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Abstract

As chip technology keeps on shrinking towards higher densities and lower operating
voltages, memory and logic components are now vulnerable to electromagnetic infer-
ence and radiation, leading to transient faults in the underlying hardware [Bau05],
which may jeopardize the correctness of software execution and cause so-called soft
errors. To mitigate threats of soft errors, embedded-software developers have started
to deploy SOFTWARE-IMPLEMENTED HARDWARE FAULT TOLERANCE (SIHFT) tech-
niques, e.g., [CCK+06; MD11; LCP+09]. However, the main cost is the significant
amount of t¢éme due to the additional computation of using SIHFT techniques. To
support safety critical systems, e.g., computing systems in automotive and avionic
devices, real-time system technology has been primarily used and been widely studied.
While considering hardware transient faults and STHFT techniques with real-time
system technology, novel scheduling approaches and schedulability analyses are desired
to provide a less pessimistic off-line guarantee for timeliness or at least to provide
a certain degree of performance for new application models. Moreover, reliability
optimizations also need to be designed thoughtfully while considering different resource
constraints.

In this dissertation, we present three treatments for soft errors. Firstly, we
study how to allow erroneous computations without deadline misses by modeling
inherent safety margins and noise tolerance in control applications as (m, k) constraints.
We further discuss how a given (m, k) requirement can be satisfied by individual
error detection and flexible compensations while satisfying the given hard real-time
constraints. Secondly, we analyze the probability of deadline misses and the deadline
miss rate in soft real-time systems, which allow to have occasional deadline misses
without erroneous computations. Thirdly, we consider how to deploy redundant multi-
threading techniques to improve the system reliability under two different system
models for multi-core systems: 1) Under core-to-core frequency variations, we address
the reliability-aware task-mapping problem. 2) We decide on redundancy levels for each
task while satisfying the given real-time constraints and the limited redundant cores
even under multi-tasking. Finally, an enhancement for real time operating systems
is also provided to maintain the strict periodicity for task overruns due to potential
transient faults, especially on one popular platform named REAL-TIME EXECUTIVE
FOR MULTIPROCESSOR SYSTEMS (RTEMS).
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Due to the invention of semiconductor-based integrated circuits [Kil76], computer
systems these days have been widely adopted in all areas of technology. Compared to
earlier tube-based solutions, embedded systems - with massively lower weight and
energy consumption - have become ubiquitous even in safety critical domains, such as
computing systems in automotive, robotics, avionic devices, and nuclear power plants.
In these domains, computing systems have to perform real-time control operations
on time to react to dynamic changes imposed by their environments. Such real-time
activities are typically modeled as tasks with hard deadlines. Any task finishing
after its deadline is considered to deliver not only a late, but also wrong result, as it
could jeopardize the whole system behavior. Therefore, the correctness of the system
behaviors depends not only upon the functional correctness of the delivered results,
but also upon the timeliness of the time instant at which these results are delivered.

In addition to timeliness, dependability has emerged as one of the most prominent
design constraints as well. Since chip technology keeps on shrinking towards higher
densities and lower operating voltages [Gar00], hardware faults caused by electromag-
netic radiation, process variations, temperature, aging, and voltage fluctuations have
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become unavoidable and increased dramatically [Con02; SKK+02; Con03; Bor05;
Bau05b; NX06; DW11]. Nowadays, the magnitude of these hardware faults can be ob-
served in all areas of computing. For example, the JAPAN AEROSPACE EXPLORATION
AGENCY (JAXA) reported that the Japanese satellite Hitomi accidentally crashed in
March 2016 and led to a severe financial damage of more than two hundred million
Euros. According to the investigations provided by JAXA [Japl6], the ATTITUDE
CONTROL SYSTEM (ACS) determined to activate the REACTION WHEEL (RW) though
the satellite was not rotating, to counteract against the wrong attitude provided by
the INERTIAL REFERENCE UNIT (IRU), which was caused by the particle strikes.
In fact, this should not have been a fatal problem. However, it initiated a series of
cascading failures. Eventually the satellite rotated abnormally and separated into
several pieces [Alel6]. More severe outcomes were reported for the car manufacturer
Toyota, i.e., several Toyota vehicles were reported to accelerate unintendedly in the
years between 2000 to 2010 [CBS10], at least 89 casualties and monetary losses of over
one billion U.S. dollars for the car manufacturer, On the one hand, radiation-induced
bit flips were assumed to be one possible miscreant [Junl3]. On the other hand, the
death of tasks caused by overload may also have led to the loss of throttle control on
ELECTRONIC THROTTLE CONTROL SYSTEM (ETCS) and have caused the vehicle to
accelerate out of control [Kool4].

Functional safety standards such as the industrial-oriented IEC-61508 [Int10]
and the automotive domain specific ISO-26262 [Int00] are provided by certification
authorities in the industry, which require a low (or very low) probability of failure
per hour (e.g., due to deadline misses). Extensive researches have been conducted
at the hardware level, such as N-modular redundant components with an additional
voter (commonly used in avionic systems [Skl76]), radiation hardening, or memory
protected with an ERROR-CORRECTING CODE (ECC). However, for cost-sensitive
mass products such as cars, applying solely hardware techniques against hardware
faults is sometimes not affordable due to its severe impact on performance, circuit
area, and energy consumption. As reported by the developers of the ARGOS satellite,
using radiation hardened hardware was simply too slow for the "data processing job
intended for it" [LWW-+02]. Even though such hardware faults occur rarely, this
waste of resources cannot be avoided if fault-tolerant techniques are implemented at
the hardware level.

Before detailing the state of the art in real-time systems with respect to fault-
tolerance and identifying potentials therein that lead to the contributions of this
dissertation in Section 1.2, the following Section 1.1 provides the context that moti-
vates this dissertation - SOFTWARE-IMPLEMENTED HARDWARE FAULT TOLERANCE
(SIHFT) Techniques on Real-Time System. Section 1.3 provides an outline for this
dissertation, and Section 1.4 shows an overview of my own contributions to research
results obtained in cooperation with other researchers.
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1.1 SIHFT Techniques on Real-Time Systems

Instead of solely addressing hardware faults at the hardware level, embedded-software
developers have started to deploy application-specific error detection [Hil00; HJS02;
OSMO02; NV03; RCV+05a; LCP+09; HAN12] and error recovery [CCK+-06; PGZ08;
BSS13]. These SIHFT techniques can selectively harden the critical tasks and sensitive
spots in the software stack. To adopt such techniques, the main cost is significantly
the additional amount of time. For example, CRAFT [RCV+05b] duplicates in-
structions that lead to relatively high susceptibility towards software failures (jump,
branches, calls, etc), but these techniques incur beyond 40% performance loss. Another
well-known example is adopting SIMULTANEOUS REDUNDANT MULTI-THREADING
(SRT) [RMOO] to provide fault detection and recovery, by which multiple copies of
the same program are executed as separate threads on the same processor leading to
significant performance overhead.

In order to support those safety-critical systems as mentioned at the very beginning
of this chapter, real-time systems technology has been primarily used and widely
studied. Even without considering any aforementioned impact from hardware faults
or any performance overhead due to STHFT techniques, making a predictable real-
time system itself is already a challenging matter. Typically, real-time systems are
designed by considering several pessimistic assumptions on system behavior and on the
environment, e.g., the WORST-CASE EXECUTION TIME (WCET) of all computational
activities. Under such a design approach, system designers can perform an off-line
schedulability analysis and develop a scheduling algorithm to guarantee that the
system is able to satisfy a given timing requirement under all operating conditions
predicted in advance. If the real-time application can be modeled by a few fixed
parameters, classical schedulability analysis can be effectively applied to provide an
off-line guarantee. However, when taking hardware faults and SIHFT techniques into
consideration, classic stories in real-time systems now might turn over a new leaf.

Everything Adapted from Hard to Soft

Depending upon the types of considered faults, e.g., permanent (remaining for in-
definite periods), intermittent (appearing frequently and irregularly), and transient
(occurring arbitrarily) hardware faults [Muk08; SS82], classical arguments and anal-
yses in real-time computing technology can be refined accordingly. To handle such
permanent hardware faults, the hardware should be hardened with redundancy tech-
niques such as replication [Pra96]. In this dissertation, mainly the effect of transient
hardware faults is investigated (also known as SINGLE EVENT UpPSET (SEU) [WAOS;
Alt13] or soft errors). Namely, each task instance may only be affected by a transient
hardware fault. All hardware faults are assumed to have either no effect (the fault
was masked by a subsequent operation) or be detected (and recovered) by SIHET
techniques. There are no unnoticed faults or timeouts in the considered systems.
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Without relying on specific hardware features, there are several well-known SIHFT
techniques to handle transient hardware faults, e.g., retry/re-execution [MD11; PM98;
BDPY6], checkpoint-based recovery [BDP96; ELS+13], etc. This dissertation assumes
that additional computations, which are incurred by some necessary protections
preventing the considered systems from system crashes and control flow errors, can
be integrated into the execution time of tasks, and mainly focuses on INCORRECT
CoMPUTATION FAuLTs (ICF), i.e., that the delivered results may be wrong in response
to correct inputs. Based on these assumptions, the effect of applying different STHF'T
techniques against ICF is simplified to the different additional workload for each task
instance and the different value of the reliability metrics.

Since transient hardware faults are supposed to appear occasionally, the additional
workload incurred by SIHFT techniques should not be directly considered as part
of the normal execution behavior. For example, consider a real-time control task
which is protected by a re-execution mechanism. At the end of each execution, a
fault detection mechanism always verifies if the delivered results are wrong due to
transient hardware faults. Depending upon the indication of the fault detection, the
re-execution mechanism may be triggered to derive a new output without further
detections. Suppose that the WCET excluding the time spent on fault detection is
X time units and that the fault detection takes additional 20% of X. This means
that normally the WCET of this task is 1.2X time units, but the WCET of this
task becomes 2.2X if a fault is detected!. Under such a scenario, directly applying
classical analyses of hard real-time systems to deliver an off-line guarantee by always
integrating workload of STHFT can be very pessimistic.

Hence, novel scheduling approaches and schedulability analyses are desired to
provide a less pessimistic off-line guarantee for timeliness or at least to ensure a certain
degree of performance for new application models considering SIHFT techniques
against transient hardware faults. Instead of assuming that recovery mechanisms
always take place, the additional workload incurred by SIHFT techniques should be
modeled more flexibly, e.g., by adopting multiple versions or probabilistic distributions.
Depending upon the considered application models, different real-time guarantees or
further reduction on the overall utilization can be achieved.

Resource-Efficient Reliability on Multi-Core Systems

When modern mainstream processors gradually become multi-core systems?, the
demand of achieving resource-efficient reliability on multi-core systems is also a
foreseeable objective in the near future. Considering the available resources in such
systems, adopting redundant cores to mitigate the impact of soft-errors by using
software/hardware redundancy techniques like REDUNDANT MULTI-THREADING

!We assume that, there is no need for the additional detection after detecting one fault.

2Commercial examples are: Tilera chip with 100 cores [Til], Intel’s Xeon Phi [Intb] and SCC [Inta],
Nvidia GPUs with 1024 processing elements [Tes]. Due to increasing core integration, emerging on-
chip systems are envisaged to contain 1000s of cores (according to the ITRS prediction: approximately
1500 cores by 2020 and > 5000 cores in 2026) [ITR].
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(RMT) [Rot99; RM00; SGF+06] is an expected solution to enable spatial and temporal
redundancy.

When we are aware of the additional overhead incurred by SIHFT techniques,
we notice that optimizing the overall system reliability also requires to thoughtfully
consider the given timing-constraints. For example, the frequencies of individual
cores in multi-core hardware may not be trivially homogeneous due to process vari-
ations [BDMO02], aging effects [SGH-+14], and performance heterogeneous (micro-)
architecture designs [ARM13]. Under these circumstances, the reliability-aware task-
mapping problem even limited to one-by-one mapping can not be trivially solved by
a greedy approach [RKS+14b] while satisfying the given timing constraints.

Furthermore, existing results in the literature typically assume that TRIPLE MOD-
ULAR REDUNDANCY (TMR)-based RMT has to be applied using three cores in parallel,
i.e., CHIP-LEVEL REDUNDANT MULTI-THREADING (CRT) [KCK+16; RKS+14b], or
that three replicas are executed on one core sequentially, i.e., SRT [RMO00]. However,
solely adopting any of them is too inefficient in practice. For example, applying SRT
on high utilization tasks to run identical copies on the same core is likely to lead to a
system overload. Moreover, the number of redundant cores in the system is limited.
Even if the number of cores is adequate to activate CRT for all tasks, the utilization
of the dedicated cores may be unnecessarily low (see some examples in Section 1.2.3).

Therefore, several optimization approaches are provided in this dissertation to
address the distinct aforementioned design constraints. The key objective is to
allocate the tasks by using RMT to improve the overall reliability defined by any
applicable metric, e.g., the sum of reliability penalty or the maximum reliability
penalty. The timing guarantee is either defined as the tolerated deadline miss rate,
which is typically adopted as the quality of service (QoS) metric, or defined as hard
real-time constraint(s). The potential applications may have competing scenarios
of concurrent execution, e.g., image recognition, data encryption, and secure video
conferences, in which various thread instances have to process different sets of data.

1.2 Contributions of this Dissertation

This dissertation focuses on the analysis and optimization for hardware-fault resilience
of system software, in particular embedded system software. The presented context
mainly addresses the effect of transient hardware faults under the SEU assumption,
so-called soft errors, that manifest the causes on the software level as bit flips [WAO0S;
Alt13] in the main memory or in CPU registers. In this section, the studied problems
and the proposed approaches are described in detail. Moreover, the contributions of
this dissertation are explicitly listed.

Chapter 2 introduces more background information about real-time systems, basic
terms and metrics for better understanding this dissertation.
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Figure 1.2: Average performance and failure rate in a LEGO NXT path-tracing
experiment as Figure 1.1 in relation to the maximum observed number
of erroneous task instances for any sliding window size k = 16.

1.2.1 Control Robustness and Soft-Error Compensation

In some control applications, a limited number of soft errors might be tolerable and
may only downgrade the control performance, e.g., the mission can still be completed
but might be imperfect. Due to the potential inherent safety margins and noise
tolerance of control tasks, the subsequent iterations might gradually correct the faulty
behavior without any need for explicit fault tolerance routines, which is called inherent
fault-tolerance [VCT+99; FGI09].

An initial experiment as shown in
Figure 1.1 demonstrates this effect on a
simple LEGO NXT path-tracing appli-
cation. While constantly going forward, Failure
light sensors are read periodically so that
the robot can follow and stay on a circu-

Start Point

lar track. During this activity, a fault is
randomly injected in each job to derive a
wrong control decision. When many jobs
are affected by faults, it could result in
the robot steering towards the outside of
the track. Such soft errors leads either

Avg. Dist.

to an increase of steering actions, or in

the worst case to the robot leaving the Figure 1.1: An initial experiment on a

track, which is marked as a failed run. path-tracing application.
Figure 1.2 illustrates the average cov-
ered distance (compared to the maximum recorded) as well as the rate at which the

experiment failed in binned sets of errors per window with a given window size k = 16.
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The window started from any instance with a sliding-window policy. We observe
that a control task can tolerate limited number of errors, which can be modeled as
a (m,k) control robustness constraint®, requiring a number m of correct runs out
of any k consecutive instances to be correct. For example, the results in Figure 1.2
suggest that (6,16) is possible, namely that the failure rate is zero if there is at most
10 errors out of 16 any consecutive instances.

One trivial way to comply with given (m, k) robustness constraints is to adopt
static (m, k) patterns that preselect m instances executed with STHFT techniques
for reliable executions in every repeated window. However, such over-provisioning
at the expense of high workloads is likely unnecessarily for low fault rates, since
erroneous executions incurred by transient faults are not always more than the number
of preselected reliable executions. Although the classical hard real-time approach
pessimistically provides an off-line guarantee based on given (m, k) constraints, it also
provides an opportunity to use SIHFT techniques adaptively on-the-fly only when it
is necessary. The aforementioned observations lead to the first contribution of this
dissertation:

Contribution 1: Static Reliable Execution and Dynamic Compensation

e (m,k) control robustness is introduced to quantify the minimal constraint for
inherent fault tolerance. By preselecting the reliable instances with a static
(m, k) pattern, the given (m,k) constraint can be satisfied, which is called
Static Pattern-Based Reliable Execution.

o A sufficient schedulability test based on a multi-frame task model is provided
accordingly to ensure the given hard real-time guarantee.

e A runtime adaptive approach, called Dynamic Compensation, is presented to
determine the executing task versions by monitoring the erroneous instances
with sporadic replenishment counters, such that the number of expensive reliable
executions can be greatly reduced under low soft-error rates.

Chapter 4 describes how and when the proposed approaches can safely compensate,
or even ignore errors, while satisfying the given hard real-time and (m, k) control
robustness constraints.

1.2.2 Deadline Misses and Probabilistic Analysis

For safety-critical systems, hard real-time guarantees are of importance to ensure that
results are not just functionally correct but also always delivered according to given
timing constraints. In hard real-time systems, it is assumed that any deadline miss

3In the literature regarding real-time systems, the term (m, k) is often used for modeling firm
real-time constraints. Here we borrow this insight to represent the robustness of control tasks.
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can lead to a catastrophe and must be avoided. By contrast, soft real-time system
can tolerate certain deadline misses. However, intuitively, deadline misses should still
be avoided as far as possible, and it is important to quantify the deadline misses to
justify whether the considered systems are acceptable.

In such systems, quantifying the deadline misses is more meaningful than validating
if every deadline can be strictly met. Based on one natural assumption that fault
rates are low (or very low), tasks may seldom have longer execution times incurred
by fault recovery operations but these may lead to deadline misses. Due to the usage
of SIHFT techniques, such various execution times for each task are modeled by
a probabilistic distribution function, by which the system designers are allowed to
provide a statistical quantification such as the deadline miss rate [MEPO04] and the
probability of deadline misses [BPK+18; BMC16; DGK+02; KC17].

Both the probability of deadline misses as well as the deadline miss rate are
important performance indicators to evaluate the extent of requirements compliance
of soft real-time systems. To derive the probability of deadline misses, probabilistic
response-time analyses [AE13; MC13; DGK+02; BMC16; TBE-+15] are typically
applied. However, most of them are based on convolution operations to calculate the
probability density functions, indicating exponential time complexity. Alternatively,
we provide PROBABILISTIC SCHEDULABILITY TESTS (PST) by using analytical upper
bounds [KC17; BPK+18] and the moment generating function to calculate the
probability of deadline misses without any convolution.

By applying existing probabilistic approaches, i.e., [AE13; MC13; DGK-+02;
BMC16; TBE+15], the probability of the first deadline miss can be obtained while
assuming that either jobs missing their deadlines are discarded or that the system is
rebooted. In this situation the probability of one deadline miss is directly related to
the deadline miss rate since all jobs can be considered individually. However, these
very restrictive assumptions often do not hold in practice as aborting jobs or rebooting
the system after a deadline miss is not always an option. If at the moment of a deadline
miss, the job is neither discarded nor the system rebooted, the additional workload
due to a deadline miss may cause a domino effect introducing further deadline misses
for the subsequent instances. Hence, the actual deadline miss rate may be greater
than the probability of the first deadline miss. Instead of deploying simulations, this
contribution provides an analytical approach to derive the deadline miss rate.

The second contribution of this dissertation provides several analytical bounds on
the probability of deadline misses and the deadline miss rate:

Contribution 2: Probability of Deadline Misses and Deadline Miss Rates

o« Two PSTs are proposed to evaluate the upper bounds on the probability of
deadline misses and ¢-consecutive deadline misses for any positive integer £.
Compared to the state-of-the-art, the proposed approaches are very efficient
with respect to the analysis runtime and the precision of the derived bounds.
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e We prove that finding the optimal real valued parameter s for the Chernoff
bound approach is a convex optimization problem.

o Leveraging on approaches in the literature, an analytical approach is proposed
to derive a safe upper bound on the expected deadline miss rate.

Chapter 5 describes the proposed PSTs in detail, explains how they can derive
the probability of /-—consecutive deadline misses, presents how they can be adopted
in the analysis of deadline miss rates, and evaluates them with extensive simulations.

1.2.3 RMT on Homogeneous Multi-core Systems

RMT is a fault-tolerance technique adapted from hardware to software, providing
temporal (or structural) redundancy by repeated execution of the same code. In
combination with DOUBLE MODULAR REDUNDANCY (DMR) and TMR, fault detection
and recovery can be achieved by replica-comparing and majority-voting, respectively.
As introduced in Section 1.1, SRT is one well-known approach activating RMT against
transient hardware faults, but it increases the computation time significantly [RMOO0].

Instead of running replicas on the same core, exploiting idle cores for task redun-
dancy provides an alternative against soft errors on multi-core systems. State-of-
the-art techniques like [Rot99; RM00; SGF+06] exploit idle cores to enable spatial
and temporal redundancy. In particular, Intel’s CRT [MKRO02] executes redundant
copies of a given task on different cores in parallel and performs error detection and
recovery using comparison and voting on the threads’ outputs. However, in modern
multi-core systems, individual cores may exhibit different frequencies due to process
variations [BDMO02], aging effects [SGH+14], and performance heterogeneous (micro-)
architecture designs [ARM13].

25%

Frequency (GHz)

ISO%

Figure 1.3: The core-to-core frequency variations (28 % at 1.2V and 59 % at 0.8V)
for an Intel 80-core test chip, adpated from [DVA-+11].
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Figure 1.3 shows the core-to-core frequency variations for an Intel’s 80-core test
chip [DVA+11]. Aging further aggravates this issue by inducing frequency degradation



10 Chapter 1. Introduction

at run-time. As shown in Figure 1.4, the performance of the task with RMT depends
upon the lowest-frequency core in the assigned core group. As transient hardware faults
might occur more within a longer execution time, executing on a higher frequency core
is assumed to have a better (lower) reliability penalty than executing on the lower one.
When applying RMT on such a multi-core system with performance heterogeneity,
efficiently optimizing the reliability of the whole system is not a trivial problem.

Deadline miss!

Core; . » Coreg
Corey s Corey
Cores Corey
0 2 4 6 8 10 0 2 4 6 8 10
(a) A task with TMR-based RMT can (b) The thread on the lowest core, i.e.,
meet the deadline. Corey, leads to a deadline miss.

Figure 1.4: Example of TMR-based RMT on three cores with different frequencies,
where the core frequencies are f; > fo > f3 > f4. The red blocks represent
the workload due to the necessary steps for synchronizing the majority-
vote mechanism, and the green blocks are the redundant threads. The
vote has to wait for the redundant thread on the lowest-frequency core
among the assigned cores, i.e., Cores or Corey, to derive a result.

Without performance heterogeneity, multi-tasking together with RMT is also a
useful combination in practice, by which the multi-cores may be utilized as much
as possible. Instead of solely using CRT— the utilization of dedicated cores may
be unnecessarily low, or SRT— activating on high utilization cores may lead to a
system overload, we propose a hybrid structure combining CRT and SRT, where
two threads are executed on the same core and one is executed on another core in
parallel, termed as MIXED REDUNDANT THREADING (MRT). Figure 1.5 illustrates
different redundancy levels among the combinations of SRT, CRT, MRT, DMR,
and TMR. Consider one task and two available cores. Since SRT-TMR imposes a
higher computation demand on one processor, e.g., three times the execution time, it
may lead to a deadline miss as shown in Figure 1.6a. Applying CRT-TMR is also
not possible, as only two cores are available. However, if we execute the task with
one replica on Core; sequentially and one on Corey in parallel like in Figure 1.6b,
TMR-based RMT as MRT is possible without sacrificing timeliness. While considering
RMT and task-mapping on multi-core systems, the performance heterogeneity and
eventually using MRT motivate the third contribution of this dissertation:
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Figure 1.5: DAG abstractions of the different redundancy levels, where the blue
nodes are original executions and the green nodes are replicas. The
yellow nodes represent the workload due to the necessary steps for
forking the original executions and replicas, joining, and comparing the
delivered results from DMR/TMR at the end of RMT.

Deadline miss!
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(a) SRT is not feasible. (b) MRT can activate TMR.

Figure 1.6: TMR-based RMT on two cores, where blue blocks are the original exe-
cution, green blocks are replicas, and red blocks represent the workload
necessary for forking and joining the original execution and replicas.
CRT is not possible since only two cores are available. While SRT is
not feasible due to a deadline miss as shown in subfigure (a), MRT can
feasibly schedule the task with TMR as shown in subfigure (b).

Contribution 3: Reliability-Aware Task Mapping Approaches
The third contribution of this dissertation is twofold. Firstly, we provide reliability
optimizations through CRT on multi-core systems with performance variations:

e Given the redundancy level of each task, we show how an elegant approach
called HUNGARIAN ALGORITHM (HA) can be applied to provide an effective
task-mapping in the course of the global optimization with respect to reliability
while considering the effect of performance heterogeneity on RMT.

o An ITERATIVE LEVEL ADAPTATION (ILA) heuristic in combination with the
above task-mapping approaches is proposed, such that the redundancy level of
tasks can be determined under polynomial time complexity.

Secondly, we present resource-aware reliability optimizations through different RMT
levels while complying multi-tasking on multi-core systems:



12 Chapter 1. Introduction

o MRT is proposed as a mixture of SRT and CRT, providing more flexibility on
RMT selections, i.e., the tasks with one replica are executed on one core and a
second replica is executed on a different core.

e Several dynamic programming approaches with different optimization granulari-
ties through the FEDERATED SCHEDULING (F'S) as a backbone are proposed
to find an optimal selection of redundancy levels while satisfying given hard
real-time constraints for multi-tasking.

Chapter 6 first describes how HA can be applied to determine an effective task-
mapping and details the ILA heuristic for RMT. Without considering performance
variations, Chapter 6 shows how SRT, CRT and MRT can be activated in different
granularities under F'S to optimize the system reliability while satisfying given hard
real-time constraints.

1.2.4 Strict Periodicity and Overrun Handling

Let us consider periodic real-time task systems. In the literature, it is usually assumed
that multiple task instances of a task are executed in a FIRST-COME-FIRST-SERVE
(FCFS) manner. Thus, it is sufficient to release the second task instance at the
moment the first task instance finishes, assuming that the first task instance finishes
after the time point at which the second task instance would have been released
according to a strictly periodic pattern.

A task is said to overrun when a task instance is not finished at the end of its
period. This may not only happen if a task misses its deadline but also when a
task has an arbitrary deadline. When SIHFT techniques are considered, e.g., re-
execution [MD11] or check-pointing [ELS+13], tasks may have a longer execution
time in some rare cases due to fault recovery operations, leading to deadline misses as
well.

In our work Systems with Dynamic Real-Time Guarantees [BKH+16], we analyzed
the impact of transient hardware faults within the execution of a task instance. During
these analyses, we discovered that the implementation in REAL-TIME EXECUTIVE FOR
MULTIPROCESSOR SYSTEMS (RTEMS) (version 4.11) does not behave as expected
when these faults occur in a task missing its deadline.

To illustrate the behavior of the original design, we provide an example with two
implicit-deadline sporadic4 tasks in Figure 1.7: 7, with C7 =6 and 17 = 10, and 7
with C =1 and T» = 2, where 77 is given a higher priority than 75°. We let 7 release
only two jobs (at 0 and 10) and let 7 have a phase of 6, i.e., the first job of 75 is
released at 6 but its follow-up jobs arrive with a period of 2.

4Chapter 2 explains the definition of different task models in detail.
For the simplicity of presentation, here the priorities of tasks are given arbitrary to show the
effects under different designs.
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Figure 1.7: The original design in RTEMS [KBC16]. The red job is postponed from
10. The arrival pattern from 16 is changed due to the lateness of the
red job, due to which all following jobs are released earlier.

We can see that 7 cannot be executed in the interval [10,16] as 7; has higher
priority, resulting in 3 expired periods. Using the original overrun handling, the job of
T released at 10 (colored red) is finished at 17, which leads to a new release of 79 at
17, as 1 is marked to have deadline misses. This results in a shift of the periodicity
of 7 by 1 for this job and the following jobs. The job that should be released at
16 is released at 17 now (orange) and the following jobs are all shifted as well. It is
worth noting that the jobs that should be released at 12 and 14 are never released
to the system. Overall, we can see that the original design in RTEMS violates the
strict periodicity and does not match the expectation of overrun handling in most
applications and researches, as two jobs do not enter the system at all and the period
of 7y is shifted due to the deadline miss of the job started at 10.

Contribution 4: Overrun Handling Support
Hence, the forth and last contribution of this dissertation tackles the design problems
arising from the original implementation of RTEMS when overruns take place:

o Two major problems in the original implementation of RTEMS are discovered,
namely, that the release patterns of tasks are shifted and that jobs are not
released at all if the overrun of a task is longer than one task period.

e A provided extension enhances fixed-priority and dynamic-priority schedulers
to provide a proper behavior (following the expectation in the literature) for
overrun handling. It is now part of the mainstream version.

Chapter 7 describes the design flaw of overrun handling in detail and provides a
comprehensive implementation included in the latest version of RTEMS.

1.3 Outline

This dissertation is structured as follows:

e Chapter 2 summarizes the background and related work required for under-
standing this dissertation.

e Chapter 3 provides the system model and the experimental platform used
throughout the dissertation.
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Chapter 4 presents the first contribution of this dissertation: The design and
implementation of the static pattern-based and runtime compensation approaches
for soft-error handling. The (m, k) model is introduced to quantify robustness
requirements, and to study the problem of scheduling tasks with multiple
versions for soft-error handling while satisfying (m, k) robustness requirements.
Chapter 5 describes the second contribution: The PST approaches for deriving
the probability of (¢-consecutive) deadline misses and the analyses of deadline
miss rates. Compared to conventional analyses, the PST approaches are efficient
with respect to the derived probability of deadline misses and the needed
calculation time. This is the first work deriving the deadline miss rate in soft
real-time task system without considering rebooting after deadline misses.
Chapter 6 shows the third contribution: We provide several reliability-aware task
mapping approaches via RMT on a multi-core system. The proposed reliability
optimizations consider two different systems: homogeneous multi-core systems
with heterogeneous performance and homogeneous multi-core systems with
multi-tasking.

Chapter 7 addresses the fourth contribution: We provide a complete enhance-
ment on fixed-priority and dynamic-priority schedulers for the overrun handling
in RTEMS, which is accepted in version 4.11 and inherited by version 5.

Chapter 8 summarizes key results and current limitations in this dissertation, and
discusses opportunities for future research.

1.4 Author’s Contribution to this Dissertation

According to §10(2) of the “Promotionsordung der Fakultét fiir Informatik der
Technischen Universitdt Dortmund vom 29. August 2011”7, my contribution to the
presented results for each chapter is listed in the following;:

e Chapter 4 describes the soft-error compensation approaches while satisfying

given hard real-time constraints and control robustness requirements. The
approach was published at LCTES 2016 [KBC+16], where I was the principal
author, contributed the design, and coordinated self-balancing robot’s imple-
mentation and evaluation with Bjérn Bonninghoff. The evaluation on linear
dependences was developed in cooperation with Mikail Yayla and published
at EITEC 2018 [YKC18], which I co-authored. The proposed approaches in
this chapter are implemented in RTEMS by Mikail Yayla during the project —
SUMMER OF CODE IN SPACE (SOCIS) 2017 — funded by EUROPEAN SPACE
AGeNcyY (ESA) [Mik17], which I mentored.

Chapter 5 at first describes the probabilistic schedulability tests for deriving the
probability of deadline misses. The approach was published at SIES 2017 [KC17],
where I was the principal author. Especially, Niklas Ueter contributed to the
theorem that finding the optimal real-valued parameter is a convex optimization
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problem. It was published at DATE 2019, where I was the principal author.
The analytical upper bounds based on Hoeffding’s inequality and Bernstein’s
inequality were published at ECRTS 2018 [BPK+18], which I co-authored.
I contributed the theorems and implementation involved in the evaluation
deployed by Georg von der Briiggen. The analyses of Deadline Miss Rates were
published at RTCSA 2018 [KBC18a], where I was the principle author and
contributed concepts, implementation and evaluation of the analyses.

e Chapter 6 describes the reliability-aware task mapping approaches for redundant
multi-threading on multi-core systems. The approaches were published at REES
2015 [KCK+15], TC 2016 [KCK+16] and TC 2018 [KBC18b]. In each of
these publications, I was the principal author and contributed concepts, design,
implementation, and evaluation of the approaches.

o Chapter 7 describes the design flaw of overrun handling and provides a com-
prehensive enhancement on RTEMS (accepted at version 4.11 and inherited by
version 5). Details were already published at WMC 2016 [KBC16], where I was
the principal author and provided concepts, design, and implementation of the
enhancement.
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This chapter summarizes the background and related work required for under-
standing this dissertation. Each contribution in this dissertation is individually
supplemented by its corresponding related work. Initially, several terminologies in
real-time systems are introduced, e.g., task models and scheduling algorithms, since
most of them are commonly used as standard models throughout the dissertation.
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2.1 Terminology of Real-Time Systems

This section is partially based on the work of Buttazzo et al., i.e., Soft Real-Time
Systems: Predictability vs. Efficiency [BLA+05], which is complemented in several
places if appropriate.

2.1.1 Typical Task Models

Depending on the timing requirements, real-time tasks are classified according to the
consequence of their potential deadline misses as follows:

e Hard real-time: All jobs must be completed within their deadlines. Any deadline
miss leads to a total system failure.

o Firm real-time: Only a limited number of jobs is allowed to miss their deadlines.
For example, the (m, k)-firm real-time guarantee allows to specify tasks in which
m out of any consecutive k jobs must meet their deadlines [Ram99].

o Soft real-time: The usefulness of the produced result gracefully degrades with
its increasing response time. If a deadline is missed, the system keeps working
at a degraded level of performance. Although deadline misses are tolerable in
the system, they should still be avoided as far as possible.

e Non real-time: It does not matter if deadline are missed or not. The usefulness of
the produced result does not depend on the completion time of its computation.

In this dissertation, only hard and soft real-time systems are considered.

2.1.2 Deadline and Activation Models

Each task in a real-time system is associated with a relative deadline. Depending
on the timing requirements, relative deadlines of tasks can be classified into three
categories: implicit, constrained, and arbitrary deadlines.

o Implicit-deadline: Each deadline of a task is equal to its minimum inter-arrival
time or period.

e Constrained-deadline: Each deadline of a task is no more than its minimum
inter-arrival time or period.

o Arbitrary-deadline: No general relation between deadlines and periods exists.

Each job of a task in the system has its absolute deadline. It is the absolute time
before which a task should be completed.

As stated above, a limited number of deadline misses are tolerable in firm or soft
real-time systems. Depending on the action against deadline misses, the system may
behave in the following two ways:

e Discards the job missing its deadline or even reboots the system. The remaining
portions of the computation will not continue but no carry-in workload is
propagated to the subsequent jobs [AE13; MC13; DGK+02; BMC16; TBE+15].
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o Lets the overrun job continue until it finishes. However, the carry-in workload
may trigger further deadline misses as a domino effect in the subsequent jobs
[BKH+16; KBC18a].

Computational activities can either be activated by a timer at predefined time
instants, named time-triggered activation, or by the occurrence of a specific event,
named event-triggered activation. In real-time systems, the activations of jobs for each
task are mostly triggered by time. Depending on how the activations are separated,
there are three activation models:

e Periodic model: All activations are strictly separated by a fixed interval of time,
called period. Suppose that the first job of task 7; is activated at time &;. The
Jj-th job must be activated at time ¢; + (j — 1)7T;, where T; is the task period.

o Sporadic model: A task has a minimum inter-arrival time 7; between the
activations of any two adjacent jobs. This task is said to be sporadic.

o Aperiodic model: If a task has no regulation with respect to its job activations,
this task is said to be aperiodic.

In general, periodic task model is usually a default system model in the imple-
mentation of REAL TIME OPERATING SYSTEM (RTOS). For example, the deadline
detection in REAL-TIME EXECUTIVE FOR MULTIPROCESSOR SYSTEMS (RTEMS) is
embedded in the routine of the task periodicity, by which the task deadline is expected
to be less than — constrained — or equal to its period — implicit. Throughout this
dissertation, only periodic and sporadic models are considered.

2.1.3 Scheduling Algorithms and Schedulability

Which job is executed on a processor can be decided by many different scheduling
approaches, e.g., a priority-based scheduling approach, a budget-based scheduling
approach, or a time-division scheduling approach, for example, TIME DIVISION
MurtIiPLE ACCESS (TDMA) [SCT10]. In a TDMA system, each task is assigned a
particular time window, called TDMA slot, such that each task uses its own slot one
after the other.

Depending on how the priorities are assigned, priority-based scheduling algorithms
in real-time systems can be classified as follows [LKA04]:

o Fized task priority: All jobs of each task are associated with a unique prior-
ity level. A task which has a shorter period gets a higher priority. This is
widely used in the industrial practice and is supported in most RTOSs, also
known as fixed-priority scheduling. Here two widely-used algorithms are RATE-
MonoToNIC (RM) scheduling and DEADLINE-MONOTONIC (DM) scheduling,
by which each task is given a fixed priority based on their periods and their
deadlines, respectively.

o Fixed job priority: Each job of a task has a single priority, whereas different
jobs of the same task may have different priorities. One well-known scheduling
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algorithm is EARLIEST-DEADLINE-FIRST (EDF) scheduling, by which the job
in the system with the earliest absolute deadline is always executed first.

e Dynamic priority: Each job may have different priorities on-the-fly. For example,
the job with the least laxity is always executed first by LEAST-LAXITY-FIRST
(LLF) scheduling.

Furthermore, depending on if CPU occupation can be transferred from one running
task to another, scheduling algorithms can be classified into two categories:

o Preemptive: A job or task instance can be preempted by another job or task
instance during the execution at any time.

e Non-Preemptive: Once a job or task instance has started to run on a processor,
it cannot be preempted by another job or task instance until it finishes its
computation. The scheduler is only invoked at the end of a job (assuming there
is no interrupt).

A real-time system is said to be schedulable, if there exists a scheduling algorithm
that schedules the system without violating the given timing constraints. A scheduling
algorithm is said to be feasible to be applied under a given real-time system if it
schedules the system without violating the given timing constraints.

To test if a scheduling algorithm is feasible to be applied under a given real-time
system, the WORST-CASE EXEcUTION TIME (WCET) of each task in a real-time
system must be known in order to derive the timing guarantee. In this dissertation,
assume that the WCET of each task is given in advance by either a measurement-based
approach! or by a static analysis. How to derive tight and safe upper bounds on the
WCET analyses is widely-discussed in the literature, which is out of the scope for
this dissertation.

Knowing the WCET of each task, utilization bounds like the seminal result of the
Liu AND LAYLAND (L&L) bound [LL73] can be used to validate the schedulability
quickly. In addition, the well-known TIME-DEMAND ANALYSIS (TDA) developed in
[LSDR&9] is applicable and even tighter than the L&L bound. However, considering
the impact of hardware transient faults, both tests may reject many task sets which
are actually schedulable if we pessimistically add the execution time of applying
error-correcting mechanism to the WCET of each task®. This concept is explicitly
discussed from different perspectives in Chapter 4 and 5.

2.2 Control Robustness and Soft-Error Compensation

2.2.1 Fault-Tolerance in Control Applications

In control theory, control systems are expected to deal with imperfect signals and the
uncertainty induced by environments. Hence, controllers are typically designed to

!Please note that there is no guaranteed upper bound for measurement-based approaches, since
the measurement-based approach in general will underestimate the actual WCET.
*We assume that the number of repeated errors is limited or given as a threshold.



2.2. Control Robustness and Soft-Error Compensation 21

(m, k) R-pattern E-pattern (Reverse) E-pattern
(3,10) | 1110000000(1001001000| 0001001001
(5,10) |1111100000(1010101010| 0101010101
(7,10) /1111111000 (1110110110} 0110110111

Table 2.1: Iterations of different patterns over different (m, k), where binary {0,1}
represents two different purposes of instances, e.g., unreliable and reliable.

make the control output gradually closer to the desired control signal with erroneous
signals in the feedback loop. Particularly, several techniques are proposed to handle
delayed [Ram99; KGC+12] or dropped signal samples [HSJ08; BS15; GDD19]. These
uncertain signals occur occasionally like soft-errors in general. If faults are not
fatal, applying techniques such as interpolation, moving average, and fuzzy design
can mitigate the effect of such soft-errors. In case a fault results in a completely
wrong result, such samples can be dropped, while a new input can be computed
using the previous inputs [Ram99; HSJ08; BS15]. Such a margin of tolerable errors,
e.g., delayed, dropped, wrong, during task executions allows us to exploit different
SOFTWARE-IMPLEMENTED HARDWARE FAULT TOLERANCE (SIHFT) schemes or even
to ignore soft-errors occasionally.

2.2.2 (m,k) Models and Static Patterns

In general, (m, k) models define that m out of k£ consecutive instances have to comply
with a given requirement, where m < k. Such a model provides a flexible but robust
requirement, which requires not only a ratio m over k but also the frequency of
correctnesses, i.e., only m within every k. In the related literature, a (m,k) firm
real-time guarantee is said that at least m out of k£ consecutive job instances of the
corresponding task can meet their deadlines. To comply a given (m, k) constraint,
several (m, k) patterns [QHO00; NQO6; Ram99; KS95] are widely used, i.e., DEEP RED
PATTERN (R-pattern) [KS95], EVENLY DISTRIBUTED PATTERN (E-pattern) [Ram99],
and Reverse E-pattern [QHO0] by which the instances are preselected for different
purposes.

In general, each pattern for task 7; is a binary string B; = {ﬁ@o, Bit,--- Bi,(ki_l)}.
Each 3;; can be either "1" or "0", and Z?ial Bi,j = m;. Since the aforementioned
static patterns are used as a backbone to comply with the given (m, k) robustness
constraints in Chapter 4, we define them formally in what follows:

Suppose that a job instance of task 7; in a given pattern B; is denoted as f3; ;,
where j =0,1,...,k; — 1. The j-th job instance of task 7; is determined as follows:

« If B; is R-pattern:

1,0 < g d k;<my
61’,3':{ JOmOC ST 01, k-1 (2.1)

0, otherwise
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o If B; is E-pattern:
1, if 5 = | [2me | ko
Bij = J H ki ] miJ j=0,1,... k-1 (2.2)
0, otherwise

« If B; is Reverse E-pattern:

B - {07 if = |[ 25 et =01, k-1 (2.3)

1, otherwise

Table 2.1 shows different static patterns over different (m, k) constraints. By repeating
a given static pattern B;, it can be guaranteed for taskr; that there must be m; job
instances marked as "1" among any k; consecutive jobs. Therefore, such job instances
can be preselected for applying necessary techniques to satisfy the given (m,k)
constraint.

2.3 Probabilistic Analysis and Deadline Misses

2.3.1 Probabilistic Timing Analysis

Several probabilistic timing analyses in the literature can calculate the probability
that a deadline miss occurs in the system. Depending on the considered task models,
they can be classified as follows:

o For periodic real-time task systems: Diaz et al. [DGK+02] provided a
framework for calculating the deadline miss probability. Tanasa et al. [TBE+15]
adopted the Weierstrass Approximation and applied a customized decomposition
procedure to derive the deadline miss probability among all possible combina-
tions. However, both of them only work for small examples with respect to the
number of jobs, i.e., 7 and 25 jobs in the hyper-period, respectively.

o For sporadic real-time task systems: Axer et al. [AE13] iterated over
the activations of released jobs to evaluate the response-time distribution for
non-preemptive fixed-priority scheduling. Maxim and Cucu-Grosjean [MC13]
proposed a probabilistic response time analysis and probabilistic minimum inter-
arrival times based on job-level convolution. Ben-Amor et al. [BMC16] provided
a probabilistic response time analysis based on [MC13], considering precedence
constrained tasks. All above approaches convolute the probability at which a new
job arrives in the interval of interest, but this convolution procedure expectedly
lead to an extremely high analysis runtime. Recently, von der Briiggen et al.
[BPK+18] proposed a novel approach to compute probabilistic response time
based on using multinomial distributions and a task-level convolution procedure,
which drastically improves the computational complexity but preserves full
precision in terms of approximation quality.

For an extensive literature review, we refer the reader to the recent survey by Davis
and Cucu-Grosjean [DC19].
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2.3.2 Deadline Miss Rate

As soft real-time systems tolerate and allow a certain amount of deadline misses, the
deadline miss rate is an important performance indicator to evaluate the proposed
analyses, scheduling algorithms, etc. Most studies in the literature [KG94; SLS+99;
BBL+03; LB05; HJS+06] use the deadline miss rate as a performance metric to
empirically evaluate their proposed approaches.

Manolache et al. [MEPO04] presented a stochastic approach for obtaining the
expected deadline miss rate analytically. Based on this, Manolache et al. [MEPO0S]
addressed the problem of task priority assignment and task mapping. They consider a
non-preemptive scheduling to reduce the computational complexity of their convolution
based approach, which is very restrictive.

2.4 Redundant Multi-Threading on Multi-Core Systems

2.4.1 N-Modular Redundancy

The most common structural redundancy solution against errors, known especially
from highly critical systems in avionics, is N-MODULAR REDUNDANCY (NMR) of
important components. Particularly, DOUBLE MoDULAR REDUNDANCY (DMR) and
TRIPLE MODULAR REDUNDANCY (TMR) [LV62; VZB+10; RM00; MKRO02] are widely
used. In a DMR setup, a functionally redundant voter component can continuously
compare the internal state of the external behavior of two components and detect a
deviation. In a TMR setup, the third component can be used to further correct one
faulty instance without repeating previous work. In REDUNDANT MULTI-THREADING
(RMT) techniques, N-Modular Redundancy becomes available for both temporal and
structural redundancy.

2.4.2 RMT techniques

RMT techniques [RM00; VPC02; MKRO2] provide fault detection and recovery mech-
anisms by replicating a task into multiple identical executing threads and comparing
the produced results. There are two ways to apply RMT, SIMULTANEOUS REDUNDANT
MULTI-THREADING (SRT) and CHIP-LEVEL REDUNDANT MULTI-THREADING (CRT).

SRT approaches like in [RM00; VPCO02] provide transient fault coverage by running
identical copies of the task on the same processor. Alternatively, CRT approaches in
[RKS+14b; MKR02; KCK+16] use redundant cores on multi-core systems for RMT,
in which redundant replicas of a given task are executed on different cores in parallel.

2.4.3 Schedulability Problem for Parallel Workloads

Some related researches for the schedulability problem of parallel workloads in fork-
join and DAG task models are known, i.e., [LCA+14; AQN+13; KKP+15; RE17].
Axer et al. [AQN+13] focused on a worst-case response time analysis with a fork-join
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task model. Li et al. [LCA+14] proposed a FEDERATED SCHEDULING (FS) strategy
to deal with parallel workloads in partitioned scheduling. Recently, Rambo et al.
[RE17] proposed a replica-aware co-scheduling by considering replicas as gangs under
a single error assumption for mixed-critical systems with much better performance
than [AQN+13]. However, most existing research assumes that the parallel workload
distribution is known, i.e., the number of threads per task is given beforehand, and
only analyze the feasibility problem in terms of timeliness. Kwon et al. [KKP+15]
tackled the scheduling problem with the global scheduling algorithm PD? [SA05] and
determine the parallel executing options by testing all possible combinations. The
above work focuses on the scheduling of given parallel workloads, whereas our work
aims to optimize the system reliability by parallelizing the workloads, scheduling them
under given timing constraints on a given multi-core platform.

2.5 Related Implementation for Maintaining Periodicity

In Chapter 7, we enhance the overrun handling mechanisms in RTEMS for keeping
the task periodicity strict. In this section, we extensively review how the other
real-time operating systems, e.g., FreeRTOS [Real6] , LITMUS?? [Bra06; BBC+07],
and ERIKA-OS [Evil6], handle overruns and maintain the periodicity of tasks.

2.5.1 FreeRTOS

FreeRTOS is a well-known real-time operating system, which especially offers lighter
and easier real-time processing. In timers.c, prvProcessTimerOrBlockTask() and
prvProcessExpiredTimer () are responsible for the periodicity of the task. The
feature of prvProcessTimerOrBlockTask() is similar to the function Period() in
RTEMS that determines if a task should be blocked or if a timer has expired. In
the function prvProcessExpiredTimer (), the expired timer is updated immediately
with the next expiry time. To maintain the periodicity, all tasks’ timers are listed
in an expiry time order and the task which refers to the head of list expires first.
Although the deadline of each task is assigned correctly in their timer, there exists no
mechanism providing overrun handling in the FreeRTOS scheduler that enforces the
correct number of postponed jobs required to be released for keeping strict periodicity.

2.5.2 LITMUSHT

LITMUS?T is a popular real-time extension of the Linux kernel. The implementation
of overrun handling for the fixed-priority scheduler can be found in job_completion()
in sched_pfp.c. With the common function prepare_for_next_period() and
setup_release() in jobs.c, it has implemented a special counter called job_no
to record how many jobs should be ideally released without overrun behavior. As
reported in [BBC+07], the system will have already advanced to the next job by the
time at which the job completion is signaled from user-space. It had another system
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call named wait_for_job_no() to handle such a overrun situation, which is replaced
completely by sys_wait_for_job_release() in the latest version of LITMUS?T,
With sys_wait_for_job_release() in litmus.c, a task is only going to sleep when
its number of released job is greater than job_no by triggering complete_job().
This is similar to the case in rate_monotonic_period() where RTEMS decides if
the period should be blocked. By this implementation, the postponed jobs should
be released consecutively until there is no postponed job, which is similar to our
enhancement in Chapter 7.

Interestingly, when adopting the EDF scheduling in LITMUS®T | we noticed that
once a job is overrunning, it gets the highest priority in the system. This results
from the fact that the distance between the job missing its deadline and its absolute
deadline becomes negative. This behavior is not well-defined in the literature.

2.5.3 ERIKA-OS

ERIKA-OS is an open-source OFFENE SYSTEME UND DEREN SCHNITTSTELLEN
FUR DIE ELEKTRONIK IN KRAFTFAHRZEUGEN (OSEK)/VEHICLE DISTRIBUTED
EXECUTIVE (VDX) Kernel proposed in [GBL+00]. Its latest version is released
in [Evil6]. According to the OSEK standard [OSEO05], the periodicity of tasks is
predefined in the OIL language file by setting up corresponding alarms to each task.
Each core only maintains one sorted alarm queue and each alarm has an assigned
time. Along with the system clock ticking, the difference between the current time
and the assigned time of the first alarm is gradually decreased to zero and the first
alarm is set to ready. As long as it is ready, one job from its corresponding task will
be released and the alarm itself will be inserted back into the queue for the next
period.

Due to the above design, jobs of all corresponding tasks from the ready alarms
will be sequentially released until there are no more ready alarms in the alarm sorted
queue. However, when there is one executing job in the system, all other alarms,
which are corresponding to lower priority tasks, could be ready at the same time,
but pending or even missing deadlines. Since there is no mechanism to monitor the
amount of time for such pending alarms, there is no further information about how
many jobs are actually postponed. Therefore, for such tasks missing their deadlines,
only the first postponed job will be released in the system and the periodicity is no
longer strict.
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This chapter summarizes the considered system models and the experimental
platforms adopted in this dissertation.

3.1 Application Model for Uniprocessor Systems

In this dissertation, a considered application can be modeled as a set of periodic or
sporadic, hard or soft real-time tasks with their implicit or constrained deadlines,
such that there are in total N tasks, denoted as ' = {71, 79, ..., 75 }. FEach task 7; e T’
is associated with a relative deadline D;.

A preemptive fixed-priority scheduling policy is assumed where the priority of a
task cannot be changed during runtime. The tasks are indexed from 1 to n where
71 has the highest priority and 7, has the lowest priority. Let hp(7;) be the set

27
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Figure 3.1: Multiple execution versions, where Ti({Cg’“, Cz-d, Cy }, D;, T;).

of tasks with higher priority than 7, and let hep(7;) be hp(1) U {7}. We assume
preemption overheads to be negligible compared to the execution time of one task
instance. If the overheads are not negligible, they can be integrated into the WORST-
Case ExecuTioN TiME (WCET) of tasks using standard approaches provided in
the literature.

Each task 7; releases an infinite number of task instances, called jobs, under a
minimum inter-arrival time constraint (or period) 7T;, which specifies the minimum
time between two consecutive job releases of ;. Therefore a job of task 7; released
at time t, must be completed not later than the absolute deadline t, + D; and the
next job of task 7; must be released exactly at (or not earlier than) t, + T; for
periodic (or sporadic) tasks. We consider implicit-deadline, where D; = T; V7; € T,
and constrained-deadline task systems, where D; <T; V1; € I.

Due to soft-error handling, e.g., error detection and recovery mechanisms, we
consider that soft-errors induced by hardware transient faults only affect every task
instance, namely job, at most once under the SINGLE EVENT UPSET (SEU) assumption.
Without using error detection and recovery, the system can still be executed with
wrong output values but without unnoticed faults, i.e., a SILENT DATA CORRUPTION
(SDC), or a even system crash. It means that if the fault rate is IF, then the probability
that the first execution of a job is incorrect is F. The following one or two executions
for detection or correction, if they exist, are assumed to be hardened perfectly; error
detection and correction always perform correctly. Without such a control of errors
in the experiments, the conclusions may not be drawn correctly, since erroneous
executions can be similar under different error rates.

Each task 7; is assumed to have several (but a finite number of) execution versions

J is associated with a distinct value of execution time Cj The
utlhzatlon of 7/ can be calculated as U} J = CJ /T;. Throughout the dissertation (bes1des

. Each Versmn (e
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Figure 3.2: Dual modes with probabilistic execution time, where

Chapter 6), we assume that there is no data dependency among tasks, i.e., we only
consider independent tasks. In this dissertation, two types of execution time models
are considered, namely:

o Multiple Ezecution Versions: Each task has multiple versions as shown in
Figure 3.1, regarding which the scheduler can decide which version 77 to execute
when a job of task 7; arrives. In Chapter 4, we consider periodic tasks to

be available in three versions, i.e., {r” 74 TZ-T}, with different execution times

it

{C’Z“,Cld,C{ }, concretely. Depending on selected SOFTWARE-IMPLEMENTED
HARDWARE FAULT TOLERANCE (SIHFT) methods, different versions provide
different levels of soft-error handling. Since not all errors lead to critical failures
of a task, but might only have an impact on the output [ESH+11], selective
protection can increase the efficiency but also reduce the quality by allowing
incorrect output [SAL+08].

Providing only a low level of protection with SIHFT techniques, the unreliable
version 7;* only protects the system from errors that lead to a system crash,
while nevertheless allowing incorrect outputs. The error detection version Tid, in
contrast, requires additional effort to determine the correctness of the output
values, for example, redundant execution, special encoding of data [SSF09], or
control-flow checking [RCV+-05a]. To enable error recovery mechanisms, the
reliable version 7, has full error detection and correction by applying error
detection techniques on a larger scale than w.r.t. Tid, e.g., increased redundancy
and voters [CRA06].

o Multiple Modes with Probabilistic Exzecution Time: Each task 7; has a set of h
distinct execution modes and each mode j with j € {1,...,h} is associated with
a different WCET Cg . Assume those execution modes are ordered increasingly
according to their WCETsS, i.e., Cg < CZH Vje{l,...,h—1}. One of the
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applicable cases, i.e., dual modes, is as shown in Figure 3.2 that each task has
two distinct WCETSs while using STHF'T techniques against transient faults.
When no fault occurs during the execution of task 7; and therefore no error
recovery is necessary, the execution is considered as a normal execution with a
smaller WCET value denoted as Cijv . If a fault is detected in a job of task 7,
the related job has a longer WCET (abnormal), denoted as C’ZA, for potential
error recovery [BKH+16]. Tt holds that C# > CN Vr;. The fault detection is
assumed to perform perfectly and to be executed at predefined checkpoints or
at the end of a job execution. This additional computation time required for
the fault detection is integrated into C’iN .

The occurrence of soft errors, i.e., that 7; is executed abnormally, is modeled
by a given probability ]P’f‘. Thus, the probability of executing a job normally is
IP’ZN =1- IP’Z-A for each job of 7;. We assume that IP’;4 is independent from previous
errors and executions according to the following definition:

Definition 1 (Independent Random Variables). Two random variables are
(probabilistically) independent if they describe two different events such that
whether one event take places or not does not have any impact on the probability
that the other one occurs.

Namely, the random variables describing the execution times of jobs of the same
or different tasks are assumed to be independent in this model.

3.2 Application Model for Multi-Core Processor Systems

Specifically in Chapter 6, we consider that an application is given as a task graph
G=(T",E), where I is a set of N nodes representing tasks, such that I = {7y, 79, ..., Tn },
and E = {egy|(72,7,)} is the set of edges denoting task dependencies.

Each task 7; has K; task versions 7; = {71, 7 2, ..., Ti K, } generated by the reliability-
aware compilation [SRA+13; RSK+11]. Moreover, each task 7; has an individual
relative deadline D; for its all its versions. Although we consider homogeneous multi-
core processor systems (detailed in Section 3.3), two different models need to be
considered:

e Cores with homogeneous performance; each core has multi-threads.
e Cores with heterogeneous performance; each core has a single thread.

When the performance of cores is heterogeneous, the execution time of task version
7k depends on the core it is assigned to. We assume the given mapping function
C; k,m(e) denotes the continuous cumulative distribution function of execution time,
according to which the execution time of version 7; ; is less than or equal to execution
time e when it is executed on core ¢,,. With this mapping function, the deadline miss
rate for a version 7;; on core ¢, can be estimated as:

Pam(Tiksem) = 1= Cj pm(D;) (3.1)
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In addition, the expected execution time of a task version 7;; depending on the
frequency of core ¢, is denoted as E(7; k.., ), Which can be calculated by the continuous
cumulative distribution function Cj i n(e).

To guarantee the timeliness, we assume that the set of tolerable rates of deadline
misses pr = {p1,p2,...,pi} is given as a hard real-time constraint in the system.
Therefore, each task must guarantee its probability of deadline miss rate to be lower
than the tolerable miss rate p;. According to Eq.(3.1), we consider version 7; ;, to be
feasible on core ¢,,. If it’s deadline miss rate Pdm(TM, Cm) 18 not greater than the
given miss rate constraint p;, i.e., Pqy, (Tik;cm) < pi, where 1 <k < K;. If there exists
a task mapping such that all tasks comply with their tolerable miss rates for each of
their feasible versions, we consider this task mapping as a feasible solution. Please
note that in this considered model each core has only one single thread, so that the
deadline miss rate is solely based on the probability distribution of the task execution
time.

3.2.1 Task Redundancy Levels

We consider task-level redundancy levels formed by TRIPLE MODULAR REDUNDANCY
(TMR) and also DOUBLE MODULAR REDUNDANCY (DMR) [RM00; MKRO02]. To
execute a task with CRT-TMR, it requires three cores to provide a majority-voting
mechanism (so CRT-DMR with two cores). In addition, we propose the mixed
usage of CHIP-LEVEL REDUNDANT MULTI-THREADING (CRT) and SIMULTANEOUS
REDUNDANT MULTI-THREADING (SRT), called MIXED REDUNDANT THREADING
(MRT), under which TMR can also be activated on two parallel cores with two replicas,
i.e., the original execution and one replica are executed on one core while a second
replica is executed on a second core. By using all possible combinations, the following
six redundancy levels can be defined:

e NON-RMT (¢): the task without any redundancy.

e SRT-DMR : the original and one replica executed sequentially.

e SRT-TMR : the original and two replicas executed sequentially.

e CRT-DMR : the original and one replica executed in parallel.

e CRT-TMR : the original and two replicas executed in parallel.

e MRT-TMR : the original and one replica executed sequentially, one replica
executed in parallel, i.e., original and two replicas in total.

These redundancy levels can be characterized as a set of directed acyclic graphs
(DAGs) [LCA+14]. Figure 1.5 illustrates the possible DAGs, where each node
(sub-task) represents a sequence of instructions and each edge represents execution
dependencies between nodes. Each node is characterized by the WCET of the
corresponding sub-task. A node is ready to be executed if all of its predecessors have
been executed. Each box represents a processor, i.e., nodes in the same block are
assigned to the same processor. We assume that each task 7; has K; given levels
generated by the reliability-aware compilation [RSK+11; HWZ06], each matching one
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of the above six redundancy levels, i.e., 7; = {7;1,7i 2,, Ti k, }. For each task 7; € T',
one of the levels is chosen to be executed, denoted as 6 = {61,605, ...,0n}. If task 7; is
executed without any REDUNDANT MULTI-THREADING (RMT), 6; is ¢; otherwise, 6;
is the above any other levels. For each level 7; ;, two parameters are assumed to be
given:

« The total execution time C; ;: The sum of the WCETSs of all the sub-tasks of
o The critical-path length L; j: The WCET of the critical-path in the given DAG,
i.e., the sum of the WCETSs of the path with the longest total WCET.

We assume that the correctness of the execution result is affected by soft-errors (faults).
The WCET is profiled off-line in a fault-free system and is protected by the adoption
of watchdog approaches. Each level 7; ; is associated with two cost values; namely,
the utilization u; ; and the number of required cores H; ;. The utilization w; ; is given
by % and H; ; is determined by the scheduling policy detailed in Section 6.3.1. We
assume that each task 7; has at least a level 7; 4 without any redundancy and that its
total execution time is not larger than its period.

Particularly for Section 6.2 dealing with performance heterogeneity, I'rtyr and
I'y denote the set of tasks which are executed in CRT-TMR mode or without RMT,
respectively. The cardinality of a set X is denoted as |X]|. J; denotes the number
of cores to satisfy all tasks activated in the decided redundancy levels 0, where
05 = |T'y| + 3 x |T'rmr|. We assume the voter and the interconnect between cores are
both hardened by special treatments without further effects from errors as in [RSS+17;
HLD+15]. Therefore, the reliability penalty of TMR-based RMT can be a negligible
value ¢, where ¢ > 0. With respect to the execution time, a task executed in TMR-
based RMT mode has to wait for all redundant threads completing their jobs due to
the usage of majority-voting mechanism. As shown in Fig. 1.4, we can observe the
fact that the slowest thread on core C3 will dominate the execution time of the task.
If the redundant thread on core C3 spends too much execution time, it may lead to a
deadline miss. Therefore, we can safely estimate the execution time of the task in
RMT mode by the execution time of its redundant thread on the lowest-frequency
core of the assigned core group.

3.3 Hardware Model

For the chapters targeting uniprocessors (i.e., Chapters 4, 5, and 7), no specific
hardware model is assumed. However, for Chapter 6, targeting multi-core systems, we
consider a multi-core processor C = {cy, ca, ..., cpr} with M ISA-compatible REDUCED
INSTRUCTION SET COMPUTING (RISC) cores that are connected in a communication
fabric, e.g., a NETWORK ON CHIP (NOC). Each core ¢; has its own instruction and
data cache to execute tasks. Let G; be a subset of cores from a many-core processor
C = {c1,c2,...,cp}, which is detailed in the next section. If G; has three cores, it
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is eligible for the task activated with CRT-TMR, which is called the core group for
brevity. Throughout this dissertation, we assume that all additional communication
overhead can be integrated into the execution time of tasks, e.g., NOC overhead,
cache coherency traffic, or shared resource accesses.

3.4 Experimental Platforms

In this dissertation, several experimental evaluations are conducted to evaluate the
proposed scheduling algorithms and analyses. The applied platforms are introduced
hereinafter.

3.4.1 Synthesized Task Sets

For uniprocessor systems, we apply the UUniFast [BB05] method to synthesize task
sets for numerical simulations or an event-driven simulator. Given a utilization value
UXN . and a number of tasks N for a desired set, the UUniFast method can randomly
generate implicit-deadline task sets. According to the suggestion from Emberson et
al. [ESD10], the task periods are generated according to a log-uniform distribution
with targeted orders of magnitude. For each task 7;, the normal utilization is assigned
with a utilization value UZ-N , while the execution time CZ-N is set to UiN STt

For multi-core systems, we apply the UUniFast-Discard [DB09] method, which is
an extended version of UUniFast for the multiprocessor (or even multi-core) domain.
This algorithm applies UUniFast unchanged for total utilization US]Xm > 100%, and
discards any task set which contains an individual task utilization UZ-N greater than
100%. Unfortunately, this algorithm becomes increasingly inefficient for large numbers
of task number N with values of UL close to N/2 [ESD10)].

sum

3.4.2 Lego Mindstorms NXT Robot

To demonstrate the scheduling approach proposed in Chapter 4, a Lego Mindstorms
NXT robot [Leg] was used as a computing unit for control applications. The micro-
controller is powered by an Atmel 32-bit ARM main processor, which runs at 48 Mhz,
while having 64 KB RAM and 256 KB flash memory. The co-processor is an 8-bit
AVR ATmegad8 processor running at 8 Mhz with 512 Bytes RAM and 4 KB flash.
The robot has up to four sensors at its disposal as well as three output ports on its
top to control up to three motors.

A REAL TIME OPERATING SYSTEM (RTOS), named nxtOSEK [Chil3] is devel-
oped, allowing us to program custom applications with C/C++ and providing access
to the Lego robot’s sensors and motors. NxtOSEK as a port of the OFFENE SYSTEME
UND DEREN SCHNITTSTELLEN FUR DIE ELEKTRONIK IN KRAFTFAHRZEUGEN (OSEK)
standard relies on two types of files: The OIL file describes the properties of tasks and

1 . . . . . .
The execution time for a unreliable version C}' is assigned to U;* - T;.
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Figure 3.3: Overview of the event-driven uniprocessor simulator released on [Kual8].

their alarms, stacksize, etc. For each task, the task body which contains the motor-,
display-, sensor- and other functions should be designed in the C (or C++) files.

3.4.3 Event-Driven Uniprocessor Simulator

We also implemented an event-driven simulator? written in Python 2.7 to simulate

the RATE-MoNOTONIC (RM) policy as well as fault occurrences.

An overview about the simulator is shown in Figure 3.3. For each task 7;, there
are only two types of events in the simulator: release and deadline. A release
event of 7; adds its new workload to the entry of 7; in the status table and places a
deadline event of 7; into the event list. The deadline event of 7; will check if the
remaining workload of 7; is zero in the status table, i.e., 7; meets its deadline, or not,
i.e., one deadline is missed. The main components of the simulator are listed in the

following:

o Task Generator: By applying the aforementioned UUniFast method [BB05]
and the suggestion from Davis et al. made in [DZBO08], the task generator outputs
a set of tasks under a given utilization value UL,
o Dispatcher: It checks if the number of jobs released by the targeted task (by
default the lowest priority task) is equal to the targeted number. If not, it

sum?

continues to dispatch the next event in the event list.

« Event List: This linked list? is used to keep tracking the following events in
the simulated task system. When a new event is inserted by another release

where UY

sum

N
= Z‘I};EF Uz .

event, the events in the list are sorted according to their future occurring time.

e Status Table: It records the number of deadline misses, the number of released

jobs, and the remaining workload for each unfinished job of a task.

According to the considered model in Chapter 5, jobs are never aborted in the
simulator. If a job misses its deadline, the remaining portion of execution time is still

executed at the same priority level before the next job of the task can start executing.

Whenever the dispatcher gets a new event, the workloads of the tasks in the status

>The complete scripts are available at [Kual§].
3This can be easily upgraded to any sortable data structure with a lower time complexity.
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table are updated with respect to the elapsed time from the previous to the current
event and the processor is assigned to the highest priority task under a fixed-priority
scheduling policy. If no ready task exists in the system, the processors runs idle until
the next job is released.

Please note that the two dashed blocks in Figure 3.3 belonging to the release
events are compatible with different considered models: 1) For this dissertation, we
followed the considered task model to implement a fault injection module, so that
each task can only be released in two different execution modes, either related to C
with high probability PiN , or related to C;A with low probability PiA. This part can be
easily revised to fit any execution time distribution; 2) As we consider a preemptive
fixed-priority scheduling policy in this dissertation, the task with the highest priority,
which has non-zero workload, will be executed. This part can be easily extended for
non-preemptive task systems and dynamic-priority scheduling policies.

3.4.4 Reliability-Aware Many-Core Simulator

In Chapter 6, we use an in-house reliability-aware many-core simulator provided
by our partner in the SPP1500-Project — Generating and Executing Dependable
Application Software on UnReliable Embedded Systems, Prof. Dr.-Ing. Muhammad
Shafique, to build up our framework. We refer the reader to more details in [RSK+11;
Reh15; RCK+16].

Tech 5.0 |Gate-LeveI Netlistm<_I|VHDL Filesm —> Estimating Masking Probabilities
ecnn. a0 = | 3 | —
Library 82 v NetList Circuit N
(TSMC 8 g Standard Logic Synthesis Parser GeGnr:gt‘or EStll_ma.t'OTI‘ of
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09| (SDF) Compiler) v Masking
7 (_ Find Gate Paths Probabilities
" Logic Activity e -
Reliability- Simulation = propabilities e .
Driveny @Ilodel Sim) (.ved) Core-to Core.
Compiler Freq_ue_ncy
SEb 1 Variation
. _| Application Application Ma
Tr:‘:':isofr?; | Executables Activity P
Instruction ‘ f — \ 4 .
Scheduling| [« Our In-house Reliability-Aware Many-Core Simulator

Manycore ISS

Reliability Analysis

Other m <—| Error Logging & Characterization |
Compiler

Blogks <—| Vulnerability Estimation |

THHH Hﬂ 100 <—m H 0 H4—| Performance Estimation |

Applications RT Penalty

Figure 3.4: Experimental setup with reliability-driven compiler, system software,
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and processor simulator.
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Overall, the framework as shown in 3.4 employs a reliability-aware many-core
simulator with integrated configurable fault generation and injection modules. Each
core implements the SPARC-v8 ISA (used in LEON2 and LEONS3 cores), which is gen-
erated using the ArchC architecture description language and related tools [ARB+05].
We extended the simulator with in-house developed configurable fault generation and
injection modules and error analysis and logging functionalities. These are required
to perform an in-depth reliability and vulnerability analysis.

For accurate reliability estimation, we synthesized the LEON3 cores using the
Synopsys Design Compiler for a TSMC 45nm technology library to obtain area,
frequency, and logical masking probabilities. We performed gate-level error masking
and propagation analysis on the netlists to obtain logical masking probabilities of
different processor components. These probabilities are then used to obtain the
instruction vulnerabilities that are later used to estimate task reliability penalties;
(see detailed procedure in [RSK+11; RCK+16]). For the fault scenario generation,
different parameters (e.g., the number of bit flips per fault, the fault rate using
the neutron flux calculator [Wil06], and the coordinates of a given location, fault
distribution, etc.) are used.

Faults in different processor components are randomly injected (as also done
in [SWK+05; MWE+03]) during the execution of a given function version. Their
effects on the application output are monitored using an error logger. Possible Errors
are categorized w.r.t their severity from the user’s perspective (e.g., application failure,
incorrect output, correct output). The results of the fault injection experiments are
used (1) to estimate the software-level vulnerability and masking properties of the
applications; (2) to analyze the reasons of application failures, e.g., accessing prohibited
memory regions and non-decodable instructions. Again, we assume the voter and
the interconnect between components are both hardened by special treatments as
in [RSS+17; HLD+15].

For the task set we analyzed, seven tasks were chosen from the embedded bench-
mark MiBench [GRE+01]: (1) SAD, (2) ADPCM, (3) CRC, (4) SusanS, (5) SHA,
(6) SATD, and (7) DCT, where the data dependencies are as follows:

« DCT - SAD - SATD
« ADPCM - CRC
e SUSAN — SHA

Each task is compiled with a reliability-driven compiler, which is based on the
GCC framework. Different reliable function versions are generated by applying
different reliability-driven transformations [RSK+11; RKS+14a] and a reliability-
driven instruction scheduling algorithm [RSH12]. These reliable function versions
provide trade-off points for reliability vs. performance. Fig. 3.5(a) shows an example
in our setup, according to different function versions under the same frequency core
have different performance. A subset of Pareto-optimal versions is selected and used
by the run-time system. For each compiled version, we estimate the performance and
the values of reliability penalties under two different fault rates, i.e., 1 fault/1MCycles
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Figure 3.5: Performance heterogeneity of the experimental setup.

and 10 faults/1MCycles, which are computed from the neutron flux, fault probability,
processor layout, and the processor frequency, which conforms to the test conditions
opted by the related work [HWZ06; LDV+04]. The reliability penalty for each function
(task) is estimated using the approach in [RSK+11; RCK+16].

3.4.5

Real System Simulation

To analyze the behavior of Systems with Dynamic Real-Time Guarantees [BKH+16],
we select REAL-TIME EXECUTIVE FOR MULTIPROCESSOR SYSTEMS (RTEMS) [RTE13]

version

4.11* to deploy experimental evaluations, where the used kernel is enhanced

“The latest release in 2018 is version 5, but it is still an ongoing branch. The proposed enhancement
is inherited from 4.11 without further changes.
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by the contribution in Chapter 7. In [BKH+16], we adopted QEMU emulators to
deploy testing instances on RT'TEMS with the chosen board support package, RealView
Platform Baseboard Explore for Cortex-A9.

rtems__task Task_i(
rtems_ task_argument unused

)

{
rtems_id selfid = rtems_task_self();
rtems_ status__code status;
rtems_ id RM__period ;
period_name = rtems_ build_name( ’P’, ’E’, ’R’, i’ );
status = rtems_rate_monotonic_ create (period_name, &RM_ period);
if ( RTEMS_SUCCESSFUL != status ) {
printf("RM failed with status: %d\n", status);
exit (1);
}
while (TRUE){
status = rtems_rate_monotonic_period (RM_period, givenTi);
update__monitor ();
LOOP(normal wecet);
task_fault = faultInjection ();
if (task__fault = TRUE){
update__monitor ();
remaining_ time = abnormal_ wcet — normal_ wcet;
if (remaining time != 0)
LOOP(remaining_ time );
}
check_deadline(deadline , task_type, selfid);
}
}

Listing 3.1: Ilustrated example of task body in RTEMS version 4.11.

For each task, the period and the priority are given and configured off-line.
Listing 3.1 presents the pseudo code of the task body implemented in RTEMS. As
we can see that LOOP () is implemented by simulating the computation time with the
given WCET. To simulate the occurrence of faults, a specific procedure is triggered
in the moment in which a task instance finishes its normal execution with a random
draw, based on the given probability of faults per millisecond. Here CZ-N determines if
the execution is prolonged to run up to a longer WCET C’ZA or not. To monitor the
system state, the enhancement proposed in Chapter 7 provides a helper function to
calculate the carry-in workload for each task potentially incurred by deadline misses
for each task.
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4.1 Overview

To avoid catastrophic events like unrecoverable system failures caused by soft errors,
SOFTWARE-IMPLEMENTED HARDWARE FAULT TOLERANCE (SIHFT) techniques have
been proposed without the needs of special hardware supports. However, maintaining
the correctness of all executions by trivially using them to each job can be very costly
due to their additional computation time. As a result, how and when to apply such
software-based approaches should consider the properties of applications and the
scheduling strategy to keep the timeliness guarantees.

From the initial experiment we did in [KBC+16] (shown in Chapter 1.2.1), we
observed that, a limited number of errors may not be that fatal due to the inherent
safety margins and noise tolerance in control applications. In control theory literature,
several techniques have been proposed to aid control applications to be stable if
some signal samples are delayed [Ram99; KGC+12] or even dropped [HSJ08; BS15].
Although they can describe the tolerance for such a delayed/dropped occurrence in
the (m, k) requirement or even more flexible model for varying intervals, none of them
have discussed how to actively decide when to maintain the correctness of executions
by using scheduling techniques. In most of control systems, having a high quality
control is the main objective. However, satisfying the minimal requirement may
only provide a minimum acceptable control performance. In order for the system to
meet both control robustness requirements and timeliness requirements, an adaptive
deployment providing high quality of control most of time without utilizing too much
timing resource is thus desired.

In this chapter, we introduce how the above fault-tolerance can be modeled as
a (m, k) robustness requirement and how a given (m, k) robustness requirement can
be satisfied by adopting patterns of task jobs with individual error detection and
compensation capabilities. Based on an off-line scheduling analysis, we propose a
dynamic compensation approach to guarantee the timeliness even under the worst
case that all the jobs are affected by soft errors, while reducing the average utilization
of the system, which can result in energy reduction for embedded systems. To the
best of our knowledge, this is the first work presenting a selective runtime adaption
for soft-error handling without skipping any job.

The presentation is organized as follows: In Section 4.2, a pattern-based method
to enforce the reliable executions is introduced. In Section 4.3, we propose a runtime
adaptive approach called dynamic compensation. In Section 4.5, the experimental
evaluation demonstrates the effectiveness of the proposed approaches. Section 4.6
summarizes the chapter. Parts of this chapter were originally published on LCTES
2016 [KBC+16] and EITEC 2018 [YKC18|.

4.1.1 Motivational Example

Suppose that we are given two tasks 7 and 7o with properties as defined in Table 4.1.
To satisfy the given requirement (ma,k2) = (1,1), only 75 is taken for executions,
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Task | (my, ki) | C} cé |l cr T
| (24) | 1 | 1+e| 2 | 4
T (1,1) X X 5 | 8

Table 4.1: Example task set properties.

which requires computation time Cj = 5 for each job. Assuming transient faults
occur at t =0 and ¢ = 8 on task 71, the example in Figure 4.1 demonstrates execution
scenarios for different compensation strategies. For simplicity of presentation, the
provided diagram starts from time point ¢ = 0.

If all 71 jobs are trivially activated with 7] to prevent any effects from soft errors
like Figure 4.1a, 75 is clearly not schedulable due to the processor overload, by which
the system utilization is over 100%, i.e., % + g > 1. To comply the requirement
(mi1, k1) for 7, one way is to statically distribute the execution of reliable jobs 77
and unreliable jobs 7{* in an alternating pattern. This static approach is introduced
as Static Pattern-Based Reliable Ezecution in Section 4.2. As shown in Figure 4.1b,
directly executing 7{ on the second and forth jobs will guarantee satisfaction of the
requirement (mi, k1) = (2,4) and avoid the processor overload even all the jobs are
erroneous. However, it is obvious that this approach is over-provisioning, since the
fault does not occur on the second job under this distribution of errors, in which the
potential correctness of the second job. In addition, the overall utilization now is

100%, which may not be good in terms of energy-saving.

In this chapter, the considered system allows limited number of erroneous exe-
cutions but requires to satisfy all the given hard real-time constraints. To achieve
this treatment against soft errors, we provide a run-time adaptive approach called
Dynamic Compensation that enhances Static Pattern-Based Reliable Fxecution by
recognizing the need to execute reliable jobs dynamically instead of having a static
schedule. As shown in Figure 4.1c, we can see that reliable execution is only activated
once on the fourth job, since satisfaction of the requirement (2,4) would only be
broken if an error occurs in this job. If the failure rate of the system is low or k; is
larger than m; greatly, the amount of expensive reliable executions can be reduced
significantly in this way. However, if there is an additional fault which occurs at ¢ = 4,
the above dynamic approach is not schedulable as Figure 4.1d. This can be solved by
using a more schedulable pattern to avoid consecutive reliable executions, i.e., once
there is a fault at 0, the following instance at 4 must execute the recovery version.

Up to here, we can see that applying SIHFT techniques efficiently is not a trivial
task. While (m;, k;) control robustness requirements need to be satisfied, the timeliness
of the real-time system also needs to be guaranteed. If the reliable execution can only
be activated right before the moment that the requirement would not be satisfied, the
resulting reduction of execution time can be utilized to save energy, which may be good
to most mobile and embedded devices with the limitation of battery capacity.
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0 2 4 6 8 10 12 14 16 18 20
(b) 71 is statically distributed.

Y S R T R
e, (1. 1)
18 20

0 2 4 6 8 10 12 14 16

(c) 71 is dynamically compensated with a reliable execution on the
forth instance.

4 4
s T h , (2,4)
7_2 1 1 1 1 \l ( 17 1)
0 2 4 é 8 1I0 1I2 14 16 1I8 ;O

T9 misses its deadline!

(d) 71 is not feasible if an additional fault occurring at ¢ = 4.

Figure 4.1: To deal with two occurring faults (£), there are different ways: The red
block presents the reliable executions 7;°, the green block presents the
executions with error detection Tl-d, and the yellow block presents the
unreliable version 7.

4.1.2 Fault Model

In this chapter, we deal with potentially wrong values in the data transfer of the
motor and the light sensor values caused by soft errors in the system. The probability
of the occurrence of a fault is assumed, and every task job has at most one fault
under SINGLE EVENT UPSET (SEU) [WAO08; Alt13]. Without using error detection
and correction, the considered system can still be executed without a system crash.
However, the wrong values in the data transfer may degrade the control performance
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and finally lead to a mission failure, e.g., under soft errors the robot deviates from or
leaves the track, but its operating system does not crash.

4.1.3 Problem Definition

From the above example, the problem addressed in this chapter can be stated as
follows: Suppose that we are given a set of timing-independent and preemptive control
tasks I' = {11, 72,..., 7 }. Each task 7; is associated to an individual (m;, k;) control
robustness requirement, which means that m; out of any k; consecutive jobs must be
correct, e.g., see [GNB18]. We assume this (m;, k;) requirement can be given by other
means analytically [KGC+12; GDD19] or empirically [BS15; YKC18].

Without restriction to a specific method, each task is assumed to have one
unreliable version 7;* with its WORST-CASE ExecuTioN TiME (WCET) C}', one
unreliable version with fault detection (namely detection version) 7¢ with its WCET
Cid, and one reliable version 7;° with its WCET C7, respectively. Due to the rising
overhead for error detection as well as for error correction, we assume that C# < C¢
< Cj, V7; €I holds. The objective of this chapter is to derive an analytical solution
utilizing the processor efficiently by reducing the amount and thus the overhead of
reliable jobs 7] such that the system can satisfy its hard real-time constraints and
(m;, k;) requirements without skipping any job.

To schedule all the above control tasks on a uniprocessor system, the RATE-
MonoTonic (RM) scheduling is considered throughout this chapter. All the control
tasks are indexed from 1 to n where 7 has the highest priority and 7,, has the lowest
priority. As stated in Chapter 2.1.3, using L1u AND LAYLAND (L&L) bound [LL73]
and the TIME-DEMAND ANALYSIS (TDA) may unnecessarily reject many task sets
which are schedulable actually. In this chapter, a sufficient schedulability test based
on a multi-frame task model [MC97] is provided to validate the proposed scheduling
approaches.

The objective of this chapter is how to efficiently utilize the processor by reducing
the number and thus the overhead of reliable executions 7;” such that the system can
satisfy both its hard real-time and (m;, k;) requirements while maintaining low overall
utilization without skipping any job. The off-line solution to this problem is presented
in Section 4.2, whereas the on-line solution is presented in Section 4.3. In Section 4.4,
an empirical approach to obtain (m, k) requirements is introduced.

Please note that the proposed approaches are not limited to the RM scheduling.
They can be easily extended for constrained-deadline tasks, in which D; <T;, V1; €[,
and the priority assignment policy should be changed to DEADLINE-MONOTONIC
(DM), by which the shorter the relative deadline, the higher the assigned priority.
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4.2 Static Pattern-Based Reliable Execution

In this section, we first show how to enforce the (m;,k;) requirement by applying
(m, k) static patterns to allocate the reliable executions for a specific task 7;. While
the adopted pattern may affect the schedulability, stability, and flexibility, deciding
the most suitable pattern is out-of-scope of this work. The scheduling analysis and
the illustrated example are presented at the end of this section.

4.2.1 Static Pattern and Soft-Error Handling

To fully utilize the fault tolerance, it should be clear that the most efficient way
is to execute the reliable version of task 7; only at the essential jobs by which the
amount of reliable jobs is equivalent to m; for every k; consecutive jobs for a (m;, k;)
requirement. To ease the static analysis as well as to reduce the implementation cost,
we adopt the well-known concept of (m, k)-patterns [QH00; NQO6; Ram99; KS95] that
defines a partitioning of jobs within any k; consecutive jobs. To adapt the concept
for the targeted purpose, the partitioning is redefined as follows:

Definition 2 ((m,k)-pattern). (m,k)-pattern of task 7; is a binary string B; =
{51'70751‘,1, . /Bl-’(ki_l)} which satisfies the following properties: 1) 3; ; is a reliable job
if B;; =1 and a unreliable job if 5; ; = 0 and 2) Z?ial Bij = m.

By repeating the (m, k)-pattern B;, a job pattern of 7; can be obtained. If we can
guarantee that all reliable jobs in (m, k)-pattern are all correct, a (m;, k;) requirement
for 7, must be satisfied. A trivial way is to directly execute the reliable version 7;"
for every m; jobs, which is called Reliable Ezxecution (RE) for the rest of chapter.
However, directly applying the reliable version on each reliable job is not the only
option. Giving a try with an unreliable version before directly executing the reliable
version in a same period may also be feasible to deliver the correct jobs, which is called
Detection and Recovery (DR). To notate briefly, both static approaches (static-RE
and static-DR) for the rest of this chapter are denoted as STATIC PATTERN-BASED
RELIABLE EXECUTION (SRE) and SDR, respectively.

For implementation, each control task 7; can use an index to identify the current
job on a (m, k)-pattern B; with a given (m;, k;) requirement. When the current job in
B; is reliable, the reliable version 7" and the detection version TZ»d should be executed
accordingly depending upon the adopted strategy, i.e., RE or DR. In contrast (index
points to an unreliable job), the control task keeps executing the unreliable version 7;*
without fault detection safely. After all, (m;, k;) requirement will be satisfied through
RE or DR with a static (m, k)-pattern that the number of reliable jobs within window
size k; must be equal to m;.

4.2.2 Offline Scheduling Analysis

Due to the availability of multiple versions for each 7;, the periodic control tasks may
have different distinguishable execution times depending on the executing versions.
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To validate the system schedulability, the multi-frame task model proposed by Mok
and Chen [MC96] can be applied for describing the studied task set. Each task can
be transformed to a multi-frame real-time task 7; with k; frames, period T;, and
an array of different execution times, i.e., {C? , C’Z-l, e Cfi_l}, in which the array of
execution times for each task can be determined by given (m, k) patterns. Without
loss of generality, each task is assumed to has at least two frames, i.e., k; > 2. If a
task has a (1,1) requirement, we can artificially create a multi-frame task with two
same execution time frames.

Definition 3 (Maximum of the sum of the execution times). For any o consecutive
frames of task 7;, let ;(0) be the maximum of the sum of the execution times. For
brevity, we define 2;(0) = 0.

Therefore, Q;(1) is max?ial C'ij and €;(2) is max?ial(Cg + C’Z.((jﬂ) mod ki)). It is
not difficult to see that ;(o) is equal to Q;(c mod k;) + [%J 22261 C’ij when o > k;.

With the critical instant of multi-frame task by Definition 5 in [MC96], the
schedulability test of task 7, can be given as follows!:

Lemma 1. Suppose that all the multi-frame tasks in hp(7,) under fixed priority
scheduling on a uniproccessor are schedulable. Multiframe task 7, is schedulable, if

3t with 0<t<T, such that Q,(1)+ Q([Ti])s t (4.1)
Ti€ hp(1q) i

Proof. This directly comes from Theorem 5 and Lemma 6 by Mok and Chen in [MC96].
By using the definition of critical instant [MC96], we can ensure that task 7, must be
schedulable under fixed-priority assignment, if there exists a time point ¢, where the
worst case response time is less than deadline T,. ]

To calculate Eq. (4.1), ©;(o) for each task 7, must be found out, where o =
1,2,...,k; — 1. One trivial way is to construct a look-up table for the first k; entries,
and derive Q;(0) in O(k?) for o =1,2,...,k; — 1. To test the schedulability in off-line,
all the task frames in the test must be considered under the assumption that reliable
executions always follow a given pattern to take place statically. Depending on which
strategy is applied for reliable executions, i.e., RE or DR, the peak frames with the
maximum execution time and €;(o) for each task 7; should be different in the worst
case. Suppose that each task is given a (m, k) pattern B;, the precise rules to calculate
Q;(0) can be defined as follows:

o Detection and Recovery (DR): For each unreliable job marked as "0", the
execution time should be considered as C}* for the unreliable version 7;*. As the
worst case is re-executing 7, right after Tl-d in the same period, each reliable job
marked as "1" in B; should be considered as Cid +CY.

!Typically in the literature regarding scheduling and priority assignment, 7 is often used instead
of 7, when describing a specific task. However, k in this chapter is already used in (m, k) requirement
and thus a different parameter ¢ is used here.
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2 7
no| (24 | 1] 23
To (1,1) x | x | 5 |10

Task | (mi, ki) | C} ciler| T
4

Table 4.2: Task set properties for demonstrating schedulability tests.

« Reliable Execution (RE): For each unreliable job marked as "0", the execution
time is set as C;'. As the worst case is executing 7, directly with RE, the
execution time of each reliable job marked as "1" in B; is Cj.

The following example illustrates how Eq. (4.1) can be applied for different
strategies:

Example 1. Suppose that there are two tasks 7 and 75 in I', and the corresponding
properties for 71 and 7 are given as shown in Table 4.2. The given pattern for
task 71 is E-pattern [Ram99], by which (2,4) requirement can be represented as
B; ={0,1,0,1}. For simplicity, 7 requires (1,1) and only has 735 to execute.

For DR strategy, according to the above rule, the pattern B; should be transferred
as {C},C{ + C7,C1,C + C7}. By checking with Eq. (4.1), none of ¢ from 0 to 10 can
pass the schedulability test. For example, when ¢ = T5 = 10,

(1) + ([14—0]) > 10 (4.2)

where Q2(1) = C5 and Q4(3) = C + 2C{ + 2C]. Hence, task 7 is deemed to be
unschedulable with DR strategy. For RE strategy, pattern B; can be transferred to
{C},CT,Ct,CT}. Based on Eq. (4.1), we can test whether task 7o is schedulable. As
shown in Eq (4.3), when ¢ = 8:

(1) + (E]) <8 (4.3)

where Q2(1) = C3 and 24(2) = C{ + C]. Therefore, the given task set can be
schedulable with RE strategy. O

4.3 Dynamic Compensation

As revealed in the motivational example, it is pessimistic to allocate the reliable jobs
strictly due to the fact that soft errors randomly occur from time to time and limited
faults are tolerable. To obtain the timeliness guarantee, Lemma 1 must be applied with
the assumption that reliable executions follow a given pattern to take place statically.
In fact, it is possible to adaptively schedule tasks in run-time but still guarantee the
behaviors in the worst-case scenarios. Here we propose a runtime adaptive approach,
called DyNAMIC COMPENSATION (DC), to decide the executing task version in run-
time by enhancing Static Pattern-Based Reliable Execution and monitoring the
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Figure 4.2: Example of successful executions in the proof of Theorem 2, in which
(a) is the original jobs of 7; and (b) is the jobs of 7; after the insertion.
x number of S insertions at most only push out « reliable jobs.

erroneous jobs with sporadic replenishment counters. The main idea is to execute the
unreliable jobs as many as possible and exploit their successful executions to postpone
the moment that the system must enforce the (m;, k;) requirement. It is worth noting
that the resulting distribution of execution jobs can still follow the binary string of
(m, k) static patterns even in the worst case. Please note that, we only consider the
detection version Tl-d for the execution of unreliable jobs in the DC approach in order
to know whether the derived result is correct or not on-the-fly.

4.3.1 Preprocessing

Suppose that a static pattern B; is a binary string and given as the initial input. In
Section 4.2.1, only the minimum amount of reliable executions is used to comply the
(mj, ki) requirement without considering the positive impact of successful unreliable
jobs. However, a successful execution of an unreliable job can still be counted as a
correct run like a reliable execution. Such cases can be handled carefully in the DC
approach to ensure that the future jobs can still satisfy the (m;, k;) requirement.

The key idea is to postpone the adoption of the original binary string B; due
to unreliable jobs with successful executions. For the simplicity of presentation, an
S denotes a successful execution for each unreliable job, by which each successful
execution can insert one S into the original binary string B;. Theorem 1 shows that
the above procedure can still satisfy the (m;, k;) requirement:

Theorem 1. Given a control task 7; with a (m;, k;) requirement, a task is executed
repeatedly based on a (m,k)-pattern B;. If there are z successful executions of Tid
denoted as S inserting into the sequence of jobs, task 7; can still comply the (m;, k;)
requirement with the given pattern B; for any consecutive k; jobs, in which x > 0.



48 Chapter 4. Soft-Error Compensation

Proof. We can prove this by contradiction. Suppose that the insertion of x successful
executions S violate the (my, k;) requirement from time ¢ to ¢+ k; - T;. By definition of
the (my, k;) requirement, the total amount of successful executions and reliable jobs
must be less than m; within time interval [¢t, t + k; - T;]. The interval must start with
an original job 0/1 or a successful execution S including k; consecutive executions.
For k; consecutive executions, suppose that there are x successful executions. x
successful executions S are inserted into the original sequence of jobs, and z jobs thus
are pushed out from the time interval. For example, the original jobs of 7; can be
shown as Figure 4.2a, in which z is 2 and (m,, k;) = (3,6). By the assumption of not
satisfying the (m;, k;) requirement, the amount of reliable jobs "1"s must be less than
m; —x within time interval [¢, ¢t + k; - T;]. However, there are only at most z of reliable
executions denoted as "1" being pushed out from the time interval by inserting x
successful executions S as shown in Figure 4.2(b). It means that, the total amount
of successful executions and reliable jobs is at least m; within the time interval [¢,
t + k; - T;]. Thus, the contradiction is reached. O

From Theorem 1, we notice that, the number of consecutive unreliable executions
before a reliable job, i.e., jobs marked as "0" before a job marked as "1", represents the
number of tolerant faults before the moment that reliable executions must be executed
for enforcing (m, k) requirement. On the one hand, an erroneous execution can only
affect k; — 1 number of the following executions. On the other hand, unreliable jobs
may likely provide successful executions like reliable executions. Hence, they should
be executed as many as possible but under a counter-based control. To realize this
idea, we use a set of sporadic replenishment counters to monitor the current status of
fault tolerance and aid the runtime adaptation.

To exploit the most amount of unreliable jobs in the (m;, k;) requirement, the
given (m, k) pattern B; is always rearranged so that the binary string always starts
from 0 and ends with 1, i.e., the first job is unreliable and the last job is reliable.
After rearranging, the number of partitions as p; is counted, such that one partition
is composed of a group of consecutive unreliable jobs and a group of consecutive
reliable jobs. For example, given a pattern B; = {0,1,1,0,0,1}, p; is set to 2, since
there are two partitions, i.e., {0,1,1} and {0,0,1}. To describe the partitions for
implementation, two sets of counters are required, i.e., counter o; ; € O; and counter
a;j € A;, where j € {1,...,p;} and p; is the number of partitions in task 7;. In each
partition, counter o; ; is prepared to describe the number of unreliable jobs, whereas
counter a; ; records the number of reliable jobs. For the above pattern B;, the set of
counters A; will be set as {2,1}, and O; will be set as {1,2}.

4.3.2 Compensation and Replenishment

For each task 7;, a mode indicator II; is used to indicate the behaviors of dynamic
compensation under different statuses, i.e, II; € {tolerant, safe}. If task 7; cannot
tolerate any error in the following jobs, the mode indicator is set to safe and the
compensation is activated for complying the robustness requirements accordingly. If
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Algorithm 1 Dynamic compensation of task 7; with (m;, k;)

1. procedure dyn_Compensation(mode 11;,index j)
2: if II; is tolerant mode then

3: result = execute(r?);

4 if Fault is detected in result then

) 0 j = 0jj— 1;

6 Enqueue_Error(o; ;);

e if 0;; is equal to 0 then

8 Set II; to safe mode;

9 Set £; to Qi js

10: else

11: either Detection_Recovery() or Reliable_Execution();
12: b;i=4; -1,

13: if ¢; is equal to 0 then

14: Set II; to tolerant mode;

15: j=(j+1) mod k;;

16: Update_Age(Q;);
17: end procedure

task 7; can still tolerate an error, the mode indicator is set to tolerant and the task
executes the detection version Tid in the next job. The pseudo-code is presented in
Algorithm 1, and detailed as follows:

o Whenever an erroneous result is observed, the current counter o; ; is decreased
by one unit (Lines 4-5). After k jobs, one unit needs to be increased back to
the same counter o; ; (Lines 6 and 16).

o When the current tolerance counter o; ; is equal to 0, task 7; is required to be
executed in the safe mode. ¢ is set to a;; (Lines 7-9).

e In safe mode, ¢ will be decreased iteratively. When /£ is reduced to 0, the task
turns back to tolerant mode and update the index of partition j (Lines 13-15).

Particularly, there are two different strategies (Line 11):

+ Detection and Recovery (DR): The task will first execute 7¢. If there is
a fault detected in the result, the system has to re-execute the job with the
reliable version immediately in the same period.

o Reliable Execution (RE): In safe mode, the task will execute the following
jobs with the amount of a; ; of reliable versions 7;" obstinately.

Due to the flexibility of counters @; and A;, Algorithm 1 is applicable for any
given pattern. To notate briefly, the DC approach (Algorithm 1) in combined with
two strategies is denoted as DRE and DDR for the rest of this chapter.

In fact, we can notice that, the resulting jobs sequence will perform the same as
Static Pattern-Based Reliable Execution in the worst case as the following:
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Lemma 2. Given a (m, k)-pattern B;, in the worst case that all the unreliable jobs
are erroneous executions, the DC approach (Algorithm 1) will follow the static pattern
B; to execute detection and reliable versions accordingly.

Proof. This is based on the proof of Theorem 1, by taking the fact that there is no
successful unreliable execution inserting to the static pattern. If there is no insertion
in the binary string of static pattern B;, B; is exactly the same as it is. Therefore, the
DC approach (Algorithm 1) behaves the same execution sequence of jobs as Static
Pattern-Based Reliable Execution. O

4.3.3 Feasibility Test

Based on Lemma 2, thus, the schedualibility test in Section 4.2.2 can be directly
applied to test the feasibility for the worst case, where all unreliable jobs are applying
an error detection technique. For each task 7;, the following theorem shows that
(mj, ki) requirement can be satisfied by applying the DC approach (Algorithm 1):

Theorem 2. By applying the DC approach (Algorithm 1) with a given pattern B;,
the control task 7; always comply its (m;, k;) requirement in any consecutive k; jobs
even in the worst case.

Proof. This property can be proved directly. Suppose that given a interval of k;
consecutive executions of task 7;, there must be two cases, either some of unreliable
jobs are correct or all unreliable jobs are never correct.

For the first case, if the output of unreliable jobs are correct, by applying the DC
approach (Algorithm 1), the system will keep execute the detection versions without
changing the dynamic counters. From Theorem 1, the correct execution of unreliable
jobs only postpone the adoption of static patterns B;, so that the amount of correct
jobs is at least m; and (m;, k;) requirement is still enforced in any consecutive k jobs
jobs. For the second case that all the unreliable jobs are never correct, Lemma 2 shows
that the DC approach performs as same as SRE, which enforces (m;, k;) requirement
by a given pattern B;. Therefore, (m;, k;) requirement for task 7; will be satisfied by
applying the DC approach even in the worst case that all executions of unreliable
jobs are erroneous. O

4.4 Empirically Obtaining (m, k) Requirements

In this section, we present one empirical approach to obtain (m, k) robustness require-
ments. First of all, we need to find the potential candidates (m, k) requirements that
can prevent the targeted application from a mission failure. The potential candidates
are defined as follows:

Definition 4 (Finding (m,k) candidates). The potential robustness requirement
candidates (m, k) can be found by finding the minimum number m’ of the correct jobs,
given sliding window size j, among all the possible (i,7) observed, i.e., (m, k) = (m/, k).
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Figure 4.3: The empirical process of finding and verifying (m, k) robustness require-
ments. Red blocks are for finding, green instructions for verifying (m, k)
requirements.

Among the candidates, the best one is selected as follows:

Definition 5 (Determining the best (m, k) candidate). Out of all candidates, the
best (m, k) candidate has the lowest m compared to its k, while guaranteeing the
prevention of mission failure. If the ratio 7* of (m, k) candidates is equal, the candidate
with the larger difference k —m is chosen.

Please note that if the ratio of k to m of two robustness requirements is equal,
then (m, k) with the higher difference between k and m is easier to be satisfied. For
example, (1,2) needs a much strict pattern such as {0,1}, whereas (2,4) can also
allow an execution pattern like {0,0, 1,1}, which has a higher flexibility to apply the
proposed compensation approaches. Therefore, we pick (2,4) rather than (1,2) in this
case. In Figure 4.3, we present how to empirically find and verify (m, k) candidates
with the instructions step-by-step. In the red blocks in Figure 4.3, we specify the
steps for finding (m, k) candidates, and in the green blocks we specify the steps for
verifying (m, k) candidates.

4.4.1 Finding (m,k) candidates

At first, we find the maximum fault rate, denoted as finqz, for which the system
always runs without a mission failure. The fault rate should be high enough so
that any increase of it would cause a mission failure. Afterwards, we run several
experiments and inject faults into jobs of 7; based on fi,q; Without any fault detection
and correction routines, and record the information about whether a fault occurred
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in the jobs of 7; in a bit sequence and do this for all jobs of 7; that are executed by
the system in each experimental run. With sufficient amount of bits, we quantify the
correctness to prevent mission failure by finding the minimal amount of correct jobs
m in every k consecutive jobs with a size k sliding window through the bit sequence
to derive certain (m, k) requirements and find the tightest one.

4.4.2 Verifying (m, k) candidates

Up to here, we should have several distinguishable (m, k) candidates. To find out the
best one over these candidates, we configure the system with a fault rate frqi > fimaz,
which definitely causes the system to fail when no protection in executions. Afterwards,
we sequentially start from the first, which is the potentially best, (m, k) requirement
in the list to verify if the selected candidates are able to prevent mission failures. We
adopt (m, k) R-pattern [QHO00; NQO6] to comply the (m, k) requirement by executing
reliable versions accordingly. If the system run over the application without a mission
failure, we then say the tested (m, k) empirically works. If not, we then try the next
best requirement in the list, till we can reach a stable (m, k) requirement.

4.5 Experimental Evaluation

In this section, we use experiments to demonstrate the effectiveness of the proposed
approaches. Given an user preferred (m, k) pattern B, the proposed approaches and
some baseline approaches as shown in Figure 4.4, are listed as follows:

o Fully Robust (FR): The system only runs the reliable versions. This is the most
robust way against potential errors.

e SRE-B: The system directly executes a reliable version if the current job of B is
marked as reliable (see Section 4.2).

e SDR-B: The system gives an additional chance to execute a detection version
7& when the current job of B is marked as reliable. If any fault is detected, a
reliable version is executed immediately in the same period (see Section 4.2).

o DRE-B: By applying the DC approach (Algorithm 1), the system starts to
execute reliable versions if the current fault tolerance counter is depleted (see
Section 4.3).

o DDR-B: By applying the DC approach (Algorithm 1), the system executes a
detection version Tid again when the tolerance counter is depleted. If the result
is not correct, a reliable version is executed immediately in the same period (see
Section 4.3).

For simplicity of presentation, we let all tasks have the same pattern B. In general,
the proposed approaches in this chapter can work well with the other techniques
in the literature which require the bounded occurrence of delayed /dropped samples
[Ram99; HSJ08; BS15; KGC+12]. These existing solutions can be considered as
one of the above baseline approaches, i.e., FR or SRE. Specifically, applying static
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patterns to guarantee the presence of mandatory jobs in [Ram99] can be considered as
SRE. Running in an open loop for each invalid sample followed by a certain number of
reliable jobs in [KGC+12] is also similar as SRE. In [HSJ08; BS15], while the sample
does not appear in time, the previous control value is held for the next loop, in which
all the jobs are fully reliable as FR to prevent from further soft errors.

The evaluation is performed in two separate experiments: a case study with a
practical robotic application and a numerical simulation for synthesized task sets.
For the case study, we extend a self-balancing robotic application, i.e., NXTway-
gs [YYal0], with a fault injection mechanism and apply the proposed compensation
approaches. Here all the (m,k) robustness requirements are obtained by several
empirical experiments in advance. We evaluate the proposed approaches based
on the overall utilizations for varying fault-rates and (m, k) requirements for this
robotic application. To calculate the overall utilization after finishing a test track, we
consider the number of periods, denoted as |p|, and the numbers of executed unreliable,
detection, and correction versions of a task, denoted as |ul, |d|, and |r|, respectively.
The overall utilization is calculated as follows:

[ul G}t + [r|CF

U P i A G b 2 4.4
SRE Ip|T: #4)
[u|Cf* + (|d| = [r)C + |r[(Cf + CF)
USDR = T (4.5)
d|Cd + |r|CT
Uppp = ——1 7% 46
DRE p|T; (+6)
(ld - rhey + Iricf + ¢f)
UDDR = pIT; (4.7)

In the numerical simulation, we use Lemma 2 to report the success ratio in
terms of the schedulability for different proposed approaches with different given
(m, k)-patterns. We only apply two well-known static (m, k)-patterns, which are the
DEEP RED PATTERN (R-pattern) [KS95] and the EVENLY DISTRIBUTED PATTERN
(E-pattern) [Ram99] as shown in Table 2.1. Please note that, in the DC approach,
the E-pattern is actually be transferred as the Reverse E-pattern [QHO00] in the
preprocessing phase. Please refer back to Chapter 2 for more details of (m,k)
patterns.

4.5.1 Case Study: Two Wheeled Mobile Robot

We consider a self-balancing application, i.e., a two wheeled mobile robot on LEGO
Mindstorms NXT equipped with a modified boot loader to run the nxtOSEK [YYal0].
There are three periodic real-time control tasks in this robotic application: (1) Balance
Control, (2) Path Control, (3) Distance Control, which are related to a Gyroscopic
Sensor, two Light Sensors, and an Ultrasonic Sensor respectively. Each sensor samples
the environment at a given rate and is connected as a slave to an I2C' peripheral
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Figure 4.4: Example illustrates different compensation approaches. Given the R-
pattern (2,3), i.e., B =(0,1,1). Suppose faults (£) occur at the second
and third jobs. Yellow blocks are unreliable executions. Brown blocks
are the unreliable executions of detection versions. Red blocks are
reliable executions.

bus. Sampled values are obtained by a master controller that initiates reads from the
Sensors.

It has been shown that this operation can be suspected to radiation-induced faults
and software-based hardening is applicable [NVS+02]. While different techniques are
available to harden the complete application, it lies beyond the scope of this chapter
to apply and evaluate system-wide fault-tolerance, e.g., control-flow and memory
errors. Hence, we solely consider the vulnerable access to the sensors in this case
study. While the applicability of sophisticated software fault-tolerance mechanisms
has been shown for I?C implementations [NVS+02], the sensor data is also crucial to
the control application and thus serves the targeted purpose.

Fault Injection and Task Versions

To demonstrate the system under the threat of transient faults, we use a simplified
error model and define that for each independent sampling, the value may deviate
from the true value with a probability prq.: per job. By providing proxies to the
original calls that effectively access the bus to read the sensor values, we provide an
unreliable version that heuristically injects errors to the returned value. An error
detecting proxy is then provided with an according overhead [NVS+02], and a reliable
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Figure 4.5: Overall Utilization after applying different compensation approaches
on Task Path, where lower is better. Two horizontal and dashed bars
represent the maximum (0.457) and the minimum utilization (0.265).

Task Name | m | k | Period | Unreliable (us) | Detection (us) | Reliable (pus)
Balance 111 4000 X X 435
Path 3 | 10 | 1000 99.267 102.598 291.139
Distance 319 3000 99.933 103.93 173.217

Table 4.3: Properties of task versions in nxtOSEK-GS [YYal0], which are associated
with data sampling of Gyroscopic Sensor, Light Sensor, and Ultrasonic
Sensor respectively. The time unit here is microsecond (us).

proxy that uses majority voting. Within these three versions of the control tasks, all
calls to read the sensors are hooked with the proxies, and, for the error detection
version, the comparison result is propagated to signal the success of the respective
task. The average execution time for each task version is profiled and shown in
Table 4.3, along with the respective task periods in microsecond and feasible (m;, k;)
requirements, i.e., (1,1),(3,10),(3,5) respectively. The robustness requirements are
again derived from empirical experiments where the self-balancing robot needs to
follow a given monitor while keeping balance, and the fault rate was kept at 30%.
Within the empirical experiment, the R-pattern was used for both dynamic and static
approaches.

Experimental Results

In this experiment, we evaluate the effectiveness of different compensation approaches
based on the overall utilization. In addition, we vary the (m;, k;) requirement of
the Path Control task to show the corresponding impact on utilization. In order to
calculate the overall utilization, we monitor the number of executed jobs of each task
version and multiply these by the profiled execution times. In addition, we acquire a
maximum utilization resulting from applying FR, which is 0.457, and serves as the
baseline as it represents the overall utilization in absence of the proposed method,
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Figure 4.6: The overall utilization of SRE-R can be lower than DDR-R.

and with full protection against errors. The minimum overall utilization is 0.265 and
is obtained by solely using the unreliable version for all task jobs, resulting in no
protection against soft errors.

Figure 4.5 presents the results for the self-balancing application described above for
different (m;, k;) requirements and varying fault rates. When the fault rate increases,
the overall utilization of dynamic compensations also rises, since the requirement of
reliable executions is increased within the application execution. On the other hand,
we can notice that SRE-R will always be constant for a fixed (m;, k;) requirement,
as the overall utilization is deterministic by the amount of job partitions. Using
SDR-R results in lower utilizations, as it benefits from the dynamic reaction according
to the fault distribution. When the fault rate is as low as 10% and the (my, k;)
requirement equals to (3,10), the probability of activating reliable executions is rare,
and, hence, both dynamic compensation approaches, i.e., DRE-R and DDR-R, can
closely achieve the minimum overall utilization. On the other hand, when the fault
rate is as large as 0.3 and the (m;, k;) requirement is tight, i.e., (7,10), the difference
between SRE-R and both dynamic approaches is limited. Interestingly, given a tight
(m, k) requirement, SDR-R results in lower utilization than DRE-R. However SDR-R
will likely compensate for an error that can safely be neglected while for small m.

Interplay of Different (m,k) and Fault Rates

In Figure 4.5, we can see that DDR-R always dominates the other approaches. However,
we also noticed that it is not always the case when the gap between the execution
times of C] and C’fl is closer under some circumstances as shown in Figure 4.6. This
motivates us to investigate the impact of the difference between the reliable version
7; and the detection version Tid by adopting a scaling factor S to control the gap

r

between the execution times of detection version and reliable version, where S = %
In addition to .S, the considered parameters here are the fault rate and the ratio %l
Figure 4.7 presents the linear dependences between the scaling factor S and the

ratio Uggp/Uppr. Generally, if the S is higher, DDR-R can obtain more benefit. If
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Figure 4.7: The linear dependences between the scaling factor S and the ratio
gﬁ;ﬁ describe how much DDR-R can outperform SRE-R in the overall
utilization.

only the fault rate [F is increased, the gradient decreases (see blue and black plots),
since more faults enforce DDR-R to execute the detection and the recovery versions
within one period. If only m is increased, the gradient increases because Uggy generally
increases more than Uppr. When S = 1.5, SRE-R only has 1.2 times overall utilization
compared to the DDR for the red plot, and one for the green plot. For blue and black
plots, SRE-R outperforms DDR where F = 30% in the region that S < 2. As a result,
it is not always beneficial to solely adopt DDR-R, though it seems to be the dominant
technique in many cases. When the fault rate is higher, the margin between DDR-R
and SRE-R gets smaller.

4.5.2 Synthesized Task Sets

We have shown that DDR-R generally outperforms the other compensation approaches
in reducing the overall utilization. However, recalling that the DDR-R executes a
detection version followed by a reliable version in case that an error is detected, the
DDR-R requires much execution time in the worst-case, i.e., when having a sufficient
amount of consecutive errors. Therefore, DDR-R approach is relatively harder to be
scheduled. On the other hand, SRE-R approach does not execute the detection version
by default, and it can also perform well as shown in Figure 4.6. These observations
motivate us to evaluate different compensation approaches regarding schedulability
with the synthetic task sets.
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Figure 4.8: Success ratio comparison for different static approaches with two (m, k)
patterns, i.e., R-pattern and E-pattern.

In this experiment, we evaluate the success ratio of different compensation ap-
proaches with synthesized task sets by using Lemma 1. For each task set, if all the
tasks in it can pass Eq. (4.1), it is deemed to be schedulable and therefore successful.
As stated in Lemma 2, the DC approaches, i.e., DRE and DDR, in the worst case
perform the same as the static compensation approaches, i.e., SRE and SDR, respec-
tively. Therefore, we only test SRE and SDR with two different patterns to compare
their differences. To empirically evaluate the schedulability of different compensation
approaches, we apply the UUniFast [BB05] method to generate a set of utilization
values and follow the suggestion from Davis and Burns in [DZB08] to generate the
task periods for each task set according to an exponential distribution. The utilization
U; of multi-frame task 7; is based on its peak frame, and the generated periods lie
within the range from 1 to 1000. Since there are only three frame types (versions)
in this study, i.e., 7}, Tid, and 77, we take 7] as the peak frame and set its WCET
as C] = T;U;. For the other task versions, we set C}* = C}/3 and Cf =C!-121%
to emulate the software-only fault detection (i.e., SWIFT+PROFiIiT [RCV+05b])
and error recovery by using SIMULTANEOUS REDUNDANT MULTI-THREADING (SRT)
technique. The cardinality of the task sets is 10, and k; is uniformly distributed in
the range [3,10]. For each k;, m; is set accordingly by different ratio of over all 7.
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Please refer to Chapter 3.4 for more detailed informations about the experimental
setup.
Figure 4.8 illustrates the derived results from the numerical simulation. It should

be clear that the success ratios of the schedulability tests for the approaches (except
m

different protection approaches decreases.k No matter which pattern the approaches
use, we can observe that the maximum of the execution times §2; among the frames
of task 7; are really close when 7* ratio is high. SRE with both patterns, i.e, SRE-R
and SRE-E, perform better (with respect to the success ratio of schedulability) than

the other SDR approaches in all the simulated cases.

FR) are highly dependent on the ratio If 7* increases, the flexibility of using

Interestingly, the strategies using the E-pattern, i.e., SRE-E and SDR-E, are
always better than the same strategies using the R-pattern, i.e., SRE-R and SDR-R,
in terms of the success ratio. The reason comes from the distribution of reliable
jobs. As the E-pattern evenly distributes the reliable jobs, in general, there are less
consecutive reliable jobs in a strategy using the E-pattern than those in the same
strategy using the R-pattern. Therefore, for a low priority task, the interference from
the higher priority tasks under the E-pattern is usually less than the case with the
R-pattern, so it is relatively easier to be scheduled. When 7* is high, e.g., to 0.7
or even 0.9, both SDR approaches, i.e., SDR-R and SDR-E, are clearly inferior to
the others, because SDR approach needs to additionally provide fault detection and
re-execution.

Overall, we can see that SRE-E will be the most suitable approach to adopt if
the considered system is heavily loaded. The type of given patterns matters, i.e.,
E-pattern is better, but is not significant as the compensation strategies, i.e., RE
or DR, regarding to the schedulability. DR strategy can save more utilization in
run-time if the fault rate is relatively low, but it is more difficult to be scheduled in
the worst case. For the dynamic compensation approaches, the R-pattern is more
suitable than the E-pattern, since the consecutive unreliable jobs at the beginning of
the R-pattern provides the most flexibility and fault-tolerance.

4.6 Summary

While embedded systems used for control applications are liable to both hard real-time
constraints and fulfillment of operational objectives, the inherent safety margins and
noise tolerance in control applications can be exploited when applying software-based
error-handling approaches against soft errors induced by the uncertain environment.
Hence, in this chapter, we propose to adopt (m,k) model to express the control
robustness requirement and present two scheduling approaches, i.e., Static Pattern-
Based Reliable Execution and Dynamic Compensation, to determine when/how to
compensate or even ignore soft errors safely.

The experimental evaluations compared the efficiency and the applicability of
proposed approaches with the baseline approaches. The results show that the overall
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utilization of using the DC approach in general outperforms the SRE approach, but
can also be inferior to the situation that the given robustness requirement is tight.
Moreover, the proposed approach with DR strategy can further reduce the overall
utilization but makes the given task sets more difficult to be scheduled as shown in
the results. These results suggest that the proposed approaches can be used to serve
different applications with inherent fault-tolerance depending upon their perspectives,
thus avoiding over-provision under robustness and hard real-time constraints.

The proposed approaches in this chapter have been implemented in REAL-TIME
EXECUTIVE FOR MULTIPROCESSOR SYSTEMS (RTEMS) by Mikail Yayla within the
project — SUMMER OF CODE IN SPACE (SOCIS) 2017 — funded by EUROPEAN SPACE
AcENCY (ESA), which I mentored. The detailed report can be found in [Mik17].
His contribution in RTEMS allows people to easily port the proposed approaches
to several other platforms rather than only on LEGO NXT [YYalO]. This might
potentially provide the flexibility for the fault tolerance of space vehicles to mange
redundant executions more efficiently in the future.
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5.1 Overview

In Chapter 4, we have presented how a system can allow limited erroneous executions
(so decrease the result quality) while satisfying given hard real-time timing constraints.
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In this chapter, we proposes another treatment for soft errors incurred by the transient
faults: the considered system allows rare deadline misses but without any erroneous
execution, e.g., soft real-time systems. To handle soft errors, many SIHFT techniques
have been proposed in the need of additional computation, e.g., re-execution [MD11],
redundancy [RMO0], check-pointing [ELS+13], etc. While the appearance of transient
faults is usually assumed to be very low, the additional amount of time incurred
by such techniques may still lead to deadline misses. Since the transient faults are
usually approximated and interpreted as random and independent events [Bau0ba],
the WCET of distinct execution modes can also be modeled as independent random
variables. Therefore, it is reasonable to model the timing behavior in conjunction
with sporadic soft-error handling events based on probabilistic arguments.

The deadline miss probability is one important metric considered in the literature
to quantify the timeliness of real-time systems. To derive the probability, several
researches propose to analyze the probabilistic response time by using the convolution-
based approaches [MC13; BMC16; DGK+02] and obtain the probability the response
time succeeding the targeted deadline as the deadline miss probability. To derive the
probability, they calculate the joint probability density function of the worst-case
pending execution times at a given time instant by convolving the probabilistic demand
whenever a job arrives in the interval of interest. Naturally they are computationally
expensive and not scalable with respect to the number of jobs in the interval of
interest. Lately in [BPK+18], a task-level convolution-based approach greatly reduces
the analysis runtime by using multinomial distributions, but it still requires significant
runtime when the number of tasks is large.

Alternatively, we propose to use analytical upper bounds to over-approximate
the probability of deadline misses. In [KC17], an analytical approach is proposed
to over-approximate the probability of (¢-consecutive) deadline misses based on the
Chernoff bound and the MOMENT GENERATING FuNcTION (MGF). In [BPK+18§],
we additionally provide two more analytical approaches by applying the Hoeffding’s
inequality [Hoe63] and the Bernstein’s inequality [FR13], which are several orders
of magnitude faster, e.g., 103k, than the task-level convolution-based approach in
[BPK+18], but with several orders of magnitude more errors. If a sufficiently low
deadline miss probability can be derived, these analytical approaches whilst providing
reasonable quality.

Likewise, the deadline miss rate is also an important performance indicator to
evaluate the extent of requirements compliance for real-time systems. Existing
probabilistic approaches, i.e., [BPK+18; MC13; BMC16; KC17], all assume that, after
a deadline miss the system either discards the job missing its deadline, or reboots
itself. Under this assumption, the probability of one deadline miss directly relates
to the deadline miss rate, since no backlog incurred from the jobs missing deadlines
needs to be considered. However, such restrictive assumptions do not always hold in
practice, as aborting jobs or rebooting the system after a deadline miss is not always
an option [BKH+16; KBC16]. If this is the case, the additional workload due to a
deadline miss may trigger further deadline misses. Hence, the actual deadline miss
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rate may be greater than the probability of the first deadline miss as shown in the
following subsection.

Theoretically, the expected miss rate for a task can be determined by counting the
number of jobs that miss the deadline and the number of total releases in an infinitely
long sequence of jobs, considering all tasks under the given constraint, the related
scheduling algorithm, and the given fault rate. Nevertheless, as Butler and Finelli
stated in [BF93|, Life-testing of ultrareliable software is infeasible, i.e., the amount of
time needed to perform the simulations is too large or even impossible. Therefore, a
statistical quantification that can efficiently derive the deadline miss rate is desired.

In this chapter, we provide an analytical approach to safely over-approximate the
expected deadline miss rate for a specific sporadic real-time task under fixed-priority
preemptive scheduling in uniprocessor systems. The proposed approach is compatible
with the existing techniques in the literature that calculate the probability of deadline
misses either based on the convolution-based approaches or analytically. To the best
of our knowledge, this is the first approach providing a safe upper bound on the
expected deadline miss rate.

The presentation in this chapter is organized as follows: In Section 5.1.1, two
motivational examples are presented. In Section 5.2, we introduce how to apply
analytical upper bounds to form the probabilistic schedulability test, which can
derive the probability of (¢-consecutive) deadline misses. In Section 5.4, an analytical
approach is proposed to adopt the probabilistic approaches in the literature to derive a
safe upper bound on the expected deadline miss rate. In Section 5.5, the experimental
evaluations firstly demonstrate the effectiveness of the Chernoff bound approaches and
secondly present the efficiency and the pessimism of the proposed analytical approach
while deriving the expected deadline miss rate. Finally Section 5.6 summarizes the
chapter. Parts of this chapter were originally published on SIES 2017 [KC17], ECRTS
2018 [BPK+18], RTCSA 2018 [KBC18al, and DATE 2019 [KUB-+19].

5.1.1 Motivational Example

In the following, two examples are given to motivate the presented results of this
chapters: The first example! shows why the traditional job-level convolution-based
methods are not scalable due to state space explosion; the second example shows
that in fact the deadline miss rate may be significantly different, if aborting jobs or
rebooting the system after a deadline miss is not an option.

Job-level Convolution leads to state space explosion!

Suppose that we have two periodic tasks 7 and 75 that periodically release jobs,
starting from time 0. Each task 7; has two modes of execution times C¥ and C
with probability ]P’fv and Pf, respectively. The period of task 7 is 1 and the period

!This example is adapted from [BPK+18] to illustrate the time complexity of convolution-based
approaches.
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of task 7 is 100. Task 71 is assumed to always has a higher priority than task 7o and
always meet its deadline. We assume these two tasks are running on a uniprocessor
system with a fixed-priority preemptive scheduling. The system is further assumed to
reboot if a job of task 79 is not finished before the next job of task 7 is released.

What we are interested here is how likely a job of task 19, arriving at time ¢,
can finish its execution before the next period t, + 100. An intuitive procedure is to
convolute the probability density functions of the execution times over these two tasks
and evaluate the probability of the accumulative execution time, namely workload, of
the jobs released from time t, to t, + ¢ -1 (inclusive), starting from ¢ =1,2,3,...,100.
When £ is 1, we have 22 combinations of the workload formed by the two jobs of 7
released at time t,. When ¢ is 2, we can have up to 2° combinations of the workload,
and so on so forth. Intuitively, we can notice that it will lead to 21!
the workload when £ is 100, which is exponential with respect to the number of jobs

combinations of

that may interfere with a job of task 7. This intuitive approach, which enumerate all
possible combinations, is based on job-level convolution generally used in [BMC16;
DGK+02; MC13].

Since there are only two modes of task 71, there are only ¢ + 1 different workload
combinations of the £ jobs released from time ¢, to time ¢, + £ — 1. Therefore, there
are only 2(¢ + 1) different workload combinations of the jobs released from time ¢, to
tq+ ¢ —1. It is possible to evaluate all of them from ¢ =1,2,...,100, but it should
be clear that it is not practical especially when the number of combinations can be
easily larger than this example. Essentially, the only thing we are interested is the
probability of the deadline miss at time ¢, + 100. We do not actually care about
the individual execution modes of the 100 jobs of task 7 released from t, to t, + 99.
Instead, only their overall workload matters with respect to the probability of the
deadline miss at time ¢, + 100, which can be calculated by using a binomial distribution
over 100 independent random variables with the same distribution. Eventually, there
are only 101 different workload combinations taken into consideration for the jobs of
71. Together with the job of task 7o, there are in fact only 2 x 101 different workload
combinations. This approach is based on task-level convolution proposed by von der
Briiggen et al. in [BPK+18], which is the state-of-the-art.

The aforementioned approaches are different ways to realize the same concept to
convolute the probability density functions of the jobs’ execution times. Although the
task-level convolution-based approach proposed by von der Briiggen et al. [BPK+18§]
significantly dominates the traditional job-level convolution-based approach with
respect to the related runtime and the scalability, the proposed analytical upper
bounds in this chapter are still several orders of magnitude faster than it. Nevertheless,
the error of analytical upper bounds is also not negligible compared to the convolution-
based approaches. More evaluation details are provided in Section 5.5.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 1
T9 misses the deadline two times!

Figure 5.1: An example schedule showing that a deadline miss of the first job of 7
(at time 5) directly leads to an additional deadline miss of the second
job of 7 (at time 10). For 7o, same color blocks represent the same j-th
job. The upward arrows represent the arrival time for each job, whereas
the next downward arrows represent the related deadline.

Probability and Miss Rate could be significantly different!

Consider two implicit-deadline periodic tasks 71 and 75 under fixed-priority preemptive
scheduling. Task 7 has a WCET of 2 and a period of 3. Task m has a period of 5
and two distinct versions identified by the different resulting WCETSs, which is either
1 or 2.25. Assume that for each job of 7 one of the two versions is executed with
50% probability. Since the first job of 75 will meet its deadline if it is executed for 1
time unit and miss the deadline if it is executed for 2.25 time units, the probability of
deadline misses for the first job is 50%. However, as shown in Figure 5.1, once the
first job of 7 executes 2.25 time units, which leads to its deadline miss, the second
job definitely misses its deadline as well. In this example, the probability that the
first job of 7o misses its deadline is 50% and therefore at least 2 of the 3 jobs of 7
miss their deadlines in this case. Obviously, the occurrence of a pattern that leads to
a greater deadline miss rate than 50% does not mean the actual miss rate is greater
than 50% as well, since all other possible patterns and the related possibility must
be considered. Furthermore, a deadline miss at time 15 will propagate into the next
hyper-period?, which complicates the calculation. Hence, to estimate the deadline
miss rate in the displayed scenario, the aforementioned setting is deployed in the
event-based simulator detailed in Chapter 3.4.3. The empirical results show that the
deadline miss rate on average was 93.04% over 100 simulations where five million jobs
of 7 were considered in each simulation.

Overall, this example shows that it is necessary to analyze more than just the first
deadline miss of a task when considering the deadline miss rate if aborting jobs or
rebooting the system after a deadline miss is not possible. The probability of deadline
misses and the deadline miss rate could be significantly different.

5.1.2 Problem Definition

Suppose that a set of independent and preemptive tasks I' = {71, 79,...,7,} are given
in a uniprocessor system. Each task 7; releases an infinite number of task instances,
called jobs, under a minimum inter-arrival time constraint (or period) 7T;, which
specifies the minimum time between two consecutive job releases of 7;. Each task

2The hyper-period is the least common multiple of all task periods.
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is also associated with a relative deadline D;. Therefore a job of task 7; released at
time t, must be completed not later than the absolute deadline ¢, + D; and the next
job of task 7; must be released exactly at (or not earlier than) ¢, + T; for periodic (or
sporadic) tasks. We consider: 1) Implicit-deadline task sets, i.e., D; =T; V71, € ', and
2) Constrained-deadline task sets, i.e., D; <T; Vr; eI

To model the execution of a job, we assume that the occurrence of soft errors can
be modeled by a given probability IP’f, i.e., the probability is IP’;4 that 7; is executed
abnormally. Depending upon the occurrence of soft-errors and the applied SIHFT
techniques, the execution time of a job may differ. The probability of executing a job
normally is thus IP’ZN =1 —I[Dg4 for each job of 7;. We assume that }P’f is independent from
previous errors and executions, as similar assumptions are used in [MC13; DGK+02;
BKH+16].

Two distinct WCETSs are assumed for each task 7;. When no fault occurs during
the execution of task 7; and therefore error recovery is not necessary, the execution is
considered to be a normal execution with a smaller WCET value, denoted as C’,L»N If
a fault is detected in a job of task 7;, the related job has a longer WCET denoted as
C’ZA for potential error recovery, called an abnormal execution, i.e., C’iA > C’Z-N V7;. The
fault detection is assumed to perform perfectly and be done at predefined checkpoints
or the end of a job execution, in which the incurred additional computation time is
integrated into C’iN .

With all these assumptions, for a specific task 7, the upper bound probability of
deadline misses is defined as follows:

Definition 6 (Probability of deadline misses). The PROBABILITY OF DEADLINE
Misses (DMP) of task 7, denoted by @, is an upper bound on the probability that
a job of task 7 is not finished before its (relative) deadline Dy. To be more precise,
the DMP of 73, is:

DM Py, = max {P(Ry; > Dy)}, j=1.2,... (5.1)
J

where Ry, ; is the response time of the j-th job of 7.

The first problem in this chapter focuses on how to derive a probabilistic guarantee
for a specific task 73 that calculates the upper bound ®; on the probability of deadline
misses based on probabilistic WCETSs. In addition to the probability of deadline misses,
we also provide the analytical upper bound ®;, ¢ on the probability of /-consecutive
deadline misses. The solution to this problem is presented in Section 5.2.

Secondly, for a given schedule of a sequence of jobs of 7, the deadline miss rate is
formally defined as follows:

Definition 7 (Miss Rate). The miss rate of a task 73 € I for a given schedule S is
the number of jobs missing their relative deadline Dy in S divided by the number of
released jobs of task 73 in S.
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The expected miss rate of 7 is defined as:

Definition 8 (Expected Miss Rate). The expected miss rate of a task 7 € I', denoted
by Eg, is the probability that a job of 7, misses its deadline.

Theoretically, the expected miss rate for a task 75 can be determined by counting
the number of jobs of 75, that miss the deadline and the number of total releases in
an infinitely long sequence of jobs, considering all tasks in I' under the constraint
given by I, the related scheduling algorithm, and the given fault rate. However, how
to count the number of jobs missing their deadlines in an infinitely long sequence is
obviously not possible in practice. Therefore, the objective here is to calculate a safe
upper bound on the expected miss rate of a task 7, denoted as I[*fk By definition,
E; > Eyg.

The second problem in this chapter focuses on how to over-approximate the
expected miss rate Ej of a specific task 75, which is done under the assumption that
the system is never restarted when a deadline miss happens. In addition, all jobs are
never aborted in this assumed system, i.e., if a job misses its deadline, the remaining
part of the job still has to be executed before the next job of the task can start
executing. As discussed in [BKH+16; KBC16], there are many reasons to apply this
assumption in real contexts as long as the system safety is not jeopardized. The
solution to this problem is presented in Section 5.4.

Although each task is assumed to have two distinct WCETs with their corre-
sponding probabilities, this assumption is only used in the examples in Section 5.2.1,
Section 5.4.1, and the evaluation in Section 5.5. The proposed approaches in this chap-
ter are applicable for any general probabilistic distributions as long as the probabilistic
WCETs are all independent of each other.

5.2 Analytical Upper Bound

As shown in [MC13], the DMP of a job is maximized when 7y is released at its critical
instant [LL73], i.e., 7 is released together with a job of all higher priority tasks
and all following jobs of those higher priority tasks are released as early as possible.
This implies that the well-known TDA [LSD89] can be applied to determine the
worst case response time of task 75, which is also an exact schedulability test with
pseudo-polynomial runtime under the assumption that the schedulability of tasks in
hp(7) is already ensured by finding a time point ¢ where the total workload released
by tasks in hep(7y) is smaller than ¢. That is, if and only if

3t with 0 <t < Dy, such that Se=Cr+ >, [—] Ci< t (5.2)
ryehp(r) | L
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where S; is the sum of the WCETSs of these jobs in hep(7;) from time 0 to time
t. Hence, if S; <t holds, task 7 is schedulable under the fixed-priority scheduling
algorithm, where Cy and C}; in the considered model of this dissertation can be C’;:‘
and CZ»A, respectively.

The probability that 7, cannot finish within this interval is denoted accordingly
with P(Sy > t). Since the TDA only needs to hold for one time point ¢ with 0 < ¢ < Dy,
to ensure that 75 is schedulable, the probability that the test fails is upper bounded by
the minimum probability among all time points at which the test could fail. Therefore,
the probability of deadline misses ®; can be upper bounded by

Oy = Oglgil%k P(S; > t) (5.3)

Instead of using convolution-based approaches proposed in the literature [BPK+18;
MC13; BMC16; DGK+-02] with significant computation times, we notice that con-
centration inequalities in the literature can be applied to obtain upper bounds on
P(S; > t) and then derive analytical bounds on the DMP. In the rest of this section,
we summary three analytical approaches proposed in [KC17] and [BPK+18], and
explain how such inequalities in the literature can be used.

To apply these inequalities as the backbones, the proposed approaches only look
for P(S; > t) instead of P(S; > t), which is still an upper bound of P(S; > t) by
definition P(S; > t) > P(S; > t).

5.2.1 Chernoff-Bound Approaches

To apply the Chernoff bound as the backbone, the MGF is used to specify the
probability distribution of a random variable [MUO05]. The MGF is defined as follows:

Definition 9 (Moment-Generating Function). The moment-generating function of a
random variable X; is defined by the expected value of eX#* for any non-negative real
number s i.e., MGF(X;) = E [exp(X; - s)].

For the specific case of the WCET distribution of a task 7;, the MGF with respect
to a given real number s is:

h; . )
MGF;(s) = > exp(CY - s)- P (5.4)
j=1

where h; is the number of (but finite) possible values of execution time C’g , exp is
the exponential function, i.e., exp(z) = €%, and s > 0 is a given real number3. For the
considered task model in this dissertation, i.e., each task 7; has two distinct WCET
values C’ZA, CN, Eq. (5.4) can be simplified as

MGF;(s) = exp(C - s)- PA+exp(CN - s)- (1-P) (5.5)

3Usually ¢ is often used instead of s when describing a MGF in the literature regarding probability
theory and statistics. Since typically ¢ denotes the time in real-time scheduling, s is used here for
avoiding confusion.
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which is specifically used in Section 5.5 to demonstrate the applicability of analytical
approaches on fault-tolerance.

Since the execution times of the jobs are assumed to be all independent, the
probability distribution of the sum of the execution time of these jobs can be defined
as the multiplication of their MGF's. By independence, the distribution of the sum of
the WCET of these jobs from time 0 to ¢ is

MGFpep(r)(s) = [ (MGFi(s))Pit (5.6)

Tichep(Ty)

, where p;; is the number of jobs released to interfere task 7, up to time ¢.
By using Eq. (5.6) and the Chernoff bound, P(S; > ¢) in Eq. (5.3) can be over-
approximated as follows:

Lemma 3. Suppose that S; is the sum of the execution times of the pg ¢+ 3+ cnp(r,) Pirt
jobs in hep(7) from time 0 to ¢. In this case, the probability of S; is greater than or

equal to t is
( MGFhep(Tk) (8) )

P(S; > t) < mi
(S >1) < mip exp(s-t)

s>0

(5.7)

Proof. From Lemma 2.9 in [Buc04] and Pages 63-65 in [MUO05], for a random variable
X defined by a moment generating function MGF(s) for s > 0, the definition of the
Chernoff bound is:

P(X >t) <MGF(s)/exp(s-t),Vs>0 (5.8)

Therefore, a safe upper bound on the probability that P(S; > ¢) under the MGF
defined in Eq. (5.6) is equivalent to Eq. (5.7). O

With Eq. (5.7), the upper bound on the probability that the total released workload
from hep(7y) is not able to finish at time point ¢ can be obtained. The Chernoff bound
is in general pessimistic and there is no guarantee for the quality of the approximation
(even if the optimal value for s is known). Nevertheless, an upper bound on P(S; > t)
can still be obtained by taking the minimum over any number of s values?.

Based on Eq. (5.7), the following theorem show that how we can safely extend
the TDA as Eq. (5.2) to a probabilistic version to calculate a safe upper bound on
the probability of deadline misses:

Theorem 3. Given a set of constrained-deadline (or implicit-deadline) sporadic tasks
I'. 1) If the condition in Eq. (5.2) holds, then the probability of deadline misses of
task 75 is 0. 2) Otherwise, the probability of deadline misses (at least one) @y can be
upper bounded by Eq. (5.3), where P(S; > t) is derived by taking the right-hand side

from Eq. (5.7) under p; ¢ = [%] for each task 7 in hp(7x) and pg . = 1.

*How to find out a specific s to derive the optimal result for the Chernoff bound is discussed in
Section 5.3.
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Proof. The first assertion directly holds based on the TDA [LSD89]. Since the given
task set is schedulable, the probability of deadline misses must be 0 by definition. We
only prove the second assertion. At first, we prove why testing ¢ in the range (0, Dy]
for 7, is sufficient.

Since the jobs of 75 are only preempted by higher-priority jobs in Ap(7;) and
preempts any lower-priority jobs, we can safely remove any lower-priority jobs and
only take 71,...,7; into consideration. Suppose a job of task 7, is ready at time ¢’
with completion time tg, in which tgp —t' > D). Let t_1 be the latest instant before tp,
at which 1) either the processor idles at time ¢_; or 2) all the jobs of task 7 released
strictly before t_1 have finished their executions. That is, from t_1 to tg, the processor
executes only the jobs of task 7 and hp(7x) that are released after or at t_;. Such a
time point £_; always exists, i.e., the starting time of the system.

Now, we remove all the jobs executed before ¢_; from the schedule. The new
schedule from ¢_1 to tg is the same as the original schedule, in which only jobs arrived
at or after t_; are executed. It is possible that there are multiple jobs of task 7%
executed in the time interval [t_1,tr). We consider two cases:

o Case 1, there is only one job of task 7 executed in the time interval [t_1,tR):
We can move the release of the job of task 7 from ¢’ to t_;. The response time
of the job of task 73 is not decreased.

e Case 2, there are at least two jobs of task 7 executed in the time interval
[t-1,tr): By the definition that the schedule is busy for executing either task
T or hp(1) in [t-1,tR), the response time of the first job of task 7 executed
in this window must be greater than Ty. We can move the release time of this
first job of task 75 to t_1 as well. The response time of the first job of task 7 in
the time interval [t_1,tR) is still greater than T.

In short, in both cases above, we can safely consider that task 75 releases a job
at time t_1. In the first case, the deadline misses happen when the accumulated
workload (sum of the requested execution time of the jobs released by 7 and hp(73))
executed from t_q to t_1 + ¢ is greater than ¢ for any 0 < ¢ < Dg. In the second case,
the deadline misses happen when the accumulated workload from ¢_1 to t_1 +t is
greater than t for any 0 < ¢t < Tj. By the assumption Dy < T}y, the probability that
the accumulated workload executed from t_; to t_; + ¢ is greater than or equal to ¢
for any 0 <t < Dy, is a safe upper bound of the probability of deadline misses.

T%] jobs of task 7; and
one job of task 7 released from time 0 to time ¢ for any 0 < ¢ < Dy. When a job of
task 75, misses its deadline, by the above analysis, we can safely take [%] jobs of task
7; and one job of task 7 and evaluate the sum of their execution times up to time ¢.

For notational brevity, let t_; be 0. There are at most [

Consequently the condition in Eq. (5.3) provides an upper bound on the probability
of deadline misses of task 7. ]

However, there is an infinite number of points in the interval (0, Dy] in Eq. (5.3),
which is impossible to to test over in practice. The following lemma shows that it is
sufficient to test only a pseudo-polynomial number of time points:
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Lemma 4. Let Ly be a set of time interval lengths, where Ly, = {r-T;|7; € hp(7g);r =1,
ooy | Di/T;]} U {Dx}. The upper bounded DMP ®; derived by using Eq. (5.3) is
exactly the same as only testing the discretized points ¢ € Lj, defined as follows:

®, = min P(S; > 1), 5.9
k {gﬁg}(t ) (5.9)

where P(S; > t) is derived by taking the right-hand side from Eq. (5.7) under p; ; = [TLZ]
for each task 7 in hp(7y) and pg ¢ = 1.

Proof. Suppose for contradiction that the minimum P(S; > t) (by using Eq. (5.3))
happens when ¢ = ¢" and ¢’ lies in an interval («, 3), where a and 8 are two consecutive
discretized points in Ly, i.e., 3 (v € Lg and 7 € (, 3)). More specifically, H—:] is the

same as [%] for any task 7; € hep(7). Therefore, for each task 7; in hep(7y), we know

that p; 4 is also the same as p; 5. With this, MGFpp(7,)(5) in Eq. (5.6) is exactly the

same when t =t/ or t = 8 for any s > 0. As a result, for any given s > 0, we have

MGFhep(Tk)(S) MGFhep(‘rk)(S)
exp(st’) exp(s-B)

since 3 > t’, in which the contradiction is reached. O

To more efficiently analyze the DMP, we can select a few testing points in Ly
and the minimum value among the probability in these points is still a safe upper
bound on the probability of deadline misses. We here introduce a k-point DMP test
which may trade off the quality of delivered results for the time complexity, which is
motivated by Chen et al. in [CHL15] and Bini et al. in [BB04]. We define k selected
points corresponding to the k—1 higher-priority tasks and task 7. At each time point
t, we verify if the total released workload up to time ¢ from hep(7) can be finished.
With Theorem 3, the proposed k-point DMP test is defined as follows:

Theorem 4. Given a set of constrained-deadline sporadic tasks I', the probability of
deadline misses of task 7 is upper bounded by &, defined as follows:

qp= - min P(S; > 1), (5.10)
te{l 75 |T1,| 7 |T2,.... Dy p {0}

where P(S; > t) can be derived from Eq. (5.7) by setting p;; = [%] for each task 7; in
hp(7) and pg ¢ = 1.

Proof. Since these k selected points, i.e., [?—fJTl, [%JTQ,...,[%JTk_l,Dk, lie in
the range of [0, Dy], it is sufficient to only test those (up to) k selected points (by
removing 0). Since these k selected points are part of Ly = {r- Ti|r; € hp(7);r =

1,...,|Dx/T;|} {Dy} in Lemma 4, it is clear that Oy > By O
The following example illustrates how Theorem 4 works for calculating the DMP.

Example 2 (Example of Using Theorem 4). Suppose a task set has three sporadic
tasks:
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teLy 10 20 | 30 | 40 45 50 60 70 75
arg,.omin(P(S" > 1)) | 5.4999 | 5.4799 | 3.72 | 0.6214 | 0.6358 | 4.9155 | 0.6483 | 0.711 | 0.7216
mingo(P(S* > t)) 1.0 1.0 | 1.0 | 0.1041 | 0.05551 | 1.0 | 0.02921 | 0.00049 | 0.00024

Table 5.1: Corresponding probabilities of deadline misses on all discretized points ¢
in L gathered from Lemma 4.

o 71:Ty=Dy=10,CN =4,0{ =6,P{ = 1077,
o 7:Ty=Dy=45CN =10,C4 = 15,P4 = 107°,
o 73:T3=D3=75CY=10,C4 =30,P5 = 1076,

to be scheduled on a uniprocessor with the RM fixed-priority scheduling policy. In
this example, we evaluate the probability of deadline misses of task 73, i.e., k= 3. At
first three time points are selected accordingly: t € {45,70,75}. The upper bound
probability P(.S; > 45) is at most 0.05551 when s is around 0.6358:  [(exp(6s)-10~%+exp(4s)-
(1-1079))*x (exp(15s)-10 9 +exp(10s)-(1-107%) ) x (exp(30s)-10~C +exp(10s)-(1-1076) )]/ exp(45s). For time
point 70, the upper bound is 0.000492 when s is around 0.711. For time point 75, the
upper bound is 0.00024 when s is around 0.721. Therefore, dy, is set to 0.00024.

We also provide the results obtained from Lemma 4 in Table 5.1. In this example,
we can observe that the minimum probability among all the time points ¢ in Ly is
0.00024 while t = 75, which is the same as the delivered result from Theorem 4, i.e.,
Py = (i)k: in this example. ]

As a result, we can see testing k selected points is not necessarily worse than
testing over all the time points ¢ in Ly with respect to the quality of the derived
results. Empirically, we did not observe any lose from Lemma 4 to k-point DMP test
from the numerical evaluations (presented in Section 5.5).

Hoeffding’s inequality and Bernstein’s inequality

There are two more concentration inequalities, which are easier to compute than the
Chernoff bound, and can be applied to derives the targeted probability that the sum
of independent random variables exceeds a given value, e.g. P(S; > t). The first one is
the Hoeffding’s inequality. For completeness, the original theorem is presented here:

Theorem 5 (Theorem 2 from [Hoe63]). Suppose that we are given M independent
random variables, i.e., X1, Xo,..., Xy, Let S=YM X;, X = S/M and p=E[X] =
E[S/M]. Tfa; < X; < b, i=1,2,..., M, then for s >0,
2M?s? )
T (b - a;)?

Let 8" =sM, i.e, s=5"/M. Hoeffding’s inequality can also be stated with respect
to S:

P(X - > s) Sexp(— (5.11)

, 25"
P(S-E[S]>s )Sexp(—m) (5.12)
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By adopting Theorem 5, we can derive the probability that the sum of the execution
times of the jobs in hep(7y) from time 0 to time ¢ is no less than t:

Theorem 6. Let a; be C;; and b; be Cp,. Suppose that S; is the sum of the
execution times of the py ;1 + X1 chp(r,) Pit jobs in hep(7y) released from time 0 to time
t. Then,

_ 2ElS]” ) if ¢~ E[S;] >0
P(S;>t) < eXp( Lriehep(ry) (bi~a;)?pi s ! [ t]

1 otherwise

where p;; = [%] and E[S,] = ¥ renep(ry) (E11 CijPil3)) - pics-

Proof. Since the execution time of a job of task 7; is an independent random variable,

(5.13)

there are in total p;; independent random variables with the same distribution
function upper bounded by C;j and lower bounded by C;; for each 7; € hep(7y).
With Eq. (5.12) and s’ =t - E[S;], we directly get:

2(t - E[S;])*

Z’rz-ehep(m) (bl - ai)Qloi,t

P(St > t) = P(St - E[St] >t - E[St]) <exp (— ) (514)

when s’ > 0. Otherwise, i.e., when s’ <0, we use the safe bound P(S; >¢) < 1. O]

The Chernoff bound and the related inequality by Hoeffding and Azuma can be
generalized by the Bernstein’s inequality. The original corollary is also stated here:

Theorem 7 (Corollary 7.31 from [FR13]). Suppose that we are given L independent
random variables, i.e., X1, X»,..., X1, each with zero mean, such that | X;| < K almost
surely for ¢ =1,2,...,L and some constant K > 0. Let S = ZiLzl X;. Furthermore,
assume that E[X?] < 6 for a constant ¢; > 0. Then for s > 0,

s2/2
Yl 07+ Ks/3
The proof can be found in [FR13]. Note, however, that the result in [FR13] is
stated for the two-sided inequality, i.e., as upper bound on P(|S| > s). Here, the
one-sided result, which is a direct consequence of the proof in [FR13] (page 198), is
tighter.
Hence, the following upper bound can be derived:

Theorem 8. Suppose that the sum of the execution times of all L = pg 1+ 3.7 chp(r, ) Pirt
jobs is S¢. Let K = max_ chep(r,) Cin; — E[Ci] be the centralized WCET of any job,
where E[C;] = Z?il Pi(j)C;,; is the expected execution time of a job of task 7;. Then,

B (t-E[Se])?/2 ey
B(S, 2 1) < exp( znshw(%)v[ci]pi,ﬁK(t-E[st])/g) if t—E[S;]>0

1 otherwise

(5.16)

for any t > 0, where p;; = [%] and E[S] = Znehepm)(zﬁil CiiPi(4))pit-



74 Chapter 5. Probabilistic Analyses for Deadline-Misses

Proof. Since for each task 7; € hep(7x) the execution time of a job of task 7; is an
independent random variable, there are in total p;; independent random variables
with the same distribution function. Suppose that C; is a random variable representing
the execution time of a job of task 7; and let Y; = C; - E[C;] = C; - Z;Zl CiiPi(j)
denote its centralized execution time. Since the expected execution time of a job is
fully determined by its corresponding task, we have E[C;] = E[C;].

Hereinafter, we explain why we adopt V[C;] instead of 67 as known from Theorem 7.
Consider Eq. (5.15) with S = ¥, ¥;. The exact variance V[Y;] = E[Y}?] - E[V}]? =
E[Yf] is unknown and hence some loose upper bound §? must be considered in most
applications of Bernstein’s inequality, like stated in Theorem 7. Here, the probabilities
of the different execution modes are given numerically, i.e., P;(j) for C; ;. Hence, for
an arbitrary but fixed task 7; with h; different execution modes, this results in

h;
= Z Pi(5) (CF; - 2Ci ;E[Ci] + E[Ci]?)
A

)20 SE[C hsz _ E[C?] - E[C,]? = V[C]

(5.17)

i.e., V[Y;] = V[C;], which can be computed exactly in time O(h;). Instead of imposing
an upper bound #?, we can invoke the tightest version of Theorem 7 by using the
exact variance.

Since E[Y;] =0and V1 <l < M :Y; < K, we can invoke Theorem 7 with s = t—-E[.S¢].
When s < 0, we use a safe bound P(S; > t) <1. When s> 0, Eq. (5.15) can be rewritten
as

M E[S:])%/2
IP(ZYl Zt—E[St]) < exp( (t=E[S:])/ ) (5.18)
=1 S VIl + K(t-E[S.])/3

Finally, observing that Y, ¥; = S; ~E[S;] and ¥, V[Y;] = Yrichep(ry) Y[Cilpit (from
Eq. (5.17)) completes the proof. O

The implementation of three analytical bounds, i.e., Lemma 3, Theorem 6, and
Theorem 8, are all released in combination with the event-based simulator on [Kual§].

5.2.2 Consecutive Deadline Misses

We also study how to handle more general cases for the upper bound on the probability
of /-consecutive deadline misses. For the rest of this section, we reform the notation of
the DMP from ®;, to ®; ¢ for the probability of /-consecutive deadline misses. While
¢ is 1, we define the probability ®; ; as ®;, delivered by Theorem 3, i.e., &3 1 = ®y,.

The following theorem shows that how to extend Eq. (5.3) and recursively obtain
a safe upper bound on the probability of ¢-consecutive deadline misses:
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Theorem 9. Given a set of constrained-deadline sporadic tasks I'. Suppose that

o¢ = i P(St >t 5.19
k= e i P05 2 1) (5.19)

where P(S? > t) can be derived from Eq. (5.7) by setting p; ; = [%] for each task 7;
in hep(7y,). That is, ®¢

k2w
deadline misses when the processor executes at least w (consecutively released) jobs
of task 75, without any idling. For notational brevity, let ®; o be 1. The probability of

(-consecutive deadline misses of task 7, is upper bounded by ®; ,, defined as follows:

is the upper bound on the probability of w-consecutive

D = max { P}, - Ppo-wlw e {1,2,...0}} (5.20)

Proof. We prove this theorem by constructing ®; ; from j = 1,2,...,¢ sequentially.
When j is 1, the upper bound ®;; is equal to ®; and can be derived by using
Theorem 3 or 4. Therefore, suppose that ®;; for j € {1,2,...,£-1} is already
calculated by the previous steps. For a preemptive fixed-priority schedule, removing
tasks with priority lower than 7, does not change the schedule of task 7. As a
result, we only consider hep(7) in the proof. To have ¢-consecutive jobs of task 7
with deadline misses, there must be at least ¢ consecutively released jobs of task 7
missing t heir deadlines. Let J; be a job of task 7 in which its previous £ -1 jobs,
Ji,Ja, ..., Ji_1, released by task 7 all miss their deadlines.

Let t; be the arrival time of job J; released by task 7. Let tg be the completion
time of job Jp. Since task 7 is a sporadic task with a minimum inter-arrival time T3,
by definition, we have ty—t; > ((-1)Ty and tgp—ty > Dy. That is, tg—t1 > ({—1)T)+ Dy,.
Let t_; be the latest instant before tr, at which either the processor idles at time ¢_1,
or all the jobs of task 7, before t_; have finished their executions. Suppose that there
are w” jobs of task 7 released after or at time ¢_q.

We consider two different cases in this interval [¢_1,tR):

1. Case 1 - if t; > ¢_1: This implies that w* > £ and the processor is busy from
time t_q to time tR executing the jobs released at or after ¢t_1. Similar to the
proof of Theorem 3, we can remove all the jobs executed before t_; and set
the release time of the first job of 7, released in this interval to time ¢_; in the
schedule.® Similarly, we can also advance the subsequent jobs of 7, to release at
time t_1 +Ty,t_1+2T},.... This adjustment does not decrease the response times
of these consecutively released jobs of task 7. Therefore, all of these w* jobs of
task 7 still miss their deadlines. With a similar argument to the one made in
the proof of Theorem 3, the processor is busy executing the periodically released
workload from time ¢_; to time ¢ + (¢ - 1)T) + Dy, < t_1 + (w* = 1)T} + Dy.
Hence, the upper bound on the probability of this case is @2 ‘-

2. Case 2 - if t; < t_y: This implies that w* < £ and the procéssor is busy from
time ¢_q to time tp executing the jobs released at or after ¢t_1. Therefore, we

5The first job of task 7 released at or after ¢{_; may not be J;.
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(b) Case 2: t1 <to=1t_

Figure 5.2: Task 71 and 79 are implicit-deadline sporadic tasks with Cf‘ =211 =
Dy =4, C'QA =5,T5 = Dy =9. The blue marked blocks are overrunning
executions.

know that from time ¢; to time ¢_1, there must be at least £ — w” consecutive
jobs of task 73, with deadline misses and probability upper bounded by @y, (p_y,»).
We now only have to evaluate the probability of the w* consecutive deadline
misses of task 75 from time t_; to time tg, which is upper bounded by Qz’w*, as
an identical scenario to Case 1. Therefore, the upper bound on the probability
of this case is hence @i’w* " P (0-wr)-

If w* is known, one of these two cases defines the upper bound on the probability of
£-consecutive deadline misses of task 7. However, even though w* is unknown, we
can iterate all the possible values from 1 to £. Therefore, the upper bound on the
probability of ¢-consecutive deadline misses can be found by Eq. (5.20). O

Figure 5.2 illustrates the two cases in the proof of Theorem 9. Suppose that m
is the targeted task 7, in Theorem 9. As shown in Figure 5.2a, the execution of the
second job released at time 9 is pushed by the overrun of the first job, i.e., the first
blue block. Therefore, the analyzed window should cover the time interval [¢1,tg). In
Figure 5.2b, there are only two jobs of 7o with an idle instant, but in fact the second
job can be followed by the other w* — 1 jobs consecutively without any idle instants.
We can find that the analyzed schedule of the jobs finished before t5 and the jobs
released after to, can be individual.

With Theorem 9, we can obtain ®;, for the upper bound on the probability
of /-consecutive deadline misses. To avoid testing all time points in the interval
(0, (w-1)Tk + D] in Eq. (5.19), we can again apply the same strategy as in Lemma 4
to generate a pseudo-polynomial number of time points L to test. That is, Ly =
{r-Tir e hp(ti);r=1,...,| (¢ = 1)T + Dy)/T; |} u{(w—=1)Tk + DiJw =1,...,¢}. To
efficiently analyze the probability ®;, of f-consecutive deadline misses, we use a
similar strategy to select k - ¢ testing points L to derive CTDM, which can be similarly
proved as Theorem 4, i.e., (i)k,f > @y . That is, Ly = {(w=1)Tg+Dylw=1,...,0}u
{r-Tilri € hp(7i);r = | D/Ti], ..., | (€= )T + Di) [ T3]}
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To the best of our knowledge, this approach is the first result regarding to the
probability of /-consecutive deadline misses. Furthermore, it is applied as a backbone
to derive the deadline miss rate in the next section.

5.3 Finding Optimal s for Chernoff-Bound

Despite the Chernoff bound being an over-approximation without non-trivial analytical
guarantees for the quality of approximation, the quality of approximation varies with
the choice of s. Hence, in order to optimize the quality of approximation, it is
beneficial to find the smallest Chernoff bound efficiently, based on all possible s values.
The following example demonstrates the differences of the derived DMP from the
Chernoff bound over different s and the task-level convolution-based approach:

Example 3 (Differences between Chernoff-Bound and Convolution-Based Approach).
Consider a real-time system with a set of sporadic tasks with 25 tasks, i.e., I' =
{71,72,,T25}, on a uniprocessor. We use the UUniFast method [BB05] to synthesize
sporadic implicit-deadline task sets with a given normal mode utilization of 60%,
setting P4 = 107 and CA = 1.83- C for all tasks. The tasks are scheduled according
to RM preemptive scheduling, i.e., tasks with shorter periods have higher priority.
For these task sets, we used the Chernoff bound approach to calculate the DMP
considering a fixed value s = 1, denoted by Chernoff, and the task-level convolution-
based approach in [BPK+18] with the proposed runtime optimization that prunes
out unnecessary states, denoted by Pruning. Furthermore, we iteratively calculated
the Chernoff bound for different values of s with a step size 0.5, denoted as Seq.

. - . . 10 .
£ o = o= :
Q Q .
80w . Rt
< o .
[-mp— oy o, . S
8 10 ki o] 0
S w00 S N *
S S
w0 ¥ Seq @ 10 o Seq
a Lo . 4 Chernoff e Lo / ° Chernoff
z o Pruning Cediaiae! Pruning
0.0 25 5.0 75 10.0 125 15.0 175 20.0 1o 0.0 25 5.0 7.5 100 125 15.0 175 200
Real number s Real number s
(a) SetO (b) Set 1
Figure 5.3: Derived results comparison: The red diamonds represent the obtained

upper bound on the probability of deadline misses by setting s = 1 with
the Chernoff bound approach. The blue curves are drawn by iterating
over different s with step 0.5 by using the Chernoff bound approach.
The bottom orange lines are the derived results from the task-level

convolution-based approach in [BPK+18].
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Figure 5.4: Runtime comparison: The average required runtime with different state-
of-the-arts for the selected task sets in the motivational example.

Figure 5.3 displays these results and shows that using Chernoff with a fixed
value can lead to a large gap compared to the DMP for Pruning. This also holds
true if only a small interval of possible values for s can be considered, i.e., in [KC17]
s€(0,1] and in [BPK+18] s € (0, 3] was considered to achieve a good runtime. When
Chernoff is used iteratively for multiple real number s to find out a suitable s, the
gap to Pruning may be reasonably small as Seq shows. Regarding the required
runtime for analyses, shown in Figure 5.4, Pruning is orders of magnitude slower than
Chernoff. However, the required runtime for finding a suitable s by iteratively as in
Seq highly depends upon the step size and the considered interval. Unfortunately,
the results in Figure 5.3 suggest 1) that the actual value of s differs largely based
on the considered task set, and 2) that being slightly off from the best value may
lead to a large difference from the value obtained by Pruning. However, Figure 5.3
also suggests that for a given task set the Chernoff bound is a convex function with
respect to s. ]

In this section, we show that finding the smallest Chernoff bound based on all
possible s values in fact poses a convex optimization problem and is thus efficiently
solvable. This allows to increase the precision of the Chernoff bound approach, since a
wider range of possible s values can be covered. This is due to the fact that the convex
property allows to search the possible interval of s values more efficiently. Hence, the
reduced runtime directly leads to a more precise DMP estimation. Furthermore, the
task-level convolution-based approach has a runtime complexity that is exponential
in the number of considered tasks for each point in time, while the Chernoff bound
has a runtime complexity that is linear with respect to both the number of tasks and
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the number of values that are considered for s. Therefore, the Chernoff bound is the
only method to determine the deadline miss probability for really large task sets, e.g.,
1000 tasks, while still resulting in a reasonable approximation quality.

5.3.1 Optimization Problem

As stated in Section 5.2.1, the Chernoff bound holds for any non-negative real-value
s, and thus poses an optimization problem to find the smallest upper bound. In this
section, we explain how to efficiently compute the smallest upper bound of each task’s
deadline-miss probability, using the Chernoff bound approach and to evaluate the
precision loss compared to the convolution-based approach. That is, the following
optimization problem transformed from Eq. (5.9) must be solved

Pr(S; >t) < inf {( [1 MGFi(sk)pi*t) -esk't} (5.21)

8k>0

Tichep(Ty,)
where .
MGF,(s1,) = 3 eCsk .Y (5.22)
j=1

This means, for each task 75, in the task set, a non-negative real value s; must
be identified that minimizes Eq. (5.21) for some given time ¢ and a given set of all
higher-priority tasks 71, 7s,...,7k_1. In the following, we show that this optimization
problem shown in Eq. (5.21) is log-convex. It thus exhibits a unique minimum and is
efficiently solvable by various numerical algorithms.

Theorem 10 (Boyd [BV04]). Let y € Y then if a function f(z,y) is log-convex in z
for each y € Y and f(z,y) >0, the function g(z) = [y f(z,y) dy is log-convex.

Lemma 5. The moment-generating function of a task 7;

MGF; = f s Py(u) du, (5.23)

[o¢]

for a given probability density function P;(u) and any s € R*, is log-convex.

Proof. By definition of a probability density function, P;(u) > 0 for any v € R and thus
satisfies the conditions stated in Theorem 10. Since the logarithm of the integrand,
ie., s-u+In(P;(u)), is linear in s for any u € R, it is convex. Therefore, by the
arguments of Theorem 10, MGF; is log-convex. O

Theorem 11. The moment-generating function of the cumulative execution time of
a given number of job-releases is log-convex.

Proof. By the i.i.d assumption, we know that the moment-generating function of
the cumulative execution time of a given number of job-releases can be given as the
multiplication of the individual moment-generating functions of each job instance, i.e.,
[+ ehep(ry) MGF; for j job releases. By the property of the logarithm function, the
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logarithm of the cumulative moment-generating function, i.e., In(I1cpep(r,) MGF;) is
equivalent to ¥ . chep(r,) IN(MGF;). Since convexity is closed with respect to addition
and Lemma 5, we know that the moment-generating function of the cumulative
execution time of a given number of job-releases is log-convex. O

In order to minimize Eq. (5.21), we use the common approach to minimize the
logarithm of the equation instead. Since the logarithm is strictly monotonically
increasing, the minimum will be the same for both equations. In conclusion, for each
task 75, we solve the following convex optimization problem

inf ( > [T ln(MGFi(sk))) -5t (5.24)

5£>0 Tiehep(T)

where ¢ is given from a finite set of values Ly like k-points derived by Theorem 4. The
probability that task 7 misses its deadline is thus upper bounded by

Dy, = min{ inf {( > YT ln(MGFi(sk))) - Sk t}} . (5.25)

teLy, | s3>0 richep(Th)

Since this optimization problem is a set of finitely many convex optimization
problems, it can be efficiently and unequivocally solved by |Lg| binary searches.

Numerical Issues

With respect to an implementation of the above optimization problem, the floating-
point arithmetic is of special concern due to overflow and underflow problems, since
the sum of exponential functions in MGF; that may lead to over or underflow if not
handled properly.

There are two types of floating-point arithmetics that can be used, namely either
finite-precision with hardware support (by default), or arbitrary-precision with software
supports, e.g., the mpmath library in Python [Joh+13].

In the former case, the computation may suffer from over- and underflow problems
since Cij - s varies with the parameter range of s. In the latter case, the number
of digits that can be used for numeric presentation is only limited by the available
memory of the computing system. Note that truncation and approximation errors
are unavoidable in both arithmetics due to the limitations of binary representation.

Although arbitrary-precision arithmetic is considerably slower than finite-precision
arithmetic due to the incurred software overhead, we will adopt it to evaluate the
proposed approach to avoid any over- and underflow problems in Section 5.5.

5.4 Deadline-Miss Rate

According to Definition 8, the expected miss rate is the probability of a job 73 missing
its deadline. Nevertheless, it is different to the probability of deadline misses discussed
in the previous section, since the assumed system is never restarted or abort any
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job missing its deadline. Ideally, the expected miss rate for a specific task 73, can be
determined by counting the number of jobs of 75, that miss their deadlines and the
number of total releases in an infinitely long sequence of jobs. However, it is obviously
not practical to get an infinite number of released jobs to measure.

Therefore, we propose to use busy intervals to partition deadline misses and
describe the probability for different exclusive events (see Section 5.4.1). Based on
the above probabilistic arguments, it is possible to derive an upper bound for the
expected deadline miss rate with at most J consecutive jobs missing their deadlines
(see Section 5.4.2).

5.4.1 Partition Into Busy Intervals

At first the definition of busy intervals we use for partitioning deadline misses is:

Definition 10 (Busy Interval of 7i). An interval [tq,tp] is a busy interval of task Ty,
if no job of T, presents in the system right before to, a job of Ty arrives at ty, a job of
T finishes at time ty,, no further job of i, or a task in hp(7y) is in the system right
before ty, and between t, and t, only jobs of T, or of jobs in hp(1i) are executed.

Please note that a busy interval for 75 also ends at time ¢ if a job of 75, finishes at
time t, and one (or more) job of tasks in hp(7x) and/or of 75 itself arrive at ¢, if no
job of 13, beside the one finishing at ¢; is in the system right before ;.

Considering constrained- and implicit-deadline task sets, a busy interval of 7
can end due to different cases that are illustrated in Figure 5.5. Let 7 be defined
by C’{V = Cf‘ =1, T1 =2, and Dy = 2. Red boxes represent the execution of 7. For
To assume C’év =1, Cf‘ =3, T =5, and D- = 5 if it is not declared differently. Blue
boxes with crosshatch patterns represent abnormal execution before the deadline of
the related job, orange boxes with dot patterns represent abnormal execution after
the deadline, and green boxes with slash patterns represent normal execution.

(1) Periodic tasks, implicit-deadline (Figure 5.5a): Busy intervals of 7o must always
end with a job of 75 meeting its deadline. The first two jobs miss their deadlines,
the third job meets its deadline at 14.

(2) Sporadic tasks, implicit-deadlines (Figure 5.5b): In this case busy intervals can
also end by the processor running idle with respect to hep(72) as happening at
time 6.

(3) Periodic tasks, constrained-deadline (Figure 5.5¢): Let C3' =5, Ty = 8, Dy = 5.
Similar to the previous case, a busy interval for periodic tasks with constrained
deadlines can finish with a job meeting its deadline as happening at ¢t = 12.

Depending on the number of jobs of 75, that miss their deadlines, the busy intervals
of 7, can be partitioned as:

Definition 11 (I; Busy Interval of 7). A busy interval of 7, is an I; busy interval,
if the first j jobs of 7 in the busy interval miss their deadlines.
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(a) Periodic, implicit-deadline task sets: An Iy interval of 72 with two consecutive deadline misses (at ¢ = 5 and
t = 10), followed by a job meeting its deadline at ¢ = 14. At ¢ = 15, a new busy interval of 75 starts.

I
I
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I

4
T b2z preziig & ; [ ]
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(b) Sporadic, implicit-deadline task sets: Two I; intervals of 75, both ending with idle time at ¢ = 6 and ¢ = 15,
respectively. While the first busy interval finishes with idle time, the second finishes with a job of 7 meeting
its deadline.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(c) Periodic, constrained-deadline task sets: One I; interval ending at ¢ = 12. It ends after the second job of T
finishes at ¢ = 12, meeting its deadline.

Figure 5.5: The possible scenarios for busy intervals. Red boxes represent the
execution of 71. For 7o, blue boxes with crosshatch patterns represent
abnormal execution before the deadline of the related job, orange boxes
with dot patterns represent abnormal execution after the deadline, and
green boxes with slash patterns represent normal executions. The
upward arrows represent the arrival time for each job, whereas the
downward arrows represent the deadline for each job.

For this definition it does not matter, if the busy interval ends with a job of 7%
meeting its deadline or by the processor running idle with respect to tasks in hep(7y).
Note that an I busy interval does not contain any deadline misses. The probability
of the occurrence for I; is denoted as 1 (1;).

Theorem 12. For a given sequence of a sufficiently large number of jobs of 7, the
jobs can be partitioned into busy intervals of 7, with at most J jobs missing their
deadlines consecutively. All these busy intervals are independent from each other.
Therefore, the sum of the probabilities ¥(I;) from j = 0 to J is one, i.e., Zfzo P(I;) = 1.

Proof. As each busy interval either ends with a job of 7, meeting its deadline or
the processor running idle with respect to tasks in hep(7), all the busy intervals
are independent. If a job misses its deadline, it must be part of a busy interval of
type I; with at least one deadline miss, i.e., j > 1, with a known probability ¢ (I;),
since Dy < Ty. Otherwise, the probability that a job is meeting its deadline is ¥ (Ip).
Since the intervals are independent, they are the probabilities for their occurrences.
Therefore, Zg:[)@/}(lj) =1. O
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5.4.2 Expected Miss Rate

With at most J jobs consecutively missing their deadlines, now it is possible to describe
a given schedule with probabilistic arguments in I; busy interval manner. According
to Definition 8, the expected deadline miss rate E; with at most J jobs consecutively
missing their deadlines can be obtained by the following equation:

- Expected number of deadline misses
k =

Expected number of released jobs
Sl v(;)-j
=3 - (5.26)
ijl w(Ij) ]t 1/}([0) -1

where 1 (I;) is the probability of the occurrence for I; for task 7, for any possible
schedule. The numerator of Eq. (5.26), i.e., Zgﬂ Y(I;) - j, is the expected number of
jobs missing their deadlines among all the possible busy intervals. The denominator
of Eq. (5.26), i.e., Zgzl (1) j+1(1p)-1is the number of sampled jobs (may meet or
miss their deadlines) over the given schedule, in which the left part is the number of
jobs (missing deadlines) in each I; busy interval, whereas the right part is the number
of a job that must meet its deadline.

However, calculating the probability ¢ (1;) precisely is still an unsolved problem to
the best of our knowledge. Alternatively, we adopt the upper bound on the probability
of f-consecutive deadline misses ®;, , presented in Section 5.2.2 to derive the upper
bound of (1) for over-approximating Eq. (5.26). While we explicitly analyze the
miss rate for one task 7, the proposed approaches can be applied to each task in any
given task sets.

Upper Bound of ¢(I})

Let @ ; be a safe upper bound on the probability that j (or more) consecutive jobs
of 7, miss their deadline. By definition, for j > 1, the probability ¢ (/;) for an interval
I; with ewactly j-consecutive deadline misses must be upper bounded by @y ;, i.e.,
P(I;) < @y ;. Moreover, as the sequence of ®y ; is non-increasing for j > 1, @y
must be larger than or equal to the probability ¢(I;) for an interval I; with ezactly
j-consecutive deadline misses if [ < j. For instance, ®y 1 > 1(12).

Several general approaches to calculate ®; ; are known from the literature. Job-
level Convolution-based methods like in [MEP04; MC13] directly enumerate the WCET
state space with the associated probabilities. Considering the jobs in non-decreasing
order of arrival time, they convolute the current state of the system associated with a
vector of possible states, i.e., possible total WCETs and related probability, with the
current release jobs. By repeating this procedure until Dy, is reached, all released jobs
are convoluted, and the probability that the worst case response time is greater than
Dy, (at least one deadline miss) can be derived accordingly. In [BPK+18] a task-level
convolution was proposed that evaluates the resulting deadline miss probability for a
set of time points individually. Although these approaches focus on the probability of
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one deadline miss, i.e., ®j 1, they can be extended to multiple deadline misses. For
{-consecutive deadline misses, instead of repeating until Dy, the procedure is repeated
until (£ - 1)Ty + Dy, is reached.

The approaches presented in [MEP04; MC13; KC17; BPK+18] all calculate the
probability of deadline misses based on the probability that the workload S; over
a given interval of length ¢ is larger than t. To be more precise, they evaluate if
P(S; > t) for certain ¢ values of interest, i.e., the deadline of 73 and the release times
of all jobs of higher priority tasks. If these probabilities are known for some or all of
these values of interest, we can directly apply Theorem 9 proposed in Section 5.2.2 to
derive a safe upper bound on the probability for /-consecutive deadline misses.

Please note that while ®;, ¢ as the upper bound of (/) can be calculated by all
methods mentioned above, the job-level convolution-based analyses suffers from state
explosion due to the large number of jobs and hence are not practicably applicable
as shown in [BPK+18] and the evaluation later on. Hence, either the task-level
convolution presented by von der Briiggen et al. in [BPK+18] or the analytical
approach proposed in Section 5.2.2 should be applied.

Approximation of the Expected Miss Rate

To approximate Eq. (5.26), here we assume that the safe bound on the probability for
one deadline miss is greater than 0, i.e., ;1 > 0. Otherwise, the expected deadline
miss rate is trivially zero, i.e., Ex = 0. A safe upper bound on the expected miss rate
E; can be obtained by the following theorem:

Theorem 13 (Approximation of the Deadline-Miss Rate). Suppose that we are given
a schedule of a set of constrained-deadline (or implicit-deadline) sporadic tasks I’
where the largest number of consecutive deadline misses of 7 in this schedule is J.
An upper bound on the expected deadline miss rate of task 7, can be calculated as

. Y1 ®Phjd
k= B
Yo Pr g+ (1= Ppy)

(5.27)

where ®; 1 and ®;, ; are derived by Theorem 9.

Proof. By the above arguments for 1 (1;), we know 1 (I;) < ®; ;. For any possible
schedule, the probability 1 (1Iy) that there is no job missing its deadline must be at
least 1 - @y, 1, ie., 9(lp) >1 - Py 1, and Zﬂzl Y(I;) - j > 0, which means that

V(1) N 1D
SIaw() G T Phyed

(5.28)

Therefore,

_ Zgzl 1/1(13‘) .7
Tio (1) -5+ $(1o)

k
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~ 1 < 1
T, e =%y,
J . T -
Zj:l ¢(I])] ijl (bk,j'j
7 .
< Zj=1 (I)k,j )
Sy Py g+ (1= Dpn)
< Ey (5.29)
This concludes that E; must be upper bounded by Iffk, ie, E; < E. O

The following example illustrates how Eq. (5.26) and Eq. (5.27) can be used to
calculate the expected miss rate.

Example 4 (Example of Expected Miss Rate). Suppose that the probabilities of I;
are given as: ¥(Ip) =0.99, (1) =0, and ¥ (I2) = 0.01. With Eq. (5.26), we get the
expected miss rate:
0.01-2
0.01-2+0.99

Let the safe bounds of them be given as follows: @1 = 0.05, ®; 2 =0.02, and @}, 3 = 0.
With Eq. (5.27), a safe upper bound on the expected miss rate can be derived as:

1

0.95
L+ 50510022

=0.0198

=0.0865

5.4.3 Threshold J' and Time Complexity

Since in Eq. (5.27) the maximum number of jobs with consecutive deadline misses
J could be extremely large or even infinite, an additional approximation is required
to bound the summation in Eq. (5.27). Let S = Z;Zl @y, ;- j. We can use a threshold
(J+1) P41

JPk,j
that 7y is always larger than the other r;, where J' < j and 0 < 7y < 1. A safe upper
bound on E; can be obtained by the following theorem:

J" to simplify the procedure. Let r; = . Assume there is a given J', such

Theorem 14. Suppose that we are given an index J’ such that r is always larger

than any other 7 if 0 < J' < j. Let § = Zg{l)j@kﬂ

‘bk“]]r

An upper bound on the

1*7‘31 :

expected deadline miss rate of task 7, can be calculated as
. S

Ef=———— (5.30)

S+1- (I)kJ

Proof. Comparing to Eq. (5.27), Eq. (5.30) only replaces S with S. Therefore we
prove S > S as follows:

S =

s

Il
=

D -
j
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(J’-1)

Z j‘I’k] + Z Z‘I)k 2

z=]'

(J’—l)

Z j(pk,j + q)k,,]]’ + qu)k,,]]’ + 7”17“2@]9731 N

j=1
J'-1)

< Z Jpj + Z ry) @y (5.31)

J=

As Y220 (ry)* @y is an infinite series with a common ratio ry, in which 0 <rp <1,
we can calculate Eq. (5.31) from the finite sum formula:

J'-1) o
& k,J
S = J®k, :
jz=:1 J 1- ry
Since S > S, it follows directly that E; > Eg. O

The complexity of this approximation mainly comes from S, which is dominated
by the calculation of j- ®; ; for j=1,2,...,J". According to Eq. (5.20), we need
to calculate @g , in every iteration and use the derived ®;,_,, from the previous
iterations. The space complexity to record all values ® for w =1,2,. "is O(J").
Suppose that the time complexity to determine if ]P’(St >t) for a given smgle time
point ¢t is O(L). For each <I>9 , the time complexity is O(Dy - L) with discretized time

points ¢t from 0 to Dy. Smce <I>k » can be calculated by the derived oY immediately,

k,w

thus, the time complexity of S is O(J'- Dy, - L) (if we only look at D y0).

5.5 Experimental Evaluation

This section presents two different piles of experimental evaluations for the proposed
approaches in this chapter as follows:

1. We evaluated the approximation quality and the runtime of the deadline-
miss probability computation of the analytical bound approach. As shown
n [BPK+18], Hoeffding’s and Bernstein’s inequalities are several orders of
magnitude faster than the Chernoff bound approach, whereas the error of
them is large, i.e., by several orders of magnitude. Therefore we selectively only
evaluated the Chernoff bound approach in Theorem 3 and Theorem 4, denoted as
Chernoff and Chernoff-K respectively, compared to the traditional job-level
convolution-based approach proposed in [MC13], denoted CPRTA.

2. We evaluated the efficiency and the pessimism of the proposed analytical
approach in Section 5.4.2. To calculate the upper bound of deadline miss
rate, we used two different ways to determine ®; ;, namely the Chernoff bound
approach with & selected points in Theorem 4, denoted as Chernoff®, and the

5The scripts were downloaded from https://github.com/kuanhsunchen/EPST/ on July. 23 in
2018.
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tighter task-level convolution-based approach presented by von der Briiggen
et al. in [BPK+18], denoted as CON. Moreover, we compared to the results
derived from the event-driven simulator, introduced in Section 3.4.3, labeled as
SIM.

Please note that the convolution-based approach in [MC13], i.e., CPRTA, leads to
identical results as the task-level convolution-based method, i.e., CON, proposed
in [BPK+18] while it has (in general) a larger runtime. However, while we proposed
the Chernoff bound approach, the state-of-the-art was still the job-level convolution-
based method proposed in [MC13]. Therefore the first evaluation here keeps as it was
to demonstrate the novelty of our contribution at that moment.

5.5.1 Experimental Setup

For the evaluation, we implemented the probabilistic schedulability test with the
Chernoff bound approach on Linux kernel 3.13.0 with Python 2.7. The adopted
machine had an Intel Core i7-4770 and 8GB DDR3 RAM. To find the s with the
minimal probability in Eq. (5.7), we used SciPy library [JOP+01] and searched
multiple s in (0, 1]. The complete scripts are all available at [Kual7]. Please note that
the proposed analyses should be carefully implemented, as the considered probabilistic
values are very small. Due to the lack of precision in floating-point calculation, the
terms in the commutative operations should be pre-sorted to avoid inconsistent results.

We synthesized randomized implicit-deadline task sets with a given utilization
value Ui, i-e., Udim = Srer UfY according to the UUniFast method [BB05], where
UZ-N is defined as C’iN /T;. For each task set, the task periods were generated by a
log-uniform distribution with two orders of magnitude, i.e., [1-100]. We adopted
time-demand analysis [LSD89] to ensure the schedulability when all tasks are always
executed normally, and discarded those task sets that were anyway not schedulable.
To simulate a recovery mechanism, we set the error detection costs to 20% of the task
execution time and assumed a complete re-execution if a fault is detected, i.e., C'Z-A
was set to % ~1.83- C’Z.N for all tasks 7; € I'". With the generated utilization UZ-N, the
normal execution time C’iN was set to UiN -T;.

In the first evaluation, the considered cardinalities of the task sets were: 10, 20,
A

7
After observing that the results among these three cardinalities are similar, we select to

show the case for 10 tasks to demonstrate the comparisons. For the second evaluation,

and 30 tasks. For each given fault rate P{*, we recorded 100 synthesized task sets.

task sets with a cardinality of 2, 5 and 10 were considered in this evaluation. We
used an identical fault rate PZ»A for all tasks, and only present the miss rates of the
lowest-priority tasks.

For the configuration of the simulator, since we consider tasks with their specified
minimum inter-arrival times (i.e., they are sporadic), it is unnecessary to release a
higher-priority job if there is no unfinished job of a task under analysis. In order to

"Here we assume there is at most one error to be handled for each job of tasks.
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Tasks: 10, NumMisses:2, U"f;miﬁo% Tasks: 10, NumMisses:3, Utilization:60%
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Figure 5.6: Calculated DMPs with UL, = 60.0%, varying fault rates and £ .

fairly compare with our analytical approach considering the worst case, we enforced a
worse release pattern in the simulator so that the estimated miss rate is closer to the
worst case. Namely, if the lowest-priority task does not have any unfinished job at
time ¢, a higher-priority task does not release any job even if its minimum inter-arrival
time allows it to release a job at time t already. Instead, the next release of those
higher-priority tasks is postponed to the point in time when the next job of 7 is
released.

5.5.2 Evaluation of Deadline-Miss Probability

In this evaluation, we present the maximum DMP <i>,~7g among all the tasks with the
given £, i.e., 7; € I'. For each fault rate, we recorded 100 calculated DMP and reported
the medians (red lines), the interquartile range of the sample (the width of the boxes),
the maximums (top lines), and the minimums (bottom lines) with the box plots,
where a base-10 log scale is used for the Y-axis.

Firstly we compare the results derived by Chernoff and Chernoff-K to evaluate
the approximation by testing only k time points. Interestingly, the results derived
from both approaches are almost identical. Namely, the probability (i)i’g of deadline
misses delivered by Chernoff-K is always the same as ®; ; delivered by Chernoff.
Although we know that testing a pseudo-polynomial number of time points may give
us a tighter upper bound on the deadline-miss probability, our experiments empirically
support that it may be sufficient to test only k-points derived by Chernoff-K to
obtain the upper bound on the probability efficiently. For the real valued parameter
s adopted in Chernoff and Chernoff-K, we search s only in the range of (0,1].

Figure 5.6 presents the relationship for the probability of {2,3}-consecutive dead-
line misses, in which their interquartiles are all close to the maximums. The medians
start to downgrade when the fault rate is decreased. Moreover, the ranges between
the maximums and minimums are slightly changed when the fault rate goes down.
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Methods Cardinality 5 tasks | 10 tasks | 20 tasks | 30 tasks
CPRTA | Avg. Time (sec) | 7.4812 - - -
Successful Runs | 98/100 | 0/100 0/100 0/100
Chernoff | Avg. Time (sec) | 0.1406 | 0.4855 1.6738 2.7545
Successful Runs | 100/100 | 100/100 | 100/100 | 100 /100
Chernoff-K | Avg. Time (sec) | 0.0418 | 0.1253 | 0.4760 0.7917
Successful Runs | 100/100 | 100/100 | 100/100 | 100/100

Table 5.2: Analysis time need for 100 synthesized task sets per configuration.

Chernoff-Bound against Job-Level Convolution-Based Approaches

In order to evaluate the pessimism and the efficiency, we compared the proposed
approaches, i.e., Chernoff and Chernoff-K, with the job-level convolution-based
approach proposed in [MC13] without any further approximation, denoted CPRTA.
We used the released scripts in MATLAB and only changed the input of the simulation
by using the task generator described in Section 3.4.% Specifically, the randomized
period of tasks in this comparison is uniformly distributed between [1,50]. Comparing
to typically using [1,100] in the literature, this is unfortunately needed to reduce the
number of iterations in CPRTA.

Table 5.2 first presents the required analysis times for different analyses. We test
over 100 task sets for each configuration and we set at most 10 minutes as the timeout
threshold in each task sets. Unfortunately, CPRTA is still not able to derive the
DMP for 10,20 and 30 tasks after we adjusted the randomized distribution of periods
to [1,50]. Without setting the timeout threshold, we also use 6 computers in our local
cluster to derive the results by using CPRTA for 12 hours for task sets with 10 tasks.
To the end, however, none of the CPRTA analyses is able to finish. The run time
reported in [MC13] was 140 seconds in average for task sets with 16 tasks. However,
the convolution-based approaches for testing the generated task sets in [MC13] were
usually quite easy to finish. When we used the widely-accepted UUniFast method
for generating the task sets, we note that the convolution takes much longer time to
compute. Thus, such convolution-based approaches would be very time consuming
and are not suitable for large task sets.

Moreover, we compare the derived DMPs of CPRTA and Chernoff-K under
different UX,y;, for the lowest priority task in each set. In Figure 5.7, the results in the
left-hand side are derived under UX)y, = 60%, whereas the results in the right-hand
side are derived under UZy, = 70%. As shown in Figure 5.7, besides the extreme cases,
our method is a bit pessimistic (the lower the tighter). However, if the pessimism of
sufficient tests is acceptable especially under a large number of tasks, the proposed
approaches can efficiently derive the upper bound on the probability of deadline misses

8The scripts were downloaded from https://who.rocq.inria.fr/Dorin.Maxim/ on Jan. 24 in
2017. The modified scripts and the input generated by UUniFast method can be found in [Kual7].
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Figure 5.7: DMPs under different approaches and varying US]\{IID‘

instead of unnecessarily deriving the whole response time distribution.

Job-level Convolution with Re-Sampling against Chernoff-K

As shown in the previous subsection, we can see that CPRTA without any approx-
imation is very time consuming even with 10 tasks. In [MC13], the re-sampling
technique by manually introducing a threshold of the valid number of data points
was shown to improve the needed calculation time of CPRTA by orders of mag-
nitudes faster. However, with the task sets generated by applying the UUniFast
method, the results derived from CPRTA with the re-sampling technique, denoted
as CPRTA-resample, may be worse than the results derived from Chernoff-K
even for 10 tasks as shown in Figure 5.8. Although for 10 tasks using re-sampling in
CPRTA with a threshold set to 100 indeed reduces the calculation time, i.e., around
1 second in average, the derived results are all worse than our analysis in medians
and the interquartile ranges of the sample as shown in Figure 5.8. Especially when
USA{lm =70%, the DMPs derived from CPRTA with re-sampling are really closed to
1. For 20 tasks and above, we can not obtain any result by using re-sampling with a
threshold set to 100 within 6 hours. With threshold 1000, CPRTA is not able to
finish even with U}, = 60% in 6 hours. With threshold 50, the calculation time of
CPRTA is extremely fast, but the results are all close to 1 even under utilization
Udim = 60%.

After all, we know that CPRTA with re-sampling could provide tighter results
with a higher threshold but require much more time to calculate the probability.
Conversely, CPRTA with re-sampling could need less time for calculation with a
lower threshold but provide looser results with respect to the probability of the
deadline-miss rate. If using convolution-based approaches anyway cannot avoid to
use approximations like the re-sampling technique to reduce the time complexity, how
to properly approximate the convolution for the balance between the tightness and
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the calculation time is another considerable issue, which is the essential problem that
needs to be solved for the convolution-based approached proposed in the literature.

Task-level Convolution-based Approach against Chernoff bound Approach

In this evaluation, we considered the following approaches: Chernoff referring to the
Chernoff bound based approach that uses a golden-section search to find an optimal s
value with only & time points, i.e., we rename Chernoff-K as Chernoff for the rest
of evaluations, and Pruning referring to the task-level convolution-based approach
with the pruning technique described in [BPK+18]. We compare the computed
deadline-miss probabilities of the lowest-priority tasks and the required runtime by
Chernoff and Pruning. Further, we used task sets with a varying number of tasks,
ie., {10,15,20,25}. Due to the high runtime required by Pruning, we created a
varying number of task sets depending on the number of tasks, i.e., 100 sets with
10 tasks, 50 sets with 15 tasks, 25 sets with 20 tasks, and 5 sets with 25 tasks. We
considered two normal-mode utilizations, namely 50% and 70%.

Fig. 5.9 and Fig. 5.10 show that the average computation time used for the Chernoff
bounds is 1 — 3 magnitudes faster than Pruning. Additionally, unlike Pruning, the
runtime of Chernoff is insensitive to the task set utilization. With a larger number
of tasks per task set, i.e., 100 tasks, Pruning cannot derive any results even over 24
hours, whereas Chernoff finished the computations in average 507.5 sec over 5 sets.

With respect to the approximation quality, Fig. 5.11 displays the calculated
deadline-miss probabilities of the lowest-priority tasks in each analyzed task set
consisting of 20 tasks each with cumulative utilization of 50%. As expected, due
to the lack of an analytical bound on approximation performance of Chernoff, the
difference between the two methods can be arbitrarily large. Moreover, the differences
are larger for task sets where the deadline-miss probability is already very low. By
contrast, in the cases where the deadline-miss probability is higher, e.g., 1073 to 107,
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Figure 5.9: Average runtime time for the Chernoff and Pruning method for soft-
error implicit-deadline task sets with 50% utilization for different number
of tasks per task set. The soft-error probability is set to 2.5%.
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Figure 5.10: Average runtime time for the Chernoff and Pruning method for soft-
error implicit-deadline task sets with 70% utilization for different
number of tasks per task set. The soft-error probability is set to 2.5%.

the differences are relatively smaller. Fig. 5.11 also shows that the optimal value of s
depends on the specific settings of the task set, e.g., the utilization, which empirically
shows that testing only a specific range is not enough.

5.5.3 Evaluation of Deadline-Miss Rate

Since the calculation of ®; ; mainly determines the required analysis time and the
precision for the upper bound of the expected miss rate, we first present the perfor-
mances of two applicable state-of-the-art techniques, i.e., Chernoff and CON, over
different value j of calculating ®y, ;.

Trends of ¢, ; from CON and Chernoff

For a cardinality 10 tasks, we reported values of ®; ; for j up to 6 with 5 random
task sets. For a cardinality 5 tasks, 10 random task sets were analyzed up to 5. From



5.5. Experimental Evaluation 93

< 1078 2.723 B Chernoff (2.5%) [ Pruning (2.5%)

- 1.823
% 107%
50 4.644
& 10-% 5.879 9.978 9.137 3.965 8.153 5.673 6.129 4310
=
% 10—1‘5()
a 10-161
o
21071
= -2
3107
S 10206
10—3(]()

Set0 Setl Set2 Set3 Set4 Set5 Set6 Set7 Set8 Set9 Set10
a

1
10 0044 060 0058 0050

0.057 0.079
= | 0.073
3 1073 o159 0110 0085
é" 0131 o 11 015 0.163 0166 %5 012
= 107" 0.144

0.141

% 0170 0.267
a 1077 oge 0.185
- 0.189
2 9
B
£ 10
L
3 10—11

SO S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24

Figure 5.11: Approximation quality for the Chernoff and Pruning method for
soft-error recovering implicit-deadline task sets with 50% Figure a)
and 70% Figure b) utilization for different task sets. The bars are
annotated with the computed optimal value of s.

Fig 5.12, we can observe that Chernoff requires significantly less amount of analysis
time than CON. When the cardinality of the task sets increases from 5 to 10, we
can see that for j = 5, calculating ®; ; by CON requires almost 6000 seconds in
average, which is in practice hard to be applied. This is due to the large number of
jobs involved in the interval of analysis since the time complexity of CON is roughly
the number of jobs of a task to the power of the number of tasks.

In Figure 5.13, we compare the calculated expected miss rates. The y-axis here is
the ratio between the derived values over two different approaches, in which the higher
the ratio, the bigger the differences. We can see that if j is larger, the differences of
the derived values are bigger. When the cardinality of the task sets is big like 10,
the differences between two approaches are not that significant. Generally, when j
increases, ®; ; decreases drastically. When we consider the calculation of S, we can
expect that the value contributed from j- @y ; for bigger j becomes negligible very
soon. This observation supports our approximation in Section 5.4.3. Since the derived
upper bound of the expected miss rate is mainly dominated by those ®;, ; with small j,
such insignificant ®;, ; values resulting from a large j and, hence, requiring significant
analysis time can be sensibly ignored. Therefore, we set J' to 4 for S in the rest of
evaluations to efficiently over-approximate the expected deadline miss rate Ek for all
the given task sets.
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Figure 5.12: Trends of ®; ; with respect to different j and different cardinalities.

Comparison among SIM, CON and Chernoff

To evaluate the efficiency of our analysis, we compared the derived upper bounds
from CON and Chernoff to the estimated deadline miss rate from the event-driven
simulator SIM introduced in Section 3.4.3. The considered cardinality of the task
sets is 2 in this evaluation, since deriving ®; ; using SIM to simulate the miss rates
is really time consuming, i.e., it requires 338.84 seconds in average. The simulator
stopped its simulation when two-million jobs from the lowest priority task finished
their executions. We show the results for 20 different task sets where the expected
miss rate derived from SIM was greater than 107° in Figure 5.14. The restriction
regarding the displayed task sets is taken to increase the readability of the figure.

In Figure 5.14, the bounds derived from CON and Chernoff are generally higher
than the miss rates of SIM. However, we can observe that from some sets like
{50, 54,56,57,512,...}, the expected miss rate derived by SIM is higher than CON.
The main reason is that the number of tested jobs is not enough. This also empirically
supports that deploying simulations to estimate the deadline miss rate is not practical.

Although the bounds derived from CON in our setting are relatively close to the
simulated miss rate from SIM, CON does not scale that well with respect to the
number of tasks in the system, especially when calculating S. The bounds derived
from Chernoff are generally greater than the estimated bound from CON by two
orders of magnitude. However, it is more scalable than CON and SIM. Hence, the
trade-off between precision and required time has to be carefully considered when
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Figure 5.13: Average analysis runtime for calculating ®;, ; with respect to different
j and different cardinalities.

applying our analytical approach. If the error resulting from the pessimism of the
Chernoff bound is acceptable, Chernoff is still a good choice.

Expected Miss Rate with More Tasks

Since the variation of the derived miss rates is significant even under the same
utilization setting and fault rate, we choose box plots to present the results, i.e.,
shwoing the medians (red lines), the interquartile range of the sample (the width of
the boxes), the maximums (top lines), and the minimums (bottom lines). We recorded
the miss rates of 100 synthesized task sets for each configuration. Unfortunately,
CON could not obtain H*fk in an acceptable amount of time even with J' = 4, i.e.,
30 minutes per task set, whereas Chernoff could obtain the result for each task
set in, on average, 2 minutes. Therefore, we only present the results E; while @, ;
are derived by Chernoff, i.e., Chen and Chen’s method [KC17], for the cardinality
with 10 tasks. As shown in Figure 5.15, naturally the derived bounds are less if the
fault rates are lower; the derived bounds are higher if UL}, is higher. The trends of
results derived using different values of U, are similar to the results presented in
Figure 5.15.
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Figure 5.15: Expected Miss Rate Ej, derived from Chernoff for 10 tasks under
different UL}y, and different fault rates P/

5.6 Summary

As soft real-time systems tolerate and occasionally accept certain deadline misses, the
probability of deadline-miss and the deadline-miss rate both are important performance
indicators to evaluate the proposed analyses, scheduling algorithms, etc. This chapter
firstly presented analytical bound approaches in Section 5.2.1, which can safely
over-approximate the probability of deadline misses. It could be shown that the
computations are substantially faster than the state-of-the-art convolution-based
approaches. Furthermore, it could be shown that in the cases where the cut-off
deadline miss probability of interest is in the region of 1073 to 107!, the differences in
approximation quality are reasonable in light of the runtime improvement. To the



5.6. Summary 97

best of our knowledge, this is the first work adopting concentration inequalities to
efficiently derive the probability of deadline-misses.

Secondly, this chapter provided an analytical approach in Section 5.4.2, which
can efficiently derive a safe upper bound on the expected deadline miss rate, based
on the analytical bound approaches proposed in this chapter or the state-of-the-art
convolution-based approaches in the literature. The experimental results show the
applicability and the efficiency of our approaches, evaluating the derived expected
miss rate, the precision and the required runtime over different backbones, and the
estimated miss rate from simulations. To the best of our knowledge, this is the first
study analyzing the expected deadline miss rate in general task and scheduling models.

Overall, the proposed approaches in this chapter provided some new trails, com-
pared to the existing techniques in the literature, by which the system designer is
allowed to efficiently provide probabilistic arguments for the probability of deadline-
miss and the deadline-miss rate. The studied model and results are aligned with the
design requirement for safety-critical systems. For example, verifying if the probabil-
ity as a threshold to reboot the system for resolving consecutive deadline misses is
acceptable or not. All related scripts are available on [Kual9] and [Kual§|.
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6.1 Overview

Instead of considering uniprocessor systems in Chapter 4 and 5, in this chapter, we
study how to achieve resource-efficient reliability on multi-cores systems. In such
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systems, a commonly adopted soft error mitigation technique is REDUNDANT MULTI-
THREADING (RMT) that achieves error detection and recovery through redundant
thread executions on different cores for an application. Towards this, both need to
be handled in this study, 1) which tasks should be assigned to which cores, namely
task mapping problem, and 2) which reliable levels should tasks activate, namely task
redundancy level problem.

In this chapter, we consider how to adopt RMT to improve the system relia-
bility on two different system models. The first one is that the individual cores
on the considered multi-core systems exhibit different frequencies due to process
variations [BDMO02], aging effects [SGH+14], and performance heterogeneous (micro-)
architecture designs [ARM13]. For instance, process variations may lead to significant
frequency variations (e.g., up to 30% [BDMO02]). Another source of performance
heterogeneity is iso-ISA performance-heterogeneous cores, e.g., ARM big. LITTLE
architecture [ARM13] and Kumar et al. [KFJ+03]. In the state-of-the-art, i.e.,
dTune [RKS+14b], a greedy mapping approach is adopted to match reliability-critical
tasks onto high-frequency cores. However such a greedy approach lacks effectiveness,
since the number of high-frequency cores in the considered system might not be
sufficient. In addition, the reliability degradation of executing tasks on low-frequency
cores also needs to be considered for all tasks at the same time. Under core-to-core
frequency variations, there may be scenarios as shown in the motivational example
(see Section 6.1.1), where assigning the reliability-critical task to the high-frequency
core is not reliability-wise beneficial, since the timeliness of the overall system also
needs to be thoughtfully satisfied.

Secondly, instead of solely adopting CHIP-LEVEL REDUNDANT MULTI-THREADING
(CRT)-TrIPLE MODULAR REDUNDANCY (TMR) (or not) and one-by-one mapping,
we consider that tasks can be executed in multiple different redundancy levels while
satisfying the given hard real-time constraints under multi-tasking. Similar scenarios
are in general considered in [BCM+13; DKV13; IPE+12], i.e., the objective of these
papers is to schedule tasks with real-time constraints while concerning fault detection
and tolerance features. However, these papers consider frame-based task systems.
Even in such a simplified setting, the problem explored in this chapter is still very
different from the problems explored in [BCM+13; DKV13; IPE+412]. In [BCM+13;
DKV13] the energy efficiency and mean-time to failure under lifetime constraints is
optimized. In [IPE+12] the authors present a runtime scheduling strategy to adapt
the system to the occurrence of faults at runtime to reduce the overhead due to fault
tolerance. Those algorithms are not applicable to the problem studied in this chapter.

Motivated by the above issues, in this chapter, we present several optimization
approaches to tackle the task mapping problem and the task redundancy level problem
under different system models respectively. These approaches aim to optimize the
overall system reliability!, e.g., the sum of reliability penalties or the maximum relia-

!Whenever we mention the system reliability, the considered metric is from the penalty perspective.
If the reliability penalty is high, the system is less reliable. If the reliability penalty is low, the system
is more reliable. Details can be found in Section 6.1.2.
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bility penalty, while satisfying given hard real-time constraints. In the first model, we
introduce the reliability-driven task mapping technique determining task redundancy
levels, i.e., task execution with or without RMT, and task allocation decisions, i.e.,
mapping (redundant) tasks on many-cores with heterogeneous performance charac-
teristics. In the second model, we consider different RMT levels on a multi-core
system, i.e., DOUBLE MODULAR REDUNDANCY (DMR)/TMR with SIMULTANEOUS
REDUNDANT MULTI-THREADING (SRT), CRT, and MIXED REDUNDANT THREAD-
ING (MRT), and tackle the reliability optimization problem by adopting Federated
Scheduling [LCA+14] and R-BOUND-MP-NFR [AJ03] as the backbone. We propose
several dynamic programming algorithms to optimize the system reliability while
guaranteeing its schedulability. Throughout the simulation results, we can see that
the proposed approaches significantly improve the system reliability and even the
system schedulability compared to the state-of-the-art techniques.

6.1.1 Motivational Example

This section presents two examples to illustrate the motivations of this chapter: The
first example demonstrates a scenario that the greedy mapping approach is not good
enough even only CRT-TMR is considered; the second example shows why the MRT-
TMR can balance the usage of resource with respect to the number of cores and the
execution time.

Greedy Mapping is Not Good Enough!

Here we provide a motivational example to explain why the greedy mapping, e.g.,
used in dTune [RKS+14b], is not good enough with respect to the overall reliability.
For simplicity, we only present the motivational example for tasks by single version
with given redundancy levels. Suppose that we are given three tasks, i.e., 71, 79, and
73. Task 7 has the CRT-TMR requirement but the others have no redundancy. Five
cores are sorted by their frequencies beforehand, i.e., ¢; is faster than c;,1. Now we
consider the task mapping problem to assign the cores to three tasks for minimizing
overall penalty, where the reliability penalty of tasks on each core are defined in
Table 6.1a. As shown in Figure 1.4 in Chapter 1, the penalty value of Table 6.1a
for 71 depends on the frequency of lowest-frequency core in the assigned core group.
Please note, we denote the penalty value as oo to show the infeasible mapping that
violates the tolerance of deadline miss rate. With the above setting, there are four
available assignments with different penalty values as illustrated in Table 6.1b.

In the above example, we can check all the possible mappings to obtain the
optimal result that will be 0.42 while the miss rate constraint is not violated. In
this example, 7 cannot adopt core c5 for RMT activation, since the tolerable miss
rate will be violated. By using the greedy mapping to assign the tasks and cores,
overall penalty of mappings is 0.6. RMT-activated task 7 uses core group {ci,co,cs}
for the minimal communication overhead, and the reliability-wise critical task, i.e.,
73, acquires the higher-frequency core c4 among the rest of cores. Moreover, if the
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Penalty value | ¢ Co c3 n s

CRT-TMR — T1 3 3 9 9 (&9
O—To 0.10 | 0.15 | 0.20 | 0.25 | 0.30
o—T3 0.24 | 0.26 | 0.28 | 0.30 | 0.32

(a) Tasks reliability penalty on each core.

Mappings Total penalty
T — TMR(03,04,C5),T2 e ¢(02)7T3 - ¢(Cl) o0
T = TMR(Cl,CQ,CE}),TQ - ¢(C5)773 - ¢(C4) 0.6
71 = t™r(C2, €3, ¢4), T2 = P(c5), T3 > P(c1) 0.54
T = TMR(CQ,C3,C4),7_2 g ¢(Cl)>7'3 - ¢(C5) 0.42

(b) Possible mappings and overall penalty.

Table 6.1: Possible mappings with corresponding reliability penalty values.

allocation of CRT-TMR task 7 is not assigned properly, overall penalty of mappings
may be even worse in this example, i.e. co.

Overall, we can see that the reliability-wise critical task is a suboptimal choice
without considering the total benefit of system. Moreover, the miss rate constraint
for each task should also be considered to ensure the feasibility of task mapping as
well. As a consequence, it is clear that such a task mapping problem requires better
strategies, since the straightforward exhaustive search is obviously not feasible in
practice with the expected high time complexity. It is not difficult to see that, if the
reliability penalty of task increases non-linearly, it may lead to a result which is even
worse than the proportional setting of this motivational example.

Why Mixed Redundant Threading is Desired?

Consider that we want to activate CRT-TMR to enable detection and correction for
soft errors. In the literature, either SRT [MKR02; KCK+16] or CRT [RM00; VPC02;
RKS+14b; KCK+16] is used to provide TMR but these techniques are not combined.
This means, the task and the two replicas are either executed sequentially on the
same core (SRT) or on three different cores (CRT). The proposed mixture of SRT and
CRT, called Mixed Redundant Threading (MRT), can balance the number of used
cores and the additional computation as MRT enables TMR, with two available cores.
As already demonstrated in Figure 1.6, adopting MRT can exploit the available cores
more efficiently to improve the reliability under the given time constraints.

Suppose we can only use four homogeneous cores to execute two tasks 7 and
7o and that the corresponding reliability penalties under different RMT levels for
and 7o are given as shown in Table 6.2a. The penalties of task m and 75 without
any redundancy (¢) are Ry and Rs, respectively. The penalty values of 73 and 7»
for SRT are oo due to deadline misses caused by the additional computing time. A
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Penalty Value | ¢ | SRT | MRT | CRT
Tl Ry o |e+A €

(P Ro oo | e+ A €

(a) Tasks reliability penalty on different levels

Mappings Total Penalty Max Penalty
SRT(T1) + (b(TQ) and SRT(TQ) + ¢(7’1) 0 00
P(11) + d(72) Ri+ Ry max {Ry, Ry}
CRT(m1) + ¢(72) and CRT(72) + ¢(m1) | Ri+cor Ry+e | max{R; +¢&, Ry +¢}
MRT (71 )+MRT(72) 2 + A) St A

(b) Possible mappings and overall penalty

Table 6.2: Corresponding penalty values and possible mappings.

is the reliability penalty induced by MRT and ¢ is the negligible reliability penalty
of CRT-TMR. Typically A and & should be much smaller than R; and Rs, i.e.,
R>»> A>¢e, Re{R;,Ry}. As shown in Table 6.2b, the mappings with two SRT-TMRs
and two CRT-TMRs are not feasible. The mapping with one CRT-TMR does not
provide the optimal reliability penalty under the given reliability penalty metrics, as
only one task can be protected by CRT. However, using MRT for both tasks allows
them to have redundant executions concurrently, by which the system penalties in
both metrics are lower than the CRT mapping, if the reliability penalty A is much
smaller than R; and Ry. Eventually, this example shows that MRT provides an
additional option for balancing the usage of cores and for reliability optimization.

6.1.2 Problem Definition

Assume we are given a multi-core processor C with M ISA-compatible homogeneous
REDUCED INSTRUCTION SET COMPUTING (RISC) cores, and a set of tasks I' with
multiple versions. In this chapter, we directly use the same objective metric of
reliability (-timing) penalty as in [RKS+14b; RTK+13] as a part of the linear
combination for functional and timing reliabilities. We first define how we quantify
the reliability of tasks, then the studied problems in this chapter are separately defined
later on.

To quantify the reliability of tasks, we assume that the reliability penalty of
each task level 7; ; is given as R; ;. When consider the performance heterogeneous
among different cores, we assume the task reliability is given by a mapping function
R(7; 1, cm) that indicates the reliability penalty of task version 7; 5 on core ¢,,. R;;
and R(7; j,cm) describe the probability that a fault during the execution of level 7; ;
leads to a visible error when executing (on core ¢,,). The probability of an error for
each instruction is estimated by using Instruction Vulnerability Index and Function
Vulnerability Index metrics proposed in [RSK+11; RSH12]. The task vulnerability can
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be characterized/estimated by the composition of its instructions. The task level with
a lower vulnerability has a smaller reliability penalty, i.e., it has a better reliability.

Reliability Optimization via Perfect Matching

In this problem, we further assume the number of cores M must be greater than or
equal to the number of tasks N. Each RISC core has only one single thread. Due
to the performance variance, e.g., process variations [HBD+13; RTG+13; HGM12;
HMO08] and architectural design, each core ¢; has its own frequency denoted as f;.
For notational brevity, we index the M cores in a non-decreasing order of current
frequencies, i.e., fomaz = f1 = fo... 2 far = foin-

The studied problem can be divided into two sub-problems:

o Task Mapping: Given the redundancy levels # and the tolerable miss rate
constraints pr, we consider how to select the executing version 7;; and allocate
the cores with corresponding frequency for each task T;, so that the overall
reliability penalty Yr is minimized. For this sub-problem, we classify the given
redundancy levels into two classes and propose two algorithms to minimize the
overall reliability penalty in Section 6.2.

e Redundancy Level Adaptation: The objective is to determine the task
redundancy levels 8 without violating the deadline miss rate. Without checking
all the combinations, we propose an ITERATIVE LEVEL ADAPTATION (ILA) to
efficiently determine the redundancy levels of tasks with our mapping approaches
so that the overall reliability penalty is minimized (See Section 6.2.3).

The above approaches are first presented with the assumption that there is no data
dependencies and communication among the tasks. Therefore, the considered task
mapping only affects the execution time of tasks. After addressing the simpler problem
ideally, we consider how to enhance our system model to incorporate the overhead of
execution time for the data dependencies and communication in Section 6.2.4.

The objective function is defined in the following:

Definition 12 (Overall Reliability-Timing Penalty Wr). The overall reliability penalty
of task set I', denoted by Vr, is given by Wr =¥ . R(7; k, ) under the miss rate
constraint p, where R(7; 1, ) is the reliability penalty of task version 7;; executing
on Core Cpy.

Reliability Optimization with Multi-Tasking

Under the same system setting, in this problem, we alternatively assume that the
WORST-CASE EXEcUTION TIME (WCET) of tasks can be given. Without including
deadline miss rates, the objective function is thus different. Instead of taking the
tolerable deadline miss rate into consideration, it is redefined as follows:

Definition 13 (Overall Reliability Penalty Wr(6)). The overall reliability penalty
of task set I' is Wr(0) = ¥, Rip,, where R; g, is the reliability penalty of task ;
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executing at redundancy level 8; and the set 6 contains the redundancy levels 8; of all
tasks 7; € I'.

Please note that, the main focus of this work is not the schedulability problem. For
a given task set, the objective here is that the system reliability should be increased as
much as possible by activating TMR for some (or at best all) tasks. We assume that
the activation of TMR for a task 7; has a different impact on the system reliability for
each task, i.e, a reliability penalty is given for each task that is smaller when TMR, is
activated and larger when TMR is not activated. The total system reliability can be
defined by any applicable metric, e.g., the sum of reliability penalty or the maximum
reliability penalty, and the goal is to minimize the systems reliability penalty under
the given metric.

Please also note that the proposed approaches are applicable to any system
reliability metrics, if the optimization can be solved by a dynamic programming
algorithm, i.e., R; ; can be set to any reliability penalty.

6.2 Reliability Optimization via Perfect Matching

In this section, we first present our task mapping approaches under the assumption that
the redundancy levels for all the tasks are already known beforehand, i.e., 6 is given.
With given redundancy levels, the task mapping problems can be classified to two
different cases, i.e. Homogeneous Redundancy Levels and Heterogeneous Redundancy
levels. Afterwards we deal with the problem how to decide the redundancy levels of
tasks together with the proposed mapping approaches. Please note that we assume a
set of independent tasks first and relax this assumption in Section 6.2.4 later on.

6.2.1 Homogeneous Redundancy Levels

In this section, we show that HUNGARIAN ALGORITHM (HA) [Kuh55] can be the
subroutine of our approach to solve the case that all the tasks require a homogeneous
redundancy level in time complexity O(N?3). There exists two cases: either all the
tasks are executed in the CRT-TMR level, or none of them requires RMT. We will
focus on the former case, and explain how to cope with the latter case at the end of
this section.

For the completeness, we link both cases to the well-known MINIMUM WEIGHT
PERFECT BIPARTITE MATCHING (MWPBM) problem. In the MWPBM problem,
there is a bipartite graph G = (V,E) with two disjoint subsets X ¢ V and Y ¢ V, where
[E is the set of edges between X and Y. Each edge e in E is associated with a weight
w(e). The MWPBM problem is to find out a perfect matching of maximum weight
where the weight of matching M is given by w(M) = ¥ .y w(e). We use the terms
X, Y, and w(M) to refer to the MWPBM problem; the terms C, T', and ¥r to refer
to our problem, where Wr = Y. . R(7;x, ¢ ). The way we use the bipartite graph is
defined as the following:
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Definition 14 (Bipartite Graph for Task Mapping). To build a bipartite graph
G = (V,E), we consider the tasks in I" as the nodes in subset X, and the cores in C as
the nodes in subset Y, by which XuY =V, and XnY = @. With the version selection
table 1, each weight of edge e € E can be referred to a corresponding entry ¥ (7, ¢;,)
which connects two specific nodes, i.e., 7; in X and ¢, in Y.

CRT-TMR . for All Tasks In this case, each task needs three cores to execute
in the CRT-TMR level. Although all the tasks have the same demanded number
of cores for the redundancy, the way we group and assign the cores will affect their
deadline miss rate. We observe that the execution time of each task in the CRT-TMR
level relies on the lowest frequency core in its assigned core group. Therefore, to
increase the feasibility of core grouping for the following task mapping procedure,
an optimal grouping of cores should have the maximal summation of frequencies
from each lowest frequency cores among all the groups. The following theorem
shows that the optimal core grouping can be obtained by grouping every three cores
{ci,civ1,civa},Vi=1,4,7,...,(dp — 2) consecutively.

Theorem 15 (Optimal Core Grouping). Given a set of cores C with variation,
grouping every three adjacent cores {c¢;,ci41,¢iv2},Vi=1,4,7,...,(dp —2) may obtain
the optimal grouping which has the maximal summation of frequencies from each
lowest frequency cores among all the groups.

Proof. First of all, it is not difficult to see that the first dy high-frequency cores are
definitely used in an optimal solution and formed into N groups, in which each group
has 3 cores. Suppose that there is an optimal grouping solution, in which ¢; is in
group G/, ¢z is in group GY, and c3 is in group G%. We only consider the case that
G} # G5 # Gf, as the other cases are simpler than this case. Let ¢;,¢j, ¢ be the
lowest-frequency cores in each of these three groups. Without loss of generality, we
index these three cores such that i < j < k, in which 4 > 4 by definition. Therefore, cg,
can be in any of the three groups in this index rule and the summation of frequencies
among these groups is f; + fj + fj.

Now, we (1) swap ¢z in G and the second fast core in group G} and (2) swap
c3 in G4 and the lowest-frequency core in group G}. These three groups now are
called G7,G3,G3. The lowest-frequency core in Gj is c3, which does not have lower
frequency than the ¢;. Moreover, after swapping, either the lowest-frequency core in
G5, or the lowest-frequency core in G3 is core c¢j. So, there are two cases:

o Case 1: lowest-frequency core in G5 is ¢;: This implies that the lowest-frequency
core of G is also ¢, due to the fact that the swapping procedure does not
change the lowest-frequency core in group G. If core ¢; is in G4 and core ¢; is
in G}, then after swapping the lowest-frequency core of Gj is ¢;. Similarly, if
core ¢; is in G and core ¢; is in G, then after swapping the lowest-frequency
core of G3 remains as c;. We illustrate these two scenarios in Figure 6.1, where
the first and second scenarios of the three groups Gi, G4, G5 are in Figure 6.1a
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(o) (&) ()

Figure 6.1: Example of two swapping scenarios in case 1 in the proof of Theorem 15.
In this example, ¢; is c7, ¢j is cg, and ¢ is cg. After swapping, the
frequencies of cores are increased from f7 + fg+ fo to f3+ fs + fo.

and Figure 6.1b, respectively. Therefore, for such a case, we show that the
lowest-frequency core in G3 is c;.

« Case 2: lowest-frequency core in G is ¢;: For such a case, with the similar
procedure as in Case 1, we can show that the lowest-frequency core in G3 is c;.

As a result, the grouping Gj,Gj3,Gj has higher total frequency (with respect to
the lowest-frequency cores in the three groups) where f3 + f; + fi < fi + fj + f&
and G} = {c1,c2,c3}. If we continue swapping, we can eliminate all differences
between the grouping G, G}, G} and the consecutive core grouping {¢;, ¢it1, Cis2} , Vi =
1,4,7,..., (09 — 2) without decreasing the total frequency of the solution. Therefore,
we reach the conclusion. O

Based on Theorem 15, the task mapping problem can be transformed equiva-
lently to the MWPBM problem with N tasks and N groups, {c¢;,¢is1,¢iv2}, Vi =
1,4,7,...,(3N - 2). Therefore, we can construct the corresponding bipartite graph
and adopt HA as the subroutine to find an optimal assignment with the minimal
overall reliability penalty while all the miss rate constraints are satisfied. According to
the preprocessing, we can ensure that if a task is not feasible to execute on a certain
core, the value of corresponding entry in table ¥ must be infinity. With the above
setting, it is clear that if Wr is infinity, there is no feasible assignment with such an
input set of tasks I' and cores C. Up to here, it should be also clear how to handle the
case when none of the tasks require RMT execution. That is also a perfect matching
problem by assigning N tasks to N cores.

As a result, we summarize our approaches as Algorithm 2 to handle both cases
(all tasks are executed in the CRT-TMR level or none of the tasks are protected). If
the tasks require the RMT execution, we prepare a core group list List} to record the
cores for each group with the optimal grouping of cores by Theorem 15 (line 5). If
none of the tasks require RMT execution, we choose the first §y cores from C and
record in List) (line 8). Then, the corresponding bipartite graph G can be constructed
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Algorithm 2 Homogeneous redundancy levels

Input: set of tasks I'; selected redundancy levels for tasks 6; set of cores C; best versions
table ;
Output: mapping M with the set of selected versions;
1: List, « &;
2: if all redundancy levels are activated in CRT-TMR then
3 for ¢; eC,j < 1,4,...,0p-2 do
4 //Assign the core grouping by Theorem 15
5: List, uG; = {cj,c(j+1)7c(j+2)};
6: else if all redundancy levels are ¢ then
7 List,, < C.head(dy);
8: G <« build Bipartite Graph with T', List, and ;
9: M « find the mapping by HungarianAlgorithm(G);
10: if W is oo then
11: return FAIL

by I', List}, and ¢ by Def. 14. With the bipartite graph G, we can find the minimum
weight bipartite perfect matching and assign the tasks and cores with mapping M
by HA and the bipartite graph including the information of possible mappings (line
11). In particular, if the total weight of mapping is infinity, we know that there is no
feasible assignment to satisfy the miss rate constraint (lines 12-14).

According to the perfect matching property, the preprocessing, and the definition
of G, we can ensure that Algorithm 2 delivers a feasible mapping M for tasks and
cores, where each core only appears once in a specific core group while the miss rate
constraint is satisfied. The time complexity is dominated by HA with 2N nodes, i.e.
O(N?).

6.2.2 Heterogeneous Redundancy Levels

In this section, we consider each task has an arbitrary redundant level requirement
6; in the task mapping problem, i.e., [['y| # n and |I'tyg| # n. For such a case, the
approach in Section 6.2.1 by reducing the assignment problem to the MWPBM
problem is no longer applicable, since the bipartite graph cannot be built due to the
unknown properties of core grouping in optimal solutions.

However, we observe that it is beneficial to assign the cores of CRT-TMR tasks
before ¢ tasks, as the CRT-TMR tasks are fully protected with a negligible reliability
penalty €. No matter which cores are assigned to CRT-TMR tasks, their reliability
penalty is always negligible. In order to supply more resilient cores in terms of
performance for the ¢ tasks, the frequencies of assigned cores for CRT-TMR tasks
should be as low as possible. Therefore, we propose our approach for this heterogeneous
case, which consists of two parts: assigning CRT-TMR tasks and assigning ¢ tasks.
Algorithm 3 presents the pseudo code for the two portions of tasks assignment with
heterogeneous redundancy levels.
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Assigning CRT-TMR tasks First of all, s; denotes the resilience of CRT-TMR
task by the lowest acceptable core frequency of task 7; as Eq.(6.1) (line 4 in Algorithm 3)

8i = argcjc o, {1V (7is¢j) # 00,and P (7i, ¢js1) = 00}, (6.1)

where (7, ¢5,+1) is set to a dummy version with co penalty for notational brevity. To
maximize the number of tasks satisfying their deadline, the assignment of CRT-TMR
tasks should start from the most resilient task, which accepts the lowest frequency
core among all the redundant cores.

To find out the most resilient tasks, we sort all the CRT-TMR tasks by a non-
increasing order of cy,’s speed, and re-index them by the sorted list, in which ties are
broken arbitrarily (line 6). The assigning procedure starts from the most resilient
task 7, which has the maximum index s; of cores in C, with the lowest-frequency
group Gy, where Gy, = {¢s,-2, Cs,-1,¢s,, |5k 2 3} (line 8). Then, we exclude the cores
of Gy from C and consider the next resilience-wise task 7,_1 (line 9). For task 7;,
s; should be the lowest frequency core among the rest of cores, if the original s; is
assigned to the task already (lines 11-13). By repeating the above procedure, the
frequencies of assigned cores will be as low as possible which satisfies the minimal
requirement of core frequency for each CRT-TMR, task.

Assigning ¢ tasks After assigning the CRT-TMR tasks, the rest of cores and ¢
tasks can be transformed to MWPBM problem as Section 6.2.1. As a result, we can
make a bipartite graph G (line 18) by Def. 14 and finish a perfect matching M by HA
with the minimal Ur as the optimal result (line 19). If the procedure cannot find a
feasible mapping, the algorithm returns that there is no feasible solution (lines 20-22).
With the CRT-TMR tasks assignment and the perfect matching property, we can
ensure that the mapping assignment M derived by Algorithm 3 is feasible for tasks
and cores, where each core is only assigned to one unique task while all the miss rate
constraints in pp are satisfied. The time complexity is similar as Algorithm 2, which
is dominated by the HA, i.e., O(N?).

The solution derived from Algorithm 3 can be proved to be optimal in terms of
overall reliability penalty if there exists a feasible solution for the input. If we try to
handle TMR and ¢ tasks concurrently, there is no efficient way to decide the core
grouping beforehand. However, as the reliability penalty of TMR tasks are negligible,
we can reach the optimality as shown in the following theorem.

Theorem 16 (Optimality of Algorithm 3). Given a set of cores C, a set of tasks
I", heterogeneous redundancy levels of tasks 0, and tolerable deadline miss rates pr.
Algorithm 3 provides a feasible task mapping with the minimal overall reliability
penalty under heterogeneous redundancy levels 6.
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Algorithm 3 Heterogeneous redundancy levels

Input: set of tasks I'; selected redundancy levels for tasks 6; set of cores C; best versions
table ;
Output: mapping M with the set of selected versions;

1: //assigning TMR tasks

2: List, < C; Listy < T'pyr;

3: for each 7; € List; do

4: find out s; based on Eq.(6.1);

5: sort Listy by s; and re-index them;

6: //7 has the maximum index as sy

7: M « assign Gy = {c(sk_g),c(sk_l),csk|sk > 3} to Tk;
8: remove the cores of Gy from List,;

9: for each 7; € Listy,i=(k-1),(k-2),...,1 do
10: if s; > s(j+1) — 3 then
11: Si < S(i+1) — 35
12: M « assign 7; with G; = {C(S,L_Q),c(si_l),csi};
13: remove the cores of G; from List..;
14: //assigning ¢ tasks
15: G < build Bipartite Graph with Ty, List., and ;
16: M <« find the mapping by HungarianAlgorithm(G);
17: if W is oo then
18: return FAIL;

Proof. As the reliability penalty of the CRT-TMR level is assumed to be a negligible
value € in our model, the overall reliability U under heterogeneous redundancy levels
can be reformulated from Def. 12 to:

Ur= > R(Tig,cm),cm€C. (6.2)
TiEF(;/)

According to Eq.(6.2), we can observe that the overall reliability Wr fully relies on the
frequencies of assigned cores for ¢ tasks, if all CRT-TMR tasks are feasible to execute
with their assigned cores. Therefore, we know that the derived task mapping will be
an optimal mapping if the assigned cores of ¢ tasks have the maximal summation of
frequencies to obtain the minimal overall reliability penalty.

As the candidate cores for ¢ tasks are the remaining cores after mapping the CRT-
TMR tasks, the assigned cores for CRT-TMR tasks must have the lowest summation
frequencies (for those lowest frequency cores in each group) to let the remaining cores
have the maximal summation frequencies. The core grouping in Algorithm 3 groups
every three adjacent low-frequency cores, which guarantees the optimal feasibility
for CRT-TMR tasks by Theorem 15 and the lowest frequencies among the candidate
cores. In the following, we will prove that the assignment for CRT-TMR tasks in
Algorithm 3 based on the above grouping which can find out an optimal mapping
such that the rest of cores for ¢ tasks have the maximal summation of frequencies.
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Tasks Core Groups Tasks Core Groups
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Figure 6.2: Example of task mappings for RMT tasks and core groups in the proof
of Theorem 16, in which (a) is an optimal solution and (b) is derived by
Algorithm 3.

Assume there is an optimal task mapping between CRT-TMR tasks and core
groups as Figure 6.2(a), and the mapping Figure 6.2(b) is the result of Algorithm 3, in
which the core groups are sorted by their lowest frequency core, i.e., g1 > g2 > g3 > g4.
Then there are two cases:

o Case 1: There are two consecutive mappings in a different order in Figure 6.2(a)
than they are in Figure 6.2(b): For such a case, we swap the order for these two
consecutive mappings, i.e., m5 and mj, and they become mg and ms. After the
swapping procedure, the total frequency of remaining cores will be the same, as
the assigned cores for CRT-TMR tasks are not changed.

o Case 2: There is an element of Figure 6.2(a) not in Figure 6.2(b) and an
element of Figure 6.2(b) not in Figure 6.2(a): We swap ¢ and g, for the element
of mapping m/, and now m} becomes m;. As the rest of the cores are changed
from group g1 to go, we know that the total frequency of rest of the cores is not
less than before i.e, g2 < g1.

As a result, the swapping procedure shows that the derived mapping is no worse
than before. The differences between Figure 6.2(a) and Figure 6.2(b) are eliminated
without worsening the total frequency of the solution. We know that the derived
mapping is as good as any optimal solution in which the rest of cores have the maximal
total frequency. As the optimality of HA has been proved in [Kuh55], the derived
task mapping must be optimal with the minimal overall reliability penalty. As a
consequence, we reach the conclusion that the derived task mapping by Algorithm 3
is optimal. ]

6.2.3 Redundancy Level Adaption

Until now, the assumption was that the redundancy levels of tasks 6 are given. In
this section, we present an ILA which determines the redundancy levels of tasks with
the proposed mapping approaches in Section 6.2.2.

To minimize the overall reliability penalty, it is beneficial to execute as many
tasks as possible in the CRT-TMR level. However, which tasks should execute in the
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CRT-TMR level is not that trivial to determine. Some tasks may suffer from their
higher vulnerability, whereas some of tasks may suffer from their tighter deadline
miss rate.

Intuitively, deploying the CRT-TMR execution for the task with the highest
reliability penalty is a reasonable way to decrease the overall reliability penalty as
the greedy approach in [RKS+14b]. However, the task with the "highest reliability
penalty" is only relative to a specific core frequency, e.g., on the highest frequency
core. If we greedily execute this task in the CRT-TMR level, all the possible task
mappings for the rest of tasks may even lead to an inferior overall system reliability.
In addition, we are not able to know how a task is vulnerable under the core grouping,
as the core grouping for the CRT-TMR execution is still unknown at this moment.
Since checking all the combinations of redundancy levels may not be possible, here
we propose an iterative approach exploiting our task mapping approaches as the
subroutine to guarantee the feasibility and efficiency of redundancy levels.

Algorithm 4 presents the pseudo-code of level adaptation. It first adopts Theo-
rem 15 to find out the mapping between the tasks and cores for the initial case that
none of the tasks requires the CRT-TMR level, which helps us find out a reasonable
reference to upgrade the redundancy levels (lines 2-3). Then, the following procedure
is repeated until there is no more improvement. At first, we consider the task with the
maximal reliability penalty in the current mapping solution (line 7). The objective is
to upgrade one more task from level ¢ to CRT-TMR with the current solution for
the reliability improvement. For this task, we greedily upgrade its redundancy level
by picking up two unused cores that can satisfy the miss rate constraint of the task.
If the upgrade is feasible, we can adopt Algorithm 3 to find out the next mapping
M (lines 9-10); otherwise, we rollback the infeasible upgrade (line 12). Then, we
continue the procedure finding the next high penalty task for upgrading from level ¢
to CRT-TMR (line 14). When there is no more improvement and all the tasks are
considered, we can terminate the iterative procedure.

Algorithm 4 may deliver a feasible mapping M and minimize the system reliability
penalty Ur with as many as possible CRT-TMR  tasks. The time complexity is only
scaled by the number of tasks IV, which is still applicable to be used online.

6.2.4 Communication and Data Dependency

In this section, we present how to deal with the communication and data dependency
among the tasks when we considering the task mapping problem on a multi-core
processor. We consider the communication fabric with the most popular deterministic
routing algorithm, i.e., XY routing (proven to be deadlock-free) [MBO6], on the
most common topology, i.e., 2-Dimension (2D) mesh. Since the assumed multi-core
processor only has a single thread per core, to parallelize the execution of dependent
tasks and utilize all the redundant cores concurrently, one way is to adopt the well-
known technique, i.e., software pipelining, to dispatch the dependencies into different
pipeline stages, where the dependent inputs of tasks can be transformed by the
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Algorithm 4 Levels adaptation and task mapping

Input: set of tasks I'; set of cores C; best versions table 1);
Output: mapping M with the set of selected versions;

1: //mapping the first case

2: Vectory < assign all redundancy levels of tasks as ¢;

3: M « apply Algorithm 2 with I" and C to find out the mapping;
4: if WUr is co then

5: return FAIL;

6: find out task 7, with the highest penalty in mapping M
7. for each 7,7, €'y do

8: 0y, < assign the redundancy level of task 7, as TMR,;
9: M <« apply Algorithm 3 to find out the task mapping;
10: if Ur is oo then
11: restore 0y, to ¢
12: check the next 7, in mapping M

predecessors before the execution of next pipeline stage. With the software pipelining,
we can consider the task mapping with the data dependencies on all the redundant
cores concurrently. We assume that the communication overhead is significantly less
than the computation overhead, so that the system reliability may not be dramatically
changed.

For the given task graph G, we prepare m; to denote whether task 7; has a
predecessor: 7; is equal to 1 if task 7; has a predecessor; otherwise, m; is 0. Although
all the dependent tasks can execute at the same time with software pipeline, the
communication of dependent pipelines has to be considered with the allocation of
assigned cores. As shown in Figure 6.3(a), the different allocation of assigned cores,
may lead to a different communication distance. In addition, the CRT-TMR execution
also has internal communication among the redundant threads for the majority-voting
mechanism. As shown in Figure 6.3(b), the allocation of cores dedicated for CRT-TMR
executions has to be considered for avoiding any unnecessary performance penalty.

In general, the communication overhead can be estimated by considering the data
size, the required cycles per hop, and the distance of communication. However, the
realistic distance of communications can only be calculated after the allocation of
the tasks and cores is done. To mitigate the uncertainty, we propose to estimate the
overhead with the maximal distance on the 2D mesh to cover the worst execution
scenario. As shown in Figure 6.4, if a task is assigned to core ¢; in a 3x3 mesh
topology, the maximal distance will be 4 hops as ¢; to ¢;. If it is assigned to the
pipeline on core ¢;, the maximal distance will be 2 hops as ¢; to ¢;. Therefore, by
applying XY routing, the maximal distance of communication on core c¢,,, denoted by
gm can be calculated statically.
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Figure 6.3: The communication on 2D mesh topology with XY routing. In (a),
pipelines P; and P, have the communication. In (b), RMT adopts
{ca,c6,c9} and {ca,c3,c6}, respectively.
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For the communication of dependent pipelines, the internal communication time
overhead can be estimated by the input data size of task and the maximal distance
gm of assigned core ¢, of pipeline as the following:

Ain (T, em) = gm x inputData__size(T;) (6.3)

Similarly, since the majority-voting mechanism has to wait for all the output data
of the redundant threads, the internal communication in RMT can be estimated by
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the output data size of task and the maximal distance g, of assigned core ¢,, as the
following:
Aout(Ti, ¢m) = gm x output Data__size(T;) (6.4)

Assume the data transfer spends p cycles per hop. Since the communications prolong
the execution time of tasks, the interval between the release and deadline is reduced
by all the possible communications as the following:

Di=D;—p-(0;- Aoyt (i, cm) + i - Ajyy (73, €m)) (6.5)

As a consequence, the deadline miss rate of task as Eq.(3.1) with the pipeline on core
¢m should be reformulated as Eq.(6.6):

Pdm(Ti,kv cm) =1~ Ci,k,m(Dz,') (6.6)

With the reformulated deadline miss rate Eq.(6.6), we can incorporate the communi-
cation overhead into our proposed approaches. Please note that the applicability is
not limited to XY routing. The approximation can be easily extended for the other
deterministic routing algorithms by changing Eq.(6.3) and (6.4) accordingly.

If none of the tasks requires RMT execution, Algorithm 2 is still optimal to the
task mapping with the data dependency due to the optimality of Theorem 15 and HA
for the worst case. However, if the compatibility of cores is arbitrary to each task,
Theorem 15 can not hold any more, in which the feasibility and frequencies do not
have the absolute relation. Even if a core has the highest frequency among the others,
it may not be suitable for the task which has a significant communication overhead.
As the cores’ positions also affect the feasibility of mappings, it is not good enough to
determine the assignment sequence only by the frequencies of cores.

Algorithm 5 takes the above issues into consideration and solves the task mapping
problem with the communication and data dependencies. At first, we have to
reformulate the deadline miss rate of task versions in the best versions table 1 with
Eq.(6.6) (line 2), which can be done in the preprocessing. To present the impact
of communication, we denote the number of available cores for task 7; as a;, which
can be obtained by calculating the number of feasible entries in the reformulated
best version table ¢ (line 3). Then, we sort the tasks with the corresponding a; by a
non-increasing order. (line 4). The assignment starts from the task with the minimal
number of available cores and assign three lower frequency cores among the available
cores (lines 5-12). If the task cannot be satisfied by the remaining available cores,
it is clear that there is no further feasible solution (lines 9-11). By checking all the
RMT tasks, all the assigned cores and TMR tasks are excluded as the procedure in
Section 6.2.2. As the rest of tasks are only ¢ tasks in I', we follow the same procedure
as Algorithm 3 to build up the bipartite graph and find out a perfect matching M
by HA with the minimal ¥r (lines 14-18). Please note that, in case of dependent
tasks where the predecessor output has soft errors, we assume that the errors can
be recovered by task re-execution before it is served to its dependent task, which is
similar to dTune [RKS+14Db].
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Algorithm 5 Task mapping with data dependency

Input: set of tasks I'; set of cores C; best versions table 1;
Output: mapping M with the set of selected versions;
: Listy, < I'tur, Liste < C;
reformulate best versions table ¢ with Eq.(6.6);
calculate the number of available cores a; for I'tyg;
sort and re-index Listy, by a;;
for each 7; € Listy,i=1,2,...,k do
//7x has the minimal number of available cores
assign three lower frequency cores to 7; in List,;
remove the assigned cores from List,;
if 7; is not able to activate RMT then
return FAIL;
: //assigning ¢ tasks
: G < build Bipartite Graph with I'y, List., and v;
: M « find the mapping by HungarianAlgorithm(G);
: if Up is oo then
return FAIL;

e e ol
Uk W N = O

Consequently, we can find out a reasonable task mapping M by using Algorithm 5
and the reformulated versions table 1. The time complexity is the same as Algorithm 3,
i.e., O(N?). The evaluation of the proposed approaches in this Section 6.2 is in
Section 6.4.1

6.3 Reliability Optimization with Multi-Tasking

In this section, we first give a short, general overview of FEDERATED SCHEDULING
(F'S) [LCA+14] that includes a short example, which is used to tackle the studied
problem. Afterwards, we present several dynamic programming algorithms to optimize
the system reliability while guaranteeing the system schedulability. The evaluation
for the proposed approaches in this section is presented in Section 6.4.2 eventually.

6.3.1 Federated Scheduling

In FS, the tasks in I' are partitioned into subsets that are scheduled individually on a
multi-core system with M homogeneous cores. To simplify the presentation, we here
assume that the execution levels of all tasks have been determined, i.e., 6; is given
V1; € I'. Obviously a schedule for I' on M uniform frequency cores can only exist, if
the following two necessary conditions are met:

e The sum of all task utilizations is not greater than the number of processors,
ie, Yreruig, <M.
» No task has a critical path greater than its period, i.e., V1; € I', L; g, <T; = D;.
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Federated Scheduling [LCA+14] partitions the tasks into two disjoint subsets
according to their utilization: 7g;¢ contains all high-utilization tasks, i.e., u; ; > 1, and
Turrrre contains all low-utilization tasks, i.e., u; j < 1. We denote the executing levels
of tasks in 7g;¢ with 0g¢ and the executing redundancy levels of tasks in 7 prr g as
Orirre- First, the number of cores necessary to schedule 7g;¢ is determined while
Turre Will be scheduled on the remaining cores if possible. Please note that we
present FS in the general case here. Some remarks regarding our studied problem
and some properties that arise due to the structure of that problem are given in the
next section.

o High-utilization tasks (7; in 7g;¢): For each task 7; € T1¢, the parallel sub-
tasks are scheduled on cores dedicated to the task, called list scheduling in the
literature [Gra66], by any work-conserving parallel scheduler. A work-conserving
list scheduler is a scheduler that never lets a core idle if there is any sub-task
ready to be executed. As shown in Theorem 2 in [LCA+14], the required number
of dedicated cores H; g, for 7; ¢, is at most:

Ci;o. — Liop.
Hip = | 0% b 6.7
i,0; ’r ,1—17, _ L@'ﬂi ( )
For the task set 731, we denote the sum of dedicated cores as Hgig = Y1, e, Hio;-

o Low-utilization tasks (7; in 7yprre): We adopt R-BOUND-MP-NFR, de-
veloped by Andersson et al. [AJ03], to schedule the tasks in 7i;prr on the
number of remaining cores Hyjrrg = M — Hge. On each core of Hyirrig
RATE-MoNOTONIC (RM) priority assignment is used. According to Theorem
7 in [AJ03], R-BOUND-MP-NFR feasibly schedules the tasks in 7y ;rr e using
partitioned scheduling if

Z Uj.0; < HLITTLE/2 (6.8)

Tj€TLITTLE

This directly leads to the following sufficient schedulability test. A prove is therefore
omitted.

Lemma 6. FS can schedule the tasks 7g1q U Tirrie in I on M cores, if the following
condition holds:

Z Hiﬂi + z Uj.0; 2<M (6.9)
Ti€TBIG Tj€ETLITTLE
Example 5 (Example for Federated Scheduling). We assume the redundancy level
of the tasks to be given and thus drop the level indexes for C; and L;. Consider five
tasks to be scheduled on 7 processors using FS as follows:

. (Tl = 10,01 = 12,[/1 = 5) and u = 1.2
. (T2=2,02:4,L2=1)andUQ=2
° (T3=20,C3=2,L3=1) and U3:0.1
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L] (T4 = 30,04 = 6,L4 = 3) and Uyg = 0.2
. (T5 = 12,05 = 6,L5 = 4) and us = 0.5.

In FS the tasks are first classified into 7g;¢ and 7yrrog according to their utilization.
Therefore, 151 = {71,772} and Tyirree = {73,74,75}. We determine the number of
dedicated cores for each task 7; € 751, i.e., H1 = [%] =2 and Hy = [3%” =3.

Since Hgig =2+3=5, Hyyrrig = M — Hgio = 7-5 = 2. According to Theorem 7
in [AJO3], the tasks in 7y ;pr s are schedulable as Eq. (6.8) holds, i.e., (0.1+0.2+0.5) <
2/2. The tasks are sorted in an ascending order of their periods, i.e., {75, 73,74}, and
assigned to the remaining 2 cores in this order according to R-BOUND-MP-NFR. As

a result, 75 is assigned to core 1, and {73, 74} are assigned to core 2.

6.3.2 Redundancy Level Selection

In this section we show how the overall reliability penalty can be optimized, assuming
that we can choose from different given redundancy levels for each task. Obviously it
is possible to determine the optimal selection of redundancy levels by checking all
possible combinations of redundancy levels and core assignments, and choosing the
combination that yields the minimum reliability penalty while satisfying the timing
constraints. However this straightforward method has exponential time complexity.
Instead, we propose a dynamic programming algorithm to determine the optimal
redundancy level for each task while satisfying the feasibility under FS. We start by
calculating the possible solution for {7}, use those results to calculate the possible
solution for {71, 72}, use those results to calculate the possible solution for {71, 72, 73}
and so on until we calculate the possible solution for {7y, 72,...,7n5}. From the results
for {71, 72,...,7n} we choose the one with the minimum reliability penalty.

When calculating possible solutions for {71, 72,...,7;}, those solutions depend on:

o The selection of the redundancy levels 6; for the tasks 7; € {7, 7,...,7-1}.

e The number of total required cores m = 23;11 Hjyg, for 7j € {m1,79,...,7-1}
where ujp; 2 1, i.e., 7; that are in Hy¢ for there selected redundancy level 6;.

e The sum of utilizations k = Z;:ll uj g, for tasks 7; € {71, 72,..., Ti-1} With u;g, <1,
i.e., 7; that are in Hy;rrop for there selected redundancy level 6.

e The chosen redundancy level #; and the resulting increase of either m or k.

The necessary values are stored in two 3-dimensional tables G and j* to record the
sub-optimal reliability values and the selected redundancy levels, respectively. This
means, G(i,m, k) stores the minimum reliability penalty for the first ¢ tasks, using m
cores for tasks in Hy¢ and with a total utilization of k£ for tasks in H; g, While
J*(i,m, k) stores the selected redundancy level for task i. Using these values, the
chosen redundancy levels for all other tasks can be traced back step by step. Those
calculations have to be done for all possible combinations of m and k, i.e., m is an
integer with 0 <m < M and k is in the range of [0,0.5- M].
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When building G(i,m, k) and j*(i,m, k), we assume u; ; and H; j to be given for
all redundancy levels. If this is not the case, they can be calculated in a preprocessing
step.

In the initial step, i.e., when we only consider 71, for given values of m and k we
calculate j*(1,m, k) as

Ri; ifuj>1land m>H;
J (1,m k) =arg  min Ri; ifujj<landk>u; (6.10)

&) otherwise
leading to minimum reliability penalties of
G(lamak) :Rl,j*(l,’m,k)‘ (611)

For the following steps we calculate the values of G(i,m, k) assuming G(i—1,m, k)
to be given, where ¢ = 2,3,..., N. This means, when we select level j for 7;, we know
that the minimum reliability penalty for task 71, 7s,...,7;—1 has been calculated and
stored in

e« G(i-1,m-H;j, k) when u;; > 1, or
o G(i—1,m,k—wu;;) when u;; < 1.

Let Pj(i,m,k) be the resulting reliability penalty for the selection of level j for task
7;, defined as:

RiJ +G(i_1vm_Hi,jak) if Us 5 2 1 and m > Hi,j
Pj(l, m, ]"v') Ri,j + G(’L -1,m,k- Ui,j) if Uj 5 < 1 and k> Us,j (612)

00 otherwise

Suppose that j is the j which minimizes P;(i,m, k) for given values of m and k.
This means we know that

G(i,m, k) = Pjs (i,m, k) (6.13)

and j*(i,m, k) is j;. This calculations have to be done for all i = 2,3, ..., n, all integer
m with 0 <m < M, and all utilization values k in the range of [0,0.5- M].

The pseudo-code of the presented level selection can be found in Algorithm 6,
using a scaling factor w for the utilization values, i.e., the third dimension of the table.
This is necessary to upper bound the number of entries in the 3-dimensional tables
and thus bounding the time needed to construct those tables. Obviously, the number
of values we have to consider for the first dimension is the number of tasks N while
for the second dimension we only have to consider up to M integer values. Note, that
the maximum number of dedicated cores is bounded by 3 for each task.? However,

%In the general case (explained in Section 6.3.1) the number of cores needed for the execution of a
single task can be arbitrary large, depending on the relation of Cj g, — Ls 9, to T; — L; 9,. However,
the number of processors needed to activate CRT-TMR is bounded by 3 due to the assumption that
L;g, <T; and at most 3 instances are executed in parallel. If the fine-grained selection in Section 6.3.3
is used, still none of the sequential stages will be executed more then 3 times in parallel and thus the
bound of 3 still holds.
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Algorithm 6 Offline table construction

Input: N tasks, M cores, w scale unit
Output: j* level selection table
1: for m«<0,...,M do

2: forkeO,...,[O‘zM]do
3: if m+2k-w> M then
4: 7 (1,m,k) « oo
5: G(1,m, k) < oo
6: else
7 calculate j*(1,m, k) and G(1,m,k) by using Equations ((6.10)) and ((6.11))
8 for ¢+ 2,3,...,N do
9: for m< 0,...,M do
10: for k< 0,...,[%2M] do
11: if m+2k-w> M then
12: 7 (i,m, k) < oo
13: G(i,m, k) < oo
14: else
15: for each j € possible redundancy levels do
16: calculate P; by using Equation ((6.12))
17: j*(’i7 m, k‘) < arg minjzl}gw)Ki Pj
18: G(i,m, k) < 3 (i,m, k)

if the utilization values are not discretized, we would have to consider an infinity
number of values for the third dimension. Therefore, we discretize all utilization values
based on a scale unit w, i.e., 0 <w <1 and all values of u; ; are replaced with u; ;/w.
Under the assumption that all scaled utilization values u;/w are integers, our dynamic
programming approaches in Section 6.3.2 and Section 6.3.3 find the solution with the
minimized reliability penalty that is possible when Federated Scheduling [LCA+14]
is used and the schedulability of the task set under a selection of execution levels is
tested based on the sufficient schedulability test in Lemma 6.

Ui,j

Theorem 17. Let w with 0 <w <1 be given and let —>* be an integer Vu; ;. For

: 0.5M
allie{1,2,...,N},me{1,2,..., M}, and ke {1,2,..., 22} Fq. (6.10), Eq. (6.11),
Eq. (6.12), and Eq. (6.13) compute the optimal task redundancy level selection
j*(i,m, k) and the optimal solution overall reliability penalty G(i,m, k) achievable
under F'S when the sufficient schedulability test in Lemma 6 is used.

Proof. This can be proved using mathematical induction:

Base case (i =1): Eq. (6.10) calculates the optimal level for each m and k and
Eq. (6.11) calculates the resulting minimal reliability penalty, stored in j*(1,m, k)
and G(1,m, k), respectively. Thus G(1,m,k) and j*(1,m, k) are optimal.

Inductive step (i > 2): Assume that G(i—1,m, k) and j*(i—-1,m, k) are optimal
for the sub-problem considering the first ¢ — 1 tasks for all values of m < M and k,
i.e., G(i-1,m,k) stores the minimal reliability penalty value and the selected version
j* of 7,1 is stored in j*(i — 1,m, k) for each m and k. Suppose for contradiction
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that G(i,m,k) is not optimal. This means, that at least one of the level selections
for 71, ..., 7 is not optimal. For each version of 7; the penalty P;(i,m, k) for a
given m and k can be calculated by adding the reliability penalty R;; to either
G(i-1,m - H, k) for a version where u; ; >1 or G(i —1,m,k—w;;) if k> u; ;. If
the version is not applicable, i.e., m < H;; for versions with u; ; > 1 or k < u; j/w
for versions with u; ; < 1, P;j(i,m, k) is set to co. As we take the version j* that
minimizes P;(i,m, k) we know that G(i,m,k) and j*(i,m, k) are calculated correctly
based on G(i - 1,m,k) and j*(i — 1,m, k). Therefore, if G(i,m,k) or j*(i,m, k) is
wrong for any combination of m and k, at least one of the previously selected ¢ — 1
task levels is not optimal, which contradicts the induction hypothesis. O

After the tables G and j* are calculated, the minimum value stored in G(N,m, k) is
the minimum penalty value. We denote this position by m}; and k}. The redundancy
level of 6 can be found in the related entry of table j*, i.e., at j(IN,m}y, ky ). From
this value, we can easily trace back the redundancy levels selected for 7n_1,7n_2,...,71
iteratively, i.e., if the utilization of the selected level uy g, <1, for 7y_1 the selected
version is stored at j*(N - 1,m*, k* - UN%), otherwise it is the version at j*(N -
1,m* - Hyg,,k"), and so on. As k is defined as M /(2 * w), the time complexity of
Algorithm 6 is O((XY; |K;|) - M?/w) and the space complexity is O(NM?/w).

If the scaling factor that is necessary to ensure that all utilization values are
integers is too small, the number of entries that have to be considered in the table
would be too large. To avoid this, a ceiling function can be used when calculating
the utilization values for a given scale unit w, i.e, all values of u; ; are replaced with
[wi j/w]. This leads to a trade-off between the accuracy of our dynamic programming
approach on one hand and the space and the time complexity on the other hand.

That the dynamic programming finds the optimal solution under FS using the
schedulability test in Lemma 6 implicates that better reliability penalties can be
achieved if other scheduling approaches or tighter schedulability tests are used. This
also means that in some cases other scheduling strategies can perform better as
shown in Section 6.4.2. However, our approach in general is not limited to F'S and
the schedulability test in Lemma 6. It can be applied for other strategies and tests
by reformulating Eq.(6.10), Eq.(6.11), Eq.(6.12), and Eq.(6.13) accordingly if the
sub-optimality to construct an optimal solution to schedule the first ¢ tasks on m
cores can be achieved by referring to the optimal schedules of the first ¢ — 1 tasks on
m' processors (with m’ <m) in a similar manner.

One specific example is to adopt semi-partitioned scheduling instead of partitioned
scheduling for both the tasks in 7g;¢ and 7 rrs. Rate-Monotonic Scheduling with
Task Splitting (RM-TS) as proposed in [GSY+12] can be applied for the tasks in
Turrree under FS. In this case, Eq.(6.8) should be reformulated as

20(T)

o (6.14)

Z Ujp, < Hyrre -
T;€TLITTLE
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where O(T) = N(21/N - 1). Eq. (6.14) directly leads to the following sufficient test.
A prove is therefore omitted.

Lemma 7. FS can schedule the tasks 7g1q U Tirrie in I on M cores, if the following

condition holds: L+ o(D)
+
Z Hi,@i + Z ’U/j,@j . W < M (615)

Ti€TBIG TjE€TLITTLE

Please note that Eq.(6.10), Eq.(6.11), Eq.(6.12), and Eq.(6.13) should be refor-
mulated accordingly. The corresponding results derived by using FS with Eq.(6.14)
and Eq.(6.15) are also presented in Section 6.4.2 for completeness.

For the tasks in 74 it is possible that nearly 50% of the utilization of 3 cores
is wasted when CRT is used, i.e., when one activation of a task has a utilization
slightly bigger than 0.5.% In this case using MRT-TMR directly is not possible as
two complete activations of the task cannot be placed on the same core. However,
using MRT-TMR under semi-partitioned scheduling is possible as long as the total
utilization of 3 activations is below 2, i.e, by starting the original on core 1 and one
replica on core 2, preempting the replica on core 2 after 50% of the replica is executed,
starting the second replica on core 2 and finishing the previously preempted first
replica on core 1 after the original task is finished.

In addition, using MRT-TMR for tasks in 7p;g may also result in unbalanced
utilization of CPUs and the waste of nearly 50% of the utilization of two CPUs in a
similar scenario. This utilization could be used by other tasks. However, balancing
the utilization of CPUs is not the main focus of this work. Our goal is to explain
the approach in general and to show its effectiveness. Therefore we use well known
techniques, i.e., FS and list scheduling.

6.3.3 Fine-Grained Selection

In this section we extend our approach from selecting among given redundancy
levels to a more fine-grained approach where different stages of the task execution
can be hardened individually. For each given task 7;, we assume that it has 5;
sequential stages, e.g., a function or a basic block, that can be hardened by redundancy
individually as in the fork-join task model adopted by Axer et al. [AQN-+13]. This
means, we can decide whether we run a stage of a task with TMR, DMR, or without
any redundancy. If a stage is executed with redundancy, the task execution is forked
at the beginning of this stage and joined at the end of this stage.

If task 7;’s stage s is executed in the redundancy level 6; s € {¢, DMR, TMR} we
assume its critical-path length, WCET, and reliability penalty are all given with
corresponding mapping functions, i.e., L;(s,8), Ci(s,0; ), and R;(s, 6; 5), respectively,
thus its utilization U; (s, 8; ) is Ci(s, 6 5)/Ti. Our objective is to select the redundancy
level 0; s for each task’s stage that minimize the overall reliability penalty while
satisfying the given timing constraints.

3We neglect the workload due to the synchronization in this example as it only adds additional
complexity in the description without adding any insight.
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Algorithm 7 Preprocessing for utilization

Input: N tasks
Output: Utilization-grained table U
1: fori< 1,2,...,N do
for k< 0,1,...,1/w do
s¥(1,k) < by using Eq.(6.16)
Q?(la k) < Ri(Lsg(lvk))
for s < 2,3,...,5; do
calculate s}'(s, k) by using Eq.(6.17)
q;’(Sa k) < Ri(‘s’j) + Q7(5 - 17k - Uz(S,j))
U(i k) < ¢!(Si, k)
K(i, k) < backtrack with table s} and U;

Definition 15 (Overall Reliability Penalty ¥{.). The overall reliability penalty of
task set I', denoted by Wr, is the sum of the tasks’ reliability penalties given by
UL =Y . Rig,, where R; g, is the reliability penalty of task 7; for a given selection
0; ={0i1,0i2,...,0; s} of stage redundancy levels.

Preprocessing

To make the final scheduling/task partition decision, the number of cores for 74,5 and
utilization for 7i;rrg are both required. We prepare two reference tables U and C
to record the optimal reliability penalty under given resource constraints and refer
to both tables to obtain the best redundancy for each task stage. When for a stage
s of 7; a redundancy level 0; s is selected, we have to consider two possibilities: 1)
7; € Turrroe and the constraint is the utilization of the task, or 2) 7; € T3¢ and the
constraint is the number of dedicated cores.

Utilization Demand Table For the first case, we prepare a table U (i, k) to record
the optimal reliability penalty of 7; with given utilization k and a corresponding cost
table K(i, k) for recording the exact required utilization of U (i, k). Again we use w to
scale the utilization values and assume that all the scaled utilization values u;/w are
integers. To find the optimal reliability penalty in U (i, k), we use a stage-wise dynamic
programming algorithm. Therefore, we construct two 2-dimensional tables s}'(s, k)
and ¢}'(s, k). The first dimension saves the considered stages and therefore is in the
range [1,.5;] while the second dimension depends on the corresponding utilization
values k in the range of [0,1/w]. In each stage s, all levels j € {¢, DMR, mr} are
considered with their corresponding utilization U;(s, j) and reliability penalty R;(s, 7).
The pseudo code of the preprocessing is provided in Algorithm 7. For the first stage,
we find the level j;; with the minimal reliability penalty for each k in [0,1/w] and
record j7; in the si'(1,k) entry:

5i(1,k) =arg min ‘
je{¢,DMR,TMR} | 0o otherwise

(6.16)
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Algorithm 8 Preprocessing for cores

Input: N tasks, M cores
Output: Cores-grained table C
1: fori< 1,2,...,N do
calculate £ and [;"** with all stages in TMR
for s < 1,2,...,5; do
for £+ 0,1,...,£"™ do
for [ < 0,1,...,[;"" do
calculate s{(s,€,1) by using Eq.(6.18) and Eq.(6.19)
05(5,€,1) < Ry, 55(s,,1))
C’(i,O) « 00
H(%,0) < oo
form<1,...,M do
C(i,m) < by using Eq.(6.20)
H(i,m) < by [

— = e
Y 72

P l,] with corresponding &' and I

The corresponding reliability penalty R;(1,s¥(1,k)) is recorded in ¢}'(1,%). For the
following stage s =2,3,...,5;

s¥(s,k) = ar min
i (5,k) gje{¢,DMR,TMR}

(6.17)

Ri(saj)+qzl(s_1ak._[Ui(s7j)) lkaU1(87])
00 otherwise

After all the entries in table ¢;' are calculated, we can find the optimal selection
for each task with utilization k and record the exact utilization demand (scaled
up by w) in K(i,k). Both the time and the space complexity of Algorithm 7 are

O((2X, S;) - N/w).

Core Demand Table For the second case, we prepare a core-level table C (1i,m)
to record the optimal reliability penalty and record the number of required cores in
table H(¢,m). Similarly, we prepare a stage-wise table s§(s,&,[) to find the stage
redundancy j € {¢, DMR, rmr} with the minimal reliability penalty under the critical
length [ and the worst-case execution time { constraints, where £ > 1 > L;(s, s{(s,&,1)).

As each task 7; in 7, is assigned to [g j{: ] cores in F'S, we intend to find the optimal
redundancy selection for each stage s by which the sum of the critical length [ and the
total execution time £ among all the stages does not exceed L; and C;, respectively.
The pseudo code is shown in Algorithm 8. Here we calculate the maximal critical
length ["®* and the maximal total execution time £"** by profiling each task 7;’s
critical length Zssil Li(s,0;) and total execution time ijl Ci(s,0;s) with TMR,
respectively, on all its stages. We start from the first stage with the minimal reliability
penalty and record the redundancy level in s{(1,&,1):

s$(1,€,1) = ar min
(L&D gje{d),DMR,TMR}
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{Ri(l,j) if €2 Ci(1,7) and I 2 Li(1, j) (6.18)

00 otherwise

Its corresponding R;(1,s5(1,&,1)) reliability penalty is recorded in ¢f(1,£,1). For the
following stage s =2,3,...,5;

s$(s,&,1) = ar min
i(5:6,0) gje{qb,DMR,TMR}

(6.19)

00 otherwise

{Ri(s,j) +RIif €2 Ci(s,5) and I > Li(s, 5)

where R! = ¢§(s -1, = Ci(s,5),l - Li(s,j)) and the reliability penalty is recorded in
q5(s,&,1). After all the entries in ¢f are calculated, we can find a certain combination
of ¢ and I’ under the condition that £ > [ > L; 4 to obtain the minimal reliability
penalty C(i,m), defined as:

C(i,m) = min (6.20)

g5(Si,6,0) ifmx |5 ] and €212 Ly
00 otherwise

where L; 4 is the critical length of task 7; without any redundancy. For each m and i
combination, those & and I are recorded to & = ¢ and [[* = I'. The time complexity
of Algorithm 8 is O((ZX, S;) - €1) while the space complexity is O(NMEL).

Selecting and Scheduling

Using the reference tables U and C , our fine-grained approach builds two 3-dimensional
tables j*(i,m, k) and G(i,m, k) to record the sub-optimal selections of task 7; and the
resulting penalty values, respectively, for m dedicated cores and utilization, presented
as pseudo-code in Algorithm 9. We use the tables U and C to find the selection
with the minimal reliability penalty between the fine grained versions that are in 7g¢
Or Ty rrrLe, 1.€., with utilization > 1 and utilization < 1, respectively. Again, all the
possible combinations of utilization value k and number of available cores m have to
be checked for all tasks, i.e., 0< k< 1/w and 1 <m < M.

For the first task 71 (lines 1-5 in Algorithm 9) the minimum reliability penalty for
each m and each k can be calculated as:

G(1,m, k) =min {U(1,k),C(1,m)} (6.21)

For the other tasks, i.e., 7; with ¢ > 1 (lines 6-26 in Algo. 9), for each combination
of m and k we need to consider all possible k' with 0 < k' < k to select the best
achievable penalty when a selection 6; with U;(s,6; ) <1 is chosen and all possible
m' with 1 < m' < m to select the best achievable penalty when a selection 6; with
U;(s,6;5) > 1 is chosen.

As aresult, the best possible selection Py (%, m, k) for a solution with U;(s, 6; 5) <
1 can be found as:

Pliaryp(ism, k) = min {O(i, k) + G(i - 1,m, k- K(i, k) } (6.22)
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Algorithm 9 Fine-grained table construction

Input: N tasks, M cores, U and C fine-grained tables;
1: for m < 0,...,M do
2 for k< 0,....[%3M] do

w

3: G(l,m,k‘)emin{U(l,kLCA'(l,m)}

4: j*(l,m, ]{)) <« gl,m,k

5: for ¢ < 2,3,4,...,N do

6: for m<0,...,M do

7: forkeO,...,[W]do

8: if m+2k-w> M then

9: G(i,m, k) < oo;

10: else

11: Pia(i,m, k) < oo

12: for m' < 0,...,m do

13: P(i,m’ k) = C(i,m') + G(i— 1,m —H(i,m'), k)
14: P (i,m, k) = min{ P, (i,m, k), P(i,m' k) }
15: Pliorie(i,m, k) « oo

16: for ¥ < 0,...,k do

17: P(i,m, k') = Ui, k") + G(i = 1,m, k- K(i,k"))
18: Plrrpoe(im, k) = min {Pypp s (4, m, k), P(i,m, k") }
19: G(i,m, k) = min { Py (i,m, k), Prppr g (i, m, k) }
20: 36, m k) < Ok

The best possible selection Py (i, m,k) for a solution with U;(s,6;s) > 1 can be
found as:
Pic(iymyk) = min {C(i,m')+G(i-1,m-H(i,m'),k)} (6.23)

1<m’<m

Therefore, for 7; with ¢ > 1 the best possible selection for m and k is:
G(i,m, k) = min {P];IG(i’ m, k), PEITTLE(ivmv k)} (6.24)

Please note, that Py, (i,m, k) and P\ (4, m, k) and therefore G(i,m, k) may be
oo for some values of m and k. The number of dedicated cores or the utilization of
the chosen reliability selection §; is stored in j*(i,m, k).

Afterwards, the table G(i,m, k) contains the optimal reliability values for each
combination of ¢, m, and k. It contains entries with value oo if the condition of the
schedulability test in Lemma 6 does not hold, i.e., m + 2k -w > M. Note, that some
other values may be oo as well, if the combination of the number of processors m and
the utilization value k is too small to schedule any selection redundancy stages, i.e, if
m =0 and the sum of the utilizations of the tasks versions with no redundancy at all
is larger than k. We search for the entry G(N,m*,k*) with the minimal reliability
penalty. Based on the related entry in j* (N, m*, k™) we know the chosen selection 6}
and can backtrack to the entry in j* (N —1,m, k) etc. The time and space complexity
of Algorithm 9 both are O(NM?/w). To schedule tasks in T' with their redundancy
selection the tasks are classified in 7g;¢ and 7 prp and scheduled using FS.
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6.4 Experimental Evaluation

To evaluate the performance of the proposed approaches in this chapter, we use the
same setting as dTune [RKS+14b]. The details of the experimental framework are
introduced in Chapter 3. The proposed approaches in Section 6.2 and Section 6.3 are
evaluated in Section 6.4.1 and Section 6.4.2, respectively.

6.4.1 Evaluation for Task Mapping Approaches

At first, we evaluated the proposed mapping approach as Algorithm 3, the level
adaptation approach as Algorithm 4, and Algorithm 5 with the generated reliability
penalty value, different redundancy levels, and cores performance heterogeneity.

In total, we generate 128 different redundancy levels for the above 7 functions,
i.e., 27, to test our approaches and the greedy mapping approaches used in dTune.
Depending upon the performance heterogeneity, the infeasible scenarios in the evalua-
tion are excluded. To simulate the performance heterogeneity of cores, the evaluation
is performed by three different scenarios with variations w on 8x8 cores as follows:

e Grouping Frequency Levels: Such scenarios are for evaluating architectures
with heterogeneous performance, e.g., ARM big. LITTLE architecture [ARM13].
We evaluate four different frequency levels in a multi-core processor. We assume
the performance variation is w, where the cores are with frequencies f1, (1-w) f1,
(1-2w)f1, and (1-3w)fi.

o Uniform distribution: Based on the variation model of [RTG+13], we uni-
formly generate the frequencies of cores from the highest one f; to the lowest
one fjs to consider process variations.

e Normal distribution: The various frequencies of cores are normally distribut-
ed/generated [GMOS] in the range of (0,1]- f1 with the mean 1-w and standard
deviation ¢ = 0.05 to consider process variations. As it is possible that the
normal distribution has a random variable greater than 1 or less than 0, we take
such cases to the corresponding boundary conditions.

Considering real-word scenarios on performance variations, we only evaluate our
proposed approaches while w is up to 30% [BDMO02]. Figure 3.5(b) shows the example
variation scenarios under normal distribution. For simplicity of presentation, we set
all the individual miss rate Vp; € pr with the same rate p.

For each configuration of core frequencies, we generate 500 different processors
with different variations, and report the average results. As we are not aware of any
other state-of-the-art related works, we normalize our results to the greedy mapping
and compare the efficiency with the same set of task versions and core configurations
for fairness, in which the normalized ratio is calculated as ¢, of the resulting solution
divided by ¢, of the greedy mapping. By definition, the lower normalized penalty
ratio is better.
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Figure 6.5: Overall reliability penalty ratio by normalizing the results of proposed
approaches to the greedy mapping strategy. It shows the evaluation
results under two different fault rates, i.e., 1079 and 1077,

Evaluational Results for Task Mapping

In these simulations, we evaluate our mapping approach with all the possible redun-
dancy levels. Each bar in the presented figures is obtained by averaging the reliability
results through these 128 different redundancy levels. Since the greedy mapping
cannot guarantee the feasibility of the task mapping, it may be possible that the
greedy mapping is not a feasible one to meet the miss rate constraint.

Simulation without Data Dependency Figure 6.5 shows the evaluation results
under two different fault rates, i.e., 1075 and 1077, Overall, we can observe that our
approach outperforms the greedy mapping approach, and the average improvement
is around 20% among all the cases. In particular, the improvement can be up to
80% (0.2 in the bar plot) when the fault rate is 1077 under Grouping Frequency
Levels. In such scenarios, the reliability penalties may play a minor role, whereas the
greater penalties of timing constraint violations dominate the value of the penalty
function. Moreover, when the variations of performance among the cores are higher,
our approach is typically more effective than the greedy mapping approach. It is
because our approach prevents the severe degradation of reliability, in which the cores
are not grouped properly. Please note, if the design constraints are too strict, none of
the approaches can deliver a feasible solution. Even if there exists a feasible solution,
there is no space to further improve the reliability among different approaches.

In case the difference of frequencies between different grouping levels is large

enough, the greedy mapping approach may suffer from the sequential assignment of
cores, in which the task with RMT mode may have severe performance degradation
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Figure 6.6: Overall reliability penalty ratio for the complicated application under
two different fault rates 107 and 107",

due to the domination of its lowest-frequency core in the majority-voting. In particular,
the most improvement can reach up to 80% when w = 0.3, n = 1077, and pr = 5%.

Interestingly, we can observe that the improvement is not significant under the
scenario of uniform distribution. Among all the possible combinations, the differences
of overall reliability penalty between both approaches are not significant, since the
frequencies of the cores are degraded smoothly. Nevertheless, our task mapping
approaches can still perform well in some cases. For example, in the lower fault rate
as 1077, the improvement can be up to 31%, when the tolerable miss rate is higher,
i.e, pr = 30%.

In the scenario of normal distribution, some of the results with the severe per-
formance variations, i.e., w > 0.16, have no feasible solutions in the simulation. Due
to the lack of high-frequency cores, most of the redundancy levels cannot be satis-
fied, in which most of the cores are degraded as the middle-frequency under normal
distribution. When the tolerable miss rate is strict with the lower fault rate, i.e.,
n=10"" and p = 15%, the results in our simulations depend upon the timeliness of
task mapping, in which the improvement is less because of the negligible differences
of feasible mappings. Among all the feasible constraints, our proposed approach
outperforms the greedy mapping approach under both fault rates.

Fig 6.6 presents the comparison results under different fault rates for a more
complicated application scenario. We construct this application by using the functions
selected from MiBench as mentioned previously, and duplicate the functions to
increase the demand for cores. Based on 14 functions in the complicated application,
214 different redundancy levels, and present the overall reliability penalty
ratio in average. As a result, we know that our approach is still applicable and

we examine

outperforms the greedy approach in case the application is more complicated.



130 Chapter 6. Reliability Optimization for Multi-Cores Task Mapping

O 0 N N
% < 5 o
o o o

Grouping Frequency Levels Uniform Distribution Normal Distribution
1

©
o S o8
=] I
T o [ I |
& 0.6
z 5
T & 04
c =
& 32 o02-
a w
= 0
o) O 00 N N & O 0 ™m
pus 5 94 9 5 8N &8 & N g
E o o o ©o ©o o
o 1
© ~
& 9 os
s L r
E S 06 I
[e] -
zZ 2 04

= |

> 02

(©

& |

0

«
(=]

30%

0.24
2028

]
o
W e=15% @O

Figure 6.7: Evaluation of the reliability penalty ratio with the communication
overhead under different fault rates.
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Figure 6.8: Overhead between our approach and greedy mapping.

Simulation with Communication Overhead By applying the communication
model presented in Section 6.2.4, we reformulate the deadline miss rate of tasks in the
preprocessing and adopt Algorithm 5, to obtain the simulation results in Figure 6.7. At
first, we can observe that the trends of results are similar as the previous case (without
data dependency). Since the overhead of communication increases the hardness of
meeting deadline, the feasible versions of tasks are reduced greatly, in which most of
the tasks have a few choices to utilize the different frequencies of cores. However, the
reliability improvement among all the different mappings is generally more than the
case without dependency consideration.

Required Analysis Time To compare the required analysis time, here we report
the average execution time for the experiments reported in Figure 6.5 and Figure 6.6.
As shown in Figure 6.8, we can see that if the input number is as small as 7 tasks,
our method can still be efficient. However, when the input number is increased to 21
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Figure 6.9: Evaluation of the resulting redundancy levels with variation w = 0.14
under different fault rates.

tasks, the overhead difference is more obvious. As the greedy mapping sorts the tasks
by the reliability penalties, the execution time is mainly dominated by the sorting
algorithm. However, the time complexity of our approach is O(N?3). When there are
many tasks, some approximations are required to trade the execution time for the
efficiency.

Evaluational Results for Levels Adaptation

Here are the evaluational results when the redundancy levels of tasks are not deter-
mined beforehand. To evaluate the effectiveness, we adopt Algorithm 4 to derive
the redundancy levels with different maximal numbers of RMT tasks, in which the
maximal number of RMT tasks is determined by the number of available cores. Here
we present the evaluation under different fault rates 107% and 1077 with variation
w = 0.14. As we are not aware of any other approaches of redundancy levels adaptation,
we show the normalized reliability penalty ratios with our mapping approach.

As shown in Figure 6.9, we can see that the trends in the charts with the derived
redundancy levels still follow our observation in the previous evaluational results. If
the frequency variation among the cores is not negligible as in the case of grouping
frequency levels, the proposed mapping approach perform well most of time. If the
frequencies of cores are degraded smoothly as the case of uniform distribution, the
improvement of overall reliability penalty is not significant. In the case of normal
distribution, the improvement is still significant with the derived redundancy levels
when the tolerable miss rate is tighter, i.e., p = 5%.

We also compare the resulting redundancy levels with the optimal redundancy
levels for seven tasks, which is obtained by a brute-force search with a factorial timing
complexity. We observe that the task mapping and redundancy levels derived by



132 Chapter 6. Reliability Optimization for Multi-Cores Task Mapping

our proposed approaches are equal to the optimal task mapping under the optimal
redundancy levels.

6.4.2 Evaluation for Multi-Tasking Approaches

For evaluating the proposed optimization approaches in Section 6.3, we analyzed the
performance of both the coarse-grained and the fine-grained approaches compared
to the greedy approach used in dTune [RKS+14b] with respect to the number of
feasible configurations and by comparing the best resulting reliability penalties among
those feasible configurations, using real tasks from an embedded benchmark.

For each redundancy level, we determined the WCET by a large number of
measurements and estimated the reliability penalty values under two different fault
rates 7, i.e., 7 = 107% and 1077 fault/cycles, as adopted in [HWZ06; LDV+04].
Similarly to [HWZ06; LDV+04], the reliability penalty for each function/task is
estimated using the same metrics as in [RSK+11; RCK+16]. The time overhead of
the synchronization for DMR and TMR redundancy levels are integrated into the
total execution time Cj;; and the critical-path length L; ; for level 7; ;. From those
values we generated the tasks period using two different approaches:

« Random Periods: We randomly drew 7; in the range of [1.65- C; 4, (1.65 +
p) - Ci ] using a uniform distribution, i.e., analyzing task sets with smaller /
larger periods compared to the execution time and therefore larger / smaller
utilization values. The p values we used in the experiments were 0.6, 1.2, and
1.8, leading to upper bounds of 2.25, 2.85, and 3.45, respectively, for the periods
compared to the execution time. We generated 500 task sets for each p to get a
sufficient sample size.

e Given Total Utilization: We applied the UUnifast-Discard method proposed
by Davis et al. [DB11] to generate task sets of size N with a given total utilization
U™ for the execution without any redundancy, i.e., U* = ¥ .p u; 4. Each task 7;
is assigned with a utilization value u; 4 and the period is T; = C; 4/u; 4, i.e., the
execution time of the non-RMT level divided by the assigned utilization from
the UUnifast-Discard method. We evaluated using three different values of U*,
i.e., 250%, 300%, and 350% creating 500 task sets for each utilization value.

As dTune only can decide to activate CRT-TMR or not, it needs at least 9 cores
to activate CRT-TMR for one task and 21 cores to activate CRT-TMR for all tasks.
Therefore, we evaluated the range of 9 to 21 cores.

For the setting of U*, we choose the range of 250% to 350% due to the following
reasons: (1) When U™ is larger than 350%, the average utilization of a task is more
than 50%. Therefore most tasks cannot activate SRT-TMR, or MRT-TMR due to the
additional computations for replicas and synchronization. (2) If the total utilization
is less than 250%, the average task utilization is below 33% and therefore most tasks
can activate SRT-TMR.
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We implement our dynamic programming approaches with C++, i.e., Algorithm 6
and Algorithm 9, using an Intel Core i7-4770 with 16GB DDR3 RAM for the evalua-
tions. The derived reliability penalties of Algorithm 6 and Algorithm 9 with Lemma 6
(partitioned scheduling) and Lemma 7 (semi-partitioned scheduling) are compared
with dTune [RKS+14b] by evaluating the number of feasible configurations and
the derived overall reliability penalties Up(6). The greedy approach adopted in
dTune [RKS+14b] works as follows:

o The tasks are sorted by their reliability penalty R; 4.
e The [ME N | tasks with the highest reliability penalty are selected to activate
CRT-TMR.

o The remaining tasks are executed in NON-RMT.

Although the task mapping approaches introduced in Section 6.2 outperform
the greedy approach in [RKS+14b] under variation-performance multi-cores, the
approaches from both papers will perform the same in the studied problem that all
the cores in the considered system are homogeneous.

Evaluation of the Coarse-Grained Approach

To show that MRT provides additional possibilities for reliability optimization we
adopted a similar comparison as in [KCK+16]. We restrict the coarse-grained approach
to only use TMR with partition scheduling and semi-partition scheduling, as dTune
can only choose between CRT-TMR and no redundancy as well. For each of the seven
tasks, TMR can be activated individually, leading to 27 = 128 configurations. We
report the number of feasible configurations for both the coarse-grained approach
(Algorithm 6) and dTune [RKS+14b]. The average analysis duration for one run of
the coarse-grained approach considering 7 tasks was 0.22 seconds. As results under
different fault rates n are similar, we only present the results for n = 1075,
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Figure 6.10: Number of feasible configurations for different p.

Figure 6.10 shows the number of feasible configurations with respect to p and the
number of cores M. A log scale with base-10 is used for the Y-axis to improve the
readability. The number of feasible configurations using the coarse-grained approach
is generally not less than for the greedy approach. Some exceptions are the cases
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Figure 6.11: Number of feasible configurations for different U*.

using partitioned-scheduling under tight constraints, e.g., 9 cores and p = 0.6. This
is due to the limitation of the sufficient bound of the partitioned-scheduling. As all
tasks without redundancy are by construction in 7yrrg and the sufficient bound
only accepts tasks with a total utilization of ¥ - . o
are barely schedulable without any redundancy. When the parameter p is increased,
i.e., the utilization of tasks are relatively lower, the coarse-grained approach adopts
SRT/MRT-TMR to exploit the spare utilization of cores, while the greedy approach
can only decide if CRT-TMR should be activated or not without any adaptation.

uj ¢ < M[2 some task sets

As shown in Figure 6.11, for different U* settings, the number of feasible con-
figurations using the coarse-grained approach are generally superior to the greedy
approach when the number of available cores is less than 18. However, we can see
that our approach does not always outperform the greedy approach if the number
of available cores is sufficient to activate CRT-TMR for many tasks. For example,
when the number of available cores is 21 and U™ is close to 350%, the coarse-grained
approach does not outperform the greedy approach. However, these results strongly
support our claim that using MRT is able to increase the schedulability for given
selections of TMR.
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Figure 6.12: Comparison of the coarse-grained approach and the greedy approach
under different p.

Figure 6.12 shows the normalized ratio of overall system reliability, which is
calculated as Wr of the resulting solution divided by Wr of the greedy approach.
To generate the reliability penalties, 7 = 107 was used. Instead of using the given
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Figure 6.13: Comparison of the coarse-grained approach and the greedy approach
under different U*.

redundancy configurations in the previous evaluation, the greedy approach decides
which task can be executed with CRT-TMR. Our coarse-grained approach determines
the executed redundancy level of each tasks. For the sake of fairness, we only compare
those task sets where both approaches are able to provide feasible mappings. By the
definition of the penalty value, lower values are better. Generally, most of the results
derived by the coarse-grained approach are better than the greedy approach results.
However, when M is 9, we can see that our approach cannot outperform the greedy
approach when partitioned scheduling is used in the coarse-grained approach. From
the previous evaluation we know that our approach can find some feasible mappings,
but the best one it can find is limited by the sufficient condition of FS and in this
case the coarse-grained approach can barely execute the tasks without redundancy.
For 12 up to 20 cores the coarse-grained approach achieves a significantly better
reliability penalty than the greedy approach. For the normalized reliability penalty
ratio displayed in Figure 6.13, we observe that the gain by using the coarse-grained
approach is larger when the overall utilization is smaller. If semi-partitioned scheduling
is used, the gain is higher when the number of available cores is in the range between
9 to 11 especially for U* = 350. Overall, as our approach can fully exploit the available
cores with SRT or MRT rather than solely using CRT, it specifically performs well
when the number of available cores is in the most interesting region, i.e., TMR can
be activated for some tasks but not for most/all.

Evaluation of the Fine-Grained Approach

We compare the results of the fine-grained approach (Algorithm 9) with the coarse-
grained approach to show the possible benefit if the stage redundancy can be de-
termined arbitrarily. We show the comparison to the coarse-grained approach here.
Please note that the fine-grained approach performs as least as good as the coarse-
grained approach. Since the latter one can only harden the whole task, it is always
one option for the former one as well.

Figure 6.14 and Figure 6.15 show the average system reliability values achieved
by the fine-grained approach over 500 runs, normalized by the values achieved by
the coarse-grained approach. The number of task stages .S; was drawn uniformly
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Figure 6.14: Comparison of the fine-grained approach and the coarse-grained ap-
proach under different p.
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Figure 6.15: Comparison of the fine-grained approach and the coarse-grained ap-
proach under different U*.

distributed in the range of 2 to 5. Generally, the more stages a task has, the more
flexibility for using redundancy it has. Please note, that when S; is 1 for each task 7;,
the fine-grained approach is the same as the coarse-grained approach. The average
analysis duration for one run of the fine-grained approach with 7 tasks was 3.8 seconds.

In Figure 6.14, we see that the fine-grained approach improves the results of the
coarse-grained approach more when p is smaller. While the coarse-grained approach
with partitioned scheduling suffers from the small number of available cores which
does not allow to harden many complete tasks if the utilization is high, i.e., M =9 and
p = 0.6, the fine-grained approach can harden some stages of the tasks with redundancy.
In this case, the normalized ratio between the fine-grained and the coarse-grained
approaches is 0.6292, but the bar is not shown due to the scale of Y-axis. However,
we choose to use the scale from 0.8 to 1.0 as it improves the readability for the other
settings. Under semi-partitioned scheduling, the gain of the fine-grained approach is
not as large as under the coarse-grained approach, since the coarse-grained approach
can activate some redundancy already for some tasks due to a larger sufficient bound
in Lemma 7.

In Figure 6.15, we can observe that the benefit of using the fine-grained approach is
not as large as in Figure 6.14, especially under semi-partitioned scheduling. The reason
is that if the coarse-grained approach can already activate TMR for most complete
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tasks, the fine-grained approach can only perform as good as the coarse-grained
approach for those tasks.

6.5 Summary

Using Redundant Multithreading (RMT) for error detection and recovery is a promi-
nent technique to mitigate soft-error effects in multi-core systems. Simultaneous
Redundant Threading (SRT) on the same core or Chip-level Redundant Multithread-
ing (CRT) on different cores can be adopted to implement RMT. This chapter studies
how to achieve resource-efficient reliability on multi-core systems by using RMT and
redundant cores while considering the given resource constraints.

At first we introduce reliability-driven mapping techniques to allocate the tasks
onto a multi-core processor by taking application vulnerability and performance
heterogeneity into consideration. We show that a special case of the studied problem
with homogeneous redundancy levels is equivalent to the MWPBM problem, and
an approach is developed to optimally handle heterogeneous redundancy levels. To
consider communication and data dependencies, we provide a viable way to estimate
the transfer overhead with a deterministic routing algorithm and show how it enhances
our proposed mapping approaches. Our evaluations show that the proposed approaches
may improve greedy method drastically when the frequency variation among the cores
is not negligible. For different scenarios of chip frequency variation maps, the overall
improvement may result in average in 20% less reliability penalty, while guaranteeing
all tasks meet their given deadline miss rate constraints

For the implementation, the interactions between the compiler and the operating
system are required. The reliable compilation helps us exploit the resilience of tasks
with varying execution time and vulnerabilities The proposed approaches needs to
be implemented in the scheduler to determine the task mapping and the redundancy
levels. Since the time complexity of proposed approaches are polynomial time based,
they can be adopted, either for on-line reconfiguration due to aging-induced effects
or process variations, or off-line configuration due to heterogeneous architectures
pursuing the dependable application design.

Secondly, this chapter also exploits redundant cores to mitigate soft-error ef-
fects by using RMT reasonably with multi-tasking. We provide software synthesis
methodologies for real-time embedded system designers to efficiently exploit mixed
redundancy techniques to decrease the system reliability penalty while satisfying
the timing constraints in multi-core systems. We provide a combination of CRT
and SRT called MRT to achieve these goals. In addition, we provide two reliability
optimization approaches to decrease the system reliability penalty with different
granularity while scheduling the hard real-time tasks on multi-cores. The results show
that the proposed approaches are generally better than the greedy approach in terms
of reliability when the number of available cores is limited to activate CRT-TMR for
tasks. Furthermore, since the fine-grained approach has more flexibility to harden
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tasks in stage-level, the decrease of the system reliability penalty is at least as good as
for the coarse-grained approach. When the resources are more limited, the benefit of
adopting the fine-grained approach is more significant. While our approaches already
perform better than the greedy approach in most cases if partitioned scheduling is
used for the tasks in 7y;proE, using semi-partitioned scheduling can increase the gain
even further.

To the best of our knowledge, this work provides the first solid foundation for
using mixed redundancy techniques in multi-core systems. The methodologies are
not limited to the mixture of two redundancy levels but also applicable to multiple
redundancy levels up to the designer’s choice. However, our study is limited to
implicit-deadline real-time tasks under federated scheduling in homogeneous multi-
core systems. It has been shown by Chen [Chel6a] that F'S does not perform well for
constrained- and arbitrary-deadline real-time task systems. Nevertheless, the proposed
MRT can directly be used for other scheduling strategies while the applicability of the
proposed optimization techniques depends on the scheduling strategy that is used.
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7.1 Overview

In soft real-time systems like in Chapter 5 or Mixed-Criticality Systems [Ves07],
deadline misses (we call this behavior as overrun of tasks in this chapter) are not
absolutely forbidden but require a proper reaction from the designed system to handle
such cases as discussed in Chapter 5. Therefore, a REAL TIME OPERATING SYSTEM
(RTOS) and platforms, e.g., FreeRTOS [Real6], Litmus-RT [Bra06], and REAL-TIME
EXECUTIVE FOR MULTIPROCESSOR SYSTEMS (RTEMS) [RTE13], for running such
real-time systems should ensure that the system still behaves as expected if such
overrun situations occur. Namely, the task jobs should still be released according to
the given pattern and all task jobs are still released even if another task job is still
in the system at the moment the next task job would be released according to the

139
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pattern. This makes sure that the system behavior is predictable even with very rare
overrun situations.

It is usually assumed that multiple task jobs of a task are executed in a FIRST-
COME-FIRST-SERVE (FCFS) manner. Thus, it is sufficient to release the second task
job at the moment the first task job finishes, assuming that the first task job finishes
after the time point at which the second task job would have been released according to
a strictly periodic pattern. However, during our work on Systems with Dynamic Real-
Time Guarantees [BCH+16], we ran simulations with RTEMS (Real-Time Ezecutive
for Multiprocessor Systems) [RTE13] to analyze the impact of transient faults during
the execution of a task job. We assumed those faults to happen randomly under a
given fault rate and wanted to analyze the impact of the fault rate on the system
behavior. Interestingly, we discovered that RTEMS (version 4.11) did not behave as
expected when these faults result in a task missing its deadline within these analyzes.

In this chapter, we focus on explaining the problems that arise from the original
implementation of RTEMS when overruns take place and provides a solution that
tackles these problems. Two major problems are discussed and solved: On one hand,
missing the deadline of a task job leads to a shift of the release pattern of the task. On
the other hand, if the deadline was missed by more than one period, the task job that
should have been released during this period was never released. We extended the
current release of the RTEMS source code to tackle these two problems. In addition
we shortly explain the case study we performed for the paper Systems with Dynamic
Real-Time Guarantees in Uncertain and Faulty Execution Environments [BCH+16]
in Section 7.4, which was the motivation why we discovered those problems and
enhanced the implementation of RTEMS.

7.2 Original Design in RTEMS

In this section, we describe the original design of overrun handling mechanism in
RTEMS [RTE13] and present how to integrate the enhancement perfectly in the latest
RTEMS release. A motivational example is provided to demonstrate the differences
between the original design and the enhanced version of overrun handling. In addition
to the proper overrun handling mechanism, we also provide a useful helper function,
which is detailed at the end of this section.

7.2.1 Task Model

In this chapter we consider n independent periodic real-time tasks ' = {71, 79,..., 7}
in a uniprocessor system. Each task 7; releases an infinite number of jobs (also called
task jobs) under the given period (temporal) constraint 7;. As we assume the tasks
to be strictly periodic this means if at time 6, a job of task 7; arrives, the next job of
the task must arrive at 6, + T;. The relative deadline of task 7; is D, i.e., a task job
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(a) The overrun handling with our enhancement in RTEMS. The postponed jobs due to the execution
of 71 are marked red, the jobs postponed due to the execution of previous jobs of 72 that are
not executed in the right period are marked orange. The yellow job is postponed due to the
orange job in the same period but can still finish its execution on time.
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(b) The overrun handling with our enhancement for dynamic real-time guarantees in RTEMS. Due
to error recovery routine, task 71 runs in the second period with the abnormal mode, i.e., C{* = 6.
The postponed jobs due to the execution of 71 are marked red, the jobs postponed due to the
execution of previous jobs of 7 that are not executed in the right period are marked orange.
The yellow job is postponed due to the orange job in the same period but can still finish its
execution on time.

Figure 7.1: An example illustrates the enhanced overrun handling mechanism and
how does it work for dynamic real-time guarantees [BCH+16].

released at 6, must be finished before 6, + D;. We mainly consider implicit-deadline
task sets in this chapter, i.e., D; =T; V7;.

7.2.2 Original Design

In the considered version 4.11 of RTEMS!, the scheduler uses a virtual table of
function pointers to hook scheduler-specific code and the thread management. In
this chapter, we limit our attention on the fixed-priority scheduler in the RTEMS
implementation. Although the related functions have a prefix rate-monotonic and is
called RMS in RTEMS, the scheduler can be used for any fixed-priority scheduling,
by which the priorities of tasks can be set by the system designer. For the sake of
clarity, we will remove the prefix when we mention the functions of the scheduler in
the rest of paper. The primary source code is located in the following files in the
SuperCore (cpukit/score):

o cpukit/rtems/src/ratemonperiod.c

o cpukit/rtems/src/ratemontimeout.c

o cpukit/rtems/include/rtems/rtems/ratemon.h

o cpukit/rtems/include/rtems/rtems/ratemonimpl.h

The rate-monotonic manager in RTTEMS is responsible for handling the periodicity of
the tasks. Based on it, this chapter mainly redefines the behavior of the Period ()

When this work was published, version 4.11 was the latest version. The proposed enhancement
here is included in the latest version 5.1 as well.
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Figure 7.2: Flowchart of the RMS manager in RTEMS.

function and the Timeout () function in ratemonperiod.c and ratemontimeout.c,
respectively. As mentioned in [BS14], for each task, its periodicity is implemented by
using a timer to track its period.

To implement a periodic task, the system designer should create a periodic timer
and implement the task body with a loop that calls Period() at the beginning to
initialize the corresponding timer with the current system tick plus its period. Every
time the task finishes its task body, i.e., at the end of the loop, Period() is called
to setup the next iteration and immediately checks if the period is depleted yet. If
the task finishes before its next period, it immediately goes to sleep (or suspends)
until its period elapses, at which time its timer fires, wake the task to continue the
loop body, and so on so forth. In the original design in RTEMS, if the watchdog
notices that the deadline of a job expires but the job has not finished yet, i.e., a
period timeout of a task takes place but the task body has not been finished, RTEMS
marks the period state as EXPIRED and does nothing more. The next time Period ()
is called at the beginning of the loop, i.e., when the expired task is finished, the
Block_while_expired() function records the marked state of the expired period
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to update the system statistic routine and releases the next job immediately while
updating the timer with the current system tick plus its period. Figure 7.2 illustrates
the flowchart of the RMS manager. However, such an overrun handling mechanism
is not able to keep the periodicity of the task, since the system tick at which the
delayed task job finishes is normally not at an integer multiple of the period of the
task. Also this moment does not necessarily have to happen during or at the end
of the first period after the deadline expired, but could be in any period after the
originally expired one. In such a scenario, all the postponed jobs that would have been
initialized in the time interval between the expired deadline and the newly released
task job is created are just gone.

7.3 Enhancement

After discussing the original design, we now explain how we can enhance the original
implementation to handle the deadline overrun correctly. Based on the previous
observations, the main ideas of our enhancement can be summarized as follows:

e correcting the deadline assignment errors using a watchdog, i.e., keep the
periodicity of the tasks,

e tracking the number of postponed jobs, and

e providing two modes of job releasing depending on the situation, i.e., normal
and postponed release.

The flowchart is provided in Figure 7.3, in which the light background blocks are
involved in the enhancement. In the rest of this subsection, we explain more details
about our implementation. Please note that the use of the word deadline in the rest
of section is referring to the deadline of the watchdog timer. Since the arrival time of
the tasks’ jobs is exactly the deadline of the watchdog timer in RMS, the periodicity
of tasks should be fixed from the deadline assignment of the watchdog.

Correcting the deadline assignment

To keep the correct deadline assignment after a job misses its deadline, we add an
additional variable called latest_deadline in the Control structure that records
the latest deadline assigned by the period watchdog. This variable is used to call
an additional function named Renew_deadline () in the Timeout () function, making
sure that the watchdog updates the timer to the next absolute deadline. The next
deadline will be recorded in the variable latest_deadline. Due to this enhancement,
the watchdog updates the timer correctly rather than doing nothing in the original
design. The recorded deadline in the variable latest_deadline is prepared for the
next call of the Timeout () function, allowing to set the deadline to the sum of latest
deadline and period for the next deadline assignment directly.
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Tracking the number of postponed jobs

In addition to the correct deadline assignment, we also implemented a tracking
mechanism for the number of the postponed jobs to ensure that the postponed
jobs are correctly released. To deploy this idea, we add an additional variable in
the Control structure called postponed_jobs and initialize it while the periodic
timer is created. When the watchdog detects a deadline miss (a period timeout
while the related task is not finished), this variable is increased by one immediately
in the Timeout () function. Conversely, every time a postponed job is released by
Release_postponedjob(), this variable is decreased by one immediately.

Two modes of job releasing

As we mentioned before, normally the execution of periodic tasks is correct, if there
is no deadline miss. When there is an overrun, the watchdog of the expired period
detects such an overrun and the next call of Period() will immediately release
one job and set the expired period state back to the normal state by using the
function Block_while_expired(). In the original facility, the above behavior is
handled by the function Release_job(). In the enhancement, we replaced it with
an additional function Release_postponedjob() and let the watchdog handle the
deadline assignment individually. We implemented it similar to the original job
releasing routine, but it does not assign the new deadline to the timer while releasing
a postponed job. Since they already missed their deadline and are tracked by the
watchdog in the Timeout () function, it is meaningless to assign an already expired
deadline to the watchdog. Every time a postponed job is released, the variable
postponed_jobs is decreased by one. When the variable postponed_jobs is not 0,
the scheduler is in the postponed mode.

Based on the original design in RTEMS, every time Period() is called at the
beginning of the loop, it checks the state of the current period. When the state is
EXPIRED, in fact the period might be expired many times already. In this block,
now it calls the enhanced Block_while_expired() to release the postponed jobs
without assigning a new deadline. We added one more condition when checking if the
state of the period is ACTIVE, in which the task is blocked and waits for the next
period. The additional condition checks if the variable postponed_jobs is greater
than 0, which means the scheduler is still in the postponed mode. Otherwise, when
the variable postponed_jobs is 0, the scheduler is in the normal mode and the job
release is the same as it was in the original design.

Example with Enhancement

We use the same example as before in Section 1.2.4 to illustrate the effect of our
enhancement in Figure 7.1a, which is now matching the expectation of most appli-
cations and researches. At time 10 71 is executed, as it has higher priority than 7o,
which leads to three expired periods of 7. This means, the watchdog increases the
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Figure 7.3: Flowchart of the enhanced RMS manager. The light background blocks
are involved in the enhancement.

variable postponed_jobs to 3. When task 7o can be executed, it starts to release the
postponed jobs in the postponed mode. Moreover, the three postponed jobs of 75 that
should be released at time units 10, 12, and 14 due to the execution of 77, marked red,
are released at time units 16, 17, and 18, respectively. However, the period from 16 to
18 and from 18 to 20 also expired while executing the three previously postponed jobs
and the job postponed at 16, marked orange. At 20 the job postponed at 18 (marked
orange as well) is released and is finished at 21, at which time the job postponed at
20 is released (yellow) and finishes at 22. After all the postponed jobs are finished,
the release of 1 turns back according to the original pattern again.

We provide an additional example in Figure 7.1b as well to demonstrate how the
enhancement works for dynamic real-time guarantees [BCH+16]. Detailed notation
can be found in Section 7.4 or in [BCH+16]. Suppose that task 7 requires a full
timing guarantee with the abnormal execution time C’f‘ = 6, and the normal execution
time C¥ = 1. Task 7 is a timing tolerable task with C3' = CJ' = 1. In Figure 7.1b,
the second job of task 71 needs 6 time units for its execution time. We can see that
after all the postponed jobs of task 7o are finished at 24, the release of task m turns
back according to the original periodic pattern again.
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7.3.1 Helper Function for Online-Monitoring

In the enhancement, we also provided a helper function called Postponed_num()
to return the number of postponed jobs with the current period ID of tasks as
function input. According to the expected behavior, the number of postponed jobs
is only increased by the watchdog of the corresponding period; it is only decreased
by the routine of postponed job releasing in RMS manager. This helper function
is especially useful for on-line admission control and the system monitor design in
terms of scheduling. For example, it is already used in [BCH+16] for the system state
analysis, where the overhead of the enhancement is negligible in our evaluation (see
Section 7.4).

7.3.2 Arbitrary Deadline and Non-Rebooting Policy

Up to this point, we have presented how to handle the overrun for implicit- (D; =
T; V7; € ') or constrained-deadline (D; < T; Vr; € ') task sets properly with our
enhancement based on the original scheduler design in RTEMS. In the arbitrary-
deadline task model, no general relation between D; and T; exists. Especially, for
some tasks D; > T; is possible. However, due to the limitation of the original design in
the fixed-priority scheduler, the arbitrary-deadline task model is not supported yet in
RTEMS as well. Since the deadline detection is originally embedded in the routine of
the task periodicity, the deadline is expected to be less than or equal to their period
without any overrun. However, this expectation is only true for implicit-deadline and
constraint-deadline task models and applications where all deadlines are met.

From the schedulability analysis aspect, the detection of deadline misses should
be separated as an individual feature. One potential solution is to set the deadline of
a task explicitly as the input parameter while the period is initialized and update the
deadline accordingly while every job is released. The detection routine for deadline
misses should be revised for recording the number of deadline misses rather than the
number of periods expired. Based on our enhancement, this solution could make the
fixed-priority scheduler of RTEMS support more general real-time task models.

In addition, the enhancement proposed in this chapter is also necessary to the
considered system model in the previous Chapter that all jobs are never aborted or
the system is never rebooted while a job misses its deadline. Since the remaining
part of the job still has to be finished fully before the next job of the same task can
execute, the proposed enhancement can handle the postponed released jobs correctly
while keeping the periodicities for all the tasks.

7.4 Case Study: Dynamic Real-Time Guarantees

The need for the presented enhanced implementation for RTEMS was discovered
during the work on the paper Systems with Dynamic Real-Time Guarantees in
Uncertain and Faulty Execution Environments [BCH+16]. A System with Dynamic
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Real-Time Guarantees can be used to analyze and schedule systems where some tasks
have two different WORST-CASE ExEcuTiON TiME (WCET); a shorter WCET CN
for executions that happens more often (called normal execution), and a longer WCET
CZ-A for some rare special cases (called abnormal execution). The general idea is that
not only all tasks in the system normally need to fulfill strict timing guarantees but
also in some special cases, i.e., a number of tasks with abnormal execution happen in
a short period of time, for some not so important tasks (called timing tolerable tasks)
rare deadline misses are tolerable while for the more important tasks (called timing
strict tasks) deadline misses are allowed under no circumstances. In Systems with
Dynamic Real-Time Guarantees fixed-priority scheduling is used.

A System with Dynamic Real-Time Guarantees assumes that at the beginning of
a task’s execution it is not possible to determine if the task is executed in a normal or
an abnormal mode, i.e., abnormal executions happen randomly and do not follow a
strict pattern. This is the case when we look at the fault tolerance enhanced to handle
soft errors, i.e., the consequences of transient faults of the computing hardware or
the memory subsystem, by using software-based solutions, e.g., re-execution [MD11]
or checkpointing [ELS+13]. Such faults can either happen for each individual task
job with low probability or they can happen as a burst that affects (nearly) all tasks
over a small time window. In both cases it would not be sensible to in general
assume the longer CZ-N in the analysis if those faults occur rarely and some deadline
misses can be tolerated, as it would lead to over dimensioning the system. The idea
of Systems with Dynamic Real-Time Guarantees is to give full timing guarantees,
i.e., all tasks meet all their deadlines, if tasks are executed normally, and maybe
downgrade this guarantees to limited timing guarantees if some tasks are executed
in the abnormal mode. When limited timing guarantees are given, only the timing
strict tasks are guaranteed to meet their deadlines while the timing tolerable tasks
may miss some deadlines but still bounded tardiness for these tasks is guaranteed.
In addition, Systems with Dynamic Real-Time Guarantees provide a system monitor
that analyzes if full timing guarantees can be given for all tasks, i.e., all tasks will
meet their deadline if no faults occur, or if only limited timing guarantees can be
given for some timing tolerable tasks. To determine this for each timing tolerable
tasks an over estimation of the busy period is calculated, summing up the current
carry-in workload by jobs with higher or identical priority and the workload created
in the future under the assumptions of 1) a worst-case release pattern and 2) that no
further faults occur. For details see Section 6 of [BCH+-16].

Similar behavior occurs in Mixed-Criticality Systems [Ves07] which have two
modes, a high- and a low-criticality mode where tasks have a longer execution time
in the high-criticality mode. It is often assumed that low-criticality tasks can be
abandoned when the system switches from the low-criticality to high-criticality mode
to ensure that the high-criticality tasks will still meet their deadlines. However, this
assumption has been criticized recently [ENN+15; EN16; BD16]. The problem is
tackled when a System with Dynamic Real-Time Guarantees is used, as the low-
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Figure 7.4: Percentage of Time where Full Timing Guarantees can be given for
task sets with utilization 70% in the normal mode under different fault
rates.

criticality tasks are seen as timing tolerable tasks and the system gives limited timing
guarantees, i.e., guarantees bounded tardiness instead of abandoning the task.

To analyze the behavior of Systems with Dynamic Real-Time Guarantees, RTEMS
on a QUICK EMULATOR (QEMU) emulator was used, where the number of cores was
set to 1 for the emulation. It was assumed that transient faults happen randomly,
i.e., a given rate of faults per millisecond, and at the moment a task job finished its
normal execution a random draw, based on the probability of faults per millisecond
and CiN , determined if the execution was prolonged to run up to C’ZA or not. The
system monitor was used to determine the amount of time when only limited timing
guarantees could be provided.

As the timing tolerable tasks are not abandoned those tasks may miss their
deadlines. However, they should be executed after the deadline as the result may
still be useful. In addition, it may happen that not only one job of a task misses the
deadline but also that the execution of the task may be postponed for more than
one period. In these cases more than one job of a task may be ready to execute at a
given time, another situation previously not covered in RTEMS. The enhancement
presented in Section 7.3 was necessary to ensure that the release pattern was still
correct when a task missed its deadline. The number of the postponed releases was
determined using the helper function. The system monitor framework also adopts the
helper function when it calculates the carry-in workload for each task.

The scheduling algorithm in [BCH+16] can only schedule 44.4% of the task sets
when the task sets are randomly generated with 10 tasks, 50% of these tasks are
randomly chosen to be timing strict tasks, the total utilization in the normal mode
is 70%, and CZA =1.83- CiNVi, i.e., the total utilization in the abnormal mode is
~ 128.1%. We used 40 of those randomly created tasks sets under the given setting that
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are schedulable according to the scheduling algorithm in [BCH+16] if the bounded
tardiness condition for the timing tolerable tasks is dropped. Obviously, for utilization
> 100% in the abnormal mode, bounded tardiness for the timing tolerable tasks can
only be guaranteed if the fault rate is not too high as a high fault rate will lead to
more Overruns.

We let the system simulate one hour per run under different fault rates for each
of those task sets, i.e., on average 1074, 3-107*, 1073,3-1073 and 1072 faults per
millisecond (f/ms). For each executed task job we decided if the job was faulty or not
by a random draw. The results, i.e., the percentage of time the system was running
with full timing guarantees, are shown in Figure 7.4 (which is Figure 8 in [BCH+16]).
The median of those 40 sets is colored red. The blue box represents the interval
from the first to the third quartile, while the black whiskers show the minimum and
maximum of all of the data.

7.5 Summary

The demand of overrun handling has emerged and it is widely used in practical and
theoretical systems, e.g., in the design of soft real-time systems, Mixed-Criticality
systems [Ves07], Systems with Dynamic Real-Time Guarantees [BCH+16], and the
system model without rebooting/aborting policy for deadline misses. RTOSs are
not only used in embedded real-time systems but also useful for the simulation and
validation of those systems. Therefore, a RTOS should ensure that the system can
behave properly as expected in the literature when such overrun situations occur.

In this chapter, we introduce how to enhance the fixed-priority scheduler in
the released version 4.11 of RTEMS with a generally expected overrun handling
mechanism. The provided enhancement was accepted on January 30th in 2017 as
stated in the RTEMS report ticket #2795 [Chel6b] for version 4.11 and is inherited
by the latest version 5.1. In addition to the proposed enhancement, we also prepare
the corresponding test-suites on uniprocessors obeying the standard validation and
the coding convention in RTEMS. At the end, we thank Mr. Huan-Fui Lee for his
assistance on deploying the case study.
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In the preceding chapters of this dissertation, it has been shown that the usage of
SOFTWARE-IMPLEMENTED HARDWARE FAULT TOLERANCE (SIHFT) techniques in
uniprocessor or multi-core systems poses a number of novel challenges with regards
to satisfying and proving real-time guarantees. For instance, the classical non-
probabilistic approaches proposed in the literature may be too pessimistic and thus
lead to over-provisioned systems. Towards this, several published and peer-reviewed
analyses and scheduling algorithms have been presented in this dissertation that are
beneficial to designing and verifying resource-efficient real-time systems with respect
to fault-tolerance and reliability requirements.

8.1 Summary

Firstly, the concepts of STHFT techniques have been introduced, which are applied
in software systems to mitigate the effects of transient faults in hardware without
additional hardware support. Further, this dissertation was giving an overview of
real-time systems, and the prominent techniques to verify the timeliness of safety
critical systems.

The studied problems in this dissertation are summarized as follows: In Chap-
ter 4, we have studied how to reduce the analytic pessimism while deploying STHFT
techniques in hard real-time systems. We have shown that the inherent robustness,
i.e., safety margins and noise tolerance in control applications can be modeled as
(m, k) robustness requirements and be exploited to avoid over-provisioning when
applying software-based error-handling approaches against soft-errors. Motivated by
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this observation, we have presented a lightweight off-line static pattern scheduling,
which uses (m, k) patterns to determine when to execute a reliable version, and a
dynamic compensation algorithm for optimizations during runtime. The dynamic
compensation is based on static pattern scheduling to monitor the current tolerance
status and determine the necessary instant in time to execute a reliable version
subsequently.

Moreover, in Chapter 5 we have studied how to efficiently analyze and compute the
probability of deadline misses and miss rates incurred by the overheads of potential
error recovery mechanisms in systems with soft real-time constraints. We have
shown that the probability of deadline misses can be safely over-approximated by
using analytical bound approaches. Further, it was shown that the differences in
approximation quality, comparing to the state-of-the-art, are reasonable in light of the
runtime improvement. Based on the proposed approximation approach and accounting
for consecutive deadline misses, we have presented that a safe upper bound on the
expected deadline misses rate can be derived efficiently.

Furthermore, in Chapter 6 we have studied how to optimize the system reli-
ability via REDUNDANT MULTI-THREADING (RMT) on multi-core systems whilst
satisfying given real-time constraints. We have proposed to solve reliability-aware task-
mapping problems based on the MINIMUM WEIGHT PERFECT BIPARTITE MATCHING
(MWPBM) problem to improve the overall system reliability. In addition, we have
developed several dynamic programming approaches to decide redundancy levels for
each task whilst adopting FEDERATED SCHEDULING (FS) to handle multi-tasking.

Finally, in Chapter 7 we have proposed an enhancement for implementations
in a REAL TIME OPERATING SYSTEM (RTOS) to guarantee strict periodicity for
potential task overruns due to hardware transient faults. We have introduced how to
enhance the implementation of the fixed-priority scheduler in REAL-TIME EXECUTIVE
FOR MULTIPROCESSOR SYSTEMS (RTEMS) with a overrun handling mechanism that
provides the aforementioned periodicity. Additionally, the proposed enhancement has
been reviewed and was accepted on January 30th in 2017 and is included in the latest
version of released source code.

8.2 Ongoing and Future Work

Tolerance-Aware Analysis and Scheduling: The rational behind the proposed
approaches in Chapter 4, motivated us to consider similar scenarios in different
applications and domains, e.g., wireless communication with limited bandwidths, or
network communication systems with limited reliable channels. For example, the
reliable transmission of messages are typically costly and thus the number of reliable
transmission channels is limited.

How to efficiently monitor the tolerance status and improve the correct transmission
in such systems, i.e., resource-aware scheduling, is a foreseeable challenge.
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Investigating Impacts of Different System Models: The considered schedul-
ing models in this dissertation are solely focused on fixed-priority preemptive scheduling
policy. Thus, researching and transferring our proposed results for different scheduling
and task models, e.g., arbitrary deadlines, non-preemptive scheduling policy, and
dynamic priority scheduling is an open problem. Furthermore, the costs of using
SIHFT techniques in this dissertation is only considered by their time overheads and
is assumed to perform always correctly. In future work, we would like to consider
different models of STHFT techniques and analyze their respective impacts.

Extension of RTOS and Open Source: As described in Chapter 7, we have
noticed that the implementations of task models and overrun-handling in RTOSs
may not fully conform to what is premised and believed in the literature. Therefore,
making them consistent with the assumptions made in the analyses is mandatory
and an important future work. Moreover, the implementations of the proposed
approaches, presented in this dissertation, are released and publicly available. In
order to further improve the applicability of the released scripts, we would like to
extend our contributions, e.g., the event-based simulator mentioned in Chapter 2, to
consider multi-core system models and dynamic priority assignment policies.
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