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Introduction

Power, bipower and multipower variations stem from the concept of using qua-
dratic variations and covariations, which for example are a central part of the Ito
calculus, as estimators for the integrated volatility.

A general multipower variation V,fm), which for m = 1 is called power variation

and for m = 2 is referred to as bipower variation, is an object of the following form

*

n+k”™ m
(m) . _ | | k; (3)
Vn T ' 'Ai+aj,nX

i=k, j=1

pj

k
with A7, X =) (-1) k X

j=0 J
and is a natural generalisation of quadratic variations (m = k; = 1,p; = 2) and
covariations (m = 2,k; = kg = p; = py = 1).

The idea of multipower variations goes back to a series of papers by Barndorff-
Nielsen and Shephard with regard to some problems in financial econometrics, cf.
[4], [5], [6], [7] and [8]. Power variations and their generalisation the multipower
variations are for example used to handle high frequency data in stochastic volatil-
ity models and provide model-free estimators for the volatility. Moreover, general
multipower variations in contrast to simple power variations allow, in an underlying
model, to separate the continuous components and the jump components.

The versatile applicability of power/multipower variations that stems from the
property of being model-free, i.e. to be not bound to a specific model, makes the
study of power/multipower variations to the subject of various articles, e.g. in the
context of power /bipower variations of continuous semimartingales in [3], of bipower
variations of semimartingales with a focus on finance in [17], of bipower variations
of Gaussian processes with stationary increments in [2], of multipower variations
in the setting of Lévy-type processes in [29] and of the robustness of multipower

variation towards jumps in the setting of Brownian semimartingales in [9].

v



VI INTRODUCTION

In this thesis, as the title suggests, we will look into the limiting behaviour
of multipower variations of Lévy driven respectively fractional-Lévy-motion driven
processes.

A Lévy driven process is a process given by the following representation

X, = jzg(t _§)—g(-s)dL, (teR),

where L is a two-sided Lévy process and g, g are deterministic real valued functions.
This process exists in the sense of [23] as an integral over a random measure which
is associated to the underlying Lévy process L. Note that Lévy driven processes
have stationary, but not necessarily independent, increments, infinitely divisible
marginal distributions and a correlation structure that can be modified to suit our
needs in modelling. These properties and the fact that the class of Lévy driven
processes includes Gaussian processes, like the fractional Brownian motion, as well
as non-Gaussian type processes makes Lévy driven processes a popular choice in
recent financial modelling, e.g. modelling the prices of electricity as done in [19].
Furthermore, similarly to the fractional Brownian motion a Lévy driven process in
the case of g(s) = g(s) = (s)$, where o > 0, is referred to as a fractional Lévy
motion.

By replacing in the above representation of the Lévy driven process the driving
Lévy process L by a fractional Lévy motion we obtain the fractional-Lévy-motion
driven process which for example in the case of the underlying Lévy process being
a pure jump Lévy process with finite second moments was introduced in [21]. Since
processes driven by the fractional Lévy motion posses similar properties to Lévy
driven processes and do not require the driving process to have independent incre-
ments, they can be seen as a generalisation of Lévy driven processes and similarly
be used in financial modelling.

The goal of this thesis is on the one hand to derive limit theorems for multipower
variations of Lévy driven processes, while also studying convergence rates as well
as the properties of the limiting objects, and on the other hand to produce similar

results in the case of more general driving processes. Our results are based on the
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first-order asymptotics for power variations of Lévy driven processes in [10]. As
in [10] we will assume the underlying Lévy process to be a symmetric pure-jump
Lévy process and use a similar approach to extend the first-order asymptotics to
the multipower variations case. By including specific properties of Lévy driven
processes, which under suitable assumptions on the kernel functions g, g stem from
the driving Lévy process L, e.g. L2—isometry or scaling property, we will also provide
additional limit theorems as well as produce convergence rates that even in the case
of power variations were not known. Moreover, note that we will also extend all of
our results for Lévy driven processes, which are compatible with the definition of
fractional-Lévy-motion driven processes in [21], to the setting of processes driven
by the fractional Lévy motion.

The structure of this thesis is as follows. In the first chapter we will introduce
the basic assumptions, notations, definitions, properties and tools that will be used
throughout this work. The focus of the second chapter will be the extension of
the stable convergence in law limit theorems for power variations in [10, Theorem
1.1 (2)] and [11], Theorem 1.2 (i)] to the multipower variations case. The third
chapter provides a version for multipower variations of [10, Theorem 1.1 (i7)], which
similarly to [10] is based on an ergodic argument. In the fourth chapter we will,
while focusing on convergence rates, present the extension of [10, Theorem 1.1 (i7i)]
to the multipower variations case and include some new limiting results. The last
chapter contains the extensions of the limit theorems of the preceding chapters
to fractional-Lévy-motion driven processes. Moreover, note that the main part of
the assumptions in the limit theorems in chapter two to five focuses on the kernel
functions rather than on the underlying Lévy process. Therefore we will exemplary
introduce in each of these chapters some kernel functions with which the associated
Lévy driven processes and fractional-Lévy-motion driven processes will satisfy the

respective assumptions.
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CHAPTER 1

Preliminaries

1.1. Lévy Processes

In this section we will introduce Lévy processes as well as highlight some related
terms and properties which will be of relevance for this work. Moreover, each of the
two subsections is dedicated to give a short introduction to specific Lévy processes

and their properties which we will need later.

DEFINITION 1.1.1. A real valued process L = (L;);»o is called (one-sided) Lévy

process if the following conditions are satisfied.

e [y =0 almost surely.

For each n € N and any choice of 0 < t; < t; < -+ < t,, the random

variables
Ly, Ly, = Ly, ..., Ly, — Ly, |

are independent (independent increments).

e The distribution of L;,,— L, does not depend on s for all s,t = 0 (stationary
increments).

e The process L is stochastic continuous, i.e. for each ¢t =2 0 and € > 0 we

have
EEPULS — L] >¢)=0.

e The process L is pathwise cadlag, i.e. L, is almost surely right continuous

for t 2 0 and has almost surely left limits for ¢ > 0.

Note that a Lévy process L = (L;)so is an infinitely divisible process, cf. e.g.
[25, Theorem 8.1.], and can be characterised by its associated characteristic triplet

(7,0, 1), since by the Lévy-Khinchin formula, cf. e.g. [13 Theorem 3.1], the Lévy
1



2 1. PRELIMINARIES

process L has for each ¢t = 0 the following characteristic function
E(exp(iul,;)) = MM for weR (1.1.1)
with
. 1 2 2 UL . d
P(u) = iyu — 50 U+ i (e -1- zum1{|x|51}) v(dr),

where v € R is the drift parameter, o = 0 is the Brownian component and v is the

Lévy measure of L, i.e. v satisfies
V({0}) =0 and J A1 v(dz) < oo, (1.1.2)
R

Throughout this work we will consider two-sided Lévy processes in R with char-

acteristic triplet (v, 0, v), i.e.

L,§1> , fort=0

(2)
~Lic-

L, := ,
fort <0
where LY and L'® are two independent copies of the above introduced one-sided
Lévy process with characteristic triplet (v, o”, v).

Furthermore, we will assume the one/two-sided Lévy process to be without a
Brownian component, i.e. to have the characteristic triplet (v, 0, ), and often refer

to a one/two-sided Lévy process simply as Lévy process.
DEFINITION 1.1.2. Let L be a (two-sided) Lévy process in R with characteristic
triplet (7,02, v).
(i) The process L is said to be symmetric if and only if the distribution of L

is invariant under multiplication with —1.

(i7) The parameter

1
B :=inf {T >0: J |z| v (dx) < oo}
-1

is referred to as Blumenthal-Getoor indez.
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REMARK 1.1.3. (i) By using the Lévy-Khinchin formula, cf. e.g. [13] The-
orem 3.1], it is easy to see that a Lévy process L with characteristic triplet
(v,0°,v) is symmetric if and only if we have v = 0 and v is symmetric, cf.
[25] 18. Exercise 3: E 18.1. (i)].

(i7) For the Blumenthal-Getoor index ( it follows directly from that

B €[0,2]. Furthermore, we have
1
J |z|"v(dz) < 00, forall p>p.
-1

By using this result, one can show in a similar way to [13], proof of Propo-

sition 3.11] that

> |ALJ <00 forall p> g,

ass<b
where a,b € R with a < band AL, = L, — L,_ denotes the jumps of a Lévy
process with Blumenthal-Getoor index .

(i77) By combining with the relation between characteristic functions and
moments, cf. e.g. [25] Proposition 2.5 (iz) and (z)], we get that the
Lévy process L = (L;)ser with characteristic triplet (v, 0,v) is centred, i.e.
E(L,) = 0 for all ¢t € R, and has finite second moments, i.e. E(L;)* < 0o
for all £ € R, if and only if

v = —J x v(dz) and [ 2° v(dr) < oo.
|z|>1 |z|>1

1.1.1. The Compound Poisson Process.

The compound Poisson process is one of the easiest examples for a pure jump
Lévy process, which stems from the fact that by [13, Proposition 3.3] a compound
Poisson process is a Lévy process whose paths are piecewise constant functions.

Furthermore, the compound Poisson process is an essential part of the Lévy-1to
decomposition, cf. e.g. [13 Proposition 3.7], and can therefore in some cases be
used in order to approximate more general Lévy processes, e.g. Lévy processes with

the characteristic triplet (0,0, 7) whose Lévy measure v is symmetric.



4 1. PRELIMINARIES

DEFINITION 1.1.4. A Lévy process (L;);so with the following characteristic func-

tion
E(exp(iul,)) = exp (t)\[ e -1 n(dx)) for all t,u € R,
R

where A\ > 0 and 7 is a distribution with n({0}) = 0, is referred to as a compound

Poisson process.

REMARK 1.1.5. (i) The characteristic triplet (v, o”, v/) of a compound Pois-

son process has the following form

v = AJ 21q,<1y n(de), o =0and v = .
R

(i7) The Blumenthal-Getoor index 3 of a compound Poisson process is 0 since

71 is a distribution, i.e.
f 2* A1 v(dz) < v(R) = Ap(R) < oo.
R

(ii2) A short and comprehensive overview about alternative but equivalent defi-

nitions and the properties of a compound Poisson process can for example

be found in [25, Chapter 1.4] and [13], Chapter 3.2].

1.1.2. The Symmetric a-Stable Lévy Process.

Now we come to a short discussion about the symmetric a-stable Lévy process
and some of its properties. Note that Remark (i17) focuses on the existence and
some of the properties of random variables that are driven by a symmetric a-stable

Lévy process.

DEFINITION 1.1.6. Let o € (0,2). A symmetric Lévy process (L;);er is called

symmetric a-stable Lévy process if it has the following characteristic function

E(exp(iuL;)) = exp (z’|t|’yu + [t J (eiux -1- iux1{|x|51}) V(dx)) for t,u € R,
R
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where

Imﬂx v(dx), fora<1
v = 0, fora=1
belx v(dz), fora>1

c

|x|1+04

and the Lévy measure v is absolutely continuous and has the density f(x) =

for a constant C' > 0 with respect to the Lebesgue measure.

PROPOSITION 1.1.7. For o € (0,2) let L = (L;),er be a symmetric a-stable
Lévy process. The characteristic function of L satisfies for all u,t € R the following

representation
E(exp(iul,)) = ¢ lHEll ,

where K > 0 is a suitable constant that is referred to as scale parameter.
PROOF. For u = 0 and arbitrary ¢t € R we have E( exp(iuL,)) = el = o ItKIul™

In the case of u # 0 the representation dv(x) = f(z)dx yields v = 0 and
J, (emw -1- iuxl{mﬂ}) v(dx)
R

= - |u|af (¥ = 1-iy) v(dy) - 2|UIQ[

—€ 3
. [N

o0

(1 = cos(y)) v(dy),

—0, as €l0 — K /2, as €l0

where in the above equality ¢ € (0,1) is arbitrary and we used the substitution
Y = uzr.

Hence, we have
E(exp(iul,;)) = e 1Kl

for all u,t € R.
O

REMARK 1.1.8. (i) A direct consequence of Proposition is that the

symmetric a-stable Lévy process (L )ser is self similar with parameter 1/c,
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i.e.
1
La £ a° L,
for all a >0 and t € R.
(i7) The Blumenthal-Getoor index 3 of a symmetric a-stable Lévy process is

equal to the parameter «, since

=00, ford=<a

J lz|°v(dz) = C lz|° " dx :
lz[<1 lz]<1 < oo, ford>a

(i71) A more detailed overview about a-stable and symmetric a-stable Lévy pro-

cess can for example be found in [24] and [16], Chapter 1].

1.2. Driven Processes

This section consists of three subsections. The first subsection contains a set of
assumptions of which some are required in the second subsection in order to define
the Lévy driven process and the rest will be needed in the subsequent chapters.

In the second subsection we will introduce the Lévy driven processes, and in the

third subsection we will define processes driven by a fractional Lévy motion.

1.2.1. Assumptions.
In the following set of assumptions v is a Lévy measure and g, g are two deter-
ministic functions from R to R.
@ a>0,keNandf e (0,2].
lim sup, o, v(z : |z| = t)t° < oo.
g(z) =g(x) =0 for all x € (—00,0).
For all ¢ = 0 we have that g(t —.) — §(—.) € L°(R) is bounded on R.
g(t) ~ ct” for t | 0, where c # 0.
g € C*((0,00)) and there exists a § > 0 such that
() g™ (@) = Kt*" for all t € (0,6),
(i1) g € L'((5,00)),

(i11) |g(k)| is decreasing on (4, 00),

@O
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(iv) |¢"] € L°((5,00)) is decreasing on (4, 00).
® [ 19" ()1 108(1/19% (5)])ds < o0.

REMARK 1.2.1. The assumptions @ to @ are essential for the construction/existence

of the Lévy driven process (X;)s»o in Definition and Remark [1.2.5, Whereas

the assumptions @ to @ are of a technical nature, i.e. the assumption
° @ allows us to handle the asymptotic behavior of X, for ¢ | 0.
° @ enables us to apply and work with Taylor’s theorem.
° @ is needed to get @ to work in some special cases.

The next lemma shows that the Lévy measure of a Lévy process with finite

second moments always satisfies assumption @

LEMMA 1.2.2. Let v be the Lévy measure of a Lévy process then it holds that

J 2’v(dr) < 00 = limsupv(z : |z| 2 t)t° < 00, VO € (0,2].
|z|=1

t—o00

PROOF. For each 0 € (0,2] we have

limsupv(z : |z] 2 8)t’ = infsupv(x : |z| = )¢’ = inf supJ, *v(dx)
t—00 neN || =t

t=n neN ¢>p

IA

inf SupJ, xeu(dx) = J xel/(dac)
neN >y |z|=1

|z]=1
J 2’ v(dz) < oo,
|z|=1

IA

O
Now we will use the following proposition in order to illustrate a few functions

that satisfy some of the above assumptions.

PROPOSITION 1.2.3. (i) Let 0<a<a, keN, 0 e (0,2], g=0 and

(2)%
g(z) = —
(x+1)*
then the assumptions @,@,@ and in the case of a« —a < —1/60 the as-

sumptions @ as well as @ are satisfied, where in @ we have ¢ = 1 and
n @ the parameter 6 > 0 is sufficient large.

for x€eR
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(ii) Let o, € (0,00), k €N, § € (0,2], g =0 and
g(z) = e_&w(x)i for z€eR

then the assumptions @,@,@,@ and @ are satisfied, where in @ we
have ¢ = 1 and in @ the parameter & > 0 is sufficient large.

(i1i) Let >0, k€N, 0 € (0,2] and
g(z) = g(z) = ()} for z€R

then the assumptions @,@,@ and in the case of a« —1 < =1/6 the as-
sumptions @ as well as @ are satisfied, where in @ we have ¢ =1 and
mn @ the parameter 6 > 0 is arbitrary.

PROOF. It is evident that in (7), (i) and (éi¢) the assumptions @ and @ are
satisfied. Moreover, in (i), (i7) and (iii) we have g(x) = ¢(x)(z)S for x = 0 with
o(y) » Lasy |l 0, ie. assumption @ holds with ¢ = 1.

In the setting of (i) let ¢ = 0 then we have |g(t—2)—g(—-z)| < (t—2)% + (-2)}
for x 2 0, |g(t — x) — g(—2)| < (t — 2)} for x € (=t — 1,0), by the mean value
theorem |g(t — z) — g(—z)| < || "¢ for x < =t — 1 and some & € [—x,t — 2] as

well as

JR lg(t — ) — g(=2)|"der < [t(t _ )%z + JO (= 2)° = (=2)°dz

0 —t-1
o (T 1)0
+t ,[ |x|(a_ Yz

1

< oo for oz—l<—§7

i.e. in the case of & — 1 < —1/6 the assumption @ is satisfied.

Furthermore, in the setting of (7i7) for each n € N we have

n—1
g(n)(x) = (l_l(oz - i))xa_n for x>0,
i=0

which yields that in the case of @ — 1 < —1/6 the assumption @ is satisfied for all
0> 0.
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By using

(@)

t1) < ()3 1pesyy + (2 + 1) Loy

in the setting of (i) and
e (@)} < (0) ey + € (@) €T sy, with €€ (0,)
%_J

—0, as x—00

in the setting of (i7), we get that assumption @ holds on the one hand in the setting
of (i) and on the other hand in the case of & — @ < —1/6 in the setting of (i).

For each n € N an application of the general Leibniz rule in the setting of (i)

results in
d n n n -1 n—[-1 | _a xoc n l
(%) o@=) | (ﬂm - ))( ['] (—oo)x =) e
=0 1=0 7=0 =0
N — ,
(1.2.1)
and in the setting of (7) yields
d n n n -1 n—{-1 R o P
() oo - Z( | )(ﬂm—z))( (-5 e+ 1)
=0 =0 j3=0
::/:l,n
xa n l xa n 1 l
= i (1 + —) = ~ T
(x+1)a+"; L (z+1)>*" ;; i

where the second last equality is a consequence of the binomial theorem.
In order to conclude this proof note that for a sufficient large § > 0 assumption (5)

follows in the setting of (i7) from (1.2.1) and in the setting of (i) from a combination

of (1.2.2) and a —a < —1/0. O
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1.2.2. Lévy Driven Processes.
In this subsection we will define the Lévy driven processes by using the same
assumptions as in [10] and then present some additional assumptions, under which

the absolute moments of the Lévy driven processes have a handy representation, cf.

Remark (i1) and (i27).

DEFINITION 1.2.4. Let L = (L;);er be a (two-sided) symmetric Lévy process
without a Brownian component and ¢, g two deterministic functions from R to R
such that the assumptions @ to @ are satisfied.

Then the stochastic process, defined by

X, i= Lo g(t =)= g(=s) dL,  (t20)

is referred to as a Lévy driven process and in the case of g = 0 as a Lévy driven

movmg averages process.

REMARK 1.2.5. Let v denote the Lévy measure of the Lévy process L.

(i) By [23], Definition 2.5 and Theorem 2.7], we know that for each ¢ = 0
the stochastic integral X, exists as a limit in probability of integrals with

respect to the random measure
A((a,b])=Ly— L, for a,beR with a<b

of deterministic simpel functions that almost surely approximate the func-
tion g(t —.) — g(.). Moreover, the limit does not depend on the sequence
of approximating simple functions.

In order to apply [23, Theorem 2.7] we need to verify three conditions,

which in the setting of Definition [I.2.4] simplify to

J_O: JR |(g(t +s) — Q(S))J;|2 Al v(dr)ds < oo for t=0.

The condition above is satisfied under the assumptions @ to @ as shown
n [10, (3.1)].
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Let in addition to the assumptions in Definition the following two
assumptions be satisfied.

o [l ¥v(dzx) < 00, ie. E(LY) < co forall € R.

e g(T —.)=G(-.) € L*(R) for a fixed T = 0.
Then by Remark [1.1.3] (¢) and (éii) we know that [21], (2.7)] is satisfied and
that the symmetric Lévy process L is centered. Hence, an application of
[21] Proposition 2.1] with the function f(t,s) := g(T — s) — g(—s), which
does not depend on ¢, yields

E(X7) = B(L)) - [19(T = ) = §(= 72wy

for a fixed T" = 0.

For a € (0,2) let L = (L;)er be a symmetric a-stable Lévy process, cf.
Definition[1.1.6] An application of the results in [24] Section 3.4] yields that
for each ¢ € L“(R) the random variable X := IR ¢(s) dL, is well defined as
a limit in probability of the sequence ( IR ¢, dM )neN, where M is the to L
corresponding a-stable random measure and (¢, ),,en 1S a sequence of simple
function approximating ¢. The limit does not depend on the approximating
sequence (¢, )nen-

Note that by combining the definition of the symmetric a-stable Lévy
process in [24, (1.3.1) and above] with [24, Proposition 3.4.1], where the
skewness intensity of the to L corresponding a-stable random measure is
identical to 0, we get that X is a symmetric a-stable random variable with
scale parameter ||¢|| Lo ).

Furthermore, since we can write X = [[¢]|pa(®)Y, where Y is a symmet-
ric a-stable random variable with scale parameter 1, we obtain by using

[24], Property 1.2.16] for all p < a the following result
EIX]" = |9llfe@ElYT" = Kl|¢]|am < 0,

where the constant K > 0 does not depend on the function ¢.
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1.2.3. Processes Driven by a Fractional-Lévy-Motion.

By using an alternative approach than the one described in Remark (),
it is possible to define a Lévy driven process under different assumptions than in
Definition [I.2.4] Note that under some additional assumptions this two definitions
of the Lévy driven process coincide.

Moreover, the fractional Lévy motion we get by this alternative approach al-
lows us to define processes driven by the fractional Lévy motion, which posses a

representation as Lévy driven processes.

DEFINITION 1.2.6. Let L = (L;);er be a two-sided Lévy process with character-
istic triplet (v, 0,v). Suppose that v = — Ilwl>1 xv(dz) and J'lezl 2°v(dz) < 0, i.e.
by Remark [1.1.3] (4ii) we have E(L;) = 0 and E(L;)* < oo for all € R.

Then in the case of the function f : R* - R satisfying f(£,-) € L*(R) for all

t € R we refer to the process

X, :=J f(t.s)dL, (t€R)

as a Lévy driven process.

Furthermore, for each d € (0,1/2) the Lévy driven process given by

d

1 t
My := Mg, := Td+1) j_oo(t —5)} = (=)} dL, (t eR)

is also referred to as a fractional Lévy motion.

REMARK 1.2.7. Note that a symmetric Lévy process L with finite second mo-
ments and without a Brownian component satisfies the assumptions on the Lévy
process in Definition [1.2.6] cf Remark (i) and (#i1).

By [21], Proposition 2.1 and Theorem 3.3], the above defined Lévy driven process
(X:)ier and the fractional Lévy motion (M;)er exist as limits of approximating

step functions in L*() and satisfy

E(X?) = (LD F(t )2 fort €R
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respectively

(t=s)s = (=9)%
I'(d+1)

2
t
E(Mit) = E(L}) J' ( ) ds forteR.

Moreover, by additionally assuming in the setting of Definition that the
driving Lévy process L is symmetric, that for all s,£ € R the kernel function f is
given by f(t,s) = g(t—s)—g(—s) as well as that g, g, and L satisfy the assumptions
@ to @, the above defined Lévy driven process (X,);er coincides for ¢t = 0 with
the Lévy driven process in Definition [1.2.4]

The following definition and three propositions are the main tools we need in
order to construct processes driven by a fractional Lévy motion, which also posses

the representation as Lévy driven processes.

PROPOSITION 1.2.8. Let 0 < d < 1/2.
(i) For f € L'(R) n L*(R) the left- and right-sided Riemann-Liouville frac-
tional integrals ([flf) and ([ff), which are given by

(1)) = s [ s -y ay
and
(D@ = 75 | £ =)y

exist for almost all x € R.

(ii) The mapping || - || : L'(R) n L*(R) - [0, 0) given by

1
d \2 ?
loll s= ([ (1%9)" )i )
is a norm on L'(R) N L*(R), which for a suitable constant K > 0 satisfies

lgllz <= K(llgllor @y + lgll2ey)
for all g € L'(R) n L*(R).

PRrROOF. For (7) see [21], below (5.41)] and for (i) see [21], (5.44) and above]. O
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DEFINITION 1.2.9. The set H is the completion of L'(R) n L*(R) with respect
to the norm || « || g, cf. Proposition (i1).

PROPOSITION 1.2.10. Let (My;)ier be a fractional Lévy motion as in Definition
and h € H. Then there exists a sequence (¢ )rey C H of the form

(k)
= a; "1/.e k7,
¢k ; g (S’Lk 787,’-?—1]
where ny, € N,a§k) € R and —o0 < s(1k> <0 < ng)+1 <00 fori=1,...,n; and
k € N, satisfying ||¢r — bl g 2200 so that
(k)
J]R (bk:(s) de,s = Zai (Md,snl - Md,si)
i=1

converges in LQ(Q) as k — oo towards a limit denoted by IR h(s) dMys. The limit
IR h(s) dM, is independent of the approzimating sequence (¢y.)ken-

PROOF. See [21], Theorem 5.3]. O

PROPOSITION 1.2.11. Let (My;)ier be a fractional Lévy motion as in Definition
and h € H. Then in L*(Q) we have

JR h(s) dM,,, = JR(Ii‘h)(s) dL,.

PROOF. See [21] Proposition 5.5]. O

Based on the results in Proposition [1.2.10] we will now define processes driven
by the fractional Lévy motion, which by including the results of Proposition [1.2.11
posses a very handy representation as Lévy driven processes, cf. Remark [1.2.13]

DEFINITION 1.2.12. Let (My,;)ier be a fractional Lévy motion as in Definition

[[.2.6l Then for h € H we refer to
Yy, o= J W(i—s)dMy, (1 €R)

as a fractional-Lévy-motion driven process.
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REMARK 1.2.13. In the setting of Definition let h,(s) := h(t — s) for
t,s € R. By applying Proposition|1.2.10[ as well as Proposition for each t € R
with the function h;, we get on the one hand that the fractional-Lévy-motion driven
process Y = (Yy;)ier exists in the L’-sense and on the other hand that Y has in

L*(2) the following representation

Yy, = f; h(t - s) dM,, = J']R he(s) dMy, = JR (1°h)(s) dL,

for each t € R.

Furthermore, by using the definitions of [ i, we obtain

1 « d-1
Yar = 05 H he(y)(y — )" dy dL,

1 t—s i ) . )
" I(d) JR Lo M)t =s =) dvdL, = JR (I5h)(t = s) dL,  (1.2.3)

for each ¢ € R in L*(), where in order to get the second equality we used the

substitution x = t — y. Since an equality in the L*-sense implies an almost sure

equality, the equality in ((1.2.3)) holds almost surely.

1.3. Differential Filters and Multipower Variations

Let X = (X,),er be a stochastic process and g : R = R a deterministic function.
For all k,n € N and i € R we define in an iterative way the kth order (linear)
differential filter of the process X by

AL X 1= ALX = AT X with A7, X = X: (1.3.1)
and the modified kth order (linear) differential filter of the function g by
k k-1 k-1 : 0 i
aL(s) 1= ALg() - AlTg() with alug() =o(5-s). 132

The above filters can also be represented by

k s
AfX = Z(—w( , )X” (1.3.3)

J n
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and

J

Al g(s) = i}(-nj( * )g(i;j —3). (1.3.4)

ExamMpPLE 1.3.1.
¢ £ X = Xi- X,
o A7, X = Xi—2Xe + Xez,
o ALX = X:-3Xo +3X2 — X,

n

DEFINITION 1.3.2. For m € N let X = (Xf”,...,Xt(m)tZO be a R™ valued
(stochastic) process, a = (ai,...,a,) € Z", k = (ki,...,k,) € N"as well as

p=(p1,...,pm) € (0, OO)m. Moreover, let

*
k, := j:r{lﬁ%(]\/[(kj —a;) and k7= _jg{l,%},(M(aj)'

Then we refer to

n+k* m

Vi = v (X e kp) = ) ]

ik, j=1

pj

k; i
Az’j—aj,nX(]>

as mth order (multi)power variation of X.

REMARK 1.3.3. Note that by setting p := max([p;],...,[pa]), we can transform

a mth order power variation into a (mp)th order power variation as follows

*

) E T ko b v
o T -3 T
i=k, j= i=k, j= =

where 0 < piy/p < 1.

EXAMPLE 1.3.4. The (first order) Power Variation

A i |atx|
i=k
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includes things like

i|Xf{_Xi_nl ? and i|XfL_2Xi +X% )
i=1

i-1
n
1=2

Moreover, the Bipower Variation

) n+k” . P
2 _ kx Pz y Yy
Vn - Z |Ai+az,nX Ai+ay,nY
i=ky
encompasses things like
n—1 n
]{;w Pz ky py
Z |X@ - Xi |X1 - Xiz as well as Z |Ai,nX Ay
i=1 1=k Vky
and the Tripower Variation
n+k* A »
(3) _ Ky Pz y N2 Pz
Vn - Ai+ag5,n‘)( Az'+ay,n}/ Az'+az,nZ
i=ky
includes things like
n="7 A »
ke Pz y Y k. Pz
Z | Ai—5,nX Az,ny Ai+7,nZ

i=max(ky,ky,k;)+5

1.4. Stable Convergence in Law

Let (9, F,IP) be a probability space. We denote the convergence in distribu-
d P
tion/law by —, the convergence in probability by — and the almost sure con-

a.s.
vergence by —.

DEFINITION 1.4.1. Let (Y},),en be a sequence of random variables on (2, F,P)
and Y a random variable on an extension of (2, F,P). We refer to the convergence
of Y,, to Y as stable convergence in law respectively F-stable convergence in law and

denote it by Y, 275 v if and only if for all F-measurable random variables U we

have (Y, U) — (Y,U).

As illustrated in [1] the stable convergence in law of a sequence (Y},)pen Of

random variables is rather a property of the respective sequence (Y},),en than of the
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corresponding sequence of distribution functions, which marks the main difference
between the convergence in distribution and the stable convergence in law.

There are some technical advantages the stable convergence in law has over
the convergence in distribution, for instance that Y, L Y and X, = X imply
(v,,X,) I (Y, X), cf. [28] Lemma 2.21]. Moreover, by merely considering the
above mentioned technical advantage in combination with the fact that many known
limit theorems are stable, i.e. they hold true with respect to stable convergence in
law, we are able to obtain many new and interesting results, which makes stable
convergence in law a nice tool to work with.

Note that there are other equivalent characterisations of the above defined sta-
ble convergence in law, cf. [1] or [22], and that the usefulness of the respective

characterisations depends on the given situation, cf. e.g. [Il, above Theorem 1].

REMARK 1.4.2. (i) The following two results can be easily derived from the
above definition.
oY, LN Y implies Y, L Y and Y, L Y implies Y,, <, Y, ie. the
stable convergence in law is an intermediate convergence between the
convergence in probability and the convergence in distribution.
e The continuous mapping theorem and Slutsky’s theorem can be ex-
tended to hold true in the case of stable convergence in law.
(i7) The assumption that Y is a random variable on an extension of (2, F,P)
is essential in the above definition of F-stable convergence in law.
Note that in the case of Y, s Y, where Y is F-measurable, we have
(v,,Y) <, (Y,Y), which by the continuous mapping theorem results in
Y, = Y| <0 respectively Y, =y,
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1.5. Some Useful Inequalities

In this section we will present some nonstandard inequalities that will be used

throughout this work.

LEMMA 1.5.1. Suppose that the function g satisfies the assumptions @,@,@
and @ Then for a fixed pu = 0 there exists a finite positive constant K, so that for
alln € N and i € R the following inequalities hold

(i) | Alug@)l s K (3 -o) we[5h ol —p ]
(id) | AL, g(a)] = Kn™ (25 —0)"", 0 e (- 6,2),
(i11) | Aﬁn g(z)| < Kn™" (1[%_5%_5](3:) + g(k) (% - :c) 1(_00’%_5)(37)),

x € (—00,1—5].

PROOF. See [10], Proof of Lemma 3.1]. Moreover, note that the proof of the case

x € [Z - i, i] in (i) uses the same argumentation as [10, proof of (3.5)]. O

Now we come to a simple generalization of Holder’s inequality.

LEMMA 1.5.2. Let (S, A, 1) be a measure space and m € N. Suppose that for
j=1,...,m we have r; € [1,00) and f; € L' (S). Then for 1/R := Z;nzl 1/r; we

have

IT TAilleresy < T TIAllzmcs)
J=1 J=1

PROOF. By applying Holder’s inequality with the parameters p = r,,/R and

qu/(p_l) =Tm/(rm_R)7 we get

m m—1
T TAllemes < I TN, 2 o Wfnlliomcs):
j=1 J=1

The rest follows by induction using the fact that Z;n:_ll % = % - TL = rgr_R. 0
J m m

The following lemma and corollary are one of our main tools in this work and

can be seen as a kind of generalized version of Minkowski’s inequality.
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LEMMA 1.5.3. Let (S, A, 1) be a measure space and m € N. Suppose that for
Jj =1,...,m we have p; € (0,00) and A-measurable functions fj,fj : S - R

satisfying ]_[;nzl [f;17, HT:I |fj|pj € LI(S, A, ).
Then it holds that

(LEMV’W) - (Lglﬂl”du)
m m . k-1 R ‘ R %
ZU(]‘[ mw)(' |fj|ﬂ)|fj—fj| du} ,

where r = [ T2, (1 V p;).

PROOF. The above result is a consequence of a combination of the subadditivity

of x - |z]| for a € (0,1] and the Minkowski inequality. O

COROLLARY 1.5.4. Let S be a finite set and m € N. Suppose that a,<-j>,dl(-j> eR

and p; € (0,00) for j=1,...,m and i € S. Then we have
1 1
) ey | ()
|a; |’) —< |a; |”)
m m ) k-1 T
: Z{ ( [ |a§”|pﬁ‘)< |a§”|pf) o, —aﬁ“r’k] ,
k=1]1€eS \j=k+1 j=1

where v = r[;nzl(l Vv p;).
PROOF. An application of Lemma [1.5.3| concludes this proof. 0

This last lemma deals with the preservation of convergence rates under a specific

transformations of the convergent sequence and its limit.
LEMMA 1.5.5. Suppose for i = 1,2 that (aﬁli))neN and (¢, )peny are real valued
sequences with

<lec,| and af? — am,
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where r = 1 and o' € R. Then for a suitable constant K > 0 we have
1 2
|l = 1a] < Kle,-

PrROOF. By using the mean value theorem and the fact that for « = 1,2 the

i
sequences (ag))neN converge, we get

r—=1
- 1 1
o2t = a2 = (sl 1) (1621 = 11| < K|






CHAPTER 2

Stable Convergence in Law Limit Theorems for Multipower

Variations

The goal of this chapter is to provide stable convergence in law limit theorems
for multipower variation based on the results for power variations presented in [10]
Theorem 1.1 (¢)] and [11], Theorem 1.2 (7)].

In the first section we will proceed as in the proof of the results for power
variations and focus on Lévy driven processes that are driven by a compound Poisson
process which will in the setting of compound Poisson driven processes allow us, in a
natural way, to extend the respective results for power variations to the multipower
variations case.

Note that the extension of the results for multipower variations of compound
Poisson driven processes to other driving Lévy processes will require us, in contrast
to the power variations case, to make some additional assumption on the kernel
functions and the driving Lévy process, and will be discussed in section two.

Moreover, note that the last section will contain all the technical auxiliary re-

sults, which we will use in this chapter.

In order to provide a clear and comprehending overview of the notations and
definitions used in Theorem [2.1.1] as well as in Theorem [2.2.1] and therefore to im-
prove the readability of these theorems, we will summarise and present the respective

notations and definitions in the following details.

DETAILS 2.0.1.

o VM = V(X 0k p) (of. Definition [1.3.4)

e For each t € R the jumps of the Lévy process (L,)ser at time t are denoted
by AL, where ALy 1= Ly — Ly with Ly_ 1= limgyy g4 L.

23
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o (T,,)men 15 a sequence of F-stopping times, where F := (F,)so 45 the fil-
tration generated by the Lévy process (L;)sso, that exhausts the jumps of
(Ly)ss0, 1.€.

o (T, (w):m=1}n[0,00) ={t=0:AL, # 0},
o T (w) # T, (w) for n # m with T,,(w) < 00.

o hia) = Lolo(-1) g (e = )Y forz € R,

o (U,)men 18 a sequence of independent and uniform [0, 1]-distributed
random variables that on the one hand lives on the probability space
(Q,f,fp’), which is an extension of the underlying probability space
(2, F,IP), and on the other hand is independent of the o-algebra F.

o CM) 2 nj\il |C;|” with C; :=¢; l_[figl(aj —-r).
Hﬁl(l vV p;).

’I(G,Sp)
i 5 wh67€
7=1,..., M Sj

e .

Il
=,
=}

e 7!

~Sipi(1=+ -2, for6.e(1,2]
o 7;(0;,S;p;) := ’ j( b Sfpf) ’ .
1, for6; € (0,1]
Now we will verify some properties of the random variables Z and A , which will

appear as limits in Theorem and Theorem below.

ProroSITION 2.0.2. The random variables

Z=c" N ALy PP and Z= Yy |ALy

ZAL pj rp{M)
m ! Hm
m:T,,€[0,1]

m:T,, €[0,1]
i Theorem and Theorem [2.2. 1) are infinitely divisible.

Moreover, fort € R we have

E(e“f) = exp (JR

0

- ~(M) Z%lpj
(e”C o —l)l/(dx)) (2.0.1)

and

E(c") = exp (fROXR (e“y'x'%” - 1)y(dx)n(dy)) , (2.0.2)
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where Ry := R\ {0}, v is the Lévy measure of the Lévy process (L;)sso and n is the
distribution of H§M>

PROOF. In this proof we will use the same argumentation as in [10, Remark
2.2.]. Note that in this proof we will denote the Dirac measure in z by d,, where
z € R" with k € N.

Since (T),)ms1 18 a sequence of stopping times that exhausts the jumps of the
Lévy process (L;)ssq, cf. Details an application of [25] Theorem 19.2. (i)]
yields that

A= Z (T, ALg,,)
m=1

is a Poisson random measure on [0, 1] X R, with mean measure A ® v.

The Lévy process (L;)so and the sequence of stopping times (7),),,»1 live on the
underlying probability space (€2, F,IP), whereas due to the properties of (U,,)men i
Details Mthe sequence (Héi‘/[> )men 18 a sequence of n-distributed random variables
that lives on an extension of the underlying probability space and is independent of
the o-algebra F.

Because of the above properties of A and (H&M))meN the assumptions in [27),
Definition 35. in Chapter 3.9] are satisfied and we are therefore able to apply [27
Theorem 36. in Chapter 3.9] in order to get that

Z 5(Tm,ALTm Y

m=1
is a Poisson random measure on [0, 1] X Ry X R with mean measure A ® v ® 1.
By using the Poisson random measures A and Y, we get the integral representa-
tions of Z and Z, namely

Z=0" N |ALy [P = [

M
( M>|:v|2f=1pj>A(ds, dz)
m:T,, €[0,1] [0,1]xRg

and

7 = Z |ALyp,

m:TmE[Ovl]

M
e g0 _ J' (12127 7y )1 (ds, d, dy).
[0,1]xRo xR
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We get ‘D as well as 1) and therefore that the random variables Z and
Z are infinitely divisible, by combining the above integral representations with the

standard calculus for integrals over Poisson random measures. U

2.1. The Driving Process is a Compound Poisson Process

In this section we will present and proof the multipower variations case of [10,
Theorem 1.1 (i)] and [11, Theorem 1.2 (¢)] in the setting of the driving process of
the Lévy driven processes being a compound Poisson process.

Note that Theorem (i7) below, i.e. the extension for multipower variations
of [11l, Theorem 1.2 (i)], also provides a convergence rate with respect to almost

sure convergence, which even in the case of power variations is new.

THEOREM 2.1.1. For each j = 1,..., M suppose that the kernel functions g;, g;
and the symmetric compound Poisson process (L;)wer satisfy the assumptions @
to @ with respect to the parameters o, c;, k;,0; and in the case of 0; = 1 the

assumption @ as well. Moreover, for each j = 1,..., M assume a; € Z, p; > 0,
S; = 1 with YN 1/S; =1 and set

, t
Xtm = J g;(t =s) = g;(=s) dLs; for t=0.

Then by using the definitions and notations in Details we get the following two

results.

(i) If aj < kj = 1/(S;p;) for all j then it holds that

nZ;\Zl O‘j?’jvn(M> E; 7 = Z |ALTm|Z?£1ij7(71M)'
n—oo m:T,,€[0,1]

(77) Suppose that for each j = 1,..., M the function f; : [0,00) = R given by
£;(t) = g; () for t > 0 satisfies f; € C™([0,00)) and f;(0) = ¢;.
If for all j we have a; = k; — 1/(S;p;) as well as 1/(S;p;) +1/6; > 1
then we deduce that
Yitiam;

a.s. = Mo
n V(M) 25 7 .= C(M) Z |ALTm|Z]=1p]

log(n) noee miToe[0,1]
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_T

VyﬁM> -Z| = O(log(n)) ™ a.s. asn — 0.

M
nlj=1%jPj

with

log(n)

The following remark contains some kernel functions for which Theorem [2.1.1]is

applicable.

REMARK 2.1.2. Note that under suitable assumptions on the parameters a.y,
K¢y, 0y and p.y we can apply Theorem with the kernel functions introduced
in Proposition [1.2.3]

2.1.1. Proof of Theorem Note that the last section of this chapter
contains some of the technical results that we will use in this proof.

In order to ease our notations we will throughout this proof denote all positive
constants by K, although they may change from line to line, and assume K € N.
Furthermore, for j = 1,..., M we will often write (-) instead of j respectively (-)
instead of (7).

We assume without loss of generality that almost surely we have 0 < 77 and
T, < T;;, for i € N. Otherwise we replace in the following proof the sequence of

~

stopping times (7}, )men by the sequence (7),),,en, which is given by

~

T i= g}g{:rk (T, >T,} formeN with T)=0,

and then change at the end of the proof the order of summation in Z and Z , cf.
Theorem [2.1.1}, from m e N: T, € [0,1]tom eN:T,, €[0,1].
Let n € N be sufficiently large then we fix € € (Fl/n,fg), where
M
K, > 2(4+ kol + 1B+ ) (Il + la]) | and Ky < 2min(d;,...,6y),

Jj=1

and define the set

Q, := {w € Q: for all j = 1 with Tj(w) € [0,1] we have |T}1(w) = T;(w)| > €

and AL, (w) =0forall s € [—c,e]U[l—¢,1+ 5]}.
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Note that by construction we have

P(Q.)1T1 asel0. (2.1.1)
For i = k:(.), ...,n we decompose
k()X J Azng()(s) dL _Mzne+Rzns7 (212)
where
Mi(,ﬁ,a = Ai,(n)g(')(s) dLs and R§,7)7,,8 = J Ai,(n)g(')(s) dL,.
w2 -
For
n+k* M
1_[ | z+aj,ne (213)
i=k, =1

we have on (). the following representation
n+k*+aq
o= ) |l

P1
| |l z+aj—a1,n€
i=ky+aq
1)
)3 )3 IMm

m:Tn€[0.1]  je{k,+aq,....n+k*+a1}: T e(

P
| | zm+l+a] ai,m,e

bj

bj

=
Il

nx

| | (7 Pj
Mz+a7-—a1,n £

bj

™

len/2]+v,,
| m+l n,e
1

m:Ty, €[0,1 1=0

len/2]+v—a1 M

Z Z lM +l+aj;,n,e
Jj=1

m:T,,€[0,1] l=—a,

len/2]|+v,,—max(ay,...,aps) M

Z Z l_[ Mi<i>+l+(zj,n,s

m:T,, €[0,1] I=—min(ay,...,aps) j=1

bj

I

=:Ag

A

|_sn/2j+vm—max(a1, LA 5

oy >

m:T,,€[0,1] l=—min(ay,...,aps)

=1A1

kj
ALTm Az'm+l+aj,n 9j (2'1'4)
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where we used Lemma (id) (first result) and Lemma [2.3.3] (i) (last result) in
*1, Lemma[2.3.1] (4i) and Lemma [2.3.3] (i) in %5, Lemma [2.3.3] (ii) and (iii) in %3
as well as Lemma [2.3.3] (4) and (ii) in *g.

To (1):

Since the assumptions @ and @ allow us to write g.y(¢t) = (t)i(‘)f(.)(t), where

the function f.) : R — R satisfies f.y(t) — ¢y for t | 0, we get by denoting
{nT,,} = nT,, — (i,, — 1) the following representation

I Fay+1—r
na(.)g(') ( m (;L _ Tm)

ap [Im tag+l=r o0 i +ay+1l—1
n n - Tm f(.) n - Tm

+

) ae a()+l—r 1,
acy +1l=r+ (i, —nT,) | fo —+ﬁ(zm—nTm)

(a()+l

(a()+l—r+(1—{nT })) h %(1—{nTm})) (2.1.5)

forall ] € Z and r=0,1,..., k).
The above representation and a combination of Lemma (1), fiy(t) = ¢y

for t | 0, the continuous mapping theorem and Slutsky’s theorem yield for each

deN,
Pj
)|l|,m<d

pj
) |
|t],m=d

where (U,,),.en is a sequence of independent and uniform [0, 1]-distributed random

M | k; .
2 Ak o (imta+l—7
(]_[ D (=1) ( T Jgj( T —Tm)

7=1 |r=0

@

ﬁ (ﬁ kzj(—l)r(ij cj~(aj+l—r+(1—ﬁm))

j=1 |r=0 +

variables that on the one hand lives on the probability space (Q, F , I@), which is an
extension of the underlying probability space (2, F,P), and on the other hand is
independent of the g-algebra F.
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By setting U,, = 1 — f];m we get for each d € N,

M
Py — .
J) — (l_[|cj'hj(l+aj+Um)|p])
n—0oo A
|1],;m=d J=1

. ki
aJ J
n Az'm+l+aj,n gj

Jj=1

|l|,m=d
(2.1.6)
Furthermore, for d € N we have
ZM |_5d/2 +v,—As M
Vieai= 3 AL Py [ AL (T
m:m=d,T,, €[0,1] l=—A, Jj=1
s v led/2]|+v,,—As M ‘
—)Zd = Z |ALTm|Zj:1pj Z l_[ |cj-hj(l+aj+Um)|pJ
noee mim=d, T, €[0,1] I=—A; Jj=1
as. , _ S, .
=5Z= ) ALy |2 Z ]_[|cj S+ a; + U, (2.1.7)
m:T,,€[0,1] I=—A; j=1

where the stable convergence in law follows from and the continuous mapping
theorem, cf. [28, Lemma 2.20 and Lemma 2.21].

Note that by a successively application of the fact that h.y is bounded on every
compact interval, Lemma [I.5.2] the inequality

|h(.)(8)| <K |S - k‘(.)la(')_km for s € (5(.) + k’(.), OO),

which follows from an application of Lemma (i71) by using

hiy(s) = Aolh( y(=s) for s€eR with h( y(s) = (s)3"
in combination with U,, € [0,1] a.s. and the fact that s = (s)*?™ is monotone

decreasing on (0, 00), we obtain

<-1

M 00 - L
Z<K Yy |ALTm|Z%”’]’[1 +T] ( > i+ a; -k Sipi(@s—h )) } (2.1.8)
m:Tym€[0,1] j=1 VM=K

<00 a.s.
where the finiteness is a consequence of L being a compound Poisson process, i.e.

M
Zm:Tme[O 1] |ALTm|2j=1pj < 00 almost surely.
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For d,n € N with n > d we have the following decomposition

len/2]+v,,—As M

Mo k. pPj
Vma = nZ]:I a;pj Z Z l_[ ‘ALTm Ai;+l+aj,n g](Tm)
m:T,el01]  I1=—A;  j=1
= Vieat gfllid + Afoid (2.1.9)
with
1) len/2]+v,, —As M . p;
An,z—:,d = Z Z l_[ |ALTmn ’ A'L':n+l+aj,n g](Tm)
m:m=d,T,,€[0,1] I=|led/2]+v,,—Aa+1 j=1
and
) len/2]+v,—As
~(9 (677
An,e,d = Z Z l_[ ‘AL n’ Azm+l+a3 n 9j
m:m>d,T,,€[0,1] I=—A, j=
By assuming d to be sufficiently large, so that |ed/2] — Ay > K;, we get
A0 7
ned = Clg a.s. (2.1.10)
for 1 = 1,2 with
M M ) L
W N | G R
m:Ty, €[0,1] j=1 Ni=|ed/2]-A,

and
M 00 1
672) = K Z |AL |Z?le’j 1+ l—[ Z |l +q. — k'|5jpj(aj_kj) 55
ed * T j j )
m:m>d,T,,€[0,1] j=1 VI=K

where (2.1.10)) follows by a similar argumentation as in (2.1.8]), in which we utilise
the results for i,,,v,, and 7T, in Lemma in combination with (2.1.11]) and

(2.1.12)) below.

Note that on the one hand for [ = —a(.),..., k) — a¢y we have

imtag+l |0
— In

|A1m+l+a( )» ng()(Tm)‘ =

= Kn “Oacy + 1+ (i, —nT,,) |7, (2.1.11)
_Y—’

€[0,1] a.s.
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which in the case of [ = —a.y,..., k.y—a¢y—1 follows from Lemma (i) as well

as

b — 1 2y, i + L+ acy = key iy + 1+ agy
Tm€< n ’W}C[ n ’ n

and in the case of [ = k() — a(.y is a consequence of a combination of the equality

above (2.1.5)) as well as of the convergence f(.y(t) = ¢y as ¢t | 0, and on the other
hand for [ = k(y —aqy+1,...,[en/2] + v,, — Ay we have

ay—k(.
) k. @m+a(.)+l—k(.) RO
‘Aim+l+a(.),ng(')(Tm)| S Kn () m — m
= Kn "agy + 1= key + (i = 0T,) |“07% 0 (2.1.12)
_Y_J
€[0,1] a.s.

which follows, since € < Ko, from

- acy + { € Iy + 1+ ag.) Iy + 1+ acy — ]{(.)
and Lemma (7).
Since we have the convergences in and for all £ > 0,
~ (1) | ~2) _ ~
hm 11rnsup[P’(|V,%E - Vn@dl > ) < hm hmsupIP’(C’ +C ;2 5)

hm]P’(CH 52}25): ,

d— o0
where 1' and (2.1.10)) are responsible for the inequality and the fact that we

have C d — 0 a.s. for i = 1,2 and d — o0 is responsible for the last equality, we

are able to apply [12, Theorem 3.2|, which in combination with the representation

in (2.1.4) yields

Z;\/Il ap;T; ] 10‘11” o P L S
Voe=n V..=n Z | |22 . on Q.. (2.1.13)
n—00
i=k, j=1
Moreover, for
5 n+k* M .
— 1%5P;j 10‘31’3 | | 7
Vn n=’ V J |A'L+a],n

i=k, 7=1
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and the parameter r as in Details we get

| - (V)

1

Z M | n+k* M 3 ) k-1 T
< ity Ly (1‘[ | Ay XY |”f)(1‘[| )|Rz+ak,m|k
k=1| i=k, \j=k+1 j=1
n _1 n 1
< Z 1_[ ( Sip; Z |Af]n X(j)lsjpj)sj (nakskpk Z IR 21;6 Skpk) kT
k=1 ] =k+1 Z:k() ’L:kj()

k-1 -

ﬂ( % 5iPs Z |07 | pr) , (2.1.14)

7=1 i= k()

where the first inequality follows from the decomposition in and an applica-
tion of Corollary and the second inequality is a consequence of Lemma [1.5.2
in combination with £, + a(y = k) and E* + acy < 0.

By combining Lemma (i), , Slutsky’s theorem and the continuous

mapping theorem, we get

1 1 p
(Vn)r - (Vn,e)T — 0 on Qz—:a

n—o0

which by utilising (2.1.13)), Slutsky’s theorem, and the continuous mapping theorem

yields
1 1 1 1 L—s 1
(Vn)7 = (Vn,s)r + (‘/n)7 - (Vmg)T — 7" on Qs
respectively
L-s
Vo, — Z  on (). (2.1.15)

In order to extend the convergence in (2.1.15)) to the whole set €, i.e. to a set
with probability 1, it is sufficient to verify

lim a,. = lim lima, . = lim lim a, . =lima,. = a,., (2.1.16)
n—00 n—o0 /0 el0 n—oo €l0 ’
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where
. = P(Qg‘lj £V, U)dP, oo = j F(Va, U)dP,
Q. Q

e, = P(Q) J'Q f(2,U)dP and (oo = Lz f(2,U)dP

for arbitrary f € C3(R) and F-measurable random variables U.

In the first/last equality follows from (2.1.1]) and the dominated conver-
gence theorem, the forelast equality is an application of and the swapping
of limits is possible since on the one hand by as well as the assumptions on

e above ([2.1.1)) we have

Upe — G, foreé€ (O, Kg)

n—o0

and on the other hand a,. — a,. uniformly as ¢ | 0, which is a consequence of

EL1) and
ane = anal = [P = 1] ISR+ [ (f 0 ap
Q. N,

< K (|pe)™ -1

+ P2\ Q).

To (i1):
The combination of the representation (£2.1.5)), the continuity of fi.) on [0, 00)
and {nT,} € [0,1] a.s. yields

ASapy A
ntOSOPE A Seyp) K

ke
G N R
log(n) l:_zAl zm+l+a(.),ng( )( ) log(n)

a.s. asn — oo

with A3 := max(kq, ..., ky) — A;, which by an application of Lemma implies
M

an:1 a;p; P K
<

As M
kA
Whem = ——F— |A wndi(To)| = a.s. 2.1.17
s log(n) lz_ZAlD mtl+a;,nd] log(n) ( )

as n — 09,
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Furthermore, by applying the same argumentation as in [11, (4.6) and (4.9)]

using our notations, we get

len/2]+v,,
1 | aey 4 ke S(pe) K
RO AR g (1) = ey (L + {nTm})‘ < 2.1.18)
log(n) l=l§+1 mttn I ) log(n) (
almost surely as n — oo as well as
len/2]+v,,
1 agy—ky | S0P K
hey(l + {nT,,}) = C 700 < (2.1.19)
log(n) z=1§+1 l ) ) l log(n)

almost surely as n — o0.
By using the asymptotic expansion for harmonic numbers in [20, Theorem

3.2(a)], i.e.

=1 1
27:/@+log(n)+(9(ﬁ) asn — 00,

=1

where « is the Euler-Mascheroni constant, and the fact that

len/2]|+v,,— Az len/2|+v—As M ,:,{SL‘ len/2]|+v,,— Az
L - N I N 1 L LI W | F
1=A3+1 1=A3+1 7=1 1=A3+1
we get
I_&‘TL/QJ‘F’UT”—AQ
! 11+ ag |0 Resoro g < B (2.1.20)
log(n) i log(n)
almost surely as n — oo as well as
1 len/2]+v,,—As M 1P () K
Ci(l+a)V |7 =0 = (2.1.21)
log(n) l=A23:+1 l;[ | I I log(n)
almost surely as n — o0, where ¢ := nﬁl |C;17.
From (2.1.18)), (2.1.19)), (2.1.20)), and Corollary we conclude
oo Sore Lenf2rem S0P0)  a.s. Seyp(.
|00 T 7 2 e P (2.1.22)

log(n) l=k(y+1
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and
len/2]+vp,
! > e+ T DT E o [T (2.1.23)
log(n) l=k’(.)+1 nooe
Let

len/2]+v,,—As M

—~ 1
Woem = oy 2, LI

I=A3+1 j=1

aj
Azm+l+a] n g]

len/2]+v,,— A, ﬁ l N
C](l + (lj)aj_ I
log(n) 451 jai

~ 1
.
Whem :=

Pj

and let the parameter r be as in Details then we have

S

1 1
1 r max(S1,..., Snr)
)

as n — 00, which follows by adding and subtracting inside of the absolute value in

(2.1.24]) the term

|(Wn,s,m) - (Wn,s,m)%| = K( a.sS. (2124)

1

1 len/2]+v,,—As
( Y e+ {nTm})|p('))

o) 4,

by applying Corollary as well as Lemma and then by using, since we have
acy — Ay < 0 and ay + Az = k), a combination of the convergences in ([2.1.20)),

(2.1.22)) and (2.1.23]) as well as the convergence rates in (2.1.18]) and (2.1.19)).

Moreover, by combining (2.1.21]), (2.1.24) and Lemma [1.5.5] we obtain

_ ) 1 \reeGoosn
Whem —C| s K| —— a.s. asmn — 00. (2.1.25)
" log(n)

Since by (22.1.3) and (2.1.4)), we have

M
anzl a5Pj __ 3 1 QjpPj n+k® M
Ve := V.= [ ][]
€ n,e z+aJ n,e
log(n) log(n Pt

M —
Z |ALTm |Zj:1 b (Wn,e,m + Wn,a,m) on Qav

m:Ty, €[0,1]
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we get for
5 L1 P ) _ Y ayp; n+k” ﬁ ‘A
n - n - 1+a; ,n
log(n) log(n) £ k L J
and

Z — C(M) Z |ALTm|Zj:1PJ

m:Ty, €[0,1]

the following two convergence results

<1

|V, - Vn5| < [?( ) a.s. on €, with K < 00 a.s., (2.1.26)

log(n)

— ~ M
D S I B
miThe[0,1] log(n)

Y

<090 a.s.

a.s. on €. (2.1.27)

as n — 00, where on the one hand follows by using in the following order
Corollary , Lemma with the parameters ry = Sy, the decomposition
, the convergences in Lemma (i7), which can be used since we have
k. +acy = k¢y and k" + acy < 0, as well as by a subsequent application of Lemma
and on the other hand is a consequence of (2.1.17)), (2.1.25)) and the fact

M
that, since L is a compound Poisson process, we have ) .. €[0.1] |ALTm|Zﬂ'=1pJ < 00
. m b

almost surely.

Note that by the definition of 7 in Details we have

N 7;(0;,5;p;5) S S 1
j=1,., M S T j=1,...MS;  max(S;,...,Sy)’

(2.1.28)

T =

where the inequality is due to the fact that in the case of 6.y € (0,1] we have
70y, S(ypey) = 1 and in the case of 0.y € (1, 2] we have

1 1 1
0< S(.)p(.) (% + W - 1) = T(.)(@(.), S(.)p(.)) =1+ S(.)p(.) (% - 1) < 1.
\ >'0 I <0

In order to end this proof we combine ([2.1.26)), (2.1.27)) as well as (2.1.28]), which
imply that for each w € A := lim,j; €)., where by (2.1.1) we have P(A) = 1, there
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exist e(w), K(w), n(w) >0 with w € Q) and

T - 26 = K s )

for all n > n(w).

2.2. The Driving Process is a Lévy Processes with Finete Second

Moments

In this section we will, in order to extend Theorem [2.1.1]to driving Lévy processes
with finite second moments, combine the LQ—properties of Lévy driven processes, cf.
Remark (i), with the ideas of the proof of [10, Theorem 1.1 ()] and [11],
Theorem 1.2 (7)].

THEOREM 2.2.1. Let L = (L;);er be a symmetric Lévy process without a Brown-
tan component, with a Lévy measure v satisfying .I|m|21 xZV(dx) < 00 and Blumenthal-
Getoor index 3 < 2. For each j = 1,..., M suppose that the kernel functions g;, g,
as well as the Lévy process L satisfy the assumptions @,@,@,@,@ with respect
to the parameters a;,c;, k;,0; and in the case of 0; = 1 the assumption @ as well.

Moreover, for each j =1,..., M set
, t
Xt(J) = J g;(t —=s) = g;(=s) dLs for t=0

and assume a; € Z, p; € (0,2) with Zie{l Gy Pi <2, 85 2 1 with Zi\i 1/5;, =1

as well as

-2a;-1

k; 2
| A g5lli2@) <0 K (2.2.1)

for all sufficiently large n € N and i = k;, ..., n, where K > 0 is a suitable constant.
Then by denoting Q; := 2[(2 - Zie{l gy Pi) for each j as well as by using the
definitions and notations in Details we get the following two results.
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(i) If for each j = 1,..., M we have Q;p; > [ and either Q;p; = min{S;p;, 2}
and o;; < min{k; = 1/(S;p;), k; — 1/2} or a; < k; — 1/p; then it holds that

pEimemy M IS g ST ALy, [P EDY,
noee T €[0,1]

(ii) Suppose that for each j = 1,..., M the function f; : [0,00) = R given by
fi(t) = g;(t)t™ for t > 0 satisfies f; € " ([0, 00)) and £;(0) = ¢;.
If for all j we have Q;p; > B, oj = k; = 1[/(S;p;), 1/(S;p;) +1/6; > 1
and min{Q;p;,2} = S;p; then we deduce that

M
Z]’:l QjPj

-~ Al .
n V(M) P 7 = C(M) Z |ALTm|Zj=1p]-

log(n) noee miThe[0,1]

In the following remark we will on the one hand focus on cases in which a kernel
function satisfies (2.2.1)) and on the other hand introduce some kernel functions for
which Theorem is applicable.

REMARK 2.2.2. (i) For o € (0,1/2) set g(s) := (s)5, s € R. Then by [14]
Proposition 2] we have Aing € L*(R) for all i € Z and n € N. Moreover,

by substitution, we obtain

2

ik .
n ; k 1 — @

k J

I Az’,nQHi?(R):J ‘Z(_l)j( )( n _S) ds
= 1 520 J +
—20~1 0 - J k 2 K
S B DYCY S| =
o0 | £

Y

=A{19(s)
where K > 0 is a suitable constant.
(i7) Let the function g be as in Lemma with ¢ € L*((8, 00)) and denote
all positive constants by K. Then for sufficiently large n € N and ¢ =
k,...,n an application of Lemma yields

a 0
J'_ | Afn g(s)|2ds < n_Qa_lK[ (—s)Qads
i—(k+1) ’ —(k‘+1)

n
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i—(k+1)

-1
| Afm g(s)|?ds < Kn>*"! J (—S)Q(Q_k) ds,
ig k-ns

i
J | AL g(s)Pds < Kn7!
ik _g

as well as

ik _§

B _ -0 2
J | Afm g(3)|2d3 < Kn 2kJ' |g(k) (—s)| ds.

By assuming o — k < —1/2, the above inequalities in combination with

assumption @ imply

k 2 " k 2 -2a-1
| A glli2@ = J | A;,9(s)|"ds <= Kn ,

where n € N is sufficiently large and i = k, ..., n.
(i7i) Note that Remark (i) and (i7) allow us, under suitable assumptions
on the parameters a(.y, k(.), 0.y and p(.), to apply Theorem with the

kernel functions introduced in Proposition [1.2.3

Now we will show that in the case of the driving process being a symmetric a-
stable Lévy process a similar argumentation as in the proof of Theorem [2.2.1| would

not work.

REMARK 2.2.3. In the following we will write (+) instead of j for j =1,..., M.

By taking a look at the proof of Theorem [2.2.1] one can easily get the idea to
obtain a similar result to Theorem in the case of (L;);er being a symmetric
p-stable Lévy process by modifying some of the assumptions on the parameters py.y
and by using Remark (ii1).

The proof of such a modified result would require us, in order to use Remark

(i11), to assume

i B ~a()B-B15
I Ass gl ey =0~ K (2.2.2)
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instead of
k() 2 < 20
I A, 9(~)||L2(R) =n
for all sufficiently large n € N and i = k(.),...,n, where K > 0 is a suitable constant
and 0 < § < 5.

In the following we will show that assumption contradicts the assumptions
@ and @, i.e. under assumption it becomes impossible to use Theorem
2.1.1] and therefore to proceed as in the proof of Theorem [2.2.1]

Note that by assumption @ and @ we have

90y(8) = ()37 fry(s)

for s € R with f(.)(t) = C() #0ast 0.
Moreover, for all € € (0,1), n € N and s € (i/n —&/n,i/n) the above represen-
tation in combination with (|1.3.4)) yields

A go(s) = goifn—5) = (ifn = )30 fy(ifn = s).

Hence, by fixing a sufficiently small ¢ € (0,1) with |f.y(s)| = |¢y|/2 for all

s € (0,¢), we get

i
n
i—€
n

for all n € N.
The above inequality and (2.2.2)) lead to the following contradiction

€ B
ke |B _—o)B-1 J Q) B —ayp-1 |C()/2| a)B+1
A, g(s) ds=n S a(s/n)| ds=n ———c

n 99 (8) O|( )27 fey(s/n)] RS

0<K<n™P_0

n—o0

where K > 0 is a suitable constant.

2.2.1. Proof of Theorem [2.2.1] Note that in this proof we will use some of
the technical results that can be found in the last section of this chapter.
In order to ease our notations we will throughout this proof denote all positive

constants by K, although they may change from line to line. Furthermore, we will
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assume n € N to be sufficiently large and for j = 1,..., M we will often write (-)
instead of j respectively (-) instead of (j).
Note that the Lévy measure v and the parameter 0.y satisfy assumption @, cf.
Lemma [[.2.2
For each d € N the stochastic process L(d) given by
L(d)=Ly(d)= ) ALdgap,siya  fors<t
ue(s.t]

is a symmetric compound Poisson process and (7T,,,(d)),,en defined by

T (d): T, if |ALTm| >1/d
" a 00 else

is a sequence of stopping times that exhausts the jumps of (L;(d))so.

Since
1
T,.(d) €[0,1] = T,, € [0,1] and |ALy | > y
we get in the setting of ()

~ M
Zo= Yy ALy (@)=Y
m:T,, (d)€[0,1]

M
D M
= > 1ALy, P L, g Y

m:T,,€[0,1]
a.s. I.LI -
—5 7 = Z |ALTm|ZF1p]H7<nM) (2.2.3)
d=oo miT,,€[0,1]

and in the setting of (1)

~ ~ Mo
Zd — O<M) Z |ALTm(d)(d)|ZF1p]

m: Ty (d)€[0,1]

Mo
=M Z |AL |Zj:1p]1{IALTm|>1/d}

m:T,,€[0,1]
s 5 _ ~(M) Yilips
—7=C > |ALg, |2, (2.2.4)

m:T,, €[0,1]
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where the convergences follow from the dominated convergence theorem and the
= : (M) M
fact that Z, Z < 0o a.s., since H,, ' < K a.s. and ) ;~, p; > f.

Moreover, for each d € N we define the compound Poisson driven process
X(d) = J'; gt =) = Goy(=s) dL(d),  t=0,
and the stochastic process
xa) = xM = XV ), (2.2.5)

where as stated in [10l below (4.35)] the process X(d) is of the form (2.3.2).
For I :={1,..., M} and the parameter r as in Details we have

n+k* M . v n+k* M A . v
(Z [ ) —(Z [T]ak,. X" ) )

i=k, j7=1 i=k, j=1

3 =

n+k*
kj i\ | Py kj y by
= K (z (l | Ai+aj,nX(]) )( | | Ai+aj,nX<J)(d) )
JcI:|J|<M JEI\J

i=ky jeJ

3=

<K ( )3 ni(]_[ A, XY pj)(]_[ A, XYd) pj) . (2.26)

JcI:|J|<M i=k, " jeJ JEI\J
where the first inequality is a result of multiple applications of Corollary using

(2.2.5) and the second inequality follows by Hélder’s inequality.
Let

M oap; . . .
n%=1 %P1 i the setting of (i)

Up += ZM QiDs -1 ’
ni=1 pr(log(n)) , in the setting of (“)

By fixing for each J C I with |J| < M —1 a x(J) € I\ J and by using the
decomposition
Q; itj= K(J)

1
==Y — with r, := (2.2.7)
1 j; ! 2[p; else
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as well as the identity
M naj in the setting of (i)
= [ [ 1vjl” with vy, := ’
v, = |vj | with v, := . _ ’
=1 n“ (log(n)) w5 , in the setting of (iz)

we obtain the following inequalities.

n+k* ks () Pj ks ) pj
E ( l_[ Vjn Aiiaj,n X )( l_[ Yjn Aiiaj,n X (d) )
i=k. jeJ s v ’ jen\J'* M ’
=T jn =Zi,5,n,d
(1_[| ol )( T towinal”
ik, W\ e jer\J LY(Q)
n+k*
<K ) (1_[ [iinl™| mm)( [T Neisnal®| mm)
i=k, \ jeJ JeIl\J
n+k* 1 1
L T
<K Z (ﬂn 7)( 1_[ im0l ](Q))
i=k, “ j€J jeEI\J

1

n+k*
K TT (2 Ml ™ o)
enJg
Tpn+k x@ ONY
= [T (1™ 3 (\Am ). (2.28)
er\J i=

where the first as well as the third inequality are a consequence of Lemma and

the second follows from ([2.2.9)) below.

Since on J we have p(.y7(.y = 2, an application of [21], Proposition 2.1] using
k) () NS
Ai+a(.),nX = [—oo Ai+a(.),ng(')(8) dLs

and the same argumentation as in Remark (i1) yields

()

Hzicranl™ Nl s
AN (€2) k() () 2
|U( ) |2 = E(Aiﬂz(‘),nX ) - E(Ll) || Az+a()ng )||L2(R)

<n 07K, (2.2.9)
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Now by choosing the parameter r as in Details and by setting

* *

n+k” M X P n+k” M . i
o | | j V2 . | | i ) I
Vn +=Up Z |Ai+aj,nX and Vn,d <= Up Z |Ai+aj,nX (d) )
i=k, j=1 i=k, j=1

we obtain

m limsupP(|(Vn)% - (and)%

li
d—0o 5,00

>)=0 (2.2.10)

for each € > 0, where in the following specified order we applied , Markov’s
inequality, and, since we have k, + a¢y = k) as well as E* + acy <0, a
combination of Lemma 2.3.5] and Lemma 2.3.4]

Note that for each d € N in the setting of (i) respectively (i) we have

Viod L Zy respectively V4 RN (2.2.11)

which is due to a combination of Lemma [2.3.5] and Theorem 2.1.1]
In the setting of (i) a combination of (2.2.11)), (2.2.3)), (2.2.10]) and [12], Theorem
3.2] yields

1 L- 1 L—
(V) =5 (Z)" respectively V, — Z.

In the setting of (i) an application of (2.2.11)) and (2.2.4)) results in
1 .1 a.s. =~ 1 ~.1 as.
(Voa) = (2)" —(Za)" = (2)" — 0,
which in combination with (2.2.10)) and [12, Theorem 3.2] implies that
1, s1 g
(Vo)™ =(2) — 0,
le.

1 ~ 1 ~
(V) N (Z)r respectively V, =7

n— oo
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2.3. Some technical auxiliary results

The purpose of this chapter is to provide a comprehensive overview of the tech-

nical auxiliary results that we have used in the presiding sections of this chapter.

LEMMA 2.3.1. Let L = (L;)er be a (two-sided) compound Poisson process on the
probability space (Q, F,P) and let (T,,)men be a sequence of F-stopping times, where
F := (F,)is0 15 the filtration generated by (L;) o, that satisfies 0 < Ty < Ty < ...
and ezxhausts the jumps of (L;)so, i-€.

o {T,,(w):m=1}n[0,00)={t20:AL; # 0},
o T (w) # T,,(w) for n # m with T,,(w) < oo.

Furthermore, for e >0, m,n € N and w € 2 we denote

.m -1 m
i 2= 1 (w,n) € NU {0} as a random index satisfying T,, € (Z - ,%]
{nTm} = nTm - (Zm - 1)
and

0, := {w € Q: for all j 2 1 with T;(w) € [0,1] we have |Tj4;(w) = Tj(w)| > €

J

and ALy(w) =0 for all s € [—e,e]U[l—-¢,1+ 5]},

where ALy := Ly — Ly_ with Ly_ = limgy g Ly are the jumps of L at time t.
Then we obtain the following results.

(i) For each d € N we have

({nTm})mEN,msd = (Um) asn — 00,

meN,m=<d

_~

where (U,,)men @5 a sequence of independent and uniform [0, 1]-distributed
random variables that on the one hand lives on the probability space (Q, f, I?’),
which is an extension of the underlying probability space (Q, F,P), and on
the other hand is independent of the o-algebra F.
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(i1) Let i,n € N, € > 4/n. Then on the set Q. in the case of T,, € [0,1] we
have
T € 1 1 € 1 _~
Tme<ﬁ_§7ﬁi| =15 ¢ (5—575] form #m
and

1 € 1 . L . € :
Tme(H—ﬁ,ﬁ]4=>ze{@m,zm+1,...,zm [ J+vm} with

13
it |$]) =5 <
-1 else 7

o] 0 L(

n
=

where |+ | denotes the floor function.

PROOF. To (i): See [10] (4.4)].

To (ii): The first statement is a consequence of the definition of the set . and
the equivalence can be seen as follows.

= In the case of i < i,,, i.e. 7 <1,, — 1, we have

i 1 i, i e i
n T |M\nTrn| T2

(2.3.1)
If i > i, + [en/2] + v,,, then in the case of v,, = 0 we have ([2.3.1]), since

:l/n e(_l/nﬂo]
— A ——t—
i e 4, 1+wv, len/2] e in
—— 2>+ -—=> =
n 2<n n n 27 n’
and in the case of v, = —1, i.e. = (zm + [%J) - % >T,,, we have

«=: It is sufficient to show for j,, := 14, + [en/2] + v,, that

Jn € Im
Tme(ﬁ_§77}7

since for each ¢ € N with i,, <7 < 7, we have
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which follows from € > 4/n as well as

iy 1 i, i € i
ﬂnepﬁ_ﬁfﬁ}cpﬁ_§fﬁ]

En

In the case of v, =0, i.e. % (zm + |_7J) - % < T,,, we have

im  Um  lenf2] € b Im Um  LEn/2]
wntmt T Tg<In=qg syttt
and in the case of v,, = —1, since € > 4/n, we have
im  Um  lenf2] e 4, 1 b Im Um  LEM/2]
W+T+ n —§SW—E<TmSWSW+W+ .

The following two lemmas, which play a crucial role in the proof of Theorem[2.1.1],

focus on some properties of the Lévy driven process respectively of it’s decomposition

into a dominant part and a rest part.

LEMMA 2.3.2. Suppose that the kernel functions g,q and the symmetric com-

pound Poisson process (L;)ier satisfy the assumptions @ to @ with respect to the

parameters o, ¢, k,0 and in the case of 6 = 1 the assumption @ as well. Moreover,

let the set S, be as in Lemma|2.3.1. Then we have for k,n € N withn = k, ¢ > 4/n,

t
X, = j ot = 5) = §(=s) dL..

Mi,n,z—: = ' Af,ng(s) dLs and Ri,n,e = [

_£
2

Sl

-
the following results.
(i) If a < k—=1/p for some p > 0 then we have
= P
nap Z |Ri,n,5|p 7:0 07
i=k
- P L < L
ap k -$ ap p L-s
n Zk |AmX| -2 Y and n Zk |Mm5 -2
1= 1=

A .g(s) dL,

on §2., where Y is the random variable that we would get by applying The-

orem (i) for M =1 and a; = 0.



2.3. SOME TECHNICAL AUXILIARY RESULTS 49

(i1) Assume that the function f : [0,00) = R given by f(t) = g(t)t " for
t >0 satisfies f € C*([0,00)) with f(0) = c. If for some p > 0 we have
a=k—1/pand1/p+1/0 > 1 then we obtain

nozp n » 1 7(0,p)
Tog(n) 2 Z |R,;’n,5| =0 <log(n)) a.s. asmn — 0o,
ap n
n k P a.s. == p as A
—log(n) sz 'AWX| -2 Y and log Z |MZ nE -

on §)., where

—p(l—é—%), for 6 € (1,2]
1, for6e(0,1]

7(0,p) =

and Y is the random variable that we would get by applying Theorem
(i1) for M =1 and a; = 0.

Proor. With M, ,, ./, instead of M, , . as well as with R, ,, ./o instead of R, ,, .
an application of [10l proof of (4.1), (4.7) and (4.17)] yields (¢) and an application
of [11, proof of (4.2), (4.14) and (4.16)] yields (ii). O

LEMMA 2.3.3. Let the set Q. and the sequence (T,,)men be as in Lemma |2.3. 1.
Moreover, suppose that (M, )z is defined as in Lemma i.e. under the
same assumptions on the kernel functions g, g and the symmetric compound Poisson

process (L )ier. Then for n € N and € > 4/n we get on the set Q. the following

results.

(i) Leti e N. IfT,, € [0,1]n (i - i:l then we deduce that
Mi,n,a = ALTm Ain g(Tm)
and
. o . en
1 € {zm,zm+1,...,zm+{7J+vm}.

Furthermore, we have M, ,, . = 0 in the case of T,, ¢ [0,1] N (% - £ %] for
all m € N.
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(“) For l7 r= 07 ) L%J we have Ml+r,n,5 = M—l,n,s = Mn+l+r,n,s = Mn—l,n,s =0.
(74i) Let T,, € [0,1] then it holds that M; _;,. = M; +|cnj2)+v,,+ine = 0 for

1=0,....[2Z|

PROOF. Since the sequence (7},)en €xhausts the jumps of (L;);s¢ a combina-
tion of the definitions of €., M;, . and Lemma [2.3.1] (ii) yields (¢).

Moreover, we obtain (i) and (éiz) by combining the definitions of M;,, . and in
the case of (ii7) also the equivalence in Lemma (i1) with the fact that on €,
we have on the one hand AL, = 0 for all s € [—¢,e]U[1 —¢,1 + €] and on the
other hand |T,, = T,,,_1| > ¢ for T,,,,T,,,_; € [0, 1] respectively |T,,,1 — T),| > ¢ for
T, Toner € [0,1]. 0

In order to handle in the proof of Theorem the rest term, that appears while
approximating a Lévy driven process with a compound-Poisson driven process, we

will need the following lemma.

LEMMA 2.3.4. Let L = (L;)er be a symmetric Lévy process without a Brownian
component and with Blumenthal-Getoor index 5 < 2. Suppose that L as well as the
kernel functions g, g satisfy the assumptions @ to @ with respect to the parameters
a,c, k,0 and in the case of 0 = 1 the assumption @ as well.

Moreover, let for each d € N the process X (d) be given by

X,(d) := L_m,t>x[_1,1] (g(t _s) - g(—s))x N(ds, dz), (2.3.2)

where t 2 0 and N is the to the Lévy process L corresponding Poisson random

measure, i.e. N(A) :=#{t: (t,AL,) € A} for all measurable A € R x (R \ {0}).

(i) Ifa <k—=1/p and 8 < p for some p >0 then we have

C}erolo lim sup n” iEU Ain X(d)|p) = 0.

n—00 €
i=k

(ii) Assume that the function f :[0,00) = R given by f(t) = g(t)t * fort >0
satisfies f € C*([0,00)) with f(0) = c.



2.3. SOME TECHNICAL AUXILIARY RESULTS 51

If for some p > 0 we have o =k —1/p and 1/p + 1/0 > 1 then it holds
that

o
np

lim lim sup

E(| Af, X(d)]P) = 0.
d> noeo log(n) & (| Ain X ()] )
PROOF. For each d € N the process X (d) is well-defined as stated in [10] (4.18)]
and [11], (4.17)]. Furthermore, we get (i) by applying [10, proof of Lemma 4.2] and

(ii) by applying [11], proof of Lemma 4.1]. O

Note that in the proof of Theorem [2.2.1) we need to use Theorem and
Lemma [2.3.4. In the following lemma we will show that under the assumptions on

the parameters in Theorem the assumptions on the parameters in Theorem
2.1.1l and Lemma [2.3.4 are satisfied.

LEMMA 2.3.5. Let j =1,..., M. In the setting of (i) in Theorem we have
o a; < k;j—1/(S;p;),
o Q;p; > B and a; < k; = 1/(Q;p;),
2> f and o < k; —1/2,
and in the setting of (ii) in Theorem we have
® Q;p; > B and2 > j,
o «; < k;j—1/(Q;p;) if Q;p; # S;p;,
o a; <k;=1/2if Q;p; # S;p;,
o o; =k;—1/(S;p;) and 1/6; +1/(S;p;) > 1.

PROOF. In order to ease our notations we will for j = 1,..., M throughout this
proof write (-) instead of j.

In both settings we have on the one hand by assumption 2 > 5 and on the other
hand Q.yp¢y > B due to py € (0,2) and the definition of Q..

In the setting of (i) we get

1 1 1
oy <minikoy — =——.ky— =—, k- 5
X {() Sepey ™ Qupe 2}
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in the ’either-case by combining

1

oy < min {k(.) - m,

1 . .
key— 5} with  Quypey 2 mln{S(.)p(.), 2}

and in the ’or-case by combining
1 ) .
oy < /{3(.) - m with Py = mln{S(.)p(.),Q(.)p(.),Q}.

Note that in the setting of (ii) we have by assumption a) = k¢y = 1/(S¢yp())
as well as 1/6.y + 1/(S(ypy) > 1. Moreover, since in the setting of (i7) we have
acy = key = 1/(Seypy), we get by using the assumption min{Qyp..y, 2} = Syp(y
that a(y < k¢y — 1/(Qyp(y) in the case of Quypey # Seypey and oy < ky —1/2 in
the case of 2 # S.yp(.y. O



CHAPTER 3

A Consistency Theorem for Multipower Variations where
the Lévy Driven Process is Driven by a Symmetric a-Stable

Lévy Process

In this chapter we will use the various properties of symmetric a-stable Lévy
processes respectively of processes driven by symmetric a-stable Lévy processes to
derive a natural extension of the results for power variations in [10, Theorem 1.1 (73)]
to the multipower variations case. In our proof we will, in order to use Birkhoff’s
ergodic theorem, proceed similarly to [10].

Note that [10, Theorem 1.1 (ii)] was used by the respective authors to proof
the second-order asymptotic results in [10, Theorem 1.2], regrettably in the case of
multipower variations there arise problems that prevent us from obtaining a similar

result while using their approach.

THEOREM 3.0.1. Suppose that the kernel functions g,g as well as the sym-

metric [3-stable Lévy process (L;)ier with 8 < 2 and scale parameter o > 0, i.e.
E(exp(iul,)) = exp(—aﬁ|u|5) for all uw € R, satisfy the assumptions @ to @

with respect to the parameters o, c, k, 0, where 6 = 3. Moreover, set

t
X, = J g(t—s)—g(=s) dLy, for t=0

and assume for j =1,... M that a; € Z, k; € N with k < k; and p; € (0,3).
Ifa<k-1/8 and Z?ilpj<ﬁthen we have
pj)

~1+(a+1/8) ¥ )2, pyy M) P e o ki k 0
n jzlpj Vn n_)—o)o E l_[ | z (_1) l Yk*+aj_l
=0

J=1

53
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where k, is as in Definition [1.3.9,

n+k* M

v = Z l_[ |Afiaj7nX

i=k, j=1

Pj

(cf. Definition[1.3.9),

and

— 00

%) 0 £ k
Y, ::[ cZ(—l)l( , (t—s=1); dL, for t=0.
1=0

The next remark exemplarily illustrates some kernel functions for which the

above theorem is applicable.

REMARK 3.0.2. Note that Theorem is applicable with the kernel functions
presented in Proposition [I.2.3]

3.1. Proof of Theorem [3.0.1]

Throughout this proof we will denote all positive constants by K, although they
may change from line to line. Furthermore, for j = 1,..., M we will often write (-)
instead of j and (-) instead of (7).

Since the assumptions in [10, Theorem 1.1 (ii)] are satisfied, we define

n *© « i l k t_S_l
Y = | n%) (-1) ol dL, for t=0
- =0

and

TS
Y, :=J CZ(—l)l(l (t—s—1); dL, for t=0
% 1=0

as in [10L (4.38)].
Note that by [10, (4.39)] we have

{na+1/ﬁ AﬁnX:i=k,...,n}i{leii:k’w“’”} (3.1.1)

for all n € N with n = k.
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k(.
By combining the two representations of Aifn)X , cf. (1.3.1) and (|1.3.3), we

obtain for i =k, +a(y,...,n+ kK + a.y the following representation

ky—k

k: y—k

=0

Now we define by using 5 = Zjﬂzlpj < 3 the parameters ).y := B/p(.), which
by definition satisfy Q) = 1, Q(.yp.y < f and Z;\il 1/Q; = 1.

An application of [10, (4.45),(4.46) and the convergence below (4.46)] with
p = Q) < B yields

% Z v - YioolQmp(.) LN 0, (3.1.3)
i=k

n— oo

%Z Y |Q<)p<) P E|Y |Q(>p(> and %ZlyfolQmm%Elykwl@)pw, (3.1.4)
i=k =

where by [10, (4.46)] we have E|V;°|%0P0 < co.
Furthermore, we have

n+k*  k()—k " Qurey n+k* koy—k
Z | bl Z+a() l‘ < (|k()_k+1||bl || ita()— l|
1=k,

=0 i=k, [=0

)Q(~>P<~)

=n
e

ky—k 'rn+k*+a(.)—z

<K Z Z [V, |90P0 < KZ|YZ-°|Q<‘)”) (3.1.5)
i=k

=0 i:k,,+a(4)—l

"~

2k
for @ € {n, 0}, and by a similar argumentation we obtain

n+k*  k()—k n
[y 00 QuyP() n 60 1 Qo
‘ bl( )(Y;m(.)—l - Em(,)_z)' <K Z Y," -, |Q< PC) (3.1.6)

=k, =0 i=k

Let r = l_[?il(l Vv p;) and

n+k* M kj—k P 1+*
n=|[FS TS ) (55111
i=k, j=1 k

=:B§j) =:§<J)
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then we deduce that

1
M d— r
A, < Z(l i ( 1—[ ‘ B4 pﬂ')( T B pf) gl _ gl pd)
n = n i i i i
i=k,  j=d+1 Jj=

d=1
M n+k* L d-1 n+k*
Qﬂ”])%’“)( ( ‘—v QJPJ)QJ’)
: 57
dz: (] =d+1 ( zzk’: 7=1 zzk:
1
1 n+k* . Qapa\ 0ar
(ﬁ > |8 -B" ) - (3.1.7)
i=ky

where the first inequality follows by Corollary and the second by Lemmall.5.2]
By combining (3.1.5)) to (3.1.7)), we get

A < KZ( ﬂ( Z|Y |ij]) )(t(%ilﬁﬂ%j)&ﬂ)

j=d+1 i=k J i=k
1
1 & n Qar
(ﬁ Z |Y; |ded)
i=k
P
— 0, (3.1.8)

where the convergence is a consequence of an interplay of (3.1.3)), (3.1.4]), Slutsky’s
theorem and the continuous mapping theorem.

Now we define the function F : R" - R by

(Ti) ieNy P | | ‘ Z bl ifk +a]—l
Jj=11=0

where by Definition we have k, + a¢y — (k) — k) =2 k, and denote by T the

Y

forward shift operator on RN, ie
. N N .
T:R - R with (sz‘)z‘eNo = (331+z')z'eN0-

Then for each h € N, we get

J

M
. D
F(Th($k+i)ieNO) (($k+h+z zeNO l_[ Z bl(J>35h+k.+aj—z J-

j=1 =0
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As stated in [10, below (4.45)] the process (Y, );s, is ergodic, i.e. an application
of Birkhoff’s ergodic theorem, cf. e.g. [18] Satz 20.14], results in

1n+k* M kj—k o) b M kj—k o) b
] 00 J a.s. i 00 J
w0 LIy v —>E(I [| Y o ) 0. (319)
i=k, j=1 " 1=0 j=1 " 1=0

[

. SF((YE, ieno)

k*-k
=Yt (T (Y3 ieng)

The finiteness of the right side in (3.1.9)) follows from Lemma and

ky—k kiy—k
()00 Qeip() o0 QePe) o0 | QP
E‘ DL <K Y EY < KE|y; < oo,
1=0 =0

where for the last inequality we used the stationarity of the discrete time sequence
(Y )ienisks cf. [10) below (4.45)].
We conclude this proof with

M
~1(a+1/B) Y M py oy L (G) a+1/B \ k Pj
. Fann o LSEPTIST 0ot qk
i=k, j=1 ' 1=0
; 1n+k* M ki—k ) b,
Jiym J
= ﬁ l_[ bl Y;+aj—l
i=k, j=1 =0

where for the first equality we have used (3.1.2)), for the second (3.1.1) and for

the convergence a combination of (3.1.8]), (3.1.9)), Slutsky’s theorem as well as the

continuous mapping theorem. [






CHAPTER 4

Limit Theorems and Convergence Rates for Multipower

Variations

The pathwise properties of Lévy driven processes, cf. Lemma [4.5.3] will be the
main tool of this chapter. By using this tool we will on the one hand extend the
results for power variations in [10, Theorem 1.1 (éii)] to the multipower variations
case and on the other hand derive, in section one to three, limit theorems that
include convergence rates. In contrast to the previous chapters the Lévy driven
processes of a multipower variation in this chapter can be driven by different Lévy
processes.

Note that even in the case of power variations the results of this chapter, which
provide convergence rates, were not known.

In the fourth section we will, by considering Lévy driven processes of the Ornstein-
Uhlenbeck type, present a simplified version of the preceding results of this chapter.

Moreover, in order to improve the readability of this chapter and also to highlight
our main results, we will present all the technical auxiliary results, which we will

use in this chapter, in the last section.

4.1. The Driving Processes are Lévy Processes

Now we come to the before mentioned extension of [10, Theorem 1.1 (7i7)],
namely Theorem (i). Furthermore, note that by a simple modification of
Theorem[4.1.1] (i) we are able to eliminate a step in the respective proof and therefore
able to obtain the convergence rate in Theorem (i1).

THEOREM 4.1.1. For each j = 1,...,M let Q; =2 1 and let Y = (Liﬁ)teR be
a symmetric Lévy process without a Brownian component and with a Blumenthal-

Getoor index 3; < 2. Suppose for each j =1,..., M that LY as well as the kernel

59



60 4. LIMIT THEOREMS AND CONVERGENCE RATES

Junctions g;, g; satisfy the assumptions @,@,@,@,@ with respect to the param-
eters o, Kk, 0;, where we have oy > k; — 1/(Q; V 5;), and in the case of 0; = Q;
the assumption @ as well. Moreover, for each j = 1,..., M assume that a; € Z,

p; >0, k; € N with k; < k; and set

) t )
Xtm = J g;(t —s) = g;(—s) dLi]> for t=0.

Then by denoting

n+k* M
) \ | Py
V,fM> ::Vn(M>(X;a; kip) := Z l_[ ‘AfjaﬁnX(j) ’ (cf. Deﬁnitz’on
i=ky j=1

as well as
d ! . d K?j . t . )
Fi(t) := (E) X with (%) X9 = [ @t —s5)dL X P - as.,

¢f. Lemmal[f.5.3 below, we obtain the following two results.
(i) If for j = 1,..., M there are S; 2 1 satisfying Z;\il 1/S; =1 and S;p; 2 1

then by assuming S;p; < Q; in the case of k; = k; we get

145 M kipii AM)  as. e D
By —>f [ [|Fw ] a.
n—oo Jq =i

(i) If for j = 1,..., M we have k; < k; then by assuming p; < Q; in the case

of kj +1 = k; we get

“1+Y M kips 1 M) A Pj
n j=1 Jp]Vn _ J 1_[ IFj,kj(t) T
0 j=1

-0 (n—% min(LPh---WM))

almost surely as n — oo, where r = 1_[;.‘/:[1(1 Vv p;).

PRrROOF. Note that in this proof we will use some of the technical results which
will be presented in the last section of this chapter. Moreover, in order to ease our
notations we will throughout this proof for j = 1,..., M often write (+) instead of j

and (-) instead of (j).
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)

is almost

To (i): An application of Lemma [4.5.3| yields that the process X

surely r(.)-times absolutely continuous on the interval [0, 1] with
A\ g Q) SeyPe)
Foyuey =\ 7] X7 e L70([o, 1]) n L7979 ([0,1]).

By setting ¢ = (¢1,...,¢a) and ¢ = (Y14, ..., Pars), where ¢y := X' and the
sequence (1(.y;)ien is chosen as in Lemma we obtain for

n+k*

M
W, (€) s=n 2k ST AL, L 617

i=k, g=1

and

1 M
1€):= [ TTig" @ras
j=1

the following chain of convergences
lim W,(¢) = lim llim W, (¢y) = llim lim W, (v,;) = llim I(¢;) = 1(¢) as.,

where the first and last equality, of which the last also requires the application of
Lemma [I.5.3 as well as Lemma [I.5.2] follow from Lemma [£.5.5] the third equality
is a consequence of Lemma and the swapping of limits in the second equality
is based on the fact that by Lemma and Lemma the sequence W, (1)

converges with respect to n and uniformly with respect to [. Hence, we get (7).

To (i1): By applying Lemma [4.5.3) we get that the process X ) is almost surely

(k(.y + 1)-times absolutely continuous on the interval [0, 1] with

d kiy+1
(%) X() c Lmax(l,p(‘))([()? 1])

Therefore a pathwise application of Lemma yields (i7). O

The subsequent remark will, while illustrating the interplay between the param-
eter assumptions in Theorem and the fact that there are no restrictions on the

order M of the multipower variation V,fM>, provide an additional convergence rate

in Theorem (i7).
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REMARK 4.1.2. Note that Theorem can be applied with the parameter
r = 1 by transforming, as done in Remark [1.3.3| the Mth order power variation
Vn(M) into a (M p)th order power variation VTme, where p 1= max([p],...,[pm])-

The respective convergence rate would then become

O (n_ min(l,m/p,...,pM/p))

as n — 09,

4.2. The Driving Processes are Lévy Processes with Finete Second

Moments

In this section we will combine the pathwise properties, cf. Lemma below,
and the L°-property, cf. Remark (i1), of Lévy driven processes in order to

obtain convergence rates in probability and in L.

THEOREM 4.2.1. Forj=1,..., M let LY = (Ll(tj))teR be a symmetric Lévy pro-
cess without a Brownian component, with Lévy measure v; and Blumenthal-Getoor
index 3; < 2. Suppose for each j =1,..., M that LY 4s well as the kernel functions
g, gj satisfy

e the assumptions @,@,@,@ with respect to the parameters o, k;,0;,
where we have oy > k; — 1/(Q; V B;), and in the case of §; = Q; the
assumption @ as well,

o | A:';,N]. 9illz2w) < 00 for some N; € N with N; = k, + a;,

. gj(.ﬁj) e L*((0,00)) and J|$|21 2’v;(dx) < 00

with QQ; 2 1 and k; = k; + 1 for some k; € N.

Moreover, for j =1,..., M assume a; € Z, p; > 0 with Zl]‘fl P < 2 and set

X ‘=J 0,(t = ) = g;(=s) ALY for 0.

Then it holds that

1
p

3=

E (n—1+2ﬁ1 kjp; V(M))

r dt)

_ ( J'Ol ﬁ |y, (1)

| - O (n_%min(lapl"“apM))
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as n — 00, where

n+k* M
. -\ | P
V= VO (Xaikp) =y [ ]| art, XP|" (ef Defnition[33),
i=k, 7=1

d \¥i A
Fip (1) = (%) Xtm (¢f. Lemmal[4.5.9 below)

and r = 1_[;.‘/:[1(1 V).

The following remark will allow us, among other things, to derive an additional

result from Theorem [£.2.1]

REMARK 4.2.2. (i) In Theorem we can choose the parameter r = 1
by transforming the Mth order power variation Vn(M) into a (Mp)th order
power variation V,fMp) with p := max([p1],...,[pm]) as done in Remark

1.3.3l Then the respective convergence rate would become

O (n_ min(l,m/p,...,pM/p))

as n — 0.

(i7) Let g and § be two functions with g € L*((0,48))NC*((0, 0)) for some § > 0
so that the assumptions @,@ and @(m) are satisfied. Moreover, assume
n € N to be sufficiently large, i = k,...,n as well as g(k) e L*((8,00)) and
denote all positive constants by K.

By substitution and the assumption @, we obtain

k
I &b ol = |,

n

Furthermore, an application of Lemma (i7t), which can be proven
without using the assumptions @, @(z), @(u) and @)(iv)7 yields

i-k

i§ i
[ | Ain g(s)|’ds = Kn™*" J . lds< Kn 2!
-5 ik
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as well as

izk_§

n _ =6 2
J' |Aing(s)|2dssKn zk[ |g(k)(—s)' ds < Kn

-2k

By combining the above inequalities with assumption @, we get

k 2 0 k 2
| A, g||L2(R) = J | A, g(s)|"ds < K.

By combining Theorem and Remark [£.2.2] we get the following corollary.

COROLLARY 4.2.3. In the setting of Theorem [{.2.1] assume that all assumptions
are satisfied so that Theorem[{.2.1] is applicable. Then for each ¢ > 0 we have

P(I(Vn)% — (F)% > g) =0 (n‘%min(lwh---,pM))

respectively

g

as n — 00, where p := max([pi],...,[pam ),

vV - F' > g) = O(n—min(l,p1/p,~.~,pM/p))

Pt

1+Y Mk M tH
V,i=n_ +¥i0 jijn< ) and F = J, 1_[ |ijj(t)
0 j=1
Proor. By Markov’s inequality, we have

P(|(va) - (7)

1
T

>c)s éﬂa‘(vn)i —(F)

for all € > 0.

Hence, we obtain the first result by an application of Theorem and the
second by setting r = 1 as well as applying a combination of Remark (i) and
Theorem .2.71 O

4.2.1. Proof of Theorem Note that the last section of this chapter
contains some of the technical results that we will use in this proof.
To ease our notations we will throughout this proof denote all positive constants

by K, although they may change from line to line, and for j = 1,..., M often
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write (+) instead of j respectively (-) instead of (j). Furthermore, we will denote

Py(t) = X,f.) and adopt the notations used in the proof of Lemma 4.5.4]

By Lemma |1.2.2) we know that the Lévy measure vy and the parameter 0.,
satisfy assumption @
An application of Lemma yields that ¢.y is pathwise (k) + 1)-times abso-

lutely continuous on the interval [0, 1] with
o0 () = J't g (e =) dLY A @ Pas.
Moreover, note that the process
th = j_oo gé.kf')ﬂ)(t —5)1(0,00)(t = 5) dLif), t € R,

exists in the L*-sense, cf. [21] Proposition 2.1].

Since for each ¢ € [0,1] we have Yt _ gb(l~c(>+1)

(t) a.s. an application of [21

Proposition 2.1] results in

2
j El¢(k“+1)(t)| dt =E (L’ f I gt - s)‘ ds di
2
E(L{) f j g (s )| ds dt < K. (4.2.1)
The pathwise absolute continuity of ¢E{€)(')) implies that for each ¢t € [0,1] we have

o037 <[oy ) = o3 (en| + [oy” €|
|¢“”(£<>)| [ ot

k() k.

(key+1)
|Ak*+a('),N()¢()|+KJ |¢ O+ (g )|ds as., (4.2.2)

where 0 < £y = (k. + a¢y — k(y) [ N¢y < (ke + a¢)) /Ny < 1 and the last inequality
is based on (4.5.4)), cf. proof of Lemma m

Furthermore, by the same argumentation as in Remark (i1), we have

k() 2 (N2, ko 2
El Ak,+a(‘),N(‘) ¢()' SE(Ll ) ” Ak,+a(.),N(.) g()||L2(R)

OIS 2
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Let gy := 2/p(.y and in the case of Z?i1pj < 2set qpreq 2= 2/(2 - Z;‘ilpj).

By (4.5.3)), cf. proof of Lemma |4.5.4] we get

Ly M 1n+k* GIP WP ;
g |(n v Them) 4, szﬁﬁz( 1 |2 )R
=1 i=ky N j=1,..,M:j#l
M 1n+k* ()P P -
j J
<N+ E(( [1 |8 )Rm )
=1 i=ky =1,..,M:j#l

R

i,m

e

1
1\ r
Q)ql)

M 1n+k* ™E é 1n+kz* 02 qil :
J
x5 ([ TT (53 =) )(5 3 =l
=1 \\ ji=1, Mgl N ik, i=ky
M
<Ky 07 < Fop T mnenen), (4.2.4)
=1

where the second inequality in the case of r > 1 requires an application of Holder’s
inequality, the third as well as the fourth inequality follow by Lemma [1.5.2| and the
second last inequality is a consequence of and below.

Note that by the Cauchy-Schwarz inequality we have on the one hand

© 2
n Z (J”“() k() |¢(k()+1) )|ds)

1=k,

1 n+k*
=3 E‘R;ﬁl

i=k

n+k 9
e e N

smﬂ[ ( ‘qs(’““*”( )‘Q)ds < Kn, (4.2.5)

where the second inequality uses the properties of a.), k, and k*, cf. Definition
1.3.2, the third is an application of Fubini’s theorem, and the last follows from
(4.2.1), and on the other hand

nz

i=ky 1=k,

IE‘R

+ -k
Z E|¢(k(>) ("“U—U)‘ < K, (4.2.6)
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where the first summand can be handled by and the second by applying in the
following order , Cauchy-Schwarz inequality and then handling the resulting
summands with respectively a combination of Cauchy-Schwarz inequality,
Fubini’s theorem and .

In the case of K* — k, + 1 = 0 we obtain by using (4.5.10)), cf. proof of Lemma
[4.5.4] the following inequalities

E (Jolli”gb;kj) s p]ds)i —(LITn(s)ds)i

SZEU( 11 B[ fz?(s)\”ds)

- ; (E( J'Ol <j=17.1:\[4:j# Be) pj) Rg)(S)‘mds))
ol [ o)

M
<K Z n_Tl < Kn°r min(p1,....par) (427)

Y

=S =

where the second inequality in the case of » > 1 follows by an application of Holder’s
inequality, the third by Fubini’s theorem in combination with two applications of
Lemma and the second last inequality by (4.2.8) and (4.2.9)) below.

By a similar argumentation as in (4.2.5)) and (4.2.6)), we obtain in the case of
k* —k, + 1 = 0 on the on hand

i- km rag) k() s k*+1

J NI kZ J (La“"k( e )|dy)2ds

n+k -1 ket ALIORUONNE S ket (s )
" ©)
Z J, J”“()ko ‘¢ (y )' dy |ds
i=ky

n+k -1 i k*+1 ita()- k()vz kxt+l

Z J, J”au’f() icky E’¢
1=k

2
(k()ﬂ)( )‘ dy ds
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1 2
sKn_2L JE|¢(_)' (y)l dy < Kn™>, (4.2.8)

where for the first to fourth inequality we used respectively the Cauchy-Schwarz

inequality, Fubini’s theorem, the properties of a.), k., k* (cf. Definition as
well as (4.2.1]), and on the other hand

(oo

where the first inequality is generated by an application of the Cauchy-Schwarz

(k) 2 ' ~(-) 2
(s)‘ ds < K E‘q& (s)| ds + K | E|R (s)| ds < K,  (4.2.9)
0

inequality, the second summand can be bounded by (4.2.8) and the first can be
handled by the same argumentation as the second summand in (4.2.6)).

In the case of k¥ — k, + 1 < 0 we get by a similar argumentation as in (4.2.7))
that

1

1+k k, N 1+k*—k*+1 r .
E ([ ]_[|¢‘ : ds) —(J' Tn(s)ds) < K i)
0 0

(4.2.10)

Moreover, we obtain (4.2.11)) and (4.2.12)) below as follows. By applying in the

following order Hélder’s inequality in the case of » > 1, Fubini’s theorem in the

case of (4.2.12]), Lemma and (4.2.2)), we get the first inequality in (4.2.11]) and

(4.2.12)). The respective second inequalities can be obtained by using the Cauchy-

Schwarz inequality and then by handling the respective second summands with

a combination of the Cauchy-Schwarz inequality and Fubini’s theorem. The last

inequality in (4.2.11)) and (4.2.12) is a consequence of (4.2.1)) and (4.2.3]).

In the case of k¥ — k, + 1 > 0 we have

( n+k” (k)(z+a—k:) )T

i=n+k, j=

( nik H( (‘A:imj,Nj ¢j|+

i=n+k, j=

k+1)( )‘d ) ) )i
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1
K ekt M . 9 1 ) q%‘ v i
S(W 3 H(E‘ N +[ E ds) < Kn
0

i=n+tk, j=1
and in the case of k¥ — k, + 1 < 0 we have

! N PN g
E(J;m*—k,u l_[ ¢j (t) dt)

(klj+1)

¢; 7 (s)

S

(4.2.11)

1 M
k;
= (K J'n+k*k~*+1 l_[ (E(’ Ao+ay,N, ?;

¢;° ()

L
ds) ) dt

2 % v _1
b, (s)‘ ds) dt) <Kn .

(4.2.12)

1
)
n ]:1 0
1 M k. 2 1
J
s| K Jm—k*—k*ﬂ l_[ (E‘ Ak*+aj7Nj Qb]' + JO E

n ]:1

~—

The subadditivity of the function s + |s|% as well as a combination of (4.2.4

with (4.2.7)), (4.2.11)), (4.2.10) and (4.2.12)) result in

~1+5 M kypy AM) }_ 1 M
(" i) = ( TR ®
j=1

as n — 00. O

E dt)

— O (n_% min(17p17"'7p]\/1))

4.3. The Driving Processes are Symmetric a-Stable Lévy Processes

Now we will focus on Lévy driven processes that are driven by symmetric a-stable
Lévy processes. By proceeding as in section two, while using the scaling property
instead of the L*-property, cf. Remark (i1) and (iii), we will similarly to

section two obtain convergence rates in probability and in L.

THEOREM 4.3.1. For each j =1,..., M suppose that the kernel functions g;, g;
as well as the symmetric B;-stable Lévy process (L,ﬁj))teR with 1 < B; < 2 and scale
parameter o; > 0, i.e. E( exp(iuLﬁj))) = exp(—afj |u|™) for all u € R, satisfy

e the assumptions @ to @ and @ with respect to the parameters o, k;,0;,

where 0; = B; and a; > k; — 1[(Q; V B;), and in the case of 0; = Q); the

assumption @ as well,
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g;nj) e L7 ((0,00)) and || AZ?NJ, gillzsiwy < 00 for some N; € N with

,.]V‘7 = k* + aj,
where Q); 2 1 and k; = k; + 1 for some k; € N. Moreover, for each j =1,..., M
assume a; € Z and p; > 0 with Zl]\flpl < B, where 1 < B <min(fy,..., L), and set

. t .
Xtm = J g;(t =s) = g;(=s) dLg” for t=0.

Then we have

— O(n—%min(Lm ~~~~~ pM))

as well as

IP’( 25)_—

for each € >0 as n — oo, where p = max(1,[p|,...,[pm]), r = ]_[j.\il(l VD),

_ ki AM) e -
V,=n = V" (X;a;k;p)  (cf. Definition[1.5.9),

and

pj

dt

with
A\ (Y -
(%> Xtm:J g§ J)(t—s) dLi]) A®P - a.s..

ProOF. This proof consists of three steps.

Step 1: In this step of the proof we will show

1
T

E|(V.)" - (F)

1.
—=min(1,pq,...,
=(9(nr (11 pM)) as n — 00

by modifying the proof of Theorem Therefore we will use the same notations
as in the proof of Theorem [4.2.1]

Note that contrary to the proof of Theorem we do not need to use Lemma
1.2.2| since the assumption @ is satisfied.
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In the modification of the proof of Theorem we will instead of (4.2.1]) use

B
1 3 1/t B
J' E\qsﬁf“;')*”(t)| dt =KJ (J' R —s)| ) Yt < K,
0 0 -

which follows by a similar argumentation as used in (4.2.1]) from Remark (4i1)
( () e L79((0,0)), and instead of (4.2.3) we will use

and g

k) ()
Ak’*+a() N() ¢( )| - E IJ Ak‘*+a(.>,N(.)g(')(S) dLs

B

iy B B()
) K(/[R | Akray Ny 9¢->(3)] ”ds) <K,

which is a consequence of the representation

k() ()
Ak +a(.y, N() J Ak +a.y,N(. )g()(S) dLs >

Remark [1.2.5| (7i7) and the fact that || AZ:;,N(') 9|1 25 my i bounded.

Furthermore, in this modification of the proof of Theorem [4.2.1] we will also
redefine the parameters ¢y and gp41 as follows. Let q(.) := 3 /p¢y and in the case
of Zj 1Dj < B let qurey = B/ (5 - Zj 1 D)

By using Holder’s inequality with the parameters p = B and p = B/(B -1)
instead of the Cauchy-Schwarz inequality in the proof of (4.2.5), (4.2.6)), (4.2.8) and
(4.2.9)), we obtain

1 B 1 n+k* 0 B
= IE‘R <kn” and Y E[BD| <K (4.3.1)
i=ky =k,
as well as
el 50| -3 "elE9 )
J E‘Rn (3)| ds < Kn™" and J' E|B (s)| ds < K, (4.3.2)
0 0

where in the proof of (4.2.6) and (| m we need to use the respective first result in
(4.3.1) and (4.3.2) instead of ([£.2.5) and (4.2.8).
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We get

@)
|
I
E
2
S
=

‘H*—‘

""" par) (4.3.3)

.
|/\
5

E ‘ (n—1+2§\£1 kipj ) 1

and in the case of k* — k, + 1 = 0 we obtain

=

(k;)

E (J::ﬁ 67 (s p"ds)r—U T(s)ds) <K % vl

< K~ minenpan) (4.3.4)

by replacing (4.2.5)) and (4.2.6]) by (4.3.1) as well as ) and (4.2.9) by (4.3.2) in

the argumentation used to obtain (4.2.4]) and (4.2.7)).
In the case of & — k, + 1 < 0 a similar argumentation as used to get (4.3.4)

yields
l * =
1+k k*+1 M ] D, T 1+$ r L
E J 1_[ (3) ds _ [ Tn(S)dS < Kn—;mln(pl ..... pM)‘
0 =1 0
(4.3.5)
Moreover, in the case of k* — k, + 1 > 0 we have
1
n+k”* 7/ + CL _ k > ¥
Z l_[ <Kn - (4.3.6)
i=n+k, j=1

and in the case of k¥ — k, + 1 < 0 we have

1
1 M T
2 pj _1
E(J Bl dt) < Kn'7, (4.3.7)
n j:l

-~

which follows by the application of Holder’s inequality with the parameters p = 3
and p = B / (B — 1) instead of the Cauchy-Schwarz inequality in the proof of (4.2.11))

and (4.2.12]).
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We conclude this part of the proof in a similar way as done in the proof of

Theorem 4.2.1, i.e. by combining the subadditivity of the function s |s|% with
(£3.3), @-34), (£.3.5), (.3.6) and (L.3.7).

Step 2: By first transforming the Mth order power variation Vn<M> into a (M p)th
order power variation V,fMp) with p := max([p;],...,[pa]) as done in Remark
and then by applying Step 1 with r = 1, we obtain

E

V. — Fl — O(n—min(lypl/ﬂv---,PM/p)) as 1 — 00,

Step 3: We can conclude this proof by applying for each £ > 0 the Markov

inequality on

P(‘(Vn); —(F); 25) as well as IP(

Vv, - F| > 5)
and by using the results proven in Step 1 and Step 2. ([l

4.4. Some Examples

In this section we will exemplary provide some kernel functions with which the

preceding results of this chapter are applicable.

REMARK 4.4.1. Note that Theorem is applicable with the kernel functions
presented in Proposition (i) and (#7). Furthermore, Theorem [4.2.1 Corollary
and Theorem are applicable in the case of the kernel functions being as

in Proposition (i1).

Now we will illustrate the preceding results of this chapter by applying them in
the setting of Ornstein-Uhlenbeck type Lévy driven processes.

PROPOSITION 4.4.2. For each j = 1,...,M suppose that the symmetric Lévy
process Y = (L§j>)teR with Lévy measure v; and Blumenthal-Getoor index 3; < 2
1s without a Brownian component and satisfies assumption @ with respect to the

parameter 0; € (0,2].
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Moreover, for each j =1,...,M assume \;,p; >0, k; €N, a; €Z, ¢; € R and

set
() ! -
X7 = J g;(t = s) dLi]) for t=0

with g;(s) = Cje_/\jsl[o,oo)(s)-
_ M
By denoting p := max([pi],...,[pam]), r = l_[jzl(l vV p;),

M 1 M .
V, = n_HZj:lkjij,fM) and F := J 1_[ |E7kj(t) "t
where
n+k* M . »,
; i\ | Pi
Vn(M> = V,fM>(X;a;k‘;p) = Z 1_[ lAii%nX(]) (¢f. Definition[1.5.9)
ik, j=1
and
Ch )
F’jvkj(t) = J gj ! (t - S) dsz )
we obtain

1 . .
. —=min(1,py,..., —min(1, yeees
Vn—F|=(’)(m1n(n pmin(hprpar) = min(Les/p pM/p))) a.s. asn — 00,

Furthermore, if we have either for all j =1,..., M that
o« YV p <2 and J|ac|21 2?v;(dx) < o0,
orforallj=1,..., M that
e 1< Z?ipi < min(fy,...,0um), B; =0, € (1,2) and (Liﬁ)teR is a symmet-
ric 3;-stable Lévy process with scale parameter o; > 0,
then for each £ > 0 we get

1 1
T T

- (F)

B(|(v.)" - (F)7] 2 ¢) = 2E|(v2)

1 .
—=min(1,pq,...,

=O(n > (1,p1 pM)) as mn — 00

as well as

i

Vn—F|zg)s%E

V- F| _ O(n—min(l,pl/py--pr/p)) 4s 1 — 00
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ProoF. Throughout this proof we will denote all positive constants by K, al-
though they may change from line to line, and for 7 = 1,..., M we will write (-)
instead of j respectively (-) instead of (j).

The functions g.y, gy with gy = 0 have the following properties.

e For s < 0 we have g(.(s) = g y(s) = 0.
e For § > 0 and t € R we have

cyl —
[ taeste =) = gy (=) s - IOl ot mor _ g < oo
R O
e For t,s € R we have

=At Ays
()6 )

l9¢)(t = 5) = gy (=s)| = legyle L(—o0,1(5) = legyl-

e For s € (0,00) and k € N we have ggﬁ)(s) = (—)\(.))kc(.)e_)‘(‘)s, ie.
o gy € C((0,00)) and g € L’((0,00)) for 6 > 0,
e for each k € N the function | g((.k))| is decreasing on (0, 00),
e for ecach k € N and a < k we have |ggk))(t)| < Kt*7* t € (0, 00),
e for 6 > 0 it holds that

JOOO |9E.k))(3)|610g(1/|g((f“))(s)|)d8

o0 o0
—0N. —ox.
SKJ se ”Sds+K[ e "% ds < 00.
0 0

By the above properties, we know that g.y, g., A satisfy the assumptions @,
@,@,@,@ and @ with respect to the parameters o, k, 0, where & € N, 0 = 0.,
and a € (0, k).

Furthermore, since we have

a5 e L79((0,00)) n 12((0, 00))
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and g(.y, gcy satisfy the assumptions @,@ and @, we obtain for n = k() and
i = K¢y, ...,n the following two properties

k) 2 z k() 2
| A 90 llzzwy = J | A 90)(s)]7ds < K,

| Ai,(n) g(')||L(ﬁ)<~)(R) - J | Ai,<n) 9¢y(s)|"ds = K,

where the first property follows from Remark (i7) and the second is a conse-
quence of using Lemma in a similar way to Remark (i7).

By applying Lemma with respect to the parameters o., k(.), 6., where
Q) € (/{3(.) - 1/2, /{5(.)), and p = 2 we get

A\ o ke .
(%) X = [ g((_k)“)(t —-s) dLi) A ® P — almost surely. (4.4.1)

An application of Theorem (i7), Remark [4.1.2] Theorem 4.2.1, Remark
(i), Corollary and Theorem with the parameters Q) = py + 1,

Key = key + 1, )y = Ky — 1/(2(Q(.) v ﬁ(.))), 0.y in combination with the represen-
tation (4.4.1]) concludes this proof. O

4.5. Some technical auxiliary results

This section contains all the technical auxiliary results that we have used in the

presiding sections of this chapter.

DEFINITION 4.5.1. Let I C R be an interval. A function ¢ : I — R is called
absolutely continuous if and only if on the interval I the function ¢ is almost ev-
erywhere differentiable with respect to the Lebesgue measure, i.e. for a,b € I with

a < b we have

o(b) — 6(a) = j oV(s)ds.

Moreover, the function ¢ is said to be k-times absolutely continuous if and only if

the functions ¢, <;5(1), ey qﬁ(k_l) are absolutely continuous.
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Now we will look in to the effect Taylor’s theorem has on the (linear) differential

filter of an absolutely continuous function.

LEMMA 4.5.2. Let k,n € N with k = n. Moreover, let g : [0,1] = R be a k-times

absolutely continuous function. Then for i =k,...,n we have on the one hand
ir (k) k=11
Al = “ZO ) (55-s) s

and in the case of k = 2 on the other hand

k=1 k-1) [T — (k - 1) 1 Tl Z”T k S
Mg =g )( m Z o I O ds,

l,r=0

where (Ky,)1r=0.. k-1, (Tir)ir=0, k-2 C R are suitable constants that do not depend

on the parameters i,n and the function g.

PROOF. In order to ease our notations let

R(g"™ m,.a) = [ IO R

r—a

An application of Taylor’s theorem yields

1 1 1—1
Aing =959\

ant 1 an @ — 1 I (k) 1
=ngl (T)n 1+R( k—l,n n) (4.5.1)
l1=1 ) [N J

=ir1(g,i,n)

In the case of k = 2 we get by induction and by using Taylor’s theorem for
m =1,...,k — 1 the following result

m+1

Ai,n g = Azlng - Aﬁl,ng

k-1 k=1-Y750 f om — 57y (1= m (xm i—1—-m
=Z Z HW [9 ” (T) ( n )}

l1=1 l7n=1 r=1

+ Tm(gai>n) - rm(g7i - 17”)
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i klilr(ﬁl| )(Zl”?ﬂ(%)

Im+1=1
k-1 k=1-Y750 f om 1 k) o i=-m 1
+lzl... lzl l_llmn k‘—l_zlr’—’n
1= m= =

+ rm(g,z',n) - Tm(gai - 17“)

k-1 E=1-300 1 fma+1 ) _
Z Z (l—[ I ik ) REEN )<%) + rms1(g,i,n).  (4.5.2)

= m+l =1

Hence, by (4.5.1) and (4.5.2)), we have on the one hand

k-1

Aing = Tk(gaian) = Z #R(g(k)7k_ 1 _l7— _)

n ’'n
l,r=0

and in the case of k& = 2 on the other hand

k-1 -y (i—(k=1)) 1 .
Al g =" ( m pr=n rr-1(9,1,n)

. k-2 .
o (k-1) i—(k-1) 1 Tir (k) 1—r 1
=g ( ™ nk_1+ZFRg ’k_l_l’T’ﬁ .

l,r=0

O

The following lemma will provide the pathwise properties of Lévy driven pro-

cesses, which are the foundation of this chapter.

LEMMA 4.5.3. Letp = 1 and let L = (L;)er be a symmetric Lévy process without
a Brownian component and with a Blumenthal-Getoor index B < 2. Suppose that L
as well as the kernel functions g, g satisfy the assumptions @ to @ and @ with
respect to the parameters a, k, 0 and in the case of p = 0 the assumption @ as well.

Then in the case of a > k —1[/(p Vv ) the Lévy driven process

Xo= [ gt-9)-g-sydr. @20

is almost surely k-times absolutely continuous on the interval [0,1] with

d k d k t
(E) X er”([0,1]) a.s. and (£> Xt=J, g(k)(t—s) dL, AN®P-—a.s.
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PROOF. See [10, Lemma 4.3]. O

Note that the next lemma is the main tool of this chapter for obtaining conver-

gence rates.

LEMMA 4.5.4. Forj=1,...,M letk; €N, a; € Z and p; > 0.
Moreover, for each j =1,..., M suppose that ¢; : [0,1] = R is a (k; + 1)-times
absolutely continuous function satisfying Io |¢(k +1)( Y|P g < oo,

Then it holds that

4y k M T
- +Zj=1 J‘ijrf >(¢; a;k‘;p) - JO 1_[ ¢] j
j=1

as n — 00, where

Pj
ds

O (n_% min(]-vpl7"'7pM)>

n+k™ M
k; b .
Vi Giaikip)i= Y [ ]|ataass|”  (cf Definition[L33)
i=k, j=1

and r = 1_[;.‘/:[1(1 V).

PROOF. In order to ease our notations we will throughout this proof denote
all positive constants by K, although they may change from line to line, and for
j=1,..., M often write (-) instead of j respectively (-) instead of (7).

Furthermore, we will assume n € N to be sufficiently large, so that on the one
hand we have k, < n + k* and on the other hand the inequalities below regarding
the parameters a(.y, k.y, k., k™ are satisfied.

Let S(.) = max(l, 1/p(.)), g(.) € (1, OO] with 1/5(.) + 1/5’(.) = 1, ™= ‘_rlninM{pi}

and
1
n+k* M n+k* M r
k) [T+ a;—k;\ 1 |p
-\ > Tl atinnf” ) =3 LT ()l |
izky j=1 ik, j=1 n

An application of Corollary yields

1
M -
(n_1+zj=1 ki ) " A,
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1
M n+k* [ M -1 : r
1 ko ks Pj (k;) 1+ a; —k;\|pi 1y |P
S (1—[ Ny )(1‘[ o (T R
I=1 =k, \j=l+1 j=1
1
M 1 n+k* [P o r
<> |5 [T (B |5 ] (4.5.3)
I=1 i=k, \j=1,...,.M:j#l

where based on Lemma [4.5.2] we used

ko (k) [+ a0) = Ry
l Az+a() n ¢ . ¢( ) n

e I i+ag—r 0T
" © -
SK IZO n 0 J’H—a() (r+1) qs ( )| (T - S) ds
7,+a()
k() +1) )
SK Jz+a() k() |¢( ()+ dS =: R”E,T)'L (454)
and
(ol o) (Bt ae =k
Bi,n .= Rz,n + ¢(.) (T |.

For i = ky,...,n + k" we have 0 < (i + a¢y — k:())/n < (i+ag)/n < 1,

k()

1
which in combination with the continuity of the function q§( on the interval [0, 1],

k 1 max
Io |¢( 0¥ )( )| D 75 < 00 and Holder's inequality implies
n+k* Seap
Z ‘RU R )p()[ |¢(k(>+1) max(p(~>=1>d8 < Knlm50ro (4.5.5)
i=ky

and
(4.5.6)

By using Holder’s inequality with the parameters S(.y and S( y in followed
by an application of (4.5.5)) and (4.5.6), we get

(n—1+2§\11 kﬂ’j)i An < Kini<§l+§ll_1_m) =0 (n_%ﬂ) as n — 00. (457)
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Now we consider the representation

lm*M (k)(”% kj)

n+k*—k*+1

pj=f T T(s)ds,
0

where

n+k* M

T (s) := Z l—[‘¢(k)(2+a] k~)1(i:’7ikgﬂ](8) P

i=k, j=1

=37/)j(5)
k.
Note that by continuity of the function qﬁg,)( " on the interval [0,1] we have
1 n+k M 'l + CL _ k’
w2 L
i=n+k

=0 l as n — 00 4.5.8
Emnms so

in the case of k* — k, +1 > 0 and

! M (k;) Pj 1

n j:].

in the case of k* — k, +1 < 0.

Furthermore, in the case of k¥ — k, + 1 = 0 we obtain by using Lemma the
following inequalities

(Eﬁ[ " st)i - (f: Tn(s)dsf

(L (E1kr )i
‘B (S)‘ )ém

where forv =k,,...,n+k, —1 and s € ('n', = kn+1:| by Taylor’s theorem we used

| Ry (key) (& + acy = K
-y (220 )

ol

;”(s)\’"ds)

IA

vi(s)|” )

(s)|plds)r , (4.5.10)

\qsif“;'”(s) — ()
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M iz k*+1 )
kot .0
SJW ke '¢( (y )ldy = &)
and
BY(s):= R '¢(k(>) '
Since in the case of k* =k, +12>0fori=k,,...,n+ k, — 1 we have

i+ acy — k. —k, t+apy— k. —k, +1
< ) ()/\Z ) ()VZ

- n n n n

we get by a similar argumentation as in 1} and 1} that B (s) is bounded

on the interval [0, 1] and

<1,

i—kx+1
S >P<> n ~ 5. )P()
R (s) Z R (s)
| kel (0T ke SePe)
n (k. )+1) ‘
< — d
n Z+a(> k), im ks |¢ (y)|dy

—S (k +1) max(p.,l) =Syp(
()p()J |¢ ) ¢) dySKTL ()p()‘

An application of Holder’s inequality with the parameters 5., and §() in (4.5.10)

( )‘ sor “ ds leads

followed by a combination of the above results for B, B and Io

in the case of k¥ — k, + 1 = 0 to the following convergence

([ 1_[ ? )i—(ETn(s)ds)i =O(n_%”) (4.5.11)

as n — 09,

In the case of k* — k, + 1 < 0 we get similarly

(L ﬂ|¢(k) ds) —(L ! Tn(s)ds) =O(n‘%“) (4.5.12)

as n — 00,

We can conclude this proof by using the subadditivity of the function s + |s|%
followed by a combination of (4.5.7), (4.5.8), (4.5.11) in the case of k¥ — k, +1 = 0,
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by a combination of (4.5.9), (4.5.12) in the case of k¥ — k, + 1 < 0 as well as by a

subsequent application of Lemma |1.5.5 O

This last lemma will allow us to replace the multipower variations of pathwise
absolutely continuous functions by the multipower variations of pathwise C..° (R)-

functions, which for example is a crucial part in the proof of Theorem (7).

LEMMA 4.55. For j = 1,...,M let k; € N, a; € Z, p; > 0 as well as
S; = 1 with S;p; = 1 and Zl]‘fll/Sl = 1. Moreover, for each j = 1,..., M
suppose that ¢; 2 [0,1] = R is a k;-times absolutely continuous function satisfy-
ing Iol |¢§kj)(s)|sjpjds < 00. Then for each j = 1,..., M there exist a sequence of
functions (¢;,)ien C Cp (R) satisfying L)l |¢§kj)(s) - w](-j;j)(s)|sjpjds %0 so that

1
T

1
M -
(n—1+zj:1 kjpj)r

(Val6rr-e000))” = (Valras- o)

converges uniformly to 0 as | — oo for sufficiently large n € N, where

n+k* M
kj P -
VolCisooy Q) 2= Z | | Aita; nSj (cf. Definition[1.3.9)
ik, j=1

and r = ]_[j.\il(l Vp;).

PRrROOF. In order to ease our notations we will throughout this proof denote
all positive constants by K, although they may change from line to line, and for
j=1,..., M we will often write (-) instead of j. Furthermore, we will assume n € N
to be sufficiently large, so that besides the other properties requiring a sufficiently
large n below we have k, <n + k”.

By [26] Theorem 3.17] there exists a sequence (1(.y;)ien C Cs (R) with

k)
(d) (d) |- 00
Z ||¢(.) - w(.)J”LS(JPO)(o,l) — 0. (4.5.13)
d=0
Since for sufficiently large n € N as well as i = k,,...,n + k" we have

0= (i+awy—ky)/n<(i+ag)/n=<l,
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an application for each [ € N of Lemma yields on the one hand

k) k() )
'Ai+a(.),n¢( R z+a( ) ndj( )l| = ' z+a(.),n(¢(') - ¢()7l)‘
k-1 ita()-d2 . ky-1-d
Ky - ) o) (FR972 )T
= nd Jitee)- <d2+1> ¢ ()l n s 5
dl,d2=0 - n

z+a( -)

- (k) (k)
Kn ”Jﬁa()k() |¢> 1 (s) =y (s )|

IA

1
7,+a,( )

g Seap ()P()
K,n/S(.)p(l) k() (J,Ha() - ‘¢(k())( )_ k())( )‘ 2 () ) , (4514)

where in the case of Siyp.y > 1 the last inequality follows by an application of

IA

Holder’s inequality with the parameters q(.y = Si.ypey and gy = Seypey/ (Seypey — 1),
and on the other hand by a similar argumentation as above

1
S(yp()

k() —— k() COPINES )po
' z+a()ngb()| Knsu © (Jﬁao ) ‘gb (s )| ) (4.5.15)

as well as

i+a

1

ita(.

S()P()
k() k() (k()) Se1pe)
| Ha()nw()l‘ < KnSor0 (L“w ) |¢()l | ds) . (4.5.16)

For

Ay = (H_HZ] ! ]p]) l(V (€2517---7¢>M)>i - (Vn(iﬁl,h---,@/)M,l))i

an application of Corollary followed by Lemma and a combination of
({4.5.14) to (4.5.16)) yields

s 1(E S b))
5 bror

* itag L
dpd ) Sar

n+k
( Jz+ad kdq

1=

(kd)( ) — w(kd)( )

t
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sK? &dﬂ([\¢“<)”” f Xfﬁ([lw“) )Qj

([|¢“R>—wwk>

dpd )SdT
)

where the last inequality follows from the fact that for sufficiently large n € N and

i=ky,...,n+k" wehave 0 < (i +aqy— ki) /n < (i+ag)/n<1.
The above inequality and (4.5.13) imply that

1
T

(n”*Zfl@%)i‘(vz(¢h.u,¢nn)i-—(vztth.“,umLo)

converges uniformly to 0 as [ — oo for sufficiently large n € N. OJ






CHAPTER 5

Limit Theorems and Convergence Rates for Multipower

Variations of Fractional-Lévy-Motion Driven Processes

The focus of this chapter lies on the extension of the limit theorems for Lévy
driven processes, which were presented in the preceding chapters, to processes driven
by the fractional Lévy motion. Our main tool will be Remark that allows us,
by using the underlying Lévy process, to represent a process driven by the fractional
Lévy motion as a Lévy driven process.

Note that the results of the preceding chapters where the driving process is
a symmetric a-stable Lévy processes can not be extended by using Remark [I.2.13]
since by construction the underlying Lévy process of a process driven by a fractional
Lévy motion is required to be a pure jump Lévy process with finite second moments.

Moreover, in order to illustrate the applicability of the main results of this chap-
ter, i.e. Theorem and Theorem below, and to show that for some specific
kernel function many assumptions in these results become redundant, we will apply
them in the setting of Ornstein-Uhlenbeck type processes that are driven by the

fractional Lévy motion.

To provide a clear and comprehending overview of the notations and definitions
used in Theorem and in Proposition [5.0.6, we will summarise and present the

respective notations and definitions in the following details.

DETAILS 5.0.1.
o VI = VI (Viaskp) = Y I3, ‘Afiaj,nY(j)
e For each t € R the jumps of the Lévy process (L,)ser at time t are denoted
by ALy, where ALy = Ly — Ly with Ly_ 1= limgyy g4 L.

Dj
, ¢f. Definition|1.5.2.

87
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o (T,,)men 15 a sequence of F-stopping times, where F := (F,)so 45 the fil-
tration generated by the Lévy process (L;)sso, that exhausts the jumps of
(Ly)ss0, 1.€.

o (T, (w):m=1}n[0,00) ={t=0:AL, # 0},
o T (w) # T, (w) for n # m with T,,(w) < 00.

. anM) = Z;:_min(ah__@M) Hj\il lc; + hi(l+a; + U )", where
o hy(2) = ¥ lo(=1) (e = 1) forz € R,

o (U,)men 18 a sequence of independent and uniform [0, 1]-distributed

random variables that on the one hand lives on the probability space
(Q,f,fp’), which is an extension of the underlying probability space
(2, F,IP), and on the other hand is independent of the o-algebra F.

o CM) 2 nj\il |C;|” with C; :=¢; l_[figl(aj —-r).

o= H;\il(l vV p;).

7(0;,5;p;

. )
e 7:= min , where

j=1,.M  Sj

~Sip; (1= 2= 5). for6;€(1,2]
o 7;(0;,S;p;) := 7 0, Sips !
1, for6; € (0,1]
Now we come to a limit theorem for processes driven by the fractional Lévy

motion, which is based on the results in Theorem and Theorem [2.2.1]

THEOREM 5.0.2. Let L = (L;);er be a symmetric Lévy process without a Brown-
tan component, with a Lévy measure v satisfying Ilmlzl JZQI/(dl') < 00 and Blumenthal-

Getoor index f < 2. For each j = 1,...,M let 0 < d; < 1/2 and ¢; € H, cf.

Definition |1.2.9, and suppose that the functions g;,g; gen by g; = ([fj¢j), g; =0

as well as the Lévy process L satisfy the assumptions @,@,@,@,@ with respect

to the parameters a;,c;, k;,0; and in the case of 0; = 1 the assumption @ as well.

Moreover, for each j =1,...,M assume a; € Z, p; >0, S; = 1 with Zf\i 1/5; =1

and set

th = J' P;(t —s) dMéj) for teR
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with
(4) 1 ' d; d;
Mt := m _Oo(t_s)+ - (_S)+ dLs fOT’ t ER

Then by assuming for each j = 1,..., M in (i) and (iv) that
e the function f; : [0,00) = R given by f;(t) = g;(t)t™" fort > 0 satisfies
f; € C9([0,00)) with f;(0) = ¢;,
as well as in (4i1) and (iv) that

2

k; 90
o | Ai’Jnngiz(R) <n *'K for all sufficiently large n € N and i = kj,....n,

where K > 0 is a suitable constant,
we get by using the definitions and notations in Details the following results.
(4) If aj < kj = 1/(S;p;) for all j and either L is a compound Poisson process
or M =1 with py; > B then we have

M s M
nzf:lajijn(M) L= Z = Z |ALTm|Zj=1p]H,§1M> as n — 00,
m:T,,€[0,1]
(13) If oy = k; = 1/(S;p;) as well as 1/(S;p;) + 1/6; > 1 for all j and either L
15 a compound Poisson process or M =1 with py; > B then we obtain

M
nzj:1 o;p;

P = Mo
—log(n) VnM) 7= Z |ALTm|ZF1p] as mn — 00.

m:T,,€[0,1]
In the case of L being a compound Poisson process we have instead of the
convergence in probability an almost sure convergence with convergence rate
O(log(n))

(#9i) For j =1,..., M suppose that p; € (0,2) with Zie{l _____ Ay Pi < 2 and set
Qj:=2/(2- Zie{L._.,M}\{j}pi)' If for each j = 1,..., M we have Q;p; > f3
and either o; < min{k; = 1/(S;p;), k; — 1/2} and Q;p; = min{S;p;,2} or
a; < k;j = 1/p; then it holds that

T
T

Doty I g o S ALy P s - oo

m:T,, €[0,1]
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(iv) For j =1,...,M suppose that p; € (0,2) with Zie{l gy Pi < 2 and set

Qi =2/(2= Y ictu..angy Pi)- If for each j =1,.... M we have Q;p; > B,
o = k; —1/(S;p;), 1/(S;p;) +1/0; > 1 and min{Q,p,,2} = S;p; then we
deduce that

Zévil @;jPj N M
r VTSM) L7 - Z |ALTm|Zj=1pj as n — 0.

log(n) miT, e[0,1]

ProOOF. By Remark [1.2.13] we have the following identity

n+k* M

=S et =5 T [akx]”
i=k, j7=1 i=k, j=1

which holds almost surely and where
W ._
X -9 - gi(-9) d

fort=0and j=1,..., M.

A direct consequence of Lemma is that the Lévy measure v and the pa-
rameter ¢; satisfy assumption @ forj=1,..., M.

The application of [10, Theorem 1.1 (7)] and [11), Theorem 1.2 (4)] yields (i) and
(i7) in the case of M = 1. Furthermore, by applying Theorem and Theorem
2.2.1] we obtain the rest of Theorem [5.0.2 O

The following proposition will provide some insights on the properties of the

limiting random variables Z and Z in the above theorem.

PROPOSITION 5.0.3. The random variables Z and Z in Theorem are infin-
itely divisible. Furthermore, the characteristic function on 1s of the form (m
and the characteristic function of Z 1is of the form .

PROOF. See the proof of Proposition [2.0.2 0

By a similar argumentation as in the above theorem, we will now extend the

results of Theorem [4.1.1, Remark [4.1.2) Theorem Remark (i) and Corol-
lary to processes driven by the fractional Lévy motion.
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THEOREM 5.0.4. For each j = 1,..., M let LY = (L§j>)teR be a symmetric
Lévy process without a Brownian component, with a Lévy measure v; satisfying
I|x|21 xQVj(dx) < 00 and Blumenthal-Getoor index B; < 2.

Moreover, for each j = 1,...,M choose Q; 21,0 < d; < 1/2 and ¢; € H, cf.

Definition |1.2.9, and suppose that the functions g;, g; given by g; = (Idj qu) g; =0
as well as the Lévy process LY satzsfy the assumptions @ @ @ @ with respect

to the parameters o, k;,0;, where oy > k; = 1/(Q; v B;), and in the case of 0; = Q;

the assumption @ as well.
Forj=1,...,M assume a; € Z, p; >0, k; € N with k; < k; and set

) =[ ¢;(t —s) dMéﬂ for teR
with
) 1 ' d; a4 ()
Mt = m _oo(t—s)+ _(_S)+ dLS fOT‘ tER

Then by using the parameters p = max([py],...,[pm]) and r = l_[j.\il(l Vv p;),
by denoting

L ki AM) s -
V,=n J Vo '(Yia; k;p)  (cf. Definition[1.5.9),

as well as by setting

@
dt X

A\ -
(%) Xtsz' 93(‘ J)(t—s) dLi”A@IP’—a.s.,

bj

A t )
dt with X = j g;(t = s) = §;(=s) dLY",

where

we get the following results.
(i) If for j = 1,..., M there are S; = 1 satisfying Z;{l 1/S; =1 and S;p; = 1

then by assuming S;p; < Q; in the case of k; = k; we obtain

a.s.
V, —m F as n — oo.
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(#) If for j = 1,..., M we have k; < r; then by assuming p; < Q; in the case
of kj + 1 = k; it holds that

Vn _ F| - O (min (n_%min(lzplz"wp]\/f), n_ mln(l’pl/p’va/p)>)

almost surely as n — 00.

11) Suppose for j =1,...,M that k; = k; + 1, g(-ﬁj) e I? 0,00)) as well as
j J j

k.
| Ay w, 95llz2) < 00 for some N; € N with N; z k, + a;.

Then in the case of Z;\fl P < 2 we have

(]

as well as

d

for each € >0 as n — o0.

1 1
s

_(F)?

1
T

> ¢) < 2E|(V,) - (F)

) (n—% min(l,pl,...,pM))

1 — min
Vn —_ F‘ 2 8) S EE Vn — F' - O(n (Lpl/p: 7p]VI/p))

ProOOF. By Remark [1.2.13] we have the following identity

n+k* M . D n+k*™ M & P

. . J ; y J

viOviakp) = Y [ ]afe " = Y [1]ak,.x"|",
i=k, j=1 i=k, j=1

which holds almost surely.

For each j = 1,..., M we know by Lemma that the Lévy measure v; and
the parameter ¢; satisfy assumption @

Hence, the application of Theorem [£.1.1] Remark [4.1.2] Theorem [.2.1], Remark
(i) and Corollary results in Theorem [5.0.4] O

In the following remark we will consider under which assumptions on the func-
tion ¢ € H, cf. Definition the corresponding right-sided Riemann-Liouville
fractional integral (Ifgzﬁ), cf. Proposition , satisfies the assumptions in Section
21
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REMARK 5.0.5. Let 0 < d < 1/2 and denote all positive constants by K.
(i) By assuming for ¢ € H that ¢(z) = 0 for z < 0, we get g(x) = (Iffqﬁ)(x) =0
for x < 0, i.e. g and § = 0 satisfy assumption @
(ii) For ¢ € H and t,s € R we obtain by using the substitution z = ¢t — y the

following identity
(1lo)(t - s) = ﬁ J'_: d(y)(t—s—y)"dy
- o | o= - 9 = (1))
with 1,(s) = o(t - ).

Since ¢ € H implies ¢, € H for all £ € R an application of Proposition
(i1) yields (I(_i@/}t) e L*(R) for all t € R.
(i3i) Let ¢ € H with ¢(z) = 0 for < 0 and |p(z)| < pe ™ for x = 0, where
i, A > 0. By (i) we know that ([ffqﬁ)(:z:) =0 for z < 0.

Furthermore, for x > 0 we have

1 o - oz [ a4
‘([f(b)(x)‘ < X0 [ ‘¢(x—z)|zd 'dr < Ke™ j M2y — 0,
0 0 T— 00

where the limit is a consequence of L’Hopital’s rule.
Hence, (If(b) is bounded on R.
(1v) Set ¢ = x1[0,00), Where x € C’k((—g, 00)) for some £ > 0 and k € N. Then

for x = 0 we have
d * yd_l
o) = (10)(@) = [ xCe =)ty with o(p) = L.
0 I'(d)
For x > 0 an (iterative) application of Leibniz’s integral rule, cf. e.g. [15],

yields

9 = Y X0+ [ KO- iy

d-1

= d+i-k kz_é_2 d—1-r NG
= Zx(l)(())x g F((d) L) +L X )(x—y)%dy-
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Note that the function ¢ satisfies assumption @ (i) for all & > 0 and

a € [0,d], since for = 0 we have

€T d—1
(k) Yy
r—1y)——=dy| <
Uo X ( y)r(d) y

k
max,ero.01 X (5)] 4
I'(d+1)

Furthermore, by additionally assuming that ¥ € H, where y = X(k)l[o,m),
we can proceed as in (#4) in order to obtain that (If)}) e L*(R).
A combination of ([f)}) e L*(R), the identity

(I5X) (@) = J'Ox X (@ = y)u(y)dy for z 2 0

and the fact that Q/J(i) € LQ((é, 00)) for all i € NU {0} and & > 0, since we
have d — 1 < —1/2, yields that g satisfies assumption @ (i) for 6 = 2 and

an arbitrary ¢ > 0.

As our first application of Remark we will consider Ornstein-Uhlenbeck
type processes in the setting of Theorem [5.0.2]

PROPOSITION 5.0.6. Let L = (L;)er be a symmetric Lévy process without a
Brownian component, a Lévy measure v satisfying J'lezl x2u(dx) < 00 and Blumenthal-
Getoor index 3 < 2. Moreover, for j = 1,..., M suppose that \;,p; >0, S; = 1 with
ZZI 1/S;=1,d; €(0,1/2), k; €N, a; € Z, p1; € R with p1; # 0 and set

Y;m = J ¢;(t = s) dMsj) for teR
with

; 1 t d d;
Mt<]) = m [_oo(t — S)+J - (_S).'.J dLs f07" teR

and (/53'(5) = :uje_)\js]-[o,oo)(s)'
Then by using the definitions and notations in Details with a; = d; and
c; = p;/T(d; + 1) forj=1,..., M we get the following results.
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(i) Let either L be a compound Poisson process or M =1 with py > 3.
If for each j = 1,..., M we have d; < k; — 1/(S;p;) then it holds that

S

M — M
nzFldjij,fM) L= Z = Z |ALTm|Zj=1ijr<nM> as n — 00.

m:T,, €[0,1]

.....

= 2/(2 Zze{l _____ M}\{j}pl) If for eachj =1,..., M we have Q;p; > 3

and either d; < min{k; — 1/(S;p;), k; — 1/2} and Q;p; = min{S;p;,2} or
dj < k;j —1/p; then we obtain
M —s Mo
nzf:ld"p"VrfM> Ly Z |ALTm|Z'7=1"’)”H,<n]\/‘[> as n — 00,
m:T,,€[0,1]
PROOF. Throughout this proof we will for j = 1,..., M write (-) instead of j.
d. ~
Let gy = (I+()¢(.)), 9y E0, gy =dgy, ¢y = M(.)/F(d(.) + 1) and (9(.) = 2.
By Remark (4) to (i) and Lemmal|l.2.2} the functions g.), §.) and the Lévy

process L satisfy the assumptions @,@,@,@ with respect to the parameters a.y,

K¢y and 6(.y. Furthermore, an application of L’Hopital’s rule, where the derivative of

g(.) can be obtained by using Remark (iv), yields that g(.y satisfies assumption

@ with respect to the parameters a(.y and c(.y.

For arbitrary k¥ € N and 6 > 0 it follows directly from Remark (iv) that

g €C ((O 00)), g (k) €L ((6,00)) and |gy(t)] < Kt*O™ for t € (0,4) and some

constant K > 0.

Moreover, for k € N and ¢ > 1 an (iterative) application of integration by parts

in combination with Remark (iv) results in

””(t) _

i ]_[]C é ’(1- dey+1) bk (7 des(s—t) gdet
_)kl N gtk e +(_1))\.[ o ST
Z © I'(d.)) © ['(d.y)
k—i—2
= (_1)k6-A(~>t(L Jl Ays )=l g Z)\ A()l_[r o (I—dgy+7)
T(d(y) 0° T(d(y)

k-1
]._[rz()(l - d() + T) te)\(,)ssd(,)—l—kds)
F(d(.)) 1
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t
= (—1)ke_)‘(')t( K+ K[ 071071 g g ), (5.0.1)
1

v
—00 as t— 00

where K € R as well as K > 0 are suitable constants.

Note that for k£ € N and all sufficiently large ¢ > 1 by (5.0.1)) we have

k . k (k
|90y 1(t) = sign(pacy) (=1)" g5 (1)
and therefore also

d. (& . k (k+1
90y 106) = sien(ue)) (=) gty™ (1) < 0.

Hence, for each k € N there exists a § > 0 so that the function | gg,k))| is decreasing
on (0, 00).

We can conclude this proof by applying Theorem (i) and (zi7) since the
functions g(.), gy and the Lévy process L satisfy the assumptions @ to @ with
respect to the parameters av.), c(.y, k(.),0(.) and by Remark (i1) we have

k. 2 —2ay—1
| &) 90llz2@) < Kn™ 07,

where K > 0 is a suitable constant, n € N is sufficiently large and 7 = k.y,...,n. O

Now we will use the results of Remark 5.0.5 in order to illustrate Theorem
5.0.4l in the setting of some specific linear combinations of Ornstein-Uhlenbeck type

processes.

PROPOSITION 5.0.7. For each 7 = 1,..., M let LY = (Lﬁj))teR be a sym-
metric Lévy process without a Brownian component, a Lévy measure v; satisfying
Ile ZEQI/j(dZE) < 00 and Blumenthal-Getoor index 3; < 2.

Moreover, for j =1,...,M assum p; >0, d; € (0,1/2), k;, k; € N with k; < k;,
a; € Z and set

Y;m = J' ¢;(t = s) dMS(j), for teR
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with
(). 1 ! d; d; (4
Mt .= m _oo(t - S)+ - (_S)+ dLs fO’r’ t (S R
Kj+2 [
and ¢;(s) = x;(8)1[0.c0)(5) = D pige 1[0,00)(8), where 0 < Ajy < -+ < Aok +2
and the parameters iy, . .., ;. +2 € R are chosen so that we have Zfilﬁ i/ N #0

as well as x;(0) = Xg-l)(()) = = X;-Hj)(()) = 0.

Then by setting
M
vV, = n_1+2j=1kjij,fM>(Y;a;k‘;p) (cf. Definition[1.3.9),
1 M t LB w7t )
F:J J J' t—s—u du |dL;
1 _m( A ) )

: ()
as well as p = max([pi],...,[pa]) andr = H;\/:I1(1ij) we get the following results.

bj

dt

(i) If for j = 1,..., M there are S; = 1 satisfying Zj‘/:[l 1/S; =1 and we have
S;p; = 1 then it holds that

a.s.
V, —m F as n — oo.

(i) If for j =1,..., M we have k; < k; then we obtain

v, - F' _ (’)(min (n—%min(Lm ----- pa) = min(Lpi/p,... pM/p)))

Y

almost surely as n — 00.

(ii2) If Z;\flpl <2 and forj=1,...,M we have k; = k; + 1 then we deduce that

P(|[() = ()] 2 <) = 2B| (V)7 = (F)7| = 0 (s mnthoem)

as well as

P('Vn —F| > 5) < %E

v, - F‘ _ O(n—miﬂ(lm1/ﬁ ,,,,, :DM/P))

for each e >0 asn — oo.

PROOF. Throughout this proof we will for j = 1,..., M write (-) instead of j
and (-) instead of (j).
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Let goy = (1376), Gy = 0, agy(k) = dey + k for k € NU {0}, 6y = 2 and
choose Q(.y > max{S;p(.y,2}.

By Remark (i) to (iii) and Lemma [1.2.2] we know that the Lévy process
L('), the functions g(.y, gy and the parameter 6.y satisfy the assumptions @,@ and
(3). Since by assumption (3), we have g.) € L*(R), we get || A:E:;No) gyl 2wy < 00
for some Ny € N with Ny = k, + a(..

Moreover, by Remark [5.0.5 - (iv), we know that for each k = 0,1,... K¢y + 1
we have on the one hand gy € C’H“H((O 00)) as well as g( )) €L ((5, 00)) for an
arbitrary 0 > 0 and on the other hand

k—1-2 diy—1
dy—=1-r t )
(k) t)— ZX O)t () +i— kl_[ ( () )+J ng))(t—s)s—ds
0

I'(dy) I'(d(.y)
='0
k K()+2
—A(.),l(t—s) diy-1
s ds 5.0.2
= <1
for t > 0.
For each k£ = 0,1,..., k() the representation in ([5.0.2)) respectively the represen-
tation above it allows us to obtain
(k) d agy(k)—k
lgey | = K™ = K™

for t € (0,9), where 6 > 0 is arbitrary and K > 0 is a suitable constant, as well

as by setting ¢ = Xgi)l[o,oo) to proceed as in Remark |5.0.5| (7¢) in order to get
(k) 2
90 €L ((07 Oo))
Furthermore, for ¢ > 1 and k& = 1,2,... k) + 1 an (iterative) application of

integration by parts in (5.0.2)) yields

(k) (_1)k gy k Aoyt ! A dey-1
gy (1) = Ay e O J/ e O s
() () = T(dy) L& MO0 .
K(.)+2 k—1 . k—i—2 1-d +r
+ (_1)k+l M(.),le—/\(.)’lt Z )\’E,)’l ’\(')yl l_[ ( () )

F(d(.))

=1 =0
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k-1 K()+2 ¢

Rl Lo (1 =dey + 1) J Aeya(s—t) dey—1-k

+(-1) i e TS0 g
[(dgy) ; Rl

k-1 K()+2
L Wl Lo (L —dey +7) po =1k
e T S ) e

(5.0.3)

i K()+2 i
where in order to get the first equality we used XE%(O) = z:(1)+ peyaAy, = 0 for

i=0,1,..., Ky and the second equality follows by combining L’Hopital’s rule with
the fact that for A > 0 we have e ™ = o(1)t*0™' 7% as ¢ - 0.

Note that by (5.0.3) for all sufficiently large ¢ > 1 we have

K(.)+2
(k) : F(o) k (k)
Ig(.)l(t)=81gn(z )( D)y (#) for k=1, re+1
=1 Ol
and therefore also
K()+2 [
(k) . H) k (k 1)
dt' () |(t)=SlgIl(Z )( 1) * (t)<0 for k=1,...,f€(.).
=1 7O
Hence, for each k = 1,..., k() there exists a ¢ > 0, so that the function |gék))| is

decreasing on (¢, 00).

Since for each k = 1,..., K the functions g(.), gy and the Lévy process I
satisfy the assumptions @,@,@,@ and @ with respect to the parameters o) (k),
k, 0.y and we have a(y(k) =k > —=1/(Q(y V (), we can conclude this proof by
applying Lemma [4.5.3, which leads to

d\o . t , :
(%) X§>=J' g((f“)<>)(t—s) AL NP - as.,

as well as by applying Theorem [5.0.4] U
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