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Abstract

Maps representing the detailed features of the road network are becoming more

and more important for self-driving vehicles and next generation driver assistance

systems. The mapping of the road network, by specially equipped vehicles of the

well-known map providers, leads to usually quarterly map updates, which might

result in problems encountered by self-driving vehicles in the case that the road

information is outdated. Furthermore, the provided maps could lack details, such as

precise landmark geometries or data known to exhibit a fast temporal decay rate,

which might be, nevertheless, highly relevant, such as friction data.

As an alternative, extensive amounts of information about the road network can

be acquired by common vehicles, which are, nowadays, commonly equipped with

manifold types of sensors. Subsequently, this type of gathered data is referred to

as CVD1. The process of map creation requires, at first, the extraction of relevant

sensor data at the vehicle-side and its accurate localization. Unfortunately, sensor

data is typically affected by measurement uncertainties and errors. A minimization

of both can be achieved by means of an appropriate sensor data fusion.

This work aims for a holistic view of a three-staged pipeline, consisting of the

extraction, localization, and fusion of CVD, intended for the derivation of large-scale,

high-precision, real-time maps from collective sensor measurements acquired by

a common vehicle fleet. The vehicle fleet is assumed to be solely equipped with

commercially viable sensors. Concerning the processing at the back-end-side, general

approaches that are applicable in a straightforward manner to new types of sensor

data are strictly favored. For this purpose, a novel distinction of CVD into areal,

point-shaped landmark, and complex landmark data is introduced. This way, the

similarities between different types of environmental attributes are exploited in an

overall highly beneficial manner; and the proposed algorithms can be adapted to

new types of data that appertain to these categories by appropriately adjusting their

parameterizations.

To achieve the above mentioned goals, both novel approaches, where the research

lacks established ways, and relevant extensions/adaptations of existing ones are

suggested to fulfill the very specific, automotive requirements. To briefly sum up,

the major aspects tackled within this thesis are

1 Collective Vehicle Data (CVD)



– the precise vehicle localization by utilizing GNSS2-postprocessing at the back-

end-side, which is shown to both significantly improve the localization accuracy

and to be feasible for the use case of CVD,

– an extension to global submapping, referred to as adaptive partitioning, which

allows the subdivision of large-scale problems into small chunks in an adaptive,

consistent, and resource efficient manner,

– a novel approach for determining temporal weighting in an adaptive manner,

which allows to appropriately derive the landmark and localization specific

temporal decay rates in a highly efficient way by means of preaggregation,

– a highly efficient, multi-hypothesis clustering based upon JCBB3 data asso-

ciation, which involves i. a. a novel multi-criteria cost-function that allows

a goal-oriented selection of the most probable hypotheses from a principally

exponential search space,

– a novel approach to the simultaneous fusion of possibly only partially observed

complex and non-complex landmark observations, which are allowed to exhibit

tight attribute interdependencies, and are, therefore, provided in the shape of

a novel, parametric description, the so-called ADG4,

– a novel, double-staged approach to areal data fusion, which is both scalable

and incrementally computable, and exploits the FGT5 in the case of batch

inserts or updates to enhance the computational efficiency by up to a factor of

ten,

– a novel, highly flexible, and modular instantiation of the suggested approaches

at both the vehicle- and back-end-side, and

– a novel, highly flexible, and efficient data storage, which utilizes hierarchi-

cally cascaded templates, and which can be, moreover, considered to be the

foundation stone for the definition of generalized processing functions.

All in all, this thesis condenses a broad and manifold research concerning the

deduction of large-scale and high-precision map data grounded on preprocessed

sensor measurements that have been acquired by common vehicles, the so-called

CVD. The focus is put on the utilization of commercially viable sensors. Additionally,

besides its broad perspective, this thesis also emphasizes highly relevant details, such

as the efficient, adaptive temporal weighting of sensor data at the back-end-side

and the template-based hierarchical data storage. A complete pipeline, consisting

2 Global Navigation Satellite System (GNSS)
3 Joint Compatibility Branch and Bound (JCBB)
4 Attribute Dependency Graph (ADG)
5 Fast Gauss Transform (FGT)



of the extraction, localization, and fusion of CVD, is presented and evaluated, as

each component is known to have a direct impact on the quality of the deduced map

data. Approaches to the fusion of areal and point-shaped/complex landmark data

are either invented from scratch or significantly enhanced according to the state of

the art, always bearing in mind the highly specific needs of the automotive context.





1
Introduction

The chapter starts with a motivation of the guiding theme of the thesis, the automatic

generation of up-to-date maps from sensor data acquired by a fleet of vehicles. After-

wards, it illuminates three key steps to achieve this goal, “extraction”, “localization”,

and “fusion” of collective vehicle data (CVD), in the automotive context. Then

the concept of solution presented in the thesis is outlined, and the most important

contributions are pointed out. The chapter ends with surveys of the structure of the

thesis and of publications by the author.

Contents
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1.1 Motivation

Digital maps representing the road network and its current state are becoming more

and more important for self-driving vehicles and next generation driver assistance

systems. Digital maps can be considered as an additional, virtual sensor with an

extensive foresight, that extends the typical sensor set of modern vehicles in a sensible

manner. A particular strength of this virtual sensor is that it is not exposed to

occlusions or adverse weather conditions. However, it is directly affected by the

quality and freshness of the map data it is grounded on. Therefore, maps of a high

quality and up-to-dateness are mandatory, especially if incorporated in safety-critical

systems, such as piloted driving ones.

In today’s times, the mapping of the road network by specially equipped vehicles

of the well-known map data providers leads to usually quarter-wise map updates.

This low frequency of updates is in particular an issue for self-driving vehicles.



8 1 Introduction

Figure 1.1: Modern vehicles incorporate manifold types of sensors which can be
utilized for the acquisition of CVD and, this way, for the collaborative
mapping of the road network and for gaining information about its
current state by means of sensor data fusion.

Furthermore, the maps usually lack specific details, such as the exact geometry of

roundabouts, or information about the road network that has a rapid temporal decay,

for example that a road segment is slippery.

An approach to cope with this problem is to utilize the manifold types of distinct

sensors incorporated within today’s common vehicles (figure 1.1), such as cameras,

ultrasonic sensors, lidars, radars, illumination/rain/temperature sensors, inertial

sensors, and GNSS1-receivers. The road network and information about its current

state can be collaboratively gathered by common vehicles, using those sensors, and

transmitted to a common back-end where they are subsequently fused to detailed up-

to-date maps with supplementary information which are back-propagated to vehicles

for further use. The sensors of common vehicles do not always achieve the quality

of the costly, highly specialized equipment of mapping vehicles, for instance due to

commercial constraints. However, as common vehicles are able to collaboratively

acquire vast amounts of corresponding sensor data, the hope is that imperfections

of the data may be compensated in practice by exploiting the redundancy of the

measurements made. This way of derivation of high-precision and highly up-to-date

map data and supplemental information based upon CVD2 can be considered as

a very promising approach that will empower next generation piloted and driver

assistance functions. The thesis makes novel contributions to this approach.

1.2 Extraction, Localization, and Fusion

Three key steps are crucial for the collaborative mapping of the road network and

gaining information about its current state by common vehicles: the extraction of

sensor data from the vehicle fleet, its accurate localization, and its precise and robust

fusion.

1 Global Navigation Satellite System (GNSS)
2 Collective Vehicle Data (CVD)



1.3 Automotive Requirements 9

Extraction refers to the process of acquiring CVD from the vehicles, and propagating

it to a common back-end. The data reaching the back-end can directly originate

from sensors, or may be preprocessed at the vehicle-side by ECU3s. However, due to

bandwidth limitations that are imposed by the cellular network and limitations of

computational resources at the back-end-side, the propagation of sensor raw data can

be considered as commonly infeasible. Instead, alternative approaches that represent

this data more concisely are highly desirable.

Localization means the detection of the current geographic locations of the vehicles.

An accurate localization can be considered as vital for the precise geographic refer-

encing of the acquired sensor data. The quality of localization is commonly regarded

to directly affect the quality of the fusion. Highly accurate approaches to localiza-

tion are known from geodesy and usually provide an absolute accuracy within a

centimeter range. However, those approaches usually cannot be directly incorporated

within common vehicles due to economic constraints. Unfortunately, this by now

excludes especially dual- and multi-frequency GNSS receivers, and high-grade IMU4s.

Therefore, other ways of gaining a precise vehicle navigation are required.

Fusion is concerned with combining the collaboratively acquired and subsequently

referenced sensor data in a way that highly-precise and large-scale maps are gained.

Different types of real-world artifacts, such as traffic signs or friction data, usually

require distinct approaches. On the other hand, generic approaches to the fusion of

CVD would minimize the adaptation time for new use cases and types of artifacts.

It is a challenge to combine both principally converse requirements.

An illustrative scenario including acquisition, fusion, and back-propagation of CVD,

is visualized in figure 1.2. Detected roundabouts, slippery road segments, stop-and-go

traffic, and traffic sign observations are exemplary reported to the back-end-side by

means of the cellular network. At the back-end-side, the CVD received is fused and

provided as a-priori data to subsequent vehicles.

1.3 Automotive Requirements

From the automotive point of view, universality, scalability, incrementality, high-

precision, robustness, and compensation for temporal decay are considered as crucial

properties of a pipeline intended for the fusion of CVD. In the following, these

aspects are explained in detail and, furthermore, a fundamental set of requirements

considered within this thesis is constituted.

3 Electronic Control Unit (ECU)
4 Inertial Measurement Unit (IMU)
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Figure 1.2: An exemplary scenario visualizing the processing cycle of CVD, con-
sisting of data acquisition, subsequent data propagation to a common
back-end, and the back-propagation of the fused data to successive
vehicles.

Universality

Universality means that the incorporated acquisition, propagation, and processing

steps are applicable to distinct types of CVD. This way, development and maintenance

costs can be significantly reduced, and the adaptation to new use cases and types of

CVD can be eased. The requirement of universality can be considered to affect the

full CVD chain.

Scalability

The processing of CVD is required to tackle large scale. For this purpose, a pipeline

for processing CVD needs to be scalable. Horizontal scaling is of special interest,

as it enables to scale out the usually computationally expensive processing to a

theoretically indefinite amount of computing units. In comparison, the impact of

vertical scaling against the backdrop of huge amounts of acquired CVD is limited,

however, should still be not neglected.

Incrementality

Generally, incrementality allows, in the case of new CVD input, to reutilize former

computational results for determining subsequent aggregates. Usually, this way

valuable computational resources can be saved. Especially in the case of applications

with huge amounts of data, incrementality significantly matters.
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High-Precision and Robustness

As the derived map data and information is intended to be principally utilized within

self-driving vehicles and next-generation driver assistance systems, the precision

and robustness of the fusion has to be particularly considered. The precision can

usually be measured by determining the deviation from the ground truth. Measuring

robustness is usually more complicated and commonly requires to be defined for

each application individually. For example, the robustness of a fusion algorithm can

be determined based upon its risk of divergence and the robustness of a clustering

algorithm upon its risk of undesired cluster splits.

Compensation for Temporal Decay

The road network and information about its current state are exposed to environmen-

tal dynamics. Therefore, CVD is significantly affected by temporal decay and should

be only fused in an appropriately weighted manner. However, temporal weighting

can be considered as a challenging task, as the actual decay rate is actually influenced

by manifold aspects.

1.4 Approach of the Thesis

The thesis considers the extraction, localization, and fusion of CVD in a holistic

manner and presents solutions under consideration of the requirements of the previous

section on the following basis. The CVD is collected by a fleet of common vehicles

equipped with usual sensors, and transmitted to the back-end-side. At the back-end-

side the fusion of the collectively acquired artifacts of the environment is performed.

Subsequently, the back-end-side provides the fused artifacts as a-priori information

to consecutive vehicles.

A central, novel idea of the thesis is to assign artifacts of the environment to be

mapped to one of the three classes: point-shaped landmarks, complex landmarks, and

areal properties. Each of those classes is treated by specific methods.

Point-shaped landmarks are artifacts with such a minor extent that their geographic

representation by a point is sufficient. Examples are traffic signs, traffic lights,

reflector posts, and other pole-like objects.

Complex landmarks are artifacts whose geometric shape is relevant, such as cross-

roads, roundabouts, traffic islands, pedestrian crossings, or sign gantries. The class

of complex landmarks is considered as an extension of the class of point-shaped

landmarks. This makes algorithms for the fusion of complex landmark data suitable

for the fusion of point-shaped landmark data as well.

Areal properties denote properties which exist at every geographic location, such as

temperatures, illuminations, frictions, or signal strengths.
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Figure 1.3: The processing chain for the generalized extraction, localization, and
fusion of CVD. The chapters corresponding to the individual steps of
the processing chain, concerning both the vehicle- and back-end-side,
are indicated by encircled ˝ numbers.
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The core of the approach is a hybrid processing chain located both at the vehicle-

and the back-end-side (figure 1.3).

The processing chain at the vehicle-side is responsible for extracting and localizing ar-

tifacts of the environment, transforming them in a concise, parametric representation,

and propagating them to the back-end-side for collaborative fusion.

Every measurement is related to an individual vehicle and has two components: a

report and a trace. A report contains observations acquired by the vehicle sensors and

a trace gives the corresponding vehicle trajectory. The data items are stochastic and

usually represented by a single- or multi-dimensional value and variance or covariance

information. Each report is associated with one of the three artifact classes.

The processing chain at the back-end-side combines the specific methods of the

classes of artifacts with general steps shared by all methods. Its input consists of

measurements sent by the vehicle fleet. The back-end-side first persists the received

reports and traces according to their class in a hierarchical, template-based data

storage. Subsequently, the observations in a report are geographically referenced with

regard to the corresponding vehicle trajectory of the associated trace. Geographical

referencing is performed by a known method of stochastic compounding which yields

location estimates with covariances. The further steps are depending on whether the

class of artifact is “point-shaped” or “complex” on the one hand, and “areal” on the

other hand.

Data of point-shaped and complex landmarks, in the following denoted as “point-

shaped landmark data” and “complex landmark data” for short, first undergo a step

of clustering. The purpose of clustering is to group corresponding observations,

i. e. observations which belong to the same point-shaped/complex landmark. Three

well-known approaches to data association, ICNN5, SCNN6, and JCBB7, are extended

to clustering approaches by allowing dynamic map updates and are enhanced with

respect to the automotive requirements. Afterwards, the fusion of point-shaped

landmark data is performed by adapting several approaches from the fields of

stochastic sensor data fusion and robotics: (F)CI8, EKF9-based Online-SLAM10, and

BA11-based Full-SLAM. For complex landmark data EKF-based Online-SLAM and

BA-based Full-SLAM are adapted. For this purpose, parametric representations of

the landmark data are used, in particular the newly introduced ADG12 for complex

5 Individual Compatibility Nearest Neighbor (ICNN)
6 Sequential Compatibility Nearest Neighbor (SCNN)
7 Joint Compatibility Branch and Bound (JCBB)
8 Covariance Intersection (CI)
9 Extended Kalman Filter (EKF)
10Simultaneous Localization and Mapping (SLAM)
11Bundle Adjustment (BA)
12Attribute Dependency Graph (ADG)
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landmark data. The ADG makes all components of information and their relation

simultaneously available to the incorporated fusing procedure. The output of the

fusing procedure are estimates with covariances of landmarks.

The fusion of “areal data”, i. e. data of areal artifacts, consists in calculating an

approximating function represented by function values at the vertices of a regular

grid. The data function is represented as a weighted sum of elliptic basis functions

located at the data samples. In addition to the data function, an uncertainty function

is introduced which evaluates the uncertainty of the values of the data function.

The FGT13 is employed for efficient updating of the sums of basis functions in a

batch mode. As an additional application, it is shown how the uncertainty function

can be used to derive lane centerline geometries. In this case, the vehicle positions

from the trace data are considered as areal data. The uncertainty function provides

information about the density of the vehicle positions, and centerlines of lanes are

assumed at locations of a high density.

The final step of the processing chain persists the point-shaped/complex landmark

estimates and approximated areal properties, and makes them available on demand

to the vehicle fleet.

1.5 Main Contributions

Within the thesis, extensions and adaptations of existing approaches, which are

known to the state of the art, as well as novel solutions, where the research lacks

established ways, are presented for the specific use case of the extraction, localization,

and fusion of CVD. The main contributions are as follows.

An effective categorization of environment artifacts

By distinguishing environment artifacts to be mapped into just three big categories,

i. e. point-shaped landmarks, complex landmarks, and areal properties, an effective

generic treatment instead of an ineffective individual treatment of many sorts of

artifacts has been made possible [117].

An efficient and generalized processing chain for dynamic mapping

Based on the categorization of environment artifacts, an efficient and generalized

processing chain comprehending the extraction, localization, and fusion of CVD has

been designed. For its proof-of-concept, a software architecture has been evolved

and implemented [115, 116, 117]. The universal representation of CVD based on

hierarchical templates can be regarded as its foundation [107, 112, 117].

13Fast Gauss Transform (FGT)
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Employing generalized methods for efficient and quality-increasing pro-

cessing

Two essential concepts, adaptive partitioning and temporal weighting, are employed

(chapter 4). Those concepts allow for an efficient scalable processing of large-scale

data sets by spatial and temporal locality. Additionally, locality can be used to

achieve more precise linearizations and, therefore, more precise estimates of artifacts.

Adaptive partitioning is an extension of the method of global submapping, which

allows to scale the processing of CVD in a computationally efficient and consistent

manner for large-scale maps [115, 116].

A novel approach to temporal weighting allows determining appropriate temporal

weights in a highly efficient and adaptive manner by means of preaggregation [109,

115, 116, 117]. Temporal weights are assigned to the current and past observations

and the corresponding trajectory information. The reason is that the road network

and information about its current state are exposed to environmental dynamics

which decays its relevance for the future. This fact is taken into account by the

weights which decay with increasing history of observations and which specify the

amount to which past observations are considered at the fusion step. The weights

are efficiently determined from a circular-buffer-based data structure which stores

condensed information about the past and which is permanently updated.

A method for improving the precision of vehicle localization

An adaptation of PPP14-based GNSS vehicle localization by means of postprocessing is

suggested for the use case of precisely georeferencing CVD [115, 116, 117] (chapter 3).

The novelty is that the vehicles are required to propagate GNSS raw data to the

back-end-side. This way, in fact, the computational effort is shifted from the vehicle

to the back-end-side. However, significantly more precise localization results can be

gained. By providing more accurately referenced CVD to the actual fusion algorithms,

their convergence rate and accuracy is positively affected.

A novel extension of JCBB for data clustering

A novel extension of JCBB from a pure data association to a clustering algorithm

by utilizing a generalization of BB15, the so-called GBB16, in combination with the

BFS17 search strategy is introduced [113, 116]. As the number of hypotheses does

principally evolve exponentially with every new observation, a novel, multi-criteria

cost-function for limiting the search to the η most promising hypotheses at each level

14Precise Point Positioning (PPP)
15Branch and Bound (BB)
16General Branch and Bound (GBB)
17Breadth-First Search (BFS)
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of the GBB tree is suggested. This way the algorithm can be also deployed under

computational resource limitations and/or for real-time applications.

An approach to the fusion of point-shaped landmark observations

The applicability of several state-of-the-art approaches to the fusion of point-shaped

landmark data is investigated (chapter 7). For this purpose, own derivations of the

suggested algorithms are provided, which aim to fulfill the imposed requirements of

the large-scale point-shaped CVD fusion. The reader may also refer to the previous

work of the author [104, 114], which focuses purely on the robust determination of

the longitudinal position of point-shaped landmarks by utilizing map-matching and

supervised learning. This previous work can be regarded as influential concerning

the decisions made within this thesis.

An approach to the fusion of complex landmark observations

A novel approach to the fusion of complex landmark observations is presented [108,

110, 111, 112, 116] (chapter 8). Complex landmarks are described in a novel and

highly generic manner by means of an ADG. This way, the fusion can be easily

adapted to new types of complex landmarks. Furthermore, the algorithm is able to

fuse multiple types of point-shaped/complex landmarks in one single pass and is,

therefore, able to exploit tight correlations between them.

An efficient double-staged approach to the fusion of areal data

A novel, double-staged approach to the incremental fusion of areal data is pre-

sented [105, 115], which is tailored to suit the specific requirements of the large-scale

CVD fusion (chapter 9). Additionally, it is evolved, in the case of a batch insert or

update, how the areal data fusion can be sped up by more than ten times by means

of the FGT. For this purpose, a state-of-the-art variant of the FGT, the so-called

FIGTree18 algorithm, is extended in a novel way to simultaneously handle distinct

multivariate Gaussian distributions. Furthermore, a novel approach for the derivation

of lane centerline geometries from the uncertainty function of the double-staged areal

data fusion is proposed [106, 115].

1.6 Organization of the Thesis

Chapter 2 gives a survey of the state-of-the-art of CVD. Furthermore, distinct use

cases/benefits and limitations/challenges known to the state of the art concerning

CVD are pointed out, cross-references concerning the topics and aspects tackled

within the thesis are established.

18Fast Improved Gauss Transform with Tree Data Structure (FIGTree)
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Chapter 3 addresses aspects of localization of vehicles and CVD: precise localization

of vehicles, modeling of vehicle motion for SLAM, and stochastic compounding of

relative measurements for geographic referencing of sensor data.

Chapter 4 is devoted to adaptive submapping and temporal weighting.

Chapter 5 introduces the parametric description of point-shaped landmarks. It gives

an overview of the approach to the fusion of point-shaped landmark data, whose

details will be presented in the following two chapters.

Chapter 6 is concerned with data association respectively clustering. It presents

measures of correspondence, extended versions of the existing approaches “Individual

Compatibility Nearest Neighbor (ICNN)”, “Sequential Compatibility Nearest Neigh-

bor (SCNN)”, and “Joint Compatibility Branch & Bound (JCBB)”, and the results

of experimental evaluations.

Chapter 7 elaborates the fusion of point-shaped landmark data based on the results

of the clustering. It comprehends the fusion via (F)CI, fusion via EKF-based Online-

SLAM, and fusion via BA-based Full-SLAM, and related evaluations.

Chapter 8 is devoted to the fusion of complex landmark data. It defines the parametric

description of complex landmarks, presents approaches of fusion via an extended

formulation of EKF-based Online-SLAM and fusion via an extended formulation of

BA-based Full-SLAM and reports on an evaluation of BA-based Full-SLAM for two

scenarios.

Chapter 9 presents the double-staged areal data fusion and the approach to derivation

of lane centerline geometries.

Chapter 10 elaborates the instantiation of the processing chain for CVD at both

the vehicle- and back-end-side, and introduces the hierarchical template-based data

storage.

Chapter 11 briefly summarizes the central aspects of the thesis. Furthermore,

recommendations for extensions thereof are provided.

1.7 Publications

Contents of the thesis have been published in several conference papers and patents.

The paper with the title “Large-Scale Fusion of Collective, Areal Vehicle Data” at

the IEEE International Conference on Multisensor Fusion and Integration (MFI)

2015 [115] presents the approach of fusion of areal data (chapter 9) and the PPP-based

GNSS vehicle localization by means of postprocessing (chapter 3.2.2).
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The paper “Parametric Fusion of Complex Landmark Observations Present within

the Road Network by Utilizing Bundle-Adjustment-based Full-SLAM” at the Inter-

national Conference on Information Fusion (FUSION) 2016 [116] presents the fusion

of complex landmark data by BA-based Full-SLAM (chapter 8). It comprehends

the extension of global submapping (chapter 4.2), the approach to determining

appropriate temporal weights by means of preaggregation (chapter 4.3), methods of

data association (chapter 6), and PPP-based GNSS vehicle localization by means of

postprocessing (chapter 3.2.2).

The paper“Selected Aspects Important from an Applied Point of View to the Fusion of

Collective Vehicle Data” at the IEEE International Conference on Multisensor Fusion

and Integration (MFI) 2016 [117] gives a survey of different aspects and contributions

of the thesis: the generalized pipeline for the extraction, localization, and fusion of

distinct types of CVD (chapters 1.4 and 10), the PPP-based GNSS vehicle localization

by means of postprocessing (chapter 3.2.2), the approach for determining appropriate

temporal weights by means of preaggregation (chapter 4.3), and the concept of

universal storage of CVD based on hierarchical templates (chapter 10.4).

The results presented in those publications and in the thesis are original contributions

by the author. The co-authors supported in their role of supervisors, to the usual

extent, by discussions of specific technical aspects, and gave hints with respect to

the presentation of the results.

Furthermore, several contributions of the thesis have been transferred into patents of

the author:

DE102015000394: Double-staged approach to the fusion of areal data (chapter 9).

DE102015000399: Derivation of lane centerline geometries from the intermediate

results of the double-staged areal data fusion (chapter 9).

CN107077784, DE102015001247, EP3158295, US9983307, WO2016120001:

Approach to the fusion of complex landmark observations (chapter 8).

DE102015001193: Adaptive temporal weighting by preaggregation (chapter 4.3).

DE102015001194, WO2016120004: Universal storage of CVD based on hierarchical

templates (chapter 10.4).

Finally, the master’s thesis of the author entitled “Dynamic georeferencing of

location-related fleet data for smart map services” [104] and the related patent

DE102013009856 [114] have to be mentioned. This work focuses purely on the

robust determination of the longitudinal position of point-shaped landmarks by

map-matching and supervised learning. It can be regarded as influential with respect

to decisions made within this thesis.
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State of the Art

In this chapter, the origins of the acquisition of CVD1 are briefly summarized.

Potential use cases/benefits and limitations/challenges are illuminated. Furthermore,

topics and aspects treated in this thesis are cross-referenced and motivated.
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2.1 Introduction

As stated by Bishop [5] common vehicles, such as private cars, taxis, and lorries,

can be valuable sources of information concerning the road network and its current

state. It is usually sufficient that a small percentage of these vehicles, according to

Huber et al. [57] approximately 1-5 %, has to be equipped with the functionality of

gathering and propagating sensor data, the so-called CVD, to a central instance.

The percentage required is known to be dependent on multiple factors, such as the

type of the data acquired, the frequenting of the road, and the incorporated data

aggregation algorithms (section 2.3.4). The acquisition of CVD has a long history

in Europe [5]. In Germany, for example, the Gesellschaft für Verkehrsdaten mbH is

acquiring and processing CVD since 1997 [57].

For the purpose of gathering CVD, it is highly beneficial to equip modern vehicles

with diverse sensors. The collectively acquired data can be subsequently fused and

provided to other vehicles as a-priori information. Such data is not acquirable for

large-scale by conventional measuring methods, such as camera or induction loop

1 Collective Vehicle Data (CVD)
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based ones [12, 73]. The fused data can be incorporated into navigation systems, next

generation comfort, assistance, or piloted driving functions [12, 57]. Nevertheless,

manifold technical challenges have to be tackled for the large-scale utilization of

CVD (section 2.3).

As alternatives to the gathering of information about the road network by common

vehicles, satellites and mobile phones are exemplified by Bishop [5]. Apple and

Google are prominent examples of gathering information by means of mobile phones.

The acquired data is processed and, for instance, incorporated into their map services.

However, current vehicles are able to perceive their environments usually more

comprehensively than mobile phones. This is due to the extensive sensor set of

today’s cars. The acquisition of comparable sensor data by satellites has been i. a.

evaluated by the European Space Agency [5]. The shadowing by large buildings

has been identified as the major restriction of satellite-based systems, compared to

the acquisition of CVD by common vehicles. For those reasons, the acquisition of

information about the road network by common vehicles can be regarded as the

(currently) most favorable way.

2.2 Use Cases and Benefits of CVD

In the past, diverse projects of acquisition and processing of CVD have been initiated.

The acquisition of CVD by common vehicles is a cost-effective way of gathering

information about the road network when comparing it to current state-of-the-art

camera or induction loop based monitoring systems [73]. Furthermore, CVD allows

for principally deriving estimates of large-scale, high-accuracy, timeliness, and fine-

granularity [28]. In the following, a survey of potential use cases for the utilization

of CVD and the related benefits is given.

Lorkowski et al. [74] have evaluated the elicitation of CVD by taxis, which was

motivated by their above-average mileage. As stated by Reinthaler et al. [98]

and Brockfeld et al. [12] experiments have revealed that CVD acquired by taxis

is representative for privately owned vehicles. After filtering the provided data,

approximately 85 % of the data was identified to be suitable for the subsequent

processing [13, 74]. According to Brockfeld et al. traffic congestions could be

identified based upon this data with both a high reliability and a low latency of just

a few minutes. However, real-time applications, such as controlling traffic lights,

were classified as not achievable in this way. This was mainly due to bandwidth

limitations of the cellular network and the, therefore, intentionally reduced data

acquisition frequencies (section 2.3.2).
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Furthermore, Lorkowski et al. [74] made a first attempt to derive digital road data

solely from CVD. It is assessed that the GNSS2 self-localization of common vehicles

is principally not accurate enough for this type of application, due to commercial

constraints of the utilized hardware. However, by combining localization data

acquired by multiple vehicles, the inaccuracies induced by the utilized sensors can

be (partially) compensated, as emphasized by the authors. Within this thesis, the

aspect of deriving digital road data is also addressed in detail (chapter 7, chapter 8,

and section 9.10.4). The challenge of gaining a precise vehicle localization in a

commercially viable manner is tackled by means of postprocessing GNSS raw data

at the back-end-side (section 3.2).

De Fabritiis et al. [28] have investigated the short-time prediction, ranging from

15 min to 30 min, of vehicle travel speeds by applying ANN3s to CVD that was

gathered by approximately 600 000 privately owned vehicles in Italy. The CVD was

propagated with a frequency of 12 min by the vehicles to the back-end-side. An

accuracy of 90 % for short-time predictions of vehicle travel speeds was achieved.

It can be noticed that the past research on CVD has been mainly focused on improving

route planning by identifying congested traffic and, in general, by determining current

and predicting future vehicle travel speeds. Additionally, first attempts of deriving

road geometries can be observed. However, CVD has a much greater potential because

it can provide maps with multiple layers of attributes that have a fast temporal decay

rate, such as slippery or dirty road segments, potholes, lost objects, or broken down

vehicles. Furthermore, common vehicles can be as well employed to map the more

static parts of the road network, such as lane centerline geometries, traffic lights,

traffic signs, crosswalks, stop lines, roundabouts, crossroads, speed bumps, roadside

structures, and curbstones, to just name a few. Those attributes can support next

generation driver assistance and/or piloted driving functions. Furthermore, current

improvements of the exteroperceptive sensors and GNSS-based localization existing

in common vehicles allow for gaining higher sensing accuracies than in the past. The

huge, redundant amount of data acquired by common vehicles allows to alleviate

sensor errors so that results comparable with that acquired by high-grade sensors,

as used e. g. by the well-known map providers, can be (nearly) gained. Therefore,

the current trend of forming alliances between automobile manufacturers and map

providers can be regarded as highly useful [1, 14].

2 Global Navigation Satellite System (GNSS)
3 Artificial Neural Network (ANN)
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2.3 Limitations and Challenges of CVD

This section illuminates the current limitations and challenges of the elicitation of

CVD. Especially the topics of precise vehicle localization (section 2.3.1), required

bandwidths (section 2.3.2) and processing capabilities (section 2.3.3), penetration

rates (section 2.3.4), and, furthermore, privacy and security (section 2.3.5) objections

are examined.

2.3.1 Localization

A usual approach to alleviate the inaccuracies of GNSS-based localization (section 3.2)

in the context of CVD is map matching [13, 70, 98]. Map matching allows to project

vehicle trajectories to the most probable corresponding paths of the digital road

network, according to an error measure. This raises multiple problems. For instance,

additional errors may be introduced to the vehicle trajectories by matching with

possibly inaccurate road geometries. Furthermore, missing road geometries within

the digital road map can lead to wrong associations, e. g. to nearby roads.

The challenges of dealing with inaccurate GNSS localization are tackled in this thesis

by postprocessing the raw GNSS data at the back-end-side under the incorporation

of correction data. This way, more accurate vehicle trajectories can be gained, and

the problematic map matching can be avoided (section 3.2.2).

2.3.2 Bandwidth

Bandwidth limitations of the cellular network on the one hand, and large amounts of

acquired sensor data on the other hand, are a crucial challenge for the transmission

of CVD to a central instance and the reception after its processing [2].

The cellular network is steadily extending, so that blank spots become less and the

technological state of the art is matched. However, by now not all cellular base

stations are providing the latest, fourth generation cellular technology, although the

next, fifth generation can be considered as already mature. It has to be taken into

account that areas of lower bandwidths will probably never completely disappear

because the latest cellular technology is not always available. Furthermore, areas

without any cellular network still exist, what typically requires CVD-enabled vehicles

to pause the data transmission and retain the data.

It is known that the bandwidth required for CVD-enabled vehicles is strongly

depending on the actual data transmitted and the frequency thereof [92]. To cover

fast vehicle velocities, as for instance observed on German autobahns, a very sparse

localization sampling rate, e. g. every few minutes [92], is considered as not being

sufficient for the deduction of high-quality estimates. Instead a localization sampling

rate of 10 Hz is proposed (section 3.2). This sampling rate implies approximately
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0.42 MB/h if every position of the vehicle trajectory is represented by three coordinates

of 4 Bytes each. For the case of postprocessing of GNSS raw data, much larger amounts

of data have to be transmitted to the back-end-side. The uncompressed transmission

of GNSS raw data approximately leads to 25.5 MB/h at a 10 Hz sampling rate.

However, by means of dedicated compression algorithms, the required bandwidth

can be considerably reduced to 2.3 MB/h (section 3.2.2).

Furthermore, it can be useful to support GNSS-based localization in shadowed

areas, such as urban canyons, tunnels, by means of egomotion estimates. The

required bandwidth for its transmission should be approximately equal to that for

the transmission of GNSS localization data. This means that, depending on the

demanded quality, the required bandwidth does range from 0.42 MB/h to 25.5 MB/h.

Under the assumption that a similar compression ratio as for the GNSS raw data

can be achieved by e. g. delta-based compression, between 0.5 MB/h and 5 MB/h

can be estimated for the CVD that is only related to the vehicle localization.

Additionally, at least an equal amount of bandwidth is probably required for the

propagation of features extracted from the on-board sensors, such as cameras, radars,

or lidars. This way, the overall, estimated bandwidth ranges from 1 MB/h to 10 MB/h,

depending on the intended use cases and the demanded quality.

Assuming an average required penetration rate of 2 % (section 2.3.4), 1 mio. CVD-

enabled vehicles in Germany would lead to approximately 0.95 to 9.5 TB/h of CVD

that needs to be propagated and processed. By multiplying those numbers by 24 h,

365 d, and considering all vehicles worldwide, one is faced with an impressive amount

of data to be transmitted and processed each year.

For those reasons, approaches to reducing the amount of CVD propagated to the

back-end-side, not only by means of data compression, are required. Kerner et al. [66]

propose just to propagate CVD which is significantly different from the data at the

back-end-side. However, a drawback of this approach is that no amplification by

means of similar data is achieved. Only deviating data affect the accumulation, what

is actually considered as undesirable. For this reason, Ayala et al. [2] propose a more

sophisticated approach which introduces an equal probability for every vehicle to

propagate CVD. The actual probability of data transmission is derived by means

of the central limit theorem, so that a specified confidence is achieved. This way,

the aforementioned drawbacks of the approach presented by Kerner et al. [66] are

diminished, the amount of transmitted CVD is reduced, and the quality of the

postponed data fusion is assured.
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2.3.3 Processing

The real-time processing of CVD is a challenging task, because huge amounts of

data (section 2.3.2) need to be processed in a highly robust manner within a restricted

period. Furthermore, it is aggravated by the fact that the majority of the powerful

approaches to sensor data fusion is computationally time-consuming [71]. Hence, the

scalability of the method of processing, e. g. by means of data parallel programming

or appropriate index data structures/storage solutions, is a crucial aspect [71]. Due

to those reasons, all CVD-processing algorithms presented in this thesis are evaluated

with the main focus on robustness and large-scale feasibility (section 1.3).

2.3.4 Penetration Rates

Within the context of CVD, “penetration rate” denotes the amount of CVD-enabled

vehicles that is required to fulfill a given objective, such as gaining a certain timeliness

or precision of the CVD fusion. For this purpose, several estimates have been

presented by the research community. To briefly sum up these estimates, the required

penetration rates usually vary between between 1 % and 5 % for highways, and

between 2 % and 10 % for urban roads [131]. However, it shall be stressed that a

general estimate is not appropriate, because the actually required penetration rate

is highly dependent on multiple factors, such as the algorithms utilized for sensor

data fusion, the quality of the acquired sensor data, and the desired confidence

level/timeliness.

Kerner et al. [66] suggest a penetration rate between 1.5 % and 2 % for the identifica-

tion of traffic congestions. A penetration rate of 1.5 % leads to a probability of 65 %

that a traffic congestions is appropriately detected, and a penetration rate of 2 % to

a probability of 85 %.

As commonly supposed within the research community, those rates could be easily

fulfilled if multiple car manufacturers would cooperate [10, 66]. Therefore, it has been

an important step for the large-scale acquisition and fusion of CVD that the German

premium car manufacturers decided to form an alliance to tackle this challenge

collaboratively [1].

2.3.5 Privacy and Security

The collection of data is widely seen as critical in public perception [33]. While the

research community has mainly focused on the technical challenges of acquiring and

processing CVD, both privacy and security issues have been mostly neglected [93].

Usually CVD-enabled vehicles are authorized by the back-end-side by means of a

unique identifier. While this approach reduces the risk of fraud, it neglects the
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privacy of customers. Therefore, approaches for anonymizing customer data, while

simultaneously minimizing the risk of exploitations, are strongly desirable.

For this purpose, Eichler and Jeske [61] suggest a ticket-based system. The so-called

“Get-Dispenser protocol” still requires that a vehicle authenticates itself periodically

at the back-end-side. However, the data is anonymized by means of tickets that have

a limited temporal validity. Although the proposed protocol provides good privacy,

some corner cases have to be additionally considered in practice. For example, in

sparsely inhabited areas it might be possible to directly associate vehicle trajectories

with certain persons or families.





3
Localization

This chapter addresses several aspects of geographical localization of vehicles and

CVD1 which are in particular relevant for the quality of the mapping achieved and its

assessability: precise localization of vehicles, modeling of vehicle motion for SLAM2,

and stochastic compounding of relative measurements for geographic referencing of

sensor data. Suitable methods are selected and analyzed with respect to their precision.

Contents

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Precise Vehicle Localization . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Multilateration . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.2 Offline Processing . . . . . . . . . . . . . . . . . . . . . . 32

3.2.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Modeling Vehicle Motion . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Compounding Measurements . . . . . . . . . . . . . . . . . . . . 41

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1 Introduction

Geography-related data collected by a vehicle is usually referring to an individual

vehicle reference frame. However, a precondition for the fusion approaches presented

in the remainder of the thesis is geographical referencing of the CVD to one global

frame. Global geographical referencing is achieved by combining the location data

provided by the traces of the vehicle trajectories, and of the location data being part

of the observations captured by the vehicle sensors.

An important influential factor on the quality of the fusion results is the precision of

vehicle localization. Vehicles are usually localized by a global navigation satellite

system (GNSS). However, multiple error sources are diminishing the localization

quality of such systems. An approach to GNSS3-based vehicle localization with

1 Collective Vehicle Data (CVD)
2 Simultaneous Localization and Mapping (SLAM)
3 Global Navigation Satellite System (GNSS)
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Error Source Impact on GPS Impact on DGPS

Ephemerides 2.1 m 0.1 m
Satellite Clocks 2.1 m 0.1 m
Ionosphere 4.0 m 0.2 m
Troposphere 0.7 m 0.2 m
Multipath 1.4 m 1.4 m
Receiver 0.5 m 0.5 m

Σ 10.8 m 2.5 m

Table 3.1: Typical error sources and impacts of (D)GPS-based vehicle localization
by means of a single-frequency GNSS receiver [15, 138].

high precision, adapted to the processing chain of this work, will be proposed in

section 3.2. It employs state-of-the-art technology and makes use of the application

context which does not necessarily require online-processing of the captured data.

A helpful information to cope with measurement errors is the restricted kind of

motion a vehicle can perform. Approaches like SLAM, which will be employed for

the fusion of point-shaped/complex landmark data, incorporate a vehicle motion

model. Several motion models have been proposed in the past. The pros and cons of

utilizing a linear versus a circular vehicle motion model will be elaborated in detail

in section 3.3.

Another aspect of geographical referencing of CVD is the accumulation of the

measurement errors of vehicle localization when referring sensed observations to the

global frame by compounding the vehicle location and locations of observations which

are given relatively to the vehicle. This requires a method for estimating the location

of observations relatively to the global frame including an assessment of their quality.

An existing method of stochastic compounding of a sequence of relationships between

objects, which yields means and covariances of geographically referenced locations,

will be adopted in section 3.4.

3.2 Precise Vehicle Localization

Precise vehicle localization and capturing of vehicle trajectories are crucial for

the accurate referencing of CVD and its subsequent fusion [40, 69]. Vehicles are

commonly localized by satellite-based methods. However, a precise satellite-based

vehicle localization is known to be challenging since multiple error sources are reducing

the localization quality. The ionosphere, imprecise ephemerides, and drifting satellite

clocks, which principally impose 4.0 m respectively 2.1 m of error each, can be regarded

as the major error sources (table 3.1). Additionally, multipath effects by conceiving

reflected and, therefore, delayed signals can lead, especially in (urban) canyons, to

a further localization error of approximately 1.4 m. When summing up these error

sources, and including the receiver’s imprecision, an overall error of 10.8 m does
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result (table 3.1). For the use case of collaboratively building highly precise maps,

this is regarded as obviously insufficient.

By means of DGPS many of these errors, such as imprecise ephemerides, drifting

satellite clocks, and ionospheric/tropospheric errors, can be alleviated so that an

overall localization error of approximately 2.5 m results. However, DGPS is grounded

upon correction data which is usually derived from a network of terrestrial reference

stations, and that needs to be propagated to the vehicle-side prior to its processing.

For the large-scale propagation of correction data, the cellular network is predesti-

nated. However, the cellular network is well-known to exhibit white spots, preventing

a gapless precise vehicle localization by means of DGPS.

Therefore, current research has been mainly focusing on the suitability of other

channels for providing correction data to the vehicle-side. For instance, the data

channel of DAB4 has been identified as a promising alternative [78]. However, the

DAB network is affected by similar coverage restrictions as the cellular one. An

ideal solution is expected to work world-wide, to provide a (nearly) geodetic-grade

localization precision, and to be commercially viable for common vehicles.

The approach to overcome those issues in the processing chain of this thesis is offline-

processing. The GNSS raw data is propagated by the vehicles to the back-end-side

as part of the acquired CVD. At the back-end-side, the received GNSS raw data is

postprocessed under consideration of GNSS correction data. This approach features

two crucial benefits. Firstly, cellular white spots affecting the online-availability

of correction data can now be regarded as unproblematic. Secondly, by means of

postprocessing, a more precise localization can be achieved, as the full trajectory can

be inspected at once, and ambiguities can be, this way, more appropriately resolved.

The rest of this section is organized as follows. First, the principle of multilateration

is recalled (section 3.2.1). Subsequently, the offline approach favored in the thesis is

presented (section 3.2.2). Then the offline approach is experimentally evaluated and

compared with the online solution of immediately using the locations obtained by

multilateration on the data provided by the GNSS receiver (section 3.2.3). Finally,

the insights gained are discussed and suggestions for further optimizations are made

(section 3.2.4).

3.2.1 Multilateration

Multilateration yields coordinates of location from measured signals. A vehicle

trajectory is immediately available online by applying multilateration to a sequence

of measurements taken with an appropriate sampling rate.

4 Digital Audio Broadcasting (DAB)
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Multilateration determines the distances between a GNSS receiver and several GNSS

satellites, the so-called pseudoranges ϕipr,∆tq, i “ 1, . . . n, n the number of satellites,

by

ϕipr,∆tq “ }si ´ r}2 ` c ¨∆t
3D“

b
psi,x ´ rxq2 ` psi,y ´ ryq2 ` psi,z ´ rzq2looooooooooooooooooooooooomooooooooooooooooooooooooon

ϕiprq

` c ¨∆t. (3.1)

si denotes the i-th satellite position, r the receiver’s position, c the speed of light,

and ∆t the difference between the satellite’s and the receiver’s clocks [65].

Usually, the non-linear pseudorange equation (equation 3.1) is linearized via 1st-order

Taylor series (appendix A.3) for solving it in an efficient manner, such as by means

of QR5 (section 7.4.5):

T1 ϕiprq ` c ¨∆t “ ϕipr0q ` BϕiprqBr ¨ pr ´ r0qlooooooooooooooomooooooooooooooon
T1 ϕiprq

` c ¨∆t

3D“ ϕipr0q ` BϕiprqBrx ¨ prx ´ r0,xq ` BϕiprqBry ¨ pry ´ r0,yq `
Bϕiprq
Brz ¨ prz ´ r0,zq ` c ¨∆t

“ ϕipr0q ` r0,x ´ si,x
ϕipr0,xq ¨ prx ´ r0,xq ` r0,y ´ si,y

ϕipr0,yq ¨ pry ´ r0,yq `
r0,z ´ si,z
ϕipr0,zq ¨ prz ´ r0,zq ` c ¨∆t.

(3.2)

If the position r of the receiver has to be determined in three dimensions, at least four

satellite observations si are required, since additionally the time-difference between

the receiver’s and the satellite’s clocks ∆t needs to be resolved. The resulting system

5 QR Factorization (QR)
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Type Accuracy Latency Sample rate

Broadcast
orbits 100 cm

real time 1 d
clocks 5 ns

Ultra-Rapid
orbits 3 cm

3 h - 9 h 15 min
clocks 150 ps

Rapid
orbits 2.5 cm

17 h - 41 h
15 min

clocks 75 ps 5 min

Final
orbits 2.5 cm

12 d - 18 d
15 min

clocks 75 ps 30 s

Table 3.2: Different orbit and clock products that are provided by the IGS [58] are
opposed to the broadcast ones according to their accuracies, latencies, and
sample rates.

of equations for the receiver’s absolute position r in the three-dimensional case is

then given by

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̋

r0,x ´ s1,x

ϕ1pr0q
r0,y ´ s1,y

ϕ1pr0q
r0,z ´ s1,z

ϕ1pr0q c

r0,x ´ s2,x

ϕ2pr0q
r0,y ´ s2,y

ϕ2pr0q
r0,z ´ s2,z

ϕ2pr0q c

r0,x ´ s3,x

ϕ3pr0q
r0,y ´ s3,y

ϕ3pr0q
r0,z ´ s3,z

ϕ3pr0q c

r0,x ´ s4,x

ϕ4pr0q
r0,y ´ s4,y

ϕ4pr0q
r0,z ´ s4,z

ϕ4pr0q c

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

¨

¨
˚̊
˚̊
˚̊
˝

rx ´ r0,x

ry ´ r0,y

rz ´ r0,z

∆t

˛
‹‹‹‹‹‹‚
“

¨
˚̊
˚̊
˚̊
˝

ϕmeas.
1 ´ ϕ1pr0q

ϕmeas.
2 ´ ϕ2pr0q

ϕmeas.
3 ´ ϕ3pr0q

ϕmeas.
4 ´ ϕ4pr0q

˛
‹‹‹‹‹‹‚
. (3.3)

ϕmeas.
i denote the by the GNSS receiver measured pseudoranges. The system of

equations is allowed to be overdetermined. This is relevant in the case when more

than four satellites si are simultaneously observed. A solution to the linearized system

of equations can be determined in an efficient and robust manner, for instance, by

means of QR. For further details, see Kaplan and Hegarty [65].

In practice, the online solution to GNSS-based localization is robustified by in-

corporating a limited number of former measurements. For this purpose, filtering

techniques, such as (E)KF6s, are commonly utilized. One component of such meth-

ods is the motion model. Aspects of modeling vehicle motions will be the topic of

section 3.3.

6 Kalman Filter (KF)
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3.2.2 Offline Processing

As already mentioned, the first step of the approach of offline processing is the

transmission of the GNSS raw data from the vehicles to the back-end-side as a

part of the acquired CVD. At the back-end-side, the received GNSS raw data is

postprocessed under consideration of GNSS correction data. Figure 3.1 provides a

top-level view of the GNSS offline processing approach. Its core is the postprocessing

procedure with the following interfaces:

Solution 3.1: GNSS Postprocessing

Input: GNSS raw data (pseudoranges, doppler, signal strengths, . . .), correction

data (ephemerides, clocks, ionosphere, troposphere, . . .), and optionally

egomotion data.

Output: A postprocessed trajectory estimate.

The postprocessing employs the so-called PPP7 which emerged in the recent decade

for the precise GNSS-based localization, and which is regarded as highly suitable

for postprocessing GNSS raw data [54, 55, 138]. PPP-based GNSS localization

simultaneously considers GNSS code and phase measurements, and does utilize

precise ephemerides and clocks instead of the ones broadcasted by the satellites [65].

Both adjustments are intended for significantly improving the accuracy and robustness

of the localization.

Precise ephemerides and clocks can be, for instance, obtained from the IGS8 which

derives them from a globally distributed network of reference stations [56, 58, 138].

By utilizing precise satellite ephemerides and clocks instead of the broadcast ones,

the overall localization error can be reduced by approximately 4.2 m (table 3.1). An

overview of different products provided by the IGS, and the corresponding accuracies

and latencies, is given in table 3.2. Unpredicted ultra-rapid correction data is

provided by the IGS with a latency of approximately 3-9 h, and final correction data

after 12-18 d.

The postprocessing determines a stream of system states based on sub-sequences of

the raw data stream and the correction data, and optionally supported by egomotion

data to compensate for potential outages and errors. It is performed by filtering on

sub-sequences of the raw data stream and correction data [55, 123]. Filtering can be

applied in a forward, backward, and combined manner.

7 Precise Point Positioning (PPP)
8 International GNSS Service (IGS)
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Figure 3.1: For the precise referencing of CVD, GNSS raw data is transmitted
as part of the CVD to the back-end-side. At the back-end-side, the
received data is processed under consideration of correction data. The
postprocessing of the GNSS raw data can be supported by egomotion
data to compensate for potential GNSS outages and errors.

Figure 3.2: The approximately 316 km-long route from Ingolstadt to Frankfurt that
has been utilized for evaluating the accuracy of the PPP-based GNSS
postprocessing.
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PPP SBAS Proc.-Dir. PPP-AR Average Dev. Std. Dev.

Offline

yes yes combined no 1.301 m 0.963 m
yes yes forward no 1.301 m 0.974 m
yes yes forward yes, 1-it. 1.301 m 0.974 m
yes yes backward no 1.324 m 0.983 m
yes yes backward yes, 5-it. 1.327 m 0.981 m
yes no forward no 1.374 m 0.981 m
yes no combined no 1.376 m 0.981 m
yes no backward no 1.380 m 0.984 m

Online no yes – – 1.852 m 2.281 m

Table 3.3: Accuracies of distinct kinematic PPP-configurations that have been
gained by GNSS postprocessing, using ionospheric correction data pro-
vided by the SBAS-satellites and processing the trajectory in a for-
ward/backward/combined manner, and with(out) using PPP-AR. For
this purpose, the RTKLIB and final products provided by the IGS were
utilized. For comparison, the online solution is opposed.

3.2.3 Evaluation

In the following, a PPP-based offline solution to GNSS-based localization is evaluated

and opposed to an GNSS-based online-localization by multilateration for the use

case of precisely referencing CVD.

For the evaluation, a commercially viable u-blox 6 single frequency GNSS receiver

has been incorporated at the vehicle-side for both determining the GNSS online

solution and acquiring the GNSS raw data. At the back-end-side, for PPP-based

postprocessing the RTKLIB [122, 123, 124, 125] was utilized. The raw observation

and navigation data has been acquired by enabling the proprietary UBX-messages RXM-

RAW and RXM-SFRMB of the u-blox 6 GNSS receiver. Furthermore, the GNSS receiver

has been parametrized to a sampling rate of 10 Hz (section 3.3). The acquired GNSS

raw data was propagated as part of the CVD to the back-end-side and subsequently

postprocessed under the consideration of correction data. The final correction data

was provided by the IGS.

For the actual evaluation, a route from Ingolstadt to Frankfurt of 316 km was

utilized (figure 3.2). The route consists mainly of German Autobahn sections and

can be considered to feature mainly ideal, open sky conditions for GNSS. The ground

truth for this route was acquired by a deeply coupled, geodetic-grade, localization

system, the iMAR iTraceRT-F400, and can be considered to be accurate, concerning

its absolute position, to within a few centimeters [59].

In table 3.3 the actual accuracies achieved by means of distinct parameterizations of

PPP are provided and opposed to the online solution gained by the GNSS receiver.

It can be noticed that the best average deviation, which is approximately 1.30 m,



3.2 Precise Vehicle Localization 35

Ratio

RINEX 3.0 1.0
Text Compression 4.2
C-RINEX 3.0 3.8
C-RINEX 3.0 + Text Compression 11.1

Table 3.4: Compression ratios achievable for RINEX 3.0 observation data according
to Hatanaka [53]. RINEX 3.0 is set as the reference value. C-RINEX does
refer to the compressed RINEX-format introduced by Hatanaka.

and the worst average deviation, which is approximately 1.38 m, differ by 8 cm on

average. The best offline solution is by approximately 0.55 m more accurate on

average than the online one. The improvement is accompanied by a significantly

decreased standard deviation of 1.318 m. In figure 3.3 the absolute average deviation

probabilities corresponding to the means and standard deviations previously provided

in table 3.3 for offline localization and in figure 3.4 for online localization are visualized.

The absolute average deviations are provided in a combined manner for both the

lateral and longitudinal direction.

For the transmission of the raw GNSS observation data from the vehicle to the

back-end-side, a protocol based upon the well-known RINEX9 3.0 data format has

been used. On average, one measurement of raw GNSS observation data, which

is gathered every 1
10

-th of a second, is expected to require approximately 730 B on

average. By employing specialized compression algorithms for GNSS raw data, such

as the one introduced by Hatanaka [53], the size of the raw data can be reduced

to approximately 9 % of the original size (table 3.4). This results in an average

compressed observation size of 66 B, leading to approximately 2.3 MB of raw GNSS

observation data per hour and vehicle at a 10 Hz sampling rate for a single-frequency

receiver.

3.2.4 Discussion

In this section, a commercially viable solution for the precise referencing of CVD

by means of PPP-based postprocessing has been suggested. This approach deviates

from the state of the art in that the precise vehicle position is computed at the

back-end-side instead of the vehicle-side. This may be considered as unusual, but is

highly beneficial concerning the achieved accuracy, robustness, and availability.

The results of 1.38 m average deviation at 0.984 m standard deviation obtained

by PPP-based postprocessing under mostly open-sky conditions and by utilizing

a single frequency receiver can be considered as very good. In comparison to the

online solution, the offline solution has an average deviation reduced by 0.55 m and

9 Receiver Independent Exchange Format (RINEX)
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Figure 3.3: The average deviation probabilities of distinct PPP-based GNSS post-
processing parameterizations.
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Figure 3.4: The average deviation probabilities gained by online localization.

a standard deviation reduced by 1.318 m. This improvement can be considered

as significant. When comparing the suggested offline solution to the one achieved

by the same GNSS receiver and SAPOS10 EPS11 correction data, as suggested by

Mickler [78], the standard deviation of the presented offline solution is still 0.22 m less.

Additionally, concerning the use case of CVD, the solution of the thesis is neither

degraded by outages of the reception of correction data due to white spots of the

cellular nor the DAB network. Cellular white spots can be regarded as unproblematic

for the transmission of GNSS raw data to the backend-side due to the feasibility of

caching. Thus the comprehensive PPP-based postprocessing of GNSS raw data can

be regarded as highly promising for the use-case of CVD.

On the downside, the postprocessing of GNSS raw data at the back-end-side requires

the propagation of higher amounts of data via the cellular network. However, the

amount of data can be significantly reduced by means of dedicated compression

algorithms, so that they become commercially viable with approximately 2.3 MB/h

per vehicle.

Further improvements concerning the precise referencing of CVD are achievable

by utilizing a dual- or multi-frequency GNSS receiver. However, this causes much

higher expenses for the receiver and can be considered, therefore, as currently

commercially not viable for common vehicles. In the future, this might of course

change. Furthermore, as a vehicle cannot be expected to encounter everywhere ideal

GNSS conditions, it is suggested to support the postprocessing by vehicle egomotion

data, for example by data from an IMU12 and odometry. This way, the localization

10Satellite Positioning Service of the German National Survey (SAPOS)
11Realtime Positioning Service (EPS)
12Inertial Measurement Unit (IMU)
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(a) Linear Motion (b) Circular Motion

Figure 3.5: Comparison of a linear (equation 3.4) and a circular (equation 3.5)
vehicle motion model [103]. The linear vehicle motion model assumes
rotations to be instantly performed at each time increment k. On the
contrary, the circular motion model assumes rotations to be performed
in a continuous manner.

is able to compensate considerably better for GNSS shadowing and multipath effects

as e. g. observed in urban canyons.

3.3 Modeling Vehicle Motion

A further approach to robustified vehicle localization besides the GNSS raw data

filtering in chapter 3.2.2 is to filter the stream of location data calculated from the

GNSS sensor data. For this purpose, filtering techniques like the (E)KF are commonly

utilized. One component of such techniques is the assumption of a vehicle motion

model. A vehicle motion model is defined by a class of mathematical trajectories

which can represent the possible real trajectories of a vehicle sufficiently well. A

vehicle motion model helps to improve the prediction of the position of a vehicle

in motion by restricting the possible locations. An improved prediction in turn

improves the precision of vehicle localization which is of high relevance for the fusion

of point-shaped/complex landmark data.

Existing vehicle motion models can be categorized in linear models, such as CV13 or

CA14, and curvilinear models, such as CTRV15, CTRA16, CSAV17, or CCA18 [102,

103].

13Constant Velocity (CV)
14Constant Acceleration (CA)
15Constant Turn Rate and Velocity (CTRV)
16Constant Turn Rate and Acceleration (CTRA)
17Constant Steering Angle and Velocity (CSAV)
18Constant Curvature and Acceleration (CCA)
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Figure 3.6: Visualization of the vehicle-speed-dependent deviations of a linear (equa-
tion 3.4) and a circular (equation 3.5) vehicular motion model. It
is distinguished between different localization sampling-rates fs P
t1 Hz, 5 Hz, 10 Hzu and different curve radii r P t50 m, 100 m, 500 mu.
The maximal lateral acceleration for dry road conditions is assumed to
be limited by 10 m{s2.



40 3 Localization

Linear motion models lead to simpler algorithms than circular motion models, but

the question is whether or at what costs they can achieve the approximation behavior

of circular models which can be expected as better. Schweitzer [103] has analyzed

the influence of different rates of location sampling and different curve radii on the

deviation between a linear motion model, which is comparable to CV, and a circular

motion model, which is comparable to CSAV:

Definition 3.1: Linear Motion Model
˜
xk`1

yk`1

¸
lin“

˜
xk ` vk ¨∆t ¨ cos pϕk `∆ϕk`1q
yk ` vk ¨∆t ¨ sin pϕk `∆ϕk`1q

¸
(3.4)

with vk being the vehicle’s velocity, ϕk its current heading, ϕk`1 its intended

heading, ∆ϕk`1 the resulting heading increment, and ∆t the time increment.

Definition 3.2: Circular Motion Model
˜
xk`1

yk`1

¸
circ“

˜
xk ` cos pϕkq ¨∆Lk`1 ´ sin pϕkq ¨∆Qk`1

yk ` sin pϕkq ¨∆Lk`1 ` cos pϕkq ¨∆Qk`1

¸
(3.5)

with

∆Lk`1 “ r ¨ sin p∆ϕk`1q,
∆Qk`1 “ r ¨ p1´ cos p∆ϕk`1qq,
∆ϕk`1 “ 180˝ ¨ vk ¨∆t

π ¨ r ,

and vk being the vehicle’s velocity, ϕk its current heading, ϕk`1 its intended

heading, ∆ϕk`1 the resulting heading increment, and ∆t the time increment.

Both motion models are visualized in figure 3.5.

Figure 3.6 depicts the deviation of the linear from the circular vehicle motion model

for three different sampling rates, fs P t1 Hz, 5 Hz, 10 Hzu, and three different curve

radii, r P t50 m, 100 m, 500 mu. For the comparison of both motion models the

Euclidean distance metric

∆circ, lin “
a
pxcirc ´ xlinq2 ` pycirc ´ ylinq2 (3.6)

is employed. The maximal lateral acceleration a on a dry road surface is assumed to

be limited by 10 m{s2. The maximal velocity of a vehicle without loosing traction is

then given by vmax “ ?a ¨ r, with a being the maximal lateral acceleration and r the

curve radius.
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The results show that the deviations are significantly larger for lower than for higher

localization sampling rates. The average error decreases from 3.99 m at 1 Hz to

0.046 m at 10 Hz. One can conclude that higher sampling rates lead to less benefit

of the principally more accurate curvilinear motion models. Therefore, at higher

sampling rates, a less computationally intensive, linear motion model can be safely

incorporated without a considerable loss of accuracy. However, at lower sampling

rates a curvilinear motion model should be the first choice.

Within this work, a localization sampling rate of 10 Hz and a linear vehicle motion

model are used. This choice affects the computational efficiency positively, what is

crucial for large-scale applications, and the analysis of this chapter shows that the

resulting error can be regarded as negligible.

3.4 Compounding Measurements

The sensor data originating from exteroceptive sensors is typically provided by

coordinates in a sensor-related reference frame. For cooperative fusion, it is reasonable

to refer all the data to one global reference frame. It can be regarded as common

use to refer the data of all sensors to a common vehicular reference frame.

By utilizing the timestamp of the sensor readings for determining the vehicular

position at this specific point in time, it can be referenced precisely, even in the case

when the sampling points/rates of the sensors involved are distinct. The current

location of the vehicular reference frame in turn can be expressed by the position xi
and heading ϕazimuth

i of the vehicle i, e. g. as provided by a GNSS receiver, and the

respective reference frame, such as WGS8419, may take over the role of the global

reference frame. Figure 3.7 shows an exemplary visualization of the three involved

reference frames, the sensory 1 , the vehicular 2 , and the global one 3 .

The sensor data can be transferred into the global reference frame by compounding

the sequence of relative reference frame locations. However, the measurements of

every relationship, e. g. of the location of a captured object with respect to a sensor

reference frame, of the location of a sensor with respect to the vehicle reference

frame, or of the location of the vehicle with respect to the global reference frame,

are affected by distinct uncertainties. Therefore, the corresponding uncertainties

along the chain of transformations should be appropriately considered with the aim

to assign a total uncertainty to the resulting absolute representation of the sensor

data. In this work, the method for stochastic compounding developed by Smith et

al. [120] is employed.

The basic compounding operation is defined as follows:

19World Geodetic System 1984 (WGS84)
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Figure 3.7: In this example, a traffic sign l0 is observed by means of a TSR-
camera. As usual, it is provided within the sensor’s own reference
frame 1 . In order to combine the sensor readings of multiple sensors,
all individual sensor reference frames are transformed into a common
vehicular frame 2 . By transforming the common vehicular reference
frame by means of an absolute position xi and heading ϕazimuth

i of a
vehicle i, the acquired CVD can be referenced in a global, cross-vehicular
manner 3 , such as by the WGS84 reference frame. The distinct
sampling points/rates of the utilized sensors need to be taken into
account. This can be, for instance, achieved by means of interpolation.
The interpolated vehicular position is denoted by xi.

Definition 3.3: Compounding

Input: A sequence of objects i, j, k with relationships of object j relative

to object i and of object k relative to object j, represented by real

relationship vectors xi,j and xj,k.

Output: The spatial relationship of object k relative to object i, represented by a

real relationship vector xi,k “ xi,j ‘ xj,k.

‘ is the so-called compounding operator introduced by Smith et al. A relationship

vector specifies the parameters of a class of the possible motions by which the

reference frame describing the location of object j may result from the reference

frame of object i. An example of relationship vector is xi,j “ pxi,j, yi,j, ϕi,jqT which

specifies that a two-dimensional object j is translated by pxi,j, yi,jqT and rotated by

an angle ϕi,j relative to object i. The class of motions of this example are rigid ones

in the plane.
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In this work, motivated by the use of the linear vehicle motion model (section 3.3),

the relation xi,j of a vehicle to the global reference frame is assumed to belong to

the motion class of translations in the plane, i. e. xi,j “ pxi,j, yi,jqT . Furthermore,

for sensors delivering just points, the observation model, i. e. motion model of the

relation between the captured points and the sensor, can be assumed translational as

well, since the orientation of a reference frame associated with the captured object

is irrelevant. If the sensor is rigidly connected with the vehicle, the relation xj,k
between the captured points and the vehicle motion belongs to the motion class of

the translations in the plane, too, i. e. xj,k “ pxj,k, yj,kqT . In this case, ‘ is the usual

vector addition, and thus xi,k “ xi,j ` xj,k holds for the relation xi,k of the captured

object within the global reference frame.

The related stochastic version is

Definition 3.4: Stochastic Compounding

Input: A sequence of objects i, j, k with stochastic spatial relationships of

object j relative to object i and of object k relative to object j, under

assumption of a Gaussian noise model, represented by means xi,j and

xj,k and covariances Covpxi,jq and Covpxj,kq of the relationship vector

distributions.

Output: The stochastic spatial relationship of object k relative to object i, repre-

sented by a mean xi,k and a (co)variance Covpxi,kq of the relationship

vector distribution.

By linear approximation of the compounding operator by the first-order Taylor

expansion around the means, Smith et al. have derived the following first-order

approximations of the mean and the covariance of xi,k:

xi,k « xi,j ‘ xj,k (3.7)

Covpxi,kq « J‘ ¨
«

Covpxi,j,xi,jq Covpxi,j,xj,kq
Covpxj,k,xi,jq Covpxj,k,xj,kq

ff
¨ JT‘, (3.8)

where

J‘ “ δpxi,j ‘ xj,kq
δpxi,j,xj,kq

ˇ̌
ˇ̌
xi,j ,xj,k

.

is the Jacobian of the compounding operator ‘.
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In the case that the measurements xi,j and xj,k are not cross-correlated, the com-

pounded co-variance simplifies to

Covpxi,kq no cc« J‘ ¨
«

Covpxi,j,xi,jq 0

0 Covpxj,k,xj,kq

ff
¨ JT‘. (3.9)

In practice, this is for instance the case when determining the vehicle position via

GNSS and the relative vector to a point-shaped landmark, such as a traffic sign,

by a TSR20-camera (figure 3.7). Both sensors are independent of each other and,

therefore, uncorrelated.

In the case of the two-dimensional translational vehicle motion and observation

models from above, the Jacobian J‘ of the compounding operator ‘ is

J‘
transl.“ δpxi,j ‘ xj,kq

δpxi,j,xj,kq
ˇ̌
ˇ̌
xi,j ,xj,k

“ δpxi,j ` xj,kq
δpxi,j,xj,kq

ˇ̌
ˇ̌
xi,j ,xj,k

“
«

1 0 1 0

0 1
J0‘

0 1
J1‘

ff
. (3.10)

Hence, the compounding of the measurement uncertainties Covpxi,jq and Covpxj,kq
in this case is gained by means of pure matrix addition

Covpxi,kq « J0
‘ ¨ Covpxi,j,xi,jq ¨ J0

‘ ` J1
‘ ¨ Covpxj,k,xj,kq ¨ J1

‘
“ Covpxi,kq ` Covpxj,kq .

(3.11)

3.5 Discussion

This chapter has addressed several aspects of localization of vehicles and CVD with

the aim of treating them in an appropriate way in the processing chain: localization

of vehicles, modeling of vehicle motion, and stochastic compounding of relative

relationships of localization.

An approach for precise GNSS vehicle localization has been presented which calculates

the localization at the back-end instead of the vehicle-side (chapter 3.2). The

calculation is PPP-based and is performed by offline-postprocessing. This approach

can be considered as unusual but it is highly beneficial concerning the gained accuracy,

robustness, and availability. It is used in the processing chain proposed in the thesis.

An analysis of the difference between linear and curvilinear vehicular motion models

has been presented. It shows that for sampling rates greater or equal to 10 Hz

the error introduced by linear vehicular motion models can be regarded as minor.

Therefore, a linear vehicular motion model is subsequently utilized for reducing

20Traffic Sign Recognition (TSR)
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the computational load, while the prediction quality is only affected in a negligible

manner (section 3.3)

A condition for the fusing approaches presented in the remainder of the thesis is

that the location data captured by vehicles in motion and referring to individual

vehicle frames, is referred to one universal global frame. For this purpose, a method

of compounding spatial relations has been picked up which takes into account

uncertainties of measurements and which is used in the processing chain of the thesis

(section 3.4).





4
Submapping and Temporal

Weighting

Data streams delivered by a fleet of vehicles are usually covering a large area and

long periods. Therefore, their processing requires computationally efficient solutions.

This chapter introduces two approaches to meet this requirement: submapping and

temporal weighting. A variant of submapping is designed which includes advantages of

known approaches. For temporal weighting a novel method is presented which allows

an efficient dynamic adaption of the weights of observations within an arbitrarily

specifiable interval back from the current moment.
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4.1 Introduction

At any time, the processing chain usually acts on just a spatially and temporally local

subset of vehicle locations and observations. Efficiency can be gained by supporting

the processing chain by structures for those data, which take their specific properties

into account in order to store or to deliver the required information more efficiently.

A common approach of e. g. robotics is not to store spatial information during pro-

cessing in one global map, but in local submaps. An operation of data manipulation

acts on just those submaps which are relevant for it. The advantage is that the time

requirement for manipulating a submap is only depending on the size of information

in the submap, and not on the total information of the map. A data structure for

submapping will be presented in section 4.2 which includes advantages of known

approaches.

A reason that operations should act just on temporally local information is that

observations and other information of the past may lose relevance over time. This
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can be taken into account by assigning weights to information items of the past which

decrease with increasing history. The information is considered by an operation

only to an extent given by its weight, i. e. information items with higher weights

are more important. As the computation of temporal weights has to be performed

very frequently, its efficient evaluation is fundamental. Furthermore, the temporal

decay of CVD1 is strictly depending on its type and acquisition frequency. A novel

approach for determining appropriate temporal weights in both an efficient and

adaptive manner will be proposed in section 4.3.

Submapping and temporal weighting will be used in later chapters, in particular for

the fusion of point-shaped/complex and areal CVD (chapters 7, 8, and 9).

4.2 Submapping

Submapping is a common way for extending algorithms that are feasible for limited

scale to large scale [9]. The idea is to use several local maps instead of just a global

one, each of which just cover a part of the overall region considered, but which are

sufficiently large for the operations to be executed. The submapping problem is

defined according to the requirements of the thesis as follows:

Problem 4.1: Submapping

Providing a data structure which represents a finite set of submaps covering the

area of possible locations and which efficiently supports the following operations

on the set of submaps:

Insertion: Inserts a location x with attribute values into the corre-

sponding submap.

Deletion: Removes a location x with attribute values from the

corresponding submap.

k-NN Search: Determines k locations, k ą 0, nearest to a query loca-

tion x, limited to the submap of location x and possibly

neighboring submaps.

r-Range Search: Determines all other locations x1 in the range of radius r ą
0 around a query location x, limited to the submap of

location x and possibly neighboring submaps.

Function Evaluation: Evaluates a function f on a submap and possibly neigh-

boring submaps.

1 Collective Vehicle Data (CVD)
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Function Updating: Updates a function f on a submap and possibly neigh-

boring submaps.

Existing approaches to submapping can be roughly subdivided into global and local

methods [3]. While local methods commonly incorporate a local reference frame,

which is for instance relative to the vehicle’s initial position, global methods utilize

submaps based on a common, vehicle-independent, global reference frame.

In the following, a variant of global submapping, called adaptive submapping, similar

to the one suggested by Guivant and Nebot [48] is introduced. The proposed variant

is employed for scaling the fusion of point-shaped (chapter 7), complex (chapter 8),

and areal data (chapter 9).

The method provides a data structure which covers the region to be mapped by a

set of small, equally sized submaps which are cells of a grid laid over the region.

The data structure is adaptive in that only submaps which contain still relevant

information from the past, and submaps which might be affected soon by a vehicle,

are stored. The latter submaps are determined in a predictive manner when vehicles

are located near to the boundary of the region covered up to now. The submaps

are globally aligned, i. e. they all are referred to the same, global reference frame.

The submaps can be processed independently from each other, and, in particular, in

parallel.

Updating is performed by considering the submap cell which is directly addressed by

the updating operation, but also the submap cells in its so-called 8-neighborhood,

i. e. those submaps which are neighboring along a shared grid edge or a shared grid

vertex (figure 4.1). This way, the consistency between neighboring submap cells can

be more appropriately assured. Even globally optimal results can be achieved when

certain constraints are fulfilled (chapter 9). The search for the submaps relevant for

execution of an operation and the search for locations within submaps is supported

by a combination of hash tables and R-trees [49] as dynamic index structures.

This data structure of global submapping has several advantages. The global approach

to submapping exhibits the advantage that all vehicles share a common coordinate

reference frame, what significantly simplifies the collaborative fusion of CVD. Storing

only submaps which have been relevant in the past takes account to the principally

sparse nature of the road network. Furthermore, the index data structures utilized

for a fast grid lookup are not bloated with unused entries. The redundant calculation

and comparison of overlapping areas of distinct 8-neighborhoods and allowing none

to only minor deviations, due to numeric inaccuracies, between the gained results

provides an additional layer of computational safety, what can be considered as

crucial when the fused data shall be incorporated within safety critical automotive



50 4 Submapping and Temporal Weighting

Figure 4.1: Global submapping by means of adaptive partitioning. The locality of
computations, which apply to exactly one grid (hachured in gray ‚), is
limited to their eight direct neighbors (highlighted in red ‚, the so-called
8-neighborhood). The grids are assumed to be square and have, in this
example, an equal side length of 64 m.

functions. Finally, the submapping data structure allows effective local linearizations

of functions in a canonical way by choosing the linearization point of the 1st-order

Taylor series (appendix A.3) in the submap cell where the function is evaluated, e. g.

by taking its center point.

4.3 Temporal Weighting

An important aspect of the fusion of CVD is the consideration of the temporal

decay of acquired data. The decay rate should be chosen depending on the type of

sensor data. For example, temperature measurements are expected to decay much

faster than road sign observations or pothole detections. Additionally, the decay

of measurements should depend on their acquisition frequencies. This way, the

number of measurements can be reduced to the actually required ones, e. g. to gain

a specific fusion accuracy, and valuable processing capacities can be saved, what can

be considered as being crucial for large-scale applications.

In this work, the temporal decay is taken into account by weights assigned to

information items of the past and decreasing with increasing history. In the case

of areal data (chapter 9), temporal weighting will be performed for every submap,

and in the case of point-shaped/complex landmark data (chapters 7 and 8) for every

cluster of corresponding landmark observations.



4.3 Temporal Weighting 51

Figure 4.2: An exemplary circular buffer that is utilized for determining appropriate
measurement weights in both an adaptive and computationally efficient
manner.

The problem of temporal weighting is as follows:

Problem 4.2: Temporal Weighting

Input: A stream of data items with timestamps of their acquisition.

Output: A list of non-negative weights, which is updated whenever a new data

item appears.

The problem is solved by using a circular buffer as the basic data structure. An

exemplary instantiation of a circular buffer is visualized in figure 4.2.

The circular buffer consists of so-called bins which are circularly arranged. c#

denotes the number of bins provided by the data structure; it is set according to

the targeted maximal temporal extent of the fusion. Every bin represents a time

interval of width c∆t which defines the temporal discretization granularity of the

weight computation. c∆t is set according to the targeted frequency of the fusion

process. A sequence B of consecutive bins b represents a period whose start time

and end time are denoted by ts and te, representing the most actual and the least

actual timestamp under consideration, respectively, i. e. ts ą te. Initially, B consists

of one bin covering the time between te “ 0 and ts “ c∆t.

The observations are processed in ascending temporal order. Let tc denote the

timestamp of the current observation o. If tc ď ts, o is assigned to the bin b of B

whose c∆t-period contains tc. The number of observations assigned to a bin is denoted

by hpbq. If the number of observations stored in bins of B exceeds a given upper

bound ccutoff of observations that is being considered for computing the temporal

weights, the bin covering the least recent period is removed from B, and te is updated,
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Figure 4.3: Visualization of an exemplary linear and exponential temporal weight
computation according to the suggested scheme, which is applied
step-by-step based on the exemplary data provided in figure 4.2. All
timesteps that feature observations are hachured in gray ‚. The weight-
ing factor ν has been set to 1.06 for the exponential weighting.
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i. e. te “ te ` c∆t. By setting an upper bound, the required processing capacities at

the back-end-side can be adjusted. If tc ą ts, new bins are inserted into B in front of

the bin covering the most recent period, until the corresponding ts satisfies tc ď ts.

ts is updated by ts “ ts` j ¨ c∆t, with j the number of bins added. Then o is inserted

in the bin whose time period covers tc.

The weight of an observation õ with timestamp t̃ is calculated as

ωpt̃q “ Hpt̃qř
bPBHptspbqq

, te ď t̃ ď ts, (4.1)

with

Hptq “
ÿ

bPBt
hpbq, te ď t ď ts,

where tspbq is the start time of a bin b, i. e. the bin covers the period between

tepbq “ tspbq ´ c∆t and tspbq, and Bt is the subset of bins b P B with tepbq ď t. Hptq
is the cumulative histogram of the binned observation counts hpbq, covering the bins

between the least recent one and the last bin whose period precedes t.

This approach leads to a linear weighting scheme, i. e. the growth of the weights is

proportional to the accumulated counts in histogram bins. If an exponential weighting

is required, it can be accomplished in a straightforward manner by augmenting the

histogram function hpbq, for instance by hexppbiq “ phexppbi´1q ` hexppbiq ¨ νiq ¨ νi
for i ě 1, and hexppb0q “ hpb0q for the least recent bin. By setting the weighting

parameter ν ą 1 an exponential oblivion of former observations is achieved. In the

case of ν “ 1 the oblivion is linear.

Figure 4.3 shows a step-by-step temporal weight computation according to the exem-

plary data visualized in figure 4.2. The pointer indicating the current timestamp tc
is moved bin by bin from te to ts. At every time step, the resulting cumulative

histogram and the resulting weights for the linear and exponential weighting scheme

are visualized.

The suggested approach for determining temporal weights has several favorable

properties. First, the most actual observations always gain the major weight, as

the function describing the cumulative histogram is monotonically non-decreasing

for ν ě 1. Second, the resulting weights ωptq are, per definition, always normalized

and, hence, within the range r0, 1s. Furthermore, an absence of observations leads

to a temporal decay with the slope defined by the cumulative histogram of past

observations, what is induced by the monotonically non-decreasing function describing

the cumulative histogram. This property is crucial, as decay factors widely differ for
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distinct measurement types and acquisition frequencies. The presented weighting

approach can adapt itself to both.

Another important feature of the presented approach is the ability to forget about

past observations, what can be regarded as essential in dynamic environments.

Furthermore, the circular buffer-based solution is designed in a way that it can be

bidirectionally extended by moving both pointers ts and te, as CVD is known to be

exposed to nondeterministic latencies due to its transmission via the cellular network.

However, present observations are strictly prioritized by the data structure to former

ones. Therefore, the pointer te may never supersede the pointer ts. However, the

pointer ts is allowed to subsume former bins and, therefore, to enforce shifting the

pointer te to more recent ones.

The circular buffer allows for an efficient continuous updating of the histogram. This

dynamic preaggregation is considerably more efficient than an aggregation of all

associated timestamps every time a new weight needs to be computed or a (full)

reweighting needs to be applied. This is crucial for the large-scale application of this

work.

4.4 Discussion

This chapter has addressed aspects of efficiency and effectiveness relevant for several

steps of the processing chain. A novel approach to global submapping has been

presented, which allows scaling the processing of CVD in an adaptive and consistent

manner. Even globally consistent solutions can be achieved if certain boundary

conditions are fulfilled (section 4.2).

Furthermore, a novel approach for determining temporal weights in an adaptive and

efficient manner by means of preaggregation has been elaborated. Based on binned

observation counts, a linear as well as an exponential weighting scheme has been

defined (section 4.3).





5
Mapping of Point-shaped Landmark

Data

This chapter specifies the concept of collaborative point-shaped landmark data mapping

from observations acquired by common vehicles and gives a survey of the approach

to its realization proposed in this work. It starts with a method of parametric

representation of point-shaped landmarks. Next, it specifies the task of point-shaped

landmark data mapping. Then it outlines the steps of the approach of precise point-

shaped landmark data mapping proposed in this work. The details of two of its major

steps, i. e. clustering and fusion of point-shaped landmark data, will be presented in

the subsequent chapters 6 and 7.
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5.1 Introduction

The road network context features many different types of point-shaped landmarks,

such as traffic signs, traffic lights, and reflector posts. Point-shaped landmarks

are, on the one hand, of interest because of the information they provide to the

driver/the vehicle. On the other hand, they also are a valuable, salient type of road

network features which can be utilized for the objective of achieving a precise vehicle

localization. In this sense, they, and all pole-like landmarks, constitute an additional,

valuable source for precise vehicle localization.

Point-shaped landmarks are usually not shown within generally available maps. For

instance, speed limits and other restrictions imposed by traffic signs are usually only

provided as attributes of road segments. Other types of point-shaped landmarks,

such as traffic lights or reflector posts, are not represented at all. However, induced

by the crucial requirement of a highly accurate vehicle localization, even under
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difficult conditions, these formerly neglected types of point-shaped landmarks gain

significantly in importance.

Furthermore, as the road network context is exposed to steady changes, the usual

quarterly updating of maps by the well-known map data providers is not sufficient

anymore for point-shaped landmark based localization and further use cases.

An approach to cope with those issues is the mapping of these point-shaped landmarks

by common vehicles in a collaborative manner. As today’s vehicles are usually

equipped with manifold sensors, the detection of these landmarks does not constitute

any significant additional effort.

The purpose of this chapter is to specify the mapping problem and give a survey

of the approach of the thesis to its solution. Section 5.2 introduces a parametric

representation of point-shaped landmarks. Section 5.3 is devoted to the problem of

point-shaped landmark mapping and section 5.4 to the approach of its solution.

5.2 Parametric Representation of Point-shaped

Landmarks

In this thesis, point-shaped landmarks are represented by a set of parameters, as

follows:

Definition 5.1: Representation of a Point-shaped Landmark

A point-shaped landmark is represented by a vector specifying its geographic

location which is usually two-dimensional (latitude, longitude) or three-dimensional

(latitude, longitude, altitude), and additional optional attributes like the property

of being a traffic sign and its direction and indication.

The process of landmark mapping uses observations of landmarks acquired by vehicle-

mounted sensors. An introductory example of point-shaped landmark observations

is provided in figure 5.1. The figure shows landmark observations acquired by a

single vehicle which is driving along a short road excerpt. Both the trajectory

and the landmark observations are exposed to measurement uncertainties which

are visualized by the uncertainty ellipses of the 3σ-range of a Gaussian probability

distribution (appendix A.2).

Point-shaped landmark observations consist of two parts, the observation of location

and the observation of attributes:
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(a) Without Observation Uncertainties

(b) With Observation Uncertainties

Figure 5.1: An exemplary road section with point-shaped landmark observations
acquired by a single vehicle. The acquired landmark observations are
highlighted in blue ‚, their ground truths in red ‚, and the individ-
ual vehicle positions of the trajectory in gray ‚. The measurement
uncertainties are visualized according to their 3σ-ranges by error el-
lipses (appendix A.2).
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Definition 5.2: Representation of a Point-shaped Landmark Location

Observation

A point-shaped landmark location observation is represented by a vectorial random

variable representing its observed geographic location, which is assumed to be

(approximately) Gaussian. It is represented by a vector z “ pz0, . . . , zdqT .

Definition 5.3: Representation of a Point-shaped Landmark Attribute

Observation

A point-shaped landmark attribute observation is represented by a vector of the

observed additional attributes.

The locations and the attributes may be acquired by different sensors. The location

is modeled by a random variable in order to take into account the uncertainties and

errors of measurement.

During the mapping process, estimations of the landmark locations and attributes

are derived:

Definition 5.4: Representation of a Point-shaped Landmark Location

Estimate

A point-shaped landmark location estimate is represented by a vectorial random

variable specifying the estimated geographic location of the landmark, represented

by a vector l “ pl0, . . . , ldqT .

Definition 5.5: Representation of a Point-shaped Landmark Attribute

Estimate

A point-shaped landmark attribute estimate is represented by a vector of the

estimated additional attributes.

5.3 Problem of Point-shaped Landmark Mapping

The task of point-shaped landmark mapping is defined as follows:

Problem 5.1: Point-shaped Landmark Mapping

Input: 1. A sequence of vehicle trajectories.

2. For every vehicle trajectory: a sequence of landmark observations,

represented with respect to relative vehicular frames.

3. A temporal decay model.



5.4 Approach to Point-shaped Landmark Mapping 61

Output: A sequence of submaps which contain estimates of the locations of the

acquired landmarks, represented with respect to a global reference frame,

taking into account the temporal decay of the acquired data.

5.4 Approach to Point-shaped Landmark Mapping

Landmark mapping denotes the process of updating a map which is represented

by a submapping data structure, cf. section 4.2, by means of landmark estimates

derived from the landmark observations provided by a fleet of vehicles, and taking

into account the temporal decay of the acquired sensor readings, cf. section 4.3:

Solution 5.1: Point-shaped Landmark Mapping

Initialization:

1. Setup of mapping data structures.

2. Setup of temporal decay models.

Procedure of map updating:

1. Clustering: Assignment of landmark observations to clusters corresponding to

distinct landmarks.

2. Landmark estimation: Estimation of landmark locations and, optionally, vehicle

locations by sensor data fusion.

The process of point-shaped landmark mapping consists of two phases. The first

phase, “clustering”, generates clusters of the landmark observations that may be

related to distinct vehicle trajectories and that belong to the same landmark. For this

purpose, methods to pure data association according to Neira and Tardós [85] are

evolved to clustering ones. Further important modifications to these methods, besides

manifold performance and robustness optimizations, are the localized execution of

data association supported by a submapping data structure (section 4.2) and the

incorporation of temporal decay by temporal weighting (section 4.3). The details

will be presented in chapter 6.

The second phase, “fusion”, derives a landmark estimate for each of the previously

identified clusters. It can be grounded upon one of the several methods of data fusion,

such as (F)CI1 [63] or SLAM2 [29, 120, 126]. While the (F)CI-based methods only

require compounded landmark observations, this means observations transformed

into a global reference frame, the SLAM-based methods require both the sequence

1 Covariance Intersection (CI)
2 Simultaneous Localization and Mapping (SLAM)
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of vehicle locations and the acquired landmark observations relative to them. The

details of these distinct approaches will be presented in chapter 7.

Both phases process the input data incrementally from a sequential stream. The

phases are executed in succession, i. e. phase 1 is performed before phase 2 is

performed on the output of phase 1. Alternatively, phase 1 followed by phase 2

could be executed for every observation, before the next observation is processed.

The first variant is preferred for reasons of computational efficiency. In the case of

computationally demanding approaches to sensor data fusion, such as EKF3-based

Online-SLAM or BA4-based Full-SLAM, the second variant can be considered as

still infeasible for large-scale applications [85].

Complex landmarks will be mapped in the same two-phase manner. For this purpose,

both phases have to be adapted, cf. chapter 8.

3 Extended Kalman Filter (EKF)
4 Bundle Adjustment (BA)
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Clustering of Landmark Data

Prior to their fusion, the observations of point-shaped/complex landmarks have to

be grouped into clusters of corresponding observations according to the landmarks to

which they actually belong. Frequently utilized algorithms for the task of non-Bayesian

data association are ICNN1, SCNN2, and JCBB3. In this chapter, those algorithms

are extended to EICNN4, ESCNN5, and EJCBB6 to satisfy the needs of large-scale

and high-precision fusion of point-shaped/complex CVD7. Furthermore, the enhanced

algorithms are evaluated and compared with each other.
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6.1 Introduction

According to the approach of the thesis to landmark mapping, cf. section 5.4, the

observations of point-shaped and complex landmark data are first grouped into

clusters of corresponding observations belonging to one of the landmarks, before

those clusters are used for the fusion as described in chapters 7 and 8 for point-shaped

and complex landmark data, respectively.

The clustering problem will be considered as a dynamic data association problem

which associates landmark observations with corresponding landmark estimates.

The quality of data association is known to affect the quality of fusion signifi-

cantly. A robust determination of correspondences is crucial if a high-quality point-

shaped/complex landmark fusion is strictly demanded [21, 72]. Various algorithms

intended for tackling data association in a robust and computationally feasible man-

ner have been proposed in the past as approximating alternatives to exhaustive

search which is impractical because of its computational requirements. Each of these

approaches has distinct strengths and weaknesses.

The chapter starts with a specification of the clustering problem and an introduction

to data association which closely follows a publication of Neira and Tardós [85]

(section 6.2). The introduction comprehends the definitions of the data association

problem and of two types of measures of correspondence, IC8 and JC9, as well as

exhaustive search and ICNN as two contrasting algorithms of solution with respect

to the trade-off of quality and efficiency. Next, solutions to the clustering problem

based on dynamic data association are presented (section 6.3). The probably most

frequently utilized non-Bayesian algorithms for data association in the context of

landmark fusion today, ICNN, SCNN, and JCBB [85], are extended to clustering

ones, EICNN (section 6.3.2), ESCNN (section 6.3.3), and EJCBB (section 6.3.4).

Furthermore, the distinction of observations by their landmark type, submapping,

and temporal decay are taken into account. The chapter ends with the evalua-

tion (section 6.3.8).

6.2 Clustering and Data Association

Clustering concerns the generation of clusters of the landmark observations, which

should belong to the same landmark, from a stream of trajectories. It is achieved

by processing every trajectory separately. The treatment of a trajectory updates a

central map data structure which also serves as input of the clustering procedure in

8 Individual Compatibility (IC)
9 Joint Compatibility (JC)
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order to take into account the currently achieved result. Thus the clustering problem

for one trajectory can be specified as follows:

Problem 6.1: Clustering

Input: 1. A stream of landmark observations of a vehicle trajectory, represented

with respect to a global frame.

2. A related temporal decay model.

3. A mapping data structure which represents the current state after

the input processed up to now, in particular

a) the current clustering,

b) the current state of the temporal weighting data structure.

Output: A new state of the mapping data structure achieved after processing the

input trajectory, taking into account the temporal decay.

The clustering problem is tackled by treatment as a data association problem based

on the work of Neira and Tardós [85]. In the terminology of the thesis, the data

association problem can be specified as follows:

Problem 6.2: Data Association

Input: 1. A sequence of stochastic landmark observations

Z “ pzi | i “ 0, . . . ,mqT

affected by an approximately Gaussian error, with means zi and

covariances Covpziq “ Czi .

2. A sequence of stochastic landmark estimates

L “ plj | j “ 0, . . . , nqT

represented by means lj and covariances Covpljq “ C lj .

3. An implicit measurement or landmark association function

f jiplj, ziq

with a multi-dimensional real-valued range. An association plji , ziq is

compatible if f jiplji , ziq “ 0.
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Output: A correspondence map, also called interpretation or hypothesis,

H “ phi | i “ 1, . . . ,mqT ,

hi “ lji , or hi “ ˚ if zi is spurious. H pairs each non-spurious landmark

observation zi with a corresponding compatible landmark estimate lji ,

if any. A correspondence map is feasible if a compatibility constraint

holds. The compatibility constraint uses a compatibility measure which

is based on the landmark association functions. A correspondence map

is optimized if its total compatibility measure value is optimized.

A clustering of landmark observations Zlj is immediately obtained from a correspon-

dence map by taking

Zlj “ tzi | lji P Hu, j “ 1, . . . , n, (6.1)

as clusters.

In the application of the thesis, Z represents the sequence of observations of point-

shaped or complex landmarks collected along a vehicle trajectory. While landmark

estimates are assumed to be initially given for this version of the data association

problem, they are not necessarily available for the clustering problem. This issue

will be addressed later.

The following subsection 6.2.1 is devoted to the definition of compatibility measures

which are not yet specified in the problem formulation. Afterwards, the subsec-

tions 6.2.2 and 6.2.3 present “Exhaustive Search” and ICNN, respectively, as two

contrasting algorithms of solution with respect to the trade-off of solution quality

and efficiency.

6.2.1 Definitions of Compatibility Measures

Because lji and zi are generally not available, the condition f jiplji , ziq “ 0 for

defining compatibility of an observation zi and an estimate lji has been replaced

by relaxed compatibility measures [85]. One approach is to define an individual

relaxed IC measure for every association plji , ziq. A tighter compatibility measure

can be obtained by considering all associations of a correspondence map together and

defining a JC measure between the vector Z representing the sequence of observations

and L representing the sequence of estimates. Both approaches will be recapped in

the following.
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Individual Compatibility

One possibility to remedy the issue of using f jiplj, ziq “ 0, or, equivalently,

}f jiplj, ziq} “ 0 according to some norm }.} as compatibility check for inaccu-

rate observations is to take

}f jiplj, ziq} ă ε (6.2)

for some small real constant ε ą 0. This approach has been extended by taking into

account the stochastic nature of the data and its error distribution, leading to the

so-called stochastic IC measure:

Definition 6.1: Stochastic Individual Compatibility Measure

D2
jiplj, ziq “

`
f jiplj, ziq

˘T ¨ Covpf jiplj, ziqq´1 ¨ f jiplj, ziq. (6.3)

The total IC measure of a correspondence map is the sum of the values of the IC

measures of its correspondences.

Using this measure, a relaxed compatibility criterion is obtained as follows.

Definition 6.2: Stochastic Individual Compatibility Constraint

zi and lj are corresponding if and only if

D2
jiplj, ziq ă χ2

d, α, (6.4)

where χ2
d, α comes from the χ2-test [89]. A correspondence map is feasible with

respect to IC if all its associations plji , ziq fulfill the stochastic IC constraint.

For non-linear measurement functions, the covariance Covpf jiplj, ziqq is approxi-

mated by using the linear approximation of f ji,

f jiplj, ziq « f jipl0j , z0
i q `Gjiplj ´ l0jq `Hjipzi ´ z0

i q (6.5)

with

Gji “
Bf jiplj, ziq

Blj

ˇ̌
ˇ̌
l0j , z

0
i

, Hji “
Bf jiplj, ziq

Bzi

ˇ̌
ˇ̌
l0j , z

0
i

,
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obtained by Taylor expansion (appendix A.3)

Covpf jiplj, ziqq “ F ji ¨
«

Covplj, ljq Covplj, ziq
Covplj, ziq Covpzi, ziq

ff
¨ F T

ji

no cc“ F ji ¨
«

Covplj, ljq 0

0 Covpzi, ziq

ff
¨ F T

ji

“ Gji ¨ Covplj, ljq ¨GT
ji `Hji ¨ Covpzi, ziq ¨HT

ji,

(6.6)

with

F ji “
Bf jiplj, ziq
Bplj, ziq

ˇ̌
ˇ̌
l0j , z

0
i

“
”
Gji Hji

ı

and Covplj, ljq, Covplj, ziq, and Covpzj, zjq being covariances of the corresponding

random variables.

A suitable choice for l0j and z0
i is lj and zi, as it is expected that the landmark

estimate and measurement are both close to the ground truth values and thus

approximate the function over the relevant region close to those values well.

Linearization is required when non-linear vehicle motion (section 3.3) or landmark

observation models (chapters 7 and 8) are utilized.

To facilitate the computational effort, it is assumed that there are no cross-correlations

between landmarks lj present within the map and their observations zi by vehicles.

This is induced by the fact that the map is built collaboratively by multiple vehicles,

with principally independent observations. The fact that a vehicle may observe a

landmark anew is at this neglected and justified by the fact that in practice the

majority of observations is independent and the effects of self-affirmation are this

way negligible. However, if self-affirmation shall be fully eliminated then anew

observations of landmarks by the same vehicle have to be excluded.

Intuitively, equation 6.4 verifies whether the observation zi is plausible to originate

from the Gaussian distribution implied by the estimated landmark lj according to

a given threshold χ2
d, α. Both the uncertainty of the landmark observations, as well

as the uncertainty of the landmark estimations, are incorporated by means of the

squared Mahalanobis distance Dji (appendix A.1).

The χ2
d,α-CDF10 allows to set the upper bound for the deviation between a landmark

observation and estimate according to a desired upper error bound α, e. g. α “ 0.95.

The χ2
d,α-CDF is grounded on the accumulation of the d-dimensional χ2

d-PDF11. The

10Cumulative Density Function (CDF)
11Probability Density Function (PDF)
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Figure 6.1: Visualization of the χ2
d-PDF for d P Nď7 (subfigure a), which corre-

sponds to the probability distribution achieved by summing random
samples from a standard Gaussian distribution N p0, 1q, and the corre-
sponding χ2

d,α-CDF (subfigure b).
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χ2
d-PDF represents the probability distribution formed by summing random variables

that have been sampled from a standard Gaussian distribution N p0, 1q. In figure 6.1

the χ2
d-PDF and the corresponding χ2

d,α-CDF are visualized for dimensions d P Nď7.

In the case of point-shaped landmarks, the dimensions d “ 2 and d “ 3 are of course

of special interest. However, higher dimensions become relevant when secondary

attributes shall be incorporated within the measure of correspondence (chapter 8).

On the downside, IC is restricted due to the Mahalanobis distance metric and the

χ2-test to Gaussian errors. Furthermore, the Mahalanobis distance metric is known

to be sensitive to outliers. However, at least the sensitivity to outliers can be tackled

by computing the Mahalanobis distance metric more robustly, e. g. by means of the

MCD12 [39].

Joint Compatibility

A disadvantage of IC is that it does only determine the degree of association quality

between observed and estimated landmarks in an individual and not combined

manner. In the case of ambiguities, this is known to lead to erroneous associations.

Therefore, it has been suggested to jointly consider associations between multiple

landmark observations and estimates. For this purpose, an extension to IC by Neira

and Tardós [85], which is referred to as JC, is used:

Definition 6.3: Joint Implicit Measurement Function / Landmark As-

sociation Function

Let H “ pl¨i | i “ 1, . . . ,mq be a map with the landmark estimate index wildcard ¨
and f ji “ f jiplj, ziq, i “ 1, . . . ,m, j “ 1, . . . , n, implicit measurement respectively

landmark association functions. Then the function

fHpL, Zq “

¨
˚̋
f ¨ 1

...

f ¨m

˛
‹‚ (6.7)

is called a joint implicit measurement function / landmark association function.

Definition 6.4: Stochastic Joint Compatibility Measure

The stochastic joint compatibility measure is taken as the total joint compatibility

measure of the correspondence map H:

D2
HpL, Zq “ pfHpL, ZqqT ¨ CovpfHpL, Zqq´1 ¨ fHpL, Zq. (6.8)

12Minimum Covariance Determinant (MCD)
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Definition 6.5: Stochastic Joint Compatibility Constraint

A correspondence map H is stochastically jointly compatible if and only if

D2
HpL, Zq ă χ2

d,α. (6.9)

A correspondence map is feasible with respect to joint compatibility if it is stochas-

tically jointly compatible.

For non-linear measurement / landmark association functions, the corresponding

covariance of an assignment hypothesis H can be approximated under assumption of

no cross-correlation by

CovpfHpL, Zqq “ FH ¨
«

CovpL,Lq CovpL,Zq
CovpL,Zq CovpZ,Zq

ff
¨ F T

H

no cc“ FH ¨
«

CovpL,Lq 0

0 CovpZ,Zq

ff
¨ F T

H

“ GH ¨ CovpL,Lq ¨GT
H `HH ¨ CovpZ,Zq ¨HT

H

(6.10)

with

FH “ BfHpL, Zq
BpL, Zq

ˇ̌
ˇ̌
L0,Z0

“
”
GH HH

ı
,

using the Taylor expansion up to the linear term

FHpL, Zq « fHpL0, Z0q `GH ¨ pL´L0q `HH ¨ pZ ´Z0q,

with

GH “ BfHpL, Zq
BL

ˇ̌
ˇ̌
L0,Z0

“

¨
˚̋
G¨1

...

G¨m

˛
‹‚,

HH “ BfHpL, Zq
BZ

ˇ̌
ˇ̌
L0,Z0

“

¨
˚̋
H ¨1

...

H ¨m

˛
‹‚.

The wildcard ¨ denotes the index of a landmark estimate.

Neira and Tardós [85] have shown that the inverse of the approximation of

CovpfHpL, Zqq can be incrementally calculated. This reduces the computational
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effort from Opm3q to Opm2q [85]. The incremental calculation uses the recursive

representation

fHt
pL, Zq “

˜
fHt´1

f ¨ t

¸
, t ą 1, fH1

pL, Zq “ f ¨ 1, (6.11)

GHt “
˜
GHt´1

G¨ t

¸
, HHt “

˜
HHt´1

H ¨ t

¸
. (6.12)

where Ht denotes the submap of H restricted to the observations zi P Z, i “
1, . . . , t ď m, in particular H “ Hm.

6.2.2 Data Association by Exhaustive Search

Data association can be considered as a search problem for a feasible or optimized

correspondence map in the space of observation-landmark correspondence maps.

The search space can be represented as a tree, the so-called interpretation tree [46].

Figure 6.2 shows an exemplary interpretation tree for three given landmark obser-

vations z0, z1, and z2. Each path from the root to a leaf represents a candidate

correspondence map. With each incorporated landmark observation zk, which corre-

sponds to a distinct layer within the interpretation tree, one additional possibility,

besides the assignment to an already known landmark estimate lj , that an observation

is spurious ˚ is considered. Exhaustive search checks all candidate correspondence

maps for feasibility, i. e. whether the selected compatibility constraint is fulfilled,

and returns those. If an optimized feasible correspondence map is desired, the total

feasibility measure of the feasible correspondence maps is calculated and those with

the optimal value are returned.

The number of tree paths for data association can be expressed by

pn` 1qm (6.13)

with n “ |L| being the number of landmark estimates and m “ |Z| the number of

landmark observations.

This analysis shows that the size of the search space may unfortunately grow ex-

ponentially in the size of the correspondence map. This prohibits an exhaustive

search for large scale applications. For this reason, less computationally intensive,

but approximating approaches have been proposed [85]: ICNN, SCNN, and JCBB.

ICNN is purely based on IC, while SCNN and JCBB are based on both IC and JC.



6.3 Solutions of the Clustering Problem 73

l0z0

l0z1

l0z2 l1 l2 ˚

l1

l0 l1 l2 ˚

l2

l0 l1 l2 ˚

˚

l0 l1 l2 ˚

l1

l0

l0 l1 l2 ˚

l1

l0 l1 l2 ˚

l2

l0 l1 l2 ˚

˚

l0 l1 l2 ˚

l2

l0

l0 l1 l2 ˚

l1

l0 l1 l2 ˚

l2

l0 l1 l2 ˚

˚

l0 l1 l2 ˚

˚

l0

l0 l1 l2 ˚

l1

l0 l1 l2 ˚

l2

l0 l1 l2 ˚

˚

l0 l1 l2 ˚

Figure 6.2: An exemplary interpretation tree for three landmark observations z0,
z1, and z2. Every path between the root and the leaf nodes represents
a data correspondence map, indicating the potentially exponential
number of correspondence maps. For each observation, the assignment
to a landmark estimate l0 , l1 , l2 , or the classification as noise ˚ is
possible.

Those algorithms deliver results of different quality with different computational

requirements. The next subsection is devoted to ICNN.

6.2.3 Data Association by Individual Compatibility Nearest

Neighbor

The data association algorithm ICNN is the simplest, but most efficient approximate

solution of the data association problem among the alternatives for exhaustive search

presented in [85]. Algorithm 6.1 shows a pseudo-code in the terminology of this

thesis. ICNN uses the IC constraint (equation 6.4) for feasibility and the IC measure

for optimization. ICNN has a set L of known landmark estimates, and a set of

landmark observations Z as input and returns one correspondence map H as output.

ICNN processes the landmark observations zi sequentially and assigns a landmark

estimate li P L which is closest to zi according to the IC measure among all given

landmark estimates and which satisfies the IC constraint. If no compatible landmark

exists, the version of ICNN presented here marks the observation as “spurious” in

the observation map.

The runtime complexity of ICNN is bounded by Opn ¨mq, n “ |L|, m “ |Z| [85].

6.3 Solutions of the Clustering Problem

“Exhaustive Search” and ICNN as presented in the preceding sections need to be

extended in order to solve the clustering problem, cf. problem 6.1. A mandatory

extension is that the set of landmark estimates can be extended during processing

of a trajectory. The algorithm EICNN extends ICNN in this aspect, thus making

ICNN basically suitable for the clustering problem. Several ideas are combined in

order to achieve high quality and efficiency of the dynamic generation of landmark

estimates. EICNN will be presented in subsection 6.3.2.
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Besides ICNN two further algorithms from [85] are extended in this way. The first

one is SCNN. While ICNN uses IC, SCNN additionally considers JC. ESCNN extends

SCNN, analogously EICNN extends ICNN, cf. subsection 6.3.3. The second one is

JCBB. By employing the BB13 search paradigm, JCBB is able to correct erroneous

associations, in contrast to the other approaches mentioned before. The extension

EJCBB differs from JCBB by utilizing a generalized approach to BB, the so-called

GBB14 [84], in combination with the search strategy BFS15 instead of DFS16, cf.

subsection 6.3.4. This way it is able to dynamically update the landmark map L.

Additionally, at each layer of the GBB tree the current set of hypotheses can be

pruned to the most promising ones, e. g. for limiting the required computational

resources and/or assuring real-time feasibility.

All those algorithms are combined with a separation of the observations of the

input trajectory into substreams of observations of landmarks of the same type,

based on landmark type attributes, cf. section 6.3.6. Each substream is processed

separately. All algorithms are implemented based on a map data structure which

employs submapping according to the approach of section 4.2, cf. subsection 6.3.7.

Furthermore, temporal decay of landmark observations and estimates is considered

by using the temporal weighting approach of section 4.3, cf. subsection 6.3.5. All

this improves the computational efficiency of clustering.

The performance of the algorithms presented in this section have been experimentally

analyzed. The design of the experiments and the results will be presented in

subsection 6.3.8.

6.3.1 Clustering by Exhaustive Search

Clustering can be as well considered as a search problem for a feasible or optimized

correspondence map in the space of observation-landmark correspondence maps. The

search space can be again represented as a tree. Figure 6.3 shows an exemplary tree

for three given landmark observations z0, z1, and z2. Each path from the root to a

leaf represents a candidate correspondence map. With each incorporated landmark

observation zk, which corresponds to a distinct layer within the tree, two additional

possibilities, besides the assignment to an already known landmark estimate lj , are

considered:

– an observation is constituting a new landmark estimate lk ,

– an observation is spurious ˚ .

13Branch and Bound (BB)
14General Branch and Bound (GBB)
15Breadth-First Search (BFS)
16Depth-First Search (DFS)
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l0 l2 ˚

˚

l1
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Figure 6.3: An exemplary clustering via exhaustive search for three landmark
observations z0, z1, and z2. Every path between the root and the leaf
nodes represents a data correspondence map, indicating the potentially
exponential number of correspondence maps. For each observation, the
assignment to a previous/new landmark l0 , l1 , l2 , or the classification
as noise ˚ is possible.

The number of tree paths for clustering can be recursively expressed by

|Xk| “
ÿ

ΛH,H PXk´1

p|tlj P ΛHu| ` 2q . (6.14)

Xk denotes the set of hypotheses H existing after incorporating observation zk, and ΛH

the set of landmark estimates occurring in H. Hence the expression |tlj P ΛHu|
denotes the number of identified landmark estimates within the hypothesis H.

This analysis shows that the size of the search space may unfortunately grow ex-

ponentially in the size of the correspondence map. This prohibits a clustering via

exhaustive search for large scale applications.

6.3.2 Extended Individual Compatibility Nearest Neighbor

The algorithm EICNN, cf. algorithm 6.2, extends ICNN in two major aspects:

dynamic landmark estimation and improved efficiency and robustness. Algorithm 6.2

shows a pseudocode formulation of EICNN.

Adding new landmark estimates has two aspects, both under consideration of compu-

tational efficiency and robustness: conditions to be fulfilled for adding a new landmark

estimate, and calculation of the representation of a new landmark.

During processing of the input stream of landmark observations, a landmark is either

associated with an already existing landmark estimate, or a new landmark estimate

is created. The decision is taken depending on three conditions on the currently

processed landmark observation which have to be fulfilled for adding a new landmark

estimate:
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Solution 6.1: Clustering Conditions

IC-Condition: The landmark observation zj does not fulfill the IC-test (defini-

tion 6.2). The reason for this condition is that it could be that a landmark estimate

is among the already existing ones which can be associated with the landmark

observation.

Minimal Support Condition: The number of other landmark observations zk in

the input sequence Z, which are supporting the landmark observation, exceeds a

given threshold κ ě 0. zk supports zj if the bounding boxes of their uncertainty

ellipses (appendix A.2 and A.4) have a non-empty intersection. The reason of

this condition is to make the algorithm more robust against spurious landmark

observations.

Distance Condition: The observation has a minimal distance to existing landmark

estimates of the same type and with the same attributes. This condition limits

the risk of undesired cluster splits.

If all conditions are fulfilled, a new landmark estimate is created. Its representation

by a location and a covariance is calculated as the first (mean) and second moment

(covariance) of the locations of the landmark observations of its cluster by means

of averaging. This simple approach avoids the execution of a fusion algorithm like

the one of chapter 7 in this phase, what usually would be computationally too

expensive [72].

Three approaches to increasing the efficiency of calculations are used:

Solution 6.2: Improving the Efficiency of Clustering Calculations

Efficient Exclusion of Associations of High Uncertainty: An efficient pre-test

of the compatibility of a landmark observation and a landmark estimation can-

didate is introduced. The test consists in checking the bounding boxes of the

uncertainty ellipses (appendix A.2) of the two items for non-empty intersection.

The uncertainty ellipses are determined from the mean and covariance information

of the items and for a given sigma range, e. g. 3σ. The reason of this extension is

to reduce the number of executions of computationally expensive matrix inversions

for the calculation of the Mahalanobis distance in the case of low compatibility.

Efficient Analytical Calculation of the Bounding Box of an Arbitrary Ellipse:

This is employed for the intersection tests incorporated. The details are provided

in appendix A.4.

Efficient Search for Intersecting Bounding Boxes: An R-tree [49] is used to

find those bounding boxes of a set of bounding boxes which intersect a given
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input : pL, Zq
output :H
1 Iterate over all landmark observations

for zi P Z do
χmin

val “ 8 ;
χmin

idx “ ´1 ;

2 Iterate over current map

for lj P L do

— Compute Mahalanobis distance and apply χ2-test to pairing

χmin
current “

`
f jiplj , ziq

˘T ¨ Covplj , ziq ¨ f jiplj , ziq ;

if
`
χmin
current ă χmin

val

˘
and

`
χmin
current ă χ2

d,α

˘
then

χmin
val “ χmin

current ;
χmin

idx “ j ;

end

end

if χmin
idx “ ´1 then

— Mark observation as spurious
H “ HY p˚q ;

else

— Assign observation to an existing landmark
H “ HY `

χmin
idx

˘
;

end

end

Algorithm 6.1: Detailed procedure of ICNN according to Neira and Tardós [85]. As
input, the algorithm requires a set of known landmarks L and a set
of landmark observations Z. As output, it returns one greedy assign-
ment hypothesis H. ICNN performs data associations by assigning
observations to their nearest neighbors by means of the Mahalanobis
distance metric, if and only if the associations successfully fulfill the
χ2-test. The runtime complexity is bounded by Op|L| ¨ |Z|q [85].

bounding box. This reduces the average lookup time of the intersection test to

OpM ¨ logMpnqq instead of Opnq, where n is the number of tree entries and M a

constant denoting the maximal chunk size of the R-tree data structure.

The resulting EICNN is more robust, cf. solution 6.1 and efficient, cf. solution 6.2,

than ICNN. However, its weaknesses of testing associations only individually and its

greedy approach have not been alleviated this way.

6.3.3 Extended Sequential Compatibility Nearest Neighbor

The only difference between ESCNN, cf. algorithm 6.3, and EICNN, cf. algorithm 6.2,

is that an additional test for the JC is incorporated after IC has been successfully

passed. As noted in section 6.2.1, JC is tighter than IC, thus possibly avoiding

inappropriate associations.
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input : pL, Zq
output :H
1 Iterate over all landmark observations

for zi P z do
χmin

val “ 8 ;
χmin

idx “ ´1 ;

2 Selectively iterate over current map

for lj P tlj | lj P L, fulfillsConstraintsplj , ziq ^ intersectsplj , ziqu do

— Test for individual compatibility

χmin
current “

`
f jiplj , ziq

˘T ¨ Covplj , ziq´1 ¨ f jiplj , ziq ;

if
`
χmin
current ă χmin

val

˘
and

`
χmin
current ă χ2

d,α

˘
then

χmin
val “ χmin

current ;
χmin

idx “ j ;

end

end

if χmin
idx “ ´1 then

— If enough support and minimum distance constraint fulfilled
then assign observation to a new landmark

if | tzk | zk P Z, intersectspzi, zkqu | ě κ and @ lj P L fulfillsMinDistanceplj , ziq
then

H “ HY pχnew
idx q ;

end

else

— Assign observation to an existing landmark
H “ HY `

χmin
idx

˘
;

end

3 Update map

L = updateMapByHeuristicpL, zi, Cpziq, χmin
idx q ;

end

Algorithm 6.2: Outline of the extended version of ICNN, referred to as EICNN. As
input, the algorithm requires a set of known landmarks L (which can
also be empty) and a set of landmark observations Z. As output, it
returns one greedy assignment hypothesis H. The algorithm provides
a more efficient iteration over the current landmark map via an R-tree
based intersection test, a minimal support (denoted by κ) test for the
instantiation of new landmarks, an exclusion of observations with a
high uncertainty, an incorporation of a heuristic utilizing the first and
second moment for updating the current map, and the incorporation
of constraints by augmenting the map iteration (solution 6.1 and 6.2).
The runtime complexity is bounded by Op|L| ¨ |Z|q [85].
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input : pL, Zq
output :H
1 Iterate over all landmark observations

for zi P Z do
χmin

val “ 8 ;
χmin

idx “ ´1 ;

2 Selectively iterate over fused map

for lj P tlj | lj P L, fulfillsConstraintsplj , ziq ^ intersectsplj , ziqu do

— Test for individual compatibility

χmin
current “

`
f jiplj , ziq

˘T ¨ Covplj , ziq´1 ¨ f jiplj , ziq
if

`
χmin
current ě χmin

val

˘
or

`
χmin
current ě χ2

d,α

˘
then

continue;
end

— Formulate hypothesis
if χmin

idx “ ´1 then

— If enough support and minimum distance constraint fulfilled
then assign observation to a new landmark

if | t1 | zk P Z, intersectspzi, zkqu | ă κ or
D lj P L  fulfillsMinDistanceplj , ziq then

continue;
end
Hnew “ HY pχnew

idx q ;

else

— Assign observation to an existing landmark
Hnew “ HY `

χmin
idx

˘
;

end

— Test hypothesis for joint compatibility
if fTHnew

¨ CovpLHnew ,ZHnewq´1 ¨ fHnew
ě χ2

d,α then

continue;
end

H “ Hnew ;
χmin

val “ χmin
current ;

χmin
idx “ j ;

end

3 Update fused map

L = updateMapByHeuristicpL, zi, Cpziq, χmin
idx q ;

end

Algorithm 6.3: Outline of the extended version of SCNN, referred to as ESCNN. As
input, the algorithm requires a set of known landmarks L (which can
also be empty) and a set of landmark observations Z. As output, it
returns one greedy assignment hypothesis H. The algorithm features
the same improvements as introduced by EICNN. However, it does ad-
ditionally incorporate JC for gaining a globally consistent hypothesis.
The runtime complexity is bounded by Op|L| ¨ |Z|q`Op|L|2 ¨ |Z|q [85].
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input : pL, Zq
output :Hbest

Hbranches “ tH0 “ tuu ;

1 Traverse and expand tree (until maximal hypothesis length is reached)

for k “ 0; k ă |Z|; k “ k ` 1 do

Hnew
branches “ tu ;

2 Iterate over all available hypotheses

for Hi P Hbranches do

3 Iterate over hypothesis and expand it (branch)

for lj P Hi Y t˚, lku do

Hnew
i “ Hi Y pljq ;

— Test individual compatibility of hypothesis (bound)
if not individuallyCompatiblepzk, Hnew

i q then
continue;

end

— Test joint compatibility of hypothesis (bound)
if not jointlyCompatiblepzk, Hnew

i q then
continue;

end

Hnew
branches “ Hnew

branches YHnew
i ;

end

end
Hbranches “ selectNBestHypothesespHnew

branches, ηq ;

end

4 Return best hypothesis from Hbranches

Hbest “ selectBestHypothesispHbranchesq ;

Algorithm 6.4: Outline of the extended version of JCBB, referred to as EJCBB. As
input, the algorithm requires a set of known landmarks L (which can
also be empty) and a set of landmark observations Z. The algorithm
incorporates a BFS search strategy instead of DFS for traversing the
exponential solution space via a generalization of BB, GBB [84], to
allow a dynamic updating of the landmark map L. Additionally, it
includes the same enhancements as previously introduced to EICNN
and ESCNN. It tracks η assignment hypotheses simultaneously and
provides the best one as the final output Hbest.
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The runtime of ESCNN is bounded by Op|L| ¨ |Z|q ` Op|L|2 ¨ |Z|q [85].

(E)SCNN can be still classified as a greedy algorithm, as data associations are never

reconsidered [85].

6.3.4 Extended Joint Compatibility Branch & Bound

Both EICNN and ESCNN exhibit a crucial drawback: erroneous updates of the

current landmark map L, e. g. due to ambiguities, cannot be remedied anymore later

on [16]. Therefore, it is very likely that both approaches induce divergence of the

subsequent fusion algorithms and, therefore, deviations of the mapped landmarks

according to their ground truths.

The problem can be tackled by considering multiple data association hypotheses

simultaneously by exploring the search space in a BB-manner [68]. The two main

search strategies to BB are DFS and BFS [118]. The algorithm JCBB by Neira

and Tardós [85] employs DFS. In contrast to JCBB, EJCBB, cf. algorithm 6.4,

incorporates a generalization of BB, the so-called GBB [84]. In combination with the

search strategy BFS, EJCBB is able to dynamically update the landmark map L

and, therefore, to provide a clustering instead of pure data association.

In the case of limited computational resources and/or real-time requirements, the

number of hypotheses at each layer of the interpretation tree of EJCBB can be

additionally diminished to the η most promising ones by incorporating a novel

heuristic. The heuristic is based upon a multi-objective cost function:

cpHq “ ωIC ¨ νICpHq ` ωJC ¨ νJCpHq ` ω˚ ¨ ν˚pHq ` ωnew ¨ νnewpHq.

νIC is the IC-value (section 6.2.1), νJC the JC-value (section 6.2.1), ν˚ the noise

ratio (percentage of noise classifications measured by the total observation count),

and νnew the cluster-ratio (percentage of landmark estimates measured by the total

observation count). The non-negative weights ωIC, ωJC, ω˚, and ωnew are determined

in a supervised manner based upon labeled ground truth data, as performed within

the evaluation (section 6.3.8).

The suggested extension of the pure landmark association algorithm JCBB to a full

landmark clustering algorithm, EJCBB, can be therefore regarded as well suited

for large-scale scenarios under potential computational resource limitations and/or

real-time constraints.
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6.3.5 Temporal Decay

The road network context is exposed to more or less variation over time, for example,

contingent upon roadworks. Therefore, it is crucial to compensate for temporal

dynamics during data association/clustering.

This is achieved concerning EICNN, ESCNN, and EJCBB in two ways

– the processing of the observations zj takes places in their chronological order,

– and the landmark estimates li and observations zj are weighted according to

their acquisition timestamps by augmenting the Mahalanobis distance metric.

By utilizing temporal weights ωli , ωzj P r0, 1s and augmenting the Mahalanobis

distance metric based weighting factors by p1`γ ¨ p1´ωliqq ¨Covpliq respectively p1`
γ ¨ p1 ´ ωzjqq ¨ Covpziq instead of Covpliq respectively Covpzjq, EICNN, ESCNN,

and EJCBB are able to consider the variation of landmarks over time. γ denotes

a spreading factor, which is individually determined for each covariance Covpliq
respectively Covpzjq so that the cut-off value is reached when the temporal weights

are equal to zero. This way, the clustering is able to adapt to altered landmarks and

to forget about removed ones.

The different decay rates of distinct road network features, for which the weighting

scheme needs to adapt to, can be considered as a challenge. For example, moving

construction zones exhibit a higher temporal dynamic than road signs. To approach

this challenge, an efficient temporal weight computation based upon preaggregation

is utilized (section 4.3).

6.3.6 Landmark Type Attributes

As aforementioned, constraints constitute a crucial aspect that needs to be considered

when applying data association/clustering to CVD. This is motivated by the fact

that landmarks appertaining to the same class are, unfortunately, also sporadically

observed nearby to each other within the road network context. To take a single

example, a speed limit and an overtaking restriction sign plate, which are located

close to each other, however, that do not share a common pole, should be in any case

reflected by distinct clusters. Otherwise, the subsequent fusion of these observations

(chapter 7) would lead to inaccurate results. This can be considered as highly

undesirable in the case that these landmarks are e. g. utilized for a highly precise

vehicle localization.

For that reason, the data association/clustering is extended to eventual additional

attributes, such as the type of a sign. The data association/clustering is only

performed when attributes match, e. g. the sign type, or their deviations are within

an expected range, e. g. the orientation of a traffic sign. Sporadically, spurious
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Figure 6.4: Application of global submapping to data association/clustering for an
exemplary road excerpt. Data association/clustering is performed inde-
pendently for every grid cell hit by an observation, but under considera-
tion of its 8-neighborhood to achieve global consistency. The currently
inspected grid cell is hachured in gray ‚, while its 8-neighborhood is
highlighted in red ‚.

landmark observations occur, what can also affect their attributes. Therefore, it is

also crucial to augment the minimal support test (sections 6.3.2, 6.3.3, and 6.3.4),

which is performed by the extended approaches prior to appending an additional

landmark to the map.

6.3.7 Submapping

EICNN, ESCNN, and EJCBB are principally global algorithms when utilized out-of-

the-box. Since the application area of fusing CVD requires the successful tackling of

large-scale regions, the scalability of the utilized algorithms is necessary. For this

purpose, the global submapping by adaptive partitioning described in section 4.2 is

employed. The approach partitions the landmark map by a regular grid into cells. A

data association/clustering algorithm is executed on the region of the cell affected

by the current landmark observation and its 8-neighborhood of cells (figure 6.4).

To assure global consistency, measurements with a huge uncertainty, this means



84 6 Clustering of Landmark Data

Figure 6.5: The steps of scalable data association/clustering by global submap-
ping. First, observations with uncertainties exceeding the allowed
bounds, according to the chosen parametrization of the adaptive par-
titioning (section 4.2), are removed. Next, the affected grid cells and
the corresponding 8-neighborhood-cells are determined. Finally, data
(re)association/(re)clustering is applied to the 8-neighborhood.

uncertainties that exceed the 8-neighborhood, are excluded because they would

otherwise interfere with the region of processing.

Figure 6.5 gives an overview of the general steps performed by all the data asso-

ciation/clustering algorithms. First, the observations with a huge uncertainty are

removed. Next, data association/clustering is applied to each affected 8-neighborhood.

Finally, the associated/clustered observations are fused by means of algorithms

intended for the aggregation of point-shaped (chapter 7) or complex landmarks (chap-

ter 8).

6.3.8 Evaluation

In the following, the clustering by EICNN and EJCBB is evaluated based on a

synthetic scenario with known ground truth. ESCNN is excluded, as it just extends

EICNN by the JC-test, so its significance for the actual evaluation can be regarded

as minor. For the evaluation of EICNN and EJCBB, first optimal parameterizations

for both algorithms are derived by means of labeled ground truth data. Afterwards,

both algorithms are evaluated according to a selection of distinct quality measures,

which are regarded as highly relevant for the fusion of CVD.
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Quality Measures

The quality of the data association/clustering can be principally assessed in manifold

ways. However, as it is striven for a high accuracy so that fused CVD can be

subsequently utilized for demanding applications, such as highly precise landmark-

based vehicle localization, the following indicators are chosen:

Definition 6.6: Quality Measures for Data Association/Clustering

False positives: count of incorrect associations,

Precision: φ “ true positives
true positives Y false positives

, and

Recall: ρ “ true positives
true positives Y false negatives

.

The classification of observations as noise does neither account for the incorrect

associations count nor for the corresponding precision value φ, as both do not include

false negatives. However, the recall value ρ does account for noise classifications.

Additionally, the commonly utilized Fβ-score [130] is employed, which is based upon

the precision φ and recall value ρ:

Definition 6.7: Fβ-score

Fβ “ p1` β2q ¨ φ ¨ ρ
β2 ¨ φ` ρ .

As the precision φ has a hight priority in the context of the fusion of CVD, β “ 0.1

is chosen to weight the precision within the Fβ-score ten times as high as the recall ρ.

The justification thereof is that more than enough observations are propagated to the

back-end-side so that the data association/clustering can be very selective. Finally,

since “large-scale” is in the focus of interest, the cumulative runtime of all computing

units is provided as a crucial indicator.

Optimal Parametrization

EICNN and EJCBB both have multiple parameters which need to be adjusted

appropriately. Some of those parameters can be set based on system knowledge,

others need to be empirically determined. The latter parameters are derived in an

optimizing manner by means of a grid search. The utilization of a computationally

expensive grid search, instead of other more target-oriented optimization approaches,

is motivated by its comprehensive coverage of the search space to determine a global

optimum. The selected parameters are evaluated according to the hereinafter evolved

quality measures.
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Evaluation Scenario

A partially synthetic evaluation scenario (figure 6.6), hereinafter referred to as

“synthetic scenario”, is defined. The scenario has 29 simulated point-shaped landmarks

which were observed 2560 times in total relatively to multiple real-world trajectories.

The average standard deviations of the vehicle localization and of the landmark

observations are approximately 1.06 m and approximately 2.19 m, respectively. The

motivation for utilizing a partially synthetic scenario for the evaluation is

– an assured knowledge about the actual ground truth and

– the possibility of designing a highly challenging environment which features

many nearby landmarks, as commonly not observed within the road network

context.

The landmark observations are sampled according to a distance-dependent two-

dimensional Gaussian distribution. The Gaussian distribution is aligned so that the

major axis of the corresponding error ellipse (appendix A.2) coincides with the view

vector from the vehicle to the landmark. The actual standard deviations, which are

represented by the major axis fmajorpδq and minor axis fminorpδq, are determined by

the following linear functions according to the length of the view vector δ:

fmajorpδq “ 0.2 ¨ δ ` 1,

fminorpδq “ 0.1 ¨ δ ` 1.
(6.15)

This approach is justified by the fact that the angular error of a TSR17-camera is

commonly minor in comparison to the distance error.

Extended Individual Compatibility Nearest Neighbor

This section reports on the evaluation of EICNN on the synthetic scenario (sec-

tion 6.3.8) based upon 100, 500, 1000, 1500, and 2000 landmark observations that

are randomly sampled 50 times each.

EICNN is parametrized so that a minimal support κ of new clusters by at least

ten observations is required. Observations with an uncertainty exceeding 2 m are a

priori classified as noise and, therefore, directly excluded from the correspondence

determination. Furthermore, the cut-off value utilized by the IC-test is set to

χ2
d“2, α“0.93 (section 6.2.1). α has been determined via grid-search.

In figure 6.7 the average incorrect association count, precision, recall, and F0.1-score is

provided. One can notice that the incorrect association count is always equal to zero,

while the precision is equal to one, from 500 observations on. 100 observations can be

17Traffic Sign Recognition (TSR)
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Figure 6.6: A partially synthetic scenario exhibiting 29 point-shaped landmarks
and the corresponding uncertainties at 3σ. Their ground truths are
visualized by red circles ˝ and their observations by blue circles ˝.
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Figure 6.7: Accuracy evaluation of EICNN. 100, 500, 1000, 1500, and 2000 land-
mark observations are randomly sampled for fifty times each from the
synthetic scenario (figure 6.6). The averaged results are then displayed
by Box-Whisker-Plots (appendix A.5).
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Figure 6.8: Runtime evaluation of EICNN for 100, 500, 1000, 1500, and 2000
landmark observations randomly sampled for fifty times each from the
synthetic scenario (figure 6.6), and the corresponding linear regression.

considered as not sufficient for determining the clusters in a robust manner (minimal

support κ ě 10) and the algorithm behaves, therefore, as desired by classifying all

observations as noise. Furthermore, one can observe that the F0.1-score converges

rapidly to 0.96, which is very close to the optimal score of one.

In figure 6.8 the average runtimes are provided. One can notice that EICNN scales

linearly with the observation count and requires an average runtime of 1.77 s for 2000

observations (cumulative runtime of all computing units).

Extended Joint Compatibility Branch and Bound

In the following, EJCBB is evaluated on the synthetic scenario (section 6.3.8) based

upon 100, 500, 1000, 1500, and 2000 landmark observations that are randomly

sampled for 50 times each.

EJCBB is parametrized so that observations with an uncertainty exceeding 2 m are

a priori classified as noise and, therefore, excluded from the subsequent observation

fusion. Furthermore, the cut-off value utilized by the IC- and JC-tests is set to

χ2
d, α“0.93 (section 6.2.1).

The number of simultaneously tracked hypotheses is limited to η “ 10 to assure

computational feasibility. The ten most promising hypotheses are then selected by

the as following parametrized cost function (section 6.3.4):

cpHq “ 1.5loomoon
ωIC

¨ νIC ` 1.5loomoon
ωJC

¨ νJC ` 0.5loomoon
ω˚

¨ ν˚ ` 1.5loomoon
ωnew

¨ νnew.

The parameters ωIC, ωJC, ω˚ and ωnew were also determined in an optimal manner

by means of a grid search.

This approach deviates significantly from the one suggested by Neira and Tardós [85],

as their approach assesses the quality of a hypothesis solely by a low noise count.
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Figure 6.9: Accuracy evaluation of EJCBB. 100, 500, 1000, 1500, and 2000 land-
mark observations are randomly sampled for fifty times each from the
synthetic scenario (figure 6.6). The averaged results are then provided
in the shape of Box-Whisker-Plots (appendix A.5).
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Figure 6.10: Runtime evaluation of EJCBB for 100, 500, 1000, 1500, and 2000 land-
mark observations that are randomly sampled for fifty times each from
the synthetic scenario (figure 6.6), and the corresponding quadratic
regression. Additionally, the runtime of JCBB for 50 observations is
provided according to [20].

However, as the precision and not the recall is defined to be of the topmost priority for

the use case of clustering CVD, this alternative selection criterion is highly favored.

Figure 6.9 visualizes the incorrect associations count, precision, recall, and F0.1-score

of EJCBB for the synthetic scenario. One can notice that the incorrect associations

count is always equal to zero, while the precision is equal to 1 for 500 and more

observations. 100 observations can be considered as not sufficient for determining the

clusters in a robust manner (minimal support κ ě 10) and the algorithm behaves,

therefore, as desired by classifying all observations as noise. The reader may also

notice the very low recall value, which does reflect the strong limitation of the

JC-test. This has also been assessed by Neira and Tardós [85]. The recall of EJCBB

is approximately 6 % for 2000 observations, while the one of EICNN is approximately

24 % (figure 6.7). The low recall value of EJCBB does of course affect the F0.1-score,

for which a value of F0.1 “ 0.81 is below the value F0.1 “ 0.96 of EICNN.

Figure 6.8 provides the average runtimes of EJCBB. One can notice that EJCBB

scales, in this case, approximately quadratically with the observation count. As sug-

gested by Neira and Tardós [85], the matrix inversion is performed in an incremental

manner (section 6.2.1). This way, the computational effort of the matrix inversion is

reduced from Opn3q to Opn2q.
Overall, EJCBB can be considered as a computationally demanding algorithm, which

becomes computationally tractable when the number of simultaneously considered

hypotheses is bounded. An overview of the runtimes of manifold implementations

of JCBB is provided by Reid [96]. Some implementations even require up to 20 s

of computation time for the association of just 50 distinct observations [20], while

EJCBB is able to cluster 2000 observations in approximately 4.5 s. Therefore, EJCBB
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can be regarded as a significant extension and enhancement both concerning the

robustness and computational efficiency of the performed clustering.

6.4 Discussion

Data association/clustering is considered within the research community, as well

as the subsequent fusion (chapters 7 and 8), as a highly challenging task [16, 21].

Furthermore, the results thereof are known to significantly affect the quality of

subsequent processing steps. As stated by Castellanos et al. [16], large-scale, the

simultaneous incorporation of multiple data sources, and the tackling of complex

environments can be regarded as topics that still require further research. Besides

complex environments, which are addressed later on in a dedicated manner (chapter 8),

all remaining challenges and beyond, such as compensating for temporal decay, have

been extensively addressed within this chapter.

Three state-of-art algorithms for data association have been extended for tackling

the challenges introduced by the large-scale and high-precision fusion of CVD to

the algorithms EICNN, ESCNN, and EJCBB. Not only have these algorithms been

extended from pure data association to clustering ones, but also their efficiency

and robustness have been significantly enhanced. In detail, large-scale has been

approached i. a. by partitioning the problem into small computationally feasible

chunks, and by index-based intersection tests prior to the actual IC and JC tests. As

stated previously, both IC and JC can be regarded as computationally demanding

due to the involved matrix inversions and, hence, constitute the dominating costs.

The extension of JCBB from a pure data association to a full clustering algorithm,

EJCBB, has been approached by GBB [84] in combination with the search strategy

BFS for being able to dynamically update the landmark map. For the use-case of

restricted computational resources or real-time constraints, a novel, multi-objective

cost function has been defined for selecting the η most probable hypotheses at each

layer of the interpretation tree. The runtime efficiency of the suggested EJCBB

approach (4.5 s for 2000 observations) can be regarded as impressive when compared

to EICNN (1.77 s for 2000 observations) or other JCBB implementations (20 s for

50 observations [20]). If desired, the computational efficiency could be even further

improved by combining EICNN with EJCBB and by utilizing EJCBB only in

ambiguous cases, as suggested by Chen et al. [18].

The utilized χ2
d,α-test can be regarded as both the strength and the weakness of

(E)ICNN, (E)SCNN, and (E)JCBB. On the one hand, it allows to robustly identify

correspondences in the case of Gaussian errors. On the other hand, non-Gaussian

errors cannot be appropriately resolved. Fortunately, Gaussian localization and

observation errors can be often assumed. However, a more universal test for errors
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originating from other distributions than Gaussian would be in some cases also of

interest. It could be achieved by augmenting/substituting the IC- and JC-tests by

alternative ones.

In summary, EICNN, ESCNN, and EJCBB can be regarded as highly valuable

improvements of their original data association predecessors for the specific use

case of clustering CVD, in particular with respect to robustness and computational

efficiency.





7
Fusion of Point-shaped Landmark

Data

In this chapter, three methods for the optimized estimation of landmark locations

based on the processing state of the acquired landmark observations achieved after

clustering are presented, evolved, and opposed to each other with respect to key aspects,

such as accuracy and runtime. They are based on the approaches to data fusion

Covariance Intersection (CI) and Simultaneous Localization and Mapping (SLAM).
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7.1 Introduction

The purpose of the methods presented in this chapter is the optimized estimation

of landmark locations based on the processing state of the acquired landmark

observations achieved after clustering:

Problem 7.1: Estimation of Landmark and Vehicle Locations

Input: 1. A trajectory consisting of a sequence Zv “ pzv
l | l “ 0, . . . , pqT of

vehicle location observations, a sequence Z “ pzi | i “ 0, . . . ,mqT of

corresponding landmark observations, and Z|l the subsequences of

landmark observations acquired at the vehicle locations l.

2. A sequence Z l “ pZ l
j | j “ 0, . . . , nqT of clusters of landmark obser-

vations, each corresponding to a landmark. Z l
j|l denotes landmark

observations belonging to cluster j and acquired at vehicle location l.

3. A sequence Xv “ pxv
l | l “ 0, . . . , pqT of vehicle location estimates, a

sequenceL “ plj | j “ 0, . . . , nqT of landmark estimates corresponding

to the sequence of clusters. Both sequences may be incomplete, i. e.

xv
l “ ˚, lj “ ˚ for some values l and j, respectively. The estimates

are stored in a submapping data structure.

4. Related temporal decay models.

Output: Improved estimations of landmark locations and vehicle locations, by

data fusion.

Multiple approaches to the fusion of point-shaped landmark data are known to the

state of the art, and the task can be tackled from different points of view. On the

one hand, it can be tackled from the pure sensor fusion’s point of view by utilizing

approaches, such as (F)CI1. On the other hand, it can be approached from the

robotic’s point of view by utilizing one of the manifold approaches to SLAM2 [3, 32].

However, the transition between both perspectives is regarded as fluent. Particular

1 Covariance Intersection (CI)
2 Simultaneous Localization and Mapping (SLAM)
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Abs. Pos. Scalab. Increm. Est. Uncert. Temp. Weight.

CI yes yes yes yes no
FCI yes yes yes yes no
EKF-SLAM yes yes yes yes no
BA-SLAM solved via LM yes yes yes yes yes
BA-SLAM solved via QR yes yes yes yes yes

Table 7.1: A survey of the algorithms for the fusion of point-shaped landmark data
presented in the thesis: (F)CI, EKF-based Online-SLAM, and BA-based
Full-SLAM, which is solved both directly by utilizing LM and after lin-
earization by utilizing QR. Additionally, the attributes crucial for the
fusion of CVD are itemized.

challenges of the fusion of CVD3 are its large-scale and temporal dynamics. Therefore,

both aspects need to be taken into particular consideration.

In table 7.1 the subsequently evolved algorithms (F)CI, EKF4-based Online-SLAM,

and BA5-based Full-SLAM, for the fusion of point-shaped landmark data are op-

posed to each other. Attributes important from the automotive point of view are

particularly considered. All those algorithms can be adapted to handle absolute

vehicle positions and can be effectively scaled to multiple computing units via adap-

tive partitioning (section 4.2). Furthermore, all algorithms can be applied in an

incremental manner or extended to be incrementally computable. In the case of

BA-based Full-SLAM, this aspect is dependent on the solver that is actually incorpo-

rated. In the case of LM6, it can be achieved by utilizing the previously determined

solution as an initialization. In the case of QR7, it can be achieved by utilizing an

incremental approach to QR [6, 51]. While (F)CI and EKF-based Online-SLAM

provide estimation uncertainties directly, for BA-based Full-SLAM they need to be

explicitly derived. Furthermore, temporal weighting, as introduced in chapter 4.3,

can only be sensibly incorporated into approaches without marginalization, such as

BA-based Full-SLAM.

In this chapter, the three selected approaches to the fusion of point-shaped landmark

observations, cf. table 7.1, (F)CI (section 7.2), EKF-based Online-SLAM (section 7.3),

and BA-based Full-SLAM (section 7.4), are evolved to suit the use case of a large-scale

CVD-fusion and when possible to compensate for temporal decay. Subsequently,

these approaches are opposed to each other concerning their accuracies and runtimes

on the basis of two evaluation scenarios (section 7.5). Finally, the findings are

discussed in detail (section 7.6).

3 Collective Vehicle Data (CVD)
4 Extended Kalman Filter (EKF)
5 Bundle Adjustment (BA)
6 Levenberg Marquardt (LM)
7 QR Factorization (QR)
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7.2 Fusion via (Fast) Covariance Intersection

Fusion by CI was initially presented by Julier and Uhlmann [63]. It tackles the task

of fusing random variables with unknown cross-correlations. This is in contrast to

the well-known KF8 (section 7.3), which assumes known cross-correlations and is

then able to provide optimal fusion results. However, if cross-correlations are not

perfectly known, or independence is incorrectly assumed, the KF is generally known

to provide suboptimal fusion results or even to diverge. On the contrary, CI is able

to handle correlations of any extent.

Fusion by CI requires that consistent measurement estimates according to the

definition given by Jazwinski [60] are provided for the measurements to be fused:

Definition 7.1: Consistent Estimate

Let x be a random input variable representing a measurement, x “ Erxs, and

Cx,x its covariance. Let furthermore be pCx,x an estimated uncertainty of x. Then

the estimate is consistent if the following consistency condition is fulfilled:

pCx,x ´Cx,x ě 0. (7.1)

To put the definition into words, a consistent estimate implies that the estimated

measurement uncertainty pCx,x ist not underestimating the actual measurement

uncertainty Cx,x.

CI is defined as follows:

Definition 7.2: Fusion by Weighted Covariance Intersection

Input: 1. Random variables a and b representing two measurements, a “
Eras, b “ Erbs their means, and pCa,a, pCb, b consistent estimated

measurement uncertainties of a and b,

2. a weight ω, 0 ď ω ď 1.

Output: The mean cω and an estimated covariance pCcω , cω of a random variable

cω called fusion of a and b, which satisfy

pCcω , cω “
´
ω ¨ pC´1

a,a ` p1´ ωq ¨ pC
´1

b, b

¯´1

,

cω “ pCcω , cω ¨
´
ω ¨ pC´1

a,a ¨ a` p1´ ωq ¨ pC
´1

b, b ¨ b
¯
.

(7.2)

The usefulness of the concept of CI is implied by the following property:

8 Kalman Filter (KF)
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Figure 7.1: Set-theoretic interpretation of CI according to Chong and Mori [19].
CI provides a conservative error estimate that always encloses the
intersected area. However, one can notice that CI does not always
provide the tightest possible bound.

Property 7.1: Consistency Property of Covariance Intersection

The estimated measurement pCcω , cω of a fusion cω, 0 ď ω ď 1, by CI is consis-

tent [63]:

pCcω , cω ´Ccω , cω ě 0. (7.3)

The interesting point of the consistency property of CI is that it is independent from

the cross-correlation of the measurements a and b and of the weight ω. This implies

that neither independence of a and b nor an estimation of the cross-correlation is

required. Figure 7.1 depicts a set-theoretic explanation of CI given by Chong and

Mori [19]. It visualizes the fusion of CI for two given, exemplary measurements.

The estimated covariances are represented by covariance ellipses of range 1σ (ap-

pendix A.2). Additionally, the intersection of both covariance ellipses is shown. It

can be noticed that the covariance ellipse of CI encloses the intersection. However,

it can not be regarded as a tight estimate of the resulting uncertainty. Figure 7.2

shows exemplary fusions by CI for ω P t0.25, 0.5, 0.75u.
7.2.1 Optimal Covariance Intersection

The example of figure 7.2 shows that the tightness of the CI is depending on the

parameter ω. This leads to a further variant of CI:
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Figure 7.2: Exemplary application of CI for distinct values of ω P t0.25, 0.5, 0.75u.
Definition 7.3: Fusion by Optimal Covariance Intersection

Input: 1. Random variables a and b representing two measurements, a “
Eras, b “ Erbs their means, and pCa,a, pCb, b consistent estimated

measurement uncertainties of a and b,

2. An objective function fp.q which maps a covariance matrix to a

non-negative real number.

Output: The mean cω and an estimated covariance pCcω , cω of a weighted fusion

cω of a and b, where

ω “ arg min
ω

fppCcω , cωq. (7.4)

Different objective functions f have been proposed to choose a suitable value of

ω, such as minimizing the determinant or minimizing the trace of the matrix of
pCc, c [63]. In those cases, the objective functions are convex so that an unambiguous

solution to the optimization problem in the range of r0, 1s exists. Any solver for

convex optimization functions can be utilized, for example, the well-known Brent

algorithm [11]. By combining golden ratio search with parabolic interpolation

(equivalent to a Lagrangian interpolation of degree 2) this approach is known to

provide in practice superlinear convergence.

Alternatively, closed form solutions to optimal CI have been proposed by several

authors [86, 97]. Those are usually referred to as FCI9 and show an improved

computational efficiency in comparison to the application of generic optimization

9 Fast Covariance Intersection (FCI)
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input :C1,C2 PM2ˆ2 pRq
output : Ω

1 Jointly diagonalize covariances

pE1,V 1q “ eigenpC1q ;

T “ pV 1
?
E1q´1 ;

pE2,V 2q “ eigenpT ¨C2 ¨ TT q ;

e “
ˆ

1{E1
2

1´ 1{E1
2

. . .
1{En2

1´ 1{En2

˙T
;

2 Determine ω

switch criterion do
case determinant do

ΩY
"
´1

2

`
e1 ` e2˘

*
;

break ;

end
case trace do

A “ V 2 ¨E1 ¨ pV 2qT ;

p “ 2 ¨ A11 ¨ e2 ¨ p1` e1q `A22 ¨ e1 ¨ p1` e2q
A11 ¨ p1` e1q `A22 ¨ p1` e2q ;

q “ A11 ¨ pe2q2 ¨ p1` e1q `A22 ¨ pe1q2 ¨ p1` e2q
A11 ¨ p1` e1q `A22 ¨ p1` e2q ;

ΩY
"
´p

2
˘

c´p
2

¯2 ´ q
*

;

break ;

end

end

3 Handle border cases

Ω “ ΩX r0, 1s ;

if Ω “ tu then
switch criterion do

case determinant do
if detpC1q ă detpC2q then Ω “ t0u;
else Ω “ t1u;
break ;

end
case trace do

if tracepC1q ă tracepC2q then Ω “ t0u;
else Ω “ t1u;
break ;

end

end

end
return Ω ;

Algorithm 7.1: Outline of FCI for both the determinant and the trace criterion
according to Reinhardt et al. [97]. The algorithm requires two covari-
ances C1, C2 PM 2ˆ2 pRq as input and provides a unique solution
ω P Ω as output in the case of a convex objective function.
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algorithms. Algorithm 7.1 is an example of FCI according to Reinhardt et al. [97], for

both the determinant and the trace objective function. First, both covariances of the

input variables are jointly diagonalized. Afterwards, possible values of ω according

to the chosen objective function are determined and inserted in a solution set Ω,

utilizing the derived closed form solutions. Finally, all out-of-range solutions ω R r0, 1s
are removed from Ω. In the case of an empty solution set, both covariances are

compared to each other by the chosen objective function. Afterwards, the covariance

with the smaller function value constitutes the resulting intersection, i. e. ω P t0, 1u.
Subsequently, the determined weight can be utilized for calculation of the mean and

covariance estimate of the fusion (equation 7.2).

7.2.2 Tackling Inconsistent Measurements via Union

An extension to CI is the so-called CU10 [129]. It can be incorporated in the case

of inconsistent observations, cf. definition 7.1, as follows. First, CU requires that

inconsistent measurements are robustly identified. Afterwards, a consistent estimate c

with the mean c and covariance pCc for two inconsistent measurements with the

means a, b and covariance estimates pCa,a and pCb, b can be derived by computing

the estimate that encloses (tightly) both inconsistent measurements.

7.2.3 Extension to the Fusion of Multiple Measurements

CI can be extended to the fusion of more than two measurements. In the following,

two possibilities are outlined: incremental multiple fusion and batch multiple fusion.

Incremental multiple fusion fuses original or fused measurements in pairwise manner

by CI. A special case is to process the original measurements sequentially by fusing

the next measurement with the result of fusion of the measurements already processed.

Incremental multiple fusion is feasible due to the fact that the covariance estimate of

fusion by CI is consistent.

Batch multiple fusion is defined as follows:

Definition 7.4: Batch Multiple Fusion by Weighted Covariance Inter-

section

Input: 1. Random variables x1, . . . , xn representing measurements, x1, . . . , xn
their means, and pCx1,x1 , . . . , pCxn,xn consistent estimated covariances

of x1, . . . , xn,

2. Weights ωi, 0 ď ωi ď 1, with
řn
i“1 ωi “ 1.

10Covariance Union (CU)
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Output: The mean cω1, ..., ωn and an estimated covariance pCcω1, ..., ωn
of a random

variable cω1, ..., ωn which is a fusion of x1, . . . , xn and which satisfies

pCω1, ..., ωn “
´
ω1 ¨ pC´1

x1,x1
` . . .` ωn ¨ pC´1

xn,xn

¯´1

,

c “ pCω1, ..., ωn ¨ pω1 ¨ pC´1

x1,x1
¨ x1 ` . . .` ωn ¨ pC´1

xn,xn ¨ xnq.
(7.5)

While the batch approach for multiple variables does still provide an optimal estimate,

the incremental one might provide a probably suboptimal result [129]. Fortunately,

the consistency of both approaches, the incremental and the batch one, is always

guaranteed.

7.2.4 Application to Point-shaped Landmarks

For point shaped landmarks, the landmark observations of a cluster resulting from

the clustering step (section 6) are taken as the measurements fused by multiple CIs.

The result of fusion is the desired landmark estimate.

7.3 Fusion via EKF-based Online-SLAM

The section starts with a short overview of different approaches to SLAM. Then the

difference between approaches to Online- and Full-SLAM is pointed out. Afterwards,

feature-based EKF-Online-SLAM as initially presented by Smith et al. [120] is

recapped and adapted for the fusion of point-shaped landmarks from CVD.

Approaches to SLAM aim to simultaneously solve the map building and localization

task. They allow approaching the fusion of CVD in a holistic manner, as both the

vehicle motion and landmark observations are jointly considered. This significantly

differs from algorithms purely intended for sensor data fusion, such as CI (section 7.2).

There exist multiple variants of SLAM, which can be roughly subdivided into

three main categories: grid-based, feature-based, and topological [139]. Grid-based

approaches commonly utilize an occupancy-grid for the representation of the envi-

ronment. Feature-based approaches use salient, often point-shaped landmarks to

represent the environment. Topological approaches derive a graph representation of

the environment based on the observed salient features.

Furthermore, approaches to SLAM can be distinguished into the categories of

Online- or Full-SLAM [126]. Full-SLAM considers the whole vehicle trajectory

at once, while approaches to Online-SLAM only consider the current vehicle position,

by marginalizing out former ones. Figure 7.3 shows a graphical comparison of

Online- and Full-SLAM. Hybrid approaches to SLAM which only perform a partial
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(a) Online-SLAM (b) Offline-/Full-SLAM

Figure 7.3: The difference between Online- and Full-SLAM. xv0, . . . ,x
v
p are the

positions constituting the vehicle trajectory. z0, . . . ,zm are the obser-
vations of the landmarks l0, . . . , ln, which are acquired by the vehicles.
For Online-SLAM the previous vehicle positions are marginalized out,
while Full-SLAM considers the whole vehicle trajectory [29, 126]. In
both cases, the considered vehicle positions are highlighted in gray ‚.

marginalization are possible, too. They are able to alleviate the computational effort

while simultaneously increasing the robustness and accuracy of SLAM.

A further distinction of approaches to SLAM is between single- and multi-robot

SLAM [17, 99, 137]. Multi-robot SLAM is commonly considered to be more challeng-

ing than single-robot SLAM, as the map is built in a cooperative manner by multiple

vehicles. As the fusion of CVD does imply a cooperative map-building, multi-robot

approaches to SLAM are basically relevant here. However, the utilization of absolute,

GNSS11-based positions instead of relative ones partially alleviates the task.

EKF-based Online-SLAM presented in this section belongs to the feature-based

category. The features are the point-shaped landmarks. Using the EKF instead of the

KF allows non-linear prediction and observation models by means of linearization [64,

132]. This is favorable because in the context of SLAM the utilized model functions

are commonly non-linear. Although, in this work, a linear vehicle motion model is

intentionally incorporated, the observation model is still non-linear. Therefore, the

extended variant of the KF is strictly required.

Subsections 7.3.1 and 7.3.2 are devoted to the representation of the estimates and

observations of the vehicle and the landmark locations. Subsection 7.3.3 outlines the

function of EKF-based Online-SLAM. The subsequent subsections present its steps

in detail. The final subsection 7.3.8 compares EKF-based Online-SLAM to CI.

11Global Navigation Satellite System (GNSS)
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7.3.1 Modeling the State

EKF-based Online-SLAM generates, as typical for (E)KFs [64], a sequence of states

emerging from the sequence of vehicle location observations and corresponding

landmark observations. A state is represented by a state vector x̂k|k and a state

covariance matrix P k|k, k “ 1, . . . . In the case of point-shaped landmark fusion,

they are defined as follows:

Definition 7.5: State Vector

x̂k|k “
”
xv
l l0 ¨ ¨ ¨ ln

ıT
, k “ 1, . . . (7.6)

where xv
l denotes the current estimated vehicle position, which is the l-th one in

the vehicle trajectory. l0, . . . , ln denote the estimated positions of all currently

known landmarks. All those positions are represented by coordinates in the global

frame.

Definition 7.6: State Covariance Matrix

P k|k “

»
————–

xv
l l0 ln

xv
l Σxv

l
Σxv

l , l0
¨ ¨ ¨ Σxv

l , ln

l0 Σl0,xv
l

Σl0 ¨ ¨ ¨ Σl0, ln
...

...
. . .

...

ln Σln,xv
l

Σln, l0 ¨ ¨ ¨ Σln

fi
ffiffiffiffifl
, k “ 1, . . .

(7.7)

where Σ¨,¨ represents the uncertainties and cross-correlations of the vehicle and

landmark positions.

The state vector stores both types of observations in an absolute manner. This

deviates from the general practice. However, this definition is very advantageous for

collaborative mapping as it will become apparent during the course of section 7.3.

Furthermore, as typical for Online-SLAM, former vehicle positions xv
0, . . . , x

v
p´1 are

not represented within the state vector and the state covariance matrix, as they are

marginalized out (figure 7.3).

7.3.2 Representation of Observations

The current observations at every step k are represented by an observation vector zk
and the corresponding observation covariance matrix Rk:
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Definition 7.7: Observation Vector

zk “
”
zv
l z0 ¨ ¨ ¨ zm

ıT
, (7.8)

where zv
l denotes the currently observed vehicle position, which is the l-th one in

the vehicle trajectory. z0, . . . , zm denote the current landmark observations. The

landmark observations are represented relative to the vehicle, i. e. by coordinates

in the vehicle frame.

Definition 7.8: Observation Covariance Matrix

Rk “

»
————–

zvl z0 zm

zvl Σzvl
0 ¨ ¨ ¨ 0

z0 0 Σz0
. . .

...
...

. . . . . . 0

zm 0 ¨ ¨ ¨ 0 Σzm

fi
ffiffiffiffifl
. (7.9)

The reason for representing the observations in the context of EKF-based Online-

SLAM relatively to the vehicle is that the measurements are made relatively to the

vehicle at every step k. The observation covariance matrix Rk, which is usually

referred to as noise matrix in the context of (E)KF, does not feature any cross-

correlations, in contrast to the state covariance matrix P k|k. This is implied, on the

one hand, by the relative nature of the measurements, and, on the other hand, by

the assumption of independence between the actual landmark observations.

The landmark observations in the observation vector and the landmark estimates in

the state vector are related by an assignment by clustering according to section 6.

7.3.3 EKF-based Online-SLAM

Online-SLAM iteratively updates the system state based on new observations. Its

central task of step k ´ 1, k ą 1 can be specified as follows:

Problem 7.2: Online-SLAM

Input: A state vector x̂k´1|k´1, a state covariance matrix P k´1|k´1, an observa-

tion vector zk, and an observation covariance matrix Rk.

Output: An updated state vector x̂k|k and an updated state covariance ma-

trix P k|k.

EKF-based Online-SLAM treats the problem in two substeps:
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Figure 7.4: Working principle of the EKF, which consists of the iterative execution
of a prediction and an update step based on new measurements (equa-
tions 7.10 to 7.14).

Solution 7.1: EKF-based Online-SLAM

Predict: Determine a prediction x̂k|k´1 of the next state vector and a prediction

P k|k´1 of the next state covariance matrix, based on x̂k´1|k´1, P k´1|k´1.

Update: Determine the updating x̂k|k of the state vector and the updating P k|k
of the next state covariance matrix, based on zk and Rk.

Figure 7.4 illustrates the principle of iteration of this step.

The prediction of the state vector x̂k|k´1 and the prediction of the state covariance

matrix P k|k´1 by the EKF is performed according to

x̂k|k´1 “ fpx̂k´1|k´1,u
v
k´1q,

P k|k´1 “ F k´1P k´1|k´1F
J
k´1 `Qk´1,

(7.10)

with a control vector uv
k´1 and the Jacobian F k´1 of f evaluated at x̂k´1|k´1 and uv

k´1.

Qk´1 is added to the state covariance matrix to model the uncertainty that is imposed

by the prediction.

The updating of the state vector x̂k|k and the updating of the state covariance

matrix P k|k is performed by

x̂k|k “ x̂k|k´1 `Kkỹk,

P k|k “ pI ´KkHkqP k|k´1,
(7.11)
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where ỹk is the so-called measurement residual and Kk the so-called gain which

controls the weighting of the prediction x̂k|k´1 and the actual observations zk.

The measurement residual between the observation vector zk and the observation

prediction x̂k|k´1 is determined by

ỹk “ zk ´ hpx̂k|k´1q, (7.12)

where h is an observation prediction model.

The gain is defined by

Kk “ P k|k´1H
J
kS

´1
k , (7.13)

where Sk is the so-called residual covariance andHk is the Jacobian of the observation

prediction model.

The residual covariance is calculated by

Sk “ HkP k|k´1H
J
k `Rk (7.14)

with the observation uncertainty Rk.

Algorithm 7.2 presents the details of the approach in pseudocode. The algorithm first

predicts a vehicle position based on a vehicle motion model (subsection 7.3.4) and

then updates the vehicle position by fusing the predicted and the observed vehicle

position (subsection 7.3.5). Afterwards, for every landmark observation made from

the current vehicle position, the algorithm checks whether the associate landmark

estimate is already in the state vector. If the landmark estimate is not yet existing,

the state vector and state covariance matrix are extended (subsection 7.3.6). If the

landmark estimate already exists, the landmark estimate is updated by fusing a

predicted landmark estimate with the observation (subsection 7.3.7). Finally, the

algorithm returns the filtered trajectory positions and the fused landmark estimates.

7.3.4 Predicting the Vehicle Position

A linear vehicle motion model is utilized. As analyzed in detail in section 3.3,

the error introduced by a linear motion model (instead of a circular one), and in

conjunction with a 10 Hz GNSS sampling rate, can be considered as being minor.

This way, both additional linearization errors are circumvented and simultaneously

the computational effort is reduced, what can be considered as being crucial for

high-precision and large-scale applications.
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input : Zv “ pzv
0, . . .q ,

Z “ pz0, . . .q .
output : x̂k|k, P k|k
k “ 0;

1 Iterate over distinct vehicle positions
for zv

l P Zv do

k “ k ` 1;

2 Predict vehicle position
px̂k|k´1, P k|k´1q “ predictVehiclePositionpxv

l´2, x
v
l´1, x̂k´1|k´1, P k´1|k´1q;

3 Update vehicle position
px̂k|k, P k|kq “ updateVehiclePositionpzv

l , x̂k|k´1, P k|k´1q;
4 Iterate over currently observed landmarks
for zi P Zv

l do

if isLandmarkUnknownpziq then
5a First observation of a landmark
px̂k|k, P k|kq “ insertNewLandmarkpzi, x̂k|k, P k|kq;

end
else

5b Further observation of an existing landmark
px̂k|k, P k|kq “ updateLandmarkpzi, x̂k|k, P k|kq;

end

end

end

return px̂k|k, P k|kq ;

Algorithm 7.2: Fusion of point-shaped CVD via EKF-based Online-SLAM. The
procedure expects a vehicle trajectory Zv and the corresponding
landmark observations Z as input. As output, the procedure provides
the fused landmark positions in the shape of the state vector x̂k|k
and state covariance matrix P k|k.
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The prediction x̂k|k´1 of the state vector is performed by linear extrapolation of the

vehicle motion based on the last two vehicle positions:

x̂k|k´1 “ fpx̂k´1|k´1, u
v
k´1q “

”
xv
l l0 ¨ ¨ ¨ ln

ıT
, (7.15)

and

xv
l “ xv

l´1 ` uv
k´1,

uv
k´1 “

xv
l´1 ´ xv

l´2

tl´1 ´ tl´2

¨ ptk ´ tl´1q.

xv
l´1 resp. xv

l´2 are the two last vehicle position estimates, tk is the time of the

prediction, and tl´1 resp. tl´2 are the corresponding two last timestamps of the

vehicle position estimates xv
l´1 resp. xv

l´2. The landmark estimates l0, . . . , ln are

not affected by the vehicle motion, as they are represented by their absolute positions

in the global frame.

For two dimensions this explicitly yields

x̂k|k´1 “ fpx̂k´1|k´1, u
v
k´1q 2D“

«
x̂0
k´1|k´1 ` uv,x

k´1loooooooomoooooooon
xv
l,x

x̂1
k´1|k´1 ` uv,y

k´1loooooooomoooooooon
xv
l,y

x̂2
k´1loomoon
lx0

x̂3
k´1|k´1looomooon
ly0

x̂4
k´1|k´1looomooon
lx1

x̂5
k´1|k´1looomooon
ly1

. . .
ffT

.

(7.16)

The predicted state covariance matrix P k|k´1 is obtained as

P k|k´1 “ F k´1 ¨ P k´1|k´1 ¨ F T
k´1 `Qk´1

“

»
————–

xv
l l0 ln

xv
l Σxv

l
Σxv

l ,l0
¨ ¨ ¨ Σxv

l ,ln

l0 Σl0,xv
l

Σl0 ¨ ¨ ¨ Σl0,ln
...

...
. . .

...

ln Σln,xv
l

Σln,l0 ¨ ¨ ¨ Σln

fi
ffiffiffiffifl
,

(7.17)
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with the Jacobian

F k´1 “
”
F x̂k´1

F uv
k´1

ı
2D“

»
———————————–

xv
l,x xv

l,y lx0 ly0 lxn lyn uv,x
k uv,y

k

xv
l,x 1 0 0 0 ¨ ¨ ¨ 0 0 1 0

xv
l,y 0 1 0 0 ¨ ¨ ¨ 0 0 0 1

lx0 0 0 1 0 ¨ ¨ ¨ 0 0 0 0

ly0 0 0 0 1 ¨ ¨ ¨ 0 0 0 0
...

...
...

...
. . .

...
...

...
...

lxn 0 0 0 0 ¨ ¨ ¨ 1 0 0 0

lyn 0 0 0 0 ¨ ¨ ¨ 0 1 0 0

fi
ffiffiffiffiffiffiffiffiffiffiffifl

(7.18)

of the prediction model function fpx̂k´1|k´1,u
v
k´1q and with the additive prediction

uncertainty

Qk´1 “

»
————–

xv
l l0 ln

xv
l ∆Σxv

l
0 ¨ ¨ ¨ 0

l0 0 0 ¨ ¨ ¨ 0
...

...
. . .

...

ln 0 0 ¨ ¨ ¨ 0

fi
ffiffiffiffifl
. (7.19)

7.3.5 Updating the Vehicle Position

If the vehicle moves, and even no landmarks are observed, then the state vector x̂k|k
and state covariance matrix P k|k are nevertheless updated to filter the vehicle motion.

To accomplish this, a stripped-down vehicle-selective observation vector ẑv
k and

observation noise matrix Rv
k is utilized:

ẑv
k “

”
zv
l

ıT
,

R
zvl
k “

” zvl

zvl Σzvl

ı
.

(7.20)

Afterwards, the predicted and observed state are fused according to the EKF equations

of subsection 7.3.3.

The vehicle-selective measurement residual is

ỹv
k “ zv

k ´ hpx̂k|k´1q, (7.21)
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with the observation prediction model

hpx̂k|k´1q “
”
xv

ıT
. (7.22)

The vehicle-selective Jacobian of the observation prediction model is

Hvpx̂k|k´1q “
« xv

l,x xv
l,y l0x l0y lnx lny

xv
l,x 1 0 0 0 ¨ ¨ ¨ 0 0

xv
l,y 0 1 0 0 ¨ ¨ ¨ 0 0

ff
. (7.23)

The residual covariance is

Sv
k “ Hv

kP k|k´1pHv
kqJ `Rv

k. (7.24)

The resulting vehicle-selective EKF-gain is

Kv
k “ P k|k´1pHv

kqJpSv
kq´1. (7.25)

Finally, the vehicle-selective EKF update equations are given by

x̂k|k “ x̂k|k´1 `Kv
kỹ

v
k,

P k|k “ pI ´Kv
kH

v
kqP k|k´1.

(7.26)

7.3.6 First-Time Observation of a Landmark

In the case that a landmark ln`1 is observed for the first time, both the state

vector x̂k|k and the state covariance matrix P k|k need to be extended. The extension

of the state vector x̂k|k is accomplished by adding one additional landmark entry ln`1:

x̂k|k “
”
xv
l l0 ¨ ¨ ¨ ln ln`1

ıT
. (7.27)
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ln`1 is initialized with the absolute position of the landmark observation, which is

obtained by compounding according to section 3.4. Furthermore, the state covariance

matrix P k|k needs to be extended by an additional column and row:

P k|k “

»
——————–

xv
l l0 ln ln`1

xv
l Σxv

l
Σxv

l ,l0
¨ ¨ ¨ Σxv

l ,ln
Σxv

l ,ln`1

l0 Σl0,xv
l

Σl0 ¨ ¨ ¨ Σl0,ln Σl0,ln`1

...
...

. . .
...

...

ln Σln,xv
l

Σln,l0 ¨ ¨ ¨ Σln Σln,ln`1

ln`1 Σln`1,xv
l

Σln`1,l0 ¨ ¨ ¨ Σln`1,ln Σln`1

fi
ffiffiffiffiffiffifl

“

»
——————–

xv
l l0 ln ln`1

xv
l Σxv

l
Σxv

l ,l0
¨ ¨ ¨ Σxv

l ,ln
Σxv

l
¨ JT0‘

l0 Σl0,xv
l

Σl0 ¨ ¨ ¨ Σl0,ln Σl0,xv
l
¨ JT0‘

...
...

. . .
...

...

ln Σln,xv
l

Σln,l0 ¨ ¨ ¨ Σln Σln,xv
l
¨ JT0‘

ln`1 J0‘ ¨Σxv
l
J0‘ ¨Σxv

l ,l0
¨ ¨ ¨ J0‘ ¨Σxv

l ,ln
J0‘ ¨Σxv

l
¨ JT0‘ ` J1‘ ¨Σln`1 ¨ JT1‘

fi
ffiffiffiffiffiffifl

lin.“

»
——————–

xv
l l0 ln ln`1

xv
l Σxv

l
Σxv

l ,l0
¨ ¨ ¨ Σxv

l ,ln
Σxv

l

l0 Σl0,xv
l

Σl0 ¨ ¨ ¨ Σl0,ln Σl0,xv
l

...
...

. . .
...

...

ln Σln,xv
l

Σln,l0 ¨ ¨ ¨ Σln Σln,xv
l

ln`1 Σxv
l

Σxv
l ,l0

¨ ¨ ¨ Σxv
l ,ln

Σxv
l
`Σln`1

fi
ffiffiffiffiffiffifl
.

(7.28)

J0‘ and J1‘ are the Jacobians of the compounding operator ‘ of section 3.4. As

may be observed, the utilization of a linear vehicle motion model is again highly

beneficial and leads to a pure addition of the vehicle and landmark uncertainties.

The initialization of the additional column and row can be achieved either by a

constant initialization or in a heuristic manner by replicating the cross-correlations

of another landmark [27, 119], such as by the most converged or the closest one.

Equation 7.28 reflects the first variant of the heuristic, where the entries of the most

converged landmark l0 are duplicated. The heuristics are incorporated for speeding

up the convergence of first-time landmark observations.

7.3.7 Further Observation of an Existing Landmark

If a landmark li is again observed, both the state vector x̂k|k and state covariance

matrix P̂ k|k need to be updated. The approach is similar to the one utilized for
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updating the vehicle position. It uses a stripped-down observation vector zzik and

stripped-down observation noise matrix Rzi
k :

ẑzik “
”
zv
l zi

ıT
,

Rzi
k “

« zvl zi

zvl Σzvl
0

zi 0 Σzi

ff
.

(7.29)

The observed zzik and the predicted state x̂k|k´1 are fused by means of the EKF. Let

lj be the landmark estimate of the cluster to which the landmark obeservation zi
belongs, i. e. zi P Z l

j (section 7.1). Because lj is represented with respect to the

global frame, it is independent from the vehicle motion. Thus the prediction lets it

unchanged.

The landmark-selective EKF-measurement residual is

ỹzik “ zzik ´ hzipx̂k|k´1q, (7.30)

with the observation prediction model

hzipx̂k|k´1q “
”
xv
l lj ´ xv

l

ıT
. (7.31)

The corresponding landmark-selective Jacobian of the observation prediction model

is

Hzi 2D“

»
———–

xv
l,x xv

l,y l0x l0y ljx ljy lmx lmy

xv
l,x 1 0 0 0 ¨ ¨ ¨ 0 0 ¨ ¨ ¨ 0 0

xv
l,y 0 1 0 0 ¨ ¨ ¨ 0 0 ¨ ¨ ¨ 0 0

ljx ´1 0 0 0 ¨ ¨ ¨ 1 0 ¨ ¨ ¨ 0 0

ljy 0 ´1 0 0 ¨ ¨ ¨ 0 1 ¨ ¨ ¨ 0 0

fi
ffiffiffifl, (7.32)

The residual covariance is

Szik “ Hzi
k P k|k´1pHzi

k qJ `Rzi
k . (7.33)

The resulting EKF-gain is

Kzi
k “ P k|k´1pHzi

k qJpSzik q´1. (7.34)
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The landmark-selective EKF equations for the updated state vector x̂k|k and the

updated state covariance matrix P k|k are given by

x̂k|k “ x̂k|k´1 `Kzi
k ỹ

zi
k ,

P k|k “ pI ´Kzi
k H

zi
k qP k|k´1.

(7.35)

7.3.8 Comparison to Covariance Intersection

As stressed by Uhlmann [129], CI and KFs should be considered for different use

cases. Uhlmann differentiates between three cases for two given measurements that

shall be fused: (1) both measurements are fully independent, (2) they are partially

correlated, and (3) they are fully correlated. Based on those cases Uhlmann states

that

– in the case of two independent measurements, the KF yields an optimal estimate,

and CI a consistent one,

– in the case of partial correlation, CI yields consistent, however, suboptimal

(not tight) estimates, while the KF provides inconsistent ones,

– in the case of full correlation, CI yields an optimal estimate, while the KF

generates an inconsistent one.

Thus CI always provides a consistent estimate, and in the case of full correlation, even

an optimal one. The KF provides for partially and fully correlated measurements

inconsistent estimates. Only in the case of independent measurements, the KF

provides optimal ones.

Those insights into the fusion of CVD imply that if correlations of multiple observa-

tions cannot be excluded, then CI should be, according to Uhlmann, preferred to

KFs. CVD acquired by distinct vehicles can be assumed to be correlated concerning

the visibility conditions and the current GNSS localization accuracy induced by the

current satellite constellation and atmospheric effects. However, if CVD is acquired

over a longer period of time by multiple vehicles, these effects are expected to cancel

out. A comparison of both algorithms on simulated and real-world data will be

provided in section 7.5.

7.4 Fusion via BA-based Full-SLAM

EKF-based Online-SLAM can be considered as the primal approach to SLAM [120].

In the past, approaches to Full-SLAM (figure 7.3b) have not been feasible because of

their high computational demand. It results from the rapid growth of the solution

space in dimensionality with an increasing amount of vehicle position measurements

and corresponding landmark observations [47]. However, meanwhile BA-based Full-
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SLAM has become feasible not only by Moore’s law [101], but also by the advent of

efficient solvers and the consideration of the specific structure of the problem. Today,

solving Full-SLAM by utilizing BA can be regarded as the state of the art, especially

when solving its linearization by means of factorization.

BA-based Full-SLAM as it is called in computer vision [127], or Graph-SLAM as

it is denoted in robotics [7] formulates the SLAM problem as a LS12 optimization

one. The LS-based formulation to Full-SLAM was originally introduced by Lu and

Milios [75] and later on refined by Dellaert [29]. In the following, the definition

provided by Dellaert is recapped in detail and adapted to the fusion of point-shaped

CVD.

In contrast to EKF-based Online-SLAM, Full-SLAM considers the whole vehicle

trajectory at once:

Problem 7.3: BA-based Full-SLAM

Input: 1. A sequence of landmark observations,

Z “ pzi | i “ 0, . . . ,mqT , (7.36)

2. A sequence of vehicle position observations,

Zv “ pzv
l | l “ 0, . . . , pqT , (7.37)

where Z|l is the subsequence of landmark observations acquired at

vehicle location l.

Output: 1. A sequence of landmark estimations,

L “ plj | j “ 0, . . . , nqT , (7.38)

2. A sequence of vehicle position estimations,

Xv “ pxv
l | l “ 0, . . . , pqT . (7.39)

12Least Squares (LS)
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BA-based Full-SLAM treats the problem as an optimization one:

{pXv, Lq “ arg max
pXv,Lq

P pXv, L | U v, Zq
joint“ arg max

pXv,Lq
P pXv, L, U v, Zq

“ arg min
pXv,Lq

´ P pXv, L, U v, Zq ,

(7.40)

where

U v “ puv
l | l “ 0, . . . , pqT (7.41)

is a sequence of steering commands uv
l corresponding to the vehicle positions xv

l of

the input trajectory. P denotes a probability function which will be defined in the

next subsection.

7.4.1 Least Squares Formulation

Similar to EKF-based Online-SLAM, BA-based Full-SLAM is grounded upon two

fundamental functions: a vehicle motion model and a landmark observation model.

Under assumption of a Gaussian error distribution, the vehicle motion model is

defined, by means of the probability theory, by

P pxv
l | xv

l´1, u
v
l q 9 exp

ˆ
´1

2
¨ ››f `xv

l´1, u
v
l

˘´ xv
l

››2

Σm

˙
. (7.42)

To put the equation into words, the probability of the vehicle position estimate xv
l ,

given its former position estimate xv
l´1 and the corresponding steering command uv

l ,

is high if its distance to its prediction fpxv
l´1, u

v
l q is low. The distance is measured

according to the Mahalanobis distance metric }.}2Σm
(appendix A.1) with respect to

the vehicle motion covariance matrix Σm.

Similarly, the landmark observation model is, also under assumption of a Gaussian

error distribution, defined by

P pzi | xv
l , ljq 9 exp

ˆ
´1

2
¨ }h pxv

l , ljq ´ zi}2Σo

˙
. (7.43)

This intuitively means that the probability of the landmark observation zi, given the

corresponding landmark estimate lj and the current vehicle position xv
l , is high if its

distance to its prediction hpxv
l , ljq is low. The distance is measured according to

the Mahalanobis distance metric }.}2Σo
(appendix A.1) with respect to the landmark

observation covariance matrix Σo.
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The vehicle motion covariance matrix Σm and the landmark observation covariance

matrix Σo are utilized to reflect both measurement and prediction uncertainties.

The prediction uncertainties Σpred.
m and Σpred.

o , respectively, are estimated by linear

uncertainty models with

Σpred.
m

2D“
«
c 0

0 c

ff
¨ }uv

i }2, Σpred.
o

2D“
«
c 0

0 c

ff
¨ }zk}2, (7.44)

within which the uncertainty is expected to grow proportionally with the prediction

distance. The parameter c is the so-called growth factor, and is set to c “ 0.1.

The measurement uncertainties Σmeas.
m and Σmeas.

o , respectively, are directly related

to the sensors

Σmeas.
m

2D“
«
σxx σxy
σxy σyy

ff
, Σmeas.

o
2D“

«
σxx σxy
σxy σyy

ff
. (7.45)

The pooled covariances Σm and Σo are defined as a linear combination of the

corresponding measured and predicted uncertainties:

Σm “ 1

2
¨ `Σmeas.

m `Σpred.
m

˘
, (7.46)

Σo “ 1

2
¨ `Σmeas.

o `Σpred.
o

˘
. (7.47)

Taking the logarithm of equation 7.40

{pXv, Lq “ arg min
pXv,Lq

´ log pP pXv, L, U v, Zqq (7.48)

and discarding the constant factors 1
2

leads to the following formulation of BA-based

Full-SLAM:

{pXv, Lq “ arg min
pXv, Lq

$
’’’’’’&
’’’’’’%

pÿ

l“1

}f `xv
l´1, u

v
l

˘
loooooomoooooon
mot. prediction

´xv
l

loooooooooomoooooooooon
mot. pred. deviation

}2Σm
`

pÿ

l“1

ÿ

plj ,ziq
Pvpxv

l q

} h pxv
l , ljqloooomoooon

obs. prediction

´zi
loooooooomoooooooon
obs. pred. deviation

}2Σo

,
//////.
//////-

(7.49)
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with vpxv
l q “

 plj, ziq | zi P Z l
j|l
(
, Z l

j|l the sequence of observations belonging to

cluster j and acquired at vehicle location xv
l (section 7.1), and

››f
`
xv
l´1, u

v
l

˘´ xv
l

››2

Σm
“ `
f
`
xv
l´1, u

v
l

˘´ xv
l

˘T ¨Σ´1
m ¨ `f `xv

l´1, u
v
l

˘´ xv
l

˘
,

}h pxv
l , ljq ´ zi}2Σo

“ ph pxv
l , ljq ´ ziqT ¨Σ´1

o ¨ ph pxv
l , ljq ´ ziq .

In summary, the resulting non-linear optimization problem consists of two terms: a

term concerning the vehicle motion and another one concerning the observed land-

marks. Both terms are intended for determining the deviations between the actual

values, xv
l and zi, and the predictions thereof, f

`
xv
l´1, u

v
l

˘
and h pxv

l , ljq. Further-

more, the Mahalanobis distance metric reflects the motion prediction uncertainty Σm

and the landmark observation prediction uncertainty Σo.

In the following, two approaches of solution are presented. The first approach tackles

the problem directly by means of the LM-algorithm (section 7.4.2). The second

approach employs factorization (section 7.4.5) after linearization (section 7.4.3), with

the advantage of a reduced computational load.

7.4.2 Direct Solution via Levenberg Marquardt

The LM-algorithm [41, 52, 80] is an optimization approach designed for non-linear

objective functions. Therefore, it is suitable for directly determining a solution to

BA-based Full-SLAM (equation 7.49) without the explicit need of linearization. The

LM-algorithm constitutes an iterative procedure that does combine the Gauss–Newton

method with the method of gradient descent [41, 80]. However, for fast convergence,

and especially in the case of multiple local maxima/minima, an initial guess of the

parameter vector has to be provided [67]. As a matter of fact, convergence can

usually be assumed after approximately five iterations [47].

The basic working principle of Levenberg’s approach is subsequently shown on the

basis of the motion prediction deviation term of BA-based Full-SLAM (equation 7.49)

the equations for the landmark observation term can be accordingly derived:

LMpXv
kq “

ÿ

xv
l PXv

k

}xv
l, k ´ f

`
xv
l´1, k, u

v
l

˘ }2Σm

ñ LMpXv
k`1q «

ÿ

xv
l PXv

k

}xv
l, k ´

`
fpxv

l´1, k, u
v
l q ` Jv

l, k∆x
v
l, k

˘ }2Σm
, Xv

k`1 “Xv
k `∆Xv

k,

(7.50)

with

Jv
l, k “

Bfpxv
l, k, u

v
l q

Bxv
l, k

.
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Xv
0 is an initial estimate of the parameter vector, Xv

k, k ą 0 the k-th step of iteration,

and ∆Xv
k its perturbation. Taking the derivative with respect to ∆Xv

k and setting

it to zero leads to

´
pJv

kqT Σ´1
m J

v
k

¯
∆Xv

k “ pJv
kqT Σ´1

m pXv
k ´ fpXv

k, U
vqq. (7.51)

This set of linear equations can now be solved for ∆Xv
k in a straightforward manner

by methods, such as Gaussian elimination, Cramer’s rule, or factorization.

Furthermore, Levenberg introduced the so-called damping factor λ, which is adjusted

in each iteration:

´
pJv

kqT Σ´1
m J

v
k ` λI

¯
∆Xv

k “ pJv
kqT Σ´1

m pXv
k ´ fpXv

k, U
vqq . (7.52)

For large manifestations of λ the algorithm leads to a Gauss-Newton update, for

small ones to a gradient descent one [41]. In the case of an iteration leading to a

worse result, the damping factor λ is increased, otherwise, decreased.

Marquardt replaced the identity matrix of Levenberg’s formulation by a diagonal

matrix depending on Jv
k, i. e.

´
pJv

kqT Σ´1
m J

v
k ` λ ¨ diag

´
pJv

kqT Σ´1
m J

v
k

¯¯
∆Xv

k “ pJv
kqT Σ´1

m pXv
k ´ f pXv

k, U
vqq

(7.53)

for the case considered here. Generally, this leads to a faster convergence. The

resulting, improved formulation is known as the Levenberg Marquardt-algorithm.

7.4.3 Linearized Least Squares Formulation

As suggested by Dellaert [29] the non-linear equations of BA-based Full-SLAM can

be linearized by computing their 1st-order Taylor expansion (appendix A.3). This

allows for solving the equation system by means of factorization in a significantly

more efficient manner. On the downside, the linearization introduces, of course,

additional errors. However, those can be (partially) alleviated by utilizing approaches

of relinearization.

The motion prediction deviation term fpxv
l´1, u

v
l q´xv

l , as introduced in equation 7.49,

can be linearized by computing its 1st-order Taylor expansion in one variable. This
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is due to the fact that the steering commands uv
l can be treated as a constant. The

resulting linearization is denoted by

fpxv
l´1, u

v
l q ´ xv

l «
“
fpxv, 0

l´1, u
v
l q ` F l´1

l ¨ pxv
l´1 ´ xv, 0

l´1q
‰

looooooooooooooooooooooomooooooooooooooooooooooon
T1 fpxv

l´1, u
v
l q

´ “
xv, 0
l ` pxv

l ´ xv, 0
l q‰looooooooooomooooooooooon

T1 xv
l

“ f `xv, 0
l´1, u

v
l

˘` F l´1
l ¨ pxv

l´1 ´ xv, 0
l´1q ´ xv, 0

l ´ pxv
l ´ xv, 0

l q
“ F l´1

l ¨ pxv
l´1 ´ xv, 0

l´1q ´ pxv
l ´ xv, 0

l q ` f `xv, 0
l´1, u

v
l

˘´ xv, 0
l

(7.54)

with

F l´1
l “ Bfpxv

l´1, u
v
l q

Bxv
l´1

ˇ̌
ˇ̌
xv, 0
l´1

.

The linearization point xv, 0
l´1 is initially set to be equal to the measured vehicle

position xv
l´1.

Analogously, the observation prediction deviation term hpxv
l , ljq´zi can be linearized

by the 1st-order Taylor expansion in two variables

hpxv
l , ljq ´ zi «

”
hpxv, 0

l , l0jq `H lj
i ¨ pxv

l ´ xv, 0
l q ` J lji ¨ plj ´ l0jq

ı
loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

T1 hpxv
l , ljq

´ “
z0
i `

`
zi ´ z0

i

˘‰
looooooooomooooooooon

T1 zi

“ hpxv, 0
l , l0jq `H lj

i ¨ pxv
l ´ xv, 0

l q ` J lji ¨ plj ´ l0jq ´ z0
i ´ pzi ´ z0

i q
“ hpxv, 0

l , l0jq `H lj
i ¨ pxv

l ´ xv, 0
l q ` J lji ¨ plj ´ l0jq ´ zi

“ H lj
i ¨ pxv

l ´ xv, 0
l q ` J lji ¨ plj ´ l0jq ` hpxv, 0

l , l0jq ´ zi
(7.55)

with

H lj
i “ Bhpxv

l , ljq
Bxv

l

ˇ̌
ˇ̌
pxv, 0
l , l0j q

J lji “ Bhpxv
l , ljq
Blj

ˇ̌
ˇ̌
pxv, 0
l , l0j q

.

The linearization point l0j is initially set to be equal to the centroid of the corresponding

landmark cluster.
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Substituting the linearized vehicle motion and landmark observation terms into

equation 7.49, leads to the following linearized formulation of BA-based Full-SLAM:

{pXv, Lq “ arg min
pXv,Lq

$
’’’&
’’’%

pÿ

l“1

››F l´1
l ¨ pxv

l´1 ´ xv, 0
l´1q ´ pxv

l ´ xv, 0
l q ` f `xv, 0

l´1, u
v
l

˘´ xv, 0
l

››2

Σm
`

pÿ

i“1

ÿ

plj ,ziq
Pvpxv

l q

›››H lj
i ¨ pxv

l ´ xv, 0
l q ` J lji ¨ plj ´ l0jq ` hpxv, 0

l , l0jq ´ zi
›››

2

Σo

,
///.
///-

“ arg min
pXv,Lq

$
’’’&
’’’%

pÿ

l“1

›››F l´1
l ¨ pxv

l´1 ´ xv, 0
l´1q ` Gl

l ¨
`
xv
l ´ xv, 0

l

˘` f `xv, 0
l´1, u

v
l

˘´ xv, 0
l

›››
2

Σm

`

pÿ

l“1

ÿ

plj ,ziq
Pvpxv

l q

›››H lj
i ¨ pxv

l ´ xv, 0
l q ` J lji ¨ plj ´ l0jq ` hpxv, 0

l , l0jq ´ zi
›››

2

Σo

,
///.
///-

(7.56)

with

Gl
l “ ´1 “ diagp´1, . . . ,´1q.

The reason for introducing the identity matrix Gl
l is to achieve conformation with

the matrix notation used later on in equation 7.62.

Furthermore, the squared Mahalanobis norm can be expressed by means of the

Euclidean norm by pre-multiplication of the factor Σ´1{2 which is the root of the

inverse of the given covariance matrix Σ:

}x´ y}2Σ “
ˆb

px´ yqTΣ´1px´ yq
˙2

“ px´ yqT Σ´1 px´ yq | Σ´1 “ Σ´1{2Σ´1{2

“ px´ yqT Σ´1{2Σ´1{2 px´ yq | Σ “ ΣT ô Σ´1 “ `
Σ´1

˘T

“ px´ yqT pΣ´1{2qTΣ´1{2 px´ yq | pA ¨BqT “ BT ¨AT

“
´
Σ´1{2 px´ yq

¯T
Σ´1{2 px´ yq | xT ¨ x “ xx,xy,

a
xx,xy “ }x}2

“ }Σ´1{2 px´ yq }22. (7.57)
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By utilizing this transformation, equation 7.56 can be rewritten to

{pXv, Lq “ arg min
pXv,Lq

$
’’’&
’’’%

pÿ

l“1

›››Σ´1{2
m

`
F l´1
l ¨ pxv

l´1 ´ xv, 0
l´1q `Gl

l ¨ xv
l ` f

`
xv, 0
l´1, u

v
l

˘˘›››
2

2
`

pÿ

l“1

ÿ

plj ,ziq
Pvpxv

l q

›››Σ´1{2
o

´
H lj

i ¨ pxv
l ´ xv, 0

l q ` J lji ¨ plj ´ l0jq ` hpxv, 0
l , l0jq ´ zi

¯›››
2

2

,
///.
///-

“ arg min
pXv,Lq

$
’’’&
’’’%

pÿ

l“1

›››Σ´1{2
m ¨ F l´1

l ¨ pxv
l´1 ´ xv, 0

l´1q `Σ´1{2
m ¨Gl

l ¨ xv
l `Σ´1{2

m ¨ f `xv, 0
l´1, u

v
l

˘›››
2

2
`

pÿ

l“1

ÿ

plj ,ziq
Pvpxv

l q

›››Σ´1{2
o ¨H lj

p ¨ pxv
l ´ xv, 0

l q `Σ´1{2
o ¨ J lji ¨ plj ´ l0jq `Σ´1{2

o ¨ `hpxv, 0
l , l0jq ´ zi

˘›››
2

2

,
///.
///-
.

(7.58)

This pure LS-formulation is favorable since methods for solving LS-problems are now

immediately applicable.

7.4.4 Linearized Least Squares Matrix Formulation

As mentioned before, the LS-formulation to Full-SLAM, as provided in equation 7.58,

can be transformed into a common matrix notation:

{pXv, Lq “ arg min
pXv,Lq

`}Aδ ´ b}22
˘
, (7.59)

with δ “
”
Xv L

ıT
, so that it can be efficiently solved via factorization.
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The following example with a trajectory of five vehicle positions, two distinct land-

marks, and five landmark observations is utilized to illustrate the matrix notation of

BA-based Full-SLAM:

Xv “
´
xv

0 xv
1 xv

2 xv
3 xv

4

¯
,

L “
´
l0 l1

¯
,

U v “
´
uv

0 uv
1 uv

2 uv
3 uv

4

¯
,

Z “
´
z0 z1 z2 z3 z4 z5 z6 z7

¯
,

vpxv
0q “ tpl0, z0qu,

vpxv
1q “ tpl0, z1q , pl1, z2qu,

vpxv
2q “ tpl0, z3q , pl1, z4qu,

vpxv
3q “ tpl0, z5q , pl1, z6qu,

vpxv
4q “ tpl0, z7qu.

(7.60)

Figure 7.5 shows a graphical illustration of the example. The corresponding matrix

formulation without incorporating the Mahalanobis norm is

{pXv, Lq “ arg min
pXv,Lq

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̋

›››››››››››››››››››››››››››››››››››

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

G0
0 0 0 0 0 0 0

F 0
1 G1

1 0 0 0 0 0

0 F 1
2 G2

2 0 0 0 0

0 0 F 2
3 G3

3 0 0 0

0 0 0 F 3
4 G4

4 0 0

H0,0
0 0 0 0 0 J0

0 0

0 H1,0
1 0 0 0 J0

0 0

0 H1,1
2 0 0 0 0 J1

1

0 0 H2,0
3 0 0 J0

0 0

0 0 H2,1
4 0 0 0 J1

1

0 0 0 H3,0
5 0 J0

0 0

0 0 0 H3,1
6 0 0 J1

1

0 0 0 0 H4,1
7 J0

0 0

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon
A

¨

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˝

x0 ´ xv, 0
0

x1 ´ xv, 0
1

x2 ´ xv, 0
2

x3 ´ xv, 0
3

x4 ´ xv, 0
4

l0 ´ l00
l1 ´ l01

˛
‹‹‹‹‹‹‹‹‹‹‚

loooooomoooooon
δ

´

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

fpxv, 0
0 ,uv

0q
fpxv, 0

1 ,uv
1q

fpxv, 0
2 ,uv

2q
fpxv, 0

3 ,uv
3q

fpxv, 0
4 ,uv

4q
hpxv, 0

0 , l00q ´ z0

hpxv, 0
1 , l00q ´ z1

hpxv, 0
1 , l01q ´ z2

hpxv, 0
2 , l00q ´ z3

hpxv, 0
2 , l01q ´ z4

hpxv, 0
3 , l00q ´ z5

hpxv, 0
3 , l01q ´ z6

hpxv, 0
4 , l00q ´ z7

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

looooooooooomooooooooooon
b

›››››››››››››››››››››››››››››››››››

2

2

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

.

(7.61)

Equation 7.62 provides the complete matrix notation, including the Mahalanobis

norm.
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{ pX
v
,
L
q “

ar
g

m
in

pX
v
,L
q

¨ ˚̊ ˚̊ ˚̊ ˚̊ ˚̊ ˚̊ ˚̊ ˚̊ ˚̊ ˚̊ ˚̊ ˚̊ ˚̊ ˚̋

› › › › › › › › › › › › › › › › › › › › › › › › › › › › › › › › ›¨ ˚̊ ˚̊ ˚̊ ˚̊ ˚̊ ˚̊ ˚̊ ˚̊ ˚̊ ˚̊ ˚̊ ˝

Σ
´1
{2

m
¨G

0 0
0

0
0

0
0

0

Σ
´1
{2

m
¨F

0 1
Σ
´1
{2

m
¨G

1 1
0

0
0

0
0

0
Σ
´1
{2

m
¨F

1 2
Σ
´1
{2

m
¨G

2 2
0

0
0

0

0
0

Σ
´1
{2

m
¨F

2 3
Σ
´1
{2

m
¨G

3 3
0

0
0

0
0

0
Σ
´1
{2

m
¨F

3 4
Σ
´1
{2

m
¨G

4 4
0

0

Σ
´1
{2

o
¨H

0
,0

0
0

0
0

0
Σ
´1
{2

o
¨J

0 0
0

0
Σ
´1
{2

o
¨H

1
,0

1
0

0
0

Σ
´1
{2

o
¨J

0 0
0

0
Σ
´1
{2

o
¨H

1
,1

2
0

0
0

0
Σ
´1
{2

o
¨J

1 1

0
0

Σ
´1
{2

o
¨H

2
,0

3
0

0
Σ
´1
{2

o
¨J

0 0
0

0
0

Σ
´1
{2

o
¨H

2
,1

4
0

0
0

Σ
´1
{2

o
¨J

1 1

0
0

0
Σ
´1
{2

o
¨H

3
,0

5
0

Σ
´1
{2

o
¨J

0 0
0

0
0

0
Σ
´1
{2

o
¨H

3
,1

6
0

0
Σ
´1
{2

o
¨J

1 1

0
0

0
0

Σ
´1
{2

o
¨H

4
,1

7
Σ
´1
{2

o
¨J

0 0
0

˛ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‚
loo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
m
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
oon

A

¨¨ ˚̊ ˚̊ ˚̊ ˚̊ ˝

x
v 0
´
x

v
,0

0

x
v 1
´
x

v
,0

1

x
v 2
´
x

v
,0

2

x
v 3
´
x

v
,0

3

x
v 4
´
x

v
,0

4

l 0
´
l0 0

l 1
´
l0 1

˛ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‚

lo
ooo
oom

ooo
ooo
n

δ

´

¨ ˚̊ ˚̊ ˚̊ ˚̊ ˚̊ ˚̊ ˚̊ ˚̊ ˚̊ ˚̊ ˚̊ ˝

Σ
´1
{2

m
¨f
px

v
,0

0
,u

v 0
q

Σ
´1
{2

m
¨f
px

v
,0

1
,u

v 1
q

Σ
´1
{2

m
¨f
px

v
,0

2
,u

v 2
q

Σ
´1
{2

m
¨f
px

v
,0

3
,u

v 3
q

Σ
´1
{2

m
¨f
px

v
,0

4
,u

v 4
q

Σ
´1
{2

o
¨`
h
px

v
,0

0
,l

0 0
q´

z
0

˘

Σ
´1
{2

o
¨`
h
px

v
,0

1
,l

0 0
q´

z
1

˘

Σ
´1
{2

o
¨`
h
px

v
,0

1
,l

0 1
q´

z
1

˘

Σ
´1
{2

o
¨`
h
px

v
,0

2
,l

0 0
q´

z
2

˘

Σ
´1
{2

o
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−

Figure 7.5: Exemplary scenario, which exhibits multiple observations of two point-
shaped landmarks l0 and l1 acquired relative to a single vehicle trajec-
tory xv

0, . . . , x
v
4 (equation 7.60). The observation of the point-shaped

landmark l1 is hindered two times due to the obstacles ‚.

7.4.5 Solution by QR-factorization after Linearization

In the following, the optimization problem represented by the linearized LS matrix

formulation of the preceding section, equation 7.62, is solved by means of factorization.

The matrix formulation has the form

{pXv, Lq “ arg min
pXv,Lq

`}Aδ ´ b}22
˘
, (7.63)

with δ “
”
Xv L

ıT
.

At a first glance, this approach seems to be very similar to the working principle of

the general-purpose LM optimization algorithm. However, by utilizing a tailored

solution, the structure of the problem can be much better exploited. This has a

positive effect on the performance and is reflected by the experimental comparison

of the two approaches later on (section 7.5).

Cholesky and QR can be considered as two intensively explored factorization methods.

When compared to Cholesky, QR is known to provide a better numerical stability,

while being approximately two times more demanding concerning the computational

effort [29]. However, in favor of numerical stability, QR is preferred, as the quality of

the fused data has the highest priority.

Within literature, different approaches to the computation of QR exist, such as

Householder Reflections, Givens Rotations, or the Graham-Schmidt method. Ad-

ditionally, multiple variants of the aforementioned methods exist, for example for

sparse matrices [25, 43]. However, those approaches are all grounded on the same,
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fundamental assumption that the matrix A can be expressed by means of two other

matrices Q and R, so that the equation

A “ QR, (7.64)

with an orthogonal matrix Q and an upper triangular matrix R, is fulfilled.

QR factorization by Householder Reflections is defined as

Hn ¨ . . . ¨H2 ¨H1loooooooooomoooooooooon
Householder Reflections

¨A “ QTA “ R (7.65)

with

QTb “
«
c

d

ff
.

Its application to the linear LS optimization problem yields [43]:

}Aδ ´ b}22 “ }QTAδ ´QTb}22 “ }Rδ ´ c}22 ` }d}22. (7.66)

Then the solution can be obtained in straightforward manner because R is an upper

triangular matrix.

The runtime complexity of the approach is dominated by the Householder Reflections.

For A P Rmˆn the runtime complexity is known to be bounded by

O
´

2
´
m´ n

3

¯
n2
¯
. (7.67)

Furthermore, a well-adjusted ordering, which aims to reduce the non-zero elements

of the subsequent factorization, is known to have a more significant impact on the

computational efficiency than the actual choice of the factorization method [29].

Multiple general-purpose approaches to matrix preconditioning exist, such as the

well-known COLAMD13 [26]. However, also more specialized ones exist that aim to

exploit the specific structure of the problem. Such a specific preconditioning, intended

for BA-based Full-SLAM, is known as LX-ordering. The LX-preconditioner, firstly,

aims to resolve the landmark positions L and, secondly, the vehicle positions Xv [67].

This way, a generally very beneficial preconditioning is achieved. However, the task

of determining an optimal ordering is known to be generally NP-complete [29].

13Column Approximate Minimum Degree Ordering Algorithm (COLAMD)
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Furthermore, approaches to QR exist that allow an incremental update when rows

and/or columns are added and/or removed. This way the cost of partial map updates

can be alleviated [6, 51].

Determining the Estimation Uncertainties

While the estimation uncertainties are directly provided for example by EKF-based

Online-SLAM, in the shape of the state covariance matrix, they are unfortunately

not directly provided by BA-based Full-SLAM. Therefore, they need to be ex-

plicitly derived [42]. The uncertainties can be either computed based upon the

matrix A (equation 7.62) or the matrix R, which is the resulting upper triangular

matrix after applying QR to the matrix A:

Σ “ pATAq´1 “ pRTRq´1. (7.68)

This naive approach has a runtime complexity bounded by Opn2q. However, there are

more efficient approaches known to the state of the art [42], which aim to compute

only the elements of ATA that are associated with the non-zero entries of the

matrix R. This results in a more efficient computation, which is known to feature a

runtime complexity of Opnq.
7.4.6 Compensating for Temporal Decay

The road network context is exposed to more or less variation over time, for example,

contingent upon roadworks. Therefore, it is crucial to compensate for temporal

dynamics during the map building process.

By utilizing temporal weights ωm, ωo P r0, 1s and augmenting the Mahalanobis

distance metric based weighting factors by
?
ωm ¨ Σ´1{2

m ,
?
ωo ¨ Σ´1{2

o ,
?
ωa ¨ Σ´1{2

a

instead of Σ
´1{2
m , Σ

´1{2
o , Σ

´1{2
a , BA-based Full-SLAM (equation 7.58) can be extended

to consider the variation of landmarks over time. To be more specific, temporal

dynamics can be compensated by weighting former vehicle poses and landmark

positions less than more current ones. They can even be entirely excluded from the

fusion process by setting ωm respectively ωo to 0. This way, the map computation is

able to adapt to altered landmarks and to forget about removed ones.

The different decay rates of distinct road network features, for which the weighting

scheme needs to adapt to, can be considered as a challenge. For example, moving

construction zones exhibit a higher temporal dynamic than road signs. To approach

this challenge, an efficient temporal weight computation based upon preaggregation

is utilized (section 4.3).
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(a) Direct via LM (b) After Linearization via QR

Figure 7.6: Outline of point-shaped landmark data fusion via BA-based Full-SLAM
by utilizing a direct LM-based solving approach (subfigure a) and a
QR-based one after linearization (subfigure b).

7.4.7 Application to Point-shaped Landmark Data

In figure 7.6 an outline of BA-based Full-SLAM, involving a direct (figure 7.6a) and

a linearization-based (figure 7.6b) approach, is provided.

To put the figure into words, both approaches are basically equal until their third step.

In the case that new observations are acquired, at first, the affected 8-neighborhood

is determined (section 4.2). Afterwards, the determined 8-neighborhoods are

(re)clustered (chapter 6). From this point on, both approaches differ.

The direct approach incorporates the non-linearized BA-based Full-SLAM equations

provided in equation 7.49 and aims to determine a solution to it by utilizing the

LM optimization algorithm. As the LM algorithm is an iterative procedure, usually

multiple iterations are required. Furthermore, an approximation of the solution

needs to be a priori provided, to prevent convergence to a local instead of a global

optimum.

The linearization-based approach is based upon the linearized BA-based Full-SLAM

formulation provided in equation 7.56. As the linearization requires the definition

of adequate linearization points and the ideal linearization points are given by the

final solution, the linearization and the subsequent solving via QR can be applied

iteratively. This way the error induced by linearization can be reduced.
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7.5 Evaluation

In this chapter, the previously derived approaches to the fusion of point-shaped

landmark data, (F)CI, EKF-based Online-SLAM and BA-based Full-SLAM, solved

directly via LM and after linearization via QR, are opposed to each other. For the

evaluation, two distinct scenarios, a synthetic and a real-world one (section 7.5.1) are

incorporated. For each algorithm and scenario 100, 500, 1000, 1500, and 2000 obser-

vations are randomly sampled without replacement for fifty times each. The averaged

fusion results are then provided in the shape of a box-whisker-plot (appendix A.5).

7.5.1 Description of the Evaluation Scenarios

Subsequently, both evaluation scenarios, a synthetic and a real-world one, are

described in detail.

Synthetic Scenario

The partially synthetic scenario, hereinafter referred to as just the synthetic one, as

visualized in figure 7.7, is comprised of 29 simulated point-shaped landmarks, which

were observed 2560 times in total relative to multiple real-world trajectories. The

average standard deviation of the localization is approximately 1.06 m and of the

landmark observations approximately 2.19 m.

The landmark observations are sampled based upon a distance-dependent two-

dimensional Gaussian distribution. The Gaussian distribution is aligned so that the

major axis of the corresponding error ellipse (appendix A.2) coincides with the sight

vector from the vehicle to the landmark. The actual standard deviations represented

by the major fmajorpδq and minor axes fminorpδq are determined by the following

linear functions according to the length of the sight vector δ:

fmajorpδq “ 0.2 ¨ δ ` 1,

fminorpδq “ 0.1 ¨ δ ` 1.
(7.69)

This proceeding is justified by the fact that the angular error of a TSR14-camera is

commonly minor in comparison to the distance one.

Real-world Scenario

The real-world scenario, that shows a short road excerpt in Ingolstadt, consists of

24 point-shaped landmarks, road signs, which were observed by a TSR-camera 2490

times in total (figure 7.8). As no accuracy measure is directly provided by the sensor,

an estimate of it is incorporated. The average standard deviation of the localization

is approximately 1.33 m and of the landmark observations approximately 1.31 m.

14Traffic Sign Recognition (TSR)
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Figure 7.7: Partially synthetic scenario, which exhibits 29 point-shaped landmarks.
The provided ellipses are representing the 3σ-range of the measurement
uncertainties.

Figure 7.8: Real-world scenario that was acquired at Ingolstadt and exhibits 24
point-shaped landmarks and the corresponding uncertainties at a 3σ-
range.
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7.5.2 Fusion via (Fast) Covariance Intersection

Subsequently, the fusion of point-shaped landmark observations by utilizing (F)CI is

evaluated. (F)CI is applied in an iterative manner (section 7.2.3). Furthermore, the

determinant criterion is utilized for (F)CI (section 7.2.1). This is substantiated by the

fact that the determinant of the state covariance matrix of EKF-based Online-SLAM

monotonically decreases with each update [31]. Therefore, both aspects support the

comparability of (F)CI and EKF-based Online-SLAM.

In figure 7.9 the accuracies, and in figure 7.10 the runtimes of CI and FCI gained

on the synthetic scenario via CI and FCI are provided. The median accuracy is

approximately 1.13 m on average after 100 observations, and approximately 1.03 m

on average after 2000 observations. Hence, one can infer that the accuracy only

marginally improves by 0.1 m with an increasing observation count. However, the

lower and upper quartiles are tighter, and outliers are more sparse and less severe.

The results concerning the accuracy of CI and FCI are, as expected, very comparable.

The median accuracy of FCI on the synthetic scenario is approximately 1.13 m

on average after 100 observations and approximately 1.03 m on average after 2000

observations, while the runtimes of the FCI approximately halve when compared to

CI.

In figure 7.11 the accuracies and in figure 7.12 the runtimes gained via CI and FCI

on the real-world scenario are provided. One can notice that the outliers are more

severe than at the synthetic scenario. This is mainly due to the coarse observation

error model, which partially leads to inconsistent error estimates and, therefore,

to suboptimal fusion results provided by (F)CI. The median accuracy gained by

CI is approximately 1.67 m on average after 100 observations and approximately

1.64 m on average after 2000 observations. While the median accuracy gained by

FCI is approximately 1.71 m on average after 100 observations and approximately

2.01 m on average after 2000 observations. Therefore, one can assess that CI is

able to significantly better compensate for inconsistent error estimates than FCI.

Furthermore, the inconsistent error estimates also affect the computation time.

Initially, FCI is even slower than CI and outperforms CI not until 800 observations.

The computation time reduces then by only one fourth.

7.5.3 Fusion via EKF-based Online-SLAM

In the following, the fusion of point-shaped landmark observations by means of

EKF-based Online-SLAM is evaluated according to its accuracy and runtime, for

both the synthetic and real-world scenario.

In figure 7.13 the average median accuracies for EKF-based Online-SLAM are

visualized for both the synthetic and real-world scenario. At the synthetic scenario,



7.5 Evaluation 133

100 500 1000 1500 2000

0

2

4

6

8

10

Number of Observations

D
ev
ia
ti
on

rm
s

(a)

100 500 1000 1500 2000

0

2

4

6

8

10

Number of Observations

D
ev
ia
ti
on

rm
s

(b)

Figure 7.9: Accuracy evaluation of CI (subfigure a) and FCI (subfigure b) for 100,
500, 1000, 1500, and 2000 observations from the synthetic scenario.
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Figure 7.10: Runtime evaluation of CI and FCI for 100, 500, 1000, 1500, and 2000
observations from the synthetic scenario, and the corresponding linear
regressions.
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Figure 7.11: Accuracy evaluation of CI (subfigure a) and FCI (subfigure b) for 100,
500, 1000, 1500, and 2000 observations from the real-world scenario.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0.1

0.2

0.3

0.4

Number of Observations

R
u
n
ti
m
e

rss

CI
FCI

Figure 7.12: Runtime evaluation of CI and FCI for 100, 500, 1000, 1500, and 2000
observations from the real-world scenario, and the corresponding linear
regressions.
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the determined average median accuracy is 0.7 m for 100 observations, and 0.16 m for

2000 observations. This can be considered, based solely on the median values and the

lower and upper quartiles, as a very good result. Regarding the frequent outliers that

induce a partial divergence of the filter, the overall robustness thereof is considered as

minor. Similar results emerge at the real-world scenario. EKF-based Online-SLAM

provides an average median accuracy of approximately 1.67 m. The average median

accuracy can be considered as nearly independent of the actual observation count.

However, again severe outliers can be noticed, which lead to a low assessment of the

filter’s robustness.

In figure 7.14 the averaged runtimes of the EKF-based Online-SLAM are visualized

for both the synthetic and the real-world scenario. One can notice that both scenarios

feature nearly similar runtimes.

7.5.4 Fusion via BA-based Full-SLAM

In the following, the fusion of point-shaped landmark observations via BA-based

Full-SLAM, solved directly via LM, and after linearization via QR, is evaluated

according to its accuracy and runtime for both the synthetic and real-world scenario.

The LM-based approach is limited to at most five iterations, whereas the QR-based

one is utilized without relinearization to emphasize its advantage.

In figure 7.15 the gained average accuracies for the synthetic scenario, and in

figure 7.17 for the real-world one, are provided. Concerning the synthetic scenario,

one can notice that both approaches to BA-based Full-SLAM monotonically converge

and are able to determine tight estimates of the fused landmarks. For 100 observations

the average median deviation for solving via LM is 0.65 m and 0.23 m for 2000

observations. The solving via QR leads to a slightly increased error of 1.25 m for

100 observations and 0.35 m for 2000 observations. Furthermore, the determined

deviations are in both cases minor, what does reflect the superior robustness of BA-

based Full-SLAM. The same can be observed at the real-world scenario. Both solving

methods are able to reduce the amplitude of outliers with an increasing observation

count. The average median deviation is for 100 observation approximately 1.39 m and

for 2000 observations approximately 1.24 m. However, despite the coarse observation

error model, in the case of the real-world scenario, both approaches to BA-based

Full-SLAM provide highly robust estimates.

In figure 7.16 the runtimes of BA-based Full-SLAM solved via LM and QR for the

synthetic scenario, and in figure 7.18 for the real-world one are provided. One can

notice the much higher computational efficiency of the QR-based solver, which is

between 8- and 20-times faster for 2000 observations, than the LM-based one.
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Figure 7.13: Accuracy evaluation of EKF-based Online-SLAM for 100, 500, 1000,
1500, and 2000 observations from the synthetic (subfigure a) and
real-world (subfigure b) scenario.
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Figure 7.14: Runtime evaluation of EKF-based Online-SLAM for 100, 500, 1000,
1500, and 2000 observations from the synthetic and real-world scenario,
and the corresponding regressions.
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Figure 7.15: Accuracy evaluation of BA-based Full-SLAM solved via LM (sub-
figure a) and QR (subfigure b) for 100, 500, 1000, 1500, and 2000
observations from the synthetic scenario.
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Figure 7.16: Runtime evaluation of BA-based Full-SLAM solved via LM and QR
for 100, 500, 1000, 1500, and 2000 observations from the synthetic
scenario, and the corresponding regressions.
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Figure 7.17: Accuracy evaluation of BA-based Full-SLAM solved directly via LM
(subfigure a) and after linearization via QR (subfigure b) for 100, 500,
1000, 1500, and 2000 observations from the real-world scenario.
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Figure 7.18: Runtime evaluation of BA-based Full-SLAM solved directly via LM
and after linearization via QR for 100, 500, 1000, 1500, and 2000
observations from the real-world scenario, and the corresponding
regressions.
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Figure 7.19: Runtime comparison of point-shaped landmark observation fusion
via CI, FCI, EKF-based Online-SLAM, BA-based Full-SLAM solved
directly via LM and after linearization via QR for 100, 500, 1000,
1500, and 2000 observations from the synthetic (subfigure a) and
real-world (subfigure b) scenario, and the corresponding regressions.

7.6 Discussion

In this chapter, five approaches to the fusion of point-shaped CVD, such as traffic

signs, traffic lights, or reflector posts, have been adapted and evaluated in detail. To

be more specific: CI, FCI, EKF-based Online-SLAM, BA-based Full-SLAM, which

is solved either directly via LM or after linearization via QR.

CI and FCI apparently differ from the other presented approaches, as they cannot

be directly assigned to the category of SLAM. However, they are considered as a

worthwhile alternative in the case that the computational efficiency of the fusion is

put at a premium. On the other side, approaches to SLAM, regardless of whether

Online-SLAM or Full-SLAM, are known to be computationally demanding. Full-

SLAM is known to be even more computationally challenging than Online-SLAM

because of its principal lack of marginalization.

The runtimes of the evaluated approaches are contrasted with each other in figure 7.19

for both the synthetic and the real-world scenario. One can notice that BA-based
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Figure 7.20: Accuracy comparison of point-shaped landmark observation fusion
via CI, FCI, EKF-based Online-SLAM, BA-based Full-SLAM solved
directly via LM and after linearization via QR for 100, 500, 1000, 1500,
and 2000 observations from the synthetic (subfigure a) and real-world
(subfigure b) scenario, and the corresponding regressions.

Full-SLAM solved directly via LM is computationally most demanding, followed by

EKF-based Online-SLAM.

In figure 7.20 the algorithms are contrasted with each other concerning their average

median deviation for the synthetic and the real-world scenario. One can notice that

EKF-based Online-SLAM and BA-based Full-SLAM solved directly via LM provide

the most accurate results, both for the synthetic and the real world scenario.

Concerning the robustness, which is crucial for the deduction of high-precision

maps from CVD, BA-based Full-SLAM, regardless of whether solved by LM or QR,

(figures 7.13, 7.15 and 7.17) should be preferred to EKF-based Online-SLAM. Both

solving methods to BA-based Full-SLAM have distinct pros and cons. The direct

one via LM is accompanied by a high accuracy but also by a significantly larger

computational effort. The solving via QR after linearization remarkably alleviates

the computational effort but is also accompanied by linearization errors, which

decrease the overall estimation accuracy. However, the resulting linearization errors

can be alleviated by means of relinearization. The challenge of robustifying EKF-

based Online-SLAM to prevent its divergence has been tackled by several authors.
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A commonly utilized approach is based upon the identification of divergence and

the subsequent reinitialization of the diverging filter [139]. This would also be a

sensible extension of the provided implementation. However, approaches to BA-

based Full-SLAM are, grounded on their working principle, still superior concerning

their robustness. Therefore, based upon the gained results, BA-based Full-SLAM

is unreservedly recommended for the fusion of point-shaped CVD, when robustness

and accuracy is strictly demanded and the required computational resources are just

secondary.
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Fusion of Complex Landmark Data

In the previous chapter 7, algorithms for the fusion of point-shaped landmark observa-

tions have been presented and opposed to each other. However, there are several types

of landmarks within the road network context, such as crossroads, roundabouts, traffic

islands, pedestrian crossings, and sign gantries, which can be considered as being

complex (section 1.4). The reduction of these complex landmarks to point-shaped ones

or the independent consideration of their primitive features, such as points, circles,

and lines, involves a severe loss of useful information and accuracy and should be

avoided. Therefore, a generalized approach to the parametric description and fusion

of complex landmarks is presented and evaluated in this chapter.
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8.1 Introduction

Besides many point-shaped landmarks (chapter 7), such as road signs, traffic lights,

and line-shaped ones, such as lane markings, the road network context possesses

also more complex landmarks, such as crossroads, roundabouts, and sign gantries.

Those complex landmarks should not be just reduced to e. g. their center points,

referred to as primary attributes within this thesis, as it would lead to a severe loss of

useful detail information. Furthermore, it is also not feasible to consider the multiple

attributes of complex landmarks independently, as one would ignore this way the

usually tight attribute interdependencies. Instead, an approach should be favored

that allows to fuse complex landmarks under the strict consideration of attribute

interdependencies and to retain their full geometric detail.

This chapter starts with a brief summary of the state of the art of fusing more

complex landmark observations (section 8.2). Afterwards, a generalized approach

for the parametric description of complex landmarks based on a DAG1, referred to

as the ADG2, is presented (section 8.3.2). It is incorporated into both EKF3-based

Online- (section 8.5) and BA4-based Full-SLAM5 (section 8.6). Finally, the extended

BA-based approach to Full-SLAM, which is solved via Sparse-QR6, is evaluated

in detail (section 8.7). This is motivated by the fact that this approach to SLAM

has been identified to provide a superior robustness on point-shaped landmark data

while still being computationally feasible if employing linearization (section 7.5).

For evaluation purposes, a hybrid scenario consisting of roundabout and traffic

sign observations is selected. The roundabout, as a complex landmark, is chosen

intentionally, as its parametric description provides an above average complexity and

multiple attribute interdependencies. However, the approach presented is not limited

to roundabout observations. It can be adapted in a straightforward manner to other

types of complex landmarks by defining an appropriate parametric description of

their shapes.

1 Directed Acyclic Graph (DAG)
2 Attribute Dependency Graph (ADG)
3 Extended Kalman Filter (EKF)
4 Bundle Adjustment (BA)
5 Simultaneous Localization and Mapping (SLAM)
6 QR Factorization (QR)
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8.2 State of the Art

First attempts for tackling the challenge of complex landmark observations have

been to additionally incorporate the diameter of a landmark or the description of a

landmark by a polygonal shape. They have already led to higher accuracies and faster

convergence, i. a. due to a more accurate determination of correspondences [3, 35],

thus showing the general usefulness of fusion of complex landmarks.

Two main approaches can be distinguished: non-parametric and parametric ones. A

non-parametric approach has been i. a. proposed by Nieto et al. [87]. They suggested

to describe and fuse complex landmark observations of an arbitrary shape by incor-

porating scan-matching of raw sensor data into EKF-based SLAM. A disadvantage

of this approach is that it requires to transmit huge amounts of raw sensed data via

the cellular network when utilized for the fusion of CVD7.

First steps towards the concise, parametric description of complex landmarks were

done by both Emter [36] and Turan [128]. They have considered trees as complex

landmarks. Both extended the description of point-shaped tree landmark observations

by an additional attribute, the radius. Furthermore, Emter additionally incorporated

a visual tree signature into the point-shaped landmark description. Both authors

noticed a more reliable determination of correspondences, a faster convergence, and

a resulting more accurate map.

Because of bandwidth restrictions of the cellular network it is (by now) not feasible

to propagate large amounts of raw sensed data, such as point clouds, from common

vehicles to the back-end-side. Therefore, the focus of this thesis is on a novel concise,

parametric description of complex road network features. The parametric description

of landmarks allows sharing the workload between the vehicle- and back-end-side.

This can be considered as a crucial feature for large-scale applications.

8.3 Parametric Representation of Complex

Landmarks

A parametric representation of a complex landmark separates structure and appear-

ance. The structure is specified by its components and their arrangement depending

on a finite set of parameters. An appearance is obtained by assignment of concrete,

feasible values to the parameters. For example, components of circular roundabouts

could be the road segment in the roundabout itself and at its junctions. Parameters

may be the radii and the common center of an inner and an outer circle which define

the boundary of the roundabout road, and angles which specify the locations of the

junctions.

7 Collective Vehicle Data (CVD)
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The application of the fusion methods of chapter 7 requires the representation of

landmark estimates and landmark observations in a way that a measurement residual

in the case of EKF-based online-SLAM, cf. equation 7.12, or a landmark observation

probability in the case of BA-based Full-SLAM, cf. equation 7.43, can be calculated.

Both are based on some sort of difference between an observation and an observation

prediction according to an observation prediction model. Thus representations of

landmark estimates and observations are required which fulfill those conditions.

One possibility is to use a vector consisting of the parameters of the parametric

representation as a representation of landmark estimates and observations. For

observations, the values of the parameters might for example be obtained by fitting

the parametric model into a point cloud acquired by the sensor mounted on the

vehicle, cf. [91].

A problem of this kind of approximation is that independent updating of the parameter

estimates might imply inconsistent parameter values because of observation and

estimation errors due to imprecision or incompleteness of measurements. In this

chapter, an approach to reducing the problem is presented. It consists in introducing

auxiliary attributes which may depend on several parameters and which are used for

observation prediction. The attribute interdependencies are represented by a DAG,

referred to as the ADG.

8.3.1 An Example: Circular Roundabouts

In the following, circular roundabout landmarks are used as main case study since

roundabouts are particularly complex. The parametric representation chosen orients

itself on the construction guidelines for circular roundabouts with concentric rings

according to Haller [50]. The roundabout is defined by three circles which have the

same center point (figure 8.1). The radii of the three concentric circles are denoted

as inner radius, inner ring radius, and outer radius, respectively. The first two circles

represent the so-called truck apron, and the last two the road. The height of the

curbstone of the inner ring is another attribute.

A junction is defined by two circles, an inner rounding circle and an outer rounding

circle. The inner rounding circle is tangential to the middle circle of the roundabout,

and the outer rounding circle is tangential to the outer circle of the roundabout.

Thus the two circles are uniquely specified by their center points. Their center points

are given by two vectors, outer relative vector and inner relative vector, respectively,

which provide their locations relatively to the center point of the roundabout. The

boundary of the road of a junction close to the roundabout is induced by arc segments

of the two circles. The arc segments are defined by an outer rounding arc angle

and an inner rounding arc angle which are measures relative to the line between
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Figure 8.1: Parametric description of a roundabout in Ingolstadt according to
the construction guides provided by Haller [50]. Digital orthophoto:
C GeoBasis-DE / BKG 2018 (modified).

the center point of each of the two circles and the center point of the roundabout,

respectively.

This informal description will be formalized later in section 8.3.6 based on the concept

of ADGs which is presented in the next section. The parameters of this example

are “center frame”, “inner radius”, “inner ring radius”, “outer radius”, “outer relative

vector”, “inner relative vector”, “outer rounding arc angle” and “inner rounding arc

angle” and will inspire the choice of the so-called LA8s of ADGs which play the role

of parameters in this concept.

8.3.2 Attribute Dependency Graph (ADG)

ADGs are a special kind of parametric representation of complex landmarks. They

specify ADF9s which determine the pose of an AA10 in dependence on one or several

8 Landmark Attribute (LA)
9 Attribute Dependency Function (ADF)
10Auxiliary Attribute (AA)
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other AAs. The functions are controlled by so-called LAs which are the parameters

of the representation. The ADGs are DAGs. Every vertex represents an elementary

ADF and is labeled with a corresponding elementary LA. An edge represents the

AA which is the output of the ADF of its start vertex and an input of the ADF of

its end vertex. A concrete incarnation of a complex landmark is represented by the

values of its LAs.

The ADF of an AA of the ADG is determined by a subgraph in the ADG. This

so-called ACG11 is induced by all those vertices for which a directed path exists to

the vertex which calculates the AA. This vertex is the root of the subgraph. The

ACGs are denoted by paq where a is the root. The inputs of the ADF are the

inputs of the ADFs of the leaves of the ACG. The ADF results by concatenating the

ADFs at the vertices according to the edges of the subgraph.

An important special case is that the ADG is a tree (ADT12). For ADTs a vertex has

at most one ingoing edge, and the ACGs become paths. The concatenation of two

ADFs can be mathematically expressed as follows. Let fpaaux.
f ,af q and gpaaux.

g ,agq
be two ADFs with LAs af and ag and input AAs aaux.

f and aaux.
g , respectively. The

result of concatenation is a function hpaaux.
f ,ahq “ gpfpaaux.

f ,af q,agq where ah is a

LA which is depending on af and ag. According to the terminology of section 3.4,

ah results from af and ag by compounding, i. e. ah “ af ‘ ag.
In the case of an ADG with possibly multiple ingoing edges at its vertices,

aaux.
f represents a d-tuple, d ě 1, of AAs which are provided by d ADFs

f ipaaux.
fi

,afiq, i “ 0, . . . , d ´ 1. The concatenation yields hpaaux.
f ,ahq “

gpf 0paaux.
f0

,af0q, . . . , f d´1paaux.
fd´1

,afd´1
q,agq where aaux.

f “ paaux.
f0

, . . . , aaux.
fd´1
q and

ah is depending on afi , i “ 0, . . . , d´ 1 and ag.

The LAs of the ADFs will be used for observation prediction in section 8.5.2. The

attribute observation prediction functions have the form ha pxv
l , lj, a

m
j , pamj qq

where xv
l denotes the vehicle position estimate, amj an LA estimate of the complex

landmark estimate lj , and pamj q the estimates of all attributes in the ACG for the

LA amj . By optimization over subgraphs of concatenation the error can be uniformly

distributed among the LAs which are the shape-representing parameters.

This general definition of an ADG is now made concrete in an appropriate way.

The AAs are represented by frames, i. e. an origin together with two or three

orthonormal basis vectors, depending on the dimension of the complex landmark.

An ADF with exactly one input-AA specifies the location of the frame of its output

AA relatively to the frame of the input-AA. For example, in the case of a circular

roundabout (figure 8.1), the center point of every circle can be represented by a frame.

11Attribute Concatenation Graph (ACG)
12Attribute Dependency Tree (ADT)
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The origin of the frame defines the center point, and the vectors the orientation

of the frame. The location of the frame of the center point of the inner rounding

circle can be specified relatively to the frame of the center point of the circles of the

roundabout.

In this framework, an ADF fpaaux.
f ,af q specifies the relative location of the origin

and the relative orientation of the basis vectors of the output frame. The relative

location of the origin is defined by a position vector tf . The relative orientation is

described by the rotational difference between the basis vectors of the two frames

involved. In the two-dimensional case, the rotation is defined by an angle αf . The

parameters of the position vector and the rotational difference are the LA of the

ADF, that is af “ ptf , αf q. The concatenation hpaaux.
f ,ahq “ gpfpaaux.

f ,af q,agq of

two such functions has the same form with ah “ pth, αhq. Its angle of rotation is

αh “ αf ` αg. If the position vectors are in Cartesian representation, its position

vector is th “ Rαf tf ` tg, where Rαf is the matrix of rotation by αf .

An ADF with more than one input AA determines the location of its output frame

relatively to all input frames. This might e. g. be performed by taking some sort of

weighted mean of the input frames where the weights are LA of the ADF.

The implementation of ADGs in the thesis is restricted to ADTs so that the latter,

general case does not occur. The general case is postponed to future work.

8.3.3 Dynamic Blocks and ADG-schemes

The basic idea of parametric representations is to specify a family of incarnations

with a single scheme. The incarnations are defined by the values of the parameters.

ADGs are limited in the sense that the number of components of a complex landmark

is fixed and only their geometry and mutual location can be varied. However, a

class of complex landmarks may contain incarnations with different numbers of

components. Examples are roundabouts or crossroads which may have different

numbers of junctions. When starting with the data acquisition the number of

junctions is not yet known, and it has possibly to be adapted when more information

is available.

For this purpose ADG-schemes are introduced. An ADG-scheme has the form of an

ADG, but in addition disjoint, connected, vertex-induced subgraphs can be marked.

Those subgraphs are called “dynamic blocks”. Every dynamic block has an attribute

called“dynamic block counter”. Depending on the value of the dynamic block counter,

an ADG-instance of the ADG-scheme is generated by creating n copies of every

dynamic block where n is the value of the dynamic block counter of the block. The

vertices of the dynamic block copies are connected to vertices outside the block by

edges between all copies of vertices whose originals have been connected by an edge.
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The concepts of ADGs and ADG-schemes can be summarized as follows:

Definition 8.1: Attribute Dependency Graph (ADG)

An ADG represents the dependency of the attributes of a complex landmark and

is defined as the instantiation of an ADG-scheme.

Definition 8.2: Attribute Dependency Graph Scheme (ADG-scheme)

An ADG-scheme is given by a directed acyclic graph (DAG) with dynamic blocks.

Vertex Set: Represents the elementary ADFs which specify the pose of an output-

AA relatively to the poses of the input-AAs. The functions are controlled by

LAs.

Edge Set: Specifies the concatenations of the elementary ADFs and AAs commu-

nicated from the start-ADF to the end-ADF of the edges.

Dynamic Block: Is a connected subgraph induced by a subset of vertices together

with a block counter attribute. The dynamic blocks have to be disjoint.

Definition 8.3: Instanced Attribute Dependency Graph Scheme (In-

stanced ADG-scheme)

An instanced ADG-scheme results by replacement of every dynamic block with a

block-count-number of disjoint copies. The edges linking a dynamic block to its

environment are canonically copied.

Definition 8.4: Attribute Concatenation Graph (ACG)

An ACG is defined for every LA of an instanced ADG and is induced by all those

vertices for which a directed path exits to the vertex of the LA. The ACG of a LA

a is denoted by paq.

8.3.4 Relation to Point-shaped Landmarks

In order to treat point-shaped landmarks as a special case of complex landmarks, a

convention on the LAs is introduced by defining several types of LAs:

Definition 8.5: Categories of Attributes of Complex Landmarks

Primary Attributes: Specify the location of the complex landmark.

Secondary Attributes: Specify the structure and shape of the complex landmark.

The secondary attributes are distinguished in two categories:

ãÑ Header Attributes which are obligatory, and

ãÑ Non-header Attributes which are optional.
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A natural choice of the primary attribute is a frame whose origin is the center point

of the region covered by a complex landmark and whose basis vectors are chosen

in an appropriate way, e. g. according to some global geographic reference frame.

For a roundabout the center of the road-bounding circles may be used as primary

attribute. The related ADF can be constant, i. e. without any input, or can have the

sensor frame as an input.

Secondary header attributes of a roundabout can be the radii of the circles. The

angles of the junctions can be secondary non-header attributes. One reason for

distinguishing between header and non-header secondary attributes is to keep the

number of attributes dynamically depending on the concrete instantiation, cf. the

concept of dynamic blocks (section 8.3.3). For example, the number of junctions of

the roundabout can be different so that secondary attributes specifying junctions

are non-header attributes. Another reason is that secondary header attributes are

required to be obligatory observed, while secondary non-header attributes are optional

to be observed with every complex landmark observation.

In this framework, a point-shaped landmark is a complex landmark without secondary

attributes and just one primary attribute which represents its position.

8.3.5 Treating Rotational Attributes

Rotational attributes occur in ADGs in relation with frame rotations and polar

representations of position vectors. A polar position vector is denoted by pr, ϕq with

radius r and angle ϕ. Within the SLAM-approaches presented in this chapter, it is

assumed that the position vector attributes are represented in Cartesian notation. One

approach to treating rotational attributes in this context is by matrix representation

of rotations. The central operation is matrix-vector multiplication, which e. g. occurs

for the compounding of LAs of ADGs, see section 8.3.2 for the general two-dimensional

case and section 8.3.6 for the example of circular roundabouts.

In the following a linearization of a rotation matrix-vector-multiplication,

Rα ¨ a « Rlh
α0
¨ pα ´ α0q ¨ a0loooooooooomoooooooooon
rotation part

` Rrh
α0
¨ aloomoon

vector part

, (8.1)

for use in the matrix formulation of linearized extended BA-based Full-SLAM is

derived, where

Rα
2D“

˜
cosα ´ sinα

sinα cosα

¸
, (8.2)

α is a given angle, a is a vector, and Rlh
α0

, Rrh
α0
¨ a is defined below.
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Linearization of the trigonometric terms sin and cos by their 1st-order Taylor-

series (appendix A.3) with respect to the linearization point α0 yields

sinα “ sinα0 ` cosα0 ¨ pα ´ α0q,
cosα “ cosα0 ´ sinα0 ¨ pα ´ α0q.

(8.3)

Putting the linearized trigonometric terms into the rotation matrix leads to the

linearized rotation matrix

Rα´α0

2D«
˜

cosα0 ´ sinα0 ¨ pα ´ α0q ´ psinα0 ` cosα0 ¨ pα ´ α0qq
sinα0 ` cosα0 ¨ pα ´ α0q cosα0 ´ sinα0 ¨ pα ´ α0q

¸

ô
˜

cosα0 ´ sinα0 ¨ pα ´ α0q ´ sinα0 ´ cosα0 ¨ pα ´ α0q
sinα0 ` cosα0 ¨ pα ´ α0q cosα0 ´ sinα0 ¨ pα ´ α0q

¸

ô
˜

cosα0 ´ sinα0

sinα0 cosα0

¸
¨ 1`

˜
´ sinα0 ´ cosα0

cosα0 ´ sinα0

¸
¨ pα ´ α0q

ô
˜
´ sinα0 ´ cosα0

cosα0 ´ sinα0

¸

loooooooooooomoooooooooooon
Rlh
α0

“ Jα0

¨pα ´ α0q `
˜

cosα0 ´ sinα0

sinα0 cosα0

¸

looooooooooomooooooooooon
Rrh
α0

ô Rrh
α0
` Jα0pα ´ α0q

(8.4)

Multiplying the linearized rotation matrix with the development a “ pa´ a0q ` a0

around a0 results in

`
Rlh
α0
¨ pα ´ α0q `Rrh

α0

˘ ¨ a
« Rlh

α0
¨ pα ´ α0q ¨ a0 `Rrh

α0
¨ a. (8.5)

The left-hand part is associated with the rotational factor and a right-hand part

with the vectorial one a.

The rotational factor Rlh
α0
¨a0 can be transformed into a pure premultiplication factor

for pα ´ α0q:

Rlh
α0
¨ pα ´ α0q ¨ a0 “

˜
Rlh
α0;0,0 ¨ a0

0 Rlh
α0;0,1 ¨ a0

1

Rlh
α0;1,0 ¨ a0

0 Rlh
α0;1,1 ¨ a0

1.

¸
¨
˜
α ´ α0

α ´ α0

¸
. (8.6)

According to section 3.4, the covariance of the linear approximation of the function Rα

for a stochastic α and under assumption of no cross-correlation is

CovpRαaq « Jα0,a0 ¨ Covppα,aqT q ¨ JTα0,a0

“ Jα0 ¨ Varpαq ¨ JTα0
` Ja0 ¨ Covpaq ¨ JTa0 .

(8.7)
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Figure 8.2: ADG of a roundabout. Primary attributes are highlighted in yellow ‚,
secondary header attributes in green ‚, secondary non-header attributes
in red ‚ (representing a junction each), and AAs in gray ‚.

where Jα0,a0 is the Jacobian matrix of the linearized function Rα.

The Jacobian matrix of the linearized function Rα results, as well, from the concate-

nation of Rlh
α0
¨ a0 and Rrh

α0
:

Jα0,a0 “ pRlh
α0
¨ a0looomooon

Jα0

, Rrh
α0loomoon

Ja0

q. (8.8)

As an alternative to the suggested approach, the small-angle approximation [8] could

be used, too. However, by utilizing a variable linearization point α0 close to the

rotation angle, instead of setting the linearization point α0 to zero as presumed by

the small-angle approximation, a more accurate linearization is achieved.

8.3.6 ADG for Circular Roundabouts

This section presents an ADG scheme for circular roundabouts. Figure 8.1 shows

an overlay of the LAs over a geographically represented circular roundabout, and

Figure 8.2 depicts the scheme of the roundabout-ADG. The ADG scheme has one

dynamic block which is used for the representation of the junctions. In the following,

primary attributes are highlighted in yellow ‚, secondary header attributes in green ‚,
secondary non-header attributes in red ‚, and AAs in gray ‚.
The primary attribute of the scheme for circular roundabout is the center vector .

It is the LA of an ADF which specifies the pose of an AA relatively to the AA

obs root frame . The obs root frame is located on the vehicle. The center vector
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Figure 8.3: State vector representation for a parametric roundabout description.
Primary attributes are highlighted in yellow ‚, secondary header at-
tributes in green ‚, and secondary non-header attributes in red ‚
(representing a junction each).

is the position vector of the origin of the center frame . The basis vectors of the

center frame have the same orientation as the basis vectors of the obs root frame .

This means that the frame rotation of the related ADF is the identity. For that

reason the frame rotation part of the LA of the ADF defining the pose of the AA

obs root frame relatively to the AA center frame is omitted, i. e. the corresponding

LA is just the position vector center vector .

The AAs inner radius frame , inner ring radius frame , and outer radius frame

are basically specified relatively to the center frame by three position vectors as

AAs. The orientations of the basis vectors of the frames are chosen being those

of the center frame , so that the frame rotation parts are also omitted here. The

vectors are represented in polar coordinates. The lengths of the vectors given by

the LAs are inner radius , inner ring radius , and outer radius . The orientation

is chosen arbitrarily w. r. t. to the center frame, but constant. For that reason

only the inner radius , inner ring radius , and outer radius occur as LAs of the

ADF defining the poses of the AAs inner radius frame , inner ring radius frame ,

and outer radius frame relatively to the AA center frame . They have the role of

secondary header attributes.

The AA curbstone height frame is located above the AA inner radius frame . The

orientation of its position vector is in the z-direction of the inner radius frame ,

and its length is specified by the LA curbstone height which is a further secondary
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header attribute. Again the orientations of both frames are chosen to be the same,

so that the frame rotation part is omitted.

The main items of a junction are the inner and the outer rounding arcs. An arc can

be defined by the center point and the radius of the circle of which it is a part, and

two angles which define the section of the circle forming the arc. In the ADG the

circles are defined w. r. t. to an inner relative frame and an outer relative frame

as AAs, respectively. The poses of the frames are defined relatively to the AA

center frame . The locations of their origins are defined by the position vectors

inner relative vector and outer relative vector as the position part of the LA. The

basis vectors of the inner relative frame and outer relative frame are oriented so

that the x-basis vectors are collinear with the position vectors inner relative vector

and outer relative vector , respectively.

The four parameters of an arc are the circle center, circle radius, and two an-

gles. By the constraints of roundabout construction according to Haller [50],

outlined in section 8.3.1, the four parameters of an arc, circle center, circle ra-

dius, and two angles, cannot be chosen independently of each other. For that

reason, only the center point and one angle are used as parameters. Then val-

ues of the radius and the second angle, e. g. the opening angle of the arc are

uniquely determined by the tangential constraints of the construction. The an-

gle used is the inner rounding arc angle resp. outer rounding arc angle which

specifies the end point of the section of the junction road considered. This

end point might be used as the origin of an AA inner rounding arc angle frame

resp. outer rounding arc angle frame , with a position vector having the LA

inner rounding arc angle resp. outer rounding arc angle in polar representation.

However, the length of this position vector is the radius of the arc-defining cir-

cle which is not directly available. As it does not affect the optimization, the

length of the position vector of the origin of the inner rounding arc angle frame

resp. outer rounding arc angle frame is chosen to 1. Furthermore, the orientation

of its basis vectors is chosen to be the same as of the inner relative frame resp.

outer relative frame so that the rotation of the associated ADF is the identity.

To exemplify the compounding of complex roundabout LAs, both the value and

covariance for a junction’s inner rounding arc angle are subsequently derived by

applying the compounding rules (section 3.4). The dependency chain of the

inner rounding arc angle - attribute according to the roundabout ADG (figure 8.2)

is: center vector , inner relative vector , inner rounding arc angle . Each of those

attributes specify an ADF defining the pose of an output-AA relatively to an input-

AA. An ADF consists of a position vector for the origin and a rotation for the basis

vectors, cf. table 8.1.
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The compounded ADFs have the same form. For example, the compounded ADF

center vector ‘ inner relative vector ‘ inner rounding arc angle (8.9)

specifies the pose of the AA inner rounding arc angle frame relatively to the AA

obs root frame . The relative rotation angle of the compounded ADF is

LArot “ inner relative angle , (8.10)

i. e. the polar angle of the inner relative vector relatively to the AA center frame .

The position vector of the compounded ADF in Cartesian representation is

LApos “ center vector ` inner relative vector `
R

inner relative angle
¨ inner rounding arc vector ,

(8.11)

with

inner relative vector “ inner relative length ¨
˜

cos
`

inner relative angle
˘

sin
`

inner relative angle
˘
¸

“ R
inner relative angle

¨
˜

inner relative length

0

¸
,

inner rounding arc vector “ inner rounding arc length ¨
˜

cos
`

inner rounding arc angle
˘

sin
`

inner rounding arc angle
˘
¸

“ R
inner rounding arc angle

¨
˜

inner rounding arc length

0

¸
.

The corresponding (co)variances, cf. sections 3.4 and 8.3.5, are

Var
`
LArot

˘ “ Var
`

inner relative angle
˘
,

Cov pLAposq « Cov
`

center vector
˘ `

J
inner relative angle

0

¨ Var
`

inner relative angle
˘ ¨ JT

inner relative angle
0

`

J
inner relative length

0

¨ Var
`

inner relative length
˘ ¨ JT

inner relative length
0

`

J
inner relative angle

0

¨ Varp inner relative angle q ¨ JT
inner relative angle

0

`

J
inner rounding arc angle

0

¨ Varp inner rounding arc angle q ¨ JT
inner rounding arc angle

0

`

J
inner rounding arc length

0

¨ Varp inner rounding arc length q ¨ JT
inner rounding arc length

0

.

(8.12)
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8.4 Approach to Complex Landmark Mapping

As for point-shaped landmarks, complex landmark mapping is updating a map which

is represented by a submapping data structure, cf. section 4.2, by means of landmark

estimates derived from the landmark observations provided by a fleet of vehicles, and

taking into account the temporal decay of the acquired sensor readings, cf. section 4.3.

The procedure is basically the same as for point-shaped landmarks, cf. chapter 5.4:

Solution 8.1: Complex Landmark Mapping

Setup of map updating:

1. Setup of mapping data structures.

2. Setup of temporal decay models.

Procedure of map updating:

1. Clustering: Assignment of landmark observations to clusters corresponding to

distinct landmarks.

2. Landmark estimation: Estimation of landmark locations and, optionally, vehicle

locations by means of sensor data fusion.

The clustering of complex landmark observations is performed on vectors representing

the observations. The vector representation of a complex landmark extends the

geographic information which corresponds to the point-shaped landmark, by entries

of the secondary attributes. The clustering consists of two parts. The first part

concerns the primary attribute and it is performed analogously to point-shaped

landmarks, cf. chapter 6. The second part concerns the clustering of observations of

corresponding dynamic blocks, for which the methods of chapter 6 are applied as

well. The secondary header attributes do not need a separate clustering since they

are immediately coupled with the primary attribute.

Sensor data fusion is performed by SLAM. Both variants employed for point-shaped

landmarks in chapter 7, EKF-based Online-SLAM and BA-based Full-SLAM, will

be extended to complex landmarks.

8.5 Fusion of Complex Landmarks by EKF-based

Online-SLAM

In the following an extension of fusion by EKF-based Online-SLAM (section 7.3)

to complex landmarks is presented. As EKF-based Online-SLAM has already been

described in detail in section 7.3, this section focuses on the modifications required

for complex landmark observations.
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EKF-based Online-SLAM requires the definitions of a state representation, a motion

prediction function, and an observation prediction function, cf. chapter 7.3.3. Given a

sequence of landmark observations and motion increments, it generates a sequence of

state vectors and state covariance matrices as output. The next state of the sequence

is obtained from the previous one, depending on the current motion increment and

the corresponding landmark observations.

8.5.1 Modeling the State

Equation 8.13 shows the extended state vector and the corresponding state covariance

matrix. The state vector is comprised of the most current, estimated vehicle position

xv and the estimated positions of all landmarks, represented by the primary LA

lprim., as for point-shaped landmarks. Additionally, vectors of secondary header and

non-header LA are part of the state vector. Figure 8.3 shows such a vectorized

representation for the example of a circular roundabout landmark.

Analogously, the state covariance matrix contains the uncertainties of the vehi-

cle/landmark positions and their cross-correlations, and, beyond those of point-shaped

landmarks, the uncertainties and cross-correlations of the primary and secondary

(non-)header LAs of complex landmarks. Cross-correlations between the vehicle and

a complex landmark or pairs of complex landmarks are always expressed according

to the primary LAs.

Primary LAs of complex landmarks are stored within the state vector x̂k|k according

to their absolute position. In contrast, secondary header and non-header LAs are

stored relatively to the primary ones or are independent.

8.5.2 Observation Prediction for Landmark Attributes

The observation prediction function predicts the observation of a landmark based on

a given position and former landmark estimates (chapter 7). For complex landmarks,

it consists of two subfunctions: a subfunction for the prediction of primary LAs,

the so-called observation prediction function, and a subfunction for the prediction

of secondary LAs, the so-called attribute observation prediction function. By this

separation, filtering and smoothing algorithms for the ADG-based fusion of complex

landmarks can be as well utilized for the fusion of point-shaped landmarks because

the observation prediction function is equal for both.

The observation prediction function hpxv
l , l

prim.
j q has the same form as for point-

shaped landmarks and is applied to the primary LAs lprim.
j and the estimated vehicle

position xv
l .
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The attribute observation prediction function

ha
´
xv
l , l

prim.
j , l

sec.head{sec.,m
j ,

´
l
sec.head{sec.,m
j

¯¯
(8.14)

predicts the values of chained LAs according to given model functions and by utilizing

compounding (section 3.4). xv
l is the estimated vehicle position, lprim.

j the estimated

primary LA of the complex landmark, l
sec.head{sec.,m
j a secondary header or non-header

LA, and plsec.head{sec.,m
j q the dependency chain of the LA l

sec.head{sec.,m
j .

8.5.3 First-Time Observation of a Complex Landmark

If a complex landmark ln`1 is observed for the first time, the state vector x̂k|k and

the corresponding state covariance matrix P k|k have to be extended in a similar

manner as for point-shaped landmarks (section 7.3.6). The expansion of the state

vector x̂k|k has to take care of the complex landmark’s primary, secondary header,

and secondary non-header LA:

x̂k|k “
”
xv l0 ¨ ¨ ¨ ln ln`1

ıT

“
”
xv l0 ¨ ¨ ¨ ln

ln`1hkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkj”
lprim.
n`1 lsec. head.

n`1 lsec.
n`1

ııT

“
”
xv l0 ¨ ¨ ¨ ln

ln`1hkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj”
lprim.
n`1 looooooooooooooooooomooooooooooooooooooon

lsec. head
n`1

”
lsec. head., 0
n`1 ¨ ¨ ¨ lsec. head,m

n`1

ı
looooooooooooomooooooooooooon

lsec.n`1

”
lsec., 0
n`1 ¨ ¨ ¨ lsec.,m

n`1

ıııT
.

(8.15)

Analogously, the state covariance matrix P k|k has to be extended for every complex

landmark observation that is perceived for the first time (equation 8.16). The

initialization of the additional columns and rows can be achieved, similar as for

point-shaped landmarks, either by a constant initialization or in a heuristic manner

by replicating the cross-correlations of another landmark [27, 119], such as by the

most converged or closest one. This approach is known to usually speed up the

convergence of landmark observations that are perceived for the first time.



162 8 Fusion of Complex Landmark Data

P
k|k

“

»—————————————————————————————————————–

x
v

l
0

l
n

l
n`

1

x
v

Σ
v

Σ
v
,l0

¨¨¨
Σ
v
,ln

Σ
p

rim
.

x
v
,ln`

1
0

0

0
...

0

0
0

Σ
p

rim
.

x
v
,ln`

1

l
0

Σ
l0
,v

¨¨¨
Σ
l0
,ln

Σ
p

rim
.

l0
,ln`

1
0

0

0
...

0

0
0

Σ
p

rim
.

l0
,ln`

1

...
...

...
...

...

l
n

Σ
ln
,v

Σ
ln
,l0

¨¨¨
Σ
ln

Σ
p

rim
.

ln
,ln`

1
0

0

0
...

0

0
0

Σ
p

rim
.

ln
,ln`

1

l
n`

1

Σ
p

rim
.

ln`
1
,x

v
0

0

0
...

0

0
0

Σ
p

rim
.

ln`
1
,x

v

Σ
p

rim
.

ln`
1
,l0

0
0

0
...

0

0
0

Σ
p

rim
.

ln`
1
,l0

¨¨¨
Σ

p
rim

.
ln`

1
,ln

0
0

0
...

0

0
0

Σ
p

rim
.

ln`
1
,ln

»———–

Σ
p

rim
.

ln`
1

Σ
sec.

h
ea

d
.,

p
rim

.
ln`

1
Σ

sec.,
p

rim
.

ln`
1

Σ
sec.

h
ea

d
.,

p
rim

.
ln`

1
Σ

sec.
h

ea
d
.

ln`
1

Σ
sec.,

sec.
h
ea

d
.

ln`
1

Σ
sec.,

p
rim

.
ln`

1
Σ

sec.,
sec.

h
ea

d
.

ln`
1

Σ
sec.
ln`

1

fiffiffiffifl
looooooooooooooooooooooooooooooom

ooooooooooooooooooooooooooooooon
Σ
ln`

1

fiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

E
q
u

a
tio

n
8
.1

6
:

E
x
ten

sion
of

th
e

state
covarian

ce
m

atrix
P
k|k

w
h
en

a
com

p
lex

lan
d
m

ark
is

ob
served

for
th

e
fi
rst

tim
e.

P
rim

ary
L

A
s

are
h
igh

ligh
ted

in
yellow

‚,
secon

d
ary

h
ead

er
L

A
s

in
green‚,

an
d

secon
d
ary

n
on

-h
ead

er
L

A
in

red‚.



8.5 Fusion of Complex Landmarks by EKF-based Online-SLAM 163

8.5.4 Repeated Observation of a Complex Landmark

If a complex landmark li is again observed, the state vector x̂k|k and the state

covariance matrix P k|k updating by EKF-based Online-SLAM is performed using a

stripped-down observation vector ẑik and observation noise matrix Ri
k (section 7.3.7):

ẑik “
”
xv li
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“
”
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(8.17)

The stripped-down observation vector ẑik and the stripped-down observation noise

matrix Ri
k both incorporate secondary header and non-header LAs if they have

been observed by the vehicle. Partial landmark observations, which do not include

all secondary non-header attributes, are typical for complex landmark observations

covering extensive areas and are caused by the sensor’s limited field of view or

by occlusion. Hence, the landmark lj selective observation model hlipxkq and its
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Jacobian H lipxkq have to additionally tackle these peculiarities of complex landmarks

in comparison to point-shaped ones. Afterwards, the updated state vector x̂k|k
and state covariance matrix P k|k are determined in the same manner for complex

landmarks as for point-shaped ones (section 7.3.3).

8.6 Fusion via an Extended Formulation of BA-based

Full-SLAM

In the following, BA-based Full-SLAM for point-shaped landmarks (section 7.4)

is extended to complex landmarks represented by an ADG. At first, the required

extension of its LS13 formulation is elaborated (section 8.6.1). Subsequently, the

linearization of the LS formulation (section 8.6.2) and its transformation into a

matrix notation (section 8.6.3), so that it can be efficiently solved by factorization, is

worked out.

8.6.1 Extended Least Squares Formulation

For complex landmarks the LS formulation of BA-based Full-SLAM of section 7.4 is

extended as follows:

{pXv,L,Aq “ arg min
pXv,L,Aq

$
’’&
’’%

pÿ
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›››
´
f
`
xv
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˘
loooooomoooooon
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,
//.
//-
.

(8.18)

The first two terms correspond to those of the original formulation for point-shaped

landmarks. Xv “ pxv
0, . . .q denotes again the estimated, full vehicle trajectories.

L “ pl0, . . .q is the set of all estimated primary LAs which represent the reduction of

the complex landmarks to point-shaped ones. U v “ puv
0, . . .q represents the estimated

vehicle motion increments and Z “ pz0, . . .q all observations of primary LAs.

The secondary LAs are considered in the additional third term. A “ `
a0
j , . . .

˘

denotes the set of all estimated secondary LAs, and ZA “
`
za,0
i , . . .

˘
all observations

of secondary LAs. The third term is structured quite similarly to the second one.

It quantifies the deviations between the predictions ha
`
xv
l , lj, a

m
j , pamj q

˘
(sec-

13Least Squares (LS)
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Figure 8.4: Exemplary scenario which shows complex landmark observations ac-
quired relatively to a single vehicle trajectory (equation 8.21). For visual
clarity, the complex landmarks are purely exemplary. The observation
of the complex landmark l1 is hindered two times due to the obstacles ‚.

tion 8.5.2) and the observations za,m
i of secondary header and non-header LAs

according to the ADG. The function vpxv
l q, already used in the second term, deter-

mines all corresponding tuples plj, ziq of primary LA estimations lj and observations

zi perceived from trajectory point xv
i . Analogously, vapziq returns all corresponding

tuples of secondary LAs za,m
i observed together with the primary LA zi and their

estimates amj .

The uncertainties of the predictions and measurements are expressed, as for point-

shaped landmark data, by employing the Mahalanobis metric. They are incorporated

in form of combined covariance matrices within the LS formulation: Σm for the

vehicle motion, Σo for primary LAs, and Σa for secondary LAs.

8.6.2 Linearized Extended Least Squares Formulation

The LS-based formulation of extended BA-based Full-SLAM can be linearized for

efficient computational solution by factorization, analogously to the case of point-

shaped landmarks (section 7.4.1). In equation 8.19 the linearization of the additional

term is derived in detail. Subsequently, the complete, linearized extended formulation

of BA-based Full-SLAM is provided in equation 8.20.

8.6.3 Linearized Extended Least Squares Matrix Formulation

The linearized LS-based formulation of extended BA-based Full-SLAM (equation 8.20)

can be transformed into a corresponding matrix formulation. This way the linearized

LS formulation can be efficiently solved by factorization. To illustrate the transfor-

mation, the example provided in section 7.4.4 for point-shaped landmarks is enriched
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to feature multiple complex landmark observations, see figure 8.4. The related

definitions are

Xv “
´
xv

0 xv
1 xv

2 xv
3 xv

4

¯
,

L “
´
l0 l1

¯
,

A “
´
a0

0 a1
0 a2

0 a3
1 a4

1
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7
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0
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(8.21)

For visual clarity, simplified complex landmarks are used which do not correspond to

any real-world ones, and which do not have non-header attributes.

The resulting matrix formulation of the optimization problem is provided in equa-

tion 8.22. The Mahalanobis premultiplication factors are omitted because of visual

clarity. However, they can be added in the same manner as for point-shaped land-

marks (equation 7.62).

8.7 Evaluation

This chapter presents the results of an evaluation of fusion by BA-based Full-SLAM,

solved via Sparse-QR. This method has been selected for evaluation because it has

shown an outstanding balance between accuracy, robustness, and computational

efficiency for point-shaped landmarks (chapter 7).

8.7.1 Description of the Evaluation Scenarios

The evaluation has been performed on two scenarios, a single complex landmark

scenario and a hybrid landmarks scenario consisting of the same complex landmark

and several point-shaped landmarks. Both are real-world scenarios and are located

in Ingolstadt at the WGS8414 coordinate p48.784906, 11.390313q.

14World Geodetic System 1984 (WGS84)
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Figure 8.5: Complex landmark scenario consisting of a single roundabout landmark.
Primary attributes are visualized by a red circle ˝ and secondary
attributes by a red diamond ˛. The point-shaped traffic sign landmarks
are not used for fusion in this scenario; they are only visualized for
comparability reasons.

Complex Landmark Scenario

The complex landmark scenario is visualized in figure 8.5. It consists of a single

roundabout. The roundabout is observed in a partial manner 2587 times and from

12 distinct vehicle trajectories. The average standard deviations of the GNSS15-

based vehicle localization and of the landmark observations, including primary and

secondary (non-)header attributes are approximately 1.22 m and 2.8 m, respectively.

Real and simulated sensor data are combined because the roundabout perception

based on lidar data, especially concerning the outer roundabout ring, is at this point

in time still work in progress. However, the simulated data should accurately reflect

the utilized sensors and algorithms.
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Figure 8.6: Hybrid landmarks scenario consisting of 42 point-shaped traffic signs
and one roundabout. Primary attributes are visualized by a red circle ˝
and secondary attributes by a red diamond ˛. The point-shaped and the
complex landmarks are simultaneously used for fusion in this scenario.

Hybrid Landmarks Scenario

The hybrid landmarks scenario is visualized in figure 8.6. It consists of the round-

about landmark of the previous scenario and 42 additional point-shaped traffic sign

landmarks which are observed 5517 times in total. The average standard deviations

of the vehicle localization, the point-shaped traffic sign observations, and the complex

roundabout landmark observations including primary and secondary (non-)header

attributes, are approximately 1.24 m, 2.02 m, and 2.8 m (as before). A combination

of actual and simulated sensor data is also used here. This scenario is intended for

the evaluation of complex landmark fusion in a more challenging manner. Because

15Global Navigation Satellite System (GNSS)
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of its larger-scale and hybrid nature it resembles a common urban scenario within

the automotive context.

8.7.2 Fusion by BA-based Full-SLAM

The fusion of complex landmark observations by BA-based Full-SLAM solved via

Sparse-QR is evaluated for both scenarios with respect to the accuracy achieved and

the runtime required. For this purpose, 100, 500, 1000, 1500, and 2000 observations

are used which have been randomly sampled without replacement for fifty times

and which may be accompanied by secondary header and non-header attributes.

The Sparse-QR-based approach is applied in the same manner as for point-shaped

data (section 7.5.4), this means without relinearization. The fifty fusion results

obtained are averaged to get robust estimates of the accuracies, runtimes, and

the occurrence of outliers, and are visualized by box-whisker-plots, when sensible.

Appendix A.5 provides the precise definition of this type of plot.

Complex Landmark Scenario

Figure 8.7 shows the fusion result of the complex landmark scenario for 100 and

500 observations. It can be noticed that the fusion result based on 100 partial

observations does not incorporate all junctions and noticeably deviates from the

ground truth. In contrast to that, the fusion based on 500 observations leads to an

estimate that nearly exactly covers the ground truth and incorporates all present

junctions.

Figure 8.8 compiles the accuracies achieved on the primary, secondary header, and

non-header attributes in detail for 100, 500, 1000, 1500, and 2000 partial observations

in total. Figure 8.9 additionally shows the corresponding runtimes.

Hybrid Landmarks Scenario

Figure 8.11 depicts the fused result of the hybrid landmarks scenario (figure 8.6)

based on 1000 partial observations. It can be noticed that the point-shaped traffic

sign landmarks as well as the complex roundabout landmark are estimated accurately.

Figure 8.10 shows the results of a detailed analysis of the accuracies achieved and

the corresponding runtimes for 100, 500, 1000, 1500, and 2000 partial observations

in total.

8.8 Discussion

In this chapter, a generalized, parametric description of complex landmarks, the

so-called ADG, has been introduced. Approaches for the fusion of complex landmarks

represented by ADGs have been derived for EKF-based Online- and BA-based Full-

SLAM. However, the concept proposed can also be adapted to other approaches
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(a) n “ 100

(b) n “ 500

Figure 8.7: Visualization of the fused result of the complex landmark scenario for
100 and 500 observations. Primary attributes are visualized by circles ˝
and secondary attributes by diamonds ˛. The ground truth is provided
in red ‚ and the fusion result in black ‚.
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Figure 8.8: Accuracy evaluation of BA-based Full-SLAM solved by Sparse-QR,
applied to the complex landmark scenario (figure 8.5) for 100, 500,
1000, 1500, and 2000 observations. The accuracy evaluation is divided
into the accuracy achieved on primary, secondary header, and secondary
non-header attributes. The evaluation is visualized by three box-whisker-
plots according to the definition in appendix A.5.
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Figure 8.9: Runtime evaluation of BA-based Full-SLAM solved by Sparse-QR,
applied to the complex landmark scenario for 100, 500, 1000, 1500, and
2000 observations.
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Figure 8.10: Accuracy and runtime evaluation of BA-based Full-SLAM solved via
Sparse-QR, applied to the hybrid landmarks scenario (figure 8.6) for
100, 500, 1000, 1500, and 2000 observations, concerning the primary
attributes. The evaluation of the accuracy is provided in the shape of a
box-whisker-plot according to the definition provided in appendix A.5.
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Figure 8.11: Fused result of the hybrid landmarks scenario based on 1000 partial
observations. Primary attributes are visualized by circles ˝ and sec-
ondary (non-) header attributes by diamonds ˛. The ground truth is
shown in red ‚ and the fusion result in black ‚.
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to SLAM due to its generic structure. Because BA-based Full-SLAM solved via

Sparse-QR has shown an outstanding balance between accuracy, robustness, and

computational efficiency for point-shaped landmark data it has been chosen for the

evaluation for complex landmarks, too.

According to the evaluation of the larger-scale hybrid landmark scenario, consisting

of 43 landmarks (42 traffic signs and one roundabout), an overall accuracy concerning

the primary attribute of 0.37 m (average median deviation) has been achieved for

2000 observations in total, what corresponds to approximately 46 observations per

landmark. Compared to the complex landmark scenario nearly the same accuracy

of 0.26 m (average median deviation), obtained from 100 partial observations, has

been achieved, by only utilizing less than half of the observations. Thus it seems

to be reasonable to fuse landmarks of different kind in a combined, hybrid manner

because the overall accuracy and consistency is positively influenced. Furthermore,

even for a larger-scale hybrid scenario the runtime of the BA-based Full-SLAM fusion

has turned out as being feasible. For 2000 partial observations a runtime of 7.51 s,

accumulated for all processing units, could be observed.

As mentioned earlier, the transformation of raw sensor data into a high-level, para-

metric landmark description takes place at the vehicle-side. This way both the

required amount of cellular traffic, and the necessary computational resources at the

back-end-side can be significantly reduced. However, the vehicles are expected only

to propagate landmark observations strictly matching the parametric model or in

the case of any doubt to mark them as invalid.

As an outlook, the approach presented could be extended by tackling both explicit

constraints and cascaded subgraphs (cascaded dynamic blocks). It is expected that

this way most complex landmarks in the automotive context that can be described

in a parametric manner by an ADG can be appropriately fused.

Knowing the exact positions and shapes of the variety of complex landmarks in the

automotive context, such as crossroads, roundabouts, sign gantries, traffic islands,

and crosswalks, is of high importance to autonomous driving applications and next

generation driver assistance systems. This data is by now usually not mapped by the

common mapping-providers in the desired detail level. However, it could be instead

mapped by common vehicles and by utilizing the suggested approach to complex

landmark fusion, leading to much more up-to-date and highly detailed maps.
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Fusion of Areal Data

This chapter is devoted to the fusion of areal CVD1, such as temperatures, friction

values, ambient light levels, traffic densities, signal strengths, or air qualities, into a

continuous map. The map is represented by a data function which represents the

acquired data, and an uncertainty function which represents the reliability of the data

function at every location of the domain of the map. The uncertainty function is

obtained as some sort of non-normalized KDE2 employing elliptical BF3s as kernels.

The BFs are derived from the error covariances of the locations of the data samples.

The data function approximates the acquired data points and is represented as a

weighted sum of those BFs, inspired by the well-known RBFN4 interpolation method.

Computational efficiency is in particular gained by submapping and by utilizing the

FGT5. An experimental analysis shows that in this manner a speed-up by more than

a factor of ten can be achieved in the case of batch inserts or updates. A particular

application of the concept is demonstrated by using the uncertainty function for the

determination of lane centerline geometries which subsequently might be employed

for referencing the fused areal data with highly up-to-date lane affiliations.
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9.1 Introduction

Areal CVD, such as temperatures, friction values, ambient light levels, traffic densities,

signal strengths, or air qualities, can be used to collaboratively build highly up-to-

date and large-scale maps thereof. The fields of application of fused areal CVD are

manifold. Such fused areal data can be used as a valuable, a priori input for next

generation comfort, assistance, and piloted driving functions. For example, the data

can be utilized for a next generation predictive ACC6 or a piloted driving function,

where the velocity of the vehicle is additionally adjusted to maintain safety and

comfort on slippery or bad road segments which were collaboratively identified.

This chapter presents an approach to the large-scale fusion of areal CVD by means

of a double-staged areal data fusion. The data is given by measurements consisting

of a location, a related uncertainty, and a data value, e. g. the friction at the location

of measurement. “Double-staged areal data fusion” means that the areal data map is

represented by two functions.

The data function represents the acquired data values, e. g. friction measurements.

It approximates the acquired data values by a weighted sum of elliptical BFs, in

contrast to RBF7-based representations. The elliptical BFs are derived from the

error covariances of the locations of the data samples and the mutual locations of

the samples.

The uncertainty function represents the reliability of the data function at every

location. It is obtained as some sort of non-normalized KDE employing the BFs of

the data function as kernels.

The areal map is calculated incrementally by augmenting the current map by a batch

of further measurements. Besides measurement uncertainties, the approach takes

into account requirements of large-scale fusion, such as incrementality, scalability,

and compensating for the temporal decay of measurements. Computational efficiency

is in particular gained by submapping according to section 4.2 and by utilizing the

FGT. The approach has been experimentally evaluated on a data set of friction

6 Adaptive Cruise Control (ACC)
7 Radial Basis Function (RBF)
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measurements, and it could be found that in this manner a speed-up by more than a

factor of ten can be achieved in the case of batch inserts or updates. Furthermore, it

is shown how the uncertainty function can be utilized for the determination of lane

centerline geometries.

Section 9.2 introduces the concept of double-staged areal data fusion. Section 9.3 re-

caps interpolation by RBFNs and probability density estimation by KDE, and defines

the uncertainty and data functions that are incorporated within the double-staged

areal data fusion. Section 9.4 provides the details of the elliptic BFs. Section 9.5

incorporates compensation of the temporal decay of measurements by temporal

weighting and section 9.6 of adaptive submapping. Section 9.7 is devoted to the ap-

plication of the FGT for efficient evaluation. Section 9.8 summarizes the algorithmic

approach of double-staged areal data fusion. Section 9.9 introduces the approach to

the determination of lane centerline geometries. Finally, section 9.10 presents the

results of the experimental evaluation.

9.2 Double-staged Areal Data Fusion

An areal data map is represented together with the measured data from which it is

derived, as follows:

Definition 9.1: Double-Staged Areal Data Map

R “ pU ,D,Mq,
where M is a finite set of measurements ps,Σ, vq, with s the location of the

sample, Σ the covariance of the measurement error of the location,

and v P R the value of the measured sample,

D represents a data function which approximates the measurements,

U represents an uncertainty function.

D and U are defined over a region of interest and are derived from M by fusion.

They are explicitly represented in rasterized form, i. e. on a data raster and on an

uncertainty raster. A raster corresponds to a regular quad grid in the region of

interest, and its elements, called pixels, have the function value at the center of

the quads they represent.

Areal data fusion is performed by iteratively fusing new batches of measure-

ments Mnew with the already existing areal data map R:
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Definition 9.2: Incremental Areal Data Fusion

Input: 1. An areal data map R “ pU ,D,Mq.
2. A set of new measurements Mnew.

3. A temporal decay model.

Output: An areal data mapping R1 “ pU 1,D1,M1q which results from R by

augmentation by Mnew and that takes into account the temporal decay

of the acquired data.

The basic idea to solving the problem of areal data fusion is to determine the data

function as approximating function of the data values of the measurements. In

literature, the fusion of spatial measurements via interpolation is usually performed

either by Kriging or by RBFNs [22, 23, 82, 83]. However, a recent result by Fazio and

Roisenberg [38] surprisingly reveals that, depending on the actual parametrization,

both approaches are able to provide the same results. Furthermore, their research

indicates that RBFNs are much more time efficient. Fazio and Roisenberg found a

speed-up by a factor of 200. According to them, this difference even increases with

more data. For those reasons, a BF-based approach has been chosen for the areal

data fusion presented in the following.

Incremental areal data fusion will be performed by the following steps:

Solution 9.1: Incremental Areal Data Fusion

1. Updating the set of measurements.

2. Adapting the scales of affected old and the new measurements (optional).

3. Computing temporal weights.

4. Generating the rasterized uncertainty function for the updated set of mea-

surements.

5. Generating the rasterized data function for the updated set of measurements.

9.3 Uncertainty and Data Functions

Interpolation by RBFNs represents the value fptq interpolated from data values fpsiq
at source points si, i “ 1, . . . , n, at a target point t as a linear combination of

RBFs ϕp}t´ si}q,

fptq “
nÿ

i“1

λi ¨ ϕp}t´ si}q, (9.1)
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where the weight parameters λi satisfy a linear equation system which expresses the

approximation condition:

¨
˚̊
˚̊
˝

ϕpr11q ϕpr12q ¨ ¨ ¨ ϕpr1nq
ϕpr21q ϕpr22q ¨ ¨ ¨ ϕpr2nq

...
...

. . .
...
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˛
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looooooooooooooooooooomooooooooooooooooooooon
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˛
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˚̊
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˝

fps1q
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˛
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f

. (9.2)

ϕ determines the shape of the RBF, e. g.

ϕprijq “ exp
`´pa ¨ rijq2

˘
(9.3)

for Gaussian-RBFs. rij denotes the distance, e. g. Euclidean distance, between two

corresponding source points si and sj, and a is a scale parameter.

The runtime complexity of interpolation by RBFNs is depending on the method

used for solving the underlying equation system (equation 9.2). For QR8, the time

complexity is bounded by O
`
2
`
m´ n

3

˘
n2
˘

for a mˆ n matrix.

The double-staged areal data fusion presented in the following is an alternative to in-

terpolation by RBFNs, which uses a basis representation as well. It is computationally

more efficient and takes into account the uncertainty of the measurements.

The basic idea to defining the uncertainty function is a non-normalized KDE. The

KDE is a non-parametric method to estimate the PDF9 from a set of samples si,

i “ 1, . . . , n, of a distribution with unknown density function by

p̂hptq “
nÿ

i“1

khpt´ siq, (9.4)

where kh is a kernel function scaled by h, i. e.

khpxq “ 1

hdimpxq ¨ k
´x
h

¯
. (9.5)

The kernel k is a density function, e. g. a radial Gaussian kernel

kpxq “ 1ap2πqdimpxq ¨ exp

ˆ
´}x}

2

2

˙
. (9.6)

8 QR Factorization (QR)
9 Probability Density Function (PDF)
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The idea behind considering KDE is that the certainty is low in regions where a

minor number of data samples has been acquired. This is immediately reflected by

the PDF estimated by KDE from the locations of the measured samples.

The basic concept of KDE is considerably modified for the definition of uncertainty

functions. The uniform kernel shapes are replaced with individual Gaussian kernel

shapes ki for every measured sample si, i “ 1, . . . , n, whose covariance Σi is the

covariance of the measurement error of the location of the sample. The uniform

scaling factor h is replaced with an individual scaling factor hi at every sample si.

The individual scaling factors allow for coping with varying sampling densities which

make it difficult to choose an appropriate uniform scaling factor. For reasons of

efficiency, the evaluation of the scaled kernels is restricted to their truncations at a

3σ range (equation A.2), i. e. covering 99.73 % of their values. The normalization by

division of the sum by n is omitted since it is more convenient for deriving the data

function and computation time is saved. This together leads to

Definition 9.3: Uncertainty Function

Uptq “
nÿ

i“1

ϕiptq|Ei,3 ,

ϕiptq “ 1

hi
ki

ˆ
t´ si
hi

˙
,

(9.7)

where ki is a Gaussian density function with the covariance Σi of the measurement

at location si, hi an individual scaling factor, Ei,3 the truncation of the BF ϕi at a

3σ range, i “ 1, . . . , n.

The choice of the scaling factors is implied by the requirements of the data function.

The details, in particular the calculation of the scaling factors, will be presented in

section 9.4.

The data function calculates the data value v at an arbitrary location t as a weighted

sum of the measurement values vi at data points si. The weight wiptq expresses

the degree of influence of the data point on t. The influence is depending on the

variance Σi. It is taken into account by employing the BFs ϕi and performing a

normalization by using the uncertainty function so that the sum of weights at every

location is equal to 1:
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Definition 9.4: Data Function

Dptq “
nÿ

i“1

wiptq ¨ vi,

wiptq “ ϕiptq|Ei,3
Uptq ,

(9.8)

where Uptq is the uncertainty function, ϕi is the BF, Ei,3 is the truncation of

the BF ϕi at a 3σ range, and vi is the value of the measurement at location si,

i “ 1, . . . , n.

9.4 Elliptical Kernels and Adaptive Adjustment of

Scales

The task treated in this section is:

Problem 9.1: Elliptical Kernels and Adaptive Adjustment of Scales

Input: A finite set of locations si with corresponding covariance matrices Σi,

i “ 1, . . . , n.

Output: For every location si an elliptic Gaussian function with center si and

covariance matrix Σi so that the Gaussian functions cover the region of

interest “well” and have a “moderate” overlap.

The approach of solution is to formulate those requirements as an LP10 problem [24]

which is based on covariance ellipses (appendix A.2) induced by the given covariances.

Then the LP problem is solved by existing methods.

The LP problem is first derived for n “ 3 locations for illustration purposes, and will

then be formulated for an arbitrary number of locations. Figure 9.1 shows such an

example.

The basic idea is to find scaling factors so that initially disjoint neighboring co-

variance ellipses with a common range c of the kernels ki induced by the si and

the covariances Σi do not intersect, but are expanded to their maximal extent. By

closing these gaps, the homogeneity of the approximation is increased.

10Linear Program (LP)
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Figure 9.1: Adaptive adjustment of the scales hi for three given uncertainty el-
lipses (appendix A.2). The sum of the corresponding deltas δij, δji is
not allowed to exceed the shortest distance between two ellipses ∆ij.

The optimization problem is

maximize:

h1 ` h2 ` h3

subject to:

δ12ph1q ` δ21ph2q ď ∆12

δ13ph1q ` δ31ph3q ď ∆13

δ23ph2q ` δ32ph3q ď ∆23.

(9.9)

hi denotes the wanted scales, δijphiq the shortest distance between two uncertainty

ellipses (appendix A.2), where the i-th ellipse is scaled by the parameter hi and the

j-th ellipse remains unscaled, and ∆ij the shortest distance between the unscaled

i-th and the unscaled j-th ellipse. The analytical computation of the shortest

distance between two (uncertainty) ellipses is stressed by Zheng [136] as a surprisingly

sophisticated problem. For details how to approach it analytically, the reader may

refer to the literature provided.

Since the scale dependent shortest-distance function δijphiq is non-linear, it is ap-

proximated by means of its 1st-order Taylor series (appendix A.3)

δijphiq “ δmij hi ` δbij. (9.10)

This way, it can be incorporated in a straightforward manner into the LP [24]. The

scale dependent shortest-distance function is linearized through sampling, and the
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application of linear regression to the determined sample points. Evaluations have

shown that the error introduced by this approach is negligible. The resulting LP is

maximize:

h1 ` h2 ` h3

subject to:

δm12h1 ` δm21h2 ď ∆12 ´ δb12 ´ δb21

δm13h1 ` δm31h3 ď ∆13 ´ δb13 ´ δb31

δm23h2 ` δm32h3 ď ∆23 ´ δb23 ´ δb32.

(9.11)

The solution of the LP is usually not unique, i. e. multiple, according to the objective

function, equally good solutions exist. Among those solutions are preferred which

scale the ellipses of close-by measurements in a similar manner. This preference

is expressed by augmenting the LP by additional constraints limiting the maximal

deviation between neighboring adaptive scales hi, hj:

maximize:

h1 ` h2 ` h3

subject to:

δm12h1 ` δm21h2 ď ∆12 ´ δb12 ´ δb21

δm13h1 ` δm31h3 ď ∆13 ´ δb13 ´ δb31

δm23h2 ` δm32h3 ď ∆23 ´ δb23 ´ δb32

´Ω12 ď h1 ´ h2 ď Ω12

´Ω13 ď h1 ´ h3 ď Ω13

´Ω23 ď h2 ´ h3 ď Ω23.

(9.12)

Ωij is modeled by a logistic, distance-dependent function

Ωp}xi ´ xj}2q “ Ωij “ G ¨ 1

1` e´k¨G¨}xi´xj}2
´

G
Ωp0q ´ 1

¯ , (9.13)

where xi and xj are the centers of the ellipses i and j, respectively.

The values of the parameters have been empirically determined and are chosen as

G “ 1.0, Ω0 “ 0.1, and k “ 0.4 (figure 9.2).

This approach can be regarded as more natural than a common, constant limit for

all given pairs of measurements. The two main reasons for incorporating a logistic

function are that
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Figure 9.2: Sigmoidal limitation of the scale deviation for neighboring uncertainty
ellipses (appendix A.2) by utilizing a logistic function. The logistic
function is parametrized as follows: G “ 1.0, Ω0 “ 0.1, and k “ 0.4.

– the scale deviations are allowed to differ in an exponential manner, proportional

to the Euclidean distance of the corresponding measurements,

– an unlimited growth of the scale deviations is prevented, as the logistic function

is limited by G.

Additionally, it is suggested to limit the range of adaptive scales hi to an inter-

val rx, ys, e. g. r0.5, 3s. This way, both the risk of potentially negative weights and

of excessive inflation is circumvented. Commonly, negative weights have no real

physical justification and should be, therefore, strictly avoided [4, 30, 62].

The formulation of the LP for the general case of n uncertainty ellipses is given by

Solution 9.2: Elliptical Kernels and Adaptive Adjustment of Scales

maximize:

h1 ` . . .` hn
ˇ̌
ˇ hi P rx, ys

subject to:

δmij hi ` δmjihj ď ∆ij ´ δbij ´ δbji
ˇ̌
ˇ @ affected pairs i, j

´ Ωij ď hi ´ hj ď Ωij

ˇ̌
ˇ @ affected pairs i, j

(9.14)

The LP problem can be solved by means of the Simplex algorithm [24]. In practice,

the Simplex algorithm is known to converge rapidly although it has an exponential

worst-case runtime.

For improving the computational efficiency, an intersection test, e. g. by utilizing

R-trees, can be utilized for pruning not reasonable pairings of measurements. Not

reasonable pairings are, for example, ones that do not intersect, although, the
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Figure 9.3: Pruning of uncertainty ellipses (appendix A.2) that do not intersect the
central raster cell, although, extended to their maximal extent. Pruned
uncertainty ellipses are faded out. For the pruning a fast R-tree-based
intersection test is utilized.

corresponding uncertainties have been inflated to their maximal extent (figure 9.3).

In practice, this way the number of equations can be significantly reduced.

9.5 Compensating for Temporal Decay

Areal sensor data is usually exposed to rapid decay. In order to take this into

account, the temporal circular buffer-based weighting mechanism of section 4.3 is

employed. The mechanism assigns a weight ωi P r0, 1s to every measurement so that

more recent measurements get a higher weight than measurements more in the past.

Incorporating those weights leads to the following definitions:

Definition 9.5: Double-staged Areal Data Fusion with Temporal Decay

Let ϕi be the BF representing the covariance Σi of the measurement at location

si with data value vi, temporal weight ωi P r0, 1s, and Ei,3 its truncation at a 3σ

range, i “ 1, . . . , n:

Uncertainty function with temporal decay

U twptq “
nÿ

i“1

ωi ¨ ϕiptq|Ei,3 . (9.15)
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Data function with temporal decay

Dtwptq “
nÿ

i“1

wtw
i ptq ¨ vi,

wtw
i ptq “

ωi ¨ ϕiptq|Ei,3
U twptq .

(9.16)

Intuitively, if more recent measurements occur in the environment of a location t,

possibly already existing measurements close to t contribute less to the value of

Dtwptq than the new ones.

9.6 Submapping

As before, scalability is achieved by adaptive global submapping, as introduced in

section 4.2. For evaluation of the data function Dptq and the uncertainty function Uptq
at a location t, the measurements located in the submap cell containing t and cells of

its 8-neighborhood are considered. This means that measurements whose uncertainty

exceeds the 8-neighborhood of their locations might be excluded. If the cell size is

large compared to the typical uncertainties this has no severe implications on the

quality of approximation, e. g. its continuity. The temporal decay mechanism is

applied for every grid cell, under consideration of its 8-neighborhood (section 4.2).

9.7 Efficient Evaluation of the Uncertainty Function

Batch and cyclic updating according to the current temporal weights requires the

calculation of the uncertainty function for multiple measurements at many locations.

Since such updates happen frequently, the quest is for an efficient algorithmic

implementation. The problem to be solved efficiently is specified as follows:

Problem 9.2: Efficient Evaluation of the Uncertainty Function

Input: An uncertainty function U according to equations 9.7 or 9.15, respectively,

and an uncertainty raster U

Output: The values of U at the pixels of U .

The evaluation of the uncertainty function requires the accumulation of multiple

Gaussians. The accumulation of multiple Gaussians is a general problem, and efficient

algorithms have been suggested by multiple authors, such as the FGT [44, 45, 121]

or derivatives of it [79, 94, 95, 100]. In particular, the FGT has been incorporated

by Elgammal et al. [34] for improving the computational efficiency of KDE.

The basic idea of the FGT is to introduce two series expansions to the source points,

i. e. the locations of the given measurements for the case considered here, and to
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the target points, i. e. the sampling points of the uncertainty raster cells. The

far-field Hermite-expansion combines multiple source points under consideration of a

common development point. It is utilized for determining the function value of the

accumulated sources more time efficiently in the case that there are many nearby

source points. Furthermore, the local Taylor-expansion (appendix A.3) combines

multiple target points under consideration of a common development point. It is

utilized for determining the function values of nearby targets more efficiently. Both

expansions can be combined in the case of simultaneously many nearby source and

target points.

The IFGT11 [134, 135] aims to resolve the weaknesses of the FGT, mainly concerning

the space partitioning and its performance at higher dimensions. To achieve this, it

focuses on a single expansion type, the truncated Taylor-expansion (appendix A.3),

and substitutes the basic box-based space partitioning of the FGT by a more advanced

approach to clustering.

Another FGT-extension, the FIGTree12-algorithm [79], is based on the IFGT and

aims to improve it even further. Weaknesses of the IFGT are a bad performance at

low bandwidths and a complicated parameter adjustment. If parameters are chosen

inappropriately, they can even lead to a worse computational performance than by

direct evaluation. The first challenge is tackled by a tree data structure, the second

one by introducing an automatic parameter selection scheme, which is based on the

input data, desired accuracy, and chosen bandwidth.

9.7.1 Extension to Non-Radial Gaussian Basis Functions

Unfortunately, the FIGTree algorithm is, as well as its algorithmic predecessors, such

as the FGT, IFGT, principally limited to radial Gaussian BFs, whose covariance

matrices C feature a constant diagonal value σ2, the so-called bandwidth:

C “

¨
˚̋
σ2 0 0

0
. . . 0

0 0 σ2

˛
‹‚. (9.17)

Thus, either the assumed elliptic, therefore, non-radial CVD uncertainties of the

vehicle localization need to be reduced to radial ones, e. g. via PCA13 by averaging

the determined axes or selecting the major one, or the FIGTree algorithm needs to

be extended for non-radial Gaussian BFs.

11Improved Fast Gauss Transform (IFGT)
12Fast Improved Gauss Transform with Tree Data Structure (FIGTree)
13Principal Component Analysis (PCA)
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For the extension of the FIGTree algorithm to non-radial Gaussian BFs, it can be

exploited that a multivariate Gaussian distribution can be rewritten as a double

summation of exponential terms

ϕs,Cptq “ 1ap2πqdimpsq detpCq ¨ exp

ˆ
´1

2
pt´ sqTC´1pt´ sq

˙

“ 1ap2πqdimpsq detpCq ¨ exp

˜
´1

2

dimpsqÿ

i“1

dimpsqÿ

j“1

pti ´ siqptj ´ sjqC´1pi, jq
¸
,

(9.18)

where s denotes the source point, t the target point, C the covariance matrix, and

dimpsq the dimension of the vector s.

The equation leads, in the case of a two-dimensional Gaussian distribution, to the

product of four exponential terms,

ϕs,Cptq “ 1ap2πqdimpsq detpCq ¨ exp

˜
´1

2

dimpsqÿ

i“1

dimpsqÿ

j“1

pti ´ siqptj ´ sjqC´1pi, jq
¸

2D“ 1ap2πq2 detpCq
¨ exp

ˆ
´1

2
pt1 ´ s1qpt1 ´ s1qC´1p1, 1q

˙
¨ exp

ˆ
´1

2
pt1 ´ s1qpt2 ´ s2qC´1p1, 2q

˙

¨ exp

ˆ
´1

2
pt2 ´ s2qpt1 ´ s1qC´1p2, 1q

˙
¨ exp

ˆ
´1

2
pt2 ´ s2qpt2 ´ s2qC´1p2, 2q

˙
,

(9.19)

that can be rewritten to one-dimensional Gaussians.
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As the covariance matrix C is symmetric, only two distinct cases, diagonal entries 1 ,

and non-diagonal entries 2 , need to be considered:

ϕs,Cptq 2D“ 1ap2πq2 detpCq
¨ exp

ˆ
´1

2
pt1 ´ s1qpt1 ´ s1qC´1p1, 1q

˙

looooooooooooooooooooooomooooooooooooooooooooooon
1

¨
ˆ

exp

ˆ
´1

2
pt1 ´ s1qpt2 ´ s2qC´1p1, 2q

˙˙2

loooooooooooooooooooooooooomoooooooooooooooooooooooooon
2

¨ exp

ˆ
´1

2
pt2 ´ s2qpt2 ´ s2qC´1p2, 2q

˙

looooooooooooooooooooooomooooooooooooooooooooooon
1

.

(9.20)

The first case 1 , which is covering the diagonal elements (i “ j) of the covariance

matrix C, is denoted by

exp

ˆ
´1

2
pti ´ siqpti ´ siqC´1pi, iq

˙
“ exp

˜
´pti ´ siq2

p
a

2{C´1pi, iqq2

¸
. (9.21)

The second case 2 , which is covering the non-diagonal elements (i ‰ j) of the

covariance matrix C, is denoted by

ˆ
exp

ˆ
´1

2
pti ´ siq ptj ´ sjqC´1pi, jq

˙˙2

“ exp
`´pti ´ siq ptj ´ sjqC´1pi, jq˘

“ exp

ˆ
´pti ´ siq pti ´ siqpti ´ siq ptj ´ sjqC

´1pi, jq
˙

“ exp

¨
˚̋ ´pti ´ siq2´a

1{C´1pi, jq
¯2

˛
‹‚

ptj´sjq
pti´siq

.

(9.22)

Afterwards, the three resulting radial Gaussians can be individually evaluated by

means of the FIGTree algorithm. This increases the computational effort by the

factor pd pd` 1qq {2 according to the dimension d, as the symmetry of the covariance

matrix C can be exploited. As a consequence, the computational effort increases by

approximately a factor of three for two-dimensional sources s and targets t.
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9.7.2 FIGTree-based Evaluation

The approach to the efficient evaluation of the uncertainty function (equations 9.7

and 9.15) presented in the following utilizes the FIGTree-algorithm. The challenge of

multiple bandwidths, i. e. uncertainties, has to be tackled, as the FIGTree-algorithm

does not support them out-of-the-box. To achieve this, it is exploited that CVD

measurements often expose similar uncertainties. Therefore, clustering is applied to

determine accumulations of source points of similar uncertainties. For this purpose,

the well-known, density-based clustering algorithm DBSCAN14 [37] is utilized.

For every identified cluster, the average uncertainty is calculated and the corre-

sponding sources and targets are determined. The sources are determined in a

straightforward manner by identifying each measurement that belongs to the current

cluster. The identification of the relevant targets of a cluster considers the extent

of the Gaussians. This is efficiently achieved by first computing the covariance

ellipse (appendix A.2) of each Gaussian according to the desired range. Afterwards,

a tight outer hull [81, 133] that encompasses all elliptic contours of a given cluster

is computed. Then the target points are determined from the corresponding tight

outer hull by a scanline-based approach. Finally, the accumulation of Gaussians is

computed efficiently for every cluster, using the FIGTree-algorithm.

9.8 Algorithmic Summary of the Double-staged

Approach

Figure 9.4 visualizes the approach to areal data fusion. At the first stage, the uncer-

tainty function is calculated. At the second stage, the data function is determined

based on the impact of the measurements gained by the uncertainty function. Both

calculations can be performed in an incremental manner.

The incremental update of the uncertainty raster cells of the first stage is provided

in algorithm 9.1. First, all grids cell G 1 which are affected by the new measure-

ments Mnew are determined. Then the grids cells are processed separately. This way,

the computation can be executed in parallel. For every grid cell, the interaction of

the new points Mnew, corresponding to the area of the currently inspected grid cell,

and the old measurements Mi that contributed to this grid cell, is analyzed. For the

resulting subset of measurements M1
i YMnew an LP according to equation 9.14 is

set up and solved. Afterwards, the temporal weights Ωi are efficiently computed by

means of pre-aggregation (section 4.3). Finally, affected historic measurements M1
i

are removed from the current uncertainty raster cell U i and readded to it together

with the new measurements Mnew corresponding to this grid cell.

14Density-based Spatial Clustering of Applications with Noise (DBSCAN)
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Algorithm 9.2 outlines the alternative of FIGTree-based batch-update of the uncer-

tainty raster. The FIGTree-based algorithm is pretty similar to the direct approach

of algorithm 9.1. It actually differs by the computation of bandwidth clusters and

the subsequent iteration over the determined ones. Within each iteration, the sources

contributing to the current cluster and the associated targets are determined. After-

wards, the accumulation of Gaussians is computed efficiently by incorporating the

FIGTree algorithm.

At the second stage, the sensor data is approximated by means of the not-normalized

KDE computed in the previous stage. The incremental update of the data raster is

shown in algorithm 9.3. First, all affected grid cells G 1 are determined. Then the

uncertainty raster cell U i is utilized for determining the overall impact of each new

measurement. This information is subsequently used to add a new BF to the data

raster cell Di. Prior, of course, all affected BFs have to be removed from the data

raster cell.

Figure 9.5 summarizes the complete areal CVD fusion algorithm. It starts with the

adaptive submapping. Then the two steps of the actual approximation are performed

on a per-grid-cell basis: the uncertainty step 2 and the subsequent data step 3 .

9.9 Derivation of Lane Centerline Geometries

The uncertainty function (equation 9.7, respectively 9.15) can be utilized for de-

termining up-to-date centerline geometries of lanes from CVD. A lane centerline is

characterized by measurement locations of high density which are approximately

arranged along a curve. This induces some sort of ridge of the uncertainty function,

if the function values are considered as height values.

Problem 9.3: Derivation of Lane Centerline Geometries

Input: The uncertainty function U of a set of areal measurements and its

derivative.

Output: A set of ridge curves L which fulfill the constraints of lanes.

Constraints on lanes may concern the feasibility of their geometric shape, for example

curvature restrictions, as commonly encountered in road engineering.

The first step of the algorithm determines peak points of the uncertainty function.

For that purpose, additionally the first derivative of the uncertainty function U is

calculated. It is obtained by utilizing the first derivative of the Gaussian [90] as BF

of U :

Bϕptq
Bt “ ´ϕptq ¨C´1 ¨ pt´ sq. (9.23)
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Figure 9.4: Visualization of the simplified working principle of double-staged areal
data fusion. At first, the uncertainty raster and, subsequently, the data
raster is updated.

input :G “ tR1 “ pU1,D1,M1q, . . . , Rm “ pUm,Dm,Mmqu,
Mnew “ tpx1,Σ1, v1q, . . . , pxn,Σn, vnqu

output :G “ tR1 “ pU1,D1,M1q, . . . , Rm “ pUm,Dm,Mmqu
1 Determine affected grid cells (G1 Ď G)
G1 “ affected grid cellspG, Mnewq ;

for pU i,Miq P G1 do

2 Determine by new measurements affected old measurements
M1

i “ affected measpMi, Mnewq ;

3 Adjust scales of affected and new measurements
A “ taju “ compute scalespM1

i YMnewq ;

4 Compute temporal weights
Ω “ tωju “ compute weightspM1

i YMnewq ;

5 Update uncertainty raster cells
U i “ remove measurementspU i, M1

iq ;
U i “ add measurementspU i, M1

i YMnew, A, Ωq ;
Mi “Mi YMnew ;

end
return pGzaffected grid cellspG, Mnewqq Y G1 ;

Algorithm 9.1: Algorithmic outline of the uncertainty step of the double-staged areal
data fusion.
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input :G “ tR1 “ pU1,D1,M1q, . . . , Rm “ pUm,Dm,Mmqu,
Mnew “ tpx1,Σ1, v1q, . . . , pxn,Σn, vnqu

output :G “ tR1 “ pU1,D1,M1q, . . . , Rm “ pUm,Dm,Mmqu
1 Determine affected grid cells (G1 Ď G)
G1 “ affected grid cellspG, Mnewq ;

for pU i,Miq P G1 do

2 Determine by new measurements affected old measurements
M1

i “ affected measpMi, Mnewq ;

3 Adjust scales of affected and new measurements
A “ taju “ compute scalespM1

i YMnewq ;

4 Compute temporal weights
Ω “ tωju “ compute weightspM1

i YMnewq ;

5 Cluster bandwidths
B “ tΣbu “ cluster bandwidthspA, M1

i YMnewq ;

6 Remove affected measurements
U i “ remove measurementspU i, M1

iq ;

for Σb P B do

7 Filter sources with current bandwidth
Mfilt “ filter sourcespM1

i YMnew, Σbq ;
T “ tyku “ determine targetspMfiltq ;

8 Update affected measurements
U i “ add measurements via FIGTreepU i, Mfilt, T , Σbq ;
Mi “Mi YMfilt ;

end

end
return pGzaffected grid cellspG, Mnewqq Y G1 ;

Algorithm 9.2: Algorithmic outline of the FIGTree-based batch-update of the uncer-
tainty step of double-staged areal data fusion.

input :G “ tR1 “ pU1,D1,M1q, . . . , Rm “ pUm,Dm,Mmqu,
Maff “M1

i YMnew

output :G “ tR1 “ pU1,D1,M1q, . . . , Rm “ pUm,Dm,Mmqu
1 Determine affected grid cells (G1 Ď G)
G1 “ affected grid cellspG, Maffq ;

for Di P G1 do

2 Update affected BFs
Di “ remove BFspU i, Di, Maffq ;
Di “ add BFspU i, Di, Maffq ;

end
return: pGzaffected grid cellspG, Maffqq Y G1 ;

Algorithm 9.3: Algorithmic outline of the data step of the double-staged areal data
fusion.
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As before, the computation of the first derivative can be performed incrementally.

Subsequently, for each trajectory point a corresponding peak point is determined:

Definition 9.6: Derivation of Lane Centerline Geometries: Identifica-

tion of Peak Points

A peak point is identified when the slope of the first derivative of the uncertainty

function U respectively U tw at a pixel of the uncertainty raster is approximately 0,

››››
BUptq
Bt

››››
2

« 0, (9.24)

and the value of the uncertainty function at the pixel is among the highest ones

within the 3σ covariance ellipse (appendix A.2) of the current trajectory point.

The second step connects the locations of peak points to seams. For this purpose, a

histogram of the vehicle trajectory directions that contributed to this peak point is

evaluated, and the peak point is connected with a preceding and succeeding peak

point that is indicated as most probable by the histogram. Additional constraints

are considered, such as the preference of seams with a constant curvature. The

consideration of constraints has been identified to affect the overall robustness, even

under tough conditions, in a positive manner. The approach features a linear runtime

complexity in the number of identified peak points, as it comprehensively exploits

the domain of the problem. Therefore, it can be regarded concerning its runtime and

for this specific use-case, as superior to more generic ones, such as e. g. Graph Cut,

that usually exhibit a non-polynomial runtime complexity [88].

The third step smooths the determined seams in order to compensate for small

deviations induced by the discretization. For this purpose, parametric cubic spline

curves are incorporated. Furthermore, main seams are identified by their average

amplitude so that minor seams are clung to main seams. This is, for example, relevant

for the use-case of highway entries or exits, where the main seam is the highway.

Technically, clinging is achieved by setting the first and second derivative of the

interconnection point of the minor cubic spline seam to the ones of the main cubic

spline seam.

Figure 9.6 outlines the complete algorithm including adaptive submapping according

to section 4.2. After new measurements have been acquired, and the correspond-

ing uncertainty raster cells have been updated, the lane centerline geometries are

determined.
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Figure 9.6: Outline of the algorithm for determining lane centerline geometries by
means of the uncertainty function computed at the first stage of the
double-stage areal data fusion approach.

9.10 Evaluation

In this section, first the experimental set-up is introduced (section 9.10.1). Sub-

sequently, the double-staged approach to the incremental and scalable fusion of

areal CVD is evaluated in detail (section 9.10.2). Afterwards, the improvement,

in the case of batch inserts, deletions, and updates, by means of the FGT is an-

alyzed (section 9.10.3). Furthermore, the approach proposed for the derivation

of precise centerline geometries of lanes is evaluated (section 9.10.4). Finally, the

findings are discussed and further enhancements are suggested.

9.10.1 Experimental Set-Up

As part of the evaluation, multiple trajectories were acquired by a testing vehi-

cle (section 10.2). They resulted in approximately 5 000 distinct measurements per

evaluated 100 m ˆ 100 m grid cell on average. The utilized GNSS15 receiver was

parametrized to operate with a sampling rate of 10 Hz (section 3.2). The acquired

GNSS pseudoranges were propagated together with the acquired areal CVD to

15Global Navigation Satellite System (GNSS)
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the back-end-side. Afterwards, precise GNSS positions were derived by means of

postprocessing (section 3.2.2). After postprocessing the vehicle trajectories, the

measurements were geographically referenced by utilizing linear interpolation based

on the corresponding GNSS and measurement timestamps. Finally, the acquired

trajectories were multiply duplicated by adding Gaussian noise, with the intention

to reduce the ecological impact of the acquisition of a big number of trajectories.

9.10.2 Direct Incremental Computation

Figure 9.7 visualizes the results for exemplary friction test data with a known ground

truth and by utilizing the direct approach to double-staged areal data fusion. The

exemplary friction measurements are ranging from zero to six. Zero represents a

good (usual) friction and six a bad one. It can be noticed that areas with a low

friction are identified in a robust manner and with a fine granularity. Adaptive

partitioning (section 4.2) has been parametrized to provide 100 mˆ 100 m raster cells

with 1 mˆ 1 m pixels.

Furthermore, a detailed runtime analysis is provided in figure 9.8a. It can be noticed

that the computational effort grows linearly with the number of measurements, with

some minor deviations from the linear regression. However, they are not caused by

the algorithm itself, but by the internal working principles of the database (caching,

data persistence, memory management) and the operating system (scheduler, memory

management). Furthermore, it may be noticed that the actual stamp computation

consumes the major share of the overall computational effort. Pre- and postponed

operations are nearly negligible. The averaged computational requirement for one

single grid cell for both the uncertainty and the data function under consideration

of its 8-neighborhood is approximately 4.53 s for 50 000 data points and 27.35 s for

250 000 ones. For determining the joint runtime of both stages the runtimes need to

be doubled. The analysis reveals that the major computational effort corresponds to

the stamp computation and optimizations of the algorithm should primarily focus it,

for example by means of FGT.

9.10.3 FIGTree-based Batch Computation

In this section, the single-bandwidth and the multi-bandwidth FGT-based approach to

the calculation of the uncertainty function are experimentally analyzed and compared

to each other. The FGT could be theoretically also applied to the data function.

However, many distinct data values would lead to lots of possibly single-element

clusters. For that reason, the FGT is not very suitable for speeding up the second

stage.

As the FIGTree algorithm for computing the FGT is out-of-the-box limited to radial

Gaussian BFs, the non-radial Gaussian BFs are transformed by means of PCA
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(a) Direct
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(b) Single-Bandwidth FGT
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(c) Multi-Bandwidth FGT

Figure 9.8: Detailed average runtimes for the direct (subfigure a), the FGT-
based (subfigure b), and the multi-bandwidth FGT-based approach (sub-
figure c) for approximately 5 000, 25 000, 50 000, 125 000, and 250 000
measurements per grid cell.
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and computing the average value of the minor and major axes to radial ones. The

subsequently provided results reflect radial Gaussian BFs and include the cost of the

PCA and averaging.

However, by rewriting the multivariate Gaussian BFs by means of a double summation,

as shown previously, the FIGTree algorithm can be as well utilized for non-radial

Gaussian BFs. However, this way the computational effort is increased by a factor

of three concerning two-dimensional Gaussian-BFs (section 9.7).

Figures 9.8b and c provide the average runtimes for the single- and the multi-

bandwidth approach to double-staged approximation on a per grid-cell basis. While

the single-bandwidth approach first computes an average bandwidth for every grid

cell, the multi-bandwidth approach starts by computing clusters of bandwidths for

every grid. The allowed bandwidth deviation is limited to εband “ 0.1 m, what can

be considered as minor in practice. It may be noticed that, by incorporating the

FIGTree algorithm, the computational requirements can be reduced by more than

a factor of ten, in the case of radial Gaussian BFs, and by more than a factor of

three in the case of non-radial Gaussian BFs. The resulting computation time for

the single-bandwidth approach is approximately 2.169 s for 250 000 measurements

per grid cell. Furthermore, the multi-bandwidth extension is able to process 250 000

measurements in 2.308 s per grid cell. Thus the computational effort for the suggested

multi-bandwidth extension is in practice nearly negligible, and hence it should be

strongly preferred to the single-bandwidth approach.

9.10.4 Derivation of Lane Centerline Geometries

The approach to deriving lane centerline geometries is evaluated on a short excerpt

of the German autobahn A9. Approximately ten trajectories per lane are used.

Figure 9.9 provides a distant view and figure 9.10 a close-up view of both the

uncertainty stage and the determined lane centerline geometries. It may be noticed

that long hilltops are featured by the uncertainty raster cells, which are induced by

the trajectories and the corresponding localization uncertainties of the vehicles. These

hilltops are then algorithmically identified under the consideration of constraints,

and subsequently combined to seams (section 9.9). The seams yield, even at low

trajectory counts, highly precise and robust estimates of the actual lane centerline

geometries. The fast convergence is, of course, positively affected by the precise

vehicle localization due to GNSS postprocessing (section 3.2.2). This way, fused

CVD can be, subsequently, employed to obtain highly up-to-date and precise lane

centerline geometries.
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9.11 Discussion

In this chapter, a novel, double-staged approach to the fusion of large-scale, areal

CVD, such as temperatures, friction values, ambient light levels, traffic densities,

signal strengths, or air qualities, has been presented in detail.

The positive characteristics of the proposed approach are mainly an incremental and

scalable computation, the incorporation of measurement uncertainties and temporal

weights, and the direct provision of confidence information, in contrast to existing

state-of-the-art approaches. Furthermore, the evaluation of the suggested approach

revealed an average runtime for a single grid cell and stage, under consideration of

its 8-neighborhood, of 4.53 s for 50 000 data points and of 27.35 s for 250 000 data

points. This results in an average processing time per measurement of approximately

100µs, what can be considered as extremely feasible for large scale applications.

Additionally, a further enhancement of the suggested approach, in the case of batch

inserts, deletions, and updates, which can be caused for example by a full temporal

reweighting, by incorporating the FGT, has been investigated. A speed-up by more

than a factor of ten for radial Gaussian BFs has been determined by utilizing a novel

multi-bandwidth variant of the FIGTree approach. A further proposed extension

of the FIGTree-algorithm for tackling non-radial Gaussian BFs, by rewriting the

multivariate Gaussian BF to univariate ones, still leads to a speed-up by more than

a factor of three. Further research concerning the batch update could focus the

incorporation of non-radial Gaussian BFs in an even more efficient manner, e. g. by

exploiting the correlations between the singular univariate terms.





10
Instantiation at the Vehicle- and

Backend-side

This chapter presents the instantiation of the extraction, localization, and fusion

pipeline for CVD1 developed in the previous chapters, at both the vehicle- and the

back-end-side, on the system level. A particular emphasis among the requirements

stated in section 1.3 is put on universality. Universality means that the processing

pipeline can be quickly adapted to new use cases and types of CVD. For this purpose,

a universal CVD storage is proposed for the back-end-side as the foundation stone

for the straightforward definition and application of universal processing functions.
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10.1 Introduction

As motivated in chapter 1, the goal of the thesis is a universal, incremental, and

scalable pipeline for the extraction, localization, and fusion of CVD. Those objectives

have to be considered at the instantiation of the CVD-processing pipeline at the

vehicle- and at the back-end-side. While the requirements “incrementality” and

“scalability” mainly affect the fusion part of CVD-processing (chapters 7, 8, and 9),

“universality” affects the fusion at the back-end-side as well as the extraction and

localization at the vehicle-side.

This chapter presents a modular processing pipeline for both the vehicle- and back-

end-side on the system level, which allows a straightforward adaptation to new use

cases and types of data. The sensor data is preprocessed at the vehicle-side and,

1 Collective Vehicle Data (CVD)
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afterwards, the extracted areal data measurements and landmark observations are

transmitted in a concise, whenever possible parametric manner to the back-end-

side (chapter 8). This approach is motivated by the aim to limit the cellular traffic

that is required for the transmission of CVD to the back-end-side. Additionally,

this way the computational effort is alleviated at the back-end-side as it is partially

shifted to the vehicle-side.

Figure 10.1 shows the CVD-processing pipeline from a macro-perspective. Processing

at the vehicle-side, referred to as the “Acquisition-Pipeline”, mainly concerns feature

extraction and localization, and processing at the back-end-side, referred to as the

“Fusion-Pipeline”, concerns mainly the fusion of the acquired CVD. Both the vehicle-

and back-end-side are designed to be fully parameterizable and reconfigurable so

that they can be rapidly adapted to new use cases and types of CVD.

Sections 10.2 and 10.3 present details of the vehicle-side and back-end-side of the

processing pipeline, respectively. Section 10.4 is devoted to the hierarchical template-

based data storage. Section 10.5 gives information about the software frameworks

used for implementation.

10.2 Processing at the Vehicle-side

The vehicle-side entity of the hybrid CVD-processing pipeline is instantiated by

utilizing ADTF2, a framework for the fast, filter-based prototyping of automotive

applications. ADTF provides a runtime environment and basic filters, such as for

accessing the CAN3 and FlexRay buses, which are commonly used within modern

vehicles. Furthermore, ADTF can be extended by own filters written in C++ or

Python. ADTF is not intended for use within series production. However, the

concepts described in the following are intentionally kept general so that they can be

easily transferred to series-grade ECU4-implementations.

For evaluation purposes, an Audi A6 has been equipped with an industry-grade

CarPC running i. a. ADTF and featuring multiple CAN and FlexRay interfaces.

Furthermore, the on-board localization has been replaced by a commercially viable,

single-frequency u-blox 6 GNSS5-receiver, which additionally allows to acquire

GNSS-raw-data at a 10 Hz rate. For visual clarity, a slightly simplified test-setup is

presented in figure 10.2.

Figure 10.3 visualizes the first entity of the hybrid CVD-processing pipeline from the

micro-perspective. It consists of four major modules:

2 Automotive Data and Time-triggered Framework (ADTF)
3 Controller Area Network (CAN)
4 Electronic Control Unit (ECU)
5 Global Navigation Satellite System (GNSS)
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Figure 10.1: The hybrid CVD processing pipeline visualized from the macro-
perspective for both the vehicle-side, referred to as the “Acquisition-
Pipeline”, and back-end-side, referred to as the“Fusion-Pipeline”. Both
the extraction and localization of CVD at the vehicle-side and the
fusion of CVD at the back-end-side (right-hand side of the figure) can
be rapidly adapted to new use cases and types of CVD by means of
reconfiguration and parametrization (left-hand side of the figure).
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Figure 10.2: Simplified test-setup at the vehicle-side.

Figure 10.3: The hybrid CVD-processing pipeline at the vehicle-side, shown from
the macro-perspective. It consists of four main modules: a module for
determining a unique session-token, a GNSS-localization module, a
GNSS-persistence module, and an environment-persistence module.
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Figure 10.4: The “Environment-Persistence” module shown from the micro-
perspective. It consists of multiple PPP-chains for processing, packing,
and propagating environmental sensor data from the vehicle- to the
back-end-side. This module can be parametrized over-the-air so that
it can be easily adapted to new use cases and types of CVD.

Figure 10.5: The “GNSS-Persistence” module shown from the micro-perspective.
The module consists of four PPP-chains for processing, packing, and
propagating the online solution determined by the GNSS-receiver and
the corresponding raw data from the vehicle- to the back-end-side.
This module is parametrized over-the-air so that it can be easily
adapted to new use cases.
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Figure 10.6: The RUF-chains are intended for receiving, unpacking, and fusing
diverse types of CVD in a parallel manner at the back-end-side.

– a “Session-Token” module for requesting a unique session id from the back-end,

– a “GNSS-Localization” module providing a solution determined by the GNSS-

receiver and the corresponding GNSS-raw-data intended for its postprocessing

at the back-end-side (section 3.2.2),

– and two modules, the “GNSS-Persistence“ module and the “Environment-

Persistence” module, which consist of multiple sub-modules responsible for

localization and environment persistence.

The “Environment-Persistence” module (figure 10.4) consists of n parallel PPP6-

chains, of which each is responsible for preprocessing, packing, and propagating one

sensor datum or a group thereof simultaneously. This way the suggested hybrid

CVD-processing pipeline can be rapidly adapted for new use cases and types of data,

as it is based on standardized modules.

The “GNSS-Persistence” module (figure 10.5) consists of four parallel PPP-chains

which are responsible for preprocessing, packing, and propagating the acquired

localization data. One PPP-chain is persisting the online device solution. The

three other PPP-chains are handling the GNSS-raw-data, which is subsequently

utilized for determining a more precise solution to GNSS-based localization via

postprocessing (section 3.2.2) at the back-end-side.

6 Process-Pack-Propagate (PPP)
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10.3 Processing at the Backend-side

The back-end-side of the CVD-processing pipeline is instantiated using PostgreSQL

and PostGIS. Figure 10.6 shows the processing at the back-end-side. The first step

of the RUF7-chains is receiving a certain type or a group of data and is followed by

an unpacking step and a final fusion step.

For the actual data processing a custom database extension for PostgreSQL, named

libAFD2, has been developed. The libAFD2 consists of the modules mod_areal,

mod_attenuation, mod_clustering, mod_core, mod_gnss, mod_landmarks, and

mod_seam.

mod_core provides basic functionality to all other modules, mod_attenuation in-

corporates temporal weighting, mod_clustering data association, mod_gnss the

postprocessing of raw GNSS-data, mod_landmarks the fusion of arbitrary point-

shaped and complex landmark observations, mod_areal the fusion of areal data, and

mod_seam the determination of lane centerline geometries.

10.4 Hierarchical Template-based Data Storage

A common approach to storing CVD at the back-end-side is using self-contained

tables for each distinct data type. Unfortunately, this approach does not exploit the

similarities between different types of CVD and queries targeting certain classes of

CVD are, therefore, unnecessarily difficult and, hence, prone to errors. Because of

its benefits, a novel, hierarchical template-based storage scheme for CVD is used:

Definition 10.1: Hierarchical Template-based Storage Scheme

Template: A blueprint for a table scheme. Multiple instantiations of a template

can be utilized to store data of a similar kind.

Hierarchical Template: Templates can be combined by inheritance to more spe-

cialized / complex ones. Inheritance can be applied in a cascaded manner.

This means that combined templates can be again and again extended to

suit the requirements of more specialized / complex data. The hierarchy of

templates is induced by the order of inheritance.

Hierarchical Template-based Storage Scheme: A storage scheme that makes

use of templates that are combined in a cascaded manner.

The hierarchical template-based storage scheme is achieved by exploiting the inheri-

tance feature of modern databases, such as PostgreSQL. The storage scheme uses the

possibility of formulating database queries in a way that they either target a singular

7 Receive-Unpack-Fuse (RUF)
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table within the inheritance hierarchy, or that they also include the inheriting child

tables. This way queries based on classes of CVD, instead of their sole types, become

possible.

For example, by exploiting the inheritance hierarchy, different types of complex

landmarks can be utilized in a straightforward manner as additional point-shaped

landmarks (point-shaped landmarks are defined to constitute a subclass of complex

landmarks, cf. chapter 8). This is helpful since additional point-shaped landmarks

can be of interest for improving the vehicle localization.

Furthermore, universal processing functions for different types of CVD are specified

by requiring the target table of a function to inherit from certain table templates.

Consistency is assured by requiring that changes applied to template tables have

also to be applied to all tables that inherit from them. This is a crucial feature for

large-scale systems.

Scalability is achieved at a macro-level by utilizing PL/Proxy, a PostgreSQL exten-

sion developed by Skype, which allows to scale SQL8-queries to multiple database

instances.

An introductory instance of the hierarchical template-based CVD storage scheme

for the example of friction data is provided in figure 10.7. It is conceptually based

on three storage layers, “root”, “refinement”, and “instantiation”. The suggested

storage scheme has the property that all types of areal and point-shaped/complex

landmark data are defined to inherit from the root reports template of the root layer.

Furthermore, all types of vehicle traces, such as GNSS-position and -covariances, are

defined to inherit from the root traces template of the root layer. Both root templates

are specialized to match the particular needs imposed by vehicle friction reports of

the refinement layer. Finally, three explicit instantiations are derived within the

special example to store the (referenced) friction reports and the corresponding

vehicle position traces on the layer of instantiations. This scheme can be applied

throughout every sensor data item that needs to be persisted and/or processed at

the fusion center.

A more advanced instance of the hierarchical template-based CVD storage scheme,

although still simplified due to visual clarity, is shown in figure 10.8. It visual-

izes the representation of the two introduced categories of CVD, areal and point-

shaped/complex landmark data (chapters 7, 8, and 9). It can be noticed that the

definition of point-shaped landmark data as a subclass of complex landmark data is

also reflected by this storage scheme. Furthermore, the templates are refined to fulfill

the storage requirements of diverse types of CVD. The template for clustered reports

8 Structured Query Language (SQL)
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Figure 10.7: An introductory instance of the hierarchical template-based CVD-
storage using the example of friction data. Additionally, the three
layers “root”, “refinement”, and “instantiation” of the storage scheme
are highlighted.

demonstrates one of the many capabilities to refine a given template for specific use

cases.

10.5 Implementation

All modules of the back-end-side have been written in C/C++ because of performance

reasons, while glue code is usually written in PL/pgSQL, a procedural SQL-language,

because of adaptability reasons. Furthermore PL/Proxy, a PostgreSQL extension

developed by Skype which allows to scale SQL-queries to multiple database instances

is used.

The vehicle-side mainly incorporates ADTF, Qt and RTKLIB as frameworks.

The back-end-side additionally involves (except of ADTF) Eigen3, Boost, GDAL,

FIGTree9 and Qhull.

The software of the back-end processing-side consists of approximately 70.000 LOC10,

while the software of the vehicle-side consists of 5.000 LOC, both without including

incorporated frameworks. Figure 10.9 shows the size of the individual libAFD2-

modules in LOC.

10.6 Discussion

In this chapter, a hybrid processing pipeline for CVD has been presented which is

instantiated at both the vehicle- and back-end-side. It has been designed in a way

that it can be rapidly adapted to new use cases and types of CVD. The underlying

concepts have not only been theoretically elaborated, but also implemented and

evaluated on different real-world scenarios.

9 Fast Improved Gauss Transform with Tree Data Structure (FIGTree)
10Lines of Code (LOC)
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Figure 10.9: LOC count of the extraction, localization, and fusion pipeline for CVD
for the vehicle- and back-end-side. Additionally, the diagram shows
the LOC for the modules of the libAFD2 at the back-end-side.

The modularity of the design positively influences the simplicity of adaptation and

the robustness, as common well-tested modules can be reutilized and reparametrized

on-demand. Preprocessing and transformation of CVD into a concise parametric

representation already at the vehicle-side has been shown to alleviate both the

computational effort at the back-end-side and the required amount of cellular traffic.

This can be assumed as crucial for large-scale applications.

Furthermore, the data storage is crucial for a generalized data processing. The

requirement of supporting multiple data types is met by representing the similarities

between different types of CVD by hierarchical templates instead of self-contained

tables. This needs, of course, some additional initial effort. However, it may rapidly

pay off by reduced subsequent maintenance and adaptation costs.

As an outlook, the suggested pipeline for extraction, localization, and fusion of CVD

might be extended by an intelligent and demand-oriented acquisition of CVD which is

triggered by the back-end-side. For this purpose, the ideas suggested by Ayala et al. [2]

and Kerner et al. [66] could be incorporated and further refined. Additionally, the

CVD storage could be further extended, for instance by unsupervised spatiotemporal

partitioning based on approaches to multi-objective optimization.





11
Conclusions and Future Work

This chapter summarizes the main achievements of the thesis with respect to its main

topics, extraction, localization, and fusion of CVD1, and presents the main insights

gained. Furthermore, possibilities of further improvements and extensions of the

approaches are outlined.
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11.1 Conclusions

This thesis has considered the topics “extraction”, “localization”, and “fusion” of CVD.

The focus has been on universal, scalable, and incremental approaches which are

additionally able to deal with temporal dynamics.

Since the precise vehicle localization is a foundation stone of an accurate fusion

of CVD, it has been initially treated in detail. A series-tractable solution based

upon the postprocessing of GNSS2-raw-data via PPP3 at the back-end-side has been

proposed for this purpose (section 3.2.2). An experimental analysis of the solution

has shown a standard deviation of approximately 0.98 m instead of 2.28 m at open-sky

conditions, what can be considered as a remarkable improvement.

Furthermore, general and adaptive approaches to scalability (section 4.2) by global

submapping and to efficient deduction of temporal weights (section 4.3) for employ-

ment prior to, or within, the actual CVD fusion algorithms have been developed in

the course of the thesis.

1 Collective Vehicle Data (CVD)
2 Global Navigation Satellite System (GNSS)
3 Precise Point Positioning (PPP)
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Subsequently, state-of-the-art approaches to non-Bayesian data association, ICNN4,

SCNN5, and JCBB6, have been examined in detail and extended to clustering ones

and enhanced concerning their efficiency and robustness (chapter 6). Incorrect

data associations are usually the reason for diverged fusion algorithms and spurious

landmark estimates. Therefore, the precision of the clustering is strictly favored

over the recall for the use-case of fusing CVD. It is expected that the amount of

data provided by the vehicle fleet is more than sufficient for a precise fusion, and

the clustering can be selective with respect to the input data. For this purpose, an

impactful modification of JCBB which incorporates a generalization of BB7, the

so-called GBB8, in combination with BFS9, has been developed. This modification

transforms JCBB into a robust multi-hypothesis clustering algorithm, as it is this

way able to dynamically update the landmark map. Additionally, in the case of

computational resource limitations or real-time constraints, a multi-objective cost-

function for the selection of the η most promising hypotheses at each layer of the

interpretation tree has been introduced. The weights of the cost function used have

been determined by applying an optimization algorithm based on labeled ground

truth data. Furthermore, since the JC10 criterion is very restrictive in comparison to

IC11, SCNN/JCBB and their extensions ESCNN12/EJCBB13 provide a lesser recall

than ICNN and its extension EICNN14, respectively. However, both new variants

usually achieve more robust results.

The fusion of point-shaped landmark data has been performed within this thesis

by well-known algorithms from the research fields of sensor data fusion/robotics, in

particular (F)CI15 and SLAM16. From the automotive point-of-view, aspects such

as the incorporation of absolute instead of relative vehicle positions, scalability,

incrementality, the provision of estimation uncertainties, and the compensation of

temporal dynamics have been identified as essential. For this purposes, extended

versions of EKF17- and BA18-based approaches to SLAM have been derived. The

approaches have been experimentally evaluated and opposed to each other, with

4 Individual Compatibility Nearest Neighbor (ICNN)
5 Sequential Compatibility Nearest Neighbor (SCNN)
6 Joint Compatibility Branch and Bound (JCBB)
7 Branch and Bound (BB)
8 General Branch and Bound (GBB)
9 Breadth-First Search (BFS)
10Joint Compatibility (JC)
11Individual Compatibility (IC)
12Extended Sequential Compatibility Nearest Neighbor (ESCNN)
13Extended Joint Compatibility Branch and Bound (EJCBB)
14Extended Individual Compatibility Nearest Neighbor (EICNN)
15Covariance Intersection (CI)
16Simultaneous Localization and Mapping (SLAM)
17Extended Kalman Filter (EKF)
18Bundle Adjustment (BA)
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respect to attributes essential from the automotive point-of-view, such as accuracy,

robustness, and computational efficiency (section 7.5). The evaluation shows that

overall good results were achieved by BA-based Full-SLAM which has been solved

after linearization in a computationally efficient manner by means of QR19. Because

approaches to Full-SLAM principally do not involve marginalization they are known

to be more robust to outliers, what has also be confirmed by the experimental

evaluation. Furthermore, it has turned out that the computational load of Full-

SLAM is considerably reduced by linearization and by utilizing efficient methods for

sparse matrix factorizations.

The fusion of point-shaped landmarks has been subsequently extended to an approach

to fusion of complex landmarks (chapter 8). This has been motivated by the fact that

complex landmarks, such as crosswalks, crossroads, roundabouts, traffic islands, sign

gantries, or lane markings, are widespread in the automotive context. Representing

complex landmarks by point-shaped descriptions, such as just by their center point,

implies a considerable loss of useful information, and the incorporation of secondary

attributes is, therefore, highly desirable. Challenges of complex landmarks are the

often just partial observability due to sensor limitations or occlusions, and the varying

number of degrees of freedom of certain complex landmarks, such as crossroads or

roundabouts which can have an arbitrary number of junctions. For universal modeling

of complex landmarks, a DAG20-based description has been introduced within this

work. This parametric description by ADG21s allows, on the one hand, to reduce the

cellular traffic for the transmission of complex landmark observations, compared to

raw sensor data, and, on the other hand, to fuse complex landmark observations in a

generalized, common manner. The ADGs are highly flexible and able to represent the

interdependencies between corresponding attributes. This property can be considered

as essential for the fusion of complex landmarks. The ADGs can be principally used in

distinct approaches to SLAM. In this thesis, EKF-based Online-SLAM and BA-based

Full-SLAM have been considered. Applications to complex roundabout observations

and a hybrid scenario with additional traffic sign observations show promising results.

An important strength of the approach is its ability to fuse distinct kinds of complex

and non-complex landmark observations simultaneously, and therefore to exploit

distinct cross-landmark correlations. It has turned out that this influences the overall

convergence and robustness positively. However, there are still some interesting open

research questions, such as the incorporation of explicit constraints, what will be

discussed in the next section.

19QR Factorization (QR)
20Directed Acyclic Graph (DAG)
21Attribute Dependency Graph (ADG)
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The fusion of areal data can be performed by interpolation or approximation. From

literature two well-studied approaches are known, the interpolation via Kriging

and RBFN22s. According to Fazio and Roisenberg [38], both approaches can be

parametrized to provide comparable results, but RBFNs are much more time-efficient.

Therefore, the fusion of areal data has been tackled in this thesis by an approach

inspired by RBFN interpolation. To fulfill the requirements of fusion of CVD (sec-

tion 1.3) a double-staged approach to areal data fusion has been proposed which

has several important advantages against RBFN interpolation. At first, the new

algorithm is able to incorporate elliptic instead of radial BF23s. This is useful since

elliptic BFs can be canonically related to GNSS-based localization. By means of an

LP24-based approach to determining the actual BF-weights, negative or unbalanced

weights can be excluded, what is a well-known problem of interpolation with Krig-

ing/RBFNs. Furthermore, the double-staged areal data fusion allows an incremental

update due to its split computation. Additionally, information about the confidence

of areal data fusion can be directly derived from the first stage, the uncertainty stage.

This is essential if only a-priori data of a high confidence shall be provided to the

vehicle fleet. Additionally, the intermediate results gained from the uncertainty stage

can be reutilized, e. g. for the derivation of lane centerline geometries which can be

later on used to assign fused areal data to corresponding lanes.

Because large amounts of data need to be processed and the accumulation of Gaussians

to be performed is computationally expensive, the approach to areal data fusion

has been further improved in the case of a batch insertion or updating, as e. g. for

temporal reweighting. For this purpose, the FGT25 has been used which allows a

more efficient accumulation of Gaussians by means of a series expansion (section 9.7).

A speed-up factor of more than ten has been achieved in experiments. Unfortunately,

the FGT is commonly restricted to radial BFs. However, by rewriting the multi-

dimensional Gaussian by means of a double-sum this problem can be solved, but at

expense of computational efficiency. However, still a speed-up by more than a factor

of three can be observed.

The approaches theoretically derived and elaborated in this thesis have been instan-

tiated at the vehicle- and back-end-side. For this purpose, an Audi A6 has been

equipped i. a. with an automotive-grade computer which allows to receive and send

data via the CAN26 and FlexRay buses. Furthermore, the vehicle has been equipped

with several additional measurement units (chapter 10). A key aspect of the instanti-

ation was the fulfillment of the requirement of universality as stated in section 1.3.

22Radial Basis Function Network (RBFN)
23Basis Function (BF)
24Linear Program (LP)
25Fast Gauss Transform (FGT)
26Controller Area Network (CAN)
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For this purpose, a generic, modular acquisition, preprocessing, and propagation

pipeline has been incorporated at the vehicle-side, which has been implemented on

the basis of the automotive, rapid-prototyping framework ADTF27. The modular

approach incorporated is intentionally kept very general so that it can be transferred

in a straightforward manner to an ECU28 implementation. The modularity is also

given at the back-end-side, for which a PostgreSQL-based processing pipeline has

been utilized. Furthermore, a custom database extension, the so-called libAFD2,

which consists of multiple modules for the universal processing of distinct types

of CVD, has been developed as part of this work. It uses the native PostgreSQL

C-interface, the so-called SPI29, for the efficient processing of huge amounts of data.

At the back-end-side, the scalability of the presented approaches has been achieved at

the micro level (vertical scalability) by adaptive partitioning (section 4.2) and at the

macro level (horizontal scalability) via PL/Proxy. Furthermore, a generalized data

storage scheme based on hierarchical templates has been incorporated, which exploits

the similarities of distinct types of vehicular sensor data. It can be considered as the

foundation stone of the universal processing.

11.2 Future Work

This section presents ideas and recommendations for possible improvements of the

approaches presented in this thesis.

The accuracy of the trajectories gained by postprocessing, cf. section 3.2, can

be further improved by incorporating more accurate ionospheric and tropospheric

correction data. Alternatively, by incorporating a dual- or multi-frequency GNSS-

receiver, ionospheric/tropospheric and multipath errors might be algorithmically

reduced. Furthermore, the actually incorporated GNSS-antenna could be replaced

with a more multipath resistant one. Both possibilities of improvement have not been

pursued here because of cost and design constraints of a series-tractable solution,

which was the goal of the thesis. An extension that should be strived in any case is

the incorporation of vehicle egodata in the postprocessing at the back-end-side, to

compensate for GNSS shadowing and outages.

The method for determining adaptive temporal weights of section 4.3 can adjust in

an unsupervised manner to the frequency of the CVD acquisition and provides this

way realistic decay rates. However, there are a few parameters of the underlying data

structure, such as the bin width and count, which are expected by now to be set

manually according to the characteristics of the input data. As an alternative, meth-

27Automotive Data and Time-triggered Framework (ADTF)
28Electronic Control Unit (ECU)
29Server Programming Interface (SPI)
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ods for the appropriate selection of these parameters by multi-objective optimization

based on ground truth data could be explored.

The parametric representation of complex landmarks by ADGs in chapter 8 might

be further extended by allowing cascaded subgraphs, so-called dynamic blocks,

and the incorporation of explicit constraints. Especially the definition of explicit

constraints might be useful in many cases, as restrictions, such as orthogonality,

parallelism, symmetry, limited angles, and lengths, could improve the robustness in

complicated scenarios, while simultaneously reducing the required observation count.

The incorporation of constraints could be performed i. a. by penalization terms

or by utilizing KKT30. The incorporation of KKT would be the more elegant and,

therefore, the favored way. Possible resulting challenges could be the linearization

and the subsequent derivation of the matrix notation required for efficiently solving

the equation system by QR, what is expected to become even more complex than

for complex landmarks without explicit constraints.

In section 9.10.4, the non-normalized KDE31 has been analyzed for ridges which

correspond to vehicle trajectories and thus to centerlines of lanes. The robustness

of this approach could be further improved by incorporating possible lane markings

detected by vehicles equipped with TSR32-cameras or lidars. Furthermore, coupled

GNSS-localization can be incorporated to compensate for GNSS-shadowing and

outages, as e. g. observed in urban scenarios, to improve the overall robustness.

The incorporation of the FGT has improved the computational efficiency of the

double-staged approach to areal data fusion (section 9.7). A further improvement for

the case of elliptic Gaussian distributions might possibly be achieved by a stronger

exploitation of the structure of the double summation by a common consideration of

its distinct terms.

The hierarchical template-based data storage scheme of section 10.4 could be further

extended by concerning the spatiotemporal partitioning of the stored data. Further-

more, unsupervised partitioning based on a multi-objective optimization could be

investigated.

An issue not treated in the thesis is the classification of road network scenarios

based on the common consideration of individual, fused features. An important

scenario from the automotive point of view are roadworks. Roadworks are usually

not defined by a singular feature, however, they are constituted of multiple ones,

such as roadwork and/or masked signs, special lane markings, delineators, or a dirty

roadway. A possible roadwork scenario is presented in figure 11.1. It exhibits a detour

30Karush–Kuhn–Tucker Conditions (KKT)
31Kernel Density Estimation (KDE)
32Traffic Sign Recognition (TSR)
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Figure 11.1: An exemplary roadwork scenario with a detour to the opposing traffic
lane, yellow lane markings =, and delineators ˝.

to the opposing traffic lane, yellow lane markings, and delineators. For a human it is

easily recognizable as a roadwork – to detect it algorithmically can be considered as

challenging, because of an extensive amount of actual manifestations. The previously

mentioned features can be utilized to identify roadworks and to determine their

extents so that succeeding vehicles can be informed in advance about an approaching

roadwork. The precise models of roadworks can be subsequently utilized for next

generation piloted, driver assistance, or comfort functions.

For the identification of possible roadworks, the following procedure is proposed. At

first, potential roadwork areas should be identified, what can be done by a variation

of fusion of areal data presented in chapter 9. Different types of observed roadwork

features are incorporated in an areal voting mechanism. Possible roadwork areas,

this means areas whose confidence is above a cut-off confidence level, can then be

fused by the algorithms presented in chapters 7 and 8. The distinct fused features

can be subsequently provided to classification approaches. A general classification

approach would be again useful, as not only roadworks, but also entities defined by

multiple features, such as play streets, or parking lots, are of interest to be mapped

and identified collaboratively.
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A.1 Mahalanobis Distance Metric

The Mahalanobis distance [76] is a measure for the dissimilarity of two samples a

and b of a multi-variate random variable with covariance Σ:

}a, b}Σ “
b
pa´ bqTΣ´1pa´ bq. (A.1)

In the case that Σ does take the shape of an identity matrix, the Mahalanobis

distance is equal to the Euclidean one.

A.2 Covariance Ellipse

The covariance ellipse (also called uncertainty/error ellipse respectively covari-

ance/uncertainty/error ellipsoid for more than two dimensions) of a random variable x

with mean x and covariance Cx,x with range c is defined as

Ex,c “
 
x̃ | px̃´ xqTC´1

x,xpx̃´ xq ď c2
(
. (A.2)

A.3 Linearization of Non-linear Functions

The Taylor series in one variable is defined by

T8 fapxq “
8ÿ

n“0

f pnqpaq
n!

px´ aqn (A.3)

with a being the linearization point and f pnq the n-th derivative of a given function

fpxq. By only considering the 1st-order term, the Taylor series can be utilized for

the linearization of non-linear functions:

T1 fapxq « fpaq ` f 1paq ¨ px´ aq. (A.4)
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The 1st-order Taylor series in two variables is denoted by

T1 fa,bpx, yq « fpa, bq ` Bfpx, yq
Bx

ˇ̌
ˇ̌
a,b

px´ aq ` Bfpx, yq
By

ˇ̌
ˇ̌
a,b

py ´ bq (A.5)

with pa, bq being the chosen linearization point.

Analogously, the approach can be extended to n variables.

A.4 Bounding Box of an Ellipse

An ellipse can be defined in parametric form by

˜
xptq
yptq

¸
“
˜
cx ` a ¨ cosptq ¨ cospαq ´ b ¨ sinptq ¨ sinpαq
cy ` a ¨ cosptq ¨ sinpαq ` b ¨ sinptq ¨ cospαq

¸
(A.6)

with a being the length of its major axis, b the length of its minor axis, pcx, cyqT its

center point, α its rotation around the center point, and t P r0, 2πs the parameter.

The horizontally and vertically extremal points of an ellipse are characterized by

vertical and horizontal tangents, respectively. They can be determined by setting

x1ptq respectively y1ptq equal to zero:

x1ptq “ cx ` a ¨ cosptq ¨ cospαq ´ b ¨ sinptq ¨ sinpαq
“ ´ a ¨ cospαq ¨ sinptq ´ b ¨ sinpαq ¨ cosptq
“ 0,

y1ptq “ cy ` a ¨ cosptq ¨ sinpαq ` b ¨ sinptq ¨ cospαq
“ ´ a ¨ sinpαq ¨ sinptq ` b ¨ cospαq ¨ cosptq
“ 0.

(A.7)

By substituting cospαq respectively cosptq by λα respectively λt, the derivative of the

parametric ellipse equation (equation A.7) is rewritten to

x1ptq “ ´ a ¨ λα ¨
a

1´ λ2
t ´ b ¨

a
1´ λ2

α ¨ λt “ 0,

y1ptq “ ´ a ¨a1´ λ2
α ¨

a
1´ λ2

t ` b ¨ λα ¨ λt “ 0
(A.8)

with

cospαq “ λα,

cosptq “ λt,

sinpαq “a
1´ λ2

α,

sinptq “
a

1´ λ2
t .
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Figure A.1: An exemplary box-whisker-plot that does feature common indicators,
such as the median, upper and lower quartiles, uppermost and lowest
values, and upper and lower outliers.

The intermediate solutions are then obtained as

λ1, 2
t “ ˘ a ¨ λαa

a2 ¨ λ2
α ´ λ2

α ¨ b2 ` b2
,

λ3, 4
t “ ˘ a ¨aλ2

α ´ 1a
a2 ¨ λ2

α ´ λ2
α ¨ b2 ´ a2

.

(A.9)

After resubstituting λα respectively λt by cospαq respectively cosptq (equation A.9),

the final solutions are

t1, 2 “ cos´1
`˘λ1, 2

t

˘
,

t3, 4 “ cos´1
`˘λ3, 4

t

˘
.

(A.10)

The bounding box is obtained from the minimum and maximum x- and y-coordinates

of the ellipse points with those parameters.

A.5 Box-Whisker-Plot

A box-whisker-plot (figure A.1) is an efficient approach for simultaneously providing

common indicators, such as the median, upper and lower quartiles, uppermost and

lowest values, and upper and lower outliers, for a given set of measurements. While

the box is unambiguously defined within literature, the whiskers, and outliers are

not [77]. The whiskers are defined within this work to indicate the uppermost and

the lowest non-outlier value. Furthermore, outliers are defined to be 1.5 times below
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the lower quartile, respectively 1.5 times above the upper quartile. In the case

that multiple experiments are conducted to gain more robust results, the resulting

indicators of the averaged box-whisker-plot are defined to be the averages of the

distinct values. However, upper and lower outliers are an exception, as they are not

averaged, and their sets are instead concatenated.
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Adaptive Cruise Control

ACC is a commonly radar- and/or camera-based driver assistance system

that tracks surrounding vehicles and automatically adjusts the velocity

of the own vehicle.

Ambiguity Resolution

In the context of GNSS-based localization, AR denotes a class of methods

for resolving ambiguities that could lead to multiple feasible position

estimates.

Artificial Neural Network

ANNs aim to mimic the reasoning of organisms by incorporating inter-

connected artificial neurons. These neurons are able to interact with

each other by exchanging values. By means of supervised learning,

ANNs can be trained to weight the received values appropriately, and to

provide the sought-for results at the output layer. Commonly, ANNs are

subdivided into three layers of neurons: the input layer, the processing

(hidden layer), and the output layer.

Attribute Concatenation Graph

An ACG is induced by all those vertices for which a directed path exists

to the vertex which calculates the AA. This vertex is the root of the

tree. An ACG is denoted by paq where a is the root.

Attribute Dependency Function

Every vertex of an ADG represents an ADF and is labeled with a

corresponding elementary LA. It transforms the corresponding input

LA under consideration of the input AA(s) and provides the result as

an output AA.

Attribute Dependency Graph

An ADG denotes a concise, parametric description of complex landmarks

by a DAG. This way, the interdependencies between attributes can

be appropriately modeled and incorporated within subsequent data

association or fusion algorithms.
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Attribute Dependency Tree

A special case of an ADG whose vertices have at most one ingoing edge.

For ADTs the ACGs become paths.

Automotive Data and Time-Triggered Framework

ADTF is a framework that is intended for the rapid prototyping of

automotive applications by incorporating a modular, filter-based ap-

proach to data processing. In so doing, predefined filters, such as for the

communication via CAN/FlexRay, or custom ones may be incorporated.

Auxiliary Attribute

An AA denotes one of the inputs or the output of an ADF.

Basis Function

BFs are well-known fundamental functions, such as Gaussian, Cauchy,

or Epanechnikov, that are utilized within other functions or algorithms.

Branch and Bound

BB is an approach to a more efficient traversing of the exponential

solution space of distinct optimization problems instead of enumerating

all possible candidate solutions. For this purpose, BB splits the problem

space recursively into sub-problem spaces, the so-called branches. All

new branches are checked against the upper bound of the so far best-

known solution and only followed up when they can principally lead to

a better solution. Otherwise, branches are bounded, it means discarded.

This way, BB can provide a feasible solution usually more efficiently

than by exhaustive search. In rare cases BB can still degenerate to an

exhaustive search.

Breadth-First Search

BFS is a method for the traversing of tree and graph data structures.

BFS explores nodes by beginning at the root node and proceeding with

the direct neighbor nodes. Subsequently, the method moves on to the

next level within the node hierarchy. This procedure is repeated until

all nodes have been visited.

Bundle Adjustment

BA is an approach for simultaneously refining the geometry of a scene

acquired by a sensor and its relative motion. Additionally, the estimation

of the exact sensor parameters is often incorporated within the refinement
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process. BA is usually expressed as a non-linear LS problem, whose

solution is subsequently approached by a non-linear solver, such as LM,

or after linearization by a linear one.

Collective Vehicle Data

CVD refers to all kinds of information that is continuously or on demand

acquired by a vehicle fleet. For this purpose, the data of principally

all vehicular sensors can be utilized. By transmitting this data to a

central instance, extensive information about the road network and its

current state can be derived. This information can be subsequently

backpropagated to the vehicle fleet and incorporated into next generation

driver assistance, comfort, or piloted functions.

Column Approximate Minimum Degree Ordering Algorithm

COLAMD is an approach for permuting a given matrix in a way that

sparser factorizations, this means with less fill in, are achieved.

Compressed Receiver Independent Exchange Format

C-RINEX is a compressed version of the RINEX file format.

Constant Acceleration

CA denotes a linear vehicular motion model that does assume a constant

acceleration between two given time intervals.

Constant Curvature and Acceleration

CCA denotes a curvilinear vehicular motion model that does assume a

constant curvature and acceleration between two given time intervals.

Constant Steering Angle and Velocity

CSAV denotes a curvilinear vehicular motion model that does assume a

constant steering angle and velocity between two given time intervals.

Constant Turn Rate and Acceleration

CTRA denotes a curvilinear vehicular motion model that does assume

a constant turn rate and acceleration between two given time intervals.

Constant Turn Rate and Velocity

CTRV denotes a curvilinear vehicular motion model that does assume a

constant turn rate and velocity between two given time intervals.
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Constant Velocity

CV denotes a linear vehicular motion model that does assume a constant

velocity between two given time intervals.

Controller Area Network

CAN is a message-based protocol that is commonly incorporated within

vehicles for the communication between distinct ECUs. The protocol

was officially released in 1986.

Covariance Intersection

CI is an algorithm for the fusion of consistent random variables with

an unknown cross-correlation. In so doing, a user-defined criterion is

incorporated, e. g. the minimization of the determinant or trace of the

resulting fused covariance matrix.

Covariance Union

CU is an extension of CI. It allows to additionally incorporate incon-

sistent measurements. In the case of consistent ones, the approach is

equal to CI.

Cumulative Density Function

The CDF provides information about the probability with which the

PDF of a random variable will take a value less than or equal to x.

Density-Based Spatial Clustering of Applications with Noise

DBSCAN is a density-based clustering algorithm. The output of the

clustering algorithm is mainly defined by two parameters, the search

radius ε and the number of required measurements κ within the search

radius ε. DBSCAN is able of classifying measurements as noise. This

is highly beneficial in the case of erroneous measurements. DBSCAN

features an average runtime complexity of Opn log nq when tree-based

index data structures, such as R-trees, are incorporated. DBSCAN is

one of the most common clustering algorithms.

Depth-First Search

DFS is a method for the traversing of tree and graph data structures.

DFS explores nodes by beginning with a root node and proceeding within

the node hierarchy until a leaf node is encountered. Subsequently, the

method steps one level back and continues the DFS with a neighboring

node. This procedure is repeated until all nodes have been visited.
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Differential Global Positioning System

DGPS utilizes a reference station to improve the accuracy of GPS.

By knowing its exact position a reference station is able to provide

delta information (difference between the exact and the currently mea-

sured position). This delta information can be utilized by GPS re-

ceivers to compensate for satellite ephemeris errors/clock drifts and

ionospheric/tropospheric distortions.

Digital Audio Broadcasting

DAB denotes a digital radio transmission standard. It is utilized in

several countries within Europe and Asia. Furthermore, DAB does allow

to transmit arbitrary additional data, such as GNSS correction data,

parallel to the broadcasted audio.

Directed Acyclic Graph

A DAG is a directed graph without cycles.

Electronic Control Unit

Within the automotive context, the term ECU does refer to embedded

systems that control or regulate parts of a vehicle.

Extended Individual Compatibility Nearest Neighbor

An extension of ICNN that aims to increase the overall robust-

ness/efficiency and allows the consideration of constraints.

Extended Joint Compatibility Branch and Bound

An extension of JCBB that aims to increase the overall robust-

ness/efficiency and allows the consideration of constraints.

Extended Kalman Filter

The EKF is an extension of the KF that can handle non-linear models

by means of linearization. Both the EKF and the KF are designed to

fuse measurements with known cross-correlations.

Extended Sequential Compatibility Nearest Neighbor

An extension of SCNN that aims to increase the overall robust-

ness/efficiency and allows the consideration of constraints.
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Fast Covariance Intersection

FCI is a closed form solution to CI and usually provides a better

computational efficiency.

Fast Gauss Transform

The FGT is a procedure intended for the fast batch summation of

Gaussians by incorporating Taylor and Hermite expansions for the

source and target points.

Fast Improved Gauss Transform with Tree Data Structure

The FIGTree denotes an improved FGT.

FlexRay

The bus can be considered as a faster alternative to the CAN bus. It

does provide both static and dynamic segments by means of TDMA.

Static segments are preallocated, therefore, stronger real-time guarantees

are assured than by the CAN bus. Furthermore, dynamic segments allow

event-triggered messages and can be, therefore, regarded as CAN-like

messages.

General Branch and Bound

GBB aims to provide a more general formulation of the BB search

paradigm. Differences between BB and GBB are i. a. that GBB allows

a more generic pruning than the comparison of lower and upper bounds

by ordinary BB and the utilization of domain-specific knowledge. The

introduced generalizations allow that common search procedures, such

as e. g. A*, can be formulated as a special case of GBB.

Global Navigation Satellite System

GNSS is a satellite-aided global localization service grounded upon

multilateration. For this purpose, precise timestamps that are obtained

from atomic clocks are emitted by each satellite. Subsequently, these

timestamps are received by GNSS receivers, and the position thereof is

derived from the measured signal runtimes, the so-called pseudoranges.

Known manifestations of GNSS are: GPS, GLONASS, BeiDou, and

Galileo.
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Global Positioning System

GPS is a global navigation satellite system developed by the U. S. De-

partment of Defense, which provides a localization deviation of less than

10 m for civil usage.

Improved Fast Gauss Transform

The IFGT denotes an improved FGT.

Individual Compatibility

IC is a χ2-based test that is intended for determining if an individual

sample is probable of originating from a given distribution.

Individual Compatibility Nearest Neighbor

A data association algorithm based on the IC-test.

Inertial Measurement Unit

An IMU is a device that is able to measure the relative motion of a

vehicle by utilizing a combination of accelerometers, gyroscopes, and

magnetometers. A combination of relative inertial and global GNSS-

based localization is highly sensible in order to compensate for GNSS

outages and deviations.

International GNSS Service

IGS is a service of the International Association of Geodesy that provides

GNSS correction data, in particular, more accurate ephemerids and

clocks when compared to the broadcast ones.

Joint Compatibility

JC is a χ2-based test that is intended for determining if a set of sample

points is probable of jointly originating from a given distribution.

Joint Compatibility Branch and Bound

A BB-based data association algorithm that incorporates both the IC-

and JC-test.

Kalman Filter

The KF is a filter that allows to fuse multiple measurements based on

linear models with known cross-correlations in an ideal manner.
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Karush–Kuhn–Tucker Conditions

The KKT conditions can be considered as a generalization of the La-

grange multipliers. While the Lagrange multipliers allow solving opti-

mization problems under the consideration of equality constraints, the

KKT conditions allow to also consider inequality ones.

Kernel Density Estimation

KDE is a non-parametric approach for determining the PDF of a random

variable. The PDF is approximated by a sum of BFs, such as Gaussian,

Cauchy, or Epanechnikov.

Landmark Attribute

A LA denotes an elementary attribute of an ADG that is transformed

by an ADF.

Least Squares

LS approaches minimize the sum of squared errors. This way, they are

able to provide a solution to a given optimization problem.

Levenberg Marquardt

The LM algorithm is intended for iteratively determining a solution to

a non-linear LS problem. It combines the Gauss–Newton method with

the one of gradient descent for fast convergence.

libAFD2

The libAFD2 is a novel framework that has been developed within the

scope of this thesis. It is intended for the generalized fusion of CVD

and does intensively utilize the SPI for all computationally-intensive

functions and for the glue code.

Linear Programming

LP is a technique that does allow to model and solve linear optimization

problems under the consideration of equality and inequality constraints.

The procedure exploits the fact that the solution space of every lin-

ear program is spanned by a convex polytope. The Simplex method

by Dantzig is a well-known algorithmic approach for determining the

optimal solution (if existent) of a linear program.
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Lines of Code

LOC is a metric for describing the size of a computer program by

providing the total number of source code lines.

Minimum Covariance Determinant

The MCD method is a robust estimator for the first and second moment

of a set of measurements. The basic idea of this method is to sample

multiple subsets, to compute for each subset the first and second moment,

and to return the first and second moment for the subset with the smallest

covariance determinant (determinant of the second moment). This way,

a more robust estimate of the first and second moment can be achieved

in the case of noisy measurements.

PL/Proxy

PL/Proxy is a PostgreSQL extension that allows to partition and scale

queries to multiple database instances. PL/Proxy has been originally

developed by Skype.

PostgreSQL

PostgreSQL is an object-relational database that is being steadily devel-

oped since 1996. It is commonly regarded as the most advanced open

source database. Hence, it features an extensive amount of features and

can be even further extended by means of own or third-party extensions.

Furthermore, it is known to be feasible for large-scale applications, such

as Skype (prior to the acquisition by Microsoft).

Precise Point Positioning

PPP is a method for determining more accurate position estimates

via GNSS by additionally considering the carrier phase. Furthermore,

precise satellite ephemerids and clocks are commonly incorporated for

this purpose.

Principal Component Analysis

The PCA is a statistical procedure that is intended for determining an

orthogonal coordinate system for a set of n-dimensional measurements.

The orthogonality implies that the so-called eigenvectors, which denote

the determined coordinate system, are linearly independent. Further-

more, the PCA provides so-called eigenvalues, which reflect the variances

of the eigenvectors.
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Probability Density Function

The PDF of a continuous random variable denotes its relative likelihood

to take a certain value. A PDF is always bounded to the range r0, 1s
and its integral is always equal to one.

Process-Pack-Propagate-chain

PPP-chains are processing chains at the vehicle-side for preprocessing,

packing, and propagating sensor data from the vehicle- to the back-end-

side.

QR Factorization

The QR factorization of a matrix is denoted by: A “ QR. Q is an

orthogonal matrix and R an upper triangular one. The QR factor-

ization can be, for instance, utilized for determining the solution of a

linearized LS problem. There exist well-researched methods, such as the

Gram–Schmidt process, Householder reflections, or Givens rotations, for

computing the QR factorization in both a robust and efficient manner.

Radial Basis Function

RBFs are well-known BFs whose function value is only dependent on

the distance between their origin and a given value.

Radial Basis Function Network

An RBFN is an ANN that incorporates RBFs as activation functions.

Realtime Positioning Service

The SAPOS EPS service does provide real-time DGPS correction data.

The incorporation of the EPS service for online localization does usually

lead to a precision between 1 m and 3 m.

Receiver Independent Exchange Format

RINEX is a receiver independent and widely supported file format for

the exchange of GNSS raw data.

Receive-Unpack-Fuse-chain

RUF-chains are processing chains at the back-end-side for receiving,

unpacking, and fusing sensor data that has been provided by the vehicles.



Glossary 243

RTKLIB

The RTKLIB is a C++-framework and toolkit for GNSS-based localization.

It supports manifold online and offline localization methods and features

a wide range of parameterization options.

Satellite Based Augmentation System

SBAS is a system that enhances GNSS-based localization by providing

additional information. In particular, these are more accurate satellite

ephemerids, satellite clock drifts, and ionospheric/tropospheric correc-

tion data.

Satellite Positioning Service of the German National Survey

The SAPOS service of the German National Survey is a commercial,

highly-reliable DGPS service. It is grounded upon a network of approxi-

mately 260 reference stations in Germany. The derived correction data

is provided in the shape of two products: the EPS real-time positioning

service and the HEPS high precision real-time positioning service. While

the EPS service does usually lead to an online localization precision

between 1 m and 3 m, the HEPS service does usually lead to an online

localization precision between 1 cm and 2 cm.

Sequential Compatibility Nearest Neighbor

A data association algorithm based on both the IC- and JC-test.

Server Programming Interface

PostgreSQL’s SPI is intended for the extension of its functionality by

the development and utilization of user-defined functions and data types.

For this purpose, the C/C++ programming language is utilized. The

utilization of C/C++ can be regarded as especially beneficent in the case

of demanding computations and in the case when third party frameworks,

such as Boost or Eigen3, shall be involved.

Simultaneous Localization and Mapping

SLAM can be regarded as a class of methods that allow a vehicle to

build a map of an unknown area, while simultaneously localizing itself

within.

Structured Query Language

SQL is a standardized database query language for relational databases,

which is intended for schema creation / modification / deletion, data
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inserts / updates/ deletions / queries. SQL is supported by (nearly) all

common relational databases. However, it is usually supported within

distinct scopes and some databases feature own extensions.

Traffic Sign Recognition

TSR is an automotive camera-based system that is intended for the

recognition of traffic signs.

World Geodetic System 1984

WGS84 is a global coordinate system for the geographic referencing of

landmarks on earth and the nearby outer space. The coordinate origin

of the WGS84 coordinate system is located at the earth’s center of

mass. Coordinates within the WGS84 coordinate system are provided

in degrees with regard to their latitude and longitude, and in meters

with regard to their altitude. Furthermore, WGS84 is the reference

coordinate system of GPS.
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AA Auxiliary Attribute

ACC Adaptive Cruise Control
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[57] W. Huber, M. Lädke, and R. Ogger. Extended Floating-car Data for the

Acquisition of Traffic Information. World Congress on Intelligent Transport

Systems, pages 1–9, 1999. (Cited on pages 19 and 20)

[58] IGS. IGS Products, 2016. (Cited on pages 31 and 32)

[59] iMAR. iTraceRT-F400, 2016. (Cited on page 34)

[60] A. H. Jazwinski. Stochastic Processes and Filtering Theory. Courier Corpora-

tion, 1970. (Cited on page 98)

[61] T. Jeske. Floating Car Data from Smartphones: What Google and Waze Know

About You and How Hackers Can Control Traffic. BlackHat Europe, 2013.

(Cited on page 25)

[62] A. G. Journel. Constrained Interpolation and Qualitative Information - The

Soft Kriging Approach. Mathematical Geosciences, 18(3):269–286, 1986. (Cited

on page 188)



260 Bibliography

[63] S. J. Julier and J. K. Uhlmann. A Non-Divergent Estimation Algorithm in

the Presence of Unknown Correlations. American Control Conference, 1997.

(Cited on pages 61, 98, 99, and 100)

[64] R. E. Kalman. A New Approach to Linear Filtering and Prediction Problems.

Journal of Basic Engineering, 82(1):35–45, 1960. (Cited on pages 104 and 105)

[65] E. Kaplan and C. Hegarty. Understanding GPS: Principles and Applications.

Artech House Publishers, 2005. (Cited on pages 30, 31, and 32)

[66] B. S. Kerner, C. Demir, R. G. Herrtwich, S. L. Klenov, H. Rehborn, and

A. Haug. Traffic State Detection with Floating Car Data in Road Networks.

IEEE Conference on Intelligent Transportation Systems, pages 44–49, 2005.

(Cited on pages 23, 24, and 219)

[67] R. Kummerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard. g2o: A

General Framework for Graph Optimization. IEEE International Conference

on Robotics and Automation, pages 3607–3613, 2011. (Cited on pages 119

and 127)

[68] A. H. Land and A. G. Doig. An Automatic Method of Solving Discrete

Programming Problems. Journal of the Econometric Society, pages 497–520,

1960. (Cited on page 81)

[69] J. Levinson and S. Thrun. Robust Vehicle Localization in Urban Environments

Using Probabilistic Maps. IEEE International Conference on Robotics and

Automation (ICRA), pages 4372–4378, 2010. (Cited on page 28)

[70] Q. Li, T. Zhang, H. Wang, and Z. Zeng. Dynamic Accessibility Mapping Using

Floating Car Data: A Network-constrained Density Estimation Approach.

Journal of Transport Geography, 19(3):379–393, 2011. (Cited on page 22)

[71] Q. Li, T. Zhang, and Y. Yu. Using Cloud Computing to Process Intensive

Floating Car Data for Urban Traffic Surveillance. Journal of Geographical

Information Science, 25(8):1303–1322, 2011. (Cited on page 24)

[72] Y. Li, S. Li, Q. Song, H. Liu, and M. Meng. Fast and Robust Data Association

using Posterior Based Approximate Joint Compatibility Test. IEEE Trans-

actions on Industrial Informatics, 10(1):331–339, 2014. (Cited on pages 64

and 76)

[73] C. Liu, X. Meng, and Y. Fan. Determination of Routing Velocity with GPS

Floating Car Data and WebGIS-based Instantaneous Traffic Information Dis-

semination. Journal of Navigation, 61(02):337–353, 2008. (Cited on page 20)

[74] S. Lorkowski, E. Brockfeld, P. Mieth, B. Passfeld, K. U. Thiessenhusen, and

R. P. Schäfer. Erste Mobilitätsdienste auf Basis von Floating Car Data. AMUS,



Bibliography 261

pages 93–100, 2003. (Cited on pages 20 and 21)

[75] F. Lu and E. Milios. Globally Consistent Range Scan Alignment for Environ-

ment Mapping. Autonomous Robots, 4:333–349, 1997. (Cited on page 116)

[76] P. C. Mahalanobis. On the Generalized Distance in Statistics. 1936. (Cited on

page 229)

[77] R. McGill, J. W. Tukey, and W. A. Larsen. Variations of Box Plots. The

American Statistician, 32(1):12–16, 1978. (Cited on page 231)

[78] F. Mickler. Spurgenaue GPS Fahrzeuglokalisierung für moderne Fahrerassisten-
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