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A B S T R A C T

The last decade revealed the vast economical and societal potential
of Cyber-Physical Systems (CPS) which integrate computation with
physical processes. In order to better exploit this potential, designers of
CPS are trying to take advantage of novel technological opportunities
provided by the unprecedented efficiency of today’s hardware. There
are, however, considerable challenges to this endeavor.

First, there is a strong trend towards softwarization. Functions that
were originally implemented in hardware are now being increasingly
realized in software. This fact, together with the ever growing func-
tionality of modern CPS, translates to unrestrained code generation
which, in turn, directly influences their safety and security. Second,
the spreading adaptation of multi-core and manycore architectures,
due to their considerable increase in computation power, additionally
generates issues related to timing properties, resource partitioning,
task mapping and scalability.

In order to overcome these challenges, this thesis investigates the
idea of adopting virtualization technology to the domain of CPS. Sev-
eral research questions originate from this idea and the following work
aims at answering those questions. It addresses both technological
and methodological issues. With respect to the technological aspects,
it investigates problems and proposes solutions related to timing prop-
erties of a virtualized execution platform as well as the thereon based
high availability technique. Regarding the methodological aspects, it
discusses models and methods for the planing of safe and efficient
virtualized CPS compute and control clusters, proposes architectures
for the development and verification of virtualized CPS applications
as well as for the testing of non-functional characteristics of the under-
lying software and hardware infrastructure. Further, through a set of
experiments, this thesis thoroughly evaluates the proposed solutions.

Finally, based upon the provided results and some new considera-
tions regarding the requirements of future CPS applications, it gives an
outlook towards a generic virtualized execution platform architecture
for emerging CPS.
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1
I N T R O D U C T I O N

At the turn of the century, technological advances in computing and
engineering initiated a new phase of the digital revolution. An ubiq-
uitous and profound transition from analog to digital information
storage, processing and communication took place. The shift affected
all aspects of life as well as all branches of industry. In early 90’s,
high-end car models had on average less then ten Electronic Control
Units (ECU) installed, while in 2005 cars from the same price category
had about one hundred build-in ECUs [39]. In 1993 approximately
only 3% of worlds technologically stored information was in digital
format, in 2007 already more than 94% [53]. Mobile cellular subscrip-
tions reached 0.61% of the worlds population in 1993, in 2010 they
were amounted to 76.5% [100].

To a great extent, the technical foundation of this paradigm shift
was formed by embedded systems, which can be defined as "infor-
mation processing systems embedded into enclosing products" [95].
It was, however, not solely enabled by optimizing already known
solutions. It was rather due to the fact that researchers and developers,
driven by the novel technological opportunities, kept opening up new
areas of application for embedded systems. As a consequence, the
process of conjoining computation and communication with physical
processes accelerated. By functionally interconnecting tasks, areas and
domains that were previously operationally independent, embedded
systems started to expand massively. Once functionally dedicated,
single-purposed, closed, simple and manageable solutions now be-
came multi-layered, eclectic, interconnected complex systems with a
strong trend towards openness, evidently defying their original defini-
tion. As a consequence, established design and analysis approaches
for embedded systems were rendered partially inadequate. A new
abstraction was needed.

In order to better reflect the complex and heterogeneous character of
the newly emerged systems, Helen Gill (National Science Foundation
in the U.S.) introduced, in 2006, the term Cyber-Physical Systems (CPS)
[77], a concept denoting the "integration of computation with physical
processes". Of course recognizing this dependability at that time was
not a new finding, at least not in the embedded system community.
Yet, the incorporation of this view allowed, in contrast to classical em-
bedded system design and analysis approaches, for the modeling and
analysis techniques to concentrate less on the computational aspect
and, instead, to focus on the interaction between the computational
and physical worlds.
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The intensification of research in this direction yielded numerous
findings. Prominent book examples that summarizes many of these are:
Marwedel [95], focusing on the fundamental bases of hardware and
software models, Alur [2], describing formal methods for modeling
and verification of CPS, and Lee [77], describing the realization of CPS
by studying the interplay of the involved models (software, hardware,
physical environment) and their temporal dynamics.

On the one hand, rising abstraction levels facilitates interdisciplinary
design, analysis and verification of CPS. On the other hand, as fruitful
and necessary the approach proves to be, it only solves a specific subset
of problems. It is often not sufficient in respect of practical realization
of CPS, as many of the problems and challenges – especially in the
implementation and as a consequence also in the design of execution
environments – are either not being addressed by such an approach
or the problems are being hidden behind different abstraction layers.
This is one of the reasons why CPS designers and engineers, despite
using state-of-the-art modeling and implementation techniques, are
still struggling with issues related to system complexity. In fact, the
situation is becoming even more complicated as the complexity of CPS
is increasing rapidly. In this regard, two factors can be differentiated:
the software- and hardware-related sources of complexity.

Concerning the former, a strong trend can be observed of shifting
from hardware-driven designs to software-driven designs. Functions
that were originally implemented in hardware are increasingly be-
ing realized in software. Further, the technologically-driven growing
functionality of modern CPS translates to unrestrained code genera-
tion. This process is being inevitably reflected in the exploding size
of their software stacks. For example, contemporary premium-class
automobiles contain about 100 million lines of software code.

Regarding the latter, they mainly stem from the spreading adap-
tation of multi-core and manycore architectures. These architectures
offer a considerable increase in computation power, yet in turn they
generate issues and challenges related to efficient parallelization, re-
source partitioning, task mapping, scalability or communication. The
heterogeneous landscape of offered hardware products additionally
intensifies the problem.

All of these aspects render modern CPS already today heavily
complex as well as software-reliant systems and it is likely that the
above described direction of CPS evolution will gather momentum.
This will further increase the role of software in these systems and, as a
consequence, the complexity of CPS. Getting an answer to the possibly
hardest question that CPS developers face today will become even
more complicated, namely: How to design and implement a safe and
efficient system that fulfills all of the functional and non-functional
requirements and – at the same time – remains manageable? The
following dissertation aims at providing an answer to this question.
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1.1 motivation

The complexity of a system originates from it’s functional and non-
functional requirements. In the case of modern CPS, those are numer-
ous and multifaceted. Depending on the application, the functional re-
quirements range from simple sensor readings to complex algorithms
conducting image analysis or solving optimization problems. In other
words, the functional requirements of CPS cover a large spectrum of
computation. Regarding the non-functional requirements, for many
CPS, the most important one is meeting the timing-constraints from
a given domain of application. Depending on the situation, failing at
this task can result in a lower service quality or in a system failure
with potential catastrophic outcome. However, there are also other
non-functional requirements that CPS have to comply with. Among
them are reliability, maintainability, availability, safety, security or
efficiency [95]. The amount of constraints adds to the complexity of
CPS.

Fortunately, the issue of complex software stacks, efficient utiliza-
tion of manycore architectures as well as the optimization of multiple
orthogonal requirements is not exclusive to the field of modern CPS.
There exist other domains where researchers and developers are strug-
gling with a wide range of similar challenges. A good example are
large data centers, where comparable issues and challenges have been
successfully tackled by the technique of virtualization – or more spe-
cific – by platform virtualization. The success of this approach is a
consequence of the following features of this technology:

• It allows for the integration and consolidation of systems and
system components on homogeneous and scalable hardware.
This significantly reduces system complexity while increasing
flexibility. Further, it allows for a considerably better resource
utilization.

• Its excellent isolation properties provide a high degree of fault-
containment – both in time and space dimension. This signifi-
cantly impedes the propagation of errors or unwanted withhold-
ing of crucial system resources. Additionally, this also makes it
difficult for malware to compromise a system.

• It enables efficient high availability solutions which significantly
improve dependability by allowing systems to survive hardware
failures and guarantee service continuity.

• The techniques of Virtual Machine (VM) migration and live mi-
gration enable proactive maintenance and ease management. In
addition, they facilitate efficient load balancing.
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• Finally, as a consequence of the above listened features, virtu-
alization allows for a significant reduction of the procurement,
operation and maintenance costs.

Considering the characteristics of modern CPS and their develop-
ment trend, the above listed features of virtualization are of clear
relevance for CPS, as they address many of the current and future
challenges posed by these systems. In fact, the success stories from
data centers and cloud environments have motivated a process of re-
thinking of the currently used system architectures. Due to the believe
that virtualization technology has the potential to notably advance
the automation process, many domains have started to explore the
possibilities provided by this technology. This is especially true for
the embedded system and CPS communities. Today, in the field of
energy grids, logistic, automotive or avionic systems designers and
engineers are struggling to develop novel, virtualization-based exe-
cution platforms. Unfortunately, the integration of CPS by means of
virtualization is not a straightforward task as virtualization technology
was initially not designed to cope with strict timing constraints. These,
however, are omnipresent in CPS. Despite this fact, until recently,
research has put the most emphasis on topics of fault-tolerance and
hardware utilization. There is little literature on how to improve the
real-time capabilities of this technology or how to model and integrate
a CPS by means of virtualization. This is a relatively new and open
research field.

1.1.1 Can It Work?

As discussed above, virtualization technology comes with many at-
tractive benefits of which several are of high interest to the embedded
and cyber-physical system communities. However, also reservations
regarding the adoption of virtualization technology for embedded
systems exist and have been expressed in literature. A prominent
example is the article [51] by Gernot Heiser. The main points of criti-
cism are that virtualization can not address the scheduling needs of
embedded systems, as it is characterized by a hierarchical schedul-
ing model which is, in fact, inherent to this technology, and that the
virtual-machine model does not support an efficient way to share data
between the components of a system. Finally, VMs are heavyweight
and thus not suitable for embedded hardware and systems.

As far as the first objection is concerned, in Section 3.3.2.1, we
describe how the concept of unikernels can help in overcoming the
problem of hierarchical scheduling. Unikernels are lightweight enough
to encapsulate individual threads into VMs and, as a consequence,
allow for imposing global scheduling policies and facilitating tim-
ing analysis. Moreover, they also provide an answer to the reproach
of resource inefficiency (see Section 2.1.6). In recent literature [93],
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unikernels are shown to be as efficient as modern lightweight virtual-
ization or container technologies, such as Docker [34] or LXC [84], yet
without their substantial security issues. A trade-off between isolation
(VMs) and efficiency (container) does not have to exist with unikernels.
When optimally tailored, unikernels can have as small footprints as
480KB and run in as little as 3.6MB of RAM. Further, unikernels can
be booted as fast as in a few milliseconds and thus comparable to
process startup times – note that Docker containers need about 200ms.

Other techniques that can help to mitigate the discussed scheduling
problem are partitioning approaches. For example, while using the Xen
hypervisor [10], cpupools can be used for this purpose. This approach
allows to partition the physical cores on a machine into different pools.
Each of these pools can have a separate CPU scheduler, which can be
set to meet different scheduling requirements. This is a flexible way
to separate scheduling concerns, if needed, VMs can still be moved
on-the-fly from pool to pool and the pools itself reconfigured, in order
to meet new constraints.

Also with regard to the possibility of efficient data sharing between
components of a virtualized system new possibilities emerged. The
problem of efficient information exchange between VMs can be tackled
by shared memory systems which are based upon granting mecha-
nisms (see Section 2.1.5.2). This way, a VM can explicitly offer parts of
its memory (typically at page granularity) to other VMs and set the
operation flags to the desired access level.

Yet the main point of criticism addresses I/O operations. Tradition-
ally, virtualized systems maintain isolation properties at the cost of
at least one extra copy operation. From the perspective of embed-
ded systems using single address space shared buffers with simple
synchronization primitives, this seems inefficient. We want to point
out two approaches that help to mitigate the problem for virtualized
systems without sacrificing isolation properties.

The first is the hardware extension IOMMU, which provides secure
virtual machine guest operating system access to selected I/O devices
by safely remapping guest-physical addresses to host-physical ad-
dresses. This extension enables the socalled pass-through technology
for passing or dedicating devices to VMs.

The second approach is called Single Root I/O Virtualization (SR-IOV)
[36, 108]. SR-IOV provides additional definitions to the PCI Express
specification in order to enable I/O virtualization methods based on
PCI Express native hardware. This technology allows a PCIe device
to appear as multiple separate physical PCIe devices. The natively
virtualized devices are directly accessible to the guests without the
involvement of the hypervisor. SR-IOV together with IOMMU can
allow for a efficient, secure and scalable device access.

In the end, however, there is no free lunch. At some point, a system
designer dealing with these kind of questions will be confronted
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with the decision to either partition/dedicate hardware or to adopt
some form of multiplexing. Whether classical shared buffers coupled
together with simple low level synchronization primitives are better
suited than paravirtualization, or the above discussed approaches, has
to be decided depending on the given use case and the safety and
timing requirements it imposes on the system.

We argue that none of the discussed reservations regarding the
adoption of virtualization technology seems to constitute an insur-
mountable problem. We claim that from the technical point of view,
virtualization in embedded and cyber-physical systems is possible and
feasible. The next chapters of the following thesis will scientifically
substantiate this claim.

1.2 research questions

Several research questions originate from the idea of integrating CPS
by means of virtualization. Those can be roughly divided into two
categories: the technological- and methodological issues. Considering
the latter, two aspects can be additionally differentiated focusing either
on the functional- or on the non-functional properties. Corresponding
to these categories, this thesis addresses the following ones:

• Technological Issues

– Can real-time capabilities of virtual execution environments
be improved, so that they meet the strict timing-constrains
of CPS?

– Are contemporary high availability solutions via virtual ma-
chine replication suitable for improving the dependability
of CPS?

• Methodological Issues

– How to adequately model a CPS and include the different
non-functional requirements?

– Does a holistic – including the execution platform, commu-
nication infrastructure and fault-tolerance aspects – model
exist that allows for the planning of safe and efficient virtual
execution environments?

– How to test virtualized CPS applications during develop-
ment?

– How to consider the complex and interwoven dependencies
between the execution platform, communication infrastruc-
ture and the physical world in the process of verifying the
functional correctness of the CPS application?
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1.3 scientific contributions

The scientific contributions of this thesis address the research questions
stated in the previous section. In detail, this work advances the state-
of-the-art by the following contributions:

• Technological Issues

– In order to enable the execution of time-constrained vir-
tualized CPS applications, we analyze the architecture of
Xen [10] – a popular, performant and open-source Virtual
Machine Monitor (VMM) – identify its shortcomings with
respect to real-time capabilities and extend it with a suite
of real-time schedulers [69].

– To solve an issue of priority inversion during network
packet processing, we introduce an architecture that syner-
gizes the work of the VMM-scheduler with I/O-scheduling
[69].

– To facilitate scheduling [69] and analysis [63] as well as
an efficient high availability solution [62], we propose and
evaluate the utilization of unikernels as guest Operating Sys-
tems (OS).

– In order to increase the dependability of virtualized CPS, we
propose a novel approach to high availability and present
a self-determined virtual machine replication model that re-
duces latency costs by an order of magnitude when com-
pared with state-of-the-art techniques [62, 68].

• Methodological Issues

– We propose a methodology for the planning of safe and
efficient virtualized execution environments which aim at
hosting time-constrained virtual machines [63]. To this end,
we combine evolutionary algorithms with formal system
performance analysis – in particular algorithms consid-
ered in classical scheduling theory. We show that such an
approach allows to optimally dimension the execution envi-
ronment and – at the same time – provides strict guarantees
regarding the timing predictability of an integrated CPS.

– We present a hardware-in-the-loop (HiL) Hardware-in-the-Loop
(HiL) co-simulation architecture for the development and
testing of virtualized CPS applications [64].

– Based upon application requirements from the smart grid
domain, we describe how the complex dependencies be-
tween the Information and Communication Technologies (ICT)
and the electric power system can be taken into account
during application development and verification [64, 65].
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• Software Contributions: CPS-Xen and CPS-Remus

– We developed CPS-Xen with CPS-Remus. A virtual exe-
cution environment for a dependable and efficient host-
ing of virtualized CPS applications. It is based upon the
Xen-Hypervisor and implements the above listed scientific
contributions related to the architectural aspects. CPS-Xen
was used as the evaluation platform for obtaining the re-
sults presented in this thesis. For reasons of openness and
reproducibility of the presented results, the entire source
code is available for download on our GitHub project page1

[27]. The software stack also includes all of the extensions
made by us to the MiniOS-Unikernel.

1.4 contributions obtained in cooperation

In accordance with §10(2) of the PhD regulations of the department of
computer science, TU Dortmund, 2011, for all results presented in a
thesis, which were obtained in cooperation, an additional list has to
be provided that separates the author’s own contributions. A separate
acknowledgment has to be given to my advisor Prof. Dr.-Ing. Olaf
Spinczyk who contributed advice, ideas and technical comments to
all publications presented in this thesis.

• Chapter 4: This chapter concerns the methodology of planning
safe and optimally dimensioned virtual execution environments
for CPS applications. My contribution is the idea and the de-
sign of the proposed methodology as well as the concept for
evaluation. I am also the principal author of the publication
that presents the obtained results [63]. This contribution was
achieved in cooperation with Ulrich Gabor and is based upon
his master thesis, which I supervised.

• Chapter 5: The fifth chapter describes an architecture for de-
veloping and testing of CPS applications. This architecture was
developed in cooperation with Markus Küch and is partially
based upon his master thesis. We published the results – with me
as the principal author – in [64]. My contribution to these results
is the overall concept of the presented architecture which con-
joins a co-simulation approach from the master thesis with my
virtual execution platform. Furthermore, I contributed the imple-
mentation and evaluation parts that are related to virtualization
technology.

1 https://github.com/cpsxen/cps-xen

https://github.com/cpsxen/cps-xen
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1.5 thesis structure

This thesis is structured as follows:

• Chapter 2: Background (pages 11-26)
The second chapter provides background information that facili-
tates the understanding of the scientific contributions presented
in this thesis. It introduces basic notions from the area of virtu-
alization technology and briefly discusses different approaches
to system performance analysis. Further, it also provides related
work for the topics presented in this chapter. In-depth literature
that is directly related to our contributions is being discussed in
corresponding chapters and sections.

• Chapter 3: Virtualized CPS-Architecture (pages 27 - 70)
This chapter describes the architecture of our virtual execution
environment, it discusses the technological aspects related to its
infrastructure software and presents our scientific and software
contributions in this area.

• Chapter 4: Planning Virtualized CPS (pages 71 - 92)
The fourth chapter presents a methodology for the construction
and integration of safe and efficient cyber-physical systems by
means of virtualization. It describes the necessary techniques,
the corresponding models and discusses how system designers
and administrators can benefit from this approach.

• Chapter 5: Testing of Virtualized CPS (pages 93 - 104)
The fifth chapter proposes architectures for the verification and
testing of virtualized cyber-physical systems, including the ap-
plications as well as the underlying computer hardware and
field devices.

• Chapter 6: Discussion and Outlook (pages 105 - 110)
This chapter discusses the topic of safety certifications as well as
anaylzes the potential requirements of future CPS applications.
Based on this analysis, it provides an outlook in form of a generic
execution platform architecture for emerging CPS applications.
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2
B A C K G R O U N D

This chapter provides background information with respect to virtual-
ization technology and system performance analysis. We refrain from
an exhaustive and in-depth description of those fields, as this would
go beyond the scope of this thesis. Therefore, in the following sections,
the aforementioned research areas are being presented to an extend
that is necessary for the understanding of the scientific contributions
described in this work.

2.1 virtualization technology

This section begins with a brief historical perspective and definitions
with respect to virtualization. Next, in order to provide a context for
our findings, we discuss different types of execution environments.
The discussion is being followed by the introduction of the technique
of platform virtualization. After presentingplatform virtualization, the
architecture of the Xen hypervisor – including its high availability
solution Remus – are being discussed. The section concludes with
information regarding unikernels.

2.1.1 A Brief Historical Overview

The idea of virtual machines has its origins in the 1960s, in the so-called
mainframe era. At that time, mainframe computers were expensive
machines. Institutions and companies were searching for means that
would allow multiple users to simultaneously share a common hard-
ware platform. A pioneer system that met these requirements, by
implementing the concept of a time-sharing operating system, was
presented in 1962 [26]. It was developed at Massachusetts Institute
of Technology’s Computation Center and called the Compatible Time-
Sharing System (CTSS) . Few years later, the IBM company took the
time-sharing concept to a new level by developing a revolutionary
architecture that could simultaneously run multiple instances of an
operating system by using virtualization. The Control Program/Conver-
sational Monitor Systems (CP40/CMS) [1, 28] was able to create fourteen
virtual IBM System/360 environments – virtual duplicates of real
System/360 machines. The CP was responsible for the creation and
management of virtual machines, while CMS was a lightweight single-
user operating system that was developed before CP existed and
originally aimed at the evaluation of modularization concepts in sys-
tem evolution [28]. In contrast to conventional time-sharing systems,
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which divided the computer resources between multiple users, the CP
provided each user with an emulated stand-alone computer. Several
releases followed and soon the CP/CMS were able to host dozens of
OS’s and time-sharing users. The CP/CMS architecture was revolution-
ary as it established a novel technological paradigm. All contemporary
virtualization solutions are descendants of this architecture.

Even though virtualization technology started with the idea of
abstracting mainframe resources, it became relatively quickly clear
that beyond resource partitioning virtualization also provides the
means to solve a variety of problems when it comes to compatibility in
a broad sense. As a consequence, the concept of virtualization was also
adopted by other areas, among them to compilers, operating systems
and programming languages.

To date, 50 years after the invention of this technology, plenty of vir-
tualization types emerged. The most important ones are: application-,
network-, desktop-, operating system-, and platform virtualization.
Even if not always fully aware, most of us use one or multiple forms
of virtualization every day.

2.1.2 What Is Virtualization Technology?

A good way to explain the concept of virtualization is by using another
concept, the emulation. Emulation and virtualization are to some
degree similar. Virtualization can even be interpreted as an extension
of emulation. In fact, for many virtualization techniques emulation is
an enabling technology. What they have in common is that both create
logical representations of hardware. The main difference lies in the
scalability. While with emulation one system can imitate a behavior of
another system, virtualization is able to simultaneously support, on a
single machine, an arbitrary number of different systems.

Another way to describe virtualization is by means of interfacing
[124]. When a component is being virtualized, an additional layer
of indirection is being added for the accessing of its resources. In
the process, this interface, and the resources visible through this
interface, are being mapped onto the interface and resources of the
real component. By this, the real component (or an entire system) can
appear as one or multiple different ones.

Finally, virtualization can also be defined as an isomorphic relation
between a guest and a host, and the process of virtualization as the con-
struction of such an isomorphism [111]. More formally, it is a mapping
which satisfies the condition that for a sequence of operations, which
modify the state of a guest, a corresponding sequence of operations
exists on the host, which perform an equivalent transformation of its
state. Readers interested in a more detailed description of formal defi-
nitions with respect to virtualization, are referred to the publication of
Popek and Goldberg [111].
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Figure 2.1: Types of execution environments.

In computer science, a common practice for solving complexity
issues is to introduce abstraction layers that are separated by interfaces.
It helps to ignore implementation details and to concentrate on higher
level functionalities. In a way virtualization embeds this approach,
yet besides facilitating design and management, it also provides the
means for a relaxation of resource constraints and the solving of
compatibility issues. This is why there exist virtualization solutions
for any level of a system architecture, including both hardware- and
software components.

In order to focus the discussion and define a context for the findings
presented in this dissertation, before we proceed with the discussion
of platform virtualization, the next section provides basic notions
with respect to types of execution environments. For an exhaustive
description of the virtualization technology as such, please refer to
Smith and Nair [124].

2.1.3 Types of Execution Environments

Figure 2.1 depicts architectures for different types of execution plat-
forms, which are being discussed in contemporary literature and
press articles in the context of virtualization and efficient service or
application development and deployment.

Native execution (1) represents platforms that run software – more
or less – directly on hardware for which this software was specifically
implemented for. In other words, this architecture represents non-
virtualized execution environments.

Hardware or system partitioners (2) provide system-wide hardware iso-
lation for software. They are being used to host bare-metal applications
or operating systems directly on the hardware without any additional
abstraction layer. The possibility of resource or device sharing is lim-
ited and mostly only hardware-based. Examples of partitioners are
the ARM Trusted Firmware (ATF) 1 and Jailhouse [115]. The former is

1 https://github.com/ARM-software/arm-trusted-firmware

https://github.com/ARM-software/arm-trusted-firmware
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a reference implementation of the ARMs TrustZone technology 2. It
divides the hardware of the system in two environments, the so-called
secure world, aiming at hosting safety and security sensitive work-
loads, and the normal or less trusted world. The latter – Jailhouse – is
a lightweight real-time static partitioner for multicore platforms based
on Linux.

The software for creating logical abstractions of hardware as well as
instantiating and running virtual machines is called Virtual Machine
Monitor (VMM) or hypervisor. Traditionally, hypervisors running di-
rectly on the hardware are being referred to as bare-metal or type-1
VMMs (3) [46]. Beside hardware partitioners, hypervisors provide
the strongest isolation properties by leveraging dedicated hardware
virtualization extensions. They also provide an advanced and rich set
of features with respect to resource and device sharing. Most promi-
nent examples of bare-metal hypervisors are Xen [10], VMware ESXi
or Microsoft Hyper-V. A special case represents the L4Re Microkernel,
a microkernel-based operating system framework with support for
type-1 virtualization yet with a split functionality between the hyper-
visor and the user-space based VMM. It is based on the Fiasco.OC
microkernel [110] from the L4 microkernel family [52].

VMMs running on top of a host operating system are being referred
to as type-2 or hosted VMMs (4), as they coexist with other programs
executed under the host operating system. In this architecture, the
created virtual machines run as processes on the host operating system.
Two popular type-2 hypervisors are Virtualbox and VMware Workstation
Player. A special case constitutes the Kernel-based Virtual Machine (KVM)
[74] hypervisor. There is a discussion on how to classify KVM. On the
one hand, VMs under KVM run as regular Linux processes and thus
rely on the host OS. On the other hand, the KVM module turns the
Linux kernel into a hypervisor that closely resembles a type-1 VMM.

Finally, an execution environment that is currently gaining enor-
mous traction are containers (5). Containers are instances of user-space
software packages isolated and run by a single kernel. They hold
assets like libraries, files and other dependencies that are necessary for
the encapsulated applications or system to run. The containerization
approach is also being referred to as operating-system-level virtualization
or lightweight virtualization. Containers facilitate the development and
deployment of services by abstracting code from infrastructure, sim-
plifying configuration as well as enabling scalability and portability.
Popular examples of container engines are LXC [84] – for system
containerization, and Docker [34] – for application containerization.

In the following section, we will discuss the concept of platform
virtualization – as well as the enabling techniques – in more detail as
it forms the basis for the results presented in this dissertation.

2 https://developer.arm.com/technologies/trustzone

https://developer.arm.com/technologies/trustzone
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2.1.4 Platform Virtualization

The form or type of virtualization can be determined based on where
in a system architecture the virtualization software is located. In the
case of platform virtualization, the virtualization interface is placed
between the host and the guest. With regard to terminology, the un-
derlying hardware of a machine is usually being referred to as a
host and the executing software – the operating system including the
encapsulated applications – as a guest. Both bare-metal as well as
hosted virtualization enable platform virtualization. However, as type-
1 VMMs reduce one layer of indirection and give the hypervisor an
exclusive control over the hardware, they are – in respect of efficiency
and security – the preferred technology for implementing platform
virtualization.

The major feature of platform virtualization is the ability to support
the execution of multiple different OS simultaneously on a single hard-
ware. To this end, the virtualization layer has to provide a complete
system environment (CPU, memory, I/O) to all of its guests. In order
to facilitate this, the virtualization software has to multiplex the exist-
ing physical resources among the running guests. This is done by the
VMM. The VMM manages all hardware resources of the underlying
host platform and traps privileged accesses in order to verify their cor-
rectness. Normally, the guest software is unaware of this indirection.
Note that not all of the virtual hardware presented to the guests has
to be available on the physical host. The virtualization software can
embed emulation in order to provide the desired resource.

In literature, platform virtualization is sometimes being referred to as
system virtual machines [124] – as it aims at providing system replication.
Another term is server virtualization. This term originates from the great
popularity of this virtualization form in the server domain. Connected
to this popularity is the computer architecture that is most commonly
being virtualized, the x86 architecture. Since decades, this architecture
is widespread and very popular. Ironically, it is one of the more
difficult architectures to virtualize. The issue resides in the concept
of privilege levels, known as rings, of the x86 architecture and a
set of seventeen nonvirtualizable instructions [117]. Nonetheless, its
popularity made it a very attractive target and a lot of effort has been
put into overcoming the limitations of this architecture in respect of
virtualization. In the following, a description of the popular solutions
enabling platform virtualization on x86 is provided.

2.1.4.1 Binary Translation

Binary translation [98, 123] or binary rewriting is a technique for detect-
ing and patching the set of problematic instructions – the non-trapping
sensitive instructions – on the x86 architecture. As those instructions
have to be emulated, the VMM dynamically analyzes the instruction
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stream, identifies the ones that have to be substituted and rewrites
them so that they produce the intended effect. As a consequence, most
of the code of the guest can be executed in user space. The obvious
downside of this approach is the additional indirection that imposes a
performance penalty, especially in the case of intensive I/O operations.
Binary translation was popularized by VMware. VMware refers to its
platform virtualization solution that combines binary translation and
direct execution of instructions as full virtualization. However, this
seems disputable as in a traditional sense full virtualization translates
to providing the guest with an interface to the full system architecture
– the Instruction Set Architecture (ISA) . The virtual hardware exposed to
the guest is typically functionally identical to the underlying hardware.
For example, this was the case with the IBM System/370 which had
a total commonality between the ISA of the virtual machine and the
real machine [121].

2.1.4.2 Paravirtualization

The paravirtualization technique [10, 132] takes a different approach.
Instead of dealing with the emulation of the problematic instruc-
tions, it bypasses them, respectively, delegates their execution. This
is done by exposing a virtual machine interface to the guest that is
similar but not identical to the underlying hardware. In the case of
the most prominent embodiment of the paravirtualization technique,
the Xen hypervisor [10], the guests are being presented with a hyper-
call Application Programming Interface (API). Hypercalls are conceptually
similar to system calls. Through this interface the OS can delegate the
execution of privilege instructions to the VMM and thus significantly
reduce the virtualization overhead. The downside of this approach is
that using the hypercall-API requires a modification of the guest OS
kernel. Although no changes to the Application Binary Interface (ABI)
are necessary and therefore no modifications the guests application
code are needed. A significant part of the evaluation results presented
in this thesis are linked to this form of platform virtualization.

2.1.4.3 Hardware-assisted Virtualization

The notion hardware-assisted virtualization denotes a class of hardware
enhancements that aim at improving the execution performance of
virtual machine environments. The first to implement such extensions
was IBM. IBM introduced additional hardware to their System/370
machines, in order to assist the VMM in instruction emulation. In
respect of the x86 platform, in 2005 and 2006, Intel and AMD added a
set of new instructions that facilitates virtualization on x86. These tech-
nologies are called Intel VT-x and AMD-V, respectively. In 2010, also
ARM announced architectural support for virtualization and released,
in 2011, first CPUs with this feature. Depending on the solution the



2.1 virtualization technology 17

implementation details may vary, though conceptually they are similar.
All three extensions introduce an additional mode of operation. This
allows the hypervisors to be executed in an extra privileged mode,
while the guest OS is able to execute with its traditional OS privileges
(within ring 0 on x86 or supervisor mode on ARM). In the context of
Xen, this virtualization form is called Hardware Virtual Machine (HVM).
The advantages of HVM are faster transitions for system calls and
– when compared with paravirtualization – the support for unmodi-
fied operating systems. Introducing this mode theoretically removes
the need for either paravirtualization or binary translation. However,
there are also some trade-offs. HVM innately does not provide virtual
devices. Those have to be emulated, along with BIOS, timers and
interrupts. The cost of this is performance. At least this was the case
with the first generation of hardware-assisted virtualization extensions
where only features regarding CPU virtualization were provided.

2.1.4.4 Hybrid Virtualization

Since 2006, manufacturers extended hardware assistance for virtualiza-
tion by iteratively adding new features. The introduction of nested pag-
ing or Second Level Address Translation (SLAT) allows the hypervisor to
take advantage of hardware supported translation from pseudo-physical
or real-memory addresses to machine addresses. Prior to that, this
mechanism had to be implemented in software – for example using
the shadow page tables [124] concept. Beyond memory virtualization, an-
other important extension concerns with I/O virtualization. Through
the remapping of Direct Memory Accesses (DMA) and interrupts, the
Input/Output Memory Management Unit (IOMMU) allows guests to use
devices directly – without the intervention of the hypervisor. In order
to take advantage of hardware assistance, hypervisors are trying to
incorporate guest support for those features. An approach that com-
bines both the software- and hardware solutions is often being called
hybrid. Such an approach seems only natural, as it combines the best of
both worlds. Eventually, hardware assistance will replace all need for
software assistance. However, in respect of Xen, compatibility issues
still exist and a comprehensive and stable software support is still
being in development.

2.1.5 The Xen-Hypervisor

The results presented in this dissertation are linked to the Xen-Hypervi-
sor [10]. There are several reasons why we have originally chosen Xen
as the target platform to evaluate our research:

First, Xen is an efficient platform virtualization solution. Due to the
technique of paravirtualization, Xen provides low-latency I/O pro-
cessing, which is of high importance for CPS. Next, even though Xen
does not include device drivers itself, it instantiates a privilege guest
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Figure 2.2: The Xen architecture with a simple configuration of one paravir-
tualized (PV) and one fully virtualized guest (HVM).

(called Domain 0 or Dom0) that facilitates device utilization for guests.
Domain 0 typically runs the Linux operating system – although Solaris
or NetBSD are also supported. By leveraging Domain 0, Xen indirectly
supports all drivers available for the Linux operating system. More-
over, when porting a new operating system to Xen, it is not necessary
to implement a myriad of drivers and repeat work that has already
been done by others. For this purpose, Xen provides an abstract and
simplified interface to devices – the split device driver model, which
will be described later in this chapter. Besides x86, Xen also supports
the ARM architecture, a predominant platform for embedded- and
cyber-physical systems – two domains where virtualization technology
is gaining significant interest. Furthermore, at the time of decision,
Xen was the only VMM to provide a relatively efficient High Availabil-
ity (HA) solution [30]. Finally, the Xen hypervisor is an open-source
project. This significantly facilitates research, as all parts of its software
architecture are open to adaptation and extension.

2.1.5.1 The Architecture of Xen

The physical host, illustrated in Figure 2.2, represents a server which
deploys the Xen hypervisor. Xen runs directly on the host’s hard-
ware and is the first software to execute after the system leaves the
bootloader. The hypervisor is responsible for managing hardware
resources, including the CPUs, memory and interrupts. Further, it also
handles timers as well as the scheduling of VMs.

After setting up all of the required software structures, Xen boots a
privileged guest – Domain 0 (Dom0). Dom0 is always the first domain
to load under Xen, as it holds the drivers for the underlying hardware
devices. Beside some xen-specific infrastructural software, this is also
were Xen’s management API resides. The Xen API (not to be confused
with the hypercall-API used by the guest’s kernels) is being utilized
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by different toolstacks (most popular being the xl-toolstack) in order to
provide user space VM management functionalities for administrators.

Figure 2.2 also depicts two additional domains: one Paravirtualized
(PV) guest and one fully virtualized HVM guest. In contrast to Dom0,
these domains are restricted (e.g. are not allowed to access hardware
directly) and are therefore also called unprivileged domains (DomU) in
Xen. Both guests encapsulate an operating system and some applica-
tions. However, due to the different virtualization form, they differ
in way they access hardware devices. The PV guest makes use of
the Xen’s split device driver – to be more precise it implements the
front-end part of this model. In contrast, the HVM guests uses conven-
tional drivers provided by its operating system while Xen emulates
the corresponding devices. To this end, Xen utilizes the well-known
open-source Quick Emulator (QEMU).

In the following, we will discuss the split device driver model in
more detail as it provides a good illustration of Xen’s overall paravir-
tualization approach.

2.1.5.2 The Split Device Driver Model

The motivation for the split device driver model is – besides omitting
the x86 virtualization issues – to make use of the already existing
drivers in Dom0. However, as not all hardware devices are designed
to cope with multiple access, some form of multiplexing has to be
provided. In this regard, Xen mimics the approach encountered in
operating systems. Operating systems provide different software ab-
stractions, in order to facilitate hardware access for processes. For
VMs, an analogous service is being provided by the split device driver.

The split device driver is composed of components which are the
backbone of Xen’s paravirtualization approach: the grant tables – a
generic mechanism for sharing memory between domains, events – a
concept of software signals and interrupts, and the XenStore – a hierar-
chical, tree-like transactional key-value data structure for exchanging
configuration information between domains. The keys denote a path
in the tree and the values store domain information. The driver itself
consists of two parts: the front-end and the back-end. Both parts are iso-
lated, the back-end typically resides in Dom0, whereas the front-end
is located in DomU. Now, how do those elements all fit together?

Figure 2.3 exemplifies the architecture of the split device driver
for the network driver. Suppose a guest domain wishes to send out
a network packet. In order to do that it has to fulfill the following
requirements.

First, the guest domain needs a virtual device – in this case one that
represents a network card. Analogues to the driver, this device is split
into two parts. One resides in DomU and is bound to the front-end
driver (netfront), the other is typically located in Dom0 and connects
to the back-end part (netback).



20 background

CPS-Xen: Eine Plattform für Virtualisierte Cyber-Physische Anwendungen 14

DomU

Backends

NIC

Drivers

Domain 0

netback

Xen

Hardware 

Frontends

netfront

Shared memory

TCP/IP Stack TCP/IP Stack

Application

Payload

Event channel

Grant table

xenbus xenbus
Ring 

buffer

Figure 2.3: The Xen split device driver model exemplified for networking.

Next, using the grant table mechanism, DomU has to dedicate mem-
ory for inter-domain communication. On top of the shared memory
segments it has to instantiate a ring buffer – a data structure for
the realization of the producer-consumer communication model. The
ring buffer is being filled with requests and responses that contain
instructions, e.g. a grant reference to the granted page. Data (payload) is
transmitted elsewhere, and for this purpose, DomU has to share addi-
tional pages which then are to be referenced within the instructions.
Finally, in order to deliver the asynchronous request and response
notifications, a communication channel has to be established between
the two domains. To this end, both domains bind to a dedicated event
channel. In contrast to interrupts, these channels are bidirectional and
connection-oriented. The IDs of the channels are being announced
through the XenStore.

After setting up the required infrastructure, DomU can insert data
into the granted shared memory pages, enqueue a corresponding
request in the ring buffer and notify – through the dedicated event
channel – Dom0 that there is a packet pending. Dom0 is then able
to read the packet and pass it to the appropriate components of the
operating system (e.g iptables), in order to deliver it to the real driver.

Readers interested in more details regarding the architecture of Xen
are referred to [20].

2.1.5.3 Remus - High Availability in Xen

High availability solutions aim at ensuring a continuous operation
of a system. A crucial aspect of their efforts relates to the ability
of surviving hardware failures. Classical, hardware-based solutions,
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which involve physically redundant components, are fast and reliable,
yet expensive.

Remus [30] – an extension to the Xen hypervisor – takes a different
approach. By capitalizing the techniques of VM replication and live mi-
gration [23], Remus provides a high availability solution implemented
solely in software. In face of hardware failure, it allows a running
system to transparently continue execution on an alternate physical
host. This process of switching to a redundant source of computation
is known as failover.

To this end, Remus periodically suspends the execution of the pro-
tected guest, captures its state and asynchronously transmits it to a
backup host. The captured state is also being referred to as snapshot or
checkpoint while the process of capturing is being called checkpointing.
Each checkpoint comprises of dirtied pages, that is, memory that has
been altered since the previous round. Due to the periodic character
of the replication process, we refer to this approach as to the peri-
odic checkpointing model. In order to minimize the amount of time in
which the protected guest has to remain suspended, Remus allows the
guest to resume its execution ahead of synchronization points, that is,
without waiting for the backup to acknowledge the receipt of the last
checkpoint. This technique is known as speculative execution [104]. The
combination of the asynchronous replication and speculative execu-
tion allows for an efficient guest protection, especially when compared
to the performance penalties induced by the classical approaches to
VM replication, e.g. the lock-step [16] technique. However, in contrast
to the deterministic lock-stepping approach, Remus cannot guarantee
that a restored guest will produce the same output as before a failover.

In order to prevent the impression of inconsistent states between
the protected guest and its backup, Remus provides the possibility to
buffer output until the state of both VMs has been synchronized. This
is, after the backup has acknowledged the receipt of the last checkpoint.
Remus refers to this option as network buffering. An enabled network
buffering option guarantees that an external view on the system will
remain coherent – also in the event of a failure. The cost of coherency
preservation is latency.

For the purpose of monitoring the availability of a platform, Remus
utilizes a heartbeat mechanism. A signal in form of a network packet
is being periodically exchanged between the protected guest and the
backup guest. In face of failure, the backup identifies the absence of
the heartbeat and initiates a failover process. As a result, the service
resumes its execution on the alternate host. Note that in the current
implementation, there is no mechanism that identifies the failure of a
backup host. Only a failure of the master can be detected.

Finally, in contrast to other software-based high availability solu-
tions [35, 116], Remus does not rely on parallel execution. As long
as the protected guest is alive, there is only one VM instance of a
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service actively running. The backup VM resides in the memory of
the backup host, yet its execution is suspended and therefore, it does
not consume CPU resources. However, in contrast to solutions adapt-
ing redundant execution, Remus is highly demanding in respect of
network bandwidth.

Unfortunately, for several reasons Remus is not suitable for pro-
tecting CPS applications. In fact, to the best of our knowledge, there
exists no virtualization-based approach to high availability that fits
the needs of the CPS domain. The current techniques are either in-
adequate or inefficient. The further elaboration of this assessment is
provided in Chapter 3 together with the proposal and discussion of
a novel model for high availability that avoids the drawbacks of the
established techniques.

2.1.6 Unikernels

In the context of platform virtualization, it is common practice to em-
ploy general-purpose operating systems for guests. Those provide a
lot of functionality, ease the deployment of common services or legacy
software and are accessible not only to experts. However, fully func-
tional operating system are demanding in terms of resources. In fact,
in most cases, to perform a task of interest they consume significantly
more resources than actually necessary. Nevertheless, in data-center or
cloud environment domains, such an approach is being accepted as it
does not interfere with the fulfillment of the functional requirements
of commonly deployed services. It does, however, translate into cost
issues and efforts are being made to reduce the generated overhead.

In contrast, in the domain of CPS, where functional requirements
are often as critical as non-functional requirements, such an ineffi-
ciency will not only result in a waste of resources but it can also
lead to a system failure. This is due to the fact that the generated
overhead negatively impacts crucial system properties like timeliness
or availability.

Regarding the former, in order to guarantee a wide spectrum of
functionalities, general-purpose OS’s instantiate a lot of additional
processes of which most of them are not related to the service of
interest. The instantiated processes – even if properly isolated by
means provided for this purpose by the OS – still interfere with the
execution of the service in question. This negatively impacts the service
timing predictability.

Considering the latter, the memory overhead generated by processes
that are not service related also induces an adverse impact on the
efficiency of high availability solutions. During VM replication all of
the modified pages have to be transferred to the backup host. This also
includes the pages that were altered by processes that are not service
related. Even in the case of lightweight Linux distributions aiming at
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virtual appliances, due to this phenomena, the unnecessary increase
in checkpoint size can be in average amounted to 2 MB [68].

Finally, the deployment of dedicated services embedded in general-
purpose operating systems also poses serious security risks – both in
the case of CPS as well as cloud environments. For the aforementioned
reasons, a rationalization of the deployment process seems in order.

In fact, in recent years successful efforts have been made to increase
the resource efficiency of service deployment in virtual environments.
These efforts are based upon the concept of Library Operating Sys-
tems (LibOS) [40, 42, 86]. LibOS’s allow to optimally adapt the required
OS code base to the particular needs of an application. For each ap-
plication only those parts of the OS API are being implemented, and
later on compiled into a VM image, on which the application actually
depends. This way, sealed against modifications, single-purpose ap-
pliances [90, 91, 94, 112] – also called unikernels – can be constructed.
Such an approach to application deployment has several advantages.
Unikernels have a significantly reduced images size, this minimizes
the attack surface for malicious code injection. The fact that no unnec-
essary services are being executed inside the unikernels additionally
increases their security properties. Further, the tailored character of
unikernels allows for a substantial reduction of the overall system
resource usage. This also translates into increased system performance
and, as a consequence, facilitates the fulfillment of non-functional
requirements. Finally, due to the fact that unikernels allow for the
encapsulation of individual threads into VMs, the hierarchical schedul-
ing model that is inherent to virtualization technology can be flattened,
facilitating global scheduling and timing analysis (see Section 3.3.2.1).

Considering these aspects of unikernels, as well as the fact that most
CPS applications are specialized and functionally dedicated tasks
and can therefore be implemented as single-purpose appliances, CPS
applications provide an excellent target for unikernels. This is why, in
this thesis, we leverage unikernels for the construction and evaluation
of fault-tolerance CPS applications. In particular, we employ and
extend MiniOS which is a tiny paravirtualized OS kernel – originally
distributed with the Xen project – that serves as the basis for most of
the currently available unikernels.

2.2 system performance analysis

Designing virtual execution environments for cyber-physical systems
is a daunting task. The problems originate from the intrinsically het-
erogeneous and distributed character of CPS, the strict non-functional
constraints imposed on those systems by the physical environment
as well as the technological challenges when virtualizing time-critical
applications. Therefore, a successful process of designing, planning
or testing virtualized CPS has to rely on methods that are able to
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Empirical methods State-based verification Analytical methods

(Simulating, test, (Model checking) (Mathematical system

measurement) abstractions)

+ Large modeling scope + Exhaustive + Exhaustive

- Not exhaustive + Accurate (exact) + Fast

(-) Slow -Slow (state-space - Limited modeling scope

explosion) - Limited accuracy

- Pessimistic results

Table 2.1: Approaches to system performance analysis.

quantify relevant system characteristics in a holistic manner, this is,
by taking all aspects of the system – as well as its environment – into
account. Only by this, a robust evaluation of a virtualized execution
platform for CPS can be guaranteed.

In general, the task behind the objective of collecting data that
reflects the performance of a system is being referred to as system
performance analysis. There exist different approaches to system per-
formance analysis, all having their advantages and disadvantages.
The choice of an appropriate method always has to depend on the
given requirements. In the case of CPS, a fundamental property that
an analysis technique has to exhibit is exhaustiveness, that is, the
ability to include corner cases, in particular the worst-case scenarios.
Otherwise, no guarantees regarding critical system characteristics can
be provided.

2.2.1 Categories of System Performance Analysis

System performance analysis methods can be roughly divided into
the three categories: empirical-, analytical- and state-based verification
methods. Table 2.1 summarizes the properties of the three different
classes. The classification is derived from [109].

Simulation-based approaches form the first class. These are estab-
lished evaluation techniques characterized by a mature tool base. The
fact that they offer a large modeling scope, provide accurate results
and are relatively easy to adopt renders them popular. However, these
methods tend to become slow with increasing model complexity and
– what is important in respect of analyzing CPS – they exhibit the
inability to satisfactorily cover corner cases. Due to the latter, they
fail at providing hard guarantees for lower and upper performance
bounds of a system. A mature and popular simulation interface for
architectural exploration, performance and system-level modeling is
SystemC [45, 81] which has been approved by the IEEE Standards
Association as IEEE 1666-2011.
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The state-based verification approaches form another category of the
performance analysis methods. As the name implies, those depend
on a state-based system representation, e.g. timed automaton, as
well as a model checker which is being employed in order to verify
whether a system model meets a given system property. Similar to
the simulation-based approaches, the state-based verification methods
have rich modeling capabilities and are being able to model – in detail
– any state-related behavior of a system-under-study. As their models
comprise complete systems behaviors, the provided evaluation results
are exhaustive. Moreover, those are also exact, meaning, the computed
performance bounds are not only correct but also precisely accurate.
Unfortunately, this class of approaches struggles with state-space
explosion which renders it impracticable for the verification of larger
systems. A prominent example for these techniques is UPPAAL [12].

The third category of performance analysis techniques is being rep-
resented by the analytical methods. These are based on mathematical
formalisms intended to abstract the system in a way that facilitates a
quantification of the system’s performance characteristics. As a con-
sequence, analytical methods are fast and exhaustive. Moreover, the
computed performance bounds can be – in a mathematical sense –
proven to be correct. On the downside, analytical methods exhibit a
trade-off between the accuracy of the computed results and the model-
ing scope. In some cases, the analysis of a system is only feasible after
the constraints of a mathematical model – the system is supposed to
fit in – have been relaxed. Yet, this leads to overly conservative approx-
imations of the performance bounds. Two prominent examples for the
analytic approaches are: the Modeling and Analysis Suit for Real-Time
Applications (MAST) [49, 50] and the Real-Time Calculus (RTC) [128].

For the modeling and verification of the virtualized execution en-
vironments for CPS, we have chosen to rely on the analytic methods.
There are two reasons for this decision. First, as indicated earlier, those
methods allow for the computation of reliable performance bounds –
a crucial aspect for the validation of virtualized CPS. Secondly, design-
ers of virtualized CPS will inevitably be confronted with large design
spaces. Yet, an efficient exploration of a large design space is only
realizable with a fast assessment technique. Analytical approaches
to performance evaluation fulfill this requirement. Therefore, besides
the ability to provide strict guarantees regarding the non-functional
characteristics of a system-under-study, they also represent a suitable
driver for planning and optimizing virtualized CPS. The adaptation
of the analytic methods for the purpose of planning safe and efficient
virtualized CPS is being presented in more detail in Chapter 4.





3
V I RT UA L I Z E D C P S - A R C H I T E C T U R E

The research on virtual execution environments for CPS falls broadly
into two categories: the technological aspects involving the efficiency
of the execution and communication infrastructure and the formal or
methodological aspects. The former concerns with technological issues
related to the hardware and software foundations of the virtualized
execution environment, the latter aims at providing formal methods
and methodologies for the planning and verification of virtualized
CPS. This chapter deals with the former category, specifically with in-
frastructure software. The findings presented in the following sections
have been published in [62, 68, 69].

The first section of this chapter introduces the reader to the domain
of Cyber-Physical Energy Systems (CPES). We use CPES as a background
for our research, in particular, from real-life applications encountered
in this domain we derive timing constrains and used them for the
evaluation of the virtual execution environment CPS-Xen, which is
being described in the third section of this chapter. Before that however,
a discussion concerning architectural challenges related to timing
characteristics of virtualized CPS is being provided. The fourth and
last section concerns with the efficiency of high availability solutions
that employ virtual machine replication. It discusses the state-of-the-
art approaches and presents our contributions in this field.

3.1 cyber-physical energy systems

This section briefly describes the domain of modern power systems.
Power systems are a good example of large, distrusted and complex
CPS. This renders them well suited to serve as an exemplary target
for our approach as well as the background for our evaluation. In
this passage also the non-functional requirements encountered in this
domain are being presented.

In recent years, due to the liberalization of the electricity markets,
the ongoing integration of renewable energy sources and the intro-
duction of new technologies (e.g. electrical mobility) substantially
changed the circumstances in operation of the electric power grid. All
these affected the expectations regarding the IT infrastructure and the
currently applied software solutions. As a consequence, the require-
ments imposed in this domain on the infrastructure also changed.
Yet, the current system architectures were not designed to meet the
multifaceted requirements of future power systems. Therefore, there is
a need for new architectural solutions that adequately reflect the novel

27
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Protocol Inter-Arrival Time Transfer Time Limit

SV 0.250 ms 3 ms

GOOSE 5 ms 3-20 ms

MMS 50 ms 100 ms

Table 3.1: Timing constraints derived form the IEC 61850 specification for the
three main protocols.

expectations [136]. Our CPS-Xen architecture [62, 68, 69], described
later on in this chapter, aims at the fulfillment of those expectations.

In respect of our research, an interesting area of modern power
systems is the substation automation field. Recently, in this area, the
concept of interconnected and intelligent microprocessor-based con-
trollers – the Intelligent Electronic Devices (IED) – is being tested. The
hope is that those devices will allow to meet the requirements of the
novel monitoring, control and protection applications. To this end, the
control or protection applications are being commonly implemented
on dedicated IEDs. This, together with the strict safety requirements,
which enforce policies dictating redundant device deployment, trans-
lates to a considerable amount of IEDs that have to be installed and
managed in each substation. That, in turn, leads to high procure-
ment, operation and maintenance costs. Fortunately, in most cases, the
computation logic executed on these devices can be abstracted. This
opens the possibility to employ virtualization. The aforementioned
characteristics render IEDs an excellent target for CPS-Xen with its
unikernel-based approach.

The non-functional requirements encountered in this field are being
defined by specific regulations and specifications – as the IEC 61850
Standard [58, 60]. The IEC 61850 is a bundle of standards for power
system automation and transmission grid protection. It is mainly
composed of three protocols: the Sampled Values (SV), the Generic Ob-
ject Oriented Substation Event (GOOSE) and the Manufacturing Message
Specification (MMS) protocol. The SV protocol is used for transmitting
measurements values, the GOOSE messages are responsible for carry-
ing state changing commands, and finally, the MMS protocol is being
utilized for exchanging general purpose data between substation ap-
plications. The first two protocols implement the second – and the
MMS the third – layer of the OSI model.

The timing requirements imposed on a system by the IEC 61850
specification are summarized in Table 3.1. The transfer time limit com-
prises of the network communication delay and the communication
processing time both at the sender and receiver. The inter-arrival time
denotes the frequency at which the devices communicate with each
other (e.g. an IED with a circuit breaker). As the timing constraints
specified in IEC 61850 only refer to the end-to-end communication for
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Figure 3.1: Major potential sources of indeterministic latencies in the Xen
architecture.

the purpose of the experiments, described later in this chapter, we as-
sume those to also include the computational delays of the algorithms
abstracted from the IEDs and encapsulated in VMs. Even though this
assumption tightens up the overall timing constraints imposed on our
system, the computational latencies – when put in relation with the
communication delays – only constitute a small fraction of the overall
latency. For example, the computational delay for our implementation
of a distance protection function – used for overcurrent protection
in power lines and representing one of the most critical function re-
garding timing constraints in this domain – measured in realistic load
scenarios never exceeded 40 µs.

3.2 sources of indeterminism

Before proceeding with the analysis of selected issues and shortcom-
ings concerning the timing properties of the Xen architecture and
the description of the proposed solutions, this section provides an
overview over the potential sources of indeterminism encountered on
this platform. As the following analysis focuses on the architectural
aspects, we abstract from computational delays induced by application
workload.

When analyzing the Xen architecture, several sources of latencies
that may unpredictably influence the timeliness of a system can be
identified. However note that those are mostly not specific to Xen and
have also their equivalents in other virtualization platforms. Figure
3.1 depicts the major potential sources of indeterministic latencies in
the Xen architecture.

processor and i/o processing The way VMs are being sched-
uled by the VMM is of fundamental importance for the timing proper-



30 virtualized cps-architecture

ties of a system. However, as will be shown later, in order to obtain
system wide characteristics that are not limited to a single part of the
architecture, the examination should include the interplay between
the VM scheduler and the I/O processing subsystem. In the next
sections of this chapter, we identified, discussed as well as proposed
solutions for the issue of indeterministic latencies related to processor
scheduling and I/O processing exhibited by the Xen architecture. The
adaptation of real-time scheduling policies from classical scheduling
theory for the Xen architecture as well as subsequently adjusting and
synchronizing them with the I/O processing subsystems, allow for a
substantial improvement of the timeliness properties of the system.
As a result, our CPS-Xen architecture is characterized by significantly
lower system response times as well as a minimal latency dispersion.

memory and caches Depending on the hardware architecture
and due to the use of shared resources, there can be additional sources
of indeterministic latencies while accessing data – mainly stemming
from memory controllers, interconnects and bus contention.

On platforms mostly dedicated for servers and high-performance
centers, the Non-Uniform Memory Access (NUMA) design exemplifies
such a source. Even though that NUMA was devolved to enable scala-
bility in multi-processor environments – by reducing the number of
processors competing for access to a shared memory bus – a subop-
timal mapping of processes or VMs to cores can induce significant
fluctuations in memory access times. In order to tackle this issue,
NUMA-aware scheduling algorithms have been proposed [14]. Since
version 4.3, also Xen supports NUMA-aware placement of VMs1.

On a lower level of memory architectures and far more common
in memory design, another way to deal with latencies attributed to
controllers and bus contention are caches. Caches aim at keeping the
necessary data local to the processors. However, the starting-point
of this technology was the optimization of memory access times in
average. Therefore, in their standard form, caches contribute to a
better overall performance, yet do not guarantee deterministic timings.
In literature, different approaches to cache management have been
proposed in order to increase system predictability [82, 102, 131].
A current approach [15] that utilizes hardware extensions for cache
partitioning, e.g. the ARM cache controller PL310 or the Intel Cache
Allocation Technology (CAT), implements cache management as an OS
feature. The published results show a significant reduction in the
dispersion of access latencies, rendering the systems under study
predictable. Further studies are needed in order to determine the
potential of these approaches for real-time virtualization.

1 https://wiki.xen.org/wiki/Xen_4.3_Feature_List

https://wiki.xen.org/wiki/Xen_4.3_Feature_List
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Currently, in the Xen implementation, both CAT and its latest exten-
sion, the Code/Data Prioritization (CDP), can be used to control cache
allocation on VM basis.

interrupts An important feature of virtual execution environ-
ments, aiming at hosting time-sensitive CPS applications, is the ability
of the hypervisor to minimize the latencies for interrupt delivery. This
is not an easy task as virtualization adds an extra indirection layer
that comes at a price. When virtualizing interrupts, at least what the
hypervisor has to do is to handle the physical interrupts and inject
the corresponding virtual interrupts to the appropriate virtual CPUs.
This induces additional delays. Interrupt delivery latencies are not
only software but also highly hardware specific, therefore there is
no general factor that represents the cost of interrupt virtualization.
Yet a specific hardware can be tested in this regard. An evaluation
of the interrupt processing delays in Xen was done by Stefano Sta-
bellini2 on Xilinx Zynq Ultrascale+ MPSoC3, an ARM Cortex A53
based development board. While the native interrupt latency on this
board amounts to ca. 300ns, the maximum delay under Xen – after the
cache warm up phase – reached 4980ns in the experiments. Even if a
worst-case delay of 5 µs fulfills many – if not most – real-time systems
timing requirements, it differs from the native delay by a factor of
16. This overhead has to be kept in mind while designing and testing
virtualized CPS.

guest os A guest OS can influence the timeliness of a system in sev-
eral ways: due to the need of hardware emulation, unnecessarily long
boot times, execution of non-essential processes and encapsulation of
superfluous libraries that are not related to the application of interest,
or other forms of inefficient resource consumption. Therefore, in this
thesis, we leverage unikernels (see Section 2.1.6) for the construction
of virtualized CPS. In particular, we employ, adjust and extend the
MiniOS kernel. In Section 3.4.4, we compare MiniOS and Linux open-
Suse Leap with respect to resource efficiency and the implications for
timing properties.

toolstack In the case of Xen, the current default xl toolstack for
managing VMs as well as the tools and infrastructure behind its API
were not designed with hard – or even – soft real-time requirements
in mind. This has negative implications for the timing properties of
employed tools.

In the final sections of this chapter, we describe our high-availability
solution CPS-Remus. CPS-Remus is an exemplification of the idea that

2 https://xenproject.org/2017/03/20/xen-on-arm-interrupt-latency/

3 https://www.xilinx.com/products/silicon-devices/soc/

zynq-ultrascale-mpsoc.html

https://xenproject.org/2017/03/20/xen-on-arm-interrupt-latency/
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
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the design space of virtualization-based fault-tolerance approaches
can be extended to support time-sensitive VMs. Other fault-tolerance
approaches, like N-Version Programming (NVP) [18], are also possible.
However, the proper design of high level functionality is not enough to
guarantee deterministic timing behavior. Tools are commonly depend-
ing on lower parts of system software. The Xen toolstack includes the
libxl and libxc libraries, needed to carry out commands, as well as the
XenStore infrastructure for storing domain related information. These
are known for causing unnecessary overheads [92, 93]. The bottomline
is that regardless the hypervisor, the design of virtualization-based
tools and solutions for time sensitive applications has to involve a
thorough analysis of the entire toolstack, including infrastructure
functionalities.

3.3 cps-xen for real time

This section begins with an analysis of the shortcomings of Xen with
respect to scheduling time-critical VMs and timely I/O processing,
specifically the processing of network packets. After discussing the
deficiencies, CPS-Xen is being introduced, an architecture for hosting
virtualized CPS applications that extends Xen with a suite of real-
time schedulers and addresses the issue of efficient and timeliness
scheduling of VMs and their network packets. Finally, the proposed
solutions are being evaluated through an extensive set of experiments.

3.3.1 Real-Time Scheduling in Xen and CPS-Xen

The experiments, described later in this chapter, were conducted with
the Xen hypervisor version 4.1.4. In this version Xen shipped with two
default schedulers: the credit and the Simple Earliest Deadline First (SEDF)
as well as additionally supported ARINC653.

ARINC653 is a real-time scheduler from the aviation domain. It is a
non-premeptive cyclic executive scheduler which, due to its limited
functionality, strongly resembles a dispatcher. It defines a major frame
of fixed duration and divides it into minor frames which can then
be allocated to domains. The predetermined domains are repeatedly
scheduled with a fixed periodicity. The scheduler is designed with
strong focus on temporal isolation and a statically predictable schedule.
Therefore, the ARINC653 scheduler has a well defined yet very limited
field of application.

Due to the described features, a significantly reduced performance
and lack of support for multicore systems, the scheduler fails at fulfill-
ing our needs and it is not a suitable choice for efficient integration
of CPS. However, in some specific scenarios it could be applied to a
partition of a system which requires strong timing isolation or time
transparent static schedules for security reasons.
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The credit scheduler [29] is a general purpose, proportional share
scheduler and currently the default scheduler in Xen. While using this
scheduler each domain, including domain 0, is assigned a weight and a
cap. The weight parameter defines an order on the VM set. This order
determines proportions in which CPU time should be allocated. For
example, a VM with a weight of 128 will get twice as much CPU time
as a domain with a weight of 64. The cap parameter, whereas, defines
an upper boundary for CPU time that can be assigned to a VM.

The scheduler is quantum-based with a default time slice of 30 ms.
This means that in this time period a scheduled VM cannot be pre-
empted. The high default value aims at CPU intensive workloads.
Since Xen verison 4.2, however, this parameter can be adjusted by
means of the xl-toolstack.

The credit scheduler also implements load balancing. The method is
rather simple. Every CPU manages its local scheduling queue. If there
are no runnable VMs in the queue, the CPU can change its state into
idle. However, before that it has to check whether there are runnable
VMs in the queues of the other processors. If this is the case, those
have to be scheduled. Such an approach guarantees a system-wide
fair sharing of the CPU resources.

Due to the described features, the credit scheduler delivers solid
performance for most workloads types. However, for the same reasons
it is not an optimal choice for the scheduling of latency-sensitive VMs.

The second scheduler shipped with Xen 4.1.4 is the SEDF scheduler.
This one also provides a weighted CPU sharing, yet at the same time
enforces time guarantees based upon algorithms from the domain
of real-time scheduling [79]. With SEDF the CPU requirements of
each domain are being specified by three parameters: a time slice, a
period and a boolean flag indicating whether a domain should receive
extra CPU time. The slice is a time interval of CPU time which is
being allocated to a domain in each period. Together, the time slice
and the period parameter represent the CPU share requested by a
domain. For example, a domain wishing to receive 20% of the CPU
could set its slice to 2 ms and its period to 10 ms. Finally, the boolean
parameter allows to turn the scheduler into a semi-work conserving
type. A domain with an enabled extra CPU time option makes use
of the so-called slack time which is the remaining CPU time after all
runnable domains received their CPU share.

The SEDF scheduler also keeps tracks of two additional values for
each of its domains: the wall-clock time at which a domain period ends
– called deadline, and the remaining CPU time of a domain in a given
period. Conform to the EDF policy, the scheduler always schedules –
as the next VM – a runnable domain which has the earliest deadline
of all runnable domains in the queue. The SEDF is a preemptive
scheduler implemented with per CPU queues.
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Unfortunately, in the tested implementation the SEDF scheduler
does not handle increased load situations well and fails at holding
real-time constraints of time sensitive applications. The corresponding
results are shown in Section 3.3. Due to this finding, we extended
the Xen hypervisor with a suit of real-time schedulers which we
will discuss in the next section. Regarding the SEDF scheduler, its
shortcomings led later (Xen version 4.6) to its removal from the list of
supported schedulers in Xen.

Since version 4.5, Xen ships with a new scheduler called the Real-
Time-Deferrable-Server (RTDS). The RTDS is a real-time CPU scheduler
built to provide guaranteed CPU capacity to guest VMs on Symmetric
Multiprocessing (SMP) hosts. The scheduler applies the preemptive
global EDF real-time scheduling algorithm to schedule VCPUs in the
system. On the Xen project website4, the scheduler is being advertised
as aiming at the scheduling of soft and firm real-time embedded,
mobile and automotive graphics and gaming in the cloud workloads.
The RTDS scheduler bases its predictability guarantees on results
from the domain of hierarchical scheduling theory [31, 38] and was
originally developed in the RT-Xen project [133, 134]. In Xen 4.10,
the status of the RDTS scheduler remains an experimental feature.
As at the time when we conducted our studies the Xen hypervisor
was still in version 4.1.4, in the following series of experiments we
did not compare CPS-Xen with the RTDS scheduler. Nonetheless, in
Section 3.3.4, we provide a rudimentary evaluation and comparison
of the CPS-Xen RM and the RT-Xen RTDS schedulers based upon Xen
Version 4.10 on an embedded development board. Now, before we
proceed with the evaluation of the schedulers, we would like to briefly
address two points.

First, in our research we aim at a different scheduling model than
hierarchical scheduling does. In contrast to hierarchical scheduling,
we explicit flatten the scheduling hierarchy in order to facilitate both
the scheduling as well as its analysis (see Section 3.3.2.1).

Secondly, there is another shortcoming of Xen in respect of schedul-
ing real-time workloads. Irrespective of the performance and efficiency
of a Xen VMM scheduler, even while running at normal utilization
levels, VMs can still miss their deadlines. The problem is related to
the way Xen processes I/Os. The architecture has limitations that
may introduce priority inversion issues to the system and result in
unpredictable network traffic latencies. In the evaluation section (see
Section 3.3.3) we quantify the impact of this architectural deficiency
for network packet processing. The results reveal that the negative
impact on VMs delays is substantial. Despite this, works concerned
with virtualization, Xen and real-time systems either do no address
this issue, e.g. RT-Xen [133, 134] or [97], restrict their solution to lo-
cal inter-domain communication [135] or only alleviate, yet do not

4 https://wiki.xenproject.org/wiki/Xen_Project_Schedulers

https://wiki.xenproject.org/wiki/Xen_Project_Schedulers
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Figure 3.2: Architecture overview of an integrated CPS by means of CPS-Xen.

solve the problem [47]. To the best of our knowledge the only work
that successfully addresses this problem is [80]. There, the authors
propose an traffic control architecture for Xen that enables network
streams prioritization. To this end, they extend the Domain 0 network
card driver with additional netback devices which can be assigned
to dedicated VMs. The network devices can then be prioritized with
a one-thread-per-priority approach and their number is set to the
amount of needed priority levels.

Our own solution to this problem was proposed in [69]. In contrast
to the aforementioned work, our approach is transparent and does
not require any source code modifications. However, both approaches
rely on the Linux real-time scheduling policies and the concept of
dedicated packet processing threads. Our approach is being described
later in this chapter, but first of all, the CPS-Xen architecture and its
scheduling model are being discussed.

3.3.2 Architecture of CPS-Xen

In this section we discuss the architecture of CPS-Xen as well as its real-
time scheduler suit. For a detailed description of the Xen architecture
please refer to Section 2.1.5 .

The generic architecture for CPS-Xen is presented in Figure 3.2. It
depicts how the information and communication infrastructure of
CPS-Xen interweaves with the physical world – represented in the
figure by the physical devices. Further, it shows how we assume a
CPS – that was integrated by means of CPS-Xen – to look like. Every
physical host represents a computational node, which is a server
running CPS-Xen. Each of the servers hosts a privileged domain 0
as well as multiple guests encapsulating CPS applications. In order
to prevent or minimize traffic interferences during the transmission
of time-critical data, the architecture assumes two communication
interfaces. The inter-node interface is responsible for handling the VM
management traffic. For example, this includes data that has to be
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transmitted during checkpoint operations or the migration of VMs.
The process level interface, whereas, connects the computational part
of the architecture with its physical counterpart. This includes the
exchange of data between VMs and the sensors and actuators.

3.3.2.1 CPS-Xen Scheduling Model

In platform virtualization the scheduling problem forms a two- (or n,
in the case of nested virtualization) level hierarchy. The first level is
constituted by the hypervisor scheduler which assigns each VM its
share of resources. The second layer is being introduced by the guest
OS scheduler which, in turn, assigns its tasks to the virtual CPUs. Such
a model poses significant challenges both in respect of scheduling
analysis as well as scheduling decisions. The scheduling policies (also
called server policies) provided by hierarchical scheduling models,
in practice, introduce an additional computational overhead, and in
theory, generate overly pessimistic projections for upper bounds. This
is fine and acceptable if a system designer can take advantage of the
features provided by the hierarchical scheduling approach, meaning,
the underlying platform architecture corresponds with such a model.
However, this is not the case for our model. A project that aims at en-
abling hierarchical scheduling studies for VMs is the aforementioned
RT-Xen [133].

We avoid the complexity of a hierarchical scheduling model and
the attendant difficulties by flattening the scheduling hierarchy. We
achieve this by employing unikernels (see Section 2.1.6) for the con-
struction of specialized standalone kernels. This allows us to embed
each application into a dedicated VM and therefore to reduce the
scheduling level to a single layer. From this perspective, missing a
deadline within a VM is equivalent to missing a deadline by the hyper-
visor. As a consequence, scheduling algorithms and analysis methods
from the field of classical scheduling theory can be applied to our
architecture, respectively, our scheduling model.

Due to the single level scheduling hierarchy as well as motivated by
the shortcomings of Xen in respect of scheduling real-time workloads
(see Section 3.3.1), we extended Xen with a suit of classical real-time
schedulers and implemented it as a part of our CPS-Xen project. In the
current version 1.3, CPS-Xen allows to switch – on the fly – between
the following three fixed-priority preemptive scheduling policies:

• Fixed Priority Scheduling Policy (FP)

• Rate-Monotonic Scheduling Policy (RM)

• Deadline-Monotonic Scheduling Policy (DM)

All three schedulers ensure that each time a scheduling decision
is being made by the scheduler, the processor executes the runnable
domain which has the highest priority of all other and ready to execute
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domains. The policies differ, however, in the way how priorities are
being assigned and handled.

In the case of the FP scheduler, the priority parameter is being
assigned statically and explicitly, meaning, it represents an absolute
value that can only be changed by the system administrator. The
priority parameter is the only parameter required by the FP policy.

In the case of the RM policy, the scheduler computes the priorities
of the domains dynamically. Each time a new domain is being added
to the queue, e.g. due to instantiation or migration, or some of the
domain parameter change, the scheduler recomputes the assigned
priorities. Accordingly to the RM algorithm, the highest priority is
being assigned to the domain with the shortest period [78, 85]. Note
that our CPS-Xen implementation differs from the classical definition
of the RM policy. Besides taking the period parameter, it also expects
the slice argument to be defined for each of the scheduled domains.
The slice denotes the amount of CPU time a domain may receive
during a period. It can be used to enforce strict timing isolation –
e.g. in case of malicious VMs. If set equal to the value of the period
argument, the slice parameter does not influence the policy of the
RM scheduler. The introduction of the slice argument also enables
weighted CPU sharing. The fairness, however, depends on the values
of the periods. Finally, the period parameter determines the priority
of the domain and the time at which the used CPU time is being
cyclically reset, or in other words, the budged for the next period
refreshed.

The third implemented policy is the DM scheduler [4–6]. In our
implementation it takes three parameters. Additionally to the two RM
scheduler parameters also a deadline parameter has to be specified.
The deadline value has to be less or equal of the period value. The
priorities are being computed analogous to the RM approach, yet
based upon the deadline values of the domains.

At this time, CPS-Xen only supports a partitioned scheduling model
where each CPU holds and manages its own dedicated scheduling
queues. Therefore, it lacks global load balancing on multiprocessors
and all of the available scheduling policies work only in the non
work-conserving mode.

3.3.2.2 Real-Time Networking in Xen and CPS-Xen

Another factor – besides the VMM-scheduler – that significantly in-
fluences the timing properties of virtualized CPS applications is I/O
scheduling. As CPS applications commonly assume distributed archi-
tectures, the I/O processing of network packets becomes a matter of
particular importance.

Recall that in Xen I/O processing is done by Domain 0 (or driver
domains) on behalf of the guests and is based on the split device
driver model (see Section 2.1.5.2). By default, CPS-Xen delegates the
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processing of networks packets to Domain 0, which runs a Linux
kernel. The standard mainline Linux kernel provides mechanisms
for supporting latency-sensitive applications. The software layer re-
sponsible for this functionality is called Queuing Discipline (QDisc)
and implements policies for network traffic shaping, including pri-
oritization and classification. Xen inherits the Linux network stack,
including QDisc. However, in order to be in accordance with the idea
of virtualization and guarantee isolation, Xen introduces additional
virtualization-related components to the stack, the virtual network
devices. Unfortunately, the way these interact with the Linux kernel
may lead to priority inversion issues.

Before the Linux kernel version 3.12, in the xen-related part of the
stack, the network packets were processed by a single kernel thread.
All of the guests virtual network devices (netif ) where managed by the
back-end of the split network device driver (netback) and the dedicated
kernel thread serviced all tasks related to the netback, including the
processing of the shared tx and rx queues. In terms of real-time perfor-
mance this approach exhibited several limitations [135]. The network
packets were scheduled or processed regardless of the priority of the
destined VMs which led to priority inversion and indeterministic
latencies.

Since Linux kernel version 3.12, there is a new netback model. This
model is build around the concept of virtual interfaces (VIF) which are
back-end devices that merge and replace the netifs and netbacks. For
packet processing the new model utilizes the New API Packet Reception
Mechanism (NAPI) [119] as well as multiple kernel threads. The model
is also called 1:1 since for every booted VM a dedicated VIF kernel
thread is being instantiated. The concept of dedicated threads for
handling guests traffic removes one of the potential sources of priority
inversion which was related – before Linux 3.12 – to the processing
of the shared rx and tx queues. In the new model, each VIF device
handles its queues independently and does not need to coordinate –
as before – with the netback device. However, this does not remove
all sources of indeterminism in the virtualization-related parts of the
network stack. The VIFs still may process packets independently of the
priority of the destined VM. In order to address this issue, we propose
a solution [69] that utilizes the new 1:1 model together with a Linux
feature that allows for configuring scheduling policies for threads
(including kernel threads) and setting their priorities. An example
of such a Linux scheduling policy is the preemptive fixed-priority
scheduling policy SCHED_FIFO.

The idea behind our solution is to synergize the work of the VMM-
scheduler with the processing of the network packets in Domain 0.
This is done by aligning the priorities of the VMs with the priorities of
corresponding VIF threads. Our approach does not require any kernel
modification and is transparent as it utilizes the POSIX interface (chrt
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command) in Domain 0 in order to manipulate the real-time attributes
of the packet processing threads. The results for this approach are
being presented in the next section.

3.3.3 Evaluation

This section provides evaluation results for CPS-Xen. In particular,
in a set of experiments the CPS-Xen execution environment is being
analyzed in respect of the VMM-scheduling quality, the impact of the
scheduling synergy – between the VM and I/O scheduling – on the
reactiveness of the system, and finally, platform scalability. Before that
however, the setup of the experiments as well as the benchmark used
for the purpose of evaluation are being described.

3.3.3.1 Experimental Setup

The experiments were conducted on a Dell PowerEdge R620 machine
consisting of two 8-core Intel Xeon E5-2650v2 processors running at a
constant speed of 2.6 GHz and an integrated Intel I350 1Gbit Ethernet
network card. All power management features as well as Turbo Mode
were disabled. Domain 0 ran on a 64-Bit version of Ubuntu 14 Server
with a para-virtualized kernel 3.13 on an exclusively dedicated core.
The used VMM was CPS-Xen based upon the Xen version 4.1.4. Due
to the fact that the safety-critical applications from the CPES domain
strictly depend on periodic sensor values and that in respect to such
assumptions the rate-monotonic algorithm provides the optimal prior-
ity assignment [78, 85], in the following experiments, the RM policy
was chosen for VM-scheduling. The workloads representing the power
system applications were all embedded into the para-virtualized Mini-
OS guests. The generation of the request network packets for the
VMs under test was conducted on additional computers. Those were
connected to the server via a gigabit Ethernet switch.

3.3.3.2 Benchmark and Latency Types

For the purpose of this evaluation a User Datagram Protocol (UDP)-based
client-server benchmark has been implemented in the programming
language C. The benchmark servers represent CPS services (e.g. pro-
tection algorithms) and are embedded and executed inside VMs. The
servers can be configured for variable CPU loads. All VMs run on
the PowerEdge R620 host. In turn, the benchmark clients represent
sensors or actuators and are instantiated on separate computers. The
clients are responsible for triggering the computation inside the VMs
by generating request for the CPS services. During benchmarking
latencies are being recorded for every single request/response pair.

The benchmark allows to quantify three different latency types
across the platform: the algorithm/service Execution Time (ET), the
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Figure 3.3: Latency measurements locations.

System Response Time (SRT) and the Round-Trip Time (RTT). For esti-
mating execution times of the algorithms encapsulated in VMs, we
implemented a clock cycle precise measurement technique [107] that
provides a maximum measurement deviation of four clock cycles. The
system response latencies – defined as the time interval between the
moment when the network packet destined for a given VM arrives at
the bottom of the Linux TCP/IP network stack and the time-stamp
at which it is being delegated to the network adapter for a response
transmission – are being collected in Domain 0. To this end, we hook
into the TCP/IP stack layer-2 kernel functions using systemtap5 [114]
and log the appropriate time-stamps. Finally, on the machines gener-
ating the network packets representing sensor values, we collect RTT
for every single packet. We use these values to additionally validate
the plausibility of the measured execution and response time latencies.
In the subsequent experiments for each measurement in each of the
presented figures - if not explicitly stated otherwise - a total number
of 10,000 packets were sent.

Figure 3.3 depicts the benchmark architecture and the measurements
locations. Table 3.2 summarizes the latency types and the measurement
locations together with the corresponding collection methods.

3.3.3.3 VM Types and Parameters

In our experiments three types of VMs are being used. Each type
represents a different class of workload with different timing con-
straints. The parameters for the VMs were derived from the IEC 61850
standard, which is described in Section 3.1. Table 3.3 summarizes the
VM types and their parameters including their Worst-Case Execution
Times (WCET) and the request frequencies. The VM types are as follows:
the MMS-VMs – representing the soft or non-real-time workloads, the
GOOSE-VMs – representing services with hard real-time requirements

5 https://sourceware.org/systemtap
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Latency type Measuring point Measuring method

1) Execution time Guest domain Clock cycles (RDTSC instruction)

2) System response time Domain 0 Systemtap (TCP/IP-stack layer 2)

3) Round-trip time Benchmark client POSIX’s clock_gettime() function

Table 3.2: The three different latency types with the corresponding measurement
locations and measuring techniques.

yet with relaxed request frequency, and the SV-VMs –again repre-
senting workloads with hard real-time constraints but also with high
request frequency. Note that in the case of the SV-VMs, the IEC 61850
standard assumes a sending frequency of 250 µs. In our experiments,
however, we assume a window of four SV-values and set the period for
triggering SV-based computation to 1 ms. We do this for the following
reason. When implementing SV-based protection functions it is com-
mon practice to bundle high frequent sensor data into arrays of values.
This is due to the fact that many algorithms require a specific amount
of values in order to be able to successfully determine a significant
change in the physical environment. Sending each and every value
separately does not influence the quality of the algorithm’s decision,
however, it significantly increases the communication load. In the
scalability experiments, a total number of 140 thousand packets has to
be send in less than a minute. In order to facilitate the evaluation, we
bundle four values into one packet.

Before we proceed with the description of the VM parameters,
we wish to briefly address the way the WCET notion is being used
throughout the next sections. Considering the complexity of our archi-
tecture, the use of classical (analytical) approaches to WCET-analysis,
which assume a relatively simple and precise hardware model and
combine it with a static software analysis, is in practice not feasible.
Thus, in the following experiments the notion of WCET is being used
in an empirical sense, that is, for denoting an empirically based approx-
imation of the analytical WCET. The WCET values were determined
through a campaign of thoroughly conducted latency measurement
experiments. For example, for the SV-VM type the measurements
were obtained using an implementation of a real CPES application – a
distance protection function. In turn, the genesis of the WCETs for the
GOOSE and MMS-VMs is of synthetic nature, though the presented
WCET timings were empirically verified. The values for MMS-VMs
are used in the scalability experiments for imposing a variety of CPU
loads on the processor.

Recall (see Section 3.3.2.1) that in our scheduling model we use
the slice parameter to define the amount of CPU time a VM can
be given in a period of time. In our experiments this parameter is
set to the WCET value – while the period parameter is being set to



42 virtualized cps-architecture

VM type Request frequency WCET

SV-VM 1 ms 40 µs

GOOSE-VM 5 ms 375 µs

MMS-VM 50 ms 2.4 - 33.6 ms

Table 3.3: VM types and their parameters.

the request frequency. Unfortunately, such a simple mapping which
applies the WCET values to the slices has proved insufficient. During
long term experiments (106 requests) and in high CPU load situations,
we witnessed rare outliers in our results which violated VM deadlines
(in case of the RM policy the deadline is equal to the period). As
the reason for the seldom outliers we identified the context switch
function inside the hypervisor. During the conduction of our tests,
the measured WCETs for the context switch function amounted to
180 ns in average while the highest value reached 2122 ns. Taking
the used scheduling quantum of 10 µs into account, the worst-case
overhead for the context switching function of 2122 ns translates to a
21% resource loss. Therefore, we decided to calculate the worst-case
context switch latency into the value of the slice parameter. This solved
the outlier issue. However, note that such pessimistic parametrization
assumptions may lead to over dimensioned systems.

3.3.3.4 Results

This section provides results for experiments concerning with the
VMM-scheduling quality, the impact of VMM- and I/O-scheduler
parameter alignment and platform scalability.

scheduling The first series of experiments focuses on analyzing
the interdependency between the VMM-scheduler and network packet
scheduling with respect to system response times. Further, also the
scheduling suitability for latency-sensitive VMs of the CPS-Xen RM
scheduler and the Xen SEDF scheduler is being analyzed.

Figure 3.4 depicts the combined results of three separate experi-
ments in form of six boxplots. We use boxplots, instead of e.g. the
commonly used cumulative distribution function, as we are interested
in each and every obtained response latency – including outliers. In
each of the experiments, ten VMs have been instantiated and executed
concurrently on a single core – this induces a realistic load on the
schedulers. All of the VMs were running an echo server (no workload)
for which reaction latencies have been measured. For each experiment
and each of the VMs the requests were send over a network from
a sensor node with a constant period of 1 ms for a total number of
20,000 packets. The VMs were prioritized with VM1 having the highest
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Figure 3.4: Differences in the response times of time sensitive VMs under a) CPS-Xen RM schedul-
ing with synergized network packet scheduling, b) standard CPS-Xen RM scheduling
and c) standard Xen SEDF scheduling.

priority and VM10 the lowest one. To improve readability, only the
results for each of the two most significant VMs, VM1 and VM10, have
been included in the figure.

The three experiments differ in the way VMs and packets are being
scheduled by the system. The VMs depicted under a) represent a
system running the CPS-Xen RM scheduler with aligned scheduling
priorities of the VIF kernel threads in Domian 0. The second VM pair
b) represents system response times for VMs also scheduled under
the CPS-Xen RM scheduling policy, yet in this case the VIF threads
priorities were left unaligned. Finally, pair c) depicts response times
for VMs that were scheduled with the standard Xen SEDF scheduler.
For the purpose of analysis, a synthetic deadline that is in accordance
with the request period of 1 ms is being assumed.

The comparison of the pairs b) and c) shows that even though the
CPS-Xen RM scheduler performs better than the Xen SEDF scheduler,
which exhibits hundreds of deadline violations, it still misses several
deadlines. The fact that this is also true for the highest prioritized VM1

confirms that optimizing the VMM-scheduler alone is not sufficient. A
comparison of the VM pairs b) and a) reveals the degree of influence
that the alignment of both schedulers (the VMM- and I/O-scheduler)
has on the response latencies. In a) not a single deadline is being
missed – for the total number of 200,000 requests. Further, also the
dispersion of the latency values is significantly lower. The numerical
details for each of the VMs are supplied in Table 3.4.

The obtained results show that our approach of synergizing the
VMM-scheduler with the scheduling of the network packets notably
improves the timing properties of the system and enables the hosting
of latency-sensitive CPS applications. Moreover, the minimized latency
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VM Maximum x σ Minimum

a) VM1 276 µs 37.33 µs 6.49 µs 29 µs

a) VM10 443 µs 51.63 µs 28.22 µs 28 µs

b) VM1 1277 µs 37.77 µs 19.41 µs 28 µs

b) VM10 1505 µs 51.68 µs 34.94 µs 29 µs

c) VM1 1905 µs 482 µs 291 µs 28 µs

c) VM10 1661 µs 493 µs 290 µs 28 µs

Table 3.4: The maximum, arithmetic mean, standard deviation and minimum
values of the latency measurements for the different VMs.

dispersion significantly facilitates the planning of such virtualized
compute and control clusters.

scalability The following series of experiments investigates CPS-
Xen in respect of its scalability characteristics. The first series concerns
timing characteristics of the platform under increasing CPU load and
the second analyzes timing properties with respect to an increasing
number of VM instances.

cpu load Figure 3.5 shows the result of a series of scalability
experiments concerning CPU load. Depicted are the response latencies
of VMs scheduled under the CPS-Xen RM policy and the Xen SEDF
policy. In each of the experiments three VMs – including one GOOSE-
VM, one SV-VM and one MMS-VM – were instantiated and executed
concurrently on a single core. As before, the priorities are distributed
inversely to the lengths of the periods – with SV-VM having the highest
and MMS-VM the lowest priority. The MMS-VM was used solely to
iteratively increase the processor utilization and is therefore not shown
in the results. The CPU load in the experiments ranges from 20% up
to 90%. Each boxplot for each of the load levels represents values
obtained in separate experiments. Note that the indicated load level is
computed based on the WCET parameters of the VMs, meaning, for
a given setup the specified loads represents worst-case load bounds.
While conducting the experiments the actually measured loads were
on average about 15% lower than the specified worst-case bounds.
A deadline equal to the request period has been assumed for these
experiments.

Figures 3.5 a) and b) depict the response latencies under the RM
scheduling policy for the SV-VM1 and GOOSE-VM2. We observe that
the response times for those VMs are situated – irrespectively of the
CPU load – significantly below the defined deadlines (1 and 5 ms) and
are characterized by a relatively small variance. For all load situations,
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(a) SV-VM1 - CPS-Xen RM
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(b) GOOSE-VM2 - CPS-Xen RM
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(c) SV-VM1 - Xen SEDF
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(d) GOOSE-VM2 - Xen SEDF

Figure 3.5: Response times of VMs in relation to CPU load under RM and
SEDF.

the highest prioritized VM (SV-VM1) exhibits a standard deviation of
no more than 2.5 µs and an average response latency of 48 µs. Also the
performance of the GOOSE-VM2 is stable across all load situations.
The standard deviation for the GOOSE-VM2 does not exceed 18 µs
and the VM response time in average amounts to 331 µs. Figure 3.5
c) and d) depict the response latencies for SV-VM1 and GOOSE-VM2

under the SEDF scheduler. The results reveal that the SEDF scheduler
can not handle load situations and starts to miss deadlines even under
a low CPU utilization, starting at a load level of 30%.

vm instances This series of experiments addresses the scalability
potential of CPS-Xen with respect to the number of instantiated VMs.
The first experiment investigates the scale up characteristic of the
platform for the single core case while the second experiment concerns
the multi-core case.
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(b) GOOSE-VMs

Figure 3.6: Response times of six VMs with real-time constraints running on a single core under
the CPS-Xen RM scheduler.

In the first experiment, nine VMs – three of each VM type – are being
instantiated and executed concurrently on a single core. In order to
stress the influence of the scheduler, the VMs are also being prioritized
within each of the classes – with VM1 having the highest and VM3

the lowest priority. Figures 3.6 a) and b) summarize the results for
the SV-VMs and the GOOSE-VMs. As can be observed, in none of
the cases a deadline is ever missed. Further, the highest measured
response delays as well as the average response times correlate with
the results obtained in the CPU load experiments. Solely the standard
deviation values diverge, yet this is to be expected due to the additional
prioritization within the VM classes. The σ values for the SV-VMs and
the GOOSE-VMs, starting with VM1, are: 4.22 µs, 6.08 µs, 11.28 µs and
42 µs, 87 µs, 196 µs, respectively. Note that also all of the non real-time
VMs completed their execution on time.

The second series of experiments aims at assessing whether the
platform maintains its deterministic behavior in situations where load
is being induced on multiple cores. In order to investigate this aspect,
a total number of 36 VMs is being instantiated and concurrently
executed on four separate cores. Each core hosts nine VMs. The sets of
VMs comprise three SV-VMs, three GOOSE-VM and three MMS-VMs.
The priorities of the VMs are set as in the previous experiment. For the
sake of completeness we rerun the experiments for the SEDF scheduler.
Figure 3.7 presents the measured response time values for the SV-VMs
and the GOOSE-VMs under both schedulers and for all four cores. To
improve readability, the results for the non real-time MMS-VMs are
left out.

Figures 3.7 a) and b) show the latencies under the CPS-Xen RM
scheduler. In none of the depicted cases a deadline is being missed.
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(a) SV-VMs under RM
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(b) GOOSE-VMs under RM
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(c) SV-VMs under SEDF
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(d) GOOSE-VMs under SEDF

Figure 3.7: Response times of 24 real-time VMs from a total of 36 VMs running on 4 cores under
RM and SEDF.

Unfortunately, in contrast to the previous experiment, the latencies of
the SV-VMs exhibit some irregularities that are partially inconsistent
with the assumed scheduling model. For example, on core 3 the
highest prioritized VM1 has a greater worst-case delay than the other
two lower prioritized VMs. Another example provides the VM2 which
exhibits a slightly different timing behavior on each of the cores.
Considering the CPS-Xen architecture and the results obtained in the
previous experiments, in all likelihood, the divergences in timings are
to be attributed to the efficiency of the network stack as the pointed
out inconsistencies seem to disappear in the case of the GOOSE-VMs.

Finally, Figures 3.7 c) and d) show that in load situations the Xen
SEDF scheduler in not able to fulfill the timing-constraints of the VMs
and misses each of the deadlines.
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VM Period Workload

VM1 1 ms 300 µs

VM2 3 ms 400 µs

VM3 6 ms 500 µs

VM4 12 ms 600, 1700 and 3400 µs

Table 3.5: VM types and their parameters.

3.3.4 CPS-Xen and RT-Xen on Embedded Hardware

This section rudimentarily compares the CPS-Xen RM scheduler with
the RT-Xen RTDS scheduler. The presented experiments aim at an
empirical evaluation of the schedulability guarantees of the schedulers
in increasing load situations. As both schedulers aspire to be adopted
in embedded systems, the experiments are being conducted on a
Commercially available Off-The-Shelf (COTS) development board called
UP. For a detailed description of the schedulers, please refer to Sections
3.3.1 and 3.3.2.1.

3.3.4.1 Experimental Setup

The UP board is an inexpensive credit card size development board
equipped with a Intel R© AtomTM x5 Z8350 Processors (1.44 GHz),
4GB DDR3L RAM and a 1x Gb Ethernet with a RJ-45 connector. The
experiments are conducted with CPS-Xen and RT-Xen using version
4.10 of the Xen hypervisor. Domain 0 runs on a dedicate core using
one VCPU as well as Ubuntu 16.04.3 LTS with a para-virtualized
kernel 4.10.0-42. During the experiments, all power management as
well as acceleration features of the Atom processor are disabled. The
CPU load generating computations are all being executed on the same
core and embedded in MiniOS guests.

For the purpose of evaluation, we use a modified version of our
UDP-based client-server benchmark (see Section 3.3.3.2) to trigger
computation and measure processing times, defined as time intervals
between the starting and completion of workloads, using the clock
cycle precise measurements technique.

The evaluation comprises three experiments which differ in respect
of CPU loads, specifically it includes scenarios with 55%, 65% and
80% CPU load levels. The experiments are being repeated for both
schedulers and each load level. Table 3.5 describes the used VM types
and their parameters, including the workload triggering period and
the computation demands. These workloads represent the highest
measured execution times for each of the VMs. The values have been
rounded up to the nearest hundred, yet never more then a few mil-
liseconds. In other words, in practice, the load levels are in average a
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Figure 3.8: VM1 workload processing wall clock times for different CPU loads under the CPS-Xen
RM and RT-Xen RTDS schedulers.

few percents lower than assumed. In order to estimate these execution
delays, for every VM at least 104 measurements were conducted. The
computation demands of VM1 to VM3 remain constant across all test.
The workload of VM4 is being adjusted depending on the scenario in
order to increase the CPU load.

The schedulers are being parametrized adequately to the require-
ments of the VMs. The period parameters of the schedulers, used for
CPU time budget replenishment, are set to the corresponding compu-
tation triggering periods and are to be interpreted as deadlines. The
slice parameters – denoting the amount of time that the VCPU will be
allowed to run every period – are set to the workload demands of the
VMs. In case of the RTDS scheduler, the extratime flag is set to enable.
If needed, this binary flag is suppose to allow the scheduler to provide
additional CPU time to VCPUs from unreserved system resources.

The results of the experiments are depicted in form of boxplots in
Figure 3.8. Due to the high amount of experiments, in the following
we only depict the results for VM1, which has the most strict timing
requirements of all VMs. For the full numerical results of all conducted
experiments, please refer to Table a.1 in Apendix a.

Last but not least, before interpreting the results, note that the mea-
sure of dispersion of latencies alone, can not be seen as an adequate
comparison criterion between the two schedulers. The higher vari-
ance values exhibited by the RTDS scheduler are inherent to the EDF
policy, which is a dynamic priority scheduling algorithm. However,
the standard deviation values are of interest for the assessment of the
RM scheduler and are therefore being provided by Table 3.6, which
presents the numerical values for the experiments.
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CPU Scheduler VM Maximum σ #Missed

Load Deadlines

55%
RM VM1 293 µs 13.4 µs 0

RTDS VM1 1135 µs 59.6 µs 3 (0.15%)

65%
RM VM1 295 µs 13.6 µs 0

RTDS VM1 2848 µs 126 µs 174 (0.87%)

80%
RM VM1 295 µs 13.4 µs 0

RTDS VM1 4513 µs 290 µs 814 (4.07%)

Table 3.6: Numerical results of conducted experiments for VM1 under the RM
and RTDS schedulers, including the amount of missed deadlines,
the maxima of measured latencies and standard deviation values.

As can bee seen in Figure 3.8, the RTDS scheduler already starts to
miss deadlines at moderate CPU load conditions of 55%, and with an
increasing load the situation deteriorates further. In case of VM1, the
RTDS scheduler misses 3 deadlines at a load level of 55%, 174 at load
level of 65% and 814 at a load level of 80%. Respectively, this amounts
to 0.15%, 0.87%, and 4.07% of the 2 ∗ 104 recorded periods in each of
the experiments. Unfortunately, this phenomena also affects the other
VMs. For details, please see Appendix a.

In the case of the RM scheduler, irrespective of CPU load and the VM
type, no deadlines are ever missed. Further, as can be seen in Table 3.6,
the RM scheduler performs deterministically. In all load situations, the
maximum execution time for VM1, as well as the standard deviation
of the measured latencies values, are nearly equal.

Two conclusions can be distilled from the results presented in this
section. First, our in previous sections thoroughly evaluated RM sched-
uler also performs well on inexpensive COTS platforms with signif-
icantly scarcer resources then server hardware. Second, the RTDS
scheduler does not live up to the promise of delivering a reliable
scheduler for soft and firm real-time workloads.

3.4 cps-remus for efficient high availability

The second part of this chapter concerns the efficiency of high avail-
ability solutions that employ virtual machine replication. To this end,
Section 3.4 starts with an examination of the state-of-the-art tech-
niques. Next, it evaluates the performance of Remus and discusses its
suitability for the protection of virtualized CPS applications. Further,
this section introduces the self-determined virtual machine replication
model, a novel and efficient approach to high availability that avoids
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the drawbacks of the established methods. Finally, also the evaluation
results for the proposed approach are being presented.

3.4.1 High Availability - State of the Art

This section provides an overview of the existing high availability
approaches using VM replication and the existing optimizations to
VM replication.

At the lowest level highly available systems can be implemented
using redundant hardware components. This approach is robust, yet
very expensive. Therefore, efforts have been made to achieve this goal
in software instead. The first architectures that methodically explored
the idea of software-based fault-tolerance using replication were inves-
tigated in the 1980’s. The Delta-4 project [19, 113, 125] coined many
of the concepts relating to replication schemes and checkpointing,
including event-based as well as periodical approaches. Most of those
concepts can be found in later works concerning VM-based replication.
Our self-determined approach is also partially rooted in the Delta-4
concept of systematic checkpointing.

A pioneer concept of hypervisor-based high availability through
lock-stepped VM replication was proposed by Bressoud and Schneider
[16, 120]. In this concept, the input events from the primary host are
being forwarded to the backup host and deterministically replayed.
Unfortunately, this approach suffers from high performance costs –
especially in multiprocessor environments.

The overhead related to lock-stepping and replaying can be reduced
if replication is conducted through state copying. In such an approach,
instead of deterministically replaying VM inputs, the entire state of a
VM is being captured and transferred to a backup host. The first to
present and implement this idea was Cully et al. [30]. The implementa-
tion is based upon the Xen hypervisor and its feature of live migration
[23]. However, in contrast to the Bressoud and Schneider approach,
Remus is highly demanding in respect of network bandwidth.

There exist approaches that aim at mitigating the network overhead
induced during VM replication by leveraging parallel execution. In
[116] the authors present a hypervisor-based fault tolerant system
that tolerates non-benign random faults and software faults by utiliz-
ing redundant execution of a service and making use of N-version
programming [9].

Another approach relying on parallel execution is COLO [35]. In
COLO a deployed service executes on a primary VM as well as si-
multaneously on a number of backup VMs. Upon service response
the outputs of the primary VM and its replicas are being analyzed.
In the case where responses diverge, a synchronization process is
being triggered before the final response is sent to the clients. If this
is not the case, the response is being sent directly to the requesting
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party. Due to this mechanism, the authors refer to their approach as
coarse-grained VM lock-stepping.

A different technique that tries to combine lock-stepping with state
copying is Kemari [127]. Kemari synchronizes the states of the primary
and backup VMs upon event issuing. Each time the primary VM tries
to read or write to storage or to send a packet, the operation is being
trapped and resumed only after synchronization. The authors claim
that such an approach allows for transparency, yet doesn’t require to
buffer the responses.

Several optimizations to the process of VM replication have been
proposed. In [88] the authors present three different optimization tech-
niques for memory state synchronization: fine-grained dirty region
identification, speculative state transfer, and synchronization traffic
reduction using active slave. In [138, 139] the behavior of memory
accesses among checkpointing epochs is being analyzed, in order
to improve the memory tracking mechanism during checkpoint cap-
turing. Further, a technique for efficient mapping of large memory
regions between VMs is presented. Finally, [99] describes optimiza-
tions concerning with checkpoint sizes and checkpointing latencies in
respect of Remus. The authors utilize data compression mechanism
to reduce checkpoint sizes and leverage paravirtualization features
to reduce latencies. Note that all of the described optimizations can
– or partially have been – adapted for our approach. Our approach
is transparent in this regard, as it does not directly interact with the
way checkpoints are being constructed but focuses on determining the
checkpoint capturing moment.

High-availability via VM replication is a promising technology that
significantly improves service availability. Unfortunately, none of the
presented approaches fully fits the needs in respect of protecting CPS
services. The current HA techniques either utilize a periodic replication
model and transfer state modification over a network to an inactive
backup VM or have to rely on parallel/redundant execution with a
voting mechanism. Concerning the requirements of CPS services both
approaches are partially inadequate or unnecessary inefficient. This
aspect is being further elucidated in the next sections.

3.4.1.1 Shortcomings of Remus

This section discusses the performance of Remus and its shortcoming
with respect to protecting CPS applications. We have chosen to discuss
Remus, as it represents a prominent example of the current state-of-
the-art techniques for high availability via VM replication as well as
due to the fact that we have used Remus for the implementation of
our self-determined replication model, which is being described later
in this chapter. For further details regarding Remus see Section 2.1.5.3
or [30].
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Figure 3.9: Effect of Remus on response times of an echo server. (a) classi-
cally deployed VM (no protection), (b) protected with network
buffering disabled, (c) protected with network buffering enabled.

The following analysis is based on the 4.7 version of Xen and Remus,
the latter is part of the toolset for VM management distributed with
Xen. The analysis focuses on the latency overhead generated by Remus.
The latencies were quantified by the means of the same UDP-based
client-server benchmark that was used to evaluate CPS-Xen (for details
refer to Section 3.3.3). In order to collect data, an echo-server was
embedded in a VM and deployed as a fault-tolerant service, that is,
the VM was being protected by Remus. Remus was set to perform
checkpointing with an interval of 100 ms. This checkpointing period
was equal to the request frequency of the benchmark client. Figure 3.9
summarizes the results of three experiments in form of three boxplots,
each comprising the round-trip times of 10,000 packets acquired on
the client side.

For the purpose of a reference the first experiment (a) measures the
delays of a non-protected echo server. The highest measured latency is
0.25 ms while the mean response time of the server amounts to 0.18 ms.
The second experiment (b) collects data of a protected echo server.
Network buffering is disabled, that is, the primary host does not wait
for the backup to acknowledge the receipts of checkpoints before
sending responses. Here, the mean response value is 2.48 ms and the
highest measured delay reaches 27.06 ms. Finally, the experiment (c)
is being repeated with enabled network buffering. The mean response
latency amounts to 83.14 ms and a highest latency of 198.27 ms can be
observed.
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The results reveal that in its current form Remus induces an unac-
ceptable – with respect to the requirements of most CPS applications
– overhead on the response times of protected services. Some of the
sources for the additional delays are to be attributed to the current
implementation of Remus, which deviates from the approach de-
scribed in the original Remus paper [30]. For instance, in its current
implementation and in contrast to the Remus article, Xen resumes
a checkpointed VM only after all of the dirty pages have already
been transmitted to the backup. Now, if a request is to arrive during
the execution of the function responsible for this transmission (sus-
pend_and_send_dirty() in xc_sr_save.c), the processing of the request
will be delayed. In worst case for the time it takes to capture and send
the current checkpoint and – additionally – by the duration of the
guest suspend and resume processes. However, the significant delays
introduced to service response times by Remus are not to be attributed
to implementation issues alone. We argue that the cause is inherent
to periodic checkpointing and that the presented results motivate a
rethinking of this replication model and its assumptions in respect of
protecting CPS applications.

3.4.2 High Availability Assumptions

In this section, we discuss some of the assumptions made by current
VM replication-based HA solutions [30, 35, 87] and the resulting
checkpointing models. Further, we assess the adequacy of the models
in respect of protecting CPS applications.

While analyzing the current virtualization-based high-availability
approaches, the following three assumptions can be distinguished:

1. Though not restricted to it, the VM replication-based HA solu-
tions assume server hardware and thus a powerful and scalable
infrastructure.

2. Transparency - neither the protected applications nor the OS
should require code modification.

3. External state consistency has to be guaranteed.

How can these assumptions be explained? Their genesis is rooted
in the fact that until recently the scope of application for replication-
based high availability was – in practice – restricted to data-center and
cloud computing environments. Thus, present HA approaches assume
homogeneous hardware and scalable resources, applications that have
to be deployed from unmodified binaries and, finally, workloads such
as databases or web services. Such assumptions favor the use of the
periodic checkpointing model or the redundant execution techniques.

Although data-center and cloud environments still remain the main
area of application for HA systems, in recent years hardware man-
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ufacturers have started to add virtualization support into products
aimed at the embedded domain and thereby significantly increased
the interest in CPS virtualization. The added hardware support facili-
tates the adaptation of HA techniques for the CPS domain. However,
there exist substantial differences both in respect of the assumptions
as well as the constraints encountered in cloud environments and the
CPS domain. Those have to be taken into account while adopting or
designing HA solutions for CPS:

1. Though not restricted to it, the HA solutions for CPS services
have to assume heterogeneous hardware and often significantly
scarcer resources.

2. Transparency is not an issue. Most CPS applications are tailored
for a specific task and infrastructure. For efficiency reasons also
the OS code has to be – at least partially – paravirtualized.

3. Especially in the case of the monitoring and control applications,
external state consistency is not required. Control applications
have to possess the intelligence to cope with missing sensor val-
ues – typically sensors do not implement the TCP protocol and
actuators do not request retransmissions of control commands.

4. Finally, CPS services impose considerably stricter timing con-
straints on HA approaches that the one encountered in cloud
environments.

These constraints reveal the gap between the requirements of CPS
applications and the present HA design space comprising of the pe-
riodic checkpointing model and the redundant execution solutions.
The latter assume a scalable and homogeneous hardware, something
that can not be fully satisfied by the hardware platforms from the
embedded systems domain. Concerning the former aspect, the issue is
twofold. The first problem relates to the significant latency overhead
generated by the periodic checkpointing model. The second issue is
associated with task activation or service requests patterns. Not all
processes or requests are being triggered in an exact and constant
time interval and can therefore be adequately approximated by a
period. There exist phenomena like delays and jitters, burst behav-
iors or sporadic and aperiodic requests patterns [126] common to
the CPS domain. In order to be able to protect heterogeneous CPS
services with the periodic replication model, it has to be configured to
include worst-case scenarios. This in turn enforces a very conservative
parametrization that – once again – generates and adds a considerable
and unreasonable overhead.

In summary, the cost of adopting current HA solutions in their
present form for the CPS domain are unnecessary high. Therefore, we
argue that the current HA design space needs to be extended by an



56 virtualized cps-architecture

adequate replication model that allows for an efficient protection of
emerging CPS applications.

3.4.3 Self-determined Replication

This section introduces the idea of self-determined VM replication,
compares the two models of periodic and self-determined VM replica-
tion by discussing their basic stages of operation as well as describes
the design and implementation details of our approach.

The main idea behind self-determined replication is to enable a
semantic-based determination of the checkpoint capturing moment.
This implies that the control over synchronization has to be transferred
from the virtual machine monitor (VMM) toolstack to the service en-
capsulated in the VM. It also means that the transparency property
has to be sacrificed as the service has to be aware of the fact that it is
being virtualized in order to trigger synchronization. We argue that
waiving transparency is an acceptable price as in most cases the trans-
parency condition is anyway inadequate in respect of CPS services
(for discussion please refer to Section 3.4.2). In practice, sacrificing
transparency offers numerous possibilities in respect of potential syn-
chronization points. Using self-determined replication a CPS service
developer could trigger checkpointing, for example, at the following
points:

• depending on input or output semantic

• after executing a specific code path

• after an arbitrary number of iterations

The simple idea of giving control over synchronization to the service
not only provides the developer with these options but it also has
important consequences in respect of service response latencies. In
order to facilitate the understanding of the origin of these delays, in
the following, we provide a model for the basic stage operations for
both of the synchronization approaches.

3.4.3.1 Stages of Operation

Figure 3.10 depicts the basic stages of operation during VM replication
for both the self-determined and the periodic approach as well as each
of the network buffering options.

In the case where network buffering is enabled, the main difference
between the two approaches – in respect of the way the response
latencies are composed – is to be attributed to the idle phase of the
periodic technique. Here, depending on the timing, the idle phase, be-
tween issuing a response (2) and a checkpoint (3), can be in the worst
case equal to the period of the checkpointing frequency. However,
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Figure 3.10: Basic stages of operation during checkpointing.

suspending service execution at an arbitrary moment in time may also
lead to an additional delay of two checkpoints as well as the transmis-
sion and synchronization (4) phases. In the case of self-determined
checkpointing, there is no idle phase between issuing a response (2)
and a checkpoint (3) as the VM chooses to synchronize its state only
after completing its task. Therefore, in the worst case, the latency is
bounded by the execution time of the service and the delay of the
checkpoint as well as the transmission and synchronization phases (4).

In the case where network buffering is disabled, the difference in
latency composition between the two approaches is defined by the
checkpoint and transmission delays. In terms of the periodic approach,
if a request (2) is to arrive right after a checkpointing process has been
triggered (1) then the client will have to wait for the duration of the
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Figure 3.11: Overview of CPS-Remus architecture for self-determined VM replication.

checkpointing, transmission and execution stages. In the case of the
self-determining approach, the worst case response latency is only
bounded by the execution time of the protected service.

3.4.3.2 Design and Implementation

We have based the implementation of the self-determined replication
model on Remus [30] and our CPS-Xen project [27, 69], which extends
Xen [10] by implementing a suite of established real-time schedulers
(see Section 3.3). The solution was named CPS-Remus. CPS-Remus
extends the original Remus functionality by enabling the deployment
of fault-tolerant CPS services using the self-determined checkpointing
approach. In our implementation, all of the original features and
options provided by Remus remain available and can be used in
combination with our approach.

In the following description, we focus on novel aspects of the archi-
tecture that directly relate to self-determined replication. For details
regarding the original Remus architecture and its functionality, please
refer to Section 2.1.5.3 or [30, 99].

Figure 3.11 depicts the high-level architecture of CPS-Remus. The
heart of the architecture is formed by the Remus replication engine.
It has been extended to introduce an additional communication path
between the protected VM and the replication mechanism. For this
purpose, XenStore is being utilized. XenStore is a data structure that
provides a filesystem-like hierarchy and can be used to exchange infor-
mation between Xen domains. Xen tools can utilize this infrastructure
in order to configure and control virtual devices. We, in turn, utilize it
to signalize checkpointing requests of the protected VMs.

self-determined checkpointing In order to trigger check-
pointing, the protected VM has to change the value of a key in Xen-
Store. First, however, it has to create a specific path "data/ha", right
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below its domain node, in the XenStore hierarchy. Depending on the
execution context, this can be achieved either by utilizing libxenstore, a
library that exports XenStore functions to userspace, or from kernel
space by using XenBus – an in-kernel API provided for guests to
interact with the database. This way, both the services deployed as
unikernels as well as the one instantiated inside a general purpose OS,
like Linux, can easily access the required XenStore infrastructure. Now,
invoking CPS-Remus with the parameter "-E", using Xen’s standard
toolstack xl, initializes the self-determined checkpointing process in
Domain 0. First, this checks whether the appropriate path exists in
the XenStore database. If not, an error message is displayed, otherwise,
CPS-Remus registers a watch on the above mentioned path together
with a callback function. Watches are a mechanism that allows to react
to changes in the database. When a given path is being "watched over"
then any change, at that point in hierarchy, will result in invoking a
corresponding callback function. In the discussed case, this function
triggers the checkpointing process.

heartbeat and failover CPS-Remus also reworks the heartbeat
mechanism of Remus. This was necessary due to the fact that in the
current implementation Remus utilizes the timeout property of the
secure shell (SSH) connection to mimic the heartbeat mechanism. In
order to change the heartbeat frequency, the SSH server has to be
reconfigured and restarted. This renders the deployment of services
with different timing requirements impractical.

CPS-Remus implements an active heartbeat mechanism. On startup,
the user is supposed to supply a heartbeat frequency by setting the
"-t" option with an appropriate value. This allows for a fine-grained
and application-specific parametrization of the heartbeat and therefore
affects the reaction time of the failover procedure. With CPS-Remus,
two processes are being instantiated: a sender process at the primary
server side and a receiver process on the backup host. After the instan-
tiation, the sender and receiver start to exchange – at the preselected
frequency – a heartbeat signal. Failing to receive this signal, on the
backup side and within the specified time interval, triggers the failover
procedure. Technically this is being realized by identifying the PID
of the underlying migration process – utilized by Remus – through
a named pipe and issuing a UNIX signal to an appropriate handler.
The handler is responsible for the triggering of the original Remus
failover procedure. Finally, in order to provide security, our heartbeat
implementation also relies on the SSH technology.

3.4.4 Evaluation

In this section we examine the performance of CPS-Remus. The first
part describes the experimental settings. The second part addresses
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the efficiency of the self-determined VM replication by quantifying
its latency overhead and comparing it with the one generated by
the periodic approach. Next, after identifying and analyzing addi-
tional sources of latency overhead during checkpointing, we cover
performance improvements gained by leveraging unikernels for the
construction of fault-tolerant CPS services. Finally, we analyze the
service recovery latencies and evaluate the real-world applicability of
our approach.

3.4.4.1 Experimental Setup

As before, for the purpose of evaluation, we use the UDP-based client-
server benchmark described in Section 3.3.3.2. In each of the exper-
iments, we deploy the server as a protected service and generate
requests on clients instantiated on separate computers. We use two dif-
ferent communication interfaces: one for sending requests and another
for the VM management traffic (heartbeats and checkpoint transmis-
sions). On computers generating requests, we record the round-trip
times for every single request/response pair. Again, the results of the
experiments are being presented in form of boxplots as in the case of
protecting time sensitive services we are interested in each and every
obtained response latency – including outliers.

We use two different OS’s for deploying our protected services. To
evaluate the efficiency of self-determined checkpointing and compare
its latency overhead with the one generated by the periodic replica-
tion, we use the minimalistic openSuse Leap 42.1 Linux distribution
which is tailored for the purpose of virtual appliances. The provided
OS image ran the kernel version 4.1.36. In order to quantify the im-
provement achieved by leveraging unikernels for the deployment of
CPS services, we use MiniOS. Unfortunately, MiniOS innately does
not support a VM suspend/resume mechanism that is necessary for
para-virtualized OS’s in order to be protected by Remus. In fact, none
of the unikernels that we have considered did in practice. Unlike VMs
using hardware virtualization (e.g. HVM), where device states are
being secured during suspension using the QEMU emulator, in case of
para-virtualized VMs the OS has to take care of this operation by itself.
Otherwise, it won’t survive the process of checkpointing. Therefore,
based partially on the sources of Mirage OS [91], we extended MiniOS
to support this functionality. The full source code is available on our
GitHub project site 6.

The experiments were conducted on two Dell PowerEdge R620 ma-
chines consisting each of two 8-core Intel Xeon E5-2650v2 processors
running at a constant speed of 2.6 GHz and two integrated Intel I350
1Gbit Ethernet network cards. All power management features as well
as Turbo Mode were disabled. Domain 0 ran on a 64-Bit version of

6 https://github.com/cpsxen/cps-xen
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Figure 3.12: Response times of a protected echo server using the periodic and self-determined
replication approach with both network buffering disabled a) and enabled b).

Ubuntu 14 Server with a para-virtualized kernel 3.13 on a dedicated
core. As the VMM, we used CPS-Xen based upon Xen version 4.7.
All workloads embedded into openSuse Leap were executed with
real-time priorities (set through the POSIX interface chrt command),
in order to minimize the influence of background processes on the
benchmark. Also the guests corresponding kernel threads (VIFs) in
Domain 0, dedicated for packet processing, were set to run under
real-time priorities.

3.4.4.2 Results

Our first experiments measure the latency overhead of the periodic
and self-determined checkpointing approach. In the case of periodic
checkpointing, Remus was configured to perform synchronization
with an interval of 100 ms, equal to the clients requests frequency.
For the self-determined approach, due to the event-based character
of this method, the checkpoint triggering frequency also equals the
request frequency which additionally facilitates the comparison. In the
subsequent experiments, each of the presented latency distributions
was generated from 10,000 observations.

Figure 3.12 depicts response delays of the protected benchmark
server for both the periodic and the self-determined approach. The
service was configured to serve as an echo server with no workload
and without memory dirtying. The experiments were conducted twice,
once with disabled and once with enabled network buffering.

Protecting the server with disabled network buffering, in case of
the periodic approach, yields a mean response latency of 2.48 ms,
a standard deviation of 5.24 ms and a worst case delay of 27.06 ms.
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Network buffering disabled Network buffering enabled

Stat. values Periodic Self-determined Periodic Self-determined

Max. 27.06 ms 0.46 ms 198.27 ms 34.23 ms

x 2.48 ms 0.36 ms 83.14 ms 23.11 ms

σ 5.24 ms 0.02 ms 35.18 ms 0.69 ms

Table 3.7: The maximum, arithmetic mean and standard deviation values
for latency overheads generated by the different VM replication
approaches.

In the case of the self-determining approach, the values are, respec-
tively, 0.36 ms, 0.02 ms and 0.46 ms. The contrasting results are to be
attributed to the fact that in the case of periodic checkpointing, Remus
resumes the service only after all of its dirty pages have been transmit-
ted to the backup. In the instance of the self-determined approach, as
the protected VM is not being arbitrary suspended by the VMM, this
functionality is being triggered by the VM itself and at a more conve-
nient time (for operation details see Section 3.4.3.1 Stages of Operation).
This reduces the latency overhead significantly. A comparison of the
worst case delays of both approaches reveals a difference in latency by
a factor of 58.

Next, we repeated our experiment, but this time with enabled net-
work buffering (b). In case of the periodic approach, a worst case
latency of 198.27 ms was observed. From the collected data, we com-
puted a mean latency of 83.14 ms and a standard deviation of 35.18 ms.
In turn, the self-determined version delivered a worst case delay of
34.23 ms, a mean latency of 23.11 ms and a standard deviation of only
0.69 ms. This discrepancy in the results is – again – caused by the
fact that synchronization is being enforced on the service by the peri-
odic approach at a arbitrary moment in time. This leads to additional
latencies composed of the checkpointing period and delays of the
replication stages (compare Section 3.4.3.1 Stages of Operation). In the
worst case, the latency between these two approaches varies by a factor
of 5.7. The numerical details for each of the experiments depicted in
Figure 3.12 are summarized in Table 3.7.

The analysis of the different response delays clearly shows that
periodic checkpointing induces – irrespective of the network buffering
option – a significant latency overhead when compared with the
self-determining approach. Still, some of the higher latencies cannot
be fully explained based only on the model of checkpointing stage
operations presented in Section 3.4.3.1. Therefore, in the following we
analyze the source of these latencies in more detail.
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Figure 3.13: Amount of dirty pages identified during replication of idle
guests for both Leap and MiniOS.

checkpoint function delays For this experiment we aug-
mented the Xen libraries involved into checkpointing to provide tim-
ing data. Especially two latencies were of interest to us: the delay
for retrieving modified pages (dirty pages) and the time for which a
protected domain remains suspended. Table 3.8 shows the collected
data.

Delay Retrieval Suspension

Max. 222 µs 116.168 ms

x 122 µs 20.194 ms

Min. 112 µs 17.707 ms

Table 3.8: Delays associated with checkpointing functions

The results reveal an anomaly in form of a worst case suspension
delay that is significantly larger than any other of the 10,000 logged
delays. As it seems to correlate with the worst case delay of the dirty
page retrieval function, in the next experiment, we analyze guests
memory usage.

idle guests memory overhead In order to identify and analyze
the source of the worst case delay during the dirty page retrieval
function, we evaluate the memory overhead generated by protected
guests during replication and compare the results. To this end, in the
subsequent experiment, we instantiate idle guests and identify for
each OS the amount of modified pages per checkpoint iteration. We
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expect the non-service related activities in Leap to be responsible for
a significant part of the measured delays. Figure 3.13 presents the
collected data from 10,000 iterations for both Leap and MiniOS.

The obtained results confirm our assumption. On average, an idle
Leap guest modifies 515 pages per checkpoint iteration. In the same
time interval, MiniOS dirties 21 pages on average. Mapping these
pages to memory size, on our x86 architecture, yields an average
checkpoint size of 2.1 MB for Leap and 0.08 MB in the case of MiniOS.
Based on the utilized 1 Gigabit Ethernet interface, the computed
theoretical network transmission delays are approximately 16.8 ms for
Leap and 0.68 ms for MiniOS, respectively. The difference equals a
factor of 24.

Further, the results also show an issue with memory usage that
explains the occasional outliers in the measured delays of the check-
poinitng functions and thus the response timings. During this experi-
ment, in seldom cases (approximately one per 3,000 checkpoints), an
idle Leap guest modifies up to 2000 pages and in worst case even as
much as 2586 pages. This gives a checkpoint size of 10.59 MB and takes,
based on our network property assumptions, 84.73 ms to transmit. In
the case of MiniOS, a worst case of 45 modified pages was recorded.
This translates to a checkpoint size of 0.18 MB and a transmission
delay of 1.47 ms.

Two conclusions can be drawn from this experiment. First, there
is a substantial difference in memory usage between the two idle
guests – on average by 2670% and, when comparing the worst cases,
even as high as 5883%. Second, Leap generates non-deterministic
page modification spikes approximately five times greater than in
average, whereas MiniOS approximately by a factor of two. Moreover,
comparing the complexity of the OS’s and their lines of codes, we
expect any further optimization – in this respect – to be easier to
accomplish with MiniOS than Leap.

The presented results clearly motivate the deployment of protected
CPS services as unikernels. Therefore, the next section evaluates this
approach in more detail.

latencies of unikernel-based cps services The following
experiments evaluate the effect of leveraging unikernels for the con-
struction of protected CPS services in respect of their timing properties
and compare the results with the standard approach. To this end, we
repeat the latency experiments with services deployed as unikernels
and contrast them with the previously obtained results.

Figure 3.14 depicts the latency distributions of the differently (peri-
odic and self-determined) protected echo servers, both with disabled
(1) and enabled (2) network buffering. The response times with dis-
abled network buffering (1) under periodic checkpointing (a) for the
server deployed under Leap are: 27.60 ms in worst case, 2.48 in average
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Figure 3.14: Effect of classical and unikernel-based CPS service deployment on latency. a) response
times under periodic checkpointing and b) response times under self-determined
checkpointing. Both for network buffering disabled (1) and enabled (2).

and the computed standard deviation is 5.24 ms. The results obtained
with MiniOS are respectively: 5.09 ms, 0.28 ms and 0.35 ms. The val-
ues measured from the server under self-determined checkpointing
b) when deployed with Leap are: in worst case 0.46 ms, in average
0.36 ms and 0.029 ms for standard deviation. In the case of MiniOS
0.24 ms, 0.21 ms and 0.021 ms, respectively.

The obtained results confirm our previous findings. In the case of
periodic checkpointing, due to less memory overhead generated by
MiniOS, the protected unikernel provides significantly better response
timings. Moreover, the experiment with self-determined replication re-
veals another downside of encapsulating services in a general purpose
OS’s. Despite the minimal computational workload of the echo server
and its real-time prioritization Leaps non-service related background
activities still interfere with its execution and induce additional delays.
A comparison between Leap and MiniOS of the worst case response
latencies shows a difference of 191%.

In the case with network buffering enabled (2), the collected re-
sponse times for the periodic checkpointing (a) under Leap are 198.27
ms in the worst case and amount to 83.14 ms in average, compared
to a worst case of 108.17 ms and an average of 56.31 ms in the case
of MiniOS. Once again, the results validate and comply with the
checkpointing model discussed in Section 3.4.3.1 as well as with the
previous findings with respect to the overhead generated by Leap.
While the worst case latency exhibited by MiniOS is to be explained
by the 100 ms period and the delay of the transmit and synchroniza-
tion stage, the additional latency of the service encapsulated in Leap
is to be accounted to the previously measured and discussed non-
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deterministic memory usage and the interfering effect of the execution
of the non-service related threads.

Finally, in the last experiment conducted under self-determined
replication, in the case of Leap, a worst case delay of 34.23 ms was
measured and an average response time of 23.11 ms was computed.
For MiniOS, we obtained a worst case latency of 10.30 ms and com-
puted a mean response value of 4.36 ms. The results show that also in
the case where network buffering is enabled, a significant performance
improvement can be achieved by utilizing unikernels. And this both
with respect to the worst case delay as well as the deterministic system
behavior. Note than the computed latency dispersion of the service
encapsulated in MiniOS exhibits a standard deviation of only 230 µs.

3.4.5 Real-world Applicability and Service Recovery Latencies

One of the areas where virtualization is gaining significant inter-
est is the automotive domain. In this domain, the system software
is moving towards an integrated and service-oriented architecture.
Therefore, in order to test the real-world applicability of our approach,
we implemented the AUTOSAR protocol Scalable service-Oriented Mid-
dlewarE over IP (SOME/IP) [7, 8] and integrated it as a library into our
unikernel. SOME/IP is an automotive and embedded communication
protocol which supports – among others – remote procedure calls,
event notifications and service discovery. In the following experiments,
we instantiate (on separate physical hosts) one protected SOME/IP
server-service and three unprotected SOME/IP client-services. The
server-service represents an ECU offering a service instance that pro-
vides sensor values which are being periodically refreshed with a
frequency of 20 ms. This is also the frequency at which checkpointing
is being conducted. The heartbeat frequency is set to the half of the
sending frequency, which is 10 ms. All services are being deployed on
dedicated cores as unikernels and each is granted 16 MB of memory.
In this scenario, the protection focus is on the server-service as it holds
the subscriptions for the offered services. After a successful service-
discovery procedure, which involves the announcement, detecting
and finding of services, the clients subscribe to the server-service for
notifications. In the following, we analyze the CPU overhead and the
checkpoint sizes during replication as well as the server-service recov-
ery times in the face of a primary host failure. Table 3.9 summarizes
the replication costs. The results are the same for both replication
approaches.

The CPU overhead was measured in Domain 0, which was running
on a single core and where the replication engine threads are being
executed. The measured value is adjusted for the CPU costs of the
server-service, yet, it still comprises the logging costs. During the
10,000 measured checkpoints, the checkpoint sizes varied between
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Stat. CPU Checkpoint Checkpoint

values overhead size in pages size in kB

x 24% 28.19 115.4

Max. - 49 200.7

Table 3.9: CPU overhead induced by server-service replication and check-
point sizes.

28 and 49 pages and amounts to 28.10 pages in average. Based on
the utilized 1 Gigabit Ethernet interface, these values translate to a
theoretical network transmission delay of 0.92 ms in the average case
and 1.6 ms in the worst case.

Net. buff. off Net. buff. on

Client Periodic Self-det. Periodic Self-det.

1 38 ms 34 ms 40 ms 39 ms

2 38 ms 33 ms 40 ms 39 ms

3 38 ms 34 ms 40 ms 39 ms

Table 3.10: Server-service recovery delays from the client-services point of
view in the presence of a primary host failure.

The next table, Table 3.10, depicts the server-service recovery times
from the point of view of the clients. The latencies represent the delta
between the point in time when the last packet was received from the
primary host and the first one received from the backup server after
failover. Note that during normal operation these delays amount to
20 ms, as this is the frequency at which the server notifies the clients
due to the sensor values update. Therefore, from the point of view of
the clients, the actual additional delay, induced by the primary host
failure and the service recovery, ranges from 14 to 20 ms – depending
on the method and settings. While network buffering was enabled all
packets arrived in the correct order. With network buffering disabled,
one packet was resend and was therefore duplicated from the point of
view of the clients. The fact that after the failure of the primary host
all clients continued to receive packets shows that the whole state of
the server-service, including active network connections, sensor states
and the subscriber list, was correctly preserved.

Finally, please note that in order to provide a comparable and there-
fore fair evaluation environment of the two replication methods, we
have chosen a setting where our approach mimics the periodic repli-
cation model. Recall that the server-service is determining its sensor
values in a strictly periodical fashion. In an additional experiment,
where the sensor values were refreshed based on a sporadic activation
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pattern, this is randomly determined (using uniform distribution) over
an interval of 20 - 100 ms, the CPU overhead amounted only to 11% –
compared to the 24% while using the periodic replication approach.
Consequently, an analogue improvement of factor 2 was also observed
for the network utilization.

In summary, we argue that in respect of real-world applicability the
provided results are promising and our method is only a few steps
away from use in a production environment.

3.5 chapter summary

In this chapter we introduced the reader to the technological issues
related to the architectural foundations of the virtualized execution
environment Xen with respect to the deployment of fault-tolerant CPS
applications. We identified and discussed the shortcomings of Xen
and state-of-the-art high availability approaches, in particular Remus,
and proposed solutions that address those deficiencies.

The first part of the chapter concerns with the scheduling models
and characteristics of Xen and CPS-Xen. In this part we thoroughly
evaluated the properties of the default Xen SEDF scheduler as well as
the CPS-Xen RM scheduler and assessed their suitability for schedul-
ing latency-sensitive CPS applications. The suitability of the schedulers
was being validated by using timing constraints – encountered in real-
life applications – that were derived from the domain of cyber-physical
energy systems. The results of the conducted series of experiments
shed light on several aspects of the analyzed architecture. First, the
only scheduler of Xen 4.1.4 that aims at the fulfillment of timing con-
straints fails at this task even at low CPU utilization levels. Secondly,
and more important, our studies of the CPS-Xen RM scheduler re-
vealed that optimizing the VMM scheduler alone is not sufficient. It
turns out that in the standard Xen architecture I/O scheduling may
introduce priority inversion into the system, in particular, occasionally
handling network packet of lower prioritized VMs before packets of
higher prioritized VMs have been processed. The proposed solution
of synergyzing the work of both schedulers by aligning the priorities
of the VMM scheduler and the I/O scheduler significantly improves
the response times of the virtualized CPS applications as well as mini-
mizes latency dispersion. The latter translates to a more deterministic
system behavior and therefore facilitates the planning of virtualized
execution environments for CPS. Finally, we compared our CPS-Xen
RM scheduler with the RT-Xen RTDS scheduler on an inexpensive
COTS development board. The results show that in contrast to the
RTDS scheduler, our CPS-Xen RM scheduler performs well and – even
in high load situations – never misses a deadline.

The second part of this chapter concerns with the efficiency of high
availability solutions that employ virtual machine replication. In this
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part we analyzed the state-of-the-art techniques and discussed their
suitability for the construction of fault-tolerance CPS applications. To
this end, we preliminarily evaluated Remus a prominent HA solu-
tion that employs the periodic checkpointing model. The preliminary
results revealed substantial efficiency deficiencies which – despite
some implementation issues – mainly result form the underlying and
inadequate – with respect to the CPS domain – assumptions of the
periodic replication model. Therefore, as the next step we introduced
the self-determined replication model, which is tailored for the re-
quirements encountered in the CPS domain. Next, by incorporating
the unikernel-based approach for the deployment of CPS applications
and combining it with the proposed novel replication model, in a
series of experiments, we showed that our combined concept fulfills
the timing constraints encountered in the CPS domain – and this in a
highly efficient manner. Finally, the results of the real-world applica-
tion evaluation are promising and demonstrate the feasibility of our
approach in production environments.

In summary, this chapter describes our contributions to the techno-
logical foundations of virtual execution environments for CPS.





4
P L A N N I N G V I RT UA L I Z E D C P S

Despite the growing popularity of virtualization in the embedded
system domain, there is little literature on how to integrate a CPS into
one functional whole on a homogeneous platform by means of this
technology. Instead, till recently, research has put the most emphasis
on the topics of hardware utilization, fault-tolerance and security. The
possibility of integrating and consolidating systems – one of the most
important features of virtualization technology and one of the main
reasons for its popularity – remains an open research topic in the
embedded systems community. This chapter aims at reducing that
gap by presenting a methodology for the integration of virtualized
CPS. More specifically, the proposed methodology addresses the issue
of planing safe and efficient virtualized CPS compute and control
clusters which host CPS applications embedded in VMs. In contrast to
typical resource allocation solutions from other domains that employ
virtualization (e.g. cloud computing), our solution not only optimally
dimensions the compute and control clusters, but also provides strict
guarantees regarding the timing predictability of the integrated CPS.
Furthermore, it facilitates the modeling of such systems, making it
more accessible to system designers. The findings presented in the
following sections are based on [63].

The first section of this chapter discusses the challenges to the
approach and the related work. Next, an overview of the methodology
is being provided. It is being followed by an detailed description of the
used models and the employed techniques. The fourth section presents
the evaluation results and is being succeeded by a discussion which
shows how our solution can help in answering practical questions that
a system designer or administrator of a virtualized CPS cluster could
encounter. Finally, the chapter concludes with a summary.

4.1 challenges

The integration of CPS by means of virtualization is a complex and
challenging undertaking. In order to guarantee a safe and efficient
outcome, numerous requirements have to be fulfilled. The planning of
virtualized CPS compute and control clusters has to take the following
aspects into account:

• CPS are mostly real-time systems. This implies that computa-
tional delays of their critical functions are as important as their
functional correctness. The violation of a real-time property of a
critical task can lead to damage or even a catastrophe. In order

71
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to avoid such problems, guarantees regarding timing properties
have to be provided.

• Due to the distributed character of CPS, a local – single core or
host – timing analysis is not sufficient. A global interference anal-
ysis of the system components is required and therefore metrics
like end-to-end latencies have to be obtained. This implies that
the analysis also has to take communication delays as well as
data dependency into account.

• CPS control or protection functions have to be characterized
by high dependability and availability. Therefore, the analysis
should allow to incorporation VM migration into its model. This
is due to at least three reasons: Migration forms the technological
foundation for high availability solutions, is of advantage when
resolving maintenance issues and even becomes a necessity,
when deploying additional workload to an already running
system that is subject to certain quality-of-service conditions,
like minimal service downtimes or response times.

• CPS vary significantly in their size. Therefore, the planning
process should remain efficient and scale with the increasing
size of a CPS.

• To obtain efficiency, the planning and integration process has
to allow for the optimization of several non-functional require-
ments, such as latencies, VM migration overhead or the amount
of needed hardware.

Considering the above listed requirements with respect to integrat-
ing CPS by the means of virtualization, our research goal can be
expressed by the following question: How to find a suitable mapping
between the VMs encapsulating the CPS applications and an appro-
priately dimensioned hardware as well as – at the same time – fulfill
the strict timing requirements of CPS?

Even though this question has not been addressed by literature
directly, there exist two research areas where related problems are
being discussed and are of importance for our work.

The first related issue is the application placement problem which
is being discussed in the area of embedded systems and considered as
one of the most urgent issues [96]. The importance of this topic results
from the technologically motivated shift of chip manufactures from
improving single-core processors towards designing and constructing
many- and multiple-cores processors. As a consequence, plenty of
methodologies have been proposed to tackle this problem. They aim
at finding an efficient mapping by optimizing metrics like execution
times, energy consumption, throughput or memory usage. For solving
the mapping problem most of them adopt one or more of the well
established search approaches, among them: Genetic Algorithms [21,
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24, 55], Simulated Annealing [105, 140] or Integer Linear Programming
(ILP) [3, 11, 140]. For a more extensive survey see [122].

Cloud computing, especially the aspect of efficient allocation of
cloud infrastructure resources for VMs, constitutes the second rele-
vant area. Until recently, most works from this domain focused on
allocating resources in Infrastructure as a Service (IaaS) clouds [70].
Since lately, concepts like SDN and Network Function Virtualization
(NFV) extended the problems definition by incorporating the require-
ments for network service deployment in cloud infrastructures [56, 89].
The efficient deployment of flexible and scalable softwarized network
functions is considered to be an enabler for future cloud networking
solutions including carried clouds based upon the fifth generation
(5G) of mobile networks [101, 137].

Despite strong structural similarities with our problem, all of these
approaches fail at fulfilling our needs. The reason is twofold. Firstly,
none of the approaches provides actual guarantees regarding the re-
sponse times of the deployed functions, tasks, VMs or services. And
although some of them include the minimization of latencies into their
solutions, the optimization or minimization of performance metrics
does not automatically translate into providing strict guarantees re-
garding these quantities. Secondly, there is the modeling issue. Most
of the approaches – especially from the cloud computing domain –
operate on a higher abstraction level than the one that is required in
order to adequately model our problem (e.g. CPU scheduling is not be-
ing modeled). Therefore, they are not suitable for modeling real-time
or cyber-physical systems. On the other hand, the few approaches that
potentially or explicitly enable the modeling of time-critical systems,
when applied to our constraints and objectives, render the problem –
due to its complexity – practically intractable.

In the context of our studies, an interesting work is provided by
Thiele et al. in [130]. The authors propose a framework called Dis-
tributed Operation Layer (DOL) for alleviating early design stage
system performance analysis and optimizing task mapping by a multi-
objective algorithm. Unfortunately, this approach could not be adopted
due to the fact that for performance analysis DOL embeds real-time
calculus [129] which does not handle well the modeling of state-based
systems. As our problem requires to differentiate system states (e.g.
event-based high availability), we were unable to adequately model
our architecture with DOL.

4.2 concept

In literature, computational problems displaying requirements and
constraints similar to those that have to be fulfilled while planning
efficient virtualized CPS, are being referred to as Multiobjective Opti-
mization Problems (MOP) [25, 106]. However, in our case, the application
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of methods dedicated for solving these kind of problems is being
complicated by the fact that the criteria for providing guarantees re-
garding the timeliness of the planned system cannot be represented
as a simple function. In order to determine a feasible solution, an
exhaustive system performance analysis of each postulated VM to
hardware mapping has to be conducted. To solve these challenges, we
propose an approach that combines multiobjective optimization with
formal system performance analysis. In particular, we use Evolutionary
Algorithms (EA) to tackle the problem of exponential search spaces and
adopt classical scheduling theory formulas in order to analyze the
timing properties of the candidates in question and thereby to asses
their feasibility. The contributions of the following sections can be
summarized as follows:

• We propose a holistic approach for the planning and integration
of virtualized CPS.

• We describe the methodology behind the approach, define the
used methods, the corresponding models, as well as the assumed
system architecture.

• We combine EAs with algorithms considered in classical schedul-
ing theory. This allows not only for an efficient search of the
solution space but also for a detailed modeling of the problem –
including CPU-scheduling – which in turn enables to provide
guarantees regarding the timing predictability of the system
and, at the same time, to optimize additional non-functional
requirements.

• Finally, our approach also provides answers to numerous prac-
tical questions that arise when integrating or managing a CPS:
How to fulfill the strict requirements without an overdimension-
ing or overprovisioning of the system? Can additional functions
be safely deployed in an already running system? Or, how to
efficiently plan maintenance?

4.3 methodology, architecture , models and techniques

An overview of our entire approach is given in Figure 4.1. From a
high-level perspective the core of our approach comprises two meth-
ods: an evolutionary algorithm and a system performance analysis
technique. These methods are combined in order to compute an effi-
cient mapping of VMs to a distributed execution platform, provide
guarantees regarding the timing predictability of the system and – at
the same time – enable the optimization of additional non-functional
requirements. The process starts with a specification of the CPS. This
input is being read and transformed into parameters for the EA. Every
time the EA computes a new allocation it is being transformed into
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Figure 4.1: Approach Overview

a system model that serves as an input for the performance analysis.
After the evaluation of the candidate in question, the analysis out-
put is being used to update the EA. This process terminates when
pre-defined conditions are satisfied. The result is a placement for the
VMs.

In order to facilitate the evaluation of our EA and to provide a
holistic modeling view on the problem, we have extended our frame-
work with ILP. The EA approach faces the following problem: Even
though the solutions found by our EA fulfill the a priori defined
constraints and the strict timing requirements of the applications, the
approach can not make any statements regarding the quality of the
solutions. In particular, this means that for a given request it is unable
to quantify the distance between the results of the EA and an optimal
solution. In turn, ILP equips us with the means for computing an
optimal placement, yet the approach has to struggle with scalability
issues. Therefore, a complementary analysis including both the ILP
and EA approach is only feasible for relatively small instances of our
placement problem. For most real life tasks we have to depend on the
EA approach. Nevertheless, the ILP results can be used as a metric to
derive statistical insight regarding both the quality of the EA as well
as the impact of the adjustments done to the EA operators.

4.3.1 Architecture and Scheduling Model

The starting point for our approach forms the virtualized execution
platform architecture described in Chapter 3 and depicted in Figure
3.2. The execution platform is able to host multiple time sensitive
applications, encapsulated in VMs, and comprises two communication
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interfaces, one for the virtualization management traffic and another
for the communication between the physical part of the CPS (sensors
and actuators) and the servers.

As described in Section 3.3.2.1, platform virtualization inherently
generates a two- (or n, in case of nested virtualization) level schedul-
ing hierarchy. On the first level, the hypervisor schedules its VMs,
assigning to each the designated share of resources. The second layer
is constituted of the VMs’ schedulers, which in turn schedule their
own tasks.

We avoid this complexity by employing unikernels (see Section
2.1.6). This allows us to flatten the scheduling hierarchy. We embed
application threads into VMs and instantiate as many dedicated VMs
as needed for the integration of the CPS. From this perspective, missing
a deadline of a thread executing within a VM is equivalent to missing
a deadline by the hypervisor.

Regarding the scheduling policies, in CPS most of the applications
strictly depend on periodic sensor data. Scheduling policies that per-
form well under such conditions are rate- and deadline monotonic
algorithms. These are dynamic preemptive scheduling algorithms
based on static priorities where the highest priority is assigned to
the task with the shortest period or, respectively, to the one with the
shortest deadline. Therefore, we have incorporated these algorithms
into our models.

4.3.2 CPS-Model

In order to compute a placement for the VMs a model is required
which unifies information about several aspects of the CPS. This
includes detailed information about the applications encapsulated
in the VMs, the underlying execution platform (hardware and the
scheduling policies), the communication infrastructure as well as the
interactions with the physical environment. Let us begin with the
definition of a virtualized CPS application (vCPSA) representing the
VM and the encapsulated application.

Definition 1. A vCPSA is a virtualized CPS application defined by a
tuple:

τi = (Ci, Ti, Bin
i , Bout

i , Di, Hinit
i , Hregular

i ), (4.1)

where Ci is the execution demand, Ti denotes the period triggering the
computation, Bin

i and Bout
i the ingoing respectively outgoing message

size, Di the deadline, Hinit
i the size of the migration overhead and

Hregular
i the maximal checkpoint size.

This compact definition already includes most of the required char-
acteristics. Still, this abstraction level does not allow to express data
dependency between the vCPSA. Therefore, we need another defini-
tion:
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Definition 2. A vCPS is a virtualized cyber-physical system defined
by a tuple

τ = ({τ1, . . . , τn}, φ) (4.2)

of vCPSA and an additional function φ:

φ(τj) =

τk in case τk is data dependend on τj

⊥ otherwise.
(4.3)

Finally, we need a definition of a placement:

Definition 3. Given a vCPS τ = ({τ1, . . . , τn}, φ), a placement is a
disjunct partitioning P1 t · · · t Pk of the virtualized CPS applications
{τ1, . . . , τn} on k hosts.

As already mentioned, in order to compute a placement we also
have to provide characteristics about the capacities of the computation
and communication hardware. This information is required for the
generation of the system models for the performance analysis and
has to be identified separately. Some parts of the information are
of objective nature and can be determined by appropriate standards
and associations from the given field of application. For example, if
we were to integrate a subsystem from the domain of smart grids
and would like to virtualize some substation control or protection
functions then, in order to find out how often functions are being
invoked or what their timing requirements are, we would have to refer
to the IEC 61850 Standard [58].

The computation or communication capacities of the underlying
hardware infrastructure, like the amount of available cores or network
bandwidth, can be obtained from reference manuals and data sheets
as well as benchmarking or profiling of the hardware. Regarding
scheduling, the assumed scheduling policy has to map the one that is
actually being used on the execution platform. An adequate represen-
tation of a scheduling policy – both in the EA and for the performance
analysis technique – that still remains computationally efficient is not
as straightforward as it may seem at first glance.

Another issue that is frequently rising the most controversies is
the estimation of the execution demands. In the context of our work,
we have to distinguish two aspects of this problem. There exists a
rich literature on how to determine the WCET of a piece of software.
Classical approaches assume a relatively simple yet precise hardware
model and combine it with a static software analysis. Unfortunately,
in our case, considering the complexity of the underlying execution
platform that is needed for virtualization purposes, the application
of established WCET-analyzers is – at least for today – not possible.
Therefore, for the purpose of empirical studies that aim at testifying
to our approach, the best we can hope for is an approximation of
the WCET through a campaign of very thoroughly conducted latency
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measurement experiments. However, regarding the core of this work,
our approach is of formal nature and therefore independent of the
quality of the WCET-parametrization in the input model. Still, we
find it important to make this distinction between the analytical and
empirical meaning of the WCET notion used in this context.

In summary, our CPS-Model is a matrix that comprises a number
of characteristics, like the number of VMs to integrate, their periods,
deadlines, WCETs and other attributes required to fully specify the
placement problem. Which of these are actually needed and used
depends on the objective function and the given constraints.

4.3.3 The Evolutionary Algorithm

At the heart of our approach lies an evolutionary algorithm. Generally
speaking, an EA is a metaheuristic optimization algorithm. It transfers
the mechanisms encountered in biological evolution, like selection,
recombination or mutation into the language of mathematics and
computer science and tries to find a solution to a problem through the
iterative usage of such mechanisms. In most implementations, after
generating an initial population, the EA repeatedly traverses through
the following steps:

• evaluate individuals

• select candidates for variation based on their fitness

• reproduce

The EA terminates after satisfying some a priori defined constraints
and optimization objectives (in other terms, achieving a sufficient
fitness) or simple by exceeding a time limit.

As mentioned before, several conflicting objectives render our dis-
cussed placement problem a multiobjective optimization problem.
Fortunately, there exists a large number of frameworks that facilitate
such optimization. The majority of the available multiobjective op-
timization evolutionary algorithms (MOEA) use a derivative of the
Non-Dominated Sorting Generic Algorithm II (NSGA-II), which promotes
the discovery of a diverse subset of the Pareto-frontier (non-dominated
solutions) [32]. In this work, we use the Open BEAGLE [43] framework,
which provides an implementation of the proven NSGA-II algorithm,
yet additionally supports features, like parallel fitness evaluation or
checkpointing, and is free.

4.3.3.1 Encoding and Operators

The choice of problem representation is crucial to the performance
of an evolutionary algorithm. In order to reduce the computational
complexity, which is determined mainly by fitness evaluation, we
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decided to choose a fixed length representation for the encoding of
our individuals.

Definition 4. Given a vCPS τ = ({τ1, . . . , τn}, φ) then a genotype
space of fixed length is defined as:

G = {((1, i1), . . . , (n, il)) | 1 ≤ il ≤ n, ∀1 ≤ l ≤ n}, (4.4)

where each tuple represents a vCPSA, whereby the first component
denotes the vCPSA index and the second the allocated host index.

Definition 4 ensures that every generated candidate already encodes
all of the CPS applications that need to be mapped. Therefore, every
candidate is formally valid, yet not necessarily feasible in regard to
the given constraints.

The second factor that has a decisive influence on how well the EA
performs are its operators. For the exploration of the search space we
use the two standard operators: crossover and mutation. As is known,
the operators have to be appropriately tailored and adjusted to the
structure of the problem, otherwise, the EA may not perform better
than a random search over the solution space. Therefore, we have
fine-tuned our operators by repetitive EA execution and comparison
with the ILP solution metric.

4.3.3.2 Fitness

The fitness of a candidate in question gives evidence to the quality of
the solution this candidate is encoding. We have chosen to model the
fitness of an individual as a layered vector of fitness values represent-
ing both the constraints as well as the optimization objectives:

1. i) average violated resource consumption
(average resource consumption > 100%)

ii) average violated deadline
(finish time of vCPSA i > Di)

2. i) migration traffic

ii) number of used hosts

iii) average response time

The first layer contains criteria for the estimation of the distance to
a feasible placement. The values are provided by system performance
analysis. Only when both values are zero, meaning (i) the utilization
of all resources (hosts and networks) is less or equal than 100% and
(ii) the needed time for any vCPSA is less or equal than its deadline, a
placement is feasible. We found out that using the average – instead
of the worst-case – values has an positive influence on guiding the EA
in its search.
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The second layer contains optimization criteria. Those are only being
evaluated in the case of an already existing feasible placement. The
migration traffic denotes the overhead necessary to reach a postulated
placement when starting from a currently given one. The other two
are self-explanatory: ii) minimizes the needed amount of hardware
and iii) minimizes the response times of the applications in the system.
Note that these criteria are potentially conflicting. For example, shorter
response times can likely be achieved by providing more hardware
to the system and optimal solutions for management issues, like
replacing CPUs, might require extensive migrating of virtual machines.

The list of the second-layer metrics is not exhaustive, also other
aspects of the system can be adopted as an optimization criteria –
given they can be satisfactory quantified.

The fitness evaluation proceeds hierarchically. Each of the candi-
dates can be in one of the two states: Either his layer 1 is still being
evaluated, then the placement is not (yet) schedulable, or layer 2 is be-
ing optimized and the candidate is schedulable with the actually given
characteristics. This modeling approach was chosen due to the two
aspects: Feasible (scheduable) solutions always dominate not schedu-
able solutions and the model of the system can easily be extended by
additional constraints, objectives or states and still the fitness vectors
remain comparable across all generations.

4.3.4 Performance Analysis

A feasibility assessment of a postulated placement depends on several
interdependent constraints. The analysis has to include characteris-
tics like the utilization level of the computation and communication
infrastructure, data dependency and timing requirements of the virtu-
alized CPS applications. Moreover, the analysis has to be exhaustive,
otherwise no guarantees can be given regarding the safety-critical char-
acteristics of the system and has to be fast, or else the computation
times for the fitness evaluation become not practically feasible. For
this reason, we have decided to rely on analytical methods for system
performance analysis, specifically, conducting this work we utilize
the MAST framework. For a more detailed motivation regarding the
choice of performance analysis method, please refer to Section 2.2.

The results of the analytical methods are only as good as their under-
lying models. Therefore, the system model has to be well parametrized.
For this, we transform the information encoded in the CPS model
as well as the placement candidate in question into a MAST system
model. This takes place on each invocation of the performance analysis
function. The following elements need to be specified in conformity
with the MAST syntax: the processing resources, representing the com-
putational and communication capacities, the schedulers, which define
the scheduling policies, the scheduling servers, which represent the
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minimize
n

∑
i=1

n

∑
j=1

j · Xi,j (4.5)

minimize
n

∑
i=1

Hinit
i · (1− Xi,preset(i)) (4.6)

Subject to:

n

∑
j=1

Xi,j = 1 (∀i, 1 ≤ i ≤ n) (4.7)

t0 ≥ Xi,j

(
Ci +

i−1

∑
k=1

Xk,j

⌈
t0

Tk

⌉
Ck

)
(4.8)

(∀i, j, 1 ≤ i, j ≤ n, ∀t0 ∈ Pi,j)

t0 ≥ Xi,jCi +
i−1

∑
k=1

(
Xk,j

⌈
t0

Tk

⌉
Ck − (1− Xi,j)

⌈
t0

Tk

⌉
Ck

)
(4.9)

(∀i, j, 1 ≤ i, j ≤ n, ∀t0 ∈ Pi,j)

Xi,j = {0, 1} (∀i, j, 1 ≤ i, j ≤ n) (4.10)

schedulable entities in the scheduler and finally, the operations, which
define the actual computation or communication demands.

We then use the "Holistic Analysis" implemented in MAST [48] to
compute resource consumption and to check if all deadlines are met.

4.3.5 Integer Linear Programming

As already mentioned, we have extended our framework with an ILP
formulation of the placement problem (Equations 4.5 to 4.9). The for-
mulation is based on the approach presented in [11]. Our formulation
assumes the same system model as the EA, both are being generated
from the shared CPS-Model. In its current form, the formalism allows
for finding an optimal allocation for the vCPS applications in respect
to the number of used hosts (Equation 4.5) or the VM migration over-
head (Equation 4.6) – for example in case when we want to add a new
vCPSA to a already deployed system. In order to guarantee real-time
capabilities, we incorporated the exact schedulability test for the rate
monotonic scheduling policy as constraints into our ILP formulation.

There exist other formalization approaches [3] that rely only on CPU
utilization. However, as utilization based tests can classify schedulable
task set as not schedulable, we chose the more precise, sufficient and
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Notation Definition

Xi,j The ith VM runs on the jth host (boolean value)

Ci Computational demand of the ith VM

Tk Period of the kth VM

Hinit
i Migration overhead for ith VM

Xi,preset(i) The ith VM resides on the same host as before

(boolean value)

t0 Point in time, see [11, 13]

Table 4.1: Variable definitions in the ILP formulation.

necessary schedulability test and based the constraint formulation
upon the well-known worst-case response time analysis formula [72].

The schedulability constraint checks if the needed computation
time until timestamp t0 is less or equal than the timespan till t0

(Equation 4.8) for one timestamp in the range [0 : Di) for a vCPS
τi. Since there are exponentially many points, which may fulfill this
equation, the set of timestamps must be reduced. Bini and Buttazzo
devised a method to identify a subset Pi,j of timestamps, which may
be checked [13]. Before we can implement this constraint in an ILP,
the formula has to be linearized (Equation 4.9). Additionally for every
combination of vCPS τi and host j, only one of the |Pi,j| formulas must
be fulfilled. One method to achieve this in an ILP formulation can be
found in the appendix of [11].

Finally, the first constraint (Equation 4.7) ensures that every VM is
deployed exactly once. The variables used in the ILP formulation are
described in Table 4.1.

4.4 analyzing virtualized cps

In this section, we describe the obtained findings from experiments
conducted with the proposed algorithm. First, we present some gen-
eral results showing the plausibility and performance of our algorithm
and the computed solutions. Next, we show how good the computed
solutions are compared to the optimal solutions we received through
evaluating the ILP formulation. Finally, we examine how our algo-
rithm can help answering practical questions that system designers
encounter in their daily work and aid in decision making.

4.4.1 Scenario Generation

For the purpose of evaluation, the models of the CPS to be analyzed
are being generated randomly. The parameters of the virtualized CPS
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applications are inferred from probability density functions (PDF).
As the focus of our evaluation lies on the testing of the quality of
our algorithm, the following parametrization of the PDFs is chosen
freely, in other words, it is not tailored for any specific CPS domain or
real life scenario, although the PDFs can easily be adapted to fit the
requirements of any specific domain. The parameters Ci, Ti, Bin

i , Bout
i ,

Di, Hinit
i , Hregular

i of the vCPSA are being inferred as follows:

Di = Ti ∼ 0.8 · N (6, 2) + 0.2 · N (60, 20) [ms]

Ci ∼ N
(

Ti

3
,

Ti

8

)
[ms]

Bin
i = Bout

i ∼ LN (0, 0.125) [KB]

Hinit
i ∼ 0.8 · N (256, 64) + 0.2 · N (1024, 256) [KB]

Hregular
i ∼ Hinit

i
2

[KB],

where N denotes the normal and LN is the log-normal distribution.
Ti and Hregular

i are mixtures of distribution functions and consist of
two weighted parts, in order to model some computationally intensive
and multiple lightweight components. Our specification of Hregular

i
is based on Hinit

i and stems from [23] where the authors thoroughly
analyze various workloads in the context of live migration. Their
results show that even for problematic workloads only less then 50%
of the pages of a VM are being modified during execution. For the
purpose of illustration, we interpret evaluated random variables with
the given units in squared brackets.

4.4.2 Settings

We conducted the experiments with an initial population size of 100.
Per iteration the NSGA-II generates additional individuals – from
the remaining ones – and extends the population to 200 in order to
reduced it again using its selection algorithm. In each iteration, we
apply the one point crossover operator with the probability of 0.7
and the mutation operator with the probability of 0.3. If mutation is
being applied, the flip probability is 0.02. Mutation is being conducted
on randomly selected individuals. The parameters and operators are
changeable and might be adjusted to specific models.

For statistical purpose, we repeat each experiment 15 times. There-
fore, the following box plots represent the values of 15 independent
runs on the same vCPS model. Since the multiple optimization objec-
tives can not be combined into one scalar value (otherwise one could
simply use a single-objective EA), we compare the different criteria
separately.
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Figure 4.2: Quality of solutions for selected generations for a model of size
50. Each box plot represents 15 independent runs on the same
data.

4.4.3 Experiments

This section presents the results of the experiments that allow to assess
the quality and applicability of our approach.

4.4.3.1 Generation Improvement Ratio

The first experiment, depicted in Figure 4.2, shows the improvement of
the placement quality across generations with respect to three criteria:
the amount of needed hosts, migration data size and average response
times of the applications. The underlying model size is 50, meaning,
the algorithm is computing a placement for a system with 50 vCPSA.
The x-axis denotes the generation number and the y-axis the results of
the normalized quality for the objectives. For each of the criteria, the
result range is being mapped to an interval between 0 and 1, where
0 represents the best solution and 1 the worst value. For example,
the best achieved placement in respect of the number of needed
hosts amounts to 26 and is mapped to 0 while the worst solution
requires 33 and is mapped to 1. As can be seen, the improvement of
the placement quality over the generations is significant. The initial
solution requires 33 hosts with an average response times of 17.04 ms,
while the best solution uses 26 hosts with an average response time
of applications amounting to 12.04 milliseconds. Note that all of the
solutions – regardless of their quality – are feasible placements, in
other words, they are guaranteed to meet the timing requirements of
the 50 virtualized CPS applications in the system.

4.4.3.2 Comparing EA with ILP solutions

This experiments compares the quality of the EA with the ILP results.
In order to facilitate the computation, we evaluate a small system of
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Figure 4.3: Quality of solutions for selected generations for a model of size
10 in comparison with ILP solution. Each box plot represents 15
independent runs on the same data.

size 10. The underlying ILP model abstracts from detailed network
communication formulation, thus Bin

i = Bout
i = Hregular

i = 0. The
two inspected optimization criteria are the number of used hosts
and migration overhead. Again, each box plot depicts data from 15
independent runs on the same vCPS.

Figure 4.3 shows the quality of two objectives in comparison with
the calculated ILP solutions for a model of size 10. As can be seen, the
solutions computed by our algorithm in respect of the migration over-
head can compete with the ILP results after 20 generations. However,
none of the individuals encoding a placement reaches the ILP opti-
mum in respect of the number of used hosts. The ILP solution requires
3 while the EA solutions need at least 4 hosts. We further investigated
this aspect and rerun MAST models encoding the solution computed
by the ILP. We found out that due to the more pessimistic nature of
the algorithms employed by the holistic analysis, MAST assesses the
optimal ILP solution as not schedulable and, as a consequence, the EA
discards these individuals after their fitness has been evaluated. The
overly pessimistic nature of assessment is, however, a known aspect
of formal performance analysis and not inherent to MAST. Other
techniques, e.g. RTC, exhibit similar behavior. This is the price that
has to be paid for fast and exhaustive guarantees provided by these
techniques. Nonetheless, note that Figure 4.3 only depicts selected in-
dividuals from different generations, which already encode optimized
solutions. The first unoptimized yet feasible solutions computed by the
algorithm in this scenario require 10 hosts, as the algorithm initially
maps each of the vCPSA to a dedicated host. In other words, the EA
optimizes the solutions from using 10 to using 4 hosts, while the ILP
from using 10 to using 3 hosts.
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Figure 4.4: Runtime with different model sizes per generation.

4.4.4 Time and Scalability

In order to evaluate the runtime efficiency and scalability of our
approach, we employed a machine with four Intel Xeon E5-4650 pro-
cessors, each providing eight cores.

Figure 4.4 depicts the results of the runtime experiments. For smaller
models (less than 20 vCPSA) the time to evaluate a candidate does not
exceed one second. Realistic scenarios, consisting of ca. 50− 60 vCPSA,
take about 5 seconds per generation to evaluate. Larger models sizes,
exceeding 100 vCPSA, need considerably longer to compute. In our
experiment, for a model of size 100, the computation time amounts to
18 seconds. These results indicate an exponential growth rate of the
runtime function with increasing model size. Still, for many practical
applications, the obtained runtime values are acceptable. Significantly
larger models, counting hundreds of applications, would have to con-
sider a relaxation of the approach, in order to remain computationally
feasible. A possible solution is to partition the VMs beforehand and
execute the algorithm separately on smaller clusters. Although, in this
case the algorithm will never be able to reach an optimal solution, the
quality loss of the solution should remain reasonably small. Finally,
our inquiries have shown that the increase in evaluation time is mainly
to be attributed to the MAST solver.

4.4.5 Convergence

The next experiment concerns with convergence times of our algo-
rithm. The results are depicted in Figure 4.5. Please note that there is a
semantic difference in the notion of convergence in respect of ILPs and
EAs. In the former case, this notion denotes the approaching towards
a single, n-dimensional point (optimum) in the solution space whereas
the latter can be interpreted as a stabilization process of a population
resulting – in our multiobjective case – in a multi-dimensional pareto
front. In other words, in the case of the EA, the convergence translates
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Figure 4.5: Number of nondominated fronts per generation for different
model sizes (n). Each dot is representing the median of 15 differ-
ent runs.

to the loss of genetic variety in the population and is therefore a good
indicator for when to stop iterating.

As can be seen in Figure 4.5, for bigger models the convergence
process takes longer, though in both cases, at generation 30, the num-
ber of nondominated fronts is 2, which means that there are only few
individuals, which are not part of the pareto front, but form a second
nondominated front.

4.4.6 Ping-Pong Effect

The "Ping-Pong" effect is a scheduling problem arising when newer
scheduling decision revert previous ones and the schedule starts to
oscillate between two or more similar states. There are scheduling
algorithms, which counter this specific effect.

How vulnerable is our algorithm to this effect? As our algorithm
computes a set of equal solutions under given constraints, the pos-
sibility can not be excluded that under an alternating set of similar
constraints the proposed solutions could bounce between similar so-
lutions. However, the criterion to reduce the number of migrations
should result in at least a few solutions, which do not exhibit oscilla-
tion effects. Finally, it is up to the system designer or administrator to
select or apply a proposed placement.

4.4.7 Online or Offline Placement

During discussions about scheduling algorithms often the question
arises whether an approach can be considered as online or offline. In
Section 4.4.4, our experiment shows that in the case of larger models
(e.g. 100 VMs) the running time of the fitness function per generation
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is about 18 seconds. If we additionally consider the convergence
experiment (Section 4.4.5), which illustrates that for such sized models
the stabilization process needs about 28 generation, then the total
runtime of our algorithm takes about 8 minutes. Assuming we define
online as "activated and deployed immediately after a triggering
event occurred", then our approach should rather be considered as
offline. However, if we define online as "at system runtime", then our
placement algorithm can also be interpreted as online.

4.5 practical issues

The multiobjective approach of our algorithm allows for a variety of
deductions from the computed solutions which can provide answers to
numerous practical questions that arise when integrating or managing
a virtualized CPS. Typical questions are:

• How to fulfill given requirements without an over-dimensioning
of the necessary hardware?

• Can additional virtual machines be deployed in an already run-
ning system?

• How to efficiently plan maintenance?

All of these questions can be answered by examining the computed
solutions for a specific model. In the following, we exemplarily exam-
ine a random model consisting of 50 VMs. Note that the necessary
steps to interpret the results do not differ for other models.

In the following Figures 4.6, 4.7 and 4.9, every "x" mark represents
a system configuration option in respect of two optimization crite-
ria. For the purpose of visualization, we decided to use multiple
2-dimensional representations of the solution space, due to a rather
unclear and chaotic graphical form the computed pareto front takes
in a 3-dimensional representation. Now let’s consider the following
real world questions:

how to fulfill system requirements without over-dimen-
sioning the necessary hardware? In order to reduce energy
consumption, save procurement and maintenance costs or appropri-
ately balance the quality-of-service against offered services prices,
it would be desirable to have the possibility to chose from different
system configurations representing trade-offs between the criteria of
interest. Our approach provides the means to facilitate such an option.
An adequate configuration can easily be chosen from the solution
space computed by our algorithm.

Figure 4.6 shows 100 individuals encoding solutions which differ
with respect to two optimization criteria, the amount of used hosts
and the average response times of the VMs. The depicted individuals
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Figure 4.6: All 100 individuals of generation 30 for a model consisting of
50 VMs. The system designer can choose a placement balanced
between number of used hosts and the average latest response
time.
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Figure 4.7: All 100 individuals of generation 30 for a model consisting of 50
VMs in which 2 VMs are new. The red line shows the number of
hosts of the initial placement.

cover the entire solution space computed by the algorithm after 30
generations. All of the presented configuration are feasible solutions,
meaning they do not exceed the computation load and bandwidth
specifications as well as fulfill the given timing requirements. As can
be seen, the system designer can choose from placements ranging from
27 to 39 hosts and exhibiting average latencies oscillating between 12
and 18 ms. Depending on the aim of the system, the designer can
easily decide on the choice of the configuration. In practice, of course,
only the solutions constituting the pareto front would be of interest.

can additional virtual machines be deployed in an al-
ready running system? Our algorithm can cope with the issue
of adding new workload to an already running system. Figure 4.7
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shows 100 individuals after 30 iterations of our algorithm on a ran-
domly generated model consisting of 50 VMs in which two new VMs
have been added to the system. The red line marks the number of
required hosts (39) for the original placement without the new VMs.
The y-axis denotes the migration cost for state transitioning from the
initial placement to a new system configuration. As before, all of the
computed and depicted placements fulfill the given load constraints
and timing requirements. Using these results, the system designer
could choose an adequate placement considering the trade-off between
the number of used hosts and the necessary migration traffic.

In the context of this question, another one of technical nature
arises: In such cases, does it yield benefits to start the search for a
new placement from the current setup? In other words, is it useful
to search locally when only small changes have been made to the
optimization problem? In our approach a local search translates to
starting the EA with a population based on the previous solution and
not from a randomly generated one. In order to investigate this issue,
we conducted another experiment where for both initiation types we
compare the number of nondominated fronts as well as the quality of
the computed solutions.

Figure 4.8 depicts the number of nondominated fronts for two runs
of the EA with different initialization. The blue solutions contain
randomly initialized individuals and the red solutions consists to 50%
of individuals that tightly reflect the previously deployed placement.
As can be seen, the convergence process is very similar. This means that
using individuals encoding precious placements, does not necessarily
yields benefits in respect of the runtime of the algorithm.

We additionally compared the quality of the computed solutions.
For this purpose, we calculated the width of the two pareto fronts
with the standard euclidean distance metric d(x, y) =

√
∑n

i=1(xi − yi)2.
The random initial population generated a pareto front with a width
of 3616, whereas the biased initial population generated a pareto
front with a width of 3035. This indicates that a randomly initialized
population yields a more diverse front when compared to the biased
one. We also compared the standard deviation values for each criteria
separately and those are also slightly higher for runs with a randomly
initialized population.

Since probably no runtime savings can be expected, but the width of
the pareto front and also the standard deviation of the single criteria
is slightly higher with a random initialization, and we can not put
forward any empirical arguments for the biased approach, it seems
that in the case when only small adjustments have to be made to the
system the randomized approach is of advantage.

how to efficiently plan maintenance? Consider a scenario
with a given placement and the necessity to power down multiple
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Figure 4.8: Number of nondominated fronts per generation for different
initializations.

servers for the purpose of maintenance. If the already running VMs
are constrained by certain quality-of-service conditions (e.g. minimal
service downtime), then a reconfiguration of the system has to happen
at runtime and therefore has to rely on migration. The alternative
would be to shut down all of the affected VMs and restart them at
their new locations. However, in this case, the service downtimes
would be significant. Our approach can compute a wide spectrum of
alternative placements taking into account the number of hosts that
need to be powered down subject to the necessary migration network
traffic. For a synthetic scenario, we compute alternative placements
for a model consisting of 50 VMs. It uses 39 hosts in its initial form.
The results after 30 iterations can be seen in Figure 4.9. The illustra-
tion also contains placements which use even more hosts than the
initial solution and are thus marked red. From these results, a system
designer could now choose an adequate placements and decide on
how many hosts he wants to free with respect to quality-of-service
constraints. Again, regardless of the choice, all real-time requirements
for the services are guaranteed.

4.6 chapter summary

In this chapter, we introduced a methodology for planning safe and
efficient virtualized CPS compute and control clusters. We described
how to enable an optimized integration of CPS by means of virtual-
ization and discussed the used methods, the corresponding models
and the assumed system architecture of the execution platform. We
showed that the presented methodology allows not only to optimally
dimension the virtualized CPS, but also provides strict guarantee re-
garding the timing predictability of the integrated CPS applications.
The approach yields system configuration options representing trade-
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Figure 4.9: New placements for a model consisting of 50 VMs. The red area
shows placements, which require more hosts than the initial
placement.

offs between different non-functional requirements of which all are –
in a mathematical sense – guaranteed to be fulfilled. From those, a sys-
tem designer can safely choose the one that best meets his individual
needs. Moreover, as our approach combines evolutionary algorithms
with a mature formal performance analysis technique (MAST), the
modeling process is – compared e.g. to ILP formulations – relatively
easy and flexible and therefore accessible to a wide range of system de-
signers. Finally, the presented methodology also provides answers to
several practical questions that arise when integrating CPS by means
of virtualization.



5
T E S T I N G O F V I RT UA L I Z E D C P S

The previous chapters discussed the technological aspects related to
the development of virtual execution environments for CPS, in par-
ticular, the efficiency issues related to the system software of the un-
derlying execution and communication infrastructure and the thereon
based high availability solution, as well as a methodology for the
planing of safe and efficient virtualized CPS. Those chapters exhibit a
strong focus on the non-functional aspects related to the construction
of virtualized CPS. The following chapter shifts the focus towards
functional aspects, as it addresses the issue of testing virtualized
CPS applications. As it was the case in the previous chapters, the
background for our research is situated within the domain of cyber-
physical energy systems. In particular, we describe two architectures
for testing applications from the smart grid domain.

The first part describes a HiL co-simulation architecture, which
aims at the validation and verification of virtualized CPS applications
while taking into account the complex dependencies between the
power system and the communicational and computational aspects
of the infrastructure. The second part presents a testbed which aims
at an empirical evaluation of the applications. In contrast to the first
approach, it allows to induce realistic load levels on the infrastructure,
and therefore provides the means for testing both the functional and
non-functional characteristics of virtualized CPS applications as well
as of the underlying ICT. It has, however, a smaller scope of application
than the HiL co-simulation architecture. The findings presented in the
following sections have been published in [64, 66].

5.1 hardware-in-the-loop co-simulation architecture

The ongoing integration of renewable energy sources into the electrical
transmission systems coupled with the cross-border liberalization of
European electricity markets is causing a higher degree of volatility
in power grids. To ensure a safe, secure and efficient grid operation,
new concepts utilizing the advances in computing and communication
technologies are being developed. Concepts of electricity transmission
and distribution systems, in which digital information flow, use and
management play a central role, are being referred to as smart grids.

In the field of modern power systems, the literature proposes a
wide range of smart grid concepts, which utilize power system assets
in combination with modern ICT infrastructure as well as different
testbed architectures for the development and testing of suitable appli-
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cations [22, 41, 71]. Consequently, besides power system aspects every
process of development and testing of smart grid applications should
take into account the link to the underlying ICT infrastructure. As an
empirical evaluation is often not feasible in practice, most solutions
rely on simulation tools. The main challenge in these approaches is
the facilitation of a combined analysis of the power system and ICT
simulation.

Fortunately, a solution to this problem is being provided by the
Hybrid Simulator Architecture described in [44, 103]. It is a modular
co-simulation environment for comprehensive analysis of mutual ef-
fects, taking into account communication networks, IT processing and
power system response while investigating smart grid applications.
However, the IT processing model it provides is very simplistic. The
architecture abstracts from the characteristics of the execution plat-
form and reduces the complexity of computation to run time estimates
of the analyzed application. We argue that such an approach is not
sufficient with respect of testing virtualized CPS applications, inter
alia, due to the complexity of the virtualized execution platform. We
aim at a more comprehensive approach that enables a thorough test-
ing and analysis of virtualized smart grid applications as well as the
virtualization hardware and software infrastructure. Therefore, in the
following, we extend the Hybrid Simulator Architecture in order to facil-
itate the integration of our CPS-Xen execution platform. To the best
of our knowledge, there exists no other work that describes how to
develop and test virtualized power system applications while taking
into account the mutual dependencies between the power system and
the ICT. In detail, we make the following contribution to the research
on virtualized cyber-physical energy systems [64]:

• We introduce a HiL co-Simulation Architecture for the development
and testing of virtualized CPS applications by integrating the
virtualized execution platform into the co-simulation of the
power and ICT systems.

• We provide validation (simulation-based correctness analysis) for
virtualized software functions in joint interaction with the power
system, the computation and communication infrastructure.

• We show how to obtain detailed latencies of the virtualized
system. These delays comprise of the measured computation
times for the given algorithm running in the VM as well as of
the delays caused by the packet processing on the virtualized
platform.

• The obtained computation-related latencies allow for a precise
parametrization of simulation models regarding information
technology delays.
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In the following, we briefly describe the IEEE Standard 1516 - High
Level Architecture (HLA) [59] for distributed simulation as it forms the
basis for the introduced HiL co-Simulation Architecture. For a com-
prehensive introduction that outlines the HLA-Standard in a practical
way, please refer to [76].

5.1.1 IEEE1516 HLA Standard

The HLA IEEE 1516 Standard for distributed simulation defines an
architecture comprising of the following three main components:

• A central administration instance, the Runtime Infrastructure (RTI)
which provides a set of services for synchronization, information
exchange and management

• HLA compliant simulation systems called Federates. Note that
in our case, we also define the connected hardware-in-the-loop
infrastructure as a federate.

• A model for describing shared objects, attributes and interactions
called Object Model Template (OMT).

The overall co-simulation, composed of the three components, is
called a Federation. In turn, a running co-simulation is referred to as
a Federation Execution. The federates are connected to the RTI during
federation execution. The RTI hosts and manages the federation ex-
ecution and offers services to the federates, in order to synchronize
their logical time and facilitate the information exchange. To use these
services, every federate has to implement the corresponding interface.
In addition, the HLA IEEE 1516 Standard defines features for the con-
nection of federates to the RTI via Ethernet through the TCP/IP and
UDP communication protocols. This enables HLA IEEE 1516 Standard
based simulations to be distributed and run in parallel. The most
important parts of the HLA IEEE 1516 Standard are:

• IEEE 1516: Framework and Rules - Fundamentals;

• IEEE 1516.1: Interface specification - Interface specification for
federates and RTI services;

• IEEE 1516.2: Object Model Template specification - Specification
of the structure for a valid Federation Object Model (FOM).

From the beginning of a federation execution till it’s completion,
the participating federates perform service calls on the RTI, which
in turn uses the interfaces of the federates to perform callbacks. To
exchange information every federate publishes and subscribes to the
so called objects and interactions defined in the FOM. Non-persistent
information - like events - is exchanged by updating and reflecting
interactions, as well as their parameters. Persistent information - like
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Figure 5.1: Hardware-in-the-loop co-Simulation Architecture comprising the three federates: the
power system and the communication network simulators as well as the execution
platform.

related data - is exchanged by updating and reflecting objects and
their attributes.

5.1.1.1 Types of Federates

We divide federates in two classes. They differ in the connection mode
to the RTI. The first class is called common federate. Common feder-
ates have integrated HLA components which allow for information
exchange with other federates directly via the RTI. In most cases,
simulators do not provide such components, therefore they have to
publish and receive information through an additional instance that
contains the appropriate HLA components. Federates utilizing such
a component are referred to as delegated federates and constitute the
second class.

5.1.2 The HiL co-Simulation Architecture

This section describes the HiL co-Simulation Architecture, which inte-
grates our virtual execution platform into the HLA-based co-simulation
of the power and ICT systems. It is being depicted in Figure 5.1.

The architecture (federation) comprises the following three feder-
ates:

• Network Simulator Federate - for the communication network
simulation.

• Power-Sim Federate - for the simulation of the power system.

• HiL Federate - the interface to the execution platform for the
virtualized CPS applications.

The power system simulator is connected to the Power-Sim Federate
via a OLE for Process Control Data Access (OPC DA) server connection.
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The OPC is a widely spread performant industrial communication
standard and we use it to facilitate data exchange of measurement and
control values between the power system simulator and the Power-Sim
Federate. The synchronization of the logical time for the power system
simulator, the Power-Sim Federate and the federation is realized in a
conservative approach. This means that only one federate is advancing
it’s logical time at all times. The Power-Sim Federate translates the mea-
surement values into the corresponding object attribute values. After
the transformation, the updated object attribute values are published
via RTI to the subscribed HiL-Federate. Only the object attributes and
the interactions defined in the FOM are allowed to publish and sub-
scribe. The FOM itself is being loaded by the RTI during the creation
of a federation execution. All federates use services implemented in
the RTIambassador whereas the interfaces for the service callbacks are
located in the FederateAmbassador. Figure 5.1 also illustrates the struc-
tural difference between the delegated and the common federates. The
network simulator includes the implementation of the HLA compo-
nents in the FederateAmbassador interface which makes the Network
Simulator Federate an example for a common federate. In contrast, the
Power-Sim Federate and the HiL-Federate are delegated federates. There-
fore, neither the power system simulator nor the virtualized execution
platform includes HLA components. The updated object attributes are
committed from the HiL-Federate to the virtualized execution platform
through the HiL-Interface. The virtualized execution platform sends
control commands back to the HiL-Federate which delivers these con-
trol commands via RTI, the Power-Sim Federate and the OPC DA server
to the power system simulator.

5.1.3 HiL-Interface

The HiL-Interface creates the simulation entry point for the virtualized
execution platform. Through this entity the virtualized CPS applica-
tions issue their control commands to the simulated primary power
system equipment. Further, the HiL-Interface is responsible for the
protocol translation. Depending on the communication direction, the
interface transforms either the power simulation data into UDP pro-
tocol stream or the UDP stream into the format of the power system
data. The HiL-Interface is also responsible for the synchronization
of the data exchange between the co-simulation and the virtualized
execution platform. This is guaranteed by forcing the Hil-Federate’s
FederateAmbassador to pause execution during the time when the con-
trol application is running on the virtualized execution platform. The
HiL-Federate and the virtualized execution platform exchange data in
a conservative approach.
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Figure 5.2: Power system test network

5.1.4 Proof of Concept

This sections provides a proof of concept for our approach by the
means of a step-by-step analysis of a message flow of our HiL-co-
simulation Architecture. The chart describes the testing process of a
virtualized overcurrent protection application. For this purpose we
investigate a simplistic scenario.

scenario The scenario comprises of an elementary power and
communication system. The test network for the power system is
illustrated in Figure 5.2. It depicts the generator Gen1 with a constant
feed-in, two substations BB01 and BB02, and the transmission line
L12 to interconnect the load and the generator. The power line L12 is
being monitored by a measurement device situated in the substation
BB01. The state determining values - in form of a current phasor
- are being continuously transmitted to the protection application
over the substation LAN. The protection function, executed on the
virtualized platform and located within the substation BB01, analyses
these values. In case of an overcurrent or a short circuit, the protection
algorithm dispatches a control command to the circuit breaker CB4
(situated in substation BB01), in order to interrupt the current flow.
The test network is modeled and simulated in the power system
simulator PowerFactory [33]. The underlying communication system
assumes a simplistic topology and is modeled in the Network Simulator
Federate. The overall HiL co-Simulation Architecture was implemented
in JAVA and the protection algorithm, running within the VM, in the
C programming language.

In the evaluated scenario the sequence of events is as follows: At the
beginning of the scenario the current on the line L12 is stable and the
switch is set to open. 100ms after the start of the simulation a short
circuit occurs on the monitored transmission line L12 between the
generator and the connected load, causing a dynamic increase in the
current functions. The overcurrent is detected by the measurement
device at 110ms and the corresponding current phasor values are being
send to the VM executing the protection algorithm. This information
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Figure 5.3: 3-phase short circuited line L12

arrives at 110, 5ms. The protection function analyses the corrupt state
of the transmission line and sends a control command to the circuit
breaker CB4 after 0, 072ms. The computation time of the algorithm is
0, 001ms, the remaining 0, 071ms account for packet processing on the
virtualized execution platform. The control command arrives at the
switch at 111, 072ms triggering the operation to interrupt the current
flow. At the time-stamp 120ms, after about another 9ms - the time
elapsed due to the process level equipment - the current flow on the
transmission line L12 amounts to 0.

The results for our scenario are depicted in Figure 5.3. The blue
line represents the phase current, the red line shows the value of the
current phasor and the brown line depicts the position of the circuit
breaker CB4. All values are presented in relation to logical time.

5.1.5 Simulation Process and Results

This section details the simulation process by analyzing a message
flow chart from our scenario. The chart is given in Figure 5.4 and rep-
resents a sequence of events that occur in our simulation between the
time a state change of the power system is released and the execution
of the related response control command. The message flow chart can
be elucidated as follows: At time-stamp t0, after simulating the recent
processes in the test network, the power system simulator releases its
new state values to the HiL-Federate. The HiL-Federate initiates the
communication between the measurement device and the virtualized
execution platform. This causes the RTI to invoke the network sim-
ulator in order to compute the corresponding communication delay
t1. Next, the RTI schedules the HiL-Federate, which translates the
simulation protocol into the UDP protocol and forwards the data to
the protection algorithm. The response time of the virtualized exe-
cution platform - given in t2 - is composed of two values. The first
represents the actual computation delay of the protection algorithm
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and the second one quantifies the latencies occurred due to packet
processing on the virtualization platform. In contrast to the other
delays, the t2 value is not the outcome of a simulation, instead it is
the actual time that passed while computing the algorithm. In the case
of t2, the logical time and the wall-clock time are one. After releasing
the control command by the execution platform, the HiL-Federate
translates it from UDP back to the simulation protocol and again initi-
ates a communication. However, this time from the host on which the
protection VM is running to the desired equipment device. This trans-
mission latency is given by t3. Next, a new event for the power system
simulator has to be scheduled to execute the corresponding operations.
The time elapsed due to the operation of the process-level equipment
is denoted by t4. The sum of the delays t1 to t4 represents the logical
time for the entire process, from the release of new power system
state values to the execution of the control operation. It includes the
latencies from the information and communication infrastructure and
the delays induced by the operation of the primary equipment of the
power system.

The obtained results show that our HiL-co-Simulation Architecture is
working as intended. It correctly handles the different type of simu-
lators and successfully interfaces the virtualized execution platform
with its encapsulated CPES applications. To achieve this behavior,
the architecture synchronizes all of its members and appropriately
translates the corresponding data traffic. The obtained results confirm
that our approach is able to analyze virtualized CPS applications with
respect to their functional correctness as well as their interdependen-
cies with the power system and the communication network. Further,
the detailed response time analysis, including the execution time of
the algorithms as well as the latencies induced by the packet process-
ing of the virtualized execution platform, facilitates the preliminary
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performance evaluation of both the virtualization hardware and the
virtualized CPES software.

5.1.6 Discussion

In order to ensure optimal performance and a meaningful execution
time analysis, our test CPS application was implemented in the C
programming language. Therefore, to analyze the monitor, protection
or control algorithm, which are in practice often implemented or
analyzed in JAVA, GNU R or MATLAB, in order to be able to analyze
them on the HiL co-Simulation Architecture, they would have to be
rewritten in C or C++.

Another issue relates to the preliminary performance evaluation of
the virtualization hardware. As shown in Section 5.1.4, our architecture
is able to evaluate – to the extend provided by simulation – the
functional correctness and the exact execution delays of the CPES
application under study. However, due to the co-simulation timing
constraints - given by the individual simulators - a realistic workload
level can not be induced on the virtualization hardware. Therefore, the
analysis of the packet processing times should be treated with caution,
as they represent timing values for an architecture with sufficient
free resources. A solution to this approach would be to interface
the virtualized execution platform with real-time simulators. Then, a
thorough analysis of the hardware related characteristics would be
possible. A testbed architecture which enables such an analysis will
be discussed in the next section.

Finally, although the presented scenario was concerned with substa-
tion level equipment, the HiL-co-Simulation approach can also analyze
scenarios related to control centers and wide area applications.

5.2 vgridlab – a testbed for virtualized smart grids

One of the shortcomings of the HiL co-simulation architecture, in-
troduced in the previous chapter, is its inability to induce realistic
workloads on the tested hardware, in particular, the integrated exe-
cution platform. In this section, we discuss a testbed architecture for
the development, deployment and validation of virtualized smart grid
functions, which fixes this deficiency and allows for an evaluation of
the underlying ICT infrastructure and devices used in power systems
automation under realistic load situations. In detail, the novelty of this
architecture is given by the following characteristics:

• It represents a consistently virtualized ICT infrastructure. The
hardware resources of both the communication network and the
execution platform are being virtualized.
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Figure 5.5: Overview of the vGridLab architecture, comprising power system simulation and hard-
ware components for measurement, communication and computing as well as measuring
points for deriving application and platform characteristics.

• The virtualized applications can be evaluated in combination
with real devices for power system automation.

• Due to the interfaced real-time power system simulator, both
the application as well as the infrastructure can be evaluated
in real-time. The use of a real-time simulator also enables the
inducement of realistic workloads on the infrastructure or even
the possibility to conduct stress tests of the underlying hardware.

Figure 5.5 depicts the implementation of our virtualized smart grid
testbed architecture that is adopted for the needs of a case study that
involves a virtualized smart grid application for the controlling of an
On Load Tap Changer (OLTC). The architecture and its description is
based on [65].

The testbed architecture consists of three components: the energy
system simulator, the HiL electrical devices and the virtualized ICT
infrastructure. These components can be flexibly interconnected and
adjusted in order to fit the requirements of the experiment under
study.

The power system is being represented by the real-time simulator
OP5600. In the given example, the RTS simulates a low-voltage distri-
bution network connected via an OLTC to medium voltage network.
The OLTC is operated by a virtualized control (vControl) being ex-
ecuted as a virtual machine in the compute and control cluster. The
low-voltage network consists of two feeders including two loads and
a photovoltaic unit operated as open loop. In the discussed experi-
ment, the HiL component of the architecture comprises one phasor
measurement unit (PMU) of type ABB RES 670. The PMU is used to dis-
tribute timestamped voltage measurements in compliance with IEEE
C37.118.1 that are to be processed by the vControl. For this purpose,
the analogue outputs of the OP5600 simulator are connected to the
PMU.
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The ICT system consists of a communication network and a com-
pute and control cluster. Software-defined networking (SDN) is applied to
enable dynamic and flexible configuration of the communication in-
frastructure. Therefore, the control logic is concentrated at the so-called
SDN controller, which determines network behavior via the OpenFlow
protocol based on its global view. In total, five Pica8 3290 bare metal
switches and four software switches, running Open vSwitch on stan-
dard computing hardware, can be incorporated into the testbed. The
compute and control cluster is responsible for hosting the virtualized
smart grid application as well as the SDN controllers. It is running
CPS-Xen [69] (for details on CPS-Xen see Section 3.3).

vGridLab provides multiple measuring points and interfaces for
obtaining application and system characteristics. In the following, a
brief overview of those is given. The numbers in brackets correspond
to the numbers depicted in Figure 5.5.

The functional correctness of the virtualized algorithms can be veri-
fied by analyzing state-variables in the power system simulation (1).
The OpenFlow switches (2) are adapted to allow for the measuring
of communication and switching latencies as well as to quantify over-
heads generated by high-availability solutions (e.g. failover latencies
in case of link failures). In a privileged domain of the virtualized exe-
cution platform (3) system response times (comprising the latencies
constituted by the entire platform software stack, including TCP/IP-
stacks latencies and the application execution times) can be measured.
Further, by using clock cycle precise measurements techniques – em-
bedded in guest VMs (4) – the testbed allows to obtain highly accurate
execution delays for the analyzed smart grid algorithms. The real-
time simulator (5) allows to quantify round-trips times, which are
defined as the time interval between the sending of a changed variable
state and the corresponding control decision of the algorithm. Finally,
through the analysis of the logged system data, characteristics of the
HiL-device (6) can be deduced.

Overall, the presented architecture allows for a detail analysis and
evaluation of both the function and non-functional characteristics
of the virtualized smart grid applications as well as the underlying
ICT infrastructure and real electrical devices used in power system
automation. It has standardized and well-defined interfaces enabling
for loose coupling of different ICT and power system hardware. This
facilitates the adaptation of our architecture to a variety of different
scenarios. Finally, due to the real-time simulator, realistic workloads
can be induced on the to be evaluated systems, allowing for the
implementation of stress test scenarios, which are of high interest to
the power system automation community.
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5.3 chapter summary

This chapter introduced two architectures for developing, verification
and validation of virtualized CPS applications from the smart grid
domain. Both architectures aim at taking into account the interwo-
ven dependencies between the applications, the power system and
the underlying ICT as well as the possibility to enable the testing
of involved hardware components, including power system and ICT
equipment. However, the two architectures differ in their scope of ap-
plication. While the HiL-co-Simulation Architecture enables the analysis
of large scale scenarios involving wide area applications, it exhibits
shortcomings with respect to run times and the possibility to induce
realistic workloads on the ICT hardware. In turn, the vGridLab testbed
architecture allows for a real-time evaluation of the applications and
the underlying hardware components – including stress test scenarios,
yet it has only a limited scope that includes low-scale distribution
networks or individual substations. However, the architectures are not
mutually exclusive and could be combined in order to assess larger
networks or wide area applications in all details.
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D I S C U S S I O N A N D O U T L O O K

The previous chapters presented and discussed in detail technologi-
cal and methodological approaches for the planing and construction
of safe and efficient virtualized cyber-physical systems. This chap-
ter extends and generalizes the discussion. Based upon the expertise
from previous findings as well as some new considerations, it gives
an outlook towards a generic execution platform architecture with
virtualization support for emerging CPS applications. Before that how-
ever, it provides a discussion regarding the conformity of virtualized
environments with standards of functional safety.

6.1 safety certification

Although we did not conduct any research on the topic of safety
certification in CPS, in the following, we want to briefly address
this topic as it constitutes an important aspect of constructing safe
and secure virtualized CPS. Achieving conformity with standards of
functional safety has to be regarded as an additional requirement.

Most cyber-physical systems have strict functional safety certifica-
tion requirements that have to be met before a system can be deployed.
Depending on the deployment domain, different standards have to
be considered. Examples are: the IEC 61850 – for power system au-
tomation (briefly discussed in Chapter 3, Section 3.1), IEC 61508 [57]
– functional safety standard covering a broad spectrum of industry
applications, ISO 26262 [61] – function safety for road vehicles, or DO-
178C [118]– for software-based aerospace systems, as well as many
others. Besides safety standards, embedded software products often
also have to comply with software development guidelines. A promi-
nent example is the MISRA C [54] set of rules for the C programming
language aiming at facilitating safety, reliability and portability of the
implemented code.

In general, the certification process of software is a time and money
consuming process. As virtualization was originally neither designed
with real-time safety requirements in mind nor for a specific embed-
ded domain, most of the fully-fledged hypervisors – of which some
are open source projects – do not provide any level of safety certifica-
tion. There exist products that emerged from solutions for real-time
operating systems or hardware partitioning approaches and possess
various levels of certifications for different domains. Along the way,
some added virtualization support to their portfolio. Prominent exam-
ples are SYSGO PikeOS [17, 73], Green Hills Integrity Multivisor or
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Windriver. In respect of Xen, the community around the hypervisor is,
as of 2019, making efforts to certify the hypervisor code for the ISO
26262 ASIL-B standard level.

The certification of hypervisors is an important and expensive aspect
of adopting this technology to the domain of CPS. It should, however,
not only be perceived as a challenge, as it can also be an asset. An
already certified hypervisor can act as a safe and secure basis for
strong isolation of mixed-criticality applications and thus helping
manufacturers to certify specific system components separately in
their own execution environments. Furthermore, due to the isolation
property, the execution of environments with different certification
levels is possible.

6.2 generic architecture for emerging cps

The last few years were characterized by a rapid development of
the virtualization technology ecosystem. Novel hardware features
facilitating virtualization technology emerged, COTS hardware prod-
ucts for embedded systems introduced or extended their support for
virtualization, new hypervisors aiming at embedded systems were
developed while prominent solutions added embedded and cyber-
physical systems domains to their scope of application, and most
important, also the expectations regarding the functionality of CPS
applications evolved and with them their requirements.

Although we are not able to address all the new developments in
this thesis, we wish to summarize the requirements of future CPS
applications and propose extensions to our architecture that allow
to meet those new expectations. Note that the extensions do not
invalidate our results in any way. They just add new functionalities.
All previously discussed findings hold.

In the presentation of the generic architecture, we abstract from
concrete solutions or implementations and concentrate on discussing
high level requirements that – in our opinion – should be fulfilled by
platforms aiming for hosting future CPS applications.

However, before presenting the architecture, we first summarize the
requirements of future CPS applications. Due to its generic character,
the following enumeration lists requirements that correspond to the
combined needs of different CPS domains. Solutions from the field of
logistic will have a different subset of requirements with respect to
the execution platform than automotive systems or systems aiming at
controlling and managing electric power distribution grids. Obviously,
the architecture should support the implementation of any desired
subset.
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6.2.1 Requirements of Future CPS

The generic architecture for virtualized CPS is designed to comply
with the following requirements:

hardware extensions The architecture should support all avail-
able hardware-assisted virtualization capabilities, in order to facilitate
virtualization as well as increase performance and security. Today,
those include not only CPU and memory features, but cover the entire
system architecture. Among them are interrupt, GPU, I/O and net-
work virtualization. Note that x86 and ARM architectures support an
equivalent spectrum of features.

componentization At all levels the architecture should remain
as modular as possible. This is important because componentization
is a prerequisite for the construction of efficient and secure execution
platforms. The possibility to tailor the infrastructure software trans-
lates to smaller footprints – and thus reduced attack surfaces, faster
boot and execution times, higher certification-friendliness, eases the
implementation and compliance with security policies, allows for the
construction of driver domains and finally for an adequate isolation of
workloads with different criticality levels. Therefore, the architecture
should support static hardware partitioning for safety and security
critical workloads as well as the possibility to concurrently host multi-
ple and different execution environments to facilitate the development
and deployment of mixed-criticality systems. The support for execu-
tion environments should include native execution, general-purpose
OS’s, unikernels as well as application and system containers.

resource management The architecture should support options
for flexible allocation, sharing and partitioning of resources. The imple-
mentation of these capabilities has to be based on available hardware
extensions as well as concepts and technologies like paravirtualization,
driver domains and pass-through.

Starting with the CPU, the execution platform should provide a set
of best-effort, soft- and real-time schedulers as well as – for highly
timing sensitive applications – the possibility to dedicate physical
cores to a domain without the need to employ a scheduler. Also the
grouping of CPUs into pools should be supported with the option for
assigning schedulers on a per CPU pool basis.

When it comes to memory, besides the static on per VM basis al-
location, the architecture should provide ways for dynamic memory
reconfiguration as well as for the construction of shared memory re-
gions. Ideally, also NUMA-awareness and cache allocation techniques
should be available.
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Regarding IO-processing and communication, a wide range of in-
ternal and external buses should be supported, including bandwidth
allocation and balancing options. IO-processing is to be synergized
with corresponding VMM-schedulers.

Due to the increase in artificial intelligence and pattern recognition
use cases, the execution platform should provide support for GPU
based machine and deep learning techniques. Another GPU related
requirement is the possibility for sharing GPU capabilities and displays
between different execution environments at run time.

In order to fulfill multi-media requirements, besides GPU virtual-
ization, it should also be possible to share audio capabilities between
different execution environments with routing support for various
source and destination devices.

Finally, also workload, energy and software management as well as
maintenance features should be available on the platform. For these,
the architecture has to implement VM migration, support for advanced
power management – including policies on per execution environment
basis – as well as remote install, update and diagnostic capabilities for
the entire infrastructure stack.

fault-tolerance properties The architecture should support
a broad spectrum of configurable fault-tolerance methods. Beside
different isolation levels for guaranteeing time and space fault contain-
ment, the execution platform should assume additional fault-tolerance
techniques. A crucial aspect lies in the possibility to provide various
forms of redundancy. This allows to significantly increasing system
reliability.

In order to protect applications from hardware failures, redundancy
can be delivered by implementing different standby modes utilizing
rebooting and microrebooting, replication as well as parallel execution
techniques. Our CPS-Remus solution for high availability with real-
time failover and recovery is an example of such techniques. In order
to protect against software faults, the technique of N-version program-
ming can be adopted to provide build-in redundancy. Furthermore,
system monitors for conducting sanity checks as well as watching over
and verifying system functions should also be assumed.

timing properties In order to facilitate planing and verifica-
tion, the architecture should exhibit deterministic system latencies
and the processing times have to correspond with the timing require-
ments encountered in the given application or domain of interest. In
order to achieve this, the implementation of the architecture has to
fulfill the requirements mentioned above in the resource management
paragraph.
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Figure 6.1: A generic execution platform architecture for emerging CPS applications.

certification and security The implementation of the archi-
tecture should aim at minimizing the trusted computing base. A direct
consequence of such an approach is the increase in system security.
Moreover, it facilitates code management and certification. The latter
is of special importance, as the execution platform has to comply
with safety standards from the given domains of interest. A proven
paradigm for implementing minimal trusted computing bases is the
microkernel design. In fact, many of the available hypervisors are
microkernels.

The platform should also provide a possibility to define fine-grained
access policies for inter-domain communication, drivers and hyper-
calls. Finally, it has to support hardware security technologies like
Trusted Platform Module, Intel Trusted Execution Technology or ARM
TrustZone.

6.2.2 Generic Architecture

Most of the above discussed requirements are already being fulfilled
by our CPS-Xen architecture. However, in order to cope with the
additional ones, the generic architecture generalizes and extends our
CPS-Xen architecture (compare Figure 3.2) by, inter alia, introducing
and merging additional execution environments into its stack. The
different types of execution environments have been discussed in
Section 2.1.3. In the following, we will discuss selected extensions to
the presented architecture, which is depicted in Figure 6.1.

Some workloads impose particularity strict timing or security re-
quirements on systems. In order to facilitate a safe consolidation
of such workloads with other applications on a common hardware
platform, the generic architecture assumes hardware partitioning func-
tionalities. Depending on the hardware capabilities, the partitioner can
be implemented as part of the firmware software, as a separate system
monitor or as a part of the hypervisor. Regardless of implementation
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details, the partitioner should possess the functionality to divide the
hardware in at least two partitions, e.g a mixed-criticality partition and
a safety and security partition. Ideally, the safety and security partition
should then be further dividable. Note that this can lead to compatibil-
ity and portability issues. Timing or security sensitive applications are
often being developed for dedicated OS’s. OEMs trying to ship a rich
assortment of applications, which are bound to specific OS libraries,
are forced to deploy a redundant set of functionalities and services
encapsulated in different OS’s. However, the new Armv8.4 architec-
ture [83] provides means to mitigate this effect by introducing a new
virtualization layer into its Secure world exception level stack and thus
allowing for a secure isolation of trusted resources and generalization
of trusted code.

Another important feature of the generic architecture is the enor-
mous ecosystem of execution environments for encapsulating applica-
tions. This guarantees that regardless of how strict the requirements
may be, there exist an adequate execution environment for the efficient
development and deployment of a given applications. To this end, the
generic architecture offers all forms of environments from bare-metal
through virtualized general-purpose OS’s, unikernels, containers or
even complex nested virtualization solutions and this without having
to compromise on isolation and security quality.

Last but not least, with the advent of highly softwarized automa-
tion solutions and increasing connectivity, the desire and interest in
keeping products state of the art – by installing or updating software
without the requirements of its physical presence – has grown sig-
nificantly. Therefore, the architecture also assumes the realization of
over-the-air software techniques. If extended with diagnostic func-
tionalities and methods for live updating of the system software, the
architecture comprises a comprehensive and efficient software man-
agement concept for the entire infrastructure stack. The new live
patching features of the Xen hypervisor can act as an example of such
techniques. It allows to substitute hypervisor’s data and functions at
runtime without the need to reboot the system or to migrate guest
VMs.
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S U M M A RY A N D C O N C L U S I O N

The last decade revealed the vast economical and societal potential
of cyber-physical systems. The unprecedented efficiency of today’s
hardware facilitates the exploitation of this potential and further fuels
the adaptation of CPS to ever new areas of application. However, new
opportunities brought to light new challenges. The main ones oscillate
around the softwarization of CPS and the spreading adaptation of
multi-core and manycore architectures. They have been described in
more details in Chapter 1. These challenges, together with the various
functional and often strict non-functional requirements of this domain,
render CPS and their design highly complex.

Fortunately, these issues are not exclusive to the area of CPS. In
other domains, comparable problems could have been successfully
tackled by the technique of virtualization. The objective of this thesis
is to investigate the applicability of this technique to the domain of
CPS.

7.1 contributions

The idea of adopting virtualization technology to CPS yields several
research questions of both technological as well as methodological
nature. The contributions of this work are presented in accordance
with these categories.

technological contributions The first set of contributions
focuses on the technological issues related to the infrastructure soft-
ware and have been made subject of discussion in Chapter 3.

In Section 3.3, we analyze the shortcomings of the popular platform
virtualization solution Xen with respect to hosting time sensitive work-
loads. We identify two major problems. First, the policies provided by
Xen for scheduling VMs with soft- and firm real-time requirements
(SEDF and RTDS) fail at fulfilling the timing constraints of the hosted
CPS applications. Second, in the Xen architecture, we discover issues
associated with I/O processing which introduce priority inversion into
the system. Subsequently we propose solutions for the encountered
problems – implemented in form of an extension called CPS-Xen – and
quantify throughout an extensive set of experiments that our approach
significantly improves the timing properties of the execution platform.

The contributions of the second part of Chapter 3 concern with the
efficiency of high availability solutions that employ virtual machine
replication. In Section 3.4, after analyzing the drawbacks of state of
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the art techniques, we introduce our self-determined virtual machine
replication model. Self-determined replication extends the high avail-
ability design space by a replication model that allows for an efficient
protection of CPS applications. This claim is being scientifically sub-
stantiated by an exhaustive and in-depth evaluation of our approach,
including a real-world applicability study which further demonstrates
the feasibility of our approach in production environments.

methodological contributions The second set comprises
contributions of methodological nature.

Chapter 4 extends the state of the art by introducing a methodology
for the planning and integration of safe and efficient virtualized CPS
compute and control clusters. It shows how the presented methodol-
ogy enables to optimally dimension a virtualized CPS, while at the
same time allowing to provide strict guarantees regarding the timing
predictability of the integrated CPS applications. Furthermore, by com-
bining evolutionary algorithms with a mature performance analysis
technique, our approach facilitates the modeling process – e.g. when
compared with ILP optimization – and by this significantly improves
its accessibility to designers and engineers. Finally, our contribution
provides answers for several practical questions that could arise while
integrating and managing a virtualized CPS cluster.

In Section 5.1 of Chapter 5, we present a HiL co-simulation architec-
ture, which aims at the validation and verification of virtualized CPS
applications while taking into account the complex dependencies be-
tween the power system and the communicational and computational
aspects of the infrastructure. The proposed architecture enables the
analysis of large scale scenarios involving wide area applications. It
exhibits, however, shortcoming in respect of the possibility to induce
high loads on the ICT hardware. Therefore, its mainly suited for the
analysis of functional aspects of the application and the architecture.

The testbed vGridLab, presented in Section 5.2 of the same chapter,
overcomes the shortcoming of the previous architecture and enables a
real-time evaluation of the applications and the underlying hardware
components – even including stress test scenarios. However, it has a
reduced modeling scope when compared with the HiL co-simulation
architecture. The testbed provides the means for testing the functional
aspects of virtualized CPS applications as well as the non-functional
characteristics of the underlying ICT in real-time.

Based upon the expertise from the findings presented in the pre-
vious chapters as well as some new considerations regarding the
requirements of future CPS applications, Chapter 6 gives an outlook
towards a generic execution platform architecture with virtualization
support for emerging CPS applications.
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software contributions Finally, in the course of our research
work, we developed CPS-Xen with CPS-Remus. A virtual execution
environment for a dependable and efficient hosting of virtualized CPS
applications. It implements the above listed scientific contributions
and serves as the evaluation platform for the results presented in this
thesis. For reasons of openness and reproducibility of the presented
results, the entire source code is available for download on our GitHub
project page 1. The software stack also includes all of the extensions
made by us to the MiniOS-Unikernel.

7.2 final remarks

This dissertation advances the state of the art in the domain of cyber-
physical systems. It does so by describing several contributions which
successfully address various technological as well as methodological
issues and challenges related to the adoption of virtualization technol-
ogy to this domain. This work proves the feasibility of the approach
and demonstrates how to employ virtualization technology for the
benefits of CPS. Regarding the future of virtualization and CPS, our
conclusion is that it is not a question of if, but of to what extend
virtualization will be employed for the construction of future CPS. We
believe that its role in delivering safety, security and efficiency to CPS
will be crucial.

1 https://github.com/cpsxen/cps-xen

https://github.com/cpsxen/cps-xen
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A P P E N D I X : N U M E R I C A L E VA L UAT I O N R E S U LT S .

CPU Scheduler VM Maximum σ #Missed

Load Deadlines

55%
RM VM1 293 µs 13.4 µs 0

RTDS VM1 1135 µs 59.6 µs 3 (0.15%)

65%
RM VM1 295 µs 13.6 µs 0

RTDS VM1 2848 µs 126 µs 174 (0.87%)

80%
RM VM1 295 µs 13.4 µs 0

RTDS VM1 4513 µs 290 µs 814 (4.07%)

55%
RM VM2 396 µs 17.5 µs 0

RTDS VM2 1914 µs 173 µs 0

65%
RM VM2 396 µs 17.2 µs 0

RTDS VM2 3805 µs 255 µs 2 (0.01%)

80%
RM VM2 397 µs 17.7 µs 0

RTDS VM2 4589 µs 311 µs 6 (0.03%)

55%
RM VM3 490 µs 20.2 µs 0

RTDS VM3 2433 µs 268 µs 0

65%
RM VM3 490 µs 20.2 µs 0

RTDS VM3 4204 µs 330 µs 0

80%
RM VM3 485 µs 18.9 µs 0

RTDS VM3 6069 µs 429 µs 3 (0.15%)

55%
RM VM4 584 µs 21.8 µs 0

RTDS VM4 2159 µs 413 µs 0

65%
RM VM4 5078 µs 518 µs 0

RTDS VM4 4256 µs 545 µs 0

80%
RM VM4 8446 µs 501 µs 0

RTDS VM4 7679 µs 635 µs 0

Table a.1: Full numerical results of experiments described in Section 3.3.4, in-
cluding the amount of missed deadlines, the maxima of measured
latencies and standard deviation values.
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