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FUNCTIONAL CENTRAL LIMIT THEOREMS FOR

MULTIVARIATE BESSEL PROCESSES IN THE FREEZING

REGIME

MICHAEL VOIT, JEANNETTE H.C. WOERNER

Abstract. Multivariate Bessel processes (Xt,k)t≥0 describe interacting parti-

cle systems of Calogero-Moser-Sutherland type and are related with β-Hermite
and β-Laguerre ensembles. They depend on a root system and a multiplicity k

which corresponds to the parameter β in random matrix theory. In the recent
years, several limit theorems were derived for k → ∞ with fixed t > 0 and fixed

starting point. Only recently, Andraus and Voit used the stochastic differential
equations of (Xt,k)t≥0 to derive limit theorems for k → ∞ with starting points

of the form
√
k · x with x in the interior of the corresponding Weyl chambers.

Here we provide associated functional central limit theorems which are locally
uniform in t. The Gaussian limiting processes admit explicit representations in
terms of matrix exponentials and the solutions of the associated deterministic

dynamical systems.

1. Introduction

From a stochastic point of view, integrable interacting particle systems of Calogero-
Moser-Sutherland type on the real line R with N particles are multivariate Bessel
processes on appropriate closed Weyl chambers in R

N . These processes are also
often called Dunkl-Bessel, or radial Dunkl processes. They are time-homogeneous
diffusion processes and can be described either by the generators of their transition
semigroups and their explicit transition probabilities or as solution of the associated
stochastic differential equations (SDEs); see [CGY, GY, R1, R2, RV1, RV2, DV, A].
In general, multivariate Bessel processes (Xt,k)t≥0 are described via root systems,
a possibly multidimensional multiplicity parameter k and by their starting points
X0,k := x. From a physical point of view, the multiplicies k are coupling con-
stants which describe the strength of interaction of the particles (and, sometimes,
of the particles with some fixed wall). We restrict our attention to the root sys-
tems AN−1, BN , and DN on R

N as these cover the most relevant cases in view of
interacting particle systems and random matrix theory. We thus omit the dihedral
cases on R

2 in [Dem], the finitely many exceptional cases, as well as the obvious
direct product situations, where all results follow from the corresponding results of
the independent components.
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We briefly recapitulate the most important cases AN−1 and BN . For AN−1, we
have a multiplicity k ∈]0,∞[, the processes live on the closed Weyl chamber

CA
N := {x ∈ R

N : x1 ≥ x2 ≥ . . . ≥ xN},
and the generator of the transition semigroup is

Lf :=
1

2
∆f + k

N∑

i=1

(∑

j 6=i

1

xi − xj

) ∂

∂xi
f, (1.1)

where we assume reflecting boundaries, i.e., the domain of L is

D(L) := {f |CA
N
: f ∈ C(2)(RN ), f invariant under all coordinate permutations}.

For BN , we have the multiplicity k = (k1, k2) ∈]0,∞[2, the processes live on

CB
N := {x ∈ R

N : x1 ≥ x2 ≥ . . . ≥ xN ≥ 0},
and the generator of the transition semigroup is

Lf :=
1

2
∆f + k2

N∑

i=1

∑

j 6=i

( 1

xi − xj
+

1

xi + xj

) ∂

∂xi
f + k1

N∑

i=1

1

xi

∂

∂xi
f, (1.2)

where we again assume reflecting boundaries, i.e., L has the domain

D(L) := {f |CB
N
: f ∈ C(2)(RN ), f invariant under all permutations

and sign changes of all coordinates}.
By [R1, R2, RV1, RV2], the transition probabilities of arbitrary Bessel processes

have the form

Kt(x,A) = ck

∫

A

1

tγk+N/2
e−(‖x‖2+‖y‖2)/(2t)Jk(

x√
t
,
y√
t
) · wk(y) dy (1.3)

for t > 0, x ∈ CN , and A ⊂ CN a Borel set. For the root systems AN−1 and BN ,
we here have the weight functions wk of the form

wA
k (x) :=

∏

i<j

(xi − xj)
2k, wB

k (x) :=
∏

i<j

(x2i − x2j )
2k2 ·

N∏

i=1

x2k1

i , (1.4)

and
γAk (k) = kN(N − 1)/2, γBk (k1, k2) = k2N(N − 1) + k1N (1.5)

respectively. In all cases, wk is homogeneous of degree 2γk. Furthermore, ck > 0
is a known normalization constant, and Jk is a multivariate Bessel function of
type AN−1 or BN with multiplicities k or (k1, k2) respectively which is analytic
on C

N × C
N with Jk(x, y) > 0 for x, y ∈ R

N . Moreover, Jk(x, y) = Jk(y, x) and
Jk(0, y) = 1 for all x, y ∈ C

N . For this and further informations we refer e.g. to
[R1, R2]. We notice that if we start the process from 0, then Xt,k has the Lebesgue
density

ck
tγ+N/2

e−‖y‖2/(2t) · wk(y) dy (1.6)

on CN for t > 0.
Eq. (1.3) shows that for the root systems AN−1, BN , the multivariate Bessel

processes are related to random matrix theory, as here for the starting point X0,k :=
0 ∈ R

N , the distributions of Xt,k (t > 0) are just (up to scaling and with a proper
choice of the parameters) the distributions of the ordered eigenvalues of β-Hermite
and β-Laguerre ensembles respectively which were introduced by Dumitriu and
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Edelman [DE1, DE2] in the context of their tridiagonal random matrix models. We
also point out that for other starting points, more complicated tridiagonal random
matrix models for the distributions of Xt,k were studied recently; see [AG, HP].

We are interested in limit theorems for (Xt,k)t≥0 when one or several components
of k tend to ∞ in a coupled way (we here briefly write k → ∞ by misuse of
notation). This means that (parts of) the coupling constants become large, i.e.,
from a physics point of view, that we have freezing. Here, k → ∞ means that the
drift terms become large compared with the diffusive Brownian part. Moreover,
in the random matrix models mentioned above this roughly means β → ∞ as in
[DE2]. Most of these limit theorems for k → ∞ were derived in the last years for
(Xt,k)t≥0 when t > 0 and the starting points x ∈ R

N of the processes are fixed;
see [AKM1, AKM2, AM, V] where for the special case x = 0 the results fit to the
results of [DE2] for β → ∞ in tridiagonal random matrix theory.

In the present paper we follow [AV1] and consider the processes (Xt,k)t≥0 given
as solutions of the the stochastic differential equation of the form

dXt,k = dBt +
1

2
(∇(lnwk))(Xt,k) dt

with starting pointsX0,k of the form
√
k·x with x in the interior of the corresponding

Weyl chambers and an N -dimensional Brownian motion (Bt)t≥0. In this case, the

renormalized processes (Xt,k/
√
k)t≥0 start in x and satisfy SDEs with fixed drift

parts, where the diffusive Brownian part tends to 0 for k → ∞. In [AV1], several
limit theorems were derived in this case where most of these limit theorems may
be seen as strong laws of large numbers which are locally uniform in t. Moreover,
only in one special limit case, a corresponding central limit theorem was derived
in [AV1]. In the present paper we present an approach to functional central limit
theorems which again are a.s. locally uniform in t. Our approach works for all root
systems and all limits which appear under the label k → ∞ in our focus.

Let us describe the main results more closely: As mentioned above, the renor-
malized processes (Xt,k/

√
k)t≥0 satisfy SDEs where the Brownian parts disappear

for k → ∞. We denote the solution of the associated deterministic limit differential
equation system with initial condition x by φ := (φ(t, x))t≥0. Using this φ, we shall
derive an explicit Gaussian diffusion process W := (Wt)t≥0 such that

√
k(
Xt,k√
k

− φ(t, x)) −→Wt (1.7)

for k → ∞ locally uniformly in t with the rate O(1/
√
k) a.s..

Clearly, φ plays an essential role in this limit theorem. Unfortunately, we are
not able to write down φ explicitly for arbitrary root systems and arbitrary starting
points x in the interior of the associated Weyl chamber. On the other hand, we
shall collect a lot of informations about φ. For instance, we show that in all cases,
‖φ(t, x)‖2 =

√
Ct+ ‖x‖22 with some known constant C > 0. This implies that we

may decompose the dynamical system into an easy radial part and a difficult part
on a sphere. Moreover, depending on the root system, we have a particular solution

φ(t, x) =
√
Ct+ ‖x‖22 · x0 (1.8)

with a particular vector x0 on the unit sphere and the constant C as above. For
the root systems AN−1, BN and DN (and a particular meaning of k → ∞), the
components of x0 consist of the ordered zeros of the Hermite polynomial HN or
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some Laguerre polynomial LN of order N respectively up to scaling. In fact, this
particular vector x0 already appeared in [AKM1, AKM2, AM, AV1] where the
processes with fixed starting point were studied. We shall see in all cases that the
stationary solution x0 of the spherical part is attractive, i.e., the particular solutions
in (1.8) are attracting for large t in some way. In this special important case of
starting points, we shall compute more specific details about the limit process W
like the covariance matrices of Wt for t > 0.

Notice that the cases in Sections 2-7 below, the central limit theorems for starting
points of the form c · x0 with c > 0 hold also formally for c = 0, i.e., for the fixed
starting point 0 on the boundary of the Weyl chamber by [V]. At a first glance,
this kind of continuity seems to be natural. On the other hand, this is by no way
obvious, as the generators and the SDEs become highly singular in 0.

This paper is organized as follows. In the next two sections we study Bessel
processes of type AN−1 when the one-dimensional multiplicity k tends to ∞. In
particular in Section 2 we discuss details of the solutions φ of the limit dynamical
systems as these solutions appear in all stochastic limit theorems in a central way.
Section 3 is devoted to a functional CLT for the Bessel processes.

In Sections 4 and 5 we then study the root systems BN with multiplicities of the
form k = (k1, k2) = (ν · β, β) where ν > 0 is fixed and β tends to ∞. Depending
on ν, here the zeros of the Laguerre polynomial Lν−1

N play a prominent role. As
in Sections 2 and 3, we first study the solutions of the limit dynamical systems in
Section 4 and present then a functional CLT in Section 5. In Section 6 we consider
the root systems DN with k ∈ [0,∞[ for ∞. The case DN is then used in Section
7 to settle also the limits k = (k1, k2) for k1 ≥ 0 fixed and k2 → ∞ in the BN -case.
As for the root systems BN the case k = (k1, k2) for k2 ≥ 0 fixed and k1 → ∞
was already treated in [AV1], we skip this case here. In Section 8 we consider an
extension to the multivariate Bessel processes by adding an additional drift term
of the form −λXt,k, λ ∈ R and derive the corresponding limit theorems. For
λ > 0 the resulting process is ergodic and mean reverting, which also determines
the long-term behaviour of the limiting Gaussian process. In the one-dimensional
case with λ > 0 the squared process is the Cox-Ingersoll-Ross process, widely used
in mathematical finance. As many results and their proofs for this extension are
completely analogous to the results in the preceding sections, we there only presents
some major results and skip some proofs.

We here finally recapitulate that for all root systems, the Bessel processes (Xt,k)t≥0

may be seen as unique solutions of associated SDEs by the following theorem. This
result is part of Lemma 3.4, Corollary 6.6, and Proposition 6.8 of [CGY], where
the proofs of the first statements contain some gaps which can be closed with the
results in [Sh]. We are grateful to P. Graczyk to a hint to this gap.

Theorem 1.1. Assume that all multiplicities k are positive. Then, for each starting
point x ∈ CN in the closed Weyl chamber and each t > 0, the Bessel process
(Xt,k)t≥0 satisfies

E
(∫ t

0

∇(lnwk)(Xs,k) ds
)
<∞,

and the initial value problem

X0,k = x, dXt,k = dBt +
1

2
(∇(lnwk))(Xt,k) dt (1.9)
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with an N -dimensional Brownian motion (Bt)t≥0 has a unique (strong) solution
(Xt,k)t≥0. This solution is a Bessel process as above.

Moreover, if all components of k are at least 1/2, and if x is in the interior of
CN , then (Xt,k)t≥0 lives on the interior on CN , i.e. (Xt,k)t≥0 does not hit the
boundary a.s..

2. The dynamical system in the limit for the root system AN−1

We first study Bessel processes and their limits for the root systems AN−1 as
k → ∞. We first recapitulate some results [AKM1] and [AV1]. The SDE (1.9) for
Bessel processes (Xt,k)t≥0 of type AN−1 reads as

dXi
t,k = dBi

t + k
∑

j 6=i

1

Xi
t,k −Xj

t,k

dt (i = 1, . . . , N). (2.1)

with an N -dimensional Brownian motion (B1
t , . . . , B

N
t )t≥0. The renormalized pro-

cesses (X̃t,k := Xt,k/
√
k)t≥0 satisfy

dX̃i
t,k =

1√
k
dBi

t +
∑

j 6=i

1

X̃i
t,k − X̃j

t,k

dt (i = 1, . . . , N). (2.2)

The solutions of this SDE are closely related to the following deterministic limit
k = ∞; see Lemma 2.1 of [AV1]:

Lemma 2.1. For ǫ > 0 consider the open subset Uǫ := {x ∈ CA
N : d(x, ∂CA

N ) > ǫ}
(where R

N carries the usual Euclidean distance). Then the function

H : Uǫ → R
N , x 7→

(∑

j 6=1

1

x1 − xj
, . . . ,

∑

j 6=N

1

xN − xj

)

is Lipschitz continuous on Uǫ with Lipschitz constant Lǫ > 0, and for each start-
ing point x0 ∈ Uǫ, the solution φ(t, x0) of the dynamical system dx

dt (t) = H(x(t))
satisfies φ(t, x0) ∈ Uǫ for all t ≥ 0.

For certain starting points, the ODEs of Lemma 2.1 have simple solutions which
can be expressed via the zeros of the N -th Hermite polynomial HN , where we

assume that the (HN )N≥0 are orthogonal w.r.t. the density e−x2

as in [S]. We
recapitulate from [AKM1] (or Section 6.7 of [S]):

Lemma 2.2. For y ∈ CA
N , the following statements are equivalent:

(1) The function 2
∑

i,j:i<j ln(xi − xj)− ‖x‖2/2 is maximal at y ∈ CA
N ;

(2) For i = 1, . . . , N : 1
2yi =

∑
j:j 6=i

1
yi−yj

;

(3) The vector

z := (z1, . . . , zN ) := (y1/
√
2, . . . , yN/

√
2)

consists of the ordered zeroes of HN .

Lemma 2.2 leads to the following solution of the ODEs of Lemma 2.1; cf. [AV1]:

Corollary 2.3. For the vector z as above and each c > 0, a solution of the ODE
in Lemma 2.1 is given by φ(t, c · z) =

√
2t+ c2 · z.
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We next show that the solution in Corollary 2.3 attracts all other solutions.
For this we recapitulate that by [RV1], for a Bessel process (Xt,k)t≥0 of type A,
(‖Xt,k‖)t≥0 is a one-dimensional Bessel process on [0,∞[ with multiplicity param-
eter (kN +1)(N − 1)/2. This corresponds to the following property of φ, where we

denote by φ̇ the derivative with respect to the first component:

d

dt
‖φ(t, x)‖2 = 2

N∑

i=1

φi(t, x) · φ̇i(t, x)

= 2
∑

i,j=1,...,N,i6=j

φi(t, x)

φi(t, x)− φj(t, x)
= N(N − 1). (2.3)

As ‖φ(0, x)‖2 = ‖x‖2, we see that for all t ≥ 0 and all x,

‖φ(t, x)‖2 = N(N − 1)t+ ‖x‖2. (2.4)

This is the first step for the following stability result:

Lemma 2.4. For each initial value x in the interior of CA
N , the solution φ of the

ODE in Lemma 2.1 has the form

φ(t, x) =
√
N(N − 1)t+ ‖x‖2 · φ0(t, x) (t ≥ 0)

where for all t, x, the function φ0 satisfies

‖φ0(t, x)‖ = 1 and lim
t→∞

φ0(t, x) =

√
2

N(N − 1)
· z

with the vector z of Lemma 2.2.

Proof. Using (2.4), we define

φ0(t, x) := (φ0,1(t, x), . . . , φ0,N (t, x)) :=
1√

N(N − 1)t+ ‖x‖2
· φ(t, x) = φ(t, x)

‖φ(t, x)‖
(2.5)

with ‖φ0(t, x)‖ = 1. The ODE in Lemma 2.1 for φ implies that

d

dt
(φ0,i(t, x)) =

φ̇i(t, x)√
N(N − 1)t+ ‖x‖2

− N(N − 1) · φi(t, x)
2(N(N − 1)t+ ‖x‖2)3/2

=
1

N(N − 1)t+ ‖x‖2

(∑

j 6=i

√
N(N − 1)t+ ‖x‖2
φi(t, x)− φj(t, x)

− N(N − 1)

2
φ0,i(t, x)

)

=
1

N(N − 1)t+ ‖x‖2

(∑

j 6=i

1

φ0,i(t, x)− φ0,j(t, x)
− N(N − 1)

2
φ0,i(t, x)

)
.

Therefore,

ψ(t, x) := φ0

(N(N − 1)

2
t2 + ‖x‖2t, x

)
(t ≥ 0)

satisfies

ψ̇i(t, x) =
∑

j 6=i

1

ψi(t, x)− ψj(t, x)
− N(N − 1)

2
ψi(t, x) (i = 1, . . . , N) (2.6)
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with ψ(0, x) = φ0(0, x) = x/‖x‖. The ODE (2.6) is a gradient sytem ψ̇ = (∇u)(ψ)
with

u(y) := 2
∑

i,j=1,...,N,i<j

ln(yi − yj)− ‖y‖2 ·N(N − 1)/4.

Lemma 2.2 ensures that u admits a unique local maximum on CA
N , that this maxi-

mum is a global one, and that it located at
√

2

N(N − 1)
· z

where, by (D.22) of [AKM1], this vector has ‖.‖2-norm 1. We conclude from Sec-
tion 9.4 of [HS] on gradient systems that this point is an asymptotically stable
equilibrium point of the ODE (2.6). This and (2.5) now lead to the claim. �

We are not able to determine φ explicitly for arbitrary starting points and N .
On the other hand, (2.3) is a special case of the observation that for each sym-
metric polynomial p in N variables, t 7→ p(φ(t)) is a polynomial in t which can be
computed explicitly. For instance, it follows immediately from the definition of φ

that d
dt

∑N
k=1 φk(t, x) = 0 and thus

N∑

k=1

φk(t, x) =

N∑

k=1

xk for t ≥ 0. (2.7)

To derive a result for general symmetric polynomials, we use the elementary sym-
metric polynomials ek := eNk in N variables which are characterized by

N∏

k=1

(z − xk) =

N∑

k=0

(−1)N−keN−k(x)z
k (z ∈ C, x = (x1, . . . , xn)). (2.8)

In particular, e0 = 1, e1(x) =
∑N

k=1 xk, . . . , eN (x) =
∏N

k=1 xk. As each symmetric
polynomial in N variables is a polynomial in e1, . . . , eN by a classical result, the
following lemma shows that all symmetric polynomials of φ are polynomials in t.

Lemma 2.5. For each initial value x in the interior of CA
N , consider the solution

φ(t, x) of the ODE in Lemma 2.1. Then, for k = 0, . . . , N , t 7→ ek(φ(t, x)) is a
polynomial in t of degree (at most) ⌊k

2 ⌋ where the leading coefficient of order ⌊k
2 ⌋

is given by

(−1)l ·N !

2l · l!(N − 2l)!
(k = 2l ≤ N) and

(−1)l · (N − 1)!

2l · l!(N − 2l − 1)!
·
N∑

j=1

xj (k = 2l+1 ≤ N).

Proof. The statement is clear for k = 0, 1. For k ≥ 2 we use induction on k. For
this we denote the elementary symmetric polynomial in R variables of order k ≤ R
by eRk , and for a non-empty set S ⊂ {1, . . . , N}, the vector φS(t, x) ∈ R

|S| is the
vector with the coordinates φi(t, x) for i ∈ S in the natural ordering on S. With
these notations we have for k ≥ 2 that

d

dt
ek(φ(t, x)) =

N∑

j=1

dφj(t, x)

dt
· eN−1

k−1 (φ{1,...,N}\{j}(t, x)).
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Therefore, by the differential equation for φ,

d

dt
ek(φ(t, x)) =

N∑

j=1

∑

i:i6=j

eN−1
k−1 (φ{1,...,N}\{j}(t, x))

φj(t, x)− φi(t, x)
(2.9)

=
1

2

∑

i,j=1,...,n;i6=j

eN−1
k−1 (φ{1,...,N}\{j}(t, x))− eN−1

k−1 (φ{1,...,N}\{i}(t, x))

φj(t, x)− φi(t, x)
.

Moreover, simple combinatorial computations yield for i 6= j

eN−1
k−1 (φ{1,...,N}\{j})− eN−1

k−1 (φ{1,...,N}\{i}) = (φi − φj)e
N−2
k−2 (φ{1,...,N}\{i,j}) (2.10)

and
∑

i,j=1,...,N ;i6=j

eN−2
k−2 (φ{1,...,N}\{i,j}) = (N − k + 2)(N − k + 1)eNk−2(φ). (2.11)

Therefore, by (2.9)-(2.11),

d

dt
ek(φ(t, x)) = −1

2
(N − k + 2)(N − k + 1)eNk−2(φ(t, x)). (2.12)

This recurrence relation and the known cases k = 0, 1 now easily lead to the claim.
�

Remark 2.6. The differential equation for φ immediately implies that for each
r ∈ R and x in the interior of CA

N ,

d

dt

(
φ(t, x+ r · (1, . . . , 1))− φ(t, x)

)
= 0

and thus

φ(t, x+ r · (1, . . . , 1)) = φ(t, x) + r · (1, . . . , 1). (2.13)

This implies that we may assume
∑N

j=1 xj = 0 without loss of generality for our

initial conditions. If we do so, the degrees of the polynomials t 7→ ek(φ(t, x)) for
odd k can be chosen to be even smaller.

Lemma 2.5 and Eq. (2.8) can be used to compute φ(t, x) explicitly in the interior
of CA

N . First, one has to determine the polynomials ek(φ(t, x)) (k = 1, . . . , N). In
a second step, one has to determine the ordered, different zeros of the polynomials
in (2.8) from the coefficients of the polynomials which is a diffeomorphism and the
inverse of a simple explicit polynomial map. We present an example.

Example 2.7. Let N = 3. Choose the starting point x ∈ CA
3 with x1+x2+x3 = 0

according to Remark 2.6. We here obtain

e1(φ(t, x)) = 0, e2(φ(t, x)) = −3t+ e2(x), e3(φ(t, x)) = e3(x)

and thus
3∏

k=1

(z − φk(t, x)) = z3 + (e2(x)− 3t)z − e3(x). (2.14)

We now apply Cardano’s formula in the casus irreducibilis. We first observe that
the existence of 3 real zeros implies 3t− e2(x) > 0, and we have the solutions

φk(t, x) =

√
4t− 4

3
e2(x) · cos

(1
3
arccos

(√27

2

e3(x)

(3t− e2(x))3/2

)
+

2

3
(1− k)π

)



CENTRAL LIMIT THEOREMS FOR MULTIVARIATE BESSEL PROCESSES 9

for k = 1, 2, 3. The correct ordering φ1(t, x) ≥ φ2(t, x) ≥ φ3(t, x) here follows easily
from the case t→ ∞ in which case we have

φ(t, x) =

√
4t− 4

3
e2(x) ·

(
(
√

3/4, 0,−
√

3/4) +O(t−3/2)
)

=
√

6t− 2e2(x) · (
√

1/2, 0,−
√

1/2) +O(t−1) =: φ̃(t) +O(t−1)

with a solution φ̃ of our differential equation of the type of Corollary 2.3. This
improves Lemma 2.4 in a quantitative way.

We also remark that the discriminant of the polynomial (2.14) is given by

∆ := e3(x)
2/4 + (e2(x)− 3t)3/27.

By Cardano’s formula, ∆ = 0 holds if and only if we have multiple (real) zeros in
(2.14), i.e., a point on the boundary of CA

3 . Hence, if we formally start our solution
at time t = 0 at some x on the boundary of CA

3 with x1 + x2 + x3 = 0, then φ can
be written down for all t ≥ 0 such that φ(t, x) is in the interior for all t > 0.

We finally point out that with Remark 2.6 we can generalize all results to arbi-
trary starting points in CA

3 .

3. A functional central limit theorem for the root system AN−1

In this section we use the solutions φ of the ODE in Lemma 2.1 in order to derive
limit theorems for Bessel processes of type AN−1. We have the following strong
limit law; see Theorem 2.4 of [AV1].

Theorem 3.1. Let x be a point in the interior of CA
N , and let y ∈ R

N . Let k0 ≥ 1/2

such that
√
k · x+ y is in the interior of CA

N for k ≥ k0.
For k ≥ k0 consider the Bessel processes (Xt,k)t≥0 of type AN−1 starting at√
k · x+ y. Then, for all t > 0,

sup
0≤s≤t,k≥k0

‖Xs,k −
√
kφ(s, x)‖ <∞ (3.1)

almost surely. In particular, locally uniformly in t a.s.,

Xt,k/
√
k → φ(t, x) for k → ∞.

We now turn to an associated functional central limit theorem which makes the
difference Xt,k −

√
kφ(t, x) in (3.1) more precise. For this we again fix a point x in

the interior of CA
N as before and consider the associated solution t 7→ φ(t, x) (t ≥ 0)

of the ODE in Lemma 2.1. We also introduce the N -dimensional process (Wt)t≥0

which is the unique solution of the inhomogeneous linear SDE

dW i
t = dBi

t +
∑

j 6=i

W j
t −W i

t

(φi(t, x)− φj(t, x))2
dt (i = 1, . . . , N). (3.2)

with initial condition W0 = 0; notice that here the denominator is 6= 0 for all t > 0.
The SDE (3.2) may be written in matrix notation as

dWt = dBt +A(t, x)Wtdt (3.3)

with the matrices A(t, x) ∈ R
N×N with

A(t, x)i,j :=
1

(φi(t, x)− φj(t, x))2
, A(t, x)i,i := −

∑

j 6=i

1

(φi(t, x)− φj(t, x))2
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for i, j = 1, . . . , N , i 6= j. The process (Wt)t≥0 admits the explicit representation
in terms of matrix-valued exponentials

Wt = e
∫

t

0
A(s,x)ds

∫ t

0

e−
∫

s

0
A(u,x)dudBs (t ≥ 0). (3.4)

This process is obviously Gaussian, and we shall describe it more closely below.
It is related to the Bessel processes (Xt,k)t≥0 by the following functional CLT:

Theorem 3.2. Let x be a point in the interior of CA
N and let y ∈ R

N . Let k0 ≥ 1/2

such that
√
k · x+ y is in the interior of CA

N for k ≥ k0.
For k ≥ k0 consider the Bessel processes (Xt,k)t≥0 of type AN−1 starting at√
k · x+ y. Then, for all t > 0,

sup
0≤s≤t,k≥k0

√
k · ‖Xs,k −

√
kφ(s, x)−Ws‖ <∞ (3.5)

almost surely. This means that
√
k(

Xt,k√
k

− φ(t, x)) −→ Wt for k → ∞ locally

uniformly in t almost surely with rate O(1/
√
k).

Proof. For k ≥ k0 consider the processes

(Rt,k := Xt,k −
√
kφ(t, x)−Wt)t≥0

on R
N . Then R0,k = 0, and, by the SDEs (3.2) and (2.1) and the ODE for φ in

Lemma 2.1,

Ri
t,k = k

∫ t

0

∑

j 6=i

(
1

Xi
s,k −Xj

s,k

− 1√
k(φi(s, x)− φj(s, x))

− W j
s −W i

s(√
k(φi(s, x)− φj(s, x))

)2

)
ds

for i = 1, . . . , N . We now use Taylor expansion for the function 1/x with Lagrange
remainder around some point x0 6= 0, i.e.,

1

x
=

1

x0
− x− x0

x20
+

(x− x0)
2

x̃3

with some x̃ between x 6= 0 and x0 6= 0 where x, x0 have the same sign. Taking

x = Xi
s,k −Xj

s,k and x0 =
√
k(φi(s, x)− φj(s, x)),

we arrive at

Ri
t,k = −

∫ t

0

(∑

j 6=i

(Xi
s,k −

√
kφi(s, x)−W i

s)− (Xj
s,k −

√
kφj(s, x)−W j

s )

(φi(s, x)− φj(s, x))2
+Hi

s,k

)
ds

= −
∫ t

0

(∑

j 6=i

Ri
s,k −Rj

s,k

(φi(s, x)− φj(s, x))2
+Hi

s,k

)
ds

with the error terms

Hi
s,k = k

∑

j 6=i

(
(Xi

s,k −
√
kφi(s, x))− (Xj

s,k −
√
kφj(s, x))

)2

(√
k(φi(s, x)− φj(s, x)) +Di,j(s)

)3



CENTRAL LIMIT THEOREMS FOR MULTIVARIATE BESSEL PROCESSES 11

where, by the Lagrange remainder,

|Di,j(s)| ≤ |(Xj
s,k −

√
kφj(s, x))− (Xj

s,k −
√
kφj(s, x))|.

By Theorem 3.1, this can be bounded by some a.s. finite random variable D inde-
pendent of i, j, s ∈ [0, t], and k ≥ k0 where D depends on x, y, t. Therefore, for all
i = 1, . . . , N ,

|Hi
s,k| ≤

1√
k
H for k ≥ k0, s ∈ [0, t]

with some a.s. finite random variable H. In summary,

Rt,k = −
∫ t

0

(A(s, x)Rs,k +Hs,k) ds, R0,k = 0

and thus, for suitable norms and all u ∈ [0, t],

‖Ru,k‖ ≤ A

∫ u

0

‖Rs,k‖ ds+
t · ‖H‖√

k

with A := sups∈[0,t] ‖A(s, x)‖ <∞. Hence, by the classical lemma of Gronwall,

‖Ru,k‖ ≤ t‖H‖√
k
etA

for all u ∈ [0, t]. This yields the claim. �

Remark 3.3. The Bessel processes (Xt,k)t≥0 of type A admit some algebraic prop-
erties which are related with corresponding algebraic properties of φ and the matrix
function A(t, x). We discuss some of them:

(1) (Xt,k)t≥0 has the same scaling as Brownian motions, i.e., for all r > 0, the
diffusion ( 1rXr2t,k)t≥0 is also a Bessel process of type A with the same k
where clearly the starting point is changed. The corresponding relations
for φ and A are

φ(r2t, rx) = r · φ(t, x), A(r2t, rx) =
1

r2
A(t, x) for r > 0, t ≥ 0.

Moreover, if we consider (Wt)t≥0 from (3.2), then for r > 0, ( 1rWr2t)t≥0 is
also a process of this type where x is replaced by rx in Eqs. (3.2)–(3.4).

(2) By (2.1), the center of gravity
(
Xt,k :=

1

N
(X1

t,k + . . .+XN
t,k) =

1

N
(B1

t + . . .+BN
t )
)
t≥0

is a Brownian motion up to scaling. For φ and (Wt)t≥0 this means that

N∑

i=1

φi(t, x) = x1 + . . .+ xN and W 1
t + . . .+WN

t = B1
t + . . .+BN

t

for t ≥ 0. Moreover, this reflects the fact that the sums over all rows and
columns of A(t, x) are equal to 0. In particular, A(t, x) is always singular.

(3) Let (X̂t,k)t≥0 be the orthogonal projection of the Bessel process (Xt,k)t≥0 on
R

N to the orthogonal complement (1, . . . , 1)⊥ ⊂ R
N of the vector (1, . . . , 1);

notice that we here write row vectors for simplicity of notation. (X̂t,k)t≥0

is again a diffusion which lives on this (N − 1)-dimensional subspace which
is stochastically independent of the center-of-gravity-process (Xt,k)t≥0 on
R ·(1, . . . , 1). As the latter one is quite simple (see (2)), the main difficulties



12 MICHAEL VOIT, JEANNETTE H.C. WOERNER

of the particle process (Xt,k)t≥0 are contained the (N − 1)-dimensional

process (X̂t,k)t≥0. On the level of φ and A, we have the relations

φ(t, x+ r · (1, . . . , 1)) = φ(t, x) + r · (1, . . . , 1)
and A(t, x+ r · (1, . . . , 1)) = A(t, x) for r ∈ R.

Remark 3.4. Similarly as in Theorem 3.2 we may deduce functional central limit
theorems for powers p ∈ N of Bessel processes (which are taken in all coordinates).
The most prominent examples are the squared Bessel process for p = 2. We have

√
k((

Xt,k√
k
)p − φp(t, x)) −→Wt,p (3.6)

for k → ∞ locally uniformly in t almost surely with limiting processes which are
given as solution of

dWt,p = pφp−1(t, x)dBt + pAp(t, x)Wt,pdt, W0,p = 0 (3.7)

with the matrices Ap(t, x) ∈ R
N×N with

Ap(t, x)i,j :=
φp−1
i (t, x)

(φi(t, x)− φj(t, x))2
,

Ap(t, x)i,i := −
∑

j 6=i

(p− 2)φp−1
i (t, x)− (p− 1)φp−2

i (t, x)φj(t, x)

(φi(t, x)− φj(t, x))2

for i, j = 1, . . . , N , i 6= j.

Remark 3.5. Assume now that N is odd, and that (Xt,k)t≥0 starts at
√
kcz in

the interior of CA
N . In order to study the N−1

2 + 1-th component, we notice that

zN−1

2
+1 = 0 and that hence for p ≥ 2 we have W

N−1

2
+1

t = 0 which implies a

degenerate normal limiting distribution. This suggests that for the N−1
2 + 1-th

component we have a faster rate of convergence than
√
k. Indeed from Theorem

3.2 we see that as k → ∞
X

N−1

2
+1

t,k
d→ N

for some normal random variable N , hence (X
N−1

2
+1

t,k )p
d→ N p without normalizing

sequence.

We finally calculate the covariance matrix of Wt for the special solution φ of
Corollary 2.3 explicitly. For this we introduce the matrix A ∈ R

N×N with

Ai,j :=
1

(zi − zj)2
, Ai,i := −

∑

j 6=i

1

(zi − zj)2
(3.8)

for i, j = 1, . . . , N , i 6= j and the vector z as in 2.2. Moreover, let E be the
N-dimensional unit matrix. It is shown in [AV2] that the matrix E − A has the
eigenvalues

1, 2, . . . , N. (3.9)

The eigenvectors are also known by [AV2], but more complicated. We omit details
here. With these notations we have:
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Lemma 3.6. Assume that (Xt,k)t≥0 starts in the interior of CA
N in

√
k ·cz+y with

y ∈ R, z as in 2.2 and c > 0. Then the covariance matrices Σt ∈ R
N×N for t > 0

of the limit process (Wt)t≥0 are given by

Σt = (t+
c2

2
)(E −A)−1(E − e

(ln c2

2t+c2
)(E−A)

).

with eigenvalues λAk (t, c) =
1
2k

(2t+c2)k−c2k

(2t+c2)k−1 (k = 1, . . . , N). In particular, λA1 (t, c) =
t.

Proof. For the special case φ(s, cz) =
√
2s+ c2z, the matrix function A(s, cz) has

the simple time-dependence A(s, cz) = 1
2s+c2A. Hence we obtain for the process

Wt = e(ln(2t+c2)−ln c2)A/2

∫ t

0

e(− ln(2s+c2)+ln c2)A/2dBs (t ≥ 0).

Since A is real and symmetric and taking (3.9) into account, we may write A as
A = UDU t with an orthogonal matrix U and with the diagonal matrix

D = diag(d1, . . . dN ) := diag(0,−1,−2, . . . ,−N + 1).

This leads to

Wt = U

∫ t

0

diag

(( 2t+ c2

2s+ c2

) d1
2

, . . . ,
( 2t+ c2

2s+ c2

) dN
2

)
dB̃sU

t

with the rotated Brownian motion (B̃t := U tBtU)t≥0. This, the Itô-isometry, and
di/2 6= 1 for all i yield

Σt = U ·
∫ t

0

diag

(( 2t+ c2

2s+ c2

) d1
2

, . . . ,
( 2t+ c2

2s+ c2

) dN
2

)2

ds · U t

= U ·
∫ t

0

diag

(( 2t+ c2

2s+ c2

)d1

, . . . ,
( 2t+ c2

2s+ c2

)dN

)
ds · U t

= U · diag
(

1

2(1− d1)
(2t+ c2 − c2(1−d1)(2t+ c2)d1), . . . ,

1

2(1− dN )
(2t+ c2 − c2(1−dN )(2t+ c2)dN )

)
· U t.

Combining

(U(E −D)−1U t)−1 = U(E −D)U t = E − UDU t = E −A

with a reformulation of the i-th entry in the diagonal matrix

1

2(1− di)
(2t+ c2 − c2(1−di)(2t+ c2)di) =

1

1− di
(t+

c2

2
)(1− e

(1−di) ln
c2

2t+c2 )

we obtain by functional calculus that

Σt = (t+
c2

2
)(E −A)−1

(
E − U · diag

(
e
(1−d1) ln

c2

2t+c2 , . . . , e
(1−dN ) ln c2

2t+c2

)
U t

)

= (t+
c2

2
)(E −A)−1(E − e

(ln c2

2t+c2
)(E−A)

)

which yields the desired form of the covariance matrix. �
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Remark 3.7. (1) A key role plays the matrix (E − A)−1 which is the covari-
ance matrix which appeared in [V] for the case when starting (Xt,k)t≥0 in
zero and in [DE2] in the context of asymptotics for eigenvalues of Hermite
ensembles. Note that though we assume c > 0 we may formally set c = 0
and obtain Σt = t(E−A)−1 as in [V]. Since limt→∞ Σt/t = (E−A)−1, we
obtain asymptotically in t the same result as starting in zero independent
of the actual starting point cz.

(2) As noted in [DE2] (E − A)−1 is the Hessian of the potential from part
(1) of Lemma 2.2 evaluated at the maximizer. Hence the limiting result for
k, t→ ∞ may be interpreted as a natural first order approximation induced
by the underlying dynamical system.

(3) Inserting the definition of the matrix exponential in the representation of

Σt yields Σt = (t+ c2

2 )[− ln c2

2t+c2E− (ln c2

2t+c2
)2

2 (E−A)−· · · ]. Hence we see
that the diagonal elements have a different behaviour in t as the remaining
entries of the covariance matrix.

(4) As the matrices in Lemma 3.6 satisfy Σ0 = 0, the results of Lemma 3.6 are
also valid for t = 0.

(5) We point out that the methods of the proof of Lemma 3.6 also lead to
explicit formulas for the covariances of arbitrary components at different
times for the process (Wt)t≥0.

Remark 3.8. Note that in principle also the eigenvalues of the the general A(t, x)
could be calculated, since the characteristic polynomials are again symmetric poly-
nomials of the entries, which results in quotients of symmetric polynomials in φ.

4. The dynamical system in the limit for the root system BN

In this and the next section we turn to Bessel processes for the root systems BN

with multiplicities k = (k1, k2) = (ν · β, β) with ν > 0 fixed and β → ∞. For this
we first recapitulate some facts from [AKM2] and [AV1].

We first notice that the SDE (1.9) for Bessel processes of type BN reads as

dXi
t,k = dBi

t + β
∑

j 6=i

( 1

Xi
t,k −Xj

t,k

+
1

Xi
t,k +Xj

t,k

)
dt+

ν · β
Xi

t,k

dt (4.1)

for i = 1, . . . , N with an N -dimensional Brownian motion (B1
t , . . . , B

N
t )t≥0. The

renormalized processes (X̃t,k := Xt,k/
√
β)t≥0 satisfy

dX̃i
t,k =

1√
β
dBi

t +
∑

j 6=i

( 1

X̃i
t,k − X̃j

t,k

+
1

X̃i
t,k + X̃j

t,k

)
dt+

ν

X̃i
t,k

dt (4.2)

for i = 1, . . . , N . These processes are related with the deterministic limit case
β = ∞; see Lemma 3.1 of [AV1]:

Lemma 4.1. Let ν > 0. For ǫ > 0 consider the open subset

Uǫ := {x ∈ CB
N : xN >

ǫν

N − 1
, and xi − xi+1 > ǫ for i = 1, . . . , N − 1}
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of CB
N . Then the function

H : Uǫ → R
N , x 7→




∑
j 6=1

(
1

x1−xj
+ 1

x1+xj

)
+ ν

x1

...∑
j 6=N

(
1

xN−xj
+ 1

xN+xj

)
+ ν

xN




is Lipschitz continuous. Moreover, for each starting point x0 ∈ Uǫ, the solution
φ(t, x0) of

dx
dt (t) = H(x(t)) satisfies φ(t, x0) ∈ Uǫ for t ≥ 0.

We discuss the general solutions φ(t, x) below. For certain starting points, φ can
be determined in terms of zeros of Laguerre polynomials. For this we recapitulate

that for α > 0 the Laguerre polynomials (L
(α)
n )n≥0 are orthogonal w.r.t. the density

e−x ·xα. We need the following characterization of the zeros of L
(ν−1)
N ; see [AKM1],

or Section 6.7 of [S], or, in the present notation, [AV1]:

Lemma 4.2. Let ν > 0. For y ∈ CB
N , the following statements are equivalent:

(1) The function

W (x) := 2
∑

i<j

ln(x2i − x2j ) + 2ν
∑

i

lnxi − ‖x‖2/2

is maximal at y ∈ CB
N ;

(2) For i = 1, . . . , N ,

1

2
yi =

∑

j:j 6=i

2yi
y2i − y2j

+
ν

yi
=
∑

j:j 6=i

( 1

yi − yj
+

1

yi + yj

)
+
ν

yi
;

(3) If z
(ν−1)
1 , . . . , z

(ν−1)
N are the ordered zeros of L

(ν−1)
N , then

2z := 2(z
(ν−1)
1 , . . . , z

(ν−1)
N ) = (y21 , . . . , y

2
N ). (4.3)

Lemma 4.2 leads to the following solutions of the ODE of Lemma 4.1; cf. [AV1]:

Corollary 4.3. Let ν > 0 and y ∈ CB
N the vector in Eq. (4.3). Then for each c > 0,

a solution of the dynamical system in Lemma 4.1 is given by φ(t, c ·y) =
√
t+ c2 ·y.

We next show that the solution in Corollary 4.3 attracts all other solutions in
some way similar to the A-case in Lemma 2.4. For this we observe that by the
ODE for φ,

d

dt
‖φ(t, x)‖2 = 2

N∑

i=1

φi(t, x) · φ̇i(t, x)

= 2
∑

i,j=1,...,N,i6=j

( φi(t, x)

φi(t, x)− φj(t, x)
+

φi(t, x)

φi(t, x) + φj(t, x)

)
+ 2νN

= 2N(N + ν − 1). (4.4)

As ‖φ(0, x)‖2 = ‖x‖2, we obtain for t ≥ 0 that

‖φ(t, x)‖2 = 2N(N + ν − 1)t+ ‖x‖2. (4.5)

This is the first step for the following stability result:
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Lemma 4.4. For each starting point x in the interior of CB
N , the solution φ of the

ODE in Lemma 4.1 has the form

φ(t, x) =
√

2N(N + ν − 1)t+ ‖x‖2 · φ0(t, x) (t ≥ 0)

where φ0 satisfies

‖φ0(t, x)‖ = 1 and lim
t→∞

φ0(t, x) =
2

N(N − 1)
z

with the vector z of Lemma 4.2(3).

Proof. The proof is similar to that of Lemma 2.4. Using (4.5), we define

φ0(t, x) :=
1√

2N(N + ν − 1)t+ ‖x‖2
· φ(t, x) = φ(t, x)

‖φ(t, x)‖ (4.6)

with ‖φ0(t, x)‖ = 1. The ODE in Lemma 4.1 implies that

d

dt
(φ0,i(t, x)) =

φ̇i(t, x)√
2N(N + ν − 1)t+ ‖x‖2

− N(N + ν − 1) · φi(t, x)
(2N(N + ν − 1)t+ ‖x‖2)3/2

=
1

2N(N + ν − 1)t+ ‖x‖2

(∑

j 6=i

1

φ0,i(t, x)− φ0,j(t, x)
+

+
∑

j 6=i

1

φ0,i(t, x) + φ0,j(t, x)
+

ν

φ0,i(t, x)
−N(N + ν − 1)φ0,i(t, x)

)
.

Hence, ψ(t, x) := φ0

(
N(N + ν − 1)t2 + ‖x‖2t, x

)
for t ≥ 0 satisfies

ψ̇i(t, x) =
∑

j 6=i

1

ψi(t, x)− ψj(t, x)
+
∑

j 6=i

1

ψi(t, x) + ψj(t, x)

+
ν

ψi(t, x)
−N(N + ν − 1) · ψi(t, x) (4.7)

for i = 1, . . . , N with ψ(0, x) = φ0(0, x) = x/‖x‖. The ODE (4.7) is a gradient

system ψ̇ = (∇u)(ψ) with

u(y) :=
∑

i,j=1,...,N,i<j

(ln(yi − yj) + ln(yi + yj)) + ν

N∑

i=1

ln yi −
N(N + ν − 1)

2
‖y‖2.

Lemma 4.2 ensures that u admits a unique local maximum on CB
N , that this maxi-

mum is a global one, and that it located at y with

(y21 , . . . , y
2
N ) =

1

N(N + ν − 1)
(z

(ν−1)
1 , . . . , z

(ν−1)
N ).

We notice that ‖y‖ = 1; see e.g. (C.10) in [AKM2]. These observations and (4.6)
now lead to the claim as in the proof of Lemma 2.4. �

We are not able to determine φ explicitly for arbitrary starting points and N .
On the other hand, as for the root systems of type A in Section 2, (4.4) is a special
case of more general observation. For this we again use the elementary symmetric
polynomials ek := eNk in N variables and define

ẽk(x) := ẽNk (x) := ek(x
2
1, . . . , x

2
N ) (k = 0, . . . , N).
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As each symmetric polynomial in N variables is a polynomial in e1, . . . , eN by some
classical result, we obtain from the following lemma that all symmetric polynomials
in squares of the components of φ are polynomials in t.

Lemma 4.5. For each x in the interior of CB
N , consider the solution φ(t, x) of the

ODE in Lemma 4.1. Then, for k = 0, . . . , N , t 7→ ẽk(φ(t, x)) is a polynomial in t
of degree k with leading coefficient

2k(N + ν − 1)(N + ν − 2) · · · (N + ν − k) ·
(
N

k

)
(k ≤ N).

Proof. The statement is trivial for k = 0 and follows from (4.5) for k = 1. For
k ≥ 2 we use induction on k. We use the notations φS(t, x) and e

R
k from the proof

of Lemma 2.5. We put ẽRk (x) := eRk (x
2
1, . . . , x

2
R). We then have for k ≥ 2 that

d

dt
ẽk(φ(t, x)) = 2

N∑

j=1

dφj(t, x)

dt
· φj(t, x) · ẽN−1

k−1 (φ{1,...,N}\{j}(t, x)).

Therefore, by the differential equation for φ,

d

dt
ẽk(φ(t, x)) = 2

N∑

j=1

(
2
∑

i:i6=j

φj(t, x)
2

φj(t, x)2 − φi(t, x)2
+ ν

)
ẽN−1
k−1 (φ{1,...,N}\{j}(t, x))

= 2
∑

i,j=1,...,N ;i6=j

φj(t, x)
2ẽN−1

k−1 (φ{1,...,N}\{j}(t, x))− φi(t, x)
2ẽN−1

k−1 (φ{1,...,N}\{i}(t, x))

φj(t, x)2 − φi(t, x)2

+ 2ν

N∑

j=1

ẽN−1
k−1 (φ{1,...,N}\{j}(t, x)). (4.8)

Moreover, simple combinatorial computations show that for k ≤ N − 1,

φ2j ẽ
N−1
k−1 (φ{1,...,N}\{j})− φ2i ẽ

N−1
k−1 (φ{1,...,N}\{i}) = (φ2j − φ2i )ẽ

N−2
k−1 (φ{1,...,N}\{i,j})

(4.9)
and ∑

i,j=1,...,N ;i6=j

ẽN−2
k−1 (φ{1,...,N}\{i,j}) = (N − k + 1)(N − k)ẽNk−1(φ). (4.10)

Moreover,

φ2j ẽ
N−1
N−1(φ{1,...,N}\{j})− φ2i ẽ

N−1
N−1(φ{1,...,N}\{i}) = 0. (4.11)

Furthermore,
N∑

j=1

ẽN−1
k−1 (φ{1,...,N}\{j}) = (N − k + 1)ẽNk−1(φ). (4.12)

Therefore, by (4.8)-(4.12), for k ≤ N ,

d

dt
ẽk(φ(t, x)) = 2(N − k + 1)(N − k + ν)ẽNk−1(φ(t, x)). (4.13)

This recurrence relation and the known cases k = 0, 1 lead easily to the claim. �

Example 4.6. Let ν > 0, N = 2, and x ∈ CB
2 . Then, by (4.4), (4.13), and the

initial conditions,

(z − φ1(t, x)
2)(z − φ2(t, x)

2) = z2 − (φ1(t, x)
2 + φ2(t, x)

2)z + φ1(t, x)
2φ2(t, x)

2
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with

φ1(t, x)
2+φ2(t, x)

2 = 4(1+ν)t+‖x‖2; φ1(t, x)
2φ2(t, x)

2 = 4ν(1+ν)t2+2ν‖x‖2t+x21x22.
This yields, since φ is non-negative,

φ1(t, x) =

(
1

2

(
4(1 + ν)t+ ‖x‖2 +

√
16(1 + ν)t2 + 8‖x‖2t+ (x21 − x22)

2

))1/2

,

φ2(t, x) =

(
1

2

(
4(1 + ν)t+ ‖x‖2 −

√
16(1 + ν)t2 + 8‖x‖2t+ (x21 − x22)

2

))1/2

This implies in particular that for t→ ∞,

φ1(t, x) =

(
1

2
(4(1 + ν)t+ ‖x‖2)

)1/2

1 +

√
1

1 + ν
+

ν
1+ν ‖x‖4 − 4x21x

2
2

(4(1 + ν)t+ ‖x‖2)2




1/2

=

(
1

2
(4(1 + ν)t+ ‖x‖2)

)1/2
(
1 +

√
1

1 + ν

)1/2

+O(t−1/2),

φ2(t, x) =

(
1

2
(4(1 + ν)t+ ‖x‖2)

)1/2
(
1−

√
1

1 + ν

)1/2

+O(t−1/2),

which is some quantitative version of Lemma 4.4.
We also observe that our solutions φ(t, x) also exist when we start at time t = 0

at any point x on the boundary of CB
2 and that for these solutions, φ(t, x) is in the

interior of CB
2 for all t > 0.

5. A functional central limit theorem for the root system BN

The solutions φ in the preceding section appear in the following SLLN for Bessel
processes of type BN ; see Theorem 3.4 of [AV1].

Theorem 5.1. Let ν > 0. Let x be a point in the interior of CB
N , and let y ∈ R

N .
Let β0 ≥ 1/2 with

√
β ·x+y in the interior of CB

N for β ≥ β0. For β ≥ β0, consider
the Bessel processes (Xt,k)t≥0 of type B with k = (k1, k2) = (β · ν, β), which start
in

√
β · x+ y. Then, for all t > 0,

sup
0≤s≤t,β≥β0

‖Xs,k −
√
βφ(s, x)‖ <∞ a.s..

In particular, Xt,(ν·β,β)/
√
β → φ(t, x) for β → ∞ locally uniformly in t a.s..

We now turn to an associated functional central limit theorem which makes the
difference Xt,k − √

βφ(t, x) more precise for ν fixed and β → ∞. As in Section 2
we fix some x in the interior of CB

N and consider the associated solution t 7→ φ(t, x)
(t ≥ 0). We also introduce an N -dimensional process (Wt)t≥0 as the unique solution
of the inhomogeneous linear SDE

dW i
t = dBi

t+
∑

j 6=i

(
W j

t −W i
t

(φi(t, x)− φj(t, x))2
− W j

t +W i
t

(φi(t, x) + φj(t, x))2

)
dt

− ν ·W i
t

φi(t, x)2
dt (5.1)
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for i = 1, . . . , N with initial condition W0 = 0. Notice that here all denominators
are 6= 0 for t > 0. The SDE (5.1) may be written in matrix notation as

dWt = dBt +Aν(t, x)Wtdt (5.2)

with the matrices Aν(t, x) ∈ R
N×N with

Aν(t, x)i,j :=
1

(φi(t, x)− φj(t, x))2
− 1

(φi(t, x) + φj(t, x))2
(i 6= j),

Aν(t, x)i,i :=
∑

j 6=i

(
−1

(φi(t, x)− φj(t, x))2
− 1

(φi(t, x) + φj(t, x))2

)
− ν

φi(t, x)2

(5.3)

for i, j = 1, . . . , N . The process (Wt)t≥0 is given in terms of matrix-exponentials
by

Wt = e
∫

t

0
Aν(s,x)ds

∫ t

0

e−
∫

s

0
Aν(u,x)dudBs (t ≥ 0). (5.4)

This process is obviously Gaussian; we describe it more closely below. It is related
to the Bessel processes (Xt,k)t≥0 as follows:

Theorem 5.2. Let ν > 0. Let x be a point in the interior of CB
N and let y ∈ R

N .
Let β0 ≥ 1/2 such that

√
β · x+ y is in the interior of CA

N for β ≥ β0.
For β ≥ β0 consider the Bessel processes (Xt,k)t≥0 of type BN with k = (νβ, β)

starting at
√
β · x+ y. Then, for all t > 0,

sup
0≤s≤t,β≥β0

√
β · ‖Xs,k −

√
βφ(s, x)−Ws‖ <∞ a.s., (5.5)

i.e., Xs,k − √
βφ(s, x) −→ Wt for β → ∞ locally uniformly in t a.s. with rate

O(1/
√
β).

Proof. For β ≥ β0 consider the processes

(Rt,β := Xt,(νβ,β) −
√
βφ(t, x)−Wt)t≥0

on R
N with R0,β = 0. Then by the SDEs (5.1), (4.1) and the ODE in Lemma 4.1,

Ri
t,β = (5.6)

= β

∫ t

0

[∑

j 6=i

(
1

Xi
s,k −Xj

s,k

− 1√
β(φi(s, x)− φj(s, x))

− W j
s −W i

s(√
β(φi(s, x)− φj(s, x))

)2

)

+
∑

j 6=i

(
1

Xi
s,k +Xj

s,k

− 1√
β(φi(s, x) + φj(s, x))

+
W j

s +W i
s(√

β(φi(s, x) + φj(s, x))
)2

)

+ν

(
1

Xi
s,k

− 1√
βφi(s, x)

+
W i

s(√
βφi(s, x)

)2

)]
ds

for i = 1, . . . , N . We use Taylor expansion for 1/x with Lagrange remainder around
some point x0 6= 0, i.e.,

1

x
=

1

x0
− x− x0

x20
+

(x− x0)
2

x̃3
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with some x̃ between x 6= 0 and x0 6= 0 which have the same signs. Taking

x = Xi
s,k ±Xj

s,k, x0 =
√
β(φi(s, x)± φj(s, x)) and

x = Xi
s,k, x0 =

√
βφi(s, x),

we get

Ri
t,β =−

∫ t

0

(∑

j 6=i

(Xi
s,k −√

βφi(s, x)−W i
s)− (Xj

s,k −√
βφj(s, x)−W j

s )

(φi(s, x)− φj(s, x))2

+
∑

j 6=i

(Xi
s,k −√

βφi(s, x)−W i
s) + (Xj

s,k −√
βφj(s, x)−W j

s )

(φi(s, x) + φj(s, x))2

+
Xi

s,k −√
βφi(s, x)−W i

s

φi(s, x)2
+ +Hi

s,β

)
ds

= −
∫ t

0

(∑

j 6=i

Ri
s,β −Rj

s,β

(φi(s, x)− φj(s, x))2
+
∑

j 6=i

Ri
s,k +Rj

s,k

(φi(s, x) + φj(s, x))2

+ ν
Ri

s,β

φi(s, x)2
+Hi

s,β

)
ds

with the error terms

Hi
s,β =β

[∑

j 6=i

(
(Xi

s,k −√
βφi(s, x))− (Xj

s,k −√
βφj(s, x))

)2

(√
β(φi(s, x)− φj(s, x)) +D−

i,j(s)
)3

+
∑

j 6=i

(
(Xi

s,k −√
βφi(s, x)) + (Xj

s,k −√
βφj(s, x))

)2

(√
β(φi(s, x) + φj(s, x)) +D+

i,j(s)
)3

+ ν

(
Xj

s,k −√
βφj(s, x))

)2

(√
βφi(s, x) +Di(s)

)3
]

where, by the Lagrange remainders in the 3 Taylor expansions above,

|D±
i,j(s)| ≤ |(Xi

s,k −
√
βφi(s, x))± (Xj

s,k −
√
βφj(s, x))|

and

|Di(s)| ≤ |Xi
s,k −

√
βφi(s, x)|.

By Theorem 5.1, the terms |D±
i,j |, |Di| can be bounded by some a.s. finite random

variable D independent of i, j, the sign, s ∈ [0, t], and β ≥ β0 where D depends on
x, y, t. Therefore, for all i = 1, . . . , N ,

|Hi
s,β | ≤

1√
β
H for β ≥ β0, s ∈ [0, t]

with some a.s. finite random variable H. In summary,

Rt,β = −
∫ t

0

(Aν(s, x)Rs,β +Hs,β) ds, R0,k = 0
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and thus, for suitable norms and all u ∈ [0, t],

‖Ru,β‖ ≤ A

∫ u

0

‖Rs,β‖ ds+
t · ‖H‖√

β

with A := sups∈[0,t] ‖Aν(s, x)‖ <∞. The classical lemma of Gronwall now implies
that

‖Ru,β‖ ≤ t‖H‖√
β
etA

for all u ∈ [0, t]. This yields the claim. �

Remark 5.3. The Bessel processes (Xt,k)t≥0 of type B have the same space-time
scaling as Brownian motions and the Bessel processes of type A in Remark 3.3(1),
i.e., for r > 0, ( 1rXr2t,k)t≥0 is also a Bessel process of type B with the same k with
modified starting points. The corresponding relations for φ and A are

φ(r2t, rx) = r · φ(t, x), A(r2t, rx) =
1

r2
A(t, x) for r > 0, t ≥ 0.

Moreover, for the solution (Wt)t≥0 of (3.2), ( 1rWr2t)t≥0 is also a process of this type
where x has to be replaced by rx in Eqs. (5.1)–(5.3).

In the end of this section we again calculate the covariance matrix of Wt for the
special solution φ of Corollary 4.3 explicitly. For this we introduce the matrices
Aν = (Aν,i,j)i,j ∈ R

N×N with

Aν,i,j :=
1

(yi − yj)2
− 1

(yi + yj)2
, Aν,i,i :=

∑

j 6=i

( −1

(yi − yj)2
− 1

(yi + yj)2

)
− ν

y2i

(5.7)
for i, j = 1, . . . , N , i 6= j and the vector y as in 4.2. Moreover, E is the N-
dimensional unit matrix. It is shown in [AV2] that E − 2Aν has the eigenvalues

2, 4, . . . , 2N, (5.8)

independent of ν. The eigenvectors are also known by [AV2], but more complicated.
We omit details here. With these notations we have:

Lemma 5.4. Let ν > 0. Assume that the Bessel process (Xt,k)t≥0 of type B with
k = (νβ, β) starts in the point

√
β · cy + w in the interior of CB

N with w ∈ R, y as
in 4.2, and c > 0. Then, the covariance matrices Σν,t ∈ R

N×N for t > 0 of the
limit Gaussian process (Wt)t≥0 are given by

Σν,t = (t+ c2)(E − 2Aν)
−1(E − e

ln c2

t+c2
(E−2Aν))

with eigenvalues λBk (t, c) =
1
2k

(t+c2)2k−c4k

(t+c2)2k−1 (k = 1, . . . , N).

Proof. For the special case φ(s, cy) =
√
s+ c2y with c > 0 and the vector y in 4.2,

the matrix function Aν(s, cz) has the form Aν(s, cy) =
1

s+c2Aν . Hence,

Wt = e(ln(t+c2)−ln c2)Aν

∫ t

0

e(− ln(s+c2)+ln c2)AνdBs (t ≥ 0).

Since Aν is real and symmetric and taking (5.8) into account, we may write Aν as
Aν = UDU t with an orthogonal matrix U and with the diagonal matrix

D = diag(d1, . . . dN ) := diag(−1/2,−3/2, . . . , (−2N + 1)/2).
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This leads to

Wt = U

∫ t

0

diag

(( t+ c2

s+ c2

)d1

, . . . ,
( t+ c2

s+ c2

)dN

)
dB̃s · U t

with the rotated Brownian motion (B̃t := U tBtU)t≥0. This, the Itô-isometry, and
2di 6= 1 for all i yield

Σt = U ·
∫ t

0

diag

(( t+ c2

s+ c2

)d1

, . . . ,
( t+ c2

s+ c2

)dN

)2

ds · U t

= U ·
∫ t

0

diag

(( t+ c2

s+ c2

)2d1

, . . . ,
( t+ c2

s+ c2

)2dN

)
ds · U t

= U · diag
(

1

1− 2d1
(t+ c2 − c2(1−2d1)(t+ c2)2d1), . . . ,

1

1− 2dN
(t+ c2 − c2(1−2dN )(t+ c2)2dN )

)
· U t.

Combining

(U(E − 2D)−1U t)−1 = E − 2 · UDU t = E − 2Aν

with

1

1− 2di
(t+ c2 − c2(1−2di)(t+ c2)2di) =

1

1− 2di
(t+ c2)(1− e

(1−2di) ln
c2

t+c2 )

we obtain by functional calculus that

Σν,t = (t+ c2)(E − 2Aν)
−1

(
U · diag

(
1− e

(1−2d1) ln
c2

t+c2 , . . . , 1− e
(1−2dN ) ln c2

t+c2

)
U t

)

= (t+ c2)(E − 2Aν)
−1(E − e

ln c2

t+c2
(E−2Aν))

which yields the desired form of the covariance matrix. �

Remark 5.5. The eigenvalues of Σt in the cases A2N−1 and BN are related by

λBi (t, c) = λA2i(t, c ·
√
2) (i = 1, . . . , N)

independent of ν. We have the impression that this is connected in some way with

the fact that H2N (x) = const.(N) · L[−1/2)
N (x2) for ν = 1/2.

Please notice that all preceding results hold for ν > 0. We show below that most
results are also valid for ν = 0, where however, some results will have a slightly
modified form. These results are closely related to the root systems of type D.

6. A functional central limit theorem for the root system DN

We now briefly study limit theorems for Bessel processes of type DN . We reca-
pitulate that the associated closed Weyl chamber is

CD
N = {x ∈ R

N : x1 ≥ . . . ≥ xN−1 ≥ |xN |},



CENTRAL LIMIT THEOREMS FOR MULTIVARIATE BESSEL PROCESSES 23

i.e., CD
N is a doubling of CB

N w.r.t. the last coordinate. We have a one-dimensional
multiplicity k ≥ 0, and the SDE (1.9) for the Bessel processes (Xt,k)t≥0 of type D
has the form

dXi
t,k = dBi

t + k
∑

j 6=i

( 1

Xi
t,k −Xj

t,k

+
1

Xi
t,k +Xj

t,k

)
dt (6.1)

for i = 1, . . . , N with an N -dimensional Brownian motion (B1
t , . . . , B

N
t )t≥0. The

renormalized processes (X̃t,k := Xt,k/
√
k)t≥0 satisfy

dX̃i
t,k =

1√
k
dBi

t +
∑

j 6=i

( 1

X̃i
t,k − X̃j

t,k

+
1

X̃i
t,k + X̃j

t,k

)
dt (i = 1, . . . , N). (6.2)

These processes are closely related with the deterministic limit k = ∞. For this
limit case we recapitulate the following obvious facts from Lemma 4.1 of [AV1]:

Lemma 6.1. For ǫ > 0 consider the open subsets Uǫ := {x ∈ CD
N : d(x, ∂CD

N ) > ǫ}.
Then the function

H : Uǫ → R
N , x 7→




∑
j 6=1

(
1

x1−xj
+ 1

x1+xj

)

...∑
j 6=N

(
1

xN−xj
+ 1

xN+xj

)




is Lipschitz continuous on Uǫ, and for each starting point x0 ∈ Uǫ, the solution
φ(t, x0) of

dx
dt (t) = H(x(t)) satisfies φ(t, x0) ∈ Uǫ for t ≥ 0.

We now proceed as in Section 4 of [AV1]. Using the representation

L
(α)
N (x) :=

N∑

k=0

(
N + α

N − k

)
(−x)k
k!

(α ∈ R, N ∈ N)

of the Laguerre polynomials according to (5.1.6) of Szegö [S], we form the polyno-

mial L
(−1)
N of order N ≥ 1 where, by (5.2.1) of [S],

L
(−1)
N (x) = − x

N
L
(1)
N−1(x). (6.3)

Hence, by continuity, the equivalence of (2) and (3) of Lemma 4.2 remains valid for

ν = 0 with the N zeros z1 > . . . > zN = 0 of L
(−1)
N . In summary, by [AV1]:

Lemma 6.2. For r ∈ CD
N , the following statements are equivalent:

(1) The function WD(y) := 2
∑

i<j ln(y
2
i − y2j )−‖y‖2/2 is maximal in r ∈ CB

N ;

(2) rN = 0, and for i = 1, . . . , N − 1,

4
∑

j:j 6=i

1

r2i − r2j
= 1;

(3) If z
(1)
1 > . . . > z

(1)
N−1 > 0 are the N − 1 ordered zeros of L

(1)
N−1, then

2 · (z(1)1 , . . . , z
(1)
N−1, 0) = (r21, . . . , r

2
N ). (6.4)

As in the B-case in Section 3, Lemma 6.2 leads to the following particular solu-
tions of the ODE of Lemma 6.1; cf. [AV1]:

Corollary 6.3. Let r ∈ CD
N the vector in Eq. (6.4). Then for each c > 0, a solution

of the dynamical system in Lemma 6.1 is given by φ(t, c · r) =
√
t+ c2 · r.
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Again, the solutions in Corollary 6.3 are attracting. For this we again first
observe that as in Section 3, for all x in the interior of CD

N and t ≥ 0,

‖φ(t, x)‖2 = 2N(N − 1)t+ ‖x‖2. (6.5)

This is the first step for the following stability result which is completely analogous
to Lemma 4.4; we thus omit the proof.

Lemma 6.4. For each x in the interior of CD
N , the solution φ of the ODE in

Lemma 4.1 has the form

φ(t, x) =
√
2N(N − 1)t+ ‖x‖2 · φ0(t, x) (t ≥ 0)

where φ0 satisfies

‖φ0(t, x)‖ = 1 and lim
t→∞

φ0(t, x) =
2

N(N − 1)
r

with the vector r of Lemma 6.2.

Beside the particular solutions of the ODE in Lemma 6.3 we have the following

observations for further special solutions. This result fits with Eq. (6.3) for L
(−1)
N .

Lemma 6.5. Let x be a point in the interior of CD
N with xN = 0. Then the

associated solution of the ODE in Lemma 6.1 satisfies φ(t, x)N = 0 for all t, and
the first N − 1 components (φ(t, x)1, . . . , φ(t, x)N−1) solve the ODE of the B-case
in Lemma 4.1 with dimension n− 1 and ν = 2.

Moreover, if xN > 0 or < 0, then for all t, φ(t, x)N > 0 or < 0 respectively.

Proof. If xN = 0, then by the ODE in 6.1, d
dtφ(t, x)N = 0. This shows the first

statements. These statements and the fact that the curves (φ(t, x))t are either
equal or do not intersect then show the last statement. �

The solutions φ of the ODE in Lemma 4.1 appear in the following SLLN; see
Theorem 5.5 of [AV1]:

Theorem 6.6. Let x be a point in the interior of CD
N , and y ∈ R

N . Let k ≥ 1/2

with
√
k · x + y in the interior of CB

N for k ≥ k0. For k ≥ k0, consider the Bessel

processes (Xt,k)t≥0 of type DN starting in
√
k · x+ y. Then, for all t > 0,

sup
0≤s≤t,k≥k0

‖Xs,k −
√
kφ(s, x)‖ <∞

almost surely. In particular,

Xt,k/
√
k → φ(t, x) for k → ∞

locally uniformly in t a.s..

We now turn to an associated functional CLT for Xt,k−
√
kφ(t, x). As in Section

3 we fix some x in the interior of CD
N and consider the associated solution t 7→ φ(t, x)

(t ≥ 0). We also introduce an N -dimensional process (Wt)t≥0 as the unique solution
of the inhomogeneous linear SDE

dW i
t = dBi

t +
∑

j 6=i

(
W j

t −W i
t

(φi(t, x)− φj(t, x))2
− W j

t +W i
t

(φi(t, x) + φj(t, x))2

)
dt (6.6)

for i = 1, . . . , N with initial condition W0 = 0. The SDE (6.6) may be written in
matrix notation as

dWt = dBt +A(t, x)Wtdt (6.7)
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with the matrix A(t, x) ∈ R
N×N with

A(t, x)i,j :=
1

(φi(t, x)− φj(t, x))2
− 1

(φi(t, x) + φj(t, x))2
(i 6= j),

A(t, x)i,i :=
∑

j 6=i

(
−1

(φi(t, x)− φj(t, x))2
− 1

(φi(t, x) + φj(t, x))2

)
(6.8)

for i, j = 1, . . . , N . The process (Wt)t≥0 is Gaussian and given by

Wt = e
∫

t

0
A(s,x)ds

∫ t

0

e−
∫

s

0
A(u,x)dudBs (t ≥ 0). (6.9)

It is related to the Bessel processes (Xt,k)t≥0 of type D by the following result. As
the proof is completely analogous to that of Theorem 5.2, we omit the proof.

Theorem 6.7. Let x be a point in the interior of CD
N and let y ∈ R

N . Let k0 ≥ 1/2

such that
√
k · x+ y is in the interior of CD

N for k ≥ k0.

For k ≥ k0 consider the Bessel processes (Xt,k)t≥0 starting at
√
k · x+ y. Then,

for all t > 0,

sup
0≤s≤t,k≥k0

√
k · ‖Xs,k −

√
kφ(s, x)−Ws‖ <∞ a.s., (6.10)

i.e., Xs,k −
√
kφ(s, x) −→ Ws for k → ∞ locally uniformly in s a.s. with rate

O(1/
√
k).

Remark 6.8. Consider the Bessel processes (Xt,k)t≥0 of Theorem 6.7 which start

in
√
k ·x for x in the interior of CD

N with xN = 0. Then, by Lemma 6.5, φ(t, x)N = 0
for all t ≥ 0, and the matrix function A from (6.8) satisfies A(t, x)N,N = 0.

We next calculate the covariance matrix of Wt for the special solution φ of
Corollary 6.3. For this we introduce the matrix A ∈ R

N×N with

Ai,j :=
1

(ri − rj)2
− 1

(ri + rj)2
, Ai,i :=

∑

j 6=i

( −1

(ri − rj)2
− 1

(ri + rj)2

)
(6.11)

for i, j = 1, . . . , N , i 6= j and the vector r as in 6.2. By [AV2], E − 2A has the
eigenvalues

2, 4, . . . , 2N. (6.12)

The eigenvectors are also known by [AV2]; we omit details here. With these nota-
tions we obtain the following result. As its proof is again analog to that of Lemma
5.4, we skip the proof.

Lemma 6.9. Assume that the Bessel processes (Xt,k)t≥0 of type DN start in the

points
√
k · cr + w in the interior of CD

N with w ∈ R
N , r as in 6.2, and c > 0.

Then, the covariance matrices Σt ∈ R
N×N for t > 0 of the limit Gaussian process

(Wt)t≥0 are given by

Σt = (t+ c2)(E − 2A)−1(E − e
ln c2

t+c2
(E−2A)

).

Remark 6.10. Let x be a point in the interior of CD
N with xN = 0. Then, by

Lemma 6.5, the matrices A(t, x) of Eq. (6.8) satisfy A(t, x)N,j = A(t, x)j,N =
0 for j 6= N and t > 0. We thus conclude from Eq. (6.9) that for the cen-

tered Gaussian process (Wt)t≥0 the N -th component (W
(N)
t )t≥0 is independent
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from (W
(1)
t , . . . ,W

(N−1)
t )t≥0. This situation appears in particular in the setting of

Lemma 6.9.

7. Further limit theorems for the case B

The preceding results for the root systems of type D are closely related to limit
results for Bessel processes of type B for the degenerated case (k1, k2) = (0, k) for
k → ∞ which was excluded in Section 3.

To explain the connection we recapitulate some well-known facts; see [AV1], [V].
Let (XD

t,k)t≥0 be a Bessel process of type D with multiplicity k ≥ 0 on the chamber

CD
N starting in some point x in the interior of CD

N . It follows from the generator of
the associated semigroup (or the associated SDE (6.1)) that the process (XB

t,k)t≥0

with
XB,i

t,k := XD,i
t,k (i = 1, . . . , N − 1), XB,N

t,k := |XD,N
t,k |

is a Bessel process of type B with the multiplicity (k1, k2) := (0, k) and starting
point (x1, . . . , xN−1, |xN |) ∈ CB

N with x1 > . . . > xN−1 > |xN | ≥ 0. Notice that
(XB

t,k)t≥0 is a diffusion with reflecting boundary where in particular the boundary
parts with the N -th coordinate equal to zero are attained.

We now translate the results of the preceding section. For this we consider the
solutions φ(t, x) of the ODE in Lemma 6.1 in the following two particular cases:

(1) If x is in the interior of CB
N , then φ(t, x) will be also in the interior of CB

N

for all t ≥ 0.
(2) If x ∈ CB

N satisfies x1 > . . . > xN−1 > xN = 0, then we have φ(t, x)1 >
. . . > φ(t, x)N−1 > φ(t, x)N = 0 for all t ≥ 0.

Case (2) appears in particular for φ(t, x) =
√
t+ c2 · r for c > 0 and the vector r

from Lemma 6.2 with rN = 0.
Theorem 6.6 now reads as follows for the B-case with (k1, k2) = (0, k) for k → ∞:

Theorem 7.1. Let x be a point as described above in (1) or (2). For k ≥ 1/2,

consider the Bessel processes (Xt,(0,k))t≥0 of type BN starting in
√
k · x. Then, for

all t > 0,

sup
0≤s≤t,k≥1/2

‖Xs,k −
√
kφ(s, x)‖ <∞ a.s..

We next consider the Gaussian processes (Wt)t≥0 of Eq. (6.9). Theorem 6.7 now
leads to functional CLTs where the cases (1) and (2) have to be treated separately
for geometric reasons. For the case (1) we have the following result:

Theorem 7.2. Let x be a point in the interior of CB
N . For k ≥ 1/2 consider Bessel

processes (Xt,(0,k))t≥0 of type B starting at
√
k · x. Then, for all t > 0,

sup
0≤s≤t,k≥k0

√
k · ‖Xs,(0,k) −

√
kφ(s, x)−Ws‖ <∞ a.s.. (7.1)

Proof. As x is in the interior of CB
N , we obtain that for each t > 0 and almost all

ω ∈ Ω, the path (
√
kφ(s, x)−Ws(ω))s∈[0,t] is arbitrarily far away from the boundary

of CB
N whenever k is sufficiently large. This, the connection between the D- and

B-case, and Theorem 6.7 thus lead to the theorem. �

Theorem 7.2 may be seen as Theorem 5.2 for the degenerate case ν = 0 in the
notation there.

We next turn to case (2):
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Theorem 7.3. Let x ∈ CB
N with x1 > . . . > xN−1 > xN = 0. For k ≥ 1/2 consider

Bessel processes (Xt,(0,k))t≥0 of type B starting at
√
k · x. Then, for the process

(W̃t := (W
(1)
t , . . . ,W

(N−1)
t , |W (N)

t |))t≥0, and all t > 0,

sup
0≤s≤t,k≥k0

√
k · ‖Xs,(0,k) −

√
kφ(s, x)− W̃s‖ <∞ a.s.. (7.2)

Proof. This follows immediately from Theorem 6.7, the connection between the D-
and B-case, and from ||a| − |b|| ≤ |a− b| for a, b ∈ R. �

We finally notice that for the process (W̃t)t≥0, the first N − 1 components form

a Gaussian process which is independent from (|W (N)
t |)t≥0 by Remark 6.10. The

distributions of |W (N)
t | clearly are one-sided normal distributions.

8. Extensions to multi-dimensional Bessel processes with an

additional Ornstein-Uhlenbeck component

In this section we will consider an extension of our previous models by adding
an additional drift coefficient of the form −λx, λ ∈ R, i.e. a component as in a
classical Ornstein-Uhlenbeck setting

dYt,k = dBt + (
1

2
(∇(lnwk))(Yt,k)− λYt,k) dt.

If λ > 0, we obtain a mean reverting process with speed of mean-reversion λ, which
is an ergodic process. For λ ≤ 0 the process is non-ergodic. For N = 1 and λ > 0
the squared process is the well-known Cox-Ingersoll-Ross process, widely used in
mathematical finance.

We derive the results for the root system AN−1 as the same technique also
holds for the other root systems. We consider processes (Yt,k)t≥0 of type AN−1 as
solutions of

dY i
t,k = dBi

t +


k

∑

j 6=i

1

Y i
t,k − Y j

t,k

− λY i
t,k


 dt (i = 1, . . . , N). (8.1)

with an N -dimensional Brownian motion (B1
t , . . . , B

N
t )t≥0. By applying Itô’s for-

mula together with a time-change argument we see that Y may be given as a
space-time transformation of the original X (with λ = 0), namely

Yt,k = e−λtX e2λt
−1

2λ
,k
.

For a proof based on the generators cf. [RV1].
A similar relation also holds for the solutions of the associated deterministic

dynamical systems.

Lemma 8.1. Let φ(t, x) be a solution of the dynamical system dx
dt (t) = H(x(t))

with starting point x in the interior of CA
N as in Lemma 2.1. Then

φ(
1− e−2λt

2λ
, e−λtx)

is a solution of the dynamical system dx
dt (t) = H(x(t))−λx(t) with starting point x

for all t ≥ 0.
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Proof. The claim follows by direct calculation. We denote by φ̇(t, x) the derivative
with respect to the first argument. For i ∈ {1, · · ·N} we obtain by the space-time
homogeneity in Remark 3.3 that

∂

∂t
φi(

1− e−2λt

2λ
, e−λtx) =

∂

∂t

(
e−λtφi(

e2λt − 1

2λ
, x)

)

= −λe−λtφi(
e2λt − 1

2λ
, x) + e−λt ∂

∂t
φi(

e2λt − 1

2λ
, x)

= −λe−λtφi(
e2λt − 1

2λ
, x) + eλtφ̇i(

e2λt − 1

2λ
, x)

= −λφi(
1− e−2λt

2λ
, e−λtx)

+
∑

j 6=i

1

φi(
1−e−2λt

2λ , e−λtx)− φj(
1−e−2λt

2λ , e−λtx)
,

which yields the desired result. �

With the same technique as in Theorem 3.1 and Theorem 3.2 we may deduce a
functional central limit theorem for (Yt,k)t≥0, namely

√
k(
Yt,k√
k

− φ(
1− e−2λt

2λ
, e−λtx)) −→Wt (8.2)

for k → ∞ locally uniformly in t almost surely with rate O(1/
√
k), where W is

given by

dW i
t = dBi

t +


∑

j 6=i

W j
t −W i

t

(φi(
1−e−2λt

2λ , e−λtx)− φj(
1−e−2λt

2λ , e−λtx))2
− λW i

t


 dt. (8.3)

for i = 1, . . . , N with initial condition W0 = 0. The SDE (8.3) may be written in
matrix notation as

dWt = dBt +Aλ(t, x)Wtdt (8.4)

with the matrices Aλ(t, x) ∈ R
N×N with

Aλ(t, x)i,j :=
1

(φi(
1−e−2λt

2λ , e−λtx)− φj(
1−e−2λt

2λ , e−λtx))2
,

Aλ(t, x)i,i := −
∑

j 6=i

1

(φi(
1−e−2λt

2λ , e−λtx)− φj(
1−e−2λt

2λ , e−λtx))2
− λ

for i, j = 1, . . . , N , i 6= j. The process (Wt)t≥0 admits the explicit representation
in terms of matrix-valued exponentials

Wt = e
∫

t

0
Aλ(s,x)ds

∫ t

0

e−
∫

s

0
Aλ(u,x)dudBs (t ≥ 0). (8.5)

Note that due to the constant term in the diagonal of Aλ(t, x) for λ 6= 0, we
obtain a linear time-dependence in the exponential of the matrix exponential which
dominates the long-term behaviour of the covariance matrix as we will see in the
following special case.
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Lemma 8.2. Assume that (Yt,k)t≥0 starts in the interior of CA
N in

√
k · cz+y with

y ∈ R, z as in 2.2 and c > 0. Then the covariance matrices Σλ
t ∈ R

N×N for t > 0
of the limit process (Wt)t≥0 are given by

Σλ
t =

1 + e−2λt(λc2 − 1)

2λ
(E −A)−1(E − e

ln λc2

e2λt
−1+λc2

(E−A)
),

where A is defined by (3.8).

Proof. For the special starting points cz we obtain the special solution

φ(
1− e−2λs

2λ
, e−λscz) = e−λsφ(

e2λs − 1

2λ
, cz)

= e−λs

√
e2λs − 1

λ
+ c2z.

Hence the matrix function Aλ(s, cz) has the simple form with the same time-
dependence for each entry

Aλ(s, cz) =
λe2λs

e2λs − 1 + λc2
A− diag(λs, · · · , λs),

where A is given by (3.8). This yields the process

Wt =

∫ t

0

e
(t−s)diag(−λ,··· ,−λ)+ln

(

e2λt
−1+λc2

e2λs
−1+λc2

)

A
dBs (t ≥ 0).

Since A is real and symmetric and taking (3.9) into account, we may write Aλ(s, cz)
as Aλ(s, cz) = UDU t with an orthogonal matrix U and with the diagonal matrix

D = diag(
λe2λs

e2λs − 1 + λc2
d1 − λs, . . .

λe2λs

e2λs − 1 + λc2
dN − λs).

This leads to

Wt = U

∫ t

0

diag

(( e2λt − 1 + λc2

e2λs − 1 + λc2

) d1
2

e−(t−s)λ, . . . ,
( e2λt − 1 + λc2

e2λs − 1 + λc2

) dN
2

e−(t−s)λ

)
dB̃sU

t

with the rotated Brownian motion (B̃t := U tBtU)t≥0. This, the Itô-isometry, and
di/2 6= 1 for all i yield

Σλ
t

= U ·
∫ t

0

diag

(( e2λt − 1 + λc2

e2λs − 1 + λc2

)d1

e−2(t−s)λ, . . . ,
( e2λt − 1 + λc2

e2λs − 1 + λc2

)dN

e−2(t−s)λ

)
ds · U t

= U · diag
(
e−2λt

2λ

(
1

1− d1
(e2λt − 1 + λc2)− 1

1− d1
(λc2)1−d1(e2λt − 1 + λc2)d1

)
, . . . ,

e−2λt

2λ

(
1

1− dN
(e2λt − 1 + λc2)− 1

1− dN
(λc2)1−dN (e2λt − 1 + λc2)dN

))
· U t.

With a similar calculation as in the proof of Lemma 3.6 we obtain

Σλ
t =

e−λ2t

2λ
(e2λt − 1− λc2)(E −A)−1(E − e

ln( λc2

e2λt
−1+λc2

)(E−A)
)

which yields the desired form of the covariance matrix. �
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Remark 8.3. (1) Note that the long-term behaviour of the covariance matrix
is inherited by the long-term behaviour of Y . In the ergodic case for Y ,
i.e. λ > 0, we obtain limt→∞ Σλ

t = 1
2λ (E − A)−1. For λ < 0 we need an

exponential scaling

lim
t→∞

e2λtΣλ
t =

λc2 − 1

2λ
(E −A)−1(E − e

ln( λc2

λc2−1
)(E−A)

).

(2) Note that we can also recover the formula for Σλ
t in terms of Σ0

t by replacing

t with 1−e−2λt

2λ and c by e−λtc. This also transfers to the eigenvalues and

leads to the largest eigenvalue (1− e−2λt)/(2λ).
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