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Abstract

Classical finite association schemes lead to finite-dimensional algebras which are gen-
erated by finitely many stochastic matrices. Moreover, there exist associated finite hy-
pergroups. The notion of classical discrete association schemes can be easily extended to
the possibly infinite case. Moreover, this notion can be relaxed slightly by using suitably
deformed families of stochastic matrices by skipping the integrality conditions. This leads
to a larger class of examples which are again associated to discrete hypergroups.

In this paper we propose a topological generalization of association schemes by using
a locally compact basis space X and a family of Markov-kernels on X indexed by some
locally compact space D where the supports of the associated probability measures satisfy
some partition property. These objects, called continuous association schemes, will be
related to hypergroup structures on D. We study some basic results for this notion and
present several classes of examples. It turns out that for a given commutative hypergroup
the existence of an associated continuous association scheme implies that the hypergroup
has many features of a double coset hypergroup. We in particular show that commutative
hypergroups, which are associated with commutative continuous association schemes,
carry dual positive product formulas for the characters. On the other hand, we prove
some rigidity results in particular in the compact case which say that for given spaces
X, D there are only a few continuous association schemes.

1 Introduction

In this paper we study a topological generalization of the notion of classical finite association
schemes by using the notion of hypergroups in the sense of Dunkl, Jewett, and Spector. To
explain this, let us start with the notion of a finite association scheme which is common in
algebraic combinatorics; see e.g. the monographs [5], [4].

1.1 Definition. Let X, D be finite nonempty sets and (R;);cp a disjoint partition of X x X
with R; # 0 (i € D) and with:

(1) There exists e € D with R, = {(z,z) : z € X }.

(2) There exists an involution i — i on D such that for i € D, R; = {(y,z) : (z,y) € R;}.



(3) For all 4,5,k € D and (z,y) € Ry, the number
pfij ={zeX: (z,2) € R; and (2,y) € R;}|
is independent of (z,y) € Ry.

Then A := (X, D, (R;)icp) is called a finite association scheme with intersection numbers
(pﬁj)i,j,kel) and identity e.

Now let A := (X, D, (R;)icp) be a finite association scheme. Form the adjacency matrices
A; € RX¥*X (i € D) with

1 if (z,y) € R;

(Ai)ay = { 0  otherwise (i €D, zy€X)

Then A, is the identity matrix Iy, and the transposed matrices satisfy A7 = A; for i € D.
Moreover, for i, j € D, we have for the usual matrix product A;A; = >, .p pﬁ jAk-
Define the valencies

wi=pi;=[{z€X: (z,2) € R} €N (1.1)

of R; (or i € D), where these numbers are independent of x € X. Then the renormalized
adjacency matrices S; := W%Ai € RX*X are stochastic, i.e., all row sums are equal to 1.
Moreover, the products

SiSj =Y 2 pk.S (i) € D) (1.2)

keD iV

are convex combinations of the S;, and the linear span of the S; is a finite dimensional
algebra. This algebra is isomorphic with the algebra of measures of some finite hypergroup
structure on D in the sense of Dunkl, Jewett, and Spector, where the S; are identified with
the point measures §; of i« € D. For this we recapitulate the definition of a finite hypergroup;
see [8], [14], [21], and in the finite case, [44], [45]. We point out that we do not use another
definition of hypergroups where products of sets are considered, and which runs under the
subject classification 20N20.

1.2 Definition. A finite hypergroup (D, ) is a finite non-empty set D with an associative, bi-
linear, probability-preserving multiplication * (called convolution) on the vector space M (D)
of all complex measures on D with the following properties:

(1) There exists a neutral element e € D with 0, % 0, = ¢ * 0, = d, for x € D.

(3) There exists an involution z +— Z on D such that for all z,y € D, e € supp (3, * &) if
and only if y = Z.

(4) If for p € My(D), p~ is the image of p under the involution, then (6, * d,)~ = 0y * 6z
for all z,y € D.

Now let A := (X, D, (R;)iep) be a finite association scheme as above. It is easy to see
that then the unique bilinear extension of the convolution

Wk .
51*6] :wapﬁjék (l,]GD)
keDp "V

of point measures leads to a finite hypergroup (D, x), the so-called hypergroup associated
with A.

Classical examples of finite association schemes and hypergroups appear from groups:



1.3 Example. Let H be a subgroup of a finite group G with identity e. Consider the set
X = G/H :={gH : g € G} of cosets as well as the set D := G//H := {HgH : g € G}
of double cosets. It can be easily cheked and is well-known that the partition Rpgzp :=
{(zH,yH) € X x X : Hx 'yH = HgH} (HgH € D) of X x X leads to a finite association
scheme with identity HeH and involution HgH + Hg 'H. The associated hypergroup is
the so-called double coset hypergroup (D, *) with the double coset convolution

1

] > Stamyn  (x,y € G).

heH

OHeH * OHyH =

The associated convolution algebra M;(D) is often also called a Hecke-algebra.

Typical commutative examples for 1.3 appear, if one considers so-called distance-transitive
graphs X on which the group G of all graph automorphisms acts where H is the fix group of
some vertex. We then have G/H = X in a canonical way, and G//H can be identified with
{0,1,..., N} with the diameter N of X. We do not give further details here and refer to [5].
The set of distance-transitive graphs is a proper subset of the set of distance-regular graphs
where again canonical associated commutative association schemes and commutative hyper-
groups exist, and where the construction of 1.3 via groups usually is not longer available. We
here skip details of the theory of distance-regular graphs and refer to the monographs [5], [9]
and the recent survey [11].

Let us now consider generalizations of association schemes. We first skip the condition
that X and D are finite, where we keep a finiteness condition for the partition; see Definition
3.1 below. It turns out that then most statements for finite association schemes remain
valid. In particular, there exist associated discrete hypergroups (D, #) as above. Typical
examples appear when we consider totally disconnected, locally compact groups G with a
compact, open subgroup H. Then the spaces X := G/H and D := G//H as above are
discrete with respect to the quotient topology, and X, D and a partition as in 1.3 lead to
a possibly infinite association scheme. The associated hypergroup (D, x) is then just the
double coset hypergroup studied in hypergroup theory; see [21]. The details are worked
out in [42]. Typical examples for this are the infinite association schemes associated with
homogeneous trees and, slightly more general, with infinite distance-transitive graphs; see
[42]. We also mention that there exists examples of higher rank with X as sets of vertices of
affine buildings; see e.g. [1] and references there.

We next consider a further discrete extension from [42]. Fix some (possibly infinite) as-
sociation scheme with an associated partition and the associated stochastic, renormalized
adjacency matrices S;; assume that we in addition have a further algebra of matrices gen-
erated by “deformed” stochastic matrices S; € RX*X for i € D where any entry of any S;
is positive if and only if so is the corresponding entry of S;. We add some further technical
axioms like S, = S, and that there is a measure on X which replaces the counting measure of
an association scheme and which satisfies some adjoint relation; see Definition 3.5. It turns
out that these so-called generalized association schemes with the matrices S; instead of the
S; also admit associated hypergroups (D, *) as above.

In this paper we use this notion of generalized association schemes from [42] and present a
topological extension in Definition 4.2 by using families of Markov kernels on locally compact
spaces X which are indexed by some locally compact space D instead of stochastic matrices
as before. We require that the supports of the measures associated with these kernels admit
partition properties similar to those of association schemes, and we require that the kernels



generate an algebra such that again the product linearizations of the kernels fit to some
hypergroup structure (D, *). In addition, some natural topological conditions are added. We
point out that we here require from the beginning that there exists an associated hypergroup
structure (D, *) (different from the discrete case). We have done this as we otherwise would
run into technical topological problems (which we want to avoid in this paper), and as for
all known examples this hypergroup property is available from the beginning. This is in
particular the case for standard classes of examples of such continuous association schemes
(CAS for short). Here is a short incomplete list of examples:

(1) If H is a compact subgroup of a locally compact group G, then X := G/H and D :=
G//H lead to canonical CAS associated with groups analog to the finite case or the
case where H C G is compact and open.

(2) All (unimodular) association schemes and all generalized association schemes as above
are CAS.

(3) If a non-compact commutative CAS is given, then it often can be deformed via so-called
pairs («, ¢) of positive multiplicative functions on D and X; see Section 8 for details.
This construction often leads to plenty of interesting families of deformed CAS with
deformed Markov kernels, where the spaces X, D remain unchanged. On the other
hand, in the compact and in particular finite case, the situation is much more rigid.
It turns out that for given compact spaces X, D, there is at most one associated CAS
structure; see Corollary 5.14. Moreover, each finite CAS is automatically an association
scheme, i.e., there is in fact no freedom in the choice of the stochastic matrices S; of a
generalized association scheme in the finite case. This difference between the compact
and non-compact case is remarkable.

(4) Besides the examples indicated above we point out that there are several further stan-
dard constructions to get new CAS from given ones; see Section 11.

This paper is organized as follows. In Section 2 we recapitulate some facts about hy-
pergroups in the sense of Dunkl, Jewett and Spector with a focus on the commutative case;
the main references are the monograph of Bloom and Heyer [8] and Jewett [21]. Some tech-
nical details of Section 2 may be skipped at a first reading. In Section 3 we recapitulate
some notations and facts on possibly infinite classical association schemes and their discrete
generalizations mentioned above. This discrete generalization motivates the definition of
continuous association schemes (CAS for short) on the basis of Markov kernels and associ-
ated transition operators in Section 4. The central Section 4 contains the discussion of basic
properties and some natural classes of examples. In Section 5 we add some further axioms
to the basic definition, called translation properties (T1) and (T2), which are needed to get
stronger interrelation between the analysis on X and D. It turns out that all compact CAS
as well as all CAS associated with groups and all classical discrete association schemes have
these properties. As a byproduct we obtain some rigidity result, e.g., that all finite CAS are
in fact association schemes.

Section 6 is then devoted to positive definite functions on D and X for commutative
CAS. We in particular obtain that each commutative hypergroup (D, *) which is associated
with some CAS with property (T2) admits a dual positive convolution on the support of
the Plancherel measure of (D, *); see Theorem 6.9. This central result will be improved in
Section 7 where we consider two possibly different commutative CAS structures with the



same basic spaces X, D where we assume that one of them has property (T2) and where the
schemes are related in some way. The central positive definiteness result in Theorem 7.1 will
also lead to further rigidity results.

The sections 8-11 are mainly devoted to examples of CAS and construction principles of
examples beyond the group cases and discrete association schemes. We start in Section 8
with nontrivial functions ¢ on X which are eigenfunctions under all transition operators of
the given commutative CAS. It turns out that these ¢ are always related with multiplicative
functions « of the hypergroup (D, *). The interrelations between ¢ and « will lead to further
results regarding the properties (T1) and (T2) in the commutative case. Moreover, if ¢
and « are in addition positive, we shall construct a deformed CAS with the same spaces
X, D but deformed Markov kernels. On the level of hypergroups this deformation is just the
known deformation of a hypergroup by a positive semicharachter in [35], [8]. In the case
of commutative CAS associated with non-compact symmetric spaces X, the eigenfunctions
@ are closely related with the joint eigenfunctions of the invariant differential operators on
X which are completely classified; see [18], [24]. In Section 9 we shall mainly study the
deformation of commutative CAS which appear via orbits when some compact group acts
continuously on some locally compact abelian group.

Section 10 is devoted to the deformation of a concrete class of examples, namely of
the infinite association schemes associated with infinite distance-transitive graphs. For this
recapitulate that the set of these graphs extend the class of all homogeneous trees only slightly
and is parametrized by two parameters. We show how boundary points of these graphs lead
to deformations. In Section 11 we present several further standard constructions which lead
from given CAS to new ones. Typical examples are direct products and joins, which are
well-known in the theory of hypergroups by [21], [8].

Section 12 contains an introduction into random walks on X for a CAS (X, D, K); we
in particular show that the canonical projections of these random walks to D are random
walks on the hypergroup (D, *). This observation may be used to transfer limit theorems for
random walks on (D, ) like (strong) laws of large numbers and central limit theorems (see
Ch. 7 of [8] and references there) to random walks on X in future. This seems to be interesting
in particular for examples which appear as deformations of group CAS, as here random walks
on X may be seen as “radial random walks with aditional drift” on the homogeneous space
X. Finally, Section 13 contais a short list of central open problems for CAS.

2 Hypergroups

In this section we recapitulate some facts on hypergroups with an focus on the commutative
case mainly from [14], [21], [8]. Only some results in the end of this section are new.

Hypergroups form an extension of locally compact groups. For this, remember that the
group multiplication on a locally compact group (G, -) leads to the convolution 0, * 0, = 04y
(z,y € G) of point measures. Bilinear, weakly continuous extension of this convolution
together with the canonical involution with §, — J,-1 then lead to a Banach-x-algebra
structure on the Banach space M(G) of all signed bounded regular Borel measures with the
total variation norm ||.||7y as norm.

In the case of hypergroups we usually do not have an algebraic operation on the basis
space, and we only require a convolution * for bounded complex measures which admits most
properties of a group convolution:



2.1 Definition. A hypergroup (D, *) is a locally compact Hausdorff space D with a weakly
continuous, associative, bilinear convolution % on the Banach space M;,(D) of all bounded,
complex regular Borel measures with the following properties:

(1) For all z,y € D, 6, * d, is a compactly supported probability measure on D such that
the support supp (05 * 0,) depends continuously on z,y w.r.t. the so-called Michael
topology on the space of all compacta in X (see [21] for details).

(2) There exists a neutral element e € D with 0 % 0, = ¢ * 0, = d, for x € D.

(3) There exists a continuous involution  — Z on D such that for all z,y € D, e €
supp (65 * dy) holds if and only if y = 7.

(4) Iffor p € My(D), u~ denotes the image of y under the involution, then (0,%d,)~ = dy*dz
for all z,y € D.

A hypergroup is called commutative if the convolution * is commutative. It is called sym-
metric if the involution is the identity.

If D is finite, then Definition 2.1 agrees with that of the introduction.
2.2 Remarks. (1) The identity e and the involution .~ above are unique.
(2) Each symmetric hypergroup is commutative.

(3) For each hypergroup (D, *), (My(D), %) is a Banach-x-algebra with the involution u —

p* with p*(A) := u(A~) for Borel sets A C D.

(4) For a second countable locally compact space D, the Michael topology agrees with the
well-known Hausdorff topology; see [27].

The most prominent examples of hypergroups are double coset hypergroups G//H :=
{HgH : g € G} for compact subgroups H of locally compact groups G. This extends the
discussion in the introduction:

2.3 Example. Let H be a compact subgroup of a locally compact group GG with identity e
and unique normalized Haar measure wy € M*(H) C M'(G). Then the space

My(G||H) :={p € My(G) : p=wn*p*wp}

of all H-biinvariant measures in M (G) is a Banach-*-subalgebra of M;(G). With the quotient
topology, G//H is locally compact, and the canonical projection pg,/p : G — G//H is
continuous, proper and open. Now consider the push forward pg/ g : My(G) — My(G//H)
with pg//m(p)(A) = ,u(pg;}/H(A)) for p € My(G) and Borel sets A C G//H. Then pg g is
an isometric isomorphism between the Banach spaces My(G||H) and My(G//H) w.r.t. the
total variation norms, and the transfer of the convolution on M,(G||H) to My(G//H) leads
to a hypergroup (G//H,*) with identity HeH and involution HgH — Hg 'H, cf. [21].

The pair (G, H) is called a Gelfand pair if the double coset hypergroup is commutative.
For the theory of Gelfand pairs we refer to [12] and [15].

The notion of Haar measures on hypergroups generalizes that on groups:



2.4 Definition. Let (D, ) be a hypergroup, z,y € D, and f € C.(D) a continuous function

with compact support. We write . f(y) := f(z xy) == [ [ d(0, * 0y) and fo(y) == f(y * x)
where, by the hypergroup axioms, f., »f € C.(D) holds by [21].
A non-trivial positive Radon measure w € M ' (D) is a left or right Haar measure if

/Dxfdwz/Dfdw or /Dfxdwz/Dfdw (f € Cu(D), w € D)

respectively. w is called a Haar measure if it is a left and right Haar measure. If (D, ) admits
a Haar measure, then it is called unimodular.

The uniqueness of left and right Haar measures and their existence for particular classes
are known for a long time by Dunkl, Jewett, and Spector; see [8] for details. The general
existence was settled only recently by Chapovsky [10]:

2.5 Theorem. Fach hypergroup admits a left and a right Haar measure. Both are unique
up to normalization.

2.6 Examples. (1) Let (D, *) be a discrete hypergroup. Then, by [21], left and right Haar
measures are given by

1 1
Goraen = Gty

Notice that discrete hypergroups are not necessarily unimodular; see e.g. [22] for ex-
amples of double coset hypergroups.

wi({z}) = (x € D).

(2) If (G//H,x) is a double coset hypergroup and wg a left Haar measure of G, then its
canonical projection to G//H is a left Haar measure of (G//H, x).

We next recapitulate some facts on Fourier analysis on commutative hypergroups from
[8], [21]. For the rest of Section 2 let (D, %) be a commutative hypergroup with Haar measure
w. For p > 1 consider the LP-spaces LP(D) := LP(D,w). Moreover Cy(D) and Cy(D) are the
Banach spaces of all bounded continuous functions on D and those which vanish at infinity
respectively. For a function f: D — C and x € X we put f~(x) := f(z) and f*(z) := f(Z).

2.7 Definitions and facts. (1) The spaces of all (bounded) non-trivial multiplicative con-
tinuous functions on (D, *) are

X(D,x):={a€C(D): a#0, alzxy) =a(z)- aly) for all z,y € D}

and xp(D, %) := x(D, *) N Cy(D).

~ -

D:=(D,%)" :={a € xp(D,*): a(z)=a(z) for all z € D}

is the dual space of (D, ). Its elements are called characters.

All spaces will be equipped with the topology of compact-uniform convergence. x(D, *)
and D are then locally compact.

If D is discrete, then D is compact, and if D is compact, then D is discrete.

All characters a € D satisfy ||a]|oc = 1 and a(e) = 1.



(2) For f € LY(D) and p € My(D), their Fourier(-Stieltjes) transforms are defined by
flo) = [ f@p@ de@), i) = [ a@du(e) (@ D).
D D

We have f € Co(D), fr € Cy(D) and || flloe < If]11. lllo < lltllzv-

(3) There exists a unique positive measure 7 € M +(D) such that the Fourier transform
A LY(D) N L3(D) — Co(D) N L*(D,n) is an isometry. 7 is called the Plancherel

measure on D.

Notice that, different from locally compact abelian groups, the support S := supp 7
may be a proper closed subset of D. Quite often, we even have 1 ¢ S.

(4) For f € LY(D, ), u € My(D), their inverse Fourier transforms are given by
f@):= [ fl@)ala) dn(@), ife) = [ alz)du(a) (o D)
S D

with f € Co(D), 1 € Cp(D) and [|flloc < [Ifll1, [ 2llsc < ltllzv.

(5) f € Cp(D) is called positive definite on the hypergroup D if for alln € N, z1,...,2, € D
and ¢1,...,¢, € C, ZZ,ZZI ek - f(xg *x ;) > 0. Obviously, all characters a € D are
positive definite.

We collect further results:

2.8 Facts. (1) (Theorem of Bochner, [21]) A function f € Cy(D) is positive definite if and
only if f = fi for some u € ]\4,;r (D). In this case, u is a probability measure if and only
if fi(e) = 1.

(2) For f,g € L*(D), the convolution product f * g(z) := [ f(x * §)g(y) dw(y) (z € D)
satisfies f * g € Co(D). Moreover, for f € L?(D), f*(x) = f(z) satisfies f* € L?(D),
and f* f* € Cy(D) is positive definite; see [21], [8].

(3) (Refining of the Theorem of Bochner, [37]) For a positive definite function f € Cy(D)
with f = [ for some p € ]\417+ (D), the following statements are equivalent

(i) suppp C S;
(ii) f is the compact-uniform limit of positive definite functions in C.(D);

(iii) f is the compact-uniform limit of functions of the form h * h* with h € C.(D).
(4) There exists precisely one positive character g € S by [35], [8].

(5) Ifu e Ml(ﬁ) satisfies ji > 0 on D, then its support suppu contains at least one positive
character; see [38].

In contrast to l.c.a. groups, pointwise products of positive definite functions on D are
not necessarily positive definite; see e.g. Section 9.1C of [21] for an example with |D| = 3.
However, in some cases positive definiteness is preserved under pointwise products.

If for all a,8 € D (or a subset of D like S) the products af are positive definite,
then by Bochner’s theorem 2.8(1), there are probability measures d,%d5 € MY(D) with
(8a%03)Y = af, i.e., we obtain dual positive product formulas as claimed in Section 1. Under



additional conditions, (ﬁ, %) then carries a dual hypergroup structure with 1 as identity and
complex conjugation as involution. This for instance holds for all compact commutative
double coset hypergroups G//H by [14]. For non-compact Gelfand pairs (G, H) it is known
that there are dual positive convolutions on S; see [21], [38] for details. These convolutions
usually do not generate a dual hypergroup structure. Moreover, it is possible here that af
is not positive definite on D for some a, 8 € D; see [41] for discrete examples.

The following result extends Theorem 2.1(4) of [38] and will be needed below:

2.9 Proposition. Let (D, *) be a commutative hypergroup. Let o € Cy(D) be a function on
D such that «- B is positive definite for each character 5 € S in the support of the Plancherel
measure. Then for each B € S there is a unique measure p € M;(S) with « - B = [i.

Proof. Fix € S. By 2.8(3) there exists a sequence of positive definite functions f,, in C.(D)
which tend locally uniformly to 8. Moreover, again by 2.8(3), each f,, has the form f, = fi,
for some u,, € MbJr (S). We conclude easily from the assumption of the proposition that the
functions o - fr, = - fin = [gay du(y) € Ce(D) are positive definite for all n. As these
functions tend locally uniformly to « - 3, we obtain from 2.8(3) that « - § = [ for some
p € M (S) as claimed. O

3 Discrete association schemes

In this section we briefly recapitulate two discrete generalizations of classic finite association
schemes from [42] as announced in the introduction. For classic finite association schemes
we refer to the monographs [5], [4]. This section is useful to understand the non-discrete
generalization in the next section which is technically more involved.

The first extension from the finite to the possibly infinite case is canonical:

3.1 Definition. Let X, D be nonempty, at most countable sets and (R;);ep a disjoint par-
tition of X x X with R; # ) for ¢ € D and the following properties:

(1) There exists e € D with R = {(z,z) : x € X }.
(2) There exists an involution i — i on D such that for i € D, R; = {(y,z) : (z,y) € R;}.
(3) For all 4,5,k € D and (x,y) € Ry, the number
pﬁj ={zeX: (z,2) € R and (z,y) € R;}|
is finite and independent of (x,y) € Ry.

Then A := (X, D, (R;)iep) is called an association scheme with intersection numbers (pf;j)m,kep
and identity e.

An association scheme is called commutative if pﬁ ;= p"jl for all 4,4,k € D. It is called
symmetric (or hermitian) if the involution on D is the identity. Moreover, it is called finite,
if so are X and D.

3.2 Facts. Now let A := (X, D, (R;)icp) be an association scheme according to Definition
3.1. Following [5], [42], we form the adjacency matrices A; € RX*X (i € D) with

1 if (z,y) € R;

(Ai)ay := { 0  otherwise (€D, zyeX)

The adjacency matrices A; have the following obvious properties:



A, is the identity matrix Ix.
> icp Ai is the matrix Jx whose entries are all equal to 1.
AT = A; fori € D.

For all i € D and all rows and columns of A;, all entries are equal to zero except for
finitely many cases.

(5) For i,j € D, the usual matrix product 4;A; exists, and A;A; =3, p pﬁjAk.
(6) A is commutative if and only if A4;A4; = A;A; for all 4,5 € D.

(7) A is symmetric if and only if all A; are symmetric.

(8) Fori,j,k € D, pf; = Py

The valency of R; or i € D is defined as
wi =pi;={z€X: (2,2) € Ri}| €N (3.1)

where w; is independent of x € X. Therefore, the renormalized matrices S; := %Ai € RXxX
are stochastic, i.e., all row sums are equal to 1. The stochastic matrices S; satisfy

SiS; = ken ﬁ;jpﬁjsk for  i,j€D. (3.2)

We next discuss a property of association schemes which is always valid in the finite case,
but not necessarily in infinite cases.

3.3 Definition. An association scheme with valencies wj is called unimodular if w; = wj; for
alli € D.

We collect some facts from Section 3 of [42]:
3.4 Facts. (1) If an association scheme is commutative or finite, then it is unimodular.

(2) An association scheme is unimodular if and only if the associated discrete hypergroup
is unimodular.

(3) If (X, D, (R;)iep) is unimodular, then S = S; for all i € D.
(4) There exist non-unimodular association schemes.

The observations above and in particular Eq. (3.2) were used in Section 5 of [42] for the
following generalization of Definition 3.1 of association schemes:

3.5 Definition. Let X, D be nonempty, at most countable sets and (R;)iep a disjoint par-
tition of X x X with R; # () for i € D. Let S; € RX*X for i € D be stochastic matrices.
Assume that:

(1) For all 4, j,k € D and (x,y) € R, the number
pﬁj ={zeX: (z,2) € R and (z,y) € R;}|

is finite and independent of (x,y) € Ry.
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(2) For alli € D and z,y € X, Si(z,y) > 0 if and only if (x,y) € R;.

(3) For all 4,5,k € D there exist (necessarily nonnegative) numbers ﬁf’j with S’ISJ =
ZkEDﬁ?,jSk'

(4) There exists an identity e € D with S, = Iy as identity matrix.

(5) There exists a positive measure wy € MT(X) with supp wx = X and an involution
i~ i on D such that for alli € D, z,y € X,

wx({y)Si(y, #) = wx({a})Si(x,y).
Then A := (X, D, (R;)iep, (gi)z‘ep)N is called a generalized association scheme.
A is called commutative if S;S; = 5;8; for all 4,5 € D. It is called symmetric if the
involution is the identity. A is called finite, if so are X and D.

3.6 Remarks. (1) If A = (X, D, (R;)iep) is an unimodular association scheme with the
associated stochastic matrices (S;);ep as above, then (X, D, (R;)icp, (Si)iep) is a gen-
eralized association scheme. In fact, axioms (1)-(4) are clear, and for axiom (5) we take
the involution of A and wx as the counting measure on X. Fact 3.4(3) and unimod-
ularity then imply axiom (5). Clearly, notions like commutativity and symmetry are
preserved. For details we refer to [42].

(2) If (X,D,(R;)icp,(Si)iep) is a generalized association scheme, then (X, D, (R;)icp)
is an association scheme. If this scheme is unimodular, then we may form the two

generalized association schemes (X, D, (R;)icp, (Si)iep) and (X, D, (R;)iep, (Si)ieD)
on the same spaces X, D where the second one is formed according to (1).

For examples of infinite commutative association schemes and of generalized association
schemes, which are no association schemes, we refer to [42], [43] and to Section 10 below.
Generalized association schemes always lead to discrete hypergroups; see Prp. 5.4 of [42]:

3.7 Proposition. Let A := (X, D, (R;)iep, (Si)iep) be a generalized association scheme with
deformed intersection numbers ﬁ,ﬁ ;e Then the product * with

8i%0; = Y pep By ;0%

can be extended uniquely to an associative, bilinear, || . ||py-continuous mapping on My(D).
(D, %) is a discrete hypergroup with identity e and the involution on D from Definition 3.5(5).
(D, %) has the left and right Haar measure

Y=Y epwidi and Q=Y cpwidi with wi=z- >0 (i€ D)

respectively. (D, %) is commutative or symmetric if and only if so is A.

For association schemes there is a corresponding result; see Proposition 3.8 of [42]. In
fact, the associated hypergroup convolution algebras are just the Bose-Mesner algebras for
finite association schemes in [5].
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3.8 Proposition. Let A := (X, D, (R;)icp) be an association scheme with intersection num-
bers pﬁj and valencies w;. Then the product * with

0; x 0 := Z Wk ~p§j5k

keD Wit
can be extended uniquely to an associative, bilinear, || . ||y -continuous mapping on My(D).
(D, *) is a discrete hypergroup with the left and right Haar measure
Ql = széz and Q,« = Q?( = Zw;éz (33)
i€D ieD

respectively. (D, x) is commutative, symmetric, or unimodular if and only if so is A.

A generalized association scheme is called unimodular if so is the associated hypergroup.
Clearly, unimodular association schemes always lead to unimodular generalized association
schemes in Remark 3.6(1).

4 Continuous association schemes

In this section we propose and discuss a system of axioms which extends the notion of
generalized association schemes above to a continuous setting where we replace the stochastic
matrices (5;);ep by Markov kernels. We briefly recapitulate some well-known notations on
Markov kernels:

4.1 Definition. Let X, Y be locally compact spaces equipped with the associated Borel o-
algebras B(X), B(Y). A Markov kernel K from X to Y is as a mapping K : X xB(Y) — [0, 1]
such that

(1) for all x € X, the mapping K(z,.) : B(Y) — [0,1], A — K(x, A) is a probability
measure on (Y, B(Y)), and

(2) for A € B(Y), the mapping K(.,A): X —[0,1], x — K(x, A) is measurable.

Consider the Banach spaces F,(X), F5(Y) of all C-valued bounded measurable functions on
X, Y with the supremum norm. Then for any Markov kernel K from X to Y we define the
associated transition operator

To: F(Y) - Fy(X)  with  Tif(z) = /Y fy) K@, dy) (€ X).

Clearly, K is determined uniquely by the operatator Tk .

We say that a Markov kernel K is continuous if Tk (Cy(Y)) C Cp(X). If Tk (Co(Y)) C
Co(X), then K is called a Feller kernel.

Let us also recapitulate the composition

Kq o0 Ky(z, A) ::/XKg(y,A) Kq(z,dy) (re X, Ae B(X))

of Markov-kernels K1, Ko on X, i.e., from X to X. We then have Tk ox, = Tk, 0o Tk,, and
the composition of kernels and transition operators are associative.

A (nontrivial) positive Radon measure w € M*(X) is called K-invariant w.r.t. a Markov
kernel K on X, if [ K(z,A) dw(z) = w(A) € [0,00] for A € B(X).
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We now turn to continuous association schemes. We here consider two second countable,
locally compact spaces X, D together with a continuous Markov kernel K from X x D to
X with transition operator Tk : Cp(X) — Cy(X x D). For each h € D, we then define the
Markov kernels

Kp(x,A) .= K(z,h; A) := K((x,h), A) (r e X,A e B(X))

on X with transition operators
Ty Cu(X) = Ch(X), Tf(@) = TS (@) = [ (0) K (o hidy) = Tucf ..
X

With these notions we now define continuous association schemes. Unfortunately, the def-
inition is more involved than in the discrete case due to the additional continuity assumptions
and some other restrictions which are satisfied in the discrete case automatically.

4.2 Definition. Let X and D be second countable, locally compact spaces, and K a con-
tinuous Markov kernel from X x D to X. Then (X, D, K) is called a continuous association
scheme (or, for short, CAS), if the following holds:

(1) (Compact support:) For z € X, h € D, the support supp K(z, h;.) is compact, and
the mapping (z, h) — supp K(x,h;.) from X x D into the space C(X) of all compact
subsets of X is continuous w.r.t. the Hausdorff topology on C(X).

(2) (Partition property:) For each z € X, the compact sets supp K(z,h;.) (h € D)
form a partition of X, and the associated unique map 7 : X x X — D with y €
supp K (z,m(x,y);.) for z,y € X is continuous.

(3) (Hypergroup property:) D carries a hypergroup structure (D, ) such that for all
hi,ho € D,z € X, and A € B(X)

K, 0 Kpy(x, A) = /D Kz, A) d(5p, * 6n,)(h). (4.1)

Moreover, the identity e € D satisfies K(z,e;.) = 0, for z € X.

(4) (Invariant measure on X:) There exists a positive Radon measure wx € MT(X)
with supp wyxy = X, such that for the continuous hypergroup involution - : D — D and

all he D, f,g € Co(X),

/Thf'gde:/ f'Thgde. (42)
X X

A CAS (X, D, K) is called commutative, symmetric, or unimodular if so is the hypergroup
(D, x). It is called compact or discrete if so are D and X.

Clearly, a CAS (X, D, K) is commutative if and only the Markov kernels K} (h € D)
commute.
We present some standard examples of CAS. Further examples are given later on.
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4.3 Proposition. Let (X, D, (Rp)nep, (Si)nep) be a generalized association scheme as in
Definition 3.5. Then

K((z,h),A) =Y Sp(x,y) (xe€X, heD, ACX)
yeEA

defines a Markov kernel from X x D to X, and (X, D, K) is a CAS.

Proof. K is a obviously a Markov kernel from X x D to X. Moreover, as X and D are discrete,
all topological axioms are trivial. Furthermore, fact (4) after Definition 3.1 in combination
with Definition 3.5(2) show that supp K((x,h),.) is finite for all z € X and h € D. This
shows 4.2(1). Moreover, 4.2(2) is obvious, and 4.2(3) follows from Proposition 3.7. Finally,
4.2(3) follows from 3.5(5). O

Remark 3.6(1) and Proposition 4.3 imply:

4.4 Corollary. Let (X, D, (Rp)nep) be an unimodular association scheme with the stochastic
matrices (Sp)nep as defined after Definition 3.1. Then

K((z,h),A) =) Sp(z,y) (x€X, heD, ACX)
yeA

defines a Markov kernel from X x D to X, and (X, D, K) is an unimodular CAS.

4.5 Remark. Proposition 4.3 admits the following partial converse statement:

Let (X, D, K) be a discrete CAS. Define the stochastic matrices (Sp)zy := Kn(z,{y})
for h € D, x,y € X as well as the sets Ry, := {(z,y) € X x X : (Sp)zy > 0}. Then
(X, D, (Rp)hep, (Sh)nep) satisfies almost all axioms of a generalized association scheme in
3.5. In fact (Rp)nep forms a partition of X x X, and the axioms (2)-(5) of 3.5 hold. We do
not know at the moment whether also (1) in 3.5 holds automatically. We come back to this
problem later on in the finite case.

Here is a further standard class of examples of CAS.

4.6 Proposition. Let H be a compact subgroup of a locally compact unimodular group G
with normalized Haar measure wy € M*(H) C MY(G). Then the quotient X := G/H and
the double coset space D := G//H are locally compact w.r.t. the quotient topology, and the
canonical projections

pc:G— G/H, pe(r):=xH, pgpy:G/H—G//H, peu(rH):=HrH
are continuous, open, and closed. Moreover,
K((xH,HhH),A) := pg(0y * wp * 0p * wpr)(A) (x,h € G, A€ B(X)) (4.3)

establishes a well-defined Markov kernel from X x D to X, and (X, D, K) is an unimodular
CAS.

Proof. The topological statements about pg, pg/g are well-known from the theory of locally
compact groups. We next check that K is a well-defined continuous Markov kernel, and
that (X, D, K) is a CAS. Clearly, by its construction, K is a probability measure w.r.t. the
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variable A, and the definition of K ((xH, HhH), A) is independent of the representatives x, h
of xH and HhH respectively. Before checking that the maps

Dy: X xD—[0,1], (z,h)— K((z,h),A)
are measurable for all Borel set A, we investigate the associated transition operator Tk . For
f € Cp(X) we have that
Tk f(xH,HhH) :/ f(yH) d(6g * wg * 0p * wrr)(y) (4.4)
G

- / / f(l'ZthgH) de(Zl) dUJH(ZQ)
GJG

is continuous in z,h € G. As the projections pg,pg g are open, it follows that the map
(xH,HhH) — Tgf(xH,HhH) is continuous. If we have proved that the maps Dy are
measurable for all Borel set A, we conclude that K is a continuous Markov kernel as claimed.
To prove measurabilty of the maps D 4, we first choose a compact set A. As the characteristic
function 14 of A is a monotone limit of functions f,, € C.(X), we obtain from the theorem of
monotone convergence that the continuous functions (xH, HhH) — Tk fn(xH, HhH) tend
to (xH,HhH) — Tgla(xH,HhH) = K((zH,HhH),A) = Da(zH, HhH). This proves that
D 4 is measurable for A compact. For the general case we use Dynkin systems. In fact,

D:={AeB(X): Ds ismeasurable}

is a Dynkin system which contains the set I of all compacta in X, where K is closed under
intersections. Therefore, the o-algebra o(K) and the Dynkin system D(K) generated by K
satisfy B(X) = o(K) = D(K) C D. Hence, D4 is measurable for all Borel set A as claimed.

It is now standard to check the axioms (1)—(4) of Definition 4.2. In fact, the compact
support in (1) is clear, and the continuity w.r.t. the Hausdorff topology follows in the same
way as in [21] for double coset hypergroups. Moreover, the projection 7 in (2) is given by
n(zH,yH) := Hx 'yH and thus continuous, while the partition property in (2) is clear.
Furthermore, it is well-known D = G//H is a double coset hypergroup with the convolution

OHh H * OHRH = / OHhyhhy i dwrr (h);
H
see 2.3 and [21] for details. Moreover, for z, hi, ha € G and Borel sets A C X,
Kunm o Kppon(vH, A) = / Kypyu(w, A) Kpn,p(zH, dw)
X

= /G((sy kW * Opy * wH)(pal(A)) d(0z * wp * 0, *wi)(Y)
= (0 * Wi * Opy * WH * Op, * wH)(pal(A))

and

/ Kw(.%'H,A) d((SthH * (5Hh2H)(w) = / KththH(:CH, A) de<h)
D H

— /H(pg(ém * WH * Onyhiy * wa))(A) dwg (h)

= (5@, k Wi * Opy * W * Op, * wH)(Pc_;l(A))7
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which proves Eq. (4.1).

We next turn to 4.2(4). Let wg be some Haar measure wg of G and take its projection
wx = pg(wg) as invariant measure on X. To check (4.2), we take f,g € C.(X), h € G and
observe from (4.4) and unimodularity that

/X f - Thg dwx — /G /G J@H)g(ayH) d(wi * 5 * wir)(y) dwe (@)
_ / / FlayH)g(xH) d(wpr * -1 *wir)(y) dwg ()
GJG
:/ T;Lf-gdwx.
X

This completes the proof of 4.2(4). Finally, as the canonical projection of the Haar measure
wg to G//H = D is a Haar measure of the double coset hypergroup (D;x*) (see [21]),
(X, D, K) is unimodular. O

We next proceed with the theory of CAS. We first collect some obvious consequences
from Definition 4.2 for a CAS (X, D, K).

4.7 Facts. (1) Property 4.2(2) ensures that for hi,hy € D with K;, = K}, we have
hi = hg. Therefore, the convolution * of (D, *) is determined uniquely by the kernels
Ky, h € D.

(2) T is the identity operator.

(3) It can be easily shown that the adjoint relation (4.2) holds for further classes of func-
tions. In particular, it can be easily seen that (4.2) holds for all f € Cy(X) and
g € LY(X,wx). Taking in particular f = 1, we obtain

/gde:/ Thg dwx (4.5)
X X

for all h € D and g € L'(X,wy). Taking ¢ = 14 for measurable sets A C X, we
conclude that wx is Kj-invariant for all h € D.

(4) For all h € D and p € [1,00], the operator T}, associated with the kernel Kj on X is
a continuous linear operator on LP(X,wx) with || T3] < 1. In fact, for f € LP(X,wx),
the Holder inequality and the invariance of wx imply

= [ | [ ) Knta.ay]” dwx(a)
< [ (L 1rp gt ) ([ 1 Kate.dn) " dox (@) = 1615

(5) For all h € D, Ty, clearly is a continuous operator on (Ch(X), ||.]|co)-

(6) As Co(X) is ||.]|2-dense in L?(X,wx), and as T}, is |.||2-continuous, the adjoint relation
(4.2) implies that T}, is the adjoint operator T} on L?(X,wx).
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(7) For all z,y € X, n(y,z) = n(z,y).
)

m(x
In fact, for each h € D, m(x,y) # h means that there is a neighborhood U, of y in
x such that for all ¢ € C.(X) with supp g C U, we have Tpg(x) = 0. As Thg is
continuous by our assumptions, we conclude that 7T(.%', y) # h is equivalent to the fact
that for all € > 0 there are neighborhoods U,, U, of x,y respectively such that for all
f,geC ( ) with supp f C Uy, supp g C Uy, and with || f||1wyx = ||g/liwx =1 we have
| [ f(w) Thg(w) dwx (w)] < e. This and the adjoint relation 4.2(4) lead to the claim.

We next study some topological properties of w. For this recapitulate that in our setting,
the Hausdorff topology on C(X) agrees with the so-called Michael topology in [21] or Section
1.1 of [8]; see e.g. [27]. In particular, by these references (see in particular (2.5F) of [21]), C(X)
is locally compact, and for each compactum Q C C(X), the set (J4-qA C X is compact.
With these preparation we obtain:

4.8 Lemma. (1) For compact sets K C X and L C D, the set UheL’xeK suppKp(z,.) C X
18 compact.

(2) For each x € X, the projection my : X — D, my(y) = w(x,y) is open, closed and
proper, i.e., m; {(A) C X is compact for each compactum A C D.

Proof. Part (1) follows from 4.2(1) and the remark about C(X) above.
These facts also imply that 7, is proper, as for each compactum A C D, the set

= Ut w) = U supp Kn(x, )

yeA yeA

is compact. Problem 5 of Section XI.6 of [13] now implies that 7, is also closed.

We finally show that m, is open. For this assume that there is some neighborhood
U C X of some y € X such that 7,(U) C D is no neighborhood of 7;(y). This means that
there is a sequence (hy), C D \ 7,(U) with h, — 7(z,y). Hence, by 4.2(1), the compacta
7, (hy) = supp Kp, (v,.) tend to m; !(7(z,y)). On the other hand, 7 1 (h,) NU = 0, and
7. (m(x,y)) contains € U. This leads to a contradiction. Hence, 7, is open. O

4.9 Lemma. Fuch g € Cy(X) is uniformly continuous in the sense that for each e > 0 there
exists a neighborhood U C D of the identity e such that for all x,y € X with w(z,y) € U,

lg(z) —g(y)| < e.

Proof. The proof is similar to a corresponding result for hypergroups; see e.g. 1.2.28 of [8].

Fix some ¢ > 0. Choose some compactum G C X such that |g(x)] <e/2 for z € X \ G.
For each x € X we take some open neighborhood W, C X with |g(y) — g(x)| < &/2 for
y € W,. Now choose open neighborhoods U, C D of e with {y € X : n(x,y) € Uy} C W,.
By a basic result on hypergroups we find open symmetric neighborhoods U, C D of e with
Uy x Uy C U,. We now consider the open set V, = {y € X : w(z,y) € Uy} which cover
the compactum G. Choose n € N and x1,...,z, € X with G C Ul:l,...,n Vz,, and define the
open neighborhood U :=(\,_; _, Uz, C D.

Now consider z € G and y € X with 7(z,y) € U. We find [ with 2 € Vz, € Wa,. As then
m(xy, x) € Uy, and w(z,y) € Uy, we obtain w(z;,y) € Uy, * Uy, C le, which implies y € Wy,.
Hence, by the definition of Wy, |g(y) — g(x)| < e. As this also holds for all z,y € X \ G, the
proof is complete. O
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4.10 Lemma. Let h € D. Then:
(1) If f € Co(X), then T f € Co(X).

(2) If f € Co(X), then Ty, f € Co(X); in other words, the kernels Kp on X are Feller
kernels.

Proof. The continuity of T}, f is clear in both cases.

Now let f € C.(X). Let x € X with Tj, f(z) # 0. Then, by the definition of the projection
7, suppfN{y € X : w(x,y) = h} # 0, and thus, by 4.7(7), supp fN{y € X : 7(y,z) = h} # 0.
This yields x € UyEsuppf supp Kj,(y,.) As this set is compact by Lemma 4.8, we obtain
Thf € Co(X).

Part (2) follows from part (1) and the continuity of 7}, w.r.t. ||.|/cc- O

We next study integrals over the operators T},.
4.11 Lemma. Let 1 € My(D).
(1) For each f € Cyp(X),
Tf(e) = [ D@ duth) (e X)

defines a function T, f € Cy(X). The operator T, is a continuous linear operator on
Co(X) with || Ty < [|pll7v-

(2) If supp p is compact, then T, maps Co(X) into Co(X).

(3) The operator T,, maps Co(X) into Cy(X).

(4) For each p € [1,00], the operator T, from (1) may be also regarded as a continuous
linear operator on LP(X,wx) with ||T,| < [|u||rv.

Proof. (1) T,f is continuous by Definition 4.2. The further statements are clear.
(2) follows from Lemma 4.8 in the same way as Lemma 4.10(1).

(3) If supp p is compact, then (3) follows from (2) and the continuity of 7,,. On the other
hand, for each € > 0 and p € My(D) there exists a measure p. € My(D) with compact
support and || — pellry < e. Hence ||T), — T}, || < e. Thus, T, f is a uniform limit of
functions in Cy(X) which yields the claim.

(4) This follows from 4.7(4) and standard facts on operator-valued integrals.
O

We now consider the C*-algebra B(L?(X,wy)) of all bounded linear operators on L?(X,wy)
as well as the closed subspace A(X) := span{T}, : h € D}. The space A(X) is closed under the
involution .* on B(L*(X,wx)) by 4.7(5). Moreover, by Lemma 4.11(4), we have T, € A(X)
for all p € My(D). In summary:

4.12 Proposition. (1) A(X) is a C*-subalgebra of B(L*(X,wx)).
(2) The map T : (My(D),x, ., ||l.lltw) = A(X) C B(L*(X,wx)), p + T, is a norm-

decreasing Banach-x-algebra homomorphism, i.e., T is a x-representation of the hyper-
group (D, *) on the Hilbert space B(L*(X,wx)).
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Proof. (1) Let hi,hy € D. Then, by 4.2(3), T, Th, = T, +s,, € A(X). This yields that
A(X) is closed under multiplication. All further facts are clear.

(2) is also clear by the same arguments and Lemma 4.11.
O

We next study a couple of linear operators A : C.(X) — C(X). For each such A we form
the scalar products

(Ag1,92)x = / Agi(z) - g2(z) dwx (2) for g1,92 € Co(X). (4.6)
X
Here are some examples: Let F' € C(X x X) and form T : C.(X) — C(X) by

/ F(z,y) g(y) dox(y)  (z€ X, g€ Cu(X)). (4.7)

Moreover, for all u € My(D), the operators A := T}, are operators as in (4.6).
We now fix some left Haar measure wp of the hypergroup (D, ). Then L'(D,wp) is a
Banach-x-algebra with the convolution and involution

frgl /fw*y 7 dwp(y), f@)=TF@ (veD)

Moreover, the map L'(D,wp) — My(D), f — fwp is an embedding of the Banach-x-algebra
L'(D,wp) into the Banach--algebra Mj(D); see [21]. For each f € L'(D,wp) we thus may
define the linear operators Ty := T, for which the results of Lemma 4.11 and Proposition
4.12 hold.

Moreover, even for f € C(D), the linear operators Ty : Co(X) — C(X) with

To@)i= [ [ o) Kilods) S0 dwn(h) (@€ X, g€ CuX)  (@8)

are well-defined, as by 4.2(2) for g € C.(X), the set m(x,supp g) C D is compact. It
is also clear that for f € C(D) and fi, fa € C.(D), we have f1 x f % fo € C(D) with
Tt sfspy = T1, TTy,. We shall use these facts for relations between positive definite functions
on (D,*) and X in Section 6. For this we need additional properties for CAS, which we
discuss in the next section.

Before doing this, we study the linear operators T,, for multiplicative functions o € C'(D),
ie, a(hxl)=a(h)-a(l) for all h,l € D

4.13 Lemma. Let (X,D,K) be a CAS, g € Ce(X), and let a € C(D) be multiplicative.
Then the function ¢ = Thg € C(X) satisfies Tip(x) = a(l) - p(z) for alll € D and x € X.

Proof. Let wp be a left Haar measure of (D,x*) as above. Fix [ € D, z € X and consider
the function g,(w) == [y g(y (z,dy) (w € D). Then g, € C.(D) by the considerations
above, and, by Lemma 5.5G of [21]

/ / 9z (h) d(8; * 0y (h) a(w) dwp(w) = / 9o (I x w)a(w) dwp(w)
D JD D
= / gz (w)a(l * w) dwp (w)
D

— ofl) /D go(w)a(w) dop(w) =  a()Tag(x).
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Hence,

o= | f
4

/D gs(h) d(6 % ) (1) a(w) dop(w) = a()Tag()

D

/ 9(y) Kp(z,dy) Ki(z,dz) a(h) dwp(h)

)
)
>

/ o) Kn(, dy) d(5) + 50)(h) a(w) dwp (w)

>
>
>

as claimed. O

Lemma 4.13 can be applied to the uniqueness of the adjoint measure wx € M*(X) at
least in the compact case:

4.14 Lemma. Let (X, D, K) be a compact CAS. Then:
(1) If g € C(X) satisfies Trg = g for all h € D, then g is constant.

(2) For all g € C(X), T1g is constant, and there is a unique measure w € M, (X) with
w(A) = [ Kp(x,A) dwp(h) for all Borel sets A C X, where the right hand side is
independent of x € X.

(3) The measure w from (2) is equal to the adjoint measure wx € M™(X) from 4.2(4)
up to a positive multiplicative constant. In particular wx s unique up to a positive
multiplicative constant.

Proof. For (1) assume without loss of generality that g is R-valued with Tj,g = ¢ for all
h € D. Take xg € X such that g(zo) is maximal. As g(zo) = [y 9(y) Kn(wo,dy) we see
that g(y) = g(xo) for all y € supp Kp(xo,.). As this holds for all h € D, it follows that g is
constant.

For (2) we conclude from Lemma 4.13 for a=1 that for l € D, Ti(Thg) = Tig(z).

Hence, by part (1), Tig is constant. As Tig(x) = [, [ 9(y (z,dy) dwp(w), we see from
the representatlon theorem of Riesz that there exists a unlque measure w € M; (X) with
Thg(z) = [y gdwforall g€ C(X) and z € X.

For (3) we assume without loss of generality that wy € M'(X) and wp € M*(D). We
use the invariance condition (4.5) for wx and obtain for g € C(X) and each x € X that

/X g dw = Tyg(x) = /X Tyg duwy = /D /X Thg(@) dwx (v) dwp(h) = /X g

This proves wx = w and the claim. O

5 Strong continuous association schemes

Let (X, D, K) be a CAS with associated hypergroup (D, *). We first recapitulate the trans-
lations fx(l) := f(l x h) := [, f d(6; * 0s) of functions f € C(D) for h,l € D as well as the
projection maps m, : X — D for z € X from the preceding section.

5.1 Definition. Let (X, D, K) be a CAS.

(1) We say that (X, D, K) has the translation property (T1) if for all h € D, x € X, and
feC(D),
fhome = Th(f © 7T;r)-
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(2) We say that (X, D, K) has the translation property (T2), if for all f € C.(D), Ty =
T/om  where we assume that the invariant measure wx and the left Haar measure wp
of (D, *) are chosen with suitable normalizations.

(3) We say that (X, D, K) is strong, if (T1) and (T2) hold.

We shall prove below that in the discrete case and in the commutative case, property (T2)
implies (T1); see Theorems 5.4 and 8.5. This indicates that generally, (T2) seems to be the
stronger condition. Otherwise we do not know further relations between these conditions. In
several sections below we present examples where (T1) and (T2) do not hold. On the other
hand, there are several standard classes of strong CAS; here is the first one:

5.2 Proposition. Let H be a compact subgroup of a locally compact unimodular group G.
Then the associated unimodular CAS (X := G/H,D = G//H, K) as in Proposition 4.6 is
strong.

Proof. Let z,y,h € G, and f € C.(G//H). The proof of Proposition 4.6 yields
(s o T H) = [ f dysya < Sunir) = [ F(Ha™ ywhH) don(w)
G//H H
and
Tina(f o maa)yH) = [ f(Ha ™ 2H) Knia 9. (1)
X
:/ f(Hz 'ywhH) dwg(w).
H

This proves (T1). Moreover, for f € C.(G//H), g € C.(G/H), and 2 € G we have with the
notations of Proposition 4.6 that

ng(l’H):/ / g(yH)Kunp(vH,yH) f(HhH) dwe) g (HRH)

y

= / g(zrhH) f(HhH) dwg(h) dwp(r)

/9 d(pG(0x * wg * 0p * wy))(yH) f(HhH) dwg(h)

Q
b

T
Q

/ g(xzhH) f(Hr 'hH) dwg(h) dwg(r)

T
@

g(xhH) f(HhH) dwg(h)

o

= | f(Hz 'yH) g(yH) dwa(y)

@

- /D fr(@H, yH)) g(yH) dwgu(H) = T/g(aH)

which proves (T2). O
Here is a second standard class of strong CAS.

5.3 Proposition. Let (X, D, (R;)iep) be an unimodular association scheme. Then the as-
sociated unimodular discrete CAS (X, D, K) of Corollary 4.4 is strong.
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Proof. By linearity, it suffices to check (T1) for characteristic functions f = 1) with r € D.
For h € D and z,y € X we obtain from the axioms and basic properties of an association
scheme and the definition of the kernels K}, that

Th(Lry 0 ma)(y) = /X Ly (m(w, 2)) Kn(y, dz) = Kn(y, {2 € X : 7(z,2) =1})
= :h\{z €eX: n(x,z)=r 7n(y,z) =h}|

= wlh\{z € X:7(z,x) =7, n(y, z) = h}|

1 1
= =—p

m(z,y)
wp, wh, r.h

On the other hand, we see from Proposition 3.8 and Lemma 3.5(4) of [42] that

(fome)(y) = /D 10y d(Br(g) % 00) = (r(eg) * 00) ({1)

w’r T 1 ng,y)

- p h— )
whwﬂ_(x7y) W(I,y), wh T,h

which completes the proof of (T1). For (T2) we again use linearity and check (T2) for
J =1y and g =1, withr € D and 2z € X. Let x € X. With the Kronecker-d we obtain

Trg(x) = wy - /X 9(y) Ko (2,dy) = 6, n(z) = T g(x)

which yields the claim (T2). O
Proposition 5.3 has the following converse statement:

5.4 Theorem. Let (X, D, K) be a discrete unimodular CAS with property (T2). Then there
is an unimodular association scheme (X, D, (Ry)rep) such that (X, D, K) is the associated
CAS according to Corollary 4.4. In particular, for discrete unimodular CAS, (T2) implies

(T1).

Proof. Assume that the measure wxy € MT(X) and the Haar measure wp are normalized
such that (T2) holds. Let r € D and x,z € X and put f = 1y, and g = 1y,. Then, as in
the proof of the preceding result, T7°7g(x) = wx ({z}) Or.m(z,2) and

Trg(x) = Ki(x,{z}) wp({r}) = Kr(z,{z}) wp({r}) Or.n(c2)- (5.1)

Hence, by (T2),

K, (z,{z}) = m O m(z,2) (x,z€ X, re D). (5.2)

This in particular shows that for r € D and =z € X,

wp({rh) = Y wx({z}) (5-3)

z€X:w(x,z)=r
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and, as K,(z,.) is a probability measure,

(Kpo Kz, {z}) = > wz<{z})

zeX:m(x,z)=r

/\
~—

b wx({x))
p o = ot O

x({z
p({r

As by the definition of a discrete CAS K, o K7 is a finite convex combination of the Kj
(s € D) where the identity kernel K. appears with a positive coefficient, we conclude from
(5.4) that wx({z}) > 0 is independent of z € X. Therefore, after renormalization of wx
and wp, we may assume that wy is the counting measure. We then see from (5.3) that
wp({r}) = |supp K,(z,.)| for r € D and all z € X. Moreover, by (5.2),

r Orm(z,z)
K. (x,{z}) = (reD, z,zeX). (5.5)
wp({r})
We now define the partition (R,),ep of X X X via R, := {(z,y) : y € supp K,(x,.)}. This
is a partition by the partition property of a CAS for which clearly property (1) of 3.1 holds.
Moreover, 3.1(2) follows from (5.5) and w({7}) = w({r}). We finally check 3.1(3). For this
let 4,7,k € D and z,y € X with 7w(x,y) = k. Then

.o (o _ 1 HZEX:W('Z'VZ):Z.? W(Zay):j}‘
KioKjtlyh= D>, e G oo wn ()

z€X i (z,2)=t, 7(2,y)=

and

Kio Kj(z,{y}) = (i x 5;)({k}) - Ki(z,{y}) = W

A comparison of both formulas shows that [{z € X : w(x, z) =4, 7(2,y) = j}| depends only
on m(x,y) = k and not on the choice of z,y as claimed.

In summary, we see that (X, D, (R,),ep) is an association scheme with (X, D, K) as
associated CAS by (5.5). The last statement of the theorem follows from Proposition 5.3. [

In summary, in the unimodular case, strong discrete CAS are precisely classical asso-
ciation schemes. Moreover, discrete commutative CAS may be seen as generalizations of
generalized association schemes.

Theorem 5.4 suggests that in general (T2) implies (T1). Unfortunately, we do not see
any approach for the proof of this conjecture in the non-discrete case.

We next rewrite (T2) as follows:

5.5 Lemma. Let (X, D, K) be an unimodular CAS with the Haar measure wp of (D, *) and
the adjoint measure wx € M*(X). Then (T2) holds if and only if wx (A) = [ Kp(z, A)dwp(h)
for all Borel sets A C X and x € X.

In particular, for each unimodular CAS with (T2), wx is unique up to a positive constant.

Proof. Assume first that (T2) holds. It can be easily seen (see Lemma 5.9 below) that then
for all g € Co(X) and z € X, T1°"g = Ty g and thus

/ / y) K, dy) dwp(h) = Trg(x) = T*"g(x) = /X o(y) dwx (y).

This shows that wx = [, Ku(z,.) dwp(h) for z € X.
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Conversely, this representation of wx shows for f € C.(D), g € Co(X), and x € X that

17%9(a) = [ 9(0)- frte, ) doxv) = [ [ o) srto.0) Kao.dy) don(h)
/ / h) Kp(x,dy) dwp(h) = Trg(x).
Hence, (T2) holds. The uniqueness assertion is clear. O

Lemma 5.5 and Lemma 4.14 now lead to:
5.6 Proposition. FEach compact CAS has property (T2).

If we combine Proposition 5.6 with Theorem 5.4 and Proposition 4.3, we obtain the
following classification of finite CAS:

5.7 Theorem. Fach finite CAS (X, D, K) is associated with an association scheme accord-
ing to Corollary 4.4. In particular, each finite generalized association scheme is in fact an
association scheme.

We notice that this classification does not hold in the infinite case. Examples are given
in [43] and below, e.g. in Section 10.
We now return to (T1) and (T2) and study CAS with these properties:

5.8 Lemma. Let (X,D,K) be a CAS with (T1). Then:
(1) For all z € X, the push forward ,(wx) € M (D) is a right Haar measure of (D, x).
(2) For all pe My(D), feCe(D) andx € X, T,(fomy) = (f*xp~)omy.
(3) Forallp e C(D), feCe(D) andx € X, T,(fomy) = (f*¢~)om,.
Proof. (1) For all h € D and f € C.(D) we obtain from 4.7(3) that, as claimed,
(T (wx))(fn) = wx (fn 0 T2) = wx (Th(f 0 7)) = wx (f 0 me) = (ma(wx))(f)-

(2) and (3) follow simply by integration of the equation in Definition 5.1.

5.9 Lemma. Let (X,D,K) be a CAS with (T2). Then:
(1) For all z € X, the push forward w,(wx) € M (D) is a right Haar measure of (D, ).
(2) For all f € C(D) and g € Co(X), Trg =T/"g € C(X).
(3) For all f € C(D) and g € C(X), Tyg =T'"g € C(X).

Proof. (2) is clear, and (3) follows from Lemma 4.8 similar to the proof of Lemma 4.10. For
the proof of (1) we use (3) with g =1 and f € C.(D). Hence, for z € X,

/f r(2,)) dwx () = T g(x) = Tyg(x)

:/D/XlKh(x,dy) ) dwp(h /fde

which proves the claim. O
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5.10 Remark. There exist commutative CAS without (T1) and (T2). For this consider the
discrete generalized association schemes associated with homogeneous trees of [43] with the
parameter ¢ # 1 there. As shown in Remark 2.4 of [43], there the measure wx is unique
up to a positive multiplicative constant for which the push forward statements of Lemmas
5.8(1) and 5.9(1) are not correct, i.e., (T1) and (T2) do not hold there; see also Section 10.

5.11 Lemma. Let (X, D, K) be a strong unimodular CAS. Let f € C.(D) and f € C(D),
or f € C(D) and g € C.(D), or f,g € L*(D,wp). Then, for all x,z € X,
/ f(r(z,y)) g(7(z,)) dux(y / f(h g(7(z, ) x h) dwp(h).

Proof. Let f € C.(D) and f € C(D). Then, by (T2) and Lemma 5.8(3),
/ F(n(a,9)) 9wz, )) dwx (y) = TV (gom)(2) = Ty (7o) ()
— (f*g)om)(@) = (f~ *g)(n(z2) /f o(n(zz) * 1) dwp(h)

as claimed. The same computation works for f € C(D) and g € C.(D) as well as for
f,g € L*(D,wp) by density. Notice here that due to Lemma 5.8(1), for all z € X the map
f > fom, is an L%isometry from L?(D,wp) into L?(X,wx). O

We next present some orthogonality result which is well-known in the group case.

5.12 Corollary. Let (X,D,K) be a compact, commutative strong CAS. Then for o, €
(D,*)" and z,z € X,
| alw(e.) B dex(0) = 85 ol ) - ol

Proof. Lemma 5.11 yields
/ a(n(z,y)) Bl (z,p)) dox () = / o) Bl (o) * 1) dwp ()
X D
- /D o (k) BB dwp (k) - Bl (z 7).

As the characters of the compact commutative hypergroup (D, x) form an orthogonal basis
of L?(D,wp), the proof is complete. O

We finally remark that for given spaces X, D and given projection 7 : X x X — D, there
is at most one CAS with property (T2), i.e., (T2) is a quite strong condition:

5.13 Proposition. Let (X, D, K) and (X, D, K) be CAS with property (T2) with the same
X,D, w. Then (X,D,K) = (X,D,K) and (D,+) = (D, %).

Proof. (T2) implies that for all f € C.(D) and g € C(X)
Trg=T/"g=Tsg (5.6)

with ng as operator associated with the kernels Kj,. As for z € X and g € C’C(X)~ the map
D — C, h— [y g(y) Kp(x,dy) is continuous, (5.6) implies by a limit that Tj,g = Tjg for all
g € C.(D) and h € D. This also readily shows that K; = K}, for all h. Fact 4.7(1) finally
proves (D, x) = (D, %). O
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Propositions 5.13 and 5.6 yield:

5.14 Corollary. Let~(X, D, K) and (X, D, f() be compact CAS with the same X, D, w. Then
(X, D,K) = (X, D, K) and (D, ) = (D, %),

Variants of 5.13 and 5.14 will be given in Section 7.

6 Positive definite functions

In this section we study several concepts of positive definiteness on CAS. We restrict our
attention to the commutative case for simplicity even if some results remain valid in a slightly
more general setting. Therefore, (X, D, K) will always be a commutative CAS.

6.1 Definition. (1) Let A : C.(X) — C(X) be a linear operator. A is called positive
definite if (Ag, g)x € [0, 00] for all g € C.(X).

(2) A continuous function F' : X x X — C is called positive definite, if for all n € N,
21,...,%n € X and ¢q1,...,c, € C, szlzl ek Fxg, ) > 0.

Both concepts are closely related:

6.2 Lemma. A continuous function F' : X x X — C is positive definite if and only if the
linear operator TY : C.(X) — O(X) is positive definite.

Proof. This follows from standard density arguments similar to corresponding results for
hypergroups; see e.g. Lemma 4.1.4 of [§]. O

As the pointwise products of positive semidefinite matrices are again positive semidefinite
(see e.g. Lemma 3.2 of [6]), we have the following well known result:

6.3 Lemma. If ;G : X x X — C are positive definite, then the pointwise product F - G :
X x X — C is also positive definite.

We now study for which f € Cy(D) the operators T are positive definite. The following
more or less obvious result will be needed later on.

6.4 Lemma. For a function f € Cy(D), the operator Ty is positive definite if and only if
for each step function g = > " ¢ila, - X — C withn € N, ¢1,...,¢, € C, and disjoint,
relatively compact Borel sets Ay, ..., A, C X, the inequality (Ttg,g)x € [0,00[ holds.

Proof. For the only-if-part, we notice that each step function g as required in the lemma is the
pointwise limit of functions in C.(X) whose supports are contained in some fixed compactum
in X. The result then follows from dominated convergence. The if-part follows by the same
arguments. O

We now collect some relations between positive definite functions on D and positive
definiteness on X.

6.5 Lemma. Let f € C.(D). Then, f* f* is positive definite on D, and Ty, s+ is positive
definite.

Proof. The first statement is well-known; see 2.8(2). The second one is clear as Tt f+ = T¥Ty
by 4.12.

26



6.6 Corollary. For each character o € (D,*)" in the support S of the Plancherel measure
of (D, ), the operator Ty, is positive definite. Moreover, if f € Cy(D) is positive definite on
(D, x) such that f has the form f = ji for some p € M, (S), then Ty is positive definite.

Proof. By Fact 2.8(3), each a € S is a locally uniform limit of functions of the form f x f*
with f € Cq(D). It follows from the axioms of a continuous association scheme and the
definition of T, that for each g € C.(X), Tag is a locally uniform limit of T, ¢~g. Lemma 6.5
thus implies that T, is positive definite. The second statement follows in the same way. [

If (X, D, K) has property (T2), then the preceding results can be rewritten:
6.7 Corollary. Let (X, D, K) be a commutative CAS with (T2). Then:
(1) For each f € C.(D), (f* f*)om: X x X — C is positive definite.

(2) For each character a € S C D in the support of the Plancherel measure of (D, ),
aom: X x X — C is positive definite.

Proof. Part (1) follows from Lemma 6.5, property (T2), and Lemma 6.2.

For part (2) we again use that a € S is a locally uniform limit of functions of the form
f*f*with f € C.(D). Hence, by part (1), aom is a locally uniform limit of positive definite
functions on X x X and thus also positive definite. ]

We now turn to a kind of converse statement of Lemma 6.5 and Corollary 6.6:

6.8 Lemma. Let f € C(D) such that Ty is positive definite. Then:

(1) f(e) € [0, 00[;
(2) f is positive definite on (D, *).

Proof. For part (1) assume that f(e) € C\ [0, co[ holds, i.e., arg f(e) € R\ 27Z with a branch
of the arg-function on C \ {0} which is continuous in f(e). Now choose £ > 0 such that for
all z € C with |z — f(e)| < € we have z # 0, argz & 27Z, and |argz — arg f(e)| < 1/2 (or
another small positive constant). As f is continuous, we find a neighborhood W, C D of e
with |f(z) — f(e)| < € for x € W,. We thus obtain that for all ¢ € C(D) with values in [0, co|
and with ¢(e) > 0,

. p(x) f(x) dwp(z) € C\ [0, 00f. (6.1)
On the other hand we now fix some z € X. As 7 : X x X — D is continuous with 7(z, z) = e,
we find a neighborhood U, C X of z with n(U,,U,) C W,.. Choose some g € C.(X) with
values in [0, co[ and with ¢g(z) > 0 and supp g C U,. Then Kj(z,U,) =0 for all z € U, and
h € D\ We. As T} is positive definite, we obtain

0< AQQX—/// y) Kn(z,dy) dwx (z) - f(h) dwp(h)
:/// y) Kn(z,dy) dox(z) - f(h) dwp(h)
= [ (@) £(@) dun(o)

e
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where ¢ is continuous with with values in [0, co[ and with ¢(e) > 0. This contradicts (6.1)
and completes the proof of part (1).

For (2) consider any ¢ € C.(D) and g € C.(X). Then, by 4.11(2), T,,g € C.(X), and by
our preceding considerations,

(Tprapapd, 9)x = T3TT09,9)x = (T Tpg, Tog)x > 0.

This shows that T« s« is positive definite, and we obtain from a standard computation for
hypergroups and part (1) that

/D /D F(h1 # Ba) - o) - 9(ha) duwp(h) dwp(ha) = " % f  p(e) € [0, 00].

As this holds for all ¢ € C.(D), it follows from standard arguments for hypergroups (see
Lemma 4.1.4 of [8]) that f is positive definite on (D, *). O

Corollary 6.7 and Lemmas 6.3 and 6.8 now lead to the following result. Is was given for
association schemes in Theorem 4.6 of [42].

6.9 Theorem. Let (D,x*) be a commutative hypergroup which is associated with some CAS
(X, D, K) with (T2). Then, for all a,p € S C D in the support of the Plancherel measure,
a- 3 is positive definite on D, and there is a unique probability measure 6,%0g € Ml(lj) with
(8a%03)Y = - B. The support of this measure is contained in S.

Furthermore, for all a € S, the unique positive character ag in S according to 2.8(4) is
contained in the support of do%d5.

Proof. Corollary 6.7, property (T2), and Lemmas 6.3 and 6.8 show that «-f is positive definite
on (D, ). Bochner’s theorem 2.8(1) now leads to the probability measure d,%5 € M'(D).
Furthermore, Proposition 2.9 ensures that the support of this measure is contained in .S. The
assertion about the support of J,%d5 follows from Theorem 2.1 of [38]. O

The methods of the proof of Theorem 6.9 can be used to prove the following equivalence
of different concepts of positive definiteness.

6.10 Proposition. Let (X, D, K) be a commutative CAS with property (T2) such that 1
is contained in the support S of the Plancherel measure of the associated hypergroup (D, x).
Then for a € (D, x)" the following facts are equivalent:

1) aeS;

2) The operator T, is positive definite;

(1)

(2)

(3) aom e Cyp(X x X) is positive definite;

(4) For each B € S, the product - B is positive definite on (D, %).

Proof. (1) = (2) follows from Corollary 6.6, and (2) = (3) is a consequence of (T2) and
Lemma 6.2. (3) = (4) follows from Lemma 6.3 with the methods of the proof of Theorem
6.9. Finally, (4) = (1) is a consequence of 1 € S and Corollary 7 of [37]. O

For compact CAS, Theorem 6.9 can be improved:
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6.11 Theorem. Let (D,*) be a compact commutative hypergroup which is associated with
some compact commutative CAS (X, D, K). Then (T2) holds by Proposition 5.6, and, with
the dual convolution % of Theorem 6.9, (15, %) satisfies all hypergroup axioms possibly except
for the condition that supp(da*dg) is compact (i.e. finite) for all o, 5 € D.

Proof. For compact commutative hypergroups we have S = D, Dis discrete, and the unique
positive character in S is the identity 1; see e.g. [8]. Therefore, if we take 1 as identity
and complex conjugation as involution, almost all hypergroup axioms of (15, %) follow from
Theorem 6.9. In fact, as D is discrete, the topological axioms hold automatically. Moreover,
the bilinear, weakly continuous extension of the dual convolution * from the set of point
measures to My(D) is associative as the inverse Fourier transform is injective; see [8].

We thus only have to check that for o # 5 € D, the character 1 is not contained in the
support of do*d5. For this we recapitulate that for all v, p € D, A(p) = [pypdwp = 171136+,
with the Kronecker-d. Therefore, with 12.16 of [21],

(504%55)({1}):/[)1{1} d((sa:k(sg):/ 1d(6a%65) =

D
- / 1 (da#0p)” dwp = / of dwp = [[30a,5 = 0.
D D

This completes the proof. ]

In the finite case, Theorem 6.11 is a follows; see also Theorem 4.7 of [42]:

6.12 Corollary. Let (D,x*) be a finite commutative hypergroup which is associated with some
finite commutative CAS (X, D, K). Then D carries a dual hypergroup structure.

We next turn to the problem whether the conclusions of 6.9, 6.11, and 6.12 on positive
dual convolutions also hold for commutative CAS without (T2). We here follow Section 5 of
[42] and assume that we have two commutative CAS (X, D, K) and (X, D, K ) with the same
spaces X, D and the same projection 7 : X x X — D. We denote the associated commutative
hypergroups by (D, ) and (D, %) and the supports of the associated Plancherel measures by
S and S. Assume that (X, D, K) has property (T2), and that all characters & € S of (D, ¥)
in the support of the Plancherel measure have the form

a(h) = /S o(h)dp(a)  forall heD

for some p € M'(S). It was proved in Theorem 5.10 of [42] for commutative generalized
association schemes that then (D, %) also admits a positive dual convolution on S. We shall
extend this result to CAS in Theorem 7.1 which has some unexpected consequences: It turns
out that under some additional conditions like property (T2) for one of the CAS and a
support condition, the hypergroup structures (D, x) and (D, %) are equal; compare this with
the assertions of 5.7, 5.13, and 5.14.

7 A comparison of different CAS on the same spaces

As before, let (X, D,K) and (X,D,K) be commutative CAS with the same spaces X, D
and the same projection 7 : X x X — D. Let again (D, x) and (D, %) be the associated
commutative hypergroups and S and S the associated Plancherel measures respectively. The
following extension of Theorem 6.9 is the main result of this section.
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7.1 Theorem. Assume that (X, D, K) has property (T2) in the setting above. Then for all
characters & € S and B € S, the product & - (3 is positive definite on (D, %), and there is a
unique p € M*(S) with

G(h)B(h) = /S a(h)du(e)  forall heD.

In the discrete case, the proof is quite simple and similar to that of Theorem 5.10 of [42],
while it will be more involved in the continuous case due to some approximation procedure.
To highlight the idea of the proof, we first give the proof in the discrete case:

Proof of Theorem 7.1 in the discrete case. Let & € S and 8 € S. Let T be the linear
operator associated with @ and the CAS (X, D, K). Then, by Corollary 6.6, Tj is positive
definite. Now let g € C.(X). Choose z1,...,x, € X different with supp g = {z1,..., 2.},
and let @p be a Haar measure of (D, %), wx € M T (X) the associated measure, and (., .) ¢ the
associated scalar product on L?(X,&x). The positive definiteness of T and the properties
of supp Kp(x,.) for h € D and x € X imply that

0<(Tag,9)% ZZ (k) g(ar) Kn(zy, {a1}) Ox ({zx}) - a(h)op({h}) (7.1)

heD k,l=1

Kr(ay ) (@, {21}) @x ({2 })a(m (@r, 21))op ({7 (2x, 1) }).-

On the other hand, as (X, D, K) has property (T2), Bom: X x X — C is positive definite,
i.e., the matrix (B(m(xk, x;)))k, is positive semidefinite. Eq. (7.1) and the fact that pointwise
products of positive semidefinite matrices are positive semidefinite yield that

n

Z mg(xl) f{ﬂ(xk,xl)(xka {JI[}) (DX({'CU]C})

k=1

~a(m(@g, 21))B(m(@k, 21))wp ({7 (zk, 1) }) = 0.

As in the computation of Eq. (7.1), we obtain that <Td.5g,g>X > 0, i.e., Ta.g is positive
definite. Hence, by Lemma 6.8, @f is positive definite on (D,%). Finally, the support
condition follows from Proposition 2.9. 0

We now turn to the the general case by using Lemma 6.4.

Proof of Theorem 7.1 in the general case. We keep the notations of the discrete case. Let
& € Sand B € S. Consider some step function g = Soiicla, 0 X — C with n € N,
c1,...,cyn € C, and disjoint, relatively compact, non-empty Borel sets Ay,..., A, C X asin
Lemma 6.4. Let € > 0 be a small constant.

As fom: X x X — C is continuous and thus uniformly continuous on the compactum
suppg x suppg C X x X, we may decompose the sets Ay, ..., A, into finitely many, disjoint,
non-empty Borel sets such that, after denoting these finitely many sets again by Aj,..., A4,
we have the following additional property:

Forall i,j=1,...,n,u,ve€ 4;, z,yc Aj: |B(n(u,z))—B(r(v,y))| <e. (7.2)
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We thus now assume without loss of generality that the step function g has a representation
where this property holds, and where the sets A; are fixed. For the functions f = &,&- 5 €
Cy(D) we put

®4(i,7) ::/D/Akh(x,Aj)d@X(g;).f(h) dop(h).

A short computation and the definition of g then yield that
n
(Trg,9)x = > @i Pp(i,j). (7.3)
ij=1
As Ty is positive definite, we obtain that <ng, 9) % = 0 for all choices of c1,...,c, € C. This
means that the matrix (®4(7,7))s,j=1,..,n is positive semidefinite.
On the other hand, as (X, D, K) has property (T2), we know that fonm: X x X — C
is positive definite, i.e., the matrix (5(m(x;,x;)))s; is positive semidefinite for all choices of

points x; € A;, i = 1,...,n. As pointwise products of positive semidefinite matrices are
positive semidefinite, we obtain that the matrix (®¢(4,7) - B(7(z4,x;)))ij=1,.n is positive
semidefinite. This means that for all choices of ¢1,...,¢, € C,

0< > @icPali,f)B(n(wiz)))

ij=1

n
~Yae / / R, Ay) disx () - () Bl (s, 23)) dp(h). (7.4)
ij=1 DA
Furthermore, for 7,5 = 1,...,n and h € D, the relation fAi f(h(x,Aj) dwx (z) > 0 implies
SUDge A, Kp(z, A;) > 0, and this implies that h € 7(A;, A;). This, the estimate (7.2), and
|&t||cc = 1 imply that

e [ [ Rawd)) dox(a)a0) Brlaa) dan(n) -

ij=1

- Soae [ [ Rl y) dox(e)-ah) 50 dan(] < elgl - @x (summ )

ij=1
We conclude from (7.4) and (7.3) that

n

<T&Bgvg>)~( = Z Eicj @&B(Zaj) eC

ij=1

has a distance from [0, co[C C which is at most Ce for some constant C > 0 depending on g
only. As in our approximation £ > 0 may be arbitrarily small, we obtain (T5 g9, g) ¢ € [0, 00][.
As this holds for all step functions g, Lemma 6.4 shows that T} 5 is positive definite as claimed.

Again, the support condition follows from Proposition 2.9. O

We now present some applications of Theorem 7.1.

7.2 Corollary. Let (X, D,K) and (X, D, K) be commutative CAS with the same X, D and
m. Assume that (X, D, K) has property (T2), and that the identity 1 is contained in S. Then
each character 3 € S is positive definite on (D, %), and there is a unique p € M1 (S) with

5(h):/§5(h) du(B)  forall heD.
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Proof. Use Theorem 7.1 with & = 1. O

In Remark 9.9 we present an example which shows that the technical condition 1 € S in
Corollary 7.2 is necessary.
Here is a further consequence of Theorem 7.1 which generalizes Theorem 5.10 of [42].

7.3 Corollary. Let (X,D,K) and (X,D,f() be commutative CAS with the same X, D and
7. Assume that (X, D, K) has property (T2), and that each character § € S of (D, %) has
the form

fwzéﬁmmmm (h e D) (75)

for some p € M(S).
Then, for all &, € S, the product & - 8 is positive definite on (D, %), and there is a
unique probability measure 65*07 € MY(S) with (55%6 5 ) =a-pB.

Proof. Theorem 7.1 shows that for & € S and 8 € S the product &j is positive definite on
(D, %) with af = f57 dpa,p(y). Eq. (7.5) now implies that for all &, € S, the product &j
is positive definite on (D, %), and that the claimed integral representation holds. O

Clearly, Corollary 7.1 is also a generalization of Theorem 6.9. However, in practice it
does not go far beyond 6.9 by the following theorem which is closely related with 5.13:

7.4 Theorem. Let (X, D, K) and (X, D, K) be commutative CAS with the same X, D and
m. Assume that (X, D, K) has property (T2) and that 1 € supp S holds. Assume in addition
that each character B € S has the form

:meww> (h e D) (7.6)

for some € MY(S). Then, (D,*) = (D, ¥%).

Proof. We first recapitulate some facts on commutative hypergroups from [21] which are well-
known for lca groups and Gelfand pairs. For this let (D, %) be any commutative hypergroup.
Then the dual D can be identified with the symmetric spectrum

Ay (L' (D,wp)) := {¢ € LYD,wp)* : ¢ multiplicative, o(f*) = ¢(f) for f € LY(D)} (7.7)

of the commutative Banach-*-algebra (L'(D,wp), *,.*) via

a— @, with o (f) = /Dcp(x)oz(:c) dwp(x).

In particular, if Ag(L'(D,wp)) carries the Gelfand topology and D the topology of compact-
uniform convergence, then this mapping is a homeomorphism. We also recapitulate the
well-known fact that A4(L'(D,wp)) is the set of all extremal points in the set P(D, %) of all
positive linear functionals on L*(D,wp)) with dual norm equal to 1; see e.g. Rudin [32].

We now apply these facts to our theorem. We first conclude from (7.6) that each § €
S C Cy(D) leads to a positive linear functional @5 € P(D,*). Moreover, by Corollary 7.2,
each § € S C Cp(D) has the form

:éamw@> (he D) (7.8)
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for some pg € M L(S). As g is an extremal point, we conclude that ;15 is a point measure.
In fact, if ug fails to be a point measure, then we may write pg as ug = Apg + (1 — X\)uo
with different measures p1, up € M1(S) and A €]0,1], i.e., g would be a nontrivial convex
combination of elements of P(D,*) contradicting extremality.

In summary pg is a point measure for each 8 € S which proves S C S. The same
arguments also yield S c S, ie., we have S = S. Therefore, for all r,y€Dand a € S = S,

(5m*5y)/\(oz):/Do_zd(ém*dy):a(x)a(y):...:((Lciéy)/\(a).

As the restricted Fourier-Stieltjes transform M (D) — Cy(S) = Cy(S), p1 — fi is also injective
(see [21]), we obtain that ¢, * d, = d,%0, for all z,y € D as claimed. O

7.5 Remark. We briefly discuss some implication of the preceding results. For this we re-
capitulate the original motivation in the introduction of [42] for the study of generalizations
of classical commutative association schemes. Consider a sequence (Gy,, Hy,)nen of Gelfand
pairs such that the double coset spaces G, //H, are homeomorphic with some fixed locally
compact space D. Modulo these homeomorphims, we obtain associated double coset hy-
pergroups (D, *,). The spherical functions of (G, Hy,) then may be regarded as nontrivial
continuous multiplicative functions on (D, *,,). For many examples of series (G}, Hy,)n, these
functions are parameterized by some spectral parameter set x (D) independent on n, and the
associated functions ¢, : x(D) x D — C can be embedded into a family of special functions
which depend analytically on n in some parameter domain A C C. In many cases, these
special functions are well known, and the product formulas for spherical functions can be
written down explicitly on D with n € N as parameter. Based on Carleson’s theorem, a
principle of analytic continuation (see e.g. [34], p.186), one can often easily extend these
positive product formulas to a continuous range of parameters, say n € [1,00[ such that for
all these n associated commutative hypergroup structures (D, %) exist.

Besides positive product formulas for ¢, (A, .) on D, there also exist dual product formulas
for the functions ¢,(.,z) (r € D) on suitable subsets of x(D) for the group cases, i.e.,
for n € N. In particular, positive dual convolutions on the supports S,, C x(D) of the
Plancherel measures of the double coset hypergroups G,//H, exist; see e.g. Theorem
6.9. For many examples, these dual convolutions are known and can be extended again by
Carleson’s theorem to positive dual convolutions for all n € [1, c0[. However, for symmetric
spaces of rank > 2, this dual convolution is usually a difficult business, and not very much
is known in this respect. When writing (the introduction of) [42], the author hoped that
a theory of continuous association schemes might lead to examples of commutative CAS
associated with (D, x,) for all n € [1,00[ such that Theorem 6.9 or Corollary 7.3 leads at
least to the existence of dual positive convolutions on S, in these cases.

This idea was motivated by natural families (Kp)pep of Markov kernels on concrete
spaces X which are are associated with commutative hypergroup structures on D in [25]
and [7]. In fact, Kingman [25] studies the Euclidean case X = R? with D = [0, oo[ where
the associated hypergroups are the Bessel-Kingman hypergroups indexed by a continuous
parameter. Moreover, Bingham [7] studies the spherical case X = S? := {z € R3 : |22 = 2}
with D = [—1, 1] where the associated hypergroups on [—1, 1] are related with ultraspherical
polynomials. Unfortunately, the kernels (K})nep in [25] and [7] do not lead to commutative
CAS such that the theory of our paper cannot be applied there. This becomes clear from
Theorem 7.4 without discussing any details of these kernels from Theorem 7.4, as almost all
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conditions of Theorem 7.4 are satisfied for these examples. In fact, if the structures in [25]
and [7] would lead to commutative CAS, then Theorem 7.4 could be applied to this structure
as the CAS (X, D, R’) where we would have to take the CAS (X, D, K) as a group case with a
suitabele smaller group parameter than for (X, D, K ). We here notice that then in particular
(7.6) holds by well-known explicit positive integral representations of the associated Bessel
functions and ultraspherical polynomials; see e.g. the survey of Askey [2].

8 Multiplicative functions and deformations

Following the well known notion of multiplicative functions, semicharacters, and characters
on commutative hypergroups (see [8], [21], and Section 2 above), we here introduce a corre-
sponding concept for commutative continuous association schemes. We in particular use it to
construct deformed continuous association schemes (X, D, K) from a given scheme (X, D, K)
with the same spaces X, D and modified kernels K. This construction leads to examples of
CAS which are beyond double coset examples and classical discrete association schemes where
usually (T1) and (T2) do not hold.

8.1 Definition. A pair (o, ) € C(D)x C(X) of continuous functions is called multiplicative
on a commutative continuous association scheme (X, D, K) if o # 0 and

Tho(x) = /X o(y)Kn(x,dy) = p(z) - a(h) forall he D,z e X. (8.1)

A multiplicative pair (o, @) is called a semicharacter of (X, D, K ), if in addition

a(h) = a(h) for all h e D. (8.2)

A semicharacter (a, ) is called a character, if o and ¢ are bounded, and positive, if a and
¢ are |0, co[-valued.

8.2 Remarks. (1) Eq. (8.1) means that ¢ is a joint eigenfunction of all mean value oper-
ators Ty, h € D.

(2) If @ = 1, then (8.1) is a mean value condition, i.e., ¢ may be seen as a harmonic
function. Notice that for a compact CAS, all harmonic functions are constant by
Lemma 4.14. We shall see in Remark 9.10 that usually there might exist unbounded
positive harmonic functions. It might be interesting to explore under which conditions
on a CAS, all bounded harmonic functions are constant.

(3) For a multiplicative pair (a, ¢), « is determined uniquely by ¢. The converse statement
is not correct as for any « € C'(D), the joint eigenspace

Ey:={peC(X): (a,9) multiplicative} (8.3)
is a vector space.

(4) Let (X = G/H,D = G//H, K) be a commutative continuous association scheme which
comes from some Gelfand pair (G, H) with a connected Lie group G. Then, any
¢ € C(X) is contained in some joint eigenspace E, for « € C(D) if and only if
¢ is a joint eigenfunction of all G-invariant differential operators on X = G/H; see
e.g. Prp. IV.2.4 of Helgason [18].
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We next study relations between « and ¢ for multiplicative pairs.

8.3 Proposition. If («, ) is multiplicative on (X, D, K) with ¢ # 0, then « is a multi-
plicative function of (D,x), i.e., for all hy,ha,h € D, a(hy * ha) = a(h1)a(he). Moreover, if
(a, @) is in addition a semicharacter or character, the so is a on (D, ).

Conwversely, for each nontrivial multiplicative function o € C(D) on (D, x) there exist
functions ¢ € C(X) with ¢ # 0 such that (a, ) is multiplicative on (X, D, K).

Proof. Let («, @) be multiplicative as described. For x € X, hy, hy € D we have

p(x) - alhy * hy) = p(x) - /D a(h) d(0n, * 0n,)(h) = /DTW(CC) d(0n, * 6n,)(h)

— Th, 0 Thy () = o(a) - alhr)a(ha)

Taking z € X with ¢(z) # 0 leads to the first claim. The second statement is clear.

For the last statement we conclude from Lemma 4.13 that for each g € C.(X) and
each nontrivial multiplicative function o € C(D) on (D, *), the function ¢ := T,-g¢ with
a~(h) := a(h) satisfies T, = a(h) - . We still have to check that we can choose g such that
© # 0 holds. As a(e) =1, we find a neighborhood U C D of e on which R« > 0 holds. Now
fix some € X and a neighborhood W C X of x with w(z, W) C U. Now choose g € C.(G)

with g > 0, g # 0, and supp g C W. Then

Rp(z) = /U /Wg<y> K (x, dy) Ra(h) dwp(h) > 0

as claimed. O

(T1) and (T2) lead to a further standard construction of multiplicative pairs:

8.4 Lemma. Let (X, D, K) be a commutative CAS with (T1) or (T2). Then for all multi-
plicative function o € C(D) on (D,*) and z € X, the pair (a, & := « o 7,) is multiplicative
on (X,D,K).

Proof. Assume first that (T1) holds. Then for x € X, h € D,
Tha(z) = Th(aom,)(z) = a(m(x) * h) = a(m.(x))a(h) = a(xz)a(h) (8.4)

as claimed.

Assume now that (T2) holds. We conclude from the last assertion of Proposition 8.3 that
for all g € Cc(X), the function ¢4 := T* °Tg = T,-g satisfies Thp, = a(h) - ¢4 for h € D.
On the other hand, as « o 7 is uniformly continuous on compact subsets of X x X, we find
relatively compact neighborhoods U,, C X of z with U,41 C U, for all n and ), U, = {z}
such that for all g,, € C.(X) with supp g, C Uy, g, > 0, and fX gn dwx = 1, we have

Pon () = /X a”(m(z,y)) gn(y) dwx (y) — o~ (7(2, 2)) = a(n(z, 7)) = a(7.(z))

uniformly on compacta w.r.t. . Hence, the limit & := « o, also satisfies Tp,& = «a(h) - & for
h € D as claimed. ]

The arguments of the preceding proof and in particular in (8.4) can be combined in a
different way and lead finally to:
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8.5 Theorem. For each commutative CAS, (T2) implies (T1).

Proof. Let (X, D, K) be a commutative CAS with (T2) and with associated commutative
hypergroup (D, *). Let @ € D be a character, and let z € X and & := a o m,. Then, by
property (T2) and Lemma 8.4, T),a = a(h) - & for h € D. Hence, for z € X and h € D,

Th(aom,)(x) = Tha(x) = a(x)a(h) = a(n,(z))a(h) = a(r,(z) * h).
As this equation is linear in «, we obtain that

Th(foﬂ'z) = fh O Ty

forall h € D, z € X and f € Cy(D) of the form f = i with u € My(D) in the notation of
Section 2.7(4). On the other hand, it is well-known from hypergroup theory that, again with
the notion of Section 2.7(4), the set {g : g € C.(D)} is a ||. | so-dense subspace of Cy(D); see
e.g. Theorem 2.2.32(vii) of [8]. We thus conclude that T}, (f om,) = from, for all f € C.(D),
h € D and z € X as claimed. O

Theorem 8.5 and Proposition 5.6 imply:
8.6 Corollary. Fach compact commutative CAS is strong.

8.7 Remark. (1) Notice that in the proof of the first part of Lemma 8.4, (T1) is needed
for the specific z € X with & := a o7, only.

(2) If (X =G/H,D =G//H, K) is a commutative CAS associated with the Gelfand pair
(G, H), then (T1) and (T2) hold by 5.2. Hence, for a multiplicative function « of (D, %)
and z € G, we may take & € C(X) with &(zH) := a(m.gy(rH)) = a(Hz"*xH) for
red.

(3) Let (X = G/H,D = G//H,K) be a commutative CAS which comes from some
symmetric space G/H. Then for each multiplicative a € C(D), E, C C(X) is the
joint eigenspace of the algebra D(G/H) of all G-invariant differential operators on
X = G/H (with suitable eigenvalues). In this case E, is completely known by Kashi-
wara et. al. [24]; see also the description of the results in Section I1.4.1 of [18]. As this
goes beyond the scope of this paper, we skip details. For some interesting concrete
examples of functions in F, on hyperbolic planes we refer to the introduction of [18].

(4) We expect that the well-established representation theory of compact hypergroups and
the arguments of the proof of Theorem 8.5 yield that for all compact CAS, (T2) implies
(T1). Proposition 5.6 then would imply that each compact CAS is strong.

We now restrict our attention to positive semicharacters («, ¢p) of some commutative
CAS (X,D,K). It is well known from [35] or Section 2.3 of [8] that then the positive
semicharacter g of (D, x*) leads to a deformed commutative hypergroup (D, %) with the
deformed convolution of point measures

)
ao(h1) - ao(h2)

where the identity and involution of (D, ) are not changed. Moreover, if wp is a Haar
measure of (D, ), then

Ony ¥0py = - (8p, * Opy) € MY(D) (h1,hy € D) (8.5)

@p :=ai-wp € MY (D) (8.6)

is a Haar measure of (D, *) by [35]. We now show that (ag,¢o) also leads to a deformed
commutative CAS (X, D, K) which is associated with (D, %).
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8.8 Proposition. Let (v, o) be a positive semicharacter as above. Define the deformed
kernel K from X x D to X with

R, A) = —— / coly) Kn(e,dy)  (heD, e X, AcB(X)).

ap(h)po() Ja
Then (X, D, K) is a commutative CAS which is associated with (D, %) above. Moreover:

(1) If wx € M™(X) is an invariant measure of (X, D, K), then Ox := ¢f - wx € MT(X)
is an invariant measure of (X, D, K).

(2) Assume that (X, D, K) has property (T1), and let &y € C(D) be a positive semichar-
acter and z € X. Consider the positive semicharacter (ag, &g = ap o) of (X, D, K)
according to Lemma 8.4. Then for all f € C(D), h€ D and y € X,

f(h¥m(y)) = (Ti(f o 7)) (y) (8.7)

where Tﬁ is the operator associated with the kernel K. This means that (T1) holds for
(X, D, K) for the specific z € X.

Proof. Notice that K satisfies Kj(x, X) =1 for h € D, z € X. This normalization and the
continuity of K show that K is a continuous Markov kernel from X x D to X. Moreover, K
clearly satisfies the conditions of 4.2(1) and (2) with the projection 7 of the scheme (X, D, K).
We next check axiom 4.2(3). For hy,he € D, z € X and A € B(X) we have

Kfu OK}Q(‘T?A) = / KhQ(y7A) IN{M(‘T?dy)
X

N S / Koy (4, A) 00(y) K, (2, dy)

ag(h 0(96

ao(h )Oéoth2 / / 0(2) Ky (y, dz) Ky (x, dy)
1
(

- TG / / 0(2) Kn(x,dz) d(Sn, * on,) ()

= cotimiaatia) J e ) aalh) o, 1.0

_ / Ky (, A) d(6p, %6n,) ().
D

For the adjoint relation in 4.2(4), we observe for fi, fo € C.(X) and h € D that

/Xf1~Thf2 Cl@x_/ / f1(x)f2(y)Rh(x,dy) divx (z) (8.8)
/ / (Poao fl SOO fQ)( ) h(l’,dy) 800($)2 de(l‘)

_ag(h)/ vof1 - Th(pof2) dwx.

This, ag(h) = ag(h), and the adjoint relation 4.2(4) for (X, D, K) now lead to 4.2(4) in the
deformed case. This completes the proof of the main statement and of part (1).
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Finally, for the proof of (2) we observe that (T1) for (X, D, K) and (8.5) imply that

- 1
f(him.(y)) = cooom @) (On * 07, (y)) (0 f)
1
= m(aof)h(ﬁz(y))
1

_ mTh(aof)(Trz (¥))

)
= Xf(Trw(w)) f(h(y,dw) = (Th(foﬂ'z»(y)-

0
8.9 Remark. Let (X, D, K) be a commutative strong CAS, o € C(D) a positive semichar-
acter of (D, x), and z € X. Then (g, g o ;) is a positive semicharacter of (X, D, K) by

8.4. Consider the associated deformed CAS (X, D, K) which has property (T1) for z € X
by 8.8(2). A short computation similar to the proof of 8.8(2) shows that we also have

Trg(zx) = T7°"g(x) for all f e C.(D), g€ Ce(X), (8.9)
i.e., (T2) also holds for (X, D, K) and z € X.

In the setting of Prp. 8.8, the semicharacters of (X, D, K) and (X, D, K) are closely
related. This is well-known for hypergroup deformations from [35] or Section 2.3 of [8].

8.10 Lemma. Let (X,D,K) and (X, D, K) be related as in Proposition 8.8. Then
{(a/ag,p/v0) :  (a,¢) a semicharacter of (X,D,K)}

is the set of all semicharacters of (X, D,K).

Proof. Let («, ) be a semicharacter of (X, D, K). Then, for h € D, z € X,

o/ o0)e) = s | () Kz, dy) = 22D (8.10)

ao(h)po(z) ao(h)po(z)
This shows (8.1) for (a/aw, ¢/po) and thus the first part of the lemma.

For the converse statement we notice that (1,1) is a positive character of (X, D, K).
Hence, (1/ag,1/pg) is a positive semicharacter of (X, D, K) by the first part of the lemma.
We now apply the first part of the lemma to (1/ag, 1/d9) where the rules of (X, D, K) and
(X, D, K ) are interchanged. This readily proves that each semicharacter of (X, D, K ) has
the form as stated in the lemma. O

9 Orbit schemes and their deformations

We now study examples of semicharacters (a, ) and associated deformations beyond the
case ¢ = aom, for z € X under condition (T1) or (T2). We know from 4.6 and 5.2
that Gelfand pairs (G, H) lead to commutative, strong CAS (G/H,G//H, K). parametrized
Typical examples are given by the following orbit construction; see [21] for the background.
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9.1 Orbit schemes. Let G be a locally compact abelian group and H C Aut(G) a compact
group of automorphisms which acts continuously. Form the semidirect product G x H which
contains H as a compact subgroup canonically. Then (G x H, H) is a Gelfand pair, and we
may identify (G x H)/H with G via (g,h)H ~ g (9 € G,h € H), and (G x H)//H with the
space G of all H-orbits in G via H(g,h)H ~ g := {h(g) : h € H} where all spaces carry
the quotient topology. Consider the associated commutative strong CAS

A:=(X:=(GxH)/H=G, D:=(GxH)//H=G", K)
where the double coset hypergroup (D, x) has the identity {e} (e the identity of G), the

involution g7 = (¢7), and the convolution

Ogf * Ogr = /H(S(gl'h(gz))H dwp(h) (91,92 € G)

for the normalized Haar measure wy of H. The Markov kernel K is given by

K028 5= [ Spuaton(4) den(h) = wn({h € H : g2+ hlor) € 4)

for 1,92 € G, A € B(G). By the proof of Proposition 4.6, the map 7 : X x X — D is given
by m(g1H,g2H) := (gl_lgg)H. Moreover, if wg is some Haar measure of G, then wg X wy is
a Haar measure of G x H, and we may choose the measures wx,wp of A as wx := wg and
wp = ¢(wg) for the orbit map ¢ : G — GH with ¢(g) = g".

We call A the orbit scheme associated with (G, H).

In this setting we have multiplicative pairs as follows:

9.2 Lemma. Let ¢ € C(G) be multiplicative, i.e., ¢(g192) = ©(91)¢(g2) for g1,92 € G, with
¢ #0. Form a € C(D) with

a(gh) = /H o(h(g)) dun(h) (g€ C). (9.1)

Then (o, @) is multiplicative on A. Moreover:
(1) If ¢ € C(G) is a character of G, then so is the pair (o, @) on A.

(2) Let g9 € C(G) be positive and multiplicative such that the associated oq satisfies
ao(9) = ap(g?) for g € G. Then (o, o) is a positive semicharacter on A. Hence,
with the associated kernel K from Proposition 8.8, (X, D, K) is a commutative CAS.

Proof. ¢ satisfies p(e) = 1 and ¢(g) # 0 with ¢(g7!) = ¢(g9)~! for g € G. In particular, we
obtain « # 0. Moreover, as for g1, g2 € G,

Tyro(on) = [ o) Kyp(omdy) = [ olonhion) donh

— [ lon) - pli(an)) dom(h) = o(g2) - el

the first statement is clear. Parts (1) and (2) are then clear. O

9.3 Remark. Let ¢y € C(G) and ag € C(D) be as in the setting of Lemma 9.2(2).
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(1) We are mainly interested in nontrivial g, i.e., 9 #Z 1, as otherwise 9.2(2) does not
lead to a nonidentical deformation. This clearly works for noncompact groups G only.

(2) The push forwards 7, (0x) € M T (D) of invariant measures wx as in 8.8(2) for x € X
usually will not be Haar measures on (D, *); for examples see below. Therefore, by
Lemmas 5.8 and 5.9, the deformed CAS of Proposition 9.2 usually do not have (T1)
and (T2).

(3) Consider the original orbit scheme A as in Section 9.1. Let G be the dual group on which
H also acts via h(a)(g) := a(h(g)). Consider the orbit maps ® : G — GH = D, g s g/
and ® : G — (), a — a'l. It is well-known that (G) can be identified with the
dual (D,*)" via ®(a)(g") := S a(h(g)) dwr(h), and that for a Haar measure wg
and its associated Plancherel measure wp (which is a Haar measure of G), the push
forwards ®(wg) € M1 (D) and @(wé) € M*((D,*)") are a Haar measure of (D, *)
and its Plancherel measure respectively; see [21]. In particular, the support S of the
Plancherel measure is equal to (D, *)" for these examples.

On the other hand, if pg € C(G) is a positive multiplicative function with oy # 1
as in 9.2(2), then for the associated deformed hypergroup (D, %) the support S of the
Plancherel measure is a proper subset of (D,*)" for ap # 1. In fact, we even have
1¢ S by [35].

It is an interesting problem whether (D, %)" or S carry dual positive convolutions. Gen-
erally, the answer is negative for (ND, ¥)"; see below. On the other hand, for S there exist
some positive results. In fact, for .S, this problem is closely related with a property of ag:

9.4 Lemma. In the setting of Lemma 9.2(2), the following statements are equivalent:
(1) 1/ag € Cy(D) is positive definite on the orbit hypergroup (D, *);
(2) for all &, B € S there exists fis 5 € MY(S) with &(z)B(x) = I V() dfis () forz € D.
(3) each character & € S is positive definite on (D, ).

Proof. For (1) = (3) assume that 1/aq is positive definite on (D, ). For & € S we find a
unique a € (D, *)" with & = a/ag by [35]. As (D, *)" carries a dual positive convolution on
(D, )", we see that & = - (1/ayp) is positive definite on (D, %) as claimed.

(3) = (2) follows from (T2) for (X, D, K), S = (D,*)", and Corollary 7.3

Finally, for (2) = (1) we take & := § := 1/ag € S in (2). The homeomorphism
S — S, o a/ag then yields that 1/aq is the inverse Fourier transform of some € M'(S)
as claimed. O

9.5 Remark. Consider some example in the setting of Lemma 9.2(2) with a # 1 such
that one and thus all statements of Lemma 9.4 hold. Then (X,D,K) # (X,D,K) and
(D, *) # (d,*). This shows that the technical condition 1 € S in Theorem 7.4 is essential.

We now present some examples for the theory of Sections 9.1-9.4.

9.6 Examples. Fix an integer d > 1 and put G := (R% +) and H := O(d) as orthogonal
group acting on G. We use the canonical identification D = [0,00[. Then (D,x) is the
so-called Bessel-Kingman hypergroup of index a = d/2 — 1; see e.g. [8], [21], and [25].
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The multiplicative functions on G have the form ¢(z) = p,(z) = »%) = et Lhim1 2k
with z € C?. Then ¢, is a character precisely for z € R, and ¢, is positive precisely for
zei-RL

In the first case, the character a, € (D, *)" associated with ¢, (z € R?) according to
(9.1) is given by a,(w) = jo(w - ||z]|2) with the the modified Bessel functions

Ja(y) =0 Fi(a+1;—y*/4)  (y€C). (9.2)

Please be careful with the different meaning of the parameter o and the functions «.

In the second case the positive multiplicative function «, € C'(D) associated with ¢, (z €
i-R%) is given by o, (w) = ju(iw-| z||]2). In particular, as the hypergroup (D, *) is symmetric,
all conditions of 9.2 are satisfied in this case, i.e., (o, ¢,) is a positive semicharacter of our
orbit CAS (R%, [0, 00[, K), and (c, ¢,) leads to a deformation for each z € i - RY. We now
study examples for the equivalent conditions of 9.4, and we discuss whether the complete
dual (D, %)" carries a dual positive convolution.

Before doing this, we notice that for each ¢ > 0, the map x — cz is a hypergroup
automorphism on (D = [0, 0o, *). This ensures that we may restrict our attention to z € i-R?
with ||z]|2 = 1 without loss of generality.

9.7 Examples. (1) Let d = 1, ie., @« = —1/2 and j_;/5(7) = cosx. Let 2 = +i. The
deformed hypergroup (D = [0, 00[, %) is then the so-called cosh-hypergroup; see [46]
and Sections 3.4.7 and 3.5.72 of [8]. The characters are given by

(@) = C(?jiﬁ? (2 € [0,00[, A€ [0,00[Ui- [0,1])

where in this parameterization, a is in the support of the Plancherel measure precisely
for A € [0, 00[. Using

cos(Ax) 1 /°° cos(tz)

coshz 2 J_ cosh((t+ \)w/2)

dt for AeC, |\ <1

(see (1) in [46] and references there), we see that the first condition of 9.2 holds.
Hence, by 9.2, the support of the Plancherel measure of (D, %) carries a positive dual
convolution. This convolution was computed explicitly in [46]. We remark, that by
[46], there does not exist a positive dual convolution on the complete dual space.

(2) Let d = 3, ie., a =1/2 and jo(x) = SINZ - Tet ||z]o = 1. In this case, the deformed

T

hypergroup (D, %)" is the Naimark hypergroup with convolution

1 Tty
Op¥0y = ———— inht d; dt , 0, ;
*0y sinh z sinh y /x_y| S 0 (z,y € [0,00])

see [21], [8] and [46]. This example is also isomorphic with the double coset hypergroup
SU(1,1)//SU(2), and it follows from the work of Flensted-Jensen and Koornwinder
[16], [17] that all bounded hermitian spherical functions are positive definite on SU(1,1)
and that thus the complete dual (D, %)" carries a dual positive convolution. The dual
convolution was computed explicitly in [46].

Here is a short list of further examples for 9.1-9.4:
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9.8 Examples. (1) Put G := (Z,+) and H := {£1} which acts multiplicatively on G.
Then D = Nj in a canonical way, and (D, *) is the so-called discrete polynomial hy-
pergroup associated with T-polynomials of the first kind; see e.g.
refLa and citeBH. The associated transition matrices are given by

1
So = Iz, Sk(ﬂ?,y) = §5k,|zfy| (k eN, z,y € Z)

with the Kronecker-4.

Similar to Examples 9.6 and 9.7(1), we consider ¢, (k) := e** for k € Z,z € R. Then
az(n) = cosh(zn) for n € Ny, and we obtain deformed CAS similar to 9.7(1). For
further details on this discrete example see also Example 5.11 of [42].

(2) Fix integers p > g > 1 as well as one of the division algebras F := R, C, or quaternions
H. Take G := (M, 4(F),+) as additive group of of p x ¢ matrices over F on which the
unitary group H := Up(F) acts from the left. G is a real Euclidean vector space of
dimension dpg with real scalar product (z|y) = Rtr(z*y) where 2* =z', Rt = 1(t + 1)
is the real part of t € F, and tr the trace in My 4(IF). The action of H is orthogonal
w.r.t. this scalar product, and z,y € G are in the same H-orbit if and only if z*z = y*y.
Thus the space of H-orbits is naturally parametrized by the cone D := II;(F) of positive
semidefinite ¢ x g-matrices over F.

For ¢ =1 and F = R, we just have II; = [0, co[, and we end up with the one-dimensional
examples in Section 9.6. For ¢ > 2, the associated orbit hypergroup structures were
discussed in [31] where the associated multiplicative functions are Bessel functions of
matrix argument.

Similar to Section 9.6, we now fix z € G, and consider the positive multiplicative
function ¢.(x) := e®?) on G. The associated positive semicharacter a, on (D, *)
can be written down explicitly in terms of Bessel functions of matrix argument. The
associated deformed CAS (M, ,(F),II,(F), K) may now be written down explicitly.

(3) We mention a further example. Fix an integer ¢ > 1 as well as F as above. Let
G := (Hy(F),+) be the vector space of all F-hermitian ¢ x g-matrices on which the
unitary group H := U,(F) acts by conjugation. Here, two matrices x,y € G are in the
same H-orbit if and only if  and y have the same (ordered) spectrum, i.e., we may
identify the space of H-orbits with the Weyl chamber

Co={(z1,...,2¢) e R z1 > ... > 124}

of type A. Again we may write down the multiplicative functions ¢, on G explicitely,
where the associated positive multiplicative functions a, on (D = Cj,*) are Bessel
functions of type A.

9.9 Remark. The example in 9.7(1) shows that the condition 1 € S in Corollary 7.2 is
necessary. To explain this, define (X, D, K) as the orbit CAS from 9.6(1) for d = 1. Then
(T2) holds for (X, D, K). Now let (X, D, K) be the deformation of this CAS considered in
9.6(2). If Corollary 7.2 would be correct, we would find some p € M*([0, oo[) with

> A
cosx = / cos(Az) du(X) for all € [0, 00].
o coshx

It we write the factor coshx on the left hand side, it becomes clear that such a measure p
does not exist.
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9.10 Remark. Let d > 1 be an integer. Consider the orbit CAS (X = R%, D = [0, oo[, K)
from 9.6. Fix vectors 21,20 € i - R? with ||z1]l2 = ||22]l2 = 1 and 21 # 2z5. Consider the
associated multiplicative pairs (a;,y.;) (j = 1,2) with ¢, = e ) and a,, = a,.

Now consider the deformation (X, D, K) of (X, D, K) associated with (a.,,¢.,). Then,
by Lemma 8.10, (¢4, /@2, , sy [z, = 1) is a positive semicharacter of (X, D, K), i.e., ¢4,/ ¢z
is a positive, unbounded harmonic function of (X, D, K).

This construction of positive, unbounded harmonic functions can be extended to other
classes of examples like the discrete ones in the next section.

10 Examples associated with infinite distance-transitive graphs

The set of all infinite distance transitive graphs of finite valency can be parametrized by two
parameters as follows by Macpherson [30].

10.1 CAS associated with infinite distance-transitive graphs. Let a,b > 2 be inte-
gers. Let Cp the complete undirected graph graph with b vertices, i.e., all vertices of Cj are
connected. Consider the infinite graph I' := I'(a, b) where precisely a copies of the graph Cj,
are tacked together at each vertex in a tree-like way, i.e., there are no other cycles in I' than
those in a copy of Cp. For b = 2, I is the homogeneous tree of valency a. We denote the
natural distance function on I' by d.

After drawing a picture, it is clear that the group G := Aut(I") of all graph automorphisms
acts on I' in a distance-transitive way, i.e., for all v, ve,v3,v4 € T' with d(v1,v3) = d(v3,v4)
there exists g € T with g(v1) = vs and g(ve) = vs. Aut(T) is a totally disconnected, locally
compact group w.r.t. the topology of pointwise convergence, and the stabilizer subgroup
H C G of any fixed vertex e € I" is compact and open. We identify G/H with I', and G//H
with Ny by distance transitivity. We now study the association scheme A = (I' ~ G/H,Ny =
G//H, (R;)ien,) with (T1) and (T2) as well as the associated double coset hypergroup (Ng ~
G//H,*). Asin the case of finite distance-transitive graphs in [5], A and (Np, %) are symmetric
and associated with a sequence of orthogonal polynomials in the Askey scheme [3].

More precisely, it can be seen by some counting (see [36]) that the hypergroup convolution
is given by

m+n
Om*0n =3 Gmnkde € M'(Ng)  (m,n € Ng) (10.1)
k=|m—n|
with ) .
a [e—
Im,nm+n = T > 0’ Imn,|m—n| = a(a _ 1)m/\n71(b _ 1)m/\n > 0’
b—2
Im,n,|m—n|+2k+1 = ala — Tymhn—k—1(p = TymAnF >0 (k=0,....mAn—1),
a—2
Imm,|m—n|+2k+2 = a(a _ 1)m/\n—k—1(b — 1)m/\n—k—1 >0 (k’ =0,....mAn— 2)

The Haar weights are given by wg := 1, w, = a(a — )"~ 1(b—1)" (n > 1). Using

2 1

a—1 _b- B
) In,in = a(b — )7 Inin—-1 = a(b — 1)7

In,1n+1 =
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we define a sequence of orthogonal polynomials (PTE“”’))HZO by

ab ab 2 a—1 b—2
R =

and the three-term-recurrence relation

@) plap) — L pab =2 ey a—1 @ >
Pl pf PR ST T R (n>1). (10.2)
Then,
Pr(r;Lb)Pr(La’b) = ZZL:—TZ%fM gm,n,kplga’b) (ma n > 0)' (10'3)

We discuss some properties of the P from [36], [41]. Eq. (10.2) yields

—1 n —1 —n
(ap) (2t 2 _ c(z)z" +e(z7)z
B () ((a—1)(b—1))/2 for 2 € C\{0, %1} (10.4)
with (a—1)2—2=1+(b—2)(a—1)1/2(b—1)~1/2
c(z) := alozT) . (10.5)
We define
S0 1= S(()mb) = 27a-b ) S1 = 3§a7b) = ab-a—bi? . (10.6)
2y/(a—1)(b—1) 2y/(a—1)(b—1)
Then
PP (s)=1, P (s)=(1-07" (n>0) (10.7)

It is shown in [41] that the P it into the Askey-Wilson scheme (pp. 26-28 of [3]). By the
orthogonality relations in [3], the normalized orthogonality measure p = p(*?) ¢ M(R) is

dp D) (z) = wled) (x)dx‘[ Ly T ezbz2 (10.8)

and
b—a
_l’_

)[71,1] b

dpD () = W@ (2)dx dd, for b>a>?2 (10.9)

with

w@ () = o Q- )2
o2 (s —x)(r—s0)
For a,b € R with a,b > 2, the numbers sg, s1 satisfy
—51 <5< —-1<1<sq.
By Eq. (10.4), we have the dual space
D~{zeR: (P (x),>0 is bounded} = [—s1,s1].
This interval contains the support

S = su (a,b) _ [_1> 1] for a > b > 2
ey | {so}U[-1,1] for b>a>2

of the orthogonality measure, which is also the Plancherel measure.; see [28]. We have S = D
precisely for a = b = 2. The following theorem from [41] shows that for these examples several
interesting phenomena appear, and that Theorem 6.9 cannot be extended considerably from
S to a bigger subset of D.

(10.10)

)
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10.2 Theorem. In the setting above the following statements are equivalent for x € R:
(1) x € [so,s1]-

(2) The kernelT' x I' = R, (v1,v2) — pid)

d(v1 U2)(ﬂf) is positive definite;

(3) The mapping g — Pé?;}} 0 (x) is positive definite on G.

Moreover, for all z,y € [so,s1] there exists a unique piz, € M'([—s1,51]) with

n

S1
Pb) (). plab) () = / Pad) (2) dpizy(2)  for all n € Ny. (10.11)

—81

Finally, there are b > a and x,y € [—sga’b),séa’b)[ for which no g, € MY(R) exists with
(10.11).

We next construct examples of positive semicharacters of A and study the associated
deformed CAS. The approach will be similar to [43] for homogeneous trees. However, we
shall use the results of Section 8 which will simplify some computations.

10.3 Examples of positive multiplicative pairs. Fix some constant ¢ € R as well as
some point B in the boundary 0T, i.e., B is a sequence (vy)nen, C I' of vertices with
d(Vptm,vn) = m for n,m € Ny where vg is the vertex above which is stabilized by H. We
define some kind of “distance” d(v, B) € Z of a vertex v € I" from B as follows: For v € T’
there is a unique index ng € Ny such that d(v,v,) € Ny is minimal for n = ng. We then put
d(v,B) := d(v,vp,) — no. We in particular have the normalization d(vy, B) = 0. We now
define the function ¢ := pp . : I' =]0, oo with
o(v) == e d(v.B),

10.4 Proposition. ¢ is a joint eigenfunction of all transition operators Ty, h € Ng. More
precisely, for allv € T,

V) = 1 w) = (a,b) ) - ofv
K T T TP DAL

with ) 1
Ze ::§<e (a—1)(b—1)+

e¢ (a—l)(b—l)) €l

Proof. The assertion is trivial for h = 0.
Assume now that h > 1. We first observe by counting that

|S(v,h)| = ala — 1)1 (b—1)" for S(v,h):={weT: dv,w) =h}. (10.13)

Moreover, again by counting we have the following facts:

There is 1 vertex w € S(v, h) with @(w) = e¢dwB) = ¢e-(dv,B)=h),

there are b — 2 vertices w € S(v, h) with @(w) = e&(@®B)=h+1),

there are (a — 2)(b — 1) vertices w € S(v, h) with @(w) = @B =142) and so on.

In general, we see that for £ = 0,1,...,h — 1, there are (b — 2)(a — 1)*(b — 1)* vertices
w € S(v, h) with p(w) = e (Uv:B)=h+2k+1)
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and for k = 0,1,...,h — 2, there are (a — 2)(b — 1)¥T!(a — 1)* vertices w € S(v,h) with
S0(,w) — ¢ (d(v,B)—h+2k+2)

Finally, there are (a — 1)"(b — 1) vertices w € S(v, h) with @(w) = e¢(dvB)+h),
If we insert these facts into the definition of T}, and use the formula for a geometric sum
twice, we arrive at

Thip(v) = a(h,a,b,c) - p(v)
with
1
ala—1)=1(b—-1)

a(h,a,b,c) == - (1 e 4 (a— 1) (b - 1)heh+ (10.14)

h—1
+ (b N 2)efch Z(a o 1)k(b . 1)ke(2k+1)c+
k=0

h—2
+@-2)b-1e ™) (a—1)F0b- 1)ke(2k+2)c>
k=0

C_Ch

“ala— D)FI(b—1)

(b—2)e[(a — 1) (b — 1)re*h — 1]
(a—1)(b—1)e* -1

(a _ 1)h—1(b _ 1)h—162c(h—1) -1

(a—1)(b—1)e* —1 >

- (1 +(a—1)"(b—1)e>+

+

+ (a —2)(b —1)e*

In particular, ¢ is a joint eigenfunction of all 7. We now conclude from Proposition 8.3 that
the mapping Ny —]0,00[, h — «(h,a,b,c) is multiplicative on the symmetric polynomial
hypergroup (Np,*) which implies that this mapping is a positive semicharacter. On the
other hand, it follows from the theory of polynomial hypergroups (see [8]) that the positive
semicharacters on (Np, ) have the form h +— P}Ea’b) () with some unique z € [1, 00[. In order

to find the correct x, we compare the explicit representation (10.4) of P,Ea’b) (x) with the
eigenvalues a(h, a, b, c) in (10.14) for large values of h. This leads readily to

1 1
r=x.=-(e(a—1)(b—-1)+
2< ( ) ) e (a—l)(b—1)>
and thus a(h,a,b,c) = Péa’b) (z.) as claimed. O

We can now use the results of Section 8 to define a deformed CAS (T', Ny, K) according
Proposition 8.8 with Ko(z,{y}) = 0. and, for h > 1,

ec(d(y,B)—d(z,B)) c(d(y,B)—d(x,B))

(&

f(h<x7 {y}) = - P}Ea’b) (xc) . a<a _ 1)h—1(b — 1)h

Kh(xﬂ {y})

a (z,y € X).
P ()

For b = 2, i.e., for homogeneous trees, this result fits with the results in [43] where the same
kernels were obtained in a different, more computational way.
We point out that in particular the case xz. = 1 is interesting which appears precisely for

¢im —%ln((a —1)(b-1)).
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In this case, the associated deformed polynomial hypergroup (Np, %) has the functions

(a,b)

No—=R, ne P () =P (2)/P*P(1) (x€R)

as semicharacters. It can be easily derived from (10.4) that here the dual space (D,%)"
corresponds to S from (10.10).

We point out that the ideas of this section may be used to study deformations of infinite
commuative association schemes associated with affine buildings e.g. of type A,,.

10.5 Remark. Consider a homogeneous tree I' of valeny a, i.e., we take b = 2 above. Fix
a point B € OI' in the boundary and a constant ¢ € R\ {0} as before, and consider the
associated multiplicative pair and the associated deformed CAS (I',Ny, K) as above. Let

vo € ' as above. Then, by Proposition 8.8(1), an invariant measure wr of (I', Ny, K) is given
by wr(v) = e2¢4v:B) for v € T. Tts push forward 7, (wr) € MT(Ng) then satisfies

o (wr)(0) =1, 7o (wr)(1) = €7 + (a — 1)e*,

and for n > 2,
n—1
T, (wF)(n) — €—2cn + Z e2(—n+2l)(a o 2)(& - 1)l—1 + e2cn(a o 1)‘
=1
This measure m,, (wr) is usually not equal to the Haar measure w, of the (deformed) polyno-
mial hypergroup (Np, *.) with normalization w.(0) = 1, as we have

1 ((a—1)e* +1))?

we(l) =
C( ) gil’o aeQC

which is usually different from 7, (wr)(1) above. We thus in particular conclude from Lemmas
5.8(1) and 5.9(1) that for ¢ # 0, the deformed CAS (I',Np, K) usually do not have the
properties (T1) and (T2).

11 Further constructions of continuous association schemes

In this section we present further constructions of CAS from given ones. We start with the
direct product.

11.1 Direct products. Let (X1, D1, K') and (X3, D2, K2) be CAS with associated hyper-
groups (D1,#1) and (Dag,*3). We then form X := X; x X9 and D := D; x Dy. We define
the convolution of point measures via the direct product of measures by

O(a1,0) * O(y1 o) = (Oay *1 0yy) X (0zy %2 0y,) (21,41 € D1, 22,2 € Dy).

It is well-known that the unique bilinear, weakly continuous extension of this convolution
leads to the so-called direct product hypergroup (D, x); see Section 10.5 of [21] or Section
1.5.28 of [8]. We now put

K (hy o) (21, 22), Ay X Ag) := K}, (21, A1) - Kjp, (22, Ag) (11.1)

for h; € D;, x; € X;, and Borel sets A; C X; with ¢ = 1,2. It is well-known and can be easily
checked that (11.1) leads to a unique Markov kernel Ky, 5,y on X for (hi,h2) € D1 x Ds.
Moreover, it can be easily seen that these kernels can be combined to a Markov kernel K
from X x D to X. We have:
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11.2 Proposition. (X := X; X X9, D := Dy x D9, K) is a CAS; it will be called the direct
product of (X1, D1, K') and (Xa, Do, K?).

If (X1, D1, KY) and (X2, Do, K?) are commutative, symmetric, compact, or discrete, then
sois (X, D, K). Moreover, the properties (T1) and (T2) are also preserved.

Proof. First of all, one has to check that K is a continuous Markov kernel in the notion
of the beginning of Section 4. For this we first notice that for g € C.(X) of the form
g(x1,x2) = g1(x1)g2(x2) with g; € C.(X;), the map ((x1,z2),h) — T} (g)(z1,x2) is continuous
by the product structure in (11.1). As by the theorem of Stone-Weierstrass, the linear span of
functions on X of the form g(z1,z2) = g1(x1)g2(x2) for g; € Ce(X;) is ||.||co-dense in C(X),
the map above is continuous even for all g € C.(X). Taking Lemma 4.8 into account, we see
that the map above is continuous even for all g € Cy(X).

All properties in 4.2(1) and (2) can be checked easily. We only mention that for the projec-
tions 1 and 7 of the given CAS, the projection 7w : X x X — D satisfies w((x1, x2), (y1,y2)) =
(m1(x1,y1), m2(z2,y2)) by (11.1). 4.2(3) can be also checked easily by the product structure
in (11.1). Moreover, if we define the product measure wx := wy, X wx,, then Eq. (4.1) in
4.2(4) can be also checked easily.

The statement about (X, D, K) being commutative, symmetric, compact, or discrete is
also trivial.

We next check property (T2). We here first notice that for Haar measures wp, of (D;, *;)
(1 = 1,2), the product wp := wp, X wp, is a Haar measure of (D,x). Using (T2) for the
given schemes, we readily obtain for f; € C.(D;), g; € C.(X;) and z; € X; (i = 1,2) that

/X fu(ma (21, 22)) Fa(mayn, 2)) 9(u1)g () dlw, X wxy)(y, p2) =

:/D/Xg(yl)g(y2)Kh1,h2(($17$2)ad(y17y2))fl(hl)fQ(hﬂde(hl’hQ)‘
(11.2)

Again, the theorem of Stone-Weierstrass shows that Trg = T' fom g holds for f € C.(D) and
g € Cc(X) as claimed.
Property (T1) can be derived in the same way by a Stone-Weierstrass argument. O

We next turn to joins.

11.3 Joins of CAS. We first recapitulate the join of hypergroups from Section 10.5 of [21].
Let (Dq,*1) be a discrete hypergroup with identity e; € Dy, and let (Dg,*2) be a compact
hypergroup with normalized Haar measure wp,. We form the disjoint union

D:=DyV Dy := (Dl \ {61}) U Dy

with Dp \ {e1} and Dj as open subsets. D is locally compact. We define the convolution of
point measures on D via

Oz *2 Oy for z,y € Do

(0z %1 0y)|Dy\fer} + 0z ¥1 0y)({er})wa  for 2,y € Dy
O for x € D1,y € Do
dy for y € Dy,x € Do

Oy * 0y 1=

Assume now that (Dj,#;1) is associated with some discrete CAS (X7, Dy, K1) and (D, *2)
with some compact CAS (Xo, Dy, K 2). We assume that wp, and wy, are normalized such that
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they are both probability measures. We form the join (D, %) as above and put X := X; x Xo.
Moreover, for h € D, x1 € X1, 22 € X9, Borel sets B C X5 and sets A C X7 we put

K?(29,B) 64, (A)  for he Dy

wx,(B) - Kﬁ(azl,A) for he D\ {e) (11.3)

Kh<(.%'1,x2),A X B) = {
Clearly, each K} can be extended uniquely to a Markov kernel on X, and we can combine
the K to some Markov kernel K from X x D to X.

11.4 Proposition. (X, D, K) is a CAS which will be called the join of the CAS (X1, Dy, K1)
and (X2, Do, K?). We shall write the join as (X1, D1, K1)V (X2, D2, K?).

If (X1,D1, KY) and (X2, Do, K?) are commutative or symmetric, then so is (X, D, K).
Moreover, if (X1, D1, K') has property (T2), then so has (X, D, K).

Proof. By the topological structure of X and D it is clear that our kernel K from X x D
to X is continuous. Moreover, the properties 4.2(1) and (2) are obviously satisfied with the
projection 7 : X x X — D with

7r2(x2,y2) e DyCD for r1 =Y
m(z1,y1) € Di\{ea} C D for z #y

To check 4.2(3), we fix z; € X; and Borel sets A; C X; (i = 1,2). Then for hy, hy € Do,

m((z1,22), (y1,42)) := {

Kh1 o Khz((arba:g),Al X AQ) = 6x1 (Al) . Kﬁl ] Kﬁ2($2,A2)

=0g, (A1) - | Ki(22, A2) d(Sp, *2 py)(h)
Dy

= [ Kp((z1,22), A1 X Az) d(0p, *2 0n,)(h)
Do

as claimed. Moreover, for hy € D1, hy € Do,

Ky o Kpy ((21,72), A1 X Ag) = Ky ((21,92), A1 x Ag) Kip (22, dys)
X2

= / wx, (A2) K (21, A1) Kj, (22, dy2) = Kj (21, A1)wx, (A2)
Xo
= Kp, ((x1,22), A1 X A2)

as claimed. Moreover, for h; € D1, hy € D2 we conclude from Eq. (4.5) that

Kpy o Kp,((z1,72), A1 X A2) = / K}, (y2, A2)8y, (A1) dwx, (y2) Ky, (1, dy1)
X1 J X2
= K}, (1, A1) - wx, (Ag) = K, ((z1,22), A1 X Ag)

as claimed. Finally, for hq, ho € Dy we conclude from Lemma 4.14(3) with our normalizations
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that [, Kj (22, A2) dwp,(h) = wx,(As) and thus
Ky © Ky (21,2), A1 X Ag) = / Wy (A2) KL (41, Ay) K} (21, dyy) - wiy (Xo)
X1

= | Kj(21, A1) d(Sp, #1 6,)(h) - wx, (A2)
Dy

= / wx, (A2) Kp (21, Ar) d(Sp, *1 6py) (h)+
Di\{e1}

+ (O, *1 0ny)({€1})02, (A1) i Kj (22, A2) dwp, (h)

- /DKh((xl,xz),A1 x Ag) d(6p, * Ony)(h)

which completes the proof of 4.2(3).

In order to check the adjoint relation 4.2(4), we put wx := wx, Xwx,. Let f1,91 € Ce(X1),
f2,92 € Ce(X2) and consider f,g € Cc(X) with f(z1,72) = fi(z1)f2(z2) and g(x1,72) 1=
g1(x1)g2(z2). We conclude from (11.3) that then for all h € D and (x1,22) € X,

fi(z1) - T;?fz(lé) for he Dy

Tinf (1, 2) :{ Ti (1) fy, fodwx,  for heDi\ {er} (11.4)
and hence
/ Tf- do _{ fX1 f191 del-fX2T}%f2-ggde2 for h € Dy
h g X fX2 fgdeQ -fX2 ggdc«.)x2 .fX1 T}%fl-gl del for he Dl\{el}

This leads to the adjoint relation 4.2(4) for our particular functions f,g. The assertion for
general f,g € C.(X) finally follows from a Stone-Weierstrass argument. This completes the
proof of the first part of the proposition.

Clearly, commutativity and symmetry are preserved under joins.

We next turn to property (T2). Recapitulate that the compact CAS (X, D, K) has (T2)
by Proposition 5.6, and that

wp :=wp, ({e1}) - wp, + wp, | py\fes} € MT(D)

is a Haar measure of the join (D, ) with the normalization wp, € M*(Dz). We check (T2)
via Lemma 5.5. For this fix (z1,22) € X and Borel sets A; C X1, A2 C X5. Then, by 5.5,

/DKh((xl,a:Q),Al XAQ) de(h) :/DQ...de(h)+/Dl\{el}...dwp(h)

= wp, ({e1}) 62, (A1) A K} (2, As) dwp, (h)+

T+ wxa(A2)| [ K (1, Av) dop, (h) = wpy ({e1}) 8, (A1)

Dy
= wp, ({e1}) 0z, (A1)wx, (A2) + wx, (A2) |wx, (A1) — wp, ({e1}) 0z, (Al)}
= (UXl(Al)U)XZ(AQ) = wX(Al X Ag).

As the Borel measures [, Kj((x1,22),.)dwp(h) and wx on X; x X, are determined uniquely
by their values on cylinder sets, it follows that both measures are equal independent of
(x1,x2). (T2) now follows from Lemma 5.5. O
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We now consider iterated joins of finite CAS. For this we fix a sequence (Ap,)nen of finite
CAS. We form the iterated joins

A;:An\/((Ag\/(AQ\/Al))) (TLEN)

and
AP = (.. (A1 VA2) VA3)...) VA, (n € N).

n

We now form the inductive limit of the sequence (A%),en of discrete CAS as well as the
projective limit of the sequence (A%),en of compact CAS in an informal way and obtain as
limits a discrete CAS A’ and a compact CAS AP. We here do not work out any theory of
these limits which are well-defined on the level of hypergroups; see [39]. We here just present
these limits as examples of CAS. We start with the inductive limit:

11.5 Example. We start with a sequence of finite CAS (A, = (Xy, Dy, K™))nen with the
associated hypergroups (D, *,) with the identities e,, € D,, and with the normalized Haar
measures wp, € M'(D,), and with the normalized adjoint measures wx, € M'(X,). We
also fix some sequence (z,)neny With z, € X, for each n. Assume that |D,| > 2 for all n.
We now define the discrete inductive limit CAS A = (X, D, K) as follows: D is the discrete,
disjoint union

D := Dl U U (Dn \ {en})a

n>2

and X is the discrete, countable set
X :={(zn)nen : xn € X,, for all n, and x, = z, for all except for at most finitely many n}.
The convolution of point measures on the hypergroup (D, %) is given by

; for 1€ D,, heDUU]Dp\{ex}, n>2
e n—1
Op % 0 := o, for heD,, leDUU,_yDr\{ex}, n>2
Op %1 0; for h,l € D,

and, for h,l € D, \ {e,} with n > 2, by the probability measure

Op, * 0; 2:(5h *n 5l)|Dn\{€n}+

n—1 n—1

+(0n#0 ) (L) [So( 1 WDm<{em}>)'ka\Dk\{ekw(ﬁ wp,({em})) - wp, ).

k=2 m=k+1 m=2
A Haar measure on (D, ) is given by the measure
00 n 1
wpi=wp, + Y ([] wonlfemd))  -wn,lpeny-
n=2 m=1
The kernels Kj on X are given by
Kf]i('rl’ {yl}) ’ 5(In)n22a(yn)n22 fOI' h 6 Dl

-1
Kn((zn)nen, {(yn)nen}) = 9 TT wx, ({yn}) K@i AAui}) 0n)nsion,(wu)nsia for b € D\ {er},
n=1 - -
[1>2
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where we again use the Kronecker-6. These K}, are in fact Markov kernels on X where the
properties 4.2(1) and (2) obviously hold with the projection 7 with

(@) nens (Yn)nen) = m(z1,91) €ED1 C D for (Tp)nz2 = (Yn)n>2
n)neN; (Un)neN) = TFn(fL‘nayn) e D, \ {en} cD for n = max{l D a ?é yl} > 2

Notice that the maximum exists by the definition of X. 4.2(3) can now be checked by using
the computations in the proof of Proposition 11.4. These computations also show that
l

oxtlenen)) = I i

for | with z,=2, for n>I

is an adjoint measure, and that (T2) holds by Lemma 5.5. We omit the details of proofs.
We next turn to the projective limit:

11.6 Example. We start with the same sequence (A, = (Xp, Dy, K™))nen with the nota-
tions as before. We define the compact projective limit CAS A = (X, D, K) as follows:

D= JDu\ {eah) U {e)

is the one-point compactification of the discrete disjoint union J,,51(Dn \ {€n}) where the
additional non-discrete limit point e will be the neutral element e of (D, ). The hypergroup
convolution of point measures is given by

PRI { 0 for 1€ Dy \{en}, he{efUUps,(Dr\ {er})
PO 5 for he D\ fend, 1€ {eh UUpa(Di\ {ex)

and, for h,l € D, \ {en} by the probability measure

k—1
% 81 = (01 0 00l Do ey + O 50 ) ({en D D2 (T wonldemd)) - wiilnfery-

k>n m=n+1
The normalized Haar measure on the compact hypergroup (D, x) is given by

o0

n—1
wp = Z( I1 me({em})> - wpn Do feny € MY(D).

n=1 m=1

Moreover, X is the compact usual direct product Hn21 X, and the adjoint measure is the
infinite product measure
wyx = H wx,,

n>0
The kernel K. on X will be the identity, and for h € D), \ {e,} C D with n € N, we have

Kn((@n)nens {1s - vn)} X A) =0, on ) rrens) Kt @ns {wn}) [ wxi (4
I>n+1

for all (zp)neny € X, (Y1,-..Yn) € X1 X ... x X, and Borel sets A C lenﬂ X;. These
formulas clearly determine unique Markov kernels K, on X where the properties 4.2(1) and
(2) obviously hold with the projection 7 : X x X — D with

ﬂ((xn)nel\h (xn)nEN) =e€eD
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and
T((@n)neN, (Yn)nen) = Tn(@n, Yn) € Dp \ {en} C D

for (zp)nen # (Tn)neny and n:= min{l : z; # y;}. 4.2(3) and (4) can now be checked by using
the computations in the proof of Proposition 11.4. Finally, (T2) is clear by compactness and
Proposition 5.6.

We notice that for given sequences (Ay,),, of finite CAS which are not coming from groups,
the construction 11.6 leads to examples of compact, non-discrete stron CAS which are not
associated with groups according to Proposition 4.6.

There exist several generalizations of the join on the level of hypergroups like substitutions
of open hypergroups in [40] or Section 8.1 of [8] or further constructions used in several papers
of H. Heyer, S. Kawakami, and others; see e.g. [19], [20], and papers cited there. We expect
that these constructions should also have a meaning on the level of CAS.

12 Random walks on continuous association schemes

In this section we introduce and investigate random walks on X associated with some given
CAS (X, D, K). Before doing so we briefly recapitulate some facts on random walks on the
hypergroup (D, ). For simplicity we restrict our attention to the time-homogeneous case.

12.1 Random walks on hypergoups. Let (D, x*) be a second countable hypergroup with
identity e. Let either T := Ny or T := [0,00[. A family (u)ier € M*(D) of probability
measures is called a (discrete or continuous) convolution semigroup, if 1o = de, and if for all
s,t €T, psry = ps * j1g, and if in the continuous case, the mapping [0, co[— M(D), t >
is weakly continuous in addition. It can be easily checked and is well-known that for each
t € T we may form the Markov kernel K; on D via

Ki(h,A) = (0, x )(4)  (he D, Ae B(D), t €T).

The K; are in fact Feller kernels (see the beginning of Section 4) with K. as trivial kernel
and K; o Ky = Kgyy for all s,t € T'; see the beginning of Section 4 for the notations. In
particular, (K;)ier is a semigroup of transition kernels. As (D, x) is second countable and
locally compact, it is a matter of fact that for the starting distribution . and this semigroup
there exists a time-homogeneous Markov process (Y;)ier with the transition probabilities

P(Yyrt € AlY, = h) = Ky(h, A) = (6, % i)(4)  (zx € D, Ae B(D), s,t € T).

These Markov processes are called random walks on (D, %) associated with (u¢)er.

Notice that for a locally compact group D = G, this just means that (Y;);er just consists
of group products of iid G-valued random variables in the discrete case, and that (Y;)ier is
a Levy process in the continous case.

For a detailled study of random walks on hypergroups including limit theorems for special
classes we refer to [8] and references there.

We now use these ideas to define random walks (Z;)er on X for a CAS (X, D, K):

12.2 Random walks on continuous association schemes. Let (X, D, K) be a CAS
with associated hypergroup (D,x*) with identity e. Let T := Ny or T := [0, 00], and let
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(ut)eer C M1(D) be a (discrete or continuous) convolution semigroup of probability measures
on D as before. For each ¢t € T" we now define the Markov kernel K ji on X via

KX (z, A) / Kn(x, A) dug(h)  (r€ X, AcB(X), teT)

which is associated with the transition operator 7}, of Lemma 4.11, i.e., the K ji are in
fact Feller kernels by 4.11. Moreover, precisely as in Proposition 4.12 we see that (K ii JteT
is a semigroup of transition kernels. If we now fix some starting point x¢g € X, we again
find some associated time-homogeneous Markov process (Z;)icr. These processes are called
random walks on X with start in xg associated with (u)ier.

For T := [0, o[, we show that (Z;)¢cr is a so-called Feller process, i.e., that the operators
T, associated with the Feller kernels K ji satisfy in addition the condition

1709 — 9lloc — 0 for t—0 and all g € Co(X). (12.1)

12.3 Proposition. Let (X, D, K) be a CAS and T := [0,00[. Fach random walk (Z;)ter on
X with start in any xo € X associated with any convolution semigroup (ui)ier on (D, %) is
a Feller process.

In particular, (Z)ier admits a modification such that all paths of this modification are
RCLL, i.e., they are right continuous such that for all t > 0 the left limits exist. For T :=
[0, 00[, we thus shall assume in addition that the random walk (Z;)ier on X has the RCLL

property.

Proof. In order to check (12.1), we fix some g € Cp(X) and € > 0. By Lemma 4.9, we find
some open neighborhood U C D of e such that |g(z) — g(y)| < e holds for all z,y € X with
m(x,y) € U. Hence, for each x € X and t > 0,

[ [ 19 = st o) duar) < =

Thus,

Tgte) =ota)l = | [ [ (o) = o)) Ky dpu)
=+ 2lgloe ju(D\ V) < 22

whenever ¢ is small enough. This proves (12.1). The second statement is well-known; see
e.g., Section 17 of [23]. O

The random walks (Z;)ier on X may be studied by using known results for random walks
(Yy)ter on (D, ). This follows from the following result which seems obvious at a first glance
and can be seen easily in the group cases X = G/H, D =G//H.

12.4 Theorem. Let (X,D,K) be a CAS and xy € X fized and consider the continuous,
open, and closed map ¥ : X — D, ¢(zx) := w(xp,x).

Let (Zy)ier be a random walk on X with start in xo associated with some convolution
semigroup (u¢)ier on (D, %) as described above where we assume that all paths are RCLL for
T = [0,00[. Then the process (V(Z;))ier is a random walk on (D, *) with start in e associated
with (pit)ter-
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For the proof we first consider the case T' = Ny and check that the projected process
(¥(Zy))ter is a Markov process.

For this we fix n € Ny as well as Borel sets Ay,..., A, € B(D). We consider the sub-
probability measures Py, . 4, € M<1)(D) and ]NDAO’,,,,An € M(l)(X) with

Pay,...4,(A) i= P((Xo) € Ag, ..., (Xy) € A, 0(Xpi1) € A) (A€ B(D))

and
Pay..4,(B) = P($)(X0) € Ao, ..., (Xp) € Ay, Xp1 € B) (B € B(X)).

Then clearly, P, . 4, is the image measure of PAO A, under ¢. We need the following
reconstruction of PAo,..., A, from Py, . a,:

12.5 Lemma. For alln € Ny, Ay,..., A, € B(D), and B € B(X),

Pa..n(B) = / Ky (20, B) dPay... 1, ().
D

Proof of Lemma 12.5. We prove the lemma by induction on n.
In fact, for n = 0 we have the two cases ¥(z¢) & Ao and (o) € Ap. In the first case the
assertion is trivial, and in the second case we get the claim from

PAO(B) P(Zl GB) Kv‘u (.CC(), ):/DK}L(JZ(),B) dul(h) :/DKh(:L'o,B) dPAO(h).

We now turn to the step n — 1 — n for n > 1. As all spaces are second countable and
locally compact, we may use the concept of regular conditonal probabilities, and obtain from

the Markov property of (Z;):cr, the assumption of our induction step, and from the axioms
of a CAS that

Pay,..4,(B) = P($(Xo) € Ao, ..., (Xp) € An, Xpi1 € B) (12.2)

= / y )P(Xn+1 S B| ’QZJ(X()) S Ao, ey LZJ(Xn—l) €Ap 1, X, = xn) dpAo,...,An,l (l'n)
An
= / K;i(l (mnv B) dpAo,...,An71 ($n)
h1(An)
/ / .\ (2n, B) Kp,(x0, dzyn) dPa,y,... 4, (h)
= / Kpo Kul (z0, B) dPaq,.... A (h)
/ Ky o K;S (20, B) dPay... A, (h)
/ / Ki(wo, B) d(3h * p1)(1) dPa... 1, (h)

- / Ki(20, B) d(Pag.... a1 |a, % 1) (1)
D
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where | 4, means the restriction of a measure to A,,. If we take B = 1~1(A) for A € B(D) in
(12.2), we obtain from the axioms of a CAS that

Py, 4, (A) = P(¥(Xo) € Ao, ..., ¥(Xy) € Ay, 0(Xng1) € A) (12.3)
/ Ki(wo, o™ (A)) d(Pao,..a, |4 # 1) (1)
= (Pag,...An 1] A, * p11)(A).

If we insert this identity in the end of (12.2), we get the claim

Pa..n(B) = / Ky (20, B) dPa... 1, ().
D

O]

Proof of Theorem 12.4. We first consider the case T' = Ny and check that (¢¥(Z;))ier is a
Markov process. For this consider n € N and Ay,...,A4,, A € B(D). Let (F;)ier be the
canonical filtration of (¢(Z;))ier on the associated probability space (€2, A, P). Then, by
Lemma 12.5 and the first lines of (12.2),

Howtmen 4P = (12.4)
/{w(XO)GAO""vw(Xn)EAn} {Y(Xnt1)EA}

= Kj, o KX (z0, " (A)) dPa,,...a,_, (h)
A'"/

/ Ky(x,) © K (0,7 (A)) dP.
{1h(Xo)€Ao,... 0(Xpn)EAL}

As the last integrand is measurable w.r.t. the o-algebra o(¢(X,)) C F,, we obtain from
(12.4) that a.s.

P(tp(Xnt1) € Al Fn) = Ky(x,) 0 K\, (zo, v (A))
and thus a.s.
P(p(Xny1) € Al o(¥(X0))) = Ky(x,) © Ky (w0, ¥ (A)) = P(Y(Xng1) € Al Fr).  (12.5)

Therefore, (¢(Z;))ier is a Markov process. Moreover, a comparison of (12.5) with the transi-
tion probabilities of random walks on (D, %) shows immediately that (¢(Z;)):er is a random
walk on (D, ) associated with (u;)ier and start in e as claimed.

Let us now turn to the case T'= [0, 00[. A change of the notations of the preceding proof
shows readily that for all n € N, 0 < ¢; <ta < ... <tpt1, and A € B(D),

P((Xt,4,) € Al o($(Xe,))) = Kyx,,y © gy, (@0,47 1 (A))
— P(6(Xinyy) € Al o((Xe), - 0(X2,)) s,

Standard arguments from the theory of Markov processes with RCLL paths (see Section 17
of [23]) now show that

P(Xt,,1) € Alo(¥(X,)) = P($(Xe,.y) € Alo(¥(Xe);t € [0,8,]))  as.  (12.6)

This is the Markov property, and the proof can be completed as for T" = Np. ]
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For many classes of commutative hypergroups (D, ) there exist limit theorems for random
walks on (D, ) like (strong) laws of large numbers, central limit theorems, and so on; see
Ch. 7 of [8] and references there. Theorem 12.4 may be now used to transfer these results to
random walks on X for suitable commutative CAS (X, D, K). This seems to be interesting
in particular for examples which appear as deformations of group CAS, as here random walks
on X may be seen as “radial random walks with aditional drift” on the homogeneous space
X. This seems to be interesting in particular for such random walks on affine buildings
and on noncompact Grassmann manifolds. We shall study these examples in a forthcoming

paper.

13 Open problems

We finally collect some open problems which appeared in the preceding course on CAS:
(1) Do there exist (commutative) CAS with (T1), but without (T2)?

(2) Does (T2) always imply (T1)? Notice that this is the case in the discrete and in the
commutative case, and that it is likely that it can be shown in the compact case.

(3) Is each discrete CAS a generalized association scheme? The answer is positive in the
finite case. The general problem is part of:

(4) Does each (commutative) CAS (X, D, K) admit a further associated (commutative)
CAS ()g,D,K) with the same spaces X, D, and the same projection m such that
(X, D, K) has property (T2).

(5) Give examples of (commutative) CAS (X, D, K) with X,D connected, which are not
of the form X = G/H, D = G//H for a locally compact group G with a compact
subgroup H or deformations of such group cases.
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