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Abstract

The spherical functions of the noncompact Grassmann manifolds Gp,q(F) = G/K over F =
R,C,H with rank q ≥ 1 and dimension parameter p > q can be seen as Heckman-Opdam hyper-
geometric functions of type BC, when the double coset space G//K is identified with some Weyl
chamber CB

q ⊂ R
q of type B. The associated double coset hypergroups on CB

q may be embedded
into a continuous family of commutative hypergroups (CB

q , ∗p) with p ∈ [2q − 1,∞[ associated
with these hypergeometric functions by a result of Rösler. Several limit theorems for random
walks associated with these hypergroups were recently derived by the second author. We here
present further limit theorems in particular for the case where the time parameter as well as p
tend to ∞. For integers p, these results admit interpretations for group-invariant random walks
on the Grassmannians G/K.

Key words: Hypergeometric functions associated with root systems, Heckman-Opdam theory, non-
compact Grassmann manifolds, spherical functions, random walks on symmetric spaces, random walks
on hypergroups, moment functions, central limit theorems, dimension to infinity.
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1 Introduction

In this paper we present several central limit theorems (CLTs) for group invariant random walks
on the non-compact Grassmann manifolds Gp,q(F) = G/K over the (skew-)fields F = R,C,H. We
state these results via corresponding CLTs on the associated double coset spaces G//K which can be
identified with the Weyl chambers CB

q ⊂ R
q of type B. The associated spherical functions, regarded

as functions on CB
q , are then hypergeometric functions of type BC, and it turns out that the CLTs

can be stated more generally for certain classes of Markov chains on CB
q whose transition probabilities

are related with hypergeometric functions of type BC for a wider range of parameters than just for
the group parameters.

Let us describe more details of the general setting. The Heckman-Opdam theory of hypergeometric
functions associated with root systems generalizes the theory of spherical functions on Riemannian
symmetric spaces; see [H], [HS] and [O] for the general theory, and [R2], [RKV], [RV], [Sch], [NPP] for
some recent developments. In this paper we are mainly interested in the type BC, but we shall need
also need some facts on the A-case as limit case; see [RKV], [RV] for these limits. We recapitulate
that for the root system Aq−1, q ≥ 2, the theory is connected with the groups G := GL(q,F) with
maximal compact subgroups K := U(q,F), and for the root system BCq, q ≥ 1, with the non-
compact Grassmann manifolds Gp,q(F) := G/K with p > q, where depending on F, the group G is

∗This author has been supported by the Deutsche Forschungsgemeinschaft (DFG) via RTG 2131 High-dimensional

Phenomena in Probability - Fluctuations and Discontinuity.
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one of the indefinite orthogonal, unitary or symplectic groups SO0(q, p), SU(q, p) or Sp(q, p) with
K = SO(q)× SO(p), S(U(q)× U(p)) or Sp(q)× Sp(p), as maximal compact subgroup.

In all cases, the K-spherical functions on G (i.e., the nontrivial, K-biinvariant, multiplicative
continuous functions on G) can be seen as as nontrivial, multiplicative continuous functions on the
double coset space G//K where G//K carries the corresponding double coset convolution and com-
mutative double coset hypergroup structure. The KAK-decomposition of G shows that G//K may
be identified with the Weyl chambers

CA
q := {x = (x1, · · · , xq) ∈ R

q : x1 ≥ x2 ≥ · · · ≥ xq}

of type A and
CB

q := {x = (x1, · · · , xq) ∈ R
q : x1 ≥ x2 ≥ · · · ≥ xq ≥ 0}

of type B respectively. This identification is based on a exponential mapping x 7→ ax ∈ G from the
Weyl chamber to a system of representatives ax of the double cosets in G with

ax := ex (1.1)

for x ∈ CA
q in the A-case, and

ax :=





coshx sinhx 0
sinhx coshx 0

0 0 Ip−q



 (1.2)

for x ∈ CB
q in the BC-case with the diagonal matrix notation

ex := diag(ex1 , . . . , exq ), coshx = diag(coshx1, . . . , coshxq), sinhx = diag(coshx1, . . . , coshxq).

We identify G//K with CA
q or CB

q from now on. We also fix q and, in the BC-case, p > q.
For the spherical functions we follow [HS] and denote the Heckman-Opdam hypergeometric func-

tions associated with the root systems

2 ·Aq−1 = {±2(ei − ej) : 1 ≤ i < j ≤ q} ⊂ R
q

and
2 ·BCq = {±2ei,±4ei,±2ei ± 2ej : 1 ≤ i < j ≤ q} ⊂ R

q

by FA(λ, k; t) and FBC(λ, k;x) respectively with spectral variable λ ∈ C
q and multiplicity para-

meter(s) k. Here, e1, . . . , eq are the unit vectors in R
q. The factor 2 in both root systems comes from

the known connections of the Heckman-Opdam theory to spherical functions on symmetric spaces in
[HS] and references there. In the Aq−1-case, the spherical functions on G//K ≃ CA

q are then given
by

ϕA
λ (ax) := ϕA

λ (x) := ei·〈x−π(x),λ〉 · FA(iπ(λ), d/2;π(x)) (x ∈ R
q, λ ∈ C

q) (1.3)

with multiplicity k = d/2 where

d := dimR F ∈ {1, 2, 4} for F = R,C,H,

and where
π : Rq → R

q
0 := {t ∈ R

q : x1 + . . .+ xq = 0}
is the orthogonal projection w.r.t. the standard scalar product as in Eq. (6.7) of [RKV] and at is
identified with x. In the BC-case, the spherical functions on G//K ≃ CB

q are given by

ϕp
λ(ax) := ϕp

λ(x) := FBC(iλ, kp;x) (x ∈ R
q, λ ∈ C

q) (1.4)

with multiplicity
kp = (d(p− q)/2, (d− 1)/2, d/2) ⊂ R

3

corresponding to the roots ±2ei, ±4ei and 2(±ei ± ej) where again ax is identified with x.
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In the BC-case, the associated double coset convolutions ∗p of measures on CB
q are written down

explicitly in [R2] for p ≥ 2q such that these convolutions and the associated product formulas for
the associated hypergeometric functions FBC above can be extended to p ∈ [2q − 1,∞[ by analytic
continuation. These convolutions ∗p on the space M(CB

q ) of all bounded regular Borel measures

on CB
q are associative, commutative, and probability-preserving, and they generate commutative

hypergroups (CB
q , ∗p) in the sense of Dunkl, Jewett, and Spector with 0 ∈ CB

q as identity by [R2]. For
hypergroups we generally refer to [J] and [BH]. The nontrivial multiplicative continuous functions of
these commutative hypergroups (CB

q , ∗p) are precisely the functions ϕp
λ with λ ∈ C

q by [R2]. This

means that for all x, y ∈ CB
q and λ ∈ C

q,

ϕp
λ(x)ϕ

p
λ(y) =

∫

CB
q

ϕp
λ(t) d(δx ∗p δy)(t)

where the probability measures δx ∗p δy ∈ M1(CB
q ) with compact support are given by

(δx ∗p δy)(f) =
1

κp

∫

Bq

∫

U(q,F)

f
(

arcosh (σsing(sinhxw sinh y + coshx v cosh y))
)

dv dmp(w) (1.5)

for f ∈ C(CB
q ). Here, dv means integration w.r.t. the normalized Haar measure on U(q,F), Bq is the

matrix ball
Bq := {w ∈ Mq(F) : w∗w ≤ Iq},

and dmp(w) is the probability measure

dmp(w) :=
1

κp
∆(I − w∗w)d(p/2+1/2−q)−1 dw ∈ M1(Bq) (1.6)

where dw is the Lebesgue measure on the ball Bq, and the normalization κp > 0 is chosen such that
dmp(w) is a probability measure. For p = 2q− 1 there is a corresponding degenerated formula where
mp ∈ M1(Bq) becomes singular; see Section 3 of [R1] for details.

For fixed parameters p ∈ [2q − 1,∞[ and d = 1, 2, 4 we now consider random walks on the
hypergroups (CB

q , ∗p) as follows: Fix a probability measure ν ∈ M1(CB
q ), and consider a time-

homogeneous Markov process (S̃p
k)k≥0 on CB

q with start at the hypergroup identity 0 ∈ CB
q and with

the transition probability

P (S̃p
k+1 ∈ A| S̃p

k = x) = (δx ∗p ν)(A) (x ∈ CB
q , A ⊂ CB

q a Borel set).

Such Markov processes are called random walks on the hypergroup (CB
q , ∗p) associated with the

measure ν. Notice that we here use p as a superscript, as this p may be variable below. The fixed
parameters q and d are suppressed.

We shall present mainly two different types of CLTs for (S̃p
k)k≥0.

For the first type we start with some probability measure ν having classical second moments.
For each constant c ∈ [0, 1] we consider the compression mapping Dc(x) := cx on CB

q as well as

the compressed probability measures νc := Dc(ν) ∈ M1(CB
q ) and the associated random walks

(S
(p,c)
k )k≥0. We shall prove in Section 4 that S

(p,n−1/2)
n converges for n → ∞ in distribution to some

kind of “Gaussian” measure γt ∈ M1(CB
q ) which depends on p where the time parameter t ≥ 0 can

be computed via second moment of ν. Triangular CLTs of this type are well-known in probability
theory on groups and hypergroups. We here in particular refer to [BH] and references there for several
results in this direction for Sturm-Liouville hypergroups on [0,∞[. Moreover, for integers p ≥ 2q, this
result is more or less a known CLT for biinvariant random walks on noncompact Grassmannians; see
e.g. [G1], [G2], [Te1], [Te2], [Ri].

For the second CLT we study the random walks (S̃p
k)k≥0 for a given fixed probability measure ν ∈

M1(CB
q ) where the time k as well as the dimension parameter p tend to infinity in some coupled way.

It turns out that under suitable moment conditions on ν and for any sequence (pn)n ⊂ [2q,∞[ with
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pn → ∞, there are normalizing vectors m(n) ∈ R
q such that (Spn

n −m(n))/
√
n tends in distribution

to some classical q-dimensional normal distribution N(0,Σ2) where the norming vectors m(n) and
the covariance matrix Σ2 are explicitly known and depend ν. For q = 1, CLTs of this kind were given
in [Gr1] and [V1] by completely different methods. Both proofs for q = 1 however are based on the
fact that for p → ∞, the hypergroup structures (CB

1 = [0,∞[, ∗p) converge to some commutative
semigroup structure on CB

1 = [0,∞[ which is isomorphic with the additive semigroup ([0,∞[,+).
This observation finally shows that for large p, (Spn

n )n behaves like a sum of iid random variables
which then leads to the CLT. For q ≥ 2, the situation is much more involved as here for p → ∞,
the hypergroup structures (CB

q , ∗p) converge to the double coset structures G//K in the case Aq−1

in some way, where the dimension parameter d = 1, 2, 4 remains unchanged; see [RKV] and [RV] for
the details. As for q ≥ 2, this limit structure is more complicated than for q = 1, the details of the
CLT and its proof in Section 3 will be more involved than in [Gr1] and [V1]. In fact, we will need
stronger conditions either on the moments of ν or on the rate of convergence of (pn)n to ∞ than
in [Gr1]; see Theorems 4.1, 4.3 below. We remark that the CLTs in [Gr1], [V1], and here for the
non-compact Grassmannians are related to other CLTs for radial random walks on Euclidean spaces
of large dimensions in [Gr2] and references cited there. We also point out that our CLTs for p → ∞
are closely related to some CLT in the case Aq−1 in [V2] which depends heavily on the concept of
moment functions on commutative hypergroups; see [BH] and [Z1] for the general background. In
fact, we shall need these moment functions for the BC-hypergroups (CB

q , ∗p) as well as for the limit
cases associated with the case Aq−1. These moment function will be essential to describe the norming
vectors m(n) and the covariance matrix Σ2 above. We shall collect several results on these functions
in the next section. We point out that these results are mainly needed for the CLTs of Section 3, but
not for those in Section 4. We also remark that our CLTs for p → ∞ are related to the research in [B]
on the limit behaviour of Brownian motions on hyperbolic spaces and noncompact Grassmannians
when the dimension tends to infinity.

2 Modified moments

Generally, examples of moment functions on a commutative hypergroup can be obtained as partial
derivatives of the multiplicative functions of the hypergroup w.r.t. the spectral variables at the identity
character; see [BH]. To obtain explicit formulas for these moment functions for our particular examples
on Weyl chambers, we start with explicit integral representations of the multiplicative functions in
[RV] which are consequences of the well-known Harish-Chandra integral representation of spherical
functions.

We start with some notations from matrix analysis; we here usually refer to the monograph [HJ].
For a Hermitian matrix A = (aij)i,j=1,...,q over F we denote by ∆(A) the determinant of A, and
by ∆r(A) = det((aij)1≤i,j≤r) the r-th principal minor of A for r = 1, . . . , , q. For F = H, these
determinants are taken in the sense of Dieudonné, i.e. det(A) = (detC(A))

1/2, when A is considered
as a complex matrix. For each positive Hermitian q × q-matrix A and λ ∈ C

q we consider the power
function

∆λ(A) := ∆1(A)
λ1−λ2 · . . . ·∆q−1(A)

λq−1−λq ·∆q(A)
λq . (2.1)

We shall also need the singular values σ1(a) ≥ σ2(a) ≥ . . . ≥ σq(a) of a q × q-matrix a which are
ordered by size and which are the ordered eigenvalues of a∗a. Finally, for x ∈ CB

q , u ∈ Uq(F), and
w ∈ Bq, we define

g(x, u, w) := u∗(coshx+ sinhx · w)(coshx+ sinhx · w)∗u. (2.2)

We recapitulate the following facts; see Lemmas 4.10 and 4.8 of [RV]:

2.1 Lemma. (1) Consider the probability measures mp from (1.6). Then for each n ∈ N there
exists a constant C := C(q, n,F) such that all p > 2q,

∫

Bq

σ1(w)
2n

∆(I − w∗w)2n
dmp(w) ≤

C

pn
. (2.3)
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(2) Let x ∈ CB
q , w ∈ Bq, u ∈ U(q,F) and r = 1, ..., q. Then

∆r(g(x, u, w))

∆r(g(x, u, 0))
∈ [(1− x̃σ1(w))

2r, (1 + x̃σ1(w))
2r] with x̃ := min(x1, 1).

We now recapitulate the moment functions in the A-case and then in BC-case from [V2].

2.2 Definition. The spherical functions of type A in (1.3) satisfy

ϕA
λ (x) =

∫

U(q,F)

∆(iλ−ρA)/2

(

u−1e2x u
)

du (x ∈ CA
q ) (2.4)

with the half sum of positive roots

ρA := (ρA1 , . . . , ρ
A
q ) ∈ CA

q with ρAl :=
d

2
(q + 1− 2l) (l = 1, . . . , q); (2.5)

see Section 3 of [RV]. Eq. (2.4) in particular yields that ϕA
−iρA ≡ 1, and that for λ ∈ R

n and x ∈ CA
q ,

we have |ϕA
λ−iρA(x)| ≤ 1.

We now follow [V2]. For multiindices l = (l1, . . . , lq) ∈ N
q
0 we define the moment functions

mA
l (x) :=

∂|l|

∂λl
ϕA
−iρA−iλ(x)

∣

∣

∣

λ=0
:=

∂|l|

(∂λ1)l1 · · · (∂λn)lq
ϕA
−iρA−iλ(x)

∣

∣

∣

λ=0

=
1

2|l|

∫

K

(ln∆1(u
−1e2x u))l1 ·

(

ln

(

∆2(u
−1e2x u)

∆1(u−1e2x u)

))l2

· · ·
(

ln

(

∆q(u
−1e2x u)

∆q−1(u−1e2t u)

))lq

du

(2.6)

of order |l| := l1 + · · · + lq for t ∈ CA
q . Notice that the last equality in (2.6) follows from (2.4) by

interchanging integration and derivatives. We denote the j-th unit vector by ej ∈ Z
q
+ and the moment

functions of order 1 and 2 by mej and mej+ek (j, k = 1, .., q). The q moment functions of first order
lead to the vector-valued moment function

mA
1
(x) := (mA

e1(x), . . . ,m
A
eq (x)) (2.7)

of first order. Moreover, the moment functions of second order can be grouped by

mA
2
(x) :=







mA
2e1(x) · · · mA

e1+eq (x)
...

...
mA

eq+e1(x) · · · mA
2eq (x)






for x ∈ CA

q .

We now form the q × q-matrices ΣA(x) := mA
2
(x)−mA

1
(x)x ·mA

1
(x).

These moment functions have the following basic properties; see Section 2 of [V2]:

2.3 Lemma. (1) There is a constant C = C(q) such that for all x ∈ CA
q , ‖mA

1
(x)− x‖ ≤ C.

(2) For each t ∈ CA
q , ΣA(x) is positive semidefinite.

(3) For x = c · (1, . . . , 1) ∈ CA
q with c ∈ R, ΣA(x) = 0. For all other x ∈ CA

q , ΣA(x) has rank q− 1.

(4) All second moment functions mA
ei+ej (x) are growing at most quadratically, and mA

2e1(x) and

mA
2eq (x) are in fact growing quadratically.

(5) There exists a constant C = C(p) such that for all x ∈ CA
q and λ ∈ R

q,

|ϕA
−iρA−λ(x)− ei〈λ,m

A
1
(x)〉| ≤ C||λ||2.
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We now consider a probability measure ν ∈ M1(CA
q ). For k ∈ N we say that ν admits k-th

moments of type A if for all l ∈ N
q
0 with |l| ≤ k the moment condition mA

l ∈ L1(CA
q , ν) holds.

We then call mA
l (ν) :=

∫

CA
q
mA

l (x)dν(x) the l-th multivariate moment of ν. The vector

mA
1
(ν) :=

∫

CA
q

m1(x) dν(x) ∈ CA
q ⊂ R

q

is called the dispersion of ν. We also form the modified symmetric q × q-covariance matrix

ΣA(ν) :=

∫

G

m2 dν − mA
1
(ν)t ·mA

1
(ν).

We are interested in the A-case only as a limit of the BC-case for p → ∞. For this we need an
additional transformation

T : CB
q → CB

q ⊂ CA
q , x = (x1, ..., xq) 7→ ln coshx := (ln coshx1, ..., ln coshxq) (2.8)

cf. [RKV], [RV]. We define the modified moment functions m̃l(x) := mA
l (T (x)) which admit modified

integral representations similar to (2.6). Moreover, for ν ∈ M1(CB
q ) we consider the image measure

T (ν) ∈ M1(CB
q ) ⊂ M1(CA

q ). As |x− ln coshx| ≤ ln 2 for all x ∈ [0,∞[ by an elementary calculation,
we see that for all multiindices l, the l-th moment of type A of ν exists if and only if the l-th moment
of type A of T (ν) exists. We put m̃l(ν) := mA

l (T (ν)) and Σ̃(ν) := ΣA(T (ν)).
We next turn to the BC-case.

2.4 Definition. For all p > 2q − 1, x ∈ CB
q , and λ ∈ C

q, the functions in (1.4) satisfy

ϕp
λ(x) =

∫

Bq

∫

U(q,F)

∆(iλ−ρ)/2(g(x, u, w)) du dmp(w) (2.9)

with the power function ∆λ from (2.1), the half sum of positive roots

ρ = ρ(p) =

q
∑

i=1

(d

2
(p+ q + 2− 2i)− 1

)

ei , (2.10)

g as above, and with mp(w) ∈ M1(Bq) from (1.6); see [RV]. As in [RV] we define the moment
functions for l = (l1, . . . , lq) ∈ N

q
0 by:

mp
l (x) :=

∂|l|

∂λl
ϕp
−iρBC−iλ

(x)
∣

∣

∣

λ=0
:=

∂|l|

(∂λ1)l1 · · · (∂λq)lq
ϕp
−iρBC−iλ

(x)
∣

∣

∣

λ=0

=
1

2|l|

∫

Bq

∫

U(q,F)

(ln∆1(g(x, u, w)))
l1 ·
(

ln
∆2(g(x, u, w))

∆1(g(x, u, w))

)l2

· · ·
(

ln
∆q(g(x, u, w))

∆q−1(g(x, u, w))

)lq

du dmp(w)

(2.11)

for x ∈ CB
q . We also form the vector-valued first moment function mp

1
, the matrix-valued second

moment function mp
2
, as well as Σp(x) := mp

2
(x)−mp

1
(x)t ·mp

1
(x) as above.

We have the following basic properties; see Section 3 of [V2]:

2.5 Lemma. (1) There is a constant C = C(p, q) such that for all x ∈ CB
q ,

‖mp
1
(x)− x‖ ≤ C.

(2) For each x ∈ CB
q , Σp(x) is positive semidefinite.

(3) Σp(0) = 0, and for x ∈ CB
q \ {0}, Σp(x) has full rank q.
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(4) All second moment functions mp
ej+el

(x) are growing at most quadratically, and mp
2e1

is growing
quadratically.

(5) There exists a constant C = C(p, q) such that for all x ∈ CB
q and λ ∈ R

q,

|ϕp
−iρ−λ(x)− ei〈λ,m

p
1
(x)〉| ≤ C||λ||22.

Similarly to the A-case, we also define multivariate l-th moments, dispersions, and covariance
matrices of type BC(p) for measures ν ∈ M1(CB

q ).

We next derive estimates for |m̃l(ν) − mp
l (ν)| for l ∈ N

q
0 and large p under the assumption that

these moments exist. For this we first show that for a given ν ∈ M1(Cq
q ) the existence of moments of

some maximal order is independent from taking classical moments, moments of type A, or moments
of type BC. For our purpose it will be sufficient to restrict to the case when |l| is even.
Let k ∈ N0 and ν ∈ M1(Cq

q ). We then say that ν admits finite A-type moments of order at most 2k
if

m̃2k·e1 , ..., m̃2k·eq ∈ L1(CB
q , ν).

Indeed, it follows immediately from the definition of moment functions in (2.6) and Hölder’s inequality,
that in this case all moments of order at most 2k are ν-integrable. Similarly, if

mp
2k·e1 , ...,m

p
2k·eq ∈ L1(CB

q , ν)

then we say that ν admits finite BC(p)-type moments of order at most 2k.

2.6 Proposition. For k ∈ N and ν ∈ M1(CB
q ) the following statements are equivalent:

(1) ν admits all classical moments of order at most 2k, i.e.
∫

CB
q
xl1
1 · · ·xlq

q dν(t) < ∞ for all l =

(l1, ..., lq) ∈ N
q
0 with |l| ≤ 2k.

(2) ν admits all moments of type A of order at most 2k.
(3) T (ν) admits all moments of type A of order at most 2k.
(4) For each p ≥ 2q − 1, ν admits all moments of type BC(p) of order at most 2k.

Proof. To show (1)⇒(2) it is sufficient to prove that mA
2k·e1 , ...,m

A
2k·eq ∈ L1(CB

q , ν). From (2.6) we
have

mA
2k·ej (ν) =

1

22k

∫

CB
q

∫

U(q,F)

(

ln∆j+1(u
∗e2xu)− ln∆j(u

∗e2xu)
)2k

du dν(x).

We now recall from Lemma 4.2 [V2] that jxq ≤ ln∆j(u
∗e2xu) ≤ jx1 for u ∈ U(q,F), x ∈ CB

q , and
j = 1, ..., q. Therefore, from elementary inequalities we obtain that

mA
2k·ej (ν) ≤

1

22k

∫

CB
q

|(j(x1 − xq) + xq|2kdν(x) < ∞. (2.12)

To prove (2)⇒(1) it is sufficient to show that
∫

CB
q
x2k
1 dν(x) < ∞. It can be easily seen that for every

u ∈ U(q,F) there exist coefficients ci(u) ≥ 0 for i = 1, ...q with
∑q

i=1 ci(u) = 1 such that

∆1(u
∗e2xu) =

q
∑

i=1

ci(u)e
2xi ≥ c1(u)e

2x1 .

Thus, using the elementary inequality 22k(a2k+b2k) ≥ (a+b)2k for a = ln(c1(u)e
2x1) and b = − ln c1(u)

we have
∫

U(q,F)

∫

CB
q

(ln∆1(u
∗e2xu))2k du dν(x) ≥

∫

U(q,F)

∫

CB
q

(ln(c1(u)e
2x1))2k du dν(x)

≥ −
∫

U(q,F)

(| ln c1(u)|)2k du+

∫

CB
q

x2k
1 dν(x).

7



Now, Lemma 5.1 and Proposition 4.9 of [V2] ensure that
∫

U(q,F)
(| ln c1(u)|)2k du is finite. Hence

we have
∫

CB
q
x2k
1 dν(x) < ∞ as desired.

The equivalence of (2) and (3) follows from

1

4
u∗e2xu ≤ u∗(coshx)2u ≤ 1

2
u∗e2xu

which implies that
| ln∆j(u

∗(coshx)2u)− ln∆j(u
∗e2xu)| ≤ ln 4.

To prove (3)⇒ (4) we recall from Lemma 6.4 in [V2] that

| ln∆jg(x, u, w)− ln∆j(u
∗(coshx)u)| ≤ 2j ·max(| ln(1− σ1(w))|, ln(σ1(w) + 1)) := Hj(w). (2.13)

It can be easily seen that
∫

Bq
ln(1 + σ1(w))

2kdmp(w) is finite.

Moreover, as 1 ≥ σ1(w) ≥ .... ≥ σq(w) ≥ 0 for w ∈ Bq we have

1

1− σ1(w)
≤ 2

1− σ1(w)2
≤ 2

q
∏

r=1

1

1− σr(w)2
≤ 2

∆(I − w∗w)
. (2.14)

Now, from Lemma 2.1 and (2.14) together with the elementary inequality

| ln(1 + z)| 6 |z|
1− |z| for |z| < 1 (2.15)

we obtain that
∫

Bq

| ln(1− σ1(w))|2kdmp(w) ≤ 22k
∫

Bq

σ1(w)
2k ·∆(I − w∗w)−2kdmp(w) < ∞. (2.16)

Hence,
∫

Bq
|Hj(q)|2kdmp(w) < ∞ for j = 1, .., q. Therefore, using the elementary inequality 32k(a2k+

b2k + c2k) ≥ (a+ b+ c)2k we have

mp
2k·ej (ν) ≤

(

3

2

)2k ∫

Bq×U(q,F)×CB
q

(

| ln∆j+1g(x, u, w)− ln∆j+1(u
∗(coshx)u)|2k+ (2.17)

+ |ln∆j+1(u
∗(coshx)u)− ln∆j(u

∗(coshx)u)|2k +
+ | ln∆jg(x, u, w)− ln∆j(u

∗(coshx)u)|2k
)

dmp(w) du dν(x).

We see that the right hand side of (2.17) is finite, from (2.13), (2.16) and the assumption thatmA
2k·ej (ν)

is finite.
Finally, the converse statement (4)⇒(3) follows analogously from

mA
2k·ej (ν) ≤

(

3

2

)2k ∫

Bq×U(q,F)×CB
q

[| ln∆j+1(u
∗(coshx)u)− ln∆j+1g(x, u, w)|2k

+ | ln∆j+1g(x, u, w)− ln∆jg(x, u, w)|2k

+ | ln∆j(u
∗(coshx)u)− ln∆jg(x, u, w)|2k]dmp(w)dudν(x). (2.18)

We now turn to the main result of the section:

2.7 Proposition. Let l = (l1, ...., lq) ∈ N
q
0 with |l| ≥ 3 and ν ∈ M(CB

q ). Assume that ν admits finite
moments of order 4(|l| − 2). Then, there exists a constant C := C(|l|, q, ν) such that

|m̃l(ν)−mp
l (ν)| 6

C√
p
. (2.19)
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Proof. We consider the |l| factors of the integrand in the integral representations (2.11) of the moment
functions mp

l and the modified version of (2.6) for m̃l. For i = 1, 2, ..., |l| these factors have the form:

fi(x, u, w) := ln∆r(g(x, u, w))− ln∆r−1(g(x, u, w)),

f̃i(x, u, w) := ln∆r(g(x, u, 0))− ln∆r−1(g(x, u, 0))

with the convention ∆0 ≡ 1 where r ∈ {1, ..., q} is the smallest integer with i ≤ l1 + ...+ lr.
Then, from Lemma 2.1(2) and (2.15) for all i = 1, ..., |l|, x ∈ CB

q , u ∈ U(q,F), w ∈ Bq we obtain that

|fi(x, u, w)− f̃i(x, u, w)| ≤ 2 max
r=1,...,q

| ln∆r(g(x, u, w))− ln∆r(g(x, u, 0))|

6 4q · x̃σ1(w)

1− x̃σ1(w)
6 4qx̃

σ1(w)

1− σ1(w)

where x̃ = min{1, x}. Thus, by (2.14) we have

|fi(x, u, w)− f̃i(x, u, w)| ≤ 8qx̃
σ1(w)

∆(I − w∗w)
.

Now, notice that

|m̃l(ν)−mp
l (ν)| =

∣

∣

∣

∣

∣

∣

1

2|l|

∫

Bq×U(q,F)×CB
q





|l|
∏

i=1

fi(x, u, w)−
|l|
∏

i=1

f̃i(x, u, w)



 dudmp(w)dν(t)

∣

∣

∣

∣

∣

∣

(2.20)

Therefore, by a telescopic sum,

|m̃l(ν)−mp
l (ν)| =

=
∣

∣

∣

1

2|l|

|l|
∑

i=1

∫

Bq×U(q,F)×CB
q

(

(fi(x, u, w)− f̃i(x, u, w))×

|l|
∏

j=i+1

fj(x, u, w)
i
∏

k=1

f̃k(x, u, w)
)

dudmp(w)dν(x)
∣

∣

∣

≤ 1

2|l|

|l|
∑

i=1

∫

Bq×U(q,F)×CB
q

∣

∣

∣
(fi(x, u, w)− f̃i(x, u, w))×

|l|
∏

j=i+1

fj(x, u, w)

i
∏

k=1

f̃k(x, u, w)
∣

∣

∣dudmp(w)dν(x) (2.21)

We estimate the summands of the expression of the last formula of (2.21) in two ways:
Summands for i = 1 and |l|:
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From Cauchy-Schwarz inequality, (2.21) and Lemma 2.1 we obtain that

∫

Bq×U(q,F)×CB
q

∣

∣

∣

∣

∣

∣

(f1(x, u, w)− f̃1(x, u, w))

|l|
∏

j=2

fj(x, u, w)

∣

∣

∣

∣

∣

∣

dudmp(w)dν(x)

≤
(

∫

Bq×U(q,F)×CB
q

|fi(x, u, w)− f̃i(x, u, w)|2dudmp(w)dν(t)

)1/2

×

×





∫

Bq×U0(q,F)×CB
q

|l|
∏

j=2

fj(x, u, w)
2dudmp(w)dν(x)





1/2

≤ M1 · 8q
(

∫

Bq

σ1(w)
2

∆(I − w∗w)2
dmp(w)

)1/2

≤ M1 ·
C√
p

(2.22)

where
M1 := M1(ν, |l|, q) = 8q · max

r∈N
q
0,|r|≤2(|l|−1)

max{m̃r(ν),m
p
r(ν)}

which is finite by initial assumption and Proposition 2.6. Similarly, we obtain same upper bound for
the |l|’s summand in (2.21).
Now, let i = 2, ..., q−1. Here, we apply Hölder’s inequality twice and obtain with the same arguments
as above that

∣

∣

∣

∣

∣

∣

∫

Bq×U0(q,F)×CB
q

(

(fi(x, u, w)− f̃i(x, u, w))

|l|
∏

j=i+1

fj(x, u, w)

i−1
∏

k=1

f̃k(x, u, w)
)

dudmp(w)dν(x)

∣

∣

∣

∣

∣

∣

≤
(

∫

Bq×U0(q,F)×CB
q

|(fi(x, u, w)− f̃i(x, u, w)|2dudmp(w)dν(t)

)1/2

×





∫

Bq×U0(q,F)×CB
q

|l|
∏

j=i+1

|fj(x, u, w)|4dudmp(w)dν(x)





1/4

×
(

∫

Bq×U0(q,F)

i−1
∏

k=1

|f̃k(x, u, w)|4dudmp(w)dν(x)

)1/4

≤ M2 ·
C√
p

(2.23)

where
M2 := M2(ν, |l|, q) = 8q · max

r∈N
q
0,|r|≤4(|l|−2)

max{m̃r(ν),m
p
r(ν)}

which is again finite by our assumption and Proposition 2.6. Thus, the estimates (2.22) and (2.23)
give the desired assertion.

3 Spherical Fourier transform

In this section we collect some well-known methods and facts about the spherical Fourier transform of
type A and BC. We start with the identification of all multiplicative functions and of the dual space
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in accordance with [R2] and [NPP] for p ≥ 2q − 1 in the BC-case.
The set of all continuous multiplicative functions

χ(CB
q , ∗p) := {f : CB

q → C : f continuous,

∫

CB
q

d(δx ∗p δy) = f(x)f(y)}

is given by {ϕp
λ : λ ∈ C

q}. Moreover, the set χb(C
B
q , ∗p) of bounded functions in χ(CB

q , ∗p) is equal to
{ϕp

λ : ℑλ ∈ co(Wq · ρ)} where co denotes the convex hull, and WB
q the Weyl group of type Bq acting

on C
q. The dual space

(CB
q , ∗p)∧ := {f ∈ χb(C

B
q , ∗p), f(x−) = f(x)}

is {ϕp
λ : λ ∈ CB

q or λ ∈ i · co(WB
q · ρ)}. Finally, the support of Plancherel measure is the set

{ϕp
λ : λ ∈ CB

q }.

3.1 Definition. Let ν ∈ M1(CB
q ). The BC-type spherical (or hypergroup) Fourier transform is given

by

Fp
BC(ν)(λ) :=

∫

CB
q

ϕp
λ(x)dν(x)

for λ ∈ {λ ∈ C
q : ℑλ ∈ co(WB

q · ρ)}.
We now give some estimates on spherical functions and Fourier transforms from [V2].

3.2 Lemma. For all x ∈ CB
q , λ ∈ R

q, and l ∈ N
q
0,

∣

∣

∣

∣

∂|l|

∂λl
ϕp
λ−iρ(x)

∣

∣

∣

∣

6 mp
l (x)

3.3 Lemma. Let k ∈ N0 and assume that ν ∈ M1(CB
q ) admits finite k-th modified moments. Then,

for all λ ∈ C
q with ℑλ ∈ co(WB

q · ρ), Fp
BC(ν)(·) is k-times continuously differentiable, and for all

l ∈ N
n
0 with |l| 6 k,

∂|l|

∂λl
Fp

BC(ν)(λ) =

∫

CB
q

∂|l|

∂λl
ϕp
λ(x)dν(x). (3.1)

In particular,
∂|l|

∂λl
FBC(ν)(−iρ) =

∫

CB
q

mp
l (x)dν(x). (3.2)

3.4 Remark. There are corresponding results to the Lemmas 3.2 and 3.3 for the A-case with the
corresponding moment functions mA

l for l ∈ N
q
0 and the Fourier transform FA and ν ∈ M1(CA

q ); see
Lemmas 6.1, 6.2 in [V2].

4 Central limit theorems for growing parameters

In this section we derive two CLTs for random walks when the time and the dimension parameter
p tend to infinity. The statements of both CLTs are similar, but the assumptions on the moments
and the relation between the time and p are different. We first present a CLT where we assume some
restriction on (pn)n≥1:

4.1 Theorem. Let (pn)n≥1 ⊂ [2q − 1,∞[ be an increasing sequence with limn→∞ n/pn = 0. Let
ν ∈ M1(CB

q ) be with ν 6= δ0 and second moments. Consider the associated random walks (Sp
n)n>0 on

CB
q for p ≥ 2q − 1. Then

Spn
n − n · m̃1(ν)√

n

converges in distribution to N (0, Σ̃(ν)).
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Proof. We know from Lemma 4.2(2) of [RV] that there exists a constant C > 0 such that for all
p > 2q − 1, x ∈ CB

q , λ ∈ R
q,

|ϕp
λ−iρ(x)− ϕA

λ−iρA(ln coshx)| 6 C · ‖λ‖1 · x̃
p1/2

where ‖λ‖1 := |λ1| + . . . |λq| and x̃ := min(x1, 1) > 0. Hence, denoting the half sums of positive
roots of type BC associated with pn as described in (2.10) by ρ(n) := ρBC(pn), for all ν ∈ M1(CB

q ),
we get

∣

∣

∣

∣

∣

∫

CB
q

ϕpn

λ−iρ(n)(x)dν(x)−
∫

CB
q

ϕA
λ−iρA(ln coshx)dν(x)

∣

∣

∣

∣

∣

6 C · ‖λ‖1√
pn

. (4.1)

Let ν(n,p) ∈ M1(CB
q ) be the law of Sp

n. Then, T (S
pn
n ) has the distribution T (ν(n,pn)) whose A-type

spherical Fourier transform satisfies

FA(T (ν
(n,pn)))(λ− iρA) =

∫

CA
q

ϕA
λ−iρA(x)dT (ν

(n,pn))(x) =

∫

CB
q

ϕA
λ−iρA(ln coshx)dν

(n,pn)(x) (4.2)

for λ ∈ R
q. Furthermore, by plugging ν(n,pn) into (4.1) we get

FA(T (ν
(n,pn)))(λ− iρA) =

∫

CB
q

ϕpn

λ−iρAdν
(n,pn)(t) +O(

‖λ‖1
p
1/2
n

)

=

(

∫

CB
q

ϕpn

λ−iρAdν(x)

)n

+O(
‖λ‖1
p
1/2
n

)

=

(

FA(T (ν))(λ− iρA) +O(
‖λ‖1
p
1/2
n

)

)n

+O(
‖λ‖1
p
1/2
n

).

Using the the initial moment assumption and Lemma 2.6 we see that the first and second modified
moments m̃1 and m̃2 exist. Moreover, all entries of the modified covariance matrix

Σ̃(ν) = m̃2(ν)− m̃1(ν)
t · m̃1(ν)

are finite.
By Lemma 3.3, the Taylor expansion of FA(T (ν))(λ− iρA) for |λ| → 0 is given by

FA(T (ν))(λ− iρA) = 1− i〈λ, m̃1(ν)〉 − λm̃2(ν)λ
t + o(|λ|2).

Using the initial assumption that O(1/
√
npn) = o(1/n) we obtain

E(ϕA
λ/

√
n−iρA(T (S

pn
n ))ei〈λ,

√
nm̃1(ν)〉 = FA(T (ν

(n,pn)))(λ/
√
n− iρA) · ei〈λ,

√
nm̃1(ν)〉

=

[(

FA(T (ν))(λ− iρA) +O(
‖λ‖1√
npn

)

)n

+O(
‖λ‖1√
npn

)

]

· ei〈λ,
m̃1(ν)
√

n
〉n

=

[(

1− i〈λ, m̃1(ν)〉√
n

− λm̃2(ν)λ
t

2n
+ o(

1

n
)

)

×

×
(

1 +
i〈λ, m̃1(ν)〉√

n
− 〈λ, m̃1(ν)〉2

2n
+ o(

1

n
)

)]n

=

(

1− λΣ̃(ν)λt

2n
+ o(

1

n
)

)n

.

Thus,
lim
n→∞

E(ϕA
λ/

√
n−iρA(T (S

pn
n )) · exp(i〈λ, m̃1(ν)〉

√
n)) = exp(−λΣ̃(ν)λt/2). (4.3)
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On the other hand, from Lemma 2.3(5) we have

lim
n→∞

E(ϕA
λ/

√
n−iρA(T (S

pn
n ))− exp(−i〈λ, m̃1(S

pn
n )〉/√n)) = 0. (4.4)

(4.3) and (4.4) and the fact that |ei〈λ,
√
nm̃1(ν)〉| 6 1 together yield that for all λ ∈ R

q,

lim
n→∞

exp(−i〈λ, (m̃1(S
pn
n )− n · m̃1(ν)〉)/

√
n) = exp(−λΣ̃(ν)λt/2).

Levy’s continuity theorem for the classical q-dimensional Fourier transform implies that (m̃1(S
pn
n )−

n · m̃1(ν)〉)/
√
n tends to the normal distribution N (0, Σ̃(ν)).

Now, Lemma 2.3(2) implies that (T (Spn
n )− n · m̃1(ν)〉)/

√
n also converges to N (0, Σ̃(ν)).

Moreover, since limx→∞(x− ln coshx) = ln 2, we see that (ln cosh(Spn
n )−Spn

n )/
√
n → 0, which implies

that (Spn
n − nm̃1(ν))/

√
n → N(0, Σ̃(ν)) as desired.

4.2 Remark. For the rank one case q = 1 the preceding CLT was derived in [Gr1] with different
techniques under weaker assumptions, namely without the restriction n/pn → 0 as n → ∞. The proof
in [Gr1] relies on the convergence of the moment functions

(mp
1(x))

2 −mp
2(x) → 0 (4.5)

on [0,∞[ for p → ∞. However, for q ≥ 2 this convergence is no longer available.

We next try to get rid of the restriction n/pn → 0. We shall achieve this by assuming the existence
of fourth moments in addition.

4.3 Theorem. Let (pn)n≥1 be an increasing sequence with p1 > 2q − 1 and limn→∞ pn = ∞. Let
ν ∈ M1(CB

q ) with ν 6= δ0 and with fourth moments. Consider the associated random walks (Sp
n)n>0

on CB
q for p ≥ 2q − 1. Then

Spn
n − nmpn

1
(ν)√

n

converges in distribution to N (0, Σ̃(ν)).

Proof. We first notice that by Taylor’s theorem and Proposition 2.7 for all p > 2q − 1,

∣

∣

∣

∣

E(ϕp
λ/

√
n−iρ

(Sp
n))−

(

1− i〈λ,mp
1
(ν)〉√

n
− λmp

2
(ν)λt

2n

)∣

∣

∣

∣

≤
∑

l∈Nq,|l|=3

mp
l (ν)

λl1
1 ...λ

lq
q

l1!...lq!

≤ 1

n3/2

∑

l∈Nq,|l|=3

(m̃l(ν) + C/
√
p)

λl1
1 ...λ

lq
q

l1!...lq!

≤ K1
‖λ‖3∞
n3/2

(4.6)

for some constant K1 > 0 which is independent of p. Analogously, for all p > 2q − 1,

∣

∣

∣

∣

ei〈λ,
√
nmp

1
(ν)〉 −

(

1 +
i〈λ,mp

1
(ν)〉√

n
− 〈λ,mp

1
(ν)〉2

2n

)∣

∣

∣

∣

6 K2
‖λ‖3∞
n3/2

(4.7)

for some K2 > 0 independent of p.
Using estimates (4.6) and (4.7) we now follow similar paths as in the proof of Theorem 4.1. We
however use the BC-type Fourier transform and BC-moments instead of objects of type A, and then
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approximate A-type moments by BC-type moments using Proposition 2.7. Now, we have

E(ϕpn

λ/
√
n−iρ(n)

(Spn
n ))ei〈λ,

√
nmpn

1
(ν)〉 = Fpn

BC(ν
(n,pn))(λ/

√
n− iρ(n)) · ei〈λ,

√
nmpn

1
(ν)〉

=

[(

1− i〈λ,mpn

1
(ν)〉√

n
− λmpn

2
(ν)λt

2n
+ o(

1

n
)

)

×

×
(

1 +
i〈λ,mpn

1
(ν)〉√

n
− 〈λ,mpn

1
(ν)〉2

2n
+ o(

1

n
)

)]n

=

(

1− λΣpn(ν)λt

2n
+ o(

1

n
)

)n

From Lemma 2.7 we also obtain that

|λΣpn(ν)λt − λΣ̃(ν)λt| = O(
|λ|2√
pn

)

for pn → ∞. Therefore, we have

lim
n→∞

E(ϕpn

λ/
√
n−iρ(n)

(Spn
n ))ei〈λ,

√
nmpn

1
(ν)〉 = lim

n→∞

(

1− λΣ̃(ν)λt

2n
+

λ(Σpn(ν)− ˜Σ(ν))λt

2n
+ o(

1

n
)

)n

= exp(−λΣ̃(ν)λt/2)

On the other hand from the Lemma 2.5(5) we have

lim
n→∞

E(ϕpn

λ/
√
n−iρ(n)

(Spn
n )− exp(−i〈λ,mpn

1
(Spn

n )〉/√n)) = 0. (4.8)

The rest of the proof is now analogous to that of Theorem 4.1.

5 A central limit theorem with fixed p with inner normaliza-

tion

In this section we present some CLT for some fixed p. We consider the following setting: Fix some
nontrivial probability measure ν ∈ M1(CB

q ) with some moment condition and for d ∈]0, 1] consider
the component-wise compression map Dd : x 7→ d · x on CB

q as well as compressed measure νd :=

Dd(ν) ∈ M1(CB
q ). For given ν and d we consider the random walk (S

(p,d)
n )n>0 associated with νd.

We investigate the limiting behavior of (S
(p,n−1/2)
n )n>1. This case can be seen as CLT with inner

standardization in contrast to the case with (Sp
n)n≥0 in Section 3 where we consider CLT with outer

standardization n1/2. These two CLTs exhibit different limiting procedures. The limit theorem for

(S
(p,n−1/2)
n )n>1 in the rank 1 case was studied by Zeuner [Z1]. In the group cases, this CLT is related

with the CLTs in [G1], [G2], [Te1], [Te2], [Ri].

5.1 Definition. Let p ≥ 2q − 1 and t ≥ 0. A probability measure γt = γt(p) ∈ M1(CB
q ) is called

BC(p)-Gaussian with time parameter t and shape parameter p if

Fp
BC(γt)(λ) = exp(

−t(λ2
1 + ...+ λ2

q + ‖ρ‖22)
2

)

for all λ ∈ CB
q ∪ i · co(WB

q · ρ) ⊂ C
q.

We notice that by injectivity of the hypergroup Fourier transform (see [J]), the measures γt are
determined uniquely and that they form a weakly continuous convolution semigroup (γt)t≥0, i.e. for
all s, t ≥ 0 we have γs ∗p γt = γs+t and γ0 = δ0. The existence of the measures γt for t > 0 is not quite
obvious at the beginning, but we shall see from the proof of he following CLT that γt indeed exists.
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5.2 Theorem. Let ν ∈ M1(CB
q ) with ν 6= δ0 and with finite second moments. Let

t :=
1

qd

∫

CB
q

‖x‖22dν(x).

Then, (S
(p,n−1/2)
n )n≥1 tends in distribution for n → ∞ to γ t

p
.

For the proof we need some information on ϕp
λ:

5.3 Lemma. Let p ∈ [2q − 1,∞[ be fixed. Then:

(1) For all i, j = 1, 2, ..., q with i 6= j and all λ ∈ C
q,

∂

∂xi
ϕp
λ(0) = 0 and

∂2

∂xi∂xj
ϕp
λ(0) = 0 (5.1)

(2) For all i = 1, 2, ..., q, and λ ∈ CB
q ∪ i · co(Wq · ρ),

∂2

∂x2
i

ϕp
λ(0) = − (λ2

1 + ...+ λ2
q + ‖ρ‖22)

pqd
< 0.

Proof. The spherical functions ϕp
λ(x) are invariant under the action of the Weyl group of of type BC

w.r.t. x. Therefore, ϕp
λ(x1, .., xq) is even in each xi, which leads to (1). Moreover, as ϕp

λ(x1, ...., xq) is

invariant under the permutations of xi,
∂2

∂x2
i
ϕp
λ(0) is independent of i. To complete the proof of (2),

we recall from Eq. (1.2.6) in [HS] that for all λ ∈ C
q the hypergeometric function FBC(λ, kp, ·) is the

unique solution to the eigenvalue problem

Lf = −(λ2
1 + ...+ λ2

q + ‖ρ‖22)f (5.2)

for x ∈ int(CB
q ) = {x ∈ CB

q : x1 > x2 > ... > xq > 0} with f(0) = 1 where the differential operator L
is defined as

L :=
∑

1≤i≤q

[

∂2
i

∂x2
i

+ (2k1 coth(xi) + 4k2 coth(2xi))
∂i
∂xi

]

+ 2k3
∑

1≤i<j≤q

[

coth(xi + xj)

(

∂i
∂xi

+
∂j
∂xj

)

+ coth(xi − xj)

(

∂i
∂xi

− ∂j
∂xj

)]

. (5.3)

Notice here that the factors 2, 4, 2 of the multiplicities k1, k2, k3 respectively, originate from the dir-
ectional derivatives w.r.t the roots in Eq. (1.2.6) in [HS].
Now, using part (1), ϕp

λ(x) = FBC(iλ, kp, x), and the Taylor expansion of coth around 0, we have

−(λ2
1 + ...+ λ2

q + ‖ρ‖22)ϕp
λ(0) = lim

‖x‖→0
Lϕp

λ(x)

= (q + 2qk1 + 4qk2 + 2q(q − 1)k3)
∂2
1

∂x2
1

ϕp
λ(x)

∣

∣

∣

∣

x=0

= pqd · ∂2
1

∂x2
1

ϕp
λ(x)

∣

∣

∣

∣

x=0

for all λ ∈ C
q. Finally, as co(WB

q · ρ) is contained in {x ∈ R
q : ‖x‖2 ≤ ‖ρ‖2}, the final statement of

(2) is also clear.
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Proof of Theorem 5.2. Lemma 5.3 and ϕp
λ(x) ≤ 1 for x ∈ CB

q ensure that there exists c > 0 such that

1− c(x2
1 + x2

2 + ...+ x2
q) 6 ϕp

λ(x) for all x ∈ CB
q .

Consequently by Taylor expansion,

n

∣

∣

∣

∣

∣

ϕp
λ(

x√
n
)− 1 +

λ2
1 + ...+ λ2

q + ‖ρ‖22
2pqd

· ‖x‖
2
2

n

∣

∣

∣

∣

∣

≤ C‖x‖22

for some constant C > 0 where ‖x‖22 is integrable w.r.t ν by our assumption. Thus, dominated
convergence theorems yields that

lim
n→∞

n

∫

CB
q

(

ϕp
λ(

x√
n
)− 1 +

(λ2
1 + ...+ λ2

q + ‖ρ‖22)
2pqd

· ‖x‖
2
2

n

)

dν(x) = 0.

Rewriting this relation as

∫

CB
q

ϕp
λ(

x√
n
)dν(x) = 1− 1

n

(λ2
1 + ...+ λ2

q + ‖ρ‖22)
2pqd

·
∫

CB
q

‖x‖22dν(x) + o(
1

n
)

we obtain

Fp
BC(PS

(p,n−1/2)
n

)(λ) =

∫

CB
q

ϕp
λ(

x√
n
)dν(n)(x) =

[

∫

CB
q

ϕp
λ(

x√
n
)dν(x)

]n

=

(

1− 1

n
· (λ

2
1 + ...+ λ2

q + ‖ρ‖22)
2pqd

∫

CB
q

‖x‖22dν(x) + o(
1

n
)

)n

which implies

lim
n→∞

Fp
BC(PS

(p,n−1/2)
n

)(λ) = exp

(

− (λ2
1 + ...+ λ2

q + ‖ρ‖22)
2pqd

·
∫

CB
q

‖x‖22dν(x)
)

= exp

(

− t(λ2
1 + ...+ λ2

q + ‖ρ‖22)
2p

)

for all λ ∈ R
q∪i·co(WB

q ·ρ). Hence, by the weak version of Levy’s continuity theorem for commutative

hypergroups (see Theorem 4.2.11 in [BH]) there exists a bounded positive measure in µ ∈ M+
b (C

B
q )

with

Fp
BC(µ)(λ) = exp

(

− t(λ2
1 + ...+ λ2

q + ‖ρ‖22)
2p

)

(5.4)

for all λ ∈ R
q, and (P

S
n−1/2
n

)n≥1 converges to µ vaguely.

Notice that the right hand side of (5.4) is obviously analytic for λ ∈ C
q. Moreover, the left hand side is

holomorphic for λ in the open set I := {a+ ib ∈ C
q : a ∈ R

q, b ∈ Int(co(WB
q · ρ))} ⊂ C

q. This follows

from the fact that ϕp
λ(·) is holomorphic for λ ∈ I, that |ϕp

λ(x)| ≤ 1 for all x ∈ CB
q and λ ∈ I, and from

some well-known theorem on the holomorphy of parameter integrals (which is a consequence of the
theorems of Fubini and Morera). We thus conclude that equality (5.4) holds for all λ ∈ Ī. Therefore,
we have Fp

BC(µ)(−iρ) = 1, i.e. the limiting positive measure µ is indeed a probability measure. This
implies that (P

S
(p,n−1/2)
n

)n≥1 converges weakly to µ = γ t
p
as desired.

5.4 Remark. The considerations in the above proof yield that the probability measures γt in Defin-
ition 5.1 above indeed exist.
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6 A law of large numbers for inner normalizations and grow-

ing parameters

We present a further limit theorem for (S
(p,n−1/2)
n )n≥1 when p and n go ∞ in a coupled way. It will

turn out that then, under some canonical norming, the limiting distribution is a point measure, i.e.,
we obtain a weak law of large numbers:

6.1 Theorem. Let ν ∈ M1(CB
q ) with ν 6= δ0 and finite second moments. Let t := 1

qd

∫

CB
q
‖x‖22dν(x)

be as in Theorem 5.2 and (pn)n≥1 ⊂ [2q − 1,∞[ be increasing with limn→∞ n/pn = 0. Then,

(S
(pn,n

−1/2)
n )n≥1 tends in distribution for n → ∞ to the constant

ln

(

et +

√

(et)
2 − 1

)

· (1, . . . , 1).

For the proof of theorem we first recapitulate the Taylor expansion for ϕA
λ (x) at x = 0 from [Gr1]:

6.2 Lemma. For ‖x‖2 → 0,

ϕA
λ (x) = 1 +

1

q
(λ1 + λ2 + ...+ λq)

q
∑

k=1

xk +Rλ(x)

with
Rλ(x) =

∑

α

fα(λ)Pα(x)

where the Pα(x) are symmetric polynomials in x1, ..., xq which are homogeneous of order ≥ 2.

We also need the following fact:

6.3 Lemma. For p ≥ 2q − 1, the half sum ρ = ρBC(p) satisfies the condition ρA − ρ ∈ co(WB
q · ρ),

where WB
q is the Weyl group of type Bq.

Proof. Denote ρ̂ := (ρq, ρq−1..., ρ1). Then, obviously ,−ρ,−ρ̂ ∈ WB
q · ρ. On the other hand we have

ρA − ρ =

(

d

2
(p+ 1)− 1

)

(1, ...., 1) =
1

2
(−ρ− ρ̂).

This proves the result.

6.4 Proposition. Let ν, t and (pn)n≥1 be defined as in Theorem 6.1. Consider the half sum of
positive roots ρ(n) := ρBC(pn) of type BC associated with the parameters pn as described in (2.10).
Then, for all λ ∈ C

q with ℑλ = ρA,

∫

CB
q

ϕpn

λ−iρ(n)(
x√
n
)dν(x) = 1 +

t

n
·

q
∑

k=1

(λk − iρAk ) + o(1/n) as n → ∞. (6.1)

Proof. Lemma 6.2 and the Taylor expansion ln coshx = x2 + O(x4) show that for all λ ∈ C
q with

such that ℑλ ∈ co(WA
q · ρA)

ϕA
λ (ln cosh

x√
n
) = 1 +

q
∑

i=1

λi
‖x‖22
nq

+Rλ(
‖x‖2
n

) (6.2)

for n → ∞. On the other hand, Theorem 4.2(2) in [RV] states that

|ϕp
λ−iρ(n)(

x√
n
)− ϕA

λ−iρA
(ln cosh

x√
n
)| ≤ C · ‖λ‖1 ·min(1, x1/

√
n)√

p
(6.3)
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for all λ ∈ C
q such that ℑλ− ρ(n) ∈ co(WB

q · ρ(n)). Notice that the analysis of the proof of Theorem
4.2(2) in [RV] shows that (6.3) is in fact precisely valid for

λ ∈ {λ ∈ C
q : ℑλ− ρ(n) ∈ co(WB

q · ρ(n)) and ℑλ− ρA ∈ co(WA
q · ρA)}.

If we combine (6.2) and (6.3) and use the Lemma 6.3 we see that as pn/n → ∞
∣

∣

∣

∣

∣

ϕpn

λ−iρ(n)(
x√
n
)− 1−

q
∑

k=1

(λk − iρAk )
‖x‖22
qn

∣

∣

∣

∣

∣

= o(
‖x‖22
n

) for all λ ∈ C
q with ℑλ = ρA (6.4)

which, by integrating w.r.t ν yields the result.

Proof of the Theorem 6.1. Let ν(n,pn) be the n-fold ∗pn
convolution power of ν. The Proposition 6.4

shows that for all λ ∈ C
q with ℑλ = ρA

lim
n→∞

∫

CB
q

ϕpn

λ−iρ(n)(
x√
n
)dν(n,pn)(x) = lim

n→∞

(

∫

CB
q

ϕpn

λ−iρ(n)(
x√
n
)dν(x)

)n

= lim
n→∞

(

1 +
t

n
·

q
∑

k=1

(λk − iρAk ) + o(1/n)

)n

=et·
∑q

k=1(λk−iρA
k ).

Thus, using (6.3) we have that

lim
n→∞

FA(P
T (S

(pn,n−1/2)
n )

)(λ− iρA) = lim
n→∞

∫

CB
q

ϕA
λ−iρA(ln cosh

x√
n
)dν(n,pn)(x)

= lim
n→∞

∫

CB
q

ϕpn

λ−iρ(n)(
x√
n
)dν(n,pn)(x)

= et·
∑q

k=1(λk−iρA
k )

for all λ ∈ C
q with ℑλ = ρA. By making substitution λ 7→ λ+ iρA above, we get

lim
n→∞

FA(P
T (S

(pn,n−1/2)
n )

)(λ) = et·
∑q

k=1 λk (6.5)

for all λ ∈ R
q. On the other hand from (2.4) we can easily see that

et·
∑q

k=1 λk = ϕA
λ (t(1, ..., 1))

= FA(δt(1,....,1))(λ)

for all λ ∈ C
q with ℑλ ∈ co(WA

q · ρA). Since, the equality (6.5) is satisfied on R
q, i.e support of the

Plancherel measure, from Levy continuity theorem for commutative hypergroups (see Theorem 4.2.11
in [BH]) it follows that P

T (S
(pn,n−1/2)
n )

converges weakly to the Dirac point measure δt(1,...,1). Now,

since T−1 is a continuous function, from continuous mapping theorem we conclude that P
S

(pn,n−1/2)
n

converges weakly to
T−1(δt·(e1,...,eq)) = δln(et+

√
e2t−1)·(1,...,1)

as desired.
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