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Yoda: “Always with you what cannot be done. Hear
you nothing that I say?”

Luke: “Master, moving stones around is one thing, but
this is... totally different!”

Yoda: “No! No different! Only different in your mind.
You must unlearn what you have learned.”

Luke: “All right, I'll give it a try.”

Yoda: “No! Try not. Do... or do not. There is no try.”

The Empire Strikes Back

“Kept you waiting, huh?”

Solid Snake in Metal Gear Solid 2: Sons of Liberty
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1 Introduction

Change is an inevitable part of many dynamic systems. Even though it is often caused
by the natural evolution, a change can also point at a serious malfunction of the system.
This thesis is devoted to the detection of sudden changes in univariate time series which
exhibit a slowly time-varying trend. The signal is assumed to be covered by additive noise
and occasional unusually large or small values, called outliers, may be present. Many
procedures for the detection of change points have been proposed throughout the years.
An extensive discussion on this topic can be found in the book “Detection of Abrupt
Changes: Theory and Application” by Basseville and Nikiforov (1993)).

In this work, we focus on the detection of change points in online-monitoring applications.
Our goal is to develop methods that are able to identify structural breaks in the process
with a short delay. At the same time, we restrict the number of false alarms by controlling
the run length, which we define as the duration between two alarms. Common methods
of choice under these premises are control charts, which have their origin in Statistical
Process Control. A control chart is a tool to decide whether a process follows its natural
behaviour. Based on a sample of consecutive observations, a control statistic is computed
and compared to predefined control limits.

In this thesis, we study two-sample location tests in a moving time window to identify
sudden changes in the mean function of a time series with a slowly varying signal. The
time window consists of the most recent observations in the process and is split into two
subwindows to test for a location shift between them. The main contributions of this
thesis are extensive comparisons between control charts based on different test statistics
under consideration of the run length.

The studied principle has some advantages over ordinary control charts. As only the
newest observations in the process are used to check for a change point, no large historical
data sets have to be acquired to estimate the process parameters. This relaxes the
assumptions on the signal and allows for slow natural changes in the parameters. As
the past of the process is disregarded by the new control charts, they adapt to the local
signal course. This reduces the risk of falsely identifying natural changes as relevant ones
and thus helps to keep the false alarm frequency small. Moreover, using appropriate test
statistics makes the charts robust against a predefined number of consecutive outliers,
avoiding confusion between outlier patches and level shifts.

In what follows, we provide an overview of the main themes and results of the Chapters

- 4]in this thesis. A global summary and some ideas for possible future research can be
found in Chapter



2 1 Introduction

Methods for real-time filtering and pattern detection

Chapter [2| introduces the basic terms and problems of online monitoring, which are relevant
to this thesis. It is based on the publication “Online analysis of medical time series” by
Fried et al. (2017)). The article has been modified and rephrased to fit more into the context
of this thesis. Information on the changes can be found at the beginning of Chapter 2

The chapter introduces three time series from real-world applications, which will ap-
pear throughout this thesis as illustrative examples for the developed control charts to
demonstrate their versatility and wide applicability.

The first time series consists of heart-rate measurements obtained from an online-
monitoring of a patient in an intensive care unit. The underlying signal of the time series
in such an application is known to vary over time. It is important to have outlier-resistant
procedures that are able to distinguish between unavoidable variation and sudden, clinically
relevant changes that may threaten the patient’s health.

The second time series represents greyscale values. They stem from the biosensor
technology Plasmon-Assisted Microscopy of Nano-Size Objects (PAMONO) (Siedhoff et al.,
2014b)). The signal is piecewise constant, making the time series a good testing ground for
our procedures to illustrate their detection qualities in a rather undisturbed setting.

As a third example, we consider measurements of crack widths from a bridge monitoring.
These data are used as an example to show how the control charts, originally designed for
detecting changes in the mean, can be modified to find structural breaks in the variance.

Parts of Chapter [2| are based on a review article and it mainly serves the purpose
to summarise prior research. It focuses on two fields which are combined in the later
chapters of this thesis. We first give an overview of robust local filtering procedures.
They are separated into the groups of filters based on location estimators and filters
based on regression. Their goal is to approximate the signal of a time series so that they
preserve the relevant signal characteristics without being influenced by outliers. Regression
estimators are especially suited for signal extraction in trend-affected time series. From
the summarised literature, the repeated median (Siegel, 1982) turns out to be convincing
from the viewpoint of efficiency and robustness against outliers.

In addition, we discuss deficiencies of ordinary control schemes for the applications we

have in mind and motivate the use of the control charts studied in the following chapters.

Robust control charts for the mean based on repeated two-sample location tests
Chapter [3|is based on the article “Control charts for the mean based on robust two-sample
tests” by Abbas and Fried (2017). Some extensions have been made compared to the
original article. They are described at the beginning of the chapter.

We introduce control charts based on sequentially applied two-sample tests to identify
sudden changes in an otherwise locally constant signal.

In extensive simulation studies, we compare several two-sample tests with respect to

their performance in the absence of relevant changes, that is when the process operates
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in control, and under sudden location shifts, so-called out-of-control settings. In the first
case, we aim for charts which ensure the same, or at least a similar, run-length behaviour
over a wide range of noise distributions. This is a desirable property because the true
distribution is often unknown in practice. Moreover, the charts should detect structural
breaks fast and with a high probability, so that we study the detection speed and rate,
again over a broad spectrum of distributions.

We show that control charts that are based on rank tests have a distribution-free
in-control run-length distribution. Furthermore, we conclude that a control chart based
on the two-sample Hodges-Lehmann estimator for shift (Hodges and Lehmann, [1963)
provides a good compromise regarding the requested properties. For an in-control process,
it is nearly distribution free. Moreover, it is robust against outliers and fast in detecting

location shifts.

Robust control charts for the mean of a locally linear time series

Although the moving time window is able to deal with slow trends in the signal, strong
trends can easily be confused with location shifts. In Chapter [4] we modify the control-
chart principle from Chapter [3|in order to find abrupt level and trend changes in time
series where the assumption of a locally constant signal is violated.

Assuming a locally linear signal, we construct residual control charts which apply the
tests to one-step-ahead forecast errors of a fitted local regression model. Residual charts
have been studied extensively in the control-chart literature; see for example Knoth and
Schmid (2004). However, our herein developed charts have again the advantage that they
do not require much knowledge on the global process behaviour.

We study two cases. In the first one, we use the repeated median to compute the forecast
errors, assuming a simple linear model within a moving time window. If this assumption
is exactly fulfilled, the forecast errors vary regularly around a constant. However, the
one-step-ahead forecast errors are correlated. This causes the control charts which are
based on rank tests to lose the exact distribution independence of the in-control run length.

Simulation studies indicate that the main properties of the control charts, which
are observed in Chapter [3| also apply in this setting. Again, the two-sample Hodges-
Lehmann estimator provides a good basis for a control chart by retaining its detection
and robustness properties from the locally constant setting. Especially when the forecast
errors are computed from a large window, it performs similarly well as for the locally
constant scenario. Moreover, the two-sample testing approach is able to deal with model
misspecification. Even if the local linearity assumption is not exactly fulfilled, the charts
can deal with the resulting slow trends in the series of forecast errors.

In the second scenario, we briefly consider a local autoregression of order one. Here, all
charts lose their distribution independence. For small to moderate autocorrelations, we

can still expect reasonably good detection properties.
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Computations and Software

The programming part of this thesis is performed with the statistical software package R
(R Core Team, |2017)), version 3.4.1. Most simulations are conducted on the Linux HPC
cluster LiDOng at TU Dortmund University. Each node consists of a 3.00 GHz Intel Xeon
E5450 machine with 15 GB RAM. We use the R package batchtools (Lang et al., 2017)
to carry out the simulations in parallel on the cluster. For simulations on a local machine,
we use future.apply (Bengtsson, 2018). The graphics are created with the packages
ggplot2 (Wickham, 2009)), gridExtra (Auguie, 2016)), scales (Wickham, 2017), and
tikzDevice (Sharpsteen and Bracken, 2018). Many tables are generated with the help
of xtable (Dahl, |2016)). Data manipulation is achieved with the packages data.table
(Dowle and Srinivasan, [2017), plyr (Wickham, 2011), dplyr (Wickham et al., 2017)), and
tidyr (Wickham and Henry, 2017)).
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2 Methods for real-time filtering and pattern detection

This chapter is based on the article “Online analysis of medical time series”, published in
the Annual Review of Statistics and Its Application by Fried et al. (2017)). The article is
joint work with Roland Fried (TU Dortmund University), Matthias Borowski (University
of Miinster), and Michael Imhoff (Ruhr-University Bochum).

To better fit into the context of this thesis, the article has been revised. The emphasis is
put on procedures for online signal extraction and shift detection in univariate time series.

Major changes are the following:

e The sections on multivariate techniques, clinical applications, outlier and trend

detection, and online segmentation procedures have been removed or shortened.

e The original article deals with medical applications only. Here, the procedures are

looked at from a more general point of view.

e Three time series from real-world applications are introduced. These are not part of

the original article.

e A brief introduction to control charts is added to motivate the development of
alternatives in the Chapters [3| and [4] This is not part of the original article.

o This chapter serves as an introduction to the basic problems considered in this thesis.
This required to rewrite Introduction and Conclusion for a better transition to the

following chapters.

2.1 Introduction

The analysis of quantities that are measured continuously over time is a frequent task in a
multitude of applications like health care, biology, or engineering. A frequent objective is
to detect unusual patterns like monotonic trends or sudden changes of the level, the trend,
or the variability. These can indicate severe disturbances in the monitored characteristic.
For example, when monitoring vital parameters of a patient in an intensive care unit,
a sudden increase or decrease of the measurements can point at critical changes in the
well-being of the patient.

We consider monitoring tasks in which the analysis of new incoming observations is
executed automatically and in real-time. Relevant changes have to be detected as soon as
possible, while false alarms should only occur rarely. In general, an alarm indicates that

some kind of intervention is required to correct the process. Triggering false alarms too
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often can make the responsible staff insensitive to alarms. This implies the danger that
important situations are ignored (Borowski et al., 2011). Moreover, a closer inspection can
be costly, for example when a production machine has to be stopped for a certain amount
of time (Basseville and Nikiforov, 1993, p. 6ff.),

Several aspects can complicate the real-time analysis. Due to technical reasons, the
measurements are often noisy, so that essential information on the quantity of interest can
be hidden. Furthermore, the data are often collected with a high frequency. In addition,
measurement artefacts can lead to outliers. Such observations with an unusually large
absolute value can corrupt the analysis and lead to false decisions by mimicking or masking
relevant patterns. To deal with these difficulties, procedures are required that can extract
the important information of a time series, are computationally efficient, separate relevant
from irrelevant structures, and identify unusual situations with only a short time delay.

This chapter summarises research that contributes to the outlined problems. In Section
2.2] data sets from three different real-world applications are introduced. They serve as
examples throughout this thesis and contain several of the structures described before. In
Section [2.3| we give an overview of robust filtering procedures. They aim at approximating
the true signal underlying a noisy and outlier-contaminated time series. Section [2.4] serves
as a motivation for the shift-detection methods discussed in the Chapters [3] and 4 We
outline some existing techniques and describe their drawbacks with respect to our intended
applications. The procedures aim at giving real-time information on sudden shift or
variability changes. In Section [2.5] we give some remarks on how the methods described in

this chapter are connected to the procedures studied in the other chapters of this thesis.

2.2 Data sets

The data sets described in the following serve as application examples for the methods
discussed in the Chapters [3]and [4 In this chapter, we use them merely as illustrative and
motivational examples.

The research questions behind these data are very different but can be boiled down to
the detection of sudden changes in specific process parameters. However, our goal is not
to solve the underlying problems, since solutions of an acceptable quality often require
several steps which are adjusted to the data structures to be analysed. Development and
discussion of such procedures are beyond the scope of this thesis. Instead, we motivate
how the herein discussed procedures can be used for a single step on which further analysis
can be build up.

In Subsection [2.2.1], we describe a data set from a monitoring application in an intensive
care unit where the measurements are affected by a time-varying trend and outliers. We
discuss a time series with a piecewise-constant signal in Subsection [2.2.2] It stems from
a biosensor technology which can be used to detect very small particles in sample fluids.

The goal on both data sets is to detect abrupt location changes. The measurements shown
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Figure 2.1: Heart-rate measurements of a patient in an intensive care unit from an online
monitoring. Panel (a) shows the complete time series, panel (b) the time series
restricted to the box in panel (a).

in Subsection originate from a monitoring of crack widths in a concrete bridge where

the signal of the time series is non-linear. Here, the objective is to find variability changes.

2.2.1 Online monitoring of vital parameters in intensive care units

In intensive care units, online systems assess the physical state of a critically ill patient
by continuously measuring vital signs like heart rate, blood pressure, oxygen saturation,
or respiration rate with a high sampling frequency. The resulting time series are often
very noisy and contaminated by outliers caused by, for example, patient movements,
manipulation, nursing, or therapeutic interventions (Imhoff et al., |2009).

A fundamental task in the online analysis of such time series is the extraction of the
underlying time-varying level of the measurements. It contains important information on
the patient’s health. Clinically irrelevant short-term fluctuations have to be eliminated
and outliers need to be resisted while preserving clinically relevant information, such as
changing trends or sudden shifts (Schettlinger et al., 2006)).

The use of threshold alarms is a common approach for the quick detection of such
relevant events. The observations are compared to critical values which are manually
specified by health-care professionals. However, in several studies, it was found that

about 90% of the detected alarms are irrelevant and instead related to artefacts or minor
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fluctuations around the threshold (Imhoff et al., 2009)).

Figure (a) shows minutely observed heart-rate measurements over a duration of 3462
minutes. Many of the aforementioned structures can be found in the time series. The
signal varies over time and is affected by several sharp location or trend changes. The
measurements are corrupted by outliers. A global parametric modelling of the signal course
is, in general, not possible. Thus, the data are typically analysed under local assumptions;
see for example Imhoff et al. (2002) and Schettlinger et al. (2000]).

In the remainder of this thesis, we focus on the enlarged section of length 400 shown
in Figure (b) The restriction to a shorter time range improves the presentation of
the results later in this thesis. A small location shift can be seen around the time point
t = 290. After t = 320, a large, persistent level shift occurs, followed by a large peak near
t = 375. Behind the peak, the level seems to be slightly larger than before. The signal
bends at roughly ¢ = 430. A smaller peak can be seen at ¢ = 515 and a larger one at
t = 550. Here, the level falls below the one prior to the peak. At the end of the time range,
the signal increases slowly.

Figure demonstrates the difficulty of finding an adequate global parametric model
for the course of the time series. Moreover, as the future development is unknown, global
models seem to be inappropriate due to their lack of flexibility.

Local procedures use the most recent observations to analyse the data. This is especially
helpful for the detection of relevant structural breaks, since the procedures are less prone
to confuse the natural long-term fluctuations of the signal with abrupt changes. This idea
is the basis for the shift-detection procedures studied in the Chapters [3| and [l Most of
the procedures presented in this chapter were studied for the online monitoring of data

from intensive care units.

2.2.2 Detection of nano-size objects

The Plasmon-Assisted Microscopy of Nano-Size Objects (PAMONO) is a biosensor tech-
nology for the indirect identification of particles with a size on the nano-scale in a sample
fluid (Zybin et al., 2010). A detailed description of the construction and functioning of the
sensor can be found in Weichert et al. (2010) or Siedhoff et al. (2011)). These references
also describe an analysis pipeline for this application.

The sensor generates a sequence of greyscale images which show reflections of a laser
beam that is pointed on the sensor. If a particle adheres to the surface, a persistent bright
spot is visible in the image sequence, caused by increased greyscale values. Such spots
affect several adjacent pixel coordinates in the images. Due to physical effects, they are
typically surrounded by a dark circle.

The research goal is to automatically analyse, preferably in real time, these data and
get an indication on the particle concentration in the sample. One possibility is to extract

the greyscale values for each pixel coordinate and apply procedures for step detection to
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Figure 2.2: Pixel time series of greyscale values obtained by the PAMONO biosensor.
Sudden location shifts can be attributed to particles adhering to the sensor
surface.

the resulting time series. This is because the bright spots cause sudden location shifts in
the time series of the affected coordinates. The bright spots lead to positive shifts and
the dark circles to negative ones. It is possible that multiple particles adhere to the same
or neighbouring positions on the sensor surface. Thus, a time series may be affected by
multiple upward and downward shifts.

The height of a shift depends on the pixel coordinates associated with the time series.
Typically, the largest increase of the greyscale values is in the centre of a spot. The shifts
become smaller with increasing distance of the pixel coordinates to the centre. To our
knowledge, typical values for the jump height do not exist.

Figure shows a PAMONO time series of length 1000 for a single pair of pixel
coordinates. The measurements were taken with a frequency of 20 Hz. The data set, which
contains the corresponding greyscale images, is freely available for public use and stems
from project B2 of the Collaborative Research Centre SFB 876 E| (Siedhoff et al., 2014b)).
We use synthetically generated data, which has the advantage that we know the true time
points at which particles adhere to the sensor surface. These data consist of real particle
signals that have been placed manually on images which contain only real background
noise. A detailed explanation of the synthesising procedure can be found in Siedhoff et al.
(2014a). For the extraction of the pixel time series from the image data, we use R code
generated for the Master’s thesis of Abbas (2013)).

The depicted time series is affected by three particle adhesions, occurring at the time
points t = 164, t = 478, and t = 539. Between the resulting location shifts, the level of the

time series is nearly constant. It does not contain any visible trends or outliers. Compared

L As of March 2019, the data and a detailed description are available on the project’s website
http://sfb876.tu-dortmund.de/SPP/sfb876-b2.html. In our example, we use the time series with
pixel coordinates (497,53) which can be found in the folder synth/pcount100/nstt/training of the
data set PAMONO Sensor Data 200nm_10Apri3.
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Figure 2.3: Time series of crack-width measurements from a bridge monitoring. The black
boxes highlight sequences of increased variability.

to the heart-rate measurements, the process is very well-behaved. This provides a good

opportunity to apply our step-detection procedures in a rather clean scenario.

2.2.3 Monitoring of crack widths in concrete bridges

Sudden increases of crack widths in a concrete bridge can point at the breaking of tension
wires inside the bridge. Such events give valuable information on the remaining lifetime of
a bridge. Hence, their timely detection is important to perform appropriate actions like,
for example, closing the bridge.

A monitoring of crack widths has been started on a bridge in Bochum in June 2016.
Several monitoring devices were installed over existing cracks on the bridge. The measure-
ments are taken every two seconds. A detailed description of the data and the underlying
research goals can be found in Abbas et al. (2018)).

For this thesis, we consider the time series depicted in Figure as an example. It
shows 43 200 measurements taken on 5th August 2016. The signal is strongly non-linear.
This is because of the temperature, which is also measured but not shown in the figure
to put an emphasis on the crack widths. The black boxes highlight sequences, called
anomalous sequences, with comparatively large variability. Such increases occur abruptly
and are caused by unknown physical effects. They can complicate the analysis of these
data. Other challenges are frequently occurring isolated peaks, which are caused by heavy
vehicles or the tram passing over the bridge.

In Chapter [d, we will compare methods for shift detection in time series with a locally
linear signal. The crack-width measurements will serve as an example to show how the

discussed procedures can be adjusted to detect variability changes.
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2.3 Robust time-series filtering

In this section, we summarise procedures, called time-series filters in the following, which
aim at extracting the signal of a time series in real time. Motivated by the idea that the
signal often cannot be modelled globally, they are based on local model assumptions.
The real-valued time series (Y;: ¢ € N) is assumed to be decomposable according to the
additive components model
Y=+ +m, t €N (2.1)

The smooth sequence (u;: t € N) denotes the true and unknown deterministic signal,
which exhibits changing trends and occasional level shifts, but otherwise varies slowly
over time. By (&:: t € N) we denote additive random noise, which we consider to be
independent with expectation E (¢;) = 0 and time-varying variance Var (g;) = o2. The
outlier-generating mechanism (;),.y consists of random variables that are zero most of
the time, but sometimes take large absolute values.

We consider moving-window techniques which adapt to the local signal course. The
methods presented in Chapters [3] and [4] are also based on this idea. A moving window
contains the most recent observations of the time series and can be used for the approx-
imation of local signal characteristics like y; or o;. It avoids making, often unrealistic,
global parametric assumptions on the model in Equation ([2.1)).

This section contains a review of several time-series filters, which are based on the
assumption that the signal can be approximated by a constant or a linear function in the
window. Implementations for the described techniques can be found in the R package
robfilter (Fried et al.,2014), which is available for free on the Comprehensive R Archive
Network (CRAN).

Two possible ways of estimating the signal at time ¢ using a moving time window are
the delayed and the full online estimation. For the delayed estimation, the window is of
odd width n =2-h+1, h € N, and centred at the target time ¢. Then, the sample for the
estimation is Yg") =Yn,...,Ys,...,Yp). This leads to a time delay of h time points
before the signal can be estimated. An estimate for the location at the rightmost time
point in the window can be obtained by extrapolation. In the full online estimation, we
use only observations prior to the current time point ¢ to estimate the signal. By using
samples of the form an) = (Yi—ns1,--.,Y;), we estimate the signal without a time delay
at the time point ¢ in windows of width n, which can be an even or odd number.

The size of the window width depends on several aspects. The validity of a locally
approximately constant or linear signal in the window is crucial. Thus, n should not be
chosen too large if the signal exhibits many trend changes or level shifts. For the delayed
approach, a large window also increases the delay until y; can be estimated. On the other
hand, a small window width can increase the variability of the estimator and decrease its
robustness against outliers (Gather et al., 2006]).

We focus on the delayed estimation when describing the procedures in the sequel. They
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can be straightforwardly adjusted to the full online estimation by replacing the indices
accordingly. The signal is estimated at the time points t = h+ 1, h + 2, ... for the delayed,
and t =n,n 4+ 1,... for the full online approach.

In Subsection [2.3.1] we describe filters for locally constant signals. Locally linear signals
are treated in Subsection 2.3.2]

2.3.1 Location-based filtering

When the signal within the window is nearly constant, so that u;,; &~ p; for i = —h, ..., h,
it is reasonable to use a location estimator fi, to approximate p;. An obvious choice is the
moving average
e L sy
L —

Drawbacks are its sensitivity to outliers and that it smooths level shifts. A robust procedure
with better shift preservation is given by Tukey’s running median (Tukey, (1977, p. 120ff.,
Maékivirta et al., |[1991), defined as

pMED) — irgediar}ll (Yigi) -
The robustness of an estimator can be quantified by the finite-sample breakdown point
(Donoho and Huber, 1983), which is the number of observations in the sample that need to
be altered so that the estimate deviates arbitrarily strong from the value for the original
sample. A definition can be found in Appendix The finite-sample breakdown point
of the median is ["/2]/n, so that it can resist up to [?/2 — 1] outliers. Here, [.] means
rounding up to the nearest integer. In the absence of noise and trends, the running median
can preserve permanent and temporary level shifts exactly when they last at least h + 1
observations. The running median tends to deteriorate in trend periods as the assumption
of an approximately locally constant signal is only legitimate for very short time windows
(Gather et al., 2006). Moreover, under normality, the sample median is substantially less
efficient than the mean. As measured by the asymptotic relative efficiency (ARE), which

is the ratio of the asymptotic variances, the median has an ARE of 2/= compared to the

mean (Serfling, 2011]). ThlS means that the asymptotic variance of utMEAN) is about 37%
smaller than the one of [i /,Lt MED) | However, ,ug D) can be more efficient than u(MEAN under

heavy-tailed distributions. Nevertheless, the low efficiency under normality points at a
small one for distributions with a shape similar to the one of the normal distribution
(Lehmann, {1997, p. 360).

The behaviour during trend periods can be improved by modified trimmed means (MTM)
and double-window modified trimmed means (DWMTM) (Lee and Kassam, [1985). These

filters remove normal noise more efficiently than the running median and are robust against

n)

outliers. In a first step, the level u; and variability o; within Yi are calculated robustly

by using the median ,utMED) and the median absolute deviation from the median (MAD).
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The latter is given by

. (MAD . ~ (MED
sMAD) — ¢ median <|Y;+7, _— )|) . (2.2)
i=—h,...,h

The factor ¢, € R depends on the sample size and assures an asymptotically unbiased
estimation at a specified error distribution. For example, at normal noise and for a large

window width, we use ¢, = 1.483 (Maronna et al., 2006, p. 33). The second step consists

of trimming all observations that deviate more than a specific multiple d; = d - 6§MAD),
d >0, from ﬂgMED). The remaining observations are averaged, so that the resulting signal

estimator is given by

A 1 h ‘
MgMTM) — 7 Z Yiei- 1y, (7’) )
’ t‘ i=—h

Jo={i=—h,.. b Y- ") < d},

where I4(x) denotes the indicator function of x on the set A and |.J;| represents the
cardinality of the set J;. Lee and Kassam (1985) suggest d = 2 as a compromise between
the robustness of the running median (d = 0) and the efficiency of the moving average
(d = 00) under normality.

The DWMTM is a refinement of the MTM. A short window of width 2-m + 1, m < h,
is used in the first step. The final estimates are calculated from a long window of width
2 - h+ 1. This combination allows for an efficient noise reduction even close to level shifts
and during trends. When these patterns appear, the initially calculated estimates are still
reliable. Thus, the final estimates are calculated from nearby observations with values

close the target level. In total, the estimator is given by

1 h

~(DWMTM .

HIE ):‘Jt’ Z}/;f+i'IJt(Z)7
i=—h

']t = {Z = —]’L, o .,h,i D/;Jrz - ﬂEMED,m)’ S dt} >
ﬂﬁMEDnn) _ .I_niedian (Y;—H)

Linear median hybrid filters with finite impulse response (Heinonen and Neuvo, |1987;
Heinonen and Neuvo, [1988; Astola et al., [1989; Wichman et al., [1990)) start with applying
a couple of linear subfilters to the sample. These are selected to trace specific types of
polynomial trends well. The median of the outcome of these subfilters is used as the
estimator for p;. We describe two filters which follow this idea.

The finite impulse responsive median hybrid (FMH) filter uses the central observation
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in the sample and the averages of its left and right part as subfilters, so that

AN edian {® (1), s () , By (1)}

SRS

h h
31 (t) = ;;Y;ﬁ—i’ ) (t) =Y, @3 (t) = ;Ytﬂ-
Compared to the running median with the same window width, this filter preserves shifts
better. However, it is considerably less robust against outliers. Similar to the running
median, the FMH filter deteriorates in trend periods.

Replacing the simple averages with weighted averages can improve the performance.
The weighting scheme is chosen so that the mean square error of the prediction of a
polynomial trend in the centre of the window is minimised. The predictive linear median
hybrid (PFMH) filter results from the assumption of a linear trend. It uses the weights
w; = Wh=6i+2)/(p2p), i =1,...,h,h > 1, and the subfilters

o (t) = zh:wi Y, and P3(t) = zh:wi Y.
i=1 i=1
The PFMH filter can remove normal noise and preserves shifts during a linear trend, which
is a benefit compared to the running median. However, it is prone to impulsive spiky
noise.

To illustrate the described filters, we estimate the level of a simulated time series
generated from standard normal noise. In Figure 2.4] the original time series and the filter
outputs are depicted. Using an artificial instead of a time series from a real application,
for example as introduced in Section [2.2] has the advantage that we can control the trends,
outliers, and level shifts. The time series in Figure contains two level shifts at ¢ = 50
and ¢t = 90. From t = 141 to t = 180 there is a positive linear trend. A negative one
reaches from ¢t = 251 to ¢ = 300 and is followed by a location shift. In addition, 7.5% of
the observations are outliers at random positions. Furthermore, there are two patches of
consecutive outliers from ¢ = 196 to ¢ = 200 and from ¢ = 311 to t = 315. We apply the
filters with h = 21. For the DWMTM, we choose m = 11 for the inner window.

Both hybrid filters lead to rather wiggly estimates of the level (Figure 2.4(c)). Linear
trends and location shifts are reproduced accurately. The PFMH filter is severely affected
by the outlier patches. MTM (Figure [2.4[b)) and running median (Figure 2.4(a)) smooth
the level shifts to some extent, particularly visible at ¢ = 301 after the declining trend.
The running median furthermore shows a step-like behaviour during the trend periods.
The DWMTM traces shifts and trends more precisely. In addition, it is not affected by
the outliers. The signal estimate is stable over time, so that it shows a slightly better

overall performance than the other considered filters.
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Figure 2.4: Level estimates of selected location-based filters with window widths h = 21
and m = 11 (for DWMTM) on a simulated time series with standard normal
noise and 7.5% additive outliers at random time points as well as two outlier
patches.

2.3.2 Regression-based filtering

Robust regression techniques can help to construct filters with similarly good properties as
the running median for locally approximately constant signals and a better performance

during trend periods. We assume that the signal is linear in the time window, so that
Wi = e + B -1, ©=—h,... h. (2.3)
Then, p; and B; are level and slope in the window centred at time point ¢. Let
Ciri = Y — (ﬂt+8t'i)v i=—h,... h,

be the regression residuals for estimators ji, and Bt for p; and B;. In the following, we
summarise several possible choices for fi, and Bt.

The most popular technique for linear regression is ordinary least squares (OLS) regres-
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sion, for which the estimators are defined as

h - —
R o (i=7)- (Vi = 73)
t B h

Y

N2
Z;_:h (z — zt)
[)’IEOLS) ? Bt Eta
1 h .
Z }/;-HA Z.t - Z Z
Z_*h l—*h

Similar to the moving average, the OLS estimators can be easily influenced by outliers
(Rousseeuw and Leroy, 1987, p. 23f.).

Motivated by the median being the L, estimate of location, L;-regression is a reasonable
alternative to OLS regression (Rousseeuw and Leroy, [1987, p. 10). The regression

estimators are given by

h
( p (L) ,BELI ) = arg min Z €414
BBy i=—h

The finite-sample replacement breakdown point for Li-regression is slightly less than 30%
in large samples with a fixed equidistant design i = —h, ..., h (Davies et al., 2004)).

Rousseeuw and Hubert (1999) propose deepest regression (DR), which is a generalisation
of the median to the regression context. It has similar properties as L;-regression. The
finite-sample breakdown point is /3 for fixed equidistant designs and therefore slightly
larger than for Li-regression in large samples (Gather et al., [2006). The idea is to compute

estimators that maximise the regression depth, given by

(/Ai,gDR)7 BEDR)> = arg max {rdepth ((ljt, Bt) ,an))} :

P58y

where

rdepth((ﬂt,Bt) ,Y%n)> = min {m1n{L+( )+ R (i), R (i) + L™ (i )}},

i=—h,...,

with
L) =|{j=—h,...,i: éry; >0}, R (i)=|{j=1i+1,....h: &4; <0},

and L~ (i) and R" (i) defined analogously. Hence, the regression depth quantifies how
deeply a regression function with parameters fi, and Bt lies in the data.

Least median of squares (LMS) regression minimises the median of the squared residuals,

so that
~ (LMS
(/ALIELMS)7 52 )> = arg min {medlan (etﬂ)}
Htvﬁt i=—Ah,..., h
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(Hampel, 1975} Rousseeuw, 1984). Its finite-sample breakdown point equals [/2/n, so that
it can resist almost 50% of observations in the window being affected by outliers or a level
shift (Davies and Gather, 2005). Hence, it provides greater robustness than L;-regression
and DR. The LMS is computationally expensive and rather inefficient under normally
distributed noise, so that the filter output can be quite wiggly (Gather et al., 2006).
Similar remarks apply to least trimmed squares (LTS) regression, which is asymptotically
more efficient than LMS regression (Rousseeuw, [1984)). It minimises the sum of the r € N,

r < n, smallest squared residuals. The estimators are given by

~ (LTS T
(ﬂim’),ﬁi )) = arg miny_ (&)

ﬂt:Bt =1 i’
where (éf)
Repeated median (RM) regression by Siegel (1982) provides a good compromise between

is the ¢-th ordered squared residual in the window at time point ¢.

mn

robustness and efficiency under normal noise (Davies et al., [2004; Gather et al., [2006).

The estimators can be defined as

~(RM) : (Y — Vi
B, = median | median | ) |
i=—h,...,h j:—‘h,‘...,h 71—

i (2.4)
IagRM) = media% (Y; i BERM) . 2) .

i=—

geeey

The RM has a finite sample breakdown point of ["/2]/n.

In a simulation study, in which LMS, LTS, DR, and RM are compared, Gather et al.
(2006) find that the bias behaviour of RM regression is worse than that of LMS and LTS
if more than 30% of the data points are affected by contamination. Furthermore, RM and
DR tend to blur location shifts and are more efficient than LMS and LTS under normality,
as compared to OLS. RM regression performs slightly better than DR regarding efficiency
and outlier robustness. It is also Lipschitz continuous for equidistant design points. This
ensures locally stable estimates when there are small changes in the observations because
of, for example, noise (Fried et al., |[2007)). A fast algorithm allows for updating the RM

estimates in linear time when using a moving time window (Bernholt and Fried, [2003]).

Modifications of repeated-median filtering

Because of its promising properties, RM regression has received further attention, in
particular for the filtering of medical time series like the one introduced in Subsection
[2.2.1] We will now present some modifications proposed in the literature and point out
the advantages over ordinary RM regression.

Trimmed repeated median (TRM) regression extends the idea of the MTM to the
regression context (Bernholt et al., 2006). Starting with a robust estimate of u;, [;, and

oy, all observations, for which the deviation from the initial regression line exceeds a
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(MAD) ~(MAD) .

specific threshold d; = d - at , d >0, are removed from the sample. Here, 6; is
computed from the regression res1duals. Then, OLS regression is applied to the remaining
observations to get an estimator which is efficient under the normality assumption. The

slope and level estimators are given by

h _ o '
~(TRM) Z-:z;h (Z o Zt) ’ (Yt+i - Yt) -1y, (7)
/Bt o h .2 ’
1—1) -1 (¢
i:gzh ( t) Ji ( )
N — ~(TRM) -
(TRM) _ Y, — Bt iy,
— 1
t = ZY;'H [Jt()7 Zt ZZ IJt ,
’:]t i=——h ‘Jt =

J = {z — by b Vi — ( L z) < dt}.

Similarly, the DWMTM can be adapted when computing the RM level and slope from a
shorter window of width 2-m + 1 < 2-h + 1 (Bernholt et al., [2006). This double-window
trimmed repeated median (DWTRM) preserves sudden shifts better because the bias effects
from the inclusion of shifted and non-shifted observations in the initial fit are less spread
out. These trimmed filters are, unlike the RM, not Lipschitz continuous, so that slight
changes in the data can have a large effect on the estimation.

Robust extensions of the linear median hybrid filters are repeated median hybrid filters
(Fried et al., 2006). They can be designed to preserve specific signal characteristics. Like
the RM, they are Lipschitz continuous. Their computation time, but also their robustness,
is smaller than for the RM. An example is the predictive repeated median hybrid (PRMH)
filter, which corresponds to the median of: (i) the central observation in the sample, (ii) the
one-sided RM forecast, computed from Y;_j,...,Y; 1, and (iii) the one-sided RM backcast,
computed from Y, q,..., Y. Sudden slope changes in an otherwise linear trend can be
exactly preserved in the absence of noise, but the estimator has a rather low efficiency

under normally distributed noise. The estimators are given by

~ (RM,F Yivi — Yiis
B,E ) median median1 <M> ,

7'_7h7 ’71 jzihv"'»i

~ (RM,F) |

ﬂgRM’F) = 'I_nedianl <Y;+Z- — @E ) @) ,
~ (RM,B Yivi — Vi
5i ) — median median( as ,tﬂ) ,

i=1,...,h 7j=1,...,h 11—

J#i
~ (RM,B)

A = median (Vi — 57 1),
ﬂgPRMH) — median <ﬂ§RM,F) Y, A(RM,B)> ’
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Figure 2.5: Level estimates of selected regression-based filters with window width h = 21
on a simulated time series with standard normal noise and 7.5% additive
outliers at random time points as well as two outlier patches.

where the superscripts F and B denote the forecast and the backcast.

Weighted repeated median (WRM) regression (Fried et al., improves the noise
reduction by weighting observations when calculating the RM. Giving higher weights to
observations close to the estimation time t reduces the influence of remote shifts so that it
is possible to use a larger window for the regression. It is also Lipschitz continuous. Let
w;, Wi, © = —h, ..., h, be two weighting schemes with w;, w; € N. By w; ¢ Y; we denote

that Y; is replicated w; times. The WRM estimators are

~ (WRM Yiei — Yips
5i ) _ median W; o | median [ @; o ~F—— ;
ith,..., jthy"'z 1 — ]
J#
~ (WRM
g = median (wi o (Ym — g @)> :

A possible weighting scheme are the triangular weights w; = w; = (h+1)—|i|, i = —h, ..., h.
Fried et al. (2007) conclude from a study, that the WRM is a good compromise between
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stable estimates, preservation of location shifts, robustness against outliers, and efficiency
under normally distributed noise.

Figure shows the level estimates of the robust regression filters with A = 21 for the
simulated time series from before. The PRMH filter tracks the level shifts well but is easily
affected by outliers, similar to the FMH and PFMH filters. Furthermore, its estimates are
rather unstable, even in periods without outliers. This observation can also be made for
the LMS and the LTS, although to a lesser extent. These filters also track the first level
shifts prior to ¢ = 100 quite well. In contrast, the DR and RM filters smooth these location
shifts. In addition, all but the PRMH filter seem to have problems with the location shift
at t = 301. Except for the PRMH, the filters are reasonably robust against the outliers.

Adaptive selection of the window width

As mentioned at the beginning of this section, the choice of the window width is based
on a compromise between robustness, efficiency, and a small delay for tracking level and
trend changes. The previously described filters use a fixed window width. Some effort has
been made to construct RM-based filters which adjust the window width automatically
over time. They adapt to local signal and noise characteristics.

One way for a data-adaptive choice of the window width is using a goodness-of-fit test
based on the signs of the most recent residuals in the window (Gather and Fried, 2004). In
case of a good regression fit, the signs of the residuals should be balanced. If the numbers
of negative and positive residuals in the foremost part of the window differ substantially,
the estimators should be calculated again with a reduced window width. This should be
repeated until the signs of the residuals are appropriately balanced.

An online version of this approach, called adaptive online repeated median (aoRM), is
introduced by Schettlinger et al. (2010)). To decide whether the current window width
should be decreased or increased, it is suggested to use a sign-based goodness-of-fit test
on the most recent residuals to a rather large significance level. The assumptions on the
noise distribution are quite weak but, because of using a sign test, the procedure is not
very efficient under normality.

Based on the idea of the aoRM, Borowski and Fried (2014) propose the slope-comparing
adaptive repeated median (SCARM) for data-adaptive window-width selection. Similar to

the aoRM, it uses a test to decide if the assumption of a locally linear signal is justifiable

within the time window for the currently used width. The window (Y;_,11,...,Y;) of
width n = h + k is split into a left part (Y;_,41,...,Y; &) of width h and a right part
~ (RM, left)

(Yi—k41, ..., Y;) of width k. For each subwindow, the RM slope estimators 3, and
. (RM, right)

B, are calculated separately. The test statistic is the standardised difference of
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these estimators and given by

~ (RM, left) B(RM, right)
TSCARM) _ t ¢ (2.5)

/A (RM, left)  ~(RM, right)\
\/Var(i e)—ﬂi ¢ )>

where the denominator is the estimated standard deviation of the difference. This scale

estimator is immune to underlying trends and can be modified to work well with different
types of noise, for example, from a first-order autoregression (AR(1)). The null distribution
can be approximated by a t-distribution, where the degrees of freedom depend on A and
k. Starting with a minimal window width, the window width is increased by one for
each new observation if the null hypothesis cannot be rejected. Simulations by Borowski
and Fried (2014) indicate that the SCARM test is more efficient, in terms of detection
rate and speed, in detecting signal changes than the sign test of the aoRM. The SCARM
reduces the window width to the minimal value as soon as the test yields a significant
result. The estimation is then performed with the minimal window width. This improves
the preservation of relevant signal characteristics further compared to the aoRM, which

tests repeatedly and reduces the window width slowly.

2.4 Online detection of shifts and volatility changes

In addition to signal extraction, detecting relevant patterns like level shifts, the beginning
of trends, trend changes, or volatility changes is often of interest. These tasks are closely
related to Statistical Process Control (SPC).

In this thesis, the detection of sudden level shifts is of foremost interest. In Subsection
[2.4.] we concentrate on this aspect. We briefly comment on the identification of volatility
changes in Subsection because the procedures discussed in Chapters [3| and [4] can be
adapted to this task as well.

2.4.1 Detection of location shifts

In this subsection, we present selected approaches for the real-time detection of level shifts
under a restricted false-alarm frequency. Thus, in contrast to many existing sequential
methods for change-point detection, for example by Zeileis (2005)), Eichinger and Kirch
(2018)), or Aue and Horvath (2013)), we are not interested in keeping a global significance

level.

Basic principles of a control chart

Control charts are popular tools for the detection of unusual deviations of one or more
process characteristics from a fixed target value during online monitoring. We will embed
the procedures of the Chapters [3] and [4] into the control-chart context, which is why we
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will describe briefly the general ideas of this concept and give some examples to point out
some drawbacks of ordinary control-chart principles. Our main reference for the sequel is
the book “Statistical Quality Control: A Modern Introduction” by Montgomery (2009, p.
180ft.).

When the goal is to detect level changes, a target value represents the level of the
observations when the process operates in control, that is, in the absence of relevant
changes. Then, it is only affected by unavoidable random noise. Using the conventional
assumptions of the control-chart context, this also means that the signal is globally
constant, so that u; = pg for all t € N, where o € R is the target value. Other types of
disturbances may affect the process, leading to observations that cannot be explained by
random noise, for example a level shift. In this case, the process is said to be out of control.
In the following, we call the time point at which a structural break occurs change point.

Based on sequentially taken samples from the process, a control chart aims to identify
an out-of-control situation as soon as possible after its occurrence. For each new incoming
sample, the value of a control statistic is computed and compared to control limits, set in
a fixed distance from the target value. If the control statistic realises within these limits,
the process is assumed to be in control. Otherwise, it is said to be out of control and
an alarm is given. Typically, some kind of action is taken to eliminate the cause for the
disturbance and bring the process back into control.

The control limits are often chosen so that the process fulfils certain requirements on the
run length, which corresponds to the duration between two subsequent alarms (Basseville
and Nikiforov, 1993, p. 151ff.). The general idea is that the duration until an alarm is
given should be long for an in-control process, while it should be small for an out-of-control
process. We will go into more detail in Subsection [3.3.1} where we discuss two typical
run-length-based criteria: the average run length and the median run length.

A control chart typically operates in two phases (Montgomery, 2009, p. 198f.). In
phase I, historical data are analysed to make sure that the process is in control before
the monitoring starts. Moreover, they are used to estimate the target value and other
process parameters to establish the control limits if the parameters are unknown. The
actual monitoring is called phase II. During this phase, new observations are analysed to

detect deviations from the in-control behaviour as learned in phase I.

Traditional control-chart principles

Well-known control schemes for the mean are the Shewhart, the cumulative sum (CUSUM),
and the exponentially weighted moving average (EWMA) control chart. The underlying
principles are often used as the basis for more specialised control charts, which is why the
general ideas are described shortly in the following, assuming a constant process variance
o2 =oc?forall t € N.

The Shewhart control chart uses the sample mean as its control statistic (Shewhart,



2.4 Online detection of shifts and volatility changes 23

1931, p. 249ff.). Typically, the samples are non-overlapping. This can lead to a large
detection delay if the sample sizes are large and the structural break happens between two
consecutive samples. A simple modification would be to use a moving average as described
in Subsection [2.3.1] This would allow for a decision with each new incoming observation
(Montgomery, 2009, p. 428). The Shewhart control chart is useful for detecting large and
long-term location shifts. On the other hand, it is weak in finding small to moderate-sized
shifts because it only uses information from the current sample (Montgomery, 2009, p.
402).

The CUSUM control chart uses all in-control information since the last detected change
point for its decision, which leads to an increased detection speed for small location shifts
(Page, 1954). Basically, the control statistic is the cumulative sum of the differences
between each new observation and the target value.

Like the CUSUM chart, the EWMA control chart also has a memory (Roberts, [1959).
Its control statistic at time ¢ is a weighted mean between the mean of the current sample
and the previous value of the control statistic. Thus, it is possible to specify how important
the process history and the new observations are for the decision of the control chart by
choosing an appropriate value for the corresponding tuning parameter.

The CUSUM and EWMA charts have similar run-length properties. Unlike the Shewhart
control chart, they are good at detecting small to moderate-sized location shifts fast.
However, they can be slower in identifying large shifts (Montgomery, 2009, p. 424).

To set up the control limits, all three control charts need a fixed target value g and the
process variance o2. If they are unknown before the monitoring, they have to be estimated
in phase I. Jensen et al. (2006)) conclude from a literature survey on parameter estimation in
the control-chart context that a large amount of in-control data is necessary to ensure that
a control chart keeps the desired restrictions on the run length and detects structural breaks
reliably. Chakraborti (2000), for example, recommends using 2 500 to 5000 observations
to estimate the in-control parameters of the Shewhart control chart. However, in many
applications, for example the intensive care context, such a large amount of data, or any
in-control data at all, are not available (Imhoff et al., 2002). By using a self-starting control
chart, it is possible to overcome the need for many in-control observations (Keefe et al.,
2015)). The idea is to start with initial estimates for the in-control parameters, obtained
from a small historical data set. These are updated with each new incoming observation
during phase II until an alarm is given. The risk is that an undetected out-of-control
situation may lower the performance of the control chart as it can worsen the estimation
of the process parameters.

The dependence on a fixed target value is a general problem of ordinary control charts in
the applications we have in mind. In addition to the problem of its availability, a fixed value
does often not reflect potential changes in the process dynamics (Imhoff et al., 2002). Thus,
they are likely to confuse even a slowly varying in-control signal with an out-of-control

signal. Examples for such data are the time-series of heart-rate measurements and the
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crack-width measurements in Section 2.2

The choice of the control limits of the aforementioned charts depends on distributional
assumptions that have to be fulfilled by the data, for example that they stem from a
normal distribution. This is necessary to ensure that the desired run-length properties
are valid. In real-world applications, the data-generating distribution is often unknown,
which makes it likely that distributional assumptions are violated. This can weaken the
performance of the charts dramatically. For example, the Shewhart control chart leads to
a larger number of false alarms than desired if the underlying distribution is heavy-tailed
or asymmetric instead of a normal distribution (Amin et al., |1995)). Similar results are
reported for the CUSUM and the EWMA chart (Qiu and Li, 2011; Human et al., 2011)).

Distribution-free control charts

Unlike parametric charts as those described before, distribution-free, also called non-
parametric, control charts aim at bypassing this difficulty by choosing the control limits
so that the chart has the same in-control run-length properties under every continuous
distribution (Chakraborti et al., [2011)). Distribution-free control charts can have better
detection capabilities than parametric charts if the distributional assumptions of the
latter are not valid. Moreover, they do not depend on the process variance, avoiding the
necessity to estimate it. Chakraborti et al. (2001), Chakraborti and Graham (2008)), and
Chakraborti et al. (2011)) give extensive summaries on distribution-free control charts.
Most of them are based on the principles underlying the Shewhart, CUSUM, or EWMA
chart, but the control statistic is replaced with a statistic whose in-control distribution
is independent of the data-generating distribution. Like for the parametric charts, the
distribution-free charts in general still require a fixed target value or a reference set of
observations. An example of such a chart is the Mann-Whitney chart by Chakraborti
and van de Wiel (2008). A two-sample Mann-Whitney test is performed between the new
sample from the monitoring phase and a reference sample collected during phase I.

Also based on the Mann-Whitney statistic, Hawkins and Deng (2010) propose a
distribution-free control chart that does not need in-control reference data. At time
t, each time point in the set {1,...,t} is considered as a possible change point. The
complete process Y7, ...,Y; is divided into two samples. The first contains all observations
before the selected change-point candidate, the second sample consists of all behind it.
Then, the two-sample Mann-Whitney statistic is computed between both samples. This
is repeated for all time points in {1,...,t}. To identify a possible change point, the
maximum over all realised values of the test statistic is compared to control limits derived
via simulation. Ross et al. (2011)) provide a computationally fast implementation of this
procedure in the R package cpm (Ross, 2015). However, the chart assumes a constant
in-control signal.

Hackl and Ledolter (1992)) present a distribution-free EWMA chart which is based
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on sequential ranks. The sequential rank of a new observation is its rank among all
observations in a time window of a fixed length that covers the most recent observations.
The control chart uses an EWMA statistic in which the original observations are replaced
with the sequential ranks. These follow a discrete uniform distribution for an in-control
process, leading to the natural target value of o = 0. From their simulation studies, Hackl
and Ledolter (1992)) conclude that the chart leads to good results during trend periods,

but is rather weak in finding location shifts.

Robust control charts

Distribution-free control charts possess an inherent robustness against outliers. This is
an important property in our considered applications. However, it is difficult to tune
the charts so that they resist a desired number of outliers. This also applies to several
robust control charts (Fried, [2007). Moreover, they are based on similar assumptions as
the Shewhart, CUSUM, and EWMA charts. In general, the control statistics are replaced
with robust versions. Hence, such charts share the general drawbacks of ordinary control
schemes in our considered setting (Lucas and Crosier, [1982; Rocke, 1989; Nazir et al.,
2013).

The methods studied in Chapter 3] and [4 are motivated by the outlined drawbacks of the
control schemes described above. We aim for control charts that are able to distinguish
outlier patches from location shifts while being, at least approximately, distribution free

without the need to collect large amounts of historical in-control data.

2.4.2 Detection of volatility changes

Similar to the detection of location shifts, one is often interested in finding change points
in the variability. They can indicate a changing uncertainty in the data. Again, many
control charts exist for this setting, where a majority follows similar principles as those for
the shift detection; see for example Montgomery (2009, p. 228) and Ross et al. (2011)).

Fried (2012) adapts robust, efficient location tests to this problem by applying them to
the logarithm of squared centred observations in a moving time window. The resulting
procedures perform better than traditional tests, like the F-test, the Mood test, or the
Ansari-Bradley test, in case of outliers and under asymmetric distributions. However, they
have a slightly smaller efficiency under symmetric, normally-tailed distributions. We will
briefly investigate this approach in the control-chart context on the crack-width time series
in Chapter [4]

An alternative approach would be to use a robust, efficient scale estimator to construct
two-sample tests for variability changes. A comparison of different approaches regarding
their advantages and drawbacks is a topic for future research and beyond the scope of this

thesis.
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2.5 Discussion

We do not provide an exhaustive description of online-monitoring approaches in this
chapter. It is restricted to the methods and terminology we refer to in the remainder of
this thesis. A more detailed overview containing, among others, procedures for real-time
segmentation of time series or multivariate pattern detection can be found in the article
by Fried et al. (2017) mentioned at the beginning of this chapter and the references cited
therein.

In the sequel of this thesis, we will stay in the online-monitoring context. Our goal is to
find robust and distribution-free procedures that are able to find abrupt changes in the
signal of a time series with a time-varying trend.

The discussed shortcomings of ordinary control schemes, like the need for a fixed target
value or historical in-control data, motivates the control charts studied in Chapter [3| which
are two-sample location tests applied in a moving time window to detect sudden location
shifts.

In Chapter [4 we combine these charts with robust signal-extraction procedures to
identify location or trend changes in the signal of a time series with a non-linear in-control

signal.



3 Robust control charts for the mean based on repeated

two-sample location tests

This chapter is based on the publication “Control charts for the mean based on robust
two-sample tests” by Abbas and Fried (2017), which appeared in the Journal of Statistical
Computation and Simulation.

For this thesis, the article has been extended and changed in the following ways:

o The performance of the control charts is evaluated for additional sample sizes and

noise distributions to investigate a possible generalisation of the results.

o We add a brief simulation study to analyse the influence of outliers in an out-of-control

setting.

o In addition to the out-of-control run lengths of the control charts, we also investigate

the detection rates for structural breaks.

« Tables instead of figures are used to show the influence of non-normality on the in-
control run lengths. This change has been made to better quantify how non-normality

affects the performance of the procedures.

o The in-control analysis of the control charts under normality has been extended.
We discuss the formula to approximate the significance level for achieving a desired

in-control average run length in more detail.

o We identify the run length by the number of tests until an alarm and not by the
number of observations as in the original article. Using the definition of this chapter,
the out-of-control run length corresponds to the detection delay. Both definitions

only differ by an additive constant. This does not change the overall conclusions.

Minor changes involve rephrasing and extended explanations. Moreover, Introduction

and Discussion have been adjusted to their role in this thesis and to avoid repetitions.

3.1 Introduction

In this chapter, we continue the considerations made in Subsection [2.4.1 We propose
control charts designed for detecting location shifts in time series with a slowly time-varying
in-control signal. By making local assumptions, we avoid the need to collect large historical

in-control data sets and the specification of a fixed target value.
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Examples for potential applications are the time series of heart-rate measurements and
the PAMONO time series, both introduced in Section [2.2]

The general idea of the control charts we investigate in the sequel is to apply a two-
sample location test in a moving time window to the time series. The first part of the
window forms a reference set, while the second part is a test set. By comparing both
windows to each other, it is possible to decide whether a location shift occurs between the
current observations and their direct predecessors.

This principle allows for an adaptation to the local signal course and makes it possible to
automatically distinguish between small, irrelevant, system-inherent changes and sudden
large location shifts. The sample sizes for both sets control the robustness to prevent
confusion between level shifts and outlier patches. Hence, the charts can be set up to
resist a specific number of consecutive outliers.

The general scheme of the charts is similar to the one of some distribution-free control
charts as outlined in Subsection [2.4.1] for example the Mann-Whitney chart by Chakraborti
and van de Wiel (2008). As opposed to that, we use a moving reference sample, improving
the versatility.

Moving two-sample tests to detect change points in a time series with a locally constant
signal have been studied in several publications, for example by Fried and Gather (2007)
and Fried (2007). Abbas et al. (2016|) investigate them as part of an analysis pipeline for the
PAMONO data. Morell (2012) uses two-sample tests for the smoothing of time series which
are affected by step changes. The two latter references apply the principle retrospectively
so that the complete time series has already been observed before searching for change
points. In these references, the general interest lies in keeping a global significance level.

To our knowledge, none of the past works has dealt with these procedures in the control-
chart context. Thus, we extend the existing work by studying the run-length properties of
the approach. The considered criteria are the influence of the data-generating distribution
on the in-control run length, the robustness against outliers, and the ability to rapidly
detect location shifts.

In our studies, we find that rank-based tests lead to control charts with a distribution-free
in-control run length. Tests based on a randomisation principle to determine the null
distribution can lead to approximately distribution-free control charts. Moreover, if the
test statistic is robust against outliers, the control chart inherits this property. Control
charts based on efficient tests are also efficient for the detection of structural breaks in
terms of detection speed and quality.

This chapter is structured as follows: In Section [3.2] we introduce the general model
for the local two-sample location problem. Afterwards, in Section we describe the
two-sample location tests. They are compared in several in- and out-of-control settings via
simulations in Section [3.4l The studies are followed by investigations of the performance
of the control charts on the time series of heart-rate measurements and the PAMONO

time series in Section [3.5] We discuss our main findings in Section
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3.2 Model

Let (Y;: t € N) be a time series that can be described by the additive components model
}/;:,ut_}'gt_l_/r/t) teNv

introduced in Section [2.3] In this chapter, we assume that the variance of the noise is
constant over time so that Var (g;) = o2 for all ¢ € N.

Following Fried and Gather (2007), we use a local two-sample location test to detect
sudden shifts in (p;: t € N), which we assume to be locally approximately constant as
in Subsection [2.3.1] except for rarely occurring abrupt location shifts. For the following
motivation of this idea, we assume 7, = 0 for all £ € N.

The time window Y%n) = (Yiens1,---,Y:), t > n, of the most recent n = h + k

observations is split into the two subwindows
Yio= (YY) and Y= (Vi V)
of widths h and k, where
Y=Yy, i=1,...,h and Y;; =Y ptj, =1,... k.

We call Y;_ the reference window and Y, the test window. Assuming constant signals in

each window leads to

E(}g;):m_n+i:m_, i=1,....h, and E(Yt;):ut_kﬂzuﬁ,j:1,...,k,

where p;_, . € R are constants with . = puy- + Ay and A; € R is the shift height

between the time points t — k and ¢t — k + 1. The variances in the subwindows are given by
Var(Yt;-) =0% i=1,...,h, and Var(th;) =0% j=1,... k.

We assume the random variables in each subwindow to be independent and identically
distributed (i.i.d.). Moreover, if all higher-order moments of the distributions underlying

both subwindows are equal, the distributions differ at most in location so that

Vg Y ROF and YL Y RN G
where F, G: R — [0,1] are the cumulative distribution functions of the underlying
continuous distributions with G (z) = F' (z — A;) for all x € R.

Consequently, the problem of detecting a sudden shift in Y,E") can be understood as a
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testing problem for the hypotheses
HO,t: At =0 wvs. Hl,t: At 7£ 0. (31)

Hence, under Hy, the signal is constant in the full time window, whereas under H;, a
location shift occurs between the time points t — k and ¢t — k + 1. If Hy, is rejected, we
call t — k + 1 the change point.

In this thesis, we concentrate on the two-sided problem as shown in . Modification
of the control charts described in this chapter to the one-sided cases can be achieved by
replacing the two-sided tests with one-sided tests.

Applying the tests as control charts in a moving time window implies a non-avoidable
detection delay which increases in k. This is because a certain number of observations in
the test window has to be shifted before Hy; can be rejected. Hence, the procedure can be
set up to distinguish between patches of subsequent outliers and persistent location shifts
(Fried, 2007). Similarly, a large value of h protects against outliers in the reference window.
If the assumption of a locally constant signal is valid, long subwindows improve the
estimation of the process level and can increase the efficiency of the procedure. However,
in case of a violation, the test is likely to confuse small trends with location shifts, even
though the process is in control. Thus, when choosing the window widths, there is a
trade-off between the tolerable detection delay, the robustness, the power of the local test,

and the justifiability of the local assumptions.

3.3 Methods

In this section, we introduce different two-sample tests and performance criteria. In
Subsection [3.3.1], we define the run length and related measures used to set up and evaluate
the control charts. Selected two-sample location tests, which are the basis for the control
charts, are presented in Subsection [3.3.2]

3.3.1 Measuring the performance of a control chart

In online-monitoring applications, it is important to detect change points as soon as
possible while avoiding too many false alarms (Basseville and Nikiforov, (1993, p. 6). In
this subsection, we introduce our main performance criterion. If not noted otherwise, we
follow Basseville and Nikiforov (1993, p. 151ff.).

To facilitate the descriptions in the sequel, we make two assumptions:

e For an in-control process, the time between two subsequent false alarms is the same

as the time until the first false alarm.

o For an out-of-control process, we adopt the commonly used assumption that the

structural break occurs directly at the beginning of the monitoring (Frisén, 2003).
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Therefore, we can restrict the definitions in this subsection to the case of a single structural
break of size A.

Average run length

The most popular criterion for setting up and comparing control charts is the average
run length (ARL). We define the run length as a random variable RL, which represents
the number of analysed samples until the first alarm is given. The ARL is a function
ARL: R — R* that maps the true shift height A to the expected value of RL. Thus,
ARL (A) = Ea (RL), where Ex denotes the dependence of the expectation on A. For
A =0, the ARL is called in-control ARL and abbreviated by ARLq. It corresponds to the
expected duration until the first false alarm. If A #£ 0, the ARL measures the expected
detection delay, commonly abbreviated by ARL;. The dependence of the ARL on the
shift height is suppressed in the following for ease of notation. For an in-control process,
the ARL should be large, but small for an out-of-control process.

The control limits of a control chart are typically chosen such that it achieves a desired
ARLg. The out-of-control performance is measured by the ARL;. To compare different
control charts, the charts are tuned to have the same ARLy. They are then compared
with respect to their ARL;. A chart that minimises the ARL; for all A € R given a fixed
ARLy is called (ARL-)optimal.

This is similar to the comparison of statistical hypothesis tests. The ARLy is an analogue
to the significance level o € (0,1) and is connected to the type I error, which corresponds
to a false rejection of the null hypothesis. Similarly, the ARL; can be understood as the
power of the chart. The relationship between the ARLy and the ARL; can be compared
to the one between « and the power of a test. A large ARL( leads to wide control limits
and reduces the number of false alarms at the cost of a lower detection quality. Tuning a
control chart to a small ARLg-value results in a narrow control region and hence improves
the ability to detect change points. However, false alarms are more likely (Montgomery,
2009, p. 189, Aroian and Levene, [1950).

Analogously to statistical tests, we call a control chart conservative if its true ARLy is
larger than the desired value. This means that the duration until a false alarm is given
exceeds the nominal ARLq and leads to a smaller number of false alarms than intended.
If the ARLy falls below the specified value, we call the chart anti-conservative. Then, it is
likely to get more false alarms than the chart is designed for. Analogously to hypothesis
tests, conservative control charts can be less powerful than charts that attain the desired
value or are anti-conservative.

The ARL is often criticised as a performance measure because the run-length distribution
of an in-control process is skewed to the right. Hence, the ARLy might not appropriately
represent it (Montgomery, 2009, p. 192). Furthermore, the skewness of the run-length

distribution can depend on the shift height. For example, with increasing A, the distribution
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may become more symmetric. By this, the interpretation of the ARLy is different from
the one of the ARL; (Gan, [1993)).

Median run length

A commonly proposed alternative to the ARL is the median run length (MRL), which
is given by the median of the random variable RL, so that MRL = medians (RL). A
specific value of the MRL means that, with a probability of 50%, the run length will be
smaller, regardless of whether the process is in- or out-of-control. Such an interpretation is
not possible for the ARL (Gan, 1993; Chakraborti, 2007). We denote the in-control MRL
by MRLy and the out-of-control MRL by MRL;. Setting up and comparing control charts
with respect to the MRL is analogous to the ARL.

Optimality criterion based on ARL;, and MRL;

In this thesis, we combine ARLy and MRL; to a new criterion. For an in-control process,
we design the control charts to keep a specific ARLy. To compare the out-of-control
performance, we use the MRL;. This is because, for an in-control process, the ARLg gives
more information on the frequency of false alarms, since it is more easily influenced by
large values than the MRLy. The latter can be misleading for in-control processes. Thus,
we aim at control charts which have a minimal MRL, for a fived ARLy for all A € R.

To motivate the criterion, we consider two control charts. Both achieve the run length
RL = 100 with probability 60%. The first chart has a probability of 40% for RL = 1, the
second for RL = 99. Therefore, they have the same MRLy = 100. The first chart has
ARLy = 60.4, the second one ARLy = 99.6. Thus, the ARL reflects in-control differences
between the charts better. In our intended applications, it is important that change points
are detected quickly. Then, the probabilistic interpretation of the MRL is more informative.
This is why we will compare the charts with respect to their MRL;-values to assess the
out-of-control performance.

However, using different criteria for setting up and comparing the charts can be prob-
lematic in some cases. The same ARLg for two charts does not mean that they have the
same MRLj. Hence, a small MRL;-value can sometimes be explained by a small MRL,.
This is important when interpreting the results. In general, such differences will only have
a large impact for small values of A. We study this in more detail in the simulations in
Section [3.4]

When using a two-sample test as a control chart, the run length depends on the local
significance level. We expect the ARL and the MRL to increase with decreasing value
of a. We use the critical values of the local test as the control limits. A small value for
« increases the distance between these control limits, so that the null hypothesis is less
likely to be rejected.

There exists a variety of other performance metrics such as alarm probabilities (Woodall
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and Montgomery, 2014). Here, we use the run length because the detection speed is our

foremost interest.

3.3.2 Selected two-sample tests for the location problem

We consider two types of test statistics for the construction of the control charts: test
statistics that standardise an estimator for the location difference by an appropriate scale
estimator and rank statistics.

A well-known test following the first principle is the two-sample t-test, which is one
of the most popular tests for the location problem described by the hypotheses in (3.1]).
We discuss its shortcomings and present some rank-based and robust alternatives in the

sequel.

The two-sample t-test

The test statistic of the two-sample t-test is given by

T = —. (3.2)
ROK
h+k St
where
A0 v v
e e
is the difference of the sample means
L 1 h L 1 k
Yt— = *Z}/;_Z and Yt+ = 721/;—’—’
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is the pooled empirical standard deviation (Lehmann and Romano, 2005, p. 160f.). If
the normality assumption is valid for both subwindows, Tt(t) follows a t-distribution with
h + k — 2 degrees of freedom under Hy;. We call the control chart based on this definition
of the t-test ordinary t-chart in the following.

The popularity of the ¢t-test stems from the central limit theorem. It protects against
non-normal distributions under Hy;, given large subwindow sizes i and k, and an existing
second moment of the data-generating distribution. However, non-normality can lead to a
reduced power (Wilcox, 2003, p. 242). The test is also known to be vulnerable to outliers.
Even a single outlier can lead to a violation of the significance level and a substantial loss
of power (Fried and Gather, [2007)).
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Rank tests

Distribution-free alternatives to the t-test can be constructed with rank statistics. We
denote the ranks of the observations in the full window Y™ by Riy....,R,, RO, R
As the underlying distribution is assumed to be continuous, the probability of assigning
the same rank to two observations is zero. Nevertheless, the observations are typically
rounded in applications, so that some of them can be equal. We will assign the ranks
randomly in such cases.

A well-known rank-based alternative to the t-test is the two-sample Wilcozon rank-sum
test (Hollander et al., 2013} p. 116). The test statistic is the sum of the ranks in the test

window, given by

k
™) =3 Rf. (3.3)
j=1

The null distribution can be derived by a permutation principle, so that it is independent
of the data-generating distribution. The resulting control chart will be called Wilcoxon
chart in the remainder of this thesis.

A quantity to compare the power of hypothesis tests is the Pitman asymptotic relative
efficiency (PARE) (Hodges and Lehmann, |1956)). It compares the sample sizes which
are necessary so that both tests have the same power. A brief definition can be found
in Appendix The PARE of the Wilcoxon test compared to the t-test is 3/= ~ 0.955
under normality and never drops below 0.864. Thus, the loss in power when using the
Wilcoxon test instead of the ¢-test under normality is quite small (Hodges and Lehmann,
1956).

Another rank-based test for the location problem is the two-sample Median test. The
test statistic is the number of observations in the test window that are larger than the

median of the full window, so that

M = zk: I(a o) (R} (3.4)

j=1
The test statistic follows a hypergeometric distribution under Hy; (Daniel, 1978, p. 761f.).
We refer to the resulting control chart as Median chart.

The PARE of the Median test compared to the t-test is 2/ ~ 0.637 under normality
(Mood, 1954)). It can be more powerful under non-normal distributions. However, the
small efficiency under the normal distribution indicates that the test may not have a
convincing performance for distributions which have a shape that is similar to the normal
distribution.

The null distributions of the Median test and the Wilcoxon test are discrete, making
the tests conservative. To achieve exact significance levels, we use randomisation (Héjek,
1969, p. 24).

For small samples, Fried and Gather (2007) show that the Wilcoxon and the Median
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test can be nearly as vulnerable against outliers as the t-test. They suggest a robustifi-
cation in which the critical values and the observations in the test window are adjusted.
This adjustment depends on the underlying data-generating distribution and the desired
significance level. We will not consider this approach in the following, because we aim for
methods that can reliably deal with unknown data-generating distributions. Moreover,
for the adjustment, we would have to perform additional simulations for each considered
value of the significance level in our simulations. This is quite time-consuming as opposed

to the expected benefit.

Robust alternatives to the ¢-test

Fried and Dehling (2011) construct outlier-resistant alternatives to the t-test by replacing
the sample means and the pooled empirical standard deviation with robust counterparts
which we will describe in the following.

A natural way to achieve robustness is to replace the mean with the sample median; see
Subsection [2.3.1] The location difference can be estimated by

~ (MD ~

At :}/t—‘r_z—7

where
Y;_ = median (Y ) and Y, = medlagl (Y;;)

i=1,...,h Jj=1

(MD
are the sample medians of Y, and Y ;.. We consider two test statistics based on A )

For the first, the standard deviation within the samples is measured by

A

1) . R -
Sy =2 median (|Yi; = Vi |, [Vip = Yo | IVih = Vgl [Vih = Vi) -

The second is the sum of the MADs of both subwindows; see Equation (22.2]). We denote

the MADs for the reference window by 6§¥AD) and for the test window by 6§¥AD The

scale estimator is
~ (2
Si ) A(MAD) (MAD).

The test statistics are

A (MD) A (MD)
A A

MY = =L and TP = = (3.5)
Sy 5y

We call the corresponding control charts MD1-chart and MD2-chart in the following.
By being based on the sample median, the ARE between AEMD) and Ait) is also /=
under normality.
A compromise between the efficiency of the sample mean and the robustness of the

sample median is the one-sample Hodges-Lehmann estimator (HL1-estimator) (Hodges
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and Lehmann, [1963)). The HL1-estimators for the subwindows are defined as

~ Y., +Y." N Yt vyt
Y, = median (“2”> and Y;; = median <“+”> .

1<i<j<h 1<i<j<k 2

The magnitude of the location shift can be estimated by

~(HL1) .

At = Yt—i— Y.
The HL1-estimator has a breakdown point of about 0.293 (Serfling, 2011). Hodges and
Lehmann (1963) show that its ARE compared to the sample mean is 3/= under normality.
It never drops below 0.864 for symmetric distributions. This corresponds to the PARE
between the t-test and the Wilcoxon test. Fried and Dehling (2011) suggest the scale

estimators

&3

. _ _ &4 .
S :medlan(Y-—Y< YJT—YJ“.) and S, = median (|Z;; — 7, ;
t 1<i<j<h ’ t,i t,j|7 | t,i! t,j’| t 1§Z.<j§n(’ i t,J|)a
1< <ji<k
— (V- _V - _V +_ Vv + _ v
where (Zy1, ..., Zep) = (Y;1 Yo Y = Y Y = Y Y - Y;+) .

A3
The estimator S,E ! calculates the median of absolute pairwise differences within the
A (4
subwindows, whereas SE ) is the median of absolute pairwise differences within the joint
sample after centring the random variables by the respective subwindow median. The test

statistics are

~ (HL1) ~ (HL1)
A A
T = é(s)) and T = 5(4) (3.6)
t t

and we call the control charts HL11-chart and HL12-chart.

Alloway and Raghavachari (1991)) and Pappanastos and Adams (1996) describe control
charts based on the HL1-estimator. However, the charts depend on phase-I knowledge
and a distributional assumption.

The two-sample Hodges-Lehmann estimator (HL2-estimator) estimates A, directly from
the full window (Hodges and Lehmann, [1963). It is defined as the median of the pairwise

differences between the samples and given by

3 A4
The HL2-estimator can be combined with the scale estimators Si : and SE ), so that the

test statistics are

~ (HL2) « (HL2)
HL2 HL22
Tt( Y= f(3) and Tt( ) = f(4) ) (3.7)
S S

leading to the HL21-chart and the HL22-chart. The HL2-estimator has the same ARE

. ~ (HL1 ~ (HLL ~ (HL2
compared to Ait) as Ai ! Hgyland (1965) compares Ai " to AE ! He shows that
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their ARE equals 1 for symmetric distributions. However, for asymmetric distributions
AEHLQ) can be infinitely more efficient than AEHLI).

Fried and Dehling (2011) compare tests based on the aforementioned statistics in
simulation studies. They find that the tests based on the HL-estimators have similar
power as the Wilcoxon test under different distributions while being less vulnerable to
outliers. Tests based on the HL2-estimator have benefits under very skewed distributions.
The MD-tests provide even better robustness in the studies but suffer from a loss of
power under normality and moderately heavy-tailed or skewed distributions. From their
simulations, the authors conclude that efficient estimators for the location difference lead

to efficient tests.

Control limits of the robust control charts

The finite-sample null distributions of the robust test statistics are unknown. Using the
asymptotic distributions of the location-difference estimators, which is a normal distri-
bution in each case, allows the construction of asymptotic tests which are approximately
distribution free. From their simulation studies, Fried and Dehling (2011) conclude that
the sample sizes for the subwindows should be at least h = k = 30 to keep a significance
level of @ = 0.05 under several distributions. We will not investigate this approach further.
The local significance level determines the run length of the resulting control chart. In
general, much smaller values than a = 0.05 are needed to obtain reasonably large values
for the ARLy. Thus, we would need much larger windows to get a reliable test and a
control chart that has the desired ARLg, imposing the risk of violating the assumption of
a locally constant signal.

Fried and Dehling (2011) discuss using a permutation principle. This would lead to

distribution-free local tests. The general idea is to compute the value of the test statistic

n

k
distribution. Under H,, the splits are equiprobable, so that the critical values of the local

for all possible ( ) splits of the window Yin) into two subwindows to obtain a permutation
tests can be obtained as quantiles from the permutation distribution. Permutation tests
can be extremely powerful. For example, using the permutation distribution instead of
the t-distribution for the t-statistic in Equation leads to a test that is as powerful
under normality as the ordinary t-test (Lehmann, 2009).

The necessity to compute the permutation distribution for each new time point is a
serious deficiency, especially when the data are gathered with a high frequency. For
example, even for the quite small subwindow widths h = k = 10, there exist 184 756 splits
for which the value of the test statistic has to be computed.

A commonly used simplification is the randomisation principle, not to be confused with
randomisation to achieve an exact test. Instead of using all possible splits, a random
subset of size b << (Z), b € N, is drawn. The observed sample is added to this set. The

splits can be randomly drawn with or without replacement. Some authors, for example
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Ernst (2004), do not distinguish between both ways. Others, such as Phipson and Smyth
(2010), point out that drawing with replacement can lead to slightly conservative tests
because a single split can occur multiple times. This seems to be particularly relevant in
multiple-testing scenarios where it is important to maintain a global significance level. In
our case, this is negligible because we use the ARLy. Thus, we concentrate on drawing
with replacement, which is computationally faster because we do not have to check whether
a split has already been drawn.

Although a randomisation test for a single time window improves the speed substantially,
using the test sequentially as a control chart can still lead to unacceptable computation
times. That is why we consider two alternative strategies which avoid the calculation of
the null distribution with each new incoming observation.

A first strategy is based on simulating the null distribution under a distributional
assumption. We draw N € N random samples of size n = h + k from the assumed
distribution. The value of the test statistic is computed for each sample. Critical values
are chosen as appropriate quantiles from the simulated distribution. This approach has
the benefit that, once computed, the same critical values can be used as control limits for
every time series. However, this comes at the cost that the local tests are not distribution
free. Nevertheless, this approach provides a simple possibility to obtain a distribution of
the test statistics. In the following, we use the standard normal distribution and refer to
the resulting control charts as simulative charts.

The sample mean, the sample median, and the one-sample Hodges-Lehmann estimator
are location and scale equivariant. Thus, the estimators Ait), AEMD), and AEHLI) are
invariant to location changes and scale equivariant. This is also true for AEH ? . Moreover,
all scale estimators are scale equivariant and location invariant. Hence, all test statistics are
invariant to linear transformations. The definitions of these terms are given in Appendix
Thus, using the standard normal distribution imposes no restriction on the simulation
of the critical values compared to an arbitrary normal distribution.

Another approach is a simplification of the randomisation principle. The randomisation
distribution is computed only for the first sample Y7,...,Y,,. The resulting critical values
are used for each of the following test decisions on the time series. Implicitly, the underlying
assumption is that all observations in the time series come from the same time-invariant
distributional class. Moreover, the critical values calculated for the first sample must be
representative for all following samples. These assumptions might seem counter-intuitive
given our criticism on ordinary control charts that need historical in-control data. However,
the sample size used for computing the critical values corresponds to the width of the time
window and is therefore rather short. Moreover, we can use the distribution to perform the
test on the first sample. Additionally, the reference sample, with which we compare the
test sample, is not fixed. We need the critical values only to decide whether the location
difference is large enough to indicate a structural break between the test and the reference

window. The control charts using this principle are called simplified-randomised control
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charts from now on.

To illustrate the benefits of the simplified randomisation and the simulative approach
over the permutation principle and the ordinary randomisation, we conduct a small
simulation study using the t-statistic. The charts are applied to ten time series of length
1000 from a standard normal distribution with h = k = 10, leading to 981 tests on each
time series. For the randomisation principles, we use b = 10 000. To compute the necessary
splits for the permutation principle, we use the function combinations from the R package
gtools (Warnes et al., 2015). The simulative distribution is computed from N = 100 000
samples. The permutation principle needs about nine hours on average to perform all
tests. Ordinary randomisation reduces this time to nearly thirty minutes, whereas the
simplified randomisation principle and the simulative approach need less than five seconds.

Even though the computing time with the ordinary randomisation principle does not
seem to be too large, it has to be considered that we analyse tens of thousands of time
series in our in- and out-of-control analyses in Section [3.4, Although we use a high-
performance computing cluster, the number of long-running jobs would be enormous
due to many parameter combinations of h, k, a, different data-generating distributions,
and test statistics. Moreover, the robust test statistics are based on the sample median
and thus require more computing time than the t-statistic. Therefore, we only use the
simplified randomisation principle and the simulative approach in the following so that
the simulations can be finished within a reasonable time frame.

A randomisation distribution is discrete. Similar to the rank tests, randomisation can
be used to achieve exact significance levels. According to Fried and Dehling (2011)), this
is not necessary, since the probability of two different splits leading to the same realised

values of the test statistic is quite small.

3.4 Simulations

In this section, we present and discuss the results of several simulation studies in which
we compare control charts based on the two-sample tests introduced in Subsection in
a variety of in- and out-of-control scenarios. Table [3.1] shows the test statistics used in the
studies and by which principle the control limits are computed.

For the simplified randomisation principle, we use b = 10000 randomly drawn splits.
The control limits of the simulative charts are computed from N = 100000 samples of size
n from a standard normal distribution. As subwindow widths for our studies, we choose
(h, k) = (10, 10), (20, 20), (20, 10). In the main part of this section, we show the results for
h =k = 10 and present those for h = kK = 20 and h = 20, k£ = 10 in the Appendix. We
keep the description of our observations as general as possible and comment on differences
between the individual subwindow widths explicitly.

The simulation data are generated according to the additive components model given in
Equation (2.1]). We use the following distributions for the noise (g;: ¢ € N):
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Table 3.1: Test statistics and principles to compute the control limits used in the simulation

studies.
Control limits
.y . . Simulation Simplified
Test statistic Equation Ordinary under A7(0,1)  randomisation
t-test v v v
Wilcoxon test v
Median test v
MD-tests v v
HL1-tests v v
HL2-tests v v

 Standard normal distribution (abbreviation: A/(0,1)),
o t-distributions with 5 and 2 degrees of freedom (abbreviations: t5 and t5),

o x*-distributions with 3 and 1 degrees of freedom (abbreviations: x3 and x?).

The y2-distributions do not have expectation zero. Due to the location invariance of
the test statistics, this does not influence the local test decisions. The t- and the Y-
distributions represent departures from the normality assumption in terms of heavy-tailed
or skewed distributions. We use rather extreme cases. By this, we implicitly study the
effect of outliers in an in-control process. The variance of the ¢,-distribution does not exist,
so that the requirements of the central limit theorem are not fulfilled.

If not mentioned otherwise, we generate 10000 time series for each simulation setting.
A detailed description of how a single time series for studying a specific question is
constructed is given in the corresponding subsection. The ARL- and the MRL-values are
estimated from the run lengths on the simulated time series by the sample mean and the
sample median.

In Subsection [3.4.1] we investigate the in-control performance of the control charts under
the normal distribution and describe the functional relationship between the ARLj and the
significance level a. Afterwards, in Subsection [3.4.2] we study the impact of non-normality
on the ARLy and comment briefly on the MRLj. The control charts are compared with
respect to their detection quality in Subsection [3.4.3] We conclude this section with a

short investigation of how the out-of-control performance is influenced by outliers.

3.4.1 In-control comparison under the N (0, 1)-distribution

To achieve a desired ARLg, denoted by ARL in the following, the value of the corresponding
significance level a* for the local tests needs to be specified. Except for distribution-
free charts, the relationship between the ARLg and o depends on the data-generating
distribution. In practice, it is generally unknown. Later in this work, we use the N (0, 1)-

distribution to select the value of a* because, as will be motivated, a distributional
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assumption is inevitable for most of our control charts. For a distribution-free chart,
this is no restriction, since we obtain the same ARLg for a fixed value of a under every
distribution. In Subsection [3.4.2] we study the loss we have to expect when the true
distribution is not normal.

The leading question in this subsection is how the functional relationship between
the ARL( and the significance level o can be modelled if the data stem from a normal
distribution.

We generate time series of length 20000 under the assumption that p, = 0 for all
t =1,...,20000. Because of the location invariance of the test statistics, this is no
restriction compared to an arbitrary constant value for u;. Hence, a single simulated time
series follows the model

Y, =¢, t=1,...,20000,

where &; N (0,1),t=1,...,20000. The charts are applied with local significance levels
a = 0.0025,0.005,...,0.015,0.02,...,0.05.

Although the probability for a finite run length is 1, it is possible that no alarm is given
within the considered time range. We replace such missing run lengths with 20001 —n + 1,
which is a lower bound for the true run length. We do analogous replacements in the
other considered settings in the remainder of this chapter. In general, this is needed in
less than 1% of the simulation runs, so that the effect of underestimating the true ARLy
is negligible.

We first study the ARLg for a = 0.005, 0.02, 0.05. Table shows the ARLg-values and
the standard errors for the subwindow widths h = k£ = 10. The corresponding results for
h =k =20 and h =20, k = 10 can be found in the Tables and in Appendix [C]

Our main observations are the following;:

« For the considered equally-sized subwindows, the robust simplified-randomised charts
lead to a higher uncertainty than the simulative versions. Especially the simplified-
randomised MD-charts stand out. The estimates of the simplified-randomised
HL-charts become more precise when increasing the value of a or the window widths.
For the simplified-randomised MD-charts, the standard errors become smaller when
the window widths are unequal. They are still larger than for the other charts but

do not exceed the values as much as for the equal subwindow widths.

o Taking the standard errors into account, the ARLg-values for the ¢-charts, the
Wilcoxon chart and the simulative HL-charts are quite similar for the considered
values of «, including those not displayed. The ARLg-values of the Median chart

are generally the smallest among the considered charts.

o Under subwindows of equal size, the simplified-randomised HL-charts have somewhat
larger ARLg-values than the ordinary t-chart but approach its values when the

subwindow widths or « increase. Other than for unequal window widths, there is
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Table 3.2: ARLy for selected values of a under normality for the subwindow widths
h = k = 10. The values in brackets are the standard errors. All values are
rounded to one decimal place.

Significance level «

Control chart 0.005 0.02 0.05
ordinary 338.2 (3.4) 100.8 (1.0) 44.9 (0.5)
t-chart simpl. random. 343.6 (3.6) 101.2 (1.0) 45.0 (0.5)
simulative 341.2 (3.5) 102.7 (1.1) 44.9 (0.5)
simpl. random. 405.1 (8.7) 109.3 (2.4) 45.5 (0.6)
HL11-chart simulative 352.3 (3.6) 102.2 (1.0) 45.6 (0.5)
simpl. random. 398.0 (7.8) 106.2 (1.6) 45.3 (0.5)
HL12-chart simulative 342.7 (3.5) 104.1 (1.1) 45.5 (0.5)
simpl. random. 426.4 (10.0) 110.5 (1.5) 46.3 (0.5)
HL21-chart simulative 362.8 (3.7) 103.3 (1.1) 45.3 (0.5)
simpl. random. 408.8 (8.8) 109.2 (1.5) 45.8 (0.5)
HL22-chart simulative 365.6 (3.8) 104.3 (1.1) 45.2 (0.5)
simpl. random.  504.4 (16.9) 156.0 (6.6) 63.0 (3.5)
MDI-chart simulative 380.8 (3.9) 112.3 (1.1) 47.0 (0.5)
simpl. random. 497.6 (17.2) 159.2 (6.7) 64.1 (3.1)
MD2-chart simulative 385.6 (3.9) 113.0 (1.2) 47.7 (0.5)
Wilcoxon 334.6 (3.4) 100.3 (1.0) 44.1 (0.5)
Rank chart Median 269.4 (2.7) 97.7 (1.0) 33.6 (0.3)

no big difference in the results between the selected scale estimators. For unequal

A4
window widths, the scale estimator Si : leads to ARLg-values that are nearer to

those of the ordinary t¢-chart than 3’53), but are slightly smaller. The differences

between the scale estimators become smaller when « increases.

o The simplified-randomised MD-charts lead for most considered values of a to the

largest ARLg-values for equally-sized subwindows. In contrast, their ARLg-values

are, in general, among the smallest for h = 20, k = 10.

o Except for the robust simplified-randomised charts, the ARL-values increase with

the width of the full window. For the former, this seems to be only the case when

both subwindow widths are equal.

A possible reason for the observed similarities between the t-chart and the Wilcoxon

chart could be that they are based on similarly efficient tests. The simulative ¢-chart has

the same distributional assumption as the ordinary t-chart, which explains why the results

are nearly equal in all considered cases. This could also be a reason why the randomised

t-chart performs similarly to the ordinary t-chart. Due to the high efficiency of the sample

mean under the normal distribution, the control limits computed from the first window



3.4 Simulations 43

Table 3.3: ARLy for selected values of a under normality for the subwindow widths
h = k = 10 when using the ordinary randomisation principle. The values in
brackets are the standard errors. All values are rounded to one decimal place.

Significance level «

Control chart 0.005 0.02 0.05

HL12-chart 329.4 (3.3) 100.1 (1.0) 44.4 (0.5)
HL22-chart 328.7 (3.3) 99.7 (1.0) 43.7 (0.5)
MD2-chart 312.7 (3.1) 95.9 (1.0) 42.0 (0.4)

are very representative for those that would be obtained from the randomisation principle
when performed for later tests on the time series.

The HL-estimators for shift are also known to be very efficient under normality (Hodges
and Lehmann, [1963)), which could be an explanation of why the simulative HL-charts
perform similarly to the ¢- and the Wilcoxon chart. The simulative MD-charts, by being
based on a less efficient estimator under normality, need larger sample sizes to lead to
similar results.

Different efficiencies could also be the reason for our observations on the simplified-
randomised robust charts. For the subwindow widths h = k£ = 10, we consider 10000
random splits, which is about 5% of the possible splits. Together with the quite small
subwindow widths, the control limits from the first sample might not be very representative,
especially for the MD-charts. However, increasing the subwindow widths to h = k£ = 20
leads, at least for the HL-charts, to ARLg-values and standard errors that are comparable
to those of the t-charts. Although the relative amount of splits is smaller than for
h = k = 10, we can expect more reliable control limits due to the larger sample sizes. For
h = 20, k = 10, one reason for the simplified-randomised HL12- and HL22-chart to have
ARLy-values that are closer to the one of the t-charts could be that the scale estimator
564) uses a larger set of observations than S’ES), improving its efficiency.

For comparison, we also computed the ARLy and the standard errors for the HL.12-,
the HL22-, and the MD2-chart, when using the ordinary randomisation principle for
a = 0.005,0.02,0.035,0.05 and h = k = 10. The results for a = 0.005, 0.02, 0.05 are shown
in Table [3.3] The ARLg-values of each chart deviate by less than 10% from those of the
t-charts and the Wilcoxon chart. Furthermore, the standard errors are much smaller than
for the simplified randomisation.

Simplified randomisation increases the uncertainty because it uses a comparatively small
set of splits to compute the control limits. Particularly for small values of «, the limits
are affected by quite large variabilities. This makes a good approximation for the critical
values of the local tests difficult, especially when the test statistics lack efficiency.

Based on our findings, it does not seem to be possible to describe the functional

relationship between the ARL( and « for all charts equally well by a single function. It
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Figure 3.1: ARLg-curves of selected control charts under normality with subwindow widths
h = k = 10. For reference, the curve of the function ! is shown.

has to be specified for each control chart separately. If the samples were non-overlapping,
the run length would follow a geometric distribution with success probability o for an
in-control process, so that ARLy = a™! (Page, 1954).

Figure [3.7] illustrates the estimated ARLq for selected control charts with subwindow
widths h = k = 10 together with the function a~! as a reference. The dependence induced
by using overlapping samples causes the ARLj to be larger than for non-overlapping
samples. However, the shapes of the curves are similar to the reference curve. This leads
to the impression that the relationship between the ARLy and « for our control charts

can be generalised by
ARLy =70 -a™, v >0 and 9, < 0. (3.8)

For the sake of a less complex notation, we suppress the dependency of Equation
on the subwindow widths and the control chart. In case of non-overlapping samples, the
parameters would be v =1 and y; = —1.

Equation (3.8)) can be linearised by applying the logarithm to both sides, so that

log (ARLg) =log (70) + 71 - log () . (3.9)

Then, we can determine o* for a desired ARL; by

log (ARLY) — log (%)) ' (3.10)

o = exp (
ga!
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Table 3.4: Estimated regression coefficients for the linearised relationship between the
ARLy and « in Equation (3.9) under normality for the subwindow widths
h = k = 10, rounded to two decimal places. The values in brackets are the
standard errors and R? denotes the coefficient of determination, both rounded
to four decimal places.

Control chart lm) A4 R?

ordinary 1.19 (0.0079)  -0.88 (0.0019) 0.9999

t-chart simpl. random.  1.16 (0.0084)  -0.89 (0.0020) 0.9999
simulative 1.17 (0.0147)  -0.88 (0.0035) 0.9998

simpl. random.  0.97 (0.0150)  -0.95 (0.0036) 0.9998

HL11-chart simulative 1.18 (0.0107)  -0.88 (0.0026) 0.9999
] simpl. random.  0.96 (0.0130)  -0.95 (0.0031) 0.9999
HL12-chart simulative 1.19 (0.0116)  -0.88 (0.0028) 0.9999
simpl. random.  0.95 (0.0142)  -0.96 (0.0034) 0.9999

HL21-chart simulative 1.15 (0.0152)  -0.89 (0.0036) 0.9998
] simpl. random.  0.98 (0.0149)  -0.95 (0.0036) 0.9998
HL22-chart 5 lative 1.13 (0.0188)  -0.90 (0.0045) 0.9997
simpl. random.  1.61 (0.0969)  -0.87 (0.0232) 0.9922

MDI-chart simulative 1.15 (0.0238)  -0.91 (0.0057) 0.9996
simpl. random.  1.68 (0.0879)  -0.85 (0.0210) 0.9934

MD2-chart simulative 1.19 (0.0254)  -0.90 (0.0061) 0.9995
Rk chart Wilcoxon 1.18 (0.0099)  -0.87 (0.0024) 0.9999
Median 0.99 (0.1125)  -0.88 (0.0269) 0.9899

We estimate the unknown parameters log (7o) and v; by ordinary least squares regression
with Equation from our simulation results.

Table shows the parameter estimates, the standard errors and the coefficient of
determination for the subwindow widths h = k = 10. The corresponding values for the
subwindow widths h = k = 20 and A = 20, k = 10 can be found in Table in Appendix
[C] For all considered cases, the coefficient of determination is larger than 0.98, indicating
a very good approximation of the relationship. Over all considered subwindow widths,
the Median chart leads to the largest standard errors. Thus, it might be more difficult to
estimate the significance level reliably.

Like the ARLg-values discussed before indicate, the estimates show that some control
charts have a similar functional relationship between the ARLy and «.

For an impression of how good the approximation actually is, we estimate o* for
ARLj = 250, 370 from our simulation results. The value ARLj = 370 is often used in SPC
(Montgomery, 2009, p. 346). The control charts are applied with the calculated values
of o* to 10000 new time series of length 20000 from a A(0, 1)-distribution. Figure

shows the asymptotic 95%-confidence intervals obtained from the simulation results for
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Figure 3.2: Asymptotic 95%-confidence intervals for the ARLg after computing o* from
Equation for the subwindow widths h = k£ = 10 under the normality
assumption. The vertical dotted lines separate between the different groups of
control charts.

the subwindow widths A = k = 10. The plots for the subwindow widths h = k£ = 20 and
h =20, k=10 can be found in Figure in Appendix [B] The general observations are
similar among the different subwindow widths. For nearly all control charts, the confidence
intervals cover ARL;. Large differences can only be observed for the Median chart. For
example, with h = 20, k£ = 10 and ARL{ = 370, the estimated ARLg for the Median chart
is about 10% larger than ARL;. This could originate in the large standard deviations of
the regression estimates. The simplified-randomised robust charts lead to wider confidence
intervals than the non-randomised charts, particularly for h = k = 10. This reflects the
larger standard errors of the estimated ARLg-values. The width of each confidence interval
increases in ARL so that we have to expect a larger uncertainty when we aim at a large
ARLy-value.

Concluding, the formula in Equation (3.10)) seems well-suited to determine a*. On the
downside, we have to simulate the ARLg for several values of a because it is hardly possible
to derive the relationship analytically. Especially for randomised charts, these simulations
can be time-consuming. Given the similarities between the functional relationships for

different charts, an approximation to a satisfying degree can be possible by using the
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Table 3.5: Ratios of the ARLg under a non-normal distribution compared to the ARLy
under normality for the t-charts with subwindow widths A = k = 10. All values
are rounded to two decimal places.

t-charts
ordinary simulative simpl. randomised
a ts 2 x3 o 6t X3 X ts b xd

0.0025 138 270 148 324 139 273 149 327 108 1.12 1.09 1.22
0.0050 1.29 228 143 266 129 229 143 2.68 1.06 1.12 1.09 1.20
0.0075 1.26 2.07 138 235 1.26  2.0r 138 235 1.07 112 108 1.18
0.0100 1.21 1.90 1.31 210 1.22 1.91 1.31 212 1.05 1.10 1.08 1.16
0.0125 1.18 177 127 197 1.19 179 127  1.98 1.06 1.10 1.06 1.15
0.0150 1.18 172 127 190 1.19 174 127 191 1.0 110 1.04 1.15
0.0200 1.16 164 122 174 1.16 1.65 1.22 1.75 1.06 1.11 1.05 1.13

corresponding local significance level a* of a suitable non-randomised chart for which the
simulations can be performed much faster. For example, one could use a* of the ordinary
t-chart for the HL1- or the HL2-charts. In general, such approximations are better if ARL
is small. Moreover, equally-sized windows seem to be beneficial for the approximation.

Furthermore, we expect good results when the local tests are similarly efficient.

3.4.2 ARL, under non-normal distributions

We now investigate what happens to the ARLy when « is specified under the N (0, 1)-
distribution, but the true distribution is non-normal.

We repeat the simulations as described at the beginning of Subsection with noise
from the t5-, to-, x3-, and Y3-distribution. To quantify the impact of non-normality,
we divide the ARLg-value of each non-normal distribution for each value of a by the
corresponding ARLg-value under the N (0, 1)-distribution. This allows us to investigate
whether the ARLg-value is larger or smaller than under the A/ (0, 1)-distribution, which is
in accordance with the terms conservative and anti-conservative introduced in Subsection
B3I

We only use selected distributions, so that we cannot generalise the results to all
continuous distributions. Nevertheless, our results should provide a good intuition on how
the ARLg of a control chart behaves under different distributional shapes.

The simulations were also performed for the t;o- and the y3-distribution. We found
that each chart performs similarly under the t;p-distribution as under normality. Under
the x3-distribution, the ARLg-values lie between those for the y2- and the y?-distribution,
which is why we consider only the less and the more extreme cases in the following.

We concentrate on a < 0.02 as large ARLg-values are often of interest in practical
applications so that « is required to be small.

Table displays the results for the ¢-charts with the subwindow widths h = k = 10.
The ARLg-ratios for h = k = 20 and h = 20, k = 10 can be found in Tables and
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Table 3.6: Ratios of the ARLg under a non-normal distribution compared to the ARL
under normality for the rank-based charts with subwindow widths h = k£ = 10.
All values are rounded to two decimal places.

Rank charts

Wilcoxon Median
o ts to X3 X3 ts to X3 X
0.0025 1.04 1.04 1.05 1.05 1.02 0.99 1.00 1.00
0.0050 1.02 1.01 1.03 1.02 0.99 1.00 1.01 1.00
0.0075 1.04 1.01 1.04 1.02 1.03 1.02 1.01 1.01
0.0100 1.03 1.01 1.03 1.02 1.00 0.99 1.01 0.98
0.0125 1.01 1.00 1.02 1.00 1.00 0.99 1.00 0.98
0.0150 1.03 1.00 1.03 1.01 0.99 1.00 1.00 1.00
0.0200 1.02 1.01 1.00 1.00 1.00 1.00 1.00 0.99

in Appendix [C] Our main observations are as follows:

o In general, all three charts are conservative under the considered distributions so

that we have to expect an ARLj-value that is larger than the nominal value.

e The underlying normality assumption causes the charts based on the ordinary and
the simulative t-test to perform worse in terms of conservatism than the simplified-

randomised chart.

« Simplified randomisation protects comparatively well against moderate heavy-tailedness.
For larger subwindow widths, the ARLg of the simplified-randomised t-chart even

seems to be nearly distribution-free among the considered distributions.

o Longer subwindows also reduce the conservatism of the ordinary and the simulative

t-charts, but they still perform worse than under simplified randomisation.

In Table 3.6] we show the ARLg-ratios for the Wilcoxon and the Median chart for
h = k = 10. The results indicate a nearly distribution-free ARL, which we also observe
for the subwindow widths h = k = 20 and h = 20, k£ = 10. The following Proposition
states that the in-control run-length distribution of a control chart, which is based on a
two-sample rank test, is indeed distribution free. Concerning the in-control performance,

the rank charts represent the ideal case of a distribution-free control chart.

Proposition 1 (In-control run length of control charts based on rank tests)

Let (Y;: t € N) be a sequence of independent and identically distributed random variables
following a continuous distribution with cumulative distribution function F. Let furthermore
(T;: t >n), n €N, be a sequence of test statistics, where Ty is a rank statistic based on
an) = (Yi—nt1,...,Ys). Then, the in-control run length of a control chart based on this

sequence of test statistics is distribution free.

The proof is deferred to Appendix [A] The main idea is that the ranks in the current

sample are a transformation of the ranks in the time series up to the current time point.
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In Table we report the ARLj-ratios for the control charts based on the robust test
statistics with h = k = 10. For h = k = 20 and h = 20, k = 10, we refer to the Tables
and in Appendix [C] Our main observations can be summarised as follows:

o The ARLg-values of the simulative charts depend heavily on the underlying distribu-
tion. Here, it is difficult to generalise over all considered subwindow widths in terms
of conservatism and anti-conservatism. For example, the simulative HL21-chart is
strongly anti-conservative under the y3-distribution for h = k = 10, but conservative
for h =k =20 for o > 0.01.

o Simplified randomisation can improve the results substantially. Especially the HL22-
chart benefits from this principle by having a nearly distribution-free ARLy among
the considered distributions for all the three combinations of subwindow widths. We

make a similar observation for the MD2-chart.

o However, simplified randomisation does not always ensure this property. Moreover,
the behaviour of the charts can change from being conservative to becoming anti-
conservative, or the other way around, with increasing value of a. This is, for

example, the case for the HL1-charts under the y-distributions.

In general, the results indicate that properties of the underlying tests transfer to the
control charts. This explains why the t-charts are mainly conservative. Moreover, as
stated in Subsection the efficiency of the underlying test statistics seems to be
important for a good in-control performance of the charts. This could explain the worse
performance of the HL1-charts under skewed distributions compared to the HL2-charts.
The HLI1-estimator has a smaller efficiency. By being more efficient, the initial control
limits computed for the HL2-charts may be less affected by random variations than those
of the HL1-charts, leading to more representative control limits.

For comparison, we also computed the ratios for selected ordinary-randomised charts
analogously to Subsection[3.4.1] The results are shown in Table[3.8] The ARLg-values never
deviate much more than 5% from the values obtained under normality. We cannot expect
complete distribution independence of the in-control run length, since the randomised
tests are not distribution-free themselves. However, the results indicate that approximate
distribution independence is possible. Compared to these results, the performance loss of
the simplified-randomised HL22- and MD2-charts seems to be acceptable, considering the

enormous reduction of computing time.

Comment on the MRL,

For the interpretation of the out-of-control results in the next subsection, we discuss briefly
the behaviour of the MRLy under non-normality.
For the non-randomised charts, our conclusions are the same as those for the ARLj.

Moreover, the simplified-randomised MD- and HL2-charts lead, in general, to the same
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Table 3.7: Ratios of the ARLg under a non-normal distribution compared to the ARLy
under normality for the robust control charts with subwindow widths h = k£ = 10.
All values are rounded to two decimal places.
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HL12-charts

simulative
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simulative

simpl. randomised

ts
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X3

X1

ts

o

X3

X3

ts t2 X3 xXi ts
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X3

Xi

0.0025
0.0050
0.0075
0.0100
0.0125
0.0150
0.0200

1.26
1.20
1.19
1.15
1.14
1.13
1.11

1.13
1.13
1.11
1.09
1.07
1.07
1.07

0.34
0.39
0.43
0.45
0.47
0.48
0.50

0.08
0.11
0.14
0.15
0.17
0.18
0.20

0.97
0.99
1.00
1.01
1.03
1.02
1.04

0.84
1.01
1.09
1.18
1.23
1.26
1.36
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0.95
0.99
1.04
1.08
1.09
1.13

0.55
0.68
0.79
0.92
0.97
1.03
1.11

1.32 140 0.54 0.14 0.98
1.24 1.33 0.59 0.18 0.99
1.20 1.27 0.61 0.21 1.03
1.17 1.23 0.61 0.23 1.02
1.17 1.20 0.62 0.24 1.01
1.15 1.18 0.63 0.26 1.02
1.12 1.16 0.64 0.27 1.02

0.87
0.98
1.05
1.12
1.18
1.22
1.29

0.86
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0.95
0.94
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0.46
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0.71
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HL21-charts

HL22-charts

simulative

simpl. randomised

simulative

simpl. randomised

ts

to

X3

X1

ts

to

X3

X1

ts  ta x5 xI ts

to

X3

Xi

0.0025
0.0050
0.0075
0.0100
0.0125
0.0150
0.0200

1.39
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1.69
1.61
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1.45
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0.86

0.34
0.44
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0.74

1.03
1.05
1.05
1.04
1.02
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1.00
1.01
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1.01
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1.18
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1.11
1.13
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1.04
1.23
1.43
1.38
1.11
1.10
1.13

1.46 240 0.96 1.16 1.00
1.33 2.04 1.01 1.31 1.05
128 1.87 1.04 1.44 1.05
1.25 1.74 1.05 1.48 1.03
1.24 1.68 1.07 1.53 1.04
1.23 1.63 1.08 1.59 1.02
1.20 1.55 1.10 1.63 1.04

0.94
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1.00
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1.03
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1.08
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1.26
1.22
1.22
1.20
1.18

1.99
1.85
1.75
1.67
1.63
1.61
1.55

0.51
0.56
0.58
0.60
0.62
0.63
0.66

0.17
0.21
0.24
0.26
0.28
0.30
0.32

0.97
0.96
0.96
0.96
0.98
0.98
1.02

0.95
0.94
0.96
0.92
0.91
0.91
0.89

0.92
0.93
0.95
0.92
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0.91
0.93

0.91
0.90
0.94
0.91
0.87
0.88
0.91

1.43 246 0.81 0.62 0.98
1.34 2.22 0.83 0.65 0.95
1.33 2.08 0.84 0.68 0.96
1.32 2.00 0.86 0.69 0.97
1.30 1.92 0.85 0.69 0.94
1.28 1.84 0.85 0.69 0.96
1.25 1.79 0.85 0.69 0.96

0.98
0.94
0.94
0.97
0.93
0.90
0.86

0.93
0.93
0.94
0.94
0.90
0.93
0.92

0.92
0.92
0.96
0.98
0.96
0.98
0.98

impressions as based on the ARLgy. Notable differences occur for the simplified-randomised
HL1-charts and the simplified-randomised t¢-chart, both of which tend to be strongly

anti-conservative. For the simplified-randomised HL1-charts, this is the case under the

to- and the y2-distributions. In case of the simplified-randomised t-chart, the chart is

anti-conservative under the t;-distribution. For both charts, the results can be improved

by enlarging the subwindows to h = k = 20.

In total, control charts that show a desirable in-control performance with respect to the
ARLy also show a good one for the MRLj. In addition to the rank-based charts, these are
the MD2- and the HL22-chart.
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Table 3.8: Ratios of the ARLg under a non-normal distribution compared to the ARLy
under normality when using the ordinary randomisation principle with subwin-
dow widths h = k£ = 10. All values are rounded to two decimal places.

Ordinary-randomised charts

HL12 HL22 MD2
a t2 Xi ta Xi ta Xi
0.0050 1.02 0.96 1.01 1.00 1.00 0.99
0.0200 0.99 0.94 1.00 1.01 0.99 1.00
0.0350 0.98 0.93 0.99 1.00 1.00 1.00
0.0500 0.98 0.92 1.00 1.01 1.00 1.00

3.4.3 Out-of-control analysis

We now evaluate the out-of-control performance of the control charts with respect to the
detection speed, as measured by the MRL{, and the detection rate, both for a fixed ARLy.

The time series are generated from the model

Et, tzl,...,n
Y, =
e+ Aqug, t=n41,...,20001,

where qqif is the difference between the 84.13%- and the 50%-quantile of the distribution
of ;. For the N(0,1)-distribution, its value is gqit = 1. To improve the comparability
between different distributions, we choose the jump heights as multiples A = 0.5,1,1.5,2
of qaig. This difference is used as a substitute for the commonly used standard deviation,
which does not exist for the to-distribution. Here, we concentrate on positive location
shifts. Due to symmetry, the results for negative ones will be similar.

Figure illustrates the construction of the time series. For given subwindow widths h
and k with h + k = n, a sustained location shift starts at time point t = n 4+ 1. The first n
observations of the time series are used to compute the control limits for the simplified-
randomised control charts from a clean sample that is not affected by the location shift.
The first time window in the monitoring covers (Ys, ..., Y¥,41) so that only the rightmost
observation in the time window is shifted.

The location shift can only be detected during the first n — 1 tests. Starting with the
n-th test, the full time window is beyond the location shift. Thus, the control charts
perform like in the in-control situation as the expected values for both subwindows are
equal again. Every alarm can then be attributed to the type I error of the local test.
Because of this, we do not use ordinary control charts for comparison in the following.
They would have an unfair advantage, since they always compare the value of the control
statistic to a fixed reference value. Although we study a rather simple scenario in which
their requirements are fulfilled, we aim for applications where this is not the case. Thus,

we concentrate on a comparison of the different test statistics described so far.
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Figure 3.3: Schematic representation of the set-up for the out-of-control simulations. A
persistent location shift starts at time t = n + 1. The first n observations are
used to calculate the control limits for the simplified-randomised charts. The
monitoring begins with the window (Y5, ..., ¥,11).

We select the local significance levels for the different charts to achieve ARLg = 250, 370
under normality using Equation with our in-control-simulation results. However,
even though the charts are tuned to have the same ARLy, this does not imply that the
corresponding MRL is also equal. For example, for the subwindow widths h = k& = 10 and
ARL; = 250, the MRLy-values of the simplified-randomised MD-charts are about 80, which
is drastically smaller than the MRLg-values of roughly 170 for the non-randomised charts
and 140 for the simplified-randomised HL-charts. This leads to the following problem:
As will be shown in the sequel of this subsection, small shifts are likely to be missed by
a chart. With respect to the MRL;, the simplified-randomised MD-charts are likely to
cause alarms faster in such cases.

To quantify the detection speed of the control charts over a wide range of distributions,
we define an efficiency measure which takes values in [0, 1]. The idea is to compare the
MRL; of each control chart to the smallest MRL; in a set of distributions. Let F' be the
cumulative distribution function of a noise distribution and C the set of all considered
control charts in our study. By MRL; (C, A, F)) we denote the MRL; of a control chart
C € C for the jump-height factor A under the cumulative distribution function F. We
define the relative efficiency (RE) of C' for A under F' by

min MRL; (é, A, F)

_ Cec
RE(C,A,F) = MRL; (C, A, F)

A value close to 1 means that C' is nearly as fast in detecting the structural break as the
fastest chart in the set C. Thus, RE reflects how much slower a control chart is compared
to the fastest chart in C, as measured by the MRL;.

Our interest lies in finding control charts with a good overall performance. In a similar
spirit as Morgenthaler and Tukey (1991} p. 69), we define a minimal relative efficiency

(MRE), which reflects the worst-case behaviour of a control chart over a set F of cumulative



3.4 Simulations 53

Table 3.9: Minimal MRL;-values for different noise distributions, separated by shift-height
factor A and nominal ARL; under normality, over all control charts for the
subwindow widths A = k& = 10.

Shift-height factor A

ARL; Distribution 0.5 1 1.5 2
N(0, 1) 66 25 9 8

ts 63 16 9 8

250 ty 61 12 9 7
v 44 9 7 6

v 10 6 6 5

N(O, 1) 88 48 10 8

ts 87 33 9 8

370 ty 88 17 9 8
X3 66 10 8 6

v 10 7 6 6

distribution functions and is given by
MRE (C, A, F) = min RE (C, F, A).
FreF

Here, the worst case is restricted to the distributions used in our simulations.

An aspect that has to be kept in mind when interpreting the MRE is that slight
differences between small values are more emphasised than between large values. For
example, if the minimal MRL; was 6 and a control chart had the MRL; 8 for a specific
value of A, the chart would have a relative efficiency of only 0.75. On the other hand, if
the minimal MRL; was 60 and the chart had the MRL; 58, the MRE would be 0.97.

We start by reporting the minimal MRL;-values, separated by distribution, jump-height
factor, and ARL{. The results for h = k = 10 are shown in Table 3.9 The corresponding
results for h = k = 20 and h = 20, k£ = 10 can be found in Tables and in Appendix
[Cl These values are helpful for interpreting the MRE-values.

The minimal MRL;-values for the skewed distributions are substantially smaller than
for the symmetric ones, particularly for the y3-distribution. This can be attributed to
the anti-conservatism of some procedures under skewed distributions, for example the
HL1-charts. In general, the MRL;-values decrease with increasing shift height. However,
even for quite large jumps, a small delay is unavoidable. Even for values of A larger than
A = 2, there is not much room for improving the speed.

Therefore, anti-conservative charts may have a large impact on the MRE if we consider
a group of distributions that includes asymmetric distributions. Thus, alarms cannot
solely be attributed to a better detection quality of a chart. Instead, it is likely that they
originate from the anti-conservatism. This will mainly affect small shift heights, where

it is likely that the shifts are missed by a control chart. Moreover, apart from a possible
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anti-conservatism, the charts are rather slow in detecting small changes. This is not a
big problem for our intended applications, because we are foremost interested in finding
structural breaks of large magnitudes that cannot be explained by the natural course of
the signal.

The minimal MRL;-values also emphasise the resistance of the charts to short-term
location shifts of a certain length, making them insensitive to outlier patches. Our results
for h = kK = 20 and h = 20, k£ = 10 indicate that the minimal MRL; tends to become
larger when increasing the size of the test window for large values of A.

In Figure |3.4) we show the MRE-values for the subwindow widths h = k£ = 10 and
ARLf = 250. The results for ARL; = 370, h = k = 20, and h = 20, k = 10 can be found
in the Figures to in Appendix [B]

We separate the distributions into three classes: all considered distributions (N (0, 1)-,
ts-, to-, X3-, and y3-distribution), the symmetric distributions (NV(0,1)-, t5-, and ty-
distribution), and the skewed distributions (x3- and x?-distribution).

With respect to the comments made on small jump heights, we concentrate on large
location shifts with A > 1.5. Moreover, we focus on the group containing all distributions,
which is shown in panel (a) of the corresponding figures. The most important observations
for h = k = 10 are:

o For large values of A, the different control charts show only marginal differences
with respect to the detection speed; see Figure [3.4](a).

o The ordinary and simulative t-chart are negatively affected by the ¢5-distribution,
causing the MRE-values to be worse than for the other charts when considering
only symmetric distributions; see Figure (C) Wilcoxon and Median chart show a
weaker performance under the skewed distributions; see Figure [3.4(¢).

o The simplified-randomised charts perform nearly equally well among all considered
groups of distributions. Only the HL11-chart falls somewhat short compared to the

others because of the asymmetric distributions.

e The robust simulative charts, particularly the HL-charts, also show an appealing

behaviour over the different distributions.

o A larger ARL{ can decrease the performance because of the smaller value of the

significance level that is selected.

Increasing the subwindow widths does not necessarily improve the MRE-results; see
Figures [B.3|a) and [B.5|a) for h = k = 20 and h = 20, k = 10 with ARL; = 250. All
but the simulative HL11-chart seem to lose much of their efficiency. This is because
of the strong anti-conservatism of this chart under the y?-distribution. Removing this

distribution from the set leads to a similar impression as for h = k& = 10.
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Figure 3.4: Minimal relative efficiencies (MRE) with respect to MRL; and worst-case
detection rates over different groups of distributions for ARLj = 250 under
normality and subwindow widths h = k& = 10. The vertical dotted lines
separate between the different groups of control charts.

Shift-height factor: 0.5 (0), 1 (O), 1.5 (A), 2 (©).



56 3.4 Simulations

As the MRE compares the MRL; of a specific control chart to the minimal MRL;,
the MRE-values are dominated by anti-conservative charts. For example, the simulative
HL1-charts are very anti-conservative under skewed distributions, which reduces the MRE-
values for other control charts. However, anti-conservatism is an undesirable property,
particularly for in-control processes.

To put the MRE-values into perspective, we additionally consider worst-case detection
rates. We define the detection rate by the fraction of time series where an alarm is given
within the first n — 1 tests. As this value is in [0, 1], we calculate the minimal detection
rate over a set of distributions directly instead of comparing it to the best value. The
results for h = k = 10 and ARL{ = 250 are shown in the panels (b), (d), and (f) of Figure
[3.4L The results for the other parameter choices are shown in the aforementioned figures

in Appendix [Bl Our main observations for h = k = 10 are:

o The simplified-randomised HL-charts have the overall largest worst-case detection
rates; see Figure (b) For A = 2, they are close to 1, indicating that the change

point is detected with a high probability. The simulative charts are not much worse.

e The simplified-randomised MD-charts are slightly worse than the HL-charts. However,
the simplified randomisation still leads to somewhat better results than the simulative
approach. The main reason for the weaker performance of the MD-charts is the
N(0,1)-distribution; see Figure [3.4(d).

o Among the ordinary charts, the Wilcoxon chart is marginally better than the Median
chart. Both are somewhat superior to the ordinary t-chart when considering all

distributions.

e The weak spots of the non-randomised charts, the simulative, and the simplified-

randomised ¢-chart are the heavy-tailed distributions.
 Similar to the MRE-values, the detection rates decrease for a larger value of ARLJ.

The detection rates generally improve when the window widths increase, leading to the
same ordering of the procedures as for h = k = 10.

How a distribution affects a chart’s out-of-control performance depends on the local
test. The simplified-randomised HL-charts provide good performance over a wide range
of distributions, followed by the rank-based charts. Anti-conservatism can distort the
results somewhat. Charts with anti-conservative behaviour are more likely to cause false
alarms in the in-control setting. This is mainly the case for the simulative HL-charts.
Nevertheless, they can be reasonable replacements for the simplified-randomised charts in

case of symmetric distributions when simplified or ordinary randomisation is not feasible.
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Comment on the ARL,

The MRE can also be computed for the ARL;. We discuss the results briefly, to gain a
fuller picture of the performance of the charts. The Figures to in Appendix
depict the MRE-values of the charts with respect to the ARL; for ARL; = 250 under
normality and all three subwindow-width combinations. We focus again on the subwindow
widths h = k = 10 at first.

Compared to the MRL;, the MRE-values computed from the ARL; are drastically
reduced for most charts. For the simplified-randomised charts, the ordinary ¢-, and the
rank-based charts, they do not exceed 0.25 in most cases when using all noise distributions
for the comparison. The simulative HL.1-charts, on the other hand, have very large MRE-
values of about 0.75 for all considered shift-height factors. This resembles the results for

the MRL;. Possible explanations are the following:

« Again, anti-conservatism of the simulative charts under the y2-distributions gives
them an advantage over their competitors. This can be seen when looking at the
results for the symmetric and the skewed distributions separately. Considering only
the latter, the MRE-values are quite similar to those when taking all distributions
into account. Computing the MRE only from the symmetric distributions improves

MRE-values, especially for the simplified-randomised HL- and the rank-based charts.

e Another reason for the smaller MRE-values of the simplified-randomised charts
are occasional very large run lengths in the simulation. The in-control run-length
distribution is generally skewed to the right. This is particularly relevant when a
structural break is missed because the setting then corresponds to the in-control
case of equal levels in both subwindows. Under the normal distribution, for example,
simplified randomisation causes longer run lengths than using an exact distribution;
see Table [3.2] This is reflected in the ARL;-values because the average of the
simulated run lengths is easily affected by large values. For example if A = 2, the
ordinary t-chart misses the structural break in about 4% of the simulation runs, the
simplified-randomised HL22-chart in nearly 6%, which is not much larger. However,
for the HL22-chart, about 10% of the simulated run lengths in which the structural
break is missed are larger than 1000. For the ordinary ¢-chart, this is the case in

only 2% of the simulation runs.

Enlarging the subwindow widths to h = k = 20 increases the MRE-values. For example,
the HL2-charts perform now similarly well as with respect to the MRL;. However, for small
subwindow widths, the results obtained from the ARL; diminish the good impression the
simplified-randomised HL-charts left with respect to the MRL;. Given the explanations,
the ARL;-performance of these charts might be improved by modifying the randomisation

principle.
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In conclusion, both ARL and MRL have weak spots as representatives for the out-
of-control performance of the charts. The ARL puts much weight on large run lengths,
whereas the MRL favours charts with a smaller MRL, for a fixed ARL;. Hence, to gain
adequate insight into the overall performance of the control charts, multiple criteria should

be considered.

3.4.4 Influence of outliers in the out-of-control setting

We will now briefly investigate if, and how strong, additive outliers can worsen the out-of-
control performance of the control charts. Here, we use the subwindow widths h = k = 10
and ARL{ = 250 under normality for an illustration. The evaluation is based on the MRL;
and the detection rates in the following example.

We investigate a setting with a single positive location shift of a fixed size. The time

series are generated from the model

Et, t:17720
Y, =
e 43, t=21,...,20001,

where g, "&" N (0,1). We consider two scenarios: one negative outlier at time ¢t = 26
and two subsequent negative outliers at the time points ¢ = 26 and ¢t = 27. We use
n; = —5, —10, —15, —20, so that for two outliers their size is equal.

The selected jump height leads to detection rates of more than 0.95 and MRL;-values
smaller than 9 for each control chart. In the uncontaminated setting, we observe the
highest alarm rates at the time points, at which we place the outliers.

From Figure [3.5 which illustrates the relative efficiencies and the detection rates for

both scenarios, we make the following observations:

o All t-charts are heavily influenced even by a single outlier. Starting with n = —10,

the detection rate never exceeds 0.25. Moreover, the MRE-values are less than 0.05.

o The rank-based charts can deal with a single outlier quite well. However, as soon as
we add a second outlier, their performance also worsens. The Median chart shows
a somewhat better performance than the Wilcoxon chart. This is because of its

increased information reduction.

o All robust charts resist the outliers in both settings. For two outliers, the detection
rates are marginally reduced because 20% of the observations in the reference window

are contaminated.

This short study hints that charts based on robust test statistics also provide robustness
against outliers in an out-of-control setting. An improvement is possible by increasing the
subwindow widths. These observations coincide with those made by Fried and Dehling

(2011) in their studies of the underlying two-sample tests.
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Figure 3.5: Relative efficiencies (RE) with respect to MRL; and detection rates under
normality in outlier scenarios for an out-of-control process. The control charts
are applied with subwindow widths A = k = 10 and tuned to ARLj; = 250. The
vertical dotted lines separate between the different groups of control charts.

Shift-height factor: 0.5 (0), 1 (0), 1.5 (A), 2 (©).

3.5 Applications

In this section, we show how the control charts perform in selected real-world applications.
We use the PAMONO time series (Subsection [2.2.2]) and the heart-rate measurements

(Subsection [2.2.1)).

The PAMONO time series has a piecewise nearly constant signal, so that it provides a

relevant, making the data more challenging for the charts.

good testing ground for our control-chart principle as the assumption of a locally constant
signal is nearly exactly valid. Opposed to that, the heart-rate measurements are affected

by a time-varying trend and several disturbing structures of which not all may be clinically

We apply the charts based on the ordinary t-test, the Wilcoxon test, and the robust
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chart based on the HL22-statistic. For the latter, we use the simplified randomisation
and, for comparison, the ordinary randomisation. Our choice fell on these control charts
for the following reasons: The ordinary t-test is the standard procedure for the local
two-sample problem considered here and the Wilcoxon test is its most popular non-
parametric competitor. The HL22-chart turned out to be promising regarding distribution
independence of the ARLy and robustness in our simulation studies. Considering the
discussed restrictions of our performance criteria, the HL22-chart led to a very good overall
performance.

We tune all charts to ARL§ = 250 under normality and apply them with the subwindow
widths h = k = 10.

For the simplified and the ordinary randomisation of the HL22-chart, we choose
b = 10000 random splits. A problem arises when trying to specify o* for the ordinary-
randomised HL22-chart. The required simulations are too time-consuming to be performed
in a reasonable time frame. Hence, we approximate o by using the corresponding value
obtained for the ordinary t-chart. The motivation behind this is that we obtained sim-
ilar ARLg-values for selected values of « in our exemplary in-control simulation for the
ordinary-randomised HL22-chart and the ordinary ¢-chart; see Table [3.3]

In Subsection [3.5.1 we will briefly describe a strategy on how the control charts can
be set up for use in practical applications. The results for the PAMONO time series are
presented in Subsection [3.5.2] In Subsection [3.5.3] we discuss the time series of heart-rate

measurements.

3.5.1 Setting up the control charts for applications

Before using the control charts on real data sets, several choices have to be made. The

main questions are:

o How many consecutive observations have to be shifted so that a level shift can be

assumed?
o What time delay is acceptable before a change point needs to be detected?
o For what time period can the signal be considered to be approximately constant?
o How long should the duration between two subsequent false alarms be?

o Is anything known about the distributional shape of the data? For example, is it

symmetric or asymmetric?

The answers to these questions determine which control chart, subwindow widths, and
ARL; should be used. For example, if it is known that no outliers occur in the data, the
Wilcoxon chart is a good choice because of its distribution-free in-control run length and
good detection quality under several types of distributions. If some robustness is required,

the HL-based charts could be more reasonable.
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Specifying the correct a* is the most time-consuming part because we do not have
any analytical results on the relationship between the ARLy and «. Hence, it has to be
determined by simulation. For the window widths considered in this thesis, Equation
can be used with the parameter estimates given in the corresponding tables. If other
window widths are desired, a simulation similar to the one for our in-control investigations
could be performed.

Combining the previous thoughts, we suggest determining o* using Scheme [I}

Scheme 1 (Simulation of o)
Given a control chart with subwindow widths h and k, the significance level o to achieve

a desired ARLy can be computed by simulation using the following steps:

1) Specification of a grid of reasonable values for the significance level o, covering the

range in which o* is suspected.

2) Generation of 10000 time series of length 20 000.

a) If the control chart has an approximately or completely distribution-free ARLy,
it suffices to perform the simulations under the N (0, 1)-distribution, since the

results between the different distributions will vary only marginally.

b) For a control chart with a distribution-dependent AR Ly, it is necessary to specify

a data-generating distribution.
3) Application of the control chart to each time series with each value of « on the grid.

4) Estimation of the ARLqy for each value of a by the sample mean of the individual

run lengths.

5) Estimation of the functional relationship between ARLy and « according to Equation

:
6) Estimation of o* by Equation )

Specifying a data-generating distribution in 2) is necessary because we cannot determine
the needed parameters in Equation (3.10) analytically. For a completely or approximately
distribution-free control chart, this does not impose a restriction. The functional rela-
tionship between the ARLy and « needs to be calculated only once and can be used for
arbitrary and even unknown data-generating distributions.

The range in which a* lies can be determined by carrying out a pre-run, where the
control chart is applied to a few time series with some selected values of a.

If the nominal ARLg should be large, it is advisable to use a narrow grid of possible
values for a to improve the approximation. The smaller « is, the more influential are

slight changes in a decimal with respect to the ARLy; see Figure [3.1]
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Figure 3.6: Application of selected control charts to the original PAMONO time series
(panel (a)) and the same time series with an artificial additive outlier (panel
(b)). The charts are applied with the subwindow widths h = k = 10 and tuned
to ARL; = 250 under normality.

3.5.2 PAMONO data

As we use synthetically generated sensor data, the particle-induced change points are
known, so that we can distinguish relevant from irrelevant location shifts. In their analysis,
Abbas et al. (2016) conclude that the noise in these time series can be adequately modelled
by a normal distribution.

We evaluate the detection performance of the charts on the original time series and on
the time series after replacing one observation with an artificial outlier. Figure [3.6] shows
the alarm times, symbolised by black, vertical lines.

In general, the alarms occur in groups of several subsequent alarms. This is because of
the moving-window nature. To explain this, we consider an ideal shift at time ¢*, where
all observations at time points ¢ > t* are larger than those at time points ¢ < t*. In the
sample Ygf), only the rightmost observation is shifted. For each new time point ¢t > t*
in the window, the number of shifted observations increases. Hence, at some time point,
the fraction of observations affected by the shift in the test window suffices to cause a
rejection of the null hypothesis, even though not all observations in the test window are
affected by the structural break. Consequently, moving the window makes it likely that
the local null hypothesis for next time windows will be rejected as well. This is the case
until enough observations in the reference window are shifted and there is no indication of
a location difference between both samples.

From Figure [3.6{a) we see that two of the three particle-induced location shifts are
detected by each control chart. The third relevant location shift is missed because it is

rather small. The fraction of alarm times which are not associated with a location shift is
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Figure 3.7: Application of selected control procedures to the time series of heart-rate mea-
surements. The procedures are applied with the subwindow widths A = k = 10.
In panel (a), the two-sample tests are applied as control charts with ARLj = 250
under normality. In panel (b), an alarm is given when the absolute value of the
estimated shift height A, exceeds a specified threshold value, here if |A;| > 10.

about 0.01 for all charts and therefore quite small. Both HL22-charts lead to very similar
results. Hence, in this rather clean scenario, the simplified-randomised HL22-chart seems
to be a quite good substitute for the ordinary-randomised HL22-chart.

Figure (b) depicts the alarm times when we replace the measurement at time ¢ = 470,
which is 0.44, with the larger value 0.52 to create a positive outlier prior to the second
particle-induced location shift. In accordance with our results obtained from studying the
outlier scenarios in Subsection [3.4.4] the ¢-chart misses the location shift because of the
outlier. The other charts remain nearly unaffected.

In an evaluation of a complete PAMONO data set, the change-point detection in the
pixel time series is only one of several analysis steps to decide whether a structure in an
image sequence is caused by a particle. Thus, rare false alarms and missed location shifts
are no major drawbacks. As the spots affect several adjacent pixel coordinates, it is likely
that the change points are detected in another time series, so that this problem can be

caught in the further processing; see Abbas et al. (2016]).

3.5.3 Time series of heart-rate measurements

In the intensive-care time series, the clinically relevant change points are unknown. Intu-
itively, we would classify the large location shift starting at ¢ = 321 as relevant. Nevertheless,
alarms due to the small deviations from a constant signal are likely.

The alarm times of the control charts are shown in Figure [3.7(a). The large shift at

t = 321 is found by all procedures. However, we can also note a comparatively large
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number of alarms caused by other structures. The simplified-randomised HLL.22-chart seems
to be slightly more resistant to small changes. Unlike the other charts, it ignores the peak
at t = 515. Again, the results for simplified and ordinary randomisation are quite similar.
In general, changes can be detected quite reliably. Nevertheless, the number of alarms due
to irrelevant structures seems to be too large.

One possibility for improvement would be to compare the estimated shift height for each
time point to a specific threshold to determine the relevance of the structural break. A
simple initial idea is the following: Given the test window Y, and the reference window
Y, , we compute the estimated location difference At. In the two-sided case, the absolute
value is compared to a fixed value ¢ > 0, which represents the magnitude of location shifts
that should be detected. An alarm would then be given if |A,] > ¢.

As an example of this approach, we use ¢ = 10 so that only sudden differences in the
heart rate by more than 10 units should cause an alarm. The results for the differences of
the sample means and the two-sample Hodges-Lehmann estimator, which correspond to
the t-chart and the HL22-chart used before, are shown in Figure [3.7(b). The Wilcoxon
statistic cannot be considered here, since the rank sum does not give information on the
height of the location shift.

Compared to the results in [3.7(a) there are far fewer alarms. They now concentrate on
the location shift at ¢ = 321, the large peak at t = 375, and the structure at ¢ = 550.

3.6 Discussion

Our simulations in this chapter indicate that the discussed control-chart approach of using
two-sample tests in a moving time window is a promising step to monitor a process robustly
and nearly distribution free in real time. It allows overcoming some deficiencies of ordinary
control schemes for applications where the time series are affected by a time-varying signal.
Moreover, by making only local assumptions, the resulting charts are quite flexible and
allow for adaptation to the course of the signal.

We come to the following conclusions:
e The rank-based control charts have a distribution-free in-control run length.

o When using a simplified randomisation principle, it is possible to obtain charts with
an approximately distribution-free in-control ARL. Especially the MD- and the
HL2-charts show promising results over several subwindow widths. The HL1-charts

have problems with skewed distributions.

o Control charts based on robust statistics are insensitive to outliers. Moreover, using
test statistics of tests which are powerful over a wide range of distributions yields
control charts with good out-of-control properties regarding the detection speed as
measured by the MRL; and the detection rate.
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o For small subwindow widths, the simplified-randomised charts show a rather weak
performance with respect to the ARL;. Enlarging the windows leads to better results

and similar conclusions as for the MRL;.

o Using the normality assumption to simulate the null distribution of the robust
charts makes them far more prone to different data-generating distributions than

the simplified randomisation.

o Two application examples indicate that our approach is well suited for time series
with a piecewise constant signal. However, the control charts react sensitively to

violations of the assumption of a locally constant signal.

e Based on our simulation studies we would recommend the Wilcoxon test and the
HL2-estimator as a basis for a control chart. The Wilcoxon chart is distribution free
on an in-control process and shows good detection properties in uncontaminated
data. The HL2-estimator leads to a control chart which has an approximately
distribution-free ARLy, is powerful in detecting change points, and robust against

outliers.

To improve the computational feasibility of the robust control charts, we use a special
version of the randomisation principle to compute the control limits. Instead of recomputing
the null distribution at each new time point, we calculate it only once for each time series
by using only the observations in the first time window. This approach requires that the
distributional structure of the observations does not change over time. For our real-world
examples, the results obtained with this simplified approach do not differ much from the
ordinary randomisation. However, the simplified approach increases the dependence of the
control charts on the data-generating distribution for an in-control process. In addition, it
leads occasionally to very large run lengths, which negatively affects the ARL;-performance.
Thus, there is still room for further adjustments. We will consider one modification in
Subsection [4.3.4] where we update the randomisation distribution after a specific amount
of time.

Speeding up the computations of the robust charts by simulating the null distribution
under a distributional assumption turns out to be problematic. The in-control performance
of the charts deteriorates if the distributional assumption is violated. However, the
estimators are robust against outliers, so that the charts provide a reasonable alternative
to the randomised charts if the data justify the distributional assumption.

In Chapter [, we investigate residual-based versions of the control charts. The goal is to
detect sudden location and trend changes in time series with a time-varying signal, for

which the assumption of a locally constant signal is not justifiable.






4 Robust control charts for the mean of locally linear

time series

This chapter is based on the manuscript “Control charts for the mean of a locally linear
time series” by Abbas and Fried (2019), submitted for publication.
Most of this chapter corresponds to the submitted version. Some major changes are the

following:

o We illustrate why the charts from Chapter [3| are not reliably applicable under the

model assumptions considered here.
« We comment on a control chart based on the SCARM statistic from Equation (2.5).

e The update-randomisation principle described in this chapter is combined with the
control charts from Chapter 3]

o We add a short simulation study in which we investigate the capability to detect

sudden trend changes with the presented control charts.
e A comment on the ARL;-performance is given.

o An additional proposition states some properties of one-step-ahead forecast errors of

a local linear regression.

» Some rephrasing and shortening was necessary to avoid redundancy of aspects already
mentioned and studied in Chapter

4.1 Introduction

The control charts studied in Chapter [3| are able keep the desired ARLj even in case of a
slowly varying signal, as long as it is locally nearly constant. As an example, we consider
the time series shown in Figure [4.1]a), generated from the model

Y, = sin (0.8- <—27T+t_1)> +e, t=1,...1257, (4.1)
100

where ¢; NN (0,1). We apply the ordinary t-chart with subwindow widths h = k = 10,

tuned to ARLj = 250 under normality. Given the selected value a* ~ 0.007, the alarm

proportion of about 0.007 is quite small. Reducing the variance of the noise to /100

emphasises the trend in the time series. This is shown in Figure [£.1(b). Here, the alarm
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Figure 4.1: Application of the ordinary ¢-chart with subwindow widths h = k = 10 and
ARL; = 250 under normality to a time series with a sine-wave signal and
additive normally distributed noise.

proportion increases to nearly 7%. The alarms occur mainly in areas where the slope of
the signal is very steep, indicating that the chart confuses natural trends with location
shifts. Thus, alarms due to structural breaks cannot be distinguished from alarms caused
by the trend.

This impression is backed up by a small simulation study. We generate 1000 time series
from the model in Equation (4.1)). For A(0, 1)-distributed noise, the estimated ARLy is
248 (standard error 7.7). If the noise variance is set to /100, the estimated ARLq drops to
94 (standard error 1.5). Because the test statistic is scale invariant, the difference in the
ARL-values can only be caused by the trend.

In this chapter, we extend the control charts from Chapter [3[so that they work reliably
on time series with a strongly non-linear in-control signal. Examples for such time series are
the time series of crack widths and the time series of heart-rate measurements introduced
in Section 2.2

Under the assumption of a locally linear signal, we aim at control charts that have the
same properties as stated in the previous chapter, such as being robust against outliers,
stable over a wide range of distributions, and fast in detecting change points. We broaden
the definition of a change point so that we are not only interested in finding location shifts,
but also sudden trend changes. Again, we aim at procedures that are able to adapt to the
local signal behaviour, as described in the previous chapter.

In the SPC literature, there are many proposals to perform process-control tasks on time
series with a time-varying signal. These are generally based on the assumption that the
process behaviour can be described by a time-series model. In general, there exist two ways

to modify ordinary control charts and make them applicable in such situations: residual
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control charts and modified control charts (Knoth and Schmid, 2004)). A modified control
chart is a control chart in which the control limits are adjusted to the underlying time-series
model. A residual control chart fits a time-series model to the data and performs the
monitoring on one-step-ahead forecast errors. In this chapter, we focus on residual control
charts.

It is important to specify the correct model to ensure adequate performance of the
chart (Zhou and Goh, 2016]). However, sufficiently large data sets to estimate the model
parameters may not exist, as motivated in Chapter [3] That is why we propose residual
control charts in which the one-step-ahead forecast errors are computed based on a local
robust regression fit. We use the repeated median from Equation to compute the
one-step-ahead forecast errors from a moving time window. We apply two-sample location
tests to them as described in Chapter [3] Abrupt trend or location shifts lead to level shifts
in the time series of forecast errors, which can then be detected by the tests.

In this chapter, we concentrate on a local simple linear regression model as introduced
in Subsection [2.3.2] We conduct several simulation studies in which we compare the
control charts in different in- and out-of-control settings. Similar to the results obtained in
Chapter [3, we find that the two-sample Hodges-Lehmann estimator leads to very promising
results regarding our performance criteria. The rank-based charts lose the distribution
independence of their ARLy. Additionally, we also look briefly at a local AR(1)-model.
Here, we find that the distribution independence of the run length for in-control processes is
not retained, particularly, when the autocorrelation is high. However, under distributional
assumptions, the charts are still able to detect change points quickly for small to moderate
autocorrelations.

In the literature on control charts, residual charts for global time-series models have
received much attention; see Alwan and Roberts (1988)), Montgomery and Mastrangelo
(1991), Garthoff et al. (2014), and Garthoff et al. (2015). Similar to ordinary control charts,
they do not allow for natural changes in the model parameters. Local model assumptions
are made in the field of profile monitoring, where a functional relationship between a target
variable and explanatory variables is assumed. However, historical data sets are needed to
estimate a standard in-control profile and the relationship is assumed to be the same in
each sample (Saghaei and Noorossana, 2011). Croux et al. (2011)) use forecast errors of
robustified Holt-Winters smoothing. The drawback here is that it needs historical data for
the parameter tuning and the control limits are derived under the normality assumption.
Moreover, it is not clear how to make the procedure robust against a desired number of
consecutive outliers.

This chapter is organised as follows: In Section we describe the basic model
assumptions and connect the problem to the one discussed in Chapter [3] The construction
of the residual control charts is described in Section .3l The results of our simulation
studies are discussed in Secion [£.4] In Section [£.5] we apply the charts to some exemplary

time series and discuss our main findings in Section [4.6]



70 4.2 Model

4.2 Model

Again, our basic model assumption is that a real-valued time series (Y;: ¢ € N) can be

described by the additive components model
Y;:Mt—i_‘gt—i_lr]t) tENa

with Var (¢;) = o2 for all ¢ € N.

In contrast to Chapter [3, we now assume that the in-control process can be locally
approximated by a linear regression model in a time window Yg) = (Yie1,...,Y;) of
length ¢ € N. We call YEZ) regression window at time t in the following. The simplest

example of such a model is
/Ibt{»i%/l/t—i_/ﬁt'i?i:_£+17"'707t267 (42)

where p; is the signal value at time ¢t and (; the constant slope in the window. This
is similar to the definition in Equation (2.3)), with the difference that we shifted the
design points to take the online setting considered here into account. The one-step-ahead
forecast for Y;,; based on Yl(f) is given by ?t+1 = s + P;. We define the corresponding

one-step-ahead forecast error by

i1 = Yie1 — Yipr = g1 + e + (en — (e + B)) 5 t > L. (4.3)

Therefore, a structural break with p; 1 # p; + 5 in (Y;: ¢t € N) leads to a structural break
in the sequence (e;: t > ¢+ 1) of one-step-ahead forecast errors. Moreover, in the absence
of change points, this sequence does not contain a trend.

The basic idea of our approach described in Section is to apply the control charts
introduced in Chapter [3] to the one-step-ahead forecast errors in order to detect structural
breaks in the trend-free time series.

Let now (p;: py = E(e;),t > ¢+ 1) be the mean function of the sequence of one-step-
ahead forecast errors. Similar to Chapter [3| our goal is to detect location shifts in the
mean function between the time points t — k and ¢t — k 4+ 1 using the time window
eﬁ”) = (et—n+t1,---,€), t > L+ n, of the n most recent one-step-ahead forecast errors. In

the time window, the mean function can be described by

i, 1=-n+1...,-k

Miyi = (4.4)

g, i=—k+1,...,0,

with puy, = py_ + Ay, where Ay € R is the size of a potential location shift between the
time points t — k and t — k + 1. Thus, we are in the same situation as described in Section
0.2l
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4.3 Methods

Similar to the approach from Chapter |3 we split the time window e§"> = (€t—ni1y---1€1)

into two subwindows

_ (.- — _ (.t +
e_ = (et,l, e ,etyh) and e, = (em, e et7k> ,

where

- . + o -
€ri = €inti, 1=1,...;h, and e =€k, j=1,...,k

of widths h, k € N with n = h + k. The reference window e;_ and the test window e, are

then compared by a two-sample location test for a change point at time t — k 4 1.

4.3.1 Removing trends by local regression

Equation requires the true regression parameters p; and (5; in the time window Ygﬁ) to
be known. This ensures that the one-step-ahead forecast errors are i.i.d. for an in-control
process. In practice, the parameters are unknown, so that we estimate them from the time
window. Using the assumption of a locally linear signal in Equation , we estimate
the parameters by linear regression. The control charts are applied as described by the

following Scheme 2

Scheme 2 (Residual control charts based on local regression)
Let (Y;: t € N) be a time series, { € N the width of the regression window, and h and k
the subwindow widths for the two-sample test with h + k = n. The procedure starts at time

pointt =0+ 1:
1. Fit a linear function to the time window Yge_)l, providing estimators fi,_, and Bt_l

of level and slope in the time window.
2. Calculate the one-step-ahead forecast error &, =Y, — (/]t,l + th)-

3. If t <l +n, there are too few observations to perform a two-sample test with the

specified subwindow widths. Set t =t + 1 and return to 1.

4. If t > L+ n, perform a two-sample test on the sample (&;_py1,...,&) to identify a
change point at the time point t — k + 1, using (€&,_p+1,...,6_x) as reference and
(84—kt1,---,¢6) as test window. Then, set t =t + 1 and return to 1.

As the regression estimators for subsequent one-step-ahead forecast errors are computed
from overlapping regression windows, the forecast errors are f-dependent. With the
following Proposition [2| we show this for the simple case of a linear trend with constant

parameters. We defer the proof to Appendix [A]
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Proposition 2 (Properties of the one-step-ahead forecast errors)

Let (Y: t € Z) be a time series with Yy = u + &, where uyy = p+ -t, t € Z. The
process (ey: t € Z) of independent random variables is assumed to be strictly stationary
with expectation E(g;) = 0 and variance Var(g;) = o? for allt € Z. Let moreover fi,_,
and Bt_l be unbiased and regression equivariant regression estimators for pu;—1 and f3,
obtained from a time window (Y;_y,...,Y,_1) with a fized design i = —¢+1,...,0. Then,
the following results hold for the expectation, the variance, and the autocovariance function

of the sequence of one-step-ahead forecast errors (&,: t € 7):
(a) E(&)=0 forallteZ.
(b) Var(e;) = o+ Var (ﬂt,l) + Var (th) +2- Cov ([Lt,l,Bt,l) forallt € Z.

(¢)

Var (&), s=0
Cov (,&t,l, [LHS,l) + Cov <,at71’ Bt+571) +

Cov (&4, é145) = § Cov (Bt_l, ﬂt+5_1) + Cov <Bt—17 Bt—l—s—l) -
Cov (&tt,/lt+s_1) — Cov (et, Bt—l—s—l) , 1<s</

0, s>/
for allt € Z.

(d) (&: t € Z) is weakly stationary.

Even though the trend is removed from the time series, the independence assumption
underlying the two-sample tests considered here is violated. Therefore, the results obtained
in Chapter [3 are not directly transferable; see Section [1.4]

4.3.2 Comparison of repeated median and ordinary least squares

In principle, every linear regression estimator is legitimate for estimating the regression
parameters. Based on the results summarised in Chapter [2| we use RM regression in the
following; see Equation ([2.4)).

To motivate the preference of a robust regression estimator over a non-robust one, like
OLS regression, we consider two examples.

First, we study how a level or a slope change affects the one-step-ahead forecast errors
considering only the signal without additive noise. We compute the signal from the model
pe =0.01-¢, ¢t =1,...,80. Figure |4.2(a) shows the time series with a level shift at time
point t = 51. The one-step-ahead forecast errors are computed with ¢ = 20. Figure (b)
displays them for RM regression, Figure (C) those for OLS regression. Before the change
point, the forecast errors are zero for both procedures. The main difference is that the RM
forecast errors show a location shift that begins at t = 51 and persists for ten time points.

OLS regression leads to a peak at ¢ = 51. The forecast errors decrease linearly directly
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Figure 4.2: One-step-ahead forecast errors obtained from RM and OLS regression when
the signal is affected by a level shift (panel (a)) or a slope change (panel (d)).
The panels (b), (¢), (e), and (f) show the one-step-ahead forecast errors for
both situations. The width of the regression window is ¢ = 20.

after the change point. For both regression estimators, they become negative before going
back to zero. For OLS regression, a parabola can be observed for the values below zero,
whereas the RM forecast errors are below zero only for one time point.

The results harmonise with the intuition from the breakdown properties of the estimators.
As RM regression has a breakdown point of about 50%, many observations in the window
have to be shifted before the estimator is affected substantially by the structural break.
This causes a sequence of large forecast errors resulting in a location shift. OLS regression
is influenced much earlier by the outliers, so that the forecast errors drop quickly and
the level shift is not retained as well as for RM regression. Moreover, because of the
parabolic shape the forecast errors describe when they are negative, the estimated location
difference may be close to zero, so that the control chart might ignore the change point.
RM regression reduces this risk. The negative values can be explained by an overestimation
of the true signal because the time window contains observations from before and after
the location shifts, leading to a large positive slope.

Figures [4.2)(e) and [4.2]f) show the one-step-ahead forecast errors for a slope change.
The original signal is shown in Figure (d) The RM forecast errors increase linearly
before dropping abruptly to zero. Those for OLS regression describe nearly a bell shape.

Again, this can be attributed to the breakdown properties, which cause the increasing
trend to influence the OLS forecast errors far earlier than the RM forecast errors. Here,
OLS regression seems to have some benefits as the shape of the forecast errors resembles a
location shift more than for the RM forecast errors. However, using suitable subwindow

widths h and k for the tests makes it possible to detect the trend change because the
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Figure 4.3: One-step-ahead forecast errors obtained from RM and OLS regression. Panels
(b) and (c) show the forecast errors for the in-control time series in (a), which
is corrupted by two subsequent outliers. Panels (e) and (f) show the forecast
errors in the vicinity of a location shift directly behind the outliers; see panel
(d). The width of the regression window is ¢ = 30. The horizontal line is for
orientation and shows the zero position, the vertical line marks the structural
break.

linear increase in the forecast errors leads to a natural location difference between both
subwindows.

In a second example, we illustrate how outliers can influence the forecast errors. Here,
we generate an uncontaminated time series from the model Y; = ¢, t = 1,...,160, where
e RN (0,1). Again, we consider two scenarios.

In the first, we add outliers of size 10 at the time points t = 131 and ¢ = 132. In the
second case, we add a location shift of size 3 at ¢t = 134, starting nearly instantaneously
behind the outliers to mimic an out-of-control scenario. We compute the forecast errors
shown in Figure .3 with ¢ = 30.

The one-step-ahead OLS forecast errors are influenced by the outliers. The level shortly
after the outliers is smaller than before. In contrast, the errors obtained by RM regression
are not visibly influenced and resemble the original time series; see Figure [4.3|a) to (c).

Similarly, outliers can also prevent the detection of structural breaks when the forecast
errors are computed by OLS regression; see Figure [4.3|d) to (f). The RM forecast errors
retain the location shift better than the OLS forecast errors. The level of the latter does
not seem to be much larger than prior to the shift.

Concluding, from the two procedures only RM regression retains the location shift in
the time series of forecast errors. Moreover, the illustrations indicate that it is able to
provide reliable results even under the influence of outliers. As these results stem from the

robustness of the RM, other robust estimators may provide similar results.
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The detection of trend changes seems to be more difficult because they do not necessarily
lead to a location shift in the error sequence. Therefore, our assumption in Equation (4.4))
is only justified for location shifts.

The decreasing forecast errors result because, at some point, even a robust estimator
will be affected by a change point, so that the absolute values of the forecast errors become
smaller. This behaviour implies the risk that the control charts may signal two structural
breaks after a change point, of which only the first one corresponds to the true change
point. A simple way to prevent this would be to stop the monitoring after a structural
break has been signalled. Similar to the approach of Borowski and Fried (2014), it would
start again after ¢ observations behind the alarm time are available, assuming that none of
the observations in the new regression window is affected by the change point. However,
this also means that no change points can be detected during this time period. In this
thesis, we will not take any specific action to deal with the second location shift. Our
interest lies in studying the general applicability of the control charts and additional rules
would complicate the comparison of the procedures.

The declining trend also indicates that the subwindow widths A and k& used for the
two-sample test should be smaller than the width of the regression window ¢. This is
to prevent that the location shift in the sequence of forecast errors is missed. It can be
confused with an outlier sequence if the test is performed with subwindow widths that are
too large. The number of consecutive shifted forecast errors increases in ¢ because the

regression method is robust against more outliers.

4.3.3 Improving the computation time of the repeated median

The calculation of the RM estimates is time-consuming for a large regression window.
Computing them straightforwardly needs at least O (¢?) computation time. To reduce
it, Fried and Gather (2002)) suggest a two-step approach which we outline briefly in the
following.

The regression window Y,ﬁf) is split into ¢5 € N blocks of ¢; € N consecutive observations,
where ¢ = {1 - {5 and ¢; is odd. For each block, the sample median is computed, leading to
the medians (f/t,l, e ,thb), where }7“ is the sample median of the i-th block, i =1, ..., 5.
The new design points are the centre indices of the blocks.

If {1 << ¢, the two-step RM estimates will be very similar to the results for ordinary
RM estimation. The robustness of these new estimators will be slightly reduced. The effect
on our control charts should be negligible as reasonable robustness suffices for retaining

structural breaks in the forecast errors.

4.3.4 Modification of the simplified randomisation

The simplified randomisation described in Subsection depends on a good approxima-

tion of the control limits by the critical values obtained from the first time window. This
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assumption may be questionable when the number b of randomly drawn splits is small
compared to the number of possible splits.

We now modify the simplified randomisation principle to an wupdate-randomisation
principle. The general idea is to start with an initial randomisation distribution and
update it regularly after a specific duration. This improves the approximation of the critical
values over time if all observations come from the same distributional class. Moreover,
this approach adapts to possible trends in the time series.

The following Scheme [3| gives a sketch of this principle.

Scheme 3 (Update-randomisation principle)

Let (e;: t > 0+ 1) be a time series of one-step-ahead forecast errors, n € N the width of
the moving time window for the tests, ¢ € N the width of the regression window, a € (0,1)
the significance level, and d > n, d € N, a limit for the number of subsequent tests before

an update is performed.

(

1. Compute a randomisation distribution for the first time window eﬁr)n of one-step-

ahead forecast errors. The ¢/2- and (1 — ¢/2)-quantiles are the initial control limits.
2. Set counter j € N to 7 = 1.

3. For all time pointst > { + n:

i) If j < d, perform a test on the time window eﬁ") and set j =7+ 1.

it) Else if j = d+ 1, compute a randomisation distribution for e@n and add the
values of the test statistic to the previously computed randomisation distribu-
tion. The new control limits are the corresponding @/2- and (1 — ¢/2)-quantiles.

(n

t

Perform the test on e ) and set 3 =1.

By using the randomisation distribution of egﬁ)n for updating the critical values, we
avoid that a potential change point in egn) affects the new control limits.

This principle might be further improved by additional strategies. For example, to
reduce the risk of possibly missed structural breaks affecting the randomisation distribution
or prevent the randomisation distribution from becoming too large, we could drop old
distributions from the set of all distributions after some time. Moreover, depending on
the data, it could be advisable to compute a completely new set of distributions after the
detection of a change point.

In this thesis, we do not use any additional rules for the update-randomisation principle,
because in our simulations, we assume that all observations come from the same distribu-
tional class, the change points are placed at time points that do not affect the computation
of the critical values, and we are only interested in the duration until the first alarm.

Table [A.1] displays the ARLg-ratios for the robust control charts obtained from a
simulation performed analogously to the one in Subsection for the subwindow widths
h = k = 10 under the assumption of a locally constant signal. We applied the charts to
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Table 4.1: Ratios of the ARLy under a non-normal distribution compared to the ARLj
under normality using the update-randomisation principle with subwindow
widths h = k = 10. All values are rounded to two decimal places.

HL11-chart HL12-chart
a ts ty X3 X3 ts t X3 X
0.0025 0.99 0.85 0.79 0.47 1.00 0.88 0.88 0.35
0.0050 1.01 0.93 0.87 0.59 1.02 0.93 0.89 0.45
0.0075 1.02 0.97 0.90 0.66 1.02 0.96 0.90 0.52
0.0100 1.03 0.99 0.93 0.73 1.01 0.99 0.92 0.57
0.0125 1.03 1.01 0.95 0.77 1.01 0.99 0.92 0.62
0.0150 1.02 1.03 0.98 0.82 1.01 1.00 0.93 0.66
0.0200 1.03 1.06 1.01 0.88 1.03 1.02 0.94 0.73

HL21-chart HL22-chart
o ts l2 X3 X1 ls 2 X3 X3
0.0025 1.00 0.98 0.95 0.90 1.01 0.97 0.99 0.94
0.0050 1.03 0.99 1.01 1.01 1.02 0.98 1.01 1.00
0.0075 1.03 1.02 1.03 1.05 1.03 1.00 1.02 1.04
0.0100 1.03 1.01 1.05 1.06 1.03 0.98 1.02 1.05
0.0125 1.04 1.02 1.06 1.03 1.03 0.98 1.01 1.02
0.0150 1.03 1.02 1.05 1.03 1.03 0.98 1.01 1.01
0.0200 1.02 1.01 1.02 1.03 1.03 0.98 1.00 1.02

MD1-chart MD2-chart
at t5 t2 X3 X1 ls 12 X3 X3
0.0025 0.99 1.01 0.95 0.89 1.01 1.03 0.94 0.93
0.0050 1.03 1.01 0.99 0.95 1.02 1.01 0.96 0.94
0.0075 1.01 1.00 0.98 0.96 1.02 1.00 0.96 0.94
0.0100 1.02 1.01 0.99 0.99 1.03 0.99 0.98 0.96
0.0125 1.02 0.99 0.99 0.98 1.03 1.00 0.99 0.98
0.0150 1.00 0.97 0.98 0.97 1.02 0.99 0.98 0.98
0.0200 1.00 0.98 0.98 0.99 0.99 0.99 0.98 0.99

the original observations instead of one-step-ahead forecast errors. The duration between
two updates is set to d = 200.

For the HL2- and the MD-charts, the results are improved somewhat in terms of
distribution independence of the ARLg. Still, we cannot expect complete distribution
independence of the ARLg as can be seen for the HL1-charts.

These results indicate that the update-randomisation principle is likely to reduce
conservatism. This can be explained by smaller run lengths as compared to the simplified
randomisation. A further improvement to reduce the anti-conservatism can be achieved

by reducing the value of d at the cost of a larger computation time.

4.3.5 Using one-sample tests on the forecast errors

According to Proposition [2] for an unbiased estimation of the regression parameters, the
one-step-ahead forecast errors of an in-control process vary regularly around zero. It is

reasonable to ask whether an ordinary control chart with a fixed target value could be



78 4.3 Methods

Table 4.2: Average number of false alarms after applying a residual control chart based
on a one-sample test (sample size kK = 10) and a two-sample test (sample sizes
h =k = 10) to time series with a sine-wave signal with additive N(0, 1/00)-
distributed noise for different widths ¢ of the regression window. The control
charts are tuned to ARL; = 370 under normality, the forecast errors are
computed by RM regression. The values are rounded to one decimal place.

l One-sample Wilcoxon signed rank Two-sample Wilcoxon rank sum
50 13.5 6.2
75 51.3 6.3
100 192.4 7.4
125 447 .4 8.0

applied to them safely. However, this property only holds when the signal in the time
window follows an exact linear relationship. This can be doubtful when the signal is
non-linear and ¢ is too large to justify an approximately linear signal in the regression
window. A two-sample test can deal with slight non-linearities in the sequence of forecast
errors, which may be the results of model misspecification.

We illustrate this by an example: In 1000 replications, we generate time series with a
sign-wave signal like in Equation (4.1]) with additive N (0, /100)-distributed noise.

We compare the Wilcoxon chart described in Subsection [3.3.2] with subwindow widths
h =k = 10 to a control chart that uses the one-sample Wilcoxon signed-rank test in a
moving time window of width k£ = 10. Control charts based on signed-rank statistics are,
for example, investigated by Bakir (2006) and Chakraborti and Eryilmaz (2007)). For our
small example, we use the textbook definition of the signed-rank test; see Hollander et al.
(2013} p. 40). The target value is set to zero. We compute the one-step-ahead forecast
for ¢ = 50,75,100,125. The significance levels are chosen so that ARL; = 370 under
normality.

Table shows the average number of false alarms on the complete time series for both
control charts and all window widths. The violation of the local linearity assumption
becomes more severe with increasing value of £. This is reflected by an increasing average
number of false alarms for both charts. For the two-sample Wilcoxon test, it increases
comparatively slowly from about 6 to 8, whereas for the signed-rank test, the values rise
from 13 (¢ = 50) to 447 (¢ = 125).

Therefore, for a one-sample procedure it seems much more important that the local
model is correctly specified. Otherwise, structures that are not eliminated by the regression
are likely to be confused with an out-of-control situation. Using a two-sample test with
a moving reference window compensates for this, which is why we only consider this

approach in the following.
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4.4 Simulations

Similar to Section [3.4] we study the run-length performance of the control charts in
different in- and out-of-control scenarios. In most parts, the general simulation set-up is

the same as in Section [3.4
« Noise distributions: N(0,1), t5, t2, X3, X3
» Subwindow widths for the two-sample tests: (h, k) = (10,10), (20, 20), (20, 10).
o Number of randomly drawn splits for the update-randomisation principle: b = 10 000.

We essentially compare the same control charts as in Section However, we replace the
simplified randomisation with the update randomisation. Furthermore, we do not include
the simulative charts in our comparison. The reason is that their in-control performance
in the simulations in Section was not very convincing under a strong violation of the
normality assumption. Moreover, because of the new parameter ¢ for the width of the
regression window, this reduces the complexity in the presentation of the results.

The RM is not necessarily unbiased under skewed distributions (Siegel, 1982). Due to
the regression equivariance of the RM and the location invariance of the test statistics,
this does not lead to any problems in our analysis. A definition of regression equivariance
can be found in Appendix [D.4]

The new parameters in the simulations are chosen as follows:
o Width of the regression window: ¢ = 50, 75,100, 125.

o Block size for RM regression in the two-step approach: ¢; =5 if £ > 100 and ¢, =1

otherwise.

o Update of distribution after every d = 200 consecutive tests for the update-

randomisation principle.
In the following subsections, we generate 10000 time series from each of the discussed
simulation models.
4.4.1 In-control comparison under the N (0, 1)-distribution

Following the reasoning of Subsection |3.4.1] we start the analysis by studying the functional
relationship between the ARLy and « under the A/(0, 1)-distribution.

The data are generated from the model
Yi,=¢, t=1,...,20000+ ¢, £ =50,75,100,125,

where the first ¢ observations are used to fit the initial linear model and &, "= A/ (0,1).

Assuming that p; = g, =0 for all t = 1,...,20000 + ¢ is no restriction compared to an
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Figure 4.4: ARLg-curves of selected control charts under normality with subwindow widths
h =k = 10 and different widths ¢ of the regression window. For reference, the
corresponding ARLg-values obtained without a prior regression are shown.

arbitrary linear trend, because of the equivariance and invariance properties. However,
using the two-step approach from Subsection [£.3.3] will lead to slightly different results
compared to the ordinary RM estimation. For ¢; << ¢, the corresponding results differ
only marginally. We illustrate this by a brief example at the end of this subsection.

Similar to the simulations in Section [3.4] we replace missing run lengths with a lower
bound. Here, we use 20001 — ¢ —n + 1 and act analogously for the following simulations.
Again, the fraction of missing run lengths is less than 1%, so that the effect of this
replacement is negligible.

In Figure[4.4] we show the estimated ARLg-curves for the ordinary ¢-chart, the Wilcoxon
chart, the HL22-, and the MD2-chart for the different values of ¢ and the subwindow widths
h = k = 10. Moreover, we added the ARLg-curves obtained without a prior regression.
The ARLp-values of the residual charts are always smaller than when using the control
charts from Chapter [3| For a fixed value of «, the ARLg-value increases monotonously in
the width ¢ of the regression window and approaches the value obtained without a prior
regression. The course of the values resembles the functional relationship in Equation (i3.8))
in Subsection B.4.1]

Thus, using the control limits obtained for locally constant signals in Subsection |3.4.1
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Table 4.3: ARLy for selected values of a under normality for the subwindow widths
h = k = 10 and different widths ¢ of the regression window. The values in
brackets are the standard errors. All values are rounded to one decimal place.

Significance level «

14 Control chart 0.005 0.02 0.05
ordinary 181.0 (1.8) 67.0 (0.7) 32.1 (0.3)
f-charts update random. 184.7 (1.8) 67.5 (0.7) 32.3 (0.4)
HL11-chart 197.2 (2.2)  71.0 (0.8)  33.7 (0.4)
HL12-chart 197.7 (2.1) 714 (0.8)  33.5 (0.4)
50 HL21-chart 200.5 (2.2)  74.2 (0.8)  34.2 (0.4)
HL22-chart 199.4 (2.2)  72.6 (0.8)  33.8 (0.4)
MD1-chart 199.4 (3.1) 821 (1.2)  41.3 (0.6)
MD2-chart 209.5 (3.4) 834 (1.2)  41.2(0.6)
Wilcoxon 185.6 (1.8)  67.7 (0.7)  32.4 (0.3)
Ranl charts 1 gian 182.7 (1.9)  72.6 (0.7)  28.1 (0.3)
ordinary 306.4 (3.1)  96.6 (1.0)  43.1 (0.5)
f-charts update random. 310.9 (3.2)  97.0 (1.0) 43.0 (0.4)
HL11-chart 310.8 (3.5) 97.8 (1.1)  44.6 (0.5)
HL12-chart 315.1 (3.4) 983 (1.0)  43.7 (0.5)
125 HL21-chart 314.0 (3.6)  100.4 (1.1)  44.8 (0.5)
HL22-chart 314.0 (3.5)  99.2 (1.1)  44.5 (0.5)
MD1-chart 275.8 (4.4)  105.6 (1.6)  49.9 (0.7)
MD2-chart 295.0 (5.1) 108.3 (1.6)  51.8 (0.8)
Wilcoxon 305.4 (3.0)  96.3 (1.0)  42.8 (0.4)
Rankccharts 1 fian 256.9 (2.6)  95.8 (1.0)  33.5 (0.3)

seems only to be reliable if £ >> 125. The correlation in the one-step-ahead forecast errors
causes the local tests to be anti-conservative so that alarms can be expected to occur more
frequently than desired. However, using a large value of ¢ requires the time span in which
the signal can be seen as approximately linear to be rather long.

As the ARLg-values for ¢ = 75 and ¢ = 100 are between those for £ = 50 and ¢ = 125,
we restrict the considerations in the sequel to ¢/ = 50 and ¢ = 125 for a more concise
presentation of the results.

Table [4.3] allows a more detailed insight into the ARLg-values for selected values of «,
the subwindow widths A~ = k& = 10 and ¢ = 50, 125. The results for the subwindow widths
h =k =20 and h = 20, k = 10 can be found in the Tables [C.10] and [C.11]in Appendix [C]
Other than for the ARLy-values shown in Table [3.2] the standard errors for all control
charts are similar. Again, the t-charts, the HL-charts, and the Wilcoxon chart lead to

similar ARLg-values for the considered values of a.. Moreover, the scale estimator used for

the robust control charts seems to be more important for the actual ARLg-value when the



82 4.4 Simulations

Table 4.4: Estimated regression coefficients for the linearised relationship between the
ARLg and « in Equation (3.9) under normality for the subwindow widths
h = k = 10 and different widths ¢ of the regression window, rounded to two
decimal places. The values in brackets are the standard errors and R? denotes
the coefficient of determination, both rounded to four decimal places.

/ Control chart 1@) A1 R?
ordinary 1.27 (0.0284) -0.74 (0.0068) 0.9991

f-chart update. random. 1.25 (0.0288) -0.75 (0.0069) 0.9991
HL11-chart 1.29 (0.0315) -0.75 (0.0075) 0.9989
HL12-chart 1.27 (0.0334) -0.76 (0.0080) 0.9988

50 HL21-chart 1.35 (0.0422) -0.75 (0.0101) 0.9980
HL22-chart 1.33 (0.0435) -0.75 (0.0104) 0.9979
MD1-chart 1.81 (0.0433) -0.66 (0.0104) 0.9973
MD2-chart 1.72 (0.0360) -0.68 (0.0086) 0.9983
Wilcoxon 1.26 (0.0226) -0.75 (0.0054) 0.9994

Rank chart —y; jian 1.05 (0.0959) -0.79 (0.0229) 0.9909
ordinary 1.24 (0.0134) -0.85 (0.0032) 0.9998

f-chart update. random. 1.24 (0.0142) -0.85 (0.0034) 0.9998
HL11-chart 1.29 (0.0115) -0.84 (0.0028) 0.9999
HL12-chart 1.26 (0.0160) -0.85 (0.0038) 0.9998

125 HL21-chart 1.31 (0.0250) -0.84 (0.0060) 0.9994
HL22-chart 1.30 (0.0215) -0.84 (0.0051) 0.9996
MD1-chart 1.80 (0.0412) -0.72 (0.0099) 0.9980
MD2-chart 1.74 (0.0263) -0.75 (0.0063) 0.9992
Wilcoxon 1.24 (0.0147) -0.85 (0.0035) 0.9998

Rank chart 1 fian 1.03 (0.1101) -0.86 (0.0263) 0.9899

subwindow widths h and k are unequal.

Thus, we make similar observations as for the charts introduced in Chapter 3 The
update-randomisation principle leads to a substantial decrease of the standard errors,
particularly for small values of ov. This hints at a better possibility to estimate a significance
level for a desired ARLg. However, for the smallest considered values of «, all charts obtain
only comparatively small ARLg-values. Similar to the impressions we got from Subsection
3.4.1] it seems possible to approximate the ARL, for one of the update-randomised
HL-charts under the A/(0, 1)-distribution by the ¢-chart, which facilitates the computation.

Table shows the regression coefficients of Equation (3.9)), estimated from the sim-
ulation results for the subwindow widths h = k = 10. The corresponding values for
h =k =20 and h = 20, k = 10 are shown in Appendix [C]in the Tables [C.12] and [C.13]

The coefficient of determination is always larger than 0.98, so that we can expect a very

good approximation of the true functional relationship by the formula.
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Having specified the functional relationship gives us the possibility to compare the
ARLp-values of the ordinary RM regression to the two-step approach we use for large
values of /. We conduct a small simulation study for the ordinary ¢-chart with ¢ = 125
and the subwindow widths h = k& = 10. We aim at ARL; = 370 under normality and
use the two-step approach with ¢; = 5. Estimating the ARLg from 1000 time series from
the model shown at the beginning of the section with A/(0, 1)-distributed noise leads to
an estimated ARLg of 360 (standard error 11.7) for the ordinary RM regression and 357
(standard error 11.6) for the two-step approach. Hence, both values do not deviate by

much from each other and from the nominal ARL.

4.4.2 ARL; under non-normal distributions

We proceed analogously to Subsection and quantify the impact of non-normality on
the control charts by computing ARLg-ratios which compare the ARLg under normality
to the ARLy under non-normality.

We show the results for h = k£ = 10 in Table f.5] The corresponding results for
h =k =20 and h = 20, k = 10 can be found in Tables[C.14] and [C.15 in Appendix [C] As
in Subsection [3.4.2] we focus on a < 0.02.

We omit the results for the ordinary t-chart in the tables because it is always strongly

conservative, particularly for small values of «.
We start by describing the results for h = £ = 10 in more detail and point out the
general differences for the other subwindow widths. Our general observations are the

following;:

o Under the symmetric distributions, all but the update-randomised ¢-chart have similar
ARLp-values as under normality. The update-randomised ¢-chart is conservative by
more than 10% under the t,-distribution but leads to comparable results as under

normality for the ¢5- and the y3-distribution.

» Substantial deviations to the ARLg-values under normality can be observed for the
skewed distributions, especially for the y3-distribution. For example, for ¢ = 50, the
Wilcoxon chart is anti-conservative by about 15% and the HL12-chart by nearly 40%
for small values of a. Opposed to this, the HL21-, the update-randomised ¢- and the

MD1-chart are strongly conservative.

o For most charts, the ARLg-ratios approach 1 for the different values of o when /¢
increases. Exceptions are the HL1-charts, which are still anti-conservative. For the
HL11-chart, the performance seems even to deteriorate as its ARLg-ratios are quite

close to 1 for ¢ = 50 but are much smaller when ¢ = 125.

o Concerning the general performance of the charts, the Median chart and the HL22-
chart show a quite stable behaviour with ARLg-values close to 1 for all considered

values of ¢ and each value of a.
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o Increasing the subwindow widths to h = k = 20 leads generally to worse results if ¢
is small for all but the t5-distribution. Compared to h = k = 10, the Median chart
is strongly conservative under the yi-distribution with relative deviations of more
than 30% for a < 0.0075 when ¢ = 50. In contrast, the HL22-chart still performs

reasonably well.

« Using the larger regression window ¢ = 125 for h = k = 20 leads to better results
under the t5- and the y2-distribution. However, the x%-distribution is still problematic
for most charts. Exceptions are the Median chart, which shows a similar performance
as for h = k = 10 and, to a limited degree, the HL.22-chart. It is anti-conservative
by roughly 10%.

o Under unequal subwindow widths h = 20, k = 10, all charts again have similar ARLg-
values as under normality for the ¢5- and the x32-distribution, like for h = k = 10.
Increasing ¢ improves the outcome under the ¢o-distribution. We can again note
difficulties under the y3-distribution. Similar to h = k& = 10, the Median chart
performs very well over all considered distributions and the HLL22-chart also provides

good results.

From our simulation results it seems that, like in Chapter [3] large discrepancies to the
ARLy-values under normality occur mostly for small values of a. This is particularly
important when a large ARLg-value is desired. If the charts are not too anti-conservative,
it is still ensured to some degree that the true ARLg-value for a specific value of « is large.
Compared to the results from Chapter [3| the in-control run lengths of the rank-based
charts do not have a distribution-free ARLy. This can be explained by the correlation in
the one-step-ahead forecast errors. In general, our results indicate that the more similar a
distribution is to the normal distribution, the more likely it is that the ARLg-values will
also be similar, even for comparatively small values of . However, in order to ensure this,
the subwindow widths need to be small compared to the widths of the regression window.
In addition, it seems that the charts approach their behaviour observed in Chapter |3 with
increasing value of . This would explain why, for example, the HL1-charts become more
anti-conservative when the regression window is large; see Table Similar to Chapter [3]

the HL22-chart leads to a good overall performance among the robust charts

Comment on the MRL,

Similar to Subsection [3.4.2] we briefly discuss the MRLy. Again, when considering the
out-of-control performance, the MRLg is mainly relevant for structural breaks of a small
magnitude.

The ordinary t-chart, the Wilcoxon, and the Median chart show a similar performance as
observed for the ARLg-ratios. The update-randomised charts show the largest deviations

between normality and non-normality again for the y3-distribution. The MRL¢-ratios of
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Table 4.5: Ratios of the ARLy under a non-normal distribution compared to the ARLg
under normality for the residual charts with subwindow widths h = k& = 10
and different widths ¢ of the regression window. All values are rounded to two
decimal places.

£=50 £=125

Control « ts to X% X% ts to Xg X?
chart

0.0025 1.02 1.04 1.00 L1 0.99 0.92 0.95 0.88

0.0050 1.03 1.09 1.04 1.17 1.00 0.97 0.99 0.96

update  0.0075 1.04 111 1.05 1.20 1.01 1.04 1.02 101

random.  0.0100 1.04 1.12 1.04 1.22 1.00 1.05 1.02 1.04

t-chart  0.0125 1.04 1.12 1.03 1.21 1.01 1.07 1.02 1.05

0.0150 1.03 1.14 1.03 1.22 101 1.07 101 1.06

0.0200 1.04 1.15 1.03 1.24 0.99 1.06 1.01 1.06

0.0025 0.97 0.99 1.00 0.97 101 1.03 1.05 0.97

0.0050 0.99 0.98 1.02 1.00 1.00 1.00 1.02 0.96

Median  0-0075 1.00 0.97 1.02 1.00 1.00 0.98 1.00 0.95

o 0.0100 0.9 0.97 1.01 1.00 0.98 0.98 0.99 0.94

0.0125 1.01 0.97 1.03 1.01 1.00 0.98 1.00 0.96

0.0150 0.99 0.97 1.02 1.02 0.99 0.98 1.00 0.95

0.0200 0.99 0.97 1.02 1.01 0.99 0.97 0.99 0.95

0.0025 1.05 1.10 0.94 0.84 101 101 0.99 0.89

0.0050 1.04 1.08 0.95 0.84 1.02 1.04 0.99 0.90

Wileoxon  0-0075 1.03 1.07 0.94 0.84 1.02 1.04 0.98 0.91

e 0.0100 1.01 1.05 0.94 0.83 1.00 1.02 0.98 0.90

0.0125 1.01 1.05 0.94 0.83 0.99 1.01 0.98 0.90

0.0150 1.01 1.04 0.94 0.84 0.98 101 0.97 0.90

0.0200 1.00 1.03 0.94 0.84 0.97 1.00 0.96 0.90

0.0025 0.97 0.96 1.05 0.92 0.96 0.86 0.87 0.54

0.0050 0.96 0.96 1.02 0.97 0.95 0.91 0.90 0.63

0.0075 0.97 0.97 1.02 0.99 0.94 0.93 0.91 0.70

HL11-chart 0.0100 0.98 0.98 1.02 1.04 0.97 0.96 0.93 0.76

0.0125 0.98 0.98 1.03 1.06 0.97 0.96 0.95 0.80

0.0150 0.98 0.98 1.03 1.09 0.98 0.97 0.95 0.84

0.0200 0.98 1.01 1.06 1.12 0.97 0.98 0.97 0.91

0.0025 0.97 0.94 1.00 0.62 0.98 0.88 0.91 0.42

0.0050 0.96 0.95 0.96 0.68 0.97 0.93 0.91 0.50

0.0075 0.98 0.96 0.95 0.74 0.97 0.95 0.89 0.57

HL12-chart 0.0100 0.99 0.97 0.96 0.79 0.97 0.95 0.90 0.62

0.0125 0.98 0.97 0.96 0.82 0.97 0.95 0.91 0.67

0.0150 0.98 0.97 0.96 0.86 0.98 0.96 0.91 0.71

0.0200 0.98 0.98 0.94 0.92 0.98 0.97 0.91 0.78

0.0025 0.97 1.00 1.18 1.58 0.98 101 1.00 1.00

0.0050 0.97 1.00 1.14 1.47 0.98 1.02 1.02 1.04

0.0075 0.98 0.98 L1 1.37 0.97 0.99 101 1.04

HL21-chart 0.0100 0.99 0.9 111 1.36 0.98 0.9 1.02 1.05

0.0125 0.99 0.98 1.09 1.27 0.98 0.99 1.01 1.04

0.0150 1.00 0.97 1.07 1.26 0.9 0.99 1.02 1.03

0.0200 0.98 0.95 1.06 1.20 0.9 0.99 1.02 1.05

0.0025 0.98 0.98 1.10 117 0.99 1.00 0.99 1.00

0.0050 0.97 0.98 1.04 1.10 0.99 1.00 1.00 1.00

0.0075 0.99 0.98 1.03 1.08 0.99 0.99 101 1.00

HL22-chart 0.0100 0.98 0.97 1.02 1.05 0.98 0.99 1.01 0.99

0.0125 0.99 0.97 1.00 101 0.97 0.98 1.00 0.97

0.0150 0.97 0.96 1.00 1.00 0.98 0.9 0.99 0.98

0.0200 0.98 0.96 1.00 0.99 0.99 0.99 0.9 0.99

0.0025 1.00 0.96 1.18 1.67 1.02 101 1.05 1.29

0.0050 0.99 0.94 111 1.41 1.01 1.00 1.04 1.16

0.0075 1.00 0.95 1.09 1.34 101 0.98 1.02 112

MDI1-chart  0.0100 1.00 0.94 1.07 1.27 1.02 0.98 1.01 1.09

0.0125 1.00 0.95 1.06 1.22 101 0.97 0.99 1.05

0.0150 0.99 0.95 1.07 1.22 1.00 0.96 101 1.02

0.0200 0.97 0.94 1.05 1.18 0.99 0.95 1.00 1.03

0.0025 0.97 0.92 1.03 112 1.04 1.04 1.02 1.28

0.0050 0.96 0.92 1.00 1.06 1.01 1.00 1.00 1.16

0.0075 0.97 0.95 1.02 1.06 0.98 0.98 0.97 1.10

MD2-chart  0.0100 0.97 0.94 1.00 1.03 0.98 0.99 0.97 1.07

0.0125 0.98 0.94 1.00 1.02 0.97 0.99 0.99 1.06

0.0150 0.97 0.93 0.99 1.00 0.97 0.98 0.99 1.04

0.0200 0.96 0.92 0.97 0.99 0.97 0.97 0.99 1.02
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Start monitoring
on forecast errors

Initial regression line

[ T T T T

1 {0+ 1 f4+n £+n+1

Initial
randomisation distribution
on forecast errors

Figure 4.5: Schematic representation of the set-up for the out-of-control simulations. A
persistent location shift starts at time ¢ = £4+n+1. The first ¢ observations are
used to calculate the first regression line. The initial randomisation distribution
is computed from the forecast errors at the time points £+ 1,...,¢ +n. The
monitoring begins with the window (Ygi9,..., Yoiini1)-

the HL22-chart are similar to the corresponding ARLg-ratios, underlining its stability as
opposed to the other randomised charts, which show an MRLg-behaviour other than for
the ARLg. For example, for h = k = 10 the MRLg-ratios of the MD1-chart are close to 1
for all considered distributions, whereas the chart is strongly conservative with respect to
the ARLg under the x?-distribution.

4.4.3 Out-of-control analysis

We now turn to the out-of-control analysis and proceed analogously to Subsection [3.4.3]
First, we study the performance under the shift alternative among the different noise
distributions. Afterwards, we briefly investigate the capabilities of the residual charts
to detect sudden trend changes. Concluding this subsection, we show how outliers can
influence the detection performance.

Based on our experiences from the simulations for a locally constant signal in Chapter
[3, we restrict our analysis to the subwindow widths h = k = 10. For larger subwindows,
we expect higher detection rates due to the increased power of the local tests, as long as

the regression window is sufficiently long.

Basic settings for the simulations

Figure illustrates the basic set-up for the out-of-control simulations. In general, we use
the first ¢ observations of the generated time series to compute the first regression line. The
observations at the time points £+ 1,...,¢+n are used to calculate the first randomisation
distribution for the update-randomisation principle. The structural break occurs at time
point £ 4+ n + 1 and we perform the first test on the time points £+ 2,...,/+n+ 1 so
that only the rightmost observation in the sample is affected by the structural break.
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As in Subsection we select o* to achieve ARLj = 250, 370 under normality. Like
before, this does not necessarily mean that the charts have the same MRLy. Again, the
MD-charts have the smallest MRLg-values under normality, about 110. The MRLg-values
of the other charts vary between 160 and 170.

Shift alternative

To investigate the detection quality for location shifts, we generate the time series from

the model
¢, t=1,....0+n
Y, =
e+ A qug, t=C+n+1,...,20001 + ¢,
where ggi again denotes the difference between the 84.13%- and the 50%-quantile of the
noise distribution. We use multiples A = 0.5,1,1.5, 2 of qqir as shift height.
To summarise the detection speed, we use the MRE and the worst-case detection rates;
see Subsection 3.4.3
Table shows the minimal MRL;-values for each distribution and ARLj-value sep-
arately for each shift height and ¢ = 50,125. Figure displays the MRE-values and
the worst-case detection rates for ARL; = 250 and ¢ = 125. The corresponding results
for ARL; = 370 and for ¢ = 50 can be found in Figures to in Appendix . We
split the distributions into the same groups as in Subsection [3.4.3} all distributions, the
symmetric distributions, and the asymmetric distributions. Again, we concentrate on the
large shift heights with A > 1.5.

We can summarise our main observations as follows:

o From Table we can see that the charts are quite insensitive to small location
shifts. This was also noted in Chapter [3} see Table B.9] It scems that the residual

charts are less influenced by small changes than those for the locally constant signal.

o Regarding the minimal MRL;, the width of the regression window seems to affect
mainly the detection of small shifts. For the medium-sized shift height A = 1.5,
the detection is somewhat faster for £ = 125 than for ¢ = 50 under the symmetric
distributions. Under the skewed distributions, there are no such big differences,

which is because of the anti-conservatism of the charts.

o The ordering of the residual charts with respect to the worst-case detection rates,
shown in Figure (b), is similar to the ordering observed in Chapter ; see Figure
3.4{(b). The HL-charts show the overall highest worst-case detection rates and
are followed by the update-randomised t-chart, the Wilcoxon and the Median
chart. All these charts outperform the ordinary ¢-chart, which shows its weakest
performance under the to-distribution. While the HL-charts provide a nearly equally

well performance over all considered noise distributions, the MD- and the Median
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Figure 4.6: Minimal relative efficiencies (MRE) with respect to MRL; and worst-case
detection rates for the shift alternative over different groups of distributions
for ARL; = 250 under normality, subwindow widths h = k = 10, and ¢ = 125.
Shift-height factor: 0.5 (o), 1 (O), 1.5 (A), 2 (©).
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Table 4.6: Minimal MRL;-values for different noise distributions, separated by shift-height
factor A, width ¢ of the regression window, and nominal ARL; under normality,
over all control charts for the subwindow widths h = k£ = 10.

Shift-height factor A

14 ARL; Distribution 0.5 1 1.5 2
N(0,1) 92 62 93 10

ts 92 o7 24 10

250 12 87 46 21 10

X3 80 28 10 8

“ X2 31 8 7 6
N(0,1) 121 88 32 10

ts 121 83 30 11

370 to 117 68 24 10

2 105 37 10 8

v 44 9 7 6

N(0,1) 93 54 10 8

ts 91 49 10 8

250 to 90 40 10 8

X3 78 10 8 7

- X2 28 7 6 6
N(0,1) 125 78 10 9

is 127 70 11 9

370 123 125 60 10 9

X3 108 25 8 7

v 41 8 7 6

charts deteriorate under the N(0, 1)-distributions. The Wilcoxon chart also loses

some power under the heavy-tailed distributions.

e In general, a large regression window improves the worst-case detection rates com-
pared to a small one. For example, for { = 50 and A = 2, the worst-case values of
the HL-charts are about 0.6 under ARL{ = 250 compared to nearly 0.8 for ¢ = 125.

o Regarding the MRE, all charts perform nearly equally well for A = 2, like observed
in Chapter [3} see Figures [4.6(a) and B.4[a). The update-randomised charts have a
slight advantage and perform somewhat better than the ordinary charts under the
heavy-tailed distributions. However, similar to Chapter [3, the MD-charts benefit

from the reduced MRLj under normality.

o The only setting in which the HL-charts perform rather weak is when /¢ is small and
ARLj is large. Then, the MRE-values are smaller than 0.6, which is because of the

symmetric distributions.

e The individual MRE-values are slightly larger than in Chapter |3| because we omitted
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Table 4.7: Minimal MRL;-values for the SCARM chart for different noise distributions,
separated by shift-height factor A and nominal ARLj under normality, for the
subwindow widths A = k& = 10.

Shift-height factor A

ARL; Distribution 0.5 1 1.5 2

N(O, 1) 167 157 141 114

ts 181 170 154 131

250 12 198 190 174 153
X% 171 152 119 71

v 174 139 82 15

N(0,1) 255 246 223 192

ts 268 259 239 213

370 2 288 279 262 237
X% 254 234 197 141

v 240 203 142 56

the simulative charts. These were anti-conservative under the skewed distributions,

giving them very small MRL;-values under such distributions.

The results show that charts that perform reasonably well in case of a locally constant
signal without a prior regression also lead to good residual charts. However, a large
regression window should be preferred to improve the detection quality. A possible reason
is a decreasing variability of the forecast errors for an increasing value of ¢, so that
location shifts are less likely to be covered by noise. In addition, for small values of ¢, a
comparatively small number of shifted observations suffices to affect the RM estimators.
Thus, the location shift is less well represented in the sequence of forecast errors.

An intuitive alternative to the herein discussed residual charts is a control chart that
makes use of the SCARM test as defined in Equation . The test can also be applied
in a moving time window to detect location shifts. However, in some additional simulation
studies, we found that the resulting control chart is not competitive in terms of detection
quality. The RM slope estimator reacts only slowly to structural breaks, which leads to a

comparatively large detection delay even for large jump heights; see Table [1.7]

Comment on the ARL; under the shift alternative

Results for the MRE based on the ARL; are shown in Figures [B.13] and [B.14]in Appendix
for the subwindow widths h = k = 10, £ = 50, 125, and ARL{ = 250 under normality.

Like for the locally constant signal, the MRE-values for most charts are smaller than those

for the MRL;, albeit to a lesser extent. One reason could be the omission of the simulative
charts in the comparison. Moreover, as noted in Subsection [£.3.4] update randomisation
apparently leads to smaller in-control run lengths than simplified randomisation, which can

be advantageous for the simulation runs in which the structural break is missed. Another
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possible explanation is the second structural break in the sequence of forecast errors, which
can also lead to an alarm and, as a consequence, to smaller run lengths; see Figure 4.2]
The results for both values of ¢ are very much alike.

The HL22-chart, which leads to quite convincing results with respect to the MRL;
and the detection rate, shows a similar performance under the ARL;, particularly for
symmetric distributions. The Wilcoxon chart achieves the highest MRE-values. The weak

spot for most charts seems to be asymmetry.

Trend alternative

In addition to detecting sudden level shifts, we can also use the residual charts to find
abrupt trend changes that cannot be explained by the inherent variation of the signal. In
analogously performed simulations like before, we replace the location shift with a slope

change and generate the observations from the model

Et, tzl,,f—i—n
Y;:
b-(t—C—n), t=C(+n-+1,...,20001+¢

in 10 000 replications with b = 0.05, 0.1, 0.2, 0.5, 0.8. We only consider the case &; LR N(0,1)
in the following. As motivated by Figure [4.2] sudden trend changes in the original time
series also lead to structural breaks in the sequence of forecast errors. Therefore, we
expect a similar ordering as observed for the shift alternative of the control charts when
considering all distributions.

Figure shows the relative efficiencies and the detection rates. Large changes can be
found quite reliably by our control charts. However, due to the structure of the forecast

errors, a strong slope change is needed for a reliable detection; see Figure [4.2]

Outliers under the shift alternative

We now evaluate briefly how the control charts behave when outliers are present in the
neighbourhood of a location shift in otherwise clean data. The observations are generated

from

&, t=1,...,20+¢
Y, =
e +3, t=21+44...,20001 +¢,

where we assume that &, N (0,1), which corresponds to the model used in Subsection

[3.4.4] Again, we consider the settings of one and two negative outliers of decreasing size
n;, = —5, —10, —15, —20 after the location shift at the time points ¢t = ¢ + 26 and ¢ + 27.

Figure shows the relative efficiencies and the detection rates for ¢ = 125 and
ARLf = 250. We gain similar conclusions as for the case of a locally constant signal: The

robust control charts are able to resist the outliers rather well in both scenarios. The
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Figure 4.7: Relative efficiencies (RE) with respect to MRL; and detection rates for the
trend alternative under normality. The control charts are applied with window
widths h = k = 10 and ¢ = 125, and tuned to ARLj = 250.
Slope: 0.05 (o), 0.1 (O), 0.2 (A), 0.5 (¢), 0.8 (V).

Wilcoxon and the Median chart can deal with one outlier reasonably well, whereas the

t-charts deteriorate in both settings.

4.4.4 Local AR(1)-models

In this subsection, we briefly investigate how our residual-chart principle performs when
the time series can locally be described by an AR(1)-model instead of the simple linear
model in Equation (4.2). We assume that

Yiri = Xipi + Meys, with

(4.5)
Xt+i :Ct+¢t‘Xt+i—1+5t+i, 1= —E—l—l,...,O,

where ¢; € R is the local level, ¢; € (—1,1) is the value of the AR-parameter in the window,
and e44; and 7.4, denote noise and outliers as before. Our goal is to detect sudden changes
in ¢; under the assumption that the AR-parameter is also slowly time-varying, but does
not exhibit abrupt changes.

Using procedures for i.i.d. observations can lead to a substantially larger false-alarm
frequency than desired (Montgomery and Mastrangelo, |1991; Knoth and Schmid, [2004)).

In the sequel, we provide some comments on how our proposed approach works on such
data, considering just some special cases.

To illustrate that the residual charts for the simple linear model in Equation are
not directly applicable without some loss, we exemplarily apply the ordinary ¢-chart with
subwindow widths h = k = 10, ¢ = 50, and ARL{ = 250 under normality to 1000 time
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Figure 4.8: Relative efficiencies (RE) with respect to MRL; and detection rates under
normality in outlier scenarios under the shift alternative. The control charts
are applied with window widths h = £ = 10 and ¢ = 125, and tuned to

ARL; = 250.

Shift-height factor: 0.5 (0), 1 (O), 1.5 (A), 2 (©).

series generated from the model

Yi=¢-Yi1+e, t=1,...,20000,

where ¢ = 0.005,0.2,0.8 and &, <" A(0, 1).

From the ARL¢-values shown in Table .8 it can be seen that the chart is unable to

keep the desired ARLg and becomes anti-conservative even for a small autocorrelation.

The degree of anti-conservatism increases in the value of ¢.

To account for the new model, we replace the robust regression with a robust estimation

of ¢. The value of the AR-parameter corresponds to the lag 1 autocorrelation. Diirre

et al. (2015)) discuss various robust estimators for the autocorrelation function (ACF). In
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Table 4.8: ARLy of the residual chart based on the ordinary t-test assuming a simple linear
model when applied to data from an AR(1)-model with different values of the
AR-parameter ¢ and additive AV (0, 1)-distributed noise. The window widths
are h = k = 10 and ¢ = 50. The chart is tuned to ARLj = 250. The values in
brackets are the standard errors. All values are rounded to two decimal places.

¢ = 0.005 9 =0.2 »=0.8
194.18 (5.93) 96.90 (3.12) 8.91 (0.34)

the following, we use the implementation from the R package robts (Diirre et al., 2017,
which is freely available on R-Forge. We use the default settings and estimate the ACF by

a Gnanadesikan-Kettenring estimator.

4.4.5 In-control performance for AR(1)-models

To study the in-control relationship between the ARLy and «, we perform simulations
analogous to those for the simple linear model. We first study the behaviour under

normality before turning to the stability under non-normal distributions.

In-control performance under the N(0, 1)-distribution

In 10000 replications, we generate observations from the model

Yi=¢- Y, 1+¢e, t=1,...,20000 + ¢,
with ¢ = 0.2,0.5,0.8, &4 b N(0,1), and ¢ = 50, 75,100, 125.

Table shows the ARLg-values and the standard errors for selected values of «, £ = 125,
and ¢ = 0.2,0.8. In general, the ARL( decreases in ¢ for a fixed value of a. Although
operating on one-step-ahead forecast errors, the value of the AR(1)-parameter has a large
impact on the run length, unlike the regression parameters for the simple linear model.
This can be explained by the missing equivariance structure of the AR-models and the
bias towards zero of the correlation estimators, which increases in ¢. We obtain similar
results for the other values of /. Hence, setting up the charts to obtain a desired ARLg
requires the specification of ¢.

For a fixed value of ¢, it is again possible to describe the functional relationship between
« and the ARLg by Equation to a satisfying degree with a coefficient of determination
of at least 0.98 for the linearised relationship in Equation ((3.9).

Stability of the ARL; under non-normal distributions

To investigate the influence of the noise distribution on the ARLg, we generate time series
from the above model using i.i.d. noise from the t5-, to-, x3-, and x?-distribution.

We exemplarily select a* to achieve ARL; = 250 under normality by Equation (3.10]).
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Table 4.9: ARLq for selected values of o under different AR(1)-models with additive
N (0, 1)-distributed noise. The window widths are h = k = 10 and ¢ = 125.
The values in brackets are the standard errors. All values are rounded to one
decimal place.

Significance level «

0.005 0.02 0.05
Control chart =02 ¢=08 ¢=02 ¢=08 ¢p=02 ¢=0.8

ordinary 280.7 120.7 85.9 48.2 39.7 25.0

tcharts (2.7) (1.2) (0.9) (0.5) (0.4) (0.3)
update random. 283.9 124.2 87.1 48.9 39.9 25.3

(2.8) (1.2) (0.9) (0.5) (0.4) (0.3)

HL11-chart 285.8 134.1 91.6 52.6 40.4 26.4
(3.2) (1.6) (1.0) (0.6) (0.5) (0.3)

HL12-chart 288.8 137.6 89.9 52.9 39.5 26.3
(3.1) (1.5) (0.9) (0.6) (0.4) (0.3)

HL21-chart 289.1 141.1 93.4 55.1 40.9 27.3
(3.3) (1.7) (1.0) (0.6) (0.4) (0.3)

HL22-chart 289.9 142.7 90.9 54.4 40.3 27.1
(3.2) (1.6) (1.0) (0.6) (0.4) (0.3)

MD1-chart 263.8 167.1 98.1 68.5 46.5 34.2
(4.3) (2.8) (1.5) (1.0) (0.7) (0.5)

MD2-chart 279.1 179.3 100.4 70.4 47.9 35.1
(4.8) (3.2) (1.5) (1.1) (0.7) (0.5)

Wilcoxon 279.7 127.0 86.5 50.7 39.3 26.1

2.7 1.2 0.9 0.5 0.4 0.3

Rank charts 1 fian 542.)8 538.)1 (87.7) (56.8) (31.7) (24{3

(24)  (1.3)  (0.9)  (0.6)  (0.3)  (0.3)

The estimated ARLg-values and corresponding standard errors for ¢ = 125 as well as
all considered values of ¢ can be found in Table All charts keep ARL{ under the
N (0, 1)-distribution reasonably well, but none of the charts has a distribution-free ARLq.
However, as long as ¢ is not too large and the underlying distribution is symmetric and
not very heavy-tailed, the deviations are moderate. Our observations are similar for other

values of /.

4.4.6 Out-of-control performance for AR(1)-models

Our out-of-control study is performed under the normality assumption. The data are

generated from the model

Xt7 t:1,,f+n
Y, =
X, 4+ A, t=Cl+n+1,...,20001+7,
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Table 4.10: ARLg under different distributions for different AR(1)-models. The control
charts are tuned to ARLj = 250 under normality and applied with window
widths h = k = 10 and ¢ = 125. The values in brackets are the standard errors.
All values are rounded to one decimal place.

Distribution
o Control chart N(0,1) ts to X3 %
ordinary ~ 248.8 (2.4) 282.1 (2.8) 406.4 (4.0) 2543 (25) 2717 (2.7)

f-charts update  247.5 (2.4) 229.4 (2.3) 1950 (2.3) 196.7 (2.0) 139.1 (1.6)

random.
HL11-chart 248.4 (2.8) 223.4 (25) 160.2 (2.5) 1704 (2.1)  107.9 (1.7)
HL12-chart 249.7 (2.7) 225.7 (25) 169.7 (2.7) 179.4 (2.1)  106.7 (2.0)
0o HL2l-chart 2484 (2.8) 230.6 (2.6) 185.8 (2.2) 198.1 (2.2) 150.3 (1.9)
“ HL22-chart 248.1 (2.8) 230.6 (2.6) 1895 (2.2) 208.7 (2.3) 159.1 (1.9)
MD1-chart 248.1 (3.9) 242.2 (3.9) 2128 (3.3) 2128 (3.5) 1511 (2.2)
MD2-chart 248.8 (4.1) 244.7 (4.1) 2329 (3.9) 2309 (3.9) 184.3 (3.2)
Ronk charte Wilcoxon 2402 (2.4) 2219 (2.1) 1664 (L.7) 1842 (1.8) 1140 (1.2)
Median ~ 236.2 (2.3) 215.8 (2.1) 184.7 (1.9) 195.6 (2.0) 137.7 (1.4)
- ordinary  250.8 (2.5) 251.2 (2.5) 263.0 (2.6) 191.8 (1.9) 119.7 (1.2)
update 2513 (2.5) 2113 (2.2) 149.4 (1.7) 163.4 (1.7)  83.8 (0.9)

random.
HL11-chart 249.3 (2.8) 196.1 (24) 1075 (3.0) 133.9 (1.6)  74.2 (1.1)
HL12-chart 249.0 (2.7) 208.1 (24) 1275 (3.7) 1553 (1.8)  84.6 (1.8)
o5 HL2l-chart 245.1 (2.8) 208.4 (2.6) 119.5 (1.4) 147.1 (1.7)  81.6 (1.0)
2 HL22-chart 246.5 (2.8) 217.6 (2.6) 1464 (1.8) 170.0 (1.9)  95.2 (1.1)
MD1-chart 246.6 (4.0) 244.1 (4.1) 169.0 (2.7) 163.1 (2.5) 100.7 (1.5)
MD2-chart 246.8 (4.3) 250.7 (4.5) 2459 (4.8) 1944 (3.1) 133.3 (2.2)
Rank charts Wileoxon 2513 (2.5) 2032 (2.0) 123.3 (1.2) 1612 (1.6)  87.8 (0.9)
Median 2434 (24) 2135 (2.1) 1525 (1.5) 178.1 (1.7)  103.6 (1.0)
- ordinary 2434 (2.4) 1364 (1.4) 505 (0.5)  89.4 (0.9)  34.9 (0.4)
update  244.8 (2.5) 124.7 (1.3)  43.1 (0.5)  85.3(0.9) 324 (0.4)

random.
HL11-chart 238.7 (2.9) 109.0 (1.3) 432 (25)  77.7(0.9)  34.6 (0.5)
HL12-chart 243.6 (2.9) 121.6 (1.4) 495 (2.6)  87.2(1.0)  34.9 (0.4)
0 HL2l-chart 237.1 (3.0) 1105 (1.3)  38.6 (0.5)  75.7(0.9)  33.2 (0.5)
© HL22-chart 241.0 (3.0) 1224 (1.4) 429 (0.5)  84.1(1.0)  34.7 (0.4)
MD1-chart 239.7 (4.3) 129.4 (2.0) 46.0 (0.6)  85.0 (1.3)  42.8 (0.7)
MD2-chart 242.3 (4.5) 142.8 (2.3) 53.1(0.8) 923 (1.4)  45.7 (0.8)
Ronk chapte | Wilcoxon 2449 (24)  1312(13)  482(05) 919 (0.9)  36.2 (0.4)
Median ~ 246.8 (2.4) 148.7 (1.5)  58.2 (0.6)  106.3 (1.1)  42.5 (0.4)
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(a) ¢ = 0.2: Relative efficiencies
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Figure 4.9: Relative efficiencies (RE) with respect to MRL; and detection rates under the
N (0, 1)-distribution assuming a local AR(1)-model under the shift alternative
with ARL; = 250 under normality. The window widths are h = k£ = 10 and

¢ =125.

Shift-height factor: 0.5 (0), 1 (0), 1.5 (A), 2 (©), 2.5 (V), 3 (R).
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where A =0.5,1,...,3, £ = 50,125, and
Xt:¢'Xt—1+8t7 t:17,20001+€,

with ¢ = 0.2,0.5,0.8 and &; LR N(0,1). Again, we tune the charts to ARL] = 250 under
normality. As the results are only for illustration, we consider only the charts based on
the HL12-, HL22-, MD2-, and the ordinary t-test, the Wilcoxon and the Median test.

Figure [4.9| shows the relative efficiencies for the three values of ¢ and ¢ = 125. In general,
the ordering of the procedures is similar to the one observed for the simple linear model
under normality. The main difference is that location shifts are more difficult to detect,
the larger the value of ¢ is. Detecting shifts in highly positively correlated data is difficult,
since the shift height needs to be large enough to stand out from other correlation-induced
structures.

From this initial study, we conclude that the charts lead to acceptable results for large
location shifts and small to moderate autocorrelations. However, there is still room for
improvement. For example, Knoth and Schmid (2004) compare residual-based to modified
CUSUM and EWMA charts. They conclude that the modified versions are better suited

for positive autocorrelations.

4.5 Applications

In this section, we apply selected residual control charts to time series from the real-world
applications introduced in Section and a simulated time series. Like in Section |3.5] we
intend to show that the principles are widely applicable, even though certain modifications
for concrete applications may be necessary.

Again, we reduce the discussion to the ordinary t-chart, the Wilcoxon chart and the
update-randomised HL22-chart. Similar to Section [3.5] we also applied the ordinary-
randomised HL22-chart. The results turned out to be very similar to those of the
update-randomised chart, so that we do not show the results here.

In Subsection [4.5.1], we investigate the performance on the PAMONO time series. We
present the outcome on a simulated time series in Subsection [£.5.2] In Subsection [4.5.3] we
discuss the application on the time series of heart-rate measurements. Lastly, in Subsection
we show how the control charts can be modified so that they can be used to detect
sudden variability changes.

To set up the control charts, we follow Scheme [I] from Subsection [3.5.1]

4.5.1 PAMONO data

We start by applying the residual charts to the PAMONO time series. As in Chapter [3] we

use the subwindow widths & = k = 10 and choose ARL; = 250 under normality. Moreover,
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(a) Control charts for locally constant signal
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Figure 4.10: Application of selected residual control charts to the PAMONO time series.
The charts are applied with the subwindow widths h = k£ = 10 and tuned to
ARL{ = 250 under normality. Panel (a) shows the results of charts assuming
a locally constant signal for comparison; see Chapter [3] The residual charts
in panels (b) and (c) are applied with a regression window of length ¢ = 100.

we select the length ¢ = 100 for the regression window. For the local AR(1)-model, we use
¢ = 0.2, based on the estimated ACF from the first 100 observations.

In Figure .10, we show the alarm times for the residual charts (panels (b) and (c))
together with the results obtained in Subsection [3.5.2] (panel (a)). The residual charts
based on the simple linear model lead to similar results as the corresponding charts without
a prior regression. The only obvious difference is that the charts for the locally linear
signal lead to a second alarm block behind the second location shift.

More differences can be found when assuming a local AR(1)-model. Then, the HL22-
chart does not detect the first location shift, whereas the results for the ¢- and the
Wilcoxon chart are similar to those for the simple linear model. One reason could be that
we misspecified the AR(1)-parameter.

This example gives a first hint that the residual charts based on the simple linear model
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can be a suitable alternative to the control charts from Chapter [3| by being applicable
under weaker assumptions than they were designed for. However, more knowledge on the

process might be required when using the residual charts based on the local AR(1)-model.

4.5.2 Time series with sine-wave signal

To study the benefits of the residual charts over the charts from Chapter [3| we consider a

time series with a strong non-linear trend in form of a sine-wave, generated from

&t

t—1
[y = sin (0.8- (—27r+)> + Ay + 20

t=1,...,1257
100 +7]t7 ) 9 )

where ¢, L to, with location shifts and outlier-generating process

Ay = —0.56 - I{ago,. 12573 (t) + 0.3 - I{1003,....12573 (t) and
T]t - I{494}(t) + 05 : [{495}(t> + 15 . I{4g7}(t>, t= 1, ey 1257

This time series is similar to the one shown in Figure We use heavy-tailed noise and
outliers to challenge particularly the non-robust charts more.

All charts are applied with subwindow widths h = k = 10 and ARL{ = 250 under
normality. For the residual charts, we choose ¢ = 100. In addition, we select a* under the
assumption ¢ = 0.8 for the residuals charts based on the local AR(1)-model. We obtained
similar results as those shown here for other assumed values of ¢. The alarm times are
shown in Figure [4.2]

The charts for the locally constant signal (Figure [£.2(a)) seem to be unsuitable on time
series with strong trends, even if the time window is rather short. This supports the
impressions obtained from Figure

Using residual charts reduces the number of false alarms drastically. There are two
notable differences between the charts for the simple linear model (Figure [4.2[b)) and
those for the AR(1)-model (Figure [4.2|(c)): The latter do not detect the second location
shift and all alarms occur only behind the first shift. Thus, missing the shift may be
caused by conservatism due to using independent noise or the heavy-tailed distribution.

On the RM forecast errors, a quick detection of both location shifts is only achieved by
the HL22-chart. The Wilcoxon chart detects the second shift. Both, the t-chart and the
Wilcoxon chart show a large delay before alarms are given for the first location shift. This
indicates that both procedures only cause alarms because of the slowly decreasing level in
the sequence of forecast errors, similar to the one shown in Figure [4.2]

In total, this example illustrates the benefits of the residual charts, particularly in
combination with a robust and efficient test. Together with the impressions from the
PAMONO time series, they seem to be more versatile and should be preferred when the
signal is known to be non-linear. However, it is important to verify the model assumptions.

Further studies are necessary to work out the properties of the AR(1)-based charts under
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(a) Control charts for locally constant signal
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Figure 4.11: Application of selected control charts to a time series with a sine-wave signal.
The charts are applied with the subwindow widths h = k£ = 10 and tuned to
ARL{ = 250 under normality. For the residual charts in panels (b) and (c),
the regression window has the length ¢ = 100.

independent noise.

In the following, we only use the residual charts.

4.5.3 Time series of heart-rate measurements

We now consider the intensive-care time series, which provides a bigger challenge due to
its unclear structure. The time series is rather short with 400 observations, so that we
set £ = 50. The desired ARLj under normality is again ARLj = 250 and as subwindow
widths we choose h = k = 10. For the AR(1)-model, we assume ¢ = 0.5, based on an
estimation of the autocorrelation function from the first 50 observations, where no notable
change point is noticeable.

Figure shows the results. Both model assumptions lead to similar alarm times. The
AR(1)-assumption seems to set the focus on the larger notable structures. Compared to

the application of the charts for a locally constant signal shown in Figure [3.7] the residual
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(a) Control charts for local simple linear model
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Figure 4.12: Application of selected residual control charts with ARL; = 250 under
normality to the time series of heart-rate measurements. The window widths
are h = k =10 and ¢ = 50.

charts for the local simple linear model do not provide a big advantage. Similar to the
suggestion in Subsection [3.5.3] an improvement is possible by using a threshold approach.
This, however, requires that the height of potential location shifts is known. Another way
would be to develop the AR(1)-approach further as the initial result seems to be rather

promising. However, this single time series provides only a limited data base.

4.5.4 Time series of crack-width measurements

Using a suitable data-transformation, the residual charts can be modified to detect sudden
variability changes in a time series with a time-varying signal. To illustrate this, we use

the time series of crack-width measurements.

Data transformation

We follow the approach of Fried (2012) as outlined in Subsection and apply the
control charts to log-transformed squared observations. We outline the general idea behind
it briefly.

Similar to the time-varying signal (1;: ¢ € N) in Equation (2.1), the variance (02: ¢ € N)

might fluctuate slowly over time with only a few sudden changes. The model in Equation
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(2.1)) can be reformulated to
Yi=p+o0p-e, t €N, (4.6)

when we ignore the outlier-generating process. Here, (1;: t € N) is again locally ap-
proximately linear, but does not exhibit sudden trend or level changes. The sequence
(0¢: t € N) denotes the slowly varying true, but unknown, standard deviation, which we
assume to be locally constant. The noise sequence (g;: t € N) is assumed to be white
noise with variance Var (¢;) = 1. Thus, from Equation (4.6), we obtain Var (Y;) = o?.
The main difference to the previous considerations in this work is that we now are
interested in detecting structural breaks in (0y: ¢ € N) instead of (ys: ¢ € N). Given a

time window at time ¢ of width n, the standard deviation can be described by

o, t=-n-+1,...,—k
Otti =
Ot+, Z:—k+1,,0,

where oy = vp- 04—, 1y € R\ {0}. The testing problem is now Hp;: vy = 1 vs. Hpy: vy # 1.
A general assumption of Fried (2012)) is py; = 0 for all ¢ € N. Then, the observations can

be transformed to
Zy = log (Yf) = log (0,52) + log (gf) .
A scale change of magnitude v; then corresponds to a location shift in (Z;: t € N) of size
A; = log (ati) —log (Jt{).
Time series exhibiting a trend do not fulfil the assumption of a centred process. We
modify the approach by applying the log-transformation to the squares of the one-step-

ahead forecast errors of the RM regression. Then, the two-sample tests are applied to
log (é?) in Scheme [2| in Subsection 4.3.1{

Application to the time series

For our example, we only consider the forecast errors computed from the simple linear
model. Due to the isolated peaks, using a robust control chart seems reasonable. We use a
control chart based on the HL22-test. However, using the update-randomisation principle
as proposed in Subsection is not possible. Due to the length of the time series, the
set of randomly drawn splits becomes very large and causes memory problems on the HPC
cluster. As this example serves only as a proof of concept, we leave suitable modifications
of this approach to future research and rely on the simplified randomisation principle as
described in Subsection 3.3.2

From some prior experiments, we found that small windows lead to alarms that are
scattered all over the time range and make it difficult to draw conclusions about the true
change points. Therefore, we choose rather large subwindows of widths h = k£ = 200.
Such long windows make it time-consuming to determine the relationship between the

ARLy and « in order to estimate o*. Hence, we adopt the two-step approach used for RM
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Figure 4.13: Detection of variability changes using the time series of crack-width measure-
ments. The HL22-chart, tuned to ARL; = 370 under normality, is applied to
log-transformed squared one-step-ahead forecast errors from RM regression.
Panel (c) shows the results for the window widths h = k = 200 and ¢ = 125.

regression; see Subsection [£.3.3] We split the subwindows into 20 blocks, each containing
10 observations and compute the sample median from each block. The tests are then
performed on two samples of size 20, formed by the sample medians.

We tune the chart to ARL; = 370 under normality for ¢ = 125. The choice of a larger
ARLj is motivated by the length of the time series, which requires more tests to be
performed than in the previously considered examples.

The results are shown in Figure [4.13] Roughly 80% of the alarms are given between 5:30
and 11:30 o’clock, the time range in which the two anomalous sequences occur. Especially
for the first sequence, which is quite long compared to the second one, the alarms are mainly
given at the beginning and the end. Thus, as noted for the other application examples, the
residual charts seem helpful as a first analysis step that provides a basis for post-processing.
Concrete examples for post-processing in the bridge-monitoring application are discussed
in Abbas et al. (2018)).
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4.6 Summary

In this chapter, we extend the control charts introduced in Chapter [3] to time series where
the signal can be locally described by a regression model. We construct residual control
charts where the two-sample tests are applied to one-step-ahead forecast errors of a robust
estimation of the regression parameters.

The major findings can be summarised as follows:

e Due to the correlation of the forecast errors, the rank-based tests do not ensure

distribution-free control charts.

» Using a robust regression estimator helps to retain structural breaks in the time

series more reliably than a non-robust estimator.

o Most of the charts are anti-conservative under skewed distributions. However, an

approximate distribution independence for in-control processes can still be achieved.

o The general principle is flexible and can also be useful for time series with a locally

constant signal.

o Again, the HL22-chart leads to good overall results with respect to MRL;, detection

rate, and robustness.

e The introduced update-randomisation principle can improve the in-control run-
length behaviour and the general ARL;-performance of the charts as compared to

the simplified randomisation.

o A large width of the regression window seems to be favourable in terms of the

detection quality.

« In case of a local AR(1)-model, none of the charts is even approximately distribution
free. Under a distributional assumption and known AR-parameter, we can still

expect good detection results if the autocorrelation is not too large.






5 Summary and Outlook

In this chapter, we summarise the main results of this thesis (Section [5.1]) and give some
ideas of possible starting points for further research (Section |5.2)).

5.1 Summary

We develop new control charts by applying two-sample location tests in a moving time
window. The goal is to detect abrupt changes of the level or trend in the underlying,
possibly slowly time-varying, signal of the time series under a restricted duration between
two false alarms as measured by the run length.

Compared to ordinary control charts, the herein studied methods do not depend on a
fixed target value. It is not necessary to estimate the process parameters from historical
in-control data or make global parametric model assumptions. Only the most recent
observations are relevant for the decision of whether a change point occurs. This allows
for an adaptation to the signal course, avoiding the confusion of natural, process-inherent
fluctuations with relevant changes that may point at a failure of the monitored system.
Moreover, the charts can be easily set up to resist a specific number of consecutive outliers
for an in-control process. This makes it possible to distinguish persistent structural breaks
from short-term contamination.

We start our analysis under the assumption of a locally constant signal. Then, ordinary
two-sample location tests can be used within our control-chart framework. We consider
the well-known t-test and Wilcoxon rank-sum test. Moreover, we add selected robust
competitors of the t-test to our comparison, which are based on a robust estimator for
the location difference. These are a test based on the difference of the sample medians
(MD), one that uses the difference of the one-sample Hodges-Lehmann estimators (HL1),
and a test based on the two-sample Hodges-Lehmann estimator (HL2). From theoretical
considerations, we find that control charts based on rank tests have a distribution-free
in-control run-length distribution. Moreover, extensive simulations show that control
charts using MD- or HL2-based statistics in combination with a randomisation principle
make it possible to obtain charts that have an approximately distribution-free in-control
average run length (ARLg). Hence, for fixed values of the control limits, we can expect a
similar ARL( under a broad spectrum of distributions. We also find that properties of the
underlying tests are inherited by the control charts. Thus, a test which is powerful over a
wide range of distributions leads to overall good detection properties. A big advantage of

the robust charts over rank-based ones is their reduced sensitivity towards outliers. While



108 5.2 Outlook

the latter lead to a convincing detection quality, they can deteriorate even for a small
amount of contamination. Control charts based on robust two-sample tests can deal with
a reasonable amount of outliers.

The in-control performance of a sequentially applied two-sample location test becomes
worse when using it on a time series with strong trends, as these are confused with
relevant location shifts. Assuming a locally linear signal, we combine the tests with robust
regression techniques and obtain residual control charts that operate on one-step-ahead
forecast errors of a local regression model. The performance of the charts depends on the
assumptions made on the process. Using a simple linear model, it is possible to obtain
similar properties as under the assumption of a locally constant model. However, the
sample used for the regression has to be large to reduce the influence of the correlation
in the forecast errors. We are confronted with more problems, when we assume an
autoregressive model of order 1 (AR(1)-model). Here, we compute the one-step-ahead
forecast errors from a robust estimator of the AR-parameter. The resulting charts are
not even approximately distribution free. Nevertheless, if the underlying distribution is
known and the autocorrelation is not too large, we can still expect a rather good detection
quality.

From our simulations regarding distribution independence for an in-control process,
robustness against outliers, and fast detection of a structural break, we conclude that
the HL2-estimator in combination with a randomisation principle to compute the critical
values leads to very promising results. Additionally, for computing the one-step-ahead
forecast errors, it seems advisable to use a robust estimator not only because it is less
sensitive to outliers, but it also helps to retain location shifts better in the sequence of

forecast errors than a non-robust estimator.

5.2 Outlook

Our experiments show that the general principle of using two-sample tests as a new type
of control scheme has some desirable detection properties. However, from applications
to real-world data it becomes clear that some modifications may be necessary to have
procedures that can deal with the specific peculiarities of the data. In the sequel, we give
some ideas of how the control charts can be adjusted to some goals that may be of interest

in practice.

Estimation of the change point

A structural break in the monitored time series typically leads to a sequence of consecutive
alarms. We can combine our approach with techniques to estimate change points in order
to determine the time point of the structural break. Examples for such procedures are the
methods of Wu and Chu (1993) and Qiu and Yandell (1998]).
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Estimation
from alarm

Alarm block block

Duration d

Figure 5.1: Visual representation for possible change-point estimation. The time of a
change point is estimated from an alarm block which begins with ¢*, after at
least d time points without an alarm have passed.

The basic idea is to estimate the change point by the time index in an alarm block,
where the absolute value of the test statistic is maximal; see for example Morell (2012 p.
33). This technique can also be used to retrospectively thin out the number of alarms in
order to facilitate further processing of the data as in Abbas et al. (2016) or Abbas et al.
(2018).

For the online context, one could use the following idea: Let t* be the time point
of an alarm which is possibly followed by further alarms. Omne could now wait for a
specific duration after the last alarm in this sequence and estimate the true alarm time

retrospectively from this block. A pictorial representation can be found in Figure [5.1]

Additional rules

In an application of the control charts to a time series from an online monitoring in an
intensive care unit, the procedures do not protect against all irregular structures.

In that case, further rules might be necessary to determine whether an alarm can be
traced back to an undesired effect or is a false alarm. One such approach is replacing the
local significance test with a relevance test which compares the estimated height of the
location shift to a specific threshold. This value includes prior knowledge on the magnitude
of relevant structural breaks.

Another way to avoid the triggering of false alarms could be to include an additional
parameter for the number of consecutive alarms. Then, an alarm would only be given if a

minimal number of realisations of the test statistic is beyond the control limits.

Adaptation of the window widths

For the residual charts, we found that the performance can be improved by using longer
time windows for the estimation of the regression parameters. However, at the beginning
of the monitoring, it might not be clear how long the window should be in order to justify
the local model assumptions. Moreover, the duration in which they can be safely assumed
may change throughout the monitoring.

In such cases, it might be advisable to start with a short regression window and increase
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it whilst there is no indication that the local assumptions may be violated. For this, the
regression could be combined with adaptive techniques similar to the one proposed by
Borowski and Fried (2014).

Improving the performance under the local AR(1)-model

Especially for a local AR(1)-model, we found that the procedures are very sensitive to the
noise distribution. Perhaps another estimator for the autocorrelation function could be
useful. Here, we used a Gnanadesikan-Kettenring estimator. However, as we observed for
the simple linear model, the procedure with which the forecast errors are computed can
strongly influence the performance of the chart.

Another way might be to choose control limits for which the charts have an ARL that
is larger than the desired value over a wide range of distributions. Even though the charts
would be conservative, this concept would avoid giving more false alarms than desired.
This is related to control charts with a guaranteed ARL-performance; see for example
WeiB et al. (2018).

Other characteristics

As indicated by an application example in which we apply the charts to transformed
forecast errors in order to detect variability instead of location changes, other characteristics
of a process can be monitored by this principle as well. The two-sample location tests can

be replaced with other suitable tests.



A Proofs

Proposition 1 (In-control run length of control charts based on rank tests)

Let (Yy: t € N) be a sequence of independent and identically distributed random variables
following a continuous distribution with cumulative distribution function F. Let furthermore
(Ty: t>n), n €N, be a sequence of test statistics, where Ty is a rank statistic based on
Y§”) = (Yi_nt1,-..,Yy). Then, the in-control run length of a control chart based on this

sequence of test statistics is distribution free.

Proof
Let RL be the random variable which describes the run length of the control chart. In the
following, we define the run length as the time point at which an alarm is given. This is
different from the main part of this thesis, where the run length is defined as the number
of tests until an alarm is triggered, given by RL —n + 1.

Let Pg be the probability measure under a continuous distribution with cumulative
distribution function F'. We have to show that Pr(RL = t) does not depend on F' for all
t>n.

We consider the sequence (I;: ¢ > n) of indicator variables with

/ 1, alarm at sample (Y;_,11,...,Y})
t pr—
0, no alarm at sample (Y;_,41,...,Y}).

Then
Pe(RL=t)=Pp(l,=0,141=0,.... [, 1 =0,1; =1).

Each I; depends on T}, which is a function of the ranks
R, = (R(Yin1), R(Yionsa), .., R(Y:))
in Y. Then, we can write I, = h (Rt), where h: N — {0,1} is a function. Now, let
R, = (R(V1), R(Y2), ..., R(Y}))

be the vector of the ranks of all observations up to time point ¢. Obviously, R, is a function
g:: Nt — N" of R, with R, = g (R;), so that I, = h(g; (R;)) and

(Ins - i) = (h(gn (Rn)) -, b (ge (Re))) -

This implies that the distribution of (1,,, ..., ;) does not depend on F', since this is true for
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R, and hence the probability of {RL =t} does not depend on F either for all t > n. O

Proposition 2 (Properties of the one-step-ahead forecast errors)

Let (Y;: t € Z) be a time series with Yy = uy + &, where uyy = p+ -t, t € Z. The
process (ey: t € Z) of independent random variables is assumed to be strictly stationary
with expectation E(g;) = 0 and variance Var(g;) = o? for allt € Z. Let moreover fi,_,
and Bt—l be unbiased and regression equivariant regression estimators for pu,—, and f3,
obtained from a time window (Y;_y,...,Y,_1) with a fized design i = —¢+1,...,0. Then,
the following results hold for the expectation, the variance, and the autocovariance function

of the sequence of one-step-ahead forecast errors (&,: t € Z):
(a) E (&) =0 foralltelZ.
(b) Var(e;) = o+ Var (ﬂt_l) + Var (Bt_l) +2- Cov (ﬂt_l,Bt_1> forallt € Z.

(¢)

Var (&), s =0
Cov (,&t,l, ﬂt+s—1) + Cov <,at71ﬂ BtJrsfl) +

Cov (&, é145) = § Cov (Bt_l, ﬂt+5_1) + Cov <Bt—1’ Bt—l—s—l) -
Cov <€t7ﬂt+s_1) — Cov (Et, Bt—l—s—l) , 1<s</?
0, s>/

forallt € Z.
(d) (&;: t € Z) is weakly stationary.

Proof
For the one-step-ahead forecast Y, = fly_q + Bt,l, we can write the one-step-ahead forecast

error at time point t € Z as
=YY= Yi=pt+ftte— (Pt Bia).
(a) As fi,_; is an unbiased estimator for p; 1, it is

E(ﬂt—l) =p-1=p+3-(t—1).
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Then

E@)=B(n+p8 t+e—f—Biy)
=p+B-t+E () —E () - E(B)
=p+p-t—pp—p
=p+p-t—p—p-(t-1-2
=p+pt—p=pF-t+5-0
= 0.

Var (&;) = Var (,u +0t+e— g — Bt,l)
= Var (¢;) + Var (ﬂt_l) + Var (&—1) + 2 - Cov (/th_l, Bt_1>
= 0%+ Var (,&t_l) + Var (Bt_1> +2 - Cov (ﬂt—h Bt—l) )

because ; and (/Jt_l, Bt_1> are independent.

(c) For the lag s € Z, the covariance between &, and &, is given by

Cov (ét, ét+s) = Cov (,u + ﬁ -t + &t — Iat—l - Bt—h

TR (t + S) + €445 — ﬂt-s-s—l - ﬂt—l—s—l)

(

= Cov (ﬂt,l, ﬂtﬂ,l) + Cov (Btfla @tJrsfl) +
(ﬂt—h Bt+s—1) + Cov (Bt—lv ﬂt+5_1) +
(

Cov (,&t—la <‘5t+s) — Cov (Bt—la €t+s> .

« For s =0, we get the result in (b), since

Cov (et, :D’t—l) = Cov (8t, Bt_l) =0

because ¢, is independent of ji,_; and Bt_l.
« For |s| > ¢, we get
Cov (&4, é115) = 0.
The time window (Y;_g,...,Y;) is used to calculate &. Analogously, we use

(Yies—o, ..., Yips) for &5, If |s| > £, both windows are disjoint, so that the two

one-step-ahead forecast errors are uncorrelated.
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o Forl < s </, we get

Cov (&, &445) = Cov (ﬂtfp ﬂt+571) + Cov (Btfl’ Bt+571) +
Cov (ﬂt—h Bt-ﬁ-s—l) + Cov (Bt—la ﬂt+s—1) -
Cov (ét, /fbt+5_1) — Cov <€t7 Bt—i—s—l) )

because

Cov (4, et45) = Cov (:at—h 5t+s) = Cov (51:—17 5t+s) =0,
as ¢ and €44 are independent and €, is not used to calculate fi,_; and Bt,l.

Let 6,@1 be the vector of random errors in the time window Yﬁf)l. We can

write the regression estimators as

fy—1 = -1+ u (51(21) and Btfl = Bi—1 +gs <€§€)1>

with functions g,, gs: R — R because they are assumed to be regression

equivariant and the Y; are linear transformations of the ; with

YVi=¢e+ (1,1) - (g) for all t € Z.

Due to the strict stationarity of (¢;: ¢ € Z), the sequence ((ﬂt,l, th, 5t,1> cte Z)

is weakly stationary, implying that the sequence (&;: t € Z) is covariance sta-

tionary.

Therefore, we can summarise the autocovariance function by

o? + Var (ﬂt_l) + Var (Bt_l) + 2 Cov (ﬂt—p Bt—l) , s=0
Cov (ﬁtqa /Ait+sf1) + Cov (:atfh Bt+sfl> +

Cov (&1, e14s) = § Cov (Byy ftryas) + Cov (By Brias) -

Cov (et,ﬂHS_l) — Cov (5157 Bt+s_1) ’ 1<s</?
0, s> /.

None of the covariances depends on the actual time point ¢, since the strictly

stationary time series is always processed locally in the same way.

(d) The results (a), (b), and (c) do not depend on the time point ¢. Hence, it follows

that (&;: t € Z) is weakly stationary.

[]
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Figure B.1: Asymptotic 95%-confidence intervals for the ARLg after computing a* from
Equation (3.10)) for different subwindow widths under the normality assump-
tion. The vertical dotted lines separate between the different groups of control
charts.
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Figure B.2: Minimal relative efficiencies (MRE) with respect to MRL; and worst-case
detection rates over different groups of distributions for ARL] = 370 under
normality and subwindow widths h = k£ = 10. The vertical dotted lines
separate between the different groups of control charts.

Shift-height factor: 0.5 (0), 1 (0), 1.5 (A), 2 (©).
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Figure B.3: Minimal relative efficiencies (MRE) with respect to MRL; and worst-case
detection rates over different groups of distributions for ARL] = 250 under
normality and subwindow widths h = k£ = 20. The vertical dotted lines
separate between the different groups of control charts.

Shift-height factor: 0.5 (0), 1 (0), 1.5 (A), 2 (©).
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Figure B.4: Minimal relative efficiencies (MRE) with respect to MRL; and worst-case
detection rates over different groups of distributions for ARL] = 370 under
normality and subwindow widths h = k£ = 20. The vertical dotted lines
separate between the different groups of control charts.

Shift-height factor: 0.5 (0), 1 (0), 1.5 (A), 2 (©).
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Figure B.5: Minimal relative efficiencies (MRE) with respect to MRL; and worst-case
detection rates over different groups of distributions for ARL] = 250 under
normality and subwindow widths A = 20, £ = 10. The vertical dotted lines
separate between the different groups of control charts.
Shift-height factor: 0.5 (0), 1 (0), 1.5 (A), 2 (©).
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Figure B.6: Minimal relative efficiencies (MRE) with respect to MRL; and worst-case
detection rates over different groups of distributions for ARL] = 370 under
normality and subwindow widths A = 20, £ = 10. The vertical dotted lines
separate between the different groups of control charts.

Shift-height factor: 0.5 (0), 1 (0), 1.5 (A), 2 (©).
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Figure B.7: Minimal relative efficiencies (MRE) with respect to ARL; over different groups
of distributions for ARL; = 250 under normality and subwindow widths
h =k = 10. The vertical dotted lines separate between the different groups of

control charts.

Shift-height factor: 0.5 (0), 1 (O), 1.5 (A), 2 (©).
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Figure B.8: Minimal relative efficiencies (MRE) with respect to ARL; over different groups
of distributions for ARL; = 250 under normality and subwindow widths
h =k = 20. The vertical dotted lines separate between the different groups of

control charts.

Shift-height factor: 0.5 (0), 1 (O), 1.5 (A), 2 (©).
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Figure B.9: Minimal relative efficiencies (MRE) with respect to ARL; over different groups
of distributions for ARL; = 250 under normality and subwindow widths
h = 20, k = 10. The vertical dotted lines separate between the different

groups of control charts.

Shift-height factor: 0.5 (0), 1 (O), 1.5 (A), 2 (©).
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Figure B.10: Minimal relative efficiencies (MRE) with respect to MRL; and worst-case
detection rates for the shift alternative over different groups of distributions
for ARL{ = 250 under normality, subwindow widths h = k = 10, and ¢ = 50.
Shift-height factors: 0.5 (o), 1 (O), 1.5 (A), 2 (©).



B Figures

125

(a) MRE: N(O, 1), t5, tQ, Xg, X%

(b) Detection rates: N'(0,1), t5, t2, X3, X3

1.00 o 1.00-
A A &
A 5
0.75 s 0.75
kS
o s
o o & ¢ o © 3 o O o o o
Z 050 5 & £ 050 5 .
[m] O D
o o 8 © @ © <&
o o g 4 2 a0
o o <& 5 N N N R
0.25 o O 50.25
g o o o o
o & o o = o
8 e g o o
0.00 0.00-
> NZ " v % v X X Q Q N NZ " v > v X X Q Q
N N Vv Vv . ; N N Vv Vv . ‘
‘2\\/ Q\V ‘2\\/ Q‘V @Q @Q %Qb Q«A‘ 4\[/04-0 zb\’b \2\\/ Q‘V ‘2\\/ \2\\/ @o @Q 'b(\b (\”;\* _\b0+0 zb\’b
£F [N £F QYN
> S > S
N X
Control chart Control chart
(c) MRE: N(0,1), ts5, (d) Detection rates: N'(0,1), t5, to
1.00 o 1.00-
AN AN O A 0
AA o &
o 5
0.75 s 0.75
§ g ©° 8 : 2
w | ° o o 6 T o o o o o
Z 050 5 s £ 050 5 5
© & 3 © o
=] A o
<& s N A A A A A A o N
0.25 §025
o & o o = o
A o O o o
o
0.00 0.00-
> NZ " v N v X X Q Q> N NZ " v > v X X Q Q
N N Vv v . N N vV Vv . ‘
RS N\ @Q @Q %Qb Aq’b@‘ .\LPA;_O le\’b RN VARV AR @Q @Q %Qb A((Z;‘* .\L,°+0 eb\’b
X FQ W < FQ W
> S > S
N N
Control chart Control chart
(e) MRE: X3, x2 (f) Detection rates: x3, x3
1.00 & el 1.00-
o b £
5 © ©
< <
075 5§05 % o
O o - o
o
w b A 3 A A = A = A
& 0.50 £ 050
= O m} [m] . A
=
© o o o o ;%j o
o o ° o ]
=] =]
0.25 o 50250 o & G -
u] & o
i o o o o © © o o
o o
0.00 0.00-
> a9 N 92 N 92 X hY Q Q N S N v > 92 X X Q
N N vV Vv . N N vV Vv . ‘
RS RN\ @Q @Q %Qb Aq’b@‘ .\LPA;_O eb\’b RN VARV AR @Q @Q %Qb A((Z;‘\\ .\b0+0 eb\’b
£ QY N PR
\»Qb' S QQB‘ S

Control chart

Figure B.11:

Control chart

Minimal relative efficiencies (MRE) with respect to MRL; and worst-case

detection rates for the shift alternative over different groups of distributions
for ARL{ = 370 under normality, subwindow widths h = k = 10, and ¢ = 50.
Shift-height factors: 0.5 (0), 1 (0), 1.5 (A), 2 (©).
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Figure B.12: Minimal relative efficiencies (MRE) with respect to MRL; and worst-case
detection rates for the shift alternative over different groups of distributions
for ARL{ = 370 under normality, subwindow widths A = k = 10, and ¢ = 125.
Shift-height factor: 0.5 (0), 1 (O), 1.5 (4), 2 ().
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Figure B.13: Minimal relative efficiencies (MRE) with respect to ARL; for the shift alter-
native over different groups of distributions for ARL; = 250 under normality,
subwindow widths h = k£ = 10, and ¢ = 50.
Shift-height factors: 0.5 (o), 1 (O), 1.5 (A), 2 (©).
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Figure B.14: Minimal relative efficiencies (MRE) with respect to ARL; for the shift alter-
native over different groups of distributions for ARL; = 250 under normality,
subwindow widths h = k£ = 10, and ¢ = 125.
Shift-height factors: 0.5 (o), 1 (O), 1.5 (A), 2 (©).
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Table C.1: ARLq for selected values of a under normality for the subwindow widths
h = k = 20. The values in brackets are the standard errors. All values are
rounded to one decimal place.

Significance level a

Control chart 0.005 0.02 0.05
ordinary 562.3 (5.6) 169.1 (1.7) 73.8 (0.8)
t-chart simpl. random. 566.9 (5.8 168.0 (1.7 74.1 (0.8
p
simulative 569.2 (5.7) 169.1 (1.8) 70.8 (0.8)
simpl. random. 573.2 (6.6) 168.9 (1.8) 72.8 (0.8)
HL11-chart simulative 544.0 (5.5) 165.9 (1.7) 715 (0.8)
simpl. random. 560.9 (6.1) 166.9 (1.7) 73.1 (0.8)
HLAZ-chart o lative 542.2 (5.5) 164.2 (1.7) 71.0 (0.8)
simpl. random. 567.3 (6.3) 165.6 (1.7) 73.0 (0.8)
HL21-chart simulative 526.0 (5.3) 165.4 (1.7) 71.5 (0.8)
simpl. random. 563.8 (6.3) 166.9 (1.8) 72.9 (0.8)
HL22-chart 4 lative 525.7 (5.3) 165.4 (1.7) 71.1 (0.8)
simpl. random. 647.4 (15.0) 191.5 (3.7) 80.8 (1.3)
MD1-chart simulative 549.8 (5.6) 169.3 (1.7) 747 (0.8)
simpl. random.  653.7 (15.1) 198.3 (4.4) 81.2 (1.4)
MD2-chart simulative 543.0 (5.6) 170.1 (1.7) 74.5 (0.8)
Wilcoxon 548.8 (5.5) 166.1 (1.7) 72.5 (0.8)
Rank chart Median 471.0 (4.9) 149.8 (1.6) 55.6 (0.6)
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Table C.2: ARLg for selected values of a under normality for the subwindow widths
h =20, k = 10. The values in brackets are the standard errors. All values are
rounded to one decimal place.

Significance level «

Control chart 0.005 0.02 0.05
ordinary 383.8 (3.9) 113.0 (1.2) 49.2 (0.5)
t-chart simpl. random. 375.1 (3.9) 112.4 (1.2) 49.3 (0.5)
simulative 386.5 (3.9) 110.6 (1.1) 48.1 (0.5)
simpl. random. 324.4 (3.6) 107.4 (1.2) 47.5 (0.5)
HLAl-chart o ative 377.8 (3.8) 112.0 (1.2) 485 (0.5)
simpl. random. 356.8 (3.9) 110.0 (1.2) 47.7 (0.5)
HLA2-chart 5 ative 365.6 (3.7) 110.7 (1.2) 48.3 (0.5)
simpl. random. 322.5 (3.5) 107.4 (1.1) 48.4 (0.5)
HL21-chart simulative 374.3 (3.8) 112.2 (1.1) 485 (0.5)
simpl. random. 352.0 (3.9) 111.0 (1.2) 48.7 (0.5)
HL22-chart simulative 367.3 (3.7) 112.3 (1.2) 49.0 (0.5)
simpl. random. 234.5 (4.8) 93.2 (1.8) 46.9 (0.6)
MDI-chart simulative 418.0 (4.3) 115.0 (1.2) 50.0 (0.5)
simpl. random.  300.2 (6.3) 109.3 (2.1) 51.8 (0.8)
MD2-chart simulative 407.1 (4.2) 117.4 (1.2) 50.3 (0.5)
Wilcoxon 374.6 (3.8) 112.0 (1.2) 48.6 (0.5)
Rank chart Median 374.9 (3.8) 89.3 (0.9) 49.5 (0.5)
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Table C.3: Estimated regression coefficients for the linearised relationship between the
ARLy and « in Equation (3.9) under normality for the subwindow widths
h =k =20 and h = 20, k = 10, rounded to two decimal places. The values in
brackets are the standard errors and R? denotes the coefficient of determination,

both rounded to four decimal places.

—

Window widths Control chart log (7o) o2 R?
ordinary 1.69 (0.0142) -0.88 (0.0034) 0.9998

t-chart simpl. random. 1.68 (0.0108) -0.88 (0.0026) 0.9999
simulative 1.65 (0.0304) -0.88 (0.0073) 0.9993

simpl. random. 1.63 (0.0116) -0.89 (0.0028) 0.9999

HLAl-chart = o lative 1.70 (0.0215) -0.87 (0.0051) 0.9996

simpl. random. 1.66 (0.0098) -0.88 (0.0023) 0.9999

HLI2-chart =5 ative 1.69 (0.0214) -0.87 (0.0051) 0.9996

b=k — 20 ] simpl. random. 1.63 (0.0071) -0.89 (0.0017) 1.0000
HL21-chart o lative 1.74 (0.0290) -0.85 (0.0069) 0.9993

simpl. random. 1.65 (0.0094) -0.89 (0.0022) 0.9999

HL22-chart o lative 1.72 (0.0315) -0.86 (0.0075) 0.9992

simpl. random. 1.79 (0.0440) -0.88 (0.0105) 0.9984

MDl-chart 5 ative 1.71 (0.0159) -0.87 (0.0038) 0.9998

simpl. random. 1.79 (0.0457) -0.89 (0.0109) 0.9983

MD2-chart g lative 1.74 (0.0172) -0.86 (0.0041) 0.9997

Rank chag WVilcoxon 1.69 (0.0153) -0.87 (0.0037) 0.9998

A ALY Median 1.42 (0.1134) -0.89 (0.0271) 0.9899

ordinary 1.25 (0.0096) -0.89 (0.0023) 0.9999

t-chart simpl. random. 1.28 (0.0103) -0.88 (0.0025) 0.9999
simulative 1.23 (0.0287) -0.89 (0.0069) 0.9993

simpl. random. 1.44 (0.0323) -0.82 (0.0077) 0.9990

HLAl-chart = o lative 1.21 (0.0200) -0.89 (0.0048) 0.9997

simpl. random. 1.31 (0.0219) -0.86 (0.0052) 0.9996

HLI2-chart g Wative 1.24 (0.0222) -0.89 (0.0053) 0.9996

h=20, k=10 HLoLchart simpl. random. 1.49 (0.0329) -0.81 (0.0079) 0.9990
’ simulative 1.21 (0.0236) -0.89 (0.0056) 0.9996
simpl. random. 1.36 (0.0246) -0.85 (0.0059) 0.9995

HL22-chart o lative 1.23 (0.0266) -0.89 (0.0064) 0.9994

simpl. random. 1.81 (0.0291) -0.69 (0.0070) 0.9989

MDl-chart g | ative 1.17 (0.0166) -0.91 (0.0040) 0.9998

simpl. random. 1.75 (0.0419) -0.75 (0.0100) 0.9980

MD2-chart . lative 1.21 (0.0112) -0.90 (0.0027) 0.9999

Rank el WVilcoxon 1.24 (0.0104) -0.88 (0.0025) 0.9999

A ALY Median 1.22 (0.1146) -0.86 (0.0274) 0.9889
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Table C.4: Ratios of the ARLy under a non-normal distribution compared to the ARLg
under normality for the t-charts with subwindow widths A = k = 20. All values
are rounded to two decimal places.

t-charts
ordinary simulative simpl. randomised
a ts t x5 xi s t2 x5 xi s t2 X3

0.0025 1.22  2.38 1.35 2.36 1.21 2.35 1.35 233 1.00 1.07  1.04 1.09
0.0050 1.15 1.99 1.24 1.91 1.15 1.98 1.24 1.91 0.99 1.05 1.02 1.06
0.0075 1.12 1.83 1.20 1.70 1.12 1.83 1.20 1.70 1.00 1.07  1.02 1.06
0.0100 1.12 1.76 1.18 1.61 1.12 1.75 1.17  1.59 1.01 1.07  1.02 1.06
0.0125 1.11 1.67 1.15 1.50 1.10 1.66 1.14 1.50 1.02 1.08 1.02 1.07
0.0150 1.10 1.61 1.14 1.45 1.10 1.61 1.14 1.45 1.02 1.06 1.02 1.06
0.0200 1.09 1.53 1.12 1.37  1.09 1.52 1.12 1.36 1.03 1.08 1.03 1.06

Table C.5: Ratios of the ARLy under a non-normal distribution compared to the ARLg
under normality for the t-charts with subwindow widths A = 20, k = 10. All
values are rounded to two decimal places.

t-charts
ordinary simulative simpl. randomised
a ts t x5 xi s t2 x5 x§ s t2 X3

0.0025 1.22  2.02 1.18 146  1.22 199 120 147 099 090 1.02 1.02
0.0050 1.18 1.80 120 147 1.18 1.80 1.19 1.46 1.01 093 1.03 1.06
0.0075 1.15 1.67 118 145 1.15 1.66 1.15 1.39 1.01 094 1.03 1.07
0.0100 1.15 1.60 1.17 144 1.15 1.60 1.16 1.41 1.02 097 1.03 1.09
0.0125 1.14 153 116 141 1.14 153 116 1.39 1.03 097 1.02 1.08
0.0150 1.13 1.48 1.14 137 1.13 147 1.12 1.35 1.02 096 1.01 1.07
0.0200 1.12 1.41 1.13 134 112 1.40 1.11 1.32 1.03 097 1.02 1.06
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Table C.6: Ratios of the ARLy under a non-normal distribution compared to the
ARL( under normality for the robust control charts with subwindow widths

h =k = 20. All values are rounded to two decimal places.

HL11-charts

HL12-charts

simulative

simpl. randomised

simulative

simpl. randomised

ts

ta X3

Xi ot ot x5 x4

ts

to

X3

X3

ts

to

X3

Xi

0.0025
0.0050
0.0075
0.0100
0.0125
0.0150
0.0200

1.20
1.16
1.16
1.14
1.12
1.12
1.11

1.49 0.33
1.38 0.37
1.35 041
1.31 0.43
1.28 0.45
1.28 047
1.26 0.48

0.09 099 1.01 1.02 0.86
0.11 1.00 1.03 1.05 1.04
0.13 1.02 1.06 1.08 1.16
0.15 1.01 1.08 1.09 1.23
0.16 1.01 1.08 1.11 1.29
0.17 1.02 1.08 1.12 1.31
0.19 1.02 1.08 1.13 1.37

1.21
1.18
1.15
1.14
1.13
1.13
1.11

1.64
1.49
1.41
1.38
1.35
1.33
1.30

0.49
0.50
0.52
0.54
0.55
0.56
0.57

0.13
0.15
0.17
0.19
0.20
0.20
0.22

1.01
1.01
1.01
0.99
1.01
1.03
1.03

1.01
1.03
1.05
1.04
1.05
1.06
1.05

0.96
0.98
1.00
1.01
1.03
1.07
1.07

0.65
0.88
1.07
1.19
1.28
1.37
1.42

HL21-charts

HL22-charts

simulative

simpl. randomised

simulative

simpl. randomised

ts

ta X3

Xi ot ot x5 A4

ts

to

X3

X3

ts

to

X3

X3

0.0025
0.0050
0.0075
0.0100
0.0125
0.0150
0.0200

1.27
1.23
1.21
1.20
1.17
1.16
1.14

1.84 0.83
1.67 0.92
1.59 0.96
1.55 0.98
1.52 1.01
1.48 1.03
1.44 1.05

0.76 1.00 0.97 1.03 1.10
0.92 1.01 099 1.02 1.03
1.02 1.01 0.98 1.00 1.01
1.11 1.02 1.02 1.01 0.99
1.16 1.01 1.01 1.01 0.97
1.21 1.02 1.02 1.01 0.99
1.28 1.02 1.03 1.01 0.99

1.26
1.25
1.22
1.20
1.18
1.16
1.14

1.95
1.77
1.66
1.59
1.57
1.52
1.47

1.23
1.26
1.26
1.26
1.26
1.25
1.25

2.69
2.65
2.57
2.50
2.45
2.38
2.32

1.00
1.02
1.03
1.02
1.02
1.02
1.02

0.98
1.00
1.01
1.02
1.02
1.03
1.04

1.02
1.01
1.02
1.02
1.01
1.01
1.01

1.00
1.00
1.01
0.99
1.01
1.01
1.00

MD1-charts

MD2-charts

simulative

simpl. randomised

simulative

simpl. randomised

ts

ta X3

Xi ot ot x3 x4

ts

to

X3

X3

ts

to

X3

Xi

0.0025
0.0050
0.0075
0.0100
0.0125
0.0150
0.0200

1.35
1.29
1.27
1.25
1.23
1.21
1.20

2.13 0.51
1.90 0.57
1.80 0.60
1.74 0.62
1.68 0.64
1.65 0.65
1.58 0.66

0.18 099 1.01 1.05 1.01
0.23 1.01 1.00 1.07 1.01
0.26 1.01 1.04 1.10 1.02
0.29 099 1.02 1.09 0.98
0.31 099 1.00 1.07 0.99
0.32 099 1.01 1.08 0.98
0.33 099 1.02 1.08 0.98

1.38
1.31
1.27
1.26
1.25
1.23
1.22

2.33
2.06
1.94
1.85
1.79
1.75
1.66

0.78
0.80
0.80
0.81
0.81
0.81
0.81

0.46
0.46
0.46
0.46
0.46
0.46
0.45

0.99
0.99
0.99
0.98
0.99
0.99
0.97

1.00
1.02
1.01
1.00
0.99
1.00
1.01

1.02
1.04
1.06
1.06
1.06
1.04
1.02

0.97
1.04
1.07
1.06
1.07
1.04
1.02
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Table C.7: Ratios of the ARLy under a non-normal distribution compared to the
ARL( under normality for the robust control charts with subwindow widths
h =20, k= 10. All values are rounded to two decimal places.

HL11-charts HL12-charts
simulative simpl. randomised simulative simpl. randomised
a ts t2 X3 xP ot b i o ot o X3 xX§ st X

0.0025 0.99 0.61 0.24 0.07 0.90 0.60 0.90 0.62 1.16 0.95 0.41 0.11 0.98 0.69 0.91 0.46
0.0050 1.00 0.72 0.31 0.10 091 0.68 094 0.76 1.12 098 048 0.15 098 0.76 0.94 0.58
0.0075 1.00 0.75 0.36 0.13 0.93 0.73 0.98 0.84 1.10 1.00 0.50 0.18 0.97 0.81 0.97 0.68
0.0100 1.01 0.78 0.38 0.14 0.95 0.77 1.01 0.89 1.09 1.00 0.52 0.19 0.97 0.83 0.97 0.75
0.0125 1.02 0.81 041 0.16 0.95 0.79 1.02 094 1.11 1.02 0.53 0.21 0.99 0.84 0.98 0.81
0.0150 1.01 0.82 0.43 0.17 0.96 0.80 1.02 096 1.09 1.01 0.55 0.22 1.00 0.87 0.96 0.86
0.0200 1.01 0.85 0.47 0.20 0.95 0.82 1.03 1.02 1.09 1.01 0.56 0.24 1.01 0.88 0.98 0.94

HL21-charts HL22-charts
simulative simpl. randomised simulative simpl. randomised
a ts t2 X3 x§ ot b xd o ot ot X3 x§ s X

0.0025 1.11 1.07 0.48 0.23 0.99 091 0.98 086 1.27 1.68 0.80 0.70 1.00 0.96 1.00 0.98
0.0050 1.08 1.09 0.58 0.34 0.99 0.92 0.98 087 1.20 1.56 0.91 092 1.02 0.98 1.03 0.99
0.0075 1.10 1.11 0.65 0.41 1.01 0.93 0.98 0.85 1.19 149 0.95 1.05 1.03 0.98 1.03 0.99
0.0100 1.11 1.14 0.70 0.48 1.02 094 1.00 0.87 1.19 145 0.99 1.14 1.03 0.97 1.02 0.99
0.0125 1.11 1.13 0.75 0.54 1.01 0.93 1.00 0.88 1.19 1.42 1.02 1.21 1.04 0.98 1.02 0.99
0.0150 1.12 1.13 0.78 0.59 1.02 0.95 1.00 0.90 1.18 1.40 1.03 1.27 1.03 0.97 1.01 0.99
0.0200 1.12 1.14 0.83 0.66 1.01 094 0.98 092 1.17 1.36 1.07 1.36 1.04 0.98 1.01 0.99

MD1-charts MD2-charts
simulative simpl. randomised simulative simpl. randomised
a ts o x§ Xf ts ot oxd X ot ot X3 o 6t x§ K

0.0025 1.26 1.63 0.45 0.10 1.00 0.96 1.00 0.79 1.43 243 0.79 0.52 1.07 1.10 1.02 1.00
0.0050 1.24 1.55 0.52 0.13 1.01 098 1.04 0.82 1.35 2.16 0.82 0.57 1.05 1.07 1.02 1.04
0.0075 1.23 1.52 0.56 0.17 0.99 097 1.02 0.83 1.33 1.99 0.85 0.59 1.06 1.04 1.05 1.05
0.0100 1.22 1.46 0.59 0.19 0.99 096 1.02 0.86 1.31 1.89 0.85 0.60 1.05 1.04 1.06 1.08
0.0125 1.19 141 0.61 0.21 1.00 095 1.01 087 1.29 1.82 0.85 0.59 1.03 1.03 1.05 1.07
0.0150 1.17 138 0.62 0.23 1.00 0.95 1.02 0.89 1.27 1.77 0.85 0.59 1.03 1.00 1.05 1.07
0.0200 1.15 1.36 0.65 0.26 1.00 0.96 1.01 090 1.25 1.68 0.85 0.58 1.02 0.99 1.05 1.10
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Table C.8: Minimal MRL;-values for different noise distributions, separated by shift-height
factor A and nominal ARL{ under normality, over all control charts for the
subwindow widths h = k = 20.

Shift-height factor A

ARL; Distribution 0.5 1 1.5 2
N(0,1) 62 16 12 10

ts 52 16 12 10

250 to 36 15 12 11
X3 19 12 9 8

v 1 8 6 5

N(0,1) 100 17 13 11

ts 89 17 13 11

370 to 70 16 13 11
X3 20 13 10 8

2 13 8 7 5

Table C.9: Minimal MRL;-values for different noise distributions, separated by shift-height
factor A and nominal ARL; under normality, over all control charts for the
subwindow widths h = 20, k = 10.

Shift-height factor A

ARL; Distribution 0.5 1 1.5 2
N(0,1) 98.5 10 8 6

ts 97 11 8 6

250 123 88 11 8 7
X3 18 8 6 5

2 8 5 4 3

N(0,1) 142 12 8 7

ts 141 15 9 7

370 123 135 15 9 7
X3 26 8 6 5

X3 9 5 1 3
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Table C.10: ARLg for selected values of o under normality for the subwindow widths

= k = 20 and different widths ¢ of the regression window. The values in
brackets are the standard errors. All values are rounded to one decimal place.

Significance level «

14 Control chart 0.005 0.02 0.05
ordinary 167.8 (1.8) 732 (0.8) 382 (0.5)
f-charts update random.  169.6 (1.8)  73.4 (0.8)  38.2 (0.5)
HL11-chart 192.7 (21)  80.1(0.9)  41.3 (0.5)
HL12-chart 191.7 (2.0)  80.2 (0.9)  41.2 (0.5)
50 HL21-chart 196.1 (2.1)  81.3(0.9)  41.7 (0.5)
HL22-chart 1945 (2.1)  80.8 (0.9)  41.9 (0.5)
MD1-chart 243.9 (3.1)  104.0 (1.3)  53.4 (0.7)
MD2-chart 244.9 (3.1) 1045 (1.3) 526 (0.7)
Wilcoxon 180.3 (1.9)  77.1 (0.9)  40.6 (0.5)
Rank charts —y p o0 239.2 (2.5)  96.0 (1.0)  40.9 (0.5)
ordinary 340.0 (3.5) 1184 (1.2) 57.4 (0.6)
f-charts update random.  338.3 (3.4) 1188 (1.2)  57.5 (0.6)
HL11-chart 346.0 (3.6) 122.5 (1.3)  58.1 (0.6)
HL12-chart 3449 (3.6) 1217 (1.3) 581 (0.6)
125 HL21-chart 349.4 (3.7)  121.0 (1.3)  58.1 (0.6)
HL22-chart 347.0 (3.6) 121.9 (1.3)  58.2 (0.6)
MD1-chart 354.6 (4.6) 1321 (1.6)  64.7 (0.8)
MD2-chart 360.7 (4.8) 134.7 (1.7)  65.2 (0.9)
Wilcoxon 344.0 (3.5) 120.2 (1.3)  57.7 (0.6)
Rank charts 1 dian 342.4 (3.5) 1206 (1.3) 485 (0.5)
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Table C.11: ARLy for selected values of o under normality for the subwindow widths

h =20, k = 10 and different widths ¢ of the regression window. The values in
brackets are the standard errors. All values are rounded to one decimal place.

Significance level «

14 Control chart 0.005 0.02 0.05

i ordinary 150.0 (1.5)  60.1 (0.6)  30.9 (0.3)

update random. 148.1 (1.5)  60.5 (0.7) 30.7 (0.3)

HL11-chart 145.1 (1.6)  60.2 (0.6)  31.0 (0.3)
HL12-chart 156.4 (1.7)  62.7 (0.7)  31.5 (0.4)

50 HL21-chart 145.3 (1.6)  61.2 (0.7)  31.6 (0.4)
HL22-chart 154.8 (1.7) 632 (0.7)  32.1(0.4)
MD1-chart 132.5 (1.7)  60.1 (0.7)  33.5 (0.4)
MD2-chart 164.4 (2.3)  69.8 (0.9)  36.6 (0.5)
Wilcoxon 161.5 (1.6)  62.7 (0.7)  31.6 (0.4)

Ranlc charts =y 1 fian 198.3 (2.0)  62.1 (0.6)  36.8 (0.4)
ordinary 292.0 (2.9) 96.3 (1.0)  44.1 (0.5)

f-charts update random.  288.4 (2.9)  96.0 (1.0)  43.7 (0.5)
HL11-chart 270.2 (3.0)  90.4 (0.9)  43.0 (0.4)
HL12-chart 204.8 (3.2)  94.1 (L0)  43.5 (0.5)

125 HL21-chart 272.1 (3.1)  91.6 (0.9)  43.1 (0.4)
HL22-chart 202.0 (3.2) 945 (1.0)  43.7 (0.5)
MD1-chart 201.2 (2.7)  80.0 (0.9)  42.7 (0.5)
MD2-chart 255.6 (3.7)  93.3(1.2)  46.5 (0.6)
Wilcoxon 208.4 (3.0)  96.8 (1.0)  44.2 (0.5)

Rank charts o gj0 308.4 (3.1) 805 (0.8)  46.2 (0.5)
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Table C.12: Estimated regression coefficients for the linearised relationship between the

ARLj and « in Equation (3.9) under normality for the subwindow widths
h =k = 20 and different widths ¢ of the regression window, rounded to two
decimal places. The values in brackets are the standard errors and R? denotes
the coefficient of determination, both rounded to four decimal places.

—

14 Control chart log (7o) A4 R?
ordinary 1.80 (0.0365) -0.63 (0.0087) 0.9979

f-chart update. random. 1.80 (0.0373) -0.63 (0.0089) 0.9978
HL11-chart 1.81 (0.0336) -0.65 (0.0080) 0.9983
HL12-chart 1.80 (0.0338) -0.65 (0.0081) 0.9983

50 HL21-chart 1.81 (0.0304) -0.66 (0.0073) 0.9986
HL22-chart 1.82 (0.0281) -0.65 (0.0067) 0.9938
MD1-chart 2.09 (0.0401) -0.64 (0.0096) 0.9976
MD2-chart 2.05 (0.0429) -0.66 (0.0103) 0.9973
Wilcoxon 1.84 (0.0294) -0.64 (0.0070) 0.9987

Rank chart .y rojian 1.64 (0.1080) -0.72 (0.0258) 0.9861
ordinary 1.79 (0.0192) -0.76 (0.0046) 0.9996

f-chart update. random. 1.78 (0.0191) -0.76 (0.0046) 0.9996
HL11-chart 1.78 (0.0237) -0.77 (0.0057) 0.9994
HL12-chart 1.78 (0.0225) -0.77 (0.0054) 0.9995

125 HL21-chart 1.75 (0.0204) -0.78 (0.0049) 0.9996
HL22-chart 1.76 (0.0183) -0.77 (0.0044) 0.9996
MD1-chart 2.02 (0.0203) -0.73 (0.0049) 0.9995
MD2-chart 2.02 (0.0209) -0.73 (0.0050) 0.9995
Wilcoxon 1.78 (0.0168) -0.77 (0.0040) 0.9997

Rank chart yro jian 1.54 (0.1046) -0.81 (0.0250) 0.9896
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Table C.13: Estimated regression coefficients for the linearised relationship between the
ARLy and « in Equation under normality for the subwindow widths
h =20, k = 10 and different widths ¢ of the regression window, rounded to
two decimal places. The values in brackets are the standard errors and R?
denotes the coefficient of determination, both rounded to four decimal places.

14 Control chart log (7o) A R?
t chart ordinary 1.42 (0.0236) -0.68 (0.0056) 0.9992
update. random. 1.43 (0.0297) -0.68 (0.0071) 0.9988
HL11-chart 1,51 (0.0328) -0.66 (0.0079) 0.9984
HL12-chart 1.4 (0.0267) -0.68 (0.0064) 0.9990
0 HL21-chart 1.54 (0.0310) -0.65 (0.0074) 0.9986
HL22-chart 1.48 (0.0308) -0.67 (0.0074) 0.9987
MD1-chart 1.80 (0.0241) -0.58 (0.0058) 0.9989
MD2-chart 1.72 (0.0312) -0.64 (0.0075) 0.9985
Rank chart Wilcoxon 1.41 (0.0266) -0.69 (0.0064) 0.9991
Median 1.38 (0.0740) -0.72 (0.0177) 0.9933
tchart ordinary 1.35 (0.0145) -0.82 (0.0035) 0.9998
update. random. 1.37 (0.0186) -0.81 (0.0044) 0.9997
HL11-chart 1.37 (0.0105) -0.80 (0.0025) 0.9999
HL12-chart 1.30 (0.0114) -0.83 (0.0027) 0.9999
. HL21-chart 1.38 (0.0129) -0.80 (0.0031) 0.9998
HL22-chart 1.33 (0.0140) -0.82 (0.0033) 0.9998
MD1-chart 1.76 (0.0086) -0.67 (0.0021) 0.9999
MD2-chart 1.62 (0.0184) -0.74 (0.0044) 0.9996
Rk chagg Vilcoxon 1.33 (0.0131) -0.83 (0.0031) 0.9998
Median 1.31 (0.0994) -0.81 (0.0238) 0.9906
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Table C.14: Ratios of the ARLy under a non-normal distribution compared to the ARLg

under normality for the residual charts with subwindow widths h = k£ = 20
and different widths ¢ of the regression window. All values are rounded to
two decimal places.

¢ =50 =125
Control « ts to X% X% ts to Xg X?
chart
0.0025 1.17 1.52 1.19 2.11 1.09 1.17 1.01 1.17
0.0050 1.17 1.50 1.19 2.00 1.07 1.17 1.03 1.18
update 0.0075 1.18 1.53 1.20 1.98 1.08 1.18 1.04 1.19
random. 0.0100 1.17 1.52 1.18 1.92 1.08 1.19 1.03 1.20
t-chart 0.0125 1.17 1.51 1.18 1.87 1.09 1.20 1.04 1.20
0.0150 1.16 1.50 1.17 1.85 1.07 1.19 1.03 1.20
0.0200 1.14 1.50 1.16 1.77 1.07 1.21 1.04 1.20
0.0025 0.94 0.93 1.09 1.45 0.98 0.97 0.99 0.94
0.0050 0.96 0.93 1.08 1.36 0.98 0.98 1.00 0.96
Median 0.0075 0.96 0.95 1.07 1.32 1.00 0.99 1.00 0.97
chart 0.0100 0.97 0.95 1.07 1.29 1.00 0.99 0.99 0.95
0.0125 0.96 0.95 1.07 1.30 1.00 1.02 0.99 0.97
0.0150 0.96 0.95 1.07 1.27 1.00 0.99 1.00 0.97
0.0200 0.96 0.95 1.06 1.26 1.00 1.00 0.99 0.97
0.0025 1.09 1.29 0.91 0.93 1.05 1.12 0.88 0.69
0.0050 1.10 1.25 0.90 0.89 1.04 1.09 0.88 0.71
Wilcoxon 0.0075 1.08 1.24 0.90 0.87 1.03 1.10 0.91 0.75
chart 0.0100 1.08 1.23 0.90 0.85 1.02 1.08 0.90 0.75
0.0125 1.09 1.21 0.90 0.84 1.03 1.07 0.89 0.76
0.0150 1.08 1.21 0.91 0.83 1.04 1.07 0.90 0.76
0.0200 1.07 1.19 0.89 0.81 1.04 1.06 0.91 0.77
0.0025 1.01 1.12 1.38 2.88 1.00 1.07 1.08 1.16
0.0050 1.04 1.14 1.27 2.30 1.02 1.07 1.06 1.12
0.0075 1.03 1.13 1.22 2.11 1.00 1.06 1.02 1.11
HL11-chart 0.0100 1.03 1.12 1.20 1.97 1.00 1.06 1.02 1.11
0.0125 1.02 1.12 1.18 1.89 1.00 1.07 1.02 1.12
0.0150 1.02 1.13 1.16 1.83 1.00 1.05 1.01 1.11
0.0200 1.03 1.13 1.15 1.79 1.01 1.05 1.03 1.13
0.0025 1.02 1.11 1.09 1.51 1.01 1.07 0.97 0.80
0.0050 1.03 1.13 1.06 1.43 1.02 1.06 0.96 0.85
0.0075 1.04 1.12 1.05 1.41 1.01 1.06 0.97 0.90
HL12-chart 0.0100 1.04 1.13 1.05 1.40 1.00 1.06 0.96 0.92
0.0125 1.03 1.12 1.04 1.38 1.01 1.05 0.95 0.95
0.0150 1.03 1.11 1.03 1.38 1.00 1.04 0.95 0.97
0.0200 1.03 1.12 1.03 1.38 1.02 1.05 0.96 1.01
0.0025 1.01 1.08 1.18 2.10 1.01 1.05 1.07 1.25
0.0050 1.01 1.09 1.12 1.69 1.01 1.05 1.04 1.15
0.0075 1.02 1.09 1.08 1.52 1.01 1.05 1.02 1.10
HL21-chart 0.0100 1.03 1.10 1.07 1.43 0.99 1.03 1.00 1.06
0.0125 1.03 1.10 1.05 1.37 0.99 1.03 0.99 1.04
0.0150 1.03 1.10 1.05 1.33 1.01 1.04 1.00 1.03
0.0200 1.00 1.09 1.00 1.25 1.02 1.04 0.99 1.02
0.0025 1.01 1.07 0.97 1.07 1.00 1.03 0.97 0.86
0.0050 1.02 1.07 0.96 1.06 1.01 1.05 0.96 0.89
0.0075 1.02 1.08 0.96 1.05 1.00 1.05 0.96 0.91
HL22-chart 0.0100 1.04 1.10 0.96 1.05 1.00 1.04 0.95 0.92
0.0125 1.04 1.11 0.97 1.06 1.00 1.04 0.94 0.91
0.0150 1.03 1.11 0.96 1.06 1.02 1.04 0.96 0.92
0.0200 1.02 1.10 0.95 1.05 1.02 1.04 0.96 0.92
0.0025 0.93 0.84 1.35 3.49 0.96 0.94 1.09 1.76
0.0050 0.93 0.85 1.24 2.42 0.96 0.94 1.06 1.46
0.0075 0.93 0.85 1.19 1.99 0.96 0.94 1.04 1.29
MD1-chart 0.0100 0.94 0.85 1.15 1.77 0.97 0.96 1.03 1.21
0.0125 0.94 0.85 1.12 1.59 0.97 0.97 1.02 1.16
0.0150 0.93 0.86 1.09 1.49 0.97 0.96 1.01 1.12
0.0200 0.92 0.86 1.07 1.34 0.99 0.96 1.01 1.07
0.0025 0.92 0.81 1.10 1.42 0.99 0.93 1.01 1.22
0.0050 0.94 0.84 1.05 1.21 0.98 0.95 0.99 1.09
0.0075 0.93 0.84 1.00 1.10 0.98 0.95 0.98 1.01
MD2-chart 0.0100 0.93 0.86 0.99 1.04 0.96 0.95 0.96 0.97
0.0125 0.93 0.86 0.98 1.00 0.97 0.96 0.97 0.97
0.0150 0.93 0.86 0.98 0.98 0.96 0.95 0.97 0.96

0.0200 0.93 0.86 0.98 0.95 0.96 0.95 0.96 0.92
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Table C.15: Ratios of the ARLy under a non-normal distribution compared to the ARLg

under normality for the residual charts with subwindow widths h = 20, k = 10
and different widths ¢ of the regression window. All values are rounded to
two decimal places.

¢ =50 =125
Control « ts to X% X% ts to Xg X?
chart
0.0025 1.10 1.22 1.02 1.28 1.03 1.01 0.93 0.89
0.0050 1.12 1.29 1.06 1.39 1.04 1.03 0.98 0.97
update 0.0075 1.08 1.26 1.07 1.39 1.03 1.03 0.99 1.01
random. 0.0100 1.08 1.27 1.07 1.41 1.02 1.02 0.98 1.03
t-chart 0.0125 1.08 1.26 1.07 1.40 1.02 1.04 1.00 1.05
0.0150 1.07 1.25 1.08 1.39 1.02 1.03 0.99 1.05
0.0200 1.07 1.25 1.07 1.40 1.01 1.03 0.99 1.06
0.0025 0.97 0.97 1.02 1.05 0.99 1.01 0.99 0.93
0.0050 0.99 0.98 1.04 1.09 1.00 1.01 1.00 0.93
Median 0.0075 0.99 0.99 1.03 1.08 0.99 1.00 0.99 0.96
chart 0.0100 1.00 0.99 1.05 1.10 0.97 0.99 0.98 0.93
0.0125 1.00 0.98 1.03 1.10 0.99 0.99 0.99 0.96
0.0150 1.00 0.97 1.06 1.09 1.01 1.00 1.00 0.97
0.0200 1.01 0.96 1.04 1.07 1.00 1.00 0.99 0.95
0.0025 1.07 1.18 0.95 0.95 1.03 1.05 0.96 0.81
0.0050 1.05 1.14 0.94 0.91 1.03 1.05 0.96 0.84
Wilcoxon 0.0075 1.04 1.13 0.94 0.90 1.03 1.06 0.96 0.85
chart 0.0100 1.03 1.13 0.95 0.89 1.03 1.05 0.96 0.85
0.0125 1.04 1.13 0.95 0.89 1.02 1.04 0.96 0.84
0.0150 1.04 1.13 0.96 0.88 1.01 1.03 0.96 0.85
0.0200 1.04 1.12 0.95 0.86 1.01 1.03 0.95 0.85
0.0025 1.05 1.18 0.98 0.98 1.02 0.92 0.86 0.63
0.0050 1.03 1.11 0.99 1.01 1.01 0.90 0.91 0.72
0.0075 1.01 1.07 1.01 1.05 0.99 0.91 0.91 0.78
HL11-chart 0.0100 1.01 1.05 1.01 1.06 0.98 0.89 0.91 0.81
0.0125 1.02 1.05 1.02 1.08 0.97 0.90 0.93 0.85
0.0150 1.02 1.04 1.02 1.10 0.97 0.91 0.94 0.88
0.0200 1.00 1.03 1.03 1.12 1.00 0.94 0.96 0.93
0.0025 1.02 1.10 0.99 0.85 1.03 0.99 0.93 0.54
0.0050 1.03 1.08 0.99 0.90 1.01 0.94 0.91 0.62
0.0075 1.01 1.06 0.99 0.91 1.00 0.93 0.92 0.66
HL12-chart 0.0100 1.03 1.06 0.99 0.94 1.00 0.94 0.91 0.70
0.0125 1.02 1.06 0.99 0.96 0.98 0.93 0.91 0.74
0.0150 1.00 1.04 0.98 0.97 1.00 0.95 0.93 0.78
0.0200 1.00 1.02 0.99 0.99 1.01 0.97 0.94 0.83
0.0025 1.07 1.28 0.98 1.10 1.09 1.24 0.90 0.81
0.0050 1.05 1.20 0.99 1.10 1.05 1.14 0.93 0.84
0.0075 1.03 1.17 1.00 1.09 1.04 1.10 0.94 0.87
HL21-chart 0.0100 1.03 1.14 1.00 1.09 1.02 1.06 0.94 0.88
0.0125 1.02 1.13 0.99 1.09 1.03 1.04 0.94 0.89
0.0150 1.01 1.12 0.99 1.11 1.01 1.03 0.95 0.90
0.0200 1.00 1.08 0.98 1.10 1.02 1.03 0.96 0.93
0.0025 1.05 1.17 0.99 1.10 1.06 1.15 0.92 0.88
0.0050 1.03 1.13 1.01 1.13 1.04 1.08 0.95 0.93
0.0075 1.02 1.11 1.00 1.12 1.04 1.08 0.97 0.94
HL22-chart 0.0100 1.03 1.11 1.01 1.13 1.03 1.05 0.96 0.94
0.0125 1.03 1.11 1.00 1.12 1.03 1.03 0.97 0.95
0.0150 1.01 1.09 0.99 1.12 1.02 1.03 0.97 0.94
0.0200 0.99 1.06 0.98 1.11 1.02 1.04 0.99 0.97
0.0025 0.97 1.01 1.03 1.11 1.09 1.16 0.99 1.02
0.0050 0.97 0.99 1.00 1.02 1.04 1.06 0.98 0.94
0.0075 0.97 0.99 1.00 1.00 1.03 1.04 0.98 0.92
MD1-chart 0.0100 0.97 0.99 0.99 0.99 1.02 1.00 0.98 0.92
0.0125 0.96 0.97 0.99 0.98 1.01 0.99 0.98 0.92
0.0150 0.97 0.97 0.99 0.97 1.01 1.00 0.99 0.92
0.0200 0.97 0.96 0.99 0.97 1.02 1.00 1.00 0.93
0.0025 0.98 0.96 0.98 0.91 1.05 1.10 0.97 1.19
0.0050 0.97 0.96 0.94 0.88 1.06 1.06 0.99 1.09
0.0075 0.96 0.94 0.94 0.88 1.05 1.06 1.00 1.06
MD2-chart  0.0100 0.98 0.95 0.96 0.89 1.02 1.04 1.01 1.05
0.0125 0.97 0.95 0.96 0.90 1.00 1.02 1.00 1.02
0.0150 0.97 0.94 0.96 0.90 1.01 1.02 1.01 1.01

0.0200 0.96 0.94 0.95 0.87 1.00 1.00 1.01 0.99







D Supplementary Definitions

D.1 Asymptotic relative efficiency

The asymptotic relative efficiency (ARE) compares the asymptotic variances of two
estimators 6; and 85 for the same parameter 6 € ©, where © C R denotes the parameter
space. We follow Theorem 2.1 of Lehmann (1997, p. 345).

Let (91,,1: n e N) and (92771: n e N) be two sequences of estimators for ¢, where n
denotes the size of the sample used for the estimation. Both estimators are assumed to be

asymptotically normal with expectation 6 and variance o7(®)/n, i = 1,2, so that
Vi (in —0) R N(©0,07(0)), i =1,2.

Then, the ARE of 6, with respect to 6 is given by
ARE (@2, él) = Y5

If ARE (@2, 91) < 1, then 92 is said to be less efficient than @1. For ARE (92, @1) = 1, both

estimators are equally efficient.

D.2 Breakdown point

The breakdown point is a concept to quantify the robustness of an estimator 6 for a
parameter # € © against outliers, where © C R denotes the parameter space. We
concentrate on the replacement finite-sample breakdown point as introduced by Donoho
and Huber (1983)).

Let y™ € R" be an uncontaminated, observed finite sample of size n € N. Following
the notation of Maronna et al. (2006, p. 61), we define a set Z,,, m € N, m < n, which
contains all possible observed samples 2™ of size n, in which n — m elements coincide
with those in ™. Denoting the estimates based on y™ and 2™ by 6 (y(”)> and 6 (z(”)),

the replacement finite-sample breakdown point is defined as

i%f{m: sup |9(y)—é(z)|:oo}.

n 2€EZm,

It represents the smallest fraction ™/n of elements in y™ that have to be replaced in order

to make 0 (z(”)) realise values arbitrarily far away from 0 (y(”)).
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D.3 Pitman asymptotic relative efficiency

We consider the general testing problem Hy: 6 € ©y vs. H; : 6 € O for a parameter
0 € O, where ©( and O, are the parameter spaces under the null and alternative hypothesis
with ©9 N O; = and Oy UO; = O, and © C R is the full parameter space.

Given two hypothesis tests 17 and T5 to the significance level «, the Pitman asymptotic
relative efficiency (PARE) compares their power to each other in large samples. We follow
the definition given in Hodges and Lehmann (1956)).

Let ¢V () and (¥ (#) be the power functions of Ty and 75 for the same n € N
observations. Let ¢ € («, 1) be a nominal power and (6,,: n € N) a sequence of parameter

values in ©1, so that

Moreover, let (n* = g(n): n € N), where g: N — N, be a sequence of sample sizes so
that

I
3* @
—~
>
3
N—
3
8

— (.
The PARE of T with respect to T} is defined as

PARE (T5,T}) = lim -

n—o0 n*

if the limit exists. It is independent of the sequences (6,,: n € N) and (n* =g (n): n € N),
and of o and (.

The test T5 is called less efficient than 77 if PARE (75,77) < 1. Both tests are equally
efficient if PARE (75,71) = 1.

D.4 Selected equivariance and invariance properties

Equivariance and invariance of an estimator describe how it behaves under transformations
of the data. The following definitions for univariate estimators are taken from Rousseeuw
and Leroy (1987, p. 158f.), and for regression estimators from Rousseeuw and Leroy (1987,
p. 116f.)

Univariate estimators

Let Y™ € R be a random sample of size n € N and 0 (Y(")) an estimator for a parameter
0 € O, where © C R denotes the parameter space.

A location estimator is called shift equivariant if

A

d(Y™+a)=0(Y™)+a foralla=(a,...,a)cR"
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A location estimator is called scale equivariant if
O(b-Y™)=b-0(Y™) forallbeR\{0}.
A scale estimator is called scale equivariant if
O(b-Y™)=1p|-0(Y™) forallbeR\ {0}
A scale estimator is called location invariant if
0 (Y(”) + a) = (Y(")) for all @ = (a,...,a) € R"™.

Regression estimators

The concept of location equivariance can be adapted to the regression context. Let
Y™ = (Y1,...,Y,) € R" be a random sample and x; = (1, x;), x; € R, a vector of fixed
regressors for the i-th sample element, i = 1,...,n.

A regression estimator

A A A

0 ({(x:,Y:): i=1,...,n}) = (01.0y)

is called regression equivariant if

A

0({(xi,Yi+xi-d): i=1,...,n}) = (?)1,@2)’+d for all d = (dy, dy) € R,
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