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Abstract

The prospect of utilizing the highly localized electron spin of singly charged semicon-
ductor quantum dots as building blocks for quantum information processing sparked
interest in the behavior of the spins in such a system. In this thesis we focus on the
theoretical modeling of pump-probe experiments which provide an experimental ap-
proach to investigate the spin dynamics. We derive a semiclassical description of the
spin dynamics in the periodically pulsed quantum dot including not only the hyperfine
interaction of the electron spin with the nuclear spins but also the probabilistic nature
of the photon absorption. The periodic pulses lead to a focusing of the electron fre-
quencies onto a few modes which goes hand in hand with a re-alignment of the nuclear
spins. In an analytical approach we find two classes of resonance conditions for the
coherent electron spin dynamics. We show that the non-equilibrium distribution of the
nuclear spins is mirrored in the spin noise of the electron and therefore accessible in
experiment via spin-noise spectroscopy. Another application of the spin-spectroscopy
is the measurement of higher-order correlation functions. Those can reveal information
about physical effects beyond the macroscopic linear effects. We exploit the fourth-
order spin-noise spectrum to gain an understanding of the influence of the quadrupolar
interaction on the spin dynamics in the presence of a strong external magnetic field.
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Kurzfassung

Der Spin eines stark lokalisierten Elektrons in einem einfach geladenen Halbleiter-
quantenpunkt ist ein möglicher Kandidat für den Grundbaustein in der Quanteninform-
ationsverarbeitung. Daher ist es von besonderem Interesse, die Dynamik des Spins in
einem solchen System zu verstehen. Anrege-Abfrage Experimente sind eine Möglichkeit
dieses Problem zu untersuchen. Wir wollen die theoretische Modellierung zu diesen Ex-
perimenten liefern. Dazu leiten wir eine semiklassische Beschreibung der Spindynamik
in einem periodisch gepulsten Quantenpunkt her. Diese beinhaltet sowohl die Hyper-
feinwechselwirkung zwischen Elektronen- und Kernspins als auch die probabilistische
Natur der Photoabsorption. Unter dem Einfluss der periodische Pumppulse werden die
Frequenzen der Elektronenspinpräzession auf einige wenige reduziert. Die Ursache dafür
ist die Neuausrichtung der Kernspins untereinander. Wir leiten zwei Klassen von Res-
onanzbedingungen her, welche die Frequenzen der kohärenten Elektronenspinpräzession
vorhersagen und auch die Nicht-Gleichgewichtsverteilung der Kernspins beeinflussen.
Wir zeigen, dass diese Nicht-Gleichgewichtsverteilung im elektronischen Spinrauschen,
messbar durch Spinrauschspektroskopie, wiedergefunden werden kann. Eine andere
Anwendungsmöglichkeit für Spinrauschspektroskopie besteht in Messung von höheren
Korrelationsfunktionen. Diese können dazu verwendet werden, um Physik, die über
makroskopische, lineare Effekte hinaus geht, offen zu legen. Wir benutzen die Korrela-
tionsfunktion vierter Ordnung, um den Einfluss der quadrupolaren Wechselwirkung auf
die Spindnyamik in einem starken Magnetfeld zu verstehen.
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Chapter 1

Introduction

Quantum computing is still in its infancy and pivotal elements are not yet mature. Since
its inception about half a century ago [1–3], quantum computing has become a topic
of vivid interest not only in the physics community [4–7] but also in other fields such
as chemistry [8, 9] or machine learning [10, 11]. Like a classical computer, a quantum
computer has to possess the ability to store and manipulate information. However,
for this task the classical bit is replaced by a quantum bit or qubit. While a classical
bit only assumes either the state |0〉 or |1〉, a qubit can also be in a superposition of
both states. Still, the measurement of a single qubit provides one bit of information
since the superposition state collapses to an eigenstate. The advantage of quantum
computers lies in performing certain operations on multiple values in one stroke in-
stead of sequentially [12] using the unitary time evolution in a closed quantum system.
Therefore, quantum computers perform better at some tasks than their classical coun-
terparts. A famous example is the prime decomposition via the Shor algorithm [13, 14]
or Grover’s algorithm [15, 16] for searches in disordered lists. Also, the simulation of
inherently quantum mechanical systems could be more efficient, as Feynman and Manin
suggested [17, 18]. The requirements for a quantum computer are characterized by the
DiVincenzo criteria [19, 20]. They include but are not limited to the ability to initial-
ize and read a qubit. DiVincenzo identifies the decoherence in a qubit as one of the
biggest problems encountered. Coherence times, exceeding the gate operation time, are
necessary to compute data. The first hurdle that has to be overcome on the way to
a working quantum computer is finding a qubit meeting all those requirements. Mul-
tiple candidates [4] were proposed for this essential building block which consists of a
quantum mechanical two-level system. Proposals for the realization of qubits include
the polarization state of a photon [21–24], superconducting circuits [25–28] or trapped
atoms [29–31]. The candidate that constitutes the basis of this thesis is the highly
localized electron spin in a semiconductor quantum dot [6, 20, 32]. While quantum-dot
qubits have the edge over the other proposals concerning the integrability into existing
semiconductor-based information technology, the main obstacle to their usage turns out
to be their coherence time. The decay of the electron spin coherence is dominated by
the Fermi contact hyperfine interaction with a fluctuating nuclear spin bath. However,
Greilich et al. [33–35] showed that the influence of the hyperfine interaction does not
have to be detrimental to the conservation of quantum information. Periodic pulsing
of the quantum dot ensemble leads to a focusing of the electron precession frequencies
onto few modes via spin-flip processes with the nuclear spins. The electron spin dynam-
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Chapter 1. Introduction

ics shows an integer multiple of spin revolutions during a pulse interval, while settings
of the nuclear spin ensemble, that generate a non-resonant electron spin dynamics, be-
come less probable. This effect is referred to as nuclear focusing. Since the nuclear spins
couple only weakly to the environment, their collective influence stabilizes the coherent
electron spin dynamics and the coherence time is prolonged [36].

A model tailored to the spin dynamics in a singly charged quantum dot is the central
spin model first proposed by Gaudin in 1976 [37]. The theoretical description comprises
the electron and the nuclear spins. The nuclear spins are assumed to not be coupled
to each other and only interact indirectly via the central electron spin. The central
spin model is integrable [37] and an analytic [38–40] and stochastic [41, 42] solution is
e. g. given by the Bethe ansatz. Most analytical approaches require certain assumptions
such as homogeneous hyperfine coupling constants [43–46] or a pre-set nuclear spin po-
larization [47, 48]. Numerical approaches to the central spin model provide an often
more efficient alternative. Examples include, but are not limited to, Chebyshev poly-
nomial expansion techniques [49], cluster expansion [50, 51] or time-dependent density
matrix renormalization group [52, 53]. Semiclassical approaches [54–58], as employed
in this thesis, are conspicuous by the fact that they allow for the treatment of large
nuclear spin baths and simultaneously give access to long time scales.

Equipped with this knowledge about the central spin model, theoretical descriptions
for the dynamics in a periodically pulsed quantum dot were developed. As early as
2007, Uhrig [59] showed that an optimized sequence of π-pulses leads to an increase
in coherence time. Subsequent quantum mechanical investigations delved deeper into
spin dynamics in a pulsed quantum dot [60–63]. While a quantum mechanical approach
allows for the treatment of very long pulse sequences with millions of pulses, it suffers
from a severe restriction of the number of nuclear spins [63]. The calculation of the
time evolution operator, which makes it possible to calculate the dynamics between two
pulses in just one step, is now its downfall, since the Hilbert space grows exponentially
with the bath size. The inverse is true for a semiclassical approximation: While the
dynamics, that bridges the time between two pulses, cannot be reduced to a single
step, the computation time only grows linearly with the number of nuclear spins. A
further improvement in computational effort is possible for the case of homogeneous
coupling constants [60, 64] or with more sophisticated methods like a spectral density
approach [65].

Another way to investigate the spin dynamics in singly charged semiconductor quantum
dots experimentally is through optical spin-noise spectroscopy which was originally pro-
posed by Aleksandrov and Zapasskii [66, 67] in 1981. A non-resonant laser beam changes
its polarization plane after propagating through the sample. The Faraday rotation meas-
urement provides a way to study the electron spin noise nearly perturbation-free. Since
1981 this minimally invasive method has found many applications [68], e. g. measur-
ing spin noise in an ensemble of alkali atoms [69] or in bulk semiconductors [70–72].
In semiconductor quantum dots spin-noise spectroscopy serves as an experimental tool
to study the second-order spin noise [69, 70, 72–75]. These experimental studies were
complemented by extensive theoretical investigations [49, 75–77]. The influence of the
electrical-nuclear quadrupolar interactions on the long-time decay of the electron spin
correlation function [78, 79] and the spin-noise power spectrum [49, 73, 75, 80–83]
were ascertained in the absence of an external magnetic field. However, in order to
obtain information beyond linear effects, non-equilibrium conditions have to be util-
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Chapter 1. Introduction

ized. In an experimental setup they are realized by applying radio-frequency magnetic
fields [84–86] or through periodic laser pulses [35, 87–90]. The limitations, that the
fluctuation-dissipation theorem imposes on the second-order spin correlations, do not
hold for higher-order correlation functions. The nuclear-electric quadrupolar interac-
tion in a finite external magnetic field serves as a prime example for the advantage of
higher-order noise investigations. In the presence of a large magnetic field the informa-
tion about weak interactions, such as the quadrupolar interaction, is inaccessible in the
second-order correlation function due to the fast dephasing time of the electron spin.
When fourth-order spin response functions were experimentally investigated [91, 92] at
magnetic fields above 1T, it was shown by Fröhling et al. [93] that the quadrupolar
interaction is necessary to understand their long-time decay. The same information
can be extracted from the fourth-order spin-noise spectrum [94]. An extension of the
spin-noise spectroscopy to fourth order [95, 96] would allow for a measurement of this
quantity.

The central goal of this thesis is gaining an understanding of the spin dynamics in
singly charged semiconductor quantum dots. We aim at the description of two types
of measurements: pump-probe experiments and spin-noise spectroscopy measurements.
Hereby, emphasis is put on the pump-probe experiments [33–35]. A semiclassical ap-
proach describing the periodic excitation in quantum dots is devised in this thesis.
In Chap. 2 a short introduction to the experimental background is given. We discuss the
properties and the production process of self-assembled semiconductor quantum dots.
Special focus is placed on their behavior under optical excitations since it is a precursor
to understanding pump-probe experiments and spin-noise spectroscopy. Both types of
measurements are outlined. Additionally, we review exemplary results of pump-probe
experiments [33–35]. The theoretical model of the spin dynamics in a singly charged
semiconductor quantum dot is the topic of Chap. 3. The central spin model, which
comprises the hyperfine Fermi contact interaction between nuclear and electron spins
as well as the nuclear and electron Zeeman interaction, is introduced. It is supplemen-
ted by the theoretical description of the nuclear-electric quadrupolar interaction. The
hyperfine coupling constant distribution [49] as well as its implications for the electron
spin dynamics are discussed. The definitions of correlation functions up to the fourth
order are introduced in Chap. 4. In Chap. 5 the semiclassical approximation is derived
by expanding the path-integral representation around its saddle-point. The resulting
set of classical Euler-Lagrange equations of motion are the essential building-block to
all further investigations in this thesis. The parameters of the semiclassical simulation
are discussed. The spin dynamics gained by the application of the semiclassical ap-
proximation are benchmarked against results of quantum mechanical methods like the
Lanczos approach or an exact diagonalization.
The chapters 6 to 8 present the results of this thesis on three different topics: the clas-
sical treatment of fourth-order spin correlation functions, a semiclassical description of
the mode locking in a pulsed quantum dot and the subsequent spin dynamics in a mode-
locked system. The calculations in Chap. 6 are based on the definitions introduced in
Chap. 4. The spin correlation functions of second and fourth order are calculated in
the semiclassical approach and compared with the results of a quantum mechanical ap-
proach. The influence of the quadrupolar interaction on the fourth-order spectrum is
investigated in detail. Chapter 7 is dedicated to the modeling of a periodic laser pulse
sequence on a semiconductor quantum dot. The equations of motion are expanded upon
by a semiclassical description for the laser pump pulse and the subsequent decay of the
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excited state. Under the assumption of frozen nuclear spins [55], an analytical solution
is found. The core part of the chapter are numerical simulations. The influence of
individual parameters on the spin dynamics and the development of a non-equilibrium
steady state is discussed. Chapter 8 is directly linked to the results of Chap. 7. After
periodic pulses have driven the spin system into a non-equilibrium steady state, the
train of optical pulses stops. The electron and nuclear spin relaxation are discussed.
Furthermore, we analyze the correspondence of the electron spin-noise spectra to the
time evolution of nuclear spin distributions in this non-equilibrium case.
The thesis ends with a conclusion and a short outlook.
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Chapter 2

Experimental background

Since the theoretical investigations in this work are closely related to pump-probe ex-
periments, especially those conducted on singly charged quantum dots [33, 88, 97], they
shall briefly be introduced here. The materials analyzed in those experiments are semi-
conductor quantum dots. In pump-probe experiments transitions in the quantum dot
are periodically excited. The sample response is measured with the probe pulse which
reveals physical properties of the spin dynamics. Both, the setup and results of those
experiments, are discussed in this chapter.

2.1 Semiconductor quantum dots

Quantum dots (QDs) are solid state structures that provide confinement in three di-
mensions for electrons or holes and feature a discrete energy spectrum. While there
are many different types of QDs like natural QDs which occur due to potential fluctu-
ations [98–100] or QDs which result from electron beam lithography and wet chemical
etching [101, 102], we restrict ourselves to self-assembled In(As)Ga QDs which are a
product of molecular beam epitaxy.

In vacuum at ∼ 600◦C monolayers of InAs are deposited on a substrate of GaAs
[103–105]. Due to the very slow application, the InAs adopts the lattice structure
of the host at first. This layer is called the wetting layer. But the difference of ap-
proximately 7% in lattice constants between 5.65Å for GaAs and 6.06Å for InAs [106]
leads to lattice strain in subsequent InAs layers. The strain increases with additionally
applied monolayers until the islands “bulge up” on the wetting layer which is called
Stranski–Krastanov growth [107]. Those QD islands lead to partial strain relaxation,
see Fig. 2.1 on the left. The strain due to the difference in lattice constants through the
layers is depicted in Fig. 2.1 in the left panel. Since this occurs spontaneously, the QDs
are called self-assembled. The QDs are usually tens of nanometers in diameter and a
few nanometers high [104]. A QD ensemble at this stage in its production is depicted
in Fig. 2.1 on the right.

The QD can be charged with a carrier by including a doping layer below the substrate.
Here, n-doped QD are the focus of investigation. An electron tunneling from e. g. a Si
layer to the QD leads to a singly negatively charged QD [109].
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2.2. Optical excitations in a quantum dot

Figure 2.1: Left panel: Schematics of the growth of a InAs QD on an GaAs substrate. The
lattice constant mismatch (blue lines - GaAs, red lines -InAs) leads to a strained InAs wetting
layer. The formation of the InAs QD relaxes the strain partially. Right panel: Atomic force
microscopy image of an uncapped InAs QD ensemble [108].

The resultant QD ensemble is overgrown with an additional layer of GaAs. The smaller
band gap of the InAs is now sandwiched between the larger ones of the GaAs and
carriers are locally confined in all three dimensions. The potential well is of a size
comparable to their de-Broglie wavelength. This reduces the interaction of the trapped
electron or hole spin with the substrate but enhances the hyperfine interaction with the
nuclear spins in the QD.

The last step is the annealing process [110]. Here, the QD ensemble is heated to ∼ 900◦C
which leads to diffusion between the GaAs and InAs layers. It reduces the lattice defects
and harmonize the geometry of the QDs [111–113]. The temperature and the duration
of the process is also used to tune the band gap which affects various, optical properties
of the QD ensemble.

2.2 Optical excitations in a quantum dot

Both InAs and GaAs are direct semiconductors, meaning that the minimum of the lowest
conduction band and the maximum of the highest valence band coincide at the same
k-value. A schematic representation of the band structure of a direct semiconductor is
shown in Fig. 2.2 in the left panel. The Fermi level EF, also known as the chemical
potential, is located between the bands. Eg is the minimum required energy that allows
for the excitation of an electron from the completely filled valence band to the completely
empty conduction band at T = 0K. In contrast to an insulator, the band gap Eg is small
enough to allow for the excitation of a carrier from the valence to the conduction band.
For InAs the band gap is 0.354 eV and for GaAs it is 1.424 eV [106]. Near the Γ-point
at k = 0, the center of the Brillouin zone, the bands are assumed to be parabolic.

The difference in band gap energy of the two materials leads to the formation of a
quantum well which traps electrons and holes in all spatial directions. Since the confin-
ing well is of the order of magnitude of the de-Broglie wavelength, the energy spectrum
becomes discrete [114–116]. The energy levels spacing depends on shape and size of the
QD. Due to its discrete spectrum a QD is often called an artificial atom.

In a semiconductor material the spin-orbit coupling leads to the particle’s spin angular
momentum ~S and its orbital angular momentum ~L no longer being conserved separately.

6



2.2. Optical excitations in a quantum dot

Figure 2.2: cb and vb label the conduction and the valence band. The heavy holes, light holes
and the split-off band are hh, lh and sb. Left panel: Schematic of the band structure of a direct
semiconductor near the Γ point. EF is the Fermi level, Eg the energy of the band gap and ESO

the energy difference between the sb and the other two valence bands. Right panel: optical
transitions between electron states in an n-doped QD enabled by circularly polarized light σ±.
Schematic inspired by [114, 115].

Instead the total angular momentum ~J = ~L + ~S acts as the conserved quantity with
the quantum number |l − s| ≤ j ≤ l + s. For the s-like conduction band this leads to
j = s = 1/2 which is doubly degenerate while the p-like valence band with l = 1 is
degenerate twice for j = 1/2 and four times degenerate for j = 3/2 at k = 0 [117]. The
j = 1/2 band is split off by the energy ESO which is in the order of magnitude of the band
gap [106] and is neglected in this work. The states j = 3/2 with jz = −3/2,−1/2, 1/2
and 3/2 correspond to the light holes for |jz| = 1/2 and to the heavy holes for |jz| = 3/2.
The term heavy and light holes is connected to their effective mass which is derived from
the curvature of their respective valence bands.

Photons carry the angular momentum of ±1 depending on their helicity. This enables
the transitions between the valence and the conduction band presented in Fig. 2.2 in
the right panel. For right circularly polarized light σ+ which increases the angular
momentum of a state in an absorption process by 1, two excitations are possible: One
from the heavy hole band with jz = −3/2 to the conduction band with jz = −1/2
under the absorption of the polarized photon and the other from the light hole band
with jz = −1/2 to the valence band state with jz = 1/2. The transitions between
the band due to excitation with σ−-polarized light behaves analog to that. Excitations
of electrons to the conduction band leave behind a hole in the valence band. If the
conduction band is empty prior to the photo-excitation, the resulting particle is called
an exciton. If the QD is already charged with a single electron, then the excited electron
features a spin aligned opposing to those of the resident electron. The electron singlet
and the hole in the valence band are referred to as a trion.

The excited carriers have a life time of τ ∼ 400 ps for direct semiconductors before they
recombine [88]. The decay is accompanied by photo-emission. Since the light hole band
is usually energetically lower than the heavy hole band, it can be neglected. Only the
smallest band gap between the conduction band and the heavy hole band is taken into
account.
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2.3. Pump-probe experiments

2.3 Pump-probe experiments

Pump-probe experiments have proven to be a valuable tool to study the time-resolved
dynamics of the electron in a semiconductor QD [35, 118, 119]. The system periodically
experiences optical excitations via pump pulses and the spin polarization is detected by
a second pulse, the probe pulse. The experiments are conducted in Voigts geometry,
meaning an external magnetic field of 1-6T magnitude is applied orthogonal to the
pump beam [33]. The high magnetic fields require the use of a cryostat in which the
sample is cooled to ∼ 6K. The sample is an ensemble of In(Ga)As QDs which are single
negatively charged.

In Fig. 2.3 a simple blueprint1 for such experiments is shown. The laser provides a train
of linear polarized light pulses with a time delay of TR ≈ 13 ns. The initial beam is
divided in a pump and a probe beam. If pump and probe arrive at the sample at the
same time, the electron polarization at t = 0 is measured. To gain further information
about the spin polarization in time a delay line is introduced. The length of the delay
line is proportional to the time ∆t after a pump pulse. Each data point in time is
averaged over multiple consecutive pulses. The measurement relies on Faraday rotation
or ellipticity [120, 121] to gain insight into the electron spin polarization.

Figure 2.3: Schematic setup of a pump–
probe experiment with Faraday rotation meas-
urement. GT is a Glan-Thompson prism. λ/4
is a λ/4-waveplate and λ/2 is a λ/2-waveplate.

After the delay line the pump pulse
is circularly polarized by the combin-
ation of a Glan-Thompson prism (GT)
and a λ/4-waveplate. When the pump
power is optimized maximizing the sig-
nal amplitude, then this pump pulse is
assumed to be a π-pulse. The polarized
light excites a trion state. Since the
pump pulse only excites one electron
spin state to a trion state depending on
its polarization, the other electron state
is unaffected by the laser. During pro-
cess of the trion decay, the unpumped
state precesses in the external magnetic
field. If a strong external magnetic field
results in a Larmor precession period
larger or of the order of magnitude of
the decay time, the decaying spin com-
ponent averages to zero and the excita-
tion leads to a build-up of polarization
in the system.

To avoid any strong perturbation of the
system, the power of the probe beam is
reduced before it arrives at the sample. Since a trion is excited in the QD, one circular
polarization state is damped. This leads to two circular polarization states with different
amplitudes. The probe beam experiences a rotation of the polarization frame and gets
elliptically polarized after the transmission through the sample. The Wollaston prism

1Private communication by E. Evers
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separates the beam in two parts with orthogonal polarization. The generated spin
polarization in the sample is proportional to the difference of the amplitudes of both
linearly polarized beams measured via a balanced photon detector. In Fig. 2.3 a Faraday
rotation measurement is presented. The tilt of the polarization axis of linearly polarized
light after the transition through a medium is proportional to the spin polarization.
For the measurement of the ellipticity the second λ/2 waveplate is replaced by a λ/4-
waveplate.

2.4 Experimental results a of pump-probe experiment

Figure 2.4: The Faraday rotation signal measured at different external magnetic field strengths
| ~Bext| = 0T, | ~Bext| = 1T, and | ~Bext| = 6T. The pump pulse repetition time is TR = 13.2 ns.
The Faraday rotation signal is proportional to the electron spin dynamics. The plot is taken
from Ref. [88]

A typical pump-probe measurement on a semiconductor QD ensemble is presented in
this section. Figure 2.4 is taken from Ref. [88]. It shows the time evolution of the
Faraday rotation amplitude recorded by the experimental scheme presented above. Sim-
ilar pump-probe experiments have been conducted in Refs. [33, 35]. The electron spin
component along the optical axis, which is proportional to the Faraday rotation signal,
is shown immediately before the pulse at t = 0 and directly after. The pump pulse is
applied every TR = 13.2 ns. The spin dynamics is subject to an external magnetic field
of strength | ~Bext| = 0, | ~Bext| = 1T or | ~Bext| = 6T.

At | ~Bext| = 0 the Faraday rotation signal shows a single minimum for t < 500 ps. After
t > 500 ps the signal approaches a constant value. Due to the missing external magnetic
field, no electron spin precessions is observed and no signal is detected immediately
before the pulse. For | ~Bext| = 1T the Faraday rotation signal reveals a decaying electron
spin precession around the external magnetic field after the pulse. The time scale of the
decay is approximately ∼ 2ns. For negative times, directly before the next pulse, the
Faraday rotation signal increases towards the pulse. This electron spin revival before
the pulse is also observed for the measurement at | ~Bext| = 6T. The spin precession can
no longer be resolved on the depicted time scale for | ~Bext| = 6T.

The electron spin revival hints at a synchronization of the electron spin precession
modes to the pulse repetition time TR. Those modes, which are defined by a single
frequency, superimpose constructively at integer multiples of TR. This effect is called
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mode locking. The focusing on a few select frequencies is induced by a re-alignment of
the nuclear spins [33].

We strive to explain the electron spin dynamics and the not-directly measurable nuclear
spin dynamics during a pump pulse sequence in more detail in Chap. 7. After the
pump pulses stop, the experimental measurement is conducted. Therefore, we bridge
the divide between theoretical description and experiment in Chap. 8 by discussing
the electron spin dynamics in time and frequency domain in an already mode-locked
system. The electron spin dynamics in the frequency domain can be experimentally
accessed through spin-noise spectroscopy.

2.5 Spin-noise spectroscopy

Spin-noise spectroscopy is a minimally invasive method to measure the spin dynamics
of doped semiconductor QDs. In contrast to the pump-probe technique it relies only on
non-resonant, continuous probe beams and avoids exposing the system to unnecessary
excitations. The studied system stays in thermal equilibrium [117]. The setup is com-
parable to that of the pump-probe experiment in Sec. 2.3. However, the pump pulses
are omitted and only the linearly polarized probe beam is applied to the sample instead.
Upon contact with the sample the plane of the laser beam polarization is rotated. The
measurement relies on Faraday rotation or Kerr effect, depending on whether the beam
is transmitted through the sample or reflected. Spin fluctuations only lead to a weak
magnetization in the sample. Combined with a weak probe beam intensity, the meas-
ured signal is smaller compared to that of a pump-probe experiment. The measured
signal is noisy in the time domain. As a last step, a Fourier transformation is applied
to the data recorded in time. The obtained spin-noise spectrum reveals the frequency
composition of the spin dynamics.
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Chapter 3

Model

In this chapter we lay the foundation for all theoretical investigations in this thesis. We
derive a Hamiltonian that incorporates all important interactions in a single semicon-
ductor QD. The localization of the electron in a QD pushes the hyperfine interaction
to the fore [114, 117]. We also include the interaction of the spins in the QD with an
external magnetic field as well as the nuclear-electric quadrupolar interaction. Hyper-
fine and quadrupolar coupling constants are discussed. Other interactions like e. g. the
dipole-dipole interactions, which are important when holes come into play, are neglected.

From that point on we use ~ = 1, measuring the time t→ t/~ in units of inverse energy.

3.1 Central spin model

Neglecting charge fluctuations, the description of the spin dynamics in a singly charged
semiconductor QD is given by the total Hamiltonian

Htot = HCSM +HQ. (3.1.1)

The first part HCSM contains the central spin model (CSM) including the hyperfine
interaction and the Zeeman interaction of the nuclear and electron spin with the external
magnetic field. The other Hamiltonian HQ comprises the nuclear-electric quadrupolar
interaction. We also introduce a characteristic time scale T ∗ which is related to the
fluctuations of the effective magnetic field acting on the electron spin.

3.1.1 The Gaudin model

The CSM in its simplest form was presented by Gaudin in 1976 [37]. It only incorporates
the interaction between a central spin and a spin bath. We identify this interaction as
the Fermi contact hyperfine interaction, which was derived in a perturbative approach
in Refs. [122, 123].

The wave function of the strongly localized electron spin envelopes multiple nuclear
spins. Each nuclear spin can be described by the magnetic moment ~µI = µI

~I/I. The
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3.1. Central spin model

interaction of the electron spin with a single nuclear spin is modeled by the magnetic
field

~BI(~r) = ∇× ~µI × ~r
r3

= ∇× ~A (3.1.2)

with the distance |~rS − ~rI | = |~r| = r between the electronic dipole moment at ~rS and
the nuclear magnetic moment at ~rI. The vector potential belonging to ~BI(~r) is

~A = ∇× ~µI

r
. (3.1.3)

The Hamiltonian of an electron in the presence of an electromagnetic field with a vector
potential ~A is given by the Pauli Hamiltonian

HI =
1

2me

(
~p− e ~A

)2
+ g0µB

~S ~BI (3.1.4)

where me is the mass of the free electron, e its charge and g0 = 2 its g-factor. ~S
denotes the electron spin operator and ~p the electron momentum operator. Neglecting
the quadratic terms of ~A in a first-order perturbation calculation, the Hamiltonian HI

is rewritten as

HI = H0 +Hhf , (3.1.5)

where H0 is the Hamiltonian of a free electron and Hhf that of the perturbation linear
in ~A. The definition of the electron angular momentum ~l = ~r× ~p enables us to combine
the first two terms as ~p ~A + ~A~p = 2µI/r

3I(~I~l) using the Coulomb gauge ∇ ~A = 0. The
last term accounting for the Zeeman effect generated by the nuclear magnetic field, is
recast as

~S ~BI = ~S

(
∇×

(
∇× ~µI

r

))
=

[(
~S∇
)

(~µI∇)− 1

3

(
~S~µI

)
∆

]
1

r
− 2

3

(
~S~µI

)
∆

1

r
.

(3.1.6)

The first summand provides terms for r 6= 0. The second one only contributes for r = 0.
Evaluating the derivatives leads to

Hhf =
2µBµI

I
~I

[
~l

r3
−

~S

r3
+ 3

~r(~S~r)

r5
+

8π

3
~Sδ(~r)

]
. (3.1.7)

The first term describes the interaction of the nuclear magnetic moment ~I with a current
carrying the electron angular momentum ~l. The dipole-dipole interaction is represented
by the second and third term. The last term can be identified as the contact interaction
which was first derived by Fermi [124]. Opposite to the dipole-dipole interaction, the
Fermi contact interaction only contributes if the electron is found at the position of the
nucleus with a finite probability. This is true for s-type wave functions and, therefore,
the contact hyperfine interaction is the only dominant interaction in this case. The
opposite is holds for l 6= 0. For those orbital configurations of the wave function the
dipole-dipole interaction becomes significant and the Fermi contact interaction does not
contribute.
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3.1. Central spin model

The anisotropy induced by the hyperfine interaction of a hole trapped in a QD with the
nuclear spins is not investigated here [125]. Instead we focus on the electron-nuclear
hyperfine interaction since electrons confined in semiconductor QDs can be described
by s-type wave functions. In this spherical symmetry only the Fermi contact interaction
remains and because the electron spin interacts with multiple nuclear spins, the new
Hamiltonian is

HG =

N∑
k=1

Ak~Ik ~S. (3.1.8)

The spin operators ~S for the electron spin is coupled to each of the N nuclear spin
vectors ~Ik via the coupling constant Ak. The electron spin interacts with the nuclear
spin bath via the Overhauser field ~BN

~BN =
∑
k

Ak~Ik (3.1.9)

and the feedback onto k-th nuclear spin is given by the Knight field ~Bk = Ak ~S. The
Gaudin model is schematically depicted in Fig. 3.1. The hyperfine coupling constants

Ak =
16

3
πµB

µI

I
|ψe(~Rk)|2 (3.1.10)

depend on the probability of an electron [32, 55] being present at the position of the
k-th nucleus |ψe(~Rk)|2 and on the nuclear spin length I. In a real In(Ga)As QD, µI and
I vary, e. g. for Gallium and Arsenic I = 3/2 while for Indium I = 9/2 holds. Note
that we use the approximation of identical nuclei in the following.

Figure 3.1: In the central spin model the cent-
ral electron spin ~S interacts with the nuclear
spins ~Ik via the coupling constant Ak.

The electron wave function can be di-
vided in two parts ψe(~R) = u(~R)ψ(~R):
the Bloch amplitude u(~R) and the
envelope ψ(~R). The Bloch amp-
litude describes the periodic behavior
of the wave function which repeats
in each unit cell. For free elec-
trons the Bloch function is constant
ηe = |u(~R)|2 = 1 while in semiconduct-
ors ηe varies between 103 and 104 [48].
The material dependence of ηe can be
disregarded here since we are only in-
terested in the distribution of Ak and
ηe is set as constant, ηe = const. . The
modulating envelope function ψ(~R) suffices to describe the behavior of ψe depending on
the position of the electron. It determines the distribution function p(A) of the coupling
constants Ak. Equation (3.1.10) is often rewritten as

Ak = AsΩ|ψ(~Rk)|2 (3.1.11)

where AS is a prefactor and Ω is the volume of the unit cell. Ω is assumed to be
small compared to the QD and ψ nearly constant within a single unit cell. Since the
probability density function ψ is normalized,

1 =

ˆ
|ψ(~r)|2d~r ≈

∑
k

Ω|ψ(~Rk)|2 (3.1.12)
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3.1. Central spin model

holds and the prefactor AS is identified as the sum over all coupling constants AS =∑
k Ak. AS can be seen as an indicator for the hyperfine interaction strength and is a

material constant, e. g. for GaAs AS ∼ 10 − 100µeV [48, 55, 126]. A more in-depth
investigation of AS related to the chosen distribution of the coupling constants and the
number of nuclear spins is found in Sec. 3.1.3.

Usually an external magnetic field is applied in experiments. The Gaudin model (3.1.8)
is easily extended to

HCSM = geµB
~Bext

~S + µN
~Bext

∑
k

gk~Ik +

N∑
k=1

Ak~Ik ~S (3.1.13)

where ge is the electron g-factor and µB = 9.27 × 10−24 J/T is the Bohr magneton.
The electron g-factor of a free electron is ge = 2, in a QD this value is reduced to
ge = 0.555 [33]. The precession of the nuclear spins is much slower. The nuclear
magneton is µN = 5.05× 10−27 J/T and therefore approximately ∼ 1800 times smaller
than the Bohr magneton [117]. The ratio between the electron and nuclear Zeeman
splitting can be quantified by the parameter

ζ =
gNµN

geµB
. (3.1.14)

The electron spins precess with the Larmor frequency ωe = geµB| ~Bext| and the k-th
nuclear spin with the frequency ωN,k = gkµN| ~Bext| around the external magnetic field.
For simplicity, we assume that all nuclear spins have the same g-factor, gk = gN∀k.

In its simplest form Eq. (3.1.8), the CSM can be solved analytically, for example by a
sophisticated Bethe ansatz [37, 38]. This approach limits the number of nuclear spins to
N < 50 [41, 42]. But an exact analytical solution is also possible with a pre-set nuclear
spin polarization [47] or the simplification of equal coupling constants [45, 77]. Other
analytical methods include a cluster expansion approach [50], a Born approximation
for the non-Markovian dynamics [127] or perturbative approaches [47, 128]. This list is
by no way exhaustive and neglects all the numerical approaches ranging from classical
approaches [55, 129, 130] to Chebychev expansion techniques [49].

3.1.2 Quadrupolar interaction

The growth process of self-assembled QDs relies on different lattice constants between
growth layers. The mismatch which is up to 7% for InAs/GaAs [114], leads to lattice
strain under which the nuclei can be deformed to a non-spherical shape. The new
charge distribution in the nucleus gives rise to an electric field gradient in the QD. The
quadrupolar moment of the nucleus now reacts with this strain field and a quadrupolar
interaction [131, 132] can be observed.

Starting from classical description, the Hamiltonian for the interaction between a single
nucleus and the electron cloud is derived [122, 133]. The interaction energy E of the
charge distribution of the nucleus of density ρ with the potential V is calculated by

E =

ˆ
ρ(~r)V (~r)d~r. (3.1.15)
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The potential V is generated by the electron at ~r where ~r = 0 describes the mass center
of the nucleus. In a Taylor expansion of V around the origin, the energy is rewritten as

E = V (0)

ˆ
ρd~r +

∑
α

Vα

ˆ
rαρd~r +

1

2

∑
α,β

Vαβ

ˆ
rαrβρd~r (3.1.16)

where rα, rβ denote the spatial directions x, y, z and

Vα =
∂V

∂rα

∣∣∣∣
r=0

and Vαβ =
∂2V

∂rα∂rβ

∣∣∣∣
r=0

(3.1.17)

are the derivatives of the potential. The first derivative gives the electric field compon-
ents and ∂2V/∂rα∂rβ are the tensor components of the electric field gradient.

The first term of Eq. (3.1.16) describes a point charge. The second summand is the
electric dipole moment of the nucleus. It usually vanishes due to parity when the center
of mass is at the center of charge. The third term is the quadrupolar energy E(2).
Since V must satisfy the Laplace equation ∇2V = 0 this contribution vanishes in bulk
material where Vxx = Vyy = Vzz = 0. However, it contributes to the dynamics in a QD,
where the symmetry is broken.

An entry of the quadrupole moment tensor Q is given by

Qαβ =

ˆ (
3rαrβ − δαβr2

)
ρd~r. (3.1.18)

It is used to rewrite the quadrupolar energy E(2) as

E(2) =
1

6

∑
αβ

VαβQαβ. (3.1.19)

For a transition to a quantum mechanical picture the classical density has to be substi-
tuted by the operator ρ = e

∑protons
k δ(~r − ~rk) with k nuclear particles with charge e.

The Hamiltonian of the quadrupolar interaction is

HQ =
1

6

∑
αβ

VαβQαβ. (3.1.20)

The Wigner-Eckart theorem allows to calculate the tensor elements of the quadrupolar
operator via the Clebsch-Gordon coefficients and express (3.1.20) in spin coordinates.
The entries of the quadrupole tensor are given by〈
Imη̃

∣∣∣∣∣e
protons∑

k

(3rα,krβ,k − δαβr2
k)

∣∣∣∣∣ Im′η̃
〉

= C

〈
Imη̃

∣∣∣∣3IαIβ + IβIα
2

− δαβI2

∣∣∣∣ Im′η̃〉 ,
(3.1.21)

where I is the total angular momentum and m the secondary total angular momentum
quantum number and η̃ a set of quantum numbers. The constant C can be identified
as

C =
eQ

I(2I − 1)
(3.1.22)
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with the quadrupole moment of the nucleus Q, which is independent of the quantum
numbers m,m′ or the spatial directions rα, rβ .

The electric field gradient is diagonalized. Plugging the tensor entries Eq. (3.1.21) into
the Hamiltonian (3.1.20), we arrive at

HQ =
e2d̃Q

4I(2I − 1)

[
3I2
z − I(I + 1) + ηQ(I2

x − I2
y )
]
. (3.1.23)

The electric field gradient in z-direction is replaced by ed̃ = Vzz and the asymmetry
parameter ηQ = (Vxx−Vyy)/Vzz is introduced. In the following, we apply the assumption
[83] of axial symmetry ηQ = 0, meaning that the quadrupolar interaction strength does
not depend on an angle perpendicular to the growth axis z.

To include the whole nuclear spin bath, we sum over all individual nuclear spin Hamilto-
nian operators. Each has its own symmetry axis defined by the eigenvector of the largest
eigenvalue of the electric field gradient, which is called the quadrupole orientation ~nk.
The influence of the quadrupolar interaction [83, 134, 135] on all nuclear spins is given
by

HQ =
∑
k

HkQ =
∑
k

e2d̃Q

4I(2I − 1)

(
3(~Ik~nk)

2 − I(I + 1)
)
. (3.1.24)

The prefactor is encapsulated in the parameter

qk =
3e2d̃kQ

4I(2I − 1)
(3.1.25)

for each nuclear spin.

The quadrupole orientation vector ~nk is a unit vector defined by its deviation angle
θ from the growth axis which is aligned in z-direction. The variation of the angle θ
depends on the isotope. Since in future investigations in this work all nuclear spins
are considered to be of the same kind, an average angle θ = 23.78◦ is introduced.

Figure 3.2: A random quadrupole
orientation vector ~nk inside the cone
given by θmax in dotted lines.

Then the quadrupole orientation vector ~nk is re-
stricted to a sphere segment around the z-axis
defined by the angle θmax = 35◦ which repro-
duces the the mean deviation angle of θ for
In0.4Ga0.6As [135]. The random unit vectors
~nk are generated uniformly within this sphere
segment [81], see Fig. 3.2. The second quad-
rupolar parameter qk defines the interaction
strength. With qk/(2π) ∼ 1.677MHz for As and
2.346MHz for In in In0.4Ga0.6As QD [134, 135],
the quadrupolar interaction is of the order of
magnitude of the nuclear Zeeman interaction for
an external magnetic field of | ~Bext| = 1T. In this
model the strength of the quadrupolar coupling
qk is defined in relation to the hyperfine coupling
constants [81] via the ratio

Qr =
Aq

AS
(3.1.26)
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with Aq =
∑

k qk where the qk are assumed to be uniformly distributed. This sim-
plification neglects any potential correlation to the hyperfine coupling constant due to
position in the QD [136]. Each quadrupole coupling is generated via

qk = Qrxk

∑
k Ak∑
k xk

. (3.1.27)

The random variable xk is uniformly distributed in xk ∈ [0.5, 1].

The quadrupolar interaction only contributes to the dynamics for I > 1/2 which can
lead to a severe restriction concerning the nuclear spin bath size [81, 93, 137]. To
simplify the model it was suggested to map the problem on an effective spin I = 1/2
model [83]. However, we take another path by deriving a classical analogon to the
quantum mechanical Hamiltonian in Sec. 5.2.2.

In an In(Ga)As QD the frequency induced by the Knight field is reported to be of
the order of a few MHz [134, 138–140], the same holds for the prefactor qk [134, 135].
However, while all ~Ik are influenced by the same Knight field, the quadrupolar inter-
action varies from nuclear spin to nuclear spin. This way the influence of the overall
quadrupolar interaction on the nuclear spin is often weaker than that of the hyperfine
interaction.

3.1.3 Characteristic time scale

The characteristic time scale T ∗ governs the short time dynamics given by the dephasing
time of the electron spin dynamics. A similar time scale was also introduced by Merkulov
et al. [55] and its systematic derivation of the constant is presented in Ref. [141]. Via
the fluctuations of the Overhauser field 〈 ~B2

N〉 the characteristic time scale

T ∗ =

√
3

4

1

〈~I2〉
∑N

k=1A
2
k

(3.1.28)

is defined, and it retains the dependence of ~BN on the spin length of the nuclear spins,
see Eq. (3.1.9). For a quantum mechanical approach 〈~I2〉 = I(I+1), while for a classical
one it is I2. For large nuclear spins (I → ∞) both approaches become identical. The
fluctuation frequency ωfluc = 1/T ∗ defines a characteristic energy scale. The dephasing
time T ∗ was experimentally determined to be of the order of magnitude of 100 ps to
a few nanoseconds [78, 81, 142–144] depending on the size of the QD. Hackmann et
al. [49] linked T ∗ ∼

√
N(L0) to the number of nuclei in a sphere of radius L0 where L0

is the length scale of the envelope function.

The total Hamiltonian is composed of the hyperfine coupling of electron and nuclear
spins with their Zeeman interaction Eqs.(3.1.13) and the nuclear-electric quadrupolar
interaction (3.1.24)

Htot = HCSM +HQ. (3.1.29)

The characteristic time scale can be used to define a dimensionless Hamiltonian

H = HtotT
∗ = ~bext

~S + ζ~bext

N∑
k=1

~Ik +

N∑
k=1

ak~Ik ~S +
N∑
k=1

qk

(
~Ik~nk

)2
(3.1.30)
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with the external magnetic field~bext = geµBT
∗ ~Bext and the ratio ζ given by Eq. (3.1.14).

The coupling constants of the hyperfine interaction are

ak = T ∗Ak. (3.1.31)

Note that only the rescaled time t/T ∗ and the frequency ω/ωfluc are dimensionless.
Since the short time dynamics is only governed by the fluctuations of the Overhauser
field, it becomes invariant in the time frame of T ∗. The quadrupolar couplings qk can
also be expressed dependent on ak and Eq. (3.1.27) is rewritten as

qk = T ∗qk = Qrxk

∑
k ak∑
k xk

. (3.1.32)

3.2 Distribution of the hyperfine coupling constants

We found that the coupling constants ak are closely related to the time scale of the
system T ∗, see Eq. (3.1.28). Up until now no assumption about their distribution
p(a) was included in the model. A few of the different distributions reoccurring in the
literature [49, 52, 127, 145, 146] shall be presented here.

The possibly easiest distribution features equal coupling constants Ak = A = 1/
√
N ∀ k.

A CSM with this kind of Ak is referred to as the box model. While seemingly simplistic
the box model allows for an analytical treatment of the CSM in some cases [39, 60, 77]
or at least a reduction in complexity which proves advantageous concering computation
time.

A starting point for the derivation of a distribution which more realistically represents
the hyperfine coupling constants of a model bath with N � 105 is given by Eq. (3.1.11).
It links the coupling constant to the squared modulus of the envelope of the electron
wave function |ψ(~R)|2. The wave function assumes the form

ψ(~Rk) ∝ L
−ξ/m
0 exp

[
−1

2

(
r

L0

)m]∣∣∣∣
r=|~Rk|

(3.2.1)

where L0 ≈ 5nm is the characteristic length scale of the QD [141] and ~Rk the location
of the k-th nucleus. For m = 1 the envelope of the wave function is hydrogen like;
for m = 2 it is Gaussian [127]. In the following we restrict ourselves to m = 2. The
parameter ξ is determined by the dimension of the QD. An isotropic QD corresponds
to ξ = 3. If the quantization of the QD along the growth axis exceeds that in the QD
plane then ξ = 2.

The probability to find a large coupling constant increases with larger r in Eq. (3.2.1).
Therefore, the cut-off radius R0 is introduced. For a QD of spherical shape in ξ di-
mensions the probability to find a nuclear spin with distance r is given by ξrξ−1/Rξ0.
Via the normalization condition p(A)dA = p(r)dr the coupling constant distribution is
determined

pr0(A) = − ξ

2rξ0

1

A

[
ln

(
Amax

A

)] ξ−2
2

. (3.2.2)
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Figure 3.3: Histogram of the hyperfine coupling constant distribution for N = 100 for different
r0. Panel (a) ξ = 2 and panel (b) ξ = 3. Each histogram uses 107 data points.

It describes the probability to pick a nuclear spin with the coupling constant A for a
given r0. The ratio r0 = R0/L0 determines how far the wave function is taken into
account outside the QD. The maximum coupling constant is given at the center of the
QD Amax = A(0). The smallest coupling constant is predetermined by the cut-off r0 as
Amin = Amax exp (−r0

2). This distribution was first used by Hackmann [49, 75, 81, 82].

To generate the distribution, inverse transformation sampling is used, where p(A)dA =
p(u)du with a random number u which is uniformly distributed on [0, 1]. By integrating
over both sides we arrive at

u(A) =
1

rξ0

[
ln

(
Amax

A

)]ξ/2
. (3.2.3)

From there on the inversion function provides the desired result

A = Amax exp
(
−r2

0u
2/ξ
)
, (3.2.4)

which is utilized to generate the hyperfine coupling constants. For ξ = 2 the coupling
constants are exponential which is found in literature [41, 48, 58, 93, 129].

Exemplary histograms of the distributions for different r0 for ξ = 2 and ξ = 3 are found
in Fig. 3.3 in panel (a) and (b), respectively. For ξ = 2 the probability to find coupling
constants of the same order of magnitude is enhanced compared to ξ = 3. This fact is
most obvious for r0 = 1.0 where the probability to find smaller coupling constants is
noticeably higher for ξ = 3 than for ξ = 2. The same trend is observed for larger r0

where finding small coupling constants is more likely the larger the cut-off ratio r0. This
coincides with the fact that when more nuclear spins are allowed in a larger radius R0

around the electron spin, most of those nuclear spins only interact weakly with ~S. Only
a few nuclear spins are left to contribute significantly to the dynamics. This necessitates
an increasing number of nuclear spins N in the model if r0 is large enough to represent
the distribution adequately. For N = 100 the cut of r0 = 1.5 has proven to be sufficient.

While the short time dynamics is governed by T ∗ defined in the previous section, the
additional moments of the probability density function pr0(ak) also influence the long-
time limit of the system [55, 79, 127]. Merkulov et al. [55] proposed the correlation
function of the Overhauser field, which is proportional to aS =

∑
k ak, as a quantity to
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3.2. Distribution of the hyperfine coupling constants

Figure 3.4: The sum over all coupling constants aS for ξ = 3 as a function of the number of
nuclear spins N and the cut-off ratio r0. The coupling constants follow ak ∼ pr0(a).

measure the influence on the long-time behavior

γ̃−1 ∝ 〈A〉
2

〈A2〉
=
a2

S

N
. (3.2.5)

The analytical result of aS is depicted in Fig. 3.4 as a function of r0 and N for ξ = 3.
The expectation value of the sum over all ak is

aS =
√

3N

´ Amax

Amin
p(A)AdA√´ Amax

Amin
p(A)A2dA

=
3
√
N√
r3

0

√
πerf(r0)− 2e−r

2
0√√

2πerf(
√

2r0)− 4r0e−2r2
0

. (3.2.6)

For small r0 the sum aS assumes its maximum value max(aS) =
√

3N which is equivalent
to the box model and the effective number of nuclear spins contributing to the central
spin dynamics is a2

S ∼ N . Each nuclear spin contributes equally. For a large cut-off
sphere around the electron spin the sum over all ak is given by min(aS) =

√
3. Then all

nuclear spins are ak = 0 except for one which assumes the maximal possible coupling
constant of

√
3. The number of nuclear spins which couple significantly to the central

spin is 1. This shall be discussed a bit more in-depth later in Sec. 5.3.3.

Also, other distributions are imaginable like a uniform distribution [38] or a distribution
with equidistant coupling constants [52, 53]. A similar scheme was also applied for
exponential coupling constants where the random parameter u in (3.2.4) is replaced
with a set of evenly spaced values in a given interval [58, 127].
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Chapter 4

Correlation functions in the central
spin model

Correlation functions are a useful tool to reveal correlations between measurands. Its
order is determined by the number of operators involved. Here, we have to distin-
guish between correlation functions of operators which stand in for different physical
measurement parameters and auto-correlation functions. Auto-correlation functions de-
scribe the correlation of a measurand with itself at different times. The auto-correlation
function of spins in the frequency space is called spin noise.

We discuss the general definition of cumulants and how they pertain to correlation func-
tions. In the following, we restrict ourselves to the second and fourth-order correlation
functions since in systems with time reversal symmetry the third-order spin correlation
is imaginary and therefore not an observable [147].

4.1 Correlation functions

Cumulants are used to reveal interactions and correlations in system. Only if correlation
exists the cumulant displays a non-zero value. Therefore, Kubo’s generalized cumulant
expansion provides an important statistical tool for solving many physical problems ran-
ging from thermodynamics to solid state physics [148–152]. The cumulant generating
functional for a random variable X is

KX(ξ) = ln
(
〈eξX〉

)
= ln

( ∞∑
n=0

ξn

n!
mn

)
=

∞∑
ν=1

(−1)ν+1

(
〈eξX〉 − 1

)ν
ν

=

∞∑
n=1

ξn

n!
κn.

(4.1.1)

The bracket 〈X〉 denotes the expectation value of a random variableX. In many-particle
systems X pertains to particles or excitations. The cumulant generating function is
linked to the characteristic function 〈eξX〉 via the natural logarithm. The parameter
mn = 〈Xn〉 is the n-th moment and κn the n-th cumulant of the random variable X.
The cumulant can be calculated via the derivative

κn =
∂nKX(ξ)

∂ξn

∣∣∣∣
ξ=0

. (4.1.2)
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4.2. Second-order correlation function and spin noise

The same concept is applicable for multiple random variables. The first cumulant of X
is identical to its first moment: the mean value 〈X〉c = 〈X〉. The subscript c refers to
the cumulant average. But already for the second-order cumulant and moment deviate.
The covariance of X1 and X2 is given by

〈X1X2〉c = 〈X1X2〉 − 〈X1〉〈X2〉 (4.1.3)

and vanishes for two independent random variables. Higher orders of moments can
be expressed via a sum of cumulants of the same and combinations of lower-order
cumulants by rewriting Eq. (4.1.1). All contributions involving cumulants with two
or more independent variables vanish. Vice versa κn is composed of the moment mn

minus all combinations of lower moments that represent lower-order correlations. If
X is a random variable that follows a Gaussian probability distribution, all cumulants
with n > 2 vanish.

Therefore, higher-order cumulants present a way to access true correlations beyond that
of Gaussian noise [92, 95, 153]. In the quantum mechanical calculations, the random
variables are replaced by operators [154] and the average by traces.

4.2 Second-order correlation function and spin noise

Spin-noise experiments on singly charged semiconductor QDs are typically conducted
at temperatures of T = 4 − 6K, which can be considered as a high-temperature limit,
since its thermal energy of ∼ 350−520µeV is very large compared to the energy scale of
the Overhauser field with AS ≈ 90µeV [55, 126]. If, additionally, the external magnetic
field is low (| ~Bext| < 4 T), the equilibrium spin polarization can be neglected and the
second-order moment, the auto-correlation function, is identified as the cumulant. In
the time domain the second-order correlation function is

C̃2(t1, t2) = 〈Sz(t1)Sz(t2)〉, (4.2.1)

which is a measure of the joint variability of the z-component of the spin at the start
time of the measurement t1 and a second time t2. Since we assume equilibrium, the
time dependency of C̃2 is reduced to the relative time τ = t2 − t1 by exploiting the
commutability the Hamiltonian and the density operator. The auto-correlation function

C2(τ) = 〈Sz(τ)Sz(0)〉 (4.2.2)

is translationally invariant in time. This scheme extends to higher-order auto-correlation
functions. If the time invariance is given, the number of arguments of Cn can be lowered
from n to n− 1. The Fourier transform of C2(τ) is called the spin-noise spectrum

C2(ω) =

ˆ ∞
−∞

dτ〈Sz(τ)Sz(0)〉e−iωτ . (4.2.3)

A useful function [147] for the transition from time domain to frequency space for
spin correlation functions of arbitrary order is the Fourier transform of the Heisenberg
operator Sz(t)

a(ω) =
1√
Tm

ˆ Tm/2

−Tm/2
dt e−iωtSz(t). (4.2.4)
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4.3. Fourth-order spin noise

The Fourier transform is applied for the duration of the measurement Tm. For symmetry
reasons the measurement time starts at t0 = −Tm/2. The prefactor 1/

√
Tm ensures the

convergence of C̃2(ω1, ω2).

The Wiener-Chintchin theorem [68, 155, 156] connects the steady-state spin auto-
correlation function C̃2(ω1, ω2) = 〈a(ω1)a(ω2)〉 to the spin-noise spectrum. A prerequis-
ite for the theorem is that the limit Tm →∞ can be applied. Albeit the measurement
time is finite in an experiment, it is assumed large compared to the time scale of the
spin decay T ∗ [68, 147]. Employing the Fourier transformation (4.2.4) and using the
translational invariance in time, the second-order spin correlation function is obtained

C̃2(ω1, ω2) = lim
Tm→∞

〈a(ω1)a(ω2)〉

= lim
Tm→∞

1

Tm

ˆ Tm
2

−Tm
2

dt1 e
−iω1t1

ˆ Tm
2

−Tm
2

dt2 e
−iω2t2〈Sz(t1)Sz(t2)〉

= δω1,−ω2C2(ω).

(4.2.5)

The spin-noise spectrum C2(ω) satisfies the sum rule
ˆ ∞
−∞

dωC2(ω) =
π

2
. (4.2.6)

4.3 Fourth-order spin noise

Unlike the second-order spin noise which has been extensively studied both in frequency
and time domain [69, 75, 78], the investigation of higher-order spin noise is a recent
development [96].

As already briefly discussed in Sec. 4.1, a cumulant of fourth order separates the true
higher-order correlations from factorization by subtracting all combinations of moments
which represent lower correlations [154]. The fourth-order cumulant of a(ω) is defined
as

S̃4(ω1, ω2, ω3, ω4) =C̃4(ω1, ω2, ω3, ω4)

− C̃2(ω1, ω2)C̃2(ω3, ω4)

− C̃2(ω1, ω3)C̃2(ω2, ω4)

− C̃2(ω1, ω4)C̃2(ω2, ω3).

(4.3.1)

The high-temperature limit eliminates all contributions of first order in a finite magnetic
field. The same assumption of invariance in time applied in C̃2 also holds for C̃4 and
allows for the elimination of one variable. In the limit Tm � T ∗ the correlation function
C̃4 yields

C̃4(ω1, ω2, ω3, ω4) = δω1+ω2+ω3+ω4,0C4(ω1, ω2, ω3,−(ω1 + ω2 + ω3)). (4.3.2)

The cut S4(ω1, ω2) = S̃4(ω1,−ω1, ω2,−ω2) through the S̃4-spectrum correlates two
spin-noise power spectrum component |a(ω)|2 at different frequencies with each other.
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4.3. Fourth-order spin noise

Expressing this bispectrum S4(ω1, ω2) as

S4(ω1, ω2) =S̃4(ω1,−ω1, ω2,−ω2)

=C4(ω1, ω2)− C2(ω1)C2(ω2)

× (1 + δω1,ω2 + δω1,−ω2)

(4.3.3)

with C4(ω1, ω2) = C̃4(ω1,−ω1, ω2,−ω2) is possible since a(−ω) = a∗(ω). A positive bi-
spectrum indicates that a spin component with the frequency ω1 increases the likelihood
of finding a spin precession with ω2 at the same time. Vice versa if S4(ω1, ω2) features
anti-correlation, the probability for observing spin precessions with ω1 and ω2 simultan-
eously declines. For uncorrelated frequency components the cumulant vanishes. In the
limit Tm →∞, the last two components of Eq. (4.3.3) only contribute for ω1 = ±ω2.

The auto-correlation function C4 obeys the sum rule
ˆ ∞
−∞

dω1

ˆ ∞
−∞

dω2C4(ω1, ω2) =
π2

4
. (4.3.4)

Combining the sum rules of C2 and C4 yields the sum rule for S4(ω1, ω2). The δω1,±ω2

are infinitesimally narrow and can be discarded when calculating the integral. The
integral of S4(ω1, ω2) over the ω1 − ω2-plane vanishes indicating that the bispectrum
contains as much spectral weight in the correlations as in the anti-correlations.

For the long measurement limit the Fourier transform of C4(ω1, ω2)

FC4(ω1, ω2) = C4(t1, t2) =
1

Tm

ˆ Tm/2

−Tm/2
dτ〈Sz(t1 + τ)Sz(τ)Sz(t2)Sz〉

=
1

Tm

ˆ Tm/2

−Tm/2
dτ〈C̃2(t1, τ)C̃2(t2, 0)〉.

(4.3.5)

connects the fourth-order correlation function in time with two measurements of C2(t1/2).
One measurement starts at t = 0 and the other after a delay of τ . To get the correlation
between the two measurements the average over the time delay is calculated. This shows
that by measuring a higher-order correlation functions [92, 93] in the time domain, the
bispectrum S4(ω1, ω2) becomes accessible in experiment.
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Chapter 5

Electron spin dynamics in the
central spin model

The purpose of this chapter is manifold: (1) The most intuitive approach for the
Hamiltonian presented in Eq. (3.1.30) is the exact diagonalization. However, the nuclear
spin bath size is limited for this approach due to exponential growth of the Hilbert space
with the number of nuclear spins. (2) We derive the semiclassical approximation that is
the main building block for all later investigations in this thesis. The semiclassical equa-
tions of motion should be able to represent all interactions of the Hamiltonian. (3) We
present various approaches to solve the electron spin dynamics in a semiconductor QD,
ranging from analytic solutions – especially the frozen Overhauser field approximation
by Merkulov et al. [55] – to numerical solutions. (4) The standard set of parameters
which is reused in later chapters shall be discussed. Those are utilized to benchmark the
semiclassical approximation against other approaches and validate its use in following
chapters. We also look into the variation of a few of those parameters and how they
affect the dynamics.

5.1 Exact diagonalization

The Hamiltonian is constructed using the Kronecker product given by C = A⊗B where
A is a v ×m matrix and B a p × q matrix resulting in a (vp) × (mq) matrix C. For
the hermitian spin matrices one index suffices. The spin operators Si and Ik,i with
i = x, y, z in the two or n = (2I + 1) dimensional vector space are given by the matrix
representation S2,i = (1/2)σ2,i and In,k,i, respectively. In the case of the electron spin
or I = 1/2, the spin operator I2,k,i = (1/2)σ2,i is defined by the Pauli spin matrices
σ2,i.

For the n- and m-dimensional identity matrix 1n ⊗ 1m = 1nm holds. Therefore, the
spin matrices can be written as

SD,i =
1

2
σ2,i ⊗ 1nN (5.1.1a)

ID,k,i = 12nk−1 ⊗ In,k,i ⊗ 1nN−k (5.1.1b)
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5.2. Semiclassical approximation

where N is the size of the nuclear spin bath and the dimension of the Hilbert space
is given by D = dim(H) = 2(nN ). Inserting the spin matrices into Eq. (3.1.30), the
Hamiltonian is given in the eigenbasis of Sz and Ik,z.

For the time evolution of the autocorrelation function 〈Sz(t)Sz(0)〉 the orthonormal
basis of eigenvectors |ν〉 are used

〈Sz(t)Sz(0)〉 =
1

D

∑
n

〈ν|eiHtSze
−iHtSz|ν〉. (5.1.2)

The prefactor 1/D is due to the high-temperature limit where

ρ =
1

D
1. (5.1.3)

Inserting the identity, leads to the Lehmann representation

〈Sz(t)Sz(0)〉 =
1

D

∑
νµ

〈ν|eiEνtSze
−iHt|µ〉〈µ|Sz|ν〉

=
1

D

∑
νµ

ei(Eν−Eµ)t|〈ν|Sz|µ〉|2
(5.1.4)

where 〈ν|Sz|µ〉 = (U †SzU)νµ is the matrix element of Sz in the eigenspace of H. The
transformation matrix U is given by the eigenvectors U = (~ν1, ...~νD). At t = 0 the
correlation function assumes 〈Sz(t = 0)Sz(0)〉 = 1/4 since the square of the spin vector
is 〈~S(t = 0)~S(0)〉 = 〈Sx(0)2 + Sy(0)2 + Sz(0)2〉 = S(S + 1) = 3/4.

The explicit construction of the Hamiltonian is not viable for a larger nuclear spin
bath where more elaborate methods that do not require this step have to be applied
for a quantum mechanical treatment. Examples for those methods include the Cheby-
shev polynomial expansion technique [49], a Lanczos approach [93] or a time-dependent
density matrix renormalization group approach [52]. Also, decompositions of the hy-
perfine Hamiltonian in multiple, box-model like sub-Hamiltonians can be used as an
approach [157].

5.2 Semiclassical approximation

While quantum mechanical approaches are feasible to extract the electron spin dynam-
ics, we go another route and instead use a semiclassical approach (SCA). The SCA
is a common approach which was employed by Merkulov et al. [55] to solve the dy-
namics for a frozen Overhauser field and was expanded upon by various others to in-
vestigate many aspects of the dynamics in QDs like the dephasing mechanisms or spin
noise [53, 57, 58, 60, 120].

We derive equations of motion via a path integral formalism and discuss their intricacies
like the dependence on spin length or the configuration averaging. This work was done
in collaboration with Andreas Fischer. We then present the analytical solution by
Merkulov and cover the numerical approach used in this work briefly.
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5.2. Semiclassical approximation

5.2.1 Derivation of a scheme for the classical equations of motion

The path integral representation [158–160] of the partition function Z of a spin in an
external magnetic field shall be derived. Subsequently, a saddle point approximation
leads to a formalism which enables us to find classical equations of motion for arbitrary
Hamiltonians.

We use spin coherent states [159, 161, 162] as a representation of a spin s where

|↑0〉 = |s,m = s〉 (5.2.1)

is the maximum weight state. |↑0〉 is also the eigenstate of sz as well as of ~s 2

sz|↑0〉 = s|↑0〉 (5.2.2a)

~s 2|↑0〉 = s(s+ 1)|↑0〉. (5.2.2b)

We later identify the arbitrary spin ~s with either the electron spin ~S or a nuclear spin
~Ik. The spin coherent states |n〉 are gained by the rotation of |↑0〉 on the Bloch sphere
from the quantization axis in z-direction to a new direction. These rotations can be
defined by the Euler angles {φ, ψ ∈ [0, 2π), θ ∈ [0, π)}

|n〉 = e−iφsze−iθsxe−iψsz | ↑0〉 = e−iφsze−iθsx | ↑0〉e−iψs = R(φ, θ)| ↑0〉e−iψs. (5.2.3)

Since |↑0〉 is an eigenstate of sz the rotation around ψ only enters as a phase factor and
is neglected [160, 163]. The resolution of identity in this overcomplete basis is

2s+ 1

4π

ˆ
dn|n〉〈n| = 1. (5.2.4)

The expectation value of the spin operator for the state |n〉 is s~n = 〈n|~s|n〉.

The representation via a partition function replaces the sum over all possible paths from
nstart to nend with a sum over all closed loops. The imaginary time interval is then split
in N parts of length iδt

Z = lim
N→∞

tr
(

e−βH
)

= lim
N→∞

tr
(

e−iδtH
)N

(5.2.5)

with iδt = β/N . In between each interval we insert a resolution of identity

Z = lim
N→∞

(
N−1∏
i=0

dni

)ˆ
nN=n0

N−1∏
i=0

〈ni+1|e−iδtH |ni〉. (5.2.6)

Applying a first-order Taylor series approximation, we arrive at

Z = lim
N→∞

N−1∏
i=0

dniexp

[
−iδt

N−1∑
i=0

(
〈ni+1|H|ni〉+

1

iδt
(〈ni|ni〉 − 〈ni+1|ni〉)

)]
. (5.2.7)

In the continuum limit for N → ∞ and δt → 0 the second term can be identified as a
first derivative in time

Z =

ˆ
D[n]exp

[
−
ˆ T

0
dt (i〈n|H|n〉 − 〈∂tn|n〉)

]
. (5.2.8)
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5.2. Semiclassical approximation

The upper bound of the integral is T = Nδt = β.

For the kinetic term
´

dt〈∂tn|n〉, we obtain

is

ˆ T

0
dtφ̇ cos θ (5.2.9)

applying the periodic boundary conditions. We also define 〈n|H|n〉 as a classical
Hamiltonian function 〈n|H|n〉 = H(~n). The partition function now takes the form

Z =

ˆ
D[n]exp

[
−i

ˆ T

0
dt(H(~n)− sφ̇ cos θ)

]
(5.2.10)

where the action SA[~n] is easily identifiable as

SA[~n] =

ˆ T

0
dt(H(~n)− sφ̇ cos θ). (5.2.11)

The term
´ T

0 dtsφ̇ cos θ is called the Berry phase SB and is induced by the overlap
between coherent states.

We rescale the quantum mechanical operators of the Hamiltonian with their spin length.
For large s this is equivalent to the classical limit where spins freely commutate

[si/s, sj/s] = εijksk/s
2 ∝ O(1/s). (5.2.12)

Furthermore, this limit s� 1 leads to a rapidly oscillating behavior of e−iSA[~n]. While a
quantum object takes every possible path, a large variation of the complex phase which
weights each path leads to destructive interference. This suppresses all but the classical
case given by the saddle point approximation δSA = 0.

As a constraint the length of ~n is fixed to ~n2 = 1. Therefore, the Lagrange function L
is

L(~n, ~̇n, λ) = SB −H(~n)− λ

2
(~n2 − 1) (5.2.13)

with λ the Lagrange multiplier. The total functional derivative

δL =

(
d

dt
∇~̇nL −∇~nL

)
δ~n = 0 (5.2.14)

includes the variation of the Berry phase term which can be calculated separately and
is given in Ref. [158]

d

dt
∇~̇nSB −∇~nSB = s~n× ~̇n. (5.2.15)

Since the appearing cross product ~n × ~̇n = [n]x~̇n provides a non-regular matrix, it is
extended to an invertible rotation matrix R~n around the angle π/2 with an additional
zero from the rewritten second-order condition (~n⊗ ~n)~̇n = 0. This leads to

s ([n]x + ~n⊗ ~n) ~̇n−∇~nH(~n)− λ~n = sRn(α = π/2)~̇n−∇~nH(~n)− λ~n = 0. (5.2.16)
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5.2. Semiclassical approximation

This equation is easily solved for ~̇n

~̇n =
1

s
[(~n∇~nH(~n) + λ)~n+∇~nH(~n)× ~n] . (5.2.17)

The Lagrange multiplicator takes the role of a generalized force along the direction of
the spin and can be chosen as λ = −~n∇~nH(~n). Only the cross product term remains
on the right-hand side for the derivative of ~n with respect to time. Multiplication with
the spin length s yields

~̇s = ∇~sH(~n)× ~s. (5.2.18)

A set of often coupled classical equations of motion is derived from this general equa-
tion by deriving the appropriate Hamilton function for more than one spin. The time
evolution of a spin vector ~s = s~n is always defined by its precession in an effective field
given by ~beff = ∇~sH(~n).

5.2.2 Equations of motion for the central spin model Hamiltonian

The previously discussed interactions in a singly charged QD, see Chap. 3, can be divided
in two categories, one in which a spin operator occurs linearly in the Hamiltonian and
the quadrupolar interaction which features a quadratic term of Ik,iIk,j for i, j = x, y, z.
The derivation of the classical equations of motion for the first case shall be discussed
using the example of the hyperfine interaction. A similar approach is found in Chen et
al. [54] and Al-Hassanieh et al. [57], who transferred the quantum mechanical dynamics
of the CSM containing only the hyperfine and Zeeman interaction into a set of classical
Euler-Lagrange equations of motion using the path integral method outlined in the
previous section.

The derivation of the equation of motion for the electron spin is straight forward since
~S contributes only linearly to the Hamiltonian. We observe

S~nS = 〈nS |~S|nS〉 (5.2.19)

where the expectation value S~nS are computed using the identity related to the Baker-
Campbell-Hausdorff formula [160]

eiφSiSje
−iφSi = Sjδij + (1− δij) cos(π)Sj − εijkSk. (5.2.20)

The vector ~nS = ~er is identified with the unit vector ~er = (sin θ cosφ, sin θ sinφ, cos θ)T

in spherical coordinates. The vectors given by the spin coherent states |nS〉 can be in-
terpreted as a classical analogue to the quantum mechanical angular momentum states.
The same scheme may be applied to the nuclear spins. With Eq. (5.2.18) the (N + 1)
dimensionless effective fields of the linear terms for the central spin ~S and the N bath
spins ~Ik are found:

~bSeff = ~bN +~bext , (5.2.21a)
~bIkeff = ak ~S + ζ~bext (5.2.21b)

where ~bN =
∑

k ak
~Ik is the classical Overhauser field. Various approaches can be ap-

plied to solve these (N + 1) coupled Euler-Lagrange equations approximately. The
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5.2. Semiclassical approximation

include a frozen Overhauser field approximation proposed by Merkulov [55] and elabor-
ate approaches [58, 129] which make it possible to use large bath sizes while allowing a
variation of the hyperfine coupling constants. After solving the equations of motion for
an individual initial condition, averaging over spin vectors on the Bloch sphere remains
to be done.

The derivation of the effective field ∇~IkH(~nI) = ∇~Ik〈nI |H|nI〉 with I~nI = 〈nI |~I|nI〉
for the quadrupolar action, see Eq. (3.1.24), requires a bit more effort. To calculate the
classical H(~nI) an additional identity R(φ, θ)R−1(φ, θ) is introduced

〈nI |H|nI〉 ∼
〈
nI

∣∣∣∣(~Ik~nk)2
∣∣∣∣nI〉 =

〈
↑0
∣∣∣∣(R−1(φ, θ)~Ik~nkR(φ, θ)

)2
∣∣∣∣ ↑0〉 , (5.2.22)

to replace |nI〉 → | ↑0〉. Again Eq. (5.2.20) is utilized to simplify this equation and we
arrive at 〈

nI

∣∣∣∣(~Ik~nk)2
∣∣∣∣nI〉 =

〈
↑0
∣∣∣∣(~Ik~n′k)2

∣∣∣∣ ↑0〉 (5.2.23)

where ~n′k = R−1
y (θ)R−1

z (φ)~nk is the local easy axis ~nk rotated by the angle θ about
the y-axis and by φ about the z-axis. Since all features of ~nk, such as the spin length
|~nk|2 = 1, are transferred to the rotated easy axis, the expectation value 〈nI |(~Ik~nk)2|nI〉
is rewritten as 〈

nI

∣∣∣∣(~Ik~nk)2
∣∣∣∣nI〉 =

(
~n′k~ez

)2(
I2 − I

2

)
+
I

2
. (5.2.24)

The rotation from ~n′k is also applied to ~ez which therefore is a unit vector parameterized
in terms of spherical coordinates. ~n′k~ez becomes ~nk~Ik/I. The effective quadrupolar field
is then

∇~Ik(T ∗HQPI) = 2q̃k

(
~nk~Ik

)
~nk (5.2.25)

with an adjusted quadrupolar interaction constant1

q̃k =

(
1− 1

2I

)
qk. (5.2.26)

This coincides with the quantum mechanical result that quadrupolar interaction only
occurs for I > 1/2. It also provides a scaling behavior for the quadrupolar coupling
strength depending on simulated spin length I. Larger nuclear spins lead to a stronger
quadrupolar interaction strength. In the limit I → ∞, the corrective factor leads to
q̃k = qk. For this case the effective field of the quadrupolar interaction can also be
derived by applying a Heisenberg equation on Eq. (3.1.24) while assuming classical,
commuting variables [137, 164].

Combining Eqs. (5.2.21) and (5.2.25) yield the following system of dimensionless, coupled
differential equations for the electron spin ~S and the N nuclear spins ~Ik:

T ∗
d

dt
~S =

(
~bext +~bN

)
× ~S (5.2.27a)

T ∗
d

dt
~Ik =

[
ak ~S + ζ~bext + 2q̃k

(
~nk~Ik

)
~nk

]
× ~Ik. (5.2.27b)

1This constant was derived in collaboration with A. Fischer
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5.2. Semiclassical approximation

The effective field of the electron spin is given by the constant external magnetic field
and the Overhauser field ~bN stemming from the hyperfine interaction with the nuclear
spins. Since the hyperfine interaction is bidirectional, each nuclear spin is influenced
by the central spin via the Knight field ak ~S. The effect of the Zeeman term on the
nuclear spins is usually much weaker than the electronic one, since ζ � 1. ~bjeff/T

∗ with
j = S, Ik are the precession frequencies in the effective fields.

The classical formalism extended by the quadrupolar interaction also includes the scalar
projection of the nuclear spin ~Ik onto the local easy axis ~nk. Together with q̃k this
projection gives the angular velocity of the precession of an individual nuclear spin
around a constant axis ~nk.

5.2.3 Explanatory notes about the classical spin length

Since the saddle point approximation is used in the derivation, the classical equations of
motion only hold for the limit of large spins. For this approximation the restriction of
discrete eigenenergies is lifted and the energy spectrum becomes continuous. Therefore,
no quantum mechanical spin length can consistently be assigned to a classical spin
vector. In the classical approximation a given spin length pertains to the overall scaling
behavior of the spin dynamics rather than to physical effect that emerge due to a discrete
eigenenergy spectrum. Those quantum mechanical effects cannot be captured by the
SCA. Since the classical equations of motions are norm conserving for all spin lengths,
the classical spin length in the simulation can be arbitrarily rescaled. In the following,
we choose spin vector length unity |~S′| = 1 and |~I ′k| = 1 for the numerical simulations
to represent the electron spin S = 1/2 and a nuclear spin of I ≥ 1/2.

While the dynamics described by Eq. (5.2.27) does not change qualitatively, the time
dependence of the solution changes with the spin length. For the normed spin vectors
~S → ~S′ = ~S/S and ~Ik → ~I ′k = ~Ik/I the coupled differential equations change to

T ∗
d~S′

dt
=

(
~bext +

I

S

∑
k

a′k
~I ′k

)
× ~S′ , (5.2.28a)

T ∗
d~I ′k
dt

=
(
ζ~bext + a′k

~S′ + 2q′k(~nk
~I ′k)~nk

)
× ~I ′k . (5.2.28b)

It is possible to absorb the spin length into coupling constants and quadrupolar inter-
action strength, like we did in Eq. (3.1.28) for the quantum mechanical difference of
I(I + 1) to I2 in the time constant T ∗. This results in an adjusted coupling constant
ak → a′k = Sak and q̃k → q′k = Iq̃k. Furthermore, the Overhauser field is rewritten
as ~b′N = I

S

∑
k a
′
k
~I ′k = ~bN in the context of the normed spin vectors. Since the Over-

hauser field ~bN is invariant of the spin vector length, this modification does not alter
the electron spin Larmor precession frequency ωLT

∗ = |~bext +~bN|.

The transformed constants a′k and q′k are generated by

a′k =
S

I

√
3

4

Ak√∑
k A

2
k

, (5.2.29a)

q′k = I

(
1− 1

2I

)
qk =

I − 1/2

S

∑
k a
′
k∑

k qk
Qr qk (5.2.29b)
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5.2. Semiclassical approximation

with qk ∼ U(0.5, 1.0). For I = 1/2 the quadrupolar interaction q′k vanishes. Since I = S
the coupling constants a′k as well as the Overhauser field become independent of the
spin length.

5.2.4 Classical configuration averaging

In order to obtain an expectation value in the semiclassical approach, we perform an
averaging over multiple initial configurations. There are two possible interpretations for
this process: The first is purely classical. This assumes that one QD is represented by
a single classical trajectory which is only defined by its initial condition. The averaging
then leads to the description of a QD ensemble with identical QDs [64]. This leaves out
the different time scales T ∗ that can occur in an ensemble. The second advocates an
interpretation based on the assumption of repetitive measurements on the same QD.
This agrees well with the measurement method used in Ref. [33] where each captured
electron spin dynamics already consists of multiple measurements.

A general form of the density operator reads

ρ =
∑
σ,{m}

pi|σ, {m}〉〈σ, {m}|. (5.2.30)

The nuclear bath spins are encoded in |{m}〉 = |m1, ...mN 〉 where each mk denotes the
eigenvalue of Ix along the external magnetic field. |σ〉, the eigenstates of σz, represent
the electron spin. pi is the probability of a state |σ, {m}〉. The density matrix is
rewritten in spin coherent states |{~n}〉, cf. Eq. (5.2.3),

ρ =

(
2s+ 1

4π

)N+1 ˆ
d{~n}|{~n}〉〈{~n}|. (5.2.31)

The measuring temperature range of about 6K [33] leads to much higher energies than
those given by the fluctuations of the Overhauser field. This results in a disordered
spin bath and renders the density matrix isotropic. A Monte Carlo integration is used
to reduce the number of configurations to M while still adequately representing the
entirety of the sample space of the spins

ρ ≈ 1

M

M∑
α=1

|{~n}〉α〈{~n}|α. (5.2.32)

|{~n}〉α denotes a random coherent state. Since the spin coherent states are pure, their
time evolution can be calculated via a Schrödinger equation.

The coherent states integral over the entire Hilbert space is equivalent to the integral
over all initial classical spin configurations [53–55]. The average over the subset of initial
conditions for nuclear and electron spin leads to a discretized representation

〈~S(t)〉 =
1

NC

NC∑
µ

~Sµ(t) (5.2.33)

with NC the number of classical configurations using the approximation (5.2.30). For
the classical simulation the Schrödinger equation is replaced by the classical equations
of motion Eq. (5.2.27). The solution to these differential equations of one configuration
µ is ~Sµ(t).
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5.2. Semiclassical approximation

5.2.5 Frozen Overhauser field approximation

Merkulov et al. [55] first used a frozen Overhauser field approximation (FOA) to solve
the semiclassical equations of motion, cf. Eqs. (5.2.27). As the name of the approx-
imation implies, the nuclear spin dynamics is considered as frozen, d

dt
~Ik = 0 ∀k. This

assumption holds especially for the short time dynamics, where the spread of all hyper-
fine coupling constants has not yet come into play.

For a constant effective field ~b = ~bext +~bN the differential equation (5.2.27a) is solved
exactly by

~S(t) = (~S0~n)~n+ [~S0 − (~S0~n)~n] cos(ωLt) + [~S0 − (~S0~n)~n]× ~n sin(ωLt) (5.2.34)

where the Larmor precession frequency ωLT
∗ = |~b| is connected to the absolute value

of the effective field and the vector ~n = ~b/|~b| is defined by its direction. The vector ~S0

denotes the initial spin vector at t = 0. This result is of special importance for later
analytical calculations in a pulsed QD. For benchmarking purposes the expectation
value of the electron spin dynamics is calculated. The Overhauser field distribution
follows a Gaussian distribution

pi(bN,i) =
1√

2πσ2
exp

(
−
b2N,i
2σ2

)
(5.2.35)

in all spatial directions i for the limit of an infinitely large nuclear spin bath due to
the central limit theorem. The variance is σ2 = 1/4. The probability density of an
Overhauser field vector is

p
(
~bN

)
=

∏
i=x,y,z

pi (bN,i) (5.2.36)

with ~bN ∼ N
(
~µ = 0,Σ = 1

41
)
and σ2

|~bN|
= 3/4. The expectation value is easily calcu-

lated for the case of zero-magnetic field

〈~S(t)〉 =
~S0

3

{
1 + 2

[
1−

(
t

2T ∗

)2
]

exp

[
−1

2

(
t

2T ∗

)2
]}

. (5.2.37)

The time evolution becomes universal in (t/T ∗) with the characteristic time scale T ∗

given by the material properties of the quantum dot. For the long-time limit the spin
expectation value approaches limt→∞〈~S(t)〉 = ~S0/3.

The box model solution ak = a ∀ k and the FOA yield the same result for a central
spin model without an additional external magnetic field and without quadrupolar
interaction. Transformation to relative ~c = ~S −

∑
k
~Ik and center-of-mass coordinates

~C = ~S +
∑

k
~Ik yields a set of differential equations

T ∗
d~C

dt
= 0 (5.2.38a)

T ∗
d~c

dt
= a~C × ~c (5.2.38b)

whose solution exhibits the same dynamics for ~c as the FOA does for the central spin.
Since the nuclear spins cannot deviate from their initial alignment to each other in
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5.2. Semiclassical approximation

the box model, the long-time limit of the FOA ~S0/3 is recovered. This finite value is
the upper bound of the long-time electron spin expectation value in the absence of an
external magnetic field. The distribution of coupling constants ak and the subsequent
change of alignment of nuclear spins to each other induce a long-time decay [79, 127].

For the case of an arbitrary non-zero external magnetic field the analytical calculation
of the expectation value of the central spin becomes more complicated. Therefore,
Eq. (5.2.34) is averaged over all initial conditions to obtain the FOA benchmarks.

5.2.6 Numerical solution in the semiclassical approximation

In each of the M classical configurations the central spin dynamics ~Sµ(t) for a given
Overhauser field realization bN,µ =

∑
k ak

~Ik,µ is calculated. For an unpolarized system
the sphere point picking algorithm [165] is used to get random spin vectors on the Bloch
sphere. The coupling constants ak and qk are initially generated and are equal for all
configurations.

The fourth-order Runge-Kutta method (RK4) has proven to be a reliable tool to solve
first-order differential equations ~̇y = ~f(t, y(t)) with the initial value ~y(t0) = ~y0. ~y is the
unknown time evolution of the nuclear or electron spin vector and ~f(t, ~y(t)) the vector
product with the effective field Eq. (5.2.28).

Although simpler methods, like the Euler integration, are computationally less expens-
ive, the additional accuracy makes the RK4 worthwhile. The increased precision stems
from the higher-order terms of the Taylor series [166, 167] compared to the Euler method
which is derived from only incorporating the first term of the Taylor series. This means
that a single time step of RK4 consists of the ~yi and the weighted average of four eval-
uations of the function: one at the start, one at the end of the time step and two in
the middle. The time step width is denoted h. A time step from tn to tn+1 = tn + h is
calculated by

~yn+1 = ~yn +
1

6

(
~k1 + 2~k2 + 2~k3 + ~k4

)
+O(h5) (5.2.39)

with

~k1 = h~f (tn, ~yn) (5.2.40a)

~k2 = h~f

(
tn +

h

2
, ~yn +

1

2
~k1

)
(5.2.40b)

~k3 = h~f

(
tn +

h

2
, ~yn +

1

2
~k2

)
(5.2.40c)

~k4 = h~f
(
tn + h, ~yn + ~k3

)
. (5.2.40d)

The increments ~ki represent the slope at the evaluation points which are depicted in
Fig. 5.1. If only ~k1 is taken into account, the Euler method is obtained. If, additionally,
~k2 is included, the resulting scheme is called the second-order Runge-Kutta method.
Through the weighted combination of the ki, the error terms up to the third order are
eliminated. The local truncation error is therefore of the order O(h5) and the total
accumulated error is of the order O(h4).
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5.3. Benchmarks

Figure 5.1: Schematics of
the RK4 method. The black
line represents the function to
be approximated. The evalu-
ation of the four derivatives
are given by ~ki. The result
after one RK4 step is ~yn+1.

Since the CSM is described by a system of coupled equations of motion, the time
integration step has to be performed for each spin vector. As the information from the
other spin vectors is kept constant during h, the time step width has to be adapted
to match the fastest time scale. It is usually given by the electron spin precession in
an external magnetic field. It is averaged over the RK4 result of NC configurations to
obtain the expectation value 〈~S(t)〉, cf. Eq. (5.2.33).

5.3 Benchmarks

The numerical solution to the coupled semiclassical equations of motion (5.2.27) is an
integral part of this work. The equality between the autocorrelation function C2(t) =
〈Sz(t)Sz〉 and the expectation value 〈Sz(t)〉 sets the stage for the benchmark of the
approaches, cf. Sec. 5.3.1. The parameters are discussed in Sec. 5.3.2. Especially, the
many parameters for the SCA are of importance, since this relatively simple simulation
reappears as a building block for more intricate problems in later chapters. The bench-
marks for C2(t) in Sec. 5.3.3 with quantum mechanical approaches assert the validity
of the SCA with and without an external magnetic field. A good agreement can also
be found if the quadrupolar interaction is included, see Sec. 5.3.4.

5.3.1 Spin correlation function and spin expectation value

Here, we show that the information contained in 〈Sz(t)Sz(0)〉ρ0 with the equilibrium
density operator ρ0 is equivalent to 〈Sz(t)〉ρ↑ with a completely polarized electron spin
at t = 0 [49].

In the high-temperature limit the autocorrelation function for an unpolarized electron
spin is given by Eq. (5.1.2)

〈Sz(t)Sz〉ρ0 = Tr (ρ0Sz(t)Sz) =
1

D
Tr (Sz(t)Sz) . (5.3.1)

While 〈Sz(t)〉ρ0 vanishes for an unpolarized electron spin, a dynamics can be observed
if a polarization at the time t = 0 is taken into account. Starting from an electron spin
in the state |↑〉:

ρ↑ =

(
1 0
0 0

)
⊗ 2

D
1 =

2

D

(
1

2
1 + Sz

)
, (5.3.2)
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5.3. Benchmarks

Isotope µ/µN I gN gNµN [MHz/T] ζ−1
iso

69Ga 2.0166 3/2 1.3444 10.25 758
71Ga 2.5623 3/2 1.7082 13.02 597
75As 1.4395 3/2 0.9597 7.32 1062
115In 5.5289 9/2 1.2286 9.37 829

Table 5.1: ζiso = gNµN

geµB
of a single isotope. The magnetic moment µ, the nuclear spin length

I and the g-factors are also given. The resonant frequency gNµN of the nuclei of an isotope at
1T can be compared to the electron Larmor frequency of 7.77GHz.

the expectation value of the central spin dynamics is given by

〈Sz(t)〉ρ↑ = Tr (ρ↑Sz(t)) =
2

D
Tr (Sz(t)Sz) = 2〈Sz(t)Sz〉ρ0 . (5.3.3)

Therefore, we rescale the result for the autocorrelation function by a factor two and
arrive at the same result as for an initially polarized expectation value.

5.3.2 Parameters

The SCA is benchmarked against the classical FOA as well as quantum mechanical
methods: the exact diagonalization, the Chebyshev expansion technique and the Lanczos
method. The parameters of the simulations are discussed in this section.

The z-component of the electron spin is simulated up to Tmax = 400T ∗. The spin
dynamics is investigated at an external magnetic field of |~bext| = 0 and |~bext| = 10.
The external magnetic field is applied in x-direction. For all simulations the following
parameters are chosen: The ratio ζ = gkµN

geµB
of g-factors that governs nuclear Zeeman

interaction is ζ = 1/800. This value is an averaged quantity taking into account the
different nuclear g-factors of the nuclear isotopes in InGaAs [168–170]. The electron has
an effective g-factor of |ge| = 0.555 [171] in a GaAs quantum dot. The Larmor frequency
for 1T of both electron spin and nuclear spins is given by the product µg/(2π) with µ
being the magnetic moment, see Tab 5.1. Since the mass off the nuclei exceeds that of
the electron by far, the Larmor frequency of the electron of 7.77GHz is much larger than
that of the average nucleus with 9.35MHz [62]. All elements are assumed to contribute
equally. Of the stable Gallium isotopes 69Ga has a isotope abundance of ∼ 60 % and
71Ga of ∼ 40 % [172]. Note that the Chebyshev data does not include the nuclear
Zeeman splitting.

The bath size varies greatly between the different approaches. While an infinite bath size
is assumed in the FOA, a bath size of N = 100 is used in the semiclassical simulation.
The two quantum mechanical approaches are limited by the Hilbert space dimension
and therefore by the available active memory. The number of nuclear spins for the exact
diagonalization is N = 10. This number can be pushed to ∼ 20 nuclear spins [48, 173]
by partitioning the Hilbert space through conserved quantum numbers. The Lanczos
method and the Chebyshev expansion technique can incorporate more spins with N =
18 and N = 20, respectively.

The coupling constants ak follow the distribution pr0(a) defined by Eq. (3.2.2) in a
three-dimensional QD ξ = 3. r0 = 1.5 has been chosen in accordance with [49]. The
nuclear spin bath is unpolarized.
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The quadrupolar interaction is neglected in the first part of the benchmark Qr = 0. In
the second part the quadrupolar interaction strength is chosen to match the semiclassical
and the Lanczos method [137]. The angle θmax which restricts the easy axis ~nk to a
cone around the z-axis is 35◦.

The number of classical configurations is NC = 105. Since the nuclear spin bath is
unpolarized at t = 0, the nuclear spin vectors are distributed equally on the Bloch
sphere. The electron spin vector is initially aligned in z-direction. The nuclear spin
length is I = 1/2 for Qr = 0 and I = 3/2 for Qr 6= 0. The rescaling scheme presented
in Sec. 5.2.3 is used in the simulation to account for the different spin lengths. The
step width in the classical simulation is adapted depending on the external magnetic
field. For |~bext| = 0, the step width of h = 0.01T ∗ is chosen in the RK4 in Eq. (5.2.39).
The same step width has proven to be sufficient to trace the electron spin precession
for the magnetic field of |~bext| = 10. In the absence of a magnetic field C2 is calculated
analytically as the average over NC = 105 initial conditions of the Overhauser field.

To smooth the curves the Lanczos method averages over NC = 32 configurations of dif-
ferent ak. The statistical noise of the exact diagonalization is reduced by averaging over
NC = 50 configurations. The spin correlation function calculated via the Chebyshev
method is also averaged over NC = 50 realizations of the hyperfine coupling constants.

5.3.3 Comparison without quadrupolar interaction

Figure 5.2 shows the comparison of the semiclassical approximation (SCA) to several
other methods such as the exact diagonalization (ED), the Lanczos method, the Cheby-
shev expansion technique (CET) and the frozen Overhauser field approximation (FOA)
in the absence of an external magnetic field on the left side as well as a finite magnetic
field |~bext| = 10 on the right-hand side. The data from the ED and the CET is taken
from Hackmann et al. [49]. The data for the Lanczos method was provided by Nina
Fröhling.

In absence of a magnetic field all methods agree very well in the short-time dynamics
up to t/T ∗ ≈ 3. Due to the precession of the central spin in a frozen or nearly constant
Overhauser field, the FOA and the SCA coincide in the short-time dynamics even after
the minimum of C2(t) at t/T ∗ ≈ 3.5. They begin to differ after approximately 6T ∗ when
spin dynamics obtained with the FOA reaches the plateau given by S0/3, and C2(t)
begins to decrease to a reduced value. The basis assumption for the FOA, the constant
Overhauser field, is no longer valid for large times and, therefore, cannot capture any
features of the long-time decay of C2(t) after t/T ∗ ≈ 10. The box model faces the same
problems due to its equivalence to the FOA. This leads to the insight that the long-time
dephasing is attributed to the spread of the hyperfine coupling constants [55].

The deviation between classical and quantum mechanical calculation shortly after the
minimum can be explained by the smaller number of nuclear spin in the quantum
mechanical approach. Hackmann et al. [49] have shown that large r0 as a parameter of
the distribution pr0 lead to damped oscillation of C2(t): The pr0(a) favors a few large
coupling constants and an increasing proportion of weak coupling constants the larger
the r0 becomes, cf. Sec. 3.2. For a small number of nuclear spins only the few spins
with large ak act as an effective field in which the electron spin precesses. As Stanek
et al. [53] have shown this behavior also occurs for the classical simulation and for the
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Figure 5.2: Comparison of spin correlation functions C2(t) = 〈Sz(t)Sz〉 in absence of a mag-
netic field (a) and in a finite magnetic field |~bext| = 10 (b) calculated using different approaches.
Quantum mechanical methods used are: Lanczos with N = 18, Chebyshev expansion tech-
nique (CET) with N = 20 and exact diagonalization (ED) with N = 10, and the two classical
approaches are: the semiclassical approximation (SCA) and the frozen Overhauser field ap-
proximation (FOA), with N = 100 spins and NC = 100, 000. The CET data have been taken
from Fig. 7 in Ref. [49]. The ED is taken from Ref. [89]. The Lanczos data is provided by Nina
Fröhling. The dashed black line in (b) is the envelope function given by Eq. (5.3.5). All curves
are congruent. (c) and (d) show the difference between SCA data and the data gained by other
methods for both magnetic fields.

quantum mechanical tDMRG result for a small number of spins and is suppressed for a
larger number of spins. The remaining weakly coupled nuclear spins induce the slower
dephasing over time which is observed with both methods. The deviation between the
long-time limits shall be discussed briefly in the following. The goal is not to make
quantitative predictions for the constant value of the long-time limit C2(t → ∞) but
instead to explain the qualitative behavior of the plateau dependent on N and r0. Exact
predictions for different distributions are discussed in-depth in Refs. [54, 79, 127].

Figure 5.3 shows the Lanczos and the SCA result for different bath sizes N and cut-off
parameters r0. Panel (a) displays the dependence of the electron spin dynamics on the
nuclear spin bath size. The autocorrelation function calculated with the Lanczos method
shows a more pronounced maximum at t/T ∗ ≈ 6 compared to the other curves. This
effect can be attributed to the limited number of nuclear spins in the simulation. The
long-time behavior of C2 in the semiclassical simulation can be fitted to the quantum
mechanical result if the bath size is reduced N = 50. With an increasing number of
nuclear spins, the non-decaying fractions of the autocorrelation function calculated by
the SCA converge [53]. Already for C2 with N = 100 we observe a good agreement
with the spin dynamics including N = 200.

Different coupling constants change the Overhauser field in a single classical configura-
tion by allowing individual nuclear spins to align with each other differently over time.
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Figure 5.3: Electron spin correlation function for |~bext| = 0 for the quantum mechanical
Lanczos method and SCA with different bath sizes in panel (a) and different cut-off parameters
for the ak distribution in panel (b). The dimension is ξ = 3. The hyperfine distribution for the
Lanczos method is pr0(a) with r0 = 1.5. The data for the Lanczos method was provided by
Nina Fröhling.

This leads to a long-time dephasing depending on the distribution of the hyperfine
coupling constants [55]. Figure 5.3 (b) depicts C2(t) for different cut-off parameters r0

and N = 100.
The non-decaying fraction of C2(t) decreases with increasing r0. Merkulov et al. [55]
connect the long-time asymptotic value to

~S(t) = 〈~n~n0〉
~S0

3
= γ̃

~S0

3
(5.3.4)

with ~n0 = ~bN(0)/|~bN(0)| and ~n = ~bN(t)/|~bN(0)|. The parameter γ̃ is a monotonically
decreasing function γ̃ : R+ → (0, 1] of 〈A2

k〉/〈Ak〉2. This ratio can be used as a measure
of the spread of the coupling constants, cf. Eq. (3.2.5), and is rewritten as N/a2

S with
sum over all renormalized hyperfine coupling constants aS =

∑
k ak. N/a

2
S is depicted

in Fig. 5.4. The data is extracted from Fig. 3.4 as the inverse square of a cut at an
arbitrary spin bath size N > 1. The cut is multiplied with the number of nuclear spin
N . Since N/a2

S also is monotonous, the cut-off r0 can be directly linked to the non-
decaying fraction of the autocorrelation function. For an increasing r0 a decreasing γ̃
follows and, therefore, also a smaller non-decaying fraction of C2(t).

Figure 5.4: The parameter 〈a2〉/〈a〉2 = N/a2
S

depending on r0 which serves as a measure for
the effectively contributing nuclear spins [55].

The long-time limit of the quantum mechanical Lanczos approach features a greater
non-decaying fraction than the classical calculation of the same r0. But the same long-
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time behavior can be ensured by adjusting the parameter choice to smaller cut-offs for
the SCA. In this case r0 = 1.2 reproduces the quantum mechanical C2(t→∞) result.

The electron spin dynamics for a finite magnetic field of |~bext| = 10 is shown in Fig. 5.2
panel (b). On a short time, it is independent of the ak distribution. The short-time
dynamics is governed by the Larmor precession with the frequency ωLT

∗ = |~bext|. The
envelope function is determined by the Overhauser field distribution and the time con-
stant T ∗. They determine its shape

Senv(t) =
1

4
exp

(
−1

2

t2

(2T ∗)2

)
. (5.3.5)

Since the Overhauser field can be assumed constant for the dephasing time, the SCA
and the FOA yield very similar results for the simulations of C2(t) in the presence of a
large magnetic field.
The difference between the methods is presented in Fig. 5.2 (d). The agreement between
all methods is considerably better than in the absence of the magnetic field. Even the
largest discrepancy between SCA and CET never exceeds 0.01. The small differences
observed between classical and quantum mechanical methods disappear with increasing
bath size N [53]. The good agreement between the methods is important for later
calculations with finite external magnetic field, e. g. pulsed systems but also higher-
order correlation functions. Both investigations also include long-time effects which
makes a good quality of the SCA all the more necessary and the long-time calculations
less prone to large propagated errors.

5.3.4 Comparison including quadrupolar interaction

Not only the hyperfine interaction influences the long-time dynamics of the CSM but
also the quadrupolar coupling plays a role in this regime. Three parameters govern the
effect of the quadrupolar interaction, see Sec. 3.1.2: the coupling strengthQr, the nuclear
spin length I and the number of nuclear spin N . The easy axis ~nk are randomly drawn
from a cone around the z-axis with an apex angle of 2θmax = 70◦, cf. Sec. 5.3.2. The
differences between the classical simulation and quantum mechanical Lanczos approach
are investigated.

Figure 5.5: Classical simulation with equal hyperfine coupling constants and increasing Qr

for N = 100 nuclear spins in panel (a) and fixed Qr = 0.35 and varying N in (b).
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Figure 5.5 (a) shows the classical simulation results for different Qr. The hyperfine
coupling constants are set to be homogeneous, Ak = const, to exclude their influence
on the long-time dephasing for t� T ∗. As discussed above, such a system is equivalent
to the FOA for Qr = 0 and |~bext| = 0 and features no long-time decay. The blue curve
(Qr = 0) gives the plateau at S(0)/3, which is the upper bound for the long-time limit.
If a non-zero Qr is applied, C2(t) decays to zero. For increasing Qr, the autocorrelation
function decays faster. The scalar q̃k(~nk~Ik), cf. Eq. (5.2.27b), multiplied with the unit
vector ~nk acts as an effective field. Since ~nk~Ik ∈ [−I, I] is limited, the coupling constant
q̃k defined by Eq. (5.2.26) determines the spread of the effective coupling constants to
~nk. An inverse behavior between spread of the coupling constants and long-time decay
time can be found.

In experiments [81, 92] the decay attributed to the quadrupolar interaction occurs on
a time scale of 200 − 600 ns depending on the growth conditions of the quantum dot
ensemble. In Fig. 5.5 (b) the parameter Qr is chosen as 0.35 to fit the experiments for
N = 100. The parameter N is varied from small bath of N = 10 to N = 1000. The
long-time decay reveals its dependence on N . The quadrupolar coupling constants qk
for equal hyperfine coupling constants are qk ∼ Qr/

√
N . Therefore, the spread of the

quadrupolar coupling constants also depends on the bath size. The decay is slower the
more nuclear spins are included.

Figure 5.6: Electron spin dynamics for |~bext| = 0 for a semiclassical calculation and a Lanczos
method. The inset shows the dependence of QrI(I + 1)/

√
N on I(I + 1). The quantum

mechanical data is taken from [137].

Now that the two mechanisms determining the long-time decay of the autocorrelation
function, the hyperfine and the quadrupolar interaction, are discussed, we compare the
results of the classical simulation and the quantum mechanical Lanczos method [137].
We aim to tune the parameter Qr in such a way that C2(t) stays invariant for both
methods. For the quantum mechanical calculations, different nuclear spin lengths I are
utilized and the Hilbert space dimension is kept approximately constant. The Hilbert
space dimension limits the number of nuclear spins to 9 for I = 3/2 and N = 5 for
I = 9/2. The autocorrelation functions are depicted in Fig. 5.6.

For I = 3/2 a coupling strength of Qr = 0.15 is chosen referring to previous investiga-
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tions [81, 93] based on experimental data. In the quantum mechanical simulations for
other spin lengths, Qr is adjusted to reproduce the long-time decay of I = 3/2. For the
Lanczos data we can linearly connect the I(I + 1) and QrI(I + 1)/

√
N via the relation

Qr√
N
I(I + 1) = aI(I + 1) + b, (5.3.6)

with a = 0.0336± 0.0008 and b = 0.05± 0.01. The values for a and b are obtained via
linear regression. This relation is depicted in the inset of Fig. 5.6 using the data labeled
by the ’x’ markers. The SCA result is included as a green triangle and does fit well into
the scheme of the linear relation.

Here, we have to pay heed to the significantly different bath sizes used in the SCA and
the Lanczos calculations. To compensate for the larger number of nuclear spins, the
classical simulation has to feature a higher Qr to produce matching curves. This fact is
depicted in the inset plot of Fig. 5.6. And although Qr was originally defined in Ref. [81]
to minimize the dependency on N , the nuclear bath size still influences the long-time
decay as is evident from the dependency qk ∼ Qr/

√
N .
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Chapter 6

Fourth-order spin noise in a
semiconductor quantum dot

Besides pump-probe experiments, higher-order spectroscopy provides access to addi-
tional information about interactions in QDs [68]. In contrast to the former, spin-noise
spectroscopy is a non-invasive measurement [70]. Instead of using the probe beams in
tandem with pump pulses, that affect the state of the system, only the weaker probe
beams are applied. The resulting signal is noisy in the time domain. The information
about its spectral composition is extracted by a Fourier transformation. Higher-order
correlation functions show the interplay of two or more frequencies [174] and can there-
fore reveal dynamics beyond the Gaussian noise [175].

In this chapter we use the full Hamiltonian (3.1.30) also including the quadrupolar in-
teraction [94, 119, 176]. We compare the classical and quantum mechanical results for
the fourth-order spectrum S4(ω1, ω2) defined in Eq. (4.3.3) with and without quadru-
polar interaction. Most of the data presented here is part of Ref. [137]. All results of
the quantum mechanical simulation for higher-order correlation functions are the work
of Nina Fröhling.

6.1 Classical treatment

In the SCA the mean value over all configurations with different initial conditions [54, 89]
is calculated. The time evolution of the spin dynamics is dictated by Eqs. (5.2.27a) and
(5.2.27b). The intricacies of the SCA are the topic of Sec. 5.2.
The fourth-order cumulant is composed of fourth and second-order correlation functions.
For the special case of ω1 = −ω2 and ω4 = −ω3 its individual parts are given by

C4(ω1, ω2) =
1

NC

∑
µ∈config

FC2,µ(ω1)FC2,µ(ω2) (6.1.1)

and

C2(ω1) =
1

NC

∑
µ∈config

FC2,µ(ω1). (6.1.2)
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6.2. Spin-noise power spectrum C2(ω)

The correlation function FC2,µ(ω) [55, 76] is the Fourier transformation of the electron
spin correlation C2,µ(t) = Sz,µ(0)Sz,µ(t) in a single classical configuration µ. It is
the building block for both C4 and C2. Since the spin expectation value for a polarized
initial condition can be translated to the spin correlation function of second order for an
unpolarized electron at t = 0, see Sec. 5.3.1, the expectation value Sz,µ(t) is transformed
instead.

The bispectrum S4(ω1, ω2) is then assembled by the recipe given in Eq. (4.3.3).

6.2 Spin-noise power spectrum C2(ω)

The spin correlation function of second order was already the subject of several in-
vestigations [49, 75, 76]. However, it plays an important role in the understanding of
higher-order cumulants, see Chap. 4.1. After the time domain was revisited in Chap. 5,
the spin noise C2(ω) shall be the focus here.

A first step for understanding spin noise is taken by Fourier transforming the electron
spin dynamics (5.2.37) in a FOA [55]. For |~bext| = 0 the analytical solution is readily
available:

C2(ω) =
1

12

{
2πδ(ω) +

√
8π(2T ∗) (2T ∗ω)2 exp

[
−1

2
(2T ∗ω)2

]}
. (6.2.1)

Integration over all frequencies shows that one third of the spectral weight can be
attributed to the δ-peak at ω = 0 [49, 55, 81]. Its weight amounts to π/6 in accordance
with the sum rule (4.2.6). For non-zero magnetic fields the FOA solution has to be
calculated numerically [49, 75, 79, 81]. This simple method is compared to two more
sophisticated approaches in Fig. 6.1: the SCA and quantum mechanical calculation. In
the SCA C2(ω) is given by Eq. (6.1.2) but can also be simplified to

C2(ω) = F

 1

2NC

∑
µ∈config

Sz,µ(t)

 . (6.2.2)

The initial condition is ~Sµ(t = 0) = (1/2)~ez ∀µ due to the relation of the correlation
function of the electron and the expectation value (5.3.3). The parameters for the clas-
sical calculation are the same as in Sec. 5.3.2 unless stated otherwise. For investigations
in the frequency space we use T ∗ = 1/ωfluc as defined in Sec. 3.1.3.

The spin noise is presented in Fig. 6.1 for the external magnetic fields |~bext| = 0 and
|~bext| = 5. The plot is augmented by an additional plot which shows the low-frequency
range in panel (b). The results for the FOA and the quantum mechanical calculations
were provided by Nina Fröhling and are taken from Ref. [137]. The quantum mechanical
calculation is averaged over Na = 32 configurations for different sets of coupling con-
stants {ak} and uses N = 3 nuclear spins of length I = 9/2. A smaller cut-off radius is
used for the distribution of the hyperfine coupling constant distribution to compensate
for the smaller nuclear bath size r0 = 0.8.

All methods show good agreement for |~bext| = 5. The spin noise is represented by a
Gaussian with a mean of

µ(|~bext|) = ωfluc

√
|~bext|2 + 1/2 (6.2.3)
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6.3. Fourth-order spin noise

Figure 6.1: Spin noise C2(ω) for |~bext| = 0 and |~bext| = 5 for different approaches: the quantum
mechanical simulation (qm) with three I = 9/2 nuclear spins, the semiclassical approximation
(SCA) and the frozen Overhauser field approximation (FOA). This data has previously been
published in Ref. [137]. Panel (b) detail of C2(ω) at |~bext| = 0 for low frequencies.

and a variance of σ2 = (ωfluc/2)2 [49]. Small deviations can be attributed to the small
bath size in the quantum mechanical simulation or numerical noise due to the finite
maximum time Tm in the classical simulation. For |~bext| = 0 the differences become
more apparent. The spin-noise spectrum consists of peaked contribution at ω = 0 and
a Gaussian distribution at µ(|~bext| = 0) = ωfluc

√
1/2. For low magnetic fields the

distribution of the coupling constants p(a) governs the long-time decay. The result of
the FOA is equivalent to that of the box model for |~bext| = 0, cf. Sec. 5.2.5. The
ak-distribution of the box model is collapsed to a single δ-peak p(a) = δ(a − a) and,
therefore, C2(t) in the FOA shows no long-time decay. This translates to a δ(ω)-peak
of weight π/6 in the spin-noise spectrum. The long-time, decaying behavior for p(a) =
pr0(a) causes a shift of spectral weight from the δ(ω)-peak to non-zero frequencies, see
Fig. 6.1 (b). The spectral weight of the δ(ω)-peak is proportional to the remaining
non-decaying fraction of C2(t). The classical result traces the envelope of the quantum
mechanical spectrum. For zero-magnetic field the degeneracies in the eigenenergies
cannot be lifted by Zeeman splitting. In this restricted spectrum the excitations become
visible as peaks. To smooth the spectrum a different choice of coupling constants or
averaging over more than Na = 32 different sets of hyperfine coupling constants are
possible solutions.

6.3 Fourth-order spin noise

A few fundamental features of the fourth-order spectrum shall be investigated. First,
we discuss the shape of the cumulant S4-spectrum defined in Eq. (4.3.1) in terms of
its components C2 and C4. Then the spectrum calculated via SCA is investigated as a
limiting case of the quantum mechanical result. The last part is dedicated to the change
of the classical spectrum under the influence of |~bext|.

For the classical simulation we mostly use the parameters presented in Sec. 5.3.2. We
restrict ourselves to the dynamics given by HCSM and leave the effect of the quadrupolar

45



6.3. Fourth-order spin noise

interaction HQ to Sec. 6.4. The size of the nuclear spin bath is N = 100 and the number
of configurationsNC = 105. The distribution of the hyperfine coupling constants is given
by pr0(a) with r0 = 1.5 and ξ = 3. The strength of the nuclear Zeeman interaction is
defined by ζ = 0.00125. The measurement time is Tm = 400T ∗.

6.3.1 Components of S4

Figure 6.2: S4(ω1, ω2), C2(ω1)C2(ω2) and C4(ω1, ω2) with an external magnetic field of
|~bext| = 5 obtained by the SCA. Data taken from Ref. [137].

As Eq. (4.3.3) shows, the spectrum of S4(ω1, ω2) consists of two parts: the correlation
function C4(ω1, ω2) and the product of second-order correlations at different frequen-
cies C2(ω1)C2(ω2). The resulting S4-spectrum as well as its components are depicted
in Fig. 6.2 for an external magnetic field of |~bext| = 5. S4(ω1, ω2) features a broad
distribution of weak anti-correlations. Its strong correlations are concentrated on the
diagonal ω1 = ω2. Since both parts are composed only of positive terms, the correlations
of S4(ω1, ω2) can be attributed to C4(ω1, ω2) and its anti-correlations to C2(ω1)C2(ω2).
Positive and negative contributions cancel each other out for the frequency integral over
the spectrum.

In a finite magnetic field C2(ω) is a Gaussian distribution with mean µ(|~bext|), cf. Eq.
(6.2.3), and variance σ2 = (ωfluc/2)2 related to the dephasing time of Sz(t) for large
magnetic fields [55]. This Gaussian can be extracted from the envelope of the electron
spin dynamics via Fourier transformation. Since ω1 and ω2 are uncorrelated, the second-
order contributions combined follow a multivariate Gaussian whose covariance matrix
is diagonal with identical entries of σ2 = (ωfluc/2)2. The two-dimensional Gaussian is
depicted in the middle panel of Fig. 6.2.

The right-hand panel of Fig. 6.2 shows C4(ω1, ω2). Its contribution is restricted to
the diagonal ω1 = ω2. In each classical configuration the electron spin frequency is
given by the external magnetic field and an Overhauser field related perturbation.
The Overhauser field, only influenced by the hyperfine interaction and a weak nuc-
lear Zeeman term, is almost constant over the measurement time Tm. The Fourier
transform in an individual configuration C2,µ(ω) is therefore given by a single, narrow
peak. The product of C2,µ(ω1)C2,µ(ω2) only contributes to C4(ω1, ω2) at the overlap at
ω1 ≈ ω2. The projection of the diagonal contribution on the ω1-axis or the ω2-axis can
be approximated by the Gaussian distribution of the second-order correlation function
N (µ(|~bext|), (ωfluc/2)2).
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Figure 6.3: S4(ω1, ω2) calculated quantum mechanically for the bath size N = 3 and spin
length I = 3/2, I = 5/2 and I = 7/2. |~bext| = 5. Hyperfine coupling is given by r0 = 0.8 and
quadrupolar coupling is switched off Qr = 0. Plot taken from Ref. [137].

6.3.2 Classical limit to quantum mechanical simulations

The quantum mechanical S4-spectrum can - at first glance - deviate greatly from the
semiclassically computed one [94]. However, we show that the SCA provides a valid
approach in certain limits.

In Fig. 6.3 the results of a quantum mechanical exact diagonalization1 are shown for
different nuclear spin lengths (I = 3/2, 5/2, 7/2). The bath size is restricted to N = 3.
The hyperfine coupling constants are pr0(a)-distributed with a cut-off r0 = 0.8 and
averaged over Na = 32 configurations. A transversal magnetic field of |~bext| = 5 is
applied. For the quantum mechanical spectra a Lorentzian broadening with ω/ωfluc =
0.01 is used to make discrete results visible.

For I = 3/2 the discrete nature of the second-order spectrum C2(ω) is found in the
anti-correlations. The contributions to S4 are limited to a sparse number of (ω1, ω2)
frequency pairs which are artificially broadened. More general features like the correl-
ations along the diagonal or the centering of the spectrum with respect to the external
magnetic field strength remain the same as for the SCA results. The spectrum becomes
more continuous with an increasing nuclear spin length. For I = 7/2 it strongly re-
sembles that of the classical calculation presented in Fig. 6.2. Larger spins necessitate
a larger Hilbert space to describe and have more non-degenerate eigenenergies. For
I → ∞ the quantum mechanical spectrum is no longer discrete and a classical limit
could be reached.

The other candidate for a quantum mechanical calculation approaching the classical
result is found in the nuclear spin bath size. In Fig. 6.4 the fourth-order cumulant
spectrum is presented with a different number of nuclear spins. The spin length is fixed
to I = 9/2. For reasons of comparison the classical result is included.

The discrete second-order spectrum C2(ω) of N = 1 is mirrored in the higher-order
cumulant S4. The equidistant spacing [48, 77] of the S4 peaks around |~bext| is owed
to the Zeeman splitting of the nuclear spins coupled to the central spin via hyperfine
coupling. The spectrum contains (2I+1)2 = 100 peaks that are positive on the diagonal

1The quantum mechanical simulations were implemented by Nina Fröhling in Ref. [137].
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Figure 6.4: S4(ω1, ω2) for different bath sizes N = 1, 2, 3 for a quantum mechanical calculation
with I = 9/2. The classical spin bath has sizeN = 100. The external magnetic field is |~bext| = 5.
Quadrupolar coupling is not included. Plot taken from [137].

and negative for ω1 6= ω2. Already for N = 2 the ensemble average over various ak
leads to a discernibly more continuous spectrum. For N = 3 the quantum mechanical
spectrum on the lower left panel is qualitatively very similar to its classical counterpart
on the lower right panel of Fig. 6.4.

The comparison between the results of both approaches solidifies the conjecture that
the classical approach can be used in the limits of large nuclear spins I → ∞ or large
spin baths N →∞.

6.3.3 Influence of the external magnetic field strength on S4

For a small magnetic field the bispectrum S4 changes considerably. But the differences
displayed in Fig. 6.5 can still be attributed to the same components as for |~bext| = 5.
In the absence of a magnetic field the contributions on the axes ω1/2 = 0, and along
the diagonal are emphasized due to the strong spectral weight of the δ(ω)-peak, cf.
Eq. (6.2.1). For a full classical simulation with varying ak the δ-peak contains slightly
less weight than calculated for the FOA [55] but is still dominant.

With increasing magnetic field, the spectral weight shifts from the δ-peak to the Gaus-
sian and the mean of the normal distribution moves depending on the external magnetic
strength µ(|~bext|). For |~bext| = 1 the spectrum is depicted in Fig. 6.5. The Gaussian
is centred around µ(|~bext| = 1) = ωfluc

√
3/2 and has a variance of (ωfluc/2)2. The

anti-correlations can be traced back to the second-order correlation functions which are
shown in the panel labeled C2(ω1)C2(ω2)ω2

fluc. C2 is also responsible for the distinct
form of S4. The fourth-order correlations are depicted in the lower left panel. C4 mostly
contributes to the diagonal and weakly along the axes ω1 = 0 and ω2 = 0. The weak
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Figure 6.5: S4(ω1, ω2)ω2
fluc as well as its components C4(ω1, ω2)ω2

fluc and C2(ω1)C2(ω2)ω2
fluc

for |~bext| = 1. In the bottom right panel the diagonal cut through all three spectra is shown.
Data taken from [137].

contributions can be noticed in the S4-spectrum as an incision to the anti-correlations
near the ω1-axis and ω2-axis.

To further investigate the part of the spectrum where both, second and fourth-order
correlations, come into play, we parametrize the diagonal cut

Adiag(ω̃) = A(ω̃/
√

2, ω̃/
√

2) (6.3.1)

with the dummy variable A representing the spectra S4(ω̃), C4(ω̃) or C2(ω̃)C2(ω̃).
The diagonal frequency is ω̃ =

√
ω2

1 + ω2
2 =

√
2ω1. These cuts are depicted in the

panel labeled “diagonal cuts”. The cut through C4 mirrors the shape of S4 along
the diagonal. It is given by

∑
µ(C2,µ(ω1))2 which still follows a Gaussian distribu-

tion ω̃ ∼ N (
√

2µ(|~bext|), 2(ωfluc/2)2). The second-order correlation changes the shape
of the diagonal cut only marginally.

For different magnetic fields ranging from |~bext| = 1 to 20 the diagonal ω1 = ω2 cut
through the S4-spectrum is plotted in Fig. 6.6. For lower magnetic fields the Gaussian
has lesser spectral weight since the δ(ω)-peak is not yet completely decayed. The Gaus-
sian form persists for higher magnetic fields as well as the centering around

√
2µ(|~bext|).
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Figure 6.6: Sdiag
4 (ω̃) for magnetic fields ranging from |~bext| = 1 to 20. The spectra are shifted

by
√

2ωmax =
√

2µ(|~bext|).

6.4 Influence of the quadrupolar interaction on the fourth-
order spin noise

Fröhling et al. [93] have shown that the quadrupolar interaction plays an important role
in higher-order spin correlations. We investigate the broadening of the S4-spectrum
caused by the quadrupolar interaction and its dependence on the spin bath size N
and the quadrupolar interaction strength. After we have adjusted the quadrupolar
coupling in such a way that SCA and quantum mechanical results match in Sec. 5.3.4,
we investigate how this agreement between the two approaches translates to the fourth-
order cumulant.

Since the second-order correlation functions for non-zero magnetic fields show no ob-
vious changes if the quadrupole interaction is included, we turn to the fourth-order
cumulant. In Sec. 5.3.4 its influence on the long-time electron spin decay was discussed
and compared to a quantum mechanical approach for |~bext| = 0. A matching long-time
dynamics can be found if the quadrupolar strength Qr is adjusted to compensate for
the difference in spin length and spin bath size. Their linear correlation is used to
choose the parameters for the fourth-order cumulant. Again, the classical simulation
uses I = 3/2 to determine the quadrupolar couplings given by Eq. (5.2.29b).

In Fig. 6.7 the fourth-order cumulant is shown for I = 3/2, 7/2, 9/2 as the result of a
quantum mechanical simulation and supplemented by a classical approach. The most
notable contribution of the quadrupolar interaction is the broadening of the correlation
orthogonal to the diagonal. The broadening of the spectrum can be explained in the
context of classical configurations. To illustrate the concept, Fig. 6.8 is added. It shows
the Fourier transformation of the dynamics found in one configuration C2,µ(ω) with and
without quadrupolar interaction. Independent of Qr the second-order spin noise C2(ω)
follows N (µ(|~bext|), ω2

fluc/4) (black, dashed curve). Without quadrupolar interaction,
the spin noise C2,µ and, therefore, the frequency composition in a single configuration
is given by an almost sharp peak (blue curve). But when the quadrupole interaction
induces an additional electron dephasing by extending the effective field of the nuclear
spin dynamics, it also expands the frequency spectrum in a single configuration (green
curve). Therefore, the product C2,µ(ω1)C2,µ(ω2) in Eq. (6.1.1) results also in non-zero
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Figure 6.7: S4(ω1, ω2) for a quantum mechanical and classical approach including the quad-
rupolar coupling. The parameters Qr, N and I are chosen to coincide with those in Fig. 5.6.
The data of the quantum mechanical approach is taken from [137].

contributions for ω1 6= ω2 and the broadening in each configuration translates directly
to a broadening of the spectrum.

While all quantum mechanical spectra exhibit approximately the same behavior, the
classical spectrum seems to retain more of the heretofore sharp peak on the diagonal
and shows weaker broadening. Since the mismatch is not apparent in the shape of
C2(ω), the observed broadening is related to the fourth-order spin correlation function.
To further investigate this effect, we resort to cuts through S4. The definition of the
diagonal cut function is given by Eq. (6.3.1), and the anti-diagonal cut through the
center and global maximum of the spectrum S4(ωmax, ωmax), with ωmax = µ(|~bext|) is
defined by

Sadiag
4 (ω̃) = S4

(
ω̃√
2

+ ωmax,−
ω̃√
2

+ ωmax

)
. (6.4.1)

The cut is shifted to be centered around ωmax with ω̃ = 0 as new origin. The antidi-
agonal cuts for C4(ω1, ω2) and C2(ω1)C2(ω2) are defined analogously as Cdiag

4 (ω̃) and
C2(ω̃)Cdiag

2 (ω̃).

Diagonal cuts through the classical spectra at |~bext| = 5 are presented in Fig. 6.9. On
the diagonal we observe a dip in S4 for higher Qr. This feature is directly linked to the
broadening in the C4-spectrum. While cut through C2(ω1)C2(ω2) is independent of the
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Figure 6.8: Frequency broadening in one
configuration with (Qr = 0.35) and without
(Qr = 0) quadrupolar interaction. The envel-
ope of the averaged C2(ω) is added in black.
The scaling of the Fourier transform FSz,µ(ω)
is arbitrarily adjusted for better comparability.

quadrupolar interaction, the C4 part shifts spectral weight from the diagonal to ω1 6= ω2

parts depending on Qr. Therefore, its contribution along the diagonal decreases. While
both building blocks of S4 individually retain a Gaussian shape, the difference along
the diagonal is influenced by the reduced weight of Cdiag

4 (ω̃). For weak quadrupolar
interaction, e. g. Qr = 0.1, the spectral weight of the second-order contribution can
be neglected compared to those of the fourth-order correlation function. The diagonal
cut Sdiag

4 (ω̃) through the fourth-order cumulant can then be described by a Gaussian
with variance 2(ωfluc/2)2. But the quadrupolar interaction has a second effect on the
fourth-order correlation function C4. The variance of the Gaussian antidiagonal C4-cut
decreases with increasing Qr, see Fig. 6.9 on the right. The shrinking variance together
with the reduction of amplitude conserves the spectral weight of the C4 contributions
to S4.

The antidiagonal cuts through the S4-spectrum as well as the components of the second
and fourth-order are depicted for a varying quadrupole coupling constants in Fig. 6.10.
As it was the case with the diagonal cuts, antidiagonal cuts through C2(ω1)C2(ω2) are
described by a Gaussian [55, 76]. The C2(ω1)C2(ω2) is symmetric around ωmax and
independent of Qr. The antidiagonal cut through the C4-spectrum reveals the influence
of the quadrupolar interaction. For small Qr the curve exhibits a cusp which could
be fitted by a power law, while the shape transitions to a Gaussian shape for stronger
quadrupole coupling. To connect the quadrupolar coupling to the shape of the cut,
Fig. 6.10 is augmented by a full width half maximum Ω1/2 measurement of the C4 cut.
For small Qr the full width half maximum increases roughly linear up to Qr ≈ 0.4 and
flattens out for Qr & 0.7. As an upper bound we assume Ω1/2/ωfluc = 0.15. At Qr = 0
the shape of the C4 curve should follow a δ-peak but is limited to a finite width due to
the measuring time Tm.

The scaling behavior between classical approach and quantum mechanical approach that
is observed for C2 does not hold for the higher-order cumulants. However, qualitatively
similar behavior is observed in the broadening behavior of the antidiagonal cut. For the
quantum mechanical results see Ref. [137]. Partially, we can attribute the mismatch to
the difference in bath size or, to be more precise, to the difference of the ratio between
quadrupolar coupling strength affecting a single nuclear spin and the nuclear Zeeman
strength. Due to the increase in computational effort with the increase of the external
magnetic field strength, we vary the the nuclear bath size in the classical approach.
For a fixed external magnetic field of |~bext| = 5 and a nuclear interaction strength of
ζ = 0.00125, the diagonal and antidiagonal cuts through the S4-spectrum are presented
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Figure 6.9: Diagonal cuts ω1 = ω2 for the spectrum Sdiag
4 (ω̃), as well as its components for dif-

ferent quadrupolar coupling strengthQr. The Gaussian envelopeN (0, ω2
fluc/2) andN (0, ω2

fluc/4)
was added in dashed black lines for the C4 and C2C2 cut, respectively. The variance of Gaus-
sians fitted to Cdiag

4 is plotted in panel (d).

in Fig. 6.11 for different N to connect to the quantum mechanical simulation presented
in Ref. [137].

The difference between the result for N = 100 and those for smaller nuclear spin baths
can be understood in the context of the time scales that affect a single nuclear spin. For
small magnetic fields the quadrupolar interaction leads to an energy splitting depend-
ent on qk and the Zeeman interaction can be considered as a perturbation. Once the
quadrupolar interaction far exceeds the Zeeman interaction strength, spin-flip scatter-
ing processes between the quadrupolar energy doublets are suppressed and no further
broadening can be observed. The electron spin dynamics becomes independent of Qr.
For large magnetic fields the quadrupolar interaction acts as a perturbation to the
Zeeman interaction.

While in a physically realistic system the distribution and the value of the qk is depend-
ent on the local strain tensor, we simplified the quadrupolar coupling by using a more
phenomenological approach. The parameter Qr was fitted to experiments [75, 91, 92]
by numerically simulating the second-order spin correlation function [81]. This still
neglects the question of the value for qk for a single nuclear spin. By the definition of
the quadrupolar coupling Eq. (3.1.32), the expectation value of a quadrupolar coupling
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Figure 6.10: Antidiagonal cuts ω1 + ω2 = 2ωmax, S
adiag
4 (ω̃) for the same data as in Fig. 6.9

under variation of Qr. The full width half maximum Ω1/2 of C4 in relation to the quadrupolar
coupling strength Qr was added. The Gaussian envelope N (0, ω2

fluc/4) is marked in dashed
black lines in the S4 and C2C2 cut.

constant under the assumption of equal hyperfine coupling constants is 〈qk〉 ∼ Qr√
N
.

This leads to a stronger effect of the quadrupolar coupling with less nuclear spins in-
volved. For a constant full width half maximum Ω1/2, the parameter Qr has to be
adjusted to take the bath size into account. In Fig. 6.11 (a) the enhanced influence
of the quadrupolar interaction for small numbers of nuclear spins is visible in the loss
of spectral weight at ω̃ = 0. The same effect could be observed in Fig. 6.9 for large
Qr and N = 100. The antidiagonal cut, see panel (b), reveals the transition from an
exponential shape to a Gaussian shape which also goes hand in hand with an increase of
the quadrupolar coupling constant qk. For the quantum mechanical simulation the size
of the nuclear spin bath is limited by that of the Hilbert space dim(H) = 2(2I + 1)2.
Therefore, it is preferable to adjust the external magnetic field to show the dependence
of the antidiagonal cut of S4 on the ratio between nuclear Zeeman and quadrupolar
coupling strength (plot found in Ref. [137]). That a similar transition from the Gaus-
sian shape of the antidiagonal cut to the exponential decaying shape can be observed
for a quantum mechanical simulation under variation of the external magnetic field is
shown in Fröhling et al. [137]. For a high magnetic field of |~bext| = 200 the quantum
mechanical result assumes an exponential shape even for three I = 9/2 nuclear spins.
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Figure 6.11: Diagonal and antidiagonal cuts through the S4-spectrum for different bath sizes
N for Qr = 0.35 and |~bext| = 5.

When the dynamics is dominated by the Zeeman energy, the quadrupolar interaction
can be interpreted as a perturbation to the dynamics. This lines up with observations
of the fourth-order spin correlation function in the time domain [78, 91–93], where high
magnetic fields induce an exponential time decay T2 ∝ O(µs).

6.4.1 Fourth-order spin noise in the crossover regime

Up until now the choice of the parameters |~bext|, Qr and hyperfine interaction determined
one dominating energy, which usually is the Zeeman energy. Here, we turn to the
crossover regime where the Zeeman energy is of the order of the hyperfine energy ωfluc.
Then the electron spin dynamics is equally influenced by the external magnetic field of
|~bext| = 1 and the Overhauser field.

If we also apply a quadrupolar interaction with Qr = 0.35, the contribution of the
nuclear-electric quadrupolar interaction 〈q′k〉|(~nk~I ′k)~nk| ≤ 1.2 · 10−3 to the effective field
on the nuclear spin is approximately equal to that of the nuclear Zeeman ζ|~bext| =
1.25 · 10−3 for N = 100. Both are of the order of magnitude of 10−3 and one order of
magnitude smaller than the Knight field.

In Fig. 6.12 we compare the classical results with a quantum mechanical calculation
of the S4-spectrum for the smallest possible nuclear bath size N = 1. The parameter
values Qr = 0.08 and I = 9/2 were used. Note that for N = 1 the quadrupolar
coupling is strong compared to the Zeeman energy. Even though the influence of the
measurement on the result was neglected, the quantum mechanical result in Fig. 6.12
is near identical to those of a strong and continuous measurement presented in Ref. [94]
for a nuclear spin bath size of N = 1. The quantum mechanical S4-spectrum already
hints at its classical limit with its broadened C4-contributions along the diagonal and
the weak contributions to the positive S4-spectrum near the ω1-axis and ω2-axis. The
classical S4-spectrum shows the same broadening due to quadrupolar interaction, albeit
in a continuous spectrum.
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Figure 6.12: Comparison between a quantum mechanical simulation with N = 1, I = 9/2
and Qr = 0.08 on top and a classical simulation with N = 100 and Qr = 0.35 in the bottom
line. For the SCA the spectrum of the components C2(ω1)C2(ω2) and C4(ω1, ω2) was added.
The external magnetic field is |~bext| = 1. The plot containing the quantum mechanical result
was already published in Ref. [137].

6.5 Chapter conclusion

In the preceding sections we devised a semiclassical expression for the fourth-order
correlation function. This higher-order spectrum quantifies the correlation between
two frequencies while subtracting the Gaussian contributions originating from lower-
order correlation functions. The bispectrum S4(ω1, ω2) as a cut through the cumulant
S̃4(ω1,−ω1, ω2,−ω2) can be divided in two parts: C4(ω1, ω2), which leads to correla-
tion in the spectrum, and C2(ω1)C2(ω2), which is responsible for the occurring anti-
correlations. For magnetic fields which exceed |~bext| > 1 the correlations are concen-
trated on the diagonal and are encompassed by a multivariate Gaussian with a diagonal
covariance matrix. The spectrum is centered around µ(|~bext|), cf. Eq. (6.2.3).

We showed that a good agreement between semiclassical and quantum mechanical sim-
ulations is found if the quadrupolar interaction is disregarded. The classical approach
acts as a limit to the quantum mechanical result either for a large nuclear spin bath N
or for a large spin length I.

The second-order correlation function decays quickly on the time scale of T ∗ in the
presence of a magnetic field. Long-time effects stemming for example from quadrupolar
interaction can, therefore, not be observed in C2. Fourth-order correlation functions
provide an approach to make these previously hidden interactions visible. In the fre-
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quency correlations of the bispectrum, the influence of the quadrupolar interaction
makes itself felt as a broadening of the C4-contributions along the diagonal. We found
that the full width half maximum is proportional to the quadrupolar interaction strength
Qr. While this broadening effect is consistent with the observations in the quantum
mechanical case [137], it exhibits a different curve shape at the parameters acquired by
generating congruent, second-order correlation functions C2(t). The matching process
performed in Sec. 5.3.4 does not translate to S4 with quadrupolar interaction. We linked
the shape of the antidiagonal cut to the ratio between effective fields originating from
the nuclear Zeeman interaction and the quadrupolar interaction. The smaller bath size
of the quantum mechanical simulation leads to a stronger coupling constant qk which
exerts a larger influence on an individual ~Ik. The same connection is found in the SCA
through a variation of Qr or N at a fixed |~bext|.

Since spin-noise spectroscopy facilitates minimally invasive experimental measurements
[95, 174], they can be seen as the complement to pump-probe spectroscopy where the
spin system is driven away from equilibrium. The investigation of higher-order spin
correlation functions goes hand in hand with spin-noise spectroscopy and opens the
door to a better understanding of many phenomena of the spin dynamics in a QD. As
an exemplary interaction, we chose the quadrupolar interaction, whose effects in the
time domain were already experimentally documented in Refs. [91–93] by measuring
the fourth-order correlator 〈Sz(t1)Sz(t1 + t2)Sz(t1)Sz〉 and theoretically described by
Fröhling et al. [93].
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Chapter 7

Mode locking in a pulsed quantum
dot

We aim to describe a single electron charged QD subjected to periodic laser pulses and
located in an externally applied magnetic field. The time scales of the system vary
greatly: the time duration of the pulses (∼ 1.5 ps), the trion decay (∼ 0.4 ns) and the
repetition time of the pulse (13.2 ns) [33, 35, 177]. The mode-locking occurs on a time
scale of seconds up to minutes [33].

We have already derived and discussed the spin dynamics of an unpumped system in
the SCA in Sec. 5. Those results are still an essential building block of the semiclassical
simulation. But additionally, we need a theoretical description of the pump pulses
and the subsequent trion decay. For the pulses per se a quantum mechanical approach
suffices since they can be assumed as instantaneous compared to the other relevant time
scales. The nuclear spin dynamics is assumed frozen during the pulse. This reasoning
is not valid for the trion decay for which a semiclassical approach – equivalent to the
quantum mechanical, commonly used Lindblad approach [178] – can be found. The
quadrupolar interaction is neglected in this chapter, HQ = 0.

The simulation of a periodic pulse sequence on a QD in the hybrid quantum-classical
approach is initialized by NC classical configurations with randomly oriented N nuclear
spins and a central spin. At t = 0 the first pulse arrives. The nuclear spins are frozen
and the electron spin in each configuration is represented as a density matrix. The
transformation of the pulse is applied. After translating the now pulsed electron spin
state back to a semiclassical vector representation, the electron spin dephasing between
two consecutive pulses is described by a set of coupled equations of motion. We string
together the repeating parts of pulse and semiclassical spin dynamics and calculate the
expectation values as an average over all configurations.

In addition to the simulation, we derive analytical resonance conditions for the Over-
hauser field in a pulsed steady state under the assumption of frozen nuclear spins.

The contents of this chapter was already published in Jäschke et al. [89].
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7.1. Pump laser pulses

7.1 Pump laser pulses

The σ+-pulse initiates a transition between the electron state | ↑〉 and the trion state
| ↑↓⇑〉. The trion-up state is abbreviated as | ↑↓⇑〉 =: |T〉. Since the other trion state
| ↑↓⇓〉 cannot be excited by a σ+-pulse, the system for the pulses is reduced to a 3× 3
problem. We chose the spin eigenbasis along the z-axis. Furthermore, we assume that
the time scale of the pulse is much shorter than that of all other dynamics given by
the Hamiltonian Eq. (3.1.13) as well as the trion decay. Therefore, the pump pulse,
assumed to be instantaneous, is described by a unitary transformation.

Starting from a laser pulse of finite length in time, the Hamiltonian for the pulse consists
of the level occupations and the transition from |↑〉 to the trion state |T〉

HP = εT|T〉〈T|+ Ω(t)
(
eiεPt + e−iεPt

)
(|T〉〈↑ |+ |↑〉〈T|) . (7.1.1)

The characteristic frequency of the laser pump pulse is εP and the envelope of the
amplitude of the laser pulse is Ω(t). εT denotes the difference between the electron and
the trion energy. Via a rotating wave approximation with the unitary transformation
UI into the interaction picture

UI = |↑〉〈↑ |+ |↓〉〈↓ |+ exp(iεTt)|T〉〈T| (7.1.2)

the light-matter interaction can be rewritten as

HP ≈ HRWA
P = εT|T〉〈T|+ Ω(t)

(
e−iεPt|T〉〈↑ |+ e+iεPt|↑〉〈T|

)
. (7.1.3)

A second rotating wave approximation into the rotating frame of the excitation laser
renders the effect of the laser dependent on its envelope Ω(t) only

H̃RWA
P = UεP(HRWA

P − εP|T〉〈T|)U †εP
= (εT − εP) |T〉〈T|+ Ω(t) (|T〉〈↑ |+ |↑〉〈T|)

(7.1.4)

with

UεP = |↑〉〈↑ |+ |↓〉〈↓ |+ exp(iεPt)|T〉〈T|. (7.1.5)

The prefactor εT−εP is defined as the detuning δ, the deviation of the pump pulse from
the trion excitation energy. In this work we only take perfectly resonant laser pulses
δ = 0 into account. For an in-depth consideration of the detuned or non-instantaneous
laser pulses on the dynamics, see e. g. Yugova [121] or others [64, 179–182]. The effect
of a series of non-instantaneous pulses on a QD in a quantum mechanical approach is
discussed by Kleinjohann et al. [63].

Since we are not interested in the time evolution during the pulse but rather in the final
state of the system after the pulse, we integrate over the entire time of the pulse

U(tfinal) = T
[
exp

(
i

ˆ tfinal

0
dt′H̃RWA

P (t′)

)]
= exp

[
i
F

2
(|↑〉〈T|+ |T〉〈↑ |)

]
. (7.1.6)

For the resonant case δ = 0, the time ordering operator T can be neglected since the
relation [H̃RWA

P (t), H̃RWA
P (t′)] = 0 holds at all times. The integral in the time-evolution

operator is replaced by the pulse area F := 2
´∞
−∞Ω(t′)dt′ which is dependent on the
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duration of the pulse and its intensity. For instantaneous pulses the pulse shape is
irrelevant. The unitary transformation operator TF is

TF = cos

(
F

2

)
(|↑〉〈↑ |+ |T〉〈T|) + i sin

(
F

2

)
(|↑〉〈T|+ |T〉〈↑ |) + |↓〉〈↓ |. (7.1.7)

The pulse operator is applied to the electronic subsystem

ρ̃ap
µ =

(
U †εPTFUεP

)
ρbp
µ

(
U †εPTFUεP

)†
. (7.1.8)

where the density matrix ρbp
µ of the system before the pulse is translated to that after

the pulse ρ̃ap
µ . Since the nuclear spins are considered as frozen during the pulse, the

transformation can be applied in each configuration µ independent of its nuclear bath
configuration.

7.1.1 Transition between classical simulation and quantum mechan-
ical density matrix

In Eq. (7.1.8) a translation from classical electron spin vector to quantum mechanical
density matrix is required. The gap between those two is closed by interpreting the
semiclassical spin vector ~S as an expectation value of a quantum mechanical spin 1/2
in each configuration µ

Si,µ = Tr

[
1

2
ρµσi

]
(7.1.9)

where σi is the Pauli spin matrix for i = x, y, z. Note that because of the statistical
nature of the pulses the spin vector has no constant length. A purely classical inter-
pretation where only the average over all configurations is equivalent to an expectation
value is therefore impossible.

Considering the requirements that the density matrix is a positive semi-definite, Her-
mitian operator of trace 1, the density matrix ρbp

µ of the electronic subsystem corres-
ponding to a semiclassical vector of length |~S| = 1/2

ρbp
µ =

 1
2 + Sbp

z,µ Sbp
x,µ − iSbp

y,µ 0

Sbp
x,µ + iSbp

y,µ
1
2 − S

bp
z,µ 0

0 0 0

 (7.1.10)

can be related to the vector components Sbp
i,µ. The density matrix represents the electron

spin alignment in a single configuration µ immediately before the pulse. Before the pulse
a 2× 2 matrix is sufficient to describe the electron spin. The dimension is extended to
include the yet unoccupied trion |T〉-state.

7.1.2 Transformation of a density operator by a laser pulse

The transformation of the density matrix and the resulting expectation values for the
electron spin and trion components shall be investigated for the general case of an
instantaneous pulse with an arbitrary pulse area F , see also [121, 179–181].
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For convenience the reverse transformation in Eq. (7.1.8) is neglected. This is possible
due to the fact that the transformation, given by UεP , only acts on the trion state while
in the density matrix before the pulse Eq. (7.1.10) we assume that the trion state is
completely decayed. Therefore, while the density matrix ρ̃ap

µ does not have to equal

ρap
µ = TFρ

bp
µ T

†
F

=

 cos2
(
F
2

)
ρbp
↑↑,µ cos

(
F
2

)
ρbp
↑↓,µ −i sin

(
F
2

)
cos
(
F
2

)
ρbp
↑↑,µ

cos
(
F
2

)
ρbp
↓↑,µ ρbp

↓↓,µ −i sin
(
F
2

)
ρbp
↓↑,µ

i sin
(
F
2

)
cos
(
F
2

)
ρbp
↑↑,µ i sin

(
F
2

)
ρbp
↑↓,µ sin2

(
F
2

)
ρbp
↑↑,µ

 ,
(7.1.11)

the expectation values Eq. (7.1.9) of ρ̃ap
µ and ρap

µ still agree. The matrix elements ρbp
σσ′,µ

can be taken from Eq. (7.1.10) with σ denoting the spin state. The expectation values
Sap
i,µ and PT,µ after the pulse using Eq. (7.1.11) and Eq. (7.1.9) are

Sap
x,µ = cos

(
F

2

)
Sbp
x,µ (7.1.12a)

Sap
y,µ = cos

(
F

2

)
Sbp
y,µ (7.1.12b)

Sap
z,µ =

1

2

[(
Sbp
z,µ −

1

2

)
+ cos2

(
F

2

)(
Sbp
z,µ +

1

2

)]
(7.1.12c)

PT,µ = sin2

(
F

2

)(
Sbp
z,µ +

1

2

)
. (7.1.12d)

The maximal effect of a pulse is reached if the pulse area is F = π, which empties the
| ↑〉-state completely and excites the maximum possible trion state of PT,µ = 1. For a
pulse area of F = 2π, the pulse has no effect due to TF = 1.

A more in-depth look shall be dedicated to the resonant π-pulses

Tπ = i|T〉〈↑ |+ i|↑〉〈T|+ |↓〉〈↓ |, (7.1.13)

since they are the ideal pulse to excite a trion state. In this case cos(F/2) = 0 and
therefore most matrix entries in Eq. (7.1.11) vanish which reduces the matrix to

ρap
µ =

0 0 0

0 1
2 − S

bp
z,µ Sbp

y,µ − iSbp
x,µ

0 Sbp
y,µ + iSbp

x,µ
1
2 + Sbp

z,µ

 . (7.1.14)

After a π-pulse the x- and y-component of the electron spin vanish and the initial
electron spin is always aligned in negative z-direction after the pulse

~Sap
µ (0) =

1

2

(
Sbp
z,µ −

1

2

)
~ez. (7.1.15)

The maximal spin polarization is reached for a spin alignment in the negative z-direction
before the pulse. For greater values of Sbp

z , the polarization decreases and vanishes for
~Sbp = 1/2~ez. Since the trion

PT,µ(0) =

(
Sbp
z,µ +

1

2

)
(7.1.16)
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is excited from the | ↑〉-state, the trion occupation depends on the z-alignment of the
central spin before the pulse.

Other pulses are discussed in literature which are independent of the spin alignment
before the pulse [60]. Those pulses align the electron spin in the z-direction without
changing the spin length or exciting a trion state. Another way to tackle the pulse is
described in Ref. [65] where the spin length is kept invariant by rotating the spin in
the z-direction ~Sap = |~Sbp|~ez. The other possibility, discussed ibid., takes the quantum
mechanical nature of a pulse into account which only allows for the knowledge of the
exact polarization in one direction ~Sap = (X,Y, 1/2)T with X,Y ∼ N (0, 1/4).

7.1.3 Quantum mechanical Lindblad approach

The laser pump pulse excites an electron state to a trion state which decays back into
the | ↑〉-state emitting a photon. A master equation for the trion decay in Lindblad
form [178, 183] is derived.

The density operator Eq. (5.2.30) has to be extended to include the excitation of the
trion state |T〉. For σ+ polarized light the addition of this one state is sufficient since
|↑↓⇓〉 is never excited. The electronic subspace can be described by a 3×3 matrix given
by the eigenstates |↑〉, |↓〉 and |T〉. The entire Hilbert space including the nuclear bath
with N spins of length I has the dimension D = dim(H) = 3(2I + 1)N .

The fact that the density matrix features a mixed Ising basis, in z-direction for the
electron spin and parallel to the external magnetic field for the nuclear spin bath, can
be neglected. This is due to the difference in energy scales for the nuclear spins and
electron spins. The time scales of nuclear Zeeman energy, coupling to the Knight field
and quadrupolar interaction far surpass the short time of the trion decay and Larmor
precession of the electron spin [33]. Therefore, the trion decay is modeled for a frozen
Overhauser field configuration α = (m,m′). This reduces the system T ∗HCSM to that
of electron and trion spin dynamics HS(α) = ~bext

~S + ∆H(α) in a static field given by
the external magnetic field and the configuration dependent frozen Overhauser field.

The photon emission which accompanies the trion decay necessitates the inclusion of
an environment to the system HS. The complete description of the energy dissipation
in this environment would require the explicit form of reservoir correlation functions.
To circumvent unnecessary complications the Born-Markov approximation is applied:
The environment is large compared to the system and is not significantly altered by the
interaction. Therefore, the density matrix is a product state ρtot ≈ ρS(t) ⊗ ρE of the
system ρS(t) and the static environment ρE. Moreover, we have to assume that the bath
correlation time is much shorter than the time scale for the evolution of the system.
Intuitively, this means that the environment “forgets” its past faster than the system
progresses. Resulting from this approximation, the Markovian description of an open
quantum system for the reduced density matrix ρS is given by the Lindblad equation

ρ̇S = −i[HS, ρS]− γ(s2s1ρS + ρSs2s1 − 2s1ρSs2). (7.1.17)

The unitary dynamics of a closed system is given by the von-Neumann equation which
encompasses the first summand. The coupling to the environment is encoded in the
non-unitary trion decay governed by the decay rate γ which has the dimension of an
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inverse time. The transition operators between trion and electron state, s1 and s2, are
given by the projectors s1 := |↑〉〈T| and s2 := |T〉〈↑ |.

The Lindblad equation can formally be solved by flattening the density matrix to a vec-
tor ~ρS = (ρ11, ..., ρ1n, ..., ρn1, ..., ρnn)T and mapping the projectors with the Kronecker
product from the matrix product AρB → (BT ⊗A)~ρ. This leads to the form

~̇ρS = L~ρS = [i(HS ⊗ 1− 1⊗HS)− γ (s2s1 ⊗ 1 + 1⊗ s2s1 − 2s1 ⊗ s1)] ~ρS (7.1.18)

which can be solved by

ρS(t) = eLtρS(0). (7.1.19)

The advantages of a FOA become even more obvious in this mapping procedure which
increases the matrix size to (dimH)2. An exact treatment would see the 9 × 9 di-
mensional, mapped Hamiltonian HS ⊗ 1 replaced by the full Hamiltonian matrix of
dimension D2×D2 leading to a computationally unsolvable problem for a large nuclear
spin bath. This severely limits the number of nuclear spins [61, 63, 184] in the case of
inhomogeneous coupling. In the frozen nuclear approximation, independent Lindblad
equations for each nuclear bath configuration α are solved instead. The Liouvillians Lα
vary only by a constant, configuration dependent Overhauser field ∆H(α), therefore,
changing only the von-Neumann part of the superoperator. The starting density vector
ρS,α(t = 0) has to be extracted from the simulation result of the previous pulse period,
see Sec. 7.1.2. The solution in each nuclear configuration

ρS,α(t) = eLα(t)ρS,α(0) (7.1.20)

only requires the diagonalization of a 9× 9 Liouville matrix.

7.1.4 Extending the equations of motion by a classical Lindblad form-
alism

While the coupled classical equations of motion Eqs. (5.2.27) describe a unitary time
evolution which leaves the spin length invariant, the Liouvillian is a non-unitary oper-
ator. In an external magnetic field, this leads to a build-up of polarization caused by
the pulse and consecutive trion decay. In quantum mechanics this fact is accounted for
by the transition from an initially pure to a mixed electron state which is reflected in
the semiclassical simulation by the variation of the length of the electron spin vector.
The polarization gain through pulsing may vary from configuration to configuration.

In the FOA the trion decay and electron spin dynamics is given by Eq. (7.1.18). The
static magnetic field allows for a reduction to nine coupled linear differential equations
for each density matrix element. One differential equation is eliminated through the
conservation of the trace. Furthermore, the time dynamics of the density matrix ele-
ments for the transition between electron and trion states decouple from the rest. Those
off-diagonal trion matrix elements decay exponentially with the trion. This enables fur-
ther downsizing of the differential equation system by four equations. The remaining
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differential equations of the density matrix ρS are

ρ̇↑↑ =
iωx − ωy

2
ρ↑↓ −

iωx + ωy
2

ρ↓↑ + 2γρTT (7.1.21a)

ρ̇↑↓ =
iωx + ωy

2
ρ↑↑ − iωzρ↑↓ −

iωx + ωy
2

ρ↓↓ (7.1.21b)

ρ̇↓↑ =
−iωx + ωy

2
ρ↑↑ + iωzρ↓↑ +

iωx + ωy
2

ρ↓↓ (7.1.21c)

ρ̇↓↓ =
−iωx + ωy

2
ρ↑↓ +

iωx + ωy
2

ρ↓↑ (7.1.21d)

ρ̇TT = −2γρTT, (7.1.21e)

where ωiT ∗ = bext,i + bN,i,µ with i = x, y, z are the constant effective frequencies of a
classical configuration µ. The Eqs. (7.1.21) are inserted in the first derivative in time
of the electron spin expectation value or trion occupation probability given by

d

dt
〈O〉µ = iTr [ρS(t)[HS, O]]− γTr [∆ρLO] . (7.1.22)

O is a local placeholder variable in the electronic subspace and

∆ρL = |T〉〈T|ρS(t) + ρS(t)|T〉〈T| − 2| ↑〉〈↑ |PT,µ(t). (7.1.23)

The trion occupation probability PT,µ(t) = 〈T|ρS(t)|T〉 is directly accessible through
Eq. (7.1.21e)

d

dt
PT,µ(t) = −2γPT,µ(t). (7.1.24)

with the analytic solution

PT,µ(t) = PT,µ(0)e−2γt. (7.1.25)

The trion occupation at t = 0 is given by the laser pump pulse Eq. (7.1.12d). The
equation of motion for the electron expectation value is also faithfully reproduced by
the ansatz

d

dt

〈
~S
〉
µ

= ~ω ×
〈
~S
〉
µ

+ γPT,µ(t)~ez, (7.1.26)

with ~ωT ∗ being an effective field. Through the correspondence principle the expectation
value agrees with that of the semiclassical variable Eq. (5.2.27). Inserting Eq. (7.1.25)
into Eq. (7.1.26) gives the final electronic equation of motion for the period that bridges
the time between two pulses

d

dt
~Sµ(t) =

1

T ∗

(
~bN,µ +~bext

)
× ~Sµ(t) + γPT,µ(0)~eze

−2γt. (7.1.27)

The time t is measured relative to the last pulse. A rescaling of the classical vector to
length unity as discussed in Sec. 5.2.3 changes the γPT,µ(0)~eze

−2γt to γ/SPT,µ(0)~eze
−2γt.

In the SCA we replace the constant Overhauser field ~bN,µ by ~bN,µ(t).
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Figure 7.1: Schematic of the trion de-
cay in the rotating frame of the electron
spin.

The addition to the central spin dynamics is
easy to grasp: The vector product still de-
scribes the electronic spin precession in the ef-
fective field ~b = ~bN + ~bext. Therefore, in Fig.
7.1 the dynamics of the electron is shown in the
rotating frame of the Larmor precession. The
negative Sap

z -part given by | ↓〉 which is unaf-
fected by the laser pulse stays constant in this
frame while the trion decays back with the rate
2γ into the electron |↑〉-state which in the clas-
sical simulation is represented by the positive
Sz-component. Since the trion always decays in
positive z-direction, the recently decayed trion
part (green) is always differently aligned com-
pared to the now rotating |↓〉-part. This leads to a changing length of the electron spin
vector over the time of the trion decay. As soon as the trion is decayed PT = 0 the
classical spin vector length stays constant. The change of the vector length of the spin
length hints to the statistical nature of the photon absorption which can be found in the
density matrix description. This affirms the fact that the purely classical interpretation
of a spin vector has to be relinquished for the central spin - due to the pulse and trion
decay - even within a single configuration.

For a large magnetic field where the Larmor precession period is of the order of mag-
nitude of the trion decay time or faster, the | ↑〉-state is assumed to average to nearly
zero in the rotating frame. The unpumped | ↓〉-component then leads to an effective
polarization in the system.

7.2 Analytic solution in the frozen Overhauser field ap-
proximation

Even with the additional complication imposed by the inclusion of the trion decay, an
analytical solution for the electron spin dynamics in a periodically pulsed system can be
derived by the standard workhorse FOA. Combined with initial conditions dictated by
the pulse, restrictions for the Overhauser field distribution in a non-equilibrium steady
state are found.

7.2.1 Central spin dynamics with trion decay

The solution for Eq. (7.1.27) in the FOA without the source term is already known and
given by Eq. (5.2.34). When including the trion decay term, the homogeneous part of
the solution no longer directly includes the initial spin ~S0. Instead, the three-component
vector ~A, which depends on conditions set by the pulses, replaces ~S0

~Shom = ( ~A~n)~n+ [ ~A− ( ~A~n)~n] cos(ωLt) + ~n× [ ~A− ( ~A~n)~n] sin(ωLt). (7.2.1)

The inhomogeneous solution has the form

~Sin = ~Ce−2γt. (7.2.2)
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The vector ~C

−PT(0)~ez = 2~C +
~ω

γ
× ~C (7.2.3)

depends on the effective frequency ~ω = (~bext +~bN)/T ∗ as well as the trion occupation
PT(0). With the definition of a rotation matrix M for the cross product M~v = ~n × ~v
the solution for ~C is

~C = −PT(0)

2

[
1 +

ωL
2γ
M

]−1

~ez. (7.2.4)

The total solution comprises ~S(t) = ~Shom(t) + ~Sin(t) in which the initial condition
determines the vector

~A = ~S(0)− ~C, (7.2.5)

where the initial spin alignment after the pulse ~S(0) can be gleaned from Eqs. (7.1.12).
Since PT(0) is positive for all pulse areas, ~C has a negative sign and |~S(0)| increases
with the decaying trion.

For a strong external field applied in x-direction ~bext = bext~ex the following ~C results:

~C = −PT(0)

2

γ

γ2 + ω2
L

(ωL~ey + γ~ez) (7.2.6)

with 2γ = γ. This leads to the general solution for a frozen effective field with trion
decay

~S(t) =


Ax

−Az sin(ωLt) +Ay cos(ωLt)−
γωL

γ2 + ω2
L

PT(0)

2
e−γt

Ay sin(ωLt) +Az cos(ωLt)−
γ2

γ2 + ω2
L

PT(0)

2
e−γt

 . (7.2.7)

The parameters Ai with i = x, y, z depend on the pulse area and the state of the central
spin before the pulse.

7.2.2 Resonance Conditions

The electron spin dynamics under the influence of a periodic sequence of laser pump
pulses is described in the approximative approach of a frozen nuclear spin bath. This
assumption is usually not justified since the feedback of the Knight field is an integral
part for the energy conservation in the dynamics between two consecutive pulses. Espe-
cially for long periods of time this omission of the nuclear spin dynamics is problematic
since the hyperfine interaction leads to a rearrangement of the Overhauser field distri-
bution. This is why we only gain information about the steady state but not about the
build-up of the same with this method.

A revival effect for the electron spin even without the influence of the nuclear spin bath
is uncovered. The nuclear spin dynamics is not determined exactly. Instead, restrictions
for the Overhauser field are found in the steady state. A simple toy model shows the
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7.2. Analytic solution in the frozen Overhauser field approximation

interplay between those nuclear resonance conditions of the nuclear spin bath and the
electron spin dynamics.

Again, the dynamics of the nuclear spins is assumed frozen on the time scale TR com-
pared to that of the much faster electron spins. As for additional simplifications: Only
the Overhauser field parallel to the external magnetic field is taken into account. The
perpendicular components are regarded as small perturbations in relation to the much
larger external magnetic field. The pulses discussed are always perfectly resonant π-
pulses.

The effect of the pulses is described by Eqs. (7.1.15) and (7.1.16) which serve as initial
conditions for the analytic solution Eq. (7.2.7)

~S(t) =

 0
−Az sin(ωLt) +Ay cos(ωLt)−Aye−γt
Ay sin(ωLt) +Az cos(ωLt)−Ay γ

ωL
e−γt

 . (7.2.8)

The prefactors are given by

Ay =
ωLγ

γ2 + ω2
L

2Sbp
z + 1

4
(7.2.9a)

Az =
γ2

γ2 + ω2
L

2Sbp
z + 1

4
+

2Sbp
z − 1

4
(7.2.9b)

and depend only on the system parameter γ, the constant Larmor frequency ωL as well
as the electron spin component in z-direction before the pulse Sbp

z .

For the steady state assumption two additional conditions come into play: (1) the
Floquet periodicity condition

~S(nTR) = Sbp
z ~ez n ∈ N (7.2.10)

which in the case of the π-pulse reduces to a non-zero entry only for the z-component of
the central spin and (2) a nuclear spin dynamics that stays constant in the time average
over a repetition rate TR 〈

T ∗
d

dt
~Ik

〉
TR

= 〈ak ~S × ~Ik〉TR
= 0. (7.2.11)

For the slow nuclear spin dynamics this rather complicated condition can be factorized
and the nuclear spin stays constant from pulse to pulse if the average feedback through
the Knight field [64] vanishes over the same period TR

〈~S〉TR
=

1

TR

TRˆ

0

~S(t)dt = 0. (7.2.12)

This condition holds independent of the distribution of the coupling constants ak. Since
the effective magnetic field is applied in x-direction, the electron spin component along
this axis stays constant after the pulse. For the π-pulse this means it remains at zero
value.
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From Eq. (7.2.12) we obtain

〈~S〉TR
=

1

TRωL

 const.

Az [cos(ωLTR)− 1] +Ay sin(ωLTR) +Ay
ωL

γ
[exp(−γTR)− 1]

−Ay [cos(ωLTR)− 1] +Az sin(ωLTR) +Ay [exp(−γTR)− 1]

 .

(7.2.13)

All terms with exp(−γTR) are neglected because it is assumed that the trion is long
decayed before the next pulse TR � 1/γ. The periodicity condition Eq. (7.2.10) returns
the equality Sz(TR) = Sbp

z . The x- and y-components of the electron spin before the
pulse only depend on Sbp

z . Solving the equation of the Sz-component for Sbp
z yields

~S(TR) = Sbp
z ~ez =

1

2B

[
γωL sin(ωLTR)− ω2

L cos(ωLTR)
]
~ez (7.2.14)

with

B = (ω2
L + γ2)(2− cos(ωLTR))− γωL sin(ωLTR)− γ2 cos(ωLTR)

with Sbp
z inserted in Sy(TR) and Sx(TR). The same approximation for TRγ → ∞

as before applies. Utilizing the information gained from the Floquet condition Sbp
z is

plugged in Eq. (7.2.13)

〈Sz(TR)〉TR
=

1

2BTR
(γ(1− cos(ωLTR))− ωL sin(ωLTR)) . (7.2.15)

The averaged Knight field is proportional to 1/ωL leading to a weaker influence on the
nuclear spins for a fast electron spin dynamics. The condition 〈Sz(TR)〉TR

= 0 of a
vanishing Knight field in the steady state is met when the effective Larmor frequency
obeys one of the following classes of resonance conditions:

ωLTR = 2πn with n ∈ Z (7.2.16)

or

ωLTR = 2arctan

(
ωL

γ

)
+ 2πn with n ∈ Z. (7.2.17)

The resonance conditions dictate the positions of peaks in the Overhauser field dis-
tribution ωL = |~bext + ~bN |/T ∗. The even resonance condition (7.2.16), is well known
in literature [33, 34] and also supported theoretically by Refs. [60, 64, 65, 185]. This
resonance condition is only dependent on the external magnetic field and the pulse
repetition rate and is, therefore, also observed in models which neglect the excitation
of a trion state and its subsequent decay. The second resonance condition (7.2.17) is
only observed if a trion decay is included since the ratio ωL/γ generates an additional
phase shift. Because the principal determination arctan ∈ (−π

2 ,
π
2 ) is monotonically

increasing and |~bext| � |~bN|, the transcendent equation (7.2.17) can be approximated
by 2arctan

(
|~bext|
γT ∗

)
. For large magnetic fields ωL � γ the second resonance condition is

further simplified to ωLTR = (2n+ 1)π which is called the odd resonance condition for
its odd multiples of π. For small magnetic fields the arctangent contribution decreases
and the frequencies determined by the second resonance condition are brought closer
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7.2. Analytic solution in the frozen Overhauser field approximation

to those of Eq. (7.2.16). Both resonance conditions have also been observed in purely
quantum mechanical simulations [61–63].

The restrictions of the Overhauser field distribution translate to the electron spin dy-
namics. The even resonance condition (7.2.16) forces the electron spin to carry out an
integer number of full rotations from the negative spin alignment Sbp,1

z = −1/2 after
the pulse to the same position right before the next pulse. For this case the pulse has
no effect on the electronic state and does not excite a trion.

The odd resonance condition also leads to a spin orientation along the z-axis albeit
positive direction Sbp,2

z = 1/6. The π-pulse flips the central spin to a spin alignment in
negative z-direction Sap,2

z = −1/6. As before the laser pulse conserves the spin length.
Under the influence of a π-pulse, the vector length stays constant only for those two
alignments of the electron spin vector before the pulse.

7.2.3 Electron spin revival in an unpolarized, pulsed system

Pump-probe experiments are usually conducted at ∼ 6K [33] which corresponds to an
energy scale considerably larger than that of the hyperfine interaction. In this high-
temperature limit the Overhauser field is unpolarized in the equilibrium before pulses
are applied and the classical nuclear spin vectors are uniformly distributed on the unit
sphere. This leads to a Gaussian bN,i ∼ N (0, 1/4) for the Overhauser field distribution
in all spatial directions i = x, y, z due to the central limit theorem [55].
Before we turn our attention to the electron dynamics of a pulsed quantum dot un-
der the influence of nuclei-induced frequency focusing, the electron dynamics in a still
unpolarized bath is investigated briefly.

For an estimate of the purely electronic behavior in a pulsed system the amplitude
before and after the pulse are estimated in the limit of large magnetic fields ωL

γ � 1.
The equation (7.2.14) can be reduced to

Sbp
z (ωL) ≈ −1

2

cos(ωLTR)

(2− cos(ωLTR))
(7.2.18)

and the z-component after the pulse follows with Eq. (7.1.15) for π-pulses [61, 64]

Sap
z (ωL) ≈ −1

2

1

2− cos(ωLTR)
. (7.2.19)

Even in the absence of any mode-locking effect, an electron spin polarization can be
observed [61]. The nuclear spin dynamics on the time scale of a few pulses is considered
frozen and the precession of the electron spin is given by the frequency ωL = |~bext +
~bN|/T ∗. The expectation value for Eq. (7.2.18)

〈Sbp
z 〉 =

ˆ ∞
−∞

f(ωL)Sbp
z (ωL)dωL (7.2.20)

is calculated as an integral over the density f(ωL) which constitutes the frequency
distribution. f(ωL) is a Gaussian with shifted mean |~bext|/T ∗ and σ2 = (ωfluc/2)2.
Sbp
z (ωL) is periodic with 2π/TR in frequency. The integral is divided into parts regarding
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this periodicity and approximated by a step function

〈Sbp
z 〉 ≈

∞∑
n=−∞

f

(
n

2π

TR

) (n+1) 2π
TRˆ

n 2π
TR

Sbp
z (ωL)dωL

=

[
2π

TR

∞∑
n=−∞

f

(
n

2π

TR

)]
︸ ︷︷ ︸

=1

TR

2π

2π
TRˆ

0

Sbp
z (ωL)dωL

 .
(7.2.21)

In the last step, we took the definition for periodic functions Sbp
z (ωL) = Sbp

z (ωL +
2πn/TR) and the normalization condition of a density into account. Finally, we arrive
at

〈Sbp
z 〉 =

TR

2π

ˆ 2π/TR

0

1

2

− cos(ωLTR)

(2− cos(ωLTR))
dωL =

1

2
− 1√

3
≈ −0.077 (7.2.22)

for the purely electronic revival and

〈Sap
z 〉 =

TR

2π

ˆ 2π/TR

0

1

2

−1

(2− cos(ωLTR))
dωL = − 1

2
√

3
≈ −0.289 (7.2.23)

for the average electronic polarization after the pulse. We call revival, that occurs when
the frequency distribution is Gaussian, the electronic revival.

Figure 7.2: The dependence of Sbp
z and Sap

z

on partially executed rotations in TR are de-
picted. The dashed line represents the estim-
ated average of the same quantities over mul-
tiple configurations with 〈Sbp

z 〉 ≈ −0.077 and
〈Sap
z 〉 ≈ −0.289.

The alignment of the electron spin before and after the pulse depending on incomplete
rotations 2π∆n with ∆n ∈ R in a pulse repetition time ωLTR = (n+ ∆n)2π is depicted
in Fig. 7.2. In the purely electronic steady state all frequencies ωL/ωfluc = |~bext +
~bN| contribute to the dynamics. However, the pulse gives preference to frequencies
which leads to a negative alignment before the pulse. This is reflected by the fact that
the amplitude of ~S is maximal for ∆n = 0 and, therefore, contributes most to the
configuration averages 〈Sbp

z 〉 and 〈Sap
z 〉. Other frequencies deviating from ωLTR = 2πn

are suppressed.

The build-up of the electronic revival is described by Kleinjohann et al. [63]. The semi-
classical derivation is conducted in an analogous manner. We first consult Eq. (7.2.8).
Since the π-pulse only leaves a Sz-component, the electron spin dynamics can be written
as

Sz,µ(t) = Sap
z,µ cos(ωLt) (7.2.24)
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in the limit of |~bext| � γT ∗. The initial Sap
z (0) is −1/4. For consecutive pulses

Eq. (7.1.15) up to the NP-th pulse the electron spin revival in one configuration µ
is

Sbp
z,µ(TR, NP) = −

Np∑
p=1

1

2p+1
cosp(ωLTR) (7.2.25)

with ωL given by the individual, frozen Overhauser field in a configuration. The config-
uration average is replaced by the integral over all frequencies

〈Sbp
z (TR, NP)〉 =

TR

2π

2π
TRˆ

0

Sbp
z,µ(TR, NP)dωL. (7.2.26)

Note that only integrals with even exponents of the cosine contribute. Therefore, the
series is

〈Sbp
z (TR, NP)〉 = −

NP/2∑
p=1

1

24p+1

(2p)!

(p!)2
. (7.2.27)

The increase of the revival amplitude occurs every second pulse. In the limit of large
NP the result of Eq. (7.2.22) can be retrieved. For the amplitude after the pulse the
same approach is applied. Here only odd pulse numbers contribute the final series

〈Sap
z (TR, (NP − 1))〉 = −1

4
− 1

2

NP/2∑
p=1

1

24p+1

(2p)!

(p!)2
(7.2.28)

with the limit at NP →∞ of − 1
2
√

3
as shown in Eq. (7.2.23).

The electron spin amplitude after the pulse and before the pulse stays constant for one
pulse and alternately increase with the number of pulses applied.

7.2.4 Mode-locked electron spin

The focus of investigation in this section is the influence of the frozen Overhauser field,
following a non-equilibrium steady state distribution, on the electron spin dynamics.

An infinitely long periodic pulse sequence imprints some of its characteristics such as in-
formation about TR on the Gaussian distribution of the initially unpolarized Overhauser
field. We expect that peaks, whose position corresponds to the resonance conditions,
emerge from the Gaussian Overhauser field distribution in the direction of the external
magnetic field. Therefore, the weight of each peak is derived from the Gaussian. In the
non-equilibrium steady state, we assume perfectly sharp peaks at the positions predicted
by the resonance conditions (7.2.16) and (7.2.17). In this simple model both resonance
conditions contribute equally. The Overhauser field distribution for i = x, y, z is given
by

py(bN,i) = pz(bN,i) = F(bN,i), (7.2.29a)

px(bN,x) =
∑
n

F(bN,x) [δ(bN,x − be,n) + δ(bN,x − bo,n)] , (7.2.29b)

72



7.2. Analytic solution in the frozen Overhauser field approximation

Figure 7.3: Toy model for the central spin dynamics. Sz(t) and Sy(t) during one pulse
repetition time t ∈ [NPTR, (NP + 1)TR] for the even (a) and the odd resonance condition
(b). Panel (c) depicts the combination of both weighted with the Gaussian envelope of the
Overhauser field bN,x ∼ N (0, 1/4). The insets show the electron spin dynamics immediately
before the next pulse.

where

F(bN,i) =
1√

2πσ2
exp

(
−
b2N,i
2σ2

)
for i = x, y, z (7.2.30)

with a variance σ2 = 1/4 and δ(b) is the Dirac δ-function. The effective field be,n [bo,n]
is derived from the condition (7.2.16) [(7.2.17)].

For a statistical evaluation we connect the number of configurations with the same
Overhauser field to the weight given by the Gaussian. In each configuration the electron
spin dynamics Sz,µ(t) is provided using Eq. (7.2.8) before the statistical average for
〈Sz(t)〉 between two pulses is calculated, see Eq. (5.2.33).

In Fig. 7.3 the external magnetic field is chosen to be about 2T and the repetition rate is
given by TR = 13.5T ∗. Here, the electron spin executes about 200 Larmor precessions in
the period TR. For the strong magnetic field the approximation of bo,n ≈ (2n+1)πT ∗/TR

holds.

For the even resonance condition, featured in panel (a), the electron spin is fully aligned
in negative z-direction after and before the pulse. The maximum spin length is conserved
and, therefore, the spin polarization transferred to the next pulse period. This behavior
is synonymous with the laser pulse having no effect.

The electron spin dynamics in panel (b) belongs to the odd resonance conditions. After
the pulse the electron spin is also aligned in the negative z-direction, however, the
absolute value of ~Sµ is reduced to 1/6, cf. Eq. (7.1.15). The spin length again is retained
but the polarization before the next pulse is inverted.

While the central spin dynamics of both classes of resonance conditions possess a perfect
revival, the superposition of the two, as shown in panel (c), does not. After the pulse
the electron spin configurations of even and odd resonant Overhauser fields are aligned
in the same direction and an amplitude of 〈Sap

z 〉 = −1/3 is reached. Before the next
pulse the amplitude is reduced to 〈Sbp

z 〉 = −1/6 due to the spin vectors of each sub-class
pointing in opposite directions.

In the context of this toy model no predictions can be made about the weighting ratio
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Figure 7.4: Toy model of Sz(t) and Sy(t) with t ∈ [NPTR, (NP + 1)TR] for the different ratios
between even and odd resonance conditions. The insets shows the electron spin dynamics
immediately before the next pulse.

of even and odd resonance peaks. However, with a different ratio of the two sub-classes
the revival can be influenced, cf. Fig. 7.4. If the even resonances dominate, as seen in
panel (a), the amplitude after the pulse as well as the revival increases. In the limiting
case of even to odd weighting ratio 1:0, only the Overhauser field peaks given by the
even resonance conditions remain as was discussed in Petrov et al. [60]. For a larger
contribution of the odd class of resonance conditions, the polarization is diminished, cf.
panel (b), and reaches its minimum at 1:3 where the revival is suppressed completely,
see panel (c).

7.3 Full semiclassical simulations

This section encompasses the results of the numerical semiclassical simulations. We first
set the stage by discussing the makeup of the pulse sequence and its parameters. Then
basic features like the dependence on the number of pulses, the external magnetic field
and the pulse repetition rate are the focus of our investigation. Further simulations
show the influence of the spin dynamics under the variation of bath size N , pulse area
F and the trion decay rate γ. But also, the change in dynamics for an off-resonance
external magnetic field or a rescaling of the time constant T ∗ is observed. Last but not
least the influence of the nuclear Zeeman and the variation of the hyperfine coupling
constant distribution p(a) is discussed. We briefly compare the new insights with recent
experimental results presented in Ref. [89].

7.3.1 Recipe for the numerical simulation of a pulse sequence

After the components of the numerical simulation were discussed in previous sections,
let us combine the individual parts to a pulse sequence.

At t = 0 the nuclear spin bath is unpolarized. This translates to NC classical configur-
ations where each configuration features N classical nuclear spin vectors and a central
spin vector which are equally distributed over a Bloch sphere. Each configuration is
labeled by µ. The first pulse is applied at t = 0. During this time period the nuclear
spins are considered frozen and are not affected by the pulse. The quantum mechanical
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expectation value of the central spin as well as the expectation value of the excited
trion state is dictated by Eqs. (7.1.12)., The pulse is applied independently in each
configuration, see Fig. 7.5. This leads to a decreasing electron spin length in a single
configuration. The value ~Sap

µ is the initial condition for the time period TR at t = NPTR

which is governed by the system of coupled equations of motion given by Eqs. (7.1.27)
and (5.2.27b). The quadrupolar interaction is not taken into account. The recipe for
the numerical solution via RK4 was presented in Sec. 5.2.6.

Figure 7.5: Schematics of a pulse sequence. Each black line represents an independent semi-
classical configuration. In red the pulse and the trion decay are depicted. The blue lines indicate
where the ensemble averaging for the electron spin dynamics is performed and the histogram
of the Overhauser field distribution is created.

For a pulse sequence multiple building blocks of length TR are put in a row. At pre-
determined pulse numbers NP the quantities of interest, like the expectation value of
the electron spin dynamics 〈~S(t)〉 and the Overhauser field distribution pi(bN,i), are
calculated as an average or histogram over all configurations µ immediately before the
pulse at t = NPTR.

7.3.2 Parameters of the pulse sequence

The subject of investigation are the electron spin dynamics 〈Sz〉 and the Overhauser
field distribution pi(bN,i) with i = x, y, z under periodical, optical excitation. The
aim of this investigation is a qualitative understanding of the spin dynamics observed
in experiments. The parameters are chosen to approximately reflect the experimental
setup given by Greilich et al. [33] and stay the same for the following sections unless
stated otherwise. In previous comparisons between theory and experiment [49] T ∗ has
been found to be T ∗ ≈ 1 ns.

The standard set of parameters for the SCA was presented in Sec. 5.3.2. Each of the
N = 100 nuclear spins has a spin length I = 1/2. The electron spin vector with an
effective spin S = 1/2 can decrease in length from the maximal absolute value of 1/2.
The 〈Sz〉 and pi(bN,i) are determined as the mean value of the electron spin dynamics and
the histogram of all Overhauser fields of NC = 105 independent classical configurations,
respectively. The differential equations are solved using a Runge-Kutta fourth-order
method.

The electron spin interaction with the external magnetic field is 800 times stronger than
that of the nuclear spins. Therefore, the ratio of the Zeeman interaction is given by ζ =
gNµN
geµB

= 1/800. The repetition time TR between the pulses is 13.2ns in experiment [33].
For the sake of convenience, we set it to TR = 13.5T ∗ in the simulations. The trion
decay rate is γ = 10 1

T ∗ .
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The parameter K ′ is used to indicate if the external magnetic field fulfills the even
resonance condition (7.2.16)

K ′ = K + ∆K =
|~bext|
2π

TR

T ∗
(7.3.1)

with ∆K ∈ [0, 1) and K ∈ Z. If ∆K = 0 then the external magnetic field leads to
an even number of full electron spin precessions in TR. Otherwise, ∆K returns the
fraction of the rotation that is off-resonance. The arbitrary real number ∆K can be
used as simple means to account for different g-factors of individual quantum dots
and the associated deviations from the resonance conditions. As the default parameter
for the external magnetic field, we chose | ~Bext| ≈ 2T. Since we usually demand a
resonant external magnetic field as an additional condition, this value is represented
by K = 200. The dimensionless external magnetic field is |~bext(K = 200)| ≈ 93. The
external magnetic field is applied in Voigt geometry with ~bext = |~bext|~ex.

The Larmor precession of the electron spin for K = 200 is much faster than the pre-
viously in Sec. 5.3.3 discussed dynamics in an external magnetic field of |~bext| = 10
which corresponds to approximately 200mT. The step width is adjusted to ∼ 0.001T ∗

to resolve the dynamics for an external magnetic field with K = 200.

The so-called box model is used [45, 60, 146] to investigate basic features of the spin
dynamics subjected to a pulse sequence. Setting all coupling constants to ak = a =
1/
√
N allows us to collapse all N nuclear equations of motion to a single differential

equation of the total nuclear spin ~M =
∑

k
~Ik. Weighting ~M with the universal coupling

constant a reveals the Overhauser field dynamics directly. The computational resources
needed for a simulation are reduced by approximately a factor N . When the hyperfine
coupling constant distribution p(a) is the focus of investigations the distributions pr0(a)
from Sec. 3.2 are used. The parameter ξ is set to allow for two- and three-dimensional
QDs. The cut-off ratio is varied between 1.0 and 2.0.

The starting point for each simulation in this chapter is a completely unpolarized elec-
tron spin and nuclear spin bath. The first pulse is applied immediately at t = 0. Unless
stated otherwise, the total number of pulses is NP = 20 000.

7.3.3 Influence of the number of pulses

Figure 7.6: Precession of the electron spin
y- and z-component in the external magnetic
field as well as constant x-component and its
absolute value. The analytical solution of the
trion state is added as a dashed line.

In the case of a strong external magnetic field the electron spin dynamics is dominated
by the Larmor precession. Since the laser pulse aligns the electron spin in negative
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z-direction, only the components orthogonal to the external magnetic field contribute.
The x-component stays approximately constant at 〈Sx〉 = 0. The short-time dynamics
during the trion decay is depicted in Fig. 7.6.

Starting from an unpolarized electron spin the laser pulse at t = 0 generates a polariz-
ation in z-direction. Eq. (7.1.15) quantifies this polarization as 〈Sz〉 = −0.25 since the
|↑〉-state is depleted. The electron components perpendicular to the external magnetic
field begin to precess after the pulse and the trion state PT decays on a time scale of
0.1− 0.2T ∗. The trion decay changes the spin length as illustrated the grey line for the
absolute value of the electron spin vector. Since the trion state decays into the |↑〉-state,
the absolute value increases where 〈Sz〉 is positive. Only after the trion is decayed stays
the spin length constant.

Figure 7.7: Upper row: Sz-expectation value of central spin dynamics on the time scale
of one TR = 13.5T ∗ between two consecutive pulses for an increasing number of pulses in
the box model. The simulation is conducted for N = 100 nuclear spins and NC = 100 000
configurations. The nuclear Zeeman strength is ζ = 1/800 and the external magnetic field is
defined by the resonance condition K = 200 which leads to |~bext| = 2π200T∗

13.5T∗ ≈ 93 corresponding
to approximately 2 T. Lower row: 〈Sx〉 and 〈Sy〉 for the same parameters.

For larger time scales the hyperfine interaction comes into play. In the upper panels
of Fig. 7.7 the electron spin dynamics in z-direction for different pulse numbers NP is
depicted. Unlike in the previous detail plot of the trion decay, the Larmor precession
is too fast to be resolved on the time scale of TR. After each pulse 〈Sz〉 dephases
on the time scale T ∗. Here, no revival is observed and in the second time period
TR the starting value is given by 〈Sz〉 ≈ −0.25, cf. Eq. (7.2.19). However, the behavior
compared to the first pulse period changes before the third pulse where 〈Sz〉 now features
a revival of the approximate magnitude 0.06 as described by Eq. (7.2.27). The envelope
of the revival mirrors that of the dephasing after the pulse. The electron spin revival
always is connected to frequency focusing. On the time scale of only a few pulses this
synchronization of the electron spin precession modes to the pulse repetition time TR
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is linked to the effect of the pump pulses only, cf. Sec. 7.2.3.

After the initial sharp increase, the revival amplitude grows with the number of pulses.
Since the amplitude of the spin after the pulse depends on Sbp

z , cf. Eq. (7.1.15), for
π-pulses, it also increases. The amplitude after the pulse converges to 〈Sap

z 〉 = −1/3

and likewise the value before the pulse converges to the predicted 〈Sbp
z 〉 = −1/6. The

corresponding spin dynamics for the x- and y-components of the central spin are found in
the lower panels of Fig. 7.7. 〈Sy〉 features the same behavior as the Sz-component albeit
with a phase shift in the Larmor precession. 〈Sx〉 is suppressed by the laser pulse and
since the external magnetic field of ∼ 2T leads to a Larmor precession much faster than
the hyperfine interaction the spin component is approximately conserved. Therefore,
it does not contribute to the revival that is plotted in Fig. 7.8. The revival 〈Sbp

y 〉 is
diminished for an increasing number of pulses. This agrees well with the prediction of
the toy model, see Fig. 7.3, where in the steady state the central spin is aligned in the
z-direction before the pulse. But it also means that after 20 000 pulses the steady state
is not yet reached for this choice of parameters. Since 〈Sx〉 is approximately constant,
it is sufficient to investigate 〈Sz〉 and the absolute value of the revival.

Figure 7.8: Revival of the central spin immediately before the pulse. Panel (a): components
of the electron spin immediately before the pulse. Panel (b): detail of the Sz-component for a
few pulses. Panel (c): absolute value of the revival amplitude.

The revival on the time scale of only a few pulses, cf. Fig. 7.8 panel (b), shows the
revival amplitude of Sz increases every second pulse due to the electronic revival as
described in Ref. [63]. After four pulses the electronic steady state of 〈Sz〉 = −0.077 is
approximately reached.

After the rapid increase of revival amplitude of the electron spin on the time scale of
a few pulses all further increase is linked to the development of non-equilibrium Over-
hauser field distributions. The Overhauser field distributions in all spatial directions
(px(bN,x), py(bN,y), pz(bN,z)) for the box model are depicted in Fig. 7.9. At t = 0 the
Overhauser field is unpolarized which due to the central limit theorem leads to a Gaus-
sian distribution. It is centered around 0 and its variance in each direction is given by
1/4.

Under the influence of periodic laser pump pulses, the components perpendicular to the
external magnetic field do not change their initial Gaussian shape. But the distribution
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Figure 7.9: Overhauser field distributions pi(bN,i) in all spatial directions i = x, y, z. At t = 0
the Overhauser field is unpolarized, translating to a Gaussian distribution bN,i ∼ N (0, 1/4) in
all directions. The vertical lines in panel (a) indicate the even (dash-dotted) and odd (dotted)
resonance conditions defined by the equations (7.2.16) and (7.2.17). The panels (b) and (c)
show the Overhauser field distribution orthogonal to the external magnetic field after 1 pulse
and 20 000 pulses.

px(bN,x) develops a new shape. While the envelope of the distribution retains its Gaus-
sian shape, peaks begin to emerge. The distance between neighboring peaks is given by
∆bN,x = πT ∗/TR. As the peaks become more distinct with time, we can identify the
position of the peaks by the resonance conditions (7.2.16) and (7.2.17). A guide to the
eye for the even and odd conditions is added to the plot as vertical dashed-dotted and
dotted lines. The peaked Overhauser field distribution reduces the possible frequencies
of the electron spin dynamics which is the reason for the additional increase in revival.
This selection of only a few frequencies or modes via a re-alignment of the nuclear spins
is called mode-locking and leads to electron spin coherence due to nuclei-induced fre-
quency focusing [33]. Despite the strong approximation of a frozen Overhauser field, the
analytical predictions fit remarkably well to the result of the full numerical simulation.
The measured deviations form the analytical predictions are as small as 1 − 2 % and
never exceed 9 %.

Figure 7.10: Exemplary convergence of the
Overhauser field in a single configuration µ
(colored lines) to the even (dash-dotted) and
odd (dotted) resonance conditions.

Another behavior, that catches the eye, is the different build-up speed of the two peak
classes. Since no analytical prediction is on hand, we have a look at a few random con-
figurations µ and track the development of their Overhauser field value bN,x,µ once per
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TR. The individual Overhauser fields in Fig. 7.10 show different convergence depending
on their starting value. Both resonance conditions act as attractive fixpoints for the
Overhauser field. If the initial value of bN,x,µ is on a resonance condition, it stays con-
stant for this value. If bN,x,µ is closer to the even resonance condition, the Overhauser
field converges to the resonance condition in under 10 000 pulses. This can be observed,
for example, for the green line at bN,x = 0 or the red line at bN,x ≈ −0.5 which both start
with a deviation from the resonance condition at t = 0. For the remaining, initial values
of the Overhauser field that deviate from the odd resonance condition, the convergence
to the dotted lines progresses much slower. The more the configurations deviate from
the resonance conditions, the slower the Overhauser field attains its steady state. In the
picture of the ensemble distribution the slower convergence of the configurations with
odd resonance conditions leads to broader peaks for (7.2.17) and fast developing, sharp
peaks for (7.2.16).

Since the Overhauser field distributions py(bN,y) and pz(bN,z) do not change over time,
only the Overhauser field distribution px(bN,x) parallel to the external magnetic field is
taken into account for subsequent investigations.

7.3.4 Influence of the external magnetic field

In pump-probe experiments a strong external magnetic field [88] serves a dual purpose:
(i) the coherent oscillation in the external magnetic field dominates the electron spin
dynamics. The electron spin precession is necessary for the generation of polarization via
the pulse. (ii) the long-time dephasing stemming from the fluctuations of the Overhauser
field is suppressed.

Figure 7.11: Overhauser field distribution in the direction of the magnetic field after 20 000
pulses for different magnetic field strengths given by K: |~bext| = 2πKT∗

TR
. Panel (a) and (b) show

the entire distribution while panel (c) highlights the shift of the odd peaks given by ωL/γ for
the data from panel (a) and K = 300, see Eq. (7.2.17).

The influence of the external magnetic field on the peak structure of the Overhauser
field is depicted in Fig. 7.11. The Overhauser field distribution in the direction of the
external magnetic field px(bN,x) is plotted for different magnetic fields in resonance given
by K = 50, 100, 150 and 200 in panel (a) and K = 250, 300, 400 and 600 in panel (b)
representing magnetic field strength ranging from approximately 0.5T for K = 50 up
to 6T for K = 600. Panel (c) shows one even peak of the Overhauser field distribution
at bN,x = 0 and the corresponding odd peak in detail. Only results from panel (a)
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and px(bN,x) for K = 300 are shown. The odd peak shifts depending on the external
magnetic field.

In all panels the even peaks related to Eq. (7.2.16) do not change position and are
independent of the external magnetic field. In panel (a) the peaks following the odd
resonance condition Eq. (7.2.17) shift towards (2n + 1)π/TR for increasing |~bext| since
2arctan(|~bext|/(γT ∗)) → π. For higher magnetic fields, see panel (b) the positions of
the odd resonance peaks do not visibly change further.

However, while the peak positions are the same in panel (b), the speed of the build-up
is not. Larger magnetic fields lead to a slower build-up than weaker fields. For 6T
the peaks are barely visible after 20 000 pulses. The speed of the build-up is inverse to
the external magnetic field due to the (1/ωL) dependency of the averaged Knight field,
cf. Eq. (7.2.15). An inverse dependence between speed-up and external magnetic field
strength was discussed by Glazov et al. [64]. In quantum mechanical calculations [61]
the mode locking rate has been found proportional to |~bext|−2.

For K = 50 the Overhauser field shows one significant difference compared with the
larger magnetic fields: the even resonance peaks have less weight compared to the odd
peaks. The odd peaks are also much sharper in contrast to the odd peaks of higher
magnetic fields. Those features cannot be predicted by the resonance conditions. For
an external magnetic field lower than |~bext(K = 50)|, we approach the regime where
the Larmor precession for an external magnetic field is not significantly faster than the
dynamics induced by the hyperfine interaction. Therefore, the analytical prediction for
the position of the Overhauser field peaks does not work for small magnetic fields since
the FOA [55] is no longer valid [49, 75, 76].

7.3.5 Electron spin revival depending on the external magnetic field

We discussed the influence of the magnetic field strength on the nuclear spin dynamics
in the previous section. However, only the electron spin dynamics is measured in pump-
probe experiments, see Fig. 2.4. Here, the behavior of the electron spin revival amplitude
in the context of their Overhauser field distribution is discussed.

In Fig. 7.12 the revival amplitude |〈~S(TRNP)〉| and 〈Sz(TRNP)〉 are presented for varying
magnetic field strength in the upper and lower panels, respectively. Magnetic fields
from ∼ 0.25T up to 1.5T, which correspond to K = 25 and K = 150, are on the
left-hand side, larger magnetic fields up to 6T on the right-hand side. Independent of
the magnetic field strength each revival amplitude increases from 〈Sz〉 = 0 to a finite
value for NP < 10. This purely electronic revival was discussed in Sec. 7.2.3. The toy
model provides good predictions for higher magnetic fields, especially for the magnetic
fields used in pump-probe experiments which are between 2T or higher [33, 63, 89].
The electronic revival is Sbp

z = −0.077 for all magnetic fields K ≥ 100, see Fig. 7.12
(d), which corresponds to | ~Bext| ≥ 1T, cf. Eq. (7.2.22).

After the purely electronic steady state is reached NP < 10, the revival amplitude
increases monotonously for high magnetic fields, see panel (b), and decreases mono-
tonously for its corresponding 〈Sz〉 in (d) of Fig. 7.12. The two classes of resonance
conditions predict the spin alignment in each configuration. ~Sµ is aligned in the negative
z-direction before the pulse for the even resonance condition. This resonance condition
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Figure 7.12: Revival amplitude of the electron spin. Upper panels: absolute value of the
electron spin before the pulse |〈~S(TRNP)〉| and lower panels: Sz(TRNP). The external magnetic
field is (2πKT ∗/TR)~ex.

corresponds to an integer number of precessions in TR starting from −|~Sap
µ |~ez after the

pulse. The electron spin amplitude in one configuration with a frequency given by
(7.2.16) is not diminished by the pulses and is Sz,µ = −1/2. For the odd resonance
condition, the spin orientation before the pulse is also in z-direction, albeit positive.
Here, the electron spin amplitude approximates its steady state amplitude Sz,µ = 1/6
in one configuration. Since the peaks of the Overhauser field distribution following the
even resonance condition develop faster, see Fig. 7.11 for K > 100, the negative revival
〈Sz〉 increases. Due to the fact that the build-up speed of the peaked Overhauser field
distribution is linked to the external magnetic field strength, |~bext| also influences the
long-time build-up of the revival amplitude. For example, for K = 600 the revival
amplitude is only further increased by ∼ 0.002 after NP = 10, whereas the difference
between 〈Sbp

z 〉 at NP = 10 and NP = 20 000 assumes the value of ∼ 0.03 for K = 200.
This means a longer pulse sequence is needed to get a revival amplitude, similar to that
of K = 200, for the stronger magnetic field of K = 600. The still almost linear slope of
the electron spin revival amplitude in Fig. 7.12 (b) as well as the shape of px(~bN,x) in
Fig. 7.11 indicates that the non-equilibrium steady state is not yet reached. For large
magnetic fields K > 100, 〈Sbp

z 〉 is expected to converge to −1/6 with an increasing num-
ber of pulses. The value is predicted by the toy model for an assumed equal weighting
of the even and odd Overhauser field peaks. Slower convergence with increasing ex-
ternal magnetic field strength is also observed in quantum mechanical calculations, see
Ref. [63].

For lower magnetic fields the revival amplitude is subject to much faster changes due
to faster development of the Overhauser field Eq. (7.2.15). But even in this regime
no convergence is yet observed and a larger number of pulses is necessary to reach the
steady state. Also, |〈~S〉| does not increase monotonously for magnetic fields K < 150.
This can be partially understood in the context of the toy model through the spectral
weight of the peaks. As seen in Fig. 7.11 for K = 100 but especially for K = 50, the
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weight in the odd peaks increases compared to that of the even peaks. The revival
decreases. For the ratio of 1 : 3 between even and odd Overhauser field peaks the
revival would vanish completely. The weight of the peaks cannot be determined from
the analytical calculations. Another effect, the toy model does not predict, is the spin
polarization in y-direction for K < 150. For the |~bext(K = 50)|, but especially for the
even smaller |~bext(K = 25)|, the modulus of the Sz-component and the absolute value
of the electron spin vector assume different values. Since the π-pulse only depends on
Sbp
z , a non-zero component Sy that remains immediately before the pulse cannot be

transferred to the next pulse period. The averaged spin amplitude |〈~Sap〉| after the
pulse decreases. If the Sy is the dominating contribution to the revival amplitude, we
can assume that Sbp

z ≈ 0 and Sap
z ≈ −1/4. For external magnetic fields, whose Larmor

precession frequency is on the time scale of the trion decay, the trion decay causes
an additional decrease in polarization. The trion decay leads to a contribution to the
electron spin polarization in positive z-direction while the trion decays. Therefore,
both contributions interact destructively for a slowly rotating central spin and the spin
polarization decreases further.

7.3.6 Spin dynamics depending on the pulse repetition time

Besides the external magnetic field, the pulse repetition time TR is an integral part of
both resonance conditions. We investigate the spin dynamics dependent on TR. For
comparable results |~bext| ≈ 93.08 corresponding to 2T is kept constant and in resonance.
The parameter K has to be adjusted accordingly to K = b 200

13.5T ∗TRc. To observe mode
locking, TR has to be larger than the hyperfine dephasing time.

In Fig. 7.13 the dependency of the Overhauser field distribution px(bN,x) and the ab-
solute value of the electron spin revival |〈~S(NPTR)〉| on the repetition time TR are
presented. The position of the peaks in the Overhauser field distribution in panel (a)
are predicted correctly by the resonance conditions (7.2.16) and (7.2.17). No definitive
point can be made about the rate of the build-up depending on px(bN,x) alone. Adding
the electron spin revival in panel (b) to the picture, it becomes obvious that the speed
of the mode locking increases with TR since the electron has more time per pulse to
influence the nuclear spins.

Figure 7.13: Panel (a): Overhauser field distributions depending on the pulse repetition time
TR. Panel (b): revival amplitude |〈~S〉| depending on TR.

The electronic revival is universal for all TR as predicted by Eq. (7.2.22). The faster
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speed of the nuclei-induced frequency focusing process can be explained by revisiting
Fig. 7.10 which exemplary shows the convergence to the resonance conditions in indi-
vidual configurations. For a longer TR the distance between the resonance conditions
is smaller ∆ωL = 2π/TR. For the same rate of convergence the steady state is reached
earlier even if we take absolute times into account instead of the number of pulses. The
build-up of the Overhauser field is faster.

7.3.7 Dependence on the decay rate

Figure 7.14: Revival of the absolute value of the electron spin and the Sz-component before
the pulse.

Although the trion decay rate γ is not an adjustable quantity in experiment [35], it
influences the electron spin dynamics, see Eq. (7.2.8). In this section, we investigate the
influence of γ on this spin dynamics. The revival amplitude as well as the z-component
of the central spin are depicted in Fig. 7.14. Larger decay rates lead to shorter decay
time τT = 1/γ. It seems counterintuitive at first glance that the electron spin revival
amplitude is larger for a faster trion decay as seen in the left panel of Fig. 7.14.

In the non-equilibrium steady state the electron spin dynamics is periodic in the pulse
repetition time TR. It does not necessarily imply that Sy is always zero before the
pulse. This assumption is affirmed, if we include the information about the revival of
Sz presented in panel (b). While for small γ the relation |〈~S(NPTR)〉| = |〈Sz(NPTR)〉|
approximately holds, the z-component contributes only a fraction to the absolute value
for a faster trion decay. The missing part has to be attributed to the Sy-component since
the pulse sets Sx to zero, and it stays constant during TR except for small fluctuations.
For a decay rate of γ = 50, the quantity γ = 2γ = 100/T ∗ is in the order of magnitude of
the Larmor precession |~bext| = 93.1 and the approximation γ ≈ ωL is justified. With this
new simplification, we proceed similar to Sec. 7.2.3 and integrate over the spectrum. The
result is an electronic revival in the z-direction of Sbp

z = −0.063. For the y-direction
the additional step of plugging Sbp

z into Eq. (7.2.8) has to be taken. The result is
Sbp
y = −0.078 and the resulting absolute value assuming Sbp

x = 0 is |~Sbp| = 0.100. The
predictions agree with the simulation.

To reveal the origin of the changed electron behavior, the electron spin dynamics is
depicted for one period TR after 20 000 pulses in Fig. 7.15. After the pulse the electron
amplitude is smaller the larger γ, cf. panel (a). This is intuitive to grasp: At ∆t = 0
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Figure 7.15: Electron spin dynamics after the 20 000 pulses over the time period TR in panel
(a). Panel (b) and (c) show the short-time dynamics immediately after and before the pulse.

after the pulse, the electron spin is aligned in negative z-direction and the trion is
excited. If γ is fast compared to the Larmor precession, the trion is decayed before the
electron has executed one rotation. During most of the decay time, the electron spin
vector is aligned in negative z-direction while the trion adds a positive Sz contribution.
Those two mechanisms cancel each other out and 〈~Sap〉 decreases. For the limit of
γ →∞ the trion decays instantly. The pulse has no effect and 〈~Sap〉 = 0.

In the panels (b) and (c) of Fig. 7.15 the short-time dynamics after and before the pulse
is shown. They reveal the reason for the behavior of the revival amplitudes. The trion
decay induces a phase shift Φ [180, 186, 187]. If the trion decays slowly compared to
1/ωL, the decaying trion part is distributed “more equally” on the two electron states
during a Larmor precession and the phase shift is small. For a fast decay the sum of
γPTe−2γt~ez from the source term, Eq. (7.1.27), and a rotating electron spin vector with
mostly negative components Sy and Sz leads to a significant phase shift. This phase
shift can be quantified [180, 186, 187] by simplifying Eq. (7.2.8)

Sz(t) ≈ Ay sin(ωLt) +Az cos(ωLt) =
√
A2
y +A2

z cos

[
ωLt+

π

2
+ arctan

(
Az
Ay

)]
(7.3.2)

with

Az
Ay

=
γ

ωL
− 2Sbp

z − 1

2Sbp
z + 1

(
γ

ωL
+
ωL

γ

)
.

For γ � ωL the phase shift is π and the electron spin dynamics can be approximated
by − cos(ωLt). For ωL and γ of the same order of magnitude the phase shift retains its
dependence on Sbp

z with

Φ =
π

2
+ arctan

(
1 + 2

2Sbp
z − 1

2Sbp
z + 1

)
. (7.3.3)

This can lead to a non-zero Sy before the pulse not only in each configuration but also
in the expectation value.
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Figure 7.16: px(bN,x) for different trion decay rates. The vertical lines indicate the first mode
given by the resonance condition (7.2.17).

The histograms of the Overhauser field are depicted in Fig. 7.16. All px(bN,x) seem
equally advanced and no trion decay rate favors a faster build-up. The even resonance
condition is unaffected by the trion decay rate. The peaks predicted by the odd reson-
ance condition (7.2.17) are shifted or deformed for large γ. But the shift, indicated by
the dashed vertical lines, is not as pronounced as it is for the variation of the external
magnetic field strength.

7.3.8 Scaling behavior with the bath size

The pulse sequences are investigated up to NP = 20 000 pulses with a laser repetition
time TR ≈ 13.5 ns. This corresponds to a total of NPTR ∼ 0.27ms for the whole pulse
sequence. However, in experiments [33] the measurement time can last from seconds up
to 20min. This leads to 7.4 ·107 pulses per second for TR = 13.5 ns. With the currently
employed SCA scheme, including the simplification of the box model, those times are
not achievable due to computational constraints. The discrepancy to experimental set-
ups can be bridged exploiting the scaling behavior of the dynamics with the number of
nuclear spins.

In Fig. 7.17 each panel contains snapshots of Overhauser field distributions along the
external magnetic field px(bN,x) at different numbers of pulses NP for varying numbers
of nuclear spins N . The constant quantity in each panel is the ratio νP = NP/N which
is given in ascending order from left to right as νP = 20, 200 and 2000.

In each panel the Overhauser field distribution px(bN,x) is universal. This indicates that
a larger spin bath leads to a slower time evolution of px(bN,x). Since the nuclear spins
in the box model all precess with the same frequency, they do not change alignment to
each other. The only exchange of polarization is with the electron spin via the hyperfine
interaction. This is linked to the two effective fields of the hyperfine interaction and
their dependence on the coupling constant a := ak ∼

√
3/N ∀ k: the Knight field

a~S =
√

3/N ~S and the Overhauser field a
∑

k
~Ik =

√
3/N

∑
k
~Ik. Through the Knight

field, the electron spin dynamics is directly coupled to the nuclear spin dynamics which
then is fed back to the electron spin via the Overhauser field. Both fields contain a
dependence on the coupling constant a =

√
3/N which causes the build-up to scale

directly with the bath size a2 ∼ 1/N .
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Figure 7.17: Overhauser field distributions at different numbers of pulses for systems with
different bath sizes. The time evolution of px(bN,x) in (a) features the ratio νP = NP/N = 20,
in panel (b) and (c) νP = 200 and 2000, respectively.

The time-dependent build-up of the mode locking in experimental setups can be pre-
dicted by the simulation of smaller systems and by exploiting the scaling property
outlined above. At all times the results for N = 10 are followed faithfully by its coun-
terparts with larger N . We can, therefore, assume that this trend carries on for a more
realistic case of N = 105 where more laser pulses have to be applied to compensate for
the build-up speed. For N = 10 and NP = 20 000 the Overhauser field distribution still
features a Gaussian envelope, while resonance peaks of both resonance conditions are
sharper compared to νP = 200. The Overhauser field px(bN,x) for N = 10 will then be
equivalent to the result for N = 105 after NP = 2 · 108 pulses. The corresponding time
t = 2.7 s is in the order of magnitude of the times occurring in experiments.

However, the steady state is still not reached at νP = 2000 as can be seen in Fig. 7.18
where the revival amplitude of |〈~S〉| plotted. The same behavior observed for the Over-
hauser field distribution translates to the revival. If the time scale is rescaled with the
nuclear spin bath size, then all curves are superposable. Since no convergence is ob-
served even for N = 10, a longer pulses sequence would be necessary to reach the steady
state revival. Increasing the number of pulses by a factor of 10 − 100 provides a more
accurate estimate for the nuclei-induced frequency focusing time in experiment [33].

Figure 7.18: Revival amplitude of the absolute value of the electron spin with different nuclear
bath sizes depending on the ratio NP/N .
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Exploiting the scaling behavior further, we chose a bath size of N = 10 to reach the
steady state. The number of pulses applied is NP = 5 · 105. The result is shown in
Fig. 7.19. However, one has to be aware that the analytical steady state with infin-
itesimally sharp peaks is neither feasible in experiment nor in a numerical simulation.
Therefore, the peak width of the Overhauser field distribution is finite here and the re-
vival of 〈Sz〉, as well as the amplitude after the pulse, turn out smaller than predicted.
We assume that the steady state is reached after NP/N = 20 000 when 〈Sz〉 and 〈Sy〉
converge to their final value. Applying the scaling behavior to the curve, the estimated
non-equilibrium stead state for N = 100 and a realistic N = 10 000 is reached after
NP = 2 · 107 and NP = 2 · 109, respectively.

Figure 7.19: Overhauser field distribution and revival amplitude for a pulse sequence of 500 000
pulses with N = 10. The steady state is reached after νP = NP/N = 20 000.

7.3.9 Pump efficiency depending on the pulse area

It was shown in experiments [35, 188] that the Faraday rotation amplitude is connected
to the area of the laser pulse. The theoretically calculated spin dynamics of a pulse
sequence for different pulse areas F is presented in Fig. 7.20. In panel (a) the histogram
of the Overhauser field distribution after NP = 20 000 pulses is plotted. Panel (b) and
(c) show the electron spin amplitude immediately before and after the pulse. After only
one pulse the π-pulse leads to the largest amplitude after the optical excitation. With
an increasing number of pulses NP > 5, the electron spin amplitude after the pulse for
F = 1.2π and F = π show approximately the same time evolution.

Figure 7.20: Panel (a): Overhauser field distributions depending on the pulse area F . Panel
(b): revival amplitude |〈~S〉| depending on F . Panel (c) the electron spin amplitude after the
pulse for up to 10 pulses.
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In the distribution function px(bN,x) the position of the peaks is invariant under a change
of the pulse area. However, no distinct peaks are observable if F deviates strongly from
π as it is the case for F = 0.5π. For the smaller deviations of ∆F = ±0.2π the
distribution matches that of F = π.

The differences between the chosen pulse area become more obvious in panel (b). As
expected, the revival amplitude is smaller than that of the π-pulse for F < π. For
F = 0.5π the revival vanishes almost completely. However, what catches the eye most is
the revival increase of F = 1.2π compared to F = π. For the same spin alignment before
the pulse Sbp

z the pulse with F = 0.8π and F = 1.2π lead to the same absolute value
in each spatial direction after the pulse. While the x-component of the electron spin is
constant during TR and vanishes with cos(1.2π/2)Sbp

x = cos(0.8π/2)Sbp
x ≈ 0.309Sbp

x in
either case, the Sy-component plays an important role for the electron spin amplitude
|~S| ≈

√
S2
y + S2

z . The difference can be found in the sign of Sx and Sy. For 0 < F < π

the Sy before the pulse is shrunk and forwarded to the next pulse but for π < F < 2π
it is also flipped, see Eq. (7.1.12). This leads to a refocusing effect every second pulse
in each configuration.

Since the model for the pulses is too simplistic, it cannot make quantitative predictions.
But it can explain a few features also observed in experiment 1. The pulse area is
proportional to the pump power. In experiments it is assumed that the maximum
signal after the pulse is measured for a pulse area of π. With increasing pump power
the Faraday rotation signal after the pulse decreases after it reached a maximum whereas
the revival amplitude increases further and even surpasses the amplitude after the pulse.

Although a pump pulse with F = 2π adds a flip of the x and y spin component to
the dynamics, the result is the same as for F = 0: no frequency focusing is achieved
and the spin expectation value remains at 〈~S〉 = 0. For 2π < F < 4π the presented
dynamics is mirrored and the results repeat with a 4π periodicity of F . However, in
experiment it was observed that the Faraday rotation amplitude does not descend to
zero for F = 2π [35]. To replicate those features a more sophisticated approach to
pump pulses has to be chosen, e. g. incorporating pulses of finite duration [63], different
shape [121, 189] or also include detuning [179, 182, 189].

7.3.10 Influence of an off-resonance, external magnetic field

Up until now, we assumed that the externally applied magnetic field fulfills the resonance
condition 2πKT ∗

TR
with K ∈ Z. However, an individual QD might deviate from this

perfect resonance due to a variation of the g-factor ge [33]. The adjusted parameter
K ′ = K + ∆K defined in Eq. (7.3.1) takes into account the difference from the integer
resonance condition by including the parameter ∆K ∈ R.

Figure 7.21 shows px(bN,x) for different ∆K. Independent of the deviation from the
resonance condition, the Gaussian envelope retains its variance of 1/4 and remains
centered around bN,x = 0. Beneath the envelope the peaks shift to new positions which
satisfy the resonance conditions (7.2.16) and (7.2.17). Their displacement 2π∆K is
subtracted in the right panel with bN,x = bN,x + 2π∆KT ∗/TR. Now the peak positions

1Private communications and experimental data from Faraday rotation and ellipticity for increasing
pump power from E. Evers.
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Figure 7.21: Overhauser field distribution px(bN,x) after 20 000 pulses for deviations from the
resonance given by K = 200 in panel (a). Overhauser field distribution px(bN,x) shifted by
2π∆KT ∗/TR. The Gaussian envelope of the shifted px(bN,x) is marked by dashed lines.

of all ∆K match but the Overhauser field distribution becomes asymmetric with respect
to the origin due to the enhanced weight of the peaks to the right side. The weight
of the peaks is determined by the also shifted Gaussian envelope function centered at
bN,x = 2π∆KT ∗/TR.

Figure 7.22: Electron spin dynamics after 20 000 pulses depending on ∆K. Upper panels:
self-focusing immediately before and after the pulse. Middle panel: dynamics for one pulse
period TR. The Larmor precession cannot be resolved. Lower panel: frequency shift at inter-
mediate times.

The adjusted peak positions compensate for the non-resonant settings in TR and ~bext

since the sum of the external magnetic field and the Overhauser field have to fulfill
Eqs. (7.2.16) and (7.2.17). This is backed by the notion [33] that the central spin is self-
focusing under periodic laser pulsing. In Fig. 7.22 the z-component of the electron spin
is depicted after 20 000 pulses. The entire time evolution of the spin expectation value
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over TR is shown in the middle panel. The Larmor precession cannot be well resolved
on this time scale and only the Gaussian envelope of the dephasing and the revival is
visible. No difference between the three ∆K is noticeable in panel (b). The same applies
to the dynamics directly after and before the pulse, shown in the top panels. However,
for intermediate times shown in the bottom panels 〈Sz(t)〉 a dephasing is visible due to
the shifted, prevalent frequencies given by px(bN,x). The dephasing observed during 3.7
to 4.0T ∗ is inverse to that of 9.5 to 9.8 and vanishes once TR is reached.

7.3.11 Simple preview to quantum dot ensembles

The g-factors do not only vary over an ensemble of QDs, but multiple parameters can
also influence the dephasing. First and foremost among them are the hyperfine coupling
constants ak which define the time scale T ∗ [55]. We account for the difference between
individual QDs by introducing a modified dephasing time

T ∗η = ηT ∗. (7.3.4)

The parameter η is chosen in relation to a fictitious reference QD with a η = 1.0. It
depends, for example, on the growth process or the distribution of radii of the QDs
and is purely phenomenological in this context. In a realistic system the dephasing
is also connected to interactions between QDs. Experimentally, the interplay in an
ensemble was investigated in Ref. [188] and a more sophisticated, theoretical approach
is dedicated to describing the correlation between QDs in Ref. [182]. Note that the
rescaling of the dimensionless external magnetic field still depends on T ∗ ≈ 1 ns since
the pulse repetition rate is the same for all QDs.

Figure 7.23: Spin dynamics for a variation of T ∗η = ηT ∗. Panel (a): electron spin dynamics
〈Sz〉 after the 20 000 pulses. Panel (b): revival amplitude |〈~S〉|. Panel (c): Overhauser field
distribution in x-direction.

We investigate a variation of η between 0.8 and 1.2 in Fig. 7.23 such that 〈T ∗η 〉 = T ∗.
After 20 000 pulses the central spin dynamics in z-direction is depicted in panel (a).
For larger η the dephasing time is slower than for T ∗. The adjusted dephasing time
is mirrored in the Gaussian envelope of the revival. A stronger revival is observed for
smaller η. The convergence to the steady state is faster, since a smaller rescaling factor
η increases the strength of the hyperfine interaction. This is partially attributed to the
feedback mechanism between the Overhauser field and the Knight field. In panel (b)
the revival amplitude is plotted against the number of pulses NP/η

2 to account for the
leading effect of η. The revival curves are brought closer to each other, thus verifying the
underlying feedback mechanism. However, the curves for different η do not converge.
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These deviations may be ascribed to the fact that the ratio TR/T
∗
η is not kept constant.

In panel (c) we see that all η share the same peak positions. The difference lies in the
build-up speed of the distribution. For larger T ∗η the peaks are not as distinctive as
they are for smaller η. This fact can be linked to the electron spin dynamics shown in
panel (b).

In an ensemble of resonantly pumped QDs the electron spin dynamics for different η
is approximately in-phase and interferes constructively. Therefore, simple phenomeno-
logical predictions for the total dephasing depending on the parameter η can be made
based on the results obtained for a single QD.

7.3.12 Influence of the nuclear Zeeman effect

Like the trion decay time, the nuclear Zeeman effect is a non-adjustable quantity in ex-
periment. As discussed in Sec. 5.3.2, the parameter ζ, determining the relative strength
of the nuclear Zeeman to the electronic Zeeman, assumes a value between ζ = 1/1062
and ζ = 1/597 for 75As and 71Ga, respectively.

Figure 7.24: Panel(a): Histogram of the Overhauser field in x-direction for a varying ζ. Panel
(b): Electron spin amplitude for different ζ. The y-component of the electron spin revival is
added for ζ = 0 in a dashed black line.

In Fig. 7.24 the results of simulations for different ζ based on the isotopes of a In(Gas)As
QD and for ζ = 0 are plotted. The electron spin revival is presented in panel (a). The
initial revival is universal for all curves since its origin is purely electronic. Afterwards,
approximately the same behavior is observed for realistic ζ > 0. The build-up of the
revival amplitude correlates with the nuclear Zeeman term and ζ = 1/597 ≈ 0.00168
features the largest revival. A vastly different behavior occurs for ζ = 0 after some
100 pulses when the nuclear spin dynamics comes into play. The revival amplitude
decreases on the time scale of only a few pulses and evens out at 0.03. For ζ = 0 the
largest contribution to the revival amplitude is the y-component of the electron spin
– added as a dashed black line in Fig. 7.24 (a) – as opposed to the Sz-value for the
other cases where ζ 6= 0. Therefore, neglecting the nuclear Zeeman interaction leads to
a phase shift of π/2.

The corresponding Overhauser field distributions px(bN,x) to the electron spin dynamics
in panel (a) of Fig. 7.24 is found in panel (b) of the same plot. All Overhauser field
distributions feature a Gaussian envelope. Also, the position of the peaks remains the
same. The weight of the peaks, however, changes drastically depending on whether the
Zeeman interaction is incorporated or switched off. The peak weights to each other
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differ only marginally for the Zeeman energy ratios of the isotopes. But for ζ = 0 the
weights transition almost completely to the sub-set of peaks defined by the trion decay
dependent on resonance condition (7.2.17).

The correlation between revival and Overhauser field distribution was already shortly
discussed in the context of the toy model in Sec. 7.2.4. In the toy model we started
out with a given shape of px(bN,x). We assumed the presence of δ-peaks at both res-
onance conditions (7.2.16) and (7.2.17) and choose a spectral weight ratio between the
Gaussian envelope of the two sub-classes of the resonance conditions. If the envelope of
Eq. (7.2.17) has thrice the amplitude compared to that of the even resonance conditions,
see Fig. 7.4, the spin polarizations of configurations with frequencies given by the even
and odd resonance conditions interfere destructively. The spin expectation value at the
time of the pulse is zero. For deviations from this ratio, a non-zero revival amplitude can
be observed. For a weight imbalance of 1 : a between even to odd sub-set with a > 3,
the electron spin expectation value is aligned in positive z-direction in the toy model.
Therefore, the remarkable decrease of the spin revival is linked to the Overhauser field
distribution. The remaining, finite value can be explained by the ratio between the two
sub-sets of peaks slightly deviating from 1 : 3 and by the broadening of the peaks.

While the toy model assumes a given Overhauser field distribution and derives an elec-
tron spin revival amplitude, it requires a priori knowledge of px(bN,x). It cannot reveal
the deeper reason for the spectral weight balance between the peak heights of the two
sub-classes. This simplistic approach also fails to predict the correct phase shift of the
electron spin between different ζ. Unlike for quantum mechanical approaches [62, 63],
no transfer of spectral weight between the two sub-sets of resonance conditions was
observed for variations of ζ > 0 and K.

7.3.13 Influence of the hyperfine coupling distribution function p(a)

So far, we exclusively used the box model with ak = a∀k. Now, the focal point of
the investigation is the influence of the hyperfine coupling distribution p(a) on the
electron spin dynamics and the Overhauser field distribution px(bN,x). pr0(a) presented
in Sec. 3.2 is used. For ξ = 2 the distribution is equivalent to exponential coupling
constants ak ∼ exp (−λu) with λ = r2

0 and u ∼ U(0, 1) which is often used in literature,
see e. g. [38, 48, 129]. For a three-dimensional QD the coupling constants are given by
ak ∼ exp (−r2

0u
2/3).

Figure 7.25: Revival build-up of the electron spin for different cut-off parameters r0. Panel
(a) two-dimensional QD ξ = 2 and (b) ξ = 3.
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While the short-time electron spin dynamics of the order of one TR reveals no significant
changes, the differences become more apparent when the revival is in focus. The time
evolution of the revival amplitude over 20 000 pulses is depicted in Fig. 7.25. The curve
for the box model is added for reasons of comparison. The cut-off parameters r0 = 1.0,
1.5 and 2.0 are chosen. The revival for the box model shows the least increase over the
course of 20 000 pulses compared to pr0(a) for a two-dimensional QD, as depicted in
Fig. 7.25 (a). From the various options for the r0-parameter, those with a higher cut-off
lead to a faster revival growth. This observation is universal and independent of ξ as
can be seen via comparison with panel (b) which shows the data for ξ = 3. The revival
increase is faster for ξ = 3 than for ξ = 2.

The coupling constants enter quadratically into the time evolution of the Overhauser
field

T ∗
d

dt
~bN =

∑
k

a2
k
~S × ~Ik + ζ~bext ×~bN . (7.3.5)

If the hyperfine coupling constant distribution favors a few larger ak, the dynamics is
dominated by a reduced number of nuclear spins. Therefore, it shows comparable beha-
vior to the N scaling in the box model presented in Sec. 7.3.8 with additional distribu-
tion specific corrections. We took the sum over all coupling constants aS as an indicator
for the influence of the distribution pr0(a) on the long-time behavior, cf. Sec. 3.2: A
reduction of nuclear spins shows the same qualitative behavior as an increase in the
cut-off parameter. Both reduce the number of nuclear spins that couple effectively to
the electron spin. As a result, the build-up of the Overhauser field distribution and
the revival are faster. A similar effect has been observed for dynamics of an unpulsed
system for |~bext| = 0 in Fig. 5.3. By adjusting the parameter r0 a comparable long-time
behavior of C2(t) could be found even for different bath sizes N .

Figure 7.26: Overhauser field distribution after NP = 20 000 for different r0 corresponding to
Fig. 7.25. The data is presented for two- and three-dimensional QDs in panel (a) with ξ = 2
and in (b) with ξ = 3.

The faster build-up of the revival amplitude is translated to that of the Overhauser field
distribution shown in Fig. 7.26. Again, the data for ξ = 2 and ξ = 3 are compared to
the box model in panel (a) and (b). The Overhauser field distribution along the external
magnetic field px(bN,x) is presented after 20 000 pulses. All distributions feature their
peaks at the same positions given by the two classes of resonance conditions inside the
Gaussian envelope. Those peaks become sharper over time, and we assume that the
steady states of the pulsed system are the same for NP →∞. However, the build-up of
px(bN,x) advances at different speeds. As with the revival build-up of the electron spin,
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lower r0 lead to a slower development of the Overhauser field distribution and a lower
ξ also results in a reduced build-up speed. For the ξ-variation this can be traced back
to the histograms of the coupling constants, cf. Fig. 3.3, where ξ = 3 also leads to a
greater spread of the coupling constant distribution than ξ = 2. Therefore, the effective
number of nuclear spins can also be assumed as further reduced for ξ = 3.

7.3.14 Scaling behavior with the bath size for arbitrary ak distribu-
tions

In the previous section we showed that while the time evolution approaches the same
steady state independent of p(a), the build-up speeds of revival and Overhauser field
distribution are determined by the hyperfine coupling constant distribution. Another
factor related to the coupling constants that influenced the build-up speed is the number
of nuclear spins which acts as a rescaling factor to an individual ak. In the box model this
scaling property translates directly into the scaling behavior of the build-up. We show
that a qualitatively similar behavior is observed for an arbitrary distribution function
p(a). In this case the scaling behavior is even more desirable because the simplification
applied in the box model, which allows us to condense the dynamics of all nuclear spins
into those of a single total spin, does not hold anymore. When each spin has to be
simulated individually for ak ∼ p(a) the computation time is proportional to N · NP.
Then a reduction from e. g. N = 100 to N = 10, which still faithfully represents the
spin dynamics, leads to a significant speed-up of the numerical analysis.

The scaling of the Overhauser field distribution for pr0=1.5(a) defined in Eq. (3.2.2)
with r0 = 1.5 is depicted in Fig. 7.27. Both ξ = 2 and ξ = 3 are presented on the left
and right side, respectively. To show the scaling behavior the bath sizes of N = 100
and N = 10 were contrasted in the combinations (N,NP) = (100, 20 000), (10, 2000),
(10, 20 000). The defining constant of the scaling was νP = NP/N in the box model. For
distinct ak the result for (10, 3000) for ξ = 2 as well as for ξ = 3 match the Overhauser
field of (100, 20 000) better. All nuclear spins rotate synchronized in the box model. In
contrast to this, each nuclear spin has an individual precession speed for the general
case of ak ∼ p(a). This addition to the dynamics necessitates the introduction of the
correction function f(p(a), N) defining a new scaling variable xP = νPf(p(a), N). The
unknown function f(p(a), N) accounts for the correction to the scaling behavior of the
box model. It depends on the hyperfine coupling constant distribution as well as the
nuclear spin bath size. Since the same px(bN,x) leads to the same xP, we estimate the
ratio f(p1.5(a), 100)/f(p1.5(a), 10) = 3/2 for both ξ = 2 and ξ = 3 based on the data in
Fig. 7.27. A larger number of pulses is needed to achieve the same speed-up displayed
by the box model. This implies that f(p(a), NA) < f(p(a), NB) if NA < NB.

The scaling behavior exhibited by the box model is found in all classical simulations for
arbitrary hyperfine coupling constant distributions, albeit with an additional correction
factor. The argument presented above allows us to utilize the bath size as a simula-
tion parameter of the classical model to either reduce computation time or predict the
dynamics of longer pulse sequences.

95



7.4. Comparison with the experimental results

Figure 7.27: Scaling behavior for different hyperfine coupling constant distributions pr0(a) for
ξ = 2 and ξ = 3 according to Eq. (3.2.2) with r0 = 1.5. Panel (a) and (b) show the comparison
between the calculations with N = 100 and NP = 20 000 with those of N = 10 after NP = 2000
for ξ = 2 on the left and for ξ = 3 on the right. The combination (N,NP) = (100, 20 000)
coincides with approximately (10, 3000) for ξ = 2 and for ξ = 3 instead of the tuple (10, 2000)
recorded for the box model. The last two panels (c) and (d) show the distribution that can be
reached with (N,NP) = (10, 20 000) for ξ = 2 in (c) and for ξ = 3 in (d).

7.4 Comparison with the experimental results

In order to check whether our theoretical findings of the two classes of resonance condi-
tions are a realistic prediction, we turn our attention to experiments. The experimental
results of pump-probe experiments on semiconductor QDs presented in Fig. 7.28 have
previously been published in Ref. [89]. The time evolution of the electron spins in panel
(a) is recorded as proportional to the Faraday rotation signal after the periodic pulsing
with repetition period TR = 13.2ns has stopped at t = 0. Its Fourier transform in
panel (b) reveals the frequency dependence of the spin dynamics for the two presented
external magnetic fields | ~Bext| = 2T and 4T.

The electron spin dynamics in Fig. 7.28 (a) shows a re-occurring revival in the interval
of TR for both magnetic field strength. The fast spin precession in the time domain
is barely resolved for 2T on the time scale of multiple TR and is not resolved for 4T.
The Faraday rotation signals for the two magnetic field strengths also differ in intensity
as well as in the revival amplitude over time. For the higher magnetic field the first
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Figure 7.28: In panel (a) the Faraday rotation signal which is proportional to the electron
spin dynamics is depicted for | ~Bext| = 2T and 4T. The data is recorded after the pumping
pulse sequence with pulse repetition time TR = 13.2 ns was switched off at t = 0. Panel (b)
shows the Fourier transform of the electron spin dynamics shifted by the Larmor precession
frequency of the external magnetic field. The plots are taken from [89].

revival amplitude after the last pulse is weaker than the directly following revival burst.
The revival amplitude decays over the duration of a few TR for both field strengths.
The precession amplitudes in panel (b) show a roughly Gaussian envelope centered on
the frequency given by the external magnetic field. As a substructure broadened peaks
occur with a distance given by 2π/TR. For | ~Bext| = 2T the spacing of those peaks is
even. For | ~Bext| = 4T a second set of side peaks can be observed in between the more
prominent peaks. The distance between those additional peaks is also 2π/TR.

The even resonance conditions have been known for a long time [33, 88] and the pre-
cession frequencies peaks, defined by Eq. (7.2.16), are visible at both external magnetic
field strengths in Fig. 7.28 (b). The smaller side peaks, occurring only at | ~Bext| = 4T,
indicate the existence of additional modes. While we can claim no quantitative agree-
ment between the experimentally measured spectral positions of the additional modes
and those predicted by Eq. (7.2.17), the shape of the precession amplitude spectrum
is also noticeable in the Faraday rotation signal in time in panel (a). The weak mode-
locked amplitude for | ~Bext| = 4T at t = 13.2 ns can be traced back to the additional
modes. We have shown that superimposing modes with frequencies defined by (7.2.16)
and (7.2.17) diminishes the first revival amplitude after the pulse. This is due to the fact
that the phase difference between the modes of the two classes of resonance conditions
is an odd multiple of π at this time. The positive interference of the modes leads to
re-emerging, second revival at t = 2TR after the last pulse.

The occurrence of the additional modes seems to be linked to the external magnetic field
in the experiment. This correlation cannot be reproduced in the presented semiclas-
sical model. However, quantum mechanical approaches [62, 63] were able to verify this
interplay via an additional resonance condition for the nuclear spins which depends on
the nuclear g-factor and ~Bext. Further deviations from the experimental results are ex-
pected due to the limited number of nuclear spins and pump pulses in the semiclassical
approach. While we assume that the experiments reach the steady state, the theoretic-
ally calculated amplitude does not yet converge after 20 000 pulses. Here, we either have
to exploit the scaling behavior of the system for smaller spin baths or apply different
algorithms [58, 63, 65]. Furthermore, the current approach neglects interactions such
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as the nuclear dipole-dipole interaction [32] or the quadrupolar interaction [75, 81, 83].
Both can lead to an additional broadening of the peaks. We also have to take into
account that we restrict our investigations to a single QD while the experiments are
usually conducted on a QD ensemble. This way any ensemble effects are not taken into
account [182].

7.5 Chapter conclusion

We complemented the semiclassical approach presented in Chap. 5 by a description
of the trion decay and pump pulses which enabled us to perform a simulation of a
periodically pulsed QD. From this new set of coupled equations of motion, we derived
two resonance conditions in the FOA: ωLTR = 2πn which only depends on the repetition
rate of the pulses and the external magnetic field and ωLTR = 2 arctan(ωL/γ) + 2πn.
Beyond the dependencies of the first resonance condition, the second condition is also
subject to the trion decay rate. This result has far-reaching influence on the shape of
the non-equilibrium Overhauser field distribution function and the electron spin revival
before the next pulse. The analytical predictions are valid especially in the limit of large
magnetic fields.

In semiclassical simulations we demonstrated that the nuclei-induced frequency focusing
effect manifests itself in the build-up of the Overhauser field distribution along the
external magnetic field. From the previously unpolarized, Gaussian distribution emerge
peaks whose position corresponds to the theoretically predicted resonance conditions.
For large magnetic fields the distance between two such peaks is given by π/TR. The
electron spin revival, that occurs on the time scale of only a few pulses, can be attributed
purely to the effect the pulse has on the spin vector. Later increase of the revival
amplitude is connected to the frequency focusing due to the realignment of the nuclear
spins.

The parameters, that occur in the resonance conditions, TR and the trion decay rate γ,
were investigated. The variation of TR influences the distance between the resonance
peaks in the spectrum and thereby also the build-up speed of revival and px(bN,x).
A larger time delay between pulses leads to a faster spin revival build-up per pulse.
The trion decay rate only influences the odd resonance conditions and induces a phase
shift in the electron spin dynamics. This fact translates to a larger revival amplitude
for the electron spin but leaves the build-up speed of the Overhauser field distribution
unaffected. Compared to changes in the external magnetic field, the variation of γ has
only a small effect on the position of the odd peaks. The trion decay rate is a constant
in experiment and the inequality γ � ωL holds.

We conducted a simplistic investigation on the influence of ensemble effects on the
dynamics in a single QD, such as variation of the electron g-factor or change of the
characteristic time scale T ∗. The behavior displayed shortly before and after the pulse
reveals the self-focusing nature of the electron spin dynamics even in the face of a
non-resonant external magnetic field. That the electron spin dynamics is independent
of the characteristics of an individual QD is owed to an adjusted Overhauser field
distribution in which the peak positions are shifted to accommodate the resonance
conditions. Different coupling constants in each QD can lead to different dephasing
times given by a rescaled T ∗. Therefore, a stronger hyperfine coupling induces a faster
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dephasing after a pulse but also results in a faster nuclei-induced frequency focusing.
The electron spin revival and the Overhauser field distribution become more pronounced
earlier in the pulse sequence. Due to their self-focusing quality the superposition of
electron dynamics of different QDs still leads to congruent central spin behavior in the
ensemble. The theoretical results about the dynamics in one QD can therefore be used
to glean information about the ensemble properties.

The influence of the nuclear Zeeman interaction is parametrized by ζ which is the ratio
between nuclear and electron Zeeman energy. For parameters, that model the g-factors
found in a In(Ga)As QD faithfully, the dynamics of electron spin and nuclear spins varies
only slightly. The behavior changes fundamentally for ζ = 0 where the peaks described
by the odd resonance condition stand out and the revival amplitude decreases after an
electronic revival.

If a distribution of the hyperfine coupling constants is introduced, then we had to
relinquish the computational time won by the box model. A differential equation had
to be solved for each individual nuclear spin instead of one for the total nuclear spin.
Basic features like the increase in electron spin revival with the progress in mode locking
observed in the Overhauser field distribution remain. However, the time, in which the
system converges to the non-equilibrium steady state, depends on the distribution of
the hyperfine coupling constants. If p(a) features a broad spread, then the convergence
is faster.

A variation of the bath size can be used to approximate the build-up time of the Over-
hauser field in experiment for realistic numbers of nuclear spins and extrapolate the
steady state while reducing the computational effort. We found that in the box model
the scaling with the bath size follows the ratio νP = NP/N . Similar dependencies are
also found for more intricate distributions of coupling constants p(a), albeit, to a weaker
extend. This makes the reduction of the nuclear spin bath size less efficient.

The even resonance conditions are easily identifiable in experiment and have been repor-
ted in many experimental studies. But there are indicators that the precession modes
defined by Eq. (7.2.17) are also present in experiment: While the revival amplitude
decreases exponentially after the last pulse, the first revival after the last pulse is ad-
ditionally damped. For the external magnetic field strength, where this behavior in
the revival has been reported, the spectrum also features small side peaks next to the
frequencies given by Eq. (7.2.16). But while both peak classes are always present in the
SCA, it only occurs at select external magnetic field strength in experiment. This cor-
relation between the external magnetic field strength and the ratio of the two resonance
conditions cannot be reproduced by the SCA.
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Chapter 8

Spin dynamics in a mode-locked
system

After an extended period of laser pulses, which can last up to several minutes [33], we
assume that the steady state of the system is reached. The non-equilibrium steady
state distribution of the Overhauser field is determined by Eqs. (7.2.29) and (7.2.30).
However, since the Overhauser field distribution is not directly measurable in experi-
ments, it is difficult to validate the theoretical predictions made in the previous chapter
through comparison alone. The nuclear spin distribution becomes accessible by study-
ing the electron spin fluctuations via spin-noise spectroscopy [66, 69–71]. This technique
provides a non-perturbative way to detect fluctuations of the polarization plane of the
probe pulse by exploiting the Kerr effect, if the beam is reflected, or utilizing the Faraday
rotation, if the probe beam is transmitted through the sample.

In experiments the electron spin dynamics is often not measured in between laser pulses
but rather in between sequences of pump pulses. We investigate the electron spin dy-
namics and the time evolution of the Overhauser field distribution after the pump pulses
have stopped and the system is under the influence of nuclei-induced frequency focus-
sing. We show how the electron spin-noise spectrum grants insight into the dynamics
of the nuclear spin bath. The knowledge about the non-equilibrium steady state of the
pulsed system gained in the last chapter is used as a point of reference for the initial
condition in this investigation.

The contents of this chapter was presented in Ref. [190].

8.1 Generation of the Overhauser field distribution

The starting point for most simulations presented in this chapter is the steady state
Overhauser field distribution described in Sec. 7.2.4. Since the non-equilibrium steady
state was not yet reached in the simulations conducted in the previous chapter, the initial
conditions have to be generated. For a given classical configuration the Overhauser
field bo/e,n has to obey either the resonance condition Eqs. (7.2.16) or (7.2.17), see
also Eq. (7.2.29). For the box model the Overhauser field is set in one go as a ~Mµ =(
bo/e,n, bN,y, bN,z

)T with a the coupling constant for all nuclear spins and the total
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8.2. Spin dynamics after the pumping

nuclear spin ~M =
∑

k
~Ik. The components orthogonal to the external magnetic field

bN,y and bN,z follow the Gaussian, given in Eq. (7.2.30).

For a given distribution of the hyperfine coupling constants ak ∼ p(a), the following
algorithm is used to determine the non-equilibrium steady state Overhauser field dis-
tribution: The number of configurations with a certain Overhauser field in x-direction
bo/e,n is determined by the spectral weight given by the Gaussian envelope Eq. (7.2.30).
For the initial step a random nuclear spin vector ~I1 is drawn from the unit sphere
and assigned to a coupling constant a1 ∼ p(a). The first auxiliary Overhauser field is
~bN,1 = a1

~I1. For all subsequent steps ~Ik is again randomly generated. The spin vector
is accepted if the deviation from the desired analytical Overhauser field in x-direction
decreases and rejected otherwise. The applied condition is∣∣bN,k−1,x − bo/e,n

∣∣ > ∣∣bN,k,x − bo/e,n∣∣ (8.1.1)

with the preliminary Overhauser field up to the k-th nuclear spin ~bN,k =
∑k

j=1 aj
~Ij

and the target Overhauser field bo/e,n of one configuration in x-direction. The y- and
z-components follow a Gaussian due to the central limit theorem if the nuclear spin
bath size is large enough.

In theory the algorithm gets more precise, the more nuclear spins are incorporated.
However, the rejection rate of ~Ij also grows with an increasing number of nuclear spins
and, therefore, the computation time has to be limited by restricting the precision

|∆bN,x| =

∣∣∣∣∣
(∑

k

akIk,x

)
− bo/e,n

∣∣∣∣∣ < 10−3. (8.1.2)

The analytical result of infinitesimally sharp Overhauser field peaks cannot be reached
this way and the Overhauser field distribution as a histogram over all classical con-
figurations features a small but finite peak width. While the deviations from ideal δ
peaks can be ascribed to restrictions of the generation method, in experiments perfect
frequency focusing is also an overly optimistic assumption due to different nuclear spin
relaxation mechanisms or fluctuations in the pumping laser.

If the number of nuclear spins is large enough and the precision of |∆bN,x| is reached
before all nuclear spins are accepted, then the peak shape is given as a uniform distribu-
tion inside the boundaries ±|∆bN,x|. But while this case always occurs for N = 100, the
number of configurations that are allotted to a certain resonance peak varies over the
Overhauser field distribution. This noise to the distribution can also affect calculations
for which it serves as an initial condition.

If no perfect frequency focusing is assumed – either by not reaching the steady state
or an already partially decayed Overhauser field distribution – the peaks in px(bN,x)
are broadened. In this case the distribution is binned around the peaks and rejection
sampling is used in each bin.

8.2 Spin dynamics after the pumping

We compare the spin dynamics after NP = 20 000 with one starting from a gener-
ated non-equilibrium steady state. In the first case, we choose the data presented in
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8.2. Spin dynamics after the pumping

Sec. 7.3.13 with the hyperfine coupling constant distribution pr0(a) with r0 = 1.5 and
ξ = 3 as the initial p(~bN) at t = 0. In the second case, we generate a non-equilibrium
steady-state Overhauser field distribution as described in Sec. 8.1. Those two Over-
hauser field distributions differ in their peak width. The peaks after 20 000 pulses are
much broader than the peaks in the non-equilibrium steady state. We show that the
degree of mode locking is directly linked to the dephasing time of the electron spin. The
electron spin dynamics is presented in Sec. 8.2.1 and the change of the Overhauser field
distribution in time is investigated in 8.2.2.

8.2.1 Electron spin dynamics immediately after the pumping

Figure 8.1: Electron spin dynamics immediately after the last pulse at t = 0. The inset shows
the spin dynamics on the time scale of a few TR. Panel (a): at t = 0 the result from previous
simulations for NC = 20 000, cf. Fig. 7.26, is used. The ak distribution is pr0(a) with r = 1.5
and ξ = 3. Panel (b): at t = 0 the system is in the non-equilibrium steady state and the
Overhauser field distribution is given by Eq. (7.2.29).

In Fig. 8.1 (a) we utilize the results from the previous chapter concerning the Overhauser
field distribution and the alignment of the electron spin after NC = 20 000 pulses,
see Sec. 7.3.13. The electron spin precessions occur on a time scale of 10−2T ∗ and,
therefore, cannot be resolved in this figure. The electron spin revival in the inset occurs
periodically with the previous pump pulse period TR. On the time scale of 1000TR ≈
10 000T ∗ the long-time decay of the electron spin is shown. After approximately t/T ∗ ≈
1500 its envelope function converges to zero. The time of the decay can be linked to
the finite width of the peaks in the Overhauser field distribution px(bN,x).

To further investigate the correlation between the dephasing time of the revival and
the peak width of the Overhauser field, we turn to the assumed non-equilibrium steady
state distribution of the Overhauser field. Then the initial distribution px(bN,x), which
features two different peak shapes for the resonance classes defined by Eq. (7.2.16) and
(7.2.17), is replaced with a weighted Dirac comb (7.2.29) where both resonance classes
contribute equally. This assumption for the Overhauser field distribution in the long-
time limit of a pulsed system was substantiated by the scaling argument presented in
Sec. 7.3.8 and 7.3.14.

The initial p(~bN) for the data presented in Fig. 8.1 (b) is generated by the algorithm
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8.2. Spin dynamics after the pumping

in Sec. 8.1. The parameters of the previous chapter are retained. The magnetic field is
applied in resonance with K = 200 and the period of the prior pump pulse sequence is
TR = 13.5T ∗. The nuclear spin bath size is N = 100. The inset in Fig. 8.1 (b) shows
the electron spin dynamics on a time scale of a few TR. At every time distance of TR an
electron spin revival is observed. The revivals are a clear indicator for nuclei-induced
spin precession frequency focusing. The alternating revival strength can be attributed
to the interplay of the even and odd resonance frequencies. In the pulsed sequence,
configurations with even frequencies fully align the electron spin along the negative z-
direction. Those, which follow the odd resonance condition, lead to ~Sodd = ~ez/6 for
pumping with σ+ polarized light. The expectation value is a configuration average and
features a reduced amplitude for the first revival after the last pulse and an increase
of the revival amplitude at the second TR where the negative spin alignment of both
resonance classes boosts the spin amplitude. For every second TR this dynamics repeats.
This alternating behavior of the electron spin dynamics cannot be observed for broader
peaks like in Fig. 8.1.

Figure 8.2: Exemplary change of the peak
shape from an indicator shaped peak to a
Lorentzian peak. The red line adds a Lorent-
zian curve with width Γ extracted from the
decay in Fig. 8.1 (b).

The decay of the electron spin revival proceeds slower than before in Fig. 8.1 due to the
narrower peaks of the Overhauser field distribution. In Fig. 8.1 (b) the electron spin is
completely decayed after t/T ∗ ≈ 5000. This shows that a stronger mode locking, i.e.
sharper peaks in px(bN,x), extends the spin dephasing time in a QD. The shape of the
enveloping electron spin decay is to be examined on the basis of the peak at bN,x =
be,0 = 0. It is depicted in Fig. 8.2. Due to the generation process the shape at t/T ∗ = 0
is rectangular with its width given by the accepted precision of ±|∆bN,x| ∼ 10−3. The
“edges” of this peak are not stable and decay due to interaction with the electron spin.
The resulting shape is approximated by a Lorentzian

L(x) =
1

π

Γ/2

(x− x0)2 + (Γ/2)2
(8.2.1)

with mean x0 = bo/e,n = 0 and a width parameter Γ. A Γ ≈ 0.004 ties in with
the exponential decay 〈Sz(t)〉 ∼ exp (−t/TD) observed in Fig. 8.1 (b) over a time of
TD = 2T ∗/Γ ≈ 500T ∗. The limitations of the accuracy of the Overhauser field peak
±|∆bN,x| ∼ 10−3 translate to the decay time TD which cannot exceed 1/|∆bN,x|.

If either the shape of the decay or the shape of the Overhauser field peak is known, the
other can be derived via Fourier transformation. The exponential decay was added as
a red solid line in Fig. 8.1 (b) and matches well with the red Lorentzian in Fig. 8.2. If
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8.2. Spin dynamics after the pumping

the peak shape deviates from the Lorentzian, the envelope of the electron spin beats in
the time domain would also adjust. For example, Gaussian peaks result in a Gaussian
envelope of the electron spin decay.

8.2.2 Overhauser field distribution after pulsing

Figure 8.3: The Overhauser field distribution at t = 0 and after t = 2 000TR ≈ 104 T ∗ along
the external magnetic field in panel (a) and orthogonal to it in panel (b) and (c). The starting
point at t = 0 is the data from Sec. 7.3.13 after NP = 20 000 also used in Fig. 8.1. No further
pulses are applied. The Gaussian envelope is added in black dashed lines in panel (a).

Analogous to the previous section the change of the Overhauser field distribution is
investigated for two starting points: p(~bN) after a pulse sequence of NP = 20 000 pulses
and the assumed steady state distribution in Eq. (7.2.29). The Overhauser field dis-
tribution and its time evolution, belonging to the electron spin dynamics in Fig. 8.1
(a) after NP = 20 000 pulses, are presented in Fig. 8.3. Panel (a) contains px(bN,x)
along the external magnetic field and panel (b) and (c) its orthogonal components. The
Gaussian envelope is added in black panel (a). After the time period of an additional
tfin = 2 000TR ≈ 3 · 104 T ∗, the Overhauser field distribution is measured again in all
spatial directions. The results are plotted as dashed blue lines.

While the electron spin relaxes to zero on much shorter time scales than tfin depending
on the initial Overhauser field distribution, p(~bN) itself changes only marginally and the
peak structure is preserved over the period of a few thousand TR.

Figure 8.4: Time evolution of all spatial dir-
ections of the Overhauser field exemplary for
one configuration µ after a pulse sequence
with NP = 20 000.
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To better understand this behavior, an exemplary time dynamics of the Overhauser
field in one classical configuration bN,i,µ over multiple TR is tracked in Fig. 8.4. bN,i,µ is
recorded in each direction i = x, y, z once in every TR at t = nTR. It is noticeable that
the Overhauser field value in x-direction is subject to little change while the contribu-
tions orthogonal to the external magnetic field fluctuate significantly. The fluctuations
of bN,y,µ and bN,z,µ have no effect on the Gaussian Overhauser field distribution in y-
and z-direction.

Figure 8.5: Overhauser field distributions in the x-direction starting from the non-equilibrium
steady state of the periodically pulsed system given by Eq. (7.2.29) at t = 0.

Very similar behavior is observed in Fig. 8.5 where the initial px(bN,x) is given by
the non-equilibrium steady state distribution (7.2.29). A slight loss in peak heights
is noticeable over 104 T ∗. This decay is induced by the distribution of the hyperfine
coupling constants ak [54, 55, 127, 130] and is small due to the conservation of the
x-component of the total spin

~F = ~S +
∑
k

~Ik (8.2.2)

parallel to the external magnetic field. For N = 100 the total nuclear spin ~M =
∑

k
~Ik ∝√

N is a good approximation for ~F and, therefore,

〈Fx〉 ≈ 〈Mx〉 = const. (8.2.3)

holds. The influence of electron spin dynamics on the nuclear spins can be neglected on
the time scales of tfin. The conserved pMx(Mx) corresponding to the Overhauser field
in Fig. 8.3 and Fig. 8.5 are shown in Fig. 8.6 in panel (a) and (b). The time evolution
of the distribution of the total nuclear spin in the box model is added in panel (c).

For the nuclear spin distribution related to the Overhauser field in Fig. 8.3 after NP =
20 000, no nuclear spin polarization is visible in Fig. 8.6 (a). Instead, it shows a still
Gaussian nuclear spin distribution. The peaked structure observed in the Overhauser
field distribution can be traced back solely to the weighting of the individual nuclear
spins with coupling constants ak ∼ pr0=1.5(a). The total nuclear spin distribution in
Fig. 8.6 (b) shows broadened peaks. The collapse of these peaks to a δ-peak is due to
hyperfine coupling constant distribution. If equal coupling constants are used, those
broadened peaks transition into sharp peaks, as seen in panel (c). The Overhauser field
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Figure 8.6: Distribution of the total nuclear spin ~M in x-direction for an Overhauser field
starting at the non-equilibrium steady state of the pulsed system after NP → ∞ at t = 0 and
after 1000TR in darkness. In panel (a) the hyperfine coupling constants ak follow pr0(a) with
r0 = 1.5 and ξ = 3. The data from Fig. 8.3 after a pulse sequence with NP = 20 000 is used.
In panel (b) and (c) the distribution in Eq. (7.2.29) is the starting point. In panel (b) the ak
are distributed according to pr0=1.5(a) with r0 = 1.5 and ξ = 3. In panel (c) the box model is
used. A rescaled Gaussian with the variance of N · (|~Ik|2/3) is added. I = 1/2 and the bath
size of N = 100 are used.

distribution can directly be recovered by rescaling the Mx-axis with a =
√

3/N . All
distributions are framed by the envelope given by the Gaussian N (0, N · (|~Ik|2/3)) with
a nuclear spin length of I = 1/2 and a bath size N = 100.

It is important to note that while the Overhauser field shows little change on the time
scale of the simulation, its long-time decay is facilitated by a finite spread of ak while
the total nuclear spin polarization 〈Mx〉 is still approximately conserved.

The fact that the Overhauser field distribution remains stable for probably at least a
few milliseconds is particularly interesting with respect to experiments. After leaving
a mode-locked system several minutes in darkness, Greilich et al. reported an instant
re-emergence of the revival when the laser pulses were applied again [33]. This strongly
suggests that the information imprinted on the system by the previous laser sequence
remains intact in the distribution of the Overhauser field.

8.3 Restarting the pulses

We want to verify the fast re-emergence of the revival in the numerical simulations.
After some time in darkness, the Overhauser field distribution is still conserved and
described by the distribution given by Eq. (7.2.29). The electron spin is unpolarized.
The first π-pulse arrives at t = 0. A short pulse sequence of only a few pump pulses
shall be reapplied.

The electron spin dynamics is depicted in Fig. 8.7. Starting from Sz = 0, the instant-
aneous π-pulse leads to a half polarization at t = 0 which decays on a time scale of
T ∗. The revival – unlike for those with a Gaussian Overhauser field distribution – is
finite after the first pulse. The influence of the electronic revival build-up is evident in
the shifted, two-step increment of the amplitude after the pulse and the spin revival.
But the increase in each step is larger compared to that of the electronic revival alone
cf. Eq. (7.2.27). Therefore, the revival build-up is much faster.

Within about five pulses the maximum revival amplitude is already reached. Electron
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dynamics does not change anymore and repeats every TR. The non-equilibrium steady
state of the pulsed system is recovered again. This shows that information about pre-
vious pulsing was stored in Overhauser field and can be recovered by the electron spin
dynamics.

Figure 8.7: Electron spin dynamics in a mode-locked system. The first pulse arrives at t = 0
on an unpolarized spin.

8.4 Electron spin noise in a mode-locked system

After pulsing at t′ = 0, the Overhauser field distribution is given by Eq. (7.2.29) instead
of the Gaussian equilibrium distribution. Here, the initial electron spin alignment in
each classical configuration is correlated to the value of the Overhauser field in this
configuration. The negatively aligned spin vector belonging to the resonance condition
(7.2.16) has a greater absolute value than a ~Sµ related to (7.2.17). This leads to a finite
electron spin expectation value of 〈Sz(t′ = 0)〉 = −1/3 after the last pulse. Due to
this non-equilibrium situation, the second-order spin correlator 〈Sz(t+ t′)Sz(t

′)〉 cannot
be reduced to 〈Sz(t)Sz〉. Then, the spin-noise spectrum, which still depends on the
absolute time t′, reads

C2,t′(ω) =

ˆ ∞
−∞

e−iωt〈Sz(t+ t′)Sz(t
′)〉dt. (8.4.1)

We have proven in previous sections that the time scales of the electron spin dynamics
and the Overhauser field dynamics differ by several orders of magnitude in time. The
electron spin dephases on the time scale TD related to the finite width of Overhauser
field peaks while the time scale of the nuclear spin relaxation T1,N exceeds TD. The
inequality

TD � t′ � T1,N (8.4.2)

is assumed where T1,N can last up to tens of minutes [191, 192]. Therefore, correlations
between the Overhauser field value in x-direction and the electron spin vector can be
neglected for t′ � TD. The electron spin is approximately dephased after t = 4000T ∗

after the pump train, cf. Fig. 8.1. After t′ > 1000TR ≈ 10 000T ∗, we consider the system
in a quasi-steady state for a given t′. The correlation function 〈Sz(t+ t′)Sz(t

′)〉 and the
spin-noise spectrum C2,t′(ω) are independent of the time t′.
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8.4. Electron spin noise in a mode-locked system

The electron spin dynamics of the correlator as a function of the time t is also solved
by the coupled equations of motion used for the expectation value Eq. (5.2.27a) and
Eq. (5.2.27b). The trion decay plays no role anymore at t′ � TD and PT = 0 holds. The
initial Overhauser field distribution is given by (7.2.29) and the electron spin correlation
function is 〈Si(t′)Si(t′)〉 = 1/4 for all spatial directions i = x, y, z. All cross-correlations
vanish 〈Sy(t′)Sz(t′)〉 = 〈Sx(t′)Sz(t

′)〉 = 0.

Figure 8.8: (a) Spin-noise spectrum calculated from 〈Sz(t + t′)Sz(t
′)〉 for a starting point of

t′ = 1000TR ≈ 10 000T ∗. The initial 〈~S〉 is unpolarized. (b) The Overhauser field distribution
is taken from Fig. 8.5 at t′ ≈ 10 000T ∗.

In Fig. 8.8 the spin-noise spectrum in panel (a) is compared to the Overhauser field
distribution in panel (b). Like the non-equilibrium Overhauser field distribution, the
spin-noise spectrum C2,t′(ω) also features peaks inside a Gaussian envelope of the same
variance. Its mean value is shifted by the Larmor frequency |~bext|/T ∗. The electron
spin precession frequencies meet the resonance conditions Eqs. (7.2.16) or (7.2.17).
While px(bN,x) is normed to unity, the integral of the spin-noise spectrum over ω is
π/2 cf. (4.2.6). This explains the difference in peak heights.

Both, the slow-time evolution of Overhauser field and the near independence of the elec-
tron spin dynamics from t′, indicate a very slow nuclear spin relaxation which also makes
the assumption of a static nuclear field in spin-noise investigations viable cf. Ref. [76].
This premise is also applied in Ref. [193, 194] to discuss electron spin noise under the ef-
fect of dynamical nuclear polarization. In the FOA the Overhauser field can be directly
derived from the central spin dynamics via

C2,t′(ω) ∝ px (ω − bext,x/T
∗) . (8.4.3)

As Fig. 8.8 shows this relation also applies for a mode-locked system and information
about the nuclear spins can be accessed via the spin-noise spectrum. Small discrepancies
between the shape of the distributions in panel (a) and (b) can be attributed to neglect-
ing the nuclear spin dynamics as well as numerical noise due to a finite measurement
time.
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8.5 Phenomenological relaxation of the Overhauser field

While the Overhauser field decay is not observable on the time scales of the simulation,
in a real system several processes contribute to a slow relaxation of the Overhauser field
distribution. Since interactions like the dipole-dipole interaction between nuclear spins
on a time scale of 100µs [55, 122] or quadrupolar splittings [33, 195, 196] are not included
explicitly in the model (3.1.13), we employ a phenomenological approach introduced in
Ref. [190]. The relaxation of the nuclear spin distribution is derived analytically via a
kinetic differential equation. For reasons of simplicity we use a box model to translate
pMx into the Overhauser field distribution. The electron spin-noise spectrum is obtained
via Fourier transform from the result of the semiclassical equations of motion (5.2.27)
and satisfies Eq. (8.4.3).

A basic assumption of the phenomenological approach is that the longitudinal nuclear
spin relaxation time T1,N is much larger than the time scales associated with the electron
spin dynamics. Therefore, the Overhauser field distribution is constant for t while the
correlation function 〈Sz(t′ + t)Sz(t

′)〉 is calculated via Eq. (5.2.27). For t′ � TD the
electron spin is long decayed and assumed unpolarized at a time interval starting at t′,
cf. Fig. 8.1 (b). t′ = 0 marks the time when the pulsing ends.

The underlying mechanism for the time evolution of a nuclear spin distribution are spin-
flips. Starting from the total nuclear spin in x-direction Mx, a spin-flip either increases
or decreases Mx over the time t′. All processes with |∆Mx| > 1 are neglected here since
they do not qualitatively affect the outcome. Albeit, it is possible that the dipole-dipole
interaction leads to a ∆Mx = ±2. The rate equation for the time-dependent nuclear
spin distribution pMx(Mx; t′) is

dpMx(Mx; t′)

dt′
= W↓(Mx + 1)pMx(Mx + 1; t′)

+W↑(Mx − 1)pMx(Mx − 1; t′)

− [W↓(Mx) +W↑(Mx)] pMx(Mx; t′).

(8.5.1)

W↑T
∗ is the probability that a nuclear spin-flip increases the total nuclear spin Mx by

1 in T ∗ and W↓T ∗ is the probability for receiving a total nuclear spin of Mx − 1. The
rate W↓(Mx) is given by the W1, the rate of single spin-flips, and the number of spins
in the spin-up state (

1

N/2 +Mx

)
= N/2 +Mx. (8.5.2)

The rates for both possible spin-flips can be rewritten as

W↑(Mx) = W1(N/2−Mx), (8.5.3a)
W↓(Mx) = W1(N/2 +Mx). (8.5.3b)

This leads to the equation

dpMx(Mx; t′)

dt′
=
W1

2

{
N
[
pMx(Mx + 1; t′) + pMx(Mx − 1; t′)− 2pMx(Mx; t′)

]
+ 2

[
pMx(Mx + 1; t′) + pMx(Mx − 1; t′)

]
+ 2Mx

[
pMx(Mx + 1; t′)− pMx(Mx − 1; t′)

]}
.

(8.5.4)
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Since 1 � |Mx| � N holds for realistic systems the discrete Mx is replaced by a
continuous variable. The change of Mx by a small step of 1 leads to first and second
derivations of pMx(Mx) defined by difference quotients:

lim
1�|Mx|

[
pMx(Mx + 1; t′) + pMx(Mx − 1; t′)− 2pMx(Mx; t′)

]
=
∂2pMx(Mx; t′)

∂M2
x

(8.5.5a)

lim
1�|Mx|

[
pMx(Mx + 1; t′) + pMx(Mx − 1; t′)

]
= 2pMx(Mx; t′) (8.5.5b)

lim
1�|Mx|

[
pMx(Mx + 1; t′)− pMx(Mx − 1; t′)

]
= 2

∂pMx(Mx; t′)

∂Mx
. (8.5.5c)

The rate equation (8.5.1) transitions into the differential equation

∂pMx(Mx; t′)

∂t′
=

1

T1,N

∂

∂Mx

[
MxpMx(Mx; t′) +

M2

3

∂

∂Mx
pMx(Mx; t′)

]
(8.5.6)

with the square of the total spin of the nuclei M2 = |~I2
k |N . The longitudinal relaxa-

tion time T1,N = 1/(2W1) governs the relaxation of the mean nuclear spin Mx(t′) =´
MxpMx(Mx; t′)dMx which follows an exponential decay

∂Mx

∂t′
= −Mx(t′)

T1N
. (8.5.7)

As a side condition the nuclear spin distribution is also normalized
ˆ
pMx(Mx)dMx = 1 (8.5.8)

at any time. The non-equilibrium steady state solution of Eq. (8.5.6) converges to the
Gaussian distribution function of an unpolarized nuclear spin bath

pMx(Mx) =
1

2

√
6

πM2
exp

(
−3M2

x

2M2

)
(8.5.9)

for long times. Its variance is independent of t′

ˆ
pMx(Mx)M2

xdMx = M2/3. (8.5.10)

The non-changing Gaussian envelope is added as a dashed line in Fig. 8.6 panel (c)
which contains the nuclear spin distribution for t′ = 0 for the box model.

We want to investigate the time dependency of the Overhauser field distribution analyt-
ically depending on t′/T1,N as well as the corresponding electron spin noise. In the box
model the time evolution of the Overhauser field is directly derived from the time evol-
ution of the nuclear spin distribution by multiplying a constant prefactor a. The Over-
hauser field distribution immediately after a long pulse train is given by Eq. (7.2.29).
At t′ = 0 the peaks are broadened and approximated by a Gaussian distribution with
the variance σ2

P = 10−4

δ(x)→ 1√
2πσ2

P

exp

(
− x2

2σ2
P

)
. (8.5.11)
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Figure 8.9: The Overhauser field distribution along the external magnetic field for different
times t′/T1,N depending on the nuclear spin relaxation time T1,N in the left panels. The px(bN,x)
are a result of the phenomenological equation (8.5.6). On the right side the corresponding
electron spin-noise spectra shifted by the frequency of the external magnetic field are sbown.

The positions of the peaks are chosen to be multiples of π/TR in agreement with the
large magnetic field limit of Eq. (7.2.17).

The ansatz to solve the differential equation (8.5.6) analytically consists of applying
a Fourier transformation to both the time t′ and the nuclear spin variable Mx. This
reduces Eq. (8.5.6) to a differential equation of first order which can be solved by
using separation of variables. The solution is dependent on the ratio t′/T1,N. The
relaxation of the Overhauser field distribution is calculated for t′/T1,N = 10−4, 10−3,
10−2 and 10−1. px(bN,x) is shown on the left side in Fig. 8.9. On the right-hand side
the corresponding spin-noise spectrum is presented. For each time t′/T1,N a set of
classical configurations following the Overhauser field distribution is generated. Then
the electron spin dynamics in the time domain 〈Sz(t′+ t)Sz(t

′)〉 is determined using the
full numerical simulations of (5.2.27). The Fourier transformation over the duration of
multiple TR is C2,t′(ω).

The nuclear spin distribution and the derived Overhauser field distribution in the box
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model show a relaxation to the Gaussian distribution of an unpolarized bath in Fig. 8.9
(d). The almost sharp peaked structure at t′/T1,N = 0.0001 in panel (a) broadens at
first to still distinct peaks at t′/T1,N = 0.001 in panel (b) and then to overlapping peaks
in Fig. 8.9 (c).

The electron spin-noise spectrum on the right-hand side of Fig. 8.9 is shifted by the
Larmor precession frequency given by |~bext|. The shifted C2,t′(ω) follow their Overhauser
field distributions counterpart apart from normalization. It shows clearly that C2(ω)
reveals the nuclear spin dynamics and can be used to determine the time constant of
the nuclear spin relaxation T1,N through comparison with experimental data.

8.6 Chapter conclusion

This chapter is dedicated to the spin dynamics in a QD that is subjected to an extended
pump pulse protocol. Since only the electron dynamics is experimentally accessible,
attention was especially directed at the electron spin-noise spectrum. We demonstrated
that electron spin noise provides a tool to derive the Overhauser field distribution under
the conditions of the nuclei-induced frequency focusing effect.

The non-equilibrium steady state discussed in Chap. 7 served as a starting point for
the simulation. Two hyperfine coupling constant distributions were used in the numer-
ical simulations, equal coupling constants and ak ∼ pr0(a) with ξ = 3 and r0 = 1.5.
Independent of p(a), the Overhauser field distribution is given by a set of δ-peaks at
the resonance conditions weighted by a Gaussian while the distribution of the total
nuclear spin features broadened peaks for a spread in ak. We showed that the electron
spin dephasing is directly linked to the shape and width of the peaks in the Over-
hauser field distribution px(bN,x). The total nuclear spin distribution is stable due to
angular momentum component conservation in the electron-nuclear spin system. The
hyperfine coupling constant distribution facilitates a slow decay of the Overhauser field
distribution. The relaxation to the equilibrium Gaussian cannot be reproduced in this
simulation due to the long-time scale. The theoretical result of a very long relaxa-
tion time goes well with experimental observations that the system quickly retains its
frequency focused electron spin dynamics even after several minutes in darkness.

In experiments the pump pulse sequence is interrupted at different times and the spin
noise is measured. The electron spin noise follows the Overhauser field distribution
closely. This protocol can also be used to gauge the progress of the focusing process
since the electron spin signal decays on a time scale that is given by the width of the
δ-peaks.

Since a numerical simulation of the Overhauser field distribution decaying to the equi-
librium Gaussian in the long-time limit is not feasible in the current approach, we
resorted to a kinetic equation. The derivation of the phenomenological Overhauser field
decay includes all spin-flips of ∆M = ±1 independent of origin. The slow nuclear spin
relaxation which is the result of this differential equation can also be recovered in the
electron spin fluctuations. The relaxation process is governed by the nuclear spin re-
laxation time T1,N which can be acquired through comparison with experiments. Since
a large magnetic field suppresses spin-flips, the time scale T1,N, which is inverse to the
rate of flipping single spins, is increased under those conditions. Possible contributing
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interactions to the long-time relaxation of the Overhauser field distribution next to the
hyperfine interaction are the quadrupolar interaction or the dipole-dipole interaction.
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Chapter 9

Conclusion

The spin dynamics in a singly charged semiconductor QD occupies center stage in this
thesis. Hereby, special focus lies on the understanding of pump-probe experiments. We
devised a semiclassical description of the periodically pulsed QD which also includes the
trion decay. The electron spin decoherence can partially be suppressed due to the re-
alignment of the nuclear spins in the direction of the external magnetic field. We derived
two mode-locking resonance conditions. It is possible to extract the non-equilibrium
steady-state Overhauser field distribution from the electron spin-noise spectrum under
the conditions of the nuclei-induced frequency focusing effect. Indicators for additional
precession modes defined by the second, trion decay-dependent resonance condition
have been found in recent experiments [63, 89].
We showed that higher-order spin-noise spectroscopy can provide an alternative to
pump-probe measurements when investigating the spin dynamics in a singly charged
semiconductor QD. This is made possible because they make higher-order correlation
functions accessible. The fourth-order spin-noise correlation function reveals the in-
fluence of the nuclear-electric quadrupolar interaction in a QD even in the presence
of a large magnetic field. Therefore, it provides additional information compared to
second-order noise and second-order correlation functions.

To pave the way for the numerical simulations, we first presented the central spin
model [37] to account for the hyperfine interaction between the electron spin and the
nuclear spins as well as the nuclear and electron Zeeman interaction. The model was
extended upon to include the nuclear-electric quadrupolar interaction. We discussed
different choices of the distribution function [49] based on the shape of the QD. The
definition of the correlation functions is another prerequisite for the simulations. We
defined the second- and fourth-order correlation functions and the corresponding spin
noise.

A semiclassical approach was chosen as the method for all simulations. While the Hilbert
space dimension grows exponentially with the nuclear spin bath size, the computational
effort in a SCA increases linearly with N at most. Therefore, the SCA combines the
advantages of large nuclear spin baths sizes with access to long time scales. We derived
a set of classical Euler-Lagrange differential equations of motion via the path integral
formalism and saddle-point approximation [54]. A configuration average over all clas-
sical configurations replaces the quantum mechanical trace. Benchmark results of the
second-order correlation function against quantum mechanical approaches showed that
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the SCA is an appropriate tool to tackle the spin dynamics in a QD. We also used the
second-order correlation function to connect the quadrupolar interaction strength used
in the SCA to the parameters of the quantum mechanical calculation.

The cumulant S4(ω1, ω2) consists of two components: the fourth-order correlation func-
tion C4(ω1, ω2) and the squared second-order spin noise C2(ω1)C2(ω2). C4(ω1, ω2) only
contributes to the diagonal ω1 = ω2 in the CSM without quadrupolar interaction.
It adds positively to the bispectrum. The anti-correlations are a result of the two-
dimensional Gaussian of C2(ω1)C2(ω2). If only hyperfine interaction and Zeeman inter-
action contribute, then the quantum mechanical and the classical bispectrum agree well
for either the limit of large nuclear spin bath sizes N or large spin lengths I. In both
cases the discrete eigenvalue spectrum approaches a continuous distribution. Including
the quadrupolar interaction leads to a broadening of the C4-spectrum orthogonal to
ω1 = ω2. The width of this broadening is proportional to the quadrupolar coupling
strength Qr. The antidiagonal cut (ω1 + ω2 = const.) through the bispectrum reveals
the transition from a Gaussian to a shape, which decreases exponentially on both sides
of the diagonal. We found that the shape of the bispectrum is linked to the ratio of the
effective field of the nuclear Zeeman interaction to that of the quadrupolar interaction
on an individual nuclear spin. Due to the smaller nuclear spin bath in the quantum
mechanical approach, the quantitative agreement derived for C2(t) does not translate
to the bispectrum with Qr 6= 0. The qualitative agreement between the SCA and
the quantum mechanical approach, however, holds. In experiment, the shape of the
bispectrum can be used to extract the average quadrupolar interaction strength of a
sample.

We introduced a semiclassical description of the spin dynamics in a QD under a periodic
laser pulse train. The equations of motion were extended to include the trion decay.
Under the assumption of a frozen Overhauser field, two classes of resonance conditions
for the non-equilibrium steady state were derived: ωLTR = 2πn and ωLTR = 2πn +
2arctan(ωL/γ). The first condition corresponds to an integer number of precessions
in the pulse repetition time. The second resonance condition results in an additional
phase shift depending on the trion decay rate and the external magnetic field. Assuming
the limit of large external magnetic fields, we analytically linked the Overhauser field
distribution to the electron spin revival amplitude in a simple toy model. Employing
a full semiclassical simulation, we demonstrated that the electron spin revival observed
in experiments is associated with mode-locking effects. The revival of the electron spin
on the time scale of only a small number of pulses (NP < 10) can be solely attributed
to the synchronizing effect of the laser pulses on the electron spin dynamics. Nuclei-
induced frequency focusing, which occurs on a much longer time scale, increases the
electron spin revival further and leads to the build-up of a non-equilibrium Overhauser
field distribution. While the envelope of this distribution remains Gaussian, two classes
of peaks emerge from the initial distribution. The peak positions in our simulations
correspond to the two classes of the derived resonance conditions.

We showed that the electron spin-noise spectrum provides a way to access the underlying
Overhauser field distribution under the condition of nuclei-induced frequency focusing.
Starting from the non-equilibrium Overhauser field distribution of a periodically pulsed
QD, the decay of the electron spin revival after the end of pulsing was investigated.
We linked the time and envelope of the decay to the shape and width of the peaks
in the Overhauser field distribution. The Overhauser field distribution is stable even
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after the electron spin is long decayed due to the conservation of angular moment
components. The Overhauser field distribution can be accessed via the electron spin-
noise spectrum. The long relaxation time of the nuclear spins T1,N can be exploited to
recover the information about the electron spin dynamics imprinted on the Overhauser
field distribution even after minutes in darkness. However, the duration of T1,N prevents
the investigation of the long-time limit of the Overhauser field relaxation within our
theoretical approach. Since the numerical simulation is too computationally expensive,
we resorted to a kinetic equation which phenomenologically includes all mechanisms
that lead to a single spin-flip. The Overhauser field relaxes from the peaked distribution
function to the Gaussian of an unpolarized nuclear spin bath. The relaxation process
is also traced in the electron spin noise. Its time scale T1,N can be determined e. g.
through comparison with a spin-noise spectroscopy measurement.

We gained interesting new insights about the spin dynamics in a singly charged semi-
conductor QD. Those results pave the way for further investigations. The first step to
expand upon the current model is through a more detailed description of the quadru-
polar interaction. This mainly concerns the choice of a non-zero asymmetry parameter
ηQ and of a more realistic distribution of the qk based on the strain tensor [197]. A
more detailed modeling of the strain in a QD can be desirable, especially if long-time
effects like the mode-locking effects in pump-probe experiments are investigated. The
next step could be the inclusion of the dipole-dipole interaction. Both induce an ad-
ditional spin dephasing and we assume that taking them into account leads to a more
realistic representation of the spin dynamics in a periodically pulsed system. Another
area in which the SCA has already proven its usefulness is the simulation of the inter-
action between the QDs. While a good phenomenological description has been found
in Ref. [182], the microscopic origin of this interaction is still unknown.
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