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Dear Editor, 

Organophosphate insecticides (OPI), derived from phosphoric, phosphonic or phosphinic 
acids, find application as agents for controlling insect pest populations. OPIs elicit their char-
acteristic toxicity by phosphorylating and inhibiting the enzyme, acetylcholinesterase 
(AChE). Cholinergic stress resulting from overstimulation of nicotinic- and muscarinic ace-
tylcholine receptors is the chief mechanism of acute toxicity of OPI (Fukuto, 1990; Sogorb 
and Vilanova, 2002; Abou-Donia, 2003; Costa, 2006). The ubiquitous nature of AChE and its 
conserved physiological role in the regulation of neurotransmission means that non-target an-
imals (including humans) are at risk of adverse outcomes in the event of exposure to OPI. 
Neurotoxicity, characterized by cholinergic and non-cholinergic outcomes, is the most studied 
aspect of OPI toxicity. However, it is now unequivocally recognized that the toxicity of OPIs 
goes beyond the realm of neurotoxicity. 

A large number of animal studies explicitly demonstrate that OPIs have the propensity to 
cause hyperglycemia, perturbations in carbohydrate metabolism and endocrine dysregula-
tions. Repeated exposure to OPI precipitates insulin resistance (studies listed in Table 1), a 
key component of metabolic syndrome. Extrapolating the outcomes of animal experimenta-
tion to the human situation is a challenging task. Experimental studies often employ doses 
much higher than doses of environmental relevance. However, several studies clearly (listed 
in Table 2) establish that OPI exposure elicits metabolic dyshomeostasis in human subjects. A 
recent study demonstrates that the incidence of diabetes among Thai farmers positively corre-
lates with OPIs such as chlorpyrifos, dicrotophos, dichlorvos, ethyl-p-nitrophenyl, mevin-
phos, monocrotophos and methamidophos (Juntarawijit and Juntarawijit, 2018). Thus, it is ev-
ident that OPI exposure is a clear risk factor for metabolic dysregulations among those who 
are occupationally exposed. One has to take cognizance of the fact that levels of exposure to 
OPI among occupationally exposed people are likely to be higher than the general population. 
However, a recent study reveals that glycated hemoglobin levels correlate with plasma levels 
of OPI (due to environmental exposure), but not with AChE activity (Velmurugan et al., 
2017). This indicates that low-level OPI exposure may cause metabolic dysregulations. 
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Hence, we believe that further studies are needed to evaluate the effects of low-level, chronic 
non-occupational exposure to OPI on metabolic health. 
 
 
Table 1: Experimental studies reporting metabolic dysregulations caused by organophosphate insec-
ticides in rodent models 

Key findings 
Reference  

Long term exposure to chlorpyrifos reduces insulin sensitivity and causes 
fat gain in rats. Chlorpyrifos-treated rats also suffered from disruption of the 
gut barrier, alteration in gut microflora profile and low-grade inflammation. 

Liang et al., 2019 

Diazinon treatment was associated with an increase in blood glucose, insu-
lin and vaspin levels, and glucose intolerance in rats. Increased expression 
of PTEN and FOXO1 was observed in the livers diazinon treated rats. 

Salek-Maghsoudi et 
al., 2019 

Repeated administration of diazinon for 4 weeks caused increase in blood 
glucose, creatinine, urea, percentage of lymphocytes, dyslipidemia, in-
creased circulating aspartate aminotransferase, alanine aminotransferase, 
alkaline phosphatase and lactate dehydrogenase activities in the adult and 
aged rats compared to respective controls. 

Yousefizadeh et al., 
2019 

Methyl-parathion administration to rats causes elevated plasma glucose and 
creatinine levels along with diminished urinary flow rate and increased uri-
nary excretion of glucose, phosphate, and albumin. 

Fuentes-Delgado et 
al., 2018 

Chronic exposure to monocrotophos causes hyperglycemia and glucose in-
tolerance in mice. Intestinal metatranscriptomic and host metabolomic anal-
yses revealed that short-chain fatty acids such as acetate produced by mi-
crobial degradation of organophosphates may induce gluconeogenesis. 

Velmurugan et al., 
2017 

Exposure to acephate during pregnancy and lactation causes glucose intol-
erance in the offspring in rats. 

Ribeiro et al., 2016 

Augmentation of pancreatic beta cell functions precipitate as a way to coun-
ter glucose intolerance in rats subjected to chronic exposure to monocroto-
phos. 

Nagaraju and Rajini, 
2016 

Repeated exposure to malathion caused increase in plasma glucose, insulin 
and glycated hemoglobin levels along with dyslipidemia in rats. 

Lasram et al., 2015 

Chronic exposure to monocrotophos causes elevated fasting glucose, hy-
perinsulinemia, hypercorticosteronemia, glucose intolerance, insulin re-
sistance and increase in circulating triglyceride levels in rats. Further, tyro-
sine aminotransferase, glucose-6-phosphatase and glycogen phosphory-
lase were elevated in livers of treated rats along with loss of glycogen. 

Nagaraju et al., 2015 

Repeated exposure (8 weeks) to chlorpyrifos and profenofos causes hyper-
glycemia in rats. 

Hamza et al., 2014 

Repeated exposure to monocrotophos causes increase in blood glucose, 
dyslipidemia and cardiac toxicity in rats. 

Velmurugan et al., 
2013 

Repeated exposure to malathion causes fasting hyperglycemia along with 
increase in phosphoenolpyruvate carboxykinase, glucose 6-phosphatase 
activity and tumor necrosis factor α levels in the liver. 

Mostafalou et al., 
2012 

Hyperglycemia in rats subjected to a single dose of monocrotophos is at-
tributable to adrenergic mechanisms, while hypercorticosteronemia is re-
sponsible for upregulation of liver tyrosine aminotransferase activity. 

Joshi et al., 2012 

Cholinergic antagonism prevents the hyperglycemic potential of a single 
dose of monocrotophos. 

Joshi and Rajini, 
2012 

Acute exposure to chlorpyrifos causes hyperglycemia, hypercorticosteron-
emia and dyslipidemia in rats. 

Acker and Nogueira, 
2012 

Acute exposure to malathion causes hyperglycemia and hepatic glycogen 
depletion in rats. 

Lasram et al., 2008 

Repeated exposure to dimethoate causes alteration in glucose homeostasis 
and oxidative impairments in the pancreas in rats. 

Kamath et al., 2008  
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Key findings 
Reference  

A single dose of acephate causes reversible hyperglycemia in rats, with 
concomitant hypercorticosteronemia and increased activity of hepatic glu-
coneogenesis enzymes (tyrosine aminotransferase and glucose-6-
phosphatase). 

Joshi and Rajini, 
2009 

Sub-chronic exposure to malathion leads to hyperglycemia and up-
regulation of hepatic glycogen phosphorylase and phosphoenolpyruvate 
carboxykinase activity in rats. 

Abdollahi et al., 2004 

 

 

Table 2: Studies that demonstrate the link between exposure to organophosphate insecticides and 
metabolic dysregulations in human subjects 

Key findings Reference  

A prospective study of cases involving pesticide self-poisoning conducted in 
parallel in Sri Lanka and Bangladesh showed that OPI poisoning is associ-
ated with acute dysregulations in glucose homeostasis that are related to 
changes in insulin action and secretion. 

Gifford et al., 2019 

A survey performed in villages of Vadapalanji Panchayat (a southern part of 
India) revealed that OPI constituted nearly 50 % of used pesticides. A sur-
vey of over 3000 participants revealed a prevalence of diabetes (18 %). 
Plasma organophosphate residues correlated positively with HbA1c. HBA1c 
values did not correlate with plasma cholinesterase levels. 

Velmurugan et al., 
2017 

A retrospective observational study of 184 non-diabetic patients with organ-
ophosphate poisoning suggests that hyperglycemia at presentation is asso-
ciated with in-hospital mortality rates. 

Moon et al., 2016 

A study of 50 individuals admitted to Osmania hospital in Hyderabad (India) 
with OPI poisoning revealed that 38 % of patients had hyperglycemia. Hy-
perglycemia at admission correlated with suppression of pseudocholinester-
ase activity. Random blood sugar levels of > 200 mg/dl at admission and 
pseudocholinesterase levels below 1000 U/L are reported as reliable pa-
rameters to predict mortality and ventilator requirement in OPI poisoning. 

Rao and Raju, 2016 

A study of 71 cases of OPI poisoning revealed that blood glucose levels in 
subjects were higher (144.7 ± 85.3 mg/dL) than the normal range (70–
110 mg/dl). More importantly, a subpopulation of patients exhibiting inter-
mediate syndrome (n=11) exhibited much higher blood glucose levels 
(186.63 ± 57.31 v/s138.55 ± 71.34 mg/dL) and severe suppression of serum 
cholinesterase activity (465.11 ± 302.63 v/s 2651.72 ± 1266.68 U/L; normal 
range – 3,600–12,900 U/L) than the patients without intermediate syndrome 
(n=56). 

Çolak et al., 2014 

Transient glycosuria with or without hyperglycemia was reported in a signifi-
cant number of patients admitted due to OPI poisoning 

Sudhir et al., 2013 

A comparative cross-sectional study involving a non-diabetic farmer cohort 
(n=98) and age-matched control group (n=90) revealed that blood malathion 
(0.0746 ± 0.01404 v/s 0.0031 ± 0.0006 mg/L), fasting blood glucose 
(109.1 ± 20.6 v/s 89.8 ± 10.2 mg/dL) and insulin (12.3 ± 4.6 v/s 
5.2 ± 1.6 µU/mL) levels were markedly higher in farmer group as compared 
to the control group. A positive correlation was observed between malathion 
blood concentration, waist circumference and insulin resistance. 

Raafat et al., 2012 

91 cases of OPI poisoning were classified into grade 0, 1, 2, and 3. Blood 
glucose was elevated and serum cholinesterase activity was suppressed in 
grade 1, 2 and 3 patients. The severity of hyperglycemia was related to cho-
linesterase suppression. 

Amanvermez et al., 
2010 

A study, involving more than 33000 pesticide applicators, designed to inves-
tigate the relationship between lifetime exposure to specific agricultural pes-
ticides and diabetes incidence among the applicators, revealed that 

Montgomery et al., 
2008 
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Key findings Reference  

chlorpyrifos, coumaphos, diazinon, dichlorvos, phorate, terbufos, and tri-
chlorfon were associated with increased odds of diabetes, with chlorpyrifos, 
diazinon, and trichlorfon being dose-dependent. 
Hyperglycemia was observed in 982 out of 2708 OPI poisoning cases stud-
ied in Pakistan between 2001 and 2007. 

Ather et al., 2008 

A retrospective study of 220 patients hospitalized in Turkey between the 
years 1995 and 2004 revealed elevated blood glucose levels in patients 
(145 ±68 mg/dL) compared to the normal range (70-110 mg/dL). 

Yurumez et al., 2007 

Elevated levels of glucose, amylase and immunoreactive trypsin levels were 
observed in children exhibiting acute pancreatitis due to OPI and carbamate 
poisoning. 

Weizman and Sofer, 
1992 

A case report of 2 fatal OPI poisoning revealed that subjects were associat-
ed with severe hyperglycemia, metabolic acidaemia and moderate hyper-
kalemia. 

Hui, 1983 

A 32 year old male patient with OPI poisoning developed hyperglycemia, 
glycosuria and ketonuria soon after hospitalization. Intervention with insulin 
was required to treat hyperglycemia. 

Moore and James, 
1981 
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