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Abstract

Imaging atmospheric Cherenkov telescopes (IACT) observe the sky in the highest energy
ranges. From the remnants of cataclysmic supernovae to jets powered by supermassive black-
holes in the center of distant galaxies, IACTs can capture the light emerging from the most

extreme sources in the universe.

With the recent advent of multi-messenger astronomy it has become critical for IACTs to
publicly share their data and software. For the first time since the inception of IACT tech-
nology, in a combined effort of the H.E.S.S., MAGIC, VERITAS, and FACT collaborations,
observations of the Crab Nebula were made available to the general public in a common data
format. The first part of my thesis demonstrates the viability of the common data format by
performing a spectral analysis of the Crab Nebula on the published datasets. The text gives de-
tailed descriptions and mathematical formalizations of instrument response functions (IRFs)
and the statistical modeling used for typical spectral analyses. This is essential to understand
the measurement process of IACTs. The ultimate goal of this part of the thesis will be to
use Hamilton Markov Monte Carlo methods to test spectral models and unfold flux-point

estimates for the Crab Nebula.

The common data format paves the road for the operation of the upcoming Cherenkov Tele-
scope Array (CTA). Once CTA has been constructed, it will be the largest and most sophis-
ticated experiment in the field of ground-based gamma-ray astronomy. It will be operated
as an open observatory allowing anyone to access the recorded data. The second part of my
thesis concentrates on reproducible analysis for the Cherenkov Telescope Array (CTA). Once
operational, CTA will produce a substantial amount of data creating new challenges for data
storage and analysis technologies. In this part of the thesis I use simulated CTA data to build
a comprehensive analysis chain based on fully open-source methods. The goal is to create a
pipeline that rivals the physics performance of CTA’s closed-source reference implementation.
Every step of the analysis, from raw-data processing to the calculation of sensitivity curves,

will be optimized with respect to complexity, reproducibility and run-time.
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Part I

Open Cherenkov Astronomy






1 Introduction

The discovery of cosmic rays during the daring balloon flights of Victor Franz Hess in
1912 [80] opened up an entirely new window into the universe. This elusive radiation, which
so relentlessly bombards us from outer space, carries a wealth of information about the most
violent processes in the cosmos. Probing the gamma-ray sky is crucial to understanding the
processes which drive the cosmic-ray acceleration. While charged cosmic rays are deflected
by magnetic fields, gamma rays pinpoint back to the source and allow us to image these
objects. Only the combination of data from multiple facilities can help to unravel the inner
workings of cosmic-ray sources. The success of these joint campaigns has become appar-
ent recently through the first observational evidence of neutrino emission from the blazar
TXS 05064056 [2]. This collective effort used data from the IceCube neutrino observatory
in Antarctica as well as data from the gamma-ray experiments Fermi and MAGIC. From its
very beginning, the Fermi collaboration made all of its recorded data and software available
to the general public. With the recent advent of multi-messenger astronomy it has become
critical for imaging atmospheric Cherenkov telescopes (IACT) to openly share their data as
well. This first part of my thesis deals mainly with the computation of energy spectra and flux
point estimates in an open and reproducible manner and tries to motivate the need for public
IACT data. The text aims to convey all the essential information that is needed in order to

understand the measurement process of IACTs.

The galactic cosmic ray population is seeded by remnants of cataclysmic supernova events.
The Crab Nebula is the prototypical object of this kind. It is a steady source of bright TeV
gamma-ray emission in the northern sky and is continuously observed by radio, X-ray, and
gamma-ray observatories. It was the first gamma-ray source detected by an imaging atmo-
spheric Cherenkov telescope (IACT) in 1989 [143]. In chapter 2 I describe the typical emission
processes prevalent in supernova remnants (SNR) and describe how log-parabolic energy
spectra emerge in many sources of cosmic rays. Chapter 3 gives an overview of experimental
techniques used to observe gamma rays. In chapter 4 I show that the spectral energy distribu-
tion of the Crab Nebula, in an energy range from a few keV to tens of TeV, can be described
with a single electron population of log-parabolic shape. In that chapter I model the syn-

chrotron, inverse Compton, and Synchrotron Self-Compton emission using the naima [148]



1 Introduction

program and fitted the model to data from six different experiments using Markov chain sam-
pling. This emphasizes the importance of open data in the Cherenkov astronomy community.
Without open access to flux data from multiple wavelengths, no model assumptions can be

validated.

Chapter 5 goes through all the harrowing details needed in order to understand the measure-
ment process of IACTS, a critical part of which is the computation of the instrument response
functions. In section 5.2 these response functions are formalized in an instrument-agnostic
way, the ultimate goal of which is the construction of a common data format that can be used
by any IACT instrument. Traditionally, all IACT collaborations use their own proprietary
software and data formats to produce high-level results like flux points. In a mutual endeavor
between the MAGIC, H.E.S.S., VERITAS, and FACT collaborations to change the current
state of affairs, a small data sample of Crab Nebula observations was made public in this com-
mon data format. Using this data we published the first joint and fully open-source analysis
of combined IACT data [122]. In section 5.6 I use the published event lists and instrument
response functions to fit a log-parabolic spectral model to the IACT data using Hamilton
Markov chain sampling. Section 5.7 shows how that same data can be used to unfold the flux

points for each individual instrument.



2 Acceleration of Cosmic Rays and

Gamma Rays

Earth’s atmosphere is constantly being bombarded by very-high-energy particles of cosmic
origin. Among these are photons, neutrinos, electrons, protons and heavier nuclei. The as-
troparticle community usually refers to the hadronic particles as cosmic rays, while neutrinos
and high-energy photons are viewed as separate entities. The discovery of cosmic rays and
their byproducts in the atmosphere is attributed to the balloon experiments performed by
Victor Hess in the year 1912 [38, 80]. The term cosmic rays was coined by robert A. Millikan
19 years later [115] after performing his own observations of ionizing radiation at several
different altitudes. Cosmic rays cover a vast range of energy spanning 15 orders of magnitude
from a few keV to several EeV. One major goal in the field of cosmic-ray astronomy is to learn
more about the origin of these cosmic messengers. The key mechanism that drives cosmic
rays is believed to be shock acceleration. Satellites have gathered direct evidence of particle
acceleration in the keV to MeV range in interplanetary shocks in our solar system. Even
in our direct neighborhood, Earth’s bow shock with the surrounding medium, particles are
accelerated to higher energies [69]. Interactions in the hot and dense plasma ejected by solar
flares accelerate particles up to GeV energies [67, page 236]. Beyond GeV energies, however,
the engines for cosmic particle acceleration lie outside of our solar system. The population
of galactic cosmic rays is most likely driven by shock acceleration in supernovae remnants
within the Milky Way. At even higher energies, beyond EeV, galactic sources cannot account
for the observed fluxes. Protons at these energies are not confined by the magnetic fields
in our galaxy and can escape into the intergalactic regions. The confinement of a particle is
governed by its radius of gyration. A particle with rest mass m, and Lorentz factor y has

kinetic energy Fi;,
2

Given the cosmic ray energy of 1 EeV and rearranging for +y yields

B .
y= M0 4111 %10,
mgpcC



2 Acceleration of Cosmic Rays and Gamma Rays

The gyradius radius r of a charged particle with charge ¢ which is moving at velocity v

perpendicular to a magnetic field of strength B is
P ymu

r = —

¢qB  ¢B

Assuming a mean magnetic field of B = 5 x 10 '° T within the Milky Way [78], results in
a gyration radius of approximately » = 5 x 10'® m = 5281ly. At these energies particles can
escape the local arm of the galaxy. Hence, particles with higher energies most likely originate
in extragalactic sources. Jets of active galactic nuclei (AGN) are widely accepted to be the
source of these particles. Figure 2.1 shows the differential energy spectrum of cosmic rays.
By multiplying the flux with E*" the steep power law becomes flat. The first bend in the
spectrum around 1 x 10° TeV is often called the knee. The second bend is called the ankle
near 3 x 10° TeV and its often associated with the appearance of extra-galactic particles. The
shape of the spectrum between the knee and the ankle is still matter of some debate. The
steep cutoff visible near 5 x 10" TeV is assumed to be due to the Greisen-Zatsepin-Kuzmin
(GZK) cutoff [67, page 209]. The origin and composition of cosmic rays beyond the cutoff is
still unclear. Shock acceleration can be modeled by a process called Fermi acceleration and
a plasma dynamic approach. Both approaches predict power-law like flux. They are briefly

described in section 2.1.

The production and acceleration of cosmic rays is strongly intertwined with the production
of gamma rays and neutrinos. Differential energy spectra, or flux curves, show the energy
resolved light emission of an astrophysical source. In the gamma-ray community they are
usually given in units of cm > s™' TeV ™. The flux is often scaled by the square of the photon
energy E for better visual representation leading to units of cm™s ™' TeV. This scaled quan-
tity is often called a spectral energy distribution (SED) [67, page 3]. Both v/ f,, and E? 3—% are
common shorthands for these SEDs. I will use the latter designation in this text. SEDs are
of major interest to many astronomers, as their shape can be used to validate or invalidate
models of acceleration mechanisms in these sources. SEDs often span more than 15 orders
of magnitude in photon energy and combine a multitude of instrument technologies and
disciplines. The gamma rays in the very-high-energy range of the SEDs, above 100 GeV, are
produced by either synchrotron radiation or inverse Compton (IC) scattering on photon
fields. Sections 2.2 and 2.3 give a little more detail about the shape of synchrotron and IC
spectra for supernova remnants. Bright sources are extensively monitored by radio, infrared,
optical, X-ray and gamma-ray telescopes. The most prominent source of gamma radiation
within our galaxy is the Crab Nebula. It is a supernova remnant which exploded in 1054. The

event was recorded by Chinese astronomers which reported a “Guest Star” which had been
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Figure 2.1: All particle cosmic-ray spectrum measured by the Auger, IceTop, Tibet, Kascade, and
HiRes experiments. The energies span 10 orders of magnitude and range from a few GeV to some
100 EeV. The plot only shows the high-energy end of the spectrum starting range from 100 TeV.
Cosmic rays can reach energies equivalent of a baseball flying at 50 km/h. The plotted flux is multi-
plied by E*7 to highlight the structural features of the spectrum. The knee and ankle are visible at
approximately 1 PeV and 5 EeV.

visible for three weeks during daytime [81]. A scan of the original report by the astronomer
and a translation can be found in appendix A.3. The matter ejected during the explosion has
since expanded into a shell of hot plasma with a radius of about 1.5 lightyears [81]. Extensive
observations from in the radio, optical, X-Ray, and gamma-ray bands, have made it one of
the most popular objects for astronomers to study. For very-high-energy (VHE) gamma-ray
astronomers in particular, the Crab Nebula is of major interest due to its steady and bright
emission of photons. In Cherenkov astronomy it is common to test new data analysis tech-
niques on data from the Crab, as it is often called in the community. The analysis I performed

for this thesis is no exception.



2 Acceleration of Cosmic Rays and Gamma Rays

2.1 Fermi Acceleration

In 1949 Enrico Fermi published a model to explain the high energies observed by cosmic-ray
detectors and the power-law shape of the cosmic-ray spectra [61]. Prior to Fermi’s publication
the origin of the cosmic rays at the highest energies was unclear. Fermi summarized the

situation as follows:

The argument against the conventional view that cosmic radiation may extend
at least to all the galactic space is the very large amount of energy that should be
present in form of cosmic radiation if it were to extend to such a huge space. In-
deed, if this were the case, the mechanism of acceleration of the cosmic radiation

should be extremely efficient.

The principal idea published by Fermi is that particles, on average, gain energy by collisions
with randomly moving magnetic fields. These magnetic mirrors were believed to be clouds
of plasma moving at high velocities in random directions. As to the origin of these fields, no
explanation was given. The power-law energy spectrum for this type of particle acceleration
follows from stochastic arguments [67, §12.2.1]. Assume some test particle gains energy Ay =

oy in each collision with the magnetic mirror. After n collisions the energy will be

Yn = Yn—1 T Yn—1Q
Tn = ’Ynfl(l + Oé)
Yn = Tn—2(1+a)(l+a)

In = 70(1 + a)nv
where 7 is the initial energy of the particle. Solving this equation for n yields
. log(%)
~log(1+a)’

In this scenario, the particle keeps bouncing around between the moving magnetic fields until
it escapes the acceleration region. Let P, be the constant probability for a particle to escape

its confinement at any given time. Then, after n collisions, the probability for the particle



2.1 Fermi Acceleration

to remain within the acceleration region is P, = (1 — P.,.)". Substituting n and using the

identity 21o8) = leg(x) results in

Pn: (1_Pesc)n
lag<7y—g'

= (1 - Pesc) log(1+2)

1
In og(1+a)
= <(1 - PeSc)log(Wo)> et

log(1— Py )

[T log(1+a)
-(3)
("
-(n)

where s = log(ﬁ) /log(1+a). This acceleration model results in an energy spectrum which

follows the power-law distribution so ubiquitous in astroparticle physics. Fermi’s model was
able to successfully explain the experimental data recorded by cosmic-ray researchers at the

time.

Another approach to the problem, which is perhaps a little more motivated by physics rather
than statistics, can be build from the so-called diffusion-loss equation. In this explanation,
the magnetic fields described by Fermi are due to turbulent plasmas giving rise to “random”
movements and strong magnetic field gradients. Following the notation in [103, page 566] the

diffusion equation is defined as

dN ()
dt

d . N
= DV'N(y) = —(IN(Y) = .— + Q) (21)
d’y tesc
where D is the diffusion coefficient, Q)(~y) is a particle source term and ¢, is the typical escape
time for a particle. Fermi’s approach assumes a steady-state configuration without diffusion
or source terms. S0 Q(v) = 0 and DV>N = 0. As seen above, the energy-gain term in the

Fermi approach is postulated as % = ay. This results in the simplified equation

d N
*E(OWN(V)) =i
dN () N(v)
N(’Y) + ’7 df)/ B atesc
dN(y) _ —<1 4t >N(7) (2.2)
dy Qtese ) Y
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Equation (2.2) has a solution of the form

1

N oy () oy (2.3)

The diffusion equation results in a power-law spectrum just like the stochastic approach. The
scenario Fermi described does introduce some problems, a discussion of which can be found
in [103, page 566]. The energy gain per collision using the original Fermi model is proportional
to the square of the magnetic field velocity V i.e: AE ~ 3> = (V/c)?. Hence, it is often called
second-order Fermi acceleration. This process alone is not efficient enough to explain the
abundance of cosmic rays. The first-order Fermi mechanism was discovered in the 1970s and
takes place in the presence of strong shock waves [103, page 569]. Supernova remnants (SNR)
provide the perfect conditions for shock wave acceleration i.e. first order Fermi acceleration.
Exploding stars hurl massive amounts of matter into the space. The discarded shell expands
rapidly into the surrounding interstellar medium. A detailed discussion on acceleration in
planar shock waves can be found in [67, §12.2.2]. Hence, supernova remnants like Cassiopeia A

and the Crab Nebula are the perfect test objects to study models of cosmic-ray acceleration.

2.2 Synchrotron Emission

A charged particle moving through a magnetic field radiates energy in form of light. The
breeding grounds of cosmic rays inevitably produce photons which can be observed on Earth.
Hot gas and matter radiates thermal blackbody radiation. The largest part of the observed
SEDs is produced by synchrotron radiation. It dominates the electromagnetic energy output
over a broad range of wavelengths. Suppose a single relativistic electron with Lorentz factor
~ moving in a magnetic field produces a synchrotron radiation spectrum F'(v). Then an elec-

tron population with distribution dN(v)/dy oc v * leads to a radiated synchrotron spectrum
of

dN(v)
dv

x /dN(’Y)/dfyF(V) dy (2.4)
x /'ySF(V) d~y. (2.5)

The synchrotron spectrum of a single relativistic electron with Lorentz factor v moving in a

magnetic field peaks strongly at

2 Be
2mm,

vy = ’YQVC =7 (67, page 284]. (2.6)

e

10



2.3 Inverse Compton Emission

If the power radiated per differential energy by a single electron is approximated by its peak

frequency we get
dN _
dy)m/ﬁsﬂv—f%ﬁh

1/2
Substituting x = 'y2VC anddy = 2yv.dz = 2( ) v, yields

=z
VC

d]llfiy) x /v_sé(v—x) dzx

~ <V>2, 2.7)
VC

The synchrotron spectrum emitted by the electrons will follow the electrons’ power-law shape
with a modified spectral index. The energy loss introduced to the original electron population
due to synchrotron radiation changes the injected power-law spectrum. Suppose a Fermi
process injects a power-law electron distribution with spectral index s. Above some fixed
break energy Ypreak the synchrotron loss steepens the electrons spectrum to 'y_(SH). The

injected electron spectrum hence changes to

o 'f < rea.
dN (%) ~ v 1 1Y < Vpreak (2.8)
dry 'f(H ) else.

This in turn changes the spectrum of the synchrotron emission as seen in (2.7). Many SEDs
of active galactic nuclei and supernova remnants show a very distinct synchrotron bump.
Measuring the synchrotron spectra gives direct evidence of the electron population in the
source. The second major feature seen in many spectra is a consequence of the inverse

Compton effect.

2.3 Inverse Compton Emission

Inverse Compton (IC) interaction is the driving mechanism for very-high-energy gamma

rays detected from supernova remnants. Cherenkov telescopes almost exclusively observe

11



2 Acceleration of Cosmic Rays and Gamma Rays

the inverse Compton emission of these sources. The Compton effect describes the scattering
of a photon with an electron. Given an electron at rest, the incident photon will change its
direction and wavelength during the scattering process. It is named after Arthur Compton,
who was the first to publish a quantitative explanation of the effect in 1923. The Compton
effect is of some historical importance since its has no satisfactory explanation in a pure
wave-like description of light. The wavelength shift of the scattered photon can only be
explained with the particle nature of light. In the inverse Compton effect, the electrons are
no longer considered to be at rest. A fast-moving electron transfers its energy to a photon
during scattering. High-energy electron populations in SNRs can interact with any of the
surrounding photon fields this way, be it background starlight, infrared emission from dust
clouds, or the cosmic microwave background (CMB). The photons radiated via synchrotron
emission can also seed the inverse Compton process. In sources like the Crab Nebula, this so-
called Synchrotron Self-Compton (SSC) interaction is the key component in the VHE gamma-
ray emission measured by Cherenkov telescopes. Approximating the seed photon fields as
monochromatic, the shape of the inverse Compton spectrum roughly follows by a broken

power law as shown by [34, 64, 98]

_s+1

dN(v) o (VL) ’ for vh < m,c

-~ c

dv (L) e+ else.

Ve

(2.9)

Here m,c is the electron’s rest energy. The inverse Compton effect produces the second large
bump in the SEDs of many sources. Combining the shape of the synchrotron photon spectra
with the IC photon spectra we can now draw the SED of a typical gamma-ray source like
the Crab Nebula. Figure 2.2 shows a drawing of an SED as it would be observed from a

hypothetical source along with its main features and dependencies.

12



2.4 Log-Parabolic Energy Distributions
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Figure 2.2: A sketch of a typical SED with Synchrotron Self-Compton emission as observed in many
supernova remnants. The SED was simulated using naima [148]. The underlying electron spectrum
was assumed to be distributed according to a simple power law with index p; = 2 before the electron
population starts to cool and index py = 3 after [91]. The cutoff energy at which the cooling sets in
is fixed at 10'* eV. As shown in (2.7) the synchrotron spectrum follows the electron spectrum with
a modified index. The right side of the figure shows the inverse Compton bump. The IC emission
from the CMB photons and the synchrotron photons is drawn separately as dotted and dashed lines
respectively. This figure was adapted from Stefan FunK’s review article “Ground- and Space-Based
Gamma-Ray Astronomy” [66].

2.4 Log-Parabolic Energy Distributions

The inverse Compton emission measured by Cherenkov telescopes often shows remarkable
curvature. Extra-galactic sources like Markarian 421 as well as SNRs within our own galaxy
show a curved photon spectrum at high energies. The approximation made in section 2.3
describing the spectrum as a power law seems to be too crude. In the previous section I
assumed an electron population that was produced by a Fermi-like process resulting in a
power-law distribution. Each collision with a magnetic field resulted in an energy gain of
A~y = ary. We can adapt the energy gain processes slightly to account for some randomness

during the process. Following ideas from [141], I consider a single charged particle in prox-

13



2 Acceleration of Cosmic Rays and Gamma Rays

imity to moving magnetic fields. We can express the energy of the particle using its Lorentz

factor after each collision with the magnetic field as

Tn = €nVn—1
= €n(€n,1’yn,2)

=€, (Gn—l (En—27n—3))

where ¢; is the energy gain received by the particle in collision ¢ and +; is its Lorentz factor.
Suppose the particle starts with a low kinetic energy, we can set 7 = 1 and rearrange the

equation a bit

_ (T )
7 In(e)

=€

— i X
= e 1=1 z’

where we set X; = In(¢;). The X are assumed to be identically distributed, independent
of each other and have finite variances. This may sound like a bold claim at first. However,
the mechanisms taking place in each collision are bound to the same physical processes
and completely uncorrelated with each other. Hence, the random variables X fulfill the
conditions for applying the central limit theorem. It follows that for large n the sum x =
> In(e;) converges in distribution to a normal distribution x ~ N (u,0) with g =
nu(In(e;)) and o° = no’(In(e;)). In consequence, the energy distribution of the particles

f () will follow a log-normal distribution [50, page 312]

In(f () ~ N(u,0%).

Transforming y into a standard normal variable using Z = *-# we can write

f(E) ~ 6M+UZ‘

14
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10710 =
: —
n o/
o 7
) ’}
g —11 y
> 10
<
Z ‘% = | SQR Fit

W Y MAGIC [17]

10-12 ¥ HESS[14]

FERMI LAT [6]
¢ HEGRA [15]

1074 1073 1072 107! 10° 10! 10?
Energy / TeV

Figure 2.3: Simple least-squares fit of a log-parabolic model to observations of the Crab Nebula. The
best fitted values are A = (3.2740.13)-10" ' TeVem *s ™', a = 2.484+0.03and 8 = 0.204+0.02.
Errors on the parameters are estimated from the diagonal of the covariance matrix resulting from the
least squares fit. The error band in the plot has been estimated by sampling models from a gaussian
with the same covariance matrix. The band indicates the 5% and 95 percentile of all 10 000 sampled
models that are drawn from the gaussian. For this source the coverage of flux measurements in the
transition region between synchrotron and inverse compton emission is provided by the Fermi satellite.
For many other sources, mostly active galactic nuclei, the transition region is shifted to lower energies.

In literature the model often takes the form of an exponential function with three parameters
A, «aand
(2.10)

B\ P (%)

N(E)=A(—= .
2 (Eo )

As shown in [110, §5] and [98], the inverse Compton emission will approximately follow the

shape of the electron spectrum at high energies. Hence, a log-parabolic electron distribution

will lead to a log-parabolic gamma-ray emission. Figure 2.3 shows a fit of equation (2.10) to

observed fluxes from the Crab Nebula.
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3 Observation of Very-High-Energy

Gamma Rays

Cosmic rays have been observed using space-born as well as ground-based scintillation detec-
tors for several decades. The highest-energy cosmic rays have been recorded by the AUGER
instrument reaching up to 10* eV or 16 ] of kinetic energy. While their isotropic arrival di-
rections indicate their extragalactic origin, no point-source of cosmic rays could be identified
as of today [1]. Measuring gamma-rays or neutrinos presents one useful advantage over ob-
servations of electrically charged cosmic rays. Photons and neutrinos are oblivious to electric
and magnetic fields in space and travel in a straight line from their source to the observer.
This makes them prime candidates for learning more about the processes and objects in
which they are created. Neutrinos, however, are notoriously hard to capture due to their low
mass and neutral charge. They only interact through the weak force requiring large detection
volumes. So far no extragalactic point source of neutrinos could be identified though strong
hints indicate they are produced in active galactic nuclei [2]. The observation of high-energy
gamma rays requires much lower detector volumes and allows for observations into energy
ranges of many TeV. Since the first successful gamma-ray astronomy missions in the early
1960s, the improvement of space-faring technology and sensor equipment now allows us to

identify thousands of distinct sources of high-energy gamma radiation.

3.1 Satellite Experiments

The first gamma-ray telescope was launched into space onboard the Explorer XI mission in
1961 [95]. It carried a sandwiched scintillator with an area of only 45 cm? and detected about
1000 gamma-rays during its 7-months-long mission. While not being able to pinpoint any
sources, it is considered to be the first measurement of gamma rays of cosmic origin. Gamma-
ray bursts (GRBs) were serendipitously discovered by satellites of the Vela mission in 1967,
which were originally built to monitor the atmosphere for nuclear blasts [93]. More gamma-

ray missions followed. Among them the Compton Gamma-Ray Observatory (CGRO), Swift,

17



3 Observation of Very-High-Energy Gamma Rays

AGILE and the Integral mission. The most recent mission, the Fermi Gamma-ray Space
Telescope, was launched in 2008 and put into orbit about 550 km above Earth’s surface. It
is equipped with two detectors, the Gamma-ray Burst Monitor (GBM) and the Large Area
Telescope (LAT). The GBM’s primary purpose is to detect gamma-ray bursts within a large
field of view. It can detect photons with energies between 8 keV and 40 MeV. As the name
suggests, it was built to detect short bursts of gamma radiation in the sky. The bursts can last
anywhere from minutes to seconds and are among the most powerful and bright events ever
seen in the sky. About 200 to 300 GRBs are detected per year by the GBM [112]. The LAT
detector onboard FERMI covers an energy range of 20 MeV to 300 GeV with a field of view
of 2.4 sr covering about 20 % of the sky any one time. It was designed to catalog and monitor
several thousand sources of gamma rays and record the energy spectra [25]. During its active
years it has become an invaluable instrument for the cataloging and discovery of gamma-ray

sources. The most recently published catalog [24] contains more than 5000 sources. Figure 3.1

shows a map of all sources found in the 4FGL catalog along with their gamma-ray flux between
100 MeV and 100 GeV.
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Figure 3.1: A sky map depicting each distinct source found in the 4FGL catalog combining data
measured by the Fermi-LAT instrument over the course of 8 years. This is a Mollweide projection
in galactic coordinates clearly showing a clustering of sources around the galactic plane. The colors
indicate the total flux emitted by each source in an energy range of 0.1 GeV to 100 GeV.

3.2 Imaging Atmospheric Cherenkov Telescopes

Imaging Atmospheric Cherenkov Telescopes (IACTs) use the atmosphere as their detection
medium. Each cosmic ray or gamma ray hitting Earth’s atmosphere interacts with the nuclei

in the surrounding gas. At sufficient energies, this interaction will create secondary particles,
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3.2 Imaging Atmospheric Cherenkov Telescopes

which in turn interact with the surrounding medium. This process kicks off a cascade of
particles moving towards the surface. This so-called air shower keeps growing until the
particles’ energies are insufficient to produce new offspring. Very energetic primary particles
can induce cascades that reach the Earth’s surface. The interactions governing the air shower
induced by a primary hadron are severely different from those induced by a primary gamma
ray or electron. Anincoming electron or gamma ray interacts mainly through bremsstrahlung
and pair production. This type of air shower is of purely electromagnetic nature. An incoming
electron radiates a gamma-ray through bremsstrahlung in the presence of a nucleus. The new
photon emerging from this collision either reaches the ground and gets absorbed or, given
enough energy, creates a new electron-positron pair. This process continues until no new
particles can be formed below an energy of roughly 1 MeV. A cosmic hadron, i.e. a proton
or heavier nucleus, also starts a process of successive collisions. The number of sub-particles
created in each collision depends on the parent particles’ energy [71, page 78]. Equation 3.1
represents a proton-nucleon interaction, where IV is the target nucleus in the atmosphere

and X represents some remaining fragments of V.
p+N o>p+ X+ K0 [90] (3.1)

The process will propagate through the atmosphere until no more sub-particles can be cre-
ated below the rest energy of the pion near 140 MeV. Each hadronic air shower also has an

electromagnetic sub-shower due to the gamma rays produced in pion decay
0
T = 2. (3.2)

The air showers produced from hadronic primaries can be distinguished from the purely elec-
tromagnetic counterparts through various observables. Most important is the lateral spread
of the shower and the time development of the number of particles present in the shower,
both of which can be observed by ground-based telescopes. The charged component of an
air shower produces flashes of Cherenkov light and makes it possible to take an image of the
shower as its moving through the atmosphere. Early on, scientists working with radioactive
material noticed a faint blue glow in water near strong radioactive sources [71, page 835]. Pavel
Cherenkov began studying it systematically in 1934. He later shared the Nobel price for its
discovery with Frank and Tamm in 1958 [137]. Cherenkov light is emitted by charged parti-
cles moving through a medium at superluminal speeds. While the speed of light in vacuum
¢o is constant in all reference frames, the speed of light in transparent media is slower. The
speed of light in a material is expressed in terms of its refraction index n = co/v. The charged

high-energy particles present in an air shower can have velocities higher than the speed of
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3 Observation of Very-High-Energy Gamma Rays

light in air. If they do, they radiate Cherenkov light. This bluish light is emitted along the
direction of the moving particle. The opening angle of the Cherenkov light cone generated
by a single charged particle of velocity v is given as

0 = arccos< (3.3)

1
o),
where 8 = v/c, and n(h) is the refractive index of air at height h above sea level. As the refrac-
tion index n(h) increases with pressure, the opening angle of Cherenkov light decreases at
high altitudes. At an altitude of 10 km, the opening angle will be close to 0.8°. At sea level the
angle is closer to 1.35°. Hence, the Cherenkov light is strongly focused along the trajectory of
the moving charge. A typical light flash produced by an air shower glows for approximately
20 ns to 30 ns. Capturing this faint and fast glimpse of an air shower requires sensitive instru-
ments. Cherenkov telescopes require purpose-built cameras with single-photon resolution
and fast readout systems to image air showers. The first detections of a point-source of cos-
mic gamma radiation was performed with the Whipple telescope in Arizona in 1989 [143].
It was the first detection of the Crab Nebula in the TeV range of light. The next generation
of IACT experiments followed promptly with the HEGRA [15], MAGIC [18], H.E.S.S. [83],
VERITAS [85] and FACT [20] projects, of which all but HEGRA are still operating. Before
the first successful observation of the Crab Nebula, many challenges and problems inherent
to IACTs had to be overcome. The first IACTs struggled to differentiate between showers
induced by cosmic rays from those induced by gamma rays. Even for very bright sources of
gamma rays, the amount of cosmic rays triggering the telescope is many orders of magnitude
higher than the desired signal. Cosmic rays effectively act as the major source of background
noise in IACT data. Development of methods to perform effective background suppression
took extensive work on simulations of air showers. These simulations are necessary since
there is no artificial source of gamma rays or protons in the energy ranges probed by IACTs.
Experiments sensitive to lower energies can be calibrated in a laboratory setting, where their
response to incoming particles can be measured in great detail. For IACTs simulations are
the only way to gauge the instrument’s response. Today, background suppression, or gamma-
hadron separation, is performed using machine-learning algorithms which have been trained
on simulations. Chapter 9 goes into more detail about the algorithms used. By today, the
success of Cherenkov astronomy is self-evident given its huge contribution to our under-
standing of active galactic nuclei, supernova remnants and the gamma-ray sky in general.
One recent result from the H.E.S.S. collaboration [73] is displayed in figure 3.2. It shows a
gamma-ray view of the galactic plane in energies above 1 TeV. Chapter 7 contains details on

the next-generation Cherenkov Telescope Array (CTA) project and its data analysis.
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3.2 Imaging Atmospheric Cherenkov Telescopes

The following sub-sections describe the four currently operating Cherenkov telescopes and

the astronomer’s apparent fondness for intricate abbreviations.

3.2.1 MAGIC

The Major Atmospheric Gamma Imaging Cherenkov Telescopes [18], or MAGIC, are a pair
of Cherenkov telescopes located on the Canary island of La Palma oft the west coast of Africa.
It is part of the Roque des los Muchachos observatory on the island’s vulcanic remnant at a
height of approximately 2200 m above sea level. The two telescopes feature large segmented
mirrors with a total diameter of 17 m per telescope with a field of view of 3.5°. The first of
the two telescopes was operated in monoscopic mode from 2004 to 2009 until the second
telescope was ready for operations. MAGIC can detect relatively faint sources due to its large

mirrors.

3.2.2 VERITAS

VERITAS, the Very Energetic Radiation Imaging Telescope Array System [85], is an array of
four telescopes. Each telescope has a mirror with a diameter of 12 m and a field of view of 3.5°.
The VERITAS telescopes are located at the Fred Lawrence Whipple Observatory, Arizona, in
just about 3 hours driving distance from the state’s capital Phoenix. The four telescopes are
located on the corners of a rectangle approximately 100 m apart from each other. VERITAS

observes both active galactic nuclei as well as sources in our own galaxy.

3.2.3 FACT

The First G-APD Cherenkov Telescope (FACT) was the first of its kind to employ silicon
photo-multipliers for VHE gamma-ray astronomy. It is located next to the MAGIC telescopes
and shares much of its infrastructure with it. FACT is a single IACT with a small mirror with
a diamter of 4 m and a field of view of 4.5°. FACT is dedicated to observe and monitor bright
active galactic nuclei on the northern sky. FACT is fully autonomous and does not require
operators on site. It observes a list of predefined sources at night and automatically contacts

a remote shifter via a phone call in case any problems appear during observation [124].
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B Lt BRXNI0852

Sagittarius A

0.0 0.5 1.0 1.5 2.0

Flux 10712/ ecm 2571

Figure 3.2: The H.E.S.S. galactic plane survey. H.E.S.S. measured the diffuse gamma-ray flux in the
galactic plane over several years and published the data in 2018 [73]. The colors show the integral
flux emitted in energies above 1 TeV [73, §4.3.2]. The figure shows a region near the galactic plane
in longitudes 260° to 45° and latitudes —2.5° to 2.3° . On the left-hand side of the upper panel, a
supernova remnant RX J0852.0-4622 is clearly recognizable due to its shell-like structure. Sagittarius
A in the center of our galaxy is marked in the third panel.

3.2.4 H.ES.S.

The High Energy Stereoscopic System [83], H.E.S.S., is the largest of all currently operat-
ing Cherenkov telescopes and the only one operating south of the equator. It consists of 5
telescopes situated at an altitude of 1800 m in the Namibian highlands. Its location in the
southern hemisphere allows for long-term observations of the center of the Milky Way as
seen in figure 3.2. The largest of H.E.S.S’s telescopes has a diameter of 28 m covering an area
of about 615 m”. The sizable aperture reduces the depth of field considerably. To adjust the
focus of the optical system, the camera can be moved along the optical axis of the telescope
electronically. The four smaller telescopes each have a diameter of 13 m. These four telescopes
are arranged in a square with an edge length of 120 m with the large telescope placed in its
center. The first phase of H.E.S.S. operations began in 2004. The fifth telescope was added
in 2012, reducing the energy threshold of H.E.S.S. to several tens of GeV. A unique design
feature of H.E.S.S. is its ability to quickly dismount the cameras from the telescopes. This

simplifies maintenance works and hardware upgrades.



3.3 Water-Cherenkov Experiments

3.25 CTA

The Cherenkov Telescope Array (CTA) will be the largest of all earth-bound gamma-ray
observatories. It is currently in its planning stage with the first prototype telescopes under
construction. Its current design includes over 100 telescopes that will be stationed at La
Palma and the Paranal observatory in Chile. More details about CTA will follow in chapter 7.
Suffice it to say at this point, it will be the largest array of optical telescopes that has ever been
operated. With an estimated cost of over € 300 million [48], it will also be the most expensive

operation in the history of ground-based astroparticle physics.

3.3 Water-Cherenkov Experiments

The particles produced in air showers can be captured using scintillation water tanks on the
surface. A dense spacing of tanks and light sensors helps to measure details about the shower
structure, which can help to differentiate between air showers induced by hadrons and air
showers induced by photons. The High Altitude Water Cherenkov Experiment (HAWC) [8]
is the latest gamma-ray observatory using water tanks. It is located in Mexico at an altitude
of 4100 m and has been operating since 2015. HAWC consists of 300 water tanks with a total
water content of 56 million liters. Each tank is fitted with 4 photomultiplier tubes. The charged
component of air showers produces Cherenkov light in the tanks. The arrival time of the
shower front in the tanks is the prime indicator for the direction of the incident shower. This
method of water Cherenkov detection makes it easy to fill relatively large detector volumes
hence making HAWC more sensitive to high gamma-ray energies beyond the capabilities of
the FERMI satellite. HAWC’s detection capability peaks near 10 TeV of gamma-ray energy.
The absorption of high-energy photons due to interaction with extragalactic background
light reduces the maximum distance at which HAWC can detect sources. Thus, HAWC is
best suited for observing bright sources within our own galaxy. One considerable advantage

of HAWC is its large field of view and its capability to operate during daytime.
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4 Modeling the Crab Nebula Emission

Modeling the broadband photon emission of gamma-ray sources is an important tool to study
the driving forces behind cosmic-ray acceleration. Accurate modeling can give valuable clues
about the magnetic fields present in these sources as well as matter distribution and com-
position. Having access to multi-wavelength data from many instruments is pivotal to SED
modeling. Unfortunately collecting this data is often tedious if not outright impossible. These
data points are often proprietary and not available online. Even data published in journal
papers is often solely provided as a plot without accompanying tables or data files. This prob-
lem will become an even larger problem in the future of multi-messenger astronomy. In an
effort to change the status quo, flux data of the Crab Nebula has been collected by [15, 41, 114]
and published within the open-source gammapy project. I used this data to evaluate a simple
model of the acceleration processes in the Crab Nebula. Previous analyses [23, 114] indicate
that two distinct electron populations are present in the source. In this case I am only inter-
ested in the high-energy part of the photon spectrum above 10 eV. Here, a single electron
population suffices to describe the data. I use a Synchrotron Self-Compton model to calcu-
late the gamma-ray flux given the shape of the electron distribution and the magnetic field
strength. I assume that the magnetic field is of constant strength B and isotropic throughout
the entire acceleration region. The electron population is modeled to be distributed according

to a log-parabolic energy spectrum

, (4.1)

£yl

N(E) = H(E') Emina Emax)A<E0

where H is a step function describing a cutoff beyond maximum and minimum electron

energies of E,;, and E ..

H(E) - E: E<Eg,and E>FE .
0: otherwise

The electrons produce synchrotron emission in the nebula’s magnetic field as described in 2.2

and inverse Compton emission on existing photon fields as described in 2.3. Following [23],
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4 Modeling the Crab Nebula Emission

four photon fields are assumed to seed the IC process. First, there is the photon field of
the cosmic microwave background (CMB), which is modeled as blackbody radiation with a
temperature of 2.7 K. Observations in the optical and infrared regime show glowing filaments
of gas and dust inside the nebula. This second photon field is also assumed to be an isotropic
blackbody radiator. The dust has an approximate temperature of 70 K and an energy density
of 0.5V cm™. The third field is due to galactic background starlight with a temperature
of 5000 K and a density of 1eV cm ™. The most important seed for IC emission, however,
is the high-energy photons produced by the synchrotron emission within the nebula itself.
All photon fields are assumed to have uniform number density within the nebula. While
certainly accurate for the CMB photons, more accurate modeling of the photons’ spatial
distributions might improve results. This SSC model has six free parameters, of which five
describe the shape of the electron distribution A, E,;;,, Frax @ 5, and one describes the
magnetic field strength B. The flux points to which this model is fitted was recorded by
6 different telescopes. The hard X-Ray and soft gamma-ray fluxes up to ~10 > TeV were
observed by the INTEGRAL satellite and the SPI instrument onboard the Comptel satellite.
Fluxes from 10~* TeV to 10" TeV were recorded by the Fermi satellite. Above ~10~" TeV

ground-based IACTs measure the highest gamma-ray energies.

The synchrotron and IC emission was calculated using the numerical approximations imple-
mented in the naima [148] package. Fitting was performed using Markov-Chain Monte-Carlo
sampling (MCMC) on the posterior using the emcee [63] sampler. By default, naima uses a

Gaussian likelihood assuming independent measurement errors on the data

N
L(F|p) = HN(Fi | u=SSC(p), o=0,), (4.2)

where F is a vector of flux measurements with corresponding uncertainties o and p is the
parameter vector for the SSC model. The independence assumption for the flux errors is
almost certainly not correct. It is, however, a pragmatic approach when working with flux data
which is often published without further information about possible correlations between

the points. All priors were assumed to be uniform, or uniform in logarithmic space.

Even though implementation of radiative models in naima is relatively efficient, evaluating
the model on hundreds of thousands of Markov chain samples takes hours. To speed up
the sampling, I have built a lookup table of values of the SSC model evaluated on a grid
of 1000000 parameter combinations. Building the lookup table takes several hours on a

large machine with 24 CPU cores. The samplers then evaluated the model using linear inter-
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polation between the grid points. Sampler settings can then be adapted and tuned without
recalculating the lookup table. For the final fit a total of 1 500 000 samples where taken in 300
parallel chains. The resulting fit values are calculated from the median of the marginalized

posterior distributions. The provided errors are taken from the 16t and 84 percentile.

N _ 0.02 _ 0.01
logyo (%) = 4751433 a 3.03+001
R 0.01 _ 0.001
loglﬂ(TeV) = 15.55%001 B = 0.0457 001
Erin _ 0.05 B _ 1.6
logw(TeV) = 1111552 i = 107.8%4%

Figure 4.1 shows the fitted model together with the measured flux data. Even though this
model uses relatively simple physical assumptions, it accurately represents the observed fluxes
in the high-energy end of the SED. Figure 4.2 shows the influence of each single parameter
on the shape of the model spectrum. Table A.1 in the appendix shows the values of the
fitted parameters together with images of the marginalized posterior distributions and the
sampled chains. Figure A.1 in the appendix shows the correlation between each of the fitted
parameters. More details on MCMC methods in general, will be given in section 5.5. The

code to reproduce these results is available at

https://github.com/kbruegge/simple_ssc_model
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Figure 4.1: The full SSC (Synchrotron Self-Compton) model plotted together with the observed data.
The colored error bars show the observed fluxes by the six different instruments. The black line shows
the median of the values sampled by the Markov chain. The error band around the black line is built
from randomly chosen samples in the chain. For each sampled parameter set, the SSC model is drawn
as a gray transparent line. Burn-in samples have been discarded before producing this plot. Despite
the simple model assumptions, the SED accurately matches the data in the VHE gamma-ray end.
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Figure 4.2: The full SSC model plotted together with measured fluxes. In each image one of the
parameters of the model is varied while the others remain fixed. As stated in the text, this model
assumes one population of high-energy electrons which are distributed according to a log-parabolic
energy spectrum with high and low energy cutoffs. Each of the six free parameters is varied as indicated
by the colorbars.
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5 Spectral Analysis of IACT Data

In the previous chapter I fitted a model to existing flux points published by various IACT
experiments. In this chapter I will describe how to estimate the flux of a gamma-ray point

source using IACT data.

Observational astrophysics is performed by measuring the energy output of an object in some
form or another. IACT analysis is no different. The success of multi-wavelength observations
of the sky are self-evident. The combination of images from multiple wavelengths is key to
unlocking some of the mysteries of modern astrophysics. In the 1970s, in an effort to over-
come the technical challenges involved when sharing images among operating systems, the
FITS file format was invented. The Flexible Image Transport system (FITS), first standard-
ized in 1981 [144], quickly became the image format of choice among astronomers. Since
the 1990s, with support from NASA’s High Energy Astrophysics Science Archive Research
Center (HEASARC), many additions to the FITS format were developed to stimulate the inter-
change between experiments. The FITS format has become the de-facto standard for storing
high-level results in astronomy in all wavelengths ,be it radio, infra-red, optical or X-Ray.
The VHE gamma-ray community, the community of ground-based Cherenkov observato-
ries, is a considerable exception. Their methodology was inherited from particle physics. For
decades the standard software and file format in traditional particle physics has been the ROOT
project [40]. Storage and data analysis software for H.E.S.S., MAGIC, and VERITAS is pro-
grammed within the confines of the ROOT framework. Despite the common framework, the
internal file structures and softwares are proprietary and no sharing of code or data takes place
among the experiments. The upcoming next-generation Cherenkov Telescope Array (CTA)
will break the status quo. The CTA project is currently under construction and will consist
of at least 80 telescopes of 4 different types. The new generation of astroparticle physicists in
the CTA collaboration are trying to move away from the closed-source ROOT-based approach
to modern open-source scientific solutions like the gammapy [51] project. Even though the
internal file structures and programs are different, all Cherenkov telescopes produce their
data in similar ways in terms of physics. So similar in fact, that a joint effort was started to
find a common file format for storing and representing them in FITS format. The project was

initiated by Christoph Deil in 2016 in a face-to-face meeting near Paris. Members from all
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IACT collaborations, including myself, discussed commonalities and differences between the
data produced by the different experiments. A description of a common file structure was
drafted and presented at the Gamma 2016 conference [53] in Heidelberg. High-level datasets
from the MAGIC, H.E.S.S., VERITAS and FACT telescopes were made available to the public
in FITS format. These datasets contain observations of the Crab Nebula and corresponding
instrument response functions (IRFs). Under the auspices of Cosimo Nigro and Christoph
Deil, we used this data to publish a joint paper titled “Towards open and reproducible multi-
instrument analysis in gamma-ray astronomy” [122] in the Astronomy & Astrophysics journal.
In the paper we perform a multi-instrument likelihood fit for a log-parabolic spectral model
on the Crab Nebula data from all participating telescopes. The joint analysis in our paper
uses open source software with public data and allows anyone to recreate the results. Users
can execute the analysis by downloading all data and the relevant source code under a fixed
digital object identifier (DOI) https://doi.org/10.5281/zenodo.2381863. It is the first paper in
the field of gamma-ray astronomy which provides this level of reproducibility. In this chapter
I perform a similar spectral analysis on the data similar to the one we presented in the paper.
The statistical model used in my analysis is modified to contain nuisance parameters describ-
ing the irreducible background. The statistical model is described in section 5.4. Section 5.3
outlines how the background is estimated from measurements. Instead of minimizing the
likelihood as we did in the paper, I sample the posterior distribution using Markov-Chain
methods. Section 5.5 gives a short overview of the Monte-Carlo methods used to sample
distributions. There are two different ways to perform flux estimation of astrophysical sources.
The model-dependent approach, which I will describe in section 5.6, depends on an analytical
description of the sources energy dependent flux. The model-independent approach, which
is explained in 5.7, is often called unfolding. While both approaches use the same underly-
ing statistical model and are solved with the same techniques, they differ fundamentally in
terms of semantics. Fitting spectral models is useful for validating or invalidating physical
assumptions. Unfolding is useful for creating model-independent flux points which can be
used in conjunction with measurements and models which use different assumptions. The
main difficulty, for both approaches, lies in building the instrument response function (IRF).
Motivations for building a common data format and details about the datasets are given in
section 5.1. Details about the exact shape and functionality of the IRFs are given in section 5.2.
The pipeline that processes the raw telescope data into a high-level event lists usable for astro-
physical analysis will be the topic of chapter 8. For the remainder of this chapter, the datasets I
refer to are the published observations used in our joint paper [122]. The loading of the event
lists and instrument responses as well as the estimation of background counts is performed

with code from the gammapy project if not mentioned otherwise.
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5.1 Event Data

5.1 Event Data

Unlike traditional optical telescopes, the data recorded by IACTs is not of image-like dimen-
sions. While an optical telescope exposes some region in the sky for a long period of time to
create an image, IACTs record a set of distinct events. In the community’s parlance, one event
refers to the recorded data of one unique air shower. For a single telescope this results in one
image recorded per event, for an array of multiple telescopes more images get recorded. The
data in its raw form is not usable for astrophysical analysis. The cameras used for Cherenkov
telescopes are highly specialized devices sensitive to single photons. Precise calibrations have
to be performed and applied to the data in order to distinguish Cherenkov photons from
background light or sensor artifacts. As discussed before, even after preprocessing and re-
construction of the primary particles’ energy and direction, most of the observed air showers
are induced by cosmic rays. These are rejected by machine-learning methods before the final
event list is produced. The algorithms are trained on simulated data to differentiate between
gamma-ray and cosmic-ray air showers. Even then, much unwanted cosmic-ray background

remains. Chapter 9 will discuss these methods in detail.

The common data structure we propose for IACT data is based on the FITS format. The
BINTABLE extension to the FITS standard allows for storage of table-like data with associated
meta data stored in a header. The common data format requires just 5 columns to perform
spectral analysis: the ENERGY column, which contains estimated energy of the primary
particle; the RA and DEC columns containing the reconstructed point of origin of the event
on the sky in equatorial coordinates; the TIME column ,which stores each event’s time of
recording, and a unique identifier called EVENT_ID. Additional information, such as the
pointing position of the telescope or the total observation time, is stored in the attached
header [52]. It is important to keep in mind that estimated energy means different things for
different instruments and analysis methods. In the hypothetical situation that both FACT and
MAGIC see an air shower induced by a gamma ray with 1 TeV kinetic energy, the estimated
energies of FACT and MAGIC can differ wildly. The energy migration matrices covered in
the next section can only ever consider expected values of energy distributions. For a single
air shower, no hard statements can be made. To make matters worse, for the reasons outlined
in 5.2, the instrument responses can only be built from simulations. The response functions
for observed data might look different. This uncertainty caused by using simulations can
introduce biases in the result if the simulation does not resemble reality accurately. While it is
certainly possible to model some of this systematic uncertainty, it is prohibitively expensive in

terms of computing and man power. Table 5.1 gives an overview over the four datasets used
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Table 5.1: The data used in the fit from MAGIC, H.E.S.S., VERITAS and FACT. All the data was made
public and can be downloaded as a Zenodo bundle [122] including exploratory Python notebooks to
read the data. The altitude range shows the minimum and maximum pointing angle with respect to
the local horizon.

Telescope Year Duration/h Number of Events Altitude Range

H.ES.S. 2004 1.87 30129 41.4° to 44.6°
FACT 2013 10.33 27306 60.1° to 83.6°
MAGIC 2013 0.66 12109 69.7° to 74.3°
VERITAS 2011 0.67 3482 80.1° to 80.7°

to fit the Crab Nebula energy spectrum. The number of events seen by the telescopes depends
strongly on how the events were selected during the analysis. Even so, the small mirror size
of FACT clearly means that more observation time is required to gather a sufficient amount
of data.

5.2 Instrument Response Functions

The telescope’s probability to trigger an incoming air shower, a so-called event, depends on
environmental conditions like humidity, ambient temperature, background light, cloud cov-
erage and pointing direction. Even for fixed environmental conditions, the probability still
depends strongly on the primary particle’s true energy and point of origin within the field
of view. Not all gamma rays can be properly reconstructed by the telescope’s analysis. This
might be simply due to the fact that they are too dim or undistinguishable from sensor noise.
Some events get miss-classified, i.e. an air shower induced by a gamma ray is erroneously
recognized as a hadron-induced shower. Events may also fail to pass some predefined quality
requirement. After accounting for the triggering probability and all analysis-related effects
we are left with total acceptance probability P,(E7, O, U, ®). The angles ¥ and ¢ define
the pointing direction of the telescope in horizontal coordinates. The angle W is the azimuth
angle with respect to the north pole. At different azimuth angles the observed air showers
are aligned differently with respect to the local geomagnetic field above the telescope site. ®
is the pointing altitude above the local horizon. Air showers detected at low altitude angles
have to travel a much greater distance through the atmosphere than air showers coming from
the zenith directly above the telescope’s location. Hence, both angles influence the telescope’s
acceptance probability. The angle © defines the offset angle between the center of the tele-
scope’s field of view and a potential gamma-ray source. The acceptance probability drops

off rapidly towards the edge of the field of view (FoV). Aberration effects in the telescope’s
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optical system increase at larger distances from the center of the FoV. More importantly, air
showers originating near the edge of the FoV are less likely to be detected. Near the edge,
only one-half of all air showers will remain inside of the telescope’s visible slice of atmosphere.
Measuring the P, directly is impossible since no artificial source of gamma rays exists in the
required energy range. Simulations are the only way to gauge the instrument response to air
showers. For each generated gamma ray, the simulation needs to propagate all constituents of
the resulting air shower through the atmosphere. For each charged particle in the air shower,
the Cherenkov photons must be generated and their trajectory through the atmosphere cal-
culated. Simulated Cherenkov photons reaching the telescope are mapped onto the camera’s
sensor plane via ray tracing. All components that potentially interact with the photons must
be taken into account. The reflection on the mirrors, the shadowing by the telescope’s frame
and refraction of the light guides in front of the pixels are all important components that
have to be simulated as close to reality as possible. The resulting photon distribution on the
cameras sensor is then used as input for the simulation of the detector’s electronics. The
trigger logic, sensor effects, and electronic artifacts are simulated up to the point where the
telescope’s data acquisition system writes all its data to a file. The CORSIKA [79] software
is responsible for the air-shower physics part of the simulation. It has been under active
development for more than 20 years and is used for all major astroparticle experiments. The
collaborations building Cherenkov telescopes or cosmic-ray detectors then use their own
in-house detector simulation software to process the output of CORSIKA. Each simulated air
shower which triggers the telescope will be put through the telescope’s analysis pipeline just
like observed data. During the analysis, noise removal, background suppression and event
selection is performed. This includes the filtering of air showers which are likely of hadronic
origin. The number of events remaining after the analysis is smaller than the number of

triggered events and much smaller than the amount of simulated showers

NSimulated > NTriggered > NAccepted' (5.1)

The number of accepted events in the result is then used to estimate the acceptance probability

_ NAccepted
Pa B NSimulated
trajectory hits the ground around the telescope within a maximum distance R, ,,. As seen

. A Cherenkov telescope can only observe air showers whose primary particles’

in equation (3.3) the Cherenkov emission of an air shower is directed strongly along the
shower’s trajectory. The photons hit the ground within an energy dependent radius of the
shower’s impact point on the ground. In order to detect an air shower, the telescope has to be
situated within that radius. This defines the maximum area of impact points A = 27TR,2naX

around the telescope in which air showers are still observable. The acceptance probability is
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multiplied by the area in which showers are scattered during simulation A, resulting in the
effective area A = P, Ag,. The true, time-dependent, gamma-ray flux of a source, either

simulated or real, N(E7,t) is transformed into a distribution of accepted events by

f(Er,© / N(Ep, 1)Py(Ep, 0,0 (t), ®(t)) gy dt. (5.2)
Lobs
The pointing angles are time dependent when the telescope tracks a source. During the
observation time £, the Earth’s rotation forces the pointing position to adjust. The offset
parameter O remains free so that any potentially extended source in the FoV can be observed.
In practice, the explicit time dependence is removed by splitting the measurement into smaller
distinct observation windows, so-called runs. The lengths of one run is chosen such that
the pointing angles ¥, ® do not change significantly during the run. The effective area is
calculated on a per-run basis. For spectral analysis several observations of the same source

are aggregated which implicitly averages the luminosity of the gamma-ray source over time

ETv Z N ET eff,run(ETv 9)3 (5-3)

run

where N (E7) = ft N (E7,t) is the sources flux integrated over time. Typical run durations
lie anywhere between 5and 20 minutes. From a technical standpoint this brings an additional
advantage. It reduces load on the data acquisition and computing infrastructure as it avoids

writing huge files for long observation campaigns.

The gamma ray’s true kinetic energy E can only be estimated by the amount of Cheren-
kov light emitted by the air shower. Much care is taken to use all available information
in the recorded Cherenkov images to estimate the primary particle’s energy. As described
in chapter 9, machine-learning methods are employed to get the best estimator possible.
Nevertheless, no energy estimation is perfect. All models are inherently flawed. Due to the
stochastic nature of the air shower, the correspondence between true and estimated energy
can never be completely accurate. The relation between the true energy E7 and the estimated
energy Egy is given by the dispersion function p;( Egy, Ep, ©, ¥, ®). As with the effective
area, the explicit dependency on time and the pointing angles can be dropped when splitting
the observation into shorter runs. The dispersion function transforms distributions in true
energy f(FEr) into distributions of estimated energy ¢g(Fg ). The function f has compact

support since P, has a minimum and maximum energy outside of which no events can be
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accepted. This means that f can be normalized and interpreted in a stochastic context. In

this sense f is the probability density function of the random variable £

Pr(Er € AEr) = f(E)dE.
AEp
In the same manner, g can be defined as the probability density function of the random vari-
able . Each simulated air shower has a true and an estimated energy. Provided sufficient
simulations are available, the distributions g, f and the joint distribution p,;(Ep, Egg) can
be estimated either by kernel density estimation or straightforward histogramming of the
data. Marginalizing p; with respect to Ep results in a function which connects the true event

energy with its estimated energy

o(Eus.0) = [

: pj(EEstvE;@)dE:/O pp(Eey | B50)f(E)dE.  (5.4)
T

The dispersion function acts as the conditional distribution of the estimated energy given
the true energy pp(Egg | E7). This relation also holds if f is not normalized to be a proper
density function, but instead is a function relating true energy to actual event counts or rates.
Now all necessary ingredients are available to define the measurement process of an IACT.
By substituting f with the expression from equation (5.3), the distribution of event counts

for a single run can now be written as

G(Era,©) = B(Ees©)+ | (B | Eri ©N(Er) AlEr, ©)dEr,  (53)
T

where B(Eg, O) is the remaining background after all analysis steps have been performed.
This background consists of showers started by cosmic electrons or hadrons which could not
be discriminated from the actual gamma-ray signal by the analysis. The background can be
modeled in the same way as the signal by extensive simulations and calculation of acceptance
probabilities and migration functions. However, the simulation of hadronic air showers
is quite expensive in terms of computing time. As detailed in section 5.3 the background

B(Egg, ©, ¥, @) can be measured directly while observing gamma-ray sources.

In practice, the effective area and the migration function are calculated in some discretized
form. The effective area for a single observation is calculated by creating a two-dimensional
histogram of accepted events in bins of true energy Er and offset angle ©. If S, is the set of

accepted events and S the set of simulated events, then we get the effective area matrix A by
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dividing the number of accepted events in bin A E' by the total number of simulated events

in that bin
> pres, 1ae, (ET)

A = Agm , (5.6)
Abr ) ZETGS IAET (ET)
where the indicator function 1 is defined as
1 ifx € R,
1p(x) == (5.7)
0 else.

This admittedly unwieldy notation describes the division of two histograms, which is a rel-
atively simple operation in many programming languages. An astrophysical source model
N (FE) can be discretized into a vector containing counts in true energy ¢ where each entry

in the vector is calculated by integrating over the energy range in the bin

CAB, = (E)dE.

The count vector of accepted events can then be calculated in analogy to equation (5.2)

IaE; = cAE; AAE, tobs:

The subscripts can be dropped when expressing f, ¢, and A as vectors containing the values

for all energy bins. The equation can then be written in terms of vectorized operations as
[ =cO Atgs,

where © is the element-wise multiplication of two vectors, the Hadamard product.

The energy dispersion function for one observation is discretized in a similar way. A two-
dimensional histogram is build to estimate the joint probability density of true and estimated

energy

1 INORN > 1ap, (Br)ap, (Fig)-
(ETvEEst)ESu.

Per definition of conditional probabilities, pp(Egy | E7) can be calculated from the joint
distribution by dividing it by the probability density of E'-

PAE, = Z Iap, (ET).
Er€S,
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resulting in the final dispersion matrix

b _ Piap,ar,
DAEg AEr — .
* PAES

In analogy to equation (5.4) the relation between estimated and true energy can then be

expressed using matrix multiplication of py, with count vectors g and f

g=vrn/f

Now the measurement process can be written down in discretized form equivalent to equa-
tion (5.5)
g=DB+ Pp (C © A) Lobs- (5.8)

The instrument response functions, pp and A are stored for each offset bin ©. The data
format introduced in the previous section 5 stores the energy dispersion information in a
modified form. The energy migration pn = %—E;t is calculated for each simulated event an then
distributed into bins of with Ay

> (wEmes, lap(Wlag, (ET)
PMApAE, = PAp . (5.9)
T

Speaking in terms of histograms: The IRF contains a two-dimensional histogram in bins of
Ay and AE7p. The right-hand side of figure 5.1 shows FACT’s energy migration matrix in
the offset range Af = [0°,1.125°). The left side of figure 5.1 shows a plot of the effective area
of the FACT telescope. The IRFs are stored according to the open gamma-ray astronomy data
description (OGA) which I mentioned in the previous section. The OGA defines column
names, units, dimensions and header keywords necessary to store the IRFs into FITS files.
The IRFs are stored as multidimensional arrays in binary tables according to the BINTABLE
extension of the FITS standard [136, S.7.3] and appendix B of [47]. More details are given in
the official OGA documentation [52].
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Figure 5.1: The figures in the left column show the effective area of the FACT and H.E.S.S. telescopes.
The effective area is split into offset bins between 0° and radius of the field of view. It is largest near
the center of the field of view, where images of the air showers are still fully contained within the
telescope’s camera. The effective area for FACT takes into account only those events which have been
reconstructed to be originating within a radius of 0.17° form the true, simulated, source position. The
effective area for H.E.S.S. applies no directional cut. The right-hand figures show energy migration.
FACT’s migration is valid between 0° and 1.125° and H.E.S.S” between 0° and 0.5°. Each column in the
migration matrix sums to unity as defined in (5.9). At the time of producing the FACT IRFs, not much
simulated gamma-ray data was available and so the matrices for H.E.S.S. use a much finer binning in
both energy and offset.
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5.3 Background Estimation

The first step performed when measuring the energy spectrum of a point source is to create
a count spectrum. In most cases the positions of the point sources are known from measure-
ments in other wavelengths, most often radio and optical. As described before, an IACT
produces a list of reconstructed energies and directions. All events within a predefined radius
of the point source’s position are selected and distributed into bins of estimated energy F,
building the count spectrum. This count spectrum is called IV, as it counts the number of
events in the signal region. Despite best efforts to reduce the background in the measure-
ments, IACT data is always contaminated by background events, either due to miss-classified
events that were induced by hadrons or due to air showers started by electrons which are
notoriously hard to discriminate. Hence, the count spectrum inevitably contains unwanted
background counts

Non = Nsignal + Nbackground'

One way to estimate the background is to perform off measurements. For these measurements,
aregion in the sky is selected with similar conditions to that containing the source. This might
be a region with similar amounts of background starlight or similar atmospheric conditions.
The large disadvantage of this method is the large amount of wasted observation time. For
each signal observation, some time has to be allotted for off measurements. The WHIPPLE
telescope operated in this manner until the HEGRA collaboration established the wobble
observation mode. The idea is to point the Cherenkov telescope not directly at the source, but
with a small offset. During observation of point-sources, large fractions of the telescope’s field
of view are free from gamma-ray sources. This fact can be used to estimate the background
contamination of a count spectrum. Background events are sampled from this off region
using the same criteria that were applied when selecting the data in the signal region. This

will result in a measured count spectrum for the off-region

taNoff ~ Nbackgrounda

where t,, is the fraction of area covered by the on and off-region and their respective exposure
times. Choosing off-regions is not trivial. The signal, or on, region position is fixed due to
the location of the source. The radius of the region depends on the angular resolution of the
directional reconstruction. The off-region needs to be large enough to get enough statistics
and at the same time have a similar instrument response as the on-region. As visible in figure

5.1, the instrument response function varies strongly within the field of view. The selection
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Figure 5.2: A typical observation in wobble mode. In this hypothetical observation, the supernova
remnant in the center of the image is the object of interest. Two pointing positions are marked by white
pluses. The small white circles indicate the off-regions. They are positioned on the edge of a circle
around their respective pointing position. This way the background can be measured in the same
field-of-view offset © as the gamma-ray source. Regions in the sky which contain other gamma-ray
sources are excluded from the choice of off-regions.

process needs to take the inhomogeneous shape of the IRF into account. In the simple case of
radially symmetric acceptance probability, which is roughly the case for many observations,
one can select regions with a similar offset ¢ as the on-region. This method is called reflected
regions and is just one of many ways to estimate the background. A comparison of methods
can be found in [30]. Figure 5.2 shows how the reflected regions are selected for wobble
observations. Once the off-regions have been selected, the background contamination of the
signal’s count spectrum can be estimated and we are left with N, and N,g. Now we can

build a statistical model to estimate the energy spectrum of the observed source.

5.4 Statistical Modeling

The count spectra measured for both N, and Vg can be modeled by Poisson distributions.
Each bin in estimated energy, i.e. each entry in N, or g, is the result of a counting process.
Each value in N g is the number of accepted events in the off-region within a fixed range of

estimated energies A E;. Hence, each entry is distributed as

Pyge; ~ Poisson(uy ).
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The Poisson distribution models the number of independent events in a fixed space or time

range. Its probability mass function is defined as

ple
PPoisson(k) = o (5.10)

where k is the number of events and 1 is the mean of the Poisson distribution and its only

parameter [50, page 287]. The counts in the on-region

Non = N, signal + N background — N, signal + Lo Nofr

are the result of two independent poisson processes. The mean of the counts in the on-region
is the sum of the mean signal count pi, and the mean background count ¢, 11;,. Consequently,

the counts in the on-region are distributed as
Pon,i ~ POiSSOl’l(ILLSJ + touub,i) :

We are interested in finding the mean of the signal counts /., from the observed data vectors
Ny, and Ng. The likelihood of the observed data given the parameter vectors y,, 11, can be
expressed as the joint distribution of the background and signal. Since these processes are

independent of each other, the joint distribution is simply the product of the two likelihoods
L(Nog, Notr ta | 15, 15) = [ ] Poni (Noni | 5,5 + tativ) - Potei(Nofes | i) (5.11)
i

The number of free parameters in £ depends on the number of energy bins in the count
spectra
Mparams = dim(us) + dim(/%) = dim(Non) + dim(Noff)-

We are only interested in finding the parameters which best describe the data under the given
likelihood. Hence, the absolute value of the likelihood is of no importance. It is often easier
to work in the equivalent formulation of the problem by applying the logarithm and dropping

all terms which are constant with respect to the parameters

Noni — sitTtally i NOffﬂ' —Hb,i
log(£) =lo H (Ksi + tatni) e (o ttatns) i € ’
8\m) =08 Nop ;! No !

i on,i*

= Z Nogti1og(1y,5) + Nonji log(pesi + tatin i) — (ta + Dty — psi- (5.12)

1
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The p1, can be calculated by assuming a spectral model and calculating the gamma-ray flux of
true energy N (Er) and feeding the result through the detector’s response function. This es-
sentially reduces the number of free parameters in the likelihood to the number of parameters
in the spectral model. Section 5.6 will describe this process in detail. Alternatively, the count
spectrum can be fitted directly by applying the energy migration matrix to a count vector
as outlined in the section about unfolding 5.7. Often no such instrument responses can be
supplied for the background counts as it would require expensive simulations of hadronic
interactions in the atmosphere for different observation conditions. In many use cases, the
likelihood parameters for the background counts 14, are of no particular interest in terms of
physics. The value of y, carries no information about the actual gamma-ray source that is
being observed. Hence, the 14, can be considered as a nuisance parameter to this statistical

model. There are three ways to deal with this.

First, interpret the background measurements as some form of God-given truth and discard

any uncertainty about it. The likelihood in this case only consists of a single Poisson term
E(Nona Noffa tac | Hs) ) = H Pon,z' (Non,i ’ Hsi + tozNoff,i)'
i

Second, disregard the 14, by building the profiled, or concentrated, likelihood and expressing
the 14, as a function of the other parameters. The profiled likelihood only considers the
subspace of the likelihood where m%ﬁ = 0. Intuitively speaking, the profiling selects
only the ridge in the likelihood landscape in which the nuisance parameters maximize the
likelihood [35, page 188]. Applying the partial derivative with respect to 1, and setting it to

zero yields
Olog(L) _ Nyn n Nonta
Oy R )
This equation can be solved for y;, resulting in an expression which depends on N, ¢, tt,

and Nyg

—1=0. (5.13)

&7

[y = Noffta + Nonta - touus — Us — \/E
’ 2 (to + 1) ’

where
2 2 2 2 2
K:ta(Noﬁ+2Noff(Non+:us)+Non_2Non/~Ls+:us>+2ta:us((Noff_Non)+:us)+,u5'

This expression can be substituted into (5.12) resulting in the profile likelihood which has
no dependence on i, anymore. This profiled likelihood is known as WSTAT among X-ray

astronomers [65] and some H.E.S.S. members. It is a common choice for fitting spectral
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models to IACT data. Literature about it is sparse, however. Johannes King’s dissertation

gives an exhaustive review of its properties and potential biases [92].

The third way to deal with the 1, is to allow them to remain free during likelihood max-
imization. While this increases the number of parameters in the fit, it properly takes any
statistical uncertainty in the background measurement into account. In the following sec-
tions I will use the full likelihood as it is given in (5.11) including all nuisance parameters.
Likelihoods like these are very common in high-energy physics. Often they are maximized
directly using iterative numerical optimization methods. Errors on the resulting parameters
are then estimated by building frequentist confidence intervals using likelihood-ratio tests.
For high-dimensional problems, these methods quickly reach their limitations in terms of
computing time and robustness. Especially when dealing with many nuisance parameters,
the Bayesian approach can be easier to use and interpret. In section 5.6 I use Markov-Chain
Monte Carlo (MCMC) sampling on the full posterior distributions including all nuisance
parameters from the background to fit a spectral model. Some basics about MCMC are given

in the next section.

5.5 Posterior Sampling using Markov Chain Monte Carlo

There is a plethora of specialized algorithms to sample random variates from common uni-
variate distributions. The Ziggurat algorithm [108], for example, is one of these specialized
methods for sampling numbers from a Gaussian distribution. Typical likelihoods and their
posterior distributions, like the ones build in the previous section, cannot be sampled directly
as they do not resemble any common probability distribution and are highly problem-specific.
Additionally, these likelihoods are often expensive to compute, which makes simple rejec-
tion sampling highly problematic in terms of computing cost. The likelihood computation
sometimes includes the entire detector simulation or numerical integration routines over the
instrument response functions. The next section 5.6 will show an example of that. Markov
Chain Monte Carlo (MCMC) methods can be used to sample arbitrary multivariate probabil-
ity distributions. In this case we want to create samples from the posterior distribution defined
by our likelihood and our prior assumptions on its parameters. The posterior distribution is

build from the likelihood using Bayes’ theorem

() L(x | p)

p(p|x) = o

45



5 Spectral Analysis of IACT Data

where p is the parameter vector, x is the data vector, L is the likelihood, and 7(u) is the
prior distribution of the parameters. The normalization g is often omitted from the equation.
Its calculation g(x) = [ 7(u)L(x | p)dp is expensive when 1 has many dimensions and,

maybe more importantly, the shape of the posterior does not depend on the normalization.

A simple form of a Monte Carlo method to tackle this problem is the method of rejection
sampling. Rejection sampling makes use of a proposal density (), which is simpler than p()
in the sense that we can directly draw samples from it. Following the definition in [104], we

assume fOI‘ some constant ¢
cQ(p) > p(p) Vp.

We draw two random numbers. First, /" is sampled from @ and then a uniformly distributed
number u € [0,cQ(u')] is chosen. Add pi' to the set of samples if u < p(y') and reject
it otherwise. The larger the target density p(u) with respect to p, the more samples get
accepted. If () and p are of similar shape the process is relatively efficient. If not, less samples
get accepted and more time is spent on computing rejected samples. This simple approach
gets problematic in high dimensions. Finding a reasonable proposal density () might prove

to be impossible without choosing large values of c.

The Metropolis-Hastings [77, 113] method is a Markov Chain Monte Carlo method which
alleviates some of the problems mentioned above. The samples generated by Markov Chain
methods are generally not independent of each other. As the name suggests, the samples are
building a connected chain. Now the proposal density Q(u; 11(t)) depends on the current
state ¢ of the chain p(0), (1), ..., u(t). In this case the shape of ) is more or less irrelevant
to the problem. As [104, page 365] suggests, () might be standard normal distribution centered
on the current position j(t). Again, we generate a proposal i’ from @ and either accept or
reject it based on a probability. The probability to accept 1’ as the new u(t + 1) for the
Metropolis-Hastings algorithm is

p(p) Q(u(t); )

= min| 1, ,104, 66]. 5.14
Paccept mm( p(u(ﬂ)@(mu@))) 105 10% page 3661 519

If a new sample gets accepted, it will be added to the chain. If not, the old state is used
again. In this case the p(t + 1) = p(t) and the chain contains the same sample twice. It
can be shown that for ¢ — oo, the chain p(t) converges in distribution to kp(u), where
k is an arbitrary constant [100, S.21]. Determining the speed of convergence of a MCMC
chain is difficult. Even making a reliable statements about wether a chain has converged is

not an easy task. In practice the number of required samples in a chain is estimated using
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its autocorrelation length [63, $.3]. A modified variant of a Metropolis-Hastings algorithm
was used in chapter 4 to fit the SED model of the Crab Nebula to flux points. This MCMC
algorithm uses an ensemble of samplers to generate proposals in parallel. It is implemented
in the open-source emcee project [63]. The algorithm implemented in emcee is very robust
for many use cases and easily executed in parallel. If the evaluation of the model p(u) is
expensive or the acceptance fraction is too low, building a long enough chain of samples
might still take too long. The proposal distribution () essentially guesses the direction in
which the chain should move. We can use information about the shape of p to avoid the

random walk behavior of the chain.

Hamilton Monte Carlo methods use the gradient of the (log) posterior with respect to p
to generate proposals. This method is inspired by the physics of hamiltonian dynamics. In
addition to the parameter vector = := u we sample a momentum vector m. We interpret the
target distribution as a physical system with a Hamiltonian for the position variable x and

the momentum variable m
H(z,m) = E(z) + K(m), (5.15)

where E is the posterior distribution of interest, the “potential energy” in terms of Hamilton
dynamics, and K o m” m models the “kinetic energy” of an object bound to the surface of

p(z). We sample the canonical distribution of system states

H(z,m) —E(z) —K(m)

P(z,m) x e =e e ) (5.16)
Any target distribution p(x) can be expressed as a canonical distribution over energies by set-
ting F(z) = —log(p(z)). The MCMC chain now consists of two variables per time step. The
momentum variable m is of no interest to the inference made on the model. It is simply a tool
to apply Hamilton dynamics to this system. Since P(x,m) can be separated into marginal-
ized distributions, the m; in the chain can simply be discarded once calculation is complete.
Two proposals are generated per time step to create the next sample (z(¢ + 1), m(t 4+ 1)) in
the chain. A momentum m is proposed from a standard normal distribution. A path of
length L starting from (z;, m,) is followed according to the constrains set by Hamiltonian

dynamics

(5.17)
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This can be done using any solver which preserves the volume of the parameter space. The
position and momentum found at the end of the path is the new proposal (', m'). Equivalent

to the Metropolis step shown in equation 5.14, this proposal gets accepted with probability

Daccept = Min| 1 M =min| 1 eiH(z,’m/>+H(m(t)’mS) (84, 104, page 388].
o " P(x(t), my) ’

(5.18)
In a physical interpretation this implies that samples whose total energy H is smaller than

that of the the previous sample will always get accepted.

In the following section I use the PyMC3 [131] project to sample the full model as specified
in equation 5.11 using a variant of the Hamilton MCMC method. Explicit knowledge about
the gradient of the likelihood is still needed. This includes the forward propagation of an
astrophysical flux model through the detector’s instrument response function as discussed in

the next section.

5.6 Fitting Spectral Models

PyMC3 provides a convenient high-level user interface to create statistical models by com-
bining and nesting elementary distributions. The stochastic model is transformed into a
computational graph by the Theano [138] backend. The graph connects all input variables,
the spectral parameters in this case, to the outputs, the value of the posterior distribution.
Like many of its competitors, e.g. PyTorch [128] and Tensorflow [109], to name just two,
Theano optimizes runtime by pruning paths in its computational graph. Once the graph
is optimized, Theano creates C++ code for execution on the CPU or CUDA [120] code for
execution on the GPU. The resulting chain of operations is then automatically differentiated
using the backpropagation algorithm [72, 102]. This way PyMC3 can use the full gradient of the
posterior with respect to the spectral parameters to run Hamilton Monte Carlo algorithms.
PyMC3 [131] uses the NUTS [84] algorithm to solve equation 5.17. It requires no additional
tuning of path length or step size. The PyMC3 project supports the usage of custom operations
in order to model more complex processes. This is needed to model the measurement process
of an IACT. The main hurdle that needs to be overcome in order to use PyMC3 is the imple-
mentation of a custom differentiable Theano operation which describes the interaction of the
spectral model with the instrument response. The following steps are applicable to all sorts of
spectral models; however, I will concentrate on the log-parabolic spectral shape introduced

in section 2.4. Fitting this model means to find those parameters which are most likely to
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represent the observed data according to the statistical model we defined in section 5.4 in
particular in equation (5.11). For a log-parabolic spectrum we are fitting three model param-
eters N(E; Ny, , 3) as defined in equation (2.10). The likelihood has two parameter vectors
s and py,. Each p, models the expected number of observed counts as predicted by the
assumed spectral model applied to the instrument’s response function. In other words, the
entries in the j1, vector represent the expected counts in the corresponding bin of estimated
energy as seen by the telescope’s analysis. As discussed before, the background parameters
{tp, are considered nuisance parameters. They do not carry information about the gamma-ray
source under observation. As seen in section 5.2 the number of expected events /1, can be
calculated from the model NV when both the migration matrix pp and the effective area A g
are known. As per equation (5.8) the expected number of counts from the gamma-ray source

for an observation of length ¢, is

Hs = Pp (C © Aeff) Lobss (5.19)

where © is the element-wise multiplication operator and c is the expected gamma-ray flux
from the discretized spectral model. The spectral model is discretized per energy bin AE

to get the flux within an energy range from the differential flux

CAE, = N(E; Ny, a, 5)dE. (5.20)
AEp

Equation (5.19) can only be applied if the size and number of energy bins matches those of
A.g and pp. The same has to be true for the observed data V., and Ng in order to calcu-
late the likelihood. In case the binning does not match, the IRFs need to be recomputed or
interpolated and re-binned to fit the discretized spectral model. The energy bins are always
logarithmically spaced. This is necessary for two reasons. First, as discussed in chapter 2,
gamma-ray distributions from astrophysical source roughly follow power-law with a negative
index. The number of observed events steeply declines with increasing energy. Uniformly
spaced energy bins would mostly be empty. Second, the simulated events also follow a power-
law distribution. This has practical reasons. The higher the primary particle’s energy, the
larger the number of secondary particles in the shower and consequently the computing re-
quirements. Hence, the simulated particle spectrum is often built as a power-law distribution.

Logarithmic bins in some variable £ and basis b are defined as

log, (E;y1) = log,(E;) + w, (5.21)
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Figure 5.3: Counts from the signal and background regions of the telescope’s published datasets of
the Crab Nebula. The thick colored lines show the counts in the signal region. The thin lines show the
corresponding background counts a/Ng. The number of bins is the same for all data for both signal
and background regions. The MAGIC and VERITAS telescopes are more sensitive in the lower energy
ranges than FACT. FACT, being only a single telescope with a 4 m mirror, collects less light than the
other telescopes. H.E.S.S. can only observe the Crab Nebula at very low altitude angles because it is
located far south of the equator in Namibia. This makes H.E.S.S. less sensitive to this particular source.
Note that the estimated energy can differ wildly between telescopes. Energy estimators have inherent
biases and finite resolutions. A 1TeV shower seen by FACT will have a different estimated energy
than the energy estimated by the MAGIC telescope on the same shower.

where w is the constant, logarithmic bin width. The bin edges can hence be calculated as

By = posBte _ gloaEyw _ pyw, (5.22)
This form of binning is used for both estimated and true energy in the stored IRFs and the
observed count vectors. The data I use to fit the Crab Nebula is binned with 20 bins per
decade of energy. It is important to take all bins into account in which the telescope still has
a non-zero trigger probability. Event counts can migrate between bins when the predicted
count vector in true energy (¢ ® A.g) is multiplied by the dispersion matrix. For the data
fitted here a total of 80 bins in true energy are used. Figure 5.3 shows the on and off counts for
the Crab Nebula data published for the joint analysis in the previously mentioned paper [122].
The figure shows the number of recorded events per bin in estimated energy. This data will
be used to fit a flux model of the Crab Nebula.
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5.6 Fitting Spectral Models

The vector of expected signal counts y, used in the likelihood defined in equation (5.11)
depends on the parameters of the spectral model. In order to use Hamilton Markov Chain
methods, the gradient of the posterior p(u,(Ny, cv, 8,), iy | Nop, Nog) with respect to the
spectral model parameters Ny, v, and 3 has to be calculated. I use the automatic differentia-
tion capabilities of Theano and PyMC3 to build the gradient. In a slightly oversimplified view,
automatic differentiation finds the gradient of a function by repeated application of the chain
rule. Doing so for the likelihood £ is not problematic as it consist of elementary functions,
the Poisson density, with known gradients. The signal parameter 1, (N, «, 3, ) includes the
calculation of the integral in equation (5.20). The integral can be solved analytically. To
simplify, I replace the energy E in equation (2.10) with a unitless variable  and drop the
normalization Ej. The integral becomes

=N, /$a5’ log(@) 14

= No/exp(—alog(:v) - g logQ(az)) dz,

where 5/ = log(ﬁ10) and the substitution z = ¢°5®) was used in the last line. Now the
integration variable is substituted with u = log(z) and du = 1 dx. Solving for du and
log(x)

replacingx = e = e" yields

/N(a:; Ny, o, f)dz = Ny / exp(—au — ﬁ/u2) exp(log(u)) du

=N, / exp(—((a — 1)u + f'v%)) du
_ NO;\/E exp<<a4_ﬁ,1)2> erf<1og(:c)\ﬁ + (;‘\;;), (5.23)

2
where erf(z) = % J. Ox e~ " dtis the error function. The last step in equation (5.23) is the solu-
tion to integral number 2.325.13 in the integral table compiled by Gradshteyn and Ryzhik [70,

page 108]. The Theano library includes a symbolic tensor operation to compute the error
function and its derivatives. Hence, equation (5.23) can be used to sample the posterior
distribution with PyMC3 having all gradients available via automatic differentiation. Unfor-

tunately, the integral’s solution is very sensitive to round-off errors. To calculate the definite
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5 Spectral Analysis of IACT Data

integral of N (x; Ny, «, 3) between points a and b, the difference between two error functions

has to be evaluated

/ab N (z; Ny, o, B) da o [erf(log(b)\ﬁJr K) - erf(log(a)\/gJr K)

where K = (a—l)/z\/; . The error function converges quickly to lim,,_, . erf(xz) =1 for large

. (5.24)

values of = and, since erf is odd, lim,_, . erf(x) = —1 for small values of = respectively.

The quick convergence becomes apparent

1.0 - in figure 5.4, which shows the error func-

0.5 - tion for values close to 2. During Markov

= chain sampling, unfavorable combinations
E 00" of o and ' can get evaluated where g is
—0.5 - much smaller than «. For these configu-
_10- rations the argument of the error function
9 4 0 1 o  easily reaches values larger than 6, at which

x point I-erf(6) ~ 10", This value lies far be-

Figure 5.4: The error function erf(z) quickly con- low the machine epsilon for IEEE floats with

verges to 1. For values of x > 6, the implementa- 64 bits of approximately 2.2 x 107'°. For
tion of the error function returns 1 due to the lim-

) “ i - - aue : this reason, large values of a, b, or K lead
ited precision of 64 bit floating-point arithmetic.

to rounding errors when evaluating the er-

ror function. For these values the error function will be rounded to unity erf(6) = 1. Hence,
64 bit

the evaluation of f; N (z; Ny, av, B) dxr wrongly returns 0 for large parts of the sampled pa-
rameter space due to the limited floating point precision. The problem can be circumvented

by approximating the integral in equation (5.20) by numerical methods.

Despite the fact that Hamilton Monte Carlo needs less sample values than a non-Hamilton
approach, several thousand samples are still needed for this particular posterior. Since the
gradient gets evaluated for each energy bin independently, the total number of integral com-
putations quickly reaches many millions. While it is a relatively crude way to approximate
the area under a curve, I implemented the trapezoidal rule since it can be easily vectorized to
compute the integral in all energy bins at once. The trapezoidal rule approximates the definite
integral ff f(z) dx by partitioning the integration interval into several smaller regions in
which f(x) is assumed to be linear. Any function f(x) can be approximated by a combina-

tion of linear functions. The finer the partitioning, the better the approximation. The area
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under the linear function in partition ¢ is simply the width of the partition Ax; = z;, 1 — =

times the average value of f(z) in that partition

N-1

/fd:rz

1=0

(f(x;) + f(2i41)) Ay, (5.25)

N |

where N is the number of partitions and a < x; < z;,; < b. This can be easily generalized

to integrate vector functions f : RM - RM, where M is the number of energy bins in the

model. Using the trapezoidal rule, the gradients 2¢ Fo> 8 5> and 6;\‘; can now be expressed as a

sum of elementary functions. In addition to the potential speed improvements, this allows
the use of automatic differentiation to find the derivatives of the posterior distribution with
respect to the model parameters. At this point we have all necessary ingredients to define the
model priors and sample the posterior distribution using PyMC3. The priors on the spectral
parameters are chosen to be uniform distributions U which have their lowest bound at 0
to avoid negative values during sampling. In this context the uniform prior conveys the
lack of knowledge about these model parameters. The calculation of the i, vector given in
equation (5.19) is performed separately for each observation taking into account the different
instrument responses per observation. The complete statistical model can be summarized

as

Ny ~U(a=0,b=00)
a~U(a=0,b=00)
B~ U(a=0,b=00)

NZPD NOa 7/6)®Aeﬂ)t0bs

Observations
wy ~ U(a=0,b=00)
p ~ Poisson(A= i, + to iy | Non) - Poisson(A =y, | Nog).

This set of equations is an almost verbatim copy of the PyMC3 code used to define the model
in Python. I sample the model with the N, and Vg data as depicted in figure 5.3 for each
telescope separately. The Markov chain for this fit was built from 10 000 samples in 6 chains.
On recent multi-core CPUs the sampling will take less than a minute per dataset when the
chains are sampled in parallel. Section 5.6 shows the results of the sampled parameter values.
The lines in figure 5.5 show the fitted models together with the SSC model calculated in

chapter 4. The fit ranges for the single telescope were chosen according to the ranges selected
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5 Spectral Analysis of IACT Data

Table 5.2: Fit results for a log-parabolic model as defined in equation (2.10) for the statistical model
defined in section 5.4 including all nuisance parameters. The numbers are computed by calculating the
16, 50t and 84t percentile of the marginalized sample distributions. These numbers are compatible
with the ones presented in our paper [122], which used a numerical likelihood minimization to find
the best fit and a likelihood-ratio test to determine the errors. As shown in figure 5.5, these parameters
closely match the shape of the Crab Nebula SED fitted in chapter 4.

Telescope No/10™''Tev ' cm ?s™" «a I6]

FACT 3.4710:31 2.48102L 0567038
MAGIC 3.99+0-29 2.58T080  0.367010
H.E.S.S. 4.211023 2.481011 0311018
VERITAS 3.8610-38 251701 0.461028

in our paper [122] to make the results comparable. Appendix A.5 gives some implementation
details for the PyMC3 and Theano programs used to produce these results. All code necessary

to reproduce these results is available at
https://github.com/tudo-astroparticlephysics/ll_experiments ©

The repository contains two command line applications which can read the published data
and store the sampled Markov chains to disk. A configuration file allows to modify the energy

ranges and number of bins.
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Figure 5.5: Results of the PyMC3 fit to the published data used in our paper [122]. The best fit is taken to
be the median of the sample values in the Markov chains. The colored lines indicate the log-parabolic
spectral model corresponding to these parameters. The error bands around the spectral lines are
computed by evaluating the spectral model for 5000 randomly chosen parameter combinations from
the Markov chain. Of these values the area between the 16 and 84t percentile is shown. As a visual
reference, the dashed black line shows the best fit result of the SSC model from chapter 4. Note that
even though flux points from H.E.S.S. and MAGIC are used in chapter 4, the data used here comes
from different observations. The SSC model takes a much larger energy range into account and uses
data from a different observation period. It does, however, match the fitted spectra remarkably well.
The pivot point for the inverse-compton emission of the SSC model is lower than that of the fitted
log-parabola models. This could indicate a bias in the assumed spectral model for the fit for which the
pivot energy was fixed at 1 TeV. This effect might be mitigated if the IACT could detect lower energies.
The high-energy part of the fitted models also drops off more quickly than the SSC model. This could
indicate a bias in the SSC model due to the meager amount of flux points in the TeV range used to fit
its parameters.
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5.7 Unfolding of Flux Points

In the previous section an astrophysical source model was fitted to measured count spectra.
The predictions of the assumed model were fed through the detector’s response to imitate
the process of observing the source with a telescope. The resulting count spectrum was
then compared to the measured count spectrum. The unfolding approach is independent
of a physical source model. Unfolding is a ubiquitous problem throughout particle physics
and image processing. Detectors in high-energy physics often observe the by-products of
particle interactions, as is the case for IACT measurements. The primary particles properties
are obfuscated by finite detector resolution and the stochastic nature of particle interactions.
Wherever counts of particles are measured, limited acceptance probabilities obscure the
true particle distributions. In order to find the true distribution of the primary particles
with respect to some observable, e.g. kinetic energy, the detector effects have to be reversed.
Literature about unfolding often describes the measurement process in terms of an integral

equation
o(x) = /Q A y)f(y) dy = (LF)(y). (5.26)

In this abstract representation, A describes the detector’s response to particles with respect
to the observable y and true particle distribution f(y). The linear operator L describes the
operation in terms of an integral transform. The distribution of observed events with respect
to some estimated variable is g(x). We are interested in finding the true distribution f from
the observed g. In mathematics this kind of task is called an inverse problem. Research about
inverse problems is plentiful. With the rise of medical imaging techniques and the availability
of cheap imaging sensors, interest in solving these problems has increased over the recent
decades. The excellent review article “Modern Regularization Methods for Inverse Problems”
provides a rather extensive overview of the historical development and current state-of-the-
art methods [29]. Popular methods for tackling inverse problems, especially in the field of
high-energy physics, include the expectation-maximization method [54], variational methods,
building the SVD inverse, and even machin- learning approaches like DSEA [42] and network-
based approaches like [13, 45, 88]. The machine-learning based methods require simulated,
labeled, data to build a model. No simulated data is available in the open datasets used in
this chapter and a variational method is employed. Problems such as equation (5.26) are
often ill-posed as no unique solution exists. The general idea to solve the ill-posed problem
is to approximate it by well-posed ones [29, page 3]. To ensure the existence of a unique
solution, the space of possible solutions is constrained via regularization. Variational methods

solve equation (5.26) by minimizing a loss function F(g, (L f)(y)), which in the case of least-
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5.7 Unfolding of Flux Points

squares regression is simply the L? norm of (L f)(y) — g(x). The shape of the solution can

be constrained by including a regularization term in the loss function
9= arg}ninH (LA)(y) = 9| +T(f(¥)), (5.27)

where T(f(y)) is the so-called Thikonov regularization term. The Thikonov function 7" sup-
presses undesirable solutions and often depends on a parameter « which controls the strength
of regularization. A common choice for the regularization term is T( f(y)) = ||a.f (y)|| which
penalizes solutions with large norms. This special form of regularization is called L? regular-
ization or ridge regression in the machine-learning community’s vernacular. Another way
to simplify the inverse problem is by approximating the solution f(x) and the operator L by
a discretized form. The equation above then simplifies to a matrix multiplication x = Ay.
This can be understood as a form of regularization, where the solution is forced into the real

)

vector space RY™® | In the matrix formulation the problem can be solved by variational
methods just as well. The loss function F' can be motivated from statistical arguments as
well. The likelihood of observing g when given the true distribution f together with a a-
priori probability density 7(f) can be used to build the posterior distribution p ~ 7L as
seen in section 5.5. In a statistical interpretation this posterior distribution acts as the loss
function. The attentive reader will notice that this exact problem, in its discretized form, has
already been solved in the previous section 5.6. The equation (5.26) above corresponds to
equation (5.4) which in its discretized form becomes equation (5.19). In the previous section
we regularized the problem further by constraining the vector of true counts c to follow the
shape of the log-parabolic spectral model by integrating the model in energy bins as stated
in equation (5.20). For IACT measurements we can solve the inverse problem to directly
produce discrete flux points. In this case the flux of the source is assumed to be constant

within an energy bin so that equivalently to equation (5.20)

cary = | N(E)dE = Nap, AFy,
AEp
where N .. is the flux of the source in energy bin AEp. All that has changed in comparison
to the previous section is the shape of the spectral model. The new spectral model has as
many parameters as the number of bins in true energy, which makes the problem harder
to solve. Despite the fact that the model-dependent approach and the unfolding approach
can be interpreted, and implemented, as one and the same variational problem, high-energy
physicists make a clear distinction between the two methods. The input data remains the

same, but is binned differently. I use 5 bins per decade of true energy and 20 bins per decade
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of estimated energy. Two additional overflow bins are used on the true energy axis in order to
cover the entire range of energies in which the trigger probability is not zero. The fit range is
selected from the range in which the number of excess counts Neycess = Non — Lobs Vo Meets
a threshold of at least 4 counts. More energy bins can be used for longer observations with
more data or when constraining the likelihood with stronger priors. The newly binned count
spectra from the signal and background regions in the sky are entered into the likelihood from
equation (5.11). The vector of expected counts from the background region i, is directly
constrained by the entries in N 4. Just as we did in the previous section, the background
counts /u, are considered to be nuisance parameters without further physical meaning. They
are only needed to calculate the expected counts in the on-region p, + t, 1. As in the
previous section I use PyMC3 to sample the posterior using Markov chains. The prior for the
expected flux NV is an almost flat normal distribution which is truncated at 0 to avoid sampling

of negative numbers. A simplified view of the model is given by the equations below.

N ~ TruncatedNormal(y =0, 0 =50)
tp ~ Ula=0,b=00)

Hs ™~ Z Pp (NAET © Aeff) Lobs

Observations
p ~ Poisson(A= g + to 1y | Noy) - Poisson(A=py, | Nyg)

Figure 5.7 shows the resulting flux points overlayed on the spectral models fitted in the
previous section 5.6. The Markov chain was built from 3000 samples in 6 chains. Table 5.3
lists the flux points for each telescope including their 16" and 84" percentile. The fitted fluxes
are correlated with their neighboring bins as shown in figure 5.6. Correlations are calculated

between the samples in the Markov chain using Spearman’s correlation coefficient.
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Figure 5.6: The figure shows the correlation between the parameters as sampled by PyMC3 for each of
the 4 telescopes. For unfolding there are as many parameters as energy bins. These correlations show
the interdependence between neighbouring bins in the resulting fluxes. Bins with lower energies are
on the top-left of each matrix. High correlations indicate a strong migration between bins in energy
ranges, where the dispersion matrix pp has a rather broad distribution. This effect is stronger towards
the lower end of the energy range, at which point the energy estimation has a larger resolution. The
diagonal elements in the matrices are all equal to 1 and masked out in these pictures. The overflow bins
are not included in this representation. The low-energy bins for the FACT dataset show the highest
correlation in this comparison. Indeed, the comparatively large amount of background events in the
dataset and the large energy resolution visible in figure 5.1 have an adverse effect on the accuracy of
the unfolding, not to mention the fact that the energy dispersion matrices py, for the telescopes are
calculated from simulations which cannot represent real data perfectly.
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Figure 5.7: Results of the PyMC3 fit to the published data used in our paper [122]. The black error
bars show the unfolded flux points. As before, these values are calculated from the 16, 50t and 84t
percentile of the marginalized posterior distributions gained from the Markov sampler. The colored
lines indicate the log-parabolic spectral model as fitted in the previous section 5.6. The fit ranges for
the unfolding approach are evidently smaller than those used for the spectral fit. As mentioned in the
text, the fit ranges were found by selecting the bin edges in which the distribution of excess events
had at least 4 counts. This rather simple heuristic to find smaller fit ranges is required to help the
PyMC3 sampler to converge. Intuitively speaking, this is a consequence of the fact that the spectral
model regularizes the inverse problem and constraints the shape of the solution. Hence, the direct
fitting of flux points has larger uncertainties and can only give reliable estimates in the energy range
where sufficient statistics are available. Still, the fitted flux points match the spectral models form the
previous section quite well considering the fact that the underlying model assumptions are utterly
different.
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Table 5.3: Results of the PyMC3 unfolding. Similar to the results presented in the previous section 5.6,
these values are calculated from the 16%, 50t and 84 percentile of the marginalized sample distri-
butions. The input data, count vectors in estimated energy, is discretized into 20 bins per decade in
estimated energy. The unfolded flux points are distributed into 5 bins per decade in true energy. The
additional overflow bins are not shown in the table. The Markov chain consists of 3000 samples in 6
chains and can be sampled in several seconds on a modern CPU.

Energy / TeV Flux/ TeV ' s cm™
MAGIC FACT VERITAS H.ES.S.
0.06 0.10 (1.034328) 107°
0.10 0.16 (3.7975:83) 107° (2.0571:88) 1077
0.16 0.25 (1.63%3:38) 107° (1.42%3:37) 107°
0.25 0.40 (7.194982) 10~ *° (5.25+98%) 10~ *°
040 0.63 (1.873:39) 10 (2.25%8:39) 10 (3.8313%) 107"
0.63 1.00 (8.42+138) 1071 (9.414%18) 10 (6.597138) 107" (6.10%3:88) 10~
1.00 158 () 10‘11 (1.92%5:83) 10‘11 (2.0615:33) 10‘11 (2.24%5:33) 10‘11
1.58 2,51 (3.28%373) 10 (5.2871:73) 10 (4.5513:2%) 10 (8.5711:38) 10
251 3.98 (5.7115:85) 10 (2.3518:80) 10 (2.4115:2%) 10
398 631 (3.5313:37) 10 (4.4713:43) 10
631 10.00 (2.40%132) 107 %

5.8 Notes on Uncertainty Propagation

Error bands like the ones calculated for figure 2.3 and 5.6 cannot easily be estimated by
using standard Gaussian uncertainty propagation. This form of error propagation is often
used when some function f(x) depends on parameters x whose probability distributions are
assumed to be Gaussian and can be described using the covariance matrix V,. In case the
function f is linear in x with coeflicients B it can be written in matrix form as f(x) = Bx. For
any two random variables X, Y and scalars a and b the covariance can be transformed like
Cov(aX,bY) = abCov(X,Y). The elements in the covariance matrix contain the variance
and covariance between the entries in the parameter vector x. Hence, the covariance of the
parameters V, can be transformed into the covariance matrix for the function f by using a
simple matrix transform

Vy = BV,B".

In the non-linear case the function f is usually linearized using its truncated Taylor approxi-

mation to

fm f ) +Jp(x = ),
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where K is some constant and J; is the Jacobian matrix of f. The covariance of f can then

again be written as a matrix operation

T

This approximation works reasonably well in most cases. It can be used whenever the trun-

cated Taylor expansion is close to the true value of f within the region of uncertainty of x [21].

Figure 5.8: This figure, recreated from figure 2
in [21], shows the possible bias introduced by stan-
dard uncertainty propagation.

When propagating uncertainties of fitted
spectral parameters for energy distributions
in astrophysics, this assumption does not al-
ways hold. Even if the assumption of Gaus-
sian uncertainties on the input x holds, the
energy spectra under scrutiny are highly
non-linear and the linear taylor approxima-
tion is biased. Figure 5.8 shows a power-law
E~" for fixed energy and different values of
the index 7y on the x-axis. The figure depicts
the bias that can be introduced when approx-
imating a power-law with a linear Taylor se-
ries. Energy spectra in astrophysics often
have high curvature with respect to the fitted
parameters. Here a power-law with spectral

index +y is shown together with its first-order

Taylor expansion. In this case the uncertainty of v, as indicated by the distribution on the

x-axis, is biased. The true distribution of £~ is shifted and non-symmetric. The error bands

for the spectrum plots shown here and in our paper are build by sampling a multivariate

Gaussian with the covariance estimated by the fitting procedure V. The model is then evalu-

ated for each sampled parameter combination. At each evaluated energy, the percentiles are

noted and the area in-between is marked. This way non-symmetric error estimation can be

performed.
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6 Conclusion

Supernova remnants like the Crab Nebula are the driving forces of cosmic-ray acceleration
in our own galaxy. These objects emit electromagnetic radiation in a vast range of wave-
lengths. Observation from radio, infrared and optical to X-ray and very-high-energy gamma
ray are combined into the objects’ characteristic spectral energy distribution. Most of the
observed light is due to synchrotron emission as discussed in section 2.2. Cherenkov tele-
scopes, however, observe the inverse Compton emission of these sources. A log-parabolic
energy distribution emerges from simple stochastic arguments as shown in section 2.4. This
is compatible with the spectral shape of the inverse Compton emission in SNR as measured
by IACTs shown in figure 2.3. In order to build a spectral model for the Crab Nebula I as-
sumed a single electron spectrum and homogenous magnetic field strength. I modeled the
synchrotron, inverse Compton, and Synchrotron Self-Compton emission of the Crab Nebula
using the open-source naima software. Figure 4.1 shows that this simple model fits the X-ray
and gamma-ray data well. The resulting magnetic field in the Crab Nebula was estimated to
be B =107.8*1% LG.

Open software and common data formats are the key ingredients to reproducible science.
In a joint undertaking between the FACT, MAGIC, VERITAS, and H.E.S.S. telescope collab-
orations, Crab Nebula data was made public in a common data format. This open dataset
contains the event lists and instrument response functions for observations of the Crab Neb-
ula. In section 5.6 I fitted a log-parabolic spectral model to the observations in this open
dataset. The statistical model that describes the measurement process assumes Poissonian
distributions for the events in both the signal and background region of the sky. The expected
values for the distribution have to be calculated from the telescope’s instrument response
function. The full model, taking into account all nuisance parameters, was given in equa-
tion (5.11). The posterior probability of the model is then sampled using Hamilton Markov
chain techniques. In order to use Hamiltonian sampling, the gradient of the posterior with
respect to the free parameters needs to be calculated. This includes the integral term over the
energy spectrum and the application of the instrument response. The analytical solution to
the integral of the log-parabolic spectrum as given in equation (5.23) suffers from numeri-

cal problems. It is possible to circumvent these numerical difficulties by approximating the
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integral with the trapezoidal rule. I then use Theano’s automatic differentiation techniques
to find the gradient for the posterior. Hamiltonian sampling is performed by the PyMC3,
which allows me to sample the model several hundred times per second and CPU core. The
resulting spectra are compared to the full SSC model in figure 5.5. Section 5.7 demonstrates
how the same sampling techniques and the same model assumptions can be used to to unfold

the flux points for each individual telescope.

In the future the PyMC3 project will change its backend from the now defunct Theano li-
brary to TensorFlow Probability [56]. This might allow for even quicker sampling, which
becomes important when thousands of distinct observations are being considered. Once the

Cherenkov Telescope Array is deployed, this will become a relevant use case.

CTA will be the first experiment in high-energy physics that operates as a public observatory.
The large user community requires an open and programming-language agnostic format
definition. While the small data sample is a great test bench for new software and algorithms,

more observational data must be made public in the future.
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7 Introduction

The Cherenkov Telescope Array will be the most sophisticated experiment in the field of
ground-based gamma-ray astronomy to date. The book “Science with the Cherenkov Tele-
scope Array” published in 2019 [134] gives an exhaustive review of the scientific opportunities
that arise with the CTA facility. Once completed, CTA will be able to map the gamma-ray sky
in an energy range from ~ 20 GeV to at least ~ 300 TeV. The unprecedented energy range
will open a new window onto the very-high-energy sky. The lowest energies are invaluable
to study distant extra-galactic sources of gamma rays. CTA’ sensitivity in the GeV range
avoids the absorption of distant sources by interaction with the extra-galactic background
light. The largest energies will allow CTA to search for the extreme accelerators in our own
galaxy which boost cosmic rays into the PeV energy range. CTA will be operated as a public
observatory that serves the entire astronomy community. This is a new development for the
astroparticle community that opens up the possibilities for coordinated multi-wavelengths
campaigns and exposure to the general public. Previously both observation schedules and

observed data were only accessible to collaboration members.

Observation of serendipitous transient events and response to multi-messenger alerts neces-
sitates a wide field of view combined with a small angular resolution. The need for timely
follow-up observations in the era of multi-messenger astronomy motivated the stringent re-
quirements for the short timescale capabilities of CTA. The telescopes in the array are designed
to reposition themselves to any point in the sky within 90 seconds at most. In response to the
recent observation of gravitational waves with the LIGO and VIRGO detectors [5], the slew-
ing times will be increased even further. The study of active galactic nuclei (AGN) will benefit
immensely from the improved sensitivity in the lower energy range and the fast slewing times.
The observation of these distant highly variable objects can lead to a better understanding
of black hole and jet dynamics. A full survey of the galactic plane and the Large Magellanic
Clouds with CTA is planned. The quality of these surveys is limited by available observa-
tion time and angular resolution. CTA’s improved angular resolution compared to current
instruments allows for better source separation in the densely populated Cygnus region in
the center of the Milky Way. Other science goals probe the frontiers of current physics. CTA

will search for Dark Matter, Axions, and quantum gravity effects. To cover such a large span
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of observable energy ranges, CTA will host telescopes of three different sizes. The Large Size
Telescopes (LSTs) are, as the name suggests, the largest CTA telescopes. The LSTs have a
mirror diameter of 23m and a field of view of 4.5°. They are sensitive to the lowest part of
the observed energy spectrum down to several GeV. The first LST was built and officially
inaugurated in October 2018. It is currently in its commissioning phase and its mechanical
structure and camera are being tested. Shower images have been successfully recorded by the
LST camera. The Medium Size Telescopes (MSTs) have a diameter of 10 m to 12 m and a field
of view (FoV) of 6° to 8°. Their highest sensitivity lies in the energy range of approximately
100 GeV to 1 TeV. Two prototypes for the MST are under investigation at the moment. One
is based in Adlershof near Berlin, where its mechanical structure is being overhauled. The
MST-SCT dual-mirror prototype is located at the Fred Lawrence Whipple Observatory in
Arizona and recently received funding to construct a first iteration of its 11 000 pixel camera.
The Small Size Telescopes (SSTs) are built to observe the highest energies. They have large
FoV of about 10° to image the brightest showers in the highest energy range above 1 TeV.
Three SST prototypes have been built so far, two of which are already recording shower im-
ages. The SST-1M telescope in the city of Krakéw in Poland, the ASTRI telescope on the
slopes of Mount Etna in Sicily, and the SST-GCT just outside of Paris.

The final CTA telescopes will be built at two observation sites, one in the northern hemisphere
on the island of La Palma and one in Chile’s Atacama dessert at the Paranal observatory. The
array in the northern hemisphere will observe extra-galactic sources and some local pulsar
wind nebulae. The southern array will concentrate on galactic sources and features a larger
field of view for a chance to catch rare galactic supernova explosions. Due to the nature of
the ubiquitous power-law spectra, large collection areas are needed to catch the rare high-
energy events above 10 TeV. This is why CTA’s southern array layout covers about 4.5 km* and
consists of 50 to 70 small SST type telescopes. The northern array is made up of 4 large LSTs
and 10 to 15 medium-sized MST type telescopes. Figure 7.1 shows the planned layouts of the

northern and southern site. Figure 7.2 shows renderings of three CTA telescope prototypes.

So far, the data for the Cherenkov Telescope Array only exists in simulated form. The goal
of the coming chapters will be to create a fully configurable and reproducible pipeline for
CTA data analysis that matched the physics performance of previous CTA reference analyses.
This new analysis is based on the official CTA pipeline prototype ctapipe, a Python-based
program which is developed in a public repository. Chapter 8 lists all preprocessing steps
that are needed to be performed on the raw, simulated, CTA data. In chapter 9, the machine-
learning methods for background suppression and energy estimation are explained. The

chapter also introduces the aict-tools software, which was developed to facilitate config-
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Figure 7.1: Planned array layout of the Paranal and La Palma sites. This is the layout used for the
simulations throughout this document. The CTA internal designation for this layout is HB9. The
southern array consists of a total of 99 telescopes of which 70 are SST, 25 are MST, and 4 are LST type
telescopes. The northern array on La Palma is made up of 15 MSTs and 4 LSTs. The array layout for
the northern site is more irregular as it is located on a mountain top and has to adapt to the geological
features of the surface. The Paranal site in Chile, on the other hand, is relatively flat. The layouts were
optimized using large-scale simulations described in a paper by Tarek Hassan and others [75].

urable machine learning for IACTs. A fully working prototype for a CTA real-time analysis
is introduced in chapter 10. It is capable of processing tens of thousands air shower events
per second and can easily handle CTA's full data rate under real-time demands. In chapter 11
a full sensitivity curve for my CTA analysis is shown and compared to CTA’ reference curve.

Finally, chapter 12 contains a few remarks on the reproducibility of these results.

69



7 Introduction

Figure 7.2: Renderings of an LST, SST, and MST telescope. The LST on the right side has about four
times the mirror area of the MST on the left. A prototype of the MST structure was built in Berlin
Adlershof where it currently undergoes mechanical testing. Of the three SST prototypes, the ASTRI
model will most likely be the one deployed for CTA. The ASTRI telescope is a two-mirror design
that allows for a very wide field of view without introducing strong aberration effects. All telescopes
use active-mirror-control technology that continuously adjusts each individual mirror facet. This
helps to compensate for the deformation of the telescope’s structure while sources in the sky are being
tracked. The LST structure is mounted on bogies running on a flat track of rail with a diameter of
approximately 24 m. It weighs a total of 103 tons, of which the camera alone makes up just under 2
tons [46]. Its slender-looking design is made possible by the use of carbon fiber composite materials.
This image was rendered using Blender 2.8 [33] with models provided by G. Pérez Diaz of the Instituto
de Astrofisica de Canarias.

70



8 Processing CTA Data

The physics performance of the CTA project can only be gauged from simulated data. Simu-
lations for Cherenkov telescopes as described in section 5.2 track single particles and their
secondary products through the atmosphere. Each single Cherenkov photon produced in
an air shower is propagated to the virtual camera using ray tracing. For a project as large as
CTA, with its vast collection area on the ground, this becomes especially challenging. The
distribution of Cherenkov photons on the ground are too large to store on disk. Instead, the
data is piped directly into the simulation of the telescope’s optics and electronics. With a total
of 99 telescopes on the ground at the Paranal site, this takes up large parts of the entire CTA
computing infrastructure. Air-shower simulations for CTA, as for every IACT, are performed
by the CORSIKA software [79]. The detector simulation is computed by a program called
sim_telarray. This software is maintained by Konrad Bernl6hr and was previously used to
simulate data for the HEGRA and H.E.S.S. telescopes [31]. So far, CTA data for the final lay-
outs only exists in simulated form. However, the development of analysis software already is
well underway. The result of the simulations resemble the data from real telescopes as much as
possible. The simulated data essentially produces uncalibrated raw data. The task of the data
processing for CTA is to read the raw data and reconstruct information about the primary
particles for each air shower. Early CTA analysis was performed by the Eventdisplay [107]
and MARS [117] programs. These ROOT and C+ based projects have originally been developed
for the VERITAS and MAGIC projects. Both packages are proprietary to their respective
collaborations and were used in the early stages of CTAs development. The new software,
ctapipe, is a Python project developed under open-source licenses. The intention behind
the design of ctapipe is to create a fully configurable analysis pipeline for all CTA telescopes
that adheres to all provenance requirements set by the CTA consortium. As of now, ctapipe
can perform preprocessing of simulated data, noise removal, extraction of image features,
and reconstruction of the air shower’s direction, as I will describe in the coming sections.
Section 8.1 gives details about the ctapipe-based preprocessing pipeline and the datasets
used throughout the next chapters. Details on the feature extraction methods, the so-called

Hillas analysis, are given in section 8.3. Section 8.4 elaborates on the direction reconstruc-
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tion implementation in ctapipe. Both background suppression and energy estimation are

performed by machine-learning methods which will be the topic of chapter 9.

8.1 Preprocessing Pipeline and Simulated Datasets

The ctapipe project in version 0.6.2 does not yet provide a fully featured and configurable
application to process simulated raw data. While ctapipe comes with basic tools to build
configurable command line applications, this part of the code was only recently overhauled
and is still in an early test phase. In ctapipe a container metaphor is used to encapsulate
data. Rudimentary support for input and output of these container types is already avail-
able. Using these features for large productions is, unfortunately, still problematic at this
point. This is mostly due to the fact that no common file standards and formats have been
agreed on in the CTA collaboration. The ctapipe preprocessing pipeline reduces the raw
data to a tabular structure which can be used to train machine-learning models for energy
estimation and background suppression. This tabular structure is called data level 2 (DL2)
in the CTA vernacular. The predictions of the trained models are then appended as new
columns to the rest of the DL2 data. Consequently, one of the requirements for a DL2 stor-
age format is the capability to efficiently add, select, and remove columns. The DL2 data is
also the input for the computation of the instrument response functions as described pre-
viously in section 5.2, and therefore has to contain meta information about the air-shower
simulations. The search for an official DL2 data format comes down to a tradeoff between
columnar and row-wise storage. In machine-learning use cases, the data is often queried and
operated on in a column-wise manner. Hence, a storage format is preferable that only reads
the selected columns into memory. On the other hand, the processing of raw data happens
event-wise. Therefore, appending rows to existing files has to be as efficient as possible. The
file standard currently under consideration for CTA is HDF5, which supports both storage
modes. The HDF5 standard provides hierarchical binary storage with built-in compression
capabilities [135]. The ctapipe solution writes its data in row-wise form. This might proof
to be useful in the future once data needs to be written under real-time constraints. For the
analysis of simulated data, however, the runtime performance of the append operation is of
lesser importance. For my use case, analysis of simulated data, I chose column-wise storage
which allows for memory-efficient machine learning on a typical desktop computer. This
format allows me to store single telescope information, array-wide event information and

simulation settings within a single file. I use the methods implemented in ctapipe to build
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a custom preprocessing pipeline which can be configured using yam1 [28] files. The code and

example configurations for the preprocessing pipeline can be found online at
https://github.com/tudo-astroparticlephysics/cta_preprocessing €)

The list below gives an overview of the steps performed by the pipeline.

Raw Data Calibration
Sensor artifacts and electronic noise is removed from the raw voltage curves with the help of

calibration data. In the simulated data only a rudimentary calibration is performed.

Integration
The calibrated voltage curves are integrated below their peak to find the estimated number
of photons that hit the camera’s pixel. The location of the peak is used as an estimator for the

mean arrival time of the Cherenkov photons.

Image Cleaning
The group of pixels which have been hit by Cherenkov light are retained, while others are

discarded. An example of applied image cleaning can be seen in figure 8.1.

Image Parametrization
The cleaned image is reduced to a list of descriptive features based on the shape of the Hillas

ellipse as described in section 8.3.

Shower Reconstruction
The point of origin and trajectory of the shower are reconstructed by using images from
multiple telescopes at once. Section 8.4 explains how this stereoscopic information is used

by the implemented algorithms.
Output

The final results of the pipeline are written to disk. The final output contains telescope-wise as
well as event-wise information. In order to support the computation of instrument responses,

meta data about the simulation settings are stored per simulation run.

CTAs air-shower simulations are performed by the CORSIKA software. Its development has
been ongoing since the late 1980s and was originally designed to simulate hadronic inter-
actions in the atmosphere above the KASCADE cosmic-ray experiment in Karlsruhe [32].
The propagation of the Cherenkov photons to the ground is usually performed with the
IACT/ATMO extension to CORSIKA. The extension follows the production of charged parti-
cles in the atmosphere and calculates the emitted Cherenkov light in each track segment. The
extension was mainly written by Konrad Bernlohr and is still maintained by him. CTA’s detec-

tor simulation is performed by the sim_telarray [31] program. The historyof sim_telarray
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started with the HEGRA array and is still used today by the H.E.S.S. telescopes. The crucial
part of any detector simulation is the realistic behavior of the telescope’s trigger. A biased
simulation will lead to instrument response functions which do not correspond to the ac-
tual behavior of the telescope. In particular the calculation of the effective area, as seen in
section 5.2, is sensitive to errors in the simulations. The detector simulation uses the tra-
jectory of each single Cherenkov photon as computed by CORSIKA and traces their path
through the optical components of the telescope such as mirrors and light-guides. Once the
photons have been ray traced to the virtual camera pixel, the detector’s sensor electronics
are simulated. Additionally, potential background light sources such as scattered light in the
atmosphere have to be taken into account. Then the trigger logic is applied and the data from
the CORSIKA is either written to disk or discarded. This is the point in the analysis that takes
up a majority of the computing time. The calculation of the shower propagation is a slow
process and most of the simulated showers are discarded. Research is ongoing into adapting
CORSIKA by allowing it to stop early in the propagation process [26]. These approaches try
to predict whether the telescope’s trigger logic will discard the shower or not. Both CORSIKA
and sim_telarray are long-running software projects with decades of history. Large parts
of these legacy code bases have become unmaintainable and derelict over the recent years.
Efforts are ongoing to modernize both projects by rewriting or replacing them. The roadmap
to a new and modern air-shower simulation software has already been formalized in the
CORSIKA 8 white paper [59].

To gauge CTA’s physics performance on observed data, both signal and background data has
to be simulated. Large amounts of showers have to be simulated to test the preprocessing
pipeline and benchmark the quality of the reconstruction and machine-learning algorithms.
As mentioned in section 3.2 the majority of triggered air showers are induced by the hadronic
component, protons and heavier nuclei, of the cosmic rays. Another background compo-
nent in the low GeV energy range comes from cosmic electrons. Both particle types are
simulated separately. While air showers that were induced by protons can be separated from
gamma-ray showers by the shape of the shower, electrons create electromagnetic cascades
indistinguishable from gamma-ray showers. The incoming primary particles can be instan-
tiated in two different ways. Diffuse simulations scatter the origin of the primary particle
on the sky. The protons and electrons are simulated in a diffuse manner, so that their point
of origin is uniformly distributed across the field of view. This is in contrast to point-like
simulations, where the point of origin is fixed in the center of the field of view. Table 8.1 shows
the simulated datasets together with their associated simulation settings. These datasets will

be used throughout the rest of the document. I only consider data simulated for the southern
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Table 8.1: Datasets used for the CTA analysis. The table below lists information about the number of
simulated showers, as well as the number of remaining events after the telescope’s trigger simulation
and preprocessing have been applied. During processing events get dropped if the image cleaning
does not select any pixels or the image parametrization fails for numerical reasons. In this dataset all
telescopes point in the same direction, due south with an elevation of 70°. In the point-like gamma-ray
simulation the virtual source is situated right in the center of the array’s field of view. I exclusively
use data from the southern array in my analysis. All 99 telescopes are participating in the trigger. I
selected the simulated LSTCam, NectarCam, and DigiCam prototype hardware for these datasets.

Paranal Array HB9

Gamma Diffuse Gamma Proton Electron
Energy (TeV) 0.003 - 330.0 0.003 - 330.0 0.004 - 600.0 0.003 -330.0
Mean Multiplicity 5.4 4.5 4.7 4.7
Pointing Alt/Az (°) 70, 180 70, 180 70, 180 70, 180
Processed Events 1245513 1858 688 4326085 594198
Scatter Radius (m) 2500 3000 3000 3000
Simulated Showers 32440000 201480000 927300 000 70900 000
Spectral Index -2.0 -2.0 -2.0 -2.0
View Cone (°) 0 10 10 10
CORSIKA Runs 1622 10074 9273 3545

site for the analysis. CTA’s detector simulation places multiple virtual camera prototypes into
a single telescope. I selected the LSTCam, NectarCam, and DigiCam prototype hardware for

my analysis in accordance with previous reference analyses.

8.2 Raw Data Processing

The data recorded by imaging Cherenkov telescopes is contaminated with noise and sensor
artifacts. Some of that noise originates in background light due to stars or other diffuse light
hitting the mirror. Other noise is produced by the sensor itself or by the camera electronics.
The raw data from the pixel sensors, be it silicon based photo-multipliers or traditional photo-
multiplier tubes, consists of a series of voltages over time. Data from the sensors is only
transferred when a group of pixels in the camera reaches a certain voltage threshold. In
addition to these single telescope triggers, CTA uses a stereoscopic trigger system. Only
when two or more telescopes have triggered coincidently, the data will be stored permanently.
The collection of telescope data corresponding to one coincident trigger is called an array-

event throughout this chapter. The part of an array-event belonging to one distinct telescope
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Table 8.2: Cleaning levels used for the CTA analysis. I selected the simulated LSTCam, NectarCam,
and DigiCam prototype hardware for the datasets. In the first sweep the tail-cut cleaning method
selects all pixels above the “core threshold” In the second step, all pixels are added whose light content
is above the “neighbor threshold” and which have at least “min pixels” neighboring pixels that were
selected in the first step.

LSTCam NectarCam DigiCam

Neighbor Threshold 3.5 3.0 2.0
Core Threshold 7.5 5.5 4.5
Min Pixel 2.0 2.0 2.0

is called a telescope-event. Converting the time series of voltages in each pixel to images is the

first step of the ctapipe pipeline. This step is sometimes called signal, or image, extraction.

For the standard CTA analysis, two numbers are extracted per pixel from the voltage curves.
The number of recorded photons are estimated by integrating over the length of an adaptively
selected time window. The result is then multiplied by the gain factor of the corresponding
pixel which is known from calibration measurements. The mean arrival time of photons per
pixel is estimated by finding the rising edge of the signal. Smoothing methods are usually
applied to reduce the influence of electronic noise in the signal. This step is highly dependent
on the sensor technology and circuitry used in the camera. The observed data will have
to be carefully calibrated to compensate for any environmental effects like temperature and
humidity. CTA simulations make the rather optimistic assumption that all telescope are well

cross-calibrated.

The resulting images still contain noise due to background light. Only those pixels which have
been hit by Cherenkov light are of consequence for the analysis. Others are discarded. At first,
pixels above a certain threshold are selected as core pixels. In a second pass adjacent pixels
above a second, lower, threshold are selected. This process is known as tail-cut cleaning. The
set of selected pixels create an optical image of the air shower. These selected pixels can then
be used to extract the geometrical properties of the air shower. The cleaningis a crucial step in
the analysis. There is a trade-off between the goal to retain as many Cherenkov photons from
the air shower as possible while discarding noisy pixels which can bias the reconstruction
of the shower’s properties. The cleaning levels chosen for the preprocessing are listed in
table 8.2

Figure 8.1 shows a simulated gamma-ray event as seen by an LST type telescope. The left side
shows the voltage curve of a single pixel which is part of the air-shower image as can be seen

in the right image. The right side shows each pixel of the camera with the estimated number
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Figure 8.1: A simulated air shower induced by a gamma ray as seen by one of the four LST cameras
to be build at the Paranal observatory. The left side of the image shows the voltage curve for a single
pixel. The selected pixel lies on the edge of the shower and is marked by a red edge in the right image.
The right-hand side depicts the image in the LST camera that shows the estimated number of photons
on the color axis. The contour around the brightest pixels shows the group of pixels C' that have been
selected by the tail-cut cleaning method. This gamma ray was simulated with an energy of 1.86 TeV
and triggered a total of 17 telescopes in the array.

of photons on the color axis. The pixels selected by the tail-cut method are marked by the red
outline. This part of the analysis process is clearly the most data intensive task as it needs to

process the lowest level of data from many telescopes at once.

8.3 Image Feature Extraction

Properties of the incoming primary particle can only be inferred from the air-shower’s Che-
renkov emission. The classical IACT analysis uses the pixels selected by the cleaning step to
calculate the so-called Hillas-parameters which describe the shape of the Cherenkov emis-
sion. In his seminal conference proceeding for the International Cosmic-Ray Conference
1985, Michael Hillas [82] used air-shower simulations for the WHIPPLE telescope to find
parameters which allow for the separation between air showers from gamma rays from those
started by cosmic rays. This early work is noteworthy due to the fact that it led to the first
observation of a TeV gamma-ray source, the Crab Nebula, and started the success story of
IACT technology. Hillas proposed to approximate the shape of the air showers by an ellipse
and use its geometric parameters for further analysis. In particular the width and length of
the observed ellipse serve as a discriminating feature. They describe the standard deviation

of the Cherenkov photon distribution along the major and minor axis of the ellipse. Early
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papers described the calculation of the parameters by using rather complex equations gained
from analytical least-squares fitting of the ellipse’s major axis and then rotating the coordi-
nates before calculating the standard deviations along the axes. One example can be found in
appendix of the paper describing the first successful observation of the Crab Nebula by the
WHIPPLE telescope [143]. A simpler, and quicker, calculation of the Hillas ellipse can be per-
formed by diagonalizing the covariance matrix of the photon distribution. Let p = (X, Y)T
be a two-dimensional vector of random variables X and Y describing the position of the

Cherenkov photons on the camera. Then their covariance matrix is defined as

V. - Var(X) cov(X,Y)
P cov(X,Y) Var(X) |

The decomposition of the covariance matrix of p yields a set of orthogonal eigenvectors. The
vector associated with the largest eigenvalue points into the direction of largest variance i.e
the major axis of the Hillas ellipse. The eigenvalues are the variances of the distributions along
these directions. Hence, the Hillas width and length are then simply calculated as the square

root of the eigenvalues. This process is also known as Principal Component Analysis.

The true distribution of Cherenkov photons p can be approximated from the cleaned camera
image. Each pixel in the camera collects the photons in the area defined by its entry window. If
the tail-cut cleaning selects the pixels which mostly contain Cherenkov photons, the resulting
camera image can be interpreted as a binned measurement of the true photon distribution.
The values in the cleaned image correspond to frequency weights. Given camera pixels of
equal area, the covariance matrix for p can be calculated by the weighted variance of the
selected pixel set C'
Var(X) ~ % Z we(T, — Tpy)?,
ceC

where 7, is the weighted mean x-position, w, is the weight of pixel ¢, and W is the sum of

all weights in C'. The weighted covariance is defined accordingly

1 _ _
COV(X) ~ W g w(:(xc - xw)(yc - yw)
ceC

The mean coordinate of the shower, (Z,,, ¥,,), is often called the center of gravity (cog)
1 T,
Peog = 77 W
cog W c (yc>

ceC
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and describes the mean of the photon distribution. The angle ¢/ defines the orientation of the
major axis with respect to the horizontal axis of the camera. It is calculated from the first and

second component of the covariance matrix’s eigenvector v with the largest eigenvalue

vy
1 = arctan| — |.
vl’

Note that the ambiguous definition of arctan is used here instead of arctan2, as no preferred
direction is defined for the ellipse itself. The sum of weights IV encodes another important
property of the shower which is often called size or intensity. It is a proxy for the air shower’s
total brightness in terms of emitted Cherenkov radiation. It correlates strongly with the
primary particles initial kinetic energy. Higher order moments along the shower’s axis can
be calculated once the eigenvectors and ¢) have been calculated. The skewness of the light
distribution, i.e. the third moment along the major axis, is an indicator for the travel direction
of the shower. Similar information can be extracted from the arrival time of the photons in
each pixel. Another feature is the leakage of the image. It is defined as the number of pixels,
or sum of weights of pixels, which lie on the outer edge of the camera. This feature is useful

to discard images which are not fully contained within the camera.

8.4 Geometrical Shower Reconstruction

As explained in section 5.3, the cosmic-ray background is isotropically distributed across
the sky. Gamma-ray sources, either extended or point-like, can be distinguished from the
cosmic-ray background only when the reconstruction of the gamma-ray direction is accurate.
The better the reconstruction of the gamma ray, the higher the significance with which a
source can be detected. The optical system of an IACT is focused on the upper parts of the
atmosphere, where most air showers emit their Cherenkov light. In general, the effective area
and energy range of an IACT is limited by its field of view and its mirror size respectively. A
larger mirror helps collect more light and allows recording very dim showers. Unfortunately,
a large mirror, and hence a large aperture, reduce the depth of field of the telescope and only
parts of the shower are in focus. New detector types, like the Cherenkov-Plenoscope [119],
are proposed to remedy this problem. Similar to a thin optical lens, aberration effects and
distortions can negatively impact the image quality. Compared to a typical imaging telescope,
the requirements for an IACTs optical system are less stringent in terms of mirror precision.
For any digital imaging system, a point-like light source has to be mapped onto the area of

a single pixel in the focal plane in order to produce a sharp image. As the typical pixel size
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for an IACTs is in the order of centimeters, mirror precision is less crucial. However, since
IACTs are completely exposed to the elements, their durability and stability is of much higher
importance. In addition, these large structures which hold the mirrors and cameras of the
telescope are not completely stiff. Each change in elevation angle requires a correction of
the mirror alignment. All large IACTs use active mirror control to constantly align their
mirrors with the camera. The geometric information of the shower can be reconstructed with
an IACT due to the fact that its mirrors act much like a thin lens. The mirrors of an IACT
uniquely map coordinates in the sky to coordinates in the focal plane of the telescope. As
seen in the previous section, the major axis of the Hillas ellipse points along the main axis of
the air shower which in turn points along the primary particles trajectory. In the image of a
single telescope, the major ellipse axis does not uniquely specity a point of origin in the sky.
In fact, the showers point of origin can lie anywhere on the line defined by the major axis.
The reconstruction of the primary particles direction has a great impact on the telescopes
sensitivity. For a single telescope, extensive shower simulations are needed to use higher
order features about the image shape to determine the point of origin along the line of the

major axis. This is known as the disp-method among Cherenkov astronomers [57].

A CTA array-event will always have the information of at least two telescopes available to
describe the observed air shower. The stereoscopic view augments the Hillas parameters
with additional information about the showers shape and direction. A simple stereoscopic
reconstruction technique was introduced by the HEGRA experiment [49]. It works by su-
perimposing the images of each telescope onto a common camera coordinate system. The
intersection point between each pair of major ellipse axes is calculated and averaged to deter-

mine the point of origin on the sky.

During my research stay at CEA Paris, I adapted the HEGRA methods for implementation in
ctapipe. Previous implementations in ctapipe used numerical minimization algorithms
to find the point of intersection. In my implementation the intersection is found by linear
least-squares methods. In contrast to HEGRA, CTA consists of telescopes with different focal
lengths. The combination of different telescope sizes requires the transformation to a common
coordinate frame relative to the local horizon. The coordinate frames and transformations
in ctapipe were implemented by Maximilian Nothe. They rely on astropy’s coordinate
API, which allows for transitive transformation operations between coordinate frames. The
definition of the altitude and azimuth angles in ctapipe follows astropy’s conventions in
which an azimuth angle of 0° points due north and 90° points east. An altitude angle of
0° points parallel to the ground. The telescopes in the simulated datasets all point in the

same directions with an altitude angle of 70° and an azimuth of 180°. Given the pointing
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direction of a telescope in the horizontal frame, every point in the telescope’s camera can
be transformed into a tuple of altitude and azimuth coordinates. In analogy to the HEGRA
method, the major axis of the ellipse in each telescope is transformed into the horizontal
coordinate frame. This is achieved by selecting two points on the major axis in the camera.
The first selected point is the center of gravity. Per definition it has to lie on the ellipse’s major
axis. The second point p; is offset from the center of gravity by an arbitrary distance a in the

direction ¢ along the main axis

Pt = Peog ta (Z?jgg;) :

The transformed points p; and p.q together with the telescope’s position on the ground define
a plane in the euclidean space. A plane, in mathematical terms, is given by two vectors and a
point of origin. Each telescope participating in the triggered event defines such a plane with an
accompanying normal vector n. The intersection between two, non-parallel, planes is given
by a line whose direction is found by taking the cross product between the planes’ normal
vectors. The intersection between the planes points along the direction of the recorded air
shower. Similar to the HEGRA approach, each ordered pair of normal vectors (n;, n;) is used

to find an intersecting line which is then combined with a weighted sum

d= Z CiCj (ni>nj)a

(4,7)€S

where S contains all combinations of indices ¢ and j for which ¢ < 7 < N. For an event with
N participating telescopes, N(N — 1) intersections are evaluated. In the current ctapipe
implementation (version 0.6.2) the weights are calculated as ¢ = W%, where W is the total
intensity of the shower and w and [ are the width and and length of the Hillas ellipse. This
simple heuristic puts emphasis on shower images that are bright and elongated for which the
shower orientation ¢/ can be reconstructed accurately. Figure 8.2 shows the angular resolution
of this reconstruction method for bins in simulated energy. The angular resolution is defined
as the 68™ percentile of the distance between estimated and simulated source position and is
indicated by the blue line. The histogram in the background shows the underlying distribution

of the simulated gamma rays.

In addition to the direction of the shower, the height of the showers maximum lateral distribu-
tion H ,, can be estimated. The H ,, variable describes the point along the trajectory of the
air shower at which the amount of produced secondaries starts to decrease. This corresponds

to the point in the camera image in which the Hillas ellipse has its largest extension i.e. its
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center of gravity. The H ., feature correlates with the primary particles energy and type.
The more energy the primary particle had, the longer the trajectory of the air shower before
the all energy has dissipated. Therefore, the height above ground at which the shower was
brightest can be used for energy estimation as well as background suppression. In ctapipe

the estimation of H.

max 18 performed using a least-squares method. The center of gravity

Peog in €ach shower image is transformed into the local horizontal frame and then into the
euclidean coordinates. This vector v; together with the telescope’s position v, ; defines a line
running from the telescope to the brightest part in the shower. In a second step, the closest
point to a common intersection point between all IV lines is estimated. Following arguments
from [140] the point closest to all other lines can be found using matrix methods. In the first
step the matrix M; = 1— VZ-VZT is build for all participating telescopes in the event. The closest

mutual point py__to all lines is then found by calculating

-1
PH. = (Z Mi> > My (8.1)
% i

Figure 8.3 shows the estimated H |, for simulated diffuse gamma rays together with the true
height. While the estimator is clearly biased and systematically underestimates the true H .,
the trend of decreasing H ,, with increasing energy is followed. Hence, it can be used as a

useful feature for training the energy estimator.

Another important shower parameter is the impact point of the shower trajectory on the
ground. It is calculated using the lines defined by the reconstructed major axis of the shower
in each camera. As before the closest mutual point, the closest point to a common intersec-
tion, can be found using the least square solution from equation (8.1). The distance of each
telescope to the impact point is another helpful feature for energy estimation. Showers which
trigger the camera despite large distances, have to emit a lot of light and therefore have a large

energy content.
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Figure 8.2: Angular resolution for diffuse gamma rays. The blue line shows the 68 percentile of
the distance between estimated and simulated source position in each energy bin. The hexagonal
histogram in the background shows the event distribution. From the minimum energy up to approx-
imately 2 TeV the angular resolution improves. This is expected behavior as the reconstruction of
the major axis orientation v improves with increasing image brightness. At even higher gamma-ray
energy the shower images are often not fully contained within the telescope’s field of view and cannot
be reconstructed properly. The distribution of events is clearly skewed towards large distances. The
peak of the distribution is located near 0.1°. For most events, the direction is reconstructed accurately.
Many of these outliers would be removed for the actual analysis, whose event selection is optimized
for a specific use case. An example will be shown in chapter 11. It is important to note that the distance
is calculated between points given in a horizontal coordinate frame which is spherical. The distance
between two points on a sphere can be calculated using the Vincenty formula [142]. For this plot,
and similar plots following in the coming sections, the astropy implementation of spherical distance
computation is used. The dataset shown in the figure contains 1 858 688 array-events with a total of
8171917 single telescope-events.
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Figure 8.3: The blue line shows the estimated height above ground at which the lateral distribution
of Cherenkov photons is the largest. The shaded blue area indicates the 16™ and 84" percentile of
the estimation. The distribution in the background shows the simulated H ., values. The horizontal
lines in the H_,, distribution are due to binning effects in CTA's air-shower simulation. The estimator
follows the same shape as the H,, distribution, making it a good feature for energy estimation and
background suppression.

300 - - 2500
Gamma Diffuse
2 250 1858688 (No Cuts) - 2000
— === Median Prediction - 1500
g
£ 200 -
& - 1000
o 2
2 150 - z
= -500 O
2
& 100 -
g
= —
E —
A 50-
0= [ | [N [ | [ R | -0
1072 1071 10° 10! 10?

True Energy / TeV

Figure 8.4: The two-dimensional histogram shows the distribution of the distance between the true
impact position and the estimated impact position of the shower on the ground for bins in simulated
energy. The blue lines indicate the median of the distribution in each bin.
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9 Machine Learning

Machine learning for this CTA analysis is used for energy estimation of the primary gamma
ray and background suppression. As mentioned in section 3.2, cosmic-ray showers, i.e.
hadronic showers, build the main background component in IACT data. A model which can
separate air-showers induced by gamma rays from those started by hadrons, boosts the de-
tection significance of an IACT considerably. Energy estimation is necessary to learn about a
sources energy spectrum and the acceleration mechanisms taking place in it. From simulated
data, where the true values for the particles type and energy are available, a model can be
built which takes image parameters as input and predicts the output values on new, unlabeled,

observations.

In the early days of IACT analysis, these model functions weere often hand-crafted. For
background suppression a set of cuts were defined in the image parameter space. By looking
at the distribution of the hillas parameters for simulated gamma rays and protons, the location
of a cut can be fixed and then applied to observed data. The HEGRA analysis from 2004 [15],
for example, used a simple cut in the width of the Hillas ellipse to reduce the amount of
background events in their data. Energy estimation for HEGRA used a similar approach.
Correlation plots between image parameters and true energy were used to find the shape of
analytical function whose parameters p were fitted. These approaches are flawed. The choice
of parameters in which to place the cuts and the choice of analytical functions for energy
estimation is utterly subjective. Not to mention the fact that the capacity of human brains
to work in many dimensions is limited. These shortcomings can be overcome by supervised

machine-learning algorithms.

Here I mostly follow the notations and definitions from the book “Elements of statistical
Learning” by Trevor Hastie and others [76]. Given a set of N observations with p variables
the matrix X contains the full information needed to train a machine-learning model. In
this so-called data matrix each column corresponds to an observed variable. Each row maps
to a specific observation. The columns in X are called differently depending on context and
personal preference. Common choices are observables, variables or features. One specific

observation x € X is written as a small letter. The j'h entry, or feature, in one observation is
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indexed by 2. In a similar manner, a single uppercase letter such as X denotes a generic
random variable. The i" observed value of X is written as x;. Vectors containing entries for
each of the IV observations are set in bold lowercase x. In this specific use case, the columns in
X map to the image parameters and the rows to the observed air showers. If X, is the random
variable describing underlying the distribution of observed Hillas widths, then :cz(w) is the
Hillas width from one observed air shower in one telescope and x(*) is the vector containing
all observed Hillas widths. For the each observation we also have an associated output or
truth y stored in the vector y. The true label values in the CTA simulations come in two
distinct forms. The energy of a particle y € R is a continuous parameter, whereas the type of
the particle is a discrete variable that can take only one of two values g € {gamma, hadron}.
The labels values are encoded as numbers by convention so that g € {0,1}. For the sake
of simplicity I do not always differentiate between the continuous y and the categorical g in
some of the following definitions. Roughly following the definition in [76, page 10] we can

now specify the task of supervised machine learning as follows:

Given a N X p matrix X and some associated output vectory € R", find the
function f(X) = ¥ that takes a vector X € R” and returns a prediction for y and

minimizes some “loss function” L(y, f(X)) over the data and the true label.

If y is continuous, then f is called a regressor. If y is categorical, then f is called a classifier.
In this formulation supervised machine learning can be understood as a global optimization
problem. The space of possible solutions has to be constrained to find valid solutions with
any predictive power. Usually, the shape of the function f is fixed for a machine-learning
algorithm. It is parameterized in some form by a vector /5 whose entries are found by mini-

mization with respect to the loss. This step is often called training the classifier or regressor.

The textbook example for a choice of f and L is the least-squares regressor [76, page 11]
which exemplifies some of the important properties of supervised machine-learning methods.

Assuming f is a linear function in the data X then it can be written as

p .
FXB) =y=0+> xV8;

J=1

The loss function for the least-squares method is the residual sum of squares which can be

written as
N N

Ly, £(X),8) = Y (y; — f(2:8))* =Y _(y; — 2:8)°,

i=1 i=1
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where the data matrix was implicitly modified to contain series of ones (1,1, ..., 1) as the first
column and £ is a column vector 8 = (S, B4, - - - ﬁp)T. From this expression an analytical
solution for 3 = argmin 5 L(y, f(X), B) can be found by setting the derivative with respect

to 3 equals zero

Solving for 3 yields

The linear least-squares method essentially fits in hyperplane in the parameter space spanned
by the provided data and true label y. If the values of y are continuous, then y = f(X; ﬁ)
is the result of the regressor and can be used as is. In the case of classification, the fitted

hyperplane, or the function f(X; (), can be used to define a decision boundary or threshold

«. The classification function is then defined as

0, if f(z;,B) <o

1, else.

In case the true label for the binary classification problem ¢ or y was encoded using val-
ues {0, 1}, then the canonical value for the threshold is @« = 0.5. The decision boundary
is hence defined by all points where f(X;3) = 0.5. Intuitively speaking, new observa-
tions are classified based on their location relative to the fitted hyperplane. The distance
of a new observation to the decision boundary can be understood as a measure of “cer-
tainty” of the point belonging to either class. Figure 9.1 shows an artificial dataset on which
a least-square regressor was trained. The points in the figure are colored to indicate the
class to which they belong. It is also obvious from the figure that the raw output of the
least-square regressor is not a proper probability density as it is neither bounded nor nor-
malized. This makes the interpretation of the regressors output difficult to interpret. It
can, however, be transformed into a value range resembling a probability density by wrap-

ping the output of the least-squares predictor in a so-called sigmoid function S(f(X; /3))
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The family of sigmoid functions is loosely
defined by their properties to be monoton-
ically increasing and bounded by horizon-
tal asymptotes for m — =oo. The error
function shown in figure 5.4 is an example
of a sigmoid function. If the sigmoid func-
tion is bounded by 0 and 1, the output of

S(f(x;; 8)) can be interpreted as a probabil-
ity density. Note that this is different from a

confidence level for the prediction. Adjusting
Figure 9.1: The transparent plane in the figure the classifier output to resemble a confidence
shows the result of a least-squares fit to the data. ~ is the topic of “classifier calibration” [121,

149]. Like the least-squares approach, most
classification algorithms provide a continuous output which is either bounded or can be
wrapped by a sigmoid function. The adaption of the decision threshold « is a key component
in the analysis of IACT data. As explained in section 5.3, IACT data is heavily contaminated
by cosmic-ray background. By increasing the prediction threshold the amount of background
events can be reduced. This naturally comes with an inevitable decrease in selected signal
events. The choice of « is optimized for different physics use cases. In chapter 11 the predic-
tion threshold will be optimized for the detection of gamma-ray point sources. The correct
way to validate one’s classification model is often hotly debated within physics research groups.
The validation methods I use for the CTA analysis are described in section 9.1. Section 9.2
explains the basics of decision tree algorithms on which both the background suppression
and energy estimation are based. Results of the training and the application of the models to
CTA data is shown in section 9.4. Section 9.3 describes the software we developed to create

a reproducible machine-learning pipeline for the CTA and FACT telescopes.

9.1 Model Validation

Models for classification or regression can only be properly evaluated on labeled data. Some
machine-learning algorithms tend to overfit on the training data. While the models minimize
the loss L on the training data to a great extend, it does not generalize well to new data. In
other words, it has weak predictive power on hold-out data. In literature this problem is

known as bias-variance tradeoft, overtraining, or overfitting. A model fitted on some training
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9.1 Model Validation

data X,,,;, with label y,.,;, needs to be applied to an independent dataset X that comes

with an associated label y.; in order to get an estimate of it generalization capabilities.

A classifier’s performance in terms of predictive power is estimated from its confusion matrix.
In a classification problem with two categories, like the distinction of gamma-ray air showers
from hadronic ones, the two classes are called “positive” and “negative” per convention. In
IACT analysis the positive class is usually understood to be the gamma-ray events. The
result of the model validation for a binary classification problem contains four numbers.
The number of true positives (I'P) which are the events that have correctly been predicted
to belong to the positive class, i.e. the number of correctly identified gamma rays. The
amount of false positives, (F'P) the events that have incorrectly been predicted to belong
to the positive class, i.e. the number of hadronic events that have been falsely classified as
gamma-ray events. The number of true negatives (1'N') and false negatives (F'N) are defined
accordingly. These four numbers, that make up the confusion matrix, completely characterize
a classifier’s prediction. A myriad of scalar quantities that try to summarize the classification
can be derived from the entries in the confusion matrix. Popular choices include the accuracy,
precision, F-score, recall or true positive rate, and the false positive rate just to name a few.
Each come with their own advantages and disadvantages. The extremely common accuracy

measure, for example, is defined as

TP +TN

T T PIFPLTN + FN’

i.e. the ratio of correctly identified events with respect to the entire population. The accuracy
is only useful in the case of balanced datasets where both classes are represented by an equal
amount of data points. For imbalanced datasets the accuracy alone does provide a good
estimate on the classifiers “quality”. The balanced accuracy on the other hand is defined in

terms of true positive and true negative rates instead of the absolute numbers

TPR+TNR

aCCp, = B

and is therefore not influenced by unbalanced class ratios. In the case of IACT analysis
datasets are often imbalanced. The observed data contains orders of magnitude more back-
ground events than gamma-ray showers. The accuracy on the simulated data in itself does

not help to gauge the performance of a telescope.

A popular method for calculating performance estimates is called cross-validation. A k-fold

cross validation splits the training data into k£ independent subsets. One of the k subsets is
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used as a validation set for a model that is trained on the union of the remaining k£ — 1 subsets.
During cross-validation the model is trained and evaluated £ times. This yields & estimations
of an algorithm’s classification performance on a specific training dataset. This allows for
robust error estimates on the entries in the confusion matrix. It does, however, increase the
runtime of the model training by a factor of k. The increased runtime of the training step is
tolerable considering that the application of the trained model to the CTA data takes about
ten times as much time. This is due to the fact that the largest part of the datasets presented
in table 8.1 is used to estimate the point-source sensitivity of CTA which will be the topic of
chapter 11. Only a small part of the diffuse gammas and protons is used to train the classifier

and energy estimator. It is this smaller sample which is split during cross validation.

For the CTA analysis I use the cross-validated receiver operating characteristic (ROC) to
gauge the performance of my classification. The ROC curve is produced by drawing the
false positive rate (F'PR) versus the true positive rate (7'P R) while varying the prediction
threshold o. The T PR and F' PR for a fixed « are defined as

and FPR, = Lk

TP
TPR, = —— = —
Ra FP+TN

FN

and are therefore independent of class balance. This curve is monotonically increasing to-
wards larger values of F'PR. Instead of comparing the ROC curves themselves, different
classifiers trained on the same data can be compared by the area under their respective ROC
curve. A hypothetically perfect classifier would create no false positives and classify only true
positives. Hence, the ROC curve for the perfect has a constant value and the area under the
curve (AuC) would equal one. A classifier that only randomly selects an outcome, would
create a diagonal line with an AuC of 0.5. The ROC and the AuC are no perfect benchmarks.
Their validity has long been the spotlight of discussions in the machine-learning community
There are plenty of alternative suggestions. See [74] for an example. When large datasets
are available, which is the case for CTA analysis, these problems are somewhat diminished.
Within CTA, the ROC AuC is used to the classification strengths of competing methods for

background suppression.

For regression problems no confusion matrix in the classification sense can be constructed.
Instead a matrix showing the correlation between the true label y and the prediction y is
created on an independent test dataset. A perfect regressor would only have entries on the
diagonal of that matrix. To express the quality of the regression in one number, the coeflicient

. 2 . 2 . .
of determination or R~ score is often used. The R” score is calculated from the residual sum
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of squares RSS = ). (y; — Qi)2 as used for the least-squares loss and the variance of the
target variable y. The definition of the R? square is

~ RSS(y.y)

R =1 "22WY)
N Var(y)’

where N is the number of entries in y. It can be understood as a goodness of fit where a
value of 1 indicates a perfect match between regressor and truth. If the regressor, on average,
predicts the mean of the target, then the R? score will have a value of 0 [55, page 486]. For
IACT analysis the R? score is not sufficient to explain the quality of the energy estimation.
Equivalently to the calculation of the angular resolution, the relative difference between the

predicted and true energy is calculated for bins in estimated or true energy.

9.2 Decision Trees and Ensemble Learning

Methods like least-squares or neural networks try to find the global minimum of a loss func-
tion which was in itself defined over the entire parameter space. Often it is not possible to
find a satisfactory solution without further assumptions about the shape of the parameter
space. The idea behind decision trees is to split the parameter space into subspaces where the
problem is potentially easier to solve [76, page 305]. In each of the subspaces the loss function
is then optimized independent of the data in the other subspaces. If no satisfactory value
of the loss function is found, the subspaces are split again into even smaller sub-subspaces.
Once the partitioning has finished, each subspace R,, is assigned a label c,,. In the regression
case, the mean of the true labels from the training set in R,, is assigned. For classification,
the majority class is assigned to the subspace. The decision function returns c,,, for new point

x; located within the region R,,

M
fl@) =3 cnllw € Ry)
m=1
where 1 is the indicator function. Finding the optimal partition of subspaces in order to
construct a decision tree is an NP-complete [87] problem. Decision tree methods employ a
greedy strategy to build the partition [76, page 307]. The tree is build by performing recursive

binary splits of the subspace. Starting from the tree’s root, the parameter space is split at a
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into a set of “left” and “right” partitions. A variable j and a split value S are chosen which

define the partition
Ri(j,8)={zeX |29 <S8} and Ry(j,S)={zeX|z¥ >3}

The best point .S and variable j along which to partition the space is found by iterating
through all possible splits for all columns in X and choosing the one which minimizes the

loss (j, S) = argmin; ¢ (L).

For classification tasks the information gain loss is a popular choice. It is known under different
names such as the cross-entropy or just entropy criterion. The loss for the information gain
(IG) is defined as

L=-IG(Y,R)=—(H(Y)-H(Y | R)).

The function H is known as the information entropy

ZP = g)log, P(Y =g).

geG

For the random variable describing the target distribution Y. The probabilities P are assumed
to be uniform and are simply approximated by the class proportions. In a binary classification

problem this simplifies to

H = —plogz(p) —(1-p) log2(1 - D),

|Rp|
P = TR.[FIRAl"

split has been applied. It can be written in terms of probabilities as

where The conditional entropy H (Y | R(j, S)) is the entropy of Y after the

H(YY |R)=) P(XcRH(Y|z€R),
Re{Rp.Rp}

where H(Y|x € R) is the entropy of Y for all data points x in subspace R. Again, the

probabilities are assumed to be uniform and can be approximated by their proportions

|Rgl

’ L|

H(Y |z € Ry),
" |RL| + |Rg| L

where | Ry | and | R| is the number of samples in the left and right partition respectively. Once

the best split has been found, the process continues recursively until a stopping criterion is

met. In the case of regression, where Y is continuous, the process is the same. The only
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difference is the choice of loss function. For most regression problems, including the energy

estimation performed here, the residual sum of squares is minimized in each partition

L x ZVar(Y |z € Ryp).
RE{RLVRR}

In other words, the split (j,.5) which minimizes the total variance of the target in each

partition is chosen.

Tree building algorithms try to find the optimal split criterion in some local region of the
parameter space. Finding the best overall split in parameter space is computationally infeasi-
ble. This means the decision tree algorithm can run into a local optimum. When building a
decision tree one needs to find a balance between the tree depth and its tendency to overtrain.
In general, a decision tree whose final nodes, or leafs, contain too few samples, does not
generalize well. The number of times a certain feature has been selected for splitting during
optimization carries some notion of feature importance. This is a useful diagnostic tool for

validating ones assumption regarding the classification.

The idea of ensemble learning is to train several weak classifiers on different subsets of the data
and then combine them into one strong classifier by averaging their output. This makes the
decision tree method relatively robust to overfitting without losing much runtime since the
creation of the ensemble is trivial to parallelize. The most common way to build a decision tree
ensemble was popularized by Breiman [36]. Here the training data is split into subsets using
sampling with replacement, which is also known as bootstrapping. An additional source
of randomness, or variance, was introduced by Breiman by limiting the choice of variables
J in each partition to a random subset of features. This construction is called a “Random
Forest” [37]. For use in ensemble methods another layer of randomization can be applied to
the tree building process. Instead of iterating through all possible cuts for the n randomly
selected features, only n randomly chosen splits are considered. These extremely randomized
trees [68] can be used in bagged ensembles just like the original Random Forest, but with

much faster training times.

For my CTA analysis I use and ensemble of extremely randomized trees for classification of

particle type and regression of energy.
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9.3 AICT-Tools

To ensure reproducibility for the entire machine-learning process, I started the open-source
Python project called aict-tools. It consists of a fully configurable pipeline to perform
the common machine-learning tasks encountered in IACT analysis. Given a set of input
data and configuration files, it splits the data into test and training sets, performs on the fly
feature generation, trains and applies the models, and creates the numbers and charts needed
to gauge the performance of the trained models. Each task is dealt with by a single-purpose
command line application. This was a design decision made to facilitate the use external
tools such as make to model the data dependencies between each task. chapter 12 contains
a short discussions on the use of Makefiles to ensure reproducibility. The classification and
regression algorithms executed by the aict-tools are implemented in the scikit-learn
library [129]. Arbitrary scikit-learn predictors can be used by the aict-tools aslong as

they produce continuous output. Everything is configured in human readable yam1 files.

Originally build for the FACT project, I added new functionalities to the aict-tools to
support the analysis of CTA data. The goal was to make it possible to work with data on a
single telescope level, i.e. the telescope-events, as well as the array-event level. The output
of the CTA preprocessing comes in the form of three tables stored within a single HDF5 file.
The logical layout of this DL2 data file can be seen in table 9.1. This layout brings about some
challenges concerning the I/O functionalities of the aict-tools. First and foremost, the
splitting of the data into training and validation sets has to take the simulation information
into account. The data belonging to a single simulation run must not be separated. Otherwise
the calculation of instrument responses and event weights, as described later in section 11.1,
would not be possible. Second, in order to train models on both single telescope features as
well as array-wide information, the tables need to be merged. The tables are joined on the
primary key which consists of the unique identifiers for the run, array-event, and telescope.
The canonical way to support this kind of operation is by using the well known pandas
library [111]. While the library is a powerful tool to perform operations on table-like data, it
does not support memory mapping techniques or out of memory computing. The overhead
in terms of required RAM are considerable. For the aict-tools I implemented a way to
read and merge the CTA data in a chunk-wise manner. The aict-tools work with the full
PROD3B analysis as well as the simulations for the prototype of the CHEC camera. The code,

including example configurations, can be found at

https://github.com/fact-project/aict-tools ©
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9.4 Application to CTA Data

Table 9.1: Logical structure of the DL2 data as produced by the CTA preprocessing script. All tables
are stored in a single HDF5 file. The unique primary keys allow for merging and joining of information.
This allows for a straightforward access to the simulated values for any given telescope-event. The
telescope-event identified by the tuple (58,4100, 92), for example, can easily be associated with the
simulated energy, “mc_energy’, of the array-event (58, 4100). For the training of machine-learning
models, the array-event table is merged with the telescope-event table. For application of the models
the data is read chunk-wise by reading the entire index into memory and then reading blocks of
connected array-events. The table below shows the first exemplary lines of the diffuse simulated
gamma-ray dataset described in table 8.1. Some column names were shortened in order to fit the
table to the page. A full listing of column names can be found in the aict-tools configuration file
in appendix B.

Runs

run_id sim_index num_showers shower_reuse
14 -2 20000 e 10
148 -2 20000 cee 10
160 2 20000 - 10
Array Events

run_id event_id num_ sst mc_energy total_intensity
14 1103 0 0.011 89.319
14 4305 0 0.077 s 1640.577
14 5705 0 0.015 e 174.140

Telescope Events

run_id event_id telescope_id width length intensity
14 1103 4 0.018 0.024 cee 56.402
14 1103 6 0.017 0.022 cee 32.918
14 4305 4 0.027 0.042 e 283.853

9.4 Application to CTA Data

The datasets listed in table 8.1 are split into two parts. One for training the models and one
for evaluating the physics performance. The classification model for background suppression
is trained to separate diffuse gammas from proton simulations. The electron dataset is left
as is and not used as input for the training step. All models are trained on a single telescope

level. The array-events table is merged with the telescope-events table with an inner join.
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Each array-event has at least two associated telescope-events. This means that array-wide
information is simply duplicated for each row belonging to the same array-event. When
the model is applied to new data, the predictions for the single telescopes are aggregated
to build the estimate for the whole array-event. The application of nested machine-learning
models show large potential for improvements [116]. For this analysis, the simple, unweighted
average, is built for the prediction of the array-event. After the tables have been merged, new
features are generated by the aict-tools. These new features are build by combining the
values in different columns using elementary mathematical operators. The model settings are
completely defined by the configuration file for the aict-tools which is listed in appendix B.
The features that were selected for the model training as well as the definition of the generated

features are included in the configuration.

Of the original datasets, 1.5 % of the protons and 5 % of the diffuse gamma rays are used for
training. That leaves 295476 single telescope-events for the protons and 406 775 events for
the gamma-ray data. No additional selection cuts are applied to the data prior to training
the classifier. For this analysis an ensemble of 200 extremely randomized trees was trained.
Each tree was limited in depth by only allowing further splits in nodes with at least 100
samples. During training a 5-fold cross validation is applied to evaluate the performance.
The cross validated area under ROC curve is 0.88 &= 0.001 which is in the same range as
other analysis results previously circulated within the CTA consortium. It is difficult to
make a rigorous comparison on this performance estimate alone. The classification strength
depends strongly on the distribution of the data. Any sort of selection cut applied before
training the model can improve the classification strength by a great deal. The same is true
for the adaption of cleaning thresholds. Another layer of complexity is added when taking
energy dependencies into account. In IACT analysis, it is common practice to look at the
performance estimates in different simulated energy ranges, akin to figure 8.2 where the
angular resolution was plotted with respect to the energy. For classification, this is difficult to
justify as the energy distribution of the background events is unknown in observed data. The
migration of the background events between the energy bins could be completely arbitrary,
so that the classification strength measured on the simulated background energy might not
resemble to performance on real observations at all. A comparison on the level of estimated
energy might be more fair. However, this makes it hard to deconvolve the effects of two
multivariate models with each other when comparing these figures between different analysis
approaches. These problems have been recognized by the rest of the CTA collaboration as well
and an effort has started to unify and define benchmarks between analyses [105]. Figure 9.2

shows the receiver operating characteristic (ROC) of the classifier on the entire energy range
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Figure 9.2: The left-hand side shows the receiver operating curve for the test data with 19410067
single-telescope proton events and 7765 142 gamma events. The color scale indicates the prediction
threshold corresponding to the pair of true and false positive rate. The figure on the right-hand side
depicts the balanced accuracy of the classifier versus the prediction threshold. Both figures use the
same color scale.

together with the balanced accuracy versus varying prediction thresholds. These numbers
were calculated on the large test sets of diffuse gamma-ray and proton events. Figure 9.3
shows a list of all training features together with their feature importances as estimated by

every tree in the ensemble.

Energy regression is handled in a very similar way to the classification. A total of 200 ex-
tremely randomized trees were trained on 29 features. The target variable, the simulated
energy of the primary particle, was transformed by 3/’ = log, (1) before training the classifier.
This decreases the total range of the parameter and limits the dynamic range of the variance,
or residual sum of squares, which is optimized during training. Using the transformed target,
the estimator is able to put more weight on the low end of the energy range. The regressor
was evaluated in a 5-fold cross validation. The mean R score for this model is 0.759 = 0.007.
In contrast to the classification, the behavior of the energy estimator with respect to the true
energy is of major interest. The closer the estimated energy to the true energy, the lower the
off-diagonal entries in the response matrix and in turn the calculation of fluxes and energy
spectra. The energy resolution is calculated from the relative distance between the true and

estimated energy d = % Two definitions for the energy resolution are customary in
T
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Figure 9.3: A total of 29 variables are used to train the classifier. The box plot shows the inter-quartile
range of the feature importances for each variable. Both single-telescope and array-wide features
are deemed as relatively important by the decision tree ensemble. The classifier was also fed with
instrument parameters such as camera_type_id and mirror_area. While it does not describe
parameters of the air shower, it helps with learning the peculiarities in the different cameras and
optical systems. The concentration parameters such as concentration_cog are often selected to
split nodes in the decision tree. These parameters describe the amount of light collected in the center
pixel with respect to the rest of the selected pixels in the shower.
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Figure 9.4: The figure shows the energy resolution of the regressor. It was trained on 406 775 gamma

events with 29 features. The histogram in the background shows the distribution of d = EF“T;ET

with respect to the true energy. The peaks in the distributions correspond to the maximum acceptance
probability of the different telescope types. Similar to the behavior of the angular resolution, the energy
estimation improves with increasing energy up to the point where the lack of image containment
prevents accurate energy reconstruction.

the IACT community. First, the 68 percentile of the relative distance and second, half the

width of the central interval between the 16" and the 84t percentile

Ri, = 3(Quild) — Quo(a).

The second definition, the central interval, is used throughout this text. The energy bias
is defined as the median of the relative distance distribution. Figure 9.4 shows the energy
resolution of this regressor. Similar to benchmarking the classification strength, it is difficult
to compare the energy resolution across different analyses. Selection cuts applied before
applying the model have a large impact on the energy resolution. The optimization of the
event selection cuts is strongly dependent on the physics use case. The next section will cover
the optimization for a point-source analysis. Figure 9.5 shows the feature importance for

every variable used by the regressor.
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Figure 9.5: A total of 29 variables are used to train the regressor. The box plot shows the inter-
quartile range of the feature importances for each variable. Somewhat surprisingly, the feature called
total_intensity, which is the sum of the single telescope intensities, is not the most important
observable. The num_triggered_sst variable is deemed most important by the regressor. This can
be explained by the fact that the SST type telescopes can trigger on high-energy showers with large
impact distances due to their large field of view. In addition, the small mirror excludes them from
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1 O A Prototype for Real Time Analysis

One of CTA’s primary goals is to facilitate multi-wavelengths observations [134, Chapter 9].
Observation of serendipitous events and response to multi-messenger alerts put strong con-
straints CTA’s data acquisition system. The short timescale capabilities of CTA are a key
element in the design process. The telescopes mechanical systems capable to target any point
in the sky within 90 seconds. Transient events or flaring sources, e.g. active galactic nuclei
that increase the energy output by orders of magnitude within tens of seconds, are of major
scientific interests for CTA and the entire astroparticle community. CTA will run a continuos
real-time analysis (RTA) which operates on the on-site computing infrastructure. This allows
CTA to alert facilities operating in other wavelengths for fast follow-up observations. Official
CTA requirements state that the on-site analysis must be able to notify operators of transient
events within just 30 seconds of recording the data. Judging from the simulations used for my
ctapipe based analysis, the rate for protons and electrons is approximately 21 371 events
per second. That is after the preprocessing has been applied. The total trigger rate will be
even higher. These staggering event rates signify the challenges which have to be overcome
by the real-time analysis system. CTA’s on-site computing resources are concentrated in one
main cluster. Additionally, each telescope is equipped with a camera server that performs a
low-level calibration of the data. The data will then be send from the corresponding camera
server to a central trigger via ethernet. This software trigger bundles the single telescope-
events into array-events if they arrive coincidentally and discards them otherwise. The RTA
will operate on calibrated images. The process of integrating and calibrating the raw signal
data is the responsibility of dedicated software which will run on the camera servers or some
central facility. Current plans envision that CTA’s real-time analysis will receive the calibrated
images via multiple network endpoints. As is often the case in the world of high-energy
physics, self-built solutions for handling these data streams are currently being developed by
multiple physicists and engineers in CTA member institutions. Here I propose and alternative

approach.

Over the past decade or so, a plethora of distributed computing frameworks have been popu-

larized by the big data-driven companies like Google, Twitter, Facebook or Amazon. Some
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10 A Prototype for Real Time Analysis

of these solutions are slowly being introduced in places like the LHC at CERN [58]. In the as-
troparticle community, adoption of these new computing technologies is reluctant at best. All
popular “big-data” frameworks such as Spark [150], Storm [139], and Heron [97] support fault
tolerance computing and high availability mechanisms to recover from hardware or network
failures. As part of my research stay at CEA Paris, I developed a prototype for analyzing data
from the CTA array [39] using a well established open-source framework for distributed com-
puting called Apache Flink [43]. The resulting program, dubbed jayct, can be executed
in a distributed manner on heterogenous infrastructure without the need for hand-written
parallelization routines. I chose the £1ink framework for jayct due to the simplified setup
and more comfortable high-level API compared to other frameworks. The program performs
image cleaning, calculates Hillas parameters, reconstructs the event’s direction, and applies
pre-trained machine-learning models for particle and energy prediction. Like most big-data
processing frameworks, £1ink is executed on the Java Virtual Machine (JVM). The big-data
ecosystem almost exclusively relies on the Java runtime due to its remote debugging features
and capability to execute compiled programs on any operating system and hardware platform.
The reconstruction algorithms in jayct are essentially a Java re-implementation of FACT

software and ctapipe methods.

Frameworks for distributed streaming such as f1ink, provide high-level abstractions that
allow the user to model the dataflow as a graph in terms if sources and sinks. In this use
case, the f1ink data sources output calibrated images which were generated beforehand. The
source is connected to the sink nodes via the composition of map, filter, windowing, and
aggregation operations. Each step in the computation is distributed to an arbitrary number
of parallel slots. The location of the slots is not defined by the user, but instead is automatically
delegated to any physical machine with sufficient resources. To emulate the behavior of CTA’s
real-time analysis, we modeled multiple data sources in jayct which access the simulated
images. The results are dumped into a single sink which writes the results to a csv file. The
jayct program supports two modes for distributing the events between the test machines.
In the first variant, each image in an event gets treated separately for the calculation of the
image parameters. The image cleaning is performed on all images in a loop before they are
split into separate data items. Then the Hillas parametrization, background suppression, and
energy prediction is applied to each image separately before they get collected based on their
event ID. This last step is performed in a windowed aggregation operation which accumulates

the images within a fixed window of 5 seconds.

The second, and arguably easier, approach to distributing the computation, treats each array-

event independently. In this case the images belonging to one array-event are not separated
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and no windowed aggregation operation is necessary. Figure 10.1 shows the event rates
achieved by this second variant on just two machines. The thick line shows the mean data
rate achieved by jayct. It stays close to 30 000 events per second which is well above the
estimated background event rate. In this, admittedly simplified, setup, two or three large
machines will suffice to perform CTA’s real-time analysis. Already at this point in time, with
only one LST prototype operating, powerful computing infrastructure that consists of several
hundred dedicated compute nodes is running on La Palma. Using established frameworks for
distributed computing can help to bring down the cost of hardware, energy, and maintenance
for CTA. The big-data industry has produced many battle tested solutions for these types of

problems. There is no need to reinvent the wheel.
The source code for the jayct real-time analysis prototype can accessed at

https://github.com/kbruegge/jayct ©
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Figure 10.1: Two machines were used to benchmark the event rates reached by jayct. The gray dots
indicate the sampled event rates in a 100 ms window. The bold line shows a running average over 1
minute. The two thinner lines show the mean event rates of the single machines. A total of 40 out of
96 available threads were used for this test, of which 30 were blocked on one machine and 10 on the
other. The machines were not isolated from other users. Multiple workloads were performed by other
users during the execution of this benchmark.
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1 1 Sensitivity Computation

The sensitivity curve is a widely used tool to compare different telescope types and analyses
in terms of their detection capabilities of gamma-ray point sources. This energy dependent
curve shows the minimum flux required for the instrument to detect a source. CTA was
specifically build to detect unknown and faint sources in the very-high-energy gamma-ray
sky. The project will improve the sensitivity of TeV gamma-ray telescopes by an order of
magnitude at least. The point source sensitivity curve is often considered to be the final proof

of validity for a CTA analysis.

The reference analysis for CTA isimplemented in the Eventdisplay and MARS software pack-
ages. Both are closed-source programs based on C+ and ROOT. The Eventdisplay [107]
program was originally developed for the VERITAS project. It was adapted for CTA in or-
der to calculate instrument responses during the early stages of the CTA development. The
MARS [117] project is also based on ROOT and has been in use for the MAGIC telescope ever
since its conception. The official CTA instrument responses are calculated using both MARS
and Eventdisplay. Detailed information about the inner workings of both analyses is
sparse. Some details about the simulations are given in [11]. The most detailed source of
information is the internal report titled “Description of CTA Instrument Response Func-
tions” [106]. Unfortunately this document is accessible to CTA members only. The latest
official performance figures can be downloaded at the CTA observatory website [48]. Neither
MARS nor Eventdisplay interoperate with a high-level programming language, let alone
the official CTA pipeline prototype ctapipe. It was an explicit goal of this thesis to create an
open-source pipeline based on ctapipe and other open-source tools that rivals the physics
performance of the reference implementation. The significance and sensitivity assessments

presented in this chapter are the ultimate benchmark for comparing the different analyses.

Calculating a sensitivity curve involves multiple intermediary steps and large amounts of
simulated data. The full simulations used to produce the sensitivity curve for this analysis
need approximately 20 TB of disk space. As mentioned previously, a fair comparison of these
intermediate steps is difficult if not outright impossible. Many analyses apply a pre-selection

of events to remove events that are likely to be miss-reconstructed. Images that are not fully
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contained in the camera are often either removed by manual cuts or due to the way the recon-
struction algorithms are implemented. This might consequently improve quantities like the
angular and energy resolutions. An additional layer of complexity comes from the fact that
many of the published performance curves are drawn with respect to estimated energy. An
unbiased comparison is impossible without using the same model for energy regression. Offi-
cial CTA performance curves, specifically angular resolution, energy resolution, and effective
area, are based on an optimized event selection. The official event selection is performed by

maximizing the point-source sensitivity in each energy bin independently.

In this chapter I reproduce parts of the CTA reference analysis in order to compare it to the
performance of my, Python-based, open-source approach. As explained in section 5.2, the
detection probability for a single gamma-ray shower is highly dependent on the particle’s
energy. To calculate the response of the detector to a real source, the simulated observations
have to be reweighted to the spectrum of a real astrophysical source. Section 11.1 gives
details on how these weights are calculated. Previously, in section 5.3 I described how the
number of background counts in an IACT observation is estimated. This approach has to be
modified for the CTA simulations used here. The adapted method is explained in section 11.2.
The definition of sensitivity is strongly connected with the concept of detection significance.
Section 11.3 describes how the detection significance of a point source is commonly defined
in the IACT community. In that same section I optimize the event selection to find the best
significance for a hypothetical observation of the Crab Nebula and show the infamous 6-
plot. Finally, section 11.4 presents the result of the optimized event selection and shows the

resulting point-source sensitivity curve.

11.1 Event Weights

Events simulated by the shower simulation CORSIKA have their intrinsic energy distribution
depend on some non-physical spectrum set during configuration. In order to produce realis-
tic estimates for the telescope’s performance in terms of real physical sources, these distribu-
tions have to be transformed. As mentioned before, the energy distribution of the simulated
showers follows a power law. While a uniform energy distribution would be preferable in
many situations, such as model training for energy estimation, the computing requirements
increase with higher particle energy. The shower simulation has to track the interactions
of each secondary particle in the atmosphere. The larger the primary particle’s energy, the

larger the number of secondary particles and hence, the computing time. In particular, we
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want the distribution of simulated events to look like the distribution of events from a typical
gamma-ray source in the sky e.g. the Crab Nebula. In addition to the different shapes of
the simulated and real distributions, the absolute flux i.e. the total amount of particles per
area and time, of the source also needs to be recreated. This is necessary to get meaningful
estimates for a detection significance, e.g. 50 in a 10 min observation of the Crab Nebula,

from simulations alone.

The reweighing has to be performed for the signal events, the simulated gamma rays, as well
as the cosmic ray background events, the simulated protons and electrons. The CORSIKA
simulation is configured by providing its minimum energy E,;,, maximum energy E, ..,
the radius of the circular area on the ground in which particles are distributed Ag,, the
opening angle of the cone in which particles from an extended source are produced «, the
total number of primary particles to simulate N, and the spectral index 7y of the power-law
defining the shape of the energy distribution £ . The flux Fy,(E) = &g, £ " in terms
of physical units which corresponds to these configuration settings can be found by using
the fact that the total number of expected counts from F'(F) has to equal the number of

simulated counts

E
! max _
Nsim = /E <I>SimE1 K de - Asim ! tobs : 27T(1 - COS(O{)) = N?

‘min

where ¢, is the assumed observation duration. Solving for the only unknown variable, ®g;,,

results in
N, sim

N

Now we can calculate the energy dependent weight w(E) for each simulated event with

q)Sim =

respect to a target spectrum from an astrophysical source Fi,r. The weights have to be
chosen so that the energy distribution of particles from the target spectrum P, g €quals that

of the simulated spectrum

E | E
Ptarget(E) = /O Ftarget(E/) dE' = /0 Fsim(E/) dE' = Pym(E),

which is satisfied when
w(E) = L““‘“(E). (11.1)
Fim(E)
These weights are used when counting the simulated events or building event distributions
using histograms. To compare the sensitivity and detection significance between different

analyses and telescope designs, it is necessary to use the same assumptions about the tar-
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Table 11.1: The spectral shapes chosen for reweighing the simulated events. The MAGIC spectrum for
the Crab Nebula follows a log-parabolic spectral shape. The spectrum used to weigh the gamma rays
has a strong influence on the event optimization. Some analyses use the HEGRA spectrum published
in 2004, which follows a simple power-law. As seen in chapter 5 and the measurements published by
MAGIC later, this seems to be inaccurate. Hence, the MAGIC spectrum is used here. The electron
spectrum is the result of a fit to Fermi-LAT data released by CTA for internal comparisons. The
function f s is the probability density of the normal distribution. The function is relatively complex as
it tries to capture a “bump” in the spectral shape. The cosmic-ray spectrum was chosen in accordance
with the CTA analysis working group to only include protons. A more realistic alternative could be
achieved by using a cosmic-ray spectrum which includes heavier nuclei as well. The reference energy
is fixed to Fy = 1TeV. The spectra are given in units of cm > s~ GeV ' st " for protons and electrons
and cm s~ GeV™" for the point-like gamma rays.

Particle Publication Shape

—2.47-0.241l0g, (E/E,)
Gamma-Ray (Crab) MAGIC (2015) [17] 3.23 % IO—S(EEO) 9810(%/ Fo

Electron Fermi-LAT (2009, 2010) [7, 12]
2.38% 10" 12343 <1+1_95(€f,\/ (logo(E/Bq)|o=0.741,u=—0.101) _1>>

Proton BESS (2000) [132] 9.6 x 10°(£) o
get spectra. Specifically which spectral shapes are used to weigh the signal and background
events. Throughout this chapter the simulated gamma rays are weighted with the Crab Nebula
spectrum as published by the MAGIC collaboration in 2015 [17]. The spectrum of cosmic-ray
protons is taken from results of the BESS spectrometer [132] published in 2000. And last but
not least, the spectrum of cosmic-ray electrons which was fitted to flux points published by
the Fermi-LAT collaboration [7, 12]. The fit was performed by the authors of CTA’ reference
analysis and published in the internal IRF report [106]. These spectra were chosen in agree-
ment with CTA internal discussions which have yet to be formalized into a public document.

Table 11.1 gives an overview over the selected spectra.

11.2 Background Estimation

Point-like simulated gamma rays are used to emulate a source in the sky for which the de-
tection significance can be calculated. However, unlike the “wobble mode” observations
discussed in section 5.3, the simulations place the source right in the center of the field of
view. In this case, the reflected regions method for estimating the background counts is un-
suitable. Since the acceptance probability drops of rapidly with increasing distance to the

center, simply placing the off-regions in radially symmetric fashion around the center would
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underestimate the number of background counts in the on-region. With simulated data it
is, however, straightforward to disentangle the contributions to the counts on the on-region
Nyy = Ny + t, Ny, since each event is labeled with the primary particle type. The signal
counts [V, are calculated from the set of point-like gamma events which meet the selection
criterion given by the classification model that was trained beforehand. Then from this set
of “gamma-like” events .5, all events whose reconstructed source position lies within a radius
of 8, to the true simulated source position are retained while all other events are discarded.
Using the weights w; calculated in the previous section, the number of signal counts can be
calculated by

Ne= > wl(b; <6b,) (11.2)

w;,0;€8

The estimation of the background counts works in a similar manner. First all simulated
electrons and protons which are selected as “gamma-like” by passing the prediction thresh-
old of the classifier, are gathered into the set of background candidates B. The better the
background rejection by the classifier, the lower the number of events in B. Even with a
strong classifier, the large abundance of cosmic rays collected during observations, create a
smooth distribution of background events in the field of view. In simulated data the amount
of background data is limited by computational resources. In order to produce a finely binned
sensitivity curve, a minimum amount of counts are required to avoid biases in the calculated
significance due to fluctuations of the background counts. To alleviate this problem the radius
around the true source position from which the background counts are estimated is enlarged
to a radius of 1°. The number of counts in that region is then scaled to correspond to the size
of the off-region. The off-region is larger than the on-region by a factor of 1/¢,. The scaling
factor n between the size of the background region and the circle with a radius of 1° is given
by
A

1 ath, 0o

to w1°2  t,

so that the total number of background counts in the scaled region can be estimated by

92
Nb = Z nwzl(ﬁz < 10) = Z %wll(ez < 10). (113)
w;,0,EB w;,0,€B %

The estimated numbers are strongly dependent on the prediction threshold a and the size
of the on-region 6,,. For the observation of a single point source, these two parameters
can be optimized to achieve the highest Li&Ma significance. CTA does not officially specity
a method that defines how the background events should be estimated. This introduces

another source of uncertainty when comparing analyses with each other. The choice of
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background region has a large influence on the total number of background counts. Other
CTA analyses parameterize the dependence of IV, on the prediction threshold in each energy
bin by fitting functions to the background event distribution. The choice of function shape
for these distributions is hard to justify and rather ad-hoc.

11.3 Detection Significance

The conventional definition of detection in the IACT community is a significance level of at
least 50. Most established analysis of IACT data follow the arguments by Li and Ma [101] to
build a statistical model of the measurement process in order to calculate the significance of
an observation. I will recount a shortened version of the Li & Ma argument in this section.
Despite all the efforts taken to separate signal from background by using machine-learning
models, a non negligible amount of background events remain as detailed in section 5.3. The
number of observed counts in the signal region, the “on” region, is made up from the number
of actual signal counts from the source and the number of approximated background counts
Non = Niignal + taNp = Niignal + toNog- The expectation for the number of events in the
on-region is defined accordingly as p1,, = 1+t 1, where pi; and pu, are the expected signal
and background counts and ¢,, is the relative exposure of the off-region compared with the
on-region. See section 5.4 for detailed definitions. We previously defined the likelihood of
the data given the parameters y, and y;, in equation (5.11). For a single energy bin it was

defined as the product of two Poisson distributions

'C(NomNoffv toc ’ ,usnub) = Pon(Non ‘ s + touub) : Poff(Noff | Nb)

Non —HsFlop No —H
(s + o) e by e

Non! Noff!

The significance of a detection is calculated from a likelihood-ratio test. The null hypothesis

(Ho) _

H is that all measured counts in the signal region are due to background events alone 14

0. Respectively, the alternative hypothesis is given by ,ung) > 0. The likelihood ratio test
statistic A is defined as the ratio of the null hypothesis divided by the alternative hypothesis

L NonvNofﬁ ta | lagHO)vﬂ(HO)
ot )

B ~(Hy) ~(HD\’
£<Non7Noﬂ:7toz’/J'g 1)7M((, 1)>
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11.3 Detection Significance

where ﬂng), ﬂ,()Hl) and [LI()HO) are the maximum likelihood estimates for the null and alter-

native hypotheses. The maximum likelihood estimates for the alternative hypotheses follow
immediately from the definition of the problem to ,asHl) = Ny, — toNogand /),()Hl) = Ng.
Liand Ma argue that in the case of the null hypothesis, where no signal events are measured in
the on-region, the estimate for the background can be improved by also taking into account

the amount of counted background signals in the on-region. Following that line of reasoning,

the maximum likelihood estimate for the expected background is ,&éHO) =3 tf‘H (Non + Nog).
Following Wilk’s theorem [146] the test value can be transformed to follow a X2 distribution

with one degree of freedom

—2In(A\) ~ x> and /—2In(A) ~ [N (= 0,0 = 1)

when the number of observations approaches infinity n — oo. The significance of the
observation follows immediately from the value of S = y/—21In(\). Inserting the values for
A yields the expression commonly known as the Li&Ma significance [101, eq. 17]

1+t, N, Nog
S =4/2N_. In & on Neln| (1+¢ °>
\/ n < ta Non+Noff> of <( Q)Non+Noff

The approximation by Wilk’s theorem becomes problematic for low count statistics when the
parameters for the Poisson distributions lie on the edge of the parameter space. Alternative
solutions have been discussed by several authors [16, 44, 123]. The Li&Ma solution is used in

almost all publications in Cherenkov astronomy whenever a detection significance is given.

The CTA analysis tries to maximize the sensitivity in each energy bin independently by vary-
ing the parameters for the event selection and hence changing the values for the event counts
N, and Ng. Three parameters are optimized in this analysis. The prediction threshold «,
the size of the on and off-region 6, and the telescope multiplicity. The relative exposure is
fixed at ¢, = 0.2 throughout this chapter.

Figure 11.1 shows the infamous the 6>-plot. This image is a ubiquitous tool among Cherenkov
astronomers to visualize source detections. The image shows the distribution of events from
the on and off-regions with respect to the squared distance between estimated and true source
position 6. Here the entire energy range of the simulations is taken into account to produce
the plot so that sufficient background events are available. The plot shows that the CTA
analysis presented here would result in a definitive detection of the Crab Nebula within a
fraction of a minute of observation time. To put this in perspective, the FACT telescope needs

a few hours of observation time to achieve the same level of detection significance.
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Figure 11.1: The 6° square plot for the Crab Nebula as seen by my CTA analysis. The red curve shows
the distribution of the gamma rays together with the mean of the background counts. The shaded
region indicates the total distribution of background events. The gray line towards the bottom shows
the part of the background distribution which is due to electrons. The number of counts in the on and
off-region correspond to the area under the red and black curves to the left of the vertical line. The
larger the difference between the two, the stronger the detection. CTA will be able to detect gamma-ray
sources much quicker than any previous IACT. As this result shows, sources as bright as the Crab
Nebula can be detected in less than a minute with CTA. The multiplicity of the trigger, the radius of
the on-region, and the prediction threshold were optimized to maximize the significance as given in
section 11.3. Interestingly, the best prediction threshold in terms of significance roughly matches the
location of the maximum of the balanced accuracy curve in figure 9.2. The faint vertical line near
0.05° shows the radius of the signal region. The 6°-plot gives a quick visual reference of the signal to
noise ratio. It is a common sight in many publications [9, 10] and often displayed in the telescopes’
control rooms.
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11.4 Sensitivity Computation

The sensitivity of a telescope to a point-like gamma-ray source is defined as the minimum
brightness the source must have in order for the telescope to detect it in a predefined time
interval. The response IACTs is highly energy dependent. Hence, the sensitivity of an instru-
ment depends on the shape of the source’s emission. In high-energy Cherenkov astronomy
the ubiquitous Crab Nebula is chosen as the prototypical source. Specifically for CTA, the
sensitivity is defined as the minimum flux a source with a Crab Nebula like spectral shape
must have so that it will be detected with a significance of 5o within a fixed observation time
of 50 hours. This number is calculated in bins of estimated energy in order to produce an
energy dependent sensitivity curve. This curve can then be compared to the spectral energy

distribution of different sources and the sensitivities of similar instruments.

Given the counts in the on and off-region, the detection significance S(N,,, Nog, t,) is
calculated according to section 11.3. In the simulated data, these numbers can be expressed
in terms of signal and background counts N, = N, + t,N, and Ng = N,. At this point
the signal and background events are already weighted according to their assumed physical
spectra and observation time as described by equations 11.2 and 11.3 We are interested in
finding the factor x by which the signal events have to be scaled so that the significance S
reaches the required minimum significance level of 50. This can be written as a minimization
problem

# = argmin (5 — S(Noy = 2N, + to Ny, Ny, to))°
N,

All values except x are fixed. This problem can be solved with a simple one dimensional
minimization method. The result 2 is the estimated relative sensitivity. If the relative sensitiv-
ity is larger than one, the source cannot be detected in that energy bin within the assumed
observation time. If x is smaller than one, it describes the factor by which the source can be
fainter and still be detected. Multiplying « with the flux of the target spectrum at the center of
the energy bin yields the sensitivity in physical flux units. The statistical errors on x are com-
puted by repeatedly sampling the N, and IV, from a Poisson distribution and recomputing

the sensitivity for each sample.

CTA introduces two additional constraints to mitigate the effects of statistical fluctuations.
First, the number of excess counts has to be larger than 10, i.e Ny, — ¢, N,g > 10. Second,
the excess has to be larger than the uncertainty in the number of background counts by a
factor of five. CTA assumes a modest 1 % of uncertainty leading to N, > 5 % N g+ 0.01. For

my analysis I supplement these constraints by requiring that the total number of unweighted
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11 Sensitivity Computation

background events in a 1° radius is larger than 80 and assuming a background uncertainty
of 2 %.

Energy dependent curves can only be compared if the energy binning is well defined. CTA
uses 5 bins per decade of reconstructed energy starting at 0.02 TeV. The energy reconstruction
differs between different analysis methods. Each regressor comes with an intrinsic energy
bias in addition to its finite resolution. The relative difference between true and estimated
energy d = EE“T_TET as seen in figure 9.4 can be plotted versus true or estimated energy on the
abscissa. The CTA reference analysis applies a so-called bias correction. Linear interpolation
between the median values for d, the bias, creates a continuous function B(Efg ) which can
be used to correct the average offset in a bin of estimated energy. This function is then applied
to the estimated energy values of the simulated signal and background events before they are

distributed into the energy bins for further computations

While the usefulness of this transformation is debatable at best, it is essential when comparing

the sensitivity curves to the reference result.

To find the best sensitivity, the event selection is optimized in a brute force manner. A three-
dimensional grid of test values is created for the minimum event multiplicity m, the radius

of the on-region 6, and the prediction threshold o
(m,0,a) € {2,3,...,10} x {0.01,0.02,...,0.17} x {0.30,0.35, ...,1.00}.

This grid is then evaluated for each energy bin in parallel. From all tested combinations
of (m, 0, «), the event selection that produces the lowest relative sensitivity is chosen. Ta-
ble 11.2 shows the resulting values for each energy range together with the calculated Li&Ma
significance. In order to avoid overfitting, the step size of the grid is left intentionally large.
No independent test data is available as the amount of available background simulations is
limited. The results of the event selection is summarized in table 11.2 The selected thresholds
in v and 6 are interpolated linearly between energy bins in order to create continuous thresh-
olding functions. The thresholds for the event multiplicity define a piecewise function which
is constant between the edges of the energy bins. An event is then either accepted or rejected

based on the value of the threshold functions at the event’s estimated energy.

Figure 11.2 shows the angular resolution of the CTA analysis after applying the cuts from
table 11.2. Unlike the figure 8.2 shown previously, this plots shows the performance on the
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11.4 Sensitivity Computation

Table 11.2: The result of the grid search of the three-dimensional parameter space in minimum event
multiplicity, on-region radius 6, and prediction threshold a.. These values are used to select the events
for the plots that compare the performance of this analysis to the reference analysis. As expected, the
significance is lower in the very-high and very-low energy bins. Both due to limited statistics and
inaccurate reconstruction of direction, particle type, and energy. The relative sensitivity is multiplied
with the value of a flux model at the center of the energy range to produce a sensitivity curve. The shape
of the curve changes depending on the shape of the target spectrum. I use the MAGIC log-parabolic
spectrum, see table 11.1, to create the sensitivity curve. The last row is grayed out since the result does
not match all required optimization constraints. One alternative approach to performing the event
selection is to fix 6 to the value of the angular resolution as calculated on point-like simulations. An

example is shown in A.6.
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11 Sensitivity Computation

simulated point-like gamma-ray events. Beyond estimated energies of approximately 1 TeV,
the angular resolution falls below 0.05° which is equivalent to the apparent radius of the Eagle
nebula [118]. This low angular resolution allows CTA to map the TeV gamma-ray sky with

unprecedented precision.

Similar to the angular resolution plot, figure 11.3 shows the energy resolution for the opti-
mized event selection on point-like gamma rays. The resolution remains close to a value of
0.2 for the majority of the energy range. Like the reference analysis, the resolution improves
with increasing energy and remains relatively constant until about 20 TeV. The bump near
20 TeV is due to outliers in the distribution which shift the percentile. In general, the energy
regression seems to perform worse than the reference by at least a factor of two. This does not
influence the point-source sensitivity to a large degree as the only consequence of this is the
migration of events between energy bins in the curve. It might, however, have detrimental

effects on the reconstruction of energy spectra.

Figure 11.4 shows the effective area of this analysis compared to the reference analysis. As
stated in section 5.2, the effective area is defined as the acceptance probability of the telescope
multiplied by the maximum scatter area in the simulations. The curves match quite well in
the lowest energy range. In the range above 1 TeV the effective area of the reference analysis
is significantly larger. This might be due to the fact that I apply no “pre-selection” to the
data whatsoever. These pre-selection cuts are traditionally used in IACT analysis to remove
faint or non-typical events in a manual fashion. They are usually not well-motivated and
often the result of subjective intuition of the researcher applying them. Hence, no manual
selection takes place in the analysis presented here. The colors of the points indicate the
prediction threshold that has been applied. The optimization chooses larger thresholds in the
medium energy range. Towards the low and high-energy range separation between signal

and background is not as effective and the chosen prediction threshold is lower.

Figure 11.5 shows the point source sensitivity curve for CTA analysis presented here. The
gray line shows the official CTA requirement for the point source analyses. This result shows
that the sensitivity requirements set by CTA can easily be met by the ctapipe based analysis
in conjunction with the aict-tools package. In fact the sensitivity accurately matches the
reference analysis and even outperforms it in some energy bins. The analysis presented here
is currently the only competing alternative to the MARS and Eventdisplay analysis. All
numbers and figures presented in this chapter are calculated by a package called ctaplots

which is available at

https://github.com/kbruegge/cta_performance_plots €)

116


https://github.com/kbruegge/cta_performance_plots

11.4 Sensitivity Computation

05~ Gamma Point-Like - 500
383981 (Optimized Cuts)
O\ 0.4 - — 3 === Reference
g = (8" Percentile - 400
E —
CE 0.3 - 0
o - 300 =
5 5
= &)
o 02s - 200
()
=
=
z
A 0.1- - 100
0.0 =4 v g D O T D R voor g -0
1072 1071 10° 10! 10°

Estimated Energy / TeV

Figure 11.2: The distribution of distances between true and estimated source position. As discussed
for figure 8.2 the angular resolution is defined as the 68t percentile of the distance between estimated
and simulated source position. Unlike figure 8.2 the data here is plotted versus estimated energy to
make it comparable to the reference curve, which is unfortunately not available in units of true event
energy. Note that no cut in the distance to the true source position 6 has been applied.
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Figure 11.3: The distribution of the relative distances between true and estimated energy for point-
like gamma-ray simulations. Unlike figure 9.4 the data here is plotted versus the estimated energy to
make it comparable to the reference curve. The bump in curve near 50 TeV is due to the heavily tailed
distribution of events in that range. The outliers might be due to the lack of image containment or
similar effects. The median of the distribution, which is not shown here, does not exhibit this behavior
and remains relatively flat. Note that no cut in the distance to the true source position 6 has been
applied.
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Figure 11.4: This figure shows the effective area affer the optimized event selection has been applied.
In conjunction with the definition of the reference curve, cuts in telescope multiplicity, prediction
threshold, and direction are used. The color of each point shows the applied prediction thresholds as
defined in table 11.2. The dashed gray line shows the result of the reference analysis. The additional cut
in direction reduces the number of selected events by about half compared to figures 11.2 and 11.3. Its
important to note that the reference analysis employs an additional smoothing operation to suppress
noise which results in smoother curves.
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Figure 11.5: The sensitivity curve of the ctapipe and aict-tools based analysis for the full southern
layout at the Paranal observatory site. The sensitivity closely follows the reference shape indicated by
the black bars. No error estimates are published for the reference results. The curved dashed lines show
the flux of the Crab Nebula according to the log-parabolic spectrum as published by MAGIC [17]. The
faded point on the very-high end of the energy range does not adhere to the full selection requirements.
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1 2 Notes on Reproducibility

The computation of the optimized event selection is the final link in a long chain of analysis
steps. Many terabytes of raw data are preprocessed into tabular data on which machine-
learning algorithms can be trained. The data needs to be split into independent test and
training sets to avoid biases. All meta data concerning the air-shower simulation has to be
carried along so that the effective area can be calculated for any arbitrary subset of the data.
The entire process is a composition of many different programs which are in principle self-
contained. Without proper automatization, the whole construction is rather fragile, if not

dangerously prone to error.

Each figure and table in this document has an implicit dependency on some input data. Ta-
ble 11.2, for example, shows the results of the optimized event selection. The table can only
be constructed if the machine-learning models described in chapter 9 have been applied to
the test data which resulted from the preprocessing performed in chapter 8. The models
themselves in turn depend on the configuration files and the training data. These data de-
pendencies can be explicitly modeled with tools such as make [133] or snakemake [94]. I
chose make because it is supported on essentially every operating system that is in use today.
Data dependencies are described by so-called Makefiles. The make program builds a directed,
acyclic graph from the Makefile and executes each step in topological order. This entire doc-
ument can be build from a single call to the make program. Each machine-learning model,
fit, figure, table, and automated KIgXsnippet is part of the execution graph. Figure A.5 in the

appendix shows a visual representation of the dependency graph for this document.

All software used for this thesis was written in the Python programming language in version
3.7.2. Each plot was created using the matplotlib [86] library version 3.1.0. A full list
of Python dependencies can be found in the requirements.txt file that is attached in
appendix B.2. The ETgXcode for this document and all scripts needed to create the figures
and tables will be uploaded after official publication to

https://github.com/kbruegge/phd-thesis €)
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1 3 Conclusion

The deployment of the Cherenkov Telescope Array project will ring in a new era of Cherenkov
astronomy. Its unprecedented size brings new challenges to every aspect of traditional IACT
analysis. This second part of my thesis shows that a fully open, reproducible and configurable

analysis pipeline matches the performance of the previous CTA reference analysis.

The development of ctapipe as an open-source tool is a paradigm shift in the history of
very-high-energy physics. The ctapipe project is a chance to bundle the expert knowledge
from multiple telescope collaborations into a single place. I contributed to ctapipe imple-
mentation that performs the directional reconstruction of air showers. The resulting angular
resolution as seen in figure 11.2 closely follows that of the reference analysis. To ensure re-
producibility for the processing, I used the methods provided by ctapipe to implement a
configurable pipeline which reads simulated CTA data and performs all steps necessary to
perform background suppression and energy estimation. As of yet, no official data format
has been agreed on to store the results produced by ctapipe. I used a column-based storage
with unique identifiers on each row that allows me to perform database-like queries on the
data. We developed the aict-tools package to handle the common machine-learning tasks
encountered in JACT analysis. Efficient background suppression and energy estimation is
maybe the most challenging part of any IACT analysis. In order to supply the multivariate
methods with as much information as possible, the models were trained using per-telescope
as well as array-wide features. The aict-tools support this by joining two tables before
handing them to the model. For application to CTA data special care needs to be taken in
order to ensure data consistency as the data can only be read in a batch-wise manner. The

aict-tools perform remarkably well on CTA data as shown in figure 9.2.

The final benchmark for any CTA analysis is the sensitivity curve. The reference values pub-
lished by CTA are computed with proprietary software from the MAGIC and VERITAS col-
laborations, for which no detailed documentation is available. I built an open-source toolkit
to compute sensitivity curves and detection significances on a per-event basis. The resulting
sensitivity curve is shown in figure 11.5. The image shows that the analysis I developed for

my thesis performs just as well or event better than the reference.
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13 Conclusion

The future development of ctapipe needs to concentrate on the definition of file formats
so that an entire processing pipeline can be implemented. Once that is achieved, an official
benchmark has to be defined in order to make different analyses comparable with each other.
The performance of the aict-tools on CTA data could be improved in a future iteration by
applying two nested models on the data: one on a per-telescope level, and one that summarizes
the result of the single-telescope predictions for the entire array-event. A new production of
CTA simulations has recently been started. This simulation has been adapted with data from
the prototype telescopes that have been deployed during the last two years. CTA now has
the chance to compute the next official performance numbers using a fully reproducible and

open-source pipeline.
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A Additional Comments and Results

A.1 Least Squares Fit to High Energy Crab Emission

In figure 2.3 I performed a least-squares fit to flux data for a log-parabolic energy spectrum
with parameters «, /3, and the amplitude A. The matrix below shows the covariance of
the parameters as estimated by scipy’s curve_fit method. The scipy method uses the
Levenberg-Marquardt [99] algorithm and estimates the covariance via the Hessian matrix in

the minimum. The entries on the diagonal show the variance of the corresponding parame-
ter.

A « I}
A[ 1.819x 10 —2484x10 " —5267x10° "
al| —2484x 107" 1.169x 107 5.033 x 10*
B\ -5267x10" 5033x10* 2783 x10*
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A Additional Comments and Results

A.2 SSC Fit to Crab Nebula Flux Data
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Figure A.1: This figure shows the correlation between the sampled parameters for figure 4.1. The
red dots indicate the median. Tick labels on the axis are placed at the 1%, 99t and 50t percentile.
The histograms on the diagonal show the marginalized distributions of the parameters labeled on the

lower axis. Some of these parameters show strong correlations, which need to be taken into account
when interpreting the errors given in A.1
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A.2 SSC Fit to Crab Nebula Flux Data

Table A.1: List of free parameters for the SSC model fitted to fluxes from the Crab Nebula. The left
column shows the median sample values with their 16" and 84 percentiles. The center columns
shows the parameter values for all sampled chains in gray and the median value of all chains in red.
The rightmost column shows the marginalized posterior distribution of each parameter. The shaded
gray area indicates the 16™ and 84t percentiles.
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A Additional Comments and Results

A.3 Historical Evidence of Crab Supernova

Chinese records provide relatively reliable descriptions of variable phenomena in the sky. An-
cient Chinese astronomers speak of “Guest Stars” whenever such a variable star was observed.
Compared to European records, these document are relatively reliable. The earliest records of

Guest Stars in Chineses history date back to the Han dynasty approximately 200 B.C. [147]

The figure below shows the only known historical mention of the supernova that is now the
Crab Nebula. A Chinese astronomer recorded the phenomenon in a letter to his emperor.
The dates and description match that of a supernova consistent with the location of the Crab
Nebula.
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Figure A.2: Chinese records of the Lidai Mingchen Zouyi [145, page 535], which dates to 1414. The
passage about the Crab Nebula supernova (SN 1054)as translated in [127]. The passage reads: “27d
year of the Zhihe reign period of Emperor Renzong of Song [1055]; Attendant Censor Zhao Bian
submitted a letter saying: “Your servant considers that, since the 5th month of last year [when] the
baleful star appeared, a full year has passed and until now its brilliance has not faded [lit. retreated’]’
This is what Gu Yong meant by ‘its rapid movement, the variations in the length of its flaming rays,
and the [asterisms] on which it has trespassed successively) as a censorious anomaly it is greatly to be
feared”.
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A.4 Profile Likelihood Solution

A.4 Profile Likelihood Solution

The full Poisson likelihood includes a nuisance parameter for each energy bin that describes
the number of background counts. These nuisance parameters can be removed by “profiling”
the likelihood. Solving (5.13) for 1, yields

[y, = Nogror + Nopv — aprg — pis — \/I?
b 20(a+1)

(A.1)
where

2 2 2 2 2
K=« (Noff+ 2]\[off(]\fon +}us) + Non - 2]\fonus +:us) + 20‘“3((Noff_ Non) +:us) + M-

This expression can be substituted into (5.11) resulting in the profile likelihood which has no
dependence on i, anymore. Special care has to be taken when implementing this formula
for zero counts in the data. See https://docs.gammapy.org/0.11/stats/fit_statistics.html for

some information about edge cases.
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A Additional Comments and Results

A.5 Implementation for PyMC3 and Theano

The higher the sampling rate, the quicker the fit. Spending some time to optimize the code to
integrate the spectral model brings a large speed improvement. The listing below shows how

the trapezoidal operation is implemented in a vectorized way using the numpy [125] library.

# Define x and delta x. This can be pre—computed once.

= np.tile(np.linspace(@, 1, num=num_nodes), num_bins).reshape(num_bins, -1)
xs = (d * bin_widths[:, 1) + bin_edges[0:-1, 1
delta_xs = np.diff(xs)

# Compute the integral of f using theano's symbolic sum operation.
y = f(xs, parameters)
integral = 0.5 % theano.tensor.sum((y[:, @0:-1] + y[:, 1:]) * delta_xs, axis=1)

This unassuming piece of code brings a dramatic speed increase of at least a factor of 10.
Instead of building single scalar gradients for each energy bin, Theano can build the Jacobian
for a single tensor object. The gradient of the integral with respect to the parameters N, a, 3
can be build automatically. The PyMC3 model seems to sample faster when the gradients are
precomputed. Since the integral limits are constant, we can apply Leibniz integral rule [62]

and switch the order of the differential and the integration

oc 0 0
T N(E; N, E = —N(FE; N, E
(906 60[ / ( ) O’Oévﬁ)d / (904 ( ) 0,0[,,6)(31
AE;, AE;,
—a—pBlog;, £
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80& EO
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A.6 Sensitivity and Effective Area for Fixed On Region

and last but not least the amplitude parameter V;

de / B\ em(5) .
ONy E, ‘
A

T

The PyMC3 model can now be sampled at a rate of several hundred samples per second. The
listing below shows the definition of the PyMC3 model. The full code can be accessed at
https://github.com/tudo-astroparticlephysics/ll_experiments ©.

amplitude = pm.HalfFlat(
alpha = pm.HalfFlat( )
beta = pm.HalfFlat( )

forward_fold_log_parabola(integrator, amplitude, alpha, beta,
observations)
pm.TruncatedNormal(
1
lower=0,
shape=len(off_data),
mu=off_data,
sd=5

pm.Poisson( , mu=mu_b, observed=off_data, shape=len(off_data))
pm.Poisson(

1
mu=mu_s + exposure_ratio * mu_b,
observed=on_data,
shape=len(on_data)

A.6 Sensitivity and Effective Area for Fixed On Region

The sensitivity curve 11.5 and the effective area plot 11.4 were calculated on an optimized
subset of the data. Combinations of prediction threshold, multiplicity, and on-region radius
were tested to find the best sensitivity. This might introduce biases and over-fitting effects
since no independent test data is available. To mitigate the effects to some degree, the size of
the on-region, 6, is defined in terms of angular resolution. This reduces the dimension of the

optimization problem and increases runtime drastically.
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Figure A.3: Effective area for optimized event selection in multiplicity and prediction threshold. The
on-region radius 6 was fixed to 50 % containment of the angular distance between true and estimated
position in each energy bin. In comparison to the results shown in figure 11.4, the values match the
reference curve better.
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Figure A.4: Sensitivity curve for optimized event selection in multiplicity and prediction threshold.
The on-region radius § was fixed to 50 % containment of the angular distance between true and
estimated position in each energy bin. The results are slightly worse than the ones shown in figure 11.5,
but still well within the expected performance range.
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A.7 Dependency Graph

A.7 Dependency Graph

The figure A.5 below shows the dependency of this document. It was created from the Make-
file by the tool makef i1e2graph1 written by Pierre Lindenbaum. The output was processed
with the Gephi [27] software. Gephi is a graphical user interface to modify graphs for visual-
ization. It supports various layout algorithms and search queries in large graphs. The figure
below represents only a part of the dependency graph as one of the nodes calls into yet an-
other Makefile recursively. Still, the figure summarizes most data dependencies needed for a
proper CTA analysis. Managing this complicated construction by hand would be a herculean
task. I urge anyone performing data analysis of any kind to use a workflow automation tool

like make or snakemake.

Figure A.5: The dependency graph of this document as seen by make. The inner nodes correspond to
the final targets. The final pdf file, which is this very document, has the largest degree of all nodes in
this graph. Unfortunately, this figure itself cannot be created without human interaction and cannot
be created fully automatically.

"https://github.com/lindenb/makefile2graph
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B Configuration Files

B.1 Configuration for the aict-tools

The listing below shows the contents of the configuration file used for the aict-tools. I'd

like to take this opportunity and apologize for the terrible name of the aict-tools project.

I was put on the spot by an approaching deadline and the creative fumes of the day were

eluding me.

# seed for the random number generators,
# to make things reproducible
seed: 0

# telescope_type_key: telescope_type_name
telescope_events_key: telescope_events
array_events_key: array_events

runs_key: runs

multiple_telescopes: True

# config for the energy regression
energy:
regressor : |
ensemble.ExtraTreesRegressor(
n_estimators=200,
min_samples_split=100,
n_jobs=—1,
)

log_target: True
target_column: mc_energy

n_cross_validations : 5

# Define the name of the category you want to find.

# It will be written as <class_name>_prediction
class_name: gamma_energy

# Define the name of the column that contains the
# name of the telescope
telescope_type_key: telescope_type_name

features:
— num_triggered_telescopes
— width
— Tlength
— skewness
— kurtosis
— intensity
— camera_type_id
— telescope_type_id
— total_intensity
— average_intensity
— h_max
— distance_to_reconstructed_core_position
— num_triggered_lst
— num_triggered_mst
— num_triggered_sst
— mirror_area
— focal_length
— leakagel_intensity
— leakage2_intensity
— leakagel_pixel
— leakage2_pixel
— concentration_pixel
— concentration_core
— concentration_cog
—r

feature_generation:
needed_columns:

— width
— length
— intensity
features:
area: width % length
width_length: 1 — (width / length)
log_size: log(intensity)
log_size_area: log(intensity) / (width * length)

# config for the g/h separation
separator:
classifier : |
ensemble.ExtraTreesClassifier(

n_estimators=200,
min_samples_split=100,
criterion="entropy',
n_jobs=—1,

)

n_cross_validations : 5

features:
— num_triggered_telescopes
— width
— length
— skewness
— kurtosis
— intensity
— camera_type_id
— telescope_type_id
— total_intensity
— average_intensity
— h_max
— distance_to_reconstructed_core_position
— num_triggered_lst
— num_triggered_mst
— num_triggered_sst
— mirror_area
— focal_length
— leakagel_intensity
— leakage2_intensity
— leakagel_pixel
— leakage2_pixel
— concentration_pixel
— concentration_core
— concentration_cog
—r

feature_generation:

needed_columns:
— width
— length
— intensity

features:
area: width * length
width_length: 1 — (width / length)
log_size: log(intensity)
log_size_area: log(intensity) / (width * length)
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B Configuration Files

B.2 Python Requirements

I relied heavily on open-source software for every step presented in this thesis. The most

important libraries are listed below in no particular order.

o astropy [22, 130]

e numpy [125]

o pandas [111]

e scikit-learn [129]

e matplotlib [86]

o scipy [126]

This document itself was built with MacTex-2018 on both macOS Mojave and macOS High

Sierra. The listing below shows all the Python packages and their version numbers which

were used to produce the results shown in this document. given that the Python installation

is properly set

aict—tools==0.17.0
astropy==3.2.1
atomicwrites==1.3.0
attrs==19.1.0
bokeh==1.2.0
Click==7.0
colorama=
corner==2
corsikaio
s

iminuit==1.3.7

importlib—metadata==0.18
ipython—genutils==0.2.0
Jinja2==2.10.1
joblib==0.12.5

1.1
matplotlib==3.1.0
mock==3.0.5
more—itertools==7.1.0
naima==0.8.3
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patsy==0.5.1
9.6

.1.0
1
6.3

psutil==
py==1.8.0
pycrypto==2.6.1
pydot==1.4.1
pyfact==0.24.0
pymc—spectrum==0.1.0
pymc3==3.6
pymongo==3.8.0
PyMySQL==0.9.3
pyparsing==2.4.0
pytest==5.0.1
python—dateutil==2.8.0
pytz==2019.1
PyYAML==5.1.1
regions==0.4
ruamel.yaml==0.15.99
scikit—learn==0.20.3
scipy==1.3.0
seaborn==0.9.0
Shapely==1.6.4.post2
simple—crypt==4.1.7
six==1.12.0
SQLAlchemy==
tables==3.5.
Theano==1.0.
tornado==6.0.
tqdm==4.32.2
traitlets==4.3.2
wcwidth==0.1.7
wrapt==1.11.2
zipp==0.5.2

1.3.5
2
4

3



B.3 Configuration for Preprocessing
B.3 Configuration for Preprocessing

The listing below shows the contents of the configuration file used for the preprocessing of the
simulated CTA data. The list of telescope IDs selects the telescopes belonging to the so-called
HBO layout of the southern CTA site.

allowed_telescopes: [

4, 5, 6, 11, 53, 54, 55, 56, 57, 60, 61, 64, 65,

66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 88, 89, 90,
91, 92, 93, 415, 416, 417, 418, 426, 427, 432, 433,
438, 439, 44O, 441, 442, 443, 448, 449, 450, 451, 458,
459, 460, 461, 474, 475, 480, 481, 482, 483, 485, 486,
500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510,
511, 524, 525, 526, 527, 528, 529, 536, 537, 538, 539,
540, 541, 542, 543, 544, 545, 550, 551, 552, 553, 554,
555, 556, 557, 558, 559, 560, 561

]

names_to_id:
LSTCam: 1
NectarCam: 2
FlashCam: 3
DigiCam: 4
CHEC: 5

types_to_id:
LST: 1
MST: 2
SST: 3

integrator : NeighbourPeakIntegrator

cleaning_method: tailcuts_clean
cleaning_level:
LSTCam: [3.5, 7.5, 2]
NectarCam: [3, 5.5, 2]
DigiCam: [2, 4.5, 2]

135






Acknowledgements

My deepest gratitude goes to Prof. Dr. Dr. Wolfgang Rhode for giving me the opportunity
to work in the field of astroparticle physics and for supervising this thesis. I also thank my

second supervisor Prof. Dr. Kevin Kroninger for his interest in my research topic.

This work would never have been possible without the continuous support of my fellow col-
leagues and friends in the astroparticle physics group at Dortmund. It truly is a thoroughly
pleasant environment to work in. Special thanks go out to Jens Buss, for essentially recruiting
me and being the moral compass of the department, Lena Linhoff, for enduring my pro-
longed presence in her office, and Alexander Sandrock, for guiding me through horrible inte-
gral transforms. In particular, I'd like to thank my office mate and physics partner-in-crime
Maximilian N6the. Thanks for teaching me innumerable things about Python, BIgXand pro-
gramming in general, not to mention my appreciation for active-noise-canceling technology.
I'd like to give special thanks to everyone who took on the daunting task of proofreading this

document: Lena Linhoff, Maximilian Noéthe, and Linda Richerd.

Finally I can’t help but acknowledge the Sonderforschungsbereich 876 for its funding and for
giving me the opportunity to travel and meet all the terrific people that make up the CTA
consortium. A special thanks to the SFB for allowing me to work at the CEA institute in Paris
during the early stages of my graduate studies. Thanks to Thierry Stolarczyk for hosting me
at CEA, Karl Kosack for many helpful discussions and supporting open science for CTA, and
the entire group at CEA.

I owe additional gratitude to all my friends and family who did not get to see me much during
the last few months. In particular I'd like to thank Hannah for putting up with my late-night

antics and unusual dinner schedule.

137






List of Figures

2.1
2.2
2.3

3.1
3.2

4.1
4.2

5.1
5.2
53
54
5.5
5.6
5.7
5.8

7.1
7.2

8.1
8.2
8.3
8.4

9.1
9.2
9.3
9.4

The all-particle cosmic-ray spectrum. . . . . .. ... ... .. ....... 7
SchematicSEDmodel . . .. ... ... ... ... .. .. ... 13
Fit to the high-energy Crab emission . . . ... ... ... .. ....... 15
Skymap of Fermi’s 4FGL source catalog . . . . . . ... ... ... ..... 18
The HES.S. galactic planesurvey . . . . . ... ... ............ 22
Fit of SSC model to Crab Nebuladata . . . . . ... ... .......... 28
SSC model with varying parameters . . . . . . ... ... ... ... . ... 29
Instrument response function for HE.S.S.and FACT . ... ... ... .. 40
Depiction of wobble mod observations. . . . . .. ... ... .. ...... 42
Measured counts in the open datasets. . . . . .. ... ... ... ..... 50
Plot of the error function. . . . ... ... ... ... ... ... . ... 52
Results of the PyMC3 spectral fits . . . . ... .. .............. 55
Correlation between unfolded flux points. . . . . ... ... ... ..... 59
Results of the PyMC3 unfolding . . . .. ................... 60
Error propagation schematic explanation. . .. ... ... .. ... .... 62
CTA layout at the northern and southernsite . . . . ... ... ... .... 69
Renderings of the individual CTA telescopes . . . . ... ... ... .... 70
Preprocessingof CTAdata . . . . . ... ... ... ... .......... 77
Angular resolution for diffuse gammarays . . . .. ... ... ... .... 83
Max height reconstruction accuracy. . . ... ... ... .. .. .. ... 84
Reconstruction of the impactdistance . . .. ... .. ... ... ..... 84
Least squares machine learning example . . . ... ... .. ... ..... 88
ROC curve and balanced accuracy. . . . ... ... ... ... .. ..... 97
Feature importance for the classifier . . . . .. ... ... ... ... .... 98
Energyresolution. . . . .. ... ... ... ... o o 99

139



List of Figures

140

9.5

10.1

11.1
11.2
11.3
114
11.5

Al
A2
A3
A4
A5

Feature importance of the energy regressor . . . . . ... .. ........ 100
Real-time analysiseventrates . . . . .. ... ... ... .......... 103
6* square plot for the CrabNebula . . . ... ... ... ... ... .... 112
Angular resolution with optimized event selection . . . . . ... ... ... 117
Energy resolution with optimized event selection . . ... ... ... ... 117
Effectiveareaof CTAanalysis . . . . ... ...... ... .. ....... 118
Sensitivity curve of the CTA analysis . . . .. ... ... .. ........ 118
Correlation between fit parameters of the naima SED model. . . . . . . .. 124
Historical Chinese records about the Crab supernova . . . . ... ... .. 126
Effective area for fixed valuesof 6 . . . .. ... ... ... .. ... ... 130
Sensitivity curve for fixed valuesof 6 . . . ... ... ... ... . ... 130
Dependency Graph. . . . . .. ... ... .. L o 131



List of Tables

5.1
5.2
53

9.1

11.1
11.2

Al

Overview of the open data from MAGIC, H.E.S.S., VERITAS and FACT. . . 34
Results of the PyMC3 spectral fits . . . . . ... ... ... ......... 54
Results of the PyMC3 unfolding . . . .. ................... 61
Data structure fordatalevel 2 . . . . .. ... ... ... .. .o ... 95
Reference spectra for event weights . . . . ... ........ ... ..., 108
Event selection optimization results. . . . .. ... ... ... ....... 115
Posterior distributions of the SED model parameters . . . . . . ... .. .. 125

141






Bibliography

10.

A. Aab et al. “Searches for Large-scale Anisotropy in the Arrival Directions of Cosmic Rays
Detected above Energy of 10'? eV at the Pierre Auger Observatory and the Telescope Array”.
Astrophysical Journal 794, 172, 2014, page 172.

DporL: 10.1088/0004-637X/794/2/172. ARX1V: 1409.3128 [astro-ph.HE].

Note: The error in the title of this was published as such.

M. G. Aartsen et al. (Fermi, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S., INTEGRAL, Kanata,
Kiso, Kapteyn, Liverpool Telescope, Subaru, Swift/NuSTAR, VERITAS, and VLA Collabora-
tion). “Multimessenger observations of a flaring blazar coincident with high-energy neutrino
IceCube-170922A" Science 361:6398, 2018, eaat1378.

DoI: 10.1126/science.aat1378

M. G. Aartsen et al. (IceCube Collaboration). “Measurement of the cosmic ray energy spectrum
with IceTop-73". PhysRevD 88, 042004, 2013, page 042004.
Dpor: 10.1103/PhysRevD.88.042004. ARX1V: 1307.3795 [astro-ph.HE]

R.U. Abbasi et al. “First Observation of the Greisen-Zatsepin-Kuzmin Suppression” PRL 100,
101101, 2008, page 101101.
Dor: 10.1103/PhysRevLett.100.101101. ARXIV: astro-ph/0703099 [astro-ph]

B.P. Abbott et al. (LIGO and Virgo Collaboration). “Observation of Gravitational Waves from
a Binary Black Hole Merger”. Physical Review Letters D. 116:6, 2016, page 061102.
por: 10.1103/PhysRevLett.116.061102. ARX1V: 1602.03837 [gr-qc]

A.A. Abdo et al. (Fermi Collaboration). “Fermi Large Area Telescope Observations of the Crab
Pulsar And Nebula”. Astrophysical Journal 708, 2010, pages 1254-1267.
por: 10.1088/0004-637X/708/2/1254. ARXIV: 0911.2412 [astro-ph.HE]

A. A. Abdo et al. (Fermi Collaboration). “Measurement of the Cosmic Ray e + ¢~ Spectrum
from 20 GeV to 1 TeV with the Fermi Large Area Telescope”. Physical Review Letters 102, 18
2009, page 181101.

por: 10.1103/PhysRevLett.102.181101

A.U. Abeysekara et al. “The 2HWC HAWC Observatory Gamma-Ray Catalog”. Astrophysical
Journal 843:1, 40, 2017, page 40.
DoI: 10.3847/1538-4357/aa7556. ARXIV: 1702.02992 [astro-ph.HE]

V. A. Acciari et al. (MAGIC Collaboration). “A Fast Very High Energy ~y-ray Flare from BL
Lacertae during a Period of Multiwavelength activity in June 2015”. Astronomy & Astrophysics.
623, 2019, A175.

por: 10.1051/0004-6361/201834010. ARXIV: 1901.01733 [astro-ph.HE]

V. A. Acciari et al. (MAGIC Collaboration). “Deep observations of the globular cluster M15
with the MAGIC telescopes” Monthly Notices of the Royal Astronomical Society 484:2, 2019,
pages 2876-2885.

por: 10.1093/mnras/stz179. ARXIV: 1901.04367 [astro-ph.HE]

143


http://dx.doi.org/10.1088/0004-637X/794/2/172
https://arxiv.org/abs/1409.3128
https://arxiv.org/abs/1409.3128
http://dx.doi.org/10.1126/science.aat1378
http://dx.doi.org/10.1103/PhysRevD.88.042004
https://arxiv.org/abs/1307.3795
https://arxiv.org/abs/1307.3795
http://dx.doi.org/10.1103/PhysRevLett.100.101101
https://arxiv.org/abs/astro-ph/0703099
https://arxiv.org/abs/astro-ph/0703099
http://dx.doi.org/10.1103/PhysRevLett.116.061102
https://arxiv.org/abs/1602.03837
https://arxiv.org/abs/1602.03837
http://dx.doi.org/10.1088/0004-637X/708/2/1254
https://arxiv.org/abs/0911.2412
https://arxiv.org/abs/0911.2412
http://dx.doi.org/10.1103/PhysRevLett.102.181101
http://dx.doi.org/10.3847/1538-4357/aa7556
https://arxiv.org/abs/1702.02992
https://arxiv.org/abs/1702.02992
http://dx.doi.org/10.1051/0004-6361/201834010
https://arxiv.org/abs/1901.01733
https://arxiv.org/abs/1901.01733
http://dx.doi.org/10.1093/mnras/stz179
https://arxiv.org/abs/1901.04367
https://arxiv.org/abs/1901.04367

Bibliography

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

144

A. Acharyya et al. “Monte Carlo studies for the optimisation of the Cherenkov Telescope Array
layout” Astropart. Phys. 111, 2019, pages 35-53.
por: 10.1016/j.astropartphys.2019.04.001. ARX1V: 1904.01426 [astro-ph.IM]

M. Ackermann et al. (Fermi Collaboration). “Fermi LAT observations of cosmic-ray electrons
from 7 GeV to 1 TeV”. Physical Review D 82:9, 092004, 2010, page 092004.
DorI: 10.1103/PhysRevD.82.092004. ARXIV: 1008.3999 [astro-ph.HE]

J. Adler and O. Oktem. “Solving ill-posed inverse problems using iterative deep neural net-
works”. Inverse Problems 33:12, 2017, page 124007.
DOL: 10.1088/1361-6420/229581

E. Aharonian et al. “Observations of the Crab Nebula with HESS”. Astronomy ¢ Astrophysics
457, 2006, pages 899-915.
Dor: 10.1051/0004-6361:20065351. ARXIV: astro-ph/0607333 [astro-ph]

E Aharonian et al. “The Crab Nebula and Pulsar between 500 GeV and 80 TeV: Observa-
tions with the HEGRA Stereoscopic Air Cerenkov Telescopes” Astrophysical Journal 614, 2004,
pages 897-913.

DorI: 10.1086/423931. ARXIV: astro-ph/0407118 [astro-ph]

M. L. Ahnen. “On the On-Off Problem: An Objective Bayesian Analysis” In: Proceedings of the
34™ International Cosmic Ray Conference. ICRC 2015. 2016, page 701.
por: 10.22323/1.236.0701

J. Aleksi¢ et al. (MAGIC Collaboration). “Measurement of the Crab Nebula spectrum over
three decades in energy with the MAGIC telescopes”. Journal of High Energy Astrophysics 5-6,
2015, pages 30-38. 1ssN: 2214-4048.

por: 10.1016/j.jheap.2015.01.002

J. Aleksi¢ et al. (MAGIC Collaboration). “The major upgrade of the MAGIC telescopes, Part I:
The hardware improvements and the commissioning of the system”. Astroparticle Physics 72,
2016, pages 61-75.

Dor: 10.1016/j.astropartphys.2015.04.004. ARX1V: 1409.6073 [astro-ph.IM]

M. Amenomori et al. “The All-Particle Spectrum of Primary Cosmic Rays in the Wide Energy
Range from 10" to 10" eV Observed with the Tibet-III Air-Shower Array”. Astrophysical
Journal 678, 2008, pages 1165-1179.

DpoIL: 10.1086/529514. ARX1V: 0801.1803 [hep-ex]

H. Anderhub et al. (FACT Collaboration). “Design and operation of FACT - the first G-APD
Cherenkov telescope”. Journal of Instrumentation 8:06, 2013, P06008-P06008.
por: 10.1088/1748-0221/8/06/p06008

K. O. Arras. An Introduction To Error Propagation: Derivation, Meaning and Examples of Equa-
tion C, = FxCx F;. Technical report. Ecole Polytechnique Fédérale de Lausanne, 1998.
DoTL: 10.3929/ethz-a-010113668

Astropy Collaboration et al. “Astropy: A community Python package for astronomy”. Astron-
omy & Astrophysics 558, A33,2013, A33.
Dor: 10.1051/0004-6361/201322068. ARXIV: 1307.6212 [astro-ph.IM]

A.M. Atoyan and F. A. Aharonian. “On the mechanisms of gamma radiation in the Crab
Nebula”. MNRAS 278:2, 1996, pages 525-541.
por: 10.1093/mnras/278.2.525


http://dx.doi.org/10.1016/j.astropartphys.2019.04.001
https://arxiv.org/abs/1904.01426
https://arxiv.org/abs/1904.01426
http://dx.doi.org/10.1103/PhysRevD.82.092004
https://arxiv.org/abs/1008.3999
https://arxiv.org/abs/1008.3999
http://dx.doi.org/10.1088/1361-6420/aa9581
http://dx.doi.org/10.1051/0004-6361:20065351
https://arxiv.org/abs/astro-ph/0607333
https://arxiv.org/abs/astro-ph/0607333
http://dx.doi.org/10.1086/423931
https://arxiv.org/abs/astro-ph/0407118
https://arxiv.org/abs/astro-ph/0407118
http://dx.doi.org/10.22323/1.236.0701
http://dx.doi.org/10.1016/j.jheap.2015.01.002
http://dx.doi.org/10.1016/j.astropartphys.2015.04.004
https://arxiv.org/abs/1409.6073
https://arxiv.org/abs/1409.6073
http://dx.doi.org/10.1086/529514
https://arxiv.org/abs/0801.1803
https://arxiv.org/abs/0801.1803
http://dx.doi.org/10.1088/1748-0221/8/06/p06008
http://dx.doi.org/10.3929/ethz-a-010113668
http://dx.doi.org/10.1051/0004-6361/201322068
https://arxiv.org/abs/1307.6212
https://arxiv.org/abs/1307.6212
http://dx.doi.org/10.1093/mnras/278.2.525

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

W.B. Atwood, A. A. Abdo, et al. (Fermi Collaboration). “Fermi Large Area Telescope Fourth
Source Catalog” arXiv e-prints, 2019.
ARXIV: 1902.10045 [astro-ph.HE].

Note: Preliminary catalog publication. No journal publication yet.

W. B. Atwood et al. (Fermi Collaboration). “The Large Area Telescope on the Fermi Gamma-
Ray Space Telescope Mission”. Astrophysical Journal 697, 2009, pages 1071-1102.
por: 10.1088/0004-637X/697/2/1071. ARX1v: 0902.1089 [astro-ph.IM]

D. Baack. Data Reduction for CORSIKA. Technical report. Astroparticle Department, TU Dort-
mund, 2016

M. Bastian, S. Heymann, and M. Jacomy. “Gephi: An Open Source Software for Exploring and
Manipulating Networks”. In: Proceedings of the International AAAI Conference on Weblogs and
Social Media. ICWSM 2009. San Jose, California, USA, 2009.

Dor: 10.13140/2.1.1341.1520

O. Ben-Kiki, C. Evans, and I. Net. YAML Specification v1.2. 2019.
https://yaml.org/spec/1.2/spec.html

M. Benning and M. Burger. “Modern regularization methods for inverse problems”. Acta Nu-
merica 27, 2018, pages 1-111.
por: 10.1017/80962492918000016

D. Berge, S. Funk, and J. Hinton. “Background modelling in very-high-energy v-ray astronomy”.
Astronomy & Astrophysics 466:3, 2007, pages 1219-1229.
DoI: 10.1051/0004-6361:20066674

K. Bernlohr. “Simulation of imaging atmospheric Cherenkov telescopes with CORSIKA and
sim_telarray”. Astroparticle Physics 30:3, 2008, pages 149-158.
por: 10.1016/j.astropartphys.2008.07.009

M. Bertaina et al. “KASCADE-Grande energy spectrum of cosmic rays interpreted with post-
LHC hadronic interaction models”. In: Proceedings of the 34" International Cosmic Ray Confer-
ence. Vol. 34. ICRC 2015. 2015, page 359.

Dor: 10.22323/1.236.0359

Blender Online Community. Blender - a 3D modelling and rendering package. Blender Foun-
dation. 2019.
http://www.blender.org

G.R. Blumenthal and R.J. Gould. “Bremsstrahlung, Synchrotron Radiation, and Compton
Scattering of High-Energy Electrons Traversing Dilute Gases”. Reviews of Modern Physics 42,
21970, pages 237-270.

por: 10.1103/RevModPhys.42.237

B. M. Bolker. Ecological models and data in R. Princeton University Press, 2008.
Dpor: 10.2307/j.ctvem4g37

L. Breiman. “Bagging predictors” Machine learning 24:2, 1996, pages 123-140.
por: 10.1023/A:1018054314350

L. Breiman. “Random forests”. Machine learning 45:1, 2001, pages 5-32.
por: 10.1023/A:1010933404324

145


https://arxiv.org/abs/1902.10045
https://arxiv.org/abs/1902.10045
http://dx.doi.org/10.1088/0004-637X/697/2/1071
https://arxiv.org/abs/0902.1089
https://arxiv.org/abs/0902.1089
http://dx.doi.org/10.13140/2.1.1341.1520
https://yaml.org/spec/1.2/spec.html
http://dx.doi.org/10.1017/S0962492918000016
http://dx.doi.org/10.1051/0004-6361:20066674
http://dx.doi.org/10.1016/j.astropartphys.2008.07.009
http://dx.doi.org/10.22323/1.236.0359
http://www.blender.org
http://dx.doi.org/10.1103/RevModPhys.42.237
http://dx.doi.org/10.2307/j.ctvcm4g37
http://dx.doi.org/10.1023/A:1018054314350
http://dx.doi.org/10.1023/A:1010933404324

Bibliography

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

146

B. Breisky. “When Victor Hess Discovered Cosmic Rays in a Hydrogen Baloon. On Its Cente-
nary, Celebrating a Ride That Advanced Physics”. NY Times, 2012.
https://www.nytimes.com/2012/08/07/science/space/when-victor-hess-discovered-cosmic-rays-in-a-hydrogen-
balloon.html

K. Briigge, A. Egorov, C. Bockermann, K. Morik, and W. Rhode. “Distributed Real-Time Data
Stream Analysis for CTA”. In: Proceedings of the 27t conference on Astronomical Data Analysis
Software & Systems. ADASS XXVII. 2018.

ARXIV: 1809.00581 [astro-ph.IM].

Note: Proceedings to be published. Preprint published with permission.

R. Brun and E Rademakers. “ROOT — An object oriented data analysis framework” Nuclear
Instruments and Methods in Physics Research A 389:1, 1997, pages 81-86.
por: 10.1016/S0168-9002(97)00048-X

R. Bithler and R. Blandford. “The surprising Crab pulsar and its nebula: a review”. Reports on
Progress in Physics 77:6, 2014, page 066901.
por: 10.1088/0034-4885/77/6/066901

M. Bunse, N. Piatkowski, T. Ruhe, W. Rhode, and K. Morik. “Unification of Deconvolution
Algorithms for Cherenkov Astronomy”. In: 5th International Conference on Data Science and
Advanced Analytics (DSAA). IEEE. 2018, pages 21-30.

Note: To be published.

P. Carbone et al. “Apache Flink™: Stream and Batch Processing in a Single Engine”. Bulletin of
the IEEE Computer Society Technical Committee on Data Engineering 38, 2015, pages 28-38

D. Casadei. “Objective Bayesian Analysis of ON/OFF Measurements”. The Astrophysical Journal
798:1, 2014, page 5.
Dor: 10.1088/0004-637x/798/1/5

H. Chen et al. “Low-dose CT via convolutional neural network”. Biomed. Opt. Express 8:2,2017,
pages 679-694.
por: 10.1364/BOE.8.000679

J. Cortina and M. Teshima. “Status of the Cherenkov Telescope Array Large Size Telescopes”.
In: Proceedings of the 34™ International Cosmic Ray Conference. ICRC 2015. 2016, page 943.
Dpor: 10.22323/1.236.0943

W.D. Cotton, D. Tody, and W. D. Pence. “Binary table extension to FITS” Astronomy & Astro-
physics Supplement 113, 1995, page 159

CTA Project Office. CTA Observatory Website. CTA Obervatory gGmbH. 2019.
https://www.cta-observatory.org/.
Note: IRF data can be downloaded at https://www.cta-observatory.org/science/cta-performance/ // Current cost

estimates are listed at https://www.cta-observatory.org/project/industry/

A. Daum et al. “First results on the performance of the HEGRA IACT array”. Astroparticle
Physics 8, 1998, pages 1-11.
por: 10.1016/50927-6505(97)00031-5

M. DeGroot and M. Schervish. Probability and Statistics. Addison-Wesley, 2012. 1sBN: 978-0-
321-50046-5


https://www.nytimes.com/2012/08/07/science/space/when-victor-hess-discovered-cosmic-rays-in-a-hydrogen-balloon.html
https://www.nytimes.com/2012/08/07/science/space/when-victor-hess-discovered-cosmic-rays-in-a-hydrogen-balloon.html
https://arxiv.org/abs/1809.00581
https://arxiv.org/abs/1809.00581
http://dx.doi.org/10.1016/S0168-9002(97)00048-X
http://dx.doi.org/10.1088/0034-4885/77/6/066901
http://dx.doi.org/10.1088/0004-637x/798/1/5
http://dx.doi.org/10.1364/BOE.8.000679
http://dx.doi.org/10.22323/1.236.0943
https://www.cta-observatory.org/
https://www.cta-observatory.org/science/cta-performance/
https://www.cta-observatory.org/project/industry/
http://dx.doi.org/10.1016/S0927-6505(97)00031-5

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

C. Deil et al. “Gammapy - A prototype for the CTA science tools”. International Cosmic Ray
Conference 301, 2017, page 766.
DOL: 323/1.301.0766. ARXIV: 1709.01751 [astro-ph.IM]

C. Deil et al. Data formats for gamma-ray astronomy. 2019.

https://gamma-astro-data-formats.readthedocs.io/en/latest/ visited on 05/14/2019

C. Deil et al. “Open high-level data formats and software for gamma-ray astronomy”. In: 6th
International Symposium on High Energy Gamma-Ray Astronomy. Vol. 1792. American Insti-
tute of Physics Conference Series. 2017, page 070006.

DoI: 10.1063/1.4969003. ARXIV: 1610.01884 [astro-ph.IM]

A.P. Dempster, N. M. Laird, and D. B. Rubin. “Maximum likelihood from incomplete data via
the EM algorithm” Journal of the Royal Statistical Society: Series B (Methodological) 39:1, 1977,
pages 1-22

J. L. Devore. Probability and Statistics for Engineering and the Sciences. 8th. Brooks/Cole, 2011.
por: 10.1002/9781119047063

J. V. Dillon et al. “TensorFlow Distributions” CoRR, 2017.
ARXIV: 1711.10604

E. Domingo-Santamariaa, J. Flixa, V. Scalzottob, W. Wittekc, and J. Ricoa (MAGIC Collabo-
ration). “The DISP analysis method for point-like or extended 7 source searches/studies with
the MAGIC Telescope”. In: Proceedings of the 29 International Cosmic Ray Conference

D. Duellmann, K. Surdy, L. Menichetti, and R. Toebbicke. “Hadoop and friends - first expe-
rience at CERN with a new platform for high throughput analysis steps”. Journal of Physics:
Conference Series 898, 2017, page 072034.

DoI: 10.1088/1742-6596/898/7/072034

R. Engel et al. “Towards A Next Generation of CORSIKA: A Framework for the Simulation of
Particle Cascades in Astroparticle Physics”. Computing and Software for Big Science 3:1, 2018,
page 2. 1ssN: 2510-2044.

por: 10.1007/s41781-018-0013-0

E Fenu and Pierre Auger Collaboration. “The cosmic ray energy spectrum measured using
the Pierre Auger Observatory” In: Proceedings of the 35™ International Cosmic Ray Conference.
Vol. 301. ICRC 2017. 2017, page 486

E. Fermi. “On the Origin of the Cosmic Radiation”. Phys. Rev. 75, 8 1949, pages 1169-1174.
por: 10.1103/PhysRev.75.1169

H. Flanders. “Differentiation Under the Integral Sign”. The American Mathematical Monthly
80:6, 1973, pages 615-627. 1ssN: 00029890, 19300972.
http://www.jstor.org/stable/2319163

D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman. “emcee: The MCMC Hammer”.
Publications of the Astronomical Society of the Pacific 125:925, 2013, page 306.
DporL: 10.1086/670067. ARXIV: 1202.3665 [astro-ph.IM]

M. Fouka and S. Ouichaoui. “External Inverse Compton Spectra for Monoenergetic and Black-
body Photon Fields Upscattered by a Power-Law Electron Distribution With a Finite Energy
Range”. Astrophysical Journal 737:2, 2011, page 84.

DoI: 10.1088/0004-637x/737/2/84

147


http://dx.doi.org/323/1.301.0766
https://arxiv.org/abs/1709.01751
https://arxiv.org/abs/1709.01751
https://gamma-astro-data-formats.readthedocs.io/en/latest/
http://dx.doi.org/10.1063/1.4969003
https://arxiv.org/abs/1610.01884
https://arxiv.org/abs/1610.01884
http://dx.doi.org/10.1002/9781119047063
https://arxiv.org/abs/1711.10604
http://dx.doi.org/10.1088/1742-6596/898/7/072034
http://dx.doi.org/10.1007/s41781-018-0013-0
http://dx.doi.org/10.1103/PhysRev.75.1169
http://www.jstor.org/stable/2319163
http://dx.doi.org/10.1086/670067
https://arxiv.org/abs/1202.3665
https://arxiv.org/abs/1202.3665
http://dx.doi.org/10.1088/0004-637x/737/2/84

Bibliography

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

148

P. Freeman, S. Doe, and A. Siemiginowska. “Sherpa: a mission-independent data analysis appli-
cation”. In: Astronomical Data Analysis. Vol. 4477. Society of Photo-Optical Instrumentation
Engineers (SPIE) Conference Series. 2001, pages 76-87.

DOL: 10.1117/12.447161. ARXIV: astro-ph/0108426

S. Funk. “Ground- and Space-Based Gamma-Ray Astronomy”. Annual Review of Nuclear and
Particle Science 65, 2015, pages 245-277.
por: 10.1146/annurev-nucl-102014-022036

T. K. Gaisser, R. Engel, and E. Resconi. Cosmic rays and particle physics. Cambridge University
Press, 2016.
por: 10.1017/CBO9781139192194

P. Geurts, D. Ernst, and L. Wehenkel. “Extremely randomized trees”. Machine Learning 63:1,
2006, pages 3—-42. 1SSN: 1573-0565.
por: 10.1007/510994-006-6226-1

J. T. Gosling, J. R. Asbridge, S.]J. Bame, and W. C. Feldman. “Ion acceleration at the earth’s bow
shock: A review of observations in the upstream region”. AIP Conference Proceedings 56:1, 1979,
pages 81-99.

por: 10.1063/1.32069

L. S. Gradshteyn and I. M. Ryzhik. Table of integrals, series, and products. 7th ed. Academic
press, 2007. 1sBN: 0-12-373637-4

P.K.E Grieder. Extensive Air Showers: High Energy Phenomena and Astrophysical Aspects - A
Tutorial, Reference Manual and Data Book. 2010.
Dor: 10.1007/978-3-540-76941-5

A. Gunes Baydin, B. A. Pearlmutter, A. Andreyevich Radul, and J. M. Siskind. “Automatic
differentiation in machine learning: a survey”. Journal of Machine Learning Research 18:1, 2017,
pages 5595-5637. 1SSN: 1532-4435.

ARXIV: 1502.05767 [cs.SC]

H. E.S. S. Collaboration et al. “The H.E.S.S. Galactic plane survey”. Astronomy ¢ Astrophysics
612, A1, 2018, Al.
Dor: 10.1051/0004-6361/201732098. ARXIV: 1804.02432 [astro-ph.HE]

D.]. Hand. “Measuring classifier performance: a coherent alternative to the area under the
ROC curve”. Machine Learning 77:1, 2009, pages 103-123.
por: 10.1007/510994-009-5119-5

T. Hassan et al. “Monte Carlo performance studies for the site selection of the Cherenkov
Telescope Array”. Astroparticle Physics 93, 2017, pages 76-85. 1ssN: 0927-6505.
DoTr: https://doi.org/10.1016/j.astropartphys.2017.05.001

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. 2nd ed. Springer
Series in Statistics. Springer, New York, NY, USA, 2009.
por: 10.1007/978-0-387-84858-7

W. Hastings. “Monte Carlo Sampling Methods using Markov Chains and their Applications”.
Biometrika 57:1, 1970, pages 97-109.
por: 10.1093/biomet/57.1.97


http://dx.doi.org/10.1117/12.447161
https://arxiv.org/abs/astro-ph/0108426
http://dx.doi.org/10.1146/annurev-nucl-102014-022036
http://dx.doi.org/10.1017/CBO9781139192194
http://dx.doi.org/10.1007/s10994-006-6226-1
http://dx.doi.org/10.1063/1.32069
http://dx.doi.org/10.1007/978-3-540-76941-5
https://arxiv.org/abs/1502.05767
https://arxiv.org/abs/1502.05767
http://dx.doi.org/10.1051/0004-6361/201732098
https://arxiv.org/abs/1804.02432
https://arxiv.org/abs/1804.02432
http://dx.doi.org/10.1007/s10994-009-5119-5
http://dx.doi.org/https://doi.org/10.1016/j.astropartphys.2017.05.001
http://dx.doi.org/10.1007/978-0-387-84858-7
http://dx.doi.org/10.1093/biomet/57.1.97

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

M. Haverkorn. “Magnetic Fields in the Milky Way”. In: Magnetic Fields in Diffuse Media.
Springer Berlin Heidelberg, 2015, pages 483-506.
DoI: 10.1007/978-3-662-44625-6_17

D. Heck, J. Knapp, J. N. Capdevielle, G. Schatz, and T. Thouw. CORSIKA: A Monte Carlo code to
simulate extensive air showers. Technical report. Karlsruhe Institute of Technology, Department
of Nuclear Physics, 1998

V. E Hess. “Uber Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten”
Physikalische Zeitschrift 13, 1912, pages 1084-1091

J.]. Hester. “The Crab Nebula: an astrophysical chimera”. Annual Reviews in Astronomy and
Astrophysics 46, 2008, pages 127-155.
DoI: 10.1146/annurev.astro.45.051806.110608

A. M. Hillas. “Cerenkov Light Images of EAS Produced by Primary Gamma Rays and by Nu-
clei”. In: Proceedings of the 19 International Cosmic Ray Conference. Vol. 3. ICRC 1985. 1985,
page 445

J. A. Hinton and the HESS Collaboration. “The status of the HESS project”. New Astronomy
Reviews 48:5-6, 2004, pages 331-337.
Dpor: 10.1016/j.newar.2003.12.004. ARXIV: astro-ph/0403052 [astro-ph]

M. Hoftman and A. Gelman. “The No-U-turn sampler: adaptively setting path lengths in
Hamiltonian Monte Carlo” Journal of Machine Learning Research 15:1, 2014, pages 1593-1623.
http://www.jmlr.org/papers/volumel5/hoffmanl4a/hoffmanl4a.pdf

J. Holder et al. “The first VERITAS telescope” Astroparticle Physics 25:6, 2006, pages 391-401.
Dor: 10.1016/j.astropartphys.2006.04.002. ARXIV: astro-ph/0604119 [astro-ph]

J. D. Hunter. “Matplotlib: A 2D graphics environment”. Computing in Science & Engineering
9:3, 2007, pages 90-95.
por: 10.1109/MCSE.2007.55

L. Hyafil and R. L. Rivest. “Constructing optimal binary decision trees is NP-complete”. Infor-
mation Processing Letters 5:1, 1976, pages 15-17.
por: 10.1016/0020-0190(76)90095-8

K. H. Jin, M. T. McCann, E. Froustey, and M. Unser. “Deep convolutional neural network for
inverse problems in imaging”. IEEE Transactions on Image Processing 26:9, 2017, pages 4509-
4522.

por: 10.1109/TIP.2017.2713099

E. Jourdain and J. P. Roques. “The High-Energy Emission of the Crab Nebula From 20 keV to
6 MeV with INTEGRAL SPI”. The Astrophysical Journal 704:1, 2009, pages 17-24.
Dpor: 10.1088/0004-637x/704/1/17

K.-H. Kampert and A. A. Watson. “Extensive air showers and ultra high-energy cosmic rays: a
historical review”. European Physical Journal H 37:3, 2012, pages 359-412.
poI: 10.1140/epjh/e2012-30013-x. ARXI1V: 1207.4827

N. S. Kardashev. “Nonstationarity of Spectra of Young Sources of Nonthermal Radio Emission”.
Soviet Astronomy 6, 1962, page 317

J. King. “Hochenergetische Gammastrahlung aus dem Galaktischen Zentrum”. PhD thesis.
Ruprecht-Karls-Universitat Heidelberg, 2018

149


http://dx.doi.org/10.1007/978-3-662-44625-6_17
http://dx.doi.org/10.1146/annurev.astro.45.051806.110608
http://dx.doi.org/10.1016/j.newar.2003.12.004
https://arxiv.org/abs/astro-ph/0403052
https://arxiv.org/abs/astro-ph/0403052
http://www.jmlr.org/papers/volume15/hoffman14a/hoffman14a.pdf
http://dx.doi.org/10.1016/j.astropartphys.2006.04.002
https://arxiv.org/abs/astro-ph/0604119
https://arxiv.org/abs/astro-ph/0604119
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1016/0020-0190(76)90095-8
http://dx.doi.org/10.1109/TIP.2017.2713099
http://dx.doi.org/10.1088/0004-637x/704/1/17
http://dx.doi.org/10.1140/epjh/e2012-30013-x
https://arxiv.org/abs/1207.4827

Bibliography

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

150

R. W. Klebesadel, I. B. Strong, and R. A. Olson. “Observations of Gamma-Ray Bursts of Cosmic
Origin”. Astrophysical Journal 182, 1973, page L85.
por: 10.1086/181225

J. Koster and S. Rahmann. “Snakemake. A Scalable Bioinformatics Workflow Engine”. Bioin-
formatics 28:19, 2012, pages 2520-2522. 1SSN: 1367-4803.

por: 10.1093/bioinformatics/bts480.

https://doi.org/10.1093/bioinformatics/bts480

W. Kraushaar et al. “Explorer XI Experiment on Cosmic Gamma Rays.” Astrophysical Journal
141, 1965, page 845.
Dor: 10.1086/148179

L. Kuiper et al. “The Crab pulsar in the 0.75-30 MeV range as seen by CGRO COMPTEL. A
coherent high-energy picture from soft X-rays up to high-energy gamma-rays”. Astronomy &
Astrophysics 378, 2001, pages 918-935.

Dor: 10.1051/0004-6361:20011256. ARXIV: astro-ph/0109200 [astro-ph]

S. Kulkarni et al. “Twitter Heron: Stream Processing at Scale”. In: Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data. SIGMOD ’15. ACM, Melbourne,
Victoria, Australia, 2015, pages 239-250.

Dor: 10.1145/2723372.2742788

E. Lefa, S.R. Kelner, and E A. Aharonian. “On the spectral shape of radiation due to In-
verse Compton Scattering close to the maximum cut-oft”. Astrophysical Journal 753:2, 2012,
page 176.

por: 10.1088/0004-637x/753/2/176

K. Levenberg. “A method for the solution of certain non-linear problems in least squares”.
Quarterly of Applied Mathematics 2:2, 1944, pages 164-168.
por: 10.1090/qam/10666

D. A. Levin and Y. Peres. Markov chains and mixing times. Vol. 107. American Mathematical
Society, 2017.
por: 10.1090/mbk/107

T.-P. Li and Y.-Q. Ma. “Analysis methods for results in gamma-ray astronomy”. Astroparticle
Journal 272, 1983, pages 317-324.
por: 10.1086/161295

S. Linnainmaa. “Taylor expansion of the accumulated rounding error”. BIT Numerical Mathe-
matics 16:2, 1976, pages 146-160. 1ssN: 1572-9125.
por: 10.1007/BF01931367

M. S. Longair. High-Energy Astrophysics. Cambridge university press, 2011. 1sBN: 978-0-521-
75618-1

D.J. C. MacKay. Information Theory, Inference & Learning Algorithms. Cambridge University
Press, New York, NY, USA, 2002. 1sBN: 978-0-521-64298-9

G. Maier, J. Bregeon, T. Hassan, A. Moralejo, et al. Discussions about a CTA Benchmark. Tech-
nical report. 2019.

https://forge.in2p3.fr/projects/benchmarks-reference-analysis/wiki.

Note: There is no official document yet. One is being drafted by the CTA ASWG. The link above can only be

accessed by CTA members.


http://dx.doi.org/10.1086/181225
http://dx.doi.org/10.1093/bioinformatics/bts480
https://doi.org/10.1093/bioinformatics/bts480
http://dx.doi.org/10.1086/148179
http://dx.doi.org/10.1051/0004-6361:20011256
https://arxiv.org/abs/astro-ph/0109200
https://arxiv.org/abs/astro-ph/0109200
http://dx.doi.org/10.1145/2723372.2742788
http://dx.doi.org/10.1088/0004-637x/753/2/176
http://dx.doi.org/10.1090/qam/10666
http://dx.doi.org/10.1090/mbk/107
http://dx.doi.org/10.1086/161295
http://dx.doi.org/10.1007/BF01931367
https://forge.in2p3.fr/projects/benchmarks-reference-analysis/wiki

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

G. Maijer et al. Description of CTA Instrument Response Functions. Technical report. 2017.
https://forge.in2p3.fr/projects/cta_analysis-and-simulations/repository/show/DOC/InternalReports/IRFReports/
released.

Note: This internal CTA report is not accessible to the general public.

G. Maier and J. Holder. “Eventdisplay: An Analysis and Reconstruction Package for Ground-
based Gamma-ray Astronomy”. In: Proceedings of the 35™ International Cosmic Ray Conference.
ICRC 2017. 2018, page 747.

por: 10.22323/1.301.0747. ARXIV: 1708.04048

G. Marsaglia. “Generating a Variable from the Tail of the Normal Distribution” Technometrics
6:1, 1964, pages 101-102.
DoI: 10.1080/00401706.1964.10490150

Martin Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 2015.

https://www.tensorflow.org/

E. Massaro, M. Perri, P. Giommi, and R. Nesci. “Log-parabolic spectra and particle acceleration
in the BL Lac object Mkn 421: Spectral analysis of the complete BeppoSAX wide band X-ray
dataset”. Astronomy & Astrophysics 413, 2004, pages 489-503.

por: 10.1051/0004-6361:20031558. ARXIV: astro-ph/0312260 [astro-ph]

W. McKinney. “Data Structures for Statistical Computing in Python”. In: Proceedings of the 9th
Python in Science Conference. 2010, pages 51-56

C. Meegan et al. (Fermi GBM Collaboration). “The Fermi Gamma-ray Burst Monitor”. Astro-
physical Journal 702, 2009, pages 791-804.
Dpor: 10.1088/0004-637X/702/1/791. ARXIV: 0908.0450 [astro-ph.IM]

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. “Equation
of State Calculations by Fast Computing Machines”. Journal of Chemical Physics 21:6, 1953,
pages 1087-1092.

por: 10.1063/1.1699114

M. Meyer, D. Horns, and H. S. Zechlin. “The Crab Nebula as a standard candle in very high-
energy astrophysics” Astronomy ¢ Astrophysics 523, A2, 2010.
por: 10.1051/0004-6361/201014108. ARXIV: 1008.4524 [astro-ph.HE]

R. A. Millikan and G. H. Cameron. “The Origin of the Cosmic Rays”. Physical Review 32, 4
1928, pages 533-557.
Dpor: 10.1103/PhysRev.32.533

L. Mollerherm. “Verbesserung der Energieregression bei CTA”. Master’s Thesis. Astroparticle
Department, TU Dortmund, 2018

A. Moralejo et al. (MAGIC Collaboration). “MARS, the MAGIC Analysis and Reconstruction
Software”. In: Proceedings of the 31t International Cosmic Ray Conference. ICRC 2009. 2009.
ARXIV: 0907.0943 [astro-ph.IM]

E.E E. Morales, E Wyrowski, E. Schuller, and K. M. Menten. “Stellar clusters in the inner Galaxy
and their correlation with cold dust emission”. Astronomy & Astrophysics 560, 2013, A76.
por: 10.1051/0004-6361/201321626. ARXIV: 1310.2612 [astro-ph.GA]

S. A. Mueller. “Cherenkov-Plenoscope” PhD thesis. ETH Ziirich, 2019.
DoI: 10.3929/ethz-b-000337911

151


https://forge.in2p3.fr/projects/cta_analysis-and-simulations/repository/show/DOC/InternalReports/IRFReports/released
https://forge.in2p3.fr/projects/cta_analysis-and-simulations/repository/show/DOC/InternalReports/IRFReports/released
http://dx.doi.org/10.22323/1.301.0747
https://arxiv.org/abs/1708.04048
http://dx.doi.org/10.1080/00401706.1964.10490150
https://www.tensorflow.org/
http://dx.doi.org/10.1051/0004-6361:20031558
https://arxiv.org/abs/astro-ph/0312260
https://arxiv.org/abs/astro-ph/0312260
http://dx.doi.org/10.1088/0004-637X/702/1/791
https://arxiv.org/abs/0908.0450
https://arxiv.org/abs/0908.0450
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1051/0004-6361/201014108
https://arxiv.org/abs/1008.4524
https://arxiv.org/abs/1008.4524
http://dx.doi.org/10.1103/PhysRev.32.533
https://arxiv.org/abs/0907.0943
https://arxiv.org/abs/0907.0943
http://dx.doi.org/10.1051/0004-6361/201321626
https://arxiv.org/abs/1310.2612
https://arxiv.org/abs/1310.2612
http://dx.doi.org/10.3929/ethz-b-000337911

Bibliography

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

152

J. Nickolls, I. Buck, M. Garland, and K. Skadron. “Scalable Parallel Programming with CUDA”.
Queue - GPU Computing 6:2, 2008, pages 40-53. 1SSN: 1542-7730.
Dor: 10.1145/1365490.1365500

A. Niculescu-Mizil and R. Caruana. “Predicting Good Probabilities with Supervised Learning”.
In: Proceedings of the 22" International Conference on Machine Learning. ICML *05. ACM,
Bonn, Germany, 2005, pages 625-632.

por: 10.1145/1102351.1102430

C. Nigro et al. “Towards open and reproducible multi-instrument analysis in gamma-ray as-
tronomy”. Astronomy & Astrophysics 625, 2019.
por: 10.1051/0004-6361/201834938. ARXIV: 1903.06621 [astro-ph.HE]

D. Nosek and J. Noskovd. “On Bayesian analysis of on—off measurements”. Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment 820, 2016, pages 23-33. 1ssN: 0168-9002.

por: 10.1016/j.nima.2016.02.094

M. Nothe, D. Neise, and S. A. Mueller (FACT Collaboration). “Towards Robotic Operation
with the First G-APD Cherenkov Telescope”. arXiv e-prints, 2018.
ARXIV: 1806.01542 [astro-ph.IM]

T. Oliphant. NumPy: A guide to NumPy. USA: Trelgol Publishing. 2006.
http://www.numpy.org/

T. E. Oliphant. “Python for scientific computing”. Computing in Science & Engineering 9:3,2007,
pages 10-20

D. W. Pankenier. “Notes on translations of the East Asian records relating to the supernova of
AD 1054”. Journal of Astronomical History and Heritage 9, 2006, pages 77-82

A. Paszke et al. “Automatic Differentiation in PyTorch” In: Autodiff Workshop at the 31st Con-
ference on Neural Information Processing Systems. NIPS 2017. Long Beach, CA, USA, 2017

F Pedregosa et al. “Scikit-learn: Machine Learning in Python” Journal of Machine Learning
Research 12,2011, pages 2825-2830.
ARXIV: 1201.0490

A.M. Price-Whelan et al. “The Astropy Project: Building an Open-science Project and Status
of the v2.0 Core Package”. The Astrophysical Journal 156, 123, 2018, page 123.
DoI: 10.3847/1538-3881/aabcAf

J. Salvatier, T. V. Wiecki, and C. Fonnesbeck. “Probabilistic programming in Python using
PyMC3”. Peer] Computer Science 2, 2016.
por: 10.7717/peerj-cs.55

T. Sanuki et al. “Precise Measurement of Cosmic-Ray Proton and Helium Spectra with the
BESS Spectrometer”. Astrophysical Journal 545:2, 2000, pages 1135-1142.
Dor: 10.1086/317873. ARXIV: astro-ph/0002481 [astro-ph]

R. M. Stallman, R. McGrath, and P. D. Smith. GNU Make: A Program for Directing Recompila-
tion, for Version 3.81. Free Software Foundation, 2004. 1SBN: 978-1-882114-83-2

The CTA Consortium. “Science with the Cherenkov Telescope Array”. World Scientific, 2019.
por: 10.1142/10986


http://dx.doi.org/10.1145/1365490.1365500
http://dx.doi.org/10.1145/1102351.1102430
http://dx.doi.org/10.1051/0004-6361/201834938
https://arxiv.org/abs/1903.06621
https://arxiv.org/abs/1903.06621
http://dx.doi.org/10.1016/j.nima.2016.02.094
https://arxiv.org/abs/1806.01542
https://arxiv.org/abs/1806.01542
http://www.numpy.org/
https://arxiv.org/abs/1201.0490
http://dx.doi.org/10.3847/1538-3881/aabc4f
http://dx.doi.org/10.7717/peerj-cs.55
http://dx.doi.org/10.1086/317873
https://arxiv.org/abs/astro-ph/0002481
https://arxiv.org/abs/astro-ph/0002481
http://dx.doi.org/10.1142/10986

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

The HDF Group. Hierarchical Data Format, version 5. 2019.
http://www.hdfgroup.org/HDF5/

The IAU FITS Working Group. Definition of the Flexible Image Transport System. NASA, 2018.
https://fits.gsfc.nasa.gov/fits_standard.html

The Nobel Prize in Physics 1958.
http://nobelprize.org/nobel_prizes/physics/laureates/1958/index.html visited on 05/14/2019

Theano Development Team. “Theano: A Python framework for fast computation of mathemat-
ical expressions”. arXiv e-prints abs/1605.02688, 2016.
http://arxiv.org/abs/1605.02688

A. Toshniwal et al. “Storm@Twitter”. In: Proceedings of the 2014 ACM SIGMOD Interna-
tional Conference on Management of Data. SIGMOD ’14. ACM, Snowbird, Utah, USA, 2014,
pages 147-156.

DoI: 10.1145/2588555.2595641

J. Traa. Least-Squares Intersection of Lines. Technical report. University Illinois at Urbana Cham-
paign, 2009.

http://cal.cs.illinois.edu/~johannes/research/LS_line_intersect.pdf visited on 05/16/2019.

Note: Alternative link https://docplayer.net/21072949-Least-squares-intersection-of-lines.html

A. Tramacere, E. Massaro, and A. M. Taylor. “Stochastic Acceleration and the Evolution of Spec-
tral Distributions in Synchro-Self-Compton Sources: A Self-consistent Modeling of Blazars’
Flares”. Astrophysical Journal 739, 66, 2011, page 66.

Dpor: 10.1088/0004-637X/739/2/66. ARX1v: 1107.1879 [astro-ph.HE]

T. Vincenty. “Direct and Inverse Solutions of Geodesics on the Ellipsoid with Application of
Nested Equations”. Survey Review 23:176, 1975, pages 88-93.
por: 10.1179/sre.1975.23.176.88

T. C. Weekes et al. “Observation of TeV Gamma Rays from the Crab Nebula Using the Atmo-
spheric Cerenkov Imaging Technique”. Astrophysical Journal 342, 1989, page 379.
por: 10.1086/167599

D. C. Wells, E. W. Greisen, and R. H. Harten. “FITS - a Flexible Image Transport System”. As-
tronomy & Astrophysics Supplement 44, 1981, page 363

E.P. Wilkinson et al. Chinese history: a manual. Harvard Univ Asia Center, 2015. 1SBN: 978-0-
9988883-0-9

S.S. Wilks. “The Large-Sample Distribution of the Likelihood Ratio for Testing Composite
Hypotheses”. The Annals of Mathematical Statistics 9:1, 1938, pages 60-62.
por: 10.1214/aoms/1177732360

Z. Xu, W. Pankenier, and Y. Jiang. East-Asian Archaeoastronomy: Historical Records of Astro-
nomical Observations of China, Japan and Korea. CRC Press, 2000. 1sBN: 978-90-5699-302-3

V. Zabalza. “naima: a Python package for inference of relativistic particle energy distributions
from observed nonthermal spectra”. In: Proceedings of the 34™ International Cosmic Ray Con-
ference. ICRC 2015. 2015, page 922.

ARXIV: 1509.03319

153


http://www.hdfgroup.org/HDF5/
https://fits.gsfc.nasa.gov/fits_standard.html
http://nobelprize.org/nobel_prizes/physics/laureates/1958/index.html
http://arxiv.org/abs/1605.02688
http://dx.doi.org/10.1145/2588555.2595641
http://cal.cs.illinois.edu/~johannes/research/LS_line_intersect.pdf
https://docplayer.net/21072949-Least-squares-intersection-of-lines.html
http://dx.doi.org/10.1088/0004-637X/739/2/66
https://arxiv.org/abs/1107.1879
https://arxiv.org/abs/1107.1879
http://dx.doi.org/10.1179/sre.1975.23.176.88
http://dx.doi.org/10.1086/167599
http://dx.doi.org/10.1214/aoms/1177732360
https://arxiv.org/abs/1509.03319

Bibliography

149.

150.

154

B. Zadrozny and C. Elkan. “Obtaining Calibrated Probability Estimates from Decision Trees
and Naive Bayesian Classifiers”. In: Proceedings of the Eighteenth International Conference on
Machine Learning. ICML ’01. 2001, pages 609-616. 1SBN: 1-55860-778-1.
http://dl.acm.org/citation.cfm?id=645530.655658

M. Zaharia et al. “Apache Spark: A Unified Engine for Big Data Processing”. Communications
of the ACM 59:11, 2016, pages 56—65. 1ssN: 0001-0782.
DoT: 10.1145/2934664


http://dl.acm.org/citation.cfm?id=645530.655658
http://dx.doi.org/10.1145/2934664

	Open Cherenkov Astronomy
	Introduction
	Acceleration of Cosmic Rays and Gamma Rays
	Fermi Acceleration
	Synchrotron Emission
	Inverse Compton Emission
	Log-Parabolic Energy Distributions

	Observation of Very-High-Energy Gamma Rays
	Satellite Experiments
	Imaging Atmospheric Cherenkov Telescopes
	Water-Cherenkov Experiments

	Modeling the Crab Nebula Emission
	Spectral Analysis of IACT Data
	Event Data
	Instrument Response Functions
	Background Estimation
	Statistical Modeling
	Posterior Sampling using Markov Chain Monte Carlo
	Fitting Spectral Models
	Unfolding of Flux Points
	Notes on Uncertainty Propagation

	Conclusion

	Reproducible Data Analysis for CTA
	Introduction
	Processing CTA Data
	Preprocessing Pipeline and Simulated Datasets
	Raw Data Processing
	Image Feature Extraction
	Geometrical Shower Reconstruction

	Machine Learning
	Model Validation
	Decision Trees and Ensemble Learning
	AICT-Tools
	Application to CTA Data

	A Prototype for Real Time Analysis
	Sensitivity Computation
	Event Weights
	Background Estimation
	Detection Significance
	Sensitivity Computation

	Notes on Reproducibility
	Conclusion

	Appendix
	Additional Comments and Results
	Least Squares Fit to High Energy Crab Emission
	SSC Fit to Crab Nebula Flux Data
	Historical Evidence of Crab Supernova
	Profile Likelihood Solution
	Implementation for PyMC3 and Theano
	Sensitivity and Effective Area for Fixed On Region
	Dependency Graph

	Configuration Files
	Configuration for the aict-tools
	Python Requirements
	Configuration for Preprocessing

	Bibliography

