
Realistic Scheduling Models and Analyses for
Advanced Real-Time Embedded Systems

Dissertation

zur Erlangung des Grades eines

D o k t o r s d e r I n g e n i e u r w i s s e n s c h a f t e n

der Technischen Universität Dortmund
an der Fakultät für Informatik

von

Georg von der Brüggen

Dortmund

2019

Tag der mündlichen Prüfung: 14. November 2019
Dekan / Dekanin: Prof. Dr. Gernot Fink
Gutachter / Gutachterinnen: Prof. Dr. Jian-Jia Chen (TU Dortmund University)

Dr. Robert I. Davis (Reader at the University of York)

A B S T R A C T

In real-time embedded systems, for each task the compliance to timing constraints
has to be guaranteed in addition to the functional correctness. From a researcher’s
perspective, the examination of real-time scheduling focuses on three components
that build on one another: 1) the system and task model, 2) the scheduling al-
gorithm with related schedulability test, and 3) a theoretical and/or empirical
performance evaluation of the scheduling algorithm. These three components are
examined in this dissertation considering the following hypothesis:

Realistic scheduling models and analyses are essential for guaranteeing timing
correctness in advanced real-time systems while ensuring that the system
resources necessary to provide these guarantees are not over-provisioned.

The dissertation is structured in three parts according to the considered task and
system model. The first part primarily examines the classic periodic and sporadic
task model and focuses on general theoretical methods for comparison. It is
shown how utilization bounds can be parametrized to provide significantly higher
utilization bounds when analyzing non-preemptive Rate Monotonic scheduling
as well as task sets inspired by automotive applications. Afterwards, new speedup
factors for non-preemptive Deadline Monotonic scheduling compared to non-
preemptive Earliest Deadline First are provided and it is shown that tight speedup
factors cannot only be achieved for schedulability tests with an exponential time
complexity but also for linear time tests which in practice result in a significantly
worse acceptance ratio. The findings for utilization bounds and speedup factors
lead to a general discussion about these long standing standard techniques
and guidance for their meaning and interpretation is provided. Furthermore,
parametric augmentation functions are proposed as a possible solution.

The second part of the dissertation considers uncertain execution environments
where tasks have multiple execution modes that differ regarding their worst-case
execution time and where modes with large execution times are assumed to be
rare. Such a setting is common in mixed criticality systems or when software-
based fault tolerance mechanisms are exploited. However, this connection has
never been examined in the literature. First, criticism on previous work in the
area of mixed-criticality is detailed, i.e., that such systems are assumed to never
return to the low-criticality mode, that low-criticality tasks are treated without any
service guarantees, and that most mixed-criticality scheduling approaches assume
online adaption. Hence, a new system model, namely Systems with Dynamic Real-
Time Guarantees, is provided that allows a better applicability to realistic scenarios
by providing guarantees offline without online adaptation under static-priority
scheduling. Nevertheless, the approach is shown to be comparable to the state-of-
the-art for mixed-criticality systems. The system model is afterwards extended
to a multiprocessor scenario, considering both partitioned and semi-partitioned
scheduling, and introducing task migration techniques to provide guarantees
under intermittent faults. In addition, a new way to determine the worst-case

i

deadline failure probability for such systems is provided that drastically reduces
the runtime of such calculations compared to the state-of-the-art.

The third part of the dissertation focuses on tasks with self-suspension be-
haviour. A new algorithm called SEIFDA that increases the schedulability under
a fixed-relative-deadline strategy when considering segmented self-suspension
tasks with one suspension interval is provided that outperforms the state-of-the-
art. Considering multiprocessor resource sharing, SEIFDA is afterwards utilized
in a resource-oriented partitioned scheduling with release enforcement, again out-
performing the state-of-the-art. Furthermore, the gap between the dynamic and
the segmented self-suspension model is examined. The dynamic self-suspension
model can be utilized when only limited information about the suspension be-
havior is known and hence has a high flexibility, but results in more pessimistic
analyses and designs of scheduling policies if the suspending pattern can be
defined precisely. The segmented self-suspension has a lower flexibility, but the
self-suspending structure can be exploited by the scheduling algorithms. However,
a static execution pattern for each execution is a rather strong assumption. This
gap is bridged by introducing multiple hybrid self-suspension models, which
assume the self-suspending tasks to be specified by a set of possible execution
patterns that are known offline.

The results presented in this dissertation show the importance of realistic
models and analyses in real-time systems research and, therefore, support the
dissertation hypothesis.

ii

P U B L I C AT I O N S

The majority of the ideas and findings presented in this dissertation have been
published in the following peer-reviewed articles that appeared in international
journals and proceedings of international conferences:

[BCH15] Georg von der Brüggen, Jian-Jia Chen, and Wen-Hung Huang.
“Schedulability and Optimization Analysis for Non-preemptive
Static Priority Scheduling Based on Task Utilization and Blocking
Factors.” In: 27th Euromicro Conference on Real-Time Systems, ECRTS
2015, Lund, Sweden, July 8-10, 2015. 2015, pp. 90–101.

[BCH+16] Georg von der Brüggen, Kuan-Hsun Chen, Wen-Hung Huang,
and Jian-Jia Chen. “Systems with Dynamic Real-Time Guarantees
in Uncertain and Faulty Execution Environments.” In: 2016 IEEE
Real-Time Systems Symposium, RTSS 2016, Porto, Portugal, November
29 - December 2, 2016. 2016, pp. 303–314.

[BHC+16] Georg von der Brüggen, Wen-Hung Huang, Jian-Jia Chen, and
Cong Liu. “Uniprocessor Scheduling Strategies for Self-Suspending
Task Systems.” In: Proceedings of the 24th International Conference on
Real-Time Networks and Systems, RTNS 2016, Brest, France, October
19-21, 2016. 2016, pp. 119–128.

[BCD+17] Georg von der Brüggen, Jian-Jia Chen, Robert I. Davis, and Wen-
Hung Huang. “Exact speedup factors for linear-time schedulability
tests for fixed-priority preemptive and non-preemptive schedul-
ing.” In: Information Processing Letters 117 (2017).

[BHC17] Georg von der Brüggen, Wen-Hung Huang, and Jian-Jia Chen.
“Hybrid self-suspension models in real-time embedded systems.”
In: 23rd IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications, RTCSA 2017, Hsinchu, Taiwan,
August 16-18, 2017. 2017, pp. 1–9.

[BUC+17] Georg von der Brüggen, Niklas Ueter, Jian-Jia Chen, and Matthias
Freier. “Parametric utilization bounds for implicit-deadline pe-
riodic tasks in automotive systems.” In: Proceedings of the 25th
International Conference on Real-Time Networks and Systems, RTNS
2017, Grenoble, France, October 04 - 06, 2017. 2017, pp. 108–117.

[BCH+17] Georg von der Brüggen, Jian-Jia Chen, Wen-Hung Huang, and
Maolin Yang. “Release enforcement in resource-oriented parti-
tioned scheduling for multiprocessor systems.” In: Proceedings of
the 25th International Conference on Real-Time Networks and Systems,
RTNS 2017, Grenoble, France, October 04 - 06, 2017. 2017, pp. 287–296.

iii

[BPC+18] Georg von der Brüggen, Nico Piatkowski, Kuan-Hsun Chen, Jian-
Jia Chen, and Katharina Morik. “Efficiently Approximating the
Probability of Deadline Misses in Real-Time Systems.” In: 30th
Euromicro Conference on Real-Time Systems, ECRTS 2018, July 3-6,
2018, Barcelona, Spain. 2018, 6:1–6:22.

[BSC18] Georg von der Brüggen, Lea Schönberger, and Jian-Jia Chen. “Do
Nothing, But Carefully: Fault Tolerance with Timing Guarantees
for Multiprocessor Systems Devoid of Online Adaptation.” In: 23rd
IEEE Pacific Rim International Symposium on Dependable Computing,
PRDC 2018, Taipei, Taiwan, December 4-7, 2018. 2018, pp. 1–10.

[CBH+17a] Jian-Jia Chen, Georg von der Brüggen, Wen-Hung Huang, and
Robert I. Davis. “On the Pitfalls of Resource Augmentation Factors
and Utilization Bounds in Real-Time Scheduling.” In: 29th Euromi-
cro Conference on Real-Time Systems, ECRTS 2017, June 27-30, 2017,
Dubrovnik, Croatia. 2017, 9:1–9:25.

As part of my research, I also contributed to the following peer-reviewed
articles that appeared in international journals and proceedings of international
conferences but are ot part of this dissertation:

[CBC+18] Jian-Jia Chen, Nikhil Bansal, Samarjit Chakraborty, and Georg
von der Brüggen. “Packing Sporadic Real-Time Tasks on Identical
Multiprocessor Systems.” In: 29th International Symposium on Algo-
rithms and Computation, ISAAC 2018, December 16-19, 2018, Jiaoxi,
Yilan, Taiwan. Vol. 123. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2018, 71:1–71:14.

[CBH+17b] Jian-Jia Chen, Georg von der Brüggen, Wen-Hung Huang, and
Cong Liu. “State of the art for scheduling and analyzing self-
suspending sporadic real-time tasks.” In: 23rd IEEE International
Conference on Embedded and Real-Time Computing Systems and Ap-
plications, RTCSA 2017, Hsinchu, Taiwan, August 16-18, 2017. IEEE
Computer Society, 2017, pp. 1–10.

[CBS+18] Jian-Jia Chen, Georg von der Brüggen, Junjie Shi, and Niklas Ueter.
“Dependency Graph Approach for Multiprocessor Real-Time Syn-
chronization.” In: 2018 IEEE Real-Time Systems Symposium, RTSS
2018, Nashville, TN, USA, December 11-14, 2018. IEEE Computer
Society, 2018, pp. 434–446.

[CBU18] Jian-Jia Chen, Georg von der Brüggen, and Niklas Ueter. “Push
Forward: Global Fixed-Priority Scheduling of Arbitrary-Deadline
Sporadic Task Systems.” In: 30th Euromicro Conference on Real-Time
Systems, ECRTS 2018, July 3-6, 2018, Barcelona, Spain. Vol. 106. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018, 8:1–8:24.

[CHH+19] Jian-Jia Chen, Tobias Hahn, Ruben Hoeksma, Nicole Megow, and
Georg von der Brüggen. “Scheduling Self-Suspending Tasks: New
and Old Results.” In: 31st Euromicro Conference on Real-Time Systems,
ECRTS 2019, July 9-12, 2019, Stuttgart, Germany. Vol. 133. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2019, 16:1–
16:23.

iv

[CNH+19] Jian-Jia Chen, Geoffrey Nelissen, Wen-Hung Huang, Maolin Yang,
Björn B. Brandenburg, Konstantinos Bletsas, Cong Liu, Pascal
Richard, Frédéric Ridouard, Neil C. Audsley, Raj Rajkumar, Dioni-
sio de Niz, and Georg von der Brüggen. “Many suspensions, many
problems: a review of self-suspending tasks in real-time systems.”
In: Real-Time Systems 55.1 (2019), pp. 144–207.

[CBC18a] Kuan-Hsun Chen, Georg von der Brüggen, and Jian-Jia Chen.
“Analysis of Deadline Miss Rates for Uniprocessor Fixed-Priority
Scheduling.” In: 24th IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications, RTCSA 2018,
Hakodate, Japan, August 28-31, 2018. IEEE Computer Society, 2018,
pp. 168–178.

[CBC16] Kuan-Hsun Chen, Georg von der Brüggen, and Jian-Jia Chen.
“Overrun Handling for Mixed-Criticality Support in RTEMS.” In:
WMC 2016. Proceedings of WMC 2016. Porto, Portugal, 2016.

[CBC18b] Kuan-Hsun Chen, Georg von der Brüggen, and Jian-Jia Chen. “Re-
liability Optimization on Multi-Core Systems with Multi-Tasking
and Redundant Multi-Threading.” In: IEEE Trans. Computers 67.4
(2018), pp. 484–497.

[CUB+19] Kuan-Hsun Chen, Niklas Ueter, Georg von der Bruggen, and Jian-
Jia Chen. “Efficient Computation of Deadline-Miss Probability and
Potential Pitfalls.” In: Design, Automation & Test in Europe Conference
& Exhibition, DATE 2019, Florence, Italy, March 25-29, 2019. IEEE,
2019, pp. 896–901.

[DLB+18] Zheng Dong, Cong Liu, Soroush Bateni, Kuan-Hsun Chen, Jian-Jia
Chen, Georg von der Brüggen, and Junjie Shi. “Shared-Resource-
Centric Limited Preemptive Scheduling: A Comprehensive Study
of Suspension-Based Partitioning Approaches.” In: IEEE Real-Time
and Embedded Technology and Applications Symposium, RTAS 2018,
11-13 April 2018, Porto, Portugal. IEEE Computer Society, 2018,
pp. 164–176.

[HFB+18] Tim Harde, Matthias Freier, Georg von der Brüggen, and Jian-Jia
Chen. “Configurations and Optimizations of TDMA Schedules
for Periodic Packet Communication on Networks on Chip.” In:
Proceedings of the 26th International Conference on Real-Time Networks
and Systems, RTNS 2018, Chasseneuil-du-Poitou, France, October 10-12,
2018. ACM, 2018, pp. 202–212.

[HCB+18] Nils Hölscher, Kuan-Hsun Chen, Georg von der Brüggen, and Jian-
Jia Chen. “Examining and Supporting Multi-Tasking in EV3OSEK.”
In: OSPERT 2018 (2018), p. 25.

[SBS+19] Lea Schönberger, Georg von der Bruggen, Horst Schirmeier, and
Jian-Jia Chen. “Design Optimization for Hardware-Based Message
Filters in Broadcast Buses.” In: Design, Automation & Test in Europe
Conference & Exhibition, DATE 2019, Florence, Italy, March 25-29,
2019. IEEE, 2019, pp. 606–609.

v

[SHB+18] Lea Schönberger, Wen-Hung Huang, Georg von der Brüggen,
Kuan-Hsun Chen, and Jian-Jia Chen. “Schedulability Analysis
and Priority Assignment for Segmented Self-Suspending Tasks.”
In: 24th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications, RTCSA 2018, Hakodate, Japan,
August 28-31, 2018. IEEE Computer Society, 2018, pp. 157–167.

[UBC+18] Niklas Ueter, Georg von der Brüggen, Jian-Jia Chen, Jing Li, and
Kunal Agrawal. “Reservation-Based Federated Scheduling for Par-
allel Real-Time Tasks.” In: 2018 IEEE Real-Time Systems Symposium,
RTSS 2018, Nashville, TN, USA, December 11-14, 2018. IEEE Com-
puter Society, 2018, pp. 482–494.

vi

A C K N O W L E D G M E N T S

I want to take this chance to express my gratitude to the people who helped and
supported me during my years as a PhD student. Without them, I would not be
where I am today.

First, I would like to thank my PhD adviser Jian-Jia Chen for his guidance,
advice, support, trust, and understanding. I could not have asked for a better
adviser. I also would like to thank my second reviewer Rob Davis for his guidance,
support, and advice. I surely cannot thank him enough for all his time and effort.
Furthermore, I want to thank Heinrich Müller and Jens Teubner for being part of
my committee, and Peter Marwedel for being my PhD mentor.

I would like to express my thanks and appreciation to all my co-authors, namely
Jian-Jia Chen, Wen-Hung Huang, Kuan-Hsun Chen, Niklas Ueter, Junjie Shi, Lea
Schönberger, Marco Dürr, Mikail Yayla, and Christian Hakert from the real-time
systems group, Horst Schirmeier, Sebastian Buschjäger, Niko Piatkowski, and
Katharina Morik from other groups at TU Dortmund, as well as my external
co-authors Cong Liu, Rob Davis, Nicole Megow, Ruben Hoeksma, Maolin Yang,
Jing Li, Kunal Agrawal, Nikhil Bansal, Samarjit Chakraborty, Zheng Dong, Tobias
Hahn, Tim Harde, Matthias Freier, Geoffrey Nelissen, Björn Brandenburg, Kon-
stantinos Bletsas, Pascal Richard, Frédéric Ridouard, Neil Audsley, Raj Rajkumar,
Dionisio de Niz, Soroush Bateni, Paul Genssler, Lars Bauer, Hussam Amrouch,
Jörg Henkel, Tulika Mitra, and Vanchinathan Venkataramani. I am very thankful
for the opportunity to work with all of them.

I want to thank the members and visitors of the real-time systems group, in
addition to the ones mentioned above especially Anas Toma who I unfortunately
did not have the chance to collaborate with for a paper, as well as the other
members of the embedded systems chair for making my time at TU Dortmund
both interesting and enjoyable, our secretary Claudia Graute for taking care of so
many things over the years, and Kevin, Horst, Olaf, Jan, Boguslaw, Markus, Alex,
Hendrik, and Timon for all their help when I started and over the years.

I would like to thank my parents Willi and Maria as well as my brother
Richard and my sister Andrea for their support, both during my PhD and before.
I especially want to thank Andrea for all her feedback while writing my thesis.

Last but certainly not least I want to thank my friends for bearing with me
through all these years and for their unwavering support, understanding, and
encouragement. I want to thank Marc, Charlotte, Miri, and Anne for the music,
TK, Carsten, and Nicole for letting me win, Hajoh for the drinks, Dennis for the
food, Markus for gravity, Lena for maybe coffee, Becky for her optimistic attitude
towards life, JC for not working at night, and Kuan-Hsun for suffering with me.

vii

My work has been supported by the Deutsche Forschungsgemeinschaft (DFG)
as part of the Collaborative Research Center SFB 876 in the project A1. Multiple
of my co-authors have been (partially) funded by SFB 876 - A1 and from other
projects, namely SFB 876 - A3 and SFB 876 - B2, as well as from DFG SPP 1500.

viii

C O N T E N T S

1 introduction 1

1.1 General Concepts in Real-Time Scheduling 2

1.1.1 Modelling of Real-Time Systems 2

1.1.2 Classification of Scheduling Algorithms 3

1.1.3 Schedulability Analysis 6

1.1.4 Performance of Scheduling Algorithms 8

1.2 Context and Challenges 10

1.3 Contribution of this Dissertation 12

1.3.1 Speedup Factors and Parametric Utilization Bounds 12

1.3.2 Uncertain Execution Behaviour 15

1.3.3 Self-Suspension 17

1.4 Author’s Contribution to this Dissertation 19

2 task model , system model ,
notation, and fundamentals 21

2.1 Task Model 21

2.2 Schedulability 22

2.3 Theoretical Comparison of Scheduling Algorithms 23

2.4 Uniprocessor Scheduling 24

2.4.1 Static-Priority Scheduling 25

2.4.2 Dynamic-Priority Scheduling 28

2.5 Multiprocessor Scheduling 30

2.6 Uncertain Execution Behaviour 31

2.7 Self-Suspension 32

2.8 Resource Sharing 32

3 related work 35

3.1 Aperiodic Tasks 35

3.2 Modelling of Real-Time Systems 36

3.3 Uniprocessor Scheduling 37

3.3.1 Preemptive Scheduling 37

3.3.2 Non-Preemptive Scheduling 38

3.3.3 Limited-Preemptive Scheduling 39

3.4 Multiprocessor Scheduling 39

3.4.1 Global Scheduling 40

3.4.2 Partitioned Scheduling 41

3.4.3 Semi-Partitioned Scheduling 42

3.4.4 Comparison of Scheduling Paradigms 42

3.5 Automotive Systems and Rate-Dependent Tasks 42

3.6 Mixed-Criticality Systems 44

3.7 Probabilistic Response Time Analysis and Schedulability Tests 45

3.8 Self-Suspension 47

3.8.1 Segmented Self-Suspension Model 47

3.8.2 Dynamic Self-Suspension Model 48

3.9 Multiprocessor Resource Sharing 48

3.10 Connection to Subsequent Chapters 50

ix

x contents

4 speedup factors and parametric

utilization bounds 53

4.1 Parametric Utilization Bounds for
Non-Preemptive Scheduling 54

4.1.1 Hyperbolic Schedulability Test 55

4.1.2 Parametric Utilization Bound 63

4.2 Parametric Utilization Bounds for
Automotive Task Systems 65

4.2.1 Preliminary Results 66

4.2.2 Analysis for RM-P 67

4.2.3 Non-Preemptive Scheduling 71

4.2.4 Angle-Synchronous Tasks 73

4.2.5 Evaluation 76

4.3 Parametric Bounds - Recapitulation 81

4.4 Linear Time Speedup Factors 82

4.4.1 Speedup-Optimal Priority Assignment 82

4.4.2 Speedup Factor of DM-NP
for Constrained Deadlines 84

4.4.3 Linear-Time Schedulability Tests 86

4.5 Pitfalls of Speedup Factors and
Utilization Bounds 88

4.5.1 The Meaning and Interpretation
of Augmentation Factors 89

4.5.2 Better Speedup Factors Do Not
Imply A Dominance Relation 92

4.5.3 Speedup Factors Based on Enforced Algorithms 94

4.5.4 Relative Speedup Factors 97

4.6 Parametric Augmentation Functions 100

4.7 Parametric Augmentation Function for
Rate Monotonic vs. Slack Monotonic 101

4.8 Summary and Conclusions 107

5 uncertain execution behaviour 109

5.1 Dynamic Real-Time Guarantees in an
Uncertain Execution Environment 111

5.1.1 Modelling Uncertain Execution Behaviour 111

5.1.2 Systems with Dynamic Real-Time Guarantees 113

5.2 Uniprocessor Systems with Dynamic Real-Time Guarantees 114

5.2.1 System Definition 114

5.2.2 Exact Schedulability Test 117

5.2.3 Properties of Priority Assignments 119

5.2.4 System Mode Analysis 124

5.2.5 System Monitor Design 126

5.2.6 Evaluations 128

5.3 Multiprocessor Systems with Dynamic Real-Time Guarantees 133

5.3.1 Multiprocessor System Model 134

5.3.2 Schedulability Test 134

5.3.3 Partitioned Scheduling 135

5.3.4 Semi-Partitioned Scheduling 135

5.3.5 Compensating Faulty Processors by Task Migration 138

5.3.6 Evaluation 141

contents xi

5.4 Efficiently Approximating the
Worst-Case Deadline Failure Probability 145

5.4.1 Motivation, Problem Definition, and
Job-Level Convolution 146

5.4.2 The Multinomial-Based Approach 148

5.4.3 Runtime Improvement 155

5.4.4 Evaluation 158

5.5 Conclusion 164

6 self-suspension and its applications in

multiprocessor synchronization 165

6.1 One-Segmented Self-Suspension 167

6.1.1 Fixed-Relative-Deadline (FRD) Strategies 168

6.1.2 Schedulability Test for FRD 169

6.1.3 Task Set Transformation 172

6.1.4 Greedy Approach 173

6.1.5 Relative Deadlines Selection for τk 174

6.1.6 SEIFDA-maxD and SEIFDA-minD 175

6.1.7 Speedup Factor of SEIFDA 176

6.1.8 Approximated Test and Time Complexity 179

6.1.9 Mixed Integer Linear Programming 181

6.1.10 Evaluation 182

6.2 Resource-Oriented Partitioning 185

6.2.1 Resource-Oriented Partition 187

6.2.2 Release Enforcement 188

6.2.3 Schedulability Tests under Release Enforcement 189

6.2.4 Resource and Task Allocation 191

6.2.5 Speedup Factors 192

6.2.6 Evaluation 197

6.2.7 Multiple Critical Sections 200

6.3 Hybrid Self-Suspension Models 200

6.3.1 Hybrid Self-Suspension Task Models 202

6.3.2 Pattern-Oblivious: Individual Upper Bounds 204

6.3.3 Pattern-Oblivious: Multiple Paths 205

6.3.4 Pattern-Clairvoyant 207

6.3.5 Schedulability Tests and Examination of the
Demand Bound Functions 209

6.3.6 Evaluation 210

6.4 Conclusion 213

7 conclusions and outlook 215

7.1 Summary of the Contributions 215

7.1.1 Speedup Factors and Utilization Bounds 215

7.1.2 Uncertain Execution Behaviour 216

7.1.3 Self-Suspension 217

7.2 Examination of the Dissertation Hypothesis 217

7.3 Future Work 219

7.4 Final Remarks and Outlook 220

bibliography 223

index 249

notation 253

xii contents

abbreviations 255

list of figures 256

list of tables 257

8 appendix 259

8.1 Appendix for Chapter 4 259

8.2 Appendix for Chapter 6 262

1
I N T R O D U C T I O N

Nowadays, society strongly relies on computing systems when controlling a large
variety of complex physical plants, e.g., for the automation of industrial processes,
automotive and avionic systems, and traffic control. These computing systems
are often not only embedded into the plant controlled by them but “built from and embedded system

depend upon the synergy of computational and physical components” [Nat13], i.e., they
are not only part of the plant but directly interact with it and its environment,
and are, therefore, referred to as cyber-physical systems. A detailed introduction cyber-physical system

into embedded and cyber-physical systems can be found in the textbook by
Marwedel [Mar11].

While for general-purpose computation systems an accurate system behaviour
only depends on the functional correctness, i.e., that for a given input the expected
output is computed, for many cyber-physical systems timing correctness must
be achieved as well, i.e., the expected output must be computed within certain
timing constraints. Computing systems that require both functional and timing
correctness are called real-time systems [SR88]. On the one hand, a system is called real-time system

a soft real-time system if the computation result is of lower value if the timing soft real-time system
constraints are not met, e.g., in multimedia systems. Hence, in soft real-time
system, not meeting the timing constrains leads to a reduces quality of service.
On the other hand, the system is called a hard real-time system if not fulfilling hard real-time system

the timing constraints leads to useless results, e.g., avionic systems, automotive
systems, and traffic control. Therefore, in hard real-time system, not meeting the
timing constrains represents a system failure.1 In this work, we focus on such
hard real-time systems.

For hard real-time systems a precise analysis of the timing behaviour is of the
utmost importance. However, practical systems are too complex to decide the
compliance to these constraints directly. Hence, the characteristics of the system
should first be observed and then modelled as precisely as possible. Afterwards,
the timing behaviour can be analyzed more efficiently based on this model. Due
to the complex nature of these systems, the modelling usually focuses on some
parts of the system behaviour while abstracting others.

The goal of this dissertation is to explore how more realistic models and
analyses for real-time scheduling can be achieved. This chapter first explains
some general concepts regarding real-time systems, followed by three sections
that introduce the topics that are analyzed in depth later in this dissertation, i.e., in
Chapter 4 through Chapter 6. The considered task and system models are detailed

1 Note that different ways of categorization for real-time systems can be found in the literature. For
example, the textbook by Buttazzo [But11] distinguishes three categories based on the effect of
a deadline miss: 1) hard real-time, if a deadline miss may have catastrophic consequences for the
system, 2) firm real-time, if a result after a deadline miss is useless but does not cause any damage,
and 3) soft real-time, if a result after the deadline leads to performance degradation.

1

2 introduction

in Chapter 2 while Chapter 3 provides insight into the related work. Chapter 4

discusses how scheduling algorithms and schedulability tests are compared using
theoretical methods like speedup factors and utilization bounds, which problems
may arise when these methods are used for comparison, what kind of conclusions
should be avoided, and how utilization bounds can be parametrized to improve
their meaningfulness. Chapter 5 focuses on uncertain execution behaviour of tasks,
explores the link between mixed-criticality and fault tolerance, and answers to
criticism that mixed-criticality approaches have received, by introducing Systems
with Dynamic Real-Time Guarantees for uniprocessor scenarios, which are extended
to multiprocessor systems afterwards. The chapter concludes with a method
that allows to calculate the worst-case deadline failure probability for tasks
in uncertain execution environments under static-priority scheduling for task
sets that have a reasonably large number of tasks, i.e., up to 100 tasks while
previous approaches only allow up to 10 tasks. In Chapter 6, self-suspending
task systems are considered and a new scheduling algorithm is presented for
tasks that can be described by the segmented self-suspension model with one
suspension interval. This algorithm is shown to outperform the current state-of-
the-art and is later exploited in a resource-oriented partitioning algorithm for
multiprocessor resource sharing, where the state-of-the-art is again outperformed.
The chapter is concluded by introducing hybrid self-suspension task models that
bridge the gap between the overly restrictive segmented self-suspension model
and the overly pessimistic dynamic self-suspension model by carefully including
all given information into the modelling. The conclusion of this dissertation is
presented in Chapter 7.

1.1 general concepts in real-time

scheduling

When investigating a real-time system, a schedulability analysis determines ifreal-time system

a system is feasible under a scheduling algorithm, i.e., if for a given set of
tasks all task instances will meet their deadlines under a specific scheduling
algorithm. This process typically consists of modelling the tasks and the system in
a suitable way, and determining the schedulability under a scheduling algorithm
by applying a related schedulability test. Here, we take a look at basic modelling
principles, describe how scheduling algorithms can be classified, and provide a
high-level view on schedulability tests and the related problems. However, we
focus on the topics relevant to this dissertation. For a detailed introduction into
real-time systems the reader is referred to the textbook by Buttazzo [But11].

1.1.1 modelling of real-time systems

In many real-time systems, tasks are executed recurrently, e.g., a sensor value
is read repeatedly with a certain delay between two readings, the determined
value is processed, and the result may lead to an action that changes the current
system behaviour. In a multitasking scenario, a set of tasks is executed on a given
execution platform. Such a set of n tasks T = {τ1, ..., τn} is usually described

1.1 general concepts 3

by the periodic or the sporadic task model where each task τi = (Ci, Di, Ti) is char-
acterized by its minimum inter-arrival time (or period) Ti, its relative deadline Di, period

relative deadlineand its worst-case execution time (WCET) Ci. Each task releases an infinite number
worst-case execution
time

of task instances, called jobs, according to its minimum inter-arrival constraint.

job
A task is called (strictly) periodic [LL73] if two consequent job releases are always

periodic task
separated exactly by the task’s minimum inter-arrival, and sporadic [Mok83] if

sporadic task
two consequent job releases are separated at least by the task’s minimum inter-
arrival time. If a task τi releases jobs periodically, the phase of the task, i.e., the

phaserelease time of its first instance, is denoted with φi. If φi is omitted in the task
specification, it is assumed to be 0. A job released at time t must be able to be
executed for up to Ci time units before its absolute deadline at time t + Di to
fulfill its timing requirements. The utilization of a task is defined as Ui =

Ci
Ti

and utilization

the total utilization of a task set is Usum = ∑τi∈T Ui.

Tasks and therefore the resulting task systems are often distinguished based
on the relation between the inter-arrival times and relative deadlines of the tasks.
A task τi is called an implicit-deadline task if its relative deadline is equal to its implicit-deadline

period, and a constrained-deadline task if its relative deadline is not larger than constrained-deadline
its period. Accordingly, a task set T = {τ1, ..., τn} is an implicit-deadline task set if
all tasks have implicit deadlines, a constrained-deadline task set if all tasks have
constrained deadlines, and an arbitrary-deadline task set if tasks are allowed to arbitrary-deadline

have a relative deadline larger than their period. Note that the implicit-deadline
task sets are a subset of the constrained-deadline task sets which are, in turn, a
subset of the arbitrary-deadline task sets.

The periodic and the sporadic task model have been extended to cover more
complex task systems, e.g., mixed-criticality task systems [Ves07], self-suspending
task systems [CBH+17b], or multiframe task systems [MC96]. If not stated oth-
erwise, we assume that all task parameters considered in the underlying model
are predetermined, i.e., they are known both at design time and at runtime, and
that tasks will always respect their parameters. Especially, a task will not release
jobs more frequent than allowed by the inter-arrival time restriction, and no job
of a task will execute for more than the task’s worst-case execution time. However, worst-case execution

timewe note that even for tasks that can be exactly described by the periodic or the
sporadic task model and that are executed in a uniprocessor environment, a
precise WCET analysis is still a very challenging problem. A survey of WCET WCET analysis

analysis was provided by Wilhelm et al. [WEE+08].

1.1.2 classification of scheduling algorithms

In most modern real-time embedded systems resources are not exclusively as-
signed to one computation task but multiple jobs of a set of tasks have to be multi-tasking

executed on a given execution platform. Therefore, if multiple jobs are active at
the same time, these jobs have to compete for shared resources like execution
devices, cache, communication channels, etc. We mainly consider the competition
for the processor(s), i.e., the (main) execution device(s) of the platform. For con-
venience, uniprocessor systems are assumed unless stated otherwise. To enable
multi-tasking, i.e., multiple tasks executing jobs on the same processor, a scheduling

4 introduction

Scheduling Algorithms

Offline Scheduling
(static, or clock-driven)

Online Scheduling
(dynamic, or priority-driven)

Static-Priority Scheduling

Preemptive Non-Preemptive

Dynamic-Priority Scheduling

Preemptive Non-Preemptive

Figure 1.1: Classification of scheduling algorithms.

policy is needed, i.e., a set of predefined criteria chosen by the designers and/orscheduling policy

enforced by the system at hand. At any given point in time, the jobs that are
currently available for execution are called ready. The actual scheduling decision,
i.e., which ready job is executed at a specific point in time, is made based on a
scheduling algorithm that implements the policy by providing a set of rules toscheduling algorithm

determine the order in which jobs are executed at any given time. According to
the scheduling algorithm, the dispatcher ensures that during runtime the job withdispatcher

the highest priority among the ready jobs currently in the system is dispatched
to and executed on the processor. Whether all jobs of all tasks are able to always
meet their absolute deadlines can be determined by a schedulability test that isschedulability test

related to the task and system model as well as to the scheduling algorithm.

Scheduling policies, and therefore the related scheduling algorithms, can beclassification of
scheduling policies classified based on certain properties. An overview is provided in Figure 1.1. One

major distinction is whether a scheduling algorithm is executed offline or online,
sometimes also referred to as static or dynamic scheduling.2 An offline scheduleoffline scheduling

is statically created at design time, i.e., before the task set is actually executed,
the generated schedule is stored in a suitable data structure, e.g., a table, and
during runtime the dispatcher assigns the jobs to the processor based on this
static schedule and the current system time. Offline scheduling approaches are
therefore also called clock-driven or time-triggered. For periodic task sets, an
offline schedule is usually constructed to cover a certain time frame, normally the
hyperperiod, which is the least common multiple of all periods among tasks in thehyperperiod

system, and repeated afterwards. While for such a schedule the timing correctness
can easily be verified, constructing a suitable schedule that fulfills all timing
constraints is a challenging problem. Furthermore, storing the schedule may lead
to a large overhead if the hyperperiod is large. In addition, the scheduling of
sporadic tasks or tasks with release jitter is problematic, since the actual release
times of jobs are not known at design time. Further details are omitted since this
work examines online scheduling algorithms.

In online scheduling algorithms the currently executing job is determined atonline scheduling

priority-based
scheduling

runtime based on a priority system. Hence, such scheduling algorithms are
also called priority-driven or priority-based scheduling algorithms. They are further

2 The terms offline algorithm and online algorithm are used here to avoid confusion since the
terms static and dynamic are also used for the subclasses of online scheduling policies, also called
priority-based scheduling policies.

1.1 general concepts 5

(a) Rate Monotonic

τ1 = (2, 5, 5)

Deadline Miss

τ2 = (4, 7, 7)

0 5 10 15 20 25 30 35

(b) Earliest− Deadline− First

τ1 = (2, 5, 5)

τ2 = (4, 7, 7)

0 5 10 15 20 25 30 35

(c) Non− preemptive RM

τ1 = (2, 5, 5)

τ2 = (4, 7, 7)

0 5 10 15 20 25 30 35

Figure 1.2: An implicit-deadline periodic task set not schedulable under preemptive Rate
Monotonic scheduling (RM-P), but schedulable under both preemptive Earliest
Deadline First scheduling (EDF-P) as well as non-preemptive Rate Monotonic
scheduling (RM-NP).

divided into static-priority and dynamic-priority scheduling algorithms. In a
static-priority scheduling algorithm, all jobs of a task have the same static (or fixed) static-priority

schedulingpriority. This static priority order is determined before the actual system execution.
Assume that τi has a higher priority than task τj. This means, at any time t, if
a job of τi and a job of τj are in the system, the job of task τi has the higher
priority. For instance, in the Rate Monotonic (RM) scheduling algorithm [LL73], Rate Monotonic

the task priorities are ordered according to the periods of the tasks where the
task with the shortest period has the highest priority. On the other hand, in a
dynamic-priority scheduling algorithm the priority of a job is determined at runtime dynamic-priority

schedulingbased on parameters which may change over time. Therefore, it is possible that at
a time point t1 a job of task τi has a higher priority than a job of task τj while for
another time point t2 a job of task τj has a higher priority than a job of task τi.
One example for dynamic-priority scheduling is the Earliest Deadline First (EDF) Earliest Deadline First

scheduling algorithm [LL73] where the job with the earliest absolute deadline has
the highest priority. The difference between static-priority and dynamic-priority
scheduling is exemplified in Figure 1.2. It considers two tasks τ1 and τ2, both
described by a tuple τi = (Ci, Di, Ti), where the blue arrows signal a release of
the job and, since deadline and period are identical, also the absolute deadline
of the previous job. In Figure 1.2(a) these two tasks are scheduled according to
preemptive RM scheduling, i.e., all jobs of τ1 have a higher priority than all jobs
of τ2 and the processor will always be assigned to a task of τ1 the moment it
enters the system. Thus, when the second job of τ1 is released at time 5, the first
job of τ2 is preempted since the job of τ1 has higher priority. This results in a
deadline miss of the first job of τ2 at time 7.3 In contrast, for the dynamic EDF
schedule in Figure 1.2(b), the first job of τ2 at time 5 has a higher priority than

3 We assume that the first job of τ2 is dropped after the deadline miss.

6 introduction

the second job of τ1 since it has a deadline at 7 while the new arriving job of τ1

has its deadline at time 10, and the EDF schedule meets all deadlines.

Both online and offline scheduling algorithms can be further classified based
on whether preemption is allowed during a job execution or not. For preemptivepreemptive scheduling

scheduling the execution of a job can be interrupted at any time, i.e., either
due to a predefined schedule or because a job with higher priority arrived
in the system, and the processor is assigned to another job according to the
scheduling algorithm. Contrarily, in a non-preemptive scheduling policy a job isnon-preemptive

scheduling always executed until completion once it is granted the processor. To distinguish
between preemptive and non-preemptive scheduling, we will use -P and -NP to
denote the preemptive and non-preemptive version of a scheduling algorithm,
e.g., RM-P and RM-NP for preemptive and non-preemptive Rate Monotonic
scheduling. We note that preemption introduces context switch overhead to the
system, e.g., for suspending the task, inserting it into the ready queue, flushing the
processor pipeline, and dispatching the new incoming task. It is often assumed
that this overhead is either neglectable or included into the tasks’ worst-case
execution time. Figure 1.2(c) details the non-preemptive RM schedule compared
to the preemptive RM schedule in in Figure 1.2(a). Limited-preemptive schedulinglimited-preemptive

scheduling techniques try to combine the advantages of preemptive and non-preemptive
scheduling by allowing preemption only at predefined points in the task’s code.

Furthermore, scheduling algorithms can be classified according to their perfor-
mance compared to other algorithms in the same class, as well as compared to
algorithms from a different class, which is discussed in Section 1.1.4.

In practice, the class of the scheduling algorithm is chosen not only depending
on considerations during the design process but also based on system properties
that are enforced. For instance, many real-time operating systems only supportreal-time operating

system static-priority scheduling [Bra11], and messages scheduled on a Controller Area
Network (CAN) bus cannot be preempted [AT09].

When examining multiprocessor platforms, homogeneous multiprocessor sys-
tems with m processors are assumed, i.e., all processors and therefore the task
parameters on all processors are identical. Multiprocessor scheduling approaches
usually follow one of three paradigms. Under partitioned scheduling, each task ispartitioned scheduling

statically allocated to a specific processor where all related task instances are exe-
cuted under a uniprocessor scheduling algorithm, while under global schedulingglobal scheduling

tasks are allowed to migrate freely between processors and are scheduled based
on one global scheduling algorithm. A semi-partitioned scheduling allocates thesemi-partitioned

scheduling tasks to particular processors but allows a certain degree of migration, e.g., in
predefined time slots or depending on specified constraints.

1.1.3 schedulability analysis

The quality of different algorithms can be evaluated based on a performance metricperformance metric

or cost function. Such a metric is usually defined over the task set under analysis.
We utilize the metric of tardiness ET of the task set T, i.e., the maximum amounttardiness

of time any job is active after its absolute deadline, since it directly relates to the
schedulability of the task set. If ET = 0 under a scheduling algorithm, then all

1.1 general concepts 7

jobs meet their deadlines, i.e., the task set is schedulable. Since for hard real-time hard real-time system

systems ET = 0 is a constraint for the correct functionality of the system, it is
possible to optimize according to another metric, e.g., minimizing the average
response time, as long as ET = 0 holds. However, the only criteria we consider in
this work is whether ET = 0, i.e., if a task set is schedulable or not.

Schedulability tests are usually related to a specific scheduling algorithm or a
class thereof. They give indication whether a task set is schedulable or not and
are classified as follows:

• Sufficient tests only deem task sets schedulable that are in fact schedulable. sufficient test

• Necessary tests only deem task sets not schedulable that are in fact not necessary test

schedulable.

• Exact tests are both sufficient and necessary. exact test

Before a scheduling algorithm is chosen for a real-time system, it must first be
determined if the considered task set is schedulable using either a sufficient or an
exact test. Obviously, exact tests are preferable since they are more precise. How-
ever, it has been shown by Ekberg and Yi that, even for uniprocessor systems, an
exact schedulability test for dynamic priority scheduling of constrained-deadline
task sets is strongly coNP-complete [EY15] and that an exact schedulability test
for sporadic tasks under static-priority scheduling is NP-hard [EY17]. Therefore,
exact schedulability tests are not always a viable option and a lot of research
focuses on finding tight4 sufficient schedulability tests for different task models
and scheduling algorithms.

One specific way to determine the schedulability of a task set is a (worst-case)
response time analysis. If the worst-case response time Ri of task τi is less than or response time analysis

worst-case response
time

equal to the task’s relative deadline Di, the task will always fulfill its timing
requirements. If for all tasks in the set the worst-case response time under the
given scheduling algorithm is not larger than the relative deadline, the task set is
schedulable under this algorithm. For such an analysis, a specific task τi must
suffer the maximum interference from other tasks over a specific interval, also
called the interval of interest. The considered interval is often between the job’s interval of interest

release and its deadline. The situation where a task suffers the maximum possible
interference is called a critical instant of τi. critical instant

The Critical Instant Theorem by Liu and Layland [LL73] states that for periodic Critical Instant
Theorem
preemptive scheduling

static-priority
scheduling

tasks with constrained or implicit deadlines under preemptive static-priority scheduling,

constrained-deadline
implicit-deadline

a critical instant for τi occurs if a job of τi is released together with a job of all
higher-priority tasks. The same holds true for sporadic tasks if all subsequent jobs
of higher priority tasks are released as early as possible, i.e., exactly periodically.
Since no other job of τi can suffer from a higher interference, it is sufficient to
determine the response time for the first job of τi under the critical instant. An
example of the critical instant for task τ4 under Rate Monotonic scheduling can
be found in Figure 1.3. Note that finding a critical instant for task sets with other
characteristics is (in general) not trivial. For instance, there have been several flaws
in the literature regarding self-suspension that resulted from wrong assumptions
for a critical instant, and no critical instant theorem for self-suspending tasks

4 A schedulability test is called tight when it is nearly as precise as an exact test.

8 introduction

τ1 = (3, 8, 8)

τ2 = (2, 10, 10)

τ3 = (2, 12, 12)

τ4 = (3, 23, 23)

0 5 10 15 20

Figure 1.3: A schedule according to preemptive Rate Monotonic scheduling under the
critical instant of τ4.

has been established so far [CNH+19]. However, it is also possible to perform a
response time analysis if no critical instant is known as long as the interference a
task may suffer over any given interval can be safely upper bounded.

1.1.4 performance of scheduling algorithms

While schedulability tests analyze individual task sets, they do not directly allow
a general comparison of the performance of scheduling algorithms. Hence, a way
to compare different sufficient schedulability tests and/or scheduling algorithms
is needed. The methods to evaluate and compare scheduling algorithms and their
related schedulability tests can be divided into the following two categories:

• Theoretical methods focus on the worst-case behaviour of a scheduling al-theoretical evaluation
method gorithm or schedulability test and include dominance relations, utilization

bounds, and resource augmentation factors. The resource augmentation factors
typically compare the worst-case behaviour of a schedulability test to a
specific competitor, i.e., an alternative schedulability test either for the same
or for a different scheduling algorithm, and include speedup factors, capacity
augmentation bounds, or approximation ratios.

• Empirical methods evaluate the performance of a schedulability test consid-empirical evaluation
method ering typically average-case comparisons against a set of other scheduling

algorithms based on a large number of considered task sets. They include
the simulation of the scheduling algorithm, evaluation on synthetic task sets, case
studies, and experiments on real hardware.

A review on the evaluation of scheduling algorithms was provided by Davis as
part of the keynote in WATERS 2016 [Dav16].

Among the empirical methods, we primarily consider the acceptance ratio ofempirical evaluation
method synthetic task sets. For each considered utilization value, e.g., from 1% to 100%

with steps of 1%, a number of task sets, often 100 or 1000, is synthesized based
on a specific setting. The task sets are evaluated under different scheduling
algorithms or schedulability tests. Afterwards, for each test and algorithm, the
acceptance ratio, i.e., the percentage of accepted task sets, for each utilizationacceptance ratio

value is plotted against the utilization value. Figure 1.4 shows an example of
the acceptance ratio for the Hyperbolic Bound (HB) [BBB01] and the Time DemandHyperbolic Bound

Time Demand
Analysis

Analysis (TDA) [LSD89] for implicit-deadline task sets under Rate Monotonic
scheduling. The utilization where the acceptance rate starts to drop drastically is
called the breakdown utilization of the related schedulability test, i.e., 74% for HBbreakdown utilization

1.1 general concepts 9

and 93% for TDA in Figure 1.4. That the curve for TDA drops later than the one
for HB shows that TDA is superior to HB which was expected since TDA is an
exact schedulability test while HB is a sufficient test. The gap between the curves
of TDA and HB depends on the actual setting used to create the synthetic tasks.

A dominance relation is a theoretical method to further classify scheduling dominance relation

algorithms and schedulability tests. A scheduling algorithm A dominates a
scheduling algorithm B if every task set that is schedulable by algorithm B is also
schedulable by algorithm A. For instance, for a given scheduling algorithm, an
exact test will always perform at least as good as a sufficient test, independent
from the exact setting, e.g., TDA dominates HB as indicated in Figure 1.4. Based
on a dominance relation between different scheduling algorithms, the optimality
among a class of scheduling algorithms can be determined. An optimal algorithm is optimal algorithm

one that always optimizes the given metric, i.e., it dominates all other algorithms,
while a heuristic algorithm tries to optimize for the metric but is not guaranteed heuristic algorithm

to succeed. Hence, an optimal algorithm for minimizing the maximum lateness
will ensure that all jobs of all tasks in a task set will meet their deadlines if such
a schedule exists. We consider optimality among a certain class of scheduling
algorithms according to the classification described in Section 1.1.2 and based on
task set properties. Note that optimality with respect to one of the general classes
does not mean that another algorithm from a different class may not perform
better. For instance, RM is an optimal static-priority algorithm for preemptively
scheduled task systems with implicit deadlines [LL73], and EDF is an optimal
preemptive dynamic-priority scheduling algorithm for implicit deadlines [LL73].
Nevertheless, as detailed in Figure 1.2, there are task sets that are schedulable by
EDF but not by RM. However, since EDF can schedule every implicit-deadline
task set with a utilization of less than or equal to 100% [LL73], there is no
implicit-deadline task set schedulable by RM that is not schedulable by EDF.

A sufficient schedulability test (usually for implicit-deadline task sets) that
determines the schedulability of a task set based on the task set utilization is called
a utilization bound, e.g., the utilization bound of Usum ≤ 100% for EDF [LL73]. Since utilization bound

these bounds consider the worst-case task parameters among all possible task
sets, they describe theoretical properties of the considered algorithm. In Figure 1.4
the well-known Liu and Layland Bound [LL73], also called total utilization bound,
of Usum ≤ ln(2) ≈ 69.3% for RM scheduling is shown. Hence, when considering
the schedulability for RM, Figure 1.4 shows the complete spectrum from 1) the
direct, linear time utilization bound, i.e., Usum ≤ 69.3%, which is independent
from the actual task set parameters, over 2) the more precise HB which is still a
linear time test but considers information of the actual task set, to 3) the exact
TDA which has a pseudo-polynomial runtime. Furthermore, a simple necessary
condition is shown, i.e., that the task set can only be schedulable if Usum ≤ 100%.

Another way to theoretically describe the worst-case performance of a schedul-
ing algorithm A is the speedup factor [PST+02; KP00] compared to a scheduling speedup factor

algorithm B. A speedup factor ρ describes how much the overall system speed
must be increased to ensure that any task set schedulable by algorithm B is also
schedulable by A, where a speed increase by ρ means that for each task τi the
WCET Ci will be reduced by the factor ρ, i.e., the WCET in the sped up platform
is Ci

ρ . For instance, for implicit-deadline task sets, the speedup factor of RM-P

10 introduction

Liu & Layland Bound
Usum ≤ 69.3%, linear

dominates

Usum ≤ 100%
necessary, linear

Hyperbolic Bound
su�cient, linear

Time Demand Analysis
exact, pseudo-polynomial

Speedup Factor 1.44

50 55 60 65 70 75 80 85 90 95 100
Utilization (%)

0

10

20

30

40

50

60

70

80

90

100

A
cc
ep
ta
n
ce

R
at
io

(%
)

Figure 1.4: Example for theoretical and empirical methods to evaluate the performance
of scheduling algorithms and schedulability tests.

compared to EDF-P is ρ = 1
ln(2) ≈ 1.44 since EDF-P can schedule no task set with

Usum > 1 and if a task set with Usum ≤ 1 is speed up by 1
ln(2) the total utiliza-

tion of the resulting task set is smaller than ln(2) which is the total utilization
bound for RM-P. The speedup factor for comparing two scheduling algorithms
A and B effectively compares their exact schedulability tests. Analogously, the
speedup factor of a sufficient schedulability test X compared to another sufficient
schedulability test Y can be defined as well, where Y can either relate to the same
scheduling algorithm as X or to another scheduling algorithm. In some situations
it is also meaningful to compare a sufficient test S to a necessary condition N to
show that the test S has a bounded maximum loss.

1.2 context and challenges

From a researcher’s perspective, the examination of real-time scheduling focuses
on three components that build on one another: 1) the system and task model,
2) the scheduling algorithm with related schedulability test, and 3) a theoreti-
cal and/or empirical performance evaluation of the scheduling algorithm. The
relation between these three components is detailed at the top of Figure 1.5.

system and task model

Models abstract system characteristics to enable the analysis of timing constraints,
since modern real-time systems are usually too complex to be analyzed directly.
In most cases, if it is not sufficient to describe the system directly, the periodic or
the sporadic task model is extended by introducing additional parameters and/or

1.2 context and challenges 11

constraints. One practically relevant example for such additional constraints
are automotive task systems, where the task periods are not arbitrary but chosen automotive task set

from a specific set of possible values. In automotive systems, angle-synchronous angle-synchronous
taskstasks, where the period of the task depends on the rotation of the crankshaft, are

also common. Other well known examples for additional task parameters are
blocking time that results from mutually exclusive access to shared resources
or release jitter. When considering uncertain execution environments, mixed- mixed-criticality

systemscriticality systems [Ves07] have received attention in the real-time systems research
community due to their practical relevance. Nevertheless, the model has been
criticised [ENN+15; EN16], as it does not match the expectations of systems
engineers. However, the modelling should result in an abstraction that is accurate
and therefore able to precisely describe a system. Otherwise, the model either is
not relevant for practical scenarios, or may lead to an over-pessimistic or even
wrong analysis. On the other hand, a model should not be too restrictive but
flexible enough to describe a variety of systems with similar behaviour. Otherwise,
a large overhead for modelling and analysis must be expected when analysing a
slightly different system.

The self-suspension models in the literature show that finding a good tradeoff
between flexibility and restrictiveness is not easy. The dynamic self-suspension dynamic

self-suspensionmodel only introduces a bound on the maximum total suspension time as an
additional parameter and assumes that suspension and computation can alternate segmented

self-suspensionarbitrarily, making the model overly flexible and imprecise. On the other hand, the
segmented self-suspension model assumes a precisely known execution suspension
pattern and is therefore very precise but overly restrictive.

scheduling algorithms and schedulability tests

The scheduling algorithm should be chosen based on the system and task model.
Under the classical periodic and sporadic task models, optimal scheduling algo-
rithms are known for many classes of scheduling algorithms, e.g., EDF-P and
RM-P for preemptive implicit-deadline task sets [LL73]. However, this optimality
usually does not hold for extended task models. For instance, EDF and RM
are both not optimal for non-preemptive scheduling, mixed-criticality systems,
and self-suspending tasks. If optimal algorithms cannot be established, good
heuristics are a suitable alternative. In addition to a good performance regarding
schedulability, a scheduling algorithm must also be applicable to practical systems
with reasonable overhead. Examples of problematic properties of algorithms are
a large number of context switches, and online adaptations like disabling and
restarting tasks at runtime or reordering of task/job priorities.

Furthermore, even for optimal algorithms, an exact or at least a sufficient
schedulability test is essential to verify whether a specific task set is schedulable
under the scheduling algorithm. Such a test should not only be as precise as
possible but must also be computationally affordable. To achieve high precision,
the test should consider the information available from both the model as well as
from the scheduling algorithm. The schedulability test may also link back to the
scheduling algorithm.

12 introduction

performance evaluation

While a schedulability test determines whether a specific task set is schedulable
under a specific algorithm, the overall performance of scheduling algorithms and
schedulability tests can be evaluated using theoretical and empirical methods.
Empirical evaluation methods typically evaluate the average case performance. Inempirical evaluation

method many cases, randomly generated task sets are considered in the evaluation. There-
fore, it is important that such task sets cover a large range of interesting scenarios.
Otherwise, a scheduling algorithm or schedulability test may be classified as
good even though it only performs well in certain, practically irrelevant scenario.

Theoretical evaluation methods provide worst-case guarantees for schedulingtheoretical evaluation
method algorithms or schedulability tests. Hence, they focus on finding the worst-case

setup among all possibilities. This leads to the question whether such worst-case
scenarios are good representatives to evaluate the overall quality of an scheduling
algorithm or schedulability test.

1.3 contribution of this dissertation

Resulting from the challenges determined in Section 1.2, this dissertation exam-
ines modelling as well as analysis in real-time systems and provides possible
solutions. This investigation is performed considering the following hypothesis:

Realistic scheduling models and analyses are essential for guaranteeing timing
correctness in advanced real-time systems while ensuring that the system
resources necessary to provide these guarantees are not over-provisioned.

The main part of Figure 1.5 displays the contributions of this dissertation, their
interconnection, which of the three components the individual contributions
relate to, and the related section in this dissertation. In this section, a detailed
description based on the individual chapters, which are organized according to
the considered task model, is provided, including a brief description how these
contributions are related to the dissertation hypothesis. The main contributions
of this dissertation were published in peer-reviewed international conferences
and journals. For the ease of the reader, the references to publications related to
this dissertation are emphasized, e.g., published in [BCH15].

1.3.1 speedup factors and parametric

utilization bounds

Theoretical methods like utilization bounds and speedup factors, which compare thetheoretical evaluation
method

utilization bound
worst-case behaviour of scheduling algorithms or schedulability tests, are the
focus of Chapter 4. Speedup factors compare an algorithm or schedulability test

speedup factor with an optimal algorithm or test, or to a necessary schedulability condition,
hence giving testimony to the maximum loss when the considered schedulability
test or scheduling algorithm is used. Utilization bounds, on the other hand, always
consider the worst-case setup, i.e., the unschedulable task set with the lowest

1.3 contribution of this dissertation 13

Task and System Model

Scheduling Algorithm

Schedulability Test

Theoretical Examination

Empirical Evaluation

Uncertain Execution Environments - Chapter 5

Systems with Dynamic
Real-Time Guarantees 5.1.2

Uniprocessor 5.2.1

Multiprocessor 5.3.1

Compensation of CPUs 5.3.5

Multi-Mode Models
Mixed-Criticality Model

Uniprocessor 5.2
Exact Test 5.2.2

Priority Assignment 5.2.3
System State Analysis 5.2.4

Multiprocessor 5.3
Exact Test 5.3.2

Partitioned 5.3.3
Semi-Partitioned 5.3.4

worst-case deadline failure
failure probability 5.4

Empirical Evaluation
Uniprocessor 5.2.6

Acceptance Rate, System State

Multiprocessor 5.3.6
Acceptance Rate

Compensation of CPUs

Classic Periodic/Sporadic Models - Chapter 4

Periodic and Sporadic
Task Model

Semi-Harmonic
and Automotive

Task Systems

Non-Preemptive Scheduling

Hyperbolic Forms 4.1.1

Utilization Based Tests
Preemptive 4.2.2

Non-Preemptive 4.2.3
Angle-Synchronous 4.2.4

Speedup Factors
Linear Time Factors for Preemp-
tive and Non-Preemptive FP 4.4

Pitfalls of Speedup Factors
and Utilization Bounds 4.5

Parametric Augmen-
tation Functions 4.6

Parametric Utilization Bounds
Non-Preemptive RM 4.1.2

Automotive Task Sets 4.2.2

Empirical Evaluation
Automotive Task Sets 4.2.5

Self-Suspension Models - Chapter 6

Segmented

Hybrid 6.3

Dynamic

Resource Oriented Partition
(ROP) with Enforcement 6.2

Schedulability Test 6.2.3
Resource/Task Allocation 6.2.4

Shortest Execution Interval
First Deadline Assignment

(SEIFDA) for Segmented 6.1

FRD Schedulability Test 6.1.2
Deadline Assignment 6.1.5

Approximated Test 6.1.8
MILP 6.1.9

SEIFDA for Hybrid 6.3
FRD Schedulability Tests

Deadline Assignments

Speedup Factors
ROP with Enforcement 6.2.5

SEIFDA for Segmented 6.1.7

Empirical Evaluation
ROP with Enforcement 6.2.6

SEIFDA for Segmented 6.1.10

Gain of Hybrid Model 6.3.6

Figure 1.5: Contributions of this dissertation (marked red and with related section), their
interconnection, and what part of real-time scheduling analysis they are
related to. Blue boxes indicate pre-existing models and evaluation techniques
while gray boxes are evaluations of proposed algorithms and tests.

14 introduction

possible utilization. Therefore, they are often seen as a way to describe the quality
of an algorithm or test, i.e., it is assumed that a better utilization bound or speedup
factor means that the related algorithm/test is better. Nevertheless, the question
remains if a worst-case comparison is a good way to draw such conclusions and
allows a realistic evaluation of scheduling algorithms and schedulability tests,
since only the worst-case setting is considered and the average case behaviour
may in fact be very different while the worst-case setting may be practically
irrelevant.

For instance, when considering the utilization bound of implicit-deadline tasksutilization bound

under RM-P, the Liu and Layland Bound [LL73] of Usum ≤ ln(2) ≈ 69.3% is tight,Liu and Layland
Bound i.e., all task sets with a utilization ≤ ln(2) are schedulable and a task set with a

utilization of ln(2) + ε that is not schedulable by RM-P exists for each ε > 0. For
these task sets the periods of the tasks are distributed in a way that the largest
period is at most two times the smallest period [LL73], e.g., all periods are in
[1; 2]. However, in commercial real-time systems, tasks periods typically range
over multiple orders of magnitude [BB06]. For instance, in automotive systems pe-
riods usually range from 1 ms to 1000 ms [HDK+17; KZH15; TEH+16; SSD+13].
Furthermore, a larger range of periods leads to a higher breakdown utilization,
as shown by Emberson et al. [ESD10]. Therefore, it seems reasonable to use
additional information that is known about the considered task set, like the
period range, to parametrize the utilization bound. Hence, in Section 4.1 and
Section 4.2 respectively, we show how parametric utilization bounds can drasti-parametric utilization

bound cally increase the utilization bounds for RM-NP when considering the block-
ing factor of the task set as a parameter [BCH15] (appeared in ECRTS 2015),
and for RM-P in automotive systems where the task periods are chosen from
{1, 2, 5, 10, 20, 50, 100, 200, 1000} ms [BUC+17] (appeared in RTNS 2017).

Regarding speedup factors, the speedup factor of ρ = 1
ln(2) ≈ 1.44 for RM-Pspeedup factor

compared to EDF-P that results from the Liu and Layland Bound [LL73] is tight,
i.e., the upper bound follows directly from the Liu and Layland Bound and there
exists a task set with utilization Usum = ln(2) + ε for each ε > 0 that is not
schedulable under RM-P. As a result, the speedup factor for RM-P compared
to EDF-P is the same when considering Time Demand Analysis (TDA) [LSD89],Time Demand

Analysis which is an exact schedulability test with pseudo-polynomial runtime, as it is for
the linear time Liu and Layland Bound. However, TDA strictly dominates the
Liu and Layland Bound and, as exemplified in Figure 1.4, the acceptance ratio of
TDA is usually significantly better. This leads to the observation that speedup
factors are often not able to discriminate between different scheduling algorithms
or schedulability test regarding performance. In Section 4.4, we first provide a
speedup factor for non-preemptive Deadline Monotonic scheduling (DM-NP)
compared to EDF-NP [BCH15] (appeared in ECRTS 2015). Hereinafter, we show
that linear-time sufficient schedulability tests for DM-P compared to EDF-P, as
well as for DM-NP compared to EDF-NP, result in exact speedup factors for
implicit-, constrained-, and arbitrary-deadline task sets [BCD+17] (appeared in
IPL in 2017). These factors hold regardless of the sub-optimality of the considered
test and, in the arbitrary-deadline case, the sub-optimality of DM. Due to this
rather surprising result, we take a closer look at speedup factors in the remainder
of Chapter 4, observing additional possible problems, and provide guidance

1.3 contribution of this dissertation 15

for their meaning and interpretation. Furthermore, parametric augmentation func-
tions are proposed an a possible solution and their use is exemplified in one parametric

augmentation functionscenario [CBH+17a] (appeared in ECRTS 2017).

With respect to dissertation hypothesis, the provided parametric utilization
bounds show that considering a more restricted scenario, which therefore is a
more realistic model of the system at hand, can drastically increase the precision of
the analysis and hence avoid over-provisioning of system resources. Furthermore,
examining the meaning and practical relevance of speedup factors allows to
determine the value of this metric in realistic scenarios.

1.3.2 uncertain execution behaviour

While Chapter 4 critically scrutinizes theoretical methods to evaluate scheduling
algorithms, it only briefly considers situations where the periodic or the sporadic
task model [LL73] is not able to fully describe the system at hand. Chapter 5

focuses on such a situation, to be precise on uncertain execution behaviour. Specifi- uncertain execution
behaviourcally, it considers uncertainty regarding the worst-case execution time (WCET) of
worst-case execution
time

a task which is represented by a set of distinct execution modes with related
WCETs. For each of these modes, however, it is assumed that the WCET can
be precisely determined, i.e., the uncertainty is not related to the worst-case
execution time analysis. Reasons for such a behaviour are, for instance, a reduced
CPU frequency to prevent overheating, dynamic voltage frequency scaling to save
energy, mixed-criticality systems, and software-based fault tolerance mechanisms. mixed-criticality

systems

fault tolerance
Furthermore, it is assumed that the WCET differs largely among the modes and
that modes with a large execution time have a low probability to be executed,
i.e., a small WCET is the normal and a large WCET the abnormal case. In this
situation, one cannot simply consider the situation that the task will always run
with the largest WCET in a schedulability analysis without largely overestimating
the necessary system resources, which would result in an intolerable increase in
hardware costs. On the other hand, it must be ensured that an execution mode
with a large WCET does not destroy the timing guarantees that must be provided.
Hence, to achieve practical applicability, a reasonable tradeoff between hardware
costs and timing guarantees must be found.

In many real-time systems, rare deadline misses are acceptable at least for
a subset of the tasks, facilitating the achievement of such a compromise. For
instance, the work in [KT12; QHE12; QNE13; HQE14; XHK+15] assumes that
rare deadline misses are acceptable and tries to quantify them. One main reason
for such an assumption is that, even if all tasks in the systems have real-time
constraints, some tasks are more important for the system stability while others
are not so important. Hence, rare deadline misses can be tolerated for the latter
since they will not lead to catastrophic consequences. As an example consider
an unmanned aerial vehicle (UAV) where the tasks in the more important flight
control system should always meet their deadline while for the not so important
surveillance system occasional deadline misses are tolerable. In theory and in
practical systems, to ensure a reasonable tradeoff between worst-case timeliness
of the more important tasks and the system utilization, not so important tasks

16 introduction

are often aborted to guarantee the response time of the more important tasks if
abnormal execution behaviour occurs. An important example for systems with
such properties are mixed-criticality systems [Ves07] where, for dual-criticalitymixed-criticality

systems systems, the tasks are partitioned into the more important high-criticality tasks
and the less important low-criticality tasks. In the beginning of the system life
time, the tasks execute in the low-criticality mode, i.e., with a smaller WCET, and
at some point in time the system switches to high-criticality mode where tasks are
executed with a larger WCET. It is assumed that the system stays in high-criticality
mode for the remainder of its life time. Hence, for mixed-criticality systems the
mode switch is usually handled by online adaptation, for example by dropping
tasks, increasing inter-arrival times, or changing task priorities. Such approaches
have been criticized lately, for instance by Esper et al. [ENN+15] who asked “How
realistic is the mixed-criticality real-time system model?" and by Ernst and Di
Natale [EN16] in “Mixed Criticality Systems - A History of Misconceptions?”.
Specifically, it is pointed out that the main stream of mixed-criticality research
does not fit the expectations of system engineers since 1) low-criticality tasks
should not be abandoned, and 2) systems should return to low-criticality mode
after a sufficient amount of time.

To answer this criticism and to provide a more suitable model, Systems withSystems with Dynamic
Real-Time Guarantees Dynamic Real-Time Guarantees are introduced in Section 5.1. Such systems assume

a given task set partition into not so important tasks where rare deadline misses
are acceptable, called timing tolerable tasks, and more important tasks that musttiming tolerable tasks

always meet their deadlines, called timing strict tasks. On the one hand, theytiming strict tasks
ensure that, if the systems runs normally, called the normal mode, the deadlinesnormal mode
of all tasks should be satisfied. On the other hand, in case of a rare event,
called the abnormal mode, the timing strict tasks are still guaranteed to meet theirabnormal mode

deadlines while the timing tolerable tasks may miss deadlines but are guaranteed
bounded tardiness. All these guarantees are given in advance using static-priority
scheduling and no online adaptation is performed. During runtime, a System with
Dynamic Real-Time Guarantees provides either full timing guarantees if all jobs meetfull timing guarantees

their deadline or limited timing guarantees if only the jobs of the timing strict taskslimited timing
guarantees are guaranteed to meet their deadline while timing tolerable tasks have bounded

tardiness. Furthermore, the time of a mode switch is not assumed to be given but
detected by an online monitor. This model is not only suitable for mixed-criticality
systems but can also be applied when the uncertain execution behaviour results
from other sources like fault-tolerance mechanisms, overheating, or dynamic
voltage frequency scaling.

In Section 5.2, Systems with Dynamic Real-Time Guarantees for uniprocessor envi-
ronments are introduced, providing a precise definition of the system itself as well
as for the related terminology like full timing guarantees and limited timing guar-
antees, followed by an exact schedulability test and several important properties.
Furthermore, over-approximations for the maximum interval length with limited
timing guarantees and an online monitoring is provided [BCH+16] (appeared
in RTSS 2016). Afterwards, the system definition is extended to MultiprocessorMultiprocessor

Systems with Dynamic
Real-Time Guarantees

Systems with Dynamic Real-Time Guarantees in Section 5.3, detailing the related
definitions as well as schedulability tests and partitioning algorithms for both
partitioned and semi-partitioned scheduling. Furthermore, it is shown how Multi-

1.3 contribution of this dissertation 17

processor Systems with Dynamic Real-Time Guarantees can further increase the system
reliability using task migration techniques [BSC18] (appeared in PRDC 2018). task migration

When uncertain execution behaviour is considered, for instance in Systems with
Dynamic Real-Time Guarantees, one important problem is to determine the worst- worst-case deadline

failure probabilitycase deadline failure probability of a task. However, previous approaches are either
fast but imprecise analytical bounds or job-level convolution-based techniques
that do not scale for task sets with a reasonable size. Therefore, a novel approach is
introduced that convolves representatives of the individual tasks resulting from a
multinomial distribution instead in Section 5.4. Furthermore, several optimization
techniques are provided which ensure that the proposed approach is scalable to
large task sets. The results in Section 5.4 appeared in ECRTS 2018 [BPC+18].

When uncertain execution behaviour is modeled as a mixed-criticality system,
the result is in many situations an imprecise and therefore unrealistic description
of the actual system. This may lead to an incorrect analysis which can be both
optimistic or too pessimistic, which supports the dissertation hypothesis. One
possible solution is a realistic system model that allows an analysis of the actual
system like Systems with Dynamic Real-Time Guarantees.

As current techniques to approximate the worst-case deadline failure probability
are either imprecise or not scalable to systems with a realistic system size, these
techniques are not able to correctly quantify the system behaviour, which may
result in over-provisioning of system resources. Therefore, new approaches are
needed that are both precise and scalable like the proposed task-level convolution.

1.3.3 self-suspension

Self-suspension behaviour, which is examined in Chapter 6, may result from
multiple sources like offloading, access to external devices, and multiprocessor
resource synchronization, and may negatively impact real-time schedulability,
especially when the suspension delays are long. Two self-suspension models are
primarily studied in the literature. The dynamic self-suspension model that allows dynamic

self-suspensiona job of task τi to suspend itself at any moment before it finishes as long as the
worst-case self-suspension time Si is not violated, and the segmented self-suspension segmented

self-suspensionmodel that assumes a specified execution/suspension pattern for each task.

For the one-segmented self-suspension model, a fixed-relative-deadline (FRD) schedul- fixed-relative-deadline

ing algorithm called Shortest Execution Interval First Deadline Assignment (SEIFDA) SEIFDA
is introduced in Section 6.1. An FRD scheduling algorithm assigns individual
relative deadlines to each computation segment and schedules them individually,
using EDF. Therefore, setting the deadlines for the subjobs is the most challeng-
ing problem when developing an FRD approach. While previous assignment
strategies suffer from the fact that they assign the deadlines for a task agnostic
from the deadlines of other tasks, SEIFDA takes previously assigned deadlines
into account and assigns the deadlines one by one, starting from the task with
the shortest execution interval, i.e, the relative deadline minus the suspension
interval. A general FRD schedulability test as well as an approximated test, three
deadline assignment strategies, and an MILP formulation for FRD are provided.

18 introduction

In empirical evaluation based on synthesized task sets, SEIFDA shows a substan-
tial performance gain compared to previous FRD assignment strategies from the
literature while achieving the same speedup factor. The results in Section 6.1 werespeedup factor

presented in RTNS 2016 [BHC+16].

Afterwards, SEIFDA is utilized in the design of a resource-oriented partitionedresource-oriented
partitioned scheduling scheduling (ROP) for multiprocessor resource sharing in Section 6.2. The general

concept of a ROP is to reduce the multiprocessor resource sharing problem to a set
of uniprocessor resource sharing problems by specifying a set of synchronization
processors where all resource access is performed. To be precise, each resource
is assigned to a processor and all critical sections accessing that resource are
moved to the related processor. The non-critical sections of the tasks are executed
on the remaining processors. An algorithm is proposed that combines SEIFDA
for the analysis of the non-critical sections with ROP under release enforcement
for the critical and non-critical sections. A sufficient schedulability as well as
a resource and task allocation strategy are proposed. The provided algorithm
is shown to have a speedup-factor of 6, which is the best known speedup factorspeedup factor

for multiprocessor resource sharing, and to outperform other multiprocessor
resource sharing protocols in the evaluation. The results presented in Section 6.2
appeared in RTNS 2017 [BCH+17].

Furthermore, the gap between the dynamic and the segmented self-suspension
model is examined in Section 6.3. On the one hand, the dynamic self-suspension
model can be utilized when only limited information about the suspension
behavior is known. Therefore, it has a higher flexibility, but results in more
pessimistic analyses and designs of scheduling policies if the suspending pattern
can be defined precisely. On the other hand, the segmented self-suspension has
a lower flexibility, but the self-suspending structure can be exploited by the
scheduling algorithms to make better decisions. However, that the execution
pattern is static for each execution and that the structure of the program is well
designed are assumptions that often do not hold in practical situations. This
gap is bridged by introducing multiple hybrid self-suspension models that assumehybrid self-suspension

the self-suspending task to be specified by a set of possible execution patterns
that are known offline. These models are either applicable when no information
as to which pattern is executed for a specific job is known online, so-called
pattern-oblivious models, or when the information as to which pattern is executedpattern-oblivious

can be determined when a job arrives, so-called pattern-clairvoyant models. Thepattern-clairvoyant
provided models have different tradeoffs between flexibility and precision that
can be achieved based on the information that is known for the considered task
set. The evaluation in shows that the information that can be accessed in addition
to the information assumed by the dynamic self-suspension mode can be utilized
to achieve a significantly better performance regarding schedulability. The results
in Section 6.3 were presented in RTCSA 2017 [BHC17].

Regarding the dissertation hypothesis, both SEIFDA as well as the provided
resource-oriented partitioned scheduling show the possible performance gain
when an algorithm can exploit properties of a restricted and therefore more
precise system model instead of considering general models. Furthermore, the
introduced hybrid self-suspension models exemplify how additional information
can be included into the model to achieve a more realistic description of the

1.4 author’s contribution to this dissertation 19

analysed system and therefore a more precise analysis. In all three cases, over-
provisioning of resources can be reduced.

1.4 author’s contribution to this dissertation

According to §10(2) of the “Promotionsordung der Fakultät für Informatik der
Technischen Universität Dortmund vom 29. August 2011”, a dissertation must
include a list that highlights the author’s contribution to research results that
were obtained in cooperation with other researchers. The following overview lists
the contribution on the results presented in the individual chapters:

• Chapter 4 focuses on the theoretical comparison of scheduling algorithms
using speedup factors and utilization bounds. For the work regarding non-
preemptive scheduling published at ECRTS 2015 [BCH15], I was the prin-
cipal author contributing the concepts and theorems. I was the principal
author, contributing concepts, theorems, and evaluation, for the work pub-
lished at RTNS 2017 [BUC+17] that considers automotive systems. Niklas
Ueter provided the task generator used in the evaluation while Matthias
Freier granted insight into automotive task systems from a designers per-
spective. The work on speedup factors published in the Information Process-
ing Letters, Volume 177 [BCD+17], stems from discussion over the work
in [BCH15] at ECRTS 2015. The observations in [BCD+17], together with
other observations regarding work in the literature, then resulted in dis-
cussions that lead to the work on speedup factors and utilization bounds in
ECRTS 2017 [CBH+17a]. Due to this discussion based process, the results
in [BCD+17], where I was the principal author, and [CBH+17a], where I was
a co-author, were developed by Robert I. Davis, Jian-Jia Chen, Wen-Hung
Huang, and myself in close cooperation.

• Chapter 5 examines uncertain execution environments, introducing the
model of Systems with Dynamic Real-Time Guarantees in uniprocessor and
multiprocessor environments, and proposing a novel method to over-
approximate the worst-case deadline failure probability in such an envi-
ronment. For the work introducing Systems with Dynamic Real-Time Guaran-
tees [BCH+16], published in RTSS 2016, I was the principal author, contribut-
ing the concept, algorithms, the majority of the theorems, the schedulability
evaluation, and the analysis of the evaluation results. Based on my system
model, Wen-Hung Huang provided the system mode analysis. Kuan-Hsun
Chen provided the implementation for the system state analysis. This imple-
mentation was released in RTEMS (now inherited in version 5) and details
on the implementation were published at WMC 2016 [CBC16] with Kuan-
Hsun Chen as principal author. The multiprocessor extension, where I am
the principle author, was published at PRDC 2018 [BSC18]. It was written in
cooperation with Lea Schönberger and was a result of her Master’s Thesis
under my supervision. For the work on calculating the worst-case deadline
failure probability, published in ECRTS 2018 [BPC+18], I was the principal
author, contributing concept, analysis, theorems, and evaluation for the
task-level convolution-based approach, i.e., the part that is presented in this

20 introduction

dissertation. Nico Piatkowski provided insight on probability theory and
the related formalisms. The work in [BPC+18] also includes bounds based
on Hoeffding’s inequality and Bernstein’s inequality, which are not part of this
dissertation and were contributed by Kuan-Hsun Chen, who also provided
the related implementation for the evaluation.

• Chapter 6 considers self-suspension and multiprocessor resource sharing. I was
the principal author of the work published in RTNS 2016 [BHC+16], con-
tributing concepts, algorithms, theorems, and the analysis of the evaluation
results. Wen-Hung Huang provided the implementation and the evalua-
tion. For the work published in RTNS 2017 [BCH+17], I was the principal
author, contributing concepts, algorithms, theorems, and the analysis of
the evaluation results. Wen-Hung Huang provided the evaluation for the
methods that were proposed in [BCH+17], and Maolin Yang provided the
analysis results for methods from the literature. For the work published in
RTCSA 2017 [BHC17], I was the the principal author providing concepts,
algorithms, theorems, and the evaluation results. The implementation was
provided by Wen-Hung Huang.

2
TA S K M O D E L , S Y S T E M M O D E L ,
N O TAT I O N , A N D F U N D A M E N TA L S

This section formally introduces the task model, the system model, and the
notations used in this work. We start by introducing periodic [LL73] and spo-
radic [Mok83] task models which are later extended to cover extensions for
uncertain execution environments, self-suspending tasks, and resource sharing.
Furthermore, some fundamental preliminary findings from the literature are
introduced here, especially those used multiple times in the following chapters.

2.1 task model

We assume recurrently executed real-time tasks, modeled as a set T = {τ1, . . . , τn}
of n given tasks according to the periodic [LL73] or the sporadic [Mok83] task
model. Each task is specified by a 3-tuple of parameters (Ci, Ti, Di) where Ci is
the worst-case execution time (WCET) of τi, Ti denotes the minimum inter-arrival worst-case execution

timetime or period of τi, and Di is the relative deadline of task τi. The utilization of τi is
period

relative deadline
utilization

defined as Ui =
Ci
Ti

and the total or system utilization as Usum = ∑τi∈T Ui. Every
task in the system releases an infinite number of task instances, called jobs, where

job
the jth job of task τi is denoted τi,j. Each job τi,j has a release time ri,j, a finishing

release time
finishing time

time fi,j, and an absolute deadline di,j = ri,j + Di, i.e., a job released at time ri,j must

absolute deadline

be able to execute up to Ci time units before its absolute deadline at di,j. The
response time Ri,j = fi,j − ri,j of the jth job τi,j of task τi ∈ T (under a specific
scheduling algorithm) is the interval between arrival and finishing time for job τi,j
and we denote the worst-case response time (WCRT) of τi with Ri. worst-case response

time
The period Ti is the minimum interarrival time between any two consecutive period

job releases of τi. A task is called (strictly) periodic [LL73] if subsequent jobs periodic task
are always released exactly according to the period, i.e., if a job is released at
time t, the next job is released exactly at time t + Ti. In the periodic case, the task
is further described by a phase parameter φi which indicates the time the first phase

instance of the job is released. Note that φi is omitted in the task description if
φi = 0. For a periodic task set, the hyperperiod H is the least common multiple of hyperperiod

all Ti of tasks in T. In contrast, a task is called sporadic [Mok83], if after a job is sporadic task
released at time t the next job is released not before t + Ti.

If Di = Ti, then τi is an implicit-deadline task, and if Di ≤ Ti, then τi is a implicit-deadline

constrained-deadline task. Accordingly, a task set T is called an implicit-deadline constrained-deadline
set if Di = Ti for each τi ∈ T, a constrained-deadline set if Di ≤ Ti for each τi ∈ T,
and an arbitrary-deadline set if Di > Ti is allowed. In this work, we focus on and arbitrary-deadline

therefore implicitly assume constrained- and implicit-deadline task sets. Note
that each implicit-deadline task set is also a constrained-deadline task set, and
each constrained-deadline task set is also an arbitrary-deadline task set. Hence,

21

22 model , notation, and fundamentals

an analysis for arbitrary deadlines always holds for constrained deadlines, and an
analysis for constrained deadlines always holds for implicit deadlines. However,
the additional deadline restriction usually leads to a more precise analysis.

A task set T is called a harmonic task set (or a task set with harmonic periods),harmonic task set

if all periods are integer multiples of each other, i.e., Ti is an integer multiple
of Tj if Ti ≥ Tj for any two tasks τi and τj in T. Furthermore, we call a task set
semi-harmonic, if Ti · ni = H ∀τi ∈ T where ni is a small integer value for eachsemi-harmonic task set

period.1 Automotive applications often consider the specific set of semi-harmonic
periods Ti ∈ {1, 2, 5, 10, 20, 50, 100, 200, 1000} milliseconds (ms), as mentioned in,
for instance, [KZH15; HDK+17; SSD+13; TEH+16]. Therefore, we call a task set
that only allows these periods an automotive task set. Such task systems usuallyautomotive task set

assume that the scheduling entity is a Runnable [KZH15] and that multiple
Runnables with the same period are combined into one task. However, since
the distinction between Runnables and tasks has no impact on the analysis
presented in this work, we use the terms equivalently here. Furthermore, we
always assume implicit deadlines and that periods, deadlines, and WCETs are
given in milliseconds (ms) for automotive task systems. In addition, we define Tx

to be the subset of the tasks in T with period x, i.e., Tx = {τi | τi ∈ T and Ti = x}.

2.2 schedulability

We assume a given task set T that is scheduled according to a given online schedul-
ing algorithm, where the job that is executed at a given time is determined online
based on the job’s priority. This can either be a dynamic-priority or a static-priority
scheduling algorithm. We use -P to denote the preemptive version of a given
algorithm and -NP to denote the non-preemptive version of an algorithm, e.g.,
RM-P for preemptive rate-monotonic scheduling. We assume a work-conservingwork-conserving

scheduler which means that the processor never idles if at least one job is ready to
be executed. Unless stated differently, this work examines uniprocessor systems.
Otherwise, for multiprocessor systems, we regard homogeneous multiprocessors,
i.e., m identical processors with similar assumptions.

For a job τi,j under the considered scheduling algorithm its lateness is definedlateness

as Li,j = fi,j − di,j while its tardiness is Ei,j = max
{

0, Li,j
}

. Hence, the tardinesstardiness

Ei of task τi is defined as Ei = maxj
{

Ei,j
}

, i.e., the maximum over all jobs of τi,
and the tardiness ET of the task set T as the maximum over all tasks in the set,
i.e., ET = maxτi∈T {Ei}. A task is considered schedulable under a given algorithmschedulability

if it always fulfils its timing constraints, i.e., its tardiness is 0, and a task set is
schedulable under a given algorithm if all tasks in the set are schedulable.

Whether a task set is schedulable can be determined based on a schedulability
test, usually related to a specific scheduling algorithm.

• Sufficient tests allow false negatives but no false positives, i.e., deem tasksufficient test

sets schedulable that are in fact schedulable.

1 This definition is informal as small is not precisely defined. Since in many practical cases the
periods in a task set differ by two or three orders of magnitude [BB06], the largest ni should not be
much larger than the largest ratio between two periods in the set. An alternative definition is that
for the largest period Tmax in the set n · Tmax = H holds for a very small integer n, e.g., n ∈ [1, 10].

2.3 theoretical comparison 23

• Necessary tests allow false positives but no false negatives, i.e., deem task necessary test

sets not schedulable that are in fact not schedulable.

• Exact tests are both sufficient and necessary, i.e., they allow neither false exact test

positives nor false negatives. Therefore, they deem exactly those task sets
schedulable that are in fact schedulable by the related algorithms.

One specific type of sufficient test are utilization bounds. They determine the utilization bound

schedulability of a task set based on whether Usum ≤ x, where x depends on the
task set characteristics and the considered scheduling algorithm.

A (worst-case) response time analysis [JP86; LSD89] is another type of schedu- response time analysis

lability tests. The idea is to determine the maximum interference a task τi can
suffer from other tasks. If the response time under this interference, denoted as
the worst-case response time Ri of task τi, is less than or equal to the task’s relative worst-case response

timedeadline Di, then the task will always fulfill its timing requirements. Hence, if
Ri ≤ Di for all tasks τi ∈ T under the given scheduling algorithm, the task set is
schedulable under this algorithm. When the maximum interference that a task
can suffer is not precisely known but can be upper bounded, it is also possible to
determine an upper bound of Ri, resulting in a sufficient but not exact test.

When performing an empirical comparison of scheduling algorithms or schedu-
lability tests, we usually look at the acceptance ratio over a range of utilization acceptance ratio

values, i.e., the percentage of generated task sets that are schedulable at each
utilization level according to the algorithm or test.

2.3 theoretical comparison of

scheduling algorithms

Theoretical methods compare the worst-case performance of scheduling algo-
rithms and schedulability tests. One possibility is to compare them based on the
related utilization bounds, i.e., favoring the algorithm with the higher utilization
bound. An additional theoretical method is a dominance relation between two dominance relation

scheduling algorithms or between two schedulability test. A scheduling algo-
rithm A dominates a scheduling algorithm B if every task that is schedulable by
algorithm B is also schedulable by algorithm A. Furthermore, A strictly domi-
nates B, if A dominates B and there is at least one task set that is schedulable
by A but not by B. An algorithm A is termed optimal among a certain class of optimal algorithm

scheduling algorithms, if it dominates all other algorithms of the same class.
Regarding schedulability test, a schedulability test X dominates a schedulability
test Y if every task set that is deemed schedulable by schedulability test Y is also
deemed schedulable by schedulability test X .

A speedup factor ρ [KP00] details the sub-optimality of a scheduling algorithm A speedup factor

(or schedulability test) compared to another scheduling algorithm B (or schedula-
bility test). We assume that speeding up the platform by ρ will lead to a WCET
of Ci

ρ . The (maximum) speedup factor ρA→B between two scheduling algorithms
A and B is the minimum increase in speed necessary to ensure that algorithm A
can schedule every task set that is schedulable with algorithm B. Let ρB(T) be
the processor speed algorithm B needs to schedule T, and let ρA(T) be the speed

24 model , notation, and fundamentals

necessary for scheduling T under algorithm A. We define the maximum speedup
factor ρA→B similar to the definition provided by Davis et al. [DRB+09a] as:

ρA→B = max
∀T

{
ρA(T)
ρB(T)

}
(2.1)

We normally refer to the speedup factor as ρ if the algorithms (or tests) considered
in the speedup factor are clear. Furthermore, B is often a (potentially unknown)
optimal algorithm or a necessary schedulability condition, so we implicitly assume
such a comparison if not stated differently. For convenience, it is assumed that
the algorithm or condition we compare to is able to schedule the considered task
set on a platform with speed 1, i.e., we normalize the speed, resulting in the
following speedup factor definition:

ρ = max
∀T

{
ρA(T)

}
(2.2)

Note that the terms dominance and optimality in this work are used regarding
schedulability. It is also possible to define these relations regarding another
metric and we denote this accordingly, e.g., for optimality regarding speedup
factors we use the term speedup-optimal. A scheduling algorithm is speedup-optimalspeedup-optimal

(for a certain class of scheduling algorithms) if the required speedup factor in
comparison to an optimal algorithm is not larger than the speedup factor required
by any other scheduling algorithm (of the same class) when all tests are performed
using exact schedulability tests.

2.4 uniprocessor scheduling

We assume a given task set to be scheduled based on an online, sometimes
also called priority-driven, scheduling algorithm, which can be divided into
static-priority and dynamic-priority scheduling algorithms. For a static-prioritystatic-priority

scheduling scheduling algorithm, each task is assigned a static priority, which means that if
τi has a higher priority than τj, all jobs of τi have a higher priority than all jobs
of τj. In contrast, for dynamic-priority scheduling, the priority of a job may changedynamic-priority

scheduling during its execution. Specifically, it is possible that at a time point t1 a job of task
τi has a higher priority than a job of task τj while for another time point t2 a job
of task τj has a higher priority than a job of task τi. Furthermore, we assume a
work-conserving scheduling strategy, which means that the processor never idles ifwork-conserving

a job is ready to be executed.

Whenever a scheduling decision has to be taken, the scheduler assigns the
processor to the job in the system with the highest priority. If no job is in the
system, the processor idles. For non-preemptive scheduling, a scheduling decision
has to be made at any point in time when a job finishes executing or when a
job arrives while the processor is idle. For preemptive scheduling, in addition
a scheduling decision has to be made at every point in time where a new job
arrives to the system while another job is executing. In this case, the currently
executed job is preempted if the new arriving job has a higher priority.

Note that the abbreviation FP (for fixed-priority) is common in the literature
when addressing static-priority scheduling algorithms in general. Hence, we use
the abbreviation FP as well.

2.4 uniprocessor scheduling 25

2.4.1 static-priority scheduling

For static-priority scheduling, the tasks in T are ordered and indexed according static-priority
schedulingto their priority, i.e., τ1 has the highest and τn the lowest priority. The priority

assignment is denoted as P and the priority of a task as P(τi). For a given task
τk ∈ T we define hp(τk) as the tasks in T with higher priority than τk and lp(τk)

as the tasks in T with lower priority than τk under the considered scheduling
algorithm. Furthermore, hep(τk) = hp(τk) ∪ τk.

For implicit-deadline periodic tasks, the worst-case interference to a task can
be determined using the Critical Instant Theorem by Liu and Layland [LL73]: Critical Instant

Theorem
Theorem 2.1: Critical Instant Theorem (Liu and Layland [LL73]). A critical in-
stant for any task occurs whenever the task is requested simultaneously with requests for
all higher priority tasks.

It can be directly extended to constrained-deadline task sets. Furthermore, it
can be extended to sporadic tasks if all subsequent jobs of the higher-priority
tasks are released as early as possible. Note that for a given task set and a specific
task, a critical instant may also occur for other setups, e.g., by releasing the first
job of one of the higher-priority tasks later. However, for those other setups, the
interference is the same as resulting from the Critical Instant Theorem.

preemptive scheduling (fp-p)

For constrained- or implicit-deadline task sets under preemptive static-priority
scheduling, Time Demand Analysis (TDA) [LSD89] can be used to decide the Time Demand

Analysisschedulability of a task τk by determining the worst-case response time (WCRT)
worst-case response
time

Rk of task τk. This means that TDA is an exact test for preemptive static-priority

exact test
scheduling. According to TDA, a task τk is schedulable if the following equation
holds [LSD89]:

∃t with 0 < t ≤ Dk and Ck + ∑
τi∈hp(τk)

⌈
t
Ti

⌉
Ci ≤ t (2.3)

If such a t exists, the smallest value t where Eq. (2.3) holds is the WCRT of task τk.
To determine the schedulability of a task set T using TDA, all tasks in T are
tested in order of decreasing priority, and the task set is deemed schedulable if
Eq. (2.3) holds for each τk ∈ T. Note that Time Demand Analysis cannot be used
to determine the WCRT Rk of τk if Rk > Tk.

Among preemptive static-priority scheduling algorithms Rate Monotonic (RM- Rate Monotonic

P) scheduling, i.e., tasks with a smaller period have a higher priority, is an
optimal algorithm for scheduling implicit-deadline task sets [LL73]. For constrained- optimal algorithm

deadline task sets [LW82], Deadline Monotonic scheduling (DM-P) is optimal, Deadline Monotonic
where tasks with a shorter relative deadline have a higher priority. For any
priority order that is determined on task parameters, e.g., RM-P and DM-P, we
assume that if two (or more) tasks have the same parameter value, the order
among these tasks is determined arbitrary but fixed, i.e., if τi is chosen to have a

26 model , notation, and fundamentals

higher priority than τj it will always have a higher priority than τj. An optimal
priority order for arbitrary-deadline task sets can be determined using Audsley’s
Algorithm, which is discussed at the end of this subsection.

The well-known Liu and Layland Bound [LL73], also called total utilizationutilization bound
Liu and Layland

Bound
bound, for RM-P is

Usum(n) ≤ n(2
1
n − 1) (2.4)

where n is the number of tasks. When n converges to infinity, the total utilization
bound is Usum ≤ ln(2) ≈ 0.693.

The Hyperbolic Bound (HB) for RM-P by Bini et al. [BBB01] is defined asHyperbolic Bound

n

∏
i=1

(Ui + 1) ≤ 2 (2.5)

and dominates the Liu and Layland Bound while having the same runtime
complexity and the same total utilization bound of 0.693.

The Quadratic Bound (QB) by Davis and Burns [DB08] and Bini et al. [BNR+09]Quadratic Bound

states that task τk is schedulable by RM scheduling if

k

∑
i=1

Ui +
∑k−1

i=1 Ci −∑k−1
i=1 UiCi

Tk
≤ 1 (2.6)

This test has a utilization bound of 2−
√

2 ≈ 0.58578, as shown in [ASL04; HC15b]
for more general task models.

non-preemptive scheduling (fp-np)

In addition to the higher-priority interference, the blocking time by lower-priorityblocking time

tasks has to be taken into account when analyzing the schedulability under non-
preemptive scheduling. For a work-conserving schedule, since the highest prioritywork-conserving

job in the ready queue is always chosen for execution, a job of τk can be blocked
by a lower-priority task at most once, i.e., if at its arrival time a job τi ∈ lp(τk)

is executing. Hence, we can define the maximum blocking time B∗k of a task τk
under non-preemptive scheduling as

B∗k = max
τi ∈ lp(τk)

{Ci − ∆} (2.7)

where ∆ > 0 but infinitesimally small.

One way to verify the schedulability of a task τk under FP-NP is to extended
TDA to the non-preemptive case by including the maximum blocking time.
Therefore, as shown in [Bur94; DGC10], a sufficient schedulability test of task τk
under FP-NP is to verify whether

∃t with 0 < t ≤ Dk and B∗k + Ck + ∑
τi∈hp(τk)

⌈
t
Ti

⌉
Ci ≤ t (2.8)

2.4 uniprocessor scheduling 27

τ1 = (3, 8, 8)

τ2 = (3, 9, 9)

τ3 = (3, 12, 12)

Deadline Miss

0 5 10 15 20 25

τ4 = (2, 99, 99)

Figure 2.1: Self-pushing phenomenon for τ3. Adapted from [But11].
Note that it is sufficient if τ4 starts executing an infinitesimal amount of time
before τ1, τ2, and τ3 are released.

The analysis in Eq. (2.8) is pessimistic since it implies that task τk can be pre-
empted by a higher-priority task. The pessimism can be removed by checking
whether a job of task τk that arrives at time r can start no later than r + Tk − Ck.
As shown by Tindell and Burns [TB94], this is equivalent to the validation of

∃t with 0 < t ≤ Dk − Ck and B∗k + ∑
τi∈hp(τk)

(⌊
t
Ti

⌋
+ 1
)

Ci ≤ t (2.9)

However, solely testing Eq. (2.9) is not sufficient due to the well-known self- self-pushing
phenomenonpushing phenomenon presented by Bril et al. [BLV09], which is exemplified in

Figure 2.1. It shows that deadline misses are possible even if the condition in
Eq. (2.9) is satisfied, as a deadline miss not necessarily happens for the first job
of a task under FP-NP. An exact schedulability test for FP-NP was presented by
Davis et al. [DBB+07], exploiting the busy interval concept. It requires checking all busy interval

the jobs of task τk released in the busy interval of task τk, i.e., the longest interval
starting with a job Jb blocking τk where only Jb, jobs of tasks in hp(τk), or jobs of
τk itself are executed. Since B∗1 may be larger than T1, the total utilization bound
drops to 0 for RM-NP [NBF+14].

In some cases, another possibility to reduce the pessimism of the test in
Eq. (2.8) is to adopt the following sufficient schedulability from Yao, Buttazzo,
and Bertogna [YBB10].

Lemma 2.2 (Yao, Buttazzo, and Bertogna [YBB10]). The worst-case response time of
a non-preemptive task occurs in the first job if the task is activated at its critical instant
and the following two conditions are both satisfied:

1. the task set is feasible under preemptive scheduling;

2. the relative deadlines are less than or equal to periods.

Therefore, a sufficient schedulability test for task τk under FP-NP is to validate
whether Eq. (2.3) and Eq. (2.9) both hold.

We use a strict upper bound Bk of the maximum blocking time B∗k as

Bk = max
τi ∈ lp(τk)

{Ci} > max
τi ∈ lp(τk)

{Ci − ∆} (2.10)

Removing ∆ introduces some slight pessimism into the analysis, since it now
assumes the lower-priority task blocking τk started at the release time of the job of

28 model , notation, and fundamentals

τk and not an infinitesimal amount of time before. However, since ∆ is assumed
to be a very small positive number, this pessimism is neglectable. On the other
hand, moving from B∗k to Bk will sometimes simplify the analysis as shown later.

optimal priority assignment (opa)

If a priority assignment is not given in advance and no optimal a-priori priority
assignment strategy is known, Audsley’s Algorithm [Aud91] can sometimesoptimal priority

assignment determine an optimal priority assignment (OPA).

Definition 2.1 (Optimal Priority Assignment (from [DCB+16])). A priority order P
is said to be optimal with respect to a configuration (task model T, fixed priority scheduling
policy G, and schedulability test S), if and only if every set of tasks that is compliant with
the task model and is deemed schedulable under scheduling policy G by schedulability
test S with some priority order is also deemed schedulable under scheduling policy G by
schedulability test S using priority order P.

In other words, P is optimal if it is as least as good as any other priority order.

The idea of Audsley’s Algorithm [Aud91] is to first find a task τi that can take
lowest priority, i.e., that is schedulable according to S if all other tasks in T have
higher priority than τi. Afterwards, τi is removed from the set and another task is
determined that can take lowest priority among the remaining tasks T\ {τi}, etc.

While OPA was originally designed for periodic tasks with arbitrary start times
(phases), it was later shown by Davis and Burns [DB09] to be applicable to a
wider range of problems if the schedulability test S is OPA compatible, i.e., theOPA compatible

following three conditions all hold [DB09]:

1. The schedulability of a task τk, according to S, may be dependent on the set
of hp(τk), but not on the relative priority ordering of tasks in hp(τk).

2. The schedulability of a task τk, according to S, may be dependent on the set
of lp(τk), but not on the relative priority ordering of tasks in lp(τk).

3. When the priorities of any two tasks of adjacent priority levels are swapped,
the task being assigned the higher priority after the swap cannot become
unschedulable according to S, if it was previously schedulable at the lower
priority.

Audsley’s Algorithm [Aud91] can be used to find an optimal priority assignment
for preemptive arbitrary-deadline task sets and for non-preemptive scheduling of
implicit-, constrained-, and arbitrary-deadline task sets.

2.4.2 dynamic-priority scheduling

For dynamic-priority scheduling, we focus on Earliest Deadline First (EDF) in bothdynamic-priority
scheduling

Earliest Deadline First
the preemptive and the non-preemptive case.

2.4 uniprocessor scheduling 29

preemptive edf (edf-p)

For preemptive scheduling, EDF-P is optimal regarding schedulability [Der74].
The total utilization bound of EDF-P [LL73] is: utilization bound

Usum ≤ 1 (2.11)

for implicit-deadline task sets, hence, Eq. (2.11) is an exact test.

To handle task sets with arbitrary deadlines, Baruah et al. [BMR90] introduced demand bound
functionthe demand bound function (db fi) of a task τi as

db fi(t) = max
{

0,
⌊

t− Di

Ti

⌋
+ 1
}

Ci (2.12)

to calculate the demand generated by task τi in an interval of length t. As shown
by Baruah et al. [BMR90] a task set T with arbitrary deadlines is schedulable
under EDF-P if and only if

1. the total utilization is no greater than 1 (i.e. ∑n
i=1 Ui ≤ 1), and

2. for any time interval of length t, the total processor demand db f (t) re-
quested by the task set is not greater than the length of the interval, i.e.,

db f (t) =
n

∑
i=1

db fi(t) ≤ t ∀ t > 0 (2.13)

non-preemptive edf (edf-np)

George et al. [GRS96] extended this demand bound test to the non-preemptive
case by introducing a blocking factor B(t). They showed that an arbitrary-deadline
task set is schedulable under EDF-NP if and only if

1. the total utilization is no greater than 1, i.e. ∑n
i=1 Ui ≤ 1, and

2. for any interval of length t ≥ D1 (where D1 is the smallest task deadline)

db f (t) + B(t) ≤ t (2.14)

where

B(t) = max
∀i,Di>t

(Ci − ∆) (2.15)

with ∆ > 0 but infinitesimally small [DBB+15].

It is sufficient to test every time point t where the demand bound function
changes, i.e., every t ∈ S =

{
∪n

i=1{kTi + Di}, k ∈N
}
∩ (0, L] where L is the

longest busy interval. S is the union of the deadlines of all tasks in (0, L] [GRS96]. busy interval

Under non-preemptive scheduling, no work-conserving scheduling policy is work-conserving

optimal, since it is possible that for an optimal schedule under a non-preemptive
policy the processor must sometimes idle even if jobs are ready to be exe-
cuted. However, EDF-NP is optimal among all work-conserving scheduling
algorithms [GMR95]. Similar to FP-NP, for EDF-NP the total utilization bound is 0. utilization bound

30 model , notation, and fundamentals

2.5 multiprocessor scheduling

We assume homogeneous multiprocessor systems with m processors, i.e., all
processors and therefore the task parameters on all processors are identical. In
multiprocessor systems, three scheduling paradigms are commonly followed:

• Partitioned scheduling: Each task is statically allocated to a specific proces-partitioned scheduling

sor, i.e., all its instances are executed on the allocated processor. On each
processor, the actual schedule is determined by means of a uniprocessor
scheduling policy. Hence, for each processor an individual ready queue is
maintained and on each processor the highest-priority job in the related
ready queue is scheduled. Well known examples are partitioned EDF and
partitioned RM.

• Global scheduling: Tasks are allowed to migrate freely between processors,global scheduling

such that the m highest-priority jobs among all ready jobs in the system are
executed at any point in time. Hence, the jobs are scheduled based on one
global ready queue. Well known examples are global EDF and global RM.

• Semi-partitioned scheduling: The tasks are allocated to particular proces-semi-partitioned
scheduling sors but a certain degree of migration is allowed, e.g., in predefined time

slots or depending on specified constraints.

A comprehensive survey on multiprocessor scheduling was provided by Davis
and Burns in [DB11a].

task partitioning strategies

Determining an optimal task partition is NP-hard in the strong sense, owing
to the underlying bin-packing problem. Hence, several heuristics that usually
consist of two phases, based on the initial work by Baruah and Fisher [BF05],
have been exploited:

1. A preprocessing where the tasks are pre-sorted (usually) based on task
parameters, e.g., according to DM order or decreasing regarding task uti-
lization.

2. The actual partitioning where the tasks are assigned to the processors one
by one according to the pre-sorting (also called pre-order). For each task
the processors are considered according to an assignment strategy. All tasksassignment strategy

are allocated to the first processor (according to the strategy) that fulfils a
specific condition.

The following assignment strategies are commonly used for the task partitioning:

• First-Fit (FF): If a task can be allocated is always tested in increasing order
based on the processor ID.

• Best-Fit (BF): For each task, the processors are considered in decreasing
order with respect to their utilization.

• Worst-Fit (WF): For each task, the processors are tested in increasing order
with respect to their utilization.

2.6 uncertain execution behaviour 31

• Arbitrary-Fit (AF): For each task, the processors are tested in random order.

The specific condition used to decide whether a task can be allocated is often
a sufficient or exact schedulability test. For instance, if RM is assumed on each
processor, the Liu and Layland Bound [LL73] or TDA [LSD89] can be exploited.
used. However, some approaches use a necessary condition when assigning the
tasks, e.g., that the individual processor utilization is ≤ 100%, and determine the
schedulability on each individual processor after all tasks are partitioned.

2.6 uncertain execution behaviour

When considering an uncertain execution behaviour, each task τi is described
by a tuple ((Ci,1, ..., Ci,h), Di, Ti), i.e., it has a set of h distinct execution modesM
and each mode j with j ∈ {1, ..., h} is associated with a WCET Ci,j. We assume
those execution modes to be ordered increasingly according to their WCETs, i.e.,
Ci,m ≤ Ci,m+1 ∀m ∈ {1, ..., h− 1}. In addition, Pi(j) denotes the probability that a
job of task τi is executed in mode j and we assume that each job is executed in
exactly one of these distinct execution modes, i.e., ∑h

j=1Pi(j) = 1. Furthermore,
these probabilities are assumed to be independent from each other according to
the following definition:

Definition 2.2 (Independent Random Variables). Two random variables are (prob-
abilistically) independent if the realization of one does not have any impact on the
probability of the other.

Especially, the probability that a newly arriving job of τi has a certain execution
mode is independent of the execution mode of all jobs currently in the system
and of the execution mode of all previous jobs. For a task τj in hp(τi), ρj,t is the
maximum number of jobs that are released in an interval [0, t), also called the
interval of interest, and therefore interfere with task τi, i.e., the number of jobs
released in the interval [0, t) under the critical instance of τk. Furthermore, ρi,t
is the number of jobs of task τi in the analysis window. This notation implicitly
assumes that the time window analyzed for τi starts at 0 for notational brevity.

In addition, if tasks have two distinct execution modes, we assume a more
common execution mode, called normal mode, that has a smaller WCET CN

i while normal mode

the rare abnormal mode has a larger WCET CA
i . The related probabilities are Pi(N) abnormal mode

and Pi(A), and we assume that Pi(N) � Pi(A) and Pi(N) + Pi(A) = 1. We
denote the normal utilization of task τi as UN

i = CN
i /Ti and the abnormal utilization

of task τi as UA
i = CA

i /Ti. The total or system utilization in the normal mode is
UN

sum = ∑{τi∈T}UN
i and the total utilization in the abnormal mode is referred to

by UA
sum = ∑{τi∈T}UA

i . Let EN
i and EA

i be the tardiness of tasks τi if all jobs are
executed normally and abnormally.

32 model , notation, and fundamentals

2.7 self-suspension

Two self-suspension models are studied in the literature. For the dynamic self-dynamic
self-suspension suspension task model a task τi is specified like an ordinary sporadic task that has

the worst-case self-suspension time Si as an additional parameter. Task τi may
suspend itself at any moment before it finishes as long as the total worst-case
self-suspension time Si is not violated.

For the segmented self-suspension task model a task is specified by an arraysegmented
self-suspension (Ci,1, Si,1, Ci,2, Si,2, ..., Si,mi , Ci,mi+1), composed of mi + 1 computation segments sep-

arated by mi suspension intervals, where Ci,j is the worst-case execution time
of a computation segment and Si,j is the worst-case length of a self-suspension
interval. For the segmented self-suspension model the total WCET Ci = ∑mi+1

j=1 Ci,j

and the total self-suspension time Si = ∑mi
j=1 Si,j.

We focus on the segmented self-suspension model and typically consider one-
segmented self-suspending tasks where the execution of each job of τi is composed
of two computation segments that are separated by one suspension interval. Aftersuspension interval

the first computation segment is finished the job suspends itself, which means
that it is removed from the ready queue for the length of the suspension interval
and the job in the ready queue with the highest priority is executed. The second
computation segment is eligible to be executed only after the completion of the
suspension interval. Hence, after the suspension interval of a job ends, the job
will be reentered into the ready queue. A one-segment self-suspending task τi is
characterized by a tuple

τi = ((Ci,1, Si, Ci,2), Ti, Di) (2.16)

Unlike in a sporadic task the WCET is replaced by the execution pattern (Ci,1, Si, Ci,2),execution pattern

where Ci,1 and Ci,2 are the WCETs of the first and second computation segment
and Si is an upper bound on the suspension time. For a self-suspending task we
denote Ci = Ci,1 + Ci,2 and assume that Ci + Si ≤ Di for any task τi ∈ T. Further-
more, we denote Cmax

i = max {Ci,1, Ci,2} and Cmin
i = min {Ci,1, Ci,2}. In addition

to the task utilization Ui = Ci/Ti, we denote Ui,1 = Ci,1/Ti and Ui,2 = Ci,2/Ti for
notational brevity.

2.8 resource sharing

When examining resource sharing, we assume a system with r mutually exclu-
sive shared resources R = {R1,R2, ...,Rr}. Each sporadic task is characterized asshared resource

τi = (Ci, Ai, Ti, Di), and the WCET of τi is Ci + Ai where Ci is an upper bound on
the amount of execution time without resource access, called non-critical sectionnon-critical section

WCET, and Ai an upper bound on the amount of execution time during resource
access, called critical section WCET. Shared resources can be in-memory data, e.g.,critical section

a set of variables, or external objects, like files, database connections, and network
connections. To prevent race conditions, shared resources are accessed mutuallyrace conditions

exclusively, which means that for each shared resource Rj at any point in time no
two jobs are both in a critical section that accesses the same resource Rj. We focus

2.8 resource sharing 33

on logical shared resources, i.e., a piece of code executed on processors. Therefore,
the considered shared resources are not processor-specific. The jobs of any task
may request exclusive access to any of the shared resources R1,R2, ...,Rr. Fur-
thermore, the access to a shared resource is assumed to be non-preemptive from
other accesses to the same resource, i.e., once a task τi accesses a shared resource
Rj no other task is allowed to access Rj until τi finishes the execution on Rj. We
restrict ourselves to the case where each job of each task accesses only one shared
resource at most once, thus, the critical sections are not nested by definition. As
a result, each task is decomposed in three subtasks, representing the execution
before, during, and after the critical section. We assume that these subtasks are
described by a given execution pattern. To be precise, for each τi, we assume to execution pattern

know the share of Ci before the critical section, denoted as Ci,1, the WCET inside
the critical section, denoted as Ai, and the share of Ci after the critical section,
denoted as Ci,2. We assume this pattern is precisely known, i.e., Ci,1 + Ci,2 = Ci.

The utilization of task τi for non-critical sections is defined as UC
i = Ci/Ti and

the total critical section utilization of task τi is denoted by UA
i = Ai/Ti. Hence,

the utilization of task τi is Ui = (Ci + Ai)/Ti. The utilization of τi on resource Rq

is URq
i , i.e., URq

i = UA
i if τi accesses Rq and 0 otherwise. The total utilization of

resource Rq is URq = ∑τi∈τ URq
i , the total utilization of non-critical-sections is

UC = ∑τi∈τ UC
i , and UR = ∑Rq∈RURq is the total utilization of shared resources.

Furthermore, Ri(Ci,1), Ri(Ci,2), and Ri(Ai) denote the worst-case response time
of the related subtask (under the considered scheduling algorithm).

uniprocessor resource sharing

As shared resources must be serially executed to achieve mutual exclusion, the
execution of critical sections inevitably causes some delay due to priority inversion priority inversion

when a task τk is prevented from executing by another task with a lower priority
that holds the requested shared resource, also called pi-blocking. The resulting pi-blocking

blocking time Bk must be included in the analysis. We consider two well known blocking time
approaches under static-priority scheduling:

Non-Preemptive Protocol (NPP): A critical section that has started to be executed Non-Preemptive
Protocolcannot be preempted by any other job, i.e., it runs non-preemptively until the

critical section is finished. Under a static-priority NPP the maximum blocking
time Bk for a task τk is

Bk = max
τi∈lp(τk)

{Ai} (2.17)

NPP can also directly be applied for FIFO queues or dynamic-priority scheduling.
However, Bk must be calculated in a different way in this case.

Priority Inheritance Protocol (PIP) and Priority Ceiling Protocol (PCP): Both Priority Ceiling
Protocolprotocols were introduced by Sha et al. [SRL90] to avoid unnecessary blocking of

high-priority tasks from unrelated shared resources. In the PIP, a lower-priority
task temporarily inherits the priority of a higher-priority task that it blocks.
Regardless, under PIP a job may still be blocked by at most min {n, r} tasks.
Furthermore, PIP does not prevent deadlocks, even if resources are properly

34 model , notation, and fundamentals

nested. To tackle these problems, in the PCP each resource Rq is assigned a
priority ceiling C(Rq) that is equivalent to the base priority of task τj of the
highest-priority task that accesses Rq. Under PCP, a job can only allocate a
resource, if its priority is higher than the highest priority ceiling among the
currently allocated resources. As a result, deadlocks are avoided and each task
can be blocked by at most one lower-priority task. Let Lk be the subset of lp(τk)

in which the resource ceiling of the shared resource requested by a task τi in Lk is
higher than or equal to the priority of τk. As shown by Sha et al. in [SRL90], the
blocking time under PCP is

Bk = max
τi∈Lk
{Ai} (2.18)

3
R E L AT E D W O R K

As this dissertation covers a large spectrum of real-time systems, the goal of this
chapter is not to provide a comprehensive survey of the individual areas, but to
highlight fundamental results, to summarize the state-of-the-art, and to point out
interesting recent work.

While the focus of this dissertation is recurrent real-time systems with a peri-
odic or sporadic arrival pattern, first some details regarding the scheduling of
aperiodic tasks are provided in Section 3.1, since some general concepts as well as
complexity results yield from this setting. Section 3.2 is related to modelling of re-
current real-time task systems. Uniprocessor scheduling of periodic and sporadic
tasks considering preemptive and non-preemptive scheduling is addressed in Sec-
tion 3.3. Section 3.4 considers multiprocessor scheduling, assuming homogeneous
processors, no inter-task parallelization, and preemptive scheduling. Section 3.5
focuses on automotive task systems and rate-dependent tasks. An overview of
mixed-criticality systems is provided in Section 3.6 while probabilistic response
time analysis is covered in Section 3.7. Self-suspending tasks systems are the
focus of Section 3.8. Afterwards, related work for multiprocessor resource sharing
is summarized in Section 3.9. The chapter is concluded in Section 3.10 by a short
description of which parts of the related work the following 3 chapters relate to.

3.1 aperiodic tasks

In this scenario, for a set of independent tasks T each task τi is assumed to aperiodic task sets

release a single job. Each task τi ∈ T is specified by its worst-case execution
time (WCET) Ci, its release time ai, and its absolute deadline di. Historically,
the very first objective of operation research was to minimize the maximum
lateness among the aperiodic tasks. If the maximum lateness is zero, all tasks
meet their deadlines. The first algorithm considering the special case that all tasks
are released synchronously, called Earliest Due Date, was provided by Jackson
in 1955 [Jac55], stating that “any algorithm that executes the tasks in order of
non-decreasing deadlines is optimal with respect to minimizing the maximum
lateness”, also called Jackson’s rule. Due to the synchronous release, the resulting
schedule is by construction non-preemptive. Assuming preemptive scheduling,
this algorithm was extended to arbitrary arrival times by Horn in 1974 [Hor74]
who proposed the Earliest Deadline First (EDF) algorithm which was formally Earliest Deadline First

shown to be optimal by Dertouzos [Der74] in the same year. optimal algorithm

When considering tasks with arbitrary arrival times under non-preemptive non-preemptive
schedulingscheduling, Lenstra et al. in 1977 [LRKB77] proved that the problem of minimizing

the maximum lateness is NP-hard in the strong sense. EDF is no longer optimal,
since in the non-preemptive setting, an optimal schedule may contain idle time,

35

36 related work

even if tasks are ready to be executed, while EDF is work-conserving. If the arrivalwork-conserving

times are known a priori, branch-and-bound algorithms, like the one provided by
Bratley et al. in 1971 [BFR71], may be able to find a feasible solution offline but
can result in an exhaustive search with a time complexity of O(|J|!), where |J| is
the number of task instances in the system. Multiple approximation algorithms
are known, among them the extended Jackson’s rule [HS92], Potts Algorithm [Pot80],
and its extensions by Hall and Shmoys [HS92]. If the arrival times are not known
beforehand, no online algorithm is able to determine whether the processor
should be idle or not as shown by Howell and Venkatrao in 1995 [HV95]. Resulting
from this, under work-conserving non-preemptive scheduling a task set may
become unschedulable when the execution time of a task is reduced, a so-called
timing anomaly. However, it has been shown by Jeffay et al. in 1991 [JSM91] thattiming anomaly

EDF is optimal among work-conserving non-preemptive scheduling algorithms.

3.2 modelling of real-time systems

The analysis of recurrent real-time tasks can be traced back to the seminal work
by Liu and Layland [LL73] who introduced the periodic task model in 1973. Theyperiodic task model

assume implicit-deadline tasks with a fixed runtime that release an infinite numberimplicit-deadline
of jobs exactly periodically. Leung and Whitehead [LW82] considered periodic
constrained-deadline task systems in 1982. The periodic model was extended toconstrained-deadline

sporadic releases by Mok in his Dissertation1 in 1983 [Mok83].sporadic task model

The periodic and sporadic task models have been extended to cover more com-
plex task systems. Mok and Chen [MC96] proposed the multiframe task model
to cover the case where the execution time of a task varies greatly but follows a
known pattern. This approach was extended to generalized multiframe (GMF)
task systems by Baruah et al. [BCG+99], where tasks are represented by a 3-tuple
of vectors representing the worst-case execution times, relative deadlines, and
interarrival times of the frames. While both the multiframe and the generalized
multiframe model consider a cyclic activation pattern, Moyo et al. [MNL+10]
proposed non-cyclic generalized multiframe tasks, where an instance of any frame
can be activated after the minimum inter-arrival time specified by the previous
frame has passed. Stigge et at. [SEG+11] proposed the digraph real-time task
model where each task is described by a directed acyclic graph. The nodes in
this graph represent the possible types of jobs with related relative deadline and
worst-case execution time, while the edges show the possible transitions between
the job types and the related minimum inter-arrival time.

Other important extensions of real-time models are mixed-criticality task sys-
tems [Ves07], which are covered in Section 3.6, and self-suspending task sys-
tems [CBH+17b], which are covered in Section 3.8. In automotive applications,
rate-dependent tasks [FBD+18], which are discussed in Section 3.5, are common
where the activation of jobs depends on the rotation of the crankshaft.

1 Note that the notation in Mok’s Dissertation differs from the notation here both regarding the
order of parameters as well as in the way they are denoted.

3.3 uniprocessor scheduling 37

3.3 uniprocessor scheduling

This section considers preemptive and non-preemptive scheduling of periodic
and sporadic task sets in a uniprocessor setting.

3.3.1 preemptive scheduling

In preemptive uniprocessor systems, the scheduler design problem has been solved preemptive scheduling

for independent periodic and sporadic tasks under both static-priority and
dynamic-priority scheduling. For dynamic-priority scheduling, preemptive Earliest- dynamic-priority

schedulingDeadline-First (EDF-P) scheduling has been shown to be an optimal scheduling
optimal algorithmpolicy for implicit-deadline task sets by Liu and Layland [LL73].2 This optimal-

ity also holds for constrained- and arbitrary-deadline task sets [Der74]. For
implicit-deadline task sets, an exact schedulability test only needs to verify
whether the processor utilization is less than or equal to 100% [LL73]. Baruah
et al. [BMR90; BRH90] provided exact schedulability tests for constrained- and
arbitrary-deadline task sets under EDF-P using demand bound functions.

For preemptive static-priority scheduling, Liu and Layland [LL73] showed that static-priority
schedulingRate Monotonic (RM-P) scheduling is optimal for implicit-deadline task sets. For
optimal algorithmconstrained-deadline task sets, Deadline Monotonic (DM-P) scheduling is optimal

as shown by Leung and Whitehead [LW82]. Both results hold for synchronous
periodic releases as well as for sporadic task sets, but not for periodic task sets with
arbitrary phases [LW82; Aud91], i.e., the first jobs are not synchronously released.3

Audsley [Aud91] provided an optimal static-priority assignment (OPA) strategy for optimal priority
assignmentthis situation. An exact schedulability test for constrained- and implicit-deadline

task sets called Time Demand Analysis was introduced by Lehoczky et al. [LSD89].
TDA exploits the concept of (worst-case) response time analysis that was introduced response time analysis

by Joseph and Pandya [JP86]. For arbitrary-deadline task sets, neither RM-P nor
DM-P are optimal [Leh90]. Audsley’s Algorithm is also applicable to find an
optimal static-priority assignment for arbitrary-deadline task sets, using the exact
schedulability test for arbitrary-deadline task sets under static-priority scheduling
that was provided by Lehoczky [Leh90]. Davis and Burns [DB09] proved that
three conditions must be met to ensure that Audsley’s Algorithm can be applied
for a schedulability test, i.e., the schedulability test is OPA compatible. OPA compatible

That EDF-P has a utilization bound of ∑τi
Ui ≤ 100%, was shown by Liu and theoretical evaluation

method
utilization bound

Layland [LL73] who also provided the utilization bound of ∑τi
Ui ≤ 69.3%

for RM-P [LL73]. The Hyperbolic Bound (HB) for RM-P by Bini et al. [BBB01]
dominates this result but leads to the same total utilization bound. Kuo and Mok
proved that the utilization bound for RM-P is 100% for harmonic task sets [KM91].
While the utilization bound of 69.3% for RM-P is tight, Lehoczky et al. [LSD89]
showed that the average breakdown utilization of RM-P is 88% in a stochastic breakdown utilization

analysis. For uniformly distributed utilization values, Bini and Buttazzo [BB05]
determined an average breakdown utilization of over 90%.

2 EDF is called Deadline Driven Scheduling Algorithm in their work.
3 Examples for this behaviour can be found, for instance, in the work by Audsley [Aud91].

38 related work

The speedup factors of RM-P compared to the optimal EDF-P for implicit-speedup factor

deadline task sets follows directly from the utilization bounds by Liu and Lay-
land [LL73]. Davis et al. [DRB+09a] showed that for constrained-deadline task
sets the speedup factor of DM-P compared to EDF-P is ≈ 1.76322. Since RM-P
and DM-P are scheduling optimal for static-priority scheduling of implicit- and
constrained-deadline task sets, respectively, they are also speedup-optimal. Whilespeedup-optimal

not being scheduling optimal, DM-P is also speedup-optimal for arbitrary dead-
line task sets as shown by Davis et al. [DBB+15]. Therefore, the speedup factor
of 2 that Davis et al. [DRB+09b; DBB+15] provided for DM-P compared to EDF-P
when scheduling arbitrary-deadline task sets is the same as for the the optimal
priority assignment resulting from Audsley’s Algorithm.

3.3.2 non-preemptive scheduling

Some results for non-preemptive scheduling directly stem from the aperiodic
case. Scheduling of periodic non-preemptive tasks is NP-hard in the strong
sense [LRKB77], since periodic releases are a special case of aperiodic releasesdynamic-priority

scheduling with given arrival times. For periodic non-preemptive task sets branch-and-bound
algorithms, e.g., by Bratley et al. [BFR71], as well as approximation algorithms for
aperiodic task sets like the extended Jackson’s rule [HS92], Potts Algorithm [Pot80],
and its extensions by Hall and Shmoys [HS92] can be used if the complexity for un-
rolling all job releases in the hyperperiod is affordable.4 Nasri and Fohler [NF16]
investigated non-work-conserving EDF-NP scheduling considering critical time
windows. For sporadic releases, no algorithm can determine whether the proces-
sor should be idle or not [HV95], and EDF-NP is optimal among work-conserving
scheduling algorithms [JSM91; GMR95]. George et al. [GRS96] provided an exact
schedulability test for EDF-NP for sporadic tasks with arbitrary deadlines.

George et al. [GRS96] proved that DM-NP is not optimal for constrained-
deadline task sets, provided an exact schedulability test for static-priority non-static-priority

scheduling preemptive scheduling, and showed that Audsley’s Algorithm [Aud91] finds an
optimal priority assignment. Nasri and Kargahi [NK14] proposed an online algo-
rithm called Precautious-RM and showed that it can increase the schedulability
under RM-NP for periodic systems by introducing idle times.

Nasri et al. [NBF+14] proved that the utilization bound of non-preemptivetheoretical evaluation
method

utilization bound
scheduling is 0, both for static- and dynamic-priority scheduling, which results
from a situation where the worst-case execution time of one task is larger than
the period of another. However, to the best of our knowledge, there is no analysis
that examines the utilization bounds for non-preemptive scheduling in situations
where the blocking time can be bounded with respect to the period or the worst-
case execution time of tasks.

Davis et at. [DGC10] showed that the speedup factor for FP-NP compared tospeedup factor

EDF-NP is lower bounded by ≈ 1.76322 and upper bounded by 2 for implicit-,
constrained-, and arbitrary-deadline task sets. A lower bound of 2 in the arbitrary-
deadline case was later provided by Davis et al. [DBB+15].

4 Note that the number of jobs in the hyperperiod can be exponential in the number of tasks.

3.4 multiprocessor scheduling 39

3.3.3 limited-preemptive scheduling

The idea of limited-preemptive scheduling techniques is to combine the advantages limited-preemptive
schedulingof preemptive and non-preemptive scheduling, i.e., the improved schedulability of

preemptive scheduling where high-priority jobs can be allocated to the processor
nearly immediately with the reduced worst-case execution time that results from
preventing preemption at worst-case points in the code and from reducing the
number of possible preemptions in general. The preemption thresholds by Wang and preemption threshold

Saksena [WS99] allow to set a specific priority level for each task, i.e., the preemp-
tion threshold, and the task can only be preempted by tasks with a higher priority
than this preemption threshold. Wang and Saksena [WS99] also introduced an al-
gorithm that assigns these thresholds in a way that ensures feasibility if a feasible
schedule exists. The co-operative scheduling by Burns [Bur94] allows preemption co-operative scheduling

only at predefined preemption points in the code, therefore splitting the tasks into
non-preemptive subtasks. An algorithm that selects optimal preemption points,
in the sense that it achieves feasibility while minimizing the preemption costs,
was presented by Bertogna et al. [BXM+11]. Under deferred preemption [BLV07], the deferred preemption

maximum length of a non-preemptive interval is defined for each task, and the
actual preemption is deferred accordingly, either based on a timer that is triggered
by the arrival of an higher-priority job or by inserting specific primitives that
disable and enable preemption into the code, so called floating non-preemptive
regions [Bar05]. The problem of finding the longest non-preemptive region while
still ensuring schedulability was solved by Baruah [Bar05] for EDF and by Yao
et al. [YBB09] for static-priority scheduling. For a given task set, the scheduling
analysis under limited-preemptive scheduling is similar to the analysis under non-
preemptive scheduling but with a reduced blocking time due to lower-priority
tasks. A survey on limited-preemptive scheduling in real-time systems has been
provided by Buttazzo et al. [BBY13].

3.4 multiprocessor scheduling

Multiple timing anomalies can affect the schedulability of real-time tasks in multi- timing anomaly

processor systems as detailed by Graham in 1969 [Gra69], who pointed out that
a task set that is schedulable under a specific priority assignment may become
unschedulable5 when the number of processors is increased, the execution times
of tasks are reduced, or precedence constraints are removed.

When arrival times, deadlines, and execution times for the set J of all jobs
in the system are precisely known, Horn [Hor74] provided an optimal algorithm optimal algorithm

in 1974. While his algorithm can be applied for periodic task sets, it is usually not
applicable in practice, since it has a runtime of O(|J|3) and the number of jobs |J|
in one hyperperiod is known to be exponential in the number of tasks. Baruah et
al. [BCP+96] provided an optimal algorithm for implicit-deadline periodic task sets
called Proportionate Fair or Pfair, which is often not applicable due to the very
high runtime overhead. Fisher [Fis07] showed that no optimal online algorithm
for sporadic tasks with arbitrary or constrained deadlines exists.

5 The original argument is based on increasing the makespan which translates to missing a deadline.

40 related work

Multiprocessor scheduling approaches are categorized based on the underlying
scheduling paradigm into 1) partitioned approaches, where tasks are statically
allocated to processors, 2) global approaches, where tasks can freely migrate,
and 3) hybrid approaches that combine properties of partitioned and global
scheduling. Such hybrid approaches can be further categorized into two classes.
In semi-partitioned approaches, some tasks are split into multiple subtasks and
the subtasks are allocated to different processors. In clustering approaches, the
processors are partitioned into clusters, each task is statically allocated to one
cluster, and tasks can (usually) freely migrate among the processors of the cluster.
Clustering approaches are not further discussed here since they are out of scope
of this work. A comprehensive survey on preemptive multiprocessor scheduling
on homogeneous processors has been provided by Davis and Burns in [DB11a].

3.4.1 global scheduling

Global multiprocessor scheduling suffers from Dhall’s effect, which was found byglobal scheduling

Dhall and Liu in 1978 [DL78]. For implicit-deadline tasks, Dhall’s effect leads to aDhall’s effect
utilization bound of 1 for global EDF and global RM, independent from the numberutilization bound
of processors m. Andersson et al. [ABJ01] proved that the maximum utilization
bound for periodic implicit-deadline tasks under any global dynamic schedul-
ing algorithm with fixed job level priorities is (m + 1)/2. However, Philipps et
al. [PST+97] proved that global EDF has a speedup factor of 2− 1

m . A conclusion
of their work is that Dhall’s effect needs at least one task with very high utilization,
which lead to algorithms that exploited this property by giving high utilization
tasks a higher priority, e.g., EDF-US by Srinvasan and Baruah [SB02]. A utilization
bound depending on the maximum task utilization Umax was given by Goossens
et al. [GFB03] as m− (m− 1)Umax. Considering the density instead of the utiliza-
tion, this bound has been extended to constrained-deadline task sets by Bertogna
et al. [BCL05a] and arbitrary-deadline task sets by Baker and Baruah [BB07].

It was shown by Lauzac et al. [LMM98b] that under global static-priority
scheduling the worst-case response time (WCRT) of a task cannot necessarily beworst-case response

time obtained by releasing a job simultaneously with all higher priority tasks. Instead,
the WCRT may, for example, happen for a later job or when subsequent higher
priority jobs are not released as early as possible. The problem that no general
worst-case arrival pattern can be determined also exists for dynamic-priority
global schedulers like global EDF as pointed out by Baruah [Bar07].

Geeraerts et al. [GGL13] proved that deciding whether a sporadic task set is
schedulable on m processors, e.g., by global EDF or global FP, is PSPACE-complete.time complexity

Therefore, the known exact schedulability tests for global FP [SL16; SL14] and
global EDF [BC07a; GGL13; BM12] are not scalable [BBT15].

Most sufficient schedulability analysis for sporadic task sets under global
scheduling extends the response time analysis by Baker [Bak03]. The key conceptsresponse time analysis

of this approach are to find a necessary condition for a task not be schedulable
using the work-conserving property of the scheduling protocols, and to upperwork-conserving

bound the interference a task may suffer in a specific time interval (the so-called

3.4 multiprocessor scheduling 41

problem window) based on the the number of releases in the problem window
and the carry-in interference.

For global EDF, Baruah [Bar07] provided a sufficient schedulability test with
pseudo-polynomial runtime for constrained-deadline task sets by extending the
problem window to the last point in time any of the processors idled, thus limiting
the carry-in interference to m− 1 tasks. Baruah and Baker further improved on
the result in [Bar07] and showed a speedup factor of 2.62 in [BB08b]. They also
extend the approach in [Bar07] to arbitrary deadlines [BB08a].

For global RM, a utilization bound of m
2 (1−Umax) + umax that also holds for utilization bound

global DM when considering the density instead of the utilization was provided
by Bertogna et al. [BCL05b]. Based on the work by Baker [Bak03], sufficient
schedulability tests for constrained-deadline task sets under global FP have been
proposed by, for instance, Baker [Bak06], Baruah, alone and with multiple co-
authors, [Bar07; BF08; BBM+10], Chen et al. [CHL16a], Bertogna et al. [BCL05b;
BC07b], Fisher and Baruah [FB06], and Guan et al. [GSY+09]. Here, the approach
by Guan et al. [GSY+09] can be seen as the state-of-the-art.

For arbitrary-deadline task sets under global FP the analysis by Baker [Bak06]
is based on his work in [Bak03]. Baruah and Fisher [BF07a; BF08] extended the
analysis window and derived corresponding exponential-time schedulability tests
using annotations. Guan et al. [GSY+09] provided a response-time analysis for
arbitrary-deadline task systems utilizing the insight proposed by Baruah [Bar07]
to limit the number of carry-in jobs, and applying the workload function proposed
by Bertogna et al. [BCL05b] to quantify the demand of higher-priority tasks.
However, Sun et al. [SLG+14] showed that the analysis in [GSY+09] is optimistic.
Huang and Chen [HC15a] quantified the number of carry-in jobs of a task
more precisely than in [Bak06; BF08]. Recently, Chen et al. [CBU18] provided a
series of schedulability tests that analytically dominate the tests by Baruah and
Fisher [BF08] and has an asymptotically tight speedup factor for global DM.

3.4.2 partitioned scheduling

The multiprocessor partitioned scheduling problem is NP-hard as shown by Garey partitioned scheduling

and Johnson [GJ79]. It has been shown by Andersson et al. [ABJ01] that no
partitioning algorithm for implicit-deadline tasks can have a general utilization utilization bound

bound that is larger than m+1
2 . Lopez et al. [LGD+00] provided upper and lower

bounds for partitioned EDF based on the maximum task utilization. Baruah
and Fisher [BF05] provided the deadline monotonic task partitioning strategy
that can be combined with multiple assignment strategies like best-fit, worst-fit,
first-fit, and arbitrary-fit. They extended their work in a series of papers for both
EDF [BF06; BF07b] as well as to static-priority scheduling [FBB06]. They also
provided the speedup factors of their partitioning algorithms which are 2− 1

m for speedup factor

task sets with implicit-deadlines, 3− 1
m for constrained-deadlines, and 4− 2

m for
arbitrary-deadlines.

42 related work

3.4.3 semi-partitioned scheduling

In 2006, Andersson and Tovar [AT06] proposed a partitioned scheduling approachsemi-partitioned
scheduling for implicit-deadline periodic tasks that splits some tasks into two subtasks

that are executed on different processors without time overlap. Andersson and
Bletsas [AB08] considered sporadic implicit-deadline tasks and proposed to split
tasks in a way that each processor executes at most two split tasks, i.e., processor p
shares one task with processor p− 1 and one task with processor p + 1. In their
approach, the subtasks are scheduled in fixed time slots. Kato and Yamasaki
provided a semi-partitioned scheduling approaches under EDF [KY07; KY08].

Considering static-priority scheduling, Kato and Yamasaki [KY09] proposed
Deadline Monotonic scheduling with Priority Migration for sporadic task sets,
which dominates partitioned static-priority approaches. In their approach, tasks
that are migrated are always executed at highest priority and are migrated as
soon as the subtask finished its predefined execution budged on a processor.
Lakshmanan et al [LRL09] developed a semi-partitioned scheduling for implicit-
or constrained-deadline task sets where always the highest priority task is split.

3.4.4 comparison of scheduling paradigms

Global scheduling has a higher runtime overhead than partitioned scheduling
for managing one global ready queue, task migration costs have to be considered
in the analysis, and additional cache misses may occur after migration. On
the other hand, global scheduling should (on average) be feasible for larger
system utilization values since the underlying bin packing problem results in
unused capacity on the individual processors for partitioned scheduling and the
utilization bound of partitioned scheduling is 50%.

However, the state-of-the-art analysis for global static-priority scheduling and
global EDF stems from the seminal work by Baker [Bak03]. For such approaches,
the interference upper bounds resulting from this general approach are multiplied
with 1/m in the resulting sufficient schedulability tests. Recently, Sun and Di
Natale [SN18] proved that for global static-priority scheduling the pessimism
of such a response time analysis is so large that the analysis is dominated
by partitioned static-priority scheduling. A similar result has been shown by
Biondi and Sun [BS18] for global EDF and global FIFO scheduling. Hence, a
fundamentally different analysis technique is needed to exploit the potentially
higher utilization of global scheduling compared to partitioned scheduling.

Furthermore, a study by Brandenburg and Gul [BG16] showed that semi-
partitioned approaches are able to schedule task sets with up to nearly 100%
average processor utilization, demonstrating that the potential improvement of
system utilization under global scheduling is very limited.

3.5 automotive systems and rate-dependent tasks

Automotive systems are a field with high practical relevance where real-time con-
straints are extremely important. However, realistic automotive benchmarks are

3.5 automotive systems and rate-dependent tasks 43

usually not available to researchers, mainly due to intellectual property concerns.
In 2015, Kramer et al. [KZH15] from Bosch Corporate Research released a paper
that allows the generation of realistic benchmarks by providing the structure of
typical automotive real-time systems, e.g., regarding period distribution, worst-
case execution times, and average-case execution times. One specific characteristic
of such task systems is that for the majority of tasks the release pattern is periodic
and that the period is chosen from {1, 2, 5, 10, 20, 50, 100, 200, 1000} ms, i.e., the
periods are semi-harmonic. Such automotive task sets are usually scheduled using semi-harmonic task set

static-priority scheduling [KZH15]. While general scheduling analysis for period
task sets can be applied for such systems, to the best of our knowledge, there is
no analysis that provides a specific schedulability analysis and utilization bounds
for this restricted period setting.

Furthermore, parts of the engine behaviour is often controlled by tasks that are
triggered by the rotation of the crankshaft, i.e., the inter-arrival time depends on
the revolutions per minute (rpm). Such rate-dependent tasks are denoted by differ-
ent names in the literature, e.g., rate-dependent tasks [FBD+18], angle-synchronous angle-synchronous

taskstasks [KZH15], or tasks with variable rate-dependent behaviour [DFP+14]. For
these tasks not only the inter-arrival time but also the relative deadline depends
on the crankshaft rotation. Furthermore, in many cases the worst-case execution
time of these tasks also changes, i.e., the WCET can be described by a set of
values that are related to a certain interval of rotation speeds. Hence, modelling
these tasks as sporadic tasks based on the shortest possible interarrival time and
on the shortest deadline as well as on the largest WCET value can be extremely
pessimistic. Such tasks can also be modelled as non-cyclic generalized multiframe
tasks [MNL+10] or, even more general, as digraph real-time tasks [SEG+11], and
the related analysis techniques can be applied. However, these approaches are
not able to cover the fact that the rotation of the crankshaft does not change
arbitrary but only with a maximum acceleration. Furthermore, an exact analysis
for the digraph real-time task model and the generalized multiframe model is
intractable6 under static-priority scheduling [SY12]. Therefore, a specific mod-
elling and a specialized analysis is needed. The importance of these tasks and
their challenging analysis was highlighted by Buttle [But12] in the keynote talk
at ECRTS 2012. The first specifically designed analyses were provided by Kim et
al. [KLR12], assuming a single rate-dependent task at highest priority with an
interarrival time that is always smaller than all other periods, and by Pollex et
al. [PFS+13], assuming a constant angular speed.

Sufficient schedulability tests for rate-dependent tasks with constrained dead-
lines under static-priority scheduling have been proposed by Davis et al. [DFP+14].
They also provided linear-time approximations to bound the interference of such
tasks. Their evaluations show a huge performance gain compared to the sce-
nario where rate-dependent tasks are modeled as simple sporadic tasks. Biondi
et al. [BNB16] provided an exact schedulability test building on their previous
result in [BNB15]. Huang and Chen [HC15b] considered static-priority mode-level
scheduling, where each execution mode of a task is assigned to an individual
static-priority, and showed a utilization bound of approximately 0.5857. However,

6 The complexity of an exact analysis of the non-cyclic generalized multiframe model is un-
known [DFP+14].

44 related work

to the best of our knowledge, there is no work that addresses how the priorities
of angle-synchronous tasks should be assigned in relation to periodic tasks.

Considering Earliest Deadline First scheduling, Buttazzo et al. [BBB14] and
Guo and Baruah [GB15] provided utilization based test. Biondi et al. [BBS15]
introduced an exact schedulability test under the assumption that the acceleration
is constant between two jobs.

A survey on schedulability analysis for rate-dependent tasks was provided by
Feld et al. [FBD+18].

3.6 mixed-criticality systems

The mixed-criticality model has been introduced into the real-time systems researchmixed-criticality
systems in the seminal work by Vestal [Ves07] in 2007, assuming constrained-deadline

tasks with 4 criticality levels,7 and a set of WCET related to the execution mode
of the system. The WCET of each task is assumed to be increasing from the first
(least critical) mode to the last (most critical) mode. The system also has a number
of criticality modes (same as the number of criticality levels and usually with the
same names) and starts executing in the lowest one. When a mode switch to the
next mode, according to the criticality order, happens, all tasks are assumed to
execute up to the WCET of the related level and it is only important that all tasks
with the same or a higher criticality level always meet their deadline while no
guarantees are given for the tasks with a lower criticality level. The model has
been extended to level-dependent inter-arrival times and deadlines by Baruah
and Burns [BB11a]. In most mixed-criticality research, systems with two criticality
modes are assumed. In such systems, the terms high-criticality and low-criticality
are commonly used both for the modes as well as for the criticality levels.

Vestal [Ves07] utilized static-priority scheduling and Audsley’s Algorithm. Baruah
and Vestal [BV08] considered sporadic tasks under static-priority and dynamic-
priority scheduling. They showed the existence of feasible mixed-criticality sys-
tems that are not schedulable by EDF and that EDF does not dominate static-
priority scheduling. For static-priority scheduling, Baruah et al. [BBD11; BB11a]static-priority

scheduling as well as Burns and Baruah [BB11b] provided a series of papers for systems
with two criticality levels that abandon all low-criticality tasks at the moment of
a mode change, i.e., when some task in the system executes for more than its
WCET in the low-criticality mode. Their result in [BBD11] outperformed all other
know static-priority approaches.

Extending the work in [BV08] regarding EDF, Guan et al. [GES+11] as well asdynamic-priority
scheduling Ekberg and Yi [EY12] assigned shorter deadlines to high-criticality tasks in low-

criticality mode to ensure that they are executed before low-criticality tasks. When
a system mode change happens, all low-criticality tasks are dropped and the high-
criticality tasks are scheduled by their original deadlines. Baruah et al. [BBD+11;
BBD+15] provided an algorithm called EDF-VD, where VD stands for virtual
deadline, that uses a similar strategy. In EDF-VD all deadlines are reduced by

7 Which are are called design assurance levels the work by Vestal [Ves07].

3.6 probabilistic response time 45

the same factor. EDF-VD is the current reference algorithm for scheduling of
dual-criticality systems under dynamic-priority scheduling.

Considering that mixed-criticality systems have been introduced in 2007, an
astonishing number of research results has been provided in the area, not only
for uniprocessor scheduling but also for multiprocessor scheduling, complexity
results, and theoretical evaluation methods. Mixed-criticality is also linked to
multiple other research topics. A comprehensive survey of the state-of-the-art for
mixed-criticality was provided by Burns and Davis [BD18].

However, the research for mixed-criticality systems has been criticised since
it does not match the expectations of system engineers. Specifically, it has been
pointed out by Esper et al. [ENN+15] in “How realistic is the mixed-criticality real-
time system model?" that there is a clear mismatch between industrial standards
and academic work regarding the interpretation of key concepts like system
criticality and importance of tasks. In “Mixed Criticality Systems - A History of
Misconceptions?”, Ernst and Di Natale [EN16] detail 5 assumptions of the model
introduced by Vestal [Ves07] which they see as unrealistic and which in most
cases are similar to concerns raised by Esper et al. [ENN+15]:

1. The criticality level is applied to a task rather than to a system level function,
which they deem acceptable but not precise since tasks can be part of
multiple functions.

2. They question that tasks of higher criticality have multiple WCET estimates,
since it not clear why a certification authority would accept multiple values
that are achieved by different measuring processes. Instead, mechanisms
like timing isolation are needed to avoid failure propagation.

3. Mixed-criticality scheduling approaches rely on a significant difference
between the WCET that can be utilized after a mode switch.

4. A violation of timing assumptions like the WCET is not necessarily a
criticality mode change.

5. Low-criticality tasks can be dropped when high-criticality tasks use more
than their low-criticality WCET, since only non-critical tasks can safely
be dropped while low-criticality tasks are still critical, which means that
dropping them is not graceful degradation.

Ernst and Di Natale [EN16] also state that techniques that try to provide some tim-
ing guarantees by reducing the priorities of low-criticality tasks [BB11a; HGS+14],
reducing their computation time [BB13], or reducing their periods or dead-
lines [SZ13; JZP03] are “hardly acceptable in practice”.

The reader is also referred to Section 6 in the survey by Burns and Davis [BD18]
where system issues like isolation are addressed while more realistic mixed-
criticality models are considered in Section 5 in [BD18].

3.7 probabilistic response time analysis

and schedulability tests

Probabilistic schedulability analysis examines the situation where one or multiple
task parameters are not given by a specific value but described by random

46 related work

variables. Examples are a probabilistic inter-arrival time, resulting in sporadic
behaviour, or a probabilistic WCET, which may stem from, for instance, software-
based fault recovery or mixed-criticality systems. The probabilistic parameters
may either be described by a set of possible values with related probability or by
a continuous distribution. The focus here is on analysis assuming a set of possible
WCET values. In the following, independent probabilistic random variables are
considered. A survey of probabilistic schedulability analysis has recently been
provided by Davis and Cucu-Grosjean [DC19a], covering also a large variety
of topics in addition to probabilistic response time analysis. Davis and Cucu-
Grosjean [DC19b] also provided a survey on probabilistic timing analysis.

Two important metrics are examined in the literature to quantify the proba-
bilistic behaviour of real-time systems with respect to timeliness: the worst-caseworst-case deadline

failure probability deadline failure probability of an individual job of a task and the deadline miss rate
deadline miss rate of a task, were the former is the maximum probability that a job of task misses

its deadline and the latter is the average probability for all jobs of the task. Note
that different publications use different terms here. Most notably, the survey by
Davis and Cucu-Grosjean [DC19a] used the term deadline miss probability instead
of deadline miss rate, defining it as the average probability that a job of a periodic
task misses its deadline when examining over one hyperperiod. However, the
term deadline miss probability, and the related abbreviation DMP, is also used to
describe the worst-case deadline failure probability in multiple publications, e.g., by
Maxim and Cucu-Grosjean [MC13] and by Chen et al. [CC17; CUB+19]. Hence,
the terms worst-case deadline failure probability and deadline miss rate are used to
avoid possible ambiguity.

For periodic real-time task systems, Diaz et al. [DGK+02] provided a framework
to calculate the deadline miss rate based on convolution. Tanasa et al. [TBE+15]
allowed to approximate any arbitrary execution time distribution based on the
Weierstrass Approximation. They applied a customized decomposition procedure
to search all the possible combinations, in which the decomposition results in a
list with O(4|J|) elements where |J| is the number of jobs in the interval of interest.
Both results have an exponential-time complexity with respect to the number of
jobs in the interval of interest, and thus both suffer from a limited scalability, i.e.,
the experimental results in [DGK+02] and [TBE+15] considered 7 and 25 jobs in
the hyper-period, respectively.

Considering sporadic real-time task systems under non-preemptive static-
priority scheduling, Axer et al. [AE13] proposed to evaluate the response-time
distribution and iterated over the activations of job releases. Maxim and Cucu-
Grosjean [MC13] assumed probabilistic minimum inter-arrival as well as proba-
bilistic worst-case execution times and provided a precise probabilistic response
time analysis for static-priority scheduling policy. Their approach was extended
by Ben-Amor et al. [BAMCG16] to tasks with precedence constraints. All these
approaches consider the jobs in the interval of interest in increasing order of
the arrival time and convolve the related probability distributions. Therefore,
they are also heavily dependent on the number of jobs in the interval of interest.
Approximation techniques can be utilized to provide an upper bound on the
probability. For example, re-sampling [MC13; RH10] and dynamic-programming
based on user-defined granularity can be applied to reduce the time complexity.

3.8 self-suspension 47

As an alternative to job-level convolution, analytical bounds have been proposed
recently. Chen and Chen [CC17] provided a scalable approximation based on the
Chernoff bounds, which is applicable for 20 tasks and more than thousand jobs in
the hyper-period. Chen et al. [CUB+19] also proposed an optimization technique
which results in tighter results due to an optimized runtime. Hoeffding’s and
Bernstein’s inequalities were utilized by von der Brüggen et al. [BPC+18].8 Note
that the analytical bounds have a better runtime but do not provide tight results
but over-approximations.

Chen et al. [CBC18a] proved that the deadline miss rate may be significantly deadline miss rate

larger than the worst-case deadline failure probability and derived an analytic upper
bound for the deadline miss rate, using the calculation of the worst-case deadline
failure probability as a subroutine in the analysis.

3.8 self-suspension

The examination of self-suspending tasks in real-time systems can be traced
back to a work by Rajkumar in 1991 [Raj91]. Research on self-suspension usu-
ally considers either the segmented self-suspension model or the dynamic self-
suspension model and this section is arranged accordingly. An exception is the
DAG self-suspension model proposed by Bletsas’ in his dissertation [Ble07] that,
to the best of our knowledge, has never been applied in the literature. Unfor-
tunately, a large number of research results have recently been reported flawed
by Chen et al. [CNH+19]. The authors list 6 categories of flaws and over 20
affected publications. This Section is restricted to publications that are not listed
as flawed in [CNH+19]. A survey on self-suspension has been provided by Chen
et al. [CBH+17b].

Chen et al [CHH+19] provided speedup factor analysis for the segmented, dy- speedup factor

namic, and hybrid self-suspension model for frame-based task systems, i.e., all
tasks have the same release time and deadline, considering both uniprocessor
and homogeneous multiprocessor systems.

3.8.1 segmented self-suspension model

In the segmented self-suspension task model a task is described by an interleaving segmented
self-suspensionexecution/suspension pattern. As shown by Ridouard et al [RRC04], the scheduler

design problem is NP-hard in the strong sense, even for one self-suspension
segment. Chen [Che16a] and Mohaqeqi et al. [MEY16] showed that verifying
the schedulability under static-priority scheduling is coNP-hard in the strong
sense. This result also holds when the task under analysis is the only task with
suspension behaviour while all higher-priority tasks are sporadic.

Recently, Chen et al [CHH+19] pointed out the link of segmented self-suspension
to the master-slave problem which is examined in the operations research com-
munity. They surveyed the related complexity results, most notably that Yu

8 While most results from this work are presented in Section 5.4, the results for Hoeffding’s and
Bernstein’s inequalities are not presented here but are part of the dissertation of Kuan-Hsun Chen.

48 related work

et al. [YHL04] showed that the scheduler design problem for segmented self-
suspension tasks is NP-hard in the strong sense for a very simple setting, i.e.,
one-segmented self-suspension tasks where all tasks are released at the same
time, have the same absolute deadline, and all segments of all tasks have the same
computation time. Hence, the computational complexity of the scheduler design
problem is not due to the recurrence of real-time jobs or due to the execution
time of the segments but a direct result of the suspension behaviour.

A period enforcer algorithm to handle the impact of self-suspensions has been
proposed by Rajkumar [Raj91]. It can be applied to segmented self-suspension
tasks with multiple computation segments but Chen and Brandenburg [CB17]
showed that it can be a cause of deadline misses for otherwise schedulable self-
suspending tasks sets. They also pointed out that a schedulability test for the
period enforcer is unknown.

For static-priority scheduling, Nelissen et al. [NFR+15] provided a sufficient
schedulability test that requires exponential-time complexity, even when the
tasks in the system only have one self-suspension interval, by transforming
higher-priority tasks into periodic tasks with jitter. Note that the original work
in [NFR+15] was flawed but later corrected by the authors in [NFR+17]. Schön-
berger et al. [SHB+18] used Audsley’s Algorithm [Aud91], combining suspension
as computation and restarting inference in the schedulability test.

Chen and Liu [CL14] proposed a release time enforcement called fixed-relative-
deadline (FRD) under EDF and the equal deadline assignment strategy that has a
speedup factor of 3 for one-segmented self-suspension. The fixed-relative-deadlinespeedup factor

approach was applied to static-priority scheduling by Huang and Chen [HC16].

3.8.2 dynamic self-suspension model

In the dynamic self-suspension model a task is described by the worst-case executiondynamic
self-suspension time and the maximum suspension time. It assumes no restriction on the number

of suspension intervals, i.e., a task can suspend at any time as long as the maxi-
mum suspension time condition is not violated. For the dynamic self-suspension
model the complexity of the scheduler design problem remains an open prob-
lem [CBH+17b]. If the suspension time cannot be reduced by speeding up,
Chen [Che16a] showed that the speedup factor for the dynamic self-suspension
model is unbounded for EDF, least-laxity-first, and earliest-deadline-zero-laxity.

For static-priority scheduling, Chen et al [CNH16] provided a unifying response
time analysis framework, considering multiple approaches to model the self-
suspension time under a dynamic self-suspension behaviour, i.e., as computation,
carry-in, blocking, or jitter. Huang et al. [HCZ+15] provided PASS-OPA using
Audsley’s Algorithm [Aud91] for a static-priority assignment.

3.9 multiprocessor resource sharing

If not treated carefully, priority inversion resulting from resource access may lead
to an unnecessary long blocking time for high-priority tasks or a system deadlock.

3.9 multiprocessor resource sharing 49

In uniprocessor systems, mutual exclusion and resource synchronization is usually
provided based on longstanding priority inheritance techniques. Under static-
priority scheduling, such techniques were provided by Sha et. al [SRL90] in the
Priority Inheritance Protocol (PIP) and the Priority Ceiling Protocol (PCP). The Priority Ceiling

Protocollatter ensures the minimum possible number of pi-blocking, i.e., 1, and prevents
pi-blockingdeadlocks. Baker [Bak91] introduced the Stack Resource Policy (SRP) that provides
Stack Resource Policysimilar guarantees and is applicable for dynamic-priority scheduling. SRP is

typically preferred to PCP, since it requires a smaller number of context switches
and permits execution on a single stack.

Multiprocessor real-time locking protocols can be classified into suspension-
based protocols [RSL88; Raj90; BA10; Bra14b] and spin-based protocols [GLN01;
BW13; WB13b]. The Flexible Multiprocessor Locking Protocol (FMLP) [BLB+07]
considers both, depending on the length of the critical section.

Brandenburg and Anderson [BA10] proved that Ω(m) pi-blocking is unavoidable
under suspension-oblivious schedulability analysis. FMLP [BLB+07], O(m) multi-
processor locking protocol (OMLP) [BA13], the Generalized FIFO Multiprocessor
Locking Protocol (FMLP+) [Bra14b], and the Distributed FIFO Locking Proto-
col (DFLP) [Bra14a] are asymptotically optimal for minimizing the pi-blocking
when using FIFO-waiting queues. Yang et al. [YWB15] have summarized and
compared the protocols that can be utilized under global scheduling. Their empir-
ical results show that asymptotically optimal protocols do not necessarily perform
well. In their evaluation, the FMLP and the Priority Inheritance Protocol (PIP) per-
form best among the existing protocols under global rate-monotonic scheduling
when the linear-programming (LP) based schedulability tests in [Bra13] are used.

Several real-time locking protocols have been proposed for partitioned and
semi-partitioned scheduling, among them the Distributed PCP (DPCP) [RSL88],
the Multiprocessor PCP (MPCP) [Raj90], the Multiprocessor Stack Resource Policy
(MSRP) [GLN01], the Flexible Multiprocessor Locking Protocol (FMLP) [BLB+07],
and the Multiprocessor resource sharing Protocol (MrsP) [BW13]. The perfor-
mance of these protocols highly depends on the task partition. Lakshmanan et
al. [LNR09] proposed a synchronization-aware partitioned heuristic for MPCP, or-
ganizing the tasks that share resources into groups and attempting to assign each
group of tasks to the same processor. Nemati et al. [NNB10] presented a blocking-
aware partitioning method to split a task group that could not be assigned to
one processor, an approach that was later extended by Hsiu et al. [HLK11] such
that each resource request can be blocked by at most one lower-priority request.
For the MSRP protocol, a Greedy Slacker (GS) algorithm using integer linear
programming was proposed by Wieder and Brandenburg [WB13a] for the task
partition. In their approach called resource-oriented partitioned scheduling, Huang resource-oriented

partitioned schedulinget al. [HYC16] proposed to change the view angle and to partition the shared
resources first to so-called synchronization processors where all resource access
is handled. Afterwards, the non-critical sections are partitioned.

Recently, Chen et al. [CBS+18] introduced the Dependency Graph Approach.
The idea is to preconstruct the order in which the critical sessions are accessed
as a directed acyclic graph, and afterwards schedule the tasks using any DAG
scheduling policy. While the approach in [CBS+18] was restricted to frame-based
tasks, the approach was extended to periodic tasks by Shi et al. [SUB+19].

50 related work

Andersson and Easwaran [AE10] provided gEDF-vpr, the first multiprocessor
resource sharing protocol with a bounded speedup factor of 12(1 + 3r/4m). Thisspeedup factor

bound was improved in the LP-EE-vpr algorithm by Andersson and Raravi [AR14]
that has a speedup factor of 4 · (1 + maxr ·

⌈ r·maxr
m

⌉
) ≥ 8 where maxr is the

maximum number of resources a task requests. The resource-oriented partitioned
scheduling introduced by Huang et al. [HYC16] has a speedup factor of 11− 6

m+1
when PCP is utilized on the synchronization processors. These speedup factors
(besides for LP-EE-vpr) are only valid when tasks have at most one critical section.

Chen et al. [CBS+18] proved that for multiprocessor resource sharing the
decision whether all tasks meet one common deadline is NP-hard in the strong
sense, independent from the number of processors. They also concluded that
allowing migration or preemption does not reduce the computational complexity.

The performance of multiprocessor resource-sharing protocols highly depends
on the considered system. Hence, contrary to the uniprocessor case, no single best
protocol is known and it is unlikely that one can be established. However, it seems
important to develop criteria to determine which protocol should be applied,
depending on the system architecture as well as the structure of the task set. How-
ever, there is only limited work in this direction, even though resource sharing is
often a bottleneck for the system performance. Some explorations in which situa-
tions suspension-based protocols and in which situations spin-based protocols
are preferable were presented. Gai et al. [GNL+03] compared MPCP [Raj90] and
MSRP [GLN01] and determined that MSRP performs better when critical sections
are short and access to local resources dominates. Brandenburg et al. [BCB+08]
evaluated FMLP [BLB+07], showing that the suspension-based approach only
very rarely was superior to the spin-based approach. However, to the best of our
knowledge, a general evaluation of suspension vs. spinning has not been pro-
vided. Furthermore, how tasks should be partitioned and prioritized to achieve a
good performance is an open questions for many resource-sharing protocols.

3.10 connection to subsequent chapters

Since the related work covers a large area of real-time system research, a brief
summary of how the related work connects to the following chapters is provided.

The examination of speedup factors and utilization bounds in Chapter 4 is pri-
marily related to preemptive, non-preemptive, and limited-preemptive uniproces-
sor scheduling. Section 4.2 considers automotive task systems and rate-dependent
tasks. Section 4.5 also shows examples based on self-suspension and multiproces-
sor resource synchronization.

For uncertain execution environments a novel system model that is related to
mixed-criticality systems is provided in Chapter 5. After Section 5.2 considers
preemptive uniprocessor scheduling, preemptive partitioned and semi-partitioned
multiprocessor scheduling is examined in Section 5.3. Probabilistic response-time
analysis is the focus of Section 5.4.

The main scope of Chapter 6 is self-suspending task systems. While Sec-
tion 6.1 and Section 6.3 consider uniprocessor scheduling, Section 6.2 examines

3.10 connection to subsequent chapters 51

partitioned multiprocessor scheduling and multiprocessor resource sharing. Fur-
thermore, Section 6.3 has a focus on modelling of real-time systems.

4
S P E E D U P FA C T O R S A N D PA R A M E T R I C
U T I L I Z AT I O N B O U N D S

In this chapter, we take a careful look at theoretical methods to compare schedul-
ing algorithms and schedulability tests. We focus on utilization bounds, speedup utilization bound

speedup factorfactors, and capacity augmentation bounds to compare these algorithms, since they
capacity augmentation
bound

are widely adopted and accepted as the de facto standard theoretical tools for
assessing scheduling algorithms and schedulability tests in the real-time research
community. Nevertheless, it is not always clear how researchers and designers
should view or use such theoretical results. We point out a number of surprising
results that show how these metrics can be misinterpreted or misunderstood.
Therefore, we aim to provide a perspective on the use of these metrics, guide
researchers on their meaning and interpretation, and help avoid common pitfalls.

We first consider parametric utilization bounds for non-preemptive Rate Monotonic parametric utilization
bound
non-preemptive
scheduling

Rate Monotonic

scheduling (RM-NP) as well as for automotive task sets. In Section 4.1, we examine
the utilization bound of RM-NP, showing that depending on the blocking factor γ,
which is the relation between the blocking time of a task and its execution
time, the utilization bound can still be up to 69.3%, the same as the Liu and

Liu and Layland
BoundLayland Bound for preemptive RM (RM-P) [LL73], if γ is sufficiently small. In

Section 4.2 we focus on automotive task sets where the periods of tasks are limited to automotive task set
{1, 2, 5, 10, 20, 50, 100, 200, 1000} ms, i.e., the periods are semi-harmonic, providing semi-harmonic task set
tailor-made utilization based schedulability tests. We show that the utilization
bound of RM-P is 90% + x, where x depends on the total utilization of tasks
in the set with certain periods. Empirically, in realistic settings the acceptance
ratio is still 100% for task sets with total utilization very close to 100%. We recap
our findings in Section 4.3, observing that for both analyzed cases parametric
bounds, which consider further parameters in addition to the total utilization, can
be substantially superior to classical utilization bounds, which do not consider
additional parameters.

We move our focus to speedup factors in Section 4.4, where we show that lin- speedup factor

ear time tests for Deadline Monotonic (DM) scheduling are speedup-optimal for Deadline Monotonic
speedup-optimalboth preemptive and non-preemptive scheduling of implicit-, constrained-, and

arbitrary-deadline task sets. Since DM is not an optimal scheduling algorithm for
arbitrary-deadline task sets and the linear-time tests result in the same speedup
factor as the exact tests, this raises the questions whether and in which situation
speedup factors are a reasonable tool to compare the performance of scheduling
algorithms and schedulability tests. Hence, Section 4.5 provides perspective on
how to understand and utilize speedup factors, pointing out several misinter-
pretations or misunderstandings from the real-time systems literature. Resulting
from these findings, in Section 4.6 we propose using parametric augmentation parametric

augmentation functionfunctions, which means describing theoretical comparisons not with a single value
but based on a vector of values that detail the augmentation function based on

53

54 speedup factors and parametric bounds

the vector. An example on how an examination based on additional parameters
is performed and results in a parametric augmentation function is provided in
Section 4.7. We summarize these findings and draw conclusions in Section 4.8.

4.1 parametric utilization bounds for

non-preemptive scheduling

Allowing preemptions is often considered an important feature to increase thepreemptive scheduling

schedulability, as it enables the scheduler to allocate the processor to high priority
tasks almost immediately. This ensures that these tasks are able to meet their
deadlines, which may be impossible if they experience long blocking time from theblocking time

execution of lower priority tasks in an non-preemptive manner.

However, non-preemptive scheduling also has advantages compared to preemptivenon-preemptive
scheduling scheduling. First, calculating a good upper bound on the WCET is more difficult

WCET analysis if preemption is allowed. The reason is that preemption introduces additional
overhead, e.g., for suspending the task, inserting it into the ready queue, flushing
the processor pipeline, and dispatching the newly incoming task. This overhead
has to be taken into account when analyzing the schedulability, but it is not easy
to estimate these costs without getting very pessimistic, e.g., assuming a large
number of preemptions at worst-case points. Second, during the execution of a
task, preemption may even be impossible in some situations, for instance, due to
I/O operations or access to shared resources. Third, ensuring mutual exclusion
of shared resources introduces additional overhead to preemptive systems, e.g.,
to prevent deadlocks and chained blocking, while mutual exclusion is trivial in
non-preemptive uniprocessor systems. Context switches also destroy the program
locality, making it hard to analyse the effectiveness of caches, as context switches
may cause additional cache misses. The number of additional cache misses
depends on the number of preemptions a task experiences and the specific point
those context switches occur [AG08], making it even harder to calculate those
cache related costs, resulting in even more pessimistic bounds for the WCET.
Note that cache-related preemption delays are a possibility to tackle this problem.
A related survey is provided by Altmeyer and Maiza [AM11]. Nevertheless, the
WCET under preemptive scheduling is (sometimes substantially) larger than
under non-preemptive scheduling since the preemption overheads cannot be
neglected and are, therefore, usually included into the WCETs of the tasks under
preemptive scheduling.

To combine the advantages of preemptive and non-preemptive scheduling,
limited-preemptive scheduling techniques have been introduced, e.g., preemptionlimited-preemptive

scheduling thresholds by Wang and Saksena [WS99], co-operative scheduling by Burns [Bur94],
preemption threshold

co-operative scheduling
and deferred preemption [BLV07]. For a given task, the analysis under limited-

deferred preemption

preemptive scheduling is similar to the analysis under non-preemptive scheduling
but with a reduced blocking time due to lower-priority tasks.

While the utilization bound of RM-NP is 0 [NBF+14], the advantages of non-non-preemptive
scheduling preemptive scheduling over preemptive scheduling and the possibility to reduce the

disadvantages by using limited-preemptive techniques motivate the investigation

4.1 non-preemptive scheduling 55

of non-preemptive scheduling. We introduce the first schedulability test for non-
preemptive scheduling in hyperbolic form, which is improved afterwards. Moreover, hyperbolic form

parametric utilization bounds for RM-NP are provided that take the blocking factor γ parametric utilization
boundinto account, where γ is the relation between the execution time of lower-priority

tasks and the task itself. Depending on the value of γ, this significantly improves
the bound from 0 to up to 69.3%, the same as for RM-P, if the blocking time is
sufficiently small. The results presented in this section appeared in Schedulability
and Optimization Analysis for Non-Preemptive Static Priority Scheduling Based on Task
Utilization and Blocking Factors in ECRTS 2015 [BCH15].

4.1.1 hyperbolic schedulability test

The Time Demand Analysis (TDA) [LSD89] in Eq. (2.3), extended to the non- Time Demand
Analysispreemptive case by including the maximum blocking time in Eq. (2.8), is a

sufficient schedulability test for a constrained-deadline or implicit-deadline
task τk [Bur94; DGC10]. We restate the equation, using the upper bound Bk on
the maximum blocking time instead of B∗k : maximum blocking

time

∃t with 0 < t ≤ Dk and Bk + Ck + ∑
τi∈hp(τk)

⌈
t
Ti

⌉
Ci ≤ t (4.1)

To simplify Eq. (4.1), we partition hp(τk) into two disjunct subsets:

• hp1(τk) consists of all tasks τi ∈ hp(τk) with Ti < Dk

• hp2(τk) consists of all tasks τi ∈ hp(τk) with Ti ≥ Dk

Since in Eq. (4.1) the tasks in hp2(τk), task τk itself, and the blocking time Bk
contribute to the workload in the interval [0, Dk] exactly once, we directly include
them into the tasks execution time as

Ĉk = Bk + Ck + ∑
τi∈hp2(τk)

Ci (4.2)

Now, Eq. (4.1) can be rewritten as

∃t with 0 < t ≤ Dk and Ĉk + ∑
τi∈hp1(τk)

⌈
t
Ti

⌉
Ci ≤ t (4.3)

For brevity of notation, we abuse k by resetting it to k = |hp1(τk)| + 1, where
|hp1(τk)| is the cardinality of hp1(τk). Introducing another variable here, say k∗,
would be precise. However, since all tasks in τi ∈ hp2(τk) are summed up in Ĉk,
we only have to consider the τi ∈ hp1(τk), and such a notation has no value for
the analysis but makes the following argumentation more difficult to read.

The sufficient schedulability test in Eq. (4.3) has a pseudo-polynomial runtime,
since it has to test all time points where a job of a higher priority task arrives. If
only a subset of these points is tested, the test becomes more pessimistic. However,
to get to a hyperbolic form, we only test k time points {t1, . . . , tk−1, tk}, namely
the last arrival points of higher priority tasks and the absolute deadline of τk:

ti =

⌊
Dk

Ti

⌋
Ti ∀ τi ∈ hp1(τk) and tk = Dk (4.4)

56 speedup factors and parametric bounds

Assuming that the schedulability of {τ1, . . . , τk−1} has been ensured beforehand,
this results in the following sufficient test for the schedulability of τk:

∃tj ∈ {t1, . . . , tk} with Ĉk +
k−1

∑
i=1

⌈
tj

Ti

⌉
Ci ≤ tj (4.5)

Since the workload of the higher-priority tasks is independent from the actual
priority order, we can reorder the tasks in hp1(τk) according to their last release
times, i.e., t1 ≤ t2 ≤ . . . ≤ tk−1 ≤ tk. When evaluating time ti, we can
remove the ceiling function for τi since

⌈
ti
Ti

⌉
is always an integer. Furthermore,

as tj is the last release time for a job of τj before Dk and tj < Dk for all tasks
τj ∈ {τ1, . . . , τk} we know that

ti

Ti
+ 1 ≥

⌈
tj

Ti

⌉
∀τi, τj ∈ {τ1, . . . , τk} (4.6)

Considering time tj ∈ {t1, . . . , tk} after reordering according to the time of
the last release, the last release of τi ∈ hp(τk) only happens before tj if i < j.

If tj > ti, then
⌈

tj
Ti

⌉
=

⌈
ti
Ti

⌉
+ 1 = ti

Ti
+ 1 since ti is the last release of τi

before Dk. If tj ≤ ti, we get
⌈

tj
Ti

⌉
≤
⌈

ti
Ti

⌉
= ti

Ti
.

Hence, for each time tj the summation in Eq. (4.5) can be split into two parts as

Ĉk +
k−1

∑
i=1

⌈
tj

Ti

⌉
Ci ≤ Ĉk +

k−1

∑
i=1

ti

Ti
Ci +

j−1

∑
i=1

Ci (4.7)

where the first summation represents all jobs of higher priority tasks but the last
one, and the second summation represents the last job for the tasks where this
last job is already released at tj.

We unify these considerations in a safe sufficient schedulability test for a task τk
stated in the the following lemma:

Lemma 4.1. If the schedulability of all higher priority tasks is ensured already, task τk is
schedulable by a non-preemptive static-priority scheduling policy if

∃tj ∈ {t1, . . . , tk} such that Ĉk +
k−1

∑
i=1

ti

Ti
Ci +

j−1

∑
i=1

Ci ≤ tj (4.8)

Proof. That Eq. (4.8) is a sufficient schedulability test follows directly from the
argumentation above.

To achieve a polynomial-time schedulability test in a hyperbolic form, we need
a test based on the utilization of the higher-priority tasks and the execution and
blocking time of the task that is currently tested. In Eq. (4.8) in Lemma 4.1 the
left summation can directly be converted to be utilization-based as Ui = Ci

Ti
. The

right summation in Eq. (4.8) can be easily transformed to be utilization-based:

j−1

∑
i=1

Ci =
j−1

∑
i=1

Ti

Ti
Ci =

j−1

∑
i=1

TiUi ≤
j−1

∑
i=1

tiUi (4.9)

4.1 non-preemptive scheduling 57

where the inequality holds since ti = fi · Ti for some fi ∈ Z+, resulting in the
following utilization-based schedulability test

∃tj ∈ {t1, . . . , tk} and Ĉk +
k−1

∑
i=1

tiUi +
j−1

∑
i=1

tiUi ≤ tj (4.10)

that is more pessimistic than Lemma 4.1. For non-preemptive scheduling, we must
verify the schedulability for each task individually. The reason is that, contrary
to the utilization, the blocking time is a monotonically decreasing function with
respect to the priority. Eq. (4.10) allows a schedulability test in a hyperbolic form for hyperbolic form

static-priority non-preemptive scheduling that is stated in the following theorem:

Theorem 4.2. A task τk in a non-preemptive sporadic task system with constrained
deadlines can be feasibly scheduled by a static-priority scheduling algorithm, if the
schedulability for all higher priority tasks has already been ensured and the following
condition holds:

(
Ĉk

Dk
+ 1

)
∏

τj∈hp1(τk)

(Uj + 1) ≤ 2 (4.11)

Proof. We prove the theorem by showing that if the condition in Eq. (4.11) is
satisfied, the condition in Eq. (4.10) is satisfied as well. We use contrapositive,
thus showing that if Eq. (4.10) is not satisfied, Eq. (4.11) is not satisfied as well.
The proof uses the same strategy as the proof of Lemma 1 in [CHL15b]. For
completeness, we list the corresponding linear programming and the optimal
extreme point solution.

If a task τk is not schedulable, by Eq. (4.3) we know that

∀t with 0 < t ≤ Dk : Ĉk + ∑
τi∈hp1(τk)

⌈
t
Ti

⌉
Ci > t

This must hold true ∀ t ∈ (0, Dk]. Hence, it must hold true for times of the last
releases of higher priority tasks. All transformations made starting from Eq. (4.3)
until we reached Eq. (4.10) only increased the left side of the equations. Therefore,
an unschedulable task τk will fail Eq. (4.10) as well. Hence, if τk is not schedulable

∀ j ∈ {1, . . . , k− 1, k} holds Ĉk +
k−1

∑
i=1

tiUi +
j−1

∑
i=1

tiUi > tj (4.12)

Since Eq. (4.10) is only a sufficient scheduling condition, a task set might still be
schedulable if Eq. (4.12) holds. However, if a task is not schedulable Eq. (4.12)
holds and we prove, that Eq. (4.11) never holds if Eq. (4.12) holds. Thus Eq. (4.11)
does not hold for any unschedulable task τk. We get the following optimization
problem represented by a linear programming: linear programming

inf C∗k (4.13a)

s.t C∗k +
k−1

∑
i=1

t∗i Ui +
j−1

∑
i=1

t∗i Ui > t∗j ∀ 1≤j≤k (4.13b)

t∗j ≥ 0 ∀ 1≤j≤k (4.13c)

58 speedup factors and parametric bounds

where t∗1 , . . . , t∗k−1 and C∗k are variables and t∗k is defined as tk for notational
brevity. We replace > with ≥ in (4.13b) as infimum and minimum are the same if
≥ is used. Thus Eq. (4.12) holds ∀ Ck > C∗k .

For j = k, Eq. (4.13b) leads to C∗k ≥ t∗k −
(

k−1
∑

i=1
t∗i Ui +

k−1
∑

i=1
t∗i Ui

)
. Based on

this inequality, C∗k is replaced in Eq. (4.13a) and Eq. (4.13b). As for t∗k the two

summations are the same, we get t∗k − 2
k−1
∑

i=1
t∗i Ui in Eq. (4.13a). Since t∗k is a constant,

we have to maximize
k−1
∑

i=1
t∗i Ui to find a minimum value for C∗k . Replacing C∗k in

Eq. (4.13b) results in

t∗k − 2
k−1

∑
i=1

t∗i Ui +
k−1

∑
i=1

t∗i Ui +
j−1

∑
i=1

t∗i Ui

= t∗k −
k−1

∑
i=j

t∗i Ui ≥ t∗j ∀ 1≤j≤k−1 (4.14)

These reformulations result in the following linear programming:

max
k−1

∑
i=1

t∗i Ui (4.15a)

s.t t∗k −
k−1

∑
i=j

t∗i Ui ≥ t∗j ∀ 1≤j≤k−1 (4.15b)

t∗j ≥ 0 ∀ 1≤j≤k−1 (4.15c)

According to the extreme point theorem [LY15], these conditions form a polyhe-
dron of possible solutions. Furthermore, if the polyhedron is not empty (in which
case there is no feasible solution), one of the extreme points of the polyhedron is
an optimal solution for the optimization problem. Since 0 ≤ t∗i ≤ t∗k < ∞ for
all 1 ≤ j ≤ k− 1, the objective function in Eq. (4.15a) is bounded, and the 2(k− 1)
constraints in Eq. (4.15b) and Eq. (4.15c) form a polyhedron of feasible solutions.
As there are k− 1 variables, at least k− 1 of the constraints in Eq. (4.15b) and
Eq. (4.15c) have to be active, which means that ≥ holds with = in the solution.

One extreme point solution with t∗j > 0, ∀ 1 ≤ j ≤ k− 1 can be found by

setting t∗j = t∗k − ∑k−1
i=j t∗i Ui with

t∗i+1 − t∗i = t∗i Ui ∀ 1≤j≤k−1 (4.16)

Thus we know

t∗i+1

t∗i
= Ui + 1 ∀ 1≤j≤k−1 (4.17)

and

t∗i
t∗k

=
k−1

∏
j=1

t∗j
t∗j+1

=
1

∏k−1
j=i (Uj + 1)

(4.18)

4.1 non-preemptive scheduling 59

Based on Eq. (4.13b) with j = k the minimum value of C∗k is:

C∗k = t∗k − 2
k−1

∑
i=1

t∗i Ui
(4.16)
= t∗k − 2(t∗k − t∗1)

(4.18)
= t∗k − 2

(
t∗k −

t∗k
∏k−1

j=1 (Uj + 1)

)

⇒ C∗k = t∗k

(
2

∏k−1
j=1 (Uj + 1)

− 1

)
(4.19)

We now show that no feasible solution results in a smaller value for C∗k than
the one in Eq. (4.19). An extreme point solution for k− 1 variables must have
at least k− 1 active constraints, i.e., k− 1 constraints out of the Eqs. (4.15b) and
(4.15c) hold with equality.

By assuming that 0 = t∗p = t∗k −∑k−1
i=p t∗i Ui for a specific task τp ∈ {τ1, . . . , τk−1},

we show that in an extreme point solution for each τj ∈ {τ1, . . . , τk−1} either
Eq. (4.15b) or Eq. (4.15c) is active but not both. Let τq ∈ {τp+1, . . . , τk−1} be the
next task with t∗q > 0 in the extreme point solution, thus t∗p = t∗p+1 = . . . = t∗q−1 = 0.
If no such task τq exists, we set q = k∗ and t∗q = t∗k . With these two conditions,
we get the contradiction that 0 = t∗p = t∗k −∑k−1

i=p t∗i Ui = ∑k−1
i=q t∗i Ui ≥ t∗q > 0 for

q ≤ k− 1 and 0 = t∗p = t∗k − ∑k−1
i=p t∗i Ui = t∗k > 0 if q = k. Hence, for a feasible

solution of Eq. (4.15) we can partition {τ1, . . . , τk−1} into two tasks sets T1 and T2,
where τj ∈ T1 if t∗j = 0 (Eq. (4.15c) holds) and τj ∈ T2 if t∗j = t∗k −∑k−1

i=j t∗i Ui > 0

(Eq. (4.15b) holds). As we maximize ∑k−1
i=1 t∗i Ui we only use the tasks in T2 and

drop all tasks in T1, leading to the objective function as in Eq. (4.19) where only
τj ∈ T2 are considered. As ∏τj∈T2

(Uj + 1) ≤ ∏k−1
j=1 (Uj + 1) we maximize the

objective in Eq. (4.15) if all higher priority tasks are in T2.

Thus we know that Eq. (4.12) always holds if Ĉk > C∗k and get

(
C∗k
t∗k

+ 1
) k−1

∏
j=1

(Uj + 1) > 2 (4.20)

Thus we know τk is schedulable if

(
C∗k
t∗k

+ 1
) k−1

∏
j=1

(Uj + 1) ≤ 2 (4.21)

holds and all higher priority tasks are schedulable. We know that t∗k = Dk and
replace C∗k with Ĉk, as it is constructed as the minimum of the values Eq. (4.12)
holds for, therefore reaching the conclusion of Theorem 4.2.

Instead of minimizing C∗k to ensure Eq. (4.12) holds, by minimizing Ĉk +
k−1
∑

i=1
tiUi

we can also get another a sufficient schedulability test:

Theorem 4.3. A task τk in a non-preemptive sporadic task system with constrained
deadlines can be feasibly scheduled by a static-priority scheduling algorithm, if the

60 speedup factors and parametric bounds

schedulability for all higher priority tasks has already been ensured and the following
condition holds:

Ĉk +
k−1
∑

i=1
tiUi

Dk
≤ 1

∏
τj∈hp1(τk)

(Ui + 1)
(4.22)

Since the proof of Theorem 4.3 is very similar to the proof of Theorem 4.2 it is
not shown here but provided in the Appendix.

Observation 4.4. The schedulability tests in Theorem 4.2 and Theorem 4.3 provide the
same result.

The reason is that the optimization problem for both approaches lead to the
same linear programming and, therefore, provide the same solution, i.e, Eq. (4.13b)
and Eq. (8.1b) are the same for j = k. Since there are no estimations in the
following steps, both hold if Ĉk ≤ C∗k and both will fail for Ĉk > C∗k .

If for T the task order according to the periods and according to the relativetime complexity

deadlines are both given, the schedulability test in Theorem 4.2 can be conducted
in linear time under RM-NP and DM-NP. The blocking time for all tasks in T canlinear time

be computed in O(n) when the task set is traversed in reversed priority order,
i.e., by starting from the lowest priority task. Afterwards, the actual test starts
from the highest priority task. We analyze the changes in hp1 and hp2 for one
step, i.e., from τk to τk+1. No task can ever move from hp1 to hp2 since the relative
deadline is increasing with the task priority. Assume τk is placed in hp2 for τk+1.
Then all tasks τi ∈ hp2 with Dk ≤ Ti < Dk+1 are moved to hp1 which can be
determined for each task in O(1). If the tasks in hp2 are tested in increasing order
of their period, we can stop for this step once Ti ≥ Dk+1. Due to the monotonicity
of the deadlines in DM, each task is only moved from hp2 to hp1 at most once,
and for each move ∏

τj∈hp1

(Uj + 1) can be computed in O(1). Therefore, the test in

Theorem 4.2 has an amortized cost O(1) for each task, i.e., it is considered once
in the product of utilizations and moved from hp2 to hp1 at most once, resulting
in O(n) for testing T. If the two orders are not given, they can be determined
in O(n log n). Note that for RM-NP hp2 is always empty. For the general case
this argumentation does not hold, as tasks may be moved from hp1 to hp2 as
well. Therefore, in the general case the time complexity can be O(n) for each step,
resulting in a total complexity of O(n2). The utilization based tests in hyperbolic
form we present subsequently have the same runtime complexity.

The sufficient schedulability test in Lemma 4.1 and, therefore, the resulting
hyperbolic tests are pessimistic, as the concept of Lemma 4.1 includes the blocking
time due to lower-priority tasks but allows task τk to be preempted after it starts.
However, for non-preemptive scheduling, we merely have to verify whether a job
of task τk, arriving at time t, can be started before t + Dk − Ck and higher-priority
jobs arriving in [t + Dk − Ck, t + Dk] do not have to be considered. Hence, we

4.1 non-preemptive scheduling 61

can determine the schedulability of a job of τk released under the critical instant
(at time 0) by testing whether1

∃t ∈ (0, Dk − Ck] with Bk +
k−1

∑
i=1

⌈
t
Ti

⌉
Ci ≤ t (4.23)

thus ensuring enough time for the job of τk to start executing.

While testing Eq. (4.23) alone is not safe enough due to the self-pushing phe-
nomenon [BLV09], we adopt Lemma 2.2 from Yao, Buttazzo, and Bertogna [YBB10],
which directly results in:

Lemma 4.5. A task τk is schedulable by a static-priority non-preemptive scheduling
(FP-NP) algorithm ANP, if all higher-priority tasks are schedulable, and the following
two conditions hold:

1. the first job of τk will be executed before its deadline:
∃t ∈ (0, Dk − Ck] with Bk + ∑

τi∈hp(τk)

⌈
t
Ti

⌉
Ci ≤ t

2. the task set is schedulable by AP, i.e., the preemptive version of A:
∃t ∈ (0, Dk] with Ck + ∑

τi∈hp(τk)

⌈
t
Ti

⌉
Ci ≤ t

From Lemma 4.5, we to construct a tighter sufficient schedulability test based
on two hyperbolic equations. Since this construction is similar to the one in
Theorem 4.2, we only state the differences here.

As we examine different time intervals for the preemptive and the non-
preemptive test, i.e., (0, Dk] and (0, Dk −Ck], the sets hp1(τk) and hp2(τk) are not
necessarily identical for both tests, i.e., a task τi ∈ hp(τk) with Dk−Ck ≤ Ti < Dk
is in hp1(τk) for the preemptive case and in hp2(τk) for the non-preemptive case.
We denote these sets hpP

1 (τk) and hpP
2 (τk) for the preemptive case, and hpNP

1 (τk)

and hpNP
2 (τk) for the non-preemptive case. As the examined deadline differs, the

order of the jobs in hpP
1 (τk) and hpNP

1 (τk) may differ as well if the last release
time ti of τi is in (Dk − Ck, Dk]. As a result, the permutation of the τi ∈ hpP

1 (τk)

may differ from the permutation of the τi ∈ hpNP
1 (τk) as well since they are

permutated according to the last release of τi. We denote those last release times
tP
i and tNP

i and the resulting permutations as πP
k and πNP

k .

Theorem 4.6. A task τk is schedulable by a static-priority non-preemptive scheduling
algorithm ANP if all higher priority tasks are schedulable and the following two conditions hyperbolic form

hold:



Bk + ∑
τi∈hpNP

2 (τk)

Ci

Dk − Ck
+ 1


 ∏

τj∈hpNP
1 (τk)

(Uj + 1) ≤ 2 (4.24)




Ck + ∑
τi∈hpP

2 (τk)

Ci

Dk
+ 1


 ∏

τj∈hpP
1 (τk)

(Uj + 1) ≤ 2 (4.25)

1 When considering a tight blocking time Bk = maxτi ∈ lp(τk){Ci − ∆} with ∆ > 0 (instead of a strict

upper bound), e.g., [YBB10; BLV09],
⌊

t
Ti

⌋
+ 1 (instead of

⌈
t
Ti

⌉
) must be used in Eq. (4.23). The

simplification of setting Bk to maxτi ∈ lp(τk){Ci} allows us to put ≤ instead of < in the condition.

62 speedup factors and parametric bounds

Proof. We need to show that if both conditions hold, Lemma 4.5 holds as well.
The proof for Eq. (4.25) is similar to the one of Theorem 4.2 but looking for the
smallest Ck instead of the smallest Ĉk.

When considering Eq. (4.24), the sets hpNP
1 (τk) and hpNP

2 (τk) may differ from
hpP

1 (τk) and hpP
2 (τk), i.e., a tasks τi with Dk − Ck ≤ Ti < Dk is moved from

hpP
1 (τk) to hpNP

2 (τk), and thus |hpNP
1 (τk)| ≤ |hpP

1 (τk)|. The tasks in hpNP
1 (τk) will

be ordered according to

tNP
i =

⌊
Dk − Ck

Ti

⌋
Ti ∀τi ∈ hpNP

1 (τk) and tk = Dk (4.26)

We are again looking for the smallest B∗k > B′k = Bk + ∑
τi∈hpNP

1 (τk)

Ci to ensure that

τk cannot start by considering an optimization problem. If we replace > with ≥ to
look for the minimum instead of the infimum, the conditions are the same as the

conditions in Eq. (4.13b) with B∗k instead of C∗k . With B∗k ≥ t∗k −
k−1
∑

i=1
t∗i Ui −

k−1
∑

i=1
t∗i Ui

we get a maximization problem of the
k−1
∑

i=1
t∗i Ui with the same constraints as in

Eq. (4.13), and therefore getting the same solution for B∗k .

We now show an interesting property of the blocking time, namely that under
certain conditions and if the blocking time is not too long, the blocking time has
no impact on the schedulability test in Lemma 4.5.

Theorem 4.7. The schedulability of task τk under a non-preemptive static-priority
scheduling ANP solely depends on the schedulability of τk under its preemptive version
AP if the following two conditions hold:

Ti ≤ Dk − Ck ∀τi ∈ hp(τk) (4.27a)

Bk ≤
(

1− Ck

Dk

)
Ck (4.27b)

Proof. We need to show that under the given assumptions, if Eq. (4.25) holds,
Eq. (4.24) holds as well. As Ti ≤ Dk−Ck for all τi ∈ hp(τk), we know, that hpP

2 (τk)

and hpNP
2 (τk) are both empty, and therefore hpP

1 (τk) = hpNP
1 (τk) = hp(τk). As a

result, we know ∏
τj∈hpN

1 (τk)

(Uj + 1) and ∏
τj∈hpNP

1 (τk)

(Uj + 1) are the same. We know

Bk
Dk−Ck

≤ Ck
Dk

by Eq. (4.27b). Therefore, the success of Eq. (4.25) implies the success
of Eq. (4.24).

The proposed schedulability tests can easily be extended to limited-preemptivelimited-preemptive
scheduling scheduling, as long as the pseudo-polynomial time schedulability tests have a

similar form as the ones presented here. For instance, for the model in [YBB10], a
strict upper bound of the blocking time for τk can be computed as

Bk = max
τi ∈ lp(τk)

{ max
j ∈ np(τi)

{Ci,j}} (4.28)

where np(τi) is the number of non-preemptive regions in τi and Ci,j is the WCET
of the j-th non-preemptive region of τi. With this upper-bounded blocking time,

4.1 non-preemptive scheduling 63

the TDA-based schedulability test for task τk in [Bur94] can be revised by using
the definition of Bk in Eq. (4.28) to replace B∗k in Eq. (2.7) or Bk in Eq. (2.10). Hence,
the tests in Theorem 4.2 and Theorem 4.3 can be applied for limited preemption.

A tighter schedulability test for tasks that end with a final non-preemptive
interval has been proposed by Yao et al. [YBB10]. Let Ck, f be the length of this
final non-preemptive section of τk and let Ck,s = Ck − Ck, f be the WCET of τk
without the final section. We need to ensure that the upper-bounded blocking
time, all higher priority tasks τi ∈ hpNP

2 (τk), and the part of τk represented by
Ck,s can be executed before the last non-preemptive section of τk. Hence, similar
to Theorem 2 in [YBB10], the first condition in Lemma 4.5 is changed to verify
whether there exists t ∈ (0, Dk − Ck, f] with Bk + Ck,s + ∑τi∈hp(τk)

⌈
t
Ti

⌉
Ci ≤ t.

Thus we can reformulate Eq. (4.24) in Theorem 4.6 as



Bk + Ck,s + ∑
τi∈hpNP

2 (τk)

Ci

Dk − Ck, f
+ 1


 ∏

τj∈hpNP
1 (τk)

(Uj + 1) ≤ 2 (4.29)

if hpNP
2 (τk) and hpNP

1 (τk) are constructed accordingly.

4.1.2 parametric utilization bound

We now provide the first general parametric utilization bounds for implicit-deadline parametric utilization
boundtask sets under non-preemptive Rate Monotonic scheduling (RM-NP), where,

in addition to the utilization, the maximum blocking factor γ of the task set T is maximum blocking
factorconsidered. We start with a parametric bound for a specific task τk and then

extend it to T, both based on Theorem 4.2. Afterwards, we provide improved
bounds based on the improved scheduling condition in Theorem 4.6.

Theorem 4.8. Suppose that the tasks are indexed such that Ti ≤ Ti+1 and that
γk = maxτi∈lp(τk)

{
Ci
Ck

}
= Bk

Ck
. Task τk is schedulable by RM-NP if

Usum ≤





((2
1+γk

) 1
k − 1

1+γk

)
+ (k− 1)

((2
1+γk

) 1
k − 1

)
if γk ≤ 1

1
1 + γk

if γk > 1
(4.30)

Proof. This has a similar proof as the Liu and Layland bound using the Lagrange
Multiplier Method. Details are provided in the Appendix.

Theorem 4.9. Suppose that γ = maxτk∈T {γk}. A task set can be feasibly scheduled by
RM-NP if

Usum ≤





γ
1+γ + ln

(
2

1+γ

)
if γ ≤ 1

1
1+γ if γ > 1

(4.31)

64 speedup factors and parametric bounds

Proof. This follows directly from Theorem 4.8 by calculating the utilization bound
when k→ ∞, i.e.,

lim
k→∞

((2
1+γ

) 1
k − 1

1 + γ

)
+ (k− 1)

((2
1+γ

) 1
k − 1

)

= k
((2

1+γ

) 1
k − 1

)
+
(

1− 1
1 + γ

)
= ln

(2
1 + γ

)
+

γ

γ + 1

for the cases when γ ≤ 1. For γ > 1 the result is identical to Theorem 4.8
regardless of k.

As Theorem 4.6 improves Theorem 4.2, it can also be applied to achieve a
tighter parametric utilization bound.

Theorem 4.10. Suppose that the tasks are indexed in rate monotonic order, i.e., such that
Ti ≤ Ti+1. If γ = maxτi∈lp(τk)

{
Ci
Ck

}
= Bk

Ck
> 0, then τk is schedulable by RM-NP if

k

∑
i=1

Ui ≤ min
{

k(2
1
k − 1),

1
1 + γ

}
(4.32)

Proof. The utilization bound of Eq. (4.25) for RM-NP is the well-known Liu and
Layland bound k(2

1
k − 1), as shown in [LL73; BBB01]. We only have to focus

on the utilization bound of Eq. (4.24). Since we consider implicit-deadline task
sets, we can substitute Dk with Tk. Due to RM-NP, we know Ti ≤ Tk for any
higher-priority task τi, which means Ci

Tk
≤ Ui. Therefore, a more pessimistic test

than Eq. (4.24) is to test whether



γUk + ∑
τi∈hpNP

2 (τk)

Ui

1−Uk
+ 1


 ∏

τj∈hpNP
1 (τk)

(Uj + 1) ≤ 2 (4.33)

The utilization bound can be proven by finding the infimum
k
∑

i=1
Ui such that

Eq. (4.33) does not hold. We first show that the condition in Eq. (4.33) can be
simplified. Suppose that Uk + ∑τi∈hpNP

2 (τk)
Ui is specified, denoted as f . Since

γUk+ f−Uk
1−Uk

is maximized when Uk is either 0 or f we only consider these two cases.

We search for the infimum of
k
∑

i=1
Ui such that

(
γUk

1−Uk
+ 1
) k−1

∏
j=1

(Uj + 1) > 2. The

detailed proof showing that the infimum happens for one of the boundary values
of U1 ∈ [0; 2

1
k−1 − 1] is in the Appendix. The utilization bound for U1 = 0 is

1
1+γ . If U1 = (2

1
k−1 − 1) the utilization bound is (k− 1) · (2 1

k−1 − 1) > k(2
1
k − 1).

Therefore, the conclude the Theorem.

Based on the property shown in Theorem 4.10, we provide an improved
parametric utilization bound of RM-NP with respect to γ for sporadic real-timeparametric utilization

bound tasks with implicit deadlines.

4.2 automotive task systems 65

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0 0.5 1 1.5 2 2.5 3

U
ti

li
z
a
ti

o
n

 B
o

u
n

d

γ

Theorem 4.11

Theorem 4.9

Andersson and Tovar (2009)

Figure 4.1: Comparison of the parametric utilization bound of RM-NP with respect to

γ = maxτk∈T

{
maxτi∈lp(τk)

{
Ci
Ck

}}
by Theorem 4.9 and Theorem 4.11 with the

result by Andersson and Tovar [AT09] for RM-NP on CAN buses [Bos91].
Adapted from [BCH15].

Theorem 4.11. For γ = maxτk∈T

{
maxτi∈lp(τk)

{
Ci
Ck

}}
, a task set can be feasibly

scheduled by RM-NP if

Usum ≤





ln(2) ≈ 0.693 if γ ≤ 1−ln(2)
ln(2)

1
1+γ if γ > 1−ln(2)

ln(2)

(4.34)

Proof. This follows directly from Theorem 4.10 by calculating the utilization
bound when k→ ∞.

The result in Theorem 4.11 further improves the result in Theorem 4.9. With the
analysis in Theorem 4.11, we conclude that the utilization bound of RM-NP with
respect to γ can still be up to 69.3%, if γ ≤ 1−ln(2)

ln(2) ≈ 0.44269. We illustrate the
results of Theorems 4.9 and Theorem 4.11 in Figure 4.1. We also show the result
by Andersson and Tovar [AT09] who provided a utilization bound for RM-NP on
a CAN bus [Bos91] which covers the case when γ ≥ 2.

4.2 parametric utilization bounds for

automotive task systems

In the previous section, we provided a parametric utilization bound for non- parametric utilization
boundpreemptive scheduling where the considered parameter γ represented the relation

between blocking time and execution time. However, while the WCETs of all
tasks were assumed to be known in addition to their utilization, there were no
restrictions regarding the relation among task parameters. In this section, we
explore how to exploit the relation of task parameters among tasks in the task
set. Motivated by the following two reasons, we examine restrictions for the

66 speedup factors and parametric bounds

relation of periods in the system. First, it is known that for harmonic task sets theharmonic task set

utilization bound of RM-P is 100% [KM91]. Therefore, it seems reasonable that a
better result than the Liu and Layland bound of 69.3% [LL73] can be achieved
if the relation between periods is not arbitrary but some tasks in the set have
harmonic relations of their periods, e.g, for semi-harmonic task sets. Second, suchsemi-harmonic task set

harmonic relations among periods are common for real-world systems, since
periodic releases will be triggered recurrently based on a timer and the period of
the timer will in many cases be a round value of milliseconds or microseconds.
One prime example are automotive task sets where the period is chosen fromautomotive task set

{1, 2, 5, 10, 20, 50, 100, 200, 1000} ms for the majority of tasks [KZH15; HDK+17;
SSD+13; TEH+16]. We prove that the utilization bound for automotive task sets is
always at least 90%. In addition, we provide efficient utilization based schedu-
lability tests and parametric utilization bounds for such automotive task sets,
increasing this bound even further. We also show that representative automotive
task sets are usually schedulable for up to 100%, by considering randomized
task sets created according to the “Real world automotive benchmark for free”
provided by Bosch [KZH15]. The results presented in this section appeared in
Parametric Utilization Bounds for Implicit-Deadline Periodic Tasks in Automotive Sys-
tems in RTNS 2017 [BUC+17]. Note that the provided results can directly include
additional harmonic periods, i.e., 0.1 ms, 0.5 ms, and 2000 ms, and can be ex-
tended to additional nearly harmonic periods, i.e, including both 0.2 ms and
0.5 ms, or 500 ms. Furthermore, other semi-harmonic settings than the automotive
case can be handled taking similar steps.

4.2.1 preliminary results

While tailor-made analysis and utilization bounds for automotive task sets haveutilization bound
automotive task set not been considered in the literature, some of the known general results for

preemptive scheduling can be applied directly or with some slight modification.
We start by introducing these results.

For harmonic periods, the utilization bound under RM-P is 100% [KM91]. Hence,harmonic task set
utilization bound

Rate Monotonic
a task with a period of 1, 2, 10, 20, 100, 200, or 1000 ms can miss its deadline if
and only if the task set has more than 100% utilization.

Lemma 4.12 (Harmonic Subset). In an automotive implicit-deadline task set, a task
τk with Tk ∈ {1, 2, 10, 20, 100, 200, 1000} is schedulable under RM-P scheduling if and
only if

Uk + ∑
τi∈hp(τk)

Ui ≤ 1 (4.35)

Proof. The only-if part is obvious. We sketch the if-part, that has been proved by
Nasri et al. [NMF16], for completeness. Using the TDA in Eq. (2.3), we only test
at time t = Tk. By definition, Tk has a period in {1, 2, 10, 20, 100, 200, 1000} and for

4.2 automotive task systems 67

a higher-priority task τi the period Ti is in {1, 2, 5, 10, 20, 50, 100, 200, 1000} with
Ti ≤ Tk. Therefore, Tk is an integer multiple of Ti for any task τi in hp(τk), and

Ck + ∑
τi∈hp(τk)

⌈
Tk

Ti

⌉
Ci = Ck + ∑

τi∈hp(τk)

Tk

Ti
Ci

= Tk(Uk + ∑
τi∈hp(τk)

Ui) ≤ Tk

where the inequality is due to the if-condition.

Hence, if a task misses its deadline under RM-P in an automotive implicit-
deadline periodic task set with Usum ≤ 100%, the period of this task must be
either 5 ms or 50 ms. The following lemma combines the results in [LSP04; BB04].

Lemma 4.13 (Utilization-Bound Non-Harmonic Subset). In an automotive implicit-
deadline task set, a task τk with Tk ∈ {5, 50} is schedulable under RM-P scheduling if

Uk + ∑
τi∈hp(τk)

Ui ≤ 0.9 (4.36)

Proof. We only sketch the proof. Let Y` be the total utilization of the tasks with
periods equal to `, i.e., Y` = ∑τi∈T`

Ui for ` = 1, 2, 5, 10, 20, 50. We prove this
lemma only for Tk = 5. The objective is equivalent to finding the infimum
Y1 +Y2 +Y5 such that task τk misses its deadline. If we only test the schedulability
condition in Eq. (2.3) when t = 4 and t = 5, we can equivalently formulate this
problem as a linear programming: linear programming

minimize Y1 + Y2 + Y5

such that 4Y1 + 4Y2 + 5Y5 ≥ 4

5Y1 + 6Y2 + 5Y5 ≥ 5

Y1, Y2, Y5 ≥ 0

The utilization bound is 0.9 since the optimal solution of the linear programming
is Y1 = 0, Y2 = 0.5, Y5 = 0.4. The proof for Tk = 50 is almost identical by testing
only at time t = 40 and t = 50.

Combining Lemmas 4.12 and 4.13 directly shows that the utilization bound of
automotive implicit-deadline task sets under RM-P is 90%. Therefore, our focus is
to push this bound further upwards. Hence, in the following section, we explain
how to derive a parametric utilization bound that is superior to 90%.

4.2.2 analysis for rm-p

We first present a parametric utilization bound and tight schedulability analyses
for RM-P. Moreover, we provide an exact schedulability test that only needs to Rate Monotonic

validate 3 inequalities.

The following two theorems present parametric utilization bounds and a concrete parametric utilization
boundexample for the utilization lower bounds.

68 speedup factors and parametric bounds

Theorem 4.14 (Parametric-Bound Non-harmonic). In an automotive implicit-deadline
periodic task set, task τk is schedulable under RM-P scheduling if Tk is 5 and

Uk + ∑
τi∈hp(τk)

Ui ≤ 0.9 + ∑
τi∈T1

Ui

10
(4.37)

When Tk is 50, task τk is schedulable under RM-P scheduling if

Uk + ∑
τi∈hp(τk)

Ui ≤ 0.9 + ∑
τi∈T̂

Ui

10
(4.38)

where Tx = {τi | τi ∈ T and Ti = x} and T̂ is T1 ∪ T2 ∪ T5 ∪ T10 for notational brevity.
The above utilization bounds are lower bounded by 0.9.

Proof. We classify the higher-priority tasks in hp(τk) into two subsets hp<(τk)

and hp=(τk), in which τi ∈ hp(τk) is in hp<(τk) if Ti < Tk and is in hp=(τk) if
Ti = Tk. Let C′k be Ck + ∑τi∈hp=(τk)

Ci for notational brevity. For a specific t with
0 < t ≤ Tk, the left-hand side in the schedulability test in Eq. (2.3) is equivalent to

C′k + ∑
τi∈hp<(τk)

⌈
t
Ti

⌉
Ci

First, assume Tk is 5. By the definition of RM-P scheduling, we know that
hp<(τk) is T1 and T2. Suppose that task τk cannot pass the test in Eq. (2.3) when
we test only t = 4 and t = 5. For t = 4, we get

C′k + ∑
τi∈T1

Ui × 4 + ∑
τi∈T2

Ui × 4 > 4

⇒ C′k
5

+ ∑
τi∈T1

Ui ×
4
5
+ ∑

τi∈T2

Ui ×
4
5
> 0.8

⇒ Uk + ∑
τi∈hp(τk)

Ui > 0.8 + ∑
τi∈T1

Ui

5
+ ∑

τi∈T2

Ui

5
(4.39)

Likewise, for t = 5, this results in

C′k + ∑
τi∈T1

Ui × 5 + ∑
τi∈T2

Ui × 6 > 5

⇒ C′k
5

+ ∑
τi∈T1

Ui + ∑
τi∈T2

1.2Ui > 1

⇒ Uk + ∑
τi∈hp(τk)

Ui > 1− ∑
τi∈T2

Ui

5
(4.40)

By the inequalities in Eq. (4.39) and Eq. (4.40), for a task τk with Tk = 5 the test
in Eq. (2.3) can only fail at t = 4 and t = 5 if

Uk + ∑
τi∈hp(τk)

Ui > max

{
1− ∑

τi∈T2

Ui

5
, 0.8 + ∑

τi∈T1

Ui

5
+ ∑

τi∈T2

Ui

5

}
(4.41)

≥ 0.9 + ∑
τi∈T1

Ui

10
(4.42)

4.2 automotive task systems 69

where the ≥ is due to the intersection of the two upper bounds in Eq. (4.39) and
Eq. (4.40). With similar arguments to the case with Tk = 5, we know that the test
in Eq. (2.3) fails at t = 40 and t = 50 for a task τk with Tk = 50 if

Uk + ∑
τi∈hp(τk)

Ui > max



1− ∑

τi∈T20

Ui

5
, 0.8 + ∑

τi∈T̂

Ui

5
+ ∑

τi∈T20

Ui

5



 (4.43)

≥ 0.9 + ∑
τi∈T̂

Ui

10
(4.44)

where the ≥ again comes from the intersection of the two upper bounds. There-
fore, by using contrapositive based on Eqs. (4.42) and (4.44), we reach the conclu-
sion.

Note that Eq. (4.35), Eq. (4.42), and Eq. (4.44) determine parametric utilization
bounds of 90% + z5 and 90% + z50, where

z5 = ∑
τi∈T1

Ui

10
and z50 = ∑

τi∈T1∪T2∪T5∪T10

Ui

10

We rewrite the conditions in Eqs. (4.35), (4.42), and (4.44) as ∑τi∈T Ui ≤ 100%,
∑τi∈T1∪T2∪T5

Ui ≤ 90% + z5, and ∑τi∈T1∪T2∪T5∪T10∪T20∪T50
Ui ≤ 90% + z50.

We now show that the bounds in Theorem 4.14 are tight.

Theorem 4.15 (Tight-Bound-Non-harmonic). There exists an automotive implicit-
deadline periodic task set with Uk + ∑τi∈hp(τk)

Ui > 0.9 in which task τk is not schedula-
ble by RM-P for a task τk in Tx with x ∈ {5, 50}.

Proof. We prove this theorem by providing two concrete examples. Suppose that
Tk = 5 and let T consist of τ1 with T1 = 2, C1 = 1, and τ2 with T2 = 5, C2 = 2 + ε

with ε > 0 but arbitrarily small.

The utilization of the task set is 0.9 + ε/5 and task τ2 misses its deadline using
the exact test in Eq. (2.3). For Tk = 50, we multiple T1, C1, T2, and C2 with 10,
leading to a task set with utilization 0.9 + ε/5 again that is not schedulable
according to Eq. (2.3).

This leads to the following corollaries:

Corollary 4.16. The utilization bound of an automotive implicit-deadline task set is 90%
which is analytically tight.

Proof. This corollary follows directly by combining Lemma 4.12, Theorem 4.14,
and Theorem 4.15.

Corollary 4.17. An automotive implicit-deadline task set is schedulable by RM-P, if
∑τi∈T Ui ≤ 100% and

∑
τi∈T

Ui ≤ 0.9 + ∑
τi∈T1

Ui

10
+
(

∑
τi∈T100∪T200∪T1000

Ui

)
(4.45)

70 speedup factors and parametric bounds

Proof. Let ∑τi∈T Ui ≤ 100%. According to Lemma 4.12, task τk meets its deadline
if Tk = 1, 2, 10, 20, 100, 200, 1000. Since the satisfaction of the condition in Eq. (4.45)
also implies the satisfaction of the condition in Eq. (4.37), task τk with Tk = 5
always meets its deadline according to Theorem 4.14. Moreover, task τk with
Tk = 50 always meets its deadline since the satisfaction of the condition in
Eq. (4.45) also implies the satisfaction of the condition in Eq. (4.38). Thus, we
reach the conclusion.

In the proof of Theorem 4.14, we showed that testing t = 4 and t = 5 in Eq. (2.3)
for Tk = 5 (t = 40 and t = 50 for Tk = 50, respectively) is sufficient to achieve
the utilization bound of 90%. The following lemma shows that an exact test only
needs to test these two specific t values in Eq. (2.3) as well.

Lemma 4.18. A task τk in T5 is schedulable under RM-P scheduling if and only if
the schedulability condition in Eq. (2.3) holds for t = 4 or t = 5. A task τk in T50

is schedulable under RM-P scheduling if and only if the schedulability condition in
Eq. (2.3) holds for t = 40 or t = 50.

Proof. We only prove the case Tk = 50 since the procedure is similar for Tk = 5. Let
t∗ be the minimum value with 0 < t∗ ≤ 50 such that Ck + ∑τi∈hp(τk)

⌈
t∗
Ti

⌉
Ci = t∗.

We show that the existence of t∗ implies either Ck + ∑τi∈hp(τk)

⌈
40
Ti

⌉
Ci ≤ 40 or

Ck + ∑τi∈hp(τk)

⌈
50
Ti

⌉
Ci ≤ 50.

Recall the definition of C′k, hp<(τk), and hp=(τk) in the proof of Theorem 4.14.

• Case 1 when 0 < t∗ ≤ 40: This means that

t∗ = Ck + ∑
τi∈hp(τk)

⌈
t∗

Ti

⌉
Ci ≥ C′k + ∑

τi∈hp<(τk)

t∗Ui

Clearly, ∑τi∈hp<(τk)
Ui ≤ 1. As 40 is an integer multiple of 1, 2, 5, 10, and 20,

Ck + ∑
τi∈hp(τk)

⌈
40
Ti

⌉
Ci = C′k + ∑

τi∈hp<(τk)

40Ui

≤ t∗
(

1− ∑
τi∈hp<(τk)

Ui

)
+ ∑

τi∈hp<(τk)

40Ui ≤ 40

we reach the conclusion Ck + ∑τi∈hp(τk)

⌈
40
Ti

⌉
Ci ≤ 40.

• Case 2 when 40 < t∗ ≤ 50: This means that

t∗ = Ck + ∑
τi∈hp(τk)

⌈
t∗

Ti

⌉
Ci ≥ C′k + ∑

τi∈T̂

t∗Ui + ∑
τi∈T20

3Ci

where T̂ is T1 ∪ T2 ∪ T5 ∪ T10. Clearly, ∑τi∈T̂ Ui ≤ 1. Since 50 is an integer
multiple of 1, 2, 5, and 10,

Ck + ∑
τi∈hp(τk)

⌈
50
Ti

⌉
Ci = C′k + ∑

τi∈T̂

50Ui + ∑
τi∈T20

3Ci

≤ t∗
(

1− ∑
τi∈T̂

Ui

)
+ ∑

τi∈T̂

50Ui ≤ 50
(

1− ∑
τi∈T̂

Ui

)
+ ∑

τi∈T̂

50Ui = 50

we reach the conclusion Ck + ∑τi∈hp(τk)

⌈
50
Ti

⌉
Ci ≤ 50.

4.2 automotive task systems 71

This leads to the following exact linear time schedulability test: exact test

Theorem 4.19. The given automotive implicit-deadline periodic task set is schedulable
by RM-P if and only if all of the following conditions are satisfied:

∑
τi∈T

Ui ≤ 1 (4.46)

∑
τi∈T1∪T2∪T5

Ui ≤ max

{
1− ∑

τi∈T2

Ui

5
, 0.8 + ∑

τi∈T1

Ui

5
+ ∑

τi∈T2

Ui

5

}
(4.47)

∑
τi∈T̂∪T20∪T50

Ui ≤ max



1− ∑

τi∈T20

Ui

5
, 0.8 + ∑

τi∈T̂

Ui

5
+ ∑

τi∈T20

Ui

5



 (4.48)

where T̂ is T1 ∪ T2 ∪ T5 ∪ T10. Therefore, testing Eq. (4.46), Eq. (4.47), and Eq. (4.48)
is an exact schedulability test.

Proof. This is based on Lemma 4.12 and Lemma 4.18. The last two conditions
represent the tests at time t = 4 and t = 5 for a task τk with Tk = 5 (from
Eq. (4.41)) and at time t = 40 and t = 50 for a task τk with Tk = 50 (from
Eq. (4.43)), respectively.

4.2.3 non-preemptive scheduling

We now provide a sufficient schedulability test for automotive task sets under
RM-NP, considering the utilization of the task τk itself, the utilization of the Rate Monotonic

non-preemptive
scheduling

higher-priority tasks, and the blocking time for task τk. In this test, we assume
that that Ci < 1 for each task τi in the set. This is not too restrictive, since if Ci ≥ 1
for any task, the task set is unschedulable by default if at least one task τb in the
system has a period of 1 due to the blocking time for τb.

Theorem 4.20. Suppose that T is an automotive implicit-deadline periodic task set and
suppose that Ci < 1 for every task τi in T. When Tk is in {1, 2, 10, 20, 100, 200, 1000},
task τk is schedulable under RM-NP if

maxτi∈lp(τk) Ci

Tk
+ Uk + ∑

τi∈hp(τk)

Ui ≤ 1 (4.49)

When Tk is 5, task τk is schedulable under RM-NP if the condition in Eq. (4.37) holds
and

maxτi∈lp(τk) Ci

Tk
+ ∑

τi∈hp(τk)

Ui

≤ max

{
1− ∑

τi∈T2

Ui

5
−Uk, 0.8 + ∑

τi∈T1

Ui

5
+ ∑

τi∈T2

Ui

5

}
(4.50)

72 speedup factors and parametric bounds

When Tk is 50, task τk is schedulable under RM-NP if the condition in Eq. (4.38) holds
and

maxτi∈lp(τk) Ci

Tk
+ ∑

τi∈hp(τk)

Ui

≤ max



1− ∑

τi∈T20

Ui

5
−Uk, 0.8 + ∑

τi∈T̂

Ui

5
+ ∑

τi∈T20

Ui

5



 (4.51)

where T̂ is T1 ∪ T2 ∪ T5 ∪ T10 for notational brevity.

Proof. The condition from Eq. (4.49) comes from the same analysis as for the
if-part in Lemma 4.12 when applying Eq. (2.8) instead of Eq. (2.3). We focus on
the other cases, i.e., when Tk = 5 and Tk = 50, by using Lemma 2.2 that states that
a sufficient schedulability test is to validate whether both conditions in Eq. (2.3)
and Eq. (2.9) hold. The condition in Eq. (2.3) can be tested by using Theorem 4.19.
We focus on a utilization-based test by simplifying Eq. (2.9).

The test in Eq. (2.9) uses
⌊

t
Ti

⌋
+ 1 for the summation of the interference from

the higher-priority tasks. This can be translated into using
⌈

t
Ti

⌉
instead if we

use Bk = maxτi∈lp(τk) Ci as the blocking time instead of B∗k = maxτi∈lp(τk) Ci − ε.
Increasing the blocking time by ε makes the test a bit more pessimistic. However,
if ε can be considered to be small compared to the WCETs of the tasks in T
this pessimism is negligible. For the simplicity of presentation, instead of using
Eq. (2.9), we therefore use the following test

∃t|0 < t ≤ Tk − Ck, Bk + ∑
τi∈hp(τk)

⌈
t
Ti

⌉
Ci ≤ t (4.52)

Recall the definition of hp<(τk) and hp=(τk) in the proof of Theorem 4.14.
Furthermore, let C†

k = ∑τi∈hp=(τk)
Ci. We first consider the case when Tk is 5, i.e.,

hp<(τk) is T1 ∪ T2. Suppose that task τk cannot pass the test in Lemma 2.2 due
to the non-preemptive case using condition Eq. (4.52). Due to the assumption
Ck < 1, it is sufficient to test the condition in Eq. (4.52) at time t = 4 and at time
t = 5− Ck with Ck < 1.

For t = 4, we get

Bk + C†
k + ∑

τi∈T1

Ui × 4 + ∑
τi∈T2

Ui × 4 > 4

⇒ Bk

5
+

C†
k

5
+ ∑

τi∈T1

Ui ×
4
5
+ ∑

τi∈T2

Ui ×
4
5
> 0.8

⇒ Bk

Tk
+ ∑

τi∈hp(τk)

Ui > 0.8 + ∑
τi∈T1

Ui

5
+ ∑

τi∈T2

Ui

5
(4.53)

4.2 automotive task systems 73

For t = 5− Ck, we get

Bk + C†
k + ∑

τi∈T1

Ui × 5 + ∑
τi∈T2

Ui × 6 > 5− Ck

⇒ Bk

5
+

C†
k

5
+ ∑

τi∈T1

Ui + ∑
τi∈T2

1.2Ui > 1−Uk

⇒ Bk

Tk
+ ∑

τi∈hp(τk)

Ui > 1− ∑
τi∈T2

Ui

5
−Uk (4.54)

By the inequalities in Eq. (4.53) and Eq. (4.54), the failure of the test in Eq. (4.52)
at t = 4 and t = 5− Ck happens if

Bk

Tk
+ ∑

τi∈hp(τk)

Ui > max

{
1− ∑

τi∈T2

Ui

5
−Uk, 0.8 + ∑

τi∈T1

Ui

5
+ ∑

τi∈T2

Ui

5

}
(4.55)

We reach the conclusion in Eq (4.50) using contrapositive.

Furthermore, we test t = 40 and t = 50− Ck when Tk is 50, which leads to the
conclusion in Eq (4.51).

While Theorem 4.19 is an exact test, the test in Theorem 4.20 is only sufficient
since the blocking time is greedily included. In general, to verify the schedulability
under FP-NP, the schedulability of each task has to be verified individually. This
is due to the fact that the blocking time is a decreasing function with respect
to the priority and, thus, a task τj with a lower priority than task τi may be
schedulable while τi is not schedulable because the blocking time for τi is larger.

4.2.4 angle-synchronous tasks

In addition to periodic tasks, an automotive task system may involve event-
triggered aperiodic/sporadic tasks [FBD+18]. One specific type are angle-synchronous angle-synchronous

taskstasks where the jobs are triggered by the rotation of the crankshaft. According to
[KZH15], the inter-arrival time between two jobs of an angle-synchronous engine
control task can be modeled as

120
rpm× #cyl

× 1000 milliseconds (4.56)

where rpm is the revolutions per minute of the engine and #cyl is the number of
cylinders. Even though the inter-arrival time of these jobs may change over time,
they are scheduled based on static-priority scheduling. We consider two general
approaches for the priority assignment of those angle-synchronous tasks:

1. Assigning them to the highest priority.

2. The priorities are assigned according to the inter-arrival time at the maxi-
mum rotation speed, i.e., the shortest possible inter-arrival time between
two jobs. For example, for #cyl = 4 and 6000 rpm, the minimum inter-arrival
time is 120×1000

6000×4 = 5 ms.

74 speedup factors and parametric bounds

An angle-synchronous task τi with q execution modes can be modeled by a
tuple < C1

i , T1
i , C2

i , T2
i , . . . , Cq

i , Tq
i > where Cj

i is the WCET for the jth mode, and
T j

i is the minimum inter-arrival time after a job in the jth mode of task τi is
released. Such tasks are also called variable-rate-behaviour tasks [DFP+14] or
multi-mode tasks [HC15b], and schedulability tests of under FP scheduling have
been proposed in [HC15b; DFP+14] as well.

Two existing methods allow to calculate the interference due to an angle-
synchronous task in an interval length ∆. On the one hand, the worst-case work-
load can be determined by investigating the worst-case release patterns using in-
teger linear programming (ILP) [DFP+14] or dynamic programming [HC15b]. On
the other hand, the interference due to an angle-synchronous task τi can be safely

approximated by examining Umax
i = maxj∈{1,...,q}

{
Cj

i

T j
i

}
, Cmax

i = maxj∈{1,...,q}
{

Cj
i

}
,

and Tmin
i = maxj∈{1,...,q}

{
T j

i

}
as shown in the following lemma:

Lemma 4.21. The maximum interference Ii(∆) incurred by an angle-synchronous task
τi in an interval of length ∆ is at most

Ii(∆) =

{
Umax

i × ∆ + Cmax
i if ∆ > Tmin

i

Cmax
i if ∆ ≤ Tmin

i

(4.57)

Proof. This is based on Theorem 1 by Davis et al. [DFP+14] and Lemma 2 by
Huang and Chen [HC15b]. Without loss of generality, let the interval start at
time 0. According to Theorem 1 in [DFP+14], the maximum interference from an
angle-synchronous task τi to a lower-priority job arriving at time 0 happens in
the following worst-case pattern: a) release the first job at time 0, b) follow the
minimum period needed in the particular execution mode, and c) release the last
job with execution time Cmax

i before ∆. We consider the two cases individually.
For ∆ > Tmin

i , let t∗ < ∆ be the arrival time of the last job in the above pattern.
Lemma 2 in [HC15b] that the maximum interference from 0 to t∗ is at most
Umax

i × t∗ if the last job is excluded. Therefore, by including the job released at
or after t∗, the maximum interference incurred by τi is at most Umax

i × ∆ + Cmax
i .

For ∆ ≤ Tmin
i , only one job of the angle-synchronous task is released and the

interference is, obviously, at most Cmax
i .

We revise the schedulability test in Eq. (2.3) to consider angle-synchronous
tasks. Let hp(τk) be the set of the periodic tasks with priorities higher than task τk
and let Tas be the set of the angle-synchronous tasks with higher priority. An
implicit-deadline periodic task τk is schedulable under FP-P scheduling if

∃t|0 < t ≤ Tk, Ck + ∑
τi∈hp(τk)

⌈
t
Ti

⌉
Ci + ∑

τi∈Tas

Ii(t) ≤ t (4.58)

The schedulability test in Eq. (4.58) does not significantly increase the difficulty
for testing the schedulability of a periodic task τk under FP-P compared to the
case without angle-synchronous tasks. All utilization-based schedulability tests in
Section 4.2.2 and the test in Theorem 4.20 can be revised easily by including the
interference from the angle-synchronous tasks based on Eq. (4.58). For example,
we can revise Theorem 4.19 as:

4.2 automotive task systems 75

Theorem 4.22. Suppose that tasks in Tas are assigned to higher priorities than any
periodic task, and that the priorities of the periodic tasks are assigned by the rate-monotonic
priority assignment. For each value y in {1, 2, 5, 10, 20, 50, 100, 200, 1000} let T̂y be
defined as the set of periodic tasks with period less than or equal to y for notational
brevity. The given automotive implicit-deadline periodic task set is schedulable under
static-priority preemptive scheduling if the angle-synchronous tasks are schedulable at the
highest priority and all the following conditions are satisfied:

∑
τi∈T̂x

Ui + ∑
τi∈Tas

Ii(x)
x
≤ 1 ∀x ∈ {1, 2, 10, 20, 100, 200, 1000} (4.59)

∑
τi∈T̂5

Ui ≤ max

{
1− ∑

τi∈T2

Ui
5
− ∑

τi∈Tas

Ii(5)
5

, 0.8 + ∑
τi∈T1∪T2

Ui
5
− ∑

τi∈Tas

Ii(4)
5

}
(4.60)

∑
τi∈T̂50

Ui ≤ max



1− ∑

τi∈T20

Ui
5
− ∑

τi∈Tas

Ii(50)
50

, 0.8 + ∑
τi∈T̂∪T20

Ui
5
− ∑

τi∈Tas

Ii(40)
50



 (4.61)

Proof. This follows directly from considering the interference due to the angle-
synchronous tasks in Eq. (4.58) and repeating the same procedures as in the
proofs of Section 4.2.2.

Note that the schedulability has to be tested individually for each period. The
reason is that while the interference due to the utilization Umax

i of the angle
synchronous tasks is constant for each period, the interference due to Cmax

i
decreases when the period is increased. Furthermore, Theorem 4.22 is only a
sufficient test while Theorem 4.19 is an exact schedulability test. This is due to
the fact that the terms we introduce to calculate the interference from angle-
synchronous tasks are safe approximations but not tight.

Regarding schedulability, letting the angle-synchronous tasks have the highest
priority introduces unnecessary pessimism to the system. The reason is that tasks
with high priority are postponed while angle-synchronous tasks that arrived
later and have a larger relative deadline are executed. Instead, from a scheduling
point of view, the angle-synchronous tasks should be scheduled according to their
minimal inter-arrival time if this value can determined safely. However, this would
most likely not lead to harmonic periods which are key for a high schedulability.
Therefore, we propose to determine the priority of the angle-synchronous tasks
based on the minimal inter-arrival time Tas and to analyse them assuming they
have a period that is the maximum p ∈ {1, 2, 5, 10, 20, 50, 100, 200, 1000} with
p ≤ Tas. Hence, Tas would be removed from the analysis when only tasks in
T̂p are considered and the schedulability test for the angle-synchronous tasks
can be done by using Eq. (4.59), Eq. (4.60), or Eq. (4.61), depending on p. For
example, for a maximum of 6000 rpm and 6 cylinders, according to Eq. (4.56),
the angle-synchronous tasks have a minimal inter-arrival time of ≈ 3.33. Thus
their priority would be between the tasks in T2 and T5. Hence, they would be
removed from the analysis for x = 1 and x = 2 and the schedulability of the
angle-synchronous tasks would be determined using Eq. (4.59) for x = 2.

76 speedup factors and parametric bounds

4.2.5 evaluation

To analyze the schedulability of implicit-deadline periodic tasks in automo-
tive systems, it would be best to analyze task sets of real-world applications.
Unfortunately, real-world automotive task sets are not available to the public.
Hence, we use synthetic task sets that are similar to real-world systems, based
on “Real world automotive benchmarks for free” by Kramer, Ziegenbein, and
Hamann [KZH15]. Note that similar period distributions are used in other works
related to automotive applications, e.g., in [TEH+16; SSD+13; HDK+17].

In automotive systems, the entity for scheduling is a Runnable, which is
equivalent to a task in this paper, i.e, the information provided in [KZH15] about
Runnables is used to create tasks. We analyzed the schedulability of the resulting
task sets using the schedulability tests presented in this paper, both for scaled
and for unscaled task sets as well as both for RM-P and RM-NP. We conducted
evaluations with and without considering angle-synchronous tasks.

evaluation setup

The information to create the real-world automotive task sets was collected from
Tables III, IV, and V in [KZH15] and is summarized in Table 4.1 in a compact
form. Table III in [KZH15] provided the distribution of tasks over the periods
in {1, 2, 5, 10, 20, 50, 100, 200, 1000} ms and for angle-synchronous tasks. For each
period, the minimum, average, and maximum value of the average-case execution
time (ACET) of tasks is given in Table IV in [KZH15]. According to [KZH15],
the value distribution can be approximated using a Weibull distribution with the
probability density function

f (x) =
k
λ
·
(x

λ

)k−1
· e−(x

λ)
k

(4.62)

for x ≥ 0, if the values for the shape parameter k and the scale parameter λ

are given. We numerically approximated k and λ for each period, since only
Cmin, Caverage, and Cmax of the distributions are provided. We used the maximum
likelihood estimators for k and λ as the starting values, drew a sample of 10000
random numbers based on those values, compared the results with the given Cmin,
Caverage, and Cmax, and adjusted the values for k and λ based on the resulting
distribution. We iterated until the resulting distribution matched the values
for Cmin, Caverage, and Cmax provided in [KZH15]. Since we only approximated
the Weibull distribution up to a certain accuracy, drawn Ci values that were
not in the related [Cmin, Cmax] interval were discarded in the actual evaluation.
Based on the average execution time values the WCETs can be calculated by
scaling up the average execution time with a randomly distributed factor in the
interval [fmin, fmax] related to the period of the task. As only the scaling factors
are provided in Table V in [KZH15] but no further information regarding the
distribution was given, we used a uniform distribution over [fmin, fmax].

We conducted evaluations in two general setups: 1) based on the ACETs
reported in [KZH15], i.e., the values based on the Weibull distributions, referred

4.2 automotive task systems 77

Period Share Average ET in µs WCET factor
Min Avg. Max fmin fmax

1 ms 3% 0.34 5.00 30.11 1.30 29.11
2 ms 2% 0.32 4.20 40.69 1.54 19.04
5 ms 2% 0.36 11.04 83.38 1.13 18.44

10 ms 25% 0.21 10.09 309.87 1.06 30.03
20 ms 25% 0.25 8.74 291.42 1.06 15.61
50 ms 3% 0.29 17.56 92.98 1.13 7.76

100 ms 20% 0.21 10.53 420.43 1.02 8.88
200 ms 1% 0.22 2.56 21.95 1.03 4.90

1000 ms 4% 0.37 0.43 0.46 1.84 4.75
angle-sync. 15% 0.45 6.52 88.58 1.20 28.17

Table 4.1: The information used to generate the automotive task sets, combined from
Table III, Table IV, and Table V in [KZH15]. Adapted from [BUC+17].

0.0 0.2 0.4 0.6 0.8 1.0
Utilization (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ep
ta

nc
e

R
at

io
(%

)

99.900 99.925 99.950 99.975 100.000

0

20

40

60

80

100

a) Unscaled Values

Preemptive RM

Non-Preemptive RM

0 20 40 60 80 100

0

20

40

60

80

100

b) Scaled Values

Preemptive RM

Non-Preemptive RM

Figure 4.2: The acceptance ratio of unscaled and scaled task sets for both
preemptive (RM-P) and non-preemptive Rate Monotonic scheduling
(RM-NP). Adapted from [BUC+17].

to as unscaled tasks, and 2) based on the worst-case execution times after scaling
the ACETs with the WCET scaling factors. For a given target utilization Ut we
randomized task sets with a total utilization in the interval [Ut, Ut + γ] for a small
γ > 0. Details can be found in the Appendix. Independent from the setting, we
always created 1000 task sets for each utilization value we analyzed.

general schedulability

We evaluated the schedulability under RM-P and RM-NP for task sets without
angle-synchronous tasks, considering random task sets based on Table 4.1 under
the schedulability tests in Theorem 4.19 and Theorem 4.20 for the preemptive and
the non-preemptive case, respectively. The results with and without scaling are
shown in Figure 4.2a and Figure 4.2b, respectively. The task sets with unscaled
values are (nearly) always schedulable under RM-P. However, when considering
99.99% utilzation as an example, the setting in Table 4.1 did not lead to the case
where Corollary 4.17 could be applied directly, i.e., the combined utilization
of the tasks with periods 100, 200, and 1000 was always below 10%. Therefore,

78 speedup factors and parametric bounds

90 92 94 96 98 100
Utilization (%)

0

20

40

60

80

100

A
cc

ep
ta

nc
e

R
at

io
(%

)
Share = {0.8,0.1,0.1}
Share = {0.1,0.8,0.1}
Share = {0.1,0.1,0.8}
Share = {0.33,0.34,0.33}

Figure 4.3: The effect of non-harmonic subsets in Theorem 4.19. The share values indicate
the average percentage of tasks with period 1, 2, and 5 ms, respectively.
Adapted from [BUC+17].

we analyzed the utilization values of the individual periods, i.e., looking at the
non-harmonic periods 5 and 50. The combined utilization for periods 1, 2, and 5
was always ≤ 47.68%. Hence, the tasks up to period 5 are always schedulable
as the total utilization up to period 5 is below 90%. Furthermore, the total
utilization of periods 1, 2, 5, 10, 20, and 50 was at most 97.52% while the total
utilization of periods 1, 2, 5, 10, and 20 was at least 92.78%. Putting these values to
Eq (4.48) results in a guaranteed schedulability since 80% + 92.78%/5 = 98.556%
which is larger than 97.52%. In addition, task sets with 100% utilization are
never schedulable for RM-P due to their construction, as we created sets with a
utilization in [Ut, Ut + γ], i.e., the actual task set utilization in this case was strictly
larger than 100%. Note that it is possible that task sets with a utilization U∗ with
90% < U∗ < 100% are created that are not schedulable in the preemptive case
due to the random distribution of task periods. However, this is very unlikely
and never happened in our evaluation.

To determine the impact of the distribution of tasks among non-harmonic
periods, we analyzed task sets where all periods were in {1, 2, 5} under RM-P,
considering different distributions over the periods. The individual tasks were
created according to the Ci distribution given in Table 4.1. The results are shown
in Figure 4.3. The probability that a task has period x depends on the share value
given for that period in the related label, i.e., it shows the probability that a task is
in {T1, T2, T5}. If the distribution of probabilities is {0.8, 0.1, 0.1} (blue curve) the
task sets were always schedulable up to 98.1%, since the utilization of T1 is very
large and task sets are schedulable up to a utilization of 0.9 + ∑τi∈T1

Ui
10 according

to Eq. (4.42). To explain the other cases, we look at Eq. (4.47) in Theorem 4.19,
i.e., ∑τi∈T̂5

≤ max
{

1−∑τi∈T2
Ui
5 , 0.8 + ∑τi∈T1

Ui
5 + ∑τi∈T2

Ui
5

}
. For the green and

the red curve, the acceptance ratio drops a bit earlier than for the blue curve. The
reason is that in Eq. (4.47) a large value on the right hand side happens for either
a large or a small utilization of tasks with period 2. If the tasks are distributed
equally over the periods 1, 2, and 5 (black curve), we observe the earliest drop of
the acceptance ratio. The reason is that none of the terms on the right hand side
of Eq. (4.47) is as large as in the previous cases.

4.2 automotive task systems 79

0 20 40 60 80 100
Utilization (%)

0

20

40

60

80

100
A

cc
ep

ta
nc

e
R

at
io

(%
)

NP max BT 750 µs

NP max BT 500 µs

NP max BT 200 µs

Non-Preemptive (NP)

Preemptive

Figure 4.4: Impact of the maximum blocking time on the schedulability of automotive
task sets under for RM-NP. Adapted from [BUC+17].

When the tasks are scaled (Figure 4.2b), all task sets with a utilization less
than 100% are still schedulable under RM-P with similar reasons as in the un-
scaled case. On the other hand, for RM-NP the schedulability drops from 10%
utilization onwards, since the execution time can be larger than 1 ms for some
tasks after scaling them. Therefore, we analyzed the effect of bounded blocking
times which is similar to limited-preemptive scheduling approaches, where tasks limited-preemptive

schedulingare separated into non-preemptive subtasks with a given maximum length. As
shown in Figure 4.4, the acceptance ratio can still be very reasonable for such
a setup. Even for a comparatively large maximum blocking time of 750 µs the
improvement compared to the strictly non-preemptive case is significant. For a
maximum blocking time of 500 µs the acceptance ratio is always above 95.6%. If
the maximum blocking time is set to 200 µs or less, the acceptance ratio is the
same as in the preemptive case, i.e., the task sets are always schedulable.

This result shows that moderate blocking times due to non-preemptive exe-
cution have no negative impact on the schedulability of automotive task sets
compared to preemptive scheduling. Hence, tasks with a WCET of 200 µs or less
can be executed non-preemptively. For tasks with a WCET that is larger than
200 µs, limited-preemptive scheduling approaches like co-operative scheduling [Bur94] limited-preemptive

scheduling

co-operative scheduling
can be utilized when the length of the non-preemptive sections is chosen based
on the result of our evaluation, i.e., the non-preemptive sections are 200 µs or
less. Note that non-preemptive execution of jobs or of certain job intervals also
reduce the WCET of tasks. The reason is that overhead for preemptions and
cache misses is usually included in the WCET to guarantee a safe schedulabil-
ity analysis. While bounding such overheads is problematic under preemptive
scheduling, the number of preemptions and the effect of cache misses can more
easily be determined when the number of preemptions is zero or bounded by
the number of non-preemptive intervals. Therefore, the provided results enable
to combine the advantages of preemptive and non-preemptive scheduling in
practical scenarios.

80 speedup factors and parametric bounds

50 60 70 80 90 100
Utilization (%)

0

20

40

60

80

100

A
cc

ep
ta

nc
e

R
at

io
(%

)
Set. 1: Highest Priority

Set. 1: Period Based

Set. 2: Highest Priority

Set. 2: Period Based

Figure 4.5: Acceptance ratio of different priority-assignment strategies for angle-
synchronous tasks under different period distributions. Adapted from
[BUC+17].

angle-synchronous tasks

Besides providing the schedulability tests for automotive task sets with angle-
synchronous tasks, in Section 4.2.4 we also stated that, from a scheduling point
of view, the priorities of the angle-synchronous tasks should be set according
to their minimum inter-arrival times instead of to the highest-priority level, if
possible. We compare those two approaches in Figure 4.5, considering angle
synchronous tasks that have a minimum inter-arrival time of 5 ms, i.e., 6000 rpm
and 4 cylinders in Eq. (4.56). We drew Ci randomly according to Table 4.1, and
set Cmax

i = Ci and Umax
i = Ci/6000. We considered two settings:

• Setting 1: the periods are distributed according to Table 4.1, resulting in a
nearly identical acceptance ratio for both approaches. However, assigning
the priority of angle-synchronous tasks based on their minimum inter-
arrival time (black, dashed curve) is never worse than assigning them to the
highest priority (red, solid curve).

• Setting 2: the period distribution is based on Table 4.1 after exchanging
the probabilities for tasks to have a period of 1 ms and a period of 10
ms, i.e., a period of 1 ms has a probability of 25% and a period of 10 ms
one of 3%. The tasks are nearly always schedulable if the priority for the
angle-synchronous tasks is assigned according to the minimal inter-arrival
time (blue, dashed curve). However, if the angle-synchronous tasks have the
highest priority (green, solid curve), the acceptance ratio starts dropping at
65% and is under 20% for a utilization of 80%. While a higher utilization for
T1 usually increases the schedulability, if the angle-synchronous tasks are
scheduled with highest priority, they keep the tasks in T1 from executing,
potentially leading to deadline misses.

4.3 parametric bounds - recapitulation 81

4.3 parametric utilization bounds -
recapitulation

In the two previous sections, we showed that utilization bounds are often of
limited value when describing the actual system utilization possible in a realistic
setting. The reason is that they, by design, consider the worst-case over all
possible setups. Moreover, we showed that parameterising the utilization bounds parametric utilization

boundhelps to provide more realistic results since they allow to exclude these worst-case
scenarios from the consideration if they do not occur in the examined setting.

For example, consider the utilization bound for non-preemptive scheduling, which non-preemptive
schedulingis 0 in the general case [NBF+14]. The reason is that, if for a task τx the WCET Cx

is larger than the smallest period T1 in the system, task τ1 is never schedula-
ble and, thus, C1 can be arbitrary small and Tx arbitrarily large, resulting in
a utilization bound of 0. However, this example only has a theoretical value,
since non-preemptive scheduling should not be considered in such a situation.
Instead, a parametric utilization bound is able to capture the situation after ex-
cluding such extreme cases. Technically, the only previous results in this area by
Andersson and Tovar [AT09], who consider RM-NP for a Controller Area Network Controller Area

Network (CAN)(CAN) [Bos91], can also be considered as a parametric utilization bound. For
CAN, the length of the transmitted messages is lower- and upper-bounded by the
CAN configuration, which results in utilization bound of RM-NP of 25.8% for
CAN 2.0A due to γ ≤ 135

47 and of 29.5% for CAN 2.0B due to γ ≤ 160
67 . Hence, the

maximum and minimum length of the messages is a parameter in this utilization
bound. However, the analysis in [AT09], due to the restriction to CAN, only
covered the case of γ ≥ 2. With the analysis in Section 4.1, we showed that the
utilization bound of RM-NP for CAN bus utilization is 50% if all the messages
have the same length, i.e., γ = 1. Furthermore, we covered the general case
by considering arbitrary values of γ. That the utilization bound is still 69.3% if
γ ≤ 1−ln(2)

ln(2) ≈ 0.44269 can be utilized, for instance, in limited-preemptive scheduling limited-preemptive
schedulingsince it provides a bound on the maximum blocking time and, therefore, the

length of the longest non-preemptive intervals. Hence, the bound can be used
at design time to combine the advantages of non-preemptive and preemptive
scheduling.

Section 4.2 showed that harmonic relations among the task periods can be
used to achieve a general bound of 90% for automotive task sets which can be automotive task set

further improved by considering the utilization of tasks with specific periods as
additional parameters. The evaluation of our parametric utilization bounds and
schedulability tests showed that nearly 100% utilization is achieved for preemptive preemptive scheduling

scheduling. Furthermore, very high utilizations for non-preemptive scheduling are non-preemptive
schedulingpossible, depending on the maximum length of non-preemptive intervals.

Some parametric utilization bounds are already provided in the literature.
The utilization bounds for global multiprocessor scheduling that consider the
maximum task utilization as a parameter, e.g., by Goossens et al. [GFB03] and
Bertogna et al. [BCL05b], are parameterized. The utilization bound of 100% for
harmonic task sets by Kuo and Mok [KM91] is technically also a parametric bound harmonic task set

where the parameter is whether the task set has harmonic periods. Otherwise, the

82 speedup factors and parametric bounds

Liu and Layland Bound of 69.3% holds, which itself is parametric in the number ofLiu and Layland
Bound tasks in the set.

It is noted that the schedulability of a task set will eventually be decided by a
sufficient or at best exact schedulability test, since they have a higher precision
than utilization bounds. However, utilization bounds are helpful tools at design
time, as a precise schedulability analysis cannot be carried out for every change
in the implementation, especially if a large number of tasks are assigned to the
same processor. Both examples show that parametric utilization bounds are able
to provide the required schedulability information in a more precise way than the
more general bounds. Nevertheless, it is important that obtaining the additional
parameters must have a time complexity similar to the parametric utilization boundtime complexity

or utilization based test to be exploitable in practical scenarios. Specifically, the
complexity must be polynomial and not pseudo-polynomial or exponential.

4.4 linear time speedup factors

After focusing on parametric utilization bounds, we now move our attention
to speedup factors. Specifically, we consider speedup factors for static-priorityspeedup factor

static-priority
scheduling

preemptive and non-preemptive scheduling compared to optimal work-conserving

preemptive scheduling

non-preemptive
scheduling

algorithms, i.e., FP-P vs. EDF-P and FP-NP vs. EDF-NP. While previous work has
mainly focused on determining speedup factors assuming exact schedulability
tests and optimal priority assignment policies, we explore how the acquired
speedup factor changes, based on both the priority assignment policy and the
considered schedulability tests. To be precise, we show that a Deadline MonotonicDeadline Monotonic

priority assignment combined with linear-time schedulability tests leads to optimaltime complexity

speedup factors of FP-P vs. EDF-P as well as of FP-NP vs. EDF-NP for implicit-,
constrained-, and arbitrary-deadline task sets. This surprising result reveals that
speedup factors are neither able to capture the sub-optimality of linear-time
sufficient tests compared to exact exponential-time tests, nor able to capture the
sub-optimality of the Deadline Monotonic priority assignment in the arbitrary-
deadline case. The results presented in this section appeared in Schedulability and
Optimization Analysis for Non-Preemptive Static Priority Scheduling Based on Task
Utilization and Blocking Factors in ECRTS 2015 [BCH15] and in Exact Speedup Factors
for Linear-Time Schedulability Tests for Fixed-Priority Preemptive and Non-preemptive
Scheduling in the Information Processing Letters, Volume 177 [BCD+17].

4.4.1 speedup-optimal priority assignment

Optimality cannot only be defined according to schedulability but accordingoptimal algorithm

to any metric, in our case the speedup factor. Hence, a scheduling algorithm isspeedup factor
speedup-optimal if the speedup factor that it requires when combined with an exactspeedup-optimal
schedulability test is not larger than the speedup factor required by any other
scheduling algorithm. Again, this can be applied to different classes of task set and
different scheduling algorithms. We explore the optimality of FP-P vs. EDF-P and
of FP-NP vs. EDF-NP, i.e., the speedup-optimality of a static priority assignment
compared to EDF in both the preemptive and the non-preemptive case. On the

4.4 linear time speedup factors 83

Preemptive

Constraints lower bound
upper bound upper bound
(DM, linear) (DM, expo.)

implicit-
1/ln(2) ≈ 1.44269 [LL73]

deadline
constrained-

deadline
1/Ω ≈ 1.76322

[DRB+09a]
1/Ω ≈ 1.76322

[CHL15b]
1/Ω ≈ 1.76322

[DRB+09a]
arbitrary-

2 [DBB+15] 2 [BCD+17] 2 [DRB+09b]
deadline

Non-Preemptive

Constraints lower bound
upper bound upper bound
(DM, linear) (DM, expo.)

implicit- 1/Ω ≈ 1.76322 1/Ω ≈ 1.76322 1/Ω ≈ 1.76322
deadline [DGC10] [BCH15] [BCH15]

constrained-
deadline

1/Ω ≈ 1.76322
[DGC10]

1/Ω ≈ 1.76322
[BCH15]

1/Ω ≈ 1.76322
[BCH15]

arbitrary-
2 [DBB+15] 2 [BCD+17] 2 [DGC10]

deadline

Table 4.2: The speedup factor lower bounds, upper bounds for linear-time schedulability
tests, and upper bounds for pseudo-polynomial or exponential-time schedula-
bility tests for FP-P vs. EDF-P as well as for FP-NP vs. EDF-NP. Note that the
factors provided in ECRTS 2015 [BCH15] and ILP 177 [BCD+17] are part of the
work presented here. Adapted from [BCD+17].

one hand, optimality of a priority assignment with respect to schedulability
implies that it is also speedup-optimal for the same class of task sets. On the
other hand, non-optimality with respect to schedulability does not necessarily
imply that the priority assignment is not speedup-optimal.

The speedup factors for FP-P vs. EDF-P and FP-NP vs. EDF-NP are summa-
rized in Table 4.2, presenting the lower bounds, the upper bounds for linear-time
schedulability tests, and the upper bounds for pseudo-polynomial or exponential-
time schedulability tests. The constant Ω ≈ 0.56714 is defined by the transcen-
dental equation Ω = ln

(1
Ω

)
. The table refers to the work that appeared in

ECRTS 2015 [BCH15] and ILP 177 [BCD+17] with the related citations. However,
the provided speedup factors are detailed in this section.

Deadline Monotonic (DM) scheduling is a schedulability-optimal preemptive static-
priority scheduling algorithm (FP-P) for constrained-deadline task sets [LW82] as
well as for implicit-deadline task sets [LL73], since Rate Monotonic and DM are
the same for implicit deadline task sets. Hence, DM is also speedup-optimal in
those cases. However, DM is not schedulability-optimal for arbitrary-deadline task
sets under FP-P [Leh90] or for non-preemptive static-priority scheduling (FP-NP)
of implicit-, constrained-, and arbitrary-deadline task sets [GRS96]. Nevertheless,
DM is speedup-optimal for arbitrary-deadline task sets under both FP-P schedul-
ing (Theorem 1 in [DBB+15]) and FP-NP scheduling (Theorem 7 in [DBB+15]).
These theorems prove that the exact speedup factors are unchanged under DM
compared to Audsley’s algorithm (OPA) [Aud91]. The lower bounds for non-
preemptive scheduling of implicit- and constrained-deadline task sets are deter-

84 speedup factors and parametric bounds

mined with Audsley’s algorithm [DGC10]. In the following, we show that DM is
also speedup-optimal in these cases by providing the related upper bounds with a
linear-time test. Furthermore, we provide the linear-time tests that lead to the tight
speedup factor for the preemptive and the non-preemptive arbitrary-deadline case
and briefly recap the linear-time tests for implicit- and constrained-deadline pre-
emptive scheduling. Based on these results, we conclude that the upper bounds
on the speedup factors for static-priority scheduling using DM are the same
as the lower bounds (proven for exact tests and schedulability optimal priority
assignment policies) even when simple linear-time schedulability tests are used.
Therefore, we showed that the simplification from schedulability-optimal priority
assignment to DM priority assignment is penalty-free in terms of speedup factors.
Furthermore, the simplification from exact pseudo-polynomial or exponential
schedulability tests to linear-time sufficient tests is penalty-free with respect to
the speedup factor as well.

4.4.2 speedup factor of dm-np

for constrained deadlines

Based on the hyperbolic tests in Theorem 4.2, we can provide the speedup factor
of DM-NP with respect to EDF-NP for constrained-deadline task sets.

Theorem 4.23. The speedup factor of non-preemptive Deadline Monotonic scheduling
for task sets with constrained deadline is 1

Ω ≈ 1.76322 with respect to non-preemptive
Earliest Deadline First scheduling.

Proof. The lower bound of 1
Ω ≈ 1.76322 has been provided by Davis et. al [DGC10],

who constructed an example that shows 1
Ω ≈ 1.76322 is nearly reached for some

task sets. Hence, we only provide the upper bound of 1
Ω ≈ 1.76322 by showing

that all task sets that are accepted by the exact schedulability test for EDF-NP
on a processor with speed 1 will be accepted for DM-NP on a processor with
speed 1

Ω ≈ 1.76322 as well. We use contrapositive to show that if a task τk is not
accepted by our schedulability test in Theorem 4.2, it is also not accepted by the
exact schedulability test for EDF-NP on a processor with speed Ω.

If ∏k−1
i=1 (Ui + 1) ≥ 2 we know that ∑k−1

i=1 Ui ≥ ln 2, which directly results in the
speed-up factor of 1

ln 2 < 1.76322.

If ∏k−1
i=1 (Ui + 1) < 2 we know that ∑k−1

i=1 Ui < 1 and C∗k ≥ 0. From the proof
of Theorem 4.2 we know that the minimum value C∗k that ensures that the
schedulability test fails for a task τk can be constructed by solving the linear
programming in Eq. (4.13). From Eq. (4.11) we know that for the extreme case

k−1

∏
i=1

(Ui + 1) =
2(

C∗k
Dk

+ 1
) (4.63)

4.4 linear time speedup factors 85

By the definition of B(t) for EDF-NP in Eq. (2.15), B(Dk) = max∀i,Di>t{Ci} which
is identical to Bk under DM-NP. If a task is not accepted by the schedulability test
in Theorem 4.2 we know, that

Bk(Dk) + db f (Dk)

Dk
=

Bk + ∑k
i=1 max

{
0,
⌊

t−Di
Ti

⌋
+ 1
}

Ci

Dk

=

Bk + Ck + ∑
τi∈hp2(τk)

Ci + ∑
τi∈hp1(τk)

max
{

0,
⌊

t−Di
Ti

⌋
+ 1
}

Ci

Dk

≥
Ĉk + ∑k−1

i=1 max
{

0,
⌊

t−Ti
Ti

⌋
+ 1
}

Ci

Dk
≥ Ĉk + ∑k−1

i=1 tiUi

Dk

1
>

C∗k + ∑k−1
i=1 tiUi

tk
=

1

∏k−1
i=1 (Ui + 1)

=
1 + C∗k

Dk

2

where
1
> follows by Theorem 4.3 and Observation 4.4. For notational brevity, let

C∗k
Dk

= x. Therefore,
1+

C∗k
Dk

2 = 1+x
2 .

We have to find the infimum ∑k−1
i=1 Ui to ensure

k−1
∏
i=1

(Ui + 1) > 2
x+1 . Since the

arithmetic mean is always larger than or equal to the geometric mean, it follows

that
(

∑k−1
i=1 Ui
k−1 + 1

)k−1

≥
k−1
∏
i=1

(Ui + 1). Furthermore,
(

∑k−1
i=1 Ui
k−1 + 1

)k−1

≤ e∑k−1
i=1 Ui ,

where e is the Euler number and the right-hand side represents the case when k

goes to ∞. From
k−1
∏
i=1

(Ui + 1) > 2
x+1 , we conclude

k−1

∑
i=1

Ui > ln
(

2
1 + x

)
(4.65)

While 1+x
2 is an increasing function of x, ln

(2
1+x

)
is a decreasing function of x. As

a result,

inf
0≤x<1

{
max

{
x + 1

2
, ln

(
2

1 + x

)}}
= Ω (4.66)

The infimum occurs for the intersection of these two functions, i.e., when
2

x + 1 = ln
(2

1+x

)
. Hence, the proof is concluded by

max

{
db f (Dk) + Bk(Dk)

Dk
,

k−1

∑
i=1

Ui

}

= max





Ĉk +
k−1
∑

i=1
db fi(Dk)

Dk
,

k−1

∑
i=1

Ui





> max
{

2
x + 1

, ln
(

2
1 + x

)}
≥ Ω

86 speedup factors and parametric bounds

Theorem 4.23 directly provides the following corollary:

Corollary 4.24. The speedup factor of non-preemptive Rate Monotonic scheduling
for task sets with implicit deadline is 1.76322 with respect to non-preemptive Earliest
Deadline First.

4.4.3 linear-time schedulability tests

When exploring the linear-time schedulability tests for DM, we implicitly assume
that the tasks are indexed in order of non-decreasing relative deadlines, i.e.,
D1 ≤ D2 ≤ D3 ≤ · · · ≤ Dn. We focus on testing the schedulability of task τk in
linear time under the assumption that the first k− 1 tasks are already verified to
be schedulable under DM. We note that all tests for static-priority scheduling in
this section can be efficiently implemented by using appropriate data structures
to amortize the overall time complexity to O(n) for testing all n tasks with similar
reasons as discussed in Section 4.1 regarding Theorem 4.2.

technical preliminaries

We first introduce the techniques that are used to prove the speedup factors in the
case of arbitrary-deadline task sets. It is important to realize that the the maximum
blocking time B(Dk) under EDF-NP is never smaller than the maximum blocking
time Bk under DM-NP. Furthermore, B(Dk) = Bk unless a lower priority task
with the same deadline and a long execution time exists.

Regarding EDF, we assume the more general form of the demand bound test
presented in Eq. (2.14) for both preemptive and non-preemptive scheduling, i.e.,
∑n

i=1 Ui ≤ 1 and

db f (t) + B(t) ≤ t ∀t ≥ D1 (4.68)

In the in the preemptive case we set B(Dk) = Bk = 0. To show that a static-priority
algorithm has a speedup factor of ρ, it is sufficient to prove that any task set
T′ that is unschedulable according to some schedulability test for FP-P (FP-NP)
scheduling is also unschedulable under EDF-P (EDF-NP) on a processor whose
speed has been reduced by ρ, i.e., scaled by a factor of 1/ρ. Hence, to prove an
upper bound on the speedup factor ρ for a linear-time schedulability test for
preemptive or non-preemptive DM scheduling, we need to show that failure of
the schedulability test implies either

n

∑
i=1

Ui >
1
ρ

(4.69)

or

db f (Dk) + B(Dk)

Dk
>

1
ρ

(4.70)

4.4 linear time speedup factors 87

which implies that the task set cannot be scheduled under EDF-P (EDF-NP) on a
processor of speed 1/ρ. We observe the following relationship for the DM priority
order:

db f (Dk) + B(Dk)

Dk
≥ Ck + ∑k−1

i=1 Ci + Bk

Dk
(4.71)

Furthermore, any lower bound on a speedup factor for FP-P versus EDF-P
(FP-NP versus EDF-NP, respectively) provided for an exact test for FP-P (FP-
NP, respectively) is also valid for any sufficient test for the same scheduling
algorithm. The reason is that an exact test dominates any sufficient test for the
same algorithm, since there are no task sets which are deemed schedulable
according to the sufficient test that are not also deemed schedulable by the exact
test. We provide a set of speedup factor upper bounds for simple linear-time
sufficient schedulability tests. In addition, we show that the speedup factors are
also tight (exact) for the linear-time tests, since these upper bounds are the same
as the lower bounds (and exact values) previously published for exact tests.

preemptive dm scheduling

implicit-deadlines The Liu and Layland bound [LL73] in Eq. (2.4)
provides a schedulability test by verifying ∑k

i=1 Ui ≤ k(21/k − 1). As EDF-P can
schedule all implicit-deadline tasks sets with ∑k

i=1 Ui ≤ 1 [LL73], this directly
provides a linear-time schedulability tests with an exact speedup factor of 1/ ln 2.

constrained-deadlines The linear-time test provided by Chen
et al. in Section 5.1 of [CHL15b] can be exploited to determine the schedulability
of τk by evaluating the following condition in hyperbolic form

(Ck + ∑τi∈hp2(τk)
Ci

Dk
+ 1
)

∏
τi∈hp1(τk)

(1 + Ui) ≤ 2 (4.72)

In Eq. (4.72), hp1(τk) are the tasks in hp(τk) with periods less than Dk, therefore
empty in DM order, and hp2(τk) are the tasks in hp(τk) with periods greater than
or equal to Dk. The upper bound speedup factor for this test is 1/Ω ≈ 1.76322
as shown in Theorem 2 in [CHL15b]. Since this is the same as the lower bound
proven in [DRB+09a], the bound is also exact.

arbitrary-deadline The linear-time test we utilize is a weaker
form of the response time upper bounds provided by Davis and Burns in
Eq. (26) in [DB08] and Bini et al. in Eq. (11) in [BNR+09]. The schedulability
can be verified by verifying whether

Dk ≥
Ck + ∑k−1

i=1 Ci

1−∑k−1
i=1 Ui

(4.73)

If task τk cannot pass the test in Eq. (4.73), it follows that

1 <
Ck + ∑k−1

i=1 Ci

Dk
+

k−1

∑
i=1

Ui (4.74)

88 speedup factors and parametric bounds

Hence, either (i) Ck+∑k−1
i=1 Ci

Dk
> 0.5, (ii) ∑k−1

i=1 Ui > 0.5, or both (i) and (ii) hold. This
directly implies that EDF-P cannot schedule the task set on a processor of speed
0.5, and therefore 2 is an upper bound on the speedup factor. Since the lower
bound provided in [DBB+15] is also 2, the speedup factor is exact.

non-preemptive dm scheduling

implicit- and constrained-deadlines The upper bound
of 1/Ω ≈ 1.76322 on the speedup factor for linear-time schedulability test when
comparing DM-NP to EDF-NP was provided in Section 4.4.2. Since the lower
bound shown in [DGC10] and [DBB+15] is the same, the speedup factor is exact.

arbitrary-deadlines We use is a weaker form of the linear-time
response time upper bounds by Davis and Burns in Eq. (33) in [DB08] as well
as by Bini et al. in Eq. (14) in [BNR+09]. The schedulability can be verified by
evaluating whether

Dk ≥
Bk + Ck + ∑k−1

i=1 Ci

1−∑k−1
i=1 Ui

(4.75)

Hence, if task τk cannot pass the above test, we conclude that

1 <
Bk + Ck + ∑k−1

i=1 Ci

Dk
+

k−1

∑
i=1

Ui (4.76)

Following the same logic as in the preemptive case, either (i) Bk+Ck+∑k−1
i=1 Ci

Dk
> 0.5

or (ii) ∑k−1
i=1 Ui > 0.5 or both (i) and (ii) hold, again implying that the task set

is not schedulable under EDF-NP on a processor of speed 0.5, i.e., the upper
bounded speedup factor is 2. Since the the lower bound provided in [DBB+15] is
the same, this is also exact.

4.5 pitfalls of speedup factors and

utilization bounds

The results we presented in this Chapter so far are rather surprising. On the one
hand, we showed that utilization bounds can be very pessimistic since they coverutilization bound

corner cases that may be excluded by parametric utilization bounds, i.e., if a smallparametric utilization
bound set of easily determined parameters is used to enhance the utilization bound. On

the other hand, we showed that the speedup factors of linear-time schedulabilityspeedup factor

tests for DM are identical to the factors that can be obtained by the dominating
exact tests. This holds for all three classes of task set (implicit-, constrained- and
arbitrary-deadline) as well as for both preemptive and non-preemptive scheduling
(FP-P and FP-NP). Furthermore, DM is not even an optimal priority assignment
with respect to schedulability for arbitrary-deadline task sets. Therefore, speedup
factors are neither able to capture the sub-optimality of the schedulability test

4.5 pitfalls of factors and bounds 89

nor, when considering preemptive arbitrary-deadline task sets or non-preemptive
task sets, of the priority assignment.

This raises some serious questions regarding speedup factors, utilization
bounds, and capacity augmentation bounds that we want to cover in the re-
mainder of this chapter. While these three metrics, referred to as the resource
augmentation factors and bounds, have been widely adopted and accepted by the
real-time scheduling research community and are the de facto standard theoreti-
cal tools to compare scheduling algorithms as well as schedulability tests, how
researchers and designers should view or use these theoretical results is not
always clear. In addition to the examples previously provided in this chapter, we
found a number of surprising results and related ways how these metrics can
be misinterpreted or misunderstood in the literature. Hence, we try to provide
perspective on the use of these metrics and help avoid common pitfalls by guiding
researchers on their meaning and interpretation. Specifically, we want to shed
light on the following questions:

1. What is the actual meaning of resource augmentation factors and bounds
and how should they be interpreted?

2. If Algorithm A has a better resource augmentation factor or bound than
Algorithm B, does this also mean that the performance of Algorithm A is
always better than that of Algorithm B?

3. Enforcement may be used in algorithm design to achieve good resource
augmentation factors or bounds. Can these enforcements result in design
pitfalls that reduce the performance?

4. Are resource augmentation factors meaningful when they refer to an algo-
rithm that is not optimal?

5. Is it possible to enhance the information provided by resource augmentation
factors and bounds to give a broader perspective on performance?

We answer these questions and present our key observations based on several
research results for different models and scheduling problems. The results pre-
sented in the remainder of this Chapter appeared in On the Pitfalls of Resource
Augmentation Factors and Utilization Bounds in ECRTS 2017 [CBH+17a].

4.5.1 the meaning and interpretation

of augmentation factors

While utilization bounds, speedup factors, and capacity augmentation bounds
have been widely used in the literature to theoretically quantify the performance
of scheduling algorithms and schedulability tests, they focus entirely on the worst-
case scenario and quantify it via a single value. However, this way to define
the quantification metrics can make the augmentation bounds poorly suited to
distinguishing between the performance of different algorithms or tests. These
algorithms or tests may have an identical worst-case performance, but a very
different performance in the average-case or across a broad spectrum of other
cases. One reason is that the worst-case scenario may be a specific corner case

90 speedup factors and parametric bounds

that is far removed from practical interest. We first consider uniprocessor static-
priority preemptive scheduling of implicit-deadline task sets as an example to
illustrate this behaviour. Afterwards, we extend our view to constrained- and
arbitrary-deadline task sets and to non-preemptive scheduling.

The seminal utilization bound of ln 2 ≈ 69.3% for RM scheduling of periodic
tasks by Liu and Layland [LL73] in 1973 directly leads to a speedup factor of
1/ln(2) ≈ 1.44269 with respect to EDF-P. However, a stochastic analysis by
Lehoczky et al. [LSD89] in 1989 showed that the average case behaviour is much
better and that the average breakdown utilization is 88%. If the task utilization
is uniformly distributed, the breakdown utilization is even higher, over 90%, as
shown by Bini and Buttazzo [BB05] in 2005.

Furthermore, a number of schedulability tests for RM-P that analytically domi-
nate and are more precise than the Liu and Layland Bound have been established.
In 1995, Burchard et al. [BLO+95] presented a test that also considers the ratios
of task periods. In 1997, Han and Tyan [HT97] proposed a task transformation
technique that converts a set of periodic tasks into a corresponding harmonic
task set, such that Ti is an integer multiple of Tj if Ti ≥ Tj. The utilization bound
provided by Han and Tyan [HT97] analytically dominates the Liu and Layland
bound [LL73] and the bound by Burchard et al. [BLO+95]. To improve the utiliza-
tion bound, the harmonic relationship of the task periods was further exploited
by Kuo et al. [KCL+03]. Based on the ratio r of the minimum task period to the
maximum task period, in 1998 Lauzac et al. [LMM98a] proposed a utilization
bound of ln r + 2/r− 1 if 1 ≤ r ≤ 2. This bound is ln 2, the same as the Liu and
Layland bound, if r is 2. Furthermore, Bini and Buttazzo [BBB01] presented the
hyperbolic bound ∏τi∈τ(1 + Ui) ≤ 2 in 2001. More general utilization based tests
in hyperbolic form have been recently provided by Chen et al. [CHL15b]. While
the improvements in the other utilization bounds are based on characteristics2 of
the task set, the Liu and Layland utilization bound of ln 2 is independent of the
task parameters. However, the following worst-case scenario for RM-P, provided
by Liu and Layland [LL73], is valid for all of the tests mentioned above when n is
sufficiently large:

• T1 = D1 = 1, C1 = (2
1
n − 1)

• Ti = Ti−1 + Ci−1, Ci = (2
1
n − 1)Ti, ∀i = 2, 3, . . . , n− 1.

• Tn = Tn−1 + Cn−1, Cn = (2
1
n − 1)Tn + εTn where ε > 0 is arbitrarily small.

This task set, denoted by TRM, is not schedulable by RM-P since task τn misses
its deadline. Usum of TRM is n(2

1
n − 1) + ε = ln 2 + ε for n → ∞. Hence, all the

schedulability tests mentioned above, i.e, [LL73; LSD89; BLO+95; HT97; BBB01;
KCL+03; LMM98a; CHL15b], conclude that TRM is not schedulable under RM-P.
Therefore, we know that the speedup factor with respect to EDF-P of any of the
above schedulability tests is 1

ln 2 , since all the schedulability tests mentioned above
analytically dominate the Liu and Layland bound of ln 2. Furthermore, the lower
bound on the speedup factor of RM-P compared to EDF-P is also 1

ln 2 since τRM

is schedulable under EDF-P at speed s as long as ∑τi∈τRM
Ui
s ≤ 1.

2 Note that therefore the tests in [LL73; LSD89; BLO+95; HT97; BBB01; KCL+03; LMM98a; CHL15b]
can all be seen as parametric utilization bounds.

4.5 pitfalls of factors and bounds 91

Hence, for the comparison of RM-P with respect to the optimal scheduling
algorithm EDF-P, each of the schedulability tests presented in [LL73; LSD89;
BLO+95; HT97; BBB01; KCL+03; LMM98a; CHL15b] is a speedup-optimal schedu- speedup-optimal

lability test for implicit-deadline task sets. In other words, they all have the
minimum possible speedup factor for the class of scheduling algorithms con-
sidered, i.e., static-priority preemptive scheduling. This is the case despite the
fact that of the tests mentioned above only the test in [LSD89] is an exact test
while the others are merely sufficient. Furthermore, it is well known that in terms
of schedulability they perform very differently, which can be demonstrated via
empirically evaluating the acceptance ratio of synthetic task sets.

Therefore, by analyzing the very restricted but important example of RM-P,
we could show the lack of discrimination between schedulability tests when
assessed using speedup factors. This observation is similar to the one we made
in Section 4.4 when we considered DM scheduling in both preemptive and
non-preemptive cases. Our results in Table 4.2 show the lack of discrimination
between exact tests, with pseudo-polynomial or exponential time complexity,
and some corresponding linear-time sufficient schedulability tests when speedup
factor are considered. Furthermore, although DM is neither an optimal priority
assignment policy for arbitrary-deadline task sets under FP-P nor for FP-NP
scheduling considering any of the three classes of task sets, it is a speedup-optimal
static-priority scheduling strategy in all these cases.

The problem that speedup factors are not able to discriminate between different
schedulability tests and scheduling algorithms is not restricted to the sporadic task
model or to uniprocessor scenarios. For uniprocessor mixed-criticality scheduling,
a series of papers by Baruah showed that EDF-VD and its generalization have
the same speedup factor for different task models [Bar16a; Bar16b; BBD+15]. For
multiprocessor partitioned static-priority scheduling of constrained-deadline and
arbitrary-deadline sporadic task sets, an analysis by Chen [Che16c] shows that
the achieved speedup factors for exponential-time exact schedulability tests and
for polynomial-time sufficient schedulability tests are the same.

Observation 1: Speedup factors, utilization bounds, and capacity augmentation
bounds often lack the power to discriminate between the performance of different schedul-
ing algorithms and schedulability tests even though the performance of these algorithms
and tests may be very different when viewed from the perspective of empirical evaluation.

The reason is that utilization bounds, capacity augmentation bounds, and
speedup factors only consider the worst-case corner cases. Therefore, a constant
factor or bound, e.g., 1

ln 2 or ln 2, does not have any implication for the perfor-
mance of the algorithm or test in typical or average cases. While the structure
of the corner cases may be easily captured by simple tests, e.g., the Hyperbolic
Bound [BBB01] or the Liu and Layland bound [LL73], the more common cases
do not contribute to the metric. This means that the more common case is sim-
ply ignored in the metric, even if the algorithm or the test has relatively poor
performance in the broad space of possible task sets. As a result, a very simple
algorithm or very imprecise sufficient schedulability tests may be classified as
excellent or even optimal as long as they are able to handle these corner cases
well. This explains the results listed in Table 4.2 where DM is always classified

92 speedup factors and parametric bounds

as speedup-optimal, although its performance, in terms of schedulability across a
wide range of task sets, is not necessarily good.

Observation 2: Speedup factors, utilization bounds and capacity augmentation bounds
should only be considered for their negative implications, since these metrics only provide
information on performance in the worst case.

Observation 3: Proving that an algorithm or test has the best possible (or optimal)
speedup factor or bound for that class of algorithms does not imply that the algorithm or
test cannot be substantially improved upon.

Hence, an algorithm that does not have a constant speedup factor, utilization
bound, or capacity augmentation bound may still perform reasonably well. Nev-
ertheless, it may also perform terribly in the worst case. Furthermore, a constant
bound or factor only ensures that the algorithm performs at least at some min-
imum level in the worst case. Even showing that for the studied problem an
algorithm or test has the best possible (or optimal) speedup factor or bound
[BBD+12; BBM+09] does not imply that its performance will necessarily be good
in other cases. Hence, as researchers, we should not be satisfied with just deriving
algorithms or tests that have optimal speedup factors or bounds. These can rather
be seen as a step towards developing algorithms and tests that provide improved
performance in practice while retaining some guaranteed worst-case performance.

4.5.2 better speedup factors do not imply a

dominance relation

We again use the simplest setting, two implicit-deadline task sets under unipro-
cessor RM-P, to examine the relationship between dominance results based on
speedup factors and utilization bounds, and empirical schedulability based on ac-
ceptance ratios in evaluation. To be precise, we compare the Hyperbolic Bound (HB)Hyperbolic Bound

by Bini et al. [BBB01] and the Quadratic Bound (QB) by Davis and Burns [DB08] asQuadratic Bound
well as Bini et al. [BNR+09].

Only examining speedup factors and utilization bounds, one would conclude
that the HB is better than the QB. However, this does not hold true when consid-
ering different settings of T1

T2
. Let U1 = 0.4. Utilizing the HB in Eq. (2.5), task τ2 is

schedulable under RM-P if U2 ≤ 2/1.4− 1 ≈ 42.8%. For the QB in Eq. (2.6), task
τ2 is schedulable under RM-P if 0.4 + U2 +

0.4T1−0.42T1
T2

= 0.4 + U2 + 0.24 T1
T2
≤ 1.

Thus, the QB is better if T1
T2

> 0.715 and the HB is better otherwise. This shows
that the HB and the QB are incomparable, which means neither dominates the
other. We demonstrate the impact of different distributions of T1/T2 by evalua-
tions for four different configurations. We always set T1 to 1 and T2 was chosen
randomly uniform from (a) [1, 1.5], (b) [1, 2], (c) [1.5, 2], and (d)[1, 10]. In each
configuration and for each utilization level, we generated 10, 000 task sets:

• For a given Usum, i.e., the target utilization level, U1 was chosen randomly
uniform from [0, Usum] and U2 was set to Usum −U1.

• T1 was always set to 1 and C1 was set to U1T1.

4.5 pitfalls of factors and bounds 93

70 80 90 100
Utilization: Usum (%)

0

20

40

60

80

100
Ac

ce
pt

an
ce

 R
at

io
 (%

)

(a) uniform 1-1.5

Hyperbolic Bound Quadratic Bound

70 80 90 100
Utilization: Usum (%)

0

20

40

60

80

100

Ac
ce

pt
an

ce
 R

at
io

 (%
)

(b) uniform 1-2

70 80 90 100
Utilization: Usum (%)

0

20

40

60

80

100

Ac
ce

pt
an

ce
 R

at
io

 (%
)

(c) uniform 1.5-2
70 80 90 100

Utilization: Usum (%)

0

20

40

60

80

100

Ac
ce

pt
an

ce
 R

at
io

 (%
)

(d) uniform 1-10

Figure 4.6: Comparison of the Hyperbolic Bound (HB) and the Quadratic Bound (QB) for
RM uniprocessor scheduling for two tasks and different uniform distributions
of T2/T1. Adapted from [CBH+17a].

• T2 was chosen from a uniform distribution specified by the four configura-
tions (a) to (d) and C2 was set to U2T2.

We compared the performance of the HB and the QB based on the acceptance ratio
with respect to a given task set utilization level Usum.

The evaluation results are displayed in Figure 4.6. The acceptance ratio of the
QB is highly dependent on the configuration for T2/T1, while the acceptance ratio
of the HB is in general independent of these settings. Furthermore, the QB is
worse than HB if T2/T1 is small and superior if T2/T1 is large. Hence, the results
in Figure 4.6 show that the relative performance of these two schedulability tests
is highly dependent on the task set parameters, although the HB has a superior
speedup factor and utilization bound to the QB. Furthermore, a study by Burns
and Baxter [BB06] shows that in many real-word settings the periods in a task set
differ by two or three orders of magnitude. Hence, it seems preferable that a test
perform well if the periods of the considered tasks are not too close.

Observation 4: A scheduling algorithm or schedulability test with a worse speedup
factor or utilization bound may perform (much) better in practice than another algorithm
or test with a superior speedup factor or utilization bound, dependent on the task set
configurations and parameters used. Conclusions on the relative merits of algorithms
or tests drawn from speedup factors or utilization bounds can therefore be in direct
contradiction with those drawn from empirical performance evaluation.

94 speedup factors and parametric bounds

The reason for this apparent contradiction between dominance in terms of
speedup factors or utilization bounds and performance observed from evaluation
is that speedup factors and utilization bounds depend solely on corner cases,
which may have parameters that rarely occur or are far removed from practical
settings, while an empirical evaluation usually covers a broader spectrum of
values. Further examples can be found in the literature:

• When comparing global-RM scheduling to an optimal algorithm, the forced
forward method by Baruah et al. [BBM+10] and the test by Bertogna and
Cirinei [BC07b] both have a speedup factor of 3. On the other hand, the
schedulability tests based on the k2U and k2Q frameworks by Chen et
al. [CHL15b; CHL16b], that use a bounded carry-in [GSY+09], have worse
speedup factors, i.e., 3.62143 for k2U and 3.73 for k2Q. Nevertheless, the
evaluation results in [CHL16b; CHL15a] show that k2U and k2Q have a
much better performance than the tests in [BBM+10; BC07b].

• On the one hand, the capacity augmentation bound for scheduling implicit-
deadline DAG task sets on m homogeneous processors under federated
scheduling was proved to be 2− 1

m by Li et al. [LCA+14]. On the other hand,
Jiang et al. [JLG+16] developed a decomposition algorithm that assigns a
relative deadline for each DAG subtask and has a capacity augmentation
bound in the range of [2− 1

m , 4− 2
m). Based on the capacity augmentation

bounds, one may conclude that federated scheduling dominates the decom-
position algorithm. However, according to the evaluation in [JLG+16], the
decomposition algorithm outperforms other algorithms for the considered
experimental settings.

Observation 5: Identifying regions of dominance in terms of schedulability, between
scheduling algorithms and schedulability tests provides valuable information in addition
to theoretical analysis in terms of speedup factors or bounds, and empirical evaluations in
terms of acceptance ratios.

4.5.3 speedup factors based on enforced

algorithms

Sometimes enforcements are used in the design of scheduling algorithms to simplifyenforcement

the structure of the scheduling problem. Such enforcements may make it easier
to derive a speedup factor for the scheduling algorithm or schedulability test,
especially if they are strong and/or are applied at an early stage of the algorithm.
However, this may lead to poor performance in practical settings when compared
to other algorithms or tests that have worse speedup factors or no speedup factor
at all. We illustrate this effect with two examples, one for the scheduling of self-
suspending tasks on a uniprocessor, and the other for tasks that share resources
on multiprocessors.

4.5 pitfalls of factors and bounds 95

0.0 0.2 0.4 0.6 0.8 1.0

Utilization (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ep
ta

n
ce

R
at

io
(%

)

0 20 40 60 80 100

0

20

40

60

80

100

(a) Short Suspension in [0.01,0.1]

EDA SEIFDA-maxD-5 SEIFDA-PBminD-5

0 20 40 60 80 100

0

20

40

60

80

100

(b) Moderate Suspension in [0.1,0.3]

0 20 40 60 80 100

0

20

40

60

80

100

(c) Long Suspension in [0.3,0.6]

Figure 4.7: Comparison of the acceptance ratio for EDA [CL14] and SEIFDA [BHC+16] in
Section 6.1, showing that enforcements in the algorithm design can lead to a
huge performance loss. Adapted from [CBH+17a].

one-segmented self-suspension

We consider the scheduling of implicit-deadline one-segmented self-suspending
tasks,3 each described as τi = ((Ci,1, Si, Ci,2), Ti = Di), where two execution seg-
ments Ci,1 and Ci,2 are separated by a suspension interval Si. A fixed-relative- fixed-relative-deadline

deadline (FRD) scheduling strategy, proposed by Chen and Liu [CL14], assigns
two individual relative deadlines Di,1 and Di,2 to the first and second computation
segment, respectively. Based on the resulting deadlines, the computation seg-
ments are scheduled using EDF. Due to the implicit-deadline assumption we know
Di,1 + Di,2 + Si = Ti. The main question for FRD is how to assign Di,1 and Di,2,
i.e., how to partition the execution interval Ti − Si. We compare the Equal Deadline execution interval

Assignment (EDA) by Chen and Liu [CL14] and the Shortest Execution Interval SEIFDA

First Deadline Assignment (SEIFDA), which appeared in RTNS 2016 [BHC+16] and
is presented in Section 6.1.

The most intuitive FRD strategy is the proportional deadline assignment pro-
vided by Liu et al. [LCT+14]: Di,1 =

Ci,1
Ci
· (Ti − Si) and Di,2 =

Ci,2
Ci
· (Ti − Si). While

seeming very reasonable, the speedup factor is unbounded as shown by Chen
and Liu [CL14]. They propose to instead use EDA: Di,1 = Di,2 = (Ti − Si)/2,
and derive a speedup factor of 3 compared to an optimal scheduling algorithm
for one-segmented self-suspension task sets as well as a speedup factor of 2
compared to any other FRD strategy. The speedup factor compared to other FRD
strategies easily follows from the strong enforcement for the relative deadlines,
since both segments have half of the execution interval Ti − Si to execute the
necessary workload and any other FRD scheduling strategy could assign at most
twice the relative deadline that EDA assigns to any segment. However, EDA
jeopardizes the schedulability by assigning the same relative deadline to both
segments, even if Ci,1 = ε and Ci,2 = Ci − ε for a very small ε > 0.

3 Regardless of the fact that the argumentation here is mainly based on the results provided in
Section 6.1, we provide a brief introduction into the topic here for the convenience of the reader,
since this enables us to keep the flow of argumentation.

96 speedup factors and parametric bounds

The main problem with the proportional assignment strategy is that the dead-
line assignment for one task is independent from the deadline assignment for
other tasks. This problem is tackled by the SEIFDA algorithm that assigns the
relative deadlines of the tasks in decreasing order of their execution intervals
Ti − Si while taking into account the previously assigned deadlines. For the
shorter execution segment, we assume it is Ci,1 for ease of explanation, the possi-
ble values of Di,1 ∈ [Ci,1, Ti − Si] are calculated and afterwards one of these values
is chosen according to one of three strategies: (i) the minima value (minD), (ii) the
maxima value (maxD), or (iii) the minima value larger than Ci,1

Ci
· (Ti − Si), called

proportionally bounded minD (PBminD). While all three assignment strategies
have the same speedup factor as EDA, they clearly outperform EDA in terms of
acceptance ratios. This is shown in Figure 4.74 for SEIFDA-maxD and SEIFDA-
PBminD when considering randomly generated task sets with 10 tasks under
different settings for the length of the suspension interval. The reason for the
significantly better performance is that SEIFDA does not enforce the deadlines
but chooses them dependent on the other tasks.

multiprocessor resource sharing

Another example that shows how enforcement can compromise performance
comes from scheduling algorithms for tasks that share r resources and execute on
a platform with m homogeneous processors. We assume that r ≤ m and consider
the simplified execution structure introduced by Andersson and Raravi [AR14],
i.e., each task has only one critical section where it may access shared resources
guarded by semaphores. Hence, each sporadic task τi has three execution seg-
ments with WCETs CN

i,1, CCrit
i , and CN

i,2 representing the part before the critical
section, the critical section itself, and the part after the critical section. Further-
more, Ci = CN

i,1 + CCrit
i + CN

i,2. We compare two algorithms for implicit-deadline
task sets with known speedup factors.

• Andersson and Raravi [AR14] developed the LP-EE-vpr algorithm that has
a speedup factor of 4 · (1 +

⌈ r
m

⌉
) = 8 in the given setting, since r ≤ m. Note

that we simplify the formulas from [AR14] to match the case we analyse
while the model in [AR14] is more general. They create m virtual processors
with speed 1

2 to schedule the two non-critical sections of task τi with relative

deadlines of
CN

i,1
Ci
· Ti

2 and
CN

i,2
Ci
· Ti

2 under partitioned EDF-P. Furthermore, m
virtual processors with speed 1

2 are created to schedule the critical section
CCrit

i with a relative deadline Ti
2 . Critical sections guarded by one semaphore

are executed exclusively on one virtual processor using EDF-NP.

• The resource-oriented partitioned PCP, called ROP-PCP, by Huang et
al. [HYC16] has a speedup factor of 11− 6

m+1 . It uses two dedicated subsets
of the m processors to execute the critical and the non-critical sections indi-
vidually. Although ROP-PCP is applicable for tasks with multiple critical
sections, we assume one critical section to compare with LP-EE-vpr.

4 The results shown in Figure 4.7 are a subset of the results presented in Section 6.1 and in [BHC+16],
i.e., the results where in the test for SEIFDA five periods are calculated exactly before an over-
approximation takes place.

4.5 pitfalls of factors and bounds 97

Comparing the speedup factors, one might assume that LP-EE-vpr outperforms
ROP-PCP. However, this is not the case since LP-EE-vpr uses enforcements early
in the algorithm to provide the speedup factor while ROP-PCP first provides
the algorithm and then analyzes the resulting speedup factor. To be precise, the
enforcements of virtualization at slower speeds in LP-EE-vpr and shortened relative
deadlines substantially reduce the schedulability. The sufficient schedulability
test used in the comparison can be found in [HYC16]. Since no schedulability
test for LP-EE-vpr was provided by Andersson and Raravi [AR14], we used two
necessary conditions for the schedulability of the non-critical execution and the
critical section, respectively, based on demand bound functions. Details on how
the necessary conditions were constructed are in the Appendix.

A comparison between the sufficient test for ROP-PCP and the necessary
condition for LP-EE-vpr is shown in Figure 4.8. We considered a system with 8
processors, 80 tasks, and 1 resource per task that is accessed at most once. Three
ratios α = 5, α = 10, and α = 20 for the length of non-critical sections to the length
of critical sections were evaluated, i.e., CCrit = 1

1+α · Ci and CN
i,1 + CN

i,2 = α
1+α · Ci.

Detailed configurations can be found in [HYC16]. Furthermore, we compared to a
necessary condition for gEDF-vpr by Anderson and Easwaran [AE10], which is the
predecessor of LP-EE-vpr and the first algorithm with a proven speedup factor, i.e.,
12(1 + 3r/4m) = 21 when r = m, and also uses strong enforcement techniques.
Figure 4.8 shows that the acceptance ratio for LP-EE-vpr drops dramatically from
a utilization of roughly m × 25% and is 0 by m × 28% utilization in all cases
while gEDF-vpr drops even sooner, before m× 20% utilization. In contrast, the
acceptance ratio for ROP-PCP decreases more slowly and is still over 50% when
the utilization is at m× 76% for α = 20, m× 61% for α = 10, and m× 36% for
α = 5. These results clearly show that the enforcements, i.e., assigning stringent
relative deadlines to subtasks and enforcing slow virtual processors in LP-EE-vpr,
have significant performance drawbacks even though the speedup factor obtained
is better than that for ROP-PCP. Hence, both gEDF-vpr and LP-EE-vpr have barely
any chance to schedule task sets with a total utilization above a certain small
threshold value that depends on the exact configuration. Note that we adopt
necessary conditions for LP-EE-vpr and gEDF-vpr to show that the performance
loss for those methods is due to the early and restrictive enforcements and not
due to a sufficient schedulability test that performs badly.

Observation 6: Adding enforcements tailoring the design of a scheduling algorithm
or test to facilitate the derivation of a bounded speedup factor can be counterproductive; it
may severely compromise performance in practical settings.

4.5.4 relative speedup factors

The speedup factor for a scheduling algorithm or schedulability test is typically
provided with respect to an optimal algorithm for the same class of problem. For
example, the speedup factor of 1

ln 2 for RM-P is provided with respect to EDF-P,
which is an optimal scheduling algorithm for implicit-deadline sporadic task
sets on a uniprocessor. However, speedup factors may also be derived relative to
another non-optimal scheduling algorithm or schedulability test. One example

98 speedup factors and parametric bounds

0.0 0.2 0.4 0.6 0.8 1.0
USum/M (%)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
ce

pt
an

ce
 R

at
io

 (%
)

0 20 40 60 80 100
0

20

40

60

80

100
(a) m=8, r=8, =5

ROP-PCP NC for LP-EE-vpr NC for gEDF-vpr

0 20 40 60 80 100
0

20

40

60

80

100
(b) m=8, r=8, =10

0 20 40 60 80 100
0

20

40

60

80

100
(c) m=8, r=8, =20

Figure 4.8: Comparison of the necessary condition for LP-EE-vpr [AR14], the necessary
condition for gEDF-vpr [AE10], and the sufficient schedulability test for
ROP-PCP [HYC16], showing that enforcements made to guarantee a speedup
factor can lead to a huge performance loss. Adapted from [CBH+17a].

is the set of speedup factors for FP-NP with respect to EDF-NP, which is an
optimal work-conserving algorithm but not in general optimal, that is provided
in Section 4.4 and in [DGC10].

Furthermore, bounds on the values of speedup factors can be composed from
existing results. If an algorithmO strictly dominates another algorithm X in terms
of schedulability, we know that ρO→X = 1 and ρX→O > 1. This relation holds if
O is an optimal algorithm for the class of problem. Further, if two algorithms X
and Y are incomparable, then ρX→Y > 1 and ρY→X > 1, i.e., there are non-trivial
speedup factors in both directions. Such speedup factors may be combined into
graphs or chains. Let O dominate Z which in turn dominates Y . This results in
the following relationships between the speedup factors:

max(ρY→Z , ρZ→O) ≤ SY→O ≤ SY→Z × SZ→O

Note that while the first inequality holds due to the dominance relationships, the
second holds regardless. In addition, if O dominates both Z as well as X , and Z
and X are incomparable, the following relations hold:

SZ→X ≤ SZ→O and SX→Z ≤ SX→O

When a speedup factor SX→Z for some algorithm or test X is determined rela-
tive to some other algorithm Z that dominates it, the results must be interpreted
carefully if Z is not optimal for the considered scheduling problem. In particular,
if the speedup factor of Z is unbounded with respect to the optimal algorithm O,
i.e. ρZ→O = ∞, the speedup factor of X relative to the optimal algorithm is also
unbounded, i.e., ρX→O = ∞ regardless of the value of ρX→Z . Two examples
based on recent studies are given below to illustrate the pitfalls in using relative
speedup factors, rather than those immediately grounded by optimal algorithms.
Note that in this respect utilization and capacity augmentation bounds are more
robust, since their reference is the capacity of the processor.

4.5 pitfalls of factors and bounds 99

federated scheduling

Li et al. [LCA+14] and Baruah [Bar15b; Bar15a; Bar15c] proposed to use federated federated scheduling

scheduling for sporadic real-time tasks with intra-task parallelism, detailed as di-
rected acyclic graphs (DAGs), on multiprocessor platforms. In federated schedul-
ing, a task is either executed sequentially on a single processor while sharing this
processor with other tasks or it is assigned to a processor exclusively. The existing
speedup factor results for federated scheduling on m identical processors are:

• The capacity augmentation bound of the federated scheduling algorithm
for implicit-deadline task sets provided in [LCA+14] is 2. Therefore, the
speedup factor with respect to an optimal scheduling algorithm is also 2.

• The speedup factor of the federated scheduling algorithms for constrained-
deadline task sets provided in [Bar15b; Bar15c] is 3− 1/m with respect to
an optimal federated scheduling algorithm.

• The speedup factor of the federated scheduling algorithms for arbitrary-
deadline task sets provided in [Bar15a; Bar15c] is 4− 2/m with respect to
an optimal federated scheduling algorithm.

These speedup factors are effectively the same as for the EDF-FFID partitioning
algorithm [BF05; BF06; BF07b] for sporadic task sets. Therefore, based on these
results, Baruah concluded for the algorithms in [Bar15b; Bar15a; Bar15c]:

Baruah [Bar15b; Bar15a; Bar15c]: ... in terms of the speedup metric, there
is no loss in going from the three-parameter sporadic tasks model to the more
general sporadic DAG tasks model.

However, the resulting speedup factors and conclusions that are provided
in [Bar15b; Bar15a; Bar15c] are only meaningful if the speedup factor of an op-
timal federated scheduling algorithm with respect to an optimal scheduling
algorithm is bounded for this problem. Therefore, the constant speedup factors
of 3 and 4 become less useful due to the following result:

Chen [Che16b]: ... in terms of the speedup metric with respect to any
optimal scheduling algorithm, federated scheduling strategies do not yield
any constant speedup factors for constrained-deadline task systems with
DAG structures.

As a result, the relative speedup factors derived in [Bar15b; Bar15a; Bar15c] cannot
be related back to an optimal scheduling algorithm and this relation is effectively
unbounded.

uniprocessor self-suspension systems

Huang et al. [HCZ+15] studied constrained-deadline dynamic self-suspending
tasks under task-level static-priority scheduling. In Theorem 1 in [HCZ+15] they
showed that several heuristic priority assignments have unbounded speedup
factors, including Rate Monotonic (RM), Deadline Monotonic (DM), and Laxity
Monotonic (LM). Huang et al. [HCZ+15] proposed to use OPA [Aud91] together

100 speedup factors and parametric bounds

with an OPA-compatible schedulability test [DB11b] and showed that this ap-
proach has a speedup factor of 2 with respect to the optimal static-priority schedule.
Unfortunately, it has been shown that the (commonly used) existing scheduling
algorithms do not yield any constant speedup factors in relation to an optimal
algorithm for this problem:

Chen [Che16a]: For dynamic self-suspending task systems, . . . the speedup
factor for any FP preemptive scheduling, compared to the optimal schedules,
is not bounded by a constant if the suspension time cannot be reduced by
speeding up. Such a statement of unbounded speedup factors can also be
proved for Earliest Deadline First (EDF), Least Laxity First (LLF), and
Earliest Deadline Zero Laxity (EDZL) scheduling algorithms.

remarks on relative speedup factors

These two concrete examples show that arguments based on relative speedup
factors may be undermined and inconclusive if the reference scheduling strategies
cannot be related back to optimal algorithms. In both examples, the proposed
algorithms as well as the reference class of algorithms have unbounded speedup
factors with respect to an optimal algorithm.

Observation 7: Where relative speedup factors are used in relation to a non-optimal
algorithm or class of algorithms, then great care needs to be taken in the interpretation of
the results. If the reference algorithm has an unbounded speedup factor with respect to
optimal solutions, then the speedup factors may not be that meaningful.

Nevertheless, relative speedup factors can still be meaningful if (i) the reference
scheduling strategies are well-accepted, defined, and constrained by the system
properties, or (ii) the reference strategy facilitates comparison with an optimal
algorithm. For example, in some cases work-conserving non-preemptive unipro-
cessor scheduling may be the only implementation option and EDF-NP is an
optimal scheduling strategy for sporadic real-time tasks. Hence, the speedup fac-
tors between FP-NP and EDF-NP in [DGC10; DBB+15] as well as in Section 4.4.2
can be useful. Furthermore, although they are both not optimal algorithms, they
can be related back to EDF-P via speedup factors [DTG+15].

4.6 parametric augmentation functions

As illustrated in this chapter, using a single factor or bound to represent the
theoretical quantification of the performance of scheduling algorithms or schedu-
lability tests can prove inadequate. While it would be preferable, it is not always
possible to show the analytical or theoretical dominance of an algorithm. Hence,
we propose a more nuanced way to compare algorithms using a parametricparametric

augmentation function augmentation function A(~x), defined as follows:

• ~x is a vector of user-defined parameters of interest, like maxτi∈τ Ui or
maxτi∈τ

Criticali
Ti

, to classify different (troublesome) cases.

4.6 rate monotonic vs . slack monotonic 101

• The parametric augmentation function A(~x) represents the augmentation
factor (or the utilization bound) respecting all of the parameters described
in the vector ~x.

The concept of parametric augmentation functions can be traced back to Liu
and Layland’s seminal utilization bound for RM-P which is parametric in the
number of tasks: n(2

1
n − 1) ≥ ln 2 ≈ 69.3%. Similarly, work on speedup factors

for DM scheduling of constrained-deadline task sets by Davis et al. [DRB+09a]
explored a speedup factor upper bound that is parametric in n, i.e., Theorem
A.2 in [DRB+09a] uses the hyperbolic bound to derive a speedup factor that is a
function of n.

The parametric utilization bounds we provided in Chapter 4.1 and in Chapter 4.2 parametric utilization
boundshow how much parametric augmentation functions can improve the general

augmentation functions. In some cases, they may be unbounded unless some pa-
rameter is controlled. For instance, Davis et al. [DTG+15] compare non-preemptive
uniprocessor scheduling (FP-NP and EDF-NP) against an optimal algorithm (EDF-
P) based on parametric speedup factors. The speedup factors were obtained as
a function of Cmax/Dmin, where Cmax is the largest WCET of any task and Dmin
is the smallest relative deadline. Without this parameter, the speedup factors of
1 + Cmax/Dmin for EDF-NP and of 2 + Cmax/Dmin for FP-NP are unbounded as
Cmax/Dmin could be an arbitrarily large value. In some practical settings this value
can be relatively small, highlighting the utility of such an approach. Similarly,
in Chapter 4.1 we use the blocking factor γ which can be arbitrarily large as
well. Liu et al. [LSG+16] implicitly used parametric augmentation functions when
studying EDF-VD scheduling for mixed-criticality systems with degraded quality
guarantees. They showed that the augmentation factor depends on two task set
dependent constants, denoted by α and λ, with the worst-case speedup factor
reducing to 4/3.

Observation 8: Parametric augmentation functions can reveal more detailed and
nuanced information about the actual performance of schedulability tests or scheduling
algorithms across a wide range of parameter values, including practical settings. In some
cases parameterized augmentation functions are essential to avoid singularities and hence
unbounded results due to unrealistic combinations of parameter values.

In the next section, we detail how theoretical comparisons of two priority
assignments for uniprocessor FP-P scheduling, i.e., RM and Slack Monotonic,
may be performed using parametric augmentation functions. The results also
show that parametric augmentation functions can be helpful when designing em-
pirical evaluations and workload generators aimed at providing a comprehensive
comparison between different scheduling algorithms and schedulability tests.

4.7 parametric augmentation function for

rate monotonic vs . slack monotonic

To explore the advantages of parameterized augmentation functions, we examine
the theoretical comparisons of two priority assignment schemes for uniprocessor
FP-P scheduling. We consider:

102 speedup factors and parametric bounds

• Rate Monotonic (RM): If Ti < Tj, then task τi has higher-priority than τj;

• Slack Monotonic (SM): If Ti − Ci < Tj − Cj, then task τi has higher-priority
than task τj.

In both cases, ties are broken arbitrarily. We consider sporadic task sets in which
Di ≥ Ti for every task τi in the task set. Instead of solely using utilization bounds
(or speedup factors) for comparing these two algorithms (or the schedulability
tests of these two algorithms), we show why it is more meaningful to compare the
algorithms and tests across a broader spectrum. We first recall polynomial-time
schedulability tests for RM from the literature.

Theorem 4.25 (Chen, Huang, and Liu [CHL15b]). Suppose that Dk = f Tk where f
is a positive integer. Task τk is schedulable under RM scheduling if

k

∏
i=1

(1 + Ui/ f) ≤ (f + 1)/ f . (4.77)

The utilization bound can be further expressed as

k−1

∑
i=1

Ui ≤ f ln
(

f + 1
f (1 + Uk/ f)

)
and Uk ≤ 1 (4.78)

Theorem 4.26 (Lehoczky [Leh90]). Suppose that Dk = f Tk where f is a positive
integer. Task τk is schedulable under RM scheduling if

k

∑
i=1

Ui ≤





k
(

2
1
k − 1

)
if f = 1

f (k− 1)
((

f+1
f

) 1
k−1 − 1

)
if f = 2, 3, . . .

(4.79)

When k→ ∞, the utilization bound is
k

∑
i=1

Ui ≤ f ln((f + 1)/ f) (4.80)

We next derive sufficient schedulability tests for SM.

Theorem 4.27. Suppose that Dk = f Tk with f > 0. Task τk is schedulable under SM
scheduling if

k

∑
i=1

Ui ≤ 1 and Uk + (1−Uk + f)
k−1

∑
i=1

Ui ≤ f (4.81)

Proof. We implicitly assume that ∑k
i=1 Ui ≤ 1. Using the response time upper

bounds given by both Bini et al. [BPD15] and Chen et al. [CHL16b], a simple
schedulability test for task τk validates whether

Ck + ∑k−1
i=1 Ci −∑k−1

i=1 UiCi

1−∑k−1
i=1 Ui

≤ Dk

By the definition of SM, we know that

Ti − Ci ≤ Tk − Ck ⇒ Ti(1−Ui) ≤ Tk(1−Uk)⇒ (1−Ui) ≤
Tk

Ti
(1−Uk)

4.7 rate monotonic vs . slack monotonic 103

Hence, we get

Ci − CiUi = Ci(1−Ui) ≤ Ci
Tk

Ti
(1−Uk) = TkUi(1−Uk)

As a result, the following inequality holds:

Ck + ∑k−1
i=1 Ci −∑k−1

i=1 UiCi

1−∑k−1
i=1 Ui

≤ Ck + Tk(1−Uk)∑k−1
i=1 Ui

1−∑k−1
i=1 Ui

When Dk = f Tk, a sufficient schedulability condition for SM is:

Ck + Tk(1−Uk)∑k−1
i=1 Ui

1−∑k−1
i=1 Ui

≤ f Tk.

Dividing both sides by Tk leads to

Uk + (1−Uk)
k−1

∑
i=1

Ui ≤ f

(
1−

k−1

∑
i=1

Ui

)
⇒ Uk + (1−Uk + f)

k−1

∑
i=1

Ui ≤ f

Theorem 4.28. Suppose that Dk = f Tk with f ≥ 1. Task τk is schedulable under SM
scheduling if

k

∑
i=1

Ui ≤
f

f + 1
(4.82)

Proof. This theorem is proved by finding the infimum ∑k
i=1 Ui under the con-

dition that Uk + (1−Uk + f)∑k−1
i=1 Ui > f using the schedulability condition in

Theorem 4.27. Note that the condition ∑k
i=1 Ui ≤ 1 automatically holds. This is

equivalent to the following problem:

minimum x + y s. t. x + (1− x + f)y = f and 0 ≤ x ≤ 1,

where x is Uk and y is ∑k−1
i=1 Ui. By x + (1 − x + f)y = f , we can write y as

(f − x)/(1− x + f). Therefore, x + y is x + (f − x)/(1− x + f). The first order
derivative of x + y is

∂

∂x

(
x +

f − x
1− x + f

)
= 1− 1

(1− x + f)2 ≥ 0,

since f ≥ 1 and 0 ≤ x ≤ 1 in our assumption. Hence, x + y is minimized for
x = 0 and y = f /(1 + f).

comparing rm/sm based on traditional

utilization bounds

Let f = min∀τi(Di/Ti) for the rest of this section, with f ≥ 1 due to the problem
definition. Based on Eq. (4.80), we know that the utilization bound of RM is(
b f c ln b f c+1

b f c

)
. Similarly, based on Eq. (4.82) the utilization bound of SM is f

f+1 .

104 speedup factors and parametric bounds

Lemma 4.29. x+1
x+2 − x ln(1 + 1

x) ≤ 0 for any positive integer x.

Proof. Using Taylor series expansion, ln(1 + z) can be over-approximated as
z− z2

2 + z3

3 when −1 < z < 1. Hence, for any x ≥ 2, we get

x + 1
x + 2

− x ln(1 +
1
x
) ≤ 1− 1

x + 2
− x(

1
x
− 1

2x2 +
1

3x3)

=
−1

x + 2
+

1
2x
− 1

3x2 < 0

where the last inequality is due to −1
x+2 +

1
2x ≤ 0 for any x ≥ 2. For x = 1, we get

2
3 − 2 ln 1.5 ≈ −0.144, hence the lemma is proved.

Theorem 4.30. Suppose that min∀τi(Di/Ti) = f where f ≥ 1. The utilization bound(
b f c ln b f c+1

b f c

)
in Eq. (4.80) for RM dominates the utilization bound f

f+1 in Eq. (4.82)
for SM.

Proof. Suppose that b f c is x. Since the utilization bound f
f+1 in Eq. (4.82) is upper

bounded by x+1
x+2 , the theorem follows directly from Lemma 4.29.

Since the utilization bound for RM is better than the utilization bound for SM
for a given f ≥ 1, this also holds for the speedup factor with respect to EDF-P.

comparing rm/sm based on

parametric-utilization factors

The dominance in Theorem 4.30 only results from the utilization bounds (or the
augmentation factors) under a given f = min∀τi(Di/Ti). More precise schedula-
bility tests may lead to different conclusions.

Theorem 4.31. Suppose that f = min∀τi(Di/Ti) where f ≥ 1. SM is a feasible

scheduling algorithm for task τk if Uk ≥ 1+ f−
√

(1+ f)2−4
2 and ∑k

i=1 Ui ≤ 1.

Proof. The test in Eq. (4.81) for SM evaluates whether the conditions ∑k
i=1 Ui ≤ 1

and Uk + (1− Uk + f)∑k−1
i=1 Ui ≤ f hold. The first and second condition con-

strain ∑k−1
i=1 Ui to be at most 1−Uk and f−Uk

1+ f−Uk
, respectively. Since ∂(1−Uk)

∂Uk
= −1

and
∂(

f−Uk
1+ f−Uk

)

∂Uk
= −1

(f−Uk+1)2 ≥ −1 for f ≥ 1 and 0 ≤ Uk ≤ 1, the intersection

1−Uk =
f−Uk

1+ f−Uk
defines which of the two conditions in Eq. (4.81) dominates

the schedulability test. Let U∗(f) be the intersection of Uk for a given f . By

solving 1 − Uk = f−Uk
1+ f−Uk

, we know that U∗(f) is defined as 1+ f−
√

(1+ f)2−4
2 .

Hence, U∗(1) = 1, U∗(2) ≈ 0.382, U∗(3) ≈ 0.268, U∗(4) ≈ 0.209, U∗(5) ≈ 0.172,
U∗(6) ≈ 0.146, · · · , U∗(10) ≈ 0.092, etc.

Therefore, when Uk ≥ U∗(f) under Slack Monotonic scheduling, we know that
1−Uk ≤ f−Uk

1+ f−Uk
and the condition ∑k

i=1 Ui ≤ 1 dominates the condition that

Uk + (1−Uk + f)∑k−1
i=1 Ui ≤ f .

4.7 rate monotonic vs . slack monotonic 105

-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 0.2 0.4 0.6 0.8 1H
ig

he
r-

pr
io

ri
ty

 u
til

iz
at

io
n

Utilization: Uk

f=1
RM (Utilization Bound)

-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 0.2 0.4 0.6 0.8 1H
ig

he
r-

pr
io

ri
ty

 u
til

iz
at

io
n

Utilization: Uk

f=2
RM (Hyperbolic) SM

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1H
ig

he
r-

pr
io

ri
ty

 u
til

iz
at

io
n

Utilization: Uk

f=3

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1H
ig

he
r-

pr
io

ri
ty

 u
til

iz
at

io
n

Utilization: Uk

f=4

Figure 4.9: Theoretical comparison of SM and RM. Eq. (4.78) is denoted by RM (Hy-
perbolic), Eq. (4.80) is denoted by RM (Utilization Bound), and Eq. (4.81) is
denoted by SM. Adapted from [CBH+17a]

This schedulability analysis shows that Uk has an important role. For the rest
of this section, we assume that f is an integer for ease of comparison. Figure 4.9
provides the analytical results by comparing the conditions in Eq. (4.78) denoted
by RM (Hyperbolic), Eq. (4.80) denoted by RM (Utilization Bound), and Eq. (4.81)
denoted by SM. Figure 4.9 also shows that U∗(2) ≈ 0.382, U∗(3) ≈ 0.268, and
U∗(4) ≈ 0.209, since these are the values of Uk at the corner points on the line
for SM. Furthermore, the utilization bound of SM is 100% when Uk ≥ U∗(f),
as shown by the part of the line for SM with a 45 degree slope. As the y-axis
measures total utilization for higher priority tasks, a line between (0,1) and (1,0)
means 100% utilization.

As shown in Figure 4.9, the schedulability tests for RM in Eq. (4.78) and Eq. (4.80)
are better than the test in Eq. (4.81) for SM when Uk is small. By contrast, the
test for SM is better than the above tests for RM for larger values of Uk. Thus,
conclusions on the analytical superiority of these tests for RM and SM should
only be drawn when Uk is considered. This shows the importance of including Uk
into the parametric utilization bound when testing the schedulability of task τk,
i.e., ~x in the parametric augmentation function should include Uk.

comparing schedulability tests based on

synthetic workload

We conducted an evaluation for arbitrary-deadline sporadic task sets with k
tasks, where we only considered the schedulability of task τk, to demonstrate the

106 speedup factors and parametric bounds

0.0 0.2 0.4 0.6 0.8 1.0
Utilization: Usum (%)

0.0

0.2

0.4

0.6

0.8

1.0

50 60 70 80 90 100
0

20
40
60
80

100

Scheme:f=1

RM (Hyperbolic) RM (Utilization Bound) SM

50 60 70 80 90 100
0

20
40
60
80

100

Scheme:f=2

50 60 70 80 90 100
0

20
40
60
80

100

Ac
ce

pt
an

ce
 R

at
io

 (%
)

Scheme:f=3

50 60 70 80 90 100
0

20
40
60
80

100

Scheme:f=4

(a) Uk: uniform distribution in (0, Usum)

0.0 0.2 0.4 0.6 0.8 1.0
Utilization: Usum (%)

0.0

0.2

0.4

0.6

0.8

1.0

50 60 70 80 90 100
0

20
40
60
80

100

Scheme:f=1

RM (Hyperbolic) RM (Utilization Bound) SM

50 60 70 80 90 100
0

20
40
60
80

100

Scheme:f=2

50 60 70 80 90 100
0

20
40
60
80

100

Ac
ce

pt
an

ce
 R

at
io

 (%
)

Scheme:f=3

50 60 70 80 90 100
0

20
40
60
80

100

Scheme:f=4

(b) Uk: uniform distribution in (0, 0.5)

0.0 0.2 0.4 0.6 0.8 1.0
Utilization: Usum (%)

0.0

0.2

0.4

0.6

0.8

1.0

50 60 70 80 90 100
0

20
40
60
80

100

Scheme:f=1

RM (Hyperbolic) RM (Utilization Bound) SM

50 60 70 80 90 100
0

20
40
60
80

100

Scheme:f=2

50 60 70 80 90 100
0

20
40
60
80

100

Ac
ce

pt
an

ce
 R

at
io

 (%
)

Scheme:f=3

50 60 70 80 90 100
0

20
40
60
80

100

Scheme:f=4

(c) Uk: uniform distribution in (0, 0.3)

0.0 0.2 0.4 0.6 0.8 1.0
Utilization: Usum (%)

0.0

0.2

0.4

0.6

0.8

1.0

50 60 70 80 90 100
0

20
40
60
80

100

Scheme:f=1

RM (Hyperbolic) RM (Utilization Bound) SM

50 60 70 80 90 100
0

20
40
60
80

100

Scheme:f=2

50 60 70 80 90 100
0

20
40
60
80

100

Ac
ce

pt
an

ce
 R

at
io

 (%
)

Scheme:f=3

50 60 70 80 90 100
0

20
40
60
80

100

Scheme:f=4

(d) Uk: uniform distribution in (0, 0.1)

Figure 4.10: Experimental comparison of SM and RM scheduling. Eq. (4.78) is denoted
as RM (Hyperbolic), Eq. (4.80) is denoted as RM (Utilization Bound), and
Eq. (4.81) is denoted as SM. Adapted from [CBH+17a]

4.8 summary and conclusions 107

impact of different distributions of Uk. For Usum ≥ 0.5, we explored four different
uniform distributions for Uk: (a) [0, Usum], (b) [0, 0.5], (c) [0, 0.3], (d) [0, 0.1] where
∑k−1

i=1 Ui = Usum −Uk for each case. We tested f = 1, f = 2, f = 3, f = 4 for
each of the configurations, generating 10000 task sets for each utilization level in
each configuration. The performance was compared based on the acceptance ratio
for the tests in Eq. (4.78), Eq. (4.80), and Eq. (4.81). The results are displayed in
Figure 4.10. It shows that the acceptance ratios of the tests are highly dependent
on both f and the distribution of Uk, i.e., the configuration used. Note that RM
(Hyperbolic) and RM (Utilization Bound) have essentially the same performance
when the range of values for Uk is small, i.e., [0, 0.1], and thus the lines for
RM (Hyperbolic) and RM (Utilization Bound) are identical in Figure 4.10(d).

The evaluation settings and configurations also consider the parameter Uk
in the experimental setup since the parametric analysis showed that Uk plays
a significant role. Hence, we get a much more comprehensive picture of the
performance of the different algorithms and tests, showing how they vary with
critical parameters.

4.8 summary and conclusions

In this chapter, we studied the use of speedup factors, utilization bounds, and capacity speedup factor

utilization boundaugmentation bounds. First, we examined RM-NP and automotive task systems,
capacity augmentation
bound

providing parametric utilization bounds that significantly improved the general

parametric utilization
bound

bounds. Afterwards, we took a closer look at the speedup factors of DM vs. EDF in
both the preemptive and the non-preemptive case and showed that the speedup
factors for linear-time and exponential-time schedulability tests are the same.
These results motivated us to examine speedup factors, utilization bounds, and
capacity augmentation bounds from a more general point of view. Through a
series of examples, some of them by combining known results from the literature,
we reached the following conclusions:

• These metrics often lack the power to discriminate between the performance
of different scheduling algorithms and schedulability tests even though
their performance may be very different in an empirical evaluation.

• These metrics should only be considered for their negative implications,
since they may only provide information on performance in corner cases
that may not be important in practical settings.

• Proving that an algorithm or test has an optimal speedup factor or bound
for a class of algorithms or problems does not imply that the algorithm
or test cannot be substantially improved. Furthermore, an algorithm or
test with a worse speedup factor or bound may perform much better in
practice. Therefore, conclusions solely based on speedup factors may directly
contradict those drawn from empirical evaluation.

• Adding enforcements tailoring the design of an algorithm or test to facilitate
the derivation of a bounded speedup factor can be counterproductive since
it may severely compromise the performance in practical settings.

108 speedup factors and parametric bounds

• Great care needs to be taken in interpreting the results when relative
speedup factors are derived in relation to a non-optimal algorithm or class
of algorithms. These results can be undermined if the reference algorithm
has an unbounded speedup factor with respect to optimal solutions.

• Identifying regions of dominance between scheduling algorithms or schedu-
lability tests in terms of schedulability provides valuable information. This
information should be considered in addition to the information that can be
provided by speedup factors or bounds as well as the information provided
by empirical evaluations in terms of acceptance ratios.

Resulting from our exploration, we recommend parametric augmentation func-parametric
augmentation function tions as a theoretical evaluation method that is capable of revealing more detailed

theoretical evaluation
method

and nuanced information about the actual performance of schedulability tests
or scheduling algorithms across a wide range of parameter values, including
practical settings. We illustrated this technique by deriving such functions for
two uniprocessor scheduling algorithms and schedulability tests, namely Rate
Monotonic and Slack Monotonic. Furthermore, we showed that in some cases
parameterized augmentation functions are essential to avoid singularities and
hence unbounded results due to unrealistic combinations of parameter values.

Based on our studies of speedup factors, utilization bounds, and capacity aug-speedup factor

utilization bound mentation bounds, our considered view is to handle them with care. While these
capacity augmentation

bound
theoretical metrics can provide useful information, there are also pitfalls that must
be avoided. Problems may arise when algorithms are designed with speedup
factors in mind, or when conclusions taking a positive perspective are drawn
solely on the basis of these theoretical results. We welcome the additional infor-
mation that theoretical metrics, particularly parametric augmentation functions,
can provide. Nevertheless, we further recommend that any judgement on the
practical utility or otherwise of scheduling algorithms or schedulability tests is
backed up by a thorough performance evaluation that studies practical settings.

5
U N C E RTA I N E X E C U T I O N B E H AV I O U R

When examining uncertain execution behaviour, we focus on uncertainty regarding uncertain execution
behaviourthe worst-case execution time (WCET) of a task and not regarding other task
worst-case execution
time

parameters, e.g., an uncertain minimum inter-arrival time due to release jitter.
An uncertain execution behaviour regarding WCET may stem from a variety of
scenarios, among them software-based fault tolerance mechanisms, mixed-criticality, fault tolerance

mixed-criticality
systems

a reduced CPU frequency to prevent overheating, and dynamic voltage frequency
scaling. We model such behaviour as a set of distinct execution modes with related
WCETs, assuming that the WCET can be precisely determined for each mode,
i.e., the uncertainty is not resulting from the worst-case execution time analysis.
Furthermore, we assume that the WCET differs largely among the modes and that
modes with a large execution time have a low probability to be executed, which
means that a small WCET is the normal and a large WCET the abnormal case. If the
situation is reversed, i.e., a large WCET is the normal case, standard schedulability
analysis considering the largest WCET is sufficient. However, if a large WCET is
less likely, simply assuming that tasks will always run abnormally would result in
largely overestimating the necessary system resources and a not tolerable increase
in hardware costs. Nevertheless, it must be ensured that execution modes with
a large WCET do not destroy the necessary timing guarantees. Therefore, they
must be analysed and handled properly.

One possible solution takes advantage of the fact that for many real-time sys-
tems, very rare deadline misses are acceptable. For instance, the safety standards
in the industry, such as IEC-61508 [IEC10] and ISO-26262 [ISO00], require a low
or very low probability of failure, e.g., due to deadline misses, but not a failure
probability of 0. As a result, researchers have provided work that tries to quantify
the deadline misses resulting from workload overloads due to rare events, e.g.,
in [KT12; QHE12; QNE13; HQE14; XHK+15]. Cause for such workload overloads
may, for instance, be intermittent faults or (bursts of) transient faults and the ad- intermittent fault

transient faultditional execution time necessary when applying software-based fault tolerance
fault tolerancemechanisms. The aforementioned work assumes that, in general, rare deadline

misses are tolerable. Therefore, such work allows some tradeoff between the
timeliness of the tasks and the necessary amount of system resources.

Furthermore, mixed-criticality systems [Ves07] assume an uncertain execution mixed-criticality
systemsbehaviour with an ordered set of two or more distinct execution modes as well,

but allow deadline misses only for a specific set of tasks that depends on the
actual system mode. For convenience, we assume dual-criticality systems in
the description, i.e., two disjunct sets of tasks and two execution modes. This
concept of mixed-criticality is a result of the observation that, even if all tasks
in the systems have real-time constraints, some tasks are more important for the
system than others, e.g., they ensure the stability of the system. The system may
switch from a low-criticality to a high-criticality mode, the time where this mode

109

110 uncertain execution behaviour

switch happens is assumed to be given (or easily detectable), and the system
is assumed to never return to the low-criticality mode. Moreover, to guarantee
the timeliness of the more important tasks, the not so important tasks are often
abandoned when a mode switch happens. The model of mixed-criticality as well
as the related scheduling approaches and analysis have been criticized lately, for
instance by Ernst and Di Natale [EN16] in “Mixed Criticality Systems - A History
of Misconceptions?” as well as by Esper et al. [ENN+15] who asked “How realistic
is the mixed-criticality real-time system model?". In particular, they pointed out
that model and analysis do not fit the expectations of system engineers since
1) not so important tasks should not be abandoned, and 2) systems should return
to the starting mode after a sufficient amount of time, e.g., after a rare event does
not affect the system anymore.

Especially when considering such criticism, the connection and similarity
between mixed-criticality and fault tolerance become apparent. Nevertheless, to the
best of our knowledge, they have never been considered in the real-time systems
research. This connection will be concretized in Section 5.1 before we introduce
the model of Systems with Dynamic Real-Time Guarantees, which is suitable forSystems with Dynamic

Real-Time Guarantees systems with uncertain execution behaviour regarding the worst-case execution
time in general and not limited to mixed-criticality. Similar to mixed-criticality
systems with two modes, we assume a given task set partition into not so important
tasks where rare deadline misses are acceptable, called timing tolerable tasks, andtiming tolerable tasks

more important tasks that must always meet their deadline, called timing stricttiming strict tasks
tasks. Systems with Dynamic Real-Time Guarantees ensure that the deadlines of all
tasks are satisfied if the system runs normally. On the other hand, in case of a
rare event, the timing strict tasks are still guaranteed to meet their deadlines while
the timing tolerable tasks have at least bounded tardiness but may miss deadlines.
We exploit static-priority scheduling and provide these guarantees in advance.
During runtime, a Systems with Dynamic Real-Time Guarantees provides either

• full timing guarantees if all jobs meet their deadline, orfull timing guarantees

• limited timing guarantees if only the jobs of the timing strict tasks are guaran-limited timing
guarantees teed to meet their deadline while bounded tardiness is guaranteed for the

timing tolerable tasks.

Furthermore, in Systems with Dynamic Real-Time Guarantees, mode switches are
detected by an online monitor and the time needed to return to full timing
guarantees is approximated at runtime. A precise system definition, an exact
schedulability test, and properties for uniprocessor systems are provided in
Section 5.2. The definition is extended to Multiprocessor Systems with DynamicMultiprocessor

Systems with Dynamic
Real-Time Guarantees

Real-Time Guarantees in Section 5.3, also providing the schedulability test, both
partitioned and semi-partitioned heuristics, and compensation techniques for
intermittent faults by task migration.

One important problem regarding uncertain execution behaviour is to de-
termine the worst-case deadline failure probability of a task. Regardless, previousworst-case deadline

failure probability approaches are either fast but imprecise, i.e., analytical bounds, or not applicable
for task sets with a reasonable size, i.e., job-level convolution-based techniques.
Hence, we introduce an approach that utilizes task-level convolution and several
optimization techniques to ensure the scalability to large task sets in Section 5.4.

5.1 dynamic real-time guarantees 111

5.1 dynamic real-time guarantees in an

uncertain execution environment

In this section, we first take a closer look at both uncertain execution behaviour
induced by fault tolerance mechanisms and at the model of mixed-criticality
before detailing their connection. As a result, we propose Systems with Dynamic Systems with Dynamic

Real-Time GuaranteesReal-Time Guarantees as a general approach for systems with uncertain execution
behaviour. Most parts of the argumentation presented in this section appeared
in Systems with Dynamic Real-Time Guarantees in Uncertain and Faulty Execution
Environments in RTSS 2016 [BCH+16] and in Do Nothing, but Carefully: Fault Toler-
ance with Timing Guarantees for Multiprocessor Systems devoid of Online Adaptation in
PRDC 2018 [BSC18].

5.1.1 modelling uncertain execution behaviour

In many practical real-time systems, the physical environment and the sys-
tem platform can impose uncertain execution behaviour and, therefore, reliability uncertain execution

behaviourproblems to the system. One cause is that continuous technology scaling has
introduced multiple threats that reduce the reliability of computing hardware, not
only considering the memory hierarchy but also in the logic components [Bau05;
MWE+03; SKK+02]. Such reliability threats include transient faults, also called
soft errors, aging, and process variations. To be able to neglect transient faults,
which are results of electromagnetic interference and radiation [Bau05], recovery
operations are necessary. Otherwise, a transient fault may corrupt the correct
application execution state, and, therefore, lead to wrong execution results or even
system failure. The related recovery mechanisms can be classified into hardware-
and software-based techniques. Hardware-based techniques include spatial isola-
tion, hardware redundancy with voting mechanisms, and remapping of logical
components to a subset of hardware resources [ENN+15]. The alternative are
software-based techniques like checkpointing, software redundancy with voting
mechanisms, or re-execution of incorrectly executed jobs if an error was detected.
These software-based techniques induce additional runtime for (at least partly)
re-execution of an erroneous job [ENN+15], and the maximum execution time
with and without performed fault recovery may differ largely, e.g., by a factor of
≈ 3 for two times re-execution compared to the fault-free execution. However, if
software-based techniques are exploited, it is assumed that the fault rate is low
and, hence, recovery only has to be performed rarely. The occasionally appearing
faults can be modeled in different ways, depending on the considered systems
and the cause of the faults. For instance, they may occur for each individual job
with a certain probability or as a fault burst where a set of jobs is subjected to
fault recovery, e.g., all jobs that are active in a certain time interval. Such faults
can be modelled as overshoots and multiple publications examined the resulting
worst-case response time (WCRT), the maximum settling time, or the number of
deadline misses in such situations [KT12; QHE12; QNE13; HQE14; XHK+15].

While the aforementioned work assumes rare deadline misses to be generally
acceptable, in many practical situations deadline misses may be acceptable for

112 uncertain execution behaviour

some tasks but not acceptable for others. For instance, in an unmanned aerial
vehicle (UAV), the tasks in the more important flight control system should always
meet their deadline while for the not so important surveillance system, occasional
deadline misses are tolerable. The importance of tasks is considered in mixed-mixed-criticality

systems criticality systems, which have been introduced by Vestal in 2007 [Ves07], where
the tasks are partitioned into high-criticality and low-criticality task.1 The system is
assumed to start its lifetime in low-criticality mode and to switch to high-criticality
mode at some point in time, which is typically unknown but assumed to be easily
detectable. While in low-criticality mode, timeliness for all tasks is guaranteed.
After the mode switch, tasks are executed with a larger WCET and only timing
guarantees for the high-criticality tasks are provided. To ensure these guarantees,
scheduling approaches for mixed-criticality often perform online adaptation,
e.g., changing task parameters or priorities, and neglect the low-criticality tasks
in high-criticality mode, i.e., they are either abandoned or run as background
workload with lowest priority. This is justified by the assumption that mixed-
criticality systems stay in high-criticality mode indefinitely after the mode switch
and sufficient utilization to provide guarantees for low-criticality tasks is not
available. However, this assumption has been questioned lately, since it does not
match the expectations of systems engineers. Such criticism has been detailed
by Ernst and Di Natale [EN16] in “Mixed Criticality Systems - A History of
Misconceptions?” as well as by Esper et al. [ENN+15] who ask “How realistic
is the mixed-criticality real-time system model?", and is also mentioned in the
survey by Burns and Davis [BD18, Section 6]. Specifically, it is argued that

• systems should be able to return from the high-criticality mode to the
low-criticality mode after a sufficient amount of time, and

• that the low-criticality tasks are still critical and should therefore not be
abandoned in high-criticality mode.

Note that if systems return to low-criticality mode, abandoning the low-criticality
tasks is especially problematic since restarting them leads to an additional over-
head. Moreover, if a system frequently switches between different execution
modes, the overhead induced by online adaptation cannot be neglected, which
is often assumed in the literature. In addition, such a mode switch may be com-
pletely unnecessary when intervals with abnormal execution behaviour are small.
Besides, online adaptation, like changing task parameters or priorities at runtime,
may not be possible in real-world systems. Furthermore, most research results
for mixed-criticality systems assume the mode changes to be provided, i.e., the
possibly complicated detection of the mode switch is not considered.

Resulting from the mentioned problems, some new scheduling approaches
for mixed-criticality systems have emerged that give at least certain reduced
timing guarantees for not so important tasks e.g., [BBG16; Pat17; Eri14; LSG+16;
BB13]. Regardless, to the best of our knowledge, there is no research discussing
whether such online adaptation is necessary beside the approach we presented in
RTSS 2016 [BCH+16] and PRDC 2018 [BSC18] and detail in this chapter.

1 Note that we consider dual-criticality systems here since they are most commonly examined in
mixed-criticality research. The general model considers multiple task sets and execution modes.

5.1 dynamic real-time systems 113

5.1.2 systems with dynamic

real-time guarantees

Especially when considering the aforementioned criticism in classical mixed-
criticality research, as well as the resulting implications and concerns, the natural
connection between mixed-criticality and fault tolerance becomes apparent, since mixed-criticality

systems

fault tolerance
there are more similarities than the fact that tasks have multiple execution modes.
In both cases, the mode with larger execution time is induced by a rare event
with resulting abnormal behaviour and after these events are handled properly,
the system should return to the normal execution mode. Specifically, if assuming
that the systems return to low-criticality mode, mixed-criticality behaviour is
similar to a behaviour that occurs for both burst of transient faults as well as to
so-called intermittent faults where a system steadily alternates between proper
functionality and malfunction, e.g., due to a loose electrical contact [KK07].

Therefore, we provide a general model, called Systems with Dynamic Real-Time Systems with Dynamic
Real-Time GuaranteesGuarantees (SDRTGs), which is applicable in both cases as well as for other sce-

narios where uncertain execution behaviour occurs, for instance a CPU frequency
reduction due to overheating. Similar to mixed-criticality systems, SDRTGs assume
the tasks to be partitioned with respect to timeliness into not so important tasks,
where rare deadline misses are acceptable, and more important tasks that must
always meet their deadline. Hence, these tasks are called timing tolerable tasks, timing tolerable tasks

denoted Tso f t, and timing strict tasks, denoted Thard, respectively. Tasks may be timing strict tasks
executed either in a more likely normal mode with smaller WCET or in a rare normal mode
abnormal mode with larger WCET. One prime feature of SDRTGs is that they abnormal mode

provide service guarantees based on the current state of the system.

Assume that all tasks are executed normally over a long period of time. In
this situation, the deadlines of all tasks should be satisfied, which is denoted as
full timing guarantees in SDRTGs. In case of a rare event like fault-recovery, the full timing guarantees

timing strict tasks are still guaranteed to meet their deadlines, while the timing
tolerable tasks may miss deadlines but are guaranteed a bounded tardiness. The
situation where the guarantees are downgraded for the timing tolerable tasks is
denoted limited timing guarantees. After the additional workload induced by the limited timing

guaranteesrare event and possible delayed jobs of timing tolerable tasks does not affect the
system any more, it returns to full timing guarantees. All theses guarantees are
given in advance using static-priority scheduling without any online adaptation. This static-priority

scheduling

online adaptation
avoids the online adaptation overhead that itself may lead to deadline misses.
Moreover, such a system is implementable in current real-time operation systems,
which often do not support online changes of task parameters and in addition
often only support static-priority scheduling. Furthermore, under this approach a
mode switch must not necessarily be detected or given, to ensure that the system
functions correctly. However, during runtime, a System with Dynamic Real-Time
Guarantees uses an online monitor to display the provided timing guarantees.

Based on our general description, we now provide a precise definition, an
exact schedulability test, and some properties for Systems with Dynamic Real-Time
Guarantees in a uniprocessor environment, and show that the resulting systems
achieve a reasonable schedulability compared to the state-of-the-art for mixed-
criticality systems in Section 5.2. Afterwards, the system model is extended to

114 uncertain execution behaviour

multiprocessor platforms Section 5.3, considering both partitioned and semi-
partitioned scheduling strategies. We also show how migration techniques can be
utilized to compensate for processors that admit an abnormal execution behaviour
over a longer interval of time, i.e., intermittent faults.

5.2 uniprocessor systems with dynamic

real-time guarantees

In this section, we provide the general model of Systems with Dynamic Real-TimeSystems with Dynamic
Real-Time Guarantees Guarantees (SDRTGs) which can be adopted when uncertain execution behaviour

of tasks is imposed by the environment and the system platform. We first define
the system model as well as the related terms of full timing guarantees and limited
timing guarantees in Section 5.2.1 and provide an exact schedulability test in Sec-
tion 5.2.2. In Section 5.2.3, we continue by showing several important properties
of an optimal priority order for SDRTGs, present an algorithm to determine such
an order, and prove its optimality. How to calculate the maximum interval length
until the system returns to full timing guarantees when only providing limited tim-
ing guarantees due to some abnormal execution behaviour in the past is detailed
in Section 5.2.4, followed in Section 5.2.5 by the description of an online monitor
for the system state that approximates the amount of time needed to return to full
timing guarantees. The evaluation in Section 5.2.6 compares the acceptance ratio of
the provided optimal static-priority assignment compared to other scheduling
policies, to be precise to Rate Monotonic, Criticality Monotonic, and EDF-VD by
Baruah et al. [BBD+15], a state-of-the-art dynamic-priority scheduling approach
for mixed-criticality systems with online adaption.

The evaluation shows that regarding schedulability, our optimal priority as-
signment for Systems with Dynamic Real-Time Guarantees does not sacrifice much
in comparison to EDF-VD in most settings. In some settings, especially when
there is a larger difference between the WCETs in the abnormal and the normal
mode, our approach can even achieve a higher acceptance ratio than EDF-VD
for task sets with higher utilization values. These results show the good appli-
cability of Systems with Dynamic Real-Time Guarantees and furthermore suggests
that static-priority scheduling without any online adaptation is a sensible way
to schedule mixed-criticality systems. This observation is supported by the fact
that static-priority scheduling has less runtime overhead than dynamic-priority
scheduling. In addition, our strategy does not abandon any tasks when only
limited timing guarantees are provided and still guarantees bounded tardiness
for the timing tolerable tasks, while most mixed-criticality approaches, including
EDF-VD, allow to discard low-criticality tasks in the high-criticality mode. The
results presented in this section appeared in Systems with Dynamic Real-Time
Guarantees in Uncertain and Faulty Execution Environments in RTSS 2016 [BCH+16].

5.2.1 system definition

We assume that the tasks in T = {τ1, τ2, . . . , τn} have implicit or constrainedimplicit-deadline

constrained-deadline deadlines and two execution modes with the properties detailed in Section 2.6,

5.2 uniprocessor systems 115

referred to as the more common normal mode and the rare abnormal mode with normal mode

related WCETs CN
i and CA

i . We further assume that we do not necessarily know
the manner in which a job will be executed at the moment the job arrives or starts
executing, but that this information may be available at some time point during
or at the end of the execution process, e.g., due to a fault recovery routine that
only detects the fault at the end of a job execution. Informally, we say that the
system is abnormal in a given interval if some tasks are executed abnormally in
a certain time interval. In addition, we assume that T is partitioned into Thard
and Tso f t representing the timing strict tasks and timing tolerable tasks, respectively, timing strict tasks

timing tolerable tasksi.e., Thard ∩ Tso f t = ∅ and Thard ∪ Tso f t = T, and that for the timing strict tasks,
missing a deadline will have catastrophic consequences.

For all tasks, we assume the existence of two distinct execution modes, but
that the other task parameters cannot be changed during runtime, i.e., releasing
tasks at a lower rate, allowing some jobs to not be released, and enlarging a task’s
deadline are not valid reactions to abnormal execution. Hence, Di and Ti are
identical in the normal and the abnormal mode for all tasks. Furthermore, the
tasks are scheduled with static-priority scheduling and have the same priorities static-priority

schedulingregardless of the execution mode. One main reason for this decision regarding
the scheduling algorithms is that many real-time operating systems only support
one static-priority assignment that cannot be changed during runtime.

In Systems with Dynamic Real-Time Guarantees, jobs are never aborted. One
reason for this decision is that the results of these jobs may still be useful, even if
they are a little late, as long as the timing behaviour of the timing strict tasks is not
jeopardized. Therefore, we may reduce the guarantees for the timing tolerable tasks,
i.e., we guarantee (at least) bounded tardiness instead of timeliness. However,
the user should be informed that the results of timing tolerable tasks could be
late. Furthermore, executing one or more jobs in the abnormal mode will not
necessarily lead to missed deadlines. Lastly, when not assuming a given mode
change, the trivial approach of abandoning the tasks in Tso f t at the moment a
fault occurs is not sufficient, but jeopardizes the deadline of a task in Thard, even
if the system is proven safe in the normal mode:

Example 5.1. Let τ1 ∈ Tso f t with CN
1 = 6, CA

1 = 6 + ε, T1 = D1 = 16 and τ2 ∈ Thard
with CN

2 = 11, CA
2 = 12 + ε, T1 = D1 = 24, where ε > 0 but very small, be scheduled

according to Rate Monotonic (RM). This task set is schedulable in the normal mode, but
if we assume the critical instant of τ2 and a fault happening at t ∈ [22, 23], then τ2 will
miss its deadline as the first two jobs of τ1 are already completed.

Hence, trivially aborting jobs only works if all tasks τi ∈ Tso f t have lower
priority than all tasks τi ∈ Thard. However, in this situation there is anyway no
effect on the schedulability of tasks in Thard.

Furthermore, after some abnormal execution occurred, jobs may still miss
their deadline, even if all jobs run normally and no abnormal job remains in the
system. The reason is that some remaining workload, which was postponed by
the abnormal execution of higher priority tasks or an earlier job of the tasks itself,
can push back the time intervals where the job runs. This behaviour is exemplified self-pushing

phenomenonin Figure 5.1, where we consider the abnormal execution caused by faults, marked

116 uncertain execution behaviour

E EE
τ1 = (1, 4, 4) ∈ Thard

τ2 = (3, 9, 9) ∈ Tso f t

τ3 = (2, 12, 12) ∈ Tso f t

Figure 5.1: Tasks can miss a deadline due to self-pushing.
The first jobs of τ2 and τ3 miss their deadlines due to this additional workload.
A black cross labels the late executions. The purple job of τ3 misses its deadline
due to the self-pushing by its earlier instance. Adapted from [BCH+16].

with E, and CA
i = 2 · CN

i . The first jobs of τ2 and τ3 miss their deadlines due to the
additional workload created by the faults in the jobs of τ1 and τ2 (red) directly and
the workload that is executed after the deadline is labeled by a black cross. After
the first job of τ2 finishes, all remaining jobs in the system execute normally, but
the second job of τ3 (orange) misses its deadline due to the additional workload
induced by the late execution of the first job of τ2 and τ3. Note that the workload
created by higher priority tasks and the second job of τ3 in [12, 24] is not sufficient
for a deadline miss of the second job of τ3 but that remaining workload from the
first job of τ3 in [12, 24] leads to a self-pushing phenomenon.

The above observations have to be considered in the definition for Systems with
Dynamic Real-Time Guarantees. We say a system provides full timing guarantees, if
we can guarantee that all jobs that are currently ready to be executed will always
meet their deadline should no further abnormal execution occur. Contrarily, a
system provides limited timing guarantees, if we can only guarantee the timing
behaviour for the timing strict tasks, while for the timing tolerable tasks bounded
tardiness is guaranteed. We now formalize our argumentation and considerations.

Definition 5.1 (System with Dynamic Real-Time Guarantees). Consider a set T of
tasks under a static-priority scheduling. A job of task τi ∈ T cannot run until all the jobs
of task τi that arrived earlier are completed. All jobs of all tasks always have to be run and
can never be aborted. The tasks in T are partitioned into the timing strict tasks Thard and
the timing tolerable tasks Tso f t, hence Thard ∩ Tso f t = ∅ and Thard ∪ Tso f t = T.

If the system provides full timing guarantees, hard real-time guarantees hold for each
task:

• T: Each task τi ∈ T must meet the hard relative deadline.

If the system provides limited timing guarantees, the service level guarantees are
downgraded from hard real time guarantees to bounded tardiness for some of the tasks:

• Thard ⊆ T: Each task τi ∈ Thard is required to meet its deadline.

• Tso f t ⊆ T: Each task τi ∈ Tso f t must have bounded tardiness, i.e., 0 ≤ Ei < γ for
a fixed value γ > 0.

The partition into Thard and Tso f t is assumed to be given. We say a task set
is feasible or feasibly schedulable as a System with Dynamic Real-Time Guarantees,
if for the given partition and the given priority ordering the conditions for full
timing guarantees and limited timing guarantees both hold. While we only consider

5.2 uniprocessor systems 117

preemptive static-priority scheduling, this definition can be applied for both the
preemptive and the non-preemptive case.

An important property of our approach is not to provide any runtime (online)
adaptation. This has the nice consequence that the scheduling algorithm can
be robust regardless of mode changes, assuming that the schedule is verified
offline, to be always feasible to provide dynamic timing guarantees. Hence, the
impact on the system behaviour due to the tardiness of the tasks in Tso f t, can
be analysed in advance without disturbing the runtime system. The system may
arbitrarily switch between normal and abnormal execution due to the impact of
the physical environment, e.g., transient faults. If this impact is acceptable in the
system behaviour, e.g., guaranteeing bounded tardiness instead of hard deadlines
in Tso f t is sufficient as long as this happens for less than 1% of systems runtime,
there is no need for any runtime adaptation.

The remaining question is what information should be displayed to the user
of a system at which time point. Usually, the user will not be interested in
the information that an abnormal execution happened as long as the timing
behaviour is not affected and all results can be trusted. We focus on the timing
behaviour and assume that the calculated results can always be trusted, e.g.,
when considering fault recovery, the abnormal mode always leads to a correct
result or to a partially incorrect but still acceptable result. However, a possible
delay of currently provided results, the actual delay, and the expected time until
the system returns to providing full timing guarantees - assuming no further faults
occur - should be displayed.

5.2.2 exact schedulability test

Here, we assume the task set T, a partition of T into two subsets Thard and
Tso f t, and a static-priority order P to be given. How such a priority order can be
found is detailed in the next subsection. A sufficient schedulability test that deter-
mines whether T is a System with Dynamic Real-Time Guarantees (Definition 5.1) if
scheduled according to P must test the following three conditions:

1. Each task τi ∈ T meets its hard deadline if all tasks are executed in the
normal mode.

2. Each task τi ∈ Thard meets its hard deadline if some (or all) tasks are
executed in the abnormal mode.

3. Each task τi ∈ Tso f t has a bounded tardiness if some (or all) tasks are
executed in the abnormal mode.

To test the schedulability of a preemptive task set with constrained dead-
lines under a static-priority assignment, we apply the Time Demand Analysis
(TDA) [LSD89] as defined in Eq. (2.3) as an exact test with pseudo-polynomial run-
time. It determines the schedulability of a task τk under the assumption that the
priority order of the task set is given and the schedulability of all tasks in hp(τk)

is already ensured. The task set is schedulable under preemptive static-priority
scheduling, if Eq. (2.3) holds true for all τi ∈ T. This results in the following exact exact test

118 uncertain execution behaviour

schedulability tests to determine the schedulability of a task set as a System with
Real-Time Service Level Guarantees.

Theorem 5.1 (Exact Schedulability Test for Constrained Deadlines). For a given
static-priority ordering P, a task set T is a System with Dynamic Real-Time Guarantees
as defined in Definition 5.1, if the following three conditions hold:

1. Full timing guarantees hold, if T can be scheduled according to TDA [LSD89]
when all tasks are executed in the normal mode, i.e., Ci = CN

i ∀τi.

2. When the system runs with limited timing guarantees, all τi ∈ Thard meet their
hard deadlines, if they are schedulable according to TDA when all tasks are executed
in the abnormal mode, i.e., Ci = CA

i ∀τi.

3. Each task τi ∈ Tso f t has bounded tardiness if UA
sum ≤ 1.

Proof. Let ΘA
soft :=

{
τi ∈ Tso f t | τi ∈ hp(τj), τj ∈ Thard

}
be the tasks in Tso f t that

have a higher priority than at lest one task in Thard.

1. Follows immediately, since TDA is an exact schedulability test for any pre-
emptive static-priority scheduling algorithm if the maximum interference can
be determined based on the critical instant theorem. If no abnormal execution
occurs, all tasks are executed in normal mode and the situation is identical to the
sporadic case where all tasks have only one execution mode.

2. We only must test the tasks in Thard with TDA, since we only need to guarantee
bounded tardiness for τi ∈ Tso f t which is evaluated in the third step. However,
tasks in ΘA

soft may contribute workload to the worst-case response time of tasks
in Thard. The tasks in Tso f t do not have hard real-time constraints if abnormal
executions occur, but are executed with the same priority as in the normal mode.
Therefore, they can be handled as hard real-time tasks in the analysis, since they
contribute the same workload as tasks in Thard would. The possibility that these
tasks may miss their deadlines has no impact on the analysis, since TDA tests
every task individually and we are only interested in the workload those tasks
contribute if they are executed, but not in the concrete execution order of higher
priority tasks or if the tasks meat or miss their deadline. According to the critical
instant theorem, the worst case for τk ∈ Thard happens when it is released together
with all higher priority tasks, all subsequent jobs of these tasks are released as
early as possible, and all tasks are executed in abnormal mode. Considering CN

i
instead of CA

i in the analysis would only decrease the workload generated by
tasks in hep(τk).

3. For tasks in Tso f t, bounded tardiness has to be provided. When assuming
exactly periodic releases, the total workload contributed by jobs that are released
in one hyperperiod is always smaller than or equal to the hyperperiod length
if UA

sum ≤ 1. If jobs are released sporadically, this workload may only decrease.
Therefore, the latest possible time where a job can finish is one hyperperiod after
its release if UA

sum ≤ 1. This leads to an upper bound on the worst-case response
time for all tasks in T and thus to a bounded tardiness. If UA

sum > 1, the maximum
workload in one hyperperiod, due to jobs that arrive in the hyperperiod but are
not fully executed in the hyperperiod, is larger than the length of the hyperperiod.
Let this additional workload be γ > 0. As for each value β value x ∈ N with
γ · x > β exists, the tardiness is not bounded.

5.2 uniprocessor systems 119

This are the 3 conditions we have to match for a System with Dynamic Real-Time
Guarantees (Definition 5.1).

However, this definition of bounded tardiness seems to be too restrictive for
some practical cases. For instance, when many executions are affected by faults,
hardened hardware should be used instead of recovery mechanisms, and to
successfully apply software-based recovery mechanisms, a low expected fault rate
is usually a condition. Moreover, for mixed-criticality systems it is assumed that
the system will usually run in low-criticality mode. Hence, without restricting
ourselves to a specific kind of uncertain execution behaviour, we consider two
general possibilities:

1. Abnormal execution happens with a very low probability over an interval
with a small length and affects (nearly) all jobs.

2. For each individual job, abnormal execution happens with a low probability.

In both cases UA
sum > 1 is tolerable if UN

sum < 1 and if the intervals where no
abnormal execution occurs are significantly longer than the intervals where
abnormal execution occurs. Thus, in both scenarios, the setting itself will lead
to a bounded tardiness for most practical cases. For instance, when it can be
assumed that a burst of faults only affects a small number of jobs compared to
the number of jobs between two bursts of faults. For mixed-criticality systems, a
similar assumption is that the intervals in high-criticality mode are significantly
shorter than the intervals in low-criticality mode. In both scenarios, the system
has a sufficient amount of time to return to full timing guarantees. The length of the
interval with limited timing guarantees for a given task set can be upper bounded if
we suppose the maximum length ∆ of such an interval with abnormal execution
behavior to be known, as shown in Section 5.2.4. If we assume faults to happen
with a given rate, this rate needs to be high to affect a sufficient number of tasks
to lead to limited timing guarantees over a longer interval.

Due to this consideration, we drop the condition that UA
sum ≤ 1 in the evaluation

regarding the acceptance rate of Systems with Dynamic Real-Time Guarantees in
Section 5.2.6. However, we analyse the amount of time where only limited timing
guarantees are provided for task sets with a high utilization in Section 5.2.6 as
well, validating whether our decision to drop the condition has a high impact on
the stability of the system based on the example of reasonable fault rates.

5.2.3 properties of priority assignments

After providing the schedulability test for a System with Dynamic Real-Time Guar-
antees under a given priority ordering, we now explain how to construct such a
priority ordering, if one exists, for a given task set. First, we show that existing
or trivial priority orderings, namely Deadline Monotonic order and Criticality
Monotonic order, are not optimal for System with Dynamic Real-Time Guarantees.

Lemma 5.2 (Deadline Monotonic Order is Not Optimal). For a System with Dy-
namic Real-Time Guarantees (Def. 5.1) a Deadline Monotonic priority order is not optimal
for constrained-deadline task sets.

120 uncertain execution behaviour

Proof. Assume two tasks to be scheduled according to DM, where τ1 ∈ Tso f t with
CN

1 = 1, CA
1 = 1 + ε, T1 = D1 = 4, where ε > 0 but very small, and τ2 ∈ Thard

with CN
2 = 3, CA

2 = 4, T1 = D1 = 6. In normal mode, both tasks meet their dead-
lines with WCRTs of RN

1 = 1 and RN
2 = 4, respectively. In the abnormal mode,

UA
sum = 1+ε

4 + 4
6 = 22+6·ε

24 < 1 for small values of ε > 0, which leads to bounded
tardiness for τ1, and RA

2 = 2 · (1 + ε) + 4 > 6 and thus τ2 will miss its deadline.

If the priorities of τ1 and τ2 are switched, τ1 has bounded tardiness in abnormal
mode since UA

sum remains the same. Both tasks are schedulable in normal mode
as RN

1 = 4 and RN
2 = 3. In abnormal mode the WCRT of τ2 is 4 < 6.

As shown in Example 5.1, in general, aborting the execution of τi ∈ Tso f t is
only able to keep up hard real time guarantees for Thard, if all tasks in Tso f t have
lower priorities than all tasks in Thard.

Definition 5.2 (Criticality Monotonic). We say a task set T with two subsets Thard
and Tso f t has a Criticality Monotonic ordering, when all tasks τi ∈ Thard have higher
priority than all tasks in Tso f t.

For the following lemma, the internal order of Thard and Tso f t is not impor-
tant. However, in general, we assume that Thard and Tso f t are internally ordered
according to DM.

Lemma 5.3 (Criticality Monotonic Ordering is Not Optimal). For a System with
Dynamic Real-Time Guarantees (Def. 5.1), Criticality Monotonic order is not optimal.

Proof. Assume τ1 ∈ Tso f t with CN
1 = 1, CA

1 = 1 + ε, and T1 = D1 = 3, where
ε > 0 but very small, and τ2 ∈ Thard with CN

2 = 3, CA
2 = 3 + ε, and T1 = D1 = 6.

Let them be scheduled according to Criticality Monotonic, i.e., P(τ1) > P(τ2). In
normal mode we get RN

1 = 4 and RN
2 = 3 and thus τ1 will not meet its deadline.

If the priorities of τ1 and τ2 are switched, τ1 and τ2 both meet their deadlines in
normal mode, i.e., RN

1 = 1 and RN
2 = 4. In abnormal mode τ2 meets its deadline,

since RN
2 =2 · (1 + ε) + 3 + ε= 5 + 3 · ε < 6. Here τ1 has bounded tardiness, as

UA
sum = 1+ε

3 + 3+ε
6 = 5+3·ε

6 < 1.

Since neither Deadline Monotonic nor Criticality Monotonic scheduling are
optimal for System with Dynamic Real-Time Guarantees, we have to look at a
more general approach. Audsley’s Algorithm [Aud91], also called optimal priorityoptimal priority

assignment assignment (OPA), can be applied to find a feasible static-priority assignment if the
used schedulability test S is OPA compatible [DB09]. The related three conditionsOPA compatible

are detailed in Section 2.4.

Lemma 5.4. The Schedulability Test in Theorem 5.1 is OPA compatible.

Proof. We only sketch the proof.

1. Schedulability is independent from order of hp(τk): TDA sums up the
workload of all jobs from tasks in hp(τk). Hence, the order of those tasks has
no impact, as it only changes the order in which the workload is summed up.
This holds true for both the normal and the abnormal case in Theorem 5.1.
The task order has no impact on the condition UA

sum ≤ 1.

5.2 uniprocessor systems 121

2. Schedulability is independent from order of lp(τk): Since the workload
of tasks in lp(τk) is not considered in TDA at all, the order has no impact.
The order of the tasks has no impact on the condition UA

sum ≤ 1 as well.

3. Tasks do not get unschedulable at a higher priority: If τk is assigned a
higher priority by swapping with τk−1, the workload of the higher priority
tasks in TDA will only be reduced and thus τk remains schedulable. The
switch has no impact on the condition UA

sum ≤ 1 either.

Ensuring these three properties is sufficient to prove that a schedulability test is
OPA compatible.

We now show that the tasks in Thard and Tso f t can both be ordered according
to DM if a feasible priority assignment exists.

Lemma 5.5 (Thard in Deadline Monotonic Order). If a feasible priority assignment
P for a System with Dynamic Real-Time Guarantees (Definition 5.1) exists for a given
task set T, the tasks in Thard can be reordered according to Deadline Monotonic order and
Dynamic Real-Time Guarantees are still provided.

Proof. We only sketch the proof since it is very similar to the prove for the
optimality of Deadline Monotonic scheduling [LW82]. Using the interchanging
argument, we look at the first two consecutive tasks τj and τk in the internal
priority order of Thard that are not in DM order, i.e., Dj > Dk and P(τj) < P(τk).
If τj and τk are direct successors in P, we can swap them directly due to the
optimality of DM for constrained-deadline task sets.

The case that τj and τk are not direct successors in P remains, which means that
S :=

{
τi ∈ Tso f t | P(τj) < P(τi) < P(τk)

}
6= ∅. We increase the priority of each

τi ∈ S by 1 and set the priority of τj to P(τk−1), thus τj and τk are now direct
successors in P. All tasks in S remain schedulable as their priorities are increased,
while τj remains schedulable since Dj > Dk due to the precondition that τj and τk
are not in DM order and, as τk is schedulable, the workload created by all tasks
in hp(τj) ∪ τj ∪ τk up to Dk is smaller than Dk. Thus, we can now swap τj and τk
since both tasks remain schedulable according to the first case and continue until
all tasks in Thard are in DM order.

With a similar (omitted) proof, we achieve the same result for Tso f t.

Lemma 5.6 (Tso f t in Deadline Monotonic Order). If a feasible priority assignment for
a System with Dynamic Real-Time Guarantees (Definition 5.1) exists, the tasks in Tso f t
can be reordered according to Deadline Monotonic ordering while all Dynamic Real-Time
Guarantees still hold.

We now know that we can reorder both subsets Thard and Tso f t to be in Deadline
Monotonic order, resulting in the following theorem.

Theorem 5.7 (Thard and Tso f t in DM order). If a feasible priority assignment for
System with Dynamic Real-Time Guarantees (Definition 5.1) exists, a feasible priority
assignment where the tasks in Thard and Tso f t are internally ordered according to the
Deadline Monotonic order also exists.

122 uncertain execution behaviour

Proof. We know that Thard and Tso f t can be reordered individually according to
DM order while obtaining the feasibility. Since reordering Thard does not change
the internal order of Tso f t and vice versa, we first reorder the tasks in Thard to be
in DM order and then reorder the tasks in Tso f t to be in DM order. Afterwards,
we still obtain a feasible priority ordering for a System with Dynamic Real-Time
Guarantees.

Algorithm 1 Feasible Priority Assignment
Input: Thard, Tso f t
Output: Feasible Order P of Thard ∪ Tso f t or NOT POSSIBLE

1: Sort Thard by Di increasingly
2: Sort Tso f t by Di increasingly
3: Find Assignment(Thard, Tso f t)

Procedure: Find Assignment(Thard, Tso f t)
4: for (n = |Thard ∪ Tso f t|; n > 0; n := n− 1) do
5: τt := last element of Thard

6: if (Try Priority(τt,
{

Thard ∪ Tso f t

}
\ {τt},n,hard)) then

7: P(τt) := n
8: Thard := Thard\ {τt}
9: else

10: τt := last element of Tso f t

11: if (Try Priority(τt,
{

Thard ∪ Tso f t

}
\ {τt},n,soft)) then

12: P(τt) := n
13: Tso f t := Tso f t\ {τt}
14: else
15: return NOT POSSIBLE
16: return List of Thard ∪ Tso f t ordered by P(τt)

Procedure: Try Priority(τt, hp(τt), priority, task_type)
17: P(τt) := n
18: Assign hp(τt) to priorities 1, . . . , n− 1
19: if (task_type==hard) then
20: Ci := CA

i , ∀τi ∈ hp(τt) ∪ τt
21: else
22: Ci := CN

i , ∀τi ∈ hp(τt) ∪ τt
23: if (τt is schedulable according to TDA) then
24: return true
25: else
26: return false

Hence, according to Theorem 5.7, if a feasible priority assignment exists we can
use the priority assignment algorithm presented in pseudo-code in Algorithm 1 to
find one. The idea is similar to OPA [Aud91]: Find a task that can take the lowest
priority, i.e., it is schedulable under the assumption that all other tasks have
higher priority. If such a task can be found, assign it to the lowest priority (among
the tasks), remove it from the task set, and redo the process with the remaining
tasks. If no suitable task is found for some priority, we return NOT POSSIBLE,
otherwise we return a feasible priority assignment. To keep the length of the
pseudo code reasonable, we do not take care of the case that either Thard or Tso f t

5.2 uniprocessor systems 123

will be empty at some point during the algorithm. In that case, only the lowest
priority task of the not empty set will be tested. The main difference to OPA is
that Algorithm 1 tests at most two candidates for each priority: the remaining
task in Thard and the remaining task in Tso f t with the longest relative deadline,
respectively. Therefore, the tasks in Thard and Tso f t are preordered according to
DM. Note that regarding Dynamic Real-Time Guarantees it does not matter if the
task with the longest deadline in Tso f t or Thard is assigned to the priority if TDA
returns schedulable for both tasks. However, since tasks in Thard are only assigned
to a priority if they meet the deadline when considering only abnormal execution,
trying to assign the tasks in Thard first may result in shorter intervals with limited
timing guarantees as well as in more tasks in Tso f t that meet their deadline if
abnormal execution occurs.

Theorem 5.8 (Feasible Priority Assignment). If a feasible priority assignment for a
given System with Dynamic Real-Time Guarantees exists, Algorithm 1 will find a feasible
assignment.

Proof. Based on Theorem 5.7 we know that if a feasible priority assignment exists,
there is also a feasible assignment where Thard and Tso f t are internally in Deadline
Monotonic order. Assume that such a priority assignment S is given, e.g., an OPA
where the tasks in Thard and Tso f t are reordered to be in DM ordering in the way
presented in Lemma 5.5 and 5.6. To conclude the proof, we will reorder S until it
has the same order as provided by Algorithm 1. An important observation is that
the tasks in Thard and Tso f t always have the same internal order in S and in the
priority assignment provided by Algorithm 1, as S was reordered to have DM
order in both subsets, and Algorithm 1 only tries to assign the remaining tasks in
Thard and Tso f t with the largest relative deadline.

Let τj ∈ Thard be the task in Thard with the lowest priority in S, i.e., the task in
Thard with the longest relative deadline. Based on the interchanging argument,
we try to exchange τj with tasks that have lower priority in S until τj would
not be schedulable at its new priority. Hence, S remains schedulable, as for all
other tasks the priority is only increased. Let T j

low denote all tasks that have lower
priority than τj after the priority of τj was decreased. We must examine two cases:

1. If T j
low = ∅ the new position of τj is the lowest.

2. There are T j
low ⊆ Tso f t that have lower priority than τj. All τi ∈ T j

low are
schedulable, as P was schedulable and the priority of those tasks was not
changed.

Now τj and τi ∈ T j
low are in the same order as Algorithm 1 provides, as Algo-

rithm 1 only assigns a task in Tso f t to a priority if the task in Thard cannot be
assigned. In the next step, we consider the task τk ∈ Thard that has the lowest
priority in Thard\

{
τj
}

and decrease its priority until it would not be schedulable
anymore or we would exchange it with another task in Thard. Now τk and all
tasks with a priority lower than τk are in the same order as Algorithm 1 provides
with the same argument. We repeat this procedure until all tasks in Thard are in
the same order as provided by Algorithm 1.

124 uncertain execution behaviour

To find a feasible priority assignment, Audsley’s Algorithm [Aud91] (OPA)
could be applied directly. However, in general, Algorithm 1 has a much better
runtime than OPA. Let the task set contain n tasks. In the worst case, TDA has
to test a pseudo-polynomial number of time points to determine if a task is
schedulable on a given level. Let TDA(n) be the number of tests for that level.
Each of these tests has a runtime of O(n) to sum up the workload of the higher
priority tasks. Due to this, the time complexity needed to test the schedulability
of a task at a priority level is O(n · TDA(n)).

Hence, the time complexity is O(n2 · n · TDA(n)) = O(n3 · TDA(n)) for OPA,
as there are n priority levels and the worst case OPA has to test O(n) tasks
with TDA on each priority level. When Algorithm 1 is used, at most 2 tasks
have to be considered for each priority level, resulting in a time complexity of
O(2n · n · TDA(n)) = O(n2 · TDA(n)) to find the assignment. Ordering Thard
and Tso f t according to the relative deadlines can be done in O(n log n) which is
dominated by O(n2 · TDA(n)). Thus, when assigning priorities to give Real-Time
Service Level Guarantees the time complexity of Algorithm 1 is a power less than
the one of OPA.

5.2.4 system mode analysis

Contemplating a situation where abnormal execution occurs for some jobs during
an interval and that this interval length ∆ is known, we analyse the system mode.
We calculate the maximum time the system provides only limited timing guaranteeslimited timing

guarantees under the assumption that no further abnormal execution will occur. Let θb be the
latest time instant at which an abnormal execution has been detected. Recall that
we assume that the mode of execution (normal or abnormal) is not necessarily
known when the job starts, e.g., due to fault detection with related recovery
operations. Hence, we say we detect abnormal execution at the moment a job
executes for more than CN

i . However, the system mode analysis presented here
also works if the execution mode of a job is known beforehand. Our objective is
to find the time when the system will return to full timing guarantees, i.e., all jobsfull timing guarantees

of all tasks will meet their deadlines.

Let θ0 denote the latest time instant before θb where the processor is idle, and
θa be the first time instant where abnormal execution is detected over [θ0, θb]. Let
θb − θa = ∆, as illustrated in Figure 5.2. To provide full timing guarantees again
after an abnormal interval, it is sufficient that the system is idle at time θ f ≥ θb as
no abnormal execution that happened before θ f can affect any task that is realised
at a time t ≥ θ f . If we are able to show that the length of the busy interval forbusy interval

a given ∆ is no more than a specific value, we know that after this interval the
system will provide full timing guarantees again.

We denote Ω(t) as the maximum total amount of execution time of the tasks
in T in [θ0, θ0 + t). Clearly, the interval length during which a system is busily
executing is no more than the smallest value of t that satisfies Ω(t) ≤ t.

Theorem 5.9 (Computing Ω(t)). Let Γ denote the interval [θ0, θ0 + t) except [θa, θb].
An upper bound on Ω(t) can be calculated as:

Ω(t) = ∆ + F + I(t) (5.1)

5.2 uniprocessor systems 125

E E E E E

θb θ0 + tθaθ0

processor idled

first abnormal
execution detected

last abnormal
execution detected

∆

Figure 5.2: Schematic for the system mode analysis. A busy interval of length t with an
interval of abnormal execution [θa, θb] equal to length ∆. The time instants
where abnormal execution is detected are marked by E. Adapted from [BCH+16].

where the terms are as described below.

• I(t): the combined workload from all jobs of all tasks executed normally over the
interval [θ0, θ0 + t).

• F: the work of all tasks abnormally executed over the interval Γ.

• ∆: the interval length during which abnormal executions are detected.

To prove Theorem 5.9, we first derive equations for each of the aforementioned
terms and show that we account for the maximum possible amount of workload.
That the processor idles at θ0 by definition directly leads to the following lemma:

Lemma 5.10. There are at most
⌈

t
Ti

⌉
jobs of task τi released in [θ0, θ0 + t).

Hence, I(t) = ∑τi∈τ Wi(t) where Wi(t) =
⌈

t
Ti

⌉
CN

i . The amount of of additional
execution time for a task instance in abnormal mode compared to the normal
mode is at most CA

i − CN
i .

Lemma 5.11. In Γ, there is at most one job of each task that executes abnormally
where the additional workload for this abnormal execution, compared to jobs that execute
normally, is upper bounded by CA

i − CN
i . Therefore,

F = ∑
τi∈τ

(
CA

i − CN
i

)
(5.2)

Proof. We prove this lemma by considering two cases:

• Additional execution in [θ0, θa]: By definition of θa as the first time an
abnormal execution is detected after the last idle time, no job is executing
for more than CN

i over [θ0, θa].

• Additional execution after θb: As each task may have at most one job ex-
ecuted at any time instant, each task has at most one job that has been
partially executed and is not yet completed at time θb. As no further abnor-
mal execution is detected after θb according to its definition, there is at most
one job with abnormal execution carried out after θb, and the remaining
workload is upper bounded by CA

i − CN
i for every task τi.

Hence, we can conclude this lemma.

126 uncertain execution behaviour

Lastly we need a simple observation about ∆.

Observation 5.12. The abnormal workload executed in the time interval [θa, θb] is no
more than ∆, regardless of whichever job is executing.

Now we can prove Theorem 5.9.

Proof (Theorem 5.9). We have to show that we accounted for all possible workload
in the time interval [θ0, θ0 + t). We account for all normal executions in I(t). This
includes normal executions in ∆. For abnormal executions, the part up to CN

i is
also accounted for in I(t), regardless if they are executed in or outside ∆, as stated
in Lemma 5.10. The additional workload of CA

i − CN
i can only be executed once

outside ∆, as shown in Lemma 5.11. Thus, we get the most amount of additional
workload in ∆ if only additional workload due to abnormal execution is executed
in ∆, which is bounded by ∆ due to Observation 5.12.

Please note that the cause for an abnormal execution that is detected at time θa

may only occur in the interval [θ0, θa]. Specifically, this is the case at least for the
one job where abnormal execution is detected at θa. However, jobs may only be
executed for a very small part of CN

i during ∆ and thus we use ∆ as an upper
bound. Regardless, the exact moment the cause for abnormal execution happens
is not important to bound the busy interval or for Systems with Dynamic Real-Time
Guarantees in general, since in Systems with Dynamic Real-Time Guarantees, all
guarantees are given beforehand and no online adaptation is necessary.

5.2.5 system monitor design

Up to this point, all essential analysis in terms of system scheduling is provided.
However, for the industrial practice, an online monitor to reflect the system status
is also important. This monitor should trigger warnings if the system can only
give limited timing guarantees for an individual task or the whole system, andlimited timing

guarantees display the earliest time the task/system will return to full timing guarantees, i.e.,
full timing guarantees the monitored task or all tasks in Tso f t will meet their hard deadline. We propose

to use approximation to detect the change from full timing guarantees to limited
timing guarantees, and for the calculation of an upper bound of the next time
instance the system will return to full timing guarantees.

Since we guarantee the timing behaviour of the timing strict tasks offline, we
only have to monitor timing tolerable tasks. Assume we monitor τk ∈ Tso f t. For
notational brevity, let hp(τk)

H := hp(τk) ∩ Thard and hp(τk)
S := hp(τk) ∩ Tso f t, i.e.,

the subset of the tasks with higher priority than τk that are part of Thard and Tso f t,
respectively. Assume that for each task it is known if a job of this task is ready to
be executed at the time we analyse, and that the current execution mode of the
job is known as well, i.e., it is known whether it has been executed for less than
CN

i amount of time or not.

We know that the interference from tasks in hp(τk) and/or self-pushing (e.g.,
Figure 5.1) can prolong the execution of a job of τk. Due to this interference,
multiple deadline misses for τk may happen once the system switches to limited

5.2 uniprocessor systems 127

timing guarantees. The next time we can guarantee that τk meets its deadline, if no
further faults occur, is the moment a lower priority task is executed, i.e., the end
of the level k busy interval, denoted as busyk. Let |busyk| be the length of busyk. If busy interval

|busyk| is smaller than the time the current job of τk has left to finish its execution,
we can give full timing guarantees for τk. Otherwise τk may miss its deadline, we
can only provide limited timing guarantees, and full timing guarantees for τk can be
given again at the end of busyk.

Similar to Section 5.2.4, we denote the maximum total amount of execution
time from hep(τk) in an interval from [θ0, θ0 + t) as Ωk(t) and look for the smallest
value of t where Ωk(t) ≤ t. To apply the the formula developed in Section 5.2.4
directly, we would have to keep track of the last time the processor executed a
task in lp(τk) for each τk, and the amount of additional interference due to higher
priority tasks during this interval. We use an alternative approach here by setting
θ0 to the current time and calculate the carry in as well as the future workload due carry in

to tasks in hep(τk), to not have additional, potentially high, overhead for keeping
track of the interference of tasks in hep(τk) in busyk for each τk ∈ Tso f t.

Let Ik(t) denote the maximum workload due to jobs of tasks in hep(τk) with
normal executions in [θ0, θ0 + t], i.e.,

Ik(t) = ∑
τi∈hep(τk)

Wi(t) = ∑
τi∈hep(τk)

⌈
t
Ti

⌉
CN

i (5.3)

Furthermore, the carry in workload from tasks in hep(τk) must be taken into
account. We denote the carry in workload of τi by G(τi). To determine G(τi),
we need to know how much workload remains for a job of τk that is currently
executable, which can be estimated by keeping track of the time the job has
already been running. Depending on the mode of the job, we subtract that value
from CN

i or CA
i to get G(τi), ergo we also need to know if a job is currently in

normal or abnormal mode. If keeping track of the time a task has been executed
is too much overhead, CN

i or CA
i can directly be used as an upper bound on

G(τi) depending on its mode. Since tasks in hp(τk)
H always meet their deadline

by system design, at most one job of each task in hp(τk)
H can be in the system.

For tasks in hp(τk)
S ∪ τk there may be carry in from more than one postponed

execution and we have to sum this up with the remaining workload of a currently
active job to get G(τi) for τi ∈ Tso f t. The total carry in can be calculated as
Gk = ∑τi∈hep(τk)

G(τi).

We have to look for the smallest t with:

Ωk(t) = ∑
hep(τk)

⌈
t
Ti

⌉
CN

i + ∑
τi∈hep(τk)

G(τi) ≤ t (5.4)

As we do not know how many jobs of τk will be executed before busyk ends,
we create a virtual task τk′ with Ck′ = Gk and virtual priority k + 1. An upper
bound on the WCRT of τk′ can be calculated using Theorem 1 in [BNR+09] by
Bini et al. It states that for each sporadic task τi in a static-priority system the
WCRT Ri is upper bounded by

Ri ≤
Ci + ∑i−1

j=1Cj(1−Uj)

1−∑i−1
j=1Uj

(5.5)

128 uncertain execution behaviour

In our case, we have to take the future jobs of all tasks in hep(τk) into account and
the carry in Gk is the execution time of our virtual task. Hence, we can calculate
an upper bound for the length of the level k busy period busyk as |busyk|∗ by

|busyk| ≤
Gk + ∑j∈hep(τk)

CN
j (1−UN

j)

1−∑j∈hep(τk)
UN

j
= |busyk|∗ (5.6)

Note that only the tasks with a job that already started may have abnormal
execution behaviour, thus we assume normal execution for all future jobs and
use CN

j and UN
j in the formula. The related workload of abnormal executions

is explicitly summed up in Gk. We can provide full timing guarantees for τk at θ0

if |busyk|∗ ≤ Dk. If |busyk|∗ > Dk we only provide limited timing guarantees, and
|busyk|∗ is an upper bound on the time the systems needs to go back to to full
timing guarantees for τk, assuming no further faults occur. It is also possible to
achieve tighter bounds, e.g., by applying the results in [CHL16b; BPD15] that
require sorting the tasks in hep(τk) by their periods.

The question remains when to check if timing guarantees have changed, which
can be done using two general approaches. One is to check periodically, where
the period of this check can be determined depending on the needed granularity
during system design. Alternatively, we can check in an event-driven manner.
The moment abnormal execution is detected is a natural choice for an event, as
this is the only point in time a change from full timing guarantees to limited timing
guarantees may happen for the affected tasks. This is an important observation, as
no checks are needed while all tasks have full timing guarantees if no abnormal
execution occurs. A change from limited timing guarantees back to full timing
guarantees for a task τk may happen when a task with higher priority than τk or
an instance of τk itself finishes.

5.2.6 evaluations

We focused on two questions. First, we determined the possible acceptance
ratios for Systems with Dynamic Real-Time Guarantees under different scenarios
in a schedulability analysis. Afterwards, we explored the behaviour of task sets
with high utilization under different fault rates in system state analysis, i.e., we
analyzed the percentage of time where full timing guarantees are provided for
these task sets under different fault rates.

schedulability analysis

We generated random implicit-deadline task sets with a given UN
sum accord-

ing to the UUniFast method [BB05], applying the suggestion by Emberson et
al. [ESD10] to generate the task periods according to a log-uniform distribution
over two orders of magnitude. Specifically, log10 Ti is a uniform distribution over
[1ms− 100ms]. The WCET in the normal mode was set according to the utiliza-
tion, i.e., CN

i = Ui · Ti. We evaluated task sets with 5 different cardinality values,
5, 10, 20, 50 and 100 tasks, and randomly picked 30%, 40%, 50%, 60% and 70% of

5.2 uniprocessor systems 129

these tasks to be in Thard. We calculated CA
i for τi ∈ Thard according to 3 different

ratios, called WCET-Factors, to simulate 3 scenarios for software-based recovery
of transient faults. We assume that for complete re-execution the fault detection
takes 20% of the WCET without fault detection (only one detection at the end)
and for checkpointing we assumed 40% overhead but that only 20% of the job
has to be re-executed. To be precise:

• Re-Execution: CA
i ≈ 1.83 · CN

i as 2.2
1.2 ≈ 1.83

• Two Re-Executions: CA
i ≈ 2.83 · CN

i as 3.4
1.2 ≈ 2.83

• Checkpointing: CA
i ≈ 1.14 · CN

i as 1.6
1.4 ≈ 1.14

We considered two different values for the relation of CA
i to CN

i for τi ∈ Tso f t: The
same value as used for Thard or 1.0, i.e., fault detection without any kind of fault
recovery. For each of these in total 5 · 5 · 3 · 2 = 150 settings, we analyzed 1000
randomly generated task sets for each utilization value UN

sum ∈ [1%, 100%] with a
step size of 1%. We tested the schedulability of the task sets as a System with Dy-
namic Real-Time Guarantees using 4 static-priority orderings: Rate Monotonic (RM),
Criticality Monotonic (CM), Optimal Priority Assignment (OPA) [Aud91], and
the ordering provided by Algorithm 1, all tested by the schedulability test in
Theorem 5.1. In these tests, we dropped the condition UA

sum ≤ 1 according to
the arguments at the end of Section 5.2.2. Later in this subsection, we perform a
system state analysis, examining the behaviour of task sets with high utilization
under different fault rates, to support this argument. We also tested the schedula-
bility under EDF-VD [BBD+15], the dynamic-priority state-of-the-art scheduling
algorithm for mixed-criticality systems, using the schedulability test provided by
Baruah et. al in [BBD+15, Section 3]. Note that, contrary to a System with Dynamic
Real-Time Guarantees, EDF-VD does not provide any guarantees for low-criticality
tasks in high-criticality mode.

In addition to the acceptance ratio, we monitored if RM, CM, or OPA were able
to schedule a task set that was not schedulable by Algorithm 1. However, this
case never occurred and Algorithm 1 and OPA always resulted in an identical
acceptance ratio which strongly supports our claim that Algorithm 1 provides an
optimal assignment (Theorem 5.8). As the two curves are identical, only one curve,
labeled Optimal Assignment (OA), is used to represent OPA and Algorithm 1 in
Figure 5.3, showing the results for sets with 10 tasks, 5 of them in Thard, and a
WCET-Factor of ≈ 1.83 for both Thard and Tso f t. Since the general behaviour was
similar under all 150 settings, we only provide a subset of the results.

The most interesting result presented in Figure 5.3 is the comparison between
EDF-VD [BBD+15] and our optimal assignment (OA). While the curve for OA
starts dropping earlier than the one of EDF-VD (Utilization 52% and 61% respec-
tively), EDF-VD drops faster. Hence, from 72% onwards, OA can schedule more
task sets than EDF-VD. In this area ∑τi∈Thard

UA
i can be too large to find values for

the virtual deadlines in EDF-VD as those virtual deadlines are generated from
the original deadlines by multiplying with a factor ≤ 1. Since OA performs an
exact test considering the actual deadlines it is still able to find a feasible schedule.
Similar behaviour was observed in most settings.

In Figure 5.4, we compare the optimal assignment (OA) and EDF-VD based on
the three different WCET-Factors. For a WCET-Factor of 1.14, EDF-VD always

130 uncertain execution behaviour

0 20 40 60 80 100
Utilization Normal Mode (%)

0

20

40

60

80

100

Ac
ce

pt
an

ce
 R

at
io

 (%
)

Hard Tasks: 50.0%, WCET-Factor: 1.83, Runs: 1000, Tasks/Run: 10

Rate Mon.
Criticality Mon.
Optimal Assign.
EDF-VD

Figure 5.3: Acceptance ratio for 10 tasks per run. Adapted from [BCH+16].

outperforms OA. For WCET-Factors of 1.83 and 2.83, EDF-VD only performs
better than OA up to a utilization of 71% and 56%, respectively. For higher
utilization values OA is able to schedule more task sets than EDF-VD. The gap
between EDF-VD and OA in the acceptance ratio for a given utilization seems
reasonable if we consider that OA does not drop any tasks when only limited
timing guarantees are provided, the scheduling overhead of EDF is in general
larger than the overhead of static-priority scheduling, and that for EDF-VD online
adaptation is necessary.

We also analyzed the schedulability as Systems with Dynamic Real-Time Guaran-
tees under the Optimal Assignment (OA) considering the percentage of timing
strict tasks and the size of the task set.

The effect that the percentage of timing strict tasks has on the schedulability
is displayed in Figure 5.5. We considered 5 different rates for the percentage of
timing strict tasks and only display the interesting utilization interval [45%, 95%].
When the percentage of timing strict tasks is higher, the acceptance rate drops
earlier which was expected since we have to provide hard real-time guarantees
for a higher percentage of tasks.

Furthermore, in Figure 5.6 we show the schedulability considering different
set sizes, again showing the interesting utilization interval [45%, 75%]. If only the
sets with 10, 20, 50 and 100 tasks are consider, the curve for the larger sets starts
decreasing later but decrease faster and vice versa. Only the sets with 5 tasks
behave slightly different due to the randomness of the input.

5.2 uniprocessor systems 131

20 30 40 50 60 70 80 90 100
Utilization Normal Mode (%)

0

20

40

60

80

100
Ac

ce
pt

an
ce

 R
at

io
 (%

)
Hard Tasks: 50.0%, Runs: 1000, Tasks/Run: 10

OA, WCET-F.=1.14
EDF-VD, WCET-F.=1.14
OA, WCET-F.=1.83
EDF-VD, WCET-F.=1.83
OA, WCET-F.=2.83
EDF-VD, WCET-F.=2.83

Figure 5.4: Comparison of OA and EDF-VD. Adapted from [BCH+16].
For a WCET-Factor of 1.14 EDF-VD is always superior to the Optimal As-
signment (OA), while for WCET-Factors of 1.83 and 2.83 OA is better than
EDF-VD for utilization values higher then 71% and 56% respectively.

system state analysis

Figure 5.3 shows that OA has an acceptance ratio of 44.4% for task sets with
10 tasks, 50% tasks in Thard, a WCET-Factor of ≈ 1.83, and UN

sum = 70%, which
means UA

sum ≈ 128.1%. EDF-VD [BBD+15] achieved schedulability for 53.7% of
these sets. As both algorithms only provide schedulability for roughly 50% of the
task sets and the acceptance ratio is decreasing fast around 70% utilization, we say
these sets have a critical utilization. For the first 40 of these randomly generated
task sets with critical utilization that are schedulable according to Algorithm 1,
we examined the system state, evaluating the percentage of time where full timing full timing guarantees

guarantees and where limited timing guarantees were provided. limited timing
guarantees

We used QEMU emulators under Real-Time Executive for Multiprocessor Sys-
tems (RTEMS) [Rte] version 4.11 where the used kernel is enhanced by patch
#2772 [Che16d], enabling only one processor. The chosen board support package
was RealView Platform Baseboard Explore for Cortex-A9. For each testing instance,
the system was executed for one hour under different fault rates, i.e., on average
10−4, 3 · 10−4, 10−3, 3 · 10−3 and 10−2 faults per millisecond (f/ms). If an executed
instance of τi is faulty, the corresponding WCET CN

i becomes CA
i . Whether the

system can give full timing guarantees or only limited timing guarantees is decided by
the system monitor presented in Section 5.2.5. The percentage of time the system

132 uncertain execution behaviour

50 60 70 80 90
Utilization Normal Mode (%)

0

20

40

60

80

100

Ac
ce

pt
an

ce
 R

at
e

(%
)

Tasks per Set: 50, WCET-Factor: 1.83, Runs: 1000
30 %
40 %
50 %
60 %
70 %

Figure 5.5: Acceptance rate for percentages of timing strict tasks. Adapted from [BCH+16].
The acceptance rate drops earlier if the percentage of hard tasks is higher.

45 50 55 60 65 70 75
Utilization Normal Mode (%)

0

20

40

60

80

100

Ac
ce

pt
an

ce
 R

at
e

(%
)

Hard Tasks: 60.0%, WCET-Factor: 1.83, Runs: 1000
5 Tasks
10 Tasks
20 Tasks
50 Tasks
100 Tasks

Figure 5.6: Acceptance rate for different set sizes. Adapted from [BCH+16].
Larger task sets starts decreasing later but decrease faster. The slightly different
behaviour of sets with 5 tasks is due to randomness effects.

was running with full timing guarantees is shown in Figure 5.7. The median of
those 40 sets is colored orange, the blue box represents the interval from the first
to the third quartile, and the black whiskers show the minimum and maximum.

5.2 multiprocessor systems 133

10 4 3 10 4 10 3 3 10 3 10 2

Average Fault Rate (faults/ms)

65

70

75

80

85

90

95

100
Fu

ll
Ti

m
in

g
Gu

ar
an

te
es

 (%
)

40 Task Sets, Hard Tasks: 50.0%, Utilization: 70.0%, WCET-Factor: 1.83

Median
First to Third Quartiles
Whiskers

Figure 5.7: Percentage of time with full timing guarantees for task sets with critical utiliza-
tion under different fault rates. Adapted from [BCH+16].

The system always provides full timing guarantees for fault rates of 10−4 and
3 · 10−4 f/ms. When the fault rate is increased to 10−3 and 3 · 10−3 the median
value decreases to 98.6% and 94.9%. The third quartile is at 99.6% and 97.6%,
and the first quartile is at 96.91% and 91.4%. If the fault rate is increased further
to 10−2, we observe 93.7%, 83.4%, and 78.2% for third quartile, median, and
first quartile, respectively. This shows that even for higher fault rates under
an, in general, difficult setting, full timing guarantees can still be provided for a
reasonable percentage of time. However, for some of the task sets, the percentage
of time where full timing guarantees can be given drops faster, as can be seen by
the comparatively long lower whiskers for 3 · 10−3 and 10−2.

5.3 multiprocessor systems with dynamic

real-time guarantees

After introducing Systems with Dynamic Real-Time Guarantees and exploring their
properties in a uniprocessor environment, we extend the model to homogeneous
multicore systems by introducing Multiprocessor Systems with Dynamic Real-Time Multiprocessor

Systems with Dynamic
Real-Time Guarantees

Guarantees (MSDRTG) in Section 5.3.1 and detail the related schedulability test
in Section 5.3.2. We provide two general approaches for MSDRTG, a partitioned
approach in Section 5.3.3 and a semi-partitioned approach in Section 5.3.4. After-
wards, we discuss how processors suffering from abnormal execution behavior
over a longer but limited interval of time, e.g., due to a high-criticality mode,
intermittent faults, or processor clock speed drops resulting from overheating, can
be compensated for by means of task migration, and introduce the concepts of
full compensation and partial compensation in Section 5.3.5. We assess the developed full compensation

partial compensationtechniques by means of comprehensive evaluations in Section 5.3.6. The results
presented in this section appeared in Do Nothing, but Carefully: Fault Tolerance

134 uncertain execution behaviour

with Timing Guarantees for Multiprocessor Systems devoid of Online Adaptation in
PRDC 2018 [BSC18].

5.3.1 multiprocessor system model

Based on the general model for uncertain execution behaviour detailed in Sec-
tion 2.6 and the Model of Systems with Dynamic Real-Time Guarantees in Section 5.2,
we now define the model of Multiprocessor Systems with Dynamic Real-Time Guaran-Multiprocessor

Systems with Dynamic
Real-Time Guarantees

tees (MSDRTG) as well as its respective properties, before establishing a suitable
schedulability test. Our definition and the test assumes partitioned scheduling
but can be extended to the semi-partitioned case later.

In a system S, consider a set of n tasks T = {τ1, . . . , τn} with each task τi ∈ T
being either timing strict, i.e., τi ∈ Thard, or timing tolerable, i.e., τi ∈ Tso f t, so thattiming strict tasks

timing tolerable tasks Thard ∩ Tso f t = ∅ and Thard ∪ Tso f t = T. The task set T is partitioned onto a set
of m homogeneous processors, which means that Tj ∩ Tk = ∅ for all j 6= k with
j, k ∈ {1, . . . , m} and T1 ∪ T2 ∪ · · · ∪ Tm = T. Each set of tasks Tp allocated to
a processor p with 1 ≤ p ≤ m is identified as subsystem of S and scheduled
according to a static-priority task order Pp. Let Tp,hard and Tp,so f t be the subset of
tasks on processor p that are in Thard and Tso f t, respectively. For each τi ∈ T no
job can begin its execution before all previously arrived jobs released by the same
task are completed, and no job of any τi ∈ T must ever be aborted.

Definition 5.3 (Multiprocessor System with Dynamic Real-Time Guarantees). A
system S with subsystems T1, ..., Tm is an MSDRTG if and only if each subsystem Tp

satisfies the characteristics of a System with Dynamic Real-Time Guarantees in
Definition 5.1, i.e., if under normal system behavior, all subsystems provide full timing
guarantees, and under abnormal system behavior all affected subsystems provide at least
limited timing guarantees for a bounded interval of time.

A subsystem Tp provides full timing guarantees if hard real-time constraints arefull timing guarantees

satisfied for each task τi ∈ Tp. More precisely, under normal system behavior, all
jobs of each task τi ∈ Tp meet their hard relative deadlines, i.e., EN

i = 0 ∀τi ∈ Tp.
In a subsystem Tp providing limited timing guarantees, service level guaranteeslimited timing

guarantees may be downgraded for some timing tolerable tasks Tp,so f t ⊆ T, such that all
τi ∈ Tp,so f t have (at least) bounded tardiness, i.e., 0 ≤ EA

i < γi ∀ τi ∈ Tp,so f t for a
fixed value γi. However, each instance of each τi ∈ Tp,hard meets its hard relative
deadline irregardless, i.e., EA

i = 0 ∀ τi ∈ Tp,hard. An MSDRTG S provides full
timing guarantees if all subsystems Tp provide full timing guarantees, and limited
timing guarantees if at least one subsystem provides only limited timing guarantees.

5.3.2 schedulability test

Owing to the fact that an MSDRTG S as defined above is composed of a set of
subsystems {T1, . . . , Tm}, each of which comprises a set of tasks scheduled accord-
ing to an individual static-priority order, the schedulability test for uniprocessor
SDRTG proposed in Theorem 5.1 can be adapted for MSDRTGs as follows:

5.3 multiprocessor systems 135

Theorem 5.13 (Exact Schedulability Test for MSDRTGs with Constrained Dead-
lines under Partitioned Scheduling). A task system S with a given partition of the
task set T into subsets T1, . . . , Tm, a given partition of T into Thard and Tso f t, and a given
priority order Pp for each subset Tp ∈ {T1, . . . , Tm} is an MSDRTG if and only if:

1. Each subsystem Tp can be scheduled according to TDA [LSD89] under the given
priority order Pp and normal system behavior, i.e., Ci = CN

i ∀τi ∈ Tp.

2. For each subsystem Tp all τi ∈ Tp,hard can be scheduled according to TDA under
the given priority order Pp and abnormal system behavior, i.e., Ci = CA

i ∀τi ∈ Tp

3. For each subsystem Tp, it holds that UA
p,sum ≤ 1.

Since Theorem 5.13 is a direct extension of the test for uniprocessor systems
in Theorem 5.1, a proof is omitted. Similar to the uniprocessor case, we omit the
condition that UA

p,sum ≤ 1 in our further discussions as well as in the evaluation.

Having provided the formal specifications of an MSDRTG as well as a suitable
schedulability test, we now explain how to obtain the actual task partition and
priority assignment. Afterwards, we detail how the number of task sets that are
feasibly schedulable as an MSDRTG can be increased by utilizing task migration
in a semi-partitioned approach.

5.3.3 partitioned scheduling

Adopting the partitioned scheduling paradigm, two distinct problems must be partitioned scheduling

considered: First, the overall task set T must be partitioned so that each task
τi ∈ T is statically allocated to a specific processor. After that, a priority order
must be specified for each subsystem Tp.

For the actual partitioning, one can apply any partitioning heuristic based on
any pre-sorting as detailed in Section 2.5. Multiple combinations of pre-sorting
and partitioning heuristics will be compared in the evaluation in Section 5.3.6.
However, whether a possible assignment of task τt to processor p satisfies the
conditions for an MSDRTG in Theorem 5.13 requires applying the Feasible Pri-
ority Assignment Algorithm for (uniprocessor) SDRTGs provided in Algorithm 1,
considering the previously assigned tasks Tp together with the candidate τt. The
reason being that even if τt cannot be scheduled together with all previously
assigned τi ∈ Tp under the previous priority order Pp, the set Tp ∪ {τt} may be
schedulable under another priority order. Hence, the priority assignment on each
processor may change whenever a new task is allocated to that processor.

5.3.4 semi-partitioned scheduling

When following a partitioned scheduling approach, it may happen that no further semi-partitioned
schedulingtasks can be added to a subsystem Tp, but some spare capacity is left on the

respective processor p. In this event, it seems sensible to allow tasks to split into
so-called subtasks, which are executed on more than one processor, a so-called subtasks

semi-partitioned scheduling. More precisely, we attempt to fill each processor to the

136 uncertain execution behaviour

maximum capacity by assigning the largest possible task shares. As a consequence,
task sets can be scheduled as an MSDRTG exhibiting a higher system utilization
than feasible under partitioned techniques.

This entails additional challenges: It is necessary to decide which tasks to share,
how to compute the spare capacity of a processor, i.e., how to derive the largest
possible WCET of a subtask, and how to specify a subtask’s deadline. In addition,
it must be determined which priorities are assigned to the individual subtasks
and how to ensure the correct execution order of a sequence of subtasks.

Contemplate a task τt ∈ T that cannot be allocated to any processor under
a given partition. In this case, a certain task τs, which can be either the task
τt that could not be assigned successfully or a task that is already assigned
to a processor, i.e., a τs ∈ Tp, may be shared between at least two processors
such that τs is not executed by more than one processor at the same time. As
a consequence of this sequential execution, a release of a subjob of the shared
task τs on a processor p + 1 must not take place before the respective subjob
executed on processor p is finished. To ensure this property, it seems reasonable
to execute each subjob as early as possible, i.e., as soon as it is released. For this
reason, we always assign the highest priority in the subsystem to each subtask
of τs and the subtask’s relative deadline is, hence, the same as the subtask’s
WCET. This concept is called C=D scheme in the literature and was introduced
by Burns et al. [BDW+12]. Owing to the fact that the remaining capacity on each
processor does not suffice to execute τs completely, all processors maintaining
one share of τs are filled to maximum capacity after the splitting operation. The
only exception is the processor where the last subtask is assigned. In contrast to
the remaining processors, another task or a subtask of another shared task can
still be assigned to this processor. Since the next task instance cannot be released
before the previous one is finished, the execution order of the first shared task
τs cannot be disrupted anyway. Therefore, a subtask of τu that is later assigned
to the same processor takes higher priority than this previously assigned last
subtask of τs. Summarizing these considerations, a precise definition of the term
shared task is given.shared task

Definition 5.4 (Shared Task). A task τs ∈ T is a shared task if its execution is not
restricted to one processor and if the following conditions hold:

• A shared task is never executed by more than one processor at the same time, but is
successively passed on to the next processor as soon as its execution budget on the
current processor is exhausted.

• A shared task is always scheduled under the highest priority on each processor. The
only exception to this rule may be the last subtask of a task. In this case, the later
allocated subtask has a higher priority, since the previously assigned task segment
is the last segment of the related task.

• Concerning all calculations involving the shared task’s worst-execution time, CA
s is

used regardless of the actual system behavior.

Each share of τs, denoted as a subtask of τs, is treated as an individual task with the
specification τs,p = (CN

s,p, CA
s,p, Ds, Ts).

5.3 multiprocessor systems 137

τ1 = (1, 2, 5, 5)
Processor 1

τ2,1 = (1, 2, 7, 7)

τ2,2 = (2, 4, 7, 7)
Processor 2

τ3 = (9, 18, 14, 14)
0 5 10 15

Figure 5.8: The problem of release jitter. Adapted from [BSC18].
Task τ3 misses its deadline due to the release jitter of subjob τ2,2 on processor 2,
resulting from the execution of subjob τ2,1 on processor 1.

Having clarified how to specify the deadlines of each subtask, how to assign its
priority, and how to ensure the correct execution order of a sequence of subtasks,
we go on to discuss how to compute the maximum amount of time a subtask can
execute on a particular processor p, i.e., its worst-case execution time, which we
assumed to be given until now. Assume that a chunk of task τs should be assigned
to processor p and let the set of previously allocated tasks Tp with a priority order
Pp be given. Utilizing the method proposed by Kato and Yamasaki in [KY09], it
is possible to compute the maximum amount of time τs can be executed on a
respective processor without causing a specific task τk ∈ Tp to miss its deadline.
The minimum value derived for any τi ∈ Tp determines the worst-case execution
time Cs,p of subtask τs,p on p. Accordingly, a subtask of length Cs,p is split off and
the worst-case execution time budget of τs, i.e., the remaining workload to be
distributed to processors with spare capacity, is reduced by Cs,p. This is repeated
until either no further workload needs to be distributed or the system is deemed
to be unschedulable. Please note that we always refer to the abnormal WCET CA

s
throughout the task splitting.

When a shared task τs is migrated from processor p to processor p + 1, the so-
called release jitter of each subtask must be considered as well, i.e., the difference release jitter

between its best- and worst-case response time. An example is provided in
Figure 5.8, outlining 3 tasks being distributed to two processors. Task τ1 and τ3

are statically allocated to processor 1 and 2, respectively, the first subtask τ2,1 of
the shared task τ2 is always executed on processor 1, and the second subtask
τ2,2 is always executed on processor 2. Due to the additional workload produced
by the higher-priority task τ1 in the interval [0; 2], the first instance of τ2,1 has a
larger response time than its second and third instance. Resulting from this, τ2,2

is not released exactly periodically on processor 2, but with a release jitter of 2
time units, which, in turn, leads to a deadline miss of τ3, indicated by the cross.
This can be avoided by releasing τ2,2 exactly periodically or sporadically, such
that its maximum workload contributed by τ2,2 in any interval of length 14 is 4
time units and, as a consequence, τ3 always meets its deadline.

Owing to the fact that each subtask (except possibly the last one) of a shared task
is always executed under the highest priority in the respective subsystem, its best-
and worst-case response time do not differ. Other factors potentially inducing
jitters - although on a smaller scale - are the time required for task preemption

138 uncertain execution behaviour

and the migration time. We assume the preemption time to be sufficiently small
to be neglected and that for a given subtask the related migration time is always
constant. Accordingly, we can consider all subtasks as periodic tasks without any
release jitter in our analysis. Otherwise, release enforcement techniques can be
used as, e.g., explained in [BL92] or in Section 6.2.2.

The remaining questions is which task should be chosen as a shared task.
Two diverging strategies can be pursued: either the task τt which could not be
allocated during the task partitioning, or an already assigned task τi ∈ Tp. While
the first case can be handled as detailed above, the latter one can be dealt with
as proposed by Lakshmanan et al. [LRL09]. More precisely, the highest-priority
task in Tp is chosen to be shared between processors. The reason is that the
highest-priority task on each processor typically has a short relative deadline,
whereas the task τt to be assigned usually has a longer deadline2 as well as a
larger WCET. Moreover, it is well known that assigning a higher priority to a task
with a shorter deadline is in general favorable [LW82].

Accordingly, if the task allocation strategy is not able to assign a certain
task τt ∈ T, we look for a processor p where τt can be assigned if the highest
priority task τh

p is removed from p, i.e., τt can be scheduled along with Tp\
{

τh
p

}
.

Afterwards, we reassign τh
p , potentially dividing it into multiple subtasks and

sharing it across a number of processors applying the previously explained
method until the workload of τs is completely distributed. As soon as each τi ∈ T
is assigned to one (or more) processor(s), the algorithm terminates successfully.
Otherwise, the task set T is declared to be unschedulable as an MSDRTG.

Further strategies for increasing the number of schedulable task sets can be
applied as well, for example, removing previously assigned tasks τr from a
subsystem in order to allow a feasible allocation of the currently considered task
τt, while reconsidering τr later on. A comprehensive survey including conceivable
approaches can be found in [DB11a].

5.3.5 compensating faulty processors

by task migration

So far, we proposed a system model that enables dynamic timing guarantees, i.e.,
full timing guarantees for timing strict tasks and limited timing guarantees for
timing tolerable tasks, in a multiprocessor scenario. Moreover, we suggested a
number of scheduling strategies that allow such an MSDRTG to be established.

We now introduce a compensation technique for components exhibiting ab-
normal behavior for a limited interval of time, aiming to achieve additional
tolerance with respect to, for instance, intermittent faults, mixed-criticality be-
haviour, or a decreased CPU clock frequency. We term a system component, i.e.,
a subsystem Tp, corrupted if it exhibits abnormal execution behavior.

2 This depends on the order in which the tasks are partitioned. Nevertheless, even for an inverted
DM order, the unassigned task τt most commonly has a relative deadline that is not considerably
shorter than the one of the highest-priority task τh

p ∈ Tp.

5.3 multiprocessor systems 139

A certain subset of tasks scheduled on the corrupted subsystem Tp must be
migrated to other processors to satisfy their timing requirements. Since timeliness
is by definition guaranteed for all tasks τi ∈ Tp,hard under abnormal system
behavior, these tasks may remain on the corrupted processor even if the subsystem
exhibits abnormal behavior for an infinite time interval, as long as for each τi ∈ Tp

a correct result can be obtained within the respective abnormal WCET CA
i . For

all tasks τi ∈ Tp,so f t, bounded tardiness is already guaranteed if UA
p,sum ≤ 1 holds.

However, we remove this condition, assuming that the intervals in which the
system exhibits abnormal behavior are significantly shorter than those under
normal behavior. As a consequence, neither timeliness nor bounded tardiness can
be ensured for any τi ∈ Tp,so f t. Therefore, their migration is beneficial.

For this migration process, it is necessary to determine a specific order in which
the tasks in Tp are migrated. However, we cannot decide which tasks to favor
by means of their particular function or purpose, since all timing tolerable tasks
are considered equally important in a SDRTG. Hence, we categorize the tasks in
Tp,so f t based on their timing properties under abnormal behaviour:

• Tasks that meet their hard deadline under abnormal system behavior any-
way, denoted as Tguar

p,so f t. These can be neglected in the migration process.

• Tasks for which no timeliness but at least bounded tardiness can be guaran-
teed under abnormal system behavior, denoted Tbd

p,so f t.

• Tasks for which no guarantees can be given under abnormal system be-
havior, denoted as Tunbd

p,so f t. Note that this situation is only possible since we
dropped the condition that UA

p,sum ≤ 1.

Depending on the number of corrupted subsystems as well as on their particular
task sets, two levels of compensation are achievable. A corrupted processor can be
fully compensated if the system maintains an MSDRTG after the migration process.
Otherwise, it can be partially compensated if all τi ∈ Thard meet their hard deadlines
under abnormal system behavior, whereas at least bounded tardiness can be
guaranteed for each τi ∈ Tso f t, provided that the destination processor(s) of the
task migration are not affected by corruption.

Regarding the migration process, we begin with the tasks in Tunbd
p,so f t, owing to the

fact that they need to be migrated to achieve both full and partial compensation.
Concerning this subset, we make the following observations: Since the total
utilization up to a certain priority level is an increasing function with respect to
the priority, only tasks with a priority lower than any τi ∈ Tp,hard can be in Tunbd

p,so f t.
Moreover, if a task τj is in Tunbd

p,so f t, all tasks with a lower priority than τj are in
Tunbd

p,so f t as well, while each τi ∈ Tbd
p,so f t has a higher priority than each τj ∈ Tunbd

p,so f t.
Accordingly, Tunbd

p,so f t can be computed easily. The tasks in Tunbd
p,so f t are considered in

deadline monotonic order during the migration process.

After Tunbd
p,so f t has been determined, we try to assign each τj ∈ Tunbd

p,so f t to a non-
corrupted processor that yields full timing guarantees after the migration process.
If τj cannot be allocated to such a processor or no such processor exists, we search
for a processor q where timeliness can still be guaranteed for all tasks τi ∈ Tq,hard,
while bounded tardiness is ensured for all tasks τi ∈ Tq,so f t ∪ τj. If at least one
task in Tunbd

p,so f t cannot be assigned either way, the corrupted processor(s) cannot

140 uncertain execution behaviour

τ1 = (1, 2, 4, 4) ∈ Thard

τ2 = (2, 4, 7, 23) ∈ Tso f t

τ3 = (1, 2, 15, 20) ∈ Thard

τ4 = (1, 2, 10, 32) ∈ Tso f t

τ5 = (4, 8, 39, 40) ∈ Tso f t

0 5 10 15 20 25 30 35 40

Figure 5.9: Migration example for Tp. Adapted from [BSC18].
Tp,hard = {τ1, τ3}, Tp,so f t = {τ2, τ4, τ5}, and UA > 1. At first, τ5 ∈ Tunbd

p,so f t is

migrated, resulting in UA ≤ 1. Afterwards, τ2 is migrated since τ2, τ4 ∈ Tbd
p,so f t

and τ2 has higher priority. As a result, τ4 meets its deadline.

be compensated. If, in contrast, migration of at least one task τj ∈ Tunbd
p,so f t leads to

bounded tardiness for some of the tasks in Tq,so f t ∪ τj the corrupted processor(s)
can be partially compensated. Otherwise, if all non-corrupted subsystems exhibit thepartial compensation

characteristics of a System with Dynamic Real-Time Guarantees after the migration
of Tunbd

p,so f t, we continue to migrate the tasks in Tbd
p,so f t in deadline monotonic order

until either the characteristics of an MSDRTG are restored for the system S (in this
case, the corrupted processor(s) can be fully compensated) or one task τj ∈ Tbd

p,so f tfull compensation

cannot be assigned to any processor q in such a way that the properties of a
System with Dynamic Real-Time Guarantees are maintained for Tp ∪ τj. Please note
that migrating a small number of tasks τj ∈ Tbd

p,so f t from a corrupted subsystem Tp

to another one may already reduce the workload on Tp enough to provide full
compensation, making further migration unnecessary.

Concerning the actual migration, we assume that all instances of a task τi that
is migrated from a subsystem Tp to a subsystem Tq are terminated on processor p
before the migration and restarted on processor q afterwards. More precisely,
the release of the first instance of τi on q occurs in the same moment in which
its next release on p would have taken place. This indeed implies that all jobs
terminated on p are lost which, at first glance, contradicts the idea of Systems with
Dynamic Real-Time Guarantees. However, we assume that compensation techniques
are utilized when the abnormal execution behaviour occurs for an unusually long
interval. For instance, we assume that compared to transient faults, abnormal
behaviour due to intermittent faults over a long interval of time is rare. Hence,
sacrificing a few jobs can be tolerated for the benefit of system robustness.

By way of illustration, consider Figure 5.9 which portrays a corrupted sub-
system under abnormal behavior with 5 distinct tasks. τ1 and τ3 are part of
Thard. Since UA

sum ≈ 1.036 > 1, we categorize the tasks as follows: τ5 ∈ Tunbd
p,so f t

and τ2, τ4 ∈ Tbd
p,so f t. If τ5 can be successfully migrated to another processor, the

corrupted processor is partially compensated. If, moreover, τ2 can be migrated, τ4

meets its deadline under abnormal system behavior and the System with Dynamic
Real-Time Guarantees property is restored for Tp. Finally, the corrupted subsystem
is fully compensated if τ5 and τ2 can be migrated, such that the system S exhibits
the characteristics of an MSDRTG thereafter.

Although enabling full or partial compensation increases the robustness and
thus the safety of an MSDRTG, a compromise must be made, since this leads to
a smaller number of schedulable task sets. We will evaluate this tradeoff more
thoroughly in Section 5.3.6.

5.3 multiprocessor systems 141

Unfortunately, our proposed method is not applicable to recover from per-
manent faults. This follows from the fact that a system component affected by
a permanent fault is entirely inoperable, for which reason not only all timing timing tolerable tasks

tolerable tasks but, in addition, all timing strict tasks need to be migrated to another timing strict tasks
subsystem. In this event, the migration itself leads to manifold problems for
timing strict tasks, e.g., ensuring their timeliness during the migration process.
Therefore, addressing this issue is beyond our scope.

5.3.6 evaluation

In the following, we discuss the results of our comprehensive evaluations, in
the course of which we analyzed the schedulability of randomized synthetic
task sets as MSDRTGs under different processor assignment, task splitting, and
compensation techniques.

experiment setup

We randomly generated implicit-deadline task sets, i.e., Di = Ti ∀τi. The number
of processors m and the number of tasks n in the set differs depending on
the analyzed setting, we chose m = 4, 8, or 16, and n = 40, 80, or 160. For m
processors, the values of UN

sum ranged from 2%×m to 100%×m with steps of
2%×m. For a given m, n, and total utilization UN

sum, we generated tasks according
to the UUniFast method [BB05]. For each setting and each utilization value, 1000
randomly generated task sets were evaluated under 16 scheduling strategies.
We also evaluated if full or partial compensation was possible for each task
set, assuming that one processor was corrupted. The task periods were drawn
randomly, according to a log-uniform distribution with two orders of magnitude,
as suggested by Emberson et al. [ESD10], i.e., log10 Ti was a uniform distribution
over [1ms− 100ms]. The WCET under normal system behavior was set according
to the utilization, i.e., CN

i = Ui · Ti. Finally we randomly chose 50% of the tasks
to be in Thard, with the remaining tasks being assigned to Tso f t.

Similar to the uniprocessor case, we evaluated a fault-recovery scenario, con-
sidering one re-execution, two re-executions, and checkpointing of a task, with
the following ratios between CN

i and CA
i :

• Re-Execution: CA
i ≈ 1.83 · CN

i as 2.2
1.2 ≈ 1.83

One fault detection with an assumed overhead of 20% at the end of the
normal execution. If a fault is detected, the job is completely re-executed.

• Two Re-Executions: CA
i ≈ 2.83 · CN

i as 3.4
1.2 ≈ 2.83

Two re-executions and two fault detections, one after the normal execution
and one after the first re-execution.

• Checkpointing: CA
i ≈ 1.14 · CN

i as 1.6
1.4 ≈ 1.14

The occurrence of a fault is tested at multiple checkpoints during the normal
execution. We assumed a total overhead of 40% for the detection and that
20% of the task have to be re-executed.

142 uncertain execution behaviour

We used the same ratio values, denoted WCET-factors, for both Thard and Tso f t. As
individual tasks with an abnormal utilization over 100% can, by default, not be
scheduled on one processor, they were discarded during the random generation
and substituted with new tasks.

evaluation results

In our evaluations, we tried to allocate tasks to processors for different combina-
tions of task pre-orders and partitioning strategies. During the task pre-ordering,
Thard and Tso f t were not sorted separately. We considered the following pre-orders:

1. Rate Monotonic Order (RM): The tasks were sorted in increasing order of
their period Ti.

2. Inverted Rate Monotonic Order (IRM): Tasks with longer period Ti were
allocated first.

3. Utilization Monotonic Order (UM): Tasks with higher utilization UN
i were

allocated first.

We considered First-Fit (FF), Best-Fit (BF), Worst-Fit (WF), and Arbitrary-Fit (AF)
as assignment strategies. The three pre-orders combined with the four assignmentassignment strategy

strategies led to a total of 12 basic partitioned scheduling approaches.

The results for a setup with 8 processors, 80 tasks, and a WCET-factor of
1.83, i.e., one re-execution, can be found in Figure 5.10. The labels indicate the
considered pre-order and the applied assignment strategy, e.g., RM-FF for rate
monotonic pre-order with first-fit assignment strategy.

In Figure 5.10(a), the assignment strategies are compared under a rate mono-
tonic pre-order. RM-FF and RM-BF performed nearly identical with a slight ad-
vantage for RM-BF. Both acceptance ratios start dropping noticeably at 80%×m,
whereas RM-WF performed worst and the acceptance ratio breaks down 25%×m
earlier than for RM-BF and RM-FF. This is due to the fact that under a worst-
fit approach, the utilization is distributed equally while under the first-fit and
best-fit strategies, the processors are filled as densely as possible. Hence, a single
task with a long period and high utilization can easily lead to a situation in
which no processor has sufficient remaining capacity when the worst-fit strategy
is combined with a rate-monotonic pre-order. RM-AF performs slightly better
than RM-WF because the randomness of the approach sometimes prevents the
aforementioned worst-case scenario. Since RM-BF and RM-WF performed best
and worst, they serve as reference values for all other approaches in the following
subfigures of Figure 5.10.

Regarding the inverted rate-monotonic (IRM) order, IRM-FF and IRM-BF as
well as IRM-WF and IRM-AF performed similar, as shown in Figure 5.10(b).
While IRM-FF and IRM-BF were slightly worse than RM-BF, IRM-WF and IRM-
AF accepted more task sets than RM-WF. With a utilization-monotonic (UM)
pre-order, all strategies led to a nearly identical acceptance ratio, especially
between RM-BF and RM-WF, as shown in Figure 5.10(c).

In addition, we examined three partitioned approaches where the tasks in Thard
and Tso f t were assigned separately, namely:

5.3 multiprocessor systems 143

0.0 0.2 0.4 0.6 0.8 1.0

Utilization (%) / m

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ep
ta

n
ce

R
at

io
(%

)
Processors: 8, Tasks: 80, Hard Tasks: 50.0%, WCET-Factor: 1.83, Runs: 1000

0 20 40 60 80 100

0

20

40

60

80

100

(a) Rate-Monotonic Order (RM)

RM - First-Fit (FF)

RM - Best-Fit (BF)

RM - Worst-Fit (WF)

RM - Arbitrary-Fit (AF)

0 20 40 60 80 100

0

20

40

60

80

100

(b) Inverted Rate-Monotonic Order (IRM)

RM - BF

RM - WF

IRM - FF

IRM - BF

IRM - WF

IRM - AF

0 20 40 60 80 100

0

20

40

60

80

100

(c) Utilization-Monotonic Order (UM)

RM - BF

RM - WF

UM - FF

UM - BF

UM - WF

UM - AF

0 20 40 60 80 100

0

20

40

60

80

100

(d) Timing Strict Tasks Assigned First

RM - FF

RM - WF

RM - BF+ RM - BF

RM - WF + RM - BF

UM - WF + RM - BF

0 20 40 60 80 100

0

20

40

60

80

100

(e) First-Fit with Task Splitting

RM - BF

RM - WF

RM - FF with Task Splitting

0 20 40 60 80 100

0

20

40

60

80

100

(f) First-Fit with Compensation

RM - BF

RM - WF

RM - FF - Partial Compens.

RM - FF - Full Compens.

Figure 5.10: (a)-(d) Comparison of different partitioning strategies. The best and the
worst strategy (RM-BF ans RM-WF) are further compared to (e) our semi-
partitioned approach with highest-priority task splitting, and (f) our com-
pensation techniques. Adapted from [BSC18].

1. RM-BF+RM-BF: First, the tasks in Thard, then the tasks in Tso f t were parti-
tioned using the RM-BF approach.

2. RM-WF+RM-BF: First, RM-WF was applied for Thard, and afterwards RM-BF
was applied for Tso f t.

3. UM-WF+RM-BF: After the tasks in Thard were assigned according to UM-WF,
Tso f t was assigned via RM-BF.

The results are shown in Figure 5.10(d). RM-BF+RM-BF surpasses the other
two approaches but is still outperformed by RM-FF. The two other approaches
performed slightly better than RM-WF.

From Figures 5.10(a)-(d), we conclude that RM-BF is superior among the
considered partitioned scheduling approaches, while RM-WF performed worst.
All other applied pre-orders and partitioned strategies as well as assigning Thard
and Tso f t separately led to an acceptance ratio between RM-WF and RM-BF.

Aiming to analyze the benefit of semi-partitioned scheduling with respect
to the schedulability, we implemented a rate-monotonic first-fit strategy with
highest-priority task splitting, denoted as RM-FF-TS. Figure 5.10(e) shows that
RM-FF-TS was superior to RM-FF in the evaluation, i.e., the acceptance ratio of

144 uncertain execution behaviour

0.0 0.2 0.4 0.6 0.8 1.0
Utilization (%) / m

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ep
ta

n
ce

R
at

io
(%

)

Base Values: Processors: 8, Tasks: 80, Hard Tasks: 50.0%, WCET-Factor: 1.83, Runs: 1000

0 20 40 60 80 100

0

20

40

60

80

100

(a)-(c) Number of Cores
(a) m = 4, n = 40

RM - Best-Fit

RM - Worst-Fit

RM - Semi Partitioned First-Fit

RM - First-Fit - Partial Compensation

RM - First-Fit - Full Compensation

0 20 40 60 80 100

0

20

40

60

80

100

(b) m = 16, n = 160

0 20 40 60 80 100

0

20

40

60

80

100

Base Values
(c) m = 8, n = 80

0 20 40 60 80 100

0

20

40

60

80

100

(c)-(e) Number of Tasks
(d) m = 8, n = 40

0 20 40 60 80 100

0

20

40

60

80

100

(e) m = 8, n = 160

0 20 40 60 80 100

0

20

40

60

80

100

(c), (f), (g) WCET-Factor
(f) WCET-Factor: 1.14

0 20 40 60 80 100

0

20

40

60

80

100

(g) WCET-Factor: 2.83

Figure 5.11: Impact of: (a)-(c) the number of processors, (c)-(e) number of tasks, and
(c),(f),(g) WCET-Factor on the acceptance ratio. Adapted from [BSC18].

RM-FF-TS drops roughly 6%×m later than for RM-BF. Even for a utilization of
98%×m, some task sets were still schedulable as an MSDRTG.

Finally, we examined how providing full or partial compensation of one cor-
rupted processor affects the schedulability. To be more precise, we considered
all processors to be corrupted individually, and determined if the respective
processor could be compensated. If full (partial) compensation was possible for allfull compensation

partial compensation processors, the system provided full (partial) compensation. In Figure 5.10(f), the
resulting detriment can be observed when applying RM-FF for both the initial
partition and the compensation. While for full compensation the loss was nearly
20%×m, the loss for partial compensation was 10%×m. This means, full and
partial compensation are often achieved for the expense of 60%×m and 70%×m
system utilization in this setting.

Since the relation between the considered scheduling approaches was similar
in all settings, we focused on analyzing the impact of the different parameters
on the schedulability. The acceptance ratios for RM-BF and RM-WF as well as

5.3 worst-case deadline failure probability 145

for the semi-partitioned scheduling approach and the compensation techniques
are shown in Figure 5.11. We evaluated the effect of three different parameters
individually:

1. Number of processors in Figure 5.11(a)-(c): The acceptance ratio increased,
when the number of processors was increased. This result was expected,
since for a constant average processor utilization and a constant average
number of tasks per processor, a larger number of processors results in more
possibilities to allocate the tasks. Only for RM-WF increasing the number of
processors did not have a positive effect.

2. Number of tasks in Figure 5.11(c)-(e): Increasing the number of tasks in the
systems for a constant number of processors increased the acceptance ratio
as well, since the average task utilization is decreased and smaller tasks
can typically be allocated easier. The gap between the acceptance ratios for
systems with full and partial compensation became larger when increasing
the number of tasks.

3. WCET-Factor in Figure 5.11(c),(f),(g): As expected, increasing the WCET-
factor led to a decrease in schedulability.

Summarizing the evaluation results, it is evident that a rate-monotonic best-
fit approach leads to a good acceptance ratio under partitioned scheduling
when designing Multiprocessor Systems with Dynamic Real-Time Guarantees. If
semi-partitioned scheduling techniques are considered, namely, an approach
with highest priority task splitting, the acceptance ratio can be further increased.
The analysis of the presented compensation techniques showed a decreased
acceptance ratio, compared to the best partitioned strategy. Nevertheless, the
trade-off between acceptance ratio and reliability seems reasonable, hence a longer
interval of abnormal execution behaviour can be compensated using MSDRTGs.

5.4 efficiently approximating the

worst-case deadline failure probability

As detailed before, in many real-time systems, it is tolerable that at least some of
the tasks in the system miss their deadline in rare situations. Regardless, these
deadline misses must be quantified to ensure the system’s safety. We examine
the problem of determining the worst-case deadline failure probability of a task worst-case deadline

failure probabilityunder uniprocessor static-priority preemptive scheduling for an uncertain execu-
tion behaviour, i.e., when each task has distinct execution modes and a related
known probability distribution. The current state-of-the-art methods are either
fast but imprecise analytical bounds, i.e., [CC17], or job-level convolution-based
techniques that are not applicable for task sets with a reasonable size due to
their runtime complexity, e.g., [MC13; DGK+02; TBE+15]. We provide a task-
level convolution-based approach which exploits multinomial distributions and,
compared to the traditional job-level convolution-based approaches, allows cal-
culating the worst-case deadline failure probability with better analysis runtime,
but without reducing the precision. Our approach is enhanced by a state pruning
technique that significantly improves the runtime as well as the scalability without
any precision loss. In addition, we propose merging equivalence classes, thus

146 uncertain execution behaviour

further reducing the runtime of our analysis while the introduced precision loss
can be bounded in advance. The evaluation shows that our approach is applicable
for significantly larger task sets than the previously known convolution-based
approaches, i.e., it can handle task sets with up to 100 tasks. The results presented
in this section appeared in Efficiently Approximating the Probability of Deadline
Misses in Real-Time Systems in ECRTS 2018 [BPC+18].

5.4.1 motivation, problem definition, and

job-level convolution

This section motivates the importance of the considered problem, i.e., the cal-
culation of the worst-case deadline failure probability, and formally defines it.
Afterwards, the state-of-the-art technique for convolution-based calculation is
introduced, namely the traditional3 convolution-based approach by Maxim and
Cucu-Grosjean [MC13]. We finish this section by explaining the drawback of
current job-level convolution-based techniques.

motivation and problem definition

One important assumption for real-time systems is that a deadline miss, i.e., a job
that does not finish its execution before its deadline, will be disastrous and thus
the WCET of each task is always considered during the analysis. Nevertheless, if
a job has multiple distinct execution schemes, the WCETs of those schemes may
differ significantly. Examples are software-based fault-recovery techniques which
rely on (at least partially) re-executing the faulty task instance, mixed-criticality
systems, and a reduced CPU frequency to prevent overheating. In all these cases,
it is reasonable to assume that schemes with smaller WCET are the common case
while larger WCETs happen rarely.

We use the example of software-based fault-recovery in the following discussion.
When such techniques are applied, the probability that a fault occurs and thus
has to be corrected is very low, since otherwise hardware-based fault-recovery
techniques would be applied. If re-execution may happen multiple times, the
resulting execution schemes have an increased related WCET while the probability
decreases drastically. Therefore, solely considering the execution scheme with the
largest WCET at design time would lead to largely over-designing the system
resources. Furthermore, many real-time systems can tolerate a small number
of deadline misses at runtime as long as these deadline misses do not happen
too frequently. This holds true especially if some of the tasks in the system only
have weakly-hard or soft real-time constraints. Hence, being able to predict the
probability of a deadline miss is an important property when designing real-time
systems. We focus on the worst-case deadline failure probability4 for a single taskworst-case deadline

failure probability here, which is defined as follows:

3 We use the term traditional convolution-based approach when referring to the approach by Maxim
and Cucu-Grosjean [MC13] to avoid confusion, since our novel approach based on multinomial
distributions also uses convolution.

4 Note that the term deadline miss probability was used in the publication in ECRTS 2018 [BPC+18]. It
is changed here to avoid ambiguity and to match the terminology in the survey in [DC19a].

5.4 worst-case deadline failure probability 147

Definition 5.5 (Worst-Case Deadline Failure Probability). Let Rk,j be the response
time of the jth job of τk. The worst-case deadline failure probability (WCDFP) of task τk,
denoted by Φk, is an upper bound on the probability that a job of τk is not finished before
its (relative) deadline Dk, i.e.,

Φk = max
j

{
P(Rk,j > Dk)

}
, j = 1, 2, 3, ... (5.7)

It was shown in [MC13] that the WCDFP of a job of a constrained- or implicit-
deadline task is maximized when τk is released at its critical instant (see Sec-
tion 2.4.1). Hence, time-demand analysis (TDA) [LSD89], see Eq. (2.3), can be applied
to determine the worst-case response time of a task when the execution time of
each job is known. This implicitly assumes that no previous job has an overrun
that interferes with the analyzed job, i.e., we are searching for the probability that
the first job of τk misses its deadline after a longer interval where all deadlines
where met. Note that this is not identical to the deadline miss rate of a task and deadline miss rate

that the deadline miss rate may be even higher than this probability, as detailed
by Chen et al. [CBC18a]. However, the approach in [CBC18a] utilizes approaches
to approximate the worst-case deadline failure probability as a subroutine when
calculating the deadline miss rate.

When probabilistic WCETs are considered, the WCET obtains a value in
(Ci,1, ..., Ci,h) with a certain probability Pi(j) for each job of each task τi. Therefore,
TDA for a given t is not looking for a binary decision anymore. Instead, we are
interested in the probability that the accumulated workload St over an interval of
length t is at most t. The probability that τk cannot finish in this interval is denoted
accordingly with P(St > t). The situation where St is larger than t is called an
overload for an interval of length t and hence P(St > t) is the overload probability at overload probability

time t. According to the notation introduced in Section 2.6, ρi,t = dt/Tie for each
task τi in hp(τk) and ρk,t = 1, i.e., only the first job of τk is considered here. Since
TDA only needs to hold for one t with 0 < t ≤ Dk to ensure that τk is schedulable,
the probability that the test fails is upper bounded by the minimum probability
among all time points at which the test could fail. As a result, the worst-case
deadline failure probability Φk can be upper bounded by

Φk = min
0<t≤Dk

P(St > t) (5.8)

The number of points considered in Eq. (2.3) and therefore in Eq. (5.8) can be
reduced by only considering the points of interest, i.e., Dk and the release times of
higher priority tasks. Nevertheless, this may still lead to a pseudo-polynomial
number of points. However, since the minimum value among all these points
is taken, an upper bound is still obtained when only a subset of those points is
considered. Two general approaches to calculate Φk are known from the literature.
We summarize the traditional convolution-based approach by Maxim and Cucu-
Grosjean in [MC13] in the following subsection since the approach we propose is
convolution-based as well. An analytical approach using the moment generating
function and Chernoff bounds was introduced by Chen and Chen [CC17].

It may be easier to determine P(St ≥ t) instead of P(St > t), especially when
analytical bounds are used. As P(St ≥ t) ≥ P(St > t) by definition, these values
can be used directly when looking for an upper bound of P(St > t).

148 uncertain execution behaviour

traditional convolution-based approach

We use a notation similar to the one used by Maxim and Cucu-Grosjean in [MC13].
Each task is defined by a vector of the possible WCETs and the related probabili-
ties, e.g.,

(
3

0.9
5

0.1

)
where 3 and 5 are the WCETs and 0.9 and 0.1 are the related

probabilities. The convolution of two such vectors is denoted by ⊗ and results
in a new vector. To calculate this new vector, each element of the first vector is
combined with each element of the second vector by 1) multiplying the related
probabilities, and 2) summing up the related WCETs.

Example 5.2 (Convolution).
(

3
0.9

5
0.1

)
⊗
(

5
0.8

6
0.2

)
=
(

8
0.72

9
0.18

10
0.08

11
0.02

)

Note that the summation of the probabilities is 1 for each of these vectors. The
general idea of the traditional convolution-based approach [MC13] is the direct
enumeration of the WCET state space5 and the related probabilities. To this end, it
considers the jobs in non-decreasing order of their arrival times. For each arriving
job, the current system state which is represented by a vector of possible states,
i.e., possible total WCETs and related probability, is convolved with the arriving
job. This results in a new vector of possible states that represents the state space
after the arrival of the job. Once all jobs that are released before a certain point
in time are convolved, the probability that the workload is smaller than the next
arrival time of a job is calculated. Thereafter, the jobs arriving at that time are
convolved with the current states, and the probability for the next arrival time is
checked, etc. This process is repeated until t = Dk is reached. A small example
with two tasks is detailed in Figure 5.12. The first jobs of τ1 and τ2 are both
convolved with the initial state and the four resulting states are each convolved
with the second release of τ1 at t = 8. Obviously, when all jobs that are released
up to any point in time are convolved, states that result in the same execution
time can be combined by adding up the related probability, e.g., the states with
WCET 13 and WCET 14, respectively, in Figure 5.12.

Applying the traditional convolution-based approach calculates the exact prob-
abilities for each t in the interval of interest in one iteration. However, it can
easily lead to a state explosion where the number of states is exponential in
the number of jobs. To tackle this problem, Maxim and Cucu-Grosjean use a
re-sampling approach, which was first proposed by Maxim et al. in [MHS+12], to
reduce the number of states to a given threshold and thus reduce the runtime
while only slightly decreasing the precision as shown in [MC13]. Regardless, the
main problem of the traditional convolution based approach remains the state
explosion.

5.4.2 the multinomial-based approach

In the traditional convolution-based approach [MC13], the underlying random
variable represents the execution mode of each single job. We now take a closer

5 Please note that the approach in [MC13] does not only consider probabilistic WCETs but also
probabilistic periods. Since we only consider probabilistic WCETs here, we summarize accordingly.

5.4 worst-case deadline failure probability 149

D1 = T1 = 8

τ1
C1
P1 =

(
3
0.9

5
0.1

)

D2 = T2 = 14

τ2
C2
P2 =

(
5
0.8

6
0.2

)

(
3
0.9

5
0.1

) (
5
0.8

6
0.2

) (
3
0.9

5
0.1

)

(
0
1

)

(
3
0.9

)

(
5
0.1

)

(
8

0.72

)

(
9

0.18

)

(
10
0.08

)

(
11
0.02

)

(
11

0.648

)

(
13

0.072

)

(
12

0.162

)

(
14

0.018

)

(
13

0.072

)

(
15

0.008

)

(
14

0.018

)

(
16

0.002

)

(
13

0.144

)

(
14

0.036

)

t = 0 t = 8 t = 14

Legend: Task Related Job Release Release Time

First Execution Mode Second Execution Mode

Considered Time Deadline Misses

State Merging

Figure 5.12: The traditional convolution-based approach. Adapted from [BPC+18].
Assume P(S14 > 14) is determined for two tasks τ1 and τ2. The initial state
is convolved with the two jobs released at t = 0 and the second job of τ1
released at t = 8. Afterwards, P(S14) is determined by summing up the
probabilities of the states with a workload larger than 14 (red dotted circle),
leading to P(S14 > 14) = 0.01. States with the same execution time can be
merged (dashed green arrows). This typically happens when the related
paths are permutations of each other, e.g., both paths with workload 13 have
one execution of C1,1 and one of C1,2.

look on the related state space and show that the complexity of this approach
depends on the specific definition of these random variables. Afterwards, we
explain how this state space can be transformed into an equivalent space that
describes the states on a task-based level by proving the invariance when consider-
ing equivalence classes for each task. As a result, we introduce our approach that
is based on the multinomial distribution. We also briefly discuss the complexity
of our approach compared to the traditional convolution-based approach.

the state space of the traditional

convolution-based approach

In the traditional convolution-based approach [MC13], X(t) is the set of the
random variables representing the individual jobs released in the interval [0, t) in
the order of their arrival times. The notation of X(t) instead of X is necessary due
to the fact that the underlying state space and thus the underlying set of random
variables is dependent on the time t that is considered. Let J(t) be the number of
jobs released in [0, t) under the critical instance of τk. Hence, X(t) is a set of J(t)

150 uncertain execution behaviour

independent random variables, i.e., X(t) is the Cartesian product over those J(t)
variables. When aiming to simplify this computation, it is necessary to explicitly
consider the random variables X(t) as well as the dependence between X(t) and
the quantities St and Ci. For the simplicity of notation only, we assume that all
jobs have a common set of h execution modesM, i.e., |M| = h.6 Thus, the state
space of the random variable X(t) is X (t) = MJ(t). A concrete assignment of
these variables is denoted x ∈ X (t), and the portion of x that corresponds to
the jobs of task τi is denoted xi. Each task τi releases ρi,t = dt/Tie jobs, and thus
J(t) = ∑τi∈hep(τk) dt/Tie. Therefore, dt/Tie of the J(t) random variables in X(t)
are related to the task τi. Since the execution time of the jth job of task τi depends
on the related random variable X i,j(t), we denote it Ci(X i,j(t)). Linking the total
workload St to the random variables, from Eq. (2.3) we get:

St = St(X(t)) = Ck(Xk,1(t)) + ∑
τi∈hp(τk)

ρi,t

∑
j=1

Ci(X i,j(t)) (5.9)

Based on Eq. (5.9), we denote the exact expression for the probability of an
overload at time t as

P(St(X(t)) > t) = ∑
x∈X (t)

P(X(t) = x)1{St(x)>t} (5.10)

where 1{expression} is the indicator function which evaluates to 1 if the expression is
true, and to 0 otherwise. Since the execution modes of the jobs are assumed to be
independent, the joint probability mass P(X(t)) factorizes over the jobs. The prob-
ability of each execution mode per job is fully determined by its corresponding
task:

P(X(t) = x) = ∏
τi∈hp(τk)

ρi,t

∏
j=1
Pi(xi,j(t)) (5.11)

Each factor Pi(x) is the probability mass of any job of task τi, being in some
state x ∈ M. Note that Eq. (5.10) is exactly the quantity computed by the
traditional convolution-based approach [MC13]. Hence, it stems from the state
space X (t) =MJ(t) that is exponential in the total number of jobs. Nevertheless,
we leverage the independence of job modes to compute P(St(X(t))) ≥ t) over a
different state space, which is the key insight of our method.

invariance and equivalence classes

In Eq. (5.11), for any fixed task τi, the expression ∏
ρi,t
j=1Pi(xi,j) is determined by

the number of jobs for each state in M. As an example, consider an arbitrary
task τi with two distinct execution states, i.e.,M = {Ci,1, Ci,2}, and suppose that
xi = (Ci,1, Ci,2, Ci,1, Ci,2), x′i = (Ci,1, Ci,1, Ci,2, Ci,2), and x′′i = (Ci,2, Ci,1, Ci,1, Ci,2). The
resulting probability is identical in all three cases, i.e., Pi(xi) = Pi(x′i) = Pi(x′′i).
We formalize this property subsequently:

6 If a task has less than h (or even only one) execution modes, dummy modes with probability 0
can ensure this condition. Alternatively,Mi and hi can be defined based on the actual number of
execution modes of τi.

5.4 worst-case deadline failure probability 151

Lemma 5.14 (Probability Permutation Invariance). Let τi be a task with a set of
distinct execution modesM, let ρi,t be the number of jobs of τi released up to time t, and
let xi ∈ Mρi,t be the random vector that represents the execution mode of all jobs which
belong to task τi. The probability mass Pi is permutation invariant with respect to xi, i.e.,

∀ xi ∈ Mρi,t : ∀σ ∈ Sρi,t : Pi(xi) = Pi(σ(xi)) (5.12)

where Sn contains all permutations of n objects.

Proof. The lemma follows directly from the independence of job-wise execu-
tion modes, hence Pi(xi) = ∏

ρi,t
j=1Pi(xi,j), and from the commutativity of the

multiplication.

Until now, we considered a single task τi, but Lemma 5.14 holds for all tasks
simultaneously. Recall that the random modes of all tasks are represented by
X(t). Let X i(t) represent the random modes of the jobs of task τi, i.e., X i(t) is
the subset of random variables in X(t) that relate to the random modes of τi.
Applying the permutation invariance to each X i(t), we derive a partition on X (t)
into equivalence classes:

Definition 5.6 (Execution Mode Equivalence Classes). For any x ∈ X (t), its equiv- equivalence class

alence class [[x]] with respect to permutation invariance is given by

[[x]] = {x′ ∈ X (t) | ∀τi ∈ hep(τk) : ∃σ ∈ Sρi,t : xi = σ(x′i)} (5.13)

Based on this definition, the statement ∀x′ ∈ [[x]] : P(x) = P(x′) is a straight-
forward corollary of Lemma 5.14. The equivalence relation in Definition 5.6 is
established by an equivalent occurrence of execution modes for each task. There-
fore, each equivalence class has a canonical representative, which is given by a
tuple ` ∈ ⊗τi∈hep(τk){1, 2, . . . , ρi,t}|M|, that for each task contains the number of
jobs for all execution modes. For convenience we let [[`]] address the set of all x in
the same equivalence class and rephrase Eq. (5.10) accordingly.

Lemma 5.15 (Class-based Overload Probability). For any set of execution modesM,
let L(t) = ⊗τi∈hep(τk){0, 1, 2, . . . , ρi,t}|M|. Then,

P(St(X(t)) ≥ t) = ∑
`∈L(t)

∏
τi∈hep(τk)

ρi,t! ∏|M|j=1 Pi(j)`i,j

∏x∈M `i,x!
1{St([[`]])≥t} (5.14)

where `i,j denotes the number of jobs of task τi which are in the j-th execution mode, and
St([[`]]) denotes the execution time for some arbitrary x ∈ [[`]].

Proof. For all members of the class [[x]], each task has the same number of jobs in
the same state. Hence, iterating over the set L(t) = ⊗

τi∈hep(τk)
{0, 1, 2, . . . , ρi,t}|M|

corresponds to iterating over all such count vectors, which is in turn the same
as iterating over all equivalence classes [[x]]. Each class [[`]] contains all state
permutations for all jobs of each task. For each task τi, this is equivalent to the
well-known combinatorial problem of determining the number of ways how ρi,t

152 uncertain execution behaviour

objects can be placed into |M| bins, given by the corresponding multinomial
coefficient. Combining those for all tasks, we get

|[[`]]| = ∏
τi∈hep(τk)

(
ρi,t

`i,1 `i,2 . . . `i,|M|

)
= ∏

τi∈hep(τk)

ρi,t!
∏x∈M `i,x!

(5.15)

Combining these facts results in

∑
x∈X (t)

P(X(t) = x) = ∑
`∈L(t)

|[[`]]|P(X(t) = [[`]]) (5.16)

Observing that P(X(t) = [[`]]) = ∏|M|j=1 Pi(j)`i,j implies the lemma.

detailing the multinomial-based approach

Now, we combine the findings in this section into an algorithm that more ef-
ficiently calculates P(St > t), i.e., the probability of an overload for a length t.
For simplicity of presentation, we refer to the overload probability at time t and
the state space at time t, implicitly assuming that both the probability and the
state space is calculated over the interval [0, t) considering the critical instant
of τk. The traditional convolution-based approach determines this probability
by successively calculating the probability for all other points of interest in the
interval [0, t). Nevertheless, the probability for t is evaluated based on the re-
sulting states after all jobs in [0, t) are convolved. Hence, with respect to t, the
intermediate states are not considered.

We utilize this insight to calculate the vector representing the possible states at
time t more efficiently. Lemma 5.14 shows that the overload probability of a state
for a concrete variable assignment x ∈ X (t) is identical to the probability of all
permutations of x, i.e., the related equivalence class. This allows to consider the
jobs in J(t) in any order. Furthermore, Lemma 5.15 shows that all assignments that
are part of the same equivalence class result in the same value for St. Considering
one specific task τi, those assignments differ regarding the order in which the
execution modes happen but not regarding the total number of executions in a
given mode. However, if the jobs are convolved in the non-decreasing order of
their arrival times, this results in a large number of unnecessary states that are
merged later on. For example, in Figure 5.12 the state space can be reduced if the
second job of τ1 is convolved before the job of τ2, since the resulting merged state
space after the convolution of the two jobs of τ1 only has 3 states that represent
the number of executions in each mode. Therefore, to reduce the state space as
much as possible, we consider the jobs in an order that is based on the tasks they
are related to, i.e., first all ρ1,t jobs of τ1 are considered, then all ρ2,t jobs of τ2, etc.
However, if the jobs are just reordered and then convolved, this still leads to a
large of number states that are merged later on. Regardless, the number of states
is already significantly lower than in the traditional convolution-based approach.

Fortunately, if the number of jobs a task releases in the examined interval
is known, all possible combinations and the related probabilities can be calcu-
lated directly using the multinomial distribution. To be more precise, assume a

5.4 worst-case deadline failure probability 153

given task τi as well as a given number of releases ρi,t in an interval of length t
and let `i,j be the number of executions in mode j ∈ {1, ..., h}. We know that

`i,j ∈ {0, 1, ..., ρi,t} and ∑h
j=1 `i,j = ρi,t, resulting in

(
ρi,t+h−1

h−1

)
possible combina-

tions of `i,1, ..., `i,h where
(a

b

)
= a!

b!(a−b)! is the binomial coefficient. For each com-
bination, the related probability is

ρi,t!
`i,1!`i,2!...`i,h!

Pi(1)`i,1 ·Pi(2)`i,2 · ... ·Pi(h)`i,h (5.17)

where ρi,t !
`i,1!`i,2!...`i,h ! determines the number of possible paths for the related equiva-

lence classes and Pi(1)`i,1 ·Pi(2)`i,2 · ... ·Pi(h)`i,h is the probability of one of these
paths. The total workload of the ρi,t jobs of τi is calculated for each of these
combinations based on the related values of `i,1 to `i,h. The

(
ρi,t+h−1

h−1

)
states rep-

resent the equivalence classes of τi and the related probabilities. After calculating
these representatives for each task, the overload probability can be determined by
convolving them and adding up the overload probabilities of the resulting state
space. A concrete example where each task has two possible execution modes is
given in Figure 5.13. Note that based on Lemma 5.14, the states representing the
tasks, and therefore the tasks themselves, can be convolved in any order.

In fact, for the specific time point t, the job-based state space of the traditional
convolution-based approach has been transferred into a task-based space state
with identical properties regarding the overload probability. To visualize the
different approaches, the traditional convolution-based approach constructs a tree
based on the jobs (see Figure 5.12), where each level represents the state of the
system after the related job is convolved and the number of children on a given
level depends on the number of possible modes of the related job. Contrarily, the
multinomial-based approach constructs a tree based on the tasks (see Figure 5.13)
and the number of children on each level depends on the number of jobs the
related task releases. If the nodes on the J(t)th level of the binary tree are merged
as show in Figure 5.12, the number of states on that level is identical to the
number of states on the kth level of the tree resulting from our approach. While
the state space of our reformulation is still large, it enables pruning strategies and
other state reduction strategies which are not suitable for the traditional approach.
These strategies are explained in Section 5.4.3.

complexity discussion and comparison

When considering the complexity of the multinomial-based approach for τk over
an interval [0, t) under the critical instance of τk, both the number of tasks that
are contributing to the workload in the interval, i.e., ρi,t for the higher priority
tasks, and the total number of jobs in the interval J(t) have to be considered. The
number of multinomial coefficients depends on ρi,t and the number of possible
execution states h for each task and can be calculated as

(
ρi,t+h−1

h−1

)
. This is also

called the h-simplex of the ρth
i,t component. The convolution of these states over

all tasks leads to a total number of states of ∏k
i=1

(
ρi,t+h−1

h−1

)
.

154 uncertain execution behaviour

D1 = T1 = 15

τ1
C1
P1 =

(
3
0.9

5
0.1

)

D2 = T2 = 19

τ2
C2
P2 =

(
5
0.8

6
0.2

)

D3 = T3 = 24

τ3
C3
P3 =

(
3
0.7

5
0.3

)

D1 = T1 = 15

τ1
C1
P1 =

(
6

0.81
8

0.18
10
0.01

)

D2 = T2 = 19

τ2
C2
P2 =

(
10
0.64

11
0.32

12
0.04

)

D3 = T3 = 24

τ3
C3
P3 =

(
3
0.7

5
0.3

)

min = 10 + 3 = 13
max = 12 + 5 = 17

min = 3
max = 5

(
0
1

)

(
6

0.81

) (
8

0.18

) (
10
0.01

)

(
18

0.1152

) (
19

0.0576

) (
20

0.0072

) (
20

0.0064

) (
21

0.0032

) (
22

0.0004

)

(
23

0.00504

)(
25

0.00216

)(
23

0.00448

)(
25

0.00192

)(
24

0.00224

)(
27

0.00096

)

Legend:

Task Distribution Pruned (No Overload) Pruned (Overload) No Overload Overload

Figure 5.13: The multinomial-based approach. Adapted from [BPC+18].
The number of children depends on the number of jobs of the related task.
Note that nodes can be ignored in further steps if they never lead to an
overload (green solid circles) or if they always lead to an overload (red solid
circle). The overload probability at t = 24 is calculated by adding up the
related probabilities (dashed and solid red) which results in a deadline miss
probability of 0.00574.

The traditional convolution-based approach considers each job individually
with h possible outcomes and, therefore, leads to hJ(t) states, i.e., it is exponential
in the number of jobs. Hence, without state merging, it is not feasible for input
sets with a reasonable cardinality. However, as an integral part of the process,
the traditional convolution-based approach also calculates the deadline miss
probability at all possible points of interest in the interval, i.e., at each point in
time a job is released. Moreover, states can be merged when they have the same
related workload, e.g., states resulting from a permutation of the same number
of abnormal executions of a given task. Lemma 5.14 directly implies that when
convolution is used in combination with merging states, the final number of
states for the convolution-based approach at time t is identical to the number of
states created by the multinomial-distribution-based approach. However, while
our approach creates only necessary states, the traditional convolution-based
approach not only creates unnecessary states but also requires additional overhead
for state merging after each step. Therefore, when considering a single point in

5.4 worst-case deadline failure probability 155

time, our approach is significantly faster than the traditional convolution-based
approach with task merging.

Nevertheless, since our approach needs to consider all points of interest indi-
vidually, if the number of such points increases due to the number of tasks, the
traditional convolution-based could have advantages. We were, however, not able
to observe this behaviour in our evaluation since both our multinomial-based
approach as well as the traditional convolution-based approach with state merg-
ing were only rarely able to provide results for task sets with a cardinality of 10
or larger. Hence, for our approach, runtime optimizations are provided in the
next section. Note that the number of tasks that is feasible depends on the actual
setting and that the period range is the most important parameter since it relates
to the number of jobs, an effect that will be evaluated in Section 5.4.4.

5.4.3 runtime improvement

We introduce two strategies to improve the runtime efficiency of the multinomial-
based approach. The first one prunes the state space, i.e., it discards states
directly, if the impact on the overload probability can be determined without
considering the remaining tasks. This reduces the runtime without sacrificing
any precision. The second strategy combines execution mode equivalence classes
with very low probability when creating the task representations to reduce the
size of the state space beforehand. This leads to an increase in the approximated
overload probabilities, but the resulting error can be bounded for each task
under consideration and therefore also for the total error of the derived overload
probability. Note that both techniques can be combined.

pruning the state space

Our multinomial-based approach calculates the probabilities for each interval
individually, a property already used when transferring the state space from
job-based to task-based. For convenience, assume that the representatives of the
tasks are convolved according to the task index. Recall that the state space can be
seen as a rooted tree where each node on the jth row represents a possible state
after the convolution of the first j tasks, and that we are only interested in the
nodes on the kth (and last) layer, i.e., the states after all task representations are
convolved. Such a tree is displayed in Figure 5.13. The general concept of pruning
is to remove a state R if the resulting subtree, i.e., the subtree with root R, has
no further impact on the evaluation on the kth layer, which means that either all
states on the kth layer in the subtree with root R evaluate to an overload, or for
all states on the kth layer in the subtree with root R, the resulting workload is
less than or equal to the interval length. In the first case, the state is discarded
and the related probability is added to the overload probability for time t. In
the second case, the state is discarded immediately. This is done by checking the
boundary conditions. To this end, we list the minimum and maximum execution
time each task can contribute to the total workload up to time t. On the ith layer,
the minimum and maximum workload that can be contributed by the remaining

156 uncertain execution behaviour

tasks, denoted as Cmini and Cmaxi , is the sum of the minimum and maximum
values of the remaining tasks. Let P(discard) be a variable accounting for the
overload probability of discarded states, initialized with 0. For each state Q
created by the convolution of τi with the previous state space, let C(Q) be the
related total workload. We evaluate the following two conditions:

1. C(Q) + Cmaxi ≤ t: All paths in the subtree rooted at Q leads to states where
no overload is detected at time t, since the branch related to the maximum
cumulative workload in this subtree does not lead to an overload. Therefore,
Q can directly be discarded. In the example in Figure 5.13, those states are
marked with a solid green circle.

2. C(Q) + Cmini > t: All paths in the subtree rooted at Q result in an overload
at time t, since the branch related to the minimum cumulative workload
in this subtree results in an overload. Hence, Q can be discarded and
P(discard) is increased by the probability of Q. In Figure 5.13, those states
are marked with a solid red circle.

Obviously, all created states can only fulfill one of these conditions but not both
since C(Q) + Cmini ≤ C(Q) + Cmaxi . If Q fulfills neither, the state is added to the
representation of τ1, ..., τi. That state pruning does not change the calculated
probability follows directly from the observations that the total probability of a
subtree is equal to the probability of the root, and from the fact that the total
workload of each branch is always smaller than the maximum workload (larger
than the minimum workload, respectively). Hence, a proof is omitted. Note that
the order in which the tasks are considered has no impact on the applicability of
the pruning technique.

Similar techniques cannot easily be exploited for job-level convolution-based
approaches, e.g., Maxim and Cucu-Grosjean [MC13], Diaz et al. [DGK+02], or
Tanasa et al. [TBE+15], since one major difference is that it calculates the over-
load probability of all values successively. To be more precise, it considers the
critical instant of τk at time 0 and calculates the deadline miss probability for all
intervals [0, t) with 0 < t ≤ Dk, and the result at time t depends on the result at
time t′ if t′ < t. This can be visualized by a directed rooted tree where each level
is created according to a job’s arrival time and represents exactly one job, i.e., the
height of the tree depends on the number of considered jobs (see Figure 5.12).
The nodes on each layer represent the state space after the convolution of the
related job. One important property of this approach is that the probability of a
deadline miss is calculated on each layer. Hence, pruning a state, i.e., removing
a state and the branches resulting from it, can only be done if those branches
have no impact on the probability on all following layers, i.e, a state R at time ta

can only be pruned if all branches of the subtree with root R will either lead to
an overload at tb for all tb ∈ (ta, Dk], or to no overload at tb for all tb ∈ (ta, Dk].
This cannot be determined by evaluating the overload condition for any sin-
gle time point tb ∈ (ta, Dk]. For instance, assume that C(Q) + Cmintb

> tb for a
tb ∈ (ta, Dk], where Cmintb

is the minimum workload created by jobs released in
the interval [ta, tb). Let tb−1 and tb+1 be, with respect to tb, the previous and next
considered points in time in the convolution based approach. We observe that
τk may have no overload at tb−1, if the minimum workload of the job released
at tb−1 is smaller than tb − tb−1. Similar arguments can be made to create a case

5.4 worst-case deadline failure probability 157

Ci,2 jobs 0 1 2 3 4 5 6 7 8 9 10
Total Ci 10 11 12 13 14 15 16 17 18 19 20

Probability 0.78 0.2 0.023 0.0016 7.0 · 10−05 2.2 · 10−06 4.63 · 10−08 6.8 · 10−10 6.53 · 10−12 3.72 · 10−14 9.5 · 10−17

Ci,2 jobs 0 1 2 3 4 5 6 or 7 8, 9, or 10
Total Ci 10 11 12 13 14 15 17 20

Probability 0.78 0.2 0.023 0.0016 7.0 · 10−05 2.2 · 10−06 4.701 · 10−08 6.564711 · 10−12

Table 5.1: Multinomial distribution and state merging. From [BPC+18].
Distribution of τi with Ci,1 = 1, Ci,2 = 2, Pi(1) = 0.975, Pi(2) = 0.025 for 10
releases. The upper part details the distribution before and the lower part after
merging equivalence classes.

with no overload at tb+1 and for the cases where τk has no overload at tb if Cmaxtb
is considered.

union of execution mode equivalence classes

The general concept of this runtime improvement technique is to reduce the
state space when creating the representation for the individual tasks by unifying
equivalence classes with low probability. In contrast to the pruning technique,
this obviously results in a loss of precision when approximating the worst-case
deadline failure probability for a given point in time. However, if done carefully,
the precision loss can be upper bounded by a constant. We introduce the concept
based on the example in Table 5.1, detailing the release of 10 jobs in the interval
of interest for a task τi with two execution modes that have a WCET of Ci,1 = 1
and Ci,2 = 2, with related probabilities Pi(1) = 0.975 and Pi(2) = 0.025. In
the upper half, the original equivalence classes are displayed, i.e., one for each
possible number of jobs (0 to 10) in mode 2, together with their total WCET and
their (rounded) related probability. After the introduction of the concept, we will
explain how the approach can be generalized.

The probability decreases rapidly when the number of jobs that are executed
in the second mode increases. Such distributions are common when considering
probabilistic execution times for real-time systems. The reason is that if the
execution mode with larger WCET has a comparatively high probability, classical
non-probabilistic worst-case response time analysis considering the larger WCET
must be utilized to ensure timeliness for relatively common cases. Since the
probability of the equivalence classes decreases, the impact of those classes on
the overload probability over the given interval decreases as well. The number of
states that are created in our approach, and therefore its runtime, can be reduced
by unifying some of these highly unlikely equivalence classes. To guarantee a
safe approximation, i.e., the resulting overload probability is only increased, we
define the merge of a set of equivalence class as follows:

Definition 5.7 (Union of Task Equivalence Classes). For a given interval of interest
[0, t), let C = {[[xi]], [[x′i]], [[x

′′
i]], . . .} be a set of |C| = q equivalence classes of task τi. For

each class [[xi]] ∈ C, let Pi([[xi]]) and Ci([[xi]]) denote its probability and the related total
worst-case execution time, respectively. Furthermore, let [[xmax

i]] ∈ C be the equivalence
class with the highest total WCET, i.e., [[xmax

i]] = arg max[[xi]]∈C Ci([[xi]]).

When we union all classes in C =
{
[[x1]], ..., [[xq]]

}
, they are replaced by one new class

[[xCi]] =
⋃

[[xi]]∈C [[xi]] that has the following characteristics:

158 uncertain execution behaviour

1. Ci([[xCi]]) = Ci([[xmax
i]])

2. Pi([[xCi]]) = ∑[[xi]]∈C Pi([[xi]])

As shown in Table 5.1, when merging the equivalence classes for 6 and 7
executions of mode 2, the probability of the newly created class is the summation
of their probabilities and the related WCET is the maximum among those two
classes, here the WCET of the class with 7 executions in mode 2. We now show
that merging a set of equivalence classes leads to a bounded error of the overload
probability.

Lemma 5.16 (Unifying Equivalence Classes Leads to a Bounded Maximum Error).
For task τi let C = {[[x′i]], [[x′′i]], . . .} be a set of |C| = q equivalence classes for the interval
of interest [0, t). If C is merged into [[xCi]] according to Definition 5.7, the probability
of overload can only increase and the error is bounded by (∑[[xi]]∈C |[[xi]]|Pi([[xi]]))−
|[[xmax

i]]|Pi([[xmax
i]]).

This follows from Eq. (5.14), Eq. (5.16), and the fact that any C in which no
class [[xi]] triggers the indicator function 1{St([[x]])>t} does not introduce any error.
Hence, if at least [[xmax

i]] triggers 1{St([[x]])>t} the maximum probability increase
happens if all other classes did not trigger 1{St([[x]])>t} before the unification, but
do afterwards. Since the process can be repeated for all tasks, we conclude:

Theorem 5.17 (Bounded Overall Increase of the Overload Probability). If equiva-
lence classes of tasks with respect to the interval [0, t) are merged, the total increase of
the overload probability for this interval is increased by the summation of the individual
overload probability increase of the tasks.

We are now able to calculate the overloaded probability over [0, t) with a
bounded total error while reducing the considered states. Assume a value b for
the allowed maximum error and a set of n tasks to be given. The maximum error
is bounded by b if for each task the error is bounded by b/n. This can be achieved
by ordering the related states in decreasing order of probability, traversing them
in this order while summing up the probabilities of each state, and keeping all
states until the summation is larger than 1− b/n. Afterwards, the remaining
states are unified into one according to Definition 5.7.

So far we considered a setting similar to Table 5.1, where the workload increases
as the probability decreases. However, this is not necessarily the case, for example,
when a task has two execution modes with an equal probability. Nevertheless, the
approach based on Theorem 5.17 can still be exploited directly, since the union of
equivalence classes is agnostic to the workloads and related probabilities as long
as the total probability of the combined equivalence classes is less than b/n.

5.4.4 evaluation

The main focus of the evaluation was to determine if the proposed multinomial-
based approach can provide good results with a reasonable analysis runtime,
especially considering the scalability with respect to the number of tasks for

5.4 worst-case deadline failure probability 159

reasonable settings. For a given utilization Usum and a number of tasks, we
generated random implicit-deadline task sets with one execution mode according
to the UUniFast method [BB05]. As suggested by Emberson et al. [ESD10], the
periods of those tasks were generated according to a log-uniform distribution with
two orders of magnitude, i.e., 10ms− 1000ms. We only considered tasks with two
distinct execution modes in the evaluation, called normal and abnormal execution
mode, and hence M = {N, A}. The normal execution mode is considered to
have a (significantly) higher probability. The WCET in the normal mode was set
according to the utilization, i.e., Ci,N = Ui · Ti, and the WCET in abnormal mode
was calculated as Ci,A = f · Ci,N for all tasks in the set.

We used a fixed setting, defined by Usum, f , and Pi(A), tracking the resulting
worst-case deadline failure probability and runtime related parameters. In each
setting, the worst-case deadline failure probability for the lowest-priority task
under Rate Monotonic scheduling was determined. In our evaluations, we consid-
ered the following approaches where the bold name indicates how the approach
is referred to:

1. Convolution: The traditional convolution-based approach [MC13].

2. Conv. Merge: The traditional convolution-based approach [MC13] with state
merging.

3. Multinomial: Our multinomial-based approach from Sec. 5.4.2.

4. Pruning: Our approach combined with the pruning technique.

5. Unify: Our approach combined with the pruning technique and reducing
the complexity by union of equivalence classes.

6. Approx: Approximation of Pruning by only considering the deadline of τk
and the last releases of higher-priority tasks, inspired from the literature,
e.g., [CHL15b; BB04; BCH15; CC17].

7. Chernoff: The analytical approach using Chernoff bounds by Chen and
Chen [CC17].

8. Hoeffding: The analytical approach from [BPC+18]7 based on the Hoeffding’s
inequality.

9. Bernstein: The analytical approach from [BPC+18]7 based on the Bernstein
inequalities.

To allow runtime comparisons, all approaches were implemented in the same
programming language, Python 2.7, and executed on the same machine, a 12 core
Intel Xeon X5650 with 2.67 GHz and 20 GB RAM. For the analytical bounds, in
contrast to the work by Chen and Chen [CC17], all releases of higher-priority
tasks were considered since the bounds have a lower runtime than our approach.

We randomly generated tasks sets with a normal-mode utilization of Usum = 70,
setting f = 2 and Pi(A) = 0.025 for all tasks. Hence, Pi(N) = 0.975. Convolution
usually did not deliver a result for a cardinality of 5 due to an out-of-memory

7 The approaches based on the Hoeffding’s inequality and on the Bernstein inequalities were
presented in the same work as the task-level convolution-based approach but are not part of this
thesis. Hence, we refer to the paper here.

160 uncertain execution behaviour

3 4 5 6 7 8 9 10
Number of Tasks

0

100

200

300

400

500

600

A
ve

ra
ge

A
na

ly
si

s
R

un
ti

m
e

(s
ec

on
ds

)

Conv. Merge Multinomial Pruning

Figure 5.14: Average runtime of Conv. Merge, Multinomial, and Pruning with respect
to the task set cardinality.

error. In some cases, results could not even be provided for 3 tasks, since, for
instance, 38 jobs already lead to 238 = 274877906944 states for Dk in Convolution.
For Conv. Merge and Multinomial, a setting with 10 tasks was often not feasible
already. However, the results for Conv. Merge, Multinomial, and Pruning were
always identical (if Conv. Merge and Multinomial derived results), showing
that our pruning technique drastically decreases the runtime of the analysis and
increases the scalability without any precision loss. We analyzed the average
runtime of these three approaches for small task sets, i.e., 20 sets each from 3 to
10 tasks, which is shown in Figure 5.14. It shows that for 7 or more tasks per set
Multinomial was approximately 2.5 to 4 times faster than Conv. Merge, while
Pruning was approximately 15 to 200 times faster than Conv. Merge. Note that
Conv. Merge and Multinomial only returned results8 for 18 of the 20 sets for
n = 9, and 13 of the 20 sets for n = 10, hence we did not evaluate Conv. Merge
and Multinomial for larger sets.

Figure 5.15 displays the average runtime of the analysis with respect to the
cardinality for the remaining approaches. To analyze the scalability, the cardinality
of the task sets ranged from 5 to 35 in steps of 5. For a cardinality from 5 to 20
tasks, we evaluated 20 task sets. For a cardinality from 25 to 35 tasks, due to
the high runtime, 5 task sets were analyzed. For 5 and 10 tasks, Conv. Merge
is displayed for comparison. Bernstein and Hoeffding are orders of magnitude
faster than the other approaches which are similar with respect to the related
runtime. The difference between Approx and Pruning stems from a different

8 The averages runtime for all 3 approaches is only calculated over these sets, although Pruning
always delivered a result.

5.4 worst-case deadline failure probability 161

5 10 15 20 25 30 35

Number of Tasks

10−2

10−1

100

101

102

103

104
A

ve
ra

ge
A

na
ly

si
s

R
un

ti
m

e
(s

ec
on

ds
)

Pruning Unify Approx Chernoff Hoeffding Bernstein Conv. Merge

Figure 5.15: Average runtime with respect to task set cardinality. Adapted from [BPC+18].

number of tested time points, i.e., for Approx this number depends on the
number of tasks, and for Pruning on the number of jobs, while the runtime for
an individual time point does not differ largely.

We also examined the precision of the considered approaches. However, sta-
tistical information for derived worst-case deadline failure probabilities is unfor-
tunately not meaningful. For example, for task sets with 15 tasks, the derived
worst-case deadline failure probability in our evaluations under Pruning ranged
from 3.0 · 10−39 to 6.1 · 10−5. Therefore, comparing the average values or other
statistical parameters does not yield much information. In addition, comparing
relative values is problematic if the probability is low. Hence, we show a small
sample of 5 task sets with roughly similar probabilities in Figure 5.17(a). These
are the first 5 randomly generated task sets with a worst-case deadline failure
probability larger than 10−6. This selection is only done to increase the readability
of the figure. We observed an in general similar relative behaviour among (nearly)
all the evaluated task sets. We see that the error of Bernstein and Hoeffding is
large compared to Chernoff, i.e., by several orders of magnitude, while the three
approaches based on the multinomial distribution result in similar values, roughly
one order of magnitude better than Chernoff. We also conducted experiments
with different probabilistic distributions which lead to in general identical results.

Figure 5.17(b) compares the worst-case deadline failure probability of the three
multinomial-distribution based approaches more closely. Unify performs very
similar to Pruning, i.e., the error is in the magnitude of 10−9. This is significantly
smaller than the predefined value for the allowed error for Unify of 10−6 set in
the evaluation. The reason is that: 1) execution mode equivalence classes are
only merged for some of the tasks, while the maximum error for each task

162 uncertain execution behaviour

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Set 1 Set 2 Set 3 Set 4 Set 5

Sets with 15 Tasks
(a) Approximation Quality

10−6

10−5

10−4

10−3

10−2

10−1

C
al

cu
la

te
d

P
ro

ba
bi

lit
y

Pruning Unify Approx Chernoff Hoeffding Bernstein

Set 2 Set 4 Set 5

Sets with 15 Tasks
(b) Detailed Approximation Quality

10−5

10−4

2
.4

9
·1

0
−

0
5

6
.1

0
·1

0
−

0
5

1
.3

5
·1

0
−

0
5

2
.4

9
·1

0
−

0
5

6
.1

0
·1

0
−

0
5

1
.3

5
·1

0
−

0
5

2
.4

9
·1

0
−

0
5

8
.2

9
·1

0
−

0
5

1
.3

8
·1

0
−

0
5

Figure 5.16: (a) Approximation quality for 5 sets with 15 tasks. (b) Detailed approximation
quality for the multinomial-based approaches. Adapted from [BPC+18].

may already be significantly smaller than 10−6, and 2) the presented worst-case
analysis regarding the precision loss is pessimistic. For Approx the error for Set 4
and Set 5 is in the magnitude of 10−5 and 10−7, respectively, since only a subset
of the points of interest is considered. In some rare cases an even larger relative
difference could be observed.

Intuitively, it seems especially helpful to use the union of equivalence classes if
the periods of tasks differ largely, e.g., in automotive applications where periods
often range from 1 to 1000 ms [KZH15], since in this setup tasks with a short
period may release a large number of jobs. To evaluate the impact of the period
range on the runtime, we considered period ranges from 1 order of magnitude to
3 orders of magnitude in steps of 0.5, i.e., from [10, 100] to [10, 10000]. The runtime
evaluation is shown in Figure 5.17.9 It shows that the task-level convolution-based
approaches, i.e., Pruning, Unify, and Approx, are more sensitive to an increased
period range than the analytical bounds. The runtime increase for Pruning stems
from the larger number of considered test points and from the larger number
of jobs per task. On the other hand, the runtime of Approx increases more
slowly since only the number of considered jobs increases but not the number of
test points, since Approx only examines the last release of each higher-priority
task. Furthermore, Unify is faster than Approx which means that the union
of a potentially large number of equivalence classes has a larger impact than
only considering a small number of time points. Conv. Merge only delivered

9 Note that the evaluations presented in Figure 5.17 are performed on a different machine, an Intel
Core i7− 8550U at 1.8GHz with 16GB Ram and 8MB L3 cache. Hence, the resulting runtimes in
Figure 5.17 are not directly comparable to the runtimes in the other figures.

5.4 worst-case deadline failure probability 163

1.0 1.5 2.0 2.5 3.0

Period Range (orders of magnitude)

10−1

100

101

102

103

104
A

ve
ra

ge
A

na
ly

si
s

R
un

ti
m

e
(s

ec
on

ds
)

Pruning Unify Approx Chernoff Hoeffding Bernstein Conv. Merge

Figure 5.17: The impact of the considered period range on the runtime. We considered
1 order of magnitude, i.e., [10, 100], to 3 orders of magnitude, i.e., [10, 10000].

results for 18 of the task sets with a maximum period range of 2 magnitudes,
and for 15 of the task sets with a period range of 2.5 magnitudes. For 3 orders
of magnitudes, only in 1 case a result was delivered. The related datapoint is
therefore omitted. The average runtime increase of Conv. Merge compared to
Pruning was approximately 64, 93, 96, and 138 times, i.e., it increased with the
period range. We note that the average values for all approaches are calculated
over all task sets where the related approach delivered a result. The reason is
that the sets where Conv. Merge did not deliver results are the sets where the
runtime of the other approaches is largest, and removing these task sets from the
evaluation would therefore result in an unrealistically small average runtime for
all approaches. We also note that the actual runtimes for Conv. Merge, Pruning,
Unify, and Approx differed by approximately 2 orders of magnitude, depending
on the specific task set. This difference also becomes larger with the period range.
The reason is that under the same setting the number of jobs that have to be
considered differs largely depending on the smallest and largest period in the
task set.

Most importantly, the provided task-level convolution-based approaches are
even able to deliver results for large task sets, since the time needed to evaluate a
single point in time still remains in the scale of minutes. We evaluated task sets
with 75 and 100 tasks, where on average one time point was evaluated in 621.6 and
791.1 seconds, respectively. Therefore, when a given task set needs to be analyzed,
the approach can be used directly, especially since it is highly parallelizable due
to the fact that different points in time can be analyzed completely individually.
Hence, we suggest to first run Hoeffding’s as well as Bernstein’s bounds since they

164 uncertain execution behaviour

have a small runtime even for large task sets. If a sufficiently low worst-case
deadline failure probability cannot be guaranteed from these bounds, we propose
to run the multinomial-based approach with equivalence class union in parallel
on multiple machines by partitioning the time points equally.

5.5 conclusion

We provided Systems with Dynamic Real-Time Guarantees to model real-time taskSystems with Dynamic
Real-Time Guarantees sets in an uncertain execution environment. While previous models focused on

one specific area with uncertain behaviour, e.g., fault tolerance or mixed-criticality,
our model was designed with a focus on general applicability for systems with an
uncertain execution behaviour. Systems with Dynamic Real-Time Guarantees providefull timing guarantees

dynamic timing guarantees, i.e., full timing guarantees and limited timing guarantees,limited timing
guarantees depending on the execution mode of the tasks in the system without the necessity

of any online adaption in case of abnormal execution behaviour. Instead, static-
priority scheduling is exploited and all guarantees are provided offline. In the
course of our exploration, we defined the model of Systems with Dynamic Real-Time
Guarantees, presented a schedulability test as well as a way to find an optimal
assignment of static-priorities for such systems, and showed how to monitor the
system state online. The model was later extended to Multiprocessor Systems withMultiprocessor

Systems with Dynamic
Real-Time Guarantees

Dynamic Real-Time Guarantees, exploring both partitioned and semi-partitioned
scheduling strategies. Moreover, we introduced the concept of full and partial

full compensation

partial compensation
compensation to enhance the system reliability should one or more processors
suffer from abnormal execution behavior during a longer interval of time, e.g.,
due to intermittent faults.

The evaluations provided good support for our claim that uncertain and faulty
execution environments can be reasonably handled without any online adaptation
if certain properties can be provided offline. We showed that, if the fault rate and
task settings are given, the percentage of time where the system only provides
limited timing guarantees can be approximated. For a concrete system, this can be
used to decide whether additional adaptation might be needed. The evaluations
further showed that reasonable acceptance ratios can be achieved for partitioned
and semi-partitioned scheduling. Not least, we found that improving the system
robustness by applying the proposed compensation techniques entails a tolerable
trade-off between acceptance ratio and reliability.

Furthermore, we provided a novel way to calculate the worst-case deadline failureworst-case deadline
failure probability probability of constrained-deadline sporadic real-time tasks on uniprocessor plat-

forms, where time points are considered individually. Our approach convolves
the equivalence classes of a task represented by the values of the related multino-
mial distribution. The runtime of this approach can be improved by the detailed
pruning technique without any precision loss. Furthermore, we presented an
approximation that unifies equivalent classes with a bounded loss of precision.
We demonstrated the effectiveness in the evaluations, specifically showing that
our approach scales reasonably even for large task sets.

6
S E L F - S U S P E N S I O N A N D I T S
A P P L I C AT I O N S I N M U LT I P R O C E S S O R
S Y N C H R O N I Z AT I O N

Self-suspension behaviour has become increasingly important for many real-time
applications, due to 1) cloud offloading in the Internet of Things era [ARS18],
2) the interactions with external devices, such as GPUs [LLZ+15], I/O devices
[KSS+07], and accelerators [BA05], 3) suspension-aware protocols for multiproces-
sor resource synchronization [Raj90; Bra13], etc. However, introducing suspension
delays may negatively impact real-time schedulability, particularly given that
such delays can be quite lengthy in many scenarios.

Two self-suspension models are studied in the literature. They are applicable
in different scenarios and have a high tradeoff between flexibility and accuracy:

• The dynamic self-suspension model allows a job of task τi to suspend itself dynamic
self-suspensionat any moment before it finishes as long as the maximum self-suspension

time Si is not violated. It can be utilized when only limited information
about the suspension behavior is known. It has a higher flexibility, but
results in more pessimistic analyses and designs of scheduling policies if
the suspending pattern can be defined precisely.

• The segmented self-suspension model characterizes the lengths of the computa- segmented
self-suspensiontion segments and suspension intervals as an array, composed of mi + 1 com-

putation segments that are separated by mi suspension intervals. It has a
lower flexibility, but the self-suspending structure can be exploited by the
scheduling algorithms for better scheduling decisions. However, such a con-
crete segmented pattern is only achievable if the structure of the program is
well designed and the execution pattern is determinable.

We first consider the segmented self-suspension model, where the scheduler de- segmented
self-suspensionsign problem isNP-hard in the strong sense as shown by Ridouard et al. [RRC04].

Chen [Che16a] showed that deciding whether a segmented self-suspension task
set is schedulable by a static-priority scheduling policy is coNP-hard in the
strong sense. Approximation algorithms can resolve this computational complex-
ity issue in NP-hard scheduling problems. In real-time systems, approximations
with speedup or resource augmentation factors ensure a bounded gap between the speedup factor

derived solution and the optimal solution for NP-hard problems.

A promising approach is fixed-relative-deadline (FRD) scheduling that was in- fixed-relative-deadline

troduced by Chen and Liu [CL14]. In FRD scheduling, all subtasks are assigned
individual relative deadlines and the subjobs are scheduled under dynamic-
priority scheduling or static-priority scheduling with release time enforcement
for the subjobs. Hence, setting the deadlines for the subjobs is the most chal-
lenging problem regarding the performance of an FRD approach. In Section 6.1,
we consider one-segmented self-suspension, i.e., mi = 1, and propose Shortest SEIFDA

165

166 self-suspension

Execution Interval First Deadline Assignment (SEIFDA) that assigns the deadlines in
increasing order of the execution interval length, which is defined as Di − Si for
each task τi. In contrast to previous approaches, SEIFDA’s assignment strategy
is not agnostic to the deadlines assigned for the other tasks but takes them into
account, which results in a substantial performance gain compared to the FRD
assignment strategies from the literature. Furthermore, we show that SEIFDA
has a speedup factor of 3, which is identical to the best known speedup factor of
another FRD approach, i.e., of equal-deadline assignment (EDA) [CL14].

One prominent reason for self-suspension behaviour is multiprocessor resourcemultiprocessor
resource sharing sharing. Since the shared resources are usually the schedulability bottleneck

in modern multiprocessor platforms, the concept of resource-oriented partitionedresource-oriented
partitioned scheduling scheduling (ROP) was proposed by Huang et al. [HYC16] in 2016. The main idea of

ROP is to focuses on the shared resources instead of the computing tasks. Therefore,
each shared resource is assigned to one designated synchronization processor while
the non-critical sections are executed on the application processors, leading to a
semi-partitioned scheduling since the critical sections are (potentially) migrated. Thissemi-partitioned

scheduling focus on the resource access results in short response times for the critical sections,
while from the perspective of the non-critical sections the execution of the critical
sections appears as self-suspension. Utilizing SEIFDA in the design of a resource
oriented partitioned scheduling (ROP) in Section 6.2 promises good schedulability
due to the increased schedulability of SEIFDA compared to other self-suspension
scheduling algorithms. Furthermore, we use a release enforcement technique for
the task migration to avoid a decrease in schedulability resulting from release
jitter. By combining four different approaches for scheduling non-critical sec-
tions and two approaches for scheduling critical sections, we explore 8 different
algorithms and their effectiveness compared to state-of-the-art multiprocessor
synchronization scheduling algorithms in the evaluation. In addition, we show
that RM together with PCP under ROP with release enforcement has a speedup
factor of 6 with respect to a necessary scheduling condition, improving the best
previously known speedup factor result in the literature.

Both SEIFDA as well as its application in a ROP with release enforcements have
a good performance, both theoretically and empirically. However, since SEIFDA is
only applicable for the segmented self-suspension model, the provided ROP is
also restricted to it. The only other model considered in the real-time systems
research community is the dynamic self-suspension model. Scheduling algorithmsdynamic

self-suspension and schedulability tests for the dynamic self-suspension model could directly
be applied in a ROP. However, while the segmented model is very precise and
over-restrictive, the dynamic model is imprecise and over flexible, which leads to
an over-pessimistic analysis when more information than the total WCET and the
maximum suspension length of tasks is available. Hence, we try to bridge this gap
by introducing multiple hybrid self-suspension models in Section 6.3. These modelshybrid self-suspension

provide different tradeoffs between flexibility and precision that can be achieved
based on the information that is known for the considered task set. Compared to
the dynamic self-suspension model, all hybrid models have at least one additional
parameter mi that predefines the number of self-suspension intervals. However,
instead of assuming one specific execution/suspension pattern, a task is seen as a
set of (potentially unknown) possible execution/suspension patterns. The hybrid

6.1 one-segmented self-suspension 167

models provide several options to model the tasks, depending on whether the
execution/suspension pattern of a job can be known when it arrives:

• Pattern-oblivious Models: It is assumed that the number of self-suspension pattern-oblivious

intervals of a job of task τi is known to be at most mi. Two submodels
are considered: In the first one, individual upper bounds on the WCET of
the individual computation segments and on the maximum suspension
time of the suspension intervals are given. In the second one, multiple
execution paths are known, i.e., each task is described by a set of specific
execution/suspension patterns. These patterns are known offline and can
be utilized when designing the scheduling policy, but it is not possible to
determine which specific pattern will be executed when a new job arrives.

• Pattern-clairvoyant Model: The individual execution/suspension pattern of pattern-clairvoyant

each job is of τi is known offline and also at the moment the job arrives.

We show how these models can be applied to FRD by carefully examining
the special case that each task has only one self-suspension interval, i.e., mi = 1,
considering SEIFDA. The evaluation shows that, compared to the dynamic self-
suspension task model, the hybrid self-suspension task models can achieve
different degrees of improvement, depending on the knowledge about the execu-
tion/suspension patterns.

6.1 one-segmented self-suspension

For scheduling segmented self-suspension task sets, Chen and Liu [CL14] as well segmented
self-suspensionas Huang and Chen [HC16] proposed to use release time enforcement, called

fixed-relative-deadline (FRD), under dynamic-priority scheduling and static-priority fixed-relative-deadline

scheduling, respectively. An FRD scheduler assigns a separate relative deadline to
each computation segment of a task. Thus, the relative deadline assignment poli-
cies become critical to the performance of FRD scheduling. Chen and Liu [CL14]
introduced a rather simple assignment policy, namely equal-deadline assignment
(EDA) that assigns the same relative deadline to each computation segment of
a self-suspending task and uses EDF to schedule the computation segments.
They showed that EDA yields a better resource augmentation bound than tra-
ditional job-level or task-level static-priority scheduling algorithms. While the
study in [CL14] assumed one self-suspension interval per task, EDA has bounded
speedup factors for multiple self-suspension intervals under both EDF and static- speedup factor

priority scheduling as well, as shown in [HC16]. Regardless, its deadline assign-
ment policy is rather straightforward and the potential of FRD scheduling is not
fully exploited under EDA. One main concern is that the deadlines of each task
are set without considering the other tasks.

To tackle this problem, we propose the Shortest Execution Interval First Deadline
Assignment (SEIFDA) that assigns the deadlines in increasing order of the exe-
cution interval length, i.e., the relative deadline minus the self-suspension time.
We focus on one-segmented self-suspension task systems, i.e., a job of a task can
suspend at most once and therefore mi = 1. When considering task τk, SEIFDA
greedily chooses any feasible deadline based on the interference from the k− 1

168 self-suspension

tasks with already assigned deadlines, assuming that the shorter computation
segment of task τk has a short relative deadline. This results in several strategies
for the deadline selection.

We take a closer look at FRD scheduling in Section 6.1.1 and introduce a general
schedulability test for FRD scheduling in Section 6.1.2. To ease the presentation
and the implementation of the algorithm, we prove that it is sufficient to consider
the case where the first computation segment has a WCET that is not larger than
the WCET of the second computation segment in Section 6.1.3, since otherwise
the computation segments can be swapped before the deadline assignment and
swapped back afterwards. The concept of SEIFDA is presented in Section 6.1.4.
We provide three related deadline assignment strategies in Section 6.1.5 which are
proven to be incomparable in Section 6.1.6, i.e., they do not dominate each other.
Afterwards, we show that SEIFDA has a speedup factor of 3 for each of these
strategies in Section 6.1.7. Moreover, we introduce an approximated schedulability
test in Section 6.1.8 to achieve a reasonable runtime. In addition, Section 6.1.9
presents a generalized mixed integer linear programming (MILP) that can be
formulated based on the tolerable loss in the schedulability test defined by the
users. Our evaluation in Section 6.1.10 shows that the resulting FRD scheduling
algorithms yield significantly better performance than existing schedulers for such
task systems. We assume implicit-deadline tasks for the simplicity of presentation,
while our approach can be applied to constrained-deadline tasks as well with
minor modifications. The results presented in this section appeared in Uniprocessor
Scheduling Strategies for Self-Suspending Task Systems in RTNS 2016 [BHC+16].

6.1.1 fixed-relative-deadline (frd)
strategies

As we adopt a fixed-relative-deadline (FRD) strategy, we introduce the concept infixed-relative-deadline

detail, assuming two computation segments. For each τi ∈ T, an FRD policy
assigns relative deadlines Di,1 and Di,2 for the executions of the first subtask and
the second subtask of τi, respectively. Based on these relative deadlines, each
subjob has its own absolute deadline assigned when a job arrives. Specifically,
when a job of τi arrives at time t,

• the first subjob, i.e., the first computation segment, has the release time t
and its absolute deadline is t + Di,1,

• the suspension has to be finished before t + Di,1 + Si, and

• the second subjob, i.e., the second computation segment, is enforced to be
released at time t + Di,1 + Si and its absolute deadline is t + Di,1 + Si + Di,2.

The subjobs are scheduled using these relative deadlines with EDF as the under-
lying scheduling policy.

An FRD assignment is feasible if the WCRT of the first (second, respectively)
computation segment of task τi is no more than Di,1 (Di,2, respectively). Moreover,
an FRD scheduling policy has to ensure that Di,1 + Di,2 + Si ≤ Di to secure the
feasibility of the resulting schedule. We assume implicit-deadline tasks and, hence,implicit-deadline

Di,1 + Di,2 + Si = Ti. Otherwise, we can always increase Di,2 by setting it to
Ti − Si − Di,1 without jeopardizing the schedulability of the task set.

6.1 one-segmented self-suspension 169

existing frd approaches

Two existing FRD deadline assignments were discussed in [CL14]

• Proportional (proportional relative deadline assignment):
Di,1 =

Ci,1
Ci,1+Ci,2

· (Ti − Si); Di,2 =
Ci,2

Ci,1+Ci,2
· (Ti − Si)

• EDA (equal relative deadline assignment):
Di,1 = Di,2 = Ti−Si

2

While Proportional seems very reasonable and EDA seems very pessimistic, it
was shown in [CL14] that Proportional does not yield a constant speedup factor.
The reason is that the aggressive relative deadline assignment greedily sets Di,1

as Ci,1
Ci,1+Ci,2

· (Ti − Si) without considering interference from other tasks.

6.1.2 schedulability test for frd

The schedulability tests for FRD that are introduced in [CL14] are mainly for EDA
and more general schedulability tests are not provided. Therefore, we first intro-
duce a general schedulability test for FRD. We use demand bound functions (DBF) demand bound

functionto calculate the maximum cumulative execution time requirement of a task over
a given interval [t0, t0 + t) when the arrival time of the computation segments is
within this interval. For simplicity of presentation, we set t0 to 0 for the illustrative
example used in this section. The concrete DBF for an FRD scheduling policy
depends only on the value of Di,1 as Di,2 = Ti − Si − Di,1 as discussed before.

One intuitive way to formulate the DBFs of a task for an FRD scheduling policy
is to represent it as a generalized multiframe task (GMF) [BCG+99]. In the GMF generalized multiframe

tasktask model, task τi is represented by a 3-tuple of vectors (
−→
Ci ,
−→
Di ,
−→
Ti) where−→

Ci ,
−→
Di , and

−→
Ti are vectors of identical length, representing the WCETs, relative

deadlines, and interarrival times of the frames, respectively. We use superscripts
when referring to the terms in GMF tasks. For one-segmented self-suspension,
these vectors have a length of 2, resulting in two frames depending on the values
of Di,1, Di,2, and Si. The jth frame of a task τi has the WCET, relative deadline,
and interarrival time of the (j mod 2)th frame. For a one-segment self-suspending
task, the resulting GMF has two frames: τi = {(Ci,1, D1

i , T1
i), (Ci,2, D2

i , T2
i)}. As the

second computation segment is released after the suspension interval, D1
i = Di,1

and T1
i = Di,1 + Si. Moreover, for the second frame T2

i = Ti − T1
i = Ti − Di,1 − Si

and D2
i = Di,2 = Ti − Di,1 − Si. Now we formulate the DBFs for the case where

the segment released at time 0 is represented by the first frame as db f 1
i and by

the second frame as db f 2
i in Eq. (6.1) and Eq. (6.2), respectively.

If the first computation segment is released at 0, the segment has to be finished
at t = Di,1 while the second segment has to be finished at t = Ti. This pattern
repeats periodically and is formalized in Eq. (6.1):

db f 1
i (t, Di,1) =

⌊
t + (Ti − Di,1)

Ti

⌋
Ci,1 +

⌊
t
Ti

⌋
Ci,2 (6.1)

170 self-suspension

t
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

0

1

2

3

4

5
6

7
8

9

10

11

12

13

14

15

dbf
frd
i (t, 2) (dashed)

dbf
frd
i (t, 4) (solid)

dbf
frd
i (t, 8) (dotted)

Figure 6.1: An example of dbf
frd
i (t, Di,1) for different values of Di,1, where Ci,1 = 2,

Ci,2 = 3, Si = 4, and Ti = 20. Adapted from [BHC+16].

If the second computation segment is released at 0, it has to be finished at time
t = Di,2, the behavior is identical to releasing the first segment at time −(Di,1 + Si).
Hence, the first segment has to be finished at time Ti − Si. This pattern repeats
periodically and is formalized in Eq. (6.2):

db f 2
i (t, Di,1) =

⌊
t + (Di,1 + Si)

Ti

⌋
Ci,2 +

⌊
t + Si

Ti

⌋
Ci,1 (6.2)

The exact DBF for τi under an FRD assignment is the maximum of the two
possible arrival patterns:

dbf
frd
i (t, Di,1) = max(db f 1

i (t, Di,1), db f 2
i (t, Di,1)) (6.3)

We use the DBF in Eq. (6.3) for an exact schedulability test:

Theorem 6.1 (Exact Schedulability Test for FRD). An FRD schedule is feasible if andexact test

only if

∑
τi∈T

dbf

frd
i (t, Di,1) ≤ t ∀t ≥ 0 (6.4)

Proof. This follows directly from Theorem 1 in [BCG+99], i.e., the schedulability
condition for generalized multiframe task systems under EDF using demand
bound functions.

How the DBF differs depending on the setting for Di,1 is detailed in Figure 6.1
for a task with Ci,1 = 2, Ci,2 = 3, Si = 4, and Ti = 20 for three different settings of
Di,1, i.e., Di,1 = 2 (black, dashed), 4 (red, solid), and 8 (blue, dotted). For example,
with Di,1 = 4 we get Di,2 = 12. We consider two cases, depending on whether the
computation segment released at time 0 is Ci,1 or Ci,2, and take the maximum of
both cases as the maximum possible workload. If Ci,1 is released at 0, the DBF
equals 0 in the interval [0, 4), as no workload has to be finished up until this point.

6.1 one-segmented self-suspension 171

The maximum workload after t = 4 is at least 2, as Ci,1 has to be finished, and at
t = 20 it is 5, as both Ci,1 and Ci,2 have to be finished. When Ci,2 starts at t = 0
it must be finished at 12, and thus the total workload in [0, 12) is 3. In this case,
Ci,1 is released at t = 12 with absolute deadline 16, followed by the suspension
interval, thus the workload is 3 in [12, 16) and 5 in [16, 20) if Ci,2 is released first.
The red line in Figure 6.1 is the maximum of both cases in [0, 20). As the task
is released periodically with period 20, the DBF is also periodic with period 20.
Note that each period has only 3 jump points, since the jump at Ti by db f 1

i (t, Di,1)

is already covered by the jump of db f 2
i (t, Di,1) at Ti − Si.

In addition to the exact schedulability test, we introduce two necessary condi-
tions for the schedulability of one-segmented self-suspending task sets. One for
the schedulability under an FRD assignment and one for any arbitrary scheduling
algorithm. This allows us to compare our approach to the best possible result any
FRD scheduling algorithm and any scheduling algorithm could provide.

Lemma 6.2 (Necessary Condition for FRD). If there exists an FRD schedule to feasibly necessary test

schedule T, then

∑
τi∈T

dbf

frd-nece
i (t) ≤ t, ∀t ≥ 0 (6.5)

where

dbf

frd-nece
i (t) =

(⌊
t + Si

Ti

⌋)
(Ci,1 + Ci,2) (6.6)

Proof. This was proved in Lemma 1 in [CL14] with a slightly different formulation
of the equation.

We now provide a necessary condition for any arbitrary scheduling algo-
rithm for implicit-deadline one-segment self-suspension task sets, assuming that
Ci,1, Ci,2, and Si are given. The following equation lower bounds the workload in
the current period

Gi(t) =

{
0 if 0 ≤ t < Ti − Si

Cmax
i if Ti − Si ≤ t < Ti

(6.7)

When considering multiple releases, Eq. (6.7) lower bounds the workload in the
last period, which is started but not finished yet, i.e., in the interval

[⌊
t
Ti

⌋
· Ti, t

]
.

Combining this with the workload contributed in each completed period which
is Ci,1 + Ci,2, we get a lower bound over a given time interval of length t:

dbf
nece
i (t) =

⌊
t
Ti

⌋
(Ci,1 + Ci,2) + Gi

(
t−
⌊

t
Ti

⌋
· Ti

)
(6.8)

Hence, we get the following necessary condition:

Lemma 6.3 (General Necessary Condition for One-Segmented Self-Suspension).
If task set T can be feasibly scheduled, then necessary test

∑
τi∈T

dbf
nece
i (t) ≤ t, ∀t ≥ 0 (6.9)

172 self-suspension

Proof. Obviously Ci,1 + Ci,2 have to be scheduled after a complete interval of
length Ti, independent from the concrete scheduling policy. We now have to show
that Eq. (6.7) is a lower bound on the possible workload distributions over one
period.1 We consider the two cases Ci,1 ≥ Ci,2 and Ci,1 < Ci,2. If Ci,1 ≥ Ci,2 and we
release Ci,1 at time t0 = 0, the first subjob has to be finished before Ti − Si, as Si
and the execution of Ci,2 still have to happen before Ti. If Ci,1 < Ci,2, we release
Ci,1 at −Si − Ci,1 and thus Ci,2 has to be finished before Ti − Si independent from
the scheduling policy. As both the release patterns and the DBF are periodic with
period Ti this concludes the proof.

6.1.3 task set transformation

Before presenting our solution, we first examine some characteristics of the de-
mand bound function dbf

frd
i (t, Di,1). This provides an important transformation

of task τi to simplify the following presentation. Since all the step functions in
Eq. (6.1) and Eq. (6.2) have a period Ti, it is clear that dbf

frd
i (t, Di,1) is in general

periodic with at most four individual increasing points in one period.

Suppose that we are interested in time t with `Ti ≤ t < (`+ 1)Ti where ` is a
non-negative integer. For db f 1

i (t), we know that

• db f 1
i (t) = `(Ci,1 + Ci,2) when `Ti ≤ t < `Ti + Di,1;

• db f 1
i (t) = `(Ci,1 + Ci,2) + Ci,1 when `Ti + Di,1 ≤ t < (`+ 1)Ti.

For db f 2
i (t), we know that

• db f 2
i (t) = `(Ci,1 + Ci,2) when `Ti ≤ t < `Ti + (Ti − Si − Di,1) = `Ti + Di,2;

• db f 2
i (t) = `(Ci,1 + Ci,2) + Ci,2 when `Ti + Di,2 ≤ t < `Ti + Ti − Si;

• db f 2
i (t) = (`+ 1)(Ci,1 + Ci,2) when `Ti + Ti − Si ≤ t < (`+ 1)Ti.

Therefore, db f 2
i (t) ≥ db f 1

i (t) if (t mod Ti) > Ti − Si. Moreover, the following
two properties follow directly from the definition:

Lemma 6.4. If Ci,1 ≤ Ci,2 and Di,1 ≥ (Ti − Si)/2, then

∀t ≥ 0, dbf

frd
i (t, Di,1) ≥ dbf

frd
i (t, Ti − Si − Di,1).

Lemma 6.5. If Ci,1 ≥ Ci,2 and Di,1 ≤ (Ti − Si)/2, then

∀t ≥ 0, dbf

frd
i (t, Di,1) ≥ dbf

frd
i (t, Ti − Si − Di,1).

These two lemmas suggest assigning a shorter relative deadline to the shorter
computation segment with Cmin

i for each task τi. However, it is notationally
inconvenient to distinguish two cases, depending on whether Ci,1 is smaller or
not. Fortunately, the notational complication can be easily handled by swapping
Ci,1 and Ci,2 if Ci,1 > Ci,2.

1 The remaining proof is identical to the proof of Lemma 2 in [CL14]. Since our condition is stronger,
we include the proof for completeness.

6.1 one-segmented self-suspension 173

Lemma 6.6. Suppose that Ci,1 > Ci,2 for a task τi. We can create a corresponding
task τ∗i with the same parameters as τi but Ci,1 and Ci,2 are swapped in task τ∗i . If
Di,1 ≥ (Ti − Si)/2, then

∀t ≥ 0, dbf

frd
i (t, Di,1) = dbf

frd
i∗ (t, Ti − Si − Di,1)

where dbf

frd
i∗ (t, Ti − Si − Di,1) is the demand bound function of task τ∗i by setting the

relative deadline of the first computation segment in task τ∗i (i.e., execution time Ci,2) to
Ti − Si − Di,1.

Proof. This follows from inspecting the corresponding demand bound functions,
as they are identical.

Hence, we will implicitly assume that Ci,1 ≤ Ci,2. If Ci,2 < Ci,1, we can simply
reorder them before proceeding to the relative deadline assignment of task τi
and swap them, together with the assigned deadlines, back after the assignment.
Based on Lemma 6.6 and the discussions earlier, this does not result in any
additional restriction, but simplifies the presentation flow.

6.1.4 greedy approach

Although EDA only greedily assigns the relative deadline, it was already shown
in [CL14] that the following condition

dbf
frd
i (t, (Ti − Si)/2) ≤ dbf

frd-nece
i (t) (6.10)

holds for any t ≥ 0. Hence, the idea behind EDA was to keep this constant factor
by setting Di,1 to (Ti − Si)/2. Chen and Liu [CL14] showed that EDA has an
arbitrary speedup factor of 3. Nevertheless, EDA has certain drawbacks:

1. By default, it cannot handle task sets where for any task τi in the set
Cmax

i > (Ti − Si)/2.

2. Assigning Di,1 to (Ti − Si)/2 is pretty aggressive and therefore not neces-
sarily a good option since the demand bound function for setting Di,1 to
(Ti − Si)/2 may have a large jump too early. Hence, EDA was chosen as
one of the examples where the too-aggressive enforcement led to a good
speedup factor but to a bad performance in Section 4.5.3.

A large early jump in the DBF can be observed in Figure 6.1, where dbf
frd
i (t, 8)

is the EDA deadline setting. Contrary to the other two examples, the EDA setting
has only two jumps and the first jump at time t = 8 is the latest jump, but t = 8
is also the earliest moment in time where a demand of 3 can be reached. Whether
a later time for the first jump or a smaller first jump is beneficial depends on
the task set under consideration. However, the problem of a large early demand
increases with the difference between Ci,1 and Ci,2. Furthermore, EDA does not
allow for a small increase of the demand earlier, to achieve the benefit that the
larger portion of the demand has to be finished later. However, to allow such a
benefit, an algorithm must consider the deadline setting of other tasks and cannot

174 self-suspension

Algorithm 2 Shortest Execution Interval First Deadline Assignment (SEIFDA)
Input: T of n one-segment self-suspension sporadic implicit-deadline tasks

1: re-index (sort) tasks such that Ti − Si ≤ Tj − Sj for i < j;
2: for k = 1 to n do
3: if ∃x ∈

(
Ck,1, Tk−Sk

2

]
where Eq. (6.11) holds then

4: chose x∗ from these values according to the deadline assignment strategy;
5: set Dk,1 ← x∗, and Dk,2 ← Tk − Sk − x∗;
6: else
7: return “no feasible FRD schedule is found”;
8: return return the relative deadline assignment for each task τi in T;

chose deadlines based on a predefined criterion that is independent from the
other tasks.

Therefore, we propose the following algorithm called Shortest Execution IntervalSEIFDA

First Deadline Assignment (SEIFDA): First, we re-index (sort) the given n tasks
such that Ti − Si ≤ Tj − Sj for i < j. Then, we iteratively assign their relative
deadlines under FRD scheduling, starting from task τ1 to task τn. Suppose that
the relative deadlines Di,1 and Di,2 of all tasks τi ∈ {τ1, τ2, . . . , τk−1} have been
already assigned.

Note that, based on Section 6.1.3, we only have to consider Ck,1 ≤ Ck,2 for the
deadline assignment. If Ck,1 > Ck,2 we swap Ck,1 and Ck,2 before the deadline
assignment, swap them back after the assignment, and swap the respective
deadlines as well. As shown in Lemma 6.4, if a feasible FRD assignment exists
we can always assign the deadline of Ck,1 to a Dk,1 with Dk,1 ≤ (Tk − Sk)/2. To be
more precise, if at least one x in the range of (Ck,1, (Tk − Sk)/2] with

dbf
frd
k (t, x) +

k−1

∑
i=1

dbf
frd
i (t, Di,1) ≤ t, ∀t ≥ 0 (6.11)

exists, then we greedily assign Dk,1 to one of these x values. The pseudocode of
Algorithm SEIFDA is presented in Algorithm 2.

6.1.5 relative deadlines selection for τk

Algorithm 2 provides a framework for assigning the relative deadlines for FRD
scheduling. However, the question remains which value x should be chosen
if Eq. (6.11) holds for multiple values. Due to the greedy strategy, the relative
deadlines are fixed once they are assigned, i.e., they cannot be changed later in
the process if a different choice would have been more beneficial. Suppose that
x∗ is the chosen value of x when considering task τk. We propose the following
assignment strategies:

• Minimum x (denoted minD): x∗ is the minimum x so that Eq. (6.11) holds.

• Maximum x (denoted maxD): x∗ is the maximum x so that Eq. (6.11) holds.

• Proportionally-Bounded-Min x (denoted PBminD): x∗ is set to the mini-
mum x so that both Eq. (6.11) and x ≥ Ck,1

Ck,1+Ck,2
(Tk − Sk) hold.

6.1 one-segmented self-suspension 175

The resulting demand bound functions differ, depending on how we assign Dk,1
and, as a result, Dk,2 in Algorithm SEIFDA. We now show that EDA is a special
case of and dominated by SEIFDA-maxD.

Theorem 6.7. If a task set T is schedulable by Algorithm EDA, the task set T is also
schedulable by Algorithm SEIFDA-maxD.

Proof. EDA assigns Di,1 = Di,2 = (Ti − Si)/2 for all tasks τi ∈ T. If T is schedula-
ble by Algorithm EDA, then

∑
τi∈T

dbf
frd
i (t, (Ti − Si)/2) ≤ t ∀t ≥ 0

Algorithm SEIFDA-maxD assigns the maximum x ∈
(

Ck,1, Tk−Sk
2

]
that satisfies

Eq. (6.11) when assigning the relative deadlines for task τk. Therefore, the algo-
rithm assigns Dk,1 = (Tk − Sk)/2 for all tasks τk ∈ T if EDA is feasible. Hence,
Algorithm SEIFDA-maxD scheduled all task sets that are feasible by EDA with
an identical deadline assignment.

6.1.6 seifda-maxd and seifda-mind

In the previous subsection, we showed that SEIFDA-maxD dominates EDA. It
would be interesting to have such a relation between SEIFDA-minD and EDA
or between SEIFDA-maxD and SEIFDA-minD. We show that such a relation
does not exist by creating one task set that is schedulable by SEIFDA-maxD
but not by SEIFDA-minD (Table 6.1, Figure 6.2) and one that is schedulable by
SEIFDA-minD but not by SEIFDA-maxD (Table 6.2, Figure 6.3).

For the task set in Table 6.1, SEIFDA-minD assigns D1,1 = 5, hence D1,2 = 15,
resulting in steps at 5 and 20 for dbf

frd
1 (t, 5), periodically repeated with a period

of 25. This leads to D2,1 ∈ [25 + ε; 30] as possible values. Independent from the
actually assigned value, (in Figure 6.2 we assume 26) the second job of C1,1 misses
its deadline at t = 30 as the total workload is 2 · C1,1 + C1,2 + C2,1 = 30 + ε > 30.
However, the EDA is feasible as D1,1 = 10⇒ D1,2 = 10 and the second release of
Ci,1 is feasible with the absolute deadline of 35.

For the task set in Table 6.2, SEIFDA-minD assigns D1,1 = ε, hence D1,2 = 20+ ε.
For dbf

frd
1 (t, ε) the steps are at ε, 20 + ε, and 20 + 2ε. With D2,1 = 10 + 2ε this

leads to a schedulable task set as shown by the DBF in Figure 6.3. If SEIFDA-
maxD is used D1,1 = D1,2 = 10 + ε. This leads to a deadline miss for C2,1 no
matter which deadline is assigned (in Figure 6.2 we assume C2,1 = 20) as the total
workload in the interval [0, 20] is 20 + 2ε if C1,2 and C2,1 are both released at time
0. This directly leads to the following theorem:

Theorem 6.8. SEIFDA-minD does not dominate SEIFDA-maxD and SEIFDA-maxD
does not dominate SEIFDA-minD.

176 self-suspension

t
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

y = t

y = dbf
frd
1 (t, 5) + dbf

frd
2 (t, 30)

(SEIFDA-minD)

y = dbf
frd
1 (t, 10) + dbf

frd
2 (t, 30)

(SEIFDA-maxD)

Figure 6.2: SEIFDA-maxD and SEIFDA-minD do not dominate each other (part 1):
Schedulability test for SEIFDA-maxD (red) and SEIFDA-minD (black) for
the task set in Table 6.1, ε = 1. Adapted from [BHC+16].

SEIFDA-minD SEIFDA-maxD
Task Ci,1 Ci,2 Si Ti Di,1 Di,2 Di,1 Di,2

τ1 5 5 5 25 5 15 10 10

τ2 15+ε 15+ε 940 1000 E E 30 30

Table 6.1: SEIFDA-maxD and SEIFDA-minD do not dominate each other (part 1):
An example for comparing SEIFDA-maxD and SEIFDA-minD, where 0 < ε ≤ 1.
A E denotes that SEIFDA-minD does not find a feasible value for D2,1 and thus
D2,2 is not assigned either. Adapted from [BHC+16].

6.1.7 speedup factor of seifda

Based on the assumption that Ci,1 ≤ Ci,2, the following lemma provides inequali-
ties between dbf

frd
i (t, Di,1) and the necessary conditions when t ≥ (Ti − Si)/2.

Lemma 6.9. Suppose that Di,1 is assigned with 0 < Di,1 ≤ (Ti − Si)/2. For any time
t ≥ (Ti − Si)/2, we get

dbf

frd
i (t, Di,1) ≤ 2dbf

nece
i (t) if Ti − Si ≤ t < Ti + Di,1 (6.12)

dbf

frd
i (t, Di,1) ≤ dbf

nece
i (2t) otherwise (6.13)

Proof. We consider all cases for t ≥ (Ti − Si)/2:

• If (Ti − Si)/2 ≤ t < Ti − Si, we know that
dbf

frd
i (t, Di,1) ≤ Ci,2 = dbf

nece
i (Ti − Si) ≤ dbf

nece
i (2t).

• If Ti − Si ≤ t < Ti + Di,1, we get dbf
frd
i (t, Di,1) = Ci,1 + Ci,2 ≤ 2dbf

nece
i (t).

• If Ti + Di,1 ≤ t ≤ (3Ti − Si)/2, the result is
dbf

frd
i (t, Di,1) ≤ Ci,1 + 2Ci,2 = dbf

nece
i (2Ti − Si) ≤ dbf

nece
i (2t).

• If (3Ti − Si)/2 < t < 2Ti + Di,1, we get dbf
frd
i (t, Di,1) ≤ 2 (Ci,1 + Ci,2)

≤ 2Ci,1 + 3Ci,2 = dbf
nece
i (3Ti − Si) ≤ dbf

nece
i (2t).

• If 2Ti + Di,1 ≤ t, we know dbf
frd
i (t, Di,1) ≤ (

⌊
t
Ti

⌋
+ 1) (Ci,1 + Ci,2)

≤ dbf
nece
i (t + 2Ti) ≤ dbf

nece
i (2t).

6.1 one-segmented self-suspension 177

t
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

y = t

y = dbf
frd
1 (t, 1) + dbf

frd
2 (t, 12)

(SEIFDA-minD)

y = dbf
frd
1 (t, 11) + dbf

frd
2 (t, 20)

(SEIFDA-maxD)

Figure 6.3: SEIFDA-maxD and SEIFDA-minD do not dominate each other (part 2):
Schedulability test for SEIFDA-maxD (red) and SEIFDA-minD (black) for
the task set in Table 6.2, ε = 1. Adapted from [BHC+16].

SEIFDA-minD SEIFDA-maxD
Task Ci,1 Ci,2 Si Ti Di,1 Di,2 Di,1 Di,2

τ1 ε 10 5-2ε 25 ε 20+ε 10+ε 10+ε

τ2 10+ε 10+ε 960 1000 10+2ε 30-2ε E E

Table 6.2: SEIFDA-maxD and SEIFDA-minD do not dominate each other (part 2):
An example for comparing SEIFDA-maxD and SEIFDA-minD, where 0 < ε ≤ 1.
A E denotes that SEIFDA-maxD does not find a feasible value for D2,1 and thus
D2,2 is not assigned either. Adapted from [BHC+16].

We can now show that SEIFDA has a speedup factor of 3. speedup factor

Theorem 6.10. The arbitrary speedup factor of SEIFDA by adopting the schedulability
test in Theorem 6.1 is 3.

Proof. Assume that the task set T cannot be feasibly scheduled by SEIFDA. We
show that T is also not schedulable by any algorithm at speed 1

3 . Recall that the
tasks are indexed such that Ti − Si ≤ Tj − Sj if i ≤ j. Let T′ = {τ1, τ2, . . . , τk} be
the subset of T such that task set T′ cannot be feasibly scheduled by SEIFDA, and
T′ \ {τk} can be feasibly schedule by SEIFDA, according to Theorem 6.1.

If k is 1, C1,1 + C1,2 > T1 − S1 must hold and the arbitrary speedup factor is 1,
since T is by definition not schedulable by any algorithm at the original system
speed. Hence, we focus on k ≥ 2. By the assumption that T′ \ {τk} can be feasibly
scheduled by SEIFDA under the schedulability test in Theorem 6.1, we know

k−1

∑
i=1

dbf
frd
i (t, Di,1) ≤ t ∀t ≥ 0 (6.14)

where Di,1 is the relative deadline for Ci,1 under SEIFDA.

When we intend to assign the relative deadlines for task τk, the infeasibility of
SEIFDA for T′ under the schedulability test in Theorem 6.1 implies that

∃t ≥ 0 dbf
frd
k

(
t,

Tk − Sk

2

)
+

k−1

∑
i=1

dbf
frd
i (t, Di,1) > t (6.15)

178 self-suspension

That means, at least setting Dk,1 to (Tk − Sk)/2 cannot pass the schedulability
test in Theorem 6.1. For notational brevity, we set Dk,1 to (Tk − Sk)/2 for the rest
of the proof. This indicates that SEIFDA fails to derive a feasible FRD schedule
when assigning Dk,1 to (Tk − Sk)/2.

Suppose that t∗ is a certain t such that the condition in Eq. (6.15) holds. By
the fact that dbf

frd
k (t, Dk,1) = 0 when t < Dk,1 and the assumption that the FRD

schedule of T′ \ {τk} is feasible (see Eq. (6.14)), we know that t∗ must be no less
than Dk,1, which is (Tk − Sk)/2. Since Ti − Si ≤ Tk − Sk for i = 1, 2, . . . , k, we also
know that t∗ ≥ (Ti − Si)/2, i.e., the conditions in Lemma 6.9 are applicable. We
further partition the task set T′ into two subsets:

• T′1 = {τi ∈ T′ | Ti − Si ≤ t∗ < Ti + Di,1}, and

• T′2 = T′ \ T′1.

This means that for task τi in T′1, we can use the condition in Eq. (6.12) by
Lemma 6.9 and for task τi in T′2, we can use the condition in Eq. (6.13) by
Lemma 6.9. From the above discussions, we know

t∗ < ∑
τi∈T′1

dbf
frd
i (t∗, Di,1) + ∑

τi∈T′2

dbf
frd
i (t∗, Di,1)

≤ ∑
τi∈T′1

2dbf
nece
i (t∗) + ∑

τi∈T′2

dbf
nece
i (2t∗) (6.16)

By dividing both sides by t∗, we get

1 < 2 ∑
τi∈T′1

dbf
nece
i (t∗)

t∗
+ 2 ∑

τi∈T′2

dbf
nece
i (2t∗)

2t∗
(6.17)

Since T′1 ∪ T′2 is T′ and T′1 ∩ T′2 is ∅, we know

y = ∑
τi∈T′1

dbf
nece
i (t∗)

t∗
≤ ∑

τi∈T′

dbf
nece
i (t∗)

t∗
(6.18)

z = ∑
τi∈T′2

dbf
nece
i (2t∗)

2t∗
= ∑

τi∈T′

dbf
nece
i (2t∗)

2t∗
− ∑

τi∈T′1

dbf
nece
i (2t∗)

2t∗

≤ ∑
τi∈T′

dbf
nece
i (2t∗)

2t∗
− ∑

τi∈T′1

dbf
nece
i (t∗)
2t∗

= ∑
τi∈T′

dbf
nece
i (2t∗)

2t∗
− y/2 (6.19)

Hence, we know that ∑τi∈T′
dbf

nece
i (2t∗)

2t∗ ≥ z + y/2 and ∑τi∈T′
dbf

nece
i (t∗)

t∗ ≥ y.

Since 1 < 2y + 2z in Eq. (6.17), we know that either ∑τi∈T′
dbf

nece
i (t∗)

t∗ > 1/3 or

∑τi∈T′
dbf

nece
i (2t∗)

2t∗ > 1/3. The reason is that either y > 1/3 or z + y/2 > 1/3
holds which can be calculated using the intersection z + y/2 = y, i.e., z = y/2,
and 1 < 2y + 2z = 3y. Therefore, the arbitrary speedup factor is 3.

6.1 one-segmented self-suspension 179

6.1.8 approximated test and time complexity

The schedulability test in Theorem 6.1 is a necessary and sufficient test that
requires exponential time complexity. To achieve a better runtime, we have to ensure exponential time

complexitythat we do not have to test for all t ≥ 0. It is known that we only have to test at
the t values where the demand bound function dbf

frd
i (t) actually changes. These

time points are

Ψi = {Di,1 + `Ti, Ti − Si − Di,1 + `Ti, Ti − Si + `Ti|` ∈N0} (6.20)

where N0 is the set of non-negative integers. This means, the test in Theorem 6.1
is equivalent to

∀τi ∈ T, ∀t ∈ Ψi, ∑
τi∈T

dbf
frd
i (t) ≤ t (6.21)

One may further constrain ` to be at most H/Ti, where H is the hyperperiod, i.e, hyperperiod

the least common multiple of the periods of the tasks in T. However, the time
complexity remains exponential.

To reduce the time-complexity, we can utilize approximated demand bound func- approximated demand
bound functiontions [CKT02; CC11]. Our general approach is to use the exact demand bound

function for g periods of a task, where g is a user-defined (positive) integer, and
use a linear approximation to upper bound the DBF after the given number of
periods. Similar to the construction of the exact DBFs, we use one approximated
DBF for the case where Ci,1 is released at t = 0 in Eq. (6.22a), and one for the
case where Ci,2 is released at t = 0 in Eq. (6.22b), and take the maximum of both
values in Eq. (6.23).

d̂b f
1
i (t, Di,1) =

{
db f 1

i (t, Di,1) if t < gTi

Uit− Di,1Ui,1 + Ci,1 otherwise.
(6.22a)

d̂b f
2
i (t, Di,1) =

{
db f 2

i (t, Di,1) if t < gTi − Si

Ui(t + Si) + Ci,2
Di,1
Ti

otherwise.
(6.22b)

̂
dbf

frd
i (t, Di,1) = max(d̂b f

1
i (t, Di,1), d̂b f

2
i (t, Di,1)) (6.23)

As the proofs in this subsection are rather technical and straight forward we
merely provide the ideas here, while the complete proofs are in the Appendix.

Theorem 6.11. The function
̂

dbf
frd

i(t, Di,1) in Eq. (6.23) is a safe upper bound of
dbf

frd(t, Di,1) for any t ≥ 0 and a specified Di,1 ≤ (Ti−Si)/2. Therefore, if ∑τi∈T Ui ≤ 1
and

∑
τi∈T

̂
dbf

frd
i (t, Di,1) ≤ t ∀t ≥ 0

then the resulting FRD schedule is feasible. Moreover, this schedulability test can be done
in O(g|T|2) time complexity.

180 self-suspension

t
Di,1 Ti 2Ti

Ci,1
Ci,2

Figure 6.4: The linearized DBF for Eq. (6.22a) with g = 1. We use exact steps identical to
Eq. (6.1) up to gTi and linearization after gTi. We show the linearization of the
original, exact curve (black) without adjustment (red dashed, does not work),
linearization after jumping by Ci,1 at gTi (blue dashed, over approximation),
and after adjusting by Di,1Ui,1 at gTi (gray, tight).

Proof. The first part of the proof, to show that Eq. (6.22a) is an over approximation
of Eq. (6.1) and that Eq. (6.22b) is an over approximation of Eq. (6.2), can be done
by inspecting the corresponding values at the non-linear points of Eq. (6.1) and
Eq. (6.2), respectively, for t > gTi − Si, as illustrated in Figure 6.4. This directly
leads to the conclusion that Eq. (6.23) is an over approximation of Eq. (6.3). A
more detailed discussion is in the Appendix.

To analyze the time complexity, we only have to perform the schedulability tests

at the points in time where ∑τi∈T
̂

dbf
frd
i (t, Di,1) changes discontinuously. Each

task τi has exactly 3 jump points in each of the g periods when ̂
dbf

frd
i (t, Di,1)

(Eq. (6.23)) is used which leads to 3g discrete jump points at `Ti + Di,1, `Ti +

Ti − Si − Di,1, and t = `Ti + Ti − Si with ` = 0, 1, 2, . . . , g− 1 for each τi ∈ T.
The reason is that the jump of Eq. (6.22a) at (l + 1)Ti is to the same value as
the jump of Eq. (6.22b) at t = `Ti + Ti − Si. Let P be the set of all these 3g|T|
jump points of all τi ∈ T and let t∗ be the maximum of the points in P. It is

easy to see that ∑τi∈T
̂

dbf
frd
i (t, Di,1) is a linear function for t > t∗. Due to the

condition ∑n
i=1 Ui ≤ 1, this means that we have ∑τi∈T

̂
dbf

frd
i (t, Di,1) ≤ t for all

t > t∗. Hence, we have to test whether ∑n
i=1 Ui ≤ 1 and we have to check all the

time points where ∑τi∈T
̂

dbf
frd
i (t, Di,1) is not linear, i.e., all points in P which are

3g|T| points in total. As each test has to calculate the workload up to the tested
point for each of the |T| tasks, the time complexity is O(g|T|2).

In Theorem 6.11, we proved that a linear approximation of the demand bound
functions in Eq. (6.3) can be calculated in O(g|T|2) where g ∈N0 is given and |T|
is the number of tasks in the set. We now examine the quality of the approximation
with respect to the given g, by providing an upper bound on the ratio between
over approximation and exact value.

Theorem 6.12. For a given integer g ≥ 1

̂
dbf

frd
i (t, Di,1) ≤

(
1 +

1
g

)
dbf

frd
i (t, Di,1) ∀t ≥ 0 (6.24)

6.1 one-segmented self-suspension 181

Proof. We know that both the exact DBFs in Eq. (6.1) and Eq. (6.2) are step
functions with two steps per period, resulting in two intervals with the same
value. We have to compare their value over this interval to the maximum value
the approximated DBF takes over this interval. For example, we compare the

values of db f 1
i (gTi, Di,1) with d̂b f

1
i (gTi + Di,1, Di,1) and db f 1

i (gTi + Di,1, Di,1) with

d̂b f
1
i ((g + 1)Ti, Di,1) to conclude for Eq. (6.1) compared to Eq. (6.22a). The details

can be found in the Appendix.

This shows that we can use Eq. (6.23) to formulate Algorithm 2 as an approxi-
mation scheme for finding FRD solutions. The needed quality guarantee of 1 + 1

g
(in the schedulability test) follows directly from Theorem 6.12.

6.1.9 mixed integer linear programming

In this section, we provide a programming under logical conditions to assign
the relative deadlines of the computation segments, which can be rephrased as
a mixed integer linear programming (MILP). We utilize the schedulability test in MILP

Theorem 6.11 by assuming that g ≥ 1 is given as an integer. Moreover, let L be
{0, 1, 2, . . . , g− 1} for notational brevity. We can formulate the studied problem
as the following programming under logical constraints:

find a feasible solution (6.25a)

s.t.

0 ≤ Di,1 ≤
Ti − Si

2
, ∀τi ∈ T (6.25b)

b3`+1
i,j =

̂
dbf

frd
i (`Ti + Di,1, Dj,1), (6.25c)

b3`+2
i,j =

̂
dbf

frd
i ((`+ 1)Ti − Si − Di,1, Dj,1), (6.25d)

b3`+3
i,j =

̂
dbf

frd
i ((`+ 1)Ti − Si, Dj,1), (6.25e)

(Eqs. (6.25c), (6.25d), (6.25e) ∀τi ∈ T, , τj ∈ T, ` ∈ {L})
∑

τj∈T
b3`+1

i,j ≤ `Ti + Di,1, (6.25f)

∑
τj∈T

b3`+2
i,j ≤ (`+ 1)Ti − Si − Di,1 (6.25g)

∑
τj∈T

b3`+3
i,j ≤ (`+ 1)Ti − Si (6.25h)

(Eqs. (6.25f) (6.25g) (6.25h) ∀τi ∈ T, ` ∈ {L})

Di,1 and bh
i,j are variables that can be assigned to real numbers. The variable

b3`+1
i,j is the approximate demand bound function ̂

dbf
frd
i (t, Dj,1) of task τj when

t = `Ti + Di,1. Similarly, the variable b3`+2
i,j is the approximate demand bound

function ̂
dbf

frd
i (t, Dj,1) of τj when t = `Ti + Di,2 = (`+ 1)Ti − Si − Di,1. The ap-

proximate demand bound function ̂
dbf

frd
i (t, Dj,1) of task τj is represented by

182 self-suspension

the variable b3`+3
i,j when t = `Ti + Ti − Si = (`+ 1)Ti − Si. Therefore, the con-

dition in Eq. (6.25f), Eq. (6.25g), and Eq. (6.25h) is identical to the inequality

∑τj∈T
̂

dbf
frd
i (t, Dj,1) ≤ t when t is `Ti +Di,1, (`+ 1)Ti−Si−Di,1, and (`+ 1)Ti − Si

for every task τi in T and ` = 0, 1, 2, . . . , g− 1.

Hence, by Theorem 6.11, the above programming can be used to search a
feasible relative deadline assignment Di,1 for τi ∈ T. The constraints except
Eq. (6.25c), Eq. (6.25d), and Eq. (6.25e) (due to the logical conditions inherited
from Eq. (6.22a) and Eq. (6.22b)), are linear functions with respect to the variables.
By adopting the well-known Big-M Method, each of the logical conditions in
Eq. (6.25c), Eq. (6.25d), and Eq. (6.25e) can be expressed using several linear
constraints and several binary variables. As a result, the above programming can
be implemented as an MILP.

Please note that the presented mixed integer linear programming is a special case
of the MILP that was developed by Peng and Fisher [PF16] in parallel and has
been published in RTCSA 2016.

6.1.10 evaluation

We conducted experiments using synthesized task sets to compare the proposed
approaches in comparison to other approaches from the literature. The metric to
compare the results is the acceptance ratio with respect to the task set utilization.
We generated 100 task sets with a cardinality of 10 tasks for each of the analyzed
utilization levels that ranged from 0% to 100% with steps of 5%.

For each task set, we first generated a set of sporadic implicit-deadline tasks
with cardinality 10, adopting the UUniFast method [BB05] to generate a set
of utilization values with the given goal. We used the approach suggested by
Emberson et al. [ESD10] and generated the task periods according to a log-
uniform distribution with two orders of magnitude. To be precise, log10 Ti is a
uniform distribution over [1ms− 100ms]. The execution time was accordingly set
to Ci = TiUi and the relative deadline was set to the task periods, i.e., Di = Ti. We
converted them to self-suspending tasks by generating the suspension lengths of
the tasks according to a uniform distribution in either of three ranges depending
on the self-suspension length:

• Short suspension: [0.01(Ti − Ci), 0.1(Ti − Ci)]

• Moderate suspension: [0.1(Ti − Ci), 0.3(Ti − Ci)]

• Long suspension: [0.3(Ti − Ci), 0.6(Ti − Ci)]

We then generated Ci,1 as a percentage of Ci, according to a uniform distribution,
and set Ci,2 accordingly.

We first analyzed the acceptance rate of SEIFDA, considering the three assign-
ment strategies minD, maxD, and PBminD with respect to g ∈ {1, 2, 3, 5} for the
different settings of the suspension length, and compared it to the MILP approach
in Eq. (6.25) with g = 1. Figure 6.5 displays these results for SEIFDA-minD. The
three subfigures show that SEIFDA-minD-1 already does not lose much compared

6.1 one-segmented self-suspension 183

0.0 0.2 0.4 0.6 0.8 1.0

Utilization (%)

0.0

0.2

0.4

0.6

0.8

1.0
A

cc
ep

ta
n

ce
R

at
io

(%
)

40 60 80 100

0

20

40

60

80

100

(a) Short Suspension in [0.01,0.1]

SEIFDA-minD-1

SEIFDA-minD-2

SEIFDA-minD-3

SEIFDA-minD-5

MILP

40 60 80 100

0

20

40

60

80

100

(b) Moderate Suspension in [0.1,0.3]

40 60 80 100

0

20

40

60

80

100

(c) Long Suspension in [0.3,0.6]

Figure 6.5: Impact of the g value for SEIFDA-minD.
We considered different lengths of the suspension intervals and also compared
to the MILP in Eq. (6.25) with g = 1. Adapted from [BHC+16].

to the MILP with g = 1 while SEIFDA-minD-2, SEIFDA-minD-3, and SEIFDA-
minD-5 deliver far better results. Also, the gap between SEIFDA-minD-2 and
SEIFDA-minD-5 is relatively small. While the MILP with g = 1 performs better
than SEIFDA-minD-1, the number of variables and constraints grows quadrati-
cally with respect to g in our MILP implementation by using the Big-M Method
while SEIFDA is linear with respect to g.

Furthermore, SEIFDA-minD, SEIFDA-maxD, and SEIFDA-PBminD were com-
pared. The performance for g = 2 and g = 5 is detailed in Figure 6.6. It
shows that SEIFDA-minD and SEIFDA-PBminD are close to each other, and
that SEIFDA-PBminD performs better than SEIFDA-minD in most cases, i.e.,
only for a long suspension length SEIFDA-minD performs slightly better for
some values. SEIFDA-minD and SEIFDA-PBminD both clearly perform better
than SEIFDA-maxD. Even SEIFDA-minD-2 and SEIFDA-PBminD-2 outperform
SEIFDA-maxD-5 most of the time.

In addition, SEIFDA-maxD-5 and SEIFDA-PBminD-5 were compared with the
following scheduling approaches:

• SCEDF: the suspension-oblivious approach by converting suspension time
into computation time.

• EDA: The Equal-Deadline Assignment under linear demand bound approx-
imations in Theorem 8 in [CL14].

• MILP: The proposed MILP in Section 6.1.9. Gurobi [Gur], a state-of-the-art
MILP solver, is used to solve Eq. (6.25).

184 self-suspension

0.0 0.2 0.4 0.6 0.8 1.0

Utilization (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ep
ta

n
ce

R
at

io
(%

)

40 60 80 100

0

20

40

60

80

100

(a) Short Suspension in [0.01,0.1]

minD-2

minD-5

maxD-2

maxD-5

PBminD-2

PBminD-5

40 60 80 100

0

20

40

60

80

100

(b) Moderate Suspension in [0.1,0.3]

40 60 80 100

0

20

40

60

80

100

(c) Long Suspension in [0.3,0.6]

Figure 6.6: Comparison of the three presented approaches for SEIFDA: minD, maxD, and
PBminD for g-values 2 and 5 considering different lengths of the suspension
intervals. Adapted from [BHC+16].

0.0 0.2 0.4 0.6 0.8 1.0

Utilization (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ep
ta

n
ce

R
at

io
(%

)

0 20 40 60 80 100

0

20

40

60

80

100

(a) Short Suspension in [0.01,0.1]

SCEDF

EDA

MILP

SEIFDA-maxD-5

SEIFDA-PBminD-5

NC

0 20 40 60 80 100

0

20

40

60

80

100

(b) Moderate Suspension in [0.1,0.3]

0 20 40 60 80 100

0

20

40

60

80

100

(c) Long Suspension in [0.3,0.6]

Figure 6.7: Comparison of SEIFDA-maxD-5 and SEIFDA-PBminD-5 with suspension-
oblivious EDF (SCEDF), EDA, the MILP in Eq. (6.25) with g = 1, and the
necessary condition (NC) for arbitrary algorithms (Lemma 6.3) considering
different lengths of the suspension intervals. Adapted from [BHC+16].

6.2 resource-oriented partitioning 185

• NC: The necessary condition in Lemma 6.3. We compared to the necessary
condition to evaluate how much we may lose to a theoretical optimal
algorithm in the worst case.

We chose SEIFDA-PBminD-5 and SEIFDA-maxD-5 to cover the performance
range of the SEIFDA-Algorithm. The results are shown in Figure 6.7. EDA is
clearly outperformed by the MILP, SEIFDA-PBminD-5, and SEIFDA-maxD-5.
While NC does not decrease much when the suspension length is increased, the
gap between SEIFDA-PBminD-5 and the necessary condition becomes larger with
an increasing suspension length.

6.2 resource-oriented partitioning

The unavoidable blocking time induced by resource sharing jeopardizes the timing shared resource

correctness of real-time systems. In uniprocessor systems, mutual exclusion and
synchronization based on priority inheritance techniques have been well studied.
Known protocols like the Priority Ceiling Protocol (PCP) [Raj90], the Priority Inheri- Priority Ceiling

Protocoltance Protocol (PIP) [Raj90], and the Stack Resource Policy (SRP) [Bak91] have been
Stack Resource Policyaccepted standards for nearly 30 years. Both PCP under static-priority schedul-

ing as well as SRP under dynamic-priority scheduling prevent deadlocks and
result in the minimal number of 1 priority-inversion blockings (pi-blockings) for pi-blocking

work-conserving scheduling algorithms in uniprocessor systems with acceptable
implementation overhead.

In multiprocessor systems, resource sharing and synchronization lead to additional multiprocessor
resource sharingsynchronization overhead, since tasks may not only share resources with tasks

on the same processor but also with tasks that are running on other processors.
While in the uniprocessor scenario the performance of a resource sharing proto-
col primarily depends on the number of pi-blockings and the implementation
overhead, in a multiprocessor scenario one must also consider what happens
when a job is blocked by a job that is executed on a different processor, and how
resource access is prioritized for tasks on multiple processors. Existing protocols
can be classified into

• suspension-based protocols where a job suspends itself from the processor suspension-based
protocolswhen waiting for a resource allocated to a job on another processor, and

• spin-based protocols where a job continues to be executed on the processor in spin-based protocols

a busy waiting manner until either it gets access to the requested resource
or is preempted by a higher-priority job on the same processor.

Furthermore, the performance of multiprocessor resource sharing protocols highly
depend on the task partition (under partitioned scheduling) and the task priority
order (under global scheduling).

We consider partitioned scheduling since it performs reasonably well in practice partitioned scheduling

due to its low runtime overhead. Furthermore, uniprocessor resource sharing
protocols can be extended to the multiprocessor case under partitioned scheduling
more easily. The existing multiprocessor resource sharing protocols like the
Multiprocessor Priority Ceiling Protocol (MPCP) (with suspension locks) by
Rajkumar [Raj90] and the Multiprocessor resource sharing Protocol (MrsP) (with

186 self-suspension

spin locks) by Burns and Wellings [BW13] ensure mutual exclusion under the
assumption that the task partition is given. However, it has been shown by
Brandenburg and Anderson [BA10] that in the worst case the number of pi-
blockings can be lower bounded by the number of processors. This means thatpi-blocking

the advantages of partitioned scheduling, reducing the multiprocessor scheduling
problem to uniprocessor subproblems, can be outweighed by the synchronization
overhead if the partition is not done carefully. Some heuristics to find good
task partitions have been proposed [LNR09; NNB10; WB13a] although without
theoretical analysis regarding speedup factors.

As the shared resources are usually the bottlenecks, resource-oriented partitionedresource-oriented
partitioned scheduling scheduling (ROP) was proposed by Huang et al. [HYC16] in 2016 and is adopted

in this section. This alternative approach changes the perspective and focuses
on the shared resources instead of the computing tasks. The idea of ROP is to first
assign each shared resource to one designated synchronization processor while thesynchronization

processor non-critical sections will be executed on other application processors, decoupled
application processor from the critical sections. This focus on the resource access allows keeping the

response times of the critical sections as short as possible. When considering thecritical section

non-critical sections, the worst-case response time of those critical sections cannon-critical section

be seen as suspension time of self-suspending tasks on a uniprocessor due to the
use of partitioned scheduling. ROP focuses on the strategy of task and resource
partitioning and is in general comparable with any suspension-based locking
protocols extended from the uniprocessor PCP (i.e., DPCP in [RSL88]), SRP, FIFO
(i.e., DFLP in [Bra13]), and priority-based non-preemptive scheduling.

Huang et al. [HYC16] provided a general exploration of ROP under static-
priority scheduling and assumed that the execution pattern of a task is not known
and can change from one job to another, i.e., similar to the dynamic self-suspensiondynamic

self-suspension task model. We analyze how the schedulability under ROP can be improved using
release enforcement for the task migration under the assumption that the tasks
can be modelled according to the segmented self-suspension model. To this end, wesegmented

self-suspension explain how scheduling algorithms and analyses for segmented self-suspension
tasks, e.g., [HC16; GH98] and SEIFDA in Section 6.1, can be jointly applied with
ROP. We restrict ourselves to a very fundamental yet challenging special case
where each task has one non-nested critical section. A brief comment regarding
this restriction is given in Section 6.2.7.

We first introduce the concept of ROP as introduced by Huang et al. in [HYC16]
in Section 6.2.1. Afterwards, we explain the advantages of release enforcement in
such a ROP scenario in Section 6.2.2. In Section 6.2.3, schedulability tests for ROP
in combination with the considered algorithms are detailed. The resource and
task allocation is considered in Section 6.2.4. The examination result is a family
of possible algorithms, which adopt static-priority scheduling for the processors
that execute critical sections, and either static-priority or dynamic-priority scheduling
for the processors that execute only non-critical sections. In Section 6.2.5, we show
that RM together with PCP under ROP with release enforcement has a speedup
factor of 6 with respect to a necessary scheduling condition, improving the best
previously known result of 11− 6/(m + 1) by Huang et al. [HYC16]. We ex-
plore 8 different algorithms, combining four different approaches for scheduling
non-critical sections and two approaches for scheduling critical sections, and

6.2 resource-oriented partitioning 187

their effectiveness compared to state-of-the-art multiprocessor synchronization
scheduling algorithms and their analyses in the evaluations in Section 6.2.6. Note
that we do not intend to compare the performance of the locking protocols
here and refer the readers to [YWB15] for a survey and detailed comparisons
of the global scheduling protocols. However, we show that a simple combina-
tion of release enforcement and ROP can take care of task partitioning and
priority assignment directly and yield good performance both theoretically and
empirically. For comparing with the other lock-based protocols for partitioned or
semi-partitioned scheduling, reasonable task partitioning or priority assignments
have to be provided. The results presented in this section appeared in Release
Enforcement in Resource-Oriented Partitioned Scheduling for Multiprocessor Systems in
RTNS 2017 [BCH+17].

6.2.1 resource-oriented partition

The main idea of resource-oriented partitioned scheduling is to separate the critical resource-oriented
partitioned schedulingand non-critical sections by migrating all critical sections that access the same

resource to one dedicated synchronization processor. After that, the schedulability
of the critical sections and the non-critical sections can be analyzed individually.
Therefore, executing the critical section of a task on the synchronization processor
can be considered as if the task suspends itself from its application processor.
Furthermore, migrating all critical sections for a given resource to the same
processor allows to directly utilize uniprocessor resource sharing techniques like Priority Ceiling

ProtocolPCP and SRP. The general ROP approach introduced by Huang et al. in [HYC16]
Stack Resource Policyconsists of the following steps:

1. The m processors are partitioned into mR synchronization processors for critical synchronization
processorsections and mC = m−mR application processors for non-critical sections.
application processor

2. For each shared resource, the related critical sections are assigned to one
critical sectiondesignated synchronization processor.

3. The non-critical sections of each task are statically allocated onto a designated non-critical section

application processor. Note that both critical and non-critical sections of a task
may still be allocated to the same processor as the remaining capacity on
the synchronization processors can be used to execute non-critical sections.

When a job enters a critical section, it suspends itself on its application processor. The
job returns to the ready queue of the application processor after its critical section
is executed on the synchronization processor related to the requested resource. As a
task may be executed on more than one processor, resource-oriented partitioned
scheduling has additional overheads when compared to partitioned scheduling, partitioned scheduling

which are similar to semi-partitioned scheduling. The critical points in the design of semi-partitioned
schedulingan algorithm based on ROP are:

1. the number of synchronization processors,

2. with respect to the critical sections, the partition of the shared resources on
those synchronization processors,

3. with respect to the non-critical sections, the partition of the sporadic real-time
tasks with suspension behaviour onto the application processors,

188 self-suspension

4. the assigned base priorities for the sporadic tasks, and

5. the moment where the critical section of a task is requested on the synchro-
nization processor.

The original ROP by Huang et. al [HYC16] only considered the first four points
and assumed that task migration is possible at any time, due to the use of the
more general dynamic self-suspension model.

6.2.2 release enforcement

From the perspective of the application processor, executing the critical section ofcritical section

a task on the synchronization processor can be considered as if the task suspends
itself. From the perspective of the synchronization processor executing a given set
of shared resources, the critical sections migrating can be modeled as incoming
sporadic tasks. However, if the task migration happens directly when Ck,1 finishes
its execution, release jitter resulting from the time difference between the best-caserelease jitter

and the worst-case response time of Ck,1 has to be taken into account. Details can,worst-case response
time for instance, be found in [YCH17] for the original DPCP. This jitter introduces

pessimism into the WCRT analysis of the critical section and can be removed by
enforcing the critical sections to be periodic. This can be achieved by migrating thetask migration

task τk to the synchronization processor at the fixed time tmigr
k,1 ≥ Rk(Ck,1) after

the task is released on the application processor. This does not necessarily mean
that the task migration must be enforced to be periodic as well. It is sufficient if
the critical section of a job arriving at time tarr

k is only considered by the scheduler
on the synchronization processor at time tarr

k + tmigr
k,1 . The same problems occur

for the second non-critical sections and can again be solved by migrating back
the task according to the WCRT of the critical section. We directly use Rk(Ak) on
the synchronization processor as suspension time, i.e., the task is migrated back
after exactly Rk(Ak) time units. Hence, due to the release enforcement for both
migrations, there is no release jitter for Ck,2 as well.

This approach is also called phase modification (PM) in [BL92; SL96] and static
offset in [GH98]. It differs from other enforcement strategies with similar names,
i.e., the release guard by Sun and Liu [SL96], in which the release time of Ak
(Ck,2, respectively) of task τk must be at least Tk time units apart from Ak (Ck,2,
respectively) of the previous job of τk, and the period enforcer introduced by
Rajkumar [Raj91], which has been shown incomparable with all existing analyses
regarding suspension-based locking protocols by Chen and Brandenburg [CB17].

Under release enforcement, the timing analysis is equivalent to end-to-end dead-
line analysis, e.g., [BL92], or the static-offset static-priority uniprocessor analysis,
e.g., [GH98]. However, our focus is on partitioning and scheduling the tasks.
Hence, we apply existing safe timing analysis and scheduling algorithms based
on the literature on self-suspension, detailed in Section 6.2.3. Other approaches to
assign relative deadlines and validate Rk(Ck,1) + Rk(Ak) + Rk(Ck,2) ≤ Tk under
release enforcement can be applied as well.

6.2 resource-oriented partitioning 189

6.2.3 schedulability tests under release

enforcement

For resource-oriented partitioned scheduling, the schedulability on each processor
can be analyzed individually. While the actual mappings of tasks and resources
is detailed in Section 6.2.4, this subsection focuses on the scheduling decisions
for the individual processors and the schedulability tests. Therefore, we assume
a mapping of shared resources and tasks onto processors to be given. We first
examine the scheduling regarding critical sections and the resulting worst-case worst-case response

timeresponse time on a synchronization processor, determining the maximum suspension
synchronization
processor

time Sk for τk regarding the application processors. Afterwards, we use this
suspension time Sk to analyze the schedulability on the application processor. In

application processorthe course of this, we set individual deadlines Dk,1 and Dk,2 for the first and
second computation segments, respectively. Under the release enforcement, a
constrained-deadline task τk is schedulable by a scheduling algorithm if

1. Dk,1 + Sk + Dk,2 ≤ Tk,

2. Rk(Ck,1) ≤ Dk,1,

3. Rk(Ck,2) ≤ Dk,2, and

4. Rk(Ak) ≤ Sk.

Since they in our approach are utilized for the preplanned migration, Di,1, Si, and
Di,2 are also set for static-priority scheduling. For the simplicity of presentation,
we assume that task migration takes no time. Task τi migrates to its synchroniza-
tion processor Di,1 time units after a job of task τi arrives and migrates back to its
application processor Si + Di,1 time units after a job of task τi arrives.

We first assume that each processor is either a synchronization processor or an
application processor, and consider the case that the critical and the non-critical
sections are scheduled on the same processor afterwards. We always examine the
schedulability of task τk under the assumption that the schedulability of the tasks
that are previously assigned on the same processor is already assured.

When looking at task τk, the set of tasks placed on the same synchronization
processor as the critical section and the set of tasks placed on the same application
processor as the non-critical section are not necessarily identical. Furthermore, the
priority ordering of tasks on a synchronization processor is not necessarily the
same as on an application processor. Hence, we introduce the following notation:

• for critical sections: hps(τk) denotes the tasks with higher priority than τk on critical section

the synchronization processor, i.e., under static-priority scheduling, and

• for non-critical sections: hpa(τk) denotes the tasks with higher priority than non-critical section

τk on the application processor if static-priority scheduling is used.

Note that we only consider dynamic-priority scheduling for non-critical sections
while critical sections are always scheduling using static-priority scheduling.

190 self-suspension

critical section response time analysis

For each synchronization processor, the task priorities are assigned according to Ratecritical section
synchronization

processor

Rate Monotonic

Monotonic. Due to release enforcement, the inter-arrival time of a task τi on the
synchronization processor is at least Ti. Hence, the extended Time Demand Analysis

Time Demand
Analysis

(TDA) in Eq. (4.1) can safely be used to test whether the worst-case response time

worst-case response

of Ak is no more than Dk:

∃t, 0 < t ≤ Tk and Bk + Ak + ∑
τi∈hps(τk)

⌈
t
Ti

⌉
Ai ≤ t (6.26)

If Eq. (6.26) holds for some values of t, we use the minimum t∗k,s among those val-
ues as the maximum suspension time Sk. The value of Bk is calculated depending
on the resource sharing policy, i.e., Eq. (2.17) for NPP and Eq. (2.18) for PCP.

scheduling analysis for non-critical sections

To determine if τk is schedulable under the scheduling policy on the applicationnon-critical section
application processor processor, we validate whether Rk(Ck,1) + Sk + Rk(Ck,2) ≤ Tk after Sk = Rk(Ak)

was determined beforehand. We assign individual deadlines Dk,1 ≥ Rk(Ck,1)

and Dk,2 ≥ Rk(Ck,2) for Ck,1 and Ck,2, respectively, with Dk,1 + Sk + Dk,2 = Dk.
While those deadlines are not necessary when scheduling tasks under static-
priority, they are used for both static- and dynamic-priority to determine the
point in time where the migration takes place. To be precise, the migration to
the synchronization processor happens at θa + Dk,1 and the migration back to the
application processor at θa + Dk,1 + Sk where θa is the jobs arrival time. When
considering τk, we assume that Di,1 and Di,2 are already assigned for all tasks τi
that are already allocated to the processor. As shown in [HC16] for static-priority
and in Section 6.1.2 for dynamic-priority, those tasks can be modeled as generalgeneralized multiframe

task multiframe (GMF) tasks [BCG+99] with two frames. According to the notation
in Section 6.1.2, τi is represented by two 3-tuples τi = {(C1

i , D1
i , T1

i), (C
2
i , D2

i , T2
i)},

representing two alternately released subtasks. The computation time for the GMF
subtasks is the same as for the computation segments, i.e., C1

i = Ci,1 and C2
i = Ci,2.

As the second computation segment is released after the suspension interval, we
know that D1

i = Di,1 and T1
i = Di,1 + Si. Moreover, T2

i = Ti − T1
i = Ti − Di,1 − Si

and D2
i = Di,2 = Ti − Di,1 − Si.

We consider two assignment orders, namely Rate Monotonic and execution inter-Rate Monotonic
execution interval

monotonic
val monotonic (EIM) were tasks are ordered according to Ti − Si (see Section 6.1.4).
These two orders are each combined with static-priority scheduling as well as
dynamic priority scheduling according to SEIFDA as introduced in Section 6.1.

Static-Priority - FRD - Rate Monotonic (FP-RM): The task priorities on each
application processor are assigned in RM order. We determine Rk(Ck,1) = t∗k,1 and
Rk(Ck,2) = t∗k,2 as the minimum t such that

0 < t ≤ Ti and Ck,1 + ∑
τi∈hpa(τk)

Wi(t) ≤ t (6.27)

6.2 resource-oriented partitioning 191

holds, where Wi(t) is the maximum interference of τi over the interval [0, t).
Takada and Sakamura showed in [TS97] that Wi(t) can be calculated as the
maximum max

{
Eh

i (t)
}

of the interference patterns Eh
i (t) for h ∈ {1, 2} where

Eh
i (t) = ∑h+l+1

j=h C{j mod 2}
i and l is the minimum integer with ∑h+l+1

j=h T{j mod 2}
i ≥ t.

Note that the interference from hpa(τk) is identical to that based on the static
offset analysis in [GH98]. Similarly, t∗k,2 is determined using Ck,2 in Eq. (6.27).

If t∗k,1 + t∗k,2 < Tk − Sk, the remaining slack can be freely distributed when
assigning the deadlines Dk,1 and Dk,2. We use an equal density assignment with
respect to t∗k,1 and t∗k,2. To be precise, we first consider Ck,1

Dk,1+Sk
=

Ck,2
Dk,2

and if Dk,1
is less than t∗k,1, we set Dk,1 = t∗k,1 and adjust Dk,2 accordingly. Similar, we set
Dk,2 = t∗k,2 if Dk,2 < t∗k,2.

Static-Priority - Execution Interval Monotonic (FP-EIM): The only difference to
FP-RM is that tasks are considered and prioritized in increasing order according
to their execution interval Ti − Si.

Earliest Deadline First - Fixed Relative Deadlines - EIM (EDF-EIM): The first
dynamic-priority approach we consider is to use SEIFDA as introduced in Sec-
tion 6.1 on the individual processors.2 For each task, individual relative deadlines
are assigned for the two computation segments using the Proportionally-Bounded-
Min approach and approximated DBFs as provided in Section 6.1.5. Afterwards,
the subjobs are scheduled accordingly using EDF.

EDF - FRD - RM (EDF-RM): The only difference to EDF-EIM is that tasks are
assigned in RM instead of EIM order.

improvements for non-critical sections

Allowing non-critical sections to be executed on the synchronization processors
may increase the schedulability as it utilizes otherwise unused capacities. We
apply static-priority scheduling for the non-critical sections, even if dynamic-
priority scheduling is used on the processors that are only used for non-critical
sections, and always assign each critical section with a higher priority than all
non-critical sections on the same processor.

6.2.4 resource and task allocation

Assume a given number of mR ≥ 1 synchronization processors and mC = m−mR

application processors. We proceed with the following three steps, which are a
revised version of the algorithm by Huang et al. [HYC16] as different tests and
scheduling algorithms are applied:

(1) Assign tasks to synchronization processors: The resources are assigned to synchronization
processorthe given number of synchronization processors using Worst-Fit Decreasing
Worst-Fit Decreasing(WFD) based on the resource utilization, i.e., the resources are ordered

non-increasingly according to URq .

2 The renaming to EDF-EIM is to match the terminology we use here, since we focus on the general
strategies and not on the specific algorithms.

192 self-suspension

(2) Calculate WCRT on synchronization processors: For each task τk, we cal-
culate Rk(Ak) using Eq. (6.26), considering the mR processors individually.
The blocking time Bk is calculated according to either PCP (Eq. (2.18)) or
NPP (Eq. (2.17)), depending on the synchronization protocol. The WCRT
Rk(Ak) is the suspension time Sk for each task τk.

(3) Assign tasks to application processors: The tasks are sorted in increasingapplication processor

order according to the scheduling approach for the application processors,
i.e., either by Ti − Si if EDF-EIM or FP-EIM is used or according to Ti if EDF-
RM or FP-RM is used. The non-critical sections of the tasks are assigned
to the application processors according to the first-fit approach, using the
related schedulability test. If the schedulability condition in Section 6.2.3
holds, the deadlines are set accordingly and the non-critical sections of
the task are assigned to the processor. If a task is not schedulable on any
application processor, we try to assign it to the synchronizations processors.

The key factor in this algorithm is the setting of mR. One has to consider a
general trade-off between 1) longer suspension times if mR is small, and 2) longer
worst-case response times of the non-critical sections if mR is large. Since the
above assignment algorithm works for any mR ≤ m, trying all possible set-
tings of mR increases the time complexity only by a factor of m. Hence, the
algorithm is executed for all sensible numbers of synchronization processors,
i.e., mR ∈ {1, ..., min(m, r)}. We show that setting mR = max

{⌊
6 ∑τi∈τ UA

i
⌋

, 1
}

leads to a speedup factor of 6 for FP-RM together with PCP and release en-
forcement in the next section. However, we point out that an algorithm that sets
mR = max

{⌊
6 ∑τi∈τ UA

i
⌋

, 1
}

greedily results in a potential pitfall with significant
performance loss, since such a setting of mR is an enforcement technique that
is too strong and applied at an early stage of the algorithm, which is problematic as
stated in Observation 6 in Section 4.5.3.

6.2.5 speedup factors

This section shows that release enforcement, together with resource-oriented
partitioned scheduling, leads to a speedup factor of 6. We start with the neces-speedup factor

sary scheduling conditions for a task set to be feasible by any multiprocessor
scheduling algorithm, shown by Huang et al. in Lemma 3 in [HYC16].

Lemma 6.13 (Necessary Condition, Lemma 3 in [HYC16]). Any implicit-deadline
task system τ that is feasible upon a platform comprised of m processors must satisfy the
following conditions

UC + UR ≤ m (6.28)

Uk ≤ 1 ∀τk ∈ T (6.29)

max
τi∈ldRq (τk)

Ai + Ak + ∑
τj∈sdRq (τk)

⌊
Tk

Tj

⌋
Aj ≤ Tk ∀τk ∈ T (6.30)

where ldRq(τk) and sdRq(τk) are the sets of tasks that access the same shared resource R
as τk but with longer (Ti > Tk) and shorter or the same (Ti ≤ Tk) periods, respectively.

6.2 resource-oriented partitioning 193

Lemma 6.14. Following the necessary condition in Eq. (6.30), the blocking time Bk of a
task τk derived under resource-oriented partitioned scheduling with PCP must be upper
bounded by its period Tk when the tasks are prioritized by using RM.

Due to Eq. (6.30), URq ≤ 1 must hold for each resource Rq ∈ R. The proof of
Lemma 6.14 was provided by Huang et al. in [HYC16] as part of the proof of
their Lemma 5. For the speedup analysis, we first provide the following lemma
regarding the WCRT of a computation segment Ek if the utilization on the related
processor is low enough.

Lemma 6.15. Let hp∗(Ek) be the periodically arriving computation segments with higher
priority than Ek on the same processor. Suppose the WCRT analysis for a computation
segment Ek is to find the minimum t > 0 where

Ek + ∑
τi∈hp∗(Ek)

⌈
t
Ti

⌉
Ei = t (6.31)

If Ti ≤ Tk for all tasks τi ∈ hp∗(Ek) and

 ∑

τi∈hp∗(τk)

Ei

Ti


+

Ek

Tk
= Y ≤ 0.5 (6.32)

then Rk(Ek) under Eq. (6.31) is at most Tk ·Y.

Proof. Suppose Vi is Ei
Ti

. We must consider two cases:

Ti ≤
Tk

2
⇒
⌈

t
Ti

⌉
Ei ≤ TkVi ∀ 0 < t ≤ Tk

2
(6.33)

Tk

2
< Ti ≤ Tk ⇒

⌈
t
Ti

⌉
Ei = Ei ≤ TkVi ∀ 0 < t ≤ Tk

2
(6.34)

Therefore, we know that for all t with 0 < t ≤ Tk
2 :

Ek + ∑
τi∈hp∗(Ek)

⌈
t
Ti

⌉
Ei ≤ Ek + ∑

τi∈hp∗(Ek)

ViTk = YTk (6.35)

This means that Eq (6.31) holds when t = YTk.

Note that we apply Lemma 6.15 for analyzing Rk(Ck,1), Sk = Rk(Ak), and
Rk(Ck,2) by putting different formulas in Eq. (6.31) and Eq. (6.32). For the sim-
plicity of presentation in the following statements, we will implicitly assume that
the task set can be feasibly scheduled on the original platform and therefore the
necessary conditions in Lemmas 6.13 and 6.14 hold. Moreover, our goal here is
to prove the schedulability in a specific setting, i.e., when the platform speed
is 6. Hence, for the remaining proofs in this section, all execution times, blocking times,
utilization values, and analyses are based on the platform after speeding up by 6.

Lemma 6.16. If the two conditions that Sk + Tk(UC
k + 2 ∑τi∈hpa(τk)

UC
i) ≤ Tk and that

UC
k + ∑τi∈hpa(τk)

UC
i ≤ 0.5 hold, then the WCET of task τk (under release enforcement,

RM-P, and resource-oriented partitioned scheduling) is

Rk(τk) ≤ Sk + Tk


UC

k + 2 ∑
τi∈hpa(τk)

UC
i


 (6.36)

194 self-suspension

Proof. Under RM-P and release enforcement, Rk(Ck,1), i.e., the offset to release
the critical section to its synchronization processor, is the minimum t > 0 such
that Eq. (6.27) holds. Since Wi(t) defined for Eq. (6.27) is less than or equal to⌈

t
Ti

⌉
(Ci,1 + Ci,2) for task τi, we can safely approximate Rk(Ck,1) as the minimum

t > 0 with Ck,1 + ∑τi∈hpa(τk)

⌈
t
Ti

⌉
Ci = t. We can conclude from the assumption

that Ck,1
Tk

+ ∑τi∈hpa(τk)
UC

i ≤ UC
k + ∑τi∈hpa(τk)

UC
i ≤ 0.5, that Eq. (6.32) holds with

Ek = Ck,1 for τk and Ei = Ci for τi ∈ hpa(τk). Hence, by applying Lemma 6.15,

Rk(Ck,1) ≤ Ck,1 + Tk ∑
τi∈hpa(τk)

UC
i = Dk,1 (6.37)

Similarly, Rk(Ck,2) ≤ Ck,2 + Tk ∑τi∈hpa(τk)
UC

i = Dk,2. As a result,

Rk(τk) ≤ Sk + Tk(UC
k + 2 ∑

τi∈hpa(τk)

UC
i)

if Sk + Tk(UC
k + 2 ∑τi∈hpa(τk)

UC
i) ≤ Tk.

Lemma 6.17. Under FP-RM-PCP with release enforcement on a platform with m ho-
mogeneous processors of speed 6 and the number of synchronization processors set to
mR = max

{⌊
6 ∑τi∈τ UA

i
⌋

, 1
}

, the maximum response time Sk of a task on a synchro-
nization processor is at most

Sk ≤
{(1

6 + ∑τi∈τ UA
i
)

Tk if mR = 1

0.5Tk if mR ≥ 2
(6.38)

when the resources are packed according to the worst fit heuristic.

Proof. By Lemma 6.14, when RM is used together with PCP for scheduling, we
know that Bk/Tk ≤ 1/6 after speeding up.

When mR is 1, we know that ∑τi∈τ UA
i < 1/3 and all critical sections in T

are assigned to one processor. Due to the release enforcement, the WCRT Sk of
the critical section of task τk is the minimum t such that Eq. (6.26) holds, i.e.,
Bk + Ak + ∑τi∈hps(τk)

⌈
t
Ti

⌉
Ai = t. Since Ak/Tk + ∑τi∈hps(τk)

UA
i ≤ ∑τi∈τ UA

i ≤ 1/3

and Bk/Tk ≤ 1/6, we know that Y = Bk+Ak
Tk

+ ∑τi∈hps(τk)
UA

i ≤ 0.5, i.e., the con-
dition in Eq. (6.32) holds when RM is used for prioritizing the critical sec-
tions, Ek = Ak + Bk for task τk, and Ei = Ai for task τi in hps(τk). Hence,
Sk ≤ YTk ≤ (1/6 + ∑τi∈τ UA

i)Tk when mR is 1 due to Lemma 6.15.

For the rest of the proof, we focus on mR ≥ 2. We only need to prove that the
total resource utilization of the critical sections on any of the mR synchronization
processors is ≤ 1/3. In this case, since Bk+Ak

Tk
+ ∑τi∈hps(τk)

UA
i ≤ 1/6 + 1/3 = 0.5,

the same response time analysis used above, when mR is 1, can directly be applied
to conclude Sk ≤ 0.5Tk. We first consider how the resources are packed to the mR

synchronization processors at the platform with a speed of 6. Suppose that we
are now assigning the q-th resource Rq. By definition, q ≤ r. Let U℘` denote the
resource utilization on a synchronization processor ℘`. Before assigning Rq to
any of the mR synchronization processors, there is one synchronization processor

6.2 resource-oriented partitioning 195

with the minimum utilization so far, denoted as ℘j. Due to the worst-fit strategy,
U℘` ≥ U℘j for any synchronization processor ℘`.

We show that the utilization of the resources assigned to ℘j (after assigning Rq

to ℘j) is always ≤ 2
6 = 1

3 , i.e., U℘j + URq ≤ 1
3 , for a platform with speed 6. Assume

for contradiction that U℘j +URq > 1
3 . Hence, U℘` +URq > 1

3 , i.e., U℘` > 1
3 −URq

for any synchronization processor ℘` ∈ mR. Combining the above information,
we get

q

∑
i=1

URi = URq +
q−1

∑
i=1

URi = URq + ∑
`

U℘`

> URq + mR
(

1
3
−URq

)
=

1
3
+ (mR − 1)

(
1
3
−URq

)

†
≥ 1

3
+ (mR − 1)

1
6
=

mR + 1
6

=
1
6
×
(⌊

6 ∑
τi∈τ

UA
i

⌋
+ 1
) ∗
> ∑

τi∈τ

UA
i =

r

∑
i=1

URi ≥
q

∑
i=1

URi

where
†
≥ is due to mR ≥ 2 and URq ≤ 1/6 as the platform speed is 6, and

∗
> is

due to the fact bxc > x− 1. Therefore, we reach a contradiction. As a result, the
total resource utilization of the critical sections on any of the mR synchronization
processors is ≤ 1/3, and Sk ≤ 0.5Tk for any task τk when mR ≥ 2.

Based on these results, we can now prove a speedup factor of 6.

Theorem 6.18. The speedup factor of the proposed resource-oriented partitioned schedul-
ing algorithm is 6 if the Priority Ceiling Protocol is used to schedule the critical sections
on the synchronization processors when m ≥ 2, the worst-fit approach is used to assign
the critical sections to the synchronization processors, and the non-critical sections are
assigned in rate-monotonic order.

Proof. Suppose that the input task set T can be feasibly scheduled on m uni-speed
processors. We show that in this case the task set is also schedulable by the resource-
oriented partitioned scheduling on m processors with speed s = 6. We assume a
special setting of mR with mR = max

{⌊
6 ∑τi∈τ UA

i
⌋

, 1
}

and mC = m−mR in the
analysis. We need to show that Rk(τk) ≤ Tk for any task τk in T. Since RM is used
for the priority assignment on the synchronization processors, and the tasks are
assigned to the application processors in RM order, Lemma 6.16 and Lemma 6.17

can be implicitly applied if the required utilization condition can be satisfied.
Two cases have to be considered:

Case 1: mR ≥ 2. That is, ∑τi∈τ UA
i ≥ 2

6 . Moreover, the necessary condition in
Eq. (6.28) leads to the following inequality after speeding up with a factor of 6:

∑
τi∈τ

(6UC
i + 6UA

i) ≤ m⇒ mR + ∑
τi∈τ

6UC
i ≤ mC + mR ⇒ ∑

τi∈τ

UC
i ≤

mC

6

Hence, when we assign task τk to an application processor, there must be an
application processor with utilization ≤ 1

6 due to the pigeon hole principle. Let

196 self-suspension

this processor be ℘j and let the set of the tasks that are already assigned on
this processor be hpaj(τk). Therefore, we know that ∑τi∈hpaj(τk)

UC
i ≤ 1/6 and

UC
k + ∑τi∈hpaj(τk)

UC
i ≤ 1/3. By Lemma 6.17, Sk ≤ 0.5Tk, and by Lemma 6.16, we

know that

Rk(τk) ≤ Sk +
(

UC
k + 2 ∑

τ∈hpaj(τk)

UC
i

)
Tk ≤ Tk (6.39)

Case 2: mR = 1. This means that ∑τi∈τ UA
i < 2

6 . From Lemma 6.17, we know
Sk ≤ (1/6 + ∑τi∈τ UA

i)Tk. We consider two subcases 1) m = 2 and 2) m ≥ 3.
When m is 2, one processor is used for synchronization and another processor is
used for non-critical sections. The necessary condition in Eq. (6.28) after speeding
up with a factor of 6 leads to:

UC
k + ∑

τi∈hpa(τk)

UC
i ≤ ∑

τi∈τ

UC
i ≤

m
6
− ∑

τi∈τ

UA
i =

1
3
− ∑

τi∈τ

UA
i (6.40)

Therefore, using Lemma 6.16 due to UC
k + ∑τi∈hpa(τk)

UC
i ≤ 1/3 < 0.5 when

m = 2, results in

Rk(τk) ≤Sk +
(

UC
k + 2 ∑

τ∈hpa(τk)

UC
i

)
Tk

≤
(1

6
+ ∑

τi∈τ

UA
i +

2
3
− 2 ∑

τi∈τ

UA
i

)
Tk ≤ Tk (6.41)

When m is at least 3, due to the pigeon hole principle, there exists an application
processor ℘j in the mC = m− 1 application processors with utilization less than
or equal to (∑k−1

i=1 UC
i)/(m− 1) ≤ (−UC

k + ∑τi∈τ UC
i)/(m− 1) before assigning τk.

Let such a processor be ℘j and the set of the tasks that are already assigned on
this processor be hpaj(τk). Hence,

UC
k + 2 ∑

τi∈hpaj(τk)

UC
i ≤ UC

k +
−2UC

k + ∑τi∈τ 2UC
i

m− 1

∗
≤ UC

k

(
1− 2

m− 1

)
+

2m
6 − 2∑τi∈τ UA

i
m− 1

†
≤ 1

2
− 2 ∑τi∈τ UA

i
m− 1

(6.42)

where
∗
≤ is due to ∑τi∈τ UC

i + UA
i ≤ m

6 after speeding up and
†
≤ is due to

0 < UC
k ≤ 1

6 and m ≥ 3. Similarly,

UC
k + ∑

τi∈hpaj(τk)

UC
i ≤ UC

k +
−UC

k + ∑τi∈τ UC
i

m− 1

≤ UC
k

(
1− 1

m− 1

)
+

m
6 −∑τi∈τ UA

i
m− 1

‡
≤ 4

12
=

1
3
< 0.5 (6.43)

6.2 resource-oriented partitioning 197

where
‡
≤ is due to the fact that the function is monotonically decreasing with

respect to m. Therefore, when using Lemma 6.16 due to UC
k +∑τi∈hpaj(τk)

UC
i < 0.5

in Eq. (6.43), the condition in Eq. (6.42) for m ≥ 3 leads to

Rk(τk) ≤ Sk +
(

UC
k + 2 ∑

τ∈hpaj(τk)

UC
i

)
Tk

≤
(1

6
+ ∑

τi∈τ

UA
i +

1
2
− 2 ∑τi∈τ UA

i
m− 1

)
Tk

≤
(2

3
+

1
m− 1

(
(m− 3) ∑

τi∈τ

UA
i

))
Tk

≤
(2

3
+

(m− 3) 2
6

m− 1

)
Tk ≤ Tk (6.44)

As a result, at a speed of 6, we can always find an application processor to assign
task τk so that it meets its deadline.

6.2.6 evaluation

We conducted evaluations for m = 4, 8, and 16 processors. Depending on m,
we generate 100 task sets for each utilization level, from 5% · m to 100% · m,
in steps of 5% · m. The cardinality of each task set is 10× m. The distribution
of periods is within one order of magnitude, i.e., from 1ms to 10ms. All tasks
have implicit deadlines, i.e., Di = Ti. We applied the suggestion of Emberson et
al. [ESD10] and generated the task periods according to a log-uniform distribution.
The overall ratio of non-critical to critical-sections depends on α ∈ {5, 10, 20}.
For example, if α = 5 and Usum = 120%, we get UR = 120%× 1

5+1 = 20% and
UC = 120%× 5

5+1 = 100%. Therefore, the larger α is, the smaller is the critical
section. In each utilization step, the Randfixedsum method [ESD10] is adopted
twice to generate two sets of utilization values with the given goals of total
critical-sections utilization and total non-critical-sections utilization. Those values
are combined ensuring that UA

i + UC
i ≤ 1 for every task τi. The WCETs of the non-

critical sections and critical section of task τi are set accordingly, i.e., Ci = TiUC
i

and Ai = TiUA
i , and Ci,1 is drawn uniformly from [0, Ci], setting Ci,2 = Ci − Ci,1.

Each critical section was randomly assigned to one of the r resources under a
uniform distribution.

Multiple resource sharing protocols were compared based on the acceptance
ratio. We evaluated the following approaches, using the RM order and priority
assignment if not mentioned otherwise, where the color and linestyle are related
to the curve in Figure 6.8.

• LP-GFP-FMLP [BLB+07] (black, dashed): a linear-programming-based (LP)
analysis for global static-priority scheduling using the Flexible Multiproces-
sor Locking Protocol (FMLP) [BLB+07].

• LP-PFP-DPCP [Bra13] (red, dashed): LP based analysis for partitioned static-
priority scheduling and DPCP [RSL88]. Tasks are assigned using WFD as
proposed in [Bra13].

198 self-suspension

• LP-PFP-MPCP [Bra13] (magenta, dashed): LP based analysis for partitioned
static-priority scheduling using MPCP [Raj90]. Tasks are partitioned accord-
ing to WFD as proposed in [Bra13].

• GS-MSRP (blue, dashed) [WB13b]: the Greedy Slacker (GS) partitioning
heuristic with the spin-based locking protocol MSRP [GLN01] under Auds-
ley’s Optimal Priority Assignment.

• LP-EE-vpr (NC) [AR14] (cyan, dashed): a necessary scheduling condition
for LP-EE-vpr.

• gEDF-vpr (NC) [AE10] (green, dashed): a necessary scheduling condition
for gEDF-vpr.

• LP-GFP-PIP (cyan, solid): LP based global static-priority scheduling using
the Priority Inheritance Protocol (PIP) [EA09].

• MrsP (magenta, solid): the Multiprocessor resource sharing Protocol [BW13]
with the Synchronization-Aware Partitioning Algorithm [LNR09].

• ROP-PCP (black, solid): the ROP in [HYC16] using PCP.

• FP-RM-PCP (blue, solid): the proposed ROP with RM assignment and PCP
on each synchronization processor.

• FP-EIM-PCP (red, solid): the proposed ROP with static-priority EIM assign-
ment and PCP on each synchronization processor.

• EDF-EIM-PCP (green, solid): the proposed ROP with SEIFDA FRD dead-
line assignment in EIM order, scheduled under EDF on the application
processors, and PCP under RM on each synchronization processor.

We evaluated our proposed ROP approaches in all 8 combinations, i.e., FP
or EDF, RM or EIM, and PCP or NPP. We only present the FP and the EDF
approach that (in general) leads to the best performance, i.e., FP-EIM-PCP and
EDF-EIM-PCP, as well as FP-RM-PCP since it provides a speedup factor of 6.
In all cases, the approaches using the PCP and NPP performed similarly. For
our approaches and ROP-PCP, we used approximated demand bound functions,
where the linear approximation starts from the third period (see Section 6.1.8).

The results of our evaluations are shown in Figure 6.8. We analyzed the effect
of the three parameters individually by changing:

1. m = r ∈ {4, 8, 16} in Fig. 6.8 (a)-(c),

2. r for a fixed m, i.e., r ∈ {4, 8, 16} and m = 8, in Fig. 6.8 (c)-(e), and

3. α ∈ {5, 10, 20} in Fig. 6.8 (c),(f),(g).

In general, ROP-RM-PCP (black, solid) is outperformed by both FP-EIM-PCP (red,
solid) and EDF-EIM-PCP (green, solid). While EDF-EIM-PCP clearly outperforms
FP-EIM-PCP for most settings, there are some settings where FP-EIM-PCP and
EDF-EIM-PCP are really close and there are even cases where RM-EIM-PCP
deems more task sets schedulable than EDF-EIM-PCP. LP-GFP-PIP (cyan, solid),
FP-RM-PCP (blue, solid), and LP-GFP-FMLP (black, dashed) generally behave
similarly and mostly outperform all other approaches beside ROP-RM-PCP,
FP-EIM-PCP, and EDF-EIM-PCP. This is not surprising, as LP-GFP-FMLP and

6.2 resource-oriented partitioning 199

0.0 0.2 0.4 0.6 0.8 1.0
Utilization (%) / m

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ep
ta

n
ce

R
at

io
(%

)

0 20 40 60 80 100

0

20

40

60

80

100

(a)-(c) Number of Cores
(a) m=4 r=4 α=20

LP-GFP-FMLP

LP-PFP-DPCP

LP-PFP-MPCP

GS-MSRP

LP-EE-vpr (NC)

gEDF-vpr (NC)

LP-GFP-PIP

MrsP

ROP-RM-PCP

FP-RM-PCP

FP-EIM-PCP

EDF-EIM-PCP

0 20 40 60 80 100

0

20

40

60

80

100

(b) m=16 r=16 α=20

0 20 40 60 80 100

0

20

40

60

80

100

Base Values
(c) m=8 r=8 α=20

0 20 40 60 80 100

0

20

40

60

80

100

(c)-(e) Number of Resources
(d) m=8 r=4 α=20

0 20 40 60 80 100

0

20

40

60

80

100

(e) m=8 r=16 α=20

0 20 40 60 80 100

0

20

40

60

80

100

(c),(f),(g) Ratio α
(f) m=8 r=8 α=5

0 20 40 60 80 100

0

20

40

60

80

100

(g) m=8 r=8 α=10

Figure 6.8: Comparison of different approaches under different parameter settings.

LP-GFP-PIP are the best locking protocols under global scheduling, according
to the empirical study by Yang et al. in [YWB15]. RM-EIM-PCP outperforms
FP-RM-PCP due to the fact that tasks with shorter execution intervals are nor-
mally harder to schedule than tasks with longer execution intervals, and the
execution interval does not necessarily increase with the period. MrsP (magenta,
solid) and LP-PFP-DPCP (red, dashed) have a very wide range regarding their ac-
ceptance ratio and no general trend can be determined. LP-PFP-MPCP (magenta,
dashed), LP-EE-vpr (cyan, dashed), gEDF-vpr (green, dashed), and GS-MSRP
(blue, dashed) are clearly outperformed and therefore not further discussed.

Fig. 6.8 (a)-(c), m = r ∈ {4, 8, 16}: For LP-GFP-PIP, LP-GPF-FMLP, ROP-RM-PCP,
and FP-EIM-PCP the number of processors m does not have much impact. MrsP
and LP-PFP-DPCP perform better if m = 4. While MrsP has similar performance
for m = 8, 16, the acceptance ratio of LP-PFP-DPCP drops significantly for m = 16.
EDF-EIM-PCP performs comparable with FP-EIM-PCP for m = 4 but has a better

200 self-suspension

acceptance ratio for m = 16 while the gap is even larger for m = 8. One possible
explanation is that EDF-EIM-PCP only performs better than FP-EIM-PCP on the
application processors, and that when m = 4 the schedulability is dominated by
the critical sections where EDF-EIM-PCP and FP-EIM-PCP perform the same,
since both approaches use PCP under RM on the synchronization processors.

Fig. 6.8 (c)-(e), r ∈ {4, 8, 16} and m = 8: The ratio of r to m seems to not have
much effect on LP-GFP-PIP, LP-GFP-FMLP, and FP-EIM-PCP while ROP-RM-PCP
performs worse for r = 4 and m = 8. The acceptance ratio of EDF-EIM-PCP is
similar for r = 4 and r = 16 and better for r = 8. The most interesting part is the
acceptance ratio of MrsP, which is worse than LP-GFP-PIP for r = 4 and r = 8 but
performs almost as good as EDF-EIM-PCP for r = 16. Moreover, LP-PFP-DPCP
performs better if the number of resources is larger.

Fig. 6.8 (c),(f),(g), α∈ {5, 10, 20}: A higher value of α, and therefore a smaller
percentage of critical section utilization, results in a larger acceptance ratio.
FP-EIM-PCP and EDF-EIM-PCP perform similarly for α = 5 and α = 10, while
for α = 20, EDF-EIM-PCP clearly outperforms FP-EIM-PCP. The most likely
reason is that EDF-EIM-PCP only performs better than FP-EIM-PCP on the
application processors while the performance on the synchronization processors
is the same, since in both cases PCP under RM is used, and that when the critical
section utilization is high, i.e., for α = 5 in Fig. 6.8(f) and α = 10 in Fig. 6.8(g), the
critical section has an even higher impact on the schedulability.

6.2.7 multiple critical sections

While task sets where each task has only one critical section are rare, this restricted
scenario allows to evaluate the applicability of the concept and to show its possible
gain. The general concept of release enforcement can directly be extended to
multiple sections. The worst-case response time of the non-critical sections on
the application processors can be determined by modelling higher-priority tasks
with multiple critical sections as generalized multiframe tasks. However, for more
than two non-critical sections a good assignment of the relative deadlines on
the application processors remains an open problem. One possibility is to use
proportional relative deadline assignment for tasks with multiple critical sections,
especially when the majority of tasks have one critical section where SEIFDA can
be applied. One practical scenario where all tasks have only one critical section
are Open-MP task sets, where synchronization among tasks is always performed
at the end of a task [SGW+17].

6.3 hybrid self-suspension models

When considering self-suspension behaviour, two concrete models have been
studied in the literature: the dynamic and the segmented self-suspension (sporadic)
task model. In the dynamic self-suspension model, a task τi is specified like an
ordinary sporadic task that has the worst-case self-suspension time Si as an addi-
tional parameter. A job of task τi can suspend itself at any moment, several times

6.3 hybrid self-suspension models 201

if necessary, before it finishes, as long as the total self-suspension time of the job is
not more than Si. By contrast, the segmented self-suspension model defines an in-
terleaved execution and self-suspension pattern (Ci,1, Si,1, Ci,2, Si,2, ..., Si,mi , Ci,mi+1)

for any job of a task τi, which is composed of mi + 1 computation segments
that are separated by mi suspension intervals, where Ci,j is the worst-case ex-
ecution time of a computation segment, and Si,j is the maximum length of a
self-suspension interval. These two models are applicable in different scenarios
with a high tradeoff between flexibility and accuracy:

• The dynamic self-suspension model only requires limited information about dynamic
self-suspensionthe suspension behavior. It has a higher flexibility but is very imprecise,

which results in pessimistic analyses and designs of scheduling policies if
more information regarding the suspension behaviour is known.

• The segmented self-suspension model has a lower flexibility, but allows the segmented
self-suspensionscheduling algorithms to exploit the self-suspending structure, possibly

resulting in a better scheduling decision and a more precise analysis. How-
ever, such a concrete segmented pattern is only achievable if the structure
of the program is well designed and the execution pattern is determinable.

To summarize, the dynamic self-suspension model is very flexible but inaccurate,
while the segmented self-suspension model is very restrictive but very accu-
rate. This shows that there is a large gap between these two widely-adopted
self-suspension task models. Hence, we propose several hybrid self-suspension hybrid self-suspension

task models which can potentially fill this gap. They are more flexible than the
segmented self-suspension task model and less pessimistic than the dynamic
self-suspension task model, therefore achieving different levels of tradeoff be-
tween flexibility and precision. Compared to the dynamic self-suspension model,
all hybrid models have an additional parameter mi that predefines the number
of self-suspension intervals. However, instead of assuming one concrete execu-
tion/suspension pattern, a task is seen as a set of (potentially unknown) possible
execution/suspension patterns. They provide several options to model the tasks,
depending on whether the execution/suspension pattern of a job is known when
it arrives to the system:

• Pattern-oblivious Models: The concrete execution pattern of a job is unknown
at runtime. This model only assumes that the number of self-suspension
intervals of a job of task τi is at most mi. However, all possible execution
paths may be known offline. We specifically explore two cases:

– Individual Upper Bounds: While the specific individual execution paths
are unknown, an upper bound can be determined on the WCET time
for each of the computation segmented and on the maximum suspen-
sion time of each suspension interval.

– Multiple Paths: Each task τi is specified by a set of p execution/suspen-
sion patterns, which describe the possible execution paths.

• Pattern-clairvoyant Model: The individual execution/suspension pattern of
each job is of τi is known the moment the job arrives.

The individual models are introduced in Section 6.3.1. We show how these models
can be applied by carefully examining the special case that each task has only one

202 self-suspension

self-suspension interval, i.e., mi = 1. The applicability of FRD and extensions of
demand bound functions for the different hybrid self-suspension task models are
exemplified based on SEIFDA in Sections 6.3.2 to 6.3.4. Afterwards, we formalize
the schedulability test and examine the demand bound functions of the individ-
ual hybrid models in Section 6.3.5. Our approaches are shown to be effective in
terms of schedulability in the evaluation in Section 6.3.6. The evaluation shows
that, compared to the dynamic self-suspension task model and the segmented
self-suspension task model (that enforces the execution upper bounds on the
computation segments), the hybrid self-suspension task models can achieve differ-
ent degrees of improvement, depending on the knowledge about the execution/
suspension patterns. The results presented in this section appeared in Hybrid
Self-Suspension Models in Real-Time Embedded Systems in RTCSA 2017 [BHC17].

6.3.1 hybrid self-suspension task models

In the hybrid self-suspension task models, we assume that in addition to Si, the num-hybrid self-suspension

ber of self-suspension intervals mi is known for each task. Hence, the execution
of each job of τi is composed of at most mi + 1 computation segments separated
by mi suspension intervals, similar to the segmented self-suspension model. The
summation of the execution times of the computation segments of a job of task τi
is at most Ci, while the summation of the lengths of the self-suspension intervals
of a job of task τi is at most Si. All these values are positive for self-suspending
tasks. The proposed hybrid models are:

• more precise and less flexible than the traditional dynamic self-suspension taskdynamic
self-suspension model, where mi is not considered, and

• more flexible and less precise than the traditional segmented self-suspension tasksegmented
self-suspension model, where the WCET of each of the mi + 1 computation segments and

the maximum suspension time for each of the mi suspension intervals is
assumed to be given by a fixed value.

In our description, we assume that the tasks will be scheduled by an FRD
scheduling strategy as detailed in Section 6.1.1. We do not assume that each task
in the task set must be a self-suspending task. If a task has no self-suspension
behavior, i.e., Si and mi are both 0, such an ordinary (non-suspending) sporadic
task should still be scheduled by using its original deadline. Hence, for the
simplicity of presentation, we do not consider these tasks here. Although we
focus on one self-suspension interval in our analyses, Huang and Chen [HC16]
showed that FRD is a valid approach for multiple self-suspension intervals.

For the hybrid self-suspension task models to be applicable, we assume that
each task can generally be described by a set of p disjunct execution/suspension
patterns similar to the patterns used in the segmented self-suspension model. At
runtime, each job is executed according to one of these specific patterns. Hence,
different jobs of a task may have different execution/suspension patterns.

The proposed hybrid models provide several options depending on

1. the number of possible execution/suspension patterns,

2. the information that can be derived for each of these patterns, and

6.3 hybrid self-suspension models 203

3. whether the execution pattern of a job can be determined at the moment a
job arrives to the system.

Suppose that a job of task τi is released at time θa. If the (high-level) execution/
suspension pattern of the job cannot be identified at time θa, we call the scenario
pattern-oblivious. If the pattern can be identified, e.g., by checking (some of) the pattern-oblivious

known input values at the moment a job arrives (potentially with approximations),
we call the scenario pattern-clairvoyant. Clearly, pattern-clairvoyant approaches pattern-clairvoyant

only work if the overhead for the identification is neglectable. We consider the
following scenarios:

• Pattern-oblivious: Depending on the knowledge on the execution times of
the computation segments and the self-suspension time of the suspension
intervals, we analyze the following two subcases:

– Individual Upper Bounds: We assume the upper bounds on the execution
time of the j-th computation segment to be known, i.e., Ci,j is no more
than the individually specified Cmax

i,j for each j = 1, 2, . . . , mi + 1. In
addition, the suspension of a job of task τi takes place at most mi
times and the j-th suspension is for at most Smax

i,j amount of time for
each j = 1, 2, . . . , mi. Moreover, we assume that the WCET of task
τi is at most Cmax

i while the maximum suspension time is at most
Smax

i . Specifically, according to this definition ∑mi+1
j=1 Cmax

i,j ≥ Cmax
i and

∑mi
j=1 Smax

i,j ≥ Si. This scenario covers a special case where Cmax
i,j is set

to Cmax
i for each j, i.e., no specific information about the segments is

known. This approach is directly applicable if the individual bounds
Smax

i , Cmax
i , and mi are known, but further information about the inter-

nal structure of the task is not available.

– Multiple Paths: A task τi is directly described by the p different exe-
cution paths with known execution/suspension patterns, in which a
task τi can suspend at most mi times. In this case, all possible paths
are precisely known, i.e., as precise as in the segmented model, but
the system is not able to identify which path will be executed at the
moment a job arrives. For the special case mi = 1 this results in a set
of p triples:

{
(C1

i,1, S1
i , C1

i,2), . . . , (Cp
i,1, Sp

i , Cp
i,2)
}

.

• Pattern-clairvoyant: Each job of τi has an individual execution/suspension
pattern and the pattern that will be executed is known when the job arrives.
We assume such an identification takes negligible time.3 This is more precise
than the two models above. If all the jobs of task τi have the same pattern,
then the model becomes the segmented self-suspension task model.

Table 6.3 provides a summary of the flexibility and the accuracy of different
self-suspension task models.

To examine the hybrid models more carefully, we explain how FRD strategies,
namely SEIFDA, can be extended from the segmented self-suspension model to
hybrid self-suspension task models when each task has at most one suspension

3 It is also possible to include it into the first computation segment in all the paths. However, our
analysis has to be revised and adjusted to give the identification process the highest priority.

204 self-suspension

suspension model flexibility accuracy
dynamic very flexible (high) inaccurate (low), over flexible
pattern-oblivious less flexible than dynamic applicable in most cases for
(hybrid) (medium to high) known mi (low to medium)
pattern-clairvoyant less flexible than pattern- more accurate than pattern-
(hybrid) oblivious (medium to low) oblivious (medium to high)
segmented very restrictive (low) only applicable for fixed patterns

(high), over restrictive

Table 6.3: High-level comparison of the dynamic, hybrid, and segmented self-suspension
model. Adapted from [BHC17].

Hybrid Self-Suspension Model
Given Task Parameters IUB MP SSSD PDAB, Bias 2

Ti = Di = 30 Ci,1 Ci,2 Ci Si Di,1 Di,2 Di,1 Di,2 Di,1 Di,2 Ratio Di,1 Di,2

τ1
i 2 3 5 5

8 14 8
17 8 17 10/15 12 13

τ2
i 4 3 7 8 14 14 8 12.6/9.4 11 11

τ3
i 2 7 9 7 15 8 15 5.1/17.9 7.1 15.9

max 4 7 9 8

Table 6.4: Example deadline assignments under FRD for the hybrid self-suspension
models as presented in Sec. 6.3.2. Adapted from [BHC17].

interval, by considering multiple execution/suspension patterns instead of a
single execution/suspension pattern. This examination shows how determinable
knowledge about Ci,1, Ci,2, and Si, can be included into the algorithm and its
analysis. We first consider different FRD strategies for the pattern-oblivious sce-
narios, presented in Section 6.3.2 and Section 6.3.3. After that, pattern-clairvoyant
scenarios are discussed in Section 6.3.4.

As a running example, we use the task τi detailed in Table 6.4 with three execu-
tion patterns (paths). The execution patterns are denoted τ1

i , τ2
i , and τ3

i . While
the period Ti = 30 is identical for all execution patterns, Ci,1, Ci,2, Ci = Ci,1 + Ci,2,
and Si depend on the specific execution pattern. We assume that for each job of
task τi one of these three execution patterns is executed.

6.3.2 pattern-oblivious : individual upper bounds

We assume to know individual upper bounds (IUB) of the execution time for com-
putation segment, i.e., Cp

i,j ≤ Cmax
i,j for each execution pattern p with j ∈ {1, 2}, and

the maximum suspension time4 Smax
i = max

{
Sp

i

}
. Let the maximum total WCET

among all patterns be Cmax
i = max

{
Cp

i,1 + Cp
i,2 | p is a possible execution pattern

}
.

Note that to apply this (most basic) hybrid model, no explicit knowledge about
the individual execution/suspension patterns is needed, as long as Cmax

i , Cmax
i,1 ,

Cmax
i,2 , and Smax

i can be determined.

We construct the two resulting DBFs for the case where Ci,1 is released at t0 and
for the case where Ci,2 is released at t0 in Eq. (6.46) and Eq. (6.47), respectively. If
Ci,1 is released at t0, the DBF is periodic with period Ti, and Cmax

i is the workload

4 For mi > 1, one would consider Smax
i,j individually for each suspension interval and Smax

i is defined
similar to Cmax

i , i.e., as maximum over the summation for the possible patterns.

6.3 hybrid self-suspension models 205

in every full period, i.e., in every period but the last one. Note that it is possible
that there are 0 full periods before the time t that is analyzed. To take care of the
workload in the last period, which is the only period that has started before the
analyzed time t but did not finish at time t, we define GI

i to sum up the workload
inside one period as:

GI
i (t, Di,1) =

{
0 if 0 ≤ t < Di,1

Cmax
i,1 if Di,1 ≤ t < Ti

(6.45)

If Ci,1 is released at t0, the corresponding demand bound function is

db f I,1
i (t, Di,1) =

⌊
t
Ti

⌋
Cmax

i + GI
i

(
t−
⌊

t
Ti

⌋
Ti, Di,1

)
(6.46)

The first part determines the maximum demand of the released jobs for completed
periods, i.e., both computation segments are finished, while the second part adds
a computation segment Ci,1 if needed.

If the first computation segment of task τi, released after or at t0, is from Ci,2,
we have to consider Cmax

i,2 at Di,2 and the first release of Ci,1 happens at Di,2. Hence,
the corresponding DBF is

db f I,2
i (t, Di,1) =

{
0 if 0 ≤ t < Di,2

Cmax
i,2 + db f I,1

i (t− Di,2, Di,1) if t ≤ Di,2
(6.47)

where Di,2 is Ti − Si − Di,1. Therefore, the DBF for the pattern-oblivious model
with individual upper bounds directly follows:

Lemma 6.19. The DBF of τi for the pattern-obvious model with individual upper bounds
under an FRD assignment is:

db f I
i (t, Di,1) = max(db f I,1

i (t, Di,1), db f I,2
i (t, Di,1)) (6.48)

Considering Eq. (6.48), it is not difficult to show that Di,1 should be no more
than (Ti − Si)/2 if Cmax

i,1 ≤ Cmax
i,2 and vice versa, and we can apply SEIFDA.

Figure 6.9 shows the above functions for task τi as listed in Table 6.4. The
values of Cmax

i,1 , Cmax
i,2 , Cmax

i and Smax
i are calculated as the maximum of the

3 execution/suspension patterns. As they are independent from the deadline
assignment, they are listed as Given Task Parameters in Table 6.4. For IUB, the
value of Di,1 is chosen using SEIFDA under the given strategy and Di,2 is set
accordingly, i.e., to Di,2 = Ti − Smax

i − Di,1. For the example in Table 6.4 under
IUB, we assume the deadline assignment strategy sets Di,1 = 8, and, hence, with
Smax

i = 8, we get Di,2 = 30− 8− 8 = 14. The resulting db f I,1
i (t, Di,1), db f I,2

i (t, Di,1),
and db f I

i (t, Di,1) are shown in Figure 6.9.

6.3.3 pattern-oblivious : multiple paths

We assume to know the specific set of p triples of WCETs and maximum sus-
pension times

{
(C1

i,1, S1
i , C1

i,2), . . . , (Cp
i,1, Sp

i , Cp
i,2)
}

, where each triple describes a

206 self-suspension

t
0 5 10 15 20 25 30 35 40 45 50 55 60

0

5

10

15

20

db f I,1
i (t, 8) (dashed)

db f I,2
i (t, 8) (dotted)

db fIi (
t, 8) =

max(d
b fI

,1
i
(t, 8), db fI

,2
i
(t, 8))

Figure 6.9: Demand bound function for individual upper bounds (IUB): db f I
i for task τi

in Table 6.4 with linear approximation (solid line) for g = 1, i.e., after
t = g · Ti + Di,2 = 44. Adapted from [BHC17].

possible execution/suspension pattern. However, when a job arrives in the system
at time t, it is unknown which path will be executed. When adopting FRD for
such a scenario, we use a fixed Di,1 across all execution paths. The second com-
putation segment of the job always has an absolute deadline of t + Ti. If the first
computation segment can meet its deadline, the second computation segment is
released at time t + Di,1 + Sj

i for the j-th execution path.

For the deadline assignment of τi, first Cmax
i,1 , Cmax

i,2 , and Smax
i are calculated. The

actual deadline assignment is based on these values. Especially, they are used to
calculate the minimum value for Di,1 if PBminD is used as assignment strategy
for SEIFDA. GMP

i (t, Di,1) is defined identically to the related function in Eq. (6.45)
for the case when individual upper bounds are used, as Di,1 is identical for all
execution patterns.

We consider two cases. If the first computation segment of task τi released after
or at t0 is from Ci,1, the corresponding demand bound function db f MP,1

i (t, Di,1) is
identical to db f I,1

i (t, Di,1) in Eq. (6.46), as Di,1 is the same for all patterns:

db f MP,1
i (t, Di,1) =

⌊
t
Ti

⌋
Cmax

i + GMP
i

(
t−
⌊

t
Ti

⌋
Ti, Di,1

)
(6.49)

While db f MP,1
i (t, Di,1) is independent from the executed path, the DBF for the

case where the second computation segment is released at t0 depends on the
related pattern. If the first computation segment of task τi that is released after or
at t0 is from Cj

i,2, i.e., from version j, the corresponding DBF is

db f MP,2
i,j (t, Di,1) =

{
0 if 0 ≤ t < Dj

i,2

Cj
i,2 + db f MP,1

i (t− Dj
i,2, Di,1) if t ≤ Dj

i,2

(6.50)

where Dj
i,2 is Ti − Sj

i − Di,1. From the above discussions when deriving Eq. (6.49)
and Eq. (6.50), the DBF directly follows.

Lemma 6.20. The DBF of τi for the pattern-obvious model with multiple paths under an
FRD assignment is as follows:

db f MP
i (t, Di,1) = max

(
db f MP,1

i (t, Di,1), max
j∈{1,...p}

db f MP,2
i,j (t, Di,1)

)
(6.51)

6.3 hybrid self-suspension models 207

t
0 5 10 15 20 25 30 35 40 45 50 55 60

0

5

10

15

20

db f MP,1
i (t, 8) (dashed)

db f MP,2
i (t, 8) (dashed)

db f MP,2
i (t, 8) (dotted)

db fM
P

i
(t, 8) =

max(d
b fM

P,1

i
(t, 8), db fM

P,2

i,2
(t, 8), db fM

P,2

i,3
(t, 8))

Figure 6.10: Demand bound function for multiple paths (MP): db f MP
i for τi in Table 6.4.

For each path i, the DBF when Ci,2 is released at 0 is considered individually.
db f MP,2

i,1 is omitted as it is strictly smaller than db f MP,2
i,2 . Adapted from [BHC17].

Based on the demand bound function in Eq. (6.51), the same approach as in
Sec. 6.3.2 using SEIFDA can be applied. Note that in Table 6.4 for pattern-oblivious
multiple paths (MP), the value of Di,2 differs due to the different suspension
intervals of τ1

i , τ2
i , and τ3

i . This leads to a tighter DBF as the jump to 7 happens
at t = 15 instead of t = 14 in Figure 6.10.

6.3.4 pattern-clairvoyant

For this model, we assume that for a task τi which is described by a set of p triples{
(C1

i,1, S1
i , C1

i,2), . . . , (Cp
i,1, Sp

i , Cp
i,2)
}

of possible execution patterns we know which
of these patterns will be executed at the moment the job arrives to the system. We
first present the corresponding demand bound functions when Dj

i,1 and Dj
i,2 with

Dj
i,1 + Sj

i + Dj
i,2 = Ti are already assigned for j = 1, 2, . . . , p before considering the

individual deadline assignment. We implicitly assume Dj
i,1 + Sj

i + Dj
i,2 = Ti.

Let Cmax
i,1 = maxj∈{1,...p}

{
Cj

i,1

}
and Cmax

i = maxj∈{1,...p}
{

Cj
i,1 + Cj

i,2

}
. To calcu-

late the workload in the period that started before t and did not finish at t, i.e.,
the last release before t, let Gclair

i (t) be defined as:

Gclair
i (t) = max

j∈{1,...p}

{
0 if t < Dj

i,1

Cj
i,1 if Dj

i,1 ≤ t < Ti

}
(6.52)

We have to consider the maximum Cj
i,1 for each t in 0 ≤ t < Ti, as the relative

deadline for the first segment of τ
j
i depends on the concrete execution/suspension

pattern and is independent from the deadlines of other patterns for the same task.
Again, we consider two general release patterns depending on the segment that

208 self-suspension

t
0 5 10 15 20 25 30 35 40 45 50 55 60

0

5

10

15

20

db f clair,1
i (t)(solid)

db f clair,2
i,3 (t)(dotted)

db f clair,2
i,2 (t) (dashed)

db fc
lair

i
(t)

= max(d
b fc

lair,1

i

(t),
db fc

lair,2

i,2
(t),

db fc
lair,2

i,3
(t))

Figure 6.11: Demand bound function for shorter segment, shorter deadline (SSSD):
db f clair

i (t) for τi in Table 6.4, approximation for g = 1 (red straight line)
after t = g · Ti + Dmax

i,2 = 30 + 17 = 47. Since db f clair,2
i,1 (t) ≤ db f clair,2

i,3 (t) ∀t,

the curve db f clair,2
i,1 (t) is omitted, but D2

i,2 is Dmax
i,2 in the approximation.

Adapted from [BHC17].

is released at t = 0. If the first computation segment of task τi released after or at
t0 is from Ci,1, the corresponding demand bound function db f clair,1

i (t) is

db f clair,1
i (t) =

⌊
t
Ti

⌋
Cmax

i + Gclair
i

(
t−
⌊

t
Ti

⌋
Ti

)
(6.53)

If the first computation segment of task τi released at or after t0 is from Cj
i,2, the

corresponding demand bound function is

db f clair,2
i,j (t) =

{
0 if 0 ≤ t < Dj

i,2

Cj
i,2 + db f clair,1

i (t− Dj
i,2) if t ≤ Dj

i,2

(6.54)

where Dj
i,2 is Ti − Sj

i − Dj
i,1. Again, the DBF follows directly.

Lemma 6.21. The DBF of τi for the pattern-clairvoyant model under an FRD assignment
is as follows:

db f clair
i (t) = max

(
db f clair,1

i (t), max
j∈{1,...p}

db f clair,2
i,j (t)

)
(6.55)

So far, we provided the DBF assuming that Dj
i,1 and Dj

i,2 are assigned for
j = 1, 2, . . . , p. Now, we discuss how to assign these relative deadlines. Since the
scheduler is assumed to be clairvoyant and the executed pattern is known at
the arrival time of a job, we could calculate FRDs for each of the patterns using
SEIFDA and schedule the jobs with specific deadlines calculated specifically
for each execution/suspension pattern. However, this leads to a combinatorial
explosion if the number of execution/suspension patterns is large. Hence, we
instead present the two following heuristics.

shorter segment, shorter deadline (sssd)

Instead of considering all patterns individually, this approach allows to assign
the deadlines of one segment for all patterns of a task at the same time. This has

6.3 hybrid self-suspension models 209

the advantage that if the deadline of one of the segments is known, the deadline
for the other segment can be determined directly since Dj

i,1 + Sj
i + Dj

i,2 = Ti.
As a result of Lemma 6.4 and Lemma 6.5, we know that one should always
assign the shorter deadline Dshort

i to the shorter computation segment. A proper
Dshort

i can be found using SEIFDA directly after ordering the tasks according to

Ti −maxj∈{1,...,p}
{

Sj
i

}
in increasing order. We assign a constant relative deadline

Dshort
i with 0 < Dshort

i ≤ (Ti − Si)/2 to the shorter computation segments of all
possible patterns. This means that if Cj

i,1 ≤ Cj
i,2, then Dj

i,1 is set to Dshort
i and Dj

i,2

is set to Ti − Sj
i − Dshort

i . If Cj
i,1 > Cj

i,2, then Dj
i,2 is set to Dshort

i and Dj
i,1 is set

to Ti − Sj
i − Dshort

i . Figure 6.11 shows the demand bound function of task τi in
Table 6.4 under SSSD. Note in Table 6.4, Dshort

i is always assigned to the smaller
computation segment while the other deadline depends on Sj

i . This results in 3
different db f clair,2

i,j (t). In Figure 6.11 only db f clair,2
i,1 (t) and db f clair,2

i,3 (t) are shown

as db f clair,2
i,1 (t) ≤ db f clair,2

i,3 (t) ∀t.

proportional deadline with a bias (pdab)

This heuristic assigns the relative deadlines proportionally to the required ex-
ecution time, since choosing the proportionally bounded minimum led to the
best performance in the evaluation in Section 6.1.10. However, it is known that
a proportional deadline assignment can result in reduced schedulability if one
of the computation segments is significantly shorter than the other [CL14]. To
avoid that an arbitrarily short relative deadline is assigned to an arbitrarily
short computation segment, we introduce a constant bias Dbias

i for the shorter
computation segments. In addition, the relative deadline of the shorter com-
putation segment of the j-th execution path of task τi must be no more than
(Ti − Sj

i)/2. Therefore, when Cj
i,1 ≤ Cj

i,2, the relative deadline Dj
i,1 is set to

min
{
(Ti − Sj

i)/2, Dbias
i + (Ti − Sj

i)
Cj

i,1

Cj
i,1+Cj

i,2

}
, and hence Dj

i,2 is set to Ti − Sj
i − Dj

i,1.

When Cj
i,1 > Cj

i,2, then Dj
i,2 is set to min

{
(Ti − Sj

i)/2, Dbias
i + (Ti − Sj

i)
Cj

i,2

Cj
i,1+Cj

i,2

}

and thus Dj
i,1 is set to Ti − Sj

i − Dj
i,2. The example in Table 6.4 has a bias of 2. Note

that for pattern 2 the case happens where Di,1 is set to (Ti − Sj
i)/2 due to a too

large bias increase. A proper Dbias
i can be found by using SEIFDA directly after

ordering the tasks in increasing order according to Ti −maxj∈{1,...,p}
{

Sj
i

}
.

6.3.5 schedulability tests and examination of the

demand bound functions

With the same argument as for Theorem 6.1, we can replace dbf
frd
i (t, Di,1) with

db f I
i (t, Di,1) from Eq. (6.48), with db f MP

i (t, Di,1) from Eq. (6.51), or with db f clair
i (t)

from Eq. (6.55), depending on the adopted hybrid self-suspension model.

210 self-suspension

t
0 5 10 15 20 25 30 35 40 45 50 55 60

0

5

10

15

20

db f MP
i (t, 8) (dashed)

db f clair
i (t, 8) (dotted)db f IUB

i (t, 8)

Figure 6.12: Comparison of the related DBFs for the different hybrid models. Adapted
from [BHC17].

Theorem 6.22. An FRD schedule under a deadline assignment policy A is feasible if

∑
τi∈T

db fAi (t, Di,1) ≤ t ∀t ≥ 0 (6.56)

where db fAi (t, Di,1) is defined by the adopted hybrid self-suspension strategy. That is,
db fAi (t, Di,1) can be either db f I

i (t, Di,1) from Eq. (6.48), db f MP
i (t, Di,1) from Eq. (6.51),

or db f clair
i (t) from Eq. (6.55),

Proof. This follows directly from Theorem 6.1, Lemma 6.19, Lemma 6.20, and
Lemma 6.21.

To tackle the problem of combinatorial explosion that results from the multiple
jump points in the DBF, a linear approximation as described in Section 6.1.8 can be
utilized. We again take a linear approximation after g completed jobs of each tasks,
i.e., from t = g · Ti + Dmax

i,2 , where the slope is given by the task utilization Ui.
To get a safe upper bound, the maximum of lines with slope Ui through all
jump points in the next period is taken. Examples of this approximation are
shown in Figure 6.9 and Figure 6.11 by the red straight line. This again leads to
a 1 + 1

g approximation of the DBFs. The proof is similar to the one presented in
Section 6.1.8 and is therefore omitted.

Since the different hybrid self-suspension models are assumed to have access
to different amounts of information, the related demand bound functions become
tighter when more information can be used as shown in Figure 6.12. Hence,
db f clair

i (t, 8) ≤ db f MP
i (t, 8) ≤ db f IUB

i (t, 8), as the clairvoyant approach can use
more information than MP, which in turn can use more information than IUB.

6.3.6 evaluation

To show the achievable tradeoffs and that the proposed hybrid models effectively
utilize the available information, we conducted evaluations for synthesized task
sets, where we compared the proposed approaches with methods for the dynamic
self-suspension model based on the acceptance ratio (in percent) with respect to

6.3 hybrid self-suspension models 211

the task set utilization. For each utilization level in a range from 5% to 100% with
steps of 5%, we generated 100 task sets with a cardinality of 10 tasks.

We adopted the UUniFast method [BB05] to generate sets with a given total
utilization. The task periods were in log-uniform distribution, as suggested by
Emberson et al. [ESD10], with a period range of one or two orders of magnitude
i.e, [10ms− 100ms] or [10ms− 1000ms], respectively. We accordingly set Ci = TiUi
and created implicit deadline task sets, i.e., Di = Ti. We converted them to
self-suspending tasks where the suspension lengths of the tasks were randomly
chosen according to a uniform distribution in one of three ranges:

• short suspension: [0.01(Ti − Ci), 0.1(Ti − Ci)]

• moderate suspension: [0.1(Ti − Ci), 0.3(Ti − Ci)]

• long suspension: [0.3(Ti − Ci), 0.6(Ti − Ci)]

Each self-suspension task consisted of two paths:

• One path was randomly chosen to have the largest WCET Ci. The WCET
of the remaining path was adjusted by multiplying it with a uniformly-
distributed random variable in [0.8, 1].

• One path was randomly chosen to have the largest suspension time, equal
to Si. The worst-case suspension time of the remaining path was adjusted
by multiplying it with a uniformly-distributed random variable in [0.8, 1].

• For each path, we generated Ci,1 as a percentage of its WCET, according to
a uniform distribution, and set Ci,2 accordingly.

We consider a discrete time model in the evaluation, i.e., all task parameters
were rounded up to integers. We evaluated the following approaches:

• SCEDF: the suspension-oblivious approach by converting suspension time
into computation time.

• PASS-OPA: The state-of-the-art approach for static-priority scheduling of
dynamic self-suspending tasks presented in [HCZ+15]. Each interfering job
is considered by running the path with the maximum cumulative execution
time, i.e., Cmax

i . Each task analyzed is considered as the task running through
the path with the maximum cumulative computation and suspension time,
i.e., max1≤j≤p{Cj

i,1 + Sj
i + Cj

i,2}.
• Oblivious-IUB: The approach in Section 6.3.2.

• Oblivious-MP: The approach in Section 6.3.3.

• Clairvoyant-SSSD: The approach in Section 6.3.4.

• Clairvoyant-PDAB: The approach in Section 6.3.4.

The DBFs were approximated with g = 2 in all calculations. For Oblivious-IUB
and Oblivious-MP, SEIFDA-PBminD was used in the deadline assignment, as
SEIFDA-PBminD is usually the best deadline assignment strategy, according to
the experimental results in Section 6.1.10. For Clairvoyant-SSSD and Clairvoyant-
PDAB, we used SEIFDA-minD since a proportional lower bound is already part
of the assignment in Clairvoyant-PDAB.

212 self-suspension

0.0 0.2 0.4 0.6 0.8 1.0
Utilization (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ep
ta

nc
e

R
at

io
 (

%
)

0 20 40 60 80 100

0

20

40

60

80

100

(a)-(c) Periods: [10ms-100ms]
(a) Short Suspension in [0.01,0.1]

SCEDF

PASS-OPA

Oblivious-IUB

Oblivious-MP

Clairvoyant-SSSD

Clairvoyant-PDAB

0 20 40 60 80 100

0

20

40

60

80

100

(b) Moderate Suspension in [0.1,0.3]

0 20 40 60 80 100

0

20

40

60

80

100

(c) Long Suspension in [0.3,0.6]

0 20 40 60 80 100

0

20

40

60

80

100

(d) Short Suspension in [0.01,0.1]

0 20 40 60 80 100

0

20

40

60

80

100

(d)-(f) Periods: [10ms-1000ms]
(e) Moderate Suspension in [0.1,0.3]

0 20 40 60 80 100

0

20

40

60

80

100

(f) Long Suspension in [0.3,0.6]

Figure 6.13: Comparison of the hybrid self-suspension models with approaches for the
dynamic self-suspension model, considering different suspension length and
periods in [10ms− 100ms] in (a)-(c) or [10ms− 1000ms] in (d)-(f). Approxi-
mated DBFs with g = 2 are used. Adapted from [BHC17].

For periods in [10ms, 100ms] (Figure 6.13(a)-(c)), we observe that the presented
approaches achieve a significantly better acceptance ratio than PASS-OPA, which
always clearly outperforms SCEDF. When more information about the task system
is used, the acceptance increases, i.e., Clairvoyant approaches use more informa-
tion than Oblivious-MP, which uses more information than Oblivious-IUB. For the
Clairvoyant approaches, Clairvoyant-PDAB is almost always better than Clairvoyant-
SSSD. The acceptance ratio is higher for longer periods in [10ms, 1000ms] (Fig-
ure 6.13(d)-(f)). However, the results generally exhibit similar behaviour, therefore
further discussion is omitted.

This evaluation shows that carefully using all available information of the exe-
cution/suspension patterns, in both the self-suspension model and the scheduling
algorithms, results in a significant advantage with regards to schedulability. Thus,
instead of focusing only on the segmented and dynamic self-suspension model,
the presented models and scheduling strategies should be used if possible.

6.4 conclusion 213

6.4 conclusion

We investigated uniprocessor scheduling for one-segmented self-suspending task segmented
self-suspensionsystems. We consider fixed-relative-deadline (FRD) scheduling and provided a
fixed-relative-deadlinegeneral FRD schedulability test for dynamic-priority scheduling based on demand
demand bound
function

bound functions. Afterwards, we introduced a new FRD scheduling approach
called Shortest Execution Interval First Deadline Assignment (SEIFDA) that allows

SEIFDAmultiple deadline assignment strategies. SEIFDA yields a significantly better
performance than existing approaches, as shown in the evaluation, and has a
speedup factor of 3, i.e., the best known for segmented self-suspension. speedup factor

One important cause of self-suspension behaviour is multiprocessor resource multiprocessor
resource sharingsharing. We provided several resource-oriented partitioned scheduling (ROP) strate-
resource-oriented
partitioned scheduling

gies, using both static-priority and dynamic-priority scheduling. In contrast to
the initial work on ROP by Huang et al. [HYC16], our approaches use release

release enforcementenforcement to ensure that release jitter does not have to be considered when an-
alyzing the schedulability. We modeled the non-critical sections as segmented
self-suspending tasks and apply the related state-of-the-art uniprocessor tech-
niques to find a feasible partition. We showed that one of our approaches, namely
FP-RM-PCP, has a speedup factor of 6 compared to the optimal schedule, improv- speedup factor

ing the best previously known result. In the evaluations, two of our approaches,
namely FP-EIM-PCP and EDF-EIM-PCP (which is based on SEIFDA), outper-
formed the resource sharing protocols known from the literature. This shows the
effectiveness of our approaches and the resource-oriented partitioned scheduling
approach in general, both theoretically and empirically.

However, one of the disadvantages of the proposed ROP is the fact that the
underlying segmented self-suspension model is very restrictive and therefore
may not be applicable. While ROP can also utilize the dynamic self-suspension
model, this model is over flexible and therefore may lead to a pessimistic analysis.
To bridge this gap between the two models, we proposed multiple hybrid self- hybrid self-suspension

suspension models that utilize additional information about the considered tasks
and carefully examined a special case where the jobs in the system suspend
themselves at most once. Depending on the available knowledge about the
execution/suspension patterns, we designed pattern-oblivious approaches, that pattern-oblivious

use the information of the patterns offline but not online, and pattern-clairvoyant pattern-clairvoyant
approaches, which use the the information both offline and online. We explained
how to design FRD scheduling strategies based on SEIFDA that utilize the
offline patterns and develop different scheduling strategies, depending on the
applicable hybrid self-suspension task model. Empirically, our newly developed
approaches are shown effective in terms of acceptance ratio compared to the
state-of-the-art scheduling strategies for the dynamic self-suspension task model.
To the best of our knowledge, this is the first result for a hybrid self-suspension
task model. We strongly believe that these results open a new dimension for
suspension-aware real-time embedded systems. For example, the dynamic self-
suspension task model has been widely used for analyzing the multiprocessor
synchronization protocols, e.g., [Bra13]. If the number of suspension intervals is
small, our conclusion shows that quantifying the execution/suspension patterns
can potentially help improve the schedulability significantly.

7
C O N C L U S I O N S A N D O U T L O O K

This dissertation examines real-time systems and focuses on realistic task and
system models, scheduling algorithms and schedulability tests, and their theo-
retical performance evaluation. This chapter first recapitulates the contributions
which are provided in this dissertation in Section 7.1. In Section 7.2 it is examined
whether these contributions support the dissertation hypothesis. Afterwards,
an outlook at possible future work is given in Section 7.3. In Section 7.4 the
dissertation is concluded with some final remarks and an outlook.

7.1 summary of the contributions

The contributions of this dissertation are summarized according to the chapters
where they are detailed.

7.1.1 speedup factors and utilization bounds

Chapter 4 primarily considers theoretical evaluation methods that compare the theoretical evaluation
methodworst-case behaviour of scheduling algorithms or schedulability tests, focusing

on speedup factors and parametric utilization bounds. It first showed that paramet-
ric utilization bounds can drastically increase the utilization bounds compared parametric utilization

boundto the not parameterized state-of-the-art. To be precise, large improvements
were provided on the utilization bound for non-preemptive Rate Monotonic
scheduling, considering the blocking factor of the task set as an additional
parameter, and on the utilization bound for preemptive Rate Monotonic schedul-
ing when considering automotive systems where the task periods are chosen
from {1, 2, 5, 10, 20, 50, 100, 200, 1000} ms, i.e., the periods are semi-harmonic. Af- semi-harmonic task set

terwards, speedup factors for Deadline Monotonic scheduling compared to Earliest speedup factor

Deadline First scheduling were considered, examining both preemptive and non-
preemptive scheduling as well as implicit-, constrained-, and arbitrary-deadline
task sets. These examinations provided the rather surprising result that in these
cases linear-time sufficient schedulability tests for Deadline Monotonic scheduling
have the same speedup factors as exact schedulability tests with exponential time
complexity.

This raised the questions whether and in which situations speedup factors or
utilization bounds are a reasonable tool to compare the performance of schedul-
ing algorithms and schedulability tests, and several misinterpretations or mis-
understandings from the real-time systems literature were detailed. Therefore,
perspectives on how to understand and utilize speedup factors and utilization
bounds were given, pointing out 8 observations regarding their improper us-
age. Specifically, it was discussed why these metrics often lack the power to

215

216 conclusions and outlook

discriminate between the performance of different scheduling algorithms and
schedulability tests, even in situations where the performance differs largely in
empirical evaluations. An algorithm or test with a worse speedup factor or bound
may even perform much better in empirical evaluations and in practice, since
theoretical methods only consider, potentially practically irrelevant, corner cases.

Resulting from this, parametric augmentation functions were proposed as a possi-parametric
augmentation function ble solution, which describe theoretical comparisons not with a single value but

with a vector of values that detail the augmentation function based on these val-
ues. This allows to exclude corner cases if they are not relevant in the considered
setting and to establish regions of dominance between scheduling algorithms or
schedulability tests. An example on how such an examination can be performed
has been provided as well.

7.1.2 uncertain execution behaviour

Chapter 5 considers the situation where the periodic or the sporadic task model
is not able to correctly describe the system due to an uncertain execution behaviouruncertain execution

behaviour regarding the worst-case execution time (WCET) of the tasks. Since for such systems
worst-case execution

time
considering the absolute worst-case scenario in the analysis would lead to an
intolerable increase in hardware costs, a reasonable tradeoff between hardware
costs and timing guarantees must be found. The provided results based on the
observation that even if all tasks in a systems have real-time constraints, some
tasks are usually more important for the system stability while others are not so
important. Hence, rare deadline misses can be tolerated for the latter while for
the more important timeliness must always be guaranteed. An important example
for systems with such properties are mixed-criticality systems [Ves07], where themixed-criticality

systems mainstream research on has been criticized lately [ENN+15; EN16]. Specifically,
low-criticality tasks should not be abandoned, and systems should return to
low-criticality mode after a sufficient amount of time.

To answer this criticism, Systems with Dynamic Real-Time Guarantees were in-Systems with Dynamic
Real-Time Guarantees troduced, both for uniprocessor and multiprocessor scenarios, providing a more

suitable model for systems with an uncertain execution behaviour. During run-
time, a System with Dynamic Real-Time Guarantees provides either full timingfull timing guarantees

guarantees if all jobs meet their deadline or limited timing guarantees if only thelimited timing
guarantees jobs of the more important tasks are guaranteed to meet their deadline while not

so important tasks have bounded tardiness. All these guarantees are given offline
using static-priority scheduling without online adaptation. The approach provides
a reasonable performance compared to the state-of-the-art for mixed-criticality
systems that needs online adaptation and allows to drop not so important tasks.
The approach is extended to partitioned and semi-partitioned multiprocessor
systems, providing reasonable acceptance ratios. A task migration technique is
presented that allows to compensate processors with an abnormal execution
behaviour over a certain time period, e.g., due to overheating or intermittent
faults.

In addition, a novel approach to over-approximate the worst-case deadline fail-worst-case deadline
failure probability ure probability of a task under static-priority scheduling in uncertain execution

7.2 examination of the dissertation hypothesis 217

environments has been introduced using task-level convolution that is based on
multinomial distributions. Like job-level convolution-based approaches, the ap-
proach is more precise than analytical bounds, but contrary to them it is scalable
to large task sets due to multiple runtime improvement techniques that cannot be
applied to job-level convolution-based approaches.

7.1.3 self-suspension

In Chapter 6, a fixed-relative-deadline scheduling algorithm called Shortest Execution fixed-relative-deadline

Interval First Deadline Assignment (SEIFDA) for the one-segmented self-suspension SEIFDA
model is introduced and shown to outperform the state-of-the-art, both theo-
retically and empirically. SEIFDA is utilized in the design of a resource-oriented resource-oriented

partitioned schedulingpartitioned scheduling with release enforcement for multiprocessor resource shar-
ing, again outperforming the state-of-the-art both theoretically and empirically.

In addition, the gap between the over flexible dynamic and the over precise
segmented self-suspension model is examined. It is bridged by introducing
multiple hybrid self-suspension models, which assume a self-suspending task to hybrid self-suspension

be specified by a set of possible execution patterns that are known offline. These
models have different tradeoffs between flexibility and precision that can be
achieved based on the information that is known for the considered task set. Their
applicability depends on the additional information known compared to the
dynamic self-suspension model and on whether this is known offline and online,
so-called pattern-clairvoyant models, or only offline, so-called pattern-oblivious pattern-clairvoyant

pattern-obliviousmodels. The evaluation shows that this information can be utilized to significantly
increase the performance regarding schedulability compared to the dynamic
self-suspension model.

7.2 examination of the dissertation hypothesis

The question remains whether the contributions support the hypothesis:

Realistic scheduling models and analyses are essential for guaranteeing timing
correctness in advanced real-time systems while ensuring that the system
resources necessary to provide these guarantees are not over-provisioned.

The exploration of speedup factors in Chapter 4 showed that overvaluing
their meaning and focusing on a good speedup factor during the design of
an algorithm can lead to serious performance drawbacks. Hence, avoiding the
detailed misconceptions helps to achieve algorithms and analyses that perform
better in realistic situations. One possible reason for such performance drawbacks
is that countermeasures are taken to guarantee the performance of the algorithm
in a corner case or in a scenario with limited practical relevance. A similar
problem was determined for utilization bounds that often also result from corner
cases. Hence, the underlying model can be seen as too general, and therefore
too imprecise and unrealistic for an evaluated scenario where such cases are
excluded. To achieve a more realistic evaluation based on such metrics while
keeping the advantage of worst-case guarantees, it has been proposed to provide

218 conclusions and outlook

parametric augmentation bounds, i.e., to include additional parameters into the
evaluated function to achieve better values when certain conditions are met. This
allows to provide tighter individual results for subsets of the evaluated general
model. The possible gain of such an approach was exemplified in the provided
parametric utilization bounds for non-preemptive Rate Monotonic scheduling
and for automotive task systems. It was shown that such a parametrized analysis
can result in a tighter theoretical analysis and hence a more realistic assessment
of the performance of the scheduling algorithm, thus avoiding to provide system
resources that are not necessary in the considered setting.

The Systems with Dynamic Real-Time Guarantees introduced in Chapter 5

provide a general way to model uncertain execution behaviour. While they are
not limited to mixed-criticality systems, they explicitly take criticism of the mixed-
criticality research into account that was voiced by systems engineers who stated
that the current model and analysis does not meet their expectations. Specifically,
tasks are not abandoned, the system can return to the initial system state, and
no online adaptation is necessary. Otherwise, considering the mixed-criticality
model, jobs with decreased priority could result in a backlog that is not analyzed,
a return to low-criticality mode may be problematic since this situation is never
considered in the analysis, or online adaptation may cause a deadline miss due
to the high overhead. In such a situation an analysis that determines a task set to
be schedulable may in fact be optimistic since it does not consider these system
characteristics. However, these problems are avoided in Systems with Dynamic
Real-Time Guarantees since the backlog cannot affect the timeliness of the more
critical tasks and no online adaptation is performed. Hence, providing a realistic
system model that considers these scenarios ensures that the timeliness of the
system can be guaranteed in the analysis.

When evaluating the worst-case deadline failure probability in an uncertain
execution environment, an analysis should be both precise and scalable. However,
precise job-level convolution-based approaches are only applicable for small
task sets. Contrarily, analytical approaches are faster but may lead to a large
over-estimation that cannot be quantified. The task-level convolution provided in
Chapter 5 is scalable to large task sets and also allows to achieve a better runtime
by sacrificing a bounded amount of precision. Hence, it enables to precisely
quantify the worst-case deadline failure probability for systems with a realistic
number of tasks while avoiding over provisioning of system resources to ensure
that the worst-case deadline failure probability is below a certain threshold.

The algorithms introduced in Chapter 6, namely SEIFDA and the resource-
oriented partitioned scheduling, show the possible performance gain when a
method considers a specific situation. In this case it is considered that the number
of suspension intervals or the number of critical sections is 1. Such a restric-
tion models a specific scenario more realistically than the general model that
assumes no bounds on these parameters. While the resulting algorithms are
not applicable to the general scenario, the performance gain allows to reduce
the system resources necessary for this special case. One possible application of
one-segmented self-suspension is offloading, where a part of the task is executed
on a remote device, e.g., to save energy. Furthermore, Open-MP task sets, where
synchronization among tasks is always performed at the end of a task, are a

7.3 future work 219

possible direct application for multiprocessor resource sharing when all tasks
have one critical section.

The hybrid self-suspension models introduced in Chapter 6 allow to bridge
the gap between the dynamic and the segmented self-suspension model with
different tradeoffs between accuracy and flexibility. Applying the dynamic model
is safe but can result in largely over-estimated system resources when the tasks
have a more specific structure. Furthermore, it is often an unrealistic assumption
that the number of suspension intervals cannot be bounded while both the
worst-case execution time as well as the total suspension time can be determined
precisely, especially when considering real-time systems where tasks usually have
a specified structure. On the other hand, applying the segmented self-suspension
model may jeopardize the timing correctness when tasks do not precisely match
the model. The hybrid models fill this gap by enabling the use of the accessible
information, resulting in a more realistic model of the examined tasks than
the dynamic or the segmented self-suspension model. The evaluation of the
hybrid self-suspension models and the related schedulability tests show that they
achieve a better performance than schedulability tests for the dynamic model and
therefore potentially allow to use a system with less resources than determined
by an analysis under the dynamic self-suspension model.

Summarizing the aforementioned, the findings in this dissertation support
the hypothesis that realistic models and analyses allow to improve the analysis
precision in advanced real-time systems without jeopardizing the timing correct-
ness. They are therefore essential to achieve timing guarantees while reducing
the system resources that are required. Such a gain may result from removing
pessimism by modelling the system at hand more precisely, thus enabling the
access to additional information, or by excluding scenarios that are not relevant
for the considered system in the design of an algorithm and in the analysis.

7.3 future work

Resulting from the observations and conclusions regarding speedup factors and
utilization bounds in Chapter 4, it would be interesting to examine in which
scenarios parametric augmentation functions are able to improve the theoretical
understanding of scheduling algorithms and schedulability tests. However, while
they are a potentially powerful tool, applying them to improve speedup factors
and utilization bounds in practical scenarios may be difficult.

After providing a new, scalable analysis technique to over-approximate the
worst-case deadline failure probability under static-priority scheduling in Chap-
ter 5, exploring how such techniques can be extended to dynamic-priority schedul-
ing approaches like EDF is a logical next step. Nevertheless, the resulting scenario
is significantly more difficult, since analysis cannot easily be restricted to a
short time interval like in the static-priority case. Therefore, improved analy-
sis techniques and new ideas are necessary to tackle the resulting increase in
computational complexity.

The SEIFDA algorithm introduced in Chapter 6 is limited to one-segmented
self-suspension. Extending it to multiple self-suspension intervals and determine

220 conclusions and outlook

its performance both for self-suspending task sets as well as in a resource-oriented
partitioned scheduling or under the hybrid self-suspension model therefore is a
reasonable next step to fully utilize the potential of this algorithm. Furthermore,
it is interesting to investigate how hybrid models can be utilized in resource-
oriented partitioned scheduling algorithm or in other multiprocessor resource
sharing protocols.

7.4 final remarks and outlook

This dissertation provides realistic models and analyses for real-time systems
with a focus on practical relevance and applicability. It shows how considering a
specific setting can improve the results that are achievable compared to the general
setting, since it reduces the pessimism in modeling and analysis. Investigating
interesting and practically relevant special cases may also help to ease the transfer
of academic results into industrial practice. Furthermore, examining a specific
but restricted scenario can result in a better understanding of the underlying
problem and may help to avoid flaws when the more complex general setting
is examined. Moreover, algorithms that handle the restricted setting efficiently
can potentially be extended to more general settings. However, such an analysis
should be general enough to be applied to related scenarios, especially when
the considered scenario is strongly restricted or only relevant for a limited set of
practical applications. Nevertheless, it seems meaningful to consider important
restricted scenarios in research more often, especially when general settings are
too far from industrial applications or extremely complex.

The provided task-level convolution-based approach to calculate the worst-case
deadline failure probability assumes periodic or sporadic tasks under static-
priority scheduling. While it cannot directly be applied to dynamic-priority
scheduling, extensions to cover other static-priority scenarios for uniprocessor
scheduling like non-preemptive scheduling, limited preemptive scheduling, or
resource sharing under PCP seem relatively straightforward. Instead of exam-
ining such extensions individually, an interesting idea is to determine a set of
criteria that must be fulfilled to apply the provided analysis. Afterwards, for a
problem at hand it can be determined whether the analysis is applicable based
on these criteria. Otherwise, a (potentially more pessimistic) schedulability test
that fulfills the criteria can be used. One example for a similar concept are the
three conditions that must be met to ensure that a schedulability test is OPA
compatible [DB09]. Subsequently, similar criteria could be explored for a possible
extension to dynamic-priority scheduling.

The examination of resource-oriented partitioned scheduling shows the poten-
tial improvement when resource sharing is not considered from a task-centric but
from a resource-centric point of view. However, the currently provided solution
is limited to one resource access and to tasks where the non-critical sections can
be modelled by the one-segmented self-suspension model. While this allowed to
provide good solutions for this special case, an evaluation of the more general
setting is necessary. Nevertheless, a focus on removing one individual restriction
seems questionable. The reason is that one of the shortcomings of most real-time

7.4 final remarks and outlook 221

resource sharing protocols is that they try to solve one specific problem, i.e.,
resource sharing, while ignoring related problems like task allocation or priority
ordering which highly impact the performance. Therefore, it seems interesting
to not only tackle the individual restrictions but to take a more holistic point of
view. For instance, when assuming non-nested critical sections and that a large
share of the tasks has only one critical section, it seems possible to assign the
fixed relative deadlines for tasks with multiple critical sections first according
to the proportional scheme, and afterwards assign the deadlines for tasks with
only one critical section using SEIFDA. However, such a solution depends on
the applicability of the assumptions and otherwise alternative solutions must be
explored. Furthermore, it is important to decide in which situations a job that is
waiting for a shared resource should be suspended and in which situation the job
should spin on the processor. Here resource-oriented partitioned scheduling has
the advantage that the blocking time of a task on the synchronization processor
can be bounded relatively easily. Moreover, due to the use of PCP, the WCRT
on the synchronization processor can be relatively short for tasks with a short
period, making spinning a potentially good solution for these tasks. Hence, com-
bining these and other ideas into a more holistic resource-oriented partitioned
scheduling that provided different treatments for tasks based on certain criteria
seems to be an interesting research direction.

B I B L I O G R A P H Y

[ASL04] Tarek F. Abdelzaher, Vivek Sharma, and Chenyang Lu. “A Utiliza-
tion Bound for Aperiodic Tasks and Priority Driven Scheduling.”
In: IEEE Trans. Computers 53.3 (2004), pp. 334–350.

[ARS18] Arun Adiththan, S. Ramesh, and Soheil Samii. “Cloud-assisted
control of ground vehicles using adaptive computation offloading
techniques.” In: 2018 Design, Automation & Test in Europe Conference
& Exhibition, DATE 2018, Dresden, Germany, March 19-23, 2018. IEEE,
2018, pp. 589–592.

[AG08] Sebastian Altmeyer and Gernot Gebhard. “WCET Analysis for Pre-
emptive Scheduling.” In: 8th Intl. Workshop on Worst-Case Execution
Time (WCET) Analysis, Prague, Czech Republic, July 1, 2008. Vol. 8.
OASICS. 2008.

[AM11] Sebastian Altmeyer and Claire Maiza. “Cache-related preemption
delay via useful cache blocks: Survey and redefinition.” In: Jour-
nal of Systems Architecture - Embedded Systems Design 57.7 (2011),
pp. 707–719.

[ABJ01] Björn Andersson, Sanjoy K. Baruah, and Jan Jonsson. “Static-
Priority Scheduling on Multiprocessors.” In: Proceedings of the 22nd
IEEE Real-Time Systems Symposium (RTSS 2001), London, UK, 2-6
December 2001. IEEE Computer Society, 2001, pp. 193–202.

[AB08] Björn Andersson and Konstantinos Bletsas. “Sporadic Multiproces-
sor Scheduling with Few Preemptions.” In: 20th Euromicro Confer-
ence on Real-Time Systems, ECRTS 2008, 2-4 July 2008, Prague, Czech
Republic, Proceedings. IEEE Computer Society, 2008, pp. 243–252.

[AE10] Björn Andersson and Arvind Easwaran. “Provably good multipro-
cessor scheduling with resource sharing.” In: Real-Time Systems
46.2 (2010), pp. 153–159.

[AR14] Björn Andersson and Gurulingesh Raravi. “Real-time scheduling
with resource sharing on heterogeneous multiprocessors.” In: Real-
Time Systems 50.2 (2014), pp. 270–314.

[AT06] Björn Andersson and Eduardo Tovar. “Multiprocessor Scheduling
with Few Preemptions.” In: 12th IEEE Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA 2006), 16-
18 August 2006, Sydney, Australia. IEEE Computer Society, 2006,
pp. 322–334.

[AT09] Björn Andersson and Eduardo Tovar. “The utilization bound of
non-preemptive rate-monotonic scheduling in Controller Area Net-
works is 25%.” In: IEEE Fourth International Symposium on Industrial
Embedded Systems - SIES. 2009, pp. 11–18.

223

224 bibliography

[Aud91] Neil C. Audsley. Optimal Priority Assignment And Feasibility Of
Static Priority Tasks With Arbitrary Start Times. 1991.

[AE13] Philip Axer and Rolf Ernst. “Stochastic response-time guarantee
for non-preemptive, fixed-priority scheduling under errors.” In:
The 50th Annual Design Automation Conference 2013, DAC ’13, Austin,
TX, USA, May 29 - June 07, 2013. 2013, 172:1–172:7.

[Bak06] Theodore P. Baker. “An Analysis of Fixed-Priority Schedulability
on a Multiprocessor.” In: Real-Time Systems 32.1-2 (2006), pp. 49–71.

[Bak03] Theodore P. Baker. “Multiprocessor EDF and Deadline Monotonic
Schedulability Analysis.” In: Proceedings of the 24th IEEE Real-Time
Systems Symposium (RTSS 2003), 3-5 December 2003, Cancun, Mexico.
IEEE Computer Society, 2003, pp. 120–129.

[Bak91] Theodore P. Baker. “Stack-based Scheduling of Realtime Processes.”
In: Real-Time Systems 1 (1991), pp. 67–99.

[BB07] Theodore P. Baker and Sanjoy K. Baruah. “Schedulability analysis
of multiprocessor sporadic task systems.” In: Journal of Embedded
Computing (Jan. 2007).

[BC07a] Theodore P. Baker and Michele Cirinei. “Brute-Force Determina-
tion of Multiprocessor Schedulability for Sets of Sporadic Hard-
Deadline Tasks.” In: Principles of Distributed Systems, 11th Inter-
national Conference, OPODIS 2007, Guadeloupe, French West Indies,
December 17-20, 2007. Proceedings. Vol. 4878. Lecture Notes in Com-
puter Science. Springer, 2007, pp. 62–75.

[Bar15a] Sanjoy K. Baruah. “Federated Scheduling of Sporadic DAG Task
Systems.” In: IEEE International Parallel and Distributed Processing
Symposium, IPDPS. 2015, pp. 179–186.

[Bar16a] Sanjoy K. Baruah. “Schedulability Analysis for a General Model of
Mixed-Criticality Recurrent Real-Time Tasks.” In: IEEE Real-Time
Systems Symposium, RTSS. 2016, pp. 25–34.

[Bar16b] Sanjoy K. Baruah. “Schedulability analysis of mixed-criticality
systems with multiple frequency specifications.” In: International
Conference on Embedded Software, EMSOFT. 2016, 24:1–24:10.

[Bar07] Sanjoy K. Baruah. “Techniques for Multiprocessor Global Schedu-
lability Analysis.” In: Proceedings of the 28th IEEE Real-Time Systems
Symposium (RTSS 2007), 3-6 December 2007, Tucson, Arizona, USA.
IEEE Computer Society, 2007, pp. 119–128.

[Bar05] Sanjoy K. Baruah. “The Limited-Preemption Uniprocessor Schedul-
ing of Sporadic Task Systems.” In: 17th Euromicro Conference on
Real-Time Systems (ECRTS 2005), 6-8 July 2005, Palma de Mallorca,
Spain, Proceedings. IEEE Computer Society, 2005, pp. 137–144.

[Bar15b] Sanjoy K. Baruah. “The federated scheduling of constrained-deadline
sporadic DAG task systems.” In: Proceedings of the Design, Automa-
tion & Test in Europe Conference & Exhibition, DATE. 2015, pp. 1323–
1328.

bibliography 225

[Bar15c] Sanjoy K. Baruah. “The federated scheduling of systems of condi-
tional sporadic DAG tasks.” In: Proceedings of the 15th International
Conference on Embedded Software (EMSOFT). 2015.

[BB08a] Sanjoy K. Baruah and Theodore P. Baker. “Global EDF Schedu-
lability Analysis of Arbitrary Sporadic Task Systems.” In: 20th
Euromicro Conference on Real-Time Systems, ECRTS 2008, 2-4 July
2008, Prague, Czech Republic, Proceedings. IEEE Computer Society,
2008, pp. 3–12.

[BB08b] Sanjoy K. Baruah and Theodore P. Baker. “Schedulability analysis
of global edf.” In: Real-Time Systems 38.3 (2008), pp. 223–235.

[BBD+11] Sanjoy K. Baruah, Vincenzo Bonifaci, Gianlorenzo D’Angelo, Al-
berto Marchetti-Spaccamela, Suzanne van der Ster, and Leen Stougie.
“Mixed-Criticality Scheduling of Sporadic Task Systems.” In: Algo-
rithms - ESA 2011 - 19th Annual European Symposium, Saarbrücken,
Germany, September 5-9, 2011. Proceedings. Vol. 6942. Lecture Notes
in Computer Science. Springer, 2011, pp. 555–566.

[BBD+15] Sanjoy K. Baruah, Vincenzo Bonifaci, Gianlorenzo D’Angelo, Hao-
han Li, Alberto Marchetti-Spaccamela, Suzanne van der Ster, and
Leen Stougie. “Preemptive Uniprocessor Scheduling of Mixed-
Criticality Sporadic Task Systems.” In: J. ACM 62.2 (2015), 14:1–
14:33.

[BBD+12] Sanjoy K. Baruah, Vincenzo Bonifaci, Gianlorenzo D’Angelo, Hao-
han Li, Alberto Marchetti-Spaccamela, Suzanne van der Ster, and
Leen Stougie. “The Preemptive Uniprocessor Scheduling of Mixed-
Criticality Implicit-Deadline Sporadic Task Systems.” In: 24th Eu-
romicro Conference on Real-Time Systems, ECRTS. 2012, pp. 145–154.

[BBM+09] Sanjoy K. Baruah, Vincenzo Bonifaci, Alberto Marchetti-Spaccamela,
and Sebastian Stiller. “Implementation of a Speedup-Optimal
Global EDF Schedulability Test.” In: 21st Euromicro Conference on
Real-Time Systems, ECRTS. 2009, pp. 259–268.

[BBM+10] Sanjoy K. Baruah, Vincenzo Bonifaci, Alberto Marchetti-Spaccamela,
and Sebastian Stiller. “Improved multiprocessor global schedula-
bility analysis.” In: Real-Time Systems 46.1 (2010), pp. 3–24.

[BB11a] Sanjoy K. Baruah and Alan Burns. “Implementing Mixed Criticality
Systems in Ada.” In: Reliable Software Technologies - Ada-Europe
2011 - 16th Ada-Europe International Conference on Reliable Software
Technologies, Edinburgh, UK, June 20-24, 2011. Proceedings. Vol. 6652.
Lecture Notes in Computer Science. Springer, 2011, pp. 174–188.

[BBD11] Sanjoy K. Baruah, Alan Burns, and Robert I. Davis. “Response-
Time Analysis for Mixed Criticality Systems.” In: Proceedings of
the 32nd IEEE Real-Time Systems Symposium, RTSS 2011, Vienna,
Austria, November 29 - December 2, 2011. IEEE Computer Society,
2011, pp. 34–43.

226 bibliography

[BBG16] Sanjoy K. Baruah, Alan Burns, and Zhishan Guo. “Scheduling
Mixed-Criticality Systems to Guarantee Some Service under All
Non-erroneous Behaviors.” In: 28th Euromicro Conference on Real-
Time Systems, ECRTS 2016, Toulouse, France, July 5-8, 2016. IEEE
Computer Society, 2016, pp. 131–138.

[BCG+99] Sanjoy K. Baruah, Deji Chen, Sergey Gorinsky, and Aloysius K.
Mok. “Generalized Multiframe Tasks.” In: Real-Time Systems 17.1
(1999), pp. 5–22.

[BCP+96] Sanjoy K. Baruah, N. K. Cohen, C. Greg Plaxton, and Donald A.
Varvel. “Proportionate Progress: A Notion of Fairness in Resource
Allocation.” In: Algorithmica 15.6 (1996), pp. 600–625.

[BF07a] Sanjoy K. Baruah and Nathan Fisher. “Global Deadline-Monotonic
Scheduling of Arbitrary-Deadline Sporadic Task Systems.” In: Prin-
ciples of Distributed Systems, 11th International Conference, OPODIS
2007, Guadeloupe, French West Indies, December 17-20, 2007. Proceed-
ings. 2007, pp. 204–216.

[BF08] Sanjoy K. Baruah and Nathan Fisher. “Global Fixed-Priority Schedul-
ing of Arbitrary-Deadline Sporadic Task Systems.” In: Distributed
Computing and Networking, 9th International Conference, ICDCN 2008,
Kolkata, India, January 5-8, 2008. Vol. 4904. Lecture Notes in Com-
puter Science. Springer, 2008, pp. 215–226.

[BF06] Sanjoy K. Baruah and Nathan Fisher. “The Partitioned Multiproces-
sor Scheduling of Deadline-Constrained Sporadic Task Systems.”
In: IEEE Trans. Computers 55.7 (2006), pp. 918–923.

[BF05] Sanjoy K. Baruah and Nathan Fisher. “The Partitioned Multiproces-
sor Scheduling of Sporadic Task Systems.” In: RTSS. 2005, pp. 321–
329.

[BF07b] Sanjoy K. Baruah and Nathan Fisher. “The partitioned dynamic-
priority scheduling of sporadic task systems.” In: Real-Time Systems
36.3 (2007), pp. 199–226.

[BMR90] Sanjoy K. Baruah, Aloysius K. Mok, and Louis E. Rosier. “Preemp-
tively Scheduling Hard-Real-Time Sporadic Tasks on One Proces-
sor.” In: Proceedings of the Real-Time Systems Symposium - 1990, Lake
Buena Vista, Florida, USA, December 1990. IEEE Computer Society,
1990, pp. 182–190.

[BRH90] Sanjoy K. Baruah, Louis E. Rosier, and Rodney R. Howell. “Algo-
rithms and Complexity Concerning the Preemptive Scheduling of
Periodic, Real-Time Tasks on One Processor.” In: Real-Time Systems
2.4 (1990), pp. 301–324.

[BV08] Sanjoy K. Baruah and Steve Vestal. “Schedulability Analysis of
Sporadic Tasks with Multiple Criticality Specifications.” In: 20th
Euromicro Conference on Real-Time Systems, ECRTS 2008, 2-4 July
2008, Prague, Czech Republic, Proceedings. IEEE Computer Society,
2008, pp. 147–155.

bibliography 227

[Bau05] Robert C. Baumann. “Radiation-induced soft errors in advanced
semiconductor technologies.” In: IEEE Transactions on Device and
Materials Reliability 5.3 (2005), pp. 305–316.

[BAMCG16] Slim Ben-Amor, Dorin Maxim, and Liliana Cucu-Grosjean. “Schedu-
lability analysis of dependent probabilistic real-time tasks.” In:
Proceedings of the 24th International Conference on Real-Time Networks
and Systems, RTNS 2016, Brest, France, October 19-21, 2016. 2016,
pp. 99–107.

[BC07b] Marko Bertogna and Michele Cirinei. “Response-Time Analysis
for Globally Scheduled Symmetric Multiprocessor Platforms.” In:
Proceedings of the 28th IEEE Real-Time Systems Symposium (RTSS
2007), 3-6 December 2007, Tucson, Arizona, USA. IEEE Computer
Society, 2007, pp. 149–160.

[BCL05a] Marko Bertogna, Michele Cirinei, and Giuseppe Lipari. “Improved
Schedulability Analysis of EDF on Multiprocessor Platforms.” In:
17th Euromicro Conference on Real-Time Systems (ECRTS 2005), 6-8
July 2005, Palma de Mallorca, Spain, Proceedings. IEEE Computer
Society, 2005, pp. 209–218.

[BCL05b] Marko Bertogna, Michele Cirinei, and Giuseppe Lipari. “New
Schedulability Tests for Real-Time Task Sets Scheduled by Deadline
Monotonic on Multiprocessors.” In: Principles of Distributed Systems,
9th International Conference, OPODIS 2005, Pisa, Italy, December 12-14,
2005, Revised Selected Papers. Vol. 3974. Lecture Notes in Computer
Science. Springer, 2005, pp. 306–321.

[BXM+11] Marko Bertogna, Orges Xhani, Mauro Marinoni, Francesco Espos-
ito, and Giorgio C. Buttazzo. “Optimal Selection of Preemption
Points to Minimize Preemption Overhead.” In: 23rd Euromicro Con-
ference on Real-Time Systems, ECRTS 2011, Porto, Portugal, 5-8 July,
2011. IEEE Computer Society, 2011, pp. 217–227.

[BL92] Riccardo Bettati and Jane W.-S. Liu. “End-to-End Scheduling to
Meet Deadlines in Distributed Systems.” In: ICDCS. 1992, pp. 452–
459.

[BB05] Enrico Bini and Giorgio C. Buttazzo. “Measuring the Performance
of Schedulability Tests.” In: Real-Time Systems 30.1-2 (2005), pp. 129–
154.

[BB04] Enrico Bini and Giorgio C. Buttazzo. “Schedulability Analysis of
Periodic Fixed Priority Systems.” In: IEEE Trans. Computers 53.11

(2004), pp. 1462–1473.

[BBB01] Enrico Bini, Giorgio C. Buttazzo, and Giuseppe M. Buttazzo. “A
Hyperbolic Bound for the Rate Monotonic Algorithm.” In: 13th
Euromicro Conference on Real-Time Systems (ECRTS 2001), 13-15 June
2001, Delft, The Netherlands, Proceedings. 2001, pp. 59–66.

228 bibliography

[BNR+09] Enrico Bini, Thi Huyen Chau Nguyen, Pascal Richard, and Sanjoy
K. Baruah. “A Response-Time Bound in Fixed-Priority Scheduling
with Arbitrary Deadlines.” In: IEEE Trans. Computers 58.2 (2009),
pp. 279–286.

[BPD15] Enrico Bini, Andrea Parri, and Giacomo Dossena. “A Quadratic-
Time Response Time Upper Bound with a Tightness Property.”
In: 2015 IEEE Real-Time Systems Symposium, RTSS 2015, San Anto-
nio, Texas, USA, December 1-4, 2015. IEEE Computer Society, 2015,
pp. 13–22.

[BBS15] Alessandro Biondi, Giorgio C. Buttazzo, and Stefano Simoncelli.
“Feasibility Analysis of Engine Control Tasks under EDF Schedul-
ing.” In: 27th Euromicro Conference on Real-Time Systems, ECRTS
2015, Lund, Sweden, July 8-10, 2015. IEEE Computer Society, 2015,
pp. 139–148.

[BNB16] Alessandro Biondi, Marco Di Natale, and Giorgio C. Buttazzo.
“Performance-Driven Design of Engine Control Tasks.” In: 7th
ACM/IEEE International Conference on Cyber-Physical Systems, ICCPS
2016, Vienna, Austria, April 11-14, 2016. IEEE Computer Society,
2016, 45:1–45:10.

[BNB15] Alessandro Biondi, Marco Di Natale, and Giorgio C. Buttazzo.
“Response-time analysis for real-time tasks in engine control appli-
cations.” In: Proceedings of the ACM/IEEE Sixth International Confer-
ence on Cyber-Physical Systems, ICCPS 2015, Seattle, WA, USA, April
14-16, 2015. ACM, 2015, pp. 120–129.

[BS18] Alessandro Biondi and Youcheng Sun. “On the ineffectiveness of
1/m-based interference bounds in the analysis of global EDF and
FIFO scheduling.” In: Real-Time Systems 54.3 (2018), pp. 515–536.

[Ble07] Konstantinos Bletsas. “Worst-case and Best-case Timing Analysis
for Real-time Embedded Systems with Limited Parallelism.” PhD
thesis. Dept of Computer Science, University of York, 2007.

[BA05] Konstantinos Bletsas and Neil C. Audsley. “Extended Analysis
with Reduced Pessimism for Systems with Limited Parallelism.”
In: 11th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA 2005), 17-19 August
2005, Hong Kong, China. IEEE Computer Society, 2005, pp. 525–531.

[BLB+07] Aaron Block, Hennadiy Leontyev, Björn B. Brandenburg, and James
H. Anderson. “A Flexible Real-Time Locking Protocol for Multi-
processors.” In: 13th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA 2007), 21-24
August 2007, Daegu, Korea. IEEE Computer Society, 2007, pp. 47–56.

[BM12] Vincenzo Bonifaci and Alberto Marchetti-Spaccamela. “Feasibility
Analysis of Sporadic Real-Time Multiprocessor Task Systems.” In:
Algorithmica 63.4 (2012), pp. 763–780.

[Bos91] Bosch. Controller Area Network Specification 2.0. 1991.

bibliography 229

[Bra14a] Björn B. Brandenburg. “Blocking Optimality in Distributed Real-
Time Locking Protocols.” In: LITES 2 (2014), 01:1–01:22.

[Bra13] Björn B. Brandenburg. “Improved analysis and evaluation of real-
time semaphore protocols for P-FP scheduling.” In: 19th IEEE Real-
Time and Embedded Technology and Applications Symposium, RTAS
2013, Philadelphia, PA, USA, April 9-11, 2013. IEEE Computer Society,
2013, pp. 141–152.

[Bra11] Björn B. Brandenburg. “Scheduling and locking in multiprocessor
real-time operating systems.” PhD thesis. University of North
Carolina at Chapel Hill, 2011.

[Bra14b] Björn B. Brandenburg. “The FMLP+: An Asymptotically Optimal
Real-Time Locking Protocol for Suspension-Aware Analysis.” In:
Euromicro Conference on Real-Time Systems (ECRTS). 2014, pp. 61–71.

[BA10] Björn B. Brandenburg and James H. Anderson. “Optimality Re-
sults for Multiprocessor Real-Time Locking.” In: Real-Time Systems
Symposium (RTSS). 2010, pp. 49–60.

[BA13] Björn B. Brandenburg and James H. Anderson. “The OMLP family
of optimal multiprocessor real-time locking protocols.” In: Design
Autom. for Emb. Sys. 17.2 (2013), pp. 277–342.

[BCB+08] Björn B. Brandenburg, John M. Calandrino, Aaron Block, Hennadiy
Leontyev, and James H. Anderson. “Real-Time Synchronization on
Multiprocessors: To Block or Not to Block, to Suspend or Spin?”
In: Proceedings of the 14th IEEE Real-Time and Embedded Technology
and Applications Symposium, RTAS 2008, April 22-24, 2008, St. Louis,
Missouri, USA. IEEE Computer Society, 2008, pp. 342–353.

[BG16] Björn B. Brandenburg and Mahircan Gul. “Global Scheduling
Not Required: Simple, Near-Optimal Multiprocessor Real-Time
Scheduling with Semi-Partitioned Reservations.” In: 2016 IEEE
Real-Time Systems Symposium, RTSS 2016, Porto, Portugal, November
29 - December 2, 2016. IEEE Computer Society, 2016, pp. 99–110.

[BFR71] Paul Bratley, Michael Florian, and Pierre Robillard. “Scheduling
with earliest start and due date constraints.” In: Naval Research
Logistics Quarterly 18.4 (1971), pp. 511–519.

[BLV07] Reinder J. Bril, Johan J. Lukkien, and Wim F. J. Verhaegh. “Worst-
Case Response Time Analysis of Real-Time Tasks under Fixed-
Priority Scheduling with Deferred Preemption Revisited.” In: 19th
Euromicro Conference on Real-Time Systems, ECRTS’07, 4-6 July 2007,
Pisa, Italy, Proceedings. IEEE Computer Society, 2007, pp. 269–279.

[BLV09] Reinder J. Bril, Johan J. Lukkien, and Wim F. J. Verhaegh. “Worst-
case response time analysis of real-time tasks under fixed-priority
scheduling with deferred preemption.” In: Real-Time Systems 42.1-3
(2009), pp. 63–119.

230 bibliography

[BCH15] Georg von der Brüggen, Jian-Jia Chen, and Wen-Hung Huang.
“Schedulability and Optimization Analysis for Non-preemptive
Static Priority Scheduling Based on Task Utilization and Blocking
Factors.” In: 27th Euromicro Conference on Real-Time Systems, ECRTS
2015, Lund, Sweden, July 8-10, 2015. 2015, pp. 90–101.

[BCH+16] Georg von der Brüggen, Kuan-Hsun Chen, Wen-Hung Huang,
and Jian-Jia Chen. “Systems with Dynamic Real-Time Guarantees
in Uncertain and Faulty Execution Environments.” In: 2016 IEEE
Real-Time Systems Symposium, RTSS 2016, Porto, Portugal, November
29 - December 2, 2016. 2016, pp. 303–314.

[BHC+16] Georg von der Brüggen, Wen-Hung Huang, Jian-Jia Chen, and
Cong Liu. “Uniprocessor Scheduling Strategies for Self-Suspending
Task Systems.” In: Proceedings of the 24th International Conference on
Real-Time Networks and Systems, RTNS 2016, Brest, France, October
19-21, 2016. 2016, pp. 119–128.

[BCD+17] Georg von der Brüggen, Jian-Jia Chen, Robert I. Davis, and Wen-
Hung Huang. “Exact speedup factors for linear-time schedulability
tests for fixed-priority preemptive and non-preemptive schedul-
ing.” In: Information Processing Letters 117 (2017).

[BHC17] Georg von der Brüggen, Wen-Hung Huang, and Jian-Jia Chen.
“Hybrid self-suspension models in real-time embedded systems.”
In: 23rd IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications, RTCSA 2017, Hsinchu, Taiwan,
August 16-18, 2017. 2017, pp. 1–9.

[BUC+17] Georg von der Brüggen, Niklas Ueter, Jian-Jia Chen, and Matthias
Freier. “Parametric utilization bounds for implicit-deadline pe-
riodic tasks in automotive systems.” In: Proceedings of the 25th
International Conference on Real-Time Networks and Systems, RTNS
2017, Grenoble, France, October 04 - 06, 2017. 2017, pp. 108–117.

[BCH+17] Georg von der Brüggen, Jian-Jia Chen, Wen-Hung Huang, and
Maolin Yang. “Release enforcement in resource-oriented parti-
tioned scheduling for multiprocessor systems.” In: Proceedings of
the 25th International Conference on Real-Time Networks and Systems,
RTNS 2017, Grenoble, France, October 04 - 06, 2017. 2017, pp. 287–296.

[BPC+18] Georg von der Brüggen, Nico Piatkowski, Kuan-Hsun Chen, Jian-
Jia Chen, and Katharina Morik. “Efficiently Approximating the
Probability of Deadline Misses in Real-Time Systems.” In: 30th
Euromicro Conference on Real-Time Systems, ECRTS 2018, July 3-6,
2018, Barcelona, Spain. 2018, 6:1–6:22.

[BSC18] Georg von der Brüggen, Lea Schönberger, and Jian-Jia Chen. “Do
Nothing, But Carefully: Fault Tolerance with Timing Guarantees
for Multiprocessor Systems Devoid of Online Adaptation.” In: 23rd
IEEE Pacific Rim International Symposium on Dependable Computing,
PRDC 2018, Taipei, Taiwan, December 4-7, 2018. 2018, pp. 1–10.

bibliography 231

[BLO+95] Almut Burchard, Jörg Liebeherr, Yingfeng Oh, and Sang Hyuk Son.
“New Strategies for Assigning Real-Time Tasks to Multiprocessor
Systems.” In: IEEE Trans. Computers 44.12 (1995), pp. 1429–1442.

[BBT15] Artem Burmyakov, Enrico Bini, and Eduardo Tovar. “An exact
schedulability test for global FP using state space pruning.” In:
Proceedings of the 23rd International Conference on Real Time Networks
and Systems, RTNS 2015, Lille, France, November 4-6, 2015. ACM,
2015, pp. 225–234.

[Bur94] Alan Burns. “Preemptive Priority-Based Scheduling: An Appro-
priate Engineering Approach.” In: Advances in Real-Time Systems,
chapter 10. Prentice Hall, 1994, pp. 225–248.

[BB11b] Alan Burns and Sanjoy K. Baruah. “Timing Faults and Mixed Criti-
cality Systems.” In: Dependable and Historic Computing - Essays Dedi-
cated to Brian Randell on the Occasion of His 75th Birthday. Vol. 6875.
Lecture Notes in Computer Science. Springer, 2011, pp. 147–166.

[BB13] Alan Burns and Sanjoy K. Baruah. “Towards A More Practical
Model for Mixed Criticality Systems.” In: Proc. WMC, RTSS. 2013,
pp. 1–6.

[BB06] Alan Burns and Gordon Baxter. “Time Bands in Systems Struc-
ture.” In: Structure for Dependability: Computer-Based Systems. Jan.
2006, pp. 74–88.

[BD18] Alan Burns and Robert I. Davis. “A Survey of Research into Mixed
Criticality Systems.” In: ACM Comput. Surv. 50.6 (2018), 82:1–82:37.

[BDW+12] Alan Burns, Robert I. Davis, P. Wang, and Fengxiang Zhang. “Par-
titioned EDF scheduling for multiprocessors using a C=D task
splitting scheme.” In: Real-Time Systems 48.1 (2012), pp. 3–33.

[BW13] Alan Burns and Andy J. Wellings. “A Schedulability Compatible
Multiprocessor Resource Sharing Protocol - MrsP.” In: Euromicro
Conference on Real-Time Systems (ECRTS). 2013, pp. 282–291.

[But11] Giorgio C. Buttazzo. Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications, Third Edition. Real-Time
Systems Series. Springer, 2011. isbn: 978-1-4614-0675-4.

[BBY13] Giorgio C. Buttazzo, Marko Bertogna, and Gang Yao. “Limited
Preemptive Scheduling for Real-Time Systems. A Survey.” In: IEEE
Trans. Industrial Informatics 9.1 (2013), pp. 3–15.

[BBB14] Giorgio C. Buttazzo, Enrico Bini, and Darren Buttle. “Rate-adaptive
tasks: Model, analysis, and design issues.” In: Design, Automation &
Test in Europe Conference & Exhibition, DATE 2014, Dresden, Germany,
March 24-28, 2014. European Design and Automation Association,
2014, pp. 1–6.

[But12] Darren Buttle. “Real-time in the prime time.” Keynote talk at the
Euromicro Conference on Real-Time Systems (ECRTS). 2012.

[CKT02] Samarjit Chakraborty, Simon Künzli, and Lothar Thiele. “Approxi-
mate Schedulability Analysis.” In: IEEE Real-Time Systems Sympo-
sium. 2002, pp. 159–168.

232 bibliography

[Che16a] Jian-Jia Chen. “Computational Complexity and Speedup Factors
Analyses for Self-Suspending Tasks.” In: RTSS. IEEE Computer
Society, 2016, pp. 327–338.

[Che16b] Jian-Jia Chen. “Federated scheduling admits no constant speedup
factors for constrained-deadline DAG task systems.” In: Real-Time
Systems 52.6 (2016), pp. 833–838.

[Che16c] Jian-Jia Chen. “Partitioned Multiprocessor Fixed-Priority Schedul-
ing of Sporadic Real-Time Tasks.” In: 28th Euromicro Conference on
Real-Time Systems, ECRTS 2016, Toulouse, France, July 5-8, 2016. IEEE
Computer Society, 2016, pp. 251–261.

[CBC+18] Jian-Jia Chen, Nikhil Bansal, Samarjit Chakraborty, and Georg
von der Brüggen. “Packing Sporadic Real-Time Tasks on Identical
Multiprocessor Systems.” In: 29th International Symposium on Algo-
rithms and Computation, ISAAC 2018, December 16-19, 2018, Jiaoxi,
Yilan, Taiwan. Vol. 123. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2018, 71:1–71:14.

[CB17] Jian-Jia Chen and Björn B. Brandenburg. “A Note on the Period En-
forcer Algorithm for Self-Suspending Tasks.” In: LITES 4.1 (2017),
01:1–01:22.

[CBH+17a] Jian-Jia Chen, Georg von der Brüggen, Wen-Hung Huang, and
Robert I. Davis. “On the Pitfalls of Resource Augmentation Factors
and Utilization Bounds in Real-Time Scheduling.” In: 29th Euromi-
cro Conference on Real-Time Systems, ECRTS 2017, June 27-30, 2017,
Dubrovnik, Croatia. 2017, 9:1–9:25.

[CBH+17b] Jian-Jia Chen, Georg von der Brüggen, Wen-Hung Huang, and
Cong Liu. “State of the art for scheduling and analyzing self-
suspending sporadic real-time tasks.” In: 23rd IEEE International
Conference on Embedded and Real-Time Computing Systems and Ap-
plications, RTCSA 2017, Hsinchu, Taiwan, August 16-18, 2017. IEEE
Computer Society, 2017, pp. 1–10.

[CBS+18] Jian-Jia Chen, Georg von der Brüggen, Junjie Shi, and Niklas Ueter.
“Dependency Graph Approach for Multiprocessor Real-Time Syn-
chronization.” In: 2018 IEEE Real-Time Systems Symposium, RTSS
2018, Nashville, TN, USA, December 11-14, 2018. IEEE Computer
Society, 2018, pp. 434–446.

[CBU18] Jian-Jia Chen, Georg von der Brüggen, and Niklas Ueter. “Push
Forward: Global Fixed-Priority Scheduling of Arbitrary-Deadline
Sporadic Task Systems.” In: 30th Euromicro Conference on Real-Time
Systems, ECRTS 2018, July 3-6, 2018, Barcelona, Spain. Vol. 106. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018, 8:1–8:24.

[CC11] Jian-Jia Chen and Samarjit Chakraborty. “Resource Augmentation
Bounds for Approximate Demand Bound Functions.” In: Proceed-
ings of the 32nd IEEE Real-Time Systems Symposium, RTSS 2011,
Vienna, Austria, November 29 - December 2, 2011. 2011, pp. 272–281.

bibliography 233

[CHH+19] Jian-Jia Chen, Tobias Hahn, Ruben Hoeksma, Nicole Megow, and
Georg von der Brüggen. “Scheduling Self-Suspending Tasks: New
and Old Results.” In: 31st Euromicro Conference on Real-Time Systems,
ECRTS 2019, July 9-12, 2019, Stuttgart, Germany. Vol. 133. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2019, 16:1–
16:23.

[CHL15a] Jian-Jia Chen, Wen-Hung Huang, and Cong Liu. “Evaluate and
Compare Two Utilization-Based Schedulability-Test Frameworks
for Real-Time Systems.” In: CoRR (2015). url: https://arxiv.org/
abs/1505.02155.

[CHL16a] Jian-Jia Chen, Wen-Hung Huang, and Cong Liu. “k2Q: A Quadratic-
Form Response Time and Schedulability Analysis Framework for
Utilization-Based Analysis.” In: Real-Time Systems Symposium, RTSS.
2016, pp. 351–362.

[CHL16b] Jian-Jia Chen, Wen-Hung Huang, and Cong Liu. “k2Q: A Quadratic-
Form Response Time and Schedulability Analysis Framework for
Utilization-Based Analysis.” In: 2016 IEEE Real-Time Systems Sym-
posium, RTSS. 2016, pp. 351–362.

[CHL15b] Jian-Jia Chen, Wen-Hung Huang, and Cong Liu. “k2U: A Gen-
eral Framework from k-Point Effective Schedulability Analysis to
Utilization-Based Tests.” In: 2015 IEEE Real-Time Systems Sympo-
sium, RTSS 2015, San Antonio, Texas, USA, December 1-4, 2015. IEEE
Computer Society, 2015, pp. 107–118.

[CL14] Jian-Jia Chen and Cong Liu. “Fixed-Relative-Deadline Scheduling
of Hard Real-Time Tasks with Self-Suspensions.” In: Proceedings of
the IEEE 35th IEEE Real-Time Systems Symposium, RTSS 2014, Rome,
Italy, December 2-5, 2014. IEEE Computer Society, 2014, pp. 149–160.

[CNH16] Jian-Jia Chen, Geoffrey Nelissen, and Wen-Hung Huang. “A Unify-
ing Response Time Analysis Framework for Dynamic Self-Suspending
Tasks.” In: ECRTS. IEEE Computer Society, 2016, pp. 61–71.

[CNH+19] Jian-Jia Chen, Geoffrey Nelissen, Wen-Hung Huang, Maolin Yang,
Björn B. Brandenburg, Konstantinos Bletsas, Cong Liu, Pascal
Richard, Frédéric Ridouard, Neil C. Audsley, Raj Rajkumar, Dioni-
sio de Niz, and Georg von der Brüggen. “Many suspensions, many
problems: a review of self-suspending tasks in real-time systems.”
In: Real-Time Systems 55.1 (2019), pp. 144–207.

[Che16d] Kuan-Hsun Chen. #2772 ticket: Enhancement for more general real-
time model. http://devel.rtems.org/ticket/2772. 2016. url:
http://devel.rtems.org/ticket/2772.

[CBC18a] Kuan-Hsun Chen, Georg von der Brüggen, and Jian-Jia Chen.
“Analysis of Deadline Miss Rates for Uniprocessor Fixed-Priority
Scheduling.” In: 24th IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications, RTCSA 2018,
Hakodate, Japan, August 28-31, 2018. IEEE Computer Society, 2018,
pp. 168–178.

https://arxiv.org/abs/1505.02155
https://arxiv.org/abs/1505.02155
http://devel.rtems.org/ticket/2772
http://devel.rtems.org/ticket/2772

234 bibliography

[CBC16] Kuan-Hsun Chen, Georg von der Brüggen, and Jian-Jia Chen.
“Overrun Handling for Mixed-Criticality Support in RTEMS.” In:
WMC 2016. Proceedings of WMC 2016. Porto, Portugal, 2016.

[CBC18b] Kuan-Hsun Chen, Georg von der Brüggen, and Jian-Jia Chen. “Re-
liability Optimization on Multi-Core Systems with Multi-Tasking
and Redundant Multi-Threading.” In: IEEE Trans. Computers 67.4
(2018), pp. 484–497.

[CC17] Kuan-Hsun Chen and Jian-Jia Chen. “Probabilistic schedulability
tests for uniprocessor fixed-priority scheduling under soft errors.”
In: 12th IEEE International Symposium on Industrial Embedded Systems,
SIES 2017, Toulouse, France, June 14-16, 2017. 2017, pp. 1–8.

[CUB+19] Kuan-Hsun Chen, Niklas Ueter, Georg von der Bruggen, and Jian-
Jia Chen. “Efficient Computation of Deadline-Miss Probability and
Potential Pitfalls.” In: Design, Automation & Test in Europe Conference
& Exhibition, DATE 2019, Florence, Italy, March 25-29, 2019. IEEE,
2019, pp. 896–901.

[Dav16] Robert I. Davis. “On the Evaluation of Schedulability Tests for
Real-Time Scheduling Algorithms.” In: International Workshop on
Analysis Tools and Methodologies for Embedded and Real-time Systems
(WATERS). July 2016.

[DB11a] Robert I. Davis and Alan Burns. “A survey of hard real-time
scheduling for multiprocessor systems.” In: ACM Comput. Surv.
43.4 (2011), 35:1–35:44.

[DB11b] Robert I. Davis and Alan Burns. “Improved priority assignment
for global fixed priority pre-emptive scheduling in multiprocessor
real-time systems.” In: Real-Time Systems 47.1 (2011), pp. 1–40.

[DB09] Robert I. Davis and Alan Burns. “Priority Assignment for Global
Fixed Priority Pre-Emptive Scheduling in Multiprocessor Real-
Time Systems.” In: Proceedings of the 30th IEEE Real-Time Systems
Symposium, RTSS 2009, Washington, DC, USA, 1-4 December 2009.
IEEE Computer Society, 2009, pp. 398–409.

[DB08] Robert I. Davis and Alan Burns. “Response Time Upper Bounds
for Fixed Priority Real-Time Systems.” In: Proceedings of the 29th
IEEE Real-Time Systems Symposium, RTSS 2008, Barcelona, Spain, 30
November - 3 December 2008. IEEE Computer Society, 2008, pp. 407–
418.

[DBB+15] Robert I. Davis, Alan Burns, Sanjoy K. Baruah, Thomas Rothvoß,
Laurent George, and Oliver Gettings. “Exact comparison of fixed
priority and EDF scheduling based on speedup factors for both pre-
emptive and non-pre-emptive paradigms.” In: Real-Time Systems
51.5 (2015), pp. 566–601.

[DBB+07] Robert I. Davis, Alan Burns, Reinder J. Bril, and Johan J. Lukkien.
“Controller Area Network (CAN) schedulability analysis: Refuted,
revisited and revised.” In: Real-Time Systems 35.3 (2007), pp. 239–
272.

bibliography 235

[DC19a] Robert I. Davis and Liliana Cucu-Grosjean. “A Survey of Proba-
bilistic Schedulability Analysis Techniques for Real-Time Systems.”
In: LITES 6.1 (2019), 04:1–04:53.

[DC19b] Robert I. Davis and Liliana Cucu-Grosjean. “A Survey of Proba-
bilistic Timing Analysis Techniques for Real-Time Systems.” In:
LITES 6.1 (2019), 03:1–03:60.

[DCB+16] Robert I. Davis, Liliana Cucu-Grosjean, Marko Bertogna, and Alan
Burns. “A review of priority assignment in real-time systems.” In:
Journal of Systems Architecture - Embedded Systems Design 65 (2016),
pp. 64–82.

[DFP+14] Robert I. Davis, Timo Feld, Victor Pollex, and Frank Slomka.
“Schedulability tests for tasks with Variable Rate-dependent Be-
haviour under fixed priority scheduling.” In: 20th IEEE Real-Time
and Embedded Technology and Applications Symposium, RTAS 2014,
Berlin, Germany, April 15-17, 2014. IEEE Computer Society, 2014,
pp. 51–62.

[DGC10] Robert I. Davis, Laurent George, and Pierre Courbin. “Quantifying
the Sub-optimality of Uniprocessor Fixed Priority Non-Pre-emptive
Scheduling.” In: International Conference on Real-Time and Network
Systems (RTNS’10) (2010).

[DRB+09a] Robert I. Davis, Thomas Rothvoß, Sanjoy K. Baruah, and Alan
Burns. “Exact quantification of the sub-optimality of uniprocessor
fixed priority pre-emptive scheduling.” In: Real-Time Systems 43.3
(2009), pp. 211–258.

[DRB+09b] Robert I. Davis, Thomas Rothvoß, Sanjoy K. Baruah, and Alan
Burns. “Quantifying the Sub-optimality of Uniprocessor Fixed Pri-
ority Pre-emptive Scheduling for Sporadic Tasksets with Arbitrary
Deadlines.” In: Real-Time Networks and Systems Conference. 2009.

[DTG+15] Robert I. Davis, Abhilash Thekkilakattil, Oliver Gettings, Radu
Dobrin, and Sasikumar Punnekkat. “Quantifying the Exact Sub-
optimality of Non-preemptive Scheduling.” In: 2015 IEEE Real-Time
Systems Symposium, RTSS 2015, San Antonio, Texas, USA, December
1-4, 2015. IEEE Computer Society, 2015, pp. 96–106.

[Der74] Michael L. Dertouzos. “Control Robotics: The Procedural Control
of Physical Processes.” In: IFIP Congress. 1974, pp. 807–813.

[DL78] Sudarshan K. Dhall and C. L. Liu. “On a Real-Time Scheduling
Problem.” In: Operations Research 26.1 (1978), pp. 127–140.

[DGK+02] José Luis Díaz, Daniel F. García, Kanghee Kim, Chang-Gun Lee,
Lucia Lo Bello, José María López, Sang Lyul Min, and Orazio
Mirabella. “Stochastic Analysis of Periodic Real-Time Systems.” In:
Proceedings of the 23rd IEEE Real-Time Systems Symposium (RTSS’02),
Austin, Texas, USA, December 3-5, 2002. 2002, pp. 289–300.

236 bibliography

[DLB+18] Zheng Dong, Cong Liu, Soroush Bateni, Kuan-Hsun Chen, Jian-Jia
Chen, Georg von der Brüggen, and Junjie Shi. “Shared-Resource-
Centric Limited Preemptive Scheduling: A Comprehensive Study
of Suspension-Based Partitioning Approaches.” In: IEEE Real-Time
and Embedded Technology and Applications Symposium, RTAS 2018,
11-13 April 2018, Porto, Portugal. IEEE Computer Society, 2018,
pp. 164–176.

[EA09] Arvind Easwaran and Björn Andersson. In: Real-Time Systems Sym-
posium (RTSS). 2009.

[EY17] Pontus Ekberg and Wang Yi. “Fixed-Priority Schedulability of
Sporadic Tasks on Uniprocessors is NP-Hard.” In: 2017 IEEE Real-
Time Systems Symposium, RTSS 2017, Paris, France, December 5-8,
2017. 2017, pp. 139–146.

[EY12] Pontus Ekberg and Wang Yi. “Outstanding Paper Award: Bounding
and Shaping the Demand of Mixed-Criticality Sporadic Tasks.” In:
24th Euromicro Conference on Real-Time Systems, ECRTS 2012, Pisa,
Italy, July 11-13, 2012. IEEE Computer Society, 2012, pp. 135–144.

[EY15] Pontus Ekberg and Wang Yi. “Uniprocessor Feasibility of Sporadic
Tasks with Constrained Deadlines Is Strongly coNP-Complete.” In:
27th Euromicro Conference on Real-Time Systems, ECRTS 2015, Lund,
Sweden, July 8-10, 2015. 2015, pp. 281–286.

[ESD10] Paul Emberson, Roger Stafford, and Robert I. Davis. “Techniques
for the synthesis of multiprocessor tasksets.” In: International Work-
shop on Analysis Tools and Methodologies for Embedded and Real-time
Systems (WATERS 2010). 2010, pp. 6–11.

[Eri14] Jeremy P. Erickson. “Managing Tardiness Bounds and Overload in
Soft Real-Time Systems.” PhD thesis. University of North Carolina
at Chapel Hill, 2014.

[EN16] Rolf Ernst and Marco Di Natale. “Mixed Criticality Systems - A
History of Misconceptions?” In: IEEE Design & Test 33.5 (2016),
pp. 65–74.

[ENN+15] Alexandre Esper, Geoffrey Nelissen, Vincent Nélis, and Eduardo To-
var. “How realistic is the mixed-criticality real-time system model?”
In: Proceedings of the 23rd International Conference on Real Time Net-
works and Systems, RTNS 2015, Lille, France, November 4-6, 2015.
ACM, 2015, pp. 139–148.

[FBD+18] Timo Feld, Alessandro Biondi, Robert I. Davis, Giorgio C. Buttazzo,
and Frank Slomka. “A survey of schedulability analysis techniques
for rate-dependent tasks.” In: Journal of Systems and Software 138

(2018), pp. 100–107.

[Fis07] Nathan Fisher. The multiprocessor real-time scheduling of general task
systems. Citeseer, 2007.

[FB06] Nathan Fisher and Sanjoy K. Baruah. “Global static-priority schedul-
ing of sporadic task systems on multiprocessor platforms.” In: (Jan.
2006).

bibliography 237

[FBB06] Nathan Fisher, Sanjoy K. Baruah, and Theodore P. Baker. “The
Partitioned Scheduling of Sporadic Tasks According to Static-
Priorities.” In: 18th Euromicro Conference on Real-Time Systems, ECRTS’06,
5-7 July 2006, Dresden, Germany, Proceedings. IEEE Computer Society,
2006, pp. 118–127.

[GLN01] Paolo Gai, Giuseppe Lipari, and Marco Di Natale. “Minimizing
Memory Utilization of Real-Time Task Sets in Single and Multi-
Processor Systems-on-a-Chip.” In: Real-Time Systems Symposium
(RTSS). 2001, pp. 73–83.

[GNL+03] Paolo Gai, Marco Di Natale, Giuseppe Lipari, Alberto Ferrari,
Claudio Gabellini, and Paolo Marceca. “A comparison of MPCP
and MSRP when sharing resources in the Janus multiple-processor
on a chip platform.” In: Proceedings of the 9th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS 2003), May
27-30, 2003, Toronto, Canada. IEEE Computer Society, 2003, p. 189.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979. isbn:
0-7167-1044-7.

[GGL13] Gilles Geeraerts, Joël Goossens, and Markus Lindström. “Multi-
processor schedulability of arbitrary-deadline sporadic tasks: com-
plexity and antichain algorithm.” In: Real-Time Systems 49.2 (2013),
pp. 171–218.

[GMR95] Laurent George, Paul Muhlethaler, and Nicolas Rivierre. Optimality
and non-preemptive real-time scheduling revisited. Research Report
RR-2516. INRIA, 1995.

[GRS96] Laurent George, Nicolas Rivierre, and Marco Spuri. Preemptive and
Non-Preemptive Real-Time UniProcessor Scheduling. Research Report.
INRIA, 1996.

[GFB03] Joël Goossens, Shelby Funk, and Sanjoy K. Baruah. “Priority-Driven
Scheduling of Periodic Task Systems on Multiprocessors.” In: Real-
Time Systems 25.2-3 (2003), pp. 187–205.

[Gra69] Ronald L. Graham. “Bounds on Multiprocessing Timing Anoma-
lies.” In: SIAM Journal of Applied Mathematics 17.2 (1969), pp. 416–
429.

[GES+11] Nan Guan, Pontus Ekberg, Martin Stigge, and Wang Yi. “Effective
and Efficient Scheduling of Certifiable Mixed-Criticality Sporadic
Task Systems.” In: Proceedings of the 32nd IEEE Real-Time Systems
Symposium, RTSS 2011, Vienna, Austria, November 29 - December 2,
2011. IEEE Computer Society, 2011, pp. 13–23.

[GSY+09] Nan Guan, Martin Stigge, Wang Yi, and Ge Yu. “New Response
Time Bounds for Fixed Priority Multiprocessor Scheduling.” In:
IEEE Real-Time Systems Symposium (RTSS). 2009, pp. 387–397.

238 bibliography

[GB15] Zhishan Guo and Sanjoy K. Baruah. “Uniprocessor EDF scheduling
of AVR task systems.” In: Proceedings of the ACM/IEEE Sixth Inter-
national Conference on Cyber-Physical Systems, ICCPS 2015, Seattle,
WA, USA, April 14-16, 2015. ACM, 2015, pp. 159–168.

[Gur] Gurobi Optimization Inc. http://www.gurobi.com. 2016.

[GH98] José C. Palencia Gutiérrez and Michael González Harbour. “Schedu-
lability Analysis for Tasks with Static and Dynamic Offsets.” In:
Proceedings of the 19th IEEE Real-Time Systems Symposium, Madrid,
Spain, December 2-4, 1998. IEEE Computer Society, 1998, pp. 26–37.

[HS92] Leslie A. Hall and David B. Shmoys. “Jackson’s Rule for Single-
Machine Scheduling: Making a Good Heuristic Better.” In: Math.
Oper. Res. 17.1 (1992), pp. 22–35.

[HDK+17] Arne Hamann, Dakshina Dasari, Simon Kramer, Michael Pressler,
and Falk Wurst. “Communication Centric Design in Complex
Automotive Embedded Systems.” In: 29th Euromicro Conference on
Real-Time Systems, ECRTS 2017, June 27-30, 2017, Dubrovnik, Croatia.
Vol. 76. LIPIcs. 2017, 10:1–10:20.

[HQE14] Zain Alabedin Haj Hammadeh, Sophie Quinton, and Rolf Ernst.
“Extending typical worst-case analysis using response-time depen-
dencies to bound deadline misses.” In: 2014 International Conference
on Embedded Software, EMSOFT 2014, New Delhi, India, October 12-17,
2014. ACM, 2014, 10:1–10:10.

[HT97] Ching-Chih Han and Hung-Ying Tyan. “A better polynomial-time
schedulability test for real-time fixed-priority scheduling algo-
rithm.” In: Proceedings of the 18th IEEE Real-Time Systems Symposium
(RTSS ’97), December 3-5, 1997, San Francisco, CA, USA. IEEE Com-
puter Society, 1997, pp. 36–45.

[HFB+18] Tim Harde, Matthias Freier, Georg von der Brüggen, and Jian-Jia
Chen. “Configurations and Optimizations of TDMA Schedules
for Periodic Packet Communication on Networks on Chip.” In:
Proceedings of the 26th International Conference on Real-Time Networks
and Systems, RTNS 2018, Chasseneuil-du-Poitou, France, October 10-12,
2018. ACM, 2018, pp. 202–212.

[HCB+18] Nils Hölscher, Kuan-Hsun Chen, Georg von der Brüggen, and Jian-
Jia Chen. “Examining and Supporting Multi-Tasking in EV3OSEK.”
In: OSPERT 2018 (2018), p. 25.

[Hor74] W. A. Horn. “Some simple scheduling algorithms.” In: Naval Re-
search Logistics Quarterly 21.1 (1974), pp. 177–185.

[HV95] Rodney R. Howell and Muralidhar K. Venkatrao. “On Non-Preemptive
Scheduling of Recurring Tasks Using Inserted Idle Times.” In: Inf.
Comput. 117.1 (1995), pp. 50–62.

[HLK11] Pi-Cheng Hsiu, Der-Nien Lee, and Tei-Wei Kuo. “Task synchro-
nization and allocation for many-core real-time systems.” In: Inter-
national Conference on Embedded Software, (EMSOFT). 2011, pp. 79–
88.

http://www.gurobi.com

bibliography 239

[HGS+14] Pengcheng Huang, Georgia Giannopoulou, Nikolay Stoimenov,
and Lothar Thiele. “Service adaptions for mixed-criticality sys-
tems.” In: 19th Asia and South Pacific Design Automation Conference,
ASP-DAC 2014, Singapore, January 20-23, 2014. IEEE, 2014, pp. 125–
130.

[HC15a] Wen-Hung Huang and Jian-Jia Chen. “Response Time Bounds for
Sporadic Arbitrary-Deadline Tasks under Global Fixed-Priority
Scheduling on Multiprocessors.” In: International Conference on Real
Time Networks and Systems, RTNS. 2015, pp. 215–224.

[HC16] Wen-Hung Huang and Jian-Jia Chen. “Self-suspension real-time
tasks under fixed-relative-deadline fixed-priority scheduling.” In:
2016 Design, Automation & Test in Europe Conference & Exhibition,
DATE 2016, Dresden, Germany, March 14-18, 2016. 2016, pp. 1078–
1083.

[HC15b] Wen-Hung Huang and Jian-Jia Chen. “Techniques for Schedu-
lability Analysis in Mode Change Systems under Fixed-Priority
Scheduling.” In: 21st IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications, RTCSA 2015, Hong
Kong, China, August 19-21, 2015. IEEE Computer Society, 2015,
pp. 176–186.

[HCZ+15] Wen-Hung Huang, Jian-Jia Chen, Husheng Zhou, and Cong Liu.
“PASS: priority assignment of real-time tasks with dynamic sus-
pending behavior under fixed-priority scheduling.” In: DAC. ACM,
2015, 154:1–154:6.

[HYC16] Wen-Hung Huang, Maolin Yang, and Jian-Jia Chen. “Resource-
Oriented Partitioned Scheduling in Multiprocessor Systems: How
to Partition and How to Share?” In: 2016 IEEE Real-Time Systems
Symposium, RTSS 2016, Porto, Portugal, November 29 - December 2,
2016. IEEE Computer Society, 2016, pp. 111–122.

[IEC10] IEC-61508. Functional safety of electrical / electronic / programmable
electronic safety-related systems edition 2.0. Tech. rep. International
Electrotechnical Commission (IEC), 2010. url: http://www.iec.
ch/functionalsafety/standards/page2.htm.

[ISO00] ISO-26262-1:2011. Iso/fdis26262: Road vehicles - functional safety. Tech.
rep. International Organization for Standardization (ISO), 2000.
url: https://www.iso.org/standard/43464.html.

[Jac55] J. R. Jackson. Scheduling a production line to minimize maximum
tardiness. Tech. rep. University of California, Los Angeles, 1955.

[JZP03] Mathieu Jan, Lilia Zaourar, and Maurice Pitel. “Maximizing the
execution rate of low criticality tasks in mixed criticality system.”
In: WMC. 2103, pp. 43–48.

[JSM91] Kevin Jeffay, Donald F. Stanat, and Charles U. Martel. “On non-
preemptive scheduling of period and sporadic tasks.” In: Proceed-
ings of the Real-Time Systems Symposium - 1991, San Antonio, Texas,
USA. 1991, pp. 129–139.

http://www.iec.ch/functionalsafety/standards/page2.htm
http://www.iec.ch/functionalsafety/standards/page2.htm
https://www.iso.org/standard/43464.html

240 bibliography

[JLG+16] Xu Jiang, Xiang Long, Nan Guan, and Han Wan. “On the Decomposition-
Based Global EDF Scheduling of Parallel Real-Time Tasks.” In:
Real-Time Systems Symposium (RTSS). 2016, pp. 237–246.

[JP86] Mathai Joseph and Paritosh K. Pandya. “Finding Response Times
in a Real-Time System.” In: Comput. J. 29.5 (1986), pp. 390–395.

[KP00] Bala Kalyanasundaram and Kirk Pruhs. “Speed is as powerful as
clairvoyance.” In: J. ACM 47.4 (2000), pp. 617–643.

[KSS+07] Woochul Kang, Sang Hyuk Son, John A. Stankovic, and Mehdi
Amirijoo. “I/O-Aware Deadline Miss Ratio Management in Real-
Time Embedded Databases.” In: Proceedings of the 28th IEEE Real-
Time Systems Symposium (RTSS 2007), 3-6 December 2007, Tucson,
Arizona, USA. IEEE Computer Society, 2007, pp. 277–287.

[KY08] Shinpei Kato and Nobuyuki Yamasaki. “Portioned EDF-based
scheduling on multiprocessors.” In: Proceedings of the 8th ACM &
IEEE International conference on Embedded software, EMSOFT 2008,
Atlanta, GA, USA, October 19-24, 2008. ACM, 2008, pp. 139–148.

[KY07] Shinpei Kato and Nobuyuki Yamasaki. “Real-Time Scheduling
with Task Splitting on Multiprocessors.” In: 13th IEEE International
Conference on Embedded and Real-Time Computing Systems and Ap-
plications (RTCSA 2007), 21-24 August 2007, Daegu, Korea. IEEE
Computer Society, 2007, pp. 441–450.

[KY09] Shinpei Kato and Nobuyuki Yamasaki. “Semi-partitioned Fixed-
Priority Scheduling on Multiprocessors.” In: 15th IEEE Real-Time
and Embedded Technology and Applications Symposium, RTAS 2009,
San Francisco, CA, USA, 13-16 April 2009. IEEE Computer Society,
2009, pp. 23–32.

[KLR12] Junsung Kim, Karthik Lakshmanan, and Ragunathan Rajkumar.
“Rhythmic Tasks: A New Task Model with Continually Varying
Periods for Cyber-Physical Systems.” In: 2012 IEEE/ACM Third In-
ternational Conference on Cyber-Physical Systems, ICCPS 2012, Beijing,
China, April 17-19, 2012. IEEE Computer Society, 2012, pp. 55–64.

[KK07] Israel Koren and C. Mani Krishna. Fault-Tolerant Systems. 1st. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2007. isbn:
0120885255, 9780120885251.

[KZH15] Simon Kramer, Dirk Ziegenbein, and Arne Hamann. “Real world
automotive benchmarks for free.” In: 6th International Workshop on
Analysis Tools and Methodologies for Embedded and Real-time Systems
(WATERS). 2015.

[KT12] Pratyush Kumar and Lothar Thiele. “Quantifying the Effect of Rare
Timing Events with Settling-Time and Overshoot.” In: Proceedings
of the 33rd IEEE Real-Time Systems Symposium, RTSS 2012, San Juan,
PR, USA, December 4-7, 2012. IEEE Computer Society, 2012, pp. 149–
160.

bibliography 241

[KCL+03] Tei-Wei Kuo, Li-Pin Chang, Yu-Hua Liu, and Kwei-Jay Lin. “Effi-
cient Online Schedulability Tests for Real-Time Systems.” In: IEEE
Trans. Software Eng. 29.8 (2003), pp. 734–751.

[KM91] Tei-Wei Kuo and Aloysius K. Mok. “Load Adjustment in Adap-
tive Real-Time Systems.” In: Proceedings of the Real-Time Systems
Symposium - 1991, San Antonio, Texas, USA, December 1991. IEEE
Computer Society, 1991, pp. 160–170.

[LNR09] Karthik Lakshmanan, Dionisio de Niz, and Ragunathan Rajkumar.
“Coordinated Task Scheduling, Allocation and Synchronization on
Multiprocessors.” In: Real-Time Systems Symposium, (RTSS). 2009,
pp. 469–478.

[LRL09] Karthik Lakshmanan, Ragunathan Rajkumar, and John P. Lehoczky.
“Partitioned Fixed-Priority Preemptive Scheduling for Multi-core
Processors.” In: 21st Euromicro Conference on Real-Time Systems,
ECRTS 2009, Dublin, Ireland, July 1-3, 2009. IEEE Computer Society,
2009, pp. 239–248.

[LMM98a] Sylvain Lauzac, Rami G. Melhem, and Daniel Mossé. “An Efficient
RMS Admission Control and Its Application to Multiprocessor
Scheduling.” In: IPPS/SPDP. 1998, pp. 511–518.

[LMM98b] Sylvain Lauzac, Rami G. Melhem, and Daniel Mossé. “Compari-
son of global and partitioning schemes for scheduling rate mono-
tonic tasks on a multiprocessor.” In: 10th Euromicro Conference on
Real-Time Systems (ECRTS 1998), 17-19 June 1998, berlin, Germany,
Proceedings. IEEE Computer Society, 1998, pp. 188–195.

[LSP04] Chang-Gun Lee, Lui Sha, and Avinash Peddi. “Enhanced Utiliza-
tion Bounds for QoS Management.” In: IEEE Trans. Computers 53.2
(2004), pp. 187–200.

[Leh90] John P. Lehoczky. “Fixed Priority Scheduling of Periodic Task Sets
with Arbitrary Deadlines.” In: Proceedings of the Real-Time Systems
Symposium - 1990, Lake Buena Vista, Florida, USA, December 1990.
IEEE Computer Society, 1990, pp. 201–209.

[LSD89] John P. Lehoczky, Lui Sha, and Ye Ding. “The Rate Monotonic
Scheduling Algorithm: Exact Characterization and Average Case
Behavior.” In: Proceedings of the Real-Time Systems Symposium - 1989,
Santa Monica, California, USA, December 1989. 1989, pp. 166–171.

[LRKB77] J. K. Lenstra, A. H. G. Rinnooy Kan, and P. Brucker. “Complexity of
Machine Scheduling Problems.” In: Annals of Discrete Mathematics
1 (1977), pp. 343–362.

[LW82] Joseph Leung and Jennifer Whitehead. “On the complexity of fixed-
priority scheduling of periodic real-time tasks.” In: Performance
Evaluation 2 (1982), pp. 237–250.

242 bibliography

[LCA+14] Jing Li, Jian-Jia Chen, Kunal Agrawal, Chenyang Lu, Christopher
D. Gill, and Abusayeed Saifullah. “Analysis of Federated and
Global Scheduling for Parallel Real-Time Tasks.” In: 26th Euromicro
Conference on Real-Time Systems, ECRTS 2014, Madrid, Spain, July
8-11, 2014. IEEE Computer Society, 2014, pp. 85–96.

[LL73] C. L. Liu and James W. Layland. “Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment.” In: Journal
of the ACM 20.1 (1973), pp. 46–61.

[LSG+16] Di Liu, Jelena Spasic, Nan Guan, Gang Chen, Songran Liu, Todor
Stefanov, and Wang Yi. “EDF-VD Scheduling of Mixed-Criticality
Systems with Degraded Quality Guarantees.” In: IEEE Real-Time
Systems Symposium, RTSS. 2016, pp. 35–46.

[LCT+14] Wei Liu, Jian-Jia Chen, Anas Toma, Tei-Wei Kuo, and Qingxu Deng.
“Computation Offloading by Using Timing Unreliable Components
in Real-Time Systems.” In: Design Automation Conference (DAC).
Vol. 39:1 – 39:6. 2014.

[LLZ+15] Yuchuan Liu, Cong Liu, Xia Zhang, Wei Gao, Liang He, and Yu
Gu. “A Computation Offloading Framework for Soft Real-Time
Embedded Systems.” In: Euromicro Conference on Real-Time Systems,
(ECRTS). 2015, pp. 129–138.

[LGD+00] José María López, Manuel García, José Luis Díaz, and Daniel F.
García. “Worst-case utilization bound for EDF scheduling on real-
time multiprocessor systems.” In: 12th Euromicro Conference on
Real-Time Systems (ECRTS 2000), 19-21 June 2000, Stockholm, Sweden,
Proceedings. IEEE Computer Society, 2000, pp. 25–33.

[LY15] David G. Luenberger and Yinyu Ye. Linear and Nonlinear Program-
ming. Springer Publishing Company, Incorporated, 2015. isbn:
3319188410, 9783319188416.

[Mar11] Peter Marwedel. Embedded System Design - Embedded Systems Foun-
dations of Cyber-Physical Systems, Second Edition. Embedded Systems.
Springer, 2011. isbn: 978-94-007-0256-1.

[MC13] Dorin Maxim and Liliana Cucu-Grosjean. “Response Time Analysis
for Fixed-Priority Tasks with Multiple Probabilistic Parameters.”
In: Proceedings of the IEEE 34th Real-Time Systems Symposium, RTSS
2013, Vancouver, BC, Canada, December 3-6, 2013. 2013, pp. 224–235.

[MHS+12] Dorin Maxim, Mike Houston, Luca Santinelli, Guillem Bernat,
Robert I. Davis, and Liliana Cucu-Grosjean. “Re-sampling for sta-
tistical timing analysis of real-time systems.” In: 20th International
Conference on Real-Time and Network Systems, RTNS ’12, Pont a Mous-
son, France - November 08 - 09, 2012. ACM, 2012, pp. 111–120.

[MEY16] Morteza Mohaqeqi, Pontus Ekberg, and Wang Yi. “On Fixed-
Priority Schedulability Analysis of Sporadic Tasks with Self-Suspension.”
In: RTNS. ACM, 2016, pp. 109–118.

bibliography 243

[Mok83] Aloysius K. Mok. Fundamental Design Problems of Distributed Systems
for the Hard-Real-Time Environment. Tech. rep. Cambridge, MA, USA,
1983.

[MC96] Aloysius K. Mok and Deji Chen. “A multiframe model for real-time
tasks.” In: Proceedings of the 17th IEEE Real-Time Systems Symposium
(RTSS ’96), December 4-6, 1996, Washington, DC, USA. 1996, pp. 22–
29.

[MNL+10] Noel Tchidjo Moyo, Eric Nicollet, Frederic Lafaye, and Christophe
Moy. “On Schedulability Analysis of Non-cyclic Generalized Mul-
tiframe Tasks.” In: 22nd Euromicro Conference on Real-Time Systems,
ECRTS 2010, Brussels, Belgium, July 6-9, 2010. IEEE Computer Soci-
ety, 2010, pp. 271–278.

[MWE+03] Shubhendu S. Mukherjee, Christopher T. Weaver, Joel S. Emer,
Steven K. Reinhardt, and Todd M. Austin. “A Systematic Method-
ology to Compute the Architectural Vulnerability Factors for a
High-Performance Microprocessor.” In: Proceedings of the 36th An-
nual International Symposium on Microarchitecture, San Diego, CA,
USA, December 3-5, 2003. IEEE Computer Society, 2003, pp. 29–42.

[NBF+14] Mitra Nasri, Sanjoy K. Baruah, Gerhard Fohler, and Mehdi Kargahi.
“On the Optimality of RM and EDF for Non-Preemptive Real-Time
Harmonic Tasks.” In: 22nd International Conference on Real-Time
Networks and Systems, RTNS ’14, Versaille, France, October 8-10, 2014.
ACM, 2014, p. 331.

[NF16] Mitra Nasri and Gerhard Fohler. “Non-work-conserving Non-
preemptive Scheduling: Motivations, Challenges, and Potential So-
lutions.” In: 28th Euromicro Conference on Real-Time Systems, ECRTS.
2016, pp. 165–175.

[NK14] Mitra Nasri and Mehdi Kargahi. “Precautious-RM: a predictable
non-preemptive scheduling algorithm for harmonic tasks.” In: Real-
Time Systems 50.4 (2014), pp. 548–584.

[NMF16] Mitra Nasri, Morteza Mohaqeqi, and Gerhard Fohler. “Quantifying
the Effect of Period Ratios on Schedulability of Rate Monotonic.” In:
Proceedings of the 24th International Conference on Real-Time Networks
and Systems, RTNS 2016, Brest, France, October 19-21, 2016. 2016,
pp. 161–170.

[Nat13] National Science Foundation. “Cyber-Physical Systems (CPS).” In:
http://www.nsf.gov/pubs/2013/nsf13502/nsf13502.htm (2013).

[NFR+15] Geoffrey Nelissen, José Carlos Fonseca, Gurulingesh Raravi, and
Vincent Nélis. “Timing Analysis of Fixed Priority Self-Suspending
Sporadic Tasks.” In: ECRTS. IEEE Computer Society, 2015, pp. 80–
89.

[NFR+17] Geoffrey Nelissen, José Fonseca, Gurulingesh Raravi, and Vin-
cent Nélis. Errata: Timing Analysis of Fixed Priority Self-Suspending
Sporadic Tasks. Tech. rep. CISTER-TR-170205. CISTER, ISEP, INESC-
TEC, 2017.

http://www.nsf.gov/pubs/2013/nsf13502/nsf13502.htm

244 bibliography

[NNB10] Farhang Nemati, Thomas Nolte, and Moris Behnam. “Partitioning
Real-Time Systems on Multiprocessors with Shared Resources.” In:
Principles of Distributed Systems - International Conference, OPODIS.
2010, pp. 253–269.

[Pat17] Risat Mahmud Pathan. “Improving the Quality-of-Service for
Scheduling Mixed-Criticality Systems on Multiprocessors.” In: 29th
Euromicro Conference on Real-Time Systems, ECRTS 2017, June 27-30,
2017, Dubrovnik, Croatia. Vol. 76. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2017, 19:1–19:22.

[PF16] Bo Peng and Nathan Fisher. “Parameter Adaption for Generalized
Multiframe Tasks and Applications to Self-Suspending Tasks.”
In: 22nd IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications, RTCSA 2016, Daegu, South Korea,
August 17-19, 2016. 2016, pp. 49–58.

[PST+97] Cynthia A. Phillips, Clifford Stein, Eric Torng, and Joel Wein. “Op-
timal Time-Critical Scheduling via Resource Augmentation (Ex-
tended Abstract).” In: Proceedings of the Twenty-Ninth Annual ACM
Symposium on the Theory of Computing, El Paso, Texas, USA, May 4-6,
1997. ACM, 1997, pp. 140–149.

[PST+02] Cynthia A. Phillips, Clifford Stein, Eric Torng, and Joel Wein. “Op-
timal Time-Critical Scheduling via Resource Augmentation.” In:
Algorithmica 32.2 (2002), pp. 163–200.

[PFS+13] Victor Pollex, Timo Feld, Frank Slomka, Ulrich Margull, Ralph
Mader, and Gerhard Wirrer. “Sufficient real-time analysis for an
engine control unit with constant angular velocities.” In: Design,
Automation and Test in Europe, DATE 13, Grenoble, France, March
18-22, 2013. EDA Consortium San Jose, CA, USA / ACM DL, 2013,
pp. 1335–1338.

[Pot80] C. N. Potts. “Analysis of a Heuristic for One Machine Sequencing
with Release Dates and Delivery Times.” In: Operations Research
28.6 (1980), pp. 1436–1441.

[QHE12] Sophie Quinton, Matthias Hanke, and Rolf Ernst. “Formal anal-
ysis of sporadic overload in real-time systems.” In: 2012 Design,
Automation & Test in Europe Conference & Exhibition, DATE 2012,
Dresden, Germany, March 12-16, 2012. IEEE, 2012, pp. 515–520.

[QNE13] Sophie Quinton, Mircea Negrean, and Rolf Ernst. “Formal analysis
of sporadic bursts in real-time systems.” In: Design, Automation and
Test in Europe, DATE 13, Grenoble, France, March 18-22, 2013. EDA
Consortium San Jose, CA, USA / ACM DL, 2013, pp. 767–772.

[Rte] RTEMS: Real-Time executive for multiprocessor systems. http://www.
rtems.com/. 2013. url: http://www.rtems.com/.

[Raj91] Ragunathan Rajkumar. “Dealing with suspending periodic tasks.”
In: IBM Thomas J. Watson Research Center (1991).

http://www.rtems.com/
http://www.rtems.com/
http://www.rtems.com/

bibliography 245

[Raj90] Ragunathan Rajkumar. “Real-Time Synchronization Protocols for
Shared Memory Multiprocessors.” In: 10th International Conference
on Distributed Computing Systems (ICDCS 1990), May 28 - June 1,
1990, Paris, France. IEEE Computer Society, 1990, pp. 116–123.

[RSL88] Ragunathan Rajkumar, Lui Sha, and John P. Lehoczky. “Real-
Time Synchronization Protocols for Multiprocessors.” In: Real-Time
Systems Symposium (RTSS). 1988, pp. 259–269.

[RH10] Khaled S. Refaat and Pierre-Emmanuel Hladik. “Efficient Stochastic
Analysis of Real-Time Systems via Random Sampling.” In: ECRTS.
IEEE Computer Society, 2010, pp. 175–183.

[RRC04] Frédéric Ridouard, Pascal Richard, and Francis Cottet. “Negative
Results for Scheduling Independent Hard Real-Time Tasks with
Self-Suspensions.” In: RTSS. 2004, pp. 47–56.

[SSD+13] A. Sailer, S. Schmidhuber, M. Deubzer, M. Alfranseder, M. Mucha,
and J. Mottok. “Optimizing the task allocation step for multi-core
processors within AUTOSAR.” In: 2013 International Conference on
Applied Electronics. 2013, pp. 1–6.

[SBS+19] Lea Schönberger, Georg von der Bruggen, Horst Schirmeier, and
Jian-Jia Chen. “Design Optimization for Hardware-Based Message
Filters in Broadcast Buses.” In: Design, Automation & Test in Europe
Conference & Exhibition, DATE 2019, Florence, Italy, March 25-29,
2019. IEEE, 2019, pp. 606–609.

[SHB+18] Lea Schönberger, Wen-Hung Huang, Georg von der Brüggen,
Kuan-Hsun Chen, and Jian-Jia Chen. “Schedulability Analysis
and Priority Assignment for Segmented Self-Suspending Tasks.”
In: 24th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications, RTCSA 2018, Hakodate, Japan,
August 28-31, 2018. IEEE Computer Society, 2018, pp. 157–167.

[SRL90] Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky. “Priority In-
heritance Protocols: An Approach to Real-Time Synchronization.”
In: IEEE Trans. Computers 39.9 (1990), pp. 1175–1185.

[SUB+19] Junjie Shi, Niklas Ueter, Georg von der Brüggen, and Jian-Jia Chen.
“Multiprocessor Synchronization of Periodic Real-Time Tasks Us-
ing Dependency Graphs.” In: 25th IEEE Real-Time and Embedded
Technology and Applications Symposium, RTAS 2019, Montreal, QC,
Canada, April 16-18, 2019. Ed. by Björn B. Brandenburg. IEEE, 2019,
pp. 279–292.

[SKK+02] Premkishore Shivakumar, Michael Kistler, Stephen W. Keckler,
Doug Burger, and Lorenzo Alvisi. “Modeling the Effect of Tech-
nology Trends on the Soft Error Rate of Combinational Logic.” In:
2002 International Conference on Dependable Systems and Networks
(DSN 2002), 23-26 June 2002, Bethesda, MD, USA, Proceedings. IEEE
Computer Society, 2002, pp. 389–398.

246 bibliography

[SB02] Anand Srinivasan and Sanjoy K. Baruah. “Deadline-based schedul-
ing of periodic task systems on multiprocessors.” In: Inf. Process.
Lett. 84.2 (2002), pp. 93–98.

[SR88] J. A. Stankovic and K. Ramamritham. Tutorial on Hard Real-Time
Systems. IEEE Computer Society Press, 1988.

[SEG+11] Martin Stigge, Pontus Ekberg, Nan Guan, and Wang Yi. “The Di-
graph Real-Time Task Model.” In: 17th IEEE Real-Time and Embedded
Technology and Applications Symposium, RTAS 2011, Chicago, Illinois,
USA, 11-14 April 2011. IEEE Computer Society, 2011, pp. 71–80.

[SY12] Martin Stigge and Wang Yi. “Hardness Results for Static Priority
Real-Time Scheduling.” In: 24th Euromicro Conference on Real-Time
Systems, ECRTS 2012, Pisa, Italy, July 11-13, 2012. IEEE Computer
Society, 2012, pp. 189–198.

[SZ13] Hang Su and Dakai Zhu. “An elastic mixed-criticality task model
and its scheduling algorithm.” In: Design, Automation and Test in
Europe, DATE 13, Grenoble, France, March 18-22, 2013. Ed. by Enrico
Macii. EDA Consortium San Jose, CA, USA / ACM DL, 2013,
pp. 147–152.

[SGW+17] Jinghao Sun, Nan Guan, Yang Wang, Qingqiang He, and Wang
Yi. “Real-Time Scheduling and Analysis of OpenMP Task Systems
with Tied Tasks.” In: 2017 IEEE Real-Time Systems Symposium, RTSS
2017, Paris, France, December 5-8, 2017. IEEE Computer Society,
2017, pp. 92–103.

[SL96] Jun Sun and Jane W.-S. Liu. “Synchronization Protocols in Dis-
tributed Real-Time Systems.” In: Proceedings of the 16th International
Conference on Distributed Computing Systems. 1996, pp. 38–45.

[SL14] Youcheng Sun and Giuseppe Lipari. “A Weak Simulation Relation
for Real-Time Schedulability Analysis of Global Fixed Priority
Scheduling Using Linear Hybrid Automata.” In: 22nd International
Conference on Real-Time Networks and Systems, RTNS ’14, Versaille,
France, October 8-10, 2014. ACM, 2014, p. 35.

[SL16] Youcheng Sun and Giuseppe Lipari. “A pre-order relation for ex-
act schedulability test of sporadic tasks on multiprocessor Global
Fixed-Priority scheduling.” In: Real-Time Systems 52.3 (2016), pp. 323–
355.

[SLG+14] Youcheng Sun, Giuseppe Lipari, Nan Guan, and Wang Yi. “Improv-
ing the response time analysis of global fixed-priority multiproces-
sor scheduling.” In: 2014 IEEE 20th International Conference on Em-
bedded and Real-Time Computing Systems and Applications, Chongqing,
China, August 20-22, 2014. IEEE Computer Society, 2014, pp. 1–9.

[SN18] Youcheng Sun and Marco Di Natale. “Assessing the pessimism of
current multicore global fixed-priority schedulability analysis.” In:
Proceedings of the 33rd Annual ACM Symposium on Applied Computing,
SAC 2018, Pau, France, April 09-13, 2018. ACM, 2018, pp. 575–583.

bibliography 247

[TS97] Hiroaki Takada and Ken Sakamura. “Schedulability of generalized
multiframe task sets under static priority assignment.” In: 4th Inter-
national Workshop on Real-Time Computing Systems and Applications
(RTCSA ’97), 27-29 October 1997, Taipei, Taiwan. IEEE Computer
Society, 1997, pp. 80–86.

[TBE+15] Bogdan Tanasa, Unmesh D. Bordoloi, Petru Eles, and Zebo Peng.
“Probabilistic Response Time and Joint Analysis of Periodic Tasks.”
In: 27th Euromicro Conference on Real-Time Systems, ECRTS 2015,
Lund, Sweden, July 8-10, 2015. 2015, pp. 235–246.

[TB94] Ken Tindell and Alan Burns. “Guaranteeing message latencies on
control area network (CAN).” In: Proceedings of the 1st International
CAN Conference. Citeseer. 1994.

[TEH+16] Sebastian Tobuschat, Rolf Ernst, Arne Hamann, and Dirk Ziegen-
bein. “System-level timing feasibility test for cyber-physical auto-
motive systems.” In: 11th IEEE Symposium on Industrial Embedded
Systems, SIES 2016, Krakow, Poland, May 23-25, 2016. IEEE, 2016,
pp. 121–130.

[UBC+18] Niklas Ueter, Georg von der Brüggen, Jian-Jia Chen, Jing Li, and
Kunal Agrawal. “Reservation-Based Federated Scheduling for Par-
allel Real-Time Tasks.” In: 2018 IEEE Real-Time Systems Symposium,
RTSS 2018, Nashville, TN, USA, December 11-14, 2018. IEEE Com-
puter Society, 2018, pp. 482–494.

[Ves07] Steve Vestal. “Preemptive Scheduling of Multi-criticality Systems
with Varying Degrees of Execution Time Assurance.” In: Proceed-
ings of the 28th IEEE Real-Time Systems Symposium (RTSS 2007), 3-6
December 2007, Tucson, Arizona, USA. 2007, pp. 239–243.

[WS99] Yun Wang and Manas Saksena. “Scheduling Fixed-Priority Tasks
with Preemption Threshold.” In: 6th International Workshop on Real-
Time Computing and Applications Symposium (RTCSA ’99), 13-16
December 1999, Hong Kong, China. IEEE Computer Society, 1999,
p. 328.

[WB13a] Alexander Wieder and Björn B. Brandenburg. “Efficient partition-
ing of sporadic real-time tasks with shared resources and spin
locks.” In: International Symposium on Industrial Embedded Systems,
(SIES). 2013, pp. 49–58.

[WB13b] Alexander Wieder and Björn B. Brandenburg. “On Spin Locks in
AUTOSAR: Blocking Analysis of FIFO, Unordered, and Priority-
Ordered Spin Locks.” In: Proceedings of the IEEE 34th Real-Time
Systems Symposium, RTSS 2013, Vancouver, BC, Canada, December
3-6, 2013. IEEE Computer Society, 2013, pp. 45–56.

[WEE+08] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas
Holsti, Stephan Thesing, David B. Whalley, Guillem Bernat, Chris-
tian Ferdinand, Reinhold Heckmann, Tulika Mitra, Frank Mueller,
Isabelle Puaut, Peter P. Puschner, Jan Staschulat, and Per Stenström.
“The worst-case execution-time problem - overview of methods

248 bibliography

and survey of tools.” In: ACM Trans. Embedded Comput. Syst. 7.3
(2008), 36:1–36:53.

[XHK+15] Wenbo Xu, Zain Alabedin Haj Hammadeh, Alexander Kröller,
Rolf Ernst, and Sophie Quinton. “Improved Deadline Miss Models
for Real-Time Systems Using Typical Worst-Case Analysis.” In:
27th Euromicro Conference on Real-Time Systems, ECRTS 2015, Lund,
Sweden, July 8-10, 2015. IEEE Computer Society, 2015, pp. 247–256.

[YCH17] Maolin Yang, Jian-Jia Chen, and Wen-Hung Huang. “A misconcep-
tion in blocking time analyses under multiprocessor synchroniza-
tion protocols.” In: Real-Time Systems 53.2 (2017), pp. 187–195.

[YWB15] Maolin Yang, Alexander Wieder, and Björn B. Brandenburg. “Global
Real-Time Semaphore Protocols: A Survey, Unified Analysis, and
Comparison.” In: Real-Time Systems Symposium (RTSS). 2015, pp. 1–
12.

[YBB09] Gang Yao, Giorgio C. Buttazzo, and Marko Bertogna. “Bounding
the Maximum Length of Non-preemptive Regions under Fixed
Priority Scheduling.” In: 15th IEEE International Conference on Em-
bedded and Real-Time Computing Systems and Applications, RTCSA
2009, Beijing, China, 24-26 August 2009. IEEE Computer Society,
2009, pp. 351–360.

[YBB10] Gang Yao, Giorgio C. Buttazzo, and Marko Bertogna. “Feasibility
Analysis under Fixed Priority Scheduling with Fixed Preemption
Points.” In: 16th IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications, RTCSA 2010, Macau, SAR,
China, 23-25 August 2010. IEEE Computer Society, 2010, pp. 71–80.

[YHL04] Wenci Yu, Han Hoogeveen, and Jan Karel Lenstra. “Minimizing
Makespan in a Two-Machine Flow Shop with Delays and Unit-
Time Operations is NP-Hard.” In: J. Scheduling 7.5 (2004), pp. 333–
348.

I N D E X

abnormal mode, 16, 31, 113

absolute deadline, 21

acceptance ratio, 8, 23

angle-synchronous tasks, 11, 43, 73

aperiodic task sets, 35

application processor, 186, 187, 189,
190, 192

approximated demand bound
function, 179

arbitrary-deadline, 3, 21

assignment strategy, 30, 142

automotive task set, 11, 22, 53, 66, 81

blocking time, 26, 33, 54

breakdown utilization, 8, 37

busy interval, 27, 29, 124, 127

capacity augmentation bound, 53,
107, 108

carry in, 127

classification of scheduling policies,
4

co-operative scheduling, 39, 54, 79

constrained-deadline, 3, 7, 21, 36, 114

Controller Area Network (CAN), 81

critical instant, 7

Critical Instant Theorem, 7, 25

critical section, 32, 186–190

cyber-physical system, 1

deadline miss rate, 46, 47, 147

Deadline Monotonic, 25, 53, 82

deferred preemption, 39, 54

demand bound function, 29, 169, 213

Dhall’s effect, 40

dispatcher, 4

dominance relation, 9, 23

dynamic self-suspension, 11, 17, 32,
48, 165, 166, 186, 201, 202

dynamic-priority scheduling, 5, 24,
28, 37, 38, 44

Earliest Deadline First, 5, 28, 35

embedded system, 1

empirical evaluation method, 8, 12

enforcement, 94

equivalence class, 151

exact test, 7, 23, 25, 71, 117, 170

execution interval, 95

execution interval monotonic, 190

execution pattern, 32, 33

exponential time complexity, 179

fault tolerance, 15, 109, 113

federated scheduling, 99

finishing time, 21

fixed-relative-deadline, 17, 95, 165,
167, 168, 213, 217

full compensation, 133, 140, 144, 164

full timing guarantees, 16, 110, 113,
124, 126, 131, 134, 164, 216

generalized multiframe task, 169, 190

global scheduling, 6, 30, 40

hard real-time system, 1, 7

harmonic task set, 22, 66, 81

heuristic algorithm, 9

hybrid self-suspension, 18, 166, 201,
202, 213, 217

Hyperbolic Bound, 8, 26, 92

hyperbolic form, 55, 57, 61

hyperperiod, 4, 21, 179

implicit-deadline, 3, 7, 21, 36, 114,
168

intermittent fault, 109

interval of interest, 7

job, 3, 21

lateness, 22

limited timing guarantees, 16, 110,
113, 124, 126, 131, 134, 164,
216

limited-preemptive scheduling, 6, 39,
54, 62, 79, 81

249

250 INDEX

linear programming, 57, 67

linear time, 60

Liu and Layland Bound, 14, 26, 53,
82

maximum blocking factor, 63

maximum blocking time, 55

MILP, 181

mixed-criticality systems, 11, 15, 16,
44, 109, 112, 113, 216

multi-tasking, 3

multiprocessor resource sharing, 166,
185, 213

Multiprocessor Systems with
Dynamic Real-Time
Guarantees, 16, 110, 133, 134,
164

necessary test, 7, 23, 171

non-critical section, 32, 186, 187, 189,
190

Non-Preemptive Protocol, 33

non-preemptive scheduling, 6, 35, 53,
54, 71, 81, 82

normal mode, 16, 31, 113, 115

offline scheduling, 4

online adaptation, 113

online scheduling, 4

OPA compatible, 28, 37, 120

optimal algorithm, 9, 23, 25, 35, 37,
39, 82

optimal priority assignment, 28, 37,
120

overload probability, 147

parametric augmentation function,
15, 53, 100, 108, 216

parametric utilization bound, 14, 53,
55, 63–65, 67, 81, 88, 101,
107, 215

partial compensation, 133, 140, 144,
164

partitioned scheduling, 6, 30, 41, 135,
185, 187

pattern-clairvoyant, 18, 167, 203, 213,
217

pattern-oblivious, 18, 167, 203, 213,
217

performance metric, 6

period, 3, 21

periodic task, 3, 21

periodic task model, 36

phase, 3, 21

pi-blocking, 33, 49, 185, 186

preemption threshold, 39, 54

preemptive scheduling, 6, 7, 37, 54,
81, 82

Priority Ceiling Protocol, 33, 49, 185,
187

priority inversion, 33

priority-based scheduling, 4

Quadratic Bound, 26, 92

race conditions, 32

Rate Monotonic, 5, 25, 53, 66, 67, 71,
190

real-time operating system, 6

real-time system, 1, 2

relative deadline, 3, 21

release enforcement, 213

release jitter, 137, 188

release time, 21

resource-oriented partitioned
scheduling, 18, 49, 166, 186,
187, 213, 217

response time analysis, 7, 23, 37, 40

schedulability, 22

schedulability test, 4

scheduling algorithm, 4

scheduling policy, 4

segmented self-suspension, 11, 17,
32, 47, 165, 167, 186, 201,
202, 213

SEIFDA, 17, 95, 165, 174, 213, 217

self-pushing phenomenon, 27, 115

semi-harmonic task set, 22, 43, 53, 66,
215

semi-partitioned scheduling, 6, 30,
42, 135, 166, 187

shared resource, 32, 185

shared task, 136

soft real-time system, 1

speedup factor, 9, 12, 14, 18, 23, 38,
41, 47, 48, 50, 53, 82, 88, 107,

INDEX 251

108, 165, 167, 177, 192, 213,
215

speedup-optimal, 24, 38, 53, 82, 91

spin-based protocols, 185

sporadic task, 3, 21

sporadic task model, 36

Stack Resource Policy, 49, 185, 187

static-priority scheduling, 5, 7, 24, 25,
37, 38, 44, 82, 113, 115

subtasks, 135

sufficient test, 7, 22

suspension interval, 32

suspension-based protocols, 185

synchronization processor, 186, 187,
189–191

Systems with Dynamic Real-Time
Guarantees, 16, 110, 111, 113,
114, 164, 216

tardiness, 6, 22

task migration, 17, 188

theoretical evaluation method, 8, 12,
37, 38, 108, 215

time complexity, 40, 60, 82

Time Demand Analysis, 8, 14, 25, 55,
190

timing anomaly, 36, 39

timing strict tasks, 16, 110, 113, 115,
134, 141

timing tolerable tasks, 16, 110, 113,
115, 134, 141

transient fault, 109

uncertain execution behaviour, 15,
109, 111, 216

utilization, 3, 21

utilization bound, 9, 12, 14, 23, 26,
29, 37, 38, 40, 41, 53, 66, 88,
107, 108

WCET analysis, 3, 54

work-conserving, 22, 24, 26, 29, 36,
40

worst-case deadline failure
probability, 17, 46, 110, 145,
146, 164, 216

worst-case execution time, 3, 15, 21,
109, 216

worst-case response, 190

worst-case response time, 7, 21, 23,
25, 40, 188, 189

Worst-Fit Decreasing, 191

N O TAT I O N

General Task and Task Set Parameters
T = {τ1, . . . , τn} a set of n sporadic (or periodic) tasks Ch. 2.1
n number of tasks Ch. 2.1
τi = (Ci, Di, Ti) a sporadic or periodic real-time task τi Ch. 2.1
Ci worst-case execution time (WCET) of τi Ch. 2.1
Di relative deadline of τi Ch. 2.1
Ti inter-arrival time / period of τi Ch. 2.1
φi phase of τi (release time of the first job) Ch. 2.1
Ui =

Ci
Ti

utilization of τi Ch. 2.1
Usum = ∑τi∈T Ui utilization of T Ch. 2.1
Ei = maxj

{
Ei,j
}

tardiness of τi (maximum over all jobs) Ch. 2.2
ET = maxτi∈T {Ei} tardiness of T (maximum over all tasks) Ch. 2.2
Ri worst-case response time of τi Ch. 2.1
H = LCMτi∈T(Ti) hyperperiod of T Ch. 2.1
Tx = {τi ∈ T | Ti = x} tasks in T with period x Ch. 2.1

Task Instances (Jobs)
τi,j jth task instance (or job) of task τi Ch. 2.1
ai,j release time of τi,j Ch. 2.1
fi,j finishing time of τi,j Ch. 2.1
di,j absolute deadline of τi,j Ch. 2.1
Li,j = fi,j − di,j lateness of τi,j Ch. 2.2
Ei,j = max{0, Li,j} tardiness of τi,j Ch. 2.2

Static-Priority Scheduling
P the priority assignment Ch. 2.4
P(τi) the priority of task τi Ch. 2.4
hp(τk) tasks with a priority higher than τk Ch. 2.4
lp(τk) tasks with a priority lower than τk Ch. 2.4
hep(τk) hep(τk) = hp(τk) ∪ τk Ch. 2.4

Non-Preemptive Scheduling
Bi blocking time of τi Ch. 4.1.1
γi =

Bi
Ci

blocking factor of τi Ch. 4.1.1
γ = maxτi∈T {γi} maximum blocking factor of T Ch. 4.1.1

Speedup Factors
ρ speedup factor of a algorithm / test Ch. 2.3
Ω ≈ 0.56714 transcendental equation Ω = ln

(1
Ω

)
Ch. 4.4.1

Multiprocessor Environments
m number of processors Ch. 2.5

Resource Sharing
R = {R1,R2, ...,Rr} set of shared resources Ch. 2.8
r number of shared resources Ch. 2.8
τi = (Ci, Ai, Ti, Di) resource sharing task Ch. 2.8
Ci non-critical section WCET of τi Ch. 2.8
Ai critical section WCET of τi Ch. 2.8
Ci,1 first non-critical section WCET of τi Ch. 2.8
Ci,2 second non-critical section WCET of τi Ch. 2.8
UC

i = Ci/Ti non-critical section utilization of τi Ch. 2.8
UA

i = Ai/Ti critical section utilization of τi Ch. 2.8
UR = ∑Rq∈RURq utilization Ch. 2.8

Table 7.1: The notation used in this work (part 1 - general).

253

254 notation

Uncertain Execution Behaviour
(Ci,1, ..., Ci,h) WCETs of h distinct execution modes Ch. 2.6
h number of distinct execution modes Ch. 2.6
M set of |M| = h possible execution modes Ch. 2.6
Pi(j) probability of mode j for τi Ch. 2.6
CN

i WCET in normal mode Ch. 2.6
CA

i WCET in abnormal mode Ch. 2.6
Pi(N) probability of the normal mode Ch. 2.6
Pi(A) probability of the abnormal mode Ch. 2.6
UN

i task utilization of τi in normal mode Ch. 2.6
UA

i task utilization of τi in abnormal mode Ch. 2.6
UN

sum = ∑{τi∈T}UN
i task set utilization in normal mode Ch. 2.6

UA
sum = ∑{τi∈T}UA

i task set utilization in abnormal mode Ch. 2.6
EN

i tardiness if all jobs are executed normally Ch. 2.6
EA

i tardiness if all jobs are executed abnormally Ch. 2.6
Systems with Dynamic Real-Time Guarantees

Thard timing strict tasks Ch. 5.2
Tso f t timing tolerable tasks Ch. 5.2
hp(τk)

H := hp(τk) ∩ Thard higher priority tasks in Thard Ch. 5.2
hp(τk)

S := hp(τk) ∩ Thard higher priority tasks in Tso f t Ch. 5.2
Tp set of tasks assigned to processor p Ch. 5.3.1
Pp static-priority task order on processor p Ch. 5.3.1
Tp,hard timing strict tasks on processor p Ch. 5.3.1
Tp,so f t timing tolerable tasks on processor p Ch. 5.3.1
τs shared task Ch. 5.3.4

Probability of Deadline Misses
ρi,t = dt/Tie maximum number of jobs of τi in [0, t) Ch. 5.4
J(t) = ∑τi∈hep(τk) dt/Tie total number of jobs released in [0, t) Ch. 5.3
St maximum accumulated workload over [0, t) Ch. 5.4
Φk = maxj

{
P(Rk,j > Dk)

}
deadline miss probability (DMP) of τk Ch. 5.4

Φk = min0<t≤Dk P(St > t) DMP of τk under the critical instant Ch. 5.4
P(St > t) overload probability at time t Ch. 5.4
X(t) random variable representing the possible execution

modes of all jobs in [0, t)
Ch. 5.3

X (t) state space of X(t) with X (t) =MJ(t) Ch. 5.3
x ∈ X (t) concrete variable assignment for X(t) over [0, t) Ch. 5.3
P(X(t) = x) probability of X(t) to have assignment x Ch. 5.3
X i(t) subset of X(t) related to τi Ch. 5.3
Ci(X i,j(t)) WCET of jth job of τi based on X i,j(t) Ch. 5.3
1{expression} indicator function, i.e., 1 if and only if expression is

true, and 0 otherwise
Ch. 5.3

σ(x) permutation of x Ch. 5.3
Sn set of all permutations of length n Ch. 5.3
[[x]] equivalence class of x, i.e., all x′ ∈ X (t) that can be

permuted into x
Ch. 5.3

Table 7.2: The notation used in this work (part 2 - uncertain execution behaviour).

A B B R E V I AT I O N S

List of Abbreviations
DM Deadline Monotonic scheduling
EDA Equal Deadline Assignment
EDF Earliest Deadline-First scheduling
FRD Fixed-Relative-Deadline
GMF generalized multiframe
LCM least common multiple
-NP non-preemptive scheduling algorithm, e.g., RM-NP
OPA optimal priority assignment
-P preemptive scheduling algorithm, e.g., RM-P
RM Rate Monotonic scheduling
RTOS real-time operation system
SEIFDA Shortest Execution Interval First Deadline Assignment
TDA Time Demand Analysis
WCET worst-case execution time
WCRT worst-case response time

Table 7.3: The abbreviations used in this work.

255

L I S T O F F I G U R E S

Figure 1.1 Classification of scheduling algorithms. 4

Figure 1.2 Comparison of FP-P and FP-NP with dynamic-priority
scheduling. 5

Figure 1.3 The Critical Instant Theorem. 8

Figure 1.4 Theoretical and empirical performance evaluation of schedul-
ing algorithms. 10

Figure 1.5 Contributions of this dissertation. 13

Figure 2.1 Example of the self-pushing phenomenon. 27

Figure 4.1 Parametric utilization bounds for non-preemptive Rate
Monotonic scheduling. 65

Figure 4.2 Acceptance ratio of unscaled and scaled task sets for both
RM-P and RM-NP. 77

Figure 4.3 Effect of non-harmonic subsets. 78

Figure 4.4 Impact of the maximum blocking time on the schedulabil-
ity of under for RM-NP. 79

Figure 4.5 Different priority-assignment strategies for angle-synchronous
tasks. 80

Figure 4.6 Comparison of the Hyperbolic Bound and the Quadratic
Bound for RM-P. 93

Figure 4.7 Comparison of the acceptance ratio for EDA and SEIFDA. 95

Figure 4.8 Comparison of LP-EE-vpr, gEDF-vpr, and ROP-PCP. 98

Figure 4.9 Theoretical comparison of SM and RM. 105

Figure 4.10 Experimental comparison of SM and RM. 106

Figure 5.1 Tasks can miss a deadline due to self-pushing in an uncer-
tain execution environment. 116

Figure 5.2 Schematic for the system mode analysis. 125

Figure 5.3 Acceptance ratio for 10 tasks per run. 130

Figure 5.4 Comparison of OA and EDF-VD. 131

Figure 5.5 Acceptance rate for percentages of timing strict tasks. 132

Figure 5.6 Acceptance rate for different set sizes. 132

Figure 5.7 Percentage of time with full timing guarantees. 133

Figure 5.8 The problem of release jitter. 137

Figure 5.9 Migration example for Tp. 140

Figure 5.10 Comparisons of partitioned, semi-partitioned, and com-
pensation strategies. 143

Figure 5.11 Impact of the WCET-Factors on the acceptance ratio. 144

Figure 5.12 The traditional convolution-based approach. 149

Figure 5.13 The multinomial-based approach. 154

Figure 5.14 Average runtime of job-level convolution, task-level con-
volution, and task-level convolution with pruning. 160

Figure 5.15 Average runtime with respect to task set cardinality. 161

Figure 5.16 Approximation quality. 162

256

Figure 5.17 Impact of period range. 163

Figure 6.1 An example of demand bound functions for FRD. 170

Figure 6.2 SEIFDA-maxD and SEIFDA-minD do not dominate each
other (part 1). 176

Figure 6.3 SEIFDA-maxD and SEIFDA-minD do not dominate each
other (part 2). 177

Figure 6.4 Linear approximation of the demand bound function. 180

Figure 6.5 Impact of the g value for SEIFDA-minD. 183

Figure 6.6 Comparison of minD, maxD, and PBminD assignment for
SEIFDA. 184

Figure 6.7 Comparison of SEIFDA with other approaches. 184

Figure 6.8 Comparison of different approaches under different pa-
rameter settings. 199

Figure 6.9 Demand bound function for individual upper bounds. 206

Figure 6.10 Demand bound function for multiple paths. 207

Figure 6.11 Demand bound function for shorter segment, shorter dead-
line. 208

Figure 6.12 Comparison of the related DBFs for the different hybrid
models. 210

Figure 6.13 Possible gain of hybrid models. 212

Figure 8.1 Linear approximation of the demand bound function. 263

L I S T O F TA B L E S

Table 4.1 The information used to generate the automotive task
sets 77

Table 4.2 Linear-time speedup factors of FP-P vs. EDF-P and FP-NP
vs. EDF-NP. 83

Table 5.1 Multinomial distribution and state merging. 157

Table 6.1 SEIFDA-maxD and SEIFDA-minD do not dominate each
other (part 1). 176

Table 6.2 SEIFDA-maxD and SEIFDA-minD do not dominate each
other (part 2). 177

Table 6.3 High-level comparison of the dynamic, hybrid, and seg-
mented self-suspension model. 204

Table 6.4 Example deadline assignments under FRD for the hybrid
self-suspension models 204

Table 7.1 The notation used in this work (part 1 - general). 253

Table 7.2 The notation used in this work (part 2 - uncertain execution
behaviour). 254

Table 7.3 The abbreviations used in this work. 255

257

8
A P P E N D I X

8.1 appendix for chapter 4

section 4 .1

Proof. Theorem 4.3 Similar to Theorem 4.2, the contrapositive is used in this proof
as well, showing that if Eq. (4.10) is not satisfied, Eq. (4.22) is also not satisfied. A

linear programming is constructed to find the minimum of C∗k +
k−1
∑

i=1
t∗i Ui to ensure linear programming

Eq. (4.10) is not satisfied:

inf C∗k +
k−1

∑
i=1

t∗i Ui (8.1a)

s.t C∗k +
k−1

∑
i=1

t∗i Ui +
j−1

∑
i=1

t∗i Ui > t∗j ∀ 1≤j≤k (8.1b)

t∗j ≥ 0 ∀ 1≤j≤k (8.1c)

where t∗1 , . . . , t∗k−1 and C∗k are variables and t∗k is defined as tk for notational
brevity. Again, we replace > with ≥.

We get C∗k +
k−1
∑

i=1
t∗i Ui ≥ t∗k −

k−1
∑

i=1
t∗i Ui when considering Eq. (8.1b) with j = k,

thus switching to the maximization problem with
k−1
∑

i=1
t∗i Ui as the objective function.

Replacing C∗k +
k−1
∑

i=1
t∗i Ui with t∗k −

k−1
∑

i=1
t∗i Ui in Eq. (8.1b) leads to

t∗k −
k−1

∑
i=1

t∗i Ui +
j−1

∑
i=1

t∗i Ui

= t∗k −
k−1

∑
i=j

t∗i Ui ≥ t∗j , ∀ 1≤j≤k−1

(8.2)

259

260 appendix

The result is identical to the linear programming in Eq. (4.15), therefore resulting
in the same optimal solution as in Theorem 4.2 with the same properties. From
Eq. (8.1b) for j = k we get

C∗k +
k−1

∑
i=1

t∗i Ui ≥ t∗k −
k−1

∑
i=1

t∗i Ui

(4.16)
= t∗k − (t∗k − t∗1) = t∗1

(4.18)
=

t∗k
∏k−1

i=1 (Ui + 1)

⇒
C∗k +

k−1
∑

i=1
t∗i Ui

Dk
=

1

∏k−1
i=1 (Ui + 1)

(8.3)

We replace C∗k with Ĉk as C∗k is constructed as the minimum value to ensure
Eq. (4.10) is not satisfied under the worst case setting of the t∗i determined by the
linear programming. Therefore, if Eq. (4.22) holds, Eq. (4.10) holds as well and
the task set is schedulable.

Proof. Theorem 4.8 For RM-NP, we only have to consider the case when hp2(τk)

is empty, since a task τl can only be in hp2(τk) if Tl = Tk for RM. In this case,

the value for
(

Ĉk
Dk

+ 1
)

∏
τj∈hp1(τk)

(Uj + 1) only gets smaller, since Ci > 0 ∀i and

1 + x + y < 1 + x + y + xy = (1 + x)(1 + y) if x > 0, y > 0. The utilization
bound is proved using the Lagrange Multiplier to find the infimum Uk + ∑k−1

i=1 Ui

such that ((1 + γ) ·Uk + 1)
k−1
∏
j=1

(Uj + 1) > 2. We know that the infimum for

Ck
Tk

+ ∑k−1
i=1 Ui results from U1 = U2 = · · · = Uk−1 since the arithmetic mean is

larger than or equal to the geometric mean. Thus, there are only two variables Uk
and U1 to minimize Uk + (k− 1)U1 such that ((1 + γ) ·Uk + 1)(U1 + 1)k−1 ≥ 2.

Let G be Uk + (k− 1)U1− λ
(
((1 + γ) ·Uk + 1)(U1 + 1)k−1 − 2

)
, where λ is the

Lagrange Multiplier. To get the minimum Uk + (k− 1)U1, we consider the first
derivative:

∂G
∂U1

= (k− 1)− λ(k− 1) ((1 + γ) ·Uk + 1) (U1 + 1)k−2 = 0

∂G
∂Uk

= 1− λ(1 + γ)(U1 + 1)k−1 = 0

Therefore, λ = 1
(1+γ)(U1+1)k−1 . Hence, as a result of the Lagrange Multiplier, the

above non-linear programming is minimized when U1 is Uk +
1

1+γ − 1 and

2 = ((γ + 1)Uk + 1) (U1 + 1)k−1 = (1 + γ)

(
Uk +

1
1 + γ

)k

We get Uk = (2
1+γ)

1
k − 1

1+γ and U1 = (2
1+γ)

1
k − 1.

From a mathematical point of view, U1 can be negative when γ > 1. Since
U1 ≥ 0 by definition, we should set U1 to 0 and Uk to 1

1+γ when γ > 1. By
combining these two cases, we reach the conclusion of the proof.

8.1 appendix for chapter 4 261

Proof. Theorem 4.10 The infimum Ck
Tk

+ ∑k−1
i=1 Ui happens when all Ui values are

the same, i.e., U1 = U2 = · · · = Uk−1. Thus, there are only two variables Uk and
U1 to minimize G = Uk + (k− 1)U1 such that (γUk

1−Uk
+ 1)(U1 + 1)k−1 ≥ 2.

For the minimum total utilization this equation holds with equality. We denote
` = k− 1 and get

Uk =
(2

1+U1
)` − 1

γ + (2
1+U1

)` − 1
= 1− γ

γ + (2
1+U1

)` − 1

We replace Uk in G this value, hence the function has only one variable U1. To
determine the minimum value for G = `U1 + 1− γ

γ+(2
1+U1

)`−1
we use the first

derivative:

∂G
∂U1

= `− `γ2(1 + U1)
−`−1

(γ− 1 + 2(1 + U1)−`)2

= `

[
1− γ2(1 + U1)

−`−1

(γ + 2(1 + U1)−` − 1)2

]

We know that U1 ∈ [0; 2
1
` − 1], since if U1 > 2

1
` − 1 then Uk < 0. We now show

that the minimal value happens for one of the boundaries of U1. For U1 = 0 we
get ∂G

∂U1
(0) = `(1− 2γ

(γ+1)2) > 0 as γ > 0. We further analyze the second derivative:

∂2G
∂U1

=
−`(−`− 1)γ2(1 + U1)

−`−22(1 + U1)
−`

(γ− 1 + 2(1 + U1)−`)4

+
`γ2(1 + U1)

−`−12(γ− 1 + 2(1 + U1)
−`)(−2`)(1 + U1)

−`−1

(γ− 1 + 2(1 + U1)−`)4

=
2γ`(1 + U1)

−`−2[(`+ 1)(γ− 1) + 2(`− 1)(1 + U1)
−`]

(γ− 1 + 2(1 + U1)−`)3

The demoninator is always positive as U1 ≥ 0 and γ > 0. In the numerator
the same argument holds for the multiplied term outside the bracket. The first
term in the bracket is a constant and 2(`− 1)(1 + U1)

−` is a decreasing function
with respect to U1. Therefore, we conclude that the second order derivative of
G with respect to U1 in the range of [0; 2

1
` − 1] is either (1) always positive

∀U1 ∈ [0; 2
1
` − 1], (2) always negative ∀U1 ∈ [0; 2

1
` − 1], or (3) changing from

positive to negative at a certain value U∗1 for U1 ∈ [0; 2
1
` − 1]. For the first case

the minimum happens when U1 = 0. In the second case and the third case
the minimum is one of the boundary conditions, since ∂G

∂U1
= 0 happens when

∂2G
∂U1

< 0, which results in a local maximum.

section 4 .2

A task set with a given target utilization Ut cannot be created based on the
information in Table III, Table IV, and Table V in [KZH15] directly. Empirical
tested showed that a task set containing unscaled tasks with a total utilization
of ≈ 100% contained around 1500 individually drawn random tasks. These
individual random draws were very time consuming. Hence, we used a way to
generate tasks withs with a given utilization more efficiently:

262 appendix

1. Drawing the periods of 3000 tasks according to the percentage distribution
for period, i.e., the distribution in Table 4.1.

2. According to the number of tasks with this period, drawing the execution
time for tasks randomly based on the related Weibull distribution..

3. Drawing the scaling factors and calculating WCETs if selected.

4. Combining the tasks to Tbase.

5. Shuffling Tbase.

6. Taking tasks from Tbase until the total utilization Usum of the set is larger
than the target utilization Ut.

7. Finish, if Usum is in [Ut, Ut + γ] for a threshold value γ.

8. If not, discard the last task, take the next task from Tbase, and check if Usum

is in [Ut, Ut + γ], etc.

The threshold γ depended on the utilization steps in our experiments, i.e., it was
always smaller than the utilization steps, normally 0.1.

section 4 .5

Considering the non-critical sections of τi, a workload of CN
i,1 + CN

i,2 must be
finished with a relative deadline Ti

2 at speed 1
2 . The periodic activation every Ti

time units results in the following necessary condition:

∀0 < t ≤ Tmax

2
, ∑

τi

(⌊
t + Ti

2
Ti

⌋
× 2(CN

i,1 + CN
i,2)

)
≤ m× t (8.4)

where Tmax is the maximum among the periods in the task set and the factor 2
in the summation is due to the speed 1

2 of the virtual processors. For the critical
sections, each of the r virtual processor must be analyzed individually. For the vir-
tual processor executing task set τs, i.e., the tasks that access resource s ∈ [1, ..., r],

the demand bound function of the task set is DBFs(t) = ∑τi∈τs

(⌊
t+ Ti

2
Ti

⌋
× 2Ccrit

i

)

for any t > 0, where the factor 2 again results from the speed of 1
2 of the vir-

tual processor. The blocking time Bs(t), which is due to the shared resource s,
is Bs(t) = max∀τi∈τs,Di>t(2 · Ci − ∆), where ∆ > 0 but infinitesimally small. The
exact schedulability test for uniprocessor EDP-NP by George et al. [GRS96] tests

whether (i) ∑τi∈τs
2CCrit

i
Ti

≤ 1 and (ii) DBFs(t) + Bs(t) ≤ t ∀t > 0. For the

necessary test, we only evaluated t = Ti
2 of the tasks τi ∈ τs for each resource s.

8.2 appendix for chapter 6

section 6 .1

Here, we provide some more detailed proofs of Theorem 6.11 and Theorem 6.12

together with some additional observations.

8.2 appendix for chapter 6 263

t
Di,1 Ti 2Ti

Ci,1
Ci,2

Figure 8.1: The linearized DBF for Eq. (6.22a) with g = 1. We use exact steps identical to
Eq. (6.1) up to gTi and linearization after gTi. We show the linearization of the
original, exact curve (black) without adjustment (red dashed, does not work),
linearization after jumping by Ci,1 at gTi (blue dashed, over approximation),
and after adjusting by Di,1Ui,1 at gTi (gray, tight).
(Redraw of Figure 6.4 for readers convenience.)

Theorem 6.11: The function
̂

dbf
frd

i(t, Di,1) in Eq. (6.23) is a safe upper bound
of dbf

frd(t, Di,1) for any t ≥ 0 and a specified Di,1 ≤ (Ti − Si)/2. Therefore, if
∑τi∈T Ui ≤ 1 and

∑
τi∈T

̂
dbf

frd
i (t, Di,1) ≤ t ∀t ≥ 0

then the resulting FRD schedule is feasible. Moreover, this schedulability test can be done
in O(g|T|2) time complexity.

Proof. We show that Eq. (6.22a) is an over approximation of Eq. (6.1) and that
Eq. (6.22b) is an over approximation of Eq. (6.2). This directly leads to the conclu-
sion that Eq. (6.23) is an over approximation of Eq. (6.3). We only have to consider
the parts that are not identical, i.e., t ≥ gTi in Eq. (6.22a) and t ≥ gTi − Si in
Eq. (6.22b).

In Eq. (6.22a) we consider the case where Ci,1 is released at the beginning of

the period as displayed in Fig 6.4 for g = 1. This means d̂b f
1
i (t, Di,1) is identical

with db f 1
i (t, Di,1) for the first g releases of τi, i.e., the functions jumps by Ci,1 at

`Ti + Di,1 and by Ci,2 at (`+ 1)Ti for ` = 0, 1, 2, . . . , g− 1. We examine the g-th
release of τi. The total workload created by τi in an interval of length Ti is Ci
and thus a linear and save upper bound can be achieved by using a straight
line with gradient Ui as the task is strictly periodic. Without any adjustment
Uit is a save upper bound for the jump at (g + 1)Ti + Di,2 as it happens at the
end of the period (red). However, if Ci,1

Di,1
> Ui this is not sufficient to cover the

jump at gTi + Di,1. A simple but not tight solution is to add Ci,1 as the resulting
linear function covers the case that the jump happens at gTi instead of gTi + Di,1

(blue). Since the utilization created by Ci,1 in [gTi; gTi + Di,1] is Ci,1
Di,1

we can make
the linear approximation tighter by subtracting Di,1Ui,1 (gray). As the tasks are

released with a fixed inter arrival time Ti we know that d̂b f
1
i (t, Di,1) is an over

approximation of db f 1
i (t, Di,1).

264 appendix

In Eq. (6.22b) we upper bound the workload for the case that Ci,2 is released at
time t = 0, i.e., the functions jumps by Ci,2 at `Ti + Di,2 and by Ci,1 at `Ti + Ti − Si
for ` = 0, 1, 2, . . . , g− 1. Ui(t+ Si) is the related linear approximation by a straight
line starting at −Si. This is covers the jumps at `Ti + Ti − Si as the workload in
[−Si; Ti − Si] is Ci. We have to ensure that the jump at `Ti + Di,2 is covered as
well. An easy and save upper bound is to use Ui(t + Si + Di,1), i.e., letting the
straight line start −Si−Di,1. We tighten this approach by only adding the amount
of utilization that Ci,2 contributes in an interval of length Di,1, i.e. Ci,2

Di,1
Ti

, leading
to a save upper bound on Eq. (6.2) for t ≥ gTi − Si.

As both Eq. (6.22a) and Eq. (6.22b) are over approximations of Eq. (6.1) and
Eq. (6.2), respectively, Eq. (6.23) is an over approximation of Eq. (6.3).

We know that we only have to test the schedulability at the points in time

where ∑τi∈T
̂

dbf
frd
i (t, Di,1) changes. Each task τi has exactly 3 jump points in

each of the g periods when ̂
dbf

frd
i (t, Di,1) (Eq. (6.23)) is used which leads to

3g discrete jump points at `Ti + Di,1, `Ti + Ti − Si − Di,1, and t = `Ti + Ti − Si
with ` = 0, 1, 2, . . . , g− 1 for each τi ∈ T.1 Let P be the set of all these 3g|T|
jump points of all τi ∈ T and let t∗ be the maximum of the points in P. It is

easy to see that ∑τi∈T
̂

dbf
frd
i (t, Di,1) is a linear function for t > t∗. This means if

∑τi∈T
̂

dbf
frd
i (t, Di,1) ≤ t for some t > t∗ it holds ∀t > t∗, i.e., the schedulability

after t∗ according to the linearly approximated test can be tested by testing one

t > t∗. In addition we must evaluate all the time points where ∑τi∈T
̂

dbf
frd
i (t, Di,1)

is not linear, i.e., all points in P which are 3gT points in total. As each test hast to
calculate the workload up to the tested point for each of the |T| tasks this leads
to O(g|T|2) time complexity.

Theorem 6.12: For a given integer g ≥ 1

̂
dbf

frd
i (t, Di,1) ≤

(
1 +

1
g

)
dbf

frd
i (t, Di,1) ∀t ≥ 0

Proof. We check this condition for both cases individually, i.e., for Eq. (6.22a)
compared to Eq. (6.1) and for Eq. (6.22b) compared to Eq. (6.2). We only have to
check directly before the jumps of Eq. (6.1) (Eq. (6.2), respectively) happen, as
between jump points the exact demand bound function is not changing while
the approximated BDF is constantly increasing. It is sufficient to check the first
period after the beginning of the linearization as with each completed period the
values of all equations are increase by Ci which only leads to a lower ratio.

When we check the ratio of Eq. (6.22a) compared to Eq. (6.1) we can use

d̂b f
1
i (gTi + Di,1, Di,1) and d̂b f

1
i ((g + 1)Ti, Di,1) as upper bounds for each value t ∈

[gTi; gTi + Di,1) and t ∈ [gTi + Di,1; (g + 1)Ti), respectively, while db f 1
i (gTi, Di,1)

1 The jump of Eq. (6.22a) at (l + 1)Ti is covered by the jump at t = `Ti + Ti − Si already as at both
points the total workload of the DBF is (l + 1)Ci.

8.2 appendix for chapter 6 265

and db f 1
i (gTi +Di,1, Di,1) are lower bounds for the values of db f 1

i in those intervals.
We know db f 1

i (gTi, Di,1) = g(Ci,1 + Ci,2) while

d̂b f
1
i (gTi + Di,1, Di,1) = Ui(gTi + Di,1)− Di,1Ui,1 + Ci,1

= g(Ci,1 + Ci,2) + Di,1Ui − Di,1Ui,1 + Ci,1

= g(Ci,1 + Ci,2) + Di,1Ui,2 + Ci,1 < (g + 1)(Ci,1 + Ci,2)

as Di,1Ui,2 < Ci,2. In the other case, db f 1
i (gTi + Di,1, Di,1) = g(Ci,1 + Ci,2) + Ci,1

while furthermore d̂b f
1
i ((g + 1)Ti, Di,1) = (g + 1)(Ci,1 + Ci,2)− Di,1Ui,1 + Ci,1 <

(g + 1)(Ci,1 + Ci,2) + Ci,1. By dividing by (g + 1) in both cases we reach the
conclusion for Eq. (6.22a).

For Eq. (6.22b) compared to Eq. (6.2) we use d̂b f
2
i (gTi − Si + Di,2, Di,1) and

d̂b f
2
i (gTi + Ti − Si, Di,1) as upper bounds for the values of d̂b f

2
i in the analyzed

interval compared to db f 2
i (gTi − Si, Di,1) and db f 2

i (gTi − Si + Di,2, Di,1) as lower
bounds for the values of db f 2

i in those intervals. We know that db f 2
i (gTi −

Si, Di,1) = g(Ci,1 + Ci,2) while

d̂b f
2
i (gTi − Si + Di,2, Di,1) = Ui(gTi + Di,2) + Ci,2

Di,1

Ti

= g(Ci,1 + Ci,2) + UiDi,2 + Ci,2
Di,1

Ti

= g(Ci,1 + Ci,2) + Di,2Ui + Di,1U2

= g(Ci,1 + Ci,2) + Ci,2 + Di,1U1 < (g + 1)(Ci,1 + Ci,2)

as Di,1U1 < Ci,1. In the second case, db f 2
i (gTi − Si + Di,2, Di,1) = g(Ci,1 + Ci,2) +

Ci,2 and in addition d̂b f
2
i (gTi + Ti − Si, Di,1) = Ui(gTi + Ti − Si + Si) + Ci,2

Di,1
Ti

<

(g + 1)(Ci,1 + Ci,2) + Ci,2 as Ci,2
Di,1
Ti

< Ci,2. Dividing by (g + 1) in both cases
reaches the conclusion for Eq. (6.22b).

As a special case when g is 1, we approximate dbf
frd
i (t, Di,1) by using the

following function with only three dis-continuous points before Ti − Si, which
are at Di,1, Di,2 = Ti − Si − Di,1, and Ti − Si:

dbf
lin
i (t, Di,1) =





0 if t < Di,1

Ci,1 if Di,1 ≤ t < Di,2

Ci,1 + Ci,2 if Di,2 ≤ t < Ti − Si

Ui(t + Si) + Ci,2
Di,1
Ti

if Ti − Si ≤ t,

(8.5)

where Di,2 is defined as Ti − Si − Di,1.

Lemma 8.1. The function dbf
lin
i (t, Di,1) defined in Eq. (8.5) is a safe upper bound of

dbf
frd(t, Di,1) for any t ≥ 0 and a specified Di,1 ≤ (Ti − Si)/2.

Proof. This comes from Lemma 6.11 when g is 1.

Lemma 8.2. Let Di,1 for every task τi in T be given, where Di,1 ≤ (Ti − Si)/2 and
Ci,1 ≤ Ci,2. Let TD be {Di,1 | τi ∈ T} ∪ {Ti − Si − Di,1 | τi ∈ T} ∪ {Ti − Si | τi ∈ T},

266 appendix

i.e., TD consists of all the relative deadlines (for both computation segments) and Ti − Si
of the tasks τi’s in T. The resulting FRD schedule is feasible if ∑n

i=1 Ui ≤ 1, and

n

∑
i=1

dbf
lin
i (t, Di,1) ≤ t, ∀t ∈ TD.

Proof. The proof is rather straight forward since dbf
lin
i (t, Di,1) can be presented

by a linear function if t /∈ TD and t ≥ Ti − Si. Therefore, we only have to check
whether ∑n

i=1 dbf
lin
i (t, Di,1) ≤ t, ∀t ∈ TD. If this holds, the condition ∑n

i=1 Ui ≤ 1
implies that ∑n

i=1 dbf
lin
i (t, Di,1) ≤ t, ∀t > 0 and t /∈ TD. Therefore, by Lemma 8.1,

we reach the schedulability condition in Theorem 6.1.

	Abstract
	Publications
	Acknowledgments
	Contents
	1 Introduction
	1.1 General Concepts in Real-Time Scheduling
	1.1.1 Modelling of Real-Time Systems
	1.1.2 Classification of Scheduling Algorithms
	1.1.3 Schedulability Analysis
	1.1.4 Performance of Scheduling Algorithms

	1.2 Context and Challenges
	1.3 Contribution of this Dissertation
	1.3.1 Speedup Factors and Parametric Utilization Bounds
	1.3.2 Uncertain Execution Behaviour
	1.3.3 Self-Suspension

	1.4 Author's Contribution to this Dissertation

	2 Task Model, System Model, Notation, and Fundamentals
	2.1 Task Model
	2.2 Schedulability
	2.3 Theoretical Comparison of Scheduling Algorithms
	2.4 Uniprocessor Scheduling
	2.4.1 Static-Priority Scheduling
	2.4.2 Dynamic-Priority Scheduling

	2.5 Multiprocessor Scheduling
	2.6 Uncertain Execution Behaviour
	2.7 Self-Suspension
	2.8 Resource Sharing

	3 Related Work
	3.1 Aperiodic Tasks
	3.2 Modelling of Real-Time Systems
	3.3 Uniprocessor Scheduling
	3.3.1 Preemptive Scheduling
	3.3.2 Non-Preemptive Scheduling
	3.3.3 Limited-Preemptive Scheduling

	3.4 Multiprocessor Scheduling
	3.4.1 Global Scheduling
	3.4.2 Partitioned Scheduling
	3.4.3 Semi-Partitioned Scheduling
	3.4.4 Comparison of Scheduling Paradigms

	3.5 Automotive Systems and Rate-Dependent Tasks
	3.6 Mixed-Criticality Systems
	3.7 Probabilistic Response Time Analysis and Schedulability Tests
	3.8 Self-Suspension
	3.8.1 Segmented Self-Suspension Model
	3.8.2 Dynamic Self-Suspension Model

	3.9 Multiprocessor Resource Sharing
	3.10 Connection to Subsequent Chapters

	4 Speedup Factors and Parametric Utilization Bounds
	4.1 Parametric Utilization Bounds for Non-Preemptive Scheduling
	4.1.1 Hyperbolic Schedulability Test
	4.1.2 Parametric Utilization Bound

	4.2 Parametric Utilization Bounds for Automotive Task Systems
	4.2.1 Preliminary Results
	4.2.2 Analysis for RM-P
	4.2.3 Non-Preemptive Scheduling
	4.2.4 Angle-Synchronous Tasks
	4.2.5 Evaluation

	4.3 Parametric Bounds - Recapitulation
	4.4 Linear Time Speedup Factors
	4.4.1 Speedup-Optimal Priority Assignment
	4.4.2 Speedup Factor of DM-NP for Constrained Deadlines
	4.4.3 Linear-Time Schedulability Tests

	4.5 Pitfalls of Speedup Factors and Utilization Bounds
	4.5.1 The Meaning and Interpretation of Augmentation Factors
	4.5.2 Better Speedup Factors Do Not Imply A Dominance Relation
	4.5.3 Speedup Factors Based on Enforced Algorithms
	4.5.4 Relative Speedup Factors

	4.6 Parametric Augmentation Functions
	4.7 Parametric Augmentation Function for Rate Monotonic vs. Slack Monotonic
	4.8 Summary and Conclusions

	5 Uncertain Execution Behaviour
	5.1 Dynamic Real-Time Guarantees in an Uncertain Execution Environment
	5.1.1 Modelling Uncertain Execution Behaviour
	5.1.2 Systems with Dynamic Real-Time Guarantees

	5.2 Uniprocessor Systems with Dynamic Real-Time Guarantees
	5.2.1 System Definition
	5.2.2 Exact Schedulability Test
	5.2.3 Properties of Priority Assignments
	5.2.4 System Mode Analysis
	5.2.5 System Monitor Design
	5.2.6 Evaluations

	5.3 Multiprocessor Systems with Dynamic Real-Time Guarantees
	5.3.1 Multiprocessor System Model
	5.3.2 Schedulability Test
	5.3.3 Partitioned Scheduling
	5.3.4 Semi-Partitioned Scheduling
	5.3.5 Compensating Faulty Processors by Task Migration
	5.3.6 Evaluation

	5.4 Efficiently Approximating the Worst-Case Deadline Failure Probability
	5.4.1 Motivation, Problem Definition, and Job-Level Convolution
	5.4.2 The Multinomial-Based Approach
	5.4.3 Runtime Improvement
	5.4.4 Evaluation

	5.5 Conclusion

	6 Self-Suspension and its Applications in Multiprocessor Synchronization
	6.1 One-Segmented Self-Suspension
	6.1.1 Fixed-Relative-Deadline (FRD) Strategies
	6.1.2 Schedulability Test for FRD
	6.1.3 Task Set Transformation
	6.1.4 Greedy Approach
	6.1.5 Relative Deadlines Selection for k
	6.1.6 SEIFDA-maxD and SEIFDA-minD
	6.1.7 Speedup Factor of SEIFDA
	6.1.8 Approximated Test and Time Complexity
	6.1.9 Mixed Integer Linear Programming
	6.1.10 Evaluation

	6.2 Resource-Oriented Partitioning
	6.2.1 Resource-Oriented Partition
	6.2.2 Release Enforcement
	6.2.3 Schedulability Tests under Release Enforcement
	6.2.4 Resource and Task Allocation
	6.2.5 Speedup Factors
	6.2.6 Evaluation
	6.2.7 Multiple Critical Sections

	6.3 Hybrid Self-Suspension Models
	6.3.1 Hybrid Self-Suspension Task Models
	6.3.2 Pattern-Oblivious: Individual Upper Bounds
	6.3.3 Pattern-Oblivious: Multiple Paths
	6.3.4 Pattern-Clairvoyant
	6.3.5 Schedulability Tests and Examination of the Demand Bound Functions
	6.3.6 Evaluation

	6.4 Conclusion

	7 Conclusions and Outlook
	7.1 Summary of the Contributions
	7.1.1 Speedup Factors and Utilization Bounds
	7.1.2 Uncertain Execution Behaviour
	7.1.3 Self-Suspension

	7.2 Examination of the Dissertation Hypothesis
	7.3 Future Work
	7.4 Final Remarks and Outlook

	 Bibliography
	 Index
	Index
	Notation
	 Notation
	Abbreviations
	Abbreviations
	 Abbreviations
	 List of Figures
	List of Figures

	 List of Tables
	List of Tables

	8 Appendix
	8.1 Appendix for Chapter 4
	8.2 Appendix for Chapter 6

