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Chapter 1

Introduction

One of the defining areas in the modern stochastic analysis is the study of
solutions of stochastic (partial) differential equations (S(P)DE in the sequel).
Driven by the wish of defining a process that changes according to some random
force, equations containing known random processes are being considered
and analysed. In order to do this, one needs to find a ”natural” definition
and establish properties of stochastic integrals, i.e. integrals with respect to
stochastic processes.

From the practical point of view an important question in this context is the
statistical inference for such processes, in particular, estimation of parameters
and functions involved in a given model. If a certain process is assumed to
be described by an equation an estimator provides a precise quantification of
the process’s behaviour, leading to a better understanding of the dynamics.
Conversely, a practically motivated study often helps advance the theory in
order to accommodate some particular properties of the setup.

Possibly the simplest example of a stochastic differential equation is the so
called Ornstein-Uhlenbeck equation. It combines a very basic ordinary differential
equation (ODE) x′(t) = αx(t), x(0) = x0 ∈ R with a parameter α ∈ R, with an
additive white noise component driving the dynamics. The obtained equation has
the form

Xt = X0 +

∫ t

0

αXsds+Bt, t ≥ 0,

X0 = x0 ∈ R,

where B is a Brownian motion and α ∈ R is a parameter. From the ODE perspec-
tive, if B were a deterministic function, the solution of such an equation would
have been a function given by

Xt = eαtx0 + eαt
∫ t

0

e−αsdBs
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whenever the right-hand side is well defined. With the development of the
pathwise as well as of the Itō stochastic calculus in the first half of the 20th
century it became possible to assign a meaningful definition to this solution as
an integral with respect to a Brownian motion and to consider integrals of and
with respect to the solution process X needed for further analysis.

An important element for the definition of Itō integrals is a certain structural
property of the Brownian motion, namely the fact that it is a semimartingale.
With the statistical background in mind the estimation of the parameter α is a
natural question, and a lot of literature has been devoted to it. In the framework
of continuous observations on an interval [0, T ] classical ideas such as a maximum
likelihood estimator obtained by the Girsanov theorem as well as the least squares
ansatz lead to the estimator ∫ T

0
XsdXs∫ T

0
X2
sds

that is strongly consistent and asymptotically normal for α < 0 and has a Cauchy
limiting distribution for α > 0. These results are described in [42] together with
an optimality study of the estimator: For α < 0 the local asymptotic normality
(LAN) of the model is demonstrated and for α > 0 the local asymptotic mixed
normality (LAMN) property, and the estimator achieves the Hajek-LeCam
bound in both cases (implying optimality in a certain sense). The applications
for modelling with the Ornstein-Uhlenbeck process X are numerous and reach
from describing the structure of interest rates in finance (see [81]) and analysing
the particle dynamics in physics ([34]) to quantifying the phenotypic evolution
in biology ([47]).

The simplicity of the Ornstein-Uhlenbeck model makes it a very versatile tool,
but it also offers a lot of space for modification and adaptation for certain specific
setups. For instance, one can consider a situation where the driving random
process is non-Markovian and the increments exhibit a long-term correlation.
A simple example of such a process is a fractional Brownian motion (BH

t )t≥0,
which is a Gaussian process defined via a covariance formula depending on a
parameter H ∈ (0, 1). For H > 1

2
the increment process (BH

n+1 − BH
n )n∈N is

strongly correlated even over longer periods of time (this property is known as
long memory or long range dependence and will be made precise later), allowing
the modelling of processes with Gaussian marginal but having a more complex
dependency structure than in case of the Brownian motion, which emerges as
a special case for H = 1

2
. An application for this kind of processes related to

studying turbulence in physics is described in [87]. The solution of the equation

Xt = X0 +

∫ t

0

αXsds+BH
t , t ≥ 0,

X0 = x0 ∈ R,

2



can still be simply derived in the pathwise sense, however, the estimation study
for α proves to be more challenging than for the Brownian motion. To start
with, BH is not a semimartingale for H 6= 1

2
, so one cannot directly rely on the

classical Girsanov theorem for obtaining a maximum likelihood estimator. A way
to overcome this problem is presented in [38]: The authors define semimartingales
that can be associated with the fractional Brownian motion BH as well as with
the solution process X and subsequently make use of the Girsanov theorem.
The estimator defined in this way thus has a more complicated representation
compared to the Brownian case. It is strongly consistent, asymptotically normal
and attains the Hajek-LeCam bound related to the LAN property of the model
for α < 0. This property has been shown only recently in [44]. Following the least
squares approach, on the other hand, still yields the estimator∫ T

0
XsdXs∫ T

0
X2
sds

,

however, the pathwise definition of the stochastic integral only yields a consistent
estimator for α > 0 (see [9]), and in order to obtain an estimator converging to
the true parameter α for α < 0 a different notion has to be considered, namely
the so called divergence integral from the Malliavin calculus, an area of stochastic
analysis whose foundation was laid in 1970-80s and which has gained popularity
in recent years. These and other results concerning SDEs driven by a fractional
Brownian motion have been proved starting from the late 2000s (in particular,
strong consistency and asymptotic normality of the above estimator for α < 0
has been proved in [30] in 2009) and still constitute a fruitful basis for further
investigations despite the apparent simplicity of the objects involved. Nothing
is known, for example, about the optimal convergence rates of estimators for
α > 0.

One instance of research providing a generalisation of the fractional Ornstein-
Uhlenbeck model is a paper by H. Dehling, B. Franke and J.H.C. Woerner ([24]),
where the equation

Xt = X0 +

∫ t

0

(
p∑
i=1

µiϕi(s) + αXs

)
ds+BH

t , t ≥ 0,

X0 = x0 ∈ R,

with periodic functions ϕi having the same period, µi ∈ R and α < 0 is
considered. A driving idea for this model from the point of view of applications
is time-continuous data with Gaussian marginals depending on a long-range
dependent process and carrying some periodicities in its underlying structure.
An example is the earth temperature data derived from the ice core analysis:
It is known to have a long memory and to depend on solar cycles (see [85]).
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Assuming continuous observations, the authors have proposed a least squares
type estimator for the vector (µ1, . . . , µp, α) and shown its consistency and
asymptotic normality by means of Malliavin calculus. As of yet, no results
concerning the optimality of this estimator have been shown.

The above paper has been the starting point for this thesis, and indeed, for
the most part this manuscript should be considered to be a cloud of results and
observations surrounding it. The thesis is far from being comprehensive (nor
does it have the intention to be), and some of the results lead to many more
questions worth investigating. Rather than that it should be considered as a
kaleidoscope of answers to some questions leading in several major directions
inspired by [24] and possibly widening the pavement for a better structural
understanding of related problems.

Chapter 3, following the preliminary part of the thesis, deals with the least
squares type estimator for the vector (µ1, . . . , µp, α) in the case α > 0 and investi-
gates its asymptotic properties. One of the most curious results from this chapter
(along with the non-Gaussian limiting distribution of the estimator) is the change
in the convergence rate for some specific ϕi and the form of the limiting variance
obtained in this case. Additionally, this result is transferred to the case α < 0,
where it also leads to improved rates of convergence. The principal part of this
chapter is presented in the preprint

• R. Shevchenko, J. H. C. Woerner - Inference for fractional Ornstein-
Uhlenbeck type processes with periodic mean in the non-ergodic case, 2019,
arXiv:1903.08033.

In Chapter 4 the setting

Xt = X0 +

∫ t

0

(L(s) + αXs) ds+BH
t , t ≥ 0,

X0 = x0 ∈ R,

is considered for α < 0. However, here we do not assume that L is a linear
combination of known functions. Instead, we assume periodicity and estimate the
function L nonparametrically, relying on such classical techniques as orthogonal
projections and appropriate truncation. We define an estimator related to the
one constructed in [24], show that it converges in L2 and derive its rate of
convergence using Malliavin calculus.

The extension considered in Chapter 5 concerns the random part of the equa-
tion studied in [24]. The solutions of the equations mentioned until now are Gaus-
sian processes. However, a consideration of hydrological data (for which models
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with long memory processes are often considered and which gave the initial moti-
vation to the definition of fractional Brownian motion in [46]) shows the presence
of skewness in the observations (see [43]), requiring a non-Gaussian driving pro-
cess. One class of long range dependent processes having this property are the
non-Gaussian Hermite processes, prominent (and best studied) among them the
Rosenblatt process. Its marginals do indeed have a non-symmetric Lebesgue den-
sity (see [82] for plots and theoretical results), making it an appropriate candidate
for such a model. We consider thus the process

Xt = X0 +

∫ t

0

(
p∑
i=1

µiϕi(s) + αXs

)
ds+ ZH

t , t ≥ 0,

X0 = 0,

where ZH is the Rosenblatt process, and estimate the vector (µ1, . . . , µp, α) for
α < 0 following the construction from [24]. For the proofs of asymptotic properties
we rely this time on specific results from stochastic analysis with respect to the
Rosenblatt process and further explore the structure of the estimator from the
theoretical point of view. An additional value of this chapter is the definition of
estimators using pathwise rather than divergence type integrals and the proof of
their asymptotic properties. The results are presented in the paper

• R. Shevchenko, C. A. Tudor - Parameter estimation for the Rosenblatt
Ornstein–Uhlenbeck process with periodic mean, 2019, Statistical Inference
for Stochastic Processes.

So far there has been one parameter in the considered equations that has been
assumed to be fixed, namely the so called Hurst parameter H responsible for the
long range dependence structure of the driving process. In fact, for continuous
observations this parameter is directly accessible and does not need to be esti-
mated. For discrete observations there is a vast amount of literature dedicated to
the estimation of H in a multitude of settings by studying the so called variations
of observed processes: The monograph [77], for example, is dedicated entirely to
this topic. In the last chapter of the thesis we also consider one such question,
however, this time our main object is significantly more involved. We are dealing
with the solution u of a stochastic wave equation, an SPDE of the form

∂2u
∂t2

(t, x) = ∂2u
∂x2
u(t, x) + ẆH(t, x), t ≥ 0, x ∈ R,

u(0, x) = 0, x ∈ R,
∂u
∂t

(0, x) = 0, x ∈ R,

where WH is a noise white in space and fractional in time. The starting point
for the investigation of variations of u is, as opposed to the previous results, the

5



paper [35] by M. Khalil and C. A. Tudor considering this equation. However, in
the course of our study we encounter familiar objects such as fractional Brown-
ian motion (as well as a Gaussian process with a similar covariance structure),
but also a distribution related to a Rosenblatt marginal. Moreover, this part is
methodically connected to the others by ideas from Malliavin calculus. The main
results are limit theorems, most importantly a non-central limit theorem, where
the distribution mentioned above emerges, as well as the study of several different
estimators of the Hurst parameter H. The content of this chapter can be found
in the preprint

• R. Shevchenko, M. Slaoui, C. A. Tudor - Generalized k-variations and
Hurst parameter estimation for the fractional wave equation via Malliavin
calculus, 2019, arXiv:1903.02369, accepted for publication in Journal of
Statistical Planning and Inference.

Chapter 6 is the only part of the thesis that contains simulations illustrating
the results. While it is methodically challenging to include simulations in
Chapters 4 and 5 (given the fact that divergence integrals cannot in general be
approximated by an appropriate discretisation), a simulation study concerning
Chapter 3 is, in principle, possible. However, due to very high values emerging
in the simulation, the numerical error is high, such that many observations are
needed to adequately approximate the integrals involved. In Chapter 6, on the
other hand, we do not encounter such difficulties and the simulation study seems
to align with the theoretical results.

In total, the contents of this thesis demonstrate an interplay of theoretical
and practical ideas that have largely motivated each other either through mathe-
matical curiosity or following a concrete wish related to a (possible) application.

6



Chapter 2

Preliminaries and background

This chapter provides the reader with a toolkit of basic definitions as well as
techniques that will be used throughout the thesis. At the same time it sets up
the scene for the main chapters by making the reader familiar with reoccurring
notations and machinery.

2.1 Preliminaries

2.1.1 Properties of the fractional Brownian motion

We begin the preliminaries with a short overview over one of the central objects
of this thesis, namely the fractional Brownian motion. Its basic properties are well
known and there are numerous sources explaining them in detail (for example,
the monographs [50] and [11]). In this chapter our references are [48] and [57].

Let (Ω, F, P ) be a complete probability space.
The (two-sided) fractional Brownian motion (fBm) with Hurst index H ∈

(0, 1) is a centred Brownian process BH = (BH
t )t∈R on (Ω, F, P ) with the prop-

erties BH
0 = 0 and

E[BH
t B

H
s ] =

1

2
(|t|2H + |s|2H − |t− s|2H), t, s ∈ R.

It follows from the definition that

E[(BH
t −BH

s )(BH
u −BH

v )] =
1

2
(|s− u|2H + |t− v|2H − |t− u|2H − |s− v|2H).

This implies that the process BH has stationary increments. Moreover, it follows
that E[(BH

t − BH
s )2] = |t − s|2H , which, combined with Gaussianity, yields that

there is a continuous modification (with (H− ε)-Hölder continuous paths for any
ε > 0) of BH by Kolmogorov’s continuity criterion. From now on we assume that
the fBm we consider is a continuous modification.

7



Regarding the stationarity of increments one can compute the autocovariance
function

r(n) := E[BH
1 (BH

n+1 −BH
n )] = (n+ 1)2H − 2n2H + (n− 1)2H n→∞∼ n2H−2,

where the last step is due to a Taylor approximation. Depending on the value of
H one can consider three cases regarding the asymptotics of this function:

• if H ∈
(

0, 1
2

)
, then

∑
n∈N |r(n)| ∼

∑
n∈N n

2H−2 < ∞. In this case we say

that BH is short range dependent,

• if H = 1
2
, then r(n) = 0 for all n ∈ N. More generally, in this case the

increments of BH are independent and B
1
2 is the usual Brownian motion,

• if H ∈
(

1
2
, 1
)

, then
∑

n∈N |r(n)| ∼
∑

n∈N n
2H−2 =∞, and we say that BH

has the property of long range dependence.

In Figures 2.1, 2.2, 2.3 examples of sample paths in these three cases are demon-
strated.
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Figure 2.1: H = 0.25
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Figure 2.2: H = 0.5
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Figure 2.3: H = 0.9

Another important property of the fBm related to the covariance function is
the fact that it is a self similar process. Indeed,

{BH
at , t ∈ R} d

= {aHBH
t , t ∈ R}

in the sense of finite dimensional distributions.
In the course of this thesis we will be concerned with integrals with respect

to fBm. It is well known that for H = 1
2

the process BH is a martingale and thus
the Itō calculus is a good option. However, for H 6= 1

2
this option is not available,

as we will see in the upcoming part of this chapter.
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2.1.1 Definition. For any k > 0, a natural number n ≥ 1 and for any stochastic
process Z = (Zt)t≥0 we call

V n
k (Z) :=

n∑
i=1

∣∣∣Z i
n
− Z i−1

n

∣∣∣k
the realised k-variation of Z.

We call the limit of V k
n (Z) in probability its k-variation.

Recall that for establishing Itō’s calculus with respect to a process it is nec-
essary for this process to be a semimartingale, that is, a sum of a finite variation
process and a local martingale (having a finite quadratic variation).

2.1.2 Proposition. For H 6= 1
2

the process BH is not a semimartingale.

Proof. For k > 0 consider the process

Yn, k = nkH
n∑
i=1

∣∣∣BH
i
n
−BH

i−1
n

∣∣∣k
and note that by the self similarity the sequence (Yn, k)n≥1 has the same distri-
bution as a process (Ỹn, k)n≥1 defined by

Ỹn, k =
1

n

n∑
i=1

∣∣BH
i −BH

i−1

∣∣k .
As discussed above, the sequence of the increments {BH

i −BH
i−1, i ≥ 1} is station-

ary. By Gaussianity and the convergence of the covariance function it follows that
this sequence is even ergodic. Thus, Ỹn, k converges almost surely to E[|BH

1 |k] as
n tends to infinity. Therefore, V k

n (BH) converges in probability to zero if kH > 1
and to infinity if kH < 1.

• For H < 1
2

the number k > 2 can be chosen such that kH < 1 and thus,
the quadratic variation of BH is infinite.

• For H > 1
2

first consider k such that 1
H
< k < 2. It follows that the k-

variation of BH is zero, and thus also its quadratic variation. However, now
we can choose k between 1 and 1

H
and deduce that the 1-variation must be

infinite.

Hence, in both cases BH cannot be a semimartingale.

We conclude this section by indicating a property connecting the fBm with a
Brownian motion. Consider the square integrable kernel

KH(t, s) := cHs
1
2
−H
∫ t

s

(u− s)H−
3
2uH−

1
2du,

9



where cH =
(

H(2H−1)

β(2−2H,H− 1
2

)

) 1
2

and t > s. Then for a Wiener process (Wt)t∈R+ the

process defined by the Itō integral∫ t

0

KH(t, s)dWs

is a fractional Brownian motion.
A generalisation of this construction using the concept of multiple Wiener-Itō

integrals creates a collection of processes having the same covariance structure as
the fBm. They are known as Hermite processes and we will introduce them later.

2.1.2 Stochastic Integration

As mentioned earlier, integration with respect to the fractional Brownian motion
poses a particular challenge in its own right. One of the main tools to define such
integrals is the Malliavin calculus which is particularly well suited for Gaussian
processes. The theory as well as the application to the fractional Brownian motion
are described very extensively in [57]. Another possibility is to consider Young
integrals which are defined as Riemann-Stieltjes type integrals under certain con-
ditions introduced and studied in [86]. A comparable Riemann-type construction
is also proposed in [22].

A comprehensive overview over different integration techniques is presented
in the book [48].

Malliavin Calculus

In this section we will talk about the main definitions of Malliavin calculus
following mainly [57] as well as [51] and quote some results that will be needed
later, focussing in particular on the example of the fractional Brownian motion. If
it is not specifically stated otherwise, the proofs of the results in this section can
be found in [57] and are not given here. Throughout this section let T ∈ R+∪{∞}.

For a real separable Hilbert space (H , 〈· , · 〉H ) we call a stochastic process
W = {W (h), h ∈ H } in a complete probability space (Ω, F , P) an isonormal
Gaussian process on H if W is a centred Gaussian family of random variables
such that for all f, g ∈H

E[W (f)W (g)] = 〈f, g〉H .

For a fractional Brownian motion (BH
t )t∈[0, T ) with Hurst parameterH ∈ (0, 1)

let H H be the closure of the set of indicator functions with respect to the inner
product

〈1[0, s], 1[0, t]〉H H :=
1

2
(t2H + s2H − |t− s|2H), t, s ∈ [0, T ).

10



An isonormal process BH corresponding to this inner product is defined via
BH(1[0, s]) = BH

s for intervals and is extended linearly to simple functions and by
taking L2-limits to all elements of H H . This is described in detail in Example
2.1.5 in [51]. Thus, we have embedded (BH

t )t∈[0, T ) into an isonormal Gaussian
process on H H . The notation H H will persist throughout the thesis.

For H > 1
2

there exists an explicit characterisation of a large subset of H H

(see [61]). We consider the following definition:

|H H | :=
{
f : [0, T )→ R meas. s.th.

∫ T

0

∫ T

0

|f(v)||f(u)||u− v|2H−2dvdu <∞
}
.

It is shown in [60] that |H H | is a subspace of H H , which yields a sufficient
condition for functions to belong to the space H H .

The following result provides us with a useful representation of the inner
product of two functions from the space |H H |.

2.1.3 Proposition. Let H > 1
2
. Then we have for f, g ∈ |H H |

〈f, g〉H H = H(2H − 1)︸ ︷︷ ︸
=:αH

∫ T

0

∫ T

0

f(v)g(u)|u− v|2H−2dudv.

2.1.4 Remark. Similarly to the above proposition one can show that for H = 1
2

(that is, if W is the usual Brownian motion) the space H is identical with the
space L2([0, T )) endowed with the usual inner product.

For a Gaussian process (Wt)t∈[0, T ) on H let S denote the set of smooth
random variables of the form

S :=
{
g(W (h1), . . . ,W (hn))|g ∈ C∞p (Rn), h1, . . . , hn ∈H , n ≥ 1

}
,

where C∞p (Rn) denotes the space of infinitely continuously differentiable functions
g : Rn → R such that g and all its partial derivatives grow at most polynomially.
Then we can define the pth Malliavin derivative Dp (for p ≥ 1) as an operator
which acts on functions F = g(W (h1), . . . ,W (hn)) ∈ S by

DpF =
n∑

i1,...,ip=1

∂pg

∂xi1 . . . ∂xip
(W (h1), . . . ,W (hn))hi1 ⊗ · · · ⊗ hip ,

which means that DpF is a random variable with values in H ⊗p. It does not
depend on the choice of the function g and of h1, . . . , hn ∈H .
D is clearly a linear operator. Moreover, Dp : S → Lq(Ω; H ⊗p) is closable (this

11



is shown in [57]) and we will denote by Dp, q the closure of S with respect to the
norm

‖F‖p, q :=
(
E[|F |q] + E[‖DF‖qH ] + · · ·+ E[‖DpF‖qH ⊗p ]

) 1
q .

Since Malliavin derivatives are H ⊗p-valued random variables, one can identify
them with stochastic processes if those values in H ⊗p are functions. In this case
we will write Dp

sX for DpX(s).

For Malliavin derivatives the chain rule holds, as described in the following
proposition.

2.1.5 Proposition. Let f ∈ C(Rm;R) be a function with ‖∂if‖∞ < Mi <∞ for
some Mi > 0 (i = 1, . . . ,m) and let X1, . . . Xm ∈ D1, 2. Then f(X1, . . . , Xm) ∈
D1, 2 and

Df(X1, . . . , Xm) =
m∑
i=1

∂if(X1, . . . , Xm)DXi.

The product rule

D(X1X2) = X1D(X2) +X2D(X1) (2.1.1)

is an immediate consequence.

For a fixed integer p ≥ 1 the divergence operator, denoted by δp, is the adjoint
of the derivative operator D. Its domain Dom(δp) is the set of random variables
u ∈ L2(Ω; H ⊗p) such that

|E[〈DpF, u〉H ⊗p ]| ≤ cu‖F‖2

for all F ∈ Dp, 2, where cu is a constant.
For u ∈ Dom(δp) the image δp(u) is the unique L2-random variable satisfying the
following characterising equation

E[Fδp(u)] = E[〈DpF, u〉H ⊗p ]

for all F ∈ Dp, 2. We call δ(u)(= δ1(u)) the divergence integral (also known

as Skorokhod integral) and denote it alternatively by
∫ T

0
utδWt to indicate the

underlying process.

Now some classical results (also mentioned in [57]) will be presented which
we will require for further proofs.

2.1.6 Lemma. Let F ∈ D1, 2, u ∈ Dom(δ) such that Fu ∈ L2(Ω; H ). Then
Fu ∈ Dom(δ) and

δ(Fu) = Fδ(u)− 〈DF, u〉H
if the right-hand side is in L2.

12



2.1.7 Lemma. The inclusion D1, 2(H ) ⊆ Dom δ holds and for each u, v ∈
D1, 2(H ) we have

E[δ(u)δ(v)] = E[〈u, v〉H ] + E[Tr(Du ◦Dv)].

In the calculations related to Malliavin calculus explicit representations of
integrals and derivatives in certain particular cases can be of use. In the following
we will describe the definitions and techniques allowing such representations.

Let Hn(x) denote the nth Hermite polynomial defined by

Hn(x) :=
(−1)n

n!
ex

2/2 d
n

dxn
(e−x

2/2)

and H0 := 1. The main reason these polynomials are considered in the context
of Gaussian families is the following orthogonality property.

2.1.8 Lemma. Let X, Y be two jointly normally distributed centred random
variables satisfying E[X2] = E[Y 2] = 1. Then for all m, n ≥ 0 we have

E[Hn(X)Hm(Y )] =

{
1
n!
E[XY ]n if m = n,

0 otherwise.

If we now denote by Hn the closed linear subspace of L2(Ω, F, P ) generated by
the set {Hn(W (h)), h ∈H , ‖h‖H = 1}, then such spaces will form an orthogonal
family due to the previous lemma. We call the space Hn the nth Wiener chaos.

We will denote by Iq(· ) := δq(· ) restricted to the space H ⊗q the qth mul-
tiple stochastic integral with respect to W (known as the Wiener-Itō multiple
stochastic integral).

For functions h ∈H of norm one the relation m!Hm(W (h)) = Im(h⊗m) holds
for all m ∈ N, and as a consequence the following isometry of multiple integrals
is obtained: for p, q ≥ 1, f ∈H ⊗p and g ∈H ⊗q

E
(
Ip(f)Iq(g)

)
=

{
q!〈f̃ , g̃〉H ⊗q if p = q,

0 otherwise,
(2.1.2)

where f̃ denotes the canonical symmetrisation of f and is defined by

f̃(x1, . . . , xq) :=
1

q!

∑
σ∈Sq

f(xσ(1), . . . , xσ(q)),

where the sum runs over all permutations σ of {1, . . . , q}. We can therefore say
that the multiple stochastic integral is an isometry between the Hilbert space
H �q (subspace of symmetrised functions of H ⊗q) equipped with the scaled
norm 1√

q!
‖· ‖H ⊗q and the Wiener chaos of order q. Moreover, we have

Iq(f) = Iq
(
f̃
)
.
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The next important definition is the contraction of two functions. Consider
{ek, k ≥ 1} an orthonormal basis of H and let f ∈H �p and g ∈H �q.

For r = 1, . . . , p ∧ q, the rth contraction f ⊗r g is an element of H ⊗(p+q−2r),
which is defined by:

f ⊗r g :=

∞∑
j1,...,jp=1

〈f, ek1 ⊗ ek2 ⊗ . . . ekr〉H ⊗r ⊗ 〈g, ek1 ⊗ ek2 ⊗ . . . ekr〉H ⊗r . (2.1.3)

In the particular case when H = L2(T ), the r-th contraction f ⊗r g is the
element of H ⊗(p+q−2r) which is defined by

(f ⊗r g)(s1, . . . , sp−r, t1, . . . , tq−r)

=
∫
T r

du1 . . . durf(s1, . . . , sp−r, u1, . . . , ur)g(t1, . . . , tq−r, u1, . . . , ur) (2.1.4)

for every f ∈ L2(T p), g ∈ L2(T q) and r = 1, . . . , p ∧ q.
With this notation we can now formulate the following product rule: if f ∈

H �p and g ∈H �q, then

Ip(f)Iq(g) =

p∧q∑
r=0

r!

(
p

r

)(
q

r

)
Ip+q−2r (f⊗rg) .

An important property of Wiener chaoses is the fact that the space of σ(W )-
measurable random variables can be decomposed into orthogonal spaces, which
is known as the Wiener chaos decomposition. This can be written in terms of
multiple integrals.

2.1.9 Lemma. Let G denote the σ-field generated by W . Then any random vari-
able F ∈ L2(Ω, G, P ) can be written as

F =
∞∑
n=0

In(fn),

where f0 = E[F ], I0 is the identity mapping and the functions fn are up to
symmetrisation uniquely determined by F .

It is clear that by definition δ(In−1(f)) = In(f) for a function f ∈ H �n.
Moreover, for all r ≥ 1,

DrIn(f) =

{
n!

(n−r)!In−r(f) if r ≤ n,

0 otherwise,
(2.1.5)

which is proved in [51].
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An important property of finite sums of multiple integrals is the hypercon-
tractivity. Namely, if F =

∑n
k=0 Ik(fk) with fk ∈H ⊗k then

E[|F |p] ≤ Cp
(
E[F 2]

) p
2 . (2.1.6)

for every p ≥ 2. This is proved in [51].
The last result that we will cover in this section is the interchangeability of the

operators in Malliavin calculus and the Lebesgue integral. The following result
(in a more general form) is shown in Proposition 6.5 of [40].

2.1.10 Proposition. Consider an isonormal Gaussian process BH on Ω gener-
ated by an fBm. Let λ be the Lebesgue measure on R. Let u : R× [0, T ]×Ω→ R
be a measurable random field with the following properties:

(i) u(x, · ) ∈ Dom(δ) for every x ∈ R,

(ii) E[
∫
R

∫
R〈|u(x1, · )|, |u(x2, · )|〉H Hdx1dx2] <∞,

(iii) there is a measurable version in Ω × R of the random field(∫ T
0
u(x, t)δBH

t

)
x∈R

,

(iv) it holds that ∫
R
E

[(∫ T

0

u(x, t)δBH
t

)2
]
dx <∞.

Then
∫
R u(x, · )dx ∈ Dom(δ) and∫ T

0

∫
R
u(x, t)dxδBH

t =

∫
R

∫ T

0

u(x, t)δBH
t dx.

2.1.11 Remark. If u is a multiple stochastic integral satisfying the above as-
sumptions then it follows by (2.1.5) that also the Malliavin derivative and the
Lebesgue integral of multiple stochastic integrals are interchangeable.

Further specific results around Malliavin calculus will be quoted whenever
they are needed in the thesis.

Young integrals

Anther possibility to define stochastic integrals with respect to the fractional
Brownian motion and derived processes is a pathwise approach. It uses the
smoothness of the paths of a fractional Brownian motion. This section is based
upon the book [28].
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2.1.12 Definition. Given two continuous functions x, y on an interval [0, T ]
having bounded p- and q-variation respectively, we call a continuous function z
the (indefinite) Young integral of y against x if there exists a sequence (xn, yn)
of continuous functions of bounded 1-variation which converges uniformly with
uniform variation bounds in the sense

‖xn − x‖∞ → 0 and sup
n
‖xn‖p−var <∞,

‖yn − y‖∞ → 0 and sup
n
‖yn‖q−var <∞

and ∫ ·
0

yndxn → z uniformly on [0, T ] as n→∞.

If z is unique we write
∫ ·

0
ydx instead of z and set

∫ t
s
ydx :=

∫ t
0
ydx−

∫ s
0
ydx.

The following theorem is central for the definition of Young-type integrals.

2.1.13 Theorem (Young-Lóeve). Given x, y as in Definition 2.1.12, if
1/p + 1/q > 1, there exists a unique (indefinite) Young integral of y against x
and it has finite p-variation.

Note that this integral then coincides with the Riemann-Stieltjes integral
(which is shown in [86]).

We have already shown that paths of a fractional Brownian motion are almost
surely (H − ε)-Hölder continuous for each ε > 0. Therefore, the paths have finite

1
H−ε -variation. In view of the above theorem it means that Young integrals of
functions of bounded variations are well defined with respect to the paths of
a fractional Brownian motion, but also that such integrals, i.e. processes with
finite 1

H−ε -variation, can be integrated with respect to processes with finite 1
H−ε -

variation in Young’s sense, in particular, with respect to a fractional Brownian
motion itself (assuming that H > 1

2
).

The following result connecting the two notions of stochastic integrals is
proved in [2].

2.1.14 Remark. Let H > 1
2

and let ut ∈ D1, 2 (for all t ∈ [0, T ]) be such that

the Young integral
∫ T

0
usdB

H
s is well-defined. Suppose, moreover, that

P

(∫ T

0

∫ T

0

|Dsut||t− s|2H−2dsdt <∞
)

= 1.

Then u ∈ Dom δ and for every t ∈ [0, T ]∫ t

0

usdB
H
s =

∫ t

0

usδB
H
s +H(2H − 1)

∫ t

0

∫ t

0

Dsur|s− r|2H−2drds.

In particular, if u is a non-random Hölder continuous function of order α > 1−H,
then the Young and the Skorokhod integrals over [0, T ] coincide.
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The last conclusion has another useful consequence.

2.1.15 Remark. Let H > 1
2

and let u be a non-random Hölder continuous
function of order α > 1−H. Then for t ∈ [0, T ]∫ t

0

usδB
H
s =

∫ T

0

us1{s≤t}δB
H
s ,

which allows us to use a shorter notation δ(u·1{·≤t}) for this integral without
specifying the domain of integration.

2.1.3 Solutions of the Ornstein-Uhlenbeck type equations

Some of the main objects in our work are the Ornstein-Uhlenbeck type equations
of the form

Xt = X0 +

∫ t

0

(L(s)− αXs) ds+ σBH
t , t ≥ 0,

X0 = x0 ∈ R,
(2.1.7)

We assume in the following that L is a 1-periodic function and α, σ ∈ R\{0} as
well as x0 ∈ R. (Note, however, that all the subsequent statements can be gener-
alised to functions with a known period ν ∈ R+.) The equation does not contain
stochastic integrals with respect to BH , therefore, it can be solved pathwise us-
ing the methods from the ordinary differential equations theory. As explained in
detail in [14], the equaton

f(t) =

∫ t

0

g(s)f(s)ds+ h(t), t ≥ 0,

for almost surely continuous functions g, h : R+ → R with sup0≤s≤t(|g(s)|+|h(s)|)
for all t ≥ 0 has a unique solution which can be written as

f(t) = e
∫ t
0 g(u)du

(
h(0) +

∫ t

0

e−
∫ s
0 g(u)dudh(s)

)
, t ≥ 0,

the integral being defined in the Riemann-Stieltjes sense. With

g(t) = −α, h(t) = σBH
t +

∫ t

0

L(s)ds+ x0, t ≥ 0,

satisfying all the above conditions we can conclude that

Xt = e−αt
(
x0 + σ

∫ t

0

eαsdBH
s +

∫ t

0

eαsL(s)ds

)
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solves the equation 2.1.7. Note, moreover, that by Remark 2.1.14 the stochastic
integral

∫ t
0
e−αsdBH

s can be replaced by a Skorokhod integral
∫ t

0
e−αsδBH

s if the
latter is well defined. This is the case for H > 1

2
. Consequently, the solution is

Malliavin differentiable with respect to the fractional Brownian motion.
Skorokhod integrals with respect to X (which is in general not a centred

process) can be defined as∫ T

0

YtδXt :=

∫ T

0

Ytd

(∫ t

0

L(s)− αXsds

)
+

∫ T

0

YtσδB
H
t

for processes Y for which the two summands are well defined. This is the definition
that will be used in the thesis.

2.1.4 Solutions of the wave equation

This section is based on the books [20] as well as [77] which offer many more gen-
eral statements and concepts concerning stochastic partial differential equations
(SPDEs).

The fractional wave equation, one of the subjects of our study, is defined as
follows:

∂2u
∂t2

(t, x) = ∆u(t, x) + ẆH(t, x), t ∈ (0, T ], T > 0, x ∈ Rd, d ≥ 1,

u(0, x) = 0, x ∈ Rd,

∂u
∂t

(0, x) = 0, x ∈ Rd,

(2.1.8)
where ∆ is the Laplacian on Rd, d > 1, and ẆH is a fractional-white Gaus-
sian noise which is defined in reference to a real valued centred Gaussian field
WH = {WH

t (A); t ∈ [0, T ], A ∈ Bb(Rd)} (Bb(Rd) being the class of bounded Borel
subsets of Rd) with covariance function given by

E
(
WH
t (A)WH

s (B)
)

= RH(t, s)λ(A ∩B), A,B ∈ Bb(Rd), (2.1.9)

where RH is the covariance of the fractional Brownian motion

RH(t, s) =
1

2

(
t2H + s2H − |t− s|2H

)
, s, t ≥ 0.

Due to the presence of the noise term it is impossible to find a differentiable
strong solution. Moreover, a precise meaning needs to be given to the equation
(2.1.8). Both will be achieved with the following notion of a solution.

2.1.16 Definition. We call a field u = {u(t, x); t ∈ [0, T ], x ∈ R} the mild
solution of the wave equation if

u(t, x) =

∫ t

0

∫
Rd
G1(t− s, x− y)WH(ds, dy), (2.1.10)

where G1 are the Green’s functions of the homogeneous wave equation ∂2u
∂t2

= ∆u.
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In dimension 1 we have G1(t, x) = 1
2
1{|x|<t}, in dimension 2 G1(t, x) is equal

to 1

2π
√
t2−|x|2

1{|x|<t}. In dimensions 3 or higher G1 is a distribution, and the

solution to the homogeneous equation is understood as a solution of a Fourier
transform of the equation (see [66] for details).

This definition is motivated by the fact that

u(t, x) =

∫ t

0

∫
Rd
G1(t− s, x− y)ϕ(s, y)dsdy

solves the deterministic equation
∂2u
∂t2

(t, x) = ∆u(t, x) + ϕ(t, x), t ∈ (0, T ], T > 0, x ∈ Rd, d ≥ 1,

u(0, x) = 0, x ∈ Rd,

∂u
∂t

(0, x) = 0, x ∈ Rd

in its mild formulation (see [76]).
In the stochastic case there is one more necessary addition to the definition:

it is important to make sense of the integral with respect to WH .
As described in [35], we can define it as a Wiener integral on the Hilbert

space H W defined as the closure of the space of simple functions {1[0, t]×A, t ∈
[0, T ], A ∈ Bb(Rd)} with respect to the scalar product

〈1[0, t]×A, 1[0, t]×A〉H W := E
(
WH
t (A)WH

s (B)
)

= αHλ(A∩B)

∫ t

0

∫ s

0

|u−v|2H−2dudv,

where αH = H(2H − 1). For the existence of a solution it thus remains to check
when the above integral is well defined, i.e. when G1(t−· , x−· ) is an element of
H W . This question is treated in the following proposition proved in [77].

2.1.17 Proposition. The stochastic wave equation (2.1.8) admits a unique mild
solution u(t, x)t∈[0, T ], x∈Rd if and only if∫

Rd

(
1

1 + |x|2

)H+ 1
2

λ(dx) <∞.

Therefore, we retrieve the following specific result.

2.1.18 Proposition. The wave solution process u = {u(t, x), t ≥ 0, x ∈ Rd}
defined in 2.1.10 exists if and only if d < 2H + 1, i.e. for H = 1

2
in dimension

one and for H > 1
2

in dimensions one and two.
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2.2 Background and existing results

In this section we will focus on the estimation questions and existing results for
Ornstein-Uhlenbeck type equations. Let us talk separately about the volatility
and drift estimation.

2.2.1 Volatility estimation in OU-type equations based on
quadratic variations

Since we are concerned with parameter estimation in the setting of the Ornstein-
Uhlenbeck type equations, it is important to discuss results related to the esti-
mation of the volatility coefficient σ > 0 and/or the Hurst parameter H based
on observations of the solution X in the setting

Xt = X0 +

∫ t

0

(L(s)− αXs) ds+ σBH
t , t ≥ 0,

X0 = x0 ∈ R,
(2.2.1)

for α ∈ R, σ ∈ R\{0} and a periodic bounded deterministic function L.

A well-known approach is to consider power variations as they have been
introduced in Section 2.1.1. The realised k-variation of a stochastic process Z is
given by

V n
k (Z) :=

n∑
i=1

∣∣∣Z i
n
− Z i−1

n

∣∣∣k .
A starting point for the use of power variation in parameter estimation is a result
concerning fractional Brownian motion stated in [69], which has also been used
in Section 2.1.1: For a fractional Brownian motion (BH

t )t≥0 and some σ > 0

nkH−1V n
k (σBH)

n→∞→ ckσ
k

holds in probability for an explicitly known constant ck. The proof is based on
the self-similarity property of the fractional Brownian motion, and the fact that
it cannot be a semimartingale unless H = 0.5 follows directly from this result for
different k (as seen in Section 2.1.1).

There are many extensions to this proposition; in particular, in [77] almost
sure convergence is demonstrated for a normalised version of realised power vari-
ations

n∑
i=1

 |Z i
n
− Z i−1

n
|k

E
[
|Z i

n
− Z i−1

n
|k
] − 1


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(appropriately scaled) and its second order asymptotics is studied, thus providing
a strongly consistent estimator for both σ and H (refer also to [16] for the def-
inition of a joint estimator). Note in particular that if a continuous observation
of a path of σBH is available, it is sufficient to retrieve the exact value of σ in
case H is known. An important generalisation from [19] allows us to extend this
statement to the solution X of an Ornstein-Uhlenbeck SDE. This generalisation
comprises two following results (Theorem 1 and Corollary 2 in [19] respectively).

2.2.1 Theorem. Suppose that u = {ut, t ∈ [0, 1]} is a stochastic process of finite
q-variation where q < 1

1−H . Set Zt :=
∫ t

0
usdB

H
s . Then

nkH−1V n
k (Z)→ ck

∫ 1

0

|us|kds

in probability as n tends to infinity.

2.2.2 Proposition. Assume the same conditions as in Theorem 2.2.1. Consider
a stochastic process Y = {Yt, t ∈ [0, 1]} such that

nkH−1V n
k (Y )→ 0

in probability as n tends to infinity. Then

nkH−1V n
k (Z + Y )→ ck

∫ 1

0

|us|kds

in probability as n tends to infinity. In particular, the above condition is satisfied
for processes whose trajectories are γ-Hölder for some γ ∈ (H, 1].

The processes that are considered in our case are

Zt :=

∫ t

0

σdBH
s and

Yt :=

∫ t

0

(αXs + L(s)) ds.

As a deterministic integral of the function X with (H−ε)-Hölder trajectories (ε >
0) and the function L that is bounded by assumption the process Y has Lipschitz
continuous trajectories. Thus, both Z and Y satisfy the assumptions of the above
Theorem 2.2.1 and Proposition 2.2.2. We can conclude that an observation of a
trajectory of X over the unit interval suffices to access the constant σ.

2.2.2 Drift estimation for continuous observations

There are several approaches to parameter estimation in case L ≡ 0, most of
which are derived from corresponding ideas for classical diffusions (in other words,
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for diffusions driven by the Brownian motion). For the ergodic case (i.e. α > 0)
there is the maximum-likelihood-approach relying on Girsanov-type formulas in
[38] as well as its discretised versions ([67]). In [30], moreover, a least-squares-type
estimator defined using divergence integrals is presented. The non-ergodic case is
treated in [9], where Young integrals are considered.

The case of the non-zero mean L is a by far less studied setting. In [24] periodic
functions L ≡

∑p
i=1 µiϕi in equation (2.2.1) are considered, in which the number

p and the functions ϕi are known and the parameters µi are estimated jointly
with the multiplicative coefficient α > 0. This construction is similar to the least-
squares type estimator for the classical Ornstein-Uhlenbeck process with the same
mean structure studied in [23], but the proofs rely on the properties of divergence
integrals used in the definition of the estimators.

In this thesis we will consider drift estimation only in the setting of continuous
observations. In this case, as explained in Section 2.2.1, the value of the volatility
parameter σ can be obtained directly from observations on any compact interval.
This allows us to consider settings in which we assume σ to be known and equal to
one without loss of generality. This can be done whenever the fBm is the driving
process, in particular, in Chapters 3 and 4.

Asymptotic behaviour: Ergodic and non-ergodic case

For the Ornstein-Uhlenbeck type equations that are considered in this thesis
(2.1.7) three cases should be addressed separately depending on the value of the
parameter α. In order to percieve the differences between these cases let us note
that for the solution

Xt = e−αt
(
x0 + σ

∫ t

0

eαsdBH
s +

∫ t

0

eαsL(s)ds

)
the following statement holds.

2.2.3 Proposition. Let H ∈ (0, 1). The random variable Xt has Gaussian dis-

tribution N
(
e−αt

(
x0 +

∫ t
0
eαsL(s)ds

)
, v(α, t)

)
with variance

v(α, t) = Hσ2

∫ t

0

z2H−1(e−αz + eα(z−2t))dz.

The Gaussianity and the expectation can be read directly from the solution
formula and the variance is computed in [41]. In the same source the following
lemma is demonstrated.

2.2.4 Lemma. For v(t, α) from the previous proposition we have

(i) if α < 0 then v(α, t) ∼ σ2HΓ(2H)
(−α)2H

e−2αt as t→∞,
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(ii) if α > 0 then v(α, t)→ σ2HΓ(2H)
α2H as t→∞,

(iii) v(0, t) = σ2t2H for all t ≥ 0.

We see from these observations that for α < 0 the mean as well as the variance
of X explode as t goes to infinity, whereas for α > 0 both quantities are bounded.
For α > 0 the process is mean-reverting: it drifts towards its long-term mean
which inherits its periodicity from the function L.

A property of a similar kind is ergodicity. Indeed, it is shown in [41] that

the solution of (2.1.7) with L ≡ 0, x0 = σ
∫ 0

−∞ e
−α(t−s)dBH

s (here we ignore the
formal restriction x0 ∈ R) is a stationary, ergodic process for α > 0. Solutions of
(2.1.7) with a different initial condition approach this process with exponential
speed, which means that many convergence results obtained by ergodicity can be
translated to solutions with a general x0 ∈ R. Similar results can be obtained for
processes where L 6≡ 0 (see [24]). Due to this observation the case α > 0 is often
called the ergodic and the case α < 0 the non-ergodic case.

In the borderline case α = 0 the equation (2.1.7) reads

Xt = X0 +

∫ t

0

L(s)ds+BH
t , t ≥ 0,

X0 = x0 ∈ R,
which can be understood as a model of a periodic signal with an additive fractional
Brownian component. In this case Xt − x0 is a simple unbiased estimator of∫ t

0
L(s)ds (see [63]), but especially for the parametric version of the problem, e.g.

for L ≡
∑p

i=1 µiϕi with known ϕ1, . . . , ϕp more methods can be applied such as
Girsanov’s theorem or Bayesian estimation (see [4]). In this thesis we will only
briefly consider this case.

For a visual impression of the differences between the three setups, consider
a simulation of 10 sample paths of the solution of

Xt = X0 +

∫ t

0

(100 sin(2πs)− αXs) ds+BH
t , t ≥ 0,

X0 = 0,

for H = 0.7 and α = 1, 0 and −1 depicted in Figures 2.4, 2.5 and 2.6. Note
that although there are some results discussing the optimality of different drift
estimators in the ergodic case (comparison of asymptotic variances in [31] and
the proof of the LAN property in [44]), these results are restricted to the case
L ≡ 0. More generally, to our knowledge no LAN or LAMN property has been
established for fractional diffusions with a time dependent drift. While it is an
interesting line of research, we will not follow it here and will restrict ourselves to
presenting the relevant context and directly comparing our results to estimators
with a similar structure.

In the following we will concentrate on the relevant results for the ergodic and
the non-ergodic case separately.
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Figure 2.4: α = −1 Figure 2.5: α = 0 Figure 2.6: α = 1

Results in the ergodic case

The first contribution to be mentioned here is the paper [30]. There the case
L ≡ 0 is considered, i.e. the equation

Xt =

∫ t

0

αXsds+BH
t

for H ∈
(

1
2
, 3

4

)
. The construction of the estimator for α is based on (formally)

minimising the term
∫ n

0
(Ẋt − αXt)

2dt, which yields the sequence∫ n
0
XtdXt∫ n

0
X2
t dt

.

The stochastic integral in the numerator is considered to be the Skorokhod in-
tegral. It is shown in [30] that if the pathwise integral is considered instead, the
estimator thus obtained is not consistent (it converges to zero for all negative
α). The above sequence with the Skorokhod integral, however, is shown there
to be strongly consistent and asymptotically normal with

√
n as the speed of

convergence.
Another result that is particularly relevant in Chapter 5 is a pathwise estima-

tor of α that arises from some calculations within this paper and is also analysed
there. It is defined as (

1

HΓ(2H)n

∫ n

0

X2
t dt

)− 1
2H

,

is strongly consistent and asymptotically normal and has the practical advantage
of involving no stochastic integrals and thus of having good simulation properties.

In the subsequent paper [31] a significant expansion of these results is achieved:
The same two estimators are considered for H ∈

(
0, 1

2

]
and for H ∈

[
3
4
, 1
)
. Once

again, consistency and asymptotic normality are demonstrated.
In the paper [24] the idea of the least squares estimation is extended to the

case of a periodic bounded function L having the form L ≡
∑p

i=1 µiϕi with
functions ϕi that are assumed to be known, bounded and orthonormal.
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For the construction of an estimator of (µ1, . . . , µp, α) a technique introduced
in [27] is used where a least squares estimator is derived for a discretised version
of a more general equation

dXt = 〈ϑ, f(t, Xt)〉dt+ dBH
t ,

where ϑ := (ϑ1, . . . , ϑp+1) is a parameter vector to be estimated and f(t, x) :=
(f1(t, x), . . . , fp+1(t, x)) is a collection of known real-valued functions. For a time
interval [0, T ] and a uniform mesh size ∆t := T/N the least squares approach
for the equations

X(i+1)∆t −Xi∆t =

p+1∑
j=1

fj(i∆t, Xi∆t)ϑj∆t+ (BH
(i+1)∆t −BH

i∆t), i ∈ {0, . . . , N},

yields the estimator ϑ̃T,∆t = Q−1
T,∆tPT,∆t with

QT,∆t =

(
N∑
i=0

fj(i∆t, Xi∆t)fk(i∆t, Xi∆t)∆t

)
j, k∈{1,...,p+1}

and

PT,∆t =
( N∑
i=0

f1(i∆t, Xi∆t)(X(i+1)∆t −Xi∆t), . . . ,

N∑
i=0

fp+1(i∆t, Xi∆t)(X(i+1)∆t −Xi∆t)
)T
,

i.e., this estimator minimises the functional

(ϑ1, . . . , ϑp+1) 7→
N∑
i=0

(
X(i+1)∆t −Xi∆t −

p+1∑
j=1

fj(i∆t, Xi∆t)ϑj∆t

)2

.

Plugging in ϑ := (µ1, . . . , µp, α) and f(t, x) := (ϕ1(t), . . . , ϕp(t), −x)T and

replacing the sums by their continuous counterparts an estimator ϑ̂n = Q−1
n Pn is

obtained, where

Pn :=

(∫ n

0

ϕ1(t)dXt, . . . ,

∫ n

0

ϕp(t)dXt,

∫ n

0

XtdXt

)
and

Qn :=

(
nEp an
aTn bn

)
,

aTn :=

(∫ n

0

ϕ1(t)Xtdt . . . ,

∫ n

0

ϕp(t)Xtdt

)
,
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bn :=

∫ n

0

X2
t dt.

With Skorokhod stochastic integrals strong consistency as well as joint asymptotic
normality is demonstrated for H ∈

(
1
2
, 3

4

)
in this paper (strong consistency was

later extended in [7] to H ∈
(

1
2
, 1
)
). The rate of convergence obtained is n1−H .

In [56], moreover, an estimator for the case of the constant drift L is considered
in the setting of a Hermite process driving the equation. A Hermite process of
order q is a process in the qth Wiener chaos having the same covariance structure
as the fractional Brownian motion, and for q = 1 the fBm is retrieved. The
estimator in [56] is a generalisation of the pathwise estimator from [30].

Results in the non-ergodic case

The paper [9] deals with the estimation of α in the non-ergodic setting. There the
classical Ornstein-Uhlenbeck process is considered (i.e. with L ≡ 0). The authors
define the least-squares type estimator in the same way as it is done in [30] for
the ergodic case, namely as ∫ n

0
XtdXt∫ n

0
X2
t dt

,

assuming continuous observations of the process X. Interpreting the stochastic
integrals as Young type integrals they demonstrate strong consistency and show
a noncentral limit theorem as a second order convergence result: The error con-
verges with exponential speed in distribution to a Cauchy random variable.

2.2.3 Realised quadratic variations of the wave equation
solution

We finish the chapter by revising the results that serve as a starting point for
Chapter 6.

In the paper [36] a thorough analysis of spatial quadratic variations for the
wave equation with space-time white noise is conducted. These results are ex-
tended in [35] to the fractional-white noise with H ∈

(
1
2
, 3

4

)
. In particular, for

the normalised realised quadratic variations

Vn :=
1√
n

n−1∑
j=0

(
(u(t, j+1

n
)− u(t, j

n
))2

E[(u(t, j+1
n

)− u(t, j
n
))2]
− 1

)

(where u is the solution of (2.1.8)) it is shown for t > 1 (chosen in order to
simplify the covariance structure, see Chapter 6) that Vn√

E[V 2
n ]

converges to the
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standard normal distribution in law and

d

(
Vn√
E[V 2

n ]
, N(0, 1)

)
≤ C


1√
n

if H ∈ (1
2
, 5

8
) ,

log(n)3/2√
n

if H = 5
8
,

n4H−3 if H ∈ (5
8
, 3

4
),

where d stands for either Wasserstein, Kolmogorov or the total variation distance
and C > 0 is a constant. The main tool for the analysis is the calculation of the
spatial covariance of the solution.
These results have allowed the authors to construct a consistent and asymptoti-
cally normal estimator for H.
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Chapter 3

Parametric estimator for the
fractional Ornstein-Uhlenbeck
type processes

This chapter is dealing with parameter estimation in Ornstein-Uhlenbeck
type equations with a periodic drift function L ≡

∑p
i=1 µiϕi using the least

squares ansatz. The main result are the asymptotic properties for the estimator
introduced in Section 2.2.2 in the non-ergodic case. Of particular interest is
the asymptotics for the estimators of the parameters µi in the special case∫ 1

0
ϕi(s)ds = 0: the estimator converges faster and the expression for the

asymptotic variance is significantly more involved. At the end of the chapter this
result is applied to the parameter estimation in the ergodic case.

The content of this chapter is partially contained in the preprint

• R. Shevchenko, J. H. C. Woerner - Inference for fractional Ornstein-
Uhlenbeck type processes with periodic mean in the non-ergodic case, 2019,
arXiv:1903.08033.

3.1 Parametric estimator (non-ergodic case)

We will consider the estimator ϑ̂n from Section 2.2.2 for the non-ergodic case and

H ∈
(

1
2
, 1
)

and investigate its asymptotic properties. In particular, we will show

that the asymptotics is partly inherited from the ergodic case treated in [24] and
partly follows the results for the non-ergodic case in [9].
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3.1.1 Setting

Let us first recall the setting for this chapter in more detail.

Let (BH
t )t≥0 be a fractional Brownian motion with the Hurst indexH ∈

(
1
2
, 1
)
.

Consider a stochastic differential equation (or SDE) of the following form:

Xt = X0 +

∫ t

0

(
p∑
i=1

µiϕi(s) + αXs

)
ds+ σBH

t , t ≥ 0,

X0 = x0 ∈ R.
(3.1.1)

We assume to observe X continuously. L is assumed to be a bounded 1-
periodic function which can be written as a linear combination of p known
bounded 1-periodic L2([0, 1])-orthonormal functions with unknown real coeffi-
cients, i.e.

L(s) =

p∑
i=1

µiϕi(s) for all s ∈ [0, 1].

The factor α > 0 is also assumed to be unknown. As argued in Section 2.2.1, σ
can be estimated with probability one on any finite time interval, therefore it can
be assumed to be known and equal to one without loss of generality.

Moreover, it is important to define stochastic integrals with respect to BH .
In this chapter we will consider them to be defined in Young’s sense (cf. Sec-
tion 2.1.2). Such integrals are well defined due to Hölder smoothness of paths
of the fractional Brownian motion whenever the integrated process is sufficiently
smooth. Note that for deterministic integrands stochastic integrals in Young’s
sense almost surely coincide with Skorokhod integrals (see Section 2.1.2).

As shown in Section 2.1.3, the equation (3.1.1) has a solution with almost
surely continuous paths, which can be written as

Xt = eαtx0 + eαt
∫ t

0

e−αsL(s)ds+ eαt
∫ t

0

e−αsdBH
s

for α > 0. Let us fix the notation ξt :=
∫ t

0
e−αsdBH

s , ξ̃t := e−αtXt as well as

ξ∞ :=

∫ ∞
0

e−αsdBH
s

and

ξ̃∞ := x0 +

∫ ∞
0

e−αsL(s)ds+

∫ ∞
0

e−αsdBH
s .

3.1.2 Construction of the estimator

The estimator that we are going to consider copies the structure of an estimator
defined in [24] for the ergodic case.
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In the general construction given in Section 2.2.2 we set ϑ = (µ1, . . . , µp, α),
f(t, x) = (ϕ1(t), . . . , ϕp(t), x) as well as T = n and, as for the ergodic case,
consider the continuous counterparts of the components. By proceeding thus we
obtain the estimator ϑ̂ := Q−1

n Pn with

Pn =

(∫ n

0

ϕ1(t)dXt, . . . ,

∫ n

0

ϕp(t)dXt,

∫ n

0

XtdXt

)
and

Qn =

(
nEp an
aTn bn

)
,

where

aTn =

(∫ n

0

ϕ1(t)Xtdt . . . ,

∫ n

0

ϕp(t)Xtdt

)
,

bn =

∫ n

0

X2
t dt.

To make sure that the integrals in Pn are well-defined we need an additional
assumption on ϕi: these functions must be at least (1−H)-Hölder continuous.

The two following results are an immediate analogy to the calculations in [24].

3.1.1 Proposition. We have ϑ̂n = ϑ+Q−1
n Rn, where

Rn =

(∫ n

0

ϕ1(t)dBH
t , . . . ,

∫ n

0

ϕp(t)dB
H
t ,

∫ n

0

XtdB
H
t

)T
.

Proof. Since∫ n

0

ϕi(t)dXt =

p∑
j=1

µj

∫ n

0

ϕi(t)ϕj(t)dt+ α

∫ n

0

ϕi(t)Xtdt+

∫ n

0

ϕi(t)dB
H
t

for i ∈ {1, . . . p} and∫ n

0

XtdXt =

p∑
j=1

µj

∫ n

0

Xtϕj(t)dt+ α

∫ n

0

X2
t dt+

∫ n

0

XtdB
H
t ,

we have Pn = Qnϑ+Rn, and the claim follows.

3.1.2 Proposition. We have an explicit representation for Q−1
n , namely

Q−1
n =

1

n

(
Ep + γnΛnΛt

n −γnΛn

−γnΛt
n γn

)
with

Λn = (Λn, 1, . . . ,Λn, p)
t =

(
1

n

∫ n

0

ϕ1(t)Xtdt, . . . ,
1

n

∫ n

0

ϕp(t)Xtdt

)
and γn = D−1

n =

(
1
n

∫ n
0
X2
t dt−

∑p
i=1 Λ2

n, i

)−1

.
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Proof. This is a consequence of the fact that(
nEp −an
−aTn bn

)−1

=
1

n

(
Ep + γnΛnΛt

n γnΛn

γnΛt
n γn

)
,

which is proved in [24].

3.1.3 Auxiliary results

First let us present two elementary results that will be used in this chapter.

3.1.3 Lemma. For a centred normal sequence (Xn)n∈N of random variables we
have: If the squared L2 norms of Xn are of order at most 1

nβ
for β > 0, then the

sequence converges to zero almost surely.

Proof. First note that the squared L2 norm of a centred normal random variable
is its variance. For k ∈ N the 2k-th moment is completely determined by it; we
have

E[X2k
n ] = Ck E[X2

n]k .
1

nβk

by assumption. If we now check the summability criterion (implied by the Borel-
Cantelli lemma), this consideration allows us to get the result by Markov inequal-
ity for f(x) = x2k and k such that βk > 1:

∞∑
n=1

P (|Xn| > ε) ≤
∞∑
n=1

E[X2k
n ]

ε2k
=

1

ε2k
Ck

∞∑
n=1

E[X2
n]k .

∞∑
n=1

1

nβk
<∞.

3.1.4 Proposition. For α > 0 there exists a constant C > 0 such that∫ t
0
eαuu2H−2du ≤ Ct2H−2eαt for any t > 0 and H ∈

(
0, 1

2

)
.

Proof. It is a result from [1] that the left-hand side is bounded by a constant
times the right-hand side for large t > 0. For smaller t, that is, for t ≤ t0 for some
t0, note that the left side is continuous while the right side has one discontinuity
at 0, where it tends to infinity. Therefore, it is also possible to find a constant for
which the bound holds on the compact interval [0, t0]. By taking the maximum
of the two we obtain the result.

The next lemma provides some necessary convergence results. This lemma as
well as its proof are motivated by analogous results in [9].

3.1.5 Lemma. With the above notation we have e−αtXt → ξ̃∞ as well as

e−2αt
∫ t

0
X2
sds→

ξ̃2∞
2α

almost surely as t tends to infinity.
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Proof. The first statement follows directly from the fact that ξt → ξ∞ a.s. (shown
in Lemma 2, [9]):

e−αtXt = x0 +

∫ t

0

e−αsL(s)ds+ ξt → x0 +

∫ ∞
0

e−αsL(s)ds+ ξ∞ a.s.

For the second statement we start by noticing that ξ̃t is a process with a.s.
continuous paths. We have for each t ≥ 0:∫ t

0

X2
sds ≥

∫ t

t/2

e2αsξ̃2
sds ≥

t

2
eαt inf

t
2
≤s≤t

ξ̃2
s .

Since ξ̃t → ξ̃∞ a.s., it follows that

lim
t→∞

inf
t
2
≤s≤t

ξ̃2
s = ξ̃2

∞ a.s.

From the fact that ξ∞ ∼ N(0, HΓ(2H)
α2H ) (shown in [9]) we can conclude that ξ̃∞ also

follows a (non-degenerate) normal distribution, and hence, limt→∞
∫ t

0
X2
sds =∞

a.s. Therefre, we get by l’Hopital’s rule

lim
t→∞

∫ t
0
e2αsξ̃2

sds

e2αt
= lim

t→∞

ξ̃2
t

2α
=
ξ̃2
∞

2α
.

3.1.6 Lemma. For i ∈ {1, . . . , p} the following hold almost surely:

(1) 1
n

∫ n
0
ϕi(t)dB

H
t → 0,

(2) e−αnΛni

√
n→ 0,

(3) nDne
−2αn → ξ̃2∞

2α
,

(4) e−αn 1√
n

∫ n
0
XtdB

H
t → 0.

Proof. (1) This is an application of Lemma 3.1.3: We have

E[(
1

n

∫ n

0

ϕi(t)dB
H
t )2] =

1

n2

∫ n

0

∫ n

0

ϕi(u)ϕi(v)|u− v|2H−2dudv . n2H−2,

and the result follows for k = 2.

(2) We write Λni as a sum of a deterministic and of a centred Gaussian part
and show convergence separately:

e−αnΛni =
1

n
e−αn

∫ n

0

ϕi(t)(e
αtx0 + eαt

∫ t

0

e−αsL(s)ds)dt

+
1

n
e−αn

∫ n

0

ϕi(t)e
αtξtdt =: A+B,
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where ξt =
∫ t

0
e−αrdBH

r . Note that the summand B is indeed centred
Gaussian: It is an almost sure limit of Riemann sums which are centred
Gaussian random variables.

For the deterministic part we write

√
nA =

1√
n
e−αn

∫ n

0

ϕi(t)e
αtx0dt+

1√
n
e−αn

∫ n

0

eαt
∫ t

0

e−αsL(s)dsdt

=: A1 + A2,

and we can bound the two summands as follows:

|A1| .
1√
n
e−αn

∫ n

0

eαtdt =
1√
n
− 1√

n
e−αn → 0

as well as

|A2| .
1√
n
e−αn

∫ n

0

eαt
∫ t

0

e−αsdsdt =
1√
n
e−αn

∫ n

0

eαtdt− 1√
n
e−αn → 0.

We have shown convergence for the deterministic part and now we will
calculate the second moment of the Gaussian part in order to apply Lemma
3.1.3. We have

E[(
√
nB)2] =E[(

1√
n
e−αn

∫ n

0

ϕi(t)e
αtξtdt)

2]

=
1

n
e−2αn

∫ n

0

∫ n

0

ϕi(t)ϕi(s)e
αteαs E[ξtξs]dsdt

and we get by treating the stochastic integrals as Skorokhod integrals

E[ξtξs] =

∫ t

0

∫ s

0

e−αre−αv|r − v|2H−2dvdr.

In total, we obtain

E[(
√
nB)2]

=
1

n
e−2αn

∫ n

0

∫ n

0

ϕi(t)ϕi(s)

∫ t

0

∫ s

0

eαs−αreαt−αv|r − v|2H−2dvdrdsdt

=
1

n
e−2αn

∫ n

0

∫ n

0

|r − v|2H−2

∫ n

v

∫ n

r

ϕi(t)ϕi(s)e
αs−αreαt−αvdsdtdvdr

.
1

α2

1

n
e−2αn

∫ n

0

∫ n

0

|r − v|2H−2(eαn−αv − 1)(eαn−αr − 1)drdv

∼ 1

n

∫ n

0

∫ n

0

|r − v|2H−2(e−αv − e−αn)(e−αr − e−αn)drdv

≤ 1

n

∫ n

0

∫ n

0

|r − v|2H−2e−αve−αrdrdv .
1

n
,

34



because the last integral is bounded (this is shown in [30]). Lemma 3.1.3
yields almost sure convergence to zero and hence the desired result.

(3) This follows from the previous result and Lemma 3.1.5:

Dne−2αn = e−2αn

∫ n

0

X2
t dt−

p∑
i=1

(
√
nΛnie

−αn)2

︸ ︷︷ ︸
→0 by (2)

n→∞→ ξ̃2
∞

2α
a.s.

(4) We plug in the expression Xt and get

e−αn
1√
n

∫ n

0

XtdB
H
t = e−αn

1√
n

∫ n

0

eαtx0dB
H
t

+ e−αn
1√
n

∫ n

0

eαt
∫ t

0

e−αsL(s)dsdBH
t

+ e−αn
1√
n

∫ n

0

eαt
∫ t

0

e−αsdBH
s dB

H
t =: A+B + C.

The integral in A can again be interpreted as a Skorokhod integral (yielding
a centred Gaussian random variable) which allows us the computation of
its L2 norm:

E[A2] = x2
0

1

n
e−2αn

∫ n

0

∫ n

0

eαueαv|u− v|2H−2dudv

= x2
0

1

n

∫ n

0

∫ n

0

e−α(n−u)e−α(n−v)|u− v|2H−2dudv︸ ︷︷ ︸
=:In

.
1

n
,

because In is bounded as shown in Lemma 5.1 in [30]. Lemma 3.1.3 implies
almost sure convergence. For B, which is also a centred Gaussian sequence,
the calculation is similar:

E[B2]

=
1

n
e−2αn

∫ n

0

∫ n

0

eαu
∫ u

0

e−αsL(s)dseαv
∫ v

0

e−αrL(r)dr|u− v|2H−2dudv

.
1

n
e−2αn

∫ n

0

∫ n

0

eαu(1− e−αu)eαv(1− e−αv)|u− v|2H−2dudv

=
1

n
e−2αn

∫ n

0

∫ n

0

(eαu − 1)(eαv − 1)|u− v|2H−2dudv ≤ 1

n
In .

1

n
,

and the almost sure convergence follows. For C we use Lemma 4 from [9]

35



to decompose the double integral:

C = e−αn
1√
n

(

∫ n

0

eαsdBH
s

∫ t

0

e−αrdBH
r −

∫ n

0

e−αs
∫ s

0

eαrδBH
r δB

H
s

−H(2H − 1)

∫ n

0

e−αs
∫ s

0

eαr|s− r|2H−2drds) =: C1 − C2 − C3,

where δ stands for the Skorokhod integral. We show almost sure convergence
for the three summands:

C1 = e−αn
1√
n

∫ n

0

eαsdBH
s ξt,

and since we know from [9] that ξt → ξ∞ a.s. as t tends to infinity (where

ξ∞ ∼ N(0, HΓ(2H)
α2H )), it is enough to show that e−αn 1√

n

∫ n
0
eαsdBH

s → 0
almost surely for n → ∞. Because it is a centred Gaussian sequence, we
can again rely on Lemma 3.1.3 and compute the respective variances:

E[(e−αn
1√
n

∫ n

0

eαsdBH
s )2]

∼ e−2αn 1

n

∫ n

0

∫ n

0

eαseαr|s− r|2H−2dsdr =
1

n
In .

1

n
.

In order to treat C2 note that by Lemma 7 in [9]

Yn := e−
αn
2

∫ n

0

e−αs
∫ s

0

eαrδBH
r δB

H
s

L2

→ 0,

and consequently E[Y 2
n ] is bounded. Since, moreover, Yn is centred (as it is

a Skorokhod integral), Markov inequality helps achieve the summability of
tails:

∞∑
n=1

P (|C2| ≥ ε) =
∞∑
n=1

P (| 1√
n
e−

αn
2 Yn| ≥ ε)

≤
∞∑
n=1

E[Y 2
n ]

ε2ne
αn
2

.
∞∑
n=1

1

ne
αn
2

<∞,

and almost sure convergence to zero follows. Finally, Lemma 7 in [9] ensures
that C3e

αn
2
√
n converges to zero, which implies that also C3 itself goes to

zero as n tends to infinity. This completes the proof of the initial claim.

3.1.7 Corollary. For β < 1
2

we have nβe−αnΛni

√
n → 0 as well as

nβe−αn 1√
n

∫ n
0
XtdB

H
t → 0 almost surely as n tends to infinity.
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Proof. The deterministic part of the sequence nβe−αnΛni

√
n (i.e. nβ

√
nA, cf. the

notation from the proof of (2) in 3.1.6) is bounded up to a constant by nβ−0.5

and the variance of the random part by n2β−1. This yields polynomial rates of
convergence, thus Lemma 3.1.3 still can be applied and we obtain almost sure
convergence. The same argument holds for the second convergence result. Lemma
3.1.3 can still be applied for A, B and C1 (from the proof of (4) in 3.1.6), and
for C2 and C3 the additional factor nβ changes nothing in the structure of the
arguments, so the proofs can be followed verbatim.

3.1.4 Asymptotic properties of the estimator

In this section we will establish strong consistency and asymptotic normality of
the estimator ϑ̂ defined in Section 3.1.2. The study of the asymptotic normality
is the highlight of the whole chapter; in particular, the search for a palatable
form of the asymptotic variance in some special cases and even the proof of its
positivity require lengthy calculations.

3.1.8 Theorem. The estimator ϑ̂ = (µ̂1, . . . , µ̂p, α̂) is strongly consistent, i.e.

(1) for i ∈ {1, . . . , p}

µ̂i − µi =
1

n
(

∫ n

0

ϕi(t)dB
H
t

+
1

Dn

p∑
j=1

ΛniΛnj

∫ n

0

ϕj(t)dB
H
t −

1

Dn

Λni

∫ n

0

XtdB
H
t )→ 0,

(2) α̂− α = − 1
nDn

(
∑p

i=1 Λni

∫ n
0
ϕi(t)dB

H
t −

∫ n
0
XtdB

H
t )→ 0,

hold almost surely as n tends to infinity.

Proof. We treat each summand separately and exploit Lemma 3.1.6.

(1) Let us denote M1 := 1
n

∫ n
0
ϕi(t)dB

H
t , M2j := 1

n
1
Dn

ΛniΛnj

∫ n
0
ϕj(t)dB

H
t ,

M3 := 1
n

1
Dn

Λni

∫ n
0
XtdB

H
t . In order to prove the claim we have to show

that each of these summands converges to zero almost surely. For M1 this
is shown in Lemma 3.1.6 (1). To see this for M2j we rewrite it as follows:

M2j =
1

n

1

Dn

ΛniΛnj

∫ n

0

ϕj(t)dB
H
t

=
1

nDne−2αn︸ ︷︷ ︸
→ 2α

ξ̃2∞
by 3.1.6(3)

(e−αnΛni

√
n)︸ ︷︷ ︸

→0 by 3.1.6(2)

(e−αnΛnj

√
n)︸ ︷︷ ︸

→0 by 3.1.6(2)

1

n

∫ n

0

ϕj(t)dB
H
t︸ ︷︷ ︸

→0 by 3.1.6(1)

,
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and since ξ̃∞ is almost surely nonzero, the whole expression converges a.s.
to zero. M3 can also be rewritten in a way that makes the convergence
statement obvious:

M3 =
1

n

1

Dn

Λni

∫ n

0

XtdB
H
t

=
1

nDne−2αn︸ ︷︷ ︸
→ 2α

ξ̃2∞
by 3.1.6(3)

(e−αnΛni

√
n)︸ ︷︷ ︸

→0 by 3.1.6(2)

(e−αn
1√
n

∫ n

0

XtdB
H
t )︸ ︷︷ ︸

→0 by 3.1.6(4)

,

the claim follows with the same argument as above and completes the proof
of the theorem.

(2) In this case we also start by introducing a notation for each type of sum-
mands. Let us denote A1i := 1

nDn
Λni

∫ n
0
ϕi(t)dB

H
t and A2 := 1

nDn

∫ n
0
XtdB

H
t .

For the first type of summands we write

A1i =
1

nDn

Λni

∫ n

0

ϕi(t)dB
H
t

=
1

nDne−2αn︸ ︷︷ ︸
→ 2α

ξ̃2∞
by 3.1.6(3)

(e−αnΛni

√
n)︸ ︷︷ ︸

→0 by 3.1.6(2)

√
ne−αn︸ ︷︷ ︸
→0

1

n

∫ n

0

ϕi(t)dB
H
t︸ ︷︷ ︸

→0 by 3.1.6(1)

and for the second kind we obtain

A2 =
1

nDn

∫ n

0

XtdB
H
t

=
1

nDne−2αn︸ ︷︷ ︸
→ 2α

ξ̃2∞
by 3.1.6(3)

√
ne−αn︸ ︷︷ ︸
→0

(e−αn
1√
n

∫ n

0

XtdB
H
t )︸ ︷︷ ︸

→0 by 3.1.6(4)

.

Both calculations yield almost sure convergence of the summands (again,
using the argument given in (1)) and thus provide the proof for the initial
claim.

The next lemma is an auxiliary result for a limit theorem that will be proved
later.

3.1.9 Lemma. Let F be any σ(BH)-measurable random variable such that
P (F <∞) = 1. Then, as n→∞,

(n−Hδn(ϕ1), . . . , n−Hδn(ϕp), F, e
−αnδn(eα·))

d→ (Z1, . . . , Zp, F, Z),
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where δn is the integral over [0, n] with respect to BH , Z1, . . . , Zp
are centred and jointly normally distributed with the covariance matrix
(
∫ 1

0
ϕi(x)dx

∫ 1

0
ϕj(x)dx)i, j=1,...,p and ((Z1, . . . , Zp), F, Z) are independent. More-

over, Var(Z) = HΓ(2H)
α2H .

Proof. Due to an approximation argument rigorously explained in [25] it is enough
to show that for any d ≥ 1, s1, . . . , sd ∈ [0, ∞)

(n−Hδn(ϕ1), . . . , n−Hδn(ϕp), B
H
s1
, . . . , BH

sd
, e−αnδn(eα·))

d→ (Z1, . . . , Zp, B
H
s1
, . . . , BH

sd
, Z)

as n → ∞. The left hand side is a Gaussian vector, and hence it suf-
fices to determine the limits of the covariances. It is shown in [9] that the
limits of Cov(BH

s , e
−αnδn(eα·)) and Var(e−αnδn(eα·)) are as claimed. More-

over, in [7] the joint limiting distribution of (n−Hδn(ϕ1), . . . , n−Hδn(ϕp)) is
established. Therefore, we only have to show that Cov(n−Hδn(ϕi), B

H
s ) and

Cov(n−Hδn(ϕi), e
−αnδn(eα·)) converge to zero. For the first statement recall that

BH
s =

∫ n
0

1[0, s]dB
H
t for any n ≥ s. Then we can write (for n large enough) due to

the isometry property of the integrals:

E[n−Hδn(ϕi)B
H
s ] . n−H

∫ n

0

∫ s

0

|u− v|2H−2dudv

= n−H
∫ s

0

∫ n−v

−v
|z|2H−2dzdv = n−H

∫ s

0

∫ v

0

z2H−2dz +

∫ n−v

0

z2H−2dzdv

= n−H
∫ s

0

v2H−1dv︸ ︷︷ ︸
→0

+n−H
∫ s

0

(n− v)2H−1dv . n−H
∫ n

n−s
z2H−1dz

= n−H(n2H − (n− s)2H)
binom. series

= n−HO(n2H−1) = O(nH−1),

which goes to zero as n tends to infinity.
For the second convergence refer to Proposition 3.1.4 for the estimation∫ t

0
eαuu2H−2du . t2H−2eαt. We use this for our calculation:

E[n−Hδn(ϕi)e
−αnδn(eα·)] . n−He−αn

∫ n

0

∫ n

0

eαv|u− v|2H−2dudv

= n−He−αn
∫ n

0

eαu
∫ n

0

eα(v−u)|v − u|2H−2dvdu

= n−He−αn
∫ n

0

∫ u

0

e−αzz2H−2dz︸ ︷︷ ︸
bounded

+

∫ n−u

0

eαzz2H−2dz

 du

. n−He−αn
∫ n

0

eαueα(n−u)(n− u)2H−2du = n−Hn2H−1 → 0.
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3.1.10 Theorem. As n tends to infinity we obtain for the estimator ϑ̂

(n1−H(µ̂1 − µ1, . . . , µ̂p − µp), eαn(α̂− α))
d→ (Z1, . . . , Zp, Zp+1)

with Z1, . . . , Zp as above and Zp+1 = 2αN/M with N ∼ N(0, 1) and

M ∼ N

(
αH√

HΓ(2H)

(
x0 +

∫ ∞
0

e−αsL(s)ds

)
, 1

)

independent of N . Moreover, (Z1, . . . , Zp) and Zp+1 also are independent.

This result reflects the structure of the estimator: In the first p components
the additive term 1

n

∫ n
0
ϕi(t)dB

H
t is the slowest summand (note that it does not

include the solution process X and is, therefore, not influenced by its exponential
growth), which yields the same rates of convergence as in the ergodic case. The
estimator for α, however, does not contain such a term; it converges with the
same exponential rate as the estimator in [9]. The limiting distribution is also
structurally similar to the case L ≡ 0. As mentioned in [49], if the estimator
from [9] is applied for an equation with a nonzero starting value, the limiting
distribution will also contain this value as an additional additive term in the
denominator. Moreover, due to the possibility of considering Young integrals and

exploiting different techniques in the proofs our results are valid for H ∈
(

1
2
, 1
)

in contrast to H ∈
(

1
2
, 3

4

)
for the ergodic case in [24].

Proof of Theorem 3.1.10. First of all we divide the error into parts that con-
tribute to the limit and the rest. We use the notation from the previous theorem
and write:

n1−H(µ̂1 − µ1) = (n1−HM1 + n1−H(

p∑
j=1

M2j +M3)),

eαn(α̂− α) = (−eαn
p∑
j=1

A1j + eαnA2).

Now we will identify the rest terms by showing: n1−H(
∑p

j=1M2j + M3) and
eαn
∑p

j=1 A1j converge to zero almost surely. For M2j and M3 this follows from

the fact that they contain the factor (e−αnΛnj

√
n) which would still converge to

zero if multiplied by n1−H , since 1−H < 0.5.

Each summand A1j contains the factor

(e−αnΛni

√
n)
√
ne−αn

1

n

∫ n

0

ϕj(t)dB
H
t
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which converges to zero almost surely. The remainder 1
nDne−2αn tends almost surely

to a random variable. We write

eαn(e−αnΛni

√
n)
√
ne−αn

1

n

∫ n

0

ϕj(t)dB
H
t = (e−αnΛni

√
n)
√
n

1

n

∫ n

0

ϕj(t)dB
H
t

= (e−αnΛni

√
nnH−0.5)

(
n1−H 1

n

∫ n

0

ϕj(t)dB
H
t

)
.

The factor e−αnΛni

√
nnH−0.5 converges to zero almost surely, because H − 0.5 <

0.5 and the factor n1−H 1
n

∫ n
0
ϕj(t)dB

H
t converges in distribution to a normal ran-

dom variable (this being a consequence of the previous lemma). In total we con-
clude that the above expression converges to zero in distribution and therefore in
probability. Thus, also the whole term eαnA1j converges to zero in probability.

The next step is to consider and rewrite A2. For this we apply the change
of variables formula for Young integrals (see [9]) to the functions e−αnXn and∫ n

0
eαtdBH

t . We obtain the following formula:∫ n

0

XsdB
H
s =

∫ n

0

eαtdBH
t ξ̃n −

∫ n

0

e−αtL(t)

∫ t

0

eαsdBH
s dt

−
∫ n

0

e−αt
∫ t

0

eαsdBH
s dB

H
t =: S1 + S2 + S3,

with which we can substitute the term
∫ n

0
XsdB

H
s in A2. We will now show that

only S1 contributes to the convergence statement. Since

eαnA2 =
1

nDne−2αn
e−αn

∫ n

0

XtdB
H
t

and the denominator converges almost surely, it is enough to show that e−αn(S2 +
S3) tend to zero in probability. For S3 this is shown in [9], so we only show this
for S2. As a Lebesgue integral of a Gaussian process e−αnS2 is again centred
Gaussian, showing its second moment’s convergence will suffice:

E

[(
e−αn

∫ n

0

e−αtL(t)

∫ t

0

eαsdBH
s dt

)2
]

. e−2αn

∫ n

0

∫ n

0

e−αuL(u)e−αvL(v)

∫ u

0

∫ v

0

eαseαr|s− r|2H−2dsdrdudv

. e−2αn

∫ n

0

∫ n

0

∫ u

0

∫ v

0

|s− r|2H−2dsdrdudv . e−2αnn2H+2 → 0

as n tends to infinity.
For the last step of the proof we apply Lemma 3.1.9 to F = ξ̃∞ and obtain

(n−Hδn(ϕ1), . . . , n−Hδn(ϕp), ξ̃∞, e
−αnδn(eα·))

d→ (Z1, . . . , Zp, ξ̃∞, Z),
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and consequently(
n−Hδn(ϕ1), . . . , n−Hδn(ϕp),

e−αn
∫ n

0
eαtdBH

t

ξ̃∞

)
d→
(
Z1, . . . , Zp,

Z

ξ̃∞

)
,

where Z ∼
√

HΓ(2H)
α2H N(0, 1) and

ξ̃∞ ∼
√
HΓ(2H)

α2H
N

(
αH√

HΓ(2H)

(
x0 +

∫ ∞
0

e−αsL(s)ds

)
, 1

)
.

Now note additionally that(
1, . . . , 1,

ξ̃nξ̃∞
nDne−2αn

)
n→∞→ (1, . . . , 1, 2α) a.s.

Multiplying both vectors elementwise using Slutsky’s lemma yields(
n−Hδn(ϕ1), . . . , n−Hδn(ϕp),

e−αnS1

nDne−2αn

)
d→
(
Z1, . . . , Zp, 2α

Z

ξ̃∞

)
,

which is all that we need to show, since all the other summands converge to zero
in probability. Note that we inherit the independence statement directly from
Lemma 3.1.9.

3.1.11 Remark. Recall that the covariance matrix of the limiting vector

(Z1, . . . , Zp) has the form
(∫ 1

0
ϕi(t)dt

∫ 1

0
ϕj(t)dt

)
i, j=1,...,p

. This matrix is singu-

lar of rank one; the limiting vector can be written as(∫ 1

0

ϕ1(t)dt, . . . ,

∫ 1

0

ϕp(t)dt

)T
Z ′,

where Z ′ is a standard normal random variable. This kind of limiting distributions
does not often appear in the literature, one example being the simultaneous
estimation of the parameters σ > 0 and H ∈ (0, 1) from discrete observations

of the fractional Gaussian noise
(
σBH

∆i − σBH
∆(i−1)

)
i=1,...,n

in the high frequency

setting (considered in [13]). The authors proceed to show the LAN property for
the model with a non-diagonal rate matrix and derive from it the efficient rates
of convergence in case where both σ and H are unknown. These are worse than
the efficient rates in case where just one of the two parameters is unknown. While
we do not make such an analysis here and we do not know whether the rate n1−H

is efficient (although it is certainly an interesting question for future research), it
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is easy to see in our case that the knowledge of one of the parameters improves
the speed of convergence: By transforming the parameter vector we obtain

n1−H


µ̂1 − µ1

µ̂2 − µ2 −
∫ 1
0 ϕ2(t)dt∫ 1
0 ϕ1(t)dt

(µ̂1 − µ1)

...

µ̂p − µp −
∫ 1
0 ϕp(t)dt∫ 1
0 ϕ1(t)dt

(µ̂1 − µ1)

 d→
(∫ 1

0

ϕ1(t)dt, 0, . . . , 0

)T
Z ′

as n tends to infinity (assuming that
∫ 1

0
ϕ1(t)dt 6= 0). We will see in the next

step that the changed components converge with the speed
√
n, which will con-

sequently be the speed of convergence of the appropriately changed parameter
vector once µ1 is known. Note that if

∫ 1

0
ϕ1(t)dt = 0 the first component will

already converge with a faster speed (this will also be shown subsequently).

Consider the special case of a basis element ϕk, k ∈ {1, . . . , p}, which inte-
grates to zero on [0, 1]. The results of our theorems continue to hold, but the
limiting vector (Z1, . . . , Zp) will have a zero entry at Zk. This suggests that the
convergence of the kth component of the estimator might be of a better order
than nH−1. The same observation applies to the ”transformed estimator” from
Remark 3.1.11. Indeed, one obtains the following facts.

3.1.12 Proposition. If ϕk for k ∈ {1, . . . , p} is such that
∫ 1

0
ϕk(t)dt = 0, then,

as n tends to infinity,

√
n(µ̂k − µk)

d→ H(2H − 1)Z̄k,

where Z̄k is a zero mean Gaussian random variable with variance∫ 1

0

∫ 1

0

ϕk(t)ϕk(s)|t− s|2H−2dtds

+
∞∑
l=1

2

(
2H − 2

2l

)
ζ(2l + 2− 2H)

∫ 1

0

∫ 1

0

ϕk(t)ϕk(s)(t− s)2ldtds,

where ζ denotes the Riemann zeta function.

Proof. Recall that

√
n(µ̂1 − µ1) =

(
√
nM1 +

√
n

(
p∑
j=1

M2j +M3

))
with the notation from Theorem 3.1.8. As in Theorem 3.1.10, Corollary 3.1.7
ensures that

√
nM2j and

√
nM3 converge to zero almost surely. Given that

√
nM1 =

1√
n

∫ n

0

ϕk(t)dB
H
t ,
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it is enough for our claim to investigate the term E
[(

1√
n

∫ n
0
ϕk(t)dB

H
t

)2
]
.

With αH = H(2H − 1) we have by isometry and periodicity:

1

αH
E

[(
1√
n

∫ n

0

ϕk(t)dB
H
t

)2
]

=
1

n

∫ n

0

∫ n

0

ϕk(t)ϕk(s)|t− s|2H−2dtds

=
1

n

n−1∑
i, j=0

∫ 1

0

∫ 1

0

ϕk(t)ϕk(s)|t+ i− s− j|2H−2dtds

=
1

n

∫ 1

0

∫ 1

0

ϕk(t)ϕk(s)n|t− s|2H−2dtds

+
1

n

∫ 1

0

∫ 1

0

ϕk(t)ϕk(s)
∑
i>j

|t− s+ i− j|2H−2dtds

+
1

n

∫ 1

0

∫ 1

0

ϕk(t)ϕk(s)
∑
j>i

|s− t+ j − i|2H−2dtds. (3.1.2)

The first summand is independent of n, hence, it remains to consider the second
and the third one (which are equal for symmetry reasons). By rearranging the
sum in the second summand, we obtain the following:

1

n

∫ 1

0

∫ 1

0

ϕk(t)ϕk(s)
∑
i>j

|t− s+ i− j|2H−2dtds

=
1

n

∫ 1

0

∫ 1

0

ϕk(t)ϕk(s)
n−1∑
m=1

(n−m)|t− s+m|2H−2dtds

=
1

n

∫ 1

0

∫ 1

0

ϕk(t)ϕk(s)
n−1∑
m=1

(n−m)m2H−2

(
t− s
m

+ 1

)2H−2

dtds

=
1

n

∫ 1

0

∫ 1

0

ϕk(t)ϕk(s)
n−1∑
m=1

nm2H−2

(
t− s
m

+ 1

)2H−2

dtds

− 1

n

∫ 1

0

∫ 1

0

ϕk(t)ϕk(s)
n−1∑
m=1

m·m2H−2

(
t− s
m

+ 1

)2H−2

dtds.

Now we can use the binomial series expansion to get(
t− s
m

+ 1

)2H−2

=
∞∑
l=0

(
2H − 2

l

)
(t− s)lm−l
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and use the zero integral assumption in order to evaluate the above expression.
We conclude:

1

n

∫ 1

0

∫ 1

0

ϕk(t)ϕk(s)
n−1∑
m=1

nm2H−2

(
t− s
m

+ 1

)2H−2

dtds

=

∫ 1

0

∫ 1

0

ϕk(t)ϕk(s)
n−1∑
m=1

m2H−2

∞∑
l=2

(
2H − 2

l

)
(t− s)lm−ldtds

=

∫ 1

0

∫ 1

0

ϕk(t)ϕk(s)
∞∑
l=2

(
2H − 2

l

)
(t− s)l

n−1∑
m=1

m2H−2−ldtds.

By dominated convergence we now obtain

lim
n→∞

∫ 1

0

∫ 1

0

ϕk(t)ϕk(s)
∞∑
l=2

(
2H − 2

l

)
(t− s)l

n−1∑
m=1

m2H−2−ldtds

=

∫ 1

0

∫ 1

0

ϕk(t)ϕk(s)
∞∑
l=2

(
2H − 2

l

)
(t− s)l

∞∑
m=1

m2H−2−ldtds

=

∫ 1

0

∫ 1

0

ϕk(t)ϕk(s)
∞∑
l=2

(
2H − 2

l

)
(t− s)lζ(l + 2− 2H)dtds,

since the m2H−2−l are summable for l ≥ 1.
In a similar manner, we get

1

n

∫ 1

0

∫ 1

0

ϕk(t)ϕk(s)
n−1∑
m=1

m·m2H−2

(
t− s
m

+ 1

)2H−2

dtds

=

∫ 1

0

∫ 1

0

ϕk(t)ϕk(s)
∞∑
l=2

(
2H − 2

l

)
(t− s)l 1

n

n−1∑
m=1

m2H−1−ldtds,

which converges to zero, again, due to summability of m2H−1−l.
In total, we conclude that the second summand in (3.1.2) converges to∫ 1

0

∫ 1

0

ϕk(t)ϕk(s)
∞∑
l=2

(
2H − 2

l

)
(t− s)lζ(l + 2− 2H)dtds,

and thus, with a symmetric calculation, the third summand tends to∫ 1

0

∫ 1

0

ϕk(t)ϕk(s)
∞∑
l=2

(
2H − 2

l

)
(s− t)lζ(l + 2− 2H)dtds.

Adding up the two yields the desired result.
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3.1.13 Remark. Assume that k1, k2 ∈ {1, . . . , p} are both such that∫ 1

0
ϕk1(t)dt =

∫ 1

0
ϕk2(t)dt = 0. Following the same calculations as above we obtain

the term∫ 1

0

∫ 1

0

ϕk1(t)ϕk2(s)|t− s|2H−2dtds

+
∞∑
l=1

2

(
2H − 2

2l

)
ζ(2l + 2− 2H)

∫ 1

0

∫ 1

0

ϕk1(t)ϕk2(s)(t− s)2ldtds

as limiting covariance of
√
n(µ̂k1 − µk1) and

√
n(µ̂k2 − µk2).

Now let us show an auxiliary result that will help us analyse the variance
expression further.

3.1.14 Proposition. Let (fn)n∈Z\{0} be the real L2([0, 1])-Fourier basis without

the constant element, i.e. fn(x) =
√

2 sin(2πnx) and f−n(x) =
√

2 cos(2πnx) for
n ∈ N. Then for any u > 0 the integral∫ 1

0

∫ 1

0

fn(t)fm(s)(eu(1−|t−s|) + eu|t−s| − 2)dtds

is strictly positive and equal to 2(eu−1)u
(2πn)2+u2

if m = n and zero otherwise.

Proof. Let us wirte z = eu and calculate for m, n ∈ Z\{0}:∫ 1

0

∫ 1

0

fn(t)fm(s)(z(1−|t−s|) + z|t−s| − 2)dtds

=

∫ 1

0

∫ t

t−1

fn(t)fm(t− v)(z1−|v| + z|v|)dvdt

=

∫ 1

0

fn(t)

∫ t

t−1

fm(t− v)(z1−|v| + z|v|)dvdt.

By classical trigonometric identities we can decompose fm(t− v) as

√
2fm(t− v) = fm(t)f−m(v)− f−m(t)fm(v)

if m is positive and

√
2fm(t− v) = fm(t)fm(v) + f−m(t)f−m(v)

if m is negative. Thus, for the second part of the statement it suffices to show
that the integral ∫ t

t−1

fm(v)(z1−|v| + z|v|)dv
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is independent of t for all m ∈ Z\{0} and equal to zero for m > 0. This is indeed
the case, because∫ 0

t−1

fm(v)(z1+v + z−v)dv =

∫ 1

t

fm(v)(z1−v + zv),

and therefore, ∫ t

t−1

fm(v)(z1−|v| + z|v|)dv =

∫ 1

0

fm(v)(z1−v + zv)dv

is indeed independent of t. For symmetry reasons the integral vanishes for m > 0.
If n = m, the same trigonometric identities can be used to show that∫ 1

0

∫ 1

0

fn(t)fn(s)(eu(1−|t−s|) + eu|t−s| − 2)dtds =
1√
2

∫ 1

0

f−n(v)(z1−v + zv)dv

if n is positive and∫ 1

0

∫ 1

0

fn(t)fn(s)(eu(1−|t−s|) + eu|t−s| − 2)dtds =
1√
2

∫ 1

0

fn(v)(z1−v + zv)dv

if n is negative. Since∫ 1

0

cos(2πnv)(z1−v + zv)dv =
2(z − 1) log(z)

(2πn)2 + (log(z))2
=

2(eu − 1)u

(2πn)2 + u2

is positive for all u > 0, the first part of the claim is proved.

Now we can provide additional information about Z̄k and find a more concise
form for its variance.

3.1.15 Proposition. The variance of Z̄k from the Proposition 3.1.12 can be
simplified to

1

Γ(2− 2H)

∫ 1

0

∫ 1

0

ϕk(t)ϕk(s)

∫ ∞
0

u1−2H

eu − 1
(eu(1−|t−s|) + eu|t−s| − 2)dudtds.

This expression is positive for all bounded nonzero L2-functions ϕk with zero
integrals.

Proof. Our goal is to show that∫ 1

0

∫ 1

0

ϕk(t)ϕk(s)|t− s|2H−2dtds (3.1.3)

+
∞∑
l=1

2

(
2H − 2

2l

)
ζ(2l + 2− 2H)

∫ 1

0

∫ 1

0

ϕk(t)ϕk(s)(t− s)2ldtds (3.1.4)
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can be rewritten in the above integral form. For the first summand the definition
of Gamma function provides the representation

|t− s|2H−2 =
1

Γ(2− 2H)

∫ ∞
0

u1−2He−u|s−t|du.

For the other summands we make use of the formula Γ(z)ζ(z) =
∫∞

0
uz−1

eu−1
du for

z > 1 (see [3], p. 251) and rewrite them as follows:

2
∞∑
l=1

(
2H − 2

2l

)
ζ(2l + 2− 2H)

∫ 1

0

∫ 1

0

ϕk(t)ϕk(s)(t− s)2ldtds

= 2

∫ 1

0

∫ 1

0

ϕk(t)ϕk(s)
∞∑
l=1

(2H − 2)2l

(2l)!

1

Γ(2l + 2− 2H)

∫ ∞
0

u2l+1−2H

eu − 1
du(t− s)2ldsdt

= 2

∫ 1

0

∫ 1

0

ϕk(t)ϕk(s)

∫ ∞
0

∞∑
l=1

(2H − 2)2l

(2l)!Γ(2− 2H)(2− 2H)(2l)

u2l+1−2H(t− s)2l

eu − 1
dudsdt

=
1

Γ(2− 2H)
2

∫ 1

0

∫ 1

0

ϕk(t)ϕk(s)

∫ ∞
0

u1−2H

eu − 1

∞∑
l=1

(u(t− s))2l

(2l)!
dudsdt

=
1

Γ(2− 2H)
2

∫ 1

0

∫ 1

0

ϕk(t)ϕk(s)

∫ ∞
0

u1−2H

eu − 1
(cosh(u(t− s))− 1)dudsdt,

where (z)k and (z)(k) denote the falling and rising factorials respectively:
(z)n := z(z − 1) . . . (z − n + 1), (z)(n) := z(z + 1) . . . (z + n − 1). For even k it
follows from the definition that (−z)k = (z)(k).

Recall that

cosh(u(t− s))− 1 =
eu(t−s) + eu(s−t) − 2

2
=
eu|t−s| + e−u|t−s| − 2

2

for any t, s and add up the summands of the variance expression (3.1.3) in order
to obtain∫ 1

0

∫ 1

0

ϕk(t)ϕk(s)
1

Γ(2− 2H)

×
∫ ∞

0

u1−2H

(
e−u|s−t| +

2

eu − 1
(cosh(u(t− s))− 1)

)
dudsdt

=

∫ 1

0

∫ 1

0

ϕk(t)ϕk(s)
1

Γ(2− 2H)

×
∫ ∞

0

u1−2H

(
e−u|s−t| +

eu|t−s| + e−u|t−s| − 2

eu − 1

)
dudsdt

=

∫ 1

0

∫ 1

0

ϕk(t)ϕk(s)
1

Γ(2− 2H)

∫ ∞
0

u1−2H

eu − 1
(eu(1−|t−s|) + eu|t−s| − 2)dudsdt,
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which is our claim.
Now let us prove that the obtained variance is indeed positive, thus confirm-

ing the rate of convergence suggested above. For elements of the real L2([0, 1])-
Fourier basis this claim is shown (up to an application of Fubini’s Theorem) in
Proposition 3.1.14. We also obtain from this proposition that in this particular
case the variance (3.1.3) simplifies to

1

Γ(2− 2H)

∫ ∞
0

u2−2H

(2πn)2 + u2
du

for ϕk(x) =
√

2 sin(2πn) or ϕk(x) =
√

2 cos(2πn).
An arbitrary L2-function ϕk with zero integral can be written as∑
n∈Z\{0} cnfn, where fn are elements of the Fourier basis without the constant

component, cn ∈ R, and we have for such a decomposition:∫ 1

0

∫ 1

0

ϕk(t)ϕk(s)
1

Γ(2− 2H)

∫ ∞
0

u1−2H

eu − 1
(eu(1−|t−s|) + eu|t−s| − 2)dudsdt

=

∫ 1

0

∫ 1

0

∑
m,n∈Z\{0}

cnfn(t)cmfm(s)
1

Γ(2− 2H)

×
∫ ∞

0

u1−2H

eu − 1
(eu(1−|t−s|) + eu|t−s| − 2)dudsdt

=
∑

m,n∈Z\{0}

cmcn
1

Γ(2− 2H)

×
∫ ∞

0

u1−2H

eu − 1

∫ 1

0

∫ 1

0

fm(t)fn(s)(eu(1−|t−s|) + eu|t−s| − 2)dsdtdu

=
∑

n∈Z\{0}

c2
n

1

Γ(2− 2H)

×
∫ ∞

0

u1−2H

eu − 1

∫ 1

0

∫ 1

0

fn(t)fn(s)(eu(1−|t−s|) + eu|t−s| − 2)dsdtdu,

since all the off-diagonal terms disappear, as demonstrated in Proposition 3.1.14.
We can now use the result for the Fourier basis and complete the calculations:∫ 1

0

∫ 1

0

ϕk(t)ϕk(s)
1

Γ(2− 2H)

∫ ∞
0

u1−2H

eu − 1
(eu(1−|t−s|) + eu|t−s| − 2)dudsdt

=
1

Γ(2− 2H)

∑
n∈Z\{0}

c2
n

∫ ∞
0

u2−2H

(2πn)2 + u2
du,

which is clearly positive if ϕk is nonzero.

3.1.16 Remark. Following the above calculations we can see that the same
simplified form can be achieved for the covariance expression of two error terms
each converging with the rate

√
n.
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In the context of a different scaling for some of the components a natural ques-
tion concerning ”mixed” covariances arises. This question completes the analysis
of the limiting covariance. It is answered in the following proposition.

3.1.17 Proposition. Let k1, k2 ∈ {1, . . . , p} be such that
∫ 1

0
ϕk1(t)dt = 0 and∫ 1

0
ϕk2(t)dt 6= 0. Then the asymptotic covariance of

√
n(µ̂k1−µk1) and n1−H(µ̂k2−

µk2) is equal to zero.

Proof. As in Proposition 3.1.12, we are left with investigating the term

E
[(
n−

1
2

∫ n

0

ϕk1(t)dB
H
t

)(
n−H

∫ n

0

ϕk2(t)dB
H
t

)]
.

We obtain, again, with αH = H(2H − 1)

1

αH
E
[(
n−

1
2

∫ n

0

ϕk1(t)dB
H
t

)(
n−H

∫ n

0

ϕk2(t)dB
H
t

)]
= n−H−

1
2

∫ 1

0

∫ 1

0

ϕk1(t)ϕk2(s)n|t− s|2H−2dtds

+ n−H−
1
2

∫ 1

0

∫ 1

0

ϕk1(t)ϕk2(s)
∑
i>j

|t− s+ i− j|2H−2dtds

+ n−H−
1
2

∫ 1

0

∫ 1

0

ϕk1(t)ϕk2(s)
∑
j>i

|s− t+ j − i|2H−2dtds.

In this case the first summand converges to zero. For the second summand we
obtain similarly to Proposition 3.1.12 and using that ϕk1 integrates to zero

n−H−
1
2

∫ 1

0

∫ 1

0

ϕk1(t)ϕk2(s)
∑
i>j

|t− s+ i− j|2H−2dtds

=
1

nH−
1
2

∫ 1

0

∫ 1

0

ϕk1(t)ϕk2

n−1∑
m=1

m2H−2

∞∑
l=1

(
2H − 2

l

)
(t− s)lm−ldtds

− 1

nH+ 1
2

∫ 1

0

∫ 1

0

ϕk1(t)ϕk2

n−1∑
m=1

m·m2H−2

∞∑
l=1

(
2H − 2

l

)
(t− s)lm−ldtds

=
1

nH−
1
2

∫ 1

0

∫ 1

0

ϕk1(t)ϕk2

∞∑
l=1

(
2H − 2

l

)
(t− s)l

n−1∑
m=1

m2H−2−ldtds

− 1

nH+ 1
2

∫ 1

0

∫ 1

0

ϕk1(t)ϕk2

∞∑
l=1

(
2H − 2

l

)
(t− s)l 1

n

n−1∑
m=1

m2H−1−ldtds,

which converges to zero as n tends to infinity. By an analogous calculation this
follows also for the third summand.
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3.2 Remarks on parametric estimation in the

ergodic case and for known α

This section contains several remarks that concern the parametric estimator in
the ergodic case considered in [24] as well as a study of asymptotic properties of
the least squares estimator if α is known.

3.2.1 Rates of convergence: Ergodic case

Consider the estimator ϑ̂n = (µ̂1, . . . , µ̂p, α̂) defined in Section 2.2.2 with Sko-
rokhod integrals for α > 0. Similarly to the non-ergodic case, the rate of conver-
gence of ϑ̂n− ϑ is determined by the behaviour of integrals of periodic determin-
istic functions with respect to BH . More precisely, we have the following result
demonstrated in [24] and [7].

3.2.1 Theorem. For H ∈
(

1
2
, 3

4

)
and with the decomposition ϑ̂n − ϑ = σQ−1

n Rn

we have

n−HRn =

(
n−H

∫ n

0

ϕ1(t)dt, . . . , n−H
∫ n

0

ϕp(t)dt, −n−H
∫ n

0

XtdB
H
t

)T
d→ N(0, Σ),

where Σij =
∫ 1

0

∫ 1

0
ϕi(u)ϕj(v)dudv with the notation

ϕp+1(t) := h̃(t) = e−αt
∫ t

−∞
eαsL(s)ds

and

nQ−1
n

a.s.→
(
Ep + γΛΛT γΛ

γΛT γ

)
=: C,

where

Λ = (Λ1, . . . , Λp)
T =

(∫ 1

0

ϕ1(t)h̃(t)dt, . . . ,

∫ 1

0

ϕp(t)h̃(t)dt

)T
and

γ =

(∫ 1

0

h̃2(t)dt+ α−2HHΓ(2H −
p∑
i=1

Λ2
i )

)−1

such that
n1−H(ϑ̂n − ϑ)

d→ N(0, σ2CTΣC).

Therefore, if for some i ∈ {1, . . . , p} the integral
∫ 1

0
ϕi(s)ds is equal to zero,

the ith component of the vector ϑ̂−ϑ will by construction converge with a faster
rate, as demonstrated in Proposition 3.1.12. In the following we will consider
the last component of this vector, analyse under which conditions the speed of
convergence might change and find a limiting distribution in this case. We start
with the following lemma.
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3.2.2 Lemma. For h̃ = e−αt
∫ t
−∞ e

αsL(s)ds the integral
∫ 1

0
h̃(t)dt is equal to zero

if and only if
∫ 1

0
L(s)ds = 0.

Proof. The proof is a straightforward calculation:∫ 1

0

h̃(t)dt =

∫ 1

0

e−αt
∫ t

−∞
eαsL(s)dsdt =

∫
R
eαsL(s)

∫ 1

0

e−αt1{s≤t}dtds

=

∫ 0

−∞
eαsL(s)

∫ 1

0

e−αtdtds+

∫ 1

0

eαsL(s)

∫ 1

s

e−αtdtds

=
1

α

(∫ 0

−∞
eαsL(s)ds−

∫ 1

−∞
eα(s−1)L(s)ds+

∫ 1

0

L(s)ds

)
=

1

α

∫ 1

0

L(s)ds.

In the next proposition we will analyse second order asymptotics for the case∫ 1

0
h̃(t)dt = 0.

3.2.3 Proposition. Let L be such that
∫ 1

0
L(s)ds = 0. Moreover, let q ∈

{0, . . . , p} be such that
∫ 1

0
ϕi(t)dt 6= 0 for i ∈ {1, . . . , q} and

∫ 1

0
ϕ(t)dt = 0 for

i ∈ {q + 1, . . . , p}. Then the vector(
n1−H(µ̂1 − µ1), . . . , n1−H(µ̂q − µq),

√
n(µ̂q+1 − µq+1), . . . ,

√
n(µ̂p − µp),

√
n(α̂q+1 − α)

)
converges in law to N(0, CT Σ̃C), where C is defined in Theorem 3.2.1 and Σ̃ is

a nondegenerate matrix which will be explicitly determined in the proof.

Proof. Since nQ−1
n → C almost surely, it is enough to investigate the convergence

of the appropriately weighted vector Rn, i.e.(
n−H

∫ n

0

ϕ1(t)dBH
t , . . . , n

−H
∫ n

0

ϕq(t)dB
H
t ,

n−1/2

∫ n

0

ϕq+1(t)dBH
t , . . . , n

−1/2

∫ n

0

ϕp(t)dB
H
t , −n−1/2

∫ n

0

XtdB
H
t

)
.

As shown in [24], moreover, replacing Xt = Zt + h(t) by Zt + h̃t changes nothing
for the asymptotics, and in order to analyse the limiting distribution we consider
the vector(

n−H
∫ n

0

ϕ1(t)dBH
t , . . . , n

−H
∫ n

0

ϕq(t)dB
H
t , n

−1/2

∫ n

0

ϕq+1(t)dBH
t ,

. . . , n−1/2

∫ n

0

ϕp(t)dB
H
t , −n−1/2

∫ n

0

ZtdB
H
t , −n−1/2

∫ n

0

h̃(t)dBH
t

)
.
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We know from Section 3.1.4 that in the above vector all the integrals with de-
terministic integrands converge to normally distributed random variables with
positive variances. We also know the limits of covariances between them as well
as the covariances between −n−1/2

∫ n
0
ZtdB

H
t and other components (those are

equal to zero by properties of the product of the different order Wiener inte-
grals, see Section 2.1.2). Now note that it is shown in [30] that −n−1/2

∫ n
0
ZtdB

H
t

converges to N(0, σ2α1−4HδH) in distribution, where

δH = H2(4H − 1)

(
Γ(2H)2 +

Γ(2H)Γ(3− 4H)Γ(4H − 1)

Γ(2− 2H)

)
.

This allows us to use a multivariate version of the fourth moment theorem (see
[59] and [58] for proofs), which states that for a sequence of vectors of multi-
ple Wiener–Itō integrals componentwise convergence to Gaussian always implies
joint convergence (as formulated in [51]). We therefore conclude that the vector
converges jointly to a multivariate centred normal distribution whose covariance
matrix contains the limiting covariances of the components. It follows that also
the vector(

n−H
∫ n

0

ϕ1(t)dBH
t , . . . , n

−H
∫ n

0

ϕq(t)dB
H
t ,

n−1/2

∫ n

0

ϕq+1(t)dBH
t , . . . , n

−1/2

∫ n

0

ϕp(t)dB
H
t , −n−1/2

∫ n

0

XtdB
H
t

)
converges to a centred normal random vector. The variance of the last component
is the sum of the limiting variances of −n−1/2

∫ n
0
ZtdB

H
t and −n−1/2

∫ n
0
h̃(t)dBH

t

and thus positive.

Note that for L ≡ 0 we retrieve exactly the same rate of convergence and the
same limiting distribution for α as in [30].

3.2.4 Remark. 1. As we have seen, the object determining the convergence
of the estimators µ̂i is the integral

∫ n
0
ϕi(t)dB

H
t . In the ergodic case its

behaviour is the same as that of
∫ n

0
ϕi(t)dXt, which can be seen from the

relationship∫ n

0

ϕi(t)dXt = nµi − α
∫ n

0

ϕi(t)Xtdt+

∫ n

0

ϕi(t)dB
H
t

because the two remaining summands converge faster (see [24] for proofs).

In other words, this term also converges faster if
∫ 1

0
ϕi(t)dt = 0. The dif-

ference between the two kinds of asymptotics of the integral
∫ n

0
ϕi(t)dB

H
t

can also be perceived on another level: The covariances of the increments
of the process

(∫ n
0
ϕi(t)dB

H
t

)
n∈N become summable if ϕi integrates to zero,

transporting the setting from long to short range dependence. With this
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background in mind the different rate emerging in this special case does
indeed seem less surprising (see the overview [70] for details on this connec-
tion).

2. Although the latter analysis shows a rate improvement in many cases, the
least squares estimator is not optimal in general: In [56] an estimator in the
case p = 1, ϕ1 ≡ 1 is constructed, whose α-component converges with the
speed

√
n. A simple intuition behind this might be that more information

can be used in this special case. For the least squares type estimator the
observations only on the intervals [0, n], n ∈ N, are considered in order to
make use of ergodic type properties emerging due to periodicity (see [24]
for details). For the constant function this restriction need not appear.

3.2.2 LSE for known α

In this section we will (merely for completeness reasons) briefly discuss the be-
haviour of the least squares type estimator in case where α is known.

In this case the SDE

Xt = X0 +

∫ t

0

(L(s)− αXs) ds+BH
t , X0 = x0 ∈ R,

can be written as

Xt =

∫ t

0

L(s)ds+BH
t

without loss of generality, assuming that the process X is observed continuously:
The integral

∫ t
0
αXsds is known and can be brought to the other side. If in this

setting we follow the construction used in [23] and [24] for the least squares
estimator, we obtain the vector

1

n

(∫ n

0

ϕ1(t)dXt, . . . ,

∫ n

0

ϕp(t)dXt

)
as an estimator for (µ1, . . . , µp). Since

1

n

∫ n

0

ϕi(t)dXt = µi +
1

n

∫ n

0

ϕi(t)dB
H
t

for i = 1, . . . , p, it follows that this estimator is strongly consistent (recall that
1
n

∫ n
0
ϕi(t)dB

H
t is Gaussian and converges to zero in L2 with polynomial speed).

From Section 3.1.4 we can also establish the asymptotic behaviour of the sec-
ond order: The components are jointly asymptotically normal with the rate of
convergence n1−H for the components where

∫ 1

0
ϕi(t)dt 6= 0 and

√
n for others.
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Chapter 4

Nonparametric estimator for the
fractional Ornstein-Uhlenbeck
type processes (ergodic case)

The structure of the problem posed in [24] allows a generalisation possibility for
the results obtained in this paper. Namely, one can construct a nonparametric
estimator for the drift function L in the Ornstein-Uhlenbeck SDE by approxi-
mating it with finite linear combinations of known functions. The idea is similar
to the construction of projection density estimators, see for example [17]. This
chapter deals with this generalisation.

4.1 Setting

As before, we start with the SDE

Xt = X0 +

∫ t

0

L(s)− αXsds+ σBH
t , t ≥ 0

X0 = x0 ∈ R
(4.1.1)

with an fBm BH , H > 1
2
, but now we assume L to be an unknown bounded

1-periodic function. Moreover, this time we consider the ergodic case and the
factor α > 0 is also assumed to be unknown (for convenience of this notation
we have changed the sign in front of α in the equation in this chapter). We
assume to observe X continuously on the whole positive real line. Therefore, by
considerations in Section 2.2.1, the parameter σ 6= 0 can be assumed to be known
and equal to one without loss of generality.

Recall that the unique almost surely continuous solution of the SDE (4.1.1),
also known (for a zero mean) as the fractional Ornstein-Uhlenbeck process, has
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the following form:

Xt = e−αtx0 + e−αt
∫ t

0

L(s)eαsds+ e−αt
∫ t

0

eαsdBH
s .

Let us assume x0 = 0 for simplicity of calculations. This assumption is not
restrictive since the solution for x0 6= 0 approaches Xt for x0 = 0 with exponential
speed. As we will see later, this is enough for the statements to remain valid for
all x0 ∈ R.

The integrals with respect to BH in this chapter are understood as Skorokhod
integrals on the space H H corresponding to the driving fBm as described in
Section 2.1.2. To avoid notation overload, let us simply write H for H H in this
chapter. For an integral

∫ t
0
eαsδBH

s we will sometimes write δ(eα·1{·≤t}), by which
we mean the divergence integral from 0 to infinity as defined in Section 2.1.2. By
Remark 2.1.15 it coincides with the divergence integral on [0, t].

For the sake of clarity we will henceforth denote the solution of the SDE
(4.1.1) by XL, where L is the underlying mean function of the SDE.

As mentioned above, the main idea needed for the construction is simi-
lar to the construction of the projection density estimators. We pick an or-
thonormal basis (ϕi)i∈N of L2([0, 1]) and write an unknown function L as
L ≡

∑∞
i=1〈L, ϕi〉L2([0, 1])ϕi. Since an estimator for the coefficients of finite lin-

ear combinations has already been constructed in [24], we can use it to build an
estimator of L.

Let us introduce a construction which will serve as a foundation and a starting
point in the definition of our estimators.

4.1.1 Definition. For the SDE (4.1.1) with the mean function L, a given
L2([0, 1])-orthonormal basis (ONB in the sequel) (ϕi)i∈N and some p ∈ N we
define the p-cutoff estimator as follows:

ϑ̂L, pn := (µ̂Lp1n , . . . , µ̂Lppn , αLpn ) := Q−1
n Pn,

where

Pn :=

(∫ n

0

ϕ1(t)δXL
t , . . . ,

∫ n

0

ϕp(t)δX
L
t ,−

∫ n

0

XL
t δX

L
t

)T
and

Qn :=

(
nEp −an
−aTn bn

)
with

aTn :=

(∫ n

0

ϕ1(t)XL
t dt . . . ,

∫ n

0

ϕp(t)X
L
t dt

)
and

bn :=

∫ n

0

(XL
t )2dt.
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The integrals in this definition are Skorokhod integrals in the sense of the
definition in Section 2.1.3. Note that since XL consists of a continuous determin-
istic function and an integral with respect to BH over such a function, it will be
integrable with respect to BH .

4.1.2 Remark. If we can write L as
∑p

i=1 µiϕi for some unknown µi’s, then this
is exactly the estimator given in [24]. It is proved there that the p-cutoff estimator
is a weakly consistent and asymptotically normal estimator of ϑ = (µ1, . . . , µp, α)
in this case.

Before we present other constructions let us cite (and adapt to our definition)
some more results that are shown in [24].

4.1.3 Remark. Note that we have

Q−1
n =

1

n

(
Ep + γnΛnΛT

n −γnΛn

−γnΛT
n γn

)
with

Λn(= ΛLp
n ) = (Λn, 1, . . . ,Λn, p)

T =

(
1

n

∫ n

0

ϕ1(t)XL
t dt, . . . ,

1

n

∫ n

0

ϕp(t)X
L
t dt

)

and γn =

(
1
n

∫ n
0

(XL
t )2dt−

∑p
i=1 Λ2

n, i

)−1

. We will denote γ−1
n by DLp

n .

Now let us cite a useful representation result for ϑ̂L, pn which is proved in the
same paper:

4.1.4 Proposition. If L is of the form L(s) =
∑p

i=1 µiϕi(s) for some real
µ1, . . . , µp, then the p-cutoff estimator has the following representation:

ϑ̂L, pn = ϑ+Q−1
n Rn, where

Rn =

(∫ n

0

ϕ1(t)δBH
t , . . . ,

∫ n

0

ϕp(t)δB
H
t , −

∫ n

0

XL
t δB

H
t

)
.

Let us also state and prove a comparable representation for the general case:

4.1.5 Proposition. For a given 1-periodic bounded function L and some p ∈ N
the p-cutoff estimator can be written as follows:

ϑ̂L, pn = ϑ+Q−1
n Rn +Q−1

n Nn

with Qn and Rn as above and

Nn =

(
0, . . . , 0,−

∞∑
i=p+1

µi

∫ n

0

ϕi(t)X
L
t dt

)T

.
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Proof. Exactly as in the special case, we replace δXL
t in each component of Pn

using the representation in the SDE (4.1.1) and obtain∫ n

0

ϕi(t)δX
L
t =

∫ n

0

ϕi(t)L(t)dt− α
∫ n

0

ϕi(t)X
L
t dt+

∫ n

0

ϕi(t)δB
H
t

=
∞∑
j=1

µj

∫ n

0

ϕi(t)ϕj(t)dt− α
∫ n

0

ϕi(t)X
L
t dt+

∫ n

0

ϕi(t)δB
H
t

= µin− α
∫ n

0

ϕi(t)X
L
t dt+

∫ n

0

ϕi(t)δB
H
t

for all i ∈ {1, . . . , p} as well as

−
∫ n

0

XL
t δX

L
t = −

∫ n

0

XL
t L(t)dt+ α

∫ n

0

(XL
t )2dt−

∫ n

0

XL
t δB

H
t

= −
p∑
i=1

µi

∫ n

0

ϕi(t)X
L
t dt+ α

∫ n

0

(XL
t )2dt−

∫ n

0

XL
t δB

H
t −

∞∑
i=p+1

µi

∫ n

0

ϕi(t)X
L
t dt.

Since, moreover,

Qnϑ =


µ1n− α

∫ n
0
ϕ1(t)XL

t dt
...

µpn− α
∫ n

0
ϕp(t)X

L
t dt

−
∑p

i=1 µi
∫ n

0
ϕi(t)X

L
t dt+ α

∫ n
0

(XL
t )2dt

 ,

we can write
Pn = Qnϑ+Rn +Nn

and obtain the result.

Now let us look at a convergence result from [24] which we state here already
in a slightly generalised form.

4.1.6 Proposition. For a given 1-periodic bounded function L and some p ∈ N
the following convergence statements hold for n going to infinity:

ΛLp
ni

a.s.→
∫ 1

0

ϕi(t)h̃(t)dt =: ΛLp
i for all i ∈ {1, . . . , p},

DLp
n

a.s.→
∫ 1

0

h̃2(t)dt+ α−2HHΓ(2H)−
p∑
i=1

(ΛLp
i )2 =: DLp,

where h̃(t) = e−αt
∫ t
−∞ e

αsL(s)ds.
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The proof is identical to the one given in [24].
Note that we can find a positive lower bound for the limits of DLp

n that is
independent of p by observing that every limit is greater or equal than ψ :=
α−2HHΓ(2H). However, it is not clear that the bound will be retained if n and p
simultaneously tend to infinity. We will show this for a certain choice of p at the
beginning of the next chapter.

Let us now pick a positive real number k that is below ψ. For this an additional
assumption on α is needed: We assume that α is bounded from above by a known
constant. This enables us to define a truncated version of our estimator:

4.1.7 Definition. For a given 1-periodic bounded function L and some p ∈ N
we define the truncated p-cutoff estimator as

ϑ̂(T ) := ϑ̂(T ), L, p
n := ϑ̂L, pn 1{DLpn ≥k}.

4.2 Auxiliary results

The aim of this section is to prove some convergence and boundedness results for
the objects introduced above that will be of use in later proofs.

Before we start, let us fix a notation. We will denote

h(t) := e−αt
∫ t

0

eαsL(s)ds

such that we can write

XL
t = h(t) + e−αtδ(eα·1{·≤t}).

Note that the function [t 7→ h(t)] is bounded. Moreover, we write Λ̃Lp
ni for

1
n

∫ n
0
X̃L
t ϕi(t)dt, where

X̃L
t = e−αt

∫ t

−∞
L(s)eαsds+ e−αt

∫ t

−∞
eαsdBH

s = h̃(t) + Z̃t

with

Z̃t = e−αt
∫ t

−∞
eαsdBH

s .

4.2.1 Almost sure convergence of DLp
n

First of all, we will show almost sure convergence of DLp
n defined in Remark 4.1.3,

as anticipated in the previous chapter. We will accomplish this in several steps.

4.2.1 Proposition. For all n ∈ N we have E[(Λ̃Lp
ni −

∫ 1

0
h̃(t)ϕi(t)dt)

2] ≤ Cn2H−2

with C independent of i.
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Proof. Firstly, we remark that the deterministic part of the integral is cancelled
out, because

Λ̃Lp
ni =

1

n

∫ n

0

h̃(t)ϕi(t)dt+
1

n

∫ n

0

Z̃tϕi(t)dt

and h̃ is 1-periodic, as stated in [24], hence, 1
n

∫ n
0
h̃(t)ϕi(t)dt =

∫ 1

0
h̃(t)ϕi(t)dt.

Therefore, we are left with evaluating

E[(
1

n

∫ n

0

Z̃tϕi(t)dt)
2] =

1

n2

∫ n

0

∫ n

0

ϕi(t)ϕi(s)E[Z̃tZ̃s]dtds,

which means considering E[Z̃tZ̃s]. We rewrite it using the isometry property
(Proposition 2.1.3):

E[Z̃tZ̃s] = αH

∫ t

−∞

∫ s

−∞
e−αt+αue−αs+αv|u− v|2H−2dudv

=αHe
−αte−αs

( ∫ 0

−∞

∫ 0

−∞
eαueαv|u− v|2H−2dudv︸ ︷︷ ︸

=:S1

+

∫ t

0

∫ 0

−∞
eαueαv|u− v|2H−2dudv︸ ︷︷ ︸

=:S2.1

+

∫ 0

−∞

∫ s

0

eαueαv|u− v|2H−2dudv︸ ︷︷ ︸
=:S2.2

+

∫ t

0

∫ s

0

eαueαv|u− v|2H−2dudv︸ ︷︷ ︸
=:S3

)
.

We know due to [30] that S1 is finite. Hence, we have

| 1

n2

∫ n

0

∫ n

0

ϕi(t)ϕi(s)αHe
−αte−αsS1dtds| .

1

n2

∫ n

0

∫ n

0

e−αte−αsdtds . n−2.

For S2.1 we observe that, by change of variables,

S2.1 =αH

∫ t

0

∫ ∞
v

e−αze2αvz2H−2dzdv

=αH

(
− 1

2α

∫ ∞
0

e−αzz2H−2dz +
1

2α

(∫ t

0

eαzz2H−2dz +

∫ ∞
t

e−αze2αtz2H−2dz

))
.

The first integral is finite, and for the second one we get

e−αte−αs
∫ t

0

eαzz2H−2dz = e−αs
∫ t

0

e−α(t−z)z2H−2dz

=e−αs
∫ t

0

e−αz(t− z)2H−2dz = e−αst2H−1

∫ 1

0

e−αtu(1− u)2H−2du,

which converges to zero as t goes to∞ (and s is considered to be fixed), as shown
in [9]. Therefore, the whole term is bounded by a constant times e−αs. For the
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last integral in S2.1 we obtain

e−αte−αs
∫ ∞
t

e−αze2αtz2H−2dz = e−αs
∫ ∞
t

e−α(z−t)z2H−2dz

≤e−αs
∫ ∞
t

e−α(z−t)(z − t)2H−2dz = e−αs
∫ ∞

0

e−α(z)z2H−2dz . e−αs.

Therefore, in total e−αte−αsS2.1 is bounded by e−αs, and by symmetry e−αte−αsS2.2

is bounded by e−αt. We obtain thus

| 1

n2

∫ n

0

∫ n

0

ϕi(t)ϕi(s)αHe
−αte−αsS2.2dtds| .

1

n2

∫ n

0

∫ n

0

e−αsdtds . n−1,

and the same result holds for S2.2 by symmetry.
The methods used for S3 are similar. For symmetry reasons we have S31{t≥s} =

S31{s≥t}, and therefore,

S3 = 2

∫ s

0

eαu
(∫ u

0

eαv|u− v|2H−2dv +

∫ t

u

eαv|u− v|2H−2dv

)
du.

The first of the two summands (let us denote it by S3.1) is shown in the proof of
Lemma 6 in [9] to be at most of the order e2αs, and therefore we get∣∣∣∣ 1

n2

∫ n

0

∫ n

0

ϕi(t)ϕi(s)αHe
−αte−αsS3.1dtds

∣∣∣∣ . n−1

with the same calculation as for S2.1. For the second summand, S3.2, we first
obtain by change of variables∫ s

0

eαu
∫ t

u

eαv|u− v|2H−2dvdu =

∫ s

0

e2αu

∫ t−u

0

eαzz2H−2dzdu.

From the proof of Lemma 6 in [9] we know that

e−αt
∫ t

0

eαuu2H−2du = t2H−1

∫ 1

0

e−αtu(1− u)2H−2du

with the integral being a multiple of the confluent hypergeometric function 1F1

with parameters 1, 2H and −αt:∫ 1

0

e−αtu(1− u)2H−2du =
Γ(1)Γ(2H − 1)

Γ(2H)
1F1(1, 2H, −αt),

where 1F1 is defined as

1F1(a, b, z) =
∞∑
n=0

(a)n
(b)n

zn

n!
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(see [1], 13.2.1). The asymptotics of this function for large t is known (again,
from [1], 13.1.5), with t−1 being an upper bound, and allows us the following
estimation:

e−αt
∫ t

0

eαuu2H−2du . t2H−1t−1 = t2H−2.

Therefore, we can continue on our calculations for the second summand as follows:∫ s

0

e2αu

∫ t−u

0

eαzz2H−2dzdu =

∫ s

0

e2αueα(t−u)e−α(t−u)

∫ t−u

0

eαzz2H−2dzdu

.
∫ s

0

eαueαt(t− u)2H−2du = eαt
∫ t

t−s
eα(t−z)z2H−2dz

.e2αt

∫ αt

α(t−s)
e−zz2H−2dz = e2αt(Γ(2H − 1, α(t− s))− Γ(2H − 1, αt))

=: S3.2.1 + S3.2.2,

where Γ(s, x) denotes the incomplete Gamma function defined via Γ(s, x) :=∫∞
x
e−zzs−1dz. Note that Γ(s, x)ex is asymptotically (for large x) of the order

xs−1, which allows for more practical estimates. We obtain thus

| 1

n2

∫ n

0

∫ n

0

ϕi(t)ϕi(s)αHe
−αte−αsS3.2.1dtds| .

1

n2

∫ n

0

∫ n

s

eα(t−s)Γ(2H − 1, α(t− s))dtds

.
1

n2

∫ n

0

∫ n

s

(t− s)2H−2dtds =
1

n2

∫ n

0

∫ n−s

0

z2H−2dzds ∼ n2H−2

for the first and

| 1

n2

∫ n

0

∫ n

0

ϕi(t)ϕi(s)αHe
−αte−αsS3.2.2dtds| .

1

n2

∫ n

0

e−αs
∫ n

s

eαtΓ(2H − 1, αt)dtds

.
1

n2

∫ n

0

e−αs
∫ n

s

t2H−2dtds = n2H−3

∫ n

0

e−αsds− 1

n2

∫ n

0

e−αss2H−1ds . n2H−3

for the second summand. This completes the proof.

Now we can show that
∑p(n)

i=1 (Λ̃Lp
ni )

2 →
∑∞

i=1(
∫ 1

0
h̃(t)ϕi(t)dt)

2 almost surely as
n tends to infinity.

4.2.2 Proposition. For p(n) = nϑ, ϑ < 1−H, we have

p(n)∑
i=1

(
Λ̃Lp
ni

)2

−
(∫ 1

0

h̃(t)ϕi(t)dt

)2
n→∞→ 0

almost surely.
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Proof. Since

Λ̃Lp
ni =

∫ 1

0

h̃(t)ϕi(t)dt+
1

n

∫ n

0

Z̃tϕi(t)dt,

it is enough to show that
∑p(n)

i=1

(
1
n

∫ n
0
Z̃tϕi(t)dt

)2

and

p(n)∑
i=1

1

n

∫ n

0

Z̃tϕi(t)dt

∫ 1

0

h̃(t)ϕi(t)dt

tend to zero almost surely. Both sequences are elements of a finite sum of Wiener
chaoses, therefore, the hypercontractivity property (2.1.6) holds for them and it
suffices to show that any of their moments are bounded by n to some negative
power (up to a constant). Then the proof will follow by a Borel-Cantelli type argu-
ment similarly to Lemma 3.1.3 from the previous chapter. Note that we have es-

tablished above that E
[(

1
n

∫ n
0
Z̃tϕi(t)dt

)2
]

can be bounded by sup ‖ϕi‖∞n2H−2.

For the L2 norm of the first summand we calculate

E

p(n)∑
i=1

(
1

n

∫ n

0

Z̃tϕi(t)dt

)2
2

.
p(n)∑
i, j=1

√√√√E

[(
1

n

∫ n

0

Z̃tϕi(t)dt

)4
]√√√√E

[(
1

n

∫ n

0

Z̃tϕj(t)dt

)4
]

.
p(n)∑
i, j=1

E

[(
1

n

∫ n

0

Z̃tϕi(t)dt

)2
]
E

[(
1

n

∫ n

0

Z̃tϕj(t)dt

)2
]

. p(n)2n4H−4

by Gaussianity of 1
n

∫ n
0
Z̃tϕi(t)dt. For the L2 norm of the second summand we

obtain

E

p(n)∑
i=1

1

n

∫ n

0

Z̃tϕi(t)dt

∫ 1

0

h̃(t)ϕi(t)dt

2
≤ sup ‖ϕi‖2

∞‖h̃‖2
L1([0, 1])

p(n)∑
i, j=1

E
[∣∣∣∣ 1n

∫ n

0

Z̃tϕi(t)dt

∣∣∣∣ ∣∣∣∣ 1n
∫ n

0

Z̃tϕj(t)dt

∣∣∣∣]

.
p(n)∑
i, j=1

√√√√E

[(
1

n

∫ n

0

Z̃tϕi(t)dt

)2
]√√√√E

[(
1

n

∫ n

0

Z̃tϕj(t)dt

)2
]

. p(n)2n2H−2.
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Hence, for p(n) = nϑ both summands converge almost surely, and the proof is
complete.

Now we are prepared for the final result in this section.

4.2.3 Proposition. For p(n) = nβ, β < 1 − H, we have DLp
n → ψ (with ψ =

α−2HHΓ(2H)) almost surely as n tends to infinity.

Proof. We know from [24] that 1
n

∫ n
0
X2
t dt converges to ψ+

∫ 1

0
h̃2(t)dt, so with the

above proposition it remains to show that
∑p(n)

i=1 (Λ̃Lp
ni )

2−(ΛLp
ni )

2 → 0 almost surely.
We use the facts from [24] that lim supn→∞ | 1n

∫ n
0
Xtdt| and lim supn→∞ | 1n

∫ n
0
X̃tdt|

are finite and that |Xt − X̃t| is almost surely bounded by e−αtZ, where Z is a
random variable independent of t and calculate:

p(n)∑
i=1

(Λ̃Lp
ni )

2 − (ΛLp
ni )

2 =

p(n)∑
i=1

(Λ̃Lp
ni − ΛLp

ni )(Λ̃
Lp
ni + ΛLp

ni )

=

p(n)∑
i=1

(
1

n

∫ n

0

(X̃t −Xt)ϕi(t)dt

)(
1

n

∫ n

0

(X̃t +Xt)ϕi(t)dt

)

.
p(n)∑
i=1

1

n

∫ n

0

e−αtZdt
1

n

∫ n

0

|X̃t +Xt|dt . Zp(n)
1

n

∫ n

0

e−αtdt,

which goes to zero pointwise for the above choice of p(n).

This result extends Proposition 4.1.6 to the case where p is not fixed but
tends to infinity in a particular manner. Note that this result is not true for every
choice of p: If we fix n and let p tend to infinity, then by Parseval’s identity D

Lp
n

will converge to zero almost surely, thus there can be no unique joint limit. For
the above choice of p, however, the limit is pointwise and allows us to bound the
denominator in the definition of the estimator (Definition 4.1.7) by a constant
and thus eliminate it in further calculations.

4.2.2 Other results

We have already seen that (ΛLp
ni )

2 converge almost surely for n going to infinity,
now let us demonstrate that this statement also holds in L2.

4.2.4 Proposition. The sequences (ΛLp
ni )

2 converge in L2 to (ΛLp
n )2 for i =

1, . . . , p as n tends to infinity.

Proof. We have eα·1{·≤t} ∈ |H |, and consequently δ(eα·1{·≤t}) and also XL
t itself

are Gaussian. Moreover, it has almost surely continuous paths. Therefore, also
ϕi(t)X

L
t is an almost surely continuous Gaussian stochastic process. We conclude

that also its pathwise Lebesgue integral,
∫ n

0
ϕi(t)X

L
t dt, is a Gaussian random
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variable. Moreover, δ(eα·1{·≤t}) is centred, hence, also 1
n

∫ n
0
ϕi(t)δ(e

α·1{·≤t})dt is
centred. Therefore, we can write for every fixed i:

ΛLp
ni = Detn + CGn,

where Detn is deterministic and CGn is centred Gaussian.
We know due to the almost sure convergence result (and also due to Gaussianity)
that Detn has a (finite) limit. In order to show that (ΛLp

ni )
2 converges in L2 to

limn→∞Det
2
n, it is enough to verify that

4Det2n E[CG2
n] + E[CG4

n]→ 0,

since everything else either is cancelled out or contains an odd moment of CGn as
a factor. Due to Gaussianity we know that E[CG4

n] = 3E[CG2
n]2, and therefore,

it now suffices to prove that E[CG2
n]→ 0 holds for n→∞. We calculate:

E[(
1

n

∫ n

0

ϕi(t)δ(e
α·1{·≤t}))

2]

=
1

n2

∫ n

0

∫ n

0

ϕi(t)ϕi(s)e
−αte−αs E[δ(eα·1{·≤t})δ(e

α·1{·≤s})]dsdt

.
1

n2

∫ n

0

∫ n

0

eαveαu|u− v|2H−2

∫ n

v

∫ n

u

ϕi(t)ϕi(s)e
−αte−αsdtdsdudv.

Since the ϕi are uniformly bounded, we can write∫ n

v

∫ n

u

ϕi(t)ϕi(s)e
−αte−αsdtds

.
∫ n

v

e−αtdt

∫ n

u

e−αsds =
1

α2
(e−αv − e−αn)(e−αu − e−αn),

which means that

E[CG2
n] .

1

n2

∫ n

0

∫ n

0

(1− e−α(n−v))︸ ︷︷ ︸
bounded

(1− e−α(n−u))︸ ︷︷ ︸
bounded

|u− v|2H−2dudv

.
1

n2
n2H = n2H−2 n→∞→ 0.

Next we will demonstrate a boundedness result for the solution process XL.

4.2.5 Proposition. The sequence E[(XL
t )2] is uniformly bounded for t ≥ 0.

Proof. As mentioned above, we have:

XL
t = h(t) + e−αtδ(eα·1{·≤t}).
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The deterministic terms of E[(XL
t )2] are uniformly bounded, the mixed terms

containing δ equal zero, and for the last term we get

E[(e−αtδ(eα·1{·≤t}))
2] = e−2αt

∫ t

0

∫ t

0

eα(s+r)|s− r|2H−2dsdr,

which is bounded by a constant by Lemma 5.1 in [30].

4.2.6 Remark. E[(XL
t )4] is also uniformly bounded: For the third and fourth

power of e−αtδ(eα·1{·≤t}) recall that it is an element of {BH(h)|h ∈ H }, hence,
a Gaussian random variable with zero mean and a variance which is bounded by
a constant, as proved in Proposition 4.2.5.

As a consequence, we obtain another boundedness result:

4.2.7 Proposition. E[(DLp
n )2] is bounded. The bound is uniform with respect to

n and to p.

Proof. It follows from the Bessel inequality applied pointwise that

0 ≤ 1

n

∫ n

0

(XL
t )2dt−

p∑
i=1

(ΛLp
ni )

2 ≤ 1

n

∫ n

0

(XL
t )2dt.

Hence,

E[(DLp
n )2] = E

( 1

n

∫ n

0

(XL
t )2dt−

p∑
i=1

(ΛLp
ni )

2

)2
 ≤ E

[(
1

n

∫ n

0

(XL
t )2dt

)2
]
.

To show that the right-hand side is bounded, we calculate:

E[(
1

n

∫ n

0

(XL
t )2dt)2] =

1

n2
E[

∫ n

0

(XL
t )2dt

∫ n

0

(XL
s )2ds]

=
1

n2

∫ n

0

∫ n

0

E[(XL
t )2(XL

s )2]dtds .
1

n2
n2 = 1,

since we can find a uniform bound for E[(XL
t )2(XL

s )2] due to the Remark 4.2.6
in combination with Cauchy-Schwarz.

4.3 Error bounds

This section contains the crucial part of this chapter. Our goal is to find a bound
on the L2-error for the first p components of the truncated p-cutoff estimator
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ϑ̂(T ). Rigorously phrased, for a given number p ∈ N, an L2([0, 1])-orthonormal
basis (ϕi)i∈N and a 1-periodic bounded function L =

∑∞
i=1 µiϕi we write

ϑ̂(T ) = (µ̂
(T )
1 , . . . , µ̂(T )

p , α̂(T ))

and determine a bound on E[(µ̂
(T )
i −µi)2] for all i ∈ {1, . . . , p}. This bound might

depend on n as well as on p.
Let us first make use of Proposition 4.1.5 and replace µ̂

(T )
i for an i ∈ {1, . . . , p}

by the representation given in that proposition:

E[(µ̂
(T )
i − µi)2] = E

[((
ϑ+Q−1

n Rn +Q−1
n Nn

)
i
1{DLpn ≥k} − µi

)2
]

= E
[(
µi1{DLpn ≥k} + (Q−1

n Rn)i1{DLpn ≥k} + (Q−1
n Nn)i1{DLpn ≥k} − µi

)2
]

≤ 3

(
E
[
(Q−1

n Rn)2
i1{DLpn ≥k}

]
+ E

[
(Q−1

n Nn)2
i1{DLpn ≥k}

]
+ E

[(
µi1{DLpn ≥k} − µi

)2
])

.

We will find separate bounds for

E
[
(Q−1

n Rn)2
j1{DLpn ≥k}

]
,

E
[
(Q−1

n Nn)2
j1{DLpn ≥k}

]
and for

E
[(
µj1{DLpn ≥k} − µj

)2
]

= µ2
jP (DLp

n < k)

for j ∈ {1, . . . , p}.
Let us proceed.

4.3.1 Bound of (Q−1
n Rn)j1{DLp

n ≥k}

In this subsection the following proposition will be demonstrated:

4.3.1 Proposition. With the definitions given in Section 4.1 we have

E
[
(Q−1

n Rn)2
j1{DLpn ≥k}

]
. p2n2H−2

for every j ∈ {1, . . . , p}, and the corresponding constant does not depend on j.

Proof. The proof consists of several parts.
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1. We compute the jth entry in Q−1
n Rn explicitly and make use of the truncation

in our estimator in order to eliminate the denominator (see Definition 4.1.7):

E
[
(Q−1

n Rn)2
j1{DLpn ≥k}

]
= E

 1

n2
1{DLpn ≥k}

1

(DLp
n )2

(
p∑
i=1

δ(ϕi)Λ
Lp
ni Λ

Lp
nj + δ(ϕj)D

Lp
n − δ(XL)ΛLp

nj

)2


.
1

n2

E[δ(ϕj)
2] + E

( p∑
i=1

δ(ϕi)Λ
Lp
ni Λ

Lp
nj − δ(XL)ΛLp

nj

)2
 .

2. The isometry property of divergence integrals provides us with the asymptotic
bound for the first summand:

1

n2
E[δ(ϕj)

2] .
1

n2
n2H = n2H−2.

3. For each of the summands of

1

n2
E

( p∑
i=1

δ(ϕi)Λ
Lp
ni Λ

Lp
nj − δ(XL)ΛLp

nj

)2


we apply the formula Fδ(u) = δ(Fu)−〈DF, u〉H (see Proposition 2.1.6), expand
the expression, pull apart the summands and finally apply the Cauchy-Schwarz
inequality (pointwise, i.e. |2ab| ≤ a2 + b2 for a, b ∈ R) to the mixed terms (the
latter action gives us a factor p in front of the sum):

1

n2
E

( p∑
i=1

δ(ϕi)Λ
Lp
ni Λ

Lp
nj − δ(XL)ΛLp

nj

)2


.
p

n2

(
p∑
i=1

E
[
δ(ΛLp

ni Λ
Lp
njϕi)

2
]

+

p∑
i=1

E
[
〈D·(ΛLp

ni Λ
Lp
nj ), ϕi(· )〉2H

]
+ E[δ(XLΛLp

nj )
2] + E[〈D·ΛLp

nj , X
L
· 〉2H ]

)

=:
p

n2

(
p∑
i=1

E1i +

p∑
i=1

E2i + E3 + E4

)
,

We will now treat all the summands separately in order of their appearance in
the sum.
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3.1. Let us consider E1i. Use E[δ(u)δ(v)] = E[〈u, v〉H ] +E[〈D·u∗, D∗v·〉H ] from
Proposition 2.1.7 and write

E1i = E
[
δ(ΛLp

ni Λ
Lp
njϕi)

2
]

= E[〈ϕiΛLp
ni Λ

Lp
nj , ϕiΛ

Lp
ni Λ

Lp
nj 〉H ] + E[〈D·(ϕi(∗)ΛLp

ni Λ
Lp
nj ), D∗(ϕi(· )Λ

Lp
ni Λ

Lp
nj )〉H ]

=: ε11 + ε12.

We have:

ε11 = E[〈ϕiΛLp
ni Λ

Lp
nj , ϕiΛ

Lp
ni Λ

Lp
nj 〉H ]

=〈ϕi, ϕi〉H E[(ΛLp
ni Λ

Lp
nj )

2].

Because of the boundedness results from Section 4.2.2 we can find a constant
uniform bound on the expectation term. And since the basis elements are
bounded by assumption, we have |〈ϕi, ϕi〉H | . n2H , and hence, |ε11| . n2H .

For ε12 we have to calculate and analyse the Malliavin derivatives of the
term ΛLp

ni Λ
Lp
nj . We use the product rule for Malliavin derivatives (2.1.1) and

write first
Ds(Λ

Lp
ni Λ

Lp
nj ) = DsΛ

Lp
ni Λ

Lp
nj + ΛLp

niDsΛ
Lp
nj .

Observe that, if it is not marked otherwise by the parentheses, the deriva-
tive operator applies only to the variable written directly behind it, i.e.
DsΛ

Lp
ni Λ

Lp
nj is to be read as Ds(Λ

Lp
ni )Λ

Lp
nj . We will use this notation through-

out the thesis.

In total, we obtain

|ε12| = E[〈ϕi(∗)(D·ΛLp
ni Λ

Lp
nj + ΛLp

niD·Λ
Lp
nj ), ϕi(· )(D∗Λ

Lp
ni Λ

Lp
nj + ΛLp

niD∗Λ
Lp
nj )〉H ]

These summands can be pulled apart by the triangle inequality applied to
|ε12|. This will give us a total of four summands of the form |E[〈f, g〉H ]|
with f = ϕi(∗)D·ΛLp

nkΛ
Lp
nl and g = ϕi(· )D∗ΛLp

nmΛLp
no with (k, l), (m, o) ∈

{(i, j), (j, i)}. We will denote a summand of this form by |ε(1)
12 |). Our next

step is, of course, to find a bound for |ε(1)
12 |.

First note that we can explicitly calculate the Malliavin derivative of XL
t ,

DsX
L
t = eα(s−t)1{s≤t},

it is deterministic and uniformly bounded. We exchange the Malliavin
derivative and the Lebesgue integral as reasoned in Remark 2.1.11 and con-
clude that also DsΛ

Lp
ni = 1

n

∫ n
0
ϕi(t)DsX

L
t dt are bounded and deterministic

for i ∈ {1, . . . , p}, and, hence, we have

|〈ϕi(∗)D·ΛLp
nk, ϕi(· )D∗Λ

Lp
nm〉H | . n2H ,
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which implies

|ε(1)
12 | = |E[ΛLp

nl Λ
Lp
no ]〈ϕi(∗)D·Λ

Lp
nk, ϕi(· )D∗Λ

Lp
nm〉H | . n2H

due to boundedness of E[(ΛLp
nl )

2] and of E[(ΛLp
no)

2]. Note that the bound is
independent of p: recall that in the notation ΛLp

ni the parameter p is an index
and not a factor.

In total, taking into account the number of summands, we obtain
|
∑p

i=1E1i| . pn2H .

3.2. Now let us look at E2i. Recall that

Ds(Λ
Lp
ni Λ

Lp
nj ) = DsΛ

Lp
ni Λ

Lp
nj + ΛLp

niDsΛ
Lp
nj

and paste this expression into the scalar product

E2i = E
[
〈D·(ΛLp

ni Λ
Lp
nj ), ϕi(· )〉2H

]
.

Now the sum can be pulled apart again and, as above, we will be analysing
every summand separately. Due to a comparable structure in this case we
will again have four summands, this time of the following kind:

|E(1)
2 | = |E[〈D·ΛLp

nkΛ
Lp
nl , ϕi(· )〉H 〈D·Λ

Lp
nmΛLp

no , ϕi(· )〉H ]|

with (k, l), (m, o) ∈ {(i, j), (j, i)}.
Now note that we can find a bound for DsΛ

Lp
ni , s ≤ n, i ∈ {1, . . . , p}, which

is better than a constant:

|DsΛ
Lp
ni | =

∣∣∣∣ 1n
∫ n

0

ϕi(t)e
α(s−t)1{s≤t}dt

∣∣∣∣
. eαs

1

n

∫ n

s

e−αtdt ∼ 1

n
(1− e−α(n−s)) .

1

n
.

Using the boundedness result for ΛLp
ni (following from 4.2.4) as well as the

above calculation, we get a bound for |E(1)
2 |:

|E(1)
2 | . |〈D·Λ

Lp
nk, ϕi(· )〉H 〈D·Λ

Lp
nm, ϕi(· )〉H | .

1

n2
n4H . n2H .

Again, considering the number of summands, we arrive at the bound∑p
i=1 E2i . pn2H .

3.3 For E3 we use the same formula as for E1:

E[δ(XLΛLp
nj )

2] = E[〈XL
· ΛLp

nj , X
L
· ΛLp

nj 〉H ]︸ ︷︷ ︸
=:E31

+E[〈D·(XL
∗ ΛLp

nj ), D∗(X
L
· ΛLp

nj )〉H ]︸ ︷︷ ︸
=:E32

.
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First, we have a look at E31:

|E31| =
∣∣∣∣E [∫ n

0

∫ n

0

XL
s ΛLp

njX
L
t ΛLp

nj |s− t|2H−2dsdt

]∣∣∣∣ .
Since E[|XL

s (ΛLp
nj )

2Xt|] is bounded by a constant, we have |E31| . n2H .

Let us now consider the second term:

|E32| =
∣∣∣∣E [∫ n

0

∫ n

0

Ds(X
L
t ΛLp

nj )Dt(X
L
s ΛLp

nj )|s− t|2H−2dsdt

]∣∣∣∣ .
The product rule (2.1.1) yields

|Ds(X
L
t ΛLp

nj )Dt(X
L
s ΛLp

nj )| = |(DsX
L
t ΛLp

nj +DsΛ
Lp
njX

L
t )(DtX

L
s ΛLp

nj +DtΛ
Lp
njX

L
s )|

≤ |DsX
L
t DtX

L
s (ΛLp

nj )
2|︸ ︷︷ ︸

=0 for s 6=t

+ |DsΛ
Lp
njX

L
t DtX

L
s ΛLp

nj |︸ ︷︷ ︸
.|XL

t ΛLpnj |

+ |DtΛ
Lp
njX

L
s DsX

L
t ΛLp

nj |︸ ︷︷ ︸
.|XL

s ΛLpnj |

+ |DsΛ
Lp
njDtΛ

Lp
njX

L
s X

L
t |︸ ︷︷ ︸

.|XL
s X

L
t |

,

which can be obtained from the above calculations for the derivatives. Due
to boundedness results from Section 4.2.2 we now get a constant bound for

|Ds(X
L
t ΛLp

nj )Dt(X
L
s ΛLp

nj )|

and hence a total bound of n2H for the term |E32|.

3.4 Finally, let us analyse E4. We have

E4 = E[〈D·ΛLp
nj , X

L
· 〉2H ] . E[〈 1

n
(1− e−α(n−·)), XL

· 〉2H ] .
1

n2
n4H . n2H ,

because E[|XL
t X

L
s |] is bounded.

Let us briefly summarise the results. In part 3 we have shown:
∑p

i=1 E1i . pn2H ,∑p
i=1 E2i . pn2H as well as E3 . n2H and E4 . n2H . In total, we obtain:

1

n2
E

( p∑
i=1

δ(ϕi)Λ
Lp
ni Λ

Lp
nj − δ(XL)ΛLp

nj

)2


.
p

n2

(
p∑
i=1

E1i +

p∑
i=1

E2i + E3 + E4

)
.

p

n2
pn2H = p2n2H−2.

Combined with part 2 we get

E
[
(Q−1

n Rn)2
j1{DLpn ≥k}

]
. p2n2H−2,

which is what we wanted to show.

71



4.3.2 Bound of (Q−1
n Nn)j1{DLp

n ≥k}

First, let us introduce a notation that will also be of use later on:

4.3.2 Definition. For a 1-periodic L2-function L and a given L2-orthonormal
basis (ϕi)i∈N we will denote its projection on the space spanned by ϕ1, . . . , ϕp (for
a given p ∈ N) by Lp, i.e., we will write

Lp =

p∑
i=1

〈L, ϕi〉L2([0, 1])ϕi.

Let us now consider the part of the L2-error that we are going to analyse in
this section:

(Q−1
n Nn)j1{DLpn ≥k} =

(
1

n

1

DLp
n

ΛLp
nj

∞∑
i=p+1

µi

∫ n

0

XL
t ϕi(t)dt

)
1{DLpn ≥k}.

Now let us calculate the second moment of this term using Fubini’s theorem:

E
[
(Q−1

n Nn)2
j1{DLpn ≥k}

]
= E

 1

n2

1

(DLp
n )2

(ΛLp
nj )

2

(
∞∑

i=p+1

µi

∫ n

0

XL
t ϕi(t)dt

)2

1{DLpn ≥k}


=

1

n2

∫ n

0

∫ n

0

(
∞∑

i=p+1

µiϕi(t)

)(
∞∑

i=p+1

µiϕi(s)

)
E
[

1

(DLp
n )2

(ΛLp
nj )

2XL
t X

L
s 1{DLpn ≥k}

]
︸ ︷︷ ︸

|...|.1

dsdt

.
1

n2

(∫ n

0

|L(t)− Lp(t)|dt
)2

=

(∫ 1

0

|L(t)− Lp(t)|dt
)2

.

The bound on the expectation is obtained by applying the Cauchy-Schwarz in-
equality and using the boundedness results for the fourth moments of the factors
ΛLp
nj and XL

t , which have been shown in the auxiliary subsection 4.2. The last
step is due to periodicity of both L and Lp.

The bound we have found is nonrandom, it only depends on the class of
functions L belongs to and on the ONB (ϕi)i∈N. A more useful bound on this
expression with respect to p will be given as soon as we have made these choices.

4.3.3 Bound of µ2
jP (DLp

n < k)

Let us write µ2
jb(n, p) for a bound on this term. We proceed as in the proof of

convergence of DLp
n in order to find a suitable b(n, p).

4.3.3 Proposition. Let X̃(= X̃L) be the modified solution defined in the begin-
ning of Section 4.2. We have

E

( 1

n

∫ n

0

X̃2
t dt−

(
ψ +

∞∑
i=1

(∫ 1

0

h̃(t)ϕi(t)dt

)2
))2

 = O(n2H−2).
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Proof. We have X̃ = h̃(t) + Z̃t (see beginning of Section 4.2), thus we can write

1

n

∫ n

0

X̃2
t dt =

1

n

∫ n

0

h̃2(t)dt+ 2
1

n

∫ n

0

h̃(t)Z̃tdt+
1

n

∫ n

0

Z̃2
t dt

h̃ periodic
=

∫ 1

0

h̃2(t)dt+ 2
1

n

∫ n

0

h̃(t)Z̃tdt+
1

n

∫ n

0

Z̃2
t dt,

and therefore,

E

( 1

n

∫ n

0

X̃2
t dt−

(
ψ +

∞∑
i=1

(∫ 1

0

h̃(t)ϕi(t)dt

)2
))2


= E

[(
1

n

∫ n

0

Z̃2
t dt− ψ + 2

1

n

∫ n

0

h̃(t)Z̃tdt

)2
]

. E

[(
1

n

∫ n

0

Z̃2
t dt− ψ

)2
]

︸ ︷︷ ︸
=:S1

+4
1

n2
E

[(∫ n

0

h̃(t)Z̃tdt

)2
]

︸ ︷︷ ︸
=:S2

.

Let us deal with the summands separately, as usual. For S1, let us first observe
that for two jointly normally distributed, centred random variables X, Y we have

E[X2Y 2] = E[X2]E[Y 2] + 2E[XY ]2.

With this in mind we can write

S1 = E

[(
1

n

∫ n

0

Z̃2
t dt

)2
]
− 2ψ E

[
1

n

∫ n

0

Z̃2
t dt

]
+ ψ2

=
1

n2

∫ n

0

∫ n

0

E[Z̃2
t Z̃

2
s ]dtds− 2ψ

1

n

∫ n

0

E[Z̃2
t ]dt+ ψ2

=

(
1

n

∫ n

0

E[Z̃2
t ]dt− ψ

)2

+ 2
1

n2

∫ n

0

∫ n

0

E[Z̃tZ̃s]
2dtds.

The second summand here can be bounded by n4H−4 (. n2H−2) similarly to
Proposition 4.2.1: we integrate this time over squares of S1, S2.1, S2.2 and S3

from Proposition 4.2.1 and using the same techniques we arrive at the desired
bound. For the first summand let us observe that ψ equals E[Z̃2

0 ] (as shown in
[30]). As Z̃ is a stationary process, its second moments do not vary over time,
and hence, pulling ψ into the integral yields E[Z̃2

t ]−E[Z̃2
0 ] = 0 under the integral

sign. Therefore, the first summand vanishes.
Now we turn to the second summand and rewrite it thus:

S2 =
1

n2

∫ n

0

∫ n

0

h̃(t)h̃(s)E[Z̃tZ̃s]dtds . n2H−2,

as h̃ is bounded and thus the same arguments as in Proposition 4.2.1 can be
applied.
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Next we will need another auxiliary convergence result.

4.3.4 Lemma. Let Λ̃Lp
ni and h̃ be defined as in the beginning of Section 4.2. We

have the following bound, using the Cauchy-Schwarz inequality and the bounded-
ness results from Section 4.2.2:

E

p(n)∑
i=1

(
Λ̃Lp
ni

)2

−
(∫ 1

0

h̃(t)ϕi(t)dt

)2
2 . p(n)2n2H−2.

Proof. We calculate as follows:

E

p(n)∑
i=1

(
Λ̃Lp
ni

)2

−
(∫ 1

0

h̃(t)ϕi(t)dt

)2
2

. p(n)

p(n)∑
i=1

E

((Λ̃Lp
ni

)2

−
(∫ 1

0

h̃(t)ϕi(t)dt

)2
)2


= p(n)

p(n)∑
i=1

E

[((
Λ̃Lp
ni

)
−
∫ 1

0

h̃(t)ϕi(t)dt

)2((
Λ̃Lp
ni

)
+

∫ 1

0

h̃(t)ϕi(t)dt

)2
]

. p(n)

p(n)∑
i=1

√√√√E

[((
Λ̃Lp
ni

)
−
∫ 1

0

h̃(t)ϕi(t)dt

)4
]

∼ p(n)

p(n)∑
i=1

E

[((
Λ̃Lp
ni

)
−
∫ 1

0

h̃(t)ϕi(t)dt

)2
]

4.2.1

. p(n)2n2H−2,

the step before last being true due to properties of the moments of centred normal
random variables.

Now we can derive the actual result:

4.3.5 Proposition. For k < ϕ we have

P (DLp
n < k) = P

 1

n

∫ n

0

X2
t dt−

p(n)∑
i=1

(
ΛLp
ni

)2

< k

 . p(n)2n2H−2.

Proof. Pick ε1, ε2 > 0 such that ϕ− ε1− ε2 > k. Then we can split up the set in

74



question in the following way:

P

 1

n

∫ n

0
X2
t dt−

p(n)∑
i=1

(
ΛLpni

)2
< k


= P

(
DLp
n < k,

∣∣∣∣ 1n
∫ n

0
X2
t dt−

(
ψ +

∫ 1

0
h̃2(t)dt

)∣∣∣∣ < ε1,∣∣∣∣∣∣
p(n)∑
i=1

(ΛLpni )2 −
∫ 1

0
h̃2(t)dt

∣∣∣∣∣∣ < ε2

)
+ P

(
DLp
n < k,

( ∣∣∣∣ 1n
∫ n

0
X2
t dt−

(
ψ +

∫ 1

0
h̃2(t)dt

)∣∣∣∣ ≥ ε1 or

∣∣∣∣∣∣
p(n)∑
i=1

(ΛLpni )2 −
∫ 1

0
h̃2(t)dt

∣∣∣∣∣∣ ≥ ε2

))
.

The first summand is then zero by choice of ε1, ε2, because DLp
n must be enclosed

in the interval (ψ−ε1−ε2, ψ+ε1 +ε2) due to the last two conditions. The second
summand is bounded by the sum

P

(∣∣∣∣ 1n
∫ n

0

X2
t dt−

(
ψ +

∫ 1

0

h̃2(t)dt

)∣∣∣∣ ≥ ε1

)
︸ ︷︷ ︸

=:S1

+P

∣∣∣∣∣∣
p(n)∑
i=1

(ΛLp
ni )

2 −
∫ 1

0

h̃2(t)dt

∣∣∣∣∣∣ ≥ ε2


︸ ︷︷ ︸

=:S2

.

Let us consider S1. First note that, as mentioned in Proposition 4.2.3, Xt and
X̃t(= X̃L

t ) approach each other as t tends to infinity. Therefore, we exchange Xt

for X̃t by picking 0 < ε̃1 < ε1 such that we have

S1 =P

(∣∣∣∣ 1n
∫ n

0
X2
t dt−

(
ψ +

∫ 1

0
h̃2(t)dt

)∣∣∣∣ ≥ ε1,

∣∣∣∣ 1n
∫ n

0
X2
t dt−

1

n

∫ n

0
X̃2
t dt

∣∣∣∣ ≥ ε̃1

)
+ P

(∣∣∣∣ 1n
∫ n

0
X2
t dt−

(
ψ +

∫ 1

0
h̃2(t)dt

)∣∣∣∣ ≥ ε1,

∣∣∣∣ 1n
∫ n

0
X2
t dt−

1

n

∫ n

0
X̃2
t dt

∣∣∣∣ < ε̃1

)
≤ P

(∣∣∣∣ 1n
∫ n

0
X2
t dt−

1

n

∫ n

0
X̃2
t dt

∣∣∣∣ ≥ ε̃1

)
+ P

(∣∣∣∣ 1n
∫ n

0
X2
t dt−

(
ψ +

∫ 1

0
h̃2(t)dt

)∣∣∣∣ ≥ ε1 − ε̃1

)
.

Then we apply Markov inequality to each of the summands, obtaining for the
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first one

P

(∣∣∣∣ 1n
∫ n

0

X2
t dt−

1

n

∫ n

0

X̃2
t dt

∣∣∣∣ ≥ ε̃1

)
. E

[
1

n2

∫ n

0

∫ n

0

(X2
t − X̃2

t )(X2
s − X̃2

s )dtds

]
≤ 1

n2

∫ n

0

∫ n

0

E[|(Xt + X̃t)(Xs + X̃s)| |Xt − X̃t|︸ ︷︷ ︸
≤e−αtZ

|Xs − X̃s|︸ ︷︷ ︸
≤e−αsZ

]dtds

.
1

n2

∫ n

0

∫ n

0

e−αte−αs E[|(Xt + X̃t)(Xs + X̃s)|Z2]dtds .
1

n2
,

as the random variables involved are jointly Gaussian with uniformly bounded
variances (cf. Section 4.2.2), Z being a bound on eαt|Xt− X̃t| defined in [24] and
mentioned in Proposition 4.2.3.

The second summand is bounded by n2H−2, as shown in Proposition 4.3.3.
Now we resume the investigation of S2. Pick an 0 < ε̄2 < ε2 and note that

since
∑∞

i=1

(∫ 1

0
h̃(t)ϕi(t)dt

)2

is a convergent sum, there exists an n ∈ N such that∑∞
i=p(n)

(∫ 1

0
h̃(t)ϕi(t)dt

)2

< ε̄2. We can, therefore, write

S2 ≤ P

∣∣∣∣∣∣
p(n)∑
i=1

(
(ΛLp

ni )
2 −

(∫ 1

0

h̃(t)ϕi(t)dt

)2
)∣∣∣∣∣∣ ≥ ε2 − ε̄2

 .

We proceed as with the first summand and replace ΛLp
ni by Λ̃Lp

ni :

S2 ≤P

∣∣∣∣∣∣
p(n)∑
i=1

(
(ΛLpni )2 −

(∫ 1

0
h̃(t)ϕi(t)dt

)2
)∣∣∣∣∣∣ ≥ ε2 − ε̄2,

∣∣∣∣∣∣
p(n)∑
i=1

(
(ΛLpni )2 − (Λ̃Lpni )2

)∣∣∣∣∣∣ > ε̃2


+ P

∣∣∣∣∣∣
p(n)∑
i=1

(
(ΛLpni )2 −

(∫ 1

0
h̃(t)ϕi(t)dt

)2
)∣∣∣∣∣∣ ≥ ε2 − ε̄2,

∣∣∣∣∣∣
p(n)∑
i=1

(
(ΛLpni )2 − (Λ̃Lpni )2

)∣∣∣∣∣∣ ≥ ε̃2


≤P

∣∣∣∣∣∣
p(n)∑
i=1

(
(ΛLpni )2 − (Λ̃Lpni )2

)∣∣∣∣∣∣ ≥ ε̃2


+ P

∣∣∣∣∣∣
p(n)∑
i=1

(
(ΛLpni )2 −

(∫ 1

0
h̃(t)ϕi(t)dt

)2
)∣∣∣∣∣∣ ≥ ε2 − ε̄2 − ε̃2

 ,

where ε̃2 > 0 is picked such that ε2−ε̄2−ε̃2 > 0. For the first summand, Markov’s
inequality together with moment boundedness of Xt, X̃t yields the bound p(n)2 1

n2 ,
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since (by calculations from Proposition 4.2.3)

P

∣∣∣∣∣∣
p(n)∑
i=1

(
(ΛLp

ni )
2 − (Λ̃Lp

ni )
2
)∣∣∣∣∣∣ ≥ ε̃2


.E

p(n)∑
i=1

1

n

∫ n

0

e−αtZdt
1

n

∫ n

0

|X̃t +Xt|dt

2
. p(n)2

(
1

n

∫ n

0

e−αtdt

)2

,

using Markov inequality.

Finally, for the second summand the bound p(n)2n2H−2 has been proved in
Lemma 4.3.4.

Note that this bound is always faster than the bound derived in Section 4.3.1,
hence we do not have to take this summand into consideration while determining
the optimal p(n).

4.4 Construction of the estimator

Let us now define an estimator for the function L.

4.4.1 Definition. Given the SDE (4.1.1) with the 1-periodic and bounded mean
function L, an ONB {ϕi}i∈N of L2([0, 1]), define for a nondecreasing function
p : N→ N, p(n)

n→∞→ ∞,

L̂p(n) :=

p(n)∑
i=1

ϕiµ̂
(T )
i ,

where µ̂
(T )
i = (ϑ̂

(T, L, p(n))
n )i (see Definition 4.1.7).

In order to establish bounds on the rates of convergence which depend on n we
are free to make two choices. We can pick a suitable orthonormal basis (note that
in our previous calculations we have not specified one) and a class of functions
where L should belong to, thus imposing new conditions on our problem. This
will be done in the main proposition. Before that let us present a lemma from
[68].

4.4.2 Lemma. If a function f is continuous with the modulus of continuity ω(δ),
then it holds for the partial sum of its Fourier series SN(x) =

∑N
j=−N f̂(j)e2πijx

(where f̂(n) are the corresponding Fourier coefficients):

|f(x)− SN(x)| ≤ Aω

(
1

2πN

)
log(N)
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for some constant A.

Therefore, it seems reasonable to consider the Fourier orthonormal basis
(e2πijx)j∈Z. However, as we need a basis of real functions, we consider the family
(1,
√

2 sin(2πx),
√

2 cos(2πx),
√

2 sin(2π· 2x),
√

2 cos(2π· 2x), . . . ) as a choice for
ϕi, which changes nothing for the uniform bound, since

SN(x) = a0 +
N∑
j=1

aj
√

2 sin(2πjx) + bj
√

2 cos(2πjx)

with ai, bi being defined as scalar products of f with the respective basis elements.
As to suitable classes for L, let us consider the class Hγ of γ-Hölder continuous
functions (for which we have ω(δ) = kδγ for some constant k). The above result
will then mean

|L2p+1(x)− L(x)| .
(

1

2πp

)γ
log(p) .

log(p)

pγ
.

It is enough to consider odd indexes, since for the even ones the order of the
bounds remains asymptotically the same (this can be shown with the triangle
inequality because the bound on the coefficients is known).

4.4.3 Proposition. Consider the SDE (4.1.1) with the 1-periodic, γ-Hölder con-
tinuous (for γ ≥ 1

2
) and bounded mean function L as well as the trigonometric

orthonormal basis {ϕi}i∈N. Then L̂p(n) is an L2-consistent estimator of L for

p(n) ∼ n
2−2H
2γ+2 .

Proof. First, note that for p(n) ∼ n
2−2H
2γ+2 Propositions 4.2.2 and 4.2.3 are satisfied.

We consider the mean integrated squared error between the estimator and the
true function L and provide a tradeoff bound by applying the Cauchy-Schwarz
inequality:

E
[∫ 1

0

(L̂p(n)(t)− L(t))2dt

]
≤ 2

(
E
[∫ 1

0

(L̂p(n)(t)− Lp(n)(t))
2dt

]
+

∫ 1

0

(Lp(n)(t)− L(t))2dt

)
.

Note that

E
[∫ 1

0

(L̂p(n)(t)− Lp(n)(t))
2dt

]
= E

∫ 1

0

p(n)∑
i=1

ϕi(t)µ̂i −
p(n)∑
i=1

ϕi(t)µi

2

dt


= E

∫ 1

0

p(n)∑
i=1

ϕi(t)(µ̂i − µi)

2

dt

 =

p(n)∑
i=1

E
[
(µ̂i − µi)2

]
,
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and therefore,

E
[∫ 1

0

(L̂p(n)(t)− L(t))2dt

]
.

p(n)∑
i=1

E
[
(µ̂i − µi)2

]
+

∫ 1

0

(Lp(n)(t)− L(t))2dt.

We know from Section 4.3 that the first term is asymptotically bounded by the

slowest term out of p(n)· p(n)2n2H−2, p(n)·
(∫ 1

0
|L(t)− Lp(t)|dt

)2

(the additional

factor p(n) emerging from the summation) and
∑p(n)

i=1 µ
2
i b(n, p(n)). As we can see

from Lemma 4.4.2,

p(n)·
(∫ 1

0

|L(t)− Lp(n)(t)|dt
)2

. p(n)
log(p(n))2

p(n)2γ

as well as ∫ 1

0

(Lp(n)(t)− L(t))2dt .
log(p(n))2

p(n)2γ
.

For our choice of p(n) and γ each of the terms goes to zero as n tends to infinity.
In particular, we get

p(n)∑
i=1

µ2
i b(n, p(n)) = b(n, p(n))

p(n)∑
i=1

µ2
i . b(n, p(n))→ 0

by virtue of the Bessel’s inequality, since p(n)→∞ for n→∞.
Moreover, the p(n) chosen in the proposition minimises the bounds.

This speed of convergence can be improved by assuming that the so-
lution for every cutoff Lp can be observed. In this case the bound

p(n)·
(∫ 1

0
|L(t)− Lp(t)|dt

)2

disappears, such that convergence becomes faster.
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Chapter 5

Parametric estimators for the
Ornstein-Uhlenbeck type
equations driven by a Rosenblatt
process

As mentioned in Chapter 2, Hermite processes with Hurst parameter H ∈
(

1
2
, 1
)

are stochastic processes in Wiener chaoses with respect to a fractional Brownian
motion that have the same covariance structure, namely that of the fractional
Brownian motion with this parameter. As we will see in this chapter, they have
a representation in terms of multiple integrals, and thus calculations including
them can be made my means of Malliavin calculus. For this reason it is a
natural idea to analyse the behaviour of the least-squares type estimator in the
Ornstein-Uhlenbeck setting (analysed in [24] with Malliavin calculus for fBm)
for Hermite processes in higher order chaoses. In this chapter we have made this
analysis for the Hermite process in the second chaos, also known as Rosenblatt
process. Moreover, we have constructed other parameter estimators for this
setting and analysed their asymptotic behaviour. The mathematical reason
for the restriction to chaos two is that, although Skorokhod-type integrals are
defined for general Hermite processes, the calculus for them is less studied than
for the Rosenblatt processes.

Concerning the practical motivation we have briefly seen in the introduction
that in some applications it makes sense to consider a driving process with
skewed marginals, which exhibits self-similarity. The Rosenblatt process is
well-adapted for this role since the choice of the parameter H defining the
covariance allows to regulate the skewness of the process: In the limit H → 1 the
χ2-marginals emerge and in the limit H → 1

2
normal marginals occur (see [82]).

Moreover, Rosenblatt processes, just like their Gaussian counterparts, exhibit
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self-similarity (see [78]). From the practical point of view this offers a simple but
versatile idea for modelling processes with a skewness.

Although the definition of the least-squares estimator is analogous to the fBm
case and relies on calculus for Skorokhod type integrals, the proof techniques
are quite different from those used in [24]. The proofs in the latter setting
rely heavily upon the Gaussianity of the driving process, requiring a different
approach for the former case. The techniques found for demonstrating the
asymptotic properties for the Rosenblatt processes are more general, some of
them allowing extensions to self-similar processes. These techniques, moreover,
lay the foundation for considering general Ornstein-Uhlenbeck type equations
driven by a general Hermite process. For this some additional properties of
stochastic integrals with respect to Hermite processes need to be established;
moreover, parts of the proofs will require a different treatment, however, this
chapter provides an outline for future work in this direction which would even
further generalise the results. The same is valid for the new estimators defined
in this chapter and the techniques developed to analyse them.

We consider the following model:

Xt = X0 +

∫ t

0

(L(t)− αXt) dt+ ZH
t , t ≥ 0,

X0 = 0,

(5.0.1)

where the random noise (ZH
t )t≥0 is a Rosenblatt process with Hurst parameter

H ∈
(

1
2
, 1
)
, L is a periodic function and α is assumed to be positive (here,

again, the sign in front of α in the equation is changed to accommodate this).
We will assume that L can be written as L(t) =

∑p
i=1 µiϕi(t) with some suitable

known periodic functions ϕ, i = 1, .., p. The purpose is to estimate jointly
the parameters µ1, .., µp and α based on a continuous-time observation of the
solution to (5.0.1).

The contents of this Chapter can for the most part be found in the paper

• R. Shevchenko, C. A. Tudor - Parameter estimation for the Rosenblatt
Ornstein–Uhlenbeck process with periodic mean, 2019, Statistical Inference
for Stochastic Processes.
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5.1 Preliminaries: The Rosenblatt process and

the stochastic integral with respect to it

Let us start by recalling the definition and the basic properties of the Rosenblatt
process as well as the construction of the stochastic integral with respect to this
process, which is neither Gaussian nor a semimartingale. For a more complete
exposition, we refer to the monographs [62], [77] or to the reference [78]. The
properties mentioned in this section are demonstrated in these references. Note
that there are several possible definitions of the Rosenblatt process. Here, we
chose to work with the so-called finite interval representation of it. Let H > 1

2

and (Bt)t≥0 a Brownian motion. Consider the kernel

KH(t, s) = cHs
1
2
−H
∫ t

s

(u− s)H−
3
2uH−

1
2du (5.1.1)

with t > s and cH a deterministic constant and recall that a fBm could be defined
as a single integral of this kernel with respect to a Brownian motion (see Section
2.1.1). The Rosenblatt process with Hurst parameter H ∈

(
1
2
, 1
)

is defined as

ZH
t = d(H)

∫ t

0

∫ t

0

(∫ t

y1∨y2

∂KH′

∂u
(u, y1)

∂KH′

∂u
(u, y2)du

)
δBy1δBy2 , t ≥ 0,

(5.1.2)
with

H ′ =
H + 1

2

and d(H) a deterministic constant that ensures E(ZH
t )2 = t2H for every t ≥ 0.

The stochastic integral in (5.1.2) is a multiple integral of order 2 with respect to
the Wiener process B (see Section 2.1.2). Similarly, Hermite processes of order
q with Hurst parameter H ∈

(
1
2
, 1
)

are defined as multiple integrals of order q
of the same structure but with a different normalising constant, and the kernels
involved are KHq with Hq = 1 + H−1

q
.

The process
(
ZH
t

)
t≥0

is a self-similar stochastic process (with the self-

similarity index H). As for the fBm (see Section 2.1.1), this means that

{ZH
at , t ∈ R} d

= {aHZH
t , t ∈ R}.

This scaling property is important for the analysis of integrals with respect to
ZH , since it allows a rescaling of the integrands.

Due to the fact that it has the same covariance structure as the fBm, it
has stationary increments and a version with Hölder continuous paths of order
δ ∈ (0, H). By definition it is clear that this process lives in the second Wiener
chaos.

83



Let us denote by H H the canonical Hilbert space associated to the fractional
Brownian motion with parameter H, i.e. H H is the closure of the linear space
generated by the indicator functions {1[0,t], t ≥ 0} with respect to the inner
product

〈1[0,t],1[0,s]〉H H =
1

2

(
t2H + s2H − |t− s|2H

)
, t, s ≥ 0,

as explained in Section 2.1.2. It is also possible to define Skorokhod integrals
of random integrands with respect to the Rosenblatt process on the (possibly
infinite) interval [0, T ]. For a square integrable stochastic process (gt)t≥0 we set∫ T

0

gsδZ
H
s :=

∫ t

0

∫ t

0

I(g)(y1, y2)δBy1δBy2 (5.1.3)

with the transfer operator

I(g)(y1, y2) =

∫ T

y1∨y2
gu
∂KH′

∂u
(u, y1)

∂KH′

∂u
(u, y2)du. (5.1.4)

The notation δB in (5.1.3) indicates the Skorokhod integral with respect to the
Wiener process (By)y≥0. From Lemma 1 in [78], the Skorokhod integral (5.2.7) is
well-defined if

E
∫ T

0

∫ T

0

‖Dx1,x2g‖2
H Hdx1dx2 <∞. (5.1.5)

Moreover, if g ∈ L2,p := L2([0, T ],D2, p) (p ≥ 2), then for every t ≥ 0

E
∣∣∣∣∫ t

0

gsδZ
H
s

∣∣∣∣p ≤ c(p,H) sup
r∈[0,t]

[
E |gr|p + E

∫ t

0

∫ t

0

‖D(2)
x1,x2

gr‖pL2([0, t])dx1dx2

]
tpH

(5.1.6)
for some constant c(p, H) (this is also proved in [78]).

If g ∈H H is deterministic, then the integral (5.1.3) is a Wiener integral with
respect to the Rosenblatt process (also called Wiener-Rosenblatt integral) and it
satisfies the following isometry

E
(∫ t

0

gsδZ
H
s

∫ t

0

hsδZ
H
s

)
= H(2H−1)

∫ t

0

∫ t

0

g(u)h(v)|u−v|2H−2dudv = 〈g, h〉H H

for any functions g, h such that
∫ t

0

∫ t
0
|g(u)h(v)||u− v|2H−2dudv <∞ and for any

t ≥ 0 (see [78] for proof).

5.2 The Rosenblatt Ornstein-Uhlenbeck pro-

cess with periodic mean

The Rosenblatt Ornstein-Uhlenbeck (ROU in the sequel) process is defined as
the solution of the Ornstein-Uhlenbeck equation driven by a Rosenblatt noise,
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see e.g. [45] or [74]. Possible applications of such a model are mentioned at the
beginning of this chapter. The ROU process with periodic mean is defined as
the solution to the Ornstein-Uhlenbeck type equation whose drift is a periodic
function. More precisely, we will consider the stochastic differential equation

Xt =

∫ t

0

(L(s)− αXs) ds+ ZH
t , t ≥ 0, (5.2.1)

with vanishing initial condition, where ZH is the Rosenblatt process with Hurst
parameter H ∈

(
1
2
, 1
)
. As in Chapter 4, L is assumed to be a deterministic func-

tion that can be expressed as a linear combination of known bounded 1-periodic
functions (assumed to be orthonormal in L2([0, 1]), without loss of generality),
i.e., for p ≥ 1,

L(s) =

p∑
i=1

µiϕi(s), s ≥ 0. (5.2.2)

Let us focus on the basic properties of the solution to (5.2.1). As in the case
when the noise is a fractional Brownian motion, it follows with the arguments
given in Section 2.1.3 that (5.2.1) admits a unique strong solution which can be
written as

Xt = e−αt
(∫ t

0

eαsL(s)ds+

∫ t

0

eαsδZH
s

)
=: h(t) + Yt, t ≥ 0, (5.2.3)

where we use the notation

h(t) = e−αt
∫ t

0

eαsL(s)ds and Yt = e−αt
∫ t

0

eαsδZH
s (5.2.4)

for every t ≥ 0. The stochastic integral δZH
s in (5.2.3) is considered a Wiener in-

tegral with respect to the Rosenblatt process ZH (coinciding, as in the fBm case,
with the pathwise integral for deterministic integrands) and we will call the pro-
cess (Xt)t≥0 the Rosenblatt Ornstein-Uhlenbeck process with periodic mean. We
can also define the so-called stationary Rosenblatt Ornstein-Uhlenbeck process
with periodic mean by putting

X̃t = e−αt
(∫ t

−∞
eαsL(s)ds+

∫ t

−∞
eαsδZH

s

)
=: h̃(t) + Ỹt, t ≥ 0, (5.2.5)

with

h̃(t) = e−αt
∫ t

−∞
eαsL(s)ds and Ỹt = e−αt

∫ t

−∞
eαsδZH

s . (5.2.6)

The existence of the stochastic integrals in (5.2.3) and (5.2.5) is shown in e.g.
[14] or [45]. We also recall the correlation structure of the process Ỹ (see [14] or
[45]): for every t ≥ 0 and for s→∞ we have with cH ∈ R

E ỸtỸt+s = cHs
2H−2 +O(s2H−4). (5.2.7)
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We will start by proving some ergodic type properties of the process X. These
properties will be needed in order to analyze the asymptotic properties of our
estimators in the sequel.

5.2.1 Proposition. Let ϕ : R → R be a bounded 1-periodic function and let
(Ỹt)t≥0 be given by (5.2.6). Then

1

n

∫ n

0

ϕ(t)Ỹtdt
n→∞→ 0 almost surely.

Proof. We have for every n ≥ 1

E

[(
1

n

∫ n

0

ϕ(t)Ỹtdt

)2
]

=
1

n2

∫ n

0

∫ n

0

ϕ(t)ϕ(s)E[ỸtỸs]dtds.

First notice that for every integer n0 < n we have

1

n2

∫
[0,n]2\[n0,n]2

ϕ(t)ϕ(s)E[ỸtỸs]dtds
n→∞→ 0. (5.2.8)

Indeed, we can write

1

n2

∫
[0,n]2\[n0,n]2

ϕ(t)ϕ(s)E[ỸtỸs]dtds

=
1

n2

∫ n0

0

∫ n0

0

ϕ(t)ϕ(s)E[ỸtỸs]dtds+ 2
1

n2

∫ n0

0

∫ n

n0

ϕ(t)ϕ(s)E[ỸtỸs]dtds

.
1

n2

∫ n0

0

∫ n

n0

|ϕ(t)ϕ(s)|(Ỹ 2
t + Ỹ 2

s )dtds ≤ cn−1,

where we used EY 2
t ≤ c for every t ≥ 0 (see relation (2.16) in [56]). We obtain

by (5.2.8) and the periodicity of ϕ

E

[(
1

n

∫ n

0
ϕ(t)Ỹtdt

)2
]

.
1

n2

∫ n

n0

∫ n

n0

|ϕ(t)ϕ(s)||t− s|2H−2dtds

.
1

n2

∫ n

0

∫ n

0
|ϕ(t)ϕ(s)||t− s|2H−2dtds

.
1

n2

n−1∑
i, j=0

∫ 1

0

∫ 1

0
|ϕ(t)ϕ(s)||t− s− (i− j)|2H−2dtds

.
1

n2

n−1∑
i, j=0;|i−j|<2

∫ 1

0

∫ 1

0
|ϕ(t)ϕ(s)||(i− j)− (t− s)|2H−2dtds

+2
1

n2

n−1∑
i, j=0;i−j≥2

∫ 1

0

∫ 1

0
|ϕ(t)ϕ(s)|((i− j)− (t− s))2H−2dtds.
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Moreover,

1

n2

n−1∑
i, j=0;|i−j|<2

∫ 1

0

∫ 1

0
|ϕ(t)ϕ(s)||(i− j)− (t− s)|2H−2dtds

.
1

n2
nmax

(∫ 1

0

∫ 1

0
|ϕ(t)ϕ(s)||t− s|2H−2dtds,

∫ 1

0

∫ 1

0
|ϕ(t)ϕ(s)||1− (t− s)|2H−2dtds

)
.

Because ϕ is bounded and H > 1
2
, the two integrals above are finite and then

the summand converges to zero as n→∞.
For the second summand note that

((i− j)− (t− s))2H−2 =

(
1− t− s

i− j

)2H−2

(i− j)2H−2,

and since for i − j ≥ 2 we have 1 − t−s
i−j ≥

1
2
, we deduce that this summand is

bounded by

1

n2

n−1∑
i, j=0;|i−j|≥2

∫ 1

0

∫ 1

0

|ϕ(t)ϕ(s)||i− j|2H−2dtds

up to a constant. In total, we have

E

[(
1

n

∫ n

0

ϕ(t)Ỹtdt

)2
]

.
1

n2

n−1∑
i, j=0;|i−j|≥2

∫ 1

0

∫ 1

0

|ϕ(t)ϕ(s)||i− j|2H−2dtds

. ‖ϕ‖2
L2([0, 1])

1

n2

n−1∑
i, j=0

|i− j|2H−2 . n2H−2.

Since Ỹt is a second Wiener chaos element, then so is the integral
∫ n

0
ϕ(t)Ỹtdt,

because it is an element of the L2-closure of (ϕ(t)Ỹt)t∈R+ : It follows by Fubini’s
theorem that it is orthogonal to every Z in the orthogonal complement of this
closure. Therefore, due to the hypercontractivity property (2.1.6) we obtain the
bound

E

[(
1

n

∫ n

0

ϕ(t)Ỹtdt

)2m
]
. nm(2H−2).

We can choose an m ∈ N big enough, depending on H, such that the statement
follows by the usual Borel-Cantelli argument.

As a consequence of Proposition 5.2.1, we can deduce a discrete ergodic prop-
erty for the shifted process X̃.

5.2.2 Corollary. For every n ≥ 1, define the process Yn := {Ỹn+s, s ∈ [0, 1]}.
Then Y satisfies the following discrete ergodic property

1

n

n−1∑
i=0

∫ 1

0

ϕ(t)Yi(t)dt
n→∞→ 0 almost surely.
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Moreover, the process Xn := {X̃n+s, s ∈ [0, 1]} (n ∈ N) also satisfies the
discrete ergodic property, i.e.,

1

n

n−1∑
i=0

∫ 1

0

ϕ(t)Xi(t)dt
n→∞→

∫ 1

0

ϕ(t)h̃(t)dt almost surely.

Proof. For Yn the conclusion follows since

1

n

n−1∑
i=0

∫ 1

0

ϕ(t)Yi(t)dt =
1

n

n−1∑
i=0

∫ i+1

i

ϕ(t)Ỹtdt =
1

n

∫ n

0

ϕ(t)Ỹtdt,

while for Xn we simply use the fact that h̃ is 1-periodic.

5.3 The least squares estimator

We will analyze the least squares estimator for the parameters of the model
(5.2.1), inspired by the construction in [27] and [24]. In the first part we adapt
the definition given in Section 2.2.2. and derive some of its basic properties and
in the second part we study its consistency and its limit behavior in distribution.

5.3.1 Definition and basic properties

Our purpose is to estimate the (p+ 1)-dimensional parameter

ϑ = (µ1, ..., µp, α) (5.3.1)

where µi, i = 1, .., p, are the coefficients that appear in the definition of the
periodic function L (see formula (5.2.2)) while α is the drift parameter of the ROU
process (5.2.1). We will construct a least squares estimator (LSE) to estimate ϑ.
Following the construction explained in Section 2.2.2, we are led to the following
estimator

ϑ̂n := (µ̂1
n, . . . , µ̂

p
n, α̂n) := Q−1

n Pn, (5.3.2)

with the (p+ 1)- dimensional random vector Pn given by

Pn :=

(∫ n

0

ϕ1(t)δXt, . . . ,

∫ n

0

ϕp(t)δXt,−
∫ n

0

XtδXt

)T
(5.3.3)

and with the matrix Qn ∈Mp+1(R)

Qn :=

(
nIdp −an
−aTn bn

)
(5.3.4)

where

aTn :=

(∫ n

0

ϕ1(t)Xtdt . . . ,

∫ n

0

ϕp(t)Xtdt

)
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and

bn :=

∫ n

0

X2
t dt.

Note that in the definition of the estimator ϑ̂n (5.3.2) stochastic integrals with
respect to X appear. This integral is understood in the following sense (similarly
to the integrals in the fBm setting defined in Section 2.1.2)∫ t

0

gsδXs :=

∫ t

0

gs (L(s)− αXs) ds+

∫ t

0

gsδZ
H
s (5.3.5)

for every t ≥ 0, where the second integral is a Skorokhod integral with respect to
the Rosenblatt process (see Section 5.1), provided that the integrals above exist.
We need to chose a Skorokhod and not a pathwise integral with respect to the
Rosenblatt process because, similarly to the explanation for the fBm given in
e.g. [30], the choice of the pathwise integrals (which can be easily defined for the
Rosenblatt process since it has Hölder continuous paths or every order δ ∈ (0, H),
cf. Section 2.1.2) does not lead to a consistent estimator.

First, we need to argue that the stochastic integrals that appear in (5.3.3)
and (5.3.4) are well-defined. The Wiener integrals

∫ t
0
ϕi(s)δZ

H
s are obviously well-

defined since ϕi, i = 1, .., p are bounded and periodic. In the next result we show
that the Skorokhod integral in (5.3.3) is also well-defined.

5.3.1 Proposition. Let (Xt)t≥0 be the solution to (5.2.1). Then for every t ≥ 0

the Skorohod integral
∫ t

0
XsδZ

H
s is well-defined.

Proof. From relation (5.1.5) in Section 5.1 we need to show that

E
∫ T

0

∫ T

0

‖Dx1,x2X‖2
H Hdx1dx2 <∞.

By taking the Malliavin derivative in (5.2.3), we get for every x1, x2 > 0

Dx1x2Xu = 2d(H)1[0, u]2(x1, x2)I(eα(·−u))(x1, x2)

= 2d(H)1[0, u]2(x1, x2)

∫ u

x1∨x2
eα(u′−u)∂K

H′

∂u′
(u′, x1)

∂KH′

∂u′
(u′, x2)du′,

where I is the transfer operator (5.1.4). Hence,

‖Dx1x2X‖2H H =

∫ n

x1∨x2

∫ n

x1∨x2

∫ u

x1∨x2
eα(u′−u)∂K

H′

∂u′
(u′, x1)

∂KH′

∂u′
(u′, x2)du′

×
∫ v

x1∨x2
eα(v′−v)∂K

H′

∂v′
(v′, x1)

∂KH′

∂v′
(v′, x2)dv′|u− v|2H−2dudv

≤
∫ n

x1∨x2

∫ n

x1∨x2
|u− v|2H−2

×
∫ u

x1∨x2

∂KH′

∂u′
(u′, x1)

∂KH′

∂u′
(u′, x2)du′

∫ v

x1∨x2

∂KH′

∂v′
(v′, x1)

∂KH′

∂v′
(v′, x2)dv′dudv

= ‖Dx1x2Z
H‖2H H ,
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since eα(u′−u) ≤ 1 and the other integrands are nonnegative. From Example 1 in
[78] we know that E[

∫ n
0

∫ n
0
‖Dx1x2Z‖2

H Hdx1dx2] <∞, and the result follows.

In the sequel, we will need a more convenient expression of the estimator
(5.3.2). Note that the inverse of the matrix Qn can be expressed as (see [24])

Q−1
n =

1

n

(
Idp + γnΛnΛt

n −γnΛn

−γnΛt
n γn

)
(5.3.6)

with

Λn = (Λn, 1, . . . ,Λn, p)
T =

(
1

n

∫ n

0

ϕ1(t)Xtdt, . . . ,
1

n

∫ n

0

ϕp(t)Xtdt

)
(5.3.7)

and

γn =

(
1

n

∫ n

0

X2
t dt−

p∑
i=1

Λ2
n, i

)−1

. (5.3.8)

Another useful fact is that we can (also in a similar way to [24]) deduce a
different expression for ϑ̂n which allows to access the error ϑ̂n − ϑ directly.

5.3.2 Proposition. The estimator ϑ̂n (5.3.2) has the following representation:

ϑ̂n = ϑ+Q−1
n Rn (5.3.9)

with Qn given by (5.3.4) and

Rn =

(∫ n

0

ϕ1(t)δZH
t , . . . ,

∫ n

0

ϕp(t)δZ
H
t , −

∫ n

0

XtδZ
H
t

)
. (5.3.10)

Proof. This follows easily if the relation Xt =
∫ t

0
(L(s)− αXs) ds+ZH

t is plugged
as the integrator in each component of Pn (5.3.3).

The relation (5.3.9) will be used in order to study the asymptotic behaviour
of the LSE.

5.3.2 Strong consistency

We study the asymptotic properties of the LSE (5.3.2). In this part we prove
that ϑ̂n is strongly consistent, i.e. it converges almost surely to the parameter
ϑ (5.3.1) as n → ∞. In order to prove the estimator’s consistency we will need
several auxiliary results. First, we quote a technical lemma from [39].

5.3.3 Lemma. Let γ > 0 and p0 ∈ N. Moreover, let (Zn)n∈N be a sequence of
random variables. If for every p ≥ p0 there exists a constant cp > 0 such that for
all n ∈ N

(E[|Zn|p])1/p ≤ cpn
−γ,
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then for all ε > 0 there exists a random variable ηε such that

|Zn| ≤ ηεn
−γ+ε a.s.

for all n ∈ N. Moreover, E[|ηε|p] <∞ for all p ≥ 1.

To show strong consistency of the estimator (5.3.2), we will treat the quantities
1
n
Rn and nQ−1

n separately, as in [24] and [7].

5.3.4 Proposition. Let Rn be given by (5.3.10). Then, as n tends to infinity,
1
n
Rn → 0 almost surely.

Proof. Due to (5.1.6) it suffices to demonstrate that

sup
n

sup
r∈[0, n]

(E[|gr|p
∗
] + E[‖D(2)gr‖p

∗

L2([0, n]2)]) <∞ (5.3.11)

for g = ϕi (i = 1, . . . , p) and for g = X for all p∗ ∈ N. Then the result will follow
by taking γ = 1 − H in Lemma 5.3.3. Since by assumption all ϕi are bounded,
the statement for g = ϕi (i = 1, . . . , p) is immediate. For g = X recall that

Xt =

∫ t

0

eα(s−t)L(s)ds+

∫ t

0

eα(s−t)δZH
s .

Using the fact that L is bounded, we clearly have∫ t

0

eα(s−t)L(s)ds ≤ ‖L‖∞
∫ t

0

eα(s−t)ds =
1

α
‖L‖∞e−αt(eαt − 1) ≤ 1

α
‖L‖∞,

and by the triangle inequality it is enough to prove the inequality (5.1.6) for the
random part of X, i.e. for gt =

∫ t
0
eα(s−t)dZH

s = Yt (see (5.2.4)). We write for
every r > 0

E[|Yr|p
∗
] + E[‖D(2)Yr‖p

∗

L2([0, n]2)] =: N1,r +N2,r.

For the term N1,r we note that since Yr is a multiple Wiener-Itō integral of
order two with respect to a Brownian motion, the hypercontractivity property
(2.1.6) is applicable, yielding the inequality

E[|Yr|p
∗
]1/p

∗ ≤ (p∗ − 1)E[|Yr|2]1/2.

Therefore, since the above constant does not depend on the underlying space,
it suffices to show boundedness of the L2-norm. Due to isometry property of
Wiener-Rosenblatt integrals (5.1) we have

E[|Yr|2] =

∫ r

0

∫ r

0

e−2αreαueαv|u− v|2H−2dudv

=

∫ r

0

∫ r

0

e−αue−αv|u− v|2H−2dudv
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and clearly supr∈[0,t] E[|Yr|2] < C for every t ≥ 0 with some C > 0. Concerning
the summand N2,r we recall that

Dx1x2Yr = 2d(H)1[0, r]2(x1, x2)I(eα(·−r))(x1, x2).

Since it is nonrandom, it is enough to prove the boundedness of ‖D(2)Yr‖2
L2([0, n]2).

We have, with I given by (5.1.4),

‖D(2)Yr‖2
L2([0, n]2) =

∫ n

0

∫ n

0

(2d(H)1[0, r]2(x1, x2)I(eα(·−r))(x1, x2))2dx1dx2

= 4d(H)2

∫ r

0

∫ r

0

(I(eα(·−r))(x1, x2))2dx1dx2

= 4d(H)2‖I(eα(·−r))(x1, x2)‖2
L2([0, r]2)

= d(H)2 E[I2(I(eα(·−r))(x1, x2))2] = d(H)2 E[Y 2
r ]

due to isometry of the Wiener-Itō integrals (2.1.2). As shown above, the obtained
expression is bounded by a constant independent of r and of n. Thus, our claim
(5.3.11) is proved.

The next step is the almost sure convergence of the matrix nQ−1
n . The proof

is similar to the one given in [24] for the case of the fractional Brownian motion.

5.3.5 Proposition. Let Qn be defined by (5.3.4). As n tends to infinity, nQ−1
n

tends almost surely to the deterministic matrix

Q :=

(
Idp + γΛΛT −γΛ
−γΛT γ

)
, (5.3.12)

where

Λ = (Λ1, ...,Λp) and Λi := 〈ϕi, h̃(t)〉L2[0,1], i = 1, .., p, (5.3.13)

with h̃ from (5.2.6) and

γ :=

(∫ 1

0

h̃2(t)dt+ α−2HHΓ(2H)−
p∑
i=1

Λ2
i

)−1

. (5.3.14)

Proof. We will use the expression (5.3.6) of the matrix Q−1
n . From this formula

it suffices to prove almost sure convergence of the quantities Λn, i from (5.3.7) to
the constant Λi given by (5.3.13) for every i ∈ {1, . . . , p} as well as almost sure
convergence of γ−1

n to the nonzero real number γ−1 from (5.3.14). Concerning
Λn, i using the fact that the difference

|Yt − Ỹt| = e−αt
∣∣∣∣∫

R

∫
R

∫ 0

−∞
eαu

∂KH′

∂u
(u, x1)

∂KH′

∂u
(u, x2)duδB(x1)δB(x2)

∣∣∣∣
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converges to zero almost surely as t→∞ (and the same holds true for |Xt−X̃t|),
we obtain almost surely via Corollary 5.2.2

lim
n→∞

Λn, i = lim
n→∞

1

n

∫ n

0

ϕi(t)Xtdt = lim
n→∞

1

n

∫ n

0

ϕi(t)X̃tdt

= lim
n→∞

1

n

n−1∑
i=0

∫ i+1

i

ϕi(t)X̃tdt =

∫ 1

0

ϕi(t)E[X̃t]dt =

∫ 1

0

ϕi(t)h̃(t)dt = Λi

for every i = 1, .., p. Concerning γ−1
n we have from (5.3.8)

1

n

∫ n

0

X2
t dt =

1

n

∫ n

0

h(t)2dt+
2

n

∫ n

0

h(s)Ysds+
1

n

∫ n

0

Y 2
s ds.

Since |h(t) − h̃(t)| = e−αt|
∫ 0

−∞ e
αsL(s)ds|, we conclude that the first integral

converges to
∫ 1

0
h̃2(t)dt. For the second integral note that due to boundedness of

1
n

∫ n
0
Ysds (shown in [56]) and of | 1

n

∫ n
0
h(t)dt| we obtain almost surely

lim
n→∞

2

n

∫ n

0

h(s)Ysds = lim
n→∞

2

n

∫ n

0

h̃(s)Ỹsds = 0

by applying Proposition 5.2.1. The almost sure limit of the third integral equals
α−2HHΓ(2H), as demonstrated in [56]. So almost surely

γ−1
n =

1

n

∫ n

0

X2
t dt−

p∑
i=1

Λ2
n, i

n→∞→ ‖h̃‖2
L2([0, 1]) −

p∑
i=1

〈h̃, ϕi〉2L2([0, 1]) + α−2HHΓ(2H)

and by Bessel’s inequality we can see as in [24] that the above limit is indeed a
positive real number.

As a consequence of Propositions 5.3.2, 5.3.4 and 5.3.5 we obtain the strong
consistency of the least squares estimator.

5.3.6 Theorem. As n → ∞, the LSE (5.3.2) converges almost surely to the
parameter ϑ = (µ1, ..., µp, α) .

5.4 Limit distribution of the least squares esti-

mator

We will analyse the asymptotic behaviour in distribution of the LSE. We use
the decomposition of ϑ̂n given in Proposition 5.3.2. It follows from this result,
since the random matrix nQ−1

n given by (5.3.4) converges almost surely to the
deterministic matrix Q from Proposition 5.3.5, then it is enough to consider the
asymptotics of the vector Rn in (5.3.10).

We start with a result concerning the first p components of the vector (5.3.10).
In the sequel, by a Rosenblatt random variable we mean a random variable with
the same law as ZH

1 from (5.1.2).
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5.4.1 Proposition. For every n ≥ 1, consider Un := n−H
∫ n

0
f(s)δZH

s for a
bounded 1-periodic function f . As n tends to infinity, this sequence converges in

distribution to U =
(∫ 1

0
f(t)dt

)
V , where V is a Rosenblatt random variable.

Proof. It follows by the scaling property of the Rosenblatt process (see [78]) that

Un
d≡
∫ 1

0
f(ns)δZH

s , where
d≡ stands for the equivalence of finite dimensional

distributions. We will show that this sequence converges in L2 to the random

variable
(∫ 1

0
f(t)dt

)
ZH

1 . We can write

E
[∫ 1

0

f(ns)δZH
s −

(∫ 1

0

f(s)ds

)
ZH

1

]2

= E
[∫ 1

0

(
f(ns)−

∫ 1

0

f(r)dr

)
δZH

s

]2

= H(2H − 1)

∫ 1

0

∫ 1

0

f(nu)f(nv)|u− v|2H−2dudv +

(∫ 1

0

f(s)ds

)2

−2H(2H − 1)

∫ 1

0

∫ 1

0

f(nu)|u− v|2H−2dudv

∫ 1

0

f(s)ds.

First,

H(2H − 1)

∫ 1

0

∫ 1

0

f(nu)f(nv)|u− v|2H−2dudv

= H(2H − 1)n−2H

∫ n

0

∫ n

0

f(nu)f(nv)|u− v|2H−2dudv

= n−2HH(2H − 1)
n−1∑
i,j=0

∫ 1

0

∫ 1

0

f(u)f(v)|u− v + i− j|2H−2dudv

∼ n−2HH(2H − 1)
n−1∑

i,j=0, i 6=j

∫ 1

0

∫ 1

0

f(u)f(v)|i− j|2H−2

∣∣∣∣1 +
u− v
i− j

∣∣∣∣2H−2

dudv

∼ n−2HH(2H − 1)
n−1∑

i,j=0;i 6=j

|i− j|2H−2

(∫ 1

0

f(s)ds

)2
n→∞→

(∫ 1

0

f(s)ds

)2

.

The equivalence is obtained by considering the binomial expansion of∣∣∣1 + u−v
i−j

∣∣∣2H−2

. On the other hand,

H(2H − 1)

∫ 1

0

∫ 1

0

f(nu)|u− v|2H−2dudv

= H(2H − 1)

(∫ 1

0

f(nu)du

∫ u

0

(u− v)2H−2dv +

∫ 1

0

∫ 1

v

f(nu)du(v − u)2H−2dv

)
= H

∫ 1

0

f(nu)u2H−1du+H

∫ 1

0

f(nu)(1− u)2H−1du.
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Now, again by the binomial expansion,

H

∫ 1

0

f(nu)u2H−1du = Hn−2H

∫ n

0

f(u)u2H−1du

= Hn−2H

n−1∑
i=0

∫ 1

0

f(u)(u+ i)2H−1du ∼ Hn−2H

∫ 1

0

f(u)
n−1∑
i=0

(u+ i)2H−1du

∼ Hn−2H

∫ 1

0

f(u)
n−1∑
i=1

i2H−1
(

1 +
u

i

)2H−1

du ∼ Hn−2H

∫ 1

0

f(u)du
n2H

2H

=
1

2

∫ 1

0

f(u)du.

Moreover,

H

∫ 1

0

f(nu)(1− u)2H−1du = H

∫ 1

0

f(n(1− u))u2H−1du

= H

∫ 1

0

f(−nu)u2H−1du
n→∞→ 1

2

∫ 1

0

f(−u)du =
1

2

∫ 1

0

f(u)du

with the same argument as above. This gives the desired L2-convergence.

Now let us consider the last component of the vector Rn in (5.3.10). First we
show that the stochastic integral part does not contribute to the limit.

5.4.2 Proposition. Let (Yt)t≥0 be given by (5.2.4). Then, as n tends to infinity,

E
(
n−H

∫ n

0

YtδZ
H
t

)2

→ 0.

Proof. Let us estimate the L2-norm of the random variable n−H
∫ n

0
YtdZ

H
t with

Y from (5.2.4). In [78] the following bound is given:

E
(∫ n

0

YtδZ
H
t

)2

≤ C

(
E
[∫ n

0

∫ n

0

YuYv|u− v|2H−2dudv

]
+E

[∫ n

0

∫ n

0

∫ n

0

∫ n

0

Dx1, x2YuDx1, x2Yv|u− v|2H−2dudvdx1dx2

])
.

Since Yu is a double integral, it is easy to note that the two summands above only
differ by a constant, so it is enough to consider one of them. We obtain using the
isometry for the Rosenblatt process

E
[∫ n

0

∫ n

0

YuYv|u− v|2H−2dudv

]
=

∫ n

0

∫ n

0

∫ u

0

∫ v

0

eα(s−u)eα(r−v)|r − s|2H−2drds|u− v|2H−2dudv

≤
∫ n

0

∫ n

0

∫ n

0

∫ n

0

e−α|s−u|e−α|r−v||r − s|2H−2|u− v|2H−2drdsdudv,
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and it is demonstrated in [30] and [31] that this bound multiplied by 1
n
, 1
n log(n)

or n2−4H in cases H ∈
(

1
2
, 3

4

)
, H = 3

4
and H > 3

4
respectively converges to a

constant. Thus, the statement follows.

The next proposition concludes the asymptotic analysis.

5.4.3 Proposition. Let (Yt)t≥0 be given by (5.2.3). The sequence n−H
∫ n

0
XtδZ

H
t

converges in distribution to U =
(∫ 1

0
h̃(t)dt

)
V , where V is a Rosenblatt random

variable.

Proof. Recall that for every t ≥ 0, Xt = Yt + h(t), see (5.2.4), so we need to
analyse the limit of n−H

∫ n
0
h(t)δZH

t . Since h̃ from (5.2.6) is a periodic function,

it suffices to demonstrate that n−H
∫ n

0
(h(t) − h̃(t))δZH

t converges to zero in L2

and then to apply Proposition 5.4.1. Since |h(t)− h̃(t)| is bounded by e−αt times
a constant, we get by the isometry property (2.1.2)

E

[(∫ n

0

(h(t)− h̃(t))δZH
t

)2
]
≤ c

∫ n

0

∫ n

0

e−αue−αv|u− v|2H−2dudv,

for some positive constant c. The right hand side is bounded uniformly in n, and
the desired convergence follows.

By putting together the above results we state and prove the main result of
this section.

5.4.4 Theorem. Let ϑ̂n be given by (5.3.2). Then the sequence n1−H
(
ϑ̂n − ϑ

)
converges in distribution as n→∞ to QR where the matrix Q is given by (5.3.12)
and R is the following random vector

R =

(∫ 1

0

ϕ1(s)ds, ...,

∫ 1

0

ϕp(s)ds,−
∫ 1

0

h̃sds

)T
V,

where V is a Rosenblatt random variable (i.e. V
d
= ZH

1 ) and h̃ is defined by
(5.2.6).

Proof. The almost sure convergence of nQ−1
n to the matrix Q follows from Propo-

sition 5.3.5 an we need to prove the asymptotic behaviour in distribution of
the vector 1

n
Rn (5.3.10). For any a1, . . . , ap+1 ∈ R and for 1-periodic functions

f1, . . . , fp+1 we have

p+1∑
i=1

ain
−H
∫ n

0

fi(t)δZ
H
t = n−H

∫ n

0

p+1∑
i=1

aifi(t)δZ
H
t ,

and by Proposition 5.4.1 this converges in distribution as n → ∞ to U =
(
∫ 1

0

∑p+1
i=1 aifi(t)dt)V (where V is a Rosenblatt random variable), because
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∑p+1
i=1 aifi is again a 1-periodic function. By applying the results to fi = ϕi, i =

1, .., p and fp+1 = −h̃ and by using the L2 convergence from Proposition 5.4.2,
we obtain the conclusion.

Note that for functions ϕi, i = 1, . . . , p, whose integrals are equal to zero one
might obtain an improvement in the speed of convergence (similarly to the results
obtained in Chapter 3). This case is, however, not treated here. Also, similarly
to the fBm-case, the limit is of dimension one, however, here it is an element of
the second Wiener chaos. From the point of view of statistical applications the
limit is not as well-studied as the normal distribution, in particular, there is no
known closed expression for the density of ZH

1 . However, in [82] an algorithm for
approximating quantiles is given which makes statistical evaluations such as the
construction of confidence intervals accessible.

5.5 Alternative estimators

The estimator ϑn (5.3.2), although consistent and with explicit limit distribution,
involves a Skorokhod integral. It is well-known that it is difficult to simulate such
a stochastic object. Therefore, we will define some alternative estimators that can
be expressed only in terms of Wiener and Lebesgue integrals and consequently
they can be simulated. One of these new estimators represents an extended version
of the estimators proposed in [30] or [56] (mentioned in Section 2.2.2) as it reduces
to them when the periodic drift L reduces to a constant.

Recall that the the functions ϕi from (5.2.2) are assumed to be orthogonal in
L2([0, 1]). We will consider the following assumptions, or cases (the function h̃ is
defined in (5.2.6)):

(A1) h̃ does not belong to span(ϕ1, . . . , ϕp). In this case there exists a bounded
function ϕp+1 orthogonal to all ϕi (i ∈ {1, p}), but not orthogonal to h̃.

(A1*) h̃ ∈ span(ϕ1, . . . , ϕp). Then there is no L2 function satisfying the above
orthogonality conditions.

We will show below in Remark 5.5.5 that in the case when ϕi, i = 1, .., p are
elements of the trigonometric basis of L2([0, 1]) it is easy to check which one of
these assumptions is satisfied and to determine the function ϕp+1 without the
knowledge of h̃ in case of (A1).

5.5.1 Proposition. Assume that (A1) is satisfied. Define for every n ≥ 1

ᾱn := −
∫ n

0
ϕp+1(t)dXt∫ n

0
ϕp+1(t)Xtdt
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and for i = 1, .., p

µ̄i,n :=
1

n

(∫ n

0

ϕi(t)dXt + ᾱn

∫ n

0

ϕi(t)Xtdt

)
.

Then (ᾱn, µ̄1,n, ..., µ̄p,n) is a consistent estimator of the parameter (α, µ1, .., µp) of
the model (5.2.1).

Proof. From (5.3.5) and (A1) we have

1

n

∫ n

0

ϕp+1(t)dXt = −α 1

n

∫ n

0

ϕp+1(t)Xtdt+
1

n

∫ n

0

ϕp+1(t)dZH
t

so we can write

ᾱn − α =
n−1

∫ n
0
ϕp+1(t)dZH

t

n−1
∫ n

0
ϕp+1(t)Xtdt

. (5.5.1)

As demonstrated in Proposition 5.3.4, the numerator of (5.5.1) converges to
zero almost surely as n→∞. Moreover, we can conclude using Proposition 5.2.1
that

Λn, p+1 :=
1

n

∫ n

0

ϕp+1(t)Xtdt
n→∞→ 〈h̃, ϕp+1〉L2([0, 1])

almost surely. Since this is nonzero by the assumption (A1), strong consistency
of ᾱn follows. Consistency of µ̄i follows by observing that

1

n

∫ n

0

ϕi(t)dXt = µi − α
1

n

∫ n

0

ϕi(t)Xtdt+
1

n

∫ n

0

ϕi(t)dZ
H
t ,

and this implies, for every i = 1, .., p

µ̄i,n − µi =
1

n
(ᾱn − α)

∫ n

0

ϕi(t)Xtdt+
1

n

∫ n

0

ϕi(t)dZ
H
t (5.5.2)

and the last summand again converges to zero almost surely as n → ∞ while
1
n

∫ n
0
ϕi(t)Xtdt tends to a constant.

The asymptotic behaviour in distribution of the above estimators can be easily
obtained from the proofs in Section 5.4.

5.5.2 Proposition. As n tends to infinity the vector n1−H(ᾱn − α, µ̄1,n −
µ1, . . . , µ̄p,n − µp)T converges in distribution to the vector

∫ 1

0
ϕp+1(t)dt 1

〈ϕp+1, h̃〉L2([0, 1])∫ 1

0
ϕp+1(t)dt

〈ϕ1, h̃〉L2([0, 1])

〈ϕp+1, h̃〉L2([0, 1])

+
∫ 1

0
ϕ1(t)dt

...∫ 1

0
ϕp+1(t)dt

〈ϕp, h̃〉L2([0, 1])

〈ϕp+1, h̃〉L2([0, 1])

+
∫ 1

0
ϕp(t)dt

V,

where V is a Rosenblatt random variable.
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Proof. This follows by construction from relations (5.5.1), (5.5.2), Proposition
5.2.1 and the non-central limit theorem in Proposition 5.4.1.

When the assumption (A1*) is satisfied, we can also define consistent esti-
mators for the parameters of the model (5.2.1) which involve only Wiener and
deterministic integrals.

5.5.3 Proposition. Assume that (A1*) is satisfied. Consider the following esti-
mators

ᾱ(1)
n :=

(
1

HΓ(2H)
γ−1
n

)− 1
2H

and for i = 1, .., p,

µ̄
(1)
n,i :=

1

n

(∫ n

0

ϕi(t)dXt + ᾱ(1)
n

∫ n

0

ϕi(t)Xtdt

)
Then

(
ᾱ

(1)
n , µ̄

(1)
1,n, ..., µ̄

(1)
p,n

)
is a strongly consistent estimator of the parameter

(5.3.1).

Proof. It is shown in Proposition 5.3.5 that with γn defined in (5.3.8)

γ−1
n

n→∞→ ‖h̃‖L2([0, 1]) −
p∑
i=1

〈h̃, ϕi〉2L2([0, 1]) + α−2HHΓ(2H)

almost surely. Because (A1*) is satisfied, we obtain the equality ‖h̃‖L2([0, 1]) =∑p
i=1〈h̃, ϕi〉2L2([0, 1]), and thus consistency follows by the continuous mapping the-

orem. Consistency of the estimators of the µi is a direct consequence and can be
shown similarly to the strong consistency in Proposition 5.5.1.

Concerning the limit in law of
(
ᾱ

(1)
n , µ̄

(1)
1,n, ..., µ̄

(1)
p,n

)
, we have the following re-

sult.

5.5.4 Proposition. As n tends to infinity the vector n1−H(ᾱ
(1)
n − α, µ̄

(1)
1,n −

µ1, . . . , µ̄
(1)
p,n − µp)T converges in distribution to the vector

CαG∞


1

〈h̃, ϕ1〉L2([0, 1])
...

〈h̃, ϕp〉L2([0, 1])

+ ZH
1


0∫ 1

0
ϕ1(t)dt

...∫ 1

0
ϕp(t)dt

 ,

where Cα = αH

2H2Γ(2H)
and G∞ = BH × R with R being σ(ZH)-measurable and

having a Rosenblatt distribution and BH being defined as follows:

BH =
(2H − 1)Γ(H + 1)√

H
2

(2H − 1)
.
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Proof. Using a Taylor expansion we obtain for large n

ᾱ(1)
n − α = α

((
1 +

α2H(γ−1
n − α−2HHΓ(2H))

HΓ(2H)

)− 1
2H

− 1

)

=
α2H+1

2H2Γ(2H)
(γ−1
n − α−2HHΓ(2H)) + o(1).

Therefore, it suffices to calculate the asymptotics of the quantity

γ−1
n − α−2HHΓ(2H) =

1

n

∫ n

0

X2
t dt−

p∑
i=1

(
1

n

∫ n

0

Xtϕi(t)dt

)2

− α−2HHΓ(2H).

As in the previous computations (e.g. in the proof of Proposition 5.3.2), the above
expression has the same limit in distribution, as n→∞, as(

1

n

∫ n

0
X̃2
t dt−

p∑
i=1

(
1

n

∫ n

0
X̃tϕi(t)dt

)2

− α−2HHΓ(2H)

)

=
1

n

∫ n

0
Ỹ 2
t dt−

2

n

∫ n

0
Ỹth̃(t)dt+

1

n

∫ n

0
h̃(t)2dt− α−2HHΓ(2H)−

p∑
i=1

(
1

n

∫ n

0
Ỹtϕi(t)dt

)2

+2

p∑
i=1

(
1

n

∫ n

0
Ỹtϕi(t)dt

)(
1

n

∫ n

0
h̃(t)ϕi(t)dt

)
−

p∑
i=1

〈h̃, ϕi〉2L2([0, 1])

=
1

n

∫ n

0
Ỹ 2
t dt−

2

n

∫ n

0
Ỹth̃(t)dt− α−2HHΓ(2H)

−
p∑
i=1

(
1

n

∫ n

0
Ỹtϕi(t)dt

)2

+ 2

p∑
i=1

(
1

n

∫ n

0
Ỹtϕi(t)dt

)(
1

n

∫ n

0
h̃(t)ϕi(t)dt

)
. (5.5.3)

Note that 1
n

∫ n
0
h̃(t)2dt and

∑p
i=1〈h̃, ϕi〉2L2([0, 1]) cancel each other out by Parseval’s

identity due to (A1*). If we consider the space of square integrable functions on
[0, n] with the scalar product

〈f, g〉n :=
1

n

∫ n

0

f(x)g(x)dx,

the orthonormality assumption of ϕi, as well as (A1*), will still hold for the
periodic extensions on [0, n] of ϕi and h̃ under the scalar product 〈· , · 〉n, and by
the assumption (A1*) we obtain

2

p∑
i=1

(
1

n

∫ n

0

Ỹtϕi(t)dt

)(
1

n

∫ n

0

h̃(t)ϕi(t)dt

)
= 2〈h̃, Ỹ 〉n =

2

n

∫ n

0

Ỹth̃(t)dt.
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Therefore, (5.5.3) reduces to the term

1

n

∫ n

0

Ỹ 2
t dt− α−2HHΓ(2H)−

p∑
i=1

(
1

n

∫ n

0

Ỹtϕi(t)dt

)2

=
1

n

∫ n

0

(
Ỹ 2
t − E[Ỹ 2

t ]
)
dt+

1

n

∫ n

0

(
E[Ỹ 2

t ]− α−2HHΓ(2H)
)
dt

−
p∑
i=1

(
1

n

∫ n

0

Ỹtϕi(t)dt

)2

.

It follows from Proposition 5.2.1 that n1−H∑p
i=1

(
1
n

∫ n
0
Ỹtϕi(t)dt

)2

converges to

zero in L2 an n→∞. As to the first two summands, by replacing once again Ỹ
by Y , the quantity (5.5.3) will become asymptotically equivalent to

1

n

∫ n

0

(
Y 2
t − E[Y 2

t ]
)
dt+

1

n

∫ n

0

(
E[Y 2

t ]− α−2HHΓ(2H)
)
dt.

It is shown in [56] that n1−H 1
n

∫ n
0
E
(
[Y 2
t ]− α−2HHΓ(2H)

)
dt goes to zero in L2

when n → ∞. Another result from [56] by rescaling of ZH by the factor n−H is
that

n1−H 1

n

∫ n

0

(
Y 2
t − E[Y 2

t ]
)
dt

d≡ α−H−1Gαn

where GT are explicitly defined random variables converging in L2 as T →∞ to
a limit denoted by G∞, whose distribution and properties are as claimed in the
statement of the proposition. Thus, as n→∞

n1−H α2H+1

2H2Γ(2H)
(ᾱ(1)

n − α)
d→ α−H−1G∞.

By the definition of µ̄
(1)
i , we can write for every i = 1, .., p

µ̄
(1)
i,n − µi = (ᾱ(1)

n − α)
1

n

∫ n

0

ϕi(t)Xtdt+
1

n

∫ n

0

ϕi(t)dZ
H(t).

Since the sequence 1
n

∫ n
0
ϕi(t)Xtdt converges almost surely as n → ∞ to

〈h̃, ϕi〉L2([0, 1]), it now suffices to investigate joint convergence of(
1

n

∫ n

0

(
Y 2
t − E[Y 2

t ]
)
dt,

1

n

∫ n

0

f(s)dZH
s

)
for a periodic function f . First we rescale the Rosenblatt process involved in both
elements by n−H and obtain(
n1−H 1

n

∫ n

0

(
Y 2
t − E[Y 2

t ]
)
dt, n−H

∫ n

0

f(s)dZH
s

)
d≡
(
α−H−1Gαn,

∫ 1

0

f(ns)dZH
s

)
.

(5.5.4)
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We know from Proposition 5.4.1 that
∫ 1

0
f(ns)dZH

s converges in L2 to

(
∫ 1

0
f(s)ds)ZH

1 , and the first component also converges in L2, as mentioned above.
Consequently, we get the joint convergence in distribution of the vector (5.5.4) to

(α−H−1G∞, (
∫ 1

0
f(s)ds)ZH

1 ). This fact combined with Slutsky’s lemma for vectors
yields the desired result.

The random vector (G∞, Z
H
1 ) whose components appear in the statement

of the above result can be understood as a two dimensional Rosenblatt vector.
Its marginals are Rosenblatt distributed and it is well-defined as a limit in
L2 of the sequence (5.5.4). From the practical point of view dealing with this
estimator is even more cumbersome than with the least squares type estimator
considered above: The limiting distribution is more difficult to handle than ZH

1

obtained before. Moreover, for both pathwise estimators the knowledge of h̃ is
necessary for identifying the limiting distribution, while in the least squares case
it is needed only for the last component. However, we will see that in certain
cases one has to consider the setting (A1*), for which this is, to the best of our
knowledge, the only construction of a consistent pathwise estimator made until
now.

Let us end this chapter with a discussion concerning the hypotheses (A1) and
(A1*) in the case of the trigonometric basis of L2([0, 1]).

5.5.5 Remark. • Consider the orthonormal basis of L2([0, 1]) formed by
{1,
√

2 sin(2πn· ),
√

2 cos(2πn· ), n ∈ N}. Recall that

h̃(t) =

p∑
i=1

µi

∫ t

0

e−α(t−s)ϕi(s)ds.

By direct calculation, we obtain∫ t

−∞
eα(s−t) sin(2πns)ds =

α

(2πn)2 + α2
sin(2πnt)− 2πn

(2πn)2 + α2
cos(2πnt),∫ t

−∞
eα(s−t) cos(2πns)ds =

α

(2πn)2 + α2
cos(2πnt) +

2πn

(2πn)2 + α2
sin(2πnt).

This implies a simple rule in the non-degenerate setting (i.e., if all µi,
i ∈ {1, . . . , p}, are nonzero): If {ϕ1, . . . , ϕp} are elements of the trigonomet-
ric basis and if this set is ”symmetric” (i.e., sin(2πn· ) ∈ {ϕ1, . . . , ϕp} ⇔
cos(2πn· ) ∈ {ϕ1, . . . , ϕp}), then the assumption (A1*) is satisfied; other-
wise, (A1) is verified and ϕp+1 can be chosen from the missing counterparts.

• The pathwise estimators of α considered in [30] and [56] are special cases
of the estimator defined in Proposition 5.5.3. Indeed, for a constant mean
function the assumption (A1*) is satisfied.

102



5.5.6 Remark. A natural question in this context would be the application of
the ideas on pathwise estimators to the fractional Brownian case or to other
Hermite processes. The transition is far from immediate because the speed of
convergence of the estimator for α will change (see [56] for a special case) and
under this different scaling the summands considered to establish the second order
asymptotics will behave differently, making a careful separate analysis necessary.
We do not include this analysis here, however, it remains an interesting and, we
believe, worthwhile direction for future research.
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Chapter 6

Power variations of the wave
equation solution

In this chapter we go back to the variational methods mentioned in the
preliminaries part of the thesis. The object we consider is the solution of the
fractional wave equation described in Section 2.1.4. This model has a physical
interpretation, namely, it describes the vibration of a string depending on
time and space under the influence of a random force which has white noise
properties in space and fractional structure in the time component. This can
be used to model an influence which exhibits long memory in time, for ex-
ample if there are intrinsic or experimental reasons to assume strong correlations.

In [35] an estimator for the Hurst parameter H is derived for H < 3
4

(see
Section 2.2.3 for more details). In this chapter we will complement this result and
show by calculating the limiting distribution of the realised quadratic variation
of the solution that for H > 3

4
this estimator is not asymptotically Gaussian.

This is inconvenient for statistical applications. In order to avoid this restriction
and to get an estimator which is asymptotically Gaussian for every H ∈ [1

2
, 1),

we will use the generalized k-variations, which means that the usual increment of
the process is replaced by a higher order increment and consider higher powers
of the increments. The idea was introduced in the reference [33] and since it
has been used by many authors (see e.g. [16] or [15]). In particular, before
constructing the new estimators we will prove several central limit theorems and
derive bounds on the speed of convergence in terms of the Wasserstein distance.

The results of this chapter are presented in the preprint

• R. Shevchenko, M. Slaoui, C. A. Tudor - Generalized k-variations and
Hurst parameter estimation for the fractional wave equation via Malliavin
calculus, 2019, arXiv:1903.02369, accepted for publication in Journal of
Statistical Planning and Inference.
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6.1 Preliminaries

We recall here the fractional-white wave equation and its solution and we present
the basic definitions and the notation concerning the filters used in our work.

6.1.1 The solution to the wave equation with fractional-
white noise

We study the solution u of the one-dimensional equation
∂2u
∂t2

(t, x) = ∂2u
∂x2
u(t, x) + ẆH(t, x), t ≥ 0, x ∈ R,

u(0, x) = 0, x ∈ R,
∂u
∂t

(0, x) = 0, x ∈ R,

(6.1.1)

i.e. a square-integrable centred field u = (u(t, x); t ∈ [0, T ], x ∈ R) for T ∈ R+

defined as

u(t, x) =

∫ t

0

∫
R

1

2
1{|x−y|<t−s}W

H(ds, dy), t ≥ 0, x ∈ R, (6.1.2)

see Section 2.1.4 for details on these definitions.

It is shown in [8] that the solution (6.1.2) is self-similar in time and station-
ary in space. An important tool in this chapter is the use of the exact spatial
covariance structure, which is calculated in [35] for H > 1

2
and in [36] for H = 1

2
.

Namely, the covariance can be expressed as follows:

E (u(t, x)u(t, y)) =
1

2

(
cH |y − x|2H+1 − t |y − x|

2H

2
+

t2H+1

2H + 1

)
1{|y−x|<t}

+
(2t− |y − x|)2H+1

8(2H + 1)
1{t≤|y−x|<2t} (6.1.3)

with cH = 4H−1
4(2H+1)

. When t > 1 and x, y ∈ [0, 1], this expression reduces to

E (u(t, x)u(t, y)) (6.1.4)

=
1

2

(
cH |y − x|2H+1 − t |y − x|

2H

2
+

t2H+1

2H + 1

)
.

To be able to work with the reduced expression we will fix for the rest of the
chapter t > 1. Moreover, we will associate to the process (u(t, x), x ∈ [0, 1]) its
canonical Hilbert space H (=: H u) which is defined as the closure of the linear
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space generated by the indicator functions {1[0,x], x ∈ [0, 1]} with respect to the
inner product

〈1[0,x],1[0,y]〉H = E (u(t, x)u(t, y)) .

We will denote by Iq the multiple stochastic integral of order q ≥ 1 with respect
to the Gaussian process (u(t, x), x ∈ [0, 1]) and by D the Malliavin derivative
with respect to this process. We refer to Section 2.1.2 for the basic elements of
the Malliavin calculus.

In Section 6.3 we will also use multiple stochastic integrals with respect to
the fractional-white noise WH with covariance (2.1.9) (defined analogously to
the one-dimensional multiple integrals described in Section 2.1.2). We use the
notation IWq to indicate the multiple integral of order q ≥ 1 with respect to WH .

6.1.2 Filters

In this section we will define filters and the increments of the solution to (6.1.1)
along filters. We start with several definitions and some notation needed along
this chapter.

6.1.1 Definition. Given l, p ∈ N∗(= N\{0}), a vector α = (α0, ..., αl) is called a
filter of length l + 1 and order (or power) p if{ ∑l

q=0 αqq
r = 0, 0 ≤ r ≤ p− 1,∑l

q=0 αqq
p 6= 0

with the convention 00 = 1.

For instance, α = (1,−1) is a filter of length 2 and of order p = 1 while
α = (1,−2, 1) is a filter of length 3 and of power p = 2.

For a filter α = (a0, a1, .., al) of length l + 1 ≥ 1 and of order p ≥ 1 we define
the space-filtered process (or the spatial increment of the process u along the
filter α) as

Uα

(
i

N

)
=

l∑
r=0

aru

(
t,
i− r
N

)
for i = l, .., N, (6.1.5)

where N is a natural number corresponding (from the statistical point of view)
to the number of observations of the solution process for a fixed time t.

In the case of the filter α = (1,−1) of order one Uα
(
i
N

)
= u

(
t, i
N

)
−u

(
t, i−1

N

)
is the usual spatial increment of the solution while for α = (1,−2, 1) we have
Uα
(
i
N

)
= u

(
t, i
N

)
−2u

(
t, i−1

N

)
+u
(
t, i−2

N

)
which represents the rectangular spatial

increment.
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We denote for j ≥ 1

πα,NH (j) := E
[
Uα

(
i

N

)
Uα

(
i+ j

N

)]
.

From the covariance formula (6.1.3) we can write

πα,NH (j) =
l∑

r1,r2=0

ar1ar2 E
[
u

(
t,
i− r1

N

)
u

(
t,
i+ j − r2

N

)]
= k1

1

N2H
ΦH,α(j) + k2

1

N2H+1
ΦH+ 1

2
,α(j), (6.1.6)

with

ΦH,α(j) =
l∑

r1,r2=0

ar1ar2|j + r1 − r2|2H , j ≥ 0,

and k1 = − t
4

and k2 = cH
2

= 4H−1
8(2H+1)

. We write for further use

c1(H) :=
−t
4

l∑
q,r=0

αqαr|q − r|2H and c2(H) :=
cH
2

l∑
q,r=0

αqαr|q − r|2H+1. (6.1.7)

In particular, from (6.1.6) we obtain

πα,NH (0) = E
[
Uα

(
i

N

)]2

= k1
1

N2H
ΦH,α(0) + k2

1

N2H+1
ΦH+ 1

2
,α(0)

= c1(H)
1

N2H
+ c2(H)

1

N2H+1
.

We will need the technical lemma below to establish the asymptotic equivalent
of ΦH,α and similar expressions. The proof of the lemma is based on a Taylor
expansion, similarly to the corresponding results in [16] or [33].

6.1.2 Lemma. Let l1, l2, p1, p2 ∈ N∗, H ∈ R+\N and α(1), α(2) be filters of lengths
l1 + 1, l2 + 2 and of orders p1, p2 respectively. Then

l1∑
q=0

l2∑
r=0

α(1)
q α(2)

r |q − r + k|2H k→∞∼ κHk
2H−2p,

with κH =
∑l1

q=0

∑l2
r=0 α

(1)
q α

(2)
r

2H(2H−1)...(2H−2p+1)
2p!

(q−r)2p, where p = min(p1, p2).
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Proof. We have

l1∑
q=0

l2∑
r=0

α(1)
q α(2)

r |q − r + k|2H =

l1∑
q=0

l2∑
r=0

α(1)
q α(2)

r k2H

∣∣∣∣q − rk + 1

∣∣∣∣2H
k→∞∼

l1∑
q=0

l2∑
r=0

α(1)
q α(2)

r k2H

(
q − r
k

+ 1

)2H

=
∞∑
m=0

(
2H

m

)
k2H−m

l1∑
q=0

l2∑
r=0

α(1)
q α(2)

r (q − r)m

=
∞∑

m=2p

(
2H

m

)
k2H−m

l1∑
q=0

l2∑
r=0

α(1)
q α(2)

r (q − r)m,

since all summands below 2p will disappear because the order of both filters is
higher or equal to p. The asymptotically dominating summand is(

2H

2p

)
k2H−2p

l1∑
q=0

l2∑
r=0

α(1)
q α(2)

r (q − r)2p,

which is what we wanted to show.

6.2 Central limit theorems for the spatial k-

variations

In this section we focus on the asymptotic behaviour in distribution of the realised
k-variations in space of the solution to the fractional-white wave equation, defined
via a filter of power p ≥ 1. In the first step we show the k-variation satisfies a
central limit theorem (CLT) when p > H + 1

4
. Next, by taking k to be an even

integer, we derive a Berry-Esséen type bound for this convergence in distribution
via the Stein-Malliavin calculus. Restricting ourselves in addition to k = 2, we
prove a multidimensional CLT, which is needed for the estimation of the Hurst
parameter.

6.2.1 Central limit theorem

Fix t > 1 and l, p ∈ N∗. Let α be a filter of length l + 1 and of power p as in
Definition 6.1.1. Let u be given by (6.1.2). For any integer k ≥ 1 we define the
spatial k-variations of the process (u(t, x), x ∈ R) by

VN(k, α) =
1

N − l

N∑
i=l

[ ∣∣Uα
(
i
N

)∣∣k
E
∣∣Uα

(
i
N

)∣∣k − 1

]
(6.2.1)

with Uα
(
i
N

)
given by (6.1.5). Note that these objects are often called realised

or empirical variations, but for brevity reasons this adjective will be omitted here.
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We will show that the sequence (6.2.1) satisfies a CLT. In order to do this we
will use a criterion based on Malliavin calculus.

Chaos expansion

The first step is to derive a Wiener chaos expansion (see Section 2.1.2) of the k-
variation sequence VN(k, α) with respect to the Gaussian process (u(t, x))x∈[0, 1].
Noticing that the filtered process Uα as a linear combination of centred Gaussian
random variables is a centered Gaussian process, we get

E

(
Uα

(
i

N

)k)
= Ek E

(
Uα

(
i

N

)2
) k

2

, (6.2.2)

where Ek denotes the k-th absolute moment of a standard Gaussian variable

given by Ek =
2
k
2 Γ( k+1

2
)

Γ( 1
2

)
. We introduce the variable

Zα

(
i

N

)
=

Uα
(
i
N

)
(πα,NH (0))1/2

. (6.2.3)

It is clear that Zα
(
i
N

)
is a standard Gaussian variable and

Corr
(
Zα
(
i
N

)
, Zα

(
j
N

))
= Corr

(
Uα
(
i
N

)
, Uα

(
j
N

))
, where Corr denotes the

correlation coefficient. Using (6.2.2) and (6.2.3) we can write VN as follows:

VN(k, α) =
1

N − l

N∑
i=l

[ |Uα( i
N

)|k

E |Uα( i
N

)|k
− 1

]
=

1

N − l

N∑
i=l

[ |Zα( i
N

)|k

Ek
− 1

]
.

In Lemma 2 of [16] the expansion in Hermite polynomials of the function

Hk(t) = |t|k
Ek
− 1 is given:

Hk(t) =
∞∑
j=1

ckjHj(t),

where ck2j+1 = 0 for j > 0, ck2j = 1
(2j)!

∏j−1
i=0 (k − 2i) for j > 1 and Hj(t) denotes

the j-th Hermite polynomial defined in Section 2.1.2.

Observing that for

Ci, α :=
l∑

q=0

αq1[0, i−qN ]

we have from (6.1.6) that
∥∥∥ Ci, α

(πα,NH (0))1/2

∥∥∥
H

= 1 we can express Zα
(
i
N

)
as an integral

with respect to the process (u(t, x), x ∈ [0, 1]) since the increment u(t, y)−u(t, x)
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can be expressed as I1(1[x,y]) (recall that I1 represents the multiple integral of
order 1 with respect to the Gaussian process (u(t, x), x ∈ [0, 1])) for every x < y:

Zα

(
i

N

)
= I1

(
Ci, α

(πα,NH (0))1/2

)
.

Since we have Hq(I1(h)) = 1
q!
Iq(h

⊗q) for ‖h‖H = 1 we get

VN(k, α) =
1

N − l

N∑
i=l

Hk

(
Zα

(
i

N

))
=

1

N − l
∑
q>1

ck2q

N∑
i=l

H2q

(
Zα

(
i

N

))

=
1

N − l
∑
q>1

ck2q

N∑
i=l

H2q

(
I1

(
Ci, α

(πα,NH (0))1/2

))

=
1

N − l
∑
q>1

ck2q
(2q)!

N∑
i=l

I2q

( Ci, α

(πα,NH (0))1/2

)⊗2q
 .

Hence, we obtain the following chaos expansion of the k-variation sequence:

VN(k, α) =
1

N − l

N∑
i=l

∞∑
q=1

ck2q
(2q)!

I2q

(
C⊗2q
i,α

(πα,NH (0))q

)
=
∑
q≥1

I2q(fN,2q) (6.2.4)

with

fN,2q =
ck2q

(2q)!

1

N − l

N∑
i=l

C⊗2q
i,α

(πα,NH (0))q
. (6.2.5)

Relation (6.2.4) shows that the random variable VN(k, α) admits an infinite chaos
expansion, which contains the chaoses of all orders from q = 2 to infinity. We
will study the behaviour of each chaos component of VN(k, α). Let us start by
analysing the asymptotic behaviour of the mean square of each kernel fN,2q that
appears in the chaos expansion of VN(k, α). This will be needed for the proof of
the CLT later in the chapter.

6.2.1 Lemma. For N, q ≥ 1, let fN,2q be given by (6.2.5). Then

(N − l)(2q)!‖fN,2q‖2
H ⊗2q

N→∞→
(ck2q)

2

(2q)!

∑
v∈Z

(ϕH,α(v))2q := σ2
2q,

for H < p − 1
4q

(i.e. H < 1 − 1
4q

for p = 1 and H ∈
[

1
2
, 1
)

for p ≥ 2), where we
use the notation

ϕH,α(v) =
ΦH,α(v)

ΦH,α(0)
. (6.2.6)
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Moreover, σ2 :=
∑

q≥1 σ
2
2q <∞. For p = q = 1, H = 3/4,

N − l
log(N − l)

2!‖fN,2‖2
H ⊗2

N→∞→ c2 :=
(ck2)2

2
lim
N→∞

log(N)
∑
|v|≤N

(ρH,α(v))2 <∞.

(6.2.7)

Proof. From (6.2.5), we get

(2q)!‖fN,2q‖2
H ⊗2q =

(ck2q)
2

(2q)!

1

(N − l)2

N∑
i,j=l

〈Ci,α, Cj,α〉2qH
(πα,NH (0))2q

=
1

(N − l)2

(ck2q)
2

(2q)!

N∑
i,j=l

(
ρα,NH (j − i)

)2q

,

where we used the notation

ρα,NH (v) =
πα,NH (v)

πα,NH (0)
for v ∈ Z. (6.2.8)

Next, we write

1

N − l

N∑
i,j=l

(
ρα,NH (j − i)

)2q

=
∑
v∈Z

(
ρα,NH (v)

)2q

1{|v|≤N−l}
N − |v| − l
N − l

,

and thus

(N − l)(2q)!‖fN,2q‖2H ⊗2q =
(ck2q)

2

(2q)!

∑
v∈Z

(
ρα,NH (v)

)2q
1{|v|≤N−l}

N − |v| − l
N − l

. (6.2.9)

Using the expression

ρα,NH (v) =
k1ΦH,α(v)N−2H + k2ΦH+ 1

2
,α(v)N−2H−1

k1ΦH,α(0)N−2H + k2ΦH+ 1
2
,α(0)N−2H−1

=
ΦH,α(v) + aN(v)

ΦH,α(0) + aN(0)

with

aN(v) =
k2

k1N
ΦH+ 1

2
,α(v) (6.2.10)

we can write, with ϕH,α and ρα,NH given by (6.2.6) and (6.2.8) respectively,

bN,H(v) := ρα,NH (v)− ϕH,α(v) (6.2.11)

and remark that due to Lemma 6.1.2 for v large enough

|bN,H(v)| |v|→∞∼
∣∣∣∣aN(v)

1

ΦH,α(0) + aN(0)

∣∣∣∣ ≤ C
1

N
v2H+1−2p, (6.2.12)
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where C > 0 does not depend on N, v. With this notation we can write

(N − l)(2q)! ‖fN,2q‖2
H ⊗2q

=
(ck2q)

2

(2q)!

∑
v∈Z

(ϕH,α(v) + bN,H(v))2q 1{|v|≤N−l}
N − |v| − l
N − l

=
(ck2q)

2

(2q)!

∑
v∈Z

2q∑
m=0

(
2q

m

)
ϕH,α(v)m(bN,H(v))2q−m1{|v|≤N−l}

N − |v| − l
N − l

=
(ck2q)

2

(2q)!

∑
v∈Z

ϕH,α(v)2q1{|v|≤N−l}
N − |v| − l
N − l

+ rN,q,1,

with

rN,q,1 =
(ck2q)

2

(2q)!

∑
v∈Z

2q−1∑
m=0

(
2q

m

)
ϕH,α(v)m(bN,H(v))2q−m1{|v|≤N−l}

N − |v| − l
N − l

.

(6.2.13)
By the dominated convergence theorem we obtain

(ck2q)
2

(2q)!

∑
v∈Z

ϕH,α(v)2q1{|v|≤N−l}
N − |v| − l
N − l

N→∞→ σ2
2q,

which by Lemma 6.1.2 is finite if p = 1, H < 1 − 1
4q

, and for all H ∈ [1/2, 1) if
p > 1.

For q = p = 1, H = 3/4,

1

log(N − l)
∑
v∈Z

ϕH,α(v)21{|v|≤N−l}
N − |v| − l
N − l

converges to a positive constant and thus (6.2.7) is obtained.
In order to conclude it remains to show that the rest term rN,q,1 (6.2.13)

converges to 0 as N → ∞ for every q ≥ 1. From (6.2.13), using the bound
(6.2.12) and Lemma 6.1.2, we have the estimate

|rN,q,1| ≤ C

2q−1∑
m=0

(
2q

m

)
1

N2q−m

∑
1≤v≤N−l

|v|(2H−2p)m|v|(2H+1−2p)(2q−m) :=

2q−1∑
m=0

rN,q,1,m,

and for each m = 0, .., 2q − 1,

rN,q,1,m ≤
C

N2q−m

∑
1≤v≤N−l

|v|(2H−2p)2q+2q−m.
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If the series
∑

v∈Z |v|(2H−2p)2q+2q−m converges we get

rN,q,1,m ≤ C
1

N2q−m ≤ C
1

N

N→∞→ 0,

and when the series diverges,

rN,q,1,m ≤ C
1

N2q−mN
(2H−2p)2q+2q−m+1 ≤ CN (2H−2p)2q+1 N→∞→ 0

(up to an additional logN factor appearing whenever the exponent in the sum
adds up to minus one) if p = 1, H ∈ (1

2
, 1− 1

4q
) or p ≥ 2 and H ∈ [1

2
, 1). If p = 1

and H = 1
2

we obtain for m 6= 1

rN,q,1,m ≤ CN−2q+1 N→∞→ 0

and for m = 1
rN,q,1,m ≤ CN−2q+1 logN

N→∞→ 0.

If p = q = 1, H = 3/4, the quantity

1

log(N − l)
rN,q,1

will also converge to zero which can be seen using again (6.2.12) and Lemma
6.1.2.

The fact that the series σ2 =
∑

q≥1 σ
2
2q is finite for H < p− 1

4q
follows from the

study of the k-variations of the fractional Brownian motion, see [16] or [51].

Asymptotic normality for the renormalized k-variation

We will consider the renormalized k-variation sequence

GN(k, α) =
√
N − lVN(k, α). (6.2.14)

From the above Lemma 6.2.1 it follows that

E [GN(k, α)]2
N→∞→ σ2,

with σ2 given in the statement of Lemma 6.2.1. We will now show that the
sequence (6.2.14) satisfies a central limit theorem, which is the main result of
this section.

6.2.2 Theorem. Let l, p ∈ N∗. For a filter α of order p and of length l+ 1, with
p > H + 1

4
, let GN(k, α) be given by (6.2.14). Then the sequence (GN(k, α))N≥1

converges in distribution, as N →∞, to the Gaussian law N(0, σ2). Moreover, for

p = 1, H = 3/4, the sequence

(
1√

log(N−l)
GN(k, α)

)
N≥1

converges in distribution

to N(0, c2). The constants σ2, c2 are those appearing in Lemma 6.2.1.
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Proof. Notice that from (6.2.4), we can write

GN(k, α) =
∑
q≥1

I2q(gN,2q) with gN,2q =
√
N − lfN,2q (6.2.15)

with fN,2q given by (6.2.5). Our main tool to prove the asymptotic normality of
(6.2.15) is Theorem 6.3.1 from [51]. According to it, for p > H + 1/4 it suffices
to show that

1. (2q)!‖gN,2q‖2
H ⊗2q

N→∞→ σ2
2q and σ2 :=

∑
q≥1 σ

2
2q <∞,

2. for every q ≥ 1 and r = 1, .., 2q − 1, ‖gN,2q ⊗r gN,2q‖H ⊗4q−2r
N→∞→ 0 (where

⊗r denotes the contraction introduced ib Section 2.1.2),

3. limM→∞ supN≥1

∑
q≥M+1(2q)!‖gN,2q‖2

H ⊗2q = 0

and for p = 1, H = 3/4,

1. 1
log(N−l)(2q)!‖gN,2q‖

2
H ⊗2q

N→∞→ 1{q=1}c
2,

2. for every q ≥ 1 and r = 1, .., 2q − 1, 1
log(N−l)‖gN,2q ⊗r gN,2q‖H ⊗4q−2r

N→∞→ 0,

3. limM→∞ supN≥1

∑
q≥M+1

1
log(N−l)(2q)!‖gN,2q‖

2
H ⊗2q = 0.

Point 1 in both cases follows from Lemma 6.2.1. Let us investigate what happens
for point 2. By definition of contraction (see (2.1.3)), we have for q ≥ 1 and
r = 1, .., 2q − 1

gN,2q ⊗r gN,2q =
1

N − l
(ck2q)

2

(2q)!

N∑
i,j=l

〈Ci,α, Cj,α〉rH
πα,NH (0)2q

C⊗2q−r
i,α ⊗ C⊗2q−r

j,α

and

‖gN,2q ⊗r gN,2q‖2
H ⊗4q−2r

=

(
(ck2q)

2

(2q)!

)2
1

(N − l)2

×
N∑

i1,i2,i3,i4=l

〈Ci1,α, Ci2,α〉
2q−r
H 〈Ci2,α, Ci3,α〉rH 〈Ci3,α, Ci4,α〉

2q−r
H 〈Ci4,α, Ci1,α〉rH

πα,NH (0)2q

=

(
(ck2q)

2

(2q)!

)2
1

(N − l)2

×
N∑

i1,i2,i3,i4=l

ρα,NH (i1 − i2)2q−rρα,NH (i2 − i3)rρα,NH (i3 − i4)2q−rρα,NH (i4 − i1)r
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with ρα,NH given by (6.2.8). We use the fact that

N∑
i1,i2,i3,i4=l

ρα,NH (i1 − i2)2q−rρα,NH (i2 − i3)rρα,NH (i3 − i4)2q−rρα,NH (i4 − i1)r

≤
N∑

n,m=l

((
ρα,NH 1{|·|≤N−l}

)2q−r
∗
(
ρα,NH 1{|·|≤N−l}

)r)2

(n−m),

(where ∗ denotes convolution of sequences on Z) and we obtain

‖gN,2q ⊗r gN,2q‖2
H ⊗4q−2r

≤ C
1

N − l

N∑
v=l

((
ρα,NH 1{|·|≤N−l}

)2q−r
∗
(
ρα,NH 1{|·|≤N−l}

)r)2

(v)

≤ C
1

N − l

∥∥∥∥(ρα,NH 1{|·|≤N−l}

)2q−r
∥∥∥∥2

l4/3(Z)

∥∥∥(ρα,NH 1{|·|≤N−l}

)r∥∥∥2

l4/3(Z)

= C
1

N − l

 ∑
|v|≤N−l

(
ρα,NH (v)

)(2q−r) 4
3

3/2 ∑
|v|≤N−l

(
ρα,NH (v)

)r 4
3

3/2

by virtue of the Young’s inequality similarly to the calculations in [35] (i.e.,
‖u ∗ v‖ls(Z) ≤ ‖u‖lp(Z)‖v‖lq(Z) for s, p, q ≥ 1 if 1

s
+ 1 = 1

p
+ 1

q
). Note that for v

large enough we have by virtue of (6.2.12)

bN,H(v)1{|v|≤N−l} ≤ C
1

N
v2H+1−2p1{|v|≤N−l} ≤ Cv2H−2p ≤ CϕH(v)1{|v|≤N−l},

and since all the powers involved above are positive, this allows us to replace ρα,NH
with ϕH . Thus, for large N the norm ‖gN,2q ⊗r gN,2q‖2

H ⊗4q−2r is bounded by

C
1

N − l

 ∑
|v|≤N−l

|v|(2H−2p)(2q−r) 4
3

3/2 ∑
|v|≤N−l

|v|(2H−2p)r 4
3

3/2

.

For p ≥ 2 all these series converge. For p = 1 and H ≤ 3
4

the only cases in
which some of the series do not converge are r = 2q− 1 and r = 1. However, the
observation

1

N − l
∑
|v|≤N−l

|v|(2H−2) 4
3

∑
|v|≤N−l

|v|(2H−2) 4
3 ≤ CN−1N

8
3
H− 5

3N
8
3
H− 5

3
N→∞→ 0

ensures that even in those cases the term ‖gN,2q ⊗r gN,2q‖2
H ⊗4q−2r converges to

zero.
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Concerning point 3, fix M ≥ 1 and recall that from (6.2.9)

(2q)!‖gN,2q‖2
H ⊗2q =

(ck2q)
2

(2q)!

∑
v∈Z

(
ρα,NH (v)

)2q

1{|v|≤N−l}
N − |v| − l
N − l

,

and therefore, since |ρα,NH (v)| ≤ 1 for |v| large enough,

supN≥1

∑
q≥M+1

(2q)!‖gN,2q‖2
H ⊗2q

≤ sup
N≥1

∑
q≥M+1

(ck2q)
2

(2q)!

∑
v∈Z

(
ρα,NH (v)

)2

1{|v|≤N−l}
N − |v| − l
N − l

≤ C
∑

q≥M+1

(ck2q)
2

(2q)!

∑
v∈Z

ϕH,α(v)2

+C sup
N≥1

∑
q≥M+1

(ck2q)
2

(2q)!

∑
v∈Z

bN,H(v)21{|v|≤N−l}
N − |v| − l
N − l

.

From (6.2.12)

bN,H(v)2 ≤ C
1

N2
if p ≥ 2,

and∑
|v|≤N−l

bN,H(v)2N − |v| − l
N − l

≤ C
1

N2

∑
|v|≤N−l

v(2H−1)2 ≤ CN4H−3 if p = 1, H <
3

4
.

Consequently,

sup
N≥1

∑
q≥M+1

(2q)!‖gN,2q‖2
H ⊗2q ≤ C

∑
q≥M+1

(ck2q)
2

(2q)!

∑
v∈Z

ϕH,α(v)2,

and this tends to zero as M →∞ due to the convergence of the series
∑

q≥1

(ck2q)
2

(2q)!
.

For 1√
log(N−l)

GN(k, α) there is nothing to show since the case q = 1 does not

contribute to the limit.

6.2.2 Rate of convergence for even power variations

In this section we will further quantify the CLT proved above (Theorem 6.2.2) by
deriving a rate of convergence in Wasserstein distance for even power variations.
The choice of even powers enables us to obtain a finite sum in the Hermite
expansion and treat a finite number of summands later on. This constraint is
particularly important because there is no dominating chaos component (in
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the L2 sense), and thus the question of the interplay of an infinite number of
summands becomes difficult to treat. While there is a general CLT for such a
case (and it is used in the proof of Theorem 6.2.2), there are no known results
concerning the convergence rates. However, deriving such results still might be
possible and the constraint is not an intrinsically motivated one.

Let k ≥ 2 be an even integer. Consider the sequence GN(k, α) defined by
(6.2.14). From (6.2.4), since the coefficients ck2j vanish if 2j > k, we get

GN(k, α) =
1√
N − l

N∑
i=l

k
2∑

q=1

ck2q
(2q)!

I2q

(
C⊗2q
i,α

(πα,NH (0))q

)
. (6.2.16)

Denote for every q = 1, 2, .., k
2

the 2q-th chaos component of GN(k, α) by

G
(2q)
N (k, α) := I2q(gN,2q), (6.2.17)

with gN,2q from (6.2.15). Let us consider the k
2
-dimensional random vector

GN(k, α) :=
(
G

(2)
N (k, α), G

(4)
N (k, α), ...., G

(k)
N (k, α)

)
.

Notice that for every q1, q2 = 1, .., k
2

with q1 6= q2

E
(
G

(2q1)
N (k, α)G

(2q2)
N (k, α)

)
= 0,

while for q1 = q2 = q

E
[
G

(2q)
N (k, α)

]2

=
(ck2q)

2

(2q)!

∑
v∈Z

ρα,NH (v)2q1{|v|≤N−l}

(
1− |v|

N − l

)
.

Let us introduce the matrix C = (Cq1,q2)q1,q2=1,.., k
2

with components Cq1,q2 = 0 if

q1 6= q2 and

Cq,q =
(ck2q)

2

(2q)!

∑
v∈Z

ϕH,α(v)2q. (6.2.18)

The objective in this section is to calculate the rate of convergence of VN(k, α)
in the CLT proved in Section 6.2.1. In order to obtain this rate in terms of the
Wasserstein distance we will use Corollary 3.6 from [54] to show that the vector
GN(k, α) converges to a normal distribution with the covariance matrix C and
determine its convergence rate. This will provide corresponding results for the
k-variation statistics VN(k, α). For the sake of completeness we cite this corollary
here.
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6.2.3 Corollary. Fix d ≥ 2 and 1 ≤ q1 ≤ · · · ≤ qd. Consider a vector F :=
(F1, . . . Fd) = (Iq1(f1) . . . Iqd(fd)) with fi ∈ H �qi (where H is the underlying
Hilbert space) for any i = 1, . . . , d. Let Z ∼ Nd(0, C) with C positive definite.
Then

dW (F, Z) ≤ c

√√√√ ∑
1≤i, j≤d

E

[(
Cij −

1

qj
〈DFi, DFj〉H

)2
]

for some constant strictly positive c.

(In the one-dimensional case for a standard normal Z this result is also true
and can be found in [51]. For k = 2 the required norming condition is satisfied,
and the corollary is applicable.)

Before we begin with the proof of the main result of this chapter, let us
briefly recall the definition of the Wasserstein distance. The Wasserstein distance
between the laws of two Rd-valued random variables F and G is defined as

dW (F,G) = sup
h∈A
|Eh(F )− Eh(G)| , (6.2.19)

where A is the class of Lipschitz continuous functions h : Rd → R such that
‖h‖Lip ≤ 1, where

‖h‖Lip = sup
x,y∈Rd,x 6=y

|h(x)− h(y)|
‖x− y‖Rd

.

In order to apply the corollary for Fi = G
(2i)
N , i = 1, .., k

2
, we will write each

summand as

E

[(
Cij −

1

qj
〈DFi, DFj〉H

)2
]

≤ 2

(
Cij −

1

qj
E[〈DFi, DFj〉H ]

)2

+2E

[(
1

qj
E[〈DFi, DFj〉H ]− 1

qj
〈DFi, DFj〉H

)2
]

(6.2.20)

and conduct separate calculations for both parts. We start with a lemma for the
deterministic part.

6.2.4 Lemma. Let G
(2q)
N , Cq,q be given by (6.2.17), (6.2.18) respectively and as-

sume p ≥ 2. For N large enough and for every q = 1, .., k
2

we have for every
H ∈

[
1
2
, 1
)
, ∣∣∣E [G(2q)

N (k, α)2
]
− Cq,q

∣∣∣ ≤ C
1

N
.

For p = 1 we have for H ∈
(

1
2
, 3

4

)
∣∣∣E [G(2q)

N (k, α)2
]
− Cq,q

∣∣∣ ≤ CN4H−3
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and for p = 1, H = 1
2
, ∣∣∣E [G(2q)

N (k, α)2
]
− Cq,q

∣∣∣ ≤ C
logN

N
.

Proof. As in the proof of Lemma 6.2.1, we have

E
[
G

(2q)
N (k, α)2

]
=

(ck2q)
2

(2q)!

∑
v∈Z

(
ρα,NH (v)

)2q

1{|v|≤N−l}
N − |v| − l
N − l

.(6.2.21)

Recall the representation ρα,NH (v) = ϕH(v) + bN,H(v) introduced in Lemma 6.2.1.
We obtain by the binomial formula

E
[
G

(2q)
N (k, α)2

]
=

(ck2q)
2

(2q)!

2q∑
m=0

(
2q

m

)∑
v∈Z

ϕH,α(v)mbN,H(v)2q−m1{|v|≤N−l}
N − |v| − l
N − l

=
(ck2q)

2

(2q)!

∑
v∈Z

ϕH,α(v)2q1{|v|≤N−l}
N − |v| − l
N − l

+ rN, q, 1,

where we separated the summand with m = 2q above and we used the notation
(6.2.13). Consequently,

E
[
G

(2q)
N (k, α)2

]
=

(ck2q)
2

(2q)!

∑
v∈Z

ϕH,α(v)2q −
(ck2q)

2

(2q)!

∑
|v|≥N−l+1

ϕH,α(v)2q

+
(ck2q)

2

(2q)!

∑
|v|≤N−l

ϕH,α(v)2q

(
N − |v| − l
N − l

− 1

)
+ rN, q,1

=
(ck2q)

2

(2q)!

∑
v∈Z

ϕH,α(v)2q + rN, q,3 + rN, q,2 + rN, q,1

with

rN, q,2 =
(ck2q)

2

(2q)!

∑
|v|≤N−l

ϕH,α(v)2q

(
N − |v| − l
N − l

− 1

)
,

rN, q,3 = −
(ck2q)

2

(2q)!

∑
|v|≥N−l+1

ϕH,α(v)2q.

The asymptotics for rN, q, 1 has been studied in Lemma 6.2.1:

|rN, q, 1| ≤ C


1
N

if p ≥ 2 or p = 1, q ≥ 2, H ∈
[

1
2
, 1− 1

2q

)
,

N4H−3 if p = 1, q = 1, H ∈
(

1
2
, 3

4

)
,

logN
N

if p = 1, q = 1, H = 1
2
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for some C > 0.

For rN, q,2 we calculate

|rN, q, 2| ≤ C

∣∣∣∣∣∣
∑
|v|≤N−l

ϕH,α(v)2q

(
|v|

N − l

)∣∣∣∣∣∣ ≤ C
1

N

∑
|v|≤N−l

|v|2q(2H−2p)+1.

Note that the above series is convergent for p ≥ 2 or for p = 1 and q ≥ 2
if H < 1 − 1

2q
(which is satisfied for H < 3

4
). In these cases, we will find the

estimate

|rN,q,2| ≤ C
1

N
.

For p = 1 and q = 1, the sequence
∑

1≤v≤N−l |v|(2H−2p)2q+1 =
∑

1≤|v|≤N−l |v|4H−3

behaves as N4H−2 and we get

|rN,q,2| ≤ CN4H−3,

so here we obtain the bounds

|rN, q,2| ≤ C


1
N

if p ≥ 2 or p = 1, q ≥ 2, H ∈
[

1
2
, 1− 1

2q

)
,

N4H−3 if p = 1, q = 1, H ∈
(

1
2
, 3

4

)
,

logN
N

if p = 1, q = 1, H = 1
2
.

Finally, for rN, q,3 the same bounds can be established. An application of Lemma
6.1.2 yields

|rN,q,3| ≤ C
∑
|v|≥N−l

ϕH,α(v)2q ≤ CN (2H−2p)2q+1,

and consequently,

|rN, q,3| ≤ C

{
1
N

if p ≥ 2 or p = 1, q ≥ 2, H < 1− 1
2q
,

N4H−3 if p = 1, q = 1, H < 3
4
.

Since 1
N
< N4H−3 for H between 1

2
and 3

4
, the result for p = 1, q ≥ 2 follows.

The following proposition provides a bound for the random part in (6.2.20).

6.2.5 Proposition. Let GN be given by (6.2.14). For q1, q2 ∈ {1, . . . , k2}, p ≥ 2
and H ∈

[
1
2
, 1
)
,

Var(〈DG(2q1)
N (k, α), DG

(2q2)
N (k, α)〉H ) ≤ C

1

N
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with some positive constant C. For p = 1 and H < 3/4

Var(〈DG(2q1)
N (k, α), DG

(2q2)
N (k, α)〉H ) ≤ C


1
N

if H ∈ [1
2
, 5

8
) ,

log(N)3

N
if H = 5

8
,

N8H−6 if H ∈ (5
8
, 3

4
)

also with a positive constant C.

Proof. We can explicitly compute the Malliavin derivatives in the statement. For
q ∈ {1, . . . , k

2
}

D·G
(2q)
N (k, α) =

1√
N − l

N∑
i=l

ck2q
(2q − 1)!

I2q−1

(
C
⊗(2q−1)
i,α

(πα,NH (0))q

)
Ci,α(· ).

Assume without loss of generality q1 ≤ q2. We have

〈DG(2q1)
N (k, α), DG

(2q2)
N (k, α)〉H

=
1

(N − l)(πα,NH (0))q1+q2

ck2q1
(2q1 − 1)!

ck2q2
(2q2 − 1)!

×
N∑

i, j=l

I2q1−1

(
C
⊗(2q1−1)
i,α

)
I2q2−1

(
C
⊗(2q2−1)
j,α

)
〈Ci, α, Cj, α〉H

=
1

(N − l)(πα,NH (0))q1+q2

ck2q1
(2q1 − 1)!

ck2q2
(2q2 − 1)!

N∑
i, j=l

〈Ci, α, Cj, α〉H

×

(
2q1−1∑
r=0

r!

(
2q1 − 1

r

)(
2q2 − 1

r

)
I2q1+2q2−2−2r

(
C
⊗(2q1−1)
i,α ⊗r C⊗(2q2−1)

j,α

))
,

and E[〈DG(2q1)
N (k, α), DG

(2q2)
N (k, α)〉H ] is the term containing I0. It follows that

〈DG(2q1)
N (k, α), DG

(2q2)
N (k, α)〉H − E[〈DG(2q1)

N (k, α), DG
(2q2)
N (k, α)〉H ]

=
1

(N − l)(πα,NH (0))q1+q2

ck2q1
(2q1 − 1)!

ck2q2
(2q2 − 1)!

N∑
i, j=l

〈Ci, α, Cj, α〉H

×

(
2q1−1−w∑
r=0

r!

(
2q1 − 1

r

)(
2q2 − 1

r

)
I2q1+2q2−2−2r

(
C
⊗(2q1−1)
i,α ⊗r C⊗(2q2−1)

j,α

))
,

where w = 1 if l1 6= l2 and w = 2 otherwise.
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Due to the fact that products of integrals of different orders have zero
expectation we obtain

P := E[(〈DG(2q1)
N (k, α), DG

(2q2)
N (k, α)〉H − E[〈DG(2q1)

N (k, α), DG
(2q2)
N (k, α)〉H ]])2]

N→∞∼ C

(N − l)2(πα,NH (0))2(q1+q2)

×
2q1−w∑
r=0

E
[( N∑

i, j=l

r!

(
2q1 − 1

r

)(
2q2 − 1

r

)
I2(q1+q2−1−r)

×(C
⊗(2q1−1)
i, α ⊗r C⊗(2q2−1)

j, α )〈Ci, α, Cj, α〉H
)2]

=
C

(N − l)2(πα,NH (0))2(q1+q2)

2q1−w∑
r=0

N∑
i,j,k,m=l

r!2
(

2q1 − 1

r

)2(
2q2 − 1

r

)2

〈Ci, α, Cj, α〉H

×〈Ck, α, Cm,α〉H 〈
˜

C
⊗(2q1−1)
i, α ⊗r C⊗(2q2−1)

j, α ,
˜

C
⊗(2q1−1)
k, α ⊗r C⊗(2q2−1)

m,α 〉H ⊗(2q1+2q2−2−2r)

=:

2q1−w∑
r=0

Pr,

where the tildas denote the symmetrisation of functions as explained in Section
2.1.2. We can compute the contractions involved and get via (2.1.3)

C
⊗(2q1−1)
i, α ⊗r C⊗(2q2−1)

j, α = C
⊗(2q1−r−1)
i, α ⊗ C⊗(2q2−r−1)

j, α (〈Ci, α, Cj, α〉H )r .

Consequently, one can write for r ≥ 0∣∣∣∣〈 ˜
C
⊗(2q1−1)
i, α ⊗r C⊗(2q2−1)

j, α ,
˜

C
⊗(2q1−1)
k, α ⊗r C⊗(2q2−1)

m,α 〉H ⊗(2q1+2q2−2−2r)

∣∣∣∣
. |(〈Ci, α, Cj, α〉H 〈Ck, α, Cm,α〉H )r|
× max

a

∣∣〈Ci, α, Ck, α〉l1−r−1−a
H 〈Cj, α, Cm,α〉l2−r−1−a

H 〈Ci, α, Cm,α〉aH 〈Cj, α, Ck, α〉aH
∣∣

due to symmetrisation: the maximum (with a going from 0 to l1− r− 1) is taken
over all outcomes of different permutations of the first and second component of
the inner product, the number a signifying the number of Ci in the first component
that are appearing in the same places as Cm in the second component in a given
permutation.
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In total, we obtain for a fixed r ∈ {0, . . . , 2q1 − w}

|Pr| ≤ C
1

(N − l)2(πα,NH (0))2(q1+q2)

N∑
i,j,k,m=l

∣∣〈Ci, α, Cj, α〉r+1
H 〈Ck, α, Cm,α〉

r+1
H

∣∣
× max

a

∣∣〈Ci, α, Ck, α〉l1−r−1−a
H 〈Cj, α, Cm,α〉l2−r−1−a

H 〈Ci, α, Cm,α〉aH 〈Cj, α, Ck, α〉aH
∣∣

= C
1

(N − l)2

N∑
i,j,k,m=l

∣∣∣ρα,NH (i− j)r+1ρα,NH (k −m)r+1
∣∣∣

×max
a

∣∣∣ρα,NH (i− k)l1−r−1−aρα,NH (j −m)l2−r−1−aρα,NH (i−m)aρα,NH (j − k)a
∣∣∣ ,

with ρα,NH defined in (6.2.8) and a ranging over 0, . . . , l1 − r − 1 as above. Due
to boundedness of ρα,NH we can without loss of generality reduce the number of
factors. In particular,

max
a=0,...,l1−r−1

∣∣∣ρα,NH (i− k)l1−r−1−aρα,NH (j −m)l2−r−1−aρα,NH (i−m)aρα,NH (j − k)a
∣∣∣

≤ C|ρα,NH (i− k)ρα,NH (j −m)|,

since either the factor |ρα,NH (i − k)ρα,NH (j − m)| or |ρα,NH (i − m)ρα,NH (j − k)| is
contained in the product and for symmetry reasons there is no need to distinguish
between these cases. Using this inequality and bounding the first two factors in
the same way we arrive at a bound

|Pr| ≤ C
1

(N − l)2

N∑
i,j,k,m=l

|ρα,NH (i− j)ρα,NH (k −m)ρα,NH (i− k)ρα,NH (j −m)|

≤ C
1

(N − l)2
N

(
N∑
v=1

|ρα,NH (v)|4/3
)3

,

where the last step follows via Young’s inequality (as in Theorem 6.2.2). The
representation ρα,NH (v) = ϕH(v)+bN,H(v) together with the fact that for |v| ≤ N

we have bN,H(v) ≤ CϕH(v) for some constant C allows us to replace ρα,NH with
ϕH(v) in the last bound, since the powers involved are positive. Finally, by Lemma
6.1.2

N∑
v=1

|ϕH(v)|4/3 .


1 if H ∈ (0, 5

8
) ,

log(N) if H = 5
8
,

N
8H
3
− 5

3 if H ∈ (5
8
, 1)

for p = 1 and
∑N

v=1 |ϕH(v)|4/3 = O(1) for p > 1, and thus the result follows.

Let us now state and prove the main result of this section.
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6.2.6 Theorem. Let σ2, c2 be constants as in Lemma 6.2.1. Let p ≥ 2 and
consider the sequence (6.2.16). Let Z ∼ N(0, σ2). Then there exists a constant C
such that

dW (GN(k, α), Z) ≤ C
1√
N
.

For p = 1 and H < 3/4 let Z ∼ N(0, c2). Then there exists a constant C such
that

dW (GN(k, α), Z) ≤ C


1√
N

if H ∈ [1
2
, 5

8
) ,

log(N)3/2√
N

if H = 5
8
,

N4H−3 if H ∈ (5
8
, 3

4
).

Proof. Consider the function f : R k
2 → R, f(x) = 2

k
(x1 + ... + x k

2
). Note that

f is a Lipschitz continuous function with ‖f‖Lip ≤ 1. From Lemma 6.2.4 and
Proposition 6.2.5 it is easy to see that by Corollary 6.2.3

dW (
k

2
GN(k, α),

k

2
Z) = dW

(
k

2
(G

(2)
N (k, α), ..., G

(k)
N (k, α)),

k

2
Z

)
≤ C

1√
N
,

where Z ∼ N(0, C) if p ≥ 2 and

dW (
k

2
GN(k, α),

k

2
Z) ≤ C


1√
N

if H ∈ [1
2
, 5

8
) ,

log(N)3/2√
N

if H = 5
8
,

N4H−3 if H ∈ (5
8
, 3

4
).

if p = 1 and H < 3/4. Now,

dW (GN(k, α), Z) = sup
‖g‖Lip≤1

|E g(GN(k, α))− E g(Z)|

= sup
‖g‖Lip≤1

∣∣∣∣E(g ◦ f)

(
k

2
GN(k, α)

)
− E(g ◦ f)

(
k

2
Z

)∣∣∣∣
≤ sup

‖h‖Lip≤1

∣∣∣∣Eh(k2GN(k, α)

)
− Eh(Z)

∣∣∣∣
= dW

(
k

2
GN(k, α),Z

)
.

6.2.7 Remark. For p = 1 and k = 2 we retrieve the bounds obtained in [35]
(and in [36] for H = 1

2
), which also coincide with the speed of convergence for

the quadratic variations of the fBm (see [51]) under the Wasserstein distance.
The part of the covariance structure depending on the parameter H + 1

2
becomes

insignificant in the limit due to the fact that it contains a faster converging factor
1

N2H+1 . For k = 2 it might also be possible to get optimal rates under the total
variation distance based on the criteria in [52] by following the outline of a similar
proof in [35].
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6.2.3 Multivariate central limit theorem

In this part we restrict ourselves to the case of quadratic variations (i.e. k = 2)
and we derive a multidimensional CLT. This result will be needed in Section 6.4
which deals with the estimation of the Hurst parameter of the solution to (6.1.1).

To establish multidimensional convergence, we will use Theorem 6.2.3 in [59],
which is a version of the multivariate fourth moment theorem. Let us recall its
statement.

6.2.8 Theorem. Let d > 2 and q1, . . . , qd > 1 be some fixed integers. Consider
vectors

Fn = (F1,n, . . . , Fd,n) = (Iq1(f1,n), . . . , Iqd(fd,n))

with fi,n ∈ H �qi (with H being the underlying Hilbert space). Let C be a real-
valued symmetric non negative definite matrix and let N ∼ Nd(0, C). Assume
that

lim
n→∞

E (Fi,nFj,n) = Cij for i, j ∈ {1, . . . , d}. (6.2.22)

Then, as n tends to ∞, the following two conditions are equivalent:

• Fn converges in law to N,

• for every 1 6 i 6 d Fi,n converges in law to N(0, Cij).

We now state and prove the multivariate CLT for the renormalized sequence
(6.2.1) with k = 2.

6.2.9 Theorem. Let P > 1 be an integer and α1, . . . , αP be filters of orders
p1, . . . pP and lengths l1 + 1, . . . , lP + 1 respectively, where li, pi ∈ N∗, i = 1, .., P .
Let VN(2, α) be given by (6.2.1). If p1, . . . , pP > H + 1

4
, we have

(
√
NVN(2, α1), . . . ,

√
NVN(2, αP ))→ N (0,Θ) ,

where (Θ)i,j=1...,P denotes a P × P matrix with entries given by

Θn,m =
t2

8c1(H)2

∞∑
k=l

(
l1∑

q1=0

l2∑
q2=0

αnq1α
m
q2
|k + q1 − q2|2H

)2

. (6.2.23)

Proof. By (6.2.4) with k = 2, with c1(H), c2(H) from (6.1.7),

E (VN (k, αn)VN (k, αm))

=
N4H+2

(N − l)2 (c1(H)N + c2(H))2

N∑
i,j=l

E
(
I2

(
Ci,αn

⊗2
)
I2

(
Cj,αm

⊗2
))

=
2N4H+2

(N − l)2 (c1(H)N + c2(H))2

N∑
i,j=l

〈Ci,αn , Cj,αm〉2H .
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By (6.1.6), we have for i, j = l, .., N

〈Ci,αn , Cj,αm〉H = E
(
Uαn

(
i

N

)
Uαm

(
j

N

))
=

l1∑
q1=0

l2∑
q2=0

αnq1α
m
q2
E
(
u

(
t,
i− q1

N

)
u

(
t,
j − q2

N

))

=

l1∑
q1=0

l2∑
q2=0

αnq1α
m
q2

(
N−2H−1

2
cH |j − i+ q1 − q2|2H+1 − tN−2H

4
|j − i+ q1 − q2|2H

)
.

Plugging this into the covariance expression and using similar computations as
in [35], we get

E (VN (k, αn)VN (k, αm))
N→∞∼ 2N4H+3

(N − l)2 (c1(H)N + c2(H))2

×
N∑
k=l

(N−2H−1

2
cH

l1∑
q1=0

l2∑
q2=0

αnq1α
m
q2
|k + q1 − q2|2H+1

−tN
−2H

4

l1∑
q1=0

l2∑
q2=0

αnq1α
m
q2
|k + q1 − q2|2H

)2

=: P1 + P2 + P3.

Using Lemma 6.1.2, we get with p := min(pn, pm)

P1
N→∞∼ c1(H)

N

N∑
v=l

v4H−4p,

P2
N→∞∼ c2(H)

N2

N∑
v=l

v4H−4p+1,

P3
N→∞∼ c3(H)

N3

N∑
v=l

v4H−4p+2.

This shows that P1 is the dominant term and it converges for H < p + 1
4
, while

the other terms are negligible. We thus obtain the claimed limit:

E
(√

NVN (k, αn)
√
NVN (k, αm)

)
N→∞→ Θn,m,

where Θn,m are given by (6.2.23). The second part of the equivalence in Theorem
6.2.8 has been proved as a particular case of the CLT for higher powers (see
Theorem 6.2.2), and thus the statement of the proposition follows.
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6.3 Noncentral limit theorem

The asymptotic normality obtained in the previous section holds for any filter
of order p ≥ 2 or for any filter of order p = 1 and H ≤ 3

4
. It remains to under-

stand what happens in the case p = 1 and H > 3
4
. In this section we consider

the filter α = (1,−1) (which has order p = 1) and we will show that, after a
proper normalization, the quadratic variation associated to this filter converges
in distribution to a non-Gaussian limit. Let us start by studying the behaviour
of the mean square of the quadratic variation in order to determine a suitable
normalisation.

6.3.1 Lemma. Let VN(2, (1,−1)) be given by (6.2.1). If vN := E[VN(2, (1, −1))2]
and H > 3

4
we have

N4−4HvN
N→∞→ 4K0

k2
1

,

where K0 will be given in the proof (see (6.3.1)) and k1 appears in (6.1.6).

Proof. As in Lemma 2 in [35], we have by (6.1.6) with ΦH(= ΦH, (1,−1)) defined
in Section 6.1.2

vN =
2N4H

(k1N + k2)2

×
N−1∑
i,j=0

[
E
((

u

(
t,
i+ 1

N

)
− u

(
t,
i

N

))(
u

(
t,
j + 1

N

)
− u

(
t,
j

N

)))]2

=
2N4H

(k1N + k2)2

N∑
i,j=1

[
k1

ΦH(i− j)
N2H

+ k2

ΦH+ 1
2
(i− j)

N2H+1

]2

=
4N4H

(k1N + k2)2

N∑
j=1

N−1∑
i=j+1

[
k1

ΦH(i− j)
N2H

+ k2

ΦH+ 1
2
(i− j)

N2H+1

]2

+
2N4H

(k1N + k2)2

N∑
i=1

[
k1

1

N2H
+ k2

1

N2H+1

]2

=
4N4H

(k1N + k2)2

N∑
l=1

[
k1

ΦH(l)

N2H
+ k2

ΦH+ 1
2
(l)

N2H+1

]2

(N − l)

+
2N4H

(k1N + k2)2

N∑
i=1

[
k1

1

N2H
+ k2

1

N2H+1

]2

.

The last summand satisfies

2N4H

(k1N + k2)2

N∑
i=1

[
k1

1

N2H
+ k2

1

N2H+1

]2

≤ C
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for N large enough while the first summand converges to infinity, see below. Using
the asymptotic behaviour of ΦH and ΦH+ 1

2
, namely

ΦH(l) = H(2H − 1)l2H−2 + o(l2H−2)

and
ΦH+ 1

2
(l) = H(2H + 1)l2H−1 + o(l2H−1)

for l large, we obtain

vN
N→∞∼ 4

k2
1

N4H−2

N∑
l=1

[
k1H(2H − 1)

l2H−2

N2H
+ k2H(2H + 1)

l2H−1

N2H+1

]2

(N − l)

=
4

k2
1

N4H−4 1

N

×
N∑
l=1

[
k1H(2H − 1)

(
l

N

)2H−2

+ k2H(2H + 1)

(
l

N

)2H−1
]2(

N − l
N

)
,

and therefore,

N4−4H k2
1

4K0

vN
N→∞→ 1

with

K0 =

∫ 1

0

(
k1H(2H − 1)x2H−2 + k2H(2H + 1)x2H−1

)2
(1− x)dx

= k2
1

H2(2H − 1)

2(4H − 3)
+ 2k1k2

H2(2H + 1)

2(4H − 1)
+ k2

2

H(2H + 1)2

4(4H − 1)
. (6.3.1)

Recall that the solution to the wave equation with fractional-white noise can
be written as

u(t, x) =

∫ t

0

∫
Rd
G1(t− s, x− y)WH(ds, dy). (6.3.2)

Let xi = i
N

, i = 0, 1, .., N be a partition of the unit interval [0, 1]. Denote

gt,i(s, x) = G1(t− s, xi+1 − x)−G1(t− s, xi − x)

for i = 0, 1, .., N − 1 and for t ≥ 0, x ∈ R, with G1 given by

G1(t, x) =
1

2
1{|x|<t}

(see Section 2.1.4). We can write
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u(t, xi+1)− u(t, xi) = IW1 (gt,i),

where IW1 represents the multiple integral of order 1 with respect to the fractional-
white Gaussian noise WH . Then we have

VN(2, (1,−1)) := VN =
1

N

N∑
i=1

IW2 (g⊗2
t,i )

E (u(t, xi+1)− u(t, xi))
2 ,

and so

FN :=
VN√
vN

= I2(fN) with fN(x1, x2) =
1√
NvN

N2H+ 1
2

k1N + k2

N∑
i=1

g⊗2
t,i (x1, x2).

(6.3.3)
Since in this part we will use the multiple stochastic integrals with respect to the
Gaussian noise WH with covariance (2.1.9), let us recall some facts about them.
Designate by ξ the set of linear combinations of the simple functions 1{[0,t]×A}, t ∈
[0, T ], A ∈ Bb(Rd). The canonical Hilbert space H W associated to the field WH ,
when H > 1

2
, is defined as the closure of the linear space generated by ξ with

respect to the inner product 〈., .〉H W which is expressed by

〈1{[0,t]×A},1{[0,s]×B}〉H W := E(WH
t (A)WH

s (B))

= αHλ(A ∩B)

∫ t

0

∫ s

0

| u− v |2H−2dudv.

The scalar product in H W is given by

〈f, g〉H W = E(WH(f)WH(g)) = αH

∫ T

0

∫ T

0

∫
Rd
f(u, x)g(v, x)| u− v |2H−2dxdudv.

(6.3.4)
for every f, g ∈H W such that∫ T

0

∫ T

0

∫
Rd
|f(u, x)g(v, x)|| u− v |2H−2dxdudv <∞.

It is possible to represent the Wiener integral with respect to WH as an
integral with respect to a white noise field with space-time white noise W via a
transfer formula given by

∫ T

0

∫
R
f(s, y)dWH(s, y) =

∫
R

∫
R

(∫
R
1{[0,t]}(u)f(u, x)(u− s)H−

3
2

+ du

)
dW (s, y)

(6.3.5)
(see [77] for details).

Let us introduce a definition which will be useful for further investigation.
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6.3.2 Definition. For a random variable F having all moments we define its
mth cumulant as

km(F ) = (−i)n ∂
n

∂tn
lnE(eitF )|t=0.

We have the following link between the moments and the cumulants of F (see
[51]): for every m ≥ 1,

km(F ) =
∑

σ=(a1,..,ar)∈P({1,..,n})

(−1)r−1(r − 1)!EX |a1| . . .EX |ar| (6.3.6)

if F ∈ Lm, where P(b) is the set of all partitions of b. In particular, for centred
random variables F we have k1(F ) = EF, k2(F ) = EF 2, k3(F ) = EF 3, k4 =
EF 4− (EF 2)2. As stated in [51], the law of the second Wiener chaos elements is
completely determined by its cumulants (or equivalently, by its moments). That
is, if F, G are elements of the second Wiener chaos then F and G have the same
law if and only if they have the same cumulants. Moreover, the convergence of
the cumulants to cumulants of an element of the second Wiener chaos implies
convergence in distribution. Hence, we can analyse the asymptotic behaviour of
the cumulants of the sequence FN in order to prove a limit theorem for it and
characterise its limiting distribution.

In the particular situation when F = I2(f) (which is satisfied for the random
variables FN) its cumulants can be computed as (see e.g. [50], Proposition 7.2 or
[77])

km(F ) = 2m−1(m−1)!

∫
Rm

f(u1, u2)f(u2, u3) . . . f(um−1, um)f(um, u1)du1 . . . dum,

(6.3.7)
with u1, . . . , um possibly being multidimensional.

Based on the formula (6.3.7) we obtain the limit in distribution of (6.3.3).

6.3.3 Theorem. Let FN be given by (6.3.3) with H > 3
4
. Then the sequence

(FN)N≥1 converges in distribution to a random variable F whose law is given by
the cumulants explicitly determined in the proof (see (6.3.9) and (6.3.10)).

Proof. Note first that by the transfer formula (6.3.5) WH(gt, i) has a represen-
tation as W (g̃t, i) for some (explicitly known) function g̃t, i, where W is a two-
dimensional Gaussian noise. Therefore, k1(FN) = 0, k2(FN) = 1, the above for-
mula for cumulants (6.3.7) can be applied and we obtain for m ≥ 3
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km(FN) = 2m−1(m− 1)!

(
1√
NvN

N2H+ 1
2

k1N + k2

)m ∫
Rm

(
N∑
j1=1

g̃⊗2
t,j1

(x1, x2)

)

×

(
N∑
j2=1

g̃⊗2
t,j2

(x2, x3)

)
. . .

(
N∑

jm=1

g̃⊗2
t,jm

(xm, x1)

)
dx1 . . . dxm

= 2m−1(m− 1)!

(
1√
NvN

N2H+ 1
2

k1N + k2

)m N∑
j1,...,jm=1

(∫
R
g̃t,j1(x)g̃t,j2(x)dx

)
×
(∫

R
g̃t,j2(x)g̃t,j3(x)dx

)
. . .

(∫
R
g̃t,jm(x)g̃t,j1(x)dx

)
.

We use the isometry formula for multiple integrals with respect to W (6.3.4)
as well as the transfer formula (6.3.5) in order to get∫

R
g̃t,j1(x)g̃t,j2(x)dx = E (u(t, xi+1)− u(t, xi)) (u(t, xj+1)− u(t, xj))

= k1ΦH

(
i− j
N

)
+ k2ΦH+ 1

2

(
i− j
N

)
,

where

ΦH(k) =
1

2

(
|k + 1|2H − 2|k|2H + |k − 1|2H

)
, k ∈ R, (6.3.8)

(see Section 6.1.2) and we obtain

km(FN) = 2m−1(m− 1)!
(

1√
NvN

N2H+1
2

k1N+k2

)m
×
∑N

j1,...,jm=1

[
k1ΦH

(
j1−j2
N

)
+ k2ΦH+ 1

2

(
j1−j2
N

)]
. . .
[
k1ΦH

(
jm−j1
N

)
+ k2ΦH+ 1

2

(
jm−j1
N

)]
.

By Lemma 6.3.1

km(FN)
N→∞∼ 2m−1(m− 1)!(4K0)−

m
2 Nm

×
∑N

j1,..,jm=1

[
k1ΦH

(
j1−j2
N

)
+ k2ΦH+ 1

2

(
j1−j2
N

)]
. . .
[
k1ΦH

(
jm−j1
N

)
+ k2ΦH+ 1

2

(
jm−j1
N

)]
.

By writing

ΦH

(
i− j
N

)
= H(2H − 1)

∫ i+1
N

i
N

∫ j+1
N

j
N

|u− v|2H−2dudv,

and similarly

ΦH+ 1
2

(
i− j
N

)
= H(2H + 1)

∫ i+1
N

i
N

∫ j+1
N

j
N

|u− v|2H−1dudv,
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we get, for any m ≥ 3,

km(FN )
N→∞∼ 2m−1(m− 1)!(4K0)−

m
2 Nm

N∑
j1,...,jm=1∫ 1

0

∫ 1

0
(k1H(2H − 1)N−2H |u− v + j1 − j2|2H−2

+k2H(2H + 1)N−2H−1|u− v + j1 − j2|2H−1)dudv

. . .

. . .

×
∫ 1

0

∫ 1

0
(k1H(2H − 1)N−2H |u− v + jm − j1|2H−2

+k2H(2H + 1)N−2H−1|u− v + jm − j1|2H−1)dudv.

Next, we write

N−2H |u− v + jm − j1|2H−2 = N−2

∣∣∣∣j1 − j2

N

∣∣∣∣2H−2 ∣∣∣∣1 +
u− v
j1 − j2

∣∣∣∣2H−2

and

N−2H−1|u− v + j1 − j2|2H−1 = N−2

∣∣∣∣j1 − j2

N

∣∣∣∣2H−1 ∣∣∣∣1 +
u− v
j1 − j2

∣∣∣∣2H−1

and obtain

km(FN)
N→∞∼ 2m−1(m− 1)!(4K0)−

m
2 N−m

N∑
j1,..,jm=1∫ 1

0

∫ 1

0

[
k1H(2H − 1)

∣∣∣∣j1 − j2

N

∣∣∣∣2H−2 ∣∣∣∣1 +
u− v
j1 − j2

∣∣∣∣2H−2

+k2H(2H + 1)

∣∣∣∣j1 − j2

N

∣∣∣∣2H−1 ∣∣∣∣1 +
u− v
j1 − j2

∣∣∣∣2H−1
]
dudv

. . .

. . .∫ 1

0

∫ 1

0

[
k1H(2H − 1)

∣∣∣∣jm − j1

N

∣∣∣∣2H−2 ∣∣∣∣1 +
u− v
jm − j1

∣∣∣∣2H−2

+k2H(2H + 1)

∣∣∣∣jm − j1N

∣∣∣∣2H−1 ∣∣∣∣1 +
u− v
jm − j1

∣∣∣∣2H−1
]
dudv.
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We claim that

km(FN)
N→∞∼ 2m−1(m− 1)!(4K0)−

m
2 N−m

N∑
j1,..,jm=1[

k1H(2H − 1)

∣∣∣∣j1 − j2

N

∣∣∣∣2H−2

+ k2H(2H + 1)

∣∣∣∣j1 − j2

N

∣∣∣∣2H−1
]

. . .

. . .

×

[
k1H(2H − 1)

∣∣∣∣jm − j1

N

∣∣∣∣2H−2

+ k2H(2H + 1)

∣∣∣∣jm − j1

N

∣∣∣∣2H−1
]
.

This follows by a standard procedure (see [50] or [77]) from the Taylor expansion
in the vicinity of x = 0 of the functions

1− (1 + x)2H−2 and 1− (1 + x)2H−1

and by the dominated convergence theorem. Therefore, for m ≥ 3

km(FN)
N→∞→ 2m−1(m− 1)!(4K0)−

m
2

∫
[0,1]m(

k1H(2H − 1)|x1 − x2|2H−2 + k2H(2H + 1)|x1 − x2|2H−1
)

. . .(
k1H(2H − 1)|xm − x2|2H−2 + k2H(2H + 1)|xm − x1|2H−1

)
dx1 . . . dxm.

Note that the above integral is finite by Lemma 3.3 in [6]. Also, clearly

k1(FN) = 0 and k2(FN) = 1.

Since FN belongs to the second Wiener chaos, the convergence of cumulants
determines the convergence of FN in law to a random variable F with cumulants
given by

km(F ) = 2m−1(m− 1)!(4K0)−
m
2

∫
[0,1]m(

k1H(2H − 1)|x1 − x2|2H−2 + k2H(2H + 1)|x1 − x2|2H−1
)

. . .

×
(
k1H(2H − 1)|xm − x1|2H−2 + k2H(2H + 1)|xm − x1|2H−1

)
dx1 . . . dxm (6.3.9)

for m ≥ 3 and
k1(F ) = 0 and k2(F ) = 1. (6.3.10)
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The existence of such a limit is ensured by the Fréchet-Shohat theorem (see [37]):
It follows from the convergence of cumulants that also all the moments of FN
converge to some real numbers Mm, m ∈ N, as N tends to infinity. Moreover,
by hypercontractivity (2.1.6) the mth absolute moments of FN are bounded by
(m− 1)m. Therefore, also the limits of the moment sequences will be bounded by
(m−1)m, which means that the growth condition lim supm→∞( 1

m!
|Mm|)1/m <∞ is

satisfied, thus yielding the existence of a limiting distribution with the cumulants
obtained above.

Note that the limit law with cumulants (6.3.9) and (6.3.10) is related to
the Rosenblatt distribution but is more complex. For instance, if the constant
k2 vanished in (6.3.9), then we would have obtained a Rosenblatt distribution
in the limit. If the constant k1 vanished the cumulants would have described a
Rosenblatt distribution associated with the parameter H + 1

2
given the existence

of such an object. In total, the obtained limit reflects the covariance structure of
the solution and in contrast to the CLTs proved in this chapter also includes the
part resembling an fBm-type process with the parameter H + 1

2
.

6.4 Estimation of the Hurst parameter H

We will apply the theoretical results from Section 6.2 in order to construct and
analyse several estimators for the Hurst index of the mild solution (6.1.2) to the
wave equation (6.1.1). It is worth to emphasize that the estimators are based on
the observations of the process u at a fixed time and at discrete points in space.

We will define two kinds of estimators for the Hurst parameter. For the first
kind we will consider the observation time t of our equation to be known, and the
estimators obtained will be asymptotically normal with the rate of convergence of
order

√
N log(N) for H < p− 1

4
. In the second case we develop an estimator for H

if the time t > 1 is not known. This estimator will also be asymptotically normal,
but with a slower rate of convergence, namely

√
N . Both kinds of estimators are

strongly consistent.

6.4.1 Estimators for known t

We follow the standard procedure from [16] or [15] to construct our estimators.
First, let us define an auxiliary object, namely the k-th empirical absolute moment
of discrete variations of the mild solution u(t, x) defined in (6.1.2) for a fixed time
t > 1 and a filter α as follows:

SN(k, α) =
1

N − l

N−1∑
i=l

∣∣∣∣Uα

(
i

N

)∣∣∣∣k (6.4.1)
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with Uα
(
i
N

)
defined in (6.1.5). Since Uα

(
i
N

)
is Gaussian, we have

E
[∣∣Uα

(
i
N

)∣∣k] =
(
πα,NH (0)

) k
2
Ek, where Ek denotes the k-th absolute moment

of a standard Gaussian random variable, and therefore we obtain

E[SN(k, α)] =
(
πα,NH (0)

) k
2
Ek.

Thus, for a given k, by replacing E[SN(k, α)] by SN(k, α) we obtain an estimator
for H that is a pointwise solution to the equation

SN(k, α)
2
k − E

2
k
k π

α,N
x (0) = 0

with respect to x. Recall that (see (6.1.6))

πα,Nx (0) =
t

2N2x
Φx, α(0)− cx

N2x+1
Φx+ 1

2
, α(0),

and we denote

c1(x) := Φx, α(0) = −1

2

l∑
q, r=0

αqαr|q − r|2x, c2(x) = cxΦx+ 1
2
, α(0).

Note that for large N the function g(x) := πα,Nx (0) is invertible. In order to see
this we consider the derivative

g′(x) =
t

2

(
c′1(x)

N2x
− 2 log(N)c1(x)

N2x

)
−
(
c′2(x)

N2x+1
− 2 log(N)c2(x)

N2x+1

)
.

As shown in [16], the expression in the first parentheses becomes negative for large
N , and since it is the asymptotically dominating term, also the whole function
will become negative for N large enough. Therefore, for such N the function g is
strictly decreasing and we can define estimators by inverting it:

ĤN, k :=
(
πα,N· (0)

)−1

((
SN(k, α)

Ek

) 2
k

)
. (6.4.2)

Another estimator can be obtained by inverting only the dominant part of the
function g. Notice that asymptotically πα,Nx (0) is equal to t

2N2xΦx, α(0) =: ḡ(x),
which is easier to invert than its exact counterpart. This motivates the definition
of another class of estimators,

H̄N, k := ḡ−1

((
SN(k, α)

Ek

) 2
k

)
. (6.4.3)

We show that the two estimators constructed above are consistent and we give
their limiting behavior in distribution.
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6.4.1 Proposition. The estimators ĤN, kand H̄N, k given by (6.4.2) and (6.4.3)

of the Hurst parameter H ≥ 1
2

are strongly consistent. Moreover, with v
(k)
N :=

E[VN(k, α)2], for H ≤ p− 1
4

we have as N tends to infinity

k log(N)√
v

(k)
N

(
H − ĤN, k

)
d→ N(0, 1)

and for H > 3
4
, α = (1, −1), k = 2

2 log(N)√
v

(2)
N

(
H − ĤN, 2

)
d→ F,

where F is the random variable from Proposition 6.3.3. The same statements hold
for H̄N, k.

Proof. Since for every k ≥ 2

v
(k)
N .


1/N if H < p− 1

4
,

log(N)
N

if H = 3
4
, p = 1,

1
N2−2H if H > 3

4
, α = (1, −1), k = 2,

(6.4.4)

the almost sure convergence to zero of VN(k, α) follows by hypercontractivity
with a Borel-Cantelli argument, see e.g. [75]. Due to the fact that the functions
g and ḡ are asymptotically equal we obtain the asymptotic equality of H̄N,k and

ĤN,k and thus also strong consistency of H̄N,k.
For the asymptotic behaviour we can refer to the calculations from [16] and

obtain
VN(k, α) = k log(N)(H − ĤN, k)(1 + o(1)),

which means that by Slutsky’s lemma we will get

k log(N)√
v

(k)
N

(
H − ĤN, k

)
d→ N(0, 1)

for H ≤ p − 1
4

as N tends to infinity. For H < p − 1
4

this implies in particular
that

k log(N)
√
N
(
H − ĤN, k

)
d→ N(0, σ2)

for N →∞ with σ2 defined in Lemma 6.2.1. For H > 3
4
, α = (1, −1), k = 2 the

relation yields
2 log(N)√

v
(2)
N

(
H − ĤN, 2

)
d→ F

for F given above when N goes to infinity. The same results follow for H̄ due to
its asymptotic equality to ĤN, k.
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6.4.2 Remark. Note that this result provides the following speeds of convergence
(see (6.4.4)):

√
N log(N) for H < p − 1

4
,
√
N
√

log(N) for H = 3
4
, p = 1 and

N2−2H log(N) for H > 3
4
, α = (1, −1), k = 2.

6.4.2 An estimator for unknown t

Assume that the time t > 1 at which the solution (6.1.2) is observed is not

known. Similarly to [33], if two sequences (a
(1)
i )i∈{0,...,p} and (a

(2)
i )i∈{0,...,2p} are

considered, where a(2) is obtained by ”thinning” the sequence a(1) (i.e., a
(2)
2k := a

(1)
k

for k ∈ {0, . . . , p} and zero otherwise), then it follows that

ΦH, a(2)(0) = 22HΦH, a(1)(0) and ΦH+ 1
2
, a(2)(0) = 22H+1ΦH+ 1

2
, a(1)(0),

which implies that for large N we have πa
(2), N
H (0) ∼ 22Hπa

(1), N
H (0). This, in turn,

can be transferred to SN :

E[SN(k, a(2))] =
(
πa

(2), N
H (0)

) k
2
Ek ∼ 2Hk

(
πa

(1), N
H (0)

) k
2
Ek = 2Hk E[SN(k, a(1))].

This motivates another estimator for H defined by

H̃N :=
1

k
log2

(
SN(k, a(2))

SN(k, a(1))

)
. (6.4.5)

Its limit behavior is given below.

6.4.3 Proposition. The estimator H̃N (6.4.5) is strongly consistent for all H ≥
1
2
. Moreover for H < p− 1

4
, we have

√
N(H̃N −H)

d→ N(0, σ2)

with σ > 0.

Proof. It follows from the fact that VN(k, α)
N→∞→ 0 almost surely that SN con-

verges almost surely to its expectation. Thus, strong consistency is clear by con-
struction of H̃N . The multivariate convergence statement yields asymptotic nor-
mality by the delta method, similarly to [16].

6.4.3 Numerical computations and simulation experi-
ments

In this section we conduct simulations of the solution process and compare
numerical performances of different estimators introduced in the previous
section. More specifically, we are going to analyse the behaviour of H̄N, 2 for

filters (1, −1) as well as (1, −2, 1), that of its exact counterpart ĤN, 2 for the
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second filter as well as that of H̃N for different values of H. Methodically the
simulation scheme is simple: We simulate a vector of discrete observations of the
solution as a multivariate normally distributed vector with a given covariance
matrix using the function mvrnorm in the programming language R (the matrix is
decomposed using the eigendecomposition). The construction of estimators from
this vector is straightforward and the source code for both can be found in the
Appendix. Possible errors can occur when the covariance matrix is decomposed
or when numerical operations are carried out (such as calculating the inverse of
a function at a given point). The obtained results, however, do not seem to be
strongly jeopardised by those as they are in accordance with the theory.

For N = 1000 and t = 3 we get the following results for the mean squared
errors (MSE) computed from 100 iterations:

H = 0.51 H = 0.7 H = 0.95
H̄N, 2(1, −1) 1.02· 10−5 1.61· 10−5 0.001
H̄N, 2(1, −2, 1) 1.2· 10−5 9.626· 10−6 1.98· 10−6

ĤN, 2(1, −2, 1) 1.2· 10−5 9.634· 10−6 1.99· 10−6

H̃N 0.002 0.001 0.001

.

The estimator H̃N performs the worst. This can be explained heuristically
by the fact that it contains two sources of error instead of one, this being the
practical trade-off in the case where time t is not available. Another interesting
observation is that the exact estimator ĤN, 2 is not performing better than the
estimator H̄N, 2 which uses the inverse of an approximation of the actual function.
This encourages the use of the simpler version in applications.

True value H Mean H̄N, 2(1, −1) Mean H̄N, 2(1, −2, 1) Mean ĤN, 2(1, −2, 1) MeanH̃N

0.51 0.5107118 0.5138851 0.5110081 0.5110082
0.55 0.5499827 0.5362797 0.549677 0.549678
0.60 0.5997487 0.6007376 0.5999698 0.5999722
0.65 0.6498786 0.6510065 0.6502865 0.6502909
0.70 0.7005558 0.6925 0.7003125 0.7003196
0.75 0.7500486 0.7482407 0.7499587 0.74997
0.80 0.8005769 0.7966326 0.7998019 0.7998186
0.85 0.8512704 0.8517664 0.8500505 0.8500754
0.90 0.9042009 0.8927607 0.8997257 0.8997638
0.95 0.9587621 0.9540507 0.9498974 0.9499602
0.99 1.01826 0.9959974 0.9898137 0.9899168

Table 6.1: Mean of the estimated values for 100 simulations
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Figure 6.1: Histograms for H = 0.51, 0.7 and 0.9 respectively.
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Figure 6.2: Normal fits of empirical densities for H = 0.51, 0.7, empirical density
plot for H = 0.9.

The Figures 6.1 and 6.2 show the change in the limiting distribution (illus-
trated by histograms and density fits for the simple estimator H̄N, 2(1, −1) over
100 simulations): For H = 0.51, H = 0.7 the limiting distribution is normal and
for H > 3

4
it is not. Additionally, the boxplots in Figure 6.3 illustrate the changes

in the speed of convergence indicated in the discussion for H̄N, 2(1, −1) and pro-
vide a comparison to the rates of convergence for the other three estimators (see
Remark 6.4.2).
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Figure 6.3: Boxplots of H̄N, 2(1, −1), H̃N , H̄N, 2(1, −2, 1), ĤN, 2(1, −2, 1) from
left to right for the values of H listed above.





List of Symbols

. an . bn :⇔ an ≤ cbn for n large

∼ an
n→∞∼ bn :⇔ an . bn and bn . an

β Beta function

Γ Gamma function

ζ Riemann zeta function

(· )n falling factorial, (z)n := z(z − 1) . . . (z − n+ 1)

(· )(n) rising factorial, (z)(n) := z(z + 1) . . . (z + n− 1)

H separable Hilbert space with scalar product 〈· , · 〉H , Section
2.1.2

H H separable Hilbert space induced by an fBm with scalar prod-
uct 〈· , · 〉H H , Section 2.1.2

H W separable Hilbert space induced by a fractional-Brownian
field with scalar product 〈· , · 〉H W , Section 2.1.4

H ⊗p p-fold tensor product of H

H �p p-fold symmetric tensor product of H , Section 2.1.2

S space of smooth random variables, Section 2.1.2

Dp (p-fold) derivative operator, Section 2.1.2

‖· ‖p, q norm on S , Section 2.1.2

Dp, q closure of the derivative operator w.r.t. ‖· ‖p, q, Section 2.1.2

δp (p-fold) divergence operator, Section 2.1.2

Dom(δp) domain of the divergence operator

Tr(· ) trace of an operator on a Hilbert space

‖· ‖Lip Lipschitz norm, Section 6.2.2
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‖· ‖p−var ‖x‖p−var =: ‖x‖p−var, [0, T ]

=:
(
supΠ∈∆[0, T ]

∑n−1
k=0 |x(tk+1)− x(tk)|p

) 1
p , where the supre-

mum is taken over partitions of the interval [0, T ]

Bb(Rd) bounded Borel subsets of Rd

lp(Z) lp space of sequences indexed over Z

Mp(R) real p× p matrices
d
= equality in law for random variables
d≡ equality of all finite-dimensional distributions for processes
d→ convergence in distribution

dW Wasserstein distance, Section 6.2.2
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Appendix

Source code for the simulation of the wave equation solution, implementation of
four estimators from Section 6.4 and calculation of the respective mean squared
errors written in the programming language R. The source code for the plots is
not included.

library(kergp)

#define the covar-fctn

kernFun<-function(x1,x2,par){

h<-abs(x1-x2)

cH<-(4*par[1]-1)/(4*(2*par[1]+1))

K<-0.5*(cH*h^(2*par[1]+1)-0.5*par[2]*h^(2*par[1])

+(par[2]^(2*par[1]+1))/(2*par[1]+1))

return(K)

}

#set parameters, build a matrix, simulate and plot

H<-0.51

t<-3

covar<-covMan(kernFun, d=1, parNames = c("Hurst", "time"), par = c(H, t))

covar

nGrid=1000

xGrid=seq(from=0,to=1,length=nGrid)

Kmat<-covMat(object=covar, X=as.matrix(xGrid))

library(MASS)

yGrid<-mvrnorm(mu=rep(0, nGrid), Sigma=Kmat)

plot(xGrid, yGrid, type = "l")

#k=2, est for (1,-1)

incr<-numeric(nGrid-1)

for (i in 1:(nGrid-1)) {

incr[i]=yGrid[i+1]-yGrid[i]

}

SN=sum(incr^2)/nGrid

Hest=(-log(SN)+log(t/2))/(2*log(nGrid))
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Hest

#k=2, est for a quotient

U1 = 0

for (i in 3:nGrid)

{

U1=U1+(yGrid[i-2]-2*yGrid[i-1]+yGrid[i])^2

}

U2 = 0

for (i in 5:nGrid)

{

U2=U2+(yGrid[i]-2*yGrid[i-2]+yGrid[i-4])^2

}

Hest1=(1/(2*log (2)))*log(U2/U1)

Hest1

#inverting a fctn

inverse = function (f, lower = -100, upper = 100) {

function (y) uniroot((function (x) f(x) - y),

lower = lower, upper = upper)[1]

}

#approx and exact inverse + est for k=2, (1,-2,1)

#(calculate U1 first!, U1/nGrid=SN)

invp2 = inverse(function (x) (t*(2-2^(2*x-1)))/(nGrid^(2*x)), 0.05, 10)

invp2(U1/nGrid)

invp2exact = inverse(function (x) (t*(2-2^(2*x-1)))/(nGrid^(2*x))-

(4*x-1)*(2-2^(2*x))/(2*(2*x+1)*(nGrid^(2*x+1))), 0.05, 10)

invp2exact(U1/nGrid)

#MSE for diff est, takes around 10-20 mins

Hest0<-numeric(100)#simple est

Hest1<-numeric(100)#quotient

Hest2<-numeric(100)#approx

Hest3<-numeric(100)#exact

for (k in 1:100)

{

yGrid<-mvrnorm(mu=rep(0, nGrid), Sigma=Kmat)

for (i in 1:(nGrid-1)) {

incr[i]=yGrid[i+1]-yGrid[i]

}

SN=sum(incr^2)/nGrid

Hest0[k]=(-log(SN)+log(t/2))/(2*log(nGrid))
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U1 = 0

for (i in 3:nGrid)

{

U1=U1+(yGrid[i-2]-2*yGrid[i-1]+yGrid[i])^2

}

U2 = 0

for (i in 5:nGrid)

{

U2=U2+(yGrid[i]-2*yGrid[i-2]+yGrid[i-4])^2

}

Hest1[k]=(1/(2*log (2)))*log(U2/U1)

Hest2[k]=invp2(U1/nGrid)

Hest3[k]=invp2exact(U1/nGrid)

}

Htrue<-rep(H, 100)

library(Metrics)

mean(Hest0)

mse(Hest0, Htrue)

mse(Hest1, Htrue)

mse(as.numeric(Hest2), Htrue)

mse(as.numeric(Hest3), Htrue)
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[22] L. Decreusefond, A. S. Üstünel - Stochastic analysis of the fractional
Brownian motion.
Potential Analysis, 10, 177-214 (1999).

[23] H. Dehling, B. Franke, T. Kott - Drift estimation for a periodic mean
reversion process.
Statistical Inference for Stochastic Processes, 13, 175-192 (2010).

[24] H. Dehling, B. Franke, J. H. C. Woerner - Estimating drift parameters
in a fractional Ornstein Uhlenbeck process with periodic mean.
Statistical Inference for Stochastic Processes, 20, 1-14 (2017).

[25] K. Es-Sebaiy, I. Nourdin - Parameter estimation for α-fractional bridges.
Malliavin Calculus and Stochastic Analysis (2011).

[26] R. Fox, M. S. Taqqu - Multiple stochastic integrals with dependent inte-
grators.
Journal of Multivariate Analysis 21, 105-127 (1987).

[27] B. Franke, T. Kott - Parameter estimation for the drift of a time-
inhomogenous jump diffusion process.
Statistica Neerlandica, 13, 175-192 (2013).

[28] P. K. Friz, N. B. Victoir - Multidimensional Stochastic Processes as
Rough Paths: Theory and Applications. Cambridge University Press
(2010).

[29] M. Gubinelli, A. Lejay, S. Tindel - Young integrals and SPDE’s.
Potential Analysis 25, 307-326 (2006).

[30] Y. Hu, D. Nualart - Parameter estimation for fractional Ornstein Uhlen-
beck processes.
Statistics and Probability Letters, 80, 1030-1038 (2010).

[31] Y. Hu, D. Nualart, H. Zhou - Parameter estimation for fractional
Ornstein-Uhlenbeck processes of general Hurst parameter.
Statistical Inference for Stochastic Processes, 22, 111-124 (2019).

[32] H. E. Hurst - Long-term storage capacity of reservoirs.
Transactions of the American Society of Civil Engineers, 116, 770-799
(1951).

[33] J. Istas, G. Lang - Quadratic variations and estimation of the local Hölder
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