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“And therefore as a stranger give it welcome. There are more things in heaven and earth Horatio,
Than are dreamt of in our philosophy.”

Hamlet, Act 1, Scene 5
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Abstract

The visualization of a protein is hardly imaginable without secondary structure elements (SSEs).
But SSEs play a by far more important role in the field of chemical biology, apart from the creation
of fancy protein images. They are essential in structure-based analyses due to their impact on
secondary structure prediction and structural protein alignment.

However, their proper classification is a challenging issue. There are more than 30 tools available
that underline the subjective character of the classification of SSEs. But only two tools have
dominated this field of research for decades. Why is that? What are the advantages of hydrogen
bond-based methods, despite the fact that they are often unable to assign left-handed helices,
PPI-helices, or bent structures?

We have developed SCOT, a novel multipurpose software that incorporates the benefits of a
multitude of approaches for the classification of helices, strands, and turns in proteins. To our
knowledge, it is the very first method that not only captures a variety of rare and basic SSEs (right-
and left-handed α-, 310-, 2.27-, plus right-handed π-helices, PPII helices, and β-sheets) in protein
structures, but also their irregularities in a single step, and provides proper output and visualization
options.

SCOT combines the benefits of geometry-based and hydrogen bond-based methods by using
hydrogen bond and geometric information to gain insights into the structural space of proteins. Its
dual character enables robust classifications of SSEs without major influence on the geometric
regularity of the assigned SSEs. In consequence, it is perfectly suited to automatically assign
SSEs for subsequent helix- and strand-based protein alignments with methods such as LOCK2.
This is especially supported by our elaborate kink detection. All of these benefits are clearly
demonstrated by our results. Together with the easy to use visualization of assignments by the
means of PyMOL scripts, SCOT enables a comprehensive analysis of regular backbone geometries
in protein structures.

The high number of available secondary structure assignment methods (SSAMs) hampers a
straight forward selection of the most suitable one for a certain application. In addition, relying
on the most frequently cited tool must not necessarily result in an optimal choice. Thus, we have
developed SNOT to fill the gap of a tool that provides a multitude of objective and rational criteria
for the comparison and evaluation of different SSAMs. It provides exhaustive information on
geometrical parameters, residue statistics, the consistency with respect to protein flexibility and



quality, SSE overlaps and sequence coverage, and the consent of two classifications.

We used SNOT to compare SCOT to DSSP, STRIDE, ASSP, SEGNO, DISICL, and SHAFT.
The results point toward SCOT’s unique features as a solitary multipurpose SSAM with optimal
performance for numerous challenges: the support of commonly observed and rare SSEs, the
comprehensive assignment of turn types, the elaborate kink detection, the geometric consistency
of the SSEs, the robustness with respect to structure quality and protein flexibility, and its superior
suitability for SSE-based protein structure alignments. Our analyses of alternative π- and PPII-helix
assignments indicate challenges which we try to address with our methodology.

There are also hints toward a correlation between the SSEs of a protein and its function. Koch and
Waldmann proposed that similar arrangements of SSEs in the neighborhood of a ligand binding
site (ligand-sensing cores) can recognize similar scaffolds in disregard of the overall fold.

We have developed SLOT to discover these unrevealed similarities which are solely based on SSEs.
Its graph-based methodology is able to mimic the geometry of SSEs by using a flexible multi-point
representation instead of a straight vector. These points are used to capture the geometry of a
protein, i.e., the arrangement of SSEs, in distance matrices. This unique representation enables
the comparison of protein structures regardless of their SSEs’ directions or SSE sequence. An
optimized algorithm to determine the MCS of two given graphs is used to calculate their structural
similarity and to ensure fast runtimes. What sets SLOT further apart from its 40 competitors is that
it can be used with any external secondary structure classification.

Our exhaustive evaluation highlights the benefits of SCOT for the use with SLOT and also covers
our optimizations of the comparison algorithm. It additionally questions the applicability of the
concept of ligand-sensing cores.

In the end, SCOT, SNOT, and SLOT were the beacons on our journey to answer the question: Are
there similar ligand-sensing cores or undiscovered structural similarities solely based on SSEs?
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“All men dream: but not equally. Those who dream by night
in the dusty recesses of their minds wake in the day to find
that it was vanity: but the dreamers of the day are dangerous
men, for they may act their dreams with open eyes, to make it
possible.”

Thomas Edward Lawrence

1
Introduction

Proteins are the fundamental elements of chemical biology and their computational analysis has
become an interdisciplinary and lively field of research since huge – and due to high-throughput
techniques [8] still growing – amounts of (protein) data are available through protein databases [9].
From the chemical point of view, proteins are polymers composed of 20 different amino acids joined
by peptide bonds and organized in four levels, i.e., the primary, the secondary, the tertiary, and the
quaternary level. The three-dimensional structure determines the functions of the protein which
are, among others, binding, catalysis, switching, and acting as structural elements. The binding of
other proteins, ligands, and antibodies is the main mechanism behind biological pathways and,
thus, it is of particular interest in drug design.

From the computational point of view, various different data structures are used to represent the
structure of a protein to make them assessable and comparable with respect to the question of
structural similarity.

For either perspective, there would be a certain loss in the fascination for proteins, if scientists
were not able to visualize their structures to enhance their ideas of the protein of interest, to find
structural similarities, to identify binding sites, to follow the binding of a ligand over time in MD
simulations, . . . , or just to be attracted by their aesthetics. The majority of these visualizations,
three-dimensional visualizations in particular, represent proteins by their secondary structure
elements (SSEs), i.e., α-helices, β-strands (and turns connecting these). Thus, our idea of proteins
is – whether consciously or unconsciously – highly biased by SSEs.
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In addition to the visualization of proteins, there are other applications in which SSEs play an
important role, such as protein structure or fold prediction [10], protein structure comparison and
alignment [11], and secondary structure prediction [12]. Furthermore, correlations between SSEs
and a protein’s function have also been observed [13, 14]. However, these examples focus on very
specific proteins and functions.

In 2005, Koch and Waldmann proposed a more generally applicable correlation [15]. Their concept
of ligand-sensing cores postulates that similar spatial arrangements of SSEs constituting the
binding site can recognize similar molecular scaffolds in disregard of the overall fold. Due to its
general definition and applicability, it is of special interest for the discovery of novel small molecule
modulators of protein function for interesting new and unexplored targets with a special focus on
chemical biology. To date, there is no automated approach available to address this particular
challenge.

All of these aspects underline the relevance and influence of SSEs as a global (protein) player.
Unfortunately, there cannot be a correct classification of SSEs [16] in general. However, the
provision of an SSE annotation to each protein in the world’s largest publicly available resource
of protein structures, i.e., the RCSB Protein DataBank (PDB) [9], by default and their automated
assignment by many applications, e.g., UCSF Chimera [17], disguise this fact and impede a
discussion on their assignment and relevance. It also fosters the idea of a consent although a
multitude of different secondary structure assignment methods (SSAMs) and interpretations of a
reasonable SSE classification exists.

We created three tools to face the challenge of finding similar SSE arrangements in general and
ligand-sensing cores in particular in its entirety:

• SCOT – Secondary structure Classification based On Turns (see Chapter 3)

• SNOT – Secondary structure Numeric Observation Tool (see Chapter 4)

• SLOT – Secondary structure Layer One Two (see Chapter 5)

SCOT

SCOT is an SSAM using hydrogen bonds, geometric properties (Cα–Cα distances), as well as
dihedral angles (based on turn clustering), and is inspired by the SHAFT classifier [18]. It supports
the classification of helices, β-strands, and turns. It reads and writes files in the well-established
PDB file format [19]. SCOT utilizes a hierarchical assignment of protein structural elements starting
with the assignment of turns. Since most of the publicly available protein structures in the PDB do
not contain information on hydrogen atoms, we use the algorithm by McDonald and Thornton [20]
to assign them artificially. For the determination of the hydrogen-bonded normal and reverse turns,
we utilize the DREIDING [21] instead of the established DSSP (Define Secondary Structure of
Proteins) [22] hydrogen bonding criterion. For the open turns, we determine the Cα–Cα distance
between the first and the last residue of the turn. The detected turns are then clustered according
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to their dihedral angles. We use a dataset of more than 3,500 protein structures from the PDB
with distinct sequences by the use of the PISCES sequence culling server [23]. The dihedral
angles of the classified turns of these proteins are then clustered by emergent self organizing maps
(ESOMs) [24], with up to more than 1,000,000 neurons for a single class, resulting in a variety of
distinct turn clusters of similar backbone conformations.

The next layer of the hierarchical assignment of SSEs is dedicated to the classification of sheets
and strands. We have developed three algorithms to assign sheets and strands. The final one
determines the hydrogen bond contacts for all residues of an input protein structure. Using these
contacts, we build a strand graph consisting of sequence regions of consecutive parallel or anti-
parallel hydrogen bonding patterns. The edges are labeled with the hydrogen bonds they represent
connecting different strands. Thus, each strand, and its length in particular, is implicitly defined by
the hydrogen bond information stored at the labels of its vertex’ incident edges. We then determine
a merge blocking fingerprint based on specific turns which are usually located between succeeding
strands within the same sheet. Using this fingerprint, we merge consecutive strands whose gap is
not indicated as blocked by this fingerprint. Each connected component of the graph represents a
sheet, each of which consisting of at least two strands. To cope with the circularity of β-barrels
and to guarantee a deterministic assignment of sheets and strands, we use a priority queue to
extract the sheet and strand information out of the graph. During this step, we also determine kinks
based on the Cα–Cα distances in segments of length 4 in a strand. If this distance falls below a
pre-defined threshold, a kink is defined. The additional information about kinks is added to the
REMARK section of the output PDB file to be conform to the PDB file format.

The final layer of the hierarchical assignment of SSEs deals with the classification of helices. We
have developed five different algorithms for this purpose. The final one classifies right-handed
(α, 310, π), left-handed (α, 310), and ribbon (polyproline II, 2.27) helices. Each of these three
groups is processed separately. In each such group and for each class of a helix (e.g., α), the turn
overlaps of all sequence positions of the corresponding turn (i.e., normal of length 5 and class
1) are determined. Plus, we also determine the turn overlaps of the corresponding open turns
for all helix classes within one group. These are used for the extension of our helices. Based on
the class-specific and extension overlaps, we define three layered helices consisting of a core, a
hull, and an extension. Each such helix is created whenever we detect a segment of succeeding
helix-specific turn overlaps of a minimum number of overlaps and segment length. This is the
core of the helix. The hull is defined as all neighboring residues with an overlap of at least 1. The
extension is defined according to the core but based on the extension overlaps. We then split and
block these helices whenever the Cα–Cα distance of a sequence segment of length 4 within a
helix exceeds a predefined threshold. After that, we merge consecutive and overlapping helices
and determine their classification based on the sequence coverage and turn overlaps for each
involved helix class. The dominant class is taken as the final helix class. We also determine a helix
class Purity based on these overlaps to reflect the dominance of a helix’ class. We finally assign
kinks within cores and hulls based on minima in the corresponding turn overlaps. We also assign
classes to kinks to reflect the different geometrical regions a helix can consist of (e.g., 15 for a kink
between an α (1) and 310 (5) core). The information about kinks and class Purity are added to the
REMARK section.
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SNOT

SNOT is a tool to evaluate the performance of SSAMs. We parse files in the PDB file format
and extract a multitude of parameters for each type and class of SSEs, a group of SSEs (e.g.,
right-handed helices), and for the protein in total. For instance, we calculate the Twist, the Rise,
and the Radius within all sequence segments of length 4 in a helix. We also provide the ϕ, ψ, and
ω dihedral angles for all residues. The consistency of an SSE classification is reflected by the
Tanimoto and weighted Tanimoto similarities based on binary fingerprints for a structure ensemble
of one protein. Such fingerprints are also used to compare two SSE assignments to obtain the
consensus of different classifiers. Finally, we provide information about the distribution of residues
within different SSEs. We calculate the relative frequency and the conformational parameter
according to Chou and Fasman [25], and perform the d significance test according to Wilmot and
Thornton [26].

We used SNOT to compare different SSAMs, such as SCOT, DSSP, and SHAFT, to pick a suitable
classifier that fulfills our requirements to search for common ligand-sensing cores with SLOT.

SLOT

The comparison of protein binding sites using the SSE information alone – the so called search
for common ligand-sensing cores – is the aim of SLOT. In contrast to existing protein structure
comparison methods based on secondary structure information (SSCMs), such as TM-align [11] or
SSM [27], we perform a two step comparison. At first, the overall protein structure is compared. If
the obtained score is below a predefined threshold – the overall folds are not significantly similar –,
we compare the binding sites of the proteins in a second step. We have developed and evaluated
six different ways of modeling the SSEs of an entire protein structure or a protein’s binding site. Our
different modeling algorithms mainly utilize undirected labeled graphs, representing the geometry
and orientation of helices and strands directly or indirectly, but also on histograms representing the
distribution of distinct turn types. Each way of modeling can be used for both steps: to represent
the SSEs of the entire protein or of a protein’s binding site. We use a modified version of the
maximum clique detection algorithm by Tomita et al. [28], an optimization of the algorithm by Bron
and Kerbosch [29], to determine the maximum common subgraph (MCS) based on a modular
product graph, a technique described by Levi [30]. The determination of the MCS is known to be an
NP-hard optimization problem [31]. To address this challenge, our different ways of modeling try to
minimize the size of the input graph or use a variety of information to discriminate the compatibility
of labels, both to reduce the size or the density of the modular product graph. Finally, we derive
the similarity of two given input graphs mainly from the size of their corresponding MCS. For each
graph, we provide output files for the visualization by external programs, such as PyMOL [32].
Furthermore, the matching obtained from the MCS can also be exported and visualized. We
evaluate each way of modeling by placing five proteins, known to share a common ligand-sensing
core, in a sequentially non-redundant set of protein structures. This set of non-redundant structures
was also used for the classification of turns during the development of SCOT. The five proteins
with common ligand-sensing cores were MAO-A, MAO-B, and LSD1 [33], and ATP1 and the dog
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gastric lipasein [34]. We discuss the applicability of the concept of ligand-sensing cores on the
basis of our results obtained for this example of a common binding site fold.

With these tools at hand, we set out to find structural similarities in proteins solely based
on SSEs.

This thesis is organized as follows: Chapter 2 provides the definitions and notations used throughout
this thesis. It also contains the description of the creation of all datasets used herein and information
about the environment used for the development of our tools. The following three chapters are
dedicated to our developed tools. Chapter 3 introduces our SSE classification tool SCOT. Chapter 4
is dedicated to our SSAM evaluation tool SNOT. Chapter 5 describes our search for similar spatial
arrangements of SSEs by the introduction of SLOT. Each of these three chapters contains an
individual introduction, state of the art, methodology, results, discussion, and outlook. Finally,
Chapter 6 provides a conclusion.
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“Victory awaits him who has everything in order — luck, people
call it. Defeat is certain for him who has neglected to take the
necessary precautions in time; this is called bad luck.”

Roald Amundsen

2
Preliminaries

2.1 Definitions

The interdisciplinary scope of this thesis requires definitions in the field of chemical biology (see
Section 2.1.1) as well as computer science (see Section 2.1.2). The following definitions are used
in this thesis. Equations (such as for the comparison of fingerprints) are given in the chapters and
sections of their application.

2.1.1 Chemical Biology

Amino acids are the fundamental elements of proteins and form their primary structural layer. Here,
we concentrate on the elements of the secondary structural layer (SSEs), i.e., helices, β-sheets,
and turns. They are defined on backbone hydrogen bond interactions. Thus, the side-chains that
are the individual characteristic of the amino acids, are not import for the definition of SSEs.

Definition 2.1.1 (Amino acid/Residue). Amino acids consist of a Cα atom to which an amino
group (-NH2), a carboxyl group (-COOH), a hydrogen atom, and a side-chain (R) is bound (see
Figure 2.1). The side-chain is specific to each amino acid. The main-chain, also referred to as
backbone, consist of the N, Cα, C, and O atoms and is identical for all amino acids. The chain-trace
backbone atoms correspond to the main-chain backbone atoms without O atoms.

7
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N
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O HH
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Figure 2.1: Visualization of the common structure/atoms of all amino acids. R indicates the position of
the amino acid-specific side chain.

Definition 2.1.2 (Standard amino acids/Residues). Standard protein residues are: Ala, Arg,
Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, Val.

Definition 2.1.3 (Protein). Proteins are linear polymers composed of amino acids joined by pep-
tide bonds between their carboxyl groups.

Definition 2.1.4 (Protein structural layers). The hierarchical and structural layers of proteins
are:

1. Primary: amino acid sequence joined by peptide bonds

2. Secondary: backbone hydrogen bond interactions forming helices [35], β-sheets [36], turns,
and loops

3. Tertiary: folded secondary structure to domains or folds

4. Quaternary: folded tertiary structure to chains

2.1.2 Computer Science

A graph is an abstract mathematical model, which represents objects (vertices) and their relations
(edges). In general, a graph is defined as follows:

Definition 2.1.5 (Graph). An undirected graph G = (V,E) is an ordered pair where V is a finite
set of vertices and E is a finite set of edges between vertices E ⊆ {{u, v}|u, v ∈ V ∧u 6= v}. We say
directed graph, if E ⊆ (V ×V ) is a finite set of edges where each edge is an unordered pair (u, v) of
vertices u, v ∈ V . In a complete graph all vertices are interconnected E = {{u, v}|u, v ∈ V ∧u 6= v}
or E = {(u, v)|u, v ∈ V, u 6= v}, respectively. A labeled graph G = (V,E, lV , lE) assigns additional
information to vertices and edges by the use of the labeling functions lV and lE .

In this thesis, the labeling functions lV and lE of a labeled graph G = (V,E, lV , lE) are given by
informal descriptions. Therefore, we do not explicitly state them in our notations of labeled graphs
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and use the general notation G = (V,E). In addition, we also refer to a directed graph as an
undirected graph if the condition (u, v) ∈ E ⇒ (v, u) ∈ E with u, v ∈ V holds true.

Whenever graphs or other data structures are used to represent elements of the input, the question
concerning their similarity arises. Having said that, one way to reflect the similarity of two (or more)
graphs is to determine common substructures or subgraphs. The biggest or maximum common
subgraph denotes the maximum structural similarity.

Definition 2.1.6 (Subgraph). A graph G′ = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊆ V and
E′ ⊆ E. It is said to be (vertex-)induced by V ′ if E′ = (V ′ × V ′) ∩ E holds.

For the following definitions, let G = (V,E), G1 = (V1, E1), and G2 = (V2, E2) be graphs.

Definition 2.1.7 (Subgraph isomorphism). G is subgraph-isomorphic to a graph G1 if there
exists an injection φ : V → V1 in such a way that ∀u, v ∈ V : (u, v) ∈ E ⇒ (φ(u), φ(v)) ∈ E1.

Definition 2.1.8 (Common subgraph). G is said to be a common subgraph of the graphs G1 and
G2 if G is subgraph-isomorphic to G1 and G2.

(a) G1 (b) G2

(c) G1 (d) G2

Figure 2.2: Example for the maximum common (vertex-) induced and edge subgraph. Example of the
maximum common (vertex-)induced subgraph (MCIS) (a, b) and maximum common edge subgraph (MCES)
(c, d) for two given graphs G1 and G2. The vertices and edges of the maximum subgraphs are highlighted
in blue whereas all other vertices and edges are highlighted in green. Figures according to Raymond and
Willett [37].

Definition 2.1.9 (Maximum common subgraph). The maximum common subgraph (MCS)Gmcs

of graphs G1 and G2 is a common subgraph of G1 and G2 for which |G′| ≤ |Gmcs | holds for all
common subgraphs G′ of G1 and G2. Note that the MCS is not necessarily unique.

An MCS can either be a maximum common (vertex-)induced subgraph (MCIS) or a maximum
common edge subgraph (MCES). In an MCIS the number of vertices is maximized whereas in an
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MCES the number of edges is maximized. Figure 2.2 gives an example for both variants. Through-
out this thesis, we solely use MCISs. Thus, both terms (MCS, MCIS) are used synonymously and
refer to MCIS.

The determination of the MCS of two graphs is NP-hard in general [31] and can be reduced to the
problem of finding the largest clique (see Definition 2.1.10) in an appropriately defined modular
product graph (see Definition 2.1.11), also known as compatibility, correspondence, or association
graph. This procedure was first described by Levi [30].

Definition 2.1.10 (Clique). A clique C in an undirected graph G = (V,E) is a subset of vertices
C ⊆ V such that every two distinct vertices are adjacent.

Definition 2.1.11 (Modular product graph). In a modular product graphGP = (VP , EP ) of two la-
beled graphs G1 = (V1, E1, lV1 , lE1) and G2 = (V2, E2, lV2 , lE2), the set of vertices VP ⊆ V1×V2 con-
tains a vertex (v1, v2) with v1 ∈ V1 and v2 ∈ V2 if lV1(v1) is compatible to lV2(v2). The set of edges
EP contains an edge connecting the vertices (u1, u2), (v1, v2) ∈ VP if either e1 = (u1, v1) ∈ E1 and
e2 = (u2, v2) ∈ E2 and lE1(e1) is compatible to lE2(e2), or e1 6∈ E1 and e2 6∈ E2. The latter condition
does not come into action if G1 and G2 are complete graphs. The compatibility of vertices or edges
are strongly application-depended and, therefore, have to be defined individually.

It can be easily demonstrated that a clique in a modular product graph GP corresponds to the
common subgraph of two graphs G1 = (V1, E1) and G2 = (V2, E2). A clique contains only vertices
that represent a pair of compatible vertices u1 ∈ G1 and v1 ∈ G2 each. All vertices v ∈ C have to
be adjacent to each other, because their underlying compatible vertices u1, v1 ∈ V1 and u2, v2 ∈ V2
are either connected by compatible edges e0 = (u1, v1) E1 and e1 = (u2, v2) ∈ E2 or not adjacent.
Both criteria result in an edge connecting the corresponding vertices of C.

Definition 2.1.12 (Circle in a graph). A circle in a graphG = (V,E) is a path of edges e1, . . . , ek ∈
E with e1 = (v, w), ek = (u, v), and v, w, u ∈ V by which v is reachable from itself.

Definition 2.1.13 (Graph density). The density D of a graph G = (V,E) relates its number of
edges to the maximum possible number of edges (complete graph of the same size).

D(G) :=

0 |V | < 2

2 · |E|
|V | ∗ (|V | − 1)

otherwise
(2.1)

Definition 2.1.14 (Tree). An undirected graph T = (V,E) is called a tree if T is connected and
does not contain any circles. In a rooted tree, τ is called the root of T . A child c ∈ V of
a vertex v ∈ V has v as direct predecessor on the distinct path e1, . . . , ep ∈ E from τ to c:
e1 = (τ, w), . . . , ek = (v, c) with w ∈ V . Any vertex v ∈ V without children is called a leaf. Herein,
we only use rooted trees.

Definition 2.1.15 (Fingerprint). A fingerprint F is a vector of length |F | ∈ N. A binary fingerprint
consists of bits b1, . . . , b|F | with ∀i ∈ {1, . . . , |F |} : bi ∈ {0, 1}. An integer fingerprint consists of
integer values ∀i ∈ {1, . . . , |F |} : bi ∈ N. The initial values of a fingerprint are false or 0, respectively.
We use the terms a bit is marked or unmarked synonymously to bi = 1 or bi = 0, respectively.
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Definition 2.1.16 (Queue). A (priority) queue Q is an ordered data structure in which elements E
are ordered by keys K. It provides the following operations: push(k, e) adds element e ∈ E with
key k ∈ K to Q. pop() removes and returns the first element with respect to the order of the keys.
contains(k) returns whether an element with key k in Q exists. remove(e) removes element e from
Q.

Definition 2.1.17 (Histogram). A histogram H consists of a set of keys K and a counter function
c : k → N. For each k ∈ K, the counter function c(k) returns the counter value for k. c(k) returns 0

if k /∈ K. For a number n ∈ N, c(k) := n sets the counter of k ∈ K to n.

SSEs are the golden thread through this thesis and, therefore, appear in every main chapter.
Graphs are used in Chapter 3 as a pure data structure and in Chapter 5 more extensively as
the basis for the determination of structural similarities in proteins. In this context, the MCS (see
Definition 2.1.9) is used to represent this structural similarity. Trees (see Definition 2.1.14) are
used in Chapter 3 as a data structure reflecting the organization of strands in a β-sheet. Finally,
fingerprints (see Definition 2.1.15) are of special importance in Chapters 3 and 4 to model sequence
coverages of SSEs, for instance.

2.2 Notations

We use the following notations throughout this thesis.

• Let P be a protein, C be a chain of a protein, and S be an SSE, then |P |, |C|, or |S| denote
the sequence length of the protein, chain, or SSE respectively.

• All residues ri have (internal) sequence numbers i from 1, . . . , |C| without insertion codes. If
we refer to actual sequence numbers in concrete protein structures, we mention this explicitly.

• All hydrogen bonds used herein are intra backbone hydrogen bonds. We use the notation
hb+
i,j for a hydrogen bond between the hydrogen (H) atom (donor) of residue ri and the (O)

atom (acceptor) of residue rj . We use the notation hb−j,i for the same hydrogen bond but in
acceptor to donor direction. We use hb±i,j for any hydrogen bond regardless of its direction.

• A sequence segment s defines a segment of consecutive sequence positions with s.front , s.back ∈
{1, . . . , |C|} and s.front ≤ s.back defining the first and the last sequence position of s.

• A residue’s name is referred to by the three letter abbreviations, such as Ala for alanine.

• An SSE type refers to a primary SSE, such as helix or β-sheet (respectively strand).

• The dihedral angles φi, ψi, and ωi correspond to the dihedral angles of residue ri at sequence
position i (see Figure 2.3). φi is calculated based on the C atom of ri−1 and the N, Cα,
and C atoms of residue ri. ψi and ωi are calculated analogously on their respective four
surrounding atoms.
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• A PDB file or the PDB file format refers to the standard/fixed column width representation
and explicitly not to the also available XML or CIF file formats.

• PDB (and SSAM) file line prefixes, such as REMARK or HELIX, are written in monospace font.

• @pdb denotes the identifier of one element/protein structure of the RCSB PDB [9]. 1gos@pdb
refers to the protein structure with PDB identifier (PDB-ID) 1gos. We use 1gosA@pdb to
refer to the chain with chain identifier A of structure 1gos. We use 1j8kA2@pdb to refer to
model 2 of chain A of the nuclear magnetic resonance (NMR) structure 1j8k.

• @cath refers to entries of the CATH database [38] analogously.

• All command line options (e.g., -e) and flags (e.g., --write-fingerprints) are written in
monospace font.

• Throughout this thesis, we use the color coding for SSEs depicted in Table 2.1.

• All protein structure illustrations were created using PyMOL [32].
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ri−1 ri ri+1

φi ψi ωi

Figure 2.3: Visualization of the dihedral angles φi, ψi, and ωi of residue ri.

Helices Sheets Kinks
RH α RH 310 RH π RH Mixed LH α LH 310 PPII 2.27 Termini

Table 2.1: Secondary structure color coding. Secondary structure color coding for right- and left-handed
(RH, LH), polyproline II (PPII), and 2.27-helices, helix termini, strands, and kinks used in protein figures and
for the PyMOL [32] export scripts provided by SCOT. This Table is reproduced by permission of Bioinformatics
(2019) [7].

2.3 Datasets

The term dataset used herein refers to a subset of protein structures from the publicly available
RCSB Protein DataBank (PDB) [9]. A subset can either contain entire protein structures or
extracted and separated protein chains or models.
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2.3.1 PDB

2.3.1.1 2018

The dataset PDB 2018 copy corresponds to a copy of the entire PDB from the 27th of March 2018.
It contains 138,384 protein structures and 385,303 protein chains. The protein files were downloaded
utilizing our PDBFTP script (see Section 6.4.1, appendix). We use the option -r with ANISOU and
COMPND to remove all anisotropic temperature factors and names of standalone drugs or inhibitors.
We also set the flag –lower-pdbid to change the PDB-ID to its lowercase representation. In NMR
structures all models except the first one were removed by evoking the flag --clean-models. The
splitting of protein files to separate chain files was done with our PDBChainSplitter script (see
Section 6.4.2, appendix). All ligands were copied to those chains to which any of their atoms is
within an at most 3Å distance.

2.3.1.2 2017

For some of the datasets we used a copy of the PDB from the 20th of March 2017 containing
133,670 protein structures and 369,676 protein chains. These files were downloaded and generated
as described for the 2018 copy (see Section 2.3.1.1).

2.3.2 X-Ray Representatives (ESOM Training)

The PDB is a highly redundant dataset. A BLAST [39] sequence similarity clustering revealed
approximately 67,000 clusters with 100% sequence identity. Therefore, we created a dataset of
representative structures for the classification of turns and the analysis of SSEs in proteins. All
publicly available X-ray structures (2017 copy of the PDB) were split into separate files containing
single protein chains. Each chain file contains the global (chain-unspecific) information (e.g.,
HEADER or REMARK lines) and the chain-specific information (e.g., SEQRES or HELIX lines). These
chains were filtered based on a resolution threshold of 2Å and a maximum R-factor of 0.25.
Subsequently, the PDB-IDs of the 17,978 filtered structures were submitted to the sequence-culling
server PISCES [23]. An identity threshold of 35% led to a final sequence-diverse dataset of 3,597
X-ray structures of high quality.

2.3.3 Non-Redundant Set of Structures with Left-Handed Helices

SCOT was used to assign the SSEs of all entries in the 2018 copy of the PDB dataset. Structures
with at least one left-handed α- or 310-helix with a length of at least four residues were identified.
These structures were sequence-culled using the PISCES [23] methodology with an identity
threshold of 35%. This procedure was restricted to structures with a resolution of 3Å or better, an
R-factor of at least 0.3, and 40 to 10,000 residues per chain.
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2.3.4 Quality Dependency Dataset

The dataset of Konagurthu et al. [40], which comprises 15 randomly selected protein structures
at different resolutions, was used to analyze the methods’ sensitivity to structure quality (see
Table 2.2). Instead of using the superseded structures originally taken as low resolution structures,
we decided to replace the obsolete and superseded entries by structures that are still available in
the PDB [9]. This procedure ensures the use of still relevant structures with a low resolution. We
tried to maintain a similarly high resolution difference between low resolution and high resolution
structures. Ligands and buffer components were deleted and the structures were aligned and
renumbered according to the alignment positions to assess the consensus. Residues that were
only found in one structure were removed for comparison purposes. These preparation steps were
performed using MOE 2015 [41].

Low resolution (R) High resolution (R)
Structure PDB-ID Chains R / Å PDB-ID Chains R / Å

Hemerythrin-like domain 2awc (1mhr) A 2.2 (2.9) 3agt (2mhr) A 1.4 (1.3)
(Myohemerythrin)
Dimeric hemoglobin 1nwn (1sdh) A,B 2.8 (2.4) 3sdh A,B 1.4

Glutathione reductase 1grh (1grs) A 3.0 (3.0) 3grs A 1.5

Adenine glycosylase 1wef (1abk) A 1.9 (2.0) 1kg2 (2abk) A 1.2 (1.6)
(Endonuclease III)
Lysozyme 1bhz (2lzh) A 3.9 (6.0) 2zq3 A 1.6

Nitrosomonas cytochrome 3zow (151c) A 2.4 (2.0) 4jcg (351c) A 1.6 (1.6)
(Pseudomonas cytochrome)
Calmodulin fragment TR2C 1yru (1trc) B 2.5 (3.6) 1fw4 A 1.7

Ferredoxin reductase 4af6 (1fnr) A,B 2.9 (2.6) 3mhp (1fnd) A,B 1.7 (1.7)
Chitinase A (Endochitinase) 3aro (1baa) A 2.2 (2.9) 3arx (2baa) A 1.16 (1.8)
Ferrochelatase 1ld3 A 2.6 1doz A 1.8

Glutamate dehydrogenase 1aup A 2.5 1bgv A 1.9

Concanavalin A 4k20 (4cna) A,B 3.4 (2.9) 5cna A,B 2.0

Anti-influenza virus antibody 4gxu (1bjl) M,N 3.3 (2.9) 4gxv (3bjl) H,L 1.5 (2.3)
1F1 (Bence-Jones protein)
Phosphofructokinase 1mto (5pfk) A,B,C,D 3.2 (7.0) 4i7e (6pfk) A,B,C,D 2.0 (2.6)
Serine protease inhibitor 1psi (1qlp) A 2.9 (2.0) 3ne4 (2psi) A 1.8 (2.9)

Table 2.2: Structures of the quality dependency dataset. Structures of the quality dependency dataset
to analyze the impact of X-ray structure quality on the SSE assignment with different SSAMs. PDB-IDs in
brackets denote structures from the original dataset of Konagurthu and co-workers [40] which were replaced
for our analyses. This Table is extracted from [7].

2.3.5 Consistency NMR Ensembles

The dataset of NMR structure ensembles was generated to evaluate the consistency of different
SSAMs. NMR ensemble structures from the 2017 copy of the PDB dataset were split into separate
model files utilizing our NMRModelSplitter script (see Section 6.4.3, appendix). Each model file
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contains all global information but only the model-specific information on missing residues (REMARK
465 lines) and atom coordinates (ATOM lines). Ensembles with less than 10 models or structures
with less than 50 residues were excluded. This filtering step led to 8,800 ensembles adding up
to altogether 175,161 structures. Additionally, the dataset was pruned by excluding ensembles
that show high structural deviations as expressed by root-mean-square-deviation (RMSD) values.
To this end, all structures within one ensemble were aligned with TM-score [42]. The RMSD of
the sequence-based structure alignment of the complete structures was used for the subsequent
filtering procedure. All ensembles showing an RMSD of at least 10Å were excluded from the
dataset. The remaining ensembles were sequence-culled using the PISCES web server [23].
Standard settings were applied and the identity threshold was set to 35%. This led to a final dataset
comprising 2,856 NMR ensembles (56,189 models).

2.3.6 Consistency X-Ray Ensembles

The second ensembles dataset was built from all available X-ray structures (single chains, similar
to the X-ray representatives dataset) of the PDB 2017 copy with a resolution of at least 2Å and an
R-factor below or equal to 0.25. Their corresponding ATOM entry-based sequences were extracted
neglecting structures with less than 50 residues. A sequence deconvolution was achieved with the
help of USEARCH [43] and the resulting unique sequences were compared to all sequences of the
dataset to identify structures with a sequence identity of 100%. Subsequently, all representative
sequences for which more than 10 corresponding PDB structures were found were included in
the dataset. We found 104 single chain proteins with at least 10 other structures of identical
sequences leading to a dataset of 2,098 structures. This dataset was subsequently sequence-
culled to obtain a representative dataset. Using a sequence identity threshold of 35%, the dataset
was sequence-culled with PISCES [23]. The final dataset comprises 84 X-ray ensembles (1,584
structures).

2.3.7 Domains

2.3.7.1 CATH

We designed two datasets to evaluate the impact of SSE assignments on the quality of protein
alignments. To this end, we analyzed all domains in the CATH database (Class Architecture
Topology Homology) [38] (2018/09/24) with a resolution of at least 2.5Å and including at least 70
residues. Domains belonging to the same topology or superfamily class were sorted ascending
according to the resolution and we retained only the first member per S95 cluster. All domains
with an identical topology or superfamily were grouped. The first two domains of each topology
or superfamily cluster with at least two members were finally chosen as pairs for subsequent
SSE-based domain comparisons. The resulting two datasets contain 1,152 domain pairs of the
same superfamily and 393 domain pairs with identical topologies. The topology pairs dataset
contains structures with sequence identities ranging from 7.5% to 53.6% and of 95.4% for one pair.
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In contrast, the superfamily dataset comprises structures with sequence identities from 8.5% to
100%.

2.3.7.2 ECOD

The ECOD dataset (Evolutionary Classification Of protein Domains) [44] is based on a hierarchical
evolutionary classification of protein domains with an emphasis on distantly related homologs. For
our subset of the ECOD dataset, we extracted all sequences from the PDB files of the ECOD
version develop2016 (2018/12/11). This version contained 141,551 proteins and 639,479 domains.
We compared all sequences of the first structure per X group against all others of X group with the
help of USEARCH [43] and the information from the ECOD domains file. For each structure, the
partner with the lowest sequence identity was selected resulting in one pair per X group and a total
of 232 domain pairs. We modified parts of the corresponding PDB files which were relevant for our
parsing procedure and, thus, had to comply with the PDB file format. All ATOM lines corresponding
to ligands were renamed to HETATM lines. TER lines were added to terminate chains.

2.3.8 Ligand-Sensing Cores

2.3.8.1 LSD1

This datasets consists of three proteins, namely, human monoamine oxidase (MAO) A and B
(2bxr@pdb and 1gos@pdb) and lysine-specific demethylase 1 (LSD1, 2ejr@pdb). In 2012,
Willmann et al. proposed a shared ligand-sensing core in all three proteins [33]. This led to the
discovery of Namoline as an LSD1 inhibitor for the impairment of prostate cancer cell growth.

2.3.8.2 APT1

Another common ligand-sensing core was published in 2010 by Dekker et al. [34]. It consists of
the human acyl protein thioesterase 1 (APT1, 1fj2@pdb) and the dog gastric lipase (1k8q@pdb),
and it led to the discovery of Palmostatin B as an APT1 inhibitor.

2.3.8.3 LSC Query and Target

We created a query and a target dataset for the search for common ligand-sensing cores. The
query dataset consists of split protein chains of the LSD1 (see Section 2.3.8.1) and APT1 (2.3.8.2)
datasets. The target dataset is the union of the query dataset and the X-ray representatives dataset
(see Section 2.3.2) and contains 3,614 protein chains. In addition to this chain-based dataset, we
also created a pocket-based dataset by the use of P2Rank [45, 46]. In all query and target chains
pockets were identified using default settings. The *.atm files of the three highest ranked pockets
per chain were used resulting in 27 query and 10,818 target pockets.
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2.4 Development Environment

The following environment was used for the development and the evaluation of all introduced tools,
namely, SCOT, SNOT, and SLOT described in Chapters 3, 4, and 5 respectively:

• Workstation
Intel® Xeon® CPU E5-2690
32 cores @ 2.9 GHz
128 GB DDR3 RAM
3 HDs in RAID level 0
Scientific Linux 7.2

• GCC 5.3.1

• C++ 11
No additional libraries, STL only

• Python 2.7.5

All tools are written in C++ 11 solely using STL libraries and without the requirements for additional
external libraries. However, OpenMP is used for parallelization purposes, but a serial execution
fallback is supported in case this library is not available. We avoided the use of additional libraries
and chose to implement all algorithms, data structures, and in- and output procedures by ourselves,
to provide a maximum grade of versatility and the possibility for tailor-made optimizations.

2.5 Availability

All datasets except the copies of the PDB are available at
https://ls11-www.cs.tu-dortmund.de/people/brinkjost/datasets-phd-thesis.tar.gz

The (Linux) executables for SCOT, SNOT, and SLOT are available after publication and on request
at https://this-group.rocks

https://ls11-www.cs.tu-dortmund.de/people/brinkjost/datasets-phd-thesis.tar.gz
https://this-group.rocks
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“There must be a beginning of any great matter, but the con-
tinuing unto the end until it be thoroughly finished yields the
true glory.”

Sir Francis Drake

3
SCOT | Classifying Secondary

Structure Elements

3.1 Introduction

The first publications addressing the automated assignment of secondary structure elements
(SSE) date back into the 1970s [47]. The impact of automated secondary structure assignment
methods (SSAMs) reaches from secondary structure prediction over secondary structure-based
protein alignment to the assignment of protein domains. The high number of already published
algorithms for the classification of helices, sheets, and turns in proteins points toward the most
challenging issue in secondary structure assignment: we cannot strive for the correct answer
when it comes to secondary structure assignment [16]. DSSP [22] is the oldest still available
method for the automated identification of regular helical and extended backbone structures in
proteins. It is still actively developed and maintained by the CMBI (Centre for Molecular and
Biomolecular Informatics). As one of the predominantly applied methodologies for a huge number
of structure-based modeling approaches, it is usually applied to assign the SSEs in newly released
protein structures. Various modified versions exist as part of structural alignment and visualization
tools [17, 32]. Strikingly, it is still the most cited tool for secondary structure assignment although at
least thirty alternative approaches have been developed (see Table 3.1).

So, what are the criteria that prompt scientists to prefer one tool over another? Besides consensus

19
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Method DH HB GO Year Citations Citations/Year Add. M./A.

PSSC [48]   2014 7 1.75

SHAFT [18]   2011 2 0.29

DSSP – PPII [49, 50]   2011 36 5.14

STRIDE [51]   1995 1,524 66.26

KAKSI [52]   2005 81 6.23  
SEGNO [53]   2005 34 2.62

DISICL [54]  2014 12 3.00

PROSS [55]  1999 149 7.84

Chen et al. [56]   2009 n/a n/a
Levitt & Greer[47]   1977 463 11.29

beta-Spider [57]   2005 15 1.15

DSSPcont [58]  2003 65 4.33

SECSTR [59]  2002 140 8.75

PROMOTIF [60]  1996 885 40.23  
SSTRUC [61, 62]  1990 210 7.50

DSSP [22]  1983 9,848 281.37

RaFoSA [63]  2016 n/a n/a
SACF [64]  2016 2 1.00

ASSP [65]  2015 8 2.67

Kneller & Hinsen [66]  2015 1 0.33

PCASSO [67]  2014 2 0.50  
SST [40]  2012 12 2.00

SABA [68]  2011 7 1.00

PMML [69]  2011 2 0.29

PROSIGN [70]  2008 9 0.90

PALSSE [71]  2005 29 2.23

Taylor et al. [72]  2005 15 1.15

Zhang & Skolnick [11]  2005 1,038 79.85  
VoTAP [73]  2004 41 2.93

STICK [74]  2001 35 2.06

XTLSSTR [75]  1999 74 3.89

P-SEA [76]  1997 81 3.86

YASSPA (GETSSE) [77]  1997 296 14.10  
P-CURVE [78]  1989 106 3.66

DEFINE_STRUCTURE [79]  1988 308 10.27

SKSP [80]    2007 14 1.27

CONSENSUS/TCM [81]    1993 109 4.36

Table 3.1: SSAM citation counts. Overall and annual citation counts for published SSAMs grouped by their
underlying methodology based on dihedral angles (DH), hydrogen bonds (HB), or geometry (GO). A feature
can be fully ( ) supported. A ( ) indicates that it is not applicable. β-Spider uses only the contact energy ( ).
The Web of Science (2018/10/11) Core Collections were used to evaluate the number of citations per SSAM.
The column Add. M./A. indicates if the publication of the respective SSAM also contains additional methods
or analyses leading to citations that must not be attributed to the published SSAM.
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approaches [80], the only possibility to find the most suitable method is a close examination of the
individual strengths and weaknesses of different approaches, their availability, and their general
applicability toward the type of structural elements under investigation. The definition of helix
termini, kinks, and the impact on secondary structure-based protein alignments are further quality
criteria. Different approaches have been developed to tackle some but not all of these aspects.
Therefore, we set out to combine different aspects of SSE assignments to cope with all of the
current challenges using a single method. These aspects are covered by dedicated sections in
Chapter 4 underlining the strengths of SCOT concerning the assignment of right- and left-handed
helices including rare helix classes, β-sheets and extended conformations in general, structure
quality and flexibility, and its huge impact on the SSE-based alignment quality.

This chapter is organized as follows: Section 3.2 describes the state of the art of already available
and published SSAMs. These are grouped based on the type of data utilized for the assignment
(hydrogen bonding patterns, dihedral angles, geometric properties). It also gives examples of
some of these methods which were used for comparison purposes (see Section 4.6). Section 3.3
motivates SCOT itself and its unique characteristics, and describes its methodology including major
interim development milestones. More precisely, this section covers the classification of turns,
helices, and β-sheets, and the parsing and writing of Protein DataBank (PDB) files. Section 3.4
depicts aspects of our reimplementation of the SHAFT algorithm. Section 3.5 gives insights into
the motivation of the evolutionary steps of our classification algorithms and related results. Finally,
Section 3.6 discusses SCOT in general and motivates open challenges.

This chapter focuses on the development and evaluation of SCOT itself. Chapter 4 introduces
criteria for the comparison, evaluation, and differentiation of SSAMs and therefore covers the
detailed evaluation of SCOT with respect to other SSAMs.

3.2 State of the Art

The already available and published SSAMs can be crudely divided based on the type of data
utilized for the assignment (hydrogen bonding patterns, dihedral angles, geometric properties). In
the following, we will give examples of some of these methods which were used for comparison
purposes in Section 4.6. We will outline the basic assumptions underlying the algorithms to
highlight the major differences.

3.2.1 Hydrogen Bonding

3.2.1.1 DSSP

DSSP (Define Secondary Structure of Proteins) [22] utilizes dynamic programming for its SSE
assignments starting with the detection of hydrogen bonds. An electrostatic interaction energy is
calculated to identify distinct hydrogen bonds with an energy cut-off of −0.5 kcal/mol. This cut-off
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was chosen to address errors in coordinates and to support bifurcated hydrogen bonds. These
hydrogen bonds are used to identify turns of lengths 4 to 6 and bridges. The turns are used to form
minimal helices and bridges to form ladders and, subsequently, β-sheets.

A minimal helix consists of two consecutive turns of identical length. For instance, two consecutive
turns of length 4 starting at residues ri and ri+1 define a minimal helix of type 4 spanning residues
ri+1 to ri+4. Overlapping minimal helices define the longer helices, i.e. α-, 310-, and π-helices
based on minimal helices of types 5, 4, and 6 respectively.

A bridge between two residues ri and rj is assigned if there are hydrogen bonds hb−i−1,j and
hb+
i+1,j or hb+

i,j−1 and hb−i,j+1 (parallel), or hb+
i,j and hb−i,j or hb−i−1,j−1 and hb+

i+1,j+1 (anti-parallel).
Consecutive bridges of identical type form a ladder. One or more multiple ladders connected by
shared residues form a β-sheet. Single residue ladders are not regarded as a β-sheet and reported
separately. Irregularities in β-sheets are supported by the incorporation of β-bulges. A β-bulge
connecting two (perfect and consecutive) ladders or bridges allows on one side of the ladder a gap
of non-hydrogen bonded residues of up to 4 instead of 1.

In the case of overlapping SSEs, a hierarchical classification is applied to obtain unique residue
assignments. A further development of the algorithm (DSSP 2.0) was realized by adjusting this helix
type assignment hierarchy [82]. Consequently, π-helices (which were previously rarely classified)
are detected and referred to as α-bulges.

Left-handed helices can be assigned based on the per residue (ri) chirality information which
results from the evaluation of the Virtual torsion angle (Vtor) of the Cα atoms of residues ri−1, ri,
ri+1, and ri+2.

The information of bends is provided for the entire protein chain. A bend at residue ri is defined
whenever the angle at its Cα atom spanned by the Cα atoms of residues ri−2 and ri+2 exceeds a
threshold of 70°.

3.2.2 Hydrogen Bonding and Dihedral Angles

3.2.2.1 STRIDE

Addressing the issue of the highly permissive nature of the hydrogen bond definition used by
Kabsch and Sander [22], Frishman and Argos proposed the method STRIDE (STRuctural IDEn-
tification) [51] for secondary structure assignment. The algorithm incorporates a novel, more
restrictive, hydrogen bond definition and also geometric constraints based on the residues’ dihedral
angles. Multiple parameter (weights, statistical residue occurrences, thresholds) optimization steps
were performed to ensure a high correspondence to experimentalist-derived classifications formerly
used for protein structures published in the PDB. For this purpose, they filtered all X-ray and NMR
structures of the PDB to obtain a (sequence) redundant set consisting of 226 proteins chains with
manually assigned SSE annotations by the authors of the respective structures (HELIX and SHEET
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lines).

Similar to the DSSP algorithm, STRIDE defines minimal helices based on consecutive turns of
the same length. In contrast however, minimal helices are not limited to exactly two consecutive
turns but may contain more, which makes a subsequent merging of minimal helices superfluous.
Furthermore, each involved turn has to fulfill a condition based on optimized weight factors and
residue occurrences, both with respect to values typical for this type of helix. The terminal residues
of a (minimal) helix are only considered as part of this helix if their dihedral angles and residues
occurrences are typical for this type of helix.

The identification of β-strands is based on the identification of bridges. In addition to the four
hydrogen bonding patterns introduced by DSSP and a new pattern that involves three hydrogen
bonds, conditions based on weight factors and residue occurrences, both with respect to values
typical extended conformations, have to be fulfilled to form a bridge. Neighboring bridges are
merged if there is at most 1 intervening residue on one strand and are at most 4 intervening
residues on the other strand between both bridges.

The application of the method leads to the identification of three helix classes (α, 310, π) and strands
(no β-sheet affiliation) as well as turn structures in proteins. The methodology is incorporated in
the SSE analysis tool of VMD [83].

3.2.2.2 SHAFT

Based on a comprehensive assignment of turn types in proteins, SHAFT (Secbase automated Helix
Assignment adapted From Turns) [18] was developed as an alternative helix class assignment.
It relies on a dihedral angle-based turn classification (normal , i.e., hydrogen-bonded turns, and
open turns, i.e., turns of different lengths whose Cα–Cα distances are equal to or less than 10Å).
Continuous stretches of overlapping turns of identical types are used to assign α-, 310-, π-, and
γ-helices, but a strand definition is missing. Residue assignments to more than one helix class are
avoided by a hierarchically applied helix class assignment. Nonetheless, overlapping helices are
assigned.

The applicability of the above algorithms is restricted to protein structures with known backbone
atoms. In case of Cα-only structures, as obtained for crystal structures of low resolution or some
electron microscopy models [68], these methods cannot be applied unless the complete backbone
is reconstructed based on the Cα trace with further methods, e.g., SABBAC [84]. However, only 368

(0.27%) out of 138,384 structures of the 2018 copy of the PDB are Cα-only structures. Another weak
point is the sensitivity of more restrictive hydrogen bond definitions toward structural perturbations
and model building artifacts due to a low resolution or a high flexibility of some protein regions.
These and other flaws of hydrogen bonding-based assignment software led to the development of
novel tools which are based on geometric criteria and/or dihedral angles.
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3.2.3 Geometry

3.2.3.1 ASSP

The method ASSP (Assignment of Secondary Structure in Proteins) [65] employs geometric criteria
to assign SSEs. It is an extension of the software HELANAL-Plus [85] which assigns helical protein
segments. In ASSP, the path traversed by the Cα atoms is used to classify continuous stretches in
proteins as α-helices, 310-helices, π-helices, left-handed (α-, 310- and π)-helices, β-strands, and
PPII helices.

3.2.4 Dihedral Angles

3.2.4.1 DISICL

For DISICL (DIhedral-based Segment Identification and CLassification) [54] assignments, the
protein is divided into segments of two residues. Based on torsion angle region definitions, the
residue segments are divided into altogether 18 structural classes. The final assignments are
based on the pairing of the corresponding regions. We use a set of DISICL-derived classes to
assign α- , 310-, π-, and PPII helices as well as left-handed helices. The latter are not further
differentiated to left-handed α-, 310-, or π-helices. Additionally, β-strands are assigned using the
β-strand and β-cap definitions.

3.2.5 Geometry and Dihedral Angles

3.2.5.1 SEGNO

The program SEGNO [53] combines geometric parameters (e.g., distances and curvature-defining
angles) with the information on dihedral angles. The software assigns α-, 310-, and π-helices,
β-strands, and PPII helices, as well as mixed helices as combinations of α-, 310-, and/or π-helices.
Length constraints (minima in the number of required residues) for the different types are applied
to ensure the classification of continuous structural stretches. Additionally, a Ramachandran outlier
detection [86] leads to the exclusion of residues from the secondary structure assignment.

3.3 SCOT

While purely hydrogen bond-based methods might fail to identify geometrically regular continuous
stretches of SSEs and are not applicable to regular conformations which are not stabilized by main-
chain hydrogen bonds (PPII), geometry- and dihedral angle-based methods might overestimate
the number of stable SSEs found in proteins. We have developed SCOT (Secondary structure
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Classification On Turns) to find an acceptable compromise between both approaches (hydrogen
bond and geometry). Repetitive stretches of hydrogen-bonded and open turns of different lengths,
which are classified based on their dihedral angles and geometric distance criteria, were used to
develop and benchmark a novel alternative for a reliable and consistent assignment of SSEs in
proteins. Inspired by the work of Koch and Cole [18], we incorporate the knowledge of hydrogen-
bonded and non-hydrogen-bonded turns to assign multiple helix classes. The assignment of helices
and β-strands are based on both, turn data and four-residue segment Cα–Cα distances. The latter
are mainly applied to avoid irregularities in the assigned SSEs. SCOT was developed focusing on
bottlenecks, such as geometric uniformity, stability, consistency across structure ensembles, and
the incorporation of rare SSEs.

We have developed SCOT from scratch without using external libraries to be able to have our
hands on all aspects of the assignment. Having said that, we had to to develop procedures for the
parsing and writing of PDB files described in Sections 3.3.1 and 3.3.5. The algorithms to assign
SSEs are presented in the same order in which they are realized by SCOT. In Section 3.3.2 we
describe the assignment of normal , reverse, and open turns which are the basis for all other SSEs
assigned thereafter. In Section 3.3.3 our three algorithms to assign β-sheets are presented. For
the assignment of helices, we have developed five different algorithms which are described in
Section 3.3.4.

Each algorithm (β-sheets and helices) is an advance to its predecessor. Thus, the last algorithm of
each section is the most recent and published version. Furthermore, all predecessors may contain
(logical) pitfalls that are dealt with in each following or at least in the final algorithm. All algorithms
are named according to their main feature or data structure.

Please note that all assignment algorithms process each chain of a protein separately. Therefore,
the assignment of β-sheets spanning multiple chains is not supported.

SCOT is able to process single structures as well as folders containing all structures of interest
with built-in support for parallel execution.

SCOT is written in C++ and parallelized using OpenMP.

3.3.1 Input

SCOT requires standard PDB files as input. All options can be set via command line arguments. A
list of all supported arguments and a short documentation can be evoked using --help. In addition,
trained ESOM files are required for the dihedral angle-based classification of turns.

3.3.1.1 PDB Files

The standard PDB file format was created in the 1970’s and is supported by a large number of
software for a multitude of applications. Each protein is represented by an individual file identified
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by its PDB identifier. Each file contains meta information, such as the organism the protein is
obtained from or experimental data, atom coordinates, sequence information, secondary structure
information and more. The information is represented in a fixed column width format. Each line
has a fixed length of 80 characters and contains a six-characters long prefix which denotes the
type of the line and its (column) format for the remaining characters. However, the fixed column
width format limits the support to protein structures consisting of at most 26 chains. This is due to
the fact that there is only a single character reserved to specify the chain identifier (not counting
digits). For such proteins, only files in the newer PDBML format are available. Nevertheless, we
chose to support the standard PDB file format due to its acceptance by a wide range of software.

Our PDB file parsing procedure relies on the information given in the lines with the following
prefixes: REMARK 465 (for the support of missing residues), SEQRES (for the support of modified
residues), ATOM, HETATM (modified residues), TER, and ENDMDL in NMR structures. We parse the
residues according to the ATOM and HETATM lines in the order of their appearance. We distinguish
between ligand and modified (protein) residues based on the SEQRES information. If the name of a
residue in the HETATM lines is present in the SEQRES entry of the corresponding chain, it is (assumed
to be a modified residue and) parsed as a protein residue. If there are alternate locations given for
the atoms of a residue, we retain the conformation with the highest occupancy. If there are multiple
conformations with equal and highest occupancies, we retain the first appearing conformation of
these. Please note that the selected conformation applies to all atoms of a residue but not to all
atoms of an entire chain or protein structure. Although the PDB file format specifies that the ATOM

records should be listed from the amino to the carboxyl terminus, some PDB files provide different
orderings, such as 2xmj@pdb. In such a case, we reorder the atoms accordingly.

Missing residues indicate residues that are known to be at a specific position in the sequence of
a chain, but their coordinates are not available. We insert them in two ways. In general, missing
residues have to be inserted at the sequence positions and insertion codes for which they are
stated as missing. However, for some proteases, such as 1jou@pdb, missing residues, which
have to be inserted in front of the first residue, share the same sequence position (e.g., 1) but
a descending insertion code. Therefore, if the current residue r is the first non-missing residue
to be inserted and if r has an insertion code, we add all missing residues that have the same
sequence position as r and in the order of their appearance in the REMARK 465 table. All other
missing residues are added to the parsed sequence at their stated sequence positions. We also
set some residues with modified backbone structures or covalently linked ligands as missing and
do not parse their underlying atom information for the turn and secondary structure assignment. A
list of these residues can be found in List 6.2 of the appendix.

Most X-ray structures do not include hydrogen atoms. However, the backbone nitrogen hydrogen
atoms are essential for the determination of hydrogen bonds. Therefore, we assign the position of
the backbone hydrogen atoms according to McDonald and Thornton [20]. We do not use input
hydrogen atoms to obtain a consistent assignment. For each residue ri, the hydrogen atom is
placed in the plane with the carbonyl carbon (C) atom of the preceding residue ri−1, and the N and
the Cα atom in a distance of 1Å to the nitrogen (N) atom but 4° closer to the Cα atom of ri (see
Figure 3.1). We only assign hydrogen atoms to residues with open valences at their backbone
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Figure 3.1: Visualization of the hydrogen atom placement. Visualization of the hydrogen atom (H)
placement for residue ri according to McDonald and Thornton [20]. This Figure is extracted from [7].

nitrogen atoms. A list of excluded residues is given in List 6.1 of the appendix. Predefined input
hydrogens can also be used if hydrogens are provided in the input files, by the use of Reduce [87],
for instance. The command line option --input-hydrogens disables the assignment of hydrogen
atoms and forces SCOT to solely use the input hydrogen atoms. If this option is not given, we still
use an input hydrogen atom of a residue if the reassignment of the hydrogen atom failed. This can
happen due to missing backbone atoms C, O, or Cα.

We only parse the first model of NMR structures as the PDB file format itself does not support
individual secondary structure annotations for each model.

The parsed residue sequence order can be validated with respect to the information provided in
the SEQRES lines. If the command line option --validate-sequence is set, each parsed sequence
mismatch and the parsed sequence itself is prompted to the terminal.

3.3.1.2 ESOM Files

In addition to a PDB protein file, SCOT requires files containing the trained ESOMs. There are two
files for each turn category and length (e.g., normal-5) required to load its corresponding ESOM
and assign turn classes. The weight file (*.wts) contains the weights of the neurons whereas the
class mask file (*.cmx) contains the classification of the neurons. Their formats are specified at
the webpage corresponding to [24]. All files have to be named according to their corresponding
turns (e.g., normal-5.wts). Their location, if not present at the location of the executable, can be
specified via the option -e. This also enables the use of user-defined novel turn classifications.

3.3.2 Turns

Turns are the fundamental elements for our classification of helices and sheets. We organize
turns in three different families, namely, normal , reverse, and open [88], with different lengths
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(categories). An overview of all classified turn categories is given in Figure 3.2.
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Figure 3.2: Visualization of the turns of all categories and lengths classified herein. Normal turns are
highlighted in green, reverse turns in purple, and open turns based on a Cα–Cα atom distance between 4Å
and 8Å in orange. This Figure is extracted from [7].

Our classification of turns, which improves the former turn classification by Koch and Klebe [88],
is realized in two steps. First, we detect all hydrogen-bonded (normal and reverse) and non-
hydrogen-bonded (open) turns. The latter are limited to turns with Cα–Cα distances between the
first and the last residue of at most 8Å. Second, we assign classes to each detected turn which
are based on the respective dihedral angles.

The assignment of the turn categories starts with the determination of sequence regions that
do not contain missing residues or residues with an atypical backbone structure (missing N,
Cα, C, O, or OXT atoms). Within each such region, we detect hydrogen bonds for normal and
reverse turns using the criterion defined by Dahiyat et al. [89] (see Equation 3.1). We use the
following parameters with values from the original publication given in parentheses: R0 = 2.8Å,
D0 = 8 kcal/mol, 2.5Å ≤ R ≤ 3.5Å (3.3Å), θ ≥ 130° (135°), and an energy threshold of EHB ≤
−0.5 kcal/mol (−2 kcal/mol). θ is the N-H-O angle, ϕ is the H-O-C angle, and ϕ is the angle between
the normals of the two planes defined by the six atoms attached to the sp2 centers. Open turns
are detected by the Cα–Cα distance d between residues ri and ri+k with k ∈ {3, 4, 5}. A turn is
assigned if the distance d is within the distance thresholds: 4Å ≤ d ≤ 8Å. For open-4 9 turns, an
additional class assignment of turns with a distance 4Å ≤ d ≤ 10Å is performed which enables the
classification of PPII helices. For a given residue ri, we detect normal contacts to residues ri+k
with k ∈ {2, 3, 4, 5} from the O atom of ri to the H atom (if present) of ri+k. Reverse contacts are
detected from the O atom of ri+k to the H atom of ri with k ∈ {1, 2, 3, 4, 5}. In addition, we also
take the OXT atom (if present) of the C-terminal residue into account and only keep the strongest
contact if contacts for both atoms (O, OXT) were detected. For all other residues, we do not drop
multiple hydrogen bond contacts based on their energy. We keep all detected contacts and provide
their energy according to Dahiyat et al. in the output. For open turns, the Cα–Cα distances are
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reported.

EHB := D0

{
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)10
}

cos2(θ) cos2(max(ϕ,ψ)) (3.1)

The classification of the turns, detected in the previous step, utilizes ESOMs [24]. We clus-
tered turn conformations based on the Jigsaw-transformed dihedral angles in the X-ray rep-
resentatives dataset. ESOM training and clustering were performed utilizing the Databionic
ESOM Tools [24]. For a normal or open turn t on residues ri to ri+|t|−1, we use the dihedral
angles ωi, ϕi+1, ψi+1, . . . , ωi+|t|−2. For a reverse turn t, we use ϕi, ψi, ωi, . . . , ψi+|t|−1. These
dihedral angles are transformed using our Jigsaw transformation which consists of two functions
f1 : [−180°, 180°] → [0°, 180°] and f2 : [−180°, 180°] → [0°, 180°] given in Figure 3.3. Due to
the bisected value range collisions appear: f1(−90°) = f1(90°). To address this problem, f2 is
most discriminative whenever f1 is not and vice versa, e.g., f2(−90°) = 0°, f2(90°) = 180°. This
transformation is necessary for the clustering algorithm which uses a metric distance function d
that otherwise fails to accurately reflect the distances in angular space. For instance, the numeric
distance d(−179°, 179°) is 358° but should be 2°. Using the Jigsaw-transformed value, the distance
functions report a small distance: d(f1(−179°), f1(179°)) = 0°, d(f2(−179°), f2(179°)) = 2°.

f1(x) :=

+x+ 180° −180° ≤ x < 0°

−x+ 180° otherwise

f2(x) :=


−x− 90° −180° ≤ x < −90°

+x+ 90° −90° ≤ x < 90°

−x+ 270° otherwise

(a) Formal definition of the Jigsaw transformation.

−180° 180°

180°

90°

−90° 90°0°

(b) Visualization of the Jigsaw transformation functions.

Figure 3.3: The Jigsaw transformation. This Figure is extracted from [7].

ESOMs were trained by visually analyzing and comparing turns and their transformed backbone
dihedral angles in different clusters. Both Jigsaw transformation functions were applied to each
backbone dihedral angle of a turn resulting in two transformed angles for each input dihedral angle.
Clusters of turns with similar angles were assigned a numeric class based on the population size
of the cluster. The fewer cluster members, the higher the number. That is, neurons are assigned a
class. An overview of the ESOM parameters applied for the different turn categories can be found
in Table 3.2. Please be referred to the doctoral thesis by Christiane Ehrt [90] for the details on the
ESOM training and turn clustering.

For each turn we search for the neuron with the lowest distance in the corresponding ESOM for
the turn category. We assign the turn the class of the respective neuron.

As the ratio between rows and columns should be significantly different from unity, we chose a
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Turn type |Angles| |Turns| Multiplier |Neurons| Dimensions (R×C)

reverse-2* 5 977 100 97,700 382 × 256

reverse-3 8 134 100 13,400 142 × 95

reverse-4 11 4,113 100 411,300 785 × 524

reverse-5 14 2,892 100 289,200 658 × 440

reverse-6 17 1,869 100 186,900 530 × 353

normal-3 4 2,190 100 219,000 572 × 383

normal-4 7 83,212 10 832,120 1,117 × 745

normal-5 10 222,529 5 1,112,645 1,291 × 862

normal-6 13 10,964 100 1,096,400 1,283 × 855

open-4 7 99,883 1 99,883 386 × 259

open-5 10 117,894 1 117,894 420 × 281

open-6 13 83,711 1 83,711 354 × 237

Table 3.2: Properties of the ESOMs for each turn category. The feature vectors of the neurons used
for the clustering contain two Jigsaw transformed values for each dihedral angle. * For the training set of
reverse-2 turns, we used all protein X-ray structures of the PDB (2017) to obtain an ESOM comprising at least
4,000 neurons which is the required minimum for an optimal training [24]. This Table is extracted from [7].

ratio of 1.5 rows per column. A Gaussian bell-shaped neighborhood kernel function (-n gauss)
was used. We use an Euclidean grid distance function (-d euc) in combination with a (borderless)
toroid topology (-g toroid) to avoid border effects. The initial radius was set to half the number
of columns and the number of epochs to 200 (-e 200). The weight vectors were initialized by
sampling the hyperplane spanned by largest principal components (-i pca).

3.3.3 Sheets

We have developed three different algorithms to assign β-sheets and strands, namely, Stranded
(see Section 3.3.3.1), Linked (see Section 3.3.3.2), and Queued (see Section 3.3.3.3).

The Stranded algorithm utilizes seed fingerprints to find the sequence positions for the initial
strands which are organized in trees to form β-sheets. The Linked algorithm uses an interim data
structure and a graph for the final representation of β-sheets. The most recent algorithm is called
Queued and solely relies on graphs as its core data structure. It also utilizes a queue during the
extraction of the β-sheet and strand information from the graph. It is also the β-sheet assignment
algorithm which is incorporated into the latest version of SCOT.

3.3.3.1 Stranded

The Stranded algorithm assigns β-sheets utilizing seed-fingerprints to detect regions of extended
conformations within a protein’s sequence and a tree as its core data structure. It performs a
merging and shrinking procedure to all strands to obtain a consistent assignment.
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The algorithm starts with the identification of intra-backbone hydrogen bonds using the hydrogen
bond criterion by Dahiyat et al. [89]. The parameters for the hydrogen bond assignment are
described in Section 3.3.2. Let CV ⊆ C be the set of (valid) residues of chain C that are not
marked as missing and that have a backbone hydrogen atom (see Section 3.3.1). For each residue
ri ∈ CV , we determine the set of (neighboring) residues Ni ⊆ CV whose oxygen (O) atoms are
within a 4Å proximity of the hydrogen atom (H) of ri. For all neighboring residues rj ∈ Ni that form
a hydrogen bond between the H atom of ri and the O atom of rj , we add the hydrogen bonds
hb+
i,j and hb−j,i to the set of hydrogen bonds HB . A hydrogen bond is defined if the hydrogen bond

criterion returns an energy of at most −0.5 kcal/mol for a given donor and acceptor pair. Finally,
HB contains the hydrogen bonds for all residues ri ∈ CV . All hydrogen bonds in HB are sorted
according to the sequence positions of their residues.

The next step deals with the determination of the initial strand positions in the sequence of the
chain. For that, we create a binary seed-fingerprint FE of the size of the chain |FE | = |C|. For
each hydrogen bond-based turn t (normal , reverse) of length |t| ≥ 3 on residues ri, . . . , ri+|t|−1,
we mark all bits bi ∈ FE corresponding to the inner residues ri+1, . . . , ri+|t|−2 of t. We also set all
bits bi to 1 if the corresponding residue ri is set as missing or has an invalid backbone (no N, Cα,
C, or O or OXT atoms). After this procedure, all segments of consecutive unmarked bits (bi = 0)
are defined as seeds. We also create a second fingerprint FC of the same length, which is used to
mark the already analyzed or strand-classified regions of the sequence. This fingerprint is required
to detect circularly defined β-sheets, as present in β-barrels, for instance, and to terminate their
recursive detection (see Figure 3.4 for a β-barrel).

Figure 3.4: Visualization of a β-barrel. Visualization of a β-barrel in 1af6A@pdb assigned by the Queued
algorithm (see Section 3.3.3.3) from two perspectives.

Utilizing the fingerprints FC and FE , we scan in ascending direction for sequence positions i whose
corresponding bits are not marked (0) in both fingerprints. If for such a sequence position i a
hydrogen bond hb±i,j ∈ HB exists, we create a new undirected tree T = (V,E, τ). T represents
a sheet and its vertices v ∈ V represent the strands of that sheet. Each vertex contains its
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child vertices, a set of hydrogen bonds to its parent and child vertices, and the sense (parallel
or anti-parallel) with respect to its parent vertex. The initial tree contains vp ∈ V as the root with
one child vc ∈ V . Both vertices contain the initial hydrogen bond hb±i,j but with respect to the
(donor-acceptor) direction: hb+

i,j at vp and hb−j,i at vc or vice versa.

Next, we geometrically determine the sense which can be parallel or anti-parallel. We define a
vector for each residue ri, rj involved in hb±i,j . The vector

−→
di for residue ri is defined from the N

atom of its preceding residue ri−1 to the C atom of its succeeding residue ri+1. If the residues ri−1
or ri+1 do not exist, have no such atoms, or are set as missing, we use the atoms of ri instead.
The vector

−→
dj is defined analogously. If the angle between the vectors

−→
di and

−→
dj is below 90°, the

sense is parallel, and anti-parallel otherwise.
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Figure 3.5: Visualization of the parallel and anti-parallel sheet hydrogen bonding patterns. This Figure
is extracted from [7].

We search for hydrogen bonds in HB with respect to the sense starting at the initial hydrogen bond
to the N- and the C-terminus (see Figure 3.5). Assuming the direction is parallel and the initial
hydrogen bond is hb+

i,j . The next hydrogen bond in N-terminal direction to be searched for is hb+
i−2,j

and hb−i,j+2 in C-terminal direction. Each contact is removed from HB and added to vp and vc, again
with respect to the direction. We proceed as long as we find hydrogen bonds in HB in compliance
with the hydrogen bonding pattern. Once this procedure has stopped, we determine the sequence
coverage segment sp for vp which spans from the minimum to the maximum sequence position
of a hydrogen bond stored at vp. For all sequence positions i ∈ sp, we set the corresponding bits
bi ∈ FC to 1 to indicate the coverage. In addition, we start searching for hydrogen bonds in HB

whose residue’s sequence position is within sp. For each identified hydrogen bond, we add a new
child to vp and proceed as described for vp and vc starting with the determination of the sense.
As soon as there are no further hydrogen bonds left in HB within the sequence segment sp, we
recursively call this procedure on all children. Whenever the recursive call on a child has ended,
we verify the number of hydrogen bonds at the child. If this number is below 2, we delete the child.

The next step of the algorithm is dedicated to the merging of strands. At first, we create a binary
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fingerprint FB containing the size of the chain |FB | = |C| bits. Each bit is assigned the initial value
0. We set all bits bi ∈ FB to 1 whose associated residues are covered by a hydrogen-bonded turn
with a maximum length of 4 of any class (normal-3 and -4, reverse-2, -3, and -4). We extract all
sequence coverage segments S from the vertices of all trees and sort them according to their
sequence positions. For all two consecutive segments sj , sj+1 and associated vertices v and w,
we calculate the sequence distance ds(sj , sj+1) = sj+1.front − sj .back . If the segments overlap
(ds(sj , sj+1) ≤ 0), or if there is a gap of at most one residue (ds(sj , sj+1) ≤ 2) and the bits bi ∈ FB
with sj .back ≤ i ≤ sj+1.front are not marked (0), we merge the corresponding vertices. Let v
be the corresponding vertex to sj and w the corresponding vertex to sj+1. Assuming that v is a
root vertex, all hydrogen bonds and children of v are moved to w, the sequence segment of w is
adopted accordingly and v is removed from the set of trees. If v is not a root vertex, it is removed
from its parent. We proceed with the next pair of succeeding vertices until the last pair has been
checked.

To assign stable strand termini and to obtain a more consistent assignment, we shrink the sequence
coverage segments corresponding to each vertex. Let sv be the sequence coverage segment
corresponding to a vertex v. For each terminus sv.front , sv.back , we calculate the number of
hydrogen bonds. Note that there must be at least one hydrogen bond contact that defines each
terminus. We increment sv.front by 1 if the number of hydrogen contacts is 1. We decrement
sv.back analogously. A detailed example of this procedure is given for the Queued algorithm
described in Section 3.3.3.3.

Finally, each tree represents a β-sheet and each vertex of a tree a strand of that sheet. The root
vertex of a tree is the first strand of a reported β-sheet without a registration. All further vertices
of a tree are added to that sheet and each registration, including the sense and the connecting
hydrogen bond, is reported with respect to the parent of a vertex. Only strands of length at least 2

are retained. The algorithm stops branching a path in the tree whenever a strand does not fulfill
this criterion.

3.3.3.2 Linked

The main difference of the Linked algorithm compared to the Stranded algorithm (see Sec-
tion 3.3.3.1) is the use of a graph to represent β-sheets and especially support loops as present in
β-barrels (see Figure 3.4 for an example of a β-barrel). In contrast to the Stranded algorithm we
do not try to classify strands and sheets at once. Instead, we first detect all pairs of strands and
combine them later on to a β-sheet graph representation during the merging procedure.

The algorithm also starts with the identification of backbone hydrogen bonds HB and the creation
of a seed-fingerprint FE similar to the Stranded algorithm. Next, we use an interim data structure
consisting of strand hydrogen bonds HBS ⊆ HB and strand sequence segments SS . HBS contains
all hydrogen bonds that are classified in strands. SS contains all sequence segments that are
assigned as hydrogen-bonded strands. In other words, SS contains the residue segments and
HBS the associated hydrogen bonds (including the sense) connecting them to form sheets.



34 SCOT | Classifying Secondary Structure Elements

We scan in ascending direction for sequence positions i whose corresponding bits bi ∈ FE are
not marked (bi = 0). If for such a sequence position i a hydrogen bond hb±i,j ∈ HB exists, we pop
hb±i,j from HB and determine the sense using the geometric criteron as described for the Stranded
algorithm. We create a new pair of sequence segments sp and sc. sp initially encompasses solely
the sequence position i of the initial hydrogen bond hb±i,j . sc solely encompasses j analogously.
These segments are extended whenever we find a hydrogen bond in HB with respect to the sense
starting at the initial hydrogen bond to the N- and the C-terminal direction (see Figure 3.5). Each
identified hydrogen bond is removed from HB and, including the determined sense, added to HBS .
Assuming the direction is parallel and the initial hydrogen bond is hb+

i,j . The next hydrogen bond
in N-terminal direction to be searched for is hb+

i−2,j and hb−i,j+2 in C-terminal direction. If hb+
i−2,j

exists, sp.front is set to i− 2. If hb−i,j+2 exists, sc.back is updated to j + 2. We proceed as long as
we find hydrogen bonds in HB in compliance with the hydrogen bonding pattern. If at the end of
this procedure at least one hydrogen bond has been found, we add the initial hydrogen bond to
HBS and resume scanning for sequence positions with unmarked bits in FE to find further pairs
of strands. Otherwise, HBS is empty and we drop the two segments sp and sc which are solely
based on the initial (single) hydrogen bond hb±i,j .

Finally, after the scan is finished, SS contains all sequence segments classified as strands and
HBS all hydrogen bonds these segments are based on. Note that although we classify strands in
pairs, we do not save them as pairs but as single segments.

The strand merging procedure of the algorithm creates a blocking fingerprint FB similar to the
Stranded algorithm. We then sort all strand sequence segments SS according to their sequence
positions. For each consecutive pair of segments sj , sj+1 ∈ SS , we calculate the sequence distance
ds(sj , sj+1) = sj+1.front − sj .back similar to the Stranded algorithm and merge the two segments
if the same conditions hold true. If sj and sj+1 are merged, sj+1.front is set to the minimum and
sj+1.back to the maximum of the corresponding limits of both segments. sj is removed from SS

and we proceed checking the distance between sj+1 and its successor sj+2.

Before we create the graph to combine the strands (segments) to sheets, we also shrink the
strands in the same manner as described for the Stranded algorithm. The main difference is that
each segment is self-sufficient. Thus, if a segment does not fulfill the minimum length requirement
and gets deleted, it does not require a reorganization of the data structure (formerly tree). Plus,
the segments are given explicitly and not implicitly by the hydrogen bonds at each vertex.

We now create a graph G = (V,E) based on the segments s ∈ SS to combine the strands
(segments) to sheets. All segments are distinct and do not overlap because otherwise two
overlapping segments would have been merged. In addition, the shrinking procedure does not
create new overlaps as it only shrinks the segments. The creation of the graph is done in two
steps. First, we create a vertex v ∈ V for each segment s ∈ SS and label it with s. Second, we add
edges with respect to the strand hydrogen bonds HBS . For each hydrogen bond hb±i,j ∈ HBS , we
determine the vertices v and w for whose segments sv contains i and sw contains j analogously. If
v and w are not adjacent, we add an edge e = (v, w) to the set of edges E of G and label it with
hb±i,j including its direction (hb+ or hb−) and sense (parallel or anti-parallel). After all hydrogen
bonds in HBS have been added to G, each connected component in G represents a β-sheet and
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each vertex in such a component a strand of that sheet.

The final step deals with the extraction of the sheets and corresponding strands from G. As long
as there are vertices V , we pick a vertex v from G, create a new β-sheet consisting of a strand
covering the residues of the vertex’ segment. We add each neighbor vn of v as a new strand to the
sheet utilizing the hydrogen bond and sense information stored at the incident edge e = (v, vn)

for the strand’s registration. This procedure is recursively called on the neighbors of vn. Each
vertex that has been processed is marked as such to provide a termination criterion in loop-defined
sheets, i.e., β-barrels. As soon as this procedure stops, i.e., all vertices of a connected component
have been processed and added to the sheet, we remove all of its vertices from G.

3.3.3.3 Queued

The Queued algorithm is our most recent one for the assignment of β-sheets. Similar to the Linked
algorithm described in the previous Section 3.3.3.2, it utilizes graphs but avoids the necessity of the
interim data structure of strand hydrogen bonds and strand sequence segments. Their information
is directly modeled in the graph. It also introduces a kink detection procedure and a queue-based
extraction of vertices from the graph to obtain sequence ordered β-sheets. Furthermore, it limits
the detection and processing of hydrogen bonds to the donor-acceptor direction as each hydrogen
bond hb+

i,j implies hb−j,i.

The algorithm starts with the detection of all hydrogen bonds HB similar to the algorithms discussed
before but only takes the donor-acceptor direction (hb+

i,j) into account. Furthermore, we take all
hydrogen bonds in HB into account and do not limit their usage to seed regions.

Using this hydrogen bond information, we create an undirected labeled graph G = (V,E) to group
these hydrogen bonds to strands. Each vertex u ∈ V represents a strand without an explicit
label. Particularly, the vertices do not store any information apart from their incident neighbors
u ∈ V : (v, u) ∈ E. Each edge e ∈ E with e = (v, w) is labeled with the hydrogen bonds between
the strands represented by the incident vertices v and w. If there are no hydrogen bonds between
the vertices v and w, the vertices are not adjacent: e = (v, w) /∈ E.

As long as HB is not empty we pop the first hydrogen bond hb+
i,j with respect to the sequence

position from HB and geometrically determine the sense (parallel or anti-parallel) identical to the
previous algorithms. Next, we search for hydrogen bonds HBS ⊆ HB with respect to the sense
starting at the initial hydrogen bond to the N- and the C-terminus (see Figure 3.5). Note that
HBS initially contains hb. The next hydrogen bond in N-terminal direction to be searched for is
hb+
i−2,j and hb+

j+2,i in C-terminal direction. In contrast to the previous algorithms, we only take
the donor-acceptor direction into account. Thus, whenever we require hb−i,j we search for the
corresponding hb+

j,i hydrogen bond. Each found hydrogen bond is removed from HB and added to
HBS . If searching in both directions has stopped and if |HBS | ≥ 2, a new pair of vertices v, w is
added to the graph G and connected by an edge e = (v, w). e is labeled with the contacts HBS

and the sense. The procedure stops as soon as HB is empty. At this stage, the graph contains
an even number of vertices |V | mod 2 = 0 and |V |2 pairs of distinct adjacent vertices (connected
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components).
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Figure 3.6: Visualization of the merging of two vertices representing strands. Merging two vertices
v, w of two pairs of adjacent vertices u, v and w, x. The result consists of the merged vertex v which is now
adjacent to u and x. The edge label information (hydrogen bond contacts) and the covered sequence residues
are highlighted in blue. Merging takes place due to the overlap of residues 28–30 of the vertices v and w.
This Figure is extracted from [7].

The next step of the algorithm is dedicated to the removal of vertices representing a strand in a
non-extended region of the chain. First, we create a binary fingerprint FB containing the size of
the chain |FB | = |C| bits. Each bit is assigned the initial value 0. We set all bits bi ∈ FB to 1 if the
corresponding residue ri is set as missing. Furthermore, we set all bits to 1 if they are covered
by the residues of a hydrogen-bonded turn with a length of at most 4 of any class (normal-3
and -4, reverse-2, -3, and -4). Using this fingerprint, we search for entirely blocked strands and
corresponding vertices in the graph and remove these. More precisely, for each vertex v ∈ V ,
we calculate its sequence coverage segment sv with sv.front as the minimum and s.back as the
maximum sequence position of the contacts of its incident edge. Please note that the vertex has
only one incident edge as no merging of the adjacent vertex pairs has taken place yet. If all bits
bi ∈ FB with sv.front ≤ i ≤ sv.back are marked in FB , we remove v, its adjacent vertex w, plus the
edge e = (v, w) from G.

We now merge the vertices. For each vertex v ∈ V , we calculate its sequence coverage segment
sv as described before, and sort all segments in ascending order. For each pair of two consecutive
segments sj , sj+1, we calculate the sequence distance ds(sj , sj+1) = sj+1.front − sj .back . If the
segments overlap (ds(sj , sj+1) ≤ 0), or if there is a gap of at most one residue (ds(sj , sj+1) = 1)
and the bits bi ∈ FB with sj .back ≤ i ≤ sj+1.front are not marked (0), we merge the corresponding
vertices. Let v, w ∈ V be vertices to be merged. We delete all edges (w, x) ∈ E and add edges
(v, x) to E. In other words, all neighbors of w are removed and added as neighbors to v without
modifying the edge labels. We update the segment sv of v, delete w from V , and proceed with
sv and its succeeding segment. We stop if no further merging takes place. An example is given
in Figure 3.6. On the left, two pairs of adjacent vertices u, v and w, x are shown. The sequence
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coverage segments are su = (14, 18), sv = (26, 30), sw = (28, 32), and sx = (69, 71) based on
the hydrogen bond contacts the edges are labeled with. The sequence distance ds(sv, sw) is −2.
Therefore, the vertices v, w are merged. The result is depicted on the right hand side of Figure 3.6.

To obtain conformationally stable strand termini and a more consistent assignment, we shrink
the sequence coverage segments of each vertex. Let sv be the sequence coverage segment for
a vertex v ∈ V . For each terminus sv.front , sv.back of sv, we calculate the number of hydrogen
contacts stored at incident edges of v. In our example depicted in Figure 3.6 (right hand side),
the number of contacts for su.front is 1, and for su.back is 2. Note that there must be at least one
hydrogen bond contact that justifies each terminus. In general, we increment sv.front by 1 if the
number of hydrogen contacts is less than 2. We decrement sv.back analogously. Thus, in our
example, the initial su = (14, 18) is shrunk to su = (15, 18). After this procedure, we remove all
vertices v ∈ V whose segments sv are not at least 2 residues long: sv.back − sv.front = 0. The
remaining vertices with the shrunk ranges represent the final strands.

In each strand, we search for kinks, i.e., non-extended regions in strands. For each sequence
segment of length 4 in a strand, we calculate the distance d between the Cα atoms of the first and
the last residue ri and ri+3. If d(ri, ri+3) ≤ 8.5Å, we set a kink between residues ri+1 and ri+2. If
there are consecutive kinked sequence regions, such as (ri, ri+3), (ri+1, ri+4), . . . , (ri+k, ri+k+3)

with a total length l = k + 3 + 1, we set a kink between residues ri+k/2+1 and ri+k/2+2 if l is even
or at residue ri+bk/2c+1 if l is odd. For a given strand spanning residues ri to ri+|s|, a kink is only
reported for residues rj with j ∈ {i + 2, . . . , i + |s| − 1 − 2}. The threshold of 8.5Å was chosen
based on the four-residue Cα–Cα distance histogram for strands shown in Figure 3.7.
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Figure 3.7: Histogram of the four-residue segment Cα–Cα distances for SCOT-assigned strands. The
chosen kink distance is indicated by the dashed purple line. This Figure is extracted from [7].

Finally, each connected component of the graph represents a sheet and each vertex in such a
component a strand of this sheet. All sheets and strands are reported in ascending order with
respect to their sequence coverage segments by the use of a priority queue based on the sequence
positions of these segments. Therefore, the first strand of a sheet is the one with the lowest value
for s.front . This ensures an order-consistent reporting of the strands in the PDB file output.

By the use of the command line option --split-kinked-strands, the strands are split at the kink
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positions. For a given strand s defined on residues ri to ri+|s|−1 and a kink in s between residues
rk and rk+1, the strand is split into two strands s1, s2 from residues ri to rk and rk+1 to ri+|s|. If a
kink is solely defined on a residue rk, this residue is dropped and s1, s2 are defined on ri to rk−1
and rk+1 to ri+|s|−1, respectively. Each split strand (e.g., s1) is assigned a new registration that
involves a residue within its segment.

3.3.4 Helices

We have developed five different algorithms to assign helices, namely, Combined (see Section
3.3.4.1), Kinked (see Section 3.3.4.2), Cut (see Section 3.3.4.3), Blocked (see Section 3.3.4.4),
and Mixed (see Section 3.3.4.5).

The names are given with respect to their main functionality. The Combined algorithm combines or
merges initial helices. The Kinked algorithm introduces the detection of kinks. The Cut algorithm
splits or cuts helices with respect to four-residue segment Cα–Cα distances. The Blocked algorithm
adds a blocking mechanism to the merging procedure. Finally, the Mixed algorithm assigns the
class mixed to all helices for which a distinct class cannot be determined. It is also the helix
assignment algorithm which is incorporated into the latest version of SCOT.

3.3.4.1 Combined

The Combined algorithm utilizes the classified turns (see Section 3.3.2) to assign right-handed α-,
310-, π-, γ-, and left-handed α-, and 310-helices. Initial core helices based on helix-class-specific
turns are later combined to the final helices.

The algorithm processes each of the two helix categories (right- and left-handed) separately. Each
helix class within a category is based on an individual turn type (e.g., normal-5 1 for α-helices). All
categories, classes, corresponding turn types, and parameters are shown in Table 3.3. We will
explain the assignment of helices for the right-handed helices. The procedure is identical for the
left-handed helices but based on the classes, turns, and parameters of that category.

The category of right-handed helices consists of α-, 310-, π-, and γ-helices. It also contains the
extensions which are based on two open turn types, namely open-5 1 (α), open-4 2 (310), and
open-6 4 (π) turns. These turn types are used to extend right-handed helices with helical regions
based on open turns that have a helical conformation with respect to the dihedral angles (see
Table 6.1, appendix) similar to their hydrogen-bonded counterparts (normal-5 1, normal-4 2, and
normal-6 2 turns).

The procedure to assign right-handed helices is separated in two parts. First, the core helices for
each class are determined based on the turn overlaps. Second, we combine these core helices to
obtain the final helices. We will explain the determination of the core helices for the α-helices.

To determine the turn overlaps, we calculate the number of turns (normal-5 1 for α-helices) each
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Helix Turn Overlaps
Right-handed Category Length Class Overlaps Length

α (1) normal 5 1 3 1

310 (5) normal 4 1 2 2

π (3) normal 6 2 2 5

γ (4) normal 3 1 2 2

Extension open 5 1 4 1

open 4 2
open 6 4

Left-handed

α (6) normal 5 9 3 1

310 (11) normal 4 3 2 2

Table 3.3: Parameters and turn types used by the Combined algorithm. Parameters and turn types for
the classification of helices and their extensions used by the Combined algorithm (see Section 3.3.4.1). See
Table 6.1, appendix for the average dihedral angles, hydrogen bond energies, and four-residue segment Cα–
Cα distances of the respective turn classes. The numbers in parentheses indicate the SSE class according to
the PDB file format.

residue is spanned by using an integer fingerprint Fα of the size of the chain |Fα| = |C|. Next, we
search for sequence segments of consecutive sequence positions i for which every bi ∈ Fα is at
least 3 and of a sequence length of at least 1. Each such sequence segment s defines a core helix
from s.front to s.back . Each core helix also contains the sum of its corresponding turn overlaps∑s.back
i=s.front bi.

The combination step combines the core helices of all classes of this category (α, 310, π, γ,
extensions). We sort all core helices H with respect to their sequence positions. We search for
subsets HS ⊆ H of transitively overlapping core helices with an overlap of at least 1 residue. In
other words, for any two helices hs, ht ∈ HS there is a subset of consecutively overlapping helices
in HS for which hs is the first and ht is the last one or vice versa. In the words of graph theory,
assume all core helices in HS are vertices of a graph G and there is an edge between any two
vertices if their corresponding helices overlap, then G is connected.

After this combination procedure, the core helices of each remaining subset HS represent the
(final) helix which is defined from the residue with the smallest to the one with the highest sequence
position of the residues of all core helices h ∈ HS . Its class is based on the sum of the lengths of
the core helices of each of the four classes. The class with the highest coverage defines the final
helix class. If there are multiple maxima, we calculate the number of turn overlaps among all core
helices for each class. Similarly, the class with the maximum number of turn overlaps defines the
final helix class. However, if there are also multiple maxima, we report the final helix for each class
with maximal turn overlaps separately. In other words, if, based on the two criteria, a distinct class
cannot be determined, the helix is reported for each of the maximal classes. This is due to the fact
that the PDB File format does not support multiple helix class annotations within a single HELIX

line, i.e., the sequence segment is reported several times for different classes.
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Finally, all right- and left-handed helices are joined and sorted ascending with respect to their
sequence positions.

3.3.4.2 Kinked

The Kinked algorithm assigns the same categories and helix classes as the Combined algorithm
(see Section 3.3.4.1). The main difference is the introduction of three-layered core helices, each
consisting of a core, a hull, and an extension. This separates the extension from the hydrogen
bond-based core helix classes. Furthermore, it blocks the merging of overlapping helices if specific
open turns are located at the point of overlap. The algorithm also supports the determination of
kinks. All categories, classes and corresponding turn types, and parameters are given in Table 3.4.

Helix Turn Overlaps
Right-handed Category Length Class Overlaps Length

α (1) normal 5 1 2 3

310 (5) normal 4 1 2 2

π (3) normal 6 2 2 5

γ (4) normal 3 1 2 2

Extension open 5 1 3 1

open 4 2
open 6 4

Left-handed

α (6) normal 5 9 2 2

310 (11) normal 4 3 2 2

Extension open 5 46 2 2

open 4 15

Table 3.4: Parameters and turn types used by the Kinked algorithm. Parameters and turn types for
the classification of helices and their extensions used by the Kinked algorithm (see Section 3.3.4.2). See
Table 6.1, appendix for the average dihedral angles, hydrogen bond energies, and four-residue segment Cα–
Cα distances of the respective turn classes. The numbers in parentheses indicate the SSE class according to
the PDB file format.

Similar to the Combined algorithm, each category is processed separately, but there are some
differences in the processing of right- and left-handed helices. Therefore, we will explain the helix
assignment by reference to the right-handed helices and point out the differences to the left-handed
helices thereafter.

The classification of helices starts with the determination of the set of extensions E. These
extensions are used to extend the hydrogen-bonded cores of the helices by geometrically similar
(helical) conformations. For each residue, we determine the number of specific open spanning
turns using an integer fingerprint FE of the size of the chain |FE | = |C|. We use open turns whose
dihedral angles (see Table 6.1, appendix) correspond to those of the normal turns defining the
corresponding helix. For the right-handed helices, open-5 1 (α), open-4 2 (310), and open-6 4 (π)
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Sequence numbers
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Figure 3.8: Visualization of the layers of a core helix. Visualization of the core helix layer definition based
on an α-core helix at residues 193–209 of 1lg7A@pdb. The core (green) is based on three normal-5 1 turns
(highlighted in orange) which lead to a helix turn overlap of at least 2 from residue 201 to 205. The hull
(purple) requires at least one normal-5 1 turn. The extension shown in this example is based on open-5 1
and open-6 4 turns. The required turn overlap of at least 3 is given from residue 200 to 208. This Figure is
reproduced by permission of Bioinformatics (2019) [7].

are used.

An extension e ∈ E is a sequence segment with 1 ≤ e.front ≤ e.back ≤ |FE | of consecutive indices.
The corresponding residues rk of all integers bk ∈ |FE | with ∀k ∈ {e.front , . . . , e.back} are spanned
by at least 3 turns: 3 ≤ bk. An example is given in the lower half of Figure 3.8. For residues
193–209 of 1lg7A@pdb, the aforementioned open turns and the corresponding excerpt of the
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fingerprint are shown. The extension is defined on residues 200–208.

Next, we determine the cores and hulls of the helices and add the extensions to obtain three-
layered core helices, as exemplarily shown in Figure 3.8. We determine the core helices for each
class separately (e.g., α, 310). These are determined based on the turn overlaps similar to the
extensions. This procedure is described for the example of an α-helix. The integer fingerprint
Fα is solely based on the normal-5 1 turns. The cores are defined as continuous segments with
an overlap of at least 2 and of a sequence length of at least 3. The hull, which is based on the
surrounding residues that are overlapped by at least 1 turn (see Figure 3.8), is assigned to each
core. We also assign an extension e ∈ E to the core helix if its core and e share at least one
residue. Please note that an extension can be assigned to multiple core helices of different classes.

Class Turn pos.

4 2
5 2
8 2

1 3
6 3
19 3

(a) Open-4

Class Turn pos.

2 2
8 2

14 3
20 3
31 3
37 3

3 4
5 4
6 4
12 4
19 4

(b) Open-5

Class Turn pos.

1 2
20 2
67 2
12 2,3

2 3
31 3

7 4
11 4
21 4

46 4,5
6 5
10 5
17 5
29 5

(c) Open-6

Table 3.5: Open turns and their relative turn sequence positions preventing the merging of helices.
All open turns and their relative turn sequence positions whose corresponding bits bi ∈ FB are marked and,
thus, block the merging of two core helices in the merging procedure.

At this point, H contains all three-layered core helices. Each core helix consists of the three
aforementioned layers, namely, a core, a hull, and an extension layer, plus a class (e.g., α for core
helices based on normal-5 1 turns). We now merge the core helices. To suppress the merging
of overlapping core helices in certain regions of the sequence, we create a binary fingerprint FB
consisting of |C| bits. For the open turns depicted in Table 3.5, we mark the corresponding bits in
FB . Each marked bit bi ∈ FB indicates a blocked sequence position i. For instance, we mark bi+3

if there is an open-5 20 turn starting at sequence position i. For this list of open turns and their
positions, we analyzed all open turns that are within helices. All turns whose Cα–Cα distance was
significantly higher than distances commonly observed in helices were selected. The turn positions
were defined by visual inspection.

Next, we sort all core helicesH of the current category (right-handed) with respect to their sequence
positions (ascending). Let hj be the first core helix in H. We create a sequence segment s based
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on the extension s = hj .extension. The following merging procedure checks pairs of consecutive
helices for overlaps. The initial pair is hj and hj+1. There are four possible overlaps: cores, hulls
(but no cores), extensions (but no cores and hulls), and no overlap at all. For instance, there is
an overlap of cores if hj .core.back ≥ hj+1.core.front . In such a case, we merge hj and hj+1 by
extending s.back to hj+1.extension.back and proceed to check for overlaps between hj+1 and its
successor hj+2.

If only the hulls overlap, we search for sequence positions i ∈ {hj+1.hull .front + 1, . . . , hj .hull .back

− 1} corresponding to marked bits bi ∈ FB. In other words, we search for a blocked sequence
position in the overlapping sequence region excluding both hull terminus residues. If there is at
least one marked sequence position, the merging is blocked. Let i be the minimum and k be
the maximum sequence position with bi = 1 and bk = 1 in the defined overlapping region. We
set s.back to i and report s as the (final) helix. We create a new segment s based on hj+1 as
initial core helix but with s.front set to k instead of hj+1.extension.front , and start a new merging
procedure. Otherwise, if there are no bits marked or sequence positions blocked, we also merge
the two core helices hj and hj+1 by extending s as explained for overlapping cores and additionally
search for kinks between the cores of hj and hj+1 here. At first, we create an integer fingerprint
FK analogously to FE , but based on the normal turns corresponding to the helix classes of hj and
hj+1. For instance, if hj is an α- and hj+1 a 310-core helix, we create FK based on normal-5 1 and
normal-4 2 turns. FK covers the sequence positions from hj .core.back + 1 to hj+1.core.front − 1.
To identify kinks we search for valleys in FK . Each valley is a consecutive sequence segment sv
for which all corresponding integers bi ∈ FK have equal values but the direct surrounding integers
have a higher value. We define a kink for each segment sv (valley ) at the residue of its center, i.e.,
at sequence position b sv.front+sv.back2 c. The class of a kink is composed of two digits representing
the classes of its surrounding core helices, e.g., 15 for a kink between an α- and a 310-helix core.

If only the extensions overlap, we remove or reduce the extensions between the two core helices
hj and hj+1 by setting s.back to hj .hull .back and reporting s as a helix. We proceed with a new
segment starting with the core helix hj+1 and setting its front to hj+1.hull .front . If there is no
overlap at all, we report s as a helix and proceed with hj+1 and a new segment.

We assign classes to the reported helices (segments) based on the sequence coverage and
the overlaps of the helix-class defining turns, similar to the Combined algorithm described in
Section 3.3.4.1.

There are two differences in the procedure for the assignment of left-handed helices. First, we
do not block the merging of left-handed helices. Second, to maintain a two digit number for the
class of a kink, the classes of its surrounding core helices are transformed from the left- to their
right-handed counter part integers. The class of a kink between a left-handed α- and a 310-core
helix is 15.

Finally, all right- and left-handed helices are joint and sorted ascending with respect to their
sequence positions. All helices with a sequence length of at least 3 are reported.
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3.3.4.3 Cut

Compared to the Kinked algorithm to assign helices described in the previous section (see
Section 3.3.4.2), the Cut algorithm additionally supports a new helix category, namely, ribbon,
consisting of PPII and (left-handed) 2.27-helices. It also introduces a splitting procedure for cores
based on Cα–Cα distances and a Purity for the assigned helix class based on the number of
turn overlaps. The merging procedure actually merges core helices instead of using a sequence
segment and calculates the sequence coverage for each class by counting covered residues
instead of summing up core helix lengths. All categories, classes and corresponding turn types,
parameters, and the new splitting distances are shown in Table 3.6.

Helix Turn Overlaps Splitting
Right-handed Category Length Class Overlaps Length Distance

α (1) normal 5 1 2 3 > 6.25Å
310 (5) normal 4 1 2 2 > 6.55Å
π (3) normal 6 2 2 5 > 7.00Å
Extension open 5 1 3 1 -

open 4 2
open 6 4

Left-handed

α (6) normal 5 9 2 2 -
310 (11) normal 4 3 2 2 -

Ribbon

Polyproline II (10) open 4 9 2 4 < 7.45Å
2.27 (8) normal 3 1 2 2 -

Table 3.6: Parameters and turn types used by the Cut algorithm. Parameters and turn types for the
classification of helices and their extensions used by the Cut algorithm (see Section 3.3.4.3). See Table 6.1,
appendix for the average dihedral angles, hydrogen bond energies, and four-residue segment Cα–Cα
distances of the respective turn classes. The numbers in parentheses indicate the SSE class according to the
PDB file format.

Similar to the description of the Kinked algorithm, we will also describe the procedure of the Cut
algorithm according to the category of right-handed helices and point out the differences to the
categories of left-handed and of ribbon helices thereafter. The category of right-handed helices
consists of α-, 310-, and π-helices. The formerly included γ-helices were identified as 2.27-helices
and moved to the category of ribbon helices. The π-helices are also processed differently. In
contrast to other right-handed helices, we do not assign extensions to π-helices. Their extensions
are identical to their hulls. We identify all right-handed core helices similar to the Kinked algorithm.

At this point, H contains all three-layered (right-handed) core helices. Each core helix consists
of the three aforementioned layers, namely a core, a hull, and an extension layer, plus a helix
class (e.g., α for core helices based on normal-5 1 turns). We now split the core helices to obtain
stable helix conformations. The splitting is based on four-residue segment Cα–Cα distances, which
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Figure 3.9: Histograms of the four-residue segment Cα–Cα distances for different helix classes. His-
tograms of the four-residue segment Cα–Cα distances for SCOT-assigned right-handed α- (a), 310- (b), and
π-helices (c) and PPII helices (d) before the introduction of the core helix splitting procedure. The chosen
splitting distance is indicated by the dashed purple line in each histogram. This Figure is extracted from [7].

were empirically derived by analyzing these distances with SCOT before implementing the splitting
procedure. Figure 3.9 shows the corresponding histograms and the distances we derived for each
helix class.

The spitting procedure starts with the calculation of the maximal sequence segment smax =

(min(h.hull .front , h.extension.front),max(h.hull .back , h.extension.back)) for each core helix h ∈ H.
For each four-residue Cα–Cα segment s within {smax.front − 1, . . . , smax.back + 1}, we calculate
the distance d between the Cα atoms of the first residue rs.front and the last residue rs.back . If d is
above the core helix class-specific threshold (e.g., 6.25Å for α-helices, see Table 3.6), we split the
core helix between residues rs.front+1 and rs.back−1. If the split is outside the core of h, we keep the
split part that contains the core. We retain only those split core helices whose smax has a length of
at least 3. Figure 3.10 depicts an example of the splitting procedure. At the top the initial core helix
h is shown. The vertical purple lines indicate sequence positions where the distance is above the
threshold. For instance, the first purple line is the result of a distance above the threshold between
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the Cα atoms of the residues at 194 and 197. The core helix h is split into core helices h1, h2, and
h3. We do not create a core helix for the segment of residues 193–195 because there is no core
involved in this segment. We also drop the split core helix from residue 199 to 200 because its
length is below the required minimum of 3.

Sequence numbers
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209

h

Core

Hull

Extension

Split core helices h1 h2 h3

Figure 3.10: Generic example of the splitting of a core helix. Generic example of the splitting of a core
helix h by the Cut algorithm (see Section 3.3.4.3). There are four splits (purple lines) based on Cα–Cα
distances above the threshold between residues 194–197, 197–200, 199–202, and 204–207 leading to 5

segments. The first segment from residue 193 to 195 does not contain a part of the core and is, therefore,
dropped. The segment from residue 199 to 200 is too short and is, therefore, also dropped. The segment
from residue 196 to 198 contains a part of the core, is at least 3 residues long, and, thus, leads to the new
core helix h1. The same holds true for the segments 201–205 and 206–209 leading to core helices h2 and h3.
This Figure is extracted from [7].

We determine kinks in each core helix h ∈ H. First, we create an integer fingerprint FN analogously
to the Kinked algorithm but based on the normal turns of helices of this category: normal-5 1 (α),
normal-4 2 (310), and normal-6 4 (π) turns. Next, we calculate the minimum number of overlaps
for a residue that indicates a kink. For that, we determine the maximal value omax (turn overlaps)
of the integers bi ∈ FN . The maximal threshold t for a kink is set to t = max(0,min(5, omax)− 2).
Whenever the turn overlap bi ∈ FN for a residue ri is at least 2 smaller compared to the maximum
overlap omax, ri is involved in a kink. Each sequence segment s with ∀i ∈ {s.front , . . . , s.back} and
bi ∈ FN : bi ≥ t defines a kink at its center. If the length |s| is even, the kink is defined between
both central residues. Otherwise, the kink is defined at the central residue. Inside a core, the digits
of the kink’s class are equal (e.g., 11 for a kink inside an α-helix core). Otherwise, the digits may
differ, e.g., 15 for a kink between an α- and a 310-helix core. Such kinks are determined during the
following merging procedure and indicate separate conformationally distinct regions or classes of
the final helix.

In contrast to the Kinked core merging procedure using a sequence segment to define a merged
helix, we directly merge core helices here. Furthermore, we do not block core helices in the
merging procedure as this functionality is covered by the splitting of core helices described above.
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First, we sort the core helices in H with respect to the sequence positions of their cores (ascending).
Note that H contains all core helices of this category. Then, for two consecutive core helices
hi, hi+1 ∈ H, we calculate the overlap of their layers. There are four possible overlaps: cores,
hulls (but no cores), extensions (but no cores and hulls), and no overlap at all. For instance, if
there is an overlap of cores if hi.core.back ≥ hi+1.core.front , we merge hi and hi+1 by merging
their layers. The core of the merged helix hi is set to hi.core = (min(hi.core.front , hi+1.core.front),

max(hi.core.back , hi+1.core.back). The hull and extension are set analogously. We also merge the
sets of kinks, i.e., hi.kinks = hi.kinks∪hi+1.kinks . We remove hi+1 fromH and proceed with hi and
its new successor. If only the hulls overlap, we also merge the helices, but search for kinks between
the cores of the helices hi.core.back and hi+1.core.front in the same manner as we searched for
kinks in cores. If only the extensions overlap, we remove or reduce the extensions between the
two helices in such a way, that each extension is limited to the respective hull. The extension of hi
is set to hi.extension.back = min(hi.hull .back , hi.extension.back) and the extension of hi+1 is set
to hi+1.extension.front = max(hi+1.hull .front , hi+1.extension.front) analogously. This prevents
regions within helices that are not stabilized by at least one hydrogen bond-based turn. Finally,
if there is no overlap at all, we proceed with hi+1 and its successor. In each merging operation,
we store the sequence coverage (covered residues) and turn overlaps for each class of the core
helices the merged helix originates from. For instance, the reported helix of the core helix in
Figure 3.8 is defined on residues 200–208.

After the merging procedure, we determine the class of each of the core helices h ∈ H which
works similar to the Combined algorithm (see Section 3.3.4.1). In contrast, however, the calculation
of the sequence coverage does not sum up the lengths of the encompassed helices during the
merging procedure but uses a set of covered residues. This avoids the double counting of residues
in the overlaps of core helices of the same class. For instance, let h1, h2 ∈ H be α and h3 ∈ H be
310 core helices with cores defined on residues 3–12, 9–16, and 15–30 respectively. The sequence
coverage based on the lengths is α: 18 and 310: 16 whereas the coverage based on a set of
residues is α: 14 and 310: 16 resulting in a different final helix class assignment (310 instead of α).
The turn overlaps are calculated for the merged helix, to avoid the same issue. Furthermore, we
add the calculation of the Purity. If the class for h can be defined based on the sequence coverage,
the Purity is set to 1. Otherwise, we calculate the Purity based on the turn overlaps. We calculate
the total sum o of all turn overlaps and also the sums for each class separately (e.g., oα for α-core
helices), both with respect to the maximal sequence segment smax of h. The Purity is calculated by
the class-specific turn overlaps divided by the total number of turn overlaps (e.g., oαo ).

Finally, all core helices h ∈ H are reported as helices from the minimum of the hull and the
extension to the N-terminus (front) and the maximum to the C-terminus (back) analogously.

The assignment of left-handed helices is identical to the one of the right-handed helices with some
exceptions. First, we do not determine kinks, neither in cores nor in hulls. Second, we do not
assign extensions or hulls. Both are set to be identical to the cores. Third, the Purity is based on
the turn overlaps of the turns used within this category (normal-5 9, normal-4 3).

There are two helices classes in the category of ribbon helices: PPII and (left-handed) 2.27-helices,
referred to as ribbon due to the extended character of the backbone conformation. Similar to the
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category of left-handed helices, the Purity is calculated based on the turn overlaps of the turns
used within this category (open-4 9, normal-3 1). We also do not search for kinks and do not
assign extensions here. But we assign hulls for ribbon helices. Furthermore, we do not split the
core helices of 2.27-helices. However, we split the PPII core helices in a similar manner compared
to the fingerprint-based blocking of strands described in Section 3.3.3.3.

For each PPII core helix h, we create a binary fingerprint FP of the length of the maximal sequence
segment smax as described for right-handed helices. For every segment s of length 4 within smax,
we calculate the distance d between the Cα atoms of the first rs.front and the last residue rs.back . If
d is below 7.45Å (see Figure 3.9d for the Cα–Cα distance histogram), we set the corresponding
bits of the central two residues of s (rs.front+1 and rs.front+2) in FP . We also set each bit bi ∈ FP if
the corresponding residue ri is also involved in a strand to favor strands (hydrogen bond-stabilized)
over PPII helices. Each set bit bi = 1 defines a split and we keep only those parts of the helix for
which all bits are not set (bi = 0). Similarly to the splitting of right-handed helices, we drop all parts
that do not contain a residue of the core or are not at least 3 residues long.

Finally, all right- and left-handed as well as ribbon helices are joined and sorted ascending with
respect to their sequence positions. All helices with a sequence length of at least 3 are reported.

3.3.4.4 Blocked

The Blocked algorithm to assign helices adds a blocking functionality to the merging procedure,
which was introduced for the Kinked (see Section 3.3.4.2) but dropped in the Cut algorithm (see
Section 3.3.4.3).

We assign helices using the categories, classes and corresponding turn types, parameters, and
splitting distances used by the Cut algorithm (see Table 3.6). We identically determine the core
helices, but whenever we split a helix, we mark residues that become core helix termini of the
split helices as blocked. In the example depicted in Figure 3.10 residues 196 and 198 of helix h1,
residues 201 and 205 of h2, and residue 206 of h3 are marked as blocked. These marked termini
(block positions) are used during the merging procedure.

Before the core helices are merged, we delete all impure core helices. A helix is assumed to be
impure if there are more turn overlaps of turns corresponding to other helix classes within this core
helix than of the turns of this core helix class. In more detail, for a given core helix h, we determine
the maximal sequence segment smax (see Section 3.3.4.3). We calculate the turn overlaps for all
classes of the category under investigation (e.g., right-handed) in the sequence segment smax. If
the turn overlaps o for the class of h do not define a maximum, h is assumed to be impure and
deleted.

The merging procedure is similar to the one of the Cut algorithm. The major difference is that
when two consecutive core helices hi and hi+1 overlap, we may block the merging of these helices
based on the aforementioned block positions. Whenever the hulls of hi and hi+1 overlap, we still
merge both helices if one of the following conditions holds true. First, the extensions of hi and
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hi+1 are identical, i.e., defined on the same residues. Second, hi+1 is fully encapsulated and at
least one terminus (front or back residue) is not marked as blocked. Fully encapsulated means
that hi+1.extension.back ≤ hi.extension.back . Note that hi.extension.front ≤ hi+1.extension.front

is implicitly given due to the sorting/order and at least the front or the back of both must be different
because the first condition was evaluated as false. Third, hi+1 is not fully encapsulated and neither
hi.extension.back nor hi+1.extension.front are marked as blocked. The merging itself is identical
to the previously introduced algorithm. If we do not merge hi and hi+1 due to one of these three
conditions, we remove or reduce the extensions of both helices similar to the case of overlapping
extensions described for the previous algorithm. In a nutshell, the back extension of hi is limited to
the maximum of the back of the core and the hull. The front of the extension of hi+1 is handled
analogously. However, there is still one final case which is handled differently. If the merging of hi
and hi+1 is blocked, we report hi+1 as an individual helix if it is fully encapsulated and fully blocked,
i.e., both termini of hi+1 are block positions.

The succeeding steps, including the assignment of the classes, the filtering with respect to the
required length, the processing of left-handed and ribbon helices, and the final sorting, are identical
to the Cut algorithm (see Section 3.3.4.3).

3.3.4.5 Mixed

The Mixed algorithm for the assignment of helices regroups the helix classes and redefines the
importance of π-helices as a (semi) separate group. In addition, the 2.27-helices of the category of
ribbon helices were identified as left-handed 2.27-helices and their right-handed counterparts are
introduced. However, the difference to the other algorithms is the processing of multiple maxima
during the determination of a helix class. In contrast to these algorithms, we do not report the
identical helix for each maximal class but assign the class mixed (0) and report the helix only once.
Another difference is that during the merging procedure, we drop the blocking functionality which
was previously introduced by the Blocked algorithm (see Section 3.3.4.4). All categories, classes
and corresponding turn types, parameters, and the splitting distances are shown in Table 3.7.

The determination of the extensions E, the core helices H, and the kinks in core helices is identical
to the Cut algorithm (see Section 3.3.4.3) with two exceptions for the right-handed helices. First,
the extensions are based on the open turn counterparts with respect to the dihedral angles (see
Table 6.1, appendix) of the normal turns that are used for the right-handed helices plus the ones for
the π-helices. Even though π-helices are not part of this category, they are frequently located within
right-handed helices or at their termini and, therefore, influence and may extend these helices.
Second, the determination of kinks utilizes an integer fingerprint FK based on the normal turns
of helices of this category: normal-5 1 (α), normal-4 1 (310), and normal-6 2 (π) turns. Again we
include the turns for the π-helices.

The merging procedure is identical to the one of the Cut algorithm with the following two exceptions.
The determination of kinks in hulls also includes the normal-6 2 of π-helices for the creation of
the fingerprint FK . The other exception concerns the assignment of the final class to a core helix
h ∈ H. We solely take the turn overlaps into consideration and do not use the sequence coverage.
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Helix Turn Overlaps Splitting
Right-handed Category Length Class Overlaps Length Distance

α (1) normal 5 1 2 3 > 6.25Å
310 (5) normal 4 1 2 2 > 6.55Å
Extension open 5 1 3 1 -

open 4 2
open 6 4

π
π (3) normal 6 2 2 5 > 7.00Å
Extension open 6 4 2 1 -

Left-handed

α (6) normal 5 9 2 2 -
310 (11) normal 4 3 2 2 -

Ribbon

Polyproline II (10) open 4 9 2 4 < 7.45Å
Right-handed 2.27 (4) normal 3 2 2 2 -
Left-handed 2.27 (8) normal 3 1 2 2 -

Table 3.7: Parameters and turn types used by the Mixed algorithm. Parameters and turn types for
the classification of helices and their extensions used by the Mixed algorithm (see Section 3.3.4.5). See
Table 6.1, appendix for the average dihedral angles, hydrogen bond energies, and four-residue segment Cα–
Cα distances of the respective turn classes. The numbers in parentheses indicate the SSE class according to
the PDB file format. This Table is extracted from [7].

The Purity of a helix h is reported for all classes that contribute to the final class and not solely for
the maximal classes. Furthermore, if there is a distinct maximum for the turn overlaps, we report
the corresponding class (α or 310). Otherwise, we report the helix class mixed. See Section 3.3.4.3
for more details on the calculation of the Purity.

Before we report the final helices, we perform two filtering steps. First, we remove all core helices
that are shorter than 3 residues. Second, we remove all kinks that are in a three-residue proximity
of a helix terminus (N and C) as helix termini are more flexible which leads to high deviations from
the ideal distances in helices.

The helices can also be split at the kink positions similar to the β-strands using the command line
option --split-kinked-helices.

Finally, all core helices h ∈ H are reported as helices from the minimum sequence position of the
hull and the extension and the maximum sequence position analogously.

π-helices are assigned independent of all other helix classes. The turns and parameters for the
π-helix classification are given in Table 3.7. We split π-helices as specified for α- and 310-helices
using a Cα–Cα distance of 7Å as defined based on the histogram in Figure 3.9c. In contrast to
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the assignment of the right-handed helices, the extensions are solely based on open-6 4 turns
with an overlap of at least 2. The Purity and kinks are also determined based on the turn overlaps
of normal-5 1, normal-4 1, and normal-6 2 turns. No merging with helices of a different class is
performed leading to helices which might overlap with helices of other classes. The merging is
restricted to π-helices only.

In the category of left-handed helices, which contains the left-handed α- and 310-helices, we do not
split the core helices. We also do not determine kinks here because these helices are usually too
short to contain any kinks with respect to our definition. The Purity is based on the turn overlaps of
the turns used within this category (normal-5 9, normal-4 3).

There are three helix classes in our category of ribbon helices: PPII helices, and right- and left-
handed 2.27-helices. Similar to the category of left-handed helices, the Purity is calculated based
on the turn overlaps of the turns used within this category (open-4 9, normal-3 2, normal-3 1). We
also do not search for kinks, nor do we assign extensions here. Furthermore, we do not split the
core helices of 2.27-helices. However, we split the core helices of the PPII helices in the same way
as already described in detail for the Cut algorithm in Section 3.3.4.3.

Finally, all right-handed, left-handed, and ribbon helices are joint and sorted ascending with respect
to their sequence positions. All helices with a sequence length of at least 3 are reported.

3.3.5 Output: PDB File Writing

For each PDB input file, we write a PDB output file containing the SCOT SSE assignment and an
optional PyMOL [32] script on request using the command line option --write-pymol.

3.3.5.1 PDB File

The PDB output file contains all lines from the PDB input file except for the HELIX, SHEET, TURN,
REMARK 650, REMARK 700, and REMARK 750 lines. The assigned primary SSEs, such as helices
and sheets, are provided in the PDB file format. In the HELIX and TURN lines, the serial number
(columns 8–10) is reset to 1 for each chain. In the HELIX lines, the helix identifier (columns 12–14)
is equal to the serial number. In the SHEET lines, we use an integer value for the representation of
the sheet identifier (columns 12–14). In the TURN lines, the turn identifier (columns 12–14) is reset
for each turn family (normal , reverse, and open). In addition, columns 40–66 contain the human
readable turn family, length, and class. This information is also given in numeric format at the end
of the TURN line (columns 68, 70, and 72–73). The last column contains the energy of the hydrogen
bond for normal and reverse turns or the distance from the first residue’s to the last residue’s Cα
atom for open turns.

We use the REMARK lines to provide additional information on the assigned SSEs. We use the
sections REMARK 650 for the helix, the REMARK 700 for the sheet, and the REMARK 750 for the turn
information. Each of these remark sections starts with the SSE the section is dedicated to and
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the name of the determination method (SCOT). The REMARK 650 lines contain two separate tables.
The first table provides the assigned kinks for the helices. The first columns contain the helix serial
number (columns 12–15) and identifier (columns 17–20) followed by the residues defining the kink
(columns 22–32 and 34–44), and the kink class (columns 46–47). The table headings are also
given. The second table contains the helix class Purities. The first two columns are equal to the
previous table followed by the chain identifier (column 22), the class (columns 25–26), and the
Purity (columns 28–32). The REMARK 700 lines provide the kink information for sheets which is in
the same format as described for the helix kink information. As we do not assign classes to kinks
in sheets, the class column is left blank. The REMARK 750 lines contain a short description of the
tailing columns in the TURN lines.

Our PDB file output is suitable for most visualization tools, such as PyMOL [32] or UCSF
Chimera [17], because we particularly do not make use of the comment columns in HELIX lines.

There are two more options to modify the PDB file output. If the option --write-hydrogens is used,
the reassigned hydrogen atoms are added to the output file. Each hydrogen atom is written in the
line preceding the ATOM lines of the corresponding residue. We use the atom serial of the following
atom for the hydrogen atom. The option --write-sse-only limits the content of the output file to
the HELIX, SHEET, and TURN lines.

3.3.5.2 PyMOL Visualization Script

The optional PyMOL script visualizes the assigned helices and sheets with separate colors for
different helix classes and strands (see Table 2.1 for the color coding). Furthermore, the script
also highlights kinks and termini. We use the AngleBetweenHelices module by Holder [91] to
calculate the angle between kink-separated parts of helices and strands and highlight these parts
by additional vector representations of the split SSEs. We updated the script to color these vectors
gray and decreased their radius to avoid any distraction from the colored SSEs.

3.4 SHAFT Reimplementation

The Relibase [92] server is a web-based system for searching and analyzing protein-ligand
structures in the PDB. The standalone version as well as the publicly provided web service of the
software was retired by the CCDC in 2018. The SHAFT algorithm by Koch and Cole [18] was
originally implemented in the Relibase server. However, before we have developed SCOT, we
chose to reimplement the SHAFT algorithm as a standalone application due to several limitations of
the Relibase core structure. For instance, there is no support for OXT hydrogen bonds. In addition,
hydrogen atoms at N atoms with alternate locations are not supported either. The requirement to
use the Relibase itself to apply the SHAFT classification limited its usability.

Our reimplementation is based on the same implementation framework we also use for SCOT. This
means that it shares the implementation scheme, its parallelization support, and especially its input
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and output procedures described in Sections 3.3.1 and 3.3.5. SHAFT requires its individual ESOM
files and additional files for each turn category containing the means and standard deviations of
the weights (*.msd). These files also have to follow the naming scheme presented for SCOT (e.g.,
normal-5.msd).

Furthermore, we applied bug fixes and added some functionalities to the algorithm. Due to the
utilization of the SCOT parsing procedure, we were able to add the support for OXT atoms at
the C-terminus for the reverse turn detection similar to SCOT. We also fixed the detection of the
Schellman motif during the C-cap assignment for α-helices (see Figure 3.11). For a current helix
terminus at sequence position i, the original code required an open-4 1 turn at i − 1 which has
to be i + 1 to identify the Schellman motif and to extend the helix terminus. The extension was
reduced from i+ 4 to i+ 3. These changes were done according to Aurora et al. [93].

ri−1 ri+1 ri+2 ri+3 ri+5ri ri+4

(a) SHAFT

ri−1 ri+1 ri+2 ri+4 ri+5ri ri+3

(b) Aurora

Figure 3.11: Visualization of the Schellman Ccap motif. Visualization of the Schellman Ccap motif of the
original SHAFT implementation by Koch and Cole [18] (a) and the reimplementation according to Aurora et
al. [93] (b). The current residue ri and the normal-6 1 and normal-4 1 turns constituting the Schellman motif
are colored in blue, and the extension and the extended residue are colored in purple.

Our reimplementation also provides output in the PDB file format. In contrast to the Relibase output,
we drop the input helix annotation (HELIX lines) and solely provide the SHAFT helix annotation
without the use of comments. The format of the TURN lines was adapted to the one of the HELIX

lines. This especially affects the columns for the residue and category/class information. We also
added the energy for normal and reverse, the Cα–Cα distance for open turns, and the category and
class in numeric format at the end of the lines (see Section 3.3.5 for the exact column indices). We
write REMARK 650 and REMARK 750 lines solely containing the name of the determination method.
The optional PyMOL output is not available for SHAFT.

3.5 Results

This section covers the comparison and evaluation of the different algorithms developed for SCOT
described in Section 3.3. For a detailed comparison of SCOT to other SSAMs be referred to the
results section of SNOT (see Section 4.6).
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3.5.1 Accuracy of the PDB File Parsing Procedure

The parsing of PDB files is a considerable and oftentimes underrated challenge. For instance, the
fact that the sequence numbering is not necessarily monotonically increasing means that for two
given residues ri and rj one cannot say whether ri comes first in sequence or not based on the
corresponding sequence numbers. This also holds true if i < j. In 5k2a@pdb sequence position
208 is followed by 1001, 1046 by 1056, and 1106 by 219. In other cases, the sequence numbering
contains gaps for which no missing residues are defined, such as between sequence positions
205 and 209 in 3sd9@pdb. Some of these issues are motivated by assigning identical sequence
numbers to residues with similar functions among proteins of different species.

We validated our PDB file parsing procedure with the help of the 2018 copy of the PDB dataset. We
compared the SEQRES sequence information and, especially, the residue order of the input PDB file
to the sequence order of the parsed protein structure. Out of 385,143 separate protein chains, we
found mismatches in 1,319 chains leading to an error rate of 0.34%. This number of mismatches
also includes all (format and logical) errors present in the PDB input files themselves, such as
wrong SEQRES entries (e.g., 3tdn@pdb), which lead to a differently parsed sequence order. Thus,
on datasets consisting of files without such issues the parsing rate of error is even significantly
lower.

3.5.2 Turns

3.5.2.1 Choosing a Hydrogen Bond Criterion

Hydrogen bond-based turns play a major role as their overlaps define (core) helices, helix kinks,
a helix’ classification and Purity, the seeds for initial strands, and the blocking of merging two
strands. Thus, hydrogen-bonded turns are the fundamental elements of our SSE assignment.
However, their identification relies on a hydrogen-bond criterion as the input data does not cover
this information. Similar to the assignment of SSEs an ideal criterion to detect the presence of a
hydrogen bond does not exist.

We analyzed four different hydrogen bond criteria, namely, Kabsch and Sander [22], Mayo et
al. [21], Dahiyat et al. [89], and STRIDE [51], to find the one most suitable to our needs. We chose
the criterion by Dahiyat et al. and performed an exhaustive test case evaluation. Please be referred
to the doctoral thesis by Christiane Ehrt [90] for the details. The final parameter optimization
was based on our classification of strands. The parameter values were chosen to maximize the
consistency of assigned strands.

3.5.2.2 The Special Role of Reverse Turns

The reverse turns play a minor or indirect role in our classification of primary SSEs. They are no
key element of helices of any class nor of β-sheets or strands, respectively. In addition, they are not
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used individually but as part of the group of hydrogen-bonded turns. More precisely, they are solely
used in the classification of β-sheets for the identification of seeds by the Stranded algorithm and
in the merging procedure of all β-sheet assignment algorithms to inhibit the merging of individual
strands.

To analyze their role we assigned helices with the Mixed (see Section 3.3.4.5) and β-sheets with
the Queued algorithm (see Section 3.3.3.3) to the proteins of the X-ray representatives dataset.
We searched for all turns and their interactions (none, N-terminal overlap, included, C-terminal
overlap) with helices and strands. For N- and C-terminal overlaps, we analyzed the number of turns
with respect to the size of the overlap, i.e., the number of overlapping residues (see Figure 3.12 for
a generic example of these overlaps).

65 70 75 80 85 90

strand

reverse-5 turn
N-terminal overlap, size 2

reverse-4 turn
C-terminal overlap, size 1

Figure 3.12: Generic example of an N-terminal and a C-terminal overlap between two reverse turns
and a strand. The overlap sizes, i.e., number of overlapping residues, are also given.

A total of 9,014 reverse turns were classified for this dataset. 5,863 of these turns had overlaps
given in Table 3.8. Reverse turns play a minor role for helices of any class or category. Nonetheless,
they are essential for the termination of strands. 7,969 (95.68%) of a total of 8,329 reverse turn
overlaps reported for this dataset are located at the N- or C-terminus of a strand with an overlap of
1 residue.

SSE overlap Overlapping residues Helices Strands

N-terminus 1 73 4,138

2 7 4

3 4 0

5 130 0

Included 5 0 5

C-terminus 1 18 3,831

2 2 14

3 0 3

Total 234 7,995

Table 3.8: The number of reverse turn overlaps. The number of reverse turn overlaps with helices assigned
by the Mixed (see Section 3.3.4.5) and strands assigned by the Queued algorithm (see Section 3.3.3.3) for
the X-ray representatives dataset.

Having said that, we investigated whether the reverse turns overlapping strands are predominantly
located between strands to form the sharp turns connecting two strands of a β-sheet and leading
to the chain reversal. We were especially encouraged by the fact that the number of turn overlaps
(7,995) is higher compared to the number of overlapping turns (5,863). Thus, there is a high number
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of turns overlapping multiple SSEs, e.g., two neighboring strands. We searched for non-strand
regions between strands of a maximum size. For small disordered sequence regions of sizes from
2 to at most 8 residues, we determined the number of reverse turns sharing at least one of the
non-strand residues. Table 3.9 shows the results.

Region size Reverse-2 Reverse-3 Reverse-4 Reverse-5 Reverse-6 Total Acc.

2 0 3 2,447 6 0 2,456 2,456

3 0 75 226 249 8 555 3,011

4 0 1 462 442 550 1,455 4,466

5 0 1 84 1,286 399 1,770 6,236

6 0 3 41 15 388 447 6,683

7 2 1 34 11 16 64 6,747

8 0 7 40 29 6 82 6,829

Table 3.9: The number of reverse turns located in non-strand sequence regions of different sizes
separating two strands. Column Acc. contains the accumulated totals.

6,683 (74.14%) out of 9,014 reverse turns reported for this dataset are located in non-strand
sequence regions of at most 6 residues. As soon as the size of these regions falls below the
length of a reverse turn under investigation, its number of occurrences decreases drastically. Given
the fact that a high number of turns overlap more than one SSE, we determined the number of
turns that connect strands. I.e., we searched for reverse turns whose hydrogen bond connects
the terminal residues of two sequence neighboring strands. We discovered 2,447 reverse-4, 249
reverse-5, and 547 reverse-6 turns that connect the terminal residues of strands. In other words,
striking 38.07% of all reported reverse turns for this dataset connect two strands.

These findings clearly indicate the importance and relevance of reverse turns to form β-sheets
which are in compliance with findings by Street et al. [94].

3.5.3 Sheets

3.5.3.1 Take your Seeds

The initial idea to classify β-sheets was to search sequence regions of extended conformations
based on four-residue segment Cα–Cα distances. The fact that some SSAMs (e.g., MKDSSP, a
reimplementation of the DSSP algorithm, see Section 4.4.3) classify strands of less than 4 residues
of length – in some cases even single residue strands are assigned – we followed a different
approach to support such lengths.

We classified the X-ray representatives dataset with MKDSSP (strands), SCOT (turns), and SCOT
using the DSSP hydrogen bond criterion for comparison. We created seed fingerprints for SCOT
and SCOT with the DSSP hydrogen bond criterion based on their hydrogen bond-based turns in
two variants. The first variant uses all residues of a turn whereas the other variant corresponds to
the one of the Stranded algorithm, i.e., using all but the terminal residues of a turn.
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Table 3.10 shows the usage of seeds for both SCOT and both turn usage variants. Using all
residues of a turn to mark their sequence positions as non-extended or non-seed regions, misses
195 strands classified by MKDSSP. However, if all but the terminal residues of turns are taken into
account, only 2 strands are missed. The comparison of the two SCOT variants underlines the
benefits of the Dahiyat over the DSSP hydrogen bond criterion here. Although a significant higher
number of seeds are discovered using the DSSP criterion, a fewer number of strands could be
identified using them.

SCOT SCOT (DSSP)

Seeds 46,746 54,701

Used seeds 29,458 31,143

Unused seeds 17,388 23,857

Missed strands 195 5,305

Miss ratio 0.56% 15.19%

(a) All residues

SCOT SCOT (DSSP)

Seeds 65,668 96,201

Used seeds 29,763 44,917

Unused seeds 35,905 51,284

Missed strands 2 450

Miss ratio 0.01% 1.29%

(b) No terminal residues

Table 3.10: Number of seeds and their usage identified by the Stranded algorithm using the Dahiyat
or the DSSP hydrogen bond criterion. The strands were classified by MKDSSP. Table (a) uses all residues
whereas (b) uses all but the terminal residues for the creation of seeds. The latter one corresponds to the
version used by the Stranded algorithm.

SCOT SCOT (DSSP)

Seeds 31 55

Used seeds 24 34

Unused seeds 7 21

Strands 31 29

Missed strands 0 2

Table 3.11: Detailed analysis of used and un-
used seeds for protein 1nszA@pdb for SCOT
and SCOT (DSSP) with respect to 31 classified
strands by MKDSSP.

90 95 100
EGPQTLHGGEE

MKDSSP
SCOT
−1.615 kcal/mol

SCOT (DSSP)
−0.696 kcal/mol

−0.500 kcal/mol

−1.380 kcal/mol

Figure 3.13: Hydrogen bond-based turns and
energies for a strand assigned by MKDSSP in
1nszA@pdb which is missed by SCOT (DSSP) in
contrast to SCOT.

The strands missed by SCOT using the DSSP hydrogen bond criterion are of average length 2.6

which is comparatively short. The maximum length for a missed strand is 7 in 2dplA@pdb, residues
48–54. Table 3.11 provides the detailed seed usage for 1nszA@pdb for both, SCOT and SCOT
(DSSP). Although almost twice as much seeds are generated by SCOT (DSSP) it misses two of the
strands classified by MKDSSP. Figure 3.13 shows the hydrogen bond-based turns that impedes
the creation of a seed by SCOT (DSSP). The first two turns are based on hydrogen bonds of very
high energies close to the threshold of −0.5 kcal/mol. The strongest and third turn is also detected
by SCOT using the Dahiyat hydrogen bond criterion.

The comparison of the two SCOT variants underlines the benefits of the Dahiyat over the DSSP
hydrogen bond criterion here. Although a significant higher number of seeds are discovered
using the DSSP criterion, a fewer number of strands could be identified using them. Figure 3.14
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MKDSSP
SCOT
SCOT (DSSP)

Figure 3.14: Excerpt of the strands classified by MKDSSP and the seeds generated by SCOT and
SCOT (DSSP) for 1nszA@pdb.

exemplarily visualizes that the seeds created using the DSSP hydrogen bond criterion are shorter
and widely scattered.

Summing up, in 1.29% of the investigated cases the DSSP hydrogen bond criterion led to the
classification of turns and strands at the same spots in sequence which is not the case for the
Dahiyat criterion.

3.5.3.2 The Progress in the Assignment of β-Sheets

The main step forward from the Stranded (see Section 3.3.3.1) to the Linked (see Section 3.3.3.2)
algorithm is the transition from trees to graphs for the internal representation of β-sheets. However,
the notation of β-sheets according to the PDB file format immediately suggests the use of trees
as the data structure to represent the combination of strands to β-sheets. Although this tree-like
notation is also used for loop structures, such as β-barrels (see Figure 3.4 for the visualization of a
β-barrel), the information on loops or the ability to model loop structures during the assignment
process, can be substantial. During the shrinking procedure, the sequence length of a strand may
be decreased below the required minimum. Assume a β-barrel with at least one strand that is
not a root nor a leaf and which becomes deleted during the shrinking procedure. In such a case,
the tree is split into two separate trees representing separate β-sheets because each vertex is
reachable only via one distinct path. In graphs, vertices connected in a circle are reachable by at
least two distinct paths. This maintains the coherence of the represented β-sheet in the deletion
of one vertex of this circle. Figure 3.15 illustrates an example of the consequences of deleting a
vertex in a tree representing a β-barrel. The dashed line can only be modeled using graphs and
maintains the coherence after the deletion of the vertex v4.

The next progress in the assignment of β-sheets from the Linked to the Queued algorithm (see
Section 3.3.3.3) covers multiple aspects. Unlike in the previous algorithms, we inspect hydrogen
bonds solely in donor-acceptor direction as for each h+i,j the opposite direction h−j,i is implicitly given.
This has no effect on the classification outcome (see Figure 3.16 and Table 3.12) but reduces the
complexity of the implementation to a considerable extent.

Algorithm Stranded Linked Queued

β 19,278 32,921 32,818

Table 3.12: The number of strands assigned by the Stranded, Linked, and Queued algorithm.
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Figure 3.15: Deletion of a vertex in a tree representing a β-barrel. The deletion of vertex v4 in a tree
representing a β-barrel (a) leads to two separate trees (b). The dashed line indicates the closing of the loop
which cannot be modeled by trees but by graphs.
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Figure 3.16: Boxplots showing the sequence lengths of strands assigned by our algorithms. The
median is indicated by a big and the mean by a small white dot. Outliers were omitted in favor of a concise
visualization.

In contrast to the Stranded and Linked algorithm, the Queued algorithm takes all hydrogen bonds
into account and does not limit them to seed sequence regions. The motivation to use seeds is
to search for strands in extended regions. However, strands in non-extended regions are due to
this non-extended conformation usually very short. Thus, the benefits of using seeds are covered
by the filtering of strands with respect to required sequence length. Another difference to the
Linked algorithm is that there is no separation between the classified sequence segments and
the corresponding hydrogen bonds. This also reduces the complexity of the implementation and
avoids the storage of redundant information. The introduction of the queue tackles two important
issues. First, it ensures an ordering of the vertices that is runtime independent. In dependence on
the chosen C++ data structure for the storage of vertices, the order may vary depending on their
memory addresses in each run. Second, it ensures that a vertex is only processed once and loops
can be terminated. Both aspects are important when reporting the final β-sheets.



60 SCOT | Classifying Secondary Structure Elements

Finally, the importance of kinks assigned by the Queued algorithm and the benefits of the algorithm
in general in comparison to other SSAMs is discussed in the chapter of SNOT (see Chapter 4).

3.5.4 Helices

3.5.4.1 The Progress in the Assignment of Helices

Similar to the progress of the algorithms to assign β-sheets, the first major step forward covers
the data structure utilized for the storing of the elements in question, here helices. Instead
of using sequence segments that indicate a classified helix, the Kinked (see Section 3.3.4.2)
algorithm represents each helix via core helices consisting of three layers, namely, a core, a hull,
and an extension. Each layer fulfills a unique task which especially comes into play during the
merging procedure of the Kinked and the following algorithms (Cut, Blocked, and Mixed, see
Sections 3.3.4.3 to 3.3.4.5). These layers also allow the search for kinks in still hydrogen bond-
covered but – compared to cores – more flexible regions. However, in the merging procedure the
final (merged) helix is still stored as a sequence segment instead of using a core helix.

220 225 230 235 240 245
h1

h2

h3

Figure 3.17: A simplified and generic example indicating the problem of the merging procedure of
the Kinked algorithm. Once the core helices h1 and h2 are merged the merging procedure stops because
there is no overlap of h2 and h3. The overlap of h1 and h3 is not taken into consideration.

Assume h1, h2, and h3 are core helices as shown in Figure 3.17. After h1 and h2 were merged,
h2 and h3 are examined for an overlap. Thus, the merging stops although there is an overlap of
h1 and h3. This issue is solved by explicitly merging core helices in the Cut algorithm. Another
difference to the Combined (see Section 3.3.4.1) algorithm is the use of the blocking fingerprint
during the merging procedure. The major differences in the following algorithms cover the blocking,
splitting, and merging of core helices, which will be discussed with respect to right-handed helices
in the following section.

3.5.4.2 The Role of Right-Handed Helices in General and π-Helices in Particular

We classified the X-ray representatives dataset with the five algorithms to show the effect of their
blocking, splitting, and merging procedures. Table 3.13 in combination with Figure 3.18a clearly
shows the effect of the blocking procedure for α-helices. The Kinked algorithm assigns more but
shorter α-helices. This trend is adhered by the following algorithms. The Cut algorithm introduces
the splitting of core helices in advance to its merging procedure. It also increases the number
of classified helices (except π-helices) and decreases the average length of these helices. The
Blocked algorithm preserves the information of splits at blocked core helix termini which also play
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a role during the merging of core helices. Finally, the Mixed algorithm drops this information again.
Furthermore, π-helices become a distinct category and are not merged with other helix classes.
This results in the significant increase of the number of assigned π-helices from 135 to 572.

Helix Combined Kinked Cut Blocked Mixed
Right-handed

α (1) 20,125 23,713 25,447 25,734 25,588

310 (5) 8,144 7,789 9,439 9,706 9,628

π (3) 82 83 61 135 572

Mixed (0) (617) (20) n.s. n.s. 147

Left-handed

α (6) 0 4 4 4 4

310 (11) 0 108 108 108 108

Ribbon

PPII (10) n.s. n.s. 2,754 2,754 2,754

Table 3.13: The number of helices assigned by the Combined, Kinked, Cut, Blocked, and Mixed
algorithm. n.s. indicates that the respective class is not supported by the algorithm. The number of right-
handed mixed helices for the Combined and Kinked algorithm are due to an incomplete implementation of the
final class assignment.

The overall trend in the number of assigned helices in combination with their sequence lengths
reveal the challenge of differentiating between the right-handed helix classes. From the Kinked
algorithm to the Mixed, the different blocking and splitting features resulted in the observation that
π-helices influence right-handed α- and 310-helices but are distinct enough to form an individual
category. This is also underlined by the fact that the Mixed algorithm assigns right-handed helices
with the most stable sequence lengths (see Figure 3.18 for sequence length boxplots). For α-
and 310-helices, there are no significant changes in the number of assigned helices and their
sequence lengths for the Cut, Blocked, and Mixed algorithm. Though, we find major differences for
all algorithms for the π-helices which highlight their individual role. This special role of the π-helices
is also discussed in Section 4.6.

The convergence of α- and 310-helices with respect to their numbers and sequence lengths seems
to suggest that their assignment by the Cut algorithm is already at a final stage of development.
However, the Mixed algorithm solely uses the turn overlaps as the only criterion to define the
final class for a helix. The number of assigned mixed helices indicates that this parameter is not
distinct in all situations. Other SSAMs, such as SHAFT, use a class hierarchy (α, 310, π) to solve
the class assignment challenge in ambiguous cases. However, the small number of 147 mixed
helices among a total of 38,801 (≈ 0.4%) proves that the turn overlaps are nevertheless suitable
to determine the class of a helix in general. Especially with respect to the application of the SSE
assignment by SCOT in protein structure comparison (see Chapter 5), the mixed helix class offers
its usage as a template class that can be matched to α- and 310-helices. An example of a mixed
helix including the corresponding turn overlaps is given in Section 4.6.
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Figure 3.18: Boxplots showing the distribution of the sequence lengths of right-handed helices as-
signed by our algorithms. The median is indicated by a big and the mean by a small white dot. Outliers
were omitted in favor of a concise visualization.

3.5.4.3 Helix Kinks

The detection of kinks in helices is almost as ambitious as the detection of helices themselves. We
introduced two separate procedures to define kinks in helices. The procedure implemented in the



3.5. RESULTS 63

40 45 50 55 60 65
RYGFSATTGTYLVVATGLPLYILLRAN

123455555555554444455554321

Figure 3.19: Turn overlaps (bottom) for a SCOT-assigned α-helix in 3b9w@pdb. The kink detection
based on an turn overlap minimum (Kinked algorithm) assigns a kink at sequence position 56 (highlighted in
green) whereas the kink detection based on the difference to the maximum turn overlaps (Cut, Blocked, and
Mixed algorithms) does not assign this kink. The BDA between the vectors is 18.72°.

Kinked algorithm searches for a minimum in the turn overlaps whereas the procedure of the Cut
and all following algorithms require a certain difference in the turn overlaps to the maximum turn
overlaps. It is obvious that the first kink detection procedure detects all kinks of the other procedure
and more as it is less restrictive. The visual inspection revealed that this fact leads to kinks that are
located in bent but not kinked regions. According to Kumar and Bansal [85] the maximum BDA is
above 30° in a kinked, between 20° and 30° in a bent, and below 20° in a linear region.

Figure 3.19 depicts a kink in 3b9w@pdb that is identified only by the first (minimum) kink detection
procedure. Only one turn is missing in the otherwise perfect normal-5 1 turn stacking for the
presented α-helix. The turn overlaps at the bottom of the figure show minimum overlaps from
residues 54 to 58. Thus, the kink procedure based on the minimum detects a kink at residue 56
which is highlighted in green in the helix at the top. However, the missing turn and the resulting
minimum do not lead to a significant change in the helical geometry. This is also reflected by a low
BDA of 18.72° for the vectors and a maximum BDA of 21.73° for the helix, which is typical for a bent
helix according to the presented scheme by Kumar and Bansal.

This difference in the sensitivity of the two kink detection algorithms is also reflected by the boxplots
shown in Figure 3.20. These represent the BDAs at kink residues for both detection procedures
and for all helices classified by the Mixed algorithm in the X-ray representatives dataset. The BDAs
were calculated as described in Section 4.3.2.1. While the procedure based on the minimum still
covers most of the BDAs present at residues of helices in general, a clear distinction exists for the
procedure based on the maximum difference. It is worth mentioning that the BDAs of kink residues
were not excluded for the boxplot of BDAs in helices. The BDA is already considerably low due to
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the Cα–Cα splitting.
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Figure 3.20: Boxplots of the BDAs at kink residues. Boxplots of the BDAs at kink residues detected by
the two different procedures and at residues of right-handed helices classified by the Mixed algorithm in the
X-ray representatives dataset. The calculation of the BDA is described in Section 4.3.2.1. The numbers in
parentheses show the number of detected kinks or classified helices. Outliers were omitted in favor of a
concise visualization.

3.5.5 Runtime and Memory Consumption

The major drawback of SCOT compared to other SSAMs is its runtime and memory consumption.
The comparatively large ESOM files require approximately 700MB of disc space whereas the ones
of SHAFT require 12MB. The information stored therein is kept in memory during the classification
which leads to a memory consumption of approximately 1GB for serial execution and up to 2.5GB

for parallel execution with 30 threads. We compared the runtime of the SCOT and the SHAFT
implementation for the X-ray representatives dataset using 30 threads. The initialization including
the parsing of the ESOM files took 2 s for SHAFT and 86 s for SCOT. Note that the initialization is
always done in a serial manner. The total runtime for the classification of this dataset was 5min

27 s for SHAFT and approximately 4 h 28min 17 s for SCOT.

3.6 Discussion

We introduce SCOT as a new SSAM which assigns numerous SSEs classes which are commonly
observed in protein structures. Furthermore, it enables investigations on rarely occurring SSEs. It
provides necessary information about helices and strands, reports irregularities therein (kinks and
Purity values), and offers the assignment of distinct sets of turn conformations which are classified
according to the underlying dihedral angles. This information is provided in the established and
widely supported PDB file format.

SCOT, which was inspired by SHAFT, shares a distinct set of similarities to the SSAM of Koch and
Cole. Both classify the same turn categories and lengths (e.g., normal-5), use trained ESOMs
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based on clustered dihedral angle ranges, and assign helices on the basis of turn overlaps. In
spite of that, the focus of each method differs as do the assignment of and the view on SSEs.
First and foremost the detection of turns is based on a different and more sophisticated hydrogen
bond criterion that led to more meaningful hydrogen bonds as verified in an exhaustive test case
evaluation (see doctoral thesis by Christiane Ehrt [90]). It also led to fewer hydrogen bonds as the
criterion is more restrictive. The analysis of the seeds usage in Section 3.5.3.1 underlines this
finding. In addition, the utilization of the DSSP hydrogen bond criterion requires SHAFT to remove
weak double hydrogen bonds during the classification of turns, which is not necessary using the
criterion by Dahiyat et al. with our settings.

The next major difference covers the preparation of the turn dihedral angles for the clustering.
We address the challenge to use an Euclidean distance measure in angular space by our Jigsaw
transformation. SHAFT uses an ω-transformation for all ω angles. Values for this angle in turns
usually vary around 0° and ±180° and the transformation, therefore, shifts their values by adding
90° to address the mentioned challenge. Next, SHAFT uses a z-transformation on all dihedral
angles to normalize their values. This transformation requires the mean and the standard deviation
of each angle. Their calculation is also inhibited by the same challenge as their determination by
SHAFT is based on an Euclidean distance measure. Although there are approaches published
with respect to the angular space [95, 96], we renounced to do a normalization due to the following
reason. The typical values for each dihedral angle (π, ψ, ω) differ but ϕ angles are solely compared
to ϕ angles. The same applies to ψ and ω angle values. Thus, a normalization to cope with different
value ranges is not required.

Neglecting the fact that modern hardware can process larger ESOMs, the clustering itself is more
elaborated compared to SHAFT. The number of neurons without a class assignment is much higher
for SHAFT which especially pertains the open turns. For instance, the class mask for open-5
turns of SHAFT contains 5,619 of 20,184 (27.8%) neurons without a class whereas there are only
15,054 out of 118,020 (12.8%) for SCOT. This is of special relevance as such turns have no distinct
conformation but are used for the extension of SHAFT α-helices. In contrast, SCOT utilizes the
open turn counterparts of the corresponding normal turns with respect to their dihedral angles for
the extension of helices. SHAFT extends helices by normal turn overlaps (α, 310, π, and γ) and N-
and C-cap motifs (α and 310 only). For the latter, numerous turns of different categories, lengths,
and classes are used to detect different capping motifs.

A further important difference is the splitting of helices based on Cα–Cα distances resulting in low
BDAs inside helices. This was shown with respect to kinks and will also be further evaluated in
Section 4.6.3.1.

The last important detail that separates SCOT from SHAFT is the merging procedure. SCOT
detects all helix classes separately and merges only overlapping (right-handed) α- and 310-helices.
More important, the final class is based on the underlying turn overlaps of all turns corresponding
to right-handed helices (and not solely on the turns defining the helices to be merged). SHAFT
uses a hierarchical classification of helices (α, 310, π, γ), removes included helices and merges the
remaining (right-handed) α-, 310-, and π-helices. The class of a helix after each pairwise merging
step complies to the class of the longer of the two helices with respect to sequence length.
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In addition to these fundamental differences in the two underlying methodologies in assigning
turns and helices, there are multiple functionalities that set SCOT further apart. SCOT additionally
supports the classification of right-handed mixed, left-handed α- and 310-, left- and right-handed
2.27-, and PPII helices. It provides more in-depth information about the classified helices and
their irregularities by the Purity values and the kinks. In addition, it supports the classification of
β-sheets also including a kink detection. Both SSEs, helices and strands, can be split based on
kinks to increase its number of applications. Finally, SCOT enables a more in-depth analysis of the
assigned SSEs by the optional PyMOL scripts.

The remaining questions regarding the differences in the assigned SSEs by SCOT and SHAFT will
be answered in Section 4.6 after the introduction of our SSE/SSAM evaluation tool SNOT.

There is potential for optimization that affects the implementation. The ESOMs in the classification
of turns contain millions of neurons. The class of a turn is calculated by determining the closest
neuron with respect to a distance function.

The current implementation to determine the class of a turn requires to calculate the distance of the
turn’s feature vector to the feature vectors of all neurons. Approximative or heuristic algorithms are
no alternative as the assignment of classes to turns has to be deterministic, i.e., always assigns
the same class to the same turn. Thus, an optimization with respect to the data structure instead
of an optimized distance algorithm seems most promising. Nevertheless, the practical runtimes
are still acceptable on modern workstations. Therefore, we concentrated on the methodology in
assigning SSEs instead.

(a) (b)

Figure 3.21: Visualization of 4p1x@pdb with SCOT assigned SSEs from two different perspectives.
The PDB SSE annotation defines an eight-chain-spanning β-sheet, which is also identified by SCOT but
based on separate β-sheets of different chain.

A blind spot of the methodology of SCOT is the lack of support for multi-chain β-sheets. In the 2018
copy of the PDB 51,448 of 901,439 (5.71%) annotated β-sheets span at least 2 (e.g., 3aae@pdb)
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and up to 30 (e.g., 5wz3@pdb, PDB annotation) different chains. Looking at these numbers one has
to keep in mind, that they are highly biased as the PDB is by far not a representative set of protein
structures and its provided annotation is equally not consistent. The β-sheets spanning fewer
chains (e.g., 47,764 spanning 2 chains, PDB annotation) are also classified by SCOT in most cases
as they often consist of combined β-sheets of separate chains. This holds also true for β-sheets
spanning a higher number of different chains. Such β-sheets are β-barrels of channel-proteins in
many cases and, thus, represent an important structural motif. Therefore, this is one of the most
important issues on the agenda for the next version of SCOT. Figure 3.21 gives an example of a
channel-protein containing a multi-chain-spanning β-sheet according to the PDB provided SSE
annotation, which is also identified by SCOT.

In summary, SCOT represents a novel, widely applicable, and comprehensive method for SSE
assignments which can be easily visualized by the accompanying PyMOL scripts. Its methodology,
functionality, and versatility clearly detaches SCOT as an independent tool from its origins. The
rigorous PDB file preprocessing steps ensure the reliable processing of most PDB files including
modified residues, D-amino acids, insertion codes, and alternate locations. The output of a PDB
file which includes the novel assignments ensures the immediate use of the SSEs for further
analyses.
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“I did not tell half of what I saw, for I knew I would not be
believed.”

Marco Polo

4
SNOT | Benchmarking SSE

Classifications

4.1 Introduction

Whenever a task, a tool, or the pure human curiosity is eager for secondary structure information,
one is faced with the question which classification or SSAM to choose. The formulation of this
question, however, is not a trivial challenge in itself: which one is the most suitable, recent,
consistent, reasonable, intuitive, . . . ? Due to the fact that the PDB [9] provides secondary structure
information per se for its protein structures, this question is not asked as often as it should be.

To evaluate the researcher preferences for SSAMs, we searched through the entire 2018 copy of
the PDB protein files for DETERMINATION METHOD, which is referred to the determination method of
the secondary structure information. In more than 135,000 protein files we found approximately
1,600 times DSSP, 1,200 times AUTHOR PROVIDED, 6 times MOE, and even several times TAKEN FROM

... PDB ENTRY ... . A more detailed list can be found in Table 4.1. This clearly demonstrates
that the secondary structure information in the PDB is neither consistent nor does it show a
significant majority. Or, in more provocative words, the fact that in less than 5% of these files
the information about the determination is even given, reflects how little attention is paid to the
assignment of SSEs.

69
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Determination method Occurrences

DSSP 1,700

AUTHOR PROVIDED. 1,021

AUTHOR DETERMINED 776

AUTHOR 158

AUTHOR PROVIDED 18

PROVIDED BY DEPOSITOR 15

14

KABSCH AND SANDER 12

PROCHECK, WITH IDENTIFICATION 7

HELIX DETERMINATION METHOD 7

MOE 6

TAKEN FROM RELEASED PDB ENTRY 1VSF 6

TAKEN FROM PDB ENTRY 1AQ2. 4

BASED ON SUBMISSION 4APE 4

TAKEN FROM RELEASED PDB ENTRY 1AY6 4

. . .
RAMACHANDRAN 2

AUTHOR DETERMINED BY USING PYMOL’S DSS- 2

DSSP AND O. 1

AUTHOR-MODIFIED KABSCH & SANDER 1

SEQUENTIAL AND MEDIUM-RANGE NOE 1

Table 4.1: Statistic on the declaration of DETERMINATION METHOD in the 2018 copy of the PDB.

There are more than 30 different SSAMs available in the literature (see Table 4.2). This number mo-
tivates a bunch of more questions and criteria enabling their differentiation, such as the supported
SSE types (helix, sheet) and classes, the in- and output formats, whether it is a standalone tool
or a web service, the supported operating systems, the programming language, the runtime, the
availability, and many more. It also shows that there is no absolute secondary structure formalism
or definition and the assignment is to some extent subjective [16]. This fact raises two questions.
First, how can SSAMs be compared or evaluated? And second, is the lack of an objective tool to
compare SSEs a major reason for the lack of a debate about their assignment?

This chapter is organized as follows: Section 4.2 depicts the state of the art of tools and parameters
to evaluate SSE assignments. Section 4.3 motivates the necessity of SNOT and describes its
methodology, i.e., its six Observers (or functionalities). In Section 4.6, we exhaustively evaluate
and compare SCOT (see Chapter 3) to six different SSAMs, namely, DSSP [22], STRIDE [51],
SHAFT [18], ASSP [65], DISICL [54], and SEGNO [53], using different aspects of SNOT. Finally,
Section 4.7 discusses the findings of the previous section and motivates open challenges.
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Method DH HB GO HX α 310 π ω 2.27 LH LC PPII HK SH SK TU Cα |Y| Year AV

SCOT [7]                12 2019  
PSSC [48]           7 2014  
SHAFT [18]         6 2011
DSSP – PPII [49, 50]          5 2011  
STRIDE [51]         6 1995  
KAKSI [52]      3 2005  
SEGNO [53]         6 2005  
DISICL [54]          8 2014  
PROSS [55]      4 1999  
Chen et al. [56]     2 2009
Levitt & Greer [47]      3 1977
β-Spider [57]     3 2005
DSSPcont [58]        5 2003  
SECSTR [59]        5 2002  
PROMOTIF [60]        6 1996  
SSTRUC [61, 62]      5 1990  
DSSP [22]          5 1983  
RaFoSA [63]         6 2016  
SACF [64]         7 2016
ASSP [65]            9 2015  
Kneller & Hinsen [66]        6 2015  
PCASSO [67]     3 2014  
SST [40]        5 2012  
SABA [68]       5 2011  
PMML [69]     3 2011  
PROSIGN [70]        6 2008  
PALSSE [71]     3 2005  
Taylor et al. [72]       5 2005  
Zhang & Skolnick [11]     3 2005  
VoTAP [73]     3 2004  
STICK [74]     3 2001
XTLSSTR [75]        5 1999  
P-SEA [76]     3 1997  
YASSPA (GETSSE) [77]     3 1997  
P-Curve [78] (v3.1)        3 1989  
DEFINE_STRUCTURE [79]        5 1988  
SKSP [80]      2 2007  
CONSENSUS/TCM [81]      1 1993

Table 4.2: SSAMs grouped by their underlying methodology. SSAMs grouped by their underlying method-
ology based on dihedral angles (D), hydrogen bonds (B), or geometry (G) and their features: helix (HX),
left-handed (LH), left-handed classes (LC), helix kinks (HK), sheet (SH), sheet kinks (SK), turns (TU), number
of yes (|Y|), year of publication, and availability (A). A feature can be fully ( ) or partly ( ) supported. A ( )
indicates that it is not applicable. β-Spider uses only the contact energy ( ). A ( ) in the last column indicates
that an SSAM is available on request. This Table is extracted from [7].
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4.2 State of the Art

During the development of our own classification tool SCOT (see Chapter 3), we were searching
for a tool that can provide numerous geometric parameters and also supports the analysis of all
types of SSEs and classes alike. There are some geometric parameters published [97, 25, 26] by
which SSE assignments can be evaluated and compared. However, there is no tool that enables
the automated calculation for datasets of protein structures. In addition, some of these parameters
are not directly associated to a certain application, which gives them an abstract character. One
exception is HELANAL [98]. It uses solely the Cα atoms of a protein to geometrically characterize
helices. It calculates geometrical parameters, such as the Twist, Vtor, or BDAs between local
successive helix axes. Unfortunately, HELANAL focuses solely on α-helices.

This lack of tools in general or a single tool in the best case to evaluate all aspects of an SSE
assignment may be one of the reasons why DSSP [22] and STRIDE [51] are still the most commonly
used tools neglecting their limitations and the existence of more sophisticated SSAMs.

4.3 SNOT

We have developed SNOT (Secondary structure Numeric Observation Tool) to combine a multitude
of functionalities and parameters in a single tool (similar to the motivation of SCOT). In addition,
SNOT provides new features which enable an exhaustive, objective, and easy to use evaluation
method for SSE assignments. Furthermore, SNOT is not limited to an SSE type or class. Instead,
SNOT processes SSE types and classes separately but also combines them to right-handed
helices, left-handed helices, and extended conformations. The latter consists of PPII helices and
β-sheets.

SNOT provides six different Observers (functionalities) (see Section 4.3.2) for the analysis of
secondary structure annotations:

• Geometry - geometric properties

• Residues - residue statistics

• Consensus - consensus of two classifiers

• Consistency - consistency of the classification with respect to conformational changes

• Overlaps - analysis of overlapping SSEs

• Coverage - analysis of the sequence coverage

The Geometry Observer calculates a multitude of numerical, statistical, and geometrical properties,
such as type-specific BDAs, or the Twist. These properties can provide a measure of conformational
consistency for a secondary structure classification in itself. High deviations in these parameters
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correspond to a less strict conformational consistency within a type and/or a class of SSE. The
Residues Observer provides information on residue frequencies in SSEs. The Consensus Observer
calculates the consensus of two classifications by the use of fingerprints. The bits corresponding
to the sequence covered residues of SSEs are marked and the consensus for two fingerprints is
reflected by the Tanimoto coefficient. The Consistency Observer operates on protein ensembles
and calculates the consistency of a classification with respect to conformational variations. It also
uses fingerprints in the same manner as the Consensus Observer but introduces an additional
weighted Tanimoto coefficient measure. This weighted Tanimoto coefficient reflects the expected or
more realistic consistency especially for multiple fingerprints. The Overlaps Observer uncovers the
overlaps of SSEs of different types or different classes. Finally, the Coverage Observer determines
the relative and absolute number of covered residues for each SSE type and class.

SNOT is written in C++.

4.3.1 Input

SNOT serially processes PDB files using the same parsing procedure as SCOT described in
Section 3.3.1 with additional parsing of SSE annotations. Each provided input (command line
argument) can either be a single PDB file or a directory containing PDB files.

4.3.1.1 PDB Files

The parsing procedure of SNOT requires standard PDB files as input and consists of two major
steps. First, we parse a protein’s sequence information. This step is identical to the parsing
procedure used of SCOT (see Section 3.3.1.1). Second, we parse the SSE information from HELIX,
SHEET, and TURN lines plus the additional information provided by SCOT in the corresponding
REMARK 650, REMARK 700, and REMARK 750 lines. However, this additional information is parsed
optionally to maintain the full compatibility for PDB files not providing such information (e.g., with
SSE annotations by other SSAMs).

Each HELIX line represents a helix. We extract the sequence information (front and back residue),
the classification, and the comment for each helix. The kinks and purities specified in the REMARK

650 section are assigned and added to a helix based on the helix identifier in columns 7–10.

Each SHEET line represents a strand of the corresponding β-sheet. The affiliation of a strand to a
β-sheet is realized by the sheet identifier in columns 12–14. However, we use the sense in columns
39–40 to group the strands and start a new β-sheet whenever the the sense is 0 or the registration
is not given. We add all strands to the present sheet until a new sheet is identified. This requires
that all strands belonging to one β-sheet must be given consecutively. We extract the sequence
information, the sense, and the registration (if present) from each SHEET line. Note that the first
strand of a β-sheet does not have a registration with respect to the PDB file format. Also note that
some SSAMs do not provide registration information. In such a case, all strands are added as
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separate β-sheets, each solely consisting of a single strand. The kinks specified in the REMARK 700

section are assigned and added to a strand based on the strand and β-sheet identifiers in columns
7–10 and 12–14.

Each TURN line represents a turn. As turns are not primary SSEs, they are rarely detected by
other SSAMs and are not specified by the PDB file format. Thus, we solely support the TURN line
format provided by SCOT (see Chapter 3). The format for the turns of SHAFT [18] provided by
the Relibase [92] seems similar but still has some differences which are not supported in this
parsing procedure. We extract the sequence information for each TURN line and parse the type,
classification, and energy (distance for open turns) information from columns 67–68, 72–73, and
75–80 respectively. Please note that the support of turns is provided although they are not used by
any of the observers yet.

4.3.2 Observers

There are six different Observers provided by SNOT to analyze the SSE information presented in
the PDB files: Geometry (see Section 4.3.2.1), Residues (see Section 4.3.2.2), Consensus (see
Section 4.3.2.3), Consistency (see Section 4.3.2.4), Overlaps (see Section 4.3.2.5), and Coverage
(see Section 4.3.2.6). Each can be addressed using the functionality name as a command line
flag, e.g., --geometry. In addition, each Observer provides a short documentation which can
be evoked by the use of --help. These documentations also include a description of the output
files column headings. In addition, all Observers require at least an output directory and support
optional arguments, such as an output file extension (-e, default: .txt), and an output file column
delimiter (-d, default: ,). All other arguments, flags, and options mainly focus on the input and are
discussed individually for each Observer.

The Observers process each SSE type (helix or strand), class (e.g., α-helices), SSE groups (e.g.,
right-handed helices or extended conformations), and the entire protein separately. We combine all
right-handed helices, left-handed helices, as well as PPII helices and strands (extended conforma-
tions) in separate groups. These groups allow the analysis of entire (conformational similar) groups
and the comparison of SSAMs supporting different grades of details in the assignment of SSEs.
In the following, we explain each observer for a given SSE type t and class c. For SSE groups,
all types and classes of the group are combined and considered as one type and class. Please
note that these groups are supported by the Consensus, Consistency, Coverage, and Residues
Observers only.

4.3.2.1 Geometry

The Geometry Observer calculates geometric properties of SSEs. For each SSE type and class,
the dihedral angles, numerical and geometrical properties, and BDAs (individually for helices and
strands) are calculated. Each property is provided in separate files with suffixes dih, res, sse, num,
and bda. We will explain the methodology leading to the parameters in each output file for a given
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SSE type t and class c.

Dihedral Angles (dih)

The dih file contains the dihedral angles ϕ, ψ, and ω, plus the auto-scaled B-factor for each residue.
The auto-scaling is a normalization according to Carugo and Argos [99]. For this procedure, the
mean µb and the standard deviation σb of the B-factors of all backbone atoms of an input protein
are calculated in advance. The auto-scaled B-factor auto(br) for a residue r is based on the mean
B-factor of its backbone atoms and is defined in Equation 4.1. The result is a scaled B-factor
distribution around the mean of 0 with unit variance.

auto(br) :=
br − µb
σb

(4.1)

Secondary Structure Elements (sse)

The sse file contains general information about the SSEs, such as the front and the back residue
they are defined on as well as the length based on our internal residue identifiers. We also add
the Purity from the REMARK section as provided by SCOT (see Chapter 3). If this information is not
present, the purity is set to 1.

Geometric Properties (geo)

Based on the work by Sugeta and Miyazawa [97, 65], we calculate several geometric properties.
All properties are calculated for sequence segments of length 4 within the sequence segment of
each SSE. Thus, there are no such properties for SSEs of length < 4. For a given segment s, we
calculate the Cα–Cα distance d between the residues at s.front and s.back .

Let c1, c2, c3, c4 be the cartesian coordinates of the Cα atoms of the segment’s residues. The
vectors

−→
b1 ,
−→
b2 ,
−→
b3 represent the pseudo bonds between the atoms, −→v1 and −→v2 the planes that

lie perpendicular to the axis of the helix described by c1, c2, c3, c4, and U the helix axis (see
Equation 4.2).

−→
b1 := c2 − c1
−→
b2 := c3 − c2
−→
b3 := c4 − c3
−→v1 :=

−→
b1 −

−→
b2

−→v2 :=
−→
b2 −

−→
b3

U :=
−→v1 ×−→v2
|−→v1 ×−→v2 |

(4.2)

We calculate the Rise (see Equation 4.3), the Twist (see Equation 4.4), Vtor, and the Radius (see
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Equation 4.5). The parameter Vtor is calculated similarly to the dihedral angles ϕ, for instance, but
is based on the Cα atoms of the segment’s residues.

Rise(s) :=

−→
b1 · U
|U | (4.3)

Twist(s) := arccos(
−→v1 · −→v2
|−→v1| · |−→v2|

) (4.4)

Radius(s) :=

√
|−→v1 | · |−→v2|

(2 · (1− cos(twist(s)))
(4.5)

(a) Rise (b) Twist (c) Radius

Figure 4.1: Visualization of the Rise, Twist, and the Radius. Visualization of the Rise (a), the Twist (b),
and the Radius (c).

The Rise represents the height of one helical coil and corresponds to the length of the coil’s
segment helix axis. The Twist reflects the twist of the helix axis and the Radius is determined
perpendicular to the helix axis. These properties are visualized in Figure 4.1. Please note that the
values may be negative under certain conditions, especially in the case of left-handed helices.

Finally, the class Purity is added so it can easily be correlated to the calculated properties.

Bending Angle (bda)

We use separate equations for the determination of the BDAs in helices τH and strands τS . In
helices, we calculate the BDA τH in segments s of length 7 between the sub-segments s1 =

(s.front , s.front + 3) and s2 = (s.front + 3, s.front + 6). For both segments, we calculate the U -
matrices U1, U2 according to Equation 4.2. The BDA τH is calculated as described in Equation 4.6

τH(s1, s2) := arccos(U1 · U2) (4.6)

In strands, we calculate the BDA τS in segments of length 5. Let r1, . . . , r5 be the underlying
residues of a segment s. Let c1, n3, c3, n5 be the Cartesian coordinates of the C atom of r1, the N
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atom of r3, the C atom of r3, and the N atom of r5 respectively. τS is based on the pseudo bond
vectors

−→
b1 ,
−→
b2 between c1, n3 and c3, n5. We normalize

−→
b1 and

−→
b2 to a unit length of 1. The final

BDA τS is the angle between these vectors (see Equation 4.7).

−→
b1 := n3 − c1
−→
b2 := n5 − c3

τS(s) := arccos(

−→
b1 ·
−→
b2

|−→b1 | · |
−→
b2 |

)

(4.7)

We also add the auto-scaled B-factor (see Section 4.3.2.1) to the file to be able to correlate the
flexibility to the BDAs.

4.3.2.2 Residues

The Residues Observer calculates statistical properties of the underlying residues of SSEs. We
will explain the methodology for a given SSE type t and class c.

For each SSE type and class St,c, we count the number of residues in total R(St,c) as well as the
occurrences of each residue r individually in Rr(St,c). We count all standard residues separately.
All other, such as modified residues, can be combined (--group-non-standard-residues) using
the residue name XXX (alterable with -g). We also determine these values (R(P ) and Rr(P ))
for the entire protein structures. We calculate the relative frequency f(r) and the conformational
parameter p(r) according to Chou and Fasman [25] given in Equations 4.8 and 4.9.

f(r) :=
Rr(St,c)

Rr(P )
(4.8)

p(r) :=
Rr(St,c) ·R(P )

R(St,c) ·Rr(P )
(4.9)

We also perform the d-test for significance according to Wilmot and Thornton [26] (see Equa-
tion 4.10).

d(r) :=

Rr(St,c)−
(
Rr(P ) ·R(P )

R(P )

)
√(

Rr(P )

R(St,c)

)
·
(

1− Rr(P )

R(P )

) (4.10)

This test indicates how significant the over- or under-representation of residue r in SSE St,c is.
For an easier perception, we also provide a bin based indicator D for the significance shown in
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Equation 4.11. The different thresholds indicate different levels of significance (1.97: 5%, 2.57: 1%,
3.3: 0.1%). In case of ?, no statement regarding the significance can be made.

D(d(r)) :=



+ + + +3.30 ≤ d(r)

++ +2.57 ≤ d(r) < +3.30

+ +1.97 ≤ d(r) < +2.57

? −1.97 ≤ d(r) < +1.97

− −2.57 ≤ d(r) < −1.97

−− −3.30 ≤ d(r) < −2.57

−−− d(r) ≤ −3.30

(4.11)

4.3.2.3 Consensus

The Consensus Observer processes pairs of identical proteins (P1, P2) and compares their SSE
annotation to determine the consensus with respect to an SSE. For each protein and each SSE
type t and class c, a binary fingerprint Ft,c with |Ft,c| = |P1| = |P2| is created. The bits bi ∈ Ft,c
corresponding to the residues covered by all SSEs of type t and class c are marked (bi = 1).
Given two fingerprints F1,t,c, F2,t,c of two proteins P1, P2, the consensus is defined by the Tanimoto
coefficient (see Equation 4.12) with b1,i ∈ F1,t,c being the i-th bit of fingerprint F1,t,c and b2,i ∈ F2,t,c

defined analogously. n = |F1,t,c| = |F2,t,c| is the length of the two fingerprints. If the denominator is
0, i.e., no bit is set in both fingerprints, the Tanimoto coefficient is defined as 1. The terms Tanimoto
and Jaccard coefficient are often used synonymously.

Tanimoto(F1, F2) :=
|{i ∈ {1, . . . , n}|b1,i = 1 ∧ b2,i = 1, b1,i ∈ F1, b2,i ∈ F2}|
|{i ∈ {1, . . . , n}|b1,i = 1 ∨ b2,i = 1, b1,i ∈ F1, b2,i ∈ F2}|

(4.12)

In a secondary structure type based fingerprint Ft, all bits are marked that correspond to residues
that are covered by any SSE of type t. This is done analogously for SSE group fingerprints.

Finally, we calculate the consensus for the entire proteins by creating integer fingerprints based on
helices and strands. We use the class value 100 for strands in set fingerprints to avoid collisions
with helix classes. The PDB file format specifies that the helix class is a two digit number. Plus,
the class 0 is used by SCOT (see Chapter 3), for instance, to indicate mixed helices of no specific
class. Thus, it cannot be used to represent strands.

We provide the minimum, maximum, mean, and standard deviation at the end of each file. The
fingerprints can be exported by the use of --write-fingerprints.
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4.3.2.4 Consistency

The Consistency Observer reflects the consistency of an SSE classification with respect to con-
formational flexibility, such as present in NMR ensembles. It processes the ensembles with SSE
assignments by multiple SSAMs to obtain a comparable consistency for each SSAM among the
SSAMs. It requires that the residues within a specific ensemble among all classifiers are numbered
equally. In other words, a residue r must have the same sequence number i in all models of an
ensemble and among all classifiers. However, the sequences must not necessarily be of the same
length and contain the same residues. We process all models of an ensemble in a preparation
step and combine all model sequences to an ensemble sequence.

We provide two consistency measures, the Tanimoto coefficient (see Equation 4.14) and a weighted
Tanimoto coefficient (see Equation 4.16). Let F1, . . . , FK be the fingerprints for the structures or
models {P1, . . . , PK} of an ensemble E with SSE annotations. For each model Pk ∈ E and for
each SSE type t and class c, we create a binary fingerprint Fk,t,c with |Fk,t,c| = |Pk|. We mark all
bits in Fk,t,c similar to the Consensus Observer described in Section 4.3.2.3. In a nutshell, all bits
bi ∈ Fk,t,c are marked whose corresponding residues are part of an SSE in Pk of type t and class
c. Let n be the sequence length of all models {P1, . . . , PK} of ensemble E.

For both Tanimoto coefficients, we start with the calculation of the number indices D based on the
fingerprints of all SSAMs for this specific ensemble E. D contains the number of indices for which
at least one bit bk,i at index i is set (see Equation 4.13) in any of the fingerprints of all SSAMs with
F1, . . . , FA being all fingerprints of all SSAMs for ensemble E. This ensures that the consistency
for the same ensemble for each SSAM is calculated relative to the same divisor. This results in a
unified penalty score independent of the SSE lengths differences of multiple SSAMs. The limited
domain ([0.5, 1]) of the weighted Tanimoto coefficient is due to the fact that, for the dividend, the
majority of the number of bits set to 0 or 1 is taken into account which is at least K/2 here.

D(F1 , . . . ,FA) := |{i ∈ {1, . . . , n}|∃a ∈ {1, . . . , A} : ba,i = 1, ba,i ∈ Fa}| (4.13)

Due to D, which is based on the fingerprints of all classifiers, the calculated consistencies are not
comparable to consistencies obtained by a different set of classifiers.

Tanimoto(F1, . . . , FK) :=
|{i ∈ {1, . . . , n}|∨Kk=1 bk,i = 1, bk,i ∈ Fk}|

D
(4.14)

One of the drawbacks of the standard Tanimoto coefficient is that if at an index i a bit in one of the
fingerprints Fk,t,c is not marked whereas it is in all others, this is counted as inconsistent although
the majority of bits is consistent. Therefore, we introduce the weighted Tanimoto coefficient to cope
with this challenge (see Equation 4.16). Here, we set the number of the most frequent bit value
(b or b) for a given index i in relation to the number of fingerprints n. Thus, the consistency for a
given set of fingerprints is at least 0.5. This also means that the consistency of fingerprints that are
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entirely marked or unmarked is 1.

Ci(F1 , . . . ,FK ) := |{k ∈ {1, . . . ,K}|bk,i = 1, bk,i ∈ Fk}| (4.15)

TanimotoW(F1, . . . , FK) :=

∑n
i=1 max(Ci(F1, . . . , FK), 1− Ci(F1, . . . , FK))/K

D
(4.16)

An example of the benefit of the weighted Tanimoto in contrast to the regular Tanimoto coefficient is
given in Figure 4.2. The helix at indices 96 to 106 is only missing in the last fingerprint. Taking only
these indices into account the Tanimoto coefficient for this specific sequence region is 0 whereas
the weighted Tanimoto coefficient is 0.83, which better reflects the consistency.

75 80 85 90 95 100 105 110 115 120 125 130i

Fk,1,t

Fk,2,t

Fk,3,t

Fk,4,t

Fk,5,t

Fk,6,t

Figure 4.2: Generic example of the comparison of the Tanimoto and the weighted Tanimoto coeffi-
cient. Generic example of assigned helices for which the weighted Tanimoto coefficient (≈ 0.86) reflects the
perceived or expected consistency more closely than the Tanimoto coefficient (≈ 0.49). Both are calculated
based on all assigned helices.

Figure 4.2 also shows an example in which the overall Tanimoto(Fk,t) = 11+10
43 ≈ 0.49 and

TanimotoW (Fk,t) = (2·3)+4+(11·6)+(3·4)+(10·5)+3+(2·4)+2+(2·5)+(10·6)
6·43 ≈ 0.86. In the nominator, (2 · 3)

are for the helices at residues 76 to 77, 4 (most consistent value is 0) for 78, and (11 · 6) for 79 to 89.
The two Tanimoto coefficients are written to different files with suffixes tan and wtan. We provide
the minimum, the maximum, the mean, and the standard deviation at the end of each output file.
The binary fingerprints can be exported by the use of --write-fingerprints.

The creation of fingerprints for the SSE types and the SSE groups is done as described for the
Consensus Observer (see Section 4.3.2.3).

4.3.2.5 Overlaps

The Overlaps Observer determines the overlap of SSEs. An overlap overlaps(S1, S2) (see Equa-
tion 4.17) is the number of residues two SSEs S1, S2 have in common. For a protein P , we check
for overlaps between helices, strands, and helices and strands.

overlaps(S1, S2) := |S1 ∩ S2| (4.17)
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We also calculate the relative overlap with respect to the respective SSE length |S1| or |S2| which
is exemplarily given for S1 in Equation 4.18.

overlapsS1
(S1, S2) :=

overlaps(S1, S2)

|S1|
(4.18)

We provide the minimum, the maximum, the mean, and the standard deviation at the end of each
output file.

4.3.2.6 Coverage

The Coverage Observer calculates the SSE sequence coverage. For each protein P , a binary
fingerprint Ft,c of length |Ft,c| = |P | is created. Note that every bit corresponds to a residue in
P . The corresponding bits bi ∈ Ft,c of the residues of all SSEs of type t and class c are marked
(bi = 1). This is done similarly compared to the Consensus Observer described in Section 4.3.2.3.
The coverage is defined by Equation 4.19.

coverage(F ) :=
|{i ∈ {1, . . . , |F |}|bi = 1, bi ∈ F}|

|F | (4.19)

We also create fingerprints Ft in which all SSEs of type t regardless of their class and a fingerprint
F regardless of their type and class are taken into account and calculate the coverage accordingly.
We report the minimum, the maximum, the mean, and the standard deviation at the end of each
output file.

4.3.3 Output

Each Observer creates individual output files which are named according to the following scheme.
The output file names consist of the secondary structure type (H for helix, S for strand, P for
protein), the class (e.g., 1 for right-handed α-helices), the file type (e.g., dih), and the file extension.
For instance, the file H1-cvg.txt contains the sequence coverages of right-handed α-helix (see
Section 4.3.2.6). Files based on the entire protein are named P-cvg.txt, for instance. The file
containing the coverage for the group of right-handed helices is named H1+H3+H5-cvg.txt. All
output files are organized in columns using a comma as delimiter by default. The documentation
for the columns is individual for each Observer and can be consulted using --help. Floating point
values are given with a 4 digit precision which can be set globally in the source code. Residues are
written according to the PDB file format in their fixed column representation consisting of the name,
the chain identifier, the sequence number, and the insertion code.
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4.4 Application of SSAMs

Most of the SSAMs provide output files in individual formats which were transformed into the
PDB file format for evaluation purposes. To this end, we replaced the PDB secondary structure
annotation (HELIX and SHEET lines) of the input files with the SSE assignments obtained from the
individual tools. In all cases, the transformed SHEET lines did not contain a registration because, on
the one hand, they were not provided in the output files of the geometry-based SSAMs, and, on
the other hand, the registration was not required at any step of the evaluation. In the following, we
describe the transformations we applied for each SSAM.

4.4.1 ASSP

For ASSP (version 1.0) [65], we used the *_assp.out files which contain a list of the assigned
SSEs. Each element is annotated with its class as a character string (e.g., AlphaHelix) and
integer number (e.g., 1), and the N- and C-terminal residues. We transformed each line into its
PDB-conform equivalent. We changed the helix class number for left-handed 310-helices from 12
to 11 and left-handed π-helices from 11 to 13 which corresponds to the numbering used for the
SCOT-assigned helices. A class number of 0 is used to indicate a strand or sheet. Insertion codes
are not present in the output files which led to some errors in the final evaluation.

4.4.2 DISICL

Although DISICL (version 1.0) [54] provides files in different formats including the PDB file format,
the contents of these files differ. For instance, in the output files in PDB file format (DISICL simple
format), all π-helices are annotated as α-helices. Hence, we used a customized library which
utilizes a combination of the simplified and detailed format. The detailed library contains the
residues grouped into 18 different secondary structure classes. In compliance with the authors,
we transformed these according to the following scheme: Alpha-helix and Helix-cap to α-
, 3/10-helix, Turn type I, and Turn-cap to 310-, Pi-helix to π-, Left-handed turn to left-
handed, and Polyproline-like and Beta-bulge to PPII helices, as well as Beta-strand and
Beta-cap to strands. Each residue list contains the residues annotated with an internal index
numbering instead of the original sequence number. Each residue in the list implies that itself
and its successor are classified as part of the SSE type defined in the list. Thus, we reported all
segments of residues with consecutive indices plus the successor of the segment’s last residue as
SSEs according to the adjusted scheme. Consequently, the minimum length of helices and strands
was 2. We noticed that DISICL fails to parse ATOM lines in which the y or z coordinate is ≤ −100.
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4.4.3 MKDSSP

MKDSSP (version 2.2.1) is an implementation of the DSSP algorithm [22] and is available via
the yum package manager in CentOS. It provides the output in the DSSP format. All residues
of an input protein are annotated with several properties including the assignment to an SSE.
We transformed this annotation according to the following scheme: H to α-, G to 310-, and I to
π-helices, as well as E to β-strands. We scanned the residue sequence for consecutive segments
with identical assignments. For helices, we also considered the chirality to differentiate between
the left- and right-handed helix classes. If the chirality + was given, we assigned right-handed
classes (α: 1, 310: 5, π: 3), and left-handed classes (α: 6, 310: 11, π: 13) otherwise. In addition, we
also separated segments on differing chiralities. Each such segment was reported as an SSE and
written to the PDB file.

4.4.4 SEGNO

Although SEGNO (version 3.1) [53] provides output files in the PDB file format, we used the
information written to the standard output. The PDB file format output files contained errors, such
as unaligned helix and strand identifiers, missing insertion codes, and missing helices in some
cases. The standard output contains the residue-based SSE assignments similar to the DSSP
format. We extracted this information similar to MKDSSP utilizing the following scheme: H as α-, G
as 310-, M as mixed, P as PPII helices, and F, I, Q, N as β-strands.

4.4.5 SHAFT

The SHAFT [18] classification is realized by our in-house Relibase [92] server (version 3.3.0).
Output files in the PDB file format are available from the server. It appends the helix annotation to
the one from the PDB using the comment SHAFT for the assigned helices. The strand assignment
from the original PDB file is retained. However, the visualization program UCSF Chimera [17]
does not support comments in HELIX lines and fails to read the SSE information upon opening.
During the processing of the input files, we noticed the following issues. TER lines were ignored in
some files of the NMR ensembles. The element symbol X, some space groups, and LINK lines
are not supported and had to be removed prior to processing. Journal article titles (JRNL) in the
REMARK section have to be limited to 255 characters. For modified residues, their HETATM lines
are renamed to ATOM lines, the name of the residue itself is changed to the original name, and
the atoms corresponding to the modification are added to the HETATM entries connected via LINK

records. Finally, protein residues are identified by their N, Cα, C, and O atoms. However, if a
ligand residue contains atoms with these names, it also listed in the SEQRES entry of the output
file. In consequence, although the Relibase provides files in the PDB file format, we used the input
PDB files and replaced the HELIX lines with the corresponding lines from the Relibase to avoid
differently parsed protein structures in the analysis of SSAMs. In addition, we disregarded the
comments in the HELIX lines.
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Here, SHAFT corresponds to the implementation provided by the Relibase and not to our reim-
plementation described in Section 3.4. In contrast to our implementation, the Relibase version is
published and available to the scientific community, which enables the reader to reproduce the
following results. In addition, our bug fixes and changes to the implementation may not comply
with the authors.

4.4.6 STRIDE

STRIDE (release 01/29/96) [51] also provides an individual format which is similar to the ASSP
output used herein. In contrast, the respective lines (LOC) lack the integer number to identify the
class of an SSE and solely provide the character string. Thus, we used the following scheme to
transform the secondary structure annotations: AlphaHelix as α-, 310Helix as 310-, PiHelix as
π-helices, and Strand as β-strands.

4.5 Analysis of SSAMs

For the analysis of SCOT and six other SSAMs, we used the Observers of SNOT. In addition, we
analyzed the following use cases.

Structural alignments of the protein structures of the same CATH topology and superfamily (see
Section 2.3.7.1) were performed using two methods. To this end, the CATH domains of the
corresponding PDB structures were extracted and the SSEs were assigned using the SSAMs
discussed in this study.

The UCSF Chimera MatchMaker [100] was applied for the CATH superfamily pairs. The impact
of SSE information on the initial sequence alignment was varied from 0 to 1 with a 0.1 step size.
An SSE similarity contribution of 0.8 was determined as the optimum to successfully align all
superfamily pairs of the dataset. Apart from that, default settings were applied. Alignments of the
domain pairs were performed for the proteins with SSEs assigned by the different methods and the
RMSD values per protein pair (no iterative alignment optimization) were evaluated.

LOCK2 [101]-based structure alignments for both, the superfamily and the topology dataset, were
obtained using default settings. The resulting scores were normalized by the number of overall
matched SSEs per alignment.

For SCOT, different SSE assignments of the domains were used. Apart from the default assign-
ments, we omitted π-helices for the alignment, split strands based on the strand kink data, and
split both, helices and strands, based on the corresponding kinks. For all these settings, we
evaluated the alignment performance for both datasets to obtain optimum settings for SCOT-based
assignments (i.e., settings which result in low RMSD values and high per-residue-SSE scores
using LOCK2 [101]). These settings can be applied to successfully superpose topologically similar
protein structures.
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4.6 Results

This section demonstrates the applicability, the versatility, and the benefits of SNOT by compar-
ing SCOT to six other state-of-the-art SSAMs. Please be reminded that this section uses the
SHAFT classification provided by the Relibase and explicitly not our reimplementation described in
Section 3.4.

4.6.1 Yet Another SSAM?

Faced with a multitude of available algorithms for the automated assignment of SSEs in proteins,
the question arises whether yet another method is necessary. Despite the overwhelming number
of available SSAMs, DSSP and STRIDE are the most commonly used methods. Comparing the
SSAMs’ citation counts in Web of Science v.5.30 [102], a clear superiority in citation count per year
of both methods over all other methods can be observed (with exceptions for tools which were
published in addition to further results or methods). In this publication, we do not only present
SCOT as a novel alternative for the SSE assignment. We also try to highlight the advantages of
hydrogen bonding-based SSAMs over others which also explain the methods’ reception.

Table 4.2 provides an overview of available SSAMs together with their year of publication and
supported features. On a first glance, it is obvious that the major differences between the methods
are the underlying approach and the resulting differences in the assigned SSE classes. Further-
more, the availability is not guaranteed for all methods and some are only available as web servers
restricting their use to a small number of protein structures. Most tools support the assignment
of helical and extended conformations, but only a small subset of methods assigns rare SSEs,
such as left-handed helices, or turns. Moreover, there are only two other methods that indicate
kinks (ASSP in strands and KAKSI in helices) within regular SSEs. These criteria indicate a major
drawback which prompted us to design the novel method SCOT.

For the analysis of SSEs, the use of more than one tool is often necessary, e.g., assigning helices
with STRIDE and subsequently finding kinks with tools, such as Kink Finder [103], MC-HELAN [104]
or HELANAL [98]. In contrast, our method SCOT is the very first method that enables the most
extensive analysis of SSEs and turns in proteins. It assigns most of the known helix classes, as
well as kinks for both, helices and strands, in a single step. Furthermore, it provides an easily
interpretable output for the visual inspection of all SSE characteristics.

To investigate the general applicability of SCOT and the reliability of the assigned SSEs, we picked
six other SSAMs (DSSP [22], STRIDE [51], SHAFT [18], ASSP [65], DISICL [54], and SEGNO [53])
to put the results of our method into context based on different quality criteria. These were selected
as they cover most of the SSE classes that are assigned by SCOT.
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4.6.2 The SCOT Secondary Structure Assignment

Turns in the proteins’ backbone are the basis for all assignments discussed in this section. We
distinguish normal (hydrogen bond from the backbone carbonyl O of residue ri to the nitrogen
H of residue ri+k), reverse (hydrogen bond N–H of residue ri to C–O of residue ri+k) and open
turns which are characterized by distinct Cα–Cα distances between 4 and 8Å and do not contain
a backbone hydrogen bond (see Section 3.3.2). These turns are further subdivided based on their
dihedral angle ranges with the help of trained ESOMs (see Table 6.1, appendix for the average
dihedral angles, hydrogen bond energies, and four-residue segment Cα–Cα distances of the
respective turn classes). SCOT assigns multiple helix classes and extended conformations based
on a distinct set of underlying turn classes, hydrogen bonding patterns, and geometric criteria.
These are summarized below and compared to those of the other SSAMs.

4.6.3 Helices

4.6.3.1 Right-Handed α- and 310-Helices

Right-handed α- and 310-helices are assigned based on overlapping normal-5 1 and normal-4 1
turns. Per-residue overlaps of at least 2 with lengths of 3 (α) and 2 (310) are required for an initial
assignment of a helix core (see Section 3.3.4.5). These initial cores are extended by overlapping
turns of classes open-5 1, open-4 2, and open-6 4 with a Cα–Cα distance below or equal to 8Å
(see Figure 6.1, appendix for Ramachandran plots for open and normal turns of these classes).
Overlapping α- and 310-helices are subsequently merged to yield a unique residue-based helix
assignment. The final class of the helix (α, 310) is determined based on the number of per-residue
overlaps of the two helix-constituting normal turn classes. In case of equal numbers of turn
overlaps for both turn classes, a helix class cannot be assigned and we define them as mixed
helices (class 0). Given the permissive nature of these assignments based on both, hydrogen-
bonded and non hydrogen-bonded turns, a further post-processing step was required to get rid of
kinked and irregular helical structures (see Figure 4.3).

We assign four-residue segments for the complete protein structure and calculate the Cα–Cα
distances (four-residue segment Cα–Cα distances). Regular helical regions are characterized
by distinct optima for these distances (see Figures 3.9a and 3.9b for the four-residue segment
Cα–Cα distance histograms). As presented in the histogram in Figure 4.4, the introduction of
distance cut-offs to split α- and 310-helices leads to less bent helices for SCOT. The validity of
these overlaps, which also ensure proper ϕ and ψ angles and helical parameters, were evaluated
using the X-ray representatives dataset.

In general, SCOT-assigned helices are most similar to those of STRIDE (see Table 4.3). A complete
comparison of different geometric parameters and dihedral angles of α- and 310-helices assigned
by the discussed algorithms can be found in Table 6.2, appendix. The high fluctuations of the
ϕ and ψ angles for DISICL, the PDB classification, and SHAFT are in line with highly deviating
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Figure 4.3: Different α-helix assignments. Different right-handed α-helix assignments for residues 90–114
of chain A of the structure 3rxy@pdb. The Purities of the SCOT-assigned helices are α: 0.893, 310: 0.107 and
α: 0.898, 310: 0.102 Residues 98–101 show BDAs of 28.3°, 44.7°, 48.1°, and 29.2°. This Figure is reproduced
by permission of Bioinformatics (2019) [7].
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Figure 4.4: BDA histograms of the distances for α-helices assigned by different SSAMs. BDA his-
tograms of the distances for α-helices assigned by SCOT (blue), SCOTkinked (purple), ASSP (black), and
SHAFT (orange). BDA histogram for the SCOT assigned kink residues (green). This Figure is reproduced by
permission of Bioinformatics (2019) [7].

helical Twists and Radii as well as comparatively high bending angles (BDAs). Additionally, the
scaled B-factors for the helical residues are significantly higher. The tools characterize helices in
less stable protein regions. Together with ASSP, DISICL, MKDSSP, and SEGNO, SCOT-assigned
α-helices show the most stable values for the Radius, the Rise, the Twist, and the Vtor. Significant
length differences can be shown for SHAFT and the PDB with approximately 2 residues longer
helices. In contrast, DISICL helices are on average shorter. The huge difference in the assignment
of helix termini, which is a topic of major interest, shows huge discrepancies in their definition as
given in Figure 4.3. This underpins the findings of Tyagi and co-workers [16] for nine different
SSAMs. Concerning over- and underrepresented residue types in α-helices, SCOT is most similar



88 SNOT | Benchmarking SSE Classifications

to MKDSSP (see Table 6.4, appendix for the conformational parameters of residues in α-helices).
Altogether, the consensus for α- and 310-helices is highest for SCOT and the MKDSSP classification
(see Tables 6.12a and 6.12b, appendix for the consensus of all methods).

H1+H3+H5 SCOT ASSP DISICL MKDSSP PDB SHAFT SEGNO STRIDE

SCOT 1 0.8777 0.6536 0.8792 0.8095 0.6502 0.7908 0.9185

ASSP 1 0.6185 0.8253 0.7626 0.6137 0.7478 0.8500

DISICL 1 0.6214 0.6764 0.4496 0.6762 0.6575

MKDSSP 1 0.8147 0.6479 0.7665 0.9047

PDB 1 0.5553 0.8975 0.8182

SEGNO 1 0.5397 0.6487

SHAFT 1 0.7764

STRIDE 1

Table 4.3: Consensus of different SSAMs in the assignment of right-handed helices for the X-ray
representatives dataset.

SCOT assigns the geometrically most consistent 310-helices when compared to all other methods
(see Table 6.2, appendix for an overview of all geometric characteristics). The average 310-helix
length is 4 residues. DISICL-, MKDSSP-, SEGNO-, and STRIDE-assigned 310-helices are on
average shorter, while these of the PDB and the SHAFT assignment are longer which is in accord
with higher ϕ and ψ angle deviations. The scaled mean B-factor for 310-helices is higher than
that for α-helices for all assignments in this analysis underpinning the studies of Enkhabayar and
co-workers [105]. They characterized 310-helices as para-helices given their instability and high
variances in the geometric parameters. For normal-4 turns of class 2, which are used for the
310-helix assignment in our study, we observe lower hydrogen bond energies as compared to
normal-5 1 turns. Moreover, Pro residues are overrepresented in this helix class according to SCOT,
MKDSSP, PDB, SEGNO, SHAFT, and STRIDE (see Table 6.4, appendix for the conformational
parameters of residues in 310-helices).

Based on the structure 3rxy@pdb (chain A), the classification of α-, 310-, and mixed helices
by SCOT and their assignment by other methods can be discussed. Mixed helices are rarely
assigned by SCOT to meet the problem of ri → ri+3 hydrogen bonds occurring within α-helices.
The fraction of residues assigned as mixed helix residues is 10.35% for SEGNO whereas the
fraction of SCOT-assigned mixed helix residues is 0.09% in the X-ray representatives dataset
(see Table 4.4). The overall consensus between the SCOT- and SEGNO-assigned mixed helices
is only 0.0028 (see Table 6.12d, appendix). The average helical parameters together with the
dihedral angles are given in Table 6.2 of the appendix. For mixed helices assigned by SCOT, all of
these characteristics lie between those of α- and 310-helices underlining the difficulty of a unique
assignment. Due to bifurcated hydrogen bonds occurring in α- and 310-helices, we find helices for
which a final classification is not possible. Figure 4.5 gives an example of predominantly α-helical,
predominantly 310-helical, and mixed class residue backbone segments in 3rxy@pdb together with
their corresponding three-dimensional helix structure. It provides an overview of assignments and
highlights major differences between all methods. (For SCOT classifications, we assign relative
helix Purities which are reported in REMARK 650 of the output PDB file.) For our representative
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Figure 4.5: Examples of the assignment of different helix classes by SCOT and six other SSAMs.
Examples of the assignment of 310- (a), α- (b), and mixed (c) helices by SCOT and six other SSAMs for the
protein structure 3rxy@pdb (chain A). This Figure is reproduced by permission of Bioinformatics (2019) [7].

dataset, α-helices show an average Purity of 0.87 while 310-helices are characterized by an even
higher average Purity of 0.92 (see Table 6.2, appendix). The slightly lower Purity of α-helical
structures can be attributed to the occurrence of ri → ri+3 and ri → ri+5 hydrogen bonds. The
helices which are constituted by the latter pattern are discussed in Section 4.6.3.2. In contrast to
geometry-based methods SCOT, does not rely on uniform ϕ and ψ angles which were shown to be
inappropriate for 310-helix definitions [105]. We focus on hydrogen bonding patterns to assign the
final helix classes.

Due to our helix assignment using Cα–Cα distances for helix splitting purposes, it is no longer
necessary to assign kinks for SCOT-derived helices. The number of kinks (BDA > 30°) in α- and
310-helices for SCOT is 250. SCOT rarely assigns continuous helical stretches in bent regions.
Nevertheless, kinks in the assigned helices can still be observed. We tried to identify further
kinks by an additional hydrogen bonding pattern. An analysis of known helix kinks [106] revealed
that they are characterized by a non-consecutive sequence of turn overlaps. Looking for regions
with missing hydrogen-bonded turns might assist in the identification of bent regions in protein
helices as those regions should consequently be more flexible. This was already discussed in a
previous study focusing on the identification of kinked regions and residues involved at these kink
positions [103]. We analyzed the conformational parameter of residues at and in the immediate
sequential proximity of the assigned kinks and found a preference for Pro at position rk+1 which
is in line with previous studies [104]. The preferred residue at SCOT-defined kinks is Leu (see
Table 4.5 for the conformational parameters of residues at kink positions). While also prevalent
in helices (helix-stabilizing), we find a much higher conformational parameter for Leu at the kink
position (2 vs. 1.3 for α-helices). Intriguingly, only 24% of our hydrogen bond-based kinks show
BDAs above 20° and only 3% have BDAs above 30° (previously characterized as kink regions [85]).
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SCOT ASSP DISICL MKDSSP PDB SEGNO SHAFT STRIDE

H0 (mixed) 0.0009 n/a n/a n/a n/a 0.1035 n/a n/a
H1 (RH α) 0.3276 0.3139 0.3920 0.3073 0.3718 0.2207 0.3926 0.3260

H3 (RH π) 0.0040 0.0047 0.0066 0.0054 n/a n/a 0.0004 0.0002

H4 (RH 2.27) 0.0000 n/a n/a n/a n/a n/a n/a n/a
H5 (RH 310) 0.0391 0.0331 0.1597 0.0361 0.0504 0.0222 0.0453 0.0409

H6 (LH α) 0.0000 0.0000 0.0145* 0.0068 n/a n/a n/a n/a
H8 (LH 2.27) n/a n/a n/a n/a 0.0000 n/a 0.0188 n/a
H10 (PPII) 0.0126 0.0142 0.0890 n/a n/a 0.0291 n/a n/a
H11 (LH 310) 0.0004 0.0001 n/a* 0.0026 n/a n/a n/a n/a
H13 (LH π) n/a 0.0000 n/a* 0.0002 n/a n/a n/a n/a
S0 (β) 0.1937 0.2006 0.2819 0.2060 0.2063 0.2558 n/a** 0.2084

SUM 0.5783 0.5666 0.9437 0.5644 0.6285 0.6313 0.6634 0.5755

Table 4.4: Sequence coverage of different SSAMs for the X-ray representatives dataset. The coverage
is defined as the number of residues assigned to an SSE type divided by the number of residues in a protein.
The summed coverages for ASSP, DISICL, PDB, SHAFT, and SCOT are biased as these methods assign
overlapping SSEs. The handedness of helices is given by RH (right-handed) and LH (left-handed). SSE
classes not supported by SSAMs are annotated with n/a. * As DISICL assigns left-handed helices without
a specific class, the coverage for all assigned left-handed helices is summarized in row H6. ** The strand
information in SHAFT corresponds to the sheet entries in the original PDB file. This Table is extracted from [7].

Consequently, the residues assigned by SCOT are kink-prone (i.e., hot spots for kink formation)
rather than indeed the source of a helical deformation. Asking what kinks we miss, we analyzed
the helices with residue positions with high BDAs. We find 48 helical residues with BDAs above
30° in helices with at maximum 9 residues. Splitting them by kinks would lead to very short helical
stretches and the elimination of many short helices. This is in line with a generally rising BDA
with decreasing helix length [107]. The remaining approximately 200 cases of high BDAs are
cases that were neither found based on high Cα–Cα distance nor by a minimum of hydrogen bond
interactions. Consequently, the use of HELANAL [98] or KinkFinder [103] might help to identify
further geometric kinks in the structures of interest.

4.6.3.2 Right-Handed π-Helices

Similar to the co-occurrence of α- and 310-helices, π-helices are frequently observed as part of
other helix classes [108] and are also referred to as α-bulges [82]. The merging of α-, 310-, and
π-helices for SCOT led to a low number of assigned π-helices. In SCOT, π-helices are regarded as
a special class and do not undergo the merging steps as explained for the previously discussed
helix classes. π-helices are assigned on the basis of overlapping normal-6 2 turns with an overlap
length of at least 5 and an overlap count of at least 2. I.e., at least two consecutive normal-6 2
turns are required for a π-helix assignment. For the X-ray representatives dataset, we assigned
572 π-helices of which 552 (96.5%) overlap with α-helices by at least one residue (113 (19.8%)
are completely included) and 68 (11.9%) with 310-helices by at least one residue (1 is completely
included). This inconsistency is also reflected by the low average π-helix Purity of 0.56 for this
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H1+H3+H5 rk−3 rk−2 rk−1 rk rk+1 rk+2 rk+3

Ala 1.0651 1.6737 1.1086 1.1795 1.1520 1.4563 0.6956

Cys 0.3074 0.3074 0.7684 1.0425 0.6148 0.7684 0.9221

Asp 0.7254 0.7254 1.0093 0.6062 0.6623 0.4731 0.4100

Glu 0.8409 1.0371 1.4855 0.7130 0.9810 0.8128 0.7848

Phe 1.3678 1.5093 0.8961 1.4397 1.1320 1.5565 1.3678

Gly 0.4641 0.5373 0.7327 0.5385 0.8304 0.4885 1.2212

His 0.5241 0.5241 0.9171 0.6295 0.3275 0.7206 0.5896

Ile 1.6747 0.8038 1.1053 1.2874 0.9043 0.8373 1.3397

Lys 0.8471 1.0165 1.1182 0.9960 1.1859 1.7958 0.8132

Leu 1.5424 1.5836 0.9049 1.9995 1.1517 1.1106 1.6658

Met 1.1141 1.6206 1.2154 0.7443 1.3167 0.9116 1.4180

Asn 1.0242 1.0242 0.8016 0.7048 0.5344 0.5344 1.0687

Pro 0.7592 0.6394 0.2797 0.3840 2.6374 0.6394 0.2797

Gln 1.3698 1.2176 1.3698 1.0324 1.2684 1.3698 1.2176

Arg 0.9183 1.2121 1.6162 1.0174 0.9183 1.0285 1.1019

Ser 0.7653 0.7653 0.6428 0.5018 0.8571 0.9489 0.4592

Thr 0.6931 0.5198 0.8317 0.8032 0.5892 1.3516 0.9011

Val 1.2015 0.6141 1.1214 1.1471 0.7743 1.0413 1.2282

Trp 1.6388 1.5022 1.2291 1.4667 1.3657 0.6828 0.9560

Tyr 0.8750 0.7109 0.8750 1.4838 0.7656 0.7656 1.4766

XXX 1.4142 2.1213 1.0607 0.9993 1.4142 1.7678 1.7678

Table 4.5: Conformational parameter for residues in SCOT-defined helix kink regions. Conformational
parameter P as defined by the method of Chou and Fasman [25] for residues in SCOT-defined helix kink
regions. This Table is extracted from [7].

dataset with a maximum Purity of 0.913 (see Table 6.2, appendix). Nevertheless, we identified
three π-helices with Purities above 0.8 which were also detected by other methods (see Figure 4.6a
for an example). This contradicts the hypothesis that π-helices do not occur as regular independent
SSEs [109]. The average π-helix length for ASSP and SCOT is 6 residues. The higher average
BDA for π- and 310-helices suggests that the occurrence of normal-6 and normal-4 turns leads to
deviations from the ideal helix geometry. Intriguingly, π-helical stretches are characterized by a
lower B-factor than α- and 310-helices.

The stabilizing effects of predominantly hydrophobic and aromatic residues in π-helices [110]
(see Table 6.4, appendix for overrepresented residues in π-helices) might be a reason in addition
to the higher number of backbone hydrogen bonds due to the co-occurrence of normal-5 and
normal-6 turns constituting π-helices (see Purity in Table 6.2, appendix). The residue preferences
differ between the methods designed for the assignment of π-helices (see Table 6.4, appendix
for the conformational parameter of π-helices based on different SSAMs). For most assignment
methods, Ala, Gly, and Pro residues are underrepresented while Val, Leu, Ile, Phe, and Tyr
residues are preferentially found. The assignments of SCOT and MKDSSP are most similar
(see Table 6.12c, appendix for the consensus π-helix assignments of all methods). STRIDE and
SHAFT classifications are significantly different from all other methods and their consensus is
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0.08. Both methods assign only 36 or 47 π-helices for the complete dataset. The main reason
is the hierarchy underlying SHAFT and STRIDE which prefer α- and 310-helix assignments over
π-helix assignments. They find only π-helices whenever there is a significantly higher proportion
of ri → ri+5 hydrogen bonds within a helical region. Therefore, both tools were excluded for the
following analyses.
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(a) Pure π-helix in 4iicA@pdb
α: 0.087, π: 0.913
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(b) N-Capping π in 3w36A@pdb
α: 0.765 , π: 0.059, 310: 0.176

15 20 25 30
GAGFGGIYAVHKLHHEL

SCOT
ASSP
DISICL
MKDSSP
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(d) Kink in 4nbrA@pdb
α: 0.891, π: 0.109
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(e) Overlapping π-helix 4q2wA@pdb
α: 0.469, π: 0.375, 310: 0.156

Figure 4.6: Differences in the assignment of π-helices by different SSAMs. (a) The π-helix in 4iicA@pdb
is characterized by predominantly occurring ri → ri+5 hydrogen bonds and does not overlap with other helix
classes. In contrast, the structures 3w36A@pdb (b) and 4rg3A@pdb (c) contain α-helices which are N- and
C-terminally capped by ri → ri+5 hydrogen bonds. (d) An α-bulge which leads to a kinked (highlighted in
green) α-helical structure in 4nbrA@pdb. (e) A π-helix with overlapping normal-6 2 which can be found inside
an α-helix in 4q2wA@pdb. This Figure is reproduced by permission of Bioinformatics (2019) [7].

Given the fact that we assign also less π-helices, we analyzed potential reasons. We searched for
structures with π-helices assigned by MKDSSP (951) but missed by our method. Our prerequisite
for π-helical cores are at least two overlapping normal-6 2 turns. This leads to the omission
of π-helical turns which are predominantly assigned C-terminally (179) and N-terminally (54) of
α-helices as exemplarily shown in Figures 4.6b and 4.6c. In the case of N-terminally omitted
π-helices, the common overlaps are between the last or the first residue of the π-helix and the first
of our α- and 310-helices. Rather than π-helices, those structures might be considered as capping
motifs consisting of a normal-5 1 turn and a succeeding normal-6 2 turn constituting the helix cap.
The corresponding N- and C-terminal residues of the normal-6 turn are mainly hydrophobic and/or
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aromatic and probably lead to a stabilization of the helix terminus.

Additionally, α-bulges within helices consisting of only one ri → ri+5 hydrogen bond are not
classified as π-helices by SCOT (92 cases). In those cases, the α-helix is split into two parts
due to an increased four-residue segment Cα–Cα distance (see Figures 4.6d and 3.9c, for the
four-residue segment Cα–Cα distance histogram of π-helices). Finally, we identify π-helices that
are differently classified by the other algorithms. One example is given in Figure 4.6e. These
cases are especially interesting as they constitute helical stretches which are characterized by
overlapping ri → ri+3, ri → ri+4, and ri → ri+5 hydrogen bonds.

Given these results, we argue that only the combination of hydrogen bonding pattern and geometric
criteria provides a comprehensive and reliable classification of π-helices. The lack of single
normal-6 turn helices in the center of helices as well as at the termini of α-helices which are
characterized by a high flexibility leads to stable π-helix assignments. The geometric parameters of
the π-helices are robust when compared to DISICL and the constant ϕ and ψ angles point toward
a highly unique π-helix classification. The use of our π-helices for, e.g., protein structure alignment
is arguable due to the possible overlaps with other helix classes, but their assignment might be
interesting for further analyses regarding the evolution and function of this rare SSE class.

4.6.3.3 Left-Handed Helices

Left-handed helices are also rarely occurring in protein structures and their lengths are mostly
restricted to some residues [111]. We identified a normal-4 and a normal-5 turn class which
overlap in left-handed helices and whose dihedral angles agree with those of left-handed helical
conformations in proteins. In contrast, we could not identify a hydrogen-bonded normal-6 turn class
with the dihedral angles suitable for the assignment of left-handed π-helices. We used the dataset
of Novotny and Kleywegt [111] to compare our approach to ASSP, DISICL, and MKDSSP. DISICL
assigns no left-handed classes while ASSP and MKDSSP assign and differenciate left-handed α-,
310-, and π-helices. MKDSSP classifies the handedness (chirality) with the help of the parameter
Vtor. Using this information leads to the classification of 1 residue long left-handed helices at the
C-terminus of numerous right-handed helices (6,035 out of 6,136 (98.4%) left-handed α-helices,
1,772 out of 2,048 (86.5%) left-handed 310-helices, and 192 out of 196 (98.0%) left-handed π-helices
are 1 residue long).

Although the results of SCOT for this dataset are comparable to those of the two geometry-based
tools, we find some striking differences (see Table 6.14, appendix for the assignment of left-handed
helices by all methods for the dataset of Novotny and Kleywegt). ASSP does not classify three
of the manually assigned helices and omits three helices additionally identified by DISICL. SCOT
misses nine of the manually assigned left-handed helices due to insufficient overlaps of the
hydrogen-bonded turns, but assigns two additional left-handed 310-helices together with DISICL.
MKDSSP also finds most of the left-handed helices, but they are in general one residue shorter.
Several additional helices were identified but we omitted them in the results due to their shortness
(1–2 residues). Obviously, all four methods show discrepancies in the reliable classification of
left-handed helices. Nonetheless, there are some considerations which reveal the benefits of the
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SCOT-based assignment.
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(a) Example of a left-handed α-helix partially
composed of D-amino acids in 2q33B@pdb. The

Purity for the helix assigned by SCOT is 0.887

left-handed α and 0.113 left-handed 310.
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MKDSSP

11111 normal-5 9 turn overlaps
1223211 normal-4 3 turn overlaps

(b) Example of a left-handed 310-helix classified in
the structure 2dvtA@pdb. The Purity for the helix
assigned by SCOT is 0.714 left-handed 310 and

0.286 left-handed α.

Figure 4.7: Examples of rarely assigned left-handed helices. Examples of left-handed helices which occur
in protein structures available in the PDB. D-amino acids are underlined. The overlaps of the corresponding
normal turns are given to illustrate the respective class assignments. DISICL does not assign left-handed
classes (purple outline). This Figure is reproduced by permission of Bioinformatics (2019) [7].

The geometric descriptors of the left-handed α- and 310-helices assigned for the X-ray representa-
tives dataset are the most stable as compared to those of left-handed helices assigned by ASSP
(see Table 6.2, appendix for the geometric characteristics of left-handed helices). Additionally, the
dihedral angles of the residues in SCOT-assigned helices are not as broadly distributed as for
ASSP- and DISICL-assigned helices. The scaled B-factors suggest a higher degree of stability
for the left-handed helices identified with the SCOT methodology. In contrast to the observations
of Hollingsworth and co-workers [109, 112], we identified multiple left-handed α- and 310-helices
which are more than three residues long. Two examples and their assignment by ASSP, DISICL,
MKDSSP, and SCOT are given in Figure 4.7. The left-handed α-helix in Figure 4.7a forms due
to the presence of D-amino acids which favor the formation of left-handed helical conformations.
Although the average length of assigned left-handed helical conformations rarely exceeds four
residues (α-helices are on average one residue longer than 310-helices as also observed for their
right-handed counterparts), we argue that the left-handed helix category is a more recurrent and
regular motif than previously anticipated.

Given the sparsity of left-handed helices in the X-ray representatives dataset applied here (8
and 37 left-handed α-helices and 4 and 108 left-handed 310-helices were identified by ASSP and
SCOT, respectively while DISICL and MKDSSP classified altogether 6,534 and 8,407 often short
left-handed helices), we searched the entire 2018 copy of the PDB for left-handed helices. To this
end, we used SCOT as it is the most restrictive tool which incorporates hydrogen bond stabilization
of helices to assign at least 3 residue long left-handed helices.

The set of proteins with at least four-residue long left-handed helices was subsequently used to
generate a representative (non-redundant) set of protein structures. Although there is a significant
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bias, the high consensus to ASSP and DISICL (see Table 4.6) and the improved recognition of
left-handed α- and 310-helix classes using a hydrogen bonding criterion justify the use of SCOT for
this purpose.

The resulting representative set (see Section 2.3.3) was subsequently processed with ASSP,
DISICL, MKDSSP, and SCOT. The overall consensus between ASSP, DISICL, and SCOT is high
whereas that of MKDSSP is comparatively low to all methods (see Table 4.6, and Tables 6.13a and
6.13b, appendix). This together with the differences with respect to the conformational parameters
of the residues in left-handed helices (see Table 6.5, appendix) underlines the basic problem of
using Vtor for helix handedness assignment, i.e., the overestimation of this angle in the irregular
regions following the C-terminus of right-handed helices. Left-handed helix assignments by SCOT
and DISICL are most similar. Differences occur in the class assignment by ASSP and SCOT
leading to a low consensus for both left-handed helix classes. A huge proportion of ASSP-assigned
α-helices are classified as left-handed 310-helices by our method based on the ri → ri+3 hydrogen
bonding pattern. Further class-specific differentiations between ASSP and SCOT assignments
can be made (see Table 6.3, appendix for the geometric characteristics of the assigned helices).
While the geometric parameters of SCOT-assigned left-handed α-helices are more robust, these
of the ASSP-assigned 310-helices are more stable and show lower B-factors. In contrast, SCOT-
assigned right- and left-handed 310-helices are characterized by higher scaled B-factors which
is in compliance with the lower hydrogen bond energies of the underlying turn type (normal-4 3)
(see Table 6.1, appendix). The dihedral angles of the SCOT-derived left-handed helix classes
conform to their counterparts for the right-handed classes. In contrast, the dihedral angles of ASSP
left-handed α-helical segments tend toward those of 310-helices.

H6+H11+H13 SCOT ASSP DISICL MKDSSP

SCOT 1 0.6501 0.8534 0.3730

ASSP 1 0.6704 0.3004

DISICL 1 0.3761

MKDSSP 1

Table 4.6: Consensus of different SSAMs in the assignment of left-handed helices for the non-
redundant set of structures with left-handed helices.

4.6.3.4 Polyproline II Helices

Another class of left-handed helices in proteins are PPII helices [113]. In contrast to other helix
classes, these helices are characterized by an extended conformation and predominantly occurring
Pro residues. Their functional roles in different biological processes have already been shown
by different independent investigations [114, 115]. A repetitive hydrogen bonding pattern cannot
be found for this helix class. SCOT uses the occurrence of repetitive open-4 9 turns, which show
average four-residue segment Cα–Cα distances of 7.8Å, to assign PPII helices. ASSP, DISICL,
and SEGNO assign PPII helices based on the protein geometry and/or dihedral angles. The
consensus between SCOT and the three other methods is considerably low (below 20%). As
already observed in other analyses [49, 50], the assignment of PPII helices is a challenging issue
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and highly diverse assignments can be found. SCOT assignments are most similar to these of
SEGNO (see Table 6.12e, appendix for the consensus). There are no two tools which resemble
each other in the assignment of PPII helices. This can probably be attributed to the occurrence of
PPII helices as irregular SSEs which are partially stabilized by water bridges [116] and hydrophobic
interactions [117]. Nevertheless, the PPII helices of all methods are dominated by Pro residues.
For the X-ray representatives dataset, ASSP, DISICL, SCOT, and SEGNO assigned 3,891, 35,971,
2,752, and 7,458 PPII helices, respectively. The fraction of residues assigned as part of PPII
helices is 1.4% for ASSP, 8.9% for DISICL, 1.3% for SCOT, and 2.9% for SEGNO (see Table 4.4
for residue coverages). ASSP- and SEGNO-assigned PPII helices also show a significantly high
occurrence of Lys residues. The stability of the geometric helical descriptors for our PPII helices
is between that of DISICL, which shows a high variance within the helical parameters, and that
of ASSP and SEGNO, which assign the geometrically most stable PPII helices with the lowest
overall B-factors. The B-factors of residues involved in the different PPII helices are considerably
higher than the average scaled B-factors for other backbone hydrogen bond-stabilized SSEs (see
Table 6.2, appendix).

We analyzed the differences between the SSAMs in more detail. Many of the ASSP- and SEGNO-
defined PPII helices overlap with (1,133/933) or are completely included in (110/70) our hydrogen
bond-based assigned β-strands. SCOT assignments are designed to exclude any helices occurring
within main-chain hydrogen bond-stabilized strand structures. Consequently, many of the geometri-
cally assigned PPII helices are assigned as strands or completely omitted by SCOT. Enabling PPII
assignment independent of strands leads to the assignment of 4,559 PPII helices. Compared to the
2,752 helices found previously, this is a huge increase. The insufficient differentiation between PPII
helices and β-strands by geometry-based methods partially explains the highest mean B-factor of
SCOT-assigned PPII for the dataset. The mean B-factor of all PPII helices decreases from 0.31

to 0.04 if overlapping β-strands and PPII helices are allowed. In consequence, SCOT assigns
overall highly stable PPII helices. Intriguingly, these helices show the highest mean BDA with
the highest variance. For PPII helices, no maximum four-residue segment Cα–Cα distance was
defined to cut bent helices. PPII helices have an extended conformation with helical character.
Consequently, the use of Cα–Cα distances for a splitting is difficult and we only split PPII helices
with four-residue segment Cα–Cα distances below 7.45Å (see Figure 3.9d for the Cα–Cα distance
histogram). Although SCOT seems to be altogether less restrictive for PPII assignments than
other methods when overlapping PPII helices and β-strands are allowed, the percentage of PPII
residues is the lowest for our representative dataset. One reason is the exclusion of PPII helix
assignment within strands. Another reason is the minimum required length of three residues per
helix (as compared to DISICL).

4.6.4 Sheets

The most extended backbone conformation observed in proteins are β-strands (see Table 6.2,
appendix for the geometric parameters of all SSE classes). They occur as isolated strands as well
as in larger parallel or anti-parallel assemblies of strands (sheets). Our strand assignment is based
on the analysis of the underlying hydrogen bonding patterns. In addition, turns are used to split
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strands (see Section 3.3.3.3). In contrast to geometry-based methods, SCOT does not identify
isolated strands.

The average length of SCOT-assigned strands is similar to that of strands assigned by MKDSSP,
SEGNO, and STRIDE. ASSP and DISICL assign overall shorter strands (see Table 6.2, appendix).
The dihedral angles of SCOT-assigned strands are in a narrow range although they were not used
in the assignment procedure. The BDA distribution is broader than that of ASSP, DISICL, and
SEGNO whose strand-assignments are characterized by the lowest average BDAs (see Figure 4.8).
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Figure 4.8: BDA histogram of the distances for β-strands assigned by different SSAMs. BDA histogram
of the distances for β-strands assigned by SCOT (blue), SCOTkinked (purple), ASSP (black), and STRIDE
(orange) are given together with the binned BDAs (in degrees) for the SCOT-assigned kink residues (green).
This Figure is extracted from [7].

We additionally use four-residue segment Cα–Cα distances to account for highly bent strands
and it is possible to use this information to split strands. We assign strand kinks which can be
visualized and utilized in a strand post-processing step. This is achieved via analyzing the Cα–Cα
distance distributions within strands. Obviously, a distance below 8.5Å is atypical for strands
(see Figure 3.7 for the Cα–Cα distance histogram) and the residues within such four-residue
segments are assigned as strand-kink-residues. An analysis of the BDAs at these residue positions
shows high overall BDAs which are on average 59.69° ± 18.82° (see Figure 4.8, appendix). A
splitting at kink positions leads to a decrease in the mean BDAs from approximately 23.8° to 18.6°
(see Table 6.2, appendix) which is similar to those of the geometry-based methods DISICL and
SEGNO and below those of the hydrogen bond-based classifications. An analysis of the amino
acid propensities at different kink positions shows a clear overrepresentation of Gly (and also Ser
and Val) residues at the position of the kink whereas flanking regions include Ile, Leu, Val, and
Cys (rk−1) and Phe, Tyr, Val, Ile, and Cys (rk+1) residues (see Table 4.8). Our strand kinks can
be used to obtain geometrically uniform strands without influencing the residue preferences at
the Ncap and the Ccap of strands (see Table 6.11, appendix). In contrast to the geometry-based
methods, SCOT assignments focus on finding stable extended conformations as revealed by the
significantly lower average scaled B-factor (see Table 6.2, appendix). The use of the kinks to
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split strands leads to a geometrically more robust strand assignment without relying on purely
geometric criteria. Nevertheless, we decided against an automated splitting of strands as the
hydrogen bonding pattern is continuous and only the underlying geometry is irregular.

S0 SCOT ASSP DISICL MKDSSP PDB SEGNO STRIDE

SCOT 1 0.4788 0.5158 0.8982 0.8811 0.5916 0.8567

ASSP 1 0.5001 0.4859 0.4893 0.5439 0.4826

DISICL 1 0.5350 0.5410 0.6565 0.5431

MKDSSP 1 0.9755 0.6065 0.9252

PDB 1 0.6130 0.9067

SEGNO 1 0.6048

STRIDE 1

Table 4.7: Consensus of different SSAMs in the assignment of β-strands for the X-ray representatives
dataset. The most similar methods to SCOT are highlighted in blue.

S0 rk−3 rk−2 rk−1 rk rk+1 rk+2 rk+3

Ala 0.8824 0.5283 0.6847 1.0215 0.8323 0.7113 0.7762

Cys 1.6903 0.5843 1.8363 0.9108 1.8572 1.0851 1.2938

Asp 0.8094 0.6038 0.2098 1.0401 0.4325 0.8436 0.9293

Glu 0.6165 1.4576 0.4148 0.9458 0.6774 1.0884 0.8144

Phe 1.4921 0.7493 1.0823 0.7728 1.5498 1.2680 1.2232

Gly 2.2651 0.6036 0.3250 1.4509 0.6799 0.8788 0.9352

His 0.6582 0.8806 0.3380 0.8541 0.7205 0.9962 0.7205

Ile 1.1005 1.0732 3.1242 1.0976 1.9737 1.5462 1.4734

Lys 0.6303 1.9415 0.4831 1.0253 0.5521 0.8419 0.7959

Leu 0.9718 0.6450 1.5972 0.8790 0.9913 0.8489 0.8433

Met 0.7564 0.7839 0.7701 0.6214 1.0177 0.9352 0.8664

Asn 1.0037 1.0097 0.3507 0.9904 0.6167 1.0521 0.9855

Pro 0.8573 0.6185 0.9929 0.3483 0.2659 0.1736 1.0309

Gln 0.4684 1.4191 0.4822 0.8419 0.8680 0.9231 0.7302

Arg 0.6882 1.7256 0.4788 1.0449 0.8528 0.9974 0.9825

Ser 0.6650 0.8229 0.5237 1.1674 0.9268 1.0515 0.9726

Thr 0.7435 1.4634 0.9740 0.9689 1.0634 1.1387 1.0917

Val 1.2254 1.1492 3.1287 1.1989 2.2550 1.4791 1.6314

Trp 1.7245 1.0013 0.4450 1.0950 1.2980 1.1867 1.1126

Tyr 1.1806 1.1509 0.7648 1.0714 1.2994 1.3366 0.9430

XXX 0.6721 0.5761 1.0561 0.7149 1.4401 1.0561 1.1521

Table 4.8: Conformational parameter for residues in SCOT-defined strand kink regions. Conformational
parameter P as defined by the method of Chou and Fasman [25] for residues in SCOT-defined strand kink
regions. This Table is extracted from [7].

The significant amino acid preferences for strands are highly similar for all methods (see Table 6.6,
appendix). The only exception is DISICL, whose assigned strands show a high occurrence of Pro
residues. The most similar method to SCOT with respect to strand assignment was MKDSSP
with a consensus of 90% (see Table 4.7). The geometry-based methods classify strands that are
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assigned as PPII helices by SCOT. This is in line with the observation that ASSP, DISICL, and
SEGNO find Pro as overrepresented residue at strand termini (see Table 6.11, appendix for the
residue preferences at strand termini). This finding is further discussed in the following section.

4.6.5 Disagreements in Assigning Extended Conformations

S0+H10 SCOT ASSP DISICL MKDSSP PDB SEGNO STRIDE

SCOT 1 0.5000 0.4845 0.8453 0.8326 0.5888 0.814

ASSP 1 0.4903 0.4868 0.4899 0.5770 0.4851

DISICL 1 0.4752 0.4802 0.6636 0.4848

MKDSSP 1 0.9778 0.5665 0.9326

PDB 1 0.5721 0.9154

SEGNO 1 0.5677

STRIDE 1

Table 4.9: Consensus of different SSAMs in the assignment of extended conformations for the X-ray
representatives dataset.

The assignment of β-strands and PPII helices is highly different for ASSP, DISICL, SEGNO, and
SCOT (see Table 4.9, and Tables 6.12e and 6.12f, appendix for the consensus of these four
methods). Partially, this can be attributed to the hydrogen bond-based β-sheet assignment by
SCOT. A hierarchical assignment was applied to avoid the overlap between strands and PPII
helices. Without this restriction, SCOT assigns approximately twice as many PPII segments. We
compared the PPII helices assigned by the four tools to analyze this observation in more detail.
Figure 4.9 gives one example of the highly different per-residue assignments by the methods
analyzed herein. The hydrogen bond-based strands assigned by MKDSSP, SCOT, and STRIDE
overlap to a high degree whereas ASSP and DISICL define further isolated β-strand structures
which partially overlap with PPII helices assigned by other geometry-based methods. Altogether,
24%, 48%, and 36% of the SCOT PPII residues are classified as strand residues by ASSP, DISICL,
and SEGNO, respectively. Vice versa, many of the PPII helices assigned by these three tools
correspond to SCOT-assigned strand structures. This explains the overall lower scaled B-factor
of the PPII helices assigned by geometry-based tools. An analysis of the PPII residues of the
different methods shows that there is no clear differentiation between extended PPII helix and
strand conformation. This can be partially attributed to the similarities with respect to the dihedral
angles and geometric parameters (see Table 6.2, appendix) which limits a purely geometry-based
classification.

We argue that our hydrogen bond-based β-sheet classification and exclusion of PPII helices in
those residue segments enables a unique assignment of PPIIs. Further analyses will be necessary
to reliably and uniquely assign protein segments as PPII helices. A preliminary conclusion is that
both SSE classes cannot be distinguished easily and they should both better be referred to as
extended conformations.
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Figure 4.9: Strand and PPII assignments by different SSAMs. The assignments are given for
3mpcA@pdb. β-strands are represented in orange while PPII assignments are highlighted in light orange.
The three-dimensional representations at the top were generated using PyMOL [32]. MKDSSP, PDB, and
STRIDE do not support the assignment of PPII helices. The ribbon structure (h) is colored according to the
B-factor of the proteins’ Cα atoms with a gradient ranging from purple for the highest to white to blue for the
lowest value. This Figure is reproduced by permission of Bioinformatics (2019) [7].

4.6.6 Rare Helix Classes

Two further helix classes are discussed in this paragraph. The first one is the 2.27-helix which is
rarely occurring in proteins. SHAFT assigns 2.27-helices based on inverse γ-turns (normal-3 1)
and assigns them as right-handed γ-helices (helix class 4 according to the PDB classification).
Intriguingly, most of those SHAFT-assigned helices can be found within β-strands with mean ϕ
and ψ dihedral angles of −103.6° and 120.2°. Their assignment can be attributed to the non-
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restrictiveness of the hydrogen bond assignment according to Kabsch and Sander [22]. Our
investigations of the hydrogen bonding energies and geometry led to the conclusion that the
hydrogen-bonded normal-3 turns identified by the turn classification of Koch and Klebe [88] are
partially inappropriate due to geometry highly deviations from the optimum for hydrogen bonding
interactions [118, 119]. The original definition of so-called γ-helices relates back to the first
secondary structure investigations of Pauling and co-workers [35] who coined the term γ-helix as
an alternative to the α-helix [120]. To prevent any confusion, we will name helices composed of
γ-turns as 2.27-helices according to Donohue [121].

This helix class has been reported for a crystalline peptide structure [122] and was shown to exist
in globular protein structures [123, 124]. Its left-handed form is characterized by ϕ- and ψ-angles of
approximately −80° and 60° [125]. These dihedral angles correspond to the dihedral angle space
of normal-3 1 turns (corresponding to inverse γ-turns, mean ϕ = −82.3°, ψ = 61.1°). Normal-3 2
turns (normal γ-turn, mean ϕ = 74.3°, ψ = −52.0°) can be used to assign right-handed 2.27-helices.
Consequently, we used these turn classes to assign 2.27-helices whenever we find overlapping
turns of this class with a length of at least 2. This methodology did not detect 2.27-helices in the
complete X-ray representatives dataset, but 2.27-helices were classified for some protein structures
in the PDB (copy 2018). We used the 2.27 assignments for the complete PDB to derive some helix
characteristics. In contrast to the γ-helices assigned by SHAFT, the dihedral angles of the SCOT-
defined 2.27-helices (ϕ = −79.6° ± 26.4°, ψ = 45.2° ± 32.8°) are similar to those assigned earlier
by Ramachandran and Chandrasekaran [125]. Rather than a helical character, those elements as
assigned by SCOT are characterized by an extended conformation and should be recognized as
ribbon structures. Table 4.10 summarizes all occurrences of 3 residue long left- and right-handed
2.27-helices as assigned by SCOT. Both helix classes are highly underrepresented. In contrast to
the left-handed 2.27-helices, the right-handed class can only be found at highly flexible N-termini of
NMR ensemble structures and their meaning as a regular SSE class is questionable. However,
very short left-handed 2.27-helices can be observed in the PDB and are worth further investigations
as they are located in stable parts of the proteins. We observe that residues constituting the helices
are located in stable parts of the protein but not identified in all known structures of the respective
proteins. A less restrictive hydrogen bond definition would lead to their identification in all structures
known for the proteins. Nevertheless, we did not change our hydrogen bond criterion for this helix
type to circumvent the problems observed for SHAFT (γ-helices within strands).

SCOT is not able to classify the so-called ω-helix in proteins which was initially characterized
for synthetic polypeptides [126, 127]. This helix class was investigated by Enkhbayar and co-
workers [128]. The authors argue that ω-helices can be found within proteins. The average ϕ, ψ,
and ω angles of −75°, −34°, and 175° of the characterized ω-helices lie well within the standard
deviations of those of SCOT-assigned α-helices and a differentiation is, therefore, infeasible (see
Table 14, appendix for the dihedral angles of α-helices).
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Left-handed 2.27 (normal-3 1)

1xgo (5) P56218 (methionine aminopeptidase) His173-Asn175 (chain A)
1ysw (3) P10415 (Bcl-2) Asp32-Val34 (chain A)
2o21 (3) P10415 (Bcl-2) Asp32-Val34 (chain A)
1zr4 (2) P03012 (transposon gamma-delta resolvase) Gln13-Ser15 (chains A, D, E)
2bud (1) O02193 (males-absent on the first protein) Leu369-Gln371 (chain A)
2j28 (168) P0A7M6 (50S ribosomal protein L29) Gln39-His41 (chain X)
2kz1 (7) P01563 (interferon alpha-2) Gln191-Val193 (chain B)
2qts (15) Q1XA76 (acid-sensing ion channel) Thr295-Asp297 (chain F)
4n43 (10) Q9WPJ0 (capsid protein VP3) Val55-Asn57 (chain C)
5oun (1) Q12464 (RuvB-like protein 2) Arg220-Val222 (chain A)

Right-handed 2.27 (normal-3 2)

1njq (2) Q38895 (superman protein) Ala33-Leu35 (chain A)
2v1n (1) O60870 (protein kin homolog) Leu5-Leu7 (chain A)

Table 4.10: Examples of rarely SCOT-assigned 2.27-helices. Examples of rarely assigned left-handed
(inverse γ-turns) and right-handed (normal γ-turns) 2.27-helices assigned by SCOT. Numbers in parentheses
indicate the number of structures of the protein in the entire PDB (2018). This Table is extracted from [7].

4.6.7 Impact of Structure Quality on SSE Assignments

For the validation and evaluation of SSAMs, it is interesting to assess the tools’ ability to correctly
assign SSEs independent of the structure quality. This evaluation is especially important for the
analysis of SCOT as the more restrictive hydrogen bond criterion might lead to failures in identifying
the appropriate SSEs in poorly resolved crystal structures. A correlation between resolution and
SSE assignment was already observed for other SSAMs [129]. We used a modified version of
the dataset of Konagurthu and co-workers [40] (see Section 2.3.4) to calculate the consensus in
assigned SSEs for pairs of X-ray structures with high and low resolution. Table 4.11 presents the
results for the consensus of right-handed helices and extended conformations for all high and low
resolution pairs (for SHAFT only right-handed helices are considered as the SHEET information is
extracted from the original PDB file). The consensus results are sorted according to the resolution
of the low resolution structure. For SCOT and STRIDE, a distinct correlation between resolution
and consensus is observed (decreasing consensus with decreasing resolution). The geometry-
based methods ASSP, DISICL, and SEGNO together with SHAFT show low consensus values for
structures with poor as well as high resolutions pointing toward general inconsistencies of these
tools.

The low consensus for SCOT and SHAFT for the structure pair 4k20@pdb and 5cna@pdb results
from the fact that the protein mainly consists of β-strands. The two short helices (3 to 6 residues) in
the structure bias the results if the β-strands are not considered. Obviously, (completely or partially)
hydrogen bond-based assignment methods except for SHAFT are the most robust ones regarding
structure quality.

Based on the mean consensus for this dataset, we can state that the impact of structure quality
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on SCOT-defined SSEs is low and comparable to that of STRIDE (which is the most quality-
independent method herein) and MKDSSP. Obviously, (completely or partially) hydrogen bond-
based assignment methods are the more robust ones while geometric SSE assignment criteria are
more sensitive toward quality differences in terms of X-ray structure resolution.

UniProt PDB-ID (L/H) SCOT ASSP DISICL MKDSSP SEGNO STRIDE SCOT* SHAFT

P17802 1wef 1kg2 0.986 0.976 0.987 0.996 0.918 0.997 0.973 0.983

Q9REU3 2awc 3agt 0.987 0.964 0.991 0.967 1.000 0.982 0.973 0.943

Q9AMP1 3aro 3arx 0.997 0.946 0.946 0.984 0.917 0.979 0.994 0.962

P95339 3zow 4jcg 0.988 0.932 0.945 0.939 0.941 0.976 0.975 0.891

P24295 1aup 1bgv 0.993 0.964 0.935 0.986 0.763 0.991 0.987 0.974

P62157 1yru 1fw4 0.988 0.988 0.951 0.961 0.855 0.988 0.976 1.000

P32396 1ld3 1doz 0.994 0.975 0.958 0.981 0.885 0.991 0.988 1.000

P02213 1nwn 3sdh 0.996 0.992 0.982 0.980 0.927 0.998 0.992 1.000

P01009 1psi 3ne4 0.983 0.975 0.897 0.973 0.750 0.975 0.966 1.000

P10933 4af6 3mhp 0.972 0.967 0.908 0.968 0.852 0.991 0.944 0.928

P00390 1grh 3grs 1.000 0.977 0.986 0.993 0.987 0.997 1.000 0.970

P00512 1mto 4i7e 0.956 0.938 0.879 0.934 0.638 0.955 0.912 0.879

Q9WFX3 4gxu 4gxv 1.000 0.941 0.859 0.838 0.864 1.000 1.000 0.756

P02866 4k20 5cna 0.615 0.643 0.659 1.000 0.875 0.958 0.231 0.227

P00698 1bhz 2zq3 0.945 0.950 0.918 0.943 0.960 0.933 0.891 0.943

mean 0.960 0.942 0.920 0.963 0.875 0.981 0.920 0.897
σ 0.097 0.085 0.083 0.040 0.097 0.019 0.193 0.196

Table 4.11: The impact of structure quality on the assignments by different SSAMs. Given is the
consensus of right-handed helices and extended conformations for structure pairs with high and low resolution
together with the corresponding UniProt accession (UniProt) and PDB-IDs of the structures and the means
and the standard deviations (σ) over all structures. The structure pairs are sorted with ascending difference
between the resolution of the low and the high quality structures. For SCOT* and SHAFT, assignments solely
right-handed helices were considered. This Table is reproduced by permission of Bioinformatics (2019) [7].

4.6.8 Consistency of Secondary Structure Element Assignments

Having discussed the geometric consistency of SCOT, we now take a look at the consistency of the
assigned SSEs within structural ensembles. This issue was already discussed for DSSP [130] and
consequently, DSSPcont was introduced 15 years ago as a more robust assignment method [58].
One possibility to assess the impact of protein flexibility on the outcome of SSAMs is the analysis
of assignments for multiple models derived from NMR solution structures. Our NMR ensemble
dataset comprises 2,856 ensembles of unrelated proteins. We calculated the weighted Tanimoto
coefficient per ensemble to assess the robustness of the secondary structure assignments. The
boxplots summarizing the consistency for right-handed helices, left-handed helices, and extended
conformations are given in Figure 4.10.

With respect to the mean weighted Tanimoto coefficient, STRIDE assigns the most consistent α-
helices of all methods discussed herein followed by MKDSSP, SHAFT, and SCOT (see Figure 6.2a,
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(c) Extended conformations (PPII helices and β-sheets), * no PPII helices classified/supported by the SSAM

Figure 4.10: Boxplots showing the overall consistency of different SSAMs based on the weighted
Tanimoto coefficient. Boxplots showing the overall consistency of different SSAMs based on the weighted
Tanimoto coefficient for the NMR (left, 2,856 ensembles) and X-ray (right, 84 ensembles) ensembles datasets.
The median is indicated by a big and the mean by a small white dot. The numbers ensembles in which
SSEs were classified by each SSAM are given in parentheses. Outliers were omitted in favor of a concise
visualization. This Figure is reproduced by permission of Bioinformatics (2019) [7].
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appendix for the boxplots of the α-helix consistency). A similar trend can be observed for π-helices
(see Figure 6.2b, appendix for π-helix consistency boxplots). However, the overall differences are
negligible. SCOT, SHAFT, and STRIDE classify the most consistent π-helices although the number
of models including this helix category/class is significantly higher for SCOT. For 310-helices,
SEGNO, MKDSSP, STRIDE, and SCOT give the highest mean weighted Tanimoto coefficient (see
Figure 6.2c, appendix for 310-helix consistency boxplots). The left-handed helix assignments by
ASSP and SCOT (see Figures 6.2e and 6.2g, appendix for left-handed helix consistency boxplots)
are comparable for the NMR ensembles and more robust than those of DISICL and MKDSSP. Left-
handed α-helix assignments by ASSP are slightly less consistent than those of SCOT. Probably,
the geometry-based left-handed assignment tends to over-emphasize geometry over stability,
therefore, lacking some robustness in this evaluation. Altogether, the consistent assignment of
left-handed helices underpins their stable nature and meaning for protein structures, i.e., they are
no artifacts randomly observed in protein structures. The robustness of the 2.27-helix assignments
by SCOT and SHAFT was also analyzed. Due to the non-restrictive hydrogen bond criterion,
SHAFT identifies left-handed 2.27-helices in 2,107 of all 2,856 ensembles with a mean weighted
Tanimoto coefficient of 0.89 which is considerably lower than that for the 2.27-helices assigned
by SCOT in 19 ensembles (see Figure 6.2f, appendix for 2.27-helix consistency boxplots). If this
secondary structure class is assigned, it is classified consistently and reliably with SCOT. For mixed
helices, we observe a consistent assignment by SCOT whereas mixed helices were assigned
incoherently with SEGNO (see Figure 6.2d, appendix for mixed helix consistency boxplots). This
can be attributed to the fact that SEGNO mixed helices include α-, 310-, and π-helices whereas
SCOT mixed helices comprise only α- and 310-helices which are solely assigned in cases of equal
contributions of both underlying turn types. Intriguingly, SEGNO mixed helices occur in nearly 70%

of all proteins. SCOT assigns mixed helices in only 14% of the ensembles. The most robust PPII
assignments are obtained with ASSP, SCOT, and SEGNO (see Figure 6.2h, appendix for PPII helix
consistency boxplots). Here, the robustness of SCOT assignments cannot be explained based on
the stable hydrogen bonding patterns observed for other SSEs. In contrast the requirement of a
consecutive pattern of normal-4 9 turns, which rarely occurs randomly in coil conformations, is key
to the robust assignment.

The strand assignments by STRIDE, MKDSSP, and SCOT are the most consistent (see Figure 6.2i,
appendix for strand consistency boxplots) whereas the mean weighted Tanimoto coefficient for
ASSP and DISICL is below 0.9 for this dataset. This again underlines the main difference between
geometry- and hydrogen bond-based assignments.

A major drawback in using NMR ensemble data is the difficulty in assessing the quality of the
structural models. Therefore, we used a second dataset of X-ray structures to validate the general
conclusions drawn from our first analysis. Similar trends are observed for this dataset (see
Figures 6.2a to 6.2i, appendix for the consistency boxplots for the X-ray ensembles dataset). The
consistency of SCOT-assigned 310-helices for the X-ray structures is worse than for the NMR
structures, but not very different from these of the methods with the most consistent assignments.
Moreover, MKDSSP seems to be more consistent for the X-ray ensembles whereas STRIDE
showed the highest consistency for the NMR ensembles. Similarly, SEGNO assignments were
more consistent for the NMR- than for the X-ray structures.
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Concerning the consistency of right-handed and left-handed helices as well as extended confor-
mations, we see an overall high consistency of SCOT-assigned SSEs. Although SCOT applies
hydrogen bonding patterns and geometric criteria, it shares the robustness of MKDSSP and
STRIDE as mainly hydrogen bond-based methods. These data underpin the benefits of hydrogen
bond-based assignment methods which not only consider the backbone geometry (a snapshot in
protein crystallography), but also the stability of backbone segments. Strikingly, the also hydrogen
bond-based method SHAFT is less consistent which can only be attributed to the inconsistent
helix terminus assignment (see Tables 6.7 to 6.10, appendix for the conformational parameter
of SSE terminal residues). Additionally, an extension by one residue for the Ncap and the Ccap
in comparison to all other methods was observed. Including geometry and dihedral angle data
as realized by STRIDE and SCOT improves the geometric regularity of SSEs without neglecting
backbone flexibility. This underlines the high-wire act of obtaining consistent SSE assignments,
i.e., assignments that tolerate minor spatial fluctuations in the protein backbone maintaining stable
geometric parameters for the SSEs.

When the methods are ranked according to the mean weighted Tanimoto coefficient per SSE class,
SCOT assignments yield ranks 1 to 4 for the NMR ensembles dataset and ranks 1 to 3 for the X-ray
ensembles dataset, with 310-helices as the only exception (rank 5). Even rare SSE assignments
were shown to have a high consistency, underlining the reliability of the SCOT-assigned SSE
classes.

Summarizing this section, we observe a distinct trend in SSE assignment consistency. While
hydrogen bond-based methods lead to the most consistent assignments, the residue-based SSE
classification highly fluctuates within structural ensembles for geometry-based methods. SCOT
assigns helices and strands based on hydrogen bond as well as geometric criteria. It classifies
different SSE classes with a reliable consistency. The average weighted Tanimoto coefficient is
located in between that of geometry and hydrogen bond-based methods. Altogether, MKDSSP,
SCOT, and STRIDE lead to highly consistent assignments.

4.6.9 Impact of Secondary Structure Assignments on Alignment Quality

Finally, we used the SSAMs to discuss their impact on the SSE-based alignment of protein
structures. We evaluated the ability of two different structural alignment tools to find similarities
between proteins of one CATH superfamily and different sequence clusters, and to match proteins
with the same CATH topology, but different superfamily classes. The tools’ results were investigated
for the secondary structure assignments obtained using all SSAMs.

The first study applies the UCSF Chimera MatchMaker [100] method. A pairwise sequence
alignment of two protein structures is achieved using both, residue similarity and secondary
structure similarity (helix, strand, other). The impact of secondary structure information on the
initial sequence alignment can be adjusted according to the nature of the dataset. We evaluated
the secondary structure contribution to the initial sequence alignment from 0.1 to 1 in 0.1 steps.
The contribution leading to a matching of all pairs and the lowest root-mean-square-deviation
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Figure 4.11: Boxplots for the RMSD values (Cα atoms) of the UCSF Chimera MatchMaker [100] super-
positions of protein pairs with the same CATH superfamily. The impact of different SSE assignments
by seven SSAMs and the SSEs of the original PDB file were analyzed. The SSE contribution to the initial
sequence alignment was set to 0.8. The results for SCOT with split helices and strands at kink positions and
without π-helices are shown in green. Outliers were omitted in favor of a concise visualization.

(RMSD) of matched residues (without iterations) was applied. An optimum contribution of 0.8 was
assessed for the CATH superfamily dataset. It is noteworthy that the method’s ability is restricted
to sequential structure alignments. Therefore, we only analyzed the performance for protein pairs
belonging to the same superfamily. Figure 4.11 depicts the boxplots of the RMSD values obtained
for the protein pairs of the dataset using different SSAMs. We observe lower RMSD values for
MKDSSP, SCOT, SEGNO, and STRIDE whereas ASSP-, DISICL-, and SHAFT-based matches are
characterized by higher RMSD values for comparable alignment lengths. To further evaluate the
suitability of the different assignments for a sequence- and SSE-guided structure alignment, we
counted the number of cases in which one assignment leads to an RMSD at least 5Å below that
based on the other methods. In on average 12 cases for MKDSSP and SCOT and 13 cases for
STRIDE, another assignment method is the better choice to obtain an accurate alignment in terms
of RMSD. This average rises to 27, 31, 47, 58, and 64 for SEGNO, the PDB assignment, DISICL,
SHAFT, and ASSP, respectively. On average 42 pairs for MKDSSP and 41 pairs for SCOT and
STRIDE are matched with a significantly lower RMSD than observed for any other assignment
method. Consequently, SCOT is a suitable alternative to MKDSSP and STRIDE for the use in
sequence- and SSE-guided structure alignments.

As the UCSF Chimera MatchMaker solely uses SSE information for the initial sequence-based
alignment, we applied LOCK2 [101] to assess the impact of secondary structure definitions on
a tool that uses a vector-based SSE representation to structurally align proteins. The method
generates alignments and reports the RMSD values, a score (which can be normalized to reflect
the per-SSE-score), and the fraction of matched (aligned) SSEs. We analyzed different versions
of SCOT SSE assignments. Besides the original assignment, we omitted π-helices from the
comparisons as they constitute rare SSEs which frequently overlap with other right-handed helices.
Finally, the SCOT helices and strands were split according to the detected kinks. All of these
changes led to improved alignments with an overall lower RMSD and higher scores per matched
SSE pair retaining the overall fraction of matched SSEs. A small increase in the fraction of matched
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SSEs was observed for the CATH topology dataset (see Table 4.12 for the LOCK2 output for
different SCOT options) which can be attributed to the splitting procedure. These parameters did
also not influence the outcome for the MatchMaker comparisons (see Figure 4.11).

Topology Original W/O π-helices W/O π-helices, with split
strands at kink

positions

W/O π-helices, with split
strands and helices at

kink positions

RMSD mean 2.4461 2.4374 2.4333 2.4357

σ 0.4051 0.4101 0.4124 0.4114

FASSE mean 0.7027 0.7036 0.7038 0.7008

σ 0.1787 0.1783 0.1783 0.1784

SCORE mean 24.3128 24.5210 24.6209 24.7068

σ 4.8349 4.9831 5.0478 4.9862

total failed 2 7 5 3

Superfamily

RMSD mean 1.3095 1.3030 1.2998 1.2994

σ 0.7691 0.7621 0.7583 0.7578

FASSE mean 0.9234 0.9232 0.9232 0.9226

σ 0.1239 0.1229 0.1226 0.1231

SCORE mean 32.4865 32.6869 32.7790 32.7718

σ 4.8837 4.7569 4.6889 4.6163

total failed 7 21 14 7

Table 4.12: SCOT assignment optimization for a vector-based structural alignment of CATH topology
and CATH superfamily pairs with LOCK2. Mean and standard deviation of RMSD / Å, fraction of aligned
SSEs (FASSE), and per-SSE-score for LOCK2 alignments of CATH topology and CATH superfamily pairs are
given for SSE assignments with different versions of SCOT. Additionally, the number of pairs which could not
be compared by LOCK2 are given. This Table is extracted from [7].
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Figure 4.12: Boxplots for the fraction of aligned SSEs (FASSE) with LOCK2 for the CATH topology
(blue) and the CATH superfamily (green) datasets. Given are the distributions of the fraction of aligned
SSEs using different SSAMs. Outliers were omitted in favor of a concise visualization. This Figure is extracted
from [7].

Next, we analyzed which SSAM is best suited for an SSE vector-based structure alignment. To
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this end, we compared the LOCK2 normalized scores per SSE using different SSAMs. The
results for the topology dataset are given in Table 4.13. SCOT assignments led to the best scores
for the largest number of matches. Nevertheless, this finding might be insignificant due to only
minor score differences. Consequently, we calculated the differences in the scores per match
obtained for the different SSAMs. For per-SSE-score differences above 5, the SSAM with the lower
score was declared to be outperformed. ASSP, DISICL, SEGNO, and SHAFT are most frequently
outperformed by other methods (for 9.7% to 10.9% of all pairs). This is in line with the finding that a
lower fraction of SSEs can be matched for these assignments (see Figure 4.12 for boxplots of the
fraction of aligned SSEs with LOCK2) which hampers the reliable superposition of some topology
pairs based on the vectorized helices and strands. In contrast, MKDSSP, SCOT, and STRIDE
assignments lead to a high fraction of matched SSEs per topology pair. They are on average only
rarely outperformed by other assignment methods. Nevertheless, there is one notable difference
between the three methods. The number of cases where MKDSSP and STRIDE are outperformed
by the geometry-based methods is significantly higher than that for SCOT. In other words, our
combined geometry- and hydrogen bond-based approach offers a promising compromise between
both approaches and enables the reliable SSE-based comparisons of similar CATH domains. This
holds true for both, the CATH topology as well as the CATH superfamily pairs (see Table 4.13).

Obviously, the definition of not only SSE types provided by MKDSSP and STRIDE, but also PPII
helices and left-handed helices can be used to obtain trustworthy alignments of related domain
pairs. Examples are given in Figures 4.13 and 4.14 (alignments of two CATH topology and
superfamily domain pairs using different SSE assignments) which underline the benefits of SCOT
assignments. LOCK2 alignments which led to good scores with geometry-based, but not hydrogen
bond-based SSE assignments and vice versa, showed high scores using SCOT-assigned SSEs.

In summary, SCOT provides reliable SSE assignments to guarantee for good alignment quality
when applied for SSE-based sequence-guided and structure-guided protein structure alignments.
The inclusion of rare helix classes does not hamper the alignment and might even lead to the
identification of yet undiscovered similarities between proteins.

4.6.10 Runtime and Memory Consumption

We analyzed the Geometry (see Section 4.3.2.1) and the Consistency (see Section 4.3.2.4)
Observer with respect to their memory and runtime consumptions. The memory footprint of both
Observers was not quantifiable (0.0%) by the use of the command top. As SNOT is not parallelized,
all runtimes were achieved using a single thread.

The runtime of the Geometry Observer was evaluated with the help of the X-ray representatives
(see Section 2.3.2) dataset containing 3,597 single protein chains. All protein chain files were
stored in separate files of a total size of 1.1GB. The runtime of the Geometry Observer was
1min38 s using default settings. The CPU usage was 80% on average. This indicates that the file
I/O dominates the runtime. We performed the same analysis but switched from the three parallel
hard drives (RAID level 0) to a single solid-state drive (SSD). The runtime decreased to 47 s and
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Score at least 5 higher →
Topology SCOT ASSP DISICL MKDSSP PDB SEGNO SHAFT STRIDE Mean Best

S
core

atleast5
low

er→
SCOT 0 59 58 38 51 50 53 46 44.375 87
ASSP 23 0 41 36 46 37 48 39 33.750 49
DISICL 34 45 0 39 56 37 59 42 39.000 55
MKDSSP 29 55 49 0 34 49 46 33 36.875 52
PDB 21 46 39 14 0 40 23 28 26.375 35
SEGNO 26 40 36 33 48 0 49 40 34.000 41
SHAFT 26 46 46 21 22 47 0 31 29.875 40
STRIDE 30 49 49 26 38 45 42 0 34.875 42
Mean 23.625 42.500 39.750 25.875 36.875 38.125 40.000 32.375
Worst 30 71 69 28 52 63 57 42

Score at least 5 higher →
Superfam SCOT ASSP DISICL MKDSSP PDB SEGNO SHAFT STRIDE Mean Best

S
core

atleast5
low

er→

SCOT 0 87 86 37 58 49 68 62 55.875 265
ASSP 25 0 64 46 61 38 60 62 44.500 95
DISICL 24 59 0 33 56 30 60 43 38.125 102
MKDSSP 13 78 78 0 27 41 41 43 40.125 141
PDB 20 71 77 17 0 43 24 47 37.375 121
SEGNO 19 60 57 32 54 0 47 51 40.000 147
SHAFT 31 70 81 27 24 48 0 46 40.875 164
STRIDE 22 82 59 26 44 43 43 0 39.875 130
Mean 19.250 63.375 62.750 27.250 40.500 36.500 42.875 44.250
Worst 64 330 247 69 123 116 111 128

Table 4.13: The impact of different SSAMs on the per-SSE-scores of LOCK2 alignments for the CATH
topology and CATH superfamily (Superfam) pairs. We counted the number of times the per-SSE-score
obtained with one method was at least 5 higher (columns) or lower (rows) than that of the LOCK2 alignment
using different SSAMs. Additionally, we counted the number of times an assignment method led to the
best (columns) and worst (rows) alignments in terms of the per-SSE-scores. This Table is reproduced by
permission of Bioinformatics (2019) [7].

the CPU usage increased to 97% on average. Both underlines that the file I/O is a major bottleneck
even when using the SSD.

The same was observed for the Consistency Observer. We analyzed the runtime for the NMR
ensembles dataset (see Section 2.3.5) consisting of 2,856 ensembles with a total of 56,189 models
for each of the seven SSAMs (ASSP, DISICL, MKDSSP, SCOT, SEGNO, SHAFT, and STRIDE).
The total required file space for all files (393,323) was 63GB. The runtime with default settings on
the hard drives took 2 h 57min 57 s. However, the speed-up when using an SSD is much higher
here. The use of an SSD led to a runtime of 47min 14 s. The CPU usages were similar compared
to the usages observed in the runtime analysis of the Geometry Observer.
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DISICL

Score: 16.49
FASSE: 0.63

SCOT

Score: 29.15
FASSE: 0.43

MKDSSP

Score: 28.91
FASSE: 0.43

Score: 32.97
FASSE: 0.50

Score: 23.16
FASSE: 0.57

Score: 18.72
FASSE: 0.50

Figure 4.13: LOCK2 alignments of two CATH topology domain pairs. LOCK2 alignments of the CATH
topology domain pairs of Barwin-like endoglucanases (5b6cA02@cath (3.10.330.10) and 1o54A01@cath
(3.10.330.20)) (top) and Penicillin-binding protein 2a, domain 2 (4mnrA01@cath (3.90.1310.10) and
3oc2A01@cath (3.90.1310.30)) (bottom). The alignments are given for the SSE classifications with DISICL,
SCOT, and MKDSSP together with the corresponding scores for the matched SSEs and fractions of aligned
SSEs (FASSE). This Figure is reproduced by permission of Bioinformatics (2019) [7].

4.7 Discussion

We introduce SNOT as a novel and comprehensive tool for the in-depth evaluation, analysis, and
comparison of secondary structure assignments. It provides six different Observers for the analysis
of geometric properties, the consistency with respect to conformational flexibility, the sequence
coverage, the consensus of two secondary structure assignments, the overlaps of different SSE
types and classes, and the statistics on underlying residue types. Apart from the relevance of all of
these criteria, the major advantage of SNOT is their fusion in a single and intuitively to use tool. In
addition, it is not limited to specific SSE types or classes. Instead, the introduction of additional
SSE type and class groups (e.g., right-handed helices) supports the comparison of SSAMs with
differences in their supported SSE types and classes.
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DISICL

Score: 22.18
FASSE: 0.29

SCOT

Score: 28.73
FASSE: 0.31

MKDSSP

Score: 28.04
FASSE: 0.31

Score: 31.08
FASSE: 0.81

Score: 30.01
FASSE: 0.83

Score: 20.04
FASSE: 0.58

Figure 4.14: LOCK2 alignments of two CATH superfamily domain pairs. LOCK2 alignments of
the CATH superfamily domain pairs of Fumarase C (chain A, domain 2, 1gkmA02@cath (1.20.200.10)
and 3qbpB02@cath (1.20.200.10)) (top) and Pectate Lyase C-like (1k5cA00@cath (2.160.20.10) and
4u49B02@cath (2.160.20.10)) (bottom). The alignments are given for the SSE classifications with DISICL,
SCOT, and MKDSSP together with the corresponding scores per matched SSE and fractions of aligned SSEs
(FASSE). This Figure is extracted from [7].

All benefits of SNOT are demonstrated by the comparison of SCOT to other methods which
make use of a multitude of general approaches to indicate distinct backbone conformations.
The results presented herein shed light on the benefits of both, SNOT and SCOT. Despite the
difficulty in correctly assigning SSEs (as we cannot provide a correct answer ), SNOT provides
multiple objective criteria to evaluate SSAMs. The geometric uniformity of different SSE classes,
the dependency of the assignment on structure quality, the consistency of SSE characterization
throughout structural ensembles can be analyzed with SNOT. The impact of helix and strand
definitions on the quality of sequence- and SSE-guided and SSE-based structural alignments were
evaluated. With respect to these criteria, we compared SCOT to the broadly applied and widely
accepted methods MKDSSP and STRIDE, but also to a range of purely geometry-based methods
which do not depend on distinct hydrogen bond definitions. The latter methods are clearly superior
concerning the geometric regularity of the SSEs which is in accordance with other studies [52, 65].
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However, their robustness with respect to structure quality and flexibility is significantly lower. The
hydrogen bond-based methods MKDSSP and STRIDE provide the most robust classifications and
are well suited for SSE-based structure comparisons but show high BDAs of the assigned helices
and strands. SHAFT, as an alternative hydrogen bond-based approach for the classification of
helices, is also characterized by geometric inconsistencies, restricted to the assignment of α-, 310-,
and π-helices, and less suitable for SSE-based protein comparisons. In contrast to SHAFT, SCOT
bridges the benefits of geometry-based and hydrogen bond-based methods by using hydrogen
bond and geometry information to gain insights into the structural space of proteins. Its dual
character enables robust classifications of SSEs without significant influence on the geometric
regularity of assigned SSEs. In consequence, SCOT is perfectly suited to automatically assign
SSEs for subsequent helix- and strand-based alignments with methods, such as LOCK2 [101].

Our analyses also underline the necessity for a more comprehensive evaluation of SSAMs to
facilitate the researchers’ choice for one method. Although good benchmark studies exist and
highlight multiple aspects of SSE assignments [129, 131, 16, 80, 132], we show that deeper
investigations are necessary to solve the remaining problems of SSE assignment.

Remaining challenges, such as π- and PPII assignments, the consistent classification of left-handed
helices, and the reliable differentiation (if ever possible) between β-strands and PPIIs cannot be
fully understood as long as there is no common sense concerning their assignment. Unfortunately,
this leads to difficulties in the exhaustive analysis of such underestimated SSEs.

Further investigations on these SSE types may also lead to new criteria by which SSAMs can be
evaluated and which, thus, motivate their integration into SNOT. Another future development could
also consider the integration of the calculation of standard deviations and means for angular values
according to Hughes [95] and Batschelet [96]. In contrast to SCOT, the support for parallelization
is comparatively barely expedient as the file I/O is already the major factor of the already practical
runtimes here.

In summary, SNOT is a comprehensive tool to evaluate a multitude of different objective character-
istics of secondary structure assignments combined in six Observers. It demonstrated its benefits
for the evaluation of SCOT and six other SSAMs, namely, MKDSSP, STRIDE, ASSP, DISICL,
SEGNO, and SHAFT.

Furthermore, this evaluation clearly reveals the benefits of SCOT by bridging the gap between
geometric irregularities of hydrogen bond-based assignments and the missing robustness of
geometry-based methods. Therefore, SCOT is not restricted to single application domains and
facilitates the reliable characterization of backbone geometries for multiple purposes.
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“Science, my lad, is made up of mistakes, but they are mis-
takes which it is useful to make, because they lead little by
little to the truth.”

Jules Verne, A Journey to the Center of the Earth

5
SLOT | Searching for spatial

SSE arrangements

5.1 Introduction

Proteins are the fundamental elements of chemical biology. Their three-dimensional structure
provides insights into the core mechanisms of life and death. Since the first protein structures
were determined, the correlation between a protein’s structure and its function has become a
lively field of research in structural biology. In addition, the similarity between proteins with respect
to a certain structural layer plays a major role in the classification of proteins or the prediction
of a protein’s function. For instance, BLAST [39] can be used to find similarities in and to align
amino acid sequences, the UCSF Chimera MatchMaker [100] determines alignments additionally
based on the SSE sequence, the CATH database [38] contains protein domains in a hierarchical
classification scheme, and TM-align [11] aligns proteins and evaluates their similarity on an overall
fold level up to the quaternary structures.

In 1985, Hol said “One is struck by the ever-increasing number of examples where amino acid
sequences are vastly different and three-dimensional structures are remarkably similar.” [133] and
emphasized the interest in similarities on a particular structural level in combination with differences
with respect to all others. 30 years later, Koch and Waldmann proposed that a similar spatial
arrangement of SSEs in the proximity of the binding site (ligand-sensing cores) can recognize

115
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similar scaffolds in disregard of the overall fold [15]. Scaffolds in their sense are molecules or
inhibitors without terminal side-chains [134]. This concept is based on the PSSC approach (Protein
Structure Similarity Clustering) [15, 135, 136], which identifies structural similarities as well as
dissimilarities. Until today, two common ligand-sensing cores have been exploited for new drugs in
the structure-based design and proposed in the literature [33, 34], both with relevance to cancer
treatment. In 2010, Dekker et al. proposed a common ligand-sensing core in two proteins that
led to the discovery of Palmostatin B as an APT1 inhibitor [34]. Two years later, Willmann et al.
proposed another common ligand-sensing core which spans three proteins. It led to the discovery
of Namoline as an LSD1 inhibitor for the impairment of prostate cancer cell growth [33].

The PSSC approach used for their discovery incorporates DaliLite [137] for its structural compar-
isons, although it does not explicitly focus on SSEs. However, there are 40 different secondary
structure comparison methods (SSCMs) published in the literature (see Table 5.1). The most
frequent data structures for the representation of SSEs and their arrangements are vectors and
graphs. Especially graphs have a long history and a wide range of applications in the field of
chemical biology, due to their intuitive and already application-like setup, and their ability to be
easily visualized. In this regard, the comparison of graphs to find similarities is usually based on
the (maximum common) subgraph isomorphism problem. Willett already discussed the relevance
of this problem for the field of structural biology and the corresponding algorithms for the matching
of biological structures [138]. Nevertheless, this problem remains NP-complete in general [31] and,
therefore, the determination of the maximum common subgraph (MCS) of two given graphs is a
challenging task.

This chapter is organized as follows: Section 5.2 gives a more detailed view on the state of
the art of the published SSCMs listed in Table 5.1. These are discussed with respect to their
applicability for the search for common ligand-sensing cores. In addition, the PSSC approach used
to identify the published common ligand-sensing cores of LSD1 and APT1 is presented in more
detail. Section 5.3 motivates SLOT and its benefits, and describes its workflow from parsing, model
building, model comparison, to scoring. Furthermore, different developed modeling algorithms
using graphs or histograms for the representation of the arrangement of SSEs are introduced.
Section 5.6 evaluates the different modeling and model comparison algorithms of SLOT and its
performance in comparison to other SSCMs. The latter utilizes two datasets of domain pairs and
a query- and target-based dataset containing the aforementioned common ligand-sensing cores
in a representative set of protein structures. This section also evaluates different SSAMs with
respect to the requirements of SLOT. Finally, Section 5.7 discusses the value of the concept of
ligand-sensing cores for the rational drug design, the benefits of SLOT, and the open challenges.

5.2 State of the Art

Although the concept of ligand-sensing cores does not explicitly require dissimilarity with respect to
the spatial arrangement of SSEs on the overall fold level, such a similarity always implies similarity
on the binding site level. Thus, it is reasonable to claim for this dissimilarity-similarity combination
on both levels, as new insights are more likely to be gained fulfilling this condition because a
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Method SSE representation Non-sequential Year AV

MICAN [139] Vectors  2013  
CLICK [140] Graphs  2011  
GANGSTA+ [141] Graphs  2008  
ProSMoS [142] Vectors  2007  
SSM [143] Points/coordinates  2005  
LOCK2 [101] Vectors  2004  
MASS [144] Least squared lines  2003  
TOP [145] Vectors  2000  
CSR [146] Points/coordinates  1998  
GANGSTA [147] Graphs  2006  
KENOBI/K2 [148] Other  2000  
VAST [149] Vectors  1996  
Smolign [150] Distance matrices  2012
SA Tableau Search [151] Orientation matrices/tableaus  2010
QP Tableau Search [152] Orientation matrices/tableaus  2009
TABLEAUSearch [153] Vectors  2008
FASE [154] Points/coordinates  2006
FLASH (OPAAS) [155] Vectors  2003
GRATH [156] Graphs  2003
Method of Alesker et al. [157] Vectors  1996
Method of Koch et al. [158] Graphs  1996
SARF2 [159] Vectors  1996
COSEC [160] Vectors  1995
PROTEP [161] Graphs  1993
deconSTRUCT [162] Other 2010  
CBA [163] Graphs 2006  
Matras [164] Vectors 2003  
PrISM [165] Distance plots/matrices 2000  
DEJAVU [166] Other 1997  
SSAPc [167] Distance plots/matrices 1992  
SSAP[168] Distance plots/matrices 1989  
Samira-VP [169] Vectors 2017
TS-AMIR(flexible) [170] Vectors 2014
MIRAGE-align [171] Vectors 2012
TS-AMIR[172] Vectors 2012
TetraDA [173] Residue strings 2005
Topsalign [174] Graphs 2003
SSEA [175] Sequence 1999
LOCK [176] Vectors 1997
POSSUM [177] Graphs 1990

Table 5.1: SSCMs and their features. SSCMs grouped by their ability to compare SSEs in a sequential or
non-sequential ( ) fashion, and their availability as a standalone executable ( ), as a web service ( ), or
being not available at all. The basic representation of an SSE and the year of publication is given for each
SSCM additionally.
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multitude of approaches for the identification of the overall fold similarity already exist (see Table
5.1). In general, there is no SSCM available that combines these two steps of the search for
common ligand-sensing cores, i.e., the comparison of the overall fold and the comparison of the
binding sites if the overall folds are different.

However, there is a limited number of SSCMs available that enable a sequence-independent
identification of structural similarities with respect to the SSE arrangements, but only LOCK2
allows the use of externally provided SSE annotations. Although some of the SSCMs presented
in Table 5.1 support external SSE annotations, such as SSAPc or Matras, they require SSE
annotations in the DSSP file format. However, the use of the DSSP file format by other SSAMs
has several limitations. First, the file format contains a multitude of information, e.g., solvent
accessibility, which may neither be calculated nor supported/provided by other SSAMs, e.g., SCOT.
Second, it does not support PPII helices. Third, it does not support overlapping SSEs. Especially
SCOT supports the assignment of overlapping right-handed α- and π-helices. The benefits of this
feature have already been demonstrated in Section 4.6.3.2. Nevertheless, there is no scientific
standard for the output of an SSAM in general.

5.2.1 PSSC

The discovery of the common ligand-sensing cores for LSD1 [33] and APT1 [34] was based
on an approach called PSSC (Protein Structure Similarity Clustering) [15, 135, 136]. An input
query protein is structurally aligned against all proteins of the PDB with Dali/FSSP [178] and
the Combinatorial Extension (CE) algorithm [179], to generate a hitlist with decreasing structural
similarity. This hitlist is filtered with respect to pharmaceutically relevant superfamilies with a low
sequence similarity (of up to 20% to obtain interesting cases). The remaining hits are visually
inspected. Promising hits are superposed with respect to their ligand-sensing cores and an RMSD
of at most 4Å–5Å.

The extraction of a ligand-sensing core is described most detailed by Dekker et al. [34]. The
authors chose Ser 114 of APT1 as the center around which the ligand-sensing core was defined.
They placed a sphere of 15Å around this center and included all SSEs that were partly or entirely
within this sphere. These SSEs were then cut to a sphere of 25Å around the aforementioned
center (see Figure 5.1).

From a computational point of view, the main drawback of the PSSC approach is the high emphasis
on the visual inspection. This emphasis is also underlined by the authors [33, 34]. The reasons
are that, on the one hand, it can hardly be automated, and that, on the other hand, the precise
criteria of the visual inspection remain concealed. Both facts hamper the use of this approach in a
direct comparison to other tools.

Therefore, we decided to compete the SLOT approach with the following briefly introduced tools.
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(a) 15Å (b) 25Å

Figure 5.1: Visualization of the definition of the ligand-sensing core in 1fj2A@pdb by Dekker et
al. [34]. The center is represented by an orange sphere. We used the coordinates of the Cα of Ser 114.
(a) Visualization of the zone of 15Å (blue sphere) around the center and the residues of SSEs within this
zone are highlighted in blue. (b) The extended zone of 25Å (green sphere) around the center, the previously
selected and the additionally extended residues of the SSEs are highlighted in green. We classified the SSEs
with MKDSSP (see Section 4.4.3).

5.2.2 DaliLite

DaliLite [137] is the main algorithm behind the CATH database [38] and a sub-routine of the previ-
ously introduced PSSC approach. It uses Cα–Cα distance matrices, which are then decomposed
into elementary contact patterns and combined into sets of common pairs in both matrices. A
Monte Carlo algorithm is used to explore the search space and iteratively improve the current
solution of mapped residue pairs. Starting with an initial seed, the algorithm performs two basic
operations, i.e., the expansion of the temporary solution with residue pairs based on the elementary
contacts and the trimming or removal of any tetrapeptide fragments. The outcome is an alignment
plus an additive similarity score, namely, the Z-score.

5.2.3 LOCK2

LOCK2 is a superposition script and part of FoldMiner [101]. It represents user-provided SSEs by
vectors between the centroid of terminal residues (2 of strands and 4 of helices). In each iteration,
a pair of SSEs from a query protein is superimposed on a pair of SSEs of a target protein. The
resulting global protein superposition is scored by a dynamic programming algorithm. It allows
gaps within overlapping vectors. In contrast to its predecessor LOCK [176], it is a non-sequential
alignment algorithm.
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5.2.4 TM-align

TM-Align [11] has been used in numerous applications related to structural protein comparison
(e.g., to find the closest structural homologue to a predicted structure [180]), but has also been
used with respect to binding sites [4]. It combines the TM-score rotation matrix and dynamic
programming. At first, three initial structural alignments are calculated based on the residues in
SSEs, a gapless threading of the smaller against the larger structure, and a combination of the first
two with a gap-opening penalty. Finally, the rotation matrix is used to rotate the structures and to
obtain a similarity score matrix by the use of a heuristic iterative algorithm.

5.3 SLOT

Although there are more than 40 SSCMs published in the literature, only LOCK2 fulfills the minimum
requirements, i.e., the availability as a standalone tool, the use of external SSE annotations, and
the non-sequential matching. We have developed SLOT (Secondary structure Layer One Two)
to fulfill these and additional individual requirements to discover similar SSE arrangements. It
consists of several different modules for the input, modeling, comparison, and output. These can
be configured using a configuration file described in Section 5.3.1.1. The following sections are
dedicated to the modules of the workflow. These are named with respect to their name in the
configuration file and presented in the order of their usage in the workflow.

SLOT processes one or two datasets of proteins. Each dataset consists of the following modules:
an Identifier (see Section 5.3.2), a Protein (parser) (see Section 5.3.4), an optional Pocket (parser)
(see Section 5.3.5), a Collector (see Section 5.3.3), a Modeler (see Section 5.3.6), and an optional
Model Writer (see Section 5.3.7). The Identifier identifies the proteins of the dataset by their
PDB-IDs. The Protein parser parses all proteins from a specified directory using the PDB-IDs to
select and identify the protein files. The optional Pocket parser reads pocket files defining multiple
pockets for each protein. The Collector collects the SSEs from either the entire protein, a protein
chain, or the parsed pockets of a protein in (SSE) collections. These collections are processed by
the Modeler which creates a representation/model for each collection. The optional Model Writer
exports entire models for visualization purposes, or certain characteristics for further analyses.

We present five graph- and one histogram-based modeling algorithms. The most sophisticated
and promising candidate is the SegmentedV1DM algorithm described in Section 5.3.6.4, which
is incorporated in the final version of SLOT. It uses undirected complete labeled graphs for the
representation of SSEs. The geometry of each SSE is mimicked by so called segmentation points
along an SSE’s axis. The similarity of two such graphs is based on the MCS. Its determination
utilizes an optimized maximum clique detection algorithm in an appropriately defined modular
product graph of the two input graphs. A different approach are the turn histograms introduced in
Section 5.3.6.6. These represent the occurrences of turns in histograms and more or less implicitly
capture the geometry of a protein and its SSEs.
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The workflow contains three more modules. The Comparator (see Section 5.3.8) compares the
models in a pairwise manner and determines their maximum common substructure which is also
referred to as matching. These matchings can be exported by the optional Match Writer (see
Section 5.3.8) for visualization purposes, for instance. Finally, the Judge (see Section 5.3.10)
judges or scores each matching and provides several scores in an output file.

SLOT is implemented without the use of external libraries for maximum versatility and to be able to
create a tailor-made tool.

SLOT is written in C++ and parallelized using OpenMP.

5.3.1 Input

In contrast to SCOT and SNOT (see Chapters 3 and 4), all parameters of SLOT for the parsing,
modeling, model comparison, and writing can be set up via a configuration file. Thus, the executable
solely requires this configuration file and the number of threads for parallel execution.

5.3.1.1 Configuration Files

The SLOT configuration files are text-based files which contain all parameters for the input,
processing, and output of SLOT. A configuration is a hierarchical tree consisting of vertices
annotated with properties. Each line in the configuration file contains a parameter or the name
of a new vertex. The differentiation between parameters and vertices is based on the colon. The
hierarchy and affiliation of the parameters and vertices are established by white-space indentations,
similar to the way the programming language Python represents the hierarchy of classes, functions,
or code blocks, for instance. Based on the indentation length d of a vertex or a parameter, it is
added to its parent with indentation length d− 1.

The configuration file can contain the definition of one or two datasets. If only one dataset is
specified containing n entries, all entries are compared to each other in an all-against-all fashion
but without identity pairings leading to n(n−1)

2 pairwise comparisons. Otherwise, if two datasets
with n and m entries are defined, n ·m pairwise comparisons are performed by the workflow.

A reduced example of a configuration file is shown in Figure 5.2. An exhaustive example is given in
Figure 6.3 of the appendix.

5.3.2 Identifier

The Identifier identifies the proteins of a dataset by their PDB-IDs. These PDB-IDs are used
throughout the entire workflow to identify PDB or pocket files and internally to identify and label
proteins and models. They can be specified via a white-space-delimited string, a file containing
a PDB-ID in each line, or by the files within a directory. The latter lists all files of a directory
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dataset1

name:ligand-sensing cores lsd1

identifier

string:1gos 2bxr 2ejr

protein

directory:/datasets/proteins/

collector

protein

modeler

max-edge-distance:20

model-writer

pymol

directory:/results/models/

comparator

vertices

edges

distance-deviation-dynamic:0.1

distance-deviation-static:2

judge

file:/results/scores.txt

Figure 5.2: Reduced example of a configuration file.

with a specific file extension and uses their file names as PDB-IDs. All three ways can be
used simultaneously for a maximum of flexibility. However, at least one is required for all further
processing steps.

5.3.3 Collector

The Collector collects sets of SSEs in so called collections. A collection contains a set of SSEs,
the corresponding model (e.g., an SSE graph), and the respective protein. Each collection also
contains a collection ID which consists of the PDB-ID of the protein and a sequential number (e.g.,
1gos_2). There are three Collectors available: protein, chain, and pocket. The protein Collector
collects all SSEs of a protein in one collection. The chain Collector creates a separate collection
for each chain and adds all SSEs belonging to the chain to that collection. The pocket Collector
collects the SSEs from the parsed pockets (see Section 5.3.5) of a protein creating a collection
for each pocket. A pocket K is defined on a set of residues RK ⊆ P of a protein P . A pocket
residue (sequence) padding can optionally be specified to also include the neighboring residues of
all r ∈ RK . For instance, if a padding of 2 is given and if ri ∈ Rp is a pocket residue, we also take
ri−2, ri−1, ri+1, and ri+2 into account. Let RK include all initial and neighbor-padding residues
of a pocket K. The corresponding collection to pocket K contains all SSEs of protein P which
share at least one residue in RK . For every Collector, the SSE types (helices, sheets, or turns)
to be collected have to be specified (e.g., helices:y). Finally and similarly to the Identifier (see
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Section 5.3.2), multiple Collectors of different types (e.g., protein or chain) can be simultaneously
specified in the configuration file.

5.3.4 Protein

The protein parsing procedure of SLOT requires standard PDB files as input and is similar to the
one described for SNOT in Section 4.3.1.1. All files with a given file extension (.pdb) and with a
PDB-ID as the file name provided by the Identifier (see Section 5.3.2) are parsed from a specified
directory.

5.3.5 Pocket

The parsing of pockets is optional. Similar to the Protein parser (see Section 5.3.4), the Pocket
parser identifies files by the PDB-IDs provided by the Identifier (see Section 5.3.2) in a given
directory and with a given file extension. The major difference in the handling of files is that multiple
pocket files can be provided for a single PDB-ID. Each of which defines a single pocket. These
files have to be continuously numbered starting with 1. An optional pocket number delimiter (e.g.
_) can be specified if a delimiter for the PDB-ID and pocket number is used (e.g. 1gos_1.pdb). A
maximum number of pockets can optionally be defined to limit the number of parsed pockets even
if more are available.

The pocket files themselves have to be in the PDB file format containing ATOM lines only. All
residues specified in these lines are added to a pocket.

5.3.6 Modeler

We have developed six different algorithms to model a set of SSEs and to search for (structural)
similarities. Five of these models are based on undirected labeled graphs representing the SSEs
and their arrangement in the three-dimensional space and in some cases the geometry of the
SSEs themselves. The first three algorithms, namely, StaticV1D1 (see Section 5.3.6.1), StaticV2D1
(see Section 5.3.6.2), and StaticV3D1 (see Section 5.3.6.3), use a static or fixed number of
vertices to represent each SSE (1, 2, and 3) plus a single distance at the edges. The last two
graph-based algorithms, namely, SegmentedV1DM (see Section 5.3.6.4) and SegmentedVSD1
(see Section 5.3.6.5), segment each SSE to mimic its axis. The first one uses a single vertex
and distance matrices at the edges whereas the second one utilizes multiple vertices and single
distances at the edges. The final modeling algorithm, i.e., Turn Histograms (see Section 5.3.6.6), is
based on histograms in which the number of turns for each category, length, and class are counted
separately.

The graph-based algorithms are given in the order of their development. All models, whether it is a
graph or a histogram, have a model ID which corresponds to the collection ID it is originated from.
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5.3.6.1 Graph StaticV1D1

The StaticV1D1 modeling algorithm creates an undirected labeled graph G = (V,E) for each
Collection of SSEs. We represent each SSE (helix or strand) by a vertex v ∈ V . Each v is labeled
with an integer code representing the type t (0 for helices, 1 for strands) and the classification c
(e.g., 1 for right-handed α-helices) of an SSE, and a point in the three-dimensional space. The
code combines t and c to reduce number of criteria to be checked to determine whether two
vertices are compatible or not. It is defined by Equation 5.1. We use the classification number of
right-handed α-helices (1) also for right-handed π-helices. The point is based on the coordinates of
the median residue’s Cα atom if the length of the SSE is odd. If this residue is missing, we use the
coordinates of the Cα atom of its successor. If the length of the SSE is even and if none of the two
central residues is missing, we use the mean of their Cα atom coordinates. Otherwise, we simply
return the coordinates of the residue’s Cα atom that is not missing.

codeS(t, c) := (c · 10) + t (5.1)

After all vertices are created, we connect them by adding edges to the graph. Let u, v ∈ V be
two vertices of G. u and v are adjacent, i.e., (u, v) ∈ E, if the Euclidean distance between the
points of their labels is less than or equal to a certain threshold, namely, the connectivity distance.
Thus, vertices are only adjacent to vertices of their corresponding Euclidean neighborhood in
the three-dimensional space. This means that missing edges between vertices representing
distant SSEs allow for a certain degree of flexibility in the determination of the MCS of two graphs.
Figure 5.3 illustrates the graph for 1gosA@pdb for three different connectivity distances (16Å, 20Å,
and 24Å).

Vertex Compatibility

The vertex compatibility is solely based on the SSE type and class code of the labels of the vertices
under investigation. Two vertices u, v are compatible if they are labeled with the identical code
or if the labels represent right-handed helices of which one is of class mixed and the other of
class α or 310. Therefore, only vertices representing SSEs of the same type and classification are
compatible with two exceptions. Right-handed α- and π-helices share the same code and hence
are compatible. In addition, right-handed mixed helices are compatible to right-handed α- and
310-helices. Please note that the points all vertices are labeled with are only used for the labeling
process of the edges and for visualization purposes. They are explicitly not considered in the
determination of the compatibility.

Edge Compatibility

The edge compatibility reflects the similarity of the arrangements of two pairs of SSEs represented
by the incident vertices of two edges. Let d1 and d2 be the distances of the labels of the two
edges under investigation. We use two parameters, i.e., staticdst and dynamicdst , to determine the
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(a) 20Å

(b) 16Å (c) 24Å

Figure 5.3: Visualization of the graph for 1gosA@pdb created by the StaticV1D1 algorithm. Visualiza-
tion of the graph (blue) for 1gosA@pdb (gray) created by the StaticV1D1 algorithm (see Section 5.3.6.1) for
different edge connectivity distances. The SSEs used for the visualization and the creation of the graph were
assigned with SCOT.

allowed deviation between these distances (see Equation 5.2).

alloweddst(d1, d2) := (min(d1, d2) · dynamicdst) + staticdst (5.2)

deviationdst(d1, d2) := |d1 − d2| (5.3)

The final compatibility is given in Equation 5.4. Two edges are compatible if the difference between
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the distances of their labels is less than or equal to the allowed deviation.

compatibledst(d1, d2) := deviationdst(d1, d2) ≤ alloweddst(d1, d2) (5.4)

5.3.6.2 Graph StaticV2D1

The StaticV2D1 algorithm is very similar to the StaticV1D1 algorithm described in Section 5.3.6.1.
It also creates an undirected labeled graph G = (V,E) for each Collection of SSEs, uses the same
labels for vertices (code, point) and edges (distance), and also defines the adjacency of vertices via
edges based on a connectivity threshold. The only difference is that each SSE is represented by
two vertices u, v ∈ V to incorporate its length and also to fix its orientation in the three-dimensional
space. We use the coordinates of the Cα atom of the SSE’s N-terminal residue for u and the
coordinates of the Cα atom of its C-terminal residue analogously for v. If one of these residues is
set es missing, we use the successor of the N-terminal residue instead. We use the predecessor
of the C terminal residue analogously.

All vertices are connected via edges if the Euclidean distance between the points of their labels
is less than or equal to a connectivity distance (see Section 5.3.6.1 for more details). Figure 5.4
illustrates the graph for the same protein (1gosA@pdb) for three different connectivity distances
(16Å, 20Å, and 24Å).

Vertex Compatibility

The vertex compatibility is identical to the one described for the StaticV1D1 modeling algorithm.

Edge Compatibility

The edge compatibility is identical to one the described for the StaticV1D1 modeling algorithm.

5.3.6.3 Graph StaticV3D1

The StaticV3D1 modeling algorithm is a combination of both previously described modeling
algorithms, namely, StaticV1D1 and StaticV2D1 (see Sections 5.3.6.1 and 5.3.6.2). In accordance,
it also uses an undirected labeled graph for the representation of the SSEs of a Collection. In
contrast, however, each SSE S is represented by three vertices u, v, w ∈ V . These vertices are
labeled with the points based on the N- (u) and C-terminus (w), and its center (v) to incorporate
the geometry of S and to allow for a higher degree of partial-SSE matching. Furthermore, these
points are not solely based on the coordinates of the Cα atom of the corresponding residue, but on
the mean of the residue’s backbone atoms (N, Cα, C). The rules for the replacement of missing
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(a) 20Å

(b) 16Å (c) 24Å

Figure 5.4: Visualization of the graph for 1gosA@pdb created by the StaticV2D1 algorithm. Visualiza-
tion of the graph (blue) for 1gosA@pdb (gray) created by the StaticV2D1 algorithm (see Section 5.3.6.2) for
different edge connectivity distances. The SSEs used for the visualization and the creation of the graph were
assigned with SCOT.

residues (StaticV1D1 and StaticV2D1) and the definition of the central point (StaticV1D1) also
apply here.

Two vertices u, v ∈ V are connected via an edge (u, v) ∈ E, if the Euclidean distance between the
points of their labels is less than or equal to a connectivity distance (see Section 5.3.6.1 for more
details). The final graph for protein 1gosA@pdb for three different connectivity distances (16Å,
20Å, and 24Å) is illustrated in Figure 5.5.

Vertex Compatibility
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(a) 20Å

(b) 16Å (c) 24Å

Figure 5.5: Visualization of the graph for 1gosA@pdb created by the StaticV3D1 algorithm. Visualiza-
tion of the graph (blue) for 1gosA@pdb (gray) created by the StaticV3D1 algorithm (see Section 5.3.6.3) for
different edge connectivity distances. The SSEs used for the visualization and the creation of the graph were
assigned with SCOT.

The vertex compatibility is identical to the one described for the StaticV1D1 modeling algorithm.

Edge Compatibility

The edge compatibility is identical to the one described for the StaticV1D1 modeling algorithm.
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5.3.6.4 Graph SegmentedV1DM

The SegmentedV1DM algorithm is the one incorporated in the final version of SLOT. In contrast to
the previous algorithms, it utilizes complete undirected labeled graphs for the representation of the
SSEs. The algorithm creates a graph G = (V,E) for each Collection. Each SSE S of a Collection
is represented by one vertex v ∈ V . Each vertex v is labeled with the type and classification code
of S according to Section 5.3.6.1 and a set of segmentation points STP . These points mimic the
geometry and the axis of each SSE S.

Let ri be the N-terminal residue of S. If S is a helix, for every second residue (ri, ri+2, . . .) in the
sequence, we create a segmentation point p. Each point p is based on the mean of the N and C
atom coordinates of the following residues including ri that are required to form a helix coil. This
number of residues/atoms is individual for every helix class due to different underlying turns and
corresponding dihedral angles. Table 5.2 gives the residues and atoms per coil with respect to a
helix’ class. For instance, at each second residue we consider the following 11 backbone atoms in
an right-handed α-helix. Thus, p for residue ri is based on the coordinates of the N and C atoms of
residues ri, ri+2, ri+4 and the N atom of residue ri+6. If the helix is shorter than a single coil, p is
based on the mean of all chain-trace backbone atoms of all of its residues. In case S is a strand,
we create a segmentation point p for every residue ri based on the mean N atom coordinates of ri
and its successor ri+1. Missing residues at termini are not taken into account. If the strand consists
of a single residue, p is set to the mean of the N and the C atom coordinates of that single residue.
Figure 5.6 illustrates the segmentation points for a right-handed α-helix and a strand assigned by
SCOT in 1gosA@pdb.

Helix Residues per coil According to Backbone atoms per coil

RH α 3.6 Bamford et al. [181] 11

RH 310 3.0 Donohue [121] 9

RH π 4.4 Low and Grenville-Wells [182] 13

PPII 3.0 Crick and Rich [183] 9

2.27 2.0 Donohue [121] 6

other 3.6 11

Table 5.2: Numbers of residues and atoms per coil for different helix classes used for the calculation
of segmentation points in helices. The number of atoms per coil corresponds to the number of residues
multiplied by 3 (number of chain-trace backbone atoms, i.e., N, Cα, and C). A more detailed list including the
mean dihedral angles and the residues per coil can be found in Ramachandran and Sasisekharan [120].

All SSEs for which a minimum required number of segmentation points was created (|STP |) are
represented by a vertex v ∈ V . This minimum threshold can be adjusted for helices and strands
separately and is set to 2 for both by default.

The next step of the algorithm is dedicated to the connection of all pairwise distinct vertices
with each other to create a complete graph. Let u, v ∈ V be two vertices and STPu be the
segmentation points of the label of u and STPv of v, respectively. Let e = (u, v) ∈ E be the directed
edge with source u and target v. The labeling of the opposite edge (v, u) ∈ E required for the
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(a) (b)

(c) (d)

Figure 5.6: Visualization of the segmentation points for a helix. Visualization of the segmentation points
(green spheres) for a right-handed α-helix on residues 159–171 (a, b) and for a strand on residues 245–249
(c, d) in 1gosA@pdb. Both are given in two perspectives, orthogonal and parallel to the respective SSE axis.
The straight lines between the segmentation points are added to emphasize deviations from the ideal trace.
The SSEs used for the visualization and the creation of the segmentation points were assigned with SCOT.

omnidirectionality is explained later. We label e with a distance matrix Mu,v of size |STPu|×|STPv|.
Mu,v contains all pairwise distances between a segmentation point in STPu and one in STPv. For
instance, Mu,v contains at indices 1, 1 the distance between the first segmentation point of STPu

and the first one of STPv. An example is given in Figure 5.8c.

As the segmentation points for an SSE are given in sequence direction we transformMu,v whenever
the corresponding SSEs are arranged in an opposite direction or an anti-parallel sense. If the
sum of distances at indices 1, 1 and |STPu|, |STPv| is smaller than the sum of distances at indices
1, |STPv| and |STPu|, 1, the sense is anti-parallel. In other words, if the sum of distances front to
front and back to back are longer than the corresponding cross distances, the sense is anti-parallel.
In this case, we horizontally mirror or flip Mu,v. For instance, all distances in the first column are
exchanged with the values of the last column. Finally, the opposed directed edge to e = (u, v), i.e.,
(v, u) ∈ E, is labeled with the transposed matrix Mv,u := M>u,v.

A visualization of a graph for 1gosA@pdb is given in Figure 5.7. The coordinates of each vertex
correspond to the median segmentation point or the mean of the two central segmentation points
of its label if |STP | mod 2 = 0.

Vertex Compatibility

The compatibility of two vertices u, v is based on two criteria. First, the vertex compatibility
criteria defined by the StaticV1D1 algorithm (see Section 5.3.6.1) also applies here, i.e., the
compatibility with respect to the corresponding SSE types and classes. Second, the difference in
the number of segmentation points of each label has to be within a certain threshold. Let STPu

and STPv be the segmentation points of the labels of the vertices u and v respectively. We use
two parameters, i.e., staticSTP and dynamicSTP , to determine the allowed deviation between the
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(a) Protein, graph, and segmentation points

(b) Protein and segmentation points (c) Segmentation points only

Figure 5.7: Visualization of the graph and the segmentation points for 1gosA@pdb created by the
SegmentedV1DM algorithm. Visualization of the graph (blue) and the segmentation points (green) for
1gosA@pdb (gray) created by the SegmentedV1DM algorithm (see Section 5.3.6.4). The segmentation points
of each SSE are connected by straight lines to indicate their affiliation. The SSEs used for the visualization
and the creation of the graph were assigned with SCOT.

numbers of segmentation points |STPu| and |STPv|.

allowedstp(|STPu|, |STPv|) := (max(|STPu|, |STPv|) · dynamicSTP ) + staticSTP (5.5)

deviationstp(|STPu|, |STPv|) := ||STPu| − |STPv|| (5.6)
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compatiblestp(|STPu|, |STPv|) := deviationstp(|STPu|, |STPv|) ≤ allowedstp(|STPu|, |STPv|)
(5.7)

If the deviation deviationstp(|STPu|, |STPv|) (see Equation 5.6) is at most the allowed deviation
allowedstp(|STPu|, |STPv|) (see Equation 5.5) both vertices u and v are compatible (see Equa-
tion 5.7). Note that in contrast to the definition of alloweddst in Section 5.3.6.1, the definition here is
based on the maximum instead of the minimum.

Edge Compatibility

The compatibility of edges is based on the distance matrices of their labels and the segmentation
points of the labels of the incident vertices. Let u, v, w, x be vertices, (u, v), (w, x) be two edges,
Mu,v,Mw,x the corresponding distance matrices, and STPu,STPv,STPw,STPx the correspond-
ing segmentation points. In a figurative sense, we try to match subsets of segmentation points of
STPu,STPv and the according distances to subsets of STPw,STPx (see Figure 5.8).

Algorithm 1 shows the determination of the compatibility in detail. At first, we determine the
minimum numbers of rows mr and columns mc of Mu,v and Mw,x based on the numbers of seg-
mentation points. The displacement allows a sub-matching and is defined by a static and dynamic
parameter with respect to mr and mc. In our example in Figure 5.8, staticdsp = 1, dynamicdsp =

0,minimummtc = 3,mr = 4, and mc = 3. This means, that only 3 of a minimum of 4 rows are
taken into account at the shown step. Although staticdsp = 1, 3 instead of 2 columns are taken into
account for the strands, as the minimum number of matched segmentation points minimummtc is
set to 3. For all displacements dr and dc, we calculate the numbers of rows nr and columns nc
(which correspond to the number of segmentation points to be matched). We iterate dr and dc
from the maximal displacement to 0, which means that at first the minimal numbers of rows nr and
columns nc are considered (bottom up). For all possible combinations of nr and nc consecutive
indices, we compare the outer and cross distances and the angle between the straight lines defined
by the corresponding segmentation points. In correspondence to the pseudo-code, the indices of
the current iteration of the example are set to i = 1, j = 1, k = 2, l = 1. The outer distances are
located at indices i, j (1, 1) and i+ nr, j + nc (3, 3) in Mu,v, and k, l (2, 1) and k + nr, l + nc (4, 3) in
Mw,x (highlighted in blue). The cross distances analogously at i, j + nc (1, 3) and i + nr, j (3, 1)
in Mu,v (highlighted in orange), for instance. For both distances, we have a static and a dynamic
parameter to define the allowed deviations. The compatibility with respect to these params is
given in lines 37 and 40 of Algorithm 1. If the deviations of these distances are within the allowed
tolerances, we calculate the angle between the vectors defined by the corresponding segmentation
points.

For the current indices, the vectors for the first edge are defined by pu,i, pu,i+nr ∈ STPu and
pv,j , pv,j+nc ∈ STPv. The vectors of the other edge are defined analogously. The allowed deviation
between the angles span by these vectors can be adjusted by three parameters. These parameters
allow a fixed degree of deviation (static) plus a temperature factor that allows higher deviations the
lower the minimum of nr and nc is.
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pu,1 pu,2 pu,3 pu,4

pv,1 pv,2 pv,3

(a) Compatibility criteria for edge (u, v).

pw,1 pw,2 pw,3 pw,4 pw,5

px,1 px,2 px,3

(b) Compatibility criteria for edge (w, x).

pv,1 pv,2 pv,3

pu,1

pu,2

pu,3

pu,4

(c) Distance matrix Mu,v of the directed edge
(u, v).

px,1 px,2 px,3

pw,1

pw,2

pw,3

pw,4

pw,5

(d) Distance matrix Mw,x of the directed edge
(w, x).

Figure 5.8: Visualization of the compatibility criteria for two edges. Visualization of the compatibility
criteria for two edges (u, v), (w, x) based on the distance matrices of their labels Mu,v,Mw,x and the
segmentation points STPu,STPv,STPw,STPx (green spheres) of their incident vertices. The matrix entries
corresponding to the distances in the figures above are highlighted in the same colors.

In a nutshell, the fewer indices or segmentation points are matched or the shorter the corresponding
vectors are, the higher the allowed deviation for the difference in the angles is. The exact calculation
is given in lines 20 and 21 of Algorithm 1. If the distance and the angle deviations are within
their allowed tolerances, both edges are compatible. Otherwise, the displacements dr and dc are
reduced which results in increased nr and nc values, i.e., the number of rows and columns to be
matched. If no iteration reports compatibility of the edges, the edges are incompatible.
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1: function COMPATIBILEEDGES(Mu,v,Mw,x,STPu,STPv,STPw,STPx)
2: mr := min(|STPu|, |STPw|)
3: mc := min(|STPv|, |STPx|)
4: displacementr := max(minimummtc ,min(mr − 1, (mr · dynamicdsp) + staticdsp))

5: displacementc := max(minimummtc ,min(mc − 1, (mc · dynamicdsp) + staticdsp))

6: for dr ∈ {displacementr, . . . , 0} do
7: nr := mr − dr
8: for dc ∈ {displacementc, . . . , 0} do
9: nc := mc − dc

10: for i ∈ {1, . . . , |STPu| − nr} do
11: for j ∈ {1, . . . , |STPv| − nc} do
12: for k ∈ {1, . . . , |STPw| − nr} do
13: if COMPATIBLEOUT(Mu,v[i, j],Mw,x[i+ nr, j + nc])) then
14: if COMPATIBLECRS(Mu,v[i, j + nc],Mw,x[i+ nr, j]) then
15: for l ∈ {1, . . . , |STPx| − nc} do
16: if COMPATIBLEOUT(Mu,v[k, l],Mw,x[k + nr, l + nc])) then
17: if COMPATIBLECRS(Mu,v[k, l + nc],Mw,x[k + nr, l]) then
18: au,v :=ANGLE(pu,i, pu,i+nr , pv,j , pv,j+nc )
19: aw,x :=ANGLE(pw,k, pw,k+nr , px,l, px,l+nc )
20: t := max(0, limitagl −min(nr, nc))

21: allowedagl := staticagl + (t2 · factoragl)

22: if |au,v − aw,x| ≤ allowedagl then
23: return true
24: end if
25: end if
26: end if
27: end for
28: end if
29: end if
30: end for
31: end for
32: end for
33: end for
34: end for
35: return false
36: end function
37: function COMPATIBILEOUT(d1, d2)
38: return |d1 − d2| ≤ (min(d1, d2) · dynamicout) + staticout

39: end function
40: function COMPATIBILECRS(d1, d2)
41: return |d1 − d2| ≤ (min(d1, d2) · dynamiccrs) + staticcrs

42: end function

Algorithm 1: Algorithm of SegmentedV1DM to determine the edge compatibility. Algorithm of Seg-
mentedV1DM (see Section 5.3.6.4) to determine the compatibility of two edges (u, v), (w, x) ∈ E of a
graph G = (V,E) based on the distances matrices Mu,v,Mw,x of their labels and the segmentation points
STPu,STPv,STPw,STPx of their incident vertices u, v, w, x ∈ V . The function ANGLE returns the angle
between two straight lines defined by the first and second pair of passed points.
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5.3.6.5 Graph SegmentedVSD1

The SegmentedVSD1 algorithm uses the segmentation of SSEs introduced by the Segment-
edV1DM algorithm (see Section 5.3.6.4), but represents all segmentation points explicitly as
vertices instead of indirectly at a vertex’ label.

This algorithm also creates a complete undirected labeled graph G = (V,E) for each Collection.
Each SSE S is segmented. For each segmentation point p ∈ STP of this segmentation, a vertex
v ∈ V is added to G and to a temporary set of vertices VSTP . The label of v consists of two
values and p. The first value is the SSE type class code identical to the one described for the
StaticV1D1 algorithm in Section 5.3.6.1. The second value is a vertex index within {1, . . . , |STP |}
that corresponds to the index of p in STP . For instance, the terminal segmentation points in STP

have indices 1 and |STP | respectively. All vertices u, v ∈ VSTP representing the segmentation
points of S are connected by edges (u, v). These edges are labeled as intra, with a connection
length, and the Euclidean distance between the points of the labels of the incident vertices. The
connection length is the absolute value of the difference of the vertex indices of their incident
vertices u and v. In other words, it corresponds to the number of segmentation points between the
points corresponding to u and v. For instance, let p1, p2, p3, p4 ∈ STP be segmentation points and
u, v, w, x ∈ VSTP the corresponding vertices. The connection length for edge (u, v) is 1 whereas it
is 2 for the edge (u,w).

After the intra-labeled edges are created, all vertices VSTP are connected by edges to the rest of
the vertices V/VSTP of G. These edges are labeled as inter and also with the Euclidean distance
between the points of the labels of the incident vertices. Summing up, there are two different
types of edges in this complete graph G. The inter-labeled edges are labeled with a distance
and the intra-labeled edges are additionally labeled with a connection length. Figure 5.9 shows a
visualization of the graph for 1gosA@pdb.

Vertex Compatibility

The vertex compatibility is identical to the one described for the StaticV1D1 modeling algorithm.

Edge Compatibility

The compatibility of edges is based on the connection length for pairs of intra edges and the
Euclidean distance for all other combinations. For intra-labeled edges, the connection lengths of
both edges have to be identical to be compatible. For all other combinations, the compatibility is
based on the two distances d1 and d2 and which is identical to the one described for the StaticV1D1
modeling algorithm.
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(a) Protein and graph

(b) Protein and vertices (c) Vertices only

Figure 5.9: Visualization of the graph for 1gosA@pdb created by the SegmentedVSD1 algorithm.
Visualization of the graph (blue) for 1gosA@pdb (gray) created by the SegmentedVSD1 algorithm (see
Section 5.3.6.5). The SSEs used for the visualization and the creation of the graph were assigned with SCOT.

5.3.6.6 Turn Histograms

The algorithm to create turn histograms bins the occurrences of different turns in histograms.
For each Collection, we create a separate histogram H in which all occurrences of hydrogen-
bonded turns (normal and reverse) are counted. Similarly to the SSE type class code described
in Section 5.3.6.1, we create a turn code based on a turn’s category t, length l, and class c (see
Equation 5.8).

codeT(t, l, c) := (c · 100) + (l · 10) + t (5.8)
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For a turn, this code is the key by which it is counted in H. Thus, for each turn, a code is generated
and the corresponding number of occurrences in H is incremented by 1.

5.3.7 Model Writer

There are multiple Model Writers available to export the created models for the visualization and/or
further analyses. There are three Model Writers available for the export of graphs created by the
SegmentedV1DM algorithm (see Section 5.3.6.4). The PyMOL (see Sections 5.3.7.1) and the
Chimera (see Sections 5.3.7.2) Model Writer provide an export of the graph itself for visualization
purposes. The Segmentation Model Writer (see Section 5.3.7.3) provides the distances between
the segmentation points for further analyses.

5.3.7.1 PyMOL

The PyMOL Model Writer exports a graph G = (V,E) created by the SegmentedV1DM algorithm
(see Section 5.3.6.4) to a file to be visualized in PyMOL [32]. The file is named by the model ID of
the graph and saved to a specified directory. The default file extension is .py.

All vertices v ∈ V are exported as spheres and all edges e ∈ E as cylinders. The segmentation
points STPv of each vertex v ∈ V are exported as small spheres. Each consecutive pair of
segmentation points pj , pj+1 ∈ STPv with j ∈ {1, . . . , |STPv| − 1} is connected via a cylinder to
indicate their affiliation. This is especially useful to visualize the independent parts of split SSEs
(e.g., using the --split-kinked-sses argument provided by SCOT, see Chapter 3). The color and
diameter of each group of elements, i.e., vertices, edges, segmentation points, and segmentation
point edges, can be set separately. Furthermore, each group is assigned a separate layer which
allows the visualization of vertices only, for instance.

Figure 5.6 contains several images based on model files created by this PyMOL Model Writer. The
figures of all other modeling algorithms (e.g., Figure 5.3) were created with a modified version
without the support for segmentation points. All of these figures were created using default values
for the diameters and the colors.

5.3.7.2 Chimera

The Chimera Model Writer for the visualization in UCSF Chimera [17] is very similar to the previously
described PyMOL Model Writer (see Section 5.3.7.1) besides syntax modifications. There are two
main differences. First, the default file extension is .bld. Second, all elements are put on a single
layer which does not allow to hide a single element group, such as the segmentation points. Apart
from that, the set of parameters and the visualization of the graph itself are identical.
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5.3.7.3 Segmentation

The Segmentation Model Writer provides the distances between all pairs of consecutive seg-
mentation points in a single file for further evaluation. Let G = (V,E) be a graph created by the
SegmentedV1DM algorithm (see Section 5.3.6.4), v ∈ V be a vertex, S the corresponding SSE,
and STPv the segmentation points v is labeled with. For each consecutive pair of segmentation
points pj , pj+1 ∈ STPv with j ∈ {1, . . . , |STPv| − 1}, the Euclidean distance between pj and pj+1

is written to a separate line to the file including the graph ID, the type (0 for helices, 1 for strands)
and the classification of S, and the index j. All values are delimited by commas by default.

The written distances of the Segmentation Model Writer are used in the evaluation described in
Section 5.6.2.

5.3.8 Comparator

The Comparator compares two data structures and determines their maximum common sub-
structure. In Section 5.3.8.1 the determination of this substructure is explained for graphs and in
Section 5.3.8.2 for histograms.

5.3.8.1 Graphs

The measure of similarity of two graphs G1, G2, created by any of the graph-based modeling
algorithms, is based on their maximum common subgraph (MCS) GMCS . We perform two steps to
determine GMCS . First, we create a modular product graph GP of G1 and G2 according to Defini-
tion 2.1.11. The edge and vertex compatibilities are defined in the corresponding Sections 5.3.6.1
to 5.3.6.5 with respect to each modeling algorithm. Second, we search for maximal cliques in GP .
Each clique in GP corresponds to an MCS of G1 and G2. This correlation and this procedure was
first described by Levi [30].

We use a modified version of the clique-detection algorithm by Tomita et al. [28] which is a further
development of the original and well-established algorithm by Bron and Kerbosch [29]. Algorithm 2
shows our modified implementation.

m := max(minimummtc , (max(G1, G2) · dynamicmtc) + staticmtc) (5.9)

At first, we calculate the minimum size m for an MCS to be reported according to Equation 5.9.
Whenever the current branch of the recursion tree is not able to find a clique of at least size m or
the size c of the largest reported clique so far, it is not longer followed (see line 6 of Algorithm 2).
The main function takes a graph G = (V,E) and m and calls the recursive function initializing the
temporary result R with ∅, the possible extensions P with V , the excluded set X with ∅, and c with
0. If P and X are empty, R is reported as a clique. Otherwise, a pivot vertex p is selected from
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1: function CLIQUE(G,m)
2: CLIQUE(∅, V, ∅,m, 0)

3: end function
4:

5: function CLIQUE(R,P,X,m, c)
6: if |R|+ |P | > max(m, c) then
7: if |P | = 0 ∧ |X| = 0 then
8: c := |R|
9: Report R as a clique

10: else
11: PX := P ∪X
12: p = PIVOT(PX , P )

13: Pp := P \ NEIGHBORS(p)

14: for v ∈ Pp do
15: RN := R ∪ v
16: PN := P ∩ NEIGHBORS(v)

17: XN := X ∩ NEIGHBORS(v)

18: CLIQUE(RN , PN , XN ,m, c)

19: P = P \ v
20: X = X ∪ v
21: end for
22: end if
23: end if
24: end function
25:

26: function PIVOT(PX , P )
27: c := 0

28: for v ∈ PX do
29: n := |NEIGHBORS(v) ∩ P |
30: if n > c then
31: p := v

32: c := n

33: end if
34: end for
35: return p

36: end function

Algorithm 2: Modified clique detection algorithm based on the algorithm by Tomita et al. [28]. The
main CLIQUE function in line 1 calls the recursive function in line 5 and initializes the parameters for the
recursion. The recursive CLIQUE function processes three vertex sets, namely, the temporary result (R), the
possible extensions (P ), and the excluded set (X). The function NEIGHBORS returns the adjacent vertices of
the passed vertex.
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P ∪X with the maximal number of neighbors in P . This step is the main difference between the
original algorithm by Tomita et al. and the one by Bron and Kerbosch, i.e., the choice of using a
pivot vertex p instead of arnitrarily selecting a vertex v ∈ P . The effect of this pivoting is exemplarily
shown in Figure 5.10 where all recursive calls on an input graph are shown for both algorithm
variants. For all following steps, please be referred to Algorithm 2. Note that if the maximum clique
is not distinct, we report the first detected one only.

5.3.8.2 Histograms

The maximum common similarity of two given histograms H1, H2 is a histogram HM . Let K1 be the
set of keys and c1 the counter function of H1, and K2, c2 of H2 analogously. Then, KM = K1 ∪K2

is the set of keys and cM with ∀k ∈ KM : cM (k) = min(c1(k), c2(k)) the counter function of HM . In
other words, the histogram HM contains the minimum value of the counters for each of the keys of
H1 and H2.

This algorithm does not provide any parameters for the comparison of histograms.

5.3.9 Match Writer

The Match Writers provide a visualization of the MCS, calculated by the Comparator (see Sec-
tion 5.3.8), based on two graphs created by any of the graph-based modeling algorithms (see
Section 5.3.6).

5.3.9.1 PyMOL

The PyMOL Match Writer provides a visualization script for PyMOL [32] to highlight pairs of
matched SSEs and aligns the two proteins with respect to these matched SSEs. It processes pairs
of graphs G1 = (V1, E1), G2 = (V2, E2) created by any of the graph-based modeling algorithms of
Section 5.3.6 and their corresponding MCS GMCS = (VMCS , EMCS ) determined by the Comparator
(see Section 5.3.8.1). For each such triumvirate, a script file with the graph IDs as the file name
(e.g., 1gos-2bxr.py) is created. Each vertex vm ∈ VMCS corresponds to a pair of compatible
vertices (v1, v2) with v1 ∈ V1, v2 ∈ V2. Each vertex v1 and v2 corresponds to an SSE S1 and
S2, respectively. We color every such pair of SSEs in the same distinct color. The rest of the
protein ribbons of the respective proteins are colored in white and gray respectively, and set
semi-transparent. The protein colors and the transparency can be set individually. The distinct
colors for the pairs of matched SSEs are fixed. The alignment is based on the minimal RMSD with
respect to the terminal residues of each SSE pair. Please note that the alignment is calculated
utilizing the pair_fit command of PyMOL and explicitly not by the script or SLOT itself.

All visualizations of matchings shown in the results section (see Section 5.6), Figure 5.20, for
instance, were created using the PyMOL Match Writer.
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(b) Tree of recursive calls of our algorithm based on Tomita et al. [28].
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X = ∅

(c) Tree of recursive calls of the algorithm by Bron and Kerbosch [29].

Figure 5.10: Visualization of the recursive calls for two clique detection algorithms. Visualization of
the recursive calls for two clique detection algorithms on the graph shown in (a). In Subfigures (b) and (c),
the nodes of unfinished calls are highlighted in gray, nodes of finished calls that reported a maximal clique in
green, and nodes of finished calls that did not lead to a maximal clique in blue.

5.3.9.2 Chimera

Similar to the Chimera Model Writer (see Section 5.3.7.2), the Chimera Match Writer is also based
on its PyMOL counterpart described in Section 5.3.9.1. It enables the visualization of a matching of
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two graphs in UCSF Chimera [17]. In contrast to its counterpart, the default file extension is .cmd

and the command match is used as it the internal command of Chimera to calculate an alignment
that minimizes the RMSD between matched atom pairs.

5.3.10 Judge

The Judge judges two models, i.e., graphs or histograms, based on their common substructure
determined by the Comparator (see Section 5.3.8), calculates different scores, and provides an
output scores file. Section 5.3.10.1 is dedicated to graph-based comparisons and describes the
scoring with respect to MCSs. Section 5.3.10.2 covers the scoring of histogram similarities.

5.3.10.1 Graphs

The Judge for graphs examines the MCS GMCS = (VMCS , EMCS ) of two graphs G1 = (V1, E1),

G2 = (V2, E2). It creates a column-based scores output file containing a line for each such triple.
The first two columns contain the graph IDs of G1 and G2, followed by their sizes |V1| and |V2|, the
size of the MCS |VMCS |, and five scores based on these values. The first two scores set the size
of the MCS in relation to each graph’s size (see Equation 5.10). Let s1 = score(VMCS , V1) and s2
defined analogously be these scores. The last three scores are the minimum, the mean, and the
maximum of s1 and s2 given in Equations 5.11 to 5.13.

score(VMCS , V ) :=

0 |V | = 0

|VMCS |/|V | otherwise
(5.10)

scoremin(s1, s2) := min(s1, s2) (5.11)

scoreavg(s1, s2) :=
s1 + s2

2
(5.12)

scoremax(s1, s2) := max(s1, s2) (5.13)

We especially provide all scores for G1 and G2 in a single line instead of using two separate lines
for each graph to reduce the file size and data redundancy, such as the size of the MCS |VMCS |.
The final score file also contains a heading in the first line.

5.3.10.2 Histograms

The Judge for histograms is similar to the one for graphs described in Section 5.3.10.1. It evaluates
a triple of a histogram HM containing the similarity of two input histograms H1 and H2 (see
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Section 5.3.8.2. However, instead of using the sizes of the graphs as the basis for the calculation
of the scores, the sums of all counters (

∑
k∈K c(k)) of each histogram are the basis here.

5.4 Application of SSCMs

All SSCMs were applied with default settings in a serial manner.

5.4.1 DaliLite

We use version v4 of DaliLite [137]. If not otherwise stated, we use the Z-score for our analyses.

5.4.2 LOCK2

The LOCK2 [101] algorithm is used which is the successor of the LOCK [176] algorithm. In contrast
to Section 4.6.9, the scores are not normalized with respect to the number of matched SSEs here,
but used without any modifications.

5.4.3 TM-align

We use version 20170708 of TM-align [11]. The score used in our analyses corresponds to the
TM-score of TM-align.

5.5 Analysis of SSCMs

The parameter optimization of SLOT as well as the analysis of SLOT and three other SSCMs
use the area under the receiver-operating-characteristic (ROC) curve (AUC) as the key criterion.
ROC curves were plotted using the KNIME [184] ROC Curve node to analyze the sensitivity and
specificity (see Equations 5.14 and 5.15). Let P be the number of positives, N be the number of
negatives, TP and FP be the numbers of true positives or false positives, respectively. Let TN

and FN be defined analogously.

sensitivity :=
TP

P
=

TP

TP + FN
(5.14)

specificity :=
TN

N
=

TN

TN + FP
(5.15)
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A ROC curve plots the sensitivity in relation to the specificity for different parameter values or
snapshots. The AUC values were calculated for the resulting ROC curves.

We used the CATH topology and the ECOD subset dataset (see Section 2.3.7) for our analyses.
Both datasets consist of related protein domain pairs. Each such pair was defined as active
whereas all other possible domain pairings were defined as inactive or decoy in the all-against-all
comparison.

5.6 Results

This section covers the comparison and evaluation of the different modeling algorithms and the
optimization of the one finally incorporated in SLOT. As SLOT utilizes graphs, aspects with respect
to their comparison are also investigated in this section. In addition, several SSAMs are evaluated to
select the most suitable one for the requirements of SLOT. The performance of SLOT is compared
to three other SSCMs for two different applications, i.e., the retrieval of structurally related domain
pairs and the identification of common of ligand-sensing cores.

5.6.1 The Progress in the Modeling of SSEs

Although most of the introduced modeling algorithms use a graph to represent the spatial arrange-
ment of SSEs, they differ in how these SSEs and their spatial relationships are represented.

The first modeling algorithm, namely, StaticV1D1 (see Section 5.3.6.1), represents each SSE by a
vertex including a code to reflect the SSE’s type and class. The representation of the geometry
of an SSE is broken down to the coordinates of the Cα atom of its median residue. The vertices
representing SSEs with coordinates within a certain distance are connected via edges which are
labeled with that distance. The blind spot of this algorithm is the use of a single coordinate to
represent each SSE. The coordinate allows a localization of an SSE in the three-dimensional space,
but provides no information about its orientation or length. Figure 5.11a depicts an example of two
pairs of SSEs, whose corresponding vertices and edges are compatible although the underlying
SSEs differ in length and orientation.

The StaticV2D1 algorithm (see Section 5.3.6.2) addresses this challenge by introducing a two-
vertex representation of each SSE. The vertices are labeled with the Cα atom coordinates of the
terminal residues. However, Figure 5.11b shows the blind spot of this way of representation, i.e.,
differences in the lengths of similarly oriented SSEs. The two upper helices are oriented and
arranged similarly with respect to their respective pair-partner, but due to the differences in lengths
the upper right vertices are not part of the matching or the MCS, respectively. However, the image
of the upper right helix in Figure 5.11b also reveals another challenge. The Cα atom coordinates
of the terminal residues may be positioned at opposite sides of the helix axis.

Therefore, the StaticV3D1 algorithm (see Section 5.3.6.3) addresses this issue by calculating the
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(a) StaticV1D1 (b) StaticV2D1

Figure 5.11: Visualization of pitfalls in the vertex and edge compatibility defined by the StaticV1D1
and StaticV2D1 algorithm. Visualization of two pairs of adjacent vertices (blue) based on (a) the StaticV1D1
(see Section 5.3.6.1) and (b) the StaticV2D1 algorithm (see Section 5.3.6.2). In (a) the pairs of vertices are
compatible although the orientation of the corresponding SSEs differ. In (b) the effect of SSE lengths of
otherwise similarly arranged SSEs is demonstrated.

mean of the coordinates of the backbone atoms instead of using the coordinates of the Cα atoms.
It represents each SSE by three vertices with the coordinates obtained from the terminal residues
and the central residue. However, the higher accuracy in representing an SSE and the support
for SSE sub-matching is achieved at high costs, i.e., the higher runtime (see Section 5.6.7). The
higher number of vertices representing an SSE leads to larger graphs with respect to the number
of vertices and edges. This consequently results in larger and usually denser product graphs,
which increases the runtime. Nevertheless, the results on different datasets were not promising for
any of the algorithms discussed so far, which is why further algorithms have been developed.

The SegmentedV1DM reduces the number of required vertices and also introduces more criteria to
the definition of edge compatibility. The geometry of an SSE is represented by segmentation points.
Figure 5.12 shows a helix in 1c02A@pdb and the corresponding segmentation points following the
helix axis.

Figure 5.12: Visualization of segmentation points representing the bent shape of a helix. Visualization
of the segmentation points following the geometric shape of a SCOT-assigned bent right-handed α-helix in
1c02A@pdb, residues 135–163.

We have developed four different ways to obtain the segmentation points in strands which are
exemplarily shown for a strand in 1fj2A@pdb in Figure 5.13. Similar to helices, we initially used
the mean of the coordinates of the backbone atoms. This resulted in a zigzag-like positioning of



146 SLOT | Searching for spatial SSE arrangements

the segmentation points with respect to the strand axis. Solely using the coordinates of the Cα
atoms considerably increases this effect. The use of the mean based on the coordinates of the
N and the Cα atoms smoothens the representation. Finally, calculating the mean based on the
coordinates of the N atoms of two neighboring residues almost perfectly follows the strand axis.
Thus, both, helices and strands, can be rotated around their axes without a significant influence on
their segmentation points. For instance, if the strand in Figure 5.13b is rotated along the strand
axis by 180°, the segmentation point trace would change from a W- to an M-shaped orientation. In
contrast, this rotation does not have any effect on the segmentation points in Figure 5.13d.

(a) N, Cα, C (b) Cα

(c) N, Cα (d) N

Figure 5.13: Visualization of a strand and four different segmentation point representations. Visual-
ization of a SCOT-assigned strand in 1fj2A@pdb defined on residues 18–22 and four different segmentation
point placements. Each placement is based on the coordinates of different backbone residue atoms. The
protein structure of the strand is shown by the residues as sticks and the backbone trace as cartoon in blue.
The straight lines between the segmentation points are added to emphasize deviations from the ideal trace.

To circumvent the drawback of the StaticV1D1 algorithm shown in Figure 5.11a, the required
number of segmentation points for an SSE to be represented by a vertex should be at least 2.

The SegmentedVSD1 algorithm (see Section 5.3.6.5) is the last graph-based modeling algorithm.
Instead of representing the geometry of an SSE implicitly by segmentation points, each such point
is explicitly represented by a vertex. There are several reasons motivating this way of modeling.
First, the higher the number of vertices used to represent an SSE the more detailed the score
based on the size of an MCS is. Second, the SegmentedV1DM algorithm does not support the
matching of multiple SSEs on different parts of a single SSE. Third, the selected (segmentation
point/distance matrix) indices for a vertex to create edge compatibility may differ between different
compatibility checks for the edges to its neighbors. However, the considerable increase of the
graph sizes created by the SegmentedVSD1 increased the runtimes for the comparisons from
minutes/hours to weeks (see Section 5.6.7).

The Turn Histograms (see Section 5.3.6.6) are not limited to SSEs but consider all turns of a
protein. In contrast to the other algorithms, they represent the arrangement of SSEs implicitly
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by counting the turns that forge the SSE arrangement. Therefore, an alignment of two matching
proteins cannot be calculated.

In summary, the SegmentedV1DM algorithm led to the most convincing results in general and was,
therefore, chosen for SLOT.

5.6.2 Selecting an SSAM based on Segmentation Point Distances

One of the weak spots of the StaticV2D1 and StaticV3D1 algorithms is that the distances between
the vertices representing an SSE can differ to a huge extend which hampers the matching per
se and the sub-matching in particular. For the SegmentedV1DM algorithm, uniform distances
between the segmentation points are of upmost importance for the matching procedure. They
facilitate lower allowed deviations which result in lower runtimes and, more importantly, increase
the accuracy of the found matching procedure. Therefore, we analyzed the distances between two
neighboring segmentation points within an SSE. Figures 5.14 and 5.15 show the boxplots for these
distances obtained for the X-ray representatives dataset for the seven different SSAMs introduced
in Chapter 3 and evaluated in Chapter 4.

For the remainder of this section, helix classes refer to right-handed helix classes.

The most common SSEs in a folded protein chain are α-helices and strands. Therefore, their
accurate representation is of major importance. The use of the SCOT SSE classification with
split SSEs at kinked positions leads to the most stable segmentation point distances for α-helices
together with ASSP. However, for most of the SSAMs, the distances for these helices show the
lowest deviations compared to other helix classes and also strands. The boxplots for 310-helices
show much higher deviations in general. Nevertheless, the SCOT-assigned 310-helices are still the
second most stable among all SSAMs. For the π-helices, we see that the combination of a hydrogen
bonding pattern and geometric criteria provides a comprehensive and reliable classification (see
Section 4.6.3.2) which results in the lowest deviations for SCOT. The boxplot for STRIDE is solely
based on two segmentation point distances and, thus, lacks statistical significance.

When it comes to strands, SCOT is the second most stable SSAM whereas ASSP, which was
similarly well-performing on α-helices, shows the highest deviations here. Although the segmenta-
tion point distances for mixed and PPII helices classified by SCOT show the highest deviations
(see Figure 6.4, appendix), SCOT assigns the overall geometrically most stable SSEs. More
explicitly, no other SSAM shows a similarly good overall performance. This underlines the benefits
of SCOT for the structural alignment of proteins once again, which was already shown for LOCK2
in Section 4.6.9.

The boxplots for SCOT show that deviations for the segmentation point distances are relatively low
and, therefore, underline that their calculation is accurate.

For the remainder of this chapter, the option to split SSEs at kink positions (--split-kinked-sses)
is always used for the SCOT-based SSE annotations.
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Figure 5.14: Boxplots showing the segmentation point distances in right-handed helices for different
SSAMs. Boxplots showing the segmentation point distances between two neighboring points in right-handed
α-, 310-, and π-helices obtained for the X-ray representatives dataset for different SSAMs. For SCOT, these
distances are given for the standard settings (left) and for the split helices at kink positions (right). The
numbers of analyzed distances are given in parentheses. The assignment of π-helices is not supported by
SEGNO. The median is indicated by a big and the mean by a small white dot. Outliers were omitted in favor
of a concise visualization.
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Figure 5.15: Boxplots showing the segmentation point distances in strands for different SSAMs.
Boxplots showing the segmentation point distances between two neighboring points in strands of β-sheets
obtained for the X-ray representatives dataset for different SSAMs (see Section 4.4). For SCOT, these
distances are given for the standard settings (left) and for the split strands at kink positions (right). The
median is indicated by a big and the mean by a small white dot. Outliers were omitted in favor of a concise
visualization.

5.6.3 Parameter Optimization

The SegmentedV1DM modeling algorithm (see Section 5.3.6.4) and the Comparator for graphs
(see Section 5.3.8.1) require several parameters to be set. The parameters of the Comparator and
the vertex compatibility were set to intuitively appropriate values. We required an MCS to be of size
at least 3 or of size at least 30% of the size of the larger input graph. The two parameters for the
vertex compatibility were set in such a way that the numbers of segmentation points of two vertices
did not differ by more than 40% with respect to the higher number of segmentation points. For all
other parameters, e.g., the parameters for the edge compatibility, an optimization was performed.

This optimization was performed with the help of the CATH topology dataset (see Section 2.3.7.1)
with annotated SSEs by SCOT. We optimized the parameter values to maximize the calculated
scores and the separation from decoy pairs for as many active pairs as possible. All parameter
sets and the resulting runtimes, the scores, and the AUC values are listed in Table 5.3.

Each set was evaluated with respect to the scoremin, the runtime, and by visual inspection. The
visual inspection ensured that found positive domain pair matches show the appropriate alignments.
Furthermore, the parameters to be adjusted for the next set and their new values were also derived
by this inspection. Parameter set 7 was chosen as it is on par with the best performing parameter
sets with respect to accuracy. In contrast, however, it requires a very low runtime. It is highlighted
in blue in Table 5.3. These parameter values were used to obtain all of the following results of this
chapter. If not stated differently, the following evaluations of SLOT were based on the scoremin.
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Parameter Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8

staticmtc 0 0 0 0 0 0 0 0

dynamicmtc 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

minimummtc 3 3 3 3 3 3 3 3

staticSTP 0 0 0 0 0 0 0 0

dynamicSTP 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

staticout 1 1 1 1 1 1 1 1

dynamicout 0.2 0.15 0.2 0.15 0.15 0.12 0.15 0.12

staticcrs 1 1 1 1 1 1 1 1

dynamiccrs 0.2 0.15 0.2 0.15 0.15 0.12 0.15 0.12

staticagl 25 30 30 25 20 25 25 20

limitagl 1 1 1 1 1 1 1 1

factoragl 5 5 5 5 5 5 5 5

staticdsp 1 1 1 1 1 1 1 1

dynamicdsp 0.3 0.3 0.25 0.25 0.25 0.25 0.2 0.2

minimumSTP 2 2 2 2 2 2 2 2

Runtime 39min48 s 29min19 s 53min54 s 22min58 s 20min56 s 17min54 s 11min59 s 8min39 s

AUC scoremin 0.8447 0.8455 0.8459 0.8489 0.8418 0.8466 0.8433 0.8263
AUC scoremax 0.7972 0.8019 0.7952 0.8074 0.8028 0.8081 0.8114 0.8027
AUC scoreavg 0.8409 0.8427 0.8429 0.8458 0.8374 0.8435 0.8398 0.8235

Table 5.3: Parameter sets and the resulting runtimes, the scores, and the AUC values of the parameter
optimization. For all sets, the minimum number of segmentation points for an SSE to be represented by a
vertex was set to 2 for both, helices and strands.

5.6.4 Hunting for Domain Pairs

After we had selected an SSAM (see Section 5.6.2) and had optimized the parameters (see
Section 5.6.3), we evaluated the performance of SLOT with the help of the CATH topology and
the ECOD subset dataset. Both datasets comprise protein domain pairs (see Section 2.3.7 for
more details). We analyzed SLOT in comparison to LOCK2, DaliLite, and TM-align. Due to the
ability of SLOT and LOCK2 to use external SSE annotations, the SSE annotations by SCOT and
by MKDSSP were used as input. Table 5.4 contains the AUC and the corresponding runtimes
for single thread execution. The runtimes are given for single thread execution because not all
SSCM used herein provide parallelization support. In consequence, the runtimes for SLOT are
based on the parallel execution using 30 threads. These runtimes were converted to the runtime
for the single thread execution. In contrast to Section 4.6.9, the scores reported by LOCK2 are not
normalized with respect to the number of matched SSEs here.

SLOT performs best with SCOT instead of MKDSSP with respect to the AUC. The good perfor-
mance of DaliLite is comprehensible as it is the method behind the CATH database. However, it
suffers from the highest loss of performance among the SSCMs for the transition to the ECOD
subset dataset (0.1319). This finding indicates that DaliLite is highly optimized for the scope of the
CATH database.
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AUC Runtime
SSCM CATH ECOD |∆| CATH ECOD RF

SLOT (SCOT) 0.9244 0.8849 0.0395 11 h 29min 0 s 1 h 13min 0 s 9.4384

SLOT (MKDSSP) 0.9156 0.8674 0.0482 9 h 13min 0 s 1 h 0min 30 s 9.1405

LOCK2 (SCOT) 0.9198 0.8739 0.0459 12 h 0min 39 s 4 h 1min 7 s 2.9888

LOCK2 (MKDSSP) 0.9187 0.8842 0.0345 10 h 9min 2 s 3 h 25min 13 s 2.9678

DaliLite 0.9316 0.7997 0.1319 8 h 42min 18 s 2 h 9min 43 s 3.9734

TM-align 0.9556 0.9265 0.0291 7 h 57min 25 s 2 h 0min 9 s 3.9734

Turn Histograms 0.8686 0.8593 0.0093 29 s 13 s 2.2308

Table 5.4: The AUC and the runtimes for each SSCM obtained for the CATH topology and the ECOD
subset dataset. The differences in the AUC values for the two datasets is given in column |∆|. The runtimes
are given for single thread execution. Column RF contains the ratio between the runtimes for each dataset.

The boxplots in Figure 5.16 also underline the coherence between DaliLite and the CATH database.
DaliLite calculates the lowest scores (0 in most cases) for the decoy domain pairs. However, a good
separation of actives from decoy was observed for all SSCMs, except for the Turn Histograms.

In comparison to the AUC values in Table 5.4, the boxplots more clearly demonstrate the benefits
of SCOT- compared to MKDSSP-based SSE annotations for both, SLOT and LOCK2. Particularly,
the mean and the average values for the decoy pairs were significantly lower when using SCOT.

One striking characteristic of the results of SLOT compared to those of the other SSCMs is that
a considerable number of domain pairs defined as decoy were scored as high as active pairs.
This is indicated by the comparatively high upper whisker of the boxplot for SLOT. Therefore, we
analyzed such pairs to answer the question, of whether these were false positives by SLOT or false
negatives by the other SSCMs. Table 5.5 and Table 6.15 of the appendix contain excerpts of the
results for the queries 1cc8A00@cath and 4f01B01@cath, respectively. In both tables, the scores
calculated by SLOT are at least 0.75 which classified the corresponding domain pairs as actives
according to the boxplots in Figure 5.16a. In contrast, the scores for such pairs by all other SSCMs
were low and in the value range obtained for the decoy domain pairs (see Figures 5.16c, 5.16f,
and 5.16e). The question becomes even more interesting due to the fact that some of the matched
domains differed on their architecture level considering their CATH-IDs, such as 1cc8A00@cath
(3.30.70.100) and 1s2oA02@cath (3.90.1070.10).

We used the PyMOL Match Writer (see Section 5.3.9.1) of SLOT to superpose the matchings for
the domains of Table 5.5 in Figure 5.17a and of Table 6.15 of the appendix in Figure 6.5a of the
appendix. Both figures show clear structural similarities of 6 and respectively 7 matched SSEs
among all protein domains, which were solely found by SLOT. One possible explanation are the
non-sequential similarities of the domains, which is depicted by the topology diagrams for each
query and one associated target domain. The corresponding rows in Table 5.5 and Table 6.15 of
the appendix are highlighted in blue.

The runtimes given in Table 5.4 reveal that the factor between the runtimes for the CATH topology
and the ECOD subset dataset of SLOT is by far the highest (9.4384) compared to the ones of the
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Figure 5.16: Boxplots showing the score distributions of each SSCM for the CATH topology dataset.
Boxplots showing the score distributions of each SSCM for the actives (blue) and decoy (purple) obtained for
the CATH topology dataset. SLOT and LOCK2 were applied using SCOT with SSEs split at kink positions
and MKDSSP-based SSE annotations. The median is indicated by a big and the mean by a small white dot.
Outliers were omitted in favor of a concise visualization.

other SSCMs. Assuming that the correlation observed for SLOT, i.e., a higher degree of similarity
leads to an increase of the runtime, also holds true for other SSCMs, this high factor also points
toward the ability of SLOT to find yet unrevealed structural similarities in the CATH topology dataset.
This also hints at the different methodologies behind the two datasets.

The Turn Histograms were introduced in Section 5.3.6.6. They are discussed separately as they do
not focus on SSEs alone, but take the turns of the entire protein into account. Due to the character
of histograms in general, the runtimes were below half a minute for both datasets. But in contrast
to the other SSCMs, the file I/O massively dominated their runtimes (> 80%). The AUC was 0.8686

for the CATH topology dataset and 0.8593 for the ECOD subset dataset. Compared to the other
SSCMs, the Turn Histograms had the lowest |∆|. In addition, it is the only SSCM presented herein
for which a clear separation of actives and decoy was not possible (see Figure 5.16g).
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PDB-ID CATH-ID SLOT LOCK2 DaliLite TM-align
SCOT MKDSSP SCOT MKDSSP

1j5yA02 3.30.1340.20 0.7500 0.7143 136.35 130.63 4.50 0.6207

1xppD00 3.30.1360.10 0.7500 0.8333 141.50 142.01 4.50 0.5601

2gjvA00 3.30.2000.10 0.7500 0.8571 102.79 104.92 3.40 0.5575

1v4pC01 3.30.980.10 0.7500 0.8333 124.27 112.05 0.00 0.5475

4bndA02 3.30.1240.20 0.7500 0.8571 136.20 133.37 3.40 0.5255

4acvB00 3.30.2000.30 0.7500 0.8333 95.55 78.23 2.10 0.5068

1s2oA02 3.90.1070.10 0.7500 1.0000 119.41 118.67 2.40 0.5022

4mo0A00 3.30.780.10 0.7500 0.8571 142.45 144.02 3.20 0.5013

2pwwA00 3.30.310.10 0.7500 0.5556 76.37 81.19 2.00 0.4944

1vkwA02 3.40.109.30 0.7500 1.0000 136.42 125.64 3.60 0.4784

1i4jA00 3.90.470.10 0.7500 0.8333 103.92 76.38 0.00 0.4530

4g6tA00 3.30.1460.10 0.7500 0.6250 101.77 100.39 0.00 0.4518

3a2eA00 3.30.430.20 0.7500 0.8571 90.19 83.23 0.00 0.4094

2hzmA02 2.20.140.20 0.7500 0.8333 104.78 101.49 0.00 0.3854

3d4eA01 3.30.1450.10 0.8750 0.8333 67.48 74.63 0.00 0.3086

3vz9B00 3.30.457.50 0.7500 0.5714 82.79 84.06 0.00 0.3018

Table 5.5: List of protein domain pairs with high scores obtained by SLOT for query domain
1cc8A00@cath. List of domain pairs with high scores obtained by SLOT using SCOT-based SSE an-
notations for the query domain 1cc8A00@cath (3.30.70.100), for which low scores were obtained by all other
SSCMs. The attribution of high and low is based on the boxplots shown in Figure 5.16. A topologically
distant domain with respect to the query is highlighted in blue and the corresponding topology diagrams are
presented in Figure 5.17.

In summary, in comparison to LOCK2, DaliLite, and TM-align, SLOT was the only SSCM able
to find domain pairs in the CATH topology dataset independent of the sequence direction of the
matched SSEs.

5.6.5 Searching for Ligand-Sensing Cores

The search for ligand-sensing cores was performed on both versions the LSC query target dataset
(see Section 2.3.8.3), i.e., chains and pockets. We searched for matches among the targets for the
ligand-sensing core queries of LSD1 (2ejrA@pdb) and APT1 (1fj2A@pdb).

5.6.5.1 Chains

All SSCMs were used to search the targets for similarities to the two queries. Table 5.6 contains
the scores and ranks for each of the two query chains.

If the identity matches are excluded from the results, all SSCMs reported the targets for LSD1
among their first 10 out of 3,614 ranks. TM-align particularly reported all targets for LSD1 in front
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(a)

(b) Topology diagram of 1cc8A00@cath. (c) Topology diagram of 1s2oA02@cath.

Figure 5.17: Superposition and topology diagrams for the query domain 1cc8A00@cath and a topo-
logically distant domain. (a) Superposition according to SLOT with SCOT-based SSE annotations of the
query domain 1c88A00@cath and the domains listed in Table 5.5. The topology diagrams are given for the
query (b) and a high scored (matched), but topologically distant domain (c). The diagrams were created using
Pro-origami [185]. Matched SSEs are highlighted in the same color in all figures.

of all other matches. However, this trend slightly differs for the APT1 query. Although the targets
were still within the top 1.5% of the results for LOCK2, DaliLite, and TM-align, the ranks according
to SLOT dropped massively. Considering that LOCK2 and DaliLite provide scores that are not
normalized with respect to the size of the protein, i.e., the larger the input structures and their
structural similarity the higher the score, their scores indicate that the input sizes differ. In fact, the
number of SCOT-assigned SSEs which were modeled in 1fj2A@pdb (14) was lower compared to
2ejrA@pdb (43). Furthermore, the matchings calculated by SLOT contained 11 respectively 23

SSEs. Thus, an appropriate filtering of the results and/or the use of another score, e.g., scoreavg,
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Query Target SLOT LOCK2 DaliLite TM-align
PDB-ID PDB-ID Rank Score Rank Score Rank Score Rank Score

2ejrA 1gosA 9 0.5349 10 692.08 11 31.3 5 0.7431

2ejrA 1gosB 6 0.5349 9 737.25 9 31.6 4 0.7491

2ejrA 2bxrA 11 0.5349 4 739.84 3 35.4 2 0.8279

2ejrA 2bxrB 3 0.5581 6 739.70 5 35.3 3 0.8276

1fj2A 1k8qA 743 0.4074 21 360.69 53 13.7 18 0.7054

1fj2A 1k8qB 820 0.3929 28 358.61 54 13.7 19 0.7050

Table 5.6: The ranks and scores for the queries 2ejrA@pdb and 1fj2A@pdb and the targets with a
similar ligand-sensing core calculated by the SSCMs on the LSC query target chains dataset. The
ranks are given with respect to each query.

would provide different rankings. Furthermore, the chance of finding structural similarities increases
with fewer criteria to fulfill, i.e., the number of SSEs to be matched. Therefore, the comparatively
lower scores calculated by SLOT must not necessarily correlate with a poorer performance, but
with structural similarities that were not identified by other the SSCMs. This was already observed
for the CATH domain pairs discussed in Section 5.6.4.

The results by SLOT were filtered for each query separately. For LSD1, only matches for which
the score was above 0 were kept, resulting in 29 matches (see Table 5.7). The matches of APT1
additionally had to contain at least 10 SSEs due to the high number of high-scoring chain pairs.
More filtering criteria led to the exclusion of APT1 whose rank was 106 out of 142 matches (see
Table 6.16, appendix).

We added enzyme commission (EC) numbers to all of these matches to highlight the diversity
of the enzyme-catalyzed reactions of the corresponding target chains. All chains which were
found as similar to LSD1 are oxidoreductases (EC number 1.-.-.-) that differ with respect to their
substrates. For APT1, the found matches contained members of all top level codes except 7, i.e.,
oxidoreductases (1), transferases (2), hydrolases (3), lyases (4), isomerases (5), and ligases (6).

In addition to the EC numbers, UniProt [186] accession numbers were used to identify known
bioactive molecules in version 21 of the ChEMBL database [187]. The ChEMBL contained
bioactivity data for 6 targets of LSD1 and 11 targets of APT1.

To assess the structural similarity among the found matches of each query, they were superimposed
using the SLOT PyMOL Match Writer script (see Section 5.3.9.1). The superpositions are shown
in Figure 5.18. The very high structural similarity is evident for both sets of query and similar target
chains.

5.6.5.2 Pockets

In contrast to the previous analyses based on the chains, the search for the target pockets was
performed with SLOT only. Although the LSC target pocket dataset contained three pockets for
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Rank Query Target Matching
PDB-ID SSEs PDB-ID EC No UniProt ChEMBL SSEs SSEs Score

1 2ejrA 43 2ejrA 1.-.-.- O60341 43 43 1.0000

2 2ejrA 43 1rsgA 1.5.3.11 P50264 42 26 0.6047

3 2ejrA 43 2bxrB 1.4.3.4 P21397  35 24 0.5581

4 2ejrA 43 1h83A 1.5.3.11 O64411  36 24 0.5581

5 2ejrA 43 2bxrA 1.4.3.4 P21397  36 23 0.5349

6 2ejrA 43 1gosB 1.4.3.4 P27338  35 23 0.5349

7 2ejrA 43 1gosA 1.4.3.4 P27338  33 23 0.5349

8 2ejrA 43 1s3eA 1.4.3.4 P27338  39 22 0.5116

9 2ejrA 43 1zovA 1.5.3.1 P23342 31 17 0.3953

10 2ejrA 43 4h1bA 30 15 0.3488

11 2ejrA 43 3rp8A A6T923 32 15 0.3488

12 2ejrA 43 3axbA Q9YCJ0 34 15 0.3488

13 2ejrA 43 3aljA 1.14.12.4 Q988D3 33 15 0.3488

14 2ejrA 43 2bcgG P39958 35 15 0.3488

15 2ejrA 43 2h88A 1.3.5.1 Q9YHT1 46 16 0.3478

16 2ejrA 43 1pn0A 1.14.13.7 P15245 48 16 0.3333

17 2ejrA 43 4rekA 1.1.3.6 P12676 31 14 0.3256

18 2ejrA 43 2qa1A 1.14.13.- Q93LY7 42 14 0.3256

19 2ejrA 43 4rg3A 1.14.13.22 C0STX7 37 13 0.3023

20 2ejrA 43 4ntcA E9RAH5 27 13 0.3023

21 2ejrA 43 4h7uA 1.1.99.29 Q3L245 36 13 0.3023

22 2ejrA 43 3pl8A 1.1.3.10 Q7ZA32 38 13 0.3023

23 2ejrA 43 2gqwA 1.18.1.2 Q52437 37 13 0.3023

24 2ejrA 43 2aqjA P95480 39 13 0.3023

25 2ejrA 43 1rp0A P15245 24 13 0.3023

26 2ejrA 43 1mo9A 1.8.1.5 Q56839 41 13 0.3023

27 2ejrA 43 1kdgA 1.1.99.18 Q01738 32 13 0.3023

28 2ejrA 43 1fl2A 1.8.1.- P35340 28 13 0.3023

Table 5.7: Complete list of the matches calculated by SLOT for the query chain 2ejrA@pdb. Complete
list of the matches calculated by SLOT for the query chain 2ejrA@pdb in the LSC query target chains dataset
for which the score was not 0. The information of these matches were extended by the EC numbers (EC No),
the UniProt accession numbers [186] (UniProt), and the availability (•) of bioactive molecules in the ChEMBL
database [187]. Rows highlighted in blue contain query target chain pairs of the ligand-sensing cores.

each target (a total of 10,818 pockets), we focussed on the primary pockets.

We observed similar relative rankings of the target’s primary pockets compared to the analysis with
respect to the chains for both queries (see Table 5.8).

However, the results of ATP1 contain more than 3,500 matches with a higher score than the
matches of the target pockets. Approximately 800 of these matches contain more matching SSEs
(> 5) compared to the matches of the target pockets. The best approximately 50 matches were
assigned a score of at least 0.7which is twice as high as the highest score of the target pockets.
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(a) LSD1
(b) APT1

Figure 5.18: Superposition of the LSD1 and APT1 query chains and all targets for which a bioactive
molecule was available. Superposition of the LSD1 query chain 2ejrA@pdb and all target chains listed in
Table 5.7 (a) and of the APT1 query chain 1fj2A@pdb and all target chains listed in Table 6.16 of the appendix
(b) for which a bioactive molecule was available in the ChEMBL database [187].

Query Target Matching
PDB-ID SSEs PDB-ID SSEs Rank SSEs Score

2ejrA0 19 1gosA0 27 5 10 0.3846

2ejrA0 19 1gosB0 28 39 10 0.4255

2ejrA0 19 2bxrA0 19 2 11 0.5789

2ejrA0 19 2bxrB0 27 4 11 0.4074

1fj2A0 9 1k8qA0 14 3,252 5 0.3571

1fj2A0 9 1k8qB0 15 4,700 5 0.3333

Table 5.8: Ranks and scores for the primary pocket of each of the queries and their target’s most
similar pockets. Ranks and scores for the primary pocket of each of the queries, i.e., 2ejrA@pdb and
1fj2A@pdb, and their target’s most similar pockets calculated by SLOT on the LSC query target pockets
dataset. The ranks are given with respect to each query.

The first match with a score of less than 0.5was ranked at position 1,188.

5.6.6 On the Uniqueness of the MCS

Maximal clique detection algorithms, such as the one by Tomita et al. [28], determine all maximal
cliques in a graph G. This means that the reported cliques must not necessarily be of the same
size. In the example depicted in Figure 5.10, the reported cliques are of size 3 and 4. However,
our modified version of the algorithm, only reports the first detected maximum clique, which is the
one of size 4 in the given example. It is sufficient to report only the maximum clique because our
scoring solely takes the size of the clique/MCS into account and we are interested in the maximal
possible structural similarity of two graphs. Nevertheless, the MCS of two given graphs is not
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necessarily unique.

We analyzed the uniqueness of the MCS on five datasets, i.e., the LSC query target dataset using
chains and pockets, the CATH topology and superfamily datasets, and the ECOD subset dataset.
We disabled our optimization of the algorithm and reported all MCSs instead of one representative
MCS.

Figure 5.19 shows the boxplots for the number of MCSs and their sizes for all pairs of graphs, for
which at least one MCS of a size of at least 3 was found (blue boxplots). For the green boxplots,
scoremin had to be at least 0.5 additionally. This means that the size of the MCSs for two graphs G1

and G2 is at least half the size of the smaller of G1 and G2. Thus, these pairs can be considered
as relevant matches for further analysis.

Although the number of MCSs for relevant matches (green) was significantly lower, there was still
a considerable number of MCSs detected. As domains contain relatively few SSEs, the sizes of
multiple MCSs obtained for these datasets were small as well. This usually facilitates the discovery
of multiple MCSs. Nevertheless, the results on the LSC chain dataset demonstrates that large
MCS sizes not necessarily guarantee uniqueness.

There are several reasons for the MCS not to be unique. First, the high deviations in the parameters
required to find interesting matches allow for a high degree of flexibility in the arrangement of
the SSEs. Figure 5.20 shows 4 out of 8 matchings based on multiple MCSs for the same pair
of proteins and their graphs. This flexibility can especially be seen in Figures 5.20a and 5.20b.
Here, the purple colored strand of one protein (bottom) is matched to different strands in the target
protein. This usually happens in densely packed strands of β-sheets.

Second, using relative distances in contrast to exact coordinates leads to mirrored matches.
In Figure 5.20c, for instance, the magenta colored helices are matched in a mirrored fashion
considering the matched strands as the axis of symmetry. The relative distances, the applied
thresholds, and the allowed displacement in particular are the reasons for this match in particular
and mirrored matchings in general. In this figure, none of the proteins can be rotated and/or
translated in such a way, that all identically colored SSE pairs are superimposed. However, it is still
a valid match as the relative distances of each graph are compatible to the ones of the other.

Finally, the matching given in Figure 5.20d also shows the ability of SLOT to match SSEs in-
dependent of their sequence direction. In contrast to the other matchings, all SSEs of each
matched pair have opposite sequence directions. This can be particularly seen with the help of the
arrow-representation of the strands.

5.6.7 Runtime and Memory Consumption

The subgraph isomorphism problem for two given graphs is NP-complete in general [31]. On the
one hand, this means that no polynomial time algorithm is known and, on the other hand, that the
determination the MCS is a time-demanding procedure.
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Figure 5.19: Boxplots showing the number of MCSs and their sizes for different datasets. Boxplots
showing the number of MCSs (a) and their sizes (b) obtained by SLOT for five datasets with SCOT-assigned
SSEs which were split at kink positions. The comparison of LSC chains und pockets is query-target based
whereas the domains of both CATH and the ECOD subset datasets were compared in an all-against-all
fashion. The boxplots in blue are based on the MCSs of pairs for which at least one MCS was found (first
numbers in parentheses) whereas additionally for the green boxplots the scoremin (see Equation 5.11) for
these pairs had to be at least 0.5 (middle numbers in parentheses). The last numbers in parentheses are the
total numbers of comparisons for each dataset. The median is indicated by a big and the mean by a small
white dot. Outliers were omitted in favor of a concise visualization.

We performed a query-target-based search for the protein chains of both ligand-sensing core
datasets hidden in the X-ray representatives dataset. We analyzed the runtimes using each of the
six different modeling algorithms introduced in Section 5.3.6. In addition, we further investigated
two variants of the SegmentedV1DM algorithm with respect to the edge compatibility, i.e., bottom
up and top down. Bottom up means from high to low displacement resulting in low to high index
range lengths (see Algorithm 1 lines 6 and 8). Top down is defined analogously from low to high
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(a) (b)

(c) (d)

Figure 5.20: Equally sized matches for two chains. Four out of eight equally-sized (8 SSEs) matches for
1fj2A@pdb (white) and 2qipA@pdb (gray). The orientation of the query structure 1fj2A@pdb is fixed in all
subfigures. Matched SSEs are highlighted in the same color. The colors are fixed with respect to 1fj2A@pdb.

displacement. As a remainder, the runtimes are based on a parallel execution using 30 threads.
We used a maximum edge connectivity distance of 30Å and dynamicdst = 0.15 and staticdst = 1

(Å) for all Static modeling algorithms. For the SegmentedVSD1 algorithm, we used the same
distance parameters. For the SegmentedV1DM algorithm, we used the parameters obtained in the
parameter optimization described in Section 5.6.3. The parameters for the Comparator were set to
minimummtc = 3, staticmtc = 0, and dynamicmtc = 0.3 for all modeling algorithms.

Table 5.9 shows the runtimes with respect to each modeling algorithm and/or variant. For those
algorithms that did not finish within 6 h, the progress at that point of time is given in percentages
instead.

For the graph-based modeling algorithms, the SegmentedV1DM algorithm outperforms all other
with respect to runtime. The runtimes for the Static algorithms alone demonstrate the exponential
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Modeling algorithm Section Runtime/Progress

StaticV1D1 5.3.6.1 14%

StaticV2D1 5.3.6.2 3%

StaticV3D1 5.3.6.3 0%

SegmentedV1DM top down 5.3.6.4 23min 12 s

SegmentedV1DM bottom up 5.3.6.4 22min 35 s

SegmentedVSD1 5.3.6.5 0%

Turn histograms 5.3.6.6 59 s

Table 5.9: Runtimes for the comparison of the queries against the targets of the LSC query target
chains dataset using different modeling algorithms. If a run had not completed after 6 h, it was aborted
and its progress at that point of time is given instead. Our optimized version of the clique detection algorithm by
Tomita et al. was used for all graph-based modeling algorithms. All runtimes are based on parallel execution
using 30 threads.

runtime behavior with respect to the input size (number of vertices |V |). The transition to complete
graphs by the SegmentedV1DM algorithm influences the construction of the product graph to a
huge extend, too. Before, two pairs of compatible non-adjacent vertices led to an edge in the
product graph GP without any restriction. In a complete graph, these vertices are adjacent and
their edges have to be compatible in order to result in the corresponding edge in GP . Thus, GP is
less dense in most cases leading to lower runtimes for the determination of its maximum clique.

The two variants for the SegmentedV1DM algorithm are very close with respect to their runtimes.
The worst case time for both variants is identical as all displacements have to be considered
whether it is from high to low or vice versa. Their algorithmic difference tackles the construction of
the product graph by the use of the vertex and edge compatibility criteria. This step contributes
to only a very small fraction to the overall runtime. Combined with the fact that the results are in
each and every way identical, whether to use the bottom up or the top down variant is negligibly.
However, as we had to make a choice at some point and one would expect that it is more promising
to match fewer numbers of segmentation points than higher. In addition, the number of matched
segmentation points has no influence on the final score. Therefore, we preferred to use the bottom
up variant.

We also analyzed the benefits of the algorithm by Tomita et al. [28] over the one by Bron and
Kerbosch [29]. Our optimizations regarding the reported cliques described in Section 5.3.8.1
were used for both algorithms. Both algorithms were used to compare the graphs created by the
SegmentedV1DM algorithm for the CATH topology dataset (see Section 2.3.7.1) and the LSC
query target chains dataset (see Section 2.3.8.3). The runtimes are shown in Table 5.10.

Although the differences in runtimes for the LSC query target chains dataset are almost negligible,
the benefits of the algorithm by Tomita et al. come into play for the CATH topology dataset. One
possible reason may be the high structural similarities within the CATH topology dataset which
was already discussed in Section 5.6.4. However, the cases in which the algorithm by Bron and
Kerbosch is faster than the one by Tomita et al. are rare. In such a case, both algorithms select the
same vertices in the same order for their recursion calls. The only difference is that the algorithm
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Clique algorithm CATH topology LSC query target chains

Tomita 21min 35 s 22min 35 s

Bron Kerbosch 25min 1 s 23min 18 s

Table 5.10: Comparison of the runtimes using the algorithm by Bron and Kerbosch and the algorithm
by Tomita et al. Direct comparison of the runtimes of our optimized versions of the clique detection algorithms
by Bron and Kerbosch and the one by Tomita et al. (see Section 5.3.8.1). The runtimes were achieved based
on graphs of the SegmentedV1DM modeling algorithm. All runtimes are based on parallel execution using 30

threads.

by Bron and Kerbosch selects these vertices in this specific order by chance without the additional
overhead to determine the optimal one every time as realized in the algorithm by Tomita et al.

The memory consumption is high compared to the other tools presented herein, i.e., SCOT (see
Section 3.5.5) and SNOT (see Section 4.6.10). It took about on average 4GB to process the LSC
query target chains dataset. A comparison to other SSCMs is difficult as some, e.g., LOCK2, only
support the input of two proteins for a single pairwise comparison. Thus, the comparison in an
all-against-all manner had to be scripted and proteins had to be loaded multiple times. SLOT avoids
such redundant I/O operations to reduce the overall runtime, which leads to the comparatively high
memory consumption. DaliLite supports the input of multiple proteins and also the parallelization
of the comparisons. However, the input has to be pre-processed in a separate step. Nevertheless,
its memory footprint is negligible small.

5.6.8 Automated Pocket Detection

The creation of the LSD query target dataset based on pockets (see Section 2.3.8.3) required
an automated pocket detection algorithm. An exhaustive evaluation of different binding site
detection approaches can be found in the doctoral thesis by Christiane Ehrt [90]. Based on this
evaluation, we selected P2Rank [46] and highlight its superior performance in a comparison to
LigsiteCS [188]. LigsiteCS detected pockets were used by the CavBase algorithm integrated in the
retired Relibase [92].

We automatically searched for the pockets in the LSD1 dataset (see Section 2.3.8.1) using the
default settings for both tools. Figure 5.21 shows the superposition of the three proteins and the
detected primary pockets as spheres.

The superposition emphasizes the high structural similarity among all proteins which should
contribute to consistent locations of the detected pockets. While the centers of the pockets
detected by P2Rank are in close proximity (white spheres) with a maximum pairwise distance of
1.74Å, the situation massively differs for those detected by LigsiteCS (black spheres). Here, the
pairwise distances are 3.5Å, 7.6Å, and 10.35Å. The highest distance was observed between the
pockets of the structurally highly similar proteins MAO-A (2bxr@pdb) and MAO-B (1gos@pdb).
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(a)

(b)

Figure 5.21: Visualization of the detected primary pockets by LigsiteCS and P2Rank. (a) Visualization of
the centers of detected primary pockets by LigsiteCS [188] (black spheres) and P2Rank [46] (white spheres) for
the proteins of the LSD1 dataset. 2ejrA@pdb is highlighted in green, 1gosA@pdb in purple, and 2bxrA@pdb
in blue. The ligand and the co-factor of 1gosA@pdb are exemplarily shown (orange). (b) Enlarged visualization
of the ligand, the co-factor, and the detected pockets.

5.7 Discussion

We introduce SLOT as an innovative SSCM for the discovery of similar structural arrangements of
SSEs. It is on par with other SSCMs with respect to the performance and the runtime, but is able
to discover a yet unrevealed layer of structural similarity. It provides several similarity measures
(e.g., scoremin or the number of matched SSEs) for an application-dependent filtering of the results.
In addition, the possibilities to export the graph-based models and the matchings for visualization
tools, such as PyMOL, allow an in-depth analysis of the results. Its parameters enable a high
degree of individualization and are initially set to our optimized values for an exemplary dataset for
an immediate usage.

We have developed six different algorithms for the representation of SSEs and their arrangements.
The five graph-based algorithms are the result of an intensive optimization with respect to the
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match quality and runtime. We focussed on graphs for the representation of the SSEs and their
arrangements as they provide the highest flexibility for the representation of objects and their
spatial relationships. Furthermore, as the search for common ligand-sensing cores has been rarely
studied, we wanted to avoid pitfalls from the start, e.g., limitations due to the chosen data structure.
The best performing modeling algorithm for SLOT is SegmentedV1DM (see Section 5.3.6.4). In
contrast to the majority of the SSCMs, it utilizes segmentation points instead of vectors to mimic
the geometry of an SSE. Vectors are not applicable to represent the geometry of bent SSEs. A
way to overcome this issue is to additionally determine and store the maximum BDA of an SSE.
This, however, does neither take the position of the bend into account nor does it support multiple
bends in an SSE. Multiple bends especially occur in strands (see Figure 5.22). The segmentation
points used herein mimic the geometry of an SSE including any bend or conformation in general.

(a) 1k5cA@pdb (b) 1is3A@pdb

Figure 5.22: Examples of two protein chains with multiply bent strands assigned by SCOT and their
geometrical representation by the segmentation points. For comparison purposes, vectors from the first
to the last segmentation point of each SSE are visualized by blue lines.

We analyzed several procedures for the placement of segmentation points. The procedures for
strands mainly differ in their selections of backbone atoms (see Figure 5.13). Using solely Cα
atoms led to the highest deviations from an ideal axis among the presented backbone atom
selections. This is particularly problematic for the matching procedure. Given two identical SSEs of
which one is rotated by 180°, their segmentation points would end up at opposite sides of the ideal
axis. The matching of these points requires high thresholds for the distance and angle compatibility
determinations which also negatively affect the differentiation between positives and negatives. For
instance, in right-handed α-helices, the Radius is ≈ 2.3Å leading to a distance of 4.6Å between the
segmentation points on opposite sides of the ideal axis (see Table 6.2, appendix for the geometric
characteristics of right-handed α-helices). Thus, other SSCMs, e.g., MIRAGE-align [171], use
multiple atoms to smoothen this effect. For the calculation of the segmentation points in helices, we
use the N and the C atoms of a specific number of residues per point. In contrast to LOCK2, we use
a class dependent instead of a fixed number (4) of residues. We observed that the class-specific
segmentation point placement result in lower deviations from the axis and lower deviations in the
segmentation point distances as well.
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An additional major benefit of the segmentation points is that they allow a non-sequential matching
of SSEs. The corresponding mechanism is implemented in the creation of the distance matrices.
Here, the sequential dependency is eliminated by always selecting the sequence direction that
leads to the lowest distances. An example of a non-sequential match by SLOT is shown in
Figure 5.20d. The last benefit to be discussed is that the segmentation points also allow for a
fine-grained sub-matching of SSEs. This feature can be fine-tuned by several parameters.

The calculation of the entire distance matrices positively influences the runtimes as they reduce
the required and oftentimes redundant geometric calculations during the compatibility checks. Only
the calculation of the relative angle is done on-the-fly as the distance criteria limit the number of
such calculations to a huge extend.

In contrast to all available SSCMs except LOCK2, SLOT is able to use user-defined SSE anno-
tations in the standardized and widely supported PDB file format. It enables users to throw off
the shackles of preset SSE assignments. In Section 4.6.9 we have shown that in the structural
alignment with LOCK2, our classification by SCOT outperforms the state-of-the-art SSAMs, among
which DSSP is the most prominent one. Here, we underline the benefits of the SCOT-based SSE
classification with respect to the segmentation point distances. Although these distances based
on SCOT-assigned SSEs are not the most stable distances for all SSE types and classes, they
are among the best. Thus, no other SSAM provides such a good overall performance. This is
particularly worth mentioning considering the high number of supported SSE classes by SCOT.
PPII and right-handed mixed are the classes for which the highest deviations in the segmentation
point distances were observed. In this context be reminded, that SCOT rarely assigns right-handed
mixed helices which led to only a handful of segmentation point distances (108) compared to
SEGNO (30,273). In addition, in Section 4.6.5 we already discussed that many PPII helices as-
signed by the other SSAMs correspond to SCOT-assigned strand structures which explains their
higher stability with respect to the segmentation point distances here. Our analyses also underline
the benefits of splitting kinked SSEs for the structural alignment. The variations of the segmentation
point distances improved when this feature of SCOT was used.

The structural similarity of two graphs is represented by their MCS. The calculation of a MCS is
based on the determination of the maximum clique in an appropriately defined product graph.
We investigated two different algorithms, namely, the one by Bron and Kerbosch [29] and the
one by Tomita et al. [28], and also introduced some optimizations. There are other algorithms
available including algorithms for the general problem of determining the MCS, e.g., by Suters et
al. [189], and also algorithms for special cases, such as for outer planar graphs by Akutsu and
Tamura [190]. However, we focussed on the modeling of SSEs and also decided to implement all
aspects (parsing, modeling, comparing, and writing) of SLOT by ourselves to have our hands on
any detail. Therefore, it was not feasible to implement a wide range of different algorithms for the
determination of the MCS and evaluate them with respect to our requirements.

One important aspect to be mentioned is that the maximum clique of the product graph and the
corresponding MCS of the input graphs are not necessarily unique. Our current scoring scheme
solely considers the size of an MCS and, therefore, it is sufficient to report only one of multiple
equally sized MCSs. We evaluated whether the occurrence of multiple MCSs is rare or common
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with the help of different datasets. Multiple MCSs were found even for matches for which a score
was reported that usually indicates an active match (≥ 0.5). Most interestingly, these matches can
contain 30 SSEs and more. One possible consequence is, that either the allowed deviations are
not sufficiently strict or the arrangement of SSEs alone does not provide sufficient information for
distinct matches. In Section 4.6.8 we have discussed the flexibility of protein structures with respect
to the consistency of SSAM assignments with the help of NMR and X-ray ensembles. The allowed
deviations defined by the chosen parameter values are required to cope with fluctuations in the
SSE assignments. Thus, the level of abstraction of SSE arrangements allow multiple alignments
or matches. Nevertheless, multiple MCSs might still prove valuable. It is possible to derive a
matching purity from the number of detected MCSs for a given representative matching. But
several questions remain. First, how high is the impact of this additional information? Second,
how high is the influence on the runtime? And third, is the additional information worthwhile the
expected additional runtime?

In 1965, Moon and Moser showed that a graph G = (V,E) can contain up to 3|V |/3 cliques in
general [191]. In other words, solely reporting all cliques of a graph requires exponential time.
25 years later, Garey and Johnson [31] proved that the subgraph isomorphism problem is NP-
complete. This fact is also reflected by the measured runtimes for using each of the different
modeling algorithms introduced herein. The SegmentedV1DM algorithm was the only graph-based
modeling algorithm, for which the execution finished within 6 hours. Most astonishing is the fact,
that using the StaticV3D1 and the SegmentedVSD1 algorithm, the progress after this duration of
time was below 1%. Our evaluation also revealed the reduced computation time for the algorithm
by Tomita et al. in comparison to the algorithm by Bron and Kerbosch.

One of the main challenges in the development of SLOT was and still is the lack of an appropriate
dataset.

Two common ligand-sensing cores have been proposed and exploited for new drugs in the structure-
based design. They involve a total of 5 proteins. This small amount of proteins is barely sufficient
for the optimization of a tool when faced with almost 150,000 publicly available protein structures in
the PDB in February of 2019. We addressed this challenge by using the CATH topology and the
ECOD subset dataset. Each dataset’s individual classification was used to define pairs of similar
domains. However, apart from these pairings, SLOT identified several domains sharing structural
similarities which remained invisible to the other SSCMs. These domains showed high structural
similarities but differed significantly in their topologies. However, the defined domain pairings do
not reflect the structural similarities of other domain pairings solely detected by SLOT, which had
an influence on the evaluation of SLOT’s performance. Such hidden structurally similar domain
pairs were regarded as false positives and, therefore, negatively influenced the ROC curve and the
corresponding AUC for SLOT. Therefore, it had an impact on the parameter optimization and also
discriminates SLOT against the other SSCMs.

The main scope of SLOT is to identify new common ligand-sensing cores in the PDB. To answer
the question of whether SLOT is able to fulfill this task, we used the LSC query target datasets
to analyze the performance of SLOT in comparison to other SSCMs. All SSCMs reported high
structural similarities for the targets of the queries LSD1 (2ejrA@pdb) and APT1 (1fj2A@pdb).
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Moreover, although the target dataset consisted of more than 3,500 representative protein chains
from the PDB, all chains with common ligand-sensing cores with LSD1 were ranked among the top
10, if self-matches were excluded. Especially for TM-align, all targets for LSD1 were ranked prior to
all chains of that dataset which demonstrates the high overall structural similarity as well as the
high similarity with respect to the SSE sequence and direction.

The matches to targets of APT1 were still among the top 1.5% of all ranks. This structural similarity
is also reflected by the CATH identifiers (see Table 5.11). The domains of the proteins with the
LSD1 ligand-sensing core share the same classification and architecture levels. This means,
all of these domains mainly consist of α-helices and share a very similar overall shape. In the
current version of the CATH database (February of 2019), this group of domains consists of 60,694
domains in 1,226 superfamilies and 291 folds.

PDB-ID CATH-ID

2ejr 1.10.10.10
1gos 1.10.405.10
2bxr 1.10.405.10

(a) LSD1

PDB-ID CATH-ID

1fj2 3.40.50.1820
1k8q 3.40.50.1820

(b) APT1

Table 5.11: PDB and CATH identifiers for the two sets of proteins sharing common ligand-sensing
core.

However, the situation was completely different for the corresponding domains of the APT1 example.
Here, the CATH identifiers are identical. Thus, both domains consist of α-helices and strands, have
a highly similar overall shape, share the same topology or fold in their cores, and are homologues.
Homologues means that they share a common ancestor which correlates to a high sequence
identity (e.g., ≥ 35%) and/or high SSAP score from structure comparison [192]. The group of
domains with this CATH identifier contained 3,274 domains in the latest version, but it contained
only 1,062 in the most recent version available at the time of publication (version 3.3), i.e., the
beginning of 2010.

The by far most striking fact is that these results were based on the entire chains and did not focus
on the binding site, a domain, or the core manually defined by the authors. Thus, these proteins
share a high similarity on the tertiary fold level that separated them from a set of representative
decoy chains. Having said that, be reminded that the manually defined core of 1fj2@pdb includes
SSEs that are within 15Å of the core’s center which are then extended to at most 25Å from this
center. Figure 5.1a reveals that almost all SSEs of the chain are entirely included in the core. The
authors state that their core contained 5 α-helices (all of the chain) and 4 β-strands. Although they
do not explicitly state that other helix classes were excluded, these helices may had been removed
due to minimum length requirements. Another possible explanation is that the term α-helices is
sometimes used for the group of helices regardless of any classification. In this case, this number
of reported helices by the authors differed from the number of helices we observed which is 7

(see Figure 5.1a). In addition, the number of strands also differed between the authors’ (4) and
our observations (8). Both discrepancies might be the result of different atoms used for the core’s
center definition or the reduction of SSEs to Cα atoms during the distance calculation. Both details
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are not specified in the publication.

The identical Z-score of 13.7 for the overall fold comparison of APT1 with DaliLite obtained by us
as well as by the authors suggests that they also compared chains instead of entire proteins. For
LSD1, the Z-score reported by Willmann et al. is even lower, although the corresponding chains are
larger. Unfortunately, the authors do not provide the details of how the core for LSD1 was defined.
Assuming that they used the same criteria as for APT1, the number of SSEs and their sizes are at
least comparable. Given the fact that all SSCMs reported the highest structural similarities, the
low reported score is questionable in this sense. However, the authors report comparatively low
lengths of alignments even for identity matches of the core to its chain. The reported alignment
length of the core to its chain for 2ejrA@pdb was 158 residues to 643 residues of the entire chain.
Although the number of residues for the alignment is given, the selected residues remain unknown.

For the cores or automatically detected pockets, SLOT reported similar rankings for the targets
of LSD1 as well as of APT1. Although the performance of SLOT was improved for APT1, this
improvement was not based on a higher similarity. The matching of the entire chains contained 11

SSEs, which reflects good performance in general. The different relative rankings between the
pockets and the chains were the result of the selected score of SLOT. scoremin favors structures of
the same size. Thus, the differences in sizes are usually higher for chains than for pockets. To
overcome this issue scoremin could be used for the determination of similarity on the overall-fold-
level and scoremax for the similarity on the core-level.

Nevertheless, the best match of the primary pocket of ATP1 to a target pocket was assigned
a score of 0.3571, which led to a rank of 3,252. Only 5 SSEs, i.e., 2 helices and 3 strands, are
matched between these pockets. Furthermore, the spatial arrangement of these SSEs can be
frequently observed in the results. In conclusion, this match is out of the range of matches one
would pick for further examination, such as visual inspection. This is especially and generally true
for matches with a score of less than 0.5.

A topic that has not been discussed with respect to ligand-sensing cores, but which is important
in this context is the occurrence of super-secondary structures. Super-secondary structures are
common structural motifs consisting of helices and strands arranged in patters that can be found
in many different protein structures. The Rossmann fold [193] is one of the most common super-
secondary structure motifs in proteins [194, 195] with a high structural variety [196]. Moreover, the
Rossmann fold is present in approximately 22% of the available protein structures [197]. All of
these proteins share a common ligand-sensing core per definition.

Another blind spot of this concept is the fact that similar binding molecules in case of a common
ligand-sensing core are limited to a common scaffold [15]. There exists a myriad of possible
side-chains combinations for the functionalization of the scaffold. This fact in combination with the
frequency of super-secondary structures demonstrate the inspecificity of this concept.

From a computational point of view a lot of questions arose that still remain: What is a good
ligand-sensing core? What is a good spatial arrangement of SSEs? What is the tradeoff between
the size and the quality of the spacial arrangement? How many SSEs define a ligand-sensing
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core? How high is the probability that such a spatial arrangement can recognize similar scaffolds?

All in all, we observed high similarities for the queries and targets of APT1 and LSD1 on the
chain and the core level, which were reported by several SSCMs. We found additional structural
similarities with SLOT due to its independence from the SSE sequence und the SSEs’ directions.
Since the publication of the PSSC approach in 2004, two ligand-sensing cores have been reported
in the following 15 years. Both publications lack important details on the definition of their cores. In
addition, there is a high number of open questions that hamper the transition from visual inspection
preferences to formal criteria. Plus, there is a high degree of inspecificity with respect to the scaffold
and no demarcation from super-secondary structures. In consequence, there is no evidence that
demonstrates any benefits of the concept of ligand-sensing cores for the rational drug design.

One of the last topics to be discussed are the Turn Histograms introduced in Section 5.3.6.6. They
provided the fastest runtimes in general, but were not able to separate actives from decoys in our
CATH topology domain pair analysis. In spite of that, their performance was yet sufficient to be
used in a pre-filtering step on a protein scale. In more detail, although a combination of the Turn
Histograms and the SegmentedV1DM algorithm was not implemented, it could have been used
to fulfill the two-step procedure for the search for ligand-sensing cores, i.e., dissimilarity on the
protein and similarity on the binding site level.

Finally, there are several open challenges and possible optimizations for SLOT. First, all scores
reflect the number of matched SSEs without considering the matching quality. This hampers a
granular differentiation between different matchings. Second, SLOT utilizing the SegmentedV1DM
modeling algorithm, is only able to match one SSE to another and does not support the matching
of multiple SSEs to different parts of a single one. We introduced the SegmentedVSD1 modeling
algorithm to address both challenges, but the observed runtimes are insufficient in any way. We
additionally addressed the second challenge by using the option to split SSEs at kink positions
provided by SCOT. Third, the parsing procedure and the internal protein data structures could be
limited to the use of backbone atoms only. This would reduce the high memory footprint which
currently detains the processing of the entire PDB at once. Fourth, a functionality could be added
to cut SSEs to the size of the binding site. This however, is very sensitive with respect to the
accuracy and consistency of the detected binding sites among the proteins of interest. Last but
most important, an appropriate dataset has to be created to optimize and evaluate SLOT. The
undiscovered similarities revealed by SLOT show that the current datasets and their definitions of
decoys and actives are inadequate for our application domain.

In summary, SLOT is a novel tool for the search for similar spatial arrangements of SSEs. It was
shown to find a new layer of similarity by its independence from the SSE sequence and the SSEs’
directions. The multiple scores, parameters, and exports of models and matches allow a high
degree of application-tailored adjustments and the analyses of their effects. We evaluated its
performance against three other SSCMs, namely, LOCK2, DaliLite, and TM-align, with the help of
domain pairs in general and the concept of ligand-sensing cores in particular. This concept was
analyzed and discussed in detail with the consequence that the concept itself and its benefit for
the rational drug design proposed by the authors remains questionable and unproven.
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“It is a blessed thing that in every age some one has had the
individuality enough and courage enough to stand by his own
convictions.”

Ferdinand Magellan

6
Conclusion

SSEs play important roles in the world of proteins but their importance is often disregarded. From
visualization to structure comparison, alignment and SSE prediction, they contribute to many
fundamental applications in the field of structure-based analyses for chemical biology. Yet, their
classification remains subjective. Although there is a moderate consent among the SSAMs in the
classification of common SSE classes, i.e., right-handed α-, and 310-helices as well as β-sheets,
this does not hold true for comparatively rare and underestimated classes. It particularly manifests
in the assignment of PPII helices for which no consent exists.

But as long as SSE assignments are considered as given by default by those who utilize them
or assigned with little diligence by those who provide them, their influence remains concealed.
Furthermore, the adherence to a more than 35 years old standard narrows the biasses our view on
the most common SSE classes and hampers a discussion about the rare ones.

Apart from the assignment of SSEs, their influence on a protein’s function in general is still an
appealing but yet insufficiently answered question. The high number of SSCMs hints toward the
idea that there can be a correlation or at least some sort of information still hidden. Although the
concept of ligand-sensing cores failed to prove its applicability in general, a generally applicable
connection between the arrangement of SSEs and a protein’s function is not refuted heretofore.
Plus, we showed that there are still many similarities to be discovered that have not yet been
unveiled by other SSCMs so far.

We hope to nourish the discussion on SSEs with our contributions to their classification (SCOT),
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their evaluation (SNOT), and the comparison of spatial SSE arrangements (SLOT).

At the end we can give the answer to the initial question of this thesis.

Have we found ligand-sensing cores?

No,
but we have found a new structural level of similarity, somewhere between the secondary and the

tertiary level, that awaits its exploration.



Bibliography

[1] C. Ehrt, T. Brinkjost, and O. Koch. “Impact of Binding Site Comparisons on Medicinal
Chemistry and Rational Molecular Design”. In: Journal of Medicinal Chemistry 59.9 (2016),
pp. 4121–4151. DOI: 10.1021/acs.jmedchem.6b00078.

[2] H. Patel, T. Brinkjost, and O. Koch. “PyGOLD: a python based API for docking based
virtual screening workflow generation”. In: Bioinformatics 33.16 (2017), pp. 2589–2590.
DOI: 10.1093/bioinformatics/btx197.

[3] J. Jasper et al. “A novel interaction fingerprint derived from per atom score contributions:
exhaustive evaluation of interaction fingerprint performance in docking based virtual screen-
ing”. In: Journal of Cheminformatics 10.1 (2018), p. 15. DOI: 10.1186/s13321-018-0264-0.

[4] C. Ehrt, T. Brinkjost, and O. Koch. “A benchmark driven guide to binding site comparison: An
exhaustive evaluation using tailor-made data sets (ProSPECCTs)”. In: PLOS Computational
Biology 14.11 (2018), pp. 1–50. DOI: 10.1371/journal.pcbi.1006483.

[5] C. Ehrt, T. Brinkjost, and O. Koch. “Binding Site Comparison – Software and Applications”.
In: Encyclopedia of Bioinformatics and Computational Biology. Ed. by S. Ranganathan et al.
Oxford: Academic Press, 2019, pp. 650–660. ISBN: 978-0-12-811432-2. DOI: 10.1016/B978-
0-12-809633-8.20196-9.

[6] C. Ehrt, T. Brinkjost, and O. Koch. “Binding Site Characterization – Similarity, Promiscuity,
and Druggability”. In: Med. Chem. Commun. (2019). In submission.

[7] T. Brinkjost et al. “SCOT: Rethinking the Classification of Secondary Structure Elements”.
In: Bioinformatics (2019). DOI: 10.1093/bioinformatics/btz826.

[8] T. Blundell, H. Jhoti, and C. Abell. “High-throughput crystallography for lead discovery in drug
design.” In: Nature Reviews. Drug Discovery 1 (2002), pp. 45–54. DOI: 10.1038/nrd706.

[9] H. M. Berman et al. “The protein data bank”. In: Nucleic Acids Research 28.1 (2000),
pp. 235–242. DOI: 10.1093/nar/28.1.235.

[10] B. Adhikari and J. Cheng. “Improved protein structure reconstruction using secondary struc-
tures, contacts at higher distance thresholds, and non-contacts”. In: BMC Bioinformatics
18.1 (2017), p. 380. DOI: 10.1186/s12859-017-1807-5.

[11] Y. Zhang and J. Skolnick. “TM-align: a protein structure alignment algorithm based on the
TM-score”. In: Nucleic Acids Research 33.7 (2005), pp. 2302–2309. DOI: 10.1093/nar/
gki524.

173

http://dx.doi.org/10.1021/acs.jmedchem.6b00078
http://dx.doi.org/10.1093/bioinformatics/btx197
http://dx.doi.org/10.1186/s13321-018-0264-0
http://dx.doi.org/10.1371/journal.pcbi.1006483
http://dx.doi.org/10.1016/B978-0-12-809633-8.20196-9
http://dx.doi.org/10.1016/B978-0-12-809633-8.20196-9
http://dx.doi.org/10.1093/bioinformatics/btz826
http://dx.doi.org/10.1038/nrd706
http://dx.doi.org/10.1093/nar/28.1.235
http://dx.doi.org/10.1186/s12859-017-1807-5
http://dx.doi.org/10.1093/nar/gki524
http://dx.doi.org/10.1093/nar/gki524


174 BIBLIOGRAPHY

[12] Q. Jiang et al. “Protein secondary structure prediction: a survey of the state of the art”. In:
Journal of Molecular Graphics and Modelling 76 (2017), pp. 379–402. DOI: 10.1016/j.
jmgm.2017.07.015.

[13] A. C. Pfluck et al. “Stability of lipases in miniemulsion systems: correlation between sec-
ondary structure and activity”. In: Enzyme and Microbial Technology 114 (2018), pp. 7–14.
DOI: 10.1016/j.enzmictec.2018.03.003.

[14] Z. Khattari. “A correlation between secondary structure and rheological properties of low-
density lipoproteins at air/water interfaces”. In: Journal of Biological Physics 43.3 (2017),
pp. 381–395. DOI: 10.1007/s10867-017-9458-3.

[15] M. A. Koch and H. Waldmann. “Protein structure similarity clustering and natural product
structure as guiding principles in drug discovery”. In: Drug Discovery Today 10.7 (2005),
pp. 471–483. DOI: 10.1016/S1359-6446(05)03419-7.

[16] M. Tyagi et al. “Analysis of loop boundaries using different local structure assignment
methods”. In: Protein Science 18.9 (2009), pp. 1869–1881. DOI: 10.1002/pro.198.

[17] E. F. Pettersen et al. “UCSF Chimera - a visualization system for exploratory research
and analysis”. In: Journal of Computational Chemistry 25.13 (2004), pp. 1605–1612. DOI:
10.1002/jcc.20084.

[18] O. Koch and J. Cole. “An automated method for consistent helix assignment using turn
information”. In: Proteins: Structure, Function, and Bioinformatics 79.5 (2011), pp. 1416–
1426. DOI: 10.1002/prot.22968.

[19] H. Berman, K. Henrick, and H. Nakamura. “Announcing the worldwide protein data bank”.
In: Nature Structural and Molecular Biology 10 (2003), p. 980. DOI: 10.1038/nsb1203-980.

[20] I. K. McDonald and J. M. Thornton. “Satisfying hydrogen bonding potential in proteins”. In:
Journal of Molecular Biology 238.5 (1994), pp. 777–793. DOI: 10.1006/jmbi.1994.1334.

[21] S. L. Mayo, B. D. Olafson, and W. A. Goddard. “DREIDING: a generic force field for
molecular simulations”. In: The Journal of Physical Chemistry 94.26 (1990), pp. 8897–8909.
DOI: 10.1021/j100389a010.

[22] W. Kabsch and C. Sander. “Dictionary of protein secondary structure: pattern recognition of
hydrogen-bonded and geometrical features”. In: Biopolymers 22.12 (1983), pp. 2577–2637.
DOI: 10.1002/bip.360221211.

[23] G. Wang and R. L. Dunbrack Jr. “PISCES: a protein sequence culling server”. In: Bioinfor-
matics 19.12 (2003), pp. 1589–1591. DOI: 10.1093/bioinformatics/btg224.

[24] A. Ultsch and F. Mörchen. ESOM-Maps: tools for clustering, visualization, and classification
with Emergent SOM. Tech. rep. 46. University of Marburg, 2005.

[25] P. Y. Chou and G. D. Fasman. “Conformational parameters for amino acids in helical, beta-
sheet, and random coil regions calculated from proteins”. In: Biochemistry 13.2 (1974),
pp. 211–222. DOI: 10.1021/bi00699a001.

[26] C. Wilmot and J. Thornton. “Analysis and prediction of the different types of beta-turn in
proteins”. In: Journal of Molecular Biology 203.1 (1988), pp. 221–232. DOI: 10.1016/0022-
2836(88)90103-9.

http://dx.doi.org/10.1016/j.jmgm.2017.07.015
http://dx.doi.org/10.1016/j.jmgm.2017.07.015
http://dx.doi.org/10.1016/j.enzmictec.2018.03.003
http://dx.doi.org/10.1007/s10867-017-9458-3
http://dx.doi.org/10.1016/S1359-6446(05)03419-7
http://dx.doi.org/10.1002/pro.198
http://dx.doi.org/10.1002/jcc.20084
http://dx.doi.org/10.1002/prot.22968
http://dx.doi.org/10.1038/nsb1203-980
http://dx.doi.org/10.1006/jmbi.1994.1334
http://dx.doi.org/10.1021/j100389a010
http://dx.doi.org/10.1002/bip.360221211
http://dx.doi.org/10.1093/bioinformatics/btg224
http://dx.doi.org/10.1021/bi00699a001
http://dx.doi.org/10.1016/0022-2836(88)90103-9
http://dx.doi.org/10.1016/0022-2836(88)90103-9


BIBLIOGRAPHY 175

[27] E. Krissinel and K. Henrick. “Secondary-structure matching (SSM), a new tool for fast
protein structure alignment in three dimensions”. In: Acta Crystallographica Section D 60.12
Part 1 (2004), pp. 2256–2268. DOI: 10.1107/S0907444904026460.

[28] E. Tomita, A. Tanaka, and H. Takahashi. “The worst-case time complexity for generating all
maximal cliques and computational experiments”. In: Theoretical Computer Science 363.1
(2006). Computing and Combinatorics, pp. 28–42. DOI: 10.1016/j.tcs.2006.06.015.

[29] C. Bron and J. Kerbosch. “Algorithm 457: finding all cliques of an undirected graph”. In:
Communications of the ACM 16.9 (1973), pp. 575–577. DOI: 10.1145/362342.362367.

[30] G. Levi. “A note on the derivation of maximal common subgraphs of two directed or
undirected graphs”. In: CALCOLO 9.4 (1973), p. 341. DOI: 10.1007/BF02575586.

[31] M. R. Garey and D. S. Johnson. Computers and intractability; a guide to the theory of
NP-completeness. New York, NY, USA: W. H. Freeman & Co., 1990. ISBN: 0716710455.

[32] Schrödinger, LLC. “The PyMOL molecular graphics system, version 1.8”. 2015.

[33] D. Willmann et al. “Impairment of prostate cancer cell growth by a selective and reversible
lysine-specific demethylase 1 inhibitor”. In: International Journal of Cancer 131.11 (2012),
pp. 2704–2709. DOI: 10.1002/ijc.27555.

[34] F. J. Dekker et al. “Small-molecule inhibition of APT1 affects Ras localization and signaling”.
In: Nature Chemical Biology 6.449-456 (2010). DOI: 10.1038/nchembio.362.

[35] L. Pauling, R. B. Corey, and H. Branson. “The structure of proteins: two hydrogen-bonded
helical configurations of the polypeptide chain”. In: Proceedings of the National Academy of
Sciences of the USA 37.4 (1951), pp. 205–211. DOI: 10.1073/pnas.37.4.205.

[36] L. Pauling and R. B. Corey. “The Pleated Sheet, A New Layer Configuration of Polypeptide
Chains”. In: Proceedings of the National Academy of Sciences 37.5 (1951), pp. 251–256.
DOI: 10.1073/pnas.37.5.251.

[37] J. W. Raymond and P. Willett. “Maximum common subgraph isomorphism algorithms for
the matching of chemical structures”. In: Journal of Computer-Aided Molecular Design 16.7
(2002), pp. 521–533. DOI: 10.1023/A:1021271615909.

[38] N. L. Dawson et al. “CATH: an expanded resource to predict protein function through
structure and sequence”. In: Nucleic Acids Research 45.D1 (2017), pp. D289–D295. DOI:
10.1093/nar/gkw1098.

[39] S. F. Altschul et al. “Basic local alignment search tool”. In: Journal of Molecular Biology
215.3 (1990), pp. 403–410. DOI: https://doi.org/10.1016/S0022-2836(05)80360-2.

[40] A. S. Konagurthu, A. M. Lesk, and L. Allison. “Minimum message length inference of
secondary structure from protein coordinate data”. In: Bioinformatics 28.12 (2012), pp. i97–
i105. DOI: 10.1093/bioinformatics/bts223.

[41] C. C. G. ULC. “Molecular Operating Environment (MOE)”. 1010 Sherbooke St. West, Suite
#910, Montreal, QC, Canada, H3A 2R7. 2015.

[42] Y. Zhang and J. Skolnick. “Scoring function for automated assessment of protein structure
template quality”. In: Proteins: Structure, Function, and Bioinformatics 57.4 (2004), pp. 702–
710. DOI: 10.1002/prot.20264.

http://dx.doi.org/10.1107/S0907444904026460
http://dx.doi.org/10.1016/j.tcs.2006.06.015
http://dx.doi.org/10.1145/362342.362367
http://dx.doi.org/10.1007/BF02575586
http://dx.doi.org/10.1002/ijc.27555
http://dx.doi.org/10.1038/nchembio.362
http://dx.doi.org/10.1073/pnas.37.4.205
http://dx.doi.org/10.1073/pnas.37.5.251
http://dx.doi.org/10.1023/A:1021271615909
http://dx.doi.org/10.1093/nar/gkw1098
http://dx.doi.org/https://doi.org/10.1016/S0022-2836(05)80360-2
http://dx.doi.org/10.1093/bioinformatics/bts223
http://dx.doi.org/10.1002/prot.20264


176 BIBLIOGRAPHY

[43] R. C. Edgar. “Search and clustering orders of magnitude faster than BLAST”. In: Bioinfor-
matics 26.19 (2010), pp. 2460–2461. DOI: 10.1093/bioinformatics/btq461.

[44] H. Cheng et al. “ECOD: an evolutionary classification of protein domains”. In: PLOS
Computational Biology 10.12 (2014), pp. 1–18. DOI: 10.1371/journal.pcbi.1003926.

[45] R. Krivák and D. Hoksza. “P2RANK: knowledge-based ligand binding site prediction using
aggregated local features”. In: Algorithms for Computational Biology. Ed. by A.-H. Dediu et al.
Springer International Publishing, 2015, pp. 41–52. DOI: 10.1007/978-3-319-21233-3_4.

[46] R. Krivák and D. Hoksza. “P2Rank: machine learning based tool for rapid and accurate
prediction of ligand binding sites from protein structure”. In: Journal of Cheminformatics
10.1 (2018), p. 39. DOI: 10.1186/s13321-018-0285-8.

[47] M. Levitt and J. Greer. “Automatic identification of secondary structure in globular proteins”.
In: Journal of Molecular Biology 114.2 (1977), pp. 181–239. DOI: 10.1016/0022-2836(77)
90207-8.

[48] J. Zacharias and E.-W. Knapp. “Protein secondary structure classification revisited: pro-
cessing DSSP information with PSSC”. In: Journal of Chemical Information and Modeling
54.7 (2014), pp. 2166–2179. DOI: 10.1021/ci5000856.

[49] Y. Mansiaux et al. “Assignment of polyproline II conformation and analysis of sequence –
structure relationship”. In: PLOS ONE 6.3 (Mar. 2011), pp. 1–15. DOI: 10.1371/journal.
pone.0018401.

[50] R. Chebrek et al. “PolyprOnline: polyproline helix II and secondary structure assignment
database”. In: Database : the journal of biological databases and curation 2014 (2014),
bau102. DOI: 10.1093/database/bau102.

[51] D. Frishman and P. Argos. “Knowledge-based protein secondary structure assignment”. In:
Proteins: Structure, Function, and Bioinformatics 23.4 (1995), pp. 566–579. DOI: 10.1002/
prot.340230412.

[52] J. Martin et al. “Protein secondary structure assignment revisited: a detailed analysis of
different assignment methods”. In: BMC Structural Biology 5.17 (2005). DOI: 10.1186/1472-
6807-5-17.

[53] M. V. Cubellis, F. Cailliez, and S. C. Lovell. “Secondary structure assignment that accurately
reflects physical and evolutionary characteristics”. In: BMC Bioinformatics 6.Suppl 4 (2005).
DOI: 10.1186/1471-2105-6-S4-S8.

[54] G. Nagy and C. Oostenbrink. “Dihedral-based segment identification and classification of
biopolymers I: proteins”. In: Journal of Chemical Information and Modeling 54.1 (2014),
pp. 266–277. DOI: 10.1021/ci400541d.

[55] R. Srinivasan and G. D. Rose. “A physical basis for protein secondary structure”. In: Proc
Natl Acad Sci USA 96.25 (1999), pp. 14258–14263.

[56] K.-H. Chen et al. “A multidimensional divide-and-conquer algorithm for assigning sec-
ondary structures in proteins”. In: The 26th Workshop on Combinatorial Mathematics and
Computation Theory (2009).

[57] M. Parisien and F. Major. “A new catalog of protein β-sheets”. In: Proteins: Structure,
Function, and Bioinformatics 61.3 (2005), pp. 545–558. DOI: 10.1002/prot.20677.

http://dx.doi.org/10.1093/bioinformatics/btq461
http://dx.doi.org/10.1371/journal.pcbi.1003926
http://dx.doi.org/10.1007/978-3-319-21233-3_4
http://dx.doi.org/10.1186/s13321-018-0285-8
http://dx.doi.org/10.1016/0022-2836(77)90207-8
http://dx.doi.org/10.1016/0022-2836(77)90207-8
http://dx.doi.org/10.1021/ci5000856
http://dx.doi.org/10.1371/journal.pone.0018401
http://dx.doi.org/10.1371/journal.pone.0018401
http://dx.doi.org/10.1093/database/bau102
http://dx.doi.org/10.1002/prot.340230412
http://dx.doi.org/10.1002/prot.340230412
http://dx.doi.org/10.1186/1472-6807-5-17
http://dx.doi.org/10.1186/1472-6807-5-17
http://dx.doi.org/10.1186/1471-2105-6-S4-S8
http://dx.doi.org/10.1021/ci400541d
http://dx.doi.org/10.1002/prot.20677


BIBLIOGRAPHY 177

[58] P. Carter, C. A. F. Andersen, and B. Rost. “DSSPcont: continuous secondary structure
assignments for proteins”. In: Nucleic Acids Research 31.13 (2003), pp. 3293–3295. DOI:
10.1093/nar/gkg626.

[59] M. N. Fodje and S. Al-Karadaghi. “Occurrence, conformational features and amino acid
propensities for the pi-helix”. In: Protein Engineering 15.5 (2002), pp. 353–358. DOI: 10.
1093/protein/15.5.353.

[60] E. G. Hutchinson and J. M. Thornton. “PROMOTIF–A program to identify and analyze
structural motifs in proteins”. In: Protein Science 5.2 (1996), pp. 212–220. DOI: 10.1002/
pro.5560050204.

[61] K. Mizuguchi et al. “JOY: Protein sequence-structure representation and analysis”. In:
Bioinformatics 14.7 (1998), pp. 617–623. DOI: 10.1093/bioinformatics/14.7.617.

[62] J. Overington et al. “Tertiary structural constraints on protein evolutionary diversity: tem-
plates, key residues and structure prediction”. In: Proceedings of the Royal Society of Lon-
don B: Biological Sciences 241.1301 (1990), pp. 132–145. DOI: 10.1098/rspb.1990.0077.

[63] E. O. Salawu. “RaFoSA: Random forests secondary structure assignment for coarse-
grained and all-atom protein systems”. In: Cogent Biology 2.1 (2016), p. 1214061. DOI:
10.1080/23312025.2016.1214061.

[64] C. Cao et al. “A new secondary structure assignment algorithm using Cα backbone frag-
ments”. In: International Journal of Molecular Sciences 17.3 (2016), p. 333. DOI: 10.3390/
ijms17030333.

[65] P. Kumar and M. Bansal. “Identification of local variations within secondary structures of
proteins”. In: Acta Crystallographica Section D 71.5 (2015), pp. 1077–1086. DOI: 10.1107/
S1399004715003144.

[66] G. Kneller and K. Hinsen. “Protein secondary structure description with a coarse-grained
model”. In: Acta Crystallographica 71 (July 2015), pp. 1411–1422. DOI: 10.1107/S1399004715007191.

[67] S. M. Law, A. T. Frank, and C. L. Brooks III. “PCASSO: A fast and efficient Cα-based
method for accurately assigning protein secondary structure elements”. In: Journal of
Computational Chemistry 35.24 (2014), pp. 1757–1761. DOI: 10.1002/jcc.23683.

[68] S. Y. Park et al. “SABA (secondary structure assignment program based on only alpha
carbons): a novel pseudo center geometrical criterion for accurate assignment of protein
secondary structures”. In: BMB Reports 44.2 (2011), pp. 118–122. DOI: 10.5483/BMBRep.
2011.44.2.118.

[69] A. S. Konagurthu et al. “Piecewise linear approximation of protein structures using the
principle of minimum message length”. In: Bioinformatics 27.13 (2011), pp. i43–i51. DOI:
10.1093/bioinformatics/btr240.

[70] S.-R. Hosseini et al. “PROSIGN: A method for protein secondary structure assignment
based on three-dimensional coordinates of consecutive Cα atoms”. In: Computational
Biology and Chemistry 32.6 (2008), pp. 406–411. DOI: 10.1016/j.compbiolchem.2008.
07.027.

http://dx.doi.org/10.1093/nar/gkg626
http://dx.doi.org/10.1093/protein/15.5.353
http://dx.doi.org/10.1093/protein/15.5.353
http://dx.doi.org/10.1002/pro.5560050204
http://dx.doi.org/10.1002/pro.5560050204
http://dx.doi.org/10.1093/bioinformatics/14.7.617
http://dx.doi.org/10.1098/rspb.1990.0077
http://dx.doi.org/10.1080/23312025.2016.1214061
http://dx.doi.org/10.3390/ijms17030333
http://dx.doi.org/10.3390/ijms17030333
http://dx.doi.org/10.1107/S1399004715003144
http://dx.doi.org/10.1107/S1399004715003144
http://dx.doi.org/10.1107/S1399004715007191
http://dx.doi.org/10.1002/jcc.23683
http://dx.doi.org/10.5483/BMBRep.2011.44.2.118
http://dx.doi.org/10.5483/BMBRep.2011.44.2.118
http://dx.doi.org/10.1093/bioinformatics/btr240
http://dx.doi.org/10.1016/j.compbiolchem.2008.07.027
http://dx.doi.org/10.1016/j.compbiolchem.2008.07.027


178 BIBLIOGRAPHY

[71] I. Majumdar, S. Krishna, and N. V. Grishin. “PALSSE: A program to delineate linear sec-
ondary structural elements from protein structures”. In: BMC Bioinformatics 6.202 (2005),
pp. 1471–2105. DOI: 10.5483/BMBRep.2011.44.2.118.

[72] T. Taylor et al. “New method for protein secondary structure assignment based on a simple
topological descriptor”. In: Proteins: Structure, Function, and Bioinformatics 60.3 (2005),
pp. 513–524. DOI: 10.1002/prot.20471.

[73] F. Dupuis, J.-F. Sadoc, and J.-P. Mornon. “Protein secondary structure assignment through
Voronoi tessellation”. In: Proteins: Structure, Function, and Bioinformatics 55.3 (2004),
pp. 519–528. DOI: 10.1002/prot.10566.

[74] W. R. Taylor. “Defining linear segments in protein structure”. In: Journal of Molecular Biology
310.5 (2001), pp. 1135–1150. ISSN: 0022-2836. DOI: 10.1006/jmbi.2001.4817.

[75] S. M. King and J. W. Curtis. “Assigning secondary structure from protein coordinate
data”. In: Proteins: Structure, Function, and Bioinformatics 35.3 (1999), pp. 313–320. DOI:
10.1002/(SICI)1097-0134(19990515)35:3<313::AID-PROT5>3.0.CO;2-1.

[76] G. Labesse et al. “P-SEA: a new efficient assignment of secondary structure from C alpha
trace of proteins”. In: Computer Applications in the iosciences : CABIOS 13.5 (1997),
pp. 291–295. DOI: 10.1093/bioinformatics/13.3.291.

[77] G. J. Kleywegt and T. A. Jones. “Detecting Folding Motifs and Similarities in Protein
Structures”. In: Methods in Enzymology 277.27 (1997), pp. 525–545. DOI: 10.1016/S0076-
6879(97)77029-0.

[78] H. Sklenar, C. Etchebest, and R. Lavery. “Describing protein structure: a general algorithm
yielding complete helicoidal parameters and a unique overall axis”. In: Proteins: Structure,
Function, and Bioinformatics 6.1 (1989), pp. 46–60. DOI: 10.1002/prot.340060105.

[79] F. M. Richards and C. E. Kundrot. “Identification of structural motifs from protein coordinate
data: Secondary structure and first-level supersecondary structure”. In: Proteins: Structure,
Function, and Bioinformatics 3.2 (1988), pp. 71–84. DOI: 10.1002/prot.340030202.

[80] W. Zhang, A. K. Dunker, and Y. Zhou. “Assessing secondary structure assignment of protein
structures by using pairwise sequence-alignment benchmarks”. In: Proteins: Structure,
Function, and Bioinformatics 71.1 (2007), pp. 61–67. DOI: 10.1002/prot.21654.

[81] N. Colloc’h et al. “Comparison of three algorithms for the assignment of secondary structure
in proteins: the advantages of a consensus assignment”. In: Protein Engineering, Design
and Selection 6.4 (1993), pp. 377–382. DOI: 10.1093/protein/6.4.377.

[82] R. van der Kant and G. Vriend. “α-bulges in G protein-coupled receptors”. In: International
Journal of Molecular Sciences 15.5 (2014), pp. 7841–7864. DOI: 10.3390/ijms15057841.

[83] W. Humphrey, A. Dalke, and K. Schulten. “VMD – visual molecular dynamics”. In: Journal
of Molecular Graphics 14 (1996), pp. 33–38. DOI: 10.1016/0263-7855(96)00018-5.

[84] J. Maupetit, R. Gautier, and P. Tufféry. “SABBAC: online structural alphabet-based protein
backbone reconstruction from α-carbon trace”. In: Nucleic Acids Research 34.suppl_2
(2006), W147–W151. DOI: 10.1093/nar/gkl289.

http://dx.doi.org/10.5483/BMBRep.2011.44.2.118
http://dx.doi.org/10.1002/prot.20471
http://dx.doi.org/10.1002/prot.10566
http://dx.doi.org/10.1006/jmbi.2001.4817
http://dx.doi.org/10.1002/(SICI)1097-0134(19990515)35:3<313::AID-PROT5>3.0.CO;2-1
http://dx.doi.org/10.1093/bioinformatics/13.3.291
http://dx.doi.org/10.1016/S0076-6879(97)77029-0
http://dx.doi.org/10.1016/S0076-6879(97)77029-0
http://dx.doi.org/10.1002/prot.340060105
http://dx.doi.org/10.1002/prot.340030202
http://dx.doi.org/10.1002/prot.21654
http://dx.doi.org/10.1093/protein/6.4.377
http://dx.doi.org/10.3390/ijms15057841
http://dx.doi.org/10.1016/0263-7855(96)00018-5
http://dx.doi.org/10.1093/nar/gkl289


BIBLIOGRAPHY 179

[85] P. Kumar and M. Bansal. “HELANAL-Plus: a web server for analysis of helix geometry
in protein structures”. In: Journal of Biomolecular Structure and Dynamics 30.6 (2012),
pp. 773–783. DOI: 10.1080/07391102.2012.689705.

[86] S. C. Lovell et al. “Structure validation by Cα geometry: φ, ψ and Cβ deviation”. In: Proteins:
Structure, Function, and Bioinformatics 50.3 (2003), pp. 437–450. DOI: 10.1002/prot.
10286.

[87] J. M. Word et al. “Asparagine and glutamine: using hydrogen atom contacts in the choice of
side-chain amide orientation”. In: Journal of Molecular Biology 285.4 (1999), pp. 1735–1747.
DOI: 10.1006/jmbi.1998.2401.

[88] O. Koch and G. Klebe. “Turns revisited: A uniform and comprehensive classification of
normal, open, and reverse turn families minimizing unassigned random chain portions”. In:
Proteins: Structure, Function, and Bioinformatics 74.2 (2009), pp. 353–367. DOI: 10.1002/
prot.22185.

[89] B. I. Dahiyat, D. Benjamin Gordon, and S. L. Mayo. “Automated design of the surface
positions of protein helices”. In: Protein Science 6.6 (1997), pp. 1333–1337. DOI: 10.1002/
pro.5560060622.

[90] C. Ehrt. “PhD thesis”. Unpublished.

[91] T. Holder. https://pymolwiki.org/index.php/AngleBetweenHelices. 2018. (Visited on 03/25/2018).

[92] M. Hendlich et al. “Relibase: design and development of a database for comprehensive
analysis of protein–ligand interactions”. In: Journal of Molecular Biology 326.2 (2003),
pp. 607–620. DOI: 10.1016/S0022-2836(02)01408-0.

[93] R. Aurora, R. Srinivasan, and G. Rose. “Rules for alpha-helix termination by glycine”. In:
Science 264.5162 (1994), pp. 1126–1130. DOI: 10.1126/science.8178170.

[94] T. O. Street et al. “Physical-chemical determinants of turn conformations in globular proteins”.
In: Protein Science 16.8 (2007), pp. 1720–1727. DOI: 10.1110/ps.072898507.

[95] G. Hughes. “Multivariate and time series models for circular data with applications to protein
conformational angles”. PhD thesis. The University of Leeds, Department of Statistics,
2007.

[96] E. Batschelet. Circular statistics in biology. Mathematics in Biology. Academic Press, 1981.
ISBN: 9780120810505.

[97] H. Sugeta and T. Miyazawa. “General method for calculating helical parameters of polymer
chains from bond lengths, bond angles, and internal-rotation angles”. In: Biopolymers 5.7
(1967), pp. 673–679. DOI: 10.1002/bip.1967.360050708.

[98] M. Bansal, S. Kumart, and R. Velavan. “HELANAL: a Program to Characterize Helix
Geometry in Proteins”. In: Journal of Biomolecular Structure and Dynamics 17.5 (2000),
pp. 811–819. DOI: 10.1080/07391102.2000.10506570.

[99] O. Carugo and P. Argos. “Accessibility to internal cavities and ligand binding sites mon-
itored by protein crystallographic thermal factors”. In: Proteins: Structure, Function, and
Bioinformatics 31.2 (1998), pp. 201–213. DOI: 10.1002/(SICI)1097-0134(19980501)31:
2<201::AID-PROT9>3.0.CO;2-O.

http://dx.doi.org/10.1080/07391102.2012.689705
http://dx.doi.org/10.1002/prot.10286
http://dx.doi.org/10.1002/prot.10286
http://dx.doi.org/10.1006/jmbi.1998.2401
http://dx.doi.org/10.1002/prot.22185
http://dx.doi.org/10.1002/prot.22185
http://dx.doi.org/10.1002/pro.5560060622
http://dx.doi.org/10.1002/pro.5560060622
http://dx.doi.org/10.1016/S0022-2836(02)01408-0
http://dx.doi.org/10.1126/science.8178170
http://dx.doi.org/10.1110/ps.072898507
http://dx.doi.org/10.1002/bip.1967.360050708
http://dx.doi.org/10.1080/07391102.2000.10506570
http://dx.doi.org/10.1002/(SICI)1097-0134(19980501)31:2<201::AID-PROT9>3.0.CO;2-O
http://dx.doi.org/10.1002/(SICI)1097-0134(19980501)31:2<201::AID-PROT9>3.0.CO;2-O


180 BIBLIOGRAPHY

[100] E. C. Meng et al. “Tools for integrated sequence-structure analysis with UCSF Chimera”. In:
BMC Bioinformatics 7 (2006), p. 339. DOI: 10.1186/1471-2105-7-339.

[101] J. Shapiro and D. Brutlag. “FoldMiner and LOCK 2: protein structure comparison and
motif discovery on the web”. In: Nucleic Acids Research 32 (2004), W536–W541. DOI:
10.1093/nar/gkh389.

[102] Web of Science Core Collections. https://apps.webofknowledge.com. 2018. (Visited on
2018).

[103] H. R. Wilman, J. Shi, and C. M. Deane. “Helix kinks are equally prevalent in soluble and
membrane proteins”. In: Proteins: Structure, Function, and Bioinformatics 82.9 (2014),
pp. 1960–1970. DOI: 10.1002/prot.24550.

[104] D. N. Langelaan et al. “Improved helix and kink characterization in membrane proteins
allows evaluation of kink sequence predictors”. In: Journal of Chemical Information and
Modeling 50.12 (2010), pp. 2213–2220. DOI: 10.1021/ci100324n.

[105] P. Enkhbayar et al. “310-helices in proteins are parahelices”. In: Proteins: Structure, Func-
tion, and Bioinformatics 64.3 (2006), pp. 691–699. DOI: 10.1002/prot.21026.

[106] A. D. Meruelo, I. Samish, and J. U. Bowie. “TMKink: a method to predict transmembrane
helix kinks”. In: Protein Science 20.7 (2011), pp. 1256–1264. DOI: 10.1002/pro.653.

[107] Z. Guo, E. Kraka, and D. Cremer. “Description of local and global shape properties of
protein helices”. In: Journal of Molecular Modeling 19.7 (2013), pp. 2901–2911. DOI:
10.1007/s00894-013-1819-7.

[108] R. B. Cooley, D. J. Arp, and P. A. Karplus. “Evolutionary origin of a secondary structure:
π-helices as cryptic but widespread insertional variations of α-helices that enhance protein
f unctionality”. In: Journal of Molecular Biology 404.2 (2010), pp. 232–246. DOI: 10.1016/j.
jmb.2010.09.034.

[109] S. A. Hollingsworth, D. S. Berkholz, and P. A. Karplus. “On the occurrence of linear groups
in proteins”. In: Protein Science 18.6 (2009), pp. 1321–1325. DOI: 10.1002/pro.133.

[110] P. Kumar and M. Bansal. “Dissecting π-helices: sequence, structure and function”. In: The
FEBS Journal 282.22 (2015), pp. 4415–4432. DOI: 10.1111/febs.13507.

[111] M. Novotny and G. J. Kleywegt. “A survey of left-handed helices in protein structures”. In:
Journal of Molecular Biology 347.2 (2005), pp. 231–241. DOI: 10.1016/j.jmb.2005.01.
037.

[112] S. A. Hollingsworth and P. A. Karplus. “A fresh look at the Ramachandran plot and the
occurrence of standard structures in proteins”. In: Biomolecular Concepts 1.3-4 (2010),
pp. 271–283. DOI: 10.1515/BMC.2010.022.

[113] P. M. Cowan and S. McGavin. “Structure of poly-L-proline”. In: Nature 176 (1955), pp. 501–
503. DOI: 10.1038/176501a0.

[114] A. A. Adzhubei, M. J. Sternberg, and A. A. Makarov. “Polyproline-II helix in proteins:
structure and function”. In: Journal of Molecular Biology 425.12 (2013), pp. 2100–2132.
DOI: 10.1016/j.jmb.2013.03.018.

[115] T. J. Narwani et al. “Recent advances on polyproline II”. In: Amino Acids 49.4 (2017),
pp. 705–713. DOI: 10.1007/s00726-017-2385-6.

http://dx.doi.org/10.1186/1471-2105-7-339
http://dx.doi.org/10.1093/nar/gkh389
http://dx.doi.org/10.1002/prot.24550
http://dx.doi.org/10.1021/ci100324n
http://dx.doi.org/10.1002/prot.21026
http://dx.doi.org/10.1002/pro.653
http://dx.doi.org/10.1007/s00894-013-1819-7
http://dx.doi.org/10.1016/j.jmb.2010.09.034
http://dx.doi.org/10.1016/j.jmb.2010.09.034
http://dx.doi.org/10.1002/pro.133
http://dx.doi.org/10.1111/febs.13507
http://dx.doi.org/10.1016/j.jmb.2005.01.037
http://dx.doi.org/10.1016/j.jmb.2005.01.037
http://dx.doi.org/10.1515/BMC.2010.022
http://dx.doi.org/10.1038/176501a0
http://dx.doi.org/10.1016/j.jmb.2013.03.018
http://dx.doi.org/10.1007/s00726-017-2385-6


BIBLIOGRAPHY 181

[116] N. Sreerama and R. W. Woody. “Molecular dynamics simulations of polypeptide conforma-
tions in water: a comparison of α, β, and poly(pro)II conformations”. In: Proteins: Structure,
Function, and Bioinformatics 36.4 (1999), pp. 400–406. DOI: 10 . 1002 / (SICI ) 1097 -
0134(19990901)36:4<400::AID-PROT3>3.0.CO;2-B.

[117] M. Martino et al. “On the occurrence of polyproline II structure in elastin”. In: Journal of
Molecular Structure 519 (2000), pp. 173–189. DOI: 10.1016/S0022-2860(99)00299-9.

[118] I. J. Bruno et al. “IsoStar: A library of information about nonbonded interactions”. In:
Journal of Computer-Aided Molecular Design 11.6 (1997), pp. 525–537. DOI: 10.1023/A:
1007934413448.

[119] Z. Liu et al. “Geometrical preferences of the hydrogen bonds on protein–ligand binding in-
terface derived from statistical surveys and quantum mechanics calculations”. In: Journal of
Chemical Theory and Computation 4.11 (2008), pp. 1959–1973. DOI: 10.1021/ct800267x.

[120] G. Ramachandran and V. Sasisekharan. “Conformation of polypeptides and proteins”. In:
ed. by C. Anfinsen et al. Vol. 23. Advances in Protein Chemistry. Academic Press, 1968,
pp. 283–437. DOI: 10.1016/S0065-3233(08)60402-7.

[121] J. Donohue. “Hydrogen bonded helical configurations of the polypeptide chain”. In: Pro-
ceedings of the National Academy of Sciences of the USA 39.6 (1953), pp. 470–478. DOI:
10.1073/pnas.39.6.470.

[122] A. I. Jiménez, G. Ballano, and C. Cativiela. “First observation of two consecutive γ turns in
a crystalline linear dipeptide”. In: Angewandte Chemie International Edition 44.3 (2005),
pp. 396–399. DOI: 10.1002/anie.200461230.

[123] M. Tsunemi et al. “Crystal structure of an elastase-specific inhibitor elafin complexed with
porcine pancreatic elastase determined at 1.9 Å resolution”. In: Biochemistry 35.36 (1996),
pp. 11570–11576. DOI: 10.1021/bi960900l.

[124] M. Yang et al. “Structural basis of histone demethylation by LSD1 revealed by suicide
inactivation”. In: Nature Structural and Molecular Biology 14.6 (2007), pp. 535–539. DOI:
10.1038/nsmb1255.

[125] G. Ramachandran and R. Chandrasekaran. “Conformation of peptide chains containing
both L- and D-residues. I. Helical structures with alternating L- and D-residues with special
reference to the LD-ribbon and the LD-helices”. In: Indian Journal of Biochemistry and
Biophysics 9.1 (1972), pp. 1–11. DOI: 10.1016/S0065-3233(08)60402-7.

[126] E. Bradbury et al. “The structure of the omega-form of poly-beta-benzyl-L-aspartate”. In:
Journal of Molecular Biology (1962), pp. 230–247. DOI: 10.1016/S0022-2836(62)80086-2.

[127] R. Fraser, T. Macrae, and I. Stapleton. “Omega-helix in synthetic polypeptides”. In: Nature
(1962). DOI: 10.1038/193573a0.

[128] P. Enkhbayar, B. Boldgiv, and N. Matsushima. “ω-helices in proteins”. In: The Protein
Journal 29.4 (2010), pp. 242–249. DOI: 10.1007/s10930-010-9245-5.

[129] J. Martin et al. “Protein secondary structure assignment revisited: a detailed analysis of
different assignment methods”. In: BMC Structural Biology 5.1 (2005), p. 17. DOI: 10.1186/
1472-6807-5-17.

http://dx.doi.org/10.1002/(SICI)1097-0134(19990901)36:4<400::AID-PROT3>3.0.CO;2-B
http://dx.doi.org/10.1002/(SICI)1097-0134(19990901)36:4<400::AID-PROT3>3.0.CO;2-B
http://dx.doi.org/10.1016/S0022-2860(99)00299-9
http://dx.doi.org/10.1023/A:1007934413448
http://dx.doi.org/10.1023/A:1007934413448
http://dx.doi.org/10.1021/ct800267x
http://dx.doi.org/10.1016/S0065-3233(08)60402-7
http://dx.doi.org/10.1073/pnas.39.6.470
http://dx.doi.org/10.1002/anie.200461230
http://dx.doi.org/10.1021/bi960900l
http://dx.doi.org/10.1038/nsmb1255
http://dx.doi.org/10.1016/S0065-3233(08)60402-7
http://dx.doi.org/10.1016/S0022-2836(62)80086-2
http://dx.doi.org/10.1038/193573a0
http://dx.doi.org/10.1007/s10930-010-9245-5
http://dx.doi.org/10.1186/1472-6807-5-17
http://dx.doi.org/10.1186/1472-6807-5-17


182 BIBLIOGRAPHY

[130] C. A. Andersen et al. “Continuum secondary structure captures protein flexibility”. In:
Structure 10.2 (2002), pp. 175–184. DOI: 10.1016/S0969-2126(02)00700-1.

[131] B. Offmann, M. Tyagi, and A. G. de Brevern. “Local protein structures”. In: Current Bioinfor-
matics 2.3 (2007), pp. 165–202. DOI: 10.2174/157489307781662105.

[132] Y. Zhang and C. Sagui. “Secondary structure assignment for conformationally irregular pep-
tides: comparison between DSSP, STRIDE and KAKSI”. In: Journal of Molecular Graphics
and Modelling 55 (2015), pp. 72–84. DOI: 10.1016/j.jmgm.2014.10.005.

[133] W. G. Hol. “The role of the α-helix dipole in protein function and structure”. In: Progress
in Biophysics and Molecular Biology 45.3 (1985), pp. 149–195. DOI: 10.1016/0079-
6107(85)90001-X.

[134] M. A. Koch et al. “Charting biologically relevant chemical space: a structural classification
of natural products (SCONP)”. In: Proceedings of the National Academy of Sciences of the
USA 102.48 (2005), pp. 17272–17277. DOI: 10.1073/pnas.0503647102.

[135] M. A. Koch et al. “Compound library development guided by protein structure similarity
clustering and natural product structure”. In: Proceedings of the National Academy of
Sciences of the USA 101.48 (2004), pp. 16721–16726. DOI: 10.1073/pnas.0404719101.

[136] F. J. Dekker, M. A. Koch, and H. Waldmann. “Protein structure similarity clustering (PSSC)
and natural product structure as inspiration sources for drug development and chemical
genomics”. In: Current Opinion in Chemical Biology 9.3 (2005), pp. 232–239. DOI: 10.1016/
j.cbpa.2005.03.003.

[137] L. Holm and C. Sander. “Protein structure comparison by alignment of distance matrices”. In:
Journal of Molecular Biology 233.1 (1993), pp. 123–138. DOI: 10.1006/jmbi.1993.1489.

[138] P. Willett. “Matching of chemical and biological structures using subgraph and maximal
common subgraph isomorphism algorithms”. In: Rational Drug Design. Ed. by D. G. Truhlar
et al. New York, NY: Springer New York, 1999, pp. 11–38. ISBN: 978-1-4612-1480-9. DOI:
10.1007/978-1-4612-1480-9_3.

[139] S. Minami, K. Sawada, and G. Chikenji. “MICAN : a protein structure alignment algorithm
that can handle Multiple-chains, Inverse alignments, Calpha only models, Alternative align-
ments, and Non-sequential alignments”. In: BMC Bioinformatics 14.1 (2013), p. 24. DOI:
10.1186/1471-2105-14-24.

[140] K. P. Tan, M. N. Nguyen, and M. S. Madhusudhan. “CLICK—topology-independent com-
parison of biomolecular 3D structures”. In: Nucleic Acids Research 39.suppl_2 (2011),
W24–W28. DOI: 10.1093/nar/gkr393.

[141] A. Guerler and E.-W. Knapp. “Novel protein folds and their nonsequential structural analogs”.
In: Protein Science 17.8 (2008), pp. 1374–1382. DOI: 10.1110/ps.035469.108.

[142] S. Shi et al. “Searching for three-dimensional secondary structural patterns in proteins with
ProSMoS”. In: Bioinformatics 23.11 (2007), pp. 1331–1338. DOI: 10.1093/bioinformatics/
btm121.

[143] E. Krissinel and K. Henrick. “Multiple alignment of protein structures in three dimensions”.
In: Computational Life Sciences. Ed. by M. R. Berthold et al. Springer Berlin Heidelberg,
2005, pp. 67–78. DOI: 10.1007/11560500\_7.

http://dx.doi.org/10.1016/S0969-2126(02)00700-1
http://dx.doi.org/10.2174/157489307781662105
http://dx.doi.org/10.1016/j.jmgm.2014.10.005
http://dx.doi.org/10.1016/0079-6107(85)90001-X
http://dx.doi.org/10.1016/0079-6107(85)90001-X
http://dx.doi.org/10.1073/pnas.0503647102
http://dx.doi.org/10.1073/pnas.0404719101
http://dx.doi.org/10.1016/j.cbpa.2005.03.003
http://dx.doi.org/10.1016/j.cbpa.2005.03.003
http://dx.doi.org/10.1006/jmbi.1993.1489
http://dx.doi.org/10.1007/978-1-4612-1480-9_3
http://dx.doi.org/10.1186/1471-2105-14-24
http://dx.doi.org/10.1093/nar/gkr393
http://dx.doi.org/10.1110/ps.035469.108
http://dx.doi.org/10.1093/bioinformatics/btm121
http://dx.doi.org/10.1093/bioinformatics/btm121
http://dx.doi.org/10.1007/11560500\_7


BIBLIOGRAPHY 183

[144] O. Dror et al. “MASS: multiple structural alignment by secondary structures”. In: Bioinfor-
matics 19.suppl_1 (2003), pp. i95–i104. DOI: 10.1093/bioinformatics/btg1012.

[145] G. Lu. “TOP: a new method for protein structure comparisons and similarity searches”. In:
Journal of Applied Crystallography 33.1 (2000), pp. 176–183. DOI: 10.1107/S0021889899012339.

[146] M. Petitjean. “Interactive maximal common 3D substructure searching with the combined
SDM/RMS algorithm”. In: Computers and Chemistry 22.6 (1998), pp. 463–465. DOI: 10.
1016/S0097-8485(98)00017-5.

[147] B. Kolbeck et al. “Connectivity independent protein-structure alignment: a hierarchical
approach”. In: BMC Bioinformatics 7.1 (2006), p. 510. DOI: 10.1186/1471-2105-7-510.

[148] J. D. Szustakowski and Z. Weng. “Protein structure alignment using a genetic algorithm”. In:
Proteins: Structure, Function, and Bioinformatics 38.4 (2000), pp. 428–440. DOI: 10.1002/
(SICI)1097-0134(20000301)38:4<428::AID-PROT8>3.0.CO;2-N.

[149] J.-F. Gibrat, T. Madej, and S. H. Bryant. “Surprising similarities in structure comparison”.
In: Current Opinion in Structural Biology 6.3 (1996), pp. 377–385. DOI: 10.1016/S0959-
440X(96)80058-3.

[150] H. Sun et al. “Smolign: a spatial motifs-based protein multiple structural alignment method”.
In: IEEE/ACM Transactions on Computational Biology and Bioinformatics 9.1 (2012),
pp. 249–261. DOI: 10.1109/TCBB.2011.67.

[151] A. D. Stivala, P. J. Stuckey, and A. I. Wirth. “Fast and accurate protein substructure searching
with simulated annealing and GPUs”. In: BMC Bioinformatics 11.1 (2010), p. 446. DOI:
10.1186/1471-2105-11-446.

[152] A. Stivala, A. Wirth, and P. J. Stuckey. “Tableau-based protein substructure search using
quadratic programming”. In: BMC Bioinformatics 10.1 (2009), p. 153. DOI: 10.1186/1471-
2105-10-153.

[153] A. S. Konagurthu, P. J. Stuckey, and A. M. Lesk. “Structural search and retrieval using a
tableau representation of protein folding patterns”. In: Bioinformatics 24.5 (2008), pp. 645–
651. DOI: 10.1093/bioinformatics/btm641.

[154] J. Vesterstrøm and W. R. Taylor. “Flexible secondary structure based protein structure
comparison applied to the detection of circular permutation”. In: Journal of Computational
Biology 13.1 (2006), pp. 43–63. DOI: 10.1089/cmb.2006.13.43.

[155] E. S C Shih and M.-J. Hwang. “Protein structure comparison by probability-based matching
of secondary structure elements”. In: Bioinformatics 19 (2003), pp. 735–41. DOI: 10.1093/
bioinformatics/btg058.

[156] A. Harrison et al. “Recognizing the fold of a protein structure”. In: Bioinformatics 19.14
(2003), pp. 1748–1759. DOI: 10.1093/bioinformatics/btg240.

[157] V. Alesker, R. Nussinov, and H. J. Wolfson. “Detection of non-topological motifs in protein
structures”. In: Protein Engineering, Design and Selection 9.12 (1996), pp. 1103–1119. DOI:
10.1093/protein/9.12.1103.

[158] I. Koch, T. Lengauer, and E. Wanke. “An qlgorithm for finding maximal common subtopolo-
gies in a set of protein structures”. In: Journal of Computational Biology 3 (1996), pp. 289–
306. DOI: 10.1089/cmb.1996.3.289.

http://dx.doi.org/10.1093/bioinformatics/btg1012
http://dx.doi.org/10.1107/S0021889899012339
http://dx.doi.org/10.1016/S0097-8485(98)00017-5
http://dx.doi.org/10.1016/S0097-8485(98)00017-5
http://dx.doi.org/10.1186/1471-2105-7-510
http://dx.doi.org/10.1002/(SICI)1097-0134(20000301)38:4<428::AID-PROT8>3.0.CO;2-N
http://dx.doi.org/10.1002/(SICI)1097-0134(20000301)38:4<428::AID-PROT8>3.0.CO;2-N
http://dx.doi.org/10.1016/S0959-440X(96)80058-3
http://dx.doi.org/10.1016/S0959-440X(96)80058-3
http://dx.doi.org/10.1109/TCBB.2011.67
http://dx.doi.org/10.1186/1471-2105-11-446
http://dx.doi.org/10.1186/1471-2105-10-153
http://dx.doi.org/10.1186/1471-2105-10-153
http://dx.doi.org/10.1093/bioinformatics/btm641
http://dx.doi.org/10.1089/cmb.2006.13.43
http://dx.doi.org/10.1093/bioinformatics/btg058
http://dx.doi.org/10.1093/bioinformatics/btg058
http://dx.doi.org/10.1093/bioinformatics/btg240
http://dx.doi.org/10.1093/protein/9.12.1103
http://dx.doi.org/10.1089/cmb.1996.3.289


184 BIBLIOGRAPHY

[159] N. N. Alexandrov and D. Fischer. “Analysis of topological and nontopological structural
similarities in the PDB: New examples with old structures”. In: Proteins: Structure, Function,
and Bioinformatics 25.3 (1996), pp. 354–365. DOI: 10.1002/(SICI)1097-0134(199607)25:
3<354::AID-PROT7>3.0.CO;2-F.

[160] K. Mizuguchi and N. Go. “Comparison of spatial arrangements of secondary structure
elements in proteins”. In: Protein engineering 8 (1995), pp. 353–362. DOI: 10.1093/
protein/8.4.353.

[161] H. M. Grindley et al. “Identification of tertiary structure resemblance in proteins using a
maximal common subgraph isomorphism algorithm”. In: Journal of Molecular Biology 229.3
(1993), pp. 707–721. DOI: 10.1006/jmbi.1993.1074.

[162] Z. H. Zhang et al. “deconSTRUCT: general purpose protein database search on the
substructure level”. In: Nucleic Acids Research 38.suppl_2 (2010), W590–W594. DOI:
10.1093/nar/gkq489.

[163] J. Ebert and D. Brutlag. “Development and validation of a consistency based multiple
structure alignment algorithm”. In: Bioinformatics 22.9 (2006), pp. 1080–1087. DOI: 10.
1093/bioinformatics/btl046.

[164] T. Kawabata. “MATRAS: A program for protein 3D structure comparison”. In: Nucleic Acids
Research 31 (2003), pp. 3367–3369. DOI: 10.1093/nar/gkg581.

[165] A.-S. Yang and B. Honig. “An integrated approach to the analysis and modeling of protein
sequences and structures. I. Protein structural alignment and a quantitative measure for
protein structural distance”. In: Journal of Molecular Biology 301.3 (2000), pp. 665–678.
DOI: 10.1006/jmbi.2000.3973.

[166] G. J. Kleywegt and T. A. Jones. “Detecting folding motifs and similarities in protein struc-
tures”. In: Macromolecular Crystallography Part B. Vol. 277. Methods in Enzymology.
Academic Press, 1997, pp. 525–545. DOI: 10.1016/S0076-6879(97)77029-0.

[167] C. A. Orengo, N. P. Brown, and W. R. Taylor. “Fast structure alignment for protein databank
searching”. In: Proteins: Structure, Function, and Bioinformatics 14.2 (1992), pp. 139–167.
DOI: 10.1002/prot.340140203.

[168] C. A. Orengo and W. R. Taylor. “SSAP: sequential structure alignment program for pro-
tein structure comparison”. In: vol. 266. Methods in Enzymology. Academic Press, 1996,
pp. 617–635. DOI: 10.1016/S0076-6879(96)66038-8.

[169] S. Fotoohifiroozabadi, M. S. Mohamad, and S. Deris. “Samira-VP: a simple protein alignment
method with rechecking the alphabet vector positions”. In: Journal of Bioinformatics and
Computational Biology 15.2 (2017), p. 1750004. DOI: 10.1142/S0219720017500044.

[170] J. Razmara. “Flexible protein structure alignment based on topology string alignment of
secondary structure”. In: International Journal of e-Education, e-Business, e-Management
and e-Learning (2014). DOI: 10.7763/IJEEEE.2014.V4.294.

[171] K. Hung et al. “Enhancement of initial equivalency for protein structure alignment based on
encoded local structures”. In: IEEE Transactions on Information Technology in Biomedicine
16.6 (2012), pp. 1185–1192. DOI: 10.1109/TITB.2012.2204892.

http://dx.doi.org/10.1002/(SICI)1097-0134(199607)25:3<354::AID-PROT7>3.0.CO;2-F
http://dx.doi.org/10.1002/(SICI)1097-0134(199607)25:3<354::AID-PROT7>3.0.CO;2-F
http://dx.doi.org/10.1093/protein/8.4.353
http://dx.doi.org/10.1093/protein/8.4.353
http://dx.doi.org/10.1006/jmbi.1993.1074
http://dx.doi.org/10.1093/nar/gkq489
http://dx.doi.org/10.1093/bioinformatics/btl046
http://dx.doi.org/10.1093/bioinformatics/btl046
http://dx.doi.org/10.1093/nar/gkg581
http://dx.doi.org/10.1006/jmbi.2000.3973
http://dx.doi.org/10.1016/S0076-6879(97)77029-0
http://dx.doi.org/10.1002/prot.340140203
http://dx.doi.org/10.1016/S0076-6879(96)66038-8
http://dx.doi.org/10.1142/S0219720017500044
http://dx.doi.org/10.7763/IJEEEE.2014.V4.294
http://dx.doi.org/10.1109/TITB.2012.2204892


BIBLIOGRAPHY 185

[172] J. Razmara, S. Deris, and S. Parvizpour. “TS-AMIR: a topology string alignment method
for intensive rapid protein structure comparison”. In: Algorithms for Molecular Biology 7.1
(2012), p. 4. DOI: 10.1186/1748-7188-7-4.

[173] J. Roach et al. “Structure alignment via Delaunay tetrahedralization”. In: Proteins: Structure,
Function, and Bioinformatics 60.1 (2005), pp. 66–81. DOI: 10.1002/prot.20479.

[174] A. Williams, D. Gilbert, and D. Westhead. “Multiple structural alignment for distantly re-
lated all structures using TOPS pattern discovery and simulated annealing”. In: Protein
Engineering 16 (2004), pp. 913–23. DOI: 10.1093/protein/gzg116.

[175] T. Przytycka, R. Aurora, and G. D. Rose. “A protein taxonomy based on secondary structure”.
In: Nature Structural and Molecular Biology 6.7 (1999), pp. 672–682. DOI: 10.1038/10728.

[176] A. P. Singh and D. L. Brutlag. “Hierarchical protein structure superposition using both
secondary structure and atomic representations”. In: Proceedings of the 5th International
Conference on Intelligent Systems for Molecular Biology. AAAI Press, 1997, pp. 284–293.
ISBN: 1-57735-022-7.

[177] E. M. Mitchell et al. “Use of techniques derived from graph theory to compare secondary
structure motifs in proteins”. In: Journal of Molecular Biology 212.1 (1990), pp. 151–166.
DOI: 10.1016/0022-2836(90)90312-A.

[178] L. Holm and C. Sander. “Dali/FSSP classification of three-dimensional protein folds”. In:
Nucleic Acids Research 25.1 (1997), pp. 231–234. DOI: 10.1093/nar/25.1.231.

[179] I. N. Shindyalov and P. E. Bourne. “Protein structure alignment by incremental combinatorial
extension (CE) of the optimal path.” In: Protein Engineering, Design and Selection 11.9
(1998), pp. 739–747. DOI: 10.1093/protein/11.9.739.

[180] S. J. Emery-Corbin et al. “Annotation of the Giardia proteome through structure-based
homology and machine learning”. In: GigaScience 8.1 (2018), giy150. DOI: 10.1093/
gigascience/giy150.

[181] C. H. Bamford, A. Elliott, and W. E. Handby. Synthetic polypeptides. Academic Press, 1956.

[182] B. W. Low and H. J. Grenville-Wells. “Generalized mathematical relations for polypeptide
chain helices. The coordinates for the pi helix”. In: PNAS 39 (1953), pp. 785–801. DOI:
10.1073/pnas.39.8.785.

[183] F. H. C. Crick and A. Rich. “The structure of collagen”. In: Nature 176 (1955), pp. 915–916.
DOI: doi.org/10.1038/176915a0.

[184] M. R. Berthold et al. “KNIME: the konstanz information miner”. In: Data Analysis, Machine
Learning and Applications. Ed. by C. Preisach et al. Springer Berlin Heidelberg, 2008,
pp. 319–326. DOI: 10.1007/978-3-540-78246-9\_38.

[185] A. Stivala et al. “Automatic generation of protein structure cartoons with Pro-origami”. In:
Bioinformatics 27.23 (2011), pp. 3315–3316. DOI: 10.1093/bioinformatics/btr575.

[186] T. UniProt Consortium. “UniProt: the universal protein knowledgebase”. In: Nucleic Acids
Research 46.5 (2018), pp. 2699–2699. DOI: 10.1093/nar/gky092.

[187] A. Gaulton et al. “The ChEMBL database in 2017”. In: Nucleic Acids Research 45.D1
(2016), pp. D945–D954. DOI: 10.1093/nar/gkw1074.

http://dx.doi.org/10.1186/1748-7188-7-4
http://dx.doi.org/10.1002/prot.20479
http://dx.doi.org/10.1093/protein/gzg116
http://dx.doi.org/10.1038/10728
http://dx.doi.org/10.1016/0022-2836(90)90312-A
http://dx.doi.org/10.1093/nar/25.1.231
http://dx.doi.org/10.1093/protein/11.9.739
http://dx.doi.org/10.1093/gigascience/giy150
http://dx.doi.org/10.1093/gigascience/giy150
http://dx.doi.org/10.1073/pnas.39.8.785
http://dx.doi.org/doi.org/10.1038/176915a0
http://dx.doi.org/10.1007/978-3-540-78246-9\_38
http://dx.doi.org/10.1093/bioinformatics/btr575
http://dx.doi.org/10.1093/nar/gky092
http://dx.doi.org/10.1093/nar/gkw1074


186 BIBLIOGRAPHY

[188] B. Huang and M. Schroeder. “LIGSITEcsc: predicting ligand binding sites using the Connolly
surface and degree of conservation”. In: BMC Structural Biology 6.1 (2006), p. 19. DOI:
10.1186/1472-6807-6-19.

[189] W. H. Suters et al. “A new approach and faster exact methods for the maximum common
subgraph problem”. In: Computing and Combinatorics. Ed. by L. Wang. Springer Berlin
Heidelberg, 2005, pp. 717–727. DOI: 10.1007/11533719\_7.

[190] T. Akutsu and T. Tamura. “A polynomial-time algorithm for computing the maximum common
connected edge subgraph of outerplanar graphs of bounded degree”. In: Algorithms 6.1
(2013), pp. 119–135. DOI: 10.3390/a6010119.

[191] J. W. Moon and L. Moser. “On cliques in graphs”. In: Israel Journal of Mathematics 3.1
(1965), pp. 23–28. DOI: 10.1007/BF02760024.

[192] C. Orengo et al. “CATH – a hierarchic classification of protein domain structures”. In:
Structure 5.8 (1997), pp. 1093–1109. ISSN: 0969-2126. DOI: 10.1016/S0969-2126(97)
00260-8.

[193] S. Rao and M. G. Rossmann. “Comparison of super-secondary structures in proteins”. In:
Journal of Molecular Biology 76.2 (1973), pp. 241–256. DOI: 10.1016/0022-2836(73)
90388-4.

[194] B.-G. Ma et al. “Characters of very ancient proteins”. In: Biochemical and Biophysical
Research Communications 366.3 (2008), pp. 607–611. DOI: 10.1016/j.bbrc.2007.12.
014.

[195] G. Caetano-Anollés, H. S. Kim, and J. E. Mittenthal. “The origin of modern metabolic
networks inferred from phylogenomic analysis of protein architecture”. In: Proceedings
of the National Academy of Sciences of the USA 104.22 (2007), pp. 9358–9363. DOI:
10.1073/pnas.0701214104.

[196] I. Hanukoglu. “Proteopedia: Rossmann fold: A beta-alpha-beta fold at dinucleotide binding
sites”. In: Biochemistry and Molecular Biology Education 43.3 (2015), pp. 206–209. DOI:
10.1002/bmb.20849.

[197] K. E. Medvedev, L. N. Kinch, and N. V. Grishin. “Functional and evolutionary analysis of viral
proteins containing a Rossmann-like fold”. In: Protein Science 27.8 (2018), pp. 1450–1463.
DOI: 10.1002/pro.3438.

[198] S. Annavarapu and V. Nanda. “Mirrors in the PDB: left-handed alpha-turns guide design
with D-amino acids”. In: BMC Structural Biology 9.1 (2009), p. 61. DOI: 10.1186/1472-
6807-9-61.

http://dx.doi.org/10.1186/1472-6807-6-19
http://dx.doi.org/10.1007/11533719\_7
http://dx.doi.org/10.3390/a6010119
http://dx.doi.org/10.1007/BF02760024
http://dx.doi.org/10.1016/S0969-2126(97)00260-8
http://dx.doi.org/10.1016/S0969-2126(97)00260-8
http://dx.doi.org/10.1016/0022-2836(73)90388-4
http://dx.doi.org/10.1016/0022-2836(73)90388-4
http://dx.doi.org/10.1016/j.bbrc.2007.12.014
http://dx.doi.org/10.1016/j.bbrc.2007.12.014
http://dx.doi.org/10.1073/pnas.0701214104
http://dx.doi.org/10.1002/bmb.20849
http://dx.doi.org/10.1002/pro.3438
http://dx.doi.org/10.1186/1472-6807-9-61
http://dx.doi.org/10.1186/1472-6807-9-61


Appendix

6.1 SCOT

6.1.1 PDB Files

05N, 0EA, 0FL, 0LF, 0Y8, 0YG, 11Q, 2MT, 3PX, 4FB, AET, AME, AYA, BMT, CXM, EME, FC0, FME, FP9, GNC, HY3, HYP, HZP, I4G, IML,
IPG, MAA, MEA, MGG, MH6, MLE, MME, MMO, MP8, MPQ, MVA, NCB, NLY, NMC, NZC, OTH, PCA, PH6, PRJ, PRO, PRS, PXU, SAC,
SAR, SC2, SL5, THC, TYJ, UMA, WLU, XPR, YNM, ZYJ, ZYK

List 6.1: Residues to which no artificial hydrogen is added during parsing by SCOT.
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00E, 00I, 00S, 010, 011, 01B, 02G, 02J, 02N, 03O, 04D, 05W, 0A9, 0AD, 0DQ, 0HQ, 0JT, 0JU, 0MG, 0OB, 0QE, 0QZ, 0R8, 0TJ, 0UH, 0W5,
0W6, 0XM, 0XN, 0YA, 10C, 11Q, 125, 126, 127, 12A, 175, 18M, 18Q, 1AP, 1BO, 1C3, 1CC, 1FC, 1HB, 1HD, 1KC, 1LU, 1MA, 1MG, 1OL,
1QQ, 1RN, 1SC, 1U8, 1VR, 1ZN, 22Q, 22W, 23G, 24M, 24O, 28H, 28K, 2A1, 2AR, 2AT, 2AU, 2BD, 2BT, 2BU, 2DA, 2DT, 2EG, 2GT, 2JF,
2JG, 2JV, 2KT, 2MA, 2MG, 2MU, 2N2, 2NT, 2OP, 2OT, 2PP, 2PR, 2SG, 2ST, 2UC, 2UE, 2X0, 32L, 34H, 39Y, 3A5, 3AZ, 3BY, 3CN, 3DA,
3FB, 3ME, 3PA, 3V2, 3V3, 3V7, 40A, 40C, 40G, 40T, 47C, 48V, 4AR, 4BA, 4CG, 4F3, 4FU, 4G6, 4H0, 4KY, 4L0, 4L8, 4LT, 4M9, 4MM, 4N7,
4N8, 4N9, 4NT, 4NU, 4OC, 4PC, 4SC, 4SU, 54L, 56J, 5AA, 5AT, 5BU, 5CG, 5CM, 5FC, 5FU, 5HC, 5HT, 5HU, 5IC, 5IU, 5MC, 5MU, 5NC,
5PC, 5PY, 5R0, 5R5, 5SE, 5SQ, 5UA, 5VV, 5XU, 5ZA, 60H, 62H, 63G, 63H, 64P, 64T, 66N, 68Z, 69P, 6E4, 6F5, 6FH, 6HA, 6HB, 6HC, 6HG,
6HT, 6IA, 6J9, 6L3, 6L9, 6MA, 6MZ, 6NA, 6OG, 6PO, 6RK, 6V9, 6VA, 6VF, 6VO, 707, 70U, 7AT, 7BB, 7DA, 7GA, 7GU, 7MG, 8AG, 8AN,
8BA, 8BB, 8FG, 8LR, 8MC, 8MG, 8OG, 92B, 9AT, 9BB, 9DK, 9DZ, 9GE, 9PR, 9TS, 9V7, A23, A2L, A2M, A38, A3A, A3P, A40, A43, A44,
A47, A5L, A5M, A5O, A5R, A6A, A6C, A6G, A6U, A7E, A9Z, AA1, AAR, ABN, ABR, ABS, ABU, ACA, ACE, ACT, ACY, AD2, AEA, AF2,
AFC, AG2, AH0, AHH, AJE, AKK, AKR, AKZ, ALQ, ALT, ALV, AMP, AMU, AMV, ANZ, AP7, APK, APN, AR0, AR7, ARF, AS , ASA, ASJ,
ATD, ATL, ATM, AVC, AY0, AYE, AZ1, AZI, AZK, B27, B2A, B2F, B2I, B2N, B2V, B3A, B3D, B3E, B3K, B3L, B3M, B3Q, B3S, B3T, B3X,
B3Y, B7C, BAL, BBC, BBS, BCX, BE2, BEZ, BGC, BGM, BIL, BLE, BMN, BNO, BOC, BOE, BOR, BP4, BPE, BRU, BTN, BUA, BZG, C12,
C2L, C2S, C31, C34, C36, C37, C38, C42, C43, C45, C46, C49, C4S, C5L, C6G, C99, CA1, CAR, CBR, CBV, CCC, CCY, CDE, CDW,
CEV, CF0, CFD, CFL, CFT, CFY, CFZ, CG1, CGN, CH , CH6, CH7, CHS, CJO, CKC, CLR, CLV, CM0, CMR, CMT, COI, CP1, CPN, CQ1,
CQ2, CR0, CR2, CR5, CR7, CR8, CRF, CRG, CRK, CRO, CRQ, CRU, CRX, CSH, CSL, CTG, CWR, CX2, CXP, CY3, CYF, CZO, D00, DA
, DAO, DBH, DC , DCL, DDG, DFI, DFO, DFT, DG , DG8, DGP, DHL, DIP, DIX, DIY, DKA, DM0, DMG, DNR, DOA, DOC, DT , DUZ, DYG,
DYJ, DZM, E , E1H, E1X, ECC, ECQ, EDA, EFG, EHG, EIT, END, ESD, ETA, EXB, EXC, EYG, F3H, F4H, FA2, FAX, FBE, FBP, FDG, FDL,
FE3, FHU, FMG, FMT, FMU, FOR, FOX, FPA, FPR, FRD, FUC, FUL, FUM, G2L, G2S, G31, G36, G38, G3A, G46, G47, G48, G49, G7M,
GAL, GAO, GAU, GCK, GDO, GDP, GF2, GFL, GG7, GIC, GL3, GLC, GLK, GLZ, GM8, GMA, GMP, GMS, GMU, GN7, GNE, GNG, GOA,
GPN, GRB, GS , GSR, GSS, GTP, GVE, GX1, GYC, GYS, H2U, HAO, HAQ, HCI, HEU, HF2, HG7, HIA, HM7, HM8, HM9, HMB, HMR,
HN0, HN1, HOA, HPH, HR7, HS9, HSL, HSO, HSV, HT7, HY1, IBU, IC , IEY, IG , IGU, IIC, IL0, ILM, IMC, IP8, IPI, IU , IVA, JDT, JG3, KAC,
KAG, KCQ, KI2, KPN, KWS, L2O, L3O, LAC, LAL, LCA, LCC, LCG, LEN, LGP, LHO, LHV, LIG, LKC, LML, LOV, LPD, LPL, LTA, LYJ, LYK,
LYN, LYT, M1G, M2G, M5M, M9P, MA6, MA7, MAN, MAZ, MBN, MCM, MCR, MCY, MDF, MDO, MDP, ME6, MFC, MFD, MG1, MH6, MH9,
MHE, MHW, MIA, MKE, MLI, MLL, MMT, MN1, MN2, MN7, MN8, MNU, MPR, MPT, MRG, MSU, MTR, MTU, MUB, MX3, MX4, MX5, MY1,
MY2, MY3, MY5, MYR, N2G, N5M, N6G, N79, N7P, N80, NAG, NAK, NDG, NEH, NFA, NH2, NHH, NIT, NLO, NLW, NME, NMI, NMS, NMT,
NOR, NRP, NRQ, NTA, NYG, NZH, O2G, OAR, OCE, ODA, ODR, OFM, OGX, OHU, OIL, OIM, OMC, OMG, OMU, ONE, OPR, OSL, OTT,
OUD, OUE, OUH, OUI, OUK, OUR, P , P2T, P2U, P5P, PBE, PCS, PDU, PDW, PEA, PFX, PGA, PGN, PGP, PHA, PHL, PHQ, PIA, PIP,
PIV, PJE, PJJ, PLF, PLJ, PLW, PN2, POL, PPI, PPU, PPW, PR3, PR4, PR7, PR9, PRN, PRQ, PRW, PSA, PST, PSU, PTL, PU , PVA, PVO,
PVX, PXZ, PYO, PYR, QAC, QBT, QFG, QLG, QSC, QUA, QUO, R , RBD, RC7, RDG, RGL, RIA, RMP, RNG, RPC, RSQ, RTY, RUS, S2M,
S4A, S4C, S4G, S6G, SC , SDE, SDG, SDH, SEL, SET, SIC, SIN, SMP, SMT, SNN, SPT, SRA, SSU, STA, SUI, SUJ, SUR, SWG, T23,
T2S, T32, T38, T39, T3P, T41, T48, T49, T4S, T5O, T5S, T6A, TA2, TA3, TA4, TAF, TC1, TCP, TCY, TDY, TED, TEE, TFE, TFO, TFT, TGP,
THO, TKL, TLB, TLC, TLN, TLX, TM2, TP1, TPC, TPL, TPN, TRW, TSP, TT , TTD, TTI, TTM, TYB, TYC, TYE, TYF, TYW, TYZ, U2L, U31,
U33, U34, U36, U37, U8U, UAR, UBB, UBI, UCL, UD5, UDP, UF2, UFR, UFT, UMP, UMS, UMX, UPE, UPS, UPV, UR3, URE, URX, US1,
US2, US3, US5, USC, USM, UVX, UZR, V9C, VAD, VAI, VLM, VLT, VME, VOL, W6Q, WCR, X , X9Q, XAD, XAL, XCL, XCP, XCR, XCT,
XCY, XGL, XGR, XGU, XPB, XPC, XSN, XTF, XTH, XTL, XTR, XUA, XUG, XXY, XY1, XYG, XZA, Y , YAC, YCO, YG , YYG, Z , ZAD, ZBC,
ZBU, ZCY, ZDU, ZGL, ZGU, ZHP, ZSC, ZSN, ZTH, ZZJ

List 6.2: Residues that are set as missing during parsing by SCOT.
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6.1.2 Turn Dihedral Angles

Normal-3
C |T| ϕ1 ψ1 ω1 ϕ2 ψ2 ω2 ϕ3 ψ3 ω3 ϕ4 ψ4 ω4 ϕ5 ψ5 ω5 ϕ6 ψ6 e

1 1,852 −175.8 −82.3 61.1 178.3 −1.0
σ 4.8 5.7 9.7 4.7 0.4

2 334 175.6 74.3 −52.0 −178.1 −1.4
σ 5.7 6.5 10.9 5.4 0.7

Normal-4
C |T| ϕ1 ψ1 ω1 ϕ2 ψ2 ω2 ϕ3 ψ3 ω3 ϕ4 ψ4 ω4 ϕ5 ψ5 ω5 ϕ6 ψ6 e

1 70,498 −178.7 −61.6 −28.4 179.7 −78.2 −11.9 −179.7 −1.7
σ 4.4 6.8 11.4 3.7 15.9 15.2 4.9 0.7

2 6,970 179.4 −56.5 131.9 179.3 81.8 −0.3 179.4 −3.0
σ 5.1 6.5 7.4 3.5 13.7 14.8 4.9 1.2

3 3,227 179.3 53.9 37.1 178.2 75.3 8.6 −179.9 −1.9
σ 5.0 6.6 10.8 3.7 12.9 14.9 4.6 0.7

4 2,166 −179.1 56.8 −126.3 −179.3 −85.1 −0.1 −179.6 −3.1
σ 6.4 7.9 9.3 3.5 17.4 17.1 5.4 1.2

5 212 176.9 −54.2 141.0 5.6 −91.0 16.4 179.7 −2.8
σ 6.3 8.0 5.9 5.2 7.6 10.9 6.1 1.0

6 17 −179.7 −87.8 130.3 −4.0 −116.3 68.4 −173.0 −3.7
σ 6.1 9.7 10.9 7.6 13.8 13.0 7.2 1.6

7 9 −177.5 −72.5 76.8 −175.1 179.3 −32.5 176.0 −2.9
σ 6.5 9.9 9.6 7.6 17.0 10.4 4.3 1.4

Normal-5
C |T| ϕ1 ψ1 ω1 ϕ2 ψ2 ω2 ϕ3 ψ3 ω3 ϕ4 ψ4 ω4 ϕ5 ψ5 ω5 ϕ6 ψ6 e

1 221,356 179.3 −62.6 −41.5 178.9 −64.1 −41.8 179.2 −65.5 −40.7 179.5 −4.2
σ 3.5 5.4 6.7 3.0 6.6 6.6 3.4 10.4 7.7 3.6 1.4

2 283 −178.5 −57.5 130.1 −179.6 80.1 −3.2 −179.9 −118.7 −50.6 179.6 −3.8
σ 4.7 7.4 6.5 3.1 12.5 14.8 4.8 13.7 13.0 4.7 1.4

3 219 176.6 −83.8 143.5 2.8 −90.8 −2.6 −175.4 −67.1 −34.3 179.7 −2.9
σ 6.6 21.0 11.3 4.7 8.3 11.4 5.5 14.9 13.4 5.3 1.5

4 190 175.0 58.5 −150.5 −178.2 −63.0 −36.6 179.8 −63.0 −41.6 178.3 −1.3
σ 6.3 9.6 16.4 3.9 6.6 7.7 3.7 6.0 6.8 3.2 0.7

5 57 178.8 55.0 26.9 −178.6 63.2 16.0 −175.0 −126.4 −35.7 −177.6 −3.5
σ 4.7 6.3 7.3 3.4 7.3 9.9 5.3 14.9 14.4 5.6 1.3

6 52 −179.5 −57.5 150.2 −178.7 72.3 28.0 177.5 64.2 40.6 179.5 −1.8
σ 5.7 9.0 13.3 4.6 15.4 14.8 3.9 12.1 11.4 3.8 0.9

7 43 178.2 −59.4 142.5 −179.6 78.0 −56.5 −179.9 −70.5 −34.0 −179.3 −4.0
σ 5.1 7.1 7.3 4.7 9.7 8.5 5.0 14.4 12.2 5.0 1.6

8 28 −177.6 −64.3 −17.3 176.9 −82.4 −1.2 176.6 112.5 29.4 −179.3 −2.5
σ 4.6 8.8 11.2 4.1 11.6 8.3 4.7 13.5 13.7 4.0 1.1

9 31 179.4 55.4 44.7 −179.6 62.3 43.9 177.9 69.0 35.1 179.0 −3.3
σ 6.1 6.6 9.3 4.0 8.2 11.7 4.9 10.5 13.9 4.2 1.4

10 20 −178.9 −66.6 −22.8 −179.9 −98.5 72.7 176.6 84.2 15.5 178.6 −2.4
σ 4.2 5.2 8.9 3.1 13.3 15.6 3.6 25.3 20.3 3.0 1.3

11 21 −177.6 52.9 −137.8 175.7 −105.8 10.6 −176.9 −97.8 −36.6 −175.8 −3.0
σ 4.0 6.4 5.7 4.0 11.0 9.3 5.3 20.0 12.1 5.7 1.3

12 17 −178.4 60.9 −151.2 −177.1 −80.3 −28.3 −170.0 −135.2 1.3 −178.9 −3.4
σ 4.0 6.2 7.7 2.8 9.8 11.4 5.7 13.1 11.9 3.5 1.4

13 17 177.3 63.2 −134.3 179.2 −97.2 74.1 −178.6 56.8 36.5 177.3 −4.2
σ 3.7 8.9 10.5 2.5 10.4 14.7 3.5 7.6 7.0 4.1 1.2

14 9 178.4 54.3 35.7 174.7 83.6 −38.3 −172.4 −141.9 10.5 179.6 −4.3
σ 5.2 3.6 8.5 4.8 8.0 8.9 4.8 6.8 4.7 3.3 1.4

Normal-6
C |T| ϕ1 ψ1 ω1 ϕ2 ψ2 ω2 ϕ3 ψ3 ω3 ϕ4 ψ4 ω4 ϕ5 ψ5 ω5 ϕ6 ψ6 e

1 8,430 179.1 −63.8 −41.7 180.0 −64.0 −31.1 179.8 −91.3 1.5 178.8 74.7 26.9 179.3 −4.0
σ 3.5 5.6 7.7 3.2 7.2 9.8 3.7 12.5 11.9 4.6 19.2 16.8 4.2 1.3

2 2,157 −178.7 −66.5 −40.9 −176.8 −81.7 −35.7 −174.9 −99.9 −44.8 −175.9 −91.7 −46.5 −177.1 −4.1
σ 4.3 9.2 10.8 4.4 13.6 17.6 5.1 21.1 23.7 5.0 25.5 14.3 5.1 1.6

3 80 178.9 54.8 49.7 179.1 59.7 36.9 178.8 83.7 4.7 −179.4 −82.4 −21.6 −179.9 −3.2
σ 4.8 6.9 10.8 3.3 7.8 12.4 3.5 16.0 17.7 5.2 17.8 13.9 4.8 1.1

Table 6.1: Continued on next page.
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C |T| ϕ1 ψ1 ω1 ϕ2 ψ2 ω2 ϕ3 ψ3 ω3 ϕ4 ψ4 ω4 ϕ5 ψ5 ω5 ϕ6 ψ6 e

4 67 −177.1 −65.6 126.7 −179.0 79.1 0.3 177.9 −119.0 −70.6 177.9 −91.5 −26.6 −180.0 −2.9
σ 5.3 8.4 6.9 3.9 12.9 13.9 4.9 11.9 18.7 3.6 20.0 14.8 6.0 1.3

5 22 179.3 −97.1 −28.6 −179.7 −135.2 101.5 −4.2 −74.3 166.0 −178.6 −71.5 114.5 180.0 −3.2
σ 4.7 14.1 20.3 3.3 8.5 11.7 5.2 6.1 8.4 4.0 7.9 12.1 4.9 1.3

6 22 175.5 77.0 −178.2 −177.5 −63.2 −29.0 179.5 −91.4 0.9 178.8 53.7 56.3 178.8 −2.9
σ 7.3 9.4 11.5 4.9 7.3 9.8 4.2 12.9 13.0 4.7 9.8 7.9 4.4 1.2

7 16 172.6 101.9 173.6 175.1 −130.2 107.8 −2.0 −72.3 161.4 −176.1 −65.0 134.1 175.3 −3.5
σ 4.6 12.1 11.3 4.7 6.0 7.2 4.2 4.9 5.9 3.0 6.7 5.7 5.4 1.1

8 12 −178.6 −71.3 −28.1 −176.4 −79.2 −25.8 −177.0 −67.1 −54.3 −7.8 −91.2 156.2 177.5 −3.2
σ 4.2 9.6 12.0 4.5 11.1 15.2 5.0 11.5 2.2 5.8 4.4 8.9 6.4 1.2

9 8 180.0 −74.2 123.1 −177.6 96.2 −57.9 −177.8 −72.6 −37.1 −180.0 −108.8 −45.3 178.0 −3.9
σ 3.4 13.2 21.7 2.8 28.1 10.2 4.0 13.6 11.7 6.3 21.5 9.3 6.2 2.1

10 8 179.1 −61.2 145.3 −178.3 96.1 −135.8 −172.0 −59.7 −38.2 −178.9 −62.4 −51.2 179.7 −2.7
σ 7.6 4.7 16.0 5.9 17.3 11.6 3.7 5.5 8.8 4.8 5.5 7.6 3.2 1.1

11 9 −177.8 −79.5 −10.5 −179.5 −107.7 42.3 173.8 125.2 −29.6 −178.1 −65.9 −39.4 −179.9 −2.8
σ 4.2 9.2 10.5 4.2 13.4 10.9 7.8 21.8 15.2 4.6 11.6 12.7 2.7 1.1

12 8 179.6 −60.7 129.4 −178.5 74.5 3.0 −179.3 −131.0 29.2 178.5 115.7 −16.6 177.9 −3.1
σ 5.0 4.5 2.7 1.9 9.4 9.6 2.0 11.2 16.5 4.3 17.3 16.2 6.0 1.0

13 9 −179.2 −92.2 −70.7 −176.5 −66.1 125.2 −179.6 74.1 7.0 179.0 −127.5 −91.4 178.5 −2.7
σ 6.7 8.5 3.9 4.2 6.5 7.2 2.4 11.0 10.0 3.9 10.7 12.9 3.4 1.7

14 8 −178.7 −61.8 −40.4 176.5 −89.3 −38.0 −173.7 −122.3 89.9 2.7 −133.9 28.9 −175.2 −4.1
σ 2.9 4.9 6.3 2.8 8.4 13.7 3.8 11.5 9.0 6.4 13.8 14.2 7.9 1.5

15 10 −178.7 −118.3 128.5 3.7 −91.5 −4.9 −171.7 −58.7 −46.7 −178.4 −94.8 −42.2 −180.0 −3.8
σ 8.2 13.5 8.3 4.8 3.7 11.8 6.2 8.5 7.0 3.9 16.3 9.5 5.6 1.4

16 7 176.9 −122.4 163.9 176.6 52.1 63.6 2.2 −90.0 164.6 178.3 −64.6 124.8 −179.7 −2.6
σ 6.7 10.5 6.3 3.4 5.1 7.5 4.8 3.8 5.2 3.5 7.5 7.2 1.8 0.7

17 7 179.2 −68.3 −30.2 177.0 −84.3 −45.1 177.2 −145.1 122.0 7.9 −84.0 −5.7 −176.2 −3.8
σ 2.9 6.9 13.3 3.4 14.4 7.9 3.0 10.1 8.3 5.4 8.3 10.1 6.6 1.6

18 6 179.1 −75.0 158.2 −178.5 83.2 −55.0 174.5 −78.8 −19.2 177.7 65.0 41.6 −178.9 −3.0
σ 2.1 6.7 6.6 5.1 10.6 14.8 6.2 13.8 7.7 4.3 11.7 18.8 0.9 1.0

19 6 176.4 −65.0 −24.9 177.7 −74.0 99.2 −178.6 88.6 7.2 −176.1 43.7 58.4 −173.4 −4.0
σ 5.2 5.0 12.1 3.4 5.2 10.2 2.2 15.2 8.1 6.3 5.9 5.1 6.1 1.3

Open-4
C |T| ϕ1 ψ1 ω1 ϕ2 ψ2 ω2 ϕ3 ψ3 ω3 ϕ4 ψ4 ω4 ϕ5 ψ5 ω5 ϕ6 ψ6 d

1 39,622 180.0 −86.1 −21.0 180.0 −123.8 135.1 179.4 7.1

σ 5.2 17.0 18.3 5.2 28.3 32.7 6.0 0.7

2 24,781 −178.6 −87.2 −15.3 −176.4 −82.1 −17.8 −179.0 6.4

σ 5.1 19.5 21.4 5.2 25.8 27.6 5.0 0.9

3 6,989 179.0 −106.1 141.4 177.5 61.6 34.5 179.4 6.4

σ 5.6 30.6 19.9 5.5 15.6 20.7 5.0 0.7

4 6,971 175.5 −94.2 177.0 −179.2 −60.2 −30.0 179.3 7.7

σ 6.2 31.2 15.4 4.9 8.2 12.8 4.1 0.3

5 3,398 179.2 80.2 5.9 −179.3 −93.5 −11.0 179.8 7.5

σ 4.6 15.5 18.7 4.8 24.7 28.0 5.4 0.5

6 3,014 −179.2 −97.5 2.2 179.7 78.2 14.7 179.5 7.6

σ 5.3 19.9 16.2 5.0 18.4 21.1 4.8 0.4

7 1,442 176.2 −115.0 122.6 −177.4 62.7 −130.0 −179.7 7.2

σ 5.8 26.7 22.0 6.0 12.1 14.0 4.2 0.5

8 1,333 179.1 84.7 −171.7 −175.9 −67.9 −26.6 −179.8 7.1

σ 6.0 18.6 22.4 5.2 15.2 15.3 4.6 0.8

9 1,429 173.4 −74.0 168.4 178.8 −58.8 123.2 −178.1 7.8

σ 6.4 15.8 22.5 5.4 12.3 20.5 5.1 0.2

10 1,146 −178.9 81.4 −153.7 −179.0 −78.3 121.5 −179.0 7.3

σ 5.8 19.5 25.2 5.0 17.9 24.6 5.7 0.6

11 1,051 178.4 −119.1 138.7 −1.7 −76.0 155.1 178.9 6.3

σ 6.0 29.7 19.3 5.1 13.5 13.2 6.5 0.9

12 742 −179.6 79.1 7.5 178.7 −150.3 158.0 178.3 7.7

σ 5.3 15.8 17.1 5.1 14.8 21.7 5.7 0.3

13 337 177.5 −98.6 105.0 −177.2 91.6 148.5 −178.6 7.3

σ 5.3 14.6 20.1 4.7 16.5 34.5 5.6 0.6

14 339 −179.9 −87.3 49.9 179.2 −158.2 160.3 178.1 7.7

σ 5.3 8.7 13.8 5.7 13.8 18.1 5.9 0.2

15 284 178.0 76.2 17.7 176.4 68.4 30.2 −179.5 6.5

σ 8.0 16.1 19.1 5.4 19.5 22.3 5.4 0.8
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C |T| ϕ1 ψ1 ω1 ϕ2 ψ2 ω2 ϕ3 ψ3 ω3 ϕ4 ψ4 ω4 ϕ5 ψ5 ω5 ϕ6 ψ6 d

16 206 177.1 78.5 −55.9 179.3 −146.5 152.5 177.7 7.2

σ 6.0 9.0 15.9 5.0 14.6 16.2 5.8 0.5

17 208 −1.8 −67.7 155.0 −179.2 −69.8 133.1 178.7 7.7

σ 4.8 6.4 13.4 4.7 12.1 23.2 5.5 0.2

18 189 5.6 −87.0 0.4 178.7 −90.9 147.9 178.0 6.7

σ 5.8 9.5 13.9 5.8 30.0 15.7 6.1 0.6

19 149 178.4 −92.7 4.1 −179.9 120.5 151.1 −180.0 7.7

σ 4.8 15.8 15.0 6.2 20.7 18.5 5.1 0.3

20 166 −179.3 88.7 −9.4 177.9 −101.2 91.4 −175.2 7.7

σ 4.6 10.4 10.8 4.8 13.7 18.6 5.3 0.2

21 84 −178.9 72.4 23.2 −179.6 145.5 −170.6 −179.1 7.2

σ 5.1 16.6 21.2 4.3 24.8 15.3 4.8 0.5

22 124 −2.1 −73.2 150.6 −178.0 −64.5 −32.2 −179.9 7.7

σ 5.5 7.9 12.9 4.9 9.9 9.4 4.4 0.2

23 87 178.0 −162.7 −177.6 177.7 −69.6 97.6 −175.0 7.8

σ 6.2 18.4 10.7 6.2 14.6 22.1 8.3 0.2

24 67 178.2 93.6 146.6 177.5 63.7 27.2 −179.4 7.2

σ 5.7 17.2 28.0 4.7 13.7 16.4 4.6 0.6

25 71 179.2 −83.9 −21.1 179.7 −127.7 134.0 −1.6 7.5

σ 5.0 17.0 19.3 5.1 19.2 13.4 6.0 0.4

26 68 174.7 −74.0 153.2 177.0 −82.4 128.9 −2.5 7.7

σ 5.7 12.3 18.4 5.9 26.0 17.2 6.2 0.3

27 54 −177.9 −85.6 64.4 −175.4 −126.6 16.5 −178.5 7.8

σ 5.9 5.3 5.6 5.0 13.2 10.8 4.8 0.2

28 62 179.7 74.9 11.3 −177.7 −120.3 −49.5 −178.2 6.9

σ 4.6 11.7 14.3 4.7 7.9 8.7 6.1 0.5

29 45 179.1 −96.6 127.9 176.4 75.4 −60.7 −179.3 6.3

σ 5.2 19.6 8.9 7.3 7.5 13.4 6.8 0.6

30 48 179.9 −135.4 137.0 2.4 −79.8 −11.1 −179.8 5.5

σ 4.2 14.2 10.2 4.3 7.1 9.3 4.7 0.7

31 52 3.3 −91.0 10.9 −177.0 −70.8 −22.9 178.4 5.4

σ 5.1 5.4 11.6 5.5 16.1 21.1 5.2 0.5

32 40 179.9 88.6 1.7 179.7 101.1 150.0 −179.1 7.5

σ 3.7 10.2 10.4 4.0 14.1 15.9 4.7 0.5

33 37 177.8 −60.0 146.9 2.3 −86.7 −4.1 179.9 5.9

σ 4.0 6.3 6.5 3.4 6.5 10.7 4.5 0.4

Open-5
C |T| ϕ1 ψ1 ω1 ϕ2 ψ2 ω2 ϕ3 ψ3 ω3 ϕ4 ψ4 ω4 ϕ5 ψ5 ω5 ϕ6 ψ6 d

1 41,710 −179.6 −65.7 −36.6 −179.1 −67.1 −27.8 −179.3 −80.5 −14.8 −179.1 6.9

σ 4.4 13.3 12.0 4.0 12.8 13.4 4.3 19.2 19.3 5.1 0.7

2 28,500 177.7 −90.5 155.2 −179.1 −59.1 −33.3 −180.0 −72.7 −23.7 179.3 6.6

σ 5.8 31.4 19.5 5.0 7.1 11.3 3.6 15.9 20.3 4.2 0.7

3 5,945 −179.5 −67.5 −25.8 −177.8 −98.9 −6.8 −178.6 −128.9 132.2 179.2 6.9

σ 4.7 11.9 12.4 4.7 17.8 17.5 5.3 22.4 38.1 6.8 0.9

4 4,660 178.5 −91.5 151.8 178.1 −56.4 134.8 179.0 81.1 2.0 179.3 6.7

σ 5.7 30.3 17.5 5.1 7.4 9.0 3.8 14.4 18.3 4.9 0.7

5 3,296 178.8 −76.1 −29.7 −177.5 −91.4 −33.4 −177.7 −126.3 96.7 −177.9 5.8

σ 4.6 13.7 14.6 4.9 18.7 12.9 5.3 19.3 33.5 5.9 1.1

6 3,659 −177.9 −73.3 −27.7 −178.4 −93.0 −7.4 179.5 71.4 20.9 179.5 6.9

σ 4.5 16.5 16.0 5.0 18.8 16.2 5.4 15.6 21.1 4.8 0.8

7 2,631 179.1 −81.7 −16.2 177.9 −120.7 163.4 178.8 −64.6 132.4 −179.9 7.4

σ 5.4 16.2 23.4 5.4 28.6 25.3 5.5 13.6 20.5 5.5 0.5

8 2,027 178.3 77.3 −165.3 −176.8 −64.9 −26.2 180.0 −71.9 −23.9 179.2 5.7

σ 6.0 21.9 33.9 4.8 11.6 16.2 4.4 16.1 20.7 4.6 0.8

9 2,226 178.0 −123.2 127.2 180.0 53.9 37.8 177.9 74.9 8.2 179.9 5.5

σ 5.2 30.4 16.8 5.2 7.8 11.8 3.8 12.1 15.7 4.4 0.5

10 2,054 −179.8 52.9 39.7 177.6 78.5 4.2 179.7 −110.4 139.1 177.9 6.7

σ 4.7 6.2 9.0 3.4 10.9 13.3 4.1 18.1 18.2 5.3 0.5

11 1,422 177.3 −119.4 123.9 −178.5 61.4 −128.2 −179.5 −87.5 −0.2 −179.3 5.8

σ 6.3 24.4 26.0 6.8 12.2 13.6 4.3 17.8 19.0 5.2 0.8

12 1,283 −179.1 −66.4 −29.7 −178.7 −93.9 −5.8 −179.5 106.2 179.5 −178.2 6.7

σ 4.6 11.9 12.5 4.9 15.4 18.1 5.1 27.7 23.2 4.9 0.8

13 1,218 179.8 −61.3 129.9 179.0 76.1 7.1 179.9 −125.2 153.1 177.9 7.3

σ 4.8 15.8 10.2 3.8 13.4 17.6 4.9 20.7 26.2 6.3 0.6
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C |T| ϕ1 ψ1 ω1 ϕ2 ψ2 ω2 ϕ3 ψ3 ω3 ϕ4 ψ4 ω4 ϕ5 ψ5 ω5 ϕ6 ψ6 d

14 1,075 179.3 −88.1 −11.9 178.2 −105.3 173.8 −179.0 −66.3 −24.1 179.8 7.5

σ 5.4 18.8 18.9 6.0 28.3 19.7 5.2 13.6 19.1 5.2 0.5

15 960 177.7 −94.4 163.5 179.1 −63.6 −33.2 176.7 −116.0 107.2 −177.5 7.2

σ 5.9 31.9 19.6 4.9 9.5 13.7 5.6 19.6 27.8 6.0 0.7

16 1,058 −176.0 60.4 −123.4 −179.8 −93.3 5.4 −178.3 −102.9 138.9 176.8 6.5

σ 5.8 9.1 11.1 3.5 12.6 14.7 5.1 19.7 22.0 5.6 0.6

17 851 −178.8 −88.8 −24.0 −178.5 −84.3 132.5 179.0 68.9 19.0 −179.5 6.9

σ 5.4 18.7 19.6 4.9 32.7 17.4 4.3 15.4 20.9 5.0 0.9

18 688 −179.8 −56.6 130.3 179.8 82.5 −3.6 −178.4 −103.5 −1.9 −178.7 7.0

σ 4.9 7.6 8.0 3.5 13.3 14.2 5.5 24.7 29.4 5.1 0.8

19 453 179.4 −81.5 −30.8 −177.6 −87.5 −33.4 −178.3 −157.9 161.9 177.1 6.1

σ 5.2 19.2 19.6 5.2 15.6 13.2 5.2 12.2 14.1 6.0 0.9

20 414 −179.8 −91.4 −0.3 178.9 87.5 7.1 −179.9 −100.7 1.6 −179.9 7.6

σ 4.3 17.1 14.1 4.7 13.4 13.4 4.9 23.3 31.7 5.3 0.5

21 381 177.8 57.1 32.7 178.3 76.6 10.4 −177.8 −77.4 −22.8 179.8 6.6

σ 5.0 8.1 11.3 4.0 14.2 13.4 4.9 18.6 20.2 5.2 0.7

22 319 177.9 −96.5 144.7 179.2 82.5 −156.8 −178.0 −82.1 122.3 −179.3 7.1

σ 5.4 27.4 19.2 5.1 17.1 16.1 5.2 16.7 24.7 6.1 0.7

23 310 177.4 −89.1 150.3 176.6 −108.8 132.6 −1.5 −73.9 151.7 −179.3 6.9

σ 5.8 26.0 15.6 6.3 26.3 16.0 4.6 8.9 13.6 7.4 0.8

24 287 180.0 −143.4 166.2 175.3 64.9 −144.1 −176.5 −61.1 −33.1 179.7 6.4

σ 4.8 13.7 12.6 5.2 13.9 14.7 4.0 7.0 9.5 3.4 0.8

25 194 179.7 −91.4 153.1 174.6 −61.4 144.4 4.9 −88.4 4.9 179.9 6.4

σ 5.2 23.0 17.6 5.7 14.6 7.1 4.8 7.2 14.3 7.5 0.7

26 148 −178.9 89.9 −14.5 179.1 −112.8 −39.0 −179.9 −134.1 145.1 177.5 7.1

σ 4.2 14.0 14.6 5.6 17.9 15.7 4.8 18.8 20.9 6.2 0.6

27 158 −179.7 −82.1 −27.0 179.1 −143.1 151.3 177.0 74.2 −155.9 −177.3 7.2

σ 5.4 16.4 15.3 5.3 15.6 17.6 6.0 15.4 17.8 4.3 0.6

28 139 −179.1 75.9 9.6 178.8 −157.2 166.9 177.0 −69.0 126.7 −179.6 7.5

σ 5.6 16.7 23.0 5.5 14.5 11.2 5.9 12.0 20.3 6.1 0.4

29 144 177.3 −132.9 120.0 −2.1 −69.1 161.1 179.8 −64.2 144.7 177.9 7.0

σ 6.3 12.2 11.1 4.6 7.9 10.8 4.5 7.7 11.5 5.4 0.5

30 128 178.7 96.8 175.9 −178.8 −67.9 137.7 178.4 69.0 18.6 −179.9 5.9

σ 5.6 18.4 21.9 4.6 18.8 12.2 4.6 14.2 20.9 4.1 0.8

31 123 −179.8 −87.9 59.5 −179.1 −149.5 173.5 −179.2 −65.1 −25.9 179.6 7.5

σ 5.1 9.2 18.5 6.8 16.5 13.1 5.6 12.1 18.3 3.7 0.5

32 99 179.5 −114.5 −79.6 178.5 −91.6 −18.5 −179.9 −109.6 124.2 178.9 6.1

σ 5.6 16.0 22.4 8.4 19.0 14.9 6.2 22.7 18.8 7.2 1.1

33 109 178.3 75.9 15.2 −178.6 −111.5 5.4 179.4 82.0 15.9 −179.4 7.4

σ 5.0 13.3 14.2 4.0 16.0 11.2 4.3 15.6 15.5 3.8 0.4

34 100 −178.6 −106.9 5.8 −178.2 93.5 −14.5 −179.5 −120.4 −37.5 −178.6 6.3

σ 6.2 14.0 10.2 3.8 15.5 16.1 3.4 12.8 17.3 4.3 0.9

35 70 179.2 90.9 −173.4 −174.9 −79.4 −20.6 −179.2 −122.7 102.1 −178.5 6.5

σ 5.7 13.0 15.8 4.9 12.9 14.2 5.0 15.6 30.3 6.6 0.9

36 105 2.7 −90.6 1.3 −175.6 −58.3 −36.6 −179.6 −68.1 −25.2 −179.3 6.6

σ 4.5 8.5 13.2 5.5 6.9 11.3 3.9 13.7 17.8 4.5 0.6

37 72 −178.4 −90.1 3.4 179.4 −108.6 −131.1 −176.4 −65.6 −34.3 −178.6 5.9

σ 5.9 13.0 21.6 4.4 13.1 15.3 5.6 13.9 10.7 5.7 0.9

38 81 179.6 77.3 10.5 178.2 −127.1 172.7 180.0 −64.3 −21.7 179.7 7.5

σ 3.4 12.9 18.0 4.4 22.0 10.9 4.4 11.2 13.8 3.9 0.3

39 63 177.1 −143.9 −126.0 174.9 −63.0 −34.5 174.3 −123.5 168.5 176.8 4.9

σ 4.9 19.3 13.6 5.6 9.3 8.4 5.7 13.5 11.5 5.9 0.8

40 65 −179.8 87.5 −7.6 −179.7 −113.9 −60.7 179.9 −88.9 −21.2 178.9 5.9

σ 3.6 11.4 12.5 3.9 12.7 13.2 3.9 18.4 14.5 5.4 0.7

41 64 179.3 −51.8 139.5 6.9 −88.3 10.5 177.6 −75.5 148.0 178.1 7.2

σ 6.1 7.0 5.9 5.0 6.7 7.1 5.4 12.2 13.6 6.5 0.6

42 49 1.8 −89.7 0.9 −177.6 −66.6 −36.4 177.8 −122.7 134.1 179.2 6.1

σ 3.7 5.7 11.3 5.0 10.3 9.6 6.4 19.8 21.4 5.3 0.8

43 57 −1.9 −73.9 156.9 −176.9 −58.7 −32.2 −179.0 −66.9 −22.7 179.1 6.9

σ 3.9 8.0 16.2 3.4 7.4 9.4 3.6 11.0 14.2 3.8 0.6

44 48 176.0 −55.9 142.1 3.5 −93.5 13.6 −177.2 −73.0 −19.2 178.2 6.0

σ 4.2 7.8 6.8 4.1 5.3 12.8 4.3 17.9 22.2 4.9 0.8

45 42 −179.3 −124.2 138.5 2.4 −81.7 −10.6 178.3 −136.2 146.4 178.6 4.7

σ 4.6 17.2 11.5 3.9 7.7 10.4 5.2 16.3 22.1 6.4 0.6

46 56 178.1 53.1 37.9 179.6 57.3 27.5 179.1 78.6 10.5 −179.2 7.5

σ 5.9 5.1 7.8 3.1 5.8 9.1 3.7 11.4 10.9 4.7 0.4

Table 6.1: Continued on next page.



194 APPENDIX

C |T| ϕ1 ψ1 ω1 ϕ2 ψ2 ω2 ϕ3 ψ3 ω3 ϕ4 ψ4 ω4 ϕ5 ψ5 ω5 ϕ6 ψ6 d

47 33 179.1 75.2 −167.1 −180.0 57.2 −137.5 −178.3 −74.3 −16.5 −179.1 6.4

σ 5.0 11.1 14.3 3.3 6.5 15.8 3.1 14.0 18.9 4.6 0.7

48 41 178.2 −60.7 128.5 −178.5 84.4 1.0 177.9 81.8 179.2 −178.6 6.5

σ 4.4 5.6 5.9 2.7 7.9 8.4 5.9 16.9 28.5 4.7 1.0

49 32 179.0 −64.4 −23.6 −178.9 −104.5 5.7 179.3 −77.2 147.3 2.3 7.8

σ 3.7 6.2 6.2 3.4 10.2 13.6 4.1 22.2 7.9 5.5 0.2

50 24 −179.9 −107.7 13.8 179.9 103.5 −4.5 174.3 −139.7 164.5 179.4 7.3

σ 5.6 21.0 13.3 8.8 13.1 11.5 5.7 12.9 11.2 5.1 1.1

51 31 180.0 57.3 −126.4 −180.0 −80.6 −2.7 176.1 91.5 8.6 −178.6 7.5

σ 4.6 4.1 9.1 1.8 11.4 10.1 5.5 9.2 9.2 4.5 0.3

52 25 179.6 −103.2 12.3 179.9 96.7 −79.7 178.8 −81.0 −12.4 −179.9 6.4

σ 2.5 10.1 9.9 4.4 17.8 17.2 3.3 8.9 17.1 4.5 0.5

53 22 −175.5 84.0 −59.7 178.0 −62.1 −41.3 −179.7 −63.6 −35.3 178.9 7.0

σ 6.3 11.7 7.0 5.1 6.8 8.7 3.5 7.5 15.0 3.5 0.7

54 17 175.7 −128.7 99.5 −176.3 −52.8 138.8 4.3 −90.5 12.6 −177.3 6.6

σ 7.5 8.5 16.5 5.5 9.1 3.9 4.5 3.9 15.9 6.8 0.8

55 16 −180.0 −97.2 −28.5 178.2 −141.9 125.8 −6.4 −66.5 153.0 −179.1 6.7

σ 5.3 11.1 18.3 4.8 9.3 10.0 5.0 7.5 13.5 2.4 1.0

56 13 177.9 −134.4 105.2 0.6 −74.0 166.0 −178.0 −57.3 −35.3 −178.5 7.2

σ 7.0 5.2 19.4 4.4 11.7 5.4 4.0 7.4 5.4 3.1 0.5

Open-6
C |T| ϕ1 ψ1 ω1 ϕ2 ψ2 ω2 ϕ3 ψ3 ω3 ϕ4 ψ4 ω4 ϕ5 ψ5 ω5 ϕ6 ψ6 d

1 19,044 177.4 −86.1 147.2 −178.8 −58.5 −37.5 −179.9 −65.9 −36.0 179.2 −77.3 −30.8 179.9 6.8

σ 5.8 27.7 23.4 5.1 7.2 9.4 3.3 9.1 12.7 3.7 20.3 22.2 4.4 0.7

2 7,143 −179.4 −90.6 −12.1 179.9 −101.3 143.7 −178.6 −60.4 −32.4 −179.9 −71.8 −26.2 179.4 6.3

σ 5.5 19.1 19.6 5.4 33.4 24.2 5.1 8.0 12.1 3.7 16.3 20.1 4.3 0.9

3 7,070 −179.8 −63.6 −27.0 178.9 −90.1 2.3 178.2 82.3 16.4 178.2 −92.6 141.0 178.5 6.6

σ 3.6 7.5 10.6 3.8 12.2 11.5 4.6 17.2 16.2 4.1 20.9 23.3 6.0 0.7

4 6,539 179.9 −66.4 −40.6 −179.0 −73.0 −42.8 −176.6 −80.4 −38.9 −174.5 −97.5 −18.7 −178.5 7.3

σ 4.2 11.9 12.1 4.2 17.9 14.0 4.2 16.2 12.0 5.4 21.7 20.1 5.3 0.6

5 2,742 179.4 −73.1 −26.2 −177.5 −98.5 −18.4 −178.8 −136.7 146.2 178.4 −75.5 132.4 179.7 7.0

σ 5.0 15.1 14.9 5.0 18.3 21.3 5.4 35.5 34.4 6.2 18.1 24.7 5.5 0.8

6 2,988 −179.4 −67.2 −38.9 −178.1 −76.7 −33.3 −177.0 −93.2 −14.1 −179.9 71.0 20.9 179.4 5.8

σ 4.5 10.5 11.1 3.9 15.0 13.7 5.1 18.4 14.5 5.4 17.0 24.4 4.8 1.1

7 2,291 −178.6 −64.4 −30.8 −179.8 −88.4 −1.8 178.9 72.4 23.6 −179.0 −89.1 −12.6 179.3 5.7

σ 4.0 9.7 10.5 3.9 12.8 11.8 4.7 13.7 15.7 4.4 21.1 24.4 5.5 0.9

8 2,136 177.6 −86.6 172.1 −178.2 −62.3 −23.2 178.1 −88.9 2.8 178.4 83.3 8.7 178.1 5.7

σ 5.7 17.3 11.6 4.3 7.6 11.0 3.8 11.4 10.6 4.5 13.6 14.8 4.6 0.7

9 1,877 177.6 −126.1 126.3 −179.7 54.2 38.2 177.5 77.6 5.7 179.6 −109.8 141.8 177.8 4.8

σ 5.2 29.0 14.5 4.5 9.4 12.1 3.6 10.7 13.6 4.4 19.9 16.6 5.1 0.8

10 1,566 −179.2 −64.2 −30.1 178.2 −72.8 −34.3 −177.7 −90.2 −33.9 −178.3 −140.0 85.9 −176.5 7.3

σ 4.1 7.5 10.7 3.9 11.1 11.9 4.8 16.5 12.4 4.8 15.2 31.7 5.6 0.6

11 1,438 178.5 −67.6 −32.9 −178.6 −90.7 −25.4 −178.0 −128.6 105.5 −177.0 −63.9 −24.8 179.8 7.5

σ 4.5 9.7 10.3 4.1 16.6 17.5 4.7 24.5 31.4 5.8 9.8 13.2 4.4 0.4

12 1,114 −179.6 −93.3 91.4 179.2 −140.4 165.9 −178.9 −60.0 −33.9 −179.4 −76.2 −26.5 −179.7 6.9

σ 5.9 23.1 29.6 5.9 27.0 20.1 4.9 7.6 12.2 3.6 18.8 20.7 5.6 0.9

13 1,361 −179.1 52.2 41.3 177.4 78.4 3.8 179.6 −113.4 141.0 177.4 −77.5 131.0 179.2 6.9

σ 4.3 6.1 8.8 3.3 10.2 12.1 4.0 16.8 13.7 4.8 15.9 12.5 5.0 0.6

14 1,015 −179.3 −123.1 158.1 176.3 73.5 −157.1 −177.4 −64.2 −27.6 179.8 −71.5 −25.4 178.6 5.6

σ 5.8 26.6 22.9 5.9 22.4 32.7 5.0 12.5 16.2 4.3 16.8 21.2 4.1 1.0

15 1,079 175.7 −135.7 178.7 −179.0 −63.2 −28.5 −176.7 −106.9 −9.2 −177.3 −143.5 141.9 177.3 5.3

σ 6.2 21.7 15.2 5.4 10.4 13.2 4.4 18.0 21.2 5.5 20.8 30.8 7.0 1.1

16 1,111 176.9 −90.8 155.1 178.8 −54.7 131.9 179.3 82.1 −0.1 179.6 −108.7 150.9 178.4 6.8

σ 5.6 32.5 16.4 4.9 6.3 7.2 3.4 12.6 14.4 4.6 23.8 23.0 6.4 0.9

17 896 179.7 −65.2 −35.3 −178.3 −81.6 −39.9 −174.4 −101.9 −15.3 −177.9 86.6 177.3 −177.9 6.1

σ 4.0 8.7 11.4 4.0 14.0 11.1 5.2 18.6 15.0 5.7 17.4 27.2 5.2 1.0

18 864 −179.6 −89.4 −10.8 179.9 −99.0 144.3 178.9 −59.5 135.1 178.3 78.0 7.4 179.4 6.3

σ 5.5 17.8 18.9 5.4 32.0 19.9 4.9 9.9 11.5 4.0 16.1 19.9 5.3 0.9

19 813 −179.4 −91.2 −7.6 179.7 −91.5 162.9 179.8 −70.2 −26.2 178.5 −117.2 123.7 −179.8 6.9

σ 5.2 16.6 17.8 5.1 26.5 19.8 5.3 13.2 19.4 5.5 23.7 32.2 5.6 0.9

20 969 178.1 82.9 −179.8 −177.0 −61.4 −38.3 −179.7 −64.4 −40.0 178.4 −70.0 −36.6 179.3 7.1

σ 7.0 21.9 32.6 5.1 8.2 9.3 3.6 8.0 10.9 3.6 13.6 14.3 4.0 0.7

21 743 −178.6 −70.6 −22.1 −178.6 −97.7 −2.8 −178.8 −113.1 169.8 179.1 −80.4 −12.6 −179.5 7.0

σ 4.4 12.9 13.8 5.1 16.2 18.7 5.2 25.7 15.6 5.3 16.9 22.1 5.0 0.8
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C |T| ϕ1 ψ1 ω1 ϕ2 ψ2 ω2 ϕ3 ψ3 ω3 ϕ4 ψ4 ω4 ϕ5 ψ5 ω5 ϕ6 ψ6 d

22 766 175.1 −133.1 107.8 −174.8 60.4 −123.8 179.9 −94.1 6.3 −178.0 −106.3 139.9 176.0 4.6

σ 5.6 14.3 15.2 5.0 8.1 8.2 3.4 11.8 13.7 5.1 16.9 17.6 5.3 0.4

23 571 179.0 76.4 8.3 179.2 −107.5 153.3 −179.2 −60.9 −32.8 −179.6 −71.7 −25.8 179.0 6.5

σ 5.3 16.0 23.5 5.4 29.4 23.4 5.2 7.8 12.2 4.0 15.1 20.6 4.1 0.9

24 478 −179.7 −65.0 130.2 178.7 74.1 9.6 179.9 −126.7 159.6 175.7 −85.4 132.6 179.6 7.2

σ 4.8 17.0 14.4 4.1 14.7 20.0 5.2 21.6 17.8 6.1 21.7 22.2 5.9 0.7

25 526 −174.9 61.8 −124.3 179.9 −94.0 5.1 −177.7 −105.4 143.3 175.1 −93.4 132.6 179.6 7.1

σ 5.7 9.8 8.9 3.6 12.5 13.5 5.1 19.4 19.4 5.5 21.5 14.4 5.3 0.6

26 475 177.7 −77.3 145.7 179.6 −55.5 133.1 179.4 83.0 −8.9 −178.1 −96.3 −8.5 −179.0 6.6

σ 5.4 21.6 17.6 5.7 7.0 9.3 3.8 13.4 19.8 4.7 25.7 30.8 5.0 1.0

27 433 177.3 −114.1 171.7 −179.9 −61.0 −26.7 −179.0 −94.0 −0.1 179.9 124.9 −172.3 −178.7 5.1

σ 5.6 28.7 18.3 4.4 6.8 10.5 4.1 14.7 16.4 4.7 29.6 23.9 4.3 1.1

28 312 175.5 −72.9 160.6 −176.4 −59.6 −30.1 −179.1 −91.9 2.7 −178.6 −105.0 155.9 177.7 7.3

σ 5.8 13.6 14.4 5.6 10.9 11.9 4.0 12.9 14.3 5.7 20.1 18.5 6.7 0.6

29 256 −179.4 −66.9 −33.8 −177.9 −83.7 −36.9 −172.1 −117.6 −7.6 −177.7 −106.7 172.8 178.6 7.4

σ 3.6 10.2 11.9 3.8 12.4 11.8 5.5 12.9 15.3 4.8 30.4 24.0 6.8 0.7

30 258 179.0 −58.2 134.6 178.7 78.5 5.8 178.7 −106.5 164.8 179.3 −72.8 −22.5 −179.1 7.1

σ 5.0 9.4 9.8 3.9 12.9 16.9 4.4 22.8 12.7 5.5 17.2 16.3 4.7 0.8

31 158 −177.6 −99.9 6.2 177.7 70.8 −147.3 −177.2 −62.8 −24.8 179.3 −80.9 −13.2 −179.5 7.2

σ 6.1 19.4 20.3 5.3 22.0 22.1 4.5 8.9 14.5 3.8 17.9 21.2 5.6 0.7

32 131 −179.9 −92.0 148.5 174.9 −81.8 145.1 3.2 −89.6 −2.3 −175.7 −65.6 −32.8 179.7 5.5

σ 4.4 21.7 18.7 6.2 23.5 9.7 4.4 7.5 12.4 4.8 12.9 13.1 4.3 0.7

33 130 178.4 −101.3 173.4 177.9 −59.7 147.9 179.0 69.4 22.4 176.6 67.7 26.5 179.0 6.3

σ 6.7 20.4 18.5 5.6 11.1 13.8 5.7 14.9 16.7 5.5 13.6 16.1 5.0 0.8

34 101 178.6 −83.7 −11.2 −179.4 −115.6 35.0 176.0 65.0 31.6 176.8 82.9 11.3 178.6 7.4

σ 4.5 19.7 15.2 4.3 15.1 11.9 3.8 13.1 11.4 4.2 16.8 17.9 5.0 0.5

35 115 177.1 −98.9 118.8 179.2 −129.3 118.3 −178.0 51.7 41.1 177.2 81.6 1.5 −179.2 7.8

σ 5.8 20.6 12.4 6.1 14.4 12.3 5.2 4.7 7.9 3.3 9.6 10.7 4.4 0.2

36 88 −178.2 −100.2 −7.4 179.7 −110.5 154.3 176.6 −118.6 136.7 −2.4 −73.4 155.5 178.8 6.7

σ 4.7 18.0 15.9 5.4 32.6 17.3 5.2 26.2 14.0 4.4 8.0 14.2 6.3 0.9

37 113 180.0 −110.5 118.5 −179.0 −56.3 132.1 −179.8 82.3 −4.9 −179.5 −119.9 −58.8 −179.2 5.8

σ 6.1 19.3 14.0 4.3 5.6 5.5 3.1 12.2 12.4 4.8 11.3 13.6 4.9 0.5

38 105 179.9 −97.3 99.9 −179.4 −161.8 163.0 179.0 −57.3 131.4 178.6 85.9 −3.3 −179.8 6.6

σ 5.8 20.0 29.4 4.8 32.9 17.6 4.8 8.4 7.7 4.4 13.4 16.9 4.3 1.0

39 94 −179.1 −64.1 138.8 177.2 60.5 26.0 179.9 59.4 29.0 −176.9 −70.7 −24.1 179.0 5.9

σ 4.5 13.1 19.8 5.7 9.8 14.6 5.2 11.1 13.5 4.5 15.2 14.6 4.8 0.7

40 87 −179.7 84.2 −4.3 179.1 −117.8 −61.7 178.4 −91.0 −27.9 179.6 −138.5 153.8 177.2 6.1

σ 3.4 12.1 11.1 4.8 13.5 13.4 4.1 16.1 15.9 4.9 20.3 13.9 7.4 0.7

41 81 −179.0 −104.6 9.8 −177.9 98.1 −32.7 179.4 −110.1 −31.2 −178.8 −138.6 156.5 174.7 4.7

σ 5.4 12.9 10.3 4.2 12.7 25.8 3.1 23.4 17.4 4.9 17.0 15.0 6.8 0.9

42 85 179.1 76.6 −166.5 −176.8 −63.1 −25.0 −178.8 −98.2 9.3 179.4 −75.3 147.5 179.4 7.2

σ 6.8 13.3 22.2 4.4 7.3 11.1 4.4 10.7 12.7 4.9 32.1 22.4 5.4 0.7

43 85 −180.0 −69.1 142.5 178.5 72.9 15.4 −178.8 −105.4 −0.4 −179.6 74.4 17.8 −179.7 7.2

σ 4.8 16.4 13.4 3.7 12.2 14.3 3.8 18.8 13.9 4.6 13.5 15.0 4.1 0.6

44 73 −177.8 −94.0 −8.9 −178.8 −60.6 143.3 178.4 59.8 30.5 179.0 65.4 27.0 −179.8 6.4

σ 5.7 19.6 16.8 4.0 9.7 14.0 5.3 8.6 13.7 4.5 14.6 16.9 3.9 1.0

45 70 179.7 120.8 −165.2 179.0 −75.8 174.3 −178.5 −56.4 −37.3 179.7 −65.7 −34.8 179.1 7.2

σ 5.7 33.6 14.6 4.4 11.9 16.3 5.4 5.4 8.1 3.0 10.0 14.5 4.2 0.5

46 54 −179.5 −72.0 −34.3 −177.6 −91.6 −19.3 −177.8 −118.6 −86.9 −179.8 −177.0 169.6 179.5 5.7

σ 3.7 10.6 11.6 4.9 14.8 16.0 3.8 12.3 31.1 4.3 28.1 19.0 4.0 1.1

47 61 178.5 55.5 27.5 −179.3 66.0 13.9 −175.3 −121.1 −27.0 −177.3 −131.5 144.6 177.0 6.4

σ 4.4 7.2 9.4 4.0 10.0 12.4 5.2 21.0 15.8 6.3 22.9 21.9 5.8 0.7

48 60 177.8 101.4 3.6 176.0 74.1 −156.3 −177.8 −61.9 −32.7 179.2 −63.0 −39.4 179.0 6.8

σ 5.6 19.2 14.3 4.7 23.1 21.9 4.1 8.2 13.0 3.9 8.5 13.8 3.9 0.8

49 69 179.1 −105.1 146.5 178.2 55.6 −128.7 −178.8 −95.4 10.4 −179.6 −69.4 145.4 178.2 6.5

σ 4.5 20.3 21.7 4.5 7.9 7.9 3.2 9.9 12.7 4.6 10.2 14.7 4.6 0.8

50 61 178.0 −98.1 123.6 178.7 55.8 26.8 −179.2 63.1 16.1 −174.0 −128.2 −32.8 −176.7 5.5

σ 5.4 21.4 11.4 5.3 9.6 10.7 4.2 9.8 13.2 5.1 15.4 24.1 5.7 0.4

51 56 −177.7 −90.3 −17.5 −178.6 −144.7 171.7 174.9 74.2 −160.6 −176.7 −60.1 −34.2 −179.1 5.6

σ 5.4 13.5 13.8 5.0 13.8 11.2 6.1 14.7 20.4 4.2 8.0 10.2 3.0 1.1

52 53 176.0 −71.9 138.0 −179.3 −75.5 −17.9 −176.5 −108.9 −15.7 180.0 −141.7 147.3 −179.7 7.3

σ 5.7 13.4 11.7 5.2 12.0 11.7 5.3 17.6 18.5 5.4 12.8 19.6 5.8 0.6

53 59 178.3 −151.7 148.7 179.6 −114.4 134.4 176.1 59.2 −119.8 175.7 −54.4 −35.4 177.7 7.6

σ 4.4 23.7 17.9 4.0 10.6 10.2 4.3 6.9 7.2 3.9 5.2 5.6 3.0 0.3

54 54 176.5 −92.7 −172.9 −179.8 −73.2 −19.3 176.0 −99.4 134.7 −179.4 −57.6 138.4 178.2 7.4

σ 5.8 14.3 19.1 4.6 10.2 16.6 5.5 18.4 17.5 4.8 7.8 10.6 4.2 0.6
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C |T| ϕ1 ψ1 ω1 ϕ2 ψ2 ω2 ϕ3 ψ3 ω3 ϕ4 ψ4 ω4 ϕ5 ψ5 ω5 ϕ6 ψ6 d

55 50 179.5 81.6 3.2 177.4 −89.3 148.2 179.7 −57.4 131.7 179.9 81.3 1.4 179.5 6.8

σ 4.0 15.4 16.5 5.3 16.6 18.6 5.3 6.4 10.4 4.8 16.9 16.5 5.8 0.8

56 51 −177.0 −53.8 127.4 −179.9 76.2 1.5 −177.9 −121.1 −49.8 −178.7 −151.9 148.6 175.6 6.9

σ 3.9 11.2 5.7 2.2 12.7 14.1 4.6 12.8 13.1 5.0 12.7 14.1 5.9 0.6

57 47 −179.7 −85.7 68.9 −177.3 −149.5 162.2 −179.0 −69.7 −30.8 179.5 −140.0 136.5 178.8 6.7

σ 5.7 8.0 10.7 5.3 15.3 12.0 4.5 10.0 11.4 3.6 14.7 26.8 5.1 0.9

58 36 179.3 −69.9 −22.1 179.4 −94.5 6.3 178.0 111.3 0.0 178.5 94.4 174.6 −178.9 7.2

σ 3.8 11.6 13.0 4.1 14.2 11.8 3.7 13.0 11.2 3.5 16.1 22.4 4.5 0.6

59 40 178.7 84.2 8.1 177.3 −97.7 168.0 −179.3 −65.3 −31.7 175.8 −127.1 147.6 178.5 7.0

σ 5.1 20.2 16.8 4.8 22.4 12.0 4.0 9.9 13.2 5.1 21.2 19.5 7.2 0.8

60 37 −178.5 −103.5 8.1 −177.7 −94.4 151.4 176.1 53.8 −129.0 −178.4 −85.6 3.2 179.7 5.9

σ 5.8 14.6 16.4 5.3 19.4 18.1 5.8 11.2 9.5 4.7 13.1 16.1 5.5 1.0

61 44 −179.9 −58.9 131.4 −179.1 87.8 −10.1 179.6 −115.4 −59.5 −179.4 −98.8 −11.8 178.2 6.7

σ 3.3 6.5 6.1 3.0 11.9 12.1 3.6 11.0 9.1 3.5 20.4 17.7 5.2 0.5

62 34 175.3 −116.5 120.7 178.4 −138.4 110.4 −175.1 57.4 −124.2 179.3 −89.9 2.7 −178.4 7.8

σ 6.3 17.2 8.6 4.8 11.3 13.0 4.3 6.1 6.0 2.8 10.0 13.7 5.5 0.2

63 42 179.8 −76.4 148.7 −179.9 −69.3 −31.7 179.2 −132.1 152.9 177.9 56.6 37.7 −179.4 6.6

σ 5.9 26.1 10.2 3.7 11.3 12.8 4.2 17.5 16.1 4.0 11.3 17.7 5.4 0.7

64 34 175.9 −137.0 −126.2 173.5 −65.5 −33.5 174.3 −122.2 171.7 176.9 −111.6 131.4 −180.0 6.4

σ 5.3 12.4 12.4 4.1 9.5 9.7 5.4 10.7 11.5 6.8 21.7 13.8 5.2 0.6

65 45 168.8 −70.0 151.5 179.9 −83.0 −55.4 −176.9 −68.3 120.6 179.9 79.8 2.2 179.7 7.1

σ 9.5 11.1 13.6 4.5 16.7 18.4 5.6 8.9 10.7 2.9 9.9 11.3 5.0 0.6

66 34 179.8 −93.0 −8.1 −179.8 −97.7 151.5 174.5 −70.4 145.4 2.2 −86.9 −0.6 −178.3 5.8

σ 5.1 13.5 12.0 4.7 22.3 12.7 6.8 21.0 10.3 3.4 7.5 14.0 6.5 1.1

67 43 179.6 48.0 56.7 −174.1 −57.9 −34.0 179.6 −66.4 −35.9 178.8 −83.4 −31.0 −178.8 7.6

σ 5.2 6.7 8.2 5.2 4.7 7.3 2.8 7.7 12.7 3.1 22.9 16.4 4.7 0.4

68 27 176.6 −70.6 148.8 1.9 −88.0 −2.0 −177.9 −62.1 −41.1 178.9 −128.0 145.6 177.9 7.0

σ 7.0 13.5 6.2 2.9 5.5 9.7 3.6 6.7 7.4 6.0 14.0 20.0 5.3 0.8

69 23 178.2 57.6 30.4 178.3 76.5 8.2 179.4 −89.0 155.4 179.7 −77.3 −16.7 179.8 7.4

σ 4.9 6.6 10.7 2.9 10.7 10.5 3.7 19.5 12.7 5.3 18.0 20.5 4.8 0.6

70 30 179.9 83.7 172.8 −175.5 −64.2 −26.9 −179.5 −112.5 9.3 178.6 66.7 21.3 −176.5 6.2

σ 4.9 8.1 12.4 4.9 7.8 9.2 5.0 14.1 12.0 4.6 11.9 13.2 4.6 0.5

71 33 −1.7 −77.0 160.6 −174.5 −57.6 −37.7 −178.0 −62.2 −32.9 178.8 −74.9 −34.7 −179.5 6.7

σ 6.3 12.2 29.4 6.1 5.7 8.2 3.2 5.2 11.3 2.6 11.2 13.9 5.7 0.7

72 28 −177.4 97.0 −16.0 179.6 −120.5 −34.9 179.7 −146.8 167.2 176.4 −82.8 136.5 177.7 7.0

σ 4.8 14.0 11.6 2.9 15.6 13.4 3.7 12.5 14.3 6.2 20.7 9.5 5.3 0.5

73 27 −178.4 −77.7 157.3 178.5 −65.5 159.6 179.0 73.4 −136.7 −177.8 −68.6 −20.9 179.4 6.8

σ 4.4 11.0 17.5 5.4 12.3 17.7 4.5 15.0 6.3 5.1 11.9 15.6 4.5 0.8

74 30 178.5 −83.0 133.1 176.2 −54.9 143.0 8.4 −85.1 6.3 177.5 −70.1 151.6 −180.0 6.6

σ 5.5 15.0 29.1 3.7 5.4 5.4 5.8 6.2 6.0 4.8 7.7 9.7 11.7 0.8

75 28 −177.6 −109.0 12.7 −175.5 −59.8 −29.1 179.5 −101.2 11.1 179.4 88.6 2.9 −179.9 7.3

σ 6.6 16.7 15.5 3.8 6.5 7.2 4.0 15.8 12.3 4.5 16.1 16.9 6.3 0.6

76 19 178.7 −105.7 112.1 177.2 −124.5 −136.5 174.4 −61.6 −32.0 174.4 −126.4 169.0 177.0 6.1

σ 5.2 16.3 17.2 3.7 14.4 7.6 4.5 5.3 8.7 5.4 11.5 8.7 5.7 0.8

77 30 −177.9 −125.4 40.2 176.3 62.7 31.3 175.4 90.1 3.8 177.9 −71.6 −43.0 177.7 7.6

σ 4.1 5.8 5.5 3.7 8.8 10.4 4.5 7.2 6.7 3.2 7.3 7.6 2.3 0.1

78 17 177.2 51.8 −132.0 −178.2 −67.6 −15.6 −178.1 −82.8 −12.3 179.8 82.5 −162.8 −177.1 6.0

σ 4.7 15.1 10.1 3.7 8.7 9.8 8.5 7.3 13.5 5.6 16.2 15.4 4.8 0.9

79 31 −179.4 56.0 −127.5 −179.6 −83.2 2.9 176.1 87.2 11.0 −177.7 −57.4 −44.1 178.6 7.2

σ 4.7 5.5 6.2 2.2 8.7 8.7 5.0 7.6 9.0 3.1 5.1 10.1 4.3 0.3

80 13 −178.2 −79.0 −9.1 177.2 −92.9 −38.8 −178.9 −87.0 −30.1 −178.5 −159.6 −175.1 −179.9 7.0

σ 2.9 13.6 11.4 6.7 14.6 14.9 2.5 11.2 13.1 2.9 12.2 16.0 3.9 1.3

81 13 −178.7 −94.1 −3.1 −179.0 93.1 158.9 177.4 56.7 31.5 178.7 79.1 8.1 179.5 6.5

σ 5.0 10.2 8.6 3.4 7.6 7.0 3.1 5.9 8.5 3.2 8.0 6.3 3.2 0.5

Reverse-2
C |T| ϕ1 ψ1 ω1 ϕ2 ψ2 ω2 ϕ3 ψ3 ω3 ϕ4 ψ4 ω4 ϕ5 ψ5 ω5 ϕ6 ψ6 e

1 810 −147.4 −77.3 162.2 −82.8 175.7 −2.1
σ 16.5 14.4 9.6 14.7 12.3 1.0

2 79 −155.9 56.9 −165.2 82.5 −178.8 −1.5
σ 16.6 18.3 7.3 15.4 13.8 0.8

3 27 −111.6 −16.0 7.2 −81.8 −41.7 −1.4
σ 27.9 28.1 9.2 16.7 22.7 0.7

4 23 −129.9 −61.5 3.8 76.8 95.7 −2.2
σ 28.8 17.4 15.1 24.4 27.9 1.6
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C |T| ϕ1 ψ1 ω1 ϕ2 ψ2 ω2 ϕ3 ψ3 ω3 ϕ4 ψ4 ω4 ϕ5 ψ5 ω5 ϕ6 ψ6 e

5 8 122.8 92.5 1.5 −69.1 166.1 −1.1
σ 10.6 15.9 6.1 18.8 29.9 0.5

6 5 −159.4 43.3 −1.7 −82.0 −177.0 −0.9
σ 14.2 21.6 7.4 7.3 11.0 0.3

7 3 104.3 76.0 −0.6 −96.0 −59.7 −1.1
σ 23.2 6.1 9.6 14.7 12.8 0.8

8 2 −98.6 −75.1 6.3 21.1 −122.1 −1.3
σ 8.3 4.0 9.0 19.8 6.5 0.5

9 2 −165.5 −34.6 14.8 70.0 23.7 −0.9
σ 27.4 0.7 2.6 5.3 3.8 0.3

10 2 −135.5 −61.0 128.3 −119.6 −86.6 −1.6
σ 9.4 3.2 9.3 9.8 2.6 0.8

11 2 −163.4 −70.8 1.4 76.9 177.2 −1.2
σ 10.8 0.9 0.6 0.5 17.1 0.5

12 2 154.3 −30.2 −21.8 120.6 178.5 −0.9
σ 6.4 6.8 3.9 0.9 3.2 0.3

Reverse-3
C |T| ϕ1 ψ1 ω1 ϕ2 ψ2 ω2 ϕ3 ψ3 ω3 ϕ4 ψ4 ω4 ϕ5 ψ5 ω5 ϕ6 ψ6 e

1 88 −144.0 −116.7 173.8 −66.6 −31.8 173.9 −126.2 166.6 −4.5
σ 29.1 24.0 4.0 12.4 11.2 6.0 15.2 12.0 1.6

2 7 −127.8 31.7 −169.2 111.3 −24.9 172.4 −139.0 162.0 −3.4
σ 9.7 8.5 4.0 7.8 10.9 8.1 15.2 8.8 1.1

3 8 −145.9 87.5 −172.5 73.8 −57.8 173.6 −114.8 165.4 −4.1
σ 13.0 9.8 2.2 4.7 12.5 3.4 23.8 6.1 1.7

4 8 −160.0 97.5 −173.1 49.8 51.2 −176.1 120.0 168.9 −4.7
σ 4.0 10.9 5.4 3.9 5.6 2.5 11.7 16.9 1.1

5 7 −120.1 23.0 6.6 −86.0 −8.6 176.5 −77.6 153.4 −2.4
σ 22.8 25.6 7.5 8.7 8.0 3.1 19.8 20.9 0.9

6 4 81.1 109.2 10.7 −78.9 −19.7 179.9 −85.1 151.0 −4.0
σ 12.2 16.8 10.3 9.6 10.0 4.8 16.0 17.8 1.8

Reverse-4
C |T| ϕ1 ψ1 ω1 ϕ2 ψ2 ω2 ϕ3 ψ3 ω3 ϕ4 ψ4 ω4 ϕ5 ψ5 ω5 ϕ6 ψ6 e

1 1,654 −135.5 123.4 −179.3 51.9 41.6 177.4 78.4 3.5 179.6 −114.5 141.0 −4.6
σ 16.3 12.7 4.3 5.7 7.8 3.3 9.9 12.5 4.1 16.3 15.0 1.1

2 1,208 −130.1 −178.1 −179.5 −61.5 −29.1 −177.3 −105.7 −6.9 −178.0 −165.4 157.7 −4.2
σ 21.5 11.6 4.4 8.2 12.2 4.1 17.7 21.6 5.3 39.7 36.1 1.9

3 828 −132.6 107.7 −174.8 60.6 −122.9 179.9 −94.6 6.1 −178.0 −107.9 140.0 −5.1
σ 14.9 16.1 5.1 7.6 10.2 3.5 12.7 14.5 5.1 18.1 20.3 1.3

4 137 −141.4 174.0 178.2 −58.5 120.0 179.1 74.9 9.1 −178.6 −150.0 133.2 −3.3
σ 23.7 12.2 4.7 8.9 9.6 3.2 14.4 16.3 4.2 20.4 37.7 1.8

5 94 85.5 −6.8 178.7 −115.0 −60.9 178.4 −96.7 −24.7 179.0 −138.6 147.2 −4.6
σ 13.7 15.2 5.1 13.0 13.5 3.7 17.8 17.0 5.5 20.0 20.6 1.5

6 89 −104.2 10.6 −178.1 98.6 −36.2 179.1 −110.1 −30.1 −179.3 −139.6 155.8 −4.5
σ 11.2 10.1 4.4 14.5 26.1 2.9 23.2 17.3 3.8 17.0 15.8 1.4

7 12 −102.7 −86.5 176.3 −105.4 −87.7 171.3 −100.5 1.3 −178.5 −105.4 139.2 −4.0
σ 18.5 22.4 7.4 13.6 16.8 8.1 19.6 17.8 2.3 19.7 17.2 1.4

8 12 −136.1 88.5 −172.2 −44.5 134.9 4.3 −89.3 16.9 −176.8 −104.3 149.0 −4.3
σ 14.1 14.6 7.1 8.6 5.8 6.4 4.8 14.2 5.6 18.2 12.3 1.5

9 8 −107.8 −177.3 176.6 −61.0 −39.7 173.8 −131.2 120.2 179.0 77.3 −171.5 −3.9
σ 13.2 6.8 6.1 5.3 10.5 5.3 16.2 12.6 3.0 12.9 19.4 1.3

10 4 114.9 167.3 175.8 62.1 −122.2 −179.7 −71.5 −13.2 178.8 −114.0 94.0 −3.6
σ 12.3 15.9 2.3 7.7 4.0 3.6 7.0 8.4 2.2 6.7 18.6 2.2

11 4 −105.2 13.4 −179.6 78.3 94.8 −177.6 92.5 −6.2 176.3 −154.1 140.0 −5.9
σ 2.6 9.7 4.3 11.3 23.8 2.2 28.8 18.6 3.5 16.8 7.3 1.5

Reverse-5
C |T| ϕ1 ψ1 ω1 ϕ2 ψ2 ω2 ϕ3 ψ3 ω3 ϕ4 ψ4 ω4 ϕ5 ψ5 ω5 ϕ6 ψ6 e

1 1,902 −87.0 173.4 −178.3 −62.6 −22.4 177.9 −89.6 3.8 178.3 85.5 7.6 177.6 −86.1 145.2 −4.8
σ 14.8 11.2 4.3 7.5 10.8 3.8 11.6 10.6 4.5 13.1 14.5 4.4 17.0 14.4 1.4

2 170 −96.0 −33.9 176.0 −156.2 −178.0 −178.4 −60.6 −24.5 −177.3 −118.0 5.3 −175.8 −134.8 128.6 −3.7
σ 14.7 17.3 5.4 12.5 8.4 4.9 8.1 12.1 3.9 12.0 18.6 5.6 13.9 16.4 1.5

3 138 −111.6 −177.1 179.1 −59.8 147.6 178.4 68.4 24.7 176.4 70.8 22.9 178.7 −90.0 146.0 −4.5
σ 20.0 21.9 5.5 11.6 13.4 5.1 15.1 15.9 5.1 13.8 16.9 4.2 20.9 22.6 1.6

Table 6.1: Continued on next page.
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C |T| ϕ1 ψ1 ω1 ϕ2 ψ2 ω2 ϕ3 ψ3 ω3 ϕ4 ψ4 ω4 ϕ5 ψ5 ω5 ϕ6 ψ6 e

4 82 −117.2 146.1 −178.0 −64.0 −30.8 −178.2 −93.9 −36.5 −172.5 −108.3 −3.0 −178.3 77.3 −143.2 −3.1
σ 27.0 16.0 4.3 8.6 13.0 4.3 19.2 16.0 4.7 15.2 12.6 5.1 13.3 23.6 1.3

5 69 −119.4 116.3 −177.3 −51.8 129.2 179.4 75.1 3.1 −177.8 −127.0 −47.4 −178.0 165.9 171.5 −4.4
σ 18.8 14.3 5.2 7.0 7.0 2.6 12.2 13.2 5.3 10.2 18.8 4.6 49.0 36.3 1.8

6 67 −94.9 −29.1 176.6 −162.7 171.0 179.7 −55.0 123.9 178.9 73.2 11.0 −179.4 −129.7 118.4 −4.0
σ 16.3 17.9 5.2 17.9 8.7 4.8 6.1 6.8 3.6 11.7 12.5 4.8 11.7 18.4 1.4

7 61 −101.2 123.7 178.9 54.2 28.3 −179.5 63.8 14.4 −174.2 −129.9 −32.0 −176.9 −120.9 137.2 −5.0
σ 20.1 10.9 4.2 6.1 9.1 3.6 10.6 16.0 4.9 14.7 24.4 5.5 24.6 20.5 1.4

8 56 −124.5 111.0 −175.5 60.5 −148.9 −179.5 −92.3 −11.0 −172.3 −117.4 −12.0 −176.8 −124.1 143.1 −3.9
σ 14.7 22.0 5.9 11.3 18.8 5.0 18.6 21.9 6.0 24.6 23.3 5.9 25.1 24.3 1.6

9 29 −102.6 1.9 −179.2 95.5 156.7 178.2 56.5 32.2 179.3 78.9 7.4 −179.9 −96.0 141.0 −4.5
σ 11.9 13.0 5.9 14.1 13.4 4.4 8.2 12.2 2.6 11.2 14.0 4.9 15.9 14.5 1.3

10 26 −93.8 142.3 −178.6 −59.6 −31.9 −179.6 −88.2 4.6 179.4 110.7 150.9 −178.8 82.8 −177.5 −4.2
σ 16.6 13.2 6.3 5.6 9.8 3.0 15.0 17.6 4.2 18.1 10.8 3.1 15.9 20.2 1.5

11 17 −111.6 49.1 177.5 56.2 −129.7 −178.9 −70.2 −10.0 177.0 −84.8 −4.8 178.0 91.3 −158.1 −4.5
σ 16.5 17.3 5.7 7.4 6.2 3.7 10.1 11.1 3.3 12.2 15.9 5.9 23.2 22.3 1.7

12 15 −91.1 −5.6 178.7 83.2 3.3 −178.2 −123.1 20.4 179.2 94.3 4.2 179.3 −121.1 157.4 −3.6
σ 10.1 7.3 4.4 11.9 8.8 3.1 12.6 10.3 4.5 13.0 12.2 6.4 16.6 20.6 1.2

13 16 −94.3 −55.4 176.3 −164.8 141.6 179.2 51.2 −122.8 −179.3 −96.2 13.0 −177.5 −98.5 129.7 −4.3
σ 12.5 13.3 3.9 7.0 13.1 3.2 4.6 6.6 2.3 8.7 12.5 4.5 10.8 8.7 1.2

14 12 −110.3 138.3 −179.6 −59.1 127.1 −176.9 66.3 19.0 179.3 −136.9 −153.8 −178.1 −80.5 158.2 −4.4
σ 42.9 21.7 2.5 6.6 7.5 3.9 10.9 15.2 4.9 14.3 10.0 3.1 10.7 17.6 1.8

15 11 −139.3 89.0 −180.0 −70.6 141.2 2.6 −97.9 14.2 −173.8 −84.9 −38.1 178.6 −144.5 129.3 −4.0
σ 16.7 18.0 5.1 4.7 6.5 5.9 5.2 15.0 5.8 15.8 15.6 5.8 12.5 17.7 1.8

16 9 −138.1 137.6 −173.4 −62.0 −28.5 −178.0 −95.1 −30.3 −170.8 −115.5 −32.4 −177.5 −154.3 91.2 −2.2
σ 24.6 20.7 5.0 9.3 8.3 3.8 13.8 21.9 7.9 19.1 17.4 4.4 12.1 20.1 1.3

17 9 −106.8 1.8 179.3 72.9 6.7 −177.8 −130.9 −64.8 −176.4 −117.3 −16.7 177.9 −128.7 123.8 −3.2
σ 12.7 6.1 1.5 6.6 9.6 6.2 12.8 23.5 5.6 15.7 22.2 8.5 23.1 16.9 1.1

18 9 −132.3 146.3 178.9 53.0 41.9 174.8 81.9 −52.3 −171.0 −129.7 4.3 179.8 −96.0 138.1 −3.5
σ 13.7 17.1 5.5 5.5 9.4 4.5 9.0 9.9 7.1 14.1 17.1 5.8 10.2 15.9 1.5

19 8 100.0 −12.9 180.0 −88.1 134.2 −179.3 56.7 27.1 177.3 82.6 8.4 −179.3 −95.6 130.2 −4.2
σ 13.6 10.3 2.7 26.7 15.6 5.3 5.5 6.3 6.2 13.1 9.3 2.1 22.5 14.8 1.8

20 9 −155.4 151.1 −176.9 −60.6 −30.8 179.1 −103.5 12.8 −180.0 −135.2 −134.2 −179.1 −87.1 139.2 −2.8
σ 31.9 20.8 4.7 7.9 11.4 4.2 10.3 10.3 4.3 15.5 10.2 4.2 14.9 9.8 1.4

21 9 84.4 4.4 179.4 −128.5 149.1 176.0 51.4 −129.1 −178.9 −74.7 −8.3 179.9 −102.9 51.0 −2.3
σ 9.7 11.5 6.5 13.4 10.6 2.7 5.3 4.6 3.8 14.0 12.1 4.2 10.9 40.2 1.3

22 6 −94.1 −60.1 178.4 −176.7 155.7 172.1 55.9 30.3 −179.7 83.1 −2.3 177.5 −80.4 129.5 −5.3
σ 15.2 25.1 3.5 25.0 12.9 4.5 6.8 10.1 3.2 12.3 7.2 3.2 4.7 17.3 1.1

23 7 −143.5 169.3 176.7 59.7 −132.4 177.4 −94.2 69.7 −180.0 63.0 33.3 178.5 −95.5 130.4 −4.3
σ 11.4 3.1 3.8 10.6 9.0 3.6 12.0 16.5 2.4 9.9 15.4 2.8 16.9 18.4 1.2

24 6 −99.9 118.1 −179.6 −55.6 140.2 −0.1 −88.0 −31.8 −167.4 −144.7 30.1 179.2 −112.1 136.5 −4.2
σ 18.8 15.5 5.0 5.7 3.9 2.0 10.5 13.2 8.2 12.1 19.2 4.7 12.0 18.7 1.3

25 7 −131.9 118.0 −170.7 −58.8 −30.2 178.7 −85.6 −7.2 −178.0 −126.2 −71.7 −176.3 −170.9 177.9 −4.2
σ 14.9 15.1 6.8 4.8 16.8 3.4 18.3 14.9 4.1 17.5 13.4 5.0 22.9 14.8 0.9

26 6 −108.9 10.2 175.8 67.5 −34.6 −175.6 −101.9 −7.9 −179.3 −132.2 −53.9 −173.4 −140.1 162.6 −2.2
σ 1.3 3.2 2.4 4.6 7.6 1.1 6.5 8.4 2.6 3.2 4.0 2.2 5.3 2.9 0.2

27 7 −105.6 −165.3 175.5 −66.5 135.8 −178.4 71.3 −140.6 −178.0 −90.8 4.4 −176.1 −76.3 147.3 −3.3
σ 13.1 16.7 4.2 15.8 17.7 6.5 16.0 15.7 11.5 4.7 12.5 5.4 11.8 10.2 1.1

28 6 101.5 −5.1 176.6 −86.3 170.0 178.6 −59.1 −32.1 179.7 −85.8 −10.0 178.5 −143.5 70.0 −4.4
σ 13.0 16.3 2.7 19.4 11.6 1.5 9.9 11.9 3.2 10.4 16.6 1.9 12.4 10.1 1.5

29 5 −126.7 154.0 −178.3 −78.1 139.4 −4.8 −105.4 126.0 175.4 62.3 35.4 −176.6 −117.8 143.9 −4.2
σ 18.9 25.7 4.5 19.4 13.0 5.4 13.2 14.2 7.2 12.7 19.3 1.5 17.2 10.1 1.7

30 5 −164.0 −168.7 −175.6 −55.6 140.6 −176.3 147.1 −60.5 −5.8 −71.6 140.2 175.8 −124.1 144.5 −4.1
σ 25.4 22.0 5.7 5.6 9.6 5.3 11.1 4.8 5.3 9.9 12.9 2.7 13.2 8.3 1.1

Reverse-6
C |T| ϕ1 ψ1 ω1 ϕ2 ψ2 ω2 ϕ3 ψ3 ω3 ϕ4 ψ4 ω4 ϕ5 ψ5 ω5 ϕ6 ψ6 e

1 1,141 −92.8 114.0 −176.3 −66.0 −29.3 −178.9 −74.6 −40.5 −177.9 −102.0 −9.3 −177.9 65.6 27.7 179.7 −105.2 146.0 −5.5
σ 22.6 15.1 4.5 8.0 12.8 4.1 13.2 12.3 4.2 16.3 11.6 4.8 12.4 20.5 4.5 30.4 15.1 1.3

2 168 −70.7 161.5 −177.3 −59.1 −30.2 178.9 −84.7 −2.3 178.7 70.3 14.1 −177.2 −96.2 −21.6 −178.9 −131.3 146.6 −5.0
σ 8.6 11.9 4.2 6.5 10.5 3.3 11.1 10.1 4.1 9.7 14.4 4.9 18.3 14.2 5.0 22.3 16.6 1.4

3 49 −75.7 129.5 −177.3 −55.3 134.9 178.0 70.4 16.2 179.2 −139.9 168.8 175.9 −97.4 15.8 −178.8 −92.7 136.9 −5.1
σ 16.3 14.9 4.2 8.0 8.3 4.1 12.1 14.6 4.5 13.2 10.8 5.7 9.9 21.7 4.1 22.3 16.4 1.1

4 37 −127.3 166.6 176.3 53.9 51.3 178.2 59.0 33.4 179.0 86.7 7.5 −179.8 −82.4 −17.8 178.5 −135.3 140.1 −4.8
σ 13.1 11.6 3.4 6.2 9.9 3.0 7.5 11.2 3.6 17.3 13.2 5.0 14.6 10.6 5.1 12.4 17.6 1.3

Table 6.1: Continued on next page.
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C |T| ϕ1 ψ1 ω1 ϕ2 ψ2 ω2 ϕ3 ψ3 ω3 ϕ4 ψ4 ω4 ϕ5 ψ5 ω5 ϕ6 ψ6 e

5 33 −68.7 142.6 −179.4 −76.3 −24.4 −177.0 −113.1 −25.0 −179.6 −120.0 155.9 179.9 −81.7 70.6 −177.8 −139.9 148.1 −4.9
σ 7.8 9.7 4.7 12.8 14.7 3.9 18.7 18.0 5.3 27.0 7.8 3.6 5.0 13.5 3.6 17.0 16.6 1.6

6 29 −87.0 −177.8 179.0 −74.2 −15.8 176.9 −98.8 128.8 −178.9 −55.5 136.1 178.2 80.6 1.8 178.7 −113.0 133.9 −3.9
σ 8.2 9.2 4.7 7.8 15.8 4.5 13.6 12.4 4.0 4.0 5.2 2.6 8.9 10.3 3.7 11.2 14.5 1.5

7 24 −83.2 134.9 172.3 −99.8 135.1 9.4 −96.5 −4.7 −172.8 −77.7 −21.8 −179.8 77.3 17.0 177.9 −78.7 146.7 −4.9
σ 17.0 13.7 5.4 17.0 13.2 12.2 8.3 8.1 4.6 11.6 10.5 5.6 14.6 20.2 5.4 12.6 15.6 1.4

8 19 −133.8 145.4 173.4 79.5 178.4 −175.3 −64.4 −27.3 179.2 −95.6 4.5 177.7 54.2 53.2 177.3 −78.7 135.9 −2.8
σ 11.7 10.5 6.3 7.6 11.2 5.6 7.8 9.7 3.4 11.6 10.0 4.8 7.6 9.9 3.5 15.3 10.6 0.9

9 15 −122.7 144.2 −179.9 −92.2 −36.0 −178.9 −135.2 103.9 −4.5 −74.1 164.4 −178.1 −72.0 113.6 179.4 −144.0 146.4 −3.6
σ 31.2 10.5 5.0 11.3 16.9 2.6 7.3 10.2 4.9 5.8 8.5 2.8 7.5 11.3 5.2 18.8 17.0 2.1

10 14 −76.4 134.9 177.3 −64.6 145.6 177.8 79.3 −59.0 179.9 −80.2 −24.0 179.2 67.3 22.8 179.2 −76.2 133.6 −5.0
σ 14.6 14.6 4.2 9.0 10.5 5.3 9.3 9.0 5.1 9.6 7.1 6.4 10.4 13.2 2.4 14.3 9.0 1.1

11 14 81.1 1.1 −178.7 −125.4 154.4 177.0 52.3 −125.4 −178.5 −94.5 3.8 176.6 −81.4 155.6 178.8 −68.5 156.3 −3.5
σ 12.2 9.3 4.2 9.8 11.1 3.6 4.8 7.0 2.7 10.2 8.8 4.3 7.9 11.0 2.3 13.8 18.6 1.4

12 13 −142.4 151.1 171.2 103.4 175.6 175.3 −129.6 107.9 −2.7 −72.9 160.9 −175.4 −67.2 135.6 174.4 −123.7 142.9 −3.8
σ 11.7 11.4 3.7 11.4 3.4 4.2 5.6 7.6 4.2 5.2 5.8 2.8 5.2 4.7 5.6 12.0 13.2 0.8

13 11 −99.1 130.8 176.2 −65.3 −24.4 175.8 −78.6 104.4 −178.8 85.5 −4.4 −178.5 55.4 42.4 −176.6 −94.1 137.1 −5.5
σ 21.6 13.1 4.5 6.6 14.9 3.3 13.6 13.2 1.7 12.7 17.0 5.5 14.4 21.2 5.9 24.5 12.8 0.8

14 10 −104.3 −12.6 178.5 −153.4 173.5 −179.1 −74.1 −5.1 176.4 −89.6 −0.9 176.9 83.7 14.3 176.6 −72.1 141.3 −5.6
σ 16.6 18.3 5.0 9.0 11.9 3.8 8.9 9.1 2.5 12.1 13.0 4.0 18.4 14.3 5.9 9.1 11.0 1.5

15 8 −92.2 109.2 −172.5 −58.7 125.5 179.8 76.5 3.8 −179.9 −110.5 −8.6 177.9 64.0 26.9 −174.6 −128.8 145.0 −5.3
σ 19.4 11.1 6.1 6.0 9.4 3.1 15.8 12.3 7.0 13.3 9.4 5.8 11.0 18.9 3.3 24.3 13.1 1.1

16 8 −98.9 −129.9 −177.4 −74.3 −21.9 177.8 −142.8 166.2 −177.3 −65.5 −12.3 179.4 −96.4 1.4 −178.3 −119.7 118.9 −3.6
σ 8.0 20.8 3.9 10.2 15.5 5.2 20.1 11.7 5.1 8.8 12.5 5.1 9.9 8.9 4.0 14.2 20.7 1.9

17 7 −88.5 165.6 178.0 −54.7 139.6 178.6 95.9 −8.2 179.2 61.8 16.1 −177.7 −94.3 −28.2 −179.4 −128.9 153.6 −4.0
σ 10.8 5.9 1.4 6.5 6.2 4.7 17.8 12.2 3.3 6.4 17.5 5.6 26.0 12.2 3.8 18.7 15.3 1.5

18 6 68.7 23.1 179.3 −88.3 −12.7 177.3 −161.8 172.1 −179.5 −61.9 −33.1 179.3 −71.7 −16.2 −179.8 −119.0 23.6 −2.3
σ 8.1 19.3 3.4 17.0 15.8 3.0 18.7 4.3 3.1 8.5 13.4 3.7 9.7 9.0 3.6 9.8 22.4 0.9

19 6 −65.2 146.1 177.8 −74.6 −26.1 −173.5 −108.4 −8.4 179.2 −143.8 178.8 −179.6 −85.1 2.8 −176.6 −72.2 147.4 −5.6
σ 5.3 9.9 2.3 20.3 12.2 4.8 19.6 10.8 4.5 6.3 7.2 6.1 9.2 9.6 1.9 7.4 13.0 0.8

Table 6.1: Parameters of all turn classes. Turn classes (C), the number of turns in each class (|T|), the
mean dihedral angles (in degrees) and the energies (e / kcal/mol) for hydrogen-bonded turns and the Cα–Cα
distances (d / Å) for open turns, and the corresponding standard deviations (σ) for all normal , open, and
reverse turns. The standard deviations were calculated according to [95, 96]. This Table is extracted from [7].
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6.1.3 Turn Ramachandran Plots

(a) Ramachandran plot for the dihedral angles φ2

and ψ2 (green), φ3 and ψ3 (blue), and φ4 and ψ4 (pur-
ple) of the normal-5 1 turns (X-ray representatives
dataset) used for the assignment of right-handed
α-helices.

(b) Ramachandran plot for the dihedral angles φ2 and
ψ2 (green) and φ3 and ψ3 (blue) of the normal-4 1
turns (X-ray representatives dataset) used for the
assignment of right-handed 310-helices.

(c) Ramachandran plot for the dihedral angles φ2

and ψ2 (green) and φ3 and ψ3 (blue) of the open-4 2
turns (X-ray representatives dataset) used for the
extension of right-handed α- and 310-helices.

(d) Ramachandran plot for the dihedral angles φ2

and ψ2 (green), φ3 and ψ3 (blue), and φ4 and ψ4

(purple) of the open-5 1 turns (X-ray representatives
dataset) used for the extension of right-handed α-
and 310-helices.

Figure 6.1: Continued on next page.
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(e) Ramachandran plot for the dihedral angles φ2

and ψ2 (green), φ3 and ψ3 (blue), φ4 and ψ4 (purple),
and φ5 and ψ5 (orange) of the open-6 4 turns (X-ray
representatives dataset) used for the extension of
right-handed α- and 310-helices.

(f) Ramachandran plot for the dihedral angles φ2 and
ψ2 (green), φ3 and ψ3 (blue), φ4 and ψ4 (purple), and
φ5 and ψ5 (orange) of the normal-6 2 turns (X-ray
representatives dataset) used for the assignment of
right-handed π-helices.

(g) Ramachandran plot for the dihedral angles φ2

and ψ2 (green), φ3 and ψ3 (blue), and φ4 and ψ4

(purple) of the normal-5 9 turns (X-ray representa-
tives dataset) used for the assignment of left-handed
α-helices.

(h) Ramachandran plot for the dihedral angles φ2 and
ψ2 (green) and φ3 and ψ3 (blue) of the normal-4 3
turns (X-ray representatives dataset) used for the
assignment of left-handed 310-helices.

Figure 6.1: Continued on next page.
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(i) Ramachandran plot for the dihedral angles φ2

and ψ2 (blue) of the normal-3 2 turns (X-ray repre-
sentatives dataset) used for the assignment of right-
handed 2.27-helices.

(j) Ramachandran plot for the dihedral angles φ2 and
ψ2 (blue) of the normal-3 1 turns (X-ray representa-
tives dataset) used for the assignment of left-handed
2.27-helices.

(k) Ramachandran plot for the dihedral angles φ2

and ψ2 (green) and φ3 and ψ3 (blue) of the open-4 9
turns (X-ray representatives dataset) used for the
assignment of PPII helices.

Figure 6.1: Ramachandran plots for the turn classes used for the SCOT SSE assignments.
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6.2 SNOT

6.2.1 Geometry

H1 Distance Twist Rise Radius Vtor BDA ϕ ψ ω B-factor Length Purity

SCOT 5.157 98.900 1.506 2.305 49.744 5.828 −66.025 −37.966 179.513 −0.138 11.731 0.871

σ 0.210 3.732 0.122 0.096 5.897 3.991 11.893 13.627 4.048 0.812 5.335 0.119

SCOTkinked 5.155 98.889 1.505 2.306 49.707 5.723 −65.982 −38.049 179.503 −0.139 11.571 0.873

σ 0.206 3.693 0.120 0.095 5.806 3.833 11.811 13.505 4.042 0.811 5.298 0.118

ASSP 5.159 98.853 1.508 2.305 49.719 5.802 −65.708 −38.372 179.495 −0.139 10.787 n/a
σ 0.244 3.378 0.122 0.090 5.543 4.685 11.402 13.834 3.969 0.813 5.399 n/a
DISICL 5.157 98.928 1.509 2.303 49.819 5.768 −66.929 −39.912 179.793 −0.088 5.891 n/a
σ 0.221 3.240 0.116 0.085 5.318 4.202 15.504 38.819 4.514 0.857 5.494 n/a
MKDSSP 5.147 98.874 1.504 2.305 49.607 6.242 −64.270 −40.030 179.452 −0.166 10.660 n/a
σ 0.238 3.356 0.125 0.090 5.718 6.175 8.964 8.718 3.678 0.788 5.612 n/a
PDB 5.204 98.524 1.502 2.312 49.511 6.808 −67.219 −36.738 179.706 −0.103 13.018 n/a
σ 0.287 4.742 0.201 0.131 8.067 7.054 22.215 32.970 6.918 0.847 5.628 n/a
SEGNO 5.166 99.044 1.513 2.300 50.021 6.180 −64.490 −39.312 179.533 −0.127 10.862 n/a
σ 0.262 3.586 0.135 0.095 6.245 5.327 8.277 9.163 3.884 0.815 5.503 n/a
SHAFT 5.245 98.870 1.517 2.303 50.241 8.261 −67.259 −35.125 179.714 −0.081 14.501 n/a
σ 0.381 5.817 0.233 0.157 10.089 9.383 26.620 36.803 7.728 0.865 5.743 n/a
STRIDE 5.180 98.728 1.505 2.308 49.625 6.885 −65.787 −38.136 179.543 −0.136 12.175 n/a
σ 0.290 4.454 0.167 0.118 7.331 8.022 12.117 13.055 5.100 0.817 5.832 n/a

H5 Distance Twist Rise Radius Vtor BDA ϕ ψ ω B-factor Length Purity

SCOT 5.535 105.453 1.726 2.143 62.082 13.578 −71.861 −20.356 −179.501 0.140 3.720 0.918

σ 0.373 7.364 0.236 0.177 12.598 7.847 19.194 17.912 4.542 0.933 1.242 0.143

SCOTkinked 5.536 105.617 1.730 2.140 62.316 13.319 −71.783 −20.372 −179.508 0.140 3.694 0.914

σ 0.369 7.274 0.233 0.175 12.459 7.775 19.099 17.908 4.531 0.935 1.179 0.143

ASSP 5.588 105.822 1.750 2.127 63.044 16.069 −69.123 −22.933 179.901 0.089 3.712 n/a
σ 0.501 7.225 0.265 0.185 13.288 9.896 15.834 18.692 4.760 0.946 1.121 n/a
DISICL 6.023 108.369 1.861 2.067 69.077 36.287 −79.250 −12.699 −179.291 0.219 2.457 n/a
σ 0.912 13.551 0.439 0.326 24.000 20.697 28.088 27.831 5.700 0.999 0.841 n/a
MKDSSP 5.853 110.470 1.887 2.023 71.238 28.439 −70.185 −17.555 −179.591 0.163 3.095 n/a
σ 0.613 8.551 0.253 0.185 15.099 21.403 22.919 20.502 4.539 0.957 1.069 n/a
PDB 5.682 105.243 1.580 2.143 60.594 39.790 −74.655 −5.151 −179.603 0.192 4.664 n/a
σ 0.620 10.461 0.800 0.255 26.364 35.991 35.416 56.263 8.884 0.991 1.459 n/a
SEGNO 5.732 108.397 1.834 2.067 67.699 15.971 −70.040 −20.455 −179.593 0.189 3.261 n/a
σ 0.527 7.306 0.236 0.172 13.192 10.817 15.255 14.955 4.952 0.968 0.772 n/a
SHAFT 5.667 104.929 1.725 2.143 62.116 31.409 −77.547 −2.490 −179.431 0.153 5.745 n/a
σ 0.549 9.015 0.417 0.220 16.986 27.564 30.751 59.099 9.225 0.975 1.312 n/a
STRIDE 5.662 107.767 1.735 2.092 65.296 22.902 −68.559 −20.100 −179.683 0.156 3.435 n/a
σ 0.610 9.125 0.508 0.205 19.887 24.448 25.330 21.994 4.536 0.952 0.987 n/a

H3 Distance Twist Rise Radius Vtor BDA ϕ ψ ω B-factor Length Purity

SCOT 5.910 82.679 1.177 2.733 31.280 14.153 −77.914 −43.241 −176.918 −0.266 6.470 0.565

σ 0.450 6.684 0.392 0.253 11.790 7.531 21.099 14.585 4.835 0.661 1.669 0.071

SCOTkinked 5.898 82.817 1.179 2.729 31.384 14.074 −77.878 −43.094 −176.901 −0.271 6.224 0.568

σ 0.448 6.654 0.389 0.251 11.718 7.618 20.919 14.566 4.850 0.654 1.688 0.073

ASSP 5.807 84.294 1.226 2.692 33.218 11.744 −79.795 −38.685 −177.368 −0.133 6.041 n/a
σ 0.433 7.542 0.286 0.243 10.691 6.756 20.118 21.292 5.295 0.786 1.560 n/a
DISICL 6.463 75.900 0.977 2.983 23.677 0.000 −88.800 −38.764 −176.677 0.070 2.287 n/a
σ 0.405 7.744 0.556 0.357 15.951 0.000 22.446 13.011 5.910 0.969 0.485 n/a
MKDSSP 5.886 81.413 1.075 2.796 28.178 11.686 −79.446 −43.181 −176.527 −0.246 4.694 n/a
σ 0.366 6.540 0.371 0.264 11.331 8.981 22.185 15.190 4.963 0.687 1.672 n/a
SHAFT 5.844 84.539 1.212 2.681 33.259 15.208 −76.777 −41.404 −177.579 −0.279 8.362 n/a
σ 0.539 8.456 0.425 0.280 14.081 8.334 25.017 24.981 4.846 0.712 2.832 n/a
STRIDE 5.951 81.442 0.943 2.863 26.348 9.831 −82.190 −43.836 −177.251 −0.419 5.139 n/a
σ 0.559 10.788 0.748 0.916 21.430 5.884 34.435 37.196 15.445 0.522 0.833 n/a

Table 6.2: Continued on next page.
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H0 Distance Twist Rise Radius Vtor BDA ϕ ψ ω B-factor Length Purity

SCOT 5.358 101.008 1.597 2.249 54.389 13.905 −71.096 −29.496 −179.322 −0.071 5.878 0.495

σ 0.358 6.707 0.237 0.170 11.621 9.498 18.861 18.910 4.675 0.858 1.801 0.025

SCOTkinked 5.343 100.991 1.591 2.251 54.207 11.929 −71.238 −29.524 −179.294 −0.025 5.575 0.495

σ 0.342 6.673 0.235 0.170 11.572 8.449 19.066 18.424 4.724 0.904 1.716 0.025

SEGNO 5.226 98.834 1.516 2.305 50.134 7.741 −64.734 −39.392 179.593 −0.207 12.461 n/a
σ 0.367 5.535 0.194 0.150 8.936 7.898 9.406 9.769 3.790 0.752 5.731 n/a

H6 Distance Twist Rise Radius Vtor BDA ϕ ψ ω B-factor Length Purity

SCOT 4.958 95.283 −1.333 2.413 −42.064 n/a 61.887 41.309 179.965 −0.428 4.000 1.000

σ 0.114 1.159 0.074 0.042 2.539 n/a 10.039 11.620 5.271 0.350 0.000 0.000

ASSP 5.224 96.960 −1.456 2.345 −46.871 n/a 64.208 35.759 −179.828 −0.410 4.000 n/a
σ 0.602 4.930 0.319 0.192 12.118 n/a 25.268 31.837 6.034 0.582 0.000 n/a
MKDSSP 5.172 97.581 −1.503 2.321 −48.705 n/a −88.215 −18.593 −178.909 0.424 1.019 n/a
σ n/a n/a n/a n/a n/a n/a 32.662 29.316 7.178 1.124 0.151 n/a

H11 Distance Twist Rise Radius Vtor BDA ϕ ψ ω B-factor Length Purity

SCOT 5.882 109.986 −1.891 2.032 −70.887 n/a 64.384 24.364 179.905 −0.074 3.139 0.987

σ 0.726 9.331 0.300 0.223 16.516 n/a 15.949 17.004 4.303 0.767 0.483 0.065

ASSP 6.659 123.903 −1.434 1.817 −90.509 n/a 65.248 26.326 179.598 0.096 3.270 n/a
σ 1.842 24.965 1.652 0.475 62.390 n/a 46.740 24.991 4.271 1.002 0.871 n/a
MKDSSP 6.002 113.735 −1.953 1.970 −76.179 n/a −51.146 7.081 179.692 0.287 1.157 n/a
σ 0.976 10.575 0.357 0.263 19.488 n/a 67.381 51.097 5.452 1.072 0.429 n/a

H6+11+13 Distance Twist Rise Radius Vtor BDA ϕ ψ ω B-factor Length Purity

SCOT 5.687 106.874 −1.773 2.113 −64.737 n/a 64.269 25.135 179.908 −0.090 3.170 0.988

σ 0.750 10.235 0.354 0.254 18.762 n/a 15.739 17.153 4.351 0.757 0.500 0.064

ASSP 5.997 108.366 −1.404 2.124 −56.804 n/a 64.799 28.672 179.665 −0.018 3.435 n/a
σ 1.503 23.551 1.165 0.497 48.582 n/a 44.422 29.441 4.678 0.938 0.860 n/a
DISICL 5.608 106.141 −1.738 2.132 −62.971 n/a 54.554 6.421 −179.992 0.375 2.034 n/a
σ 0.759 9.990 0.357 0.248 18.639 n/a 53.743 56.001 7.011 1.117 0.207 n/a
MKDSSP 5.405 103.614 −1.632 2.202 −57.694 n/a −15.732 11.527 −179.456 0.096 1.488 n/a
σ 0.528 8.872 0.303 0.219 16.184 n/a 69.276 37.265 5.173 1.221 1.152 n/a

H10 Distance Twist Rise Radius Vtor BDA ϕ ψ ω B-factor Length Purity

SCOT 9.045 121.934 −2.751 1.375 −111.013 41.761 −78.858 142.983 177.964 0.309 4.194 0.995

σ 0.544 20.254 0.995 0.312 29.321 35.770 22.318 23.363 5.119 1.038 1.468 0.033

SCOTno-strands 9.247 130.532 −2.802 1.280 −122.345 43.296 −87.498 139.118 177.998 0.039 4.502 0.996

σ 0.567 22.967 0.934 0.330 31.016 35.962 24.587 22.339 5.417 0.953 1.534 0.028

ASSP 8.987 122.598 −2.966 1.352 −110.661 13.667 −77.186 141.743 177.741 0.195 3.339 n/a
σ 0.390 13.495 0.140 0.175 16.886 7.742 21.679 18.358 5.691 0.974 0.703 n/a
DISICL 8.900 122.360 −2.360 1.423 −111.472 20.406 −83.337 137.234 178.329 0.114 2.266 n/a
σ 0.519 23.024 1.575 0.330 34.237 9.576 34.561 49.021 11.221 0.975 0.607 n/a
SEGNO 9.132 123.576 −2.905 1.333 −112.802 29.297 −77.364 144.751 177.871 0.286 3.568 n/a
σ 0.555 19.248 0.604 0.293 25.149 21.433 20.976 16.259 10.350 1.034 1.033 n/a

S0 Distance Twist Rise Radius Vtor BDA ϕ ψ ω B-factor Length Purity

SCOT 9.840 153.916 −1.797 1.090 −161.130 23.809 −117.052 136.308 178.194 −0.396 5.407 1.000

σ 0.726 25.890 2.213 1.045 36.087 18.380 26.393 26.790 7.644 0.635 2.751 0.000

SCOTkinked 10.003 157.491 −2.019 0.954 −161.496 18.639 −117.071 136.328 178.193 −0.396 4.739 1.000

σ 0.388 17.883 2.133 0.232 25.159 12.010 26.289 26.604 7.559 0.634 2.295 0.000

ASSP 9.951 160.116 −2.659 0.962 −159.115 14.159 −108.679 133.835 178.388 −0.279 4.335 n/a
σ 0.368 11.904 1.379 0.123 15.383 7.769 28.375 31.371 7.454 0.762 1.666 n/a
DISICL 9.996 157.095 −2.047 0.957 −160.867 18.761 −111.008 138.845 178.177 −0.206 4.176 n/a
σ 0.415 16.748 2.110 0.773 24.259 12.139 28.199 18.260 10.014 0.813 2.330 n/a
MKDSSP 9.822 153.984 −1.781 1.093 −161.467 23.633 −116.694 136.444 178.233 −0.374 5.407 n/a
σ 0.765 25.811 2.216 1.182 36.295 18.623 27.317 27.971 7.576 0.657 2.670 n/a
PDB 9.818 153.721 −1.769 1.096 −161.358 23.970 −116.786 136.503 178.224 −0.379 5.560 n/a
σ 0.770 25.948 2.224 1.227 36.571 18.851 27.471 28.322 8.061 0.655 2.811 n/a
SEGNO 9.951 155.047 −2.057 0.970 −159.113 19.932 −113.191 137.741 178.244 −0.266 5.712 n/a
σ 0.437 18.678 2.109 0.332 27.160 13.019 28.521 21.211 8.695 0.769 2.357 n/a
STRIDE 9.816 153.723 −1.784 1.092 −161.127 23.936 −116.200 136.708 178.224 −0.368 5.422 n/a
σ 0.766 25.773 2.215 1.120 36.352 18.714 27.733 28.240 7.685 0.662 2.732 n/a

Table 6.2: Parameters of all SSEs on the X-ray representatives dataset. The mean geometric parameters,
the dihedral angles, the scaled B-factors, the lengths, and the Purities of right-handed α-, 310-, π-, and mixed
helices, left-handed α- and 310-helices, left-handed helices, PPII helices, and β-strands assigned by the
SSAMs on the X-ray representatives dataset. The Twist, the Vtor, the BDA, ϕ, ψ, and ω are given in degrees.
Their standard deviations were calculated according to [95, 96]. The Distance, the Rise, and the Radius are
given in Å. SCOTno-strands is the SCOT PPII classification without the interference by β-strands.
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H6 Distance Twist Rise Radius Vtor BDA ϕ ψ ω B-factor Length Purity

SCOT 5.087 98.779 −1.460 2.322 −48.444 n/a 61.339 40.202 −179.757 −0.443 4.861 0.854

σ 0.177 4.435 0.184 0.128 8.193 n/a 11.616 15.810 4.296 1.260 2.193 0.146

ASSP 5.349 101.834 −1.594 2.235 −54.959 n/a 61.542 33.727 179.984 −0.273 4.146 n/a
σ 0.522 7.491 0.297 0.203 14.523 n/a 16.200 18.958 5.169 1.031 0.794 n/a
MKDSSP 5.172 99.534 −1.496 2.300 −50.148 n/a −44.279 5.082 −178.842 0.106 1.431 n/a
σ 0.288 6.033 0.220 0.162 10.825 n/a 66.854 38.453 5.096 1.255 1.263 n/a

H11 Distance Twist Rise Radius Vtor BDA ϕ ψ ω B-factor Length Purity

SCOT 5.752 107.244 −1.817 2.090 −66.093 n/a 62.198 26.128 179.001 0.008 4.169 0.968

σ 0.673 8.984 0.290 0.217 16.259 n/a 20.079 21.917 5.859 0.982 0.677 0.096

ASSP 5.764 110.871 −1.882 2.018 −71.291 n/a 60.544 27.423 179.862 −0.215 3.568 n/a
σ 0.385 5.119 0.152 0.106 8.877 n/a 17.812 14.628 6.602 0.715 0.689 n/a
MKDSSP 5.970 113.543 −1.963 1.966 −76.302 n/a 26.609 20.884 179.748 0.091 1.598 n/a
σ 0.554 6.590 0.204 0.151 11.888 n/a 65.747 33.601 5.202 1.191 0.996 n/a

H6+11+13 Distance Twist Rise Radius Vtor BDA ϕ ψ ω B-factor Length Purity

SCOT 5.468 103.613 −1.665 2.189 −58.437 n/a 61.886 31.205 179.440 −0.151 4.389 0.932

σ 0.616 8.489 0.306 0.217 15.952 n/a 17.569 21.022 5.392 1.108 1.385 0.126

ASSP 5.349 101.834 −1.594 2.235 −54.959 n/a 61.542 33.727 179.984 −0.273 4.146 n/a
σ 0.522 7.491 0.297 0.203 14.523 n/a 16.200 18.958 5.169 1.031 0.794 n/a
DISICL 5.455 103.186 −1.645 2.202 −57.560 n/a 62.588 30.741 179.556 −0.161 4.197 n/a
σ 0.645 8.864 0.329 0.228 16.836 n/a 14.156 19.595 5.347 1.032 0.797 n/a
MKDSSP 5.405 103.614 −1.632 2.202 −57.694 n/a −15.732 11.527 −179.456 0.096 1.488 n/a
σ 0.528 8.872 0.303 0.219 16.184 n/a 69.276 37.265 5.173 1.221 1.152 n/a

Table 6.3: Parameters of left-handed helices on the non-redundant set of structures with left-handed
helices dataset. The mean geometric parameters, the dihedral angles, the scaled B-factors, the lengths,
and the Purities of left-handed α- and 310-helices and left-handed helices assigned by the SSAMs on the
non-redundant set of structures with left-handed helices dataset. The Twist, the Vtor, the BDA, ϕ, ψ, and ω
are given in degrees. Their standard deviations were calculated according to [95, 96]. The Distance, the Rise,
and the Radius are given in Å.
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6.2.2 Residues

H0 (mixed) H1 (α) H3 (π) H5 (310)
+ - + - + - + -

SCOT L G ARQEILKMX NDCGHPSTV ILFYV AGPS DQELKFPSWY NGHIMTV
ASSP n/a n/a ARQEILKMX NDCGHPSTYV LFY AGPS AQELKFSWY NGHITV
DISICL n/a n/a ARDQELK NCGHFPSTYVX EIKYV AGP ARNDQEKFS GILMTV
MKDSSP n/a n/a ARQEILKMWX NDCGHPSTYV EILMFYV AGPS DQEKPSW GIMTV
PDB n/a n/a ARQELKM NDCGHFPSTYV n/a n/a NDEFPSW AGIMTV
SEGNO ARQEILKM NDGHPSTVX ARQEILKMW NDCGHPSTYVX n/a n/a DQEPSW GIMTVX
SHAFT n/a n/a ARQELKM NDCGHIFPSTYV Y - NDEFPSWY AGIMTV
STRIDE n/a n/a ARQEILKMW NDCGHPSTVX - - DQEKPSWX CGHIMTV

Table 6.4: Over- and underrepresented residues in right-handed helices. Over- and underrepresented
residues in right-handed helices as assigned by different SSAMs for the X-ray representatives dataset. This
Table is extracted from [7].

H6 (α) H11 (310) HL
+ - + - + -

SCOT ANGY L GW LTV NGSW RLKTV
ASSP ANGSWY L GW - NGSWY RLKTV
DISICL n/a n/a n/a n/a NGSW RLKTV
MKDSSP STY RD GY V NGSTY RPV

Table 6.5: Over- and underrepresented residues in left-handed helices. Over- and underrepresented
residues in left-handed helices as assigned by different SSAMs for the non-redundant set of structures with
left-handed helices. HL are left-handed helices in general. This Table is extracted from [7].

H10 (PPII) S0 (β)
+ - + -

SCOT P NDCGHIFSWY CILFTWYV ARNDQEGHKMPS
ASSP KP NDCGHFSWY CILFTWYV ARNDQEGHKMPS
DISICL DPST AQEGHILMFWYVX CILFPTWYV ARNDQEGHKMSX
MKDSSP n/a n/a CILFTWYV ARNDQEGHKMPS
PDB n/a n/a CILFTWYV ARNDQEGHKPS
SEGNO KP ANDEGHIFWYVX CILFTWYV ARNDQEGHKMPSX
SHAFT n/a n/a n/a n/a
STRIDE n/a n/a CILFTWYV ARNDQEGHKPSX

Table 6.6: Over- and underrepresented residues in extended conformations. Over- and underrepre-
sented residues in extended conformations (PPII helices, β-strands) as assigned by different SSAMs for the
X-ray representatives dataset. This Table is extracted from [7].
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H1
+ Ncap-3 Ncap-2 Ncap-1 Ncap Ncap+1 Ncap+2 Ncap+3

SCOT GPS GLMP DGNPST AELPW ADEPQ ADEQT AFILMRVWY
SCOTkinked GPS GLMP DGNPST AELPW ADEPQ ADEQT AFILMRVWY
ASSP GPS GLMP DGNPST AEMPW ADEQ ADEQ AFILMQRVWY
DISICL CFGPWY DGPSY DFGLNTWY CDNPST ADEKP ADENQS ACDEFLQY
MKDSSP GNPS GLMP DGNPST AELPW ADEPQ ADEQ AFILMRVWY
SEGNO GPS GLMP DGNPST AEPW ADEQS ADEQ AFILMRVWY
SHAFT GP GPSY FGILMP DGNPST EPW ADEQS ADEQT
STRIDE GPS FGILMP DGNPST EPW ADEQ ADEQT AFILMQRVWY

- Ncap-3 Ncap-2 Ncap-1 Ncap Ncap+1 Ncap+2 Ncap+3

SCOT AILRVX AEHKRX AEFIKLMQRV
WYX

CDGHNSTV CFGHILMNRTV
YX

CFGHIKLNPRS
X

DEGHKNPSTX

SCOTkinked ILRVX AEHKRX AEFIKLMQRV
WYX

CDGHNST CFGHILMNRTV
YX

CFGHILNPRSX DEGHKNPSTX

ASSP AILRVX AEHKRX AEFIKLMQRV
WYX

CDGHINSTVX CFGHILMNPTV
YX

CGHIKNPRSX DEGHNPSTX

DISICL ADEHX AEHKLQRX AEHKQRSX AEFGIKLMQRV
WYX

CFGHILMNQTV
YX

CFGHILMPRVX HKNPRSX

MKDSSP AILQRVX AEHKQRX AEFIKLMQRV
WYX

CDGHINSTV CFGHILMNRTV
YX

CGHIKLNPRSX DEGHKNPSTX

SEGNO AILVX AEKQRX AEFIKLMQRV
WYX

CDGHINSTVX CFGHILMNPTV
YX

CGHIKNPRSX DEGHNPSTX

SHAFT AELX AILRVX AEHKQRX AEFIKLMQRV
WYX

CDGHINSTVYX CFGHILMNPRT
VYX

CFGHIKLNPRS
X

STRIDE AILRVX AEHKQRX AEFIKLMQRV
WYX

CDGHINSTVX CFGHILMNPTV
YX

CFGHIKLMNPR
SWYX

DEGHKNPSTX

+ Ccap-3 Ccap-2 Ccap-1 Ccap Ccap+1 Ccap+2 Ccap+3

SCOT ACFILMWY AEIKLMQR AEKLQR AFHKLMNQRT
Y

GN DKP DEKNP

SCOTkinked ACFILMWY AEIKLMQR AEKLQR AFHKLMNQRT
Y

GN DKP DEKNP

ASSP ACFILMW AEIKLMQRW AEKLQR AFHKLMNQRY GN DGKP DEKNP
DISICL AFILWY ACFIKLRWY ADEKLPR ADEKLPQRS DFGHKNQRSY GNP DIKP
MKDSSP AEFILMQWY ACFLMQRW AEIKLQR AEKLMQR ACFHKLMNQR

SY
GKNPQ DFGIKP

SEGNO AEFILMQW AFIKLMR AEKLQR AEKLMQRS FGHNY DGKNPS DEKNP
SHAFT AEIKLMQR AEKLQR AFHKLMNQRT

Y
GN DKP DEKNP IPV

STRIDE ACFILMW AEIKLMQRW AEKLMQR AFKLMNQRSY GN DKP DEKNPS

- Ccap-3 Ccap-2 Ccap-1 Ccap Ccap+1 Ccap+2 Ccap+3

SCOT DEGHKNPSTX CDFGHNPSTV
X

CDFGHIPTVW
YX

DEGIPV ADEFILMPRTV
WYX

AHLMQSTVWY
X

ACFGHILMVX

SCOTkinked DEGHKNPSTX CDFGHNPSTV
X

CDFGHIPTVW
YX

DEGIPV ADEFILMPQRS
TVWYX

AHLMSTVYX ACFGHILMVYX

ASSP DEGHKNPSTX CDGHNPSTVX CFGHIPTVWY
X

DGIPVWX ADEFILMPTVW
YX

AEFHILMTVWY
X

ACGHILMVX

DISICL DGHKNPSTX DEGHNPSTX FGMNTYX CFGHIMNTVW
YX

ILMPVX ADEFHILMRTV
WYX

AEHLMX

MKDSSP DGHNPSTX DGHNPSTVX CDFGHNPSTV
YX

DFGHIPTVW DEGIPVX ACEFHILMSTV
WYX

AHMSTX

SEGNO DGHKNPSTX DGHNPSTX CDFGHNPSTV
YX

DFGHINPVWY
X

ADEIKPSTVWX AEFILMVWYX ACFHILMTVYX

SHAFT CDFGHNPSTV
X

CDFGHIPTVW
YX

DGIPVX AEFIKLMPRST
VWYX

AEFHLMQSTV
WYX

ACFGHILMVW
YX

AHMQRSX

STRIDE DGHKNPSTVX CDGHNPSTX CDFGHINPTV
WYX

DGIPVWX ADEFILMPTVW
YX

AEHMNSTWX ACFGILMVYX

Table 6.7: Ncap and Ccap residue preferences of right-handed α-helices. Given are the significantly
overrepresented (d > 3.3) and underrepresented (d < -3.3) residues in the proximity of and at the N-terminal
and the C-terminal residue of right-handed α-helices. This Table is extracted from [7].
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H5
+ Ncap-3 Ncap-2 Ncap-1 Ncap Ncap+1 Ncap+2 Ncap+3

SCOT FW FILMWY I E NY
SCOTkinked E FW FILMY FI E NY
ASSP A F FY FLM IV ENY DV
DISICL FY CDFMWY DE DEKN CFITVY CFLWY GKP
MKDSSP DE FWY FILMWY EM ENT VY
SEGNO n/a n/a n/a n/a n/a n/a n/a
SHAFT M Y L E
STRIDE F G

- Ncap-3 Ncap-2 Ncap-1 Ncap Ncap+1 Ncap+2 Ncap+3

SCOT G GP GP P AGP
SCOTkinked GPS GP P AGP
ASSP P G GP AGP AGP
DISICL GPSX GSX IVX FGIPVX ADGPSX AEKPQRX AELVX
MKDSSP GP GKP DGP GP AP AGS
SEGNO n/a n/a n/a n/a n/a n/a n/a
SHAFT
STRIDE

+ Ccap-3 Ccap-2 Ccap-1 Ccap Ccap+1 Ccap+2 Ccap+3

SCOT EN VY FVY L P F LP
SCOTkinked N FVY L P F LP
ASSP IV EN V FLY GK F P
DISICL CDM DEN EK FILVY CFWY GKP
MKDSSP EM ENT FVY ILVY FL GP FL
SEGNO n/a n/a n/a n/a n/a n/a n/a
SHAFT E LM P
STRIDE G P

- Ccap-3 Ccap-2 Ccap-1 Ccap Ccap+1 Ccap+2 Ccap+3

SCOT P P P P DE T
SCOTkinked P GP P P DE T
ASSP AP AGP G PS IV
DISICL GX IVX GPX ADGPSX AERX AEILMVYX X
MKDSSP GP AIP PS PS PV DEILV T
SEGNO n/a n/a n/a n/a n/a n/a n/a
SHAFT
STRIDE

Table 6.8: Ncap and Ccap residue preferences of right-handed 310-helices. Given are the significantly
overrepresented (d > 3.3) and underrepresented (d < -3.3) residues in the proximity of and at the N-terminal
and the C-terminal residue of right-handed 310-helices. This Table is extracted from [7].
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H3
+ Ncap-3 Ncap-2 Ncap-1 Ncap Ncap+1 Ncap+2 Ncap+3

SCOT G FIV DHNPS ALPW ADEPSW DEFKLNQWY CFILMVWY
SCOTkinked G FIV DHNPS ALPW ADEPSW DEFKLNQY CFILRVWY
ASSP G none DNPS ALMPW ADEKQSW DEFKLQY FILVWY
DISICL AFILVWY ACFILWY DNPS ADEKNPRS DEHKNQSTY DGNS DKP
MKDSSP G FIPVY DGHNPS APW ADENQS DEFHKLNQY CFILRVWY
SEGNO GP FIVWY DGHNPS LPW ADEKS DEKNQ CFILVWY
SHAFT FP GNP FIVY DHNPS PW ADESW DEFLNQY
STRIDE GN CFILVY DHNPS APW ADEKQSW DEFKLNQY CFILRVWY

- Ncap-3 Ncap-2 Ncap-1 Ncap Ncap+1 Ncap+2 Ncap+3

SCOT X EHRX AEFIKLMQRVX DGHNQTV CFGILMTVYX GIPTVX DEGKNPSTX
SCOTkinked X EHRX AEFIKLMQRVX DGHNQTV CFGILMTVYX GIPTVX DEGKNPSTX
ASSP X X AEFIKVX DGHNTVX CFGILPVYX GIPVX ADENPSTX
DISICL DGHNPSX DEGHKNPSTX AEFILMQVYX FGHILMTVWY

X
GIVX AEILMPTVX AEGHMX

MKDSSP X DEX AEFIKLMQRVX DFHIMNQTVY CFGILMTVYX AGIPTVX ADEHKNPSTX
SEGNO AX ADEHQSX AEFILMQVWY

X
DGHKNQTX FGILMPVYX GIPTVX ADEKPSTX

SHAFT AEX AX AEHQRSX AEFIKLMQVWY
X

DGHKNQTVX FGILMPVYX GIPTVX

STRIDE X AEHRX AEFIKLMQRVX DGHIMNQTVY
X

FGILMTVYX GIPTVX ADEKNPSTX

+ Ccap-3 Ccap-2 Ccap-1 Ccap Ccap+1 Ccap+2 Ccap+3

SCOT DNPSW AEPW DEKQS DFKLNQWY CFGILVW DGKP KP
SCOTkinked DNPSW AEPW ADEKQS DFKLNQWY CFGILVW DGKP KP
ASSP DLPSW AELPW ADEKQRS FKLMQY FGILVWY DP DKP
DISICL ACDFLWY DNPS ADEKNPQRS DFHKLNQRST

WY
CGN DKPT DFIKPWY

MKDSSP DHNPS ALPW ADENPQS DEFHKLNQY CFILMVWY DGNP KP
SEGNO DNPS LPW ADEKS DEFKLNQY CFGILVWY DGKPT DP
SHAFT ALPW DEKQRS DFHKLNQY CFILVWY DGNPT KP P
STRIDE DNPS AELPW ADEKQS DEFKLNQY CFGILVWY DGP DKP

- Ccap-3 Ccap-2 Ccap-1 Ccap Ccap+1 Ccap+2 Ccap+3

SCOT AEGIKQRVX CGHINQTVX FGILMTVYX AGIPSV DEHKNPSTX ACFILMVYX GIVX
SCOTkinked AEGIKQRVX CGHINQTVX FGILMTVYX AGIPSV ADEHKNPSTX ACFILMVYX CGIVX
ASSP GIKTVX DGHNTVX FGIPTVX AGIPSVX ADENPSTX ALQVX GSX
DISICL EGHKQSTVX FGIMTVYX CFGHILMTVW

YX
GIPVX AEHIKLMPQRS

TVX
ACFGHILMVYX AGHMQSX

MKDSSP AEIKLMQRVX GHIKNQTVX FGILMTVYX AGIPTV DEGKNPX ACEFILMVYX AX
SEGNO AEFILMQRVX DGHNQTVYX CFGILMPTVX GIPTVX ADEKPSTX AEFILMVYX ALX
SHAFT GHINQTVX FGILMPTVX AGIPVX ADEKNPST AEFILMVYX X AX
STRIDE AEFIKLMQRVX DGHINQTVX FGILMTVYX AGIPTVX ADEKPSTX AEFILMVX AILMVX

Table 6.9: Ncap and Ccap residue preferences of right-handed π-helices. Given are the significantly
overrepresented (d > 3.3) and underrepresented (d < -3.3) residues in the proximity of and at the N-terminal
and the C-terminal residue of right-handed π-helices. This Table is extracted from [7].
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H1+H3+H5
+ Ncap-3 Ncap-2 Ncap-1 Ncap Ncap+1 Ncap+2 Ncap+3

SCOT GP FGILMP DGHNPST AELPW ADEPQS ADEQ ACFILMRVWY
SCOTkinked GP FGILMP DGHNPST AELPW ADEPQS ADEQ ACFILMRVWY
ASSP GP GLMP DGNPST AELMPW ADEKQS ADELQ AFILMRVWY
DISICL CFILVWY ACFILPWY DGNPST DENPST ADEKNPQS DEGNQS CDFPQW
MKDSSP CGNPSY FGILMP DGNPST AELPW ADEKPQS ADEQY ACFILMRVWY
SEGNO GNPS FGILMPV DGNPST AELPW ADEKQS ADEQ AFILMRVWY
SHAFT CFGP GNPSTY FGILMPV DGHNPST AEPW ADEQS ADEQ
STRIDE GNP FGILMPVW DGNPST AELPW ADEKQS ADEQ ACFILMQRVW

Y

- Ncap-3 Ncap-2 Ncap-1 Ncap Ncap+1 Ncap+2 Ncap+3

SCOT AILQVX AEHKQRX AEFIKLMQRV
WYX

CDGHINQSTV CFGHILMNRTV
YX

CGHINPRSVX DEGHKNPSTX

SCOTkinked AHILQVX AEHKRX AEFIKLMQRV
WYX

CDGHNQSTV CFGHILMNRTV
YX

CGHINPRSVX DEGHKNPSTX

ASSP HILRVX AEHKRX AEFIKLMQRV
WYX

CDGHINSTVX CFGHILMNPTV
YX

CGHINPRSVX DEGHNPSTX

DISICL DHKNSX EHKQRSX AEHIKQVX FGHILMQRVW
YX

CFGHILMVX CFILMPRTVX AHMNRSX

MKDSSP AILQRVX AEHKQRX AEFIKLMQRV
WYX

CDGHINQSTV CFGHILMTVYX CGHINPRSVX DEGHKNPSTX

SEGNO AILVX AEHKQRX AEFIKLMQRV
WYX

CDGHINQSTV
X

CFGHILMNPTV
YX

GHINPRSVX DEGHKNPSTX

SHAFT AEX AEIKLQRVX AEHKQRSX AEFIKLMQRV
WYX

CDGHIMNQRS
TVYX

CFGHILMNPTV
YX

GHINPRSVX

STRIDE AHILRVX AEHKQRX AEFIKLMQRV
WYX

CDGHINQSTV
X

CFGHILMNPTV
YX

CGHINPRSVX DEGHKNPSTX

+ Ccap-3 Ccap-2 Ccap-1 Ccap Ccap+1 Ccap+2 Ccap+3

SCOT CFILTVY CFILVWY CFILTVWY CDFITVWY CDGNST DGNPS DEGNPST
SCOTkinked CFGILTVWY CFILTVWY CFILTVWY CDFITVWY CDGNST DGNPS DEGNPST
ASSP CFGITVY CFILTVWY CFILPTVWY CDFIPTVY CDGNPST DGNPST DGNPST
DISICL CFGITVY CFGITVWY CFILRTVWY CDINPSTV DGNP DEGNPST DEGNPST
MKDSSP CFILTVY CFILVWY CFILTVWY CDFISTVWY CDGNST DGNPST DEGNPST
SEGNO CFILTVWY CFILTVWY CFILTVWY CDINSTV DGNPS DEGNST DEGNPST
SHAFT n/a n/a n/a n/a n/a n/a n/a
STRIDE CFILTVY CFILVWY CFILTVWY CDFISTVY CDGNPST DGNPST DEGNPST

- Ccap-3 Ccap-2 Ccap-1 Ccap Ccap+1 Ccap+2 Ccap+3

SCOT ADEHKNPQRS
X

ADEGHKNPQR
SX

ADEGHKNPQS
X

AEGKMNPQR AEFIKLMPQRV
WYX

AFHILMQRVW
YX

AFILMRVYX

SCOTkinked ADEHKNPQRS
X

ADEGHKNPQR
SX

ADEGHKNPQR
SX

AEGKMNPQR AEFIKLMPQRV
YX

AFHIKLMQRV
WYX

AFILMRVYX

ASSP ADEHKNPQRS
X

ADEGHKNPQR
SX

ADEGHKNQRS
X

AEGHKQRX AHIKLMQRVYX AFHIKLMQRV
WYX

AFHIKLMRVX

DISICL ADEHKQRSX ADEHKNQRSX ADEGHNPSX AEFGKLMQRW
YX

AEFHIKLMQRV
WYX

ACFHIKLMRVY
X

AFHILMRVX

MKDSSP ADEHKNPQRS
X

ADEGHKNPQR
SX

ADEGHKNPQS
X

AEGKMQRX AEFIKLMQRV
WYX

AFHIKLMQRV
WYX

ACFILMRVYX

SEGNO ADEHKNPQRS
X

ADEGHKNPQR
SX

ADEGHKNPQS
X

AEGKLMPQRX ACEFHIKLMQR
VWYX

AFILMPQRVYX AFILMRVX

SHAFT n/a n/a n/a n/a n/a n/a n/a
STRIDE ADEHKNPQRS

X
ADEGHKNPQR
SX

ADEGHKNPQS
X

AEGKMQRX AEFIKLMQRV
WYX

AFHIKLMQRV
WYX

ACFILMRVYX

Table 6.10: Ncap and Ccap residue preferences of right-handed helices. Given are the significantly
overrepresented (d > 3.3) and underrepresented (d < -3.3) residues in the proximity of and at the N-terminal
and the C-terminal residue of right-handed helices. This Table is extracted from [7].
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S0
+ Ncap-3 Ncap-2 Ncap-1 Ncap Ncap+1 Ncap+2 Ncap+3

SCOT DGKNPS DGKNP DGKNPR CFIKRTVWY CFILTVWY CFILTVWY CFILTVWY
SCOTkinked DEGKNPQST DGKNP DGKNP CFIKRTVWY CFILTVWY CFILTVWY CFILTVWY
ASSP DGKNPS DGKNPS DGKN CFIMPTVWY FILTVWY FILTVWY CFILTVY
DISICL DEGKNPRS DGNPS DGKNP CFIKPRTVWY CFIPTVWY CFILPTVWY CFIPTVY
MKDSSP DEGKNPS DGKNP DGKNP CFIKRTVWY CFILTVWY CFILTVWY CFILTVWY
SEGNO DEGKNPRS DGNPS DGKN FGKPVY CFIRTVWY CFILTVWY CFILTVY
SHAFT n/a n/a n/a n/a n/a n/a n/a
STRIDE DEGKNPST DGKNP DGKNP CFIKRTVWY CFILTVWY CFILTVWY CFILTVWY

- Ncap-3 Ncap-2 Ncap-1 Ncap Ncap+1 Ncap+2 Ncap+3

SCOT AFILVWYX ACFHILMRTVW
YX

AEFHILMSVYX ADEGNPS ADEGHKNPQR
SX

ADEGHKNPQR
SX

ADEGHKNPQR
SX

SCOTkinked ACFILVWYX AEFHILMQRST
VWYX

AEFHILMQSVY
X

ADEGLNPS ADEGHKNPQR
SX

ADEGHKNPQR
SX

ADEGHKNPQR
SX

ASSP ACFHILVWX AEFHILMVWYX AEHILMPQSV
WX

ADEGHLNQSX ADEGHKNQSX ADEGHKNQRS
X

ADEGHKQRX

DISICL ACFILVWX AEFHILMRVWY
X

ACEFHILMQRS
TVWYX

ADEGNSX ADEGHLMNQX ADEGHKMNQR
SX

AEHKMQRX

MKDSSP ACFILVWYX ACFHILMRTVW
YX

AEFHILMSVYX ADEGNPS ADEGHKNPQR
SX

ADEGHKNPQR
SX

ADEGHKNPQR
SX

SEGNO ACFHILVWYX FHILMQRVWY
X

ACEFHILMPSV
WYX

ADELNX ADEGHNPQSX ADEGKNPQRS
X

ADEGHKNQRS
X

SHAFT n/a n/a n/a n/a n/a n/a n/a
STRIDE AFILVWYX ACFHILMRTVW

YX
AEFHILMQSTV
WYX

ADEGNPSX ADEGHKNPQR
SX

ADEGHKNPQR
SX

ADEGHKNPQR
SX

+ Ccap-3 Ccap-2 Ccap-1 Ccap Ccap+1 Ccap+2 Ccap+3

SCOT CFILTVY CFILVWY CFILTVWY CDFITVWY CDGNST DGNPS DEGNPST
SCOTkinked CFGILTVWY CFILTVWY CFILTVWY CDFITVWY CDGNST DGNPS DEGNPST
ASSP CFGITVY CFILTVWY CFILPTVWY CDFIPTVY CDGNPST DGNPST DGNPST
DISICL CFGITVY CFGITVWY CFILRTVWY CDINPSTV DGNP DEGNPST DEGNPST
MKDSSP CFILTVY CFILVWY CFILTVWY CDFISTVWY CDGNST DGNPST DEGNPST
SEGNO CFILTVWY CFILTVWY CFILTVWY CDINSTV DGNPS DEGNST DEGNPST
SHAFT n/a n/a n/a n/a n/a n/a n/a
STRIDE CFILTVY CFILVWY CFILTVWY CDFISTVY CDGNPST DGNPST DEGNPST

- Ccap-3 Ccap-2 Ccap-1 Ccap Ccap+1 Ccap+2 Ccap+3

SCOT ADEHKNPQRS
X

ADEGHKNPQR
SX

ADEGHKNPQS
X

AEGKMNPQR AEFIKLMPQRV
WYX

AFHILMQRVW
YX

AFILMRVYX

SCOTkinked ADEHKNPQRS
X

ADEGHKNPQR
SX

ADEGHKNPQR
SX

AEGKMNPQR AEFIKLMPQRV
YX

AFHIKLMQRV
WYX

AFILMRVYX

ASSP ADEHKNPQRS
X

ADEGHKNPQR
SX

ADEGHKNQRS
X

AEGHKQRX AHIKLMQRVYX AFHIKLMQRV
WYX

AFHIKLMRVX

DISICL ADEHKQRSX ADEHKNQRSX ADEGHNPSX AEFGKLMQRW
YX

AEFHIKLMQRV
WYX

ACFHIKLMRVY
X

AFHILMRVX

MKDSSP ADEHKNPQRS
X

ADEGHKNPQR
SX

ADEGHKNPQS
X

AEGKMQRX AEFIKLMQRV
WYX

AFHIKLMQRV
WYX

ACFILMRVYX

SEGNO ADEHKNPQRS
X

ADEGHKNPQR
SX

ADEGHKNPQS
X

AEGKLMPQRX ACEFHIKLMQR
VWYX

AFILMPQRVYX AFILMRVX

SHAFT n/a n/a n/a n/a n/a n/a n/a
STRIDE ADEHKNPQRS

X
ADEGHKNPQR
SX

ADEGHKNPQS
X

AEGKMQRX AEFIKLMQRV
WYX

AFHIKLMQRV
WYX

ACFILMRVYX

Table 6.11: Ncap and Ccap residue preferences of β-strands. Given are the significantly overrepresented
(d > 3.3) and underrepresented (d < -3.3) residues in the proximity of and at the N-terminal and the C-terminal
residue of β-strands. This Table is extracted from [7].
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6.2.3 Consensus

H1 SCOT ASSP DISICL MKDSSP PDB SHAFT SEGNO STRIDE

SCOT 1 0.8683 0.6199 0.8715 0.8407 0.6307 0.8121 0.9188

ASSP 1 0.6086 0.8446 0.7908 0.6117 0.7523 0.8523

DISICL 1 0.6455 0.6373 0.4642 0.6190 0.6314

MKDSSP 1 0.8340 0.6488 0.7682 0.8887

PDB 1 0.5712 0.9089 0.8532

SEGNO 1 0.5434 0.6301

SHAFT 1 0.8050

STRIDE 1

(a) Right-handed α-helices

H5 SCOT ASSP DISICL MKDSSP PDB SHAFT SEGNO STRIDE

SCOT 1 0.2775 0.1694 0.6079 0.4241 0.4412 0.4007 0.6383

ASSP 1 0.1235 0.2659 0.1884 0.1788 0.1785 0.2455

DISICL 1 0.1733 0.1575 0.1078 0.1415 0.1745

MKDSSP 1 0.5902 0.4250 0.4280 0.6967

PDB 1 0.2940 0.5859 0.4475

SEGNO 1 0.3252 0.4501

SHAFT 1 0.3585

STRIDE 1

(b) Right-handed 310-helices

H3 SCOT ASSP DISICL MKDSSP SHAFT STRIDE

SCOT 1 0.2198 0.0796 0.4432 0.0632 0.0256

ASSP 1 0.0568 0.2634 0.0305 0.0088

DISICL 1 0.1102 0.0073 0.0039

MKDSSP 1 0.0341 0.0247

SHAFT 1 0.0776

STRIDE 1

(c) Right-handed π-helices

H0 SCOT SEGNO

SCOT 1 0.0028

SEGNO 1

(d) Right-handed mixed helices

H10 SCOT SCOTwostrands ASSP DISICL SEGNO

SCOT 1 0.5555 0.1644 0.0735 0.1687

SCOTwostrands 1 0.1457 0.0845 0.1478

ASSP 1 0.0936 0.2021

DISICL 1 0.1708

SEGNO 1

(e) PPII helices

S0 SCOT ASSP DISICL MKDSSP PDB SEGNO STRIDE

SCOT 1 0.4788 0.5158 0.8982 0.8811 0.5916 0.8567

ASSP 1 0.5001 0.4859 0.4893 0.5439 0.4826

DISICL 1 0.535 0.541 0.6565 0.5431

MKDSSP 1 0.9755 0.6065 0.9252

PDB 1 0.613 0.9067

SEGNO 1 0.6048

STRIDE 1

(f) β-strands

Table 6.12: Consensus of different SSAMs for all SSEs except left-handed helices. Consensus of
different SSAMs in the assignment of right-handed α, 310, π-, and mixed helices, PPII helices, and β-strands
for the X-ray representatives dataset. The most similar methods to SCOT are highlighted in blue. This Table is
extracted from [7].
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H6 SCOT ASSP MKDSSP

SCOT 1 0.5886 0.1925

ASSP 1 0.2110

MKDSSP 1

(a) Left-handed α-helices

H11 SCOT ASSP MKDSSP

SCOT 1 0.3725 0.3360

ASSP 1 0.1640

MKDSSP 1

(b) Left-handed 310-helices

Table 6.13: Consensus of different SSAMs for left-handed helices. Consensus of different SSAMs in the
assignment of left-handed α- and 310-helices for the non-redundant set of structures with left-handed helices.
The most similar methods to SCOT are highlighted in blue. This Table is extracted from [7].
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6.2.4 Consistency
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(a) Right-handed α-helices (H1)
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(b) Right-handed π-helices (H3)
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(c) Right-handed 310-helices (H5)

Figure 6.2: Continued on next page.
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(d) Right-handed mixed helices (H0)
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(e) Left-handed α-helices (H6)
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(f) Left-handed 2.27-helices (H8)

Figure 6.2: Continued on next page.
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Figure 6.2: Boxplots showing the SSE class-specific consistency of different SSAMs based on the
weighted Tanimoto coefficient. Boxplots showing the overall consistency of different SSAMs for the
assignment of different SSE classes based on the weighted Tanimoto coefficient for the NMR (left, 2,856
ensembles) and X-ray (right, 84 ensembles) ensembles datasets. The median is indicated by a big and the
mean by a small white dot. The numbers of ensembles in which SSEs were classified by each SSAM and for
each dataset are given in parentheses. Outliers were omitted in favor of a concise visualization. This Figure is
extracted from [7].
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6.2.5 Left-Handed Helices

H PDB-ID SCOT Manual[111] ASSP[65] DISICL[54] FLH[198] MKDSSP[22] Name CATH domain Sequence

310 1autL 101-104 101-104 101-104 101-104 n.i. 101-103 Activated protein C 2.10.25.10 DNGG

310 1b9wA 52-55 52-55 n.i. 52-55 n.i. 52-54
Merozoite surface protein 1
(Plasmodium cynomolgi)

2.10.25.10 KNGG

310 1b9wA n.i. n.i. n.i. 83-85 n.i. 83-84
Merozoite surface protein 1
(Plasmodium cynomolgi)

2.10.25.10 FEG

310 1g2lB 258-261 258-261 259-261 258-261 n.i. 258-260 Coagulation factor X 2.10.25.10 DNGD

310 1h21A n.i. n.i. n.i. n.i. n.i. 39-40
Split-soret cytochrome C
(Desulfovibrio desulfuricans)

– YK

310 1jv1A 182-185 182-185 182-185 182-185 182-184 182-184 Glcnac1p uridyltransferase 3.90.550.10 KYFG

310 1kdgA n.i. n.i. n.i. n.i. n.i. 450-451
Cellobiose dehydrogenase
(Phanerochaete chrysosporium)

3.30.410.10 PN

310 1kdgA 532-535 532-535 532-535 532-535 532-535 532-534
Cellobiose dehydrogenase
(Phanerochaete chrysosporium)

3.30.410.10 YENW

310 1kliL 94-97 94-97 95-97 94-97 94-96 94-96 Coagulation factor VII 2.10.25.10 ENGG

310 1n1iA 57-60 57-60 57-60 57-60 n.i. 57-59
Merozoite surface protein 1
(Plasmodium knowlesi)

2.10.25.10 NNGG

310 1n1iA 88-90 n.i. n.i. 88-90 n.i. 88-89
Merozoite surface protein 1
(Plasmodium knowlesi)

2.10.25.10 FEG

310 1ob1C 52-55 52-55 53-55 52-55 n.i. 52-54
Merozoite surface protein 1
(Plasmodium falciparum)

2.10.25.10 NNGG

310 1ob1C 87-89 n.i. n.i. 87-89 n.i. 87-88
Merozoite surface protein 1
(Plasmodium falciparum)

2.10.25.10 FDG

310 1pb5A 29-32 28-32 29-32 28-32 n.i. 29-31 Lnr module from Notch – GWDGG

310 1rfnB 91-94 91-94 92-94 91-94 n.i. 90-93 Coagulation factor IX 2.10.25.10 KNGR

310 2gsaA 65-67 65-68 65-67 65-67 65-67 65-67
Glutamate-1-semialdehyde
aminotransferase (Synechococcus sp.)

3.90.1150.10 GTWG

310 2gsaA n.i. n.i. n.i. n.i. n.i. 24-25
Glutamate-1-semialdehyde
aminotransferase (Synechococcus sp.)

3.90.1150.10 PG

6= 1h21A n.i. 77-81 (310) 77-81 (pi) n.i. n.i. 77-78 (310)
Split-soret cytochrome C
(Desulfovibrio desulfuricans)

– GGISD

6= 1hxxA n.i. 143-146 (310) 143-146 (α) 143-146 143-145 143-145 (α) Ompf porin (Escherichia coli) 2.40.160.10 NFFG

6= 1j9qA 105-107 (310) 105-108 (310) 105-108 (α) 105-108 n.i. 105-107 (310)
Nitrate reductase
(Alcaligenes faecalis)

2.60.40.240 ALGG

6= 1nifA n.i. 105-108 (310) 105-108 (α) 105-108 n.i. 105-107 (310)
Nitrate reductase
(Achromobacter cycloclastes)

2.60.40.240 ALGG

6= 1oe1A n.i. 99-102 (310) 99-102 (α) 99-102 n.i. 99-101 (310)
Nitrate reductase (Alcaligenes
xylosoxydans xylosoxydans)

2.60.40.240 ALGG

6= 1qj5A n.i. 50-53 (310) 50-53 (α) n.i. n.i. n.i.
7,8-Diaminopelargonic acid
synthase (Escherichia coli)

3.90.1150.10 SSWW

6= 2oatA 83-86 (310) 83-86 (310) 83-86 (α) 83-86 83-85 83-85 (310) Ornithine aminotransferase 3.90.1150.10 SSYS

α 1ak0A n.i. 131-134 131-134 131-134 131-133 130-133 P1 nuclease (Penicillium citrinum) 1.10.575.10 AVGG

α 1bd0A 40-44 40-44 40-44 40-44 40-43 40-43
Alanine racemase
(Geobacillus stearothermophilus)

3.20.20.10 ANAYG

α 1bnlA n.i. 135-138 135-138 135-138 135-138 135-137 Endostatin 3.10.100.10 CETW

α 1bqbA 223-226 223-226 223-226 223-226 n.i. 223-225 Aureolysin (Staphylococcus aureus) 1.10.390.10 DNGG

α 1dy2A 207-210 207-210 207-210 207-210 207-210 207-209 Endostatin (Mus musculus) 3.10.100.10 CEAW

α 1hzmA n.i. 61-64 60-63 61-64 61-64 61-63 Protein phosphatase 6 3.40.250.10 IMLR

α 1kdgA n.i. n.i. n.i. n.i. n.i. 552-553
Cellobiose dehydrogenase
(Phanerochaete chrysosporium)

3.30.410.10 AN

α 1koeA 266-269 266-269 266-269 266-269 266-269 266-268 Endostatin (Mus musculus) 3.10.100.10 CETW

α 1kwsA 298-301 298-301 298-301 298-301 298-301 298-300 Beta-1,3-glucuronyltransferase 3 3.90.550.10 AANC

α 1npcA 227-230 227-230 227-230 227-230 227-230 227-229 Neutral protease (Bacillus cereus) 1.10.390.10 DNGG

α 1ohvA 70-73 70-73 70-73 70-73 70-73 70-72
4-Aminobutyrate aminotransferase
(Sus scrofa)

3.90.1150.10 SQIS

α 8tlnE 226-229 226-229 226-229 226-229 226-229 226-228 Thermolysin (Bacillus thermoproteolyticus) 1.10.390.10 DNGG

? 1mzrA n.i. 191-194 (310) n.i. n.i. n.i. n.i.
2,5-Diketo-D-gluconate reductase
(Escherichia coli)

3.20.20.10 AQGG

? 1ptmA 211-215 (310) 211-216 (310) n.i. 211-213 n.i. 211-215 (310)
4-Hydroxythreonine-4-phosphate
dehydrogenase (Escherichia coli)

3.40.718.10 HAGEGG

Table 6.14: Assignments for left-handed helices by different SSAMs. Assignments of left-handed helices
by different SSAMs for the dataset of Novotny and Kleywegt[111]. Additionally, the Perl script findlefthanded.pl
(FLH) was used to define left-handed helices based on the dihedral angles. The assigned helices are grouped
by equally, different ( 6=), and questionable (?) assigned helix classes (H). Human proteins are given without
the name of the corresponding organism. This Table is extracted from [7].



218 APPENDIX

6.3 SLOT

6.3.1 Configuration File and Parameters

dataset1

name:lsc query

identifier

string:1gos 2ejr 2bxr

protein

directory:/datasets/lsc/proteins/

file-extension:.pdb

pocket

atom

directory:/datasets/lsc/pockets/

file-extension:.pdb

pocket-number-delimiter:_

max-number-pockets:3

collector

pocket

helices:y

sheets:y

turns:n

modeler

min-helix-segmentation-points:2

min-strand-segmentation-points:2

model-writer

pymol

directory:/results/models/

file-extension:.py

vertex-diameter:1

vertex-color:20 95 153

edge-diameter:0.2

edge-color:20 95 153

segmentation-vertex-color:131 184 26

segmentation-vertex-diameter:0.5

segmentation-edge-color:131 184 26

segmentation-edge-diameter:0.1

Figure 6.3: Continued on next page.
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dataset2

name:lsc target

identifier

directory:/datasets/lsc/proteins/

file-extension:.pdb

protein

directory:/datasets/lsc/proteins/

collector

protein

helices:y

sheets:y

turns:n

modeler

min-helix-segmentation-points:2

min-strand-segmentation-points:2

comparator

min-match-size-static:0

min-match-size-dynamic:0.3

min-match-size-minimum:3

vertices

segmentation-points-deviation-static:0

segmentation-points-deviation-dynamic:0.6

edges

outer-distance-deviation-static:1

outer-distance-deviation-dynamic:0.15

cross-distance-deviation-static:1

cross-distance-deviation-dynamic:0.15

angle-deviation-static:25

angle-temperature-limit:1

angle-temperature-factor:5

displacement-deviation-static:1

displacement-deviation-dynamic:0.25

min-segmentation-points-match-size:2

match-writer

pymol

directory:/results/matches/pymol/

file-extension:.py

protein-color1:255 255 255

protein-color2:128 128 128

protein-transparency:0.6

judge

file:/results/scores.txt

Figure 6.3: Example of a configuration file shown. The example is given in a two column representation
due to page length limitations. Almost all possible parameters are given for a comparison of protein pockets
of the LSD1 dataset (see Section 2.3.8.1) to a target dataset of entire proteins. Colors have to be given in
RGB and an integer value in [0, 255] for each color channel.
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6.3.2 Segmentation Point Distances
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(a) Right-handed mixed helices (H0)
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(b) PPII helices (H10)

Figure 6.4: Boxplots showing the segmentation point distances in right-handed mixed and PPII he-
lices for different SSAMs. Boxplots showing the segmentation point distances between two neighboring
points in right-handed mixed and PPII-helices obtained for the X-ray representatives dataset for different
SSAMs. For SCOT, these distances are given for the standard settings (left) and for the split helices at kink
positions (right). The numbers of analyzed distances are given in parentheses. The median is indicated by a
big and the mean by a small white dot. Outliers were omitted in favor of a concise visualization.
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6.3.3 Hunting for Domain Pairs

PDB-ID CATH-ID SLOT LOCK2 DaliLite TM-align
SCOT MKDSSP SCOT MKDSSP

1nc7A00 2.60.290.11 0.8000 0.6000 159.46 113.69 0.00 0.3548

3ld7A00 2.60.320.10 0.7778 0.8750 128.76 129.66 2.40 0.3361

1f00I02 2.60.40.10 0.7778 0.6000 102.98 109.13 0.00 0.3186

4unuA00 2.60.40.10 0.7778 0.7778 109.81 110.85 0.00 0.3066

4iauA02 2.60.20.10 0.7778 0.8750 104.82 107.67 0.00 0.2860

4a0tA03 2.60.320.30 0.9000 0.8750 126.61 139.97 0.00 0.2831

1rl6A02 3.90.930.1 0.7778 0.7500 82.88 107.25 0.00 0.2408

Table 6.15: List of domain pairs with high scores obtained by SLOT using SCOT-based SSE anno-
tations for the query domain 4f01B01@cath (2.60.34.10), for which low scores were obtained by all
other SSCMs. The attribution of high and low is based on the boxplots shown in Figure 5.16. A topologically
distant domain with respect to the query is highlighted in blue and the corresponding topology diagrams are
presented in Figure 6.5.
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(a)

(b) Topology diagram of 4f01B01@cath. (c) Topology diagram of 1rl6A02@cath.

Figure 6.5: Superposition and topology diagrams for the query domain 4f01B01@cath and a topolog-
ically distant domain. (a) Superposition according to SLOT with SCOT-based SSE annotations of the query
domain 4f01B01@cath and the domains listed in Table 6.15. The topology diagrams are given for the query
(b) and a high scored (matched), but topologically distant domain (c). The diagrams were created using
Pro-origami [185]. Matched SSEs are highlighted in the same color in all figures.
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6.3.4 Searching for Ligand-Sensing Cores

Rank Query Target Matching
PDB-ID SSEs PDB-ID EC No UniProt ChEMBL SSEs SSEs Score

1 1fj2A 14 1fj2A 3.1.4.39 O75608 14 14 1.000

2 1fj2A 14 1fj2B 3.1.4.39 O75608 14 14 1.000

3 1fj2A 14 4h0cA C6VYE5 12 11 0.7857

4 1fj2A 14 3trdA Q83AV9 14 11 0.7857

5 1fj2A 14 1jjfA 3.2.1.8 P10478 14 11 0.7857

6 1fj2A 14 1r1dA 3.1.1.1 Q06174 15 11 0.7333

7 1fj2A 14 1zk4A 1.1.1.2 Q84EX5 15 11 0.7333

8 1fj2A 14 2qruA Q838Q5 15 11 0.7333

9 1fj2A 14 3f67A 3.1.1.- A6TGL0 15 11 0.7333

10 1fj2A 14 4le1A O34723 11 10 0.7143

11 1fj2A 14 4iqgA Q12GY8 13 10 0.7143

12 1fj2A 14 1i6wA 3.1.1.3 P37957 12 10 0.7143

13 1fj2A 14 2plwA 2.1.1.- Q8IEL9 14 10 0.7143

14 1fj2A 14 2i3dA A9CIK7 14 10 0.7143

15 1fj2A 14 3wynA F7IX06 16 11 0.6875

16 1fj2A 14 4nbrA Q577I6 16 11 0.6875

17 1fj2A 14 3dkrA B2CZF3 16 11 0.6875

18 1fj2A 14 1yxmA 1.3.1.8 Q9BY49 15 10 0.6667

19 1fj2A 14 4nimA C0RJU5 15 10 0.6667

20 1fj2A 14 3is3A 1.1.1.62 O93874  15 10 0.6667

21 1fj2A 14 4gkbA 1.1.1.100 A0A0H3KNE7 15 10 0.6667

22 1fj2A 14 1ooeA 1.6.99.7 Q9XVJ3 15 10 0.6667

23 1fj2A 14 4n5iX C7TF14 18 12 0.6667

24 1fj2A 14 2qm0A Q81A57 18 12 0.6667

25 1fj2A 14 2fhpA Q831P8 15 10 0.6667

26 1fj2A 14 3e0xA Q97KV0 17 11 0.6471

27 1fj2A 14 3g9tA 3.1.1.- Q0GMU2 17 11 0.6471

28 1fj2A 14 1zemA 1.1.1.9 Q8GR61 16 10 0.6250

29 1fj2A 14 4nk4A 1.3.1.9 M4Q2P0 16 10 0.6250

30 1fj2A 14 3sx2A Q73W00 16 10 0.6250

31 1fj2A 14 1pbtA 3.1.1.31 Q9X0N8 16 10 0.6250

32 1fj2A 14 4lvuA 1.-.-.- Q2SZC0 16 10 0.6250

33 1fj2A 14 2apjA Q8L9J9 16 10 0.6250

34 1fj2A 14 1xg5A Q6UWP2 16 10 0.6250

35 1fj2A 14 4fc7A 1.3.1.34 Q9NUI1 16 10 0.6250

36 1fj2A 14 3iccA A0A0F7RDR0 16 10 0.6250

37 1fj2A 14 4esoA 1.-.-.- Q92N93 16 10 0.6250

38 1fj2A 14 4q82A D0LMJ0 16 10 0.6250

39 1fj2A 14 4mxdA 4.2.99.20 P37355 18 11 0.6111

40 1fj2A 14 2hdwA Q01609 18 11 0.6111

41 1fj2A 14 3ga7A 3.1.1.- Q8ZRA1 18 11 0.6111

42 1fj2A 14 3d0kA Q7W3B7 18 11 0.6111

43 1fj2A 14 1uj2A 2.7.1.48 Q9BZX2 17 10 0.5882

44 1fj2A 14 3awdA Q5FNX9 17 10 0.5882

45 1fj2A 14 3pk0A A0QQJ6 17 10 0.5882

46 1fj2A 14 3u49A P39644 17 10 0.5882

47 1fj2A 14 1yb1A 1.1.1.62 Q8NBQ5 17 10 0.5882

48 1fj2A 14 1j1iA 3.7.1.8 Q84II3 17 10 0.5882

49 1fj2A 14 1zmtA Q93D82 17 10 0.5882

50 1fj2A 14 3e9qA A0A0H2UYY2 17 10 0.5882

51 1fj2A 14 3gemA Q48MN0 17 10 0.5882

52 1fj2A 14 4g9eA D2J2T6 17 10 0.5882

53 1fj2A 14 1l7aA 3.1.1.41 P94388 19 11 0.5789

54 1fj2A 14 1q0rA Q54528 19 11 0.5789

55 1fj2A 14 4htaA Q9SZU7 19 11 0.5789

56 1fj2A 14 1mtzA 3.4.11.5 P96084 19 11 0.5789

57 1fj2A 14 4j7aA Q4TZQ3 19 11 0.5789

58 1fj2A 14 2o7rA 3.1.1.1 Q0ZPV7 21 12 0.5714

Table 6.16: Continued on next page.
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Rank Query Target Matching
PDB-ID SSEs PDB-ID EC No UniProt ChEMBL SSEs SSEs Score

59 1fj2A 14 4mqmA 2.3.1.122 P9WQN9  18 10 0.5556

(2.3.1.20)
60 1fj2A 14 1zoiA 3.1.-.- Q3HWU8 18 10 0.5556

61 1fj2A 14 3berA 3.6.1.- Q9H0S4 18 10 0.5556

62 1fj2A 14 2r11A 3.1.1.1 P96688 20 11 0.5500

63 1fj2A 14 3wwcA 3.7.1.7 Q9LCQ7 19 10 0.5263

64 1fj2A 14 2gk4A A0A0H2UQ78 19 10 0.5263

65 1fj2A 14 4g4iA 3.1.1.- G2QJR6 19 10 0.5263

66 1fj2A 14 3thrA P13255 19 10 0.5263

67 1fj2A 14 1uk8A 3.7.1.9 P96965 19 10 0.5263

68 1fj2A 14 1t64A Q9BY41  19 10 0.5263

69 1fj2A 14 3rd5A Q741V7 19 10 0.5263

70 1fj2A 14 3lcrA 3.1.2.- A4KCE5 19 10 0.5263

71 1fj2A 14 3c5vA Q9Y570  21 11 0.5238

72 1fj2A 14 3fsgA Q04D10 21 11 0.5238

73 1fj2A 14 3d59A 3.1.1.47 Q13093  21 11 0.5238

74 1fj2A 14 1ne7A 3.5.99.6 P46926 20 10 0.5000

75 1fj2A 14 2iksA P0ACP1 20 10 0.5000

76 1fj2A 14 3icwA 3.1.1.3 P41365 20 10 0.5000

77 1fj2A 14 3tnlA 1.1.1.25 Q8Y9N5 22 11 0.5000

78 1fj2A 14 3qitA 3.1.2.- D0E8E2 20 10 0.5000

79 1fj2A 14 3cxuA 3.3.2.10 Q41415 20 10 0.5000

80 1fj2A 14 1xu7A 1.1.1.146 P28845  20 10 0.5000

1.1.1.-
81 1fj2A 14 4i4cA D9IR22 23 11 0.4783

82 1fj2A 14 1r6dA 4.2.1.46 Q9ZGH3 23 11 0.4783

83 1fj2A 14 2fqxA P29724 21 10 0.4762

84 1fj2A 14 1mj5A 3.8.1.5 A0A1L5BTC1 21 10 0.4762

85 1fj2A 14 1ekkA 2.7.1.50 P39593 21 10 0.4762

86 1fj2A 14 2b61A 2.3.1.31 P45131 22 10 0.4545

87 1fj2A 14 1nm2A 2.3.1.39 P72391 22 10 0.4545

88 1fj2A 14 3jyoA 1.1.1.24 Q9X5C9 22 10 0.4545

89 1fj2A 14 2q1sA O87989 22 10 0.4545

90 1fj2A 14 1q8fA 3.2.2.8 P33022 22 10 0.4545

91 1fj2A 14 3oosA A0A0F7RDE1 22 10 0.4545

92 1fj2A 14 3ikhA 2.7.1.15 A6T989 22 10 0.4545

93 1fj2A 14 1y1pA 1.1.1.2 Q9UUN9 22 10 0.4545

94 1fj2A 14 3efbA A0A0H2V3A6 22 10 0.4545

95 1fj2A 14 3b12A 3.8.1.3 Q1JU72 22 10 0.4545

96 1fj2A 14 3k89A Q5H4I7 22 10 0.4545

97 1fj2A 14 3i8sA P33650 23 10 0.4348

98 1fj2A 14 2dfdA 1.1.1.37 P40926  23 10 0.4348

99 1fj2A 14 1n7hA 4.2.1.47 P93031 24 10 0.4167

100 1fj2A 14 3e48A 24 10 0.4167

101 1fj2A 14 4gxtA C7RF86 24 10 0.4167

102 1fj2A 14 3k0bA Q71YC9 24 10 0.4167

103 1fj2A 14 3kv1A 2.7.1.69 Q5E0H6 24 10 0.4167

104 1fj2A 14 4g5hA 4.2.1.115 A0A0H3JPH0 21 12 0.4138

105 1fj2A 14 1orrA 5.1.3.- P14169 27 11 0.4074

106 1fj2A 14 1k8qA 3.1.1.3 P80035 27 11 0.4074

107 1fj2A 14 3kd6A Q8KDR9 25 10 0.4000

108 1fj2A 14 4jnkA 1.1.1.27 P00338  25 10 0.4000

109 1fj2A 14 3g02A 3.3.2.9 Q9UR30 25 10 0.4000

110 1fj2A 14 3ljsA 2.7.1.4 Q87CC0 25 10 0.4000

111 1fj2A 14 2hrzA A9CHF5 28 11 0.3929

112 1fj2A 14 1k8qB 3.1.1.3 P80035 28 11 0.3929

113 1fj2A 14 4ooeA 1.1.1.267 P9WNS1  28 11 0.3929

114 1fj2A 14 2glqA 3.1.3.1 P05187 26 10 0.3846

115 1fj2A 14 3epwA 3.2.2.1 Q9GPQ4  26 10 0.3846

116 1fj2A 14 4juiA B3Y018 29 11 0.3793

117 1fj2A 14 3ntxA 3.5.1.1 A0A384KLA7 28 10 0.3571

118 1fj2A 14 3rufA Q7BJX9 28 10 0.3571

Table 6.16: Continued on next page.
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Rank Query Target Matching
PDB-ID SSEs PDB-ID EC No UniProt ChEMBL SSEs SSEs Score

119 1fj2A 14 1sg6A 4.2.3.4 P07547 28 10 0.3571

120 1fj2A 14 2qmaA Q87NC6 28 10 0.3571

121 1fj2A 14 4eezA 1.1.1.1 D2BLA0 29 10 0.3448

122 1fj2A 14 2zb4A 1.3.1.48 Q8N8N7 29 10 0.3448

123 1fj2A 14 2h6eA 1.1.1.117 Q97YM2 29 10 0.3448

124 1fj2A 14 1ntoA 1.1.1.1 P39462 29 10 0.3448

125 1fj2A 14 4h3vA D2PU28 29 10 0.3448

126 1fj2A 14 3nrsA Q8D0U0 30 10 0.3333

127 1fj2A 14 1llfA 3.1.1.3 Q6S5M9 36 12 0.3333

128 1fj2A 14 4hxyA Q6V1M8 30 10 0.3333

129 1fj2A 14 1yb5A 1.6.5.5 Q08257 30 10 0.3333

130 1fj2A 14 3ju8A 1.2.1.71 O50174 34 11 0.3235

131 1fj2A 14 3ndiA B5L6K6 31 10 0.3226

132 1fj2A 14 1cs0B 6.3.5.5 P0A6F1 31 10 0.3226

133 1fj2A 14 2ejlA 1.5.1.12 Q5SI02 35 11 0.3143

134 1fj2A 14 1pl8A 1.1.1.14 Q00796  32 10 0.3125

135 1fj2A 14 3wmtA 3.1.1.73 Q2UP89 32 10 0.3125

136 1fj2A 14 3TG0A 3.1.3.1 P00634 32 10 0.3125

137 1fj2A 14 4kp7A 1.1.1.267 O96693 32 10 0.3125

138 1fj2A 14 3e2dA 3.1.3.1 Q93P54 36 11 0.3056

139 1fj2A 14 4lmpA 1.4.1.1 I6YEC9 33 10 0.3030

140 1fj2A 14 3uplA Q2YIM3 33 10 0.3030

141 1fj2A 14 4m9dA 6.3.4.4 Q81JI9 34 10 0.2941

142 1fj2A 14 3iteA K7NCP5 34 29 0.2941

Table 6.16: Complete list of the matches calculated by SLOT for the query chain 1fj2A@pdb. Complete
list of the matches calculated by SLOT for the query protein 1fj2A@pdb in the LSC query target chains dataset
for which the score was not 0 and the number of matching SSEs was at least 10. The information of these
matches were extended by the EC numbers (EC No), the UniProt accession numbers [186] (UniProt), and the
availability ( ) of bioactive molecules in the ChEMBL database [187]. Rows highlighted in blue contain query
target protein pairs of the ligand-sensing cores.
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6.4 Scripts

These scripts were written for the creation and preparation of our datasets. All scripts are written in
Python and provide a documentation using the command line option -h or --help.

6.4.1 PDBFTP

The PDBFTP script utilizes the FTP interface of the PDB [9] to download the requested protein
structure files to a local machine. Due slow transmission rates and unstable connections, it uses a
connection timeout of 10 seconds and keeps retrying to reconnect and download files on connection
errors. It provides the command line arguments as shown in Table 6.17.

Argument Description

<output directory> path to the output directory

-d FTP URL to server (ftp.wwpdb.org)
-u FTP directory (/pub/pdb/data/structures/all/pdb/)
-p prefix of input files (pdb)
-s suffix of output files (.pdb)
-l log file path containing a list of synchronized PDB-IDs
-f PDB ids to download
-r PDB line prefixes to be removed (e.g., ANISOU,COMPDN)
-f PDB-IDs file

--no-unpack do not unpack/unzip files
--lower-pdbid lowers the PDB-ID
--clean-models retains only the first model

Table 6.17: Command line arguments, options, and flags of the PDBFTP script. Default values are given
in parentheses.

All parameters required for the connection and the file handling can be set via command line
arguments. Once the script is started, it synchronizes the local directory with the one of the FTP
server. The proteins or files to be synchronized can be limited by providing a file containing a list of
PDB-IDs (-f).

All protein files are available in compressed form. These are extracted automatically. However, this
extraction can be suppressed by the use of --no-unpack.

A list containing prefixes of lines that are removed from the extracted files can be given via the
option -r. For instance, -r REMARK removes all REMARK lines regardless of their remark code.

The PDB file format supports one secondary structure element annotation although an NMR file
consists of multiple models with different conformations. Therefore, the flag --clean-models can
be used to retain only the first model of NMR ensembles and removes all other. --lower-pdbid
changes the 4 character PDB identifier in the HEADER to lowercase to correspond to the filename.



6.4. SCRIPTS 227

HEADER, SOURCE, AUTHOR, OBSLTE, KEYWDS, REVDAT, TITLE, EXPDTA, SPRSDE, SPLT, NUMMDL, JRNL,
CAVEAT, MDLTYP, REMARK, COMPND

List 6.1: Global (non-chain-specific) header PDB line prefixes.

CISPEP, SEQADV, DBREF, DBREF1, DBREF2, LINK, SSBOND, SEQRES, MODRES, HELIX, SHEET, TURN, SITE,
ATOM, HETATM, ANISOU, TER, HET

List 6.2: Chain-specific PDB line prefixes.

6.4.2 PDBChainSplitter

The PDBChainSplitter script splits a PDB file into separate chain files. Each chain file contains
the global header information but only the chain-specific information in each chain file. Lists 6.1
and 6.2 show the PDB line prefixes containing the global header respectively the chain-specific
information. The chain output file names have the chain id as the file name suffix in front of the file
extension. Table 6.18 shows the supported command line parameters.

Argument Description

<input file/directory> path to the input file or directory
<output file/directory> path to the output file or directory
<threads> number of parallel threads

-e input and output file extension (.pdb)
-l ligand handling (0)
-t ligand chain distance threshold (3)

--no-header no header lines except HEADER
--lower-pdbid lowers the PDB-ID
--modres-2-atom HETATM modres lines to ATOM
--rename-chainid rename chain ids of ligands

Table 6.18: Command line arguments, options, and flags of the PDBChainSplitter script. Default
values are given in parentheses.

In some PDB files ligands are not assigned to a chain which requires a specific ligand handling by
the use of option -l. We support three different ways of ligand handling:

• 0: use input file chain annotation for the assignment

• 1: assign/copy a ligand to each chain if any ligand’s atom is within a (Euclidean) distance
threshold -t to any atom of the chain

• 2: copy all ligands to all chain files

If --rename-chainid is not given, the ligand information is copied without modification to the
chain files. Otherwise, the chain identifier may be modified according to the selected ligand
handling. The differentiation between modified and ligand residues for HETATM lines is based on
the MODRES information. If a residue’s name is listed in that section of the PDB file, each HETATM
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line is interpreted as a modified residue line respectively ligand line otherwise. The line prefixes of
modified residues can be changed to ATOM if --modres-2-atom is given. HET lines are per definition
interpreted as ligand lines.

The script supports threads. We noticed that due to the I/O-speed limitations of hard drives, the
number of threads should be limited to 5. Otherwise, the performance may saturate or even
decrease.

6.4.3 PDBModelSplitter

What the PDBChainSplitter script (see Section 6.4.2) is for proteins and their chains, the
PDBModelSplitter script is for NMR ensembles and their models. It splits the models of NMR
ensembles into separate PDB files retaining and copying the global information to each model
file while keeping only the atom and the missing residue information for a model in each file. The
supported command line arguments are given in Table 6.19.

Argument Description

<input file/directory> path to the input file or directory
<output file/directory> path to the output file or directory

Table 6.19: Command line arguments, options, and flags of the PDBModelSplitter script. Default
values are given in parentheses.

The models are separated on the basis of MODEL and ENDMDL lines. The information between
such a pair of termini is model-specific and only appear in the respective model file. In addition,
the information of missing residues for each model is extracted from the REMARK 465 lines and
assigned to a model based on the model identifier column (column 14).

The termini lines are not retained in the output model files. The output file names consist of the
original file name plus a consecutive integer model id and the input file extension.
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