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1 Introduction

Structural change in time series is an important issue in statistics. For example changes in
exchange rates (Indonesian Rupiah and US Dollar, see e.g. [33]) and stock market prices (see
e.g. Chapter 2.2.4 in [11]), sudden climate or temperature changes (see e.g. [95]), unexpected
hydrological phenomena or construction of dams resulting in changes in monthly discharge
of a river (see e.g. [34] or [37]) make parameter estimation difficult, since many estimators,
such as the sample variance, rely on the assumption that the underlying process does not
change its properties over time. We consider a special case of structural changes – abrupt
shifts in the mean. Our goal is to estimate other parameters properly in this scenario. To
achieve satisfying results under shifts in the mean we propose to segregate the data into
non-overlapping or overlapping blocks and to estimate the parameter of interest in each block
separately. Subsequently the blocks estimates are combined to obtain the final estimate of
the parameter. This thesis consists of two parts, which are described in the following.

Estimation of the Hurst parameter under shifts in the mean

Chapter 2 of this thesis is based on the article “Estimation methods for the LRD parameter
under a change in the mean” [72], where we focus on estimation of the Hurst parameter
H, which characterizes the intensity of long range dependence (LRD) in time series. This
type of dependence is described by a slowly decaying autocovariance function, while short
range dependent processes, such as the ARMA process, exhibit exponentially decaying
autocovariances. Ordinary estimators of the LRD parameter, such as the local Whittle ([50])
or the Geweke and Porter-Hudak (GPH, proposed by [28]) estimators cannot distinguish
between LRD and jumps in the mean and tend to overestimate the parameter H in the
presence of jumps. As a consequence, change-point tests, such as the Wilcoxon change-point
test proposed by [19], often do not reject the hypothesis of no changes in the mean. This is
due to the fact that the corresponding test statistic involves the true parameter H, which
has to be estimated properly under level shifts. To cope with this problem we investigate
approaches based on segregating the sample into blocks and estimating the LRD parameter
on each block separately. The resulting estimates are then combined to get a final estimate
of H. We examine segregation into two blocks considering all possible positions or using the
test statistic of the Wilcoxon change-point test to estimate the shift location. An average
value of estimates obtained from the two blocks yields the final estimate of H. As this
procedure is designed for the case of at most one level shift we propose to segregate the data
into many overlapping or non-overlapping blocks obtaining many estimates, which are then
combined by averaging. This procedure yields satisfying results in our simulation studies and
is MSE-consistent as is shown in this thesis. This feature implies weak consistency, which is
useful when employing the estimator in the test statistic of the Wilcoxon change-point test
to preserve convergence in distribution.
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1 Introduction

Scale estimation under shifts in the mean

The results of Chapter 3 of this thesis originate from the articles “On variance estimation
under shifts in the mean” [4] and “Robust scale estimation under shifts in the mean” [3]. The
focus of this part is on estimation of the variance or standard deviation under level shifts in
the possible presence of outliers. We use the same idea of segregating the data into many
blocks, since this procedure improves the performance of ordinary estimation techniques
considerably in the context of LRD.

If only a few level shifts are present we propose usage of the average value of sample
variances, obtained from many non-overlapping blocks. Under some conditions on the number
of change-points and the number of blocks we show strong consistency of this estimator
under independence. For weakly dependent stationary processes weak consistency is shown.
In the absence of level shifts the blocks estimator is asymptotically normal with the same
parameters as in the case of the ordinary sample variance. In the presence of many changes
in the mean this procedure is highly biased in finite samples. Therefore, we investigate an
adaptively trimmed mean of blockwise estimates. This procedure is designed for independent
data and yields very good results in our simulations, even for autocorrelated data.

In the presence of outliers these are no longer suitable estimators, since they are not robust.
Thus, we propose a modified version of the median absolute deviation (MAD), where the
sample median is calculated in blocks rather than on the whole sample. By doing so, we
make sure that absolute differences from only few blocks are biased, while the rest are not.
The proposed estimator yields very good results in our simulation study. We show strong
consistency of the modified MAD under some conditions on the number of change-points
and the number of blocks. When no level shifts are present the estimator is shown to be
asymptotically normal, with the same asymptotic variance as in the case of the ordinary
MAD.

In Chapter 4 the results of this thesis are summarized and an outlook on future work is
given. Some proofs, supplementary figures and tables can be found in the Appendix.
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2 Estimation methods for the LRD parameter under a
change in the mean

This chapter is based on the article “Estimation methods for the LRD parameter under a
change in the mean” [72], published in Statistical Papers. This article is joint work with
Aeneas Rooch (Ruhr-University Bochum) and Roland Fried (TU Dortmund University).
Estimation of the Hurst parameter, which describes the strength of dependence in time series
with long memory, under shifts in the mean is in the focus of this article.

The blockwise estimation techniques discussed in Section 2.3 are considered by Aeneas
Rooch in his dissertation, see [71]. The focus is on the improvement of the performance of the
change-point tests, such as the Wilcoxon change-point test, see [19]. The corresponding test
statistic involves the true Hurst parameter, which has to be estimated properly under shifts
in the mean. Aeneas Rooch segregates the data into several blocks and estimates the Hurst
parameter using the Whittle estimator, a parametric estimation technique, which requires
knowledge about the true data generating process. Also the Box-periodogram estimator is
used, which is not based on the knowledge of the true model, but is highly biased in many
situations.

In this thesis we focus on estimating the Hurst parameter properly. Different estimators,
such as the Geweke and Porter-Hudak (GPH) estimator (see [28]), which do not require
knowledge about the true model, are employed to estimate the Hurst parameter. Extensive
simulations are performed to compare the performance of the estimators with each other
as well as with other estimators from literature. Scenarios where data exhibit short range
dependence are included. Furthermore, the estimation techniques are refined using an ARMA
correction procedure to improve the results when dealing with an ARFIMA (fractionally
integrated ARMA) model, which involves components of short and long range dependence.
Asymptotic MSE-consistency, and therefore convergence in probability, of the non-overlapping
and overlapping blocks approaches when using the local Whittle or the GPH estimator in
every block is proven. Moreover, the assumption of at most one jump in the mean is relaxed
by allowing for multiple changes in the mean. It is also shown that the test statistic of the
Wilcoxon change-point test has the same asymptotic distribution when using the blockwise
estimator for the Hurst parameter instead of the true one. Finally, the estimation techniques
are applied to real data sets.

For better reading minor changes have been incorporated in the article. A major change
is the consideration of a modified version of the GPH estimator in each block to prove the
consistency of the blocks estimators, see Section 2.4. Since the Hurst parameter H ∈ (0, 1)
has to be estimated and the regression based GPH estimator Ĥ may take values outside
the interval (0, 1), we consider the modified estimator ĤI(0,1)(Ĥ) + I[1,∞)(Ĥ). Moreover, the
consistency of the blocks estimation technique is also shown to hold when using the local
Whittle estimator, see Section 2.4.

3



2 Estimation methods for the LRD parameter under a change in the mean

2.1 Introduction

A stochastic process (ξt)t≥1 is said to exhibit long range dependence (LRD) or long memory
if the dependence between ξt and ξs vanishes slowly as the distance |t − s| between the
variables increases. The autocovariance of short range dependent processes, such as the
ARMA (autoregressive moving average) process, decreases exponentially as |t− s| → 0, see
e.g. Chapter 3 in [36]. As opposed to this, the autocovariance of a process with long memory
has a much slower decay (see (2.1)).

Long-range dependence is an issue in several fields of time series analysis, ranging from
climate sciences [86] and network data traffic [23], [52], [47] to economics and finance. In the
latter context, volatilities may exhibit long memory [10], and there are discussions whether
long-range dependence can be found in stock market prices [100], [12], [7], [15], [53]; for a
survey on long-range dependence in economics, see [5].

We consider a discrete-time second order stationary stochastic process (ϵt)t≥1 defined by

ϵt = G(ξt), t ≥ 1,

where (ξt)t≥1 is a stationary Gaussian process with E(ξt) = 0 and E(ξ2
t ) = 1 ∀t and

autocovariance function γ with

Cov(ξt, ξs) = γ(|t− s|) = γ(k) = k−DL(k), k ≥ 1, (2.1)

where k = |t − s|, 0 < D < 1 and L(k) is a slowly varying function with L(bx)/L(x) → 1
for x → ∞ ∀b > 0. G : R → R is a measurable function, which satisfies E(G(ξt)) = 0. The
process (ξt)t≥1 exhibits LRD due to the slow decay and therefore the non-summability of the
autocovariances. Equivalently, stochastic processes with long memory can be characterized
using the spectral density f :

lim
λ→0

f(λ)
cf |λ|−β

= 1,

with β ∈ (0, 1) and a constant cf > 0, see Chapter 2.1 in [8].
The exponent D ∈ (0, 1) in (2.1) describes the intensity of the LRD. It is more common

to use the fractional differencing parameter d = (1 − D)/2 ∈ (0, 1/2) in the context of
fractionally integrated ARMA (ARFIMA) processes or the Hurst parameter H = 1 −D/2 =
d+ 1/2 ∈ (1/2, 1) in the context of LRD and stationary time series. The higher H is, the
slower is the decay of the autocovariance and the stronger is the dependence of the random
variables.

One example of a long memory process is the fractional Gaussian noise (fGn), a process
of first order differences of the fractional Brownian motion. Furthermore, a stochastic
process described by an ARFIMA(p, d, q) model with AR parameter p, MA parameter q
and a differencing parameter d exhibits long range dependence. See Appendix A for a brief
introduction of those processes and [8] for more information.

Remark 1. While H ∈ (1/2, 1) corresponds to long range dependent time series, the value
H ≤ 1/2 implies short range dependence. H = 1 results in time series with correlation between
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2.2 Model

two random variables Yt and Ys equal to one for all s, t, i.e., Cov(Xt, Xs)/
√
V ar(Xt)

√
V ar(Xs) =

1, ∀s, t. The correlation between the random variables of the process diverges to infinity
in the case H > 1, which is a contradiction to the fact that the correlation between two
random variables must be in the interval [−1, 1]. The case H ≥ 1 may occur for stochastic
processes with infinite variances, which is not of interest in this thesis. In the case of H < 0
the stochastic process is not measurable. See Chapter 2.3 in [8] for more information. Hence,
only H ∈ (0, 1) is considered in this thesis, specifically H ∈ (1/2, 1), since we are interested
in long range dependent processes.

The rest of this chapter is organized as follows: In Section 2.2 we present the model of the
data generating process. In Section 2.3 we introduce our adaption techniques together with the
methods of [56] and [44] for estimating H under a jump in the mean. In Section 2.4 we prove
the consistency of the blocks estimators, and in Section 2.5 we demonstrate the usefulness
of the proposed estimators when using the Wilcoxon change-point test. In Section 2.6 we
analyse the performance of our methods in a simulation study. In Section 2.7 we apply the
estimation methods to real data. In Section 2.8 we give a summary and an outlook.

2.2 Model

In this thesis we consider K change-points of possibly different heights h1, ..., hK at unknown
locations t1, ..., tK , i.e., a process (Yt)t≥1 of the type

Yt =
K∑

k=1
hkIt≥tk

+ ϵt =
K∑

k=1
hkIt≥tk

+G(ξt), (2.2)

for t = 1, . . . , N , where N denotes the sample size. There are other change-point problems:
changes in the marginal distribution of the observations [30], in the coefficients of linear
regression models with long range dependent errors [49] or in the dependence structure [35],
[65]. All these procedures require knowledge of a LRD parameter, e.g. the Hurst parameter.
More information on change-point analysis see e.g. [14] or [45].

2.3 Estimation methods

The literature offers various approaches to estimate the Hurst parameter. In [42] a rescaled
range (R/S) statistic for estimation of the Hurst parameter was introduced. A parametric
Whittle approach involving the approximate log-Likelihood was introduced by [99]. Based
on this estimation technique [50] proposed the semiparametric local Whittle estimator,
while consistency and normality of this estimator was shown by [69]. Consistency and the
distribution of the local Whittle estimator in the nonstationary case were considered by [92]
and [93] involving data tapers. Dependence of the convergence rate and the limit distribution
on H was introduced in [81]. Cases in which the local Whittle estimator is not consistent are
discussed in [63]. Another semiparametric estimator of the Hurst parameter is the Geweke
and Porter-Hudak (GPH) estimator based on the log-periodogram regression, proposed by
[28]. In contrast to the local Whittle estimator the GPH estimator has a closed form. While
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2 Estimation methods for the LRD parameter under a change in the mean

[28] used all frequencies and the corresponding periodogram values in the formula of the
estimator, [70] introduced a trimmed version of this estimation procedure by truncating the
lowest and the highest frequencies to improve the performance of the estimator. For further
overview on estimators of the LRD parameter see [88] or [89], where e.g. the Box-Periodogram
method, Peng’s method and estimation involving absolute values of aggregated series are
described.

Unfortunately, ordinary estimators usually overestimate the Hurst Parameter under changes
in the mean. In [82] it was discussed how level shifts lead to a misspecification of the
dependence structure and therefore to a possible overestimation of the Hurst parameter.

Thus, the Hurst parameter H needs to be estimated properly taking the level shifts into
account. This is e.g. crucial for change-point tests, such as the Wilcoxon change-point test
proposed by [19], since the corresponding test statistic involves the true parameter H, which
has to be estimated.

To estimate the Hurst parameter under shifts in the mean, [40] investigated usage of the
local Whittle estimator, which requires knowledge of the number of change-points. [56] used
a trimmed version of the Geweke and Porter-Hudak estimator to remove the effect of the
change in the mean by trimming the lower frequencies in the spectral domain. The estimation
method of [44] is also based on trimming the lowest frequencies, applied to the local Whittle
estimator, originally proposed by [50]. We will restrict ourselves on the latter two approaches
in the simulations (see Section 2.6), since the method proposed by [40] requires knowledge
about the number of level shifts.

We investigate estimation methods based on estimating the parameter in blocks and then
combining the estimates. This general idea can be combined with any estimation technique,
such as the GPH estimator. We examine the overlapping and the non-overlapping blocks
approach along with two further variants of this idea for comparison and verify that they
improve the respective standard estimators, which do not take jumps in the mean into account.
We compare our proposals with the adapted approaches of [56] and [44].

2.3.1 Generic estimation techniques

In what follows we will involve the two following generic techniques in the estimation of the
Hurst parameter.

GPH estimator

The regression based GPH estimator, which was first introduced in [28], uses the spectral
representation of the long memory processes. The regression is based on the representation

log (f(λ)) ≈ c− (2H − 1) log(λ)

of the spectral density f(λ) as λ → 0, see [56]. The corresponding periodogram I(λj) at
frequency λj = 2πj/N, j = 1, ..., N , is an estimator of the spectral density f(λj) and is

6



2.3 Estimation methods

defined as follows:

I(λj) = w(λj)w(−λj), where

w(λj) = 1√
2πN

N∑
t=1

Yt exp(iλjt),

see [44]. An estimator d̂ of the slope d in the regression

log (I(λj)) = c+ dzj + ej

yields the GPH estimator ĤGPH = d̂+ 0.5, i.e.,

ĤGPH = −0.5
b∑

j=1
(zj − z̄) log(I(λj))/

b∑
j=1

(zj − z̄)2 + 0.5,

where zj = log |1 − exp(−iλj)|, z̄ = b−1∑b
j=1 zj and b = ⌊Nu⌋, u > 0, is the bandwidth

parameter, which satisfies b log(b)/N = o(1) for the consistency of the parameter estimator
(see [43]). We will use u = 2/3 in the following.

Local Whittle estimator

The local Whittle (LW) estimator ĤLW proposed in [50] minimizes the approximate frequency
domain likelihood function

R(H) = log
⎛⎝1
b

b∑
j=1

λ2H−1
j I(λj)

⎞⎠− (2H − 1)1
b

b∑
j=1

log(λj)

with respect to H ∈ (0, 1), where b is a bandwidth parameter, where the relationship

f(λ) = Gλ2H−1

as the frequency λ decreases to zero with G ∈ (0,∞) and H ∈ (0, 1) is assumed, see [69]. We
set b = 0.8N0.79, as is done in [44].

2.3.2 Pre-estimating the jump

The following approach is based on the assumption of at most one level shift of height h1 at
location t1, i.e., K ≤ 1, see model (2.2). An intuitive approach is removal of a jump before
application of any of the previous methods. First, the time point t1 has to be estimated.
Then we remove the level shift and estimate the Hurst parameter H on the corrected time
series. Another possibility is to estimate H before and after the level shift and average over
the two estimates to get an overall estimate. We use the Wilcoxon change-point test proposed
by [19] (see Section 2.5), which checks the null hypothesis of no change in the mean using
the following test statistic

Wn = max
1≤k≤n

|Wk,n| ,

7



2 Estimation methods for the LRD parameter under a change in the mean

with Wk,n as defined in Section 2.5. See [19] for further information. For large values of Wn

the null hypothesis is rejected. The estimated time point t1 of the level shift is then defined
as follows:

t̂1 = arg max
1≤k≤N−1

⏐⏐⏐⏐⏐⏐
k∑

i=1

N∑
j=k+1

(
I{Xi≤Xj} − 1

2

)⏐⏐⏐⏐⏐⏐ .
The estimator t̂1/N is a weakly consistent estimator for the true fraction τ ∈ (0, 1) of
observations after which the jump occurs as can be proven using the arguments of [39], see
[9]. In the absence of level shifts the pre-estimation of t̂1 does not influence the following
estimation approach considerably.

We segregate the sequence Y1, . . . , YN into two blocks

Y1, . . . , Yt̂1 and Yt̂1+1, . . . , YN .

The height h1 is then estimated as

ĥ1 = 1
N − t̂1

(Yt̂1+1 + . . .+ YN) − 1
t̂1

(Y1 + . . .+ Yt̂1),

yielding the corrected time series

Y1, . . . , Yt̂1 , Yt̂1+1 − ĥ1, . . . , Yn − ĥ1. (2.3)

Subsequently, we estimate the Hurst parameter H on the corrected time series (2.3). The
corresponding estimator is denoted by Ĥpre,1.

Another possibility is estimating H before and after the estimated jump location t̂1, resulting
in the two estimates Ĥ(1)

t̂1
and Ĥ(2)

t̂1
. The average over those two values is an overall estimate

of H:

Ĥpre,2 =
Ĥ

(1)
t̂1

+ Ĥ
(2)
t̂1

2 .

Remark 2. Since estimation under the assumption of LRD requires many observations, we
can avoid dealing with too small blocks by setting

t̃ = arg min
t∈K

⏐⏐⏐t− t̂1
⏐⏐⏐ ,

where

K = {klow, klow + 1, . . . , kup}, (2.4)

is a set of candidate points and

klow = max{⌊N/10⌋, 10} + 1,
kup = N − klow.

8



2.3 Estimation methods

2.3.3 Estimation from two blocks

Instead of applying a change-point test statistic for splitting the sample into two subsets, we
can consider any splitting of the data into two blocks of reasonable size,

Y1, . . . , Yk and Yk+1, . . . , YN

and estimate H on each block. This is repeated for all candidate points k. Early or late time
points resulting in small blocks are not considered. We consider K from (2.4) as a set of
candidate points yielding |K| = kup − klow + 1 tuples (Ĥ(1)

k , Ĥ
(2)
k ), obtained before and after

the candidate time point, respectively.
We consider two possible methods to estimate H based on the estimates Ĥ(1)

k , Ĥ
(2)
k , k ∈ K:

the average value of all obtained estimates

Ĥme = 1
2|K|

∑
k∈K

(
Ĥ

(1)
k + Ĥ

(2)
k

)

and the average value of the left and the right estimate

Ĥdiff = Ĥ
(1)
k∗ + Ĥ

(2)
k∗

2

obtained by segregating the observations at a candidate point k∗, which yields the least
difference between the two estimates:

k∗ = arg min
k∈K

⏐⏐⏐Ĥ(2)
k − Ĥ

(1)
k

⏐⏐⏐ .
2.3.4 Estimation from many blocks

The techniques presented in the previous subsections rely on the existence of only one jump
and finding an adequate splitting into two blocks. Our main proposal extends this idea by
splitting the data into many blocks

Yj−w, Yj−w+1, . . . , Yj, . . . , Yj+w

of size n = w̄ = 2w + 1 around the observation Yj and estimating H on this window, leading
to N − 2w estimates Ȟn,j for H, where j = w + 1, ..., N − w. Subsequently, we average over
all values obtaining the estimate

Ĥo,n = 1
N − 2w

N−w∑
j=w+1

Ȟn,j. (2.5)

We choose the flank length w = w(N) (resulting in a block size n = w̄ = 2w+ 1) depending
on the sample size N ,

w = w(N) = max
{
⌊
√
N⌋, 10

}
, (2.6)

9



2 Estimation methods for the LRD parameter under a change in the mean

since the block size should be reasonably large when estimating under the LRD assumption.
Moreover, we also investigate the choice n = w, i.e., shorter windows.

Furthermore, we investigate segregation of the observations Y1, ..., YN into m = ⌊N/n⌋
non-overlapping blocks of size n = w̄ = 2w + 1

Y1, . . . , Yn, Yn+1, . . . , Y2n, Y2n+1, . . . , Y3n, . . . Y(⌊N/n⌋−1)n+1, . . . , Y⌊N/n⌋n,

yielding m = ⌊N/n⌋ estimates Ȟn,k, k = 1, . . . ,m. As an estimate for H we consider the
average of the estimates

Ĥno,n = 1
m

m∑
k=1

Ȟn,k. (2.7)

We also consider the smaller block size n = w with w as in (2.6) for comparison.

2.3.5 Trimmed estimators

A trimmed version of the regression based GPH estimator was investigated by [56] where the
lowest frequencies are trimmed, as these are affected by changes in the mean. Let I(λj) be
the value of the periodogram at frequency λj = 2πj/N . The trimmed GPH estimator is

Ĥtr
GPH = −0.5

b∑
j=l

(zj − z̄) log(I(λj))/
b∑

j=l

(zj − z̄)2 + 0.5,

where zj = log |1−exp(−iλj)| and z̄ = (b−l+1)−1∑b
j=l zl. The trimming parameter is denoted

by l = ⌊N1/2+ϵ⌋, ϵ > 0, while b = ⌊Nu⌋, u > 0, is the bandwidth parameter. Moreover, the
adapted GPH estimation technique was proposed, where the trimming parameter is computed
recursively. Let li = ⌊N (2−2Ĥi−1)/(3−2Ĥi−1)+ϵ⌋, where Ĥ1 is computed using l1 = ⌊N1/2+ϵ⌋. The
value Ĥi denotes the estimate computed using the trimming parameter li. Then the Hurst
parameter is estimated by Ĥi if |Ĥi − Ĥi−1| < 0.01 or i > 9. The authors suggest values
ϵ = 0.05 and u = 0.8. We will use the adapted trimmed estimator for comparison in this
thesis.

Similarly, [44] proposed the trimmed version of the local Whittle estimator, where the
computation of the estimate is also based only on the higher frequencies – this shall take
into account a change in the mean. The trimmed local Whittle estimator Ĥtr

LW minimizes the
function

R(H) = log
⎛⎝ 1
b− l + 1

b∑
j=l

λ2H−1
j I(λj)

⎞⎠− (2H − 1) 1
b− l + 1

b∑
j=l

log(λj)

with respect to H ∈ (0, 1), where l is the trimming parameter and b is the bandwidth
parameter. Suggested values are l = ⌊1 + 0.2N0.62⌋ and b = ⌊0.8N0.79⌋.
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2.4 Inheriting asymptotic MSE-consistency

2.4 Inheriting asymptotic MSE-consistency

In Section 2.6 we will see that our main proposal to split the data into many blocks and
estimate H separately improves estimation of the Hurst parameter considerably. In this
section we investigate conditions for the asymptotic MSE-consistency of this approach. The
estimators of H constructed using overlapping or non-overlapping blocks inherit asymptotic
MSE-consistency in the absence or presence of one or even several jumps, as is demonstrated
in the following.

Theorem 1. Let (ξt)t≥1 be a stationary Gaussian LRD process, with mean 0, variance
1 and autocovariances satisfying (2.1) and consider observations Y1, . . . , YN of the type
Yt = ∑K

k=1 hkIt≥tk
+G(ξt) for a measurable function G : R → R satisfying E(G(ξt)) = 0, see

model (2.2). Consider the overlapping blocks estimator (2.5) with a monotone increasing
window length n = 2w + 1 = o(N) with n → ∞, where w is the flank length. As generic
estimation method Ȟn,j on the j-th window choose any estimator Ȟn,j for H, which is
asymptotically MSE-consistent in the absence of level shifts. Moreover, we require that the
variance of the estimator Ȟn,k̃ in a jump-contaminated block k̃ grows sufficiently slowly, i.e.,

V ar(Ȟn,k̃) = o

(
N2

K2n2

)
. (2.8)

Let K̃ denote the index set of the windows, which include at least one jump, with |K̃| ≤ K.
For the number of change-points we assume that

K = o

(
N

n log2(N)

)
= o

(
m

log2(N)

)
(2.9)

holds, i.e., the number of level shifts grows slower than the number of blocks m.
Then the overlapping blocks estimator (2.5) is asymptotically MSE-consistent.

Proof of Theorem 1 for the local Whittle estimator. In the following we will use the local
Whittle estimator ĤLW, see Section 2.3.1. This estimator is the solution of a minimization
problem over a bounded interval (0, 1). Therefore, the variance of this estimator is naturally
bounded by one. Moreover, the variance and the bias of ĤLW tend to zero in the absence of
level shifts, see [68, p. 223].

We assume that we are dealing with K ·n jump-contaminated overlapping windows, which is
the maximum number and therefore represents the worst case scenario. Due to the stationarity
of the (Yt)t≥1 in the absence of level shifts (i.e., Yt = G(ξt), see model (2.2)) we have

E
(
Ĥo,n −H

)
= 1
N − n+ 1

N−w∑
j=w+1

E(Ȟn,j −H) = N − n+ 1
N − n+ 1E(ȞN,1 −H) → 0.

11



2 Estimation methods for the LRD parameter under a change in the mean

In the presence of level shifts we obtain

E
(
Ĥo,n −H

)
= 1
N − n+ 1

N−w∑
j=w+1,j /∈K̃

E
(
Ȟn,j −H

)
+ 1
N − n+ 1

∑
k̃∈K̃

E
(
Ȟn,k̃ −H

)

= N − n+ 1 −Kn

N − n+ 1 E(Ȟn,1 −H) + Kn

N − n+ 1O (1) → 0, (2.10)

since (2.9) holds and E(Ȟn,k̃), E(H) are both in the interval (0, 1). This proves the asymptotic
unbiasedness. Moreover, we obtain for the variance

V ar(Ĥo,n) = 1
(N − n+ 1)2

⎛⎝ N−w∑
k=w+1

V ar(Ȟn,k) +
N−w∑

k=w+1,j ̸=k

Cov(Ȟn,k, Ȟn,j)
⎞⎠

≤ 1
(N − n+ 1)2

⎛⎝ N−w∑
k=w+1

V ar(Ȟn,k) +
N−w∑

k=w+1,j ̸=k

√
V ar(Ȟn,k)

√
V ar(Ȟn,j)

⎞⎠
= Kn

(N − n+ 1)2V ar(Ȟn,k̃) (2.11)

+ N − n+ 1 −Kn

(N − n+ 1)2 V ar(Ȟn,1) (2.12)

+ 2Kn(N − n+ 1 −Kn)
(N − n+ 1)2

√
V ar(Ȟn,k̃)

√
V ar(Ȟn,1) (2.13)

+ Kn(Kn− 1)
(N − n+ 1)2V ar(Ȟn,k̃) (2.14)

+ (N − n+ 1 −Kn)(N − n−Kn)
(N − n+ 1)2 V ar(Ȟn,1) (2.15)

→ 0.

The terms in (2.12) and (2.15) tend to zero as N → ∞, since we are dealing with a MSE-
consistent estimator of the Hurst parameter. The terms (2.11), (2.13) and (2.14) represent
the decomposition of the covariance part and tend to zero, since the variance of the local
Whittle estimator is bounded by one satisfying condition (2.8).

The MSE-consistency follows from the convergence of the bias and the variance to zero.

Remark 3. 1. The above Theorem 1 can also be proven using the non-overlapping
estimator (2.7).

2. We can also use the GPH estimator in the above proof with a slight modification:
As noted in Remark 1 the Hurst parameter H lies in the interval (0, 1). However some
estimators, such as the GPH estimator proposed by [28], may take values which are
outside this range. Therefore, for simplicity, this estimator can be modified by bounding
its possible outcomes. I.e., we consider an estimator of the type ĤI(0,1)(Ĥ) + I[1,∞)(Ĥ),
where Ĥ is the GPH estimator. The variance of such estimator is bounded and lies in
the interval [0, 1] satisfying condition (2.8). The variance and the bias of the ordinary
GPH estimator Ĥ tends to zero as N → ∞ implying convergence in distribution.

12



2.5 Application to the Wilcoxon change-point test

Moreover, we have that I(0,1)(Ĥ) → 1 and I[1,∞)(Ĥ) → 0 in probability. Applying
Slutsky’s Theorem we get that ĤI(0,1)(Ĥ) + I[1,∞)(Ĥ) → H in distribution. Uniform
integrability of the random variable ĤI(0,1)(Ĥ) + I[1,∞)(Ĥ) follows from the bounded
variance, see Lemma 1.4A in [79].
Convergence in distribution and uniform integrability of ĤI(0,1)(Ĥ) + I[1,∞)(Ĥ) imply
convergence of the first moment, i.e., E

(
ĤI(0,1)(Ĥ) + I[1,∞)(Ĥ)

)
→ H, see Theorem

1.4A in [79].
Therefore, the bias E

(
ĤI(0,1)(Ĥ) + I[1,∞)(Ĥ)

)
− H tends to zero and Theorem 1 is

proven, since (2.10) in the above proof holds.

2.5 Application to the Wilcoxon change-point test

If one wants to test whether a sample Y1, . . . , YN includes a change-point, i.e., a point at
which the structure of the data changes, knowledge about H is essential since it is involved
in the scaling of test statistics. So is the function L, which appears in (2.1), but we do not
concentrate on this issue in this thesis.

Change-point problems for LRD time series have been in the focus of research for many
years. They may concern a possible change in the mean. Here, one wants to test the null
hypothesis

H0 : µ1 = . . . = µn

of a constant mean against the alternative

A : µ1 = . . . = µk ̸= µk+1 = . . . = µN for some k ∈ {1, . . . , N − 1}

that there is a change-point at which the level changes, yielding the test problem (H0, A).
CUSUM-type tests for the test problem (H0, A) have been studied e.g. by [39], [48] or [96].
In [97] a test procedure based on Wilcoxon rank statistics is analysed, while [19] proposed a
test, which is based on the Wilcoxon two-sample test statistic:

Wk,N := 1
N dN

k∑
t=1

N∑
s=k+1

(
1{Yt≤Ys} − 1

2

)

where
d2

N ∼ cr N
2−r(2−2H)Lr(N) (2.16)

with the Hermite rank r ∈ N of the class of functions {1G(ξt)≤x − F (x), x ∈ R} and cr =
⌊2r!/(1− (2−2H)r)(2− (2−2H)r)⌋ being the right scaling for Wk,n to have a non-degenerate
limit distribution under H0 if the Yt have a continuous distribution function F . The proposed
change-point test for the test problem (H0, A) rejects the null hypothesis H0 for large values
of the following test statistic

WN := max
1≤k≤N

|Wk,N | .

13



2 Estimation methods for the LRD parameter under a change in the mean

Under H0 [19] proved that WN with r = 1 converges in distribution to

1
2
√
π

sup
0≤ν≤1

|Z1(ν) − νZ1(1)|,

where (Z1(ν))ν≥0 denotes the standard fractional Brownian motion with Hurst parameter H
if the observations are strictly monotone functions of a stationary Gaussian process (ξt)t≥1

with mean zero, variance 1 and autocovariance function as in (2.1). Upper quantiles of this
asymptotic distribution can be used as critical values for the test. For details and critical
values, see [19].

Since the scaling function d2
N in (2.16) depends on the Hurst parameter H, which is not

known in practice, one has to use a suitable estimator of H, such as the overlapping blocks
estimator Ĥo,n, to apply the test. The modified test statistic is then defined as follows:

W̃N =
√

N2−r(2−2H)

N2−r(2−2Ĥo,n)
max

1≤k≤N
|Wk,N | = N r(H−Ĥo,n) max

1≤k≤N
|Wk,N | .

Taking the logarithm of W̃N yields

log(W̃N) = r(H − Ĥo,n) · log(N) + log( max
1≤k≤n

|Wk,N |). (2.17)

The term (H−Ĥo,n) · log(N) converges in probability to zero as long as the generic estimator
used in every block has a convergence rate faster than log(N) and the assumption (2.9) on
the number of level shifts is satisfied. This is e.g. satisfied by the local Whittle estimator, see
[68, p. 223]. To be more precise, we have (with (2.10) and (2.11) - (2.15)) that

E
(
(H − Ĥo,n) · log(N)

)
= O(1)E(Ȟn,1 −H) log(N) + Kn

N − n+ 1 log(N)O (1) → 0

and
V ar((H − Ĥo,n) · log(N)) =

(
O(V ar(Ȟn,1)) + O

(
K

m

))
· log2(N) → 0

yielding
E
(⏐⏐⏐(H − Ĥo,n) · log(N)

⏐⏐⏐2) → 0.

Convergence in second mean implies convergence in probability.
Combining the Continuous Mapping Theorem with Slutsky’s theorem it is obvious from

(2.17) that W̃N has the same limit distribution as WN .

2.6 Simulations

In this section we analyse the performance of the adaption techniques described in Section
2.3. Moreover we compare these estimators with the techniques proposed by [56] and [44],
see Section 2.3.5.
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2.6 Simulations

2.6.1 Simulation scenarios

As generic (not adapted) estimation methods for the Hurst parameter H we choose the local
Whittle estimator and the GPH estimator (see Section 2.3.1) and compare the results with
the trimmed counterparts. We simulate fGn time series Y1, . . . , YN with H = 0.5, 0.7, 0.9 of
length N = 500, 1000, 1500 by generating ξ1, . . . , ξN from fGn with the corresponding Hurst
parameter H, using the fArma package in R, and choosing G as the identity G(t) = t or the
quantile transform

G(t) = (3/4)−(1/2)
(
(Φ(t))−1/3 − 3/2

)
,

where Φ is the distribution function of the standard normal distribution. The resulting
random variables follow the Pareto(3,1)-distribution and are therefore heavy-tailed.

We add a jump of height h = 0.5, 1, 2 after 0.1 ·N or after 0.5 ·N observations (i.e., after a
proportion λ with λ ∈ {0.1, 0.5}) to the generated sequence of observations. We also look at
time series in the jump-free scenario. The adapted estimators presented in Section 2.3 are
applied to the generated data. For comparison, we also apply the two estimation techniques
Ĥtr

GPH and Ĥtr
LW proposed by [56] and [44], described in Section 2.3.5, to the generated time

series.
The described procedure is repeated 1000 times for each scenario, leading to 1000 estimates

H̃1 . . . , H̃1000 for each combination of the generic estimation method, adaption technique H̃
from Section 2.3 and scenario. We use the root mean-squared error (RMSE) in order to
compare the quality of the estimates. The RMSE is widely used as evaluation criterion also
for the memory parameter (see e.g. the simulation studies of [56] and [44]) as it takes bias
and variance of the estimators into account, while being on the same scale as the parameter
to be estimated.

For the case of multiple breaks we add three jumps after proportions λ = 0.1, 0.5, 0.75.
Moreover, we simulate from a fractionally integrated ARMA model, i.e., ARFIMA(p, d, q)
model

(1 − φB)(1 − B)dxt = (1 − θB)εt

with p = 0 (therefore, ϕ = 0), q = 1 (i.e., ARFIMA(0, d, 1)) and θ = −0.6, using the arfima
package in R and following the simulation study of [56], where d = H − 0.5 is the differencing
parameter. Finally, we consider the short range dependent series from the ARMA model.
Since fractional Gaussian noise (fGn) and ARFIMA(0, d, 0) are equivalent models (see e.g.
[28]) the latter model is included implicitly in this simulation study.

2.6.2 Simulation results

We will discuss in detail the results for H = 0.7 in the following and comment on the results
for H = 0.5 and H = 0.9 thereafter.
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2 Estimation methods for the LRD parameter under a change in the mean

Simulation results for H = 0.7

Tables 2.1 (fGn) and 2.2 (Pareto) report the RMSE when applying our adaption techniques
with the local Whittle estimator. We summarize the results in the following:

• For fGn time series
– if there is no jump, all estimation procedures yield similar results.
– the overlapping blocks technique Ĥo,n with block length n = w̄ = 2w+1 = 2

√
N+1

performs better than the other estimators when dealing with a small number of
observations and low jumps.

– the overlapping blocks estimator Ĥo,w with window length n = w =
√
N yields the

best results in all other cases, followed by the non-overlapping blocks estimator
Ĥno,w. The performance of the blocks estimators depends on the sample size rather
than the jump height.

• For the Pareto(3,1)-transformed fGn
– with the estimation on two blocks Ĥme we obtain the best results in the case of

low jumps in the mean.
– the overlapping blocks estimator Ĥo,n dominates if the jump in the mean is high

and in the jump-free scenario.
– most of the estimators yield better results when dealing with high jumps rather

than low jumps. Figure D.1 in Appendix D suggests that the Hurst parameter is
being underestimated under the heavy-tailed distribution, which is compensated
by the overestimation, originating from a high jump in the mean.

Simulation results for H = 0.5 and H = 0.9

For the case of H = 0.5 and H = 0.9 we report the results in Figures 2.1 and 2.2. Here we
restrict the graphical illustration of the boxplots to the case of fGn and N = 1000. The
results are similar to the case H = 0.7. The overlapping blocks estimator Ĥo,n and the
non-overlapping blocks approach Ĥno,n exhibit small variability and yield rather small bias in
the case of short memory, i.e., H = 0.5. The estimators Ĥpre,1 and Ĥpre,2 perform well for
jumps in the middle. The trimmed version of the local Whittle estimator ĤLW,tr overestimates
the parameter if the jump is high. Both ĤLW,tr and ĤGPH,tr exhibit rather high variability in
comparison to the blocks estimators. For H = 0.9, i.e., very strong dependence, again the
blocks and the pre-estimation approaches yield good results and outperform the trimmed
versions of the local Whittle and the GPH estimators.

In the case of the GPH estimator as a generic estimation technique we present the boxplots
of the estimates for H = 0.7 in Figure 2.3. We can observe that the pre-estimation techniques
yield the least bias in most cases, while having rather high variability. When dealing with early
and high jumps the overlapping blocks estimator Ĥo,n exhibits the least bias and variability.
In the case of H = 0.5 and H = 0.9 the corresponding figures show very similar results and
are omitted in this thesis.
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2.6 Simulations

h ĤLW Ĥme Ĥdiff Ĥo,w Ĥo,n Ĥno,w Ĥno,n Ĥpre,1 Ĥpre,2 Ĥtr
LW Ĥtr

GPH

N = 500

0 5.52 5.13 8.10 4.88 4.79 5.60 5.39 6.20 6.14 8.46 10.93

λ = 0.1

0.5 5.92 5.54 9.12 4.82 4.77 5.53 5.42 5.81 6.16 8.48 10.94
1 8.44 7.31 11.43 4.69 4.85 5.39 5.47 5.79 7.15 8.65 11.58
2 17.20 12.23 19.22 4.47 5.18 5.14 5.66 8.72 10.68 9.92 14.10

λ = 0.5

0.5 7.05 5.44 8.33 484 4.80 5.56 5.41 5.97 5.52 8.53 10.92
1 12.69 7.08 10.11 4.72 4.87 5.44 5.58 5.68 5.31 8.79 11.31
2 23.94 11.81 13.67 4.53 5.13 5.23 5.93 5.64 5.38 10.33 12.99

N = 1000

0 4.19 3.94 6.48 3.21 3.56 3.63 3.85 4.46 4.42 6.25 7.16

λ = 0.1

0.5 4.73 4.46 6.97 3.20 3.60 3.61 3.92 4.26 4.76 6.33 7.29
1 7.59 6.47 11.07 3.18 3.74 3.59 4.11 4.55 5.78 6.59 7.69
2 16.09 11.49 19.38 3.17 4.09 3.59 4.50 7.74 9.67 8.06 9.47

λ = 0.5

0.5 6.01 4.39 6.59 3.21 3.61 3.63 3.88 4.37 4.06 6.35 7.29
1 11.59 6.27 8.32 3.19 3.74 3.61 4.01 4.28 4.03 6.61 7.61
2 21.86 10.87 11.79 3.18 4.08 3.60 4.38 4.24 4.07 8.06 9.22

N = 1500

0 3.41 3.26 5.59 2.59 3.29 3.00 3.50 3.57 3.58 5.38 5.69

λ = 0.1

0.5 4.09 3.84 6.01 2.58 3.35 2.99 3.52 3.43 3.92 5.45 5.80
1 7.16 5.97 11.14 2.59 3.53 3.00 3.58 3.95 5.32 5.62 6.16
2 15.42 10.92 20.26 2.64 3.89 3.03 3.81 6.91 8.92 6.60 7.57

λ = 0.5

0.5 5.48 3.84 5.91 2.59 3.37 3.00 3.63 3.45 3.25 5.44 5.78
1 11.01 5.81 7.49 2.61 3.54 3.02 3.86 3.40 3.28 5.62 6.10
2 20.74 10.27 10.61 2.65 3.89 3.08 4.23 3.40 3.32 6.60 7.45

Table 2.1: Estimated RMSE·102 of different estimators for the Hurst parameter H = 0.7
in time series without (h = 0) and with change-point (jump of height h after a
proportion of λ of the data), each based on 1000 simulation runs with N = 500,
N = 1000 and N = 1500 values from fGn, based on the local Whittle estimator.
The best results for every scenario are emphasized in bold.
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2 Estimation methods for the LRD parameter under a change in the mean

h ĤLW Ĥme Ĥdiff Ĥo,w Ĥo,n Ĥno,w Ĥno,n Ĥpre,1 Ĥpre,2 Ĥtr
LW Ĥtr

GPH

N = 500

0 8.18 7.60 10.63 8.63 7.50 9.05 7.92 10.45 9.24 10.86 14.76

λ = 0.1

0.5 6.61 6.00 12.44 8.28 6.92 8.68 7.65 9.04 8.66 10.54 14.74
1 8.31 6.09 15.48 7.90 6.17 8.22 7.06 7.98 8.94 9.92 14.58
2 18.88 10.00 20.73 7.55 5.44 7.81 6.17 10.74 10.81 9.92 15.51

λ = 0.5

0.5 6.50 5.60 8.75 8.31 6.94 8.76 7.15 9.34 7.94 10.57 14.71
1 13.39 5.27 8.11 7.95 6.22 8.34 6.29 9.20 7.83 10.00 14.46
2 25.01 9.25 11.34 7.61 5.51 7.92 5.64 9.14 7.81 10.27 14.91

N = 1000

0 7.21 6.72 9.13 7.12 6.42 7.32 6.73 8.73 7.83 9.08 11.39

λ = 0.1

0.5 5.31 4.98 10.24 6.88 6.00 7.10 6.15 7.55 7.03 8.81 11.25
1 6.70 4.83 15.81 6.61 5.43 6.81 5.47 6.69 7.04 8.16 10.94
2 16.74 9.20 21.59 6.34 4.83 6.49 4.94 8.89 9.59 7.47 10.78

λ = 0.5

0.5 5.08 4.73 6.78 6.88 6.01 7.10 6.30 8.11 7.07 8.80 11.24
1 11.36 4.17 5.79 6.59 5.45 6.80 5.71 8.01 7.03 8.14 11.06
2 22.71 8.33 9.32 6.33 4.88 6.47 5.10 7.95 6.99 7.41 10.81

N = 1500

0 6.81 6.43 8.01 6.55 5.64 6.68 5.79 8.14 7.35 8.47 10.12

λ = 0.1

0.5 4.67 4.48 9.64 6.36 5.31 6.58 5.66 6.92 6.50 8.29 10.11
1 5.82 3.98 15.93 6.13 4.85 6.39 5.38 6.03 6.39 7.77 9.88
2 15.48 8.39 22.24 5.91 4.36 6.11 4.84 7.77 8.96 6.49 9.46

λ = 0.5

0.5 4.30 4.34 5.29 6.36 5.32 6.43 5.36 7.48 6.65 8.26 10.09
1 10.29 3.42 5.23 6.14 4.86 6.14 4.83 7.42 6.61 7.71 9.90
2 21.17 7.46 8.04 5.92 4.40 5.92 4.41 7.39 6.57 6.45 9.42

Table 2.2: Estimated RMSE·102 of different estimators for the Hurst parameter H = 0.7
in time series without (h = 0) and with change-point (jump of height h after a
proportion of λ of the data), each based on 1000 simulation runs with N = 500,
N = 1000 and N = 1500 values from Pareto(3,1)-transformed fGn, based on the
local Whittle estimator. The best results for every scenario are emphasized in
bold.
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Figure 2.1: Boxplots of the estimators based on the local Whittle estimator for the Hurst
parameter H = 0.5 in time series with one jump of height h after a proportion of
λ of the data, based on each 1000 simulation runs with N = 1000 realizations of
fGn.
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Figure 2.2: Boxplots of the estimators based on the local Whittle estimator for the Hurst
parameter H = 0.9 in time series with one jump of height h after a proportion of
λ of the data, based on each 1000 simulation runs with N = 1000 realizations of
fGn.
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Figure 2.3: Boxplots of the estimators based on the GPH estimator for the Hurst parameter
H = 0.7 in time series with one jump of height h after a proportion of λ of the
data, based on each 1000 simulation runs with N = 1000 realizations of fGn.

2.6.3 Multiple breaks

It is also interesting to investigate how the proposed methods perform in the case of multiple
breaks. For this purpose we generate time series ξ1, . . . , ξN from fGn with the Hurst parameter
H = 0.7 choosing G as the identity G(t) = t. We add three jumps of equal height h = 0.5, 1, 2
after 0.1 ·N , 0.5 ·N and 0.75 ·N observations to these time series. To the resulting sequences
of observations we apply the adapted estimators. For comparison we also apply the two
adapted estimation techniques Ĥtr

LW and Ĥtr
GPH proposed by [44] and [56] to the generated time

series. We repeat these simulations 1000 times for each scenario, leading to 1000 estimates
H̃1 . . . , H̃1000 for each estimation method and each scenario.

Table 2.3 reports the estimated RMSE for fGn time series. In the case of three change-points,
the overlapping and the non-overlapping blocks estimators with window length n = w =

√
N

perform best. The overlapping blocks estimator Ĥo,w outperforms the other estimation
methods. This can be explained by the fact that only a few blocks are contaminated with the
jumps in the mean, so the biased estimates of the corresponding blocks do not influence the
resulting estimator dramatically. The other methods suffer from a high number of change
points and are highly biased then. The methods proposed by [44] and [56] are outperformed
by our blocks techniques in every case. Taking into account the fast computation and the
good performance of the overlapping blocks estimator it can be recommended in our survey.
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2 Estimation methods for the LRD parameter under a change in the mean

h ĤLW Ĥme Ĥdiff Ĥo,w Ĥo,n Ĥno,w Ĥno,n Ĥpre,1 Ĥpre,2 Ĥtr
LW Ĥtr

GPH

N = 500

0.5 12.77 7.57 10.22 4.75 4.84 5.47 5.48 5.73 5.95 8.94 11.62
1 24.63 14.84 16.86 4.44 5.47 5.20 6.17 12.01 12.08 11.47 15.90
2 29.99 24.63 21.84 4.20 7.55 5.01 8.38 25.47 24.44 21.76 32.58

N = 1000

0.5 11.77 6.82 8.54 3.19 3.74 3.60 4.10 4.85 5.03 6.81 7.89
1 22.72 13.86 14.99 3.19 4.38 3.61 4.90 11.49 11.17 9.22 10.94
2 29.99 24.16 23.38 3.43 6.00 3.93 6.78 23.75 22.59 18.93 23.91

Table 2.3: Estimated RMSE·102 of different estimators for the Hurst parameter H = 0.7
in time series with three change-points (jumps of height h after a proportion of
λ = 0.25, 0.5 and 0.75 of the data), each based on 1000 simulation runs with
N = 500 and N = 1000 values from fGn, based on the local Whittle estimator.
The best results for every scenario are emphasized in bold.

2.6.4 ARFIMA model

As already mentioned in [56] and [66], the estimators of the differencing parameter d = H−1/2
tend to be positively biased in the ARFIMA(p, d, q) model, i.e., when short range dependence
components are present in the model. We simulate ARFIMA(0, d, 1) time series with
θ = −0.6 for d = 0.2 (H = 0.7) and d = 0 (H = 0.5) of length N = 1000. Again, jumps of
various heights are added at the beginning or in the middle of the data in order to compare
the performance of the estimators in the absence and presence of level shifts. In Table 2.4
we can observe that the blocks procedures fail to estimate the parameter correctly when the
block size is small. The best results are obtained by Ĥpre,1. In the case of short memory, i.e.,
ARFIMA(0, 0, 1), again, the pre-estimating procedure Ĥpre,1 performs best, since it involves
all data points in the estimation procedure.

The overlapping and the non-overlapping blocks approaches from Subsection 2.3.4 perform
similarly and do not yield desirable results for the ARFIMA model when a small block
size is chosen. In Tables E.1 and E.2 in Appendix E we show the results corresponding to
further block sizes of the non-overlapping blocks estimator (the results for the overlapping
blocks approach are similar throughout the simulation study, though the 1000 simulation
runs require more computation time). We observe that its performance can be improved by
choosing a larger block size n. Moreover, in the fGn-scenario, selecting a higher value for
n does not worsen the performance of ĤO,n considerably compared to the case of the block
length

√
N , see Table E.2. Still, the results are not satisfying when dealing with both, long

and short memory.

22



2.6 Simulations

h ĤLW Ĥme Ĥdiff Ĥo,w Ĥo,n Ĥno,w Ĥno,n Ĥpre,1 Ĥpre,2 Ĥtr
LW Ĥtr

GPH

ARFIMA(0, 0.2, 1)

0 6.38 8.56 9.15 21.50 17.68 21.71 17.82 5.37 7.43 10.29 12.74

λ = 0.1

0.5 6.98 8.97 9.30 21.52 17.61 21.65 17.79 5.52 7.99 10.16 12.79
1 8.24 10.25 10.32 21.51 17.73 21.50 18.03 5.95 9.42 10.64 13.47
2 13.19 13.51 13.93 21.62 18.07 21.79 18.34 8.09 12.10 11.33 15.70

λ = 0.5

0.5 7.67 8.70 9.60 21.57 17.70 21.61 17.64 5.19 7.51 10.25 12.97
1 10.56 10.16 11.70 21.62 17.79 21.50 17.87 5.58 7.30 10.53 13.66
2 17.53 13.26 15.54 21.66 18.20 21.76 18.21 5.70 7.62 11.40 15.30

ARFIMA(0, 0, 1)

0 5.60 7.43 8.74 26.29 17.17 26.61 17.33 4.86 7.28 9.14 14.69

λ = 0.1

0.5 8.18 9.25 9.93 26.50 17.45 26.44 17.45 5.35 8.78 8.99 14.69
1 13.61 12.68 14.49 26.46 17.77 26.62 18.02 7.03 11.24 9.61 15.11
2 24.31 18.72 22.64 26.73 18.67 26.91 19.03 10.18 15.40 11.65 16.08

λ = 0.5

0.5 12.01 9.65 11.81 26.33 17.38 26.46 17.38 5.00 6.49 9.60 15.01
1 20.38 12.98 15.40 26.54 17.68 26.67 17.85 5.38 6.58 9.68 15.05
2 32.34 18.56 19.16 26.64 18.64 26.84 18.83 5.28 6.75 11.74 16.35

Table 2.4: Estimated RMSE·102 of different estimators for the differencing parameters d = 0.2
(H = 0.7) and d = 0 (H = 0.5) in time series without (h = 0) and with change-
point (jump of height h after a proportion of λ of the data), each based on 1000
simulation runs with N = 1000 values from the ARFIMA(0, d, 1) model with
θ = −0.6, based on the local Whittle estimator. The best results for every scenario
are emphasized in bold.

Therefore, we followed the ARMA correction procedure proposed by [66], where the
differencing parameter d in the ARFIMA(p, d, q) model is estimated recursively in several
steps:

1. Obtain an initial estimate d̂ of d in the ARFIMA(p, d, q) model.

2. Remove the LRD structure: calculate Ŷt = (1 − B)d̂Yt.

3. Identify the order and estimate the parameters in the ARMA(p, q) model Φ(B)Ŷt =
Θ(B)εt.

4. Remove the ARMA structure: calculate Ẑt = Φ̂(B)
Θ̂(B)

Yt.

5. Obtain new estimate d̂ of d in the ARFIMA(0, d, 0) model (1 − B)dẐt = εt.
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2 Estimation methods for the LRD parameter under a change in the mean

6. Repeat steps 2 to 5, until the difference between two consecutive estimates of d is less
than 0.01 or the number of steps exceeds 10.

The RMSE values obtained using the above procedure are given in Tables 2.5 (for the
overlapping approach) and 2.6 (for the non-overlapping approach). We observe that the results
of the non-overlapping blocks approach (Table 2.6) improve considerably when following the
ARMA correction procedure (see Table 2.4 for comparison). For d = 0 (H = 0.5), i.e., short
memory, higher window values are preferred, while for LRD with d = 0.2 (H = 0.7) the block
length

√
N yields the lowest RMSE. Moreover, the results are nearly the same when dealing

with fGn, i.e., when no short memory components are involved. In the case of the overlapping
blocks approach we show the results for N = 1000, λ = 0.5 and h = 2 in Table 2.5. We can
observe that even lower RMSE values can be achieved when choosing overlapping instead of
non-overlapping blocks, hence it can be recommended in our survey. To be on the safe side,
we suggest choosing a block length n equal to a multiple of

√
N , preferably n > 100 in order

to obtain desirable results.

h
√

N 2
√

N + 1 3
√

N + 1 4
√

N + 1 7
√

N + 1
√

N 2
√

N + 1 3
√

N + 1 4
√

N + 1 7
√

N + 1

H = 0.5 (d = 0) H = 0.7 (d = 0.2)

2 11.81 6.51 7.06 8.54 10.46 3.69 4.79 5.43 6.61 7.22

Table 2.5: Estimated RMSE·102 of the overlapping blocks estimator based on the local Whittle
estimator with different block sizes for the differencing parameters d = 0 (H =
0.5) and d = 0.2 (H = 0.7) in time series with change-point (jump of height h
after a proportion of λ = 0.5 of the data), each based on 1000 simulation runs
with N = 1000 values from the ARFIMA(0, d, 1) model with θ = −0.6. The
ARMA-structure is removed in several steps.
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h
√

N 2
√

N + 1 3
√

N + 1 4
√

N + 1 7
√

N + 1
√

N 2
√

N + 1 3
√

N + 1 4
√

N + 1 7
√

N + 1

H = 0.5 (d = 0) H = 0.7 (d = 0.2)

ARFIMA(0, d, 1)

N = 1000

0 12.06 5.95 5.52 6.33 5.57 5.54 5.52 5.69 6.64 6.33

λ = 0.1

0.5 11.83 6.39 5.69 6.64 6.40 5.28 5.34 5.80 6.62 6.71
1 11.96 7.08 6.29 7.76 8.71 5.27 5.66 5.99 6.92 7.08
2 11.90 8.06 6.91 10.29 12.71 4.88 5.97 5.86 7.67 8.69

λ = 0.5

0.5 11.67 6.07 5.90 6.46 6.13 5.13 5.31 6.03 6.77 6.73
1 11.91 6.68 6.22 7.01 7.83 5.12 5.53 5.87 6.77 6.89
2 11.90 7.17 7.59 7.58 10.97 5.26 5.63 6.56 7.33 8.54

N = 1500

0 7.45 5.16 5.12 5.09 4.76 4.12 4.85 5.22 5.38 5.18

λ = 0.1

0.5 7.51 5.36 5.58 5.50 5.19 4.13 5.14 5.45 5.79 5.29
1 7.83 5.85 6.43 5.71 7.06 4.05 5.05 5.62 5.88 5.66
2 7.81 6.36 7.69 6.24 10.33 4.06 5.33 6.16 5.81 7.26

λ = 0.5

0.5 7.71 5.70 5.63 5.50 5.11 4.05 5.02 5.46 5.74 5.33
1 7.89 6.14 6.36 6.23 6.21 4.24 5.06 5.87 5.92 5.46
2 8.12 6.81 7.50 7.76 9.03 4.12 5.59 6.28 6.59 6.79

fGn

N = 1000
λ = 0.5

2 4.17 4.54 5.17 5.61 10.28 3.98 4.56 5.07 5.63 8.18

N = 1500
λ = 0.5

2 3.39 3.96 4.71 5.54 8.80 3.35 4.15 4.55 4.93 6.08

Table 2.6: Estimated RMSE·102 of the non-overlapping blocks estimator based on the local
Whittle estimator with different block sizes for the differencing parameters d = 0
(H = 0.5) and d = 0.2 (H = 0.7) in time series without (h = 0) and with change-
point (jump of height h after a proportion of λ of the data), each based on 1000
simulation runs with N = 1000 and N = 1500 values from the ARFIMA(0, d, 1)
model with θ = −0.6 and fGn. The ARMA-structure is removed in several steps.
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2 Estimation methods for the LRD parameter under a change in the mean

2.7 Application

We illustrate our improved estimation techniques with the help of two real data sets. We use
the famous Nile River minima, yearly minimal water level of the Nile River for the years
from 773 to 1281; the data are available e.g. in the R-package wavelets1. Nile River data is
a widely-used example for LRD time series, see e.g. Example 5.9 in [62]. Log-periodogram
values of the Nile data were considered in [8, p. 21], where evidence of long range dependence
was found. A broad analysis of the monthly river flows was carried out by [58], where the
authors applied several techniques to estimate the LRD parameter taking the seasonality of
the river data into account.

We also apply the estimation techniques to the seasonally adjusted global temperature for
the northern hemisphere for the years 1854–1989; the data are available in the R-package
longmemo2. The data consist of differences between average monthly temperature and the
corresponding monthly average over the years 1950–1979. This dataset was discussed in [8, p.
29], where a linear trend rather than a possible structural change in the data was considered.
This was supported by [20], and [46] assumed that the temperature growth is rather due to
impact of human activity or climate change. Evidence of long range dependence was found
by [8, p. 173] and [29]. A possible change point in the data was detected by [95].

2.7.1 Nile River minima

The data are displayed in Figure 2.4. In order to estimate the LRD parameter H from the
data, we have applied the local Whittle estimator to it as well as the adaption methods
investigated in this thesis. The results are given in Table 2.7. The blocks estimators with
ARMA correction from Subsection 2.6.4 are denoted by ĤARMA

o,w and ĤARMA
no,w . For analysing

the data [62, p. 386] use wavelets and the maximum-likelihood method yielding 0.95 as an
estimate for the Hurst parameter, which is similar to the value ĤLW = 0.97 obtained by the
ordinary local Whittle estimator. As opposed to this, the overlapping blocks approach with
ARMA correction and the window length

√
N yields the smaller value ĤARMA

o,w = 0.78. The
two estimation techniques Ĥtr

GPH and Ĥtr
LW described in Section 2.3.5 yield the higher values

1.00 and 1.01. The discrepancy between the estimates supports the possibility of a level shift.

ĤLW Ĥme Ĥdiff Ĥpre,1 Ĥpre,2 Ĥo,w Ĥno,w ĤARMA
o,w ĤARMA

no,w Ĥtr
LW Ĥtr

GPH
0.97 0.96 0.96 0.93 0.95 0.84 0.87 0.78 0.83 1.00 1.01

Table 2.7: Estimated LRD parameter H of the Nile River Minima data by different adaption
methods, based on the local Whittle estimator.

1http://artax.karlin.mff.cuni.cz/r-help/library/wavelets/html/nile.html
2http://cran.r-project.org/web/packages/longmemo/longmemo.pdf
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Figure 2.4: Annual minima of the water level of the Nile River near Cairo.

2.7.2 Global temperature for the northern hemisphere

Figure 2.5 shows the seasonally adjusted global temperature for the northern hemisphere. A
presence of a level shift after the year 1923 was suggested by [95]. Moreover, we can observe
a change in the scale after the year 1880. Since we are interested in changes in the mean
only, we reduce the data to the years 1880-1989 yielding 1320 monthly observations.
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Figure 2.5: Monthly global temperature for the northern hemisphere for the years 1854-1989.
The vertical lines denote a change-point, suggested by [95] (dashed) and detected
using the Wilcoxon change-point test (bold). The grey part of the time series was
excluded from the estimation procedure.

We have applied the local Whittle estimator together with the adaption methods to this data.
The results are given in Table 2.8. The ordinary local Whittle estimator yields ĤLW = 0.94,
while the other estimates, obtained by the adapted methods, are smaller. The overlapping
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2 Estimation methods for the LRD parameter under a change in the mean

blocks approach with ARMA correction and window length
√
N yields ĤARMA

O,w = 0.84, which
is similar to the value obtained by Ĥpre,1 = 0.85. It can be assumed that the pre-estimation
technique was able to determine the location of a level shift adequately and estimated the
Hurst parameter precisely in the two blocks with considerably large number of observations.
Hence, a hypothesis of a change in the mean is supported by the results.

ĤLW Ĥme Ĥdiff Ĥpre,1 Ĥpre,2 Ĥo,w Ĥno,w ĤARMA
o,w ĤARMA

no,w Ĥtr
LW Ĥtr

GPH
0.94 0.91 0.90 0.85 0.87 0.85 0.86 0.84 0.86 0.91 0.93

Table 2.8: Estimated LRD parameter H of the global temperature for the northern hemisphere
by different adaption methods, based on the local Whittle estimator.

2.8 Conclusion and outlook

When dealing with time series with long range dependence (LRD) it is crucial to estimate
the LRD parameter, such as the Hurst parameter H, properly, e.g. for inference. Different
estimation techniques, such as the Geweke and Porter-Hudak (GPH) estimator proposed by
[28], can be found in the literature. However, most of these estimators may overestimate the
LRD parameter under shifts in the mean. Under short range dependence this fact could lead
to the false assumption of an LRD structure, see e.g. [85].

Many change-point tests, e.g. the Wilcoxon change-point test by [19], require knowledge of
the LRD-parameter H for standardisation. Rejection of the hypothesis of a change in the
mean could fail due to overestimation of H.

Therefore, we have investigated techniques based on the idea to segregate the data into blocks
to adapt estimation procedures to time series with level shifts. We conducted a simulation
study to asses the performance of these proposals for different tuning parameters and in
different situations, using the local Whittle and the GPH estimators as generic estimation
techniques. We conclude that our blockwise estimation techniques yield better results than
ordinary estimators, such as the GPH estimator proposed by [28], in the change-point scenario.

We compared the performance of the adapted estimators with the trimmed versions of
the local Whittle and the GPH estimators proposed by [44] and [56], respectively. We could
observe that our proposals outperform the trimmed counterparts of the two generic estimation
techniques used in this thesis in most simulation scenarios.

We recommend estimation of H by averaging estimates obtained from overlapping blocks
with length approximately equal to a multiple of

√
N , where N is the sample size. This

adaption inherits asymptotic MSE-consistency from its underlying estimation method when
using the local Whittle or the GPH estimator, while offering fast computation. A minimum of
100 observations per block should be available for the estimation when dealing with ARFIMA
models. In this case the estimation should be carried out using the ARMA correction
procedure from Section 2.6.4.
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2.8 Conclusion and outlook

Our approach opens up some ideas for future research:

• One could explore possible improvements by e.g. choosing other monotone increasing
subsequences of the sample size N as window sizes for the overlapping or the non-
overlapping blocks approaches or by considering a weighted average of estimates obtained
from two blocks, taking the different block lengths into account.

• In the overlapping or the non-overlapping blocks approach, one could use a trimmed
mean in order to trim the estimations on blocks, which are influenced by the jump.

• The derivation of the asymptotic distribution of the blockwise approaches might be of
interest for conducting inference. However, it involves new theory on triangular arrays
for long range dependent data. This is beyond the scope of this thesis.
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3 Scale estimation under shifts in the mean

3.1 Introduction

In many applications the variance and the standard deviation of the observations need to
be estimated properly, e.g. for standardization. In the presence of outliers and jumps in
the mean suitable estimation procedures are required, since ordinary estimators, such as the
sample variance or the sample standard deviation, are biased in this situation. We propose
estimation techniques based on segregating the data Y1, . . . , YN into m non-overlapping blocks
of size n = ⌊N/m⌋, since such techniques improve parameter estimation under shifts in the
mean in the context of long range dependence, see Chapter 2.

If the data are contaminated by level shifts we use the sample variance in each block
j = 1, ...,m. When only a few level shifts are expected to occur, we propose to combine the
estimates by averaging them to obtain an estimate of the variance. The blocks-estimator
performs well in change-point scenarios, as can be seen in a simulation study. Theoretical
results, such as strong consistency and asymptotic normality, are shown under certain
assumptions on the number of blocks and the number of jumps. Moreover, suggestions on
the choice of the block size are given. In the case of many changes in the mean we consider
an adaptively trimmed mean of the blockwise sample variances, where the trimming fraction
is chosen adaptively, depending on the observed data.

If the data are contaminated by outliers a robust measure of scale, such as the median
absolute deviation (MAD), is considered instead of the sample variance or the sample standard
deviation. However, this estimator is strongly biased under shifts in the mean, since the data
are centred by the median of all observations, which itself is a biased estimator of location
in that case. In this thesis we propose a modified MAD as a scale estimator. The data
are divided into m non-overlapping blocks. In each block the sample median is calculated.
Subsequently, the data are centred by the blockwise medians before calculating the median
of the absolute differences. In this way we expect that only a small fraction of the absolute
differences is influenced by the jumps in the mean reducing the bias of the estimator. We
show strong consistency and asymptotic normality of this estimator. Moreover, suggestions
on the choice of the block size are given. We compare the performance of the proposed
estimation procedure with that of other robust estimation techniques.

This chapter is organized as follows: In Section 3.2 we introduce the model of the data
generating process. In Section 3.3 the blocks-estimator of the variance under shifts in the
mean is presented. Section 3.4 deals with scale estimation in the change-point and outlier
scenario.
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3.2 Model

We consider a sequence of random variables Y1, . . . , YN generated by the model

Yt = Xt +
K∑

k=1
hkIt≥tk

+ γtUt, (3.1)

where Xt are i.i.d. with continuous distribution function F , E(Xt) = µ and V ar (Xt) = σ2,
t = 1, ..., N . Without loss of generality we will assume µ = 0 in the following. In this thesis
we consider the case of K level shifts of potentially different heights hk at different change
locations t1, . . . , tK . Moreover, we allow for the presence of outliers by including the term
γtUt, t = 1, . . . , N , e.g. with γt ∼ N(γ, ρ2), the average absolute outlier magnitude γ ≥ 0,
ρ ≥ 0, and Ut ∈ {−1, 0, 1} with respective probabilities p/2, 1 − p and p/2 with 0 ≤ p ≤ 1.

In the following Sections 3.3 and 3.4 we will discuss approaches based on segregating the
data Y1, ..., YN into m blocks of size n.

Remark 4. 1. The number of blocks m and the block size n may both depend on the
sample size N , i.e., m = m(N) and n = n(N).

2. The heights h1, ..., hK of the jumps are assumed to be positive, which is worse than
both, positive and negative jumps, resulting in a higher bias for most scale estimators.

3. If N is not divisible by m, we choose n = ⌊N/m⌋ and disregard the remaining observa-
tions.
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3.3 Variance estimation under shifts in the mean

3.3 Variance estimation under shifts in the mean

This section is based on the article “On variance estimation under shifts in the mean” [4],
under review in AStA – Advances in Statistical Analysis, published as SFB Discussion Paper.

In Section 3.3.1 we analyse estimators of σ2 from the sequence of observations Y1, ..., YN

by averaging estimates obtained from splitting the data into several blocks. Without the
need of explicit distributional assumptions the mean of the blockwise estimates turns out
to be consistent if the size and the number of blocks increases, and the number of jumps
increases slower than the number of blocks. If many jumps in the mean are expected to
occur, an adaptively trimmed mean of the blockwise estimates can be used, see Section
3.3.2. Section 3.3.4 treats estimation of σ in a similar way. In Section 3.3.3 a simulation
study is conducted to assess the performance of the proposed approaches. In Section 3.3.5
the estimation procedures are applied to real data sets, while Section 3.3.6 summarizes the
results.

3.3.1 Estimation of the variance by averaging

The blocks-estimator σ̂2Mean of the variance investigated here is defined as

σ̂2Mean = 1
m

m∑
j=1

S2
j , (3.2)

where S2
j = 1

n−1
∑n

t=1(Yj,t − Y j)2, Y j = 1
n

∑n
t=1 Yj,t and Yj,1, . . . , Yj,n are the observations in

the j-th block. We are interested in finding the block size n, which yields a low mean squared
error (MSE) under certain assumptions.

We will use some algebraic rules for derivation of the expectation and the variance of
quadratic forms in order to calculate the MSE of σ̂2Mean, see [78]. Let B be the number of
blocks with jumps in the mean and K ≥ B the total number of jumps. The expected value
and the variance of σ̂2Mean are given as follows:

E
(
σ̂2Mean

)
= σ2 + 1

m(n− 1)

B∑
j=1

µT
j Aµj,

V ar
(
σ̂2Mean

)
= 1
m

(
ν4

n
− σ4(n− 3)

n(n− 1)

)
+ 4σ2

m2(n− 1)2

B∑
j=1

µT
j Aµj,

where ν4 = E (X4
1 ) , A = In − 1

n
1n1T

n , In is the unit matrix, 1n = (1, . . . , 1)T and µj contains
the expected values of the random variables in the perturbed block j = 1, . . . , B, i.e.,
µj = (µj,1, . . . , µj,n)T = (E(Yj,1), . . . , E(Yj,n))T . The term µT

j Aµj/(n − 1) is the empirical
variance of the expected values E(Yj,1), . . . , E(Yj,n) in block j. In a jump-free block we have
µT

j Aµj = 0, since all expected values and therefore the elements of µj are equal.
The blocks-estimator (3.2) estimates the variance consistently if the number of blocks grows

sufficiently fast as is shown in Theorem 2.

Theorem 2. Let Y1, . . . , YN with Yt = Xt + ∑K
k=1 hkIt≥tk

from Model (3.1) be segregated
into m blocks of size n, where t1, ..., tK are the time points of the jumps of size h1, ..., hK,
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3 Scale estimation under shifts in the mean

respectively. Let B out of m blocks be contaminated by K̃1, . . . , K̃B jumps, respectively, with∑B
j=1 K̃j = K = K(N). Moreover, let E(|X1|4) < ∞, K

(∑K
k=1 hk

)2
= o (m) and m → ∞,

whereas the block size n can be fixed or increasing as N → ∞. Then σ̂2Mean = 1
m

∑m
j=1 S

2
j → σ2

almost surely.

Proof. Without loss of generality assume that the first B out of m blocks are contaminated
by K̃1, . . . , K̃B jumps, respectively. Let the term S2

j,0 denote the empirical variance of the
uncontaminated data in block j, while S2

j,h is the empirical variance when K̃j level shifts are
present. Moreover, Yj,1, . . . , Yj,n are the observations in the j-th block, µj,t = E (Yj,t) and
µj = 1

n

∑n
t=1 E (Yj,t). Then we have

σ̂2Mean = 1
m

m∑
j=1

S2
j = 1

m

m∑
j=B+1

S2
j,0 + 1

m

B∑
j=1

S2
j,h

= 1
m

m∑
j=B+1

S2
j,0 + 1

m

B∑
j=1

1
n− 1

n∑
t=1

(
Xj,t + µj,t −Xj − µj

)2

= 1
m

m∑
j=1

S2
j,0 + 1

m

B∑
j=1

2
n− 1

n∑
t=1

(Xj,t −Xj)(µj,t − µj)

+ 1
m

B∑
j=1

1
n− 1

n∑
t=1

(
µj,t − µj

)2
.

(3.3)

For the second term in the last equation (3.3) we have almost surely⏐⏐⏐⏐⏐⏐ 2
m(n− 1)

B∑
j=1

n∑
t=1

(Xj,t −Xj)(µj,t − µj)
⏐⏐⏐⏐⏐⏐

≤ 2
m(n− 1)

B∑
j=1

n∑
t=1

⏐⏐⏐(Xj,t −Xj)
⏐⏐⏐ ⏐⏐⏐(µj,t − µj)

⏐⏐⏐
≤ 2
m(n− 1)

B∑
j=1

n∑
t=1

⏐⏐⏐(Xj,t −Xj)
⏐⏐⏐ ⏐⏐⏐⏐⏐

K∑
k=1

hk

⏐⏐⏐⏐⏐
= B

⏐⏐⏐⏐⏐
K∑

k=1
hk

⏐⏐⏐⏐⏐ 2
m

n

n− 1
1
B

B∑
j=1

1
n

n∑
t=1

⏐⏐⏐(Xj,t −Xj)
⏐⏐⏐ −→ 0. (3.4)

The term 1
B

∑B
j=1

1
n

∑n
t=1

⏐⏐⏐(Xj,t −Xj)
⏐⏐⏐ in (3.4) is a random variable with finite moments if n

and B are fixed. This random variable converges to E
(

1
n

∑n
t=1

⏐⏐⏐(Xj,t −Xj)
⏐⏐⏐) almost surely if

B → ∞. In the case of B → ∞ and n → ∞ this term converges to E (|X1|) almost surely
due to Theorem 2 of [41] and the condition E(|X1|4) < ∞, since S2

j − E
(
S2

j

)
are uniformly

bounded with P (|S2
j −E

(
S2

j

)
| > t) → 0 ∀t due to Chebyshev’s inequality and V ar(S2

j ) → 0.
Moreover, we used the fact that B

⏐⏐⏐∑K
k=1 hk

⏐⏐⏐ ≤ K
⏐⏐⏐∑K

k=1 hk

⏐⏐⏐ = o(m).
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The following is valid for the third term in (3.3):

1
m

B∑
j=1

1
n− 1

n∑
t=1

(
µj,t − µj

)2
≤ 1
m

B∑
j=1

1
n− 1

n∑
t=1

(
K∑

k=1
hk

)2

= B

m

n

n− 1

(
K∑

k=1
hk

)2

−→ 0.

The first term of the last equation in (3.3) converges almost surely to σ2 due to the results on
triangular arrays in Theorem 2 of [41], assuming that the condition E(|X1|4) < ∞ holds, since
S2

j − E
(
S2

j

)
are uniformly bounded with P (|S2

j − E
(
S2

j

)
| > t) → 0 ∀t due to Chebyshev’s

inequality and V ar(S2
j ) → 0. Application of Slutsky’s Theorem proves the result.

Remark 5. 1. If the jump heights are bounded by a constant h ≥ hk, k = 1, . . . , K,
the strongest restriction arises if all heights equal this upper bound resulting in the
constraint K

(∑K
k=1 hk

)2
= K3h2 = o (m). Consistency is thus guaranteed if the number

of blocks grows faster than K3.

2. By the Central Limit Theorem the estimator σ̂2Mean is asymptotically normal if no level
shifts are present and the block size n is fixed. Its asymptotic efficiency relative to the
ordinary sample variance is

V ar(S2)
V ar

(
σ̂2Mean

) =
ν4
N

− σ4(N−3)
N(N−1)

1
m

(
ν4
n

− σ4(n−3)
n(n−1)

) =
ν4 − σ4(N−3)

(N−1)

ν4 − σ4(n−3)
(n−1)

N→∞−→ ν4 − σ4

ν4 − σ4(n−3)
(n−1)

in case of i.i.d data with finite fourth moments, where

V ar
(
σ̂2Mean

)
= V ar

⎛⎝ 1
m

m∑
j=1

S2
j

⎞⎠ = 1
m
V ar

(
S2

1

)
= 1
m

(
ν4

n
− σ4(n− 3)

n(n− 1)

)

(see [2] for the variance V ar(S2
1) of the sample variance). E.g., under normality the

efficiency of the blocks estimater with fixed n is (n− 1)n−1 < 1.

3. The asymptotic efficiency of the blocks-estimator relative to the sample variance is 1 if
n → ∞.

The next Theorem shows that σ̂2Mean is asymptotically not only normal but even fully
efficient in case of a growing block size.

Theorem 3. Assume that the i.i.d. random variables Y1, . . . , YN are segregated into m

blocks of size n, with m, n → ∞ such that m = o (n), n = o (N). Moreover, assume that
ν4 = E (X4

1 ) < ∞. Then we have
√
N
(
σ̂2Mean − σ2

)
d−→ N

(
0, ν4 − σ4

)
.
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Proof. Rewriting the estimator σ̂2Mean we get

σ̂2Mean − σ2√
V ar

(
σ̂2Mean

) =
1

m(n−1)

m∑
j=1

n∑
t=1

(
Xj,t −Xj

)2
− σ2

√
1
m

(
ν4
n

− σ4(n−3)
n(n−1)

)

=
√
N

1
m(n−1)

m∑
j=1

n∑
t=1

X2
j,t − n

m(n−1)

m∑
j=1

X
2
j − σ2

√
ν4 − σ4(n−3)

n−1

. (3.5)

For the second term of the numerator in (3.5) we have that

E

⎛⎝⏐⏐⏐⏐⏐⏐
√
N

n

m(n− 1)

m∑
j=1

X
2
j

⏐⏐⏐⏐⏐⏐
⎞⎠ =

√
N

m

n

n− 1

m∑
j=1

E
(
X

2
j

)
=

√
N

n

n− 1
σ2

n

=
√
mn

n

n− 1
σ2

n
=
√
m

n

n

n− 1σ
2 → 0, (3.6)

since m = o(n). Convergence of the term (3.6) in mean implies convergence in probability to
zero. Application of the Central Limit Theorem to the remaining terms of (3.5) yields the
desired result.

Remark 6. In the proof of Theorem 3 we have assumed that m = o(n), i.e., the block size
grows faster than the number of blocks. This condition can be dropped using the Lyapunov
condition under the assumption of finite eighth moments, as will be shown in the following.
We set

Ti,j =
S2

i,j − σ2√
mi

ni

(
ν4 − σ4(ni−3)

ni−1

) ,
with E(Ti,j) = 0 and ∑mi

j=1 E(T 2
i,j) = 1 ∀i, where i denotes the i-th row of the triangular array.

The Lyapunov condition (see corollary 1.9.3 in [79]) is the following:

∃δ > 0 : lim
i→∞

mi∑
j=1

E
(
|Ti,j|2+δ

)
= 0

With δ = 2 and existing moments ν1, ..., ν8 of X1 we get
mi∑
j=1

E
(
|Ti,j|4

)
=

mi∑
j=1

1
m2

i

n2
i

(
ν4 − σ4(ni−3)

ni−1

)2 · E
((
S2

i,j − σ2
)4
)

= mi
1

m2
i

n2
i

(
ν4 − σ4(ni−3)

ni−1

)2 ·O
(

1
n2

i

)
· g(ν1, ..., ν8) = o

( 1
mi

)
→ 0,

where g is a function of the existing moments ν1, ..., ν8 with g(ν1, ..., ν8) = O(1). See [2] for
the fourth central moment of the sample variance. Therefore, the condition m = o(n) can be
dropped.
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3.3 Variance estimation under shifts in the mean

Choice of the block size

When choosing blocks of length n = 2, the estimator σ̂2
Mean results in a difference-based

estimator, which considers ⌊N/2⌋ consecutive non-overlapping differences:

σ̂2Mean,n=2 = 1
2⌊N/2⌋

⌊N/2⌋∑
j=1

(Y2j − Y2j−1)2 .

Difference-based estimators have been considered in many papers, see [94], [67], [26], [32],
[21], [59], [91], among many others. [17] discussed estimation approaches based on differences
in nonparametric regression context, [98] considered an estimation technique, which involves
differences of second order, while [90] proposed a difference-based estimator for m-dependent
data. An ordinary difference-based estimator of first order, which considers all N − 1
consecutive differences, is (see e.g. [94]):

σ̂2Diff = 1
2(N − 1)

N−1∑
j=1

(Yj+1 − Yj)2 = 1
2(N − 1)Y

TAY, (3.7)

where A = ÃT Ã and Ã such that ÃY = (Y2 − Y1, . . . , YN − YN−1)T . Theorems 1.5 and 1.6
in [78] are used to calculate the expectation and the variance of the estimator σ̂2Diff:

E
(
σ̂2Diff

)
= σ2 + 1

2(N − 1)µ
TAµ,

V ar
(
σ̂2Diff

)
= 1

4(N − 1)2

(
ν4(4N − 6) + 2σ4 + 4σ2µTA2µ+ 4ν3µ

TAa
)
,

where µ = E(Y ), νi = E (X i
1) and a is a vector of the diagonal elements of A.

When no changes in the mean are present both, the difference-based and the averaging
estimators, are unbiased. For the variance of the estimators we have

V ar
(
σ̂2Diff

)
= ν4

4N − 6
4(N − 1)2 + σ4

2(N − 1)2 ,

V ar
(
σ̂2Mean

)
= ν4

N
− σ4(n− 3)
N(n− 1) .

E.g. for N = 100 and a block size n = 10 we get V ar
(
σ̂2Mean

)
= 0.0222, while V ar

(
σ̂2Diff

)
=

0.0302. Therefore, when no changes in the mean are present the blocks estimator can
have smaller variance than the difference-based estimator. In Section 3.3.3 we compare the
performance of the proposed estimation procedures with that of the difference-based estimator
(3.7) in different change-point scenarios.

In the following we investigate the proper choice of the block size for the estimator σ̂2Mean.
All calculations in this thesis have been performed with the statistical software R, version
3.5.2, [64].

For known jump positions the MSE of the blocks-variance estimator σ̂2Mean can be deter-
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3 Scale estimation under shifts in the mean

mined analytically. The position of the jump is relevant for the performance of this approach.
Therefore, it is reasonable to consider different positions of the K jumps to get an overall assess-
ment of the performance of the blocks-estimator. For every K ∈ {1, 3, 5}, we generate K jumps
of equal heights h = δ ·σ, with δ ∈ {0, 0.1, 0.2, . . . , 4.9, 5}, at positions sampled randomly from
a uniform distribution on the values maxn (N − ⌊N/n⌋n) + 1, . . . , N − maxn (N − ⌊N/n⌋n)
(if N ≠ mn then N − mn observations are left out at the beginning and at the end of the
sequence of observations) without replacement, and calculate the MSE for every reasonable
block size n ∈ {2, 3, 4, . . . , ⌊N/2⌋}. This is repeated 1000 times, leading to 1000 MSE values
for every h and n based on different jump positions. The average of these MSE-values is
taken for each h and n. Data are generated from the standard normal or the t5-distribution.

Panel (a) of Fig. 3.1 shows the block size nopt, which yields the least theoretical MSE value
of the estimator σ̂2Mean depending on the jump height h = δ · σ with K ∈ {1, 3, 5} jumps for
N = 1000 observations and normal distribution. We observe that nopt decreases for σ̂2Mean

as the jump height grows. Blocks of size 2 (resulting in a non-overlapping difference-based
estimator) are preferred when h ≈ 4σ and K = 5, while larger blocks lead to better results in
case of smaller or less jumps.

Panel (b) of Fig. 3.1 depicts the MSE of σ̂2Mean for the respective MSE-optimal block size
nopt. In all three scenarios the MSE increases if the jump height gets larger.

Different values for the optimal block-size nopt are obtained in different scenarios, i.e., for
different K and h = δ · σ. As the true number and height of the jumps in the mean are
usually not known in practice, we wish to choose a block size, which yields good results in
many scenarios. We do not consider very high jumps any further, since they can be detected
easily and are thus not very interesting. The square root of the sample size N has proven to
be a good choice for the block size in many applications, see e.g. [72]. Moreover, in the upper
panel of Figure 3.1 we observe that smaller block sizes n are preferred when the number of
change-points is high. If the estimation of the variance is in the focus of the application, we
suggest to choose the block size depending on K:

n = max
{⌊ √

N

K + 1

⌋
, 2
}
, (3.8)

which gets smaller if the number of jumps increases, resulting in many jump-free and only
few contaminated blocks. Otherwise, if testing is of interest in view of Theorem 3 we suggest
a block size, which grows slightly faster than

√
N , e.g. n = max

{⌊
N6/10

K+1

⌋
, 2
}
, which yields

similar results as (3.8).

Remark 7. For large N we get m = N/n =
√
N(K + 1). In this case the number of jumps

needs to satisfy K = o
(
m1/3

)
= o

(
N1/6K1/3

)
, i.e., K = o

(
N1/4

)
can be tolerated, see

Remark 5. An even larger rate of shifts can be tolerated by choosing m = N/c for some
constant c, i.e., a fixed block length n. However, this reduces the efficiency of the resulting
estimator in the presence of a small rate of shifts. E.g., for the standard normal distribution
the asymptotic relative efficiency of the blocks-estimator σ̂2Mean is (n− 1)n−1 < 1 and that
of the difference-based estimator (as defined in (3.7)) is 2/3 (see e.g. [78]).

Panel (c) of Fig. 3.1 shows the MSE of the estimator σ̂2Mean with the block size n chosen
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3.3 Variance estimation under shifts in the mean

according to (3.8). For K ∈ {3, 5} there is only a moderate loss of performance when choosing
n according to (3.8) instead of nopt, which depends on the number of jumps K and the height
h = δ · σ. In case of K = 1 change in the mean the performance of the blocks-estimator
worsens slightly.

0 1 2 3 4 5

0
2
0

4
0

6
0

8
0

δ

M
S

E
−

o
p
ti
m

a
l 
b
lo

c
k
 l
e
n
g
th

(a)

0 1 2 3 4 5

0
.0

0
2

0
.0

0
4

0
.0

0
6

δ

M
S

E

(b)

0 1 2 3 4 5

0
.0

0
2

0
.0

0
4

0
.0

0
6

δ

M
S

E

(c)

Figure 3.1: (a) MSE-optimal block length nopt of σ̂2Mean, (b) MSE regarding nopt of σ̂2Mean

and (c) MSE of σ̂2Mean when choosing n =
√

N
K+1 for K = 1 ( ), K = 3 (- - -)

and K = 5 (· · ·) with N = 1000, Yt = Xt +∑K
k=1 hIt≥tk

, where Xt ∼ N(0, 1) and
h = δ · σ, δ ∈ {0, 0.1, . . . , 5}.

Table 3.1 shows the average MSE of the ordinary sample variance for normally distributed
data and different values of K and h, with N = 1000. Again, 1000 simulation runs are
performed where jumps are added to the generated data at randomly chosen positions. We
observe that the MSE becomes very large when the number and height of the level shifts
increases. Obviously, the blocks-estimator σ̂2Mean performs much better than the sample
variance.

h
0 1 2 3 4 5

1 0.20 3.62 54.04 272.02 858.45 2094.59
K 3 - 115.40 1838.69 9303.10 293.7.04 71764.25

5 - 678.29 10837.86 54854.82 173355.69 423217.58

Table 3.1: MSE·102 of the sample variance for normally distributed data, N = 1000 and
different values of K and h.
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3 Scale estimation under shifts in the mean

The results for data from the t5-distribution are similar to those obtained for the normal
distribution, see Fig. D.2 in Appendix D. Again, the blocks-estimator with the block size
(3.8) (Panel (c)) performs well and does not lose too much performance compared to Panel
(b) of Fig. D.2, where the optimal block size is considered. Similar results are obtained for
N = 2500, see Fig. D.4 and D.5 in Appendix D.

As the number of change-points K is not known exactly in real applications, there are
several possibilities to set K in formula (3.8):

1. Use a block size n = max
{⌊ √

N
K+1

⌋
, 2
}

with a large guess on the value of K.

2. Pre-estimate K with an appropriate procedure.

3. Use prior knowledge about plausible values of K.

We will discuss the first two approaches in the following two subsections.

Using a large guess on the number of jumps

If many change-points are present, a small block size should be chosen, while larger blocks
are preferred in the case of only a few level shifts. If a practitioner does not have knowledge
about the number of jumps in the mean we recommend choosing a rather high value K in
the formula (3.8), which results in small blocks. Doing so we are usually on the safe side,
since choosing too few blocks can result in a very high MSE, while the performance of the
estimator does not worsen so much when choosing many blocks.

As an example we generate 1000 time series of length N = 1000 with K = 3 jumps
at random positions. Figure 3.2 shows the MSE of σ̂2Mean depending on the jump height
h = δσ, δ ∈ {0, 0.1, ..., 5}, when choosing n =

√
N

K+1 with values K ∈ {0, 1, ..., 6}. We observe
that choosing a too small number of blocks (i.e., a too large block size) results in large MSE
values if the jumps are rather high. On the other hand, the results do not worsen as much
when choosing unnecessarily many and thus small blocks. Figure D.3 in Appendix D shows
similar results for K = 5 jumps.

Choosing n = 2 results in a non-overlapping difference-based estimator, which performs
also well but loses efficiency compared to the blocks-estimator with growing block size, which
can be fully efficient, see Remarks 5 and 7.

We will not consider the blocks-estimator with the block size n depending on the choice
of some large value of K instead of the true one in the following investigation, since it is a
subjective choice of a practitioner.
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3.3 Variance estimation under shifts in the mean
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Figure 3.2: MSE of σ̂2Mean when choosing n =
√

N
K+1 for true K = 3 ( ), K = 0 ( ) K = 1 (-

- -) K = 2 (· · · ·) K = 4 (- · -) K = 5 (– – –) and K = 6 (– - –) with N = 1000
and h = δ · σ, δ ∈ {0, 0.1, . . . , 5}, Yt = Xt +∑3

k=1 hIt≥tk
, where (a) Xt ∼ N(0, 1)

and (b) Xt ∼ t3.

Pre-estimation of the number of jumps

We will investigate the MOSUM procedure for the detection of multiple change-points proposed
by [22] to pre-estimate the number of change-points K. According to the simulations in
the aforementioned paper this procedure yields very good results in comparison to many
other procedures for change-point estimation. We will describe the procedure briefly in the
following.

At time point t a statistic Tt,N is calculated as

Tt,N(G) = 1√
2G

⎛⎝ t+G∑
i=t+1

Yi −
t∑

t−G+1
Yi

⎞⎠,
where G = G(N) is a bandwidth parameter and G ≤ t ≤ N − G. In what follows we will
set the bandwidth parameter to G =

√
N . The estimated number of change-points K̂ is the
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3 Scale estimation under shifts in the mean

number of pairs (vi, wi), which fulfil

|Tt,N(G)|
τ̂t,N

≥ DN(G, δN) for t = vi, . . . , wi

|Tt,N(G)|
τ̂t,N

< DN(G, δN) for t = vi − 1, wi + 1

wi − vi ≥ ηG with 0 < η < 1/2 arbitrary but fixed,

where DN (G, δN ) is a critical value depending on the bandwidth parameter G and a sequence
δN → 0 and τ̂ 2

t,N is a local estimator of the variance at location t. In a window of length 2G
the location t is treated as a possible change-point location. A mean correction is performed
before and after the time point t for computing τ̂ 2

t,N .
The corresponding estimated change-point locations t̂1, . . . , t̂K̂ are

t̂i = arg max
vi≤t≤wi

|Tt,N(G)|
τ̂t,N

.

More information on the procedure can be found in [22].
We will use the MOSUM procedure to estimate the number of change-points K in the

formula (3.8) for the block size n. The corresponding blocks-estimator is denoted as σ̂2mosum
Mean .

In Section 3.3.3 we will see that the performance of the two blocks-estimators σ̂2Mean (as
defined in (3.2)) and σ̂2mosum

Mean is similar in many cases.
Moreover, we introduce an additional estimation procedure, which is fully based on the

MOSUM method, for comparison. We divide the data into K̂ + 1 blocks at the estimated
locations t̂1, . . . , t̂K̂ of the level shifts. In every block j = 1, . . . , K̂ + 1 the empirical variance
S2

j is calculated. A weighted average σ̂2mosum
W of those values can be computed to estimate

the variance, i.e.,

σ̂2mosum
W =

K̂∑
j=1

nj

N
S2

j , (3.9)

where nj is the size of block j = 1, . . . , K̂.

Extension to short-range dependent data

Since many real datasets exhibit autocorrelation, we investigate the averaging estimation
procedure under dependence. We consider a strictly stationary linear process (Xt)t≥1 with
Xt = ∑∞

i=0 ψiζt−i, where ζt are i.i.d. with mean zero and finite variance and (ψi)i≥0 is a
sequence of constants with ∑∞

i=0 ψi < ∞. Moreover, the autocovariance function is defined as
γ(δ) = E((Xt −E(Xt))(Xt+δ −E(Xt+δ))), δ ∈ N, and is assumed to be absolutely summable,
i.e., ∑∞

δ=0 |γ(δ)| < ∞.

Theorem 4. Consider a strictly stationary linear process (Xt)t≥1 with an absolutely summable
autocovariance function and Yt = Xt +∑K

k=1 hkIt≥tk
, i.e., data with K level shifts. Moreover,

let K
(∑K

k=1 hk

)2
= o(m log(N)−1). Then σ̂2Mean = 1

m

∑m
j=1 S

2
j → σ2 in probability.
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3.3 Variance estimation under shifts in the mean

Proof. See Appendix B.

Remark 8. If the jump heights are bounded by a constant h ≥ hk, k = 1, . . . , K, the
strongest restriction arises if all heights equal this upper bound resulting in the constraint
K3h2 = o (m log(N)−1).

3.3.2 Trimmed estimator of the variance

So far we have considered cases where the number of changes in the mean K is rather
small with respect to the number of blocks m and thus to the number of observations N .
However, there might be situations in which level shifts occur frequently. Asymptotically, the
blocks-estimator σ̂2Mean (see (3.2)) is still a good choice for the estimation of the variance as
long as the number of level shifts grows slowly, see e.g. Theorem 2. However, if many jumps
are present in a finite sample the blocks-estimator is no longer a good choice and will become
strongly biased.

We propose an asymmetric trimmed mean of the blockwise estimates instead of their
ordinary average, i.e., large estimates are removed and the average value of the remaining
ones is calculated. We do not consider a symmetric trimmed mean, since the sample variance
is positively biased in the presence of level shifts, so that estimates from blocks containing
a level shift are expected to show up as upper outliers. Moreover, we suggest using rather
many small blocks to account for potentially many level shifts. In the next Subsections 3.3.2
and 3.3.2 the choice of the trimming fraction is discussed.

Estimation with a fixed trimming fraction

The trimmed blocks-estimator is given as

σ̂2Tr,α = CN,Tr,α
1

m− ⌊αm⌋

m−⌊αm⌋∑
j=1

S2
(j), (3.10)

where S2
(1) ≤ . . . ≤ S2

(m) are the ordered blockwise estimates, m is the number of blocks and
CN,Tr,α is a sample and distribution dependent correction factor to ensure unbiasedness in
the absence of level shifts. In practice this constant can be simulated under the assumption
of observing data from a known location-scale family. E.g., for standard normal distribution,
α = 0.2, N = 1000 and n = 20 (m = 50) we generate 1000 samples of length N = 1000 and
calculate the average of the uncorrected trimmed variance estimates. The reciprocal of this
average value yields C1000,Tr,0.2 = 1.198.

As an example, we generate 1000 time series of length N ∈ {1000, 2500} from normal and
t5-distribution. We add K = N · p jumps to the generated data at randomly chosen positions,
as was done in Subsection 3.3.1, with p ∈ {0, 2/1000, 4/1000, 6/1000, 10/1000} and height
h ∈ {0, 2, 3, 5}. We choose n = 20 to ensure that the number of jump-contaminated blocks is
sufficiently smaller than the total number of blocks.

Table 3.2 shows the simulated MSE of the trimmed estimator (3.10) for α ∈ {0.1, 0.3, 0.5}.
Clearly, the performance of the trimmed estimator depends on the number of jumps in the
mean and the trimming parameter α. Larger values of α are required when dealing with
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many jumps but lead to an increased MSE if there are only a few jumps. Therefore, it is
reasonable to choose α adaptively, as will be described in the next Subsection 3.3.2.

N(0, 1) t5
K h α = 0.1 α = 0.3 α = 0.5 α = 0.1 α = 0.3 α = 0.5
0 0 0.24 0.28 0.35 2.39 4.56 7.05

2 2 0.28 0.30 0.38 1.89 3.96 6.39
8 0.26 0.28 0.35 1.50 3.51 6.01

4 2 0.35 0.34 0.39 1.49 3.12 5.50
8 0.53 0.43 0.46 1.61 2.76 5.13

6 2 0.54 0.46 0.48 1.22 2.47 4.81
8 2.80 0.54 0.51 8.74 1.99 4.32

10 2 1.14 0.76 0.67 2.03 1.58 3.56
8 69.38 1.04 0.77 199.96 1.43 2.79

Table 3.2: Simulated MSE·102 of σ̂2Tr,α for normally and t5-distributed data with N = 1000
and different α, h and K.

Adaptive choice of the trimming fraction

Instead of using a fixed trimming fraction we can choose α adaptively, yielding the adaptive
trimmed estimator σ̂2Tr,ad with

σ̂2Tr,ad = CN,Tr,ad
1

m− ⌊αadaptm⌋

m−⌊αadaptm⌋∑
j=1

S2
(j), (3.11)

where S2
(1) ≤ . . . ≤ S2

(m) are the ordered blockwise sample variances and αadapt is the adap-
tively chosen percentage of the blocks-estimates, which will be removed.

Estimation under normality

We use the approach for outlier detection discussed in [18] to determine αadapt, assuming that
the underlying distribution is normal. In this case the distribution of the sample variance is
well known, i.e., in block j we have that

Tj :=
(n− 1)S2

j

σ2 ∼ χ2
n−1.

Since the true variance σ2 is not known we propose to replace σ2 by an appropriate initial
estimate, such as the median of the blocks-estimates, i.e.,

σ̂2Med = CN,Med · med{S2
1 , . . . , S

2
m}, (3.12)
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where CN,Med is a finite sample correction factor. Subsequently, we remove those values

T̂j =
(n− 1)S2

j

σ̂2Med
, (3.13)

which exceed qχ2
n−1,1−βm

, the (1 − βm)-quantile of the χ2
n−1-distribution, with

βm = 1 − (1 − β)1/m and β ∈ (0, 1). (3.14)

We will refer to the adaptively trimmed estimator based on the approach of [18] under
normality as σ̂2normal

Tr,ad .
The choice of βm results in a probability of 1 − β that no observation (block in our case) is

trimmed if T1, . . . , Tm are i.i.d. χ2
n−1-distributed, i.e.,

P (T1 ≤ qχ2
n−1,1−βm

, . . . , Tm ≤ qχ2
n−1,1−βm

) =
(
P (T1 ≤ qχ2

n−1,1−βm
)
)m

= (1 − βm)m =
(
(1 − β)1/m

)m
= 1 − β.

Furthermore, we expect that roughly m · βm blocks are trimmed on average in the absence of
level shifts. The following simulations suggest that the adaptive trimming fraction is slightly
larger than βm, which can be explained by the fact that we need to use an estimate such
as σ̂2Med instead of the unknown σ2. We generated 10000 sequences of observations of size
N ∈ {1000, 2500} for β ∈ {0.05, 0.1}. Table 3.3 shows the average number of trimmed blocks
in the absence of level shifts.

N
1000 2500

β
0.05 0.0647 0.0583
0.1 0.1268 0.1208

Table 3.3: Average number of trimmed blocks in the absence of level shifts for normally
distributed data and different N and β for the estimator σ̂2normal

Tr,ad .

We suggest choosing a small block size, e.g. n = 20, to cope with a possibly large number
of change-points. In this way it is ensured that the number of uncontaminated blocks is much
larger than the number of perturbed blocks. Moreover, we choose β = 0.05.

The correction factor in (3.11) needs to be simulated taking into account that the percentage
of the omitted block-estimates is no longer fixed. Therefore, for given N and β we generate
1000 sequences of observations. In each simulation run we calculate the block estimates
S2

j , j = 1, . . . ,m, and the initial estimate of the variance σ̂2Med. Subsequently, we remove
the values T̂j = (n − 1)S2

j /σ̂
2Med, which exceed the quantile qχ2

n−1,1−βm
. Then the average

value of the remaining block-estimates is computed. The procedure yields 1000 estimates.
The correction factor is the reciprocal of the average of these values. For N = 1000 and
β = 0.05 the simulated correction factor is C0.05

1000,Tr,ad = 1.0020, while for N = 2500 we have
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C0.05
2500,Tr,ad = 1.0009, so both are nearly 1 and could be neglected with little loss.

Estimation under unknown distribution

When no distributional assumptions are made and the block size n is large, one can use that√
n
(
S2

j − σ2
)
/
√
ν4 − σ4 is approximately standard normal if the fourth moment exists.

The fourth central moment ν4 = E
(
(X1 − E(X1))4

)
needs to be estimated properly in

the presence of level shifts. We can estimate this quantity in blocks and then compute the
median of the blocks-estimates µ̂4,Med, as was done in (3.12). Then, values

T̂j =
√
n
(
S2

j − σ̂2Med
)
/

√
µ̂4,Med − σ̂22

Med, (3.15)

which exceed the (1 − βm)-quantile of the standard normal distribution are removed. The
corresponding adaptively trimmed estimator is denoted as σ̂2other

Tr,ad, where, again, β = 0.05
(see (3.14)) will be used in what follows.

Table 3.4 shows the average number of trimmed blocks in the absence of level shifts for
normally distributed data, analogously to Table 3.3. We observe that the average number of
trimmed blocks-estimates is much larger than the values for the trimming procedure, which
is based on the normality assumption.

N
1000 2500

n = 20 β
0.05 1.2327 2.1748
0.1 1.6007 2.8159

N
1000 2500

n = 40 β
0.05 0.4018 0.6036
0.1 0.5676 0.8829

Table 3.4: Average number of trimmed blocks in the absence of level shifts for normally
distributed data and different values of N and β for the estimator σ̂2other

Tr,ad.

Remark 9. We do not use distribution dependent correction factors for the estimators µ̂4,Med

and σ̂2Med, since the underlying distribution is not known. The asymptotic distribution of the
blockwise empirical variances is normal and therefore, for large block sizes, the distribution
is expected to be roughly symmetric. A correction factor can then be neglected with little
loss, since the sample median of symmetrically distributed random variables estimates their
expected value.

3.3.3 Simulations

In this section we compare the variance estimators σ̂2Mean, σ̂2Diff, σ̂2Tr,0.5 with the block size
n = 20, σ̂2normal

Tr,ad with the block size n = 20 and β = 0.05, σ̂2other
Tr,ad with the block size n = 40

and β = 0.05, σ̂2mosum
Mean and σ̂2mosum

W in different scenarios. We generate 1000 sequences of
observations of length N ∈ {200, 1000, 2500} from the standard normal and the t5 distribution.
We add K jumps of heights h ∈ {0, 2, 3, 5, 8} to the data at randomly chosen positions as
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was done in Subsection 3.3.1. K is chosen dependent on the number of observations, i.e.,
K = p ·N with p ∈ {0, 2/1000, 4/1000, 6/1000, 10/1000}.

Table 3.5 shows the simulated MSE for the normal distribution. The estimators σ̂2Mean

and σ̂2mosum
Mean yield similar results. We conclude that the estimation of the number of jumps

K (required in the rule (3.8)) does not have a large effect on the estimator. The estimators
σ̂2Mean and σ̂2mosum

Mean yield the best results if the jump heights are not very large, i.e., h ≤ 2.
However, the MSE of taking the ordinary average is much larger than that of the other
estimators if the jump heights are large. Large jumps result in large blockwise estimates,
which have a strong impact on the ordinary average.

The trimmed estimator σ̂2normal
Tr,ad yields the best results among all methods considered here

for normally distributed data if the jumps are rather high. When many small level shifts are
present σ̂2other

Tr,ad outperforms σ̂2normal
Tr,ad , although the latter makes use of the exact normality

assumption. The estimator σ̂2other
Tr,ad tends to remove more block-estimates than σ̂2normal

Tr,ad in the
absence of level shifts, see Tables 3.3 and 3.4. Therefore, we also expect that more blocks are
trimmed away by σ̂2other

Tr,ad if level shifts are present, reducing the risk of including perturbed
blocks in the trimmed estimator σ̂2other

Tr,ad.
The trimmed estimator σ̂2Tr,0.5 with a fixed trimming fraction also yields good results.

However, this estimation procedure requires the knowledge of the underlying distribution
to compute the finite sample correction factor, see Subsection 3.3.2. The difference-based
estimator σ̂2Diff performs well as long as the jumps are moderately high.

Table 3.6 shows the results for the t5 distribution. The estimation procedures σ̂2normal
Tr,ad and

σ̂2other
Tr,ad yield the best results in this scenario.
In Table 3.7 the simulated MSE is presented when the data is generated from the autore-

gressive (AR) model with ϕ = 0.5, i.e., the data is positively correlated. The performance of
the difference-based estimator worsens considerably then. This is due to the fact that this
estimation procedure makes explicit use of the assumption of uncorrelatedness. While σ̂2Diff

underestimates the true variance drastically (resulting in a high MSE value) when no changes
in the mean are present, the performance seems to improve slightly when dealing with many
high jumps. This can be explained by the fact that the positive bias, which arises from the
jumps, compensates for the negative bias, which arises from the (incorrect) assumption of
uncorrelatedness. The blocks-estimator σ̂2Mean exhibits a similar behaviour, since the block
size is small when the number of jumps is high, while correlated data require large block sizes
to ensure satisfying results. For dependent data the best results are obtained when using the
adaptively trimmed estimators.
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3 Scale estimation under shifts in the mean

K h σ̂2Mean σ̂2Diff σ̂2Tr,0.5 σ̂2
normal
Tr,ad σ̂2

other
Tr,ad σ̂2

mosum
Mean σ̂2

mosum
W

N = 200
0 0 1.10 1.51 1.64 1.10 1.38 1.19 0.98

1

2 1.34 1.54 1.77 1.54 1.79 1.29 2.92
3 1.81 1.60 1.87 1.43 1.50 1.73 1.01
5 5.23 2.03 1.94 1.32 1.46 5.00 0.95
8 26.31 4.41 2.01 1.30 1.48 24.27 0.99

2

2 1.56 1.57 2.28 2.15 3.11 1.59 2.13
3 2.25 1.76 2.45 2.13 2.37 2.40 1.11
5 7.15 3.21 2.52 1.55 1.94 7.27 2.40
8 37.09 12.17 2.38 1.34 1.77 40.25 5.95

N = 1000
0 0 0.21 0.30 0.35 0.23 0.27 0.22 0.18

2

2 0.25 0.30 0.38 0.29 0.28 0.27 0.21
3 0.36 0.31 0.35 0.25 0.25 0.40 0.21
5 1.23 0.37 0.36 0.23 0.26 1.28 0.30
8 6.47 0.72 0.35 0.20 0.24 6.69 1.04

4

2 0.29 0.31 0.39 0.39 0.34 0.29 0.23
3 0.46 0.33 0.41 0.38 0.26 0.47 0.30
5 1.79 0.56 0.42 0.25 0.27 1.96 0.79
8 10.40 1.95 0.46 0.24 0.27 10.57 4.48

6

2 0.32 0.32 0.48 0.59 0.49 0.33 0.33
3 0.51 0.38 0.49 0.49 0.35 0.55 0.63
5 2.03 0.87 0.47 0.26 0.27 2.29 2.31
8 11.68 4.01 0.51 0.25 0.28 13.25 15.74

10

2 0.46 0.34 0.67 1.16 1.16 0.40 0.55
3 0.66 0.50 0.71 0.88 0.58 0.71 1.79
5 2.28 1.87 0.72 0.32 0.38 3.07 11.23
8 12.36 10.57 0.77 0.27 0.32 18.10 69.41

N = 2500
0 0 0.08 0.12 0.13 0.08 0.10 0.09 0.08

5

2 0.11 0.12 0.15 0.14 0.11 0.12 0.09
3 0.17 0.13 0.14 0.11 0.10 0.18 0.14
5 0.70 0.18 0.15 0.10 0.10 0.76 0.36
8 4.08 0.53 0.15 0.09 0.10 4.40 2.14

10

2 0.13 0.13 0.17 0.27 0.18 0.13 0.16
3 0.21 0.15 0.19 0.20 0.12 0.24 0.44
5 0.87 0.37 0.21 0.11 0.11 1.02 2.39
8 4.99 1.76 0.18 0.09 0.10 6.43 12.63

15

2 0.15 0.13 0.23 0.47 0.33 0.15 0.38
3 0.26 0.19 0.27 0.37 0.15 0.27 1.27
5 1.19 0.68 0.28 0.13 0.11 1.27 8.19
8 7.03 3.81 0.24 0.08 0.11 7.54 53.93

25

2 0.21 0.16 0.47 1.22 0.96 0.19 2.00
3 0.39 0.32 0.51 0.94 0.32 0.38 7.90
5 1.86 1.68 0.54 0.17 0.17 1.82 52.63
8 11.14 10.37 0.48 0.11 0.13 11.16 356.78

Table 3.5: Simulated MSE·102 of σ̂2Mean, σ̂2Diff, σ̂2Tr,0.5, σ̂2normal
Tr,ad , σ̂2other

Tr,ad, σ̂2mosum
Mean and σ̂2mosum

W
for normally distributed data and different sample sizes N , jump heights h · σ and
number of jumps K = p ·N with p ∈ {0, 2/1000, 4/1000, 6/1000, 10/1000}.

48



3.3 Variance estimation under shifts in the mean

K h σ̂2Mean σ̂2Diff σ̂2Tr,0.5 σ̂2
normal
Tr,ad σ̂2

other
Tr,ad σ̂2

mosum
Mean σ̂2

mosum
W

N = 200
0 0 11.56 12.53 7.80 8.16 9.38 10.60 8.93

1

2 12.24 12.62 8.57 7.78 10.85 12.69 17.70
3 13.48 12.80 9.22 8.75 11.63 12.88 11.62
5 23.04 13.98 9.85 8.89 10.49 21.03 9.35
8 79.79 20.62 9.33 8.51 9.86 78.54 10.94

2

2 12.67 12.70 10.82 8.28 17.25 10.50 17.78
3 14.42 13.23 11.72 11.60 27.34 15.19 11.15
5 28.38 17.27 13.08 10.16 31.33 29.36 16.02
8 111.37 42.16 12.35 8.84 16.83 129.94 21.69

N = 1000
0 0 2.26 2.50 1.40 2.24 2.80 1.87 2.01

2

2 2.37 2.51 1.61 1.82 2.38 2.43 2.32
3 2.66 2.53 1.64 1.99 2.65 2.52 1.93
5 5.02 2.69 1.70 2.33 2.88 4.72 2.69
8 20.46 3.68 1.64 2.25 2.60 21.87 3.90

4

2 2.48 2.52 1.80 1.59 2.19 2.06 2.37
3 2.94 2.60 1.94 1.91 2.51 2.98 2.96
5 6.69 3.21 1.86 2.09 2.62 6.59 3.88
8 29.63 7.10 1.82 2.17 2.54 33.05 9.51

6

2 2.56 2.54 2.30 1.64 2.46 2.25 2.42
3 3.09 2.71 2.22 1.86 2.47 2.96 3.37
5 7.34 4.08 2.48 2.05 2.39 7.76 6.59
8 33.98 12.80 2.34 2.06 2.60 39.50 39.14

10

2 2.95 2.61 3.07 2.26 4.61 2.49 3.15
3 3.52 3.07 3.40 2.98 4.90 3.82 6.11
5 7.89 6.86 3.71 2.13 3.17 11.64 26.66
8 35.75 31.04 3.93 2.20 2.89 50.17 175.67

N = 2500
0 0 0.89 1.00 0.58 1.32 1.81 0.83 0.94

5

2 0.97 1.01 0.65 0.79 1.28 0.90 0.79
3 1.15 1.02 0.70 0.99 1.37 1.19 0.87
5 2.67 1.18 0.69 1.20 1.45 2.67 2.14
8 12.06 2.14 0.73 1.25 1.55 12.94 7.97

10

2 1.02 1.02 0.92 0.55 0.93 0.87 1.12
3 1.24 1.09 1.03 0.74 1.20 1.48 2.03
5 3.03 1.70 0.99 1.02 1.23 3.53 6.21
8 14.40 5.56 0.95 1.23 1.38 17.91 36.37

15

2 1.09 1.04 1.24 0.65 1.02 1.17 1.64
3 1.40 1.20 1.38 0.86 1.05 1.39 4.19
5 4.00 2.57 1.40 1.00 1.10 4.24 24.28
8 20.18 11.25 1.34 1.15 1.24 21.27 159.02

25

2 1.25 1.11 2.45 1.63 3.28 1.15 7.77
3 1.75 1.56 2.85 2.23 2.30 1.67 21.70
5 5.77 5.35 2.94 0.89 1.19 5.95 145.89
8 32.04 29.47 2.78 1.11 1.18 31.27 951.03

Table 3.6: Simulated MSE·102 of σ̂2Mean, σ̂2Diff, σ̂2Tr,0.5, σ̂2normal
Tr,ad , σ̂2other

Tr,ad, σ̂2mosum
Mean and σ̂2mosum

W
for t5-distributed data and different sample sizes N , jump heights h ·σ and number
of jumps K = p ·N with p ∈ {0, 2/1000, 4/1000, 6/1000, 10/1000}.
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3 Scale estimation under shifts in the mean

K h σ̂2Mean σ̂2Diff σ̂2Tr,0.5 σ̂2
normal
Tr,ad σ̂2

other
Tr,ad σ̂2

mosum
Mean σ̂2

mosum
W

N = 200
0 0 5.21 44.79 7.18 5.92 4.95 27.83 5.02

1

2 9.75 43.01 6.08 4.78 5.15 32.52 6.05
3 7.84 41.08 5.94 5.30 5.31 30.28 5.17
5 4.69 34.70 6.00 5.31 5.06 24.75 5.35
8 19.66 21.60 5.74 5.14 4.73 18.98 5.51

2

2 20.08 41.81 5.50 4.82 6.08 35.01 5.84
3 15.88 37.36 5.14 5.29 6.45 31.92 5.31
5 7.75 26.00 4.98 5.30 5.25 21.20 6.05
8 18.98 6.77 5.00 5.37 4.86 16.33 14.93

N = 1000
0 0 1.31 44.58 5.32 2.72 1.90 18.58 1.02

2

2 5.12 43.84 4.59 2.16 1.53 24.74 1.11
3 4.24 43.00 4.53 2.40 1.77 22.73 1.05
5 2.10 40.32 4.54 2.57 1.78 20.18 1.12
8 2.60 33.96 4.54 2.60 1.71 14.36 1.76

4

2 11.48 43.01 4.05 1.87 1.50 29.51 1.12
3 9.41 41.39 3.87 1.98 1.51 26.50 0.99
5 4.66 36.13 3.92 2.39 1.61 21.68 1.85
8 1.98 24.60 3.72 2.42 1.68 11.80 8.29

6

2 20.15 42.53 3.61 1.51 1.23 33.68 1.02
3 17.05 39.82 3.46 1.80 1.32 30.27 1.07
5 9.76 32.04 3.49 2.45 1.37 22.29 3.69
8 1.90 17.06 3.56 2.64 1.66 10.47 19.47

10

2 40.98 40.84 2.81 1.10 1.11 38.31 0.89
3 37.03 37.04 2.49 1.36 1.38 34.43 2.06
5 25.41 25.13 2.59 2.32 1.38 23.44 14.21
8 7.94 6.07 2.44 2.52 1.35 7.12 122.52

N = 2500
0 0 0.51 44.46 4.83 2.16 1.41 13.95 0.38

5

2 7.50 43.79 4.30 1.65 1.05 22.84 0.38
3 6.45 42.93 4.32 1.79 1.18 21.52 0.40
5 3.68 40.15 4.34 2.09 1.24 18.08 0.75
8 0.64 33.80 4.32 2.20 1.22 12.27 3.50

10

2 20.78 43.04 3.78 1.23 0.78 31.08 0.36
3 18.76 41.45 3.72 1.44 0.92 29.04 0.60
5 13.30 36.13 3.74 1.93 1.08 23.45 3.77
8 3.93 24.69 3.59 2.09 1.08 12.97 22.39

15

2 28.58 42.44 3.38 0.94 0.59 37.94 0.45
3 25.87 39.86 3.16 1.06 0.80 35.29 1.75
5 17.91 32.15 2.98 1.76 0.97 27.69 14.74
8 5.13 16.92 3.10 2.08 0.96 13.55 78.80

25

2 41.03 41.11 2.46 0.47 0.47 40.96 1.97
3 36.83 36.80 2.09 0.59 0.59 36.77 11.09
5 25.48 25.06 1.99 1.49 0.73 25.45 89.71
8 6.84 5.78 2.07 2.00 0.88 6.84 556.63

Table 3.7: Simulated MSE·102 of σ̂2Mean, σ̂2Diff, σ̂2Tr,0.5, σ̂2normal
Tr,ad , σ̂2other

Tr,ad, σ̂2mosum
Mean and

σ̂2mosum
W for data generated from the AR(1) model with ϕ = 0.5 and different

sample sizes N , jump heights h · σ and number of jumps K = p · N with
p ∈ {0, 2/1000, 4/1000, 6/1000, 10/1000}.
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3.3 Variance estimation under shifts in the mean

Since the variance σ2 is underestimated when the data are dependent, the values T̂j in
(3.13) and (3.15) get larger resulting in a higher trimming parameter αadapt. Therefore, more
blocks are trimmed away ensuring that the perturbed ones are not involved in the calculation
of the overall estimate.

Figure 3.3 shows the simulated MSE dependent on the AR-parameter ϕ ∈ {0.1, . . . , 0.8}
in four different scenarios: no jumps, few small jumps, many small jumps and many high
jumps. We observe that the performance of all estimators σ̂2Mean, σ̂2Diff, σ̂2Tr,0.5, σ̂2normal

Tr,ad ,
σ̂2other

Tr,ad, σ̂2mosum
Mean and σ̂2mosum

W worsens when the strength of the correlation (expressed by the
parameter ϕ) grows. When no changes in the mean are present (see Panel (a)) the estimators
underestimate the variance more as ϕ gets larger.
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Figure 3.3: Simulated MSE of σ̂2Mean ( ), σ̂2Diff (- - -), σ̂2normal
Tr,ad (· · ·) , σ̂2other

Tr,ad (- · -), σ̂2Tr,0.5

(− − −), σ̂2mosum
Mean with bandwidth G =

√
N ( ) and σ̂2mosum

W with bandwidth
G =

√
N(- - -) for (a) K = 0, h = 0, (b) K = 2, h = 2, (c) K = 10, h = 2 and (d)

K = 10, h = 8 with N = 1000, Yt = Xt +∑K
k=1 hIt≥tk

, where Xt originates from
the AR(1)-process with parameter ϕ ∈ {0.1, 0.2, . . . , 0.8}.

On the other hand, large level shifts result in a positive bias of the estimators. Therefore,
when many high jumps are present (Panel (d)) the results are better than in the case of
many small jumps (Panel (c)). This is more obvious for the estimators σ̂2Mean, σ̂2Diff and
σ̂2mosum

Mean . The trimmed estimation procedures do not suffer much from the increasing strength
of correlation in our example. The averaging approach σ̂2Mean yields good results if the
dependence is rather weak and if only few small jumps are present. The performance of the
weighted average σ̂2mosum

W worsens drastically when many high jumps are present. During
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3 Scale estimation under shifts in the mean

this estimation procedure the data is segregated into few blocks at estimated change-point
locations. The approach is highly biased in the case of many and high level shifts if the
number of change-points is underestimated. This is sometimes the case if two level shifts are
not sufficiently far away from each other, see [22].

Based on the simulation results we recommend using the averaging estimation procedure
σ̂2Mean if the data are not expected to be correlated or heavy-tailed and the jump heights
are rather small. Otherwise, if either no information on the distribution, the dependence
structure of the data and the jump heights is given or the jumps are expected to be rather
large, the adaptively trimmed procedure σ̂2other

Tr,ad can be recommended.

3.3.4 Blockwise estimation of the standard deviation

In many applications we do not wish to estimate the variance σ2 but rather the standard
deviation σ, e.g. for standardization.

Estimation by the blockwise average

We will consider the two blocks-estimators

σ̂corr
Mean,1 = CN,1σ̂Mean,1 = CN,1

1
m

m∑
j=1

Sj and (3.16)

σ̂corr
Mean,2 = CN,2σ̂Mean,2 = CN,2

√ 1
m

m∑
j=1

S2
j = CN,2

√
σ̂2Mean, (3.17)

where CN,1 and CN,2 are sample dependent correction factors to ensure unbiasedness when
no changes in the mean are present. The block size n can be chosen according to the rule
(3.8). If the number of change-points is not known in practice, it can be estimated as is done
in Subsection 3.3.1.

For normally distributed data the correction factors CN,1 and CN,2 can be determined
analytically. To derive the correction factor CN,1 for the estimator σ̂corr

Mean,1 we will first consider
the exact distribution of the empirical variance when dealing with jumps in the mean in
order to derive the distribution of σ̂Mean,1 in (3.16). Given independent identically normally
distributed data Xj,1, . . . , Xj,n it is well known that (n−1)S2

j

σ2 ∼ χ2
n−1 in a j-th jump-free block

with n observations. The situation is different in the presence of jumps. Without loss of
generality the following lemma is expressed in terms of the first block consisting of the
observation times t = 1, . . . , n and containing K̃1 ≤ K jumps.

Lemma 5. Assume that X1, . . . , Xn ∼ N (0, σ2) and Yt = Xt +∑K̃1
k=1 hkIt≥tk

for t = 1, . . . , n.
Then we have for S2

1 = 1
n−1

∑n
t=1(Yt − Y 1)2 that

n− 1
σ2 S2

1 ∼ χ2
n−1,λ1 (the non-central chi-squared distribution),

where λ1 = 1
σ2
∑n

t=1 (µ1,t − µ1)
2 , µ1,t = ∑K̃1

k=1 hkIt≥tk
and µ1 = 1

n

∑n
t=1

∑K̃1
k=1 hkIt≥tk

.
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3.3 Variance estimation under shifts in the mean

Proof. Y 1 = X1 + µ1 and Yt − Y 1 = Xt − X1 − µ1 + µ1,t, t = 1, . . . , n, are independent,
since X1 and Xt −X1 are independent and the remaining terms are deterministic constants.
Hence, S2

1 and Y 1 are independent. Furthermore,

n∑
t=1

(
Yt − µ1
σ

)2
=

n∑
t=1

(
Yt − Y 1 + Y 1 − µ1

σ

)2

=
n∑

t=1

(
Yt − Y 1

σ

)2

+
n∑

t=1

(
Y 1 − µ1

σ

)2

+ 2
(
Y 1 − µ1

σ

)
n∑

t=1

(
Yt − Y 1

σ

)

= n− 1
σ2 S2

1 + n

σ2

(
Y 1 − µ1

)2
+ 0 = n− 1

σ2 S2
1 + n

σ2X
2
1

with ∑n
t=1

(
Yt−µ1

σ

)2
∼ χ2

n,λ1 , since Yt ∀t are independent and n
σ2X

2
1 ∼ χ2

1. The moment
generating function at z ∈ R of both sides and the independence of S2

1 and Y 1 yield:

(1 − 2 · z)−n/2 exp
(

λ1z

1 − 2z

)
= Mχ2

n,λ1
(z) = Mn−1

σ2 S2
1
(z) ·Mχ2

1
(z)

= Mn−1
σ2 S2

1
(z) · (1 − 2 · z)−1/2

⇔ Mn−1
σ2 S2

1
(z) = (1 − 2 · z)−(n−1)/2 exp

(
λ1z

1 − 2z

)
= Mχ2

n−1,λ1
(z)

⇒ n− 1
σ2 S2

1 ∼ χ2
n−1,λ1 .

In the following we assume that B ≤ K blocks are contaminated by K̃1, . . . , K̃B jumps,
respectively, with ∑B

k=1 K̃k = K. Without loss of generality assume that the jumps are
contained in the first B blocks, while the last m− B > 0 blocks do not contain any jumps.
The square root of a χ2

n−1,λj
-distributed random variable (n− 1)S2

j /σ
2 is χ-distributed with

n − 1 degrees of freedom and non-centrality parameter
√
λj, see e.g. [57]. We hence have√

n− 1Sj/σ ∼ χ
n−1,

√
λj

, j = 1, . . . ,m, where λj = 0 for the last blocks j = B + 1, . . . ,m,
i.e.,

√
n− 1Sj/σ ∼ χn−1. The expected value of Sj is given as

E(Sj) = σ

√
2√

n− 1
Γ(0.5n)

Γ(0.5(n− 1))F1,1(−0.5, 0.5(n− 1),−0.5λj) =: σCn,λj
, (3.18)

where F1,1(a, b, z) represents the generalized hypergeometric function, see [61] for more
details. When no changes in the mean are present we have that λj = 0 ∀ j and therefore
F1,1(−0.5, 0.5(n− 1),−0.5λj) = 1. The exact finite sample correction factor is given as

CN,1 =
√
n− 1√

2
Γ(0.5(n− 1))

Γ(0.5n) ,

53



3 Scale estimation under shifts in the mean

which is the reciprocal of the term Cn,λj
in (3.18) when no level shifts are present, since

F1,1(−0.5, 0.5(n− 1),−0.5λj) = 1, j = 1, ...,m, in this case.
For the second estimator (3.17) we have the following statements on its expectation and a

suitable finite sample correction factor:

σ̂corr
Mean,2 = CN,2

σ√
m(n− 1)

⎛⎝n− 1
σ2

m∑
j=B+1

S2
j + n− 1

σ2

B∑
j=1

S2
j

⎞⎠1/2

,

E
(
σ̂corr

Mean,2

)
= CN,2

σ
√

2√
m(n− 1)

Γ(0.5(m(n− 1) + 1))
Γ(0.5m(n− 1))

× F1,1

⎛⎝−0.5, 0.5m(n− 1),−0.5
B∑

j=1
λj

⎞⎠
:= CN,2σDn,λ1,...,λB

,

CN,2 =

√
m(n− 1)

√
2

Γ(0.5m(n− 1))
Γ(0.5(m(n− 1) + 1)) .

We used the fact that σ̂Mean,2 follows a scaled χu,v distribution with u = m(n− 1) degrees of
freedom and the non-centrality parameter v =

√∑B
j=1 λj , since n−1

σ2
∑m

j=B+1 S
2
j ∼ χ2

(m−B)(n−1)
and n−1

σ2
∑B

j=1 S
2
j ∼ χ2

B(n−1),
∑B

j=1 λj
. Using this information we can determine the expectation

of the estimator straightforwardly, see [57] and [61]. The correction factor is the reciprocal of
Dn,λ1,...,λB

, where F1,1
(
−0.5, 0.5m(n− 1),−0.5∑B

j=1 λj

)
= 1 in the absence of level shifts.

The following consistency statements are valid for the two introduced uncorrected estimators
σ̂Mean,1 = 1

m

∑m
j=1 Sj (as defined in (3.16)) and σ̂Mean,2 =

√
1
m

∑m
j=1 S

2
j (as defined in (3.17))

of σ:

Corollary 1. Under the conditions of Theorem 2 the estimators σ̂Mean,1 and σ̂Mean,2 converge
almost surely to σ, as N → ∞.

Proof. The strong consistency of σ̂Mean,2 follows immediately from the Continuous Mapping
Theorem.
For σ̂Mean,1, we have due to Theorem 2 of [41] that

1
m

m∑
j=1

(Sj − E (Sj)) → 0 almost surely,

since Sj −E (Sj) are uniformly bounded with P (|Sj −E (Sj) | > t) → 0 ∀t due to Chebyshev’s
inequality and V ar(Sj) → 0.

Let Sj,h be the sample standard deviation in the perturbed block while Sj,0 is the estimate
in the uncontaminated block. We have that

1
m

m∑
j=1

(Sj − E (Sj)) = σ̂Mean,1 − 1
m

⎛⎝ m∑
j=B+1

E (Sj,0) +
B∑

j=1
E (Sj,h)

⎞⎠ ,
i.e., it suffices to show 1

m

(∑m
j=B+1 E (Sj,0) +∑B

j=1 E (Sj,h)
)

→ σ. For the first of these two
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3.3 Variance estimation under shifts in the mean

terms we have

1
m

m∑
j=B+1

E (Sj,0) = m− B

m
E (S1,0) −→ σ as N −→ ∞,

since the consistency and the decreasing variance of S1,0 implies convergence of the expectation,
see Lemma 1.4A in [79]. Using Jensen’s inequality we get for the second term

1
m

B∑
j=1

E (Sj,h) = 1
m

B∑
j=1

E
(√

S2
j,h

)

≤ 1
m

B∑
j=1

√E
⎛⎜⎝S2

j,0 +
n∑

t=1

2(Xj,t −Xj)(µj,t − µj) +
(
µj,t − µj

)2

n− 1

⎞⎟⎠

= 1
m

B∑
j=1

√E (S2
j,0

)
+

n∑
t=1

(
µj,t − µj

)2

n− 1 = 1
m

B∑
j=1

√σ2 +
n∑

t=1

(
µj,t − µj

)2

n− 1

≤ B

m

√σ2 + n

n− 1

(
K∑

k=1
hk

)2

−→ 0,

where µj,t and µj are defined in the proof of Theorem 2.

Remark 10. The correction factors CN,1 and CN,2 from (3.16) and (3.17) satisfy

CN,1 → 1 and CN,2 → 1 as N → ∞,

where CN,1 = σ/E(σ̂Mean,1) and CN,2 = σ/E(σ̂Mean,2) in the absence of level shifts. This can
be shown with Lemma 1.4A in [79], since σ̂Mean,1 and σ̂Mean,2 are consistent estimators and
their variances tend to zero, which implies convergence of the means and thus the above
statement. Therefore, for large N and n we can neglect the correction factors and use the
estimators σ̂Mean,1 and σ̂Mean,2 instead of σ̂corr

Mean,1 and σ̂corr
Mean,1 with block sizes n → ∞.

Trimmed estimation

When dealing with a large number of level shifts, as is discussed in Section 3.3.2, the square
root of the variance estimator σ̂2Tr,ad from (3.11) can be used to estimate the standard
deviation σ. For large N and n a correction factor to ensure unbiasedness when no changes in
the mean are present can be neglected. Table 3.8 shows the simulated finite sample correction
factors for normally and t5-distributed data as well as for the stationary AR(1)-process with
normal errors and parameter ϕ ∈ {0.3, 0.6}. We observe that the correction factors are nearly
one except for strongly correlated data, i.e., AR-process with parameter ϕ = 0.6.
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N(0, 1) t5 AR(0.3) AR(0.6)√
σ̂2normal

Tr,ad
N = 1000, n = 50 1.0025 1.0660 1.0213 1.0939
N = 5000, n = 100 0.9999 1.0413 1.0108 1.0450√

σ̂2other
Tr,ad

N = 1000, n = 50 1.0082 1.0666 1.0310 1.1179
N = 5000, n = 100 1.0014 1.0334 1.0135 1.0550

Table 3.8: Simulated finite sample correction factors for the adaptively trimmed estimation
procedures for normally and t5-distributed data as well as for the stationary AR(1)-
process with normal errors and parameter ϕ ∈ {0.3, 0.6}, denoted by AR(0.3) and
AR(0.6).

3.3.5 Application

In this section we apply the blocks-approach to two datasets in order to estimate the variance.

Nile river flow data

The first dataset contains the widely discussed Nile river flow records in Aswan from 1871
to 1984, see e.g. [34], [37], [87], among many others. We consider the N = 114 annual
maxima of the average monthly discharge in m3/s, since these values are often assumed to
be independent in hydrology. The maxima are determined from January to December. The
flooding season is from July to September, see [34]. Fig. 3.4 shows the annual maxima of the
average monthly discharge of the Nile river for the years 1871 – 1984.
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Figure 3.4: Maximal monthly discharge of the Nile river at Aswan in the period 1871 – 1984.

The construction of the two Aswan dams in 1902 and from 1960 to 1969 obviously caused
changes in the river flow, see [34] and [37]. We used Levene’s test (see Section 12.4.2 in [24])
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3.3 Variance estimation under shifts in the mean

to check the three segments of the data (divided by the years 1902 and 1960) for equality of
variances. The null hypothesis of equal variances was not rejected with a p-value of p = 0.40.

A Q-Q plot of the data indicates that the deviation from a normal distribution is not large,
see Fig. D.6 in Appendix D. With β = 0.05 and n = 10 (m = 11 blocks) no blocks are
trimmed away during the trimming procedures σ̂2normal

Tr,ad and σ̂2other
Tr,ad. The ordinary sample

variance of the entire data yields the value 3243866, see Table 3.9. For the blocks-estimator
of the variance from (3.2) we choose the block size according to (3.8) with K = 2 getting
n = ⌊

√
114/3⌋ = 3. All blockwise estimators examined in this section yield much smaller

variance estimates for the whole observation period, ranging from 2075819 to 2684368.
We conclude that the procedures σ̂2Mean, σ̂2Diff, σ̂2Tr,0.5, σ̂2normal

Tr,ad , σ̂2other
Tr,ad, σ̂2mosum

Mean and
σ̂2mosum

W perform better than the ordinary sample variance, since the estimated values on the
whole dataset are similar to those for the period 1903 – 1960 in between the changes.

S2 σ̂2Mean σ̂2Diff σ̂2Tr,0.5 σ̂2normal
Tr,ad σ̂2other

Tr,ad σ̂2mosum
Mean σ̂2mosum

W

1871 – 1984

3244 2123 2219 2564 2122 2122 2684 2076

1903 – 1960

2129 2396 1815 2041 2278 2278 2003 2129

Table 3.9: Rounded estimates (·10−3) of the variance for the annual maxima of the average
monthly discharge of the Nile river in Aswan.

PAMONO data

In the second example we use data obtained from the PAMONO (Plasmon Assisted Microscopy
of Nano-Size Objects) biosensor, see [84]. This technique is used for detection of small particles,
e.g. viruses, in a sample fluid. For more details, see [83]. PAMONO data sets are sequences
of grayscale images. A particle adhesion causes a sustained local intensity change. This
results in an obvious level shift in the time series of grayscale values for each corresponding
pixel coordinate. To the best of our knowledge, a change of the variance after a jump in the
mean is not expected to occur. A Q-Q plot of the data indicates that the assumption of a
normal distribution is reasonable, see Fig. D.7 in Appendix D. Moreover, the PAMONO data
were analysed by [1], where the authors analyse these data assuming a normal distribution.

In Panel (a) of Fig. 3.5 we see a time series corresponding to one pixel, which exhibits a
virus adhesion, therefore revealing several level shifts in the mean of the time series. N = 1000
observations are available. Panel (b) of Fig. 3.5 shows a boxplot of 101070 values of the
ordinary sample variance for time series, which correspond to pixels without virus adhesion.
Since changes in the mean are not expected there, we use these data to get some insight
into the typical value range of the variance. The sample variance of the contaminated data
(upper panel) is 1.59 · 10−4, which is not within the typical range of values, since it exceeds
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3 Scale estimation under shifts in the mean

the upper whisker of the boxplot.
The other estimation procedures discussed in this section yield values within the interval

[1.1 · 10−4, 1.2 · 10−4], which are well within the interquartile range. We conclude that these
approaches yield reasonable estimates for these data.
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Figure 3.5: (a) Intensity over time for one pixel and (b) a boxplot of variances for the virus-
free pixels together with the ordinary sample variance of the above data (- - -)
and values of σ̂2Mean and σ̂2Diff ( ), σ̂2Tr,0.5 (- - -), σ̂2normal

Tr,ad (· · · ·), σ̂2other
Tr,ad (- · -),

σ̂2mosum
Mean (– – –) and σ̂2mosum

W (– - –).

PAMONO data with trend

Again, we consider a PAMONO dataset, see Subsection 3.3.5. Panel (a) of Fig. 3.6 shows a
time series corresponding to a pixel, which seems to exhibit a virus adhesion as well as a linear
trend. Panel (b) of Fig. 3.6 shows the differenced data, i.e., Yt − Yt−1, t = 2, ..., 388. The
differences of first order appear to be independent and scattered around a fixed mean. Few
large differences can be observed, which presumably originate from the jumps in the mean at
the corresponding time points. The existence of the trend could be explained by the fact that
the surface, on which the fluid for virus adhesion is placed, was heated up over time. N = 388
observations are available. We apply the estimation procedures σ̂2Mean (using K ∈ {1, ..., 5}
in the formula (3.8)), σ̂2Diff, σ̂2Tr,0.5, σ̂2normal

Tr,ad , σ̂2other
Tr,ad, σ̂2mosum

Mean and σ̂2mosum
W to the data and

get estimated values for the variance, which range from σ̂2Mean = 0.95 · 10−6 (with K = 5) to
σ̂2mosum

W = 1.66 · 10−6. The empirical variance of the observations has the value 26.48 · 10−6,
which is much larger than the other estimates. According to our experience the PAMONO
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3.3 Variance estimation under shifts in the mean

data can be assumed to be uncorrelated after differencing. The sample variance of differenced
data is 1.93 · 10−6, which is an estimator of 2σ2, yielding the value 0.97 · 10−6 as an estimate
for σ2, which is near the estimated value of σ̂2Mean.

We conclude that the proposed procedures yield reasonable results even in this situation,
where a linear trend is present.
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Figure 3.6: (a) Intensity over time for one pixel and (b) corresponding differenced series.

3.3.6 Conclusion

In the presence of level shifts ordinary variance estimators like the empirical variance perform
poorly. In this section we considered several estimation procedures in order to account for
possible changes in the mean.

Estimation of σ2 based on pairwise differences is popular in nonparametric regression and
works well in the presence of level shifts and an unknown error distribution if the data
are independent and the fraction of shifts is asymptotically negligible. However, we have
identified scenarios where estimation based on longer blocks is to be preferred.

If only a few small level shifts are expected in a long sequence of observations our recom-
mendation is to use the mean of the blocks-variances σ̂2Mean. This estimation procedure does
not require knowledge of the underlying distribution, performs well in the aforementioned
situation and is asymptotically even as efficient as the ordinary sample variance if there are
no level shifts.

If many or large level shifts are expected to occur we recommend using the adaptive trimmed
estimators σ̂2normal

Tr,ad and σ̂2other
Tr,ad. These procedures are constructed for independent data and
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3 Scale estimation under shifts in the mean

use either the exact χ2-distribution or the asymptotic normal distribution of the blockwise
estimates, where the second and the fourth moments need to be estimated. We have found
these trimming approaches to work reasonably well even under moderate autocorrelations,
although many blocks are trimmed away then, presumably due to the underestimation of
the unknown variance in the formula (3.15). Therefore, when no changes in the mean are
present the trimmed estimators suffer efficiency loss. On the other hand, we expect that
many perturbed blocks are trimmed away in the presence of level shifts reducing the bias of
the estimator. The trimming approach could be extended to dependent data in future work.

In many applications we rather wish to estimate the standard deviation σ, e.g. for
standardization. If only few jumps of moderate heights are expected to occur, either the
average value of the blockwise standard deviations or the square root of the blocks-variance
estimator σ̂2Mean can be used. Otherwise, the square root of the trimmed estimator σ̂2other

Tr,ad
can be recommended. For a large sample size N the finite sample correction factors can be
neglected with little loss.

An interesting extension will be to consider situations where not only the level but also
the variability of the data can change. Suitable approaches for such scenarios might be
constructed by combining the ideas discussed here with those presented by [101], where tests
for changes in variability have been investigated using blockwise approaches, assuming a
constant mean. This will be an issue for future work.
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3.4 Robust scale estimation under shifts in the mean

3.4 Robust scale estimation under shifts in the mean

This section is based on the preprint “Robust scale estimation under shifts in the mean” [3].
We are grateful for the help of Alexander Dürre, one of the co-authors of the article, who gave
lots of advice on mathematical tools to derive asymptotic theory for the proposed estimation
procedure.

In Section 3.4.1 we present non-overlapping blocks approaches for estimating the scale
measure σ in the change-point and outlier scenario. In Section 3.4.2 we discuss theoretical
properties of the modified MAD. In Section 3.4.3 we discuss the choice of the block size for
the blockwise estimators. Further methods for comparison are presented in Section 3.4.4.
In Section 3.4.5 we analyse and compare the performance of the methods in a simulation
study, and in Section 3.4.6 we apply them to a real data set. In Section 3.4.7, we give a brief
summary and an outlook.

3.4.1 Robust measures of scale

There is a broad variety of literature on robust measures of scale. [76] introduced an estimator
which is based on the shortest half of the observations. [74] proposed two alternatives to the
well known median absolute deviation (MAD). The estimators Sn and Qn use quantiles of
absolute differences of all pairs of observations. Some further robust scale estimators are
examined in [51]. Moreover, one can conduct an estimation of the variability in terms of M-,
S- or τ -estimation procedures, see e.g. [13], [73] and [102]. Still, the MAD is presumably the
most popular robust scale estimator.

[4] consider blockwise estimation procedures based on the sample variance to estimate σ2

under shifts in the mean. [90] investigate a difference based approach under m-dependence
when the underlying signal is discontinuous. A possible outlier contamination is not considered
in both papers. Difference-based estimators have been widely discussed in the literature, see
e.g. [94], [67], [26], [32], [21], [59], [91], [90]. Robust transformations of the vertical heights,
formed by three consecutive observations, in order to deal with both, level shifts and outliers
are considered in [75] and [27]. [6] use the median of the absolute differences of first or second
order to estimate σ2 under changes in the mean.

Our proposal is the estimator σ̂M,mod of the standard deviation σ, a modification of the
MAD, which will be investigated in this thesis. If jumps in the location are present, the
median of the total sample is not a suitable estimator. The modified estimator σ̂M,mod is
based on the idea of estimating the location in blocks rather than using the whole sample.
For this purpose the data is segregated into m blocks of size n, and in each block the median
value is calculated. Subsequently, the corrected modified MAD is calculated as follows:

σ̂M,mod = Cmod
N ζ̂N,n with (3.19)

ζ̂N,n = med{|Y1,1 − ν̂N,1|, . . . , |Y1,n − ν̂N,1|, |Y2,1 − ν̂N,2|, . . . , |Ym,n − ν̂N,m|} and (3.20)
ν̂N,j = med{Yj,1, . . . , Yj,n}, j = 1, . . . ,m, (3.21)

where Yj,1, . . . , Yj,n are the n observations in the j-th block and Cmod
N is a distribution
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dependent finite sample correction factor, which can be simulated. Choosing m = 1 results
in the ordinary (corrected) MAD.

There are other possibilities to utilize ordinary robust estimators, such as the MAD, to
estimate the scale parameter in the change-point scenario and we will include such possibilities
for comparison. The data can be segregated into m blocks, as was suggested above. A robust
measure of scale, e.g. the MAD, can then be calculated in every block. Subsequently, the
resulting m estimates M1, . . . ,Mm can be combined to get an overall estimate of scale. One
possibility is averaging the block estimates, as was done e.g. in [16] in the context of repeated
measurements, in [72] for estimation of the Hurst parameter or in [4] for non-robust estimation
of the variance. The resulting estimator (average MAD) is:

σ̂M,me = Cme
N

1
m

m∑
j=1

Mj. (3.22)

Further possibilities to combine the block estimates are the median MAD and the trimmed
MAD,

σ̂M,med = CM
N med {M1, . . . ,Mm} and (3.23)

σ̂α
M,tr = CT

N

1
m− ⌊αm⌋

m−⌊αm⌋∑
j=1

M(j), (3.24)

where CM
N and CT

N are the finite sample correction factors. We do not consider a symmetric
trimmed mean of the block estimates since the MAD is positively biased in the presence of
level shifts. Therefore, we are only interested in trimming the block estimates, which are
rather large.

The asymptotic properties of the proposed estimator σ̂M,mod can be investigated straight-
forwardly in contrast to the estimators in (3.22) – (3.24). Moreover, the simulation results
indicate that the performance of the three robust MAD-based estimators (3.19), (3.23) and
(3.24) is similar, while the estimator (3.22) exhibits rather higher MSE in the presence of
level shifts and outliers. Therefore, we recommend the estimator σ̂M,mod.

3.4.2 Theoretical properties of the modified MAD

We will now discuss some asymptotic properties of ζ̂N,n, the modified version of the ordinary
MAD, see (3.20). Many theoretical results, which are valid for the ordinary MAD, can be
adapted to the estimator ζ̂N,n due to their similar construction. The theoretical results in
this section make use of the contributions of [55], [79] and [80]. The proofs of the following
results can be found in Appendix B.

Consistency

Let X1, . . . , XN be i.i.d. with continuous cumulative distribution function (CDF) F . We
assume in the following that F is strictly monotone increasing around the median ν with
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ν := F−1(0.5). Let G be the CDF of |X1 − ν| with

G(x) := P (|X1 − ν| ≤ x) = F (ν + x) − F (ν − x) ∀x ∈ R, (3.25)

which is assumed to be strictly monotone increasing around the median

ζ := G−1(0.5). (3.26)

We consider ζ̂N,n as defined in (3.20), where m is the number of blocks and n = ⌊N/m⌋ is
the block size. The following Lemma 6 yields an exponential probability inequality for ζ̂N,n,
which is later on used to show the almost sure convergence to the theoretical MAD in the
change-point scenario (i.e., model (3.1) with γt = 0 ∀ t). The probability that the difference
between the modified MAD ζ̂N,n and the true value ζ is larger than ϵ is bounded by three
terms, which all converge to zero.

Lemma 6. Let Yt = Xt +∑K
k=1 hkIt≥tk

, where the Xt are i.i.d. with E(Xt) = 0, E(X2
t ) = σ2

and hk ≥ 0 for k = 1, ..., K (see model (3.1) with γt = 0). We assume that the number of
blocks m satisfies m → ∞, m = o(N) and K = o(m), where n = N/m is the number of
observations in a block with n → ∞. Then, for every ϵ > 0:

P
(
|ζ̂N,n − ζ| > ϵ

)
≤ exp{−2N∆2

2,ϵ,N} + exp{−2N∆2
3,ϵ,N} + 4m exp

{
−2N

m
δ2

ϵ,n

}
(3.27)

with

∆2,ϵ,N =
(
F (ν + ζ + ϵ/2) − F (ν − ζ − ϵ/2) − B

m
−
⌊
N + 1

2

⌋ 1
N

)+
, (3.28)

∆3,ϵ,N =
⌊
N + 1

2

⌋ 1
N

− F (ν + ζ − ϵ/2) + F (ν − ζ + ϵ/2) − B

m
, (3.29)

δϵ,n = min{a0, b0}, (3.30)

a0 = a0(ϵ) =
(
F (ν + ϵ/2) −

(⌊
n+ 1

2

⌋
− 1

) 1
n

)+
,

b0 = b0(ϵ) =
(⌊
n+ 1

2

⌋ 1
n

− F (ν − ϵ/2)
)+

,

where x+ = x if x > 0 and x+ = 0 otherwise.

Proof. See Appendix B.

Proposition 7. Under the conditions of Lemma 6 ζ̂N,n converges almost surely to ζ as
N → ∞.

Proof. See Appendix B.
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Bahadur representation

The Bahadur representation for ζ̂N,n (as defined in (3.20)) in the outlier- and jump-free
scenario is given as follows (see proof of Theorem 8):

ζ̂N,n − ζ =
1/2 −

(
F̂N(ν + ζ) − F̂N(ν − ζ)

)
G′(ζ) − F ′(ν − ζ) − F ′(ν + ζ)

G′(ζ)
1/2 − F̂N(ν)

F ′(ν) + ∆N ,

(3.31)

where F̂N is the empirical distribution function of the i.i.d. random variables X1, ..., XN , F
is the CDF of X1, G is the CDF of |X1 − ν| as defined in (3.25), and ν, ζ are the population
median and the population MAD, respectively. The first two terms of (3.31) are the same as
in the case of the ordinary MAD and are dominating for N → ∞, see [55].

In the following Theorem 8 we show the weak convergence of the error term ∆N to zero
with a convergence rate of at least

√
N .

Theorem 8. (Weak Bahadur representation)
Let X1, . . . , XN be i.i.d. random variables and F , the CDF of X1, be twice continuously

differentiable with F ′(ν) > 0, G′(ζ) = F ′(ν+ζ)+F ′(ν−ζ) > 0 and F ′′(x) ≤ M ∀x ∈ R, M >

0. When choosing m = o
(
N1/3

)
with m → ∞ we then have for ∆N from (3.31)

∆N = oP (N−1/2). (3.32)

Proof. See Appendix B.

To prove Theorem 8 we will use the following Lemma, where the inequality for the absolute
difference

⏐⏐⏐(ν̂N,j + ζ̂N,n

)
− (ν + ζ)

⏐⏐⏐ , j = 1, ...,m, is presented. In contrast to [55], we show
this inequality using the blockwise medians ν̂N,j instead of the sample median of the entire
data. Moreover, a slight modification of the constant D1 in the proof of [55] is necessary in
order to ensure the validity of the inequalities stated in the following Lemma. We consider
D1 = max{8/F ′(ν), 8/G′(ζ)}, while the minimum of the two values is used in [55].

Lemma 9. Let X1, . . . , XN be i.i.d. random variables and F , the CDF of X1, twice con-
tinuously differentiable at x in the neighbourhood of ν ± ζ, with F ′(ν) > 0 and G′(ζ) =
F ′(ν + ζ) + F ′(ν − ζ) > 0. Moreover, let ν̂N,j be the median of the observations Xj,1, ..., Xj,n

in block j ∈ {1, . . . ,m}, where m is the total number of blocks, which satisfies m = o(N2/3)
with m → ∞, and n is the block size. Then, with

D1 = max{8/F ′(ν), 8/G′(ζ)}, (3.33)

the following result is valid almost surely:

⏐⏐⏐(ν̂N,j + ζ̂N,n

)
− (ν + ζ)

⏐⏐⏐ ≤ 2D1
log(n)1/2

n1/2 , (3.34)
⏐⏐⏐(ν̂N,j − ζ̂N,n

)
− (ν − ζ)

⏐⏐⏐ ≤ 2D1
log(n)1/2

n1/2 , (3.35)
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j = 1, . . . ,m, for sufficiently large N .

Proof. See Appendix B.

Corollary 2. Under the conditions of Theorem 8 the limiting distribution of the estimator
ζ̂N is the same as that of the ordinary MAD in the outlier- and jump-free scenario when
choosing m = o(N1/3):

√
N
(
ζ̂N,n − ζ

)
d→ N(0, ϑ2), (3.36)

where ϑ2 = 1
4(G′(ζ))2

(
1 + γ

F ′(ν)2

)
, with γ = β2 − 4(1 − α)F ′(ν), α = F (ν − ζ) + F (ν + ζ),

β = F ′(ν − ζ) − F ′(ν + ζ) and ν = F−1(0.5), as defined in [55].

Proof. See Appendix B.

Remark 11. 1. Under shifts in the mean the random variable
√
N
(
ζ̂N,n − ζ

)
diverges in

distribution when choosing n = N1−δ

K+1 , i.e., m = N δ(K + 1), with δ = 1/3.1 (we choose
m as large as possible without violating the necessary assumption m = o(N1/3), since
this should yield an estimator which is least influenced under shifts in mean.). As an
example Figure 3.7 shows the histograms of 1000 simulated values of

√
N
(
ζ̂N,n − ζ

)
when dealing with three jumps of height h = 5 after τkN observations, with τk = k/4
and k ∈ {1, 2, 3}. We observe that the mean of

√
N
(
ζ̂N,n − ζ

)
diverges as N → ∞.

2. In Section 3.4.5 we will see that σ̂M,mod with a block size n, which is a function of
√
N

(see (3.37)), yields very good results. However, simulations suggest that
√
N
(
ζ̂N,n − ζ

)
diverges in distribution under shifts in the mean, see Figure 3.8 for an example with
K = 3 and h = 5σ.

3. The estimator σ̂M,mod is affine equivariant, i.e., applying σ̂M,mod to transformed observa-
tions ay1 + b, ..., ayN + b, a, b ∈ R, results in multiplying the original estimate by the
factor |a|.

4. Simulations suggest that the correction factor Cmod
N approaches the population correction

factor Cmod
∞ =

√
V ar (X)/ζ with ζ as defined in (3.26), which equals CMAD,∞, the

population correction factor of the MAD, if the block size n grows to infinity as
N → ∞. Table 3.10 shows the results for the block sizes n = N1/2/(K + 1) and
n = N1−1/3.1/(K + 1) with K = 0.
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3 Scale estimation under shifts in the mean

N(0, 1) t5
q \N 500 1000 2500 5000 10000 500 1000 2500 5000 10000
1/2 1.5646 1.5362 1.5154 1.5060 1.4988 1.8573 1.8288 1.8084 1.8002 1.7922
1 − 1

3.1 1.5045 1.4988 1.4904 1.4886 1.4859 1.8075 1.7876 1.7854 1.7786 1.7790

Table 3.10: Correction factor Cmod
N for n = N q with q ∈ {1/2, 1 − 1/3.1}, K = 0 and N ∈

{500, 1000, 2500, 5000, 10000}. Data are generated from the normal (CMAD,∞ =
1.4826) and the t5-distribution (CMAD,∞ = 1.7765).

N= 10
3

−6 −4 −2 0 2 4 6

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

N= 10
5

−6 −4 −2 0 2 4 6

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

N= 10
6

−6 −4 −2 0 2 4 6

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

Figure 3.7: 1000 simulated values of ζ̂N,n based on N ∈ {103, 105, 106} observations from
Yt = Xt +∑3

k=1 5It≥tk
, where Xt ∼ N(0, 1) and n = N1−1/3.1

K+1 .
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Figure 3.8: 1000 simulated values of ζ̂N,n based on N ∈ {103, 105, 106} observations from
Yt = Xt, where Xt ∼ N(0, 1), n =

√
N.
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3.4 Robust scale estimation under shifts in the mean

Robustness against outliers

We will consider the finite sample explosion breakdown point fsebpN(Θ̂, N) of an estimator
Θ̂ given a sample y1, ..., yN . It is the minimum fraction of observations which can lead to
arbitrarily large values of the estimator irrespective of the other data (see e.g. Section 3.2.5
in [54]). The fsebp of the sample variance or the standard deviation is equal to 1/N , since
arbitrarily large values can be achieved with a single outlier.

The asymptotic explosion breakdown point aebp(Θ̂) is then defined as

aebp(Θ̂) = lim
N→∞

fsebpN(Θ̂, N).

The ordinary MAD has the finite sample explosion breakdown point fsebp(MAD, N) =
⌊N+1

2 ⌋/N , which results in the largest possible asymptotic explosion breakdown point
aebp(MAD) = 1/2 for equivariant estimators (see [74] and Section 3.8.2 in [54]).

For the robust estimation procedures under level shifts we get the following results on the
fsebp:

• Modified MAD
For the modified MAD ζ̂N,n (see (3.20)) we get fsebp(ζ̂N,n, N) = ⌊n+1

2 ⌋⌊m+1
2 ⌋/(mn),

which yields aebp(ζ̂N,n) = 1/4 for any block size n. This is due to the fact that ⌊n+1
2 ⌋ of

the observations need to be contaminated in a block to achieve arbitrarily large values
of the blockwise sample medians ν̂N,j from (3.21), and ⌊m+1

2 ⌋ blocks need to contain
contaminated medians to achieve arbitrary values of the modified MAD.

• Average MAD
To achieve arbitrarily large values of the average MAD as defined in (3.22) only one
blockwise MAD needs to be perturbed. This is the case when ⌊n+1

2 ⌋ outliers are present
in one block. Therefore the aebp is limN→∞⌊n+1

2 ⌋/(mn) = 0 if m → ∞.

• Median MAD
The median of the blockwise MAD’s as defined in (3.23) has an aebp of 1/4, since ⌊m+1

2 ⌋
blocks, each with ⌊n+1

2 ⌋ outliers, are required to obtain an arbitrarily large estimate.

• Trimmed MAD
Similar considerations can be made for the trimmed mean of the blockwise MAD’s:
⌊αm⌋ + 1 blocks, each with ⌊n+1

2 ⌋ contaminated observations, cause the trimmed
estimator to explode resulting in an aebp of α/2.
By choosing a different quantile than the median one could achieve a larger fsebp than
0.25 at the expense of a smaller efficiency and implosion break down point.

The aebp of the robust triangle-based estimators discussed in [77], which are considered in
the simulation study for comparison (see Section 3.4.5), is 1/4, like for the modified and the
median MAD.
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3 Scale estimation under shifts in the mean

Robustness against level shifts

Besides robustness against outliers we are also interested in the robustness against level shifts.
For simplicity we will consider the case of even sample size N , block size n and number of
blocks m.

The ordinary MAD can take arbitrarily large values then if a single level shift occurs after
exactly 50% of the observations. Therefore, the smallest number of level shifts, which results
in a severely biased estimate, is one. As opposed to this, the modified MAD can get arbitrarily
large if half of the blocks are perturbed by a change in the mean, i.e., m

2 shifts.
To compare both quantities we will consider the smallest number of change-points needed

to distort an estimate relative to the sample size and refer to this measure as the finite sample
breakdown point under level shifts (fsbpul).

• Modified MAD
We have fsbpul(ζ̂N,n, N) = m

2 /(mn) = 1/(2n) and therefore fsbpul(MAD, N) =
1/(mn) = o

(
fsbpul(ζ̂N,n, N)

)
if m → ∞ as N → ∞.

• Average MAD
For the average MAD we get an fsbpul of 1/(mn) since one perturbed block can lead
to arbitrarily large estimates.

• Median MAD
The fsbpul of the median MAD is the same as that for the modified MAD, i.e., 1/(2n).

• Trimmed MAD
The trimmed MAD has a fsbpul of (⌊αm⌋ + 1)/(mn), which is smaller than that of the
modified and the median MAD if α < 0.5.

For odd N , n or m the consideration of fsbpul gets somewhat more complicated. In case of
odd n, for instance, the discussion above still applies if the zero deviation arising from the
median itself is excluded from the outer median in the definition of the MAD.

3.4.3 Choice of the block size

In this section we investigate suitable choices for the block size of the robust estimators
introduced in Section 3.4.1. The simulation scenarios are summarized in Table 3.11:

Distribution N(0, 1), t3
Sample size N ∈ {1000, 2500}
Number of change-points K ∈ {1, 2, 3, 4}
Jump height h ∈ {1σ, 3σ, 5σ}
Average absolute outlier height g ∈ {6σ, 10σ}
Number of simulation runs 1000

Table 3.11: Simulation scenarios for the choice of the block size.
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3.4 Robust scale estimation under shifts in the mean

Our goal is to determine an appropriate block size n, which performs well in all considered
scenarios. The performance of the blocks-estimator σ̂M,mod as well as that of σ̂M,me, σ̂M,med

and σ̂α
M,tr depends on the position of the jumps. We consider different positions of the K

jumps to evaluate the performance of the blocks-estimators. For every K ∈ {1, 2, 3, 4}, we
generate K jumps of equal heights h ∈ {0, 1σ, 3σ, 5σ} at positions sampled randomly from
a uniform distribution on the values maxn (N − ⌊N/n⌋n) + 1, . . . , N − maxn (N − ⌊N/n⌋n)
(if N ≠ mn then N − mn observations are left out at the beginning and at the end of the
sequence of observations) without replacement, and calculate the estimate for every block
size n ∈ {2, 3, 4, . . . , ⌊N/2⌋}. We repeat this procedure 1000 times and get 1000 estimates
σ̂1, ..., σ̂1000 for each estimator σ̂ and every h and n. Subsequently, the MSE of σ̂ for given
values of h and n is estimated using these values, i.e.,

M̂SE (σ̂) = 1
1000

1000∑
i=1

(
σ̂i − 1

1000

1000∑
i=1

σ̂i

)2

+
(

1
1000

1000∑
i=1

σ̂i − σ

)2

.

Data are generated from different distributions, see Table 3.11.

Choice of the block size for σ̂M,mod

Figure 3.9 shows the simulated RMSE for the modified MAD in case of N = 1000 and
different outlier and change-point scenarios. For both, the normal and the heavy tailed t3
distribution, we observe a similar behaviour of the curves, except that in the latter case the
RMSE is uniformly higher. Similar results are obtained for N = 2500, see Figure D.8 in
Appendix D.

Larger blocks lead to smaller RMSE in case of a few small jumps, but the differences are
not large in such scenarios. Shorter blocks are preferred as the number of change-points
increases.

The square root of the sample size N has proven to be a good choice for the block length
in many applications, see e.g. [4] (and Chapter 3.3) and [72]. We propose to choose the block
size according to the formula

n1 = n1(N,K) = max
{⌊ √

N

K + 1

⌋
, 2
}
, (3.37)

if one is mainly interested in a good performance of the estimator. The corresponding estimator
is denoted as σ̂2

M,mod. In the simulation study in Section 3.4.5 we will also investigate the
performance of the modified MAD when choosing

n2 = n2(N,K) = max
{⌊

N1−1/3.1

K + 1

⌋
, 2
}
, (3.38)

in view of the results in Corollary 2, which requires m = o(N1/3) for the convergence to the
centered normal distribution. The corresponding estimator is denoted by σ̂3.1

M,mod.
The number K of jumps in the mean is usually not known exactly. There are several

possibilities to deal with this problem:
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Figure 3.9: RMSE of σ̂M,mod for K = 1, h = 1σ, g = 6 ( ) K = 2, h = 3σ, g = 6
(- - -), K = 3, h = 3σ, g = 10 (· · ·) and K = 4, h = 5σ, g = 10 (- · -).
N = 1000 observations from Yt = Xt + ∑K

k=1 hσIt≥tk
+ γtUt with 5% outliers,

where γt ∼ N(gσ, 0.5), Xt ∼ N(0, 1) (left) and Xt ∼ t3 (right). The grey dots
denote the RMSE corresponding to the block size n =

√
N/(K + 1).

1. Use prior knowledge about the possible number of changes in the mean.

2. Pre-estimate the number of change-points with an appropriate procedure (e.g. robust
regression trees, see [25]).

3. Choose the block size according to one of the rules

n3 = n1(N, K̃) = max
{⌊ √

N

K̃ + 1

⌋
, 2
}

(3.39)

n4 = n2(N, K̃) = max
{⌊

N1−1/3.1

K̃ + 1

⌋
, 2
}

(3.40)

with fixed K̃, which do not require knowledge of the number of change-points. In
Section 3.4.5 we will see that the modified MAD yields satisfying results when choosing
n according to (3.39) and (3.40).

Remark 12. Choosing the smallest possible block size, i.e., n = 2, results in the median of
absolute differences:

ζ̂N,2 = med
{

|Y2 − Y1|
2 ,

|Y4 − Y3|
2 , . . .

}
, (3.41)

which is a median of i.i.d. random variables when no level shifts or outliers are present. A
correction factor cN,2 is required to ensure almost sure convergence of ζ̂N,2 to the population
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3.4 Robust scale estimation under shifts in the mean

MAD ζ. Estimators based on differences of observations have gained attention in the context
of scale estimation, see e.g. [74], [90] or [27], where differences of first or second order are
used. We will now show that the estimator ζ̂N,2 is less efficient than ζ̂N,n under normality,
with n chosen according to (3.38).

When Y1, . . . , YN ∼ N(µ, σ2) i.i.d. we have that |Y2j − Y2j−1|2−1/2 ∼ HN(σ), where HN(σ)
denotes the half-normal distribution with parameter σ. The median of this distribution is
σ

√
2erf−1(1/2) = Φ−1(3/4) = ζ, where erf−1 is the inverse error function and Φ is the CDF

of the standard normal distribution. Therefore, the appropriate correction factor for ζ̂N,2, as
defined in (3.41), is cN,2 =

√
2 in order to achieve consistency. The asymptotic distribution

of the sample median of N/2 i.i.d. random variables is well known, see e.g. Theorem 2.3.3A
in [79]:

√
N
(√

2ζ̂N,2 − ζ
)

d→ N
(
0, η2

)
with

η2 = 1

2
(
f |Y1−Y2|√

2
(ζ)
)2 .

E.g. for the standard normal distribution the random variables |Y2j − Y2j−1|2−1/2 are
HN(1)-distributed and we get the asymptotic variance η2 = 1.24. On the other hand, if the
block size n is growing and the number of blocks m satisfies m = o(N1/3) the asymptotic
variance is ϑ2 = 0.62, which is much smaller (only half of the value) than in the case of blocks
with fixed size n = 2.

Choice of the block size for further robust estimators

In this part of the thesis we will discuss an appropriate choice of the block size for further
robust estimation procedures.

Choice of the block size for σ̂M,me

Since the ordinary MAD is a robust estimator we conclude that the height of the change-points
and the magnitude as well as the amount of outliers might be not as crucial for the choice of
the block size as the number of change-points is. Intuitively, the more changes in the mean
occur the larger should the number of blocks be.

Figures 3.10 and D.9 confirm that the optimal block size nopt, which yields the smallest
RMSE, decreases as the number of jumps grows. We observe that the behaviour of the RMSE
for the median MAD is similar to that of the modified MAD. Therefore we suggest choosing
the block size according to the rule in (3.37).

Remark 13. The computation of the exact MSE requires the exact CDF of the MAD
under a change in the mean. It can be derived analytically (see Appendix C for odd n and
one change in the mean), using similar considerations as in the i.i.d. case, see e.g. [60].
However, the implementation and computation of the MSE is very time consuming and
CPU-intensive, since numerical integration of products of distribution functions is involved
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3 Scale estimation under shifts in the mean

in the computation. We conduct a simulation study instead to get an idea on the proper
choice of the block size n.
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Figure 3.10: RMSE of σ̂M,me for K = 1, h = 1, γ = 6σ ( ) K = 2, h = 3, γ = 6σ
(- - -), K = 3, h = 3, γ = 6σ (· · ·) and K = 4, h = 5σ, γ = 10 (- · -).
N = 1000 observations from Yt = Xt + ∑K

k=1 hσIt≥tk
+ γtUt with 5% outliers,

where γt ∼ N(γσ, 0.5), Xt ∼ N(0, 1) (left) and Xt ∼ t3 (right). The grey dots
denote the RMSE corresponding to the block size n =

√
N/(K + 1).

Choice of the trimming parameter α for σ̂α
M,tr

For the estimator σ̂α
M,tr from (3.24) we will investigate the reasonable choice of the trimming

parameter α first. Figure 3.11 shows the RMSE of σ̂α
M,tr for α ∈ {0.1, 0.3, 0.5} when

Xt ∼ N(0, 1) or Xt ∼ t3 (see model (3.1)). Clearly, α = 0.5 yields the best results since more
jump contaminated blocks are trimmed away. Hence, in what follows we will use σ̂0.5

M,tr with
α = 0.5.

Choice of the block size for σ̂M,med and σ̂0.5
M,tr

We will now investigate the proper choice of the block size n for the estimators σ̂M,med and
σ̂α

M,tr. Figures 3.12 and D.10 in Appendix D show the RMSE of σ̂M,med and σ̂0.5
M,tr in different

scenarios where the Xt are either normally or t3-distributed. The RMSE-curves for the
estimator σ̂M,med resemble those of σ̂M,me and σ̂M,mod.
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Figure 3.11: RMSE of σ̂α
M,tr for α = 0.1 ( ) α = 0.3 (- - -), α = 0.5 (· · ·). N = 1000 (left)

and N = 2500 (right) observations from Yt = Xt +∑3
k=1 3σIt≥tk

+ γtUt with 5%
outliers, where γt ∼ N(6, 0.5), Xt ∼ N(0, 1) (black) and Xt ∼ t3 (grey).

Therefore, the block size can be chosen according to (3.37). For the estimator σ̂0.5
M,tr we

suggest choosing the block size according to

n = n(N,K) = max
⎧⎨⎩
⎢⎢⎢⎣√ N

K + 1

⎥⎥⎥⎦ , 2
⎫⎬⎭ , (3.42)

since the impact of K seems to be slightly smaller in this case, see e.g. Figure D.10 in
Appendix D. Moreover, we observe that σ̂0.5

M,tr performs slightly better than σ̂M,med. In Section
3.4.5 the performance of all estimators with the chosen block sizes will be investigated and
compared with each other as well as with the robust scale estimators proposed by [27].

3.4.4 Further methods for comparison

The methods introduced in Section 3.4.1 will be compared with each other as well as with
the approaches proposed by [4], [75] and [27] in a simulation study.

Now we review the blocks-estimators and the adaptively trimmed estimators of the standard
deviation proposed in [4] (see Sections 3.3.4 and 3.3.2 for the details) as well as the three
robust model-free approaches proposed in [75] and [27].
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Figure 3.12: RMSE of σ̂M,med (black) and σ̂0.5
M,tr (grey) for K = 1, h = 1σ, g = 6 ( ) K =

2, h = 3σ, g = 6 (- - -), K = 3, h = 3σ, g = 10 (· · ·) and K = 4, h = 5σ, g = 10
(- · -). N = 1000 observations from Yt = Xt + ∑K

k=1 hσIt≥tk
+ γtUt with 5%

outliers, where γt ∼ N(gσ, 0.5), Xt ∼ N(0, 1) (upper panel) and Xt ∼ t3 (lower
panel).

Blocks-estimators

The blocks-estimators proposed in [4] are defined as follows:

σ̂me,1 = CN,1
1
m

m∑
j=1

Sj and σ̂me,2 = CN,2

√ 1
m

m∑
j=1

S2
j , (3.43)
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3.4 Robust scale estimation under shifts in the mean

where Sj is the standard deviation in block j, CN,1 and CN,2 are the finite sample correction
factors, which can be neglected for large N . We will choose n according to the rule (3.37).

Adaptively trimmed estimators

The adaptively trimmed estimator also introduced in [4] is the following:

σ̂Tr,ad = CN,Tr,ad

√ 1
m− ⌊αadaptm⌋

m−⌊αadaptm⌋∑
j=1

S2
(j), (3.44)

where S2
(1) ≤ . . . ≤ S2

(m) are the ordered sample variances in the corresponding blocks and
αadapt the adaptively chosen percentage of the trimmed blocks-estimates. The term CN,Tr,ad

is a finite sample correction factor, which can be neglected in large samples. The trimming
parameter αadapt is determined using the outlier detection procedure discussed in [18], since
blocks containing a level shift will often lead to outlying sample variances. For more details
see [4] and Section 3.3.2. We will refer to the adaptively trimmed estimator based on
the normality assumption as σ̂2normal

Tr,ad . The trimmed estimator is denoted as σ̂2other
Tr,ad if no

distributional assumptions are made.

Robust triangle-based approaches

For the three robust model-free approaches first the N − 2 adjacent triangle heights have to
be calculated:

hadj
t =

⏐⏐⏐⏐yt+1 − yt + yt+2

2

⏐⏐⏐⏐ , t = 1, ..., N − 2.

Then the estimators are given as follows:

Qβ
adj = cq

n{hadj
1 , . . . , hadj

N−2}(⌊β(N−2)⌋), (3.45)

Mβ
adj = cm

n

1
⌊β(N − 2)⌋

⌊β(N−2)⌋∑
t=1

hadj
(t) , (3.46)

MSβ
adj = cs

n

√ 1
⌊β(N − 2)⌋

⌊β(N−2)⌋∑
t=1

(
hadj

(t)

)2
. (3.47)

We set β = 0.5 as was recommended by the authors (therefore Q0.5
adj,M

0.5
adj and MS0.5

adj are
considered). The factors cq

n, cm
n and cs

n are finite sample correction constants, which are
required in order to achieve unbiasedness.

We will only consider Qβ
adj and MSβ

adj in the following since the performance of the estimator
MSβ

adj is very similar to that of Mβ
adj.
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3 Scale estimation under shifts in the mean

Further approaches

The triangle heights are based on differences of second order. We also consider estimation
of scale based on the median of the first order differences. When using non-overlapping
differences, the estimator is the following:

σ̂M,mod,2 =
√

2
Φ−1(0.75) ζ̂N,2 =

√
2

Φ−1(0.75)med
{

|Y2 − Y1|
2 ,

|Y4 − Y3|
2 , . . .

}
. (3.48)

It is a special case of the estimator σ̂M,mod with n = 2, which was already presented in (3.41).
A finite sample correction factor will not be used since the samples considered in the further
simulations are large and σ̂M,mod,2 is a consistent estimator of σ. The estimator based on
overlapping differences is defined as follows:

σ̂Diff,med = CDiff
N med {|Y2 − Y1|, |Y3 − Y2|, . . .} , (3.49)

where CDiff
N is the finite sample correction factor, which can be simulated.

Finally, we consider a slight modification of the estimator σ̂M,mod from (3.19) by using
moving blocks of size n instead of non-overlapping (separate) ones. The corresponding
overlapping MAD is defined as follows:

σ̂M,mod, over = Cmod,o
N ζ̂N,n with (3.50)

ζ̂N,n, over = med
{

|Yt − ν̂N,t| : t =
⌊
n

2

⌋
+ 1, . . . , N −

⌊
n

2

⌋}
and

ν̂N,t = med
{
Yt−⌊n

2 ⌋, . . . , Yt+⌊n
2 ⌋
}
, t =

⌊
n

2

⌋
+ 1, . . . , N −

⌊
n

2

⌋
,

where Cmod,o
N is a distribution dependent finite sample correction factor, which can be

simulated.

3.4.5 Simulations

We will now compare the estimators introduced in Section 3.4.1 with each other as well as
with the robust triangle-based estimators (3.45) and (3.46) proposed by [75] and [27], the
non-robust estimators (3.43), (3.44) and the robust difference-based estimators (3.48) and
(3.49). In the simulation study we consider independent as well as positively correlated data.

Independent data

The simulation scenarios considered in case of independent data are summarized in Table
3.12. Throughout this thesis we will simulate the data from N(0, 1), t3, t5, Gum(0, 1) and
Lap(1, 3) distributions. The Gum(0, 1) represents the Gumbel distribution with parameters
µ = 0 and σ = 1. The Lap(1, 3) is the Laplace distribution with location parameter µ = 1
and scale parameter b = 3.
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3.4 Robust scale estimation under shifts in the mean

Distribution N(0, 1), t3, t5, Gum(0, 1), Lap(1, 3)
Sample size N ∈ {500, 1000, 2500}
Number of change-points K ∈ {1, 2, 3, 4}
Jump height h ∈ {0, 1σ, 3σ, 5σ}
Outlier probability p = 0.05
Average absolute outlier height g ∈ {0, 6σ, 10σ}
Number of simulation runs 1000

Table 3.12: Simulation scenarios considered for independent data.

We generate 1000 datasets consisting of N observations from model (3.1) for each scenario
and present the bias and the RMSE in Tables 3.13, 3.14 as well as in E.3, E.4 and E.5 in Ap-
pendix E. Again, the positions of the jumps are chosen randomly, as was done in Section 3.4.3.

Non-robust and difference-based methods
For the non-robust blocks-estimators (3.43), the adaptively trimmed estimator (3.44) and the
robust difference-based estimators (3.48) and (3.49) we conduct some simulations to illustrate
that these estimators do not perform well in comparison to the proposed robust estimation
procedures (see Section 3.4.1) when level shifts and outliers are present. We only display the
results for the modified MAD σ̂M,mod from Section 3.4.1 for comparison, since we recommend
using this approach in what follows. Table 3.13 shows the corresponding simulation results.
We observe that these estimators yield very good results if zero or three jumps in the mean
are present. If the data are additionally contaminated by outliers, the robust difference-based
estimators (3.48) and (3.49) perform much better than the non-robust ones (3.43) and (3.44),
but are outperformed by the modified MAD (and other robust estimators from Section 3.4.1,
see Table 3.14 for comparison).

Moreover, we consider the overlapping MAD σ̂M,mod, over from (3.50) for comparison. We
observe that the performance of this estimator is very similar to that of the non-overlapping
σ̂M,mod. Therefore, further investigation of σ̂M,mod, over is omitted in our simulations.
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3 Scale estimation under shifts in the mean

Scenarios

N 500 1000 2500
K 0 3 3 0 3 3 0 3 3
ρ 0 0 0.5 0 0 0.5 0 0 0.5
g 0 0 6 0 0 6 0 0 6

RMSE

σ̂me,1 3.52 5.41 42.02 2.46 3.68 46.99 1.56 1.98 53.46
σ̂me,2 3.31 4.65 69.62 2.22 3.09 69.33 1.42 1.86 68.48
σ̂2normal

Tr,ad 6.48 7.87 87.07 4.69 5.29 69.01 3.00 3.00 63.58
σ̂2other

Tr,ad 7.22 7.53 83.79 5.14 5.32 72.42 3.27 3.17 66.00
σ̂M,mod,2 7.48 7.29 16.46 5.23 5.22 14.60 3.33 3.21 13.53
σ̂Diff,med 5.86 5.72 15.34 4.19 4.11 14.01 2.65 2.55 13.26
σ̂M,mod,over 5.60 8.73 13.40 3.84 5.09 10.00 2.37 2.81 8.05
σ̂M,mod 5.37 7.25 12.45 3.88 4.54 10.58 2.32 2.67 8.17

Table 3.13: RMSE·102 of different estimators in different scenarios. Data are generated from
the standard normal distribution.

Robust methods
Table 3.14 shows the results for N = 1000. We observe that the robust estimators, introduced
in this thesis, perform well and lead to rather similar results. In the outlier-free change-point
scenario (K = 3, h = 3σ, g = 0, ρ = 0) the estimators σ̂M,me and σ̂M,mod perform slightly
better than σ̂M,med and σ̂0.5

M,tr. The triangle-based robust estimators Q0.5
adj and MS0.5

adj , proposed
by [75] and [27], yield satisfying results as well.

In the presence of outliers and level shifts (K = 3, h = 3σ, g = 6, ρ = 0.5) robust
combinations of block estimates, i.e., σ̂M,med, σ̂0.5

M,tr or the modified MAD σ̂M,mod are preferable,
since they outperform the approaches proposed by [75] and [27] as well as the estimator
σ̂M,me.

When the data is neither contaminated by structural changes nor by outliers (K = 0, g = 0,
ρ = 0) σ̂M,mod yields slightly better results than σ̂M,med and σ̂0.5

M,tr. We can also observe the
similarity between the modified and the ordinary MAD, as expected.

The RMSE of the estimator σ̂3.1
M,mod is slightly higher than that of σ̂2

M,mod if changes in
the mean are present. This can be explained by the fact that less blocks are used when
n is chosen according to the rule in (3.38). E.g., when N = 1000 and K ∈ {0, 1, . . . , 5}
the resulting number of blocks m ranges from 18 to 55, while we have m ∈ [63, 189] when
choosing n according to (3.37).

Tables E.3 and E.4 in Appendix E show similar results for N = 500 and N = 2500. Results
for the case of N = 500, 1000, 2500 with K = 5 and h = 5σ can be found in Table E.5 in
Appendix E, where the same statements on the performance of the estimators can be made.
In all Tables 3.14, E.3, E.4 and E.5 we observe that the bias is the dominating part of the
RMSE when changes in the mean are present which are not very small.
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3.4 Robust scale estimation under shifts in the mean

Distribution Sd MAD σ̂M,me σ̂M,med σ̂0.5
M,tr σ̂2

M,mod σ̂3.1
M,mod Q0.5

adj MS0.5
adj

K = 0, g = 0, ρ = 0
Bias
N(0, 1) -0.00 0.09 0.44 0.35 0.30 0.13 0.06 -0.06 -0.09
t3 -1.57 -0.14 0.43 0.40 0.02 0.01 -0.02 -0.14 -0.20
t5 -0.00 0.21 -0.08 0.63 0.66 0.22 0.29 0.15 0.14
Gum(0, 1) 0.14 -0.10 0.23 0.04 0.06 0.09 -0.07 0.47 0.61
Lap(1, 3) 1.19 0.75 -0.20 -0.20 0.53 1.25 1.63 0.70 0.67
RMSE
N(0, 1) 2.22 3.77 3.84 4.68 4.94 3.88 3.80 4.51 4.89
t3 21.34 6.96 7.20 8.58 8.67 7.10 7.05 8.69 9.13
t5 5.51 4.94 5.28 6.46 6.60 5.33 4.97 6.00 6.37
Gum(0, 1) 4.11 4.98 5.18 6.48 6.34 5.28 5.01 6.11 6.61
Lap(1, 3) 16.05 19.02 19.27 23.41 23.52 19.77 19.30 20.87 22.14

K = 3, h = 3σ, g = 0, ρ = 0
Bias
N(0, 1) 214.63 209.55 1.28 0.69 1.22 0.85 2.92 0.47 0.40
t3 377.86 606.14 2.78 1.24 1.93 1.31 6.44 0.87 0.82
t5 271.78 326.95 1.94 1.24 1.20 1.13 4.49 0.42 0.38
Gum(0, 1) 278.41 316.36 2.28 0.82 1.25 1.08 3.91 0.65 0.56
Lap(1, 3) 903.11 > 103 4.24 4.08 4.02 5.06 17.29 2.28 2.28
RMSE
N(0, 1) 221.65 237.89 4.34 5.38 5.15 4.54 4.99 4.56 4.94
t3 390.60 698.62 8.57 9.94 9.86 8.25 10.54 8.73 9.09
t5 281.35 377.98 5.88 7.21 6.97 6.15 7.26 5.93 6.36
Gum(0, 1) 287.69 361.87 6.18 7.46 6.82 6.25 6.76 6.05 6.41
Lap(1, 3) 934.63 > 103 21.44 27.37 25.57 23.31 28.46 21.82 22.87

K = 3, h = 3σ, g = 6, ρ = 0.5
Bias
N(0, 1) 243.84 223.81 11.95 9.31 8.06 9.25 10.00 19.19 17.86
t3 429.86 640.60 24.47 16.74 14.68 17.09 20.00 37.88 33.78
t5 312.15 358.90 16.66 12.22 10.46 12.33 14.04 26.46 24.24
Gum(0, 1) 313.20 332.12 16.21 11.25 9.76 11.50 12.83 25.53 23.40
Lap(1, 3) > 103 > 103 55.32 40.80 37.45 43.16 52.97 91.55 82.38
RMSE
N(0, 1) 249.36 251.94 12.92 11.10 9.91 10.58 10.96 20.15 18.96
t3 439.78 729.40 26.58 20.03 17.97 19.51 21.96 39.80 35.84
t5 319.43 404.61 18.02 14.64 12.96 14.04 15.43 27.80 25.67
Gum(0, 1) 320.15 372.46 17.60 13.80 12.42 13.34 14.33 26.86 24.88
Lap(1, 3) > 103 > 103 61.07 50.15 46.61 49.81 58.10 96.19 87.38

Table 3.14: Bias·102 and RMSE·102 of different estimators for N = 1000 under independence.
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3 Scale estimation under shifts in the mean

Therefore, our recommendation of the modified version of the MAD has been confirmed
in the simulation study. If one is only interested in estimating the scale parameter prop-
erly, the estimator σ̂2

M,mod with the block size n = max
{ √

N
K+1 , 2

}
is a good choice. When

testing hypotheses on σ is in the focus of the application, n = max
{

N1−1/3.1

K+1 , 2
}

can be chosen.

Block size independent of K
The above choice of the block size n depends on the number K of change-points, see rules
(3.37) and (3.38). However, K is usually not known. Therefore, we investigate the performance
of the modified MAD choosing a block size, which does not depend on the unknown value of
K. Figure 3.13 shows the RMSE of the estimators σ̂2

M,mod and σ̂3.1
M,mod using block sizes (3.37)

and (3.38), respectively, together with the estimators ˜̃σ2
M,mod and ˜̃σ3.1

M,mod using block sizes
n = max{⌊

√
N/(K̃ + 1)⌋, 2} and n = max{N1−1/3.1/(K̃ + 1), 2} with K̃ ∈ {0, 1, 2, 4, 6} (i.e.,

setting K = 0, 1, 2, 4, 6 in the formulae (3.37) and (3.38)), which do not depend on the true
number of jumps K ∈ {1, 3, 5, 7, 9}.
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Figure 3.13: RMSE of (a) σ̂2
M,mod with block size n = max{⌊

√
N/(K + 1)⌋, 2} and ˜̃σ2

M,mod

with block size n = max{⌊
√
N/(K̃ + 1)⌋, 2}, (b) σ̂3.1

M,mod with block size n =
max{⌊N1−1/3.1/(K+1)⌋, 2} and ˜̃σ3.1

M,mod with block size n = max{⌊N1−1/3.1/(K̃+
1)⌋, 2} based on true K ( ), and on K̃ = 0 ( ), K̃ = 1 (- - -), K̃ = 2
(· · ·), K̃ = 4 (- · -), K̃ = 6 ( ) for N = 1000 observations from Yt =
Xt +∑K

k=1 3σIt≥tk
+ γtUt with 5% outliers, where γt ∼ N(6σ, 0.5), Xt ∼ N(0, 1).

We consider data from the normal distribution with 5% outliers, where N = 1000, h = 3 and
K = 3. We observe that the performance of the estimators σ̂2

M,mod and ˜̃σ2
M,mod (independent

of K) is similar for any fixed K̃, while ˜̃σ3.1
M,mod (with fixed K̃) yields much higher RMSE

values than the estimator σ̂3.1
M,mod if the fixed value K̃ is low (e.g. K̃ = 0). We conclude that

in this situation choosing a large value of K̃, such as K̃ = 6, is beneficial. Similar conclusions
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3.4 Robust scale estimation under shifts in the mean

can be made for the case N = 2500 with h = 3 and N = 1000 with h = 5 for normally
distributed data and the case N = 1000 with h = 3 for t3-distributed data, see Figure D.11
and the upper panel of Figure D.12 in Appendix D.

The results for the small jump height h = 1 and the normal distribution are given in the
lower panel of Figure D.12 in Appendix D. In this case estimation based on any block size with
fixed K̃ yields similar results. We conclude that the block size n =

√
N/(K̃ + 1) with a fixed

value K̃, e.g. K̃ = 2, is an appropriate choice if the value of K is not known. If the focus is on
testing hypotheses on σ (in light of Corollary 2) a block size n = max{N1−1/3.1/(K̃ + 1), 2}
with a rather large value K̃ ≥ 6 should be chosen.

Correlated data

We also consider positively correlated data generated by the first order autoregressive (AR)
model with normal errors and parameter ϕ ∈ {0, 0.1, . . . , 0.9}, which describes the strength
of the correlation. Independent normally distributed data are considered when ϕ = 0. Table
3.15 shows the simulation results. The bias and the RMSE of the ordinary sample standard
deviation and the MAD are not displayed in the table, since these values are much larger
than the rest. We observe that high positive autocorrelation causes a negative bias, i.e.,
the parameter σ is underestimated. On the other hand the estimators are positively biased
when level shifts and outliers are present. This explains why the absolute value of the bias
decreases for moderate autocorrelation and increases as ϕ grows.

If the correlation is moderately high the performance of the proposed robust estimators
does not worsen much. Choosing the block size n = max{⌊

√
N/(2 + 1)⌋, 2} instead of

n = max{⌊
√
N/(K+1)⌋, 2}, i.e., considering the estimator ˜̃σ2

M,mod, improves the performance
slightly for higher values of ϕ, since a larger block size is beneficial when dealing with
strongly correlated data. Even better results are obtained by σ̂3.1

M,mod with the block size n =
max{⌊N1−1/3.1/(K+1)⌋, 2} for large ϕ. Choosing a block size n = max{⌊N1−1/3.1/(6+1)⌋, 2}
(i.e., considering ˜̃σ3.1

M,mod) does not improve the performance of the estimator considerably.
The trimmed estimator σ̂0.5

M,tr yields slightly better results than the modified MAD for small
values of ϕ. For large values of ϕ the modified MAD is a better choice.

Similar results are obtained for N = 2500, h = 5, K = 5 and N = 1000, h = 3, K = 3, see
Tables E.6 and E.7 in Appendix E.
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3 Scale estimation under shifts in the mean

ϕ σ̂M,me σ̂M,med σ̂0.5
M,tr σ̂2

M,mod ˜̃σ2
M,mod σ̂3.1

M,mod ˜̃σ3.1
M,mod Q0.5

adj MS0.5
adj

K = 5, h = 5σ, g = 0, ρ = 0
Bias
0 1.98 1.66 1.69 1.47 2.53 3.84 3.25 1.17 1.17
0.1 -0.17 -0.99 0.68 -1.11 1.22 3.03 2.60 -5.51 -5.64
0.3 -6.08 -7.48 -2.79 -7.56 -1.83 1.04 0.32 -20.58 -20.62
0.5 -16.48 -18.93 -9.56 -19.16 -8.70 -3.12 -4.46 -39.96 -39.99
0.7 -40.22 -43.83 -28.04 -44.19 -26.86 -15.84 -18.35 -72.12 -72.13
0.9 -128.33 -133.81 -109.35 -134.24 -107.18 -84.26 -90.35 -168.08 -168.19
RMSE
0 4.63 5.91 5.27 5.10 5.11 5.73 5.43 4.59 4.94
0.1 4.30 5.71 4.95 5.08 4.42 5.32 5.00 6.90 7.19
0.3 7.39 9.34 5.84 9.00 4.96 4.56 4.40 20.87 20.96
0.5 17.07 19.74 11.04 19.77 9.95 5.78 6.64 40.07 40.12
0.7 40.50 44.23 28.75 44.50 27.45 17.04 19.36 72.18 72.19
0.9 128.43 133.95 109.61 134.34 107.40 84.71 90.74 168.10 168.21

K = 5, h = 5σ, g = 6, ρ = 0.5
Bias
0 16.07 10.86 8.76 10.43 10.44 11.16 10.87 20.19 18.81
0.1 13.33 8.11 7.63 7.74 9.10 10.43 9.99 12.53 11.14
0.3 6.86 1.02 4.32 0.59 5.46 8.30 7.56 -4.09 -5.43
0.5 -3.00 -10.28 -2.88 -10.94 -0.95 4.73 3.07 -24.96 -26.19
0.7 -25.98 -34.94 -20.10 -35.85 -18.30 -6.70 -9.67 -58.12 -59.28
0.9 -111.72 -124.37 -100.62 -125.41 -97.92 -72.83 -79.57 -155.55 -156.63
RMSE
0 17.06 12.61 10.40 11.83 11.46 12.07 11.86 21.07 19.82
0.1 14.46 10.39 9.47 9.57 10.29 11.45 11.08 13.85 12.70
0.3 8.82 6.48 7.14 5.46 7.39 9.69 9.09 6.58 7.51
0.5 6.69 12.18 6.58 12.29 5.51 7.41 6.37 25.34 26.55
0.7 26.82 35.61 21.30 36.31 19.27 9.77 11.71 58.26 59.43
0.9 112.03 124.54 100.94 125.54 98.18 73.46 80.06 155.59 156.67

Table 3.15: Bias·102 and RMSE·102 of different estimators for N = 1000, K = 5, h = 5σ and
different AR-parameters ϕ ∈ {0, 0.1, . . . , 0.9}.

3.4.6 Application

In this section we apply the robust estimation techniques to a dataset in order to estimate
the standard deviation.

Data with level shifts

We analyse data obtained from the PAMONO (Plasmon Assisted Microscopy of Nano-Size
Objects) biosensor. For more details regarding the data, see Section 3.3.5 as well as [83] and
[84].

In Panel (a) of Fig. 3.14 a time series of length N = 1000 corresponding to one pixel with
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3.4 Robust scale estimation under shifts in the mean

a virus adhesion is shown. Three level shifts in the mean of the time series can be observed.
Panel (b) of Fig. 3.14 presents a boxplot of 101070 standard deviations for time series, which
correspond to pixels without virus adhesion, i.e., without level shifts. We use these data to get
an idea about the range of typical values of the standard deviation. The values of the sample
standard deviation and the ordinary MAD of the contaminated data (upper panel) are not
within this typical range and exceed the upper whisker of the boxplot. As opposed to this,
the non-robust and robust blocks-estimators σ̂me,2, σ̂Tr,ad, σ̂M,mod,2, σ̂Diff,med, σ̂M,me, σ̂M,med,
σ̂0.5

M,tr, σ̂2
M,mod and σ̂3.1

M,mod, ˜̃σ2
M,mod, ˜̃σ3.1

M,mod yield values, which are well within the interquartile
range. More precisely, the modified MAD yields values from 1.05 · 10−2 to 1.09 · 10−2. We
conclude that the blocks-approach yields reasonable estimates for these data.
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Figure 3.14: (a) Intensity over time for one pixel; (b) A boxplot of standard deviations
(multiplied by 102) for the virus-free pixels together with the ordinary sample
standard deviation and MAD ( ), the non-robust estimators σ̂me,2 and σ̂Tr,ad
(· · · ·) and the robust estimators σ̂M,mod,2, σ̂Diff,med, σ̂M,me, σ̂M,med, σ̂0.5

M,tr, σ̂2
M,mod,

σ̂3.1
M,mod, ˜̃σ2

M,mod with block size n = max{⌊
√
N/(2+1)⌋, 2} and ˜̃σ3.1

M,mod with block
size n = max{⌊N1−1/3.1/(6 + 1)⌋, 2} (- - -) applied to the above data in (a).

Data with level shifts and outliers

Panel (a) of Fig. 3.15 shows the PAMONO data where additive outliers with an occurrence
probability of 5% have been added to the observations. The height of the outliers is chosen to
be normally distributed with mean 6 ·Std and a standard deviation 0.0005, where Std denotes

83



3 Scale estimation under shifts in the mean

the average value of the standard deviations for PAMONO time series without level shifts.
The sample standard deviation, the MAD as well as the non-robust estimators σ̂me,2 and σ̂Tr,ad

apparently overestimate the standard deviation of the data strongly as the corresponding
estimates are much higher than the upper whisker of the boxplot. The robust estimates are
smaller than the upper whisker of the boxplot and look more plausible. The modified MAD
yields the smallest values ranging from 1.17 · 10−2 to 1.20 · 10−2.
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Figure 3.15: (a) Intensity over time for one pixel with additive outliers; (b) A boxplot of
standard deviations (multiplied by 102) for the virus-free pixels together with the
ordinary sample standard deviation and MAD ( ), the non-robust estimators
σ̂me,2 and σ̂Tr,ad (· · · ·) and the robust estimators σ̂M,mod,2, σ̂Diff,med, σ̂M,me, σ̂M,med,
σ̂0.5

M,tr, σ̂2
M,mod, σ̂3.1

M,mod, ˜̃σ2
M,mod with block size n = max{⌊

√
N/(2 + 1)⌋, 2} and˜̃σ3.1

M,mod with block size n = max{⌊N1−1/3.1/(6 + 1)⌋, 2} (- - -) applied to the
above data in (a).

Data with level shifts and trend

We consider another PAMONO dataset, which exhibits a linear trend. The increase in the
grayscale intensity over time presumably originates from the fact that the surface on which
the fluid for virus adhesion is placed was heated over time. The corresponding data were
discussed in Section 3.3.5. In Panel (a) of Fig. 3.6 (see Section 3.3.5) we see N = 388
observations corresponding to a pixel with a virus adhesion and a linear trend. Panel (b)
of Fig. 3.6 shows the differenced data Yt − Yt−1, t = 2, . . . , 388. We do not find relevant
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3.4 Robust scale estimation under shifts in the mean

correlations among the differences. Few large differences indicate the existence of level shifts
at the corresponding time points.

We apply the estimators σ̂me,2 and σ̂Tr,ad and the robust procedures σ̂M,mod,2, σ̂Diff,med, σ̂M,me,
σ̂M,med, σ̂0.5

M,tr, σ̂2
M,mod, σ̂3.1

M,mod (choosing K = 3), ˜̃σ2
M,mod with block size n = max{⌊

√
N/(2 +

1)⌋, 2} and ˜̃σ3.1
M,mod with block size n = max{⌊N1−1/3.1/(6 + 1)⌋, 2} to the PAMONO-data.

The non-robust estimators yield values in the range from 1.03 · 10−3 to 1.14 · 10−3, the robust
estimates are between 0.94 · 10−3 and 1.17 · 10−3. The values of the modified MAD range
from 1.03 · 10−3 to 1.17 · 10−3, while the ordinary MAD and the standard deviation yield
values larger than 5 · 10−3. The sample standard deviation of differenced observations is
1.38 · 10−3, which estimates

√
2σ2. This implies an estimate of 1.38 · 10−3/

√
2 = 0.98 · 10−3

for σ, which is close to the values obtained by the blockwise estimators, as e.g. the modified
MAD with block size ⌊

√
N/(2 + 1)⌋ yields the value 1.03 · 10−3. This example indicates that

the blockwise estimators cope well not only with jumps in the mean but also with trends.

3.4.7 Conclusion

In the presence of level shifts and outliers ordinary scale estimators like the sample standard
deviation or the MAD are biased. In this thesis we have investigated several approaches in
order to estimate the parameter σ in such situations.

Our basic idea is to segregate the data into many non-overlapping blocks and to estimate
the scale in every block. Subsequently, the block-estimates are combined to get a robust
estimate of scale. We propose a modified version of the MAD, where the median is estimated
in blocks rather than on the whole sample. Alternatively, we can estimate the scale parameter
in blocks and take the average, the median or the trimmed mean of the values.

To get an overall assessment of the performance of the proposed estimators we have
conducted a simulation study. Further robust estimation techniques based on taking the
median or a trimmed average of the blockwise MAD values have been involved for comparison.
These robust estimation techniques have performed similarly well and provided good results
in many scenarios.

Our recommendation is to use the modified version of the MAD, since we have asymptotic
theory on it available. If the focus is on consistent estimation we recommend choosing the
block size as a multiple of the square root of N , i.e., n = max

{⌊√
N/(K + 1)

⌋
, 2
}
. Using

n = max
{⌊√

N/(2 + 1)
⌋
, 2
}

yields similar results. If the focus is on testing then choosing
larger block sizes is recommended, to satisfy the condition m = o(N1/3). Theoretical results
for this approach were obtained under independence assumption. In future work further
asymptotic theory could be developed for dependent data, e.g. in the case of stationary
ARMA processes.

An advantage of the median and the trimmed MAD is their smaller computation time,
which is O(max{m,n}). In case of n = O(

√
N) = m the computation time is O(

√
N) and

thus smaller than the O(N) needed for the ordinary or the modified MAD (see [74]).
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4 Summary and Outlook

In this chapter the results of this thesis are summarised and an outlook on future work is
given.

4.1 Summary

In this thesis we have been dealing with estimation of parameters under shifts in the mean.
The results of this work are based on the articles “Estimation methods for the LRD parameter
under a change in the mean” [72], “On variance estimation under shifts in the mean” [4] and
“Robust scale estimation under shifts in the mean” [3].

Estimation of the Hurst parameter under shifts in the mean

In the context of long range dependent (LRD) stochastic processes the main task is estimation
of the Hurst parameter H, which describes the strength of dependence. When data are
contaminated by level shifts ordinary estimators of H, such as the Geweke and Porter-Hudak
(GPH) estimator, may fail to distinguish between LRD and structural changes, such as jumps
in the mean. As a consequence, the estimator may suffer from positive bias and overestimate
the intensity of the LRD. This fact is e.g. a major issue when testing for changes in the mean.
The Wilcoxon change-point test, proposed by [19], involves the exact value of H, which is
used for the standardization of the test statistic. Overestimation of the LRD parameter
may lead to false test decisions, a structural change in a sequence of observations could be
overlooked. Therefore, the need to estimate H properly arises in the change-point context.

To overcome this problem, we have proposed to segregate the sample of size N into blocks
and then to estimate H on each block separately. Estimates, obtained from different blocks,
were then combined and a final estimate of the Hurst parameter was obtained. We have
investigated several possibilities of segregating the data and assessed their performance in a
simulation study.

One possibility was segregation into two blocks. The position at which the data are
separated into two parts could either be estimated using the Wilcoxon change-point test or
chosen at any point, yielding estimates, which were combined by averaging. When dealing
with only one jump these procedures performed well. Under several shifts in the mean the
results worsened drastically, since these procedures are designed for the case of one level shift.

Better results could be achieved by dividing the sequence of observations into many
overlapping or non-overlapping blocks of size n, chosen as a multiple of

√
N , and estimating

H by averaging estimates from these blocks. In the presence of several jumps this procedure
performed much better. When dealing with processes with long memory and short range
dependence, such as the fractionally integrated ARMA process (ARFIMA), the blockwise
estimators did not yield satisfying results. Therefore, we followed an ARMA correction
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procedure and estimated the Hurst parameter in several recursive steps, using the overlapping
or the non-overlapping blocks approach. This strategy improved the results considerably.

The proposed estimators were applied to two real data sets, the Nile river minima and the
global temerature at the northern hemisphere, revealing a possible existence of level shifts.
High values of H were obtained by ordinary estimators, while our techniques delivered lower
estimates, indicating that the data might be contaminated by level shifts.

Scale estimation under shifts in the mean

In the context of LRD we have seen that segregation into many blocks has improved the
ordinary estimators of H considerably under abrupt changes in the mean. We followed
this same idea of segregation to estimate the variance of independent or weakly dependent
processes under level shifts. When dealing with a few level shifts in finite samples we proposed
usage of the ordinary average of sample variances, obtained from many non-overlapping
blocks. We proved strong consistency and asymptotic normality under independence, where
full asymptotic efficiency compared to the ordinary sample variance was shown. For weakly
correlated processes we proved weak consistency of the blocks estimator. This estimator
performed well when the number of level shifts was moderately low. In the presence of many
level shifts even better results were obtained by an adaptive trimmed mean of the sample
variances from non-overlapping blocks. The fraction of trimmed blockwise estimates was
chosen adaptively, where extraordinary high sample variances were removed before calculating
the average value. Even though this procedure was developed under the assumption of
independence, it performed well also under weak dependence, e.g. when dealing with AR
processes.

If the data are additionally contaminated by outliers the proposed estimators fail to
estimate the variance properly, since they are not robust. Therefore, we investigated a
modified version of the well known median absolute deviation (MAD) to account for both
sources of contamination – level shifts and outliers. The formula of the MAD involves the
sample median, which is not a good estimator of location in the presence of level shifts,
especially if those occur approximately after 50% of the observations. Our proposal was to
calculate the sample median in non-overlapping blocks and to consider absolute differences
involving blockwise medians instead of only one median calculated on the whole sample. In
this way only some blocks are affected by level shifts and the resulting modified MAD is
robust against outliers and level shifts simultaneously. We proved strong consistency and
asymptotic normality under some conditions on the number of change-points and the number
of blocks for independent random variables. The Bahadur representation of the proposed
estimator was shown to be the same as in the case of the ordinary MAD, resulting in the
same asymptotic variance. In a simulation study the modified MAD provided very good
results. The proposed estimator performed well as compared to other robust methods, which
were discussed for comparison, in many simulation scenarios.

Application of the robust and the non-robust blockwise estimators to a real jump-contaminated
PAMONO data set indicated that the segregation technique improved the results considerably,
since smaller estimates of scale were obtained than in the case of ordinary scale estimators,
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such as the sample standard deviation or the ordinary MAD. We also added outliers to the
PAMONO data and observed that the robust blockwise techniques performed much better
than the non-robust ones then. Finally, data with a linear trend were analysed. The results
indicated that our segregation techniques provided reasonable results even in such scenarios.

4.2 Outlook

In this thesis we came to the conclusion that segregation into many blocks improved ordinary
estimation techniques considerably when dealing with abrupt level shifts. Our work opens up
some ideas for future research.

In the context of long range dependent processes we considered an average value of blockwise
estimates of the Hurst parameter. It would be interesting to develop estimation techniques
based on trimmed averaging. The choice of the block size could also be investigated more
extensively in additional simulation studies. Finally, further theoretical results on the
overlapping and the non-overlapping blocks approaches, such as derivation of an asymptotic
distribution for inference, might be interesting.

For estimation of the variance under shifts in the mean we proposed usage of blockwise
techniques involving the sample variance in every block. Theoretical results, such as consis-
tency and asymptotic normality, could be derived straightforwardly for the average of the
blocks estimates. For the adaptively trimmed average of sample variances this seems to be
more difficult and is an interesting task for future work. Moreover, the trimmed estimator
was developed assuming independent random variables. Although this approach worked
reasonably well for autoregressive processes, it is advisable to adapt it to dependent data to
improve its performance.

In the presence of outliers we developed a modified version of the MAD to cope with level
shifts and outliers simultaneously. Theoretical results were developed under the assumption
of independence. In future work asymptotic theory could be developed for dependent data.

In the simulation study the performance of the approaches based on segregating data into
many blocks was compared with each other. Observations from an autoregressive model were
generated to asses the performance of the estimators under dependence. Other models, such
as the ARMA model, could be considered in further investigations. Moreover, we applied the
estimators to a sequence of observations with a linear trend to get an impression of how they
work in the presence of a trend. An extensive analysis of the performance under other trend
scenarios could be carried out. Finally, investigation of the performance of the proposed
estimators assuming other kinds of structural changes, such as changes in scale or gradual
changes in the mean, seem interesting.
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A fBm, fGn and ARFIMA

In this Section we will briefly introduce the definition of fractional Brownian motion (fBm)
and fractional Gaussian noise (fGn). For more information see [8].

Definition 1 (Brownian motion). A Brownian motion B(t) is a stochastic process with the
following properties:

1. B(t) is a Gaussian process (i.e., B(t1), ..., B(tk) has multivariate normal distribution
for any set t1, ..., tk, k < ∞),

2. B(0) = 0 almost surely,

3. The corresponding process of increments B(t) − B(s) is independent,

4. E(B(t)) = E(B(s)),

5. V ar(B(t) − B(s)) = σ2|t− s|.

If σ2 = 1, then B(t) is called a standardized Brownian motion.

Definition 2 (Fractional Brownian motion). Let wH be a weight function with

wH(t, u) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, t ≤ u,

(t− u)H−1/2, 0 ≤ u ≤ t,

(t− u)H−1/2 − (−u)H−1/2, u < 0,

where 0 < H < 1. Moreover, consider the standardized Brownian motion B(t). Let s > 0 be
a constant. Then, the fractional Brownian motion BH(t) with self-similarity parameter H is
defined as follows:

BH(t) = s
∫
wH(t, u)dB(u). (A.1)

BH(t) is a stochastic integral, which is convergent in the L2 sense with respect to the Lebesgue
measure. The process BH(t) is a Brownian motion in case of H = 1/2.

Definition 3 (Fractional Gaussian noise). The stationary incremental process of the fractional
Brownian motion (ξt)t≥1 = BH(t) − BH(t− 1), t ∈ Z is called fractional Gaussian noise.

Definition 4 (ARFIMA process). A fractionally integrated ARMA process (ARFIMA(p, d, q))
Xt with MA parameter p, AR parameter q and fractional differencing parameter d = H−1/2 ∈
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(−1/2, 1/2), where H is the Hurst parameter, is an extension of the integrated process
ARIMA(p, d, q). It is defined by the equation

Φ(B)(1 − B)dXt = Θ(B)ϵt,

where B is the backshift operator with Bϵt = ϵt−1, Φ(B) and Θ(B) are the AR- and MA-filters
of order p and q, respectively, and ϵt are i.i.d. with E(ϵt) = 0 and E(ϵ2

t ) < ∞.

Remark 14. The fGn and the ARFIMA processes exhibit long range dependence, since
both have a slowly decaying autocovariance function. See [8] for more details.
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B Proofs

Proof of Theorem 4.
Without loss of generality assume that the first B ≤ K out of m blocks are perturbed by K
jumps in the mean. Furthermore, let µ = E(Xj,t) ∀j, t, µj,t = E (Yj,t) and µj = 1

n

∑n
t=1 E (Yj,t).

Let the term S2
j,0 denote the empirical variance of the data Xj,1, . . . , Xj,n in the uncontaminated

block j = 1, . . . ,m, while S2
j,h is the empirical variance in the perturbed block j = 1, . . . , B.

Then

P
(⏐⏐⏐σ̂2Mean − σ2

⏐⏐⏐ > ϵ
)

= P

⎛⎝⏐⏐⏐⏐⏐⏐ 1
m

m∑
j=B+1

S2
j,0 + 1

m

B∑
j=1

S2
j,h − σ2

⏐⏐⏐⏐⏐⏐ > ϵ

⎞⎠
= P

⎛⎝⏐⏐⏐⏐⏐⏐ 1
m

m∑
j=B+1

S2
j,0 + 1

m

B∑
j=1

S2
j,0

+ 1
m

B∑
j=1

2
n− 1

n∑
t=1

(Xj,t −Xj)(µj,t − µj)

+ 1
m

B∑
j=1

1
n− 1

n∑
t=1

(
µj,t − µj

)2
− σ2

⏐⏐⏐⏐⏐⏐ > ϵ

⎞⎠
= P

⎛⎝⏐⏐⏐⏐⏐⏐ 1
m

m∑
j=1

S2
j,0 − σ2 + 1

m

B∑
j=1

2
n− 1

n∑
t=1

Xj,t(µj,t − µj)

+ 1
m

B∑
j=1

1
n− 1

n∑
t=1

(
µj,t − µj

)2
⏐⏐⏐⏐⏐⏐ > ϵ

⎞⎠
≤ P

⎛⎝⏐⏐⏐⏐⏐⏐ 1
m

m∑
j=1

S2
j,0 − σ2

⏐⏐⏐⏐⏐⏐ > ϵ

3

⎞⎠
+ P

⎛⎝⏐⏐⏐⏐⏐⏐ 1
m

B∑
j=1

2
n− 1

n∑
t=1

Xj,t(µj,t − µj)
⏐⏐⏐⏐⏐⏐ > ϵ

3

⎞⎠
+ P

⎛⎝ 1
m

B∑
j=1

1
n− 1

n∑
t=1

(
µj,t − µj

)2
>
ϵ

3

⎞⎠
=: A1,N + A2,N + A3,N

(B.1)

For the first term A1,N of (B.1) we have:

A1,N =P
⎛⎝⏐⏐⏐⏐⏐⏐ 1
m

m∑
j=1

S2
j,0 − σ2

⏐⏐⏐⏐⏐⏐ > ϵ

3

⎞⎠
= P

⎛⎝⏐⏐⏐⏐⏐⏐ 1
m

m∑
j=1

1
n− 1

n∑
t=1

(Xj,t −Xj)2 − σ2

⏐⏐⏐⏐⏐⏐ > ϵ

3

⎞⎠ (B.2)
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= P

⎛⎝⏐⏐⏐⏐⏐⏐ 1
m

m∑
j=1

1
n− 1

n∑
t=1

(Xj,t − µ)2 + 1
m

m∑
j=1

n

n− 1(µ−Xj)2

+ 2
m(n− 1)

m∑
j=1

n∑
t=1

(Xj,t − µ)(µ−Xj) − σ2

⏐⏐⏐⏐⏐⏐ > ϵ

3

⎞⎠
≤ P

⎛⎝⏐⏐⏐⏐⏐⏐ N

m(n− 1)
1
N

m∑
j=1

n∑
t=1

(Xj,t − µ)2 − σ2

⏐⏐⏐⏐⏐⏐ > ϵ

6

⎞⎠
+ P

⎛⎝⏐⏐⏐⏐⏐⏐− n

m(n− 1)

m∑
j=1

(Xj − µ)2

⏐⏐⏐⏐⏐⏐ > ϵ

6

⎞⎠ (B.3)

The first term of (B.3) converges to zero, since the term 1
N

∑m
j=1

∑n
t=1(Xj,t −µ)2 is a consistent

estimator of σ2 and N
m(n−1) = N

N−m
→ 1. For the second term of (B.3) we have

E

⎛⎝⏐⏐⏐⏐⏐⏐− n

m(n− 1)

m∑
j=1

(Xj − µ)2

⏐⏐⏐⏐⏐⏐
⎞⎠ = n

m(n− 1)

m∑
j=1

E
(
(Xj − µ)2

)

= n

m(n− 1)

m∑
j=1

V ar(Xj) ≤ n

(n− 1)
γ(0) + 2∑∞

i=1 γ(i)
n

−→ 0,

due to absolute summability of the autocovariance function γ, which implies convergence in
probability. Therefore, the second term of (B.3) converges to zero. Altogether, the sum (B.3)
converges to zero.

The second and the third terms A2,N and A3,N of (B.1) converge to zero due to the following
considerations:

E

⎛⎝ 1
m

B∑
j=1

2
n− 1

n∑
t=1

Xj,t(µj,t − µj)
⎞⎠

= 1
m

B∑
j=1

2
n− 1

n∑
t=1

E(Xj,t)(µj,t − µj)

= 1
m

B∑
j=1

2µ
n− 1

n∑
t=1

(µj,t − µj) = 0

V ar

⎛⎝ 1
m

B∑
j=1

2
n− 1

n∑
t=1

Xj,t(µj,t − µj)
⎞⎠

= 4
m2(n− 1)2V ar

⎛⎝ B∑
j=1

n∑
t=1

Xj,t(µj,t − µj)
⎞⎠

= 4
m2(n− 1)2Cov

⎛⎝ B∑
j=1

n∑
t=1

Xj,t(µj,t − µj),
B∑

l=1

n∑
s=1

Xl,s(µl,s − µl)
⎞⎠

≤ 4
m2(n− 1)2

B∑
j=1

n∑
t=1

B∑
l=1

n∑
s=1

|µj,t − µj||µl,s − µl||Cov(Xj,t, Xl,s)|
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≤ 4
m2(n− 1)2

(
K∑

k=1
hk

)2 m∑
j=1

n∑
t=1

m∑
l=1

n∑
s=1

|Cov(Xj,t, Xl,s)|

= 4
m2(n− 1)2

(
K∑

k=1
hk

)2 (
NV ar(X1,1) + 2

N−1∑
u=1

|γ(u)|(N − u)
)

≤ 4N
m2(n− 1)2

(
K∑

k=1
hk

)2 (
V ar(X1,1) + 2

∞∑
u=1

|γ(u)|
)

−→ 0,

due to absolute summability of the autocovariance function γ and the conditionK
(∑K

k=1 hk

)2
=

o(m log(N)−1). Therefore, the term A2,N converges to zero in r-th mean with r = 2, which
implies convergence in probability. The argument in the probability A3,N is deterministic.
Set ϵN = log(N)−1. For large N we have

A3,N ≤ P

⎛⎝ 1
m

B∑
j=1

1
n− 1

n∑
t=1

(
µj,t − µj

)2
>
ϵN

3

⎞⎠
= P

⎛⎝log(N) 1
m

B∑
j=1

1
n− 1

n∑
t=1

(
µj,t − µj

)2
>

1
3

⎞⎠
≤ P

⎛⎝ log(N)B
m

n

n− 1

(
K∑

k=1
hk

)2

>
1
3

⎞⎠
≤ P

⎛⎝ log(N)K
m

n

n− 1

(
K∑

k=1
hk

)2

>
1
3

⎞⎠ = 0,

since K
(∑K

k=1 hk

)2
= o(m log(N)−1) holds. Altogether we get the result σ̂2Mean

p→ σ2.

Proof of Lemma 6.
We will use Hoeffding’s inequality to show the result. Without loss of generality we assume
that the first B ≤ K out of m blocks are contaminated by K̃1, . . . , K̃B jumps, respectively,
with ∑B

j=1 K̃j = K, each with the corresponding empirical CDF ĜN,j,h(y) of the absolute
differences, j ∈ {1, . . . , B}, e.g., for the first contaminated block we have

ĜN,1,h(y) = 1
n

n∑
t=1

I{Wt≤y}, with Wt =
⏐⏐⏐⏐⏐⏐Xt +

K̃1∑
k=1

hkIt≥tk
− ν̂N,1,h

⏐⏐⏐⏐⏐⏐ , t = 1, . . . , n,

where ν̂N,1,h is the sample median in this block. The empirical CDF ĜN,j,0(y) in a jump-
free block j is defined similarly. The empirical CDF ĜN of the absolute differences in the
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change-point scenario can be written as follows:

ĜN(y) = 1
N

N∑
t=1

I{Wt≤y} = 1
m

m∑
j=1

ĜN,j(y) = 1
m

⎛⎝ B∑
j=1

ĜN,j,h(y) +
m∑

j=B+1
ĜN,j,0(y)

⎞⎠ , y ∈ R.

Let ϵ > 0, then:

P (|ζ̂N,n − ζ| > ϵ) = P (ζ̂N,n < ζ − ϵ) + P (ζ̂N,n > ζ + ϵ). (B.4)

Consider one of the two terms in (B.4). With

F̂N,j,0 the empirical CDF of Xj,1, . . . , Xj,n in j-th block, j = 1, . . . ,m,
ν̂N,j,0 the sample median of Xj,1, . . . , Xj,n in j-th block, j = 1, . . . ,m,

αN =
⌊
N + 1

2

⌋ 1
N
,

AN = {αN + B

m
>

1
m

m∑
j=1

F̂N,j,0(ν̂N,j,0 + ζ + ϵ) − F̂N,j,0(ν̂N,j,0 − ζ − ϵ)},

BN = {αN + B

m
>

1
m

m∑
j=1

F̂N,j,0(ν + ζ + ϵ/2) − F̂N,j,0(ν − ζ − ϵ/2)},

CN = {at least one of |ν̂N,j,0 − ν| is larger than ϵ/2} and
CC

N = {|ν̂N,1,0 − ν| ≤ ϵ/2} ∩ . . . ∩ {|ν̂N,m,0 − ν| ≤ ϵ/2}

we have

P
(
ζ̂N,n > ζ + ϵ

)
= P

(
Ĝ−1

N (αN) > ζ + ϵ
)

= P
(
αN > ĜN(ζ + ϵ)

)
= P

⎛⎝αN >
1
m

B∑
j=1

ĜN,j,h(ζ + ϵ) + 1
m

m∑
j=B+1

ĜN,j,0(ζ + ϵ)
⎞⎠

= P

⎛⎜⎜⎜⎝αN >
1
m

B∑
j=1

(
ĜN,j,h(ζ + ϵ) − ĜN,j,0(ζ + ϵ)

)
  

∈[−1,1]

+ 1
m

m∑
j=1

ĜN,j,0(ζ + ϵ)

⎞⎟⎟⎟⎠
≤ P

⎛⎝αN > −B

m
+ 1
m

m∑
j=1

ĜN,j,0(ζ + ϵ)
⎞⎠

= P

⎛⎝αN + B

m
>

1
m

m∑
j=1

(F̂N,j,0(ν̂N,j,0 + ζ + ϵ) − F̂N,j,0(ν̂N,j,0 − ζ − ϵ−))
⎞⎠

≤ P (AN) = P (AN ∩ CC
N) + P (AN ∩ CN) ≤ P (BN) + P (CN). (B.5)

The inequality in (B.5) holds due to the following considerations:

F̂N,j,0(ν̂N,j,0 + ζ + ϵ) − F̂N,j,0(ν̂N,j,0 − ζ − ϵ) ≥ F̂N,j,0(ν + ζ + ϵ/2) − F̂N,j,0(ν − ζ − ϵ/2), when
|ν̂N,j,0 − ν| ≤ ϵ/2 ⇔ ν − ϵ/2 ≤ ν̂N,j,0 ≤ ν + ϵ/2, yielding
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F̂N,j,0(ν̂N,j,0 + ζ + ϵ) ≥ F̂N,j,0(ν − ϵ/2 + ζ + ϵ) and
F̂N,j,0(ν̂N,j,0 − ζ − ϵ) ≤ F̂N,j,0(ν + ϵ/2 − ζ − ϵ).

Therefore:

P
(
AN ∩ CC

N

)
= P

⎛⎝⎧⎨⎩αN + B

m
>

1
m

m∑
j=1

F̂N,j,0(ν̂N,j,0 + ζ + ϵ) − F̂N,j,0(ν̂N,j,0 − ζ − ϵ)
⎫⎬⎭
⏐⏐⏐⏐⏐⏐CC

N

⎞⎠ · P
(
CC

N

)

≤ P

⎛⎝⎧⎨⎩αN + B

m
>

1
m

m∑
j=1

F̂N,j,0(ν + ζ + ϵ/2) − F̂N,j,0(ν − ζ − ϵ/2)
⎫⎬⎭
⏐⏐⏐⏐⏐⏐CC

N

⎞⎠ · P
(
CC

N

)
= P

(
BN |CC

N

)
· P

(
CC

N

)
≤ P (BN)

With Zt = I{ν−ζ−ϵ/2<Xt≤ν+ζ+ϵ/2} ∈ [0, 1] we have the following result for BN :

P (BN) = P

⎛⎝αN + B

m
>

1
m

m∑
j=1

F̂N,j,0(ν + ζ + ϵ/2) − F̂N,j,0(ν − ζ − ϵ/2)
⎞⎠

= P

⎛⎝αN + B

m
> F̂N,0(ν + ζ + ϵ/2) − F̂N,0(ν − ζ − ϵ/2))

⎞⎠
= P

⎛⎝N (
αN + B

m

)
>

N∑
t=1

I{ν−ζ−ϵ/2<Xt≤ν+ζ+ϵ/2}

⎞⎠ = P

⎛⎝N (
αN + B

m

)
>

N∑
t=1

Zt

⎞⎠
Zt i.i.d.= P

(
N
(
αN + B

m
− E(Z1)

)
>

N∑
t=1

(Zt − E(Zt))
)

[38]
≤ exp{−2N∆2

2,ϵ,N} with ∆2,ϵ,N = (E(Z1) − B

m
− αN)+, (B.6)

where F̂N,0(x) = 1
m

∑m
j=1 F̂N,j,0(x). We have that E(Z1) = F (ν+ζ+ϵ/2)−F (ν−ζ−ϵ/2) > 1/2

since G(ζ) = 1/2, and αN → 1/2. Thus, ∃N0 ∈ N such that αN + B
m

− E(Z1) < 0 ∀N ≥ N0

(and thus ∆2,ϵ,N = (E(Z1) − B
m

−αN )+ = E(Z1) − B
m

−αN ∀N ≥ N0). Therefore, Hoeffding’s
Inequality can be applied in (B.6). Furthermore,

P (CN) = P ({at least one of |ν̂N,j,0 − ν| is larger than ϵ/2})

= P

⎛⎝ m⋃
j=1

{|ν̂N,j,0 − ν| > ϵ/2}

⎞⎠ ≤
m∑

j=1
P (|ν̂N,j,0 − ν| > ϵ/2)

[79]
≤

m∑
j=1

2 exp
{

−2N
m
δ2

ϵ,n

}
= 2m exp

{
−2N

m
δ2

ϵ,n

}
.

Therefore, we obtain

P
(
ζ̂N,n > ζ + ϵ

)
≤ exp{−2N∆2

2,ϵ,N} + 2m exp
{

−2N
m
δ2

ϵ,n

}
.
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Similarly,

P
(
ζ̂N,n < ζ − ϵ

)
≤ exp{−2N∆2

3,ϵ,N} + 2m exp
{

−2N
m
δ2

ϵ,n

}
,

which proves the above Lemma.

Proof of Proposition 7.
We will show that the infinite sum of the probabilities P (|ζ̂N,n − ζ| > ϵ) from (3.27) is finite
and use the Borell-Cantelli Lemma to prove the almost sure convergence. We observe that the
third term of the right hand side of (3.27) converges to zero as long as 2(N/m)(δϵ,n)2 > log(m),
where δϵ,n = δϵ,N/m. By definition of δϵ,n from (3.30) and due to uniqueness of ν (see [79]) we
have

δϵ,n
N→∞→ δϵ = min{F (ν + ϵ/2) − 1/2, 1/2 − F (ν − ϵ/2)} > 0

Therefore, ∃N0 such that

δϵ,n = δϵ,N/m > δϵ/2 > 0 ∀N ≥ N0 (B.7)

and therefore,

2m exp
{

−2N
m
δ2

ϵ,n

}
≤ 2m exp

⎧⎨⎩−2N
m

(
δϵ

2

)2
⎫⎬⎭ = 2 exp

⎧⎨⎩log(m) − 2N
m

(
δϵ

2

)2
⎫⎬⎭ .

Moreover (keeping in mind that m = m(N)),

∞∑
N=N0

2m exp
{

−2N
m
δ2

ϵ,n

}
≤

∞∑
N=N0

2 exp
⎧⎨⎩log(m) − 2N

m

(
δϵ

2

)2
⎫⎬⎭ < ∞,

for sufficiently large N0 (see (B.7)), is ensured if the following condition is satisfied:

2 exp
{

log(m) − 2N
m

(
δϵ

2

)2
}

1/Np
= 2 exp

⎧⎨⎩log(Npm) − 2N
m

(
δϵ

2

)2
⎫⎬⎭ → 0,

for any p > 1. This is for example true when choosing m as a multiple of any power of N ,
i.e., m = cN q, q ∈ (0, 1), c > 0, since

2 exp
⎧⎨⎩log(NpcN q) − 2 N

cN q

(
δϵ

2

)2
⎫⎬⎭ = 2 exp

⎧⎨⎩log(c) + (p+ q) log(N) − 2N
(1−q)

c

(
δϵ

2

)2
⎫⎬⎭ → 0.
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Let

αN =
⌊
N + 1

2

⌋ 1
N
.

For the first term of the right hand side of (3.27) we have the following considerations:

F (ν + ζ + ϵ/2) − F (ν − ζ − ϵ/2) > 1/2, αN → 1/2 and B

m
→ 0

⇒ ∃N0 ∈ N, ϵ̈ > 0 such that F (ν + ζ + ϵ/2) − F (ν − ζ − ϵ/2) − αN + B

m
≥ ϵ̈

⇒
∞∑

N=N0

exp{−2N∆2
2,ϵ,N} ≤

∞∑
N=N0

exp{−2Nϵ̈2} → 0.

Similar argumentations are valid for the second term. Together with the Borel-Cantelli
Lemma the almost sure convergence of ζ̂N to ζ in the change-point scenario is ensured.

Proof of Lemma 9.

P
(⏐⏐⏐(ν̂N,i + ζ̂N,n

)
− (ν + ζ)

⏐⏐⏐ > ϵ
)

= P
(⏐⏐⏐(ν̂N,i − ν) +

(
ζ̂N,n − ζ

)⏐⏐⏐ > ϵ
)

≤ P (|(ν̂N,i − ν)| > ϵ/2) + P
(⏐⏐⏐(ζ̂N,n − ζ

)⏐⏐⏐ > ϵ/2
)

≤ (2 + 4m) exp
{

−2N
m
δ2

ϵ/2,n

}
+ exp{−2N∆2

2,ϵ/2,N} + exp{−2N∆2
3,ϵ/2,N}, (B.8)

with δϵ/2,n, ∆2,ϵ/2,N , ∆3,ϵ/2,N as defined in (3.28) - (3.30). Here we used the fact that
P (|(ν̂N,i − ν)|) ≤ 2 exp

{
−2N

m
δ2

ϵ/2,n

}
, see [79]. With

ϵn := 2D1 log(n)1/2/n1/2 (B.9)

and Taylor’s theorem we get

a0(ϵn/2) = F (ν + ϵn/4) −
(⌊
n+ 1

2

⌋
− 1

) 1
n

= F (ν + ϵn/4) − 1
2 +O

( 1
n

)
= F ′(ν)

4 ϵn + o(ϵn) +O
( 1
n

)
= F ′(ν)

4 max
{

8
F ′(ν) ,

8
G′(ζ)

}
2 log(n)1/2

n1/2 + o(ϵn) +O
( 1
n

)

>
2 log(n)1/2

n1/2 for suffciently large n.

Similarly, we get

b0(ϵn/2) > 2 log(n)1/2

n1/2 for suffciently large n.
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∆2,ϵn/2,N =
(
F (ν + ζ + ϵn/4) − F (ν − ζ − ϵn/4) −

⌊
N + 1

2

⌋
/N

)+

=
(
G(ζ + ϵn/4) −G(ζ) +O

( 1
N

))+

=
(
G′(ζ)ϵn/4 + o (ϵn) +O

( 1
N

))+

>
2 log(n)1/2

n1/2 for suffciently large n.

∆3,ϵn/2,N =
⌊
N + 1

2

⌋
/N − F (ν + ζ − ϵ/2) − F (ν − ζ + ϵ/2)

>
2 log(n)1/2

n1/2 for suffciently large n.

Similarly, we get for sufficiently large n, that

(ϵn/2) > 2 log(n)1/2

n1/2 , ∆2,ϵn/2,N >
2 log(n)1/2

n1/2 and ∆3,ϵn/2,N >
2 log(n)1/2

n1/2 .

We conclude that

min{a0(ϵn/2), b0(ϵn/2),∆2,ϵn/2,N ,∆3,ϵn/2,N} > 2 log(n)1/2

n1/2 for suffciently large n. (B.10)

Therefore,

P
(⏐⏐⏐(ν̂N,i + ζ̂N,n

)
− (ν + ζ)

⏐⏐⏐ > ϵn

)
≤ (2 + 4m) exp

{
−2N

m
δ2

ϵn/2,n

}
+ exp{−2N∆2

2,ϵn/2,N} + exp{−2N∆2
3,ϵn/2,N}

≤ (2 + 4m) exp{−2 · 4 log(n)} + 2 exp{−2m · 4 log(n)}
= (2 + 4m)n−8 + 2n−8m. (B.11)

Summability of (B.11), i.e.,

∞∑
N=1

(
2
(
m

N

)8
+ 4m9

N8 + 2
(
m

N

)8m
)
< ∞, (B.12)

is ensured when all terms approach zero faster than 1
Np , for any p > 1. We consider only the

slowest term:
4m9

N8

1/Np
= 4m9

N8−p
→ 0,

if m = o(N2/3) (for p = 2). Furthermore, for any ϵ > 0 ∃N0 such that ϵn < ϵ ∀n = n(N) >
n(N0) and we have

P
(⏐⏐⏐(ν̂N,i + ζ̂N,n

)
− (ν + ζ)

⏐⏐⏐ > ϵ
)

≤ P
(⏐⏐⏐(ν̂N,i + ζ̂N,n

)
− (ν + ζ)

⏐⏐⏐ > ϵn

)
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with ϵn from (B.9). The Borel-Cantelli Lemma yields the desired result due to the fact that
the probability on the right hand side satisfies (B.12). The same result holds for (3.35).

Proof of Theorem 8.
Let F be the CDF of X1 and G the CDF of |X1 − ν|. Furthermore, let F̂N,j be the empirical
CDF in block j, whereas ĜN,j with ĜN,j(y) = F̂N,j(ν̂N,j +y)− F̂N,j(ν̂N,j −y−) is the empirical
CDF of |Xj,1 − ν̂N,j|, . . . , |Xj,n − ν̂N,j|, where ν̂N,j = med{Xj,1, . . . , Xj,n}, j = 1, . . . ,m, and
F̂N,j(x−) = limz↑x F̂N,j(z). Moreover, let F̂N = 1

m

∑m
j=1 F̂N,j be the empirical CDF of the

whole sample X1, . . . , XN and ν̂N = 1
m

∑m
j=1 ν̂N,j.

Similarly to [55], we decompose ∆N into many components ∆(1)
N , . . . ,∆(6)

N , where the last
five terms are sums of blockwise error terms, i.e., ∆(l)

N = 1
m

∑m
j=1 ∆(l)

N,j, l = 2, . . . , 6, getting

∆N =
∆(1)

N +O
(

1
N

)
+ ∆(3)

N + ∆(4)
N − ∆(2)

N − ∆(5)
N

G′(ζ) + F ′(ν − ζ) − F ′(ν + ζ)
G′(ζ) ∆(6)

N .

The components ∆(1)
N , . . . ,∆(6)

N are defined by the following equations:

ĜN(ζ̂N,n) = 1
m

m∑
j=1

F̂N,j(ν̂N,j + ζ̂N,n) − F̂N,j(ν̂N,j − ζ̂N,n−) = 1
2 + ∆(1)

N , (B.13)

1
m

m∑
j=1

(F (ν̂N,j + ζ̂N,n) − F (ν + ζ)) = 1
m

m∑
j=1

(F ′(ν + ζ)(ν̂N,j + ζ̂N,n − ν − ζ) + ∆(2)
N,j) (B.14)

= F ′(ν + ζ)(ν̂N + ζ̂N,n − ν − ζ) + ∆(2)
N ,

1
m

m∑
j=1

(F (ν̂N,j − ζ̂N,n) − F (ν − ζ)) = 1
m

m∑
j=1

(F ′(ν − ζ)(ν̂N,j − ζ̂N,n − ν + ζ) + ∆(3)
N,j) (B.15)

= F ′(ν − ζ)(ν̂N − ζ̂N,n − ν + ζ) + ∆(3)
N ,

1
m

m∑
j=1

(F (ν̂N,j + ζ̂N,n) − F (ν + ζ)) = 1
m

m∑
j=1

(F̂N,j(ν̂N,j + ζ̂N,n) − F̂N,j(ν + ζ)) + ∆(4)
N , (B.16)

1
m

m∑
j=1

(F (ν̂N,j − ζ̂N,n) − F (ν − ζ)) = 1
m

m∑
j=1

(F̂N,j(ν̂N,j − ζ̂N,n) − F̂N,j(ν − ζ)) + ∆(5)
N , (B.17)

ν̂N = 1
m

m∑
j=1

ν̂N,j = 1
m

m∑
j=1

(
ν + 1/2 − F̂N,j(ν)

F ′(ν) + ∆(6)
N,j

)
= ν + 1/2 − F̂N(ν)

F ′(ν) + ∆(6)
N . (B.18)

Combining (B.13) - (B.17), as was done by [55], we get

F ′(ν + ζ)(ν̂N + ζ̂N,n − ν − ζ) − F ′(ν − ζ)(ν̂N − ζ̂N,n − ν + ζ)

= 1
m

m∑
j=1

F̂N,j(ν̂N,j + ζ̂N,n) − F̂N,j(ν̂N,j − ζ̂N,n)

− (F̂N(ν + ζ) − F̂N(ν − ζ)) + ∆(3)
N + ∆(4)

N − ∆(2)
N − ∆(5)

N

101



B Proofs

= 1
m

m∑
j=1

F̂N,j(ν̂N,j + ζ̂N,n) − F̂N,j(ν̂N,j − ζ̂N,n−) +O
( 1
N

)
− (F̂N(ν + ζ) − F̂N(ν − ζ)) + ∆(3)

N + ∆(4)
N − ∆(2)

N − ∆(5)
N

= 1
2 + ∆(1)

N +O
( 1
N

)
− (F̂N(ν + ζ) − F̂N(ν − ζ)) + ∆(3)

N + ∆(4)
N − ∆(2)

N − ∆(5)
N

⇔ − (ν̂N − ν)(F ′(ν − ζ) − F ′(ν + ζ)) + (ζ̂N − ζ)G′(ζ)

= 1
2 − (F̂N(ν + ζ) − F̂N(ν − ζ)) + ∆⋆

N ,

with ∆⋆
N = ∆(1)

N +O
(

1
N

)
+ ∆(3)

N + ∆(4)
N − ∆(2)

N − ∆(5)
N , which yields

(ζ̂N − ζ) = 1/2 − (F̂N(ν + ζ) − F̂N(ν − ζ))
G′(ζ) + F ′(ν − ζ) − F ′(ν + ζ)

G′(ζ) (ν̂N − ν) + ∆⋆
N

G′(ζ)

= 1/2 − (F̂N(ν + ζ) − F̂N(ν − ζ))
G′(ζ) + ∆⋆

N

G′(ζ)

+ F ′(ν − ζ) − F ′(ν + ζ)
G′(ζ)

(
1/2 − F̂N(ν)

F ′(ν) + ∆(6)
N

)

= 1/2 − (F̂N(ν + ζ) − F̂N(ν − ζ))
G′(ζ) + F ′(ν − ζ) − F ′(ν + ζ)

G′(ζ)

(
1/2 − F̂N(ν)

F ′(ν)

)
+ ∆N ,

with

∆N =
∆(1)

N +O
(

1
N

)
+ ∆(3)

N + ∆(4)
N − ∆(2)

N − ∆(5)
N

G′(ζ) + F ′(ν − ζ) − F ′(ν + ζ)
G′(ζ) ∆(6)

N .

We now have to prove

∆(l)
N = oP (N−1/2) ∀l = 1, . . . , 6 (see (B.13)-(B.18)),

which will be done in the following steps 1. - 6.

1. Following [55], we have for the error term ∆(1)
N in (B.13)

ĜN(ζ̂N,n) =
⌊
N + 1

2

⌋/
N = 1

2 +O
( 1
N

)
.

Ties between Wj and Wk, j ̸= k are excluded, since the underlying CDF F is assumed
to be continuous. Therefore,

√
N∆(1)

N =
√
NO

(
1
N

)
converges to zero in probability.

2. With Taylors theorem we get for the error term ∆(2)
N in (B.14)

1
m

m∑
j=1

(F (ν̂N,j + ζ̂N,n) − F (ν + ζ)) = 1
m

m∑
j=1

F ′(ν + ζ)(ν̂N,j + ζ̂N,n − ν − ζ)

+ 1
m

m∑
j=1

F ′′(cj)
2 (ν̂N,i + ζ̂N,n − ν − ζ)2.
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Let ϵN := D2
1

log(N) , D1 = max{8/F ′(ν), 8/G′(ζ)} (see (3.33)) and ϵ > 0.

Then, for large N we have

P

⎛⎝⏐⏐⏐⏐⏐⏐
√
N

1
m

m∑
j=1

F ′′(cj)
2 (ν̂N,j + ζ̂N,n − ν − ζ)2

⏐⏐⏐⏐⏐⏐ > ϵ

⎞⎠
≤ P

⎛⎝⏐⏐⏐⏐⏐⏐
√
N

1
m

m∑
j=1

F ′′(cj)
2 (ν̂N,j + ζ̂N,n − ν − ζ)2

⏐⏐⏐⏐⏐⏐ > ϵN

⎞⎠
≤ P

⎛⎝⏐⏐⏐⏐⏐⏐
√
N

1
m

m∑
j=1

M

2 (ν̂N,j + ζ̂N,n − ν − ζ)2

⏐⏐⏐⏐⏐⏐ > ϵN

⎞⎠
= P

⎛⎝⏐⏐⏐⏐⏐⏐
m∑

j=1
(ν̂N,j + ζ̂N,n − ν − ζ)2

⏐⏐⏐⏐⏐⏐ > 2mD2
1

log(N)
√
NM

⎞⎠
≤

m∑
j=1

P

(⏐⏐⏐(ν̂N,j + ζ̂N,n − ν − ζ)2
⏐⏐⏐ > 2D2

1

log(N)
√
NM

)

(⋆)= mP

⎛⎜⎜⎜⎜⎜⎝
⏐⏐⏐ν̂N,j + ζ̂N,n − ν − ζ

⏐⏐⏐ >
√ 2D2

1

log(N)
√
NM  

:=ϵ̃N

⎞⎟⎟⎟⎟⎟⎠
(B.8)
≤ m

(
(2 + 4m) exp

{
−2N

m
δ2

ϵ̃N /2,n

}
+ exp{−2N∆2

2,ϵ̃N /2,N} + exp
{
−2N∆2

3,ϵ̃N /2,N

})
(B.10)

≤ m

(
(2 + 4m) exp

{
−2N

m

2
M

√
N log(N)

}
+ 2 exp

{
−2N 2

M
√
N log(N)

})

= m

(
(2 + 4m) exp

{
−2

√
N

m

2
M log(N)

}
+ 2 exp

{
−2

√
N

2
M log(N)

})
−→ 0 ⇐⇒ m = o(N1/3).

In (⋆) we used the fact that ν̂N,j + ζ̂N,n are identically distributed. Hence, the error
term ∆(2)

N converges to zero in probability.

3. Analogously to 2., the error term ∆(3)
N from (B.15) converges to zero in probability.

4. We will utilize the proof of Lemma 2.5.4E in [79] where stochastic sequences KN,j, j =
1, . . . ,m, and deterministic sequences βN,j = βN,1, j = 1, . . . ,m, are defined with the
following properties:

βN,1 = O
(
n−3/4

)
,

P (KN,j ≥ γN) = O
(
n−3/2

)
,

γN = c1n
−3/4

(
log(n)(1/2)(q+1)

)
,

where q ≥ 1/2 and c1 is a constant, which depends on F ′(ν). Moreover, we will use
Lemma 9 where |ν̂N,j + ζ̂N,n − θ| =: |xj| ≤ ϵn a.s. with θ := (ν + ζ). Then with ϵ > 0,
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ϵN := log(N)−1 and large N we get for the error term ∆(4)
N in (B.16)

P
(⏐⏐⏐√N∆(4)

N

⏐⏐⏐ > ϵ
)

≤ P
(⏐⏐⏐√N∆(4)

N

⏐⏐⏐ > ϵN

)
= P

⎛⎝⏐⏐⏐⏐⏐⏐
√
N

1
m

m∑
j=1

(F̂N,j(ν̂N,j + ζ̂N,n) − F̂N,j(ν + ζ)) − (F (ν̂N,j + ζ̂N,n) − F (ν + ζ))
⏐⏐⏐⏐⏐⏐ > ϵN

⎞⎠
≤ P

⎛⎝√
N

1
m

m∑
j=1

⏐⏐⏐(F̂N,j(ν̂N,j + ζ̂N,n) − F̂N,j(ν + ζ)) − (F (ν̂N,j + ζ̂N,n) − F (ν + ζ))
⏐⏐⏐ > ϵN

⎞⎠
≤

m∑
j=1

P

⎛⎝√
N
⏐⏐⏐(F̂N,j(ν̂N,j + ζ̂N,n) − F̂N,j(ν + ζ)) − (F (ν̂N,j + ζ̂N,n) − F (ν + ζ))

⏐⏐⏐ > ϵN

⎞⎠
(△)= mP

⎛⎝√
N
⏐⏐⏐(F̂N,1(ν̂N,1 + ζ̂N,n) − F̂N,1(ν + ζ)) − (F (ν̂N,1 + ζ̂N,n) − F (ν + ζ))

⏐⏐⏐ > ϵN

⎞⎠
≤ mP

⎛⎝√
N sup

|x1|≤ϵn

⏐⏐⏐(F̂N,1(θ + x1) − F̂N,1(θ)) − (F (θ + x1) − F (θ))
⏐⏐⏐  

≤KN,1+βN,1, see [79]

> ϵN

⎞⎠

≤ mP

(
KN,1 + βN,1 >

ϵN√
N

)

= mP

(
KN,1 >

ϵN√
N

− O
(
n−3/4

))
≤ mP (KN,1 > γN)

(
⇔ m = o

(
N1/3

))
≤ mO

(
n−3/2

)
−→ 0.

Equality (△) holds since the underlying random variables are exchangeable. Hence,
the error term ∆(4)

N converges to zero in probability.

5. Analogously to 4, the error term ∆(5)
N from (B.17)converges to zero in probability.

6. The following result is due to the well known Bahadur representation of the median
and further results on the behaviour of the corresponding remainder term in Theorems
2.5.5B and 2.5.5C in [79]. We will prove the convergence in mean square. Let ϵ > 0,
m = o

(
N1/3

)
and n = N/m. Then we get for the error term ∆(6)

N in (B.18):

E
(⏐⏐⏐√N∆(6)

N − 0
⏐⏐⏐2) = E

⎛⎜⎝
⏐⏐⏐⏐⏐⏐
√
N

1
m

m∑
j=1

∆(6)
N,i

⏐⏐⏐⏐⏐⏐
2
⎞⎟⎠

= V ar

⎛⎝√
N

1
m

m∑
j=1

∆(6)
N,j

⎞⎠+ E

⎛⎝√
N

1
m

m∑
j=1

∆(6)
N,j

⎞⎠2

= N

m
V ar

(
∆(6)

N,1

)
+ E

(√
N∆(6)

N,1

)2

≤ N

m
E
((

∆(6)
N,1

)2
)

+ E
((√

N∆(6)
N,1

)2
)
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= N
m+ 1
m

√
1

2π
+ o

(
n−3/4+ϵ

)
n3/2F ′(ν)2 −→ 0.

The convergence in mean square implies convergence of ∆(6)
N to zero in probability.

Combining the results 1. - 6. for the error terms ∆(1)
N , . . . ,∆(6)

N the Theorem 8 is proven.

Proof of Corollary 2.
We have that

√
N
(
ζ̂N,n − ζ

)
=

√
N

⎛⎝1/2 −
(
F̂N(ν + ζ) − F̂N(ν − ζ)

)
G′(ζ)

−F ′(ν − ζ) − F ′(ν + ζ)
G′(ζ)

1/2 − F̂N(ν)
F ′(ν)

)
+

√
N∆N .

The term
√
N∆N converges to zero in probability due to Theorem 8. The remaining term is

the same as in the case of the ordinary sample MAD and has asymptotic normal distribution
with mean zero and variance ϑ2, see [55]. The result is proven with Slutsky’s Theorem.
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C Exact CDF of the MAD for odd sample size in the
change-point scenario

Let Yt = Xt + hIt>t1 , t = 1, . . . , n = 2k − 1, k ≥ 1, where Xt i.i.d., h ≥ 0, t1 ≤ k − 1. Hence,
Y1, . . . , Yt1 are i.i.d. and so are Yt1+1, . . . , Yn. Let F0 with F0(x) = P (X1 ≤ x) and Fh with
Fh(x) = P

(
Xn−⌊nτ⌋+1 + h ≤ x

)
denote the corresponding CDFs, respectively. Then, using

similar argumentations as in [60] the CDF of the sample MAD of Y1, . . . , Yn is given as
follows:

FMAD(x) =
∫

∞

−∞

⎡⎣⎧⎨⎩
t1∑

a=max(0,t1−k)

t1−a∑
b=max(0,
t1−a−1)

2k−1∑
l=k

min(b,l−w+1)∑
d=max(0,
l−w+b−k)

k−1∑
w=l−k

min(k−1−s,w)∑
b=[k−1−s

−(k−1−w)]+(
t1
a

)(
2k − 1 − t1
k − 1 − a

)(
t1 − a

b

)(
k − t1 + a

k − 1 − b

)(
a

c

)(
k − 1 − a

w − c

)(
b

d

)(
k − 1 − b

l − 1 − w − d

)

[F0(m+ x) − F0(m)]c [Fh(m+ x) − Fh(m)]w−c

· [1 − F0(m+ x)]a−c [1 − Fh(m+ x)]k−1−a−w+c

· [F0(m) − F0(m− x)]d [Fh(m) − Fh(m− x)]l−1−w−d

· F0(m− x)b−dFh(m− x)k−b−l+w+d

⎫⎬⎭
/

⎧⎨⎩
t1∑

i=0

min(t1−i,k−1)∑
j=max(0,
t1−i−1)

(
t1
i

)(
2k − 1 − t1
k − 1 − i

)(
t1 − i

j

)(
k − t1 + i

k − 1 − j

)

F0(m)iFh(m)k−1−i(1 − F0(m))j(1 − Fh(m))k−1−j

⎫⎬⎭ · fMED(m)
⎤⎦dm,

with x ≥ 0. The CDF FMED of the sample median of Y1, . . . , Yn can be derived easily as
follows:

FMED(x) = P (med{Y1, . . . , Yn} ≤ x) = P (at least k of the Y1, . . . , Yn are ≤ x)

=
n∑

l=k

P (exactly l of the Y1, . . . , Yn are ≤ x)
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C Exact CDF of the MAD for odd sample size in the change-point scenario

=
n∑

l=k

min(t1,l)∑
i=max(0,

l−2k+1+t1)

(
t1
i

)(
2k − 1 − t1

l − i

)
F0(x)iFh(x)l−i

· (1 − F0(x))t1−i (1 − Fh(x))2k−1−t1−l+i .

The density function fMED is the derivative of FMED.
Alternatively, one can use the paper of [31], where the exact CDF of order statistics was
derived, in order to determine the CDF FMAD.
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Figure D.1: Boxplots of the estimators based on the local Whittle estimator for the Hurst
parameter H = 0.7 in time series with one jump of height h after a proportion of
λ of the data, each based on 1000 simulation runs with N = 1000 realizations of
Pareto(3,1)-transformed fGn.
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Figure D.2: (a) MSE-optimal block length nopt of σ̂2Mean, (b) MSE regarding nopt of σ̂2Mean

and (c) MSE of σ̂2Mean when choosing n =
√

N
K+1 for K = 1 ( ), K = 3 (- - -)

and K = 5 (· · ·) with N = 1000, Yt = Xt + ∑K
k=1 hIt≥tk

, where Xt ∼ t5 and
h = δ · σ, δ ∈ {0, 0.1, . . . , 5}.
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Figure D.3: MSE of σ̂2Mean when choosing n =
√

N
K+1 for true K = 5 ( ), K = 0 ( ) K = 1

(- - -) K = 2 (· · · ·) K = 3 (- · -) K = 4 (– – –) and K = 6 (– - –) with
N = 1000 and h = δ · σ, δ ∈ {0, 0.1, . . . , 5}, Yt = Xt + ∑5

k=1 hIt≥tk
, where (a)

Xt ∼ N(0, 1) and (b) Xt ∼ t3.
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Figure D.4: (a) MSE-optimal block length nopt of σ̂2Mean, (b) MSE regarding nopt of σ̂2Mean

and (c) MSE of σ̂2Mean when choosing n =
√

N
K+1 for K = 1 ( ), K = 3 (- - -)

and K = 5 (· · ·) with N = 2500, Yt = Xt +∑K
k=1 hIt≥tk

, where Xt ∼ N(0, 1) and
h = δ · σ, δ ∈ {0, 0.1, . . . , 5}.
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Figure D.5: (a) MSE-optimal block length nopt of σ̂2Mean, (b) MSE regarding nopt of σ̂2Mean

and (c) MSE of σ̂2Mean when choosing n =
√

N
K+1 for K = 1 ( ), K = 3 (- - -)

and K = 5 (· · ·) with N = 2500, Yt = Xt + ∑K
k=1 hIt≥tk

, where Xt ∼ t5 and
h = δ · σ, δ ∈ {0, 0.1, . . . , 5}.
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Figure D.6: Q-Q plot of the maximal monthly discharge of the Nile river in the period 1871 –
1984.
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Figure D.7: Q-Q plot of a pixel with a virus adhesion from the PAMONO data.
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Figure D.8: RMSE of σ̂M,mod for K = 1, h = 1σ, g = 6 ( ) K = 2, h = 3σ, g = 6
(- - -), K = 3, h = 3σ, g = 10 (· · ·) and K = 4, h = 5σ, g = 10 (- · -).
N = 2500 observations from Yt = Xt + ∑K

k=1 hσIt≥tk
+ γtUt with 5% outliers,

where γt ∼ N(gσ, 0.5), Xt ∼ N(0, 1) (left) and Xt ∼ t3 (right).
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(- - -), K = 3, h = 3, γ = 6σ (· · ·) and K = 4, h = 5σ, γ = 10 (- · -).
N = 2500 observations from Yt = Xt + ∑K

k=1 hσIt≥tk
+ γtUt with 5% outliers,

where γt ∼ N(γσ, 0.5), Xt ∼ N(0, 1) (left) and Xt ∼ t3 (right).

114



0 20 40 60 80 100

0
.0

7
0

.0
9

0
.1

1
0

.1
3

n

R
M

S
E

0 20 40 60 80 100

0
.0

7
0

.0
9

0
.1

1
0

.1
3

n

R
M

S
E

Xt ~ N(0,1)

0 20 40 60 80 100

0
.1

3
0

.1
4

0
.1

5
0

.1
6

0
.1

7
0

.1
8

0
.1

9

n

R
M

S
E

0 20 40 60 80 100

0
.1

3
0

.1
4

0
.1

5
0

.1
6

0
.1

7
0

.1
8

0
.1

9

n

R
M

S
E

Xt ~ t3

Figure D.10: RMSE of σ̂M,med (black) and σ̂0.5
M,tr (grey) for K = 1, h = 1σ, g = 6 ( )

K = 2, h = 3σ, g = 6 (- - -), K = 3, h = 3σ, g = 10 (· · ·) and K = 4, h =
5σ, g = 10 (- · -). N = 2500 observations from Yt = Xt +∑K

k=1 hσIt≥tk
+ γtUt

with 5% outliers, where γt ∼ N(gσ, 0.5), Xt ∼ N(0, 1) (upper panel) and Xt ∼ t3
(lower panel).
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Figure D.11: RMSE of (a) σ̂2
M,mod with block size n = max{⌊

√
N/(K + 1)⌋, 2} and ˜̃σ2

M,mod

with block size n = max{⌊
√
N/(K̃ + 1)⌋, 2}, (b) σ̂3.1

M,mod with block size n =
max{⌊N1−1/3.1/(K+1)⌋, 2} and ˜̃σ3.1

M,mod with block size n = max{⌊N1−1/3.1/(K̃+
1)⌋, 2} based on true K ( ), and on K̃ = 0 ( ), K̃ = 1 (- - -), K̃ = 2 (· · ·),
K̃ = 4 (- · -), K̃ = 6 ( ) for observations from Yt = Xt+

∑K
k=1 KσIt≥tk

+γtUt,
where (upper panel) N = 1000, K = 3, Xt ∼ t3 and (lower panel) N = 1000,
K = 5, Xt ∼ N(0, 1), with 5% outliers, γt ∼ N(6σ, 0.5).
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Figure D.12: RMSE of (a) σ̂2
M,mod with block size n = max{⌊

√
N/(K + 1)⌋, 2} and ˜̃σ2

M,mod

with block size n = max{⌊
√
N/(K̃ + 1)⌋, 2}, (b) σ̂3.1

M,mod with block size n =
max{⌊N1−1/3.1/(K+1)⌋, 2} and ˜̃σ3.1

M,mod with block size n = max{⌊N1−1/3.1/(K̃+
1)⌋, 2} based on true K ( ), and on K̃ = 0 ( ), K̃ = 1 (- - -), K̃ = 2 (· · ·),
K̃ = 4 (- · -), K̃ = 6 ( ) for observations from Yt = Xt+

∑K
k=1 KσIt≥tk

+γtUt,
where (upper panel) N = 2500, K = 3 and (lower panel) N = 1000, K = 5,
with 5% outliers, γt ∼ N(6σ, 0.5), Xt ∼ N(0, 1).
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E Tables

h
√

N 2
√

N + 1 3
√

N + 1 4
√

N + 1 7
√

N + 1
√

N 2
√

N + 1 3
√

N + 1 4
√

N + 1 7
√

N + 1

H = 0.5 (d = 0) H = 0.7 (d = 0.2)

N = 1000

0 26.61 17.33 13.99 12.00 9.35 21.71 17.82 15.48 13.90 10.59

λ = 0.1

0.5 26.44 17.45 14.04 12.67 10.40 21.65 17.79 15.44 13.87 11.16
1 26.62 18.02 14.15 13.46 12.50 21.50 18.03 15.72 14.21 12.03
2 26.91 19.03 14.63 15.35 16.18 21.79 18.34 15.78 15.15 13.97

λ = 0.5

0.5 26.46 17.38 14.47 12.21 10.20 21.61 17.64 15.58 13.78 11.00
1 26.67 17.85 15.08 12.51 11.98 21.50 17.87 15.87 13.87 11.80
2 26.84 18.83 16.36 13.80 15.39 21.76 18.21 16.52 14.44 13.76

N = 1500

0 23.22 15.06 12.30 10.69 8.07 20.51 16.26 14.08 12.57 9.62

λ = 0.1

0.5 23.37 15.15 12.77 10.95 9.26 20.55 16.22 14.25 12.64 9.86
1 23.30 15.24 13.24 10.87 10.95 20.53 16.31 14.35 12.64 10.54
2 23.56 15.88 14.60 11.36 13.41 20.54 16.52 15.14 12.98 12.15

λ = 0.5

0.5 23.43 15.45 12.80 11.21 9.13 20.57 16.30 14.30 12.69 9.69
1 23.67 15.89 13.51 11.73 10.33 20.54 16.46 14.25 12.99 10.43
2 23.80 16.64 14.54 13.16 12.93 20.57 16.84 15.22 13.65 11.98

Table E.1: Estimated RMSE of the non-overlapping blocks estimator with different block
sizes for the differencing parameters d = 0 (H = 0.5) and d = 0.2 (H = 0.7)
in time series without (h = 0) and with change-point (jump of height h after a
proportion of λ of the data, each based on 1000 simulation runs with n = 1000
and n = 1500 values from the ARFIMA(0, d, 1) model with θ = −0.6), based on
the local Whittle estimator.
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E Tables

h
√

N 2
√

N + 1 3
√

N + 1 4
√

N + 1 7
√

N + 1
√

N 2
√

N + 1 3
√

N + 1 4
√

N + 1 7
√

N + 1

H = 0.5 (d = 0) H = 0.7 (d = 0.2)

N = 1000
λ = 0.5

2 4.03 3.86 4.42 4.59 9.68 3.60 4.38 4.96 4.95 7.63

N = 1500
λ = 0.5

2 3.24 3.32 4.02 4.71 7.55 3.08 4.23 4.58 5.08 6.32

Table E.2: Estimated RMSE of the non-overlapping blocks estimator with different block
sizes for the differencing parameters d = 0 (H = 0.5) and d = 0.2 (H = 0.7)
in time series without (h = 0) and with change-point (jump of height h after a
proportion of λ of the data, each based on 1000 simulation runs with n = 1000
and n = 1500 values from fGn), based on the local Whittle estimator.
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Distribution σ̂M,me σ̂M,med σ̂0.5
M,tr σ̂2

M,mod σ̂3.1
M,mod Q0.5

adj MS0.5
adj

K = 0, g = 0, ρ = 0
Bias
N(0, 1) -0.11 -0.08 0.01 0.14 -0.13 0.23 0.30
t3 -1.11 -0.32 -0.04 -0.13 -0.31 -0.72 -0.60
t5 -0.66 -0.24 -0.09 0.01 -0.18 -0.17 -0.08
Gum(0, 1) -0.57 -0.75 -1.28 0.03 -0.13 -0.35 -0.36
Laplace(1, 3) -3.36 -1.43 -2.28 0.69 0.89 0.50 0.68
RMSE
N(0, 1) 5.09 6.46 6.63 5.37 5.37 6.28 6.71
t3 10.07 12.15 12.54 10.52 9.90 11.83 12.33
t5 7.16 8.69 9.07 7.44 7.05 8.71 9.02
Gum(0, 1) 7.07 8.91 8.92 7.50 7.25 8.31 8.75
Laplace(1, 3) 27.64 34.23 33.15 29.33 27.35 29.23 30.59

K = 3, h = 3σ, g = 0, ρ = 0
Bias
N(0, 1) 1.90 1.80 1.78 1.42 3.85 0.81 0.91
t3 5.52 1.95 2.72 2.36 8.59 2.75 2.47
t5 2.47 1.49 2.60 1.53 5.75 1.36 1.32
Gum(0, 1) 1.81 0.26 1.33 1.49 5.15 1.03 1.00
Laplace(1, 3) 4.71 3.45 7.32 7.23 22.42 4.69 4.49
RMSE
N(0, 1) 6.21 8.52 7.61 7.25 7.05 6.68 7.08
t3 12.95 15.00 14.02 12.80 14.38 12.31 12.69
t5 8.66 10.74 10.50 9.40 10.05 8.70 9.20
Gum(0, 1) 8.67 10.90 10.35 9.64 9.76 8.89 9.33
Laplace(1, 3) 29.66 39.24 37.05 34.99 38.70 30.42 32.42

K = 3, h = 3σ, g = 6, ρ = 0.5
Bias
N(0, 1) 14.97 11.08 8.61 9.85 10.56 19.28 17.79
t3 33.55 20.39 15.78 19.80 22.58 39.13 35.35
t5 21.95 14.27 12.43 13.99 16.04 27.46 25.20
Gum(0, 1) 20.37 12.66 10.97 13.63 14.59 26.97 24.43
Laplace(1, 3) 71.11 48.86 40.05 51.27 60.27 93.65 85.13
RMSE
N(0, 1) 16.82 14.38 11.80 12.45 12.51 21.00 19.72
t3 37.61 26.71 21.75 24.94 26.05 42.59 39.16
t5 24.40 18.79 16.67 17.50 18.23 30.05 27.85
Gum(0, 1) 23.09 17.44 15.64 17.46 17.20 29.35 27.12
Laplace(1, 3) 80.98 65.27 55.89 63.34 68.85 102.36 94.31

Table E.3: Bias·102 and RMSE·102 of different estimators for N = 500 under independence.
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E Tables

Distribution σ̂M,me σ̂M,med σ̂0.5
M,tr σ̂2

M,mod σ̂3.1
M,mod Q0.5

adj MS0.5
adj

K = 0, g = 0, ρ = 0
Bias
N(0, 1) -0.14 -0.19 -0.00 0.01 -0.04 -0.10 -0.10
t3 0.28 -0.13 0.06 0.03 0.15 0.15 -0.02
t5 0.31 0.01 0.01 0.25 0.11 0.05 0.02
Gum(0, 1) 0.30 0.19 0.08 -0.08 -0.17 -0.09 -0.18
Laplace(1, 3) -2.27 -0.43 0.77 -0.20 -0.17 -0.03 -0.45
RMSE
N(0, 1) 2.24 2.80 2.81 2.32 2.26 2.79 2.96
t3 4.36 5.55 5.31 4.49 4.44 5.44 5.73
t5 3.27 4.18 4.07 3.38 3.19 3.82 4.04
Gum(0, 1) 3.29 3.96 3.93 3.30 3.17 3.64 3.96
Laplace(1, 3) 12.57 15.16 15.14 12.80 12.77 13.52 14.31

K = 3, h = 3σ, g = 0, ρ = 0
Bias
N(0, 1) 0.87 0.57 0.51 0.60 2.31 0.19 0.03
t3 2.76 0.79 1.01 1.37 5.14 0.21 0.08
t5 1.31 0.44 0.88 0.95 3.56 0.39 0.28
Gum(0, 1) 0.96 0.59 0.54 0.66 2.95 0.14 0.04
Laplace(1, 3) 4.68 3.20 2.53 2.99 13.45 0.43 -0.06
RMSE
N(0, 1) 2.58 3.08 3.09 2.70 3.48 2.89 3.08
t3 5.51 5.79 5.65 5.07 7.29 5.42 5.67
t5 3.62 4.18 4.38 3.77 5.08 3.87 4.05
Gum(0, 1) 3.32 4.04 4.19 3.59 4.59 3.79 3.99
Laplace(1, 3) 12.88 15.38 15.53 13.43 19.12 13.36 14.22

K = 3, h = 3σ, g = 6, ρ = 0.5
Bias
N(0, 1) 8.94 7.75 7.09 7.78 8.92 18.90 17.55
t3 18.84 14.49 12.52 14.94 17.51 37.08 32.99
t5 12.30 10.21 9.34 10.65 12.35 25.81 23.45
Gum(0, 1) 11.34 9.78 8.55 9.92 11.32 25.15 23.03
Laplace(1, 3) 46.80 39.63 34.92 39.86 48.32 89.22 80.07
RMSE
N(0, 1) 9.36 8.45 7.89 8.33 9.37 19.29 17.97
t3 19.60 15.85 13.85 15.90 18.35 37.79 33.76
t5 12.89 11.20 10.41 11.38 13.04 26.37 24.06
Gum(0, 1) 11.89 10.74 9.59 10.62 11.95 25.67 23.62
Laplace(1, 3) 48.77 42.99 38.49 42.37 50.56 91.12 82.19

Table E.4: Bias·102 and RMSE·102 of different estimators for N = 2500 under independence.
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Distribution σ̂M,me σ̂M,med σ̂0.5
M,tr σ̂2

M,mod σ̂3.1
M,mod Q0.5

adj MS0.5
adj

K = 0, g = 0, ρ = 0
Bias
N(0, 1) 26.83 14.21 10.38 13.28 13.14 20.91 19.57
t3 52.64 24.58 17.66 22.50 24.25 41.72 37.24
t5 35.94 18.10 13.36 16.72 16.99 28.79 26.36
Gum(0, 1) 36.25 18.12 13.26 16.50 16.91 28.72 26.22
Laplace(1, 3) 117.54 60.79 46.34 54.85 66.73 99.74 90.21
RMSE
N(0, 1) 28.67 18.31 13.57 17.64 14.94 22.69 21.51
t3 57.35 32.45 23.99 30.71 27.80 45.51 41.31
t5 38.80 23.55 17.78 22.35 19.49 31.22 28.98
Gum(0, 1) 39.21 23.61 17.25 22.31 19.27 31.35 28.95
Laplace(1, 3) 127.61 80.05 61.70 75.47 76.39 108.76 99.80

N = 1000, K = 5, h = 5σ, g = 6, ρ = 0.5
Bias
N(0, 1) 16.07 10.86 8.76 10.43 11.16 20.19 18.81
t3 33.58 19.27 15.51 18.79 21.34 39.33 34.94
t5 21.92 13.91 11.56 13.40 15.03 27.22 24.77
Gum(0, 1) 21.09 13.45 10.53 13.65 14.26 26.83 24.54
Laplace(1, 3) 71.99 48.10 41.49 49.54 58.94 94.45 85.20
RMSE
N(0, 1) 17.06 12.61 10.40 11.83 12.07 21.07 19.82
t3 35.57 22.75 18.51 21.38 23.17 41.01 36.75
t5 23.32 16.44 13.73 15.36 16.27 28.49 26.14
Gum(0, 1) 22.53 16.19 12.92 15.63 15.75 28.05 25.92
Laplace(1, 3) 77.31 57.13 48.64 56.26 63.81 99.01 90.13

N = 2500, K = 5, h = 5σ, g = 6, ρ = 0.5
Bias
N(0, 1) 11.52 8.74 7.29 8.47 9.58 19.23 17.89
t3 24.31 15.83 13.10 15.92 18.15 37.22 33.10
t5 15.65 11.54 9.67 11.64 13.34 26.45 24.11
Gum(0, 1) 15.05 10.71 8.96 10.95 11.96 25.43 23.35
Laplace(1, 3) 58.80 42.82 37.33 43.50 51.11 91.42 81.52
RMSE
N(0, 1) 11.85 9.33 8.00 8.97 9.98 19.61 18.32
t3 25.05 17.02 14.44 16.90 19.01 38.01 33.91
t5 16.23 12.47 10.71 12.40 13.94 27.00 24.73
Gum(0, 1) 15.56 11.64 9.92 11.70 12.54 26.00 23.98
Laplace(1, 3) 60.58 46.11 40.89 46.15 53.43 93.17 83.49

Table E.5: Bias·102 and RMSE·102 of different estimators for N = 500, 1000, 2500, K = 5,
h = 5σ, g = 6 and ρ = 0.5 under independence.
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E Tables

ϕ σ̂M,me σ̂M,med σ̂0.5
M,tr σ̂2

M,mod ˜̃σ2
M,mod σ̂3.1

M,mod ˜̃σ3.1
M,mod Q0.5

adj MS0.5
adj

K = 5, h = 5σ, g = 0, ρ = 0
Bias
0 1.81 0.69 0.81 0.75 4.37 2.88 5.59 0.45 0.30
0.1 0.33 -0.86 0.04 -0.79 4.05 2.39 5.51 -6.39 -6.46
0.3 -3.11 -4.85 -2.10 -4.84 3.44 1.46 5.02 -21.21 -21.27
0.5 -9.90 -13.11 -6.81 -12.72 2.52 -0.48 4.54 -40.61 -40.73
0.7 -28.07 -33.76 -20.81 -32.99 -1.97 -7.61 1.32 -72.63 -72.74
0.9 -108.55 -118.83 -92.64 -117.28 -36.67 -55.83 -25.56 -168.45 -168.56
RMSE
0 3.07 3.15 3.23 2.98 5.25 3.94 6.39 2.97 3.08
0.1 2.51 3.20 3.03 2.82 4.98 3.57 6.38 6.92 7.05
0.3 4.05 5.84 3.82 5.58 4.64 3.16 5.97 21.34 21.42
0.5 10.30 13.50 7.67 13.06 4.30 3.33 6.02 40.66 40.79
0.7 28.27 33.96 21.23 33.16 5.11 8.72 5.32 72.65 72.76
0.9 108.63 118.91 92.83 117.35 37.94 56.34 27.66 168.46 168.57

K = 5, h = 5σ, g = 6, ρ = 0.5
Bias
0 11.52 8.74 7.29 8.47 11.25 9.58 12.54 19.23 17.89
0.1 9.80 7.02 6.77 6.82 10.96 9.21 12.30 11.66 10.22
0.3 6.52 3.26 4.85 2.90 10.78 8.69 12.37 -4.44 -5.87
0.5 -0.14 -5.13 0.23 -5.07 10.11 6.97 12.17 -25.37 -26.70
0.7 -17.91 -25.46 -13.05 -24.90 7.22 1.18 10.95 -58.93 -60.14
0.9 -97.22 -109.75 -83.59 -108.87 -23.72 -44.21 -11.83 -156.20 -157.29
RMSE
0 11.85 9.33 8.00 8.97 11.68 9.98 12.99 19.61 18.32
0.1 10.23 7.86 7.54 7.51 11.43 9.68 12.80 12.23 10.91
0.3 7.18 4.81 6.02 4.22 11.30 9.24 12.91 5.47 6.69
0.5 3.35 6.46 3.99 6.11 10.90 7.81 12.88 25.53 26.84
0.7 18.30 25.81 13.90 25.19 8.96 5.05 12.38 58.98 60.19
0.9 97.33 109.85 83.83 108.95 25.80 44.97 16.52 156.22 157.31

Table E.6: Bias·102 and RMSE·102 of different estimators for N = 2500, K = 5, h = 5σ and
different AR-parameters ϕ ∈ {0, 0.1, . . . , 0.9}.
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ϕ σ̂M,me σ̂M,med σ̂0.5
M,tr σ̂2

M,mod ˜̃σ2
M,mod σ̂3.1

M,mod ˜̃σ3.1
M,mod Q0.5

adj MS0.5
adj

K = 3, h = 3σ, g = 0, ρ = 0
Bias
0 1.56 1.18 1.35 1.04 3.62 3.26 4.40 0.51 0.47
0.1 -0.14 -0.67 0.46 -0.66 3.04 2.43 3.76 -6.43 -6.53
0.3 -4.18 -5.48 -2.49 -5.40 2.13 1.14 2.90 -21.18 -21.16
0.5 -12.02 -14.55 -8.51 -14.77 -0.37 -1.95 0.56 -40.52 -40.59
0.7 -31.82 -36.71 -24.00 -36.50 -6.82 -9.59 -4.84 -72.45 -72.56
0.9 -115.63 -123.14 -101.90 -123.29 -56.57 -65.21 -50.97 -168.32 -168.36
RMSE
0 4.44 5.51 5.31 4.71 5.58 5.30 6.23 4.58 5.08
0.1 3.98 5.41 5.30 4.48 5.18 4.88 5.70 7.63 7.97
0.3 5.88 7.82 5.91 7.10 4.89 4.58 5.33 21.49 21.52
0.5 12.86 15.65 10.30 15.58 5.17 5.49 5.26 40.64 40.73
0.7 32.23 37.28 24.93 36.89 9.84 11.74 8.43 72.50 72.62
0.9 115.76 123.31 102.26 123.41 57.87 66.17 52.52 168.34 168.38

K = 3, h = 3σ, g = 6, ρ = 0.5
Bias
0 11.70 9.25 7.75 9.01 10.12 9.56 10.58 19.37 18.10
0.1 10.27 7.31 7.04 7.27 9.85 9.05 10.47 11.76 10.36
0.3 6.08 2.47 4.41 2.37 9.34 8.35 10.04 -4.58 -5.82
0.5 -1.73 -6.35 -1.20 -6.72 7.55 6.29 8.65 -25.28 -26.61
0.7 -21.02 -28.16 -16.94 -28.52 1.50 -1.47 3.46 -58.48 -59.68
0.9 -103.50 -114.50 -93.43 -114.92 -45.65 -53.99 -39.29 -155.61 -156.72
RMSE
0 12.70 11.14 9.71 10.42 11.11 10.62 11.65 20.27 19.13
0.1 11.47 9.55 9.08 8.89 10.90 10.19 11.52 12.99 11.73
0.3 7.88 6.48 7.11 5.48 10.52 9.59 11.20 6.84 7.73
0.5 5.67 8.93 6.38 8.54 9.37 8.43 10.44 25.66 26.98
0.7 21.86 28.96 18.42 29.07 7.45 7.49 8.49 58.61 59.81
0.9 103.78 114.73 93.87 115.09 47.47 55.39 41.65 155.65 156.76

Table E.7: Bias·102 and RMSE·102 of different estimators for N = 1000, K = 3, h = 3σ and
different AR-parameters ϕ ∈ {0, 0.1, . . . , 0.9}.
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