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Abstract

This thesis investigates the variation of signal transmission in topological phases as well
as their robustness in one- and two-dimensional systems. For this purpose, multiple ap-
proaches in different systems are pursued.

First, the possibility of designed modifications at the boundaries is explored in order
to change the Fermi velocity at edge states of topological phases. The Fermi velocity as a
quantity of the transport behavior describes the speed of signal transmission. The main
idea is to hybridize local modes with dispersive edge modes in a controllable way so that
the signal speed can be significantly slowed down. In the beginning, the Haldane model
is modified. Thereafter, the findings are extended by the spin degree of freedom, yielding
to Kane—-Mele model with helical edge states. In addition, the robustness of edge states
against local disorder is investigated by reconstructing the dispersion of the edge modes
in the Haldane model. As a result, certain limits regarding the protection of topological
edge states become apparent.

Triggered by the results for lattice systems, the central idea is carried over to the
integer quantum Hall effect of a free two-dimensional electron gas. The local modes are
generated by periodically aligned bays at the boundary of the sample. The Hamiltonian
of a free two-dimensional electron gas subjected to a perpendicular magnetic field is
approximated by a finely discretized lattice. Hence the dispersion of arbitrary periodic
geometries becomes numerically accessible. The application of a gate voltage brings the
weakly hybridized edge states into resonance with the Fermi energy. Therefore the Fermi
velocity can be varied by up to two orders of magnitude. To extend the research approach,
graphene is investigated as another possible implementation due to its special properties
and the technical possibility to realize desired geometries. The numerical results indicate
that possible applications such as delay lines or interferometers are feasible.

The investigation of the topological properties of triplon excitations in BiCu,POyg re-
veals new insights into the bulk-boundary correspondence. BiCuyPOyg is described by
frustrated quantum spin-1/2 ladders which are weakly coupled to form a two-dimensional
lattice. The eigenenergies and eigenmodes of single-triplons are determined by applying
deepCUTs and Bogoliubov transformations. The one-triplon dispersions are used to fit
the inelastic neutron scattering data by adjusting the coupling constants. Based on that,
BiCuyPOg is shown to be the first disordered quantum antiferromagnet exhibiting a
gap and a non-trivial Zak phase. Additionally the topological character of BiCu,POy is
established by a finite winding number. Despite the bulk-boundary correspondence, no
localized edge states can be found due to the absence of an indirect gap. The investiga-
tion of the Su—Schrieffer—-Heeger model confirms that the disappearance of the indirect
gap leads to delocalized in-gap states. In order to further explore the localization of ed-
ge states regarding the indirect gap, two-dimensional topological systems such as the
Haldane model and the topological checkerboard model are investigated as well.

Finally, the investigation of the ferromagnetic Shastry—Sutherland lattices reveals the
existence of topological magnon excitations. Using exact spin wave theory, finite Chern
numbers of the magnon bands are determined which give rise to chiral edge states. The
thermal Hall conductivity as an experimental signature of the topological phase is cal-
culated. Various promising compounds are discussed as possible physical realizations of
ferromagnetic Shastry—Sutherland lattices.






Kurze Zusammenfassung

In dieser Arbeit wird untersucht, wie man die Signaliibertragung topologischer Phasen va-
riieren kann, sowie deren Robustheit in ein- und zweidimensionalen Systemen. Zu diesem
Zweck werden verschiedene Ansétze in unterschiedlichen Systemen verfolgt.

Als erstes wird die Moglichkeit untersucht, mithilfe von gezielten Modifikationen am
Rand die Fermi-Geschwindigkeit von topologischen Randzustdnden zu reduzieren. Die
Fermi-Geschwindigkeit ist eine wichtige Figenschaft des Transportverhaltens, welche die
Geschwindigkeit bei einer Signaliibertragung beschreibt. Der grundlegende Gedanke ist
es, lokale Zustdnde kontrollierbar mit den Randzustdnden in Wechselwirkung zu brin-
gen, sodass die Geschwindigkeit des Signals mafigeblich reduziert werden kann. Als erstes
wird das Haldane-Modell modifiziert. Danach werden die Erkenntnisse um den Spin-
Freiheitsgrad erweitert und auf das Kane-Mele-Modell mit den helikalen Randzustinden
iibertragen. Anschliefend wird die Robustheit von Randzustdnden in Anwesenheit von
lokaler Unordnung im Haldane-Modell untersucht, indem die Dispersion der Randzu-
stande rekonstruiert wird. Die topologischen Randzustdnden sind dabei nur bis zu einem
gewissen Grad geschiitzt.

Aufgrund der aussichtsreichen Ergebnisse wird die zentrale Idee auf den ganzzahligen
Quanten-Hall-Effekt eines freien zweidimensionalen Elektronengases iibertragen, um sie
einer Realisierung néher zubringen. Dazu wird der Rand mit periodisch angeordneten
Buchten modifiziert. Der Hamiltonoperator eines freien geladenen Teilchens im elektro-
magnetischen Feld wird auf einem fein diskretisierten Gitter approximiert, sodass die
Dispersion von beliebig periodischen Geometrien numerisch zugéanglich wird. Durch das
Anlegen einer Gate-Spannung konnen die hybridisierten Randzustédnde in Resonanz mit
der Fermi-Energie gebracht werden, sodass die Fermi-Geschwindigkeit um bis zu zwei
Groflenordnungen variiert werden kann. Aufgrund seiner besonderen Eigenschaften und
der technischen Moglichkeit gewiinschte Geometrien herzustellen wird zur Erweiterung
Graphen untersucht. Die numerischen Ergebnisse zeigen, dass mogliche Anwendungen
wie Verzogerungsleitungen oder Interferometer realisierbar sind.

Die Untersuchung der topologischen Eigenschaften der Triplon-Anregungen von
BiCuyPOyg fiihrt zu neuen Erkenntnissen beziiglich der Bulk-Boundary-Korrespondenz.
BiCuyPOg wird durch frustrierte Spin-1/2-Leitern beschrieben, welche schwach mitein-
ander gekoppelt sind und so ein zweidimensionales Gitter bilden. Durch Anwendung ei-
ner deepCUT und einer Bogoliubov-Transformation werden die Kopplungskonstanten
bestimmt, indem wir die Dispersion an die Daten der inelastischen Neutronenstreuung
anpassen. Darauf basierend wird gezeigt, dass BiCuy,POg der erste liickenbehaftete, unge-
ordnete Quantenantiferromagnet mit einer nicht-trivialen Zak-Phase ist. Der topologische
Charakter von BiCu,POg wird zusétzlich durch eine endliche Windungszahl bestétigt.
Trotz der Bulk-Boundary-Korrespondenz konnten keine lokalisierten Zustdnde vorgefun-
den werden, was durch die Abwesenheit einer indirekten Liicke begriindet wird. Zur Be-
statigung dieser Hypothese wird das Su—Schrieffer-Heeger-Modell untersucht, welches
zeigt, wie das Verschwinden der indirekten Liicke zu delokalisierten Zustédnden innerhalb
der Energieliicke fithrt. Um die Anfilligkeit der Lokalisierung von Randzusténden im Be-
zug auf die indirekte Liicke weiter zu untersuchen, werden zweidimensionale topologische
Systeme wie das Haldane-Modell und das topologische Schachbrett-Modell untersucht.



Abschlieflend zeigt die Untersuchung des ferromagnetischen Shastry—Sutherland-Gitters
das Vorkommen von topologischen Magnonanregungen. Mit Hilfe der exakten Spinwel-
lentheorie werden die nicht-trivialen Chern-Zahlen der Magnonenbénder bestimmt, die
zu chiralen Randzustédnden fiihren. Um eine experimentelle Signatur vorherzusagen wird
die thermische Hall-Leitfahigkeit der topologischen Phase berechnet. Verschiedene viel-
versprechende Verbindungen werden als mogliche physikalische Realisierungen des ferro-
magnetischen Shastry—Sutherland-Gitters diskutiert.
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1. Introduction

Solid-state physics is the study of macroscopic and microscopic physical properties of
solids. The collective behavior of electrons in solids is very different from the behavior
of electrons in unbounded atoms. Even if the fundamental particles and interactions are
well-known, the emergent phenomena that arise in crystal lattices are far from being
completely understood. The research results provided a large number of very important
technological achievements in the last decades such as semiconductor technology, tran-
sistors, LEDs, hard disk drives, etc. A better understanding and the discovery of new
materials are of great importance in developing new technologies that are more efficient
and sustainable. Currently, solid-state physics focuses on new types of materials and
phenomena, such as quantum materials realizing superconductivity which may become a
pioneering technology in the future. Recently, a new class of quantum materials have been
discovered which are characterized by topological properties. They possess an enormous
potential for innovations such as quantum computing or energy efficient applications in
spintronics and electronics. Topological materials have quantum mechanical properties
which are protected against perturbations in a novel way due to the global nature of
topological properties.

Topology is a fundamental branch of mathematics that deals with global properties of a
geometrical object that are preserved under continuous deformations such as stretching,
twisting or bending. The preservation is attributed to the intrinsic structure in the
space of the geometrical object. The properties are characterized by discrete topological
invariants that can only change stepwise through non-adiabatic processes such as tearing
and/or gluing. Thus, these invariants have to exhibit an inevitable connection to the
intrinsic structure and have to be preserved independent of local deformations. In this
sense, two objects are topologically equivalent if the topological invariants coincide.

The genus g of an orientable surface corresponds to the number of its holes and therefore
represents an intuitive example of an integer topological invariant. A doughnut and a
cup have genus g = 1 while a football has no holes and thus g = 0. Hence, we can turn a
doughnut into a cup through continuous deformations, but not into a football. The genus
can only be changed by integer amounts by adding or removing holes. As a result, the
doughnut and a football are declared to be topologically distinct geometrical objects, but
a doughnut and a cup belong to the same equivalence class. Similar topological invariants
are used in the following to characterize topological phases.

The discovery of the integer quantum Hall effect (IQHE) in 1980 by von Klitzing
marks the beginning of an era of research on topological phases'. The introduction
of topological concepts in order to explain the IQHE in 1983 by Thouless was a great
surprise [1]. The Hall conductance in the IQHE? changes in a step-wise manner in

!Note that this refers to the introduction of topological phases in condensed matter and not to the first
relation of topology and physics which was made in gauge theory.

2Unless noted otherwise, the IQHE always refers to the conductivity of a free 2D electron gas under the
influence of a strong magnetic field at low temperature.
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response to a reduction of the strength of the magnetic field. This strange behavior could
only be explained by the theoretical research of Thouless.

For his research results regarding the IQHE, von Klitzing was awarded the 1985 Nobel
Prize in physics. Topological phenomena in solid-state physics still inspire and aston-
ish numerous physicists. The 2016 Nobel Prize was awarded to Thouless, Haldane and
Kosterlitz for their theoretical investigation of topological phase transitions and topologi-
cal phases of matter. This proves the subject to be one of the most actively researched and
relevant topics in physics. Throughout the last years, the number of different topological
materials and phases has increased with an amazing rate.

While it is predicted that the number of topological materials will increase even more
in the future , the increasing variety of possible topological properties can lead to
confusion and misunderstandings. For this reason, I will give an introductory overview
of different topological phases and specify the focus of this thesis. I will start in a
very general fashion by introducing phases and phase transitions, then continue with the
classification of general topological phases before presenting the framework of the thesis.

First of all, distinct phases are usually associated with different states of aggregation
such as gas, liquid or solid. There also exist different phases within a given state of matter.
The most prominent example is given by HyO which can be found as water vapor, water
and ice. In addition, each phase can also exist in various forms, e.g., phases of ice can
be found in crystalline or amorphous forms . Furthermore, crystalline forms of ice are
discovered to realize 17 different phases so far . All these phases are described by state
parameters such as pressure and temperature and are connected by thermodynamic phase
transitions. The Kosterlitz—Thouless phase transition @, represents a special case that
can only be found in two-dimensional systems and is historically the first example of a
topological phase transition. In contrast to common phase transitions, the Kosterlitz—
Thouless transition® does not break any symmetry and can therefore not be described by
the well-established Ginzburg-Landau theory which is based on local order parameters.

At very low temperatures close to absolute zero, material properties are determined
by quantum physics and new exotic states are revealed. Such quantum materials are
described as zero-temperature phases with properties which can persist even for finite
temperatures. At T = 0K, different phases are linked by quantum phase transitions
including topological phase transitions. Quantum matter can have many different types
of topological properties known as topological quantum states. They do not fit into the
scheme of standard symmetry breaking phases due to their inherently global nature.

To provide an overview regarding topological properties, a schematic tree diagram is
shown in Fig. 1.1. First, systems can be divided into gapped and gapless Hamiltonians,
where we shall focus on the former. The system energies are theoretically described by
Hamiltonians. A gapped Hamiltonian is specified for an infinitely large system where
the ground state, defined as the lowest-energy state, is separated with a finite energy
gap? from the first excited states. Otherwise the Hamiltonian is called gapless. The
Hamiltonian with a finite gap can be further divided into long-range and short-range
entangled phases.

The phenomena of quantum entanglement corresponds to a special kind of correlation

3The Kosterlitz—Thouless transition is also declared as a thermodynamic phase transition since the
transition depends on temperature.
4An energy gap describes an energy range where no energy states exist.
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Figure 1.1: Classification of solid-state matter by basic properties. This overview serves
as a guideline to locate the focus of this thesis which is highlighted in color. The assign-
ment of the integer quantum Hall effects to non-interaction symmetry-protected topolog-
ical orders are based on their used models in this thesis described in Chap. 3.

between particles. The quantum states of these particles can only be described as a whole
system. Even if the particles are separated by a large distance, each particle cannot be
described by a quantum state independently from the other particles. The von Neumann
entropy S measures the entanglement of a quantum state and is calculated by taking the
trace

S =—Tr(pln(p)) , (1.1)

where p describes the density matrix of a quantum mechanical system. States of short-
range entangled phases can always be smoothly deform into trivial product states without
a quantum phase transition where the gap closes and opens. These product states are
trivial since their von Neumann entropy vanishes. The smoothly deformations are allowed
to break all symmetries as long as the gap remains. In contrast, ground states of long-
range entangled phases EI] have always a finite von Neumann entropy S as long as
the gap is preserved due to the topological entanglement entropy Eﬂ The topological
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entanglement entropy is a universal constant contribution to the von Neumann entropy
which characterizes the global properties of the entanglement in the ground state.

Quantum phases with an intrinsic topological order have finite gaps and long-
range entanglements. In contrast, phases with a symmetry-protected topological (SPT)
order have topological quantum states with a finite gap and short-range entan-
glements. States with intrinsic topological order are characterized by a non-trivial robust
ground state degeneracy , long-range entanglement Eﬂ and fractionalized excita-
tions . The presence of interaction is indispensable for the existence of intrinsic
topological order. The description of intrinsic topological insulators therefore requires the
usage of many-body theory. Distinct intrinsic topological ordered phases cannot change
into each other without a phase transition. Phases of intrinsic topological order have a
non-trivial topological entanglement entropy. They display many special features such
as anyonic statistics (non-Abelian or fractional statistics) or edge states (gapless
boundary excitations). Prominent examples of intrinsic topological orders are given by
the fractional quantum Hall effect (QHE) and quantum spin liquids [2I]. The
IQHE can be assigned to provide short-range or long-range entanglement depending on
the used definition. According to the original definition of long-range entanglement in
Ref. , the states of the IQHE have long-range entanglement. In contrast, Kitaev’s
definition in Ref. results that the states of the IQHE are short-range entangled.

SPT phases always have a finite energy gap with a unique ground state and specific
symmetries which need to be preserved for the phase. The finite energy gap refers to
the bulk properties® of the system. A SPT phase cannot be smoothly deformed into
another phase if the energy gap and the symmetries are preserved . The requirement
to close the gap in order to change the phase is interpreted as a consequence of the
topological nature of the system. One subtle but important difference of SPT orders
to intrinsic topological orders consist in the necessary preservation of the symmetries in
the SPT phases during a deformation. The importance of symmetry is also evident in
the analysis of edge states. The edge states in the SPT phases are robust against local
perturbations preserving the symmetry while edge states in intrinsic topological ordered
phases are robust against any local perturbations. The fact that the symmetry needs
to be preserved leads to the notion of “SPT phases” The eigenstates of SPT phases
have only short-range entanglement, which lead automatically to a trivial topological
entanglement entropy. This emphasizes the distinction from intrinsic topological order.

The SPT order can be classified in interacting systems such as the Haldane phase of
odd-integer-spin chains and in non-interacting systems. Topological insulators in non-
interacting fermionic systems are well-known examples of SPT phases® without interac-
tion. The concept of topological insulators is chiefly used in this work.

A topological insulator differs from the known band insulators by a twisted topology
due to a band inversion, i.e., the usual orbital character of the conduction band and
valence band is inverted by spin-orbit coupling. The energy band structure in the bulk
looks like the energy band structur of an ordinary band insulator but it possesses a non-
trivial topological index similar to the genus. Thus the change of the topological index
is always connected to a non-adiabatic quantum phase transitions where the gap closes

5The term bulk refers to volume properties of systems in contrast to boundary or interface properties.
Hence, the bulk represents the translation invariant part of the system. One can think of infinite or
periodic systems in all present spatial-dimensions.

5Note that the general notation of SPT order applies to fermionic as well as to bosonic systems.
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adiabatically

C=1

quantum phase transition

Figure 1.2: Illustration of distinct topological phases. The topological invariant is de-
noted by C. The phase transitions by closing and opening a gap are marked in red. All
three phases share the same symmetries.

and opens as schematically shown in Fig. 1.2. However, the index of a topological insu-
lator is not visible from its energy band structure in the bulk. The topology is deeply
rooted in the eigenstates with their intrinsic phase ambiguity and not in the eigenener-
gies. The presence of a non-trivial topological bulk index leads to conducting topological
edge states. This fact is explained by the bulk-boundary correspondence [24H27]. As a
result, the topological insulator behaves like an insulator in its interior while its boundary
behaves like a metal. Topological insulators have been found in several two- and three-
dimensional materials . A more detailed explanation of topological insulators is
provided in Chap. 2.

The different properties and the resulting behavior of topological insulators strongly
depend on the spatial-dimension as well as on the symmetries of the system. All possi-
ble classes of topological invariants for topological insulators and topological supercon-
ductors of non-interacting fermionic systems in dependence of all spatial-dimensions as
well as symmetries are shown in the periodic table introduced by Kitaev [33[. All ten
discrete symmetry classes are characterized by the eigenvalues of the squares of the time-
reversal 7T, particle-hole C and chiral symmetry operators S, as pointed out by Altland
and Zirnbauer [35]. The symmetries are of particular importance because they reveal
the framework of the phase. For instance, if the bulk system preserves time-reversal
symmetry (TRS) then possible edge states in a topological phase have to fulfill the TRS
as well. An excerpt of the periodic table up to three dimensions is shown in Tab. 1.1.
Depending on the dimension and the symmetry, different topological edge states” are
achievable in presence of a non-trivial topological invariant. For notational simplicity, we
will henceforth use the term “edge state” for all states localized at a boundary irrespective
of dimensionality.

The periodic table applies only to fermionic systems. Nonetheless, there is also a large
number of possible topological phases for bosonic excitations. For instance, single-particle
excitations in magnetic systems have also been observed to show topological properties.
Note that such topological phases are analogous to topological insulators but they differ

"Edge states are often stated in the literature to be symmetry-protected. This does not implies that the
phase is protected by its symmetry. It means that the symmetry must be preserved.



1. Introduction

class 72 C?> S8 D=1 D=2 D=3
Wigner—Dyson A - - = = Z(Haldane, IQHE) —
symmetry classes Al +1 - - = — —
Al -1 - — = Zs(Kane-Mele) Zs
chiral Alll - — 1 Z — 7
symmetry classes BDI +1 +1 1 Z(SSH) - -
cir -1 -1 1 2% - Zs
Bogoliubov—de D - +1 = Zs Z —
Gennes C - -1 —|= 27 —
symmetry classes DIII -1 41 1 Zs Lo Z
CI +1 -1 1 - — 27

Table 1.1: Overview of all possible topological insulators and topological superconduc-
tors classified by the ten symmetry classes of non-interacting fermionic Hamiltonians .
The classes are characterized by the spatial-dimension (D = {1,2,3}) and the discrete
symmetries given by the time-reversal symmetry 7T, the particle-hole symmetry C and the
chiral symmetry S which are formulated at the level of the single-particle Hamiltonian
(see Sec. 2.3.2). The absence of a symmetry is denoted by —. A present symmetry is
indicated by the square of the symmetry operator which can be represented by +1 and
are denoted by +1. For instance, 72 = —1 holds for half-integer spins while 72 = +1
holds for integer spins.

due to bosonic nature which results in a different occupation of the modes®.

Furthermore, topological crystalline insulators correspond to another variant of topo-
logical insulators. It extends the classification of topological phases by including cer-
tain crystal point group symmetries. Instead of the discrete symmetries in the Altland—
Zirnbauer classification, the presence of crystalline symmetries are necessary in order to
have topological characteristics. Point group symmetries such as inversion, mirror and
rotation represents typical symmetries for the nature of topological crystalline insulators.

For completeness it should be mentioned that topological phases do not necessarily have
a finite gap. Topological semimetals obey concepts similar to those used in topological
insulators. They are also characterized by topological invariants and have special edge
states. There are a number of other specific topological phases which are not mentioned
here (and not shown in Fig. 1.1) for reasons of clarity. The presented phases are chosen
to clearly allocate the work within the large research area of topological phases.

In this work we will focus on low-dimensional topological phases. As indicated above,
the spatial-dimensions has a huge impact. Physics in low-dimensional topological phases
can be very different from the behavior in three-dimensional systems. Depending on the
dimension and the symmetries, one can determine different topological invariants such as
the Zak phase [37], winding number [38], Chern number [39], Zy index 40|, etc., which
will be explained in Chap. 2. In addition, the same invariant can be determined by

8Unlike the fermionic case, bosonic systems do not obey the Pauli principle. As a result, the term
“insulators” would cause confusion since no valence and conduction bands are defined.
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various methods. The preferred method depends on the studied model.

The signal transmission of topological phases is largely determined by edge modes which
are attributed to a non-trivial topological invariant and the gap of the system. The term
“topological phases” is used as a synonym for non-interacting SPT phases henceforth.
The edge states in topological phases are commonly presented as their key property
which enables energy-efficient applications. The predicted stability of edge states against
disorder and interaction are remarkable and the main reason why they are
so interesting for technical applications. A prominent example of the robustness of edge
states is the forbidden backscattering in case of TRS . Thus edge states theoretically
represent a perfect conductor due to the ballistic transport without dissipation. Such
transport behavior for a material class is unique and promises an enormous application
potential. The possibility to vary the transport behavior in a controllable way is a useful
tool to create devices. In order to contribute to these topics, I followed various theoretical
approaches which are briefly described in the following outline.



Outline of the thesis

1.1. Outline of the thesis

The structure of the thesis is as follows:
The articles published during this PhD project are listed at the end of this chapter.

In Chap. 2, the basic concept of the Berry phase will be introduced. Afterwards, the
Su-Schrieffer-Heeger model (1D, Zak phase), the Haldane model (2D, Chern number)
and the Kane-Mele model (2D, Zs index) are presented as fundamental examples which
will greatly contribute to the understanding of the remaining work.

Chapter 3 shows the investigation how to tune the Fermi velocity in topological sys-
tems. First, the main idea is introduced and its application to electronic and spintronic
systems is shown in order to achieve new application areas. Secondly, the robustness of
tunable edge states is studied. The theoretical approaches in the IQHE regime of a 2D
electron gas and of graphene are examined to propose experimental realizations.

The study of topological properties in BiCu,POy is presented in Chap. 4. A short in-
troduction of the compound clarifies the basic framework and its peculiarities. Then, the
topological characteristics are investigated. Due to the presence of a non-trivial quantized
Zak phase, localized edge states are expected, but not found. The subsequent analysis
reveals the importance of the indirect gap for the localization of edge states.

The delocalization of edge states is studied in detail in Chap. 5. It will be shown that
the delocalization of edge states in one- as well as in two-dimensional topological systems
is generically driven by the disappearance of the indirect gap.

In Chap. 6, the ferromagnetic Shastry—Sutherland model is analyzed by using exact
spin-wave theory. Different compounds are proposed as possible physical realizations of
the ferromagnetic Shastry—Sutherland model. The non-trivial Chern number in combi-
nation with the material properties provide excellent conditions for stable topological
magnonic excitations.

Finally, in Chap. 7 main results are summarized.

In the appendix, supplementary material is provided.



Publications
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This thesis comprises parts of the published and submitted manuscripts which are listed
below in chronological order:
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2. Topological band theory

This chapter presents the required topological band theory within this thesis to ensure
the basic notion of the following chapters. First, we give an introduction to the general
context of topological insulators in Sec. 2.1. Afterwards, we will introduce the key con-
cept of the Berry phase in Sec. 2.2. The Su—Schrieffer-Heeger model in Sec. 2.3 serves as
an example to explain topological phases in one dimension. Sections 2.4 and 2.5 describe
the Chern and the Zs topological phase in two dimensions, respectively.

2.1. General context!

Quantum states of matter stand out by very astonishing features. Their energy spec-
tra show a special structure and they are characterized by special properties of their
eigenstates. In particular, unanticipated topological properties generated by eigenstates
attract great interest. Since the discovery of the integer and the fractional QHE ,
topological phenomena have become an important field of research in condensed matter
physics. The edge states occurring in the QHE are localized exponentially at the
boundaries of the sample. They are protected by the topological properties of the band
structure in the bulk . As shown by Thouless et al. , the number of edge states
corresponds to the Chern number v of the filled electronic bands which charac-
terizes the famous quantized Hall conductivity o, = ve?/h. The description of the QHE
by topological invariants , is based on the Berry phase .

In order to mimic the IQHE in a lattice model without external magnetic field, Haldane
proposed the first Chern insulator . In addition to nearest neighbor (NN) hopping
on a honeycomb lattice, the proposed Haldane model comprises a magnetic flux which
induces complex next-nearest neighbor (NNN) hopping elements while the translational
symmetry is preserved. Averaged over a unit cell of the lattice the magnetic flux vanishes.

In order to realize a Chern insulator the time-reversal symmetry (TRS) must be broken.
Non-trivial Chern numbers imply chiral edge states also in the absence of an external
magnetic field, extending the concept of the usual QHE. In the context of topologically
protected edge states the term “chiral” means that the electrons only propagate in one
direction along one edge. If no magnetic field is involved this effect is called the anomalous
QHE (2.

The Kane—Mele model represents a crucial extension of the Haldane model
including the spin degree of freedom. This renders the preservation of the TRS possible
because one spin species realizes the time-reversed replica of the other. The Kane—Mele
model was suggested to describe the effect of spin-orbit interaction on the electronic
band structure of graphene in the low-energy regime, but it turned out that the spin-
orbit interaction in graphene is too weak to produce noticeable effects. Nevertheless, the

'Parts of this section have been published in Physical Review B as regular article .
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Kane-Mele model provides fascinating theoretical insights.

Due to the preservation of the TRS in the Kane—Mele model it cannot display a net
charge current at the edges. Instead, a net spin current is possible. This phenomenon is
referred to as the quantum spin Hall effect (QSHE) [57] which can be attributed to the
topological Zs invariant , implying helical edge states . These topologically
protected edge states are called “helical” because they have a spin filtering property,
i.e., the spins T propagate in one direction while the spins | propagate in the opposite
direction along the same edge. As a result, the QSHE implies a quantization of the spin
Hall conductivity. Materials displaying the QSHE characterized by the Zy topological
invariant are referred to as Zs topological insulators .

Since the QSHE is too weak in graphene to be measurable, Bernevig, Hughes, and
Zhang proposed a model for the quantum spin Hall phase in HgTe quantum wells
where the spin-orbit coupling (SOC) is much stronger. Soon after the theoretical proposal,
the quantum spin Hall phase has been observed experimentally in a 2D HgTe/CdTe
quantum well . Another experimental observation of the QSHE was realized
in InAs/GaSb quantum wells . The discovered QSHE is only measured at low
temperatures below 40 K. Theoretical calculations predict a possible realization of
the QSHE in germanium with a large energy gap corresponding to 277 K. The calculated
energy gap of the low-buckled (2D lattice is buckled into three dimensions) honeycomb
structure of germanium results from the stronger SOC so that this system is a candidate
for detecting the QSHE at higher temperatures.

Historically, the QSHE was measured first in 2D topological insulators. A Chern insu-
lator was considered unlikely to be realized. But very recently, progress has been achieved
towards 2D Chern insulators. The first observation of the anomalous QHE was made in
thin ferromagnetic Chern insulators . It could be observed up to temperatures
of a few Kelvin. Theoretical proposals indicate that Chern insulators near room temper-
ature are possible in thin ferromagnetic Chern insulators or in superlattices of gold
atoms on single-vacancy graphene .

An alternative realization has been achieved using ultracold fermionic “°K atoms in a
periodically modulated optical lattice . The usage of ultracold fermions could imple-
ment the Haldane model in an experimental setup. A particular asset of this setup is the
tunability of the physical properties.

This historically short overview only provides a first foray into the topic. To get deeper
insights into the appearance of topological effects, we introduce the notion of the Berry
phase.

2.2. Berry phase

The Berry phase is the most fundamental concept in topological band theory and
serves as an essential tool to analyze topological phenomena . Since its discovery in
1984, many observable effects (various Hall effects, electronic or photonic polarization, ...)
of geometric origin could be described systematically with the Berry phase. Furthermore,
it was recognized that the Aharononv—Bohm effect can also be understood as a Berry
phase. In reverse it means that the Aharononv—Bohm effect can be interpreted as a
consequence of a non-trivial gauge field. In this work, the Berry phase is mainly used
as the basis to decode the topological properties of the system and for defining several

12



Berry phase

[
b}
o)
(i
—~
—
N—"
-

@ ~ - —________7

E %

2, //

= %

(<5} _______—-—-"‘"_—— /

P (o] B e ///

path I’

parameter space M, R € M

Figure 2.1: The accumulated Berry phase during an adiabatic cyclic transport in pa-
rameter space (base space). The black lines represents exemplary U(1) fibers (bundle
space). The green patch corresponds to a smooth gauge choice which contains the closed
path shown in blue. The parameter space drawn below corresponds only to the projection
of the shown patch. During the parallel transport along the closed path the eigenstate
acquires an additional quantum phase as indicated by the height of the trajectory.

topological invariants, classifying distinct topological phases.

In general, a Berry phase? may occur in every system under an adiabatic evolution
along a cyclic process depending on a parameter set R of a general Hamiltonian H(R).
The adiabatic theorem states that if the variation of continuous parameters proceeds
slow enough, a non-degenerate eigenstate remains in its instantaneous eigenstate. To this
extent, one assumes that the parameter set R lies in a differential manifold M called
parameter space, R € M, and that H(R) has non-degenerate eigenenergies F,, with a
smooth behavior as a function of R. Thus, eigenvalues over the manifold M form energy
bands which are labeled by n. Diagonalizing the Hamiltonian in the matrix representation
H(R) at each R

H(R)|n, R) = E.(R)[n, R) (2.1)
provides an instantaneous orthonormal basis for the parameter set R. Note that the

Hamiltonians in this thesis are denoted by H whereas the matrix representation of Hamil-
tonians are denoted by H. Each instantaneous eigenstate |n, R) is precisely determined

2The Berry phase has been derived in quantum mechanics. Similar classical phases such as the Pan-
charatnam phase have been investigated .
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except for a complex phase (see Fig. 2.1) which is an element of the U(1) group
In,R) = &) |n R) (2.2)

This ambiguity is called gauge freedom and leads to U(1) fiber {g|n, R)|g € U(1)} at
each R. Put simply, an eigenstate is a representative of an equivalence class of vectors
which are connected by a complex phase transformation. The parameter space M and the
U(1) fiber at each R of the same band define a fiber bundle over the parameter space M
(see Fig. 2.1). Thus each band n represents a U(1) principal fiber bundle. The next step
is to define a connection between the U(1) fibers of the eigenstates in order to describe
the adiabatic evolution in parameter space. The connection is used to transfer the change
of the gauge phase to the associated fiber element and is necessary for the definition of
the parallel transport in the U(1) principal fiber bundle . A natural connection can
be derived from the Schrodinger equation. To this end, the parameter sets are considered
to be time-dependent quantities R = R(t) which are parameterized by ¢ along the closed
path I'in M: ¢t € [0,T] — R(t) € T'. Thus, the following equations should hold

R(0)=R(T) , [|n,R(0))=|n,R(T)) and H(0)=H(T) . (2.3)

The introduction of time is only a means to an end and not a necessary condition.
Before we consider the time evolution, it is important to know that a smooth and unique
gauge choice in order to remove the arbitrariness of the phases of fibers is only possible
over certain parts of M also called patches. Finding a proper gauge choice for the entire
parameter space is not always possible. For instance, if the system possesses a topological
invariant such as a non-trivial Chern number, which is connected to a U(1) twist in the
parameter space, we can only make a well-defined gauge choice for piecewise patches .
To this end, the parameter space M is divided into patches and the collection of patches
is called the atlas of the parameter space M. The gauge transformation between the
overlap of these patches are called transition function. Usually in physics, two patches
({01,032} € M and O1 N Oy # ) are sufficient to correctly describe the entire parameter
space. For simplicity, we first assume that the closed path I' lies completely in a single
patch (see green patch in Fig. 2.1). We use the ansatz

1)) =@ |n, R(t)) with te[0,7] , (2.4)

where 6(t) should describe the time evolution of the eigenstate |n, R(0)) with the starting
condition A(0) = 0. We set h = 1 for simplicity. Inserting the ansatz Eq. (2.4) in the
Schrodinger equation leads to the differential equation

. d d
~Eu(R() + 1 {n, R()| 3 In, R() = —0() (25)
According to the adiabatic approximation?®, the solution is given by
t t d
0(t) =~ [ Ea(R() A +i [ (0 R()| o In, R(E)) (2.6)
0 0

In addition to the generic dynamical phase, the eigenstate also acquires a second phase
while moving along the path, the so-called Berry phase v, or geometric phase

() = e~ Jo B CRED & ginat) 1y Rsy) (27)

*Non-adiabatic terms correspond to i (m, R(t)| - |n, R(t)) with n # m.
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The implicit time dependence can be transformed to an explicit dependence on R leading
to the expression for the Berry phase

%:i/ (n,R|Vg|n,R) dR :/An(R) dR with 7 eR  (238)
I I

A,(R)=i(n,R|Vg|n,R) . (2.9)

This representation emphasizes the fact that the Berry phase is not a time-dependent
quantity. The vector quantity A, (R) is known as the Berry connection and represents
the desired canonical connection of the local U(1) fibers of the eigenstates.

So the basic manifold is divided into overlapping patches with well-defined gauge
phases. The intersections between the different patches are connected by gauge trans-
formation which is defined by the Berry connection, see Eq. (2.10). The connection of
all U(1) fiber bundle sections results in the complete U(1) fiber bundle. During the con-
nection process, twists between the U(1) fiber sections are mediated, which defines the
topological properties of the whole bundle . The connection between the phases of
two neighboring eigenstates described by the Berry connection can be made clear by ex-
pressing the derivative in terms of the differential quotient, so that the Berry connection
depends on the eigenstate |n, R) and the infinitesimally shifted eigenstate |n, R+ A)
(Shift in parameter space A € M). Moreover, it shows that the Berry connection mea-
sures the deviation of |n, R) by varying the parameter set R.

The Berry connection defines the parallel transport of the eigenstates in the U(1)
principal fiber bundle. As a result, the Berry phase corresponds to the acquired phase
relative to the initial state during a parallel transport along a closed path through the U(1)
principal fiber bundle. The assumption of a closed path is necessary so that the Berry
phase is gauge invariant and thus observable. Under a gauge transformation |n, R)" —
e (B) |n, R), the Berry connection is extended by an additional term

By considering a closed path, the additional contribution is restricted by
~ § VR&(R) AR = &,(R(0) ~ &(R(T)) =27m with meZ  (211)

due to the condition that |n, R(0)) = |n,R(T)). Therefore the Berry phase is only
changed by a multiple of 27 using a gauge transformation and can be regarded as a
physically relevant observable in this way only.

A further important quantity in this context is given by the Berry curvature F,, since
it has the advantage to be gauge invariant in contrast to the gauge-dependent Berry
connection. The physical importance becomes clear through the possibility to observe
the Berry curvature . In order to express the Berry phase in terms of the Berry
curvature we consider a three-dimensional parameter space due to simpler mathematics
and more general formulation. Using Stokes’ theorem, we can recast the Berry phase
by introducing the Berry field strength® €2,,, where each component corresponds to an

4This notation is inspired by the strong similarity to electromagnetism, which can also be recast in terms
of gauge theory.
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expression of a Berry curvature Fj, j:

yn = —Tm // dS(V x (n, R| Vg |n, R)) (2.12a)
— Im / / dS((Van, R| x |Van, R)) (2.12b)

— / ASQ,  with Qu; = eijuFo (2.12¢)

Fo gk =i ((Or,n, RIOR,n, R) - (9,0, RIOR,n, R)) . (2.12d)

As a result, we rewrote the Berry phase as an integral of the Berry field strength/Berry
curvature over the whole interior of the closed path instead of an integral of the Berry
connection along the boundary. Note that the definition of the Berry phase in Eq. (2.7)
requires v, to be completely real in order to express the Berry phase through the imag-
inary part of the integral. The reduction to a two-dimensional parameter space can
be achieved by the restriction to a single component of €2,,. The Berry curvature is
parameter-dependent and can be of importance, even if the Berry phase vanishes.

The Berry curvature in Eq. (2.12d) is expressed by using the derivatives of eigenstates
which is unsuitable for computational calculations since the derivatives generate arbitrary
phases. This numerical problem can be solved through various methods, for instance by
shifting the derivation from the eigenstates to the Hamiltonian. The Berry phase can
thus be expressed as

- (n, R|VRH(R)|m, R) x (m, R|VrH(R) n, R)
= [fastw S (Em(R) — E.(R))?

(2.13)

m#n

First, this formula does not depend on the gauge of |n, R) or |m, R) and can therefore be
applied in numerical calculations. The representation of -, in Eq. (2.13) gives further in-
sights into the Berry phase. It shows that the Berry phase can be interpreted as an interac-
tion between the dispersion band |n, R) and the remaining dispersion bands |m, R). The
sum of the Berry curvatures F), j; over all bands n cancels out, so that ) F,, i =0V j, k
holds. Furthermore, a degenerate eigenstate from a closed gap would cause a singularity
which can lead to a quantum phase transition. Degenerate energy bands are also general
possible (multiband case) and lead to the slightly different expression of non-Abelian
Berry phases .

The generalization to the multiband case extends each Berry connection component
into a square matrix of dimension equal to the number of unseparated bands. The non-
Abelian Berry connection A, ; is defined as

and the non-Abelian Berry curvature F,, ji is given by

Fonnijh = Frngie =1 [ A, A (2.15)

mn

In this thesis, we focus on topological quantum materials which can be described by
the framework of the band theory of solids. A further simplification is the assumption of
translation symmetry due to a Bravais lattice. The investigation of topological properties
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with a lack of translational invariance proves to be difficult using band theory and is part
of current research. Particularly, the investigation of disorder effects on topological phases
is of significance due to the prediction of their stability against disorder.

The translational invariance allows the definition of a momentum k. In presence of a
crystalline structure® the solution of the stationary Schrédinger equation H (k) |1 (n, k)) =
En(k) |1 (n, k)) can be written in the form |4(n, k)) = ¢'*" |n, k) according to Bloch’s the-
orem, where r corresponds to the position operator. The eigenstates |n, k) and eigenval-
ues E, (k) of the Bloch Hamiltonian H (k) = e*” He™*" define the band structure. Thus
the parameter space is specified as the momentum k of the first Brillouine Zone (BZ),
R =k. The restriction of the momentum space to the first BZ leads to a closed manifold
identified as a d-dimensional torus 7%

The classification of different topological phases for quantum materials are handled by
defining invariants, which are usually expressed as integrals of some geometric quantities
like the Berry phase over the whole parameter space. Topological invariants are global
properties so that the complete parameter space is required to obtain a quantized quantity.
In this sense, the accumulated Berry phase along a path that goes around the BZ is
suitable for defining an invariant. The definition, application and consequences of the
used topological invariants in this work are exemplified with fundamental models in the
following sections.

2.3. Su—Schrieffer—Heeger model

The Su-Schrieffer-Heeger (SSH) model represents the most basic non-trivial topo-
logical system in one dimension. Originally, it was introduced to describe the conducting
polymer polyacetylene. The Peierls distortion in polyacetylene leads to a bipartite sub-
lattice structure with an alternating tunnel coupling strength. At half filling, the system
represents a Peierls insulator due to the dimerization. Particularly, the choice between
the two possible dimerizations has huge consequences because the two different realization
are topologically distinct (see Fig. 2.2 (b) and (c)) for finite systems with even number
of sites.

The presented SSH model describes the spinless fermion hopping® by an effective 1D
tight-binding model, providing a simple two-band model for the bulk system. The topo-
logically protected zero-energy modes emerging for the boundary in the topological phase
are associated to a non-trivial invariant in the bulk. In this section, we will perform bulk
and boundary calculations of the SSH model and elucidate their connection. Systems
in one dimension have more than one topological quantity in one symmetry class. We
will examine the two most important topological quantities in 1D: the Zak phase and the
winding number.

The single-particle Hamiltonian is given by

Hesy = Z (UCI,BCZ',A + wCLrLACZ-’B) + h.c. (2.16)

7

5The IQHE for the free 2D electron gas has no crystalline structure. Nonetheless, the IQHE can approx-
imately be described by square lattice models and has a lot in common with topological insulators.
For further information see Sec. 3.2.

5For simplicity, the spin degree of freedom is neglected.
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Figure 2.2: (a) Illustration of the lattice structure of the SSH model. Sublattice A (

is shown as gray (blue) dots. The staggered hopping amplitudes are composed of mtracell
hoppings v (blue lines) and intercell hoppings w (green lines). The yellow shaded area
highlights the two-site unit cell. The corresponding lattice constant a is depicted by a
black arrow. (b)-(c) Fully dimerized limits of a finite SSH chain with even number of
sites. The trivial case (w = 0) consists of disconnected intracell dimers. The topological
case (v = 0) exhibit dimers between neighboring unit cells. Thus each end of the chain
provides one isolated site corresponding to the topological zero-mode.

where ¢ o and c are, respectively, the fermionic annihilation and creation operators
at site a 6 {A, B} of unit cell . The average tunneling strengths v and w are real and
non-negative. The lattice and coupling structure are shown in Fig. 2.2(a). In order to in-
vestigate the bulk system, we consider periodic (Born—von Karmén) boundary conditions.
Thus we are able to apply a discrete Fourier transformation leading to

He (e da) () 21

keBZ Ck,B

(2.18)

—ik
with H(k)z( 0~ vtwe ) ,

v 4 we'k 0

where the lattice constant a is set to unity. The resulting bulk dispersion is described by

E,(k) = £y/v? + w? + 2vwcos(k) with n e {1,2} . (2.19)

The two bands remain separated as long as v # w holds and the energy gap is A = 2|v—w|.
The condition v = w defines the transition point between both phases and describes a
conducting phase. The Peierls distortion is preferably realized since the staggering of
the hopping amplitudes (v # w) lowers the energy of the occupied states. Note that
the choice between the two unit cell configurations is arbitrary in the bulk. The change
between the two unit cells equals exchanging v and w. The swapping of both hopping
parameters v and w does not affect the energy eigenvalues in the bulk. In contrast, the
eigenstates in the bulk are significantly changed since a trivial phase is swapped to a
topological phase or vice versa. Since the impact is restricted to the eigenstates or the
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pseudo-spin representation, the consequences are not so obvious and have to be shown
by additional calculations. This is illustrated in the following sections.

The investigation of a finite chain with open boundary conditions clearly shows a
difference in the energetic spectrum by exchanging v and w. The two limiting cases
depicted in Fig. 2.2 (b) and (c) illustrate the different phases of the system. The case
w = 0 corresponds to a trivial fully dimerized chain, while at v = 0 the system hosts
additional uncoupled sites at the ends of the chain. These uncoupled sites lead to in-gap
states at zero energy. They are fittingly referred to as zero-modes which are localized at
the boundary of the chain. Furthermore, they are also called end states or edge states
and their emergence is linked to a topological invariant. These zero-modes are of special
importance due to their unique characteristics such as being topologically protected and
exponentially localized at the boundary”. In order to predict zero-modes in the SSH
model and to clarify their occurrence, we perform further bulk calculations to determine
their topological origin.

2.3.1. Pseudo-spin representation and winding number

The representation of the Hamiltonian with a pseudo-spin provides an intuitive access
to determine topological invariants. The key idea is that the pseudo-magnetic field con-
tains the information about the topological invariant. Therefore the calculation of the
eigenstates is not necessary. To begin with, the matrix representation of the Hamiltonian
must be expressed in a compact notation

H(k) = do(k)1 + d(k)S | (2.20)

where a pseudo-magnetic field d(k) € R?® couples to a pseudo-spin § = (Sgc,Sy,Sz)T
in the SU(2) matrix representation. The spin matrices fulfill the commutator relation
[S;, S;] = ie¥*Sk. The energy offset is described by do(k). This energy offset is neglected
for the determination of the topological invariant since it does not affect the eigenstates.
The total spin S is fixed by the number of bands which is equal to the multiplicity (25+1).
The eigenvalues are given by

wn = nld(k)| (2.21)

where n = —S,...,S. If |d(k)| # 0 holds for the complete BZ, the bands are separated.

The usual two-band Hamiltonian such as the one of the SSH model leads to the use
of the spin-1/2 representation with the well-known Pauli matrices {0, 0y,0.}. For this
case, S = %0'. The factor 1/2 in this special case is usually absorbed into the factor d.
The Pauli matrices with the unit matrix form a complete basis and can therefore always
be applied to two-band models. For more than two bands, the matrix representation of
the spin does not cover the whole matrix space so that the pseudo-spin representation is
not generically applicable.

The next step depends on the dimension of the parameter space. In this section, the
one-dimensional BZ is the interval from —7 to w. By exploring the SSH model as an
example, we recognize that the winding number can classify the topological quantity of a
one-dimensional system. For the SSH model, the Hamiltonian can be rewritten by using

d(k) = (v+ wcos(k), wsin(k),0) . (2.22)

"The wave function of an edge state reaches into the bulk with an exponentially decaying tail.
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Generally, the endpoint of the pseudo-magnetic field d(k) as a function of the wave
number k forms a closed loop due to the periodicity of the BZ, if k is varied from 0 to 2.
The vector d(k) is restricted to the d,-dy-plane, wherein d(k) describes a circle centered
at (v,0). The topological invariant of a loop restricted to a plane around a reference point,
mostly the origin, is designated as the winding number v. The winding number v € Z
corresponds to the total number of times that the loop winds around the reference point.
Thus the model with v > w has a trivial winding number v = 0 and v < w corresponds
to the topological phase with v = 1. The sign of the winding number is negative if the
curve loops clockwise. The continuous deformations of the loop by changing v and w do
not change the winding number unless we pass the point v = w where the gap closes. An
alternative choice of the unit cell with (B, A) instead of (A,B) would swap the meaning
of v and w as intracell and intercell hoppings, respectively. Thus the trivial phase and
the topological phase are swapped because then v > w corresponds to v = 1.

The winding number v can be formulated in several variants. According to the SSH
model, the winding number can be calculated by

U d 1 [ dy(k) ddy (k) — d (k) dda(k)
v=oo (d(k:) x dkd(k:)) _ %f - +d§(k) . (223)

The hat indicates unit vectors. A winding number can only be defined if the loop is
restricted to plane such as in the case of the SSH model where d,(k) = 0 holds. This
requirement is closely related to the chiral symmetry and is treated in the following
subsection.

2.3.2. Symmetry classification

All single-particle fermionic systems describing topological insulators and topological su-
perconductors can be classified by their spatial-dimension and their discrete symmetries,
see Tab. 1.1. All possible cases are divided into ten different symmetry classes. The
symmetry of the system is characterized by 72, C? and 82, where T, C and S represent
the time-reversal, particle-hole and chiral symmetry operators, respectively. According
to Wigner’s theorem , all symmetry operations are unitary or anti-unitary transfor-
mations in the Hilbert space. The Hamiltonian is symmetric with respect to O if the
Hamiltonian commutes with the symmetry operator

[H,0]=0 . (2.24)

The basic transformation properties of the matrix representation of a single-particle
Hamiltonian H (k) as well as the consequences for the energy E(k) can be taken from the
overview in Tab. 2.1. A detailed consideration of the symmetries can be found in the work
by Chiu et al. . In the following, we want to explain the key points of symmetries by
using the SSH model.

The TRS reverses the arrow of time ¢ — —t. If particles retrace their motion by
inverting the arrow of time, then this indicates that the system preserves the TRS. The
example of a charge particle in an external magnetic field which breaks the TRS is well-
known. The time-reversal operator 7 is anti-unitary®. Depending whether the particles
are characterized as having spin or not, different representations of 7 are used.

8 Anti-unitary operators A do not support eigenvalues . In contrast, A% has to be unitary and can
be classified by their eigenvalues.
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time-reversal TH (k)T '= H(-k) Ej(k)= Ei(-k) T?==1
particle-hole CH'(k)C~!=—H(—k) Ei(k)=—-E;(—k) C?=4=+1
chiral SH(k)S™'=—-H( k) Eik)=-E;( k) &= 1
inversion TH(k)Z= H(-k) E;ik) E(-k) I?= 1

Table 2.1: Overview of important discrete symmetry properties of single-particle Hamil-
tonians. Each row shows the required Hamiltonian transformation, the resulting effects
on the energy dispersion and squares of the symmetry operators, respectively.

The time-reversal operator T of spinless particles in the position space representation
is given by the complex-conjugation operator, 7 = K . The representation of 7 for
particles with spin should also flip the spin angular momentum. This is accomplished by a
m-rotation around the y-axis in the S,-representation so that 7 = e ™SvIC. Furthermore,
note that 72 = +1 for integer-spin and 72 = —1 for half-integer spin. This fact is of
fundamental importance for the derivation of Kramers theorem which will be discussed
in Sec. 2.5.

The particle-hole symmetry is also known as charge conjugation, hence the notation C,
it swapes all particles with their corresponding anti-particles. As a result, all possible
charges are reversed. The charge conjugation operator has to be an anti-unitary oper-
ator [36]. Similar to 7, C?> = 41 holds for integer spin while half-integer spin yields
C?=-1.

The chiral symmetry can be understood as the combination & = TC. Nonetheless,
the chiral symmetry is important for a complete classification of all phases. Even if both
symmetries 7 and C are broken, their combination can still be preserved. The chiral
symmetry operator § is unitary and Hermitian , thus S? = 1 holds.

An alternative representation of the chiral symmetry operator is based on orthogonal
sublattice projectors

Po=Yli,a)(i,a| (2.25)

(2

where « represents the sublattice index (internal degree of freedom), here a € {A,B}.
Hence, it is also called sublattice symmetry. The sublattice symmetry S requires that no
couplings between sites of the same sublattice are allowed (P,HP, = 0, P,Pg = 0 for
a # (). This also includes on-site potentials which would break the chiral symmetry see
for instance the staggered on-site potentials in the Rice-Mele model . The presence
of chiral symmetry leads to a symmetric energy spectrum. Using the basis of eigenstates
of the chiral symmetry operator results in a block off-diagonal matrix representation [38]

H:(lgT g) . (2.26)

The SSH model obviously preserves the chiral symmetry since only hoppings between
sublattices A and B are present. For a bipartite Hamiltonian as in the SSH model we
can find a general relation to reproduce the projectors on sites A and B by using S

1 1

Pa=3 2

(Il +S); PB (ﬂ —8); S = PA — PB =0 . (2.27)
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The diagonal form of S indicates that the matrix representation is expressed in the basis
of eigenstates with respect to §. Thus, without loss of generality, we conclude from
the definition of chiral symmetry that d,(k) = 0 which is necessary to define winding
numbers. If d, # 0, the loop is not confined in the d,-d,-plane so that no clear definition
of winding around the origin is given. As a result, if chiral symmetry is broken, we can
move from the topological phase to the trivial phase without going through a gap-closing-
and-opening transition. This fact illustrates the classification as a symmetry-protected
topological phase.

From the perspective of energy, we can also clarify the role of the symmetry conservation
and the gap-closing-and-opening transition with respect to the protected zero energy
states and the topological bulk invariant. As long as the chiral symmetry is preserved,
we can calculate the winding number and hence a topological invariant for the bulk.
Furthermore, the chiral symmetry implies that each eigenstate |n, k) with energy E,, has
an associated partner eigenstate S |n, k) = |n, k) with energy E; = —E,. Only the zero-
modes can be their own partner S |n, k) = |n, k) for E, = 0. These states only emerge
at the interface of topologically distinct phases. Therefore, zero-modes are considered
as topologically protected since moving away from E = 0 requires additional states at
the same interface in order to fulfill the chiral symmetry. This can only be done by a
gap-closing-and-opening transition. Otherwise, one has to break chiral symmetry. As a
result, the edge states are robust as long as the chiral symmetry and the bulk gap are
preserved.

The block off-diagonal representation in Eq. (2.26) can be used to give a general defi-
nition of the winding number [3§]

1 2

27
v= dkTr ld log(D)l !

~oni o dk ~ o o

+d
dkTr [D de] . (2.28)

The representation in block off-diagonal form is a generic feature of the chiral symmetry.
For clarity, we consider the case of a two-band model such as the SSH model, where the
block off-diagonal matrix D becomes one-dimensional with D = d,(k)+id, (k). Hence, by
regarding the off-diagonal element as a complex function D = |D|exp'®, the winding can
be expressed by using the logarithm function which is equivalent to Eq. (2.23) [80]. The
generalize formula in Eq. (2.28) can always be applied to calculate the winding number
since it only requires the chiral symmetry and works with or without the pseudo-spin
representation. Furthermore, the definition in Eq. (2.28) can be extended to define a
winding number in a three-dimensional parameter space .

The inversion symmetry Z is a spatial symmetry that reverses the position r — —r.
Inverting twice has no effect: Z? = 1. The inversion symmetry operator Z is unitary and
Hermitian?. In the case of energetically separated bands, the inversion symmetry relates
the eigenstates of the same band at k& and —k:

H(k) |u(k)) = E(k) [u(k)) (2.29)
H(—k)T |u(k)) = B(k)T |u(k)) . (2.30)

9We refer to the inversion symmetry operator Z as the operator acting only on internal degrees of
freedom. For completeness, we mention that the inversion symmetry changes the sign of plane waves
and Bloch states leading to the inversion of momentum k — —k.
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Thus the energy is degenerate F(k) = E(—k) and for the eigenstates the relation
lu(—k)) = ' ®7T |u(k)) (2.31)

applies. At the time-reversal invariant momenta A; = {0,7}, the additional phase can
only be real and is denoted as the parity 7

Tlu(A)) =nlu(A;)) with n==+1 . (2.32)

For instance the transformation symmetry operator in the SSH model is given by Z = o,
which fulfills ZTH (k)Z = H(—k). The investigation of the parities in the topologically
distinct phases of the SSH model indicates a certain relation to the invariant of the
system. The trivial phase w < v provides the same parity +1 at k = {0, 7}. In contrast,
the sign of the parity in the topological phase w > v differs since the parities are given
by no = +1 and 1, = —1. Thus we see that the parities are related to a topological
invariant of the system which is known as the Zak phase and is described in the following
subsection.

2.3.3. Zak phase

As explained in Sec. 2.2, topological properties originate from the eigenstates of the
system. The calculation of the winding number as a topological invariant is based on
a matrix representation of the Hamiltonian and therefore does not require the explicit
calculation of the eigenstates. However the definition of the winding number uses the off-
diagonal representation which is given in the basis of eigenstates of the chiral symmetry
operator. This fact shows that the topological origin of the winding number is related
to the eigenstates. In this section, we consider the Zak phase as a possible topological
invariant which is based on the eigenstates of the system.

The Zak phase 7, [37] is defined by integrating the Berry connection over the one-
dimensional BZ

27
%:i/ (n, k| O [, k) dke . (2.33)
0

Thus, the Zak phase corresponds to the Berry phase accumulated along the closed 1D
path. The path is closed due to the periodicity of the 1D BZ. Note that the 1D BZ is
a special case since it cannot be interpreted as the boundary of an interior. As a result,
the Zak phase must be calculated from the Berry connection.

In the presence of chiral or inversion symmetry, the Zak phase is quantized to 0 or
T , where the trivial phase corresponds to 0 and 7 corresponds to a topological phase.
In this cases, the quantized Zak phase can be regarded as a Zy topological invariant.
The calculation of the Zak phase in inversion symmetry systems can be simplified by
considering the parity at 0 and m. The Zak phase corresponds to m if the sign of the
parity changes.

The chiral symmetry is not intrinsically given in polyacetylene because the NNN hop-
ping violates the chiral symmetry (d, # 0). This prevents a well-defined winding number,
but the Zak phase still remains quantized due to the preserved spatial symmetry of in-
version with respect to the center of a bond . This emphasizes that the quantization
of the Zak phase can also be guaranteed by additional symmetries besides the chiral
symmetry.
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We rephrase the SSH model using the Pauli matrices (H (k) = do(k)oo + d(k)o,
Ey =dy(k) £ d(k)). Then we express the two eigenstates as

1 d.+d B 1 d,—d

The Berry connection is then given by

AL = i<j:’ Ok ’i> = (dg@kdl — dlakdg) . (2.35)

2d(d £+ d3)
Using Eq. (2.22) and integrating over the one-dimensional BZ leads to 0 for v > w and
to m in the case of v < w.

In order to determine numerically the Zak phase correctly we need to consider the
gauge freedom by calculating the eigenstate at each k. The diagonalization routine re-
sults eigenstates with arbitrary gauge phases which prevents the correct determination
of the derivative. Thus a gauge invariant formula is required. Due to the closed loop in
one dimension, it is appropriate to express the Zak phase as a Wilson loop based on a
discretized BZ

N-1
Yo =—Im > In((n,kiln, kiy1)) mod2r (2.36)
i=0

which is gauge invariant. The discretization of the BZ is described by k; = 27i/N with
i = 0,1,...,N — 1, where we set the lattice constant to unity. More details of the
numerical determination is given in App. D.

The comparison between the Zak phase and the winding number reveals that each
invariant has its own advantages and disadvantages. Both invariants coincide in some
models where each invariant corroborate the topological properties of the system. Gener-
ically, there are also models with only one topological non-trivial invariant. The winding
number is only applicable in the presence of a chiral symmetry which can hardly be
defined for higher-dimensional problems. Furthermore, the usage of the pseudo-spin rep-
resentation for the determination of the winding number is only possible in special cases.
The Zak phase does not rely on chiral symmetry and can therefore be considered as the
more general invariant. However, the Zak phase cannot be used to determine non-trivial
invariants in 1D with an even number as for instance a system with winding number
v = 2. Consequently, both methods complement each other very well to cover many
possible scenarios.

A further notable topic in this context is the direct relation between the Berry phase
and the modern theory of electric polarization . FElectric polarization and magne-
tization are the two fundamental electromagnetic properties of solid matter. The charge
separation in insulating materials is denoted as dielectric polarization. In this context,
we focus on one-dimensional lattices. From the polarization we recognize that the Zak
phase is quantized to 0 or 7 in presence of inversion symmetry.

The description of localized charges using Wannier states allows one to define a polar-
ization in each unit cell. Thus, based on the dipole picture the polarization in 1D can be

expressed as

g(wi e lwi) = L [ ak (n, kO I, k) + a5 (2.37)

Y .

24



Su—Schrieffer—Heeger model

where the unit cell number is denoted by j and the electrical charge by ¢ = —|e|. The
lattice constant is set to unity. The centers of the Wannier charge densities are equally
spaced. The first contribution in Eq. (2.37) is proportional to the Zak phase which corre-
sponds to a uniform displacement creating a dipole moment in each unit cell. Therefore
the accompanying bulk electric polarization is described by

i [T n
Patectric = ¢ (w(0)] z [w(0)) = 2‘1? [ dk (n, k| 9 |n, k) = % . (2.38)

In the case of inversion symmetry, Pejectric = {0,€/2} so that the Wannier charge cen-
ter is situated at the respective lattice sites (no polarization, Pyjectric = 0) or between them
(maximal polarization, Peectric = €/2). If Pajectric = {0, €/2} is inserted in Eq. (2.38), we
see that the Zak phase is quantized to v = {0, 7}, respectively.

One key insight gained by modern polarization theory is the fact that only the dif-
ference in polarization has a physical meaning since only the change can be observed
experimentally . This polarization change is determined by the evolution of the bulk
current j, [69] given by

T e T
AP, :/ dtj, = —7/ / Fopedt dk | (2.39)
0 2m Jo JBz

which can be expressed by the Berry phase. To this end, we assume that change is peri-
odic in time where T" denotes one period. Note that the corresponding two-dimensional
parameter space is made of a one-dimensional BZ and the periodicity in time. For a
cyclic adiabatic evolution of the system the transported charges is quantized since it
is performed by a charge pump, which shall be explained in the next subsection. The
topological charge pump performed in a finite strip requires the presence of edge states
and is closely related to the bulk-boundary correspondence of 2D Chern insulators. The
number of transported particles and the topological invariant of 2D Chern insulators are
both determined by the Chern number.

2.3.4. Bulk-boundary correspondence and Thouless charge pump

The edge states appearing at the ends of a finite chain are attributed to the topological
invariants in the bulk. The relationship between the topological bulk invariants and the
edge states in a finite system is described by the bulk-boundary correspondence .
There are several formulations of the bulk-boundary correspondence. Here we will give
a first insight by considering the SSH model as an example for the bulk-boundary corre-
spondence in one dimension.

The edge state on the right hand side of a finite chain is restricted to one specific
sublattice due to chiral symmetry, see Fig. 2.2(c). The difference between the edge
states of both sublattices Ny — Ny at one side of the chain is equal to the topological
invariant . So for v > w no edge states can be found and for v < w one edge state
can be found.

The SSH model represents a special case of a one-dimensional topological insulator
since a different choice of the unit cell is equivalent to swapping v and w. Thus an
alternative choice can predict a trivial phase instead of a topological phase. However, the
difference between both phases realizing different dimerizations results in 7 independent
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Figure 2.3: (a) Initial occupation of the time-periodic open confining potential in the
valence and conduction bands. (b) Final occupation after a full pump cycle. The electron
state at the end of the system is pumped into the conduction band by crossing the band
gap using the edge states.

from the initial configuration. Thus the topology of the SSH model is measured through
investigating the phase shift by swapping both coupling strengths .

The Thouless charge pump , also known as the adiabatic charge pump, can
be seen as a topological pump in one dimension, where an integer number of particles
is transported across the complete system in every cycle. The one-dimensional system
will be driven cyclically in time ¢ so that the parameter space becomes two-dimensional
(momentum space k and time ¢). Note that the polarization change in Eq. (2.39) presents
a Thouless pump since the polarization is changed by transporting charged particles.

The integer number of particles transported is determined by the topology of the time-
driven bulk-momentum Hamiltonian H(k,t). The quantization due to the topological
origin makes the transport unique and robust to perturbations. Hence, new applications
are feasible such as the redefinition of the ampere in metrology . The Thou-
less charge pump requires a classification by a Chern number based on the particular
parameter space given by

1 T
Cp = — / / Foudkdt (2.40)
2m Jo JBz

which determines the integer number of pumped particles along the chain. The non-
trivial Chern numbers results in time-dependent edge states for a finite chain E(t). The
dispersion of these edge states are similar to the dispersion of the edge states E(k;) in a
finite strip of a 2D Chern insulator as shown in Fig. 2.7 in the next section.

The charge pump works as a conveyor belt in one direction for the valence band and
conveyor belt in the other direction for the conduction band. We consider the example
of a confining potential periodic in time with one low-energy and one high-energy state
similar to a two-band model. The system is initialized by occupying all-low energy dips,
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see Fig. 2.3. After one period, a single electron has been transported from left to right
as defined in a Thouless pump. Hence, we reached the polarized phase. At the right
edge, the former electron is pumped from the valence to the conduction band. This is
only possible by the appearance of edge states crossing the band gap during one periodic
cycle. In the conduction band everything is reversed, so that the edge state appears at
the left side. This behavior is well realized in the time-dependent Rice-Mele model

Hiime RM = Z(v(t)c;BcL A+ w(t)cjﬂ’ ACip +he)+ u(t)(c; ACiA — c;BcLB) (2.41)

with u(t) =sin(27t/T), wv(t) =1+ cos(2nt/T), w(t)=1 |, (2.42)

where u is the coupling in a staggered on-site potential. The charge pumping cycle only
applies if the Chern number is non-trivial and requires the presence of edge states. Hence,
it clearly emphasizes the close relation between the non-trivial topological invariant and
the occurrence of edge states which is described by the bulk-boundary correspondence.

A topological Thouless pump may be realized by tuning the magnetic flux of a two-
dimensional quantum Hall system. This prominent example is known as Laughlin’s pump
argument which elucidated the quantization of the Hall conductance in the IQHE.
The characterization of a Thouless charge pump and the energetic time-evolution of edge
states during a pump have many features in common with the two-dimensional topological
Chern systems which will be examined more closely in the following section.

2.4. Haldane model

Historically, the Haldane model was the first model studied with a topological non-
trivial parameter regime where finite Chern numbers occur. In 1988, Haldane theoreti-
cally proposed a fermionic tight-binding model on a two-dimensional honeycomb lattice
as a counterpart to the IQHE without an external magnetic field. Hence, the discrete
translational symmetry of the honeycomb lattice can be preserved. In contrast, the lattice
model of the IQHE known as the Harper—Hofstadter model shows only a reduced
magnetic translation symmetry.

Due to its simple nature the Haldane model can be found in introductory lectures and
is often applied in proof-of-principle studies. Thus, this chapter fulfills two purposes.
On the one hand, the presentation of the model elucidates the general properties of
topological Chern insulators in two dimensions. On the other hand, the Haldane model
is later employed for proof-of-principle investigations in Sec. 3.1 and Sec. 5.2.

The single-particle Hamiltonian of the Haldane model in second quantization is de-
scribed by

Hpal =1 Z Czcj + 12 Z eil’”‘z’cjcj + MZaic;fci , (2.43)
(i:9) ((54)) :

where ¢; annihilates and c;-r creates a fermionic particle at site . The Haldane model has no
spin degree of freedom. The corresponding honeycomb lattice with a unit cell highlighted
in green is shown in Fig. 2.4(a). The two sites within one unit cell are denoted by A
and B.

The Hamiltonian comprises two different hopping elements. The real-valued hopping
between NN sites corresponds to the standard tight-binding hopping on a honeycomb
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Figure 2.4: (a) Schematic sketch of the honeycomb lattice and a unit cell highlighted
in green. The sublattice A is shown in red while the sublattice B is shown in blue.
(b) Tlustration of the ty hopping elements as well as the corresponding sign convention.

lattice. It leads to the famous Dirac cones in the energy dispersion. The crossing points
of these cones (pinch point) are designated as Dirac nodes. The linear dispersion around
a Dirac node is associated with massless Dirac fermions. This term already describes the
low-energy electronic properties of graphene in sufficient detail.

The complex hopping element between NNN sites added by Haldane lifts the degen-
eracy at the Dirac cones and generates a mass term, so that the system receives its
topological properties. The notation (i,j) denotes a pair of NN sites while ((,j)) de-
notes a pair of NNN sites. The hopping parameter ¢ is real-valued and serves as an energy
unit henceforth. The combination of the positive real parameter t5 and the phase ¢ de-
termines the complex NNN hopping element. The phase must not be a real number so
that ¢ # {0, 7} in order to break the TRS. This can be seen easily, since the time-reversal
operator T of spinless particles reverses the complex phase. Breaking the TRS is a fun-
damental requirement to achieve the topological Chern phase as indicated in the periodic
table of topological insulators.

The convention for the sign of the phase can be described by

A A~

vij = sgn(di(ij) x da(ij)). = 1 (2.44)

where the intermediate site i’ between site i to site j serves to define d; /2(ij). The unit
vector d;(ij) points from i to i’ whereas the unit vector da(ij) points from i’ to j. All
complex hopping elements from the sites of one unit cell are shown in Fig. 2.4(b). All
positive phases +¢ are displayed in blue while the negative phases —¢ are shown in red.
The creation of such a t5 hopping can be realized by a magnetic flux configuration [6§].

The inversion symmetry of the honeycomb lattice is violated if the sites within the unit
cell are not equivalent. This is exactly what the on-site term does, because ¢; = 1 at
site A and ¢; = —1 at site B. As a result, the breaking of the inversion symmetry opens
a finite gap at the pinch point of the Dirac cones leading to massive Dirac particles. In
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contrast to to the on-site element leads only to trivial phases of band insulators which are
adiabatically connected to the atomic limit. These has been experimentally observed in
boron nitride, where the two sites in the unit cell of the hexagonal lattice structure show
different occupation.

In order to investigate the properties in the bulk, we consider the Fourier transform of
Eq. (2.43) which is given by

Hyy Hig) [Cpa
H = CJr ) CT ’ e
Hal Z( kA k,B) (Hgl H22> ( | |

k ‘LB
Hii= M+t |:ei¢(e—ikra+eikrb+eik(ra—rb))+e—i¢<eikra+e—ikrb +eik(rb—ra)):|(2.44b)
Hoy = —M + to {e—hﬁ(e—ik:ra_|_eik:rb_|_eik(ra—rb)) +eid)(eikra+e—ikrb+eik(rb—ra)>}(2.440)
Hip =t (14 o*m) = by (2.44d)

where the translation vector are

Ta=a<@ %) and rb:a(_é’

(J[SY]

) (2.45)

The lattice constant is denote by a. The Dirac nodes are given at

27 1 27 1
= (==, 1 == (==, 1
K= (55 1) and K 3@( 7 1) (2.46)
The Taylor expansion of the Haldane Hamiltonian around the Dirac nodes to linear order
are described by

H(K + q) = —3t3 cos(r) + ;t(qxox +ay0y) + (M — 3v3tasin(@))o.  (2.47a)
and H(K'+ q) = —3tycos(m) — gt(qxax — qy0y) + (M + 3V3tysin(¢))o, , (2.47b)

where the Pauli matrices are denoted by {0, 0,,0.}. Both symmetry breaking terms lift
the Dirac cones, generating massive Dirac fermions as shown in Fig. 2.5. A mass term
based on the graphene tight-binding model corresponds to a term proportional to o,
since it lifts the degeneracy at the Dirac nodes. Breaking the inversion symmetry leads
to a trivial phase whereas breaking the TRS can lead to a topological phase. This can be
elucidated by considering the mass term and the expected edge modes for finite systems.
Edge modes are already present in the NN hopping model for Graphene due to the finite
Zak phase for finite strips . These edge modes are influenced by the mass terms as
illustrated in Fig. 2.5. The inversion symmetry breaking term is momentum independent
so that it couples with the same sign on both Dirac cones. Thus one edge state connect
the lifted Dirac nodes at the same side of the gap and therefore are attributed to a trivial
phase. The Haldane mass term has different sign at different Dirac nodes. As a result,
the edge modes connect the lifted Dirac nodes by crossing the gap which is attributed to
a topological phase. Hence, both terms compete to set the phase properties. The change
between the trivial and the topological phase is determined by a gap-closing-and-opening

29



Haldane model
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Figure 2.5: Schematic illustration of the mass term in honeycomb lattices. The filled
areas indicate the continua of the bulk states. The edge modes are depicted by red lines.
The signs indicate examples of mass terms at the Dirac nodes.

transition. Due to the preserved C'5 point group symmetry, the condition for a closed gap
in the Haldane model is determined at the two different Dirac nodes which is given by

M = 3/3tysin(¢) or M = —3v/3tysin(p) . (2.48)

These two relations reproduce the transition lines in the known phase diagram of the
Haldane model with three phases, see Fig. 2.6. The distinct gapped topological phases
are classified by the Chern number, the topological invariant of the Haldane model, which
will be explained in the next subsection.

2.4.1. Chern number and chiral edge states

The Chern numbers is used as a topological invariant of two-dimensional systems and
can be expressed in many ways. Basically, the Chern number is the accumulated Berry
phase along the boundary of the two-dimensional BZ in units of 27. A non-trivial Chern
number stems from the fact that it is impossible to find a smooth and unique gauge
phase over the whole BZ. The obstruction to have a global defined gauge is connected to
the obstruction to apply Stokes’ theorem over the whole BZ . Hence different phase
conventions are made to different patches. Now we can apply Stokes’ theorem to all
patches, so that the Chern number is given by the Berry curvature integrated over the
complete BZY

a1
Cp=1n — = / Fpay(k) dky iy . (2.49)
BZ

o7 T

In reverse it means that if the Stokes’ theorem applies for the whole BZ with one patch,
the system has a trivial Chern number. The required gauge transformations at the
overlapping patches are essential for non-trivial Chern number which are encoded in the
different Berry curvatures. Thus the Chern number can also be expressed as the winding
number of the transition function between the well-defined gauge patches .

The analytical determination of the Chern number is rarely feasible. For this reason
a numerical approximation is indispensable. The Chern number or, more precisely, the

ONote that this notation is meant to comprise all required patches to cover the whole BZ.
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Figure 2.6: The phase diagram of the Haldane model. The given Chern numbers C'
refer to the lower band. The colors indicate topologically distinct phases.

Berry curvature can be numerically calculated by the formula ﬂ@]

) . -1
Frap = A}glggo A}gligo mlmlog(wn,k!un,HMJ (Un, ket Ako [Un bt Ako+Akg)  (2-50)

*Un kot Akot Ak | Un ot Akg) (Un ket Ak |un,k>)

This formula is a discretized lattice version of the Berry curvature and handles the ar-
bitrary gauges produced in the numerical diagonalization. This can easily be seen by
noting that each state occurs twice in Eq. (2.50), as a bra and as a ket state. So an
arbitrary gauge transformation at any point in the BZ does not have any effect due to
the mutual cancellation of phase changes. This is the same as in Eq. (2.36).

The Chern invariant is always an integer number C,, € Z. For instance, the phase
diagram of the Haldane model in Fig. 2.6 contains three different phases . The
trivial phase with C), = 0 is shown with a gray shaded area. The semimetal phase
correspond to the transition lines which are marked by black lines and are described in
Eq. (2.48). The topological Chern phases with C,, = +1 are displayed by red and blue
shaded areas, respectively.

The investigation of the Berry curvature in presence of TRS explains why the non-
trivial Chern numbers are only achievable if TRS is broken. The presence of TRS in a
spinless system for instance leads to

Fy(k) = —Fyy(—k) . (2.51)

Hence, the Chern number has to vanish since the Berry curvature has a point symmetry
with respect to the origin. Therefore, breaking TRS is required to get a finite Chern
number. This coincides with the general fact that the inversion of time changes the sign
of the Chern invariant. Breaking TRS can be done for instance by an external magnetic
field or by introducing magnetic order.

A further possibility to determine the Chern number is based on the pseudo-spin rep-
resentation as introduced in Sec. 2.3.1. All Hamilonians of two-band models can be
expressed by Pauli matrices. Thus knowing the pseudo-magnetic field vector is enough
to calculate the Chern number even without calculating the eigenstates. Contrary to the
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Figure 2.7: (a) Sketch of a finite strip geometry of a honeycomb lattice. The green
shaded area highlights a unit cell in z-direction. (b) Dispersion of the edge states with
ts = 0.2t and ¢ = 7/2. The right-moving edge state is depicted in green while the
left-moving is shown in black. The filled areas indicate the continua of the bulk states.

winding number in one-dimension, the builded manifold for the endpoint of the pseudo-
magnetic field vector has to completely enclose the origin in order to obtain a non-trivial
topological index. The Chern number is thus expressed as a winding number!! of the

form

1 o |od(k)  od(k)
Cn = o /B an(k:) ok, < ok dk, dk, (2.52)

where d(k) = d(k)/d(k) is a normalized vector and n = —S, ..., S is determined by the
pseudo-spin S. The Berry curvature is given by

A

d, . (2.53)

Fn,ij = ngmyzdxaki dyak]

According to the bulk-boundary correspondence, gapless conducting states called edge
states have to occur in the Chern phase of gapped band structures if boundaries are
introduced. The boundaries separate the Chern phase from the vacuum which can be seen
as a trivial phase of matter. So in order to change the topological invariant there must
exist a gap-closing-and-opening mechanism which is accomplished by the edge states.
Such edge states were discovered for the first time at the interface between the IQHE
regime and the vacuum . A finite strip geometry!? as shown in Fig. 2.7(a) provides
two boundaries to the vacuum. As a consequence, calculating the dispersion on a finite
strip leads to two one-dimensional edge states which are localized on different edges and
propagating in different directions as shown in Fig. 2.7(b), where the lattice constant a
is set to unity. An edge state that propagates only in one direction at one edge is called
as chiral.

1This equation shows the close relation of the Chern number to the skyrmion number .
12Note that the lattice constant a alternatively specifies the distance between NNN sites. This is done
for the sake of simplicity.
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2.5. Kane—Mele model

The introduction of the Kane-Mele model was a very important step towards finding
realistic models which describe topological insulators. The Kane—Mele model was pro-
posed to describe the QSHE of graphene . The QSHE results from a Zs topological
invariant [56] and thus the corresponding materials are called Zs topological insulators.
The Kane—Mele model is known as the first example of a Zs topological insulator. The
crucial extension to more realistic models is achieved by including the spin degree of
freedom, which allows new scenarios of gap opening. The topological character of the
system is attributed to the spin-orbit interaction term. Like the Haldane model, the
Kane-Mele model represents a very important conceptual model which is often used in
proof-of-principle studies.

The model developed by Kane and Mele comprises two copies of the Haldane model due
to the extension to the spin degree of freedom. One Haldane model describes the spin-1
electron while the spin-| electron part is a time-reversed replica of the spin-1 model. Thus,
the TRS is preserved which leads to a variety of important consequences. The central
point is that the preserved TRS is also capable of possessing topological features which
are more likely to be realized in actual materials. The spin-orbit interactions preserve the
TRS and induce the topological character by inverting bands . In general, the SOCs
are described by terms of the form >, ; cijaik‘?"ﬂ with n € Ny. Applying the T-operator
does not affect the coupling

To k2t = —ai(—1)2"+1k2”+1 = g k2t (2.54)
The Kane—Mele Hamiltonian reads

Hgm =t Z c;-racja+it2 Z Vijczaagﬁcjﬂ + it, Z cj»a(aa,g X ciij)zcjﬂ . (2.55)
(i,5)ex ((@5))aB (i.5)ap

The NNN hopping does not break TRS or a spatial symmetry of the graphene lattice.
Thus, in general, it will be present in graphene, though it may be very weak.

As shown in the previous section, we can perform a Fourier transformation of the
Hamiltonian as a preparatory step to calculate dispersion and eigenstates. The matrix
representation can be divided into two block matrices

Hion(k) = (HT(’@,Q?)O: 7/2) Hi(k,¢0: _W/2)> , (2.56)

where the 2 x 2 matrices Hy and H| are defined in the previous section in Eq. (2.45).
The spin-orbit term couples the momentum with the spin so that the mass term changes
sign for different Dirac nodes or different spin states, respectively. As a result, the novel
massive Dirac fermions maintain the TRS.

In contrast to the quantized Hall conductivity in the Haldane model, the Kane—Mele
model shows a quantized spin Hall conductivity upon applying an electric field, where the
two spin channels counterpropagate. But the quantization of the spin Hall conductivity
is only valid if the spin S* is conserved. Often, the Rashba coupling is present
which mixes both spin alignments and as a consequence the quantization of the spin Hall
conductivity is not preserved. As a result, the spin Hall conductivity decreases while the
quantum spin Hall state is still preserved .
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2.5.1. Z, topological invariant and helical edge states

The topological character of Zy topological insulators in two dimensions cannot be iden-
tified by a Chern number because the Chern number vanishes automatically if TRS is
present. This results from the fact that the integrated Berry curvatures is equal to zero
due to the relation

Fijy(k) = —Fij (=) (2.57)

Therefore the classification of the Zs topological insulators requires a different topological
invariant. The definition of the Zs topological invariant is also based on the Berry phase.

The consequences of the TRS is fundamental to understanding the properties and
characteristics of the Zo topological phase. As a result of the time-reversal invariant
Hamiltonian, all eigenstates are at least doubly degenerate. If an eigenstate |n, T, k) has
the energy F(k), then the time-reversed state 7 |n, 1, k) = |n, ], —k) is also an eigenstate
with the same energy E(—k). This important constraint is described by Kramers theo-
rem . As a result, the dispersion have crossing points at the time-reversal invariant
momenta (k = —k). The Kramers pairs at the time-reversal invariant momenta of edge
states are named Kramers doublets and are of special interest since they are related to
the topological Zs invariant by the bulk-boundary correspondence. An even number of
Kramers doublets is assigned to a trivial insulator, whereas an odd number of Kramers
doublets is assigned to a Zs topological insulator [40].

The Zo topological invariant can be formulated in many different ways @l, ,
each with its own insights and relation to the topological origin. One possible mathe-
matical formulation is based on the idea of the impossibility to define a gauge for the
parameter space similar to the Chern number.

Since the conservation of TRS generically implies C' = 0, one is always able to find a
global gauge. Consistently, Stokes’ theorem is valid for the complete BZ with one patch
which leads to a Chern number equal to zero. The key idea for the definition of a Zs
topological invariant is the impossibility to globally define a Kramers pair with one patch.
So in order to define a Zsy topological invariant it is important to cut the BZ into two
halves so that the time-reversal momenta k and —k are found in different halves which
are denoted by 7 /5. Thus the parameter space is reduced by half. If we follow this basic
approach, the formula describing the Zo invariant is given by

1
v=— —/ drF + dlA| mod2m (2.58)
2m T1/2 87’1/2

where the Berry curvature as well as the Berry connection are required. Numerically, the
formula for the Zy invariant can be discretized similarly to the discretized Chern number
calculation [105].

In the case of spin S? conservation, the Zs topological invariant can be simplified to
the spin Chern number, where each spin alignment has the Chern number C; or C|,
respectively. The sum of both vanishes, but the difference

v =5(Cr -0 (2.59)

is a valid definition of the invariant [L06] [107].
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An alternative and equivalent formula to Eq. (2.58) is based on the sewing matrix.
The sewing matrix B is defined as

Bum = (Um k| T [Unt k) - (2.60)

The concept of the sewing matrix is useful for Zs topological insulators since it relates
the eigenstate at k and spin-1 with the time-reversed eigenstate at —k and spin-}. Thus
it contains the phase factor differences between eigenstates. The formula
based on the sewing matrix can be written as

HVDet /;] , (2.61)

where A; denotes the time-reversal invariant momenta and Pf corresponds to the abbre-
viation of a pfaffian. A great advantage of this formula is that it applies to Zs topological
insulators in D = 1,2, 3, with the only difference regarding the dimensions is given by
the number of A;. The flip side is that the practical calculations of the pfaffian may be
more difficult.

A further simplification is also given if a inversion symmetry is present. Similar to
one dimension, all time-reversal invariant momenta A; possess a parity with eigenvalues
n = +1. The parity at each A; is a product over all occupied Kramers doublets

N
5 = [T nom(Ni) (2.62)

m=1

and the Zg invariant is thus given by the product of all ¢; [104]

=1Iso - (2.63)

The Zoy topological phase leads to helical edge states. The edge states in the Kane—
Mele model have a close relation to the ones in the Haldane model. By considering each
spin state on its own, the spin-T has chiral edge states attributed to the Chern number
Cy = 1, whereas the spin-| has antichiral (counterclockwise direction) edge states due to
the Chern number €| = —1. The combination of both edge states leads to helical edge
states crossing at the time-reversal invariant momentum k& = 0 or k = 7 (k corresponds
to the momenta along the boundary). Despite the fact that the two edge states at the
same edge are counterpropagating, no backscattering is allowed due to time-reversal
invariance!®. Hence, the crossing point remains stable and no gap between the edge states
arises. The helical edge states remain robust even if the spin S* is not conserved, like in
the presence of a Rashba coupling. As long as the Rashba term does not close the bulk
energy gap, the topological edge modes are still present.

Due to the topological origin the edge states remain extended and stable even in the
presence of strong disorder and avoid Anderson localization. As a result, a ballistic
transport is expected at T' = 0 K.

13Backscattering is forbidden between edge states of one Kramers pair. However, backscattering between
an even number of Kramers pairs can open a gap. Thus an even or odd number of Kramers pairs
belongs to distinct phases. An odd number of Kramers pairs indicates a non-trivial Zs invariant while
an even number corresponds to a trivial invariant.
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3. Tuning of Fermi velocity

Parts of this chapter have been published in Physical Review B and SciPost as regular
articles . A third manuscript has been submitted for publication . I have
wrote substantial parts of these manuscripts. Furthermore, I created all figures and
calculated all the data shown.

3.1. Tunable edge states and their robustness towards disorder

3.1.1. General context

Due to their topological protection, edge states can carry currents without dissipation
and they are protected against disorder to some extent, see below. This robustness makes
them attractive for applications. With this long-term goal in mind, we set out to study
the influence of controllable external parameters on the signal transmission of topological
edge states as well as the effect of non-controllable features such as disorder. First, we
choose the Fermi velocity vp as the measurable quantity of interest in order to gain
understanding which is complementary to the existing literature. We emphasize that the
Fermi velocity does not influence the widely studied DC conductivity which is not the
quantity of interest in our study, in contrast to the majority of theoretical studies in the
literature, see for instance Refs. .

The Fermi velocity is a key quantity in transport behavior, representing the group
velocity of a transmitted charge or spin signal. Thus, we aim at tuning the Fermi velocity
which quantifies how fast a signal is transmitted. A previous observation in the kagome
lattice revealed that the Fermi velocity depends on the chosen precise shape of the
edge. Further investigations in the Haldane model showed that the Fermi velocity
can be influenced strongly by decorating one edge of the honeycomb lattice. We extend
this observation by considering decoration of both edges.

Next, we transfer the idea of decoration to the Kane-Mele model, i.e., to helical edge
states. An explicit Rashba coupling and its effect on the Fermi velocity is also
studied. The decoration of the edges of the Kane-Mele model leads to a tunable spin-
dependent Fermi velocity which suggests the applicability of tunable transmission speeds
in spintronics .

Finally, we study the influence of local disorder on the edge states. Since edge modes
are linked to non-trivial topological invariants, it is assumed that they are protected
against disorder. However, various experiments show that the signatures of topological
phases are much more prominent in high-purity samples than in samples of lower
quality. Thus, we intend to investigate the influence of disorder by explicit calculations.
For simplicity, we study the robustness of the chiral edge states in the Haldane model on
the honeycomb lattice.

Local disorder breaks the translational invariance. We define a transition probability
by calculating the modulus squared of the overlap between the wave functions of the edge
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modes in the disordered system with the ones in the clean system. The maximization of
this quantity is used to reconstruct the momenta of the edge states. The dependence of
the transition probability on the width and the length of the system as well as on the
strength of the local disorder is examined. We find that the disorder may not exceed
certain thresholds in order to preserve the characteristic transport properties of the edge
modes.

3.1.2. Tuning chiral edge states of the Haldane model

For the sake of completeness, we recap results for decorated edges in the model without
spin . The results are important for the comparison with the results in the modified
and extended models with spin. Moreover, they serve as reference for the disordered
Haldane model which we investigate in Sec. 3.1.4.

The complete Hamiltonian of the model can be divided into two contributions

H = Hstrip + Hdecor (3.1a)
with
Hstrip =t Z cjcj + 1t Z ei”ij¢cjcj (3.1b)
(.9 ((6g))
Haecor = Z [)‘7 (CL(@')% +cf Cd(i)) + 5702(1)%(@')] : (3-1¢)
iy

The corresponding honeycomb lattice with decorated edges is shown in Fig. 3.1. The
Hamiltonian in Eq. (3.1b) has been described in Sec. 2.4. The lattice constant a shown
in Fig. 3.1 is set to unity. The hopping parameter t serves as energy unit henceforth.

The Hamilton operator Hyecor 0f the decorating sites consists of two parts. One part
describes the additional sites at the top whereas the other part describes the bottom sites
(v € {t,b}). If the outermost sites of the undecorated honeycomb lattice are denoted
by j, the adjacent decorating sites are labeled d(j). The hopping elements between
the outermost sites and the attached decorating sites are modified by the factor A,.
Generically, we consider an attenuation so that 0 < A, < ¢ holds. The on-site energy of
the decorating sites is denoted by d,. It can be thought to be generated by a gate voltage
which changes the electric potential of the decorating sites .

The phase diagram of the Haldane model on a bulk honeycomb lattice without bound-
aries can be found in Sec. 2.4 . Calculating the dispersion on a finite strip of the
system, see Fig. 3.1, provides the chiral edge states. Coupling the decorating sites to the
honeycomb strip does not alter the topological characteristics of the system. The phase ¢
is set to m/2 in order to maximize the gap. To create rather flat energy bands we set
to = 0.2t as in Ref. . The Fermi level is set to ep = 0.

To illustrate the impact of the modification we calculate the dispersion of both edge
modes and compare it to the dispersion in the undecorated Haldane model. In the
following, we investigate a strip of finite height in y-direction whereas the strip is infinitely
extended in z-direction, see Fig. 3.1. Due to the translational symmetry in z-direction,
the wave number k, represents a good quantum number. At fixed k,, one obtains a
(2N + 2) x (2N + 2) one-particle matrix which can be diagonalized numerically. The
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N units

Figure 3.1: Sketch of a strip in the honeycomb lattice with NN hopping (black bonds).
The green area displays a unit cell in the z-direction which consists of 2IN + 2 sites
including the decorating sites. The honeycomb with blue arrows illustrates the complex
hopping elements to NNN sites with phase +¢ while the honeycomb with red arrows
illustrates the hopping elements with phase —¢, see Eq. (2.44). The top and the bottom
edge are decorated by additional sites which are coupled weakly (|A\,| < [¢]) to the bulk
sites. These decorating sites are subjected to a local potential 6. The index 7 takes the
value t (top) or b (bottom).

dispersive modes within the gap of the bulk Haldane model are the edge modes. Due
to their exponential localization at the edges, their dispersion converges quickly upon
increasing the number N of units in the unit cell. The calculations are based on strips
with N = 60 units which turns out to be sufficiently wide.

An example of a dispersion with different parameters for both edges is shown in Fig. 3.2.
The filled areas represent the continua stemming from bulk modes for all possible values
of ky. Our main focus lies on the investigation of the edge modes with energies between
the lower band edge of the upper continuum (blue shading) and the upper band edge of
the lower continuum (red shading).

Upon coupling the decorating sites to the honeycomb strip, i.e., Ay # 0, the disper-
sions of the edge modes display an “avoided crossing” (or “level repulsion”) due to the
hybridization with the local modes from the decorating sites. In the case of small values
of A, see right mover in Fig. 3.2, the edge states have a rather flat band. Increasing A
leads to a stronger repulsion between the edge modes near the zone boundary k, = 7 so
that the dispersion acquires stronger momentum dependence, see left mover in Fig. 3.2.

Besides the coupling A\, the decorating sites can be influenced by the local potentials ¢.,.
Increasing the local energy of the decorating sites counteracts the hybridization because
the tendency of an electron to visit the decorating sites is decreased if these sites differ
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Figure 3.2: Dispersion of the edge states in the decorated Haldane model with to = 0.2t,
¢ =m/2, \y = 0.2t, & = 0.1¢, A\, = 0.6¢, and o, = —0.1¢. The right-moving edge state
marked in orange is located at the top edge while the left-moving edge state marked in
green is located at the bottom edge. The filled areas indicate the continua of the bulk
states. The Fermi velocities vp = Ow/0ky|c, of both edges modes are independent of each
other.

in energy from the bulk sites. In this way, the decorating sites can be smoothly switched
off. Then, the Fermi velocity converges to the Fermi velocity vpg without decoration.

The dependence of the Fermi velocity on the parameters of the decorated model was
studied quantitatively for a single decorated edge . To prove the independence of
the chiral edge modes explicitly we calculated the Fermi velocity of both edges while
tuning parameters of only one edge. The Fermi velocity of the unaltered edge remains
unaffected to the tenth digit. We stress that the relative coupling A, and the local
potential 0, provide control parameters to tune the Fermi velocity of the edge mode
independently of the other edge mode. Furthermore, different decorations at top and
bottom edges enable us to realize different Fermi velocities vp, so that the velocities
become direction-sensitive.

3.1.3. Tuning chiral edge states of the Kane—Mele model

Here, we investigate the impact of decorated edges on the helical edge states of the Kane—
Mele model which includes the spin degree of freedom in such a fashion that it preserves
the TRS. The Hamiltonian reads

H= Hstrip + Hdecor (3-23)
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with
Hstrip = t Z c}acja + itg Z l/ijczaaéﬁcjﬁ + it Z cj»a(aaﬁ X czz-j)zcjﬂ (3.2b)
(4.4)ex ((i.5))ap (4.5)aB
and
Hdecor — Z |\>\’y <le(i)acl'a + C:l‘:acd(’i)a) + 5762(1)acd(1)a] (32C)
17,0

on the honeycomb lattice similar to the decorated Haldane model from the previous
section, see Fig. 3.1. In the Kane-Mele model, each site can host two electrons with
a spin quantum number denoted by «, 5 € {1,]}. The Hamilton operator of the strip
contains three contributions. The first term describes the usual tight-binding hopping ¢
between NN sites. As before, the hopping parameter ¢ is real and used as the energy unit.

Kane and Mele [55] argued that the second hopping term o t2 is induced by spin-
orbit interaction. The hopping parameter to is real and the sign depends on the NNN
sites ¢ and j as given by v;; defined in Eq. (2.44). The NNN term is closely related to
the NNN hopping in the Haldane model. Considering each spin specie separately, the
corresponding Hamiltonian with NN and NNN hoppings violates the TRS. It equals the
Haldane Hamiltonian at ¢ = +n/2 for S* = +1/2 and at ¢ = —7/2 for S* = —1/2.
The Kane—Mele model comprises two decoupled Haldane models with opposite phases.
Since the time-reversal transformation 7' = exp(—imrSY) K maps one onto the other, their
combination preserves the TRS .

The last term in Hgirip proportional to ¢, describes a Rashba term which
can also result from SOC in the presence of a perpendicular electric field or a certain
interaction with a substrate. The Rashba coupling preserves the TRS such as all types
of spin-orbit couplings. The hopping element parameter ¢, of the Rashba term is real.
The Rashba term violates the conservation of the total S* component so that the two
Haldane models for S* = +1/2 are coupled for ¢, # 0.

The Hamiltonian of the decorating sites at the edge is chosen to be spin-independent
for simplicity, similar to the decoration of the Haldane model. So the notation will be
the same except that an additional index is used to denote the spin.

The topological phases of the Kane—Mele model are classified by a Zo invariant ,
see Eq. (2.58). The phase diagram of the bulk Kane-Mele model including the Rashba
coupling is known . We detect the presence of helical edge states by calculating
the dispersion on a strip of finite width as before.

First, we set the Rashba coupling to zero so that our results can be directly linked to
the results for the decorated Haldane model. For A\, = d, = 0, the original Kane-Mele
model on a strip is retrieved. The corresponding Hamiltonian consists of two decoupled
Haldane Hamiltonians, each of which displays its own chiral edge states. The chiral edge
states of the spin-1 part move in opposite direction to the chiral edge states of the spin-|
part because the phase of their NNN hopping element is opposite. The two chiral edge
states with opposite spins constitute a pair of counterpropagating edge modes at each
edge. As shown in the previous section, the top edge can be modified independently of
the bottom edge. This also holds true for the Kane-Mele model. Therefore, we only
consider the decoration of the top edge in the following for brevity.

In the Kane-Mele model, the Fermi velocities of the edge modes are spin-dependent.
Except for this difference, one can carry over the basic considerations that we developed
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Figure 3.3: Dispersion of the edge states in the Kane—Mele model with to = 0.2t,
A = 0.2, and & = 0.1f. The filled areas indicate the continua of the bulk states. The
edge states located at the top edge are shown in color. The spin-1 mode propagating
to the right is marked in orange while the spin-| mode counterpropagating to the left is
marked in green. The dispersions of the edge states at the lower boundary are displayed
in black. The schematic sketch in the inset clarifies the assignments.

for the decorated Haldane model. Figure 3.3 illustrates this point. The helical edge
states of the bottom edge are the same edge states as in an undecorated Kane—Mele strip
because the bottom edge is undecorated. The dispersions of the modes at the top edge
displays the effect of the ‘avoided crossing’ combined with a certain shift of the dispersion
due to the local potential. This is in line with the results for the Haldane model.

Due to TRS, the dispersions display two mirror planes at the momenta invariant under
time-reversal: k; = 0 and k, = m, respectively. This property is based on Kramers
theorem . Kramers theorem predicts crossing points of the counterpropagating edge
states at time-reversal invariant momenta. These Kramers doublets are robust against
time-reversal symmetric perturbations. The hybridization of the edge modes with the
local modes at the top edge leads to one Kramers doublet located at k, = 0 and one
additional Kramers doublet at k; = 7 (3 Kramers doublet for the top edge mode and 1
Kramers doublet for the bottom edge mode). The number of Kramers doublets at one
edge is odd as usual in the topologically non-trivial phase because it is related to the Zo
topological invariant .

The inclusion of a finite Rashba coupling ¢, # 0 violates the S*-conservation and the
two Haldane models hybridize. The Rashba coupling alone without the imaginary NNN
hopping does not lead to a topologically non-trivial phase , which means that the
imaginary NNN hopping is indispensable for the anomalous QSHE in the Kane—Mele
model. But the Rashba coupling reduces or enhances the bulk gap and influences the
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Figure 3.4: Dispersion of the edge states in the Kane—Mele model at finite Rashba
coupling at to = 0.2¢t, t, = 0.8t, \y = 0.2¢, and é; = 0.2¢. The filled areas indicate the
continua of the bulk states. The edge states located at the top edge are shown in color.
The spin-1T mode propagating to the right is marked in orange while the spin-| mode
counterpropagating to the left is marked in green. The dispersions of the edge states at
the lower boundary are displayed in black.

edge states in this way. An exemplary dispersion of the helical edge states in the Kane—
Mele model is depicted in Fig. 3.4 where the Rashba coupling ¢, is chosen fairly large in
order to show its influence on the bulk and on the edge states. For not too large values
of the Rashba coupling the qualitative features of the bulk and of the helical edge states
remain unaltered.

The counterpropagating edge modes forming a Kramers pair still cross each other as
long as the TRS is preserved and the bulk gap does not close. If the gap is reduced by
tuning ¢, the bulk states repel the edge modes. The effect can be seen in Fig. 3.4 where
the energies of the Kramers pair at the bottom edge are shifted downwards away from the
upper continuum which is displayed in blue. As a result, vp can increase or decrease upon
switching on the Rashba coupling as shown in Fig. 3.5. Since the particle-hole symmetry
is broken by the Rashba coupling the inclusion of the local potentials at the decorating
sites is no longer symmetric so that the effect of a negative potential differs from the one
of a positive potential. Even the sign of the effect can change.

In a system preserving TRS the addition of a finite amount of unpolarized charge at
one edge does not lead to a net charge current because the two counterpropagating modes
compensate in charge due to their equal Fermi velocities. In order to create a net charge
current the TRS must be broken. One possible way to do so is to include a spin-dependent
decoration. This can be accomplished for example by proximity-induced ferromagnetic
exchange at the interface with a magnetic insulator . To demonstrate this basic idea,
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Figure 3.5: Fermi velocity vp = Ow/0kz|¢;, of the right-moving edge modes in the Kane—
Mele model relative to the original vpy without decorated edges vs. the Rashba coupling ¢,
at to = 0.2t for various decorations of the top edges and undecorated bottom edges.

we replace Hiecor DY

Hdecor = Z [)W <c:;(i)acia + c;racd(i)a> + 6702(i)aaéacd(i)a . (3.3)

Z?’y7a

The change relative to Eq. (3.2c) is that the local potential depends on the Pauli ma-
trix o,. To illustrate the difference to the previous decoration we depict the resulting dis-
persions in Fig. 3.6(a) keeping all other parameters as before. Due to the spin-dependent
decoration of the top edge the corresponding Kramers doublets no longer exist since the
crossing points are not located at the time-reversal invariant momenta. Furthermore, the
counterpropagating edge modes do not cancel each other out. Hence, a net charge and
spin current is possible.

Another possible way to break the TRS is to split the two spin states by adding a
ferromagnetic exchange field

Henx = he Y (€la0iatia + CipaanCuia) (3.4)

i,Q

to the decorated model in Eq. (3.2a). In contrast to the previous example, the exchange
field is present at all sites. This can be realized by magnetic doping . For vanish-
ing Rashba coupling ¢, = 0, the influence of the exchange field can be easily understood
by regarding the Kane-Mele model as two decoupled decorated Haldane models of which
the chemical potentials are shifted in the opposite directions. Kramers doublets no longer
exist, see Fig. 3.6(Db).

44



Tunable edge states and their robustness towards disorder

o
[N
N
|oo
)
[\)
3

Figure 3.6: (a) Dispersions of the edge states in the Kane-Mele model at to = 0.2t,
t, = 0 described in Eq. (3.2b), A = 0.2¢, and &; = 0.1¢ described in Eq. (3.3). The filled
areas indicate the continua of the bulk states. The edge states located at the top edge
are shown in color. The spin-1 mode propagating to the right is marked in orange while
the spin-| mode counterpropagating to the left is marked in green. The dispersion of the
edge states at the lower boundary are displayed in black. (b) Dispersions of the edge
states in the Kane-Mele model with 5 = 0.2¢t, t, = 0, A; = 0.2t, §; = 0.1t described in
Eq. (3.2a), and h, = 0.3t in Eq. (3.4).
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3.1.4. Robustness of the edge states against potential disorder

So far, we analyzed how an important transport property of the edge states, the Fermi
velocity, can be controlled by tuning parameters. But there are also uncontrollable prop-
erties of a solid-state system. For instance, imperfections of all kinds such as impurities,
defects or vacancies in the lattice structure can never be fully excluded. We cannot con-
sider them exhaustively here, but we aim at a first study of the robustness of edge states
to disorder. To this end, we consider random disorder in the local potentials.

The edge states emerge as a result of the discontinuity of topological invariants at the
edges of a system. Since a topological invariant is a global property of the bulk system,
it is expected that the edge states are protected as long as the disorder does not change
the global properties of the bulk system. We want to study this explicitly. To this end,
we investigate the Haldane model (3.1b) on a finite strip of the honeycomb lattice as
shown in Fig. 3.7. We consider a strip of IV, columns of a finite width of N, units so
that there are 2NV, IV, sites. We add a random local potential at each site to the Haldane
model (3.1b) to simulate the disorder. The random energies are taken from a continuous
uniform distribution in the interval [—v/3c,+/30], where ¢ is the standard deviation.
This is the control parameter for the strength of the local disorder. We also investigated
random local potentials which are normally distributed, but the results with respect to
the reconstruction do not differ fundamentally.

The translation symmetry in the z-direction is no longer preserved due to disorder. In
order to establish a link to the system without disorder we continue to consider periodic
boundary conditions. By diagonalizing the (2N, N,) x (2N, N,) matrix encoding hopping
and local energies we obtain the eigenenergies. The corresponding eigenvectors cannot
be classified directly according to their momenta k,. The eigenstates are given in spatial
representation by

) = cla,y)lz,y) (3.5)

x?y

where x and y correspond to the discrete coordinates of the lattice sites. In order to map
the eigenstates of the disordered system to the eigenstates of the clean system we express
the edge states, right- and left-moving ones, of the clean system in real space. Denoting
the wave function of such an edge state by |ic) (k) leads to

Wcl Zd z, Y ’k$7 >

71kzz

—Zd Y f |z, y) . (3.6a)

In comparison to the representation (3.5) we deduce

e—ikmz

Ck, (T,y) = d(kx,y)ﬁ (3.6b)

The possible momenta are given by k, = 2wn, /N, with n, = {0,1,..., N, — 1}.
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Y
N, units

Figure 3.7: Sketch of a finite strip of honeycomb lattice consisting of N, columns of
finite width of IV, units. Each column is enclosed by thin black lines. The different sizes
of the dots illustrate the random local potentials of a disordered configuration.

In order to assign a momentum k, to an energy of an edge state of the disordered
system, we search for the largest overlap with a clean edge mode, i.e., we maximize
|(¥]par) ]2 (k) by varying k. The momentum k, which maximizes this overlap is the one
assigned to the eigenstate of the disordered system. The overlap can be interpreted as a
transition probability and is calculated by

2

[(@lva)|® (ke) = | (2, y)er, (2, y)

x’y

(3.7)

Following this procedure, we reconstruct the dispersion of the edge state in the BZ as
shown in Fig. 3.8 for o = 0.1¢. Typically, we consider a system of N, = 50 and N, = 21
leading to 2N, N, = 2100 eigenenergies from which we select the energies corresponding to
the edge state by maximizing the transition probability (3.7). The dispersions of the edge
modes of the clean system computed from the infinite strip (N, = oo) are shown as solid
lines for the sake of comparison. To test the maximization of the transition probability
we assign momenta to eigenstates computed for a finite clean system. The results are
depicted by black diamonds in Fig. 3.8 and match the continuous lines perfectly as it
has to be. The yellow circles display the eigenenergies at the assigned momenta in a
disordered system with ¢ = 0.1¢. They are still located close to the solid lines, but do
not lie perfectly on them due to the effects of disorder.

We conclude that the qualitative features of the edge states are indeed robust against
disorder. The gaplessness of the edge modes is preserved as was to be expected from the
topological protection. But also the quantitative aspects are not drastically altered by
disorder, at least as long as the disorder strength is not too large.
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Figure 3.8: Dispersion of the edge states with ¢t = 0.2t and ¢ = 7/2 of the Haldane
model. The filled areas indicate the continua of the bulk states. The right-moving edge
state marked in orange is located at the top edge while the left-moving edge state marked
in green is located at the bottom edge. The symbols indicate the energies of eigenstates of
which the momenta are determined from maximizing the transition probability in (3.7).
The black diamonds are calculated for a clean system with IV, = 50 and N, = 21 while
the yellow circles result from a disordered system with o = 0.1¢.

An important point to study is the influence of the disorder on the bulk gap. If the
bulk gap becomes small or even vanishes the topological properties disappear. Increas-
ing disorder reduces the bulk gap. Note that a high number of draws from a normal
distribution usually leads to (at least) one value which deviates strongly from the mean
value. Thus, in the strict sense, the energy gap would always closed by disorder. To this
end, we favor the uniform distribution. An estimate for the reduction of the bulk gap
can be derived by assuming that the disorder strength o behaves similarly to an on-site
inversion-symmetry breaking term e, M C}LCZ'. Here ¢; takes the values 1 depending on
whether site ¢ belongs to one sublattice or to the other. The energy gap A of the bulk
system decreases upon increasing M. Similarly, A decreases upon increasing o as we
illustrate in Fig. 3.9 where the lower band edge wynoe = A/2 of the unoccupied states
and the upper band edge woceuw = —A/2 of the occupied states are shown. The differ-
ence between the two black lines depicts the bulk gap as a function of M according to
A = 2|M + 3/3ty sin ¢| [[19]. The symbols show the corresponding energies in
the disordered sample determined in the following way. For the lower band edge we com-
pute the minimum energy of the eigenstates which cannot be assigned to an edge mode
of the clean system. Similarly, the upper band edge is determined from the maximum
energy of the eigenstates which cannot be assigned to an edge mode of the clean system.
Of course, this way of determining the bulk gap in the disordered system is a heuristic
one and not mathematically rigorous. But the comparison to woecu(M) and wynoc(M)
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Figure 3.9: The lower band edge of the conduction band (blue) and the maximum
energy of the valence band (red) vs. the disorder strength ¢ in a system with N, = 50
and N, = 21. The energies are averaged over 60 randomly chosen configurations. The
error bars represent a standard deviation. The black lines show the band edges in a clean
system as a function of a local inversion-symmetry breaking term « M, see main text.

shows good agreement so that we conclude that the estimate works very well.

The energy gap disappears at M = 3v/3tysin ¢ 119]. Thus, the estimate
predicts that the topological properties will definitely cease to exist for a disorder strength

o~ 3V3tysing . (3.8)

We stress that the decreasing bulk gap reduces the energy interval in which the edge
mode can be identified. Concomitantly, the interval in momentum k, in which the edge
mode can be identified is reduced as well.

Next, we study how well the edge mode can be identified close to the bulk continua.
Figure 3.10 displays the transition probability |<¢|1[}C1)|2 (k;) of the edge states in the
BZ. The vertical dashed lines indicate the thresholds where the edge modes enter the
bulk continua, i.e., where the energies of the edge modes exceed the estimated bulk gap.
It is obvious that around k, = 7 the transition probability between the edge modes
in the disordered system and in the clean system is large. Thus, in particular for low
disorder, the identification of the edge mode works reliably. For increasing disorder, the
overlap decreases gradually. Approaching the band edges at fixed disorder strength, i.e.,
approaching the dashed line, the overlap decreases rapidly and a clear identification of
the edge modes becomes more and more difficult until it becomes impossible. This data
shows the breakdown of the edge modes under the influence of disorder. Clearly, there
are limits to the topological protection, even though the feature of a vanishing energy of
the edge modes persists as required by the bulk-boundary correspondence.
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Figure 3.10: Transition probability |<1/)|¢C1>|2 (k;) of the right-moving edge state aver-
aged over 50 random configurations in a system with N, = 50 and N, = 21 as a function
of the momentum k.. The error bars indicate the standard deviation. The dashed lines
indicate at which momenta the energy of the edge mode enters the bulk continua.

The quantitative behavior of | (1h|¢a)|” (kz) as a function of o is studied in Fig. 3.11(a).
The transition probability decreases upon increasing o. If the energy of the edge mode
in the clean system is far away from the band edges of the continua (red curve, diamond
symbols) the transition probability decreases more slowly than if its energy is close to
one of the continua (green curve, circle symbols).

In Fig. 3.11(b) we depict the dependence of the complete energy spectrum on the
disorder strength. The modes assigned to the two momenta shown in Fig. 3.11(a) are
highlighted by the two lines. There are regions where the eigenenergies are dense, corre-
sponding to the continua. The energies between the two dense regions at low and at high
energies belong to the edge modes. The energies assigned to the two momenta evolve
upon increasing o. At some value of o, which is specific for the momentum £k, of the
mode, they enter the bulk continuum. The corresponding values of ¢ are indicated ap-
proximately by vertical dashed lines in both panels of Fig. 3.11. Beyond these disorder
strengths one can no longer decide whether the modes are true edge modes or whether
they belong to the continuum states.
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Figure 3.11: (a) Transition probability ‘<¢Wcl>‘2 (kz) at two values of k, for the right-
moving edge state as a function of the disorder strength o in a system with IV, = 50 and
N, = 21. The probability is averaged over 50 configurations. The error bars represent the
standard deviation. The dashed lines depict where the edge modes enter the continuum
of the bulk states. (b) Complete energy spectrum for an exemplary configuration. The
energies highlighted in color correspond to the two values of k, displayed in (a).

Yet even beyond the dashed lines the transition probability is large enough to assign
energies to the momenta k,. But it happens that the assigned energies jump, as can be
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Figure 3.12: Transition probability |<1/1|1/)C1>|2 at k, = 27 8/21 as a function of the
width Ny of the strip of the Haldane model with to = 0.2t, ¢ = 7/2, and a length of
N, = 21. The probability is averaged over 50 configurations for & = 0.1¢. The error bars
represent the standard deviation. The effect of local disorder on all sites is shown by blue
diamonds. The black circles depict the effect if disorder is only present in the bulk, but
not at the edges. As to be expected, the edge modes are much less influenced in this case.

seen for k, = 27 8/21 where kinks occur beyond the dashed line. This indicates that the
assignment energy <> momentum based on the transition probability is no longer reliable.

Next, we address the dependence of the modes on the width N, and the length N, of
the system. Larger N, increases the width of the strip. Since the edge modes are localized
at the boundaries, increasing the width separates them more and more and makes them
independent of each other. We focused on wide enough strips anyway so that the edge
modes are essentially independent of N,. This is supported clearly by Fig. 3.12. The
width IV, of the strip plays no important role once it is large enough. Furthermore,
Fig. 3.12 shows that |[(¢|¢q) |2 crucially depends on the characteristics of the edges. The
edge states are exponentially located at the boundaries. Thus we exclude the effects of
local disorder onto the two outermost sites in the consideration without boundaries as
depicted by black circles. If the edges are unaffected by the local disorder, the transition
probability takes significantly larger values than in the case where all sites are subjected
to random potentials as shown by blue diamond.

Increasing the length N, of the system has a pronounced effect on the transition prob-
ability as shown in Fig. 3.13. Note the logarithmic scale of the y-axis. Though the
numerical data for the transition probability |<¢Wc1>|2 (ky) is a bit noisy, it agrees well
with an exponential dependence

(W [ba) | (ks) o exp(—(o)N,) (3.9)

where the rate v depends on the disorder strength. Naturally, the overlap decreases more
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Figure 3.13: The logarithm of the transition probability at the momentum
k, = 2mw10/21 vs. the length N, of the system at to = 0.2t, ¢ = /2, and the width
Ny = 20. The transition probability is averaged over 50 random configurations for vari-
ous disorder strengths o. The error bars represent the standard deviation.

rapidly if the disorder strength is larger.

The observed dependence on N, can be understood as follows. Let us view a system of
given length IV, to be formed by concatenating a number r of short subsystems of length
ng with N, = r-ng,. If the subsystems are still long enough, the physics inside of each of
them is only negligibly influenced by the boundaries between them. Then, the transition
probability of the total system is given by the product of all the transition probabilities
of the subsystems

T

[(Wla))? (Vo) = T [l (ne.5) (3.10)

Jj=1

On average, the transition probabilities of all the subsystems are the same so we denote
them by psup < 1. Thus we have

[ lan)|* (Na) = Doy (3.11a)
= exp(—3r) = exp(—yNy) (3.11b)

where we set pgup = exp(—7) and v = 7 /n,.

Inspecting Fig. 3.13 reveals that the exponential decay does not apply for short sys-
tems, but only beyond a certain minimum length. Thus, the above argument is only
approximately true because the assumption of negligible influence of the boundaries is
not perfectly justified for short systems. Thus a linear fit a — v N, of the logarithm of
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o a y
0.1 —0.00174 4+ 0.00458 0.00080 + 0.00004
0.2 —0.02261 £0.01491 0.00276 + 0.00012
0.3 —0.14242 4+ 0.02713 0.00479 £ 0.00023
0.4 —0.40515+0.03240 0.00532 + 0.00027
0.5 —0.52846 + 0.04800 0.00654 4+ 0.00040

Table 3.1: Fitted values of the linear fits In |(1)|¢a)|* (N2) = a — v N, in Fig. 3.13. Fit
values and errorbars are determined by a least-squares fitting technique.

| (Y[ther) |2 (N.) as shown in Fig. 3.13 works well, but the offset a is not zero in contrast to
what our simple argument suggests in Eq. (3.11b). The fitted values are given in Tab. 3.1.

Finally, we study the effect of disorder on the edge mode at a decorated edge. It has
been advocated that the decoration and a tunable gate voltage shifting the potential at
the edges render the realization of tunable, direction-dependent delay lines possible [113].
If we recall the extension to the Kane-Mele model, a dependence on the spin is also
possible. This makes the fundamental idea interesting for spintronics as well. But for
all applications the robustness towards imperfections is decisive. This motivates the
investigation of disorder.

The purpose of the decoration is to reduce the Fermi velocity by design, i.e., to intro-
duce fairly flat regions in the dispersion. This implies that there are many eigenstates
of very similar energies. From perturbation theory it is known that such systems are
susceptible to generic perturbations such as disorder. We investigate a system of size
Ny = 50 and N, = 21 with a decorated upper boundary. Since the decorating sites are
not excluded from disorder we also add a random local potential to the additional sites.
In the reconstruction of the dispersion of the edge modes we require a certain minimum
transition probability in order to obtain a reliable mapping between momenta and eigen-
states. From the above results for systems of the considered size we set this threshold to
0.3, cf. Figs. 3.10 and 3.11. For weak disorder the successfully reconstructed dispersion
is displayed in Fig. 3.14(a).

For stronger disorder, a complete reconstruction of the dispersion of the edge states
turns out to be impossible, see Fig. 3.14(b). For instance for o = 0.1¢, the eigenstates with
energies within the flat dispersion in the center of the gap cannot be mapped reliably to
the corresponding momenta because their overlap falls below the threshold. As expected
from our perturbative argument, the states in the flatter regions of the dispersion are not
robust against disorder.

For a complete understanding, we also studied the case without disorder at the deco-
rating sites. This is a realistic scenario if the technique which creates the decorating sites
is a different one from the one growing the bulk. Clearly, this kind of disorder has much
less detrimental effects on the edge modes, see for instance Fig. 3.12. The edge modes
are rather localized at the decorating sites so that they are less exposed to disorder.
This holds in particular for the states with rather flat dispersion because they differ only
slightly from the completely local states on the decorating sites. For instance the same
configuration as used in Fig. 3.14(b) can be reconstructed up to much stronger disorder
o = 0.5t if the disorder is restricted to the bulk.
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Figure 3.14: Dispersion of the edge states in a decorated system with o = 0.2¢, Ay = 0.2¢,
and ¢ = w/2. The filled areas indicate the continua of bulk states. The right-moving
edge state marked in orange is located at the top edge while the left-moving edge state
marked in green is located at the bottom edge. For reference, the black diamonds depict
the reconstructed dispersion in the clean system with N, = 50 and N, = 21 while the
yellow circles depict the reconstructed dispersion for ¢ = 0.001¢ in panel (a) and for
o = 0.1t in panel (b). Note that in panel (b) the flat part of the dispersion could not be
reconstructed because the transition probabilities fall below the required 0.3 threshold.
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Note that the above observations do not contradict the general idea of topological pro-
tection because there are modes at arbitrarily small energies. But for transmitting signals
one needs a clearly defined dispersion w(k,;) which yields the group velocity dw/dk,. If
this is not the case, as we found here for stronger disorder, we presume that the system is
not suitable for applications requiring signal transmission. This sets certain limits to the
general idea of topological protection which should not be misunderstood as a guarantee
that dispersion and group velocity are well-defined.

3.1.5. Conclusion

We concentrated on the Fermi velocity of the edge states of topologically non-trivial
fermionic lattice systems. The Fermi velocity is the group velocity with which signals
can be transmitted through the edge states. Hence, it determines the speed of signal
transmission. If it can be tuned it can be used to influence the time that signals need
to cross the sample. In this way, the tunability of the edge states can be used to create
delay lines based on interference, see Ref. . Thus it is a measurable quantity which
is very important for transport behavior, but it is different from DC conductivity studied
previously .

In Sec. 3.1.2, we analyzed the decorated Haldane model. The Fermi velocity is direction-
dependent if the different edges are decorated and tuned independently. We discussed
the effects that various parameters of the decoration have on the properties of the edge
states, most notably on their dispersion.

In Sec. 3.1.3, the results for the spinless Haldane model were extended to the spinful
Kane-Mele model. In this model, the dispersions of the edge modes depend on the
combination of direction and spin. The model as a whole does not break TRS. For each
right (or left)-moving spin-1 mode there is a left (or right)-moving spin-| mode with equal
energy. The full control of the dispersions and their dependence on direction and spin
separately can be achieved by realizing spin-dependent exchange couplings at the edges.
Candidates for the realization of such terms in the Hamiltonian are the proximity effect
of a ferromagnet in hybrid structures or magnetic doping in the bulk of the system. In
addition, we studied the effect of Rashba coupling.

In Sec. 3.1.4, we addressed the effect of disorder on the edge states as motivated by the
fundamental paradigm of topological effects that the edge states are particularly robust
against any kind of perturbation. For clarity, we performed this study for the spinless
Haldane model. Indeed, the existence of gapless states at the edges is guaranteed by
topological protection. But there is no guarantee for the preservation of a well-defined
dispersion of the edge modes. Thus, the transport properties are likely to be influenced
significantly by disorder.

We reconstructed the dispersion of the edge modes in disordered systems by comparing
them with the edge modes of the clean system. The transition probability between the
edge state in the clean system and the one in the disordered system served as a criterion
to identify the momenta. In this way, one can link the eigenstates in the disordered
systems to certain momenta and re-define a dispersion. The approach works very well
for edge states of which the energy is far away from the continua. But if the energies
approach the band edges, the mapping becomes ambiguous so that its application is no
longer reliable. Thus, for stronger disorder only small parts of the original dispersions
can be reconstructed. Increasing the disorder even further eventually destroys the edge
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modes completely. In addition, we established an approximate formula for the reduction
of the bulk gap due to disorder in the Haldane model.

Furthermore, we clarified how the transition probability depends on the width and the
length of the system under study. The width does not have a significant impact once the
sample is wide enough so that the two edge modes do not interact anymore. Increasing
the length leads to an exponential decrease of the transition probability.

In the concluding Sec. 3.1.4, we addressed the robustness of the edge states at deco-
rated edges which allow us to design small and tunable Fermi velocities. Applying the
reconstruction procedure we could cope with small disorder strengths. But we found our
expectation confirmed that the flat regions of the dispersions are particularly susceptible
to perturbations. We conclude that in order to realize and to apply the ideas of tunable
group velocities one has to resort to clean samples or, at least, to samples where the dec-
orating sites are not subjected to disorder. The edge modes displaying a large dispersion
and staying away from the band edges of the bulk modes are those which are most robust
to disorder.

Further studies are necessary in order to investigate the influence of other kinds of
disorder or imperfections. On the one hand, it is conceivable that spatially correlated
disorder is less harmful to the edge modes than the completely local one we studied
here. The edge modes may flow around smoother regions of disorder or imperfections,
for example on the surface of a topological insulator, see Refs. , . On the other
hand, imperfections such as vacancies can behave like a local infinite potential, i.e., having
very drastic effects on the edge modes. Extending such investigations to other kinds of
systems displaying topological phases constitutes another broad field of research. For
instance local spin-flip disorder caused by magnetic impurities could also destroy the Zo
topological phase or their helical edge states. A reconstruction of helical edge states in
spite of local spin-flip disorder are also possible using the same procedure.

These findings are an initial step to understand the basic hybridization mechanism to
tune the Fermi velocity of chiral or helical edge states. The natural next step is to inves-
tigate the application in experimentally achievable topological states. The site-specific
control of Chern insulators on lattices is a tremendous challenge to experimental realiza-
tion. Thus, it suggested itself to use the well-established IQHE for the same purpose.
The IQHE of a free two-dimensional electron gas corresponds to the first observed topo-
logical phase. Over time, the samples became cleaner and cleaner and the theoretical
understanding of the topological properties in the IQHE is very advanced. To this end,
we consider that the IQHE is a possible candidate for application.
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3.2. Tunable dispersion of the edge states in the integer
quantum Hall effect

3.2.1. General context

Subjecting a two-dimensional electron gas at low temperature to a strong perpendicu-
lar magnetic field results in the well-known quantization of the transverse conductivity
Oy = ve? /h with v € N which is called IQHE . The remarkably high precision with
which the integer quantum Hall conductivity can be measured is attributed to its rela-
tion to topological invariants . Shortly after the discovery of the
integer quantum Hall effect (IQHE) another topological effect was measured and dubbed
the fractional QHE since Hall plateaus appear at fractional filling factors v.
The discovery of the integer and fractional QHEs triggered a steadily growing interest in
topological phenomena in condensed matter physics.

The IQHE is a single-particle phenomenon ; no interaction between the electrons
needs to be taken into account, which facilitates its understanding. In the bulk, the
interpretation of the IQHE is that the filling factor v equals the total Chern number of
the filled Landau bands. This Chern number is a topological invariant related
to the fundamental Berry phase . This warrants the high precision of resistance
measurements fulfilling Ohm’s law without any non-linear corrections .

A closer understanding is gained if one realizes that the actual charge currents are
carried by gapless edge states which cross the Fermi level. They have to exist at the
boundaries because of the bulk-boundary correspondence . The number of gapless
edge states corresponds to the Chern number v . Fach of these edge states can be
seen as a single-channel conductor [122] propagating only in one direction along the edge.
Therefore they are called chiral edge states. They allow for adiabatic transport
because backscattering is forbidden, which makes such transport particularly interesting
for applications.

3.2.2. Present objective

For clarity, we focus here on the IQHE and do not take the spin into account, which
is left to future research. The topological protection of the chiral edge states and the
complete suppression of backscattering in these edge states suggests that the chiral edge
states enable robust applications. Calibrating resistance standards to extremely high
precision is certainly a wonderful example . Yet, in the present study we want to
trigger research on further applications. To this end, we investigate the Fermi velocity vg
occurring in the chiral edge states in the IQHE.

The key idea is to modify the edges by decorations such that local levels are created
which are brought into weak contact with the dispersive edge modes. The ensuing hy-
bridization leads to a weakly dispersing mode of which the Fermi velocity can be tuned
by changing the energy of the local modes. If the local levels are in resonance with the
edge modes the sketched mechanism is at work and a low Fermi velocity appears. If the
modes are out-of-resonance, the hybridization is ineffective and the edge states remain
strongly dispersive. The tuning of the local decorated edge modes can be achieved by
gate voltages.

As pointed out in the general context, tunable Fermi velocities pave the way to inter-
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Figure 3.15: (a) Proposal for a decorated quantum Hall sample with tunable Fermi
velocity. A perpendicular magnetic field puts the two-dimensional electron gas into the
quantum Hall phase. Two independent gate voltages Vy1 and Vi change the potential
of the blue bays at the upper boundary and of the green bays at the lower boundary,
respectively. The grey area is inaccessible to the electrons. (b) The size of the opening
of the bays to the bulk 2D electron gas can be controlled by a gate voltage Vgo. (c) The
size of the opening controls the degree of hybridization of the local mode within the bays
and the edge mode in the 2D bulk.

esting applications such as delay lines or interference devices. Unfortunately, the lattice
systems known so far cannot yet be tailored on the nanoscale to render the experimental
verification of the theoretical proposal possible. So far, solid state systems postulated by
density-functional theory can be envisaged to realizations in the future . Al-
ternatively, intricate optical lattices may make proof-of-principle realizations of tunable
Fermi velocities possible . Yet, the search for different realizations is called for.
In particular, the high standard of designing nanostructures in semiconductor systems
suggests to look at such systems for the realization of tunable dispersions of edge states.

This brings us back to the IQHE which is based on a semiconducting interface gener-
ating a two-dimensional electron gas and a perpendicular magnetic field. If one is able to
tailor the boundaries of the 2D electron gas in a way that corresponds to the decoration
of 2D lattice models, tunable Fermi velocities become possible. Indeed, it has been pro-
posed that attaching bays to the boundaries of a Hall sample allows us to generate local
modes in the bay . If they are slightly opened to the 2D bulk a weak hybridization
is realized and the physics established so far for lattice systems should carry over to the
IQHE. The basic geometry is sketched in Fig. 3.15.

Currently, it is possible to implement bays in the submicrometer range in IQHE sam-
ples. For instance, a single-electron source has been realized by coupling a quantum dot
to a 2D electron gas via quantum point contacts and a gate voltage setting the dot po-
tential . An additional gate voltage at the quantum point contacts is used to control
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the transmission, see Fig. 3.15(b), so that the hybridization can be tuned as indicated
in Fig. 3.15(c). If such a coupled quantum dot is repeated periodically, the geometry
in Fig. 3.15(a) is obtained. This setup will be studied in the following as an exemplary
model for the realization of tunable Fermi velocities in the IQHE.

Below, we present calculations showing that the Fermi velocity vg can be tuned by
adding periodically arranged bays to an integer quantum Hall sample. In Sec. 3.2.3.1
we specify the model Hamiltonian describing the IQHE and the numerical approach to
compute the edge states and their dispersion. Sec. 3.2.3.2 illustrates step by step how
the spectrum of the decorated IQHE is structured. In particular, we focus on the effects
of the hybridization between the modes in the bays and the edge modes because this is
the mechanism altering the Fermi velocities. The results for tuned Fermi velocities are
presented in Sec. 3.2.3.3. Finally, Sec. 3.2.4 collects our findings and provides an outlook.

3.2.3. Tunable edge states in the integer quantum Hall effect
3.2.3.1. Model and technical aspects

The present work is designated to illustrate the tunability of the Fermi velocity at a proof-
of-principle level. For the sake of clarity, we assume that upper and lower boundaries are
sufficiently far away from each other so that the edge states localized at the boundary do
not influence each other. Practically, this means that the magnetic length {p = \/i/|e| B
is significantly smaller than the width L, of the quantum Hall sample, i.e., the external
magnetic field must be large enough. Then it is not necessary to study a system of which
both boundaries are decorated. Hence, we focus here on a sample with quadratic bays at
the upper boundary, but no decoration at the lower boundary which is kept smooth. The
precise shape of the bays does not matter for our proof-of-principle calculations. Within
the colored areas shown in the panels of Fig. 3.16 the electrons can move freely. Their
dynamics is only governed by their kinetic energy. The boundaries are supposed to be
infinitely hard-walls as indicated by thick black lines.

Applying a perpendicular magnetic field in z-direction, see panel (a) in Fig. 3.16, is
incorporated in the usual way by minimal coupling

p—p—qA (3.12)

where the charge reads ¢ = —|e| and A is the magnetic vector potential. No electron-
electron interactions are considered so that the full Hamilton operator reads

_
H—%(p qA)” (3.13)

where m is the (effective) mass of the electrons. The electrons are confined to the x-y-
plane; we do not consider their spin degree of freedom. This can be justified because the
two spin species T and | are decoupled in the perpendicular magnetic field .
Due to the translational invariance in the z-direction a Landau gauge is particularly
appropriate. We choose the Landau gauge in z-direction A = B(—y, 0, 0)T with B > 0,
so that the momentum k, remains manifestly conserved. This leads to the continuum
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Figure 3.16: Sketch of the considered geometries of increasing complexity. Panel (a)
displays the standard IQHE sample without any decoration of the boundaries; its width
is denoted by L, and its total length by L,. Periodic boundary conditions in z-direction
are assumed. Panel (b) shows the unit cell with a bay considered where the dimensions
of the bay and the coupled bulk are given. Note the opening of the bay shown in green;
its width is denoted by L,. The total sample consists of N, such unit cells as shown in
panel (c) so that L, = NyLyp.

Hamilton operator

2l .o ¢\ &
Hpulk “om [(—1£ + %y) - _3y2] (3.14a)
e (o 0\ w9 (3.14b)
o YT By 2m Oy? ’

in real space where we use the definition of the cyclotron frequency w. = |e| B/m and the
magnetic length ¢ = \/h/|e|B. It is implied that = and y take only values in the colored
regions of the panels in Fig. 3.16 unless stated otherwise.

3.2.3.1.1. Bulk system

Solving the Hamiltonian (3.14b) in the case of a bulk system without any boundaries
leads to the famous Landau levels (LLs) with quantized energy values [129]

Ep=hwe(n+1/2), neN . (3.15)

61



Tunable dispersion of the edge states in the integer quantum Hall effect

The corresponding wave functions are plane waves in z-direction and Gaussians multiplied
by Hermite polynomials in y-direction

W(n, kg, y) = Ce~ W02 (g — yo)/0p)e*® (3.16)

because the Hamiltonian corresponds to shifted harmonic oscillators in y-direction. The
wave functions are normalized by C, H,, is the nth Hermite polynomial, and yo = kx€2B
determines the center of the wave function 1 (n, k;,y) in y-direction. These facts about
the bulk Landau levels will be helpful in understanding the more complicated situations
and serve as reference. Below, we consider more and more details of the actual model
depicted in Fig. 3.16(c).

3.2.3.1.2. Sample of finite width L,

Next, we consider a sample as shown in Fig. 3.16(a), i.e., of finite width in y-direction,
but with translational invariance along = due to periodic boundary conditions. A nu-
merical treatment is required which we introduce here. It is chosen flexible enough to be
extended subsequently to the decorated sample including the bays.

For simplicity we set the effective electron mass m = 1, Planck’s constant 7 = 1, and
use B henceforth for |e|B. As a result, the cyclotron frequency and the magnetic length

are simplified to
1
we =B and ZB:\/E . (3.17)

We use w, as the energy unit henceforth. The resulting bulk Hamiltonian reads

2
1 Y 0 0?2
Hbulk - 5 |:<EQB + 16.%) — ay2] . (318)

As displayed in Fig. 3.16(a) the boundary conditions in y-direction imply V(y) = oo
for |y| > L, /2, where V' denotes to the hard-wall confining potential. We use the same
Landau gauge as before in the bulk system. In z-direction, we exploit the translational
invariance using the plane wave ansatz

U(x,y) = exp(ikaz)ib(y) (3.19)
This leads to the Hamilton operator which acts on 1 (y)
2
1 Y 0?
Hundec. con. = 5 - — ks Y 3.20
2 [(EQB ) 8y2] (3.20)

with |y| < % We tackle this problem by discretizing the y coordinate using a mesh with
distance a between the points. It is understood that a is much smaller than any other
physical length scale in the system, i.e., £z and L, because we intend to describe the con-
tinuum limit as closely as possible. The resulting model resembles a tight-binding model,
but we emphasize that its discrete character is just due to the approximate treatment of
the continuum. We make sure that the discretization mesh is always fine enough so that
the results are close to the continuum values.
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To this end, the second derivative is approximated by the difference quotient

02 1 1 4 5 4 1
_81/;(23/) ~ 5 |t — 20) + Uy —a) = SU() + 5Y(y +a) — Yy +20) | (3:21)

a

This formula cannot be applied to values of y which are close to a boundary because
the values ¥(y + a) and ¥ (y + 2a) may not exist, see Fig. 3.17. In fact, if ypary is
the value right at the boundary (red site partly in the shaded area in Fig. 3.17), then
¥ (Ybdry) = 0 holds due to the hard-wall boundary condition and one does not need a
term at ypqary. What is needed is an approximation of the second derivative at ypary — a
for which 9 (ypary + @) is required. One could simply omit this term, but this omission
would introduce an error of the order of a with respect to the continuum situation which
we intend to approximate. Hence, we exploit that ¥(ybary) = 0 and that a continuous
function can be approximated by its Taylor expansion around ypqry. In linear order
this implies ¥ (Ybdry + @) & =¥ (ybary — @) which leads to the last term in Eq. (3.22),
where we used the symbol b(y) = ynary — a for the value of y adjacent to the boundary.
This improves the results by one order in a, especially at the important edges of the
sample. Thus the discretized Hamiltonian expressed in second quantization including the
improvements at the boundaries reads

2
1 Y ) 2
%undec. dis. — Z 5 ((g - kx) + ﬁ) CL,kzcy,kw - Wcjz-ﬁ-a,kzcy,kx
)

T 42 Cut2ak, Cuke T h-C-] = 2002 Cbly) ke o) ke (3.22)

where ¢, 1, (CL »,) annihilates (creates) an electron with wave vector k; in z-direction at
coordinate y.

Figure 3.17: [llustration of the approximation used in the immediate vicinity of a bound-
ary in order to improve the approximation of the continuous system by a discretized one,
see main text.
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In this way, we can very accurately compute eigenenergies of the plain quantum Hall
sample as a function of k,. In particular, we obtain the wanted dispersion of the edge
states. The level of complexity is illustrated by Fig. 3.18 where the discretization meshes
are shown. The calculation for the plain sample without any decoration only requires
to discretize the y-axis, shown in Fig. 3.18(a), because the other spatial dependence is
fully captured by the plane wave ansatz (3.19). The ensuing numerical calculation can be
performed very efficiently because only a relatively small number of sites is required. But
in order to be able to later include the bays as shown in Fig. 3.18(d), we first recalculate
the sample without bays by considering the mesh in panel (b).

Figure 3.18: Sketches of the meshes used to capture the physics of the quantum Hall
sample with and without bays. The strip geometry (a) and the rectangular geometry
(b) are used to describe the sample without bays. The decoupled bay (c) is considered
to compute the energy spectrum of the isolated bay as reference for the coupled system
shown in panel (d). The orange dashed lines indicate the respective unit cells.

3.2.3.1.3. Fully discretized samples

Enlarging the unit cell as shown in panel Fig. 3.18(b) leads to the continuum Hamilton

operator
1(y? _y o 9 &
’H(b):§<€T+2——————2 (3.23)
B

with the periodic condition for the wave function

Y(x + Lgp,y) = exp(iky Lop)Y(z,y) . (3.24)
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We stress that this condition allows us to determine the value of k, only up to multiples
of 27/ Ly, as usual if an enlarged unit cell in real space is considered.The corresponding
BZ is reduced.

In the approximate discretized system the first order derivatives are expressed by using
the central ratios of finite differences up to fourth order accuracy

W ~ % 1—12w($ —2a,y) — ;w(:p —a,y) + §¢(x +a,y) — 1—12w(x +2a,y)| (3.25)
wherever possible. Close to a hard-wall boundary the value ¥(z + 2a,y) is not known
because it refers to sites outside of the considered domain. Then this term is simply omit-
ted. The improvement used for the second derivative based on the mirroring explained
in Fig. 3.17 cannot be used at hard-walls in z-direction because the resulting correction
terms would be local densities with imaginary prefactors spoiling the hermiticity of the
Hamiltonian.

Thus, the Hamiltonian H,) is discretized in both directions. Expressed in second
quantization it is given by

L(y* 5\ ; 2 1 i2By 4
H = xz’l; |:2 (&B + 612> Cz,ycfﬁ,y - @Cx,y—kac%y + 2402 C:c,y+2acl”,y + 3a Cac—l—a,ycﬂﬁ,y

iBy
12a

1 1
2402 Crb(y)Cably) — 2442 Cb(a),yCb(x)y

cL+2a7ycw,y +h.c. (3.26)

where x and y run over the discrete sites within the colored areas in Fig. 3.18. The very
last term occurs at hard-wall boundaries in z-direction, i.e., treating the bays, improving
the second derivatives. The periodicity condition (3.24) carries over to

iky Lo
CaotLopy = Cay® p (3.27)

in second quantization.

The Hamiltonian (3.26) can be used to calculate numerically the spectrum for any
shape of the integer quantum Hall sample. We employ it below to consider the finite
strip without bays first, cf. Fig. 3.18(b), and isolated bays, cf. Fig. 3.18(c), for reference
purposes. Finally, we pass to the coupled system, cf. Fig. 3.18(d). Then, we also have to
include the effect of the gate voltages, see Fig. 3.15. The gate voltage Vg, controls the
size of the opening. This is implemented in our calculation by the choice of the geometry,
i.e., by the value of L,. Since we only consider bays at the upper boundary, there is no
Vg2 to be studied. The gate voltage V;1 is implemented by the Hamiltonian part

Hbays = - Z ‘/glcgycx,y (328)

z,y€ bays

where we incorporated the value of the charge into V1, i.e., we use V1 for |e|Vy.

For small values of a the Hamiltonian (3.26) corresponds to very large, though sparsely
populated matrices. We do not need all eigenvalues because we focus on the energies
of the lowest LL up to about the third LL. In particular, the high-lying eigenvalues are
strongly influenced by the discretization and hence they are meaningless for the underly-
ing continuum model. In order to handle the diagonalization within given intervals of the
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spectrum for large sparse matrices efficiently we employ the FEAST eigenvalue solver.
The FEAST algorithm uses the quantum mechanical density matrix representation
and counter integration techniques to solve the eigenvalue problem within a given search
interval. Now, we are in the position to calculate the dispersion of the lowest eigenstates
and thus the Fermi velocities being the derivatives of the dispersion at the Fermi level.

3.2.3.2. Dispersions in decorated quantum Hall samples

So far, we analyzed the LLs in the bulk, see Sec. 3.2.3.1.1, and we introduced the approx-
imate Hamiltonians to describe hard-wall boundaries of varying shapes, see Sec. 3.2.3.1.2
and Sec. 3.2.3.1.3. Here we present the results for geometries of increasing complexity.
First, we address the strip geometry, i.e., the sample without any bays. Then, we study
the isolated bays before we address the full coupled system, cf. Fig. 3.18. For clarity, we
focus on the lowest LLs.

3.2.3.2.1. Strip geometry

In the case of a hard-wall confining potential in y-direction, i.e., V(y) = oo for
ly| > Ly/2, one still expects to find eigenvalues and eigenstates bearing similarities to
the bulk solutions. For instance, the eigenfunctions exponentially localized in the middle
of the strip are barely influenced by the hard-wall confining potential. Hence they closely
resemble the bulk functions (3.16) and their energies are exponentially close to the bulk
LLs (3.15), see also below.

Moreover, the lowest eigenfunctions localized right at the boundary, i.e., k, = &L,/ %QB,
equal the eigenfunction of the second LL with n = 1. This is so because the zero of the
antisymmetric wave functions coincides with the boundary as is well-known from
the textbook problem in quantum mechanics of a parabolic potential cut off at its apex
by an infinite potential. Thus, the antisymmetric Hermite polynomials are solutions
which satisfy the boundary condition where they are localized. The influence of the other
boundary is exponentially small if /g < L, which is the limit we presuppose. These
special points are used to verify the accuracy of the calculations based on the discretized
model Hamiltonian in comparison to the continuum solutions, see Fig. 3.20.

For the discretized description to approximate the continuum efficiently in y-direction,
the distance a between sites must be small enough to capture the dependence of the
Hermite polynomials (3.16) on y. We use the wave function in Eq. (3.16) in order to
determine the root mean square length

(y-w)?) = tsfn+1/2 . (3.29)

Since H,(y) has n zeros on the root mean square length ¢p+/n + 1/2 we arrive at the

constraint
n+1/2 - LB

n+1  Vn+l

In z-direction the wavelength set by 27/k, determines an upper limit on a so that we
have to claim

a<<lp

(3.30)

2
a< k—” . (3.31)
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While (3.30) needs to be fulfilled in all our calculations, (3.31) is not required in the
solution of (3.22), i.e., if the system in Fig. 3.18(a) is considered, but only if the fully
discretized model introduced in Sec. 3.2.3.1.3 is considered.

In addition to these numerical requirements, we argued that we want to consider the
case where the edge states at upper and at lower boundaries do not interfere. This

requires
lp\/n+1/2 K Ly (3.32)

on physical grounds. The left hand side! is the root mean square of the spatial extension
of the nth LL in y-direction. We focus on the lowest bands anyway so that n = 0 and
n = 1 are the relevant cases. For concreteness, we henceforth use the values g = 1um,
a = 0.01¢p and L, = 10¢p. These values are in accordance with the above considerations
for numerical accuracy and independence (up to exponentially small corrections) of the
edge states.

5 '\ \ '\
Landau level
o in the bulk

a4t energy bands
in the strip

0 L 1 L L L L

ky [1/05]

Figure 3.19: The blue curves show the dispersions of the LLs of a strip of finite width L,
see Fig. 3.15(a). The red dashed lines indicate the equidistant energy spectrum of the
LLs in the bulk. The vertical dashed lines are located at k, = £L,/2(% indicating the
states which are localized at the upper and lower boundaries of the sample.

Considering the mesh in y-direction depicted in Fig. 3.18(a) we obtain the results (blue
solid curves) shown in Fig. 3.19 where they are compared to the bulk results (3.15) (red
dashed lines). Clearly, for small wave vectors one obtains flat bands agreeing very well
with the bulk LL. Deviations occur only in the tenth digit of the eigenenergies. This is so
because k; determines the position of the harmonic oscillator in y-direction, cf. Eq. (3.16).
Closer to the boundaries, an upturn in energy occurs because the electrons influenced by
the vicinity of the hard-wall. As pointed out above, the lowest level right at the boundary

'The Eq. (3.32) in the article \ is stated incorrectly.
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acquires the energy of the LL at n = 1 because its wave functions correspond to half a
harmonic oscillator [131]. This relation is fulfilled up to the fifth digit thanks to the
improved treatment of the second derivative at the boundary, see Fig. 3.17.
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Figure 3.20: (a) Zoom of the dispersion bands in the IQHE. The vertical dashed green
line is located at k, = Ly/%QB marking the boundary of the sample. The colored
dots indicate the eigenenergies of the corresponding wave functions. (b) Probability
densities |¢)(k,,y)|? of these eigenmodes are depicted by sold lines. The dashed lines in
the same color shows the probability densities in absence of the boundary.

The gradual change of the wave functions upon increasing k, is illustrated in Fig. 3.20.
The colored dots in panel (a) indicate the energies and the k,-values of the wave functions
which are depicted in panel (b) by solid lines of the same color. The dashed lines of
the same color display the corresponding eigenfunctions in the bulk which remain of
Gaussian shape throughout. Note the increase of the peak of the eigenfunctions in the

68



Tunable dispersion of the edge states in the integer quantum Hall effect

strip geometry upon approaching the boundary (sequence red — black — yellow) because
the electron cannot enter the hard-wall.

3.2.3.2.2. Rectangular geometry

Next, we pass to the fully discretized model (3.26) for the sample without bays, see
Fig. 3.18(b). This describes the same physics as the calculation in the previous subsection.
Still, we present exemplary results in Fig. 3.21 for two reasons. The first one is to illustrate
that this calculation indeed reproduces the results obtained previously on the mesh shown
in Fig. 3.18(a) with sufficient accuracy. Comparing the results from mesh (a) with those
from mesh (b) in Fig. 3.18 we find that their eigenenergies agree up to the fifth digit.
Note, that the calculation for mesh (a) requires to deal with a vector space of dimension
of the order of 1000 while the calculation for mesh (b) requires to deal with a vector space
with dimension of the order of 10.

The second reason is to obtain results for the undecorated sample, i.e., without bays,
as reference for the subsequent complete analysis. The main point is that the reduction
of the translational invariance by considering the enlarged rectangular unit cell in real
space of length L, leads to a reduced BZ scheme in k;-space. The backfolded branches
of the dispersion are shown in panel (b) of Fig. 3.21. Since there is no real, physical
reduction of the translational symmetry the backfolded branches display level crossings
at the boundaries and elsewhere which are preserved as long as the physical translational
symmetry is preserved. Hence the backfolded branches can be unfolded again to yield the
extended zone scheme displayed in panel (a) of Fig. 3.21. This shows the same results
presented in Figs. 3.19 and 3.20, as were obtained directly by the previous calculation
based on the mesh in Fig. 3.18(a).

For clarity, we consider a quantum Hall sample of finite length in Fig. 3.21. The length
of the unit cell in real space is given by L., and we fix the total number of these cells
to N, = 50. Of course, this value can easily be changed if needed. Hence, there are N,
different momenta k, in the reduced zone scheme. They are multiples of 27 /N, L, lying
in the interval [—7/Lgp, 7/ Lyp).

We want to focus on the filled lowest LL, i.e., filling factor ¥ = 1. Due to the upturn of
the lowest level upon approaching the boundaries of the sample, this filling factor requires
to occupy all states with energies just below the flat region of the second lowest level, see
panel (a) of Fig. 3.21. However, in order to exclude any spurious effects of the energy
levels of the second lowest LL we set the Fermi level to a value slightly below the flat band
of the Landau level n = 1, namely to ep = 1.4w, as indicated by the green dashed line in
Fig. 3.21. This allows us to distinguish unambiguously between occupied and unoccupied
levels. This procedure helps to identify our quantity of interest, the Fermi velocity, i.e.,
the derivative of the dispersion with respect to k, at the Fermi level. The ensuing minor
deviation of the filling factor v from 1 is macroscopically irrelevant for large values of L.
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Figure 3.21:

pied states.

reduced zone scheme which is shown in (b).

(a) Zoom of the lowest eigenenergies in the extended zone scheme for
Ly, =10pm and Ly, = 4.01 pm (The deviation from 4 pm is only due to the discretiza-
tion). Red symbols correspond to occupied states while blue symbols represent unoccu-
The horizontal dashed green line indicates the chosen Fermi energy. The
thin vertical red lines show boundaries of the corresponding reduced zone scheme. By
backfolding the energies into the green shaded area one obtains the representation of the

70



Tunable dispersion of the edge states in the integer quantum Hall effect

3.2.3.2.3. Isolated bays

Before dealing with the complete system with bays coupled to the quantum Hall sample
we determine the energy spectrum of isolated bays for later comparison. Note that we
choose to consider quadratic bay for calculational simplicity. The underlying physics does
not require a particular shape of the bay so that samples decorated with circular bays
are expected to show the same physics at somehow modified quantitative parameters.
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Figure 3.22: Discrete energy spectra of decoupled, i.e., isolated bays as a function of
their size Ly, are rendered by blue solid lines and blue symbols. The horizontal red dashed
lines indicate the equidistant LLs in the bulk for comparison.

For considering the isolated bays we deal with the mesh shown in Fig. 3.18(c). The
calculated energy spectrum as a function of the length Ly, is plotted in Fig. 3.22. Having
the classical cyclotron picture of circular electronic orbits in mind we choose Ly, = 2/p
as starting value. No smaller bay would allow for a classical circular orbit. As expected
the energies are larger than the bulk Landau energies because the confinement due to the
bays restricts the motion of the electrons. Accordingly, increasing Ly, lowers the energies
because enlarging the bays reduces the influence of the confining potential.

The lowest eigenenergy of the bay reaches the energy gap between the two lowest LLs
at a bay size of Ly, ~ 2.6/p. Using the gate voltage Vy; to shift the energies in the bays
relative to the rest of the sample offers a possibility to tune a local mode in resonance to
an edge mode. We will discuss this in more detail in the next subsection.

Adding the decoupled bay to the unit cell, i.e., considering the model shown in panels (b)
and (c) of Fig. 3.18 without any coupling, yields the eigenenergies provided in Sec. 3.2.3.2.2
plus the eigenenergies of the bays which do not disperse at all (not shown). They appear
as flat modes if plotted against k, due to their completely local nature in real space.
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3.2.3.2.4. Quantum Hall sample with coupled bays

Now, we pass to the fully decorated sample where the bays are coupled to the 2D
electron gas in the strip, i.e., we consider the mesh in Fig. 3.18(d). We switch on the
coupling between the bays and the strip by gradually increasing the opening L, from zero
to the maximum value Lj,. The energy spectra are computed and tracked to understand
how the coupling influences the eigenstates in general and the edge modes in particular.
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Figure 3.23: Energy spectra of the lowest eigenstates of a quantum Hall sample with
L, =10pm, L, = 4.01 pm, and ¢ = 1 pm. Panel (a) shows the case of weakly coupled
bays because the opening L, is small. Panel (b) shows a moderate coupling while in
panel (c) a rather strong coupling is shown because the opening L, is increased step by
step. Red symbols correspond to occupied states while blue symbols depict unoccupied
states; the dashed horizontal green line indicates the chosen Fermi level. The shaded
areas highlight the locations of two avoided crossings due to the hybridization of local
and dispersive modes. The arrows point to the eigenmodes whose probability density is
shown in Fig. 3.24.

To this end, we depict three representative cases with openings L, = {1/p,2(p,3(p}
and a bay size of Ly, = 3¢ in Fig. 3.23. They represent the cases of weak, moderate, and
strong coupling of the bays. Upon coupling the bays to the quantum Hall sample, i.e.,
for L, # 0, the eigenstates of the bays and the strip start to merge. Energy crossings of
local modes from the bays with dispersive edge modes in absence of any coupling turn
into avoided crossings once the bays and the strip are coupled. This represents a clear
fingerprint of the level repulsion.

Inspecting the three panels, one realizes that only the right moving edge modes are
influenced by the coupling of the bays. Only their energies depend on the degree of
coupling, i.e., on the size L, of the opening. The left moving modes are spatially separated
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because they are localized at the other boundary of the sample without decoration. Hence
they are influenced only exponentially weakly.

A nice example of level repulsion between a (formerly) local bay mode and a dispersive,
right-moving edge mode is seen in panel (b) of Fig. 3.23 around k, = 0. The relevant area
is shaded in violet in panels (a) and (b). An example of a corresponding wave function
is shown in panel (a) of Fig. 3.24. In panel (c) of Fig. 3.23 the avoided crossing is still
present but hardly discernible because the energies are already very different due to the
strong coupling. In fact, panel (a) shows the character of an avoided level crossing most
clearly because the coupling of the bays is still small and hence the hybridization between
the bay modes and the strip modes is still small and the repelling levels are still close to

each other.
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Figure 3.24: Probability density |1/, (x, y)|? of two eigenstates influenced by the different
avoided crossings. Panel (a) shows the hybridization between the edge state of the LL
n = 0 with the local mode in the bay. The energy and momentum of this state are indi-
cated in panel (b) of Fig. 3.23 by the open arrow. Panel (b) shows the weak hybridization
of the edge state with the second LL n = 1 mediated by the local mode in the bay. The
energy and momentum of this state are indicated in panel (b) of Fig. 3.23 by the filled
arrow. The parameters of the geometry are L, = 10pm, L,, = 4.01pm, L, = 3m,
Lo =2pm, and £ = 1 pm.

Another, less obvious and thus surprising, origin of avoided level crossings between
dispersive edge modes and local modes results from the breaking of the translational
invariance and the concomitant backfolding. This mechanism induces hybridization be-
tween local LLs and edge modes. An example is indicated by a shaded area in panel (a)
at ky ~ 0.47/L,p, and in panel (b) at k; ~ 0.8m/L,,, of Fig. 3.23. Clearly, the effect is
weaker than the hybridization of edge modes and local bay modes. This is so because
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the coupling of edge modes and local LLs is a second order effect in the coupling of the
bays to the strip. Thus bay modes hybridize only indirectly in this phenomena, see also
panel (b) of Fig. 3.24 where an exemplary wave function is shown. Similar effects were
also found in the IQHE where different edge modes start to mix with one another due to
the breaking of the translational symmetry by a step potential .

To support the interpretations given above, we plot the probability density | (z, y)|? for
eigenstates from the two avoided level crossings in Fig. 3.24. Panel (a) shows a state built
from an edge mode and a local mode from the bays; its position in the energy spectrum
is indicated by a open arrow in panel (b) of Fig. 3.23. Clearly, the two constituents, the
edge mode and the local mode in the bay, can be seen.

Panel (b) of Fig. 3.24 shows a state built from an edge mode, a local mode from the
bays, and the next higher LL. n = 1; its position in the energy spectrum is indicated
by a filled arrow in panel (b) of Fig. 3.23. Here, three states are mixed and contribute
to the eigenstates as can be discerned nicely. The contribution of the local mode in the
bay is much smaller than in the case shown in panel (a) because it contributes only as a
intermediat state in the second order effect providing a coupling of the other two modes.

3.2.3.3. Tuning the Fermi velocity

In the previous sections we developed a detailed understanding of the energy spectra
of quantum Hall samplse decorated with bays. Our ultimate goal is to study whether
and how the Fermi velocity vgp can be tuned in such a decorated quantum Hall sample.
We highlight that the Fermi velocity vr represents the group velocity of the coherent
quantum mechanical propagation of electronic wave packets. It cannot be seen as classical
propagation of electrons along the (longer) boundaries of the bays, see below. Here we
present quantitative results for the Fermi velocity and its dependence on the parameters
of the model.

First, we examine the dependence of vg on the size of the bays by increasing L;, for
maximally opened bays, i.e., for L, = Ly,. The results are shown in panel (a) of Fig. 3.25.
For maximally opened bays, the dispersions display no flat region because the strong
level repulsion induces sizable momentum dependencies for most modes, see panel (c)
of Fig. 3.23. Thus no strong dependence of the Fermi velocity for maximally opened
bays is expected in accordance with panel (a) of Fig. 3.25. The complex interplay of
many hybridizing levels makes it impossible to predict parameters for which v takes its
minimum value. However, the comparison of panel (a) in Fig. 3.25 with Fig. 3.22 reveals
that the Fermi velocity is indeed influenced when the local mode in the bay approaches
the Fermi level, here 1.4w., which is the case around Lj, = 2.6¢g. Note that the Fermi
velocity is generally reduced, roughly by a factor 2, once the local modes have come down
in energy so that they reach the Fermi level.

The next parameter varied is the opening L, of the bay. Panel (b) of Fig. 3.25 shows
the results for various bay sizes. Note that the opening cannot exceed the size of the
bay, hence the curves stop at L, = Ly. All curves follow the general trend that the
Fermi velocity is lowered upon increasing the hybridization between local modes in the
bays and the dispersive edge modes. This is achieved by increasing the opening L,. An
approximate reduction by a factor of 2 occurs once the local energy levels from the bay
come down in energy, i.e., for large enough Ly,. This reduction is not very impressive. In
addition, the geometry is fixed once the sample is grown and cannot be tuned on the fly.

74



Tunable dispersion of the edge states in the integer quantum Hall effect

080 05 10 15 20 25 30 35 20
Ly[tg]

080 05 10 15 20 25 30 35 20
LOI:EB]

Figure 3.25: (a) Fermi velocity vp of the right-moving modes as a function of the bay
size Ly, with Ly = 10pm, Ly, = 4.01um, /g = 1 pm, and L, = Ly,. (b) Fermi velocity vp
as a function of the opening L, of the bays for various bay sizes L, with L, = 10 m,
Lyp = 4.01 pm, and £ = 1 pm.

The last investigated dependence of vp on a geometric parameter is the dependence on
the distance between the bays, i.e. the size L, of the decorated unit cell, see Fig. 3.16.
One could imagine that a certain resonance phenomenon occurs for special values of L.
Generally, we expect that the influence of the decorating bays decreases upon increasing
L, because the fraction of decorated boundary decreases. Explicit results are shown
in Fig. 3.26. Again, the dependence of vp is rather weak. The expected trend that a
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Figure 3.26: Fermi velocity vr as a function of the distance between the bays, i.e., Ly,
illustrated in Fig. 3.16, for various bay openings L, with L, = 10pm, L = 3pm, and
{p = 1pm.

larger L, reduces vp less is clearly confirmed because the Fermi velocity approaches
its undecorated value of about w.¢p upon increasing L,,. At small values of L, we
retrieve a reduction by a factor 2. But no resonance phenomena at particular values
of the interbay distance are found. We attribute this to the fact that none of the local
modes in the bay is truly in resonance with the edge modes.

In order to identify a suitable tuning parameter we revisit the results gained for lattice
models . Three ingredients are important for sizable changes of the Fermi veloc-
ity: (i) the local and the dispersive modes must be in (or close to) resonance. (ii) There
must be a parameter to tune and to detune this resonance. (iii) The coupling of the modes
should be rather small so that they are sensitive to being or not being in resonance.

Translating these conclusions back to the IQHE, it appears that we have to use the
gate voltage Vg1 to control the resonance between the local modes in the bays and the
dispersive edge modes. It is obvious that one can shift the bay modes by changing V1.
An additional asset is that this can be done on the fly so that one possesses a true control
knob for the speed of signal transmission and hence for the delay time which can be tuned
while the signal processing is going on.

The opening of the bays should not be large because the coupling and hence the hy-
bridization of the local and the dispersive modes should be rather weak. Thus we choose
the rather small value L, = £p in Fig. 3.27. In this figure, we plot the dependence of the
Fermi velocity on the gate voltage. For most values, the Fermi velocity does not deviate
strongly from its value of about w.¢p in a sample without bays. But if the energy levels
of the local modes in the bays approach the dispersive edge mode at the Fermi level they
resonate and lead to an avoided level crossing. In the region of the avoided level crossing
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the local mode and the dispersive one mix, so that the formerly steep crossing of the
dispersion through the Fermi level becomes flat. Hence the Fermi velocity is considerably
suppressed. Note that the resulting resonance dips of vg are rather narrow and can easily
be used to (de)tune the velocity by moderate changes of the applied external gate voltage.
In this fashion, changes of the Fermi velocity by factors 10 to 100 should be realizable,
similar to what was found in lattice models .
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Figure 3.27: (a) The horizontal dashed line shows the set Fermi level while the slanted
solid lines depict the energy level in the isolated bays shifted by the gate voltage. The
vertical red line is a guide to the eye to link the resonance visible in panel (a) to the
strong response in panel (b). Note that it does not predict the minimum precisely due
to the level repulsion. (b) Fermi velocity vp as a function of the gate voltage Vg for
Ly, =2pm, Ly = 10pm, Ly, = 4.01pm, L, = 1 pm, and /5 = 1 pm.
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Figure 3.28: (a) The horizontal dashed line shows the Fermi level while the slanted solid
lines depict the energy levels in the isolated bays shifted by the gate voltage. The vertical
red lines are guides to the eye to link the resonance visible in (a) to the strong response
in the panels below. Note that it does not predict the minimum precisely due to the level
repulsion. (b)-(d) Fermi velocity v as a function of the gate voltage Vi1 for Ly, = 3 um,
Ly, =10pm, Ly, = 4.01 pm, £ = 1 pm, and the three different values of L, as indicated.

Comparing Figs. 3.27 and 3.28, one realizes the similarities of the curves. The width
of the resonance dips is comparable if the openings L, are the same, cf. Fig. 3.27 and
panel (c) of Fig. 3.28.

Figure 3.28 illustrates very clearly that larger openings lead to significantly broader
dips which are less deep. In return, smaller openings and thus less strongly coupled bays
lead to narrower dips with significantly lower residual Fermi velocity at the minimum.
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This minimum value of vg depends on how flat the dispersion of the hybridized modes
is as determined by the coupling strength: weaker coupling implies a better localization
for the hybridized modes with flatter dispersion. Flatter modes allow for sharper dips
down to lower residual values of the Fermi velocity. Note that the reduction of the Fermi
velocity can reach a factor of 100 for narrow bay openings. A classical interpretation of
slower propagation due to the longer path along the boundaries of the bays would explain
a factor 3.75 at best for L, = 0.5nm. The longer path due to the included bay at the
upper boundary of the unit cell corresponds to 15 pm whereas the path without the bay
is 4pm. Thus the factor 3.75 describes the extension of the path.

The positions of the resonance dips depend on the energy levels of the modes in the bay
so that the bay size influences them strongly. In the smaller bays studied in Fig. 3.27, the
lowest bay level lies above the Fermi level so that the gate voltage has to bring it down
in order to observe resonance. In the larger bays, studied in Fig. 3.28, the lowest bay
level lies below the Fermi level with the second lowest above it. So Fig. 3.28 shows that
several dips may occur, even for different signs of the gate voltages. All in all, it appears
that the precise position of the dips is not at the resonance with the energy levels of the
decoupled bays, but at slightly higher values of the gate voltage. We attribute this to the
hybridization with all the LLs including a downward shift of the local energy modes due
to level repulsion from the high-lying LLs.

3.2.4. Conclusion

Topologically protected edge states possess many appealing properties. Still, avenues
towards applications have not been established. The recent proposal of tunable Fermi
velocities in Chern insulators and spinful topological insulators for the realization of delay
lines and interference devices is a step in this direction. The purpose of the present study
was to show that no lattice models are required, but that semiconductor samples with
decorated boundaries show the same phenomena. This finding represents a substantial
step forward towards realization because of the extremely high standard of designing and
growing nanostructures for semiconductor devices.

We analyzed the dependence of the dispersion of the edge states in decorated quantum
Hall samples on various parameters. The geometry of the sample defines the energy
levels and partly the degree of coupling between the decorating bays and the bulk of the
two-dimensional sample. Yet the geometric parameters do not allow for a fine-tuning of
the Fermi velocity, let alone quick changes of it in the course of signal processing.

But gate voltages can achieve the wanted tunability. First, we found that the local
levels in the bays should be close in energy to the Fermi level in the bulk of the quantum
Hall sample so that the gate voltage applied to the bays does not need to shift them to a
large extent. Second, the coupling between the bays and the rest of the sample should be
rather weak to have rather narrow and deep dips in the Fermi velocity if the local modes
are tuned into resonance to the dispersive edge states. Then, the fundamental mechanism
of mode mixing and level repulsion leads to weakly dispersive eigenmodes crossing the
Fermi level. This represents the key phenomenon for tunability.

Changes by up to two orders of magnitude appear possible. In our calculations, the
degree of coupling is a geometric parameter. In practice, we propose to make it tun-
able as well by additional gate electrodes which modify the width of the bay openings,

cf. Ref. [126].

79



Tunable dispersion of the edge states in the integer quantum Hall effect

The calculations are based on discretizing the sample in real space and mapping it
to a tight-binding type of model. For fine enough meshes, reliable results valid for the
continuum case are obtained as we could verify by comparison to analytic bulk solutions.
We increased the complexity of the considered geometry step by step in order to gain
a reliable understanding of the occurring physical phenomena. The approach is flexible
enough to be adapted to various geometries. We considered quadratic bays, but any other
shape is possible as well, however only quantitative changes are expected. Here the focus
was on a proof-of-principle calculation to show that the anticipated physics indeed takes
place in the IQHE.

In view of experimental realizability, some aspects must be kept in mind. First, the
neglected interaction between the electrons can lead to the formation of certain charge
modulations at the boundary. On the one hand, it is established that compressible and
incompressible stripes form close to the boundaries . The incompressible stripes
may hinder the propagation of signals. On the other hand, if the filling is tuned just
below filling factor v = 1, we expect that this effect is avoided because no incompressible
stripes are formed at the edges. The final clarification, however, can only be reached by
an experimental study.

For concreteness, we showed calculations for /g = 1pm. This value corresponds via
B = h/(ef%) to a magnetic field of 0.66mT and to an electron density of 3.2 - 107cm™2.
Both values are very small compared to the values in generic quantum Hall setups which
have magnetic fields and electron densities higher by about a factor of 10* .
Thus, for realization one has to look for systems with high mobility at much smaller
electron densities or to make the geometric structures of the sample smaller. For instance,
a factor 5 in linear dimensions yields a factor 25 in the electron density and in the magnetic
field.

An interesting alternative to standard semiconductors is the IQHE in graphene. The
relation between the magnetic length g and the magnetic field is the same , but
the relevant electron density n is measured relative to electron density of the semimetal
so that small values are easily realized. Due to the linearity in er of the density-of-state
one has n « 2. Furthermore, due to the perfect lattice structure a high mobility can be
expected. So the promising aim is to create non-trivial boundaries with bays on the scale
of 10 to 1000 nm in graphene. This will be investigated in the next section.

In conclusion, an experimentally realizable topological phase, the IQHE, allows for
tunable Fermi velocities if its edges are appropriately decorated. Gate voltages can serve
as control parameters for tuning. These findings should encourage further research to
realize such systems at the laboratory level to ultimately pave the way towards real
devices.

As an outlook, we want to emphasize that the presented findings can be extended in
several ways as has been done for lattice models . The detrimental effects of disorder
can be included to study the robustness of the observed effects. Such investigations will
help to understand with which accuracy an experimental realization has to be grown in
order to be able to observe the predicted effects. Without doubt, this constitutes an
essential step toward applications.

Second, our findings can be extended to spinful models without conceptual difficulties.
If the spin is subjected to spin-orbit coupling, the chiral edge modes will generically
become helical modes. This opens up the promising field for applications in spintronics,
for instance realizing switchable spin diodes.
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3.3. Tunable signal velocity in the integer quantum Hall effect
of graphene

3.3.1. General context

Non-trivial topological properties of condensed matter systems are believed to represent
a valuable resource for various purposes. The key idea is that topological properties
are protected so that they are not destroyed by small changes of the system. Hence
they are robust against imperfections and unwanted effects. This has led to the most
spectacular application of a topological insulator: the IQHE has become the interna-
tional gauge standard for resistance measurements, see Ref. and references therein.
Apart, however, from this very important application there has been little application of
topological properties so far. We are aware of three-dimensional topological insulators
used as thermoelectric elements .

In the previous section we advocated the IQHE of a 2D electron gas for Fermi velocity
engineering. Indeed, it is possible to obtain tunable signal velocities in two-dimensional
electron gases subjected to a perpendicular magnetic field . Still, there are challenges
opposing an immediate realization: modifying the edges by periodically aligned bays with
the required precision on small length scales of 100 nm represents a tremendous challenge
to sample design. Larger length scales are easier to realize, but the characteristic length
0% = h/(e|B|) must match the geometric scales so that larger length scales require smaller
magnetic fields. At first sight, this seems easy to realize, but the mobilities in the two-
dimensional electron gases are not high enough to allow for the observation of the IQHE
at low magnetic fields. The present disorder is too detrimental for low electron densities.

For this reason, we advocate to explore alternative routes and it is natural to look
for other systems displaying an IQHE. Graphene and related compounds are obvious
candidates. Graphene is widely known for its special electronic properties ﬂ@, and
its extraordinary structure. It represents an isolated single sheet of graphite E and
as such realizes a two-dimensional allotrope of carbon. The low-energy band structure of
graphene comprises two Dirac cones distinguished by different locations in the BZ. Thus,
electrons near the Fermi level have a linear dispersion relation and therefore behave like
massless relativistic particles. Theoretically, low-energy electrons are described by the
Dirac equation where the speed of light is replaced by the Fermi velocity
vp ~ 10°m/s . Engineering this important parameter has been realized already
by varying the substrate .

Subjecting graphene to a strong magnetic field at low temperatures leads to the forma-
tion of relativistic LLs. As a result, one can observe an unconventional IQHE .
The Hall conductivity in graphene appears at half-integer values: o, = +4e?/h(|n|+1/2).
The four-fold degeneracy given by valley and spin degeneracy yields the prefactor 4.
Comparing 0., (B) with the IQHE of a non-relativistic two-dimensional electron gas, the
offset 1/2 can be attributed to the single LL with energy Ey = 0 . This LL is intrinsi-
cally half-filled so that one half contributes to the valence band and causes the half-integer
conductivity. Due to cleaner samples and more precise measuring instruments the IQHE
can be detected down to small external magnetic fields as low as =~ 0.1 T owing to a very
high electron mobility . The unique properties of graphene open up many new pos-
sibilities for basic research and technical applications, especially in electronics

and spintronics [152} [153].
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Figure 3.29: (a) Tailored strip of graphene proposed for tunable Fermi velocities. A
magnetic field perpendicular to the sheet of graphene induces the IQHE. The sample has
periodically aligned bays illustrated here by the zoom with 4 bays. The gate voltage V,
is applied only to the bays highlighted in blue. The red area corresponds to the bulk of
the strip and the green area to the opening between the bulk and a bay. (b) Schematic
sketch of a single unit cell with the notation for the linear dimensions of the bays and
the strip. The total number IV, of unit cells determines the total length of the sample
Ly = NyLgp.

Our central proposal is to use graphene (or a related system) as IQHE system with
accurately tailored edges in order to realize a tunable signal velocity vg. In our view,
there are several advantages of graphene as basis material over two-dimensional electron
gases in semiconductors: (i) the high mobility allows one to reach the IQHE even at low
magnetic fields (~ 0.1T [150]); (ii) the possibilities to modify the edges in a reproducible
and accurate way are larger; (iii) the energy separations between the lowest LLs (n < 3)
are much larger due to the relativistic dispersion so that the IQHE in graphene can be
observed for lower magnetic fields and higher temperatures . So we expect that the
tunability of the Fermi velocity vp in the edge modes will be feasible in the near future.

The key challenge is to tailor the edges such that periodically arranged bays are weakly
coupled to the chiral edge states, see Fig. 3.29(a). Due to the weak coupling controlled
by the width of the opening of the bays the local modes in the bays hybridize with the
dispersive edge modes. This hybridization leads to coupled modes with very little dis-
persion, hence very low Fermi velocity. By applying gate voltages to adjust the chemical
potential or the local potential of the bays the Fermi velocity is tuned: choosing the
external parameters such that the edge mode is in resonance with the local bay modes
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reduces the Fermi velocity drastically.

The rest of this section is set up as follows. First, we introduce the model describing
the edge states and the LLs of graphene. Next, we discuss the geometry of the studied
samples. The main part shows the resulting dispersions and the tunability of the Fermi
velocity in the edge states controlled by gate voltages as external control parameters.
Finally, we conclude by summarizing and discussing possible applications.

3.3.2. Model and method

The electronic properties of graphene in the vicinity of the Fermi energy are well repro-
duced by a fermionic tight-binding model. Due to the negligible contribution of the spin
degree of freedom and of interactions we consider spinless fermions in the Hamiltonian

H=t Z czcj — Ve Z cjci . (3.33)

<i,j> i€bay

We focus on zero temperature so that the chemical potential p is identical to the Fermi
energy ep. All states up to p are occupied while the states above p are empty. The
relevant Fermi velocity is the derivative of the dispersion at the Fermi energy. A pair of
NN is denoted by (i,j). The tight-binding parameters are the NN hopping ¢ = 2.8eV
and the lattice constant a = 0.142nm [[14§].

In order to obtain the quantum Hall state in graphene, we apply an external perpen-
dicular magnetic field B. This leads to the formation of LLs with energies

at
9t2a?
E, = sgn(n)y/2ehvi B|n| = sgn(n) @W . (3.34)

The second equation stems from hvp = 3/2ta and the definition of the magnetic length
(g = \/h/[eB| ~ 25.65564/v/B nm, where the value of the magnetic field B is inserted
in units of Tesla. The non-linear spacing between the LLs results from the relativistic
behavior of the electrons near the Dirac points. The magnetic length plays the same role
as in the IQHE in the two-dimensional electron gas . It sets the scale for the
diameter of the circular motion of the electrons due to the Lorentz force. In order for the
decoration of the edges by bays to have an appreciable effect, the geometric dimensions
of the bays must be of the order of this magnetic length.

The magnetic field B is included in the tight-binding model by the Peierls substitution
attributing Aharonov-Bohm phases to the hopping processes

£t exp (ie/h / 2Adr> , (3.35)
T1

where the start and the end site of the hopping process are denoted by r, and 9, respec-
tively. The evolution of the Dirac cones to rather flat LLs has been exhaustively studied
and discussed by Delplace and Montambaux . In order to keep translational invari-
ance in the z-direction, see Fig. 3.29(a), we employ the Landau gauge A = B(—y,0,0)".
Thus, the momentum k, is a good quantum number in the calculations.

The numerical analysis is facilitated by a small system size, i.e., the number of sites
in the extended unit cell, see Fig. 3.29(b), should be rather small so that the dimension
of the resulting eigenvalue problem remains tractable. For the experimental realization,
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however, it is advantageous to consider rather large extended unit cells. In the following,
we briefly discuss these constraints, the employed numerical methods, and justify our
choice of parameters.

The tight-binding Hamiltonian (3.33) comprises only on-site terms and NN hoppings.
Hence, its very large matrix representing the Hamiltonian is mostly populated by zero
entries and may therefore be encoded as a sparse matrix. The signal transmission is
primarily determined by the properties at the Fermi energy er. Undoped graphene is a
semi-metal with ep = 0. The states at higher energies hardly influence the low-energy
dynamics. So we focus on the low LLs up to the third one, i.e., with |n| < 4. As before,
the eigenvalue solver FEAST is used to constrain the considered interval of the
energy spectrum. Based on the calculated eigenenergies the Fermi velocity as derivative
of the dispersion at the Fermi energy is straightforwardly approximated by the ratio of
finite differences. We assume periodic boundary conditions in x-direction with 50 unit
cells. This implies a sufficiently fine discretization of the BZ to identify energy crossings
and avoided crossings.

The experimental constraints consist in the limitations in accurately tailoring the strips
of graphene with the desired structure at the edges, i.e., with the periodic structure of
bays, while maintaining a high mobility to realize the quantum Hall state. The bay
pattern can be made by electron beam lithography or by anisotropic etching
techniques . It appears that creating bays of the size of 100 nm can be done without
major problems. In our calculations we assume quadratic bays for simplicity. The precise
shape of the bays does not matter for the qualitative results although it will have an
influence on the quantitative details. The size of the bays and especially the length of the
bay opening L, to the bulk of the strip, see Fig. 3.29(b), are crucial for the dispersions
of the modified edge states. To keep the example transparent, we aim at a small number
of low-lying levels in the bays so that the relevant number of states which may hybridize
can be easily tracked. This implies Ly, ~ ¢p and favors small magnetic fields (100 mT
with {p ~ 81nm). These considerations define the framework for the numerical results
in the next subsection.

3.3.3. Results
3.3.3.1. Dispersions, hybridized edge modes, and localization

In Fig. 3.30, three representative cases are depicted: uncoupled (L, = 0¢p), weakly cou-
pled (L, = 0.1¢p), and moderately coupled (L, = 0.5¢p) bays. The magnetic field is set
to B = 0.25 T which corresponds to a magnetic length of /5 ~ 51 nm. The definitions of
the various lengths are displayed in Fig. 3.29(b). They are given by: L., = 3{p ~ 153 nm,
L, = 6(p ~ 306nm, L, = 2/ ~ 102nm and L, = {0,0.1,0.5} {p =~ {0,5,26} nm. The
width of the strip L, is chosen large enough so that the two counter-propagating edge
states at the opposite edges do not overlap. This implies that both edges can be modified
independently of each other. For clarity, we exploit this simplifying fact and modify only
the upper edge while the lower edge remains a bare zigzag edge. The chosen bay size
Ly, should be experimentally realizable. The condition L,, > Ly, ensures that the bays
are separated from one another. Decreasing the distance between the bays by changing
L, increases the impact on the dispersion of edge states due to the altered fraction of
the decorated boundary to the total boundary. The three values for the opening L, lead
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Figure 3.30: Dispersions of the lowest positive eigenenergies in graphene in the IQHE
at B = 025T,L,, = 3¢p ~ 153nm, L, = 6/p ~ 306nm, L, = 2{p ~ 102nm, and
L, =1{0,0.1,0.5}{p ~ {0,5,26} nm. Panels (a)-(c) show the cases of uncoupled, weakly
coupled, and moderately coupled bays, respectively. Crossings evolve into avoided cross-
ings due to the hybridization of both modes. The dashed ellipses mark a location where
this happens. The insets zoom into the evolution of the avoided crossings at k, = 7/(4a),
where the two dispersion branches are highlighted in blue and red.

to three different degrees of hybridization. As a rule of thumb, a wider opening corre-
sponds to a larger hybridization. The effect is discernible in the dispersions in Fig. 3.30.
For the sake of clarity, we display the dispersions up to the first LL so that only two
counter-propagating edge states need to be taken into account.

Panel (a) in Fig. 3.30 shows the uncoupled case where the usual LLs and their related
edge states are distinct from the local states. The LLs are essentially flat and turn upwards
where their wave functions approach the edges of the strip. In contrast, the eigenstates of
the modes in the bays are completely local, hence completely flat as a functions of the wave
vector k,. Thus, edge states and local modes show crossings, see inset of Fig. 3.30(a).
Due to the extended unit cell comprising one bay, the edge states are backfolded into the
reduced BZ scheme as discussed in Sec. 3.2.3.2.2. Since the dispersion is symmetric
with respect to the k;-axis, we only show the positive eigenenergies. When the coupling
of the bays to the bulk of the strip is switched on, i.e., L, # 0, see panels (b) and (c) in
Fig. 3.30, the edge states mix with the local states. We observe that the crossings turn
into avoided crossings with the bay modes due to level repulsion, see for instance the
encircled regions marked by dashed ellipses. Increasing the opening further and further
results in a stronger and stronger level repulsion so that the former local modes become
more and more dispersive.

Much to our surprise, in addition to the local states of the bays other almost local
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Figure 3.31: Probability densities |1, (x,)|? of two almost local eigenstates at k, = 0.
Clearly, these modes are localized in two different regions. Panel (a) shows the local mode
stemming from the bay, whereas panel (b) shows the local mode localized in the opening
of the bay. The corresponding eigenstates are indicated by open (mode from bay) and
filled (mode in opening) arrows in panel (b) of Fig. 3.30. The parameters of field and
geometry are B = 0.25T, L, = 3/g ~ 153nm, L, = 6/p ~ 306 nm, L}, = 2/ ~ 102nm,
and L, = 0.1/ =~ 5nm.

states appear upon opening the bays. Such local states have not been observed in the
IQHE of the non-relativistic two-dimensional electron gas . Investigating the proba-
bility density of the eigenstates at k, = 0 reveals the location of the unexpected modes.
In Fig. 3.31 we display the probability densities of the two states with the energies high-
lighted by arrows in panel (b) of Fig. 3.30. Figure 3.31(a) clearly shows the density of the
local state from the bays marked in Fig. 3.30(b) by the open arrow: it is almost entirely
localized within the bay and leaks only weakly into the bulk of the strip. In contrast,
Fig. 3.31(b) clearly shows a strong localization in the opening. This is the density of the
additional local state marked in Fig. 3.30(b) by the filled arrow. Obviously, the opening
gives rise to additional localization. Hence, the added sites in the opening, see green area
of Fig. 3.29(b), contribute to the spectra similarly to the effect of the bay sites. Inde-
pendent of the origin of the almost local states, both hybridize with the edge modes at
the same energy. The additional state hybridizes more strongly as expected since it is
localized in the opening very close to the bulk of the strip while the mode from within
the bay leaks only weakly into the bulk. The hybridization of both local modes leads to
a reduced Fermi velocity.
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3.3.3.2. Fermi velocities for signal transmission

In order to tune the Fermi velocity of the edge state at the upper edge of the strip of
graphene we have to change the derivative of its dispersion at the Fermi level. To do so,
two ways suggest themselves in particular. The most transparent one is to change the
Fermi energy, i.e., the chemical potential, such that the Fermi level lies in a rather flat
region of the edge state dispersion. This can be achieved by a gate close to the total strip
of graphene [[141]. Alternatively, one may conceive a control of the energy level of the
bays alone. This can be achieved by a voltage applied to an appropriate gate close to
the edge of the strip, see Fig. 3.29(a). Undoubtedly, other ways of tuning can be devised
as well. Below we present results for both approaches to show that tuning of the Fermi
velocity is possible.

Figure 3.32 depicts the Fermi velocity as a function of the chemical potential. Panel (a)
and (b) correspond to the case of weakly and moderately coupled bays, respectively, of
which the dispersions are displayed in Fig. 3.30. The Fermi velocity in the weakly coupled
case shows three deep dips. The two extremely narrow and steep dips can be attributed
to the hybridization with two local levels from the isolated bays. The energetic position
of these local levels is indicated by vertical red lines in the two panels. The closeness of
the steep dips to these lines emphasizes our interpretation of their physical origin. The
slight shifts of the dips relative to the red lines result from the energy shift due to level
repulsion. This is supported by the fact that the shift is larger for panel (b) which refers
to bays with a wider opening and hence stronger level repulsion. The broader dips (one
in panel (a) and two in panel (b)) are related to the additional local states localized in
the openings, see Fig. 3.31(b). The fact that these dips are broader is explained by the
vicinity of these states to the bulk of the strips implying a stronger hybridization with
the edge mode.

By tuning p into these dips, the Fermi velocity can be reduced by orders of magnitude.
In particular for narrow bay openings a strong reduction can be achieved. For instance,
vp in panel (a) of Fig. 3.32 at u ~ 2meV is reduced by a factor of ~ 65000 from its
value without tailored edges, i.e., without bays, see green curve in Fig. 3.32. Increasing
the bay opening leads to a broadening and a shift of the dips, see Fig. 3.32(b). Thus for
moderately coupled case, vrp at p = 8 meV is reduced by a factor of ~ 20. Furthermore,
a wider opening possesses more low-lying energy modes so that the number of dips is
increased. If the chemical potential is out-of-resonance with local modes, the reduction
of the Fermi velocity is insignificant. This is particularly true for narrow openings where
there is no significant difference between the green and the blue line out-of-resonance.

Tuning the bay potential V; leads to similar results even though changing this gate
voltage does not simply shift the local modes relative to the bulk modes. Still, significant
changes of the Fermi velocity can be realized as illustrated in Fig. 3.33 for which we
assume a generic Fermi energy ep = 0.0005¢ = 1.4 meV in the regime of doped graphene.
The finite value of the Fermi energy is necessary to be in the dispersive regime of the edge
states. In order to realize a substantial reduction of the Fermi velocity, the local states
must be brought into resonance with the edge states. This tuning of the bay potential
results in similar dips of the Fermi velocity as the tuning of the chemical potential .
Negative values of Vj lift the bay spectrum up in energy so that they come into resonance
with the edge state, resulting in a steep dip.

In contrast, a positive gate voltage V, decreases the energy of the additional local
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Figure 3.32: Fermi velocity vg of the right-moving edge states localized at the upper edge
as a function of the chemical potential ;1 equivalent to the Fermi energy. Panels (a) and
(b) show the weakly and moderately coupled cases L, = {0.1,0.5}¢p ~ {5, 26 }nm, respec-
tively. The other parameters are B = 0.25T, L., = 3{p ~ 153nm, L, = 6/ ~ 306 nm,
Ly = 2¢p =~ 102nm. The red lines are guides to the eye to link the resonance estimated
from the uncoupled bay spectrum shown in Fig. 3.30(a).
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Figure 3.33: Fermi velocity vp of the right-moving edge states as a function of the gate
voltage V, changing only the energy offset of the bays, see Fig. 3.29(a). The parameters
are B = 0.25T,L;, = 3(p ~ 153nm, L, = 6/ ~ 306nm, L;, = 2{p ~ 102nm,
and L, = 0.14p ~ 5nm. The ragged dip at about V, = —1.7meV results from the
discretization of the BZ with 50 points. A finer mesh would lead to a smoother curve, but
is computationally demanding. The red lines are guides to the eye to link the resonance
estimated from the uncoupled bay spectrum shown in Fig. 3.30(a).

mode in the opening. The ensuing resonance leads to a broader dip due to the larger
hybridization of the opening mode to the edge mode. Note that larger absolute values
of V are needed to reach the resonance compared to what can be estimated from the
dispersion. This fact can be explained by the level repulsion from the bulk states which are
mixed in. Thus, both dips are shifted relative to the energy differences in the uncoupled
dispersion, see panel (a) in Fig. 3.30. We conclude that tuning the bay potential is also a
suitable knob to control the Fermi velocity. In summary, tuning both gate voltages leads
to resonances with local modes so that substantial reductions of the velocity of signal
transmission are achieved.

3.3.4. Conclusion

The above results clearly show that substantial tuning of the Fermi velocity in graphene
with tailored edges is possible. This can be used to construct tunable delay lines for
charge signals: by controlling external parameters such as gate voltages, the temporal
delay can be tuned at will by choosing an appropriate velocity of signal transmission
through the sample. This may help to control and to switch properties of nanoscale
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devices including devices for quantum information processes. The delayed signal itself
does not need to have quantum character, but the tuned delay can help to deliver control
precisely at suitable time instants.

Another promising idea in the same spirit is to construct interferometers in which two
signals are superposed which have propagated along different pathways. Omne of these
pathways contains the graphene sheet with tunable signal velocity. By adjusting the
Fermi velocity the delay in this path can be altered such that destructive or constructive
interference takes place. If the signal along the other pathway is propagating through a
sample of an unknown compound or an unknown device its transmission properties can
be investigated. These two suggestions are meant to exemplify promising applications
of tunable signal velocities. We emphasize that the tuning can be done very fast on the
time scales on which the gate voltages can be changed.

To obtain an idea of the order of magnitude of the delays we assume the conditions used
for Fig. 3.32(b), but with only IV, = 20. Note that samples with less units are also eligible.
However, 20 units maintain a certain periodicity and thus are related to our framework
with a discretized BZ. For simplicity, estimated values are used. The sample length is
L, =~ 3 um and we consider the broader dip because its less susceptible to imperfections.
For ;1 = 8 meV the undecorated strip of graphene displays a velocity vp = 12000 m/s.
It will be reduced by a factor of 20 down to vp = 600m/s in the minimum of the dip.
The time required by a signal to propagate along the edge is delayed from 0.25ns to 5ns.
This change of transmission time is readily detectable.

We are aware that the calculations presented in this thesis assume idealized conditions.
For instance, zero temperature and small samples without imperfections or disorder.
So further research is called for to address these points as we did already for the non-
relativistic IQHE, see Sec. 3.1.4. Nevertheless, the origin of the predicted effect is clearly
elucidated and does not rely on subtleties of the model, for instance the shape of the bays
does not matter as long as the bays host local modes. With state-of-the-art techniques,
the IQHE can be detected in graphene samples which are not smaller than 3 x 3 pm?.
For smaller samples, imperfections and disorder spoil the Hall states. As long as the
IQHE can be observed and the properties of at least one of the edges can be externally
controlled, tuning of the signal velocity will be within reach.

The key message is that graphene represents a promising material to realize the IQHE
with externally tunable dispersions of the edge states on the basis of today’s technology.
Tailoring of the edges is an exacting prerequisite. These results should trigger further
studies, including experimental ones, paving the way towards tunable signal velocities.
As an outlook we point out that further work on the influence of imperfections, disorder,
and the presence of the spin degree of freedom are in order. The latter opens up particular
applications in spintronics.
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4. Topological properties of BiCu,POq

Parts of this chapter are submitted for publication . Leanna Miiller and I used a
directly evaluated enhanced perturbative continuous unitary transformation (deepCUT)
program, which has been developed by Holger Krull and Nils A. Drescher, in order to
describe BiCuyPOg. Leanna Miiller contributed to the manuscript and to the interpre-
tation of the results. I wrote the main part of the submitted manuscript. Furthermore,
I created all figures, dispersions and calculated the shown data.

4.1. General context

Recently, quantum magnets received much attention, in particular magnetically ordered
systems [162H167]. But also a disordered valence bond crystal in a dimerized quantum
magnet displayed topologically non-trivial behavior , . Still, the number of
established compounds displaying topologically non-trivial magnetic excitations is ex-
tremely limited and therefore novel topological compounds are of great interest. In par-
ticular, no candidate for a magnetic system displaying a quantized Zak phase in one
dimension has been put forward yet.

Hence, the first of two key goals of the present chapter is to establish the existence of
such a non-trivial topological phase in BiCu,POyg, which represents a quasi-1D quantum
antiferromagnet . The second goal is a general one reaching beyond the particu-
lar material BiCuy,POg since it concerns the existence of localized edge states. Often, the
bulk-boundary correspondence is interpreted such that topological non-trivial invariants
imply the existence of localized modes. We show that for the localization of edge modes
generically the existence of an indirect gap, i.e., a finite energy difference independent
of momentum, is necessary. In contrast, the existence of a topological phase only re-
quires the bands to be separated, i.e. the existence of a direct gap at each momentum is
sufficient.

Since BiCu,yPOy is essentially a one-dimensional system, the Berry phase qualifying for
a topological invariant is the Zak phase 2 . It can take any value between 0 and 27
(© € ]0,27)) because it measures the scalar product exp(if2) = (2|1) between a quantum
state |1) at wave vector 0 and the quantum state |2) taken to wave vector 27 by parallel
transport. For inversion symmetric systems the direction of parallel transport does not
matter so that (1|2) = (2|1) holds and Q can be either 0 or 7. Importantly, the Zak
phase has been related to edge modes in strips of graphene . It has been measured
in systems of ultracold atoms in 1D optical lattices and in twisted photons .
A related, but different topological invariant is the winding number, which is discussed
in Sec. 4.5.
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4.2. Structure and model of BiCu,POg

The crystal structure of BiCu,POy is displayed in Fig. 4.1. The orthorhombic unit
cell is classified by the Pnma space group with the lattice parameters @ = 11.776 A,
y = 5.1776 A, z = 7.7903 A. From the crystal structure we can see with the naked eye
the zigzag ladder structure formed by the copper ions which host spin momenta S = 1/2.
The magnetic properties are primarily described by the copper ions. There are two types
of copper ions Cup and Cup alternating along the ladders due to differing positions
relative to the surrounding bismuth ions . If this inequality is taken into account,
the mirror-symmetry along the ladders is broken. The absence of an inversion symmetry
about the midpoint between the copper sites allows the presence of anisotropic couplings,
see below.

e

7 [
e Cup

® -

P Y

Figure 4.1: Crystal structure of BiCuy,POg. The unit cell is shown by black lines and
has an orthorhombic structure type. The inequivalent copper ions Cup and Cup form
coupled spin ladders. For clarity the phosphorus and oxygen ions are neglected.

The compound BiCu,POg is a low-dimensional quantum antiferromagnet of which the
ground state is a valence bond solid. The valence bond solid and the quantum spin liquid
are paramagnetic ground states. BiCu,POg does not show magnetic order, but it has
a finite spin gap, a finite spin-spin correlation length and elementary spin-1 excitations
which are clear pieces of evidence for a valence bond solid states. The spins are coupled
antiferromagnetically in dimers interacting via further couplings [[70{172} [I74] [175]. All
couplings are considered to be antiferromagnetic. The coupled dimers form a tube-like,
frustrated spin-1/2 Heisenberg ladder as shown in Fig. 4.2(a). The 1D spin ladders
form stacked layers with weak, but still measurable interladder couplings in each layer,
see Fig. 4.2(b). The couplings between layers are negligible . The dominating cou-
plings are those along the spin ladders. The large atomic number (Z = 83) of bismuth
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Figure 4.2: Spin model of BiCu,POg. (a) The tube-like structure realizes 1D frustrated
spin ladders with two copper sites Cuy and Cup. The different bonds represent different
isotropic Heisenberg couplings. In the case of the minimal model the difference of copper
sites is neglected so that Jo = J5 holds. (b) Interladder isotropic Heisenberg coupling J3
between adjacent spin ladders forming a weakly coupled two-dimensional system. (c)
Dzyaloshinskii-Moriya couplings of BiCu,POg. Short violet arrows display the orientation
of the DM vectors in D;;(S; x S;) where the sites i and j are primarily ordered with
ascending y-coordinate and secondarily along z-coordinate; their length is not to scale.
Inversion symmetry exists about the centers (black diamonds) of the plaquettes; reflection
about the black dashed center line is a symmetry of the isolated, isotropic spin ladder.

induces a strong SOC so that the resulting magnetic exchange coupling is anisotropic
with an important antisymmetric Dzyaloshinskii-Moriya (DM) coupling and con-
comitant symmetric coupling I' . The antisymmetric DM coupling results in
first order from the SOC, whereas the symmetric coupling is of second order. Note that
bismuth does not host a spin, but it is part of the superexchange path between the copper
ions.

The Hamilton operator reads

H = Z(J”Sl . Sj + Dij . (Sl X SJ) + ZFZﬁS?S]ﬁ) s (4.1)
i<j a,p

where bold symbols represent vectors and S denotes the spin vector operator. The
couplings J;; are equal to Jy,Ji,Jo, and J3 as shown in Fig. 4.2(a). Experimentally,
it is confirmed that Jy > J3 so that the spins coupled with Jy form dimers. Hence,
Jo is the dominating intradimer coupling while J3 describes the interladder coupling.
The intraladder couplings J; and Jy or Jj are the NN and NNN interdimer couplings,
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respectively. The Ji couplings from a zigzag leg while the .Jo couplings form straight legs.
The combination of Jy, Jo and Jj realizes a triangular structure on the lattice which
is responsible for the frustration in the antiferromagnetic spin system. The difference
between Jy and J} stems from the coupling between the inequivalent copper ions. Further
possible Heisenberg interactions of equivalent copper ions between neighboring legs Js
and Jg were also taken into account, where we assume the coupling strengths J; and Jg
from first-principles density-functional theory calculations . However the J; and Jg
couplings are neglected in the following due to the vanishingly small contribution.
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Figure 4.3: Best fit of the one-triplon dispersions obtained for Jy = 9.4meV,
J3=15meV, J; = 1.2Jy, Jo = 1.09Jy, DY = 0.58Jy, DY = 0.73.Jp, 50 = —0.02J,
and DY = 0.02Jy. Components not listed are zero. The symbols with error bars show
the inelastic neutron scattering data . The legend denotes the Zak phases (m,0) and
(0,0) of the modes in k- and [-directions, see main text. The plus and minus signs at
the time-reversal invariant wave numbers 0 and 7 indicate the parities of the modes with
respect to the inversion symmetry.

The elementary excitations of the spin isotropic ladder are dispersive triplons, i.e.,
hardcore S = 1 quasi-particles |[180] with the bilinear Hamiltonian

inso. ladder __ Z Wo(k)t?th ’ (4.2)
k,a
where tg’T creates and tg annihilates a triplon with wave vector k and flavor « € {z,v, 2},

respectively . The dispersion wy(k) is determined systematically by continuous uni-
tary transformations in real space and Fourier transformation. The basic concept
of continuous unitary transformations (CUTs) is to simplify a complex initial Hamilto-
nian by applying continuous unitary transformations, i.e., gradual basis changes .
This goal is achieved by setting up a set of differential flow equations with renormalizing
properties for running coupling constants. We use this approach to systematically derive
Hamiltonians expressed in terms of creation and annihilation operators of elementary
excitations, here triplons.

94



Structure and model of BiCuyPOg

This isotropic model leads to a six-fold degenerate triplon spectrum with six modes
due to spin degeneracy and two dimers per unit cell which is at odds with experiment.
This discrepancy with the experimental data emphasizes the importance of the DM terms
breaking the spin isotropy. In order to include spin anisotropic terms and the interladder
terms we transform not only the isotropic Hamiltonian from the representation by spin
operators to the representation by triplon operators, but also the spin operators .
This allows us to express also the remaining parts of the Hamiltonian, the DM couplings
and the interladder couplings, in terms of triplon operators. The resulting expressions are
normal-ordered and the bilinear terms are kept yielding a mean-field description of the
elementary magnetic excitations of BiCuy,POg. A discussion of trilinear and quadrilinear
interaction terms is provided below.

The anisotropic spin couplings are vital for lifting the spin degeneracy of the triplon
modes [L70H172|. It is established that the antisymmetric DM and the symmetric T’
coupling have to be considered together . In leading order we use

op _ DYDY 5°%(Dyy)?
K 2Jij 6.]1']‘ ’

(4.3)

which results from deriving the anisotropic exchange from a Hubbard model with SOC.
The parametrization is chosen such that F%’B does not comprise an isotropic component
because it is included in the Heisenberg coupling J;;. The possible directions of the DM
vectors are constrained by the point group symmetries of the lattice, see App. A. The
symmetry of BiCuyPOg is higher if we neglect the difference between the two copper
sites, see Fig. 4.2, dealing with a slightly simplified model which we call the minimal
model . In this minimal model, the DM vectors can have components as shown in
Fig. 4.2(c) compatible with the Moriya symmetry rules . If the difference between the
Cu sites is taken into account, the symmetry is reduced ; the possible DM vectors are
given in App. A. But the additionally possible DM components are rather small because
the copper sites are not very different electronically. Hence, we focus on the minimal
model in the following.

The complete bilinear triplon Hamiltonian in momentum space is represented in a
generalized Nambu notation (up to unimportant constants) as

1 i
— §Zak,lﬂk,lak,l , (4.4)
ol

where the wave number k corresponds to the direction along the ladders while [ cor-
responds to the perpendicular direction, see Fig. 4.2(b). For brevity of notation, we
combined the bosonic triplon operators into a column vector

T 4T T
akt = (Lp by tT_k,_p tT_k_m_l) (4.5)

with twelve components. Each bold face symbol stands for the three-dimensional vector
te = (7 l7tk »t5,) 7 and t,:l = (t,ﬁ’},t%’},t“) In this way, the Hamiltonian is described
by a Hermitian 12 x 12 matrix

A(k,1) B(k,1)

Het =\ Bt(e,1) AT (—k,—1)

(4.6)
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where the matrices A(k,1) = Af(k,1) and B(k,l) = BT (—k,—1) are 6 x 6 matrices. Note
that ay; and thus Hj; are modified relative to Ref. |[184] in order to consider momentum
conservation. Further simplifications are discussed in App. B.

The eigenenergies and eigenmodes are obtained by a bosonic Bogoliubov transforma-
tion @ leading to H = 3°,, . ; wa(k, l)bL 1o1n, k1 Where the index n labels the six different
modes at a given wave vector (k,[). Th’e7Bogoliubov transformation is based on usual
bosons without the hardcore property. This is justified because the essential hardcore
effects are considered in the transformation of the isolated spin ladder . The
one-triplon dispersions wy, (k,1) are used to fit the inelastic neutron scattering (INS) data
by adjusting the couplings (Jo, Df;) keeping the ratios Ji/Jo = 1.2, Jo/J1 = 0.9 and
J3/Jo = 0.16 fixed, because these ratios are determined by the experimentally deter-
mined wave number k, where the gap A occurs and by the ratio between the measured
lower maximum w(k = 7,! = 27) and the gap A of the z-mode [171].

The dispersions in k-direction in Fig. 4.3 agree very well with the experimental data at
low energies. There are discrepancies at higher energies, in particular the downturns of
the modes given by the blue and green symbols. They can be explained qualitatively by
hybridization of the single modes with two-triplon states, i.e., by decay processes
which would appear as trilinear triplon terms in the Hamiltonian. This appears to be a
serious caveat, but the description on the one-particle level in the minimal models can be
justified by the following arguments: (i) The energetically low-lying bosonic modes are
protected by the finite energy gap so that perturbation theory is valid. Hence any coupling
not considered in the single-particle description will only distort the states continuously
so that discrete topological invariants will not be altered. (ii) The topological twist
causing the finite Zak phase computed below stems essentially from the region in k-space,
namely the vicinity of k = 7/2 and 37 /2, see Sec. 4.4, where the single bosonic modes are
energetically low-lying, well-defined and provide a reliable description of the experimental
data without trilinear or quadrilinear terms in the Hamiltonian. Hence, the calculation of
the Zak phase within the minimal, bilinear model stands on a firm basis. In addition, it
is computed in two ways, namely by direct computation of the phases of quantum states
and by consideration of the parity of states with respect to inversion, see next section.

4.3. Berry phases in bosonic systems

To assess the topological properties of bosonic bands the Berry connection needs to be
generalized to bosonic systems. Even for non-interacting bosons this is not trivial. While
for fermions the scalar product of quantum states can be naturally transferred to fermionic
operators because a fermionic Bogoliubov transformation is unitary, this does not hold
for bosonic operators and transformations. For bosonic systems a symplectic product
((k1,m1| k2,m2)) is required. We define the generalized ket by the complex prefactors u
and v (see App. B) of the normal bosonic operators

T =T T =T \T
|k, n)) = (Un,k,b un,k,l?”n,k,lvvn,k,l) ) (4.7)

where each bold symbol corresponds to a 3D vector such as u = (u”, u?, uZ)T. Using the
generalized notation, we can then define the symplectic product (see App. C for more
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details) for a bosonic system by

((k1,n1] k2, n2))

T ot > _ =1 -
Ui k1 Yng ko o +un1,k1,l1un27k2,lz Uni ki Pnoskasls — YUng ki Unokasls (4'8)

Based on this symplectic product, the standard relations for the Berry connection
Ap symn(k) = i{(k,n| Vi [k, ) (4.9)

and the Berry phase
= § Au(k)d =i § (k] T k) d (4.10)

can be kept. If the closed path in the above equation encompasses the BZ, Q,/(27)
defines the Chern number. The Chern number in BiCuy,POg4 remains trivially zero even
if magnetic fields are included because the material is essentially one-dimensional.

The characteristic Berry phase for one-dimensional systems is the Zak phase .
It is computed in one direction in the periodic BZ . Due to the periodicity in k- and
l-space the closed loops k — k + 27 or | — [ + 27 both allow us to define Berry phases.
They can be averaged over the respective other wave vector yielding the vector

1
P- —/Aﬂ,sym dkdl . (4.11)
2w

Its value for each triplon band is given in the legend of Fig. 4.3. The z-mode remains
topologically trivial P = (0,0) while the coupled z-y,- and z,-y-modes display the Zak
phase P = (7, 0), for computational technicalities see App. D. The numerical calculations
result a non-trivial phase in the ladder direction, but not perpendicular to it.

One may worry that the dispersion branches of z-y,- and y-z;-modes are not separated,
and even intersect at k = 7/2 and k = 37w /2. These intersections are clear crossings so
that one can track the states easily by following the differentiably evolving dispersions.
As a result, the Zak phases are well-defined. In addition, we studied what happens if a
small perturbation, here a magnetic field, lifts the degeneracy at the intersections and
converts the crossings to anti-crossings. But since the modes all have the same Zak phase
this braiding is trivial and does not make a difference. Thus the Zak phases are robust
and remain unaltered.

The [-dependence in the investigated minimal model mainly enters via the isotropic
term J3 cos(l), which does not alter the eigenmodes since this term is proportional to
unity. The small Df and the even smaller I'§® barely have an impact on the dispersion
and on the eigenmodes so that they do not influence the topology. We checked that even
larger values of Df and I'T* do not induce a non-trivial Zak phase in [-direction or a
finite Chern number. So they not influence the topology. The Zak phase is constant for
all values of [, being either zero or 7. It is pinned to these particular values in BiCuyPOyg
because the system is inversion symmetric, see Fig. 4.2(c). The transformation operator
of inversion is given by the matrix Z = diag(1,1,1,—-1,—-1,—1,1,1,1,—1,—1, —1) with
7? = 1, which transforms IHy T = H_j _; and hence ensures the quantization of the
Zak phase as multiples of 7.
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We stress that the Zak phase is robust, i.e., small changes of the model do not alter
it. For instance, it remains the same if we pass from the minimal model to the extended
model accounting for different copper sites. This can be done by including couplings which
are allowed for different copper sites. Similarly, one may reduce the values of D{ and
DY even by a factor of 2, cf. Ref. , and still obtains the same Zak phase. Moreover,
the substantial twist leading to the non-trivial Zak phase stems from the vicinity of the
minima of the dispersions, i.e., the low-lying modes matter most. It is crucial that the
DM components DY # D{ are different in order to have a non-trivial Zak phase. If they
are equal, the topological bands are no longer separated so that either no Zak phase can
be defined or it is trivial. But DY # DY is required in order to fit the experimental
data. This becomes clear upon analyzing the effects of DY and D} mediated by their
symmetric couplings I'Y* and I'YY on the dispersion . If both parameters were equal,
the corresponding dispersions would be the same as well. This is the crucial point: the
experimental data shows that the two lowest-lying modes differ. Hence the values of
the components Df and DY must be different. Furthermore, the quantized Zak phase
persists in the presence of applied magnetic fields which do not close the spin gap above
the ground state. This insensitivity results from the fact that the Zak phase is generated
by the coupling between the k and k + 7 wave vectors. Thus, terms coupling at the same
wave vectors such as uniform magnetic fields do not destroy it. As mentioned above, even
lifted crossings do not change the Zak phases.

The wave vectors with k,[ € {0, 7} are invariant under inversion so that states at these
values have a well-defined inversion parity denoted by “+4” and by “~” in Fig. 4.3. The
product of the parities at £k = 0 and k = 7, both at [ = 27, equals the exponential of the
corresponding Zak phase in perfect agreement with the direct computation of the
Zak phase in k-direction. This alternative route to the Zak phase strongly corroborates
our finding that BiCu,POg is the first low-dimensional quantum magnet with a finite
non-trivial Zak phase.

4.4. Berry curvature in BiCu,POy

The Zak phase is computed from an integral of the Berry connection A, ¢ym(k) in
Eq. (4.9) which depends on the gauge used for the normal bosonic operators. Chang-
ing the gauge changes the Berry connection in its dependence on the wave vector k
without changing the integral, i.e., the Zak phase. Hence, it is a priori not clear from
which regions in the BZ the topological behavior results. Two arguments, however, show
that the topological non-trivial Zak phase results from the vicinity of the minima of the
triplon dispersions.

First, we consider the process of switching on the DM interactions. Without them there
is no finite Zak phase. The DM terms couple the z-mode at k with the y-mode at k + 7
and vice versa. The degeneracy between the two modes of the z-y,-modes at k = 7/2
and at k = 37/2 is lifted by the DM terms (see green lines in Fig. 4.3). The same holds
for the two modes of the y-xz;-modes (see blue lines in Fig. 4.3). The significant band
mixing and splitting at k = 7/2 and at k = 37/2 is the driving mechanism of the finite
Zak phase. Hence, the vicinity of these points in the BZ is decisive for the topologically
non-trivial behavior.
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Figure 4.4: The Berry curvatures of the three lowest triplon dispersions calculated for
Jo = 94meV, J3 = 1.5meV, J; = 1.2Jy, Jo = 1.09Jy, Df = 0.58Jy, DY = 0.73.Jy,

50 = —0.02J, DY = 0.02Jy, hy = 0.1T, and hy = 0.1T. The curvatures in the
panels (a) and (b) show high peaks which are located in the vicinity of k¥ = +7/2 and
corresponds to the mixed xy-bands. In contrast, panel (¢) shows only a small curvature
which corresponds to the topologically trivial z-mode.

Second, we study the Berry curvature
Fo(k,l) =1 {(&f«kvl?n‘) (81 ‘kvl7n>>) (8[<<k,l,n|> <8k ‘k7l7n>>)} ) (4.12)

which is a gauge-independent quantity and thus suitable to investigate from which region
non-trivial behavior results. All modes in the calculated dispersion of BiCuyPOg4 show
degenerate crossing points at k = 7/2 and k = 37 /2. These degeneracies prevent the
unambiguous definition of the Berry curvature. In order to be able to define a unambigu-
ous curvature we add a small magnetic field in z- and y-direction h = h(1,1,0)" which
lifts the degeneracies leading to six well-separated bands. Mathematically, the required
magnetic field can be chosen infinitesimally small; for computational stability we chose
h = 0.1T. The Zak phases do not change upon adding this small magnetic field. The
Berry curvatures of the three lowest bands n = {0, 1,2} are shown in Fig. 4.4. While the
summation over the whole BZ vanishes so that the Chern number is zero, it is evident
that the strong topological twists result from the vicinity of the original degeneracy points
around k = 7/2 and k = 37/2. This is the region where the triplon dispersions are low
and the agreement with experiment is very good. This piece of evidence supports the va-
lidity of the minimal model for the determination of topological phases in spite of missing
features such as the downturns in the dispersions close to two-triplon continua |170].
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4.5. Winding number w

In Sec. 4.3, we focused on the Zak phase because it is based on a Berry phase and can be
defined for any one-dimensional system regardless the preserved symmetries. But there
is another often considered topological invariant in one-dimensional systems, namely the
winding number .

The winding number counts the number of windings around a point in a two-dimensional
plane of parameters. For this concept to make sense, the Hamiltonian must have an
additional symmetry, conventionally called chiral symmetry, so that in the eigenbasis
of the chiral symmetry the Hamiltonian matrix becomes block off-diagonal. The pres-
ence of a chiral symmetry is an elementary requirement for the definition of a winding
number. A pseudo-spin representation can be used to illustrate the winding tracking
the endpoint of the pseudo-spin vector upon varying the wave vector from k£ = 0 to
k = 2mw. The chiral symmetry pins the vector to a two-dimensional plane of parameters,
see Refs. .

Such a chiral symmetry can be found for the minimal model of BiCu,POg, i.e., ignoring
the difference between the copper sites. But we were not able to find a chiral symmetry for
the extended model accounting for different copper sites. The winding numbers w found
for the z-y,- and z,-y-modes both take the non-trivial value w = —1 with respect to
the k-dependence. This is in accordance with the calculated Zak phases. We emphasize,
however, that the Zak phase is a far more general concept because its definition and
computation do not require an additional symmetry.

In the case of the established minimal model for BiCuy,POg, the Hamiltonian shows the
above discussed additional chiral symmetry allowing us to calculate the winding number
if we make harmless approximations. Here we discuss the details of this calculation.

In the minimal model with D§ = 0, the 12 x 12 matrix in Eq. (4.6) or in Eq. (B.la)
in App. B can be split into 4 x 4 matrices, simplifying the subsequent analysis which is
performed similarly to the one in Ref. . To this end, we focus on the xz-mode and its
coupling to the y;-mode. Since all couplings which are proportional to the 4 x 4 identity
matrix do not alter the eigenmodes, they do not alter the topological properties and are
therefore omitted. The contributions proportional to o, ® 1 only lead to small variations
of the energy dispersion and we neglect them in a simplifying approximation. We checked
that their omission has no impact on the Zak phase. We expect that the winding number
similarly is not changed by the couplings proportional to o, ® 1, because their effect on
the dispersion is small compared to the gap between the z-y,-modes (see green lines in
Fig. 4.3). Thus the topological invariants have to remain since no gap has closed. The
same is assumed for the inclusion of small values of DY.

Thus, for simplicity, we consider the Hamiltonian of a single ladder

1
H = 2%:(1};Hkak (4.13)
with the Nambu spinor ay = (tf,t]_ ., tf’,t, tyi’;iiﬂ)T and the 4 x 4 matrix
_ |C(k) C(k)
Hy, = [C(k) el (4.14)

where the 2 x 2 matrix C' is parametrized by Pauli matrices o = (04, 0y, 0.) according
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to
C(k) = d(k) - o (4.15a)
do(k) =0, dy(k) = T (k) — D3(k) (4.15D)
2
d. (k) = % SO R) — TW(k + 7)) (4.15¢)
=0

Then, the chiral symmetry operator is easy to identify as 1 ® o,. It fulfils the anticom-
mutator {1 ® o,, Hy} = 0. In order to calculate the winding number we transform the
Hamiltonian into the eigenbasis of the chiral symmetry operator. This is achieved by the
unitary transformation

1 0 1 0

1 1 0 -1 0
U=2lo1 0 1 (4.16)

01 0 -1

In this basis, the Hamiltonian matrix nHj) with the metric n» = o, ® 1 has a block
off-diagonal form

Hy = Ul (nH)U (4.17a)
_| 0 Di(k)
— [Di‘ ) 10 ] . (4.17b)

The matrix D; (k) is given by

_ [ du(k) +idy(k)  d.(k) + idy(k)
Dalk) = (—dzaz)—idy(k) ~d. (k) — idy (F) (4.18)
and the winding number [18§] is calculated by
1
= _— ¢ dkTry (D7 '0xD — (D" 719, DT 4.19
w=gst, 1"2( o ()k) (4.19)

with D = (Dy(k) + D{ (k))/2. By construction, the winding number is quantized to
integer values w € Z. For the investigated mode we find w = —1.

The same analysis can be performed for the y-mode coupled to the x;-mode yielding
the same winding number. In contrast, the z-mode only displays the trivial winding
number w = 0, because it does not couple with another mode. Hence, it cannot be
twisted or wound in any way.

A chiral symmetry of the general 12 x 12 matrix including all possible contributions
could not be identified so that we could not define a winding number in general.

4.6. (Non-)Existence of edge states

We are looking for a smoking gun signature of a non-trivial Zak phase. The important
bulk-boundary correspondence in its conventional interpretation states that at the
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boundaries between topologically non-trivial and trivial phases localized states must exist
closing the gaps between the topologically distinct bands. Otherwise, the abrupt change
of discrete topological invariants cannot be accounted for. These so-called edge states
should exist at the ends of strips with a finite discrete Zak phase or a finite winding
number in the bulk. Hence, we are looking for localized edge states at the
ends of finite strips of the minimal model for BiCuy,POg. Much to our surprise, we did
not find any localized edge states.

(a) (b) :
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Figure 4.5: (a) Extrapolation of the largest IPR in the minimal model for BiCu,POyq
clearly indicating that all states are extended and no localized edge states are present.
(b) Sketch of a direct gap Agi at the red arrows and of an indirect gap Aj,q at the blue
arrows. A direct gap is the minimal difference between the maximal energy of a lower
mode and the minimal energy of an upper mode at the same momentum. In contrast,
the indirect gap is given by a forbidden energy interval (shown in yellow) between two
modes irrespective of momentum conservation.

We studied the localization of all states quantitatively by computing the inverse partic-
ipation ratio (IPR) [190], which is a standard measure for localization. To this end,
we calculate the eigenstates of a finite piece of chain with open boundaries in y-direction
while we maintain the periodic boundary conditions in z-direction so that the IPR can be
determined for each of them. We assume the same coupling constants as used for the fit
of the INS shown in Fig. 4.3. If the IPR tends to zero for increasing system size the state
is extended; if it stays finite the corresponding state is localized. We use the definition

I, = Zpgz,i = Z |<<TL,’L| n, Z>>|2 (4'20)

adapted to the bosonic symplectic product and find that all I,, — 0, see Fig. 4.5(a). This
is shown by studying the largest IPR in a finite chain segment. Fig. 4.5(a) extrapolates
this largest IPR by a linear function of the inverse system size. Obviously, the largest
IPR decreases monotonically to zero and hence all IPRs vanish in the thermodynamic
limit.

This puzzling fact can be explained by three arguments. First, the usual argument of
bulk-boundary correspondence requires the existence of states within the band gaps
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of the topologically non-trivial bulk systems; let us call them in-gap states . But
there is no argument which requires that these states are localized. The localization is
plausible because their energy lies within a gap and they are induced by the boundary,
but there is no compelling reason for their localization.

Second, the energy of most localized edge states lies in an indirect gap, i.e., inde-
pendently of momentum conservation they are protected by energy conservation, for an
illustration of direct and indirect gaps see Fig. 4.5(b). If there is an indirect gap, the
energetic protection persists even if we sum over all wave vectors, for instance to compute
local densities of states. In contrast, in absence of an indirect gap the energetic separation
of the in-gap states from the bulk states is only ensured by the conserved momentum #hk.
We stress that introducing boundaries, for instance in y-direction, lifts the conservation
of momentum so that generically the momenta hybridize and the in-gap states mix with
scattering states in the continua and thereby the in-gap states delocalize. Even at this
stage, one may wonder whether the in-gap states are localized or not. If the boundary
had only the effect to reflect the incident triplon it would only mix k£ and —k and a
direct energy gap were still sufficient to induce localization. Yet this is not the case in
BiCuyPOg where the bands are separated by direct gaps, but not by indirect gaps. It is
known that this mechanism weakens localization in ordinary quantum systems
and the localization length has been linked to the precise momentum dependence of the
dispersion in topological insulators with direct gaps . Recently, it has been shown
that localization of edge states may persist in a topological system if the hybridization
is sufficiently suppressed by various symmetries . We emphasize, however, that
the outstanding significance of indirect gaps has not been mentioned in the literature.

The third argument resides in the independence of the topological invariants in the
bulk on the eigenenergies. The vector potential (4.9) and hence the Berry phase (4.10)
depend on the etgenmodes only. But they are blind to their eigenenergies, i.e., to the
dispersions. Thus, one can modify the Hamiltonian leaving the eigenmodes and the
topology completely unaltered while shifting the dispersion energies arbitrarily. But such
changes have an effect on the edge modes if boundaries are introduced . We illustrate
this point in the next section in a particularly transparent and well-established model,

the SSH model [197].

4.7. (De-)Localization in the Su—Schrieffer—-Heeger model

Since the topology of bosonic systems is still less known and the model for BiCu,POy is
rather intricate we want to support our hypothesis on the delocalization of edge states
by a transparent calculation for an established and well-known fermionic model, the SSH
model . In this paradigmatic model, we show explicitly that adding a coupling which
does not alter the eigenstates can delocalize the edge modes. If the indirect gap vanishes,
the edge modes become extended, i.e., they are no longer modes at the edge in the proper
sense.

We consider the SSH model and extend it slightly by the coupling u between NNNs,
see Fig. 4.6. Its Hamiltonian reads

N
Hssu = (”CI,BCZ',A + U’CIH,ACLB + “CIH,AQ',A + “CzT'+1,BCi,B) +he (421

7
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Figure 4.6: Lattice of the extended SSH model with intracell coupling v, intercell cou-
pling w between NNs and intercell coupling u between NNNs. The unit cell comprising
sites A and B is displayed by the yellow area.

where ¢; o is the fermionic annihilation operator at site A of unit cell ¢ and ¢; g the
corresponding fermionic annihilation operator at site B. The creation operators are the
respective Hermitian conjugates. All three couplings are real and shown in Fig. 4.6. The
Hamiltonian Hggy is particle-conserving.

In the bulk or for periodic boundary conditions Fourier transformation yields

Hosu = » (CLA, C;TC,B) Hj, (Zk’A) (4.22a)

k k,B

[ 2ucos(k) v+ we
Hi = <v +we ™k 2y COS(k)) ' (4.22b)

where the lattice constant a is set to unity. The ensuing dispersion is

En(k) = 2ucos(k) + /v? + w? + 2vw cos(k) (4.23)

with n € {1,2} corresponding to the + sign in front of the square root. The dispersion
branches are depicted in the upper row of Fig. 4.7 for v = 0 and the indicated ratios u/w.

On the one hand, the eigenstates are the same as in the usual SSH model without NNN
coupling u since the additional coupling leads to a modification of the matrix Hj propor-
tional to the 2 x 2 identity matrix 2u cos(k)ls. For this reason, we call the coupling u
isotropic. The induced modification does not change the eigenstates at all. Hence, the
extended SSH model shows the same Zak phase and the same winding number as the
non-extended SSH model.

On the other hand, however, the numerical analysis of a finite piece of chain with
open boundary condition reveals that the localization of the edge states is not protected
against the isotropic coupling despite the fact that the direct gap does not close so that
the two bands remain separated, see Fig. 4.7. By the naked eye one already discerns
that the wave function with the largest value of the IPR defined in Eq. (4.20), see also
Refs. , is localized if the energy of the edge modes lies well within the indirect
gap. But upon decreasing the indirect gap to zero for v — w/2 the IPR also drops to
zero in the thermodynamic limit N — oo. Then, it is obvious that the corresponding
states are no longer localized. These findings are in agreement with the investigation of
the localization length shown in App. E. We emphasize that this does not contradict the
logic of the bulk-boundary correspondence which requires that the energy gap has to close
at the boundary to another phase with a different quantized topological invariant .
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Figure 4.7: Delocalization of the edge states illustrated for v = 0. The three rows show
from top to bottom: the bulk dispersion, the eigenvalues of a finite piece of chain with
open boundaries consisting of 200 unit cells and the probability density [v; a|* + |1 5/
of the eigenstate ¢ with the highest IPR given in the legend of the lower panels (g)-(i).
The three columns refer to different ratios u/w. For u = 0.45w, the two edge modes lie
within the indirect gap and are well localized. The case v = 0.50w is marginal and for
u = 0.55w no indirect gap exists anymore. Concomitantly, no localized modes exist. But
the two bands continue to be clearly separated and hence well-defined.

The IPR is the standard measure of localization in perfect agreement with the computed
eigenstates shown in the lower row of Fig. 4.7. But it may be argued that remnants of
localization persist in local spectral properties to which many eigenstates contribute. The
local density of states at the ends of finite chain pieces is a promising candidate to display
fingerprints of localized edge states. Three representative results for the local density of
states at the chain ends of the SSH model are displayed in Fig. 4.8. In the regime of finite
indirect energy gaps where the IPR confirmed a localized edge state a clear resolution-
limited peak, a §-peak, is found, see upper panel. But it is obvious that the delocalization
of this in-gap state is accompanied by the broadening of this d-peak which reduces to
a diverging singularity in the marginal case v = 0.5w, where the indirect gap has just
closed. In the region where the indirect gap does not exist (or is negative, depending
on the definition) no divergence occurs, but only a broad feature is present, which is
reminiscent of the density of states of a miniband due to its Van Hove singularities at
the edges. Hence our conclusion is corroborated that the bulk-boundary correspondence
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Figure 4.8: Local density of states at one end of a finite piece of chain of the SSH
model in (4.21). Panel (a) displays the case where the indirect gap is still finite: a clear
resolution-limited d-peak occurs at zero energy. Panel (b) displays the marginal case
where the indirect gap has just vanished. Clearly, no d-peak is present, but there is still
a prominent peak which is no longer resolution limited, i.e., it has an intrinsic width.
Panel (c) displays a case where no indirect gap is present. Interestingly, a broad feature
occurs, which is reminiscent of a one-dimensional miniband with slightly broadened Van
Hove singularities at the edges.

does not imply localization. Peak-like structures may persist in local spectral quantities,
but they differ qualitatively from the J-peak for positive indirect energy gaps.

4.8. Local dynamic structure factor in BiCu,POg

In the preceding section, we illustrated and supported our scenario by an analysis of the
(de-)localization of the edge modes in the paradigmatic fermionic SSH model for simplicity
and transparency. This analysis comprised the IPR and a local spectral property, the
local density of states.

Here we return to the quantum magnet BiCuy,POg. The IPR is analyzed and shown
in Fig. 4.5(a). It is the suitable measure for the localization of a single state .
Yet we want to extend the analysis to local behavior in spectral properties. To this end,
the local dynamic structure factor (local DSF) at the end of a spin ladder suggests itself.
It displays a d-function if there is a localized edge state. It vanishes if the edge state
delocalizes. But a certain residual peak made from many eigenstates could remain, see
Sec. 4.7 on the SSH model.
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To study potential spectral peaks, Fig. 4.9 displays the local DSF at the end of a finite
piece of spin ladder with 1000 dimers, i.e., 1000 sites for triplons, where the model for
BiCuyPOg is varied. At zero temperature, the DSF equals the imaginary part of the
spin correlation function x. The result for the actual model for BiCu,POg4 is shown in
panels (c) and (f). No sharp peak is discernible which could be related to a localized edge
mode. But it is a priori unclear where such a peak should be and whether a less specific
broad feature represents the remnant of localization, see previous section on the SSH
model. Thus, it is instructive to study the DSF of a modified model which has localized
edge modes and which can be continuously tuned to the minimal model of BiCu,POg.

To this end, we consider the following variation of the Hamiltonian. The dispersion of
the isotropic spin ladder in Eq. (B.4) is replaced by

wo(k) = 1.55 +ucos(k) . (4.24)

This choice leads to a finite indirect gap for which we expect localized edge modes. For
the Hamiltonian with v = 0, Fig. 4.9(a) shows the (resolution-limited) d-peak as it results
from the existing localized edge state. In contrast, setting u = 0.013554 as in Fig. 4.9(b)
leads to the marginal case of an indirect gap which has just vanished. Then, the DSF
still displays a peak even though it is not a resolution limited J-peak anymore. Clearly, it
has acquired a certain intrinsic width. If the dispersion is changed further to the realistic
one of the isotropic spin ladder so that BiCuyPOy is described, all traces of a peak are
completely gone, see Figs. 4.9(c) and (f). In order to be able to compare the various DSFs
and to assess their evolution, the three cases are shown in Fig. 4.9 (d)-(f) with the same
scale.

In essence, we conclude that in BiCuyPOg, a quantized Zak phase is present, but no
signatures of localized edge modes occur.
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Figure 4.9: The local dynamic structure factor (DSF) as a function of transferred energy.
Panels (a) and (d) show the case of localized edge states while panels (b) and (e) show
the marginal DSF for a closed indirect energy gap. Panels (c¢) and (f) correspond to the
expected local DSF in BiCuy,POg with negative indirect gap and without any traces of
localization. The difference between the panels (a)-(c) and the panels (d)-(f) consists in
the scales. The upper panels have adapted scales to show the details, in particular the

d-peak, while the lower panels use the same scale and thus show the total evolution of
the DSF.
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Conclusion

4.9. Conclusion

Two key results are presented in this chapter: One is material-specific while the other is
general.

The material-specific result is that we analyzed the INS data of BiCu,POg quanti-
tatively on the basis of a model of non-interacting triplons. This model describes the
low-lying magnetic modes very well. Discrepancies at higher energies are attributed to
decay and interaction processes which do not change the robust, quantized topological
properties. Due to the inversion symmetry of the system, the Zak phase is quantized in
multiples of w. We found that BiCu,POyg is the first disordered one-dimensional quan-
tum magnet displaying a finite, non-trivial Zak phase of w. This result was obtained
by two approaches: (i) direct calculation of the Zak phase and (ii) the study of the
parity of the modes at inversion symmetric momenta. In addition, the computation of
the winding number in Sec. 4.5 corroborates the conclusion of a non-trivial magnetic
topology. The finite Zak phase is a robust result since it essentially depends on the dif-
ference of the DM couplings D} and DY. This difference is required in order to describe
the slightly asymmetric dispersion around the crossing point at (k = 7/2,] = 2m) and
(k=3m/2,1 =2n) |L71].

The general result concerns the bulk-boundary correspondence which constitutes a fun-
damental concept in topological systems. We found no localized edge states in BiCu,POgq
in spite of the non-trivial Zak phase and the winding number. We explained this unex-
pected behavior by the delocalization of the edge modes due to a negative indirect energy
gap between excitation modes while the direct gap remains positive so that the bands are
well separated. Adding momentum dependent terms to the Hamiltonian which are pro-
portional to the identity does not change the the topology in the bulk, but they strongly
influence the localization in confined geometries. From this observation we deduced the
generic importance of a positive indirect gap in order to have localized edge modes. This
claim was supported by the analysis of an extended SSH model. We view this scenario
as generic because it occurs without particular interactions in typical, standard models
without any fine-tuning. To this end, we extend our observation of the vital importance of
a finite, positive indirect gap for the existence of localized edge modes in two-dimensional
Chern insulators as well. This is studied in the next chapter.

We stress that delocalization due to a negative indirect gap is generic although in
particular situations localization may be protected in spite of vanishing gaps. This is
known from systems without topological properties and from systems with
topological properties where further symmetries, e. g., conservation of momentum and
energy, can preserve localization although the edge state is coupled to gapless scattering
states in the bulk .

The crucial conceptual insight into the significance of a positive indirect gap has not
been appreciated before. It puts the bulk-boundary correspondence into perspective.
While the direct gap protects the topological properties in the bulk, it is not sufficient
to protect the localization of edge modes in confined geometries. Hence, the edge states
are extended and cease to exist as edge states in the proper sense of the word. Still,
they are in-gap states and as such in accordance with the derivation of the established
bulk-boundary correspondence .
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5. Delocalization of topological edge states

Parts of this chapter have been published in Europhysics Letters as a letter [191]. Gotz
S. Uhrig contributed to the manuscript and the interpretation of the results. I created
all figures and calculated all the data.

5.1. General context

The emergence of edge states in non-interacting topological systems is described by the
bulk-boundary correspondence [24H27| which relates finite discrete topological invariants
of the energy bands in the bulk to the existence of edge states at the boundaries of finite
systems. The underlying idea is as follows. The transition between two bulk systems (one
could be the vacuum) with different discrete topological invariants cannot be continuous
because of the discrete nature of the invariants. Thus there must be in-gap states which
link the bands of different topological invariants so that they can no longer be defined
for each band separately. Since this argument hinges on the existence of the boundary, it
is assumed that these in-gap states are localized at the boundaries, hence represent edge
states . For certain Hamiltonians this can be rigorously shown [24H26].

Such topological edge states can be found in topological insulators , topological
semi-metals , and topological crystalline insulators . Higher-order topological
insulators in 3D may not display surface states, but so-called hinge states! . In one-
dimension, there can be localized states at the chain ends . Recently, however,
we found in 1D that localized end states do not represent the generic scenario if the
indirect energy gap between the bands of different topological invariants vanishes .
While the direct gap Agi measures the energetic separation of two bands at a given
fixed momentum, the indirect gap Ajnqir measures this separation if momentum changes
are admitted. Clearly, Ajngir < Agir and a finite Ag;r are sufficient for the bands to be
well-defined. This surprising finding qualifies the bulk-boundary correspondence in the
sense that a finite direct gap does not suffice to guarantee the existence of localized edge
states.

Since 1D topological systems differ significantly from their higher-dimensional counter-
parts, the question arises to which extent the delocalization of edge states occurs in 2D
as well as if the indirect gap vanishes. The goal of the present chapter is to answer this
question by a representative proof-of-principle study.

5.2. Delocalization of edge states in the Haldane model

The fermionic tight-binding model proposed by Haldane as a first example of non-
trivial topological behavior without a magnetic field is a well-established model of a Chern

'Hinge states are gapless states at the hinges of a 3D system, while the surfaces are gapped and the
bulk states provides a topological invariant.
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Delocalization of edge states in the Haldane model

Figure 5.1: Infinite honeycomb strip in z-direction. NN hopping is depicted in black.
A unit cell consists of 2N sites in y-direction, shown in green. The sign of the phase in
NNN hopping is given by arrows, e.g., red arrows stand for —¢ and magenta arrows for
4. The lattice constant a is set to unity.

insulator due to its simplicity. Hence, we choose it as our starting point. By adding a
spatially anisotropic hopping, it is possible to close the indirect gap while leaving the
topological properties of the bands completely untouched. The Hamiltonian reads

H = HHaldane + Hdiag (51&)

HHaldane = t Z C;‘[Cj + 12 Zeil¢ f (51b)
(i.3) (i)

Hiag = th Zeil‘pc ¢ (5.1c)

((id))
T

where ¢; and ¢; correspond to the creation and annihilation operators at site i, respec-
tively. The hoppings on the honeycomb lattice are shown in Fig. 5.1. A pair of NN and
NNN sites is denoted by (i,j) and by ({7, j)), respectively. The hopping elements ¢, ts
and t}, are real and ¢ serves as the energy unit. The sign of the complex phase ¢ for the
to-hopping is positive for anti-clockwise hopping and negative for clockwise hopping, see
blue and red arrows in the plaquettes in Fig. 5.1.

The notation ((i, j)) in the additional Hamiltonian Hgiag restricts the hopping to NNN
in the y-direction. Therefore, it breaks the point group symmetry C3 of the bulk system.
The sign of its phase ¢ is positive in y-direction and negative in —y-direction. This
additional term may seem artificial, but it is suitable for the intended proof-of-principle
consideration. Its realization in ultracold atom systems appears feasible .

In reciprocal space the bulk Hamiltonian reduces to a 2 x 2 matrix due to the two sites
in a unit cell; it can be expressed in terms of Pauli matrices. One finds that Hgjag is given
by 2t cos(ky + @)oo where o is the identity matrix. Hence the t5-hopping only induces
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Delocalization of edge states in the Haldane model

Figure 5.2: (a) Dispersion for to = 0.2, ¢ = 7/2, ¢ = 0, and ¢, = 0 in the left panel
and for t§, = 0.6t in the right panel. (b) Dispersions as in (a) at k, = m. The magenta
and cyan dotted lines indicate ey, and epy v, respectively.

an energy shift without having any effect on the eigenstates at a given momentum. The
topological properties derived from the eigenstates such as the Berry curvature and the
concomitant Chern number m are preserved. The bulk dispersion, however, is altered
due to t.

On the left hand side of Fig. 5.2, we illustrate the dispersion for to = 0.2t and ¢ = /2
without 5. If ¢, is switched on at ¢ = 0 the dispersion changes significantly as shown
on the right hand side of Fig. 5.2. The direct energy gap at each given k-value does not
change so that the two bands stay well-separated. But the indirect gap is given by the
energy difference between the magenta and the cyan dashed line and hence vanishes and
becomes even negative as displayed clearly in Fig. 5.2(b) at fixed k, = .

To take the orientation of the boundary into account, we define the indirect gap Acv,y(km)
as the smallest energy difference between the conduction and valence band at a fixed k;,
but for varied momentum k,. The relevant band edge for the conduction band epy ¢ (k) =
minkywbu’c(kx, k,) is displayed in Fig. 5.2 as magenta dotted line. For the valence band
Ebuy(kz) = maxkywbuvv(kx, ky) it is marked by the cyan dotted line. Thus one has

Acv,y(kx) = Ebu,c(kx) - Ebu,v(kx) . (52)

This gap can take negative values formally. Tuning ¢}, from 0 to 0.5¢ at ¢ = 0 closes the
indirect gap at k, = 7.

Next, we pass from the bulk to a finite, confined system considering a strip with zigzag
edges as shown in Fig. 5.1. We investigate the existence of localized edge states. The
boundaries are chosen to run in z-direction and thus k, continues to be preserved, but k,
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Delocalization of edge states in the Haldane model

does not. Upon turning on the diagonal t,-hopping, the topological properties in the
bulk remain completely unaffected, but we find a significant impact on the system with
boundaries: the exponentially localized edge states at t5, = 0 become less and less localized
till they delocalize completely. We want to explore this phenomenon here.

In order to measure the localization of states, the IPR is most suitable. We
want to quantify the localization to the edges of the strip, so we define the IPR of a
normalized eigenstate by

In(ks) = Zpi,z(k'x)
=2 [(nsilni) Pke)  €00,1] (5.3)

where p,, ; is the probability of finding a particle at site ¢ in the unit cell in Fig. 5.1, if the
system is in the n-th eigenstate at momentum k,. The IPR of localized states is finite,
even for N — oo, while it converges towards zero for delocalized, extended states in this
limit. Hence, in numerics an IPR of O(1/N) indicates a delocalized state while larger
values indicate localization.

First, we focus on the case k, = m being the crossing point of the dispersion of the
right and left moving in-gap states. Its energy lies precisely in the middle between the
conduction and valence bands rendering the spectrum at this value of k, similar to the
spectrum of the 1D case studied previously in Sec. 4.7. Fig. 5.3(a) depicts the IPR
as a function of ¢,. For comparison, the indirect gap Agyy is shown in Fig. 5.3(b). As
in 1D, the IPR at k, = m decreases monotonically to its minimum value O(1/N) upon
increasing t5. The IPR reaches this value at the same value ¢, where the indirect gap Acy
vanishes. This delocalized in-gap state remains extended for A, < 0.

If k, takes other values the situation is more complex because the energy of the in-gap
states is closer to one of the two bands, conduction or valence, respectively. We observe
that the delocalization I ~ 0 occurs for smaller values of ¢, than the zero of the indirect
gap Acy,y, see Fig. 5.3(a) and (b). So we conclude that the existence of an indirect gap
and delocalization are linked, but not in a straightforward manner, see discussion below.

In order to achieve a better understanding we define a specific indirect gap A, referring
to the energy of the in-gap state. This piece of information is available once the strip
geometry is analyzed quantitatively. Let the in-gap energies be denoted by wi, o where o
denotes the different in-gap branches. Then A, is the smallest energy difference of wip
to one of the bands at fixed k,

Ay(kxa Oé) = min {Win,a — €bu,v; Ebu,c — Win,a} . (54)

If the in-gap states enter the continua of either the conduction or the valence band we
set Ay(kz,a) = 0. Thus, Ay (k;, o) measures the energy distance of in-gap states to the
extended bulk modes. It is to be expected that it is closely related to delocalization.

The indirect gap A, as a function of ¢5 is shown in Fig. 5.3 (c). For k; = m, A, behaves
like Ay, since in this particular, symmetric case both quantities are proportional to
each other. For other momenta, however, differences appear. In contrast to Acyy, Ay at
k. # 7 vanishes exactly at the value of ¢}, where the IPR essentially vanishes. This shows
that localization can be attributed to a finite A,. Note also the possible non-monotonic
behavior of IPR and A, as a function of t5, e.g., at k, = 0.3, see Fig. 5.3.
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Figure 5.3: (a)-(c) The IPR, Ay, and A, of the right-moving edge state vs. diagonal
hopping t, are shown for various momenta k, as computed for N = 500.

For the sake of comprehensibility, we visualize the evolution of the band structure
as a function of the hopping amplitude ¢,. In Fig. 5.4 we depict four representative
cases th, = {0,0.25¢,0.5¢,0.75t}. On increasing t, the conduction and valence bulk bands
approach each other and the edge states become energetically overlapped by them more
and more, see Fig. 5.4(a) and (b). At the marginal value 4, = 0.5¢ shown in Fig. 5.4(c),
all in-gap states are energetically overlapped by bulk states and are therefore delocalized.
This coincides with the closing of the indirect gap Acvy = 0 at k; = 7. Increasing t
further, see Fig. 5.4(d), the range of k,-values increases where Ay, is zero or negative.
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0.0 0.5 1.0 1.5 2.0
k]

Figure 5.4: (a)-(d) Continua of the two bulk bands and dispersions of the two in-gap
states (right-mover in blue, left-mover in green) for to = 0.2¢t, ¢ = 7/2, ¢ = 0, and
th, = {0,0.25¢t,0.5¢t,0.75t}. Due to the absence of an indirect gap the continua overlap in
panels (c) and (d) and no in-gap states can be identified. The magenta and cyan lines
indicate the band edges ey, and ey, v, respectively.
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Delocalization of edge states in the Haldane model

5.2.1. Further insights into delocalization

Here we study the effect of the additional diagonal hopping term on the (de-)localization
of edge states in more detail. The dispersion of the original Haldane model as given
in Eq. (5.1a) in a strip geometry with zigzag edge is shown in Fig. 5.5(a). The two
dispersion branches marked in blue and green connect the valence and conduction bands.
They belong to the right and left-moving in-gap states with energies wiy o where o labels
the two branches. In the same range of parameters where the energy of the in-gap states
is clearly distinct from the bulk continua (shown in red) the IPR is finite
indicating well-localized edge states, see Fig. 5.5(b). The energy separation of the in-gap
states from the closest bulk energies is described by the specific indirect gap A, defined
in Eq. (5.4). It is displayed in Fig. 5.5(c).

< 051
~ ]
= 0.0
<051
T 0

0.0 0.5 1.0 1.5 2.0

Figure 5.5: (a) Continua of the two bulk bands and dispersions of the in-gap states
(right-mover in blue, left-mover in green) for to = 0.2¢, ¢ = 7/2, and t5 = 0. The
continua of the bulk bands are marked by filled red areas. (b) The IPR of both edge
states as a function of wave vector k. (c) The indirect gap of the edge states A, vs.
wave vector k.

In all three panels, the blue curve refers to the right-mover and the green curve to the
left-mover. Clearly, a finite value of A, and a finite value of the IPR go along with each
other. Hence the corresponding in-gap states are truly localized edge states, one at the
top and one at the bottom of the strip. Due to reflection symmetry both edge states
show the same IPR dependence. As a result, the blue and green curves in Fig. 5.5(b)
and (c) lie on top of each other. We see that the IPR increases for increasing A, upon
variation of k;, hence the localization length decreases.

Next, we study the effect of changing the indirect gap by turning on ¢, for real hopping,
i.e., for ¢ = 0, see Fig. 5.6, and for imaginary hopping, i.e., ¢ = 7/2, see Fig. 5.7. Since t},
breaks the particle-hole symmetry, the left- and right-moving edge states differ from each
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Figure 5.6: (a) Continua of the two bulk bands and dispersions of the two in-gap states
(right-mover in blue, left-mover in green) for to = 0.2¢, ¢ = 7/2, th = 0.3t, and ¢ = 0,
i.e., real NNN hopping. The continua of the bulk bands are marked by filled red areas.
(b) The IPR of both edge states as a function of wave vector k;. (c) The indirect gap of
the edge states A, vs. wave vector k;.

other for t5 # 0.

Figure 5.6(a) depicts exemplary results which show that the conduction band edge is
lowered such that the indirect gap A, and the IPR vanish earlier for the right-movers
for k, > w and for the left-movers for k, < w. In contrast, the valence band is lowered
such that the energy range for distinct edge states is increased. Thus, A, becomes finite
in additional regions, namely for smaller k, for the right-movers and for larger k, for the
left-movers. This is particularly evident in comparison to Fig. 5.5. As a consequence, the
curves for the IPR and for the indirect gaps no longer have axial symmetry about k, = 7
or ky = 0, see Fig. 5.6(b) and (c). But reflection about one of these axes interchanges
right- and left-movers. Consequently, the localization analysis of one edge state as shown
in Fig. 5.3 is still sufficient.

For completeness, we illustrate the delocalization of edge states as a result of imaginary
diagonal hopping for ¢ = w/2. This hopping alters the edges of the bulk continua
considerably spoiling, their axial symmetry. The dispersions and the bulk edges are
inversion symmetric with respect to (m,0) as can be seen in Fig. 5.7(a). Thus, the IPR
of an edge state is axial symmetric with respect to k, = 7 or k; = 0. As for the case
of real hopping, only a finite indirect gap A, yields a finite value of the IPR in the
thermodynamic limit N — oco. We point out that the imaginary hopping has a different
impact on the localization than the real hopping. For instance, the IPRs for the edge
states at k, = 7 are different while their indirect gaps are the same. Hence it is clear that
there is no general relation between both quantities. Of course, this was to be expected
since the IPR is dimensionless while the indirect gap has the unit of an energy. Clearly,
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Figure 5.7: (a) Continua of the two bulk bands and dispersions of the two in-gap states
(right-mover in blue, left-mover in green) for to = 0.2t, ¢ = 7/2, t), = 0.3t, and ¢ = 7/2,
i.e., imaginary NNN hopping. The continua of the bulk bands are marked by filled red
areas. (b) The IPR of both edge states as a function of the wave vector k,. (c) The
indirect gap of the edge states A, vs. wave vector k.

a velocity v and the lattice constant ¢ must enter in a quantitative relation between IPR
and A,.

Due to the broken reflection symmetry of the dispersion, the two edge states display
different dependencies. The IPR of the edge states as a function of ¢} is shown in Fig. 5.8.
Inspecting the IPR of the right-moving edge state at k, = m, one discerns that the IPR
first increases for increasing ¢, despite the decrease of the indirect gap A,. Thus, it is
corroborated that the localization does not only depend on the indirect gap A,. But, just
as in the case of real hopping, the vanishing of the indirect gap induces delocalization.
Note that the eigenstates at k, = 7 are doubly degenerate; nonetheless their IPRs are
different. In addition, the IPRs of both edge states depending on t, are presented in
Fig. 5.8. Qualitatively, the relations between the IPRs and the indirect gaps A, are
similar to the relations in the case of a real hopping.

The case of ¢ = 7/2 confirms our conclusion that the vanishing of the indirect gap A,
goes along with delocalized in-gap states. Both quantities are not linked by a simple
monotonic relation because better localized states may have a smaller A,,.

In addition, we find that if the additional hopping runs along x and not along ¥, the
additional term reads 2t} cos(k, + ¢)oo and changes neither the bulk topology nor the
localization in the strip in Fig. 5.1. Thus due to the anisotropy, we clearly see that
the choice of different directions for the boundary with respect to the th-hopping has
fundamentally different effects.
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Figure 5.8: (a)-(b) The IPR and A, of both edge states vs. hopping parameter tf for
various wave vectors k,. The values of the right-moving edge state are shown as solid
lines while the dashed lines belongs to the left-moving edge state. For A, at k, = 7, they
lie on top of each other. Panel (c) shows the function A, at k, = 0.57 with an adapted
scale for the sake of a clear presentation.

We point out that different boundaries imply different edge state dispersions. For
instance, a bearded boundary? [113] in the Haldane model has its crossing point at k, = 0
implying a different Ay (k;) so that the localization persists up to larger values of t.

5.3. Delocalization in the topological checkerboard model

The standard lattice studied above has provided a proof-of-principle result allowing us
to establish the importance of indirect gaps for the localization of in-gap states so that
they represent true edge states. In order to corroborate that this scenario is generic

and experimentally relevant, we next address the topological checkerboard lattice, see
Fig. 5.9, which has been realized by optical lattices [203H205].

2A bearded boundary corresponds to a zigzag boundary where each outermost site is coupled to one
additonal site, see for instance Fig. 3.1.
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Figure 5.9: Checkerboard strip with NN hopping (black bonds). Hopping in the direc-
tion of the arrows has a positive sign. The red (blue) line represents ¢} (t5) hopping. The
lattice constant a is set to unity.

The topological checkerboard lattice is described by a two-band model [206] with NN (¢)
and NNN (¢}, t5) hoppings

H = —tZei“z’cTc - Z tw ici (5.5)
(6.9) (i)

For the bulk, Fourier transformation yields a representation in terms of Pauli matrices

H = —s(cos(ky) + cos(ky))oo

—d(cos

(kz) — cos(ky))o
—4t cos(¢) cos(ky/2) cos(ky/2)o
—4tsin(¢) sin(k,/2) sin(k,/2)oy (5.6)

where we use s := t] +t5 and d := | — t,, for brevity and ¢ as energy unit. A topological
phase occurs for ¢ # nm and d # 0 . Investigating the strip sketched in Fig. 5.9, one
clearly sees the left- and right-moving in-gap states shown in panel (a) of Fig. 5.10. Tuning
s while keeping d constant, the bulk topology is not changed, but the dispersion changes,
just as for the Hamiltonian (5.1). Indeed, we find the same scenario as in Fig. 5.3, see
panels (b) to (d) in Fig. 5.10. This strongly corroborates our findings and paves the way
to their experimental verification.
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2.5

Figure 5.10: (a) Dispersions for s = 0, d = —¢, and ¢ = w/4. The continua of the
bulk bands are shown as red areas. (b)-(d) The IPR, Acy,, and A, of the right-moving
and left-moving edge states vs. the parameter s are shown for various wave vectors k, as
computed for N = 500. The A, of both edge states at k, = 1.57 lie on top of each other.

For completeness, we present the localization behavior of the checkerboard model as a
function of k,. As complement to the plots shown above, Fig. 5.11 displays the continua,
the dispersions, the IPR, and the indirect gap for the case where localized edge states are
present for s = 0, d = —t, and ¢ = w/4. The bulk continua are depicted in Fig. 5.11(a)
by the red shaded areas, while the dispersions of the right- and left-moving in-gap states
are displayed in blue and green. The corresponding IPRs of the in-gap states are shown
in Fig. 5.11(b). The IPR is finite over almost the entire BZ. This is consistent with the
finite values of the related indirect gap A, in panel (c). As a result of the reflection
symmetry, the blue and green curves in Fig. 5.10(b) and (c) lie on top of each other as
in the original Haldane model.

By tuning s from 0 to 2.5¢ the indirect gap is closed. The continua and dispersions
for s = 2.5t, d = —t, and ¢ = 7/4 are plotted in Fig. 5.12. The upper and lower bands
overlap everywhere in the BZ. As a result, the indirect gap is closed and the in-gap states
are delocalized for all wave vectors k,. Hence, there are no edge states in the proper
sense of the word.
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Figure 5.11: (a) Continua of the two bulk bands and dispersions of the two in-gap states
for s =t, d = —t, and ¢ = w/4. The continua of the bulk bands are marked by filled
red areas. (b) The IPRs of both edge states as a function of the wave vector k. (c) The
indirect gap of the edge states A, vs. the wave vector k.
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Figure 5.12: Continua of the two bulk bands for s = 2.5¢, d = —t, and ¢ = 7/4; they
are marked by filled red areas. The band edges of the continua are displayed in magenta
for the conduction band and in cyan for the valence band.
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5.4. Delocalization of chiral edge states

Edge modes are mostly considered and computed for infinite strip geometries because
they allow one to consider models which preserve one translational symmetry. The edge
modes can be identified easily by looking for gapless dispersion branches between two bulk
bands. For finite samples which are confined in all directions the analysis becomes more
intricate because the lack of any momentum conservation makes it difficult to identify
the energies of edge modes in the energy spectrum.

A possible solution is to deduce the indirect energy gap in the bulk allowing for changes
of all wave vectors if it is finite. Energies of the finite sample lying within the energy
window given by the finite indirect gap are associated to edge modes. This method can
be used for topological insulators with appropriate finite indirect gaps, but it fails if the
indirect gap closes or if the system enters the phase of a topological metal .

The edge mode in a finite sample is localized along the entire boundary and the particle
in such a state is propagating only in one direction as shown in Fig. 5.13. Such edge modes
are called chiral edge modes. The number of sites close to the boundary relative to the
total number of sites Vio is small for large samples and tends to zero for Nyoy — oo. This
fact opens up the possibility to identify edge modes by their IPR: the states with the
largest IPRs are the best localized ones which are to be found along the boundary. Note,
however, that this approach does not work for disordered samples where fully localized
states may exist in the bulk.

N. , units

v
N, units
Figure 5.13: Sketch of a finite sample geometry. The localization area of a chiral edge

state is highlighted in green. A possible orientation of the chirality is indicated by the
green arrow.
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Figure 5.14: Probabilities in a 2D sample with 2N, x N, = 2-20 x 20 = 800 sites. The
four eigenstates with the largest IPRs are depicted in each row at to = 0.2t,¢ = 7/2,0 =0
for ¢, = {0,0.3t,0.5t}, respectively.
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Here, the IPR of an eigenstate is defined as

In = Zpgm (5.7a)
=2 (i) 2 €fo,1] (5.7b)

where the sum runs over all sites of the sample. Fig. 5.14 depicts the probabilities of
the four eigenstates with the highest IPRs for ¢, = {0,0.3t,0.5¢t} in a finite 2D sample.
The case t5 = 0 corresponds to the original Haldane model with its known topological
characteristics. As expected, all four eigenstates display localization along the complete
boundary indicating that they are indeed chiral states. Increasing t, implies that less
and less eigenstates show finite probabilities along the complete boundary. But as long
as there is a finite indirect gap between the conduction and the valence band chiral edge
states exist.

At t§, = 0.5¢, the indirect gap has vanished. Indeed, no chiral edge states can be found
anymore. The displayed eigenstates in Fig. 5.14 are localized at edges running along
the y-direction because this localization is not altered by the diagonal hopping ¢, as we
observed already with the roles of z and y interchanged in Sec. 5.2. But we stress that
the localization at the edges running in x-direction is completely eradicated due to the
diagonal hopping t as expected from the calculations for the strip geometry. Thus, we
find that chiral edge states become extended precisely if the in-gap states delocalize along
one of the edges.

In addition, we want to mention that the IPR is only used to identify the eigenstates
with the strongest localization. However, the IPR in finite samples which are confined
in all directions cannot be used to distinguish between the existence or non-existence of
chiral edge states. Because if we increase the size of these samples the boundary and
their chiral edge states will increase as well. Thus the IPR of chiral edge states vanishes
for increasing system sizes, I,, — 0 for Ny — oo.

5.5. Conclusion

Summarizing, non-trivial topological properties of the bulk imply the existence of in-gap
states. Often, they are supposed to be localized at the boundaries of the sample. But
in generic one-particle models we showed that these edge states can delocalize if they
are not protected by finite indirect gaps. This can be demonstrated mostly clearly by
adding terms to the Hamiltonians proportional to the identity matrix. They change the
dispersions but leave the eigenstates and hence the topological properties unchanged. We
stress that this holds true independently of the number of bands. This result also implies
the most important message that the omission of terms proportional to the identity matrix
is acceptable for the bulk, but not for confined geometries.

For in-gap states of which the energy is protected by additional symmetries, it is
sufficient to consider the bulk indirect gap Ay . Generally, this gap is not sufficient to
decide on localization and one has to consider the indirect gap A, which measures the
energetic distance of the in-gap states to the closest bulk band. Generically, if A, is finite
the states are localized and thus true edge states. If A, vanishes, delocalization is to be
expected.
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While the described scenario is the generic one it can vary in special cases. Baum
et al. pointed out that further symmetries such as momentum and energy conser-
vation can prevent delocalization in topological states of matter in spite of coupling edge
states to a gapless bulk. Similarly, Verresen and co-workers discovered edge states
at the ends of critical chains. Independent of topological properties, it was noted that lo-
calization can persist notwithstanding hybridization with continua in especially designed
systems . The localization may be weak in the sense that it is not exponential, but
algebraic .

Yet, the results presented here for standard one-particle topological models illustrate
that delocalization of edge states is the generic phenomenon if indirect gaps vanish and
hybridization with bulk continua occurs. To the best of our knowledge, this fact has not
yet been appreciated in literature even though it has important consequences for realiza-
tions of topological phases and their experimental detection. The key message is that the
lack of localized edge modes does not preclude the existence of non-trivial topology char-
acterized by discrete topological invariants. Then, however, direct techniques to detect
topological invariants are required .

To pave the way towards experimental verifications by ultracold atoms in optical lat-
tices, we considered the topological checkerboard model explicitly. Further preliminary
results show that the advocated scenario also occurs in the Kane-Mele model including
Rashba couplings as a prototypical model with a Zy topological invariant.
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6. Topological magnon bands in the
ferromagnetic Shastry—Sutherland model

Parts of this chapter have been published in Physical Review B [210]. Gotz S. Uhrig
contributed to the manuscript and the interpretation of the results. I created all figures
and calculated all the data.

6.1. General context

Topological phases exist in both fermionic and bosonic systems and constitute
a fast developing research area. Although the theoretical understanding of fermionic
topological systems has made impressive progress, topological bosonic excitations have
gained considerable attention only in the past few years. Despite the increasing concep-
tual knowledge of topological matter, just very few materials have been identified with
topological properties compared to the large number of potential topological materials [3].
Even less is known about potential applications. This is, in particular, true for topolog-
ical bosonic signatures . Thus, it is a major challenge to theoretically predict and
experimentally verify topological bosonic fingerprints in order to move towards useful
applications.

In the research on topological properties in condensed matter, the magnetic degrees
of freedom have attracted more and more attention. Magnetic data storage is already a
ubiquitous everyday technology as for instance hard disk drivers. Recently, mag-
netic spin waves, so-called magnons, themselves are used to carry and to process infor-
mation which is called “magnonics” . Adding topological aspects, the field
of magnonics considerably enhances the possibilities to build efficient devices for
which we will make a proposal below in this section.

The inclusion of DM interaction terms are often proposed to identify the topological
properties in magnetic systems. Because DM couplings play an important role in topo-
logical excitations in magnetic systems similar to SOC in fermionic systems. However,
the challenge in finding topological signatures in magnetically ordered spin systems are
the small DM interactions which induce only small Berry curvatures. The size
of the DM terms relative to the isotropic coupling is roughly as large as |g —2|/2, i.e., the
deviation of the g factor from 2, because both result from SOC. Thus, the DM terms are
generically too small to induce experimental detectable topological effects. In strongly
frustrated systems, however, the relative size of the DM terms can indeed be comparable
to the isotropic couplings .

Another issue is the localization of edge modes. Employing the wording of semiconduc-
tor physics, one must distinguish direct (at fixed wave vector) and indirect gaps (allowing
for changes in the wave vector). The existence of direct gaps throughout the BZ is suf-
ficient to separate bands so that their topological properties are well defined. But the
vanishing of the indirect gap generically implies that the edge states are not localized
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anymore, i.e., the bulk-boundary correspondence with respect to localization does not
hold anymore . This was one of the main findings of the previous chapter.

In magnetic systems, three types of elementary excitations occur. Long-range ordered
magnets display magnons (or spin waves) [216], valence-bond crystals mostly feature
triplons , whereas quantum spin liquids may display fractional excitations ,
for instance spinons . For triplons, topological behavior, i.e., non-zero Chern num-
bers , were predicted in Shastry—Sutherland lattices and in spin ladders .
The topological triplon excitations in the Shastry—Sutherland lattice have been verified
in the sense that the theoretical calculations coincide with the experimentally measured
inelastic neutron scattering data . For ferromagnetically ordered systems, topo-
logical magnons are theoretically suggested in kagome lattices , pyrochlore lat-
tices , and in honeycomb lattices . For antiferromagnets, they are proposed
in pyrochlore lattices , square, and cubic lattices exploiting the Aharonov—Casher
effect . In analogy to the QHE , the magnon Hall effect as well as the
triplon Hall effect arise since the topological Berry curvature acts analogously to a
magnetic field. So far, only the magnon Hall effect was observed . Topologically
non-trivial spinons are discussed in Mott insulators as well as in quantum spin
liquids .

The Shastry—Sutherland model is commonly studied with antiferromagnetic cou-
plings leading to triplon excitations . Including DM interactions combined with a
transverse magnetic field induces topological properties where the magnetic field
is also used as a control parameter to tune a topological phase transition. The Shastry—
Sutherland lattice with purely ferromagnetic couplings also serves as a good platform for
topological magnon excitations. To show this, is the first of the two main objectives in
this chapter. The second one is to discuss compounds which are likely to realize this
model and to point out possible applications.

6.2. Topological magnon excitations

This section is structured as follows. By exact spin wave theory we show that the fer-
romagnetic Shastry—Sutherland model with DM couplings has topological bands with
non-trivial Chern numbers. The occurrence of a ferromagnetic ground state represents
the spontaneous breaking of TRS. In combination with the DM interactions a finite
Berry curvature is induced which can lead to finite Chern numbers. The degeneracy
at the quadratic band crossing point (QBCP) is lifted, and a gap opens. The expected
topologically protected edge states [45] are retrieved in strip geometry . In order to
guide the experimental verification of the magnon Hall effect, we compute the thermal
Hall effect.

6.2.1. Possible compounds for realization

Real materials are always three-dimensional; so we look for the ferromagnetic Shastry—
Sutherland model realized in layers of 3D materials. If the interlayer coupling is not too
strong, the 3D quantum Hall system can be considered to be an ensemble of layered 2D
quantum Hall systems so that it is sufficient to investigate 2D models. This statement
will be supported later by discussing the effects of interlayer coupling, see Sec. 6.2.3.
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Figure 6.1: (a) Illustration of the 2D Shastry—Sutherland lattice. The NN couplings are
shown as thick red lines, whereas the squares are highlighted in green. (b) The model
studied comprises the Heisenberg couplings J and J’ as well as the DM interaction D,.
The unit cell is highlighted in green. The sequence of the spins in the term D - S; x S;
with D = D,é, is shown by the arrow pointing from ¢ to j. The DM couplings follow a
clockwise rotation, see the circular arrows.

Layers of the Shastry—Sutherland lattice are found in various insulating magnetic mate-
rials since it is easily constructed from corner-sharing squares. The squares are not aligned
parallel or perpendicular to one another so that dimers are formed, see Fig. 6.1(a). Due
to the lack of inversion symmetry about the midpoints of the bonds, DM interactions
are possible and generically occur from spin-orbit interactions. To reach large values of
the DM couplings it is necessary to include atoms with large atomic number, because
large electron velocities favor relativistic effects and hence SOC. Moreover, the couplings
should be ferromagnetic so that it is advantageous to avoid linear bonds which would favor
antiferromagnetic superexchange according to the Goodenough—Kanamori rules. Hence
the Shastry—Sutherland lattice depicted in Fig. 6.1 appears promising if superexchange
via larger subgroups does not occur which is what happens in SrCu,(BO3), [22§].

The following materials appear to be particularly interesting: RE;Si, or RESi 230)
(RE=Gd, Dy, Ho, Er, Y). The compounds RE;Si, have a SmyGe,-type structure, and
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RESi has a FeB-type structure which both comprise planes of Shastry—Sutherland lat-
tices. These compounds display a macroscopic magnetization M indicating dominant
ferromagnetic couplings . In addition, the macroscopic magnetization clearly
shows that one of the two degenerate ground states dominates, i.e., one domain prevails.

We compute the four bands from the unit cell with four sites shown in Fig. 6.1(b)
in green. The DM couplings of the Shastry—Sutherland lattice can be directed in-plane
or out-of-plane . Usually, however, the out-of-plane couplings are assumed to dom-
inate in 2D . In order to focus on a minimal model, we thus constrain the
DM coupling to a uniform direction perpendicular to the plane D = D,é, as shown in
Fig. 6.1(b). Obviously, this introduces a chiral orientation. Single-ion anisotropy (SIA)
AP (o, € {x,y,2}) is typically present in ferromagnets with spins S > 1/2. For the
minimal model, we consider it to favor easy-axis alignment along the z-axis, so that
A% = A > 0. The SIA and the DM coupling compete because the latter profits from
tilts away from the z-axis. Therefore we estimate cautiously up to which value of the DM
interaction the collinear, fully polarized ferromagnetic order favored by the SIA represents
the ground state of the model.

To obtain such an estimate we study two NNN spins coupled by .J’ as classical vectors
of length S with polar angles 6; and 3 and relative azimuthal angle ¢ := @1 — 92 which
takes the value tanp = d := D,/J’ at the energy minimum E

2E/(J'S?) = —a(l+ay)/2—z—y— |z —y|V1+d> , (6.1)

where a = A/J', x := cos(0; + 02), and y := cos(¢h — 62) with |z|,|y| < 1. The
full derivation for this equation and its minimization are given in App. F. As long
as 14+ a/2>+/1+d?, full polarization is optimal, i.e., a canted state can occur for
d > \/a + a? /4 only, which is a conservative estimate because the effects of J, of quantum
fluctuations, and of the geometric constraints in the lattice are not included. Hence, for
small SIA and DM coupling the SIA wins and the fully polarized state is generic.
6.2.2. Topological magnons

The complete Hamiltonian of the minimal model consists of three parts
H=Hu+ Hpm + Hsia (6.2a)

where

1 — - z Qz

! 1 — — zZ Q2
-J'> l2(sjsj + 578+ 5; Sj] (6.2b)
((i3))
Hom = _112)z > (SFS; —878T) (6.2¢)
((id))
Hsia = —A 2(55)2 (6.2d)

()
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with ferromagnetic couplings J, J’ > 0; J serves as the energy unit henceforth. A pair of
NNs and of NNNs is denoted by (ij) and by {(ij)), respectively.

We use the Dyson—Maleev representation of the spin operators which is exact
as long as a single magnon above the fully polarized ground state is considered. But even
for a macroscopic fraction of magnons, spin wave theory is well justified due to the large
spins involved (S ~ 4 — 5 for {RE=Gd, Dy, Ho, Er, Y}). Note that large spins generically
lead to large energy ranges with considerable gaps which are favorable for application.
The bilinear Hamiltonian in momentum space reads

H=> >0l Hu (k)b (6.3)

k: n7m

where bl and b,, are the bosonic creation and annihilation operators, respectively, at the
site n € {1,2,3,4}, see Fig. 6.1(b). The 4 x 4 Hamiltonian matrix is given by

H(k) = ( B;‘(lk) Bg‘”) (6.4)

with the 2 x 2 matrices

(IS 4TS+ A28 1) _JS

A= (JS JS+4J'S+ A(25 - 1) (6.5a)
_ (O (A tetn) —Cr(eta +elltetho))

b= (—C*(l +ef)  —C (eft 4 ellkath)y ; (6.5b)

where C := S(J' +1iD,). We set the lattice constant to unity so that the wave vec-
tors become dimensionless. Diagonalizing H (k) yields four distinct magnon bands H =
donk wn(k)BL,kBmk depicted in Fig. 6.2. The four bands form pairs p of two bands which
are degenerate at the boundary of the BZ. We strongly presume that this degeneracy is
linked to the point group symmetry of the Shastry—Sutherland lattice which consists of
a vertical or horizontal translation shifting vertical dimers to horizontal ones and vice
versa combined with a rotation by 90°. But unfortunately we did not find an analytic
proof for this hypothesis. The whole lattice is Cy symmetric considering rotations about
the centers of the squares so that dispersions display the same symmetry.

Ferromagnetic Heisenberg models without spin anisotropic couplings such as SIA or
DM coupling display gapless Goldstone bosons with a quadratic dispersion at low
energies at the I' point. As soon as the SIA (A>0) is turned on, the continuous spin
rotation symmetry is no longer broken spontaneously but externally, and a finite spin
gap A(2S — 1) appears. Note the offset energy axis in panel (c) of Fig. 6.2. Sponta-
neously, the system chooses one of the two degenerate fully polarized ground states. The
external symmetry breaking stabilizes the fully polarized ground state since it becomes
energetically isolated from the remaining spectrum.
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Figure 6.2: One-magnon dispersions for J = J’ for two values of the DM coupling. The
critical case is D, = 0 (panel (a) and black lines in panel (c)) where the QBCP at the I"
point is clearly visible. The degeneracy of the quadratic bands is lifted for finite D, > 0
(panel (b) and red lines in panel (c)) so that distinct bands appear which show non-trivial
topological Chern numbers C' = +1.

For vanishing DM coupling, two magnon bands cross quadratically at the I' point
at finite energies. Hence, the model displays an unusual QBCP. Generically, one can
assign a Berry phase of 7 (or multiples of 7) to them [235]. The QBCP is stable and
can be interpreted as a pair of Dirac cones which are superimposed due to the Cy
symmetry . As a result, a QBCP can have a Berry flux of 0 or £27. The QBCP
can either be removed by breaking the Cy symmetry which splits it into an even number
of Dirac cones or by lifting its degeneracy, e.g., by opening a gap leading to topologically
non-trivial bands. Turning on the DM interaction (D, # 0) induces the latter scenario.
But, as shown in Fig. 6.2, the degeneracy of the upper pair of bands and of the lower pair
of bands at the boundary of the BZ persists so that no Chern number of a single band
can be defined. Hence, we define the Chern number of subspaces by taking the sum over
the Berry curvatures in each subspace which derives from the Berry phase of
the determinants of unitary transformations along closed paths . Denoting the Chern
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number of a pair of bands by C?) where p stands for “upper” or “lower” one has

1
v = / /B > Fuan(k) dko by (6.6)

nep

where F), 4 is the Berry curvature of band n defined by

0A, (k) OAa(k
Fn,ab(k) = 8]7:( ) - 81%( ) (67&)

with A, (k) = (k,n| Vi, |k,n) (6.7b)

The numerical robust calculation of the Berry curvature is performed by discretization
of the BZ avoiding the eigenstates precisely at the boundaries of the BZ. This is
possible because the relevant curvature occurs in the vicinity of the I' point anyway. The
calculated Chern numbers of the pairs of magnon bands are C'(WPPer/lower) — 41 a9 shown
in Fig. 6.2. Changing the sign of D, reverses the sign of the Chern numbers. The non-
zero Chern numbers can be attributed to the complex hopping stemming from the DM
coupling leading to fluxes of fictitious fields . The direct gap between both pairs
of bands occurs at I' and is given by 8D,S as long as 4D, < J. Otherwise, the direct
gap is located at the M point and takes the value 2JS. These relations highlight the
importance of large spins and DM couplings for large gaps.

According to the bulk-boundary correspondence , the existence of non-trivial
Chern numbers implies topologically protected edge states . For verification, we
analyze a finite strip of N = 50 unit cells in b-direction and periodic boundaries in
a-direction, see panel (c) in Fig. 6.3. The energy eigenvalues as a function of the well-
defined wave vector k, are depicted in panel (a) of Fig. 6.3. One can easily see two chiral
edge states moving right and left according to the slope of their dispersion branches which
connect the two continua shown in red. Additionally, panel (b) illustrates the localization
of these modes at the lower (yellow curve and sites) and upper (blue curve and sites) edges
of the strip.

6.2.3. Effects of interlayer couplings

In absence of detailed information about the structure and the magnetic couplings in
the proposed three-dimensional materials we discuss that the effects of weak interlayer
couplings do not destroy the topological properties put forward in the analyzed 2D model.

In our case, we assume that the system consists of stacked parallel planes, where each
plane realizes a two-dimensional ferromagnetic Shastry—Sutherland model. The distinct
planes are connected by a perpendicular interlayer coupling J.. Since there is no detailed
data on magnetic exchange paths for the proposed classes of materials we
restrict the calculations to vertical couplings between the layers because they usually
have the largest impact. As a result, the Hamiltonian in Eq. (6.2a) is extended by the
additional term

1
Hinter = —Je Y _ 5(5;*5; +5787) + 57 S; (6.8)
(is)

with the ferromagnetic coupling J. > 0. The notation (ij) indicates a coupling between
NNs from adjacent layers. We apply the Dyson—Maleev representation [232} [233] and
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Figure 6.3: (a) Eigenenergies of a strip geometry, see panel (c), with N = 50, J = J/,
D, =0.2J, and A= 0.2J. (b) Probability density |¢)(k, = 0,73)|? as a function of the
site 1, of both edge modes; the colors of their curves corresponds to the colors of the
boundary sites in panel (c).

the Fourier transform to calculate the dispersion of the bosonic one-particle excitations
within spin wave theory which is exact for single-excitations above the fully polarized
ferromagnetic state. In this way, the interlayer term Hiyer leads to to an additional
4 x 4-matrix given by 4.J.Ssin?(k2/2)1, i.e., proportional to the identity matrix.

From this we conclude that the ground states remains fully polarized since the finite
spin gap remain at its value A(2S — 1) created by the SIA. The topological properties
in the bulk remain the same as well, because terms proportional to the identity matrix
obviously do not change the eigenstates. Since only the eigenstates determine the topo-
logical properties, the same Chern number in the k,-kp-plane will ensue, regardless of the
strength of J., at each value of k.. Note that only the k,-kp-plane in the 3D parameter
space given by {k, kp, k.} results in a quantized non-trivial Chern number. Thus the
magnons realize a 3D quantum Hall system which can be considered as layered 2D quan-
tum Hall system. Thus they are primarily described by their 2D properties, since only
one of the planes has a topological character.

Concomitantly, we find edge states in the corresponding strip geometry for arbitrary k..
The resulting dispersion is the same as shown in Fig. 6.3 with an additional overall shift
proportional to 4.J.S sin?(k2/2). The localization of the 3D edge states is identical to the
one of the 2D eigenstates. The set of all localized edge states depending on k, and k.
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represents the surface states.

Furthermore, indirect gaps can vanish due to the interlayer coupling. Note that the
direct gap remains always finite which guarantees isolated bands in the bulk. The disap-
pearance of the indirect gap can lead to delocalized in-gap states as discussed in Chap. 5
for 2D systems. The additional variation of the momentum k. can close the indirect
gap to the edge states which is denoted by A.'. In this context, we ask the question
whether the edge state stay localized or not by investigating a finite, confined system in
two dimensions (b- and c-direction) and periodic in one dimension (a-direction), where
the indirect gap A, is closed. If the system is additionally confined in c-direction, the
edge states could hybridize with bulk states which leads to delocalization. However, the
vanishing of the indirect gap A. does not lead to a delocalization in this case. This is
explained by the direction of the interlayer coupling to the edge states. In Sec. 5.2.1
we mentioned that the direction of the couplings are crucial for the localization of edge
states. This scenario represents a further example where the direction of the coupling
preserves the localization while the edge states are energetically overlapped with other
bulk states. In order to show this, we analyze a layered strip with N, = 25 and N, =4
(film system with four layers thickness) while the momentum k, remains conserved.

The localization of one edge state is determined by the IPR

In(ka) =Y =1{n,8,b,c|n,8,b,c) *(kq) € [0,1] , (6.9)
4,b,c

where ¢ denotes the site within a unit cell and (b, ¢) the unit cell itself. Since we couple
four layers with each other and each layer has two boundaries, we assume the presence
of eight edge states. Therefore, we highlight the eight eigenstates in Fig. 6.4(a) with blue
lines which have the largest IPR at each k,. As a result, we can emphasize the localized
in-gap states which are mostly covered by bulk states. Nonetheless, the edge states remain
localized at the boundary in b-direction as shown for instance in panel (b) of Fig. 6.4. We
can understand this localization behavior by considering the vertical couplings between
the layers with the edge states. The couplings are perpendicular to the layers but they
do not point into the bulk. Since this vertical coupling is parallel to the boundary, the
edge states primarily hybridize with each other and not with bulk states which therefore
leads to surface states. Such a surface state corresponds to a superposition of all edge
states in each layer which can be seen for instance Fig. 6.4(b). This explanation is in
accordance with our investigation in Sec. 5.2. Note that in an small interval around
ke = 7 in Fig. 6.4(a) it is not possible to find localized edge states. The same interval
does not provide edge states in the single layer case, see dispersion in Fig. 6.3(a). Thus
this interval only provides bulk states and thus the IPR fails to find a localized state
which therefore leads to this strange behavior in the interval around k, = 7 shown in
Fig. 6.4(a).

In conclusion, the investigation of an additional 3D perpendicular interlayer coupling
shows that the topological edge modes persist and are not altered as long as the fully
polarized ground state is preserved. Hence, for weak interlayer couplings the topological
properties found in the 2D model also hold in three dimensions and thus the proposed
materials are good candidates to search for realizations of 2D physics.

!We use the same convention as in Chap. 5, where the variation of k, leads to the notion of A,. Here
we denote A. for the indirect gap to the edge states with respect to the variation of k..
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Figure 6.4: (a) Eigenenergies of a layered strip geometry with N, = 25, N. =4, J = J',
D,=02J, J. =0.3J, and A=0.2J. The eight eigenstates with the largest IPRs are
highlighted in blue. (b) Probability density 256{1727374} [¥s.p.c(ka = 7/2)% as a function
of the unit cell at (b,c); The probability density corresponds to the state of which the
energy is depicted by the black circle in the dispersion in panel (a).

6.2.4. Thermal Hall effect

Next, we address possible experimental signatures. Since magnons do not carry charge,
usual electric conductivity measurements do not make sense. The thermal Hall effect
offers a way to detect non-trivial Berry curvatures in real materials. The thermal Hall
effect consists of a finite gradient of the temperature perpendicular to a heat current.
The expression for the transversal heat conductivity xg is given by

kAT
7262 pn nab ) > (610)

where we sum over all magnon bands and set kg = 1 and A = 1. The weight ca(py) is
given by

= /5:0 de (58)2 <—j§>

= —2Lig(—p) + plog?(p* + 1) —log(p+ 1) + 2log(p + 1) log(p* + 1) , (6.11b)

(6.11a)

pu=0

where p is the Bose-Einstein distribution (exp(fw) —1)~! and Li,, is the dilogarithm for
m = 2 (Spence’s integral, in general). Equation (6.10) clearly shows that the transversal
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heat conductivity k., depends directly on the Berry curvature, thus it represents an
ideal fingerprint of non-trivial topological properties. Figure 6.5 displays the results of
Eq. (6.10) as a function of temperature for various values of D,. For the topological
phase (D, # 0), the conductivity first slightly decreases to negative values before it
strongly increases as a function of temperature. For high temperatures, k4, approaches a
finite value. In comparison, the topologically trivial bands for D, = 0 may have a finite
curvature, but such that it cancels in the sum over the BZ so that k,; vanishes.

Figure 6.5: Thermal Hall conductivity x4 as a function of temperature for various values
of the DM coupling D, at J = J', A =0.2J, and S = 4. The solid lines correspond to the
bilinear calculations whereas the dashed lines correspond to the mean-field calculations.

Since the magnetization generally decreases with increasing temperature until even-
tually the ferromagnetic phase ceases to exist at T, kg should also decrease until it
disappears at T.. The temperature dependency of the static calculation of the transver-
sal heat conductivity kg, stems only from the weight c2(py,) and its contribution to kg
which is proportional to the Berry curvature F,, o,(k). This curvature, however, is inde-
pendent of the temperature. In order to make quantitative statements, it is appropriate
to improve the results for finite temperatures, i.e., to partly include the effects of finite T'
by applying self-consistent spin wave theory.

Here we use the Dyson—Maleev representation of the spin operators which leads to an
exact description at the quartic level of operators and is given by

S =128 <bi - 1bTb.b.> (6.11a)

(] 2S 17171
S7 =25 b} (6.11b)
SZ=blb, — 5 . (6.11c)
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The complete Hamiltonian in bosonic representation is given by

H = Hu + Hom + Hsia (6.12a)
Hu=—J > S(blb; +blb, — bfb, —blb)) (6.12b)
(id)
+IYy %(bjb}bibj +biblb;b;) — blblbb,
{id)
—J" " S(bfb; + blb; — blb; — bib,) (6.12¢)
((i3))

1
/2 : Tt + Tyt I
J< > i(bibi b, bj bjbjbjbi) bibjbibj
(i7)

and with

Hpm = —iD. Y S(bjbj + b}bi)

((i5))
iD, bbb b + bibib.b 6.12d
+72(iiij+jjji) (6.12d)

((i3))
Heia = —A> (28 — 1)blb, +blofbb, (6.12€)

where we neglected all constant terms. Applying a mean-field approximation reduces the
quartic terms to bilinear terms. For this purpose, we introduce the expectation values

n=(bb) € R (6.13a)
a=(blb;) €R for (ij) (6.13b)
c=(blb;) eC for((ig)) (6.13¢)

where a corresponds to NNs and ¢ to NNNs. The Fourier transformation of the mean-field
Hamiltonian yields

H=> "0 H,(kna,)b, (6.14)
k nm
with the bosonic creation bf and annihilation operators b, at the site n € {1,2,3,4}.
The Hamiltonian becomes implicitly temperature-dependent since the expectation values
depend on the temperature. The 4 x 4 Hamilton matrix reads

(A B
H(k) = (BT(k) i ) (6.15)
with the 2 x 2 matrices
A11 A12 Bll B12
A= B— , 6.16
<A21 A22> <321 BQ2> (6.16)
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Figure 6.6: Magnetization as a function of temperature T for various values of D, at
J=J,A=0.2J,and S = 4. The horizontal dashed line indicates the value at which the
spin gap closes.

where the matrix elements are given by

A = Aoy = J(S —n+a)+4J' (S —n+Re(e)) + A2S —4n — 1) +4D,Im(c) (6.17a

Aig=A9 =—-J(S —n+a) (6.17b

By =—-J(S—n+c)=J(S—n+c)efs —iD, (S —n)(1 + e'ka) (6.17¢c

Boy = —J'(S—n+c") = J(S—n+c)er +iD,(S —n)(1 + P (6.17d

Bia = —J'(S = n+c)elfa — J'(S —n+ ¢*)elFathe) 1 iD (S — n) (e + elFatho)y (6.17¢
(S —n+c)e™ — J'(S —n+ c)elFath) _ip (S — n)(e*e 4 elkathe)) (6.17f

)
)
)
) )
( )
)

By = —J'

By expressing the expectation values using the Bose—Einstein distribution, we are able
to determine the renormalized dispersion self-consistently and the corresponding magne-
tization m at a specific temperature. The magnetization is given by the simple relation
m = S —n. The renormalized spin gap A is purely determined by the STA, which is given
by

A=A2S-4n—-1) . (6.18)

Obviously, the spin gap closes before the magnetization vanishes, so that in this approxi-
mation a Curie temperature cannot be determined. The spin gap closes for 25—-4n—1 = 0.
For the magnetization, this implies that the spin gap closes if the magnetization reaches
the value m = (25 + 1)/4 as indicated by the horizontal dashed line in Fig. 6.6.

The self-consistently calculated magnetization shows the unexpected problem that no
solution can be found for small values of the spin gap or the magnetization vanishes.
It appears that the phase transition from the ordered phase induced by the SIA to the
disordered phase cannot be captured by self-consistent spin wave theory. This issue
deserves further investigations, but it is beyond the scope of this thesis.

The improved calculations by applying self-consistent spin wave theory show that the
signature starts to decrease for higher temperatures before no self-consistent solution is
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found anymore as depicted by the dashed lines (see Fig. 6.6).

6.3. Conclusion

The study of the Shastry—Sutherland lattice with purely ferromagnetic couplings shows
that topological magnon bands are achievable if finite DM interactions are taken into
account. The DM couplings lifts the QBCP which result in separated excitation bands
with non-trivial Chern number. Due to bulk-boundary correspondence chiral edge modes
occur. To this end, we proposed compounds as possible realizations of the investigated
model.

A finite thermal Hall conductivity kg, can serve as a smoking gun signature in ex-
periments to verify topological properties of a magnetic material under study. In order
to obtain large signals, we recommend the experimental preparation of a single-domain
crystal in order to avoid cancellation effects.

In view of the above findings, we suggest characterizing the magnetic properties of the
putative realizations of ferromagnetic Shastry—Sutherland lattices in detail,
for instance by inelastic neutron scattering. This will help to determine the relevant
microscopic model which, in turn, will render the calculation of the Berry curvature
possible. In parallel, measurements of the thermal Hall conductivity can provide evidence
for finite Berry curvatures.

The usage of topological magnon excitations represents a promising approach to im-
prove magnonic devices. The field of magnonics attempts to create devices in magnetic
nanostructures which are able to carry and process informations. To this end, the ap-
plication of topological magnon excitations can take magnonics to the next level since
bosonic topological excitations have a chiral nature and are assumed to be robust against
disorder. Hence, less dissipation will occur if topological properties are included.

Most concepts for processing magnonic excitations are based on interference effects .
To this reason, we propose to tailor the edges of strips of the system by decorating them
similarly to what we proposed and computed for fermionic models in Chap. 3. In this
way, largely different group velocities can be achieved depending on the direction in which
signals of packets of magnons travel. The key is to structure upper and lower bound-
aries of a strip in a different manner so that the group velocities of the right- and of the
left-moving packets are very different. Ideally, the group velocities should be tunable by
moderate changes of the model controlled by external parameters, such as magnetic fields
or pressure. The realization of this phenomenon will pave the way for fascinating devices
in magnonics, such as delay lines and interference devices.
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In this thesis we followed different paths in order to investigate the variation and the
robustness of signal transmission in low-dimensional topological systems. Here we give a
short summary of the results regarding all topics in this thesis.

Tunable edge states and their robustness towards disorder

We reported on the tunability of edge states of topologically non-trivial phases. To this
end, we investigated the decorated Haldane model as well as the decorated Kane—Mele
model. By adjusting the spectrum of local states with a gate voltage the dispersion of
the edge states and thus the Fermi velocity as well is changed as desired. Helical edge
states can be made depending on direction and on spin. The tunability is also possible
in the case of a broken S* spin symmetry.

Furthermore, the effect of local disorder in the decorated Haldane model was addressed.
The maximization of the transition probability is applied to reassign the momenta to edge
modes in presence of disorder and thus reconstructed the dispersion of edge states. The
possibility to reconstruct the dispersion depends on the strength of the disorder and the
distance to other energies. Hence, flat dispersions of decorated edge states are prone
to perturbations and therefore only reconstructable for moderate disorder. Hence, in
contrast to the naive expectation of complete robustness against perturbations due to
the topological origin of the edge states disorder changes the dispersion of edge modes
and therefore can deteriorate signal transmission beyond the DC conductivity.

Tunable dispersion of the edge states in the integer quantum Hall effect

We considered the integer quantum Hall effect of a 2D electron gas as the next step
towards the application of a tunable Fermi velocity. As a result, we additionally proved
that the main principles are not based on lattice models. We discretized the Hamilton
operator for a free 2D electron gas subjected to a magnetic field. The discretization
mesh was chosen fine enough, so that various continuous geometries could be described
reliably. Attaching bays to the boundaries of a Hall sample result in local modes which
can be energetically tuned by gate voltages. A weak coupling between the periodic bays
and the bulk of the quantum Hall sample leads to narrow and steep dips in the Fermi
velocity. Thus the local modes can be tuned into resonance and the Fermi velocity can be
reduced by up to two orders of magnitude. The implementation with the state-of-the-art
techniques turned out to be difficult, unfortunately.

Tunable signal velocity in the integer quantum Hall effect of tailored graphene

The investigation of graphene showed that the requirements in order to realize the
tuning of the Fermi velocity with the state-of-the-art techniques are fulfilled. Thus novel
devices such as delay lines and interferometers based on a tunable Fermi velocity are
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feasible. The integer quantum Hall effect in graphene provides topological edge states
for fast signal transmission which persist even at low magnetic fields. As a result, the
magnetic length corresponds to experimentally available dimensions for tailored bays at
the boundary. Additional gate voltages can be used to tune the local modes into resonance
with the edge state at the Fermi energy which reduces the signal velocity remarkably.

Topological properties of BiCu,POg

The dispersion of the triplon excitations of BiCuy,POg has unique characteristics and
we additionally found special topological properties. We calculated the dispersion of the
triplon modes with a directly evaluated enhanced perturbative continuous unitary trans-
formation method and a bosonic Bogoliubov transformation. By fitting the dispersion
to the inelastic neutron scattering data, we determined the strengths of the couplings.
The investigation of the resulting effective model showed that BiCuyPOg is the first gap-
ful, disordered quantum antiferromagnet with a non-trivial Zak phase for the triplon
excitations. The four z- and y-modes display a non-trivial Zak phase of P = (m,0).
We calculated the Zak phase numerically by extending the formula to Bogoliubov quasi-
particles. The quantization of the Zak phase is guaranteed by the inversion symmetry so
that we could additionally determine the Zak phase through the inversion parity.

A finite winding number confirmed the topological triplon modes. The calculation of
a finite chain revealed the surprising fact that no localized edge states are present in
BiCuyPOg despite the bulk-boundary correspondence. We explained that the absence of
an indirect gap leads to delocalized in-gap states in BiCu,POg. The absence of localiza-
tion in BiCuyPOg is supported by the investigation of the local dynamic structure factor.
The examination of a generalized Su—Schrieffer—Heeger model clearly illustrates the pro-
cess of delocalization. Thus the bulk-boundary correspondence is set into perspective.
The bulk properties are preserved by the direct gap while the localization of edge states
is related to the presence of an indirect gap.

Delocalization of edge states in topological phases

In order to prove the generality of our conclusion that the indirect gap is important
for localized edge states regardless of dimension, we explored 2D Chern insulators. The
investigation of a Haldane model in a strip geometry showed that the lack of an indirect
gap to the edge states leads to delocalization. However, the indirect gap regarding the
direction parallel to the boundary does not affect the localization which emphasizes the
importance of the directions. The topological checkerboard model displayed a similar
scenario. The study of the Haldane model which describes a sample finite in both direc-
tions showed that the chirality is lost as soon as an indirect gap is closed regardless of
the direction. In summary, we concluded that the indirect gap generally is an essential
ingredient for localized edge states.

Topological magnon bands for magnonics

The investigation of the ferromagnetic Shastry—Sutherland lattices showed the emer-
gence of topological magnon excitations which represent promising candidates for appli-
cations in magnonics. The single-ion anisotropy coupling should generate a finite spin
gap while Dzyaloshinskii-Moriya couplings lift the quadratic band crossing point. Each

144



7. Summary

pair of bands possesses a non-trivial Chern number leading to topological edge states.
As a smoking gun experiment we proposed to measure the thermal Hall conductivity. To
this end, we discussed some compounds as possible physical realizations of ferromagnetic
Shastry—Sutherland lattices. These materials are promising for magnonics due to the
large spin and the likelihood of large Dzyaloshinskii-Moriya couplings.
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Appendix!

A. Symmetry analysis of BiCu,POg

The directions of the DM vectors D,,, m € {0, 1,2, 3} are restricted due to the symmetries
of the system. These restrictions are formulated by the five selection rules of Moriya
which relate the different couplings based on the point group symmetries of the system.
For the sake of completeness, we present these five selection rules here briefly. Moriya
established them by considering two interacting ions with spins whose positions we label
with A and B. The center of the connecting line AB is denoted by C. The five selection
rules of Moriya are given by:

15t If C presents a center of inversion, then D = 0 holds.

224 If there is a mirror plane perpendicular to AB and passing through C, then D 1. AB
is valid.

3'4 If a mirror plane including the positions A and B is present, the vector D is per-
pendicular to this mirror plane.

4% Tn the case of a two-fold rotation axis perpendicular to the line AB and passing
through C, then D is perpendicular to this two-fold rotation axis.
50 If there is an n-fold axis (n > 2) passing along AB, the relation D || AB is valid.

Besides the information that specific D;; components are forbidden due to point group
symmetries of the single bonds, one can additionally obtain information on the signs of the
possible D;; along the ladder by considering translations and glide reflections. Likewise
the parity of the components relative to the reflection about the center line, see Fig. 4.2
in Chap. 4, can be elucidated. This parity determines whether a term contributes to the
dispersions on the level of bilinear Hamiltonians or not .

If we neglect the difference between the two copper ions Cup and Cup, we arrive at
the minimal model of BiCuy,POg with the possible DM components shown in Fig. 4.2
in Chap. 4. Taking into account the difference between the two copper sites the
symmetry of the lattice is lower so that more D;; components are allowed. Then only
the following two symmetries of the crystal structure are present:

1. RSy: Rotation by 7 around the y-axis located in the middle of the spin ladder and
a shift by half a unit cell.

2. S;.: Reflection at the xz-plane located at a dimer.

'Parts of this appendix are submitted for publication [161] or have been published in Physical Re-
view B .
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(a) rotation symmetry

D; ru

Figure A.1: Symmetry analysis. (a) Illustration of the two symmetry operations RS,
and Sz, leaving the model of BiCuyPOy invariant. (b) Notation of the various D vectors
in BiCu,POg.

These two symmetry operations are shown in Fig. A.1(a). The notation of the various
DM vectors are shown in Fig. A.1(b).

The determined symmetries imply the following constraints. The vector Dgy only has
a y-component due to the third selection rule based on the symmetry S;.. The RS,
symmetry yields the relation

RS,(Dyy) = —Doo . (A1)

After a RS, rotation, the stipulated sequence of the spin operators within the term
D;;(S;x Sj) (according to ascending y- and z-coordinates) must be recovered by swapping
the spin operators. Thus, Eq. (A.1) shows the alternating behavior of D§ along the legs.
The symmetry analysis of the Dy bond leads to the relations

Szz(D1,Lu) = D1 Lo (A.2a)
Szz(D1,Lo) = D1 Lu (A.2Db)
Szz(D1ru) = D1ro (A.2¢)
Siz(D1ro) = D1Rru (A.2d)
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RSy(D1Lu) = Diro (A.2e)
RS,(D11,0) = Diru (A.2f)
RSy(D1ru) = D110 (A.2g)
RS,(D;ro) = D11y (A.2h)

To clarify the properties of 1Dy we start with an arbitrary vector
Dl,LU = Cp€p + Cyéy + ¢, €, , (A3)

where €, are unit vectors in the directions indicated by the subscript and ¢, are real
coefficients. Applying Egs. (A.2a) and (A.2e) to this ansatz for D 1,y, we obtain

DLLO = ca:éx - Cyéy + Czéz (A4a)

Diro = —c.€; +cyéy —c.é, . (A.4Db)

The first condition determines that the z- and z-components are uniform while the
y-component alternates along the ladder. The second condition indicates that all three
components have odd-parity since the translation to D;ry changes the sign of the
y-component as well so that all coefficients acquire a negative sign.

In the same way, we investigate Dy. Applying both symmetry operations to Do yields

Szz(D21Lu) = Da Ly (A.5a)
Sz2(D210) = D210 (A.5D)
Suzz(D2,ru) = Do ru (A.5¢)
Szz(Daro) = Daro (A.5d)
RSy (D2 1,u) = Daro (A.5e)
RS,(D31,0) = D2 rU (A.5f)
RS, (D2 ry) = D210 (A.5g)
RSy(D2ro) = D2 Lu (A.5h)

Again, we start from the general ansatz
Doy =d.é, +dyé,+d.é, . (A.6)

Using Eq. (A.5a) we easily see that the y-component has to vanish. In contrast, using
Eq. (A.5e) does not lead to an unambiguous solution because we obtain

D2,RO = —dé; —d.eé, . (A7)

Each component can fulfill this condition in two different ways. FEither the compo-
nent alternates along the ladder with even-parity or it is uniform along the ladder with
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couplings along the legs parity

D§ alternating odd
Dy uniform odd
DY alternating odd
i uniform odd
% a alternating even
5 u uniform odd
58 alternating even
5.0 uniform odd
Dj alternating N/A

Table A.1: Behavior of the sign of the D-components along the legs of the spin ladder
and their parity with respect to the symmetry S, (reflection with respect to the center
line of the spin ladder, see Fig. 4.2 in Chap. 4). Components which are not listed are
forbidden due to the selection rules of Moriya .

odd-parity. Thus, the Ds-vector is generally expressed by the superposition of both pos-
sibilities

5= Dy, + D3, (A.8)
D= D3, + D3, (A.8)

where subscript a stands for “alternating” and u for “uniform”.

Considering the fact that the differences between the copper ions are small [174], we
may neglect them altogether which allows us to conclude [L71] D§ = D3, and D3 = D3 ,.
Thus, we conclude that the uniform z-component and the alternating z-component pre-
dominate. Arbitrary components as in Eq. (A.8) are allowed, but decisive contributions
only come from the alternating even-parity z-component and the uniform odd-parity
T-component.

Note that we neglect potential differences between D5 on the Jo bond and D) on the
J5 bond because they have odd-parity and do not contribute on the bilinear level anyway.
The potential differences in the ensuing symmetric I'-terms are neglected as well because
of their barely measurable impact.

The results of the symmetry analysis are collected in Tab. A.1. Since the I'-couplings
result from the D-couplings according to Eq. (4.3) in Sec. 4.2, one can establish a similar
table for the I'-components based on Tab. A.1. The property of being alternating/odd
corresponds to a minus sign while uniform/even corresponds to a plus sign in the DM
components. Thus by multiplying the DM components by +1 in Eq. (4.3) one arrives at
the resulting properties of the I'-components.

Finally, we remark that the orientation of the Ds-vector, which belongs to the interlad-
der coupling, is analogous to the Dy-vector. The Ds-vector couples two adjacent ladders,
contributing to the transversal dispersion. No parity can be defined because the reflection
about the center line refers to a symmetry within each ladder separately.
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B. Matrix representation of the bilinear Hamilton operator

The general expression in the Nambu representation of the complete bilinear Hamiltonian
in momentum space is given up to unimportant constants by

1
H = 3 ;a};lHk,lak,l with (B.1a)

_ | Ak,1) B(k,1) | _ ¢
Hyp = BY(k,1) AT(=k,—I) =y (B.1b)

and the twelve-dimensional Nambu spinor aj; = (t;l, tzﬂr’l, tT—k,—p tT_k_m_Z)T, as shown
in Eq. (4.5) in Sec. 4.2, using ¢y = (15, ¢}, t7 )" and ¢}, = (7], ¢0],17]). Note that
the sum in (B.la) runs over all values of [ € [0, 27) (latticé constant set to unity) in the
BZ while it runs only over the values k € [0, ), i.e., over half the BZ. The reason is that
the above Nambu spinor addresses k and k + 7w simultaneously.

The 12 x 12 matrix Hj,; is composed of the two 6 x 6 matrices A and B which are again
made up by 3 x 3 matrices

(AR + Bu(k,1) Ba(k, 1)
Alk, 1) = < Bi(k,)  Au(k+7)+ Bk + 1, z>> (B-2a)
Bi(k,l)  Ba(k,l)
B(k,1) = (Bi(k’l) Bl<;+m)> (B.2b)

The 3 x 3 matrices are derived to be

wo(k) ihz —ihy

Aj(k) = | —ih. wo(k) ihe (B.3a)
ihy —ihx wo(k')
(k1) 0 T7*(k) +T5%(k)
Bi(k,1) = 0 FY(k,1) 0 (B.3b)
(k) +I5%(k) 0 F=(k,1)
0 ST (k) — D3(k))  —iDY(k.D)
Ba(k,1) = | ~i(T{¥ (k) + D3 (k)) 0 —i(TY (k) — D3(k) |- (B.3¢)
iD3(k, 1) —i(T{" (k) + D5 (k) 0

The dispersion of the isotropic spin ladder is calculated by the deepCUT method [176

yielding
13

wo(k) = ng cos(0k) . (B.4)
6=0
The coefficients ws are given in Tab. B.1. Similarly, the transformation of the spin
operators to triplon operators

12 .
bilinear and
=" apth+t5h) + (B.5b)

s higher terms
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1) ws as

0 1.5499384208488 0.3874491109155713

1 0.358817770492231 -0.05165001704799924
2 0.524739087510573 -0.08095884805094124
3 -0.209722209664048 0.03713614889687351
4 -0.160344853773972 0.0219291397751164

5 0.0967516245738429 -0.01719462494862808
6 0.010462389004026 -0.004727305201296136
7  -0.0347043572019398 0.01024208259455439
8 0.000112462598212057 -0.001628782296091526
9 0.0139297388647789 -0.00497492501969249

10 -0.00637707478352971 0.002315960919757644
11 -0.00403742286524941 0.001621270078823474
12 0.00429559542625067  -0.001835116321222724
13 0.000461321168694168

Table B.1: The coeflicients wg used to describe the dispersion of the isotropic spin ladder
as well as the prefactors as to transform the spin operators are calculated by using the
deepCUT method for the ratios Ji/Jop = 1.2 and Jo/J; = 0.9. The values for higher ¢
are small enough to be neglected.

yields the amplitudes as also given in Tab. B.1. The spin operators are labeled with
subscripts left (L) and right (R) spin in a dimer referring to the two legs of each ladder.
Bilinear or higher products of triplon operators are neglected in our approach to the
transformation of the spin operator. The Fourier transform

12

a(k) = Z a5 cos(6k) (B.6)

6=—12

yields the momentum-dependent amplitude a(k) which appears generically in effective
triplon Hamiltonians @L 242|. The Hamiltonian also includes a general uniform
magnetic field h = (hy, hy, h,) ' given by Hzeeman = —hY>_; S;.

Further variables introduced for clarity are

Fl(k, 1) = d(k, 1) + T (k) + T4 (k) 4+ Th* (k) + T4* (k, 1) (B.7)

with p € {z,y, 2} and

d(k,1) = —2J3 cos(l)a? (k) (B.8a)
Th (k) = —2Th"a?(k) (B.8b)
T (k) = 475 a?(k) cos(k) (B.8c)
T (k) =  4Th"a? (k) cos(2k) (B.8&d)

T (k1) = —2T%*a? (k) cos(1) (B.8e)
(k) = 4Ar%a(k)a(k + 7)sin(k) (B.8f)
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Y% (k) = 41%a(k)a(k + ) sin(k) (B.8g)
T9%(k) = 4T9%a(k)? cos(k) (B.8h)
T5%(k) = 4T5%a(k)? cos(2k) (B.8i)
D3 (k) = 4D§7aa(k)a(k+7r) sin(2k) (B.8j)
D3 (k)= ADj3 ,a(k)a(k + ) sin(2k) (B.8k)
DY(k,1) = —2DYa(k)a(k + 7)sin(l) . (B.81)

Inspecting the above matrices one realizes that for zero magnetic field the slightly simpler

form
A(k,1) B(k,1)
[B(l@ D) Ak, l)] (B.9)

holds. The eigenenergies and eigenmodes are obtained by a bosonic Bogoliubov transfor-
mation [184] from the ¢t-operators to the normal b-operators. This requires the diagonal-
ization of the matrix

Hy, =

)

Hyj = nHy,, (B.10)
where the metric 7 is the diagonal matrix
77:diag(ll,...,167—17,...,—112) . (Bll)

The resulting Hamiltonian reads H = 3, ;. ; wa(k, l)bL 4.1bn. k1, where the index n labels
the six different modes at a given wave vector (k,l). The normal bosonic operators read

T _ wt T ol "
bn,k,l = Z ( nk el T iy, Jedllbr — Unpgtop -1 — Un,k,lt—k—w,—l> . (B12)
H=T,Y,2

where u and v with and without tilde are generally complex prefactors. The annihilation
operator follows by Hermitian conjugation.

C. Symplectic product and Berry phase for bosons

The Berry phase in quantum mechanics is defined by the complex phase of the scalar
product between two quantum states . Thus, the key ingredient is an appropriate
scalar product. In order to be independent of a particular basis for quantum states we
aim at lifting the definition of topological phases from the level of quantum states to
operators in second quantization. In App. B, we obtained the normal bosonic creation
operator (B.12). With the prefactors occurring in this equation we define a generalized
ket by these prefactors

ke, n)) == (U g Uy, Wy, k15 nkl? CAR (C.1)

which is a column vector with twelve components. The bold face symbols such as u
represent three-dimensional column vectors with components u*, u¥ and w?. Then, we
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define the symplectic product by

((k1,n1| k2, m2)) (C.2a)
= (uiu,kl,ll’d:u,kl,ll’ 21 k1,1’ 71;,2,]62 l2) n (’U';er,kg,lgv ;Lrg,kz,lgv JQ ko,las U Jz ko, lg)T(C'2b)
ulzl,kl,llun%k%b + ﬁin,kl,llﬂ’m,kmlz - v;ru,kl,hvnz,kzh - ﬁil,kl,llﬁnz,kzlz - (C2¢)

We highlight the so far unnoted fact that ﬁk,l, in contrast to Hy, see Eq. (B.10), is self-
adjoint with respect to this symplectic product implying the well-known facts that its
eigenvalues are real and that creation and annihilation operators of different eigenvalues
commutate.

The above formalism is presented at the level of second quantization. Here we want
to elucidate its formal properties further. To be as general as possible, we consider a set
of bosonic annihilation operators a; and creation operators a;r- with 7 € {1,2,...m}. A
general linear combination ¢ reads

Z —vja;) (C.3)

where ¢ is not normalized and it is not specified whether it is a creation or annihilation
operator. Then, we define the corresponding generalized ket by the column vector

1)) i= (U1, ey Uiy Vg -5 Um) | =€ (C.4)

Sometimes the vector notation ¢ is more convenient than the ket notation. Axiomatically,
we can define the symplectic product between two kets |c)) and |¢/)) by

Z — Vi) (C.5a)

=1

.

=cnd (C.5b)
where the diagonal 2m x 2m matrix n = diag(11,..., lm, —Lmt1,---, —1l2m) is used as
a metric with n? = 1. This sort of “generalized scalar product” runs under several

names in the literature such as “quasi-scalar product” or “para-scalar product” and the
conserving transformation as “quasi-unitary” or “para-unitary”. .
prefer to avoid the term “scalar product” completely because it suggests semi-positivity,
but use “symplectic” which is the established attribute for a metric with equal number of
positive and negative directions, see for instance the symplectic structure of phase space
in analytical mechanics.

It is easy to verify that a conventional Hermitian matrix H = HT is not self-adjoint
with respect to Egs. (C.5). But nH is self-adjoint due to

{(clnH)) = ctmH ! (C.6a)
=c'H¢ (C.6b)
((nHele)) = T Hmc! (C.6c)
=c'Hd (C.6d)
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Alternatively, one can also start from

((clc)) =[eh ], (C.7)

which obviously yields an expression identical to Eqgs. (C.5). The inequality ((c|c)) > 0
tells us that ¢ is an unnormalized creation operator while ((c|c)) < 0 tells us that it is an
unnormalized annihilation operator.

The following question is imminent at this stage: Can one relate Eq. (C.5) and Eq. (C.7)
to the conventional scalar product between quantum states? The answer is ambiguous:
it depends. If there is a general ground state, i.e., a vacuum |0) annihilated by all
annihilation operators b considered (here the linear combinations b have to be annihilation
operators), then the following relation between the standard scalar product (0] 5’6" |0) in
Fock space for two one-particle states and the above defined symplectic product holds

(0] b'bT 10) = (0] (b'bT — bTH') |0) (C.8a)
=[v,b1] (C.8b)

where the last line is precisely the definition (C.7) equivalent to (C.5). Indeed, this
situation is a very common one in multi-band systems where |0) is the vacuum with
respect to all bosons at all values of k. Then one retrieves the Berry connection (4.9)
and the Berry phase (4.10) for paths through the BZ shown in Sec. 4.3.

But we stress that the identity (C.8) does not hold if an external control parameter A
is varied which changes the vacuum as well. Then the Berry phase for a path from A =0
to A = A1 reads

v =i /0 : (O(A)[B(A)DxbT(A) [0(N)) dA (C.9)
:i/oxl {<O(A)!b(A) (éka(A)) J0(A)) + (O(N) [ B(A)BT () (aA‘O(A»)] dr (C.9D)

=i /Oxl {(0(/\)’[51()\),(8AbT()\))]|O()\)>+<O()\)](6A\0(/\)>)] dx (C.9¢)

= 'Yexc()\l) + Vvac()\l) s (ng)
where two contributions are identified
A1
TexeOM) =1 [ O]V, {8181 (A)}] 10(3)) A (C.100)
A1
TaeOh) =1 [ O {03 D) A (C.10b)

One contribution, vexc, results from the bosonic excitation and equals what one obtains
using the symplectic product. The other contribution, 7yac, is the Berry phase of the
vacuum. For paths in the BZ, the analogous result has been derived in Ref. where,
however, the vacuum contribution should not occur because the global vacuum of the
system does not depend on the momentum.

The bottom line is that for topological properties defined in the BZ the symplectic
product yields a Berry phase identical to the conventional definition. In more general
cases, however, the variation of the vacuum matters as well.
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We corroborate this conclusion by repeating Berry’s original adiabatic approach in
the bosonic Fock space. Let us assume that the bilinear Hamiltonian depends on the
parameter A, which may parametrize a path in the BZ or may be an external control
parameter. It is varied slowly from 0 to 1, i.e., A =¢/T for t € [0,T] with T' — co. The
Hamiltonian is generally given by the matrix H(\) ; for an example see Eq. (4.4) in
Sec. 4.3. At each value of A the ket |n()\)) parameterizes the creation of a boson in the
nth eigenmode. Hence the equation

nH(X) [n(A)) = wa(A) [n(A)) (C.11)

is fulfilled. We assume the eigenmodes to be non-degenerate for clarity. The adiabatic
ansatz, see for instance Ref. [9], for the solution [¢,(t)) close to the instantaneous
eigenstate |¢,(N)) := bl (A)|0(N)) reads

[¥n(t)) = exp(=iO(1)) (I¢n (A1) + (1/T) L)) (C.12)

where the correction (1/7) | L) is small in 1/7 and perpendicular to |¢,(A(t))). Inserting
this ansatz in the Schrédinger equation i0; |1y, (t)) = H |1, (t)) yields

H n(6)) = (40) [9n(1)) + exp(—16(1)) 05 [én (M)

+ perpendicular terms . (C.13)

Next, we multiply with (¢, (\)| from the left to obtain

n(A) + Bo(A) = %0 + 20 (rese(N) + Hac(N) (C.14)

where Ej is the ground state energy and we used the result of the calculation (C.9).
Integrating from ©(t = 0) =0 to t = T yields

OT) =T [ (wn(3) + Bo(0) dA = rexe(1) = 1) (C.15)

This is the usual result for Berry phases in an adiabatic setting. The first term on
the right hand side of Eq. (C.15) represents the dynamic phase and the second term
Yexc(1) + Wwac(1) is the Berry phase. Clearly, there is a contribution from the excitation
and potentially from the ground state, i.e., the bosonic vacuum. Again, if the ground
state is a global vacuum applying to all bosons it does not change as a function of .
Then there is no vacuum Berry phase, i.e., 7yac = 0. This is the case for topological
phases determined in the BZ.

D. Numerical calculation of the Zak phase

Only in rare cases, the analytical determination of the Zak phase is possible. In particular
for higher-dimensional problems, for instance the twelve-dimensional extended model
considered for BiCu,POg, a numerical approach is needed. The first step is to discretize
the contour of integration. As an example for determining the phase from k£ = 0 to
k = 2m we use k; = 2 with i = 0,1,--- ,N — 1 (lattice constant is set to unity). It
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is straightforward to determine the eigenmodes |n, k;)) numerically?. But the numerical
choice of phase at each momentum k; is arbitrary so that we cannot rely on a continuous
evolution and hence an approximation of

2T
- :1/0 ((n, k| Oy |n, k) dk (D.1)

does not work. A well-established solution consists in using the Wilson loop
N-1
Yo =—Im > In (((n, ki|n, kiy1))) mod 27 (D.2)
i=0

instead, where |n, ko)) = |n, kxn)) holds because the loop is closed. We stress that in the
above formula the gauge, i.e., the choice of the phase, of each eigenmode does not matter
because it cancels out. Re-gauging each eigenmode arbitrarily

I, ky)) = n, k) = exp(ie;) [n, ky)) (D.3)

does not alter the outcome of Eq. (D.2) because each eigenmode appears once as ket and
once as bra.

An alternative variant of the above approach relies on the idea of parallel transport.
The eigenmode |n, k;)) serves as a reference state for |n, kj;1)). If their symplectic product
reads

((n, kjln, kj1)) = 2 = [z] exp(—ipjt1) (D.4)

we re-gauge |n, kj11)) such that it becomes as parallel as possible to |n, k;)). Obviously,
this is achieved by

I, kj1)) — I, kyen)) = expliogen) I kjin) (D.5)

This procedure is iterated recursively from j = 0 to j = N — 2. The next and final step
for j = N — 1 yields ¢n, but the corresponding re-gauging (D.5) is not possible because
the phase of |n, ko)) = |n, kn)) is fixed already. Then the total sum (D.2) simply reduces
to

Yo = —ImIn (((n, kn_1|n, ko)) (D.6)
since all re-gauged products are real and positive so that the Zak phase corresponds to
T =¢N - (D.7)

The attractive feature of this second variant is that it reveals the geometric character of
the Berry phase. It stems from the parallel transport in the U(1) principal fiber bundle
of the manifold given by the eigenmodes as a function of momentum.

D.1. Exemplary calculation of the Zak phase

Here we want to elucidate the numerical calculations for an analytically solvable problem
in order to get insights into the methods. As already discussed in Sec. 2.3.3, the SSH

2Since this appendix is referred in Sec. 4.3, we use the generalized notation for the eigenmodes which is
applied for BiCuyPOg. In constrast, the numerical example in App. D.1 uses the normal ket notation
due to the presented calculation in the standard SSH model.
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In,0) = |n,2m)

Figure D.1: (a) Lattice structure of SSH model with periodic boundary conditions and
N = 3 unit cells which can also be represented by a six-site loop as in panel (b). The
corresponding discretized BZ is shown in panel (c).

model serves as a standard example for a quantized Zak phase. We recall® that the
Hamiltonian is given by

Hesy = Z (vc;r’BcijA + wc;-r+17Aci7B) +he (D.8)

)

where we focus on the fully dimerized limit v = 0 and we set the lattice constant a = 1.
Thus, the pseudo-spin representation is given by d(k) = (w cos(k), wsin(k),0). The Berry
connection can be calculated with Eq. (2.35)

1

Ay =i(£|0|E) = (doOkdy — d10gds) = 5 (D.9)

2d(d + d3)
where 4+ denotes the two bands, respectively. In this special case, the Berry connection is
momentum-independent and therefore contributes uniformly over the complete BZ. Thus
the Zak phase is analytically determined by

2
Y+ = Ay dk=—-m (D.10)
0

which is equivalent to m modulo 2.

Now we want to reproduce the same result with the numerical approach. We assume
periodic boundary condition with N = 3 which form a six-site loop, see Fig. D.1. There-
fore, the momentum can take on values k; = % with ¢ = {0, 1,2}. We trace the parallel
transport of the eigenstate with a positive eigenvalue

|+, k) = \}5 <e}k> (D.10a)

1 (1 2m 1 1 4T 1 1
= ‘+;0> - ﬁ <1> ’ ’+7 ?) - ﬁ <612ﬂ-/3> ) |+7 ?> - E <€i47r/3> . (D].Ob)

3 A more detailed description of the SSH model is given in Sec. 2.3.
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Performing the numerical calculation according to Eq. (D.2), we obtain

v+ = —ImIn [(+, 0|+, 27/3) (+, 27 /3|+, 47 /3) (+, 47 /3|+, 0)] (D.11a)

elm/3 3
= —Imln 5 =7 . (D.11b)

For the alternative approach, we re-gauge the eigenstates to

1 (1 27 1 (e in/3 Ar 1 [ei2n/3

|+,0) = 7 <1> )= 7 (ei”/?’ ) )= 7 (eﬁ’r/?’) - (D.12)
As a result, the inner products (+, 0|+, 27/3) = (4, 27/3|+,47/3) = cos(n/3) = 0.5 are
real and positive so that do not contribute to the phase except the last inner product.
Note that the magnitude of one inner product is always smaller than unity and can be
interpreted as the amount of change in one iteration step of the parallel transport. The
last inner product (+,47/3|+,0) = cos(27/3) = —0.5 = 0.5¢'™ provides the Zak phase
v+ = —m accumulated over all steps. So by re-gauging, the phase was always shifted to
the next inner product until all contributions to the complex phase are summed in the
last term.

E. Investigation of the localization length in the
Su-Schrieffer—-Heeger model

The fact that topological in-gap states delocalize by closing the indirect gap can be
observed by investigating confined geometries. The disappearence of the indirect gap,
however, can also be read off the energy dispersion in the bulk. This leads to the question
if there is also the possibility to observe the delocalization process in the bulk properties.
To this end, we investigate the localization/correlation length &.

The conventional relation & = s/A is only valid for the relativistic free fermionic
dispersion FE(q) = /A% + (sq)?. A generalized approach relates the whole dispersion
curve with the localization length . This universal relation is given by

E(ik) =0 with k= —ik'+1/¢ |, (E.1)

where k' is determined by the minimum of the dispersion curve above the ground state.
According to the example shown in Sec. 4.7, we determine the localization length in the
topological phase of the SSH model with v = 0. The dispersion is described by

E(k) =w+2ucos(k) . (E.2)
Hence, inserting k = ik = 7w + i/£ leads to
E(ik) = w —2ucosh(1/£) =0 (E.2a)

= 1/¢ = acosh <2u;) . (E.2b)

At the transition point w = 2u where the indirect gap closes, the localization length
diverges. The parameter range w > 2u leads to finite values for &, whereas w < 2u leads
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to an invalid imaginary solution for &, which corresponds to the range of values with
delocalized in-gap states. Thus, this argument supports our result that a finite indirect
gap leads to a finite localization length for the in-gap states while the closing of the
indirect gap is connected to an infinite &.

In order to confirm the correctness of the universal approach we numerically calculate
the localization length of the eigenstate with zero energy at the left boundary. As above,
we consider the SSH model with v = 0. We assume exponentially localized wave function
with ¥ = ae~/¢ so that the probability density is given by

[0 = a®e®/E (E.3)

where a? is real and positive.

In Fig. E.1(a) we plot an exemplary probability density of the investigated zero-mode
with u/w = 0.49. The probability density alternates and decreases by going from the
left boundary to the right. To this end, we use the function from Eq. (E.3) to fit the
envelop function of the probability density which is shown by a blue line in Fig. E.1(a).
The used fit function works very well to describe the envelop function of the probability
density. We use a least square fit method which leads to errors below the tenth digit and
are therefore neglected.

Figure E.1(b) shows the analytical solution for the localization length using the univer-
sal approach as a function of u/w as well as the numerical calculations. The analytical
function coincides very well with the numeric and thus supports the validity of the uni-
versal relation.

As a complement, we additionally calculate the localization length with the conven-
tional relation. To do so, we describe the minimum of the dispersion with a Taylor
expansion up to the second order

Ek=m+q) =w—2u(l —q;+0(q4)) . (E.4)

The square of the Eq. (E.4) is described by
E%(q) = (w — 2u)* + (w — 2u)2uq® + O(q¢*) . (E.5)
The comparison with E2(q) = A? + (sq)? leads to
A=w—-2u and s*=(w—2u)2u . (E.6)
Thus the localization length with the conventional approach is given by

S 2u
f_g_ w—2u (E.7)

This relation for £ also diverges for w = 2u and is finite for w > 2u which also coin-
cides with our results. However the discrepancy to the numerical values is clearly shown
in Fig. E.1(b). Therefore we conclude that the universal approach is more suitable to
calculate the localization length.

For the sake of completeness, the localization length has also been determined in general
for the extended SSH model and is described by

v
1/€ = acosh (w e \/4u2 )+ w2v2) : (E.8)
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The delocalization of in-gap states is a general phenomena and also occurs in two-
dimensional topological systems as well, see Chap. 5. Thus it may be possible to extend
the one-dimensional approach to find a localization length in two dimensions. This task
is left to future research.

0.6
(a) — 1, =10.198997
—— fit a® = 0.554, £ = 4.958
(.44 0.6
=
+ 0.4
@
<'\ -
= 0.2 0.2
OO v v T T T T T T T T
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0.01 ‘ ‘ ‘
0 50 100 150 200
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(b) universal approach
61 conventional approach

®  numeric approach

0 ‘ : : :
0.0 0.1 0.2 0.3 0.4 0.5
u/w

Figure E.1: (a) Fit of the envelop probability function with an exponentially localized
function in the SSH model at v = 0 and u/w = 0.49. The IPR of the eigenstate and the
fit parameters are given in the legend. (b) The localization length for the universal and
conventional approach as a function of u/w are shown by red and green lines, respectively.
The numerical calculated values are depicted by blue circles.

161



Estimation of the ground state with two classical spins

Figure F.1: (a) Cutout of two nearest neighbor spins in the Shastry—Sutherland lattice
including their Dzyaloshinskii-Moriya coupling to the next-nearest neighbor. (b) Cou-
pling of two classical spins.

F. Estimation of the ground state with two classical spins

The ground state of the spin system determines the character of the spin excitations,
which are the subject of the investigation, and therefore represents the basis of our
spin calculation in Chap. 6. The single-ion anisotropy (SIA) and the Dzyaloshinskii—
Moriya (DM) coupling favor different ground state alignments. While the STA favors an
easy-axis alignment along the z-axis for A** = A > 0, the DM coupling benefits from
tilted spins. To find the energetically optimum alignment, we estimate the condition for
the transition from a polarized state to a tilted ground state by investigating two classi-
cal spins of length S, see Fig. F.1(b). For the correct embedding of the spin pair in the
Shastry—Sutherland lattice, the STA term is split into four parts A/4 because each site
has four J' and D, bonds, see Fig. F.1(a). The Hamiltonian of the two spins reads

A
H =781~ 7 ((S0)° +(55)°) - D=(S78Y - ts5) (F.1)

The two classical spins are parameterized by two paris of angels

sin(61) cos(¢1) sin(62) cos(2)
S1 =S5 | sin(61) sin(¢1) and Sz =5 | sin(f2) sin(p2) , (F.2)
cos (1) cos(62)

where @1 and @9 set the azimuthal angles whereas 6 and 05 set the polar angles. Hence,
the classical energy is given by

E(01,0, 01, p2) = —J'S%(cos(61) cos(ba) + sin(6;) sin(6) cos(p1 — @2))
—%Sz(cos(@l)2 + cos(62)?) — D, S?sin(6;) sin(fy) sin(p1 — @2)) , (F.3)

where only the difference of the azimuthal angels matters. Thus, we define the relative
azimuthal angle ¢ := @1 — 9. The aim is to find the lowest energy. First, we minimize
the energy by finding the extrema with respect to ¢:

OE(01,02,¢)

90 = —sin(6;) sin(f2)S?*(D, cos(¢) — J'sin(p)) =0 (F.4)

162



Estimation of the ground state with two classical spins

which is given for all polar angles by fulfilling d := D,/J’ = tan(p). Furthermore, we
introduce a := A/J', z := cos(f1 + 62), and y := cos(0; — 02) with |z, |y| < 1, so that we
can simplify the Eq. (F.3) to

2E(x,y,p)
sy

sin(¢)?
cos(¥)

a

St ay) — (y-a)

—z—y— (y—x)cos(p) (F.4a)

_ a (y — =)
=—z—y— 5(1 + zy) — o) (F.4Db)

Without loss of generality, we choose that sgn(cos(¢)) = —sgn(z — y). Using

|Cosl(¢)\ = 1+ tan(p) = Vit &2 (F.5)

leads to the final equation

2E(z,y)
S22
This expression is invariant under the exchange of z with y so that we restrict the con-

sidered range of parameters to 1 > z > y > —1 so that |x —y| - x — y. As a result,
Eq. (F.6) can be recast to

25 (z,y) —o (-1 VIE@) - Sy (-1 VITE) . (E)

S2J 2

:—x—y—%(1+xy)—|x—y|\/1+d2 . (F.6)

The term proportional to = in Eq. (F.7) is negative
~1+ Y+ VIFP) <0, (F.8)

so that x = 1 is the best value to lower the energy. The classical energy can now be
interpreted as a function of y:

{;ﬁf}y):_(yum)w(—g—uw) , (.9)

where the function has a minimal value at the boundary y = 1 in the case of a negative
slope. Hence the sign changes at

g+1= V1+ & (F.10)
which determines the phase transition. We conclude that as longas §+1 > v/1 + d? holds,

one of the two possible polarized ground states is spontaneously chosen since z =y =1
corresponds to 0; = 0y = {0, 7}.
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