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Abstract

Synchrotron radiation sources have become an essential part of modern science. The on-

going development to reach higher performance levels with improved quality of synchro-

tron light demands upgrades of current synchrotron radiation facilities or even construc-

tion of new accelerators. During this process, new challenges, both technological and in

the accelerator physics, need to be addressed to achieve a higher light quality in terms

of brightness, coherence, pulse duration, etc. This includes the suppression of coupled-

bunch instabilities. These instabilities are based on the interaction of the accelerated par-

ticles with the vacuum chamber surrounding them, especially the accelerating cavities.

Beam instabilities can significantly lower the beam quality or even result in particle loss.

The development of digital bunch-by-bunch feedback systems in the 1990’s made detailed

analysis of coupled-bunch instability eigenmodes possible, replacing the former approach-

es to counteract coupled-bunch instabilities like analog feedback systems or radiofrequency

(RF) phase modulation. Since the coupled-bunch effects increase in upcoming storage

rings due to, e.g., higher beam currents and smaller vacuum chambers, the suppression

of instabilities is once again in the focus of current accelerator research.

The scope of this thesis is to use a digital bunch-by-bunch feedback system to analyze and

quantify the suppression of longitudinal coupled-bunch instabilities by RF phase modu-

lation. Both options are available at DELTA, a 1.5 GeV electron storage ring operated by

the TU Dortmund University. For this purpose, a numerical tracking code was developed.

It is capable of analyzing coupled-bunch instabilities in the presence of a modulated RF

phase. The numerical results show that the instability growth rates decrease quadratically

with the modulation amplitude. In addition, a new method was established to measure the

growth and damping rates of coupled-bunch instability modes in the presence of RF phase

modulation. The results also show a quadratic dependence on the modulation amplitude.

Based on the knowledge and experienced gained throughout this work, studies were per-

formed in order to improve the user operation of the DELTA storage ring. An investigation
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of the injection process at DELTA showed that the injection efficiency can be increased with

the bunch-by-bunch feedback system. In addition, a beam-stability map was created by

sweeping the parameters of the RF phase modulation system and the optimal parameters

for user operation were found. Thereupon, two new easy-to-use tools were added to the

DELTA control system which help to utilize the bunch-by-bunch feedback system during

user operation.
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Zusammenfassung

Heutzutage sind Synchrotronstrahlungsquellen ein wichtiges Element der modernen For-

schung. Die kontinuierliche Weiterentwicklung zur Erzeugung höherer Lichtqualität, er-

fordert die Erweiterung bestehender Strahlungsquellen bzw. den Bau neuer Anlagen. Durch

die laufend steigenden Anforderungen der Nutzer von Synchrotronstrahlung in Bezug auf

Brillanz, Kohärenz, Pulsdauer etc., müssen stetig neue technische und physikalische Her-

ausforderungen bewältigt werden. Im Besonderen gilt dies auch für kollektive Schwingun-

gen der Teilchenpakete. Diese Instabilitäten basieren auf der Wechselwirkung der beschle-

unigten Teilchenpakete mit der sie umgebenden Vakuumkammer, insbesondere den zur

Beschleunigung verwendeten Hochfrequenz(HF)-Resonatoren. Diese Effekte können die

Strahlqualität beeinträchtigen oder sogar zum Strahlverlust führen.

Mit der Entwicklung von so genannten “bunch-by-bunch”-Rückkoppelsystemen in den

1990er Jahren, ist es möglich geworden, kollektive Schwingungsmoden im Detail zu un-

tersuchen und ihnen entgegenzuwirken. Dadurch wurden die bis dahin verwendeten Sys-

teme wie z.B. analoge Rückkoppelsysteme oder HF-Phasenmodulation, größtenteils von

digitalen “bunch-by-bunch”-Rückkoppelsystemen abgelöst. Da die Anregung von Strahlin-

stabilitäten mit der Entwicklung neuer Beschleunigermodelle kontinuierlich steigt, z.B. auf-

grund höherer Strahlströme und kleinerer Vakuumkammern, ist die Dämpfung dieser Ef-

fekte weiterhin ein wichtiger Bestandteil der aktuellen Beschleunigerforschung.

Im Rahmen dieser Arbeit wurde der Effekt von der Phasenmodulation der beschleunigen-

den HF-Spannung auf die Strahldynamik untersucht. Dazu wurde ein “bunch-by-bunch”-

Rückkoppelsystem verwendet, um die auftretenden Strahlinstabilitäten in Abhängigkeit

der Einstellparameter des Phasenmodulationssystems zu analysieren. An DELTA, einem

1.5-GeV-Elektronenspeicherring, der von der TU Dortmund betrieben wird, stehen beide

Optionen zur Verfügung.

Zu diesem Zweck wurde ein numerisches Programm entwickelt, das kollektive Schwingun-

gen der Teilchenpakete unter Einfluss einer phasenmodulierten HF-Spannung untersu-

cht. Die Ergebnisse zeigen, dass die Anwachsraten der Instabilitäten eine quadratische
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Abhängigkeit zur Amplitude der Phasenmodulation haben. Zusätzlich wurde eine neue

Messmethode entwickelt mit der die Anwachsraten der Strahlinstabilitäten unter Einfluss

der Phasenmodulation untersucht werden können. Die experimentellen Ergebnisse zeigen

ebenfalls eine quadratische Abhängigkeit.

Anschließend wurden weitere Studien durchgeführt, um den Nutzerbetrieb an DELTA zu

verbessern. Es wurde gezeigt, dass die Injektionseffizienz mit dem “bunch-by-bunch”-

Rückkoppelsystem erhöht werden kann. Das ermöglichte die Erstellung einer Stabilität-

skarte des Strahls, indem die Parameter der Phasenmodulation durchgefahren wurden, so-

dass optimale Parametersätze definiert werden konnten. Daraufhin wurden zwei neue be-

nutzerfreundliche Applikationen zum DELTA-Kontrollsystem hinzugefügt, um das “bunch-

by-bunch”-Rückkoppelsystem im Nutzerbetrieb nutzbar zu machen.

vi



Contents

Abstract iv

Zusammenfassung v

Contents vii

List of Figures xi

List of Tables xiii

Glossary xv

1. Introduction and Motivation 1

2. Particle Beam Dynamics and Coupled-Bunch Instabilities 5

2.1. Particle acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1. Longitudinal Electric Fields in Cylindrical Waveguides . . . . . . . . . . 6

2.1.2. Cylindrical Resonators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.3. RF Phase Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2. Basic Particle Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1. Frenet-Serret Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2. Momentum Compaction Factor . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3. Linear Transverse One-Particle Motion . . . . . . . . . . . . . . . . . . . 13

vii



CONTENTS

2.2.4. Longitudinal One-Particle Motion and Phase Focusing . . . . . . . . . . 14

2.2.5. RF Phase Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3. Longitudinal Wake Fields and Impedances . . . . . . . . . . . . . . . . . . . . . 21

2.3.1. The Beam Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2. Wake function and Impedance . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.3. Wake Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4. Coupled-Bunch Instabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.1. Particle Dynamics with Synchrotron Radiation and External Excitations 29

2.4.2. Instability Growth Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.3. Additional Damping Mechanisms . . . . . . . . . . . . . . . . . . . . . . 32

3. The Electron Storage Ring DELTA 33

3.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2. Phase Modulation at DELTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3. Bunch-by-Bunch Feedback System . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1. BPM and Hybrid Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.2. Processing Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.3. Amplifiers and Kicker Structures . . . . . . . . . . . . . . . . . . . . . . . 40

4. Beam Dynamics Simulation 43

4.1. Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2. Choice of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3. First Results and Code Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4. Dependence of Coupled-Bunch Growth Rates on the Modulation Amplitude . 51

viii



CONTENTS

5. Experimental Studies 53

5.1. Optimum RF Phase Modulation Frequency . . . . . . . . . . . . . . . . . . . . . 54

5.2. Phase Shift Applied in the Accelerating Cavity . . . . . . . . . . . . . . . . . . . 55

5.3. Data Acquisition with the Bunch-by-Bunch Feedback System . . . . . . . . . . 60

5.4. Determination of Coupled-Bunch Growth and Damping Rates . . . . . . . . . 62

5.5. Coupled-Bunch Instabilities in the Presence of RF Phase Modulation . . . . . 65

5.6. Studies to Improve User Operation . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.6.1. Improving the Injection Efficiency . . . . . . . . . . . . . . . . . . . . . . 72

5.6.2. Mapping the Stability of the Beam . . . . . . . . . . . . . . . . . . . . . . 74

6. Summary and Outlook 77

A. Appendix 81

A.1. DELTA Cavity Voltage and Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.2. Figures of Merit of the DORIS Cavity at DELTA . . . . . . . . . . . . . . . . . . . 83

A.3. The Saturation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

B. Acknowledgements 89

References 91

ix





List of Figures

2.1. Field distribution in a pillbox cavity . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2. Spectrum of a phase-modulated signal . . . . . . . . . . . . . . . . . . . . . . . 11

2.3. Traveling coordinate system along the orbit . . . . . . . . . . . . . . . . . . . . 12

2.4. Horizontal phase space and acceptance . . . . . . . . . . . . . . . . . . . . . . . 14

2.5. Dispersion and phase focusing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6. Longitudinal phase space and separatrix . . . . . . . . . . . . . . . . . . . . . . 18

2.7. Longitudinal phase space with two and three stable fix points . . . . . . . . . . 19

2.8. Island formation in the longitudinal phase space due to RF phase modulation 20

2.9. Beam spectra of different single- and multibunch setups . . . . . . . . . . . . . 23

2.10.Beam spectrum of four coupled bunches . . . . . . . . . . . . . . . . . . . . . . 24

2.11.Schematic of an RF-cavity simplified by an RLC parallel-circuit . . . . . . . . . 26

2.12.Bunch motion in the presence of an external driving force . . . . . . . . . . . . 30

3.1. Sketch of the synchrotron radiation source DELTA . . . . . . . . . . . . . . . . 33

3.2. RF phase modulation system at DELTA and its characteristic curve . . . . . . . 35

3.3. Overview of the digital bunch-by-bunch feedback at DELTA . . . . . . . . . . . 37

3.4. Beam position monitor and hybrid network . . . . . . . . . . . . . . . . . . . . 38

3.5. Photo of the bunch-by-bunch feedback system at DELTA . . . . . . . . . . . . 39

3.6. Sketch of the fast pulsed kicker structures used at DELTA . . . . . . . . . . . . 41

xi



LIST OF FIGURES

4.1. First simulation results of a single particle. . . . . . . . . . . . . . . . . . . . . . 49

4.2. Growth rate as a function of the beam current . . . . . . . . . . . . . . . . . . . 50

4.3. Growth rate as a function of the phase modulation amplitude . . . . . . . . . . 52

5.1. Sweep of the RF phase modulation frequency to find the optimal value . . . . 54

5.2. Analysis of the measured spectrum of the phase modulation system at DELTA 56

5.3. Measured resonance curve of the DELTA cavity . . . . . . . . . . . . . . . . . . 58

5.4. Phase shift as a function of the control voltage amplitude . . . . . . . . . . . . 59

5.5. Mode analysis of a measurement with the bunch-by-bunch feedback system 61

5.6. Grow damp measurements at DELTA . . . . . . . . . . . . . . . . . . . . . . . . 63

5.7. Grow-damp mode signals for different phase shifts . . . . . . . . . . . . . . . . 64

5.8. Functions used to reconstruct the measured grow-damp mode signals . . . . 66

5.9. Calibration measurements used for the saturation method . . . . . . . . . . . 68

5.10.Growth or damping rate τ−1 as a function of the phase shift . . . . . . . . . . . 70

5.11.Analysis of the trend of τ−1
sat by a second-order polynomial fit . . . . . . . . . . 71

5.12.Injection efficiency increase generated by using bunch-by-bunch feedback . 73

5.13.Combined parameter sweep to achieve a stability map . . . . . . . . . . . . . . 75

6.1. Comparison of simulation data and measurement data . . . . . . . . . . . . . 78

xii



List of Tables

3.1. Basic parameters of the DELTA storage ring . . . . . . . . . . . . . . . . . . . . . 34

4.1. Most important parameters used in the first simulation. . . . . . . . . . . . . . 48

xiii





Glossary

symbol description first occurrence

constants of nature

c = 299.792Mms−1 speed of light 5

e = 1.602×10−19 C electron charge 12

me = 510.998keVc−2 electron mass 30

µ0 = 1.257×10−6 NA−2 vacuum permeability 6

parameters that are used in multiple chapters

Aexc excitaion amplitude 66

Am modulation amplitude 17
~B magnetic flux density 6

D downsampling factor 39
~E elctric field strength 6
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1. Introduction and Motivation

The generation of synchrotron radiation is of particular importance for modern science be-

cause of its unique characteristics and properties. It has a broad spectrum from microwave

radiation up to the regime of hard x-ray photons with a high flux density, high brilliance,

high stability, a pulsed time structure and can be polarized linearly or circularly. Thus, it is

used by scientists of many different branches, e.g., solid-state physics, chemistry, crystal-

lography, biology, materials science, surface analysis, medicine, etc. [1]. Synchrotron ra-

diation is emitted by charged particles under circular acceleration in a magnetic field and

used for diffraction and scattering experiments, as well as for spectroscopy and imaging

purposes. Since its first observation in 1947 [2], synchrotron radiation has evolved rapidly

and today, more than 50 dedicated synchrotron light sources around the world [3] deliver

brilliant radiation for an ever growing variety of applications.

The beam intesity of third- and upcoming fourth-generation synchrotron radiation facil-

ities is mainly limited by the occurrence of so-called coupled-bunch instabilities [4, 5].

These effects significantly lower the beam quality, and, therefore, also the quality of the

emitted synchrotron radiation, or even lead to particle loss of the stored electron beam [4].

Coupled-bunch instabilities are based on the interaction of the accelerated particles with

the vacuum chamber surrounding them. While traveling through the accelerator, the parti-

cles generate electromagnetic fields, which can act back on other particles inside the beam.

The formation of these so-called wake fields depends on the geometry and the electrical re-

sistance of the vacuum chamber. Especially in resonant structures, where wake fields can

be sustained for a long period of time relative to the revolution time of the particles, this

effect can have a drastic impact on the particle dynamics [6]. If these wake fields have a

frequency component at one of the discrete eigenfrequencies of a bunched particle beam,

the beam can be excited resonantly, resulting in bunch oscillations with exponentially in-

creasing amplitude leading to beam blowup or even particle loss up to a full beam breakup.

Current developments of synchrotron light sources invest great efforts to achieve an op-

timum beam quality even at high beam currents to satisfy the increasing demands of the
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1. Introduction and Motivation

users. For this purpose, either the bunch length or the transverse profile of the beam is

minimized. An example for minimizing the bunch length is the current development of an

upgrade for the BESSY II storage ring in Berlin, Germany [7]. The project is called BESSY

VSR (variable pulse-length storage ring [8]) and utilizes superconducting multi-cell cavities

with very high quality factors to provide an radio frequency (RF) field which allows to store

short and long bunches simultaneously, without lowering the total beam current. The short

bunches are planned to be ten times shorter than the bunches of BESSY II, but the usage

of superconducting RF structures in a storage ring results in a strong coupling between the

electron bunches [9].

Minimizing the transverse profile of the beam is aimed for at various facilities, e.g., MAX

IV in Lund, Sweden [10] or Sirius in Campinas, São Paulo State, Brazil [11]. These storage

rings use special lattice patterns and insertion devices to decrease the beam profile down to

the diffraction limit [12]. Nevertheless, an increased coupling impedance as well as an en-

hancement of the beam sensitivity against collective effects are expected [5]. In conclusion,

both approaches lead to problematically high excitation of coupled-bunch instabilities.

Additionally, for high-luminosity colliders like SuperKEKB [13, 14] (which aims for beam

currents of 3.6 A resp. 2.6 A), the suppression of coupled-bunch instabilities is very impor-

tant as those instabilities present the main limit to the maximum beam current. Therefore,

collective effects are being investigated worldwide to achieve a deeper understanding and

to find solutions to counteract or prevent them.

A common approach is to avoid the formation of higher-order modes (HOMs) and harmful

frequencies in resonant structures, mainly in the cavities used to accelerate the particles,

which can give rise to coupled-bunch instabilities. This is done by redesigning the struc-

tures and adding, for example, frequency couplers, wave guides or ferrite antennas [15–

18]. In another approach, active bunch-by-bunch feedback systems are utilized, which de-

tect and counteract the coupled-bunch motion. Both approaches have their drawbacks. A

proper design of highly resonant structures in respect to suppression of harmful frequen-

cies is a very challenging and costly task, especially for superconducting structures. Digital

bunch-by-bunch feedback systems, on the other hand, are commercially available nowa-

days and applicable to almost every machine. Nevertheless, these systems are expensive,

the related kicker structures need space in the ring which is limited, and the vacuum needs

to be broken to install them. Therefore, this option is not available for every facility. In ad-

dition, since feedback systems always need time to detect the particle motion before they

can counteract them, they could become too slow for the ever rising coupled-bunch growth

rates. Also, the damping strength of these systems is limited due to their kickers with low
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quality factors and shunt impedances. The result is that bunch-by-bunch feedback systems

may be both too slow and too weak for upcoming storage rings.

The work of this thesis focuses on an alternative approach of stabilizing an electron beam

by modulating the phase of the RF field in the accelerating cavity, a technique that was

studied in circular accelerators as early as in the 1990’s [19–23], but is still not fully un-

derstood. The main goal of theses studies was related to the issues of lifetime limitations

due to RF noise, the development of slow extraction techniques and the use of paramet-

ric feedback for multi-bunch instabilities [24]. RF phase modulation induces a frequency

spread to the particle oscillation, leading to a suppression of resonant excitations. The

advantages of this approach are a suppression of the excitation of coupled-bunch instabil-

ities instead of reacting to existing instabilities and that an RF phase modulation system is

rather low-priced and easily installed. On the other hand, introducing a frequency spread

leads to additional intra-bunch motion, a deformation of the longitudinal bunch profile

and an increased bunch length and energy spread. This requires a compromise between

the beam quality increase due to the absence of coupled-bunch instabilities and the longi-

tudinal beam quality decrease due to RF phase modulation effects. In order to get a deeper

understanding of the interaction between RF phase modulation and the suppression of

coupled-bunch instabilities, as well as the quantification of this interaction as a function of

the modulation parameters, numerical studies have been performed in the framework of

this thesis, in conjunction with experimental studies at the DELTA storage ring.

The 1.5 GeV electron storage ring DELTA, operated by the Center for Synchrotron Radiation

[25] of the TU Dortmund University, serves as a synchrotron light source with several beam

lines and as a research facility for accelerator physics. The first beam was injected in 1996

[26] and it is in continuous operation since 2000 [27]. This machine is also a good example

for the development of curing coupled-bunch instabilities, since at DELTA, different ap-

proaches were made to characterize and suppress beam instabilities in order to increase

the brilliance of the generated synchrotron radiation. In 2004, a cavity prototype, called EU

cavity, with additional damping ports was installed to prevent the excitation of instabilities,

which could be assigned to HOMs of the previously installed cavity [28–30]. Afterwards, the

cavity-induced instabilities were not observable anymore, but other multi-bunch instabil-

ities still persisted, which are presumably created by other resonant structures. The proto-

type was just temporarily installed and removed after one year of operation. It was replaced

by the initial DORIS-type cavity, which was upgraded with ferrite-damping antennas [15].

With this setup, the same instabilities were suppressed as with the EU cavity, while the ori-

gin of the continuously existing instabilities is still unknown [31]. To get rid of these insta-
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1. Introduction and Motivation

bilities, a remotely controllable RF phase modulation system was installed in 2008 [32]. It

suppresses the occurrance of coupled-bunch effects at the cost of bunch lengthening and a

deformation of the longitudinal phase space up to a point where each bunch splits up into

two sub-bunches. In 2011, a digital bunch-by-bunch feedback system was installed, which

is able to eliminate coupled-bunch instabilities without the aforementioned negative ef-

fects. Nonetheless, the RF phase modulation is still used during user operation, due to its

positive side effect of increasing the beam lifetime by up to 20 % [33]. This effect is more

important for the users than the longitudinal beam quality, since there are currently no

time-resolved measurements at DELTA. Although, the scope of applicability of the bunch-

by-bunch feedback system is thereby limited to being a diagnostic tool, the availability of

both systems at the same machine grants the chance of analyzing coupled-bunch motion

under the influence of RF phase modulation.

The intent of this work is to analyze and quantify the dependence of the suppression of

coupled-bunch instabilities by RF phase modulation as a function of the modulation fre-

quency and the modulation amplitude. In addition, the results of these studies shall be

used to reevaluate RF phase modulation parameters applied at DELTA during user opera-

tion. For this purpose, an overview on particle acceleration, particle beam dynamics, lon-

gitudinal wake fields and coupled-bunch instabilities is given in Chapter 2. Due to the

fact that the complex interaction between RF phase modulation and coupled-bunch insta-

bilities cannot be calculated analytically, numerical studies with a particle tracking code,

designed specifially for this thesis, are shown in Chapter 4. The results of these calculations

are further investigated in detail by experimental studies performed at the DELTA storage

ring in Chapter 3. The experiments, presented in Chapter 5, focus on analyzing the RF

phase modulation system and its impact on the particles as well as the characterization of

coupled-bunch instabilities by analyzing data from the bunch-by-bunch feedback system.

Also, both systems are used in a combined measurement to analyze the interaction of both

effects. Finally, additional studies are carried out to improve the user operation at DELTA.
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2. Particle Beam Dynamics and
Coupled-Bunch Instabilities

In this chapter, an overview of particle acceleration, particle dynamics and the principles of

coupled-bunch instabilities together with their origin, i.e., wake fields and impedances, is

given. The fundamental equations of motion are derived and the most important figures of

merit are presented. This thesis focuses on longitudinal motion of ultrarelativistic particles

in storage rings. In this setting, the particles travel with a constant velocity approximately

at the speed of light c.

The first section introduces cylindrical waveguides and cavities for particle acceleration to-

gether with the option of using phase modulation of the electromagnetic wave to load the

cavity for special applications.

Section 2.2 presents the coordinate system used in this thesis and touches the topic of lon-

gitudinal beam dynamics of a storage ring.

In Section 2.3, the beam spectra of bunched beams are derived as well as the wake fields

and impedances of a storage ring. In addition, the formalism of a wake matrix is motivated

which is used for the numerical calculations presented in Chapter 4.

The last section concentrates on the equations of longitudinal motion of particles under

the influence of wake fields and other external excitations. The instability growth rate is

deduced and synchrotron radiation and other damping mechanisms are described.
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2. Particle Beam Dynamics and Coupled-Bunch Instabilities

2.1. Particle acceleration

The effect of electromagnetic fields on a particle with charge q and velocity~v are described

by the Lorentz force
~FL = q

(
~E +~v ×~B)

with the electric field strength ~E and the magnetic flux density ~B . Since the vector ~v × ~B is

always perpendicular to the propagation direction of the particle, magnetic fields cannot

change the energy of the particle, leaving electric fields as the only option for acceleration.

For static electrical fields, the final beam energy is limited due to the fact that it is propor-

tional to the maximum voltage that can be achieved, since the particles can only pass it

once. The first approach to work around this problem is to use free electromagnetic (EM)

waves to achieve much higher beam energies. The direction of propagation of a free EM

wave is described by the Pointing vector

~S = 1

µ0

~E ×~B

with the vacuum permeability µ0, which shows, that the electric field of free EM-waves is

also always perpendicular to its propagation direction. In order to be able to accelerate with

EM fields, additional boundary conditions have to be introduced to generate longitudinal

electric fields.

2.1.1. Longitudinal Electric Fields in Cylindrical Waveguides

The first idea to generate additional boundary conditions is to use waveguides. Assuming

the walls of a waveguide are perfectly conducting, the conditions

~n ×~E = 0 and ~n ·~B = 0, (2.1)

with the normal vector ~n, which is perpendicular to the surface of the walls, must be sat-

isfied, due to the Maxwell equations. The common approach in modern accelerators is to

concentrate on cylindrical waveguides for several reasons, e.g., rotationally symmetric EM

fields, better surface-to-volume ratio, etc.

The propagation of an EM wave inside a cylindrical evacuated waveguide is described by
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2.1. Particle acceleration

the wave equation

∆~E − 1

c2
~̈E = 0,

which derives from the Maxwell equations with the Laplace operator ∆. Separating the

spatial distribution with the cylinder coordinates (r,θ,z) from the time dependence t with

the frequency1 ω

~E(r,θ,z,t ) = ~E(r,θ,z)e iωt

leads to

∆~E(r,θ,z)+k2~E(r,θ,z) = 0 (2.2)

with the wave number k = ω/c. Since this chapter focuses on the longitudinal electric

field Ez, only the z-component of the field is considered and Eq. (2.2) is reduced to the

Helmholtz equation
∂2

∂2
r

Ez + ∂2

∂2
θ

Ez + ∂2

∂2
z

Ez =−k2Ez. (2.3)

Using the relations k2 = k2
r +k2

θ
+k2

z and k2
c = k2

r +k2
θ

, Eq. (2.3) can be simplified to [34]

∂2

∂2
z

Ez +k2
z Ez = 0

with the solution

Ez = Êe i kzz .

If kz is complex, the amplitude of a wave traveling through the waveguide decreases expo-

nentially, while it is constant if kz is real. Therefore, it is possible to define two regimes

kz =
complex if k2

c > k2 (damping)

real if k2
c < k2 (loss-free propagation)

divided by the cutoff wave number kc [34].

Assuming a cylindrical waveguide with radius R is perfectly conducting, no tangential elec-

tric fields can exist at the walls. Solving the eigenvalue problem for this geometry with the

boundary condition Ez (r = R) = 0 leads to discrete solutions [35]

kc = Xmn

R
(2.4)

1 In this thesis, f denotes the frequency in terms of cycles per time unit, whereas ω = 2π f marks the
angular frequency, i.e., the phase angle per time unit. For simplicity, the word “frequency” is used for
both.
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2. Particle Beam Dynamics and Coupled-Bunch Instabilities

with the n-th zero of the m-th Bessel function Xmn . Inserting Eq. (2.4) into the dispersion

relation ω= k · c results in

ω= c

√(
Xmn

R

)2

+k2
z

with the group and phase velocity [36]

vgr = dω

dkz
= c

kz√(
Xmn

R

)2 +k2
z

< c

and vph = ω

kz
= c

√(
Xmn

R

)2 1

k2
z
+1 > c.

The fact that the phase velocity is always higher than the speed of light makes accelerat-

ing particles with waveguides impossible, since the particles dephase with the accelerating

electrical field. While longitudinal electrical fields can be achieved with waveguides, addi-

tional boundary conditions are necessary to stabilize the phase.

2.1.2. Cylindrical Resonators

In modern accelerators, additional boundary conditions to lower the phase velocity are

introduced by using resonant cavities. In principle, these resonators are waveguides with

their entrances and exits closed off by conducting walls at the distance l . Because of the

boundary conditions of Eq. (2.1), an electromagnetic wave propagating into the cavity re-

flects at both ends resulting in a standing wave with the discrete frequencies [34]

ωmnp = c

√(
Xmn

R

)2

+
(pπ

l

)2
with p = 0,1,2,3,... (2.5)

Standing waves only exist if the resonance condition of Eq. (2.5) is satisfied, thus the cavity

behaves like an electrical oscillator with the quality factor

Q0 = ωres

∆ω
(2.6)

where ωres is the resonance frequency and ∆ω is the bandwidth between the two points at

which the amplitude is reduced by −3 dB relative to its maximum.

This means, that the cavity can only be loaded by an electromagnetic wave with a frequency

that matches the resonance frequency of the cavity. Additionally, the power transfer de-
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2.1. Particle acceleration

Ez

-R

0

R
y

x

y

Ez Hφ

Figure 2.1.: Field distribution in a pillbox-cavity with radius R. Left: Longitudinal electrical
field Ez as a function of the radius r , which is mainly determined by the Bessel
function J0 (shown by a dashed line). Right: Cross section of the cavity. The
magnetic field Hφ circles around the center. At the beam position (r = 0), no
magnetic field is present.

pends on the coupling hardware used to load the cavity, which is characterized by the cou-

pling factor κ [6]. This leads to a loaded quality factor

QL = Q0

1+κ , (2.7)

which is generally lower than Q0.

Another important figure of merit for cavities is the shunt impedance

Rs =
|Ueff|2

2P
(2.8)

which describes the efficiency of producing an effective axial voltage Ueff for a given dissi-

pated power P [36]. For a comparison of cavities, the parameter Rs/Q0 is often used which

is independent of material properties and, therefore, gives information about the power

efficiency of the cavity geometry [35].

The boundary conditions imposed on the electric and magnetic fields imply that the so-

lutions of Eq. (2.3) form two categories of modes with different eigenvalues. On the one

hand, there are transverse magnetic, so-called TM-modes, with longitudinal electric and
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2. Particle Beam Dynamics and Coupled-Bunch Instabilities

transverse magnetic fields. On the other hand, there are transverse electric TE-modes with

Ez = 0, where the magnetic fields are completely transverse [35]. To accelerate particles, a

strong electric field at the beam position (r = 0) is desired, that is only given for TM-modes,

which are classified by the nomenclature TMmnp. The indices m, n and p are the same as

in Eq. (2.5) and represent the number of nodes in the longitudinal, radial and azimuthal

plane. The most important mode is the TM010-fundamental mode, which has the highest

Rs/Q0 value. Its electric and magnetic field are shown in Fig. 2.1 and described by

Ez = ÊJ0

(
X01r

R

)
e iωt Bθ =−i

Ê

c
J1

(
X01r

R

)
e iωt

with the first two Bessel functions of the first kind J0 and J1.

2.1.3. RF Phase Modulation

The electric fields in a cavity generate a voltage on the beam axis, which usually has the

form

U (t ) = Û sin
(
ωRFt +φ)

,

with the amplitude Û , the frequency ωRF given by the master RF generator and the phase

shift φ. By applying a time-dependent sinusoidal phase modulation, given by the expres-

sion

φ (t ) = η sin (ωmodt )+φ0,

with the modulation frequencyωmod and the modulation index η describing the maximum

phase shift, the frequency spectrum is fully described by [37]

S (ω) =πÛ
∞∑

n=−∞
Jn(η)e i n π

2 δ(ω−ωRF −nωmod) (2.9)

as shown in Fig. 2.2. In addition to the center frequency ωRF, an infinite number of side-

bands occur at

ωRF ±n ·ωmod with n = 1,2,3,...

with their spectral amplitudes weighted by the Bessel function Jn(η).
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2.2. Basic Particle Dynamics

−3ωmod −2ωmod −ωmod 0 ωmod 2ωmod 3ωmod
frequency ω − ωRF

fre
qu
en
cy

sp
ec
tru

m
S(
ω
)

n=0
n=1
n=2
n=3

Figure 2.2.: Spectrum of a phase-modulated signal with the modulation frequency ωmod

around the center frequency ωRF. Sidebands with n > 3 are approximated to be
zero.

2.2. Basic Particle Dynamics

The dynamics of particles traveling through a storage ring are mainly defined by interac-

tion with the applied magnetic fields and the accelerating electric field in the cavity. To

describe these effects for a specific particle or a bunch of particles, a moving coordinate

system is introduced. The velocity of the particles is considered to match the speed of light

v ≈ c, so that relativistic effects have to be taken into account at all times. This results in

an oscillation of the particles around their reference position in all three spatial directions,

which can be examined separately.

2.2.1. Frenet-Serret Coordinates

To describe the particle motion in a storage ring, a moving coordinate system [6] is used. A

particle at the center of the coordinate system, with x = y = z = 0, is called reference parti-

cle. The path of the reference particle around the ring defines the s-axis and is called orbit.

11



2. Particle Beam Dynamics and Coupled-Bunch Instabilities

The Frenet-Serret coordinates build an orthogonal coordinate system following the orbit

as shown in Fig. 2.3. The displacements of other particles relative to the reference particle

are expressed by the x, y and z coordinates for the horizontal, vertical and longitudinal di-

rection, respectively. In addition, the transverse angles of a particle relative to the orbit are

described by x ′ = d x/d s and y ′ = d y/d s. The coordinate δ = ∆E/E0 represents the rela-

tive energy deviation from the nominal energy E0 of the reference particle. Eventually, this

leads to a six-dimensional phase space

x

x ′

y

y ′

z

δ


=



horizontal displacement

horizontal angle

vertical displacement

vertical angle

longitudinal displacement

relative energy deviation


.

2.2.2. Momentum Compaction Factor

Due to the Lorentz force in the presence of magnetic fields, a reference particle with el-

ementary charge e traveling approximately at the speed of light experiences a horizontal

acceleration described by

~̈x = ec3B

E0
~ex ,

Figure 2.3.: Frenet-Serret coordinates moving along the orbit with the coordinate s. A par-
ticle travels along its trajectory with the longitudinal displacement z and the
transverse displacements x and y .
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2.2. Basic Particle Dynamics

depending only on the particle energy E0 and the magnetic flux density B , which is perpen-

dicular to the particle motion. That leads to an energy-dependent horizontal displacement

which is represented by the so-called dispersion function D (s) [6, 34]. Considering that

the bending radius of the dipoles Rb (s) also depends on the position s along the orbit, the

length deviation of the trajectory of a particle with δ 6= 0 becomes

∆L = δ
∮

D (s)

Rb (s)
d s.

This means, that the path length of a particle depends on the particles energy and the so-

called momentum compaction factor for ultrarelativistic particles

α= d

dδ

∆L

L0

is defined as the derivation of the normalized path length deviation∆L/L0 with the circum-

ference of the ring L0.

For small energy deviations, it can be shown [34], that the momentum compaction factor

can be simplified to

α= ∆L/L0

δ
= ∆T /Trev

δ
(2.10)

with the time deviation ∆T corresponding to ∆L and the revolution time Trev.

2.2.3. Linear Transverse One-Particle Motion

A single electron traveling through the magnetic structure of a storage ring where all dipoles

only influence the horizontal motion experiences linear reversing forces in the quadrupoles

with the strength k (s) [34] and performs quasi-harmonic oscillations around the orbit in

both transverse planes. Additionally, the bending radius Rb (s) influences the horizontal

motion resulting in the linear equations of motion [6]

x ′′(s)+
(

1

R2
b (s)

−k (s)

)
x (s) = δ

Rb (s)
y ′′(s)+k(s)y(s) = 0.

The trajectory of the particle can be plotted in the transverse phase space, as shown in

Fig. 2.4 for the horizontal plane.

The transverse beam cross section is limited by the acceptance, which is defined by the two

following effects. The mechanic aperture is given by the vacuum chamber or any obstacle
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2. Particle Beam Dynamics and Coupled-Bunch Instabilities

close to the beam and the dynamic apertureis an effect of non-linear particle dynamics,

which further narrows the acceptance (for more details see e.g. [6, 34, 38]). The combina-

tion results in the acceptance ellipse shown in Fig. 2.4, which is the largest possible ellipse

for stable trajectories in the transverse phase space. All particles with a displacement or

angle outside the acceptance ellipse inevitably hit an obstacle resulting in the loss of the

particle.

2.2.4. Longitudinal One-Particle Motion and Phase Focusing

Similar to 2.2.3, a single particle performs oscillations around the longitudinal reference

position (z = 0) as well. The restoring force in this case originates from the accelerating

field in the cavity introduced in Section 2.1.1.

An electron traveling at v ≈ c around the ring loses the energy ∆Es due to the emission of

synchrotron radiation. The RF voltage in the accelerating cavity applies the energy change

∆ERF depending on the phase at which the particle passes cavity. At the synchronous phase

x

x′

particle beam

acceptance ellipse

obstacle

mechanic aperture

Figure 2.4.: Horizontal phase space of a particle beam in a recirculating accelerator. The
particles follow elliptical trajectories forming the area of the beam shown in
blue. The mechanic aperture (dashed black) is defined by the obstacle closest
to the beam (grey). The acceptance ellipse (green) is further narrowed by non-
linear effects (dynamic aperture) and describes the largest possible ellipse for
stable trajectories in the transverse phase space (the figure is based on [34]).

14



2.2. Basic Particle Dynamics

RF cavity

δ < 0

δ = 0

δ > 0

δ < 0
δ = 0
δ > 0

φs φ

U

Figure 2.5.: Left: Different path length due to energy deviation δ. Right: Phase focusing
inside the accelerating RF cavity with synchronous phase φs at δ= 0 (the figure
is based on [34]).

φs, the energy gain in the cavity

∆ERF = eÛ sin
(
φs

)
(2.11)

and the energy loss due to synchrotron radiation ∆Es perfectly compensate each other. To

ensure this over multiple turns, the RF frequency ωRF must be an integer multiple of the

revolution frequency ωrev

ωRF = h ·ωrev (2.12)

with the harmonic number h.

For α > 0, an ultrarelativistic particle with less energy than the reference particle δ1 < 0

travels a shorter path through the storage ring, as described by Eq. (2.10) and illustrated

in Fig. 2.5. Hence, it will enter the cavity earlier and with a smaller phase φ1 < φs than

the reference particle which leads to a higher energy gain, as long as π/2 <φs < π is given.

As a result, the absolute value |δ1| decreases and the particle catches up with the nominal

phase. The opposite happens to a particle with more energy than the reference particle.

The particles oscillate around φs, which is called synchrotron oscillation. Below, the equa-

tion of motion of this oscillation is derived for small deviations around the synchronous

phase ∆φ.

The energy change of a particle with charge e in one turn due to radiative energy loss ∆Es

and energy gain in the cavity ∆ERF is

E −E0 = eÛ sin
(
φs +∆φ

)︸ ︷︷ ︸
∆ERF

−∆Es. (2.13)
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2. Particle Beam Dynamics and Coupled-Bunch Instabilities

By rearranging Eq. (2.10) to

∆T =αTrevδ

and using the RF period TRF = Trev/h and

∆φ= 2π
∆T

TRF
=ωRF∆T,

the change of the RF phase in the same turn is

∆φ=ωRFαTrevδ. (2.14)

Since the synchrotron oscillation period is long compared to the revolution period, a first-

order approximation is sufficient, meaning that the phase difference ∆φ changes linearly

between two revolutions. Thus, the time derivative can be simplified by dividing by Trev,

which leads to

∆φ̇ (t ) =ωRFα
∆E (t )

E0
. (2.15)

The same assumption is valid for ∆E giving

∆Ė (t ) = eÛ

Trev
sin

(
φs +∆φ (t )

)− ∆Es

Trev
,

where the sine function can be approximated for small phase shifts ∆φ<<φs to

sin
(
φs +∆φ (t )

)≈ sin
(
φs

)+∆φ (t ) cos
(
φs

)
.

The time derivation of ∆Ė is therefore

∆Ë (t ) = eÛ

Trev
∆φ̇ (t ) cos

(
φs

)
(2.16)

and inserting Eq. (2.15) results in

∆Ë (t ) = eÛωRFα

TrevE0
cos

(
φs

)
∆E (t ) , (2.17)

which describes a harmonic oscillator with the so-called synchrotron frequency

ωs =
√

eÛωRFα

TrevE0
cos

(
φs

)
. (2.18)
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In the previous sections, the phase oscillation or, equivalently, the energy oscillation was

only calculated for sufficiently small amplitudes. In this regime, the RF voltage can be ap-

proximated to be linear due to the linearity of the sine function for small phase deviations

∆φ. However, for large amplitudes, the particles behave non-linearly due to the sinusoidal

shape of the RF voltage. For very large amplitudes they may even escape from the stable

region of the RF potential leading to particle losses. The separatrix defines the boundary

between the stable and unstable regions in the longitudinal phase space via the separatrix

equation for α> 0 [34]

∆E =±
√
−eÛ E0

πhα

[
cos

(
φs +∆φ

)+ cos
(
φs

)+ (
2φs +∆φ−π)

sin
(
φs

)]
(2.19)

with the constraint for the synchronous phase π/2 < φs < 3π/2 and the momentum com-

paction factor being α> 0. The longitudinal phase space is plotted in Fig. 2.6 and shows a

series of stable regions in the RF potential with a phase separation of 2π. All particles out-

side these regions are lost, while the particles inside undergo synchrotron oscillations with

stable trajectories. A storage ring has h such regions where electrons can be stored, which

are also called RF buckets.

Due to several effects, like particle collisions with residual gas atoms, intra bunch scattering

or occasional large energy losses through synchrotron radiation, particles leave the separa-

trix (longitudinal) or the acceptance (transverse) and the beam current becomes a function

of time

I (t ) = I0 exp

{
− t

τb (t )

}
with the beam lifetime τb (t ).

2.2.5. RF Phase Modulation

The potential generated by the accelerating RF, in which the particles oscillate with the

synchrotron frequency ωs, can be described by the Hamiltonian formalism. Considering

RF phase modulation, the Hamiltonian

H
(
δ,φ,t

)= ωsδ
2

2
+ωs tanφs

[
sinφ cos (Am sin (ωmodt ))+ cosφ sin (Am sin (ωmodt ))

]
−ωs cosφ cos (Am sin (ωmodt ))+ωs sinφ sin (Am sin (ωmodt ))−ωs tanφs

is derived, as done in [21, 24, 39–41], with φs =π−φs and the modulation amplitude Am.
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Figure 2.6.: Particle motion in an accelerating RF field at a synchronous phase φs = 20deg.
The separatrix (dashed black) represents the phase space contour separating
the stable trajectories (green), in which particles perform synchrotron oscilla-
tions around the stable fix points (SFP), from the unstable regions (blue).

To be able to calculate the stable and unstable fix points in the phase-modulated RF poten-

tial, the time-averaged Hamiltonian K

〈K 〉t =
(
ωs − ωmod

2

)
J − ωs J 2

16
+ ωsεJ

4
cos

(
2ψ

)
where ε= Am tanφs is derived for the second integer harmonic withωmod = 2·ωs (the reason

for this specialization is discussed later in this thesis). For this purpose, the transformation

δ=−
√

2J sin
(
ψ+ωmodt/2+π/4

)
φ=

√
2J cos

(
ψ+ωmodt/2+π/4

)
is used to achieve the action-angle coordinates (J ,ψ), which describe the trajectories of

the particles in the phase space near the second-harmonic resonance in a reference frame

which rotates at half of the modulation frequency [24].

While the potential without RF phase modulation has only one stable fix point (SFP) and
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2.2. Basic Particle Dynamics

no unstable fix points (UFP) in each bucket, as seen in Fig. 2.6, the fix points of the system

with RF phase modulation at the second integer harmonic are the solutions of

d J

d t
=−∂K

∂t
= 0 and

dψ

d t
= ∂K

∂J
= 0.

The fix points are given by

JSFP =
8

(
1− ωmod

2ωs

)
+2ε, ωmod ≤ (2+ε/2)ωs

0, ωmod > (2+ε/2)ωs

JUFP =
8

(
1− ωmod

2ωs

)
−2ε, ωmod ≤ (2−ε/2)ωs

0, ωmod > (2−ε/2)ωs

corresponding to the angles ψSFP = 0, π and ψUFP = π/2, 3/2π. This means, that for

ωmod > (2+ε/2)ωs only one stable fix point exists. For ωmod ≤ (2+ε/2)ωs, three stable and

−0.06
−0.03

0.00
0.03
0.06

√ 2J
sin
(ψ
)

−0.4 −0.2 0.0 0.2 0.4√
2J cos(ψ)

−0.24

−0.12

0.00

0.12

0.24

√ 2J
sin
(ψ
)

contour lines SFP UFP separatrix

Figure 2.7.: Constant-energy contour lines (blue) in the longitudinal phase space in the
regime of two stable islands (top) and three stable islands (bottom). The stable
fix points (SFP) are marked with green dots and the unstable fix points (UFP)
are shown by orange dots. The island-separatrix of each stable fix point is high-
lighted by a dashed black line.
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2. Particle Beam Dynamics and Coupled-Bunch Instabilities

two unstable fix points can be found and in the regime (2+ε/2)ωs <ωmod ≤ (2+ε/2)ωs two

stable fix points exist together with one unstable fix point [24, 41]. The phase spaces for two

and three stable fix points, which are also called islands because of their appearance in the

phase space, are shown in Fig. 2.7. Two or even three sub-bunches can be present inside

one RF bucket at the same time. The particles oscillate around a stable fix point with a revo-

lution frequency ωSR(φ̂) depending on their phase amplitude (φ̂) with respect to that point

[24]. The contours separating the different regimes depend on the modulation amplitude

Am and modulation frequency fmod and are called bifurcation edges.

Taking the energy loss due to synchrotron radiation into account, the modulation ampli-
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Figure 2.8.: Island formation in the longitudinal phase space as a function of the modu-
lation amplitude Am and modulation frequency fmod. Left: Without emission
of synchrotron radiation, two bifurcation edges distinguish the regime where
two SFPs exist in the longitudinal phase space (blue) from the regime where
only one SFP is present (white) and the regime where three SFPs occur (green).
Right: The emission of synchrotron radiation deforms the bifurcation edges
and shifts the regime of two SFPs to higher amplitudes. This shift adds a thresh-
old for the modulation amplitude below which no island formation is observed
(the figure is based on [41]).
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2.3. Longitudinal Wake Fields and Impedances

tude changes to [24]

Am,eff =
√√√√A2

m −
(

4γd∣∣tanφs
∣∣ωs

)2

with the radiation damping time γd. This effect deforms the bifurcation edges and shifts

the regime of two stable fix points to higher modulation amplitudes, as shown in Fig. 2.8.

Additionally, this adds a threshold for the modulation amplitude. If Am is below the thresh-

old, no island formation is observed in the phase space.

2.3. Longitudinal Wake Fields and Impedances

When a charged relativistic particle moves through free space, it carries an electromagnetic

field, which is Lorentz contracted into a thin disk, perpendicular to the motion of the par-

ticle. Placing the particle in a perfectly conducting vacuum chamber, all electric field lines

terminate transversely on surface charges inside the wall of the chamber inducing a mir-

ror current traveling synchronously with the particle. If the vacuum chamber has a finite

resistivity or if it is not perfectly smooth, the mirror current falls behind or is scattered at

the edge of a discontinuity. This leads to electromagnetic fields remaining in the vacuum

chamber induced by the particle, which can influence other particles passing them. Since

the particles travel close to the speed of light, there can be no field ahead of the particle

generating it, which is why they are called wake fields [42].

If the frequency of the wake field matches one of the eigenfrequencies of the beam, the

wake field is able to resonantly excite the beam giving rise to instabilities. To describe this

phenomenon, the frequency spectrum of a bunched beam as well as the spectrum of po-

tentially occurring wake fields are derived below. Afterwards, the equations of motion of a

wake field inside a resonant structure are deduced.

2.3.1. The Beam Spectrum

The beam spectrum, i.e., the signal of the beam as a function of frequency, is deduced by a

Fourier transform of the the beam current in the form

J (ω) =
∞∫

−∞
j (t )e iωt d t ,
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2. Particle Beam Dynamics and Coupled-Bunch Instabilities

with the corresponding inverse Fourier transform

j (t ) = 1

2π

∞∫
−∞

J (ω)e−iωt dω

resulting in the current as a function of time, measured at a fixed position of the ring.

A pointlike charge traveling through a circular accelerator has a current distribution

j (t ) =
∞∑

n=−∞
δ(t −nTrev) with n ∈Z

described by a Dirac comb with equidistant peaks at multiples of the revolution time Trev,

where δ(t ) means the Dirac delta function [43]. The Fourier transform of a Dirac comb

results also in a Dirac comb. In this case, this results in equidistant peaks in the frequency

spectrum at multiples of the revolution frequency ωrev (see [4, 44] for details).

In reality, the bunches are not pointlike but can be approximated by a Gaussian shape with

the standard deviation σT leading to a convolution of a Gaussian function with the Dirac

comb in the time domain

j (t ) = 1√
2πσ2

T

∞∑
n=−∞

∞∫
∞
δ(t ′−nTrev)exp

{
− (t − t ′)2

2σ2
T

}
d t ′.

According to the convolution theorem [45], Fourier-transforming a convolution of two func-

tions results in a multiplication of these functions in the frequency domain leading to

J (ω) =ωrev exp
{−ω2σ2

T/2
} ∞∑

n=−∞
δ(ω−nωrev)

where peaks at higher frequencies are suppressed, as shown in Fig. 2.9.

Assuming storage rings are filled with h bunches at multiples of the RF time TRF with slightly

different bunch charges. The non-uniform filling leads to spurious peaks in the spectrum

at multiples of ωrev in addition to the peaks at multiples of ωRF as shown in Fig. 2.9.

Taking the longitudinal synchrotron motion of the bunches into account, the Dirac comb

in the time domain

j (t ) =
∞∑

n=−∞
δ

(
t −nTrev −η cos (ωsnTrev)

)
is phase modulated with the synchrotron frequency ωs. Similar to Section 2.1.3, this leads
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2.3. Longitudinal Wake Fields and Impedances

to sidebands in the spectrum determined by the n-th Bessel function Jη. For a Dirac comb,

these sidebands increase linearly with the frequency [4] resulting in a spectrum

J (ω) =ωrev

∞∑
n=−∞

∞∑
p=−∞

i−pJn
(
η

[
nωrev +pωs

])
δ

(
ω−nωrev −pωs

)
illustrated in Fig. 2.9.

In a storage ring, the bunches are a system of h coupled oscillators due to wake fields. This

−Trev 0 Trev

j(t
)

a)

−4ωrev−2ωrev 0 2ωrev 4ωrev

J(
ω
)

−4TRF −2TRF 0 2TRF 4TRF

j(t
)

b)

−ωRF −2ωrev 0 2ωrev ωRF

J(
ω
)

−4Trev −2Trev 0 2Trev 4Trev

j(t
)

c)

−ωRF −2ωrev 0 2ωrev ωRF

J(
ω
)

Figure 2.9.: a) Beam current of a Gaussian-shaped single bunch circulating around the ring
in time and frequency domain. b) A bunch train of h bunches with slightly
different bunch charges leads to spurious peaks in the spectrum at multiples
of ωrev. c) Single bunches perform synchrotron oscillations (shown as Dirac
peaks for better visibility) around their nominal position resulting in sidebands
in the spectrum which increase linearly with the frequency. The dashed orange
line indicates the suppression of higher frequency components due to the finite
bunch length (the figure is based on [4]).
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2. Particle Beam Dynamics and Coupled-Bunch Instabilities

system has h eigenmodes µ ∈ [0;h −1] each characterized by the phase shift per bucket

∆φ= 2πµ

h
, (2.20)

while each individual bunch still oscillates with the synchrotron frequency. With the time

difference from bunch to bunch ∆t = Trev/h, Eq. (2.20) can be written as

∆φ

∆t
= 2πµ

h

h

Trev
=µωrev

resulting in a frequency shift of the peaks in the beam spectrum by this value, which leads

to the beam spectrum for small oscillation amplitudes [46]

J (ω) =
∞∑

n=−∞
δ (ω−nωRF)− i

ωη

2
δ

(
ω−nωRF +µωrev +ωs

)
, (2.21)

presented in Fig. 2.10.

ωs ωRF

ωrev

µ = 0 µ = 1 µ = 2 µ = 3 ω

J(ω)

Figure 2.10.: Beam spectrum of h = 4 coupled bunches. The corresponding eigenmodes µ
(green) create sidebands next to the RF peaks (blue) and the revolution har-
monics (light blue) with a distance of the synchrotron frequency ωs, given by
Eq. (2.21). The dashed orange line indicates the suppression of higher fre-
quency components due to the finite bunch length.
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2.3. Longitudinal Wake Fields and Impedances

2.3.2. Wake function and Impedance

A particle with the charge q1 traveling through an accelerator interacts electromagnetically

with the vacuum chamber. Consequently, wake fields are induced acting back on the beam.

A distinction is made between short-range wake fields and long-range wake fields, which

are mostly generated in cavity-like structures with a high quality factor Q0. Since this thesis

focuses on longitudinal beam dynamics, only narrow-band, long-range wake fields, cre-

ated by higher-order modes of the accelerating cavity [6] are considered in the following.

Considering a second particle q2 following the first particle at a distance d , it interacts with

the wake fields generated by q1 and experiences a force ~F1. This can introduce a motion

coupling of all particle inside the beam. In a storage ring, these wake fields can persist long

enough that a particle may interact with its own wake field from previous turns.

The longitudinal wake function W∥ is defined as the integral of the longitudinal component

of the force ~F1 over the distance of interest D ≥ d and is given by

W∥ (z) =− 1

q1q2

∫
D

~F1,∥d z = 1

q1q2

∫
D

q1Ez (z)d z = 1

q2

∫
D

Ez (t )d t

with the longitudinal electric field strength Ez (z) of the source particle [44]. The longitudi-

nal wake function can be interpreted as the energy loss ∆U per unit charge of the second

particle

W∥ =− ∆U

q1q2
.

To be able to study the frequency dependence of the wake function, a Fourier transform is

used to define the so-called wake impedance

Z∥ (ω) =
∞∫

−∞
W∥ (t )e iωt d t .

In the case of an extended charge distribution j (t ), the wake potential

V∥ (t ) =
∞∫

−∞
W∥

(
t ′

) · j
(
t − t ′

)
d t ′

is defined as a convolution of W∥ (t ) and j (t ) [47], which leads to a multiplication in the

frequency domain

Ṽ∥ = Z∥ (ω) · J (ω) .
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2. Particle Beam Dynamics and Coupled-Bunch Instabilities

Knowledge of the wake impedance of the accelerator and the beam spectrum allows to

calculate the frequency-dependent voltage induced by the wake fields.

2.3.3. Wake Matrix

For numerical calculations, it is advantageous to use a matrix formalism, based on [48], for

the wake field at any position behind the charge q1 with the charge vector ~q1 = (q,0)T which

is introduced below.

R L C

Figure 2.11.: Schematic of an RF-cavity simplified by an RLC parallel-circuit with a resis-
tance R, an inductance L and a capacitor C .

Any cavity can be sketched by an RLC parallel-circuit with a resistance R, an inductance L

and a capacitor C , as shown in Fig. 2.11. Due to Kirchhoff’s current law, the total current

∑
k

Ik = IR + IL + IC = 0

vanishes and with
d I (t )

d t
= 1

R

dU

d t
+ U

L
+C

d 2U

d t 2
= 0

the differential equation
d 2U

d t 2
+2χ

dU

d t
+ω2

RLCU = 0

is established with the resonance frequency ωRLC = 1/
p

LC and the attenuation χ= 1/2RC .

Solving this equation with the so-called natural angular frequency ωn =
√
ω2

RLC −χ2 leads

to [49]

U (t ) = e−χt [A1 cos (ωnt )+B1 sin (ωnt )]

with its derivative

dU

d t
= e−χt {

cos (ωnt )
[
ωnB1 −χA1

]+ sin (ωnt ) [−αB1 −ωn A1]
}

. (2.22)

26



2.3. Longitudinal Wake Fields and Impedances

Using the formula for the current in the inductance

IL (t ) =
∫

U (t )

t
d t ,

a second differential equation with the ansatz

IL (t ) = e−χt [A2 cos (ωnt )+B2 sin (ωnt )]

is established together with its derivative

d I

d t
= e−χt {

cos (ωnt )
[−χA2 +ωnB2

]+ sin (ωnt )
[−χB2 −ωn A2

]}
. (2.23)

With the initial values U (t = 0) =U0 and IL (t = 0) = I0, the variables

A1 =U0 and A2 = I0

is determined directly. Additionally, by using Eq. (2.22) and Kirchhoff’s law

C
dU

d t
=−IL − U

R
,

with t = 0, the parameter B1 is determined to

B1 =− ω

2QRLCωn
U0 − Rω

QRLCωn
I0,

with the quality factor of the RLC-circuit QRLC.

Eventually, Eq. (2.23) is used at t = 0 together with the voltage of the inductance

U (t ) = L
d

d t
IL (t )

to obtain

B2 = QRLCω

Rωn
U0 + ω

2QRLCωn
I0.

The resistance of the RLC-circuit R represents the shunt impedance Rs of an impedance or

a cavity, defined in Eq. (2.8), and the quality factor QRLC of the RLC-circuit represents the

quality factor of the corresponding impedance or cavity Q0, introduced in Eq. (2.6). Substi-

tuting these values and using the parameters A1, A2, B1 and B2, the differential equations
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2. Particle Beam Dynamics and Coupled-Bunch Instabilities

can be rewritten as (
U

IL

)
k

= M (t )

(
U

IL

)
k−1

(2.24)

with M (t ) being the 2×2 wake matrix

M (t ) = e−χt

(
cos (ωnt )− ω

2Q0ωn
sin (ωnt ) − Rsω

Q0ωn
sin (ωnt )

ωQ0
Rsωn

sin (ωnt ) cos (ωnt )+ ω
2Q0ωn

sin (ωnt )

)
. (2.25)

With z = ct , the wake matrix is used to calculate the wake field generated at the frequency

ωr by the charge q1 at the position z1, which is given by

~W (z) = Rsωr

Q0
M (z − z1) ~q1,

with the charge vector ~q1 =
(
q,0

)T, which is linearly dependent on the cavity parameter

Rs/Q0 introduced in Section 2.1.2.

It should be noted, that the length of the wake field is determined by the damping term

e−χt . With the quality factor of a parallel RLC-circuit Q0 = RCω [50], the damping term

can be expressed as e−ω/2Q0 , meaning that the length of the wake is proportional to the

quality factor. This is particularly important for higher-order modes (HOMs) of the accel-

erating cavity in which the quality factor can adopt values high enough to keep the wake

field length well above the accelerator circumference L0.

2.4. Coupled-Bunch Instabilities

The bunches of a particle beam are coupled by frequency-dependent wake fields and os-

cillate in modes of specific frequencies ωµ like coupled harmonic oscillators. The range

of the wake fields trapped in a resonant structure depends on the quality factor Q0 of the

structure, while the coupling strength is also dependent on the shunt impedance Rs.

If a narrow-band impedance Z (ω), with a high Q0 and therefore long-range wake fields, has

a significant value at one of the beam-mode frequencies ωµ, the beam can be excited res-

onantly at this frequency leading to exponential growth of the longitudinal motion, called

coupled-bunch instability.

Furthermore, additional effects occur in a real storage ring (e.g., Landau damping), which
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2.4. Coupled-Bunch Instabilities

damp the oscillation amplitude, counteracting the excition of coupled-bunch instabilities.

2.4.1. Particle Dynamics with Synchrotron Radiation and

External Excitations

In general, the motion of a charged particle in an electron storage ring can be described by

a damped harmonic oscillator following the equation of motion

z̈ (t )+2τ−1
D ż (t )+ω2

s z (t ) = 0

with the longitudinal coordinate z, the synchrotron frequencyωs and the damping rate τ−1
D .

A solution of this equation for ωs >> τ−1
D is a damped sinusoidal oscillation [51]

x (t ) = ke−t/τD sin
(
ωst +φ)

, (2.26)

which is mainly characterized by synchrotron radiation, since the energy loss of the particle

by emitting synchrotron radiation photons leads to damping of its motion in all directions.

External excitations, e.g., from wake field effects, add a driving force F (t ) to the equation of

motion

z̈ (t )+2τ−1
D ż (t )+ω2

s z (t ) = F (t ) .

If F (t ) is sinusoidal with ωs and the amplitude proportional to the bunch oscillation am-

plitude, this equation becomes

z̈ (t )+2τ−1ż (t )+ω2
s z (t ) = 0 (2.27)

with τ−1 = τ−1
D −τ−1

G and the growth rate τ−1
G .

In analogy to Eq. (2.26) for ωs >> τ−1, the solution of the equation of motion is given by

x (t ) = ke−t/τ sin
(
ωst +φ)

. (2.28)

If τ−1
G > τ−1

D , respectively if τ−1 < 0, the oscillation amplitude decays, if τ−1 > 0 it grows

exponentially, as shown in Fig. 2.12.
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Figure 2.12.: Bunch motion in the presence of an external driving force with growth
rate τ−1

G and synchrotron radiation damping with the damping rate τ−1
D . If

τ−1 = τ−1
D −τ−1

G < 0, the oscillation decays over time, as shown on the left-hand
side (blue). If τ−1 > 0, it grows exponentially, as shown in the right-hand side
(green).

2.4.2. Instability Growth Rate

To illustrate the basic mechanisms of longitudinal coupled-bunch instabilities, the beam

is simplified to consist only of one point-like bunch, which carries the full bunch charge

qB = eNppb with Nppb particles per bunch. It experiences a linear focusing force, i.e., phase

focusing, and the effects of a multi-turn wake field generated by an impedance source. In

this case, the longitudinal equation of motion with the longitudinal coordinate z is de-

scribed by [52]

z̈ +ω2
s z = Nppbe2α

meγL0

∞∑
n=0

W∥ (z (t )− z (t −nTrev)−nL0) ,

with the electron mass me and the Lorentz factor γ= E0m−1
e c−2. Assuming small deviations

of the wake function, which is generally given for long-range wake fields, the wake function

can be linearized to

W∥ (z (t )− z (t −nTrev)−nL0) ≈W∥ (nL0)+W ′
∥ (nL0) · [z (t )− z (t −nTrev)] .

The constant term W∥ (nL0) only contributes a constant phase shift that compensates for

the energy loss introduced by wake fields and is, thus, not important for beam dynamics

and will be neglected in the following. The dynamic part proportional to
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2.4. Coupled-Bunch Instabilities

z (t )− z (t −nTrev) ≈ nTrevd z/d t , instead, is a friction-like term which can either damp the

oscillation or give rise to an instability.

Introducing the mode frequency ωµ and changing to the frequency domain yields [44]

ω2
µ−ω2

s =−i
Nppbe2α

meγL2
0

∞∑
n=−∞

nωrevZ∥ (nωrev)− (
nωrev +ωµ

)
Z∥

(
nωrev +ωµ

)
. (2.29)

Assuming that the wake field only results in small deviations of ωµ from the nominal syn-

chrotron frequency ωs, the mode frequency can be replaced by the synchrotron frequency

on the right hand side of Eq. (2.29).

This results in the complex frequency deviation [44, 46, 52, 53]

∆ωµ =−i
Nppbe2α

2ωsmeγL2
0

∞∑
n=−∞

nωrevZ∥ (nωrev)− (nωrev +ωs) Z∥ (nωrev +ωs) .

The real part of ∆ωµ describes the perturbed synchrotron oscillation frequency of the col-

lective beam motion, i.e., the frequency shift

Re(∆ωµ) = Nppbe2α

2ωsmeγL2
0

∞∑
n=−∞

nωrev Im
(
Z∥ (nωrev)

)− (nωrev +ωs) Im
(
Z∥ (nωrev +ωs)

)
while the imaginary part of ∆ωµ is the instability growth rate

Im(∆ωµ) = τ−1
G = eNppbeα

2ωsγmeL0

∞∑
n=−∞

(nωrev +ωs)Re
[

Z∥ (nωrev +ωs)
]

. (2.30)

In analogy, for Nb bunches the growth rate for multibunch mode µ is given by

τ−1
G,µ =

eIα

2ωsγmec2Trev

∞∑
n=−∞

(
nNbωrev +µωrev +ωs

)
Re

[
Z∥

(
nNbωrev +µωrev +ωs

)]
(2.31)

with L0 = cTrev and the beam current I = NbNppbe/Trev.

The fact, that the growth rate τ−1
G,µ is proportional to the current I , while the damping rate

τ−1
D is constant, leads to a so-called instability threshold Ithr. While I < Ithr the beam re-

mains stable, whereas coupled-bunch instabilities are excited when I > Ithr.
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2. Particle Beam Dynamics and Coupled-Bunch Instabilities

2.4.3. Additional Damping Mechanisms

In order to suppress coupled-bunch instabilities to increase the beam quality and the in-

stability current threshold, two different approaches are used and briefly described below.

The first possibility are bunch-by-bunch feedback systems, which are explained in more

detail in Chapter 3.3. Such a feedback system basically detects the frequency, phase and

amplitude of a coupled-bunch instability and actively damps the oscillations of each sin-

gle bunch. Since the bunch oscillation is sinusoidal, the turn-by-turn position of a bunch

measured at a given position is a sampled sinusoid signal. The force applied by the feed-

back with fast electromagnets, called feedback kickers, is proportional to the derivative of

the bunch oscillation and can be generated by shifting the sampled signal of the position of

the bunch by a phase shift of π/2. This adds an additional damping term τ−1
FB to the factor

τ−1 from Eq. (2.27) resulting in

τ−1 = τ−1
D −τ−1

G +τ−1
FB.

To completely damp the bunch oscillation, the condition τ−1 < 0 must be satisfied again.

The second option is Landau damping [54], which has its origin in a synchrotron frequency

spread of the particles in the beam. To describe this complex effect, an impedance is con-

sidered driving the beam at a specific frequencyωµ, similar to a driving force of a harmonic

oscillator. A bunch, consisting of Nppb particles oscillating with the same frequency ωµ is

resonantly excited by the impedance resulting in exponentially growing oscillation ampli-

tudes of all particles. Adding a synchrotron frequency spread to the particles inside the

bunch leads to a smaller excitation of the whole ensemble due to the fact that some oscil-

lators have their resonance frequency shifted away from the driving frequency. The higher

the frequency deviation ∆ω from ωµ, the lower the excitation of the particle. In sum, this

leads to a suppression of the coupled-bunch motion (see e.g. [21, 44, 55]). This means, that

this effect does not add additional damping, but still stabilizes the beam by suppressing the

excitation of coupled-bunch instabilities[56].

Landau damping can be induced by RF-phase modulation, which increases the synchrotron

frequency spread. With this method, the stability of the beam is increased by suppressing

the excitation of coupled-bunch instabilities before they emerge, instead of reacting with

additional damping. However, the beam quality suffers from using RF phase modulation

due to the increased bunch length and energy spread, as shown in Section 2.2.5.
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3. The Electron Storage Ring
DELTA

Experimental studies analyzing the interaction of coupled-bunch instabilities and RF phase

modulation were performed at the 1.5 GeV electron storage ring DELTA1, operated by the

TU Dortmund University and used as a synchrotron light source. In this chapter, an overview

of the most important components, systems and diagnostic tools of DELTA is given to-

gether with its basic parameters.

gun
linear accelerator

cavity

cavity BoDo

T1
T2

SAWU55

U250

bunch-by-bunch
feedback system

BL 0

BL 1

BL 2 BL 3 BL 4

BL 5

BL 6

BL 7
BL 8
BL 9
BL 10

BL 11

BL 12

Figure 3.1.: Sketch of the synchrotron radiation source DELTA. Electrons from the gun are
accelerated in the linear accelerator and the RF cavities implemented in the
booster BoDo (green). Three insertion devices (blue) provide high-intensity
radiation, while most of the other beam lines (BL) use synchrotron light from
bending magnets. A bunch-by-bunch feedback system is installed to counter-
act coupled-bunch instabilites (orange).

1 “Dortmunder ELekTronen Speicherring Anlage” (electron storage ring facility in Dortmund)
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3. The Electron Storage Ring DELTA

Table 3.1.: Basic parameters of the DELTA storage ring [59, 60].

Parameter Symbol Value

circumference L0 115.2 m
nominal beam energy E0 1.5 GeV
maximum beam current Imax 130 mA
momentum compaction factor α 4.9×10−3

harmonic number h 192
revolution frequency frev 2.6 MHz
master RF frequency fRF 499.817 MHz
synchrotron frequency fs (15.2 - 16.4) kHz
bunch length (FWHM) σT 100 ps
cavity shunt impedance Rs 3 MΩ

cavity power Pc 25 kW
bending radius (dipoles) Rb 3.3 m

3.1. Overview

At DELTA, a 90 keV thermoelectric gun emits electrons which are accelerated to 70 MeV

in a linear accelerator. Afterwards, they reach their final energy of 1.5 GeV in a booster-

synchrotron called BoDo2. This allows a full-energy injection into the storage ring, exe-

cuted with several kickers and a static injection-bump, where the electrons are stored for

several hours. A sketch of the DELTA storage ring is shown in Fig. 3.1. In order to com-

pensate the energy loss of the beam due to synchrotron radiation, DELTA has a 500 MHz

DORIS-type cavity [57]. With the main DELTA parameters, summarized in Table 3.1, the

amplitude of the voltage powering the cavity is Û ≈ 387kV with a synchronous phase of

φs ≈ 20.3deg3.

To reduce trapped-ion effects [58] during user operation, only 144 of the h = 192 buckets

are filled with electrons accumulating a current up to Imax = 130mA. Between injections,

several beam lines provide synchrotron radiation to the experimental stations. In addi-

tion to beam lines supplied with synchrotron radiation from bending magnets, DELTA is

equipped with three insertion devices, a permanent-magnet undulator (U55), an electro-

magnetic undulator (U250) and a superconducting wiggler (SAW).

2 Booster Dortmund
3 The detailed calculations are presented in the Appendix A.1.
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3.2. Phase Modulation at DELTA

3.2. Phase Modulation at DELTA

After the sporadic occurrence of longitudinal coupled-bunch instabilities leading to beam

losses or partial beam losses, an RF phase modulation system was implemented in 2008

[32]. It mainly consists of a digital phase shifter [61] and a dual current-feedback amplifier

[62]. The system is used to modulate the 500 MHz master-RF-signal before it is amplified

by a klystron.

For this purpose, the master-RF-signal URF is sent to the phase modulation system together

with a control voltage UC, as illustrated in Fig. 3.2, resulting in a modulated output signal

Umod supplying the RF-cavity after amplification. The phase shift applied to the input sig-

nal follows the characteristic curve shown on the right side of Fig. 3.2 and depends only on

the control voltage UC. At DELTA, a DC input voltage of UDC = 9V is added to UC leading to

an output signal

Umod (UC = 0) = Ûmod sin
(
ωRFt +φDC

)
,

with the amplitude Ûmod.

master RF
signal generator

phase modulation
system

control voltage
signal generator

klystron cavity

URF UC

Umod

1

2 0 2 4 6 8 10 12
control voltage Uc

0

55

110
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φ
/d
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Figure 3.2.: Left: Schematic of the phase modulation system tuned by the control voltage
UC. An RF-signal is produced by the master RF signal generator, modulated by
the phase shifter, amplified by the klystron and sent to the cavity. The orange
marks show pickup probes used to measure the phase shift of the modulation
system (1) and inside the cavity (2), as further discussed in Chapter 5.2. Right:
Characteristic curve of the phase modulation system used at approximately
500 MHz [61]. The highlighted area is the voltage range operated at DELTA [32].
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3. The Electron Storage Ring DELTA

Additionally, a sine signal provided by a signal generator [63] is used as the control voltage

UC = ÛC sin (ωct )

with the amplitude ÛC and the frequency ωc =ωmod. For historical reasons, ÛC is specified

as the peak-to-peak amplitude [32]. The control panel of the phase modulation system

in the DELTA control room is also set to peak-to-peak amplitudes. Therefore, the values

for ÛC are specified for peak-to-peak amplitudes to prevent cofusion, but ÛC is referred

to as amplitude in the following for simplicity. The maximum value for ÛC is 6 V [32, 61].

However, only the range ÛC ∈ [0,3]V is analyzed in this thesis, because of low signal-to-

noise ratios for high values of ÛC (see Chapter 5.4 and 5.5). Using UC, the output changes

to

Umod = Ûmod sin
(
ωRFt +φ(

ÛC
)

sin (ωmodt )
)

, (3.1)

with the phase shift φ
(
ÛC

)
only depending on the amplitude of the control voltage ÛC. In

addition, the phase shift inside the cavity φ is expected to be lower than the phase shift

of the phase modulation system φPS due to the finite bandwidth of the cavity. The cavity

bandwidth is usually described by the quality factor

Q0 = ωres

∆ω

with the resonance frequency ωres and the bandwidth ∆ω between the two −3 dB-points,

where the spectral power is at 50 % of the maximum value at ωres.

During user operation, ωmod is usually set to a frequency slightly below twice the syn-

chrotron frequency ωs and ÛC is set between 400 mV and 1000 mV. Unfortunately, this

gives no information about the phase shift applied to the beam. With the RF phase mod-

ulation running, the coupled-bunch instability sidebands vanish and the unwanted beam

losses are stopped. As a side effect, a beam lifetime increase of about 20 % is observed at

the cost of beam quality [32].

3.3. Bunch-by-Bunch Feedback System

The most important diagnostic tool for this thesis is the digital bunch-by-bunch feedback

system [46]. It is capable of detecting the longitudinal, horizontal and vertical position of

every bunch relative to its reference coordinates. With the position data of every bunch at
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Figure 3.3.: Overview of the digital bunch-by-bunch feedback at DELTA. The signals from
a beam position monitor are sent via a hybrid network to the bunch-by-bunch
feedback system together with the master RF signal. The feedback system cal-
culates output signals, which are first amplified and then applied to the beam
by fast-pulsed kickers.

every turn, bunch-by-bunch modes can be measured as shown in Section 5.3.

In addition to its diagnostic capabilities, the system can be used to act back on the beam to

damp, or excite coupled-bunch oscillations. With an inbuilt signal generator, even arbitrary

signals can be sent to the beam to excite specific resonances.

The bunch-by-bunch feedback system used at DELTA is a commercial system by Dimtel,

Inc. [64]. The design for the kickers applying the output signal to the beam are adapted

from the feedback systems used at BESSY II [47, 65]. Very similar kickers are also in use

at several other storage rings [51]. An overview of the main components of the bunch-

by-bunch feedback is shown in Fig. 3.3. A beam position monitor and a hybrid network,

illustrated in detail in Section 3.3.1, are used to detect the transverse and longitudinal po-

sition of every bunch at every turn. This data is evaluated by the processing units of the

feedback system, presented in Section 3.3.2. In addition, output signals are calculated to

compensate the bunch motions and sent via amplifiers to pulsed kickers, which are shown

in Section 3.3.3.
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3. The Electron Storage Ring DELTA

3.3.1. BPM and Hybrid Network

To detect the horizontal, vertical and longitudinal position of every bunch, a so-called

beam position monitor (BPM) is used. It consists of four pickup electrodes surrounding

the beam, as shown on the left hand side of Fig. 3.4. Whenever a bunch passes the BPM, its

electromagnetic field induces a voltage inside the pickup electrodes with a signal strength

depending on the distance between bunch and pickup. In order to separate the coordinates

of the bunch, the signals are processed into three dedicated signals.

For this purpose, a “Dimtel Hybrid Network” [64], illustrated in the right hand side of Fig. 3.4,

provides the sum signal Σ and the differential signals ∆X and ∆Y , while the diagonal dif-

ference output signal Q is terminated with 50Ω. For the longitudinal plane, the sum of all

pickup signals is used. With the amplitude of this signal being proportional to the beam

current, it does not depend on the transverse position of the beam. However, the signal

gives information about the time when the bunch passes the BPM. The longitudinal posi-

tion of the bunch is given by the phase deviation with respect to the synchronous RF phase.

To measure the vertical position, the hybrid network subtracts the sum of the pickup sig-

nals C and D from the sum of the signals A and B to generate the ∆Y signal (see Fig. 3.4).

The horizontal ∆X -signal is created by subtracting signals A and D from B and C .

A B

CD
B

D

C

A

B+D

B-D

A+C

C-A

A+B+C+D

B+D-A-C

B+C-A-D

A+B-D-C

Σ

Q

∆X

∆Y

Figure 3.4.: Left: Sketch of a beam position monitor with four pickup electrodes surround-
ing the beam. Right: Block diagram of a Dimtel Hybrid Network [64]. Each
hybrid module has a sum and a difference output. In the configuration used
here, they provide a sum signal of all four pickups Σ, two differential signal ∆X
and ∆Y for both transverse coordinates and a diagonal difference output Q.
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3.3. Bunch-by-Bunch Feedback System

Figure 3.5.: Photo of the bunch-by-bunch feedback system units and the corresponding
amplifiers at DELTA. Left: From top to bottom, the clock and trigger unit,
the combined front-/backend unit and the three FPGA-based gigasample-
processors. Right: The three amplifiers (longitudinal at the top, transverse be-
low) send the output signals of the feedback system to fast-pulsed kicker struc-
tures.

3.3.2. Processing Units

The core part of the bunch-by-bunch feedback system consists of one combined

front-/back-end unit and three identical signal processing units for the three planes. The

signals from the hybrid network are sent to the front-end unit, where they are stretched by

a two-cycle comb filter and mixed with a 1.5 GHz reference signal, which is an upconverted

signal from the master RF oscillator [64]. A photo of the feedback units and amplifiers used

at DELTA are shown in Fig. 3.5.

After preprocessing, the dedicated signals are transferred to the corresponding processing

units, where they are digitized by 12-bit analog-to-digital converters (ADCs) with a 500 MHz

sampling rate phase-locked to the RF master oscillator. By default, one sample per revolu-

tion per bunch is taken by the FPGA-based gigasample processors. The beam signal is also

separated into 192 channels, one for each RF bucket.

Each unit is equipped with static memory capable of storing 65536 data points in each of

the 192 channels. With the revolution time of DELTA of Trev = 384ns, this leads to a maxi-

mum data acquisition time of tacq = 25.2ms, if one data point is taken per bunch per turn.

This time can be prolonged by downsampling a factor D , i.e., data points are only taken

in every D-th turn for every bunch, at the cost of loss of information in the unobserved
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3. The Electron Storage Ring DELTA

revolutions.

In addition to the diagnostic capabilities, each processing unit produces an output signal

to compensate coupled-bunch motion of the electron beam [46]. While coupled-bunch

modes are characterized by the phase advance between the bunches, each bunch oscillates

with the synchrotron frequencyωs. The functionality of bunch-by-bunch feedback systems

is to damp coupled-bunch instabilities by damping the oscillation of every single bunch.

For this purpose, the output signal has to be proportional to the derivative of the bunch

oscillations [51]. In each channel, the turn-by-turn samples of a given bunch are processed

by a n-tap finite impulse response (FIR) filter, where n is an integer number usually set to

n = 24 at DELTA, suppressing the DC component and phase shifting the sinusoidal input

signal by π/2. In addition, the phase advance between the BPM and the position at which

the output signal is applied to the beam has to be taken into account.

The output signal is converted back to an analog signal by a digital-to-analog converter

(DAC), amplified and sent to fast-pulsed kickers, presented in the next chapter, which ap-

ply small “kicks” every turn to the bunch to compensate its oscillation. Since these kicks

should always reduce the oscillation amplitude, this process is called negative feedback.

It is also possible to excite existing coupled-bunch modes by positive feedback. In this

case, the output signal is additionally phase-shifted by π, which increases the amplitude

of the bunch oscillation enhancing coupled-bunch instabilities. In the longitudinal plane,

the signal is sent from the DAC back to the back-end module where it is upconverted to

1.5 GHz, using a phase mixer and a bandpass filter, before it is forwarded to the amplifier.

This is necessary, since the longitudinal kicker cavity used at DELTA operates at this fre-

quency.

Furthermore, each unit has a built-in numerically controlled oscillator, called drive, which

serves as a frequency generator. It can be used to create an RF signal with fixed amplitude,

frequency and phase, which can be applied individually or in addition to the output signal.

3.3.3. Amplifiers and Kicker Structures

The output signals of the transverse processing units as well as the upconverted longitudi-

nal output signal from the back-end module are transferred to amplifiers. In the longitudi-

nal plane, a high-frequency amplifier [66] with a bandwidth ∆ f of 1 to 2 GHz and a gain of

59 dB is used. For the transverse plane, two identical amplifiers are used with an operation

bandwidth of 10 kHz to 250 MHz and a gain of 50 dB [67].
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3.3. Bunch-by-Bunch Feedback System

Figure 3.6.: Sketch of the fast-pulsed kicker structures used for the bunch-by-bunch feed-
back system at DELTA. Left: Overdamped cavity-like kicker for the longitudinal
plane. Right: 1/8 of the combined stripline kicker for the transverse planes [69].

After amplification, the signals are sent to kickers to apply the signals to the electron beam.

The kickers used at DELTA are mainly unmodified versions of the kickers used at BESSY-II

[47, 65], making tapering the structures to the DELTA vacuum chamber necessary.

For the horizontal and vertical plane, a combined stripline kicker for both planes is used

as shown in the right hand side of Fig. 3.6. It utilizes four electrodes with a length of

30 cm, which are shaped according to the DELTA vacuum chamber. With a sampling rate

of fsamp = 500MHz given by the RF frequency, the bandwidth of the kicker structure has to

be ∆ f ≤ fsamp/2 in order to be able to distinguish the bunches and kick every bunch sepa-

rately. This requirement is described by the Nyquist-Shannon sampling theorem [68]. The

transverse stripline kicker used at DELTA operates in the baseband from 0 MHz to 250 MHz

satisfying the bandwidth requirement. The horizontal and vertical shunt impedances are

different due to the geometry of the DELTA vacuum chamber. The distance between the

horizontal electrodes is approximately twice the distance of the horizontal electrodes re-

sulting in a vertical shunt impedance which is approximately twice as high as the horizon-

tal shunt impedance [65, 69]. Although the kicker has two electrodes for each plane, only

one horizontal and one vertical electrode is powered, which is sufficient becuase the trans-

verse coupled-bunch instabilities occurring at DELTA have vanishingly small growth rates.

For the longitudinal plane, a different kind of kicker magnet is used. In 1995, a cavity-like

kicker structure was developed at DAΦNE [70] with a higher longitudinal shunt impedance

41



3. The Electron Storage Ring DELTA

than longitudinal stripline kickers. The cavity-like kicker used at DELTA is depicted in the

left-hand side of Fig. 3.6 and has a resonance frequency of 1.5 GHz. Just like the transverse

kickers, the bandwidth of the longitudinal kicker has to be ∆ f ≤ 250MHz, which sets the

boundary condition, according to Eq. (2.6), that the quality factor of the cavity has to be

Q0 ≤ 6. This is assured by strongly loading the “pillbox”-cavity in the middle of the structure

with ridged waveguides at both ends. That way, the quality factor of the cavity is reduced

to Q0 ≈ 5.6 with a shunt impedance of Rs,∥ ≈ 1kΩ [65], which is about twice as high as

the shunt impedance of a comparable stripline kicker [70]. The ridged waveguides are also

used to couple the output signal of the back-end unit into the cavity.

42



4. Beam Dynamics Simulation

The complex dynamics of coupled-bunch effects in the presence of RF phase modula-

tion cannot be calculated analytically. For this reason, numerical calculations are used

to achieve first impressions on the particle dynamic and expectations for the subsequent

measurements.

The common approach to simulate coupled-bunch instabilities caused by long-range wake

fields generated in highly resonant structures is to simplify the particle bunches to rigid

macro-particles [9, 46, 48, 71, 72] carrying the full bunch charge qB = Nppb · e, as already

assumed in Section 2.4.2. Although numerical results from this approach are generally in

good agreement with measurements, it cannot be used in the presence of RF phase mod-

ulation. In this case, many particles per bunch are required to induce Landau damping to

the beam and suppress the excitation of coupled-bunch instabilities. To analyze RF phase

modulation, on the other hand, several tracking codes are available, which focus on the ef-

fects on the longitudinal phase space [21, 24, 40, 41]. To be able to track multiple particles

over ten thousands of turns, these codes consider all particles independently (in contrast

to the previous approach where the particles are coupled by wake fields). This is a valid as-

sumption in the absence of wake field effects and allows to calculate the interaction of the

particles with the RF field by matrix operations. The huge advantages of using matrix op-

erations are that these procedures are generally very performant, they calculate the inter-

action of all particles at the same time and can be optimized by parallelization techniques.

Unfortunately, this assumption is not valid when wake field effects are taken into account.

In this case, the particles are coupled and the dynamics of every particle depends on the

wake fields generated by the previous particles. Simply calculating all particles one after

another in every turn is also no option, since that would require an enormous computing

effort and time.

The solution is to combine both approaches. For this purpose, the Python tracking code

MALTE 1 has been developed, based on the MuSiC code presented in [48]. MALTE utilizes

1 coupled-bunch Multi pArticLe Tracking codE
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state-of-the-art libraries, e.g. the scipy ecosystem [73], to track particles through a virtual

recirculating accelerator with a phase-modulated RF field in the accelerating cavity and

evaluates wake-field and coupled-bunch effects at every turn as presented below.

The general idea of MALTE is to keep the simulation as simple as possible and to reduce

the computation time. Its concept is discussed in Section 4.1, while Section 4.2 focuses on

the simulation parameters. Section 4.3 shows a first study analyzing the growth rate of a

coupled-bunch instability as a function of the beam current, which also serves as a valida-

tion of the code. In Section 4.4, the growth rate is analyzed as a function of the modulation

amplitude.

4.1. Concept

In order to reduce the complexity of MALTE, the optics of the investigated storage ring is

represented by the momentum compaction factor. Thus, most components (like magnets,

drift spaces, etc.) do not have to be taken into account reducing the calculation effort dras-

tically.

This leaves the accelerating cavity as the only component, which is taken into account sep-

arately. When the particles pass the cavity, they experience a focusing effect introduced in

Section 2.2.4, i.e., the energy of each particle is changed depending on its longitudinal po-

sition within the bunch. Instead of taking the whole impedance spectrum of the cavity into

account, a passive cavity-like structure is added at the position of the cavity, called impe-

dance structure in the following, representing a harmful higher-order mode (HOM) of the

cavity. Whenever a particle passes the impedance structure, it stores a part of its energy in

the structure exciting wake fields, which can give rise to coupled-bunch instabilities.

The particle beam is generated by h equidistant RF buckets. These buckets can be filled

arbitrarily with Nb bunches. All particles are created with a random time deviation δt and

energy deviation δE with respect to the reference particle of the bucket with δt = δE = 0.

For both, energy and time, Gaussian distributions with standard deviations σT and σE are

used. In addition, an artificial temporal phase-space boundary is used as a termination

criterion to handle parameter sets that lead to unstable or unrealistic solutions. If the time

coordinate of a particle exceeds half the time between two bunches TRF/2, it overlaps with

particles of the adjacent bunch and the termination criterion is met.

In order to adequately represent the influence of RF phase modulation, a sufficiently large
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quantity of particles per bunch is needed in the numerical simulation. First-order coupled-

bunch interactions, on the other hand, do not depend on intra-bunch motion, which,

hence, can be neglected as discussed later in the thesis. While it is necessary to calculate

phase-focusing effects for every single particle, the interaction inside the impedance struc-

ture is calculated only for the center of mass of each bunch and the resulting energy change

is applied to all particles within the bunch. In addition, for phase-focusing effects, all parti-

cles are considered independently, reducing the calculation effort to one matrix operation

per bunch for each phase-space coordinate. That is not possible for wake field effects, since

the interaction of a bunch with the wake field depends on the bunches previously inter-

acted with it. To further improve the performance of MALTE, synchrotron radiation effects

are neglected completely, which is possible since neither coupled-bunch growth rates nor

RF phase modulation effects are influenced by synchrotron radiation2.

A particle with charge q0 traveling through the storage ring experiences three interactions

during each turn as presented below.

Firstly, the particle passes an accelerating cavity with a length3 lc = 0. Since synchrotron

radiation effects are neglected, the particle is not accelerated, but instead, the synchronous

phase (the phase of the reference particle) is set to φs = π. According to Section 2.2.4, the

particle is phase focused due to

∆E =∆ERF = q0Û sin
(
ωRFδt +φ0

)
(4.1)

with the energy loss due to synchrotron radiation ∆Es = 0. If phase modulation is taken

into account, this changes to

∆E

q0
= Û sin

(
ωRFδt +η sin (ωmodδt )+φ0

)
,

according to Section 2.1.3 with the modulation amplitude η and the modulation frequency

ωmod.

Secondly, while passing the ring, the phase of every particle is changed based on its energy

deviation and the momentum compaction factor defined in Eq. (2.10). For ultrarelativistic

particles, it can be shown that [34]
∆L

L0
≈ ∆T

Trev

2 Synchrotron radiation damping determines whether the beam is stable or not depending on the relation
of τ−1

D and τ−1
G , but the growth rate itself does not depend on synchrotron radiation.

3 Thin-lens approximation can be used here, since all particles travel at v ≈ c.
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and, thus, Eq. (2.10) can be rearranged to

∆T =αL0

c

∆E

E0
(4.2)

with Trev = L0/c.

The third interaction happens in the narrow-band impedance structure characterized by its

quality factor Qr, its shunt impedance Rs and its resonance frequency ωr. It is responsible

for wake-field and potential coupled-bunch effects, so that the whole bunch has to be taken

into account. Since intra-bunch motion is neglected, the center of mass of the bunch is

calculated by the mean of δt of all particles inside the bunch. When this macro particle

with charge qB = Nppb ·q0 passes the unloaded structure, it stores a part of its energy in the

structure which is equal to

∆E =− e

E0

(
qB

Rsωr

2Qr

)
with the nominal energy E0 due to the fundamental theorem of beam loading [74]. The

impedance structure basically behaves like an RLC resonance circuit which was analyzed

in Section 2.3.3. The wake field generated by the first bunch with the initial “charge vector”

~q0 = (
qB,0

)T at the time t0 is taken into account by using the wake matrix M to calculate

the charge vector

~q1(t1) = M (t1 − t0) ~q0 +
(

qB

0

)
of a second bunch passing the structure at t1 > t0, which is proportional to the value of the

wake field [48]. This bunch interacts with the wake field within and experiences an energy

change according to

∆EWF = e
Rsωr

QrE0

(qB

2
+ [

M (t1 − t0) ~q0
]

1

)
which is applied to all particles inside the bunch, where the notation

[
M (t )~q

]
1 means the

first element of the matrix.

In conclusion, the phase-space coordinates δEn and δtn of turn n are calculated depending

on the current charge vector ~qn and the coordinates of the previous turn leading to

∆EWF = e
Rsωr

QrE0

(qB

2
+ [

M (ttot) ~qn−1
]

1

)
δEn,p =∆En−1,p +Û sin

(
ωRFδtn−1,p +η sin

(
ωmodδtn−1,p

)+φ0
)−∆EWF

δtn,p = δtn−1,p + αL0c

E0
δEn,p
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for every particle p with the total time ttot since the last bunch passed the structure. In

addition, the charge vector ~qn is recalculated for every bunch together with ttot. Since the

particles can be considered independent for the second and third interaction, both calcu-

lations are performed in one matrix operation each.

4.2. Choice of Parameters

Because the computational resources are limited, only a reasonable subset of parameter in-

tervals and boundary conditions were considered. The goal of the numerical calculations is

consequently to make qualitative assessments rather than providing absolute values com-

parable to measurement data. For this reason, the simulation parameters are mainly cho-

sen to serve the performance and stability of MALTE instead of representative values of a

real storage ring. Nevertheless, most of them are still based on the values of the DELTA

parameters, as can be seen in Tab. 4.1.

As mentioned before, synchrotron radiation effects are neglected and, thus, the reference

particle should not be accelerated in the cavity, the synchronous phase is set to φs = π.

The modulation frequency fmod has to be determined for the virtual ring, since it depends

on the synchrotron frequency. At DELTA, the modulation frequency during user operation

is usually set to slightly below twice the synchrotron frequency. This value is used in the

calculations, but will be further investigated in Chapter 5.5. For this purpose, a simula-

tion was done with neither RF phase modulation nor wake field effects to determine the

synchrotron frequency of the virtual ring and define fmod.

Even though MALTE is capable of using arbitrary fill patterns, only one bucket was filled

in the following calculations due to limited memory capacity and to decrease the runtime.

This way, only one coupled oscillator exists setting the investigated coupled-bunch mode

to the fundamental mode with µ= 0. In addition, this requires long-range wake fields and,

thus, a high quality factor of the impedance structure.

To meet these requirements, Qr and Rs should be chosen as high as possible within a rea-

sonable range. For a higher-order mode of a normal conducting cavity, like the DELTA cav-

ity, a quality factor of the order of magnitude of Qr ≈ 1×105 and a shunt impedance around

Rs ≈ 5×106Ω are reasonable. This also helps to improve the performance of MALTE, since

high values of Qr and Rs lead to high growth rates τ−1
G values and, therefore, to fast-rising

phase-space coordinates limiting the necessary number of turns nt. T
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Table 4.1.: Most important parameters used in the first simulation.

Parameter Symbol Value

cavity voltage Û 350 kV
RF frequency fRF 500 MHz
harmonic number h 192
ring length L0 115.4 m
momentum compaction factor α 4.9×10−3

synchronous phase φs π

number of particles per bunch Nppb 10000
number of bunches Nb 1
mode number µ 0
quality factor (impedance structure) Qr 1×105

shunt impedance (impedance structure) Rs 5 MΩ

initial bunch length σT 1 ps
initial energy spread σE 1×10−10 eV
Number of turns nt 20000

In addition, the occupied phase-space volume is expected to grow during the calculations

due to the excitation of coupled-bunch instabilities. In order to be able to calculate a large

number of turns without meeting the termination criterion forδt , presented in Chapter 4.1,

the initial value for the bunch length σT = 1ps and the energy spread σE = 1×10−10 eV are

chosen to be relatively small compared to the values of DELTA.

The long range of the wake fields due to the high quality factor in combination with the

short bunch length justifies the first-order approximation of one-particle bunches when

calculating wake field effects, since the bunch length is short compared to the wavelength

of the wake field. While the bunch passes the impedance structure, the wake field inside

the bunch can be approximated to be constant and thus rendering the need to recalculate

the wake field for every single particle superfluous.

4.3. First Results and Code Validation

As a first study, one bunch with Nppb = 10000 is tracked through the ring with RF phase

modulation disabled (modulation amplitude η = 0) for nt = 20000 turns. The main pa-

rameters used for this simulation are shown in Table 4.1. The phase space trajectory of

one particle, as well as the rms-value of δE and the δt-coordinate of the center of mass

of the bunch are plotted as a function of the turns in Fig. 4.1 together with the value of
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the wake field inside the impedance structure. Both phase-space coordinates grow expo-

nentially due to wake fields stimulating coupled-bunch instabilities. The wake field in the

impedance structure also contains all information about the excited coupled-bunch modes

and grows in the same way (given by the first element of the “charge vector” ~qn).

To investigate coupled-bunch effects, the growth rate τ−1
G , introduced in Section 2.4.1 and

2.4.2, has to be determined. For this purpose, an exponential function in the form

f (x) = exp{b(x +a)}+ c

is fitted to the envelope of the wake field with the fit parameters a, b and c.

With the ability to track particles through a virtual storage ring and successfully determine
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Figure 4.1.: Exemplary results of Nppb = 10000 particles tracked through the ring over
nt = 20000 turns without RF phase modulation. The phase space trajectory of a
single particle is shown. Additionally, the rms value of the δE-coordinate as well
as the δt-coordinate of the center of mass of the bunch are shown separately as
a function of the turn number. The value of the wake field inside the impedance
structure shows a transient effect at the beginning, which is cut off to prevent it
from distorting exponential fits (highlighted by a dashed black line).

49



4. Beam Dynamics Simulation

0 20 40 60 80 100 120
beam current I / mA

0.0

0.1

0.2

0.3

0.4

0.5

0.6
gr
ow

th
ra
te
τ
−1 G

/s
−1

simulation data
linear fit

Figure 4.2.: Growth rate τ−1
G as a function of the beam current I (blue markers with vertical

error bars). The error bars represent the standard deviation of the individual
exponential fits. A linear fit (green line) highlights the linear dependence of τ−1

G
on I .

coupled-bunch growth rates, a second study is done analyzing τ−1
G as a function of the

beam current I without RF phase modulation. This is also used to validate MALTE, since

the dependence of τ−1
G on I is well known by analytical calculations (see Section 2.4.2).

In reality, the beam current is changed by injecting more electrons into the ring. However,

this could lead to excessive calculation times in the simulation. Therefore, the beam cur-

rent is changed in the simulation by altering the charge of every particle q , keeping Nppb

constant.

The beam current is swept from I0 = 10mA to Imax = 120mA and the instability growth

rate is determined in every step, as shown in Fig. 4.2. Linear regression is used to fit a first-

order polynomial function in the form

f (I ) = a · I
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with the fit parameter

a = (4.503±0.042)×10−3 s−1 mA−1

to the data. The results are in good agreement with the proportional relation between

growth rate τ−1
G and beam current I , as expected from Eq. (2.30). That validates that MALTE

provides realistic results and can be used for further studies.

4.4. Dependence of Coupled-Bunch Growth Rates on

the Modulation Amplitude

Investigating the interaction of RF phase modulation and coupled-bunch instabilities, the

most interesting correlation is the dependence of the growth rate τ−1
G on the modulation

amplitude η. The tracking code MALTE is used to analyze this correlation as follows [75].

To determine the growth rate, exponential functions are fitted to the rms value of δE , to

the mean of δt and to the value of wake field (given by the first element of ~qn), as already

mentioned in Chapter 4.3. The results of the three fits are basically the same, while the

wake field turns out to be the most robust choice, especially in the presence of RF phase

modulation. This can be understood by the fact, that the wake field is gathered by the first

element of the charge vector ~qn . Considering the analogy to an RLC-circuit described by

Eq. (2.24), the first entry contains no information about the phase, which is stored in the

second entry. While the exponential growth of the phase-space coordinates is distorted by

the phase modulation, the wake field is almost unperturbed by this effect. For this reason,

the wake field is used for determining the growth rate.

One particle bunch with Nppb = 10000 is tracked over nt = 20000 turns with the parameters

listed in Table 4.1. The beam current is chosen to be I = 110mA to maximize τ−1
G in order

to achieve good exponential fits. This is especially important for high modulation ampli-

tudes since, according to Section 2.4.3, the growth rates decreases when η increases. The

synchrotron frequency was acquired by evaluating the oscillation frequency of the phase

space coordinates and has a value of fs = 15.3kHz.

Repeating this simulation with identical start parameters for different modulation ampli-

tudes from η0 = 0deg to ηmax = 3deg in steps of 0.2deg yields exponentially growing results

51
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similar to Fig. 4.1. The results are shown in Fig. 4.3.

Eventually, an elementary function shall be assigned that describes the relation between

η and τ−1
G . A reasonable function with a low number of parameters is a parabola with its

maximum at the vanishing modulation amplitude and two free parameters. In this case,

the second-order polynomial function

τ−1
G

(
η
)= a ·η2 +b

is chosen with the least-square values

a = (−2.227±0.010)×10−2 ms−1 deg−2

b = (4.942±0.004)×10−1 ms−1.

These results are tested further in experimental studies at the DELTA storage ring as shown

in the following chapter.
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Figure 4.3.: Growth rate as a function of the phase modulation amplitude (blue markers
with vertical error bars). A second-order polynomial function is fitted to the
data (green).
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In order to analyze the interaction of coupled-bunch instabilities and RF phase modula-

tion, the growth rates of coupled-bunch modes as a function of the modulation amplitude

were measured and compared to the simulation results of Chapter 4.4. For this purpose,

the phase shift applied to the beam in the accelerating cavity due to RF phase modulation

has to be known, as well as the modulation frequency. At DELTA, the modulation frequency

is directly tunable, but the modulation amplitude is set via an input voltage UC at the phase

modulation system (see Chapter 3) without precise information about the phase-shift ap-

plied to beam. Therefore, measurements were done to obtain the phase shift inside the

cavity as a function of the input voltage UC, which are presented in Section 5.2.

In addition, the bunch-by-bunch feedback system is used to measure the turn-by-turn

bunch oscillation, shown in Section 5.3, which can be used to determine coupled-bunch

growth rates. For this purpose, a well-known method has been commissioned and thor-

oughly tested at DELTA [76] which is described in Section 5.4.

Unfortunately, this measurement method is not applicable in the presence of RF phase

modulation with high modulation amplitudes, as shown in Chapter 5.4. Hence, a new

method has been developed and is presented in Section 5.5. It is used to analyze coupled-

bunch growth rates as a function of the modulation amplitude as described in Section 5.5.

At last, additional studies are shown in Section 5.6, which were made to improve the user

operation at DELTA with the knowledge gained by the previous measurements.
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5.1. Optimum RF Phase Modulation Frequency

Before performing additional studies with RF phase modulation, the optimum modula-

tion frequency has to be found to maximize the investigated effects. For this purpose, the

bunch-by-bunch feedback system is used to measure the strength of beam instabilities as

follows.

When a longitudinal instability occurs, each bunch starts to oscillate with the synchrotron

frequency fs leading to an increase of the spectral power P
(

fs
)

in the single-bunch spec-

trum. With the bunch-by-bunch feedback system, the longitudinal bunch positions of all

bunches are collected individually once per revolution. Applying a fast Fourier transform

at each bunch individually, the collected data yields the single-bunch spectra. By adding

up the single-bunch spectra of all bunches, the resulting mean spectral power at the syn-

chrotron frequency P∑ (
fs

)
is an indicator for the strength of the beam instability [46]. Al-

though all information about the mode number is lost this way, the results are sufficient to
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Figure 5.1.: Spectral power P∑ (
fs

)
at the synchrotron frequency fs = 16.05kHz as a func-

tion of the modulation frequency fmod. The suppression of coupled-bunch
instabilities is maximized at f2 = 31.60kHz. The effect is also partly visible at
f3 = 47.75kHz as highlighted by the zoomed section around that frequency.
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detect the optimum modulation frequency.

To investigate this, the input voltage is set to ÛC = 1.5V and the modulation frequency

fmod is swept from 28 kHz to 54 kHz. In each step, the mean spectral power P∑ (
fs

)
at

fs = 16.05kHz is acquired as described before. The results in Fig. 5.1 show two local min-

ima. The deepest minimum is at f2 = 31.60kHz, which is slightly below twice the syn-

chrotron frequency showing that the effect of RF phase modulation maximizes at slightly

below the second integer harmonic, as already shown at other accelerators (e.g. [24, 55]).

In addition, the modulation frequency can also be set to f3 = 47.75kHz, i.e., slightly below

three times the synchrotron frequency, like at other facilities (e.g. [39, 77]), but the effect is

significantly smaller at DELTA [78].

Conspicuously, the right-hand slope is sharper than the left-hand side, specifically at the

third harmonic. A possible explanation for this asymmetry will be discussed in Section 5.6.2.

5.2. Phase Shift Applied in the Accelerating Cavity

As shown in Section 3.2, the phase modulation system at DELTA is tuned by a control volt-

age UC = ÛC sin (ωmodt ). While ωmod is the modulation frequency, its amplitude ÛC is

transformed to the modulation amplitude η
(
ÛC

)
by the phase shifter module leading to

Umod = Ûmod sin
(
ωRFt +η(

ÛC
)

sin (ωmodt )+φDC
)

, (5.1)

with the modulation signal Umod and its amplitude Ûmod as introduced in Eq. (3.1). To

determine the phase shift applied to the beam as a function of UC, measurements were

performed with a spectrum analyzer [79] in two steps. Firstly, the output signal of the phase

modulation system was investigated. Afterwards, the signal inside the cavity was measured

with a pickup probe. Both probe positions are highlighted in Fig. 3.2.

As seen in Section 2.1.3, the phase shift of a phase-modulated sinusoidal signal can be de-

termined by measuring the amplitudes of the sidebands of the spectrum and comparing

them with spectra calculated with Bessel functions. For this purpose, spectra with a given

phase shift η were calculated using Eq. (2.9) and fitted to the measurement data with η be-

ing the only fit parameter, sinceωmod andωRF are known. This way, the phase shift applied

to the beam in the measurement were determined.

In the experiment, several spectra were measured for different input voltage amplitudes ÛC
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and the Bessel function method was used in every iteration to determine η. An exemplary

spectrum is shown in Fig. 5.2 together with the calculated sideband amplitudes for the best

fitting value of η. The measured sidebands are asymmetric and the higher-order sidebands

are significantly larger than the calculated ones. The reason for these differences is the

way how the phase modulation system operates. Looking at the characteristic curve of

the system, shown in Fig. 3.2, it can be seen, that the operating range is not linear which

makes the modulation not perfectly sinusoidal. In this case, it is not accurate to use Bessel

functions to determine the modulation amplitude.

To obtain a better model, the output signal of the phase modulator is considered to be

Umod = Ûmod sin
(
ωRFt +φPS (UC)

)
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Figure 5.2.: Measured spectrum of the output of the phase shift module in comparison with
the calculated sidebands using Bessel functions (see Eq. (2.9)) and the simu-
lated sidebands with a nonlinear phase shift. The spectrum is normalized such
that the maximum of the center frequency has a value of 1 dB. For this mea-
surement, the amplitude of the control voltage was set to ÛC = 1.5V and the
modulation frequency was fmod = 31.6kHz.
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5.2. Phase Shift Applied in the Accelerating Cavity

with the phase shift φPS applied by the phase modulation system depending on

UC = ÛC sin (ωmodt )+UDC (5.2)

instead of just on the amplitude ÛC. To evaluate the measured data with this assumption, a

numerical simulation was developed to calculate frequency spectra generated by the phase

modulation system. For this purpose, the characteristic curve of the phase modulation sys-

tem [79] is interpolated by cubic splines giving a continuous function of the phase shiftφsim

(see Fig. 3.2) depending on Eq. (5.2). With this function, a 500 MHz carrier-signal can be

modulated with arbitrary modulation amplitude and frequency. Using a fast Fourier trans-

formation generates the spectrum, which is subtracted from the measured spectrum and

the sum of squared residuals ∆Γ is calculated. To find the phase shift of the measurement

φmeas, φsim is altered until the minimum of ∆Γ is found, so that φsim ≈φmeas.

The sideband amplitudes gathered by this method are also shown in Fig. 5.2 for the exem-

plary spectrum. Both, the asymmetry and the larger values of the higher-order sidebands

are reproduced by the simulation. The modulation amplitude η, which equals the maxi-

mum phase shift (see Section 2.1.3), can, thus, be determined appropriately.

In addition, because of the finite bandwidth of the accelerating cavity, the phase shift in-

side the cavity is expected to be smaller than the phase shift at the output of the phase

modulation system, as mentioned in Chapter 3.2. To determine the reduction of the phase

shift by the cavity, the quality factor of the cavity is also measured with the RF phase mod-

ulation system. This method has the advantage over conventional measurement methods

with vector network analyzers (see appendix A.2), that it can be used while the accelerator

is in operation and without breaking the vacuum.

The modulation frequency was swept from 0 kHz to 35 kHz with ÛC = 1.5V and the spec-

trum analyzer was used to measure the spectra at the pickup probe inside the cavity. The

amplitude of the first sideband on both sides ofωRF of each spectrum is plotted against the

modulation frequency resulting in the resonance curve of the cavity as shown in Fig. 5.3. A

Cauchy distribution of the form

F ( f ) = A

1+ (
2QL

(
f − fRF

)
/ fRF

)2 +u

is fitted to the data with the Amplitude A, the center frequency fRF, the loaded quality factor
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QL and the background offset u resulting in the fit parameters

A = (0.778±0.012)dB

fRF = (499.8168±0.0001)MHz

QL = 11286±258

u = (0.211±0.013)dB.

The cavity was designed to have a quality factor of Q0 = 36000 with a coupling factor of

κ= 2.0 [80–82]. This results in a loaded quality factor QL = 12000 according to Eq. (2.7).

These values are additionally verified in a conventional measurement presented in ap-

pendix A.2 and are in good agreement with the results gathered with the phase modulation

system.

The dependence of the phase shift at the output of the phase modulation systemφPS as well
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Figure 5.3.: Resonance curve of the DORIS-type cavity installed at DELTA centered
at fs = 499.817MHz, measured by altering the modulation frequency with
ÛC = 1.5V. Each blue marker represents the amplitude of a sideband in the
corresponding measured spectrum. A Cauchy distribution is fitted to the mea-
sured data (solid green).

58



5.2. Phase Shift Applied in the Accelerating Cavity

0.0 0.5 1.0 1.5 2.0 2.5 3.0
control voltage amplitude ÛC / V
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Figure 5.4.: Phase shift as a function of the control voltage amplitude ÛC at the output of
the phase modulation system (blue) and inside the accelerating cavity (black)
together with corresponding linear fits.

as at the pickup probe in the accelerating cavityφcav on the input voltage amplitude ÛC was

analyzed by sweeping ÛC from 0 V to 3 V in steps of 0.1 V. The modulation frequency was

set to its optimum value fmod = 31.6kHz. The results are shown in Fig. 5.4. A linear function

in the form

Φi
(
ÛC

)= ai ·ÛC +bi

with the fit parameters

aPS = (3.09±0.02)deg/V bPS = (−0.14±0.03)deg

acav = (1.64±0.01)deg/V bcav = (−0.07±0.02)deg

is used to highlight the linear dependence of the phase shifts on ÛC.

The phase shift in the cavity is constantly smaller than φPS by a factor of acav/aPS = 0.53.

With the measured quality factor of the cavity, the reduction factor at fs = 31.6kHz is

φcav/φPS = 0.47, which is in good agreement with the previous results. The small discrep-

ancy can be understood by the fact that the phase modulation system has a finite band-
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width as well, which narrows the measured resonance curve of the cavity leading to a

smaller bandwidth ∆ω and, hence, to a smaller damping factor.

Additionally, the maximum phase shift applied to the electron beam at DELTA in the mon-

itored regime ÛC ∈ [0,3]V is determined to be φmax ≈ 4.91deg. During user operation, the

input voltage is usually set to 0.7 V which equals a phase shift of φuser ≈ 1.08deg.

5.3. Data Acquisition with the Bunch-by-Bunch

Feedback System

To be able to evaluate coupled-bunch instability growth rates, the bunch-by-bunch feed-

back system is used to acquire the turn-by-turn data of all bunches separately, as described

in Chapter 3.3. Since this thesis focuses on longitudinal beam dynamics, only the longitu-

dinal processor unit of the system is used for all measurements.

The Dimtel bunch-by-bunch feedback system comes with a data acquisition tool that stores

the longitudinal position of every bunch for roughly 65000 turns. To characterize coupled-

bunch instabilities, it is useful to convert the data to the even-fill eigenmode basis (EFEM1),

resulting in h signals for the different oscillating modes of the beam [64]. For this purpose,

a bandpass filter is used at the synchrotron frequency to improve the signal-to-noise ratio.

Afterwards, the mode spectrum is calculated based on the scheme described in [46, 83–85].

First, the analytic signal for each bunch is derived by a Hilbert transformation of the form

H{x (t )} (t ) = 1

π

∞∫
−∞

x (τ)

t −τdτ.

The analytic signal u (t ) is defined as

u (t ) = x (t )+ i H{x (t )} (t )

and describes the envelope, or instantaneous amplitude, of the oscillation signal [86]. For

a given oscillation coordinate of bunch k

xk
n = ak

n cos
(
2πnDν+φk

n

)
,

1 Even filling pattern means, that it has rotational symmetry. For Nb filled bunches and h buckets, rotating
the fill pattern by h/Nb buckets leaves the same buckets filled [83].
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with magnitude ak
n , phase φk

n , the sample number n, downsampling factor D and longitu-

dinal tune ν, the analytic signal

uk
n = ak

n exp
{

i
(
2πnDν+φk

n

)}
is derived. By using discrete Fourier transformations of the sequence of analytic signals at

each sample, the modal phase space coordinate Uµ
n of the µ-th EFEM at sample n is given

by

Uµ
n = Aµ

n exp
{
i
(
2πnDν+φµn

)}= G−1∑
k=0

uk
n exp

{
−i

2πµk

G

}
with G being the ratio of the harmonic number to the bunch spacing, Aµ

n being the magni-

tude and φµn being the normalized angle. The absolute value of Uµ
n represents the envelope

of the mode amplitudes. If the bunch filling is not even, the calculated eigenmodes of the

beam are linear combinations of EFEMs.
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Figure 5.5.: Output of the data acquisition tools provided by Dimtel [64]. Left: Envelope
of longitudinal position signal of all 192 bunches. Right: Corresponding signal
of the 192 coupled-bunch modes of the beam. While mode µ = 12 is the most
dominant mode, the modes next to it are present due to an uneven fill pattern.
To highlight that, the modes 4 to 20 are additionally shown in a zoomed section.
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The envelope of the oscillation signal as well as the mode amplitudes, given by
∣∣Uµ

n

∣∣, are

shown in Fig. 5.5. For this exemplary measurement, 144 buckets were filled at DELTA with

a beam current I ≈ 75mA. Coupled-bunch instabilities arise and vanish during the mea-

surement, leading to the growth and afterwards the damping of the oscillation magnitude

of all bunches. On the right hand, side the transient behavior of each mode is shown. Al-

though only mode µ= 12 is responsible for the bunch oscillations, the adjacent modes are

also present in the data, which is caused by the uneven fill pattern and therefore an artifact

of the EFEM approximation.

5.4. Determination of Coupled-Bunch Growth and

Damping Rates

A method to measure growth and damping rates of coupled-bunch modes has been com-

missioned and thoroughly tested at DELTA without RF phase modulation [46]. For this

approach, the bunch-by-bunch feedback system is used to acquire the data as described in

the previous chapter.

For an acquisition time of tacq = 100ms, the longitudinal center-of-mass position of every

bunch was recorded and the data was converted to the even-fill-eigenmode basis. To ana-

lyze coupled-bunch growth and damping rates, so-called grow-damp measurements were

performed. For these measurements, the bunch-by-bunch feedback system was used to

excite and/or damp the beam to achieve a beam signal, which starts growing and damps

down afterwards, as shown in Fig. 5.5, or vice versa. This also includes measurements, in

which the data acquisition window does not contain the whole process. For example, if the

data acquisition stops at the maximum oscillation amplitude, only a growing signal is seen

in the data. Generally, two types of grow-damp measurements were performed depending

on the beam current as follows.

If the beam current I is lower than the instability threshold Ithr (see Section 2.4.1), the

damping rate due to synchrotron radiation τ−1
D is higher than the highest coupled-bunch

growth rate τ−1
G and the electron beam is stable with τ−1 < 0, according to Chapter 2.4.

In this case, the bunch-by-bunch feedback was used to excite the beam by positive feed-

back for a period of time tg, called growth time. Afterwards, the excitation was turned off

and the excited oscillations damped down due to synchrotron radiation damping. Using

positive feedback gives rise to the most dominant coupled-bunch mode, which usually is
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5.4. Determination of Coupled-Bunch Growth and Damping Rates

mode µ = 12 at DELTA. For studying other modes, the built-in frequency generator of the

bunch-by-bunch feedback system (drive) can be used to excite one specific mode with the

corresponding frequency [87]. Either way, the electron beam starts damping down expo-

nentially according to Eq. (2.28) at t ≥ tg. The factor τ−1
fit = τ−1 was evaluated via fitting an

exponential function to the mode signal during the damping period. An example of such a

measurement including the exponential fit is shown in the left hand side of Fig. 5.6.

For beam currents higher than the instability threshold I > Ithr, coupled-bunch instabilities

rise due to excitation by wake field effects leading to τ−1 > 0. In this case, the bunch-by-

bunch feedback system is used to damp the beam using negative feedback. At the start of

the measurement, the bunch-by-bunch feedback was turned off for a period of time toff and

the most dominant mode started to rise exponentially. The factor τ−1
fit was also determined

by exponential fitting, but this time on the rising slope (see the right hand side of Fig. 5.6).
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Figure 5.6.: Grow-damp measurements at DELTA. Left: The beam current I is below the
instability threshold Ithr. Positive feedback was applied from t = 0 to t = tg to
excite the beam. Afterwards the feedback was turned off and the beam damped
down. The factor τ−1

fit was determined by fitting an exponential function to the
damping part. Right: The beam current is well above the instability threshold.
This time, the feedback was turned off from t = 0 to t = toff and the factor τ−1

fit
was determined by fitting an exponential function to the growing part.
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Figure 5.7.: Grow-damp mode signals of mode µ= 12 at approximately 40 mA for different
phase shifts φcav. Only the mode signals for phase shifts φcav < 0.7deg decrease
exponentially.

If the signal reaches saturation, the data used for fitting has to be cut before the inflection

point. Alternatively, the time toff can be chosen small enough to prevent the mode from

growing into saturation as in Fig. 5.5. Studying other modes than the most dominant mode

µ= 12 is more complicated below the instability threshold, but achievable by pre-exciting

the particular mode with the drive generator, as presented in [46, 87].

To test whether these techniques are applicable in the presence of RF phase modulation

at DELTA, several grow-damp measurements for mode µ= 12 were performed for different

modulation amplitudes. The beam current was set to I ≈ 40mA, which is well below the

instability threshold [76], so that the first type of grow-damp measurements is used. The

synchrotron frequency during the measurement was fs = 15.9kHz. To make sure, that only

mode µ= 12 is excited, the drive generator was used to excite the beam with the frequency

corresponding to this mode, which is given by

fµ =µ frev + fs

according to Eq. (2.21) with fexc = f12 = 0 · fRF +12 · frev + fs = 31.266MHz. The modulation
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amplitude was swept from ÛC,0 = 0V to ÛC,max = 3V in 30 steps, which equals a phase shift

applied to the beam of φcav from 0 deg to 4.91 deg.

The results are shown in Fig. 5.7. While the saturation values in the excitation regime de-

crease with φcav, the shape of the signals changes in the damping regime for higher phase

shifts. This effect can be explained by the fact that RF phase modulation adds an oscillation

to the center-of-mass motion of the bunch. The bunch-by-bunch feedback only measures

the center-of-mass motion and, thus, detects a convolution of the oscillation arising from

RF phase modulation and the exponential damping described by τ−1. This convolution can

be seen in the data, especially for phase shiftφcav ' 0.7. Using exponential curves to fit this

kind of data is inappropriate [88], i.e., coupled-bunch growth rates cannot be studied in the

presence of RF phase modulation with this method, since τ−1 cannot be acquired. For this

reason, an alternative approach was developed and is presented in the next chapter.

5.5. Investigation of Coupled-Bunch Instabilities in

the Presence of RF Phase Modulation

The previous section showed, that the common method utilizing exponential fits cannot be

used to determine the growth rate τ−1 for high modulation amplitudes. On the other hand,

the saturation value Ymax of the investigated coupled-bunch mode is inversely related to

the modulation amplitude. This effect can be used to determine τ−1 below the instabil-

ity threshold, if the correlation between τ−1 and Ymax is known. For this purpose, a new

method, called the saturation method, was developed using this correlation.

The saturation value Ymax represents the equilibrium of the excitation by the frequency

generator of the bunch-by-bunch feedback system, synchrotron radiation damping and

the growth or damping rate of the potentially occurring coupled-bunch mode. By changing

solely RF phase modulation parameters, the excitation parameters as well as synchrotron

radiation damping remain untouched, meaning that a change of Ymax corresponds to a

change of the mode strength. It is important to note, that the common method provides

only the factor τ−1, which is a summation of the damping rate due to synchrotron radiation

and the growth or damping rate of the mode. This factor is still sufficient to characterize

coupled-bunch modes as long as the absolute value is not relevant (for example for trends,

parameter sweep, etc.), since the synchrotron radiation damping rate is just a constant

offset. This leads to the goal of finding a valid description for the relation between Ymax and
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τ−1. For this purpose, the measured mode signal Y (ω) is reconstructed mathematically as

follows2.

In signal processing, the output signal is the result of the convolution of the input signal

with the impulse response of the system [68]. In the equilibrium state, the input signal

a (t ) = Aexc ·e iωexct

is the excitation signal of the drive generator of the longitudinal bunch-by-bunch feedback

system. The impulse response of the beam is a damped oscillation

x (t ) =
0 for t < 0

−i eψt for t ≥ 0

withψ= iω1−τ−1, the oscillation frequencyω1 and the rate τ−1 ≥ 0. Both signals are shown

in Fig. 5.8.

The convolution of both signals can be achieved by multiplying the corresponding Fourier

2 The detailed calculations can be found in the Appendix A.3.

time t

R
e{

x(t
)}

t = 0

∝ e−t/τ

time t

a(
t)

impulse response exponential damping excitation signal

Figure 5.8.: Functions used to reconstruct the measured grow-damp mode signals.
Left: Damped oscillation signal of a coupled-bunch mode with its amplitude
decreasing exponentially. Right: Oscillating excitation signal.
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transforms. For this purpose, a (t ) is Fourier transformed providing

A (ω) = 2πAexc

for ω=ωexc. Additionally, the Fourier transform of x (t ) yields

X (ω) = 1

ω1 −ω+ iτ−1

and multiplying A (ω) and X (ω) results in the (measured) output signal

Y (ω=ωexc) = 2πAexc

ω1 −ωexc + iτ−1
.

During all measurements, the excitation frequencyωexc was set to the oscillation frequency

of the observed coupled-bunch mode ω1. The observed coupled-bunch mode with µ= 12

has the oscillation frequency ω12, which leads to

Y (ω12) = 2πAexc

iτ−1

with the amplitude

|Y (ω12)| = Ymax = 2πAexc

τ−1
, (5.3)

which equals the saturation value of the measurements and only depends on the excitation

amplitude Aexc and the factor τ−1. That means, if the excitation strength Aexc is known, the

factor τ−1 can be determined by measuring the saturation value Ymax [88].

For experimentally investigating the interaction between RF phase modulation and coupled-

bunch instabilities, the DELTA storage ring was filled with a bunch train of 144 bunches

at a beam current of I ≈ 40mA. Although higher beam currents are generally more suit-

able for these studies, since the growth rates are higher, this value for the beam current

was chosen nevertheless for two reasons. Firstly, the saturation method developed in the

framework of this thesis (see Chapter 5.5) is only applicable below the instability threshold.

With a threshold at DELTA of Ithr ≈ 50mA [46], this requirement is well satisfied. Secondly,

while studying coupled-bunch growth rates as a function of the modulation amplitude, the

change of beam current has to be taken into account, since the growth rate is proportional

to I (see Eq. (2.30)). However, at such a low beam current, the beam lifetime was more

than 20 h. The current was monitored during all measurement and even in the longest pa-

rameter sweep, its deviation was less than 1 %. Thus, the beam current is considered to be
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constant in the following.

At first, a calibration measurement was performed to determine Aexc, which is necessary

to use the saturation method. For this purpose, the saturation value Ymax as well as τ−1

were obtained for the same data set to be able to calculate Aexc based on Eq. (5.3). This

was done by a grow-damp measurement without RF phase modulation, where τ−1 can be

successfully evaluated by fitting an exponential curve to the damping signal. During this

measurement, the beam was excited for several seconds by the drive generator of the longi-

tudinal bunch-by-bunch feedback system. With a synchrotron frequency of fs = 15.9kHz,

the excitation frequency was set to fexc = 31266kHz, so that the applied drive signal was at

the frequency of mode µ = 12 to make sure that only this mode was excited. The long ex-

citation time was chosen to ensure that the beam was in an equilibrium state. Afterwards,

two sets of data were taken. For the first data set, the beam was permanently excited by the
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Figure 5.9.: Two datasets of the signal of mode µ = 12 taken for the calibration measure-
ment. Left: Permanent excitation to determine Ymax by taking the mean of the
signal (dashed black line). The noise of the signal is mainly caused by electric
hum (50 Hz noise). Right: Excitation turned off at t = 5ms to apply an expo-
nential fit to the damping part of the signal (solid black line).
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drive resulting in a saturated signal with its mean value being the saturation value

Ymax = (12.72±0.21)arb.units,

as shown in the left hand side of Fig. 5.9. For the second data set, the excitation was turned

off after 5 ms. Subsequently, the beam damped down exponentially and τ−1 was deter-

mined by using an exponential fit of the form

f (t ) = a ·ebt + c

with the fit parameters

a = (35.00±0.02)arb.units

b = (211.96±0.08)×10−3 ms−1

c = (35.35±0.40)×10−3 arb.units

as shown in the right hand side of Fig. 5.9, where τ−1 = b according to Eq. (2.28).

With the knowledge of Ymax and τ−1, the excitation amplitude resulted in

Aexc = Ymax ·τ−1

2π
= (0.43±0.02)arb.units.

This excitation strength was used for further studies assuming that the excitation parame-

ters of the drive generator remained untouched. This is especially true for RF phase mod-

ulation parameters but was also assumed for the beam current.

Next, the RF phase modulation amplitude sweep ws performed by varying the input voltage

ÛC from 0 V to 3 V leading to a phase shift φcav applied to the beam by the RF phase mod-

ulation from 0 deg to 4.91 deg. In every step, both types of datasets, as shown before, were

recorded to determine Ymax as a function of φcav. With it, the damping rate gathered by

the saturation method τ−1
sat was calculated by using Eq. (5.3) with Aexc from the calibration

measurement, to achieve τ−1
sat as a function of φcav. In addition, the second type of dataset

allows to determine the damping rate τ−1
fit directly by exponential fitting to compare the

results of both measurement methods. The results are shown in Fig. 5.10 [88].

Comparing the results of both methods leads to the following findings. The first data point

of both methods is exactly the same by definition, since τ−1
sat is calibrated to match τ−1

fit at
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Figure 5.10.: The growth or damping rate τ−1 as a function of the phase shift applied to the
beam by the RF phase modulation system, determined by exponential fitting
(green) and by the saturation method (blue).

φcav = 0deg. In the regime between φcav = 0deg and φcav ≈ 0.7deg, the obtained values of

τ−1 of both methods are almost identical. For φcav > 0.7deg, the data points of τ−1
sat clearly

follow a trend, while τ−1
fit start acting erratically.

For φcav > 0.7deg, only the results of the saturation method seem to be realistic and are

further investigated in the following. For this purpose, the trend of τ−1
sat

(
φ

)
was analyzed by

fitting different polynomial functions as well as exponential functions to the data. The best

match was achieved by a second-order polynomial function of the form

τ−1 (
η
)= a ·η2 +b

with the fit parameters

a = (−0.293±0.003)ms−1 deg−2

b = (−0.254±0.031)ms−1

as shown in Fig. 5.11.
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Comparing the results of the dependence of the growth or damping rate τ−1 on the RF

phase modulation amplitude gathered experimentally at DELTA with the simulation results

shown in Chapter 4.4, they shows a very similar behavior [75]. A comparison of both data

sets is shown in Fig. 6.1 of the summary. It is important to note, that the rates of the simu-

lation are positive values due to the absence of synchrotron radiation and the growth rate

of the coupled-bunch mode τ−1
G is evaluated directly. In the measurement, on the other

hand, the growth or damping rate τ−1 is gathered, which has a constant negative offset τ−1
D

(see Chapter 2.4). Nonetheless, a quadratic dependence, demonstrated by second-order

polynomial fits, exists in both cases. Hence, the assumption of a quadratic dependence of

the growth rate on the RF phase modulation amplitude is very convincing, even with no

analytical explanation available.
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Figure 5.11.: The factor τ−1
sat gathered by the saturation method as a function of the phase

shift φ (blue) with a second-order polynomial fit (green) to investigate the
trend.
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5.6. Studies to Improve User Operation

During user operation at DELTA, the RF phase modulation system is permanently used to

oppose coupled-bunch instabilities and to increase the beam lifetime at the cost of a lower

beam quality. Due to higher oscillation amplitudes of the individual particles, the bunch

length increases. In addition, mainly caused by the coupling of the longitudinal and the

horizontal plane due to dispersion, also the transverse beam size increases. Although the

bunch-by-bunch feedback system is capable of eliminating coupled-bunch effects without

reducing the beam quality, the increased beam lifetime caused by the RF phase modulation

is more important for the users, leaving it as the system of choice at DELTA.

The investigations done in the framework of this thesis regarding RF phase modulation,

coupled-bunch instabilities and the bunch-by-bunch feedback system, lead to two ideas

how to improve the user operation of DELTA.

Firstly, the injection efficiency can be improved by stabilizing the beam with the bunch-by-

bunch feedback system during injection. A measurement showing that effect is presented

in Section 5.6.1.

Secondly, a deeper understanding of the effects of RF phase modulation on the beam lead

to the possibility to automatize the process of finding optimal values for the RF phase mod-

ulation parameters after each injection. For this purpose, a map of stability as a function of

the modulation amplitude and frequency was created as shown in Section 5.6.2.

5.6.1. Improving the Injection Efficiency

Although the RF phase modulation is used during user operation when the beam is stored

for several hours, it is turned off during injection. The additional longitudinal oscillations

induced by phase modulation would lead to transverse oscillations, mainly in the horizon-

tal plane, caused by dispersion leading to particle loss and reducing the injection efficiency.

The same is true for coupled-bunch instabilities, which usually occur in the longitudinal

plane at DELTA. The impact of both effects on the injection efficiency depends on several

machine parameters, e.g., the orbit, the strength of the injection kickers, etc. Basically, a

more stable beam is advantageous for the injection efficiency, but RF phase modulation is

no option in this case. This leads to the approach of using the bunch-by-bunch feedback

system during injection to stabilize the beam with negative feedback. To test this idea,

injection was performed increasing the beam current from 100 mA to 120 mA, a regime
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in which coupled-bunch instabilities are always present at DELTA. The phase modulation

system was turned off and the bunch-by-bunch feedback system was turned on and off pe-

riodically. The injection efficiency, the status of the feedback and the beam current were

tracked during this test and the results are shown in Fig. 5.12.

Without changing any parameters at high beam currents, the injection efficiency decreases,

most likely due to coupled-bunch instabilities, as seen up to 105 mA. Whenever the feed-

back is turned on, the beam is stabilized resulting in an efficiency increase up to 15 percent-

age points. A correlation of injection efficiency and bunch-by-bunch feedback is clearly

visible.

Consequently, a feature was added to the main control panel of the DELTA control system

making easy usage of the bunch-by-bunch feedback system during injection possible for

every operator. A status button was also added to the DELTA system overview, which mon-

itors all diagnostic systems.
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Figure 5.12.: Injection process from approx. 100 mA to 120 mA. Top: Injection efficiency as
a function of time. The times when the bunch-by-bunch feedback was turned
on to stabilize the beam are marked in green. Bottom: Corresponding beam
current as a function of time.
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Over several month, it was observed, that the described impact on the injection efficiency

was reproduced multiple times, but is not always present. This is most likely based on the

fact that many machine parameters change from week to week. As mentioned before, the

particle loss due to coupled-bunch instabilities during injection is strongly dependent on

various parameters and is therefore different from week to week. However, stabilizing the

beam never resulted in decreased injection efficiency as long as the feedback was well-

calibrated. Therefore, the bunch-by-bunch feedback is used during injection on a regular

basis now.

5.6.2. Mapping the Stability of the Beam as a Function of

Phase Modulation Amplitude and Frequency

After every injection, the RF phase modulation system has to be turned on again by the

operator in charge. The general procedure is, that the operator manually changes the con-

trol voltage amplitude UC and frequency fmod to find a regime where the sidebands at the

synchrotron frequency fs in the beam spectrum vanish, which indicates that the most un-

stable coupled-bunch instability is eliminated. To keep the beam quality reduction at a

minimum, ÛC is set as small as possible.

To optimize this process, a combined parameter sweep was performed altering ÛC and

fmod in steps of 25 Hz resp. 50 mV to create a map of stability. In each iteration, the mean

spectral power at the synchrotron frequency P∑ (
fs

)
was evaluated. The results for fs =

15.8kHz are shown in Fig. 5.13 and exhibit a triangular region in which the beam is stable.

The beam can already be stabilized at ÛC = 400mV with fmod = 31.5kHz, which is slightly

below twice the synchrotron frequency. However, the frequency bandwidth of the stable

region at this point is very small. Increasing the amplitude shifts the operation point, re-

ducing the necessary precision of the modulation frequency, giving more space for fluctua-

tions. To ensure an acceptable bandwidth, the value ÛC = 700mV is chosen, which already

provided good experiences in the past. This leaves fmod as the only parameter that has

to be tuned after every injection and should be set slightly below twice the synchrotron

frequency. The longitudinal bunch-by-bunch feedback system measures the synchrotron

frequency whenever the center-of-mass of the electron bunches oscillate.

To automatize the procedure described above, a Python application was developed and

added to the control system of DELTA, working as follows. First, the phase modulation

is turned off for 5 seconds to ensure, that the feedback system measures the synchrotron
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Figure 5.13.: Mean spectral power at the synchrotron frequency for a combined parameter
sweep of the RF phase modulation amplitude ÛC and frequency fmod. Around
the optimal modulation frequency (highlighted with a dashed black line) is a
triangular region where the beam is stable. Negative values (shown in light
blue) indicate that the beam is stable, while high values (dark blue) show that
the RF phase modulation has no effect on the beam.

frequency correctly. Then the modulation frequency

fmod = 2 · fs −300Hz

is returned and can be applied to the RF phase modulation system by one click. This ad-

ditional request is implemented to give the operator the chance to check the modulation

frequency, making sure that a meaningful value was set by the script.

The triangular stable region in Fig. 5.13 is not symmetric since the area below 31.5 kHz is

larger, than the area above that value. There are two ideas to explain this asymmetry, but

also a combination of both is conceivable.

Firstly, the operation range of the RF phase modulation system at DELTA is not linear, as

shown in Chapter 3.2. The higher ÛC is, the stronger these nonlinearities get, which could

lead to an asymmetric stable region.
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Secondly, it is conspicuous that the map of stability in Fig. 5.13 looks very similar to Fig. 2.8

showing the regimes which determine how many fix points exist in the longitudinal phase

space. There is a threshold below which no effect of the RF phase modulation on the beam

can be detected, which is therefore most likely a synchrotron radiation threshold. The

regime in which the beam is stable corresponds to the regime in which two fix points exist.

While the upper bifurcation edge at fmod = 2· fs+ε separates the area of two stable fix points

from the area of one stable fix point, the lower bifurcation edge at fmod = 2 · fs −ε separates

it from the regime of three stable fix points. That would explain why the regime of stability

has a different shape at high frequencies than at low frequencies. This was also observed in

Chapter 5.1. This means, that RF phase modulation can suppress the excitation of coupled-

bunch instabilities as long as more than one stable fix point exist in the longitudinal phase

space and as long as the modulation frequency is close to twice the synchrotron frequency.
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In order to gain a deeper understanding of the particle dynamics regarding the suppres-

sion of the excitation of coupled-bunch instabilities by RF phase modulation, different

approaches were used. Firstly, numerical tracking codes were utilized to determine the

coupled-bunch growth rates under the influence of RF phase modulation. Although a vari-

ety of particle tracking codes are available, they cannot be used to solve the problem. These

codes either use rigid macro-particles representing the bunches to investigate coupled-

bunch effects, which rules out the possibility to take phase modulation effects into account,

or use thousands of particles per bunch in all calculations to analyze the effects of RF phase

modulation on the longitudinal phase space by using parallelization techniques to improve

the performance. Unfortunately, parallelization cannot be utilized in the presence of wake

fields, since these effects depend on the preceding particles, making it necessary to cal-

culate each particle one after the other. With coupled-bunch growth rates being in the

millisecond range, ten thousands of turns have to be calculated making this approach im-

practical.

For the aforementioned reasons, a new tracking code was developed, combining the two

common approaches of using macro particles for coupled-bunch effects and multi-particle

bunches for phase-modulation effects. This is done by using matrix operations for all par-

ticles at once to calculate phase focusing in the accelerating cavity in the presence of RF

phase modulation and only the center of mass of the bunch for wake field effects. The code

was validated by observing the coupled-bunch growth rate as a function of the beam cur-

rent, resulting in a linear trend, as expected from the theory. Afterwards, the code was used

to analyze the effect of RF phase modulation on coupled-bunch instabilities by sweeping

the modulation amplitude η and obtaining the coupled-bunch growth rate τ−1
G in every it-

eration. On the left-hand side of Fig. 6.1, the results show a quadratic dependence of τ−1
G

on η.

In a second approach, the findings stated above were further investigated by experimental

studies at the DELTA storage ring. DELTA utilizes an RF phase modulation system as well as
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a bunch-by-bunch feedback system as a diagnostic tool to analyze coupled-bunch effects.

Both systems were investigated separately to obtain a better understanding of their impact

on the electron beam, before they were used in combination.

In the first experimental study, the modulation frequency fmod was swept and the sum of

the single-bunch spectra was analyzed to find the optimum value for fmod at which the

suppression of coupled-bunch instabilities is maximized. While the effect was observed

slightly below the second and third integer harmonic of the synchrotron frequency fs, as

already seen at many other facilities, the suppression is significantly stronger at a frequency

slightly below twice the synchrotron frequency at DELTA, a value which was used for all

further studies.

Afterwards, the RF phase modulation system was in focus. Since the phase shift applied

to the beam by the RF phase modulation system is not available at DELTA, a study was

performed to determine the phase shift of the RF phase modulation system at its output

φPS and inside the accelerating cavity φcav as a function of the amplitude of the control

voltage ÛC. The phase shift was observed and showed a linear dependence on ÛC with a

maximum value of φcav ≈ 4.91deg at ÛC = 3V. During user operation, the control voltage is

usually set to ÛC = 0.7V which equals a phase shift of 1.08 deg.
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Figure 6.1.: Coupled-bunch growth rate as a function of the modulation amplitude η ob-
tained by numerical simulations (in blue on the left-hand side) and by using
the saturation method for measurements at DELTA (in green on the right-hand
side). Both show a quadratic dependence on η, highlighted by quadratic fits.
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While investigating coupled-bunch instabilities in the presence of RF phase modulation,

it was observed that the common method to determine coupled-bunch growth rates by

fitting an exponential function to the mode signal is not applicable for high modulation

amplitudes. The fact that RF phase modulation causes additional center-of-mass motion

and that the bunch-by-bunch feedback system can only measure the center-of-mass of

the bunches results in a convolution of both effects in the measured data, which is not

accurately described by exponential functions.

To solve this issue, a new measurement technique was developed using the saturation value

of the mode signal when the beam is excited at a specific mode by the bunch-by-bunch

feedback system while the beam current is well below the instability threshold. With it,

the growth or damping rate τ−1 was successfully obtained for modulation amplitudes up

to η ≈ 4.9deg. The results also show a quadratic dependence of τ−1 on the modulation

amplitude η and are compared with the simulation data in Fig. 6.1.

Although no analytical description for the quadratic dependence was found, a comparison

of the results of simulation and measurement reveals that the dependence of the growth

rate on the modulation amplitude was successfully determined to be quadratic in the in-

vestigated area. The absolute values do not match due to the fact, that the simulation is

able to determine the growth rate τ−1
G directly, while in the measurement, only the combi-

nation of damping and growth rate τ−1 = τ−1
D +τ−1

G can be obtained. In addition, some of

the parameters used in the simulation differ from parameters of the DELTA storage ring for

performance reasons. This adds small deviations to the absolute values.

Based on the knowledge and experience gained through the aforementioned studies, two

additional tools were developed to improve the user operation of the DELTA storage ring.

Firstly, it was shown, that the injection efficiency can be improved by using the bunch-by-

bunch feedback system to stabilize the beam during the injection process. For this purpose,

an easy-to-use application was added to the control system. Secondly, the RF phase mod-

ulation parameters were swept in a combined parameter sweep to create a map of stability,

which directly shows which parameter sets can be used to stabilize the beam. With these

parameters, another application was developed and added to the control system to set the

optimum modulation parameters automatically.
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A.1. DELTA Cavity Voltage and Phase

From the main parameters of the DELTA storage ring, shown in Table 3.1, the amplitude

of the cavity voltage can be calculated as well as the synchronous phase. For this purpose,

Eq. (2.8) is rearranged to calculate the amplitude of the cavity voltage to

Û =
√

2PRs = 387.30kV

with the cavity power P = 25kW and the shunt impedance Rs = 3MΩ.

In order to determine the synchronous phase, the energy loss of the stored electron parti-

cles per revolution is calculated using [89]

∆E = e2

3ε0Rb

E 4
0(

mec2
)4 ,

with the electron charge e, the electron mass me, the speed of light c, the vacuum permit-

tivity ε0, the bending radius Rb = 3.33m and the nominal energy E0 = 1.5GeV. The resulting

voltage necessary to compensate the energy loss per revolution is

Uacc = ∆E

e
= 134.49kV.

The synchronous phase results from the ratio of the amplitude of the cavity voltage Û and

the accelerating voltage Uacc, giving [6]

φs = arcsin

(
Uacc

Û

)
= 20.32deg

and

φs =π−φs = 159.68deg.
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To test whether these values are reasonable, the synchrotron frequency [89]

ωs =ωrev

√√√√−
eÛ cos

(
φs

)
2πβ2E0

(
α− 1

γ2

)

is calculated with the revolution frequency frev = ωrev/2π = 2.6MHz, the Lorentz factor

γ= 2935, the ratio β = v/c ≈ 1 and the momentum compaction factor α = 4.9×10−3 and

yields

fs = ωs

2π
= 15.67kHz,

which is in good agreement with typical synchrotron frequencies at DELTA of 15.5 kHz to

16.5 kHz.
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A.2. Figures of Merit of the DORIS Cavity at DELTA

To verify the design parameters of the DORIS cavity installed at DELTA, a vector network

analyzer (VNA) [90] was used. The connection between the klystron and the cavity was cut

and the VNA is connected to the coupling loop and the measurement loop of the cavity.

With this setup, so-called S-parameter-measurements were performed [91]. The goal was

to determine the quality factor Q0, the loaded quality factor QL and the coupling factor κ.

The measurements follow the procedures described in [82].

Figure A.1.: Complex plane of the reflected S11-signal of the coupling loop. The circle in-
cludes the zero value meaning, that the system is overcritical with κ> 1.

First, the coupling into the cavity has to be tested. Due to beam loading effects, the cavity

has to be detuned to minimize the reflected power at high beam currents. This is done by

rotating the coupling loop. Depending on its orientation, the coupling into the cavity can

be overcritical (κ> 1), critical (κ= 1) or undercritical (κ< 1). This can be checked by mea-

suring the reflected signal (S11) at the coupling loop and plotting it in the complex plane.

The measured complex plane is depicted in Fig. A.1 and shows, that the obtained circle in-
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cludes the zero value, which proves that the coupling factor is κ> 1, which corresponds to

an overcritical system.

In this case, the coupling factor equals the standing wave ratio (SWR) of the reflected signal

(S11), which was measured with the VNA. The measurement data is shown in Fig. A.2. The

SWR-value corresponds to the loss-value in the plot of κ= 1.97.

Figure A.2.: Standing wave ratio (SWR) measurement of the S11 signal to determine the cou-
pling factor.

Next, the loaded quality factor QL was measured by a transmission measurement (S21) from

the coupling loop to the measurement loop. With this method, QL was determined by the

bandwidth ∆ω between the −3 dB-points around the resonance frequency ωres with

QL = ωres

∆ω
.

The measured data in Fig. A.3 show a bandwidth of ∆ω = 40.5kHz with a resonance fre-

quency of ωres = 499.868MHz, which results in a loaded quality factor of QL = 12342.
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Figure A.3.: Transmission signal (S21) from the coupling loop to the measurement loop. The
loaded quality factor of the cavity QL was determined by the resonance fre-
quency and the bandwidth between the −3 dB-points.

Eventually, the unloaded quality factor Q0 of the DORIS cavity installed at DELTA is calcu-

lated by

Q0 =QL (1+κ) = 36656,

according to Eq. (2.7), which is in good agreement with the expected value of 36000.
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A.3. The Saturation Method to determine Coupled-

Bunch Damping Rates in the Presence of RF

Phase Modulation

For the saturation method introduced in Chapter 5.5, the beam is excited by the bunch-

by-bunch feedback system and damped by synchrotron radiation effects resulting in an

equilibrium state as shown in the left-hand side of Fig. 5.9. To understand this regime, a

mathematical model to reconstruct the measured signal y (t ) is developed in the following.

In signal processing, the output signal is the result of the convolution of the input signal

with the impulse response of the system [68]. In the equilibrium state, the input signal

a (t ) = Aexc ·e iωexct

is the excitation signal of the drive generator of the longitudinal bunch-by-bunch feedback

system. The impulse response of the beam is a damped oscillation

x (t ) =
0 for t < 0

−i eψt for t ≥ 0

with ψ = iω1 −τ−1, the oscillation frequency ω1 and the factor τ−1 ≥ 0. This signal is the

general form of Eq. (2.28) as shown by

Re{x (t ≥ 0)} = Re
{
−i e iω1t e−t/τ

}
= Re

{−i [ cos (ω1t )+ i sin (ω1t )]e−t/τ}
= Re

{
[ sin (ω1t )− i cos (ω1t )]e−t/τ}

= sin (ω1t )e−t/τ,

which equals Eq. (2.28) with k =φ= 0. Fourier transformation of a (t ) provides

A (ω) =
∞∫

−∞
Aexce iωexct e−iωt d t

= Aexc

∞∫
−∞

exp{−i (ω−ωexc) t }d t

= 2πAexcδ (ω−ωexc) ,
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with the delta function

δ (ω) =
1 for ω= 0

0 otherwise

which represents a normalized pulse [68].

Additionally, the Fourier transform of x (t ) yields

X (ω) =
∞∫

−∞
x (t ≥ 0)e−iωt d t

=
∞∫

0

−i e iω1t e−τ−1t e−iωt d t

=−i

∞∫
0

exp
{[

i (ω1 −ω)−τ−1] t
}

d t

=−i

[
1

i (ω1 −ω)−τ−1
exp

{
i (ω1 −ω) t −τ−1t

}]∞
0

= lim
t→0

−1

ω1 −ω+ iτ−1

exp
{
i (ω1 −ω) t −τ−1t

}︸ ︷︷ ︸
→0

−1


= 1

ω1 −ω+ iτ−1
.

Multiplying A (ω) and X (ω) results in the (measured) output signal

Y (ω) = A (ω) ·X (ω)

= 2πAexcδ (ω−ωexc)

ω1 −ωexc + iτ−1
,

which simplifies for ω=ωexc to

Y (ω=ωexc) = 2πAexc

ω1 −ωexc + iτ−1
.

During all measurements, the excitation frequencyωexc was set to the oscillation frequency

of the observed coupled-bunch mode ω1, which leads to

Y (ω=ω1 =ωexc) = 2πAexc

iτ−1

87



A. Appendix

with the amplitude

|Y (ω=ω1 =ωexc)| = Ymax = 2πAexc

τ−1
,

which equals the saturation value of the measurements.
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