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Chapter 1

Introduction

A fundamental problem in condensed matter physics is the low-temperature be-
havior of magnetic impurities in host materials. The study of these so-called
‘quantum impurity problems’ has become a mature field of work of condensed
matter physics over the last couple of decades since the groundbreaking work of
Anderson and Kondo in the early ’60s [1, 2]. Their work has never been more
relevant than today, especially due to the recent move towards nano-scale elec-
tronics, and the advent of research on spin based devices, dubbed ‘spintronics’[3].
Knowledge of the underlying physics and accurate simulation of the electronic
behavior in the proximity of such magnetic impurities is essential for the devel-
opment of tunable devices that exploit the spin of the electrons in addition to
their charge.

The existence and screening of local magnetic moments has been recently
observed in carbon vacancies in graphene [4, 5, 6, 7, 8], a material that piqued the
interest of the scientific community. One study in particular [9] found two different
types of vacancies that differ only in the rippling inherent to the single-atom thick
graphene sheet. They show magnetic or non-magnetic behavior depending on the
local curvature and external voltage. In the first part of this thesis, we address
the issue of these different types of vacancies. We develop a comprehensive model
for the relevant electronic orbitals in proximity of such a carbon impurity, and
explain successfully the underlying physics in detail. Our numerical method of
choice is Wilson’s Numerical Renormalization Group [10, 11], a staple technique
for quantum impurity systems with unparalleled numerical precision.

We then turn away from graphene and thermal equilibrium and towards elec-
tron transport through strongly correlated nano-scale regions in the second part
of this thesis. We first review electron transport in the context of a toy-model
to establish the needed groundwork. We then turn to a realistic model for the
helical current along the 1d edge of a Quantum Spin Hall Insulator when per-
turbed by a single magnetic impurity [12]. Our quantitative discussion relies on
the time-dependent extension of the Numerical Renormalization Group [13, 14].
We finally attempt our own novel approach to steady-state problems by drawing
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Chapter 1. Introduction

from Hershfield’s theoretical work on the nature of the non-equilibrium distri-
bution [15]. Our resulting adaption of the Numerical Renormalization Group is
tailor-made for the steady-state. We discuss some preliminary results as well as
the current limitations of our new approach.
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Chapter 2

Quantum Impurity Systems and the
Numerical Renormalization Group
in Thermodynamic Equilibrium

Quantum impurity systems consist of a strongly correlated sub-system, for ex-
ample a single magnetic moment or interacting orbital, coupled to a continuum
of non-interacting electrons. Originally, this continuum is modeled after the con-
duction band of a metallic host while the localized magnetic moment stems from
magnetic impurities. We introduce two of the most prominent and wide-spread
models for these systems, the Kondo model [2] in Sec. 2.1 and the Single Impu-
rity Anderson Model (SIAM) [1] in Sec. 2.2. Both exhibit non-trivial many-body
physics despite their simplistic seeming nature.

Today these original models usually serve as well understood minimalist toy-
problems, but modified versions are still used in recent publications in a multitude
of circumstances. These modifications include among others multiple localized
orbitals or magnetic moments and their interactions [11], pseudogap density of
states for the host material [16, 17, 18, 19], bosonic baths [20, 21], single bosonic
degrees of freedom [22, 23], or even superconductive bands [24]. Other studies
discuss multi-channel Kondo problems, where impurities are coupled to multiple
electronic bands [25], or multiple impurities [26, 27, 28, 29, 30]. A comprehensive
introduction to multi-channel and multi-impurity systems can be found in the
review by Bulla et al. [11].

We then introduce Wilson’s Numerical Renormalization Group (NRG) tech-
nique for quantum impurity systems conceived originally in the 1970s [10]. Ini-
tially, the NRG was applied to solve the Kondo problem [2] which, despite prior
efforts of Anderson and his Poor Man’s Scaling [31], still lacked a completely
satisfactory explanation. The NRG is designed to treat a range of widely dif-
ferent energy scales in a non-perturbative manner. These energy scales extend
from several electronvolts on the scale of the bandwidth D down to exponentially
small excitations. Its non-perturbative nature is key to the success of the NRG

3



2.1. The Kondo Problem and Anderson’s Poor Man’s Scaling

which consequently allows studying of a whole class of problems that are plagued
by infrared divergences in a perturbative approach.

2.1 The Kondo Problem and Anderson’s Poor Man’s
Scaling

The origin of the physical problem, which has been later termed ’Kondo problem’,
dates back almost a century to experimental studies by de Haas, de Boer, and
van den Berg [32, 33]. They measured the resistivity of gold that contained a
small percentage of iron. The puzzling result was a bulk resistivity that showed a
minimum as function of temperature at some finite value Tmin and increased for
T < Tmin. Kondo [2] was the first to realize the importance of magnetic scattering
in these types of materials, and devised a formula for the resistivity based on a s-d
Hamiltonian [34] almost 30 years after de Haas’s, de Boer’s, and van den Berg’s
discovery. The simplified version of Kondo’s Hamiltonian reads

HKondo =
∑
~kσ

ε~kσc
†
~kσ
c~kσ + J ~Simp~sc, (2.1.1)

where c(†)
~kσ

are fermionic annihilation (creation) operator with spin σ and momen-
tum ~k. The first term describes a non-interacting conduction band with dispersion
ε~kσ. The second term comprises a coupling between a localized magnetic moment,
~Simp, to the spin density of the aforementioned conduction band at the impurity,
~sc, via an exchange coupling J . The spin operator of the band can be written
in terms of the fermionic operators with help of the usual Pauli matrices ~σ (N
equals the number of unit cells)

~sc =
1

2N

∑
~k~k′

∑
λµ

c†~kλ~σλµc~k′µ. (2.1.2)

The contribution to the resistivity, that stems from magnetic scattering at such
an impurity up to third order in the anti-ferromagnetic couplings J > 0, takes
the form [2, 35]

Rspin
imp =

3πmJ2S(S + 1)

2e2~εF

[
1− Jρ0(εF ) ln

(kBT

D

)]
, (2.1.3)

where S = 1/2, ρ0(ε) is the density of states, εF the Fermi energy, and D the
bandwidth. The key point is that for ferromagnetic coupling, J < 0, the spins of
both the localized moment and the conduction band are aligned whereas they are
antiparallel for J > 0. This antiparallel orientation enables two second-order spin-
flip terms between energy degenerate spin states, which yield a logarithmically
divergent low temperature contribution at εF [2, 35]. Such a divergence is called
’infrared divergence’ in quantum field theory.

4



2.1. The Kondo Problem and Anderson’s Poor Man’s Scaling

Figure 2.1: Kondo’s logarithmic formula 2.1.4 applied to experimental results for the
resistivity of AuFe for various concentrations of Fe. Taken from Ref. [35] which is again
a reproduction from results published in Ref. [2].

The total resistivity including phonon scattering then reads

R(T ) = aT 5 + cimpR0 − cimpR1 ln
(kBT

D

)
, (2.1.4)

where a,R0, R1 are temperature independent constants and cimp is the concen-
tration of iron ions. The decoherence due to phonon scattering is strongly sup-
pressed, ∼ T 5, as the temperature vanishes, leaving a constant term due to po-
tential scattering at the site of the impurities as well as a logarithmic contribution
from the magnetic scattering. This formula is able to explain the experimental
data extremely well (cf. Fig. 2.1). However, since the perturbation theory di-
verges at T → 0, Kondo’s approach is not feasible for all temperatures down to
infinitesimal small values. One can define a characteristic temperature, called
Kondo temperature, below which the scattering rate begins to diverge logarith-
mically

TK = D
√
ρ0Je

− 1
ρ0J . (2.1.5)
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2.1. The Kondo Problem and Anderson’s Poor Man’s Scaling

The search for a valid solution below TK defines the ‘Kondo problem’. Two ap-
proaches are of peculiar interest. Firstly, Anderson’s Poor Man’s Scaling [31] that
draws on renormalization group (RG) techniques and grants us a tangible expla-
nation for the breakdown of the perturbation series with flow equations for the
renormalized couplings. Secondly, Wilson’s Numerical Renormalization Group
(NRG) [10] which provided the first complete and non-perturbative solution, and
is used throughout this thesis.

Anderson used the more general form of the anisotropic Kondo model where
the Heisenberg term is split into a transversal and a z-component

J ~Simp · ~sc = JzS
z
imps

z
c +

1

2
J⊥(S+

imps
−
c + h.c.). (2.1.6)

He employs a perturbative RG technique in which he eliminates high order excita-
tions to generate an effective low-energy model. His approach is widely known in
literature as ‘Poor Man’s Scaling’. Anderson derived a set of differential equations
for the flow of the different coupling components,

dJ̃⊥
d lnD

= −J̃⊥J̃z and
dJ̃z

d lnD
= −J̃2

⊥ (2.1.7)

with J̃ = ρ0J , to construct an effective model at energy scale D. Depending on
the initial values for J⊥ and Jz, the system evolves under the RG procedure until
it arrives at a so-called fixed-point. These are points in parameter space where the
flow of the couplings vanishes, i.e. where the flow equations assume a stationary
value. Fig. 2.2 shows a schematic view for the flow of these equation. Anderson
identified a local moment fixed-point (LM) which is reached for vanishing J⊥ or
for ferromagnetic Jz < 0 if |J⊥| ≤ |Jz|. In all other cases, the couplings flow to
the so-called strong coupling fixed-point (SC) where J⊥, Jz →∞, explaining the
breakdown of any perturbative approach in J for T → 0. In the isotropic case,
J = J⊥ = Jz, the differential equations simplify and can be integrated analyti-
cally. The solution for J̃ diverges at the Kondo temperature Eq. (2.1.5). The SC
fixed-point is characterized by a singlet formation between localized moment and
spin density of the conduction band. The screening cloud of this singlet extends
inversely proportional to the Kondo temperature and can reach even macroscopic
length scales due to the exponential dependency of TK on the Kondo coupling [36,
37, 38]. The impurity spin is screened by the electron cloud of the conduction
band and the singlet, called Kondo singlet, decouples from the band.

6



2.2. The Single Impurity Anderson Model

Figure 2.2: Schematic representation of the coupling’s flow J̃⊥ and J̃z for the
anisotropic Kondo model (after [31]). The final stable fixed points depend on the initial
values of J̃⊥ and J̃z: (i) For −J̃z > |J̃⊥| and J̃z < 0 the system is driven towards a
line of local moment (LM) fixed points (abscissa for J̃z < 0). In every other case, the
system reaches a strong coupling fixed point (SC). Adopted after Ref. [31].

2.2 The Single Impurity Anderson Model

The Single Impurity Anderson Model (SIAM) [1] was proposed by Anderson in
the early 1960s to describe the formation of local moments in transition metals
or rare earth impurities in metals. When these ions are brought into the host
material, they result in open d or f levels that are located in the conduction band
of the host [35]. Anderson’s Hamiltonian takes the form

H =
∑
σ

εdd
†
σdσ + Und↑n

d
↓ + gµB ~Bext · ~S +

∑
~kσ

ε~kc
†
~kσ
c~kσ +

∑
~kσ

(
V~kd

†
σc~kσ + h.c.

)
,

(2.2.1)

where dσ and c~kσ are the fermionic operators for the impurity level and the
conduction band respectively with spin σ and reciprocal vector ~k. The first three
terms are the impurity part, Himp, including an interaction with a local external
magnetic field, ~Bext · ~S. Here, ~S = 1/2

∑
λ,µ d

†
λ~σdµ is the spin operator for the

electrons on the impurity orbital written in terms of the fermionic creation and
annihilation operators and the Pauli matrices ~σ. Strictly speaking, the magnetic
field applies to the electrons on the d orbital as well as to those in the conduction
band. The latter contribution, however, simply results in a shift of the band
edges, which is negligible.

Furthermore, the Hamiltonian comprises a Coulomb interaction U [35]

U = e2

ˆ
φ∗d(~r)φ

∗
d(~r
′)

1

~r − ~r′
φd(~r)φd(~r

′)drdr′, (2.2.2)

where φd are the localized eigenfunctions of the atomic d orbital. Naive evaluation
of Eq. (2.2.2) yields interactions up to 30 eV. Modern ab initio approaches correct

7



2.2. The Single Impurity Anderson Model

Figure 2.3: Schematic picture of a localized d orbital with spin-degenerate single
particle energy εd coupled to a non-interacting electronic bath as described by the
SIAM Hamiltonian Eq. (2.2.1). The model comprises a repulsive Coulomb interaction
for electrons located on the d level and a hybridization between d sub-system and
conduction band. The interaction with ~Bext is not shown.

this value by incorporating, among others, screening effects [35, 39, 40] that
results in a realistic repulsion strength of a few electronvolts. Accurate calculation
of model parameters from Density Functional Theory is a broad topic beyond the
scope of this work, and the interested reader is referred to Ref. [39, 40].

The last term in Eq. (2.2.1) contains a coupling between the d sub-system
and the itinerant electrons via a hybridization V~k that stems from non-vanishing
matrix elements

V~k =
∑
n

ei~k·~rn〈φd|H|ψ~rn〉, ψ~rn(~r) =
1√
N

∑
~k

e−i~k·~rnφ~k(~r). (2.2.3)

The second equation defines the Wannier wavefunction of the conduction elec-
trons, ψ~rn , at the location of the d shell [35, 1] in terms of the Bloch states φ~k(~r).
The remaining two terms of the Hamiltonian (2.2.1) represent the level position
εd and a free electron gas for the conduction electrons with dispersion ε~k. A
schematic depiction of the model is shown in Fig. 2.3.

In the limit of vanishing intra-orbital Coulomb interaction, U = 0, the SIAM
reduces to its non-interacting counterpart which can be solved analytically [35].
The Green’s function for the impurity level d in frequency space can be readily
obtained by an equation of motion (z = ω + iδ)

GU=0

dσ ,d
†
σ
(z) =

[
z − εd −∆σ(z)

]−1

, ∆σ(z) =
∑
~k

|V~k|2

z − ε~k
, (2.2.4)

where the only contribution to the self-energy, ∆σ(z), stems from the hybridiza-
tion with the conduction band. In the interacting case, U 6= 0, complex terms
involving more fermionic operators enter the equation of motion. However, one
can still write down a formal solution in terms of the self-energy ΣU(z)

Gdσ ,d
†
σ
(z) =

[
z − εd −∆σ(z)− ΣU(z)

]−1

. (2.2.5)

8



2.3. Wilson’s Numerical Renormalization Group in Thermodynamic
Equilibrium

Let us consider the model in the ‘atomic’ limit for V~k = 0. The Hilbert space
consists of two distinct sub-spaces for the impurity and the band. The impurity
part contains only four states: an entire unoccupied state with energy E0 = 0,
a doubly occupied state with energy E↑↓ = 2εd + U , and two singly occupied
states with degenerate energy Eσ = εd. A ground state that belongs to the single
occupation sector will yield a magnetic moment [35]. When the hybridization
is turned on, electrons can transfer between both sub-systems. This hopping
induces an effective anti-ferromagnetic coupling which results in a screening pro-
cess of the local magnet moment analogous to the Kondo screening discussed in
Sec. 2.1. As shown by Schrieffer and Wolff [41], the Anderson and Kondo model
are closely related via a canonical transformation. The hybridization generates
an effective anti-ferromagnetic exchange interaction between the localized spin
and the conduction electrons. If the system is in the regime of a local magnetic
moment and if the hybridization V 2

~k
/D � 1 is small enough, then the Anderson

Model is equivalent to the Kondo model [35].

The SIAM serves as foundation for a multitude of theoretical models. Since
it also plays a major role within the scope of this work, we review the SIAM in
more detail in the following sections.

2.3 Wilson’s Numerical Renormalization Group
in Thermodynamic Equilibrium

In this section we present the Numerical Renormalization Group (NRG) frame-
work [10]. We discuss the core concepts such as the type of problems the NRG
is suited for, the logarithmic discretization of the conduction band, the mapping
of the Hamiltonian to a discrete chain of semi-infinite length, and the calculation
of observables. A complete review of the method can be found in Ref. [11].

The core idea of the NRG algorithm is to map the Hamiltonian of an impu-
rity problem onto a semi-infinite tight-binding chain with exponentially decreas-
ing hopping parameters between consecutive chain sites. Instead of solving the
whole Hamiltonian at once, one proceeds iteratively by adding one chain link
after the other. Each successive iteration is associated with an exponentially
smaller effective temperature due to the decreasing energy scale. This enables
the formulation of a natural truncation process where in each iteration the set of
eigenstates is partitioned according to their energy into either high or low energy
excitations. The high energy states are discarded in order to tackle the otherwise
exponentially growing Hilbert space.

In his original publication [10] Wilson focused on the solution of the Kondo
problem. Krishna-Murthy et al. extended the NRG to the more general Ander-
son impurity including a throughout discussion of the nature of various fixed
points [42, 43]. Each iteration of the NRG algorithm can be understood as per-

9



2.3. Wilson’s Numerical Renormalization Group in Thermodynamic
Equilibrium

forming one renormalization group transformation R [11]

HN+1 = R(HN) (2.3.1)

that maps the old Hamiltonian HN to the new Hamiltonian HN+1. A fixed point
H∗ is reached when the mapping R does not alter the eigenspectrum of H∗ any
further. This can readily be verified by comparing the eigenenergies of successive
Hamiltonians.

The NRG procedure can be applied for quantum impurity problems of the
following form

H = Himp +Hband +Hhyb, (2.3.2)

where the total Hamiltonian comprises three parts. The first of which, Himp,
includes terms that involve only local degrees of freedom usually connected to a
single ion or molecule. In the following, we explicitly use the SIAM (see Sec. 2.2)
as a tangible example. In this case, Himp comprises the first three terms of
Eq. (2.2.1). The second part describes the conduction band of the host material
where the electrons of the band are taken to be non-interacting (third term in
Eq. (2.2.1) for the SIAM). The hybridization part, Hhyb, incorporates all terms
that couple both the local and itinerant degrees of freedom. In case of the SIAM
this includes the last term of Eq. (2.2.1). Every band degree of freedom couples
via the hybridization V~k to the localized level. Oftentimes this hybridization is
taken to be ~k-independent.

The first step is to carry out a transformation from a discrete albeit large set
of distinct ~k-space values to a continuum description in terms of the energy. The
new fermionic operators take the form

cσ(ε) = Nσ(ε)
∑
~kσ

V~kδ(ε− ε~k)c~kσ, (2.3.3)

where δ(ε− ε~k) is the Dirac δ-distribution, and Nσ(ε) =
√
π/Γ(ε) is the appropri-

ate normalization factor to ensure the fermionic commutator relation {cσ(ε), c†σ′(ε
′)} =

δσ,σ′δ(ε− ε′). Inserting this transformation into Eq.(2.2.1) yields

H = Himp +
∑
σ

ˆ D

−D
g(ε)c†σ(ε)cσ(ε)dε+

∑
σ

ˆ D

−D
h(ε)

(
d†σcσ(ε) + h.c.

)
dε. (2.3.4)

The integral extends over the full bandwidth 2D of the conduction band. The
energy dependency can be freely shuffled between the dispersion g(ε) and cou-
pling h(ε) as long as the hybridization function and thus the action remains the
same [11, 16]. Here we also introduce the hybridization function

Γ(ε) = π
∑
~k

|V~k|
2δ(ε− ε~k) = =∆(ε− iδ), (2.3.5)

10



2.3. Wilson’s Numerical Renormalization Group in Thermodynamic
Equilibrium

Figure 2.4: Schematic representation of a logarithmic discretization of a constant
hybridization function with half-bandwidth D. The nth interval I±n has the width dn.

that describes the coupling of each energy shell to the impurity degrees of freedom.
∆(z) is defined in Eq. (2.2.4) as the self-energy contribution that stems solely
from coupling to the band. For a ~k-independent hybridization V and a constant
density of states ρ = (2D)−1 the hybridization function simplifies to

Γ(ε) = π|V |2ρ(ε) =
π|V |2

2D
≡ Γ0Θ(D − |ε|), (2.3.6)

which us used throughout this work to define a relative energy scale for all pa-
rameters. The Heavyside function Θ cuts off the hybridization outside the band.

The second step is to logarithmically discretize the energy bands around the
Fermi energy with a dimensionless discretization parameter Λ > 1 (cf. Fig. 2.4).
The intervals are Isn =

[
sDΛ−n, sDΛ−(n+1)

]
with a width dn = DΛ−n(1 − Λ−1).

The superscript s = ± distinguishes between positive or negative energy. One
defines new operators for each interval I±n and expands the original operators in
this new basis asnpσ. Thus, the energy dependent band operators read

cσ(ε) =
∞∑
n=0

∑
s=±

∞∑
p=−∞

ψsnp(ε)asnpσ, (2.3.7)

where ψsnp(ε) takes the form of a plane wave restricted to the nth interval

ψsnp(ε) =

{
d
−1/2
n es

2πipε
dn , ε ∈ Isn

0, else.
(2.3.8)

The inverse transformation reads

asnpσ =

ˆ D

−D

[
ψsnp(ε)

]∗
cσ(ε)dε, (2.3.9)

where the coefficient can be obtained from the fermionic commutator relation
{a†nspσ, an′s′p′σ′} = δn,n′δs,s′δp,p′δσ,σ′ . We insert the transformation back into our
Hamiltonian (2.3.4) and neglect all p 6= 0 modes. For a constant hybridization in
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Figure 2.5: Schematic drawing of the NRG algorithm: (a) Each interval is represented
by a single state only that couples to the local degrees of freedom (blue). (b) The
system is mapped via a tridiagonalization algorithm onto a semi-infinite tight-bind-
ing chain with exponentially decreasing hopping parameters tn. The hybridization is
~k-independent.

each interval the hybridization term reduces to a coupling between the impurity
and p = 0 states [11]. The p 6= 0 modes only indirectly couple with the local
degrees of freedom. We follow the argument of Ref. [16] and shifting the energy
dependence into the dispersion and introducing a hybridization that is constant
in each interval. The new single particle energies of the transformed conduction
band term can then be written as

ξsn =

´ sn
Γ(ε)εdε´ sn
Γ(ε)dε

. (2.3.10)

The integral
´ sn is a shorthand notation for the integral over the nth interval

for positive s = + or negative s = − energy. We drop the subscript p = 0 in the
following for clarity. The discretized Hamiltonian then takes the form

H = Himp +
∞∑
snσ

ξsna
†
snσasnσ +

1√
π

∞∑
sσn=0

γsn(d†σasnσ + h.c.), (2.3.11)

where the factor γsn can be determined by comparison with Eq. (2.3.4) [11]

γ2
sn =

ˆ sn

Γ(ε)dε. (2.3.12)

This Hamiltonian describes a local part still coupled to an infinite number of
band degrees of freedom [Fig. 2.5 (a)]. The next step is the mapping of Eq. 2.3.11
onto a semi-infinite chain via a tridiagonalization algorithm. One can derive
recursive relations that need a linear combination for the first chain site as ini-
tialization. The natural choice is to define the fermionic degree of freedom that
couples to the impurity directly as starting point for the tridiagonalization

c0σ =
1√
ξ0

∑
sn

γsnanσ, ξ0 =

ˆ D

−D
Γ(ε)dε. (2.3.13)
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Note that for a ~k-independent hybridization, V~k ≡ V , the normalization factor
simply reduces to ξ0 = πV 2. For a more in-depth derivation and an explicit for-
mula for the recursion refer to Ref. [21, 11]. Lastly, we want the final Hamiltonian
to take the form of a tight-binding chain

H = Himp +

√
ξ0

π

∑
σ

(d†σc0σ + h.c.) +
∞∑

σn=0

(ωnc
†
nσcnσ + tn[c†nσcn+1σ + h.c.]),

(2.3.14)

where cnσ are the fermionic operators of the nth chain site and ωn and tn are the
chain-site energy and hopping stemming from the recursive relations [Fig. 2.5 (b)].
The energy for the sites vanish, ωn = 0, in case of a constant ρ(ε). A key point
is that the hopping elements scale according to

tn ∝
1

2
(1 + Λ−1)Λ−n/2 (2.3.15)

in the limit of large n. They decrease exponentially with n as a result of the
logarithmic discretization. This enables us to introduce a truncation scheme
based on the separation of energy scales governed by Eq. (2.3.15) as the chain
Hamiltonian (2.3.14) is yet to be solved efficiently. For this, we can rewrite it
formally as a sequence of Hamiltonians

H = lim
N→∞

Λ−(N−1)/2HN , (2.3.16)

where

HN =Λ(N−1)/2
(
Himp +

√
ξ0

π

∑
σ

(d†σc0σ + h.c.)

+
N∑

σn=0

ωnc
†
nσcnσ +

N−1∑
nσ=0

tn[c†nσcn−1σ + h.c.]
)
.

(2.3.17)

Here, the factor Λ(N−1)/2 is incorporated such that tN−1Λ(N−1)/2 is of order one for
large N . Successive terms are connected to each other via an iterative relationship

HN+1 =
√

ΛHN + ΛN/2
∑
σ

ωN+1c
†
N+1σcN+1σ

+ ΛN/2
∑
σ

tN(c†NσcN+1σ + h.c).
(2.3.18)

This iterative relation corresponds to the addition of the N + 1st chain site in
the language of our semi-infinite chain (cf. Fig. 2.6). Furthermore, we can link a
chain of length N naturally with an energy or temperature scale [11]

DβNΛ−(N−1)/2 = β, (2.3.19)

where βN = (kBTN)−1 is the inverse temperature for the Nth iteration and β is of
order 1. Assume a chain of finite length and a finite Λ > 1. In order to evaluate
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Figure 2.6: Schematic drawing of the addition of the n+1st chain site. The eigenstates
|k〉n, k = 1, 2, 3, . . . ,K of the Hamiltonian in iteration n are partitioned according to
their energy in high and low energy states. The low energy states are used to generate
product states for the n + 1st iteration by a Kronecker product with the degrees of
freedom |α〉n+1 of the newly added site. The n + 1st Hamiltonian is written in this
basis and diagonalized; its eigenstates partitioned again for the addition of the next
site. In each iteration, the eigenspectrum is used to calculate quantum mechanical
expectation values.

expectation values for a temperature that lies in-between two iterations one can
either change Λ and the iteration or adjust β slightly. From a technical point of
view, β thus allows for a fine-tuning of the desired temperature.

If considered in isolation, an iterative formulation may not seem to provide any
tangible benefit. However, in conjunction with an appropriate truncation scheme
it enables us to generate and solve an effective low-energy Hamiltonian step-by-
step circumventing an exponentially growing Hilbert space. Consider a chain of
length N . By adding the next site we introduce a small energy splitting in the
order of tN since the hopping elements decrease exponentially. This is guaranteed
if tN is smaller than the largest kept eigenenergy. Therefore, states with a high
(low) eigenenergy for a chain of length N will predominantly contribute to the
high-energy (low-energy) spectrum of the next iteration. It is the low energy
spectrum that is the most relevant to us since we are usually interested in low
temperature properties. This leads to a truncation scheme where all eigenstates
at a given chain length N are partitioned according to their eigenenergy. The
high energy states are then discarded and only the low energy ones are coupled
to the new fermionic degree of freedom. The NRG procedure thus restricts the
full Hilbert space systematically to a smaller and more manageable set of relevant
states.

The quality of the truncation is not apparent a priori. It depends foremost on
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the discretization parameter Λ and the number of retained states Nkept and has
to be checked in practice. For a simple problem a few hundreds states may be
sufficient whereas a multi-band calculation will require several thousands states
for any meaningful result.

With the truncation scheme at hand and the definition of the temperature
for a given iteration N , Eq. (2.3.19), we turn to the actual calculation of static
observables. We employ the conventional NRG assumption that the full Hamil-
tonian is adequately described by our truncated HN with HN |r〉N = EN

r |r〉N . We
then define the expectation value of an operator Ô as [11]

〈Ô〉(TN) =
1

Z(N)

∑
r

e−βNE
N
r

N〈r|Ô|r〉N (2.3.20)

where

Z(N) =
∑
r

e−βE
N
r . (2.3.21)

One can furthermore calculate the contribution to the entropy that stems
from the impurity. It is defined as the difference between the entropy for the
whole Wilson chain and a reference system that is missing the impurity degrees
of freedom [10, 11]. The entropy for a temperature TN reads

Simp(TN)/kb ≈ S(N)/kB − S(N)
cb /kB. (2.3.22)

Here, S(N) is the entropy for the Wilson chain of length N including the impurity

S(N)/kB = β〈H(N)〉+ lnZ(N), Z(N) =
∑
r

e−βE
N
r . (2.3.23)

The second term, S(N)
cb , stems from the bare conduction band without impurity.

In practice, one carries out two separate NRG calculations, one including the
impurity and one without, and determines the entropy for each iteration N via
Eq. (2.3.23). An analogous approach is used for the impurity contribution to the
specific heat or the magnetic susceptibility [11].

2.3.1 Complete Basis Set and Sum-rule Conserving Calcu-
lation of Equilibrium Green’s Functions

One of the most important quantities is the local Green’s function and its spectral
density. The NRG has been extended to provide an accurate description of both.
However, calculation of the Green’s function in the NRG framework requires a
full basis set. We present the argumentation of Anders and Schiller [44, 14], who
first identified such a set. We furthermore review the derivation of a sum-rule
conserving calculation scheme for the Green’s function [45, 46]. The basis set is
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closely related to the non-equilibrium framework for the NRG which is discussed
in detail in Sec. 4.4.

Anders and Schiller [44, 14] found a complete basis set by reinterpreting the
iterative NRG algorithm. Normally, a Wilson chain of finite length is extended
by adding an additional chain site each iteration. This expansion leads to an
exponential number of states given by the tensor product

|r〉m+1 = |l〉m ⊗ |α〉m+1, (2.3.24)

where |r〉m+1, r = 1, . . . , Km+1 are the new states belonging to the enlarged clus-
ter, |l〉m, l = 1, . . . , Km are all eigenstates of Hm, and |α〉m+1, α = 1, . . . , d are
the degrees of freedom of the new chain site. The alternative picture introduced
in Ref. [44, 14] starts with the whole chain of length N but with each hopping
elements between neighboring sites set to zero tm = 0. At the beginning of each
iterative step, the next hopping element is switched on. This means conceptually
that the series of Hamiltonians along the chain now always acts on the Fock space
of the N site chain. The degrees of freedom that belong to the dormant chain
sites are reinterpreted as environmental degrees of freedom that are steadily in-
corporated into the Wilson chain.
Let us consider a chain with maximum length N and let Hm be the Hamiltonian
for m ≤ N active chain sites. Each eigenenergy of Hm has an additional dN−m
degeneracy where d is the number of possible states introduced by each new site,
e..g. d = 4 for a SIAM. If m = N , then all environmental degrees of freedom
are incorporated into the chain. If m = N − 1, then each energy has a d-fold
degeneracy because Hm still acts on the full Fock space FN . We can naturally
partition the whole chain into an active chain Hm and dormant rest Rm,N .

Let us adjust our notation (2.3.24) to this new picture. First, let |r;m〉 and
Em
r denote the r-th eigenstate and eigenenergy of Hm when acting on a m-site

chain. Each dormant site n > m contributes to the environment with |αn〉.
The total effect of the rest chain Rm,N can then be written as a tensor product
|e;m〉 = |αm+1, . . . , αN〉. The full eigenstate is then given by yet another tensor
product

|r, e;m〉 = |r;m〉 ⊗ |αm+1, . . . , αN〉. (2.3.25)

In other words, |r, e;m〉 represents the situation where the full chain is partitioned
into active and dormant part after the mth chain site. The variable r enumerates
the eigenstates of the active chain while e encodes the configuration of all dormant
chain sites. Furthermore, the eigenenergy Er

m of Hm does not depend on the
environmental degrees of freedom e as Hm includes only terms of the first m
chain sites. As a result, Er

m is highly degenerate. Proceeding with the NRG
algorithm lifts this artificial degeneracy for further eigenenergies.

We now turn to the truncation scheme. Let mmin be the first iteration at
which states are discarded. We partition all states into discarded high-energy
|l, e;mmin〉dis and kept low-energy states |k, e;mmin〉kpt which participate in the
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tensor product Eq. (2.3.25) during the next iteration mmin+1. The key accom-
plishment is the realization that the set of all discarded states including all states
of the last iteration make up a complete basis set for the whole Fock space FN [44,
14]. If we formally label all states of the last iteration N as discarded, we can
write the following completeness relation [14]

1 =
N∑

m=mmin

∑
l,e

|l, e;m〉dis dis〈l, e;m|, (2.3.26)

where the indices l and e depend implicitly on the iteration m. This completeness
relation can be partitioned into the sum of two operators [14]

1 = 1−m + 1+
m

1+
m =

∑
k,e

|k, e;m〉kpt kpt〈k, e;m|

1−m =
m∑

m′=mmin

∑
l′,e′

|l′, e′;m′〉dis dis〈l′, e′;m′|.

(2.3.27)

The first term projects onto the subspace of all discarded states for iterations
n ≤ m whereas the second operator includes only the kept states of iteration m.

This complete basis set enables the calculation of sum-rule conserving Green’s
functions in and out of thermal equilibrium [45, 46, 47]. We sketch the corner-
stones for the equilibrium algorithm and discuss Bulla’s improvement by using
an equation of motion [48]. We are interested in the Lehmann representation of
the Green’s function GA,B(z) in Fourier space

GA,B(t) = −iΘ(t) Tr
{
ρ[A(t), B]−s

}
, [A,B]−s = AB − sBA (2.3.28)

GA,B(z) =

ˆ ∞
0

eiztGA,B(t)dt (2.3.29)

for two fermionic (s = −1) or bosonic (s = +1) operators A,B. These operators
are considered ‘local’ operators in the framework of the NRG in the sense that
they only act on the first few Wilson sites that can still be diagonalized without
truncation of the Fockspace.
We insert the completeness relation into the commutator under the trace in
Eq. (2.3.28). The time evolution operators that occur inA(t) = exp(iHt)A exp(iHt)
are evaluated with help of the conventional NRG approximation H|s, e;m〉 ≈
Em
s |s, e;m〉 where |s, e;m〉 is an eigenstate of Hm and Em

s the corresponding
eigenvalue. After reorganizing the sum indices one ends up with three contribu-
tions to the Green’s function. The first part includes only contributions from the
last iteration N and reads [45]

Gi
A,B(z) =

1

Z

∑
l,l′

〈l;N |A|l′;N〉〈l′;N |B|l;N〉e
−βENL − se−βENl′
z + EN

l + EN
l′

. (2.3.30)
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The other two terms deal with every other iteration up to mmin before which
no states were discarded during truncation. They comprise one part each of the
commutator in Eq. (2.3.28). The contribution that includes the fermionic or
bosonic label is [45]

Gii
A,B(z) =

N−1∑
m=mmin

∑
l

∑
k,k′

Al,k′(m)ρred
k′,k(m)Bk,l(m)

−s
z + Em

l − Em
k

, (2.3.31)

while the last term can be written as [45]

Giii
A,B(z) =

N−1∑
m=mmin

∑
l

∑
k,k′

Bl,k′(m)ρred
k′,k(m)Ak,l(m)

1

z + Em
k − Em

l

. (2.3.32)

Here ρred
k′,k(m) is the reduced density matrix

ρred
k,k′(m) =

∑
e

〈k, e;m|ρ̂|k′, e;m〉. (2.3.33)

The full Green’s function is thus the sum of all three contributions

GA,B(z) = Gi
A,B(z) +Gii

A,B(z) +Giii
A,B(z). (2.3.34)

The Green’s function defined in this way overcomes the shortcomings of previous
approaches [49, 50, 51] which in a nutshell suffered from not having a system-
atic way to sum over states from different iterations resulting in overcounting of
contributions [45] and the need for phenomenological patching algorithms [49,
45].

Calculation of the Green’s function in context of the NRG requires summation
over the eigenenergies Em

k . Albeit the total number of states involved will be large
for reasonable chain lengths, it is still finite. Therefore, the resulting discrete set
of delta peaks has to be transformed into a continuous function via broadening of
the δ-distribution by a suitable function. This function is oftentimes a Gaussian
distribution on a logarithmic mesh [52, 53, 45]

δ(ω − ωn)→ e−b
2/4

bωn
√
π

exp

{
−
(

ln(ω/ωn)

b

)2
}
, (2.3.35)

where b is the broadening parameter. Bulla et al. [49] have proposed an alternative
broadening by replacing the logarithmic Gaussian by a conventional Lorentz peak
for small excitation energy.
Arguably the most important improvement is the calculation of the self-energy
and expressing Gσ(z) via [G−1

σ,0(z)− Σσ(z)]−1 [48]. In their paper the authors
study the SIAM but their method can readily applied to a multitude of different
models. They use the equation of motion for the Green’s function and derived
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an expression for the correlation part of the self-energy ΣU
σ (z) that is induced by

the interaction U [48]:

ΣU
σ (z) = U

Fσ(z)

Gσ(z)
. (2.3.36)

The index σ represents the spin and the variable U stands for the Coulomb in-
teraction. The Green’s function Gσ(z) is the quantity of interest and Fσ(z) =
Gdσd

†
σdσ ,d

†
σ
(z) arises due to the many body interaction U . The label σ is a short-

hand notation for the opposite spin of σ. Both Green’s functions are evaluated
simultaneously with the same broadening and logarithmic mesh, and the result-
ing total self-energy Σσ(z) = ∆(z) + ΣU

σ (z) is used to calculate Gσ(z) a second
time

Gσ(z) =
1

z − εd − Σσ(z)
. (2.3.37)

Here, ∆(z) is the contribution to the self-energy that arises solely from hybridiza-
tion with the band. It turns out that the arbitrariness introduced by the broad-
ening is suppressed when taking the ratio, and re-calculating Gσ(z) yields highly
accurate results [48]. The non-interacting Green’s function even becomes exact.

2.3.2 The Numerical Renormalization Group Applied to a
SIAM

Let us go back to the SIAM and apply the NRG procedure described above. For
this we choose a discretization parameter Λ = 2.5, a bandwidth D/Γ0 = 50, and a
chain length of N = 40. Furthermore, we keep Nkept = 2000 states each iteration
and adjust the local parameters to be particle-hole symmetrical εd = −U/2.

Let us first look at the entropy in Fig. 2.7. For high T it is equally likely for
the impurity orbital to be empty, singly or doubly occupied, and the entropy Simp

thus tends to kB ln(4) [Fig. 2.7 (a)]. The Coulomb interaction starts to suppress
charge fluctuations as the temperature decreases which results in the formation of
a localized moment. The system is close to a so-called local moment fixed-point
where the Coulomb interaction stabilizes a single occupied impurity orbital. The
entropy approaches kB ln(2) since the system respects spin-symmetry and both
states | ↑〉 and | ↓〉 are equivalent. The onset of the crossover from the high-
temperature limit to the local moment fixed-point depends on the ratio U/Γ0 ∼
U/V 2: a higher hybridization promotes electron delocalization and hinders the
formation of a local moment.

The local moment fixed-point, however, is unstable which can be seen when
the temperature is reduced further. The Kondo temperature TK/D =

√
8Γ0

πU
e
− πU

8Γ0

defines a second crossover from the local moment to the strong coupling fixed-
point. A higher U/Γ0 yields an exponentially smaller Kondo scale and a prolonged
unstable local moment fixed-point [Fig. 2.7 (a)].
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Figure 2.7: (a) Impurity entropy Simp as a function of T/Γ0 for different particle-hole
symmetrical local parameters. The dashed lines indicate the entropy of the different
unstable fixed points. (b) The same results as a function of temperature in natural units
T/Tk. The Kondo temperature (dashed line) defines a crossover scale below which all
curves fall onto each other (shaded blue area). The parameters are εd/Γ0 = −5 and
U/Γ0 = 10.

We calculate TK by applying a small local magnetic field to the impurity
orbital and measuring the magnetization 〈Mloc〉(T ). The Kondo temperature is
then obtained from the magnetic susceptibility χ(T ) = 〈Mloc〉/B by employing
Wilson’s definition [10, 11].

4TKχ(TK) = 0.413. (2.3.38)

The local moment is screened by the band electrons below TK which results in the
formation of a singlet state, the so-called Kondo singlet, and therefore a vanishing
entropy Simp. The Kondo temperature defines a natural energy scale below which
all curves show the same universal behavior [Fig. 2.7 (b)].

The Kondo effect is also visible in the spectral density ρrσ(ω) as a pronounced
peak at the Fermi energy ω = 0 [Fig. 2.8 (a)]. The height of this Kondo peak is
1/(πΓ0) in a particle-hole (PH) symmetric setup reflecting the Fermi liquid nature
of the fixed point, and its full width at half the maximum height (FWHM) can
be traced back to the Kondo temperature [35, 54]. Since the FWHM not only
depends on TK but also on e.g. the occupation and PH asymmetry, it is more
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Figure 2.8: (a) Spectral density ρσ(ω) for T/Tk = 6 · 10−5, ε/Γ0 = −5, U/Γ0 = 10,
and broadening b = 0.8. At ω = 0 the spectral density shows the characteristic Kondo
peak. At ω ≈ ±U/2 there are two Hubbard peaks. (b) Lowest energy levels for the full
SIAM of each even (blue solid lines) and for the free band (red dotted lines) of each odd
NRG iteration. The parameters are ε/Γ0 = −10 and U/Γ0 = 20. The system is close
to an unstable local moment fixed point between iteration N ≈ 5 and N ≈ 15 before
crossing over to the final stable strong coupling fixed point.

beneficial to rely on different calculation schemes for TK . One example is the
aforementioned definition by Wilson that uses the magnetic susceptibility or the
empirical Goldhaber-Gordon fit of the zero-bias conductance [55].

Most importantly, the NRG scheme generates the lowest eigenenergies in each
iteration. They reflect the renormalization group flow and yield valuable insight
in the nature of the various fixed points. One has to distinguish between even
and odd iterations as the energy degeneracy of the states will differ. A simplified
example would be a chain of half-filled electronic orbitals of length N coupled
by a hopping term. A chain of length two has a singlet ground state, but if
one includes another link, the ground state will change to a doublet. It will
continue alternating even in the limit of N →∞ while the physical properties
will converge if N is just large enough. This even-odd oscillations is also inherent
to the NRG which renders a comparison of eigenenergies for two consecutive
iterations meaningless.

If the system is close to a stable fixed point, the energies for even and odd
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iterations remain constant [cf. N > 30 in Fig. 2.8 (b)]. However, if the system
is close to an unstable fixed point, there will be some drift left until another
crossover occurs at some later iteration [cf. 5 < N < 15 in Fig. 2.8 (b)]. The
Kondo (or strong coupling) fixed point exhibits one additional peculiarity: the
even level energies converge to the same values as the odd energies for the bare
electronic band without any impurity [Fig. 2.8 (b)]. This provides a practical tool
to identify a strong coupling fixed point and can be easily understood in terms of
the Wilson chain: below TK the spin of the impurity is screened by the electron
bath forming a singlet state. The simplified picture is that the electron of the
impurity and the first chain link form a singlet state effectively decoupling from
the rest of the chain. This leaves a chain of N − 1 chain sites that form a free
electron bath, i.e. without an impurity. Since the length is reduced compared to
the regular free chain, we see a shift from even to odd.

There is a multitude of other thermodynamic quantities widely discussed al-
ready in the literature, ranging from magnetic susceptibility to impurity occupa-
tion numbers or correlation functions [11]. We saw how the NRG is capable of
providing us with an excellent numerical solution for a quantum impurity system
using the example of the SIAM. We reviewed some of the most common and prac-
tical quantities like the entropy and the spectral density and discussed how they
aid us with identifying and explaining the underlying physics and fixed points.
In the following, we will build upon the foundation laid out in this chapter and
move on to a more realistic model for magnetic carbon vacancies in graphene.

Before we turn to the case of graphene, let us briefly mention some important
developments for the NRG method over the years. A major keystone was the
aforementioned identification of a complete basis set [44, 14] that put the calcu-
lation of Green’s functions that were hitherto plagued by a multitude of problems
on a firm theoretical basis [45, 13]. A second consequence of this new basis was
the extension of the NRG to time-dependent quenching problems (TDNRG) [44,
14] which we discuss in detail in Sec. 4.4. The TDNRG has been successfully
combined [56, 57] with the Density Matrix Renormalization Group (DMRG) [58]
technique. The NRG is used to generate a accurate low-energy Hamiltonian that
can then be treated by the time dependent DMRG to access exponentially long
time scales.
Another approach deals with the exponentially increased numerical complexity
when including multiple bands. In order to tackle multi-band problems in an
efficient manner the so-called Interleaved NRG [59] has been developed in recent
years.
On a different note, the NRG has been successfully extended to systems with
bosonic baths as well. First applications cover the static and dynamic properties
of the (sub/super-) Ohmic Spin Boson Model [20, 21].
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Chapter 3

Tunable Kondo Effect in Defective
Graphene

We focused on simplified model Hamiltonians, like the SIAM or Kondo model,
in the previous chapter to establish the NRG method. These models are already
able to capture the essential physics of systems on a qualitative level despite
their simplicity. However, depending on the impurity problem at hand, one needs
to include more correlated localized orbitals and their interactions, realistic hy-
bridization functions, or phononic degrees of freedom in order to quantitatively
describe more nuanced behavior.

In this chapter, we focus on a realistic model for irradiated graphene sheets and
their rich physics. We start by introducing pristine samples of graphene in Sec. 3.1
and Sec. 3.1.1 where we review the unique electronic properties included in the
(next) nearest neighbor tight-binding approximation. We discuss the remarkable
pseudo-gap band structure of graphene with its linear low energy density of states
around the Dirac Points.

We continue with the different ways of disturbing the perfect honeycomb lat-
tice of graphene in Sec. 3.2. Our focus here lies on graphene with missing carbon
atoms, called carbon vacancies. Of particular interest is the case where impure
graphene is subject to external gate voltages that act as a chemical potential. We
summarize the experimental and theoretical evidence for the formation of stable
magnetic moments in these defective graphene sheets in Sec. 3.3. We review
the findings of one particular experimental study [9] where the authors identified
three types of carbon vacancies in the same setup. We develop an effective two-
orbital impurity model in Sec. 3.4 in order to describe these different types of
vacancies in one go. One of these orbitals is a remnant of the broken in-plane σ
bonds while the other is a vacancy-induced bound state located in the pseudogap
called ’zero-mode’.

In Sec. 3.4.1, we introduce the local hybridization strength as the crucial pa-
rameter that differentiates between the experimentally observed regimes. We

23



3.1. Pristine Graphene

develop a simplified yet sound picture of the low temperature behavior of car-
bon vacancies that depends on two free parameters, chemical potential µ and
hybridization strength Γ0, alone.

We employ the NRG to this model in Sec. 3.5. We begin by mapping the
parameter space and identifying the different regimes in Sec. 3.5.2 before we
look at each regime in detail in Sec. 3.5.3. We continue with various discussions
about the Kondo temperature, numerical stability, and possible enhancements.
We summarize our results in Sec. 3.5.10. The majority of our findings presented
in this chapter are published in Ref. [19] and, to a lesser extend, in Ref. [9].

3.1 Pristine Graphene

Graphene is a carbon-based allotrope with a thickness of just a single layer of
atoms arranged in a honeycomb lattice. Its unique two-dimensional character
in combination with a distinctive electronic structure and the bonding flexibility
of carbon grants graphene numerous remarkable physical properties such as ex-
tremely high tensile strength [60, 61, 62], high thermal conductivity [63, 64], and
an optical conductivity that is a universal constant [65, 66, 67]. This results in
an opacity of roughly 2.3% and the fact that one can even see a single layer of
graphene with the naked eye [67].

The earliest theoretical model of the electronic properties of graphene trace
back to Wallace [68] in 1947. He introduced the popular tight-binding formula-
tion, which is still the foundation for modern studies of graphene, to calculate
the band structure of graphite. Graphite can be seen as stacks of multiple layers
of graphene that form a three-dimensional crystal hold together by weak van der
Waals forces. Drawing from his work, McClure, Slonczewski and Weiss brought
forth a comprehensive study of the electronic properties of graphite [69, 70].
In the subsequent decades, Wallace’s model also found some application in dif-
ferent fields [71, 72], notably the most important being Haldane’s description of
the quantum Hall effect (QHE) [73] where Haldane used a suitable magnetic field
breaking time reversal but keeping the spatial symmetry intact.
The integer quantum Hall effect in graphene has been observed experimentally
almost 20 years later by Novoselov et al. and Zhang et al. [74, 75]. Furthermore,
Kane and Mele used graphene as a model system to postulate a completely new
type of quantum spin Hall effect (QSHE) in a series of papers in 2005 [76, 77].
They based their work on the existence of a presumable strong spin-orbit coupling
which, in the end, turned out to be a false assumption. Nevertheless, with their
work they kick-started the modern field of topology and topological insulators.

One of the most remarkable features of graphene is its low-energy linear energy
dispersion that yields massless and chiral quasi-particle excitations that show a
striking resemblance to solutions of the Dirac equation for relativistic and mass-
less electrons. This similarity is rooted in the honeycomb structure of graphene
and the fact that the low-energy physics is determined by two distinct points in
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3.1. Pristine Graphene

reciprocal space, called Dirac points (DPs), and their proximity. As a result, a
number of effects of quantum electrodynamics (QED) also appear in graphene
albeit at much smaller velocity compared to the speed of light [78, 79, 80].

The quasi-two dimensional shape of graphene builds the bridge to the field of
soft membranes [81] as suspended graphene sheets show spatial disorder in form of
out-of-plane ripples [82]. This leads to the existence of vibrational phonons, which
are not present in regular three-dimensional crystals, as well as crumpling [81].

Graphene samples of mesoscopic length scale [83, 84, 85, 78, 86, 87], i.e. up
to several µm, are of particular interest as well. Here, one distinguishes usually
between zigzag and armchair edges. Cutting along the edge of multiple carbon
hexagons with an angle of 120◦ between two successive cuts yields a zigzag edge
while cutting through the middle of each second hexagon results in an armchair
arrangement. Both samples show distinctive differences, e.g. zigzag edges sup-
porting localized edge states [84, 83]

Figure 3.1: Visualization of: graphene
(top left) which is a single layer of carbon
arranged in a honeycomb lattice, graphite
(top right) which are stacked graphene lay-
ers hold together by van der Waals forces,
carbon nanotubes (bottom left) that are
rolled up graphene sheets and fullerene
(bottom right) which are zero-dimensional
molecules. The figure was taken from
Ref.[78].

Despite the recurring theoretical
work done over the decades, exper-
imental studies were notably absent
until recently. One reason being the
decisiveness of the Mermin-Wagner
theorem [88] that essentially forbids
thermodynamical stable 2D crystals
to form spontaneously. As a re-
sult, graphene is not completely two-
dimensional. Instead, the single car-
bon layers exhibit the formation of out-
of-plane ripples [82].
Although graphene might not occur
naturally, it can still be obtained as
a long-lived pseudo-2D crystal [67]
from graphite by the means of exfo-
liation [89, 74, 90]. The discovery of
this simple yet ground-breaking pro-
cess by a group led by Andre Geim
at Manchester University marks the
beginning of a flood of publications.
Their method is, on one hand, both
inexpensive and can yield high-quality samples [67, 89, 90], yet, on the other,
labor intensive and due to the small sample size unfortunately unsuited for large-
scale production. The process starts with macroscopic big graphite crystal flakes
like natural graphite, kish or highly oriented pyrolitic graphite that are pressed
onto Scotch tape to remove a thin layer of graphite which is then applied onto a
Si/SiO2 substrate. The thickness of the sample can subsequently be determined
with an atomic force microscope measurement or Raman spectroscopy.
In addition to simple exfoliation there are a couple of other processes like chemi-
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3.1. Pristine Graphene

cal vapor deposition on metallic surfaces [91], surface graphitization and epitaxial
growth on SiC crystals [92, 93, 94], open flame synthesis [95], solution-based ex-
foliation [96], or by using colloidal suspensions [97].

Apart from graphite, the natural three-dimensional extension of the 2d graphene,
there are a couple of other arrangements that sparked scientific interest over the
years. If the honeycomb lattice is disturbed by changing some of the hexagons
into pentagons, one effectively introduces positive curvature defects that result
in a curl up [98, 78, 81]. The resulting molecule, fullerene C60, consists of car-
bon atoms that are ordered spherically. It can essentially be considered a zero-
dimensional object due to its round shape. A second popular application are
carbon nanotubes [99, 100] that are made up of rolled-up graphene. Here, a
finite sheet of graphene is rolled along an axis to form a cylinder. The carbon
atoms located at either edge form their conventional sp2 bonds holding the whole
structure together. This rolling thus retains the perfect honeycomb lattice on the
surface of the cylinder.
The four different arrangements, graphene, graphite, fullerene, and carbon nan-
otubes, are visualized in Fig. 3.1. In this work we focus exclusively on single
graphene sheets strapped onto a SiO2 substrate.

3.1.1 Electronic Properties of Single Layers of Graphene:
Tight-Binding Approximation

On an atomic level, graphene consists purely of carbon atoms that form hexagons
with a nearest-neighbor distance a ≈ 1.42Å. Alternatively, it can be visualized
as two triangular sub-lattices that are shifted to each other by a, or as a single
hexagonal Bravais lattice with two atoms per unit cell [Fig. 3.2 (a)]. In this case,
the lattice vectors can be written as

~a1 =
a

2

(
3√
3

)
, ~a2 =

a

2

(
3

−
√

3

)
. (3.1.1)

The nearest-neighbor (n.n.) vectors take the form

~δ1 =
a

2

(
1√
3

)
, ~δ2 =

a

2

(
1

−
√

3

)
, ~δ3 = −a

(
1
0

)
, (3.1.2)

while the six next nearest-neighbors (n.n.n.) vectors are

~δ′1,± = ±~a1, ~δ′2,± = ±~a2, ~δ′1,± = ±(~a2 − ~a1). (3.1.3)

The reciprocal vectors can be calculated from the lattice vectors

~b1 =
2π

3a

(
1√
3

)
, ~b2 =

2π

3a

(
1

−
√

3

)
, (3.1.4)

such that ~ai · ~bj = 2πδij. The Brillouin zone (BZ), which can then be con-
structed in the usual manner, has a hexagonal form as well. The BZ is shown in
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3.1. Pristine Graphene

Fig. 3.2 (b). Only two of the six corner points of the BZ, labeled K and K ′, are
linear independent while the others arise from translation of the lattice. These
two points are called Dirac points and they play a crucial role in the low energy
behavior of graphene. Their positions in momentum space are

~K =

( 2π
3a
2π

3
√

3a

)
, ~K ′ =

( 2π
3a

− 2π
3
√

3a

)
. (3.1.5)

Figure 3.2: (a) Hexagonal lattice structure of graphene. The blue and red dots rep-
resent the carbon atoms of different triangular sublattices. ~ai are the lattice vectors
and ~δi the n.n. vectors. (b) Reciprocal space, reciprocal vectors ~bi, and Brillouin zone
(shaded are). Both Dirac points are located at a corner of the BZ.

We can now write down the tight-binding Hamiltonian where electrons are
able to hop between nearest neighbor atoms (hopping between sub-lattices) as
well as between next nearest neighbors (same sub-lattice) [81]

H =− t
∑
〈i,j〉,σ

(a†σ,ibσ,j + h.c.) (3.1.6)

− t′
∑
〈〈i,j〉〉,σ

(a†σ,iaσ,j + b†σ,ibσ,j + h.c.). (3.1.7)

Here, t, t′ are the inter- and intra-sub-lattice hooping amplitudes respectively.
The creation and annihilation operators with spin σ for the different sub-lattices
are labeled a

(†)
σ,i and b

(†)
σ,i. The sums are restricted to either nearest (〈. . .〉) or

next nearest (〈〈. . .〉〉) neighbors. The Hamiltonian is bilinear and can readily be
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3.1. Pristine Graphene

diagonalized by Fourier transformation. It yields two energy bands [68, 81]

E±(~k) = ±t
√

3 + f(~k)− t′f(~k), (3.1.8)

f(~k) = 2 cos(
√

3kya) + 4 cos
(√3kya

2

)
cos
(3kxa

2

)
. (3.1.9)

Figure 3.3 shows both bands over the whole BZ for n.n. hopping only t′ = 0.
Both bands become simultaneously zero at six distinct points, two of which are
independent. These are the aforementioned Dirac points, K and K ′, that are
responsible for the low energy physics of graphene. Expanding the dispersion
near either DP yields [68, 81]

E±(~q) = ±vF |~q|+O((q/K)2), (3.1.10)

where ~q is a small vector relative to the respective DP and vF = 3ta/2 ≈ 106 m/s
is the Fermi velocity. The dispersion near the DPs resembles that of relativistic
massless particles. One can expand the tight-binding Hamiltonian for t′ = 0 close
to these points. The resulting effective Hamiltonian has a matrix structure and
consists essentially of two copies of the massless Dirac Hamiltonian for momenta
close to K or K ′ [81]. The electronic wave function in real space is a vector
with two components and obeys the 2d Dirac equation. Furthermore, the wave
function close to either DP, ψ ~K(~r) or ψ ~K′(~r), is an eigenfunction of the helicity
operator [81]

h =
1

2
~σ · ~p
|~p|
, (3.1.11)

where ~σ = (σx, σy)
T are the Pauli matrices. The electronic states close to either

DP have a well defined chirality or helicity that links momentum and pseudospin.
This pseudospin is not the real physical spin but rather a manifestation of the
two bands crossing at the Dirac points [81]. This helical property holds true only
close to either DP.

It is possible to write down an analytical solution for the density of states
(DOS) per unit cell in the case of vanishing n.n.n. hopping [101, 81]. For the
general case, where t′ 6= 0, it is sufficient to sample over the BZ and evaluate

ρ(ε) =
1

NaNk

∑
±,~k

δ(ε− E±,~k) (3.1.12)

numerically, where E±,~k is defined in Eq. (3.1.8), Nk is the number of sampled
~k-points and Na = 2 is the number of atoms in the unit cell.

We recall that the DOS enters in the definition of the hybridization function,
Eq. (2.3.5), and we can likewise determine the hybridization V by

V 2 =
∑
~kσ

|V~k|
2 =

1

π

ˆ ∞
−∞

Γ(ω)dω. (3.1.13)
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Figure 3.3: Tight-binding dispersion Eq. (3.1.8) for t′ = 0 evaluated at a discrete
set of Nk = 106 points in the Brillouin zone. The calculated values are used for an
interpolation to arrive at a smooth surface plot. Rough edges are an artifact of the
numerical interpolation.
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Figure 3.4: Two different approximations for Γ(ω) for pristine graphene. Solid curve:
t, t′ tight-binding approximation with t = 2.91 eV and t′ = −0.16 eV [102, 103]. The
frequency is shifted such that the DP coincides with ω = 0. Dashed curve: Linear
approximation Eq. (3.1.14). Taken from Ref. [19].
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The characteristic feature of the DOS and thus of the hybridization function is
the linear behavior near the DP for ω → 0. A simpler approximation than our
tight-binding approach may be used where

Γ(ω) = Γ0


2|ω|
Deff

, if |ω| < Deff

1, if Deff ≤ |ω| ≤ D

0, otherwise.
(3.1.14)

Here, D = 8 eV determines the band edges and Deff = 3 eV pins the van Hove
singularities. This analytic approximation captures the essential behavior for
small energies. Fig. 3.4 shows a comparison between analytic and sampled tight-
binding hybridization functions.
Note, that the next nearest neighbor tight-binding solution is inherently particle-
hole asymmetric. As a result the pseudo-gap is shifted to finite ω. We define
the pseudo-gap as a reference point for ω = 0 even for finite t′ since it is used
as zero bias gauge in the experimental study [9], allowing a direct comparison of
our results to the experimental data below.

3.2 Defects in Graphene: Existence of Stable Mag-
netic Moments and Kondo Physics

Albeit pristine graphene provides us with an abundance of different physical ef-
fects already, it lacks the open d or f shells of transition-metal elements and the
concomitant formation of local magnetic moments and Kondo physics. On its
own, graphene is strongly diamagnetic [104, 5]. This picture changes, however,
when the perfect honeycomb structure of graphene is disturbed by impurities. It
has been shown that graphite exhibits magnetic ordering [105, 106, 8] that has
been linked with lattice defects [107] or edges [83, 108].

In principle, there are several sources of disorder and ways to introduce defects
or impurities into graphene. The two most prominent are adsorption of foreign
atoms and the removal of single carbon atoms. One example of the adsorption
effect are isolated Co atoms that are placed on the surface of graphene [109, 110,
111].
The removal of carbon atoms from the honeycomb lattice is realized by ion irra-
diation, creating carbon vacancies [112, 113, 114]. These vacancies not only show
the formation of local magnetic moments [7, 8, 5, 4] but also the rise of a (tunable)
Kondo effect [6, 115, 116, 9]. These lattice impurities and their influence on the
local electronic structure has been extensively studied over the last decade [112,
115, 7, 5, 4, 110, 117]. The microscopic behavior that leads to a tunable Kondo
effect has been understood just recently in a series of two papers [19, 9].

Graphene in its pristine form is held together by the formation of three strong
σ bonds at every lattice site that are each made up out of two sp2 orbitals from
neighboring sites [Fig. 3.5 (a)]. These sp2 orbitals are in turn constituted of
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Figure 3.5: Schematic view of the orbitals in xy plane for the honeycomb lattice of
graphene with a single carbon vacancy. Orbitals perpendicular to the xy plane are not
shown. (a) Formation of σ bonds out of neighboring sp2 orbitals (blue). (b) Single
carbon vacancy (dashed circle) disrupts three σ bonds. (c) Lattice reconstruction and
Jahn-Teller deformation. Two broken σ bonds recombine leaving one dangling sp2

orbital at the opposite carbon atom. The vacancy has a triangle form.

atomic s, px and py orbitals. These covalent σ bonds are significantly stronger
than the weak out of plane π bonds that result from a lateral overlap of pz orbitals
(Fig. 3.6). The π bonds are responsible for the dispersion of graphene.
Irradiation by ions removes a single atom and thus breaks three σ bonds [Fig. 3.5 (b)].
This induces four states in the proximity of the vacancy: three are remnants of the
broken σ bonds and one is a semi-localized state, the ‘zero mode’ or π state, whose
energy is exactly zero in the next neighbor tight-binding approximation [117].
Two of the now unpaired sp2 orbitals will recombine resulting in the formation
of a carbon pentagon [Jahn-Teller deformation of the lattice, Fig. 3.5 (c)]. This
reconstruction of the lattice leaves a single dangling σ bond unpaired [117, 118,
116]. The stable configuration is reached by lowering the spatial symmetry.
In neutral graphene, there are four orphan electrons in total, one from each of the
broken sp2 bonds as well as one from the π system, that occupy the new vacancy
states [117].

Figure 3.6: Schematic view of π bonding in graphene. σ bonds lying in the xy plane
are not shown. (a) Hybridization of neighboring pz orbitals results in (b) formation of
π bonds.
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Due to symmetry, the σ and π bands that stem from the bulk material do not
hybridize. This, however, applies only to the case where the σ bonds are strictly
perpendicular to the pz orbitals. In case of graphene, rippling of the surface oc-
curs via sp2-sp3 hybridization which mixes the σ and the pz orbital at a carbon
site [116]. Furthermore, if a dangling σ bond located at a carbon vacancy partic-
ipates in the sp2-sp3 hybridization, the resulting orbital is not perpendicular to
the π band anymore and will couple to the DOS of the π sub-system. The effec-
tive hybridization is estimated to be substantial even for small deviations [116].
This leads to an effective hopping between π electrons to the σ orbital and an
anti-ferromagnetic exchange interaction.

Figure 3.7: Schematic view of coupling between σ and π subsystem induced by rippling
and sp3 hybridization. Only one lobe of the sp3 orbital is shown for simplicity.

3.2.1 Vacancy induced σ states

Let us first focus on the three states belonging to the σ sub-system that are
induced by carbon defects and ignore the pz states for the time being. As dis-
cussed above, we are left with three sp2 orbitals that are remnants of the broken
σ bonds after removal of a single carbon atom. Let us label the three orbitals by
i = 1, 2, 3 where the orbital with index i = 1 resides at the top and the orbitals
with i = 2, 3 at the base of the triangle in Fig. 3.5 (b). We can write down a
simple tight-binding Hamiltonian [118, 117]

H = −h(s†1s2 + s†1s3 + h.c.)− h′(s†2s3 + h.c.), (3.2.1)

where s(†)
i are the annihilation (creation) operator at site i and h, h′ > 0 the

transfer integrals. The on-site energy can be neglected since the sp2 orbitals rest
near the Fermi energy without their bonding partner [117]. Both transfer integrals
are the same in the case where the imperfect lattice shows the same symmetry
as the undisturbed crystal and differ (h′ > h) when the symmetry is reduced due
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to the Jahn-Teller effect. DFT calculations suggest that h′/h ' 5 [119, 118, 117]
favoring a reduced two-fold symmetrical configuration. The eigenvalues

E1,2 =
−h′ ±

√
8h2 + h′2

2
, E3 = h′ (3.2.2)

and corresponding eigenstates are readily obtained by diagonalization

|ψ1,2〉 = C±|s1〉 ∓
1√
2
C∓(|s2〉+ |s3〉), (3.2.3)

|ψ3〉 =
1√
2

(|s2〉 − |s3〉), (3.2.4)

with

C± =
[1

2

(
1± h′√

8h2 + h′2

)]1/2

(3.2.5)

⇒C+ → 1 C− → 0, (3.2.6)

where the limit holds for the DFT ratio h′/h ' 5. The list of states in ascending
order is thus

|ψ1〉 → (|s2〉+ |s3〉)/
√

2 (3.2.7)
|ψ2〉 → |s1〉 (3.2.8)

|ψ3〉 →
1√
2

(|s2〉 − |s3〉) (3.2.9)

In neutral graphene the bonding combination |ψ1〉 is doubly occupied while the
sp2 orbital located opposite of the shortened base of the triangle is singly occu-
pied [117, 118].

3.2.2 Vacancy Induced Zero-Mode

In addition to the reconstruction of the σ bonds and the concomitant lattice de-
formation, a carbon vacancy also induces a localized state at the center of the
π local density of states (LDOS) called ‘zero-mode’ [120]. This state is localized
around the vacancy site and its wavefunction falls off with r−1 [120, 121, 117]. In-
terestingly, the zero-mode state is completely confined to the opposite sub-lattice
with respect to the vacancy site, i.e. if the missing carbon atom is located on
sub-lattice A then the zero-mode must be located entirely on sub-lattice B [117].
The state is not part of the itinerant π bands and therefore does not hybridize
with the conduction electrons.

A simple yet powerful approach to examine the zero-mode is based on the
Green’s function of the impurity [117] which we review in the following. One
starts with a n.n. tight-binding Hamiltonian

H0 = −t
∑
iα,jβ

c†iαcjβ + h.c., (3.2.10)
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where i numerates the unit cell and α = A,B iterates over the sub-lattice. At
the site of the vacancy ~r0A we introduce a potential term

V = Uc†0Ac0A, U > 0, (3.2.11)

that hinders electrons on neighboring sites to hop onto the vacancy site. The
limit U → ∞ corresponds to a missing carbon atom since the site is effectively
removed from any hopping processes. The full Hamiltonian then takes the form

H = H0 + V (U), U →∞. (3.2.12)

Analogous to Sec. 3.1 one first transforms the unperturbed Hamiltonian into
momentum space by using Bloch wavefunctions |~kα〉 = N

−1/2
k

∑
i e

i~k·~riα |iα〉 where
~riα = ~Ri + ~τα is the position of the αth atom in the ith unit cell. The transformed
Hamiltonian takes on a 2x2 matrix shape

H~k =

(
0 f(~k)

f ∗(~k) 0

)
, (3.2.13)

with f(~k) = −t(ei~k·~δ1 + ei~k·~δ2 + ei~k·~δ3) and ~δi being the n.n. vectors defined in
Sec. 3.1 in Eq. (3.1.2). The second step is to calculate the Green’s function
for the unperturbed system in momentum space

gα,β(~k, ω) = 〈~kα|g(ω)|~kβ〉 =
ω + iη +H~k

(ω + iη)2 − |f(~k)|2
, (3.2.14)

from which the real-space GF by Fourier transform

giα,jβ(ω) =
1

Nk

∑
~k

ei~k(~riα−~rjβ)gα,β(~k, ω) (3.2.15)

is obtained. We are interested in the Green’s functions for the perturbed lattice
which is related to the unperturbed one via a Dyson’s equation G = g + gV G.
Inserting Eq.(3.2.11) yields

Giα,jβ(ω) = giα,jβ(ω) + Ugiα,0A(ω)G0A,jβ(ω). (3.2.16)

We need the diagonal elements since we are interested LDOS

Giα,iα(ω) = giα,iα(ω) + Ugiα,0A(ω)G0A,iα(ω). (3.2.17)

Here, G0A,iα(ω) can be expressed by Eq. (3.2.16) again which finally yields

Giα,iα(ω) = giα,iα(ω) +
Ugiα,0A(ω)g0A,iα(ω)

1− Ug0A,0A(ω)
. (3.2.18)

We arrive at the LDOS of site iα by taking ρiα(ω) = −1/π=Giα,iα(ω). Taking
the trace over a single sub-lattice only yields after some lengthy algebra the total
DOS of the respective sub-lattice

ρA(ω) = ρ0 +
1

Nk

−U [(1− UF0(ω))=ξ(ω)− πUρo(ω)<ξ(ω)]

π[(1− UF0(ω))2 + (πUρ0(ω))2]
(3.2.19)
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and

ρB(ω) = ρ0 +
1

Nk

−U [(1− UF0(ω))(πρ′0(ω)−=ξ(ω)) + πUρ0(ω)(F ′0(ω) + <ξ(ω))]

π[(1− UF0(ω))2 + (πUρ0(ω))2]
,

(3.2.20)

where ξ(ω) = 1/Nk

∑
~k [gAA(~k, ω)]

2
and F0(ω) = <g0A,0A(ω).

Figure 3.8: DOS for (a) same sub-lattice as single carbon vacancy site and (b) other
sub-lattice as function of the potential U . Eq. (3.2.19) and Eq. (3.2.20) are evaluated
on a (kx, ky) mesh with Nk = 3000 × 3000 points. The zero-mode peak is confined to
the sub-lattice B opposite to the sub-lattice A of the vacancy. The number of points
Nk in Eq. (3.2.19) and Eq. (3.2.20) is taken as Nk = 20 for visual clarity. The legend
applies to both sub-plots.

Fig. 3.8 shows the total density of states Eq. (3.2.19) and Eq. (3.2.20) evalu-
ated directly on (kx, ky) mesh for each sub-lattice respectively. The total lattice
includes a single carbon vacancy located on sub-lattice A. Since the zero-mode
is localized around the vacancy site, it is not visible in the limit Nk → ∞ in
the total DOS. We use a mesh of Nk = 3000 × 3000 points but use Nk = 20 in
Eq. (3.2.19) and Eq. (3.2.20) for plotting. The zero-mode peak becomes more
pronounced as U increases and is converged for U/t ∼ 10000. Following the ap-
proach of Ref. [117], we can extend this scheme from calculating the total DOS
for a given sub-lattice to the LDOS at any lattice point in real space. Further-
more, one can calculate the fraction of the zero-mode peak that is spread over the
nearest neighbor site of our vacancy, the so-called Z factor. In case of a carbon
vacancy, this factor is rather small Z ≈ 0.07 [117, 19] due to the extended nature
of the zero-mode.
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3.2.3 Scanning Tunneling Microscopy (STM) and Spectroscopy
(STS)

In the last sections, we reviewed the formation of the different orbitals at carbon
vacancies. Before we discuss experimental evidence of local moments and Kondo
physics, let us briefly outline the cornerstones of scanning tunneling microscopy
(STM) and spectroscopy (STS). STM and STS are often the experimental method
of choice for quantum impurity systems due to their excellent energy and spatial
resolution down to the atomic scale [122, 123].
The general idea is that electrons tunnel between a sample and the tip of a sharp
metallic probe generating a small but measurable current. In this setup, the
probe hovers above the surface of the sample. Measurement of the tunneling
current allows, among others, for three-dimensional imagining of the surface or
reconstruction of the LDOS.

Over the years, STM/STS has become a staple technique in numerous fields
such as (high temperature) superconductors [124, 123], quantum impurity sys-
tems in general, and graphene in particular [67, 125, 126, 127, 115, 9].

Figure 3.9: (a) Schematic electron tunneling between tip of probe and sample. The
tip and the sample are in thermodynamic equilibrium at chemical potential µ1/2 re-
spectively. φ is the so-called work function. (b) Schematic sketch of scanning tunneling
microscope. The z actuator is linked to a piezoelectric drive that uses the tunneling
current as input. The figure is taken from Ref. [123].

The underlying physical phenomenon, namely quantum tunneling between
two electrodes via a potential barrier, has been well-known since the beginnings
of quantum mechanics. A schematic depiction of the apparatus and process is
shown in Fig. 3.9 (a). The tip hovers over the sample’s surface in a distance z
where the spacer in-between is usually vacuum. Electrons are confined to either
material by a potential barrier φ (also called work-function). A finite bias voltage
V introduces a shift in the chemical potential of tip and sample skewing the
potential barrier. We know from basic quantum mechanics that an electron may
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tunnel from one material to the other even if it cannot classically muster enough
energy to overcome the potential barrier. As the wavefunction of the electron is
suppressed exponentially beyond the barrier, the tunneling probability depends
strongly on the thickness of the spacer z. If tip and sample are close enough, the
individual tunneling processes may accumulate to a macroscopic and measurable
current and the whole system will assume a steady-state driven by the applied
bias voltage.

Giaever’s measurement of the superconducting gap [124] together with Bardeen’s
theoretical work [128] laid down the foundation of tunneling spectroscopy as a
new experimental method in the 1960s. A decisive improvement to these early
applications was the invention of the modern scanning tunneling microscope [129]
with its sharp metallic tip that can be moved freely over the surface via x, y ac-
tuators. The tip is brought in near proximity (a few angstroms) to the surface
and a bias voltage is applied between sample and probe. Depending on the sign
of the voltage the electrons either tunnel from tip to into empty states in the
sample (positive voltage) or from occupied sample states into the tip (negative
voltage) [67]. The resulting current is measured and used, via a feedback loop,
to control the z actuator and thus the height of the tip [Fig. 3.9(b)].

The tunneling current takes the form [128, 67]

I(z, V ) =
4πe

~

ˆ ∞
−∞

[f(EF − eV + ε)− f(EF + ε)]

× ρT (EF − eV + ε)ρS(EF + ε)|M(z)|2dε,

(3.2.21)

where f is the Fermi function, EF the Fermi energy, V the bias voltage and,
M(z) the tunneling matrix that shows a strong dependence on the distance z
between sample and tip. In addition, the electronic densities of states of tip ρT
and sample ρS both enter into the convolution integral. Usually, one would like
the tip material to have a featureless density of states and a well-defined Fermi
surface. For this reason, some of the most commonly used materials are Au,
W, Ir, and PtIr [123]. Under the assumption of a constant ρT and for small
temperatures the expression for the current reduces to [123, 67]

I(z, V ) ∝ e−2zκ

ˆ eV

−∞
ρS(ε)dε, κ =

√
2mφ

~2
≈ 0.5

√
φÅ−1 (3.2.22)

where the work function φ ∼ 5 eV for a typical metal [123]. This exponential
dependence on the distance means that for every additional angstrom of spacer
the current will drop off roughly one order of magnitude. This, in combination
with the piezoelectric drive, enables the microscope to reach its unparalleled high
resolution.

In general, there are two distinctive operating modes for the microscope: ei-
ther the tip is swept over the sample while maintaining a constant tunneling
current or the feedback loop is turned off and the probe remains at a constant
absolute height. In the first mode, if the DOS is approximately homogeneous
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Figure 3.10: Different STM imaging modes. (a) Constant current and (b) constant
height. The figure is taken from Ref. [123].

over the scanned area, the image corresponds to the three-dimensional surface of
the sample [123]. The speed of this mode is inherently limited by the bandwidth
of the feedback loop (∼ kHz) as the tip has to be adjusted constantly. In the
second mode, the tunneling current varies due to changes in the distance between
sample surface and tip and thus also grants access to the surface topography.
Since the speed is limited by bandwidth of the measurement of the current and
not by the feedback loop, this mode is generally faster. However, for surfaces
that show a significant modulation in height it might result in crashes of tip and
sample. Both modes are visualized schematically in Fig. 3.10.

One of the most remarkable features is tunneling spectroscopy. Here, the
connection between tunneling current and density of states is exploited in order
to reconstruct the local electronic structure of the sample from the measured
current derivation [130, 123]

dI

dV
(V ) ∝ ρS(ε = eV ), (3.2.23)

setting EF = 0. One measures the tunneling current as a function of applied bias
voltage: a positive voltage results in a tunneling from the tip into the unoccupied
sample states whereas the electrons will tunnel out of the occupied states for
negative bias [123]. The dI/dV spectrum can then be calculated numerically
or via a lock-in amplifier. In either case, the scanning tunneling spectroscopy
technique provides a valid measurement of the local electronic structure of the
sample at the position of the tip which, among others, allows for direct access of
the Kondo peak.

3.3 Gate Controlled Kondo Effect in Graphene
Sheets

In the last sections, we discussed the established theory regarding carbon vacan-
cies in graphene. The existence of stable magnetic moments in these irradiated
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graphene sheets [7, 8, 5, 4] and the occurrence of Kondo physics [6, 115, 116, 9]
are well-known in literature.

Here, we focus on the existence and evolution of the Kondo peak as a function
of the applied gate voltage or, equivalently, the chemical potential. We summarize
the most important experimental studies that were carried out in the last couple
of years.

Experimentally, a tunable Kondo effect in graphene has been observed by
Chen et al. [6] in 2011. They measured the resistivity as a function of tempera-
ture and gate voltage of graphene sheets that were treated with ion irradiation
in ultra-high vacuum. The temperature range extends from 300 mK to room
temperature (290 K). Their findings were compared with untreated graphene
membranes to identify the effect of the carbon vacancies on the resistivity. They
found that the resistivity can be described by a temperature-independent con-
tribution and a temperature-dependent part that follows the behavior expected
for a spin 1/2 Kondo impurity [6]. They calculated the Kondo temperature by
directly fitting the shape of the resistivity curve [6] which resulted in quite high
Kondo temperatures between 30− 90 K as shown in Fig. 3.11.

Figure 3.11: Kondo temperature TK in
Kelvin as a function of the applied gate
voltage VG. The figure was taken from
arXiv:1004.3373v2 and later published in
Ref. [6].

The Kondo temperature calculated
in such a way shows a pronounced dip
at around Vgate = 10 V which is to be ex-
pected as the π DOS that is responsible
for screening the impurity spin vanishes
linearly for ω → 0. However, the Kondo
temperature should vanish entirely at
the Dirac point by the same logic, which
is not observed in experiment. This
poses the questions whether the mea-
surement of the resistivity, which is in-
herently a simultaneous measurement of
an ensemble of different carbon vacan-
cies, is too limited and if the underlying
model of a spin 1/2 Kondo effect regard-
less of gate voltage is too simplistic.
Both questions are addressed in a series
of two papers [19, 9] where the authors
relied experiment-wise on STS measure-
ments that probe the LDOS in proximity of individual carbon vacancies. The for-
mulation and treatment of a suitable model is discussed in Sec. 3.4 and Sec. 3.5
in detail. Here we summarize the experimental results that are mainly published
in Ref. [9].

In order to create single carbon vacancies, graphene membranes are at first
treated by low-energy ion sputtering and exposed to in situ annealing. The
samples are fixed on a SiO2 substrate and the dI/dV spectra measured at a
vacancy site are compared to spectra from regular sites to establish the presence
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Figure 3.12: (a) dI/dV curve of a carbon vacancy of a double layer of graphene
on a SiO2 substrate (red curve) compared to regular graphene (black curve) for
µ = −54 meV. The vacancy shows a Kondo peak at zero bias and the ZM peak at
the Dirac point. The black arrow indicates the position of the DP. (b) Temperature
evolution of the FWHM. A Fano fit (inset) is used to determine TK . All error and error
bars are obtained from the fitting procedure. Both figures are taken from Ref. [9].

of Kondo physics. Fig. 3.12 (a) shows the spectra for a chemical potential µ =
−54 meV for a vacancy site (red curve) and far away from any vacancy (black
curve). The chemical potential is calculated from the applied external gate voltage

µ = ~vF
√
πceff |VG − VD|, (3.3.1)

where VG is the applied gate voltage, VD is the offset of the charge neutrality point,
and ceff is the effective capacitance. A gate voltage in the order of VG ∼ 50 V
is needed in order to reach the desired high values for the chemical potential
|µ| ∼ 80 meV [9]. We define p (µ < 0) and n (µ > 0) doping via the external
gate voltage and Eq. (3.3.1). The small black arrow in Fig. 3.12 (a) indicates the
position of the Dirac point. At the site of the vacancy, one finds two peaks: the
Kondo peak at zero bias and the ZM at the position of the DP. The spectra for
pristine graphene exhibits the pseudogap behavior around the DP.

The Kondo temperature is estimated from fitting the line shape of the peak
with a Fano curve [9]. The peak exhibits a temperature related broadening which
can be taken into account by measuring the line shape at different temperatures
and extrapolating via [131]

ΓLW =

√
(αkBT )2 + (2kBTK)2. (3.3.2)

An example fit is shown in Fig. 3.12 (b) which yields equivalently high Kondo
temperatures as observed in Ref. [6].

The authors categorized the single carbon vacancies into two different types
according to their gate dependent dI/dV curves. The first type of vacancy shows
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Figure 3.13: dI/dV signature curves for different µ (written next to each curve) for
both observed types. (a) Vacancy of type I: zero-bias anomaly is present for strong p
(µ < 0) and n doping (µ > 0); see left and right subplot. The Kondo peak vanishes for
intermediate chemical potential; see middle plot. (b) Vacancy of type II: Kondo peak
for p doping (left) but not for n doping (right). For µ > 0 a single peak is shifted linear
with the chemical potential. Both figures are taken from Ref. [9]. Note that the x-axis
labels in sub-plot (b) are wrong in the original publication as well. In both cases, the
axis should extend from Vbias = −100 meV to 200 meV.

a Kondo peak for either n or strong p doping but not for vanishing to moderate p
doping [Fig. 3.13 (a)]. The second type of vacancy exhibits a Kondo peak only for
p doping. A single peak is formed for µ ≈ 0 around Vbias = 0 which is then shifted
linearly to smaller energies with increasing chemical potential such that it resides
roughly at Vbias = −µ. No Kondo peak is present for n doping [Fig. 3.13 (b)].

The different types of vacancies are linked to the out-of-plane displacement
and therefore the rippling strength at the vacancy site [9]. As discussed in Sec. 3.2,
a carbon vacancy site results in an effective hybridization between σ and π sub-
system which may lead to Kondo physics. The hybridization strength (and to a
degree the Kondo temperature) is therefore directly proportional to the intensity
of the curvature at the defect.

3.3.1 Single Orbital Model and Dynamically Screened Coulomb
Interaction

The measurements are accompanied by a simplified single orbital model with a
gate voltage dependent Ueff(µ) to account for dynamical screening effects and
reproduce the experimental STS data [9]. The full model Hamiltonian reads [9]

H =
∑
σ

(εd − µ)f †σfσ + Ueff(µ)f †↑f↑f
†
↓f↓ +

∑
σ

ˆ D

−D

ω + µ

D
c†σ(ω)cσ(ω)dω

+
∑
σ

ˆ D

−D

√
Γ(ω)

πD

[
c†σ(ω)fσ + h.c.

]
.

(3.3.3)
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Here, f (†)
σ are the fermionic operators for a single local orbital at the vacancy

site and c(†)
σ (ω) describe the conduction band. Two key points are of particular

importance: firstly, the hybridization function Γ(ω) is approximated by [9]

Γ(ω) =


Γ0
|ω+µ|
Deff

, |ω+µ|
Deff
≤ 1

Γ0,
|ω+µ|
Deff

> 1, |ω|
Deff
≤ D

Deff

0, else.
(3.3.4)

The linear slope of the pseudo-gap extends to D = 2 eV beyond which the hy-
bridization is constant to the edge of the band. Secondly, the Coulomb interaction
comprises a dynamic term that results from the filling of the ZM [9]

Ueff =

{
U, µ ≤ 0

U + min(Uπf , αµ), µ > 0,
(3.3.5)

where α is a positive constant. The rationale behind this parameterization is that
the ZM is empty if µ < 0. Therefore, the ZM influences the local orbital only
in the p doped regime. There, it is postulated that the effect of an additional
electron in the ZM can reasonably be approximated by a renormalized Coulomb
interaction. The larger µ the larger the filling and thus the additional Coulomb
term.

This model, on one hand, fits the experimental observed Kondo peaks, but,
on the other hand, cannot explain the interplay between zero-mode and broken σ
bond sufficiently on a microscopic level. The ZM is completely dismissed except
for a change of U . The justification for this parameterization is not satisfactory
since one easily encompasses the effect of the ZM directly into the model. The
adaptive U term becomes a fitting parameter without any real physical meaning.
In the following, we present the more elaborate two-orbital model of Cazalilla et
al. [116] on which we base our NRG calculations.

3.4 Formulation of an Effective Two-Orbital Model
for Carbon Vacancies in the Isolated Limit

The experimental evidence indicates the formation of local moments and existence
of Kondo physics in non-pristine graphene sheets as we discussed in Sec. 3.2.
Furthermore, we saw in Sec. 3.3 that it is possible to apply a gate voltage, that
acts as a chemical potential, in order to control formation and width of the
emerging Kondo peak [9]. Naturally, one may ask whether there is a microscopic
model that provides a compelling explanation for this behavior. The goal is to
describe both types of carbon vacancies discussed in Sec. 3.3 in a single model.
The model parameter for both cases should be similar since both vacancies are
found on the same graphene membranes and their only apparent difference is the
local curvature.
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We recall that single carbon vacancies result in the formation of a dangling
σ orbital and the π zero-mode that are orthogonal to each other and to the π
bands in case of pristine graphene as we discussed preliminarily in Sec. 3.2.1 and
Sec. 3.2.2. This orthogonality is lifted by the local curvature in the proximity
of the defect. The sp2 orbital undergoes sp3-hybridization with the pz orbital
which leads to an out-of-plane oriented lobe and an effective coupling of broken
σ bond and π conduction bands. The orthogonality between zero-mode and π
bands is likewise broken via hybridization with the slanted sp3 lobe. This indirect
hybridization is thus smaller then the coupling between sp3 orbital and π band
and will be neglected in the following.

The zero-mode lies energetically at ω = 0 in n.n. tight-binding approximation
while the sp3 orbital is energetically located below Fermi energy [117]. Ab-initio
calculations suggest that a single electron occupies both orbitals close to charge
neutrality [117]. Both orbitals are exposed to various inter- and intra-orbital
Coulomb interactions. DFT calculations state that the electrons’ spins align
ferromagnetically according to a strong inter-orbital Hund’s rule coupling JH ≈
0.35 eV [117]. In addition, electrons on the lower lying hybrid orbital are strongly
correlated by a Coulomb repulsion U . The exact value of U is debated over
the literature [132, 133, 134, 4, 135] and estimates range from U = 0.5 eV [4]
over U = 2 eV [132, 135] to U = 10 eV [134, 133]. The Coulomb repulsion for
electrons in the zero-mode state is estimated to be roughly two to three orders
of magnitude smaller (∼ 0.001 eV) than that of the hybrid orbital [116] due to
its extended nature and inter-orbital repulsion is likewise roughly an order of
magnitude smaller ∼ 0.1 eV [116].

In the following, we use the index d for the sp3 hybrid orbital that stems from
the broken σ bond whereas the index σ will stand for the spin degree of freedom
to avoid confusion. The index π will be used to label the zero-mode state.

Figure 3.14: Schematic view of the two-orbital model and the different interaction
terms. Left: Triangle shape of the carbon vacancy. Hybridization between broken σ
bond and π orbitals. Right: d orbital and π state. Only the d orbital is directly couples
to the π bands. Taken from Ref. [19].
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The full Hamiltonian consists of three parts: a fully localized Hloc that com-
prises d orbital and π state, Hband that describes the pseudogap π DOS, and Hhyb

which contains the hybridization between d orbital and π band

H = Hloc +Hπ−band +Hhyb. (3.4.1)

The local Hamiltonian then takes the form [116, 19]

Hloc =
∑
σ

(εdndσ + επnπσ) + Uddnd↑nd↓

+ Uππnπ↑nπ↓ + Udπ
∑
σσ′

ndσnπσ′ − JH ~Sπ ~Sd

− JH(d†d↑d
†
d↓dπ↓dπ↑ + h.c.).

(3.4.2)

The first two terms describe the single particle energies εd,π for both effective
orbitals while the many-body interaction is split into its various contributions:
Udd and Uππ represent the intra-orbital Coulomb interaction only, i.e. between
electrons on the same orbital but with different spin degree of freedom. Inter-
orbital interactions are further split into a density-density Udπ and a spin-spin
term which is in addition augmented by pair-hopping processes to ensure rotation
symmetry in spin space [136]. The second part of the Hamiltonian comprises the
tight-binding approximation for the π sub-system [Eq. (3.1.6)] that we already
discussed in Sec. 3.1.1. Alternatively, we can employ the linear approximation
for the hybridization [Eq. (3.1.14)] where the band has a simplified non-constant
DOS. The last part captures the coupling between local and itinerant degrees of
freedom. It takes the form

Hhyb =
∑
~kστ

V d
~k

(c†~kστdσ + d†σc~kστ ), (3.4.3)

where τ = ± denotes the band index. We only include a direct hybridization
between d orbital and π band. The whole model is depicted schematically in
Fig. 3.14.

Let us focus on the local part of the Hamiltonian and neglect hybridization
and bands for now. At charge neutrality there should be one electron localized
on the vacancy. It will occupy the low-lying d orbital in accordance with ab-
initio calculations [117]. For p doping, the d orbital will normally remain singly
occupied due to the strong Coulomb repulsion while the occupation of the π
orbital depends sensitively on its level position επ since Uππ is weak. If επ is
close to the Fermi energy and the d orbital is only partially filled, the Hund’s
rule coupling will result in triplet alignment. However, the π orbital will become
completely filled if επ is lowered enough such that the energy gain of a second
π electron will outweigh the Hund’s rule energy reduction. On the other side of
the spectrum, the π orbital will become unoccupied if επ rests too high. In all
cases, the d orbital will be singly occupied as long as the level position is not
unreasonable low. There will be a local magnetic moment due to the d orbital
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or, in case of the triplet alignment, due to both orbitals. If we now include the
hybridization, this moment will be screened below TK by the conduction electrons
resulting in Kondo physics albeit with vastly different Kondo temperatures.

For n doping, three different ground states (GS) are realistic depending on
the single particle energies and chemical potential. In the first arrangement, one
electron occupies each orbital with their spins aligned due to the ferromagnetic
Hund’s rule coupling JH . The situation resembles the triplet configuration for
p doping and will equally result in Kondo screening. The magnetic moment,
however, will be underscreened since the total spin is s = 1. The ground state
energy of the isolated vacancy model is then [19]

ET = εd + επ + Udπ − JH − 2µ. (3.4.4)

When we lower the π level slightly, it becomes doubly occupied rapidly. Both
electrons form a singlet while the sole d electron remains dangling. The ground
state is thus a doublet state with total energy [19]

ED = εd + 2επ + Uππ − 3µ (3.4.5)

and Kondo screening is possible when the hybridization is switched on.

The third configuration is reached when the π level is raised instead and is
unoccupied while simultaneously lowering the εd until two electrons occupy the
d level. The ground state is a singlet state with energy [19]

ES = 2εd + Udd − 2µ. (3.4.6)

Here, Kondo screening cannot take place as the d orbital effectively decouples
from the conduction band.

3.4.1 Hybridization Dependent Level Repulsion

We now combine the two local orbitals and the pseudo-gap DOS into a single
model. The three different ground states of the vacancy in the atomic limit,
outlined above, serve as precursors for the different vacancy types observed in
experiment [19, 9]. The local triplet and singlet configuration for n doping in
particular are directly related to vacancies of type I and II respectively. The
situation for n doping is summarized in Fig. 3.15. We recall that the singlet and
triplet GS differ by one electron in the π orbital. If we keep all Coulomb inter-
actions constant, we can trigger a change of GS by adjusting the level positions
εd/π. A larger επ and smaller εd quickly empties the orbital and breaks the fer-
romagnetic triplet state in favor of the singlet configuration. The physical origin
of this level shift is a curvature induced hybridization between d orbital and π
orbitals on neighboring carbon sites [116, 118] which generates a hopping term
between zero-mode and d orbital. In perfectly flat graphene, the local orbitals
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Figure 3.15: Schematic representation of microscopic behavior for n doping. Left:
Hybridization is small and both states lie below EF . The d orbital is singly occupied
due to strong Coulomb repulsion and can form a Kondo singlet. Center: Hybridization
is increased and both levels move apart due to level repulsion. Total occupation is
lowered and the electron’s spins form a triplet that is partially screened. Right: Even
higher hybridization leads to doubly occupied d orbital. Kondo effect breaks down.
Taken from Ref. [19].

are orthogonal and εd/π assume some value. Ripples break this orthogonality
mixing the d and π orbital. The stronger the rippling the larger the admixture.
This results in an effect called ‘level-repulsion’ where the lower lying orbital gets
shifted to even smaller and the upper orbital to even higher energy. We can write
down a simple single-particle Hamiltonian

Hsp
loc = U †

(
ε′d 0
0 ε′π

)
U =

(
εd

√
ZV√

ZV επ

)
, (3.4.7)

where V is the curvature induced hybridization [Eq. (3.1.13)], Z ≈ 0.07 [117, 19]
is the Z factor of the zero-mode at the neighboring site (Sec. 3.2.2), and U is a
unitary transformation matrix. The new orbitals d′ and π′ are linear combinations
of the original d and π orbital with hybridization dependent eigenenergies ε′d,π(V ).
The stronger the hybridization, i.e. the more curved the graphene membrane at
the vacancy, the larger the admixture of π and d orbital. The new level positions
will drift apart as the hybridization is increased. This repulsion then causes
the transition from the triplet to the singlet ground state and therefore links
both types of vacancy together: larger hybridization and thus stronger rippling
corresponds to the singlet configuration and smaller hybridization to the triplet.

We can simplify the level repulsion by a more empirical approach. Instead of
deriving the level positions from one set of parameters via Eq. (3.4.7), we can try
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to identify the characteristic regimes directly by treating εd/π as free variables.
Once we have established the regimes, we can simply interpolate between both
level energies over the desired range. The interpolation takes the form

ε′d/π(Γ0) = ε′d/π(Γi
0) +

ε′d/π(Γs
0)− ε′d/π(Γi

0)

Γs
0 − Γi

0

(Γ0 − Γi
0), (3.4.8)

where Γ
i/s
0 is the empirically determined hybridization strength for the intermedi-

ate or strong hybridization regime respectively and εd/π(Γ
i/s
o ) are the correspond-

ing level positions.

3.5 The Numerical Renormalization Group applied
to Graphene

In the past sections we laid out the realistic two-orbital impurity model including
peculiar pseudo-gap density of states of graphene. The Hamiltonian is solved
using the NRG presented in Sec. 2.3. The main focus of this section are our
results that are published in two papers [19, 9]. We find that our simplified
picture, discussed in Sec. 3.4, holds up well when tested numerically. Two of the
three groundstates of the isolated model lead naturally to both different regimes
observed in experiment distinguished by a change in hybridization strength. The
third regime has been observed as well but not explicitly labeled. We name the
three regimes according to their hybridization strength as ‘weak’, ‘intermediate’,
and ‘strong’.

The carbon vacancies in the experimental study are located on the same sam-
ples but nonetheless show qualitatively completely different dI/dV spectra. The
goal of our study is to explain all spectra in a single model with only small pa-
rameter adjustments and as few parameters as possible. The parameters are not
expected to change drastically between different vacancies as the vacancies are
all located on the same graphene sheets.

Since we tied the level positions to the hybridization strength in Sec. 3.4.1, we
are left with two undetermined parameters: chemical potential µ and hybridiza-
tion strength Γ0. We begin by sketching the different scenarios qualitatively in
Sec. 3.5.1. This sketch summarizes the key findings and serves as guideline and
orientation in the following sections. We then map the resulting parameter space
as a whole in Sec. 3.5.2 for (i) T = 4.2 K as used in experiment [9] and for (ii)
T → 0. We proceed to examine each regime independently in Sec. 3.5.3. We
analyze the spectral density for the π orbital in Sec. 3.5.4 before we compare
the Kondo temperature calculated from the line shape of the spectra density ver-
sus zero-bias conductance in Sec. 3.5.5. We continue by checking our results for
stability against deviation from our parameter set in Sec. 3.5.6. The underlying
physics does not depend on the exact set of parameters, and a small deviation is
generally acceptable. However, the Kondo temperature plummets drastically if
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Udd becomes too small. We investigated the dependence of TK on the chemical
potential and found that close to µ = 0 the Kondo temperature is exponentially
suppressed (Sec. 3.5.7). We continue with an attempt to adjust the Coulomb
matrix dynamically in Sec. 3.5.8 before finishing with a summary in Sec. 3.5.10.

3.5.1 Unified Picture of the Different Regimes

Before we review our numerical results, let us compile everything into a single
schematic diagram as a guideline for the following sections. Fig. 3.16 shows the
local orbitals and their filling for the weak [Subplots 3.16 (a)-(c)], the intermediate
[Subplots 3.16 (d)-(f)], and the strong hybridization regime [Subplots 3.16 (g)-(i)].
We depict the arrangement for p and n doping as well as for charge neutrality
(µ ≈ 0). Around µ ≈ 0, the pseudo-gap DOS suppresses Kondo screening. It
is indicated by the schematic V-shape of the band. The different regimes and
various fixed points are discussed later in detail.

In the weak hybridization regime, the vacancy shows a unscreened local mo-
ment for most µ except for large n doping. The Kondo temperature surpasses T
only for large µ > 0. The d orbital is always half-filled due to the high Coulomb
repulsion whereas the π orbital is prone to double filling. The strong Hund’s rule
coupling aligns the spins, and level repulsion is weak due to the small hybridiza-
tion.
The intermediate hybridization regime is characterized by Kondo screening for
large p and n doping. The d orbital is still half-filled, but the π orbital is either
empty or singly occupied as a result of the stronger level repulsion. The spins of
the electrons again form a triplet due to the Hund’s rule coupling.
In the strong hybridization regime, the π orbital remains empty for any chemical
potential because it is shifted above the Fermi level. This time there is a Kondo
screening for p doping. On the other hand, the d orbital fills up for n doping
creating a singlet and preventing the Kondo effect to occur.

3.5.2 Mapping of the Parameter Space

Let us first look at the whole parameter space at the experimental T = 4.2 K [9].
All calculations in this section are done for a DOS sampled in reciprocal space
(solid line in Fig. 3.4) and level repulsion based on the Z factor Eq. (3.4.7). We
use a discretization parameter Λ = 1.81 and keep N = 2000 states after every
NRG truncation. We reach the desired temperature for a Wilson chain of length
Nit = 34 and β = 1.225. The results of this chapter are for the most part
published in Ref. [19].

The physics at T = 4.2 K can roughly be partitioned into the three different
regimes discussed above based on the hybridization strength Γ0. The bound-
aries between these regimes do not represent sharp phase boundaries but broad
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Figure 3.16: Schematic representation of the vacancy levels and filling for the weak
(top row), intermediate (middle row), and strong hybridization regime (bottom row)for
p doping (µ < 0), around charge neutrality (µ ≈ 0), and for n doping (µ > 0). The
dotted line represents the Fermi energy. The pseudo-gap DOS is portrayed by the linear
slope for µ ≈ 0.

Table 3.1: Level positions and Coulomb interactions for the sampled DOS and Z factor
based level repulsion for each of the three different regimes. Data published in Ref. [19].
Regime DOS level repulsion εd/eV επ/eV Udd/eV Udπ/eV Uππ/eV JH/eV Γ0/eV
weak t, t′ Z factor −1.21 0.01 2.00 0.10 0.01 0.35 1.00
intermediate t, t′ Z factor −1.38 0.18 2.00 0.10 0.01 0.35 1.70
strong t, t′ Z factor −1.47 0.27 2.00 0.10 0.01 0.35 2.10

crossover regions instead. The Coulomb interactions and level positions for a
single representative Γ0 for each regime are listed in Tab. 3.1.

As we vary the chemical potential and the hybridization strength, the sys-
tem approaches one of seven different fixed points (cf. differently colored areas in
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Fig. 3.17): three local moment configurations (LM-a, LM-b, LM-c), three strong
coupling (SC-a, SC-b, SC-c), and one frozen impurity (FI) fixed point. Not all
FPs are stable, as we are going to see. Fig. 3.17 shows the color coded product
of the total local occupation times impurity entropy. The entropy is calculated
as discussed in Sec. 2.3.
The local occupation of the vacancy changes twice as we sweep from weak to
strong hybridization regardless of the applied chemical potential. The only excep-
tion is a narrow region for high p doping µ < −70 meV where both local orbitals
are half-filled even for the smallest hybridization strength considered here.
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Figure 3.17: Different regimes for finite temperature T = 4.2 K as function of chem-
ical potential µ and hybridization strength Γ0. The plot is colored according to the
product of local occupation and local entropy nlocSloc. The used parameters are listed
in Tab. 3.1. Solid black lines indicate the three different regimes (weak, intermediate,
and strong hybridization). Each colored area is labeled by the fixed point of the system
for finite T = 4.2 K as well as the impurity occupation of the ground state. Taken
from [19].

Let us transverse through the parameter space by picking a number of selected
hybridization strengths and varying the chemical potential. For the weakest hy-
bridization taken into consideration, Γ0 ≈ 0.5 eV, the system approaches one of
two local moment fixed points depending on µ (LM-a and LM-b in Fig. 3.17).
Interestingly, the lower lying d orbital is only half filled in both cases while the
π orbital is either doubly occupied (LM-a) or singly occupied (LM-b). This in-
verted occupation where the orbital with the higher single particle energy gets
filled first is a direct result of the vastly different intra-orbital Coulomb repulsion
Udd � Uππ. If we decrease the chemical potential while keeping Γ0 constant, an
electron gets delocalized and there is a charge crossover line from three to two
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electrons (LM-a to LM-b) defining a charge crossover chemical potential µ3→2
cc (Γ0).

These crossover values are not critical values due to the finite temperature as we
discuss later in Sec. 3.5.2.1 and Sec. 3.5.3.

A third fixed point emerges for slightly higher, but still relatively weak hy-
bridization Γ0 = 1 eV which represents the ‘weak hybridization regime’. The
LM-a fixed point is unstable and we see a crossover to a strong coupling fixed
point (SC-c) for large positive µ. The electrons in the π orbital form a singlet and
the dangling spin of the d electron gets screened below a Kondo scale TK . For
µ smaller than the charge crossover value µ3→2

cc (1 eV) ≈ 60 meV, the spins align
ferromagnetically in a local triplet state. This spin s = 1 LM fixed point extends
to p doping and is unstable as the triplet will eventually be screened partly by
the conduction band (underscreened or undercompensated Kondo effect [137]).
However, the Kondo temperature TK for the underscreened triplet is small com-
pared to T . If we decrease T further, we find another crossover to a SC fixed
point (see Fig. 3.18 for slightly larger Γ0 ∼ 1.25 eV). This picture changes when
we increase µ > µ3→2

cc above the charge crossover value. Because both π electrons
form a singlet state, the single d electron is left alone providing a dangling spin
that is then screened by the conduction electrons. The smaller µ the smaller the
Kondo scale TK regardless of the nature of the SC fixed point (conventional or
underscreened) as the effective coupling is diminished by the linearly decreasing
DOS. The difference in Kondo temperatures between underscreened triplet (p
doped) and conventional screening (n doped) has already been observed in recent
NRG calculations [138]. In addition, it has been shown that flipping the sign of
the chemical potential but keeping the absolute value does not result in a sym-
metric TK even for a conventional s = 1/2 Kondo problem [17, 110]. Thirdly, the
hybridization function is asymmetric on its own (cf. Fig. 3.4) naturally leading
to different effective hybridization strengths for n and p doping.

The ‘intermediate hybridization regime’ can be found for Γ0 ' 1.7 eV where
both local orbitals drift apart even further which in turn leads to a second charge
crossover line µ2→1

cc . At this fixed Γ0, the crossover occurs for µ2→1
cc ≈ 10 meV

(Fig. 3.17). Below this crossover value the vacancy is only occupied by one
single electron that rests in the lower d orbital. The system is therefore close
to an s = 1/2 local moment fixed point (LM-c) for µ < µ2→1

cc . The moment is
screened by the conduction band if the system resides deep in the p doped regime
(µ ≈ −90 meV, SC-a). For intermediate but negative µ the Kondo temperature
TK < T and the moment remains unscreened at finite T > TK(µ) .
For µ > µ2→1

cc , the system stays close to the LM-b fixed point. This fixed point,
however, is unstable and the triplet eventually gets partly screened. Since the
Kondo scale depends exponentially on the chemical potential due to the pseudo-
gap DOS, the strong coupling fixed point is only reached for high n doping µ ≈
100 meV.

We now turn to the ‘strong hybridization regime’ for Γ0 = 2.1 eV. The p
doped region remains the same compared to Γ0 = 1.7 eV. It is partitioned into
LM-c for small and SC-a fixed point for large absolute chemical potential. The n
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Figure 3.18: Different regimes for T = 1.6 · 10−8 K as function of chemical potential
µ and hybridization strength Γ0. The plot is colored according to the product of local
occupation and local entropy nlocSloc. The used parameters are listed in Tab. 3.1. Taken
from [19].

doped regime, on the other hand, changes drastically due to level repulsion and
increased coupling. It is dominated by a single stable frozen impurity fixed point
(FI) where the π orbital is completely empty while the d orbital is partly filled.
Interestingly, it is neither singly or doubly occupied but exhibits a fractional filling
close to the valence fluctuation point value nd ≈ 4/3. The exact value depends
on Γ0 and µ and varies slightly. However, the ground state calculated during
the NRG is a doubly occupied state. A fractional part of the second electron is
therefore delocalized and spread over the first sites of the Wilson chain. Only a
third of the electron is actually localized at the vacancy while two third rest in
the band.

Let us now lower the temperature T = 1.6 · 10−8 K and examine the stability
of each fixed point (Fig. 3.18). Overall, the LM regimes shrink at the expense
of the SC regimes while the FI regime is stable. The LM-c regime for strong
hybridization strength vanishes almost completely and is reduced to a small cor-
ridor around the only stable line of LM fixed points µ = 0. Apart from this line,
we expect the LM to be eventually screened by the band if T is only sufficiently
small. We investigate the TK(µ) behavior in Sec.3.5.7. In addition, all charge
crossover lines cease to be broad crossovers and turn into sharp transitions.
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Figure 3.19: Charge crossover potential µcc as function of Γ0. The points are the
local maxima of dNloc/dΓ0. The crossover curve is approximated by two linear fits. (a)
Crossover Nloc = 3→ 2. (b) Crossover Nloc = 2→ 1. The fitting parameter and ranges
are listed in Tab. 3.2.

3.5.2.1 Local Charge Crossover

Our vacancy mode exhibits two charge crossovers as shown in Fig. 3.17. Both
crossover curves show an almost linear µcc(Γ0) dependency for the most part and
can be reasonable approximated by two 1st order polynomials each (Fig. 3.19,
fitting parameters in Tab. 3.2).

Table 3.2: Fitting parameter for 1st order polynomial µ(Γ0) = aΓ0 + b. Column Γr
0

indicates the range that is used for the fitting procedure.
Occupation change Γr

0/eV a b/eV
Nloc = 3→ 2 [0.50, 0.80] 0.3091 −0.2346

[1.00, 1.18] 0.2133 −0.1506
Nloc = 2→ 1 [1.30, 1.83] 0.2725 −0.4527

[1.00, 1.18] 0.6830 −1.206

Fig. 3.20 shows the spectral density and local occupation at the charge crossover
between Nloc = 2 and Nloc = 1 electrons for Γ0 = 1.7 eV. For finite T = 4.2 K the
crossover takes place between µ = 8−12 meV. All ρd tend to zero for ω ≈ 20 meV
regardless of µ [Fig. 3.20 (a)]. The behavior for positive frequency differs depend-
ing on the local occupation. For µ smaller than the crossover scale µ2→1

cc the
spectral density shows a peak at ω ≈ 50 meV. This peak gradually shifts to-
wards higher energy ω ≈ 150 meV as the chemical potential increases. Note that
all curves cross each other in a small region around µ ≈ 110 meV. The shift is
accompanied by a filling of the π orbital [Fig. 3.20 (b)]. The d orbital, on the
other hand, remains approximately half-filled. The π orbital is empty for small
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µ and half-filled for chemical potential above the crossover scale. This crossover
turns into a quantum phase transition for T → 0, and the occupancy jumps at
µ = 9.6 meV for Γ0 = 1.21 eV.

Figure 3.20: (a) Spectral functions for fixed hybridization strength Γ0 = 1.7 eV and
small span of µ. The smallest values correspond to double occupation while the largest
one belong to The used parameters are listed in Tab. 3.1. Taken from [19].

3.5.2.2 Influence of the DOS and Interpolation Scheme

Before we touch upon each regime individually, we show that they are a generic
feature of our model. For this we map the different regimes in the parameter
space in Fig. 3.21 for the approximate linear hybridization function as defined in
Eq. (3.1.14). Instead of using the Z factor for level repulsion, we determine both
level positions for the intermediate and strong hybridization regime empirically
and linearly interpolate between these values. Tab. 3.3 lists the relevant level
positions.

The main features presented in the previous mapping Fig. 3.17 are also visible
for the simplified level repulsion and DOS. The main difference is that we only
find one occupation change Nloc = 2 → 1 instead of two charge crossovers. The
second charge transition is expected to occur for smaller Γ0 than we considered
here. A second difference is that the charge crossover line has a different shape
compared to the almost piecewise linear curve in Fig. 3.19 (b). Apart from these
minor differences, the regimes and fixed-points stay the same. However, the
Kondo temperature is generally slightly higher due to the steeper slope of the
DOS close to the Dirac point and SC regimes are more pronounced for the same
temperature.
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Figure 3.21: Regimes for T = 4.2 K for the approximate linear hybridization function
Eq. (3.1.14) and empirical level repulsion Eq. (3.4.8). All parameters are listed in
Tab. 3.3. Only the intermediate and strong hybridization regime are visible for this
parameter set. The dashed line indicates the change of the ground state to better
differentiate between FI and SC regime.

The suppression of the Kondo effect close to µ = 0 is driven by the pseudo-gap
and present for both choices for the DOS. The exact slope or asymmetry of the
DOS manifests itself only in minor corrections. The same is true for the type
of level repulsion. Diagonalization based on the Z factor is arguably the more
realistic method but a simple linear interpolation is sufficient and captures the
essential physics.

3.5.3 Individual Regimes for Finite and Vanishing Temper-
ature

In the following we present each regime individually by choosing a single rep-
resentative Γ0 and varying the chemical potential. We characterize the weak,
intermediate, and strong hybridization regime by means of the local entropy, lo-
cal occupation, electron arrangement, and spectral function. We compare three
different setups: (i) t, t′ DOS and Z factor level repulsion, (ii) t, t′ DOS and
linear interpolation, and (iii) approximate DOS and linear interpolation. The
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Table 3.3: Level positions and Coulomb interactions for the approximated and sampled
DOS and linear interpolation level repulsion for each of the three different regimes.
Regime DOS level repulsion εd/eV επ/eV Udd/eV Udπ/eV Uππ/eV JH/eV Γ0/eV
weak t, t′ linear interp. −0.93 −0.02 2.00 0.10 0.01 0.35 1.10
intermediate approx. linear interp. −1.20 0.15 2.00 0.10 0.01 0.30 1.21

t, t′ linear interp. −1.40 0.17 2.00 0.10 0.01 0.35 1.80
strong approx. linear interp. −1.37 0.18 2.00 0.10 0.01 0.30 1.96

t, t′ linear interp. −1.60 0.25 2.00 0.10 0.01 0.35 2.10

general behavior stays the same regardless of DOS and level repulsion scheme
emphasizing the generic character of the different regimes.

We begin with the weak hybridization regime (Γ0 ≈ 1 eV). It is characterized
by an almost featureless spectral density around ω = 0 for µ < 0 [Fig. 3.22 (a)]
that changes only cautiously as the chemical potential is increased. Kondo physics
emerge gradually for strong n doping µ ≥ 60 meV, which can be seen by the onset
of a Kondo peak at ω = 0. However, this peak is not yet fully developed and the
system is still moving towards the stable low energy strong coupling fixed point,
i.e. lowering the temperature further keeps modifying the form of the spectral
density.

The change in spectral density at high n doping is accompanied by an increase
in local orbital occupation. The occupation of the π orbital switches from one to
two electrons while the occupation of the lower d orbital is basically unaffected [cf.
Fig. 3.23 (a)]. The ferromagnetic Hund’s rule coupling can only stabilize a triplet
state successfully if the chemical potential is small enough. As the potential
increases, JH and Uππ are too weak to prevent localization of another electron in
the π orbital leaving one effective spin s = 1/2 [Fig. 3.23 (a)]. Thus, the overall
picture is that of an underscreened or undercompensated [137] Kondo problem
for µ < 50 meV. Both local electrons align due to the ferromagnetic coupling
while the hybridization strength is yet too small, diminished by the vanishing
pseudo-gap DOS, to drive the system away from a local moment fixed point.
This picture changes as soon as one crosses over to high n doping. The third
electron pairs off with the already present π electron, creating a singlet. This
renders the underscreened to a conventional Kondo problem with a higher Kondo
temperature as before [138].

When we increase the hybridization (Γ0 ≈ 1.7 eV) we arrive in the intermedi-
ate hybridization regime. Here, the spectral density reflects the influence of the
pseudo-gap DOS: Kondo physics is exponentially suppressed close to the Dirac
Point |µ| → 0 and present for stronger doping (Fig. 3.24). The finite temperature
spectral density shows a Kondo peak that is only visible for either high p or n
doping while TK vanishes for small absolute values of µ. In the p doped region,
an onset of the Kondo peak appears around µ = −40 meV albeit not yet fully
developed for T = 4.2 K. The peak continues to grow if the chemical potential
is further lowered. The n doped regime shows similar behavior. Here, a Kondo
peak starts to develop around µ = 60 meV and continues to grow as µ increases.
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Figure 3.22: Spectral density of the d orbital ρd(ω) for the weak hybridization regime
normalized by the maximum ρ0 of all ρd(ω). The curves are partitioned according to
(a) p doping and (b) n doping. The numbers inside the panels represent µ. The dashed
line stands for the realistic t, t′ hybridization and the dotted line depicts the realistic
t, t′ hybridization with the addition of level repulsion based on the Z factor. The used
parameters are listed in Tab. 3.1 and Tab. 3.3. Taken from [19].

Figure 3.23: Spin dependent occupation of both the d orbital, nd,σ (solid), and ZM,
nπ,σ (dashed). The hybridization is obtained by (i) approximated Γ(ω) (blue), (ii) t, t′

TB calculations (red), (iii) t, t′ TB calculations with the addition of level repulsion
based on the Z factor (Eq. (3.4.7), green). The occupation is shown for each regime:
(a) weak hybridization, (b) intermediate hybridization, (c) strong hybridization. The
used parameters are listed in Tab. 3.1 and Tab. 3.3. Taken from [19].
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Figure 3.24: Spectral density of the d orbital ρd(ω) for the intermediate hybridization
regime normalized by the maximum ρ0 of all ρd(ω). The curves are partitioned according
to (a) p doping and (b) n doping. The numbers inside the panels represent µ. The solid
line stands for the approximated Γ(ω), the dashed line for the realistic t, t′ hybridization,
and the dotted line depicts the realistic t, t′ hybridization with the addition of level
repulsion based on the Z factor. The used parameters are listed in Tab. 3.1 and Tab. 3.3.
Taken from [19].

The overall tendency is the same for n and p doping, i.e. higher absolute values
of µ yield more pronounced peaks.

The microscopic picture is distinctly different from the weak hybridization
regime in case of p and n doping. Starting from small chemical potential the
d orbital is half-filled while the ZM is essentially empty [Fig. 3.23 (b)]. The
electron creates a local moment that is in turn screened by the band resulting in
the pronounced Kondo peak for small chemical potential [Fig. 3.24 (a)]. The peak
vanishes gradually as the chemical potential is increased due to the DOS while
the occupation remains unchanged. The system is located in-between a strong
coupling fixed point for large negative chemical potential and an unstable local
moment fixed point closer to µ = 0. The Kondo temperature shows a strong µ
dependence so that sweeping through µ corresponds to traversing the crossover
between local moment and strong coupling.

A second electron will be localized on the impurity around µ = 0. Due to
the strong Udd Coulomb repulsion on the lower lying d orbital and the significant
ferromagnetic Hund’s rule coupling between d and π orbital, the second electron
is localized in the π orbital [Fig. 3.23 (b)]. This change is visible in the spectral
density by a shift of spectral weight from around ω = 50 meV to higher energies
(Fig. 3.24 (b) curves for µ = 0 and µ = 20 meV). Both electrons form a triplet
state due to JH which is then screened by the band resulting in an underscreened
Kondo effect. The crossover from the s = 1 unstable local moment fixed point
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to the stable underscreened Kondo fixed point is analogous to the crossover for p
doping. A Kondo peak, yet not fully developed, is visible as µ is increased.

Figure 3.25: Spectral density of the d orbital ρd(ω) for the strong hybridization regime
normalized by the maximum ρ0 of all ρd(ω). The curves are partitioned according to (a)
p doping and (b) n doping. The numbers inside the panels represent µ. The solid line
stands for the approximated Γ(ω), the dashed line for the realistic t, t′ hybridization, and
the dotted line depicts the realistic t, t′ hybridization with the addition of level repulsion
based on the Z factor. The used parameters are listed in Tab. 3.1 and Tab. 3.3. Taken
from [19].

The strong hybridization regime for Γ0 = 2.1 eV differs from the previous
regimes in two key aspects: the π orbital remains essentially empty for all relevant
chemical potentials and the stable low temperature fixed point for n doping is
a frozen impurity and not a strong coupling one. High p doping yields a singly
occupied d orbital as it was the case for weak and intermediate hybridization
as well [Fig. 3.23 (c)]. There is only a small evolution in the d occupation from
nd,σ ≈ 0.55 to nd,σ ≈ 0.65 as µ is changed. This shift occurs for small n doping,
the exact value depending on hybridization function and level repulsion. For the
parameters used here, the approximate hybridization results in the earliest shift
(solid blue curve) at around µ = 0 while the realistic t, t′ DOS and Z factor based
level repulsion causes a crossover at µ = 30 meV.

We turn to the impurity entropy. Before, we showed the entropy times lo-
cal occupation for singular temperature points when we mapped the parameter
space. Fig. 3.26 depicts the impurity entropy for Γ0 = 1 eV as a function of the
temperature T and the chemical potential µ. Subplot (a) shows the evolution
down to the experimental accessible regime T = 4.2 K and subplot (b) extends
the temperature range to T ≈ 10−8 K. For finite temperature T = 4.2 K the sys-
tem has yet to reach its stable fixed points. The system is clearly divided at the
charge crossover µ2→3

cc by a sharp quantum phase transition. For µ > µ2→3
cc and
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low T , the impurity entropy assumes Sloc = 0. This reflects the formation of the
Kondo singlet and screening of the magnetic moment of the d electron. For higher
temperature T ≈ TK there is a crossover to Sloc ∝ ln(2) which corresponds to the
unstable LM fixed point. Even higher T results in multiple additional crossovers
where the energy difference between ground state and the next lowest states be-
come small compared to T . For the low temperature region where µ < µ2→3

cc ,
Sloc ∝ ln(3) as the local configuration is that of a triplet.

Fig. 3.27 shows the entropy for intermediate hybridization strength. We again
find a sharp phase transition for T → 0 at µ1→2

cc . For µ > µ1→2
cc , the entropy

assumes Sloc ∝ ln(2) for small T since the configuration is that of a underscreened
triplet with a dangling s = 1/2 spin. For T > TK , the entropy tends to ln(3)
and eventually Sloc > ln(3) as T increases further. On the other side of the
phase transition the stable fixed point is a conventional SC. Only a single electron
occupies the d orbital and the entropy is thus Sloc = 0 for small T and Sloc ∝ ln(2)
for larger temperature. For µ close to zero, TK is suppressed and we find either
Sloc ∝ ln(3) or ∝ ln(2) depending on µ with respect to µ1→2

cc .

The behavior for strong hybridization is different in the sense that there is
no sharp transition present even for small T (Fig. 3.28). For small temperature
the entropy assumes either zero or ∝ ln(2). Finite entropy corresponds to a
conventional LM fixed point with a single electron occupying the d orbital which,
however, is only stable for µ = 0. There is a small range around µ = 0 where
Sloc 6= 0 still but where a lower T will eventually result in vanishing entropy. The
FI and SC regime both correspond to Simp = 0. The crossover is accompanied by
a slight increase of d orbital occupation which can occur for small p or n doping
(discussion in Sec. 3.5.3, Fig. 3.23).
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Figure 3.26: Local entropy Sloc(T, µ) for the weak hybridization regime Γ0/eV = 1, t, t′

hybridization function and z factor interpolation. (a) Temperature down to T = 4.2 K
(experimental accessible regime). (b) Sloc(T, µ) down to T = 1.6 · 10−8 K. The colorbar
applies to both plots.

Figure 3.27: Local entropy Sloc(T, µ) for the intermediate hybridization regime
Γ0/eV = 1.7, t, t′ hybridization function and z factor interpolation. (a) Temper-
ature down to T = 4.2 K (experimental accessible regime). (b) Sloc(T, µ) down to
T = 1.6 · 10−8 K. The colorbar applies to both plots.

Figure 3.28: Local entropy Sloc(T, µ) for the strong hybridization regime Γ0/eV = 2.1,
t, t′ hybridization function and z factor interpolation. (a) Temperature down to
T = 4.2 K (experimental accessible regime). (b) Sloc(T, µ) down to T = 1.6 · 10−8 K.
The colorbar applies to both plots.
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3.5.4 Green’s Functions of the π Orbital and Zero-Mode
Peak

Until now we focused on the spectral densities for the d orbital since the d or-
bital governs the Kondo physics. The tunneling current measured in experiment,
however, is a superposition of contributions from d orbital, π orbital, and the
substrate. The experimental dI/dV curves therefore show also features that are
related to the π orbital, for example the position of the zero-mode peak.

Figure 3.29: ρπ(ω) by Lehmann representation for T = 4.2 K in the intermediate
hybridization regime Γ0 = 1.21 eV. (a) For µ = −60 meV and different broadening
parameter b. (b) For varying µ and constant b = 0.4. The approximate DOS and linear
interpolation for level repulsion were used. The parameters are listed in Tab. 3.3. The
figure is taken from Ref. [19].

Fig. 3.29 shows the spectral density for the π orbital ρπ(ω) for T = 4.2 K in
the intermediate hybridization regime for the approximate DOS and linear inter-
polation based level repulsion. The vacancy parameters are listed in Tab. 3.3.
We calculate ρπ by a Lehmann representation of the NRG data (cf. Sec. 2.3.1
and Ref. [45, 46]).
Subplot 3.29 (a) depicts the spectral density as a function of the broadening
parameter b. It is used in a logarithmic Gaussian broadening function [11] to
transform the discrete set of excitations into a continuous function. ρπ exhibits
two main features: a single sharp peak (ZM) located slightly above Fermi energy
around ω ≈ 75 meV, as well as a much smaller peak at higher energy ω ≈ 350 meV
that we link to Hund’s rule excitations. If b = 0.8, this smaller peak becomes
washed out to such a degree that it is not visible any more. Since the calculations
are done in thermodynamic equilibrium, the fluctuation-dissipation theorem (see

62



3.5. The Numerical Renormalization Group applied to Graphene

for example Ref. [139]) holds that connects the spectral density to the lesser
Green’s function G<(ω) via the Fermi function G<(ω) ∝ ρ(ω)f(ω − µ). We
can thus visualize the filling of the π orbital because the integral over the lesser
Green’s function equals the electronic occupation. Almost all spectral weight
rests above the Fermi energy and, therefore, the π occupation is zero. This is in
accordance with the occupation in Fig. 3.23 (b).
The ZM in Fig. 3.29 (b) shows the same simple dependence on µ as in experi-
ment (Fig. 2 (a) in Ref. [9]) where higher µ shifts the peak closer to ω = 0. The
vanishing occupation eventually changes as the ZM is shifted to smaller energies
when µ > µ1→2

CC increases beyond the charge crossover.

While the d orbital governs the Kondo physics in our model, the π spectral
function provides us with additional insight about the ZM. We do not have a
theory for the admixture of d, π, and substrate to model the experimental dI/dV
curves. The mixing should show at least a Γ0 dependence as the hybridization
strength parameterizes the local curvature, but might include non-trivial effects
due to the high applied voltages. Consequently, we did not attempt to superpose
d and π spectral densities to precisely match the experimental results.

3.5.5 Calculation of Kondo Temperature

Hitherto, we looked at spectral functions that, depending on the finite temper-
ature regime, showed a more or less developed Kondo peak pinned to zero bias.
The width of the peak is tightly linked to TK , as discussed in Sec. 2.1. The Kondo
resonance develops at ω = 0 as the temperature is lowered below TK . Although
it is fully fleshed out only well below TK , a small onset of a peak will be visible
for temperatures above TK . This formation as well as the concomitant screen-
ing process is continuous, hence TK being a crossover scale. Knowledge of this
characteristic energy is thus crucial for any secondary experimental study or even
technical application.

In this section, we compare TK calculated from experimental STM dI/dV
curves [9] to our NRG results [19]. We employ two different methods for this
comparison. First, we apply a Fano fit (FF) directly to the spectral density for
finite temperature in close analogy to the experiments. Then we calculate the
zero-bias conductance and use the empirical Goldhaber-Gordon (GG) formula [55]
to determine TK in the limes T → 0.

Fig. 3.30 shows the experimental values for TK ordered by hybridization
strength from top to bottom [9]. The first two curves represent the strong hy-
bridization regime where there is only a Kondo peak for p doping. The width
of the peak is substantial with a corresponding maximum TK ≈ 200 K. Further-
more, the resonance remains almost constant in width up to µ ≈ −40 meV where
TK vanishes rapidly and remains zero afterwards.

The next three curves belong to the intermediate hybridization regime where
a finite TK is found for p and n doping. The p doped regime is similar to before:
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below µ = −75 meV, TK ≈ 50 K stays almost constant until it drops sharply to
zero. Above the DP, TK ≈ 50 K again after an equal steep rise. This rise sets in
in close proximity to the DP (µ ≈ 10 mev) in case of the third data set (purple
curve).

Figure 3.30: TK calculated via Fano
fit of the experimental dI/dV zero-bias
anomaly line shape. The first two curves
(orange, red) belong to the strong, the
next three (purple, green, blue) to the
intermediate, and the last (black) to the
weak hybridization regime. If there is no
measurable peak at zero bias, TK = 0.
The dashed lines are a guide to the eye.
Taken from Ref. [9].

The last curve (black) has been as-
signed to the same regime as the pur-
ple, green, and blue curves in Ref. [9].
We will, however, follow our argument
in Ref. [19] and classify this data set as
weak hybridization. There is no Kondo
peak visible until µ = 50 meV above
which TK ≈ 50− 100 K.

Fig. 3.31 compares the different TK
calculated from the NRG data. The
solid lines represent Kondo tempera-
tures via FFs for T = 4.2 K while the
dashed lines stand for calculations by
the empirical GG formula. The GG ap-
proach requires that the zero-bias con-
ductivity as a function of T is already
converged and that it assumes a plateau
value for small T . We therefore reduce
the temperature to T = 1.6 · 10−8 K.
A FF could be performed at finite T ,
however, it will show a strong tempera-
ture dependence. Here, we forgo a small
temperature extrapolation and show the
values for T = 4.2 K only.

The first two curves (orange, red) be-
long to the strong hybridization regime.
At around µ = −100 meV both calcula-
tions yield similar results TK ≈ 100 K
and TK ≈ 40 K for Γ0 = 2.4 eV and
Γ0 = 2.1 eV respectively. Below µ = −100 meV the Kondo temperature for
the GG approach is larger TGG

K > TFF
K . For −100 meV < µ < 0 the FF gives

almost constant TFF
K while the GG values drop off rapidly. This discrepancy can

be understood when taking finite temperature corrections to the FF into account.
The Kondo resonance for the given temperature is still developing, i.e. the tem-
perature is still above the true Kondo scale, and the system has yet to reach its
stable low temperature fixed point. The peak is much smaller and the value TFF

K

is thus strongly modified since the width at half maximum height of the peak
differs from the T → 0 result. Close to the DP, TFF

K abruptly vanishes as there is
no resolvable peak in ρd(ω). The GG calculation still yields a finite result albeit
exponentially small due to the pseudo-gap DOS (further discussion about the
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behavior close to the DP can be found in Sec. 3.5.7). There is no Kondo effect
for n doping and thus TK = 0.

The next two lines (purple and green) represent the intermediate hybridization
regime with a Kondo effect for p and n doping. The Kondo temperature TFF

K

exceeds TGG
K significantly almost everywhere by one order of magnitude. The

main difference comes about due to the finite temperature and shrunken Kondo
peak. We find that TFF

K ≈ 20−40 K except close to the DP while TGG
K is negligible

except for high p or n doping.

The last curve (blue) belongs to the weak hybridization regime. The p doped
region does not show a Kondo effect at all while it sets in for n doping at around
µ ≈ 60 meV. FF calculation yields Kondo temperatures of ∼ 20 K whereas TGG

K

is significantly smaller and just barely reaches O(1 K) for µ ≥ 100 meV.
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Figure 3.31: TK calculated by Fano fit from the zero-bias anomaly of ρd(ω) for fi-
nite T = 4.2 K (solid lines, rhombus) and via Goldhaber-Gordon fit of the zero-bias
conductivity (dashed lines, circle) for T = 1.6 · 10−8 K. The t, t′ DOS and Z factor
level repulsion is used. The first two curves belong to the strong, the next two to the
intermediate, and the last to the weak hybridization regime. The lines are understood
to be guides to the eye. Taken from Ref. [19].

Overall, our model reproduces the experimental results [9] qualitatively very
well. We find a good agreement when comparing finite temperature FFs to the
experimental values. They match in order of magnitude and show the same µ
dependence to a first approximation, i.e. a plateau like behavior for doping away
from the DP. However, we find that the results from our NRG calculations are
generally off by a factor of two in comparison to the experimental data across all
regimes. For example, in the intermediate regime the authors of Ref. [9] observe
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TK ≈ 50 meV for p and n doping while our findings are TK ≈ 25 − 30 meV.
This difference raises the question if our model misses a key physical process
that would boost TK . Yet, introducing more interactions is not expedient at the
current state: our model is already complex to such a degree that TK is a highly
non-trivial function that depends sensitively on all local parameters. The different
regimes are intrinsic to our model, as we discuss in Sec. 3.5.6, but the shape of
the spectral density ρd(ω), and hence TK , does change significantly. Also, the
fitting procedure itself is rather unreliable in such a way that different starting
parameters or a varied number of data points result in different TK . It is therefore
hard to justify another interaction based on present qualitative discrepancies.

Still, one main quantitative difference between the experimental and our cal-
culated TK is the existence of a Kondo peak close to the DP in the intermediate
hybridization regime. In the experiments, a Kondo peak as close as µ ≈ 20 meV
is observed (Fig. 3.30, purple curve) which we could not reproduce in our calcu-
lations for any parameter set taken into consideration even when using a finite
temperature FF. This inability might be due a number of reasons such as a dif-
ferent location of the DP in the experiment or missing modifications to the DOS
that strengthen PH asymmetry further. The DP does not rest at zero bias for re-
alistic graphene as can already be seen from next-nearest neighbor tight-binding
considerations [Eq. (3.1.8)]. It is rather chosen to be located at zero bias in the
framework of STM by applying a voltage and by shifting the DP to ω = 0 in the
context of the NRG. An offset in the location of the DP could explain different
results. Another possibility is a missing asymmetry term that further increases
the linear slope of the DOS pushing TK accordingly. We only considered next-
nearest neighbor tight-binding interactions but we might require a more elaborate
modeling due to (i) the high applied voltages ∼ 20V that influence the electronic
structure or (ii) modification to the local DOS by adjacent carbon vacancies.
However, we did not delve into any specific adjustment to our model any further.

3.5.6 Stability Against Parameter Deviations: Variation of
Udd and εd

We investigate the stability of the different regimes by varying the level position
εd and the Coulomb repulsion Udd. Fig. 3.32 compares the d orbital spectral
density for εd listed in Tab 3.1 (reference curves, black) to calculations where εd
is shifted by 15% percent to either ε+d = −0.85|εd| (red curves) or ε−d = −1.15|εd|
(blue curves). We refer to the reference energy as ε0d and to the shifted variables
as ε±d in the following. Since ε0d < 0, this means ε−d < ε0d < ε+d . We define ‘higher’
and ‘lower’ with regard to this inequation, i.e. ε+d is higher than ε0d. All other
parameters remain the same.

Fig. 3.32 (a) shows the weak hybridization regime. Here, the formation of a
Kondo peak in the n doped regime is significantly enhanced by a energetically
lower lying d orbital (blue curve). The Kondo effect sets in around µ = 60 eV
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Figure 3.32: ρd(ω) for (a) weak, (b) intermediate, and (c) strong hybridization
strength and varying εd while all other parameters are kept the same, see Tab. 3.1.
The t, t′ DOS and Z factor interpolation is used in all cases. The black curves stand
for the original parameter set, ε0d, and the blue and red curves represent calculations
with ε±d = −|ε0d(−1 ± 0.15)| respectively. The curves in each subplot are divided by
the maximum ρ0,regime of the original parameter set, i.e. maximum of the black curves,
where the subscript stands for weak, intermediate, and strong regime. The chemical
potential is listed next to each curve. The curves are shifted by an constant offset for
better visibility.

while a visible peak only appears at µ = 80 eV for the reference parameter set
and an even higher ε+d (red curves) hampers Kondo physics further. The p doped
regime is mainly unaffected by any small change in εd as both electrons that
occupy the vacancy form a triplet state and adding another electron or hole must
overcome the triplet binding energy.

The spectral functions for high p doping in the intermediate hybridization
regime in Fig. 3.32 (b) show the opposite behavior: the higher εd the stronger
the Kondo peak. The Kondo peak is noticeable deformed and largely broadened
as it begins to shift away from zero bias for µ = −120 meV and ε+d . When
the chemical potential increases, the peak vanish at around µ = −40 meV as
hybridization is suppressed by the vanishing DOS regardless of εd. The curve for
ε−d shows a pronounced peak that is shifted gradually towards ω = 0. It vanishes
rapidly around µ = 20 meV as the total vacancy occupation changes from one to
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two electrons and a triplet state is formed. The lower ε−d initially favors Kondo
screening in the n doped regime yielding a strongly pronounced Kondo peak at
µ = 80 meV. However, higher µ results in a breakdown of Kondo physics and
gradual deformation of the Kondo peak as it separates from zero bias. This
behavior is not unexpected since an ever increasing µ must result in yet another
charge crossover from two to three and eventually four electrons. The smaller εd
the earlier this crossover sets in, and the triplet state is destabilized.

We find the same tendency for p doping in the strong hybridization regime in
Fig. 3.32 (c) as for intermediate hybridization. The higher ε+d (red curve) tends
to boost TK as long as µ is not around µ = 100 meV or smaller. Here, the
small chemical potential hinders even a half-filled d orbital and local moment
and Kondo singlet formation is suppressed. The Kondo peak vanishes as one
approaches µ = 0 with the curve for ε−d (blue curve) being the exception. For
this parameter set, a Kondo peak is still visible at µ = −20 meV. In the n doped
regime, all curves show the same behavior: a single peak that is shifted from
zero bias as µ increases. However, the smaller εd the earlier this peak begins to
separate from ω = 0.

The underlying regimes are stable as εd is varied. The two charge crossovers
lines and competition between local triplet, singlet, and doublet state are generic
features of our two-orbital model that are not affected by a small change in εd.
Note, that not every parameter configuration produces reasonable results when
compared to experiment. A key problem is the filling of the d and π orbital deep
in the p or n doped regime where the orbitals are prone to either becoming quickly
unoccupied or doubly occupied. Both level positions must be adjusted carefully in
order to yield a significant Kondo effect at both edges of the spectrum. Generally
speaking, a high εd might boost TK for e.g. p doping in the intermediate regime
while simultaneously hampering Kondo screening for µ > 0 and vice-versa.

Next, let us address the widely different estimates for the Coulomb interaction
that are used in literature [4, 132, 134, 133]. Due to the controversy regarding
the absolute value of Udd, we adopt a pragmatic approach and considered Udd
to be more of a fitting parameter. In this paragraph, we assume a rather small
Udd = 0.5 eV [4] in comparison to the Hund’s rule coupling JH ≈ 0.35 eV from
density functional calculations [117]. Smaller Udd increases local charge fluctua-
tions which in turn boosts TK if one uses a Schrieffer-Wolff transformation as a
guideline [41]. Another advantage is that, at least in a SIAM, the ratio Udd/Γ0

determines TK . This means that one must increase the hybridization for a larger
Udd to still get a comparable TK . The quite large Γ0 remains a key problem in
our approach, as we discuss later in Sec. 3.5.10, and smaller hybridization would
thus be desirable. However, a change in any Coulomb matrix element influences
the local occupation. If Udd is to small, the lower level will quickly become dou-
bly occupied and Kondo physics will be cut off. As a countermeasure, one can
lower the hybridization as well since the d orbital position is dynamically lowered
because of the hybridization with the bands. This shift is then weakened and the
local moment stabilized. Unfortunately, this will reduce TK as well. The effect of
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Figure 3.33: ρd(ω) for intermediate (strong) hybridization regime represented by
solid (dashed) curves. The Coulomb repulsion is Udd = 0.65 eV and JH = 0.35 eV.
The level positions and hybridization strengths for both regimes are Γ0 = 0.4(0.5) eV,
εd = −0.37(−0.40) eV, επ = 0.20(0.23) eV. The temperature is T = 1.6 · 10−5 K. The
approximate hybridization function Eq. (3.1.14) is used. The Kondo peak is present but
very narrow. All curves are divided by the spectral maximum ρ0(µ) of each respective
chemical potential. Taken from Ref. [19].

a smaller Udd is therefore non trivial and hard to predict a priori.

The main problem with a small Udd is the tendency to quickly occupy the d
orbital twice leaving only small room for further parameter adjustment. We have
to increase Udd = 0.65 eV in order to stabilize local moment formation and Kondo
screening. We use the analytical hybridization Eq. (3.1.14) as the most basic
approximation to keep the calculations simple. The spectral density ρd is shown
in Fig. 3.33 for intermediate (solid lines) and strong (dashed lines) hybridization
simultaneously. The general behavior of intermediate and strong hybridization
regime can be verified, however, the Kondo temperature is extremely small and
order of magnitude smaller than anything observed in experiment [19, 9].

3.5.7 Exponentially Suppressed Kondo Temperature Close
To Dirac Point

We now focus on the influence of the pseudo-gap DOS close to the Dirac Point
at µ = 0. For this we rely on the particle-hole symmetrical analytical DOS.
Fig. 3.34 shows the Kondo temperature calculated by a Goldhaber-Gordon fit
of the zero-bias conductance for the intermediate hybridization regime in close
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proximity to the Dirac Point. The Kondo scale decreases exponentially as |µ| → 0
albeit asymmetrically for p and n doping. Since the DOS is symmetrical, this
asymmetry results from the inherently particle-hole asymmetrical parameters for
both vacancy orbitals. In general, TK for n doping is higher than for µ < 0.
Because of the exponentially declining Kondo temperature, we cannot resolve TK
closer to the Dirac Point. But since there is a small remaining DOS for finite
chemical potential, we still expect to see the formation of Kondo physics below
TK . The vacancy decouples from the conduction bands for µ = 0 and the Kondo
effect breaks down.

Figure 3.34: TK(µ) close to the DP for the analytical PH-symmetrical DOS in the
intermediate hybridization regime Γ0 = 1.21 eV. The parameters are in Tab. 3.3. TK is
suppressed exponentially as |µ| → 0. The asymmetric slope is due to the PH-asymmetric
vacancy.

3.5.8 Rotation of Coulomb Matrix

The d and π orbital are indirectly coupled to each other through the hybridization.
This leads to a re-diagonalization of the effective singe particle Hamiltonian,
Eq. (3.4.7), where the actual orbitals d′ and π′ are linear combinations of the
isolated orbitals as we discussed in Sec. 3.4.1. We adopt the prime notation
explicitly in this section to emphasize the difference between the hybridization-
free and the rotated orbitals. The new orbitals can be written as

|d′〉 = αd′|d〉+ βd′|π〉 (3.5.1)
|π′〉 = απ′ |π〉+ βπ′ |π〉, (3.5.2)

where αi and βi, i = d, π fulfill standard normalization restriction |αi|2 + |βi|2 = 1.
The coefficients depend on the hybridization V meaning that mixing does not
occur if V = 0 where thus |d′〉 = |d〉 and |π′〉 = |π〉.

This mixing implies that the whole Coulomb matrix, including inter- and
intra-orbital interactions, ought to be rotated into the new base. Ideally, the
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off-diagonal matrix element in Eq. (3.4.7),
√
ZV , would be small compared to

the isolated level energies, and the prime orbitals would thus retain their original
non-primed character with minor corrections. The intra-orbital repulsion Uπ′π′
would grow slightly at the expense of Ud′d′ which helps to stabilize the occupation
of the π′ orbital and the Kondo effect in the intermediate regime.

However, the off-diagonal element is (presumably unrealistically) large in our
case

√
ZV ∼ O(eV). This leads to a strong admixture of both orbitals and a

likewise strong rotation of the Coulomb matrix elements. All parameters, except
µ, are now directly dependent on the hybridization strength Γ0. This increases the
complexity while simultaneously destabilizing the regimes tremendously. Even
if one arrives at a configuration for e.g. the intermediate hybridization regime,
the strong mixing and concomitant change of the Coulomb matrix elements will
destroy the other regimes. Since our model already incorporated a multitude of
parameters, we omitted this level of additional complexity before.
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Figure 3.35: Spectral density ρd(ω) for the d orbital and for a rotated Coulomb
matrix for (a) p doping and (b) n doping. The curves are either divided by the max-
imum of all spectral densities ρmax (solid lines) or by the maximum of the spectral
density for the respective chemical potential ρmax(µ) (dashed lines). The parame-
ters are (V = 0) εd = −0.8904 eV, επ = 0.0804 eV, Γ0 = 0.7 eV, Udd = 2 eV,
Uππ = 0.01 eV, Udπ = 0.1 eV, JH = 0.35 eV. The admixture to the primed orbitals
is |αd′ |2 ≈ 0.85, |βd′ |2 ≈ 0.15 [see Eq. (3.5.1)]. Lines for consecutive µ are shifted by a
constant offset. µ is written next to each line. This choice of parameters correspond to
the intermediate hybridization regime.

In the experiment, the STM current is generated by tunneling into all local
orbitals as well as the underlying π bands of graphene. This results in a compli-
cated tunnel matrix [140] that adds another layer of complexity to our model. We

71



3.5. The Numerical Renormalization Group applied to Graphene

focused on the spectral function for the d′ orbital before because we were mainly
interested in the Kondo physics, and dropped the complicated linear combination.

In the following, we adjust εd and επ as well as Γ0 by hand in order to find a
configuration that resembles the intermediate hybridization regime. The Coulomb
matrix is then rotated as described above, and we make use of the inverse of the
Γ0-dependent rotation matrix to calculate the Green’s function for the d orbital.
Fig. 3.35 shows ρd for Γ0 = 0.7 eV for (a) p doping and (b) n doping. The spectral
density is depicted twice for each µ: on an absolute scale (solid lines), i.e. the
heights of the functions are directly comparable to each other, and divided by
the maximum of ρd(µ) (dashed lines).
One finds a Kondo effect again for high p or n doping. The effect breaks down
close to the DP, as expected for the pseudo-gap, and the spectral density is
dominated by two side-peaks. Compare this to Fig. 3.24 where we found only a
single broad shoulder.

3.5.9 Anisotropic Hybridization

Let us analyze the hybridization between d orbital and neighboring π orbitals in
more detail. The vacancy is surrounded by three carbon atoms forming a slightly
distorted triangle shape as shown in Fig. 3.36. At the top of the triangle resides
the unpaired d orbital while there is a π orbital at each atom at the base of
the triangle. In a realistic description, electrons can move between d orbital and
both π orbitals. The absolute value as well as the phase of this hopping element
determine the shape of the hybridization function [118].

Figure 3.36: Schematic representation of carbon vacancy with the single unpaired d
orbital at the top of the triangle (blue) and two neighboring π orbitals at the base of
the triangle (orange). V1 and V2 are the hopping elements.
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The hybridization Hamiltonian can then be written as [118, 19]

HHyb =
∑
σ

(V1a
†
1σdσ + V2a

†
2σdσ + h.c.), (3.5.3)

where a†iσ creates an electron in the π orbital located at ~δ1,2 = a/2(1,±
√

3)T from
the missing carbon atom and Vj = |Vj|eiφ are the corresponding hopping elements.
We expect V1 = V2 in a perfectly symmetrical setup. Here, we explicitly allow
both hopping elements to have different phases φi as a result of the deformation
of the lattice induced by the vacancy. The superposition V c0σ = V1aaσ + V2a2σ

results in an effective hybridization function

Γ̃(ω) =
1

N

∑
τ~kσ

(|V1|2 + |V2|2 + 2<[V1V
∗

2 ei~k(~δ1−~δ2)])δ(ω − ετ~k), (3.5.4)

where τ labels the two π bands. If the absolute values of the hybridization are the
same, |V1| = |V2|, one can define a new set of orthogonal operators for even (+)
and odd (-) parity [118, 26, 141]. The respective hybridization function can then
be determined via correctly normalizing the new fermionic commutator relations.
They then take the form

Γ±(ω) =
4|V1|2

N

∑
τ~kσ

δ(ω − ετ~k)

cos2
(
~k(~δ1−~δ2)+φ2−φ1)

2

)
, even parity

sin2
(
~k(~δ1−~δ2)+φ2−φ1)

2

)
, odd parity.

(3.5.5)

Only the even combination contributes whereas the odd linear combination de-
couples if both π orbitals hybridize equally with the d orbital (the situation in
Ref. [118]).

We calculate Γ+(ω) and Γ−(ω) for the full t, t′ tight-binding dispersion and
for vanishing phases φi = 0. The results are shown in Fig. 3.37. We still find the
pseudo-gap behavior for both hybridization functions, Γ±(ω) ∼ |ω|. However, the
even superposition yields a significant flatter slope than the odd combination or
the conventional t, t′ hybridization. This flatter slope is directly correlated to a
much smaller Kondo scale and thus detrimental to explaining the higher TK in
experiment. Fig. 3.38 compares ρd(ω) for the even, odd, and conventional t, t′
hybridization for the same set of parameters to get a rough estimation of the
influence on the Kondo scale.

One can turn on a finite phase difference ∆φ = φ1 − φ2 6= 0. If ∆φ = π,
even and odd hybridization function are switched since cos2(x + π/2) = sin2(x)
and vice versa. We suspect that V1 and V2 might differ in phase and maybe even
in absolute value due to the lattice deformation. This changes the slope of the
hybridization function, which then affects the Kondo temperature. However, a
microscopic theory that describes the local rippling and hybridization elements
Vi is beyond the scope of this work. Our preliminary results in Fig. 3.38 suggest
that the qualitative behavior due to the pseudo-gap is retained, and we did not
delve into the subject any further.
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Figure 3.37: Γ±(ω) from Eq. (3.5.5) for φ1 = φ2 = 0. The sum over ~k was directly
evaluated on a fine mesh. Both hybridization functions show the linear decline near the
DP. Taken from Ref. [19].

Figure 3.38: ρd(ω) for our conventional hybridization function (blue, solid line), the
even (red, dotted line), and the odd superposition (green, dashed line). Γ0 = 1.5 eV
and µ = ±60 meV. In all three cases we used the impurity parameter for the original
t, t′ calculation. The ρd shown belong to the intermediate regime. Taken from Ref. [19].
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3.5.10 Conclusion of the Graphene Chapter

In the last chapter, we focused on theoretical modeling of single carbon vacan-
cies in mono-layer graphene sheets and the interplay between embedded localized
magnetic moments and surrounding electronic band structure. We first reviewed
pristine graphene, the nature of the Dirac Point, and a simple tight-binding ap-
proach for the π electrons that yielded the characteristic pseudo-gap density of
states. The well-known linear electronic dispersion close to the DP is a key in-
gredient for graphene’s various properties. We continued with a discussion about
breaking the perfect honeycomb lattice by means of single carbon vacancies that
is experimentally realized by low energy ion sputtering. We saw how a single
state, the so-called ‘zero-mode’, emerged at the location of a carbon vacancy by
relying on a simple Green’s function approach know from literature. We then ex-
emplified how the broken electronic σ bonds in the vicinity of the missing carbon
atom lead to a Jahn-Teller distortion and a new σ bond.

Next, we moved away from established literature and presented the findings
of our joint collaboration published in a series of two papers [9, 19]. Firstly, we
presented the different characteristic STM spectra observed in experiments car-
ried out by our colleagues at Rutgers University, New Jersey, USA in the group
of Eva Andrei. We continued with a brief discussion about a simplified single
orbital model, its achievements, limitations, and downfalls. Then, we reviewed
a two-orbital model by Cazalilla et al. [116] that served as foundation for our
numerical study and examined three different parameter regimes in the atomic
limit. We finally applied the equilibrium NRG technique and saw how the three
different local configurations serve as precursors to the different experimental
regimes. We discussed the regimes and various aspects in detail and mapped the
whole parameter space for finite and vanishing temperature. We found an ex-
cellent qualitative agreement between our calculations and experiment and could
capture the different regimes and their characteristic dI/dV curves.

However, the model at hand is complex and various aspects are still unsat-
isfying. First of all, the Kondo temperature tends to be roughly a factor of two
too small compared to the experimental results [9]. This discrepancy is negligible
if viewed in context: there are numerous sources of possible deviations in the
theoretical and numerical approach alone that lead to corrections to TK . A short
and not extensive list includes different parameter sets (Sec. 3.5.6), modifica-
tions to the DOS (Sec. 3.5.9), or even different starting parameters for the fitting
procedure. We know that Fano line shape calculations require modifications for
particle-hole asymmetric problems [142] that were omitted in experiment as well
as interpolation for zero temperature. Furthermore, the coupling strength at the
STM tip to the various local orbitals is unknown, and, therefore, we did not add
the Fano-effect explicitly. We conclude that a factor of two is insignificant and
well in the bounds of any systematic error. Even so, it is unlikely that a better
numerical agreement in terms of the raw value of the Kondo temperature provides
further insight into the underlying physics.
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Figure 3.39: Hybridization strength Γ0

as a function of curvature angle θ at the va-
cancy by local topography measurements.
The error bars represent the uncertainty
in the measurement. Γ0 is measured in
units of Γc which defines the transition
from LM to FI ground state for µ = 0
in Ref. [9]. Γ0 > Γc: strong hybridization
regime. Γ0 < Γc: intermediate or weak hy-
bridization regime. Inset: schematic view
of the angle and the neighboring orbitals.
Taken from Ref. [9].

In addition to the quantitative de-
viation, TK ∼ O(K) close to the DP
in the intermediate regime which is not
observed in our numerical study. Since
strong parameter variations will alter
the Kondo effect in every regime, one
can try to cautiously adjust the local
parameters to push TK for n doping by
lowering the level positions εd/π for ex-
ample (Sec. 3.5.6). This results gen-
erally in a higher impurity occupation
and thus in a formation of a triplet
LM and underscreened Kondo effect for
smaller µ. However, the lowered levels
might easily lead to double occupied lo-
cal orbitals if not compensated by larger
Coulomb repulsion which, in turn, ef-
fects TK as well in a hard to predict
manner. It is unlikely that mere fid-
dling with the parameters will increase
TK close to the DP due to the vanish-
ing DOS. For µ → 0, the DOS plays a
crucial role and suppresses any Kondo
effect tremendously (Sec. 3.5.7). It is
rather likely that our model misses the
physical process responsible for a finite TK for 0 < µ < 40 meV. There might
be modifications to the LDOS beyond our simple tight-binding approximation
close to a carbon vacancy. Also, the presumed Kondo resonance measured in the
experiment might instead be a regular excitation peak since one cannot easily
distinguish between both types of resonances in the experiment. For small n dop-
ing, this peak would rest close to zero bias and yield a fake high TK while the real
Kondo effect takes over seamlessly for stronger doping. This two-peak assump-
tion would circumvent the need for an otherwise unrealistic large hybridization
function close to µ = 0.

This brings us to the hybridization strength Γ0 which is another point of
concern. Currently, it is quite high as is the hybridization V =

√
2DΓ0

π
∼ O(eV)

for usual values of Γ0. Even in the small hybridization regime where Γ0 ≈ 1 eV
and D = 8 eV for graphene we obtain V ≈ 2.3 eV which is comparable to the
nearest-neighbor hopping element t employed in our tight-binding approximation.
We recall that the physical origin of the hybridization is the local rippling and
breaking of the orthogonality of the π and σ subsystems. Fig. 3.39 [9] shows the
measures angle θ at the local vacancy. Stronger hybridization is indeed linked
to larger angles. However, the absolute values for θ are rather small and it is
unknown how such a small curvature can induce such a large. An extensive
theory likely requires ab-initio calculations and is beyond the scope of this work.
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Furthermore, the value of the hybridization has direct influence on the Coulomb
matrix as discussed in Sec. 3.5.8. If

√
ZV is comparable to the single particle

level energies, admixture of π and d orbital to the new degrees of freedom is high
which in turn leads to a large rotation of the local Coulomb matrix. As a result,
the three different regimes are hard to pinpoint as any change in Γ0 has a quite
large effect on the orbital occupation and Coulomb matrix elements.

This illustrates the major trade-off and also shortcoming of the theory pre-
sented here. On one hand, one needs a high hybridization strength to ensure just
as high Kondo temperatures, especially close to |µ| → 0. On the other hand, the
high hybridization is questionable, its origin not yet fully understood, and even
counterproductive if one tries to extend the theory and reduce the number of free
parameters.

Despite this criticism, the explanatory power of our model and numerical
calculations is excellent. The major features and different types of vacancies
observed in experiment can be explained by and traced back to a curvature de-
pendent hybridization, the peculiar DOS of graphene, as well as a two-orbital
local model that includes the vacancy induced ‘zero-mode’.
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Chapter 4

Strongly Correlated
Non-equilibrium Steady-State
Tunneling Problems

In this chapter we turn away from quantum impurity system in thermal equi-
librium and focus on non-equilibrium problems. Non-equilibrium dynamics and
electron transport through nanoscale devices have become a major field of re-
search over the last decades.A multitude of different approaches have been devel-
oped, but no single technique could be established as the predominant approach
to non-equilibrium problems despite major effort. Among these techniques are
the Kadanoff-Baym-Keldysh non-equilibrium perturbation expansion [143, 144],
Hamiltonian flow-equations [145], the real-time renormalization-group [146], real-
time quantum Monte Carlo (QMC) [147, 148, 149], time-dependent Density Ma-
trix Renormalization Group [150, 151], Quantum Master Equation in combina-
tion with NEQ-DMFT (QME-DMFT) [152], or the time-dependent Numerical
Renormalization Group (TDNRG) [44, 14]. Some methods like the analytical
flow-equations are restricted to weak-coupling between central quantum system
and conduction bands, some are perturbative (Kadanoff-Baym-Keldysh) or mean-
field in nature (QME-DMFT), and some can only access short time scales (QMC)
or have difficulties reproducing the steady-state limit faithfully (TDNRG).

Before we discuss our numerical method of choice, the time-dependent Nu-
merical Renormalization Group (TDNRG) and its steady-state adaption, we re-
view the fundamentals of non-equilibrium steady-state transport. The prime
toy-model consists of two non-interacting leads with a small (interacting) re-
gion in-between. This model will guide us throughout this chapter. We start in
Sec. 4.1 with the Landauer-Büttiker formalism [153, 154] for the current through
a non-interacting central region. This formalism significantly shaped the view of
coherent, i.e. non-phase breaking, transport and serves as a foundation for the
fully interacting case.

We continue with a very short introduction to non-equilibrium Green’s func-
tion in Sec. 4.2 which we later need for the steady-state current. In this context,
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we briefly mention the Kadanoff-Baym-Keldysh approach [143, 144] without going
into more detail. This framework systematically translates the perturbative ex-
pansion of the Green’s function in powers of the interaction to the non-equilibrium
domain.

We discuss the Meir-Wingreen formula for electron transport through a fully
interacting central region [155] in Sec. 4.3. It generalizes the Landauer-Büttiker
formula albeit expressed in terms of the non-equilibrium Green’s function.

We review the TDNRG [44, 14] in Sec. 4.4 before we discuss the Scattering-
States NRG (SNRG) [13] in Sec. 4.5. The SNRG combines from the TDNRG with
Hershfield’s reformulation of the steady-state in terms of an Y operator [15].

We employ the SNRG to a realistic problem with two spin filtered bands
of counter-propagating electrons in Sec. 4.6. Our model describes the edges of
a Quantum Spin Hall Insulator (QSHI) coupled to a magnetic impurity. We
analyze how the local spin-spin interaction may scatter electrons via spin-flips
and induce a backscattering current depending on the symmetry of the system.
The results presented in this section are published in Ref. [12].

We then attempt a completely new approach to steady-state transport in
Sec. 4.7. Instead of relying on the TDNRG algorithm to generate the correct
steady-state density matrix, we calculate the Y operator directly. We discuss the
implementation in the NRG framework as well as some preliminary considerations
and results in Sec. 4.8.

We close with a summary of our findings in Sec. 4.9.

4.1 Non-interacting Tunneling: Landauer-Büttiker
Formalism

The Landauer-Büttiker (LB) formalism [153, 154] describes the coherent trans-
port through a non-interacting nanoscale junction via a scattering or transfer
matrix where electrons tunnel without loosing phase information. Its applicabil-
ity ranges from electron transport through nanostructures, single molecules or
even weakly interacting systems like many semiconductor quantum dots [156].
The LB method lies at the heart of a single particle coherent transport theory
and provides useful insight to electron transport in general. We briefly discuss
the cornerstones of the LB formalism before we move on to the more interesting
case of interacting systems. The details can be found in any modern compendium
such as Ref. [156].

In the LB formalism one considers a nanoscale quantum junction that consists
of two large electrodes (usually labeled as left and right), each resting at their re-
spective thermal equilibrium, and a central region that connects both electrodes.
Electronic scattering inside the central region is completely elastic in nature and
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transport is entirely coherent through the junction. The electrodes, on the other
hand, quickly thermalize any incoming electron through inelastic scattering. A
suitable ansatz for transport in such a system is by a wave function that is split
into incoming, transmitted, and reflected wave and a junction. One can define
the so-called transfer matrix or alternatively the scattering matrix that connects
incoming and outgoing wave amplitudes as well as the transmission T and reflec-
tion coefficients R where T +R = 1. This approach can easily be extended to
more complicated geometries with different scattering barriers by matrix multi-
plication of the individual transfer matrices [156]. Landauer proposed that the
zero-temperature conductance G for a single channel junction can be traced back
to the transmission T and reflection coefficients R resulting in the so-called ‘first
Landauer formula’ [153, 157, 154, 156]

G =
e2

h

T

1− T
=
e2

h

T

R
. (4.1.1)

For spin degenerate transport G is multiplied by 2. If transmission is small
T → 0, the conductance vanishes linearly with T in accordance to perturbation
theory [156]. For perfect transmission T → 1, or alternatively R→ 0, the con-
ductance diverges.

A second derivation can be found in literature using linear response theory
arriving at a seemingly different result [158, 159]

G =
e2

h
T. (4.1.2)

The difference is due to different points of measurements [156]. In the case of
Eq. (4.1.1) the conductance is taken inside the junction whereas the authors of
Ref. [158, 159] defined the conductance with respect to the electrodes [156].

A generalization of the Landauer formula for finite temperature T and voltage
V reads [156]

I(V ) =
e

h

ˆ ∞
−∞

T (ω, V ) [fL(ω)− fR(ω)] dω (4.1.3)

where I is the current instead of the conductance, T (ω, V ) is the voltage depen-
dent transmission function, and fα(ω) are the Fermi-Dirac distributions of the
left and right electrodes including the respective chemical potential µα

fα(ω) =
1

eβ(ω−µα) + 1
β = (kBT )−1. (4.1.4)

For small T , both Fermi functions effectively reduce to sharp step functions defin-
ing a window of width V = µL − µR (without loss of generality µL > µR). In this
case, only the behavior for µR < ω < µL plays a role for the low T dependency of
G as both leads are either completely occupied or empty outside of this window.
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4.2 Short Overview of Non-equilibrium Green’s
Functions and Keldysh Contour

The Landauer formalism discussed above is only concerned with the limit of non-
interacting central regions. A generalization to fully interacting systems has been
accomplished by Meir and Wingreen [155] who relied on the non-equilibrium
Keldysh formalism [143]. We briefly outline the key points of this approach
to non-equilibrium Green’s functions following the introductions presented in
Ref. [139, 160].

In the equilibrium formalism, the Hamiltonian is split into an easy to solve
part H0 and a difficult contribution V containing the many-body interactions.
All operators are transformed to the interaction picture where H0 governs the
time evolution. The Green’s function is expressed with the help of the so-called
S matrix [139, 160, 161]

S(t, t′) = T exp

{
−i

ˆ t

t′
V (t1)dt1

}
(4.2.1)

where T is the time-ordering operator. This matrix is a convenient way to prop-
agate the field operators from time t′ to time t

ψ(t) = S(t, t′)ψ(t′), S(t, t′) = U(t)U †(t′). (4.2.2)

Furthermore, one can even connect the non-interacting ground state |Φ0〉 and the
fully exact ground state |Ψ0〉 via the Gell-Mann and Low theorem [139]

|Ψ0〉 = S(0,−∞)|Φ0〉, 〈Ψ0| = 〈Φ0|S(∞, 0) (4.2.3)

The Green’s function is written with the help of the S matrix [139, 160]

G(x, t;x′, t′) = −i
〈Φ0|T{S(∞,−∞)ψ(x, t)ψ†(x′, t′)}|Φ0〉

〈Φ0|S(∞,−∞)|Φ0〉
, (4.2.4)

before it is expanded in orders of the interaction term V . The occurring expec-
tation values are evaluated by Wick’s theorem resulting in Feynman’s famous
diagrammatic perturbative expansion. The key point is that, even if one acquires
a complex phase when applying Eq. (4.2.3) to the denominator of the Green’s
function, this phase is canceled by an equivalent term accumulated by the nomi-
nator [139, 162]. This, however, is not true in the non-equilibrium case in general.
It is not guaranteed and rather the exception that the system returns to its initial
state after asymptotically large times in non-equilibrium [139, 160, 162].

Despite this it is still possible to formulate a perturbative expansion that
is even structurally equivalent to the conventional diagrammatic approach in
equilibrium. One starts with a fully time-dependent Hamiltonian which can be
partitioned into [139]

H = h+H ′(t), h = H0 +Hi. (4.2.5)
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Here, h comprises the time-independent terms and is split into a bilinear H0,
needed for Wick’s theorem, and Hi which contains many-body interactions. The
deviation H ′(t), that drives the system out of equilibrium, is assumed to vanish
for t < t0. It is often reasonable to shift t0 → −∞, especially for steady-state
problems. The problem is then simplified at the cost of potential initial correla-
tions [160] which should be negligible anyway once steady-state is reached.

The plan of attack is similar to the equilibrium case as one transforms all
operators to the interaction picture governed by H0. The process is complicated
by the occurrence of Hi and H ′(t) which must both be dealt with in a two-
step transformation [139]. We start by defining the contour ordered Green’s
function [139]

G(1, 1′) = −i
〈
TC

[
ψH(1)ψ†H(1′)

] 〉
(4.2.6)

where TC is the time-ordering operator along the contour C, 1 = (x1, t1) is a
compound notation and ψH are the fermionic field operators in the Heisenberg
picture. The contour C follows along the real axis from t0 over t1 to t′1 and C2 then
back to t0. We can split C into two sub-contours: C1 that comprises the first part
from t0 → t′1 and C2 going back to t0. Since our Green’s function is defined for
two distinct time labels, we end up with four different possible combinations [139]

G(1, 1′) =


Gc(1, 1

′), t1, t
′
1 ∈ C1

G>(1, 1′), t1 ∈ C2, t
′
1 ∈ C1

G<(1, 1′), t1 ∈ C1t
′
1 ∈ C2

Gc̃(1, 1
′), t1, t

′
1 ∈ C2.

(4.2.7)

Here, Gc is the causal or time-ordered Green’s function

Gc(1, 1
′) = −iθ(t1 − t1′)〈ψH(1)ψ†H(1′)〉+ iθ(t1′ − t1)〈ψ†H(1′)ψH(1)〉, (4.2.8)

Gc̃ the antitime-ordered Green’s function

Gc̃(1, 1
′) = −iθ(t1′ − t1)〈ψH(1)ψ†H(1′)〉+ iθ(t1 − t1′)〈ψ†H(1′)ψH(1)〉, (4.2.9)

G< the lesser Green’s function

G<(1, 1′) = i〈ψ†H(1′)ψH(1)〉, (4.2.10)

and G> the greater Green’s function

G>(1, 1′) = −i〈ψH(1)ψ†H(1′)〉. (4.2.11)

It turns out that only three of the four Green’s functions are independent which
can be exploited to define a more convenient set of functions. Instead of (anti)time-
ordered Green’s functions, one commonly introduces the advanced [139]

Ga(t, t′) = iθ(t1′ − t1)
〈{

ψH(1), ψ†H(1′)
}〉

(4.2.12)
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and retarded Green’s function.

Gr(t, t′) = −iθ(t1 − t1′)
〈{

ψH(1), ψ†H(1′)
}〉

, (4.2.13)

where the curly brackets represent the anticommutator since we consider fermionic
field operators. The four functions are coupled via the relationGr −Ga = G> −G<

that encodes their linear dependency.

Next, the time dependence for the fields in Eq. (4.2.6) is changed from H
to H0 in two steps analogous to the equilibrium case. With the time ordering
according to the Keldysh contour the final result is formally equivalent to the
equilibrium case [139, 160] enabling the use of Wicks’s theorem and Feynman’s
diagrammatic approach. Equilibrium and non-equilibrium formalism differ in
one crucial detail: instead of real axis integrals one now has to evaluate contour
integrals and time ordering is defined on said contour. These contour integrals are
evaluated by analytical continuation, i.e. by shifting the integrals back to the real
axis. This process can be formalized by a set of handy rules, known as Langreth
rules or the Langreth theorem [163] which can be found in any compendium on
the topic [139, 160]. The first rule describes how to calculate the lesser/greater or
retarded/advanced component of a product of correlation functions D =

´
C
ABC

under the contour C (analogous for greater and advanced GF)

D< =

ˆ
t

[ArBrC< + ArB<Ca + A<BaCa] (4.2.14)

Dr =

ˆ
t

ArBrCr. (4.2.15)

We recall that the correlation functions A,B,C,D are still two-time functions.
The integral

´
t
is a shorthand notation for integration over all intermediate in-

dices, e.g.

D<(t, t′) =

ˆ ˆ [
Ar(t, t1)Br(t1, t2)C<(t2, t

′) + Ar(t, t1)B<(t1, t2)Ca(t2, t
′)

+ A<(t, t1)Ba(t1, t2)Ca(t2, t
′)
]
dt1dt2.

(4.2.16)

As a final note, the fluctuation-dissipation theorem connects lesser Green’s
function and spectral density ρ(ω) in an equilibrium context (see for example
Ref. [139]). In this case, only the time difference τ = t− t′ is important and the
Green’s function depends on the relative time G(τ). One can then calculate the
Green’s function in frequency space, G(ω), by using a Fourier transformation. In
the end, the lesser Green’s functions is proportional to =Gr(ω) times the Fermi
function [139]

G<(ω) = −2=Gr(ω)f(ω). (4.2.17)

Here

f(ω) =
1

eβ(ω−µ) + 1
, β = (kBT )−1 (4.2.18)

and µ is the chemical potential.
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4.3 Meir-Wingreen Formula for the Electronic Cur-
rent Through an Interacting Region

With the introduction of the non-equilibrium Green’s function and the Keldysh
contour we return to the problem of electron transport through an interacting
nanoscale region. We sketch the derivation of the Meir-Wingreen formula [155]
which bears a resemblance to the Landauer equation (4.1.3) for electron transport
through a non-interacting region. However, one has to keep in mind that the
Green’s function appearing in the Meir-Wingreen formalism represents the full
Green’s function for the completely interacting Hamiltonian containing inelastic
processes, spin flips, and multi-scattering events [155].

For the derivation, we again use the two-lead model including a small and pos-
sibly interacting nanoscale region in-between both leads. The intermediate region
is described by a discrete-level model, e.g. a single orbital or multiple orbitals de-
scribing a molecule. The electrodes are assumed to be ideal, i.e. non-interacting
and large enough such that incoming electrons are thermalized without influence
on the chemical potential. The intermediate nanoscale quantum system may be
subject to Coulomb interaction and can be described through a Hubbard Hamil-
tonian.

The full Hamiltonian takes the form [156, 155]

H = H
(0)
C +Hee +HL +HR +HT , (4.3.1)

where H(0)
C describes the non-interacting contribution of the central region, Hee

is the electron-electron interaction term, HL/R are the Hamiltonians for the left
and right electrodes, and HT comprises tunneling between electrodes and central
region. The Hamiltonian can be modified to incorporate electron-vibron interac-
tions in the middle region as well [156]. The quasi-continuous electronic degrees
of freedom in lead α with spin σ are described by the creation/annihilation op-
erators c(†)

αkσ. The central region may be more complicated and comprise several
orbitals and interactions for which we use the fermionic operators d(†)

i . We em-
phasize that i is a compound label that may include different orbitals in addition
to the spin σ.

The current from lead α to the central region is given by the expectation
value of the time derivative of the number operator Nα =

∑
αkσ c

†
αkσcαkσ. The

time evolution is evaluated by Heisenberg’s equation of motion [155, 156]

Iα(t) = −e
〈(dNα

dt

)〉
= − ie

~

〈
[HT , Nα]

〉
, (4.3.2)

where HT is the hopping Hamiltonian that reads

HT =
∑
αkσ,i

(
Vαkσ,ic

†
αkσdi + V ∗αkσ,id

†
icαkσ

)
. (4.3.3)
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After some commutator algebra, the current reduces to

Iα(t) =
ie

~
∑
kσ,i

[
Vαkσ,i〈c†αkσdi〉 − V

∗
αkσ,i〈d

†
icαkσ〉

]
(4.3.4)

=
2e

~
<

(∑
αkσ

Vαkσ,iG
<
i,αkσ(t, t)

)
(4.3.5)

with

G<
i,αkσ(t1, t2) = i〈c†αkσ(t2)di(t1)〉 (4.3.6)

being the lesser Keldysh Green’s introduced in Sec. 4.2. We are interested in the
time-independent steady-state where the two-time functions can be expressed by
a single time difference, and IL = −IR holds. We can therefore combine left- and
right-flowing current into a symmetrized expression for the total current [155].
After a Fourier transformation, exploiting the Dyson equations for G<

α,ikσ(ω), and
some algebra we arrive at [155]

I =
ie

2h

ˆ
Tr
{[
fL(ω)ΓL − fR(ω)ΓR

]
(Gr −Ga) + (ΓL − ΓR)G<

}
dω, (4.3.7)

where we switched to a matrix notation for the different orbitals indicated by a
bold notation. The matrix G refers to the fully dressed Green’s functions of the
central region and Γα describes the hybridization between each central orbital and
lead α. For the common case of a single orbital with spin label only and equal
density of states for both leads, ρα(ω) = ρ(ω), the hybridization and Green’s
function therefore read

Γα =

(
π|V↑|2ρ(ω) 0

0 π|V↓|2ρ(ω)

)
G< =

G<

d†↑,d↑
(ω) 0

0 G<

d†↓,d↓
(ω)

 , (4.3.8)

and the trace collapses to a summation over the spin σ. The calculation is anal-
ogous for the retarded and advanced Green’s function.
If the coupling to the leads differs only by a factor, ΓL(ω) = λΓR(ω), then the
current takes the form [155, 156]

I =
e

2π~

ˆ
[fL(ω)− fR(ω)] Tr

{
ΓL(ω)ΓR(ω)

ΓL(ω) + ΓR(ω)
A(ω)

}
dω, (4.3.9)

where A = i(Gr −Ga) is the spectral function in matrix notation. Note that the
spectral function involves the fully dressed Green’s function including many-body
excitation. In the non-interacting case, the Meir-Wingreen formula reduces to the
usual Landauer-Büttiker formula [155, 156].

4.4 Time-dependent Numerical Renormalization
Group

The equilibrium NRG algorithm has been successfully adopted over the years to
the realm of non-equilibrium problems by Anders and Schiller [44, 14]. At the
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heart of this time-dependent NRG (TDNRG) lies the identification of a full many-
body basis set from the ensemble of all states generated by the NRG algorithm.
This basis is essential to overcome the shortcomings of prior attempts [51], where
the authors attempted to calculate non-equilibrium Green’s functions where each
Wilson shell is linked to a single frequency interval.

In the following, we give an overview over the TDNRG algorithm as described
in Ref. [44, 14]. We already introduced the complete basis set in Sec. 2.3.1. We
continue with the basic terminology, combine the complete basis with the reduced
density matrix approach, and finally arrive at the core time evolution formula.

In the TDNRG, the system is prepared in an initial stateH i (usually for t < 0)
that still complies with the standard three part structure of impurity, band, and
hybridization for a quantum impurity system. At t = 0, an additional term ∆H
is switched on (‘quench’) such that the final Hamiltonian takes the form

Hf = H i + ∆Hθ(t), (4.4.1)

where θ(t) is the Heavyside function. The final Hamiltonian governs the time
evolution for t > 0. The expectation value of any operator O for time t reads

〈O〉(t) = Tr
(
ρ(t)O(t)

)
, (4.4.2)

where ρ(t) evolves according to

ρ(t) = e−iHf tρ0eiHf t. (4.4.3)

At the heart of any NRG lies the logarithmic discretization of the band, iterative
solution of the chain Hamiltonian, and truncation of states (cf. Sec. 2.3). We just
recall that a Wilson chain of length N with a corresponding Hamiltonian HN is
an approximate solution of the full Hamiltonian for an energy scale ωN ∼ Λ−N/2

or analogous for a temperature TN ∼ ωN [10]. However, since all energy scales
greater than TN contribute to the non-equilibrium dynamics, we need a complete
basis set of the Fock space FN [14]. Anders and Schiller found such a basis by
re-interpreting the NRG algorithm as already discussed in context of the Green’s
function in Sec. 2.3.1.

Let us rewrite the time evolution with the help of the completeness relation
Eq. (2.3.27)

〈O〉(t) =
N∑

m=mmin

∑
l,e

dis〈l, e;m|ρ(t)1O|l, e;m〉dis. (4.4.4)

After inserting 1 and some rearranging of the resulting sums, the time evolution
takes the form

〈O〉(t) =
N∑

m=mmin

trunc∑
r,s

∑
e,e′

〈s, e;m|ρ(t)|r, e′;m〉〈r, e′;m|O|s, e;m〉, (4.4.5)
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where the truncated sum
∑trunc

r,s enforces the restriction that at least one the
states r or s must be discarded at iteration m. If both states belong to the low-
energy sector, they carry on to the next iteration and contribute further down
the chain. At a first glance, Eq. (4.4.5) seems not very helpful as we are now
left with evaluating 〈r, e′;m|O|s, e;m〉 that involves all environmental degrees of
freedom e. In order to simplify the calculations, we therefore restrict O to a
local operator, i.e. O acts only on the first few chain sites for which no states
have been discarded. Most commonly used operators fulfill this requirement as
they usually deal with the degrees of freedom of the impurity alone, e.g. local
occupation or spin-spin correlation functions. The operator O thus does not act
on the environmental degrees of freedom for the dormant rest chain and

〈r, e′;m|O|s, e;m〉 = δe,e′O
m
r,s. (4.4.6)

The Kronecker delta simplifies the calculation for the density matrix elements
〈s, e;m|ρ(t)|r, e′;m〉, which comes down to evaluation of H|k, e;m〉 in the end.
We recall that the final Hamiltonian Eq. (4.4.1) governs the time evolution of the
density matrix. We resort to the conventional NRG approximation, Hf

N |k, e;m〉 ≈
Em
k |k, e;m〉 [10], and evaluate the matrix elements

〈s, e;m|ρ(t)|r, e;m〉 ≈ ei(Emr −Ems )t〈s, e;m|ρ0|r, e;m〉. (4.4.7)

In the end, the time evolution takes the form [44, 14]

〈O〉(t) =
N∑

m=mmin

trunc∑
r,s

ei(Emr −Ems )tOm
r,sρ

red
s,r (m), (4.4.8)

where

ρred
s,r (m) =

∑
e

〈s, e;m|ρ0|r, e;m〉 (4.4.9)

is the reduced density matrix [44, 14] at iteration m.

Next, we need to actually calculate the reduced density matrix in the TDNRG
framework. In Eq. (4.4.8) ρred is expressed in the eigenstates of the final Hamil-
tonian Hf since the time evolution is governed by Hf . However, the (reduced)
density matrix is typically much easier to obtain in thermal equilibrium where
ρ0 = exp(−βH i)/Zi with Zi as partition function. Anders and Schiller have
shown that one can connect both these matrix representations of the reduced
density matrix if time evolution starts from thermal equilibrium [14]. For clarity
states and indices that belong to the set of eigenstates of the initial Hamiltonian
(or denote its quantum numbers) are labeled with an additional i as index. Also,
ei = e since the environmental label e describes the decoupled rest chain that is
unchanged. Then we can write the reduced density matrix in the eigenbasis of
H i

ρred,0
si,ri

(m) =
∑
ei

〈si, ei;m|ρ0|ri, ei;m〉. (4.4.10)
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The superscript 0 is used to distinguish the reduced density matrix from the
representation in the eigenbasis of Hf . One inserts the completeness relation for
H i into the formula for the reduced density in the final basis Eq. (4.4.9) and,
after some calculations, ends up with [14]

ρred
s,r (m) = ρ++

s,r (m) + ρ+−
s,r (m) + ρ−+

s,r (m) + ρ−−s,r (m), (4.4.11)

where

ρp,p
′

s,r (m) =
∑
e

〈s, e;m|1pi,mρ01
p′

i,m|r, e;m〉, (4.4.12)

and 1
p
i,m is either the plus or minus projection operator that together constitute

the completeness relation for the set of states of H i in Eq. (2.3.27). Only the
p = p′ = + component can be traced back to the initial reduced density matrix
ρred,0
si,ri

(m). One introduces the overlap matrices S(m), that translate between
initial and final eigenbasis, and writes [14]

ρ++
s,r (m) =

∑
q,q′i

S∗q′i(m)ρred,0
q′i,qi

(m)Sqi,r(m), (4.4.13)

for which the overlap matrix elements read

〈qi, ei;m|r, e;m〉 = δe,εiSqi,r(m). (4.4.14)

All other terms do not follow from knowledge of the initial reduced density matrix
ρred,0(m) alone and require generally overlap elements between states that belong
to different NRG iterations. In the end, these matrix elements depend on the
environmental degrees of freedom in a complex way preventing simple tracing as
in Eq. (4.4.10) [14]. However, these contributions are zero if the initial density
operator describes thermal equilibrium because they incorporate coupling of high-
and low-energy states within ρ0 [14]. For time evolution starting not from thermal
equilibrium, all contributions have to be taken into account [164].

In case the system is initially in thermal equilibrium the density operator in
the NRG approximation reads [14, 10]

ρ0 =
1

Zi

∑
li

e−βE
N
li |li;N〉〈li;N |, Zi =

∑
li

e−βE
N
li . (4.4.15)

We neglect all discarded states for iterations m < N as they carry only exponen-
tially small weight for T ∼ TN . The initial reduced density matrix then has the
elements

ρred,0
si,ri

(N) = δsi,ri
1

Zi
e−βE

N
si (4.4.16)

from which one can calculate all ρred,0(m) that belong to the initial Hamiltonian
H i recursively. The recursive relation reads [14]

ρred,0
si,ri

(m) =
∑
αm+1

retain∑
ki,k′i

Pk′i,si [αm+1]P ∗ki,si [αm+1]ρred,0
k′i,ki

(m+ 1), (4.4.17)
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where the matrix elements

Pk′i,si [αm+1] = 〈si, ei;m|k′i, e′i;m+ 1〉 (4.4.18)

are automatically generated during the diagonalization of the Hamiltonian HN+1.
Now that we have the reduced density matrix in the eigenbasis of H i for any
iteration m we need to calculate ρred(m) that is needed for the time evolution. It
follows from Eq. (4.4.13) and the approximation ρred

s,r (m) ≈ ρ++
s,r (m). The latter

being valid for quenches that drive the system out of equilibrium.

The TDNRG algorithm reduces to the following steps. Two distinct equilib-
rium NRG calculations are carried out simultaneously: one for the initial and one
for the final Hamiltonian. During this calculation one automatically accumulates
the necessary overlap matrices between consecutive iterations Eq. (4.4.18). The
starting point for the recursion is the last iteration and the reduced density ma-
trix as defined in Eq. (4.4.16). From there one constructs the series ρred,0(m) via
Eq. (4.4.17). The ρred,0(m) are expressed in terms of the eigenbasis of the initial
Hamiltonian and need to be rotated into the basis ofHf by use of Eq. (4.4.13) and
the overlap matrix defined in Eq. (4.4.14). Now we can evaluate the expectation
value for all desired time points t via Eq. (4.4.8).

4.4.1 Non-equilibrium Green’s Functions in the Numerical
Renormalization Group

Anders [47] extended the Green’s function algorithm to the non-equilibrium do-
main by introducing yet another reduced density matrix ρ̃red. The calculation
itself is similar to the equilibrium case albeit more tedious and complex due to
the second reduced density matrix. For a complete and in detail derivation we
refer the reader to Ref. [47]. Here, we simply state the final results.

The fully time dependent retarded Green’s function is defined as

GA,B(t, t′) = −iΘ(t) Tr {ρ(t′)[A(t), B]s} , (4.4.19)

where s = ± for fermionic or bosonic operators A,B as before. For visibility the
commutator is split into individual terms. We focus on one part of the trace

I(t′, t) = Tr {ρ(t′)A(t)B} . (4.4.20)

The derivation relies again heavily on the completeness relation Eq. (2.3.27).
Anders showed that I(t′, t) takes the form [47]

I(t′, t) =
N∑

m=mmin

trunc∑
r,s

∑
k

ei(Emr −Ems )t′Amr,ke
i(Emr −Emk )tBm

k,sρ
red
s,r (m)

+
N−1∑

m=mmin

trunc∑
l′

∑
k2,k2

Amk1,l′e
i(Emk1

−Em
l′ )tBm

l′,k2
ρ̃red
k2,k1

(m, t′),

(4.4.21)
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where the truncated sums
∑trunc require at least one state to be discarded at

iteration m, ρred
s,r (m) are the matrix elements of the reduced density matrix as

defined before in Eq. (4.4.9), and ρ̃red
k2,k1

(m, t′) are a set of new reduced density
matrices. These new matrices follow a recursive relation resembling Eq. (4.4.17)
for ρred,0

s,r (m). We omit their definition here and refer the interested reader to
Ref. [47]. The second term of the commutator can be calculated analogous to
Eq. (4.4.21).

4.5 Scattering-States NRG and Lippmann-Schwinger
Transformation

In the previous Section 4.4, we reviewed the time-dependent extension to the
NRG for non-equilibrium problems. There is a specific type of problem for large
times where the system, on one hand, does not follow an equilibrium Boltzmann
distribution, but, on the other hand, also does not show explicit time dependency.
These system assume a non-equilibrium steady-state.

The prime example for such a steady-state system is again our toy-model
that consists of a single discrete orbital coupled to two macroscopic large and
quasi-continuous leads with a difference in chemical potential for left- and right-
moving electrons. The single orbital may be subject to many-body interactions.
Let us assume that the system is in equilibrium for t < 0 where µ = 0 for each
lead. The problem then corresponds to the two-channel Kondo problem [27, 11].
Electrons may move through the local orbital from one to the other lead although
no macroscopic current develops since the mean electron transfer vanishes. We
then apply a voltage difference at t = 0 between left and right lead. The arising
current is described in terms of the non-equilibrium Green’s functions and the
Meir-Wingreen formalism (4.3.7).

The observables will in general be time-dependent near t = 0. However,
in the limes of large times, t→∞, they cease to be time-dependent, and the
system approaches a time independent steady-state. Although the eigenstates
of the system are not occupied according to the Boltzmann distribution, that
governs systems in thermal equilibrium, one can still cast the density operator
in the conventional Boltzmann form with the help of the so-called ‘Y -operator’
introduced by Hershfield [15] which we discuss in detail in Sec. 4.5.2.

Anders [13] proposed another extension to the NRG drawing from the ideas
of Hershfield’s Y -operator [15], Oguri’s application of Lippmann-Schwinger (LS)
states [165], and the prior development of the TDNRG [44, 14]. In this approach,
the Lippmann-Schwinger states (or scattering states) intermingle the fermionic
operator of the local orbital and those of both leads. The resulting new fermionic
operators diagonalize the Hamiltonian for a non-interacting resonant level model.
The idea is to discretize the continuum of Lippmann-Schwinger states. The LS
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transformation ensures the correct boundary condition needed for transport phe-
nomena as propagation direction is encoded in the scattering states directly via a
phase factor. This adaption of the NRG, termed Scattering States NRG (SNRG),
is explicitly designed for quantum transport in steady-state problems.

Let us review this approach [13, 166] for the single orbital model coupled to
two leads mentioned above. The Hamiltonian in its discrete notation takes the
form

H =
∑
σ

εdd
†
σdσ +

∑
α~kσ

εα~kc
†
α~kσ

cα~kσ +
∑
α~kσ

(Vα~kd
†
σcα~kσ + V ∗

α~k
c†
α~kσ

dσ). (4.5.1)

Instead of using the discrete formulation we change to the continuous energy
representation. The new fermionic operators for the bath are

cασ(ε) = Nα(ε)
∑
~k

Vα~kδ(ε− εα~k)cα~kσ, Nα(ε) =

√
π

Γα(ε)
, (4.5.2)

where Nα(ε) is the appropriate normalization given by the fermionic commuta-
tor relation {cασ(ε), c†α′σ′(ε

′)} = δα,α′δσ,σ′δ(ε − ε′) and Γα(ε) is the hybridization
function for the lead α = L,R. The total hybridization function is given by

Γ(ε) = ΓL(ε) + ΓR(ε) = π(V 2
L + V 2

R)ρ(ε) = πV
2
ρ(ε), (4.5.3)

where we assumed a ~k independent hybridization Vα~k = Vα. We can define a
dimensionless fraction that describes the hybridization asymmetry

r2
α =

V 2
α

V 2
L + V 2

R

⇒ Γα(ε) = r2
αΓ(ε). (4.5.4)

In the following we generally focus on the case of symmetrical coupling where
r2
α = 1/2. The Hamiltonian in this new representation is

H =
∑
ασ

ˆ
εc†ασ(ε)cασ(ε)dε+

∑
ασ

rα

ˆ √
Γ(ε)

π
(d†σcασ(ε) + c†ασ(ε)dσ)dε+

∑
σ

εdd
†
σdσ.

(4.5.5)
We can cast the scattering state into its continuous form

γασ(ε) = aασ(ε)cασ(ε) + bασ(ε)dσ +
∑
α′

ˆ
eασ,α′σ(ε, ε′)cα′σ(ε′)dε′, (4.5.6)

where aασ(ε), bασ(ε), and eασ,α′σ(ε, ε′) are yet to be determined complex numbers.
The most straightforward way to determine these factors is by calculating the
commutator [γασ(ε), H] and comparing the coefficients. It reads

[γασ(ε), H] = aασ(ε)εcασ(ε)

+

(
εdbασ(ε) + rα

√
Γ(ε)

π
aασ(ε) +

ˆ ∑
α′

rα′

√
Γ(ε′)

π
eασ,α′σ(ε, ε′)dε′

)
dσ

+
∑
α′

ˆ (
ε′eασ,α′σ(ε, ε′) + rα′

√
Γ(ε′)

π
bασ(ε)

)
cα′σ(ε′)dε′.

(4.5.7)
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Because the scattering states diagonalize H, we can alternatively write

H =
∑
α

ˆ
ε̃γ†ασ(ε)γασ(ε)dε. (4.5.8)

We calculate the commutator again for the diagonal Hamiltonian and find

[γασ(ε), H] = ε̃aασ(ε)cασ(ε) + bασ(ε)ε̃dσ

+ ε̃
∑
α′

ˆ
eασ,α′σ(ε, ε′)cα′σ(ε′)dε′.

(4.5.9)

Comparing the coefficients yields three equations

I ε̃aασ(ε) = εaασ(ε)

II ε̃bασ(ε) = εdbασ(ε) + rα

√
Γ(ε)

π
aασ(ε) +

∑
α′

rα′

ˆ √
Γ(ε′)

π
eασ,α′σ(ε, ε′)dε′

III ε̃eασ,α′σ(ε, ε′) = ε′eασ,α′σ(ε, ε′) + rα′

√
Γ(ε′)

π
bασ(ε)

that, after some lengthy calculation, determine bασ(ε) and eασ,α′σ(ε, ε′). The last
unknown number must have an absolute value |aασ(ε)| = 1 due to normalization
constraints. Exploiting the gauge invariance, we can choose aασ(ε) = 1. The
scattering states for the non-interacting problem now read

γασ(ε) =cασ(ε) + rα

√
Γ(ε)

π
Gd(ε+ iδ)

×
[
dσ +

∑
α′

ˆ
rα′

√
Γ(ε′)

π

1

ε+ iδ − ε′
cα′σ(ε′)dε′

]
,

(4.5.10)

where the complex shift ε̃ = ε+ iδ is needed as a regularization in the continuous
energy representation. Here Gd(ε+ iδ) is the local Green’s function

Gd(ε+ iδ) =
1

ε+ iδ − εd −∆(ε+ iδ)
(4.5.11)

with

∆(ε+ iδ) =

ˆ
Γ(ε′)

π

1

ε+ iδ − ε′
dε′. (4.5.12)

The above derivation is valid for a continuum of states. We remark that the
new dispersion in the continuum representation is retained up to an infinitesi-
mal imaginary part for regulatory purposes. In the discrete notation the new
dispersion ε̃α~k reads

ε̃α~kaασ~k = εα~kaασ~k + bασ~kV
∗
α~k
, (4.5.13)
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where aασ~k and bασ~k are the coefficients that appear in the discrete equivalent of
Eq. (4.5.6). Since the hybridization function, Γ(ε), must remain invariant when
the number of ~k-points is increased, we know that Vα~k ∼ 1/

√
N . Any energy shift

thus vanishes in the thermodynamic limit, N → ∞, up to the aforementioned
regularization imaginary part.

The transformation can be inverted by an analogous ansatz for dσ and cασ(ε).
The details are readily worked out and the final results read

dσ =
∑
α

rα

ˆ √
Γ(ε)

π
Gd(ε− iδ)γασ(ε)dε (4.5.14)

cασ(ε) = γασ(ε) +
∑
α′

rαrα′

√
Γ(ε)

π

√
Γ(ε′)

π

Gd(ε− iδ)

ε− ε′ − iδ
γα′σ(ε′)dε′. (4.5.15)

The inverse transformation for dσ is of particular interest. We can define two new
fermionic operators dασ such that

dσ = rLdLσ + rRdRσ, dασ = V

ˆ √
ρ(ε)Gd(ε− iδ)γασ(ε)dε, (4.5.16)

where we used Γ(ε) = πV
2
ρ(ε). Furthermore, we can split the Green’s function

into complex phase and absolute value and absorb the phase in the definition of
the LS states

dασ = V

ˆ √
ρ(ε)|Gd(ε− iδ)|eiΦσ(ε)γασ(ε)dε

= V

ˆ √
ρ(ε)|Gd(ε− iδ)|γ̃ασ(ε)dε.

(4.5.17)

This has the benefit that hopping parameter and level positions of the Wilson
chain are completely real [13]. In the following, we leave out the tilde and simply
write γασ(ε) for the gauged LS states.

As a final remark, in addition to the continuum states γασ(ε), that are the
relevant states for electron transport, there are two additional states located
below and above the conduction band. The ansatz for these two bound states
Diσ, i = 1, 2 reads

Diσ = zidσ +
∑
α

ˆ
Aα(ε)cασ(ε)dε (4.5.18)

with additional coefficients zi and Aα(ε) that can be determined as before. We
ignore these bound states here because their spectral weight is inversely propor-
tional to the bandwidth. In the wide band limit D → ∞, the bound states
vanish.
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4.5.1 Logarithmic Discretization of Scattering States Con-
tinuum

In the last section we established a solution to the non-interacting two-leads
model in terms of the non-interacting LS states γασ(ε). Most importantly, we
established a inverse transformation that allows us to express the local fermionic
operators dσ via γασ(ε). We continue the approach outlined in Ref. [13, 166] and
perform an adapted NRG transformation. The Hamiltonian reads

H =
∑
ασ

ˆ
εγ†ασ(ε)γασ(ε)dε+ Ud†↑d↑d

†
↓d↓ (4.5.19)

after the LS transformation and including a local Coulomb repulsion. The first
term describes a continuum not unlike the bands in the standard NRG trans-
formation. Analogous to the conventional approach, we introduce a discretiza-
tion parameter Λ > 1 and divide the continuum logarithmically into inter-
vals Isn, n = 0, . . . ,∞, s = ±. We then introduce a new set of fermionic opera-
tors asnpσα that are only defined for the respective interval Isn, Eq. (2.3.8) and
Eq. (2.3.9), before we expand the LS states in this new operators

γασ(ε) =
∞∑
n=0

∑
s=±

∞∑
p=−∞

d−1/2
n esi

2πpε
dn asnpσα. (4.5.20)

We recall that the local operator dσ =
∑

α rαdασ and that the inverse transfor-
mation reads

dασ =

ˆ √
Γ(ε)

π
|Gd(ε− iδ)|γασ(ε)dε, (4.5.21)

where Γ(ε) is the hybridization function and |Gd(ε− iδ)| the absolute value of the
local Green’s function whose phase has been gauged away and absorbed into the
LS states. We want to express dασ in terms of the new operators anspσα such that
we can choose dασ as the starting linear combination for the tridiagonalization
algorithm. The expansion reads

dασ =
∑
nsp

ˆ
d−1/2
n︸ ︷︷ ︸

=[ψsn0(ε)]∗

d1/2
n

√
Γ(ε)

π
|Gd(ε− iδ)|ψsnp(ε)anspσαdε

=
∑
ns

d1/2
n

√
Γ(εns)

π
|Gd(εns − iδ)|

∑
p

anspσα

ˆ
Isn

[ψsn0(ε)]∗ψsnp(ε)dε︸ ︷︷ ︸
=δ0,p

=
∑
ns

d1/2
n

√
Γ(εns)

π
|Gd(εns − iδ)|ansσα

:=
∑
ns

Fnsansσα.

(4.5.22)
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In the second line we approximate the hybridization and Green’s function as a
constant in each interval Isn shifting all energy dependency into the dispersion [11,
16]. In the third line we simply exploit the orthogonality property of our wave
factors ψsnp(ε)

ˆ
[ψsnp(ε)]

∗ψs
′

n′p′(ε
′)dε = δn,n′δs,s′δp,p′δ(ε− ε′). (4.5.23)

Only the p = 0 modes contribute to the physical orbital. At this point the
conventional NRG approximation is applied. The p 6= 0 modes are neglected and
the index p is suppressed. We proceed with the tridiagonalization algorithm and
choose foασ := dασ as the starting orbital. Its level position can be calculated by

ω0ασ =
∑
ns

|Fns|2ξsn (4.5.24)

where ξsn are the single particle energies that occur during transformation of the
term for the kinetic energy∑

ασ

ˆ
εγ†ασ(ε)γασ(ε)dε ≈

∑
ασ

∑
ns

ξsna
†
nsσαansσα, (4.5.25)

where the p 6= 0 modes are already dropped. According to Bulla [11, 16] ξsn can
be expressed alternatively as

ξsn =

´
Isn

√
Γ(ε)|Gd(ε− iδ)|εdε´

Isn

√
Γ(ε)|Gd(ε− iδ)|dε

. (4.5.26)

In our case
√

Γ(ε)|Gd(ε− iδ)| serves as an effective hybridization function.

In the wide band limes and for Λ→ 1 the level position for the first chain site
coincides with the original level εd [13, 166]

lim
Λ→1

ω0 =

ˆ D

−D

Γ(ε)

π
|Gd(ε− iδ)|2εdε

=

ˆ D

−D

1

π

Γ(ε)

(ω − εd)2 + Γ(ε)2
εdε

= εd,

(4.5.27)

where the Lorentz peak filters out εd for large D.

We continue with the tridiagonalization and end up with the semi-infinite
Wilson chains [166]

H(Λ) =
∑
ασ

∞∑
n=0

ωnασf
†
nασfnασ +

∑
ασ

∞∑
n=0

(
tnασf

†
nασfn+1ασ + t∗nασf

†
n+1ασfnασ

)
+HU ,

(4.5.28)
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where the hopping elements decay as tnασ ∝ Λ−n/2 for large n. The interaction
part is still expressed in terms of the original fermionic operators dσ

HU = Ud†↑d↑d
†
↓d↓. (4.5.29)

By using the relation dσ = rLdLσ + rRdRσ one can rewrite HU in the new degrees
of freedom. Since dασ are chosen as the starting orbitals for the Wilson chain,
the interaction term remains completely constrained to the first chain site even
though the LS states intermingle local and band degrees of freedom [13, 166].

4.5.2 Hershfield’s Exact Reformulation of Non-equilibrium
Statistical Quantum Mechanics

Hershfield [15] provides us with a particular useful description of non-equilibrium
statistical quantum mechanics. He realized that the expectation value of an
operator A in a steady-state non-equilibrium quantum system can be written as

〈A〉 =
Tr{e−β(H−Y )A}
Tr{e−β(H−Y )}

(4.5.30)

which is strikingly similar in form to the expectation value in equilibrium where
H − Y is substituted by H − µN . The steady-state problem therefore reduces
to calculating this new operator Y . In general Y will differ from µN but the
Boltzmann form carries over to the steady state [15].

In the following we review Hershfield’s derivation of the Y operator in the
context of electron transport through a strongly correlated quantum region. In
his original paper he explicitly relies on the existence of additional relaxation
mechanism for the system to arrive in steady state [15, 167] but other equivalent
derivations based on the time-dependent open-system approach [167] have been
carried out as well.

Let us assume that the system rests in equilibrium at some distant time
t = −∞. It is disturbed by a perturbation H1 that is switched on adiabatically
and drives the system out of equilibrium, e.g. by turning on a tunneling between
two large systems with different chemical potential. One can switch to the in-
teraction picture H1,I(t) = exp (iH0t)H1 exp (−iH0t) and expand the expectation
value of any operator A in orders of the perturbation H1

〈A〉 =
1

Tr ρ0

Tr
{
ρ0

(
A− i

ˆ 0

−∞
[A,H1,I(t1)] dt1

+ (−i)2

ˆ 0

−∞

ˆ t1

−∞
[[A,H1,I(t1)] , H1,I(t2)] dt2dt1 + . . .

)}
,

(4.5.31)

where ρ0 is the initial density matrix. Hershfield continues by evaluating each real
time integral for every order n in Eq. (4.5.31) explicitly, assuming the existence
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of a relaxation process that destroys correlation for large times. He arrives at a
differential equation for ρn

∂ρn+1,I

∂t
= i [ρn,I(t), H1,I(t)] , (4.5.32)

where ρn,I(t) = exp (iH0t)ρn exp (−iH0t) in the limit η → 0 [15], and the initial
condition for the zeroth order [15]

ρ0 = e−β(H0−Y0). (4.5.33)

In order to solve the recursive differential equations Eq. (4.5.32), Hershfield in-
troduces a new set of operators Yn that follow the same equation as the set of
density operators [15]

∂Yn+1,I

∂t
= i [Yn,I(t), H1,I(t)] , (4.5.34)

which can be written in an equivalent form [15]

[H0, Yn] = [Yn−1, H1] + iηYn. (4.5.35)

The infinitesimal complex shift iη is introduced for regulatory purpose that arise
in the continuum limes [15]. The sum of all Yn and ρn is defined as

Y =
∞∑
n=0

Yn e−β(H−Y ) =
∞∑
n=0

ρn, (4.5.36)

and the non-equilibrium expectation value takes the form of Eq. (4.5.30) [15].

The zeroth order Y0 corresponds to the system without perturbation H1 and
commutes with H0

[H0, Y0] = 0. (4.5.37)

From this commutator and Eq. (4.5.35) it follows that the commutator of the full
Y and H = H0 +H1 yields an infinitesimal complex shift [15]

[Y,H] = iη(Y0 − Y )→ 0. (4.5.38)

Let H|n〉 = En|n〉. Then we can write the above equation in matrix representa-
tion

〈n| [Y,H] |m〉 = iη〈n|(Y0 − Y )|m〉 (4.5.39)
⇒ [Y ]nm(Em − En) = iη([Y0]nm − [Y ]nm) (4.5.40)

[Y ]nm =
iη

Em − En + iη
[Y0]nm, (4.5.41)

which emphasizes the regulatory property of iη and enables us to express Y in
terms of eigenvalues of H and matrix elements of Y0. We make use of this relation
later in Sec. 4.7 to develop an ansatz for a steady-state NRG that does not rely
on the TDNRG algorithm for the non-equilibrium Green’s function.
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Figure 4.1: Schematic depiction of the Y
operator for two infinite leads with different
chemical potentials µL and µR. (a) Both
leads are separated and Y (as well as Y0)
measures the number of particles cαk in the
left or right lead. (b) Both leads are con-
nected via a non-interacting region. The Y
operator measures the left and right-mov-
ing non-interacting scattering states γα,k
weighted with the corresponding chemical
potential. (c) Both leads are connected via
an interacting region. The interactions scat-
ters between left and right-moving states
and Y measures the many-body scattering
states ψα,k which include many-body exci-
tations. Adapted after Fig. 1 from Ref. [15].

Let us have a closer look at the
operators Y and Y0 for a given prob-
lem. For this we go back to our
toy-model that comprises two leads
α = L,R and a possibly interacting re-
gion that may connect both leads, e.g.
a single orbital with hopping Vα to
each lead and Coulomb interaction U .
The situation is depicted in Fig 4.1.
If both leads are disconnected, then
Y0 =

∑
α µαNα where Nα measures the

number of particles in lead α which is
Nα =

∑
k c
†
α,kcα,k for a discrete prob-

lem [Fig. 4.1 (a)]. The system decays
into two separate sub-systems that are
each in equilibrium with H1 = 0.

If we switch on the hoppings Vα
but forego many-body interactions,
i.e. U = 0, then the number oper-
ators entering in Y0 represent the
non-interacting Lippmann-Schwinger
states or scattering states instead of
the original particles [Fig. 4.1 (b)]. We
can still write Y0 =

∑
α µαNα but now

reinterpret the meaning of Nα in terms
of the scattering states and µα as the
chemical potential for left and right-
moving states. In this case, Y = Y0 still holds. The Hamiltonian can be di-
agonalized in terms of the non-interacting Lippmann-Schwinger states and thus
[H,Y0] = 0. Equivalently, H and Y0 can both be diagonalized simultaneously
which directly yields Y = Y0 according to Eq. (4.5.41). This result can alterna-
tively be understood from a symmetry point of view. Without an interaction α
remains a good quantum number even when the hopping is switched on. The
system decays again into two sub-systems, one for left- and one for right-moving
scattering states, while mixing is prohibited. We are thus back at the situation
described in (a) only with an reinterpreted occupation number operator Nα.

In the last case, we switch on a hopping as well as a many-body interaction H1

that mixes left- and right-moving states. Now, [Y0, H1] 6= 0 and one can interpret
Y as the operator that evolved from Y0 under the Hamiltonian H1 [15]. The
operator Y can still be written formally as Y =

∑
α µαNα although Nα now

measures the occupation of the fully interacting Lippmann-Schwinger ψk states
[Fig. 4.1 (c)]. The zeroth order Y0 is no longer diagonal in the new eigenbasis of
H. If we take the limes η → 0 in Eq. (4.5.41), we end up with a delta function
for the energies δ(Em − En). In this limes, Y does not change the eigenstates
themselves (modulo a possible mixing due to energetic degeneracy), but rather
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changes the distribution of the eigenstates [15].

4.6 Magnetic Impurities Coupled to Helical Edge
Bands of a Quantum Spin Hall Insulator

A particular interesting system in a steady-state out of equilibrium are the edge
states of quantum spin Hall insulators (QSHI) coupled to a local magnetic imper-
fection. A QSHI is effectively a 2d system with two counter-propagating electronic
modes located at its 1d surface. These edge states are topologically protected
which, in theory, should yield perfect conductance along the edge. Experimental
studies, however, find deviations from perfect conductance [168, 169, 170, 171]
and possible explanations encompass among other electron-electron interactions,
disorder, or inelastic scattering [172, 173, 174, 175, 176, 177, 178, 179, 180, 181].

We investigate the influence of magnetic impurities at those edges and study
the effect of a spin-spin exchange interaction between edge electrons and impu-
rity on the conductance. The general picture in literature [182, 183] is that the
edge electrons will participate in Kondo screening of the magnetic impurity when
the temperature is low enough. The resulting Kondo singlet essentially severs
the conducting surface channels at the location of the impurity. The conducting
modes then restore themselves around the screened impurity and electron trans-
port remains uninterrupted due to its topological nature. Tanaka et al. [184]
argue that one needs an anisotropic Kondo coupling to affect the perfect edge
conductance.
The effect of a Rashba spin-orbit coupling between electrons on the edge in
the presence of electron-electron interactions has been investigated before [185].
A Rashba interaction allows for scattering via spin-flips while preserving time-
reversal symmetry. The authors found that a spatially disordered Rashba cou-
pling leads to a breakdown of the perfect conductance if the electron-electron
interaction between the edge electrons is strong enough. Eriksson et al. [186]
built upon these findings, and included a magnetic impurity coupled via a Kondo
coupling to the edge electrons. They found a competition between Kondo screen-
ing and Rashba induced scattering for an anisotropic Kondo coupling even though
time-reversal symmetry is preserved.

We describe the magnetic impurity by an effective model that consists of a
localized s = 1/2 spin coupled to a non-interacting spin-full orbital (labeled d
orbital). The edge electrons constitute of two spin-filtered bands. A finite bias
voltage, eV , is applied to the edge resulting in different chemical potential µσ for
the up and down electrons. Electrons from these bands can hop onto the local
non-interacting orbital. Without a spin-spin exchange interaction Jαβ between
d orbital and local spin, the edge electrons that hop on the d orbital cannot be
scattered between both bands as they cannot change their spin. The number
of electrons in each channel is conserved and conductance remains perfect. The
conductance depends on the symmetry property of the matrix elements Jαβ: as
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long as the coupling is isotropic, the total Sz spin component is conserved. In
this case, magnetic scattering can only change the spin of incoming electrons from
one band when there is an equivalent amount of scattering processes for incoming
electrons from the other band. Thus, the effect of all scattering events on the
conductance cancels out. Only when the coupling is not isotropic, i.e. when Sz
ceases to be a good quantum number, can magnetic scattering induce a current.

We employ the SNRG as described in Sec. 4.5 for the above quantum impurity
model and discuss our results, that are published in Ref. [12]. At first, however,
we briefly sketch some of the foundations surrounding QSHI and edge states.
This overview is by no means intended to be a comprehensive introduction to the
field of topological insulators. The reader is referred to reviews such as Ref. [187,
188].

Haldane [73] initially developed a model for the Quantum Hall effect based on
edge states in armchair graphene samples. In his model, time-reversal symmetry
is broken by a magnetic field yielding a band structure with a single band located
inside the gap. The electrons of this band propagate along the edge in one
direction.
The question arose whether protected edge states can be realized without breaking
time-reversal symmetry. Kane and Mele [76, 77] postulated the existence of such
states in graphene as a result of a presumably large spin-orbit coupling. They
drew from the mathematical field of topology and introduced the Z2 topological
classification to distinguish between conventional and topological insulators. In a
nutshell, Kane and Mele’s classification reduces to whether an insulating system
with surface states inside its gap exhibits an even or odd number of band crossings
at the Fermi level [77, 188]. The edge states at the Fermi level come in so-called
Kramer’s pairs (one pair equals two states) and are counter-propagating.

Let us assume that the 1d surface edge is parallel to the x axis. The system
is translational invariant such that Bloch’s theorem holds and we can define the
momentum kx. Subplot 4.2 (a) describes the band structure of a topological insu-
lator. The band structure exhibits two states (one Kramer’s pair) for any given
Fermi energy EF inside the gap. Furthermore, the band structure is symmetric
with respect to kx = 0, where both bands cross, reflecting time-reversal symme-
try [187, 188]. On the other hand, subplot 4.2 (b) shows the band structure for
the time-reversal broken case discussed by Haldane.

The edge states for the topological QSHI are called ‘chiral’ or ‘helical’ meaning
that electron propagation and spin orientation are interlinked. In our case here,
the topological nature of the problem does not play a role beyond providing a
physical motivation for the counter-propagating and spin-filtered bands. We thus
do not delve into topology much further in this work.
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Figure 4.2: Schematic representation of conduction and valence band and edge states
for (a) time-reversal symmetric model and (b) broken time-reversal symmetry. The
situation in (a) represents a QSHI whereas (b) describes a Quantum Hall State. EF is
the Fermi energy.

4.6.1 Modeling of Helical Edge Modes Coupled to a Mag-
netic Impurity

We return to the edge of an QSHI for which we can define a spin up and down
orientation for the spin of the electrons traversing along the edge. Note that
the definition is only valid locally, i.e. one may locally define up and down state
but their orientation may change along the edge. In practice, the local nature of
this definition is only secondary for our problem and we simply assign counter-
propagating electrons different spin orientations. In addition, the edge electrons
are taken to be non-interacting.

Let us apply a chemical potential difference between left- and right-moving
electrons on the edge by using an external bias voltage eV . An electric current
I0 is driven by the different occupation numbers of left- and right-movers [12]

I0 ≈
G0

e
(µ↑ + µ↓) (4.6.1)

where G0 = e2/h is the conductance quantum and µσ the chemical potential for
the respective spin channel, eV = µ↑ + µ↓.

As mentioned above, we want to investigate the influence of a magnetic im-
purity located at the helical edge onto the edge current. We consider a model
that consists of two spin-filtered bands for a 1d edge [12]

He = −ivF
∑
ν

σ

ˆ
ψ†ν(x)∂xψν(x)dx (4.6.2)
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where vF is the Fermi velocity and ψν(x) are the field operators for the spin
projection ν. The index ν =↑, ↓ simultaneously represents the left- or right-
moving nature. Without loss of generality, we identify spin up with left- and
spin down with right-movers. The edge electrons hybridize with a single orbital
located at x = 0. The hybridization term reads [12]

Ht =
∑
ν

(tνψ
†
ν(0)dν + h.c.), (4.6.3)

where tν is the hybridization and dν the fermionic operator for the localized
orbital. The magnetic impurity encompasses a single s = 1/2 localized spin that
interacts with the electrons on the d orbital. The Hamiltonian for the local part
takes the form [12]

Hloc = Hd +HJ

=
∑
ν

εdd
†
νdν + Und↑n

d
↓ +

∑
α,β,λ,µ

Jα,βSαd
†
λσ

β
λ,µdµ.

(4.6.4)

It is formally split into a contribution Hd that comprises the level position εd and
a possible Coulomb interaction U , and HJ that describes an anisotropic spin-spin
exchange interaction Jα,β with the additional local spin ~S. The spin for the local
d orbital, ~s, is expressed in terms of its fermionic operators with the sums over µ
and λ going over ↑ and ↓ and α and β being x, y, z. A schematic picture of the
model is shown in Fig. 4.3.

Figure 4.3: Schematic representation of the helical edge and impurity model. Electron
propagation in x axis on the edge is interlinked with spin orientation. At x = 0 electrons
from both helical bands can hop onto a localized orbital. The effective spin ~s of the d
electrons is interacting with an additional spin ~S via an exchange interaction Jα,β .

Our impurity can contain two spins: the localized ~S and the spin of the
electron in the d orbital. Two different screening processes are therefore possible
in our model in equilibrium. The first screening process can be best understood
for t↑ = t↓ and Jα,β = 0. Our model then represents a SIAM with an additional
dangling s = 1/2 spin that contributes to the residual entropy. The electrons of
the band, which is formally split into two spin-filtered parts, can screen the spin
of the electron in the d orbital as discussed in Sec. 2.2. If U = 0, then the system
still reaches the same fixed point but on a temperature scale of Γ0 [35].
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A second screening process takes place where the local spin, ~S, is screened. For
this, we switch on a diagonal anti-ferromagnetic exchange interaction Jα,α 6=
0. For U = 0, the spectral density of the local orbital takes the form of a
Lorentzian that plays the role of an effective density of states for this second
screening process. We are interested in this second process and choose U = 0 in
the following except when explicitly noted otherwise.

We also remark, that the helical nature of the edge states results in a sim-
plified Lippmann-Schwinger transformation. Only two of the four LS operators
in Eq. (4.5.10) appear which simplifies the inverse transformation Eq. (4.5.16) as
well.

Let us take a look at the exchange interaction and possible quantum numbers.
If Jxx = Jyy, then the total Sz component, including the d orbital, local spin, and
edge electrons, is a good quantum number. We can perform a global gauge trans-
formation exp(iθSz/2) by rotation at the joint spin z-axis by a phase θ that leaves
the Hamiltonian invariant and preserves time-reversal symmetry. The system is
invariant under a U(1) rotation symmetry in the spin space. Furthermore, we
can write down Hershfield’s Y directly [12]

Y =
µ↑ − µ↓

2
Sz −

µ↑ + µ↓
2

Ntot (4.6.5)

where Ntot is the total number of fermions. This formula holds as long as
[H,Sz] = 0, i.e. as long as the exchange coupling is isotropic. The first term
is equivalent to a global magnetic field applied in z direction and the problem
can essentially be mapped onto an effective equilibrium problem with magnetic
field.

4.6.2 Backscattering Current and Linear Conductance

We are interested in the backscattering current, IB, or rather the linear conduc-
tivity, G = IB/V , that is induced by our magnetic impurity when in steady-state.
We present the deviation for a formula in terms of the fully interacting Green’s
function in steady-state [12]. We start with the definition for the backscattering
current operator

ÎB =
e

2

d

dt

(
NL −NR

)
=

ie

2

[
t↓ψ

†
↓(0)d↓ − t↑ψ†↑d↑ − h.c.

]
.

(4.6.6)

Here, NL andNR are the left- or right-moving number operators for the Lippmann-
Schwinger modes. The second line follows from Heisenberg’s equation of motion
and evaluation of the occurring commutator. We write the expectation values in
terms of the lesser Green’s function G<

AB(τ, τ ′) = 〈B(τ ′)A(τ)〉. We then trans-
form the expression into Fourier space since we are interested in the steady-state
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limit where only the time difference t = τ − τ ′ plays a role. The current then
reads

IB = 〈ÎB〉 = e=
ˆ [

t↑G
<

d↑ψ
†
↑
(ω)− t↓G<

d↓ψ
†
↓
(ω)
]dω

2π
. (4.6.7)

We now turn to conventional diagrammatic expansion and write the occurring
lesser Green’s function as a product of the local GF for the full Hamiltonian,
Gdνd

†
ν
, and the free GF for the edge, gψνψ†ν ,

G<

dνψ
†
ν
(ω) = t∗ν

[
Gdνd

†
ν
(ω)gψνψ†ν (ω)

]<
. (4.6.8)

We can evaluate the lesser part of this product by using Langreth rules introduced
in Sec. 4.2 [

Gdνd
†
ν
gψνψ†ν

]<
= Gr

dνd
†
ν
g<
ψνψ

†
ν

+G<

dνd
†
ν
ga
ψνψ

†
ν

(4.6.9)

gψνψ†ν (ω)r/a = ∓iπρ0 (4.6.10)

gψνψ†ν (ω)< = 2πρ0f(ω − µν), (4.6.11)

where r/a signifies the retarded or advanced part and ρ0 represents the constant
DOS of the edge.
Inserting everything into the expression for the currents yields [12]

IB =
G0

e
Γ0

ˆ [
G<

d↑d
†
↑
(ω) + 2=Gr

d↑d
†
↑
(ω)f(ω − µ↑)

−G<

d↓d
†
↓
(ω)− 2=Gr

d↓d
†
↓
(ω)f(ω − µ↓)

]
dω.

(4.6.12)

One directly sees, that the backscattered current vanishes identically in each spin
channel separately in equilibrium where the fluctuations-dissipations theorem

G<

dνd
†
ν
(ω) = −2=Gr

dνd
†
ν
(ω)f(ω − µν) (4.6.13)

holds.

The backscattered current depends on the anisotropy of the exchange inter-
action Jα,β. We define ‘symmetrical’ and ‘asymmetrical’ exchange coupling with
regards to the commutator [HJ , Sz] where Sz describes the z component of the
total spin. If the commutator vanishes, the exchange coupling is ‘symmetrical’,
and the U(1) rotational symmetry discussed above is retained. A symmetrical
or asymmetrical interaction can be fully realized by changing Jxx and Jyy [12].
The last diagonal element, Jzz, does not affect the symmetry property and can
be used to adjust the Kondo temperature [12]. The off-diagonal elements are not
needed and set to zero in the following.
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4.6.3 Effective Equilibrium with Applied Magnetic Field
for Symmetrical Interaction

In case of a symmetrical exchange interaction, Jxx = Jyy, or for Jα,β = 0, we
already discussed that the total Sz is a good quantum number, and the system as-
sumes an effective equilibrium state even for finite bias V . The chemical potential
difference directly maps onto an effective magnetic field according to Eq. (4.6.5).
We can therefore compare our calculations for finite V to an equilibrium SIAM
and magnetic field. Fig. 4.4 (a) shows the local spectral function for the d or-
bital for each spin sector for our helical model with εd = −U/2, U/Γ0 = 10, and
eV/Γ0 = 0.5 compared to ρdν for a SIAM with magnetic field B/Γ0 = 0.5. In case
of the SIAM, the Zeeman splitting is ∆E = geffB with geff ≈ 2. The Kondo peak
resides at ±B for spin up and down respectively. In case of the helical model, the
Kondo peak rests at ±µ. A simple shift of the energy axis by ±eV/2 is sufficient
for both curves to be identical.

Next, we calculate the equilibrium Kondo temperature, T eq
K , for the second

screening process that involves the local spin. We employ the same approach
as discussed in Sec. 2.3.2. The susceptibility is in turn calculated by applying a
small local magnetic field B ∼ O(10−8Γ0) and measuring the difference in spin up
and down and dividing the result by B. We emphasize that T eq

K is the equilibrium
Kondo temperature for eV = 0. Fig. 4.4 (b) shows the results for Jxx = Jyy = Γ0

and various Jzz. If scaled accordingly, all χspin curves completely fall onto each
other demonstrating universal behavior.

Now that we have established our calculation scheme for T eq
K , we set εd = U = 0

and focus on the influence of the ratio Jxx/Jyy on T eq
K . Fig. 4.4 (c) depicts T eq

K in
absolute values as function of Jyy for Jxx = Jzz. We emphasize that the Kondo
temperature depends non-linear but monotonic on Jyy, i.e. the larger Jyy the
larger T eq

K . The ratio of T eq
K and V is important as the highest of both low-energy

scales defines the low-energy behavior of our system.

Until now, our calculations were done for the equilibrium case. We rely on
the TDNRG algorithm to generate the correct density-matrix as we now turn to
the steady-state problem. From this point onward, quenches refer to a change in
Jαβ and are always taken with regard to the initial symmetrical coupling J i

xx =
J i
yy = J i

zz = Γ0. In the following, the couplings Jαβ shown in figures or listed in
text represent the final value after the TDNRG quench.

Before we discuss the different regimes depending on the ratio eV/T eq
K , we look

at the behavior of the spectral function. Fig. 4.5 shows the lesser GF and spectral
density for retained and broken U(1) symmetry. G<

ν equals the spectral density
times Fermi function exactly if U(1) symmetry is conserved [subplot 4.5 (a) and
(b)]. This equivalence is the embodiment of the fluctuations-dissipations theorem
mentioned above, and the backscattering current vanishes in each spin channel
separately. On the other hand, G<

ν (ω) and 2ρν(ω)f(ω − µν) differ if the U(1)
symmetry is broken, driving a finite current [subplot 4.5 (c) and (d)]. Finite
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Figure 4.4: (a) ρhelical
ν for V/Γ0 = 0.5, Jα,β = 0 (blue dashed line) and ρSIAM

ν (red
solid line) for B/Γ0 = 0.5. In both cases, εd = −U/2 and U/Γ0 = 10. ρhelical

ν is
shifted by an additional ±V . (b) χspin for the helical model in equilibrium V = 0,
Jxx = Jyy = Γ0, and εd/Γ0 = −0.5 and U = 0. (c) Kondo temperature calculated from
χspin via Eq. (2.3.38) for Jxx = Jzz and εd = U = 0. The figure is taken from Ref. [12].

eV and broken U(1) symmetry result in a genuine non-equilibrium steady-state
problem.

4.6.4 Competition Between V and T eq
K as Relevant Low-

Energy Scale

The low-temperature behavior of the backscattered conductance depends on the
ratio eV/T eq

K . If T eq
K is the largest low-energy scale, then G becomes zero for

T → 0 as the system approaches a strong coupling (SC) fixed point. A Kondo
singlet forms and magnetic scattering is suppressed as the local spin decouples
from the helical modes that constitutes the edge.

Fig. 4.6 (a) shows the conductance for five different coupling strengths Jyy
for broken U(1) symmetry and fixed bias eV/Γ0 = 0.01. We recall that T eq

K

depends monotonic on Jyy and distinguish two different regimes: eV < T eq
K if

Jyy/Γ0 > 0.5 and T eq
K < eV if Jyy/Γ0 < 0.5. In the former case, the SC fixed

point is reached for T < T eq
K and the above discussion hold. In the latter scenario,
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Figure 4.5: G<ν (ω) (blue solid line) and 2ρν(ω)f(ω−µν) for: retained U(1) symmetry
for spin (a) up and (b) down and broken U(1) symmetry for spin (c) up and (d) down.
The lines for different bias voltages are shifted by a = 0.25 for visibility. The legend
applies to all plots. The figure is taken from Ref. [12].

eV is the largest low-energy scale. From a renormalization group point of view,
the flow equations that drive the system towards the SC fixed point are cut-off
by eV before T eq

K is reached [12]. The system thus shows a finite backscattered
conductance for T < T eq

K which depends on the ratio eV/T eq
K . The larger eV

compared to the Kondo temperature, the larger the residual conductance (cyan
and magenta curves). The case Jyy/Γ0 = 0.5 (red curve) is interesting since here
T eq
K ≈ eV . The conductance vanishes almost but still shows a small finite residual
G.

We make a power-law ansatz for the conductance below T eq
K

T eq
K G(T ) = b(T/T eq

K )α + c (4.6.14)

and fit the data presented in Fig. 4.6 (a). The resulting fits are shown in Fig. 4.6 (b).
We find that the system behaves differently depending on eV/T eq

K . In the case
where the bias voltage is the largest low-energy scale, α ≈ 1−1.5. However, if the
Kondo temperature exceeds eV , then α = 2 as is expected for a Fermi liquid [35,
12]. The different exponents are depicted in Fig. 4.6 (c).

Next we focus on the voltage dependence of G in Fig. 4.7. Subplot (a) and (b)
show the linear conductance and current for different exchange couplings. The
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Figure 4.6: (a) Backscattered conductance G(T ) for eV/Γ0 = 0.01 and different Jyy.
The low-temperature behavior depends on the ratio eV/T eq

K (Jyy). (b) Power-law fits for
T < T eq

K according to Eq. (4.6.14). (c) Exponents α of the power-law fit in (b). α = 2 if
T eq
K > eV . The error bars are due to the numerical fitting process. The figure is taken

from Ref. [12].

temperature is always much smaller than any other energy scale T � T eq
K , eV . For

eV < T eq
K , the current vanishes as the SC fixed point dynamically restores perfect

conductance. For eV > T eq
K , we have to distinguish between retained and broken

U(1) symmetry. At the symmetrical point, the conductance is independent of
eV and G = 0 identical due to the fluctuations-dissipations theorem. Deviation
from U(1) symmetry, on the other hand, yields a finite conductance that grows
proportional to ln(eV/T eq

K ). We make an ansatz

G/JB = aslope ln(eV/T eq
K ) + b (4.6.15)

where

JB =

[
(|Jx|2 − |Jy|2)2 + 4(JxJy)

2

J2
x + J2

y

]1/2

(4.6.16)

is a measure for the anisotropy of the exchange interaction. The determined
slopes for the logarithmic increase are shown in Fig. 4.7 (c). They are roughly
constant in the U(1) symmetry broken regime albeit the numerical error bars are
relatively large.
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Figure 4.7: (a) G and (b) IB as function of eV/T eq
K and different Jyy. The black dashed

line indicates eV = T eq
K . (c) Fitting parameter aslope as determined from Eq. (4.6.15).

The error bars stem from the numerical fitting procedure. The figure was taken from
Ref. [12].

Lastly, we examine the conductive behavior as function of the anisotropy. We
define a deviation from symmetrical coupling by

∆Jyy = J f
yy − J i

yy, (4.6.17)

where J i
yy = Γ0 stands for the initial value before the TDNRG quench. We recall

that we quench from the symmetrical point J i
xx = J i

yy = Γ0 to the final value
J f
yy. We drop the superscripts i and f again in the following. Fig. 4.8 shows the

conductance as a function of this anisotropy measure.

The conductance vanishes at the symmetrical point ∆Jyy = 0. The smaller
the coupling after the quench the smaller the corresponding Kondo temperature.
We lower Jyy until at some point eV > T eq

K and a finite conductance sets in.
The bias voltage takes over as the highest low-energy scale and the dynamical
reconstruction of perfect conductance is interrupted. For large voltage eV/Γ0 =
0.5, we do not see this switch between eV and T eq

K and find a finite G for all
∆Jyy 6= 0 as the Kondo temperature is the smallest energy scale regardless of
Jyy. This residual conductance is asymmetric with regards to ∆Jyy = 0 since the
renormalization process is cut-off earlier for negative ∆Jyy.

110



4.7. Novel Scattering-States NRG Based on Hershfield’s Y Operator

Note that we do find a finite conductance for ∆Jyy > 0 for all other bias
voltages as well. However, we attribute this conductance to numerical issues that
occur in the calculation of G. First of all, the Green’s functions are not calculated
from the self-energy, as discussed in Sec. 2.3.1, due to the need for an equation
of motion for the lesser GF. Secondly, we subtract two functions that are almost
identical when evaluating Eq. (4.6.12). Thirdly, we must then perform numerical
integration, and, lastly, we demand a precision of at least O(eV ) relevant digits
in the end because we calculate G = IB/V .
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Figure 4.8: Conductance as function of anisotropy and for different bias voltages.
The symmetrical point corresponds to ∆Jyy = 0. Negative (positive) values mean
quenching to smaller (higher) couplings. The upper subplot shows the equilibrium
Kondo temperature for ∆Jyy. The x axis applies to both plots. Taken from Ref. [12].

4.7 Novel Scattering-States NRG Based on Her-
shfield’s Y Operator

In this section, we present our novel approach to steady-state transport. We adapt
the Scattering-States NRG with the help of Hershfield’s Y operator: instead of
relying on the TDNRG algorithm to calculate the correct steady-state density
matrix, and thus the Y operator indirectly, we can employ the representation of Y
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in terms of the many-body eigenstates ofH, Eq. (4.5.41), and calculate Y directly.
We thus no longer need the TDNRG algorithm, including the two simultaneous
calculations, for the density matrix. Before we lay down the algorithm, let us
discuss the key idea behind this novel approach.

First, let us recall the functioning of the equilibrium NRG. We again use
our single orbital coupled to a left and a right bath of non-interacting spin-full
electrons as a tangible example. For now, consider only a single chemical potential
µ for both bands with the same constant DOS. The system rests in equilibrium.
Both bands are logarithmically discretized around the chemical potential. In
the end, the chemical potential effectively results in a shift of the single particle
energy, εd − µ. We thus calculate the eigenvalues of H − µN during the NRG,
which are then used for the truncation scheme each iteration.

The process above is not sufficient for a genuine steady-state problem since
H − Y governs the density matrix in this case. We cannot calculate the expecta-
tion values of any operator nor does the truncation scheme makes sense anymore.
These problems have been circumvented by the use of the TDNRG to calculate
the steady-state density matrix from the limit of long times, and thus Y only
indirectly.

However, we want to remove the TDNRG completely from our new approach,
and instead employ a NRG calculation directly for the steady-state. This com-
plicates the algorithm because we then must manage two different matrices: the
Hamiltonian H and the matrix K = H − Y . We need the eigenvalues of K for
the steady-state expectation values of any operator, but the eigenvalues of H
for the calculation of Y according to Eq. 4.5.41. Our new algorithm works by
explicitly adding and subtracting Y in each NRG iteration. Since we need the
eigenvalues of both, H and K, this comes with the cost of an additional matrix
diagonalization each iteration.

We now add some detail. Fig. 4.9 shows a schematic flow diagram of the
algorithm for a given NRG iteration n, and should be referred to for guidance in
the following. The modified NRG iteration comprises the following steps:

(i) Calculate Y0,n.

(ii) Calculate Hn.

(iii) Diagonalize Hn.

(iv) Calculate Yn from the eigenvalues of Hn and knowledge of Y0,n.

(v) Calculate Kn.

(vi) Diagonalize Kn. Rotate all local matrices into the eigenbasis of Kn and
evaluate expectation values.

(vii) Calculate the Hamiltonian Hrec
n in the eigenbasis of Kn.
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(viii) Pass on the truncated version of the Hamiltonian Htrunc
n as well as Y0,n.

Both are expressed in the eigenbasis of Kn.

Figure 4.9: Schematic flow diagram for a NRG iteration n. The algorithm takes
Y0,n−1 and Hn−1 as input from which one calculates (i) Y0,n and (ii) Hn first. After (iii)
diagonalization of Hn one calculates (iv) Yn which together with Hn yields (v) Kn. Kn

is (vi) diagonalized as well. (vii) Hrec
n is reconstructed in the eigenbasis of Kn and its

(viii) truncated representation is passed on as Hamiltonian together with Y0,n for the
next iteration.

At any iteration n we begin by adding a new site to the Wilson chain and
enlarging the Fockspace as usual. We now also need Y0,n−1 from the prior iteration
in addition to Hn−1. The new operator Y0,n is constructed analogous to Hn

Y0,n =
√

ΛY0,n−1 + µL,effnL + µR,effnR, (4.7.1)

where nα are the occupation number operators for the newly added chain site.
The chemical potential µα,eff has to be scaled appropriately by Λn/2 as it is the
case for all energy scales. In the conventional NRG algorithm, all matrices are
rotated into the eigenbasis of Hn−1 before adding a new chain site. As a result
only the eigenvalues of the old Hamiltonian are usually needed to calculate Hn.
As we see shortly, the final basis of Hn−1 at the end of iteration n−1 is in general
not the eigenbasis of Hn−1 and we pass on Hn−1 in matrix form.
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Figure 4.10: Schematic
representation of trunca-
tion. (a) Conventional
truncation algorithm
where Hn is diagonal
and only the l lowest
eigenenergies are passed
on to iteration n+ 1. (b)
Truncation scheme when
Hn is not diagonal. The
whole matrix is passed
on but only a sub-matrix
is used. The rows and
columns marked by the
red line are neglected.

After we calculate Hn and Y0,n, we diagonalize the
Hamiltonian

Hn|h〉n = En
h |h〉n. (4.7.2)

With the help of the rotation matrix U0→H that trans-
lates from the original basis to the eigenbasis of Hn and
the eigenenergies En

h , we construct Yn in the eigenbasis
of Hn. In general, Yn will differ from Y0,n and not com-
mute with Hn, i.e. it will not be diagonal in this basis.
Furthermore, Yn will have a complex part depending on
η in Eq. (4.5.41) which we discuss later. From knowl-
edge of Yn and Hn we calculate Kn = Hn − Yn. Note
that Kn is hermitian but not necessary real. We diag-
onalize Kn:

Kn|k〉n = En
k |k〉n, (4.7.3)

and rotate all matrices from the eigenbasis of Hn to the
eigenbasis of Kn with UH→K (or alternatively calculate
the whole rotation matrix U0→K and rotate just once).
Now we have two sets of different eigenenergies: En

h and
En
k . The second set is needed for our truncation scheme

since the density operator ρ ∝ exp [−β(H − Y )]. We
thus truncate according to En

k . The difference in trun-
cation is visualized in Fig. 4.10.

Since we truncate according to En
k , we need to re-

construct Hn in the eigenbasis of Kn by

Hrec
n = Kn + Yn, (4.7.4)

where Kn is diagonal and Yn is rotated into the eigenbasis of Kn. Note that Hrec
n

is in general complex and hermitian due to the imaginary part of Yn. It is Hrec
n

that is passed on to the next iteration n+ 1 to construct the Hamiltonian for the
extended Wilson chain.

Before we discuss some of the results, we emphasize that this algorithm reduces
to the conventional algorithm for a non-interacting problem, i.e. HU = 0 but µα
may be finite. Left- and right-moving particles do not couple and the problem
is composed of two disjunct sub-problems. In this case, the chemical potential
enters directly as a shift of the single particle energies. Yn and Y0,n are the same
regardless of η, and Hn and Kn are both diagonal simultaneously. The algorithm
presented above is then a more complex, but exact, reformulation of two separate
Wilson chains with their respective chemical potential.
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4.8 Preliminary Results for the Y Operator Based
Scattering NRG

We discuss some results for the NRG algorithm based on Hershfield’s Y operator
outlined above. We first look at the non-interacting problem and confirm the
validity of our new approach in this limit. Then we focus on the first chain site in
more detail. After this, we turn to the numerical calculation of Y and analyze the
influence of the regulatory factor η. We show the level flow for different choices
of η. Finally, we look at the limit V → 0 where we study the current in the
interacting case.

For the calculation of the current through the quantum level, we resort to
a formula by Anders [189]. We sketch the idea here and only state the final
result. The derivation uses the anti-symmetric form of the current operator [165,
190, 155]. It further relies on the gauge transformation for the scattering states
mentioned in Sec. 4.5. The phase enters explicitly in the calculation and is used
to express the current in terms of the local fermionic operators dσα [189]

I =
e

h

VLVRΓ0

V
2

∑
σ

[
2d†σRdσR − 2d†σLdσL

+

(
rL
rR
− rR
rL

)
d†σLdσR +

(
rL
rR
− rR
rL

)
d†σRdσL

]
,

(4.8.1)

where r2
α = V 2

α /(V
2
L +V 2

R) = V 2
α /V

2 is a dimensionless measure for the hybridiza-
tion. For a symmetric coupling, the last two terms vanish and the current reduces
to the difference between left- and right-moving electrons in the effective dσα or-
bitals. In the non-interacting case, this formula can be further simplified [189],
and reduces to the known Landauer-Büttiker formula

〈I〉 =
e

h

∑
σ

ˆ ∞
−∞

[f(ω − µR)− f(ω − µL)] ρd(ω)dω, (4.8.2)

where

ρd(ω) =
1

π

Γ0

(ω − εd)2 + Γ2
0

. (4.8.3)

The spectral density is described by a Lorentz peak for the non-interacting d
level.

We choose symmetric coupling r2
α = 1/2, a non-interacting central orbital

U = 0, and employ our NRG algorithm based on the Y operator. Without finite
U , the problem reduces to two separate sub-problems for the left- and right-
moving electrons for which we may define an additional quantum number α. The
choice of η does not matter as Y contains just an energy shift by the chemical
potential. We calculate the current Eq. (4.8.1) from the occupation numbers
nσα. The latter terms vanish due to the symmetric coupling. Fig. 4.11 shows
the current compared to the analytic solution Eq. (4.8.2) for two different level
positions εd. The NRG results and the analytic formula coincide perfectly for all
voltages.
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Figure 4.11: Current through single spin-full but non-interacting orbital as function of
voltage for different level positions εd. The current is calculated via Eq. (4.8.1) from the
Y operator based NRG algorithm. The dashed line represents a numerical evaluation
of the exact formula (4.8.2). We used Λ = 4 and kept Ns = 1500 states for the NRG
calculations.

4.8.1 Local Degrees of Freedom and Hartree Transforma-
tion

We now turn to the interacting problem. Before we study the whole chain Hamil-
tonian, let us focus on the local degrees of freedom alone. The initial physical
Hamiltonian consists of a single spin-full orbital coupled to two bands. We per-
formed a LS transformation and exploited the inverse transformation to express
all local interaction terms via two orbitals, described by the fermionic operators
dασ. However, there is another orbital that is essentially decoupled from the
impurity [165]. The anti-symmetric linear combination reads

dσ = rRdLσ − rLdRσ (4.8.4)

compared to the inverse transformation for the dσ operators, Eq. (4.5.16),

dσ = rRdRσ + rLdLσ. (4.8.5)

The anti-symmetric linear combination belongs to the bands and its single particle
energy should remain at zero. In this section, we explicitly include both orbitals,
dσ and dσ, and compare the eigenspectrum of the different Hamiltonians for the
initial Wilson site labeled by the subscript 0. The Hamiltonian for the physical
d and itinerant d reads

Hdd,0 =
∑
σ

εdd
†
σdσ +

∑
σ

εdd
†
σdσ + Und↑n

d
↓. (4.8.6)
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We compare this Hamiltonian to HLS,0 for the first chain site after performing
the LS transformation, i.e. the starting orbital for the SNRG algorithm

HLS,0 =
∑
σα

ω0d
†
σαdσα + Und↑n

d
↓, (4.8.7)

We recall that ω0 → εd and that the occupation number needed for the Coulomb
interaction must be expressed in the new degrees of freedom

ndσ =
∑
αα′

rαrα′d
†
σαdσα′ . (4.8.8)

We assume particle-hole symmetric parameters for the d orbital and the same
single particle energy εd = εd = ω0. Table 4.1 lists the 16 eigenstates ordered by
their energy. Note that the states are written in different bases and one has to
translate from one to the other by inserting the above transformations Eq. (4.8.4)
and (4.8.5). Both Hamiltonians are completely equivalent and the eigenstates can
be readily obtained by a simple basis transformation. We stress, however, that
this statement only holds if εd = εd. The d orbital cannot be pinned to εd = 0 for
any finite εd without breaking this equivalency.

HLS,0 Eq. (4.8.7) Hdd,0 Eq. (4.8.6)
# Q Sz |nL, nR〉 |nd, nd〉
0 1 1/2 2−1/2(| ↑, ↑↓〉+ | ↑↓, ↑〉) | ↑, ↑↓〉
1 1 -1/2 2−1/2(| ↓, ↑↓〉+ | ↑↓, ↓〉) | ↓, ↑↓〉
2 2 0 | ↑↓, ↑↓〉 | ↑↓, ↑↓〉
3 0 0 ... | ↓, ↑〉
4 0 0 ... | ↑, ↓〉
5 0 0 ... |0, ↑↓〉
6 0 1 | ↑, ↑〉 | ↑, ↑〉
7 0 -1 | ↓, ↓〉 | ↓, ↓〉
8 1 1/2 2−1/2(| ↑, ↑↓〉 − | ↑↓, ↑〉) | ↑↓, ↑〉
9 1 -1/2 2−1/2(| ↓, ↑↓〉 − | ↑↓, ↓〉) | ↑↓, ↓〉
10 -1 1/2 ... | ↑, 0〉
11 -1 1/2 ... |0, ↑〉
12 -1 -1/2 ... | ↓, 0〉
13 -1 -1/2 ... |0, ↓〉
14 0 0 ... | ↑↓, 0〉
15 -2 0 |0, 0〉 |0, 0〉

Table 4.1: Eigenspectrum of the Hamiltonians in Eq. (4.8.6) and Eq. (4.8.7). The
first column labels the states from lowest to highest eigenenergy, the second and third
column lists their quantum numbers. Q is taken from half-filling. Column three and
four list the eigenstates as linear combinations of the original occupation basis. Ellipsis
indicate a lengthy linear combination that is omitted for visual clarity. The horizontal
lines group energy degenerate states.
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We now absorb the density term of the Coulomb interaction into the level
position by performing a Hartree transformation (HT) [165, 13]

H̃LS,0 =
∑
σα

(
ω0 +

U

2

)
nσα +

U

2

(∑
σ

nσ − 1

)2

=
∑
σα

(
ω0 +

U

2

)
d†σαdσα + Und↑n

d
↓ −

U

2
(nd↑ + nd↓) +

U

2
.

(4.8.9)

Note that the number operator in the last term must also be written in terms of
the dασ operators with the help of Eq. (4.8.8).

Alternatively, one can apply the Hartree transformation to the Hamiltonian
in Eq. (4.8.6). Only the d orbital is subject to the Coulomb interaction and
therefore only the single particle position for the d electrons are shifted:

H̃dd,0 =
∑
σ

(
εd +

U

2

)
d†σdσ +

∑
σ

εdd
†
σdσ +

U

2

(∑
σ

ndσ − 1
)2

. (4.8.10)

Diagonalization of the Hamiltonians (4.8.9) and (4.8.10) reveals two different
eigenspectra. We can bring both spectra into line by shifting the d position
in Eq. (4.8.10) as well, such that it also lies at zero energy in the particle-hole
symmetric case. The modified Hamiltonian reads

H̃ ′
dd,0

=
∑
σ

(
εd +

U

2

)
d†σdσ +

∑
σ

(
εd +

U

2

)
d
†
σdσ +

U

2

(∑
σ

ndσ − 1

)2

=
∑
σ

(
εd +

U

2

)
d†σdσ +

∑
σ

(
εd +

U

2

)
d
†
σdσ + Und↑n

d
↓ −

U

2

(
nd↑ + nd↓

)
+
U

2
.

(4.8.11)

The spectra of the modified Hamiltonian (4.8.11) and of the Hamiltonian (4.8.9)
are shown in Tab. 4.2.

Without HTT, the Hamiltonian for the first chain site after LST is equivalent
to the Hamiltonian for the physical orbital as long as we include the d orbital
with εd = εd. This means that the d orbital is not pinned to zero energy after
LST.
When we perform HTT, then the d orbital rests at εd + U/2 which is zero for
particle-hole parameters.
We remark that the HTT is irrelevant for U = 0. But even in this case, εd = εd in
order for the spectra of the physical impurity including d orbital and first chain
site Hamiltonian to be equal.
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H̃LS,0 Eq. (4.8.9) H̃ ′
dd,0

Eq. (4.8.11)
# Q Sz |nL, nR〉 |nd, nd〉
0 -1 -1 2−1/2(| ↓, 0〉+ |0, ↓〉) | ↓, 0〉
1 -1 1 2−1/2(| ↑, 0〉+ |0, ↑〉) | ↑, 0〉
2 1 -1 2−1/2(| ↑↓, ↓〉+ | ↑↓, ↓〉) | ↓, ↑↓〉
3 1 1 2−1/2(| ↑↓, ↑〉+ | ↑↓, ↑〉) | ↑, ↑↓〉
4 0 0 ... | ↑, ↓〉
5 0 0 ... | ↓, ↑〉
6 0 2 | ↑, ↑〉 | ↑, ↑〉
7 0 -2 | ↓, ↓〉 | ↓, ↓〉
8 1 1 2−1/2(| ↑↓, ↑〉 − | ↑↓, ↑〉) | ↑↓, ↑〉
9 1 -1 2−1/2(| ↑↓, ↓〉 − | ↑↓, ↓〉) | ↑↓, ↓〉
10 -1 1 2−1/2(| ↑, 0〉 − |0, ↑〉) |0, ↑〉
11 -1 -1 2−1/2(| ↓, 0〉 − |0, ↓〉) |0, ↓〉
12 2 0 | ↑↓, ↑↓〉 | ↑↓, ↑↓〉
13 0 0 ... |0, ↑↓〉
14 0 0 ... | ↑↓, 0〉
15 -2 0 |0, 0〉 |0, 0〉

Table 4.2: Eigenspectrum of the Hamiltonians in Eq. (4.8.11) and Eq. (4.8.9). The
first column labels the states from lowest to highest eigenenergy, the second and third
column lists their quantum numbers. Q is taken from half-filling. Column three and
four list the eigenstates as linear combinations of the original occupation basis. Ellipsis
indicate a lengthy linear combination that is omitted for visual clarity. The horizontal
line group energy degenerate states.

4.8.2 Regulatory shift η and Numerical Calculation of Y

We recall that the numerical calculation of Y in Eq. (4.5.41) requires a complex
regularization η. We repeat Eq. (4.5.41) for ease of reading

[Y ]nm =
iη

Em − En + iη
[Y0]nm, (4.8.12)

where n and m label all states in the respective sub-space and En are the corre-
sponding eigenenergies. In the continuum limit, this shift η → 0 and thus

lim
η→0

iη

Em − En + iη
= δEm,En . (4.8.13)

However, it is not clear a priori how to choose η in a finite discrete system. Before
we discuss different ways to adjust η, we analyze its effect on the calculation of
Y and the level spectrum by examination of the first Wilson chain site.

We look at the Y -NRG algorithm outlined in Sec. 4.7 and focus on a single
sub-space for the first chain site with quantum numbers Q = 1 and Sz = −1/2
where Q labels the total number of electrons with respect to half-filling and Sz
the total spin component in z axis. This sub-space contains two states | ↑↓, ↓〉
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and | ↓, ↑↓〉 which are themselves product states |nL, nR〉 = |nL〉⊗|nR〉 describing
the occupation of the dασ orbitals. We do not perform the Hartree transformation
mentioned in Sec. 4.8.1 because the discussion here is indifferent to whether or
not it is employed.

Let us first assume that U = 0 and εd and V are finite. The Hamiltonian is
diagonal with two eigenenergies E1,2 = εd. The matrix Y0 is also diagonal in the
same basis as H, which is simultaneously the eigenbasis of both matrices because
[H,Y0] = 0. Equivalently, one can define a preserved quantum number for left-
and right-moving electrons. We then use Y0 to calculate Y . In the case here,
the value of η is irrelevant since either the fraction in Eq. (4.8.12) cancels out
exactly or [Y0]nm = 0 for n 6= m and, thus, Y = Y0. Following the algorithm, we
calculate K = H − Y , which is already diagonal and contains the eigenenergies
of H shifted by µ.

This exemplifies how the non-interacting limit is recovered in our algorithm.
We emphasize that the numerical value of η is irrelevant if U = 0. This trivially
holds true if eV = 0 as well since then Y = Y0 = 0 and H = K.

Next, we choose particle-hole symmetric parameters U = −2εd and finite
eV . The Hamiltonian H is not-diagonal in the occupation basis |nL, nR〉 as U
mixes left- and right-movers. Furthermore, Y0 and Y are both not diagonal in
the eigenbasis of H. In our particular sub-space, Y0 is zero on the diagonal and
has two symmetrical and real non-diagonal entries. Consequently, Y is also non-
diagonal but with two complex non-diagonal elements such that Y is hermitian.
The real and imaginary part both depend monotonous on the value of η. The
difference K = H − Y becomes complex as well with new eigenenergies that are
different to those of H. However, this difference depends strongly on the ratio
η/eV . If η is much smaller than eV , the effect is negligible and the eigenvalues are
identical. If η � eV , the eigenvalues of K quickly stop changing. The influence
of η on the eigenvalues is rather small even for large η and in the order of a few
percent for the first iteration.

This makes up the second important point: the ratio η/eV is relevant when
U 6= 0. If we, guided by the analytic relation for η, choose η � eV , we would
end up with the same eigenenergies for the truncation as if eV = 0. We stress
that it is unclear whether this effect has physical meaning or is an artifact of the
algorithm. However, the influence on the eigenvalues in the first iteration is quite
small and in the order of a few percent at most unless eV is unrealistic large.

4.8.3 Different Choices for η, Level Flow, and V → 0

From the point of view of the numerical algorithm, the effect of η is to mix eigen-
states of H that are (nearly) energetically degenerate. Following the regulatory
argument, the factor in Eq. (4.8.12) reduces to a Kronecker δEm,En in the limit
η → 0. A finite η broadens this δ peak slightly yielding finite non-diagonal matrix
elements in Y . We discuss two different choices for η and look at the level flow.
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We present results for finite voltage V and small voltages where the system is
expected to show Fermi Liquid behavior.

First, we assume a constant η in each iteration, i.e. the same η in Eq. (4.8.12).
Let ωN be the energy scale of iteration N and ηeff ∝ ωN . The label ‘eff’ implies
that η is scaled by an appropriate factor

√
Λ between successive iterations such

that the value entering in Eq. (4.8.12) is the same each iteration. The propor-
tionality factor can be adjusted freely. The line of reasoning is that η introduces
a mixing of nearly degenerate states in the Y operator. If this mixing is large in
each iteration, the difference between the eigenbasis of H and the eigenbasis of
K is larger as well. Since we want to reach the steady-state governed by K, a
larger rotation might facilitate this process.

Figure 4.12: Level flow of the lowest 40 eigenenergies for HN (left column) and
KN = HN − YN (right column). εd/Γ0 = −2, U/Γ0 = 4, and eV/Γ0 = 0.1. The
complex shift ηeff = ωN . The shaded area indicates the iterations where µeff ∼ T . The
number of retained states is Ns = 1500, NRG discretization parameter Λ = 3, and
D/Γ0 = 40.

Fig. 4.12 shows the lowest energy levels of HN and KN = HN − YN for
εd/Γ0 = −2, U/Γ0 = 4, V/Γ0 = 0.1 and ηeff = ωN . We distinguish between the
level flow for HN and KN = HN −YN (left and right column) as well as even and
odd iterations N (top and bottom). The energies of HN grow rapidly for later
iterations since we add the scaled chemical potential µα,eff = µαΛN/2 to the Y
operator. The spectrum of KN = HN − YN , on the other hand, shows a more
conventional picture. However, we do not see that the system arrives close to any
fixed point. Instead, the behavior for low temperature (high iterations) shows a
rather erratic behavior.
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Figure 4.13: Level flow of the lowest 40 eigenenergies forKN = HN−YN for even (left)
and odd (right) iterations N for different ηeff . ed/Γ0 = −2, U/Γ0 = 4, and eV/Γ0 = 0.1.
The shaded area indicates the iterations where Veff ∼ T . The number of retained states
is Ns = 1500, NRG discretization parameter Λ = 3, and D/Γ0 = 40.

This behavior is not limited to our choice of ηeff . Fig. 4.13 shows the level
flow for KN for different ηeff . Up until µeff ∼ TN (blue shaded area), all levels for
different ηeff are converged and ηeff has no noticeable effect on the energies. This
is in accordance to our discussion in Sec. 4.8.2. The effect on the eigenenergies is
small for the first iterations regardless of ηeff . When we continue the algorithm
and reach a temperature scale where µeff > TN , the choice of ηeff influences the
eigenenergies drastically and the low temperature level flow differs significantly.

One can alternatively argue that η → 0 on an absolute scale from the analytic
considerations. The lowest energy scale in the NRG is given by the energy scale
ωNmax of the last iteration Nmax. We choose η = ωNmax and do not scale it for
iterations N < Nmax. This has the effect that η is small for the first iterations,
but on the same scale as the eigenenergies of KN in the last iteration. Note that
we use the eigenvalues of HN in Eq. (4.8.12) and that the difference ∆Enm might
still be orders of magnitude larger than η due to the growing eigenvalues of HN .

Fig. 4.14 shows a comparison between the level flows for scaled ηeff = ωN
plotted in Fig. 4.12 and absolute η = ωNmax . We find that the level flow is almost
converged until µeff ∼ TN . The value of η does not matter from the perspective of
the eigenenergies if µeff < TN . The low temperature behavior shows a comparable
erratic behavior without any clear fixed point.

We now focus on the limit where µeff < TN . The discussion above indicates
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Figure 4.14: Level flow of the lowest 40 eigenenergies forKN = HN−YN for even (left)
and odd (right) iterations N for ηeff = ωN (blue curves) and η = ωNmax (green curves).
ed/Γ0 = −2, U/Γ0 = 4, and eV/Γ0 = 0.1. The shaded area indicates the iterations
where µeff ∼ TN . The number of retained states is Ns = 1500, NRG discretization
parameter Λ = 3, and D/Γ0 = 40.

that the choice of η is unimportant as long as TN � µeff . We keep the absolute
η = ωNmax and compare the eigenenergies of KN for eV = 0 and eV/Γ0 = 5 · 10−5

in Fig. 4.15. There are only minor differences in both level flows. All levels are
flat which indicates that the system reached its low-temperature fixed point.

We calculate the occupation numbers for the left- and right-moving many-
body particles and evaluate Eq. (4.8.1) to determine the current through the
quantum level. It is shown in Fig. 4.16. The current is linear with different
slopes, and the larger U the flatter the slope. This kind of behavior would be
expected in the Coulomb blockade regime where the repulsion between electrons
in the intermediate nanoscale region hampers transport, and thus suppresses the
current. In the extreme case, only a single electron can occupy the local orbital,
and the question arises whether a description via scattering states is still valid
in this limit. It is a promising sign that our approach seems to reproduce the
Coulomb blockade behavior, at least qualitatively. Unfortunately, the current
should exhibit a universal behavior in the limit eV → 0, regardless of U . The
system should reach the strong coupling fixed point, for which we expect a linear
I(eV ) behavior with the same slope. As it stands now, our approach is not able
to reproduce this behavior.
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Figure 4.15: Level flow of the lowest 40 eigenenergies forKN = HN−YN for even (left)
and odd (right) iterations N for eV = 0 and eV/Γ0 = 5 · 10−5. The levels are almost
identical. The shaded area indicates where µeff ∼ TN for the finite eV/Γ0 = 5 · 10−5.
The number of retained states is Ns = 1500, NRG discretization parameter Λ = 3, and
D/Γ0 = 40.

Figure 4.16: Current through the nano-junction after Eq. (4.8.1) as function of eV in
the limit eV → 0 for different particle hole symmetric parameters.
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4.9 Conclusion of the Steady-State Transport Chap-
ter

In the last chapter, we discussed steady-state transport through strongly corre-
lated regions. We introduced the prime model for these systems that consists of
two infinite large bands that are coupled to a single correlated quantum level. A
finite external voltage drop induces a chemical potential difference and an unbal-
ance between left- and right-moving quasi-particles. The Meir-Wingreen formula
describes the electronic current through such a quantum level under the influence
of a many-body interaction in terms of the non-equilibrium Green’s functions.
We introduced our numerical method of choice, the TDNRG, and the extension
to steady-state transport problems, the Scattering States NRG, which relies on
the TDNRG algorithm for calculating the correct steady-state density operator.

We successfully applied the SNRG in the context of electron transport along
the edge of a QSHI under the influence of a quantum impurity. The 1d surface
of a QSHI shows two counter-propagating electronic modes, called helical edge
states, that couple propagation direction and spin orientation. Left- and right-
moving particles are protected by a spin symmetry. If this symmetry is retained,
the system can be mapped onto an effective equilibrium problem and backscat-
tering at the quantum impurity vanishes. On the other hand, backscattering
diminishes the perfect conductance if the spin symmetry is broken. The total Sz
spin component is not conserved and incoming spin up electrons may scatter into
outgoing spin down electrons at the impurity without limitation. However, one
can dynamically restore perfect conductance if the equilibrium Kondo tempera-
ture is the highest low-energy scale. A Kondo singlet forms, magnetic scattering
is suppressed, and perfect conductance is retained.

We then introduced a new approach to steady-state quantum impurity sys-
tems. We adopted the SNRG algorithm by directly calculating Hershfield’s Y op-
erator that enters in the steady-state density operator ρ ∼ exp(−β[H − Y ]). We
first tested our framework in the non-interacting and analytically solvable limit
U = 0 for our toy-model where our results matched the expectations perfectly.
We then focused on the regulatory factor η and its influence in our numerical
algorithm. We discussed two different approaches: η was either taken to be con-
stant on each energy shell separately or on an absolute scale. We found that the
choice of η does not matter much if TN > µeff where µeff is the appropriately
scaled chemical potential. However, the level flow differs widely below TN ∼ µeff .
One cannot discern a fixed point from the energy spectrum of KN . It is still un-
clear whether the level flow of KN can even be meaningfully interpreted in terms
of different fixed points. We finished with the limit eV → 0 where the system
is expected to show Fermi Liquid behavior for T < TK . Here, the level flow is
almost identical to eV = 0. The current is linear with eV but with different
slopes for different particle-hole symmetric combinations of εd and U in contrast
to expectations.

The TDNRG and its extension, the SNRG, are two powerful numerical meth-
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ods for non-equilibrium quantum impurity systems as we have demonstrated in
the case of helical spin transport. The adaptation to directly calculate the steady-
state density operator from Hershfield’s Y operator, that we proposed in this
thesis, is still in the developmental stages. The non-interacting limit is already
perfectly reproduced but multiple questions remain for U 6= 0 where calculations
do not yield expected results. First of all, there is the nature of the d orbital,
that has band character, and its level position. As it stands now, the orbital
rests at the same energy as the physical d orbital. Next, we have the issue of the
discretization of the Lippmann-Schwinger bands. The LS transformation is only
well-defined for quasi-continuous bands. It is unclear whether there are additional
pitfalls that were overlooked when attempting to discretize the LS continuum. Fi-
nally, a major problem is that the current does not show the expected universal
behavior for small bias voltages. One reason may that the formula for the current
might be missing additional contributions. Brief attempts to incorporate terms
that stem from the imaginary part were not fruitful, yielded no change, and were
abandoned.
In the end, non-equilibrium steady-state transport through quantum impurity
systems for arbitrary parameter regimes remains an elusive problem. Our at-
tempt for a Numerical Renormalization Group technique directly for the steady-
state based on Hershfield’s Y operator is not yet fully-fledged and needs further
development beyond the scope of this work.
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Conclusion

We first looked at carbon impurities in graphene and their magnetic properties in
Chapter 3, motivated by a recent STM study [9] that found two types of carbon
vacancies distinguished by their characteristic experimental dI/dV spectra. We
developed a comprehensive picture for these different types of vacancies based on
the effective two-orbital model by Cazalilla et al [116]. The method of choice for
our numerical study wasWilson’s Numerical Renormalization Group [10, 11]. The
experimental results are perfectly described by assuming a variable hybridization
strength that couples the carbon impurity and the π bands of graphene. We
postulated that this variation in hybridization stems from the different curvature
at the different vacancy sites [9, 19]. In the end, we were left with two free
parameters: the chemical potential and this hybridization strength. We mapped
the parameter space and analyzed the different regimes in detail. We compared
our calculated Kondo temperatures to the experimental data and found very good
qualitative agreement with just minor quantitative deviations.

We then turned to non-equilibrium systems with focus on steady-state trans-
port under the influence of magnetic impurities. We employed the Scattering
States Numerical Renormalization Group [13], an extension of the equilibrium
NRG to steady-state problems, to study the conductive behavior of helical edge
modes coupled via an anisotropic spin exchange to a localized impurity spin [12].
This setup was motivated by the helical edge modes that are present on the
1d surface of Quantum Spin Hall Insulators. We found that an anisotropic ex-
change interaction can lead to a finite backscattering current even though the
spin interaction respects time-reversal symmetry. If the Kondo temperature is
the dominant low energy scale, however, the perfect conductance is dynamically
restored [12].
Finally, we presented our novel approach to steady-state transport based on the
SNRG [13] and Hershfield’s Y operator [15]. The goal is a NRG variant tailor-
made for the steady-state in order to circumvent the need for time-evolution of
the density-matrix in the conventional SNRG algorithm. Preliminary results are
promising and the analytically solvable limit can be reproduced perfectly, but
further work and development is needed for the interacting problem.
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