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Chaining of hard disks in nematic 
needles: particle‑based simulation 
of colloidal interactions in liquid 
crystals
David Müller, Tobias Alexander Kampmann & Jan Kierfeld*

Colloidal particles suspended in liquid crystals can exhibit various effective anisotropic interactions 
that can be tuned and utilized in self-assembly processes. We simulate a two-dimensional system of 
hard disks suspended in a solution of dense hard needles as a model system for colloids suspended in 
a nematic lyotropic liquid crystal. The novel event-chain Monte Carlo technique enables us to directly 
measure colloidal interactions in a microscopic simulation with explicit liquid crystal particles in the 
dense nematic phase. We find a directional short-range attraction for disks along the director, which 
triggers chaining parallel to the director and seemingly contradicts the standard liquid crystal field 
theory result of a quadrupolar attraction with a preferred 45◦ angle. Our results can be explained by a 
short-range density-dependent depletion interaction, which has been neglected so far. Directionality 
and strength of the depletion interaction are caused by the weak planar anchoring of hard rods. The 
depletion attraction robustly dominates over the quadrupolar elastic attraction if disks come close. 
Self-assembly of many disks proceeds via intermediate chaining, which demonstrates that in lyotropic 
liquid crystal colloids depletion interactions play an important role in structure formation processes.

Colloidal suspensions of nanometer to micrometer-sized particles in a host fluid can form liquid and crystalline 
phases, but also liquid crystalline mesophases if colloidal particles are, for example, rod-shaped1, 2. Phase behavior 
and stability of a colloidal system can often be explained based on effective interactions between colloidal par-
ticles which arise from integrating out microscopic degrees of freedom of the host fluid. The resulting effective 
interactions govern colloidal stability, coagulation, flocculation, and structures that eventually self-assemble.

Colloidal mixtures containing different colloidal particles, often of different size, feature additional effective 
interactions if degrees of freedom of one species are integrated out3. The most prominent example of additional 
effective interactions in mixtures are depletion interactions, as they arise, for example, in a mixture of large and 
small hard spheres4, 5: a short-range attractive depletion interaction between large hard spheres emerges because 
the excluded volume for the small spheres decreases (and, thus, their available phase space increases) if large 
spheres approach closer than one diameter of a small sphere.

Effective interactions become even more interesting for colloids suspended in anisotropic fluids such as liquid 
crystals (LCs), which can also be seen as colloidal mixtures of larger colloidal particles suspended in a liquid of 
small rod-like particles, in particular for lyotropic LCs6. Such LC colloids exhibit anisotropic effective interac-
tions between colloidal particles if the LC is in an ordered, e.g., nematic phase7. The first studies of LC colloids 
have been performed on latex spheres suspended in a lyotropic nematic LC (a micellar nematic phase of discoid 
type)8, 9. The nematic LC phase forms typical defect-structures around a spherical inclusion depending on the 
anchoring conditions, “Saturn-ring” disclination rings or a satellite hedgehog for normal anchoring and boojums 
for planar anchoring10–12. These defect-structures also induce long-range colloidal interactions between spherical 
inclusions. These have been first explored systematically by Ramaswamy et al.13, Ruhwandl and Terentjev14 and by 
Poulin et al. who also observed a chaining of water droplets inside a LC15. The nature of these elastic LC-mediated 
interactions strongly depends on the details of the interaction between colloidal particle and LC host, i.e., how 
the LC molecules or rods are anchored on the colloid (normal, conic or planar, weak or strong anchoring), and 
can be of dipolar, quadrupolar, or even more complicated nature16–18. Such systems are promising candidates to 
realize a controlled self-assembled structure formation by anisotropic interactions19–24. The elastic interactions 
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in combination with different shapes and sizes of the colloidal particles can be used to create a multitude of dif-
ferent colloidal interactions25–27. LC colloidal assemblies can be engineered, for example, by tuning the surface 
anchoring or engineering nematic defect structures24,28, 29.

Here, we consider a colloidal mixture of hard disks and hard needles, which serves as a simple two-dimen-
sional model system of colloidal spheres suspended in a lyotropic LC. We note that systems of had rods and 
hard disks in three dimensions are qualitatively different as both disks and rods form LC phases in three 
dimensions30,31. We are interested in the situation, where the hard needles are sufficiently dense to form a nematic 
LC phase such that they can mediate elastic interactions between the hard disks. This system is interesting from 
a theoretical point of view as it can be interpreted, on the one hand, as a colloidal mixture, where we expect 
depletion interactions between two hard disks embedded into a fluid of shorter needles. We also expect, on the 
other hand, to find long-range elastic interactions mediated by the nematic hard needle LC, at least for needles 
shorter than the disks, such that a coarse-grained continuum description is appropriate. This is the situation we 
want to address in this paper. The interplay and competition of (at least) two types of effective interactions—
short-range depletion and long-range elastic—has to be unraveled and will have interesting consequences for 
the total effective interaction between the disks.

Depletion interactions are well documented for the dilute isotropic phase of needles32–37 but much less is 
known for a nematic host with the notable exceptions of Refs.38, 39, where the limit of small spheres in long needles 
has been considered. In the experimental study in Ref.39 a chaining of small spherical particles in a host of fd 
virus rods parallel to the director has been found, which was attributed to depletion attraction.

On the other hand, the theory of colloidal LCs should apply with long-range elastic interactions mediated 
by director field distortions in the nematic hard needles. Depending on anchoring conditions and dimensional-
ity of the system dipolar interactions (falling off as r−3 with the sphere separation in three dimensions)40–42 or 
quadrupolar interactions (falling off as r−5 ) can occur13, 14, 43–45. Because hard needles tend to align tangentially 
at a hard wall, we expect a quadrupolar elastic interaction, which is characteristic for planar anchoring at the 
colloidal disk13, 14, 44–46 but also generic in two dimensions43. Both for dipolar and quadrupolar interactions the 
elastic interaction is attractive and chaining of colloidal spheres has been experimentally observed20, 47, 48. Whereas 
dipolar interactions prefer chaining of spheres parallel to the director axis in three dimensions41, 42, quadrupolar 
interactions prefer an angle of approximately 30◦ with respect to the director axis in three dimensions44, 46 and a 
45◦ angle in two dimensions45. For our two-dimensional system of hard disks and hard needles we thus expect 
the elastic interaction to favor a 45◦ angle if disks form chains.

Colloidal mixtures are also computationally challenging systems. Effective interactions are essential to char-
acterize stability and potential self-assembly into crystalline phases but hard to access in a microscopic particle-
based simulation. The process of integrating out microscopic degrees of freedom corresponds to the numerical 
evaluation of a potential of mean force between the colloidal species of interest. In order to measure the potential 
of mean force all degrees of freedom including, for example, relatively slow large spheres in a bath of small par-
ticles must be properly equilibrated.

The colloidal mixture of hard disks suspended in a nematic host of hard needles is particularly challenging 
as the hard needle system must be fairly dense to establish a nematic phase. While particle-based simulations 
exist for dilute rods in the isotropic phase49, 50, the regime of a nematic host is fairly unexplored up to now and 
simulations resorted to coarse-graining approaches46. So far, only single inclusions51 or confining geometries52 
have been investigated by particle-based simulations. In order to calculate the effective interactions between 
hard disks and their self-assembly we apply a novel Monte Carlo (MC) technique, the rejection-free event-chain 
sampling technique. The event-chain algorithm has been originally proposed for pure hard sphere systems53, 
and recently generalized to dense hard needle systems54, and is used here to efficiently equilibrate the system, 
which allows us to directly obtain the potential of mean force and, thus, the effective interaction between two 
hard spheres in a nematic hard needle host.

The simulation will reveal a surprising and robust tendency for chaining of disks along the director axis which 
seems to contradict the chaining in a 45◦ angle with respect to the director axis as predicted by quadrupolar elastic 
interactions in two dimensions45. This turns out to be a result of a dominant short-range depletion interaction, 
and the analysis and explanation of this phenomenon are the main topic of the present paper.

Results
We use hard needles as a model system for a lyotropic LC. Hard needles can be viewed as two endpoints con-
nected by an infinitely thin, hard line, see Fig. 1a, and we sample in the MC simulation by moving the two end-
points. The needle length l0 is used as unit length for non-dimensionalization in the following (primed quantities 
are dimensionless). In two dimensions needles can order at sufficiently high area densities ρ′

n ≡ ρnl
2
0 > 6 in a 

Kosterlitz-Thouless transition into a quasi-ordered nematic phase54–56. In the following, we focus on a needle 
system with ρ′

n = 10 well within this nematic regime. We suspend hard disks of diameter σ ( σ ′ ≡ σ/l0 ) as col-
loidal particles into the nematic hard needle system, see Fig. 1b. The interaction between all particles, i.e., disk-
disk, disk-needle and needle-needle, is given by hard core potentials, which prohibit overlaps. For fast sampling, 
we employ the rejection-free event-chain MC algorithm. More details on the simulation are provided in the 
Methods section. The resulting needle-mediated effective interactions between disks in this lyotropic system is 
the focus of our investigation.

Chaining and depletion.  In the MC simulation, we observe a chaining of the disks along the director 
axis of the nematic needle phase, see Fig. 1b. This chaining indicates a strongly anisotropic directional attrac-
tion caused by the hard needles along the director axis. The chaining axis coincides with two elongated zones 
depleted of needles in the direction of the director on the surface of the disk, as revealed by the needle density 
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shown in Fig. 1d. Depletion zones have an extension of order l0 . Therefore, they are deep relative to the disk 
diameter and very distinct for small disks ( σ ′ = 1 ). For larger disks, the depletion zones smear out and their 
depth diminishes as compared to the disks size.

Chaining along the director axis also governs self-assembly in simulations containing many disks shown in 
Fig. 2a,b. Here we observe self-assembly of hexagonal disk crystals via intermediate chain formation and sub-
sequent aggregation of parallel chains. The chaining along the director axis is very robust and occurs up to high 
needle densities ρ′(n) = 100 , see Fig. 2c,d, where the nematic LC becomes very stiff.

Figure 1.   (a) Simulated particles: hard disks with diameter σ and hard needles with characteristic length l0 . 
(b) Simulation snapshot of disks ( σ/l0 = 3 ) forming chains along the director �n (approximately in horizontal 
direction). On the outer disks and between disks surface depletion zones with low needle density form. (c) Disk 
distance r and disks angle ϑ towards the director ϑ are used to describe the potential of mean force as well as 
other interactions. (d) Needle center of mass density distribution ρ′(�r) around a disk, relative to the director 
for different relative disk sizes σ ′ = σ/l0 (scale bars are one needle length l0 ). For small disks, there are distinct 
depletion zones in front of and behind a disk. Depletion zone extensions are O(l0) . Overlap of these depletion 
zones gives rise to the density-dependent depletion interaction. (Figure created using gnuplot 5.2 (http://www.
gnupl​ot.info/), matplotlib 3.2.1 (https​://matpl​otlib​.org/), python 3.8.2 (https​://www.pytho​n.org/), inkscape 
0.92.5 (https​://inksc​ape.org/)).

Figure 2.   (a) and (b) Evolution of a multi-colloid system, containing 40 disks with diameter σ = 2 in (a) 
160 disks with diameter σ = 1 in (b). In both systems the same area is covered by disks, the needle density is 
ρ′
n = 20 . To generate the initial configuration we place the disks overlap-free and add needles where they fit 

until the desired density is achieved. The series of snapshots shows the self-assembly of the disks first in chains 
and then into hexagonal clusters. We show partly periodic images, extending the original system indicated by 
a black square. (c) and (d) Also in high density systems ( ρ′

n = 100 ) disks align with the director. (c) and (d) 
have different initial configurations, shown in the left column with disks at 0 and 45 angles. Right column shows 
equilibrated state. (Figure created using gnuplot 5.2 (http://www.gnupl​ot.info/), inkscape 0.92.5 (https​://inksc​
ape.org/)).

http://www.gnuplot.info/
http://www.gnuplot.info/
https://matplotlib.org/
https://www.python.org/
https://inkscape.org/
http://www.gnuplot.info/
https://inkscape.org/
https://inkscape.org/
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Effective disk‑disk interaction.  To quantify the effective interaction between two hard disks suspended 
in nematic hard needles, we use the potential of mean force U(r,ϑ) ≈ −kBT ln g(r,ϑ) . Here, r is the distance 
between the disks and ϑ the angle between the connecting line and the director �n , see Fig. 1c; g(r,ϑ) is the pair 
distribution function and kBT the thermal energy. The event-chain MC simulation technique is ideally suited for 
dense mixed colloidal systems54, 57 and allows us to obtain the positional and angular dependence of the potential 
of mean force as shown in Fig. 3.

For small angles ϑ the interaction is attractive and has its minimum at the disk surface at an angle of ϑ = 0◦ . 
This explains the observed parallel chaining of disks. For larger disks, the interaction also develops a repulsive 
part around ϑ = 90◦ . The range of the interaction is decreasing relative to the disk size and of order of l0.

The effective interaction can be described as the sum of two interactions, which are the depletion interaction 
of short range l0 resulting from overlapping depletion zones around a hard disk, and a power-law quadrupolar 
elastic interaction resulting from the elastic energy of nematic hard needles. Because hard needles tend to align 
tangentially at a hard wall, we expect a quadrupolar elastic interaction falling off as r−4 and with a cos(4ϑ) angular 
characteristic43, 45, 58. Therefore, the elastic interaction is maximally attractive for ϑ = 45◦ and repulsive both for 
ϑ = 90◦ and ϑ = 0◦ . The repulsive interaction at ϑ = 90◦ can thus be explained by dominating quadrupolar 
elastic interactions, which becomes more relevant for larger disks. The interaction minimum at ϑ = 0◦ , however, 
comes as a surprise in view of the quadrupolar interaction of standard LC field theory. This minimum can only be 
explained by the dominance of the attractive depletion interaction induced by the nematic hard needles, which 
must be directed along the depletion zones parallel to the director.

Density‑dependent depletion interaction.  In order to calculate the depletion interaction caused by the 
complex anisotropic and smeared shapes of the depletion zones in Fig. 1d, we use a density-dependent descrip-
tion of depletion interactions and find

where ρ(�r) is the local needle density and ρn the average needle density. The depletion interaction is proportional 
to a generalized overlap area of depletion regions of two disks at distance �r , where the depletion region of a disk 
at �r′ = 0 is given by the region with 1− ρ(�r′)/ρn ≈ 1 , which can correctly capture the complex shaped depletion 
zones in Fig. 1d. A detailed derivation of Eq. (1) is presented in the Methods section.

(1)Udep(�r) = −kBTρn

∫ (

1−
ρ(�r′)

ρn

)(

1−
ρ(�r′ − �r)

ρn

)

d�r′,

Figure 3.   Contour plots of the measured interaction U, the calculated density-dependent depletion interaction 
Udep and the difference of the two �U = U − Udep , showing the quadrupolar behavior. Columns represent 
the different interactions and rows describe different disk diameters σ ′ = 1 , 3 and 5. The measurement was 
performed in a square system L× L with system size L = 10σ and needle density ρ′

n = 10 . On the right side are 
exemplary snapshots of configurations, marked with the black dot in the contour plot next to it. (Figure created 
using matplotlib 3.2.1 (https​://matpl​otlib​.org/), python 3.8.2 (https​://www.pytho​n.org/), inkscape 0.92.5 (https​://
inksc​ape.org/)).

https://matplotlib.org/
https://www.python.org/
https://inkscape.org/
https://inkscape.org/


5

Vol.:(0123456789)

Scientific Reports |        (2020) 10:12718  | https://doi.org/10.1038/s41598-020-69544-4

www.nature.com/scientificreports/

The depletion zones are mainly shaped by the elastic interactions in the nematic phase via anchoring condi-
tions at the disk surface. Hard rods exhibit planar anchoring at a hard disk. In the simulation the anchoring 
is only parallel on average, and fluctuations weaken the anchoring considerably. We only find a weak entropic 
planar anchoring (quantified below) such that the needle orientation only deviates little from the director orien-
tation at the disk surface. This explains the elongated depletion zones of extension of order l0 (see Fig. 1d). This 
also results in an overlap area ∼ (σ l30)

1/2 from standard geometric arguments5, such that Udep ∼ kBTρ
′
nσ

′1/2 is 
expected. Moreover, this gives rise to a strongly anisotropic depletion attraction, which is maximal parallel to 
the director ( ϑ = 0◦ ). We can calculate the depletion interaction numerically using measured density profiles 
from simulations and (1); the result is shown in Fig. 3.

Revealing the residual elastic interaction.  In order to uncover additional effective interactions apart 
from depletion, we subtract the numerically calculated depletion interaction from the measured total potential 
of mean force and obtain the residual interaction �U = U − Udep . All three interactions are shown in Fig. 3. 
This reveals the presence of another interaction, which can actually be identified as the elastic interaction from 
LC field theory. Hard needles tend to align tangentially at a hard wall, such that we have planar boundary condi-
tions. For two disks suspended in a nematic LC with planar boundary conditions, LC field theory predicts43, 58

This result is based on the one-constant approximation, i.e., assuming an isotropic elasticity of the nematic LC 
with a single elastic constant K. This elastic constant can be calculated for hard needles in two dimensions as 
K/ρ′2

n kBT = 0.358 by adapting a method from Straley59. The quadrupolar interaction (2) is shown in Fig. 4a and 
explained in more detail in the Methods section.

The field-theoretical quadrupole interaction (2) is qualitatively similar to the residual interaction �U  from 
Fig. 3 but exhibits characteristic deviations. The main differences are: (1) a much weaker interaction strength, 
(2) a distorted quadrupolar symmetry, and (3) for small disks ( σ ′ = 1 ), a missing repulsive regime around 
ϑ = 0◦ and ϑ = 180◦ . The low interaction strength of the measured interaction (i) is caused by the weak parallel 
anchoring of hard rods at the disk surface, which we find in the simulation (and which we quantify below). In the 
theoretical result (2), on the other hand, strict planar boundary conditions, i.e., infinitely strong parallel anchor-
ing is assumed. The distorted quadrupolar symmetry (ii) becomes manifest in differently strong repulsion zones 
for ϑ = 0◦ and ϑ = 90◦ . This is caused by the elastic anisotropy of the nematic hard needle phase, i.e., different 
elastic constants K1  = K3 for orientation fluctuations perpendicular ( K1 ) or parallel ( K3 ) to the director, which 
are not captured in the one-constant approximation ( K = K1 = K3 ) employed in (2). Adapting the method from 
Ref.59, we find K1/K3 ≈ 0.14 for hard needles in two dimensions (our above value K/ρ′2

n kBT = 0.358 is actually 
defined as K = (K1 + K3)/2 . From fitting mean nematic orientation field around a disk we confirm a value of 
K1/K3 ≈ 0.1 below. The weak repulsion for small disks ( σ ′ = 1 ) at ϑ = 0◦ and ϑ = 180◦ (iii) can be explained by 
the pronounced density dependence of the elastic constant ( K ∝ ρ2

n ) via a correlation effect with the depletion 
interaction. Since the depletion zones are of very low density and pronounced in this direction, especially for 
small disks, they also weaken the elastic interaction in this direction.

This interpretation is supported by a numerical calculation of the elastic interaction between two disks in the 
presence of elastic anisotropy K1/K3 = 0.1 and weak parallel anchoring (as quantified below), which is shown 
in Fig. 4b. Details of the numerical calculation are explained in the Methods section. The numerically calculated 

(2)Uquad(r,ϑ) ≈
3πKσ 4

4

cos(4ϑ)

r4
.

Figure 4.   (a) Quadrupolar interaction (2) of two disks in a liquid crystal with planar boundary condition on 
the disk’s surface (with K/ρ′2

n kBT = 0.358 , see text). This is a field theoretical result for the far-field behavior, 
assuming weak distortions of the director and using a one-constant approximation. (b) Numerically calculated 
quadrupolar interaction between two disks in a system of size L = 10σ in the presence of elastic anisotropy and 
weak anchoring ( K1/K3 = 0.1 and w = 0.5 , see (4), and K3/ρ

′2
n kBT = 0.63 ). (Figure created using matplotlib 

3.2.1 (https​://matpl​otlib​.org/), python 3.8.2 (https​://www.pytho​n.org/), inkscape 0.92.5 (https​://inksc​ape.org/)).

https://matplotlib.org/
https://www.python.org/
https://inkscape.org/
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elastic interaction only misses the correlation effect (iii) and, indeed, resembles the residual interaction �U from 
Fig. 3 more closely in its distorted shape.

Both depletion and quadrupolar interaction are attractive and promote chaining of disks, however, at angle 
0◦ if depletion dominates and around 45◦ if the elastic quadrupolar interaction dominates. We see a robust 0◦
-chaining which points at a dominating depletion interaction. In order to explain this dominance we need to 
quantify the weak anchoring for the hard needle and disk system, which is central both for directing the deple-
tion interaction in 0◦ direction as well as for weakening the residual elastic interaction.

Weak anchoring strength and elastic anisotropy in quadrupolar interaction.  Both anchoring 
strength and elastic anisotropy can be quantitatively analyzed by investigating the needle orientation field �(�r) 
around a single disk, which is suspended in a nematic phase with � = 0 asymptotically at the system bound-
ary ( �(�r) is the angle of the local director field �n(�r) with this asymptotic orientation, i.e., �n = (cos�, sin�) ; 
� is defined with respect to the asymptotic director orientation, which determines the x-axis). By comparing 
numerical MC results for hard needles and field theory calculations we can deduce both anchoring strength and 
elastic anisotropy.

The free energy of a two-dimensional LC with anchoring on a surface is given by the Frank-Oseen elastic 
energy60 and a surface anchoring potential:

The first integral is the approximate Frank-Oseen free energy F2DFO with elastic constants K1 and K3 (see Methods 
section) and the second integral over the disk’s surface represents the anchoring energy with anchoring strength 
W. The anchoring depends on the boundary condition �0 at the disks surface, which is parallel anchoring for 
hard needles at a hard disk (i.e., �0 = θ − π/2 ). The numerical minimization of this free energy is discussed in 
the Methods section. Introducing dimensionless quantities (marked with a tilde) by measuring the free energy in 
units of the elastic constant K3 and distances in units of the disk radius R = σ/2 , we find two control parameters, 
the elastic anisotropy K1/K3 and the relative anchoring strength w ≡ Wσ/2K3.

We fit the free energy minimization results to MC simulation data for the mean orientation field �(�r) of 
the needles (see Methods section). Fitting �(�r) in the range 2r/σ = 1.5− 3 and doing so for nematic densities 
ρ′
n = 10− 20 and disk sizes σ ′ = 1− 10 in systems of size L = 6σ we obtain the best fit for

In principle, the relative anchoring strength w can depend on ρ′
n and σ ′ . We only find a very weak decrease from 

w = 0.5 to 0.45 with density for ρ′
n = 10− 20 . The result for the elastic anisotropy is in good agreement with 

our above finding K1/K3 ≈ 0.14 using the method from Ref.59. Both results (4) are also very similar to results 
from Ref.61 for granular rods in two dimensions obtained in a cavity geometry. This confirms that the hard needle 
nematic phase has indeed a pronounced elastic anisotropy and only a weak effective anchoring strength at the 
hard disk surfaces; this anchoring is purely entropic as reflected by w = const implying W/σ ∼ K ∼ kBTρ

′2
n .

Depletion dominates quadrupolar interaction for chaining along director.  In the chaining of 
disks the elastic quadrupolar interaction competes with the depletion interaction. For weak anchoring the quad-
rupolar interaction is ∝ w245. From Eq. (2) we expect a quadrupolar interaction strength Uquad/kBT ∼ w2ρ′2

n  at 
the disk surface. This competes with a depletion interaction of strength Udep/kBT ∼ ρ′

nσ
′1/2 . For weak anchor-

ing with w2ρ′
nσ

′−1/2 ≪ 1 the depletion interaction dominates as observed in our simulations. This explains the 
robustly observed 0◦-chaining along the director. At high densities, the quadrupolar interaction becomes more 
relevant. We performed simulations up to very high needle densities ρ′

n = 100 and still observe robust 0◦-chain-
ing as shown in Fig. 2.

Discussion
We modeled lyotropic LC colloids as hard disks in a suspension of hard needles in a two-dimensional system. 
Simulations with an event-chain MC algorithm showed a chaining of disks along the director axis of the nematic 
needle phase. This chaining is caused by a depletion interaction due to elongated depletion zones behind and 
in front of the disks parallel to the director. This depletion interaction is only accessible in efficient microscopic 
simulations with explicit rods. Elongated depletion zones are caused by the weak planar anchoring of hard needles 
at hard disks. Calculating the depletion interaction with a density-dependent depletion theory and subtracting 
the depletion interaction we reveal a residual elastic quadrupolar interaction which is mediated by the direc-
tor distortions around the disks. A quadrupolar elastic interaction is consistent with the planar anchoring. The 
elastic interaction is weakened because hard needles are only weakly anchored and the angular dependence is 
characteristically deformed because of a pronounced elastic anisotropy of the nematic needle phase.

Both depletion and quadrupolar interaction are attractive and can give rise to chaining, in principle, but 
the depletion favors a 0◦-angle with the director axis while the quadrupolar interaction would favor 45◦ . In our 
simulations for densities up to ρ′

n = 100 and disk sizes up to σ ′ = 10 we only find 0◦-angle chaining indicating a 
robustly dominating depletion, which is mainly due to the weak planar anchoring. This type of chaining also gov-
erns the intermediate states in self-assembly of many colloidal disks into crystals as shown in simulation in Fig. 2.

A natural continuation of our work will be the investigation of hard spheres suspended in hard rods (such 
as spherocylinders) in three spatial dimensions. We believe that the two-dimensional simulation can already 

(3)F =

∫

dA

[

K3

2
(∂x�)2 +

K1

2
(∂y�)2

]

+
W

2

∫

sin2(�0 −�)dl .

(4)
K1

K3
≈ 0.1 and w ≈ 0.45− 0.50.
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provide results, which qualitatively apply also to the the three-dimensional case, while giving a significant simu-
lation speedup.

In three spatial dimensions, experiments47, 48 and numerical field theory44, 46 found quadrupolar interac-
tions with an interaction minimum and chaining of colloidal spheres at a 30◦-angle for planar anchoring, which 
corresponds to a 45◦ in two dimensions45. The field-theoretic continuum approaches did not capture depletion 
interactions, however, while experiments in Refs.47, 48 were not dealing with lyotropic systems.

With respect to applications, our results show that, in lyotropic LC colloids, depletion interactions can play 
an important role in structure formation. By exploiting their dependence on particle shape they could provide 
an additional tool to control the structure formation process. Assuming that our results carry over to three-
dimensional systems, we expect that the range of the depletion interaction mediated by the lyotropic LC is given 
by the rod length l0 . In order to develop similar observable consequences for chaining as in the simulations, 
l0 should not be orders of magnitude smaller than colloidal spheres; this requires fairly long lyotropic rod-like 
particles. The depletion interaction dominates for weak planar anchoring as realized by hard rods and hard 
spheres. Experimental investigations for these types of systems are still rare at present. An ideal system to test 
the predictions experimentally are fd virus rods. In the experimental study in Ref.39 very small hard spherical 
particles ( ∼ 20nm ) in a host of hard fd virus rods (length ∼ 900nm ) in the nematic phase have been studied and, 
indeed, an ordering parallel to the director has been found, which was attributed to depletion attraction and is 
in line with our observations. Our results suggest that future experiments with micron-sized colloidal particles 
suspended in a nematic fd virus phase could display dominant depletion interaction effects including colloidal 
self-assembly via parallel chaining.

Methods
Simulation method.  Event‑chain Monte‑Carlo.  To simulate hard disks in a suspension of hard needles 
the event-chain MC algorithm for many-body interactions is used53, 54, 62. This is a rejection-free MC method 
that performs very well for dense systems57, which makes it an excellent choice for needle systems in the nematic 
phase, for which it has been adapted in Ref.54. The event-chain MC is a Markov-chain MC scheme, which fulfills 
maximal (rejection-free) global balance rather than detailed balance. Global balance is achieved by introducing 
lifting moves62. For hard spheres or needles a lifting move is the transfer of MC displacement from one particle 
to another particle. This means in a MC move only one particle at a time is moved along a line until it contacts 
another object. For the application to hard needles, one of the two endpoints are moved and, upon collision with 
another needle, the remaining MC move distance is transferred to one of the endpoints of this needle. To which 
of the endpoints it is transferred depends on the collision point along the needle54. In the presence of additional 
disks, MC displacement is also transferred to disks if a needle collides with the disk and vice versa. Collision 
detection is the computational bottleneck, and we use a sophisticated neighbor list system to achieve high simu-
lation speeds also in the nematic phase (see Supplementary Information).

Hard needle liquid crystal.  We model the molecules of a lyotropic LC as hard needles, which consist of two 
endpoints connected by an infinitely thin, hard line (see Fig. 1a). For efficient sampling, the distance of the two 
endpoints, i.e. the length l of the hard needle can fluctuate around its characteristic length l0 in order to allow for 
independent motion of both endpoints in the MC simulation; the needle length l is restricted by a hard potential 
Vn(l) with Vn(l) = 0 for l/l0 ∈ [0.9, 1.1] and infinite Vn(l) else, such that l0 is the effective needle length. Restrict-
ing the needle length is also necessary for our neighbor lists, which accelerate the simulation.

The interaction potential Vnn between two hard needles is either infinite when they overlap or zero else. This 
results in a lyotropic transition from isotropic to nematic upon increasing the needle density ρn . In a system with 
Nn needles the density ρn = Nn/Afree is defined using the available free area Afree (reduced by the area occupied 
by disks). The simulation box is a square with edge length L and periodic boundary conditions. In a typical system 
of size Afree = 900l20 we simulate Nn ∼ 9000 needles at a needle density ρ′

n = 10.
Liquid crystalline ordering is described by the standard tensorial order parameter

which is invariant under needle inversion; �νi is the orientation of needle i.
The scalar order parameter S ∈ [0, 1] is calculated by diagonalizing the matrix, where � = 2S is the biggest 

eigenvalue. The corresponding eigenvector is the director �n . The scalar order parameter S measures the degree of 
alignment in the system and is zero in a perfectly isotropic phase and unity in a perfectly aligned nematic phase. 
Figure 5 shows the order parameter S as a function of density for the two-dimensional hard needle system54; 
the system quasi-orders above ρ′

n ≈ 655. In our two-dimensional system, this transition is a Kosterlitz-Thouless 
transition into a quasi-ordered nematic state56.

Elastic energy, weak anchoring and elastic anisotropy.  For a nematic LC the state of perfect align-
ment is the energetically preferred configuration. But this state is almost never reached because of thermal 
fluctuations, boundary conditions, or topological defects. Often effective free energies from field theories are 
used to describe deviations from homogeneous alignment. For a director field �n(�r) in three dimensions, the 
energy of small distortions can be captured with the Frank-Oseen free energy FFO63 with three elastic constants 
Ki , which determine the energy cost of the three different distortions splay ( K1 ), twist ( K2 ) and bend ( K3 ). In a 
two-dimensional system, twist distortions are not possible and, therefore, K2 = 0 resulting in60

Qαβ =
1

Nn

Nn
∑

i=1
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�νiα�ν
i
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with the needle orientation field �(�r) related to the director via �n = (cos�, sin�) . We assume � = 0 correspond-
ing to �n||�ex asymptotically at the system boundary. The last approximation is the leading order in an expansion 
in deviations from � = 0 and neglects non-linear terms in �61.

The elastic constants K1 and K3 can be calculated by adapting a method described by Straley59 to two dimen-
sions. Strictly speaking the pronounced logarithmic orientational fluctuations in two dimensions will give rise 
to a renormalization at large scales64, which we ignore in our finite size system. We obtain K1/ρ

′2
n kBT = 0.086 

and K3/ρ
′2
n kBT = 0.63 for the nematic phase with ρ′

n = 10 . This result is based on the angular distribution 
pA(θ) ∝ exp(A cos2 θ) of needle orientations �ν = (cos θ , sin θ) with A = 10 matching our MC simulations in 
the nematic phase with ρ′

n = 10 (see Fig. 5). In the one-constant approximation, we assume K = 1
2 (K1 + K3) 

resulting in K/ρ′2
n kBT = 0.358 ; for this value of K the quadrupolar interaction (2) is shown in 4.

In order to describe colloidal disks in a nematic needle phase faithfully, we need too take into account elastic 
anisotropy K1  = K3 and a finite parallel anchoring with an anchoring strength W. In order to quantify the elastic 
anisotropy K1/K3 and the relative anchoring strength w = Wσ/2K3 , we consider the needle orientation field �(�r) 
around a single disk, which is suspended in a nematic phase with � = 0 asymptotically at the system boundary 
and quantitatively compare MC simulation data with minimization of the free energy (3) containing both the 
anisotropic 2D Frank-Oseen elastic energy and the anchoring potential. Free energy minimization using the 
linearized approximation in the Frank-Oseen part (5) results in the partial differential equation

in dimensionless units �̃r ≡ 2�r/σ . Analytical solutions are only available in the one-constant approximation 
K1 = K3 , where65

(both � and ϑ are defined with respect to the asymptotic director orientation, which determines the x-axis). For 
the full problem (6) we have to resort to numerical solutions by finite element methods (using MATHEMATICA).

In Fig. 6 we plot MC simulation data for the director orientation field �(r,ϑ) as a function of ϑ (i.e., along 
circles) for different rescaled r/σ and for different system sizes such that L/σ = 6 remains fixed. Rescaling of 
lengths with σ results in good data collapse for different σ . The characteristic shoulder of �(r,ϑ) as a function 
of ϑ can only be explained by an elastic anisotropy K1/K3 ≈ 0.1 . Fits with Eq. (7) from elastically isotropic one-
constant approximation ( K1 = K3 ) remain unsatisfactory. We perform fits for specific r/σ and overall fits within 
the whole range r/σ = 1.5− 3.0 with the numerical solution of the PDE (6) in the same geometry as the MC 
simulation (square box with L/σ = 6 and director oriented along the diagonal as fixed by Dirichlet boundary 
conditions) using K1/K3 = 0.1 and w as fit parameter. The fit results for w are weakly r-dependent (dashed blue 
lines) and the result of the overall fit (solid blue line) is w ≈ 0.5 , see Eq. (4).

Quadrupolar elastic interaction.  If two colloidal disks are embedded, boundary conditions on the disk 
surface induce deformations in the director field and, thus, induce an elastic interaction given by the energy 

(5)F2DFO =

∫

dA

[

K1

2
(∇�n)2 +

K3

2
(∇ × �n)2

]

≈

∫

dA

[

K3

2
(∂x�)2 +

K1

2
(∂y�)2

]

(6)
(

∂2x̃ +
K1

K3
∂2ỹ
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Figure 5.   (a) Measurement of the probability distribution of angles ϕ with the director (black dots). The 
probability function p10(ϕ) ∼ exp(10 cos2 ϕ) (blue line) matches the MC data for ρ′

n = 10 . (b) Scalar order 
parameter S as a function of the needle density ρ′

n = ρl20 = Nnl
2
0/Afree . The transition from the isotropic to the 

nematic phase occurs roughly at ρ′
n ≈ 6 and is of Kosterlitz-Thouless type. We consider needle systems with 

densities ρ′
n ≥ 10 as in the nematic phase and use ρ′

n = 10 for the potential of mean force calculation and local 
needle density measurements. (Figure created using matplotlib 3.2.1 (https​://matpl​otlib​.org/), python 3.8.2 
(https​://www.pytho​n.org/), inkscape 0.92.5 (https​://inksc​ape.org/)).

https://matplotlib.org/
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(5) of the deformation. There are some results on these elastic interactions in the one-constant approxima-
tion ( K = K1 = K3 ). For two disks with perfect planar boundary conditions there is an approximate analytical 
result which is the quadrupolar long-range interaction from Eq. (2)43, 58. Since this is a field theoretical result, 
the needles are assumed to be infinitely small relative to the colloids. There are no analytical results for the full 
two-constant free energy (5).

Therefore, we performed numerical simulations based on the finite element method (using MATHEMAT-
ICA), i.e., solving Eq. (6) for a system with two disks with distance r and with an angle ϑ with respect to the 
director axis and using the same anisotropy K1/K3 = 0.1 and weak anchoring strength w = 0.5 that we deter-
mined numerically. We place both disks symmetrically in a system in a square box with L/σ = 10 and with a 
director axis � = 0 oriented parallel to one edge of the simulation box as fixed by Dirichlet conditions at the 
system boundaries. The total energy of the system is the sum of elastic and anchoring energy (see Eq. (3)). The 
interaction energy Uquad(r,ϑ) is obtained as the difference in energy between a system containing two disks and 
the non-interacting system as obtained by the sum of the energies of two systems containing only one of the 
disks each. This results in Fig. 4b.

Density‑dependent depletion interaction.  We use the results of Biben et al.66 and generalize them to 
anisotropic depletants with a rotational degree of freedom ϕ to get a density-dependent depletion interaction 
for disks in a suspension of hard needles. We consider a system of hard disks with positions { �XI } and Nn hard 
needles with positions {�xi} and orientations {ϕi} . Upper case indices refer to disks, lower case indices to needles. 
The energy of the system is given by

The disk-disk interaction is given by Vdd , the needle-needle interaction by Vnn and the disk-needle interaction 
by Vdn . By integrating over the needle degrees of freedom one can derive the effective part of the interaction 
V({ �XI }) between the disks 66,

(β ≡ 1/kBT ). The corresponding force FK ({ �XI }) on disk K is given by

Here, we used the single particle density of needles with angle ϕl at �xl for fixed disk positions:

By using ∇�XK
Vdn( �xl − �XK ,ϕl) = −∇�xlVdn( �xl − �XK ,ϕl) , evaluating the sum to a factor Nn and defining the 

average over the needle angles as �A�ϕ =
∫

dϕA(ϕ) , we obtain
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Figure 6.   MC simulation results for �(r,ϑ) as a function of ϑ and for r/σ = 1.5, 2.0, 3.0 for parameters 
ρ′
n = 10 , σ = 2, . . . , 10 , and L = 6σ . Data for different σ collapse fairly well. Blue dashed lines: Least 

square fits of data for each r/σ with numerical solution of the PDE (6) in the same geometry as simulation, 
for K1/K3 = 0.1 , and with w as fit parameter. Blue solid lines: Analogous least square fit of data for all 
r/σ = 1.5− 3.0 . Yellow lines: Least square fits with one-constant result (7) ( K1/K3 = 1 ) with w as fit parameter. 
(Figure created using Wolfram Mathematica 12.0, inkscape 0.92.2 (https​://inksc​ape.org/)).
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for  the  case  of  two disks  at  �0 and �r  .  We use  the  superposit ion approximat ion 
ρ(1)(�r′,ϕ|�0, �r) ≈ ρ(�r′,ϕ|�0)ρ(�r′ − �r,ϕ|�0)/ρn , where ρ(�r′,ϕ) ≡ ρ(�r′,ϕ|�0) is the density distribution around a 
single disk. For a single disk the needles are distributed according to the direct interaction potential Vdn(�r,ϕ),

This finally leads to

This effective potential is the density-dependent depletion interaction, which we further approximate by employ-
ing a factorization approximation for the angular averages, �ρ(�r′,ϕ)ρ(�r′ − �r,ϕ)�ϕ ≈ �ρ(�r′,ϕ)�ϕ�ρ(�r

′ − �r,ϕ)�ϕ , 
which is valid for the isotropic phase and the ideal nematic phase. Since we investigate the effective interaction 
in the nematic phase this should be a good approximation. This gives our final result

More intermediate steps of the derivation are given in the Supplementary Information.
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