
Complexity of Bulk-Robust
Combinatorial Optimization Problems

Dissertation

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

(Dr. rer. nat.)

Der Fakultät für Mathematik der

Technischen Universität Dortmund

vorgelegt von

Felix Hommelsheim

am 27.07.2020

Dissertation

Complexity of Bulk-Robust Combinatorial Optimization Problems

Fakultät für Mathematik
Technische Universität Dortmund

Erstgutachter: Prof. Dr. Christoph Buchheim

Zweitgutachter: Prof. Dr. Sebastian Stiller

Tag der mündlichen Prüfung: 25.09.2020

Acknowledgment

There are numerous co-supervisors who guided me during my PhD and it was a
pleasure to work with all of them. First, I would like to thank my co-supervisor
Christoph Buchheim for his advice and support. I am also grateful to David
Adjiashvili, Dennis Michaels, Moritz Mühlenthaler, and Oliver Schaudt who co-
supervised me during my PhD and were always approachable for my problems
and questions. Also most of the results of this thesis were established by the
joint work with David Adjiashvili, Moritz Mühlenthaler, and Oliver Schaudt.
The fruitful discussions with my second examiner Sebastian Stiller are also
very appreciated. The time at the TU Dortmund was wonderful and I would
like to thank all colleagues for creating a great working-atmosphere.

The support of my work by the German Research Foundation (DFG) within
the Research Training Group ”Discrete Optimization of Technical Systems un-
der Uncertainty” is gratefully acknowledged. Parts of this thesis were carried
out during my research stay at the Institute for Operations Research (IFOR)
at the ETH Zurich. It was a fantastic time in Zurich and the hospitality at the
IFOR was great.

Furthermore, I am grateful to all my friends for supporting me during my
PhD and proof-reading parts of my thesis. Finally, I would like to thank my
family and Svenja Griesbach for their absolute support.

iii

Abstract

This thesis studies three robust combinatorial optimization problems on
graphs. Most robust combinatorial optimization problems assume that the
cost of the resources, e.g. edges in a graph, are uncertain. In this thesis,
however, we study the so called bulk-robust approach which models the uncer-
tainty in the underlying combinatorial structure. To be more precise, in the
bulk-robust model we are given an explicit list of scenarios comprising a set
of resources each, which fail if the corresponding scenario materializes. Addi-
tionally, we are given a property that we have to obtain such as ’containing
a perfect matching’, ’s-t-connectivity’, or ’being connected’, which may arise
from a fundamental combinatorial optimization problem. The goal of the bulk-
robust optimization problem is to find a minimum weight set of resources such
that the desired property is satisfied no matter which scenario materializes,
i.e. no matter which set of resources from the list is removed.

We study the bulk-robust bipartite matching problem, the bulk-robust k-
edge disjoint s-t-paths problem, and the bulk-robust minimum spanning tree
problem. We investigate the complexity of the three problems and show that
most of them are hard to approximate even if the list of scenarios consists of sin-
gletons only. We complement these inapproximability results with polynomial-
time approximation algorithms that essentially match the hardness results.
Furthermore, we present FPT and XP algorithms and consider special graph
classes that allow for a polynomial-time exact algorithm.

iv

Zusammenfassung

In dieser Arbeit werden drei robuste kombinatorische Optimierungsprobleme
auf Graphen behandelt. Die meisten robusten kombinatorischen Optimierungs-
probleme nehmen an, dass die Kosten der Ressourcen, z.B. Kanten in einem
Graph, unsicher sind. Diese Arbeit jedoch behandelt den Ansatz der soge-
nannten bulk-Robustheit, die Unsicherheiten in der kombinatorischen Struk-
tur widerspiegelt. Genauer gesagt ist im bulk-robusten Modell eine explizite
Liste von Szenarien gegegeben und jedes dieser Szenarien enthält eine Menge
von Ressourcen, die ausfällt, wenn das entsprechende Szenario eintritt. Zusätz-
lich ist noch eine Eigenschaft gegeben, die wir erzeugen müssen. Diese Eigen-
schaft könnte beispielsweise sein, dass der resultierende Graph ein perfektes
Matching enthält, zwei bestimmte Knoten miteinander verbindet oder zusam-
menhängend ist. Das Ziel des bulk-robusten Optimierungsproblems ist es, eine
kosten-minimale Menge von Ressourcen zu finden, sodass die gewünschte Ei-
genschaft erfüllt ist, egal welches Szenario eintrifft, d.h. unabhängig davon,
welche Menge von Resourcen der Liste von der Lösung entfernt wird.

Diese Arbeit behandelt das bulk-robuste bipartite Matchingproblem, das
bulk-robuste k-Kanten disjunkte s-t-Wege Problem und das bulk-robuste mi-
nimale Spannbaum Problem. Wir beschäftigen uns mit der Komplexität der
drei Probleme und zeigen, dass die meisten sogar dann schwer zu approximie-
ren sind, wenn die Liste der Szenarien nur aus einelementigen Mengen besteht.
Wir komplementieren diese nicht-Approximierbarkeitsresultate mit effizien-
ten Approximationsalgorithmen, deren Güte im Wesentlichen den hardness-
Resultaten entspricht. Darüber hinaus präsentieren wir FPT und XP Algorith-
men und entwickeln effiziente exakte Algorithmen für spezielle Graphklassen.

v

Contents

1 Introduction 1

2 Preliminaries and Related Work 9

2.1 Graph Theory . 9
2.2 Complexity Theory . 15
2.3 Combinatorial Optimization on Graphs 23

2.3.1 Connectivity Problems 24
2.3.2 Matching and Covering Problems 30

2.4 Robust Combinatorial Optimization 31
2.4.1 Structural Robustness 32
2.4.2 Cost Robustness . 34
2.4.3 Demand Robustness . 35

3 Robust Matchings 37

3.1 Introduction . 37
3.2 Robust Matchings and Strong Connectivity Augmentation . . . 40
3.3 Unweighted Robust Matching Augmentation 44

3.3.1 Complexity . 44
3.3.2 Main Result . 46
3.3.3 The Source Cover Problem 51

3.4 Weighted Robust Matching Augmentation 62
3.4.1 Complexity and Approximation 63
3.4.2 Dichotomy Result . 66

3.5 Conclusion . 72

vii

4 Robust Disjoint s-t-Paths 75

4.1 Introduction . 75
4.2 `-Robust k-Disjoint Paths . 79

4.2.1 Complexity of `-Robust k-Disjoint Paths 79
4.2.2 An Approximation Algorithm for Undirected `-Robust

k-Disjoint Paths . 80
4.2.3 Directed `-Robust k-Disjoint Paths 85

4.3 1-Robust k-Disjoint Paths . 86
4.3.1 Complexity of Directed 1-robust k-Disjoint Paths 88
4.3.2 A (k+1)-approximation Algorithm for Directed 1-Robust

k-Disjoint Paths . 90
4.3.3 Solving the Augmentation Problem 92
4.3.4 Connection to Other Famous Open Problems 99

4.4 Conclusion . 103

5 Robust Spanning Trees 105

5.1 Introduction . 105
5.2 Unweighted k-Flexible Graph Connectivity 113
5.3 Weighted Flexible Graph Connectivity 115

5.3.1 Three Simple Approximation Algorithms for FGC 115
5.3.2 An Improved Approximation Algorithm 116
5.3.3 α-MSTs, Thresholds, and Exchange Bijections 119
5.3.4 Simple Analysis of Algorithm 4: A 2.8-approximation . . 125
5.3.5 Refined Analysis of Algorithm 4: A 2.523-approximation 130
5.3.6 Improved Analysis of Algorithm 4 for Bounded-weight

Instances: A 2.404-approximation 139
5.4 Approximation Hardness on Transversal Matroids 149
5.5 Conclusion . 151

6 Conclusion and Outlook 153

viii

Chapter 1

Introduction

Many real-life decision making problems that we encounter in our daily life
are combinatorial optimization problems. For example, on our way to work
we would like to take the fastest route from our home to our working place.
This problem can be modeled as a combinatorial optimization problem by a
shortest path problem in a graph. Arrived at our working place, we might
need to schedule the work plan of the employees in our company, i.e. we need
to assign tasks to employees. Such a scheduling problem can be modeled
as a matching problem in a so called bipartite graph – another combinatorial
optimization problem. Many classic combinatorial optimization problems such
as the shortest path problem and the matching problem have been investigated
exhaustively and there are numerous algorithms that solve these problems
efficiently.

However, all those combinatorial optimization problems do not consider that
the input data of real-world applications may be uncertain. In fact, almost all
data that we encounter in our daily life is subject to uncertainty: a traffic jam
on the highway on our way to work, an employee gets sick and cannot perform
the scheduled job or an adversary who attacks our computer infrastructure are
just a few examples where we encounter uncertainty.

There is a vast amount of literature addressing optimization under uncer-
tainty. Most of the different models can be divided either into stochastic op-
timization or robust optimization. Stochastic models incorporate probabilities
to represent uncertainty underlying the input data. The decision maker then
usually needs to find a solution that optimizes a certain probabilistic func-

1

2

tion in expectation. Clearly, such models need to be fed with probabilities for
all possible scenarios and these probabilities themselves are again uncertain
in real-life problems. However, an optimal solution to some stochastic opti-
mization problem is good in the average case, since it optimizes some kind
of expected value, even though there might be some realizations in which the
solution performs very poorly.

Exactly this very poor performance for some (possibly very unlikely) scenar-
ios is addressed in robust optimization. In robust optimization, the decision
maker needs to optimize the worst possible outcome, that is, he needs to opti-
mize the worst-case scenario over all possible scenarios. This phenomenon can
be interpreted by a so called adversary. After the decision maker selected the
solution, an adversary picks the worst-case scenario over all possible realiza-
tions of the data set, resulting in the worst possible outcome for the decision
maker. Clearly, such models are very conservative and, in the average case,
might perform worse compared to a solution that optimizes some expected
value. However, using a robust model allows the decision maker to give a cer-
tain guarantee on the value of the computed solution, which is not possible
when optimizing the expected value.

In this thesis we study robust combinatorial optimization problems on
graphs. The field of robust combinatorial optimization itself can be roughly
divided into two fields: Uncertainty in the cost of the underlying resources
and uncertainty in the structure of the problem, affecting the set of feasible
solutions. Furthermore, there are many different ways in modeling the uncer-
tainty of a robust optimization problem, especially in the case when the cost
are uncertain. For example, the possible realizations of the cost vector could
be restricted to some kind of polyhedral, ellipsoidal or discrete set. In this
thesis, however, we only focus on discrete uncertainty, that is, we are given a
finite set of possible realizations of the input data. We demonstrate this with
an example.

Consider the problem of finding a minimum-cost subgraph of some graph
G = (V,E) that is connected and spanning (i.e. finding a minimum spanning
tree in G) for some cost function c : E → Q≥0. In the cost-robust counterpart
the cost of the resources are uncertain. That is, we are given k ∈ N scenarios
and each scenario describes a different realization of the cost function c. To

3

be more precise, we are given a set of k cost functions C = {c1, c2, . . . , ck} with
c : E → Q≥0 for each c ∈ C. Let Y contain all subsets X of E such that
(V,X) is a spanning tree of G. The task is to solve the following optimization
problem:

min
X∈Y

max
c∈C

c(X)

Thus, the task is to find a connected spanning subgraph which minimizes the
worst-case cost over all possible realizations of the cost functions.

To the contrary, uncertainty in the structure of the problem affects the set
of feasible solutions. Again, consider the above example of finding a minimum-
cost subgraph of some graph G = (V,E) that is connected and spanning for
some cost function c : E → Q. In the structural-robust counterpart the scenario
set U describes sets of edges that can fail after the solution has been computed.
To be more precise, U is a family of subsets of edges, i.e. for each F ∈ U we
have F ⊆ E. Then the task is to solve the following optimization problem:

min
X⊆E
{c(X) | (V,X \ F) contains a spanning tree of G for each F ∈ U}

Thus, the task is to find a connected spanning subgraph that contains a span-
ning tree, no matter which set of edges F of U is removed from the solution.
The concept of structural robustness presented here is only one of many possi-
ble variants to address structural uncertainty. It is called bulk-robustness and
was introduced by Adjiashvili, Stiller and Zenklusen [ASZ15].

In this thesis we investigate bulk-robust counterparts for classic combinato-
rial optimization problems on graphs. Before bulk-robustness was introduced,
most structural-robust counterparts of combinatorial optimization problems
assumed a uniform failure model. Concretely, in such a model any subset of
resources A of size at most k is subject to failure. A typical example is the
k-edge-connected spanning subgraph problem, in which the goal is to obtain
a minimum-cost connected spanning subgraph, no matter which k − 1 edges
fail. In contrast, the bulk-robust model is on the far opposite site of the uni-
formity level. In the bulk-robust model we are given a precise list U ⊆ 2A

of scenarios comprising a set of resources each. Additionally, we are given a
property X that we wish to obtain such as ’containing a perfect matching’,
’s-t-connectivity’ or ’being connected’, which may arise from a fundamental
combinatorial optimization problem. The goal of the bulk-robust optimization

4

problem is to find a minimum cost set X of resources A such that the de-
sired property is satisfied no matter which scenario materializes, i.e. no matter
which set of resources from the list is removed. Put differently, for a given cost
function c ∈ ZA≥0 we are given the following problem:

min
X⊆A
{c(X) | X \ F has property X for every F ∈ U}

Adjiashvili, Stiller and Zenklusen considered the properties ’s-t-connectivity
in a graph’ and ’containing a basis of a matroid’. Among other things they
showed that the problem is as hard to approximate as Set Cover and thus
does not allow for a sublogarithmic-factor approximation unless P = NP. This
difficulty does not originate from the combinatorial structure of the underlying
property X but only from the combinatorial structure of the scenario list U .

To overcome this issue, the main focus of this thesis is on bulk-robust prob-
lems in which the scenario list U consists of singletons only such that the
difficulty of the problems does not originate only from the difficult combina-
torial structure of U . In particular, the focus of this thesis is on bulk-robust
problems with properties on graphs, namely ’containing a perfect matching’,
’k disjoint paths between two given vertices s and t’ or ’containing a connected
spanning subgraph’, in which each set in U has size at most 1.

Our main focus in this thesis is the design of approximation algorithms, FPT
algorithms, XP algorithms and polynomial-time exact algorithms for (variants
of) all three mentioned problems. We complement these algorithmic results
with NP-hardness and inapproximability results.

We will briefly discuss all three problems that are addressed in this thesis.

Robust Matchings. The first problem we consider is a variant of the bulk-
robust version of the perfect matching problem and is formally defined as
follows.

Problem 1.1 (Robust Matching Augmentation). Given an undirected
bipartite graph G = (U + W,E) that admits a perfect matching, the task is
to find a set L ⊆ E of minimum cardinality, such that the graph G + L − e
contains a perfect matching for each e ∈ E.

Here, by E we refer to the edges of the bipartite complement of E. Let
us rephrase the problem. Assume we are given a perfect matching and some

5

additional edges comprising some bipartite graph G. Then the task is to add
a minimum-cardinality subset of edges L such that G + L contains a perfect
matching, even if an adversary is allowed to remove any single edge (only one
at a time) of the perfect matching.

We consider both the unweighted (as in the above definition) and weighted
version of the problem (we then associate certain cost with each edge in E). In
our main hardness results we show that both versions are notoriously hard to
approximate. In the unweighted case the problem is as hard to approximate as
Set Cover (implying that there is no polynomial-time sublogarithmic-factor
approximation unless P = NP), while the weighted case is as hard to approxi-
mate as Directed Steiner Forest (implying that there is no polynomial-
time log2−ε(n)-approximation for any ε > 0 unless NP ⊆ ZTIME(npolylog(n))).

For the unweighted case, we first complement this inapproximability result
by a log2(n)-factor approximation algorithm, thus essentially matching the
bound from above. Furthermore, we show that the problem is FPT when
parameterized by treewidth and show that it is polynomial-time solvable in
chordal bipartite graphs. In the weighted case, we establish a close connection
to the problem Directed Steiner Forest to provide a polynomial-time
(1 + n

1
2
n+ε)-approximation algorithm for every ε > 0. Finally, we prove a

complexity dichotomy based on graph minors and show that the weighted
problem, restricted to a class T of connected graphs closed under connected
minors, is NP-complete if and only if T contains at least one of two simple
graph classes (we define these classes in Chapter 3).

Robust Disjoint s-t-Paths. The second problem we consider is a bulk-
robust version of the k-disjoint path problem and generalizes the bulk-robust
shortest path problem. It is formally defined as follows.

Problem 1.2 (Bulk-robust k-Disjoint Paths). We are given an (undi-
rected or directed) graph G = (V,E), two vertices s, t ∈ V , costs c ∈ ZE≥0, an
integer k ∈ N and a collection of interdiction sets F = {F1, F2, . . . , Fp} with
Fi ⊆ E for all i ∈ {1, 2, . . . , p}. The task is to find a set X ⊆ E of minimum
cost, such that the graph G[X−Fi] contains k edge-disjoint s-t paths for every
i ∈ {1, 2, . . . , p}.

The width ` of the set F is the size of a largest interdiction set in F , i.e.

6

` = maxF∈F |F |. Note that for k = 1 we simply obtain the bulk-robust shortest
path problem.

In this thesis, we present various results for different values of the parameters
` and k and distinguish between directed and undirected graphs. Here, we
outline only a few of these results.

As mentioned before, the above problem generalizes the bulk-robust shortest
path problem considered in [ASZ15] and therefore all inapproximability results
also apply here, including Set Cover hardness for ’large’ `. Furthermore, for
` = 1, it is not hard to see that Bulk-robust k-Disjoint Paths generalizes
the weighted version of Robust Matching Augmentation (for ’large’ k).
Hence, the hardness results from above also apply here.

We complement the hardness result for ’large’ ` by an efficient O(log n)-
factor approximation algorithm for constant k and constant `, which is based
on the approximation algorithm presented in [ASZ15]. Furthermore, when
` = 1 and k is constant, we develop a polynomial-time 2-approximation algo-
rithm that is based on a polynomial-time exact algorithm for the augmentation
problem. In a nutshell, in the augmentation problem we are given k-disjoint
s-t paths for free and the task is to augment this edge set to a feasible so-
lution (note that in this case only single edges can be removed). In fact, the
polynomial-time exact algorithm is an XP algorithm when parameterized by k.

Robust Spanning Trees. The third problem we consider is a bulk-robust
version of the minimum spanning tree problem and is formally defined as
follows.

Problem 1.3 (Flexible Graph Connectivity). We are given an undi-
rected connected graph G = (V,E), non-negative edge weights w ∈ QE

≥0, and
a set of edges F ⊆ E called unsafe edges. Let F := E \ F be the safe edges.

The task is to compute a minimum-weight edge set S ⊆ E with the property
that (V, S − f) is a connected spanning graph for every f ∈ F .

Flexible Graph Connectivity encapsulates several fundamental com-
binatorial optimization problems, such as the minimum-cost spanning tree
problem, the minimum-cost 2-edge connected spanning subgraph problem and
the weighted tree augmentation problem. As a direct consequence we obtain
that Flexible Graph Connectivity is APX-hard.

7

First, we complement this result by a polynomial-time 2.523-approximation
algorithm for general instances and a polynomial-time 2.404-approximation
algorithm for bounded weight instances. A bounded weight instance is an
instance in which all weights are in the range of [1,M] for some constant M .
Note that achieving the better approximation guarantee for bounded weight
instances comes with an increased running time, which is exponential in M .

Furthermore, we study the unweighted case of Flexible Graph Con-

nectivity in which we want to minimize the cardinality of S and provide
a 1.5-approximation algorithm (in fact, we provide a more general result and
refer to Chapter 5 for more details).

Outline. The next chapter contains basic concepts and notation of graphs
and complexity theory that we use throughout the thesis. Furthermore, we
present some results on important combinatorial optimization problems on
graphs and give a brief overview of the robust combinatorial optimization
literature under discrete uncertainty. Chapters 3–5 contain the main contri-
butions of the thesis and comprise the results on all three problems discussed
above (in the same order). Finally, Chapter 6 concludes the thesis.

The Chapters 3, 4 and 5 are more or less self-contained and do not require
knowledge about a previous chapter (unless probably Chapter 2, where we
introduce some notation used throughout the thesis).

Publications. An extended abstract of the contents of Chapter 3 has been
published in [HMS19] and the full version is submitted to SIAM Journal on
Discrete Mathematics. This was a joint work with Moritz Mühlenthaler and
Oliver Schaudt. An extended abstract of the contents of Chapter 5 has been
published in [AHM20] and a more detailed version is submitted to the jour-
nal Mathematical Programming, Series B. This was a joint work with David
Adjiashvili and Moritz Mühlenthaler.

8

Chapter 2

Preliminaries and Related Work

This section introduces most of the terminology used throughout the the-
sis. However, some definitions of special terms will be given in the particular
chapter. We mostly stick to the notation introduced by Diestel [Die12] and
Schrijver [Sch03].

Most of the algorithmic results presented in this thesis are based on graphs.
We will introduce basic graph theoretic terminology in the next section. Ad-
ditionally, most of our results also require some basic knowledge of complexity
theory, so we will give a brief introduction in Section 2.2. Section 2.3 contains
definitions of fundamental combinatorial optimization problems on graphs as
well as some results used throughout this work. Finally, in Section 2.4 we
present some related work on robust combinatorial optimization.

2.1 Graph Theory

In this section we present the basic graph theoretic terminology. We mostly
stick to the book of Diestel [Die12]. By N we denote the set of natural numbers,
including zero. For a set {1, 2, . . . , k} of integers we sometimes simply write
[k] for short. A set A = {A1, . . . An} of disjoint subsets of a set A is a partition
of A if the union

⋃
A of all the sets Ai ∈ A is A and Ai 6= ∅ for each i ∈ [n].

For disjoint sets U , W , we denote by U +W their disjoint union.

Graphs. An undirected graph G = (V,E) consists of a finite set of vertices V
(sometimes also called nodes) and a finite set of edges E (sometimes also called

9

10

links). An edge e = {u, v} is a set of two vertices u, v ∈ V . In a directed graph,
each edge has a direction, i.e. it has a head u and a tail v. In this case we write
e = (u, v) as a 2-tuple to clarify that the ordering of the vertices has to be
considered. If it is clear from the context whether e is directed or undirected,
we may simply write uv. In a directed graph, the edges are also sometimes
called arcs. By [V]2 we refer to the set of all pairs of vertices. Thus, in
undirected graphs we can also write E ⊆ [V]2.

A graph with vertex set V is said to be a graph on V . The vertex set of a
graph G is referred to as V (G) and its edge set as E(G), independent of the
actual names of these sets. We sometimes do not strictly distinguish between
a graph and its vertex or edge set and write v ∈ G instead of v ∈ V (G). We
usually set n := |V (G)|.

The endpoints (or sometimes ends for short) of an edge e = {u, v} are the
vertices u and v. If v is an endpoint of an edge e, we say that v is incident
to e. Two vertices u, v ∈ V are adjacent or neighbors if there is an edge
e ∈ E containing both u and v. Two edges e 6= e′ are adjacent if they have
an endpoint in common. An edge e is called a loop if both of its endpoints
are the same vertex. Two edges e, e′ are parallel if both edges have the same
endpoints. Non-adjacent vertices are independent. A graph without loops or
parallel edges is called simple. Unless stated otherwise, graphs are loopless but
may have parallel edges.

Let G = (V,E) and G′ = (V ′, E ′) be two graphs. We call G and G′

isomorphic, and write G ' G′ if there exists a bijection ϕ : V → V ′ with
uv ∈ E if and only if ϕ(u)ϕ(v) ∈ E ′. Such a map ϕ is called an isomorphism.
We do not normally distinguish between isomorphic graphs. Thus, we usually
write G = G′ rather than G ' G′. A class of graphs that is closed under
isomorphism is called a graph property.

We set G ∪ G′ := (V ∪ V ′, E ∪ E ′) and G ∩ G′ := (V ∩ V ′, E ∩ E ′). If
G ∩ G′ = ∅, then G and G′ are disjoint. If V ′ ⊆ V and E ′ ⊆ E, then G′ is a
subgraph of G, written as G′ ⊆ G. We may also sometimes say G contains G′.
If G′ ⊆ G and G′ contains all the edges uv ∈ E with u, v ∈ V ′, then G′ is
an induced subgraph of G, we then say that V ′ induces G′ in G and write
G′ =: G[V ′]. Thus, if U ⊆ V is any subset of vertices, then G[U] denotes the
graph on U whose edges are precisely the edges of G with both ends in U .

11

Finally, G′ ⊆ G is a spanning subgraph of G if V ′ spans all of G, i.e. V ′ = V .

For any set of vertices U ⊆ V of G, we write G − U for G[V \ U]. In
other words, G − U is obtained from G by deleting all vertices in U ∩ V and
their incident edges. If U = {v} is a singleton, we write G − v rather than
G−{v}. Similarly, for any subset F ⊆ [V]2 we write G−F := (V,E \F) and
G+ F := (V,E ∪ F). As above, we write G− e and G+ e for singletons. We
call a graph maximal (or minimal) with respect to some graph property if G
itself has the property but G+ uv (or G− uv) does not have this property for
any two non-adjacent vertices u, v ∈ V (G).

The complement G of a simple graph G is the graph on V with edge set
E := [V]2 \E. Similarly, for a directed graph D = (V,A) we refer by A to the
arcs not present in D. That is, we let A ⊆ (V × V) \ A.

The degree of a vertex. The set of neighbors of a vertex v ∈ V (G) is
denoted by NG(v), or N(v) for short if G is clear from the context. More
generally, for U ⊆ V , the neighbors in V \U of vertices in U are called neighbors
of U , denoted by N(U). The degree dG(v) (or d(v) if G is clear from the
context) of a vertex is the number of incident edges to v, i.e. d(v) = |N(v)|. A
vertex of degree zero is called isolated. The number δ(G) := min{d(v) | v ∈ V }
is the minimum degree of G. Similarly, ∆(G) := max{d(v) | v ∈ V } is the
maximum degree of G.

Analogously to undirected graphs we define the notion of neighborhood in
directed graphs. For a directed graph D = (V,A) we define the set of outgoing
neighbors of U by N+(U) := {v ∈ V \ U | (u, v) ∈ A for some u ∈ U}
and the set of incoming neighbors of U by N−(U) := {v ∈ V \ U | (v, u) ∈
A for some u ∈ U}.

Paths and Cycles. A path is a non-empty graph P = (V,E) of the form
V = {v1, v2, . . . , vk} and E = {v1v2, v2v3, . . . , vk−1vk}, where all vertices are
distinct, i.e. vi 6= vj for i 6= j. The vertices v1 and vk are called the end vertices
of P . If P is a directed path we call v0 the start vertex of P . The length of a
path is defined by its number of edges. Note that a path might have length
zero. In simple graphs we often simply refer to a path by its sequence of
vertices, writing P = v1v2 . . . vk. We then say that P is a path from v1 to vk.

12

For the subpath vi, vi+1, . . . , vj−1, vj of P we sometimes write viPvj for short.

A walk (of length k) in a graph G is a non-empty alternating sequence
v1e1v2e2 . . . ek−1vk of vertices and edges in G such that ei = {vi, vi+1} for all
i = 1, . . . , k − 1. If v1 = vk, the walk is closed, otherwise open.

Given two sets of vertices A,B ⊆ V we call P = v1, v2, . . . , vk an A-B path
if V (P)∩A = {v1} and V (P)∩B = {vk}. As before, for singletons we simply
write a-B path instead of {a}-B path. In particular, for two vertices s, t ∈ V
an s-t path is a graph with endpoints s and t. If the graph is directed, the
edges of a path P with endpoints s and t need to be directed in the direction
of P , i.e. from s to t. Then s is the start vertex and t is the end vertex of P .

If P = v1v2 . . . vk is a path and k ≥ 2, then the graph C := P + vkv0 is
called a cycle. Similar to paths we simply write C = v1v2 . . . vkv1 if G is simple.
The length of a cycle is its number of edges. An edge that is incident to two
vertices of a cycle but is not itself an edge of the cycle is called a chord of that
cycle. A cycle in G forming an induced subgraph is called an induced cycle
in G. This cycle has no chords. A cycle that contains all vertices is called a
Hamilton Cycle and a graph that contains such a cycle is called Hamiltonian.

The distance dG(s, t) of two vertices s, t ∈ G is the length of a shortest s-t
path in G. If no such path exists, we set dG(s, t) :=∞. As always, if G is clear
from the context we simply write d(s, t).

We often associate a certain cost or weight with each edge, defined by a
cost function c : E → Q. Then the cost of an edge set E ′ ⊆ E is the sum of
the cost of each edge in E ′, i.e. c(E ′) =

∑
e∈E′ c(e).

Connectivity. A non-empty graph G is called connected if any two of its
vertices are linked by a path, i.e. d(s, t) 6=∞ for each pair of vertices s, t ∈ V .
If U ⊆ V (G) and G[U] is connected, we also call U itself connected (in G). If
two vertices are not connected, we say that they are disconnected. A maximal
connected subgraph of G is called a connected component of G.

For two vertex sets A,B ⊆ V and X ⊆ V ∪ E such that every A-B path
in G contains a vertex or an edge from X, we say that X separates A and
B in G. Note that this implies A ∩ B ⊆ X. More generally, we say that X
separates G if G−X is disconnected, i.e. X separates some pair of vertices in
G that are not in X. A separating set of vertices is called separator. A vertex

13

which separates two other vertices of the same component is called a cutvertex,
an edge separating its two endpoints is called a cutedge or bridge. If {V1, V2} is
a partition of V , the set E(V1, V2) of all edges crossing this partition is called
a cut. In other words, each edge of a cut has precisely one endpoint in both
V1 and V2. We also denote the cut by δ(V1) := E(V1, V2). In a directed graph
D = (V,A) a cut is defined by the outgoing edges of V1, i.e., for a partition of V
into V1 and V2 we define the cut by δ(V1) := {(u, v) ∈ A | u ∈ V1 and v ∈ V2}.

A graph G is called k-connected if |G| > k and G − X is connected for
every set of vertices X ⊆ V with |X| < k. Similarly, a graph is called k-edge-
connected if |G| > 1 and G − F is connected for every set of edges F ⊆ E

satisfying |F | < k.

Trees. A graph G that does not contain any cycles is acyclic and is called
a forest. A connected forest is called a tree. Thus, a forest is a graph whose
connected components are (possibly trivial) trees. The vertices of degree 1 in
a tree are its leaves.

Bipartite Graphs. A graph G = (V,E) is called bipartite if V admits a
partition into two disjoint sets U and W such that every edge of E has one
endpoint in U and the other in W . For a bipartite graph we often write
G = (U + W,E) to indicate that U and W are the partition of V . A cycle of
odd length is called an odd cycle. Clearly, a bipartite graph can not have odd
cycles. In fact, they are characterized by this property.

Proposition 2.1. A graph is bipartite if and only if it contains no odd cycle.

A bipartite graph is balanced if every induced cycle has length 0 mod 4.
For a bipartite graph G = (U + W,E) with bipartition (U,W), we denote by
E the edge-set of its bipartite complement, i.e.

E := {uw | u ∈ U,w ∈ W and uw /∈ E}.

Contraction and Minors. Let e = uw be an edge of some graph G =

(V,E). By G/e we denote the graph obtained from G by contracting the edge e
into a new vertex ve, which becomes adjacent to all the former neighbors of u
and w. Formally, G/e is a graph G′ = (V ′, E ′) with vertex set

V ′ := (V \ {u,w}) ∪ {ve}

14

(where ve is the ‘new‘ vertex, i.e. ve /∈ V ∪ E) and edge set

E ′ :=
{
xy ∈ E | {x, y} ∩ {u,w} = ∅

}
∪
{
vey | uy ∈ E \ {e} or wy ∈ E \ {e}

}
.

A graph H is called a minor of some other graph G if one can obtain H from
G by a sequence of edge contractions, edge deletions and vertex deletions.
Similarly, we say that H is an induced minor of G if one can obtain H from G

by a sequence of edge contraction and vertex deletion. We obtain a subdivision
of some edge if we replace the edge with a path between its endpoints.

Miscellaneous. A Euler tour of some graph is a closed walk that contains
every edge precisely once. A graph is Eulerian if it admits a Euler tour.

Theorem 2.2. A connected graph is Eulerian if and only if every vertex has
even degree.

A cactus graph is a 2-edge-connected spanning graph in which two distinct
cycles share at most one vertex. The complete graph on n vertices Kn is the
graph in which every pair of vertices is adjacent. Similarly, a clique in a graph
is a set of vertices V ′ ⊆ V such that every pair of vertices is adjacent and a
stable set (or independent set) is a set of vertices V ′ ⊆ V such that every pair
of vertices is non-adjacent. Note that a clique in G corresponds to a stable set
in G. The complete bipartite graph on 2n vertices Kn,n is a bipartite graph
where each partition U and W has precisely n vertices and any two vertices
u ∈ U and w ∈ W are adjacent.

A directed graph D = (V,A) is an orientation of an (undirected) graph G if
V (D) = V (G) and E(D) = E(G), and for every undirected edge in G there
is a directed edge between its endpoints. For a directed graph D, by U(D)

we refer to the underlying undirected graph of D. That is, U(D) has the same
vertex set as D and for each directed edge in D there is an undirected edge
in U(D) with the same endpoints. A directed graph D is weakly connected if its
underlying undirected graph U(D) is connected. A directed graph D = (V,A)

is strongly connected if for each pair of vertices u, v ∈ V there is a directed
path from u to v and a directed path from v to u.

Let D = (V,A) be a directed graph. Two directed edges (u, v), (w, x) ∈ A
are called anti-parallel if u = x and v = w. That is, they are parallel edges in
the underlying graph but have the reversed direction in A.

15

2.2 Complexity Theory

In this section we give a brief introduction to complexity theory, in partic-
ular to polynomial-time solvability, NP-hardness, approximability and fixed
parameter tractability. We give a largely informal outline as presented by
Schrijver in [Sch03] and also stick to their notation. For a more formal and
thorough overview (especially for parameterized complexity and hardness of
approximation) we refer the reader to the books [GJ79, CFK+15, WS11].

An algorithm can be seen as a finite set of instructions that perform oper-
ations on certain data. The input of an algorithm will give the initial data.
When the algorithm stops, the output will be found in prescribed locations
of the data set. The instructions need not to be performed in a linear order.
For example, an instruction can determine which of the instructions should be
performed next or it can prescribe to stop the algorithm.

While the set of instructions constituting the algorithm is finite and fixed,
the size of the data set can vary and depends on the input. Usually, the data
are stored in finite sequences called arrays. The length of the arrays depends
on the input. The number of arrays, however, is fixed and depends only on
the algorithm.

The data may consist of numbers, letters and other symbols. In a computer
model they are usually stored as finite strings of 0’s and 1’s (bits). The size
of the data is the total length of these strings. Note that natural numbers are
also stored in the binary encoding and thus the size of a natural number n is
dlog ne.

The Random Access Machine. We use the algorithmic model of the ran-
dom access machine, abbreviated with RAM. This model operates on entries
that are 0, 1 strings that can represent abstract objects like vertices or edges of
a graph or rational numbers. An instruction can read several but a fixed num-
ber of entries at the same time, perform arithmetic operations on them (like
addition or subtraction) and store the answers in array positions prescribed
by the instruction. The array positions that should be read and written are
given in the location determined by the instruction.

16

Polynomial-time Solvability. A polynomial-time algorithm is an algorithm
that terminates after a number of steps bounded by a polynomial in the input
size. A step of the algorithm consists of performing one instruction. Such
algorithms are also called efficient algorithms.

In this definition, the input size is the size of the input, that is, the number of
bits that describe the input. We say that a problem is polynomial-time solvable,
or solvable in polynomial-time, if there exists a polynomial-time algorithm that
solves the problem. We also sometimes say that the problem is tractable. This
definition may depend on the chosen algorithmic model, but it has turned out
that for most models the set of problems solvable in polynomial-time is the
same. However, we here fix the algorithmic model from above, i.e. the random
access model.

The Class P. The classes P and NP are collections of decision problems.
Decision problems are problems that can be answered by ’yes’ or ’no’. A
typical example is whether a given graph is connected or not.

A decision problem is completely described by the inputs for which the
answer is ’yes’. To formalize this, fix some finite set Σ, called the alphabet, of
size at least 2. This could be for example {0, 1}. Let Σ∗ denote the set of all
finite strings, also called words, of letters from Σ. The size of a word is the
number of letters (counting multiplicities) in the word. We denote the size of
a word w by size(w).

As an example, consider the graph G = (V,E) with four vertices V =

{u, v, w, x} and five edges E = {{u, v}, {v, w}, {u,w}, {u, x}, {w, x}}. It can
be represented by the word

({u, v, w, x}, {{u, v}, {v, w}, {u,w}, {u, x}, {w, x}})

where the alphabet Σ contains all these symbols. Its size is 43.
A problem is any subset Π of Σ∗. The corresponding ’informal’ problem is:

given a word x ∈ Σ∗, does x belong to Π?

As an example, the problem if a given graph is connected is formalized by the
collection of all strings representing a connected graph.

The string x is called the input of the problem. One speaks of an instance
of a problem Π if one asks for one concrete input x whether x belongs to Π.

17

A problem Π is called polynomial-time solvable if there exists a polynomial-
time algorithm that decides if a given word x ∈ Σ∗ belongs to Π or not. The
collection of all polynomial-time solvable problems Π ⊆ Σ∗ is denoted by P.

The Class NP. Informally speaking, the class NP is defined as the collec-
tion of all decision problems for which each input with positive answer has
a polynomial-time checkable ’certificate’ of correctness of the answer. As an
example, consider the following question:

is a given graph connected?

A positive answer can be ’certified’ by giving a spanning tree in the graph and
the correctness can be verified in polynomial time. In this case, there is also a
certificate for the opposite question:

is a given graph not connected?

Here, a certificate could be a cut δ(V ′) of size 0 for some ∅ 6= V ′ ⊂ V . However,
there is not always a certificate for the opposite question.

As an example, consider the following question:

is a given graph Hamiltonian?

Again, a positive answer can be ’certified’ by giving a Hamiltonian cycle in
the graph and the correctness can be verified in polynomial-time. However, no
such certificate is known for the opposite question:

is a given graph Non-Hamiltonian?

Checking the certificate in polynomial-time means checking it in time bounded
by a polynomial in the original input size. In particular, this implies that the
certificate itself has size bounded by a polynomial in the input size.

We can formalize this as follows. The class NP is the collection of problems
Π ⊆ Σ∗ for which there is a problem Π′ ∈ P and a polynomial p such that for
each w ∈ Σ∗ one has

w ∈ Σ⇔ there exists a word x of size at most p(size(w)) with wx ∈ Π′.

18

The word x is called a certificate for w. NP stands for nondeterministically
polynomial-time, since the string x could be chosen by the algorithm by guess-
ing. Therefore, guessing well would lead to a polynomial-time algorithm for
some problem in NP.

Trivially, we have P ⊆ NP, since if Π ∈ P, we can take Π′ = Π and p ≡ 0 in
the above equation.

Most of the problems that ask for the existence of some structure belong
to NP, since the certificate can be chosen as the structure itself. One of the
biggest unsolved mathematical questions is whether P = NP. However, most
mathematicians believe that P 6= NP.

Optimization Problems. In this thesis we usually do not consider decision
problems but optimization problems. As an example consider a graph G =

(V,E) and some cost function c : E → Q≥0. Then an optimization problem
could be to minimize the cost of a Hamiltonian cycle.

Optimization problems can be transformed into decision problems as fol-
lows. Consider a minimization problem: minimize f(X) over x ∈ X, where
X is a collection of elements derived from the input of the problem and where
f is a rational-valued function on X (like the example above). This can be
transformed to the following decision problem:

given a rational numer r, is there an x ∈ X with f(x) ≤ r?

If we have an upper bound β on the size of the minimum value, then we can
find the optimum value by binary search by solving the above decision problem
for O(β) choices of r. This leads to a polynomial-time algorithm for the mini-
mization problem from a polynomial-time algorithm for the decision problem
(analogous for maximization problems). Note that almost all combinatorial
optimization problems belong to NP when transformed to a decision problem.

NP-complete Problems. The NP-complete problems are the problems that
are the hardest in NP: every problem in NP can be reduced to them. To be
more precise, a problem Π ⊆ Σ∗ is said to be reducible to problem Λ ⊆ Σ∗ if
there exists a polynomial-time algorithm that returns, for any input w ∈ Σ∗,
an output x ∈ Σ∗ with the property:

w ∈ Π⇔ x ∈ Λ.

19

In particular, this implies that if Π is reducible to Λ and Λ belongs to P, then
also Π belong to P. The same is true for NP.

A problem Π is said to be NP-complete if it is in NP and each problem in NP

is reducible to Π. Hence, if some NP-complete problem belongs to P, then P =

NP. Cook [Coo71] proved that Satisfiability is NP-complete. Afterwards,
many problems have shown to be NP-complete by reducing Satisfiability to
them. Prominent examples are the problems Hamilton Cycle, Maximum

Clique or Maximum Cut. By NP-hard we refer to all problems Π such that
any other problem in NP can be reduced to Π in polynomial-time, but Π itself
does not necessarily have to be in NP.

The concept of polynomial reductions easily extends to optimization prob-
lems: a decision problem polynomially reduces to an optimization problem if
it has a polynomial-time oracle algorithm using the optimization problem as
an oracle. In an oracle algorithm we may ask the oracle at any time and we
get a correct answer in one step. Then, an optimization problem Π is called
NP-hard if all problems in NP polynomially reduce to Π.

Approximation Algorithms. In this thesis we consider various combina-
torial optimization problems on graphs. We will show that most of them are
NP-hard and therefore it is very unlikely that we find a polynomial-time algo-
rithm solving the problem (finding one would then prove P = NP).

We now have two options: either we develop an algorithm that computes
an optimal solution for the problem (often referred to as exact algorithm)
which has a running-time that can not be bounded by some polynomial, or we
develop an algorithm that computes an approximate solution to the problem,
but is a polynomial-time algorithm. By approximate we mean that we can not
guarantee that the algorithm computes an optimal solution.

In this thesis we often develop the latter kind of algorithms, called approx-
imation algorithms and usually wish to give some kind of guarantee on the
value of the solution that the algorithm computes. More formally, an approxi-
mation algorithm is defined as follows. We stick to the notation from [WS11].

Definition 2.3. An α-approximation algorithm for an optimization problem
is a polynomial-time algorithm that for all instances of the problem produces a

20

solution whose value is within a factor of α of the value of an optimal solution.

Let us clarify the definition. Let Π be some minimization problem and let
A be a a polynomial-time α-approximation algorithm for Π. Then the value
of some solution A(I) of Algorithm A satisfies

value(A(I))
OPT(I)

≤ α,

for any instance I of Π, where OPT(I) denotes the value of an optimal solution
for I (throughout the thesis we will denote by OPT(I) the value of an optimal
solution to an instance I).

There are many different kinds of approximation algorithms, depending on
the factor α. For example, α could be any constant number, resulting in a
constant-factor approximation algorithm. Even ’better’ than a constant-factor
approximation algorithm is a polynomial-time approximation scheme (PTAS).

Definition 2.4. A polynomial-time approximation scheme (PTAS) is a family
of algorithms {Aε}, where there is an algorithm for each ε > 0, such that Aε
is a (1 + ε)-approximation algorithm (for minimization problems).

The definition for maximization problems is analogue. Note that for fixed ε,
the running time of a PTAS is always polynomial but could increase dramati-
cally as ε goes to 0, for example if the running time is O(n

1
ε).

However, not all problems allow for a PTAS and there is a class for such
problems, called APX. Informally, the class APX contains all problems that
allow for a polynomial-time constant-factor approximation algorithm. To this
point, we will not formally define APX but note that many interesting prob-
lems have shown to be contained in it, such as Maximum Satisfyability or
Maximum Cut. Similarly to NP-hardness, one can introduce APX-hardness.
Again, we will not formally define this class here but note that the following
has been shown.

Theorem 2.5. For any APX-hard problem, there does not exist a polynomial-
time approximation scheme unless P = NP.

Thus, for any APX-hard problem Π, there is some constant c(Π) > 1 that
depends on Π, such that Π does not admit a c(Π)-approximation algorithm

21

unless P = NP. Therefore, the best we can hope for is to find a constant-factor
approximation for these problems.

However, for some problems even a constant-factor approximation is impos-
sible and the guarantee of the approximation algorithm has to somehow depend
on the size of the input. As we will see in Section 2.3, there are several of them.
As an example, for the problem Set Cover there is no (1− ε) lnn-factor ap-
proximation for any ε > 0 unless P = NP [DS14] (for a precise definition of
Set Cover we refer to Section 2.3).

Such inapproximability results as Theorem 2.5 or the statement above for
Set Cover are usually proved by more careful reduction than presented in the
previous paragraphs. We do not formalize this, but note that in the reduction,
in particular we have to care about the values of feasible solutions and the
size of the instance. All reductions we present here in the thesis are somewhat
self-explained, that is, if the result implies an inapproximability result, then it
is easy to see why.

We sometimes hide some constant factors in the approximation guarantee
and write, for example, that an algorithm is an O(log n)-approximation algo-
rithm. We write it like this to encode that the logarithmic factor is the most
important one and that the constant factors can be neglected for large n.

For a more detailed introduction to approximation algorithms we refer to
the book of Williamson and Shmoys [WS11].

Fixed Parameter Tractability. We start similar to the last paragraph: For
an NP-hard optimization problem it is very unlikely that there is a polynomial-
time algorithm that computes an optimal solution. A typical question then
might be: what exactly does make the problem hard to solve?

This is one of the questions asked in parameterized complexity. What kind
of parameter (e.g. solution size or maximum degree of the graph) does make
the problem hard? Put differently, if we fix some of these parameters, is the
resulting problem tractable?

Let us be a bit more formal. Let Π be a an optimization problem and let
I be the set of instances of Π . We call a function k : I → Q a parameter.
As mentioned before, such a parameter could be for example the size of an
optimal solution.

22

For a parameter k of some problem Π we call the tuple (Π, k) a parameter-
ized problem. We usually say that Π is parameterized by k. We are now ready
to define fixed parameter tractable algorithms.

Definition 2.6. A fixed-parameter tractable (FPT) algorithm for a parameter-
ized problem (Π, k) is an exact algorithm that has a running time of f(k)·|I|O(1),
where f is a computable function solely depending on k and |I| denotes the
input size of the instance I.

We denote the class of problems that can be solved by an FPT algorithm by
FPT. Clearly, all problems in P are also in FPT. However, there are problems
for which we do not know if there exists an FPT algorithm or not and it is
very unlikely that such an algorithm exists. For example all problems in the
class W[1] do not allow for an FPT algorithm unless P = NP. We do not want
to formally define the classes W[i], i ∈ N≥1, but only mention here that all
problems in these classes do not allow for an FPT algorithm unless P = NP.
Such ’non-FPT’ results are usually proved by very careful reduction in which
we have to ensure that the respective parameter remains independent of all
other inputs (for example, increasing a parameter k to k2 is fine, but increasing
it to O(|I|) ·k is not allowed). Again, all reductions presented in this thesis are
somewhat self-explained, so we do not need the precise definitions.

FPT algorithms can be put in contrast with less efficient XP algorithms (XP
stands for slice-wise polynomial):

Definition 2.7. An XP algorithm for a parameterized problem (Π, k) is an
exact algorithm that has a running time of f(k) · |I|g(k), where f and g are
computable function solely depending on k and |I| denotes the input size of
the instance I.

For a more detailed introduction to parameterized complexity and FPT
algorithms we refer to the book of Cygan et al. [CFK+15].

Further Complexity Classes. Most of our hardness results hold unless
P = NP. However, we sometimes provide stronger inapproximability results if
we make stronger assumptions than simply P 6= NP. This motivates to study
further complexity classes.

23

A randomized algorithm (sometimes also called probabilistic algorithm) is
an algorithm that has a certain degree of randomness as part of its instruction.
Such an algorithm typically uses uniformly random bits as an auxiliary input
to guide its behavior, hoping to achieve good performance in the ’average case’
over all possible choices of random bits. A randomized algorithm does not nec-
essarily always compute a feasible solution and sometimes has a certain error
probability, i.e. the probability that the algorithm computes an infeasible solu-
tion. However, some randomized algorithms can be derandomized to obtain a
deterministic algorithm.

We denote by DTIME(t) the class of decision problems that have a deter-
ministic algorithm that runs in time t. Furthermore, we denote by ZTIME(t)

the class of decision problems that have a probabilistic algorithm that runs
in expected time t (with zero error probability). Here, expected time means
that the time t is not an upper bound for the running time, but the time the
algorithm needs in expectation. Therefore, the randomness of the probabilistic
algorithms in the class ZTIME(t) is expressed in the unknown running time of
the algorithm and not in the correctness of its solution.

As an example, we will later see the class ZTIME(npolylog(n)), i.e. the class
of decision problems that have a probabilistic algorithm that runs in expected
time npolylog(n) (with zero error probability). For some results, we then do
not have the typical condition ’unless P = NP’ but the condition ’unless
NP ⊆ ZTIME(npolylog(n))’. The function polylog(n) is a polynomial in log n

(instead n), i.e. it can be written as
∑`

k=1 ak(log n)k.

Again, the terminology of DTIME(t) and ZTIME(t) can be easily extended
to optimization problems.

2.3 Combinatorial Optimization on Graphs

In this section we define basic combinatorial optimization problems on graphs
and present results that are used throughout the thesis. Most of the problems
we work with are graph problems and can be divided into either connectivity or
matching problems. Therefore, in Section 2.3.1, we start by introducing various
kinds of connectivity problems on graphs. In Section 2.3.2 we investigate
matchings and covering problems. In most of the considered problems we

24

associate certain costs with the resources we are able to buy. When we speak
about the unweighted case of some problem we refer to the same problem but
we want to minimize the cardinality instead of the cost.

2.3.1 Connectivity Problems

The most fundamental problem on graphs is to compute a minimum-cost span-
ning subgraph that is connected. Then the task is to compute a minimum
spanning tree (MST), i.e. a spanning tree in G of minimum cost. This prob-
lem is formally defined as follows.

Problem 2.8 (Minimum Spanning Tree). Given an undirected graph G =

(V,E) and costs c ∈ QE
≥0, the task is to find a spanning tree T in G of minimum

cost.

It is well-known that Minimum Spanning Tree admits a polynomial-time
algorithm. In fact, Minimum Spanning Tree is a special case of the problem
of finding a minimum-cost basis of a matroid.

Problem 2.9 (Minimum Matroid Basis). Given a matroid M = (E, I)

and a costs c ∈ QE
≥0, the task is to find a basis X ⊆ E of minimum cost.

The classical greedy-algorithm computes an optimal solution to Minimum

Matroid Basis. For example the algorithms developed by Kruskal [Kru56] or
Prim [Pri57] compute an optimal solution to the problem Minimum Spanning

Tree and also work in a greedy fashion.
Instead of searching for a subgraph that is only 1-edge-connected, one can

also search for a graph that is k-edge-connected for some k = 1, 2, . . . , |V | − 1.
That is, we would like to compute a minimum cost spanning subgraph that is
k-edge-connected. The problem is formally defined as follows.

Problem 2.10 (k-Edge-Connected Spanning Subgraph). Given an
undirected graph G = (V,E) and costs c ∈ QE

≥0, the task is to find a minimum-
cost edge-setX ⊆ E such that (V,X) is a k-edge-connected spanning subgraph.

The problem is known to be APX-hard even in the unweighted case and
for k = 2. However, there is a polynomial-time 2-approximation algorithm
for all k ≥ 2 based on an iterative rounding approach by Jain [Jai01]. In the

25

unweighted case, there are various different best approximation guarantees
depending on k. The best known guarantees are 4/3 for k = 2 due to a result
of Sebő and Vygen [SV14], 1 + 2/(k + 1) for 3 ≤ k ≤ 6 due to Cheriyan and
Thurimella [CT00], and 1 + 1/2k + O(1/k2) for k ≥ 7 due to Gabow and
Gallagher [GG12].

Similarly, in the problem k-Edge-Connectivity Augmentation we are
given a (k − 1)-edge-connected spanning subgraph H and would like like to
augment it to a k-edge-connected spanning subgraph. More formally, the
problem is defined as follows.

Problem 2.11 (k-Edge-Connectivity Augmentation). We are given an
undirected graph G = (V,E), a set of edges Y such that (V, Y) is a (k − 1)-
edge-connected spanning subgraph with Y ∩ E = ∅, and costs c ∈ QE

≥0. The
task is to find a minimum-cost set of edges X ⊆ E such that (V, Y + X) is a
k-edge-connected spanning subgraph.

It is shown in [DKL76] that k-Edge-Connectivity Augmentation

(k-ECA) can be reduced to Weighted Tree Augmentation (WTAP)
for odd k and to Weighted Cactus Augmentation (WCA) for even k.
The latter two problems are precisely the special cases of k-ECA for k = 1

(WTAP) and k = 2 (WCA). Thus, the recent result for Cactus Aug-

mentation [BGA20] implies a 1.91-approximation for Unweighted k-ECA

(together with the 1.46-approximation for Unweighted Tree Augmenta-

tion [GKZ18]).
In Chapter 5 we will use approximation algorithms for 2-Edge Connected

Spanning Subgraph (2-ECSS) and WTAP. Therefore, we also formally
define these two problems here and discuss results for these problems in more
detail.

Problem 2.12 (2-Edge Connected Spanning Subgraph). Given an
undirected graph G = (V,E) and costs c ∈ QE

≥0, the task is to find a minimum-
cost edge-setX ⊆ E such that (V,X) is a 2-edge-connected spanning subgraph.

Problem 2.13 (Weighted Tree Augmentation). We are given an undi-
rected graph G = (V,E), a set of edges Y such that (V, Y) is a tree with
Y ∩E = ∅, and costs c ∈ QE

≥0. The task is to find a minimum-cost set of edges
X ⊆ E such that (V, Y +X) is a 2-edge-connected spanning subgraph.

26

In some other definitions of WTAP the edges in E are also called links.
Note that even though WTAP is a special case of 2-ECSS, the best known
approximation guarantee for both problems is 2.

In contrast, for the unweighted versions of both problems (and in the
case of WTAP more generally for bounded weights), a long line of results
has generated numerous improvements beyond ratio two, leading to the cur-
rently best known bounds of 4/3 for unweighted 2-ECSS [SV14], 1.46 for
unweighted tree augmenation [GKZ18] and 1.5 for WTAP with bounded
weights [FGKS18, GKZ18]. A bounded weight instance is an instance in which
all weights are in the range of [1,M] for some constantM . Note that achieving
the better approximation guarantee for bounded weight instances comes with
an increased running time, which is exponential in M .

The case of unit (or bounded) weights is where techniques for approximat-
ing 2-ECSS and WTAP start to differ significantly. In both cases, the best
known bounds are achieved by combining LP-based techniques with clever
combinatorial tools. Nevertheless, there seems to be very little intersection in
both the nature of used LPs and the overall approaches, as techniques suitable
for one problem do not seem to provide competitive ratios for the other. This
is further discussed in Chapter 5.

A similar problem to Weighted Tree Augmentation is the problem
Matching Augmentation in which we want to obtain a 2-edge-connected
spanning subgraph, but the graph available at zero cost is a matching instead
of a tree. The problem is formally defined as follows.

Problem 2.14 (Matching Augmentation). We are given an undirected
graph G = (V,E), a set of edges Y such that (V, Y) is a matching with
Y ∩E = ∅ and costs c ∈ QE

≥0. The task is to find a minimum-cost set of edges
X ⊆ E such that (V, Y +X) is a 2-edge-connected spanning subgraph.

Clearly, this problem is also APX-hard. Cheriyan et al. [CDG+19] considered
the unweighted version of the problem and gave a 7

4
-approximation algorithm.

Steiner Problems. All the aforementioned problems establish some kind
of connectivity between all pairs of vertices. A more general approach than
connecting all pairs of vertices is simply connecting only a subset of the vertices.

27

This is the concept of Steiner problems. The most famous problem is Steiner

Tree.

Problem 2.15 (Steiner Tree). We are given an undirected graph G =

(V,E), a subset of vertices T ⊆ V called terminals together with a root s, and
costs c ∈ QE

≥0. The task is to find a minimum-cost set of edges F ⊆ E in G
such that s is connected to all terminals t ∈ T in (V, F).

The directed version is called Directed Steiner Tree and there we
require directed paths from s to all terminals t ∈ T in (V, F). Note that in
both variants an inclusion-wise minimal solution does not contain cycles.

Both problems are known to be APX-hard, but the directed version is much
more difficult when it comes to approximation. The best known approximation
algorithm for the undirected version is an ln(4)+ε < 1.39-approximation algo-
rithm by Byrka, Grandoni, Rothvoß and Sanità [BGRS13]. In comparison, the
best known approximation algorithm for the directed version is an O(k

1
ε) ap-

proximation for any ε > 0, where k is the number of terminal pairs [CCC+99].
Furthermore by a result of Halperin and Krauthgamer [HK03], Directed

Steiner Tree does not admit a (log2−ε(n))-approximation algorithm unless
NP ⊆ ZTIME(npolylog(n)) for every ε > 0. On the positive side, the problem is
FPT in the number of terminal vertices for both the directed and undirected
case [DW71].

A generalization of Steiner Tree is the problem Steiner Forest, for-
mally defined as follows.

Problem 2.16 (Steiner Forest). We are given an undirected graph G =

(V,E), k terminal pairs (si, ti)1≤i≤k, and costs c ∈ QE
≥0. The task is to find

a minimum-cost set of edges F ⊆ E in G such that for each 1 ≤ i ≤ k, the
vertex si is connected to ti in (V, F).

Again, in the problem Directed Steiner Forest we ask for a forest such
that there is a directed path between the terminal pairs (si, ti)1≤i≤k. Clearly,
Steiner Forest generalizes Steiner Tree since the terminal pairs are not
required to be distinct. Therefore, we obtain the same hardness results for
Steiner Forest as for Steiner Tree, in both the undirected and directed
version. For the undirected case the best approximation algorithm is the 2-
approximation algorithm by Jain [Jai01]. The directed case is much more

28

difficult in terms of approximability and there are two incomparable results.
There is a |V |2/3+ε-approximation algorithm due to a result of Berman et
al. [BBM+13] and a k1/2+ε-approximation algorithm for every ε > 0 due to the
results in [CEGS08, FKN09], where k is the number of terminal pairs.

From the FPT algorithm for Steiner Tree it is not hard to derive an
FPT algorithm for Steiner Forest. However, it is known that Directed

Steiner Forest does not admit an FPT-algorithm when parameterized by
the number of terminal pairs [GNS11]. Nevertheless, there is a slicewise poly-
nomial algorithm by Feldman and Ruhl [FR06] that computes an optimal
solution in time O(|E||V |4k−2 + |V |4k−1 log |V |).

s-t Connectivity. On the far opposite site from connecting all vertices is the
task of simply connecting two given vertices. This problem is called Shortest

Path and is formally defined as follows.

Problem 2.17 (Shortest Path). Given an undirected graph G = (V,E),
two vertices s, t ∈ V , and costs c ∈ QE

≥0 the task is to find a minimum-cost
path from s to t.

It is folklore that the problem can be solved in polynomial-time by Dijkstras
algorithm [D+59] and can even be solved efficiently if G does not have cycles
of negative cost (in case c can also be negative) [FJ56, Bel58]. The problem is
NP-hard if there are cycles of negative cost in G.

A generalization of Shortest Path is the task of finding k disjoint s-t-
paths in a graph, called k-Disjoint Paths and is defined as follows.

Problem 2.18 (k-Disjoint Paths). Given an undirected graph G = (V,E),
an integer k, two vertices s, t ∈ V , and costs c ∈ QE

≥0, the task is to find a
minimum-cost set of edges X such that (V,X) contains k disjoint s-t-paths.

It is well-known that k-Disjoint Paths can be solved by an algorithm for
the problem Min Cost s-t-Flow in polynomial-time. In Chapter 4 we will
make use of a minimum-cost flow algorithm and some results associated with
maximum flows. Therefore, we will introduce this terminology here.

Definition 2.19. We are given a directed graph D = (V,A), two vertices
s, t ∈ V , and capacities b : A→ Q≥0, denoted by b(u, v) for uv ∈ A. A flow is
a function f : A→ Q≥0, denoted by f(u, v) for each uv ∈ A, such that

29

1. f(u, v) ≤ b(u, v) for each uv ∈ A

2.
∑

u:uv∈A f(u, v)−
∑

u:vu∈A f(v, u) = 0 for all v ∈ V \ {s, t}.

The value of a flow is |f | =
∑

su∈A f(s, u).

Such a flow is also called an s-t-flow. In the problem Max s-t-Flow we
wish to find a maximum s-t flow in D, i.e. we want to maximize |f |. There are
numerous polynomial-time algorithms for finding maximum flows in a graph,
for example in [FF09, GT88, Orl13, KRT94]. Note that algorithms for solving
Max s-t-Flow work on both directed and undirected graphs since for each
undirected edge we can add two directed arcs in each direction (observe that an
inclusion-wise minimal optimal solution to Max s-t-Flow does not contain
anti-parallel edges).

The dual problem to Max s-t-Flow is the problem Min s-t-Cut. In the
problem Min s-t-Cut the task is to find a cut between two given vertices of
minimum capacity.

Problem 2.20 (Min s-t-Cut). Given a directed graph D = (V,A), two
vertices s, t ∈ V , and capacities b ∈ QA

≥0 the task is to find a cut δ(S), S ⊆ V ,
of minimum capacity b(δ(S)) such that s ∈ S and t /∈ S.

It is well-known that the optimal value to Max s-t-Flow is equal to the
optimal value to Min s-t-Cut.

Theorem 2.21 (Max flow min cut theorem). We are given a directed graph
D = (V,A), two vertices s, t ∈ V , and capacities b ∈ QA

≥0, for uv ∈ A. Then
the optimal value to Max s-t-Flow is equal to the optimal value to Min

s-t-Cut.

Note that from a solution to Max s-t-Flow we can compute in polynomial
time a solution to Min s-t-Cut of the same value. Hence, Min s-t-Cut can
be solved in polynomial-time.

Finally, we are ready to formalize the problem Min Cost s-t-Flow.

Problem 2.22 (Min Cost s-t-Flow). We are given a directed graph
D = (V,A), two vertices s, t ∈ V , an integer k, capacities b ∈ QA

≥0, and
costs c ∈ QA

≥0. The task is to find an s-t flow of value precisely k at minimum
cost.

30

It is well-known that the problem Min Cost s-t-Flow can be solved in
polynomial-time [OPT93]. Furthermore, if the capacity function b is integral,
then there is also an optimal integral solution and this integral solution can
be found in polynomial-time.

2.3.2 Matching and Covering Problems

In this section we define matching and covering problems that play an impor-
tant role throughout the thesis, especially in Section 3.

Let G = (V,E) be a graph. A subset of the edges M ⊆ E is called a match-
ing if the edges in M are pairwise non-adjacent. In other words, any two
edges in M do not have a vertex in common. The size of a maximum match-
ing in G is denoted by ν(G). Note that a natural upper bound on ν(G) is 1

2
|V |.

Therefore, a matching M is called perfect if |M | = 1
2
|V |. Computing a max-

imum size matching is a fundamental problem in combinatorial optimization
and there are numerous algorithms that solve this problem [Edm65, MV80].
However, in this thesis we are more interested in computing a minimum-cost
perfect matching.

Problem 2.23 (Min Cost Perfect Matching). Given an undirected
graph G = (V,E) and costs c ∈ QE

≥0, the task is to find a perfect matching M
minimizing c(M) or to decide that G does not admit a perfect matching.

Using an algorithm for finding a maximum matching as a subroutine, one
can show that Min Cost Perfect Matching can be solved in polynomial-
time [Kol09]. The dual problem of finding a maximum matching is the task of
finding a minimum vertex cover. A subset of vertices V ′ ⊆ V is called a vertex
cover if G − V ′ has no edges. In other words, for every edge e ∈ E at least
one of its endpoint is in V ′.

Problem 2.24 (Vertex Cover). Given an undirected graph G = (V,E)

and costs c ∈ QE
≥0, the task is to find a vertex cover V ′ ⊆ V minimizing c(V ′).

Let us consider the unweighted case of finding a maximum matching and
a minimum vertex cover in a graph. The minimum size of a vertex cover is
denoted by τ(G). It is not hard to see that τ(G) ≥ ν(G) for every graph
G since every edge of some matching in G needs to be covered. However, in

31

bipartite graphs we have τ(G) = ν(G). This result is called Kőnig’s Theorem,
named after the Hungarian mathematician Dénes Kőnig. Using an algorithm
for maximum matchings, one can compute a minimum vertex cover in bipartite
graphs in polynomial time. We also mention here that one can use an algorithm
for Max s-t-Flow to compute a maximum matching in bipartite graphs (and
therefore also a minimum vertex cover).

In general graphs, Vertex Cover is APX-hard even in the unweighted
case. Moreover, if the unique games conjecture is true then Vertex Cover

cannot be approximated within any factor below 2 [KR08]. However, there is
a very simple algorithm that achieves a 2-approximation that was, according
to [GJ79], discovered independently by Gavril and Yannakakis.

A generalization of Vertex Cover is a problem called Set Cover, for-
mally defined as follows.

Problem 2.25 (Set Cover). Given a universe U = {1, 2, . . . , n}, a family
of subsets S = {S1, S2, . . . , Sm} whose union is U , and costs c ∈ QS≥0, the task
is to find a minimum-cost subset S ′ of S whose union equals U .

On the positive side, an approximation guarantee of (ln(n) + 1) can be
achieved by a simple greedy algorithm. On the negative side, Dinur and Steurer
proved that there is no (1− ε) ln(n)-factor approximation for Set Cover for
any ε > 0 unless P = NP [DS14]. Both results hold for the weighted and
unweighted case. Thus, there is no difference in terms of approximability for
the unweighted and weighted case of Set Cover.

2.4 Robust Combinatorial Optimization

In this section we briefly discuss three different concepts of robust combina-
torial optimization on graphs. As mentioned in the introduction, we focus on
discrete uncertainty, that is, we are given a certain finite set of realizations
of the input data. We first consider the bulk-robust model in which the set
of feasible solutions in uncertain, followed by the cost-robust model in which
the cost of the resources is subject to uncertainty. Finally, we consider the so
called demand-robustness, a model in which the demand is uncertain, that is,
it is not clear which of the constraints we have to satisfy.

32

For a more detailed overview of robust combinatorial optimization we refer
to the PhD thesis of David Adjiashvili [Adj12], which also deals with other
robust concepts such as recoverable robustness.

2.4.1 Structural Robustness

The main part of this thesis deals with structural robustness. Structural ro-
bustness deals with uncertainty in the set of feasible solutions. We begin with
an example.

When building up infrastructure from scratch we would like to ensure that
the infrastructure can withstand some kind of failure and still serves its pur-
pose. Consider for example the task of building a connected spanning network,
which is exactly the problem Minimum Spanning Tree. If an adversary is
able to remove one edge of the computed solution to Minimum Spanning

Tree, this solution is not feasible anymore. Such a problem can be addressed
if we compute a k-edge-connected spanning subgraph. Then, the solution is
robust against the failure of up to k − 1 edges and still satisfies its purpose.

However, in this case we assume that any subset of k−1 edges is subject to
failure. This homogeneity of the resources usually does not reflect the situation
in real-life problems. In the bulk-robust model we allow to precisely specify
which subsets of the resources can fail simultaneously.

The concept of bulk-robustness was introduced by Adjiashvili, Stiller and
Zenklusen [ASZ15]. In the nominal combinatorial optimization problem P we
are given a graph G = (V,E) and some kind of property X that we would
like to obtain, such as ’containing a perfect matching’, ’s-t-connectivity’. Fur-
thermore, we are given a precise list Ω ⊆ 2E of scenarios comprising a set of
edges each. The goal of the bulk-robust counterpart of P is to find a minimum
cost set of edges X such that the desired property is satisfied no matter which
scenario materializes, i.e. no matter which set of edges from the list is deleted.
Put differently, for a given cost function c ∈ QE

≥0 we are given the following
problem:

min
X⊆E
{c(X) | X \ F has property X for every F ∈ Ω}

The width of an instance, denoted by `, is the largest size of some set F ∈ Ω,
i.e. ` = maxF∈Ω |F |.

33

Adjiashvili, Stiller and Zenklusen considered the properties ’s-t-connectivity
in a graph’ and ’containing a spanning tree’ (in fact, they considered the
property ’basis of a matroid’, but for simplicity we stick to the special case of
a graphic matroid, i.e. a spanning tree).

First, they showed that the problem is as hard to approximate as Set

Cover even for uniform matroids of rank 1. Therefore, almost any bulk-
robust counterpart of some combinatorial optimization problem is as hard to
approximate as Set Cover and thus does not allow for a sublogarithmic-
factor approximation unless P = NP. Furthermore, they showed even stronger
inapproximability results for Bulk-robust Shortest Path, the bulk-robust
counterpart of the problem Shortest Path.

They showed that there is no 2
1
4
`1−ε-approximation algorithm for Directed

Bulk-robust Shortest Path for any ε > 0, where ` is the width of the
instance, unless P = DTIME(nlog logn). Here, directed means that the underly-
ing graph is directed. Additionally, they showed that the problem is APX-hard
even for ` = 2.

They complemented these inapproximability results by an efficient O(log n)-
factor approximation algorithm for Bulk-robust Spanning Tree and an
efficient O(log n)-factor approximation algorithm for Bulk-robust Short-

est Path with constant width `. Furthermore, they gave a polynomial-time
13-approximation for Bulk-robust Shortest Path for ` = 2.

Not many other bulk-robust counterparts of combinatorial optimization
problems have been considered so far. To the best of our knowledge, only
two variants of Bulk-robust Perfect Matching have been considered
by Adjiashvili, Bindewald and Michaels [ABM16, ABM17] (and by Bindewald
in his PhD thesis [Bin18]).

In [ABM16] they considered the problem Bulk-robust Perfect Match-

ing in bipartite graphs in which the edges are subject to failure. Among other
things they showed that the problem is as hard to approximate as Set Cover

even if in each scenario at most one edge can be removed from the solution.
Additionally, they proposed a polynomial-time O(log n)-factor approximation
algorithm based on a randomized rounding algorithm. However, in their work
there is a subtle but crucial error, such that the bound on the guarantee is
not correct. Furthermore, as we will see in Chapter 3, an O(log n)-factor

34

approximation algorithm for this problem is very unlikely as it would imply
NP ⊆ ZTIME(npolylog(n)) (Corollary 3.25).

In [ABM17] Adjiashvili, Bindewald and Michaels considered the problem
Bulk-robust Perfect Matching in which the vertices are the resources
and subject to failure. That is, for a given bipartite graph G = (U + W,E)

and a cost function c : W → Q, the task is to find a minimum weight set of
vertices W ′ ⊆ W such that G[U +W ′ − w] contains a U -perfect matching for
each w ∈ W . Again, they showed that the problem is as hard to approximate
as Set Cover and complement this inapproximability result by a polynomial-
time (log(n) + 2)-approximation algorithm.

2.4.2 Cost Robustness

In this section we consider a general combinatorial optimization problems of
the form

min
x∈X

c(x),

where X ⊆ {0, 1}n describes the certain set of feasible solutions and where
only the cost vector c ∈ Qn is subject to uncertainty. Furthermore, we are
given an uncertainty set C = {c1, c2, . . . , cm} of possible realizations of c. The
task then is to solve the following problem:

min
x∈X

max
c∈C

c(x)

We give an overview of results for discrete uncertainty sets. For a more thor-
ough overview of cost-robust combinatorial optimization and other uncertainty
sets (like polyhedral or ellipsoidal uncertainty sets) we refer to the survey of
Buchheim and Kurtz [BK18].

Unfortunately, even for X = {0, 1}n and two scenarios the problem is al-
ready (weakly) NP-hard by a reduction to the problem Subset Sum. However,
the cost-robust counterparts of several problems, e.g., Shortest Path, Min-

imum Spanning Tree, the Knapsack Problem and the Unconstrained

Binary Problem admit pseudo polynomial algorithms if the number m of
scenarios is fixed [KY13, ABV05c, BBI14]. A pseudo polynomial algorithm is
an algorithm that is polynomial in the numeric value of the input (the largest
integer present in the input) but not necessarily in the size of the input. Fur-

35

thermore, the cost-robust counterparts of Shortest Path, Minimum Span-

ning Tree and the Knapsack Problem all admit an FPTAS [ABV05a] for
a fixed number of scenarios. Aissi, Bazgan and Vanderpooten [ABV05c] prove
that there is always a pseudo polynomial algorithm for the cost-robust counter-
part with a fixed number of scenarios if the underlying search problem can be
solved in polynomial time. However, Buchheim [Buc20] showed that an algo-
rithm which can access the underlying certain problem only by an optimization
oracle needs exponentially many oracle calls in the worst case even without
assuming P 6= NP. Moreover, he showed that oracle-based pseudopolynomial
or approximation algorithms cannot exist either.

Interesting to note is that the cost-robust counterpart of Minimum Cut is
polynomial-time solvable, while the cost-robust counterpart of Min s-t-Cut

is strongly NP-hard even if the number of scenarios is fixed [AZ06, ABV08].
According to [BK18], it is still an open question whether the cost-robust coun-
terpart of the assignment problem is weakly or strongly NP-hard for a fixed
number of scenarios.

Finally, if the number of scenarios is unbounded, all of the above problems
are strongly NP-hard [KY13, ABV05b, ABV08].

2.4.3 Demand Robustness

Demand robustness was introduced by Dhamdere, Goyal, Ravi and Singh
in [DGRS05] and falls into the category of two-stage optimization problems.
In the first stage, the decision maker has to construct a solution that is only
based on the possible realizations of the constraints. In the second stage the
constraints materialize and the decision maker can augment his first stage so-
lution to satisfy the final constraints. It is called demand robustness since the
set of constraints, or the demand, is unknown in the first stage.

As an example, we consider the demand-robust version of Shortest Path.
We are given a graph G = (V,E), a root r, possible target vertices t1, t2, . . . , tk
and two cost functions c, d ∈ QE

≥0. The task is to connect the root r to one of
the target vertices t1, t2, . . . , tk. In the first stage, the decision maker is able
to construct a solution X1 with cost function c without knowing which target
vertex he has to connect to the root. In the second stage the final target
ti is revealed and the decision maker can augment X1 with a second stage

36

solution X2 with usually higher costs according to d such that (V,X1 ∪ X2)

contains an r-ti path. In the demand robust model, the decision maker has to
minimize the worst-case cost over all possible scenarios, i.e. he has to compute
a robust solution. There are also stochastic versions of the problem in which
the decision maker has to minimize the expected value of a solution. However,
in this thesis we stick to the robust model.

In [DGRS05] the authors considered demand robust versions of the prob-
lems Shortest Path, Vertex Cover, Facility Location, Min s-t-Cut

and Min Multi-Cut and provided approximation algorithms with guaran-
tees 30, 4, 5, O(logm) and O(log rm log log rm), respectively, where m de-
notes the number of scenarios and r denotes the number of pairs per scenario.
In [GGP+15] the approximation guarantees were improved significantly for the
demand robust versions of Shortest Path and Min s-t-Cut to 3.39 and 2,
respectively.

Feige, Jain, Mahdian and Mirrokni [FJMM07] later extended the model to
allow exponential sets of scenarios which were defined implicitly. They consid-
ered demand robust versions of Set Cover and Vertex Cover and provided
polynomial-time approximation algorithms with guarantees O(logm log n) and
2(2e

e−1
+ 1), respectively. For example, the implicit list of demands for Set

Cover is the list of all subsets of size k of the elements.

Chapter 3

Robust Matchings

3.1 Introduction

In this chapter we present our results for robust matchings. We say that a
bipartite graph is robust if it admits a perfect matching after the removal of
any single edge. Our goal is to make a bipartite graph robust at minimal cost
by adding edges from its bipartite complement and we study the complexity
of the corresponding optimization problem.

More formally, in this chapter we study the following problem.

Problem 3.1 (Robust Matching Augmentation). Given an undirected
bipartite graph G = (U +W,E) that admits a perfect matching, the task is to
find a set L ⊆ E of minimum cardinality, such that the graph G+L is robust.

Recap that for a bipartite graph (V,E), we denote by E the edge-set of its
bipartite complement. Based on a characterization of robustness in terms
of strong connectivity, we provide a deterministic log2 n-factor approxima-
tion for Robust Matching Augmentation, as well as a fixed parame-
ter tractable (FPT) algorithm for the same problem parameterized by the
treewidth of the input graph. We also give a polynomial-time algorithm
for instances on chordal-bipartite graphs, which are bipartite graphs with-
out induced cycles of length at least six. Furthermore, we show that Robust

Matching Augmentation admits no polynomial-time sublogarithmic-factor
approximation algorithm unless P = NP, so our approximation guarantee is
essentially tight. We also consider the following more general setting. Let us

37

38

call a bipartite graph k-robust, if it admits a matching of cardinality k af-
ter the removal of any single edge. By a simple reduction we show that our
algorithmic results carry over to the task of making a bipartite graph k-robust.

We refer by Weighted Robust Matching Augmentation to the gen-
eralization of Robust Matching Augmentation, where each edge e ∈ E
has a non-negative cost c(e). The task is to find a minimum-cost edge set
L ⊆ E such that the graph G + L is robust. First, we show that the ap-
proximability of Weighted Robust Matching Augmentation is closely
linked to that of Directed Steiner Forest. In particular, we show that
an f(n)-factor approximation algorithm for Weighted Robust Matching

Augmentation implies an f(n + k)-factor approximation algorithm for Di-

rected Steiner Forest, where k is the number of terminal pairs. By a re-
sult of Halperin and Krauthgamer [HK03] it follows that there is no log2−ε(n)-
factor approximation for Weighted Robust Matching Augmentation

unless NP ⊆ ZTIME(npolylog(n)). On the positive side, we show that an f(k)-
factor approximation for the Directed Steiner Forest problem yields an
(f(k) + 1)-factor approximation for Weighted Robust Matching Aug-

mentation. Hence, the algorithms from [CEGS08, FKN09] give an approxi-
mation guarantee of 1 + n

1
2

+ε for Weighted Robust Matching Augmen-

tation, for every ε > 0.

Second, we prove a complexity dichotomy based on graph minors. Let T
be a class of connected graphs closed under connected minors. We show that
Weighted Robust Matching Augmentation restricted to input graphs
from T is NP-complete if and only if T contains at least one of two simple
graph classes, which will be defined in Section 3.4, and admits a polynomial-
time algorithm otherwise. The polynomial-time algorithm for the remaining
instance classes uses a reduction to the Directed Steiner Forest problem
with a constant number of terminal pairs, which in turn admits a (slice-wise)
polynomial-time algorithm due to a result by Feldman and Ruhl [FR06]. The
terminal pairs of the instance are computed by the Eswaran-Tarjan algorithm.

An overview of inapproximability results and approximation factors of our
approximation algorithms can be found in Table 3.1.

39

unweighted weighted

Hardness of approximation log n log2−ε(n)

Approximation factor log n 1 + n
1
2

+ε

Table 3.1: Hardness of approximation results and approximation factors of

our algorithms for unweighted and weighted Robust Matching Augmen-

tation.

Summary of Algorithmic Techniques. By close inspection, it turns out
that in order to make some bipartite graph G robust at minimum cost, we
may restrict our attention to failures of single edges from any fixed perfect
matching M of G. We then show that the resulting problem is equivalent to
augmenting a minimum-cost set A of arcs to a given digraph D, such that in
the graph D+A, each vertex is contained in a strongly connected component
and each strongly connected component contains at least two vertices. In order
to satisfy these connectivity requirements, we select certain sources and sinks
of the condensation of the digraph and add a minimum-cardinality set of arcs,
such that the selected sources and sinks are contained in a single strongly
connected component. For this purpose, we use the classical Eswaran-Tarjan
algorithm. From the arcs we added we obtain an optimal set L of edges such
that G + L is robust, provided that the selection of sources and sinks was
optimal.

We model the task of selecting sources and sinks as a variant of the Set

Cover problem with some additional structure. Given an acyclic digraph, the
task is to select a minimum-cardinality subset of the sources, such that each
sink is reachable from at least one of the selected sources. We refer to this prob-
lem as Source Cover and remark that its complexity may be of independent
interest, since it generalizes Set Cover but is a special case of Directed

Steiner Tree. We give an FPT algorithm for the Source Cover problem
parameterized by the treewidth of the input graph and a polynomial-time algo-
rithm for chordal-bipartite graphs (ignoring orientations). The FPT algorithm
is single exponential in the treewidth. Our reductions from Robust Match-

ing Augmentation to Source Cover preserve chordal-bipartiteness and
bounded treewidth, so efficient algorithms for Source Cover on these graph
classes imply efficient algorithms for Robust Matching Augmentation on

40

the same classes.

As a by-product of our analysis of the Source Cover problem, we obtain
FPT algorithms for the node-weighted and arc-weighted versions of the Di-

rected Steiner Tree problem on acyclic digraphs, which are exponential
in the treewidth and linear in the number of nodes of the input graph.

Organization of the Chapter. The remainder of this chapter is organized
as follows. We illustrate the relation between robust matching augmentation
and strong connectivity augmentation in Section 3.2. In Section 3.3 we show an
even closer relation of Robust Matching Augmentation to the Source

Cover problem. Algorithms for the Source Cover problem are given in
Section 3.3.3 as well as our results on Robust Matching Augmentation

with unit costs. In Section 3.4 we give the complexity classification for the
weighted version of the problem.

3.2 Robust Matchings and Strong Connectivity

Augmentation

In this section we give some preliminary observations on the close relationship
between Robust Matching Augmentation with unit costs and strong con-
nectivity augmentation. For this purpose, we fix an arbitrary perfect matching
and construct an auxiliary digraph that is somewhat similar to the alternating
tree used in Edmond’s blossom algorithm. We show that the original graph is
robust if the auxiliary graph is strongly connected (but not vice versa). Fur-
thermore, we show that there is an optimal edge-set making the given graph
robust, that corresponds to a set of arcs connecting sources and sinks in the
auxiliary digraph. Finally, if no source or sink of the auxiliary digraph corre-
sponds to a non-trivial robust part of the original graph, then we may use the
algorithm for strong connectivity augmentation by Eswaran and Tarjan [ET76]
to make the original graph robust. As a consequence, we have that Robust

Matching Augmentation on trees can be solved efficiently by using the
Eswaran-Tarjan algorithm. In Section 3.3, we will generalize this result.

Let G = (U + W,E) be a bipartite graph that admits a perfect matching
and let M be an arbitrary but fixed perfect matching M of G. We call an

41

(a) Graph G and matching M (wiggly
edges).

(b) Digraph D(G,M).

Figure 3.1: Illustration of the correspondence between the dotted edges of G

and dotted arcs of D(G,M).

edge e ∈M critical if G−e admits no perfect matching. Observe that an edge
e ∈ M is critical if and only if it is not contained in an M -alternating cycle.
Furthermore, no edge in E \M is critical. SinceM is perfect, each edge e ∈M
is incident to a unique vertex ue of U . We consider the following auxiliary
digraph D(G,M) = (U,A), whose arc-set A is given by

A :={uu′ | u, u′ ∈ U | ∃ w ∈ W such that uw ∈M and wu′ ∈ E \M}.

We first note that the choice of the bipartition of G is irrelevant.

Fact 3.2. Let G′ = (U ′ + W ′, E), where (U ′,W ′) is a bipartition of G. Then
D(G,M) is isomorphic to D(G′,M).

Note that we may perform the reverse construction as well. That is, from
any digraph D′ we may obtain a corresponding undirected graph G and a
perfect matching M of G such that D(G,M) = D′. In fact, augmenting edges
to G is equivalent to augmenting arcs to D(G,M).

Fact 3.3. Let A be the set of arcs that are not present in D(G,M). Then
there is a one-to-one correspondence between E and A.

An example of the correspondence mentioned in Fact 3.3 is shown in Fig-
ure 3.1. In order to keep our notation tidy, we will make implicit use of Fact 3.3
and refer to A and E interchangeably. Observe that for edges e, f ∈ M there
is anM -alternating path containing e and f in G if and only if ue is connected
to uf in D(G,M). This implies the following characterization of robustness.

42

Fact 3.4. G is robust if and only if each strongly connected component of
D(G,M) is non-trivial, that is, it contains at least two vertices.

Let D′ be a digraph. A vertex of D′ is called a source (sink) if it has
no incoming (outgoing) arc. We refer to the set of sources (sinks) of D′ by
V +(D′) (V −(D′)). Furthermore, we denote by C(D′) the condensation of D′,
that is, the directed acyclic graph of strongly connected components of D′. We
call a source or sink of C(D′) strong if the corresponding strongly connected
component of D′ is non-trivial. From Fact 3.4 it follows that a subgraph of
G that corresponds to a strong source or a strong sink is robust against the
failure of a single edge. Furthermore, observe that the choice of the perfect
matching M of G is irrelevant in the following sense.

Fact 3.5. Let M and M ′ be perfect matchings of G. Then C(D(G,M)) is
isomorphic to C(D(G,M ′)).

Proof. Let M and M ′ be two distinct perfect matchings of G. Then their
symmetric difference M ∆M ′ is a sum of (M,M ′)-alternating cycles. But
each cycle is in some strong component of D(G,M) and D(G,M ′), so both
condensations must be isomorphic. �

Fact 3.5 is of key importance for our algorithmic results, for which we gen-
erally assume that some fixed perfect matching is given. Next, we observe that
for unit costs we may restrict our attention to connecting sources and sinks of
C(D) in order to make G robust. It is easy to check that this does not hold
for general non-negative costs.

Fact 3.6. Let L ⊆ E such that G+L is robust. Then there is some L′ ⊆ E of
cardinality at most |L|, such that G + L′ is robust and L′ connects only sinks
to sources of C(D(G,M)).

Proof. Let vw be an arc in L. Let L′ be a copy of L, where the arc vw is
replaced by an arc v′w′ from a sink v′ of C(D(G,M)) reachable from v to a
source w′ of C(D(G,M)) reachable from w. We show that G + L′ is robust.
Suppose for a contradiction that this is not the case. Then there is some edge
xy ∈ M , such that x ∈ U , y ∈ W , and xy is not on an M -alternating cycle
in G + L′. Equivalently, x is not contained in a directed cycle of D + L′.

43

However, since G+ L is robust, we have that x and the arc vw are contained
in some directed cycle C = {v1, v2, . . . , vk = v1} of D + L. That is, there are
1 ≤ i, j < k, such that x = vi, v = vj, and w = vj+1. Let P (Q) be a path
connecting v and v′ (w′ and w). Then C ′ := v1, v2, . . . , vj−1, P,Q, vj+2, . . . , vk is
a closed walk that contains a simple directed cycle visiting x. This contradicts
our assumption that x is not on a directed cycle in G + L′. By iterating
this argument we obtain an arc-set L′ such that |L′| ≤ |L| and G + L′ is
robust. By construction, L′ contains only arcs that connect sources and sinks
of C(D(G,M)). �

We remark that the construction of L′ given in the proof of Fact 3.6 can be
performed in polynomial time.

We denote by γ(D′) the minimal number of arcs to be added to a digraph
D′ in order to make it strongly connected. Eswaran an Tarjan have proved
the following min-max relation [ET76].

Fact 3.7. Let D′ be a digraph. Then γ(D′) = max{|V +(D′)|, |V −(D′)|}.

From the proof of Fact 3.7 it is easy to obtain a polynomial-time algorithm
that, given a digraph D′, computes an arc-set L of cardinality γ(D′) such
that D′ + L is strongly connected [FJ15]. We will refer to this algorithm by
Eswaran-Tarjan. The following proposition illustrates the usefulness of the
algorithm Eswaran-Tarjan for Robust Matching Augmentation, and at
the same time its limitations.

Fact 3.8. Suppose that C(D(G,M)) contains no strong sources or sinks. Then
Eswaran-Tarjan computes a set L ⊆ E of minimum cardinality such that G+L

is robust.

Proof. By assumption, we have that C(D(G,M)) contains no strong sources
or sinks. Therefore, each source and each sink of C(D(G,M)) corresponds to
a critical edge of the matching M . Let L′ ⊆ E of minimum cardinality, such
that G+L′ is robust. By Fact 3.6, we may assume that L′ connects only sinks
to sources of C(D(G,M)).

If |L′| < γ(D(G,M)) = max{|V +(C(D(G,M)))|, |V −(C(D(G,M)))|}, then
at least one sink or at least one source is not incident to an arc of L′. Therefore,
the graph G+ L′ is not robust. �

44

Fact 3.8 implies that Eswaran-Tarjan solves Robust Matching Augmen-

tation on trees. If strong sources or sinks are present in D(G,M), then we
may or may not need to consider them in order to make G robust. This is pre-
cisely what makes the problem Robust Matching Augmentation hard.
This close connection will be presented in Section 3.3. We will formalize the
task of selecting strong sources and sinks in terms of the Source Cover

problem, which is discussed in Section 3.3.3.

3.3 Unweighted Robust Matching

Augmentation

In this section we present our main technical tool for solving the problem
Robust Matching Augmentation. By combining it with the results in
Section 3.3.3 we obtain our algorithmic results. We say that a perfect matching
M ⊆ E of G is robust if G − e contains a perfect matching for each e ∈ M .
Now let us restate the problem Robust Matching Augmentation in a
slightly different way.

Problem 3.9 (Alternative formulation for Robust Matching Augmenta-

tion). Given a bipartite graph G = (U + W,E) and a perfect matching M
of G, the task is to find a minimum-cardinality set L ⊆ E such that M is
robust in G+ L.

Fixing the perfect matching M in the instance is just for notational conve-
nience, since we can compute a perfect matching in polynomial time and our
results do not depend on the exact choice of M , according to the discussion in
Section 3.2.

3.3.1 Complexity

We show that the problem Robust Matching Augmentation is NP-hard,
even on (bipartite) graphs of maximum degree three. Furthermore, it is NP-
hard to find a o(log n)-approximate solution in polynomial time. The result
mainly follows from the results of [Bin18] and an additional lemma. Neverthe-
less, we give the full proof here.

45

Proposition 3.10. Robust Matching Augmentation parameterized by
the solution size is W[2]-hard, even on graphs of maximum degree three.

Proof. We give a parameterized reduction from Set Cover, which is W[2]-
hard. Let (X,S) be an instance of Set Cover. We construct an instance
(G,M) of Robust Matching Augmentation as follows. Let d be the
maximal cardinality of the sets in S. For each set S ∈ S, we add a cycle CS
of length 2d on the vertices c1

S, c
2
S, . . . , c

2d
S and for each item u ∈ X, we add an

edge u1u2 to G. For each u ∈ X and S ∈ S, if u ∈ S, we join u1 to ciS by an
edge, such that i is odd and the vertex ciS has maximum degree three. This is
possible since CS has length 2d. Finally, we add two vertices t1 and t2 to G,
join them by an edge, and connect for each u ∈ X, u2 to t1. The matching M
contains for each S ∈ S the edges c1

Sc
2
S, c

3
Sc

4
S, . . . , c

2d−1
S c2d

S and for each u ∈ X
the edge u1u2, and also t1t2. It is readily verified that M is a perfect matching
of G. Let us choose the bipartition (U,W) of G such that u1 ∈ U for some
u ∈ X.

Claim 1. C(D(G,M)) contains a single sink t1 and for each S ∈ S its node-set
V (CS) defines a strong source.

Proof. Clearly, the vertices of each cycle CS are in a strong component of
D(G,M). Observe that by the construction of G, any maximal M -alternating
path that leaves a cycle CS terminates in t2. It follows that t1 is the only sink
of C(D(G,M)). Moreover, no two distinct cycles CS and CS′ are in the same
strong component of C(D(G,M)). This completes the proof of Claim 1. �

Let L ⊆ E be an optimal solution to (G,M). By Fact 3.6, we can assume
that L connects sources to the unique sink of C(D(G,M)). We now set

CL := {S ∈ S | L connects CS to t1}.

Next, we prove that L is a solution of size ` if and only if CL is a solution of
size `. For the only if part, assume this is not true and let u ∈ X be not covered
by CL. Thus, none of the sets containing u is contained in CL, meaning that L
does not connect t1 to a strong source that is a predecessor of u1 in D(G,M)

(as L only connects t1 to strong sources). Hence u1u2 is not contained in an
alternating cycle, a contradiction. For the if part, let CL be a cover of size `
and let L be the corresponding arcs in D. Assume u1 is not contained in a

46

strong component in D(G+L,M). As L only connects strong sources to sinks,
no predecessor of u1 has an edge to t1. This is a contradiction to CL being a
cover.

We now describe how to reduce the degree of the constructed graph. Note
that the only vertices with degree possibly greater than 3 are t1 and u1, u ∈ X.
All of them are in U . Consider a vertex u ∈ U of degree at least q > 3

with its neighbors w1, . . . , wq. We do not connect the vertices wi, 1 ≤ i ≤ q

directly to u. Instead we add a path P = {u′1w′1u′2w′2 . . . u′q = u}, where for
1 ≤ i < q the edges u′iw′i are matching edges. Instead of wiu we add the
edges wiu′i for 1 ≤ i ≤ q. Observe that we still have the same properties as
before but each vertex in G has degree at most 3. This concludes the proof of
Proposition 3.10. �

Proposition 3.11. Robust Matching Augmentation admits no polyno-
mial time o(log n)-factor approximation algorithm unless P = NP, where n is
the number of critical edges of the input graph.

Proof. Assume for a contradiction that there is a polynomial-time algorithm A

that computes an f(n)-approximate solution of Robust Matching Aug-

mentation, where f(n) = o(log n). Let I′ = (X,S) be an instance of Set

Cover and construct from I′ in polynomial time an instance I of Robust

Matching Augmentation as in the proof of Proposition 3.10. We now also
have that OPT(I) = OPT(I′) and n = |X|. Applying algorithm A on I yields a
solution L of cardinality at most f(n) ·OPT(I). Without loss of generality, we
may assume that L only connects sources and sinks due to Fact 3.6. We now
set

CL := {S ∈ S | L connects CS to t1}.

By the same arguments as in the proof of Proposition 3.10, we observe that CL
is a feasible solution to I′ of cardinality at most f(n) ·OPT(I) = f(n′) ·OPT(I′).
This contradicts an inapproximability result of Dinur and Steurer for Set

Cover [DS14]. �

3.3.2 Main Result

For the main theorem of this section we need to introduce the Source Cover

problem. Given an acyclic digraph, the Source Cover problem asks for a

47

minimum-cardinality subset of its sources, such that each sink is reachable
from at least one selected source. The Source Cover problem is formally
defined as follows.

Problem 3.12 (Source Cover). Given an acyclic digraph D = (V,A), the
task is to find a minimum-cardinality subset S of the sources V +(D) of D,
such that for each sink t ∈ V −(D) there is an S-t-path in D.

We are now ready to state our main theorem of this section.

Theorem 3.13. There is a polynomial-time algorithm that, given an instance
I = (G,M) of Robust Matching Augmentation, computes two instances
A1 = (S1) and A2 = (S2) of Source Cover such that the following holds.

1. U(S1) and U(S2) are induced minors of U(D(G,M)).

2. OPT(I) = max{OPT(A1),OPT(A2)}.

3. From a solution C1 of A1 and a solution C2 of A2 we can construct in
polynomial time a solution L of I of cardinality max{|C1|, |C2|}.

Proof. Let G be given by G = (U+W,E). Our goal is to obtain from solutions
of the Source Cover instances a suitable selection of sources and sinks of
C(D(G,M)), such that we can make M robust by connecting the selected
sources and sinks, using the algorithm Eswaran-Tarjan. Let us denote by
ue the vertex in U that is incident to an edge e ∈ M . Furthermore, let
D := D(G,M). We construct the Source Cover instance A1 as follows.
For each unsafe edge e ∈ M , we remove from D each vertex v ∈ U − ue, such
that v is reachable from ue in D. Furthermore, we delete all vertices that are
in a strong sink of C(D) and iterate this process until the resulting graph,
say D′, has no strong sink. Then the Source Cover instance A1 is given
by A1 := (C(D′)). The construction of A2 is as for A1, but with the arcs of
D reversed. This turns the sources of D into sinks and vice versa. Clearly,
the input graphs of A1 and A2 are induced minors of U(D), since they were
constructed by deleting vertices of U(D) and contracting strong components.
By Fact 3.4, the set of unsafe edges can be obtained efficiently by Tarjan’s
classical algorithm for computing strongly connected components. It remains
to prove statements 2 and 3.

48

Let C1 (C2) be a solution to A1 (A2). We show how to construct in
polynomial-time a solution L of I of cardinality max{|C1|, |C2|}. Let X ⊆
V (D) be the set of vertices incident to unsafe edges. Moreover, let D̂ ⊆ C(D)

be the graph induced by the vertices of C(D) that are on C1X-paths or on
XC2-paths in C(D). Note that D̂ can be computed by a depth-first search
applied on each source and sink. By running Eswaran-Tarjan on D̂ we obtain
an arc-set L∗ such that D̂+L∗ is strongly connected. Hence, each u ∈ X is on
some directed cycle in D̂ + L∗. From L∗ we can obtain in a straight-forward
way an arc-set L of the same cardinality, such that each u ∈ X is on some
directed cycle of D + L. For each arc ss′ ∈ L∗, we add an arc uu′ to L, where
u (u′) is some vertex in the strong component s (s′) of D. By the construction
of L, each u ∈ X is on some directed cycle of D. By Facts 3.3 and 3.7 we have
constructed a solution L of I of cardinality |L| = |L∗| = max{|C1|, |C2|}. This
concludes the proof of Statement 3.

It remains to prove that OPT(I) ≥ max{OPT(A1),OPT(A2)}. Suppose
for a contradiction that OPT(I) < max{OPT(A1),OPT(A2)}. Without loss
of generality, let OPT(A1) attain the maximum. Due to Fact 3.6, we may
assume that an optimal solution L of I connects sources and sinks of C(D).
Let R ⊆ V (C(D)) be the corresponding sources of C(D). Then for each unsafe
edge e ∈ M , the vertex ue must be reachable from some source s ∈ R. But
then R is a solution of A1 of cardinality |R| = OPT(I) < OPT(A1), which is a
contradiction. This concludes the proof of Theorem 3.13. �

By Theorem 3.13, in order to solve Robust Matching Augmentation,
is suffices to solve two instances of Source Cover. Due to Statement 1 of
the theorem, structural features of the input graph, such as bounded treewidth
and chordal-bipartiteness, are passed on to the digraphs of the source cover
instances. We now consider the following more general setting, which we call
Robust k-Matching Augmentation. We call a bipartite graph k-robust
if it admits a matching of cardinality k after the removal of any single edge.

Problem 3.14 (Robust k-Matching Augmentation). Given a bipartite
graph G = (U + W,E) that admits a matching of size k, the task is to find a
minimum-cardinality set L ⊆ E such that the graph G+ L is k-robust.

Note that if k is less than the size of a maximum matching, then L = ∅ is

49

optimal due to the existence of a larger matching. We give a polynomial-time
reduction from Robust k-Matching Augmentation to Robust Match-

ing Augmentation. Let (G,M) be an instance of Robust k-Matching

Augmentation, where the input graph G is given by G = (V,E). Without
loss of generality, we assume that M is U -perfect, so |U | ≤ |W |. Otherwise,
adding an edge joining two unmatched vertices solves the problem. We con-
struct an instance (G′,M ′) of Robust Matching Augmentation as follows.
Let G′ be a copy of G to which we add a leaf to each unmatched vertex of W .
We then add a vertex z to U joined to each vertex of the other part of the
bipartition. Finally, we add a vertex z′ joined to z and each leaf added in the
previous step. We extend the matching M of G to a perfect matching M ′ of
G′ by adding to M the edge zz′ and the edges between the additional leaves
and the previously unmatched vertices. Note that by construction, if e is a
unsafe edge of G′, then G− e does not admit a matching of cardinality |M |.

Note that the construction increases the treewidth by at most two, but
does not preserve chordal-bipartiteness of the input graph. However, the cor-
responding digraph contains no induced cycle of length at least six, so all our
algorithmic results for Robust Matching Augmentation carry over to
Robust k-Matching Augmentation.

Proposition 3.15. There is a polynomial-time reduction f from Robust k-

Matching Augmentation to Robust Matching Augmentation, such
that the following holds. Let I := (G) be an instance of Robust k-Matching

Augmentation and let f(I) = (G′). Then the following statements are true.

1. OPT(f(I)) = OPT(I) and from a solution L′ of f(I) we can construct in
polynomial-time a solution L of I such that |L| ≤ |L′|.

2. tw(G′) ≤ tw(G) + 2.

3. If G is chordal-bipartite, then U(D(G′,M ′)) has no induced cycle of
length at least six.

Proof. We prove the statements one by one.

Claim 1. OPT(I′) = OPT(I) and from a solution L′ of I′ we can construct in
polynomial time a solution L of I such that |L| ≤ |L′|.

50

Proof. Let (U,W) be the bipartition of G as chosen in the construction, i.e.,
such that z ∈ U . Note that since z is joined to each vertex w ∈ W , there is an
arc from each vertex of D(G′,M ′) to z. Therefore, C(D(G′,M ′)) has a single
strong sink, say Ŝ, originated from the vertex set Ŷ ⊆ V (D(G′,M ′)). Observe
that z, z′, u′1, u′2, . . . , u′k ∈ Ŷ . For a strong component s of D(G′,M ′), let Ys be
the set of vertices of V (D(G′,M ′)) in the component s.

We first show that OPT(I) ≤ OPT(I′). Let L̃ be a solution of I′. According
to Fact 3.6 and the algorithm contained in its proof we may construct from L̃

a solution L′ to I′ of cardinality at most |L̃|, such that L′ connects only sources
and sinks of C(D(G′,M ′)). Since there is only the sink Ŝ, we may further
assume that L′ connects Ŝ to a selection S ⊆ V +(D(G′,M ′)). Let x ∈ W

be M -exposed. We construct a solution L of I as follows. For each source
s ∈ S, we pick a vertex u ∈ U in the corresponding component in D(G′,M ′)

and add the edge ux to L. We now show that G + L is robust. Recap that
by construction, the critical edges of (G′,M ′) are precisely the critical edges
of (G,M). Let e ∈ M be a critical edge of (G,M). Since L′ is feasible for I′,
any vertex u ∈ U that is incident to a critical edge of (G′,M ′) is reachable
from some s ∈ S by a directed path in C(D(G′,M ′)). This directed path
corresponds to an M -alternating path in G starting from any vertex u ∈ Ys

with an M -edge. Therefore, the edge e is not critical in (G + ux,M) for any
u ∈ Ys. Hence, (G + L,M) has no critical edges and from |L| = |L′| ≤ |L̃|
we conclude that OPT(I) ≤ OPT(I′). Moreover, we can construct L from L′ in
polynomial time.

It remains to show that OPT(I′) ≤ OPT(I). Let L be an optimal solution
of I. Note that each critical edge of (G,M) is on an M -alternating cycle or
a maximal even-length M -alternating path in G + L. We construct from L

a solution L′ to I′. Let x ∈ W be M -exposed. For each u ∈ U and w ∈ W
such that uw ∈ L, we add the edge ux to L′. We show that L′ is feasible
for I′. Let uw ∈ L and let e ∈ M be a critical edge of (G,M) on a maximal
M -alternating path P of even length. By replacing uw by ux, we split P
into at most two maximal M -alternating paths of even length. On the other
hand, suppose that e be on some M -alternating cycle involving uw. Replacing
uw by ux yields a maximal M -alternating path containing e. Therefore, each
critical edge of (G,M) is on some maximal M -alternating path of even length

51

in G+L′. By the construction above, each critical edge of (G′,M ′) is hence on
some maximalM ′-alternating cycle of (G′+L′,M ′), soM ′ is robust in G′+L′.
Since |L| = |L′|, we have that OPT(I) ≤ OPT(I′). This proves Claim 1. �

Claim 2. tw(G′) ≤ tw(G) + 2.

Proof. To prove Claim 2, observe that adding a single vertex to a graph
increases its treewidth by at most one. Furthermore, adding a leaf vertex to
a graph does not increase its treewidth. We obtain G′ from G by adding leaf
vertices to each exposed vertex and finally add two more vertices. Therefore,
tw(G′) ≤ tw(G) + 2. This proves Claim 2. �

Claim 3. If G is chordal-bipartite, then U(D(G′,M ′)) has no induced cycle of
length at least six.

Proof. Now suppose that G is chordal-bipartite. Assume for a contradiction
that H = U(D(G′,M ′)) has an induced cycle C ′ of length at least six. It is
easy to see that z is not contained in C ′ since z is adjacent to all v ∈ H. In
order to obtain a cycle C in G, for every edge e in H[C ′], replace e by the
unique corresponding path Pe in G′ consisting of a matching edge and a non-
matching edge. If two consecutive paths Pe and Pe′ use the same matching
edge, simply delete those matching edges in C such that C is a cycle. Note
that all edges in H[C ′] incident to U ′ are directed from U ′ to U in D(G′,M ′).
Hence, consecutive edges to vertices in U ′ use the same matching edges, which
are then deleted. Therefore V (C) ⊆ V (G). Now if G[C] contains a chord then
H[C ′] also contains a chord due to fact 3.3. Therefore C is an induced cycle
in G (since z /∈ C ′) and |C| ≥ |C ′| ≥ 6, a contradiction. This concludes the
proof of Claim 3. �

This proves Proposition 3.15. �

3.3.3 The Source Cover Problem

In Section 3.3.2 we made precise the close relation between Robust Match-

ing Augmentation and the Source Cover problem. In this section we
present our algorithmic results for the Source Cover problem as well as
their consequences for Robust k-Matching Augmentation. Recall that
the Source Cover problem asks for a minimum-cardinality subset of the

52

sources of a given digraph, such that each sink is reachable from at least one
selected source. It is easy to see that Source Cover is a special case of
the Directed Steiner Tree problem and that it generalizes Set Cover.
We give a simple polynomial-time algorithm for Source Cover if the input
graph is chordal-bipartite (ignoring orientations). Furthermore, we show that
Source Cover parameterized by treewidth (again ignoring orientations) is
FPT. As a by-product, we obtain a simple FPT algorithm for the arc-weighted
and node-weighted versions of the Directed Steiner Tree problem on
acyclic digraphs, whose running time is linear in the size of the input graph
and exponential in the treewidth of the underlying undirected graph. To the
best of our knowledge, the parameterized complexity of the general Directed

Steiner Tree problem with respect to treewidth is open. For the corre-
sponding undirected Steiner Tree problem, an FPT algorithm was given by
Bodlaender et al. in [BCKN15].

By a “flattening” operation on the input digraph, we can transform an in-
stance I = (D) of Source Cover into a Set Cover instance as follows. Let
F (D) = (V +(D) ∪ V −(D), A′) be an acyclic digraph, where A′ is given by

A′ := {st | s ∈ V +(D), t ∈ V −(D), t is reachable from s in D}.

Then U(F (D)) is the incidence graph of a Set Cover instance A on
V −(F (D)), such that the feasible solutions of I and A are in one-to-one cor-
respondence.

As a first consequence of Theorem 3.13, Proposition 3.15, and this “flat-
tening” we may use the classic Greedy-Algorithm for Set Cover to obtain a
simple log2 n-factor approximation algorithm for Robust k-Matching Aug-

mentation.

Corollary 3.16. Robust k-Matching Augmentation admits a
polynomial-time log2 n-factor approximation algorithm, where n is the num-
ber of vertices of the input graph.

Proof. Let I = (G,M) be an instance of Robust Matching Augmenta-

tion. We use Theorem 3.13 to obtain from I in polynomial time the Source

Cover instances A1 and A2 such that OPT(I) = OPT(I′) = max{A1,A2}.
For i ∈ {1, 2} let Si be the acyclic input graph of Ai. We “flatten” the graph

53

(a) A digraph D such that U(D) is bal-
anced, but U(F (D)) is not.

...
...

(b) A digraph D such that U(D) has
treewidth one, but the treewidth of
U(F (D)) is unbounded.

Figure 3.2: Examples showing that flattening does not preserve balancedness

or bounded treewidth.

Si as described before to obtain a Set Cover instance Bi on the incidence
graph U(F (Si)). The classical greedy algorithm for Set Cover yields an
((ln |M |) + 1)-approximate cover Ci for Bi. By Theorem 3.13, we can con-
struct from C1 and C2 in polynomial time a solution L of I. By recalling that
n = |V (G)| ≥ |M |/2 and some simple calculations, we conclude that L is an
log2 n-approximate solution. �

However, as illustrated in Figure 3.2, some useful properties of the input
digraph may not be preserved by the “flattening” operation. In particular,
if U(D) has treewidth at most r, then the treewidth of U(F (D)) cannot be
bounded by a constant in general. Furthermore, the graph U(F (D)) is not
necessarily balanced (or planar) if U(D) is. Therefore, we cannot take ad-
vantage of polynomial-time algorithms for Set Cover on balanced incidence
graphs or incidence graphs of bounded treewidth. Motivated by the exam-
ple in Figure 3.2b we leave as an open question, whether Source Cover

on balanced graphs admits a polynomial-time algorithm. By Theorem 3.13,
the existence of such an algorithm implies a polynomial-time algorithm for
Robust Matching Augmentation on balanced graphs.

Source Cover on Chordal Bipartite Graphs

We show that in contrast to the treewidth and balancedness, the property of
a graph being chordal bipartite is indeed preserved by the flattening operation

54

introduced above. From this we obtain the following result.

Theorem 3.17. Source Cover on chordal-bipartite graphs admits a
polynomial-time algorithm.

Proof. Let (D) be a Source Cover instance such that U(D) is connected,
has at least one arc, and U(D) contains no induced cycle of length at least six.
If U(F (D)) is chordal-bipartite, then we can apply the polynomial-time al-
gorithm for Set Cover on chordal-bipartite incidence graphs, see [WN99,
pp. 562-573] and [HKS85]. It remains to show that U(F (D)) is chordal-
bipartite. Suppose for a contradiction that U(F (D)) contains an induced
cycle CFD = {s1, t1, . . . , sk, tk, sk+1 = s1}, where s1, s2, . . . , sk ∈ V +(F (D))

and t1, t2, . . . , tk ∈ V −(F (D)), and k ≥ 3. In order to keep the notation
concise, let t0 := tk.

Since CFD is a cycle in U(F (D)) connecting sources and sinks, we have
that for 1 ≤ i ≤ k, there are directed paths P i−1

i and P i
i in D such that P i−1

i

connects si to ti−1 and P i
i connects si to ti. We now construct a cycle C in

U(D) and then show that C is chordless and has length at least k. Let Q1
1 be

any shortest path from s1 to t1 in D. Let us assume we already constructed
the paths Qj

j and Q
j−1
j for 1 ≤ j ≤ i ≤ k − 1. We now define the paths Qi

i+1

and Qi+1
i+1 in the following way: Qi

i+1 is a shortest path from si+1 to Qi
i in D. If

there exist more than one shortest path, then we pick the one whose endpoint
is closest to yi on Qi

i. We refer to this endpoint by t′i. Similarly, Qi+1
i+1 is a

shortest path from Qi
i+1 to ti+1 in D. If there is more than one shortest path,

then we pick the one whose starting point is closest to ti on Qi
i. We refer to

this starting point by s′i. Finally Qk
1 (= Q0

1) is a shortest path from Q1
1 to Qk

k.
Again, if there is more than one such shortest path, then we first pick the one
whose starting point is closest to t1 on Q1

1 and then whose endpoint is closest
to tk on Qk

k. We refer to these two vertices by s′1 and t′k, respectively. Now let
C = {Q1

1, Q
1
2, . . . , Q

k−1
k , Qk

k, Q
k
1}.

By construction we have that C is a cycle in U(D). Note that s′i 6= t′i−1 and
s′i 6= t′i, since otherwise si−1 were adjacent to ti or si+1 were adjacent to ti−1 in
U(F (D)). Therefore, C is simple and has length at least k. Now assume for a
contradiction that C has some chord a. Observe that a connects two distinct
paths Qj

i and Ql
k (without loss of generality, i ≤ k and j ≤ `) only if i = k

and j = `− 1 or i = k − 1 and j = `, respectively, since otherwise CFD is not

55

chordless. On the other hand i = k and j = `− 1 contradicts the choice of the
starting vertex of Qi

i on Q
i−1
i . Similarly, i = k − 1 and j = ` contradicts the

choice of the endvertex of Qi
i+1 on Qi

i. Therefore, C is an induced cycle in U(D)

of length at least k, contradicting our assumption that U(D) has no induced
cycles of length at least 6. This concludes the proof of Theorem 3.17. �

By combining Theorem 3.13, Proposition 3.15, and Theorem 3.17 we obtain
the following result.

Corollary 3.18. Robust k-Matching Augmentation on chordal-bipartite
graphs admits a polynomial-time algorithm.

Source Cover on Graphs of Bounded Treewidth

We provide a fixed-parameter algorithm for Node Weighted Directed

Steiner Tree on acyclic digraphs that is single-exponential in the treewidth
of the underlying undirected graph and linear in the instance size. Since
Source Cover is a restriction of Node Weighted Directed Steiner

Tree on acyclic graphs, this implies a polynomial-time algorithm for Source

Cover parameterized by the treewidth of the underlying undirected graph.
Let us first recall some definitions related to Steiner problems and tree decom-
positions.

Problem 3.19 (Node Weighted Directed Steiner Tree). Given an
acyclic digraph D = (V,A), costs c ∈ RV

≥0, terminals T ⊆ V , root r ∈ V , the
task is to find a minimum-cost subset F ⊆ V , such that r is connected to each
terminal in (F,E(F)).

Arc Weighted Directed Steiner Tree is the corresponding problem,
where the costs are on the arcs of the graph.

A tree decomposition of a graph G = (V,E) is a tree T as follows. Each
node x ∈ V (T) of T has a bag Bx ⊆ V of vertices of G such that the following
properties hold.

•
⋃
x∈V (T) Bx = V .

• If Bx and By both contain a vertex v ∈ V , then the bags of all nodes of
T in the path between x and y contain v as well. Equivalently, the tree
nodes containing vertex v form a connected subtree of T .

56

• For each edge vw in G there is some bag that contains both v and w.
That is, for vertices adjacent in G, the corresponding subtrees have a
node in common.

The width of a tree decomposition is the size of its largest bag minus one. The
treewidth tw(G) of G is the minimum width among all possible tree decompo-
sitions of G.

To solve the Node Weighted Directed Steiner Tree on acyclic di-
graphs, we use a simple dynamic-programming algorithm over the tree decom-
position of the underlying undirected graph of the input digraph D with n

vertices.

Note that an optimal tree-decomposition of a graph G can be computed in
time O(2O(tw(G)3) ·n) by Bodlaender’s famous theorem [Bod96]. Our algorithm
intuitively works in the following way and is similar to the dynamic program-
ming algorithm for Dominating Set (see, e.g., [CFK+15, Section 7.3.2]).
We interpret a solution to Node Weighted Directed Steiner Tree as
follows: each vertex of D may be active or not. Each active vertex needs
a predecessor that is also active, unless it is the root. The cost to activate
a vertex is given by the cost function of the Node Weighted Directed

Steiner Tree instance. Starting with all terminals active, it is easy to see
that Node Weighted Directed Steiner Tree on acyclic graphs is equiv-
alent to the problem of finding a minimum cost active vertex set satisfying the
above conditions. We compute an optimal solution in a bottom-up fashion
using a so-called nice tree decomposition of the input graph.

A nice tree decomposition limits the structure of the difference of two adja-
cent nodes in the decomposition. Formally, consider a tree decomposition T

of a graph G, rooted in a leaf of T . We say that T is a nice tree decomposition
if every node x ∈ V (T) is of one of the following types.

• Leaf: x has no children and Bx = ∅.

• Introduce: x has exactly one child y and there is a vertex v /∈ By of G
with Bx = By ∪ {v}.

• Forget: x has exactly one child y and there is a vertex v /∈ Bx of G with
By = Bx ∪ {v}.

57

• Join: x has two children y and z such that Bx = By = Bz.

Such a nice decomposition is easily computed given any tree decomposition
of G. We define x+ to be the subtree of T rooted in x: the tree of all vertices
not connected to the root in the forest T − x, together with x. By B+

x we
denote the set of vertices contained in all bags of nodes in x+.

A coloring of a bag Bx is a mapping f : Bx → {1, 1?, 0}|Bx|, where the
individual colors have the following meaning.

• Active and already covered, represented by a 1, means that the vertex
is active and that there is at least one predecessor of it that is either
labeled 1 or 1?.

• Active and not yet covered, represented by a 1?, means that the vertex
is active but every predecessor is labeled 0.

• Not active, represented by a 0, means that the vertex is not contained
in the solution.

Note that there are 3|Bx| colorings of the bag Bx. For a coloring f of x
we denote by OPT(f, x) the minimum cost1 of a coloring B+

x → {1, 1?, 0}
satisfying the following conditions.

a) every vertex of Bx is colored 1, 1? or 0 according to f .

b) every vertex of B+
x \Bx is colored 0 or 1.

c) every sink v ∈ V − ∩B+
x is colored either 1 or 1?.

d) every vertex v ∈ Bx with f(v) = 1 is either a source or at least one
predecessor of v in D(B+

x) is colored either 1 or 1?.

To present the individual steps of the algorithm, assume that we are given
a nice tree decomposition of our input graph. Let us say we are currently
considering the node x in T and distinguish between the type of node x.

• Leaf: set OPT(f, x) = 0 if it is not the root.

1Here, a vertex v has a cost c(v) if it is colored 1 or 1? and 0 otherwise.

58

• Introduce: let y be the unique child of x and let v /∈ By such that
Bx = By ∪ {v}. The value OPT(f, x) depends on the type of vertex v
and on the coloring g of y. By definition, sinks have to be active and
therefore the optimal value is∞ if f(v) = 0. The same is true for sources
labeled 1? in f (those do not have predecessors and need to be labeled
either 1 or 0). Finally, we set the cost to be ∞ if v is labeled 1 in f and
not a source, but non of its predecessors is active in f . Thus we set

OPT(f, x) =



∞, if v ∈ V − and f(v) = 0 ,

∞, if v ∈ V + and f(v) = 1? ,

∞, if v /∈ V + and f(v) = 1 and (δ−(v) ∩By) ⊆ f−1(0) ,

min{OPT(g, x) : (g, y) is compatible to (f, x)}, if f(v) = 0 ,

min{OPT(g, x) : (g, y) is compatible to (f, x)}+ c(v) , else,
(3.1)

where the pair (g, y) is compatible to (f, x) if the following conditions
hold.

– If f(v) = 0, then g = f |By . As the introduced vertex is not consid-
ered to be part of the solution, we can simply keep the coloring of
the child node.

– If f(v) = 1?, then f−1(0) = g−1(0), f−1(1) = g−1(1) ∪ (g−1(1?) ∩
δ+(v)), and δ−(v) ⊆ g−1(0). This condition ensures that the intro-
duced vertex can only be labeled 1? if none of its predecessors is
labeled 1 or 1?.

– If f(v) = 1, then f−1(0) = g−1(0), f−1(1) = g−1(1) ∪ (g−1(1?) ∩
δ+(v)), and, moreover, δ−(v) \ g−1(0) 6= ∅ or v ∈ V +. This con-
ditions says that the introduced vertex can only be labeled 1 if at
least one of its predecessors is labeled 1 or 1?, unless it is a source.

• Forget: let y be the unique child of x and let v /∈ Bx such that By =

Bx ∪ {v}. Then we put

OPT(f, x) = min{OPT(g, y) : f = g|Bx} if g(v) 6= 1?.

We do not allow a vertex labeled 1? to be forgotten, as we can not assure

59

to cover it in later bags. For the remaining cases we simply keep the
optimal value.

• Join: let nodes y and z be the two children of the join node x with
Bx = By = Bz. We put

OPT(f, x) = min{OPT(g, y) + OPT(h, z)−
∑

v∈BX\(g−1(0)∩h−1(0))

c(v)},

(3.2)
where the minimum runs over all colorings g of y and h of z with f−1(0) =

g−1(0) = h−1(0) and f−1(1) = g−1(1) ∪ h−1(1).

• Root: as the graph is connected and the root node is a leaf, the root
node is a forget node, where its child node contains exactly one vertex
in its bag. The algorithm terminates with the output

OPT = OPT(f, x),

where f is the unique coloring of the empty bag x.
Having presented the algorithm, we need to prove Theorem 3.20 by showing

the correctness and bounding the running time of the algorithm.

Theorem 3.20. Node Weighted Directed Steiner Tree on acyclic
digraphs can be solved in time O(5w ·w · n) if a tree decomposition of U(D) of
width w is provided.

Proof. We need to show that the algorithm works correctly and is fixed param-
eter tractable when parameterized by the treewidth of the underlying graph.
Let T be a nice tree decomposition of U(D) of width w with t nodes.

Claim 1. The algorithm correctly computes an optimal solution to Node

Weighted Directed Steiner Tree in acyclic graphs.

Proof. We show the statement by a straight-forward inductive proof on the
decomposition tree. The induction hypothesis states that OPT(f, x) is the
minimum cost of a solution induced by the vertices of B+

x , satisfying the con-
ditions (a)-(d) (see p. 57). The base case are the leaf nodes where the hypoth-
esis clearly holds. Now let the induction hypothesis be true for all descendants
of x. We distinguish between the remaining three node types and argue that
the induction hypothesis holds in x.

60

• Introduce: let y be the unique child of the introduce node x and let
v /∈ By such that Bx = By ∪{v}. Clearly (a) holds and (b) holds by the
induction hypothesis. By putting OPT(f, x) to ∞ if f(v) = 0 for a sink
v ∈ V −, (c) also holds. For (d) observe that the notion of compatibility
is defined correctly. If f(v) ∈ {1?, 0} this is trivial. For f(v) = 1 note that
v has to satisfy the condition that δ−(v)\g−1(0) 6= ∅. Thus Condition (d)
holds for x. Now for a given coloring f we have to check if OPT(f, x) is
calculated correctly. This is true for the cases in which OPT(f, x) is set
to ∞. So it remains to show that we identify all compatible colorings
g for y to calculate the minimum. The case f(v) = 0 is trivial. For
the cases f(v) ∈ {1, 1?} observe that g has to satisfy f−1(0) = g−1(0)

and f−1(1) = g−1(1) ∪ (g−1(1?) ∩ δ+(v)). Calculating the minimum over
all pairs (g, y) compatible to (f, x) is hence correct. Finally, in order to
obtain OPT(f, x) it is clear that we have to add c(v) to the minimum of
all compatible colorings (g, y) for (f, x) if f(v) 6= 0.

• Forget: let y be the unique child of the forget node x and let
v /∈ Bx such that By = Bx ∪ {v}. For a forget node x we put
OPT(f, x) = min{OPT(g, y) : f = g|Bx} if g(v) 6= 1?. Clearly (a),
(c) and (d) hold by the induction hypothesis. (b) also holds as we only
allow colorings that satisfy f(v) 6= 1?. Finally it is easily verified that
the calculation of OPT(f, x) is correct.

• Join: let nodes y and z be the two children of the join node x with
Bx = By = Bz. By (3.2), a vertex v ∈ Bx may only be colored
1 if it is colored 1 either in By or Bz. As the induction hypothesis
holds for y and z, (a)-(d) also hold for x. It remains to show that
OPT(f, x) is calculated correctly. The considered colorings g and h of y
and z have to satisfy f−1(0) = g−1(0) = h−1(0) and f−1(1) = g−1(1) ∪
h−1(1). By adding OPT(g, y)+OPT(h, z) we count the vertices in the set
BX \ (g−1(0) ∩ h−1(0)) twice. Thus we obtain

OPT(f, x) = OPT(g, y) + OPT(h, z)−
∑

v∈BX\(g−1(0)∩h−1(0))

c(v)

.

This proves Claim 1. �

61

Claim 2. Given T , the running time of the dynamic programming algorithm
is bounded by O(5wt).

Proof. In each node x of the nice tree decomposition T we consider O(3|Bx|)

many different colorings f . We bound the running time for a bag by considering
the different kinds of bags. For this, note that the interesting steps are the
computation of the pairs (g, y) compatible to (f, x) for the minimum in (3.1)
and the computation of the minimum in (3.2).

Consider an introduce node x with its unique child y and let v /∈ By such
that Bx = By ∪ {v}. Let f and g be colorings for x and y, respectively. For a
vertex u ∈ By we consider all possible combinations (f(u), g(u)) for the three
possible values of f(v) which are given by (3.1).

• In the case f(v) = 0 we have that g = f |Bx, that is,

(f(u), g(u)) = (g(u), g(u)).

• In the case f(v) = 1? we have that

(f(u), g(u)) ∈

{(0, 0), (1, 1), (1, 1?)}, if u ∈ δ+(v),

{(0, 0), (1, 1), (1?, 1?)}, if u /∈ δ+(v),
(3.3)

and (f, x) and (g, y) are not compatible unless δ−(v) ⊆ g−1(0).

• In the case f(v) = 1 we allow the same pairs (f(u), g(u)) like in the case
f(v) = 1?, but (f, x) and (g, y) are not compatible if δ−(v) ⊆ g−1(0).

We basically have three different options for the pairs (f, g). Processing
through f and g at the same time leads to the total running time for an
introduce node of at most O(3w).

For a join node, let y and z be the two children of x with Bx = By = Bz.
Let f, g, h be colorings of x, y and z, respectively. For a vertex u ∈ Bx we
consider all possible combinations (f(u), g(u), h(u)) with

(f(u), g(u), h(u)) ∈ {(0, 0, 0), (1?, 1?, 1?), (1, 1?, 1), (1, 1, 1?), (1, 1, 1)}. (3.4)

Here we are given five different options for the triples (f, g, h), and so the total
computation time is at most O(5w).

62

The overall bottleneck case is when x is a join node since we need to compute
(3.2). As we just said, this can be done in O(5w) time. Since we have t nodes,
the total processing time is O(5wt). This completes the proof of Claim 2. �

By storing the best current solution alongside the OPT(f, x)-values we can
compute an optimal solution together with OPT. We do not give details here
since this is standard. Finally observe that the algorithm is indeed fixed param-
eter tractable when parameterized by the treewidth of the underlying graph.
This completes the proof of Theorem 3.20. �

By a simple reduction, we also obtain an FPT-time algorithm for Arc

Weighted Directed Steiner Tree on acyclic digraphs. We just sub-
divide each arc and assign the cost of the arc to the corresponding new vertex.
Each old vertex receives cost zero. This transformation does not increase the
treewidth.

Furthermore, we can reduce Source Cover to Node Weighted Di-

rected Steiner Tree by adding a new vertex r and connecting r to each
source by an arc. The sources have cost one, while all other vertices have cost
zero. The root vertex is r and the set of terminals is the set of sinks. Adding
a single new vertex increases the treewidth by at most one. As a consequence
of this reduction and Theorem 3.20, we obtain the following result.

Corollary 3.21. Source Cover can be solved in time O(5w · w · n) if a
tree-decomposition of U(D) of width w is provided.

By combining Theorem 3.13, Proposition 3.15, Corollary 3.21, and the ob-
servation that treewidth is monotone under taking minors, we obtain the fol-
lowing result.

Corollary 3.22. Robust k-Matching Augmentation parameterized by
the treewidth of the input graph is FPT.

3.4 Weighted Robust Matching Augmentation

In this section we consider the problem Weighted Robust Matching

Augmentation. First, we show a close relationship to the problem Di-

rected Steiner Forest in both directions, meaning that on the one hand

63

Weighted Robust Matching Augmentation is roughly as hard to ap-
proximate as Directed Steiner Forest and, on the other hand that using
an approximation algorithm for Directed Steiner Forest we obtain an
approximation algorithm for Weighted Robust Matching Augmenta-

tion.

Second, we classify the complexity of the problem Weighted Robust

Matching Augmentation on minor-closed graph classes. In particular, we
show that the problem is NP-hard on a minor-closed class G of graphs if and
only if G contains at least one of the two graph classes K∗ and P∗ which we
will define later.

3.4.1 Complexity and Approximation

We first demonstrate that the edge-weighted version of Robust Matching

Augmentation is substantially more involved than the unit-cost version. To
this end, we show that the approximability of Weighted Robust Matching

Augmentation essentially corresponds to the approximability of Directed

Steiner Forest. The latter problem is defined as follows:

Problem 3.23 (Directed Steiner Forest). Given a directed graph
G = (V,A), k terminal pairs (si, ti)1≤i≤k, costs w ∈ ZA≥0 the task is to find
a minimum-cost subgraph G′ ⊆ G such that for each 1 ≤ i ≤ k, the vertex si
is connected to ti in G′.

We are now ready to give our main result of this subsection.

Proposition 3.24. Let n′ be the number of vertices of a Weighted Robust

Matching Augmentation instance and n and k be the number of vertices
and terminal pairs of a Directed Steiner Forest instance, respectively.

A polynomial-time f(n′)-factor approximation algorithm for Weighted

Robust Matching Augmentation implies a polynomial-time f(4n+ 2k)-
factor approximation algorithm for Directed Steiner Forest. Further-
more, a polynomial-time f(n)-factor (resp., f(k)-factor) approximation algo-
rithm for Directed Steiner Forest implies a polynomial-time (f(n) + 1)-
factor (resp., (f(k) + 1)-factor) approximation algorithm for Weighted Ro-

bust Matching Augmentation.

64

Proof. We first prove the following statement: an f(n′)-factor approximation
algorithm for Weighted Robust Matching Augmentation implies an
f(n + k)-factor approximation algorithm for Directed Steiner Forest.
Let I be a feasible instance of Directed Steiner Forest with input graph
D = (V,A), |V | = n, costs c ∈ ZA≥0, and terminal pairs (s1, t1), . . . , (sk, tk) ∈ V .
Without loss of generality, let S =

⋃
i∈[k]{si} be the set of sources and let

T =
⋃
i∈[k]{ti} be the set of sinks of D. We may also assume that (si, ti) /∈ A

for all i ∈ [k]. In the reduction it is important that each terminal is a unique
vertex, i.e. ti 6= tj for all i 6= j, i, j ∈ [k]. We ensure this by introducing a copy
of each terminal ti and then connect it to all neighbors of the original vertex,
resulting in a graph of at most n+ k vertices.

To obtain an instance I′ of Weighted Robust Matching Augmenta-

tion, we create a bipartite graph G = (U + W,E), a cost function c′ ∈ ZE≥0,
and a perfect matching M of G in the following way.

For each v ∈ V we add the vertices uv and wv, and the edge uvwv to G
and M . For each i ∈ [k] we additionally add the edge usiwti to E. For each
matching edge uvwv ∈ M with v /∈ {t1, . . . , tk} we add the vertices u′v and w′v
and the path uvw′vu′vwv to G, and we add the edge w′vu′v to M . Observe that
n′ = |U |+ |W | ≤ 4n+ 2k.

For each a = vv′ ∈ A, note that ea = wvuv′ is an element of E and set
c′(ea) = c(a). Let EA := {ea | a ∈ A} be this set of edges. Every remaining
edge e ∈ E has cost c′(e) = 1 + f(n+ k) ·

∑
a∈A c(a) such that this edge is not

contained in any f(n′)-approximative solution. This completes the construc-
tion of G, c′, and M . Observe that this transformation can be performed in
polynomial time and that M is indeed a perfect matching of G. Additionally,
there is a one-to-one correspondence between arcs in A to edges in EA as stated
in Fact 3.3: buying an arc in A is equivalent to buying the corresponding edge
in EA.

We now show that a feasible solution to I can be transformed in polynomial-
time to a feasible solution of I′ of the same cost. Let X ⊆ A be a feasible
solution to I of cost c(X) and let X ′ be the corresponding edges to X in E.
At first observe that c(X) = c′(X ′). We now show that X ′ is feasible to I′. By
the one-to-one correspondence of arcs in D and edges in E, we have that in
G + X ′ there is an alternating path Pi from usi to wti for each i ∈ [k]. Thus,

65

by adding the edge wtiusi to Pi, we obtain an alternating cycle through utiwti
for each i ∈ [k]. It follows that X ′ is feasible. Now let X ′ be a solution to I′ of
cost c′(X ′). Let X ⊆ A be the edges corresponding to the edge set X ′ ∩ EA.
Observe that c(X) = c(X ′). We now show that X is a feasible solution to I.
As X ′ is feasible to I′, we have by Fact 3.4 that every vertex is contained in
a directed cycle in D(G + X,M). As a directed cycle through uti has to use
the edge utiusi (since no terminal vertex appears more than once in I), the
directed cycle in D(G+X,M) has to go through usi . This implies that there
is a directed path from si to ti in D[X] for each i ∈ [k] and therefore the
feasibility of X. Finally, as n′ = |U | + |W | = O(|V | + k), we have proved the
first part of the proposition.

We now prove the second part: an f(n)- or f(k)-factor approximation algo-
rithm for Directed Steiner Forest implies an (f(n) + 1)- or (f(k) + 1)-
factor approximation algorithm for Weighted Robust Matching Aug-

mentation, respectively. Let I be an instance of Weighted Robust

Matching Augmentation with G = (U + W,E) and c ∈ ZE≥0. We de-
fine c∗ ∈ ZE∪E≥0 by c∗(e) = c(e) if e ∈ E and c∗(e) = 0, otherwise. Let
M = {u1w1, . . . , unwn} be any cost minimal perfect matching with respect
to c∗, where n = |U | = |W |. We construct the Directed Steiner Forest

instance I′ withD = (V ′, A), the terminal pairs (s1, t1), . . . , (sk, tk) and the cost
function c′ ∈ ZA≥0 in the following way. We set V ′ = V and add an arc ae = uw

to A if e = uw ∈ M and add an arc ae = wu if e = wu ∈ (E ∪ E) \M . In
other words, we direct the matching edges from U toW and the non-matching
edges fromW to U . The terminal pairs are defined according to the matching,
i.e., we set si := wi and ti := ui. Finally, for every a ∈ A, we let c′(a) = 0 if
e ∈M and c′(ae) := c∗(e) otherwise. This completes the construction of I′.

Let X ′ be a feasible solution to I′ of cost c′(X ′). Observe that by the chosen
orientations of the arcs in A, any path from wi to ui in X implies that there
is an alternating path in the corresponding undirected graph with edge set X.
Hence, X ∪M is feasible for I. Finally, as M is a cost minimal matching with
respect to c∗ and k = O(n), we have thatM ∪X is an (f(n)+1)- or (f(k)+1)-
factor approximation for Weighted Robust Matching Augmentation if
X ′ is an f(n)- or f(k)-factor approximation for Directed Steiner Forest.
This concludes the proof of Proposition 3.24. �

66

On the one hand, Proposition 3.24 implies an (n1/2+ε+1)-factor approxima-
tion algorithm for Weighted Robust Matching Augmentation for every
ε > 0, due to the results in [CEGS08, FKN09]. On the other hand, an algo-
rithm achieving a guarantee of n1/3 or better for Weighted Robust Match-

ing Augmentation would imply a better approximation algorithm for Di-

rected Steiner Forest, as the number k of distinct terminal pairs is at
most O(n2) and the current best approximation factor for Directed Steiner

Forest in terms of n is n2/3+ε due to a result of Berman et al. [BBM+13]. Ad-
ditionally, by a result of Halperin and Krauthgamer [HK03], Proposition 3.24
implies the following lower bound.

Corollary 3.25. For every ε > 0 Weighted Robust Matching Aug-

mentation does not admit a log2−ε(n)-factor approximation algorithm unless
NP ⊆ ZTIME(npolylog(n)).

Proof. Observe that by the construction in the proof of Proposition 3.24,
we have that the number of vertices in the Weighted Robust Match-

ing Augmentation instance is quadratic in the number of vertices from the
Directed Steiner Forest instance. Hence, by [HK03] and Proposition
3.24, we have that for every ε > 0 Weighted Robust Matching Aug-

mentation does not admit a log2−ε(n)-factor approximation algorithm unless
NP ⊆ ZTIME(npolylog(n)). �

Given this negative result we proceed to identify structural features that
lead to polynomial-time algorithms for Weighted Robust Matching Aug-

mentation.

3.4.2 Dichotomy Result

The main result of this section is a classification of the complexity of the
problem Weighted Robust Matching Augmentation on minor-closed
graph classes. In particular we show that the problem is NP-hard on a minor-
closed class G of graphs if and only if G contains at least one of the two
graph classes K∗ and P∗, which are defined as follows. Let K1,r be the star
graph with r leaves and let Pr be the path on r vertices. For any graph H

let H∗ be the graph obtained by attaching a leaf to each vertex of H. Then

67

Figure 3.3: The graphs K∗1,3 and P ∗3 , each with its unique perfect matching.

K∗ := {K∗1,r | r ∈ N} and P∗ := {P ∗r | r ∈ N}. Note that each graph in K∗

and P∗ has a unique perfect matching. See Figure 3.3 for an illustration of the
graphs K∗1,3 and P ∗3 .

In order to prove the hardness, we first need the following lemma.

Lemma 3.26. Weighted Robust Perfect Matching Augmentation

on independent edges is NP-hard.

Proof. We give a reduction from Robust Matching Augmentation, which
was proved to be NP-hard in Proposition 3.10. Let I = (G,M) be an instance
of Robust Matching Augmentation, where G = (V,E). We construct an
instance I′ = (G′,M, c) of Weighted Robust Matching Augmentation

as follows: Let G′ := (V,M) consist only of edges from the perfect matchingM .
Furthermore, let the costs c ∈ ZE(G′)

≥0 be given by

c(e) :=

0, if e ∈ E(G) \M,

1, otherwise.

Clearly, the construction can be performed in polynomial time. The solutions
of I and I′ are in one-to-one correspondence and the costs are preserved by the
transformation. �

We are now ready to state and prove the hardness result for this section.

Lemma 3.27. Weighted Robust Matching Augmentation is NP-hard
on each of the classes K∗ and P∗.

Proof. The result follows in large parts from Lemma 3.26. The main idea
is that any instance of Weighted Robust Matching Augmentation on
independent edges can be embedded in a sufficiently large member of K∗ or P∗.
More formally, consider an instance I = (G,M, c) of Weighted Robust

68

Matching Augmentation, where G consists of independent edges. Let
(U,W) be any bipartition of V (G).

We first prove the statement for the class K∗. We construct an instance
I′ = (G′,M ′, c′) of Weighted Robust Matching Augmentation from I,
where G′ = K∗1,|M |+1. Let G′ contain the independent edges M and a path
P = v1, v2, v3, v4, where v1, v2, v3, v4 are new vertices. For each u ∈ U , connect
v2 to u by an edge. Observe that M ′ := M ∪{v1v2, v3v4} is a perfect matching
of G′. The costs c′ ∈ ZE(G′)

≥0 are given by

c′(e) :=


c(e), if e ∈ E(G),

0, if e = v1v4,

K, otherwise,

where K is chosen such that no optimal solution contains an edge of weight
K, for example, K := |V (G′)| · maxe∈E c(e). Since we may add v1v4 to any
solution at no cost, we assume that it is present in any solution. Now, from
the definition of c′ it follows that an solution optimal solution to I is also an
optimal to I′ and vice versa.

It remains to prove the statement for the class P∗ = {P ∗t | r ∈ N}. In
the following, let n := |M |. We construct an instance I′′ = (G′′,M ′′, c′′) of
Weighted Robust Matching Augmentation from I, where G′′ = P ∗2n.
LetG′′ contain the independent edgesM and join the vertices U in any order by
a path P = v1, u1, v2, u2, . . . , vn, un, where u1, u2, . . . , un ∈ U and v1, v2, . . . , vn

are new vertices. Finally, for each 1 ≤ i ≤ n, add a new vertex v′i to G′ and
join it to vi by an edge. Let M ′ := M ∪ {viv′i | 1 ≤ i ≤ n} and let c′′ ∈ ZE(G′′)

≥0

be given by

c(e)′′ :=


c(e), if e ∈ E(G)

0, if e = v′1vn or e = viv
′
i+1, 1 ≤ i < n

K, otherwise,

where K is again chosen such that no optimal solution contains an edge of
weight K, for example, K := |V (G′)| · maxe∈E c(e). By the choice of c′′, we
may assume that each edge in M ′′ \M is contained in an alternating cycle.
Furthermore, since no optimal solution to I′′ connects V (G′′) \ V (G) to V (G),
we have that any optimal solution to I′′ is optimal for I and vice versa. �

69

We complement Lemma 3.27 by showing that Weighted Robust Match-

ing Augmentation on a class G of graphs admits a polynomial-time algo-
rithm if G contains neither K∗ nor P∗.

Theorem 3.28. Let G be a class of connected graphs that is closed under
connected minors. Then Weighted Robust Matching Augmentation

on G admits a polynomial-time algorithm if and only if there is some r ∈ N
such that G contains neither the graph K∗1,r nor P ∗r . The only if part holds
under the assumption that P 6= NP.

Before we give the proof of Theorem 3.28, we need the following key lemma.
The polynomial-time algorithm described in the proof of the lemma uses the
fact that Directed Steiner Forest can be solved in polynomial time if
the number of terminal pairs is constant [FR06].

Lemma 3.29. Let r ∈ N be constant and let T be a class of perfectly matchable
trees, each with at most r leaves. Then Weighted Robust Matching

Augmentation on T admits a polynomial-time algorithm.

Proof. Let I = (G,M, c) be an instance of Weighted Robust Matching

Augmentation, where G = (V,E) ∈ T is a tree with at most r leaves and
a given bipartition (U,W). Moreover, let M be the unique perfect matching
of G. We say that an arc xy is a shortcut if there is an additional directed
path from x to y in D(G,M).

Claim 1. Let L be an optimal solution to I. Then we may assume that
D(G+ L,M) contains no shortcut.

Proof. By Fact 3.4, each strongly connected component of D(G + L,M) is
non-trivial. Suppose for a contradiction that D(G+L,M) contains a shortcut
arc a and let e ∈ E be the edge corresponding to a. Then each strongly
connected component of D(G + (L − e),M) is non-trivial. Since the costs c
are non-negative, we conclude that L− e is solution of weight at most OPT(I).
This completes the proof of Claim 1. �

By Claim 1 we only need to augment edges that do not correspond to
shortcuts in D(G,M). So let Ẽ ⊆ E be the subset of edges that are useful for
augmentation, that is,

Ẽ := {uw ∈ E | D(G+ uw,M) has no shortcut}.

70

For F ⊆ E, we denote by FWU the set of arcs obtained from F by directing all
edges fromW to U . We construct a new directed graphD′ on the vertices V by
directing allM -edges from U to W and making each edge in E \M bidirected.

Claim 2. Let L′ ⊆ Ẽ. Then G + L′ is robust if and only if D′ + L′WU is
strongly connected.

Proof. First assume that G + L′ is robust and let uw ∈ M . Then uw is
contained in some M -alternating cycle C in G+ L′. It is readily verified that
there is a corresponding directed cycle in D′ + L′WU containing the arc uw.
Therefore, there is a path from w to u in D′. Since the edges in E \M are
undirected in D′, it follows that D′+L′WU is strongly connected. Now suppose
that D′+LWU is strongly connected. Thus, each M -edge is contained in some
cycle. Since L′ ⊆ Ẽ, each M -edge is contained in an M -alternating cycle of
G+ L′, so G+ L′ is robust. This completes the proof of Claim 2. �

Using the two claims above we finish the proof of the lemma. By Claim 2,
our task is to find a minimum-weight set L′ ⊆ Ẽ, such that D′+L′ is strongly
connected. For this purpose, we construct in polynomial time an instance I′ of
Directed Steiner Forest with at most r terminal pairs, such that from
an optimal solution of I′ we obtain an optimal solution of I in a straight-
forward manner. Since the number of terminals r is constant, we can solve
the Directed Steiner Forest instance I′ in polynomial-time using the
algorithm from [FR06] and obtain a solution of I in polynomial time.

The digraph of the instance I′ is D′ + ẼWU and the arc-costs c′ of I′ are
given as follows. For each arc uw of D′ + ẼWU , let c′(uw) be

c′(uw) :=

c(uw), if uw ∈ ẼWU ,

0, otherwise.

The terminal pairs of I′ are given as follows. We run the algorithm Eswaran-
Tarjan on D(G,M) and obtain an arc-set L such that D(G,M)+L is strongly
connected. By Fact 3.7, we have |L| = max{|V +(D)|, |V −(D)|} ≤ r. Each arc
a ∈ L corresponds to a pair of terminals we wish to connect. This completes
the construction of I′.

We now show that optimal solutions of I′ correspond to optimal solutions
of I. Let L′ be an optimal solution to I′. That is, D′+L′ is strongly connected.

71

We may assume that L′ contains all arcs of D′, since each of them has cost 0.
Since L′ ⊆ ẼWU , we invoke Claim 2 and have that G + U(L′) is strongly
connected, where U(L′) are the undirected edges corresponding to L′. Let
L ⊆ Ẽ such that G+L is robust and assume that c(L) < c(U(L′)). Then LWU

is a solution of I′ and c′(LWU) < c′(L′). This contradicts the optimality of L′,
so U(L′) is optimal for I. This concludes the proof of Lemma 3.29. �

We remark that the running time of the algorithm given in Lemma 3.29 is
slicewise polynomial in the number of leaves of the input graph. We can now
state the proof of our main result.

Proof of Theorem 3.28. Due to Lemma 3.27, Weighted Robust Matching

Augmentation is NP-hard if G contains the class K∗ = {K∗1,r | r ∈ N} or the
class P∗ = {P ∗t | r ∈ N}. Assuming P 6= NP, this proves the only if statement
of the theorem.

To see the if statement, let us consider r ∈ N such that G does not contain
K∗1,r or P ∗r . First we will reduce the problem to the case where G contains
only trees. For this, let T be the class of all trees in G that admit a perfect
matching.

Claim 1. There is a polynomial-time reduction from Weighted Robust

Matching Augmentation on G to Weighted Robust Matching Aug-

mentation on T .

Proof. To see this, consider an input (G,M, c) of Weighted Robust Match-

ing Augmentation on G, consisting of a bipartite graph G ∈ G, a perfect
matching M of G, and costs c of edges in the bipartite complement of G. We
first compute a spanning tree T of G that contains all edges of M using, e.g.
Kruskal’s algorithm. We extend the costs c to all edges e in the set E(G)\E(T)

by setting c(e) = 0.
Note that (T,M, c) is an instance of Weighted Robust Matching Aug-

mentation on T . Moreover, for every optimal solution S of the instance
(T,M, c), the set S \ E(G) is an optimal solution of the instance (G,M, c).
This proves Claim 1. �

Hence we may restrict our attention to Weighted Robust Matching

Augmentation on the class T . As the next claim shows, the relevant trees
contained in T have a bounded number of leaves.

72

Claim 2. There is some number f(r) depending only on r such that every tree
in T has at most f(r) many leaves.

Proof. Let T ∈ T be arbitrary and ` be the number of leaves of T . First we
show that the maximum degree of T is bounded by r. Fix any perfect matching
M of T . Consider a vertex v of T , and let X be the set of all neighbors of v
together with their matching partners. Note that T [X] is isomorphic toK∗1,d(v),
where d(v) denotes the degree of v. Since G is closed under taking connected
minors, K∗1,d(v) ∈ G, and hence d(v) < r.

Next, we show that the number of vertices of degree at least 3 is bounded.
Since the maximum degree of T is bounded by r, the following holds for the
number of leaves in T :

` = 2 +
r∑
j=3

(j − 2)|Vj|, where Vj = {v ∈ V (T) : d(v) = j}.

The above formula is a standard graph theory exercise. As r is constant, this
implies

∑r
j=3 |Vj| = Ω(`). Again since r is constant, there is a path in T

containing Ω(log `) many vertices of degree at least 3 in T . Let T ′ be this path
together with all vertices adjacent to it.

Note that P ∗t is a minor of T ′ where t+2 is the number of vertices of degree
at least 3 on T . Since G is closed under connected minors and P ∗r /∈ G, we
have t < r. Consequently, t ∈ Ω(log `) implies that ` ≤ f(r) for some number
f(r) depending only on r. This proves Claim 2. �

According to the above claims, there is a polynomial-time reduction from
Weighted Robust Matching Augmentation on G to Weighted Ro-

bust Matching Augmentation on a class of trees with a bounded number
of leaves. Hence, Lemma 3.29 implies that Weighted Robust Matching

Augmentation on G can be solved in polynomial time. This concludes the
proof of Theorem 3.28. �

3.5 Conclusion

We presented algorithms for the task of securing matchings of a graph against
the failure of a single edge. For this, we established a connection to the classical
strong connectivity augmentation problem. Not surprisingly, the unit weight

73

case is more accessible, and we were able to give a log2 n-factor approxima-
tion algorithm, as well as polynomial-time algorithms for graphs of bounded
treewidth and chordal-bipartite graphs. For general non-negative weights, we
showed a close relation to Directed Steiner Forest in terms of approx-
imability and gave a dichotomy theorem characterizing minor-closed graph
classes which allow a polynomial-time algorithm.

In our opinion, the case of a single edge failure is well understood now and
one might go for the case of a constant number of edge failures next. Let us
remark that if the number of edge failures is a part of the input, even checking
feasibility is NP-hard [DMP+15, LMMP12].

74

Chapter 4

Robust Disjoint s-t-Paths

4.1 Introduction

In this chapter we consider the problem Bulk-robust k-Disjoint Paths.
Given an undirected graph, two terminals s, t ∈ V and a set of subsets of
edges F , find a minimum cost subset of edges that contains k disjoint s-t-
paths, no matter which of the sets in F is deleted. More formally, in this
chapter we study the following problem.

Problem 4.1 (Bulk-robust k-Disjoint Paths). We are given an (undi-
rected or directed) graph G = (V,E), two vertices s, t ∈ V , costs c ∈ ZE≥0, an
integer k ∈ N, and a collection of interdiction sets F = {F1, F2, . . . , Fp} with
Fi ⊆ E for all i ∈ [p]. The task is to find a set X ⊆ E of minimum cost, such
that the graph G[X − Fi] contains k edge-disjoint s-t-paths for every i ∈ [p].

The edges in
⋃

1≤i≤p Fi are called unsafe edges. The width ` of the set F is
the size of a largest interdiction set in F , i.e. ` = maxF∈F |F |.

We briefly discuss the approximability of the different variants of Bulk-

robust k-Disjoint Paths depending on the parameters ` and k and whether
the graph is directed or undirected.

It is not hard to see that Bulk-robust k-Disjoint Paths generalizes both
Bulk-robust Shortest Path and Weighted Robust Matching Aug-

mentation. The first part directly follows by setting k = 1. For the latter part
we set ` = 1 and use the standard reduction from s-t flows to bipartite match-
ings. We defer the precise reduction to Section 4.3.1. All these results hold

75

76

k

`
0 1 O(1) O(n)

O(1) P ? ? (1− ε) lnn

O(n) P log2−ε(n) log2−ε(n) log2−ε(n)

Table 4.1: Hardness of approximation for different parameters of ` and k on

undirected graphs. The symbol ’P’ represents that the problem is tractable

and a ’?’ represents an unknown complexity status.

for directed and undirected graphs. Therefore, Bulk-robust k-Disjoint

Paths does not admit a polynomial-time (1−ε) lnn-approximation algorithm
if ` = O(n) unless P = NP. Furthermore, if k = O(n), then Bulk-robust k-

Disjoint Paths does not admit a polynomial-time log2−ε(n)-approximation
unless NP ⊆ ZTIME(npolylog(n)). An overview of inapproximability results can
be found in Table 4.1.

Thus, if the number k of disjoint paths is large, there is not much hope
for a ’good’ polynomial-time approximation algorithm, since already for ` = 1

the problem is very hard to approximate. Therefore, when designing approx-
imation algorithms we (mostly) focus our attention to the case where k is at
most some constant (however, if k = O(n) and ` = 1 we are able to design
a polynomial-time (k + 1)-approximation algorithm). Furthermore, already
the approximation algorithm for Bulk-robust Shortest Path only runs
in polynomial-time if ` is at most some constant. We generalize this approxi-
mation algorithm to the case where k is constant, but still the running time is
polynomial only if ` is at most some constant.

To summarize, when designing approximation algorithms we (mostly) re-
strict ` and k to be at most some constants with the exception for ` = 1 and
k = O(n).

Finally, Bulk-robust k-Disjoint Paths on directed graphs generalizes
the same problem on undirected graphs in the following way: for each undi-
rected edge we can add two antiparallel directed edges connecting the same
endpoints. It is not hard to see that for each solution in the directed graph
we can construct a corresponding solution in the undirected graph and vice
versa. A solution in the directed graph has at most twice the cost of the cor-
responding solution in the undirected graph. Therefore, all positive results for

77

the directed version also apply to the undirected version by multiplying the
approximation factor by 2. However, we note here that in case ` = 1, one can
show that a solution in a directed graph does not contain antiparallel edges
such that the solution in the directed graph and the corresponding solution in
the undirected graph have precisely the same cost (and vice versa).

This is not true for negative results. As we will see in Section 4.3.1, for
large ` the directed version is much harder to approximate than the undirected
version.

Summary of Algorithmic Techniques. In the first part of this chapter
we present an O(log n)-approximation algorithm for Undirected `-robust

k-Disjoint Paths where the width ` and the number of disjoint paths k are
at most some constants. We first introduce a sequence of relaxations of the
original problem with smaller interdiction sets Fj for j = 1, . . . , `, where the set
Fj contains all subsets of failure sets of size at most j. Having a solution for the
problem with interdiction set Fj−1 at hand, we iteratively solve the problem
with interdiction set Fj. This problem is called the j-th Augmentation

Problem.

In order to solve these augmentation problems, we show that it suffices to
add a collection of paths to Sj−1 to obtain a feasible solution and that an
optimal collection of paths has cost at most twice the global optimum. We
then model the task of selecting these paths as a Set Cover problem. Using
the greedy algorithm for Set Cover we obtain an O(log n)-approximation in
each step. Since ` and k are constants this implies an O(log n)-approximation
algorithm for Undirected `-robust k-Disjoint Paths.

In the second part of this chapter we consider the problem Directed 1-

robust k-Disjoint Paths. We first present a polynomial-time (k + 1)-
approximation algorithm for arbitrary k that uses a special min-cost-flow al-
gorithm. The main algorithmic result is a polynomial-time algorithm for the
augmentation problem for constant k. That is, given k disjoint s-t-paths X0

at zero cost, the task is to find a set of edges Y ⊆ E of minimum cost such
that X0 ∪Y is feasible. Similar to the residual graph used in classic maximum
flow algorithms, we define a residual graph that depends on the edges in X0

and a solution Y . We then show that in this residual graph each unsafe edge

78

k

`
0 1 O(1) O(n)

O(1) 1 2 O(log n) ×
O(n) 1 k + 1 × ×

Table 4.2: Approximation factors for different parameters k and `. The

symbol ’×’ represents that we did not design an approximation algorithm

for these parameters.

is contained in a strongly connected component. Having this result at hand,
we are able to use a dynamic programming approach, in which we need to
make certain subgraphs strongly connected. We obtain these strongly con-
nected subgraphs by solving instances of Directed Steiner Forest with
k terminal pairs. Since k is constant, we can use the algorithm of Feldman
and Ruhl [FR06] to obtain an optimal solution in polynomial time. The most
difficult part is to prove that the dynamic program indeed computes an op-
timal solution. As an immediate consequence we obtain a 2-approximation
algorithm for Directed 1-robust k-Disjoint Paths for constant k. A
summary of approximation factors for different parameters of ` and k can be
found in Table 4.2.

Organization of the Chapter. In the next Section we consider the general
problem `-robust k-Disjoint Paths. Therein, we first establish the hard-
ness results in Section 4.2.1 followed by the O(log n)-approximation algorithm
for Undirected `-robust k-Disjoint Paths in Section 4.2.2 and conjecture
an approximation algorithm for the directed version in Section 4.2.3. In Sec-
tion 4.3 we consider the problem Directed 1-robust k-Disjoint Paths.
We first show in Section 4.3.1 the close relationship between Directed 1-

robust k-Disjoint Paths and Weighted Robust Matching Augmen-

tation to prove the inapproximability result for Directed 1-robust k-

Disjoint Paths for large k, complemented by an approximation algorithm
in Section 4.3.2. The dynamic program for the augmentation problem is pro-
vided in Section 4.3.3. In Section 4.3.4 we give a reduction from Directed

1-robust k-Disjoint Paths with constant k to other problems of unknown
complexity. Finally, Section 4.4 concludes the chapter.

79

4.2 `-Robust k-Disjoint Paths

In this section we consider the general problem `-robust k-Disjoint Paths.
As mentioned in the introduction, Bulk-robustness was introduced by Adji-
ashvili, Stiller and Zenklusen in [ASZ15]. Therein they considered Bulk-robust
versions of the problems Minimum Matroid Basis and Shortest Path.
They gave hardness results and approximation algorithms for both problems,
including a log n-inapproximability result for Bulk-Robust Shortest Path

and an O(log n)-approximation algorithm on instances with bounded width.

In fact, `-robust k-Disjoint Paths is a generalization of Bulk-Robust

Shortest Path for instances of width at most ` of Bulk-Robust Shortest

Path. Therefore, all inapproximability results for Bulk-Robust Shortest

Path are carried over to `-robust k-Disjoint Paths. We summarize these
in Section 4.2.1.

Moreover, we generalize the O(log n)-approximation algorithm for Bulk-

Robust Shortest Path on instances with bounded width to `-robust k-

Disjoint Paths, where k and ` are bounded. In the approximation algorithm
in [ASZ15], the authors iteratively solve a relaxation of the initial problem by
specifying a certain Set Cover instance which they solve using the greedy
approximation algorithm. Most of the results used to prove correctness and
polynomial running time of this algorithm carry over to `-robust k-Disjoint

Paths. The remaining challenge is to prove that the Set Cover instances
obtained by the algorithm can still be solved in polynomial time and have the
desired approximation guarantee. For convenience, throughout this section,
we stick to the notation introduced in [ASZ15].

4.2.1 Complexity of `-Robust k-Disjoint Paths

In this section we investigate the complexity of `-robust k-Disjoint Paths.
These results directly follow from the results for Bulk-Robust Shortest

Path from [ASZ15] and the fact that `-robust k-Disjoint Paths is a gener-
alization of the former problem. In [ASZ15] the authors distinguished between
the directed and undirected version of Bulk-Robust Shortest Path and
proved the following results.

80

Proposition 4.2 ([ASZ15], Proposition 3). Undirected Bulk-Robust

Shortest Path admits no (1 − ε) log |V |-approximation algorithm for any
ε > 0 unless P = NP.

The proposition, as stated in the original paper, was weaker than the one
stated here. This is due to the fact that after the publication of [ASZ15], Dinur
and Steurer proved a stronger inapproximability result for Set Cover [DS14],
which in turn allows for a stronger inapproximability result for Undirected

Bulk-Robust Shortest Path.

For the directed version of Bulk-Robust Shortest Path, Adjiashvili,
Stiller and Zenklusen proved the following result.

Proposition 4.3 ([ASZ15], Proposition 4). There is no 2
1
4
`1−ε-approximation

algorithm for Directed Bulk-Robust Shortest Path for any ε > 0,
where ` is the width of the instance unless NP ⊆ DTIME(nlog logn).

Since `-robust k-Disjoint Paths is a generalization of Bulk-Robust

Shortest Path we directly obtain the following results.

Proposition 4.4. Undirected `-robust k-Disjoint Paths admits no
(1− ε) log |V |-approximation algorithm for any ε > 0 unless P = NP.

Proposition 4.5. There is no 2
1
4
`1−ε-approximation algorithm for Directed

`-robust k-Disjoint Paths for any ε > 0, where ` is the width of the
instance unless NP ⊆ DTIME(nlog logn).

4.2.2 An Approximation Algorithm for Undirected

`-Robust k-Disjoint Paths

In this section we give a polynomial-time approximation algorithm restricted
to instances of Bulk-robust k-Disjoint Paths with an undirected graph,
a constant width ` and a constant number of disjoint paths k. We refer to this
problem as Undirected `-robust k-Disjoint Paths.

The algorithm presented in this section is very similar to the one in [ASZ15].
We give the full proof here including all lemmas proved in [ASZ15].

Consider an instance I of Undirected `-robust k-Disjoint Paths of
width at most some constant `. We define a sequence of relaxations I0, ..., I`−1

81

of the instance I`. The instance Ij is defined on the same graph, terminals and
cost as I but with a different scenario set

Fj = {R ⊆ E : |R| ≤ j and ∃F ∈ F : R ⊆ F}. (4.1)

In words, the set Fj contains all subsets of failure sets of size at most j. Clearly,
for any 0 ≤ i ≤ j ≤ `, a solution to Ij is also feasible to Ii. Note that I` is
simply I.

On a very high level, the algorithm works as follows. We start by solving
the instance I0, a min-cost-flow problem. In each subsequent iteration j > 0

the current solution Sj−1 is augmented to a solution Sj feasible to Ij. We
solve these augmentation problems by stating them as special Set Cover

problems. A simple but very useful tool is the following lemma.

Lemma 4.6 (cf. [ASZ15], Lemma 11). Let F ∈ Fj be some interdiction set
such that G[Sj−1 − F] does not admit k disjoint s-t- paths. Then

1. F ⊆ Sj−1

2. There is a min-s-t-cut in G[Sj−1 − F] with value precisely k − 1.

Proof. We prove the statements one by one. Assume the first statement is not
true, i.e. there is some e ∈ F such that e /∈ Sj−1 and let F ′ = F − e. Then
G[Sj−1 − F] = G[Sj−1 − F ′] does not admit k disjoint s-t-paths. However,
|F ′| = j − 1 and Sj−1 is feasible to Fj−1, a contradiction.

To prove the second statement, let A be any min-s-t-cut in G[Sj−1 − F].
If |A| ≥ k, then by the max flow min cut theorem (Chapter 2, Theorem 2.21),
we have that G[Sj−1 − F] contains k disjoint s-t-paths, a contradiction. If
|A| ≤ k−2, then there is some F ′ ⊆ F with |F ′| = j−1 such that G[SSj−1−F ′]
contains an s-t-cut A′ ⊆ A of size k − 1. This contradicts the feasibility
of Sj−1. �

In the context of the j-th augmentation step we call an interdiction set
F ∈ Fj critical if there is a min-s-t-cut in G[Sj−1 − F] of value k − 1. Such
cuts are called infeasible cuts. Let A = δ(VS) ⊆ E be such an infeasible cut
and let VS ⊆ V be the vertices incident to the cut on the side containing s. The
infeasible cut can be fixed in the augmentation step by a path P = v1, ..., vi

with v1 ∈ VS, vi /∈ VS and E(P) ∩ Sj−1 = ∅. Adding a fixing path for every
infeasible cut results in a graph which is feasible for the interdiction set F .

82

Problem 4.7 (j-th Augmentation Problem). Given a feasible solution
Sj−1 to Ij−1 the task is to find a set Xj ⊆ E − Sj−1 of minimum cost, such
that the graph G[Sj−1 ∪X] is feasible to Ij, i.e. G[(Sj−1 − F) ∪X] contains k
disjoint s-t-paths for every F ∈ Fj.

The following lemma states an important property of the augmentation
problem: restricting our search to paths incurs cost of at most twice the opti-
mum.

Lemma 4.8 (cf. [ASZ15], Lemma 13). There is a collection of paths P1, ..., Pq

such that Sj−1∪
⋃
i∈[q] Pi is feasible to Ij and

∑
i∈[q] c(Pi) ≤ 2OPTj, where OPTj

is the cost of the optimal solution of the j-th augmentation problem.

Proof. LetX∗j be the optimal solution to the j-th augmentation problem. X∗j is
a forest as we consider undirected graphs and inclusion-wise minimal solutions
of the augmentation problem do not contain cycles. Consider any tree T of the
forest X∗j . By doubling each edge in T we obtain an Eulerian graph. Let Vj−1

be the vertices incident to the edges in Sj−1. Starting from a vertex in Vj−1

we traverse any Euler tour until we again reach a vertex from Vj−1. This path
corresponds to our first path P1. By repeating this until we ended the tour we
obtain the paths P1, ..., Pq. Repeating this for every tree in X∗j and observing
that

∑
i∈[q] c(Pi) = 2OPTj concludes the proof. �

The algorithm for the j-th augmentation problem works in the following
way. We are given a feasible solution Sj−1 to Ij−1. We first compute all shortest
paths Puv for every two vertices u, v ∈ V [Sj−1] in the graph (V,E \ Sj−1). Let
F ′j be the set of critical interdiction sets. For every F ∈ F ′j we compute all
infeasible cuts. These infeasible cuts need to be fixed by a collection of paths
in the augmentation problem. We model this task as an instance I = (U,S)

of Set Cover and solve I using the classic greedy-algorithm, achieving a
guarantee of log |U |+ 1. We defer the formal construction of the Set Cover

instance for now but mention here that the size of U corresponds to the number
of infeasible cuts.

Therefore, in order to show that the greedy-algorithm runs in polynomial
time and has the desired approximation guarantee we prove in the next lemma
that the number of infeasible cuts in each iteration is polynomial.

83

Lemma 4.9. The number of infeasible cuts in the j-th augmentation problem
is at most O(nk+j−1).

Proof. We prove the statement by induction. In the first iteration the set S0

consists of k edge disjoint paths. It is easy to see that there are at most nk

many s-t-cuts in S0. Thus the statement holds for j = 0.
Now let Sj be a feasible solution to Ij and let F ′j+1 be the critical interdiction

sets. Additionally let Xj be the edges that were added to Sj−1 in the j-th
augmentation step. We first prove the following claim.

Claim 1. For every F ∈ F ′j+1 we have that |F ∩Xj| ≤ 1.

Proof. Suppose this is not true and F ′ := F ∩Xj has cardinality at least 2. As
F ∈ F ′j+1 we have that G[Sj − F] does not contain k disjoint s-t-paths. Then
also G[(Sj − F ′) − (F − F ′)] does not contain k disjoint s-t-paths, implying
the same for G[Sj−1− (F −F ′)]. But as |F −F ′| < k we have that Sj was not
feasible to Ij, a contradiction. This proves Claim 1. �

By the induction hypothesis there are at most O(nk+j−1) infeasible s-t-
cuts for the j-th augmentation problem. As mentioned before, Xj is a for-
est and thus |Xj| ≤ n. Combining this with Claim 1 we have that the
number of insfeasible s-t-cuts for the (j + 1)-th augmentation problem is at
most O(nk+j−2) + O(nk+j−2) · n = O(nk+j−1). This concludes the proof of
Lemma 4.9. �

We now describe the whole algorithm. We first solve I0 and compute k
disjoint paths at minimum cost. At iteration j we have already constructed
a solution Sj−1 which is feasible for Ij−1, i.e. feasible for every failure subset
of size at most j − 1. We then model the j-th augmentation problem as a
special Set Cover problem SCj = {Uj,Sj, cj} that is obtained as follows.
For each infeasible s-t-cut Y in Sj−1 we add an element uY to Uj. For each
shortest path Puv in (V,E \ Sj−1) from u ∈ V [Sj−1] to v ∈ V [Sj−1] we add a
set Suv to Sj. The cost of this set is cj(Suv) = c(Puv), i.e. the cost of a shortest
u-v-path in (V,E \ Sj−1). An element uY ∈ Uj is contained in a set Suv ∈ Sj
if and only if the path Puv fixes the infeasible s-t-cut Y .

We then solve SCj using the classic greedy algorithm with an approximation
guarantee of log n′, where n′ is the number of critical cuts in Sj−1. As the width
of the scenarios and the number of disjoint paths is constant, this can be done

84

in polynomial time due to Lemma 4.9. As the approximation guarantee in
each step is O(log n) we also achieve an overall approximation guarantee of
O(log n), as again the width of the failure scenarios and the number of disjoint
paths is constant. A complete description of the algorithm can be found below.

Algorithm 1: : A polynomial-time O(log n)-approximation algorithm
for Undirected `-robust k-Disjoint Paths

1: Solve I0 by computing k disjoint s-t-paths using a min-cost-flow
algorithm to obtain S0 and set j = 1

2: while j ≤ ` do

3: Compute the Set Cover problem SCj = {Uj,Sj, cj} using Sj−1

4: Solve SCj using the greedy-algorithm to obtain Sj
5: j = j + 1

6: return S`

We are now ready to prove the main theorem of this section.

Theorem 4.10. Undirected `-robust k-Disjoint Paths admits a poly-
nomial-time O(log n)-approximation algorithm for constant width ` and a con-
stant number of disjoint paths k.

Proof. We start by solving I0 followed by the sequence of ` augmentation prob-
lems I1, ..., I`. For 0 ≤ j ≤ ` let Xj be the solution to Ij computed by the
algorithm and let X =

⋃
0≤j≤`Xj be the final solution of the algorithm. The

correctness of the algorithm is a direct consequence of Lemma 4.6. The ini-
tial problem is solved to optimality using a min-cost-flow algorithm. For the
` augmentation problems we solve the Set Cover instances SCj for j ∈ [`]

using the greedy-algorithm. By Lemma 4.8 we only loose a factor of 2 in
the approximation guarantee when considering paths as the covering sets. By
Lemma 4.9 we have that the number of infeasible s-t-cuts of the j-th aug-

mentation problem is at most O(nk+j) and therefore at most O(nk+`).
Hence, the greedy algorithm runs in polynomial time. As the greedy algo-
rithm is a log n′ + 1-approximation algorithm, the obtained solution Xj for
the j-th augmentation problem has cost at most c(Xj) ≤ 2 log n′ · OPTj,
where n′ = O(nk+`) is the number of infeasible s-t-cuts and OPTj is the
value of the optimal solution for the j-th augmentation problem. As k

85

and ` are constants, we have that c(Xj) ≤ O(log n) · OPTj. Since OPTj is at
most OPT (the value of an optimal solution) and ` is constant, we have that
c(X) =

∑
1≤i≤` c(Xi) ≤

∑
1≤i≤`O(log n) · OPTj ≤ O(log n) · OPT. �

4.2.3 Directed `-Robust k-Disjoint Paths

In the last section we presented an algorithm for the undirected version of
`-robust k-Disjoint Paths. In principle, the same algorithm could also be
applied to the directed version. The key difference between the undirected and
directed version of `-robust k-Disjoint Paths is the fact that Lemma 4.8
is not true anymore. It was shown that restricting our search to paths in the
augmentation problem incurs cost of at most twice the optimal, which is not
true in the directed version of the problem. Note that by Proposition 4.3 it
is very unlikely that the directed version admits an approximation guarantee
that is only logarithmic in the width `.

Hence, for a similar statement like Lemma 4.8 for the directed version we
need a much higher bound that also depends on `. We conjecture the following
analogon to Lemma 4.8 for the directed version.

Conjecture 4.11. For the directed j-th Augmentation there is a collec-
tion of directed paths P1, ..., Pq such that Sj−1 ∪

⋃
i∈[q] Pi is feasible to Ij and∑

i∈[q] c(Pi) ≤ f(`) ·OPTj, where OPTj is the cost of the optimal solution of the
j-th augmentation problem and f(`) is a computable function solely depending
on `.

A suitable function for f might be f(`) = 2`. One potential approach
to prove Conjecture 4.11 is to show that any minimal solution to the j-th

Augmentation Problem can be decomposed into at most 2j (not neces-
sarily disjoint) s-t-paths. Assuming that Conjecture 4.11 is true would prove
the existence of an algorithm with the following approximation guarantee for
Directed `-robust k-Disjoint Paths.

Conjecture 4.12. There is an (f(`) · O(log n))-approximation algorithm for
Directed `-robust k-Disjoint Paths for constant width ` and a constant
number of disjoint paths k.

Note that the conjectured approximation guarantee is essentially tight due
to Proposition 4.3.

86

4.3 1-Robust k-Disjoint Paths

In this section we consider the restriction of `-robust k-Disjoint Paths to
the special case where the width ` is 1. The definition of the directed version
can thus be simplified as follows.

Problem 4.13 (Directed 1-robust k-Disjoint Paths). Given a directed
graph D = (V,E), two vertices s, t ∈ V , costs c ∈ ZE≥0, and a set F ⊆ E of
unsafe edges, the task is to find a set Y ⊆ E of minimum cost, such that the
graph G[Y − f] contains k disjoint s-t-paths for every f ∈ F .

Note that for large k (i.e. k = O(|V |)) this problem generalizes Weighted

Robust Matching Augmentation, which was the main problem consid-
ered in Chapter 3. Hence, the hardness results for Weighted Robust

Matching Augmentation carry over to Directed 1-robust k-Disjoint

Paths. In a nutshell, these hardness results imply that Directed 1-robust

k-Disjoint Paths is (almost) as hard to approximate as Directed Steiner

Forest. These results are presented in Section 4.3.1.

On the positive side, we first give a polynomial-time (k+ 1)-approximation
algorithm for any k ∈ N. The algorithm uses the LP-formulation for the
problem Minimum Cost Flow. Using properties of this LP, we show that
the support of a special Minimum Cost Flow solution is indeed a (k + 1)-
approximation for Directed 1-robust k-Disjoint Paths. This result is
presented in Section 4.3.2.

Furthermore, in Section 4.3.3 we consider the augmentation variant of this
problem, which is formally defined as follows.

Problem 4.14 (Directed 1-robust k Disjoint Paths Augmentation).
We are given a directed graph D = (V,E), the union of k disjoint s-t-paths
X0 from s to t available at zero cost, costs c ∈ ZE\X0

≥0 , and a set F ⊆ E of
unsafe edges. The task is to find a set Y ⊆ E\X0 of minimum cost, such that
G[(X0 − f) ∪ Y] contains k disjoint s-t-paths for every f ∈ F .

In order to solve this problem, we first show that in any feasible solution to
Directed 1-robust k Disjoint Paths Augmentation, each unsafe edge
is contained in a strongly connected component of a certain residual graph,

87

which is closely related to the residual graph used in the classic algorithms for
the problem Max s-t-Flow.

We then solve the augmentation problem using a dynamic programming
approach. Therein, as a subroutine, we need to solve instances of Directed

Steiner Forest on k terminal pairs. Using the feasibility criteria from
above, we can show that the solutions obtained by the dynamic program-
ming approach are indeed feasible and, additionally, that optimal solutions
of the dynamic program correspond to optimal solutions of Directed 1-

robust k Disjoint Paths Augmentation. Furthermore, we can solve
the instances of Directed Steiner Forest on k terminal pairs that are
obtained in the dynamic programming approach using the algorithm of Feld-
man and Ruhl [FR06], leading to a running time of roughly nO(k). Note that
the running time of the algorithm is slicewise-polynomial and hence we can
solve the augmentation problem in polynomial time for constant k. As a di-
rect consequence we obtain a polynomial-time 2-approximation algorithm for
Directed 1-robust k-Disjoint Paths for constant k.

Note that both, the (k+1)-approximation algorithm and the slicewise poly-
nomial exact algorithm essentially match the best known bounds, either in ap-
proximability or running time of the problem: the current best known guaran-
tee for Directed Steiner Forest is

√
k′, where k′ is the number of terminal

pairs. Since in the reduction k′ corresponds to k, improving the approximation
guarantee to below

√
k is a very ambitious task as it implies a better approxi-

mation ratio for Directed Steiner Forest. On the other hand, it is known
that Directed Steiner Forest does not admit an FPT-algorithm when
parameterized by the number of terminal pairs [GNS11]. Hence, the slice-
wise polynomial algorithm by Feldman and Ruhl [FR06] is essentially best
possible in terms of running time. Since Directed 1-robust k Disjoint

Paths Augmentation generalizes Directed Steiner Forest with k ter-
minal pairs, the slicewise polynomial algorithm presented in Section 4.3.3 is
also essentially best possible in terms of running time.

However, the complexity of Directed 1-robust k-Disjoint Paths for
constant k (or even for k = 2) is still unknown and a very interesting open
question. Therefore, we relate Directed 1-robust k-Disjoint Paths to
other famous problems for which the complexity status is also unknown. All of

88

these problems are related to Directed Steiner Forest. The first problem
is defined as follows.

Problem 4.15. (2-connected Directed k Steiner Tree) Given a di-
rected graph D = (V,A), a cost function c ∈ QE, and k terminal vertices
t1, t2, . . . , tk ∈ V together with a root s ∈ V , the task is to find a minimum
cost set of edges X ⊆ E, such that (V,X) contains 2 edge-disjoint s-t-paths
for each t ∈ {t1, t2, . . . , tk}.

We usually set T := {t1, t2, . . . , tk}. According to [CLNV14], even the com-
plexity of the following special case of 2-connected Directed k Steiner

Tree is still open.

Problem 4.16. (1-2-connected Directed 2 Steiner Tree) Given a di-
rected graph D = (V,A), a cost function c ∈ QE and two terminal vertices
t1, t2 ∈ V together with a root s ∈ V , the task is to find a minimum cost set
of edges X ⊆ E, such that (V,X) contains an s-t1-path and two edge-disjoint
s-t2-paths.

We investigate the relationship between Directed 1-robust k-Disjoint

Paths and 2-connected Directed k Steiner Tree in Section 4.3.4. We
show that a special case of Directed 1-robust k-Disjoint Paths corre-
sponds to 2-connected Directed k Steiner Tree with one additional
constraint and that a polynomial-time algorithm for Directed 1-robust

2-Disjoint Paths implies a polynomial-time algorithm for 1-2-connected

Directed 2 Steiner Tree.

4.3.1 Complexity of Directed 1-robust k-Disjoint Paths

In this section we give a reduction from Weighted Robust Matching

Augmentation to Directed 1-robust k-Disjoint Paths, showing that
approximating Directed 1-robust k-Disjoint Paths is at least as hard
as Weighted Robust Matching Augmentation and therefore at least as
hard as Directed Steiner Forest.

Proposition 4.17. A polynomial-time f(k)-factor approximation algorithm
for Directed 1-robust k-Disjoint Paths implies an f(n

2
)-factor approxi-

mation algorithm for Weighted Robust Matching Augmentation,

89

where n is the number of vertices in the Weighted Robust Matching

Augmentation instance.

Proof. Let I be an instance of Weighted Robust Matching Augmenta-

tion where G = (U + W,E) is the bipartite graph and c ∈ QE is the cost
function. We use the classical reduction from bipartite matching to the prob-
lem Max s-t-Flow. We construct an instance I′ of Directed 1-robust

k-Disjoint Paths with a directed graph D′ = (V,A), cost function c′ ∈ QA,
and F ⊆ A in the following way. We set V = {U + W ∪ {s} ∪ {t}} and
A = As ∪ At ∪ AE where As = {su : u ∈ U}, At = {wt : w ∈ W} and
AE = {uw : u ∈ U,w ∈ W,uw ∈ E}. In words, we add two vertices s and t
to G together with all edges from s to U and from W to t. Furthermore, we
direct all edges in E from U to W . Additionally we set k = 1

2
n, F = AE, and

c′(uw) :=

c(uw), if uw ∈ E(G),

0, otherwise.

Note that there is a one-to-one correspondence between the undirected edges
in E and the directed edges in AE. Hence, for X ⊆ E we refer by q(X) to the
corresponding directed edges of AE. Analogously we define q−1(Y) for some
edge set Y ⊆ AE.

Now it is easy to see that for a feasible solution X to I, the edge set
q(X) ∪As ∪At is feasible to I′. Furthermore, a feasible solution Y to I′ corre-
sponds to a feasible solution q−1(Y \ (As ∪ At)) to I. Also note that, by the
definition of c′, we have that the cost of these solutions are the same. Since
k = 1

2
n, we have that any f(k)-factor approximation algorithm for Directed

1-robust k-Disjoint Paths implies an f(n
2
)-factor approximation algorithm

for Weighted Robust Matching Augmentation. �

The following proposition is a direct consequence of Proposition 3.24 from
Chapter 3 and Proposition 4.17.

Proposition 4.18. Let n be the number of vertices of an instance of Di-

rected 1-robust k-Disjoint Paths and let n′ and k′ be the number of
vertices and terminal pairs of a Directed Steiner Forest instance, respec-
tively. A polynomial-time f(k)-factor approximation algorithm for Directed

90

1-robust k-Disjoint Paths implies a polynomial-time f(2n′ + k′))-factor
approximation algorithm for Directed Steiner Forest.

Additionally, by a result of Halperin and Krauthgamer [HK03], Proposi-
tion 4.17 implies the following lower bound.

Corollary 4.19. For every ε > 0 Directed 1-robust k-Disjoint Paths

does not admit a log2−ε(k)-factor approximation algorithm unless
NP ⊆ ZTIME(npolylog(n)).

Note that all results presented in this section also hold for the corresponding
undirected problem.

4.3.2 A (k + 1)-approximation Algorithm for Directed

1-Robust k-Disjoint Paths

In this section we present the (k+ 1)-approximation algorithm for Directed

1-robust k-Disjoint Paths. The idea is to transform the problem into a
Min Cost s-t-Flow with a predefined capacity function on the edges. We
then add every edge to our solution which is in the support of the min-cost-
flow. On the one hand, this flow has fractional value at least 1

k
for every edge

in the support of the min-cost-flow. On the other hand the costs are bounded
by (1 + 1

k
) times the value of an optimal solution, such that we are able to

obtain a (k + 1)-approximation.

For a given instance I of Directed 1-robust k-Disjoint Paths we define
an instance of Min Cost s-t-Flow with capacities g on the edges. We set
the capacities as follows.

g(e) :=

1, if e ∈ F

1 + 1
k
, otherwise

We now want to find a min-cost-flow solution with flow value precisely k + 1

with respect to the capacities g. Therefore, we would like to solve the following

91

linear program.

minimize
∑
uv∈E

c(uv) · f(uv)

subject to f(uv) ≤ g(uv) for all uv ∈ E

f(uv) ≥ 0 for all uv ∈ E∑
w∈V

f(wu)−
∑
w∈V

f(uw) = 0 for all u ∈ V \ {s, t}∑
w∈V

f(sw) = k + 1∑
t∈V

f(wt) = k + 1

(4.2)

This problem can be solved in polynomial time using standard min-cost-flow
algorithms. Note that the resulting solution does not have to be integral. Let
f ∗ ∈ QE

≥0 be an optimal solution to LP (4.2). We now claim that the support of
the solution, i.e. Y = {e ∈ E : f ∗(e) > 0} is the desired (k+1)-approximation.

For this, we first show that an optimal solution always contains a flow of
value k+ 1 with respect to g. On the other hand we show that the support of
a flow of value k + 1 with respect to g is always feasible.

Lemma 4.20. Let Y ∗ be the optimal solution to the instance I of Directed

1-robust k-Disjoint Paths and let f ∗ ∈ QE
≥0 be the min-cost-flow solution

with respect to the capacities g. We then obtain the following statements.

1. Y ∗ contains a flow of value k + 1 with respect to the capacities g.

2. Y = {e ∈ E | f ∗(e) > 0} is a feasible solution to I.

Proof. We prove the statements one by one. Observe that by the max-flow-
min-cut theorem in any feasible solution, every s-t-cut contains either at least
k safe edges or at least k + 1 edges. Otherwise Y ∗ was not feasible. On
the one hand those s-t-cuts Z in G[Y ∗] having at least k safe edges satisfy
g(Z) ≥ (1 + 1

k
) · k = k + 1. On the other hand, those s-t-cuts Z ′ in G[Y ∗]

containing at least k + 1 edges satisfy g(Z ′) ≥ k + 1. Hence, every s-t-cut
Z in G[Y ∗] has capacity g(Z) ≥ k + 1. The statement now follows by the
max-flow-min-cut theorem.

For the second statement, we need to show that Y is feasible to I. Observe
that every s-t cut Z in G[Y] has value at least g(Y) ≥ k+1. Thus, Z contains

92

either at least k safe edges or at least k + 1 edges. The statement now follows
again by the max-flow-min-cut theorem. �

Thus the support of the min-cost-flow solution is always a feasible solution.
We now need to bound the cost of this solution.

Theorem 4.21. The algorithm described above is a polynomial-time (k + 1)-
approximation algorithm for Directed 1-robust k-Disjoint Paths.

Proof. Let I be an instance of Directed 1-robust k-Disjoint Paths and
let OPT be the value of an optimal solution to I. The algorithm solves the
min-cost-flow problem with respect to the capacity function g. We then argue
that Y = {e ∈ E | f ∗(e) > 0} is the desired solution. The feasibility of X
follows from part 2 of Lemma 4.20. We now bound the cost of the solution.
Let YF = Y ∩ F be the unsafe edges in Y and let YS = Y − YF be the safe
edges. First, we have that each edge e ∈ Y has flow value at least b(e) ≥ 1

k
,

since g(e′) is either 1 or 1 + 1
k
for every edge e′ ∈ E. This is true since one

could scale g by a factor k. Then LP 4.2 is integral and one could obtain an
integral solution (for the scaled capacity function g). In addition, observe that
we may pay a factor 1 + 1

k
too much for every safe edge since the capacity of

the safe edges is 1 + 1
k
. Therefore we can bound the cost of a safe edge e ∈ YS

by k · (1 + 1
k
) · c(e) · f ∗(e) and the cost of each unsafe edge e by k · c(e) · f ∗(e).

Hence, we obtain

c(Y) = c(YS) + c(YF)

≤ k ·
(

(1 +
1

k
) ·
∑
e∈YS

c(e) · f ∗(e) +
∑
e∈YF

c(e) · f ∗(e)
)

≤ k(1 +
1

k
) ·
(∑
e∈YS

c(e) · f ∗(e) +
∑
e∈YF

c(e) · f ∗(e)
)

≤ (k + 1) · OPT ,

where the first inequality follows from the two arguments above and the last
inequality follows from part 1 of Lemma 4.20. �

4.3.3 Solving the Augmentation Problem

In this section we give a polynomial-time algorithm for Directed 1-robust k

Disjoint Paths Augmentation. We construct a residual graph somewhat

93

s t

(a) Graph D and X0 consist-
ing of two disjoint paths.

s t

(b) Residual graph
DX0

(X0 ∪ Y).

Figure 4.1: Illustration of the structure of feasible solutions to Directed

1-robust k Disjoint Paths Augmentation. Unsafe arcs are red, safe

arcs are black. In Figure a): edges of X0 are black and red; edges of A−X0

are light gray and light red. Dashed edges belong to Y .

similar to the classic residual graph used for computing maximum flows and
show that in this graph all unsafe edges are contained in a strongly connected
component. These strongly connected components are connected by safe edges.
We reduce the problem of finding those strongly connected components to a
special variant of Directed Steiner Forest on k terminal pairs, which can
be solved in polynomial time since k is constant. From an optimal solution
for each strongly connected component we construct another auxiliary graph.
A shortest s-t-path in this auxiliary graph then corresponds to an optimal
solution for Directed 1-robust k Disjoint Paths Augmentation.

Throughout this subsection we fix an instance I of Directed 1-robust k

Disjoint Paths Augmentation and set P1, ..., Pk to be the k disjoint s-t-
paths of X0 given by I. We now construct the residual graph that we use as a
certificate for feasibility. For a subgraph H = (V,A∗) of D satisfying X0 ⊆ A∗,
the residual graph DX0(A

∗) = (V,A′) consists of the same vertex set as D. For
each arc a = uv ∈ A∗ we add uv to A′ if a /∈ X0 and add the reversed arc vu
to A′ if a ∈ X0. An illustration of this graph is given in Figure 4.1. We show
that each unsafe arc of a feasible solution X0 ∪ Y to I is contained in some
strongly connected component of DX0(X0 ∪ Y).

Lemma 4.22. Let I be an instance of Directed 1-robust k Disjoint

Paths Augmentation and let Y ⊆ A \ X0. Then Y is a feasible solution
to I if and only if each unsafe arc f ⊆ F ∩ X0 is contained in some strongly
connected component in DX0(X0 ∪ Y).

94

Proof. We first prove the “if” part of the statement, so let f = uv be any unsafe
arc in X0 that is contained in a strongly connected component of DX0(X0∪Y).
As f ∈ X0, the arc f is reversed in DX0(X0 ∪ Y) and since f is on a cycle C
in DX0(X0 ∪ Y), there is a path P from u to v in DX0(X0 ∪ Y). Let P ′ be the
path corresponding to P in D[X0 ∪ Y]. Note that P ′ is not a directed path
in D and that an arc e on P ′ is traversed forward if e ∈ P ′ ∩ Y and traversed
backward if e ∈ P ′ ∩X0. We partition P ′ into two disjoint sets P ′X0

= P ′ ∩X0

and P ′Y = P ′ ∩ Y of arcs. We now argue that (X0 − P ′X0
− f) ∪ P ′Y contains k

disjoint s-t-paths in X0∪Y . Clearly we have that (X−P ′X0
−f)∪P ′Y ⊆ X0∪Y .

As X0 is the union of k disjoint paths, we have that in D[X0], δ+(v) = δ−(v)

for every vertex v ∈ V − {s, t} and δ+(s) = δ−(t) = k. Since C is a cycle
in DX0(X0 ∪ Y) the degree constraints also hold for D[(X0 − P ′X0

− f) ∪ P ′Y].
Hence (X0 − P ′X0

− f) ∪ P ′Y is the union of k disjoint s-t-paths.

We now prove the “only if” part. Let f = uv ∈ X0 be an unsafe arc and
suppose it is not contained in a strongly connected component of DX0(X0∪Y).
Let L ⊆ V be the set of vertices that are reachable from u in DX0(X0 ∪ Y)

and let R := V − L. Note that s ∈ L and t ∈ R since otherwise there is
a path from u to v in DX0(X0 ∪ Y) (as every arc in X0 is reversed). Let
L′ = {x1, . . . , xk} ⊆ V , xi ∈ Pi for all i ∈ [k], be the vertices of L that are
closest to t in D[X0]. We now claim that δ+(L) is a cut containing f of size k in
D[X0 ∪ Y]. Since f is an unsafe arc this implies that X0 ∪ Y was not feasible.
Clearly f ∈ δ+(L) in D[X0 ∪ Y], as otherwise f is contained in a strongly
connected component in DX0(X0∪Y). There is no arc e = u′v′ ∈ Y ∩ δ+(L) in
D[X0 ∪ Y] as otherwise v′ ∈ L contradicts the construction of L. Thus δ+(L)

only consists of arcs of X0 in D[X0 ∪ Y]. Since X0 is the union of k disjoint
paths, δ(L) has size at most k in D[X0∪Y], proving our claim since this implies
that X0 ∪ Y is not feasible. This concludes the proof of Lemma 4.22. �

We now construct an auxiliary digraph D = (V ,A) to compute an optimal
solution for an instance I of Directed 1-robust k Disjoint Paths Aug-

mentation. For clarity we call the elements in V (A) of D vertices (arcs) and
elements of V (A) nodes (links). We define an ordering on the vertices of Pi,
i ∈ k. For two vertices x1

i , x
2
i ∈ Pi we say that x1

i ≤ x2
i if x1

i is closer to s on Pi
than x2

i . Note that if x1
i = x2

i , we also have x1
i ≤ x2

i . Let us now construct the
node set V . We add a node v to V for every k-tuple v = (x1, ..., xk) of vertices

95

in V (X0) satisfying xi ∈ Pi, for every i ∈ [k]. Note that the corresponding
vertices of a node do not necessarily need to be distinct as the k disjoint paths
may share vertices. We also define a (partial) ordering on the nodes in V . For
two nodes v1 = (x1

1, ..., x
1
k) and v2 = (x2

1, ..., x
2
k) we say that v1 ≤ v2 if x1

i ≤ x2
i

for every i ∈ [k]. Additionally let Qi be the path from x1
i to x2

i on Pi.

Let us now construct the link set A1. For two nodes v1 = (x1
1, ..., x

1
k) ∈ V

and v2 = (x2
1, ..., x

2
k) ∈ V satisfying v1 ≤ v2 we add a directed link v1v2 to A1

if Qi ∩ F = ∅ for every i ∈ [k], i.e. if all subpaths from x1
i to x2

i are safe.

We now construct the link set A2. For two nodes v1, v2 ∈ V satisfying
v1 ≤ v2 we first need to solve an instance of Directed Steiner Forest on
k terminal pairs in order to know if we add the link v1v2 and, if so, at which
cost. We construct an instance I(v1, v2) of Directed Steiner Forest on v1

and v2 as follows. The terminal pairs are (x1
i , x

2
i)1≤i≤k. The underlying graph

for I(v1, v2) is given by D′ = (V,A′), where A′ = A −X0 ∪
⋃
i∈[k]

←−
Qi, with

←−
Qi

being the arcs of Qi in reversed direction. The costs of the arcs are given by

c′(e) :=

c(e), if e ∈ A \X0

0, if e ∈
←−
Qi for some i ∈ [k].

That is, we reverse all paths Q1, ..., Qk such that x2
i is connected to x1

i for every
i ∈ [k] and make the corresponding arcs available at zero cost. We then need
to connect x1

i to x2
i without using arcs of X0. Since the number of terminal

pairs is at most k and thus constant, I(v1, v2) can be solved in polynomial time
by the algorithm of Feldman and Ruhl given in [FR06]. Let OPT(I(v1, v2)) be
the cost of the optimal solution to I(v1, v2). We add a link v1v2 if the solution
of I(v1, v2) is strongly connected. The set of such links is A2.

Finally we set A = A1 ∪A2. For a link e ∈ A we set the cost of the link to

w(e) :=

0, if e ∈ A1

OPT(I(v1, v2)), if e ∈ A2.

We now argue that a shortest path P from node s1 = (s, ..., s) ∈ V to node
t1 = (t, ..., t) ∈ V in D corresponds to an optimal solution to I. For every
link vw ∈ P we add the optimal solution to the Directed Steiner Forest

instance I(v, w) to Y . The complete algorithm is given below.

96

Algorithm 2: : Exact algorithm for the augmentation problem
1: Construct the auxiliary graph D = (V ,A)

2: Find a shortest path P in D from s1 to t1
3: For every link vw ∈ P ∩ A2 add the arcs of an optimal solution

to I(v, w) to Y
4: return Y

We can now prove our main result in this section.

Theorem 4.23. Algorithm 2 computes an optimal solution to an instance I of
Directed 1-robust k Disjoint Paths Augmentation.

Proof. Let P be a shortest path in the auxiliary graph D and let Y be the
solution computed by Algorithm 2. We first prove the feasibility of Y .

Claim 1. The solution Y computed by Algorithm 2 is feasible to I.

Proof. Let Y (v, w) be the optimal solution to I(v, w) for every link e = vw ∈ P .
We now argue that X0 ∪ Y is feasible to I. By Lemma 4.22 we need to show
that each unsafe arc of X0 is contained in some strongly connected component
in DX0(X0∪Y). Consider an arc z1

i z
2
i ∈ X0 on an arbitrary path Pi of X0. Two

nodes v1 and v2 containing z1
i and z2

i , respectively, cannot be connected by a
link of A1 in D, as z1

i z
2
i is an unsafe arc. Let u1 = (x1

i , ..., x
1
k) (u2 = (x2

i , ..., x
2
k))

be the node on P such that x1
i (x2

i) is closest to z1
i (z2

i) on the subpath from s

to z1
i (z2

i to t) of Pi. Those two nodes exist since P is a path from s1 to t1 in D.
If there is more than one such node let x1

j (x2
j) be the vertex closest to t (s) on

Pj for every j 6= i, j ∈ [k]. By the construction of u1 and u2 we also have that
the link u1u2 ∈ P ∩ A2. Therefore, the optimal solution Y (u1, u2) to I(u1, u2)

has been added to Y . Since Y (u1, u2) connects z1
i and z2

i in DX0(X0 ∪ Y), we
obtain that the arc z1

i z
2
i is contained in a strongly connected component in the

residual graph DX0(X0 ∪ Y). Feasibility now follows from Lemma 4.22. This
proves Claim 1. �

Let Y ∗ be an optimal solution to I of cost OPT. We now show that Y is
an optimal solution, i.e. we show that c′(P) ≤ c(Y ∗) = OPT. The idea is the
following. We first show that the different strongly connected components in
DX0(X0 ∪ Y ∗) are partially ordered. Using this ordering we can construct a

97

path P ′ in D from s1 to t1 of cost c′(P ′) = c(Y ∗). The theorem then follows
by observing that a shortest path P has cost at most c′(P ′).

Let Z be some strongly connected component of DX0(X0 ∪ Y ∗) and let
L(Z) = {i ∈ [k] | E(Pi) ∩ E(Z) 6= ∅} be the set of indices of the paths
P1, ..., Pk that have at least one common edge with Z. Additionally for each
i ∈ L(Z) let si(Z) be the vertex of Z that is closest to s on Pi and put
S(Z) =

⋃
i∈L(Z) si(Z). Similarly, for each i ∈ L(Z) let ti(Z) be the vertex of

Z that is closest to t on Pi and put T (Z) =
⋃
i∈L(Z) ti(Z).

Claim 2. Let e1
i , e

2
i ∈ Pi ∩ F be two unsafe arcs of Pi such that their corre-

sponding connected components Z1 and Z2 are disjoint. If e1
i is closer to s on

Pi than e2
i , then ti(Z1) < si(Z2) for every i ∈ L(Z1) ∩ L(Z2).

Proof. Suppose this is not true and there is some i ∈ L1 ∩ L2 such that
ti(Z1) ≥ si(Z2). Then, by the definition ofDX0(X0∪Y ∗), ti(Z1) is connected to
si(Z2) in DX0(X0∪Y ∗). But as Z1 and Z2, respectively, are strongly connected
components this implies that Z1∪Z2 is a single strongly connected component,
a contradiction. This proves Claim 2. �

Using this claim we can construct a path P ′ in D of cost at most c(Y ∗).

Claim 3. There is a path P ′ in D of cost at most c(Y ∗).

Proof. We present an algorithm that constructs a path P ′ in D that only
uses edges of A2 which correspond to strongly connected components of Y ∗ in
DX0(X0 ∪ Y ∗). The path starts in s1 = (s, ..., s) ∈ V . We proceed by doing
the following two steps alternately until we reach t1 = (t, ..., t) ∈ V .

1. From the current node u = (u1, ..., uk) we proceed by taking links of A1

until we reach the next node v = (v1, ..., vk) ∈ V (with respect to the
ordering of the nodes in V) satisfying that each vertex vi, i ∈ [k] is either
t or part of some strongly connected component in DX0(X0 ∪ Y ∗).

2. From v we take a link vw ∈ A2 to some node w ∈ V , where the link vw
corresponds to a strongly connected component Z of DX0(X0 ∪ Y ∗).

To show that the algorithm computes such a path P ′ we need to show that in
Step 2 there is always a link vw ∈ A2 such that vw corresponds to a strongly
connected component of DX0(X0 ∪ Y ∗). Let v = (v1, ..., vk) ∈ V be the node

98

as constructed in Step 1 of the algorithm. Without loss of generality we can
assume that vi 6= t for every i ∈ [k]. We now need to show that there is a
strongly connected component Z inDX0(X0∪Y ∗) such that S(Z) ⊆ {v1, ..., vk}.
Suppose for each strongly connected component Z in DX0(X0 ∪ Y ∗) satisfying
S(Z) ∩ {v1, ..., vk} 6= ∅ we have that S(Z) * {v1, ..., vk} and let Z1, ..., Zj be
those components. By Claim 2 we have that for every component Zi, i ∈ [j]

there is a component Zi′ , i′ ∈ [j], such that there is some l ∈ Li ∩ Li′ with
tl(Zi′) < sl(Zi). But then the ordering of the sets Z1, ..., Zj induces a cycle, a
contradiction to the ordering.

Hence the algorithm computes a path P ′ from s0 to t0. Consider any link
e = vw ∈ P ′ ∩ A2 with v = (v1, ..., vk) and w = (w1, ..., wk) and let Ze be its
corresponding strongly connected component in Y ∗. For the cost of the link e
we now have that c′(e) = OPT(I(v, w)) ≤ c(Ze) since I(v, w) computes the
optimal solution connecting (vi, wi)1≤i≤k in the residual graph. Hence we have
c(P ′) =

∑
e∈P ′∩A2

c′(e) ≤
∑

e∈P ′∩A2
c(Ze) = OPT. This proves Claim 3. �

A shortest path P from s0 to t0 in D now satisfies c′(P) ≤ c′(P ′) ≤ OPT.
This concludes the proof of Theorem 4.23. �

We complement Theorem 4.23 by bounding the running time of Algorithm 2.

Theorem 4.24. The running-time of Algorithm 2 can be bounded by
O(|E| · |V |6k−2 + |V |6k−1 · log |V |).

Proof. Let I be an instance of Directed 1-robust k Disjoint Paths Aug-

mentation with D = (V,A), where |V | = n and |A| = m. Concerning the
running time, the most involving part of the algorithm is to construct the
auxiliary graph and to compute the shortest path from s1 to t1 in D. For the
auxiliary graph D = (V ,A) we have that |V| ≤ nk and |A| ≤ n2k. For each
link e ∈ A we need to solve an instance of Directed Steiner Forest on at
most k terminal pairs, which can be done in O(mn4k−2 + n4k−1 log n). Hence,
D can be constructed in O(mn6k−2 +n6k−1 log n). Since D is a directed acyclic
graph, a shortest path in D can be found in O(|V|+ |A|) = O(n2k). Thus the
total running time is O(mn6k−2 + n6k−1 log n). �

As a direct consequence of Theorem 4.23 we obtain a polynomial-time
2-approximation algorithm for Directed 1-robust k-Disjoint Paths. The
algorithm is given below.

99

Algorithm 3: 2-approximation Algorithm for Directed 1-robust

k-Disjoint Paths
1: Compute k disjoint s-t-paths using a min-cost-flow algorithm to

obtain Y
2: Construct the auxiliary graph D = (V ,A) using the k disjoint paths Y
3: Find a shortest path P in D from s1 to t1
4: For every link vw ∈ P ∩ A2 add the arcs of an optimal solution

to I(v, w) to Y
5: return Y

Corollary 4.25. Algorithm 3 is a 2-approximation to Directed 1-robust

k-Disjoint Paths.

Proof. Let OPT be the cost of an optimal solution to the instance I of Di-

rected 1-robust k-Disjoint Paths. The shortest k disjoint paths X0

from s to t in D have cost at most OPT. By Theorem 4.23 we can augment
X0 to a feasible solution X0 ∪ Y to I at cost at most OPT. Thus we have that
c(X0 ∪ Y) = c(X0) + c(Y) ≤ 2 · OPT. �

4.3.4 Connection to Other Famous Open Problems

In the previous section we have seen that there is a polynomial-time exact al-
gorithm for Directed 1-robust k Disjoint Paths Augmentation which
leads in a straightforward way to a 2-approximation for Directed 1-robust

k-Disjoint Paths. Ideally, one would like to complement such an approxi-
mation result with a hardness or inapproximability result. However, we did
not find such a reduction.

All hardness results for Bulk-robust combinatorial optimization problems
where obtained by showing that even the augmentation problem is NP-hard.
Consider for example the reduction for Robust Matching Augmentation

from Section 3. Therein, we have shown that for a given matching, even com-
puting an optimal augmentation is as hard to approximate as Set Cover. To
the best of our knowledge, this is not only true for the Robust Matching Prob-
lem, but for all Bulk-robust combinatorial optimization problems considered
so far, i.e. for 2-robust Shortest Path, Robust Matching Augmenta-

100

tion or Flexible Graph Connectivity (which is, in a sense, the Robust
Spanning Tree Problem, see Section 5).

However, this is not the case for Directed 1-robust k-Disjoint Paths,
since we have shown that the augmentation problem, i.e. Directed 1-robust

k Disjoint Paths Augmentation, is polynomial-time solvable for con-
stant k. Hence, there is some evidence that Directed 1-robust k-Disjoint

Paths might actually be polynomial-time solvable. The problem in using
Algorithm 2 for a polynomial-time algorithm for Directed 1-robust k-

Disjoint Paths is the following. We need to somehow combine Algorithm 2,
a dynamic programming approach, with an algorithm for finding k disjoint
s-t-paths. But this is precisely the difficulty. Algorithms for finding k dis-
joint s-t-paths usually iteratively increase the number of disjoint paths until
the number of disjoint paths reaches k. While increasing the number of these
paths, we need to keep track of which disjoint paths we have already selected.
To the contrary, a dynamic programming approach works completely the other
way around. Therein, we precisely do not want to keep track of all the edges
that we have selected so far since this would lead to an exponential running
time. Combining these two kinds of algorithms would be a very nice result
and could lead to a breakthrough for many related problems for which the
complexity status is still unknown for a long time.

Even though we did not find a reduction to an NP-hard problem, we show
that Directed 1-robust k-Disjoint Paths is closely related to two other
problems for which the complexity status is unknown. Even though we do
not give a reduction, we show that a special case of Directed 1-robust k-

Disjoint Paths corresponds to 2-connected Directed k Steiner Tree

with one additional constraint.

Note that 2-connected Directed k Steiner Tree is a generaliza-
tion of Directed Steiner Tree and therefore, by [HK03], does not admit
a log2−ε(n)-factor approximation algorithm unless NP ⊆ ZTIME(npolylog(n)).
However, there is a big gap in the complexity between Directed Steiner

Tree and 2-connected Directed k Steiner Tree if the number k of
terminals is bounded. While it is known that Directed Steiner Tree is
FPT in the number of terminals (and therefore polynomial-time solvable for
constant k), it is still unknown if 2-connected Directed k Steiner Tree

101

can be solved in polynomial-time, even for k = 2 (note that for k = 1 an opti-
mal solution is simply a min-cost-2-flow). We now show that a special case of
Directed 1-robust k-Disjoint Paths corresponds to 2-connected Di-

rected k Steiner Tree with the additional constraint that any cut between
s and the terminal vertices t1, . . . , tk contains at least k + 1 edges.

Proposition 4.26. A polynomial-time algorithm for Directed 1-robust

k-Disjoint Paths implies a polynomial-time algorithm for 2-connected

Directed k Steiner Tree with the additional constraint that every s-T cut
contains at least k + 1 edges.

Proof. Consider an instance I of 2-connected Directed k Steiner Tree

with graph G = (V,E), cost c ∈ QE, root s ∈ V , and terminals T =

{t1, . . . , tk}. We now construct an instance I′ of Directed 1-robust k-

Disjoint Paths as follows. We add to G a vertex t and all edges between T
and t, that is we add the edge set Et = {(ti, t) : ti ∈ T}. The resulting graph
is called G′. The cost of the new edges Et are zero, while the edges in E have
the same cost as before. Thus we have

c′(e) :=

c(e), if e ∈ E(G),

0, otherwise.

Finally we set F := E, that is, all original edges are unsafe, while the new
edges Et are safe.

Consider any feasible solution X to I′. Clearly we have Et ⊆ X, since
otherwise X is not feasible. We now show that the feasibility of X implies
that there are 2 disjoint s-ti paths in G[X] for every ti ∈ T . Assume this is not
true and there are no two disjoint path between s and, say tk ∈ T in G[X]. By
the max flow min cut theorem it follows that there is a cut edge e ∈ E (or no
edge at all) between s and tk in G[X]. But then Y := {Et ∪ e \ (tk, t)} is a cut
in G′[x] of size k containing an unsafe edge. This contradicts the feasibility
of X. Furthermore, note that every s-T cut in G[X] contains at least k + 1

edges since all edges in E are unsafe, as otherwise X is not feasible to I′.

Now observe that there is a one-to-one correspondence between feasible so-
lutions to 2-connected Directed k Steiner Tree on I with the property
that every s-T cut contains at least k + 1 edges and feasible solutions for

102

s
D

t1

t2

u

t

Figure 4.2: Illustration of the construction in Proposition 4.27. The rectan-

gle indicates the graph D in which all edges are unsafe. The black edges are

safe and the red edges are unsafe.

Directed 1-robust k-Disjoint Paths on I′. This completes the proof of
Proposition 4.26. �

Furthermore, we show that 1-2-connected Directed 2 Steiner Tree

is a special case of Directed 1-robust 2-Disjoint Paths. Note that ac-
cording to [CLNV14] even the complexity of 1-2-connected Directed 2

Steiner Tree is still open.

Proposition 4.27. A polynomial-time algorithm for Directed 1-robust

2-Disjoint Paths implies a polynomial-time algorithm for 1-2-connected

Directed 2 Steiner Tree.

Proof. Let I be an instance of 1-2-connected Directed 2 Steiner Tree

with graph G = (V,E), cost c ∈ QE, root s ∈ V , and terminals T = {t1, t2}.
Similar to the proof of Proposition 4.26 we construct an instance I′ of Di-

rected 1-robust 2-Disjoint Paths as follows. We add to G two vertices u
and t and four directed edges Ê = {(s, u), (t1, u), (u, t), (t2, t)}. The resulting
graph is called G′. The costs of the the new edges Ê are zero, while the edges
in E have the same cost as before. Thus we have

c′(e) :=

c(e), if e ∈ E(G),

0, otherwise.

Finally, we set F := E∪{(s, u), (t1, u)}, that is, the edges incident to t are safe
while all other edges are unsafe. An illustration of the construction is given in
Figure 4.2.

103

Consider any feasible solution X to I′. Clearly we have Ê ⊆ X, since
otherwise X is not feasible. We now show that the feasibility of X implies
that there is at least one s-ti path and at least 2 disjoint s-t2 paths in G[X].
Assume the first part is not true and that there is no path from s to t1 in
G[X]. But then {(s, u), (v, t)} is a cut of size two in G′, where (s, u) is an
unsafe edge. This contradicts the feasibility of X.

Now assume that there are no two disjoint s-t2 paths in G[X]. Similar to
the proof of Proposition 4.26, we then have that X is not feasible.

Now observe that there is a one-to-one correspondence between feasible
solutions to 1-2-connected Directed 2 Steiner Tree on I and feasible
solutions to Directed 1-robust 2-Disjoint Paths on I′. This concludes
the proof of Proposition 4.27. �

According to [CLNV14], the undirected version of 1-2-connected Di-

rected 2 Steiner Tree can be solved by a polynomial reduction to the
following problem.

Problem 4.28 (Min-Cost Cycle Through 3 Vertices). Given an undi-
rected graphD = (V,A), a cost function c ∈ QE, and three vertices u, v, w ∈ V ,
the task is to find a minimum cost cycle C ⊆ E containing u, v and w.

To the best of our knowledge, the complexity status of Min-Cost Cycle

Through 3 Vertices is still unknown, even though Björklund, Husfeldt
and Taslaman [BHT12] showed that there is a polynomial-time randomized
algorithm that finds an optimal solution with one-sided errors of exponentially
small probability in the number of vertices.

4.4 Conclusion

In this chapter we considered the robust disjoint s-t-paths problem and pro-
vided algorithms and hardness results. The main achievement is a polynomial-
time exact algorithm for Directed 1-robust k Disjoint Paths Augmen-

tation for constant k which immediately implies a 2-approximation for Di-

rected 1-robust k-Disjoint Paths.
As already mentioned in Section 4.3.4, the main open problem of this chap-

ter is whether Directed 1-robust k-Disjoint Paths admits a polynomial-

104

time exact algorithm or not. On the one hand, all hardness results for Bulk-
robust combinatorial optimization problems were obtained by showing that
even the augmentation problem is NP-hard. This is not true for Directed

1-robust k-Disjoint Paths since we designed an efficient exact algorithm
for this task. Therefore, there is some evidence that the problem is tractable.
However, showing tractability of Directed 1-robust k-Disjoint Paths

seems to be a difficult task, since it encapsulates several other problems for
which the complexity status is unknown. As a first step one might look at
the problem 1-2-connected Directed 2 Steiner Tree, which is a special
case of Directed 1-robust 2-Disjoint Paths.

Chapter 5

Robust Spanning Trees

5.1 Introduction

The problem studied in this chapter, which we call Flexible Graph Con-

nectivity (FGC), lies in the intersection of classical network design and
robust optimization. It encapsulates several well studied problems that have
received significant attention from the research community, such as the prob-
lems Minimum Spanning Tree (MST), 2-Edge Connected Spanning

Subgraph (2-ECSS) [FJ81, Jai01, GGP+94, SV14], Weighted Tree Aug-

mentation (WTAP) [Adj18, FGKS18, FJ81, GKZ18, KN18, KN16, Nut17],
and Matching Augmentation [CDG+19]. As such, FGC is APX-hard and
it encompasses all of the technical challenges associated with approximating
these problems simultaneously. In a sense, MST and 2-ECSS represent two
far ends of a spectrum of possible network design tasks that can be modeled
with FGC and the other mentioned problems lie in between. We argue that by
translating attributes of a real-life network design problem, one is much more
likely to encounter a problem from the aforementioned spectrum, as opposed
to one of its more famous extreme cases. The problem Flexible Graph

Connectivity (FGC) is formally defined as follows.

Problem 5.1 (Flexible Graph Connectivity). We are given an undi-
rected connected graph G = (V,E), non-negative edge weights w ∈ QE

≥0, and
a set of edges F ⊆ E called unsafe edges. Let F := E \ F be the safe edges.

The task is to compute a minimum-weight edge set S ⊆ E with the property
that (V, S − f) is a connected spanning graph for every f ∈ F .

105

106

For an example of FGC together with 2-ECSS and WTAP please refer
to Figure 5.1. We now briefly illustrate why MST, 2-ECSS, and WTAP

are all special cases of FGC. Clearly, if all edges of the input graph are safe,
then an optimal solution is a minimum-weight spanning tree. If, on the other
hand, all edges of the input graph are unsafe, then an optimal solution is a
minimum-weight 2-edge-connected spanning subgraph. Finally, if the unsafe
edges form a weight-zero spanning tree T of the input graph, then an optimal
solution is a minimum-cost tree augmentation of T . The goal of this chapter
is to provide approximation algorithms for FGC and our main result is the
following theorem.

Theorem 5.2. Flexible Graph Connectivity admits a polynomial-time
2.523-approximation algorithm.

In the spirit of recent advancements for WTAP our results also extend to
bounded-weight versions of the problem. A bounded-weight FGC instance is
one whose weights all range between 1 and some fixed constant M ∈ N. For
bounded-weight FGC we obtain the following result.

Theorem 5.3. Flexible Graph Connectivity admits a polynomial-time
2.404-approximation algorithm on bounded-weight instances.

Note that the algorithm stated in Theorem 5.3 has exponential running-
time in the ratio wmax

wmin
between the maximum weight and minimum weight.

We elaborate on the techniques used to prove these theorems as well as their
connection to results on 2-ECSS and WTAP later on. We start by giving our
motivation for studying this problem.

The relationship between FGC, 2-ECSS and WTAP. As was pointed
out before, some classical and well studied network design problems are spe-
cial cases of FGC, including 2-ECSS and WTAP. Thus, approximating FGC

is at least as challenging as approximating the latter two problems. In this
paragraph we present some evidence that FGC might actually be significantly
harder. For the general case of both 2-ECSS and WTAP the iterative round-
ing algorithm of Jain [Jai01] provides an approximation factor of 2, which is
best known. It is important to note that 2-ECSS subsumes WTAP in the

107

2

1

0

10

10

10

1

2

1

(a) FGC instance. Dark edges are safe
and light edges are unsafe.

(b) Optimal Solution to FGC

(c) Optimal 2-edge-connected
spanning subgraph

(d) Optimal MST Augmentation

Figure 5.1: The versatility of FGC. In (a) an instance of FGC with unsafe

edges colored gray. In (b) the optimal solution. In (c) the optimal solution to

the same instance, except that all edges are unsafe. The problem coincides

with 2-ECSS on the same graph. In (d) the dashed edges are an optimal

FGC solution for the instance where the unsafe edges have cost zero. It is

equivalent to the tree augmentation problem for the gray minimum spanning

tree.

general (weighted) case. Nevertheless, it is both instructive and useful to re-
late FGC to both problems. In particular, this enables us to improve the
approximation ratio for the bounded-weight version of FGC.

In contrast, for the unweighted versions of both problems (and in the case of
WTAP more generally for bounded weights) a long line of results has generated
numerous improvements beyond ratio 2, leading to the currently best known
bounds of 4/3 for unweighted 2-ECSS [SV14], 1.46 for unweighted tree augme-
nation [GKZ18] and 1.5 for WTAP with bounded weights [FGKS18, GKZ18].
The case of unit (or bounded) weights is where techniques for approximating
2-ECSS and WTAP start to differ significantly. In both cases, the best known

108

bounds are achieved by combining LP-based techniques with clever combina-
torial tools. Nevertheless, there seems to be very little intersection in both the
nature of used LPs and the overall approaches, as techniques suitable for one
problem do not seem to provide competitive ratios for the other.

Consequently, there are several implications for approximating FGC. First,
achieving an approximation factor better than 2 is an ambitious task, as it
would simultaneously improve the long-standing best known bounds for both
2-ECSS and WTAP. At the same time, for achieving a factor 2, it may be
possible to use classical tools for survivable network design [Jai01]. We show
that, at least with natural LPs, this is impossible, as the integrality gap of such
LPs can be significantly larger than 2. Consider the following natural gener-
alization of the cut-based formulation for survivable network design to FGC.

minimize wTx

subject to
∑

f∈δ(S)∩F

xf +
∑

e∈δ(S)∩F

2xe ≥ 2 for all ∅ (S (V

xe ∈ {0, 1} for all e ∈ E

(5.1)

In essence, the IP formulation (5.1) states that each cut in the graph needs
to contain at least one safe edge or at least two edges, which indeed is the fea-
sibility condition for FGC. One can show that many important properties that
are central in Jain’s [Jai01] analysis still hold, e.g., the possibility to perform
uncrossing for tight constraints at a vertex LP solution. These properties might
become useful for devising a pure LP-based algorithm for FGC. However, for
the instance shown in Figure 5.2, the integrality gap of formulation (5.1) is at
least 8/3.

Finally, the recent advances achieved for unweighted and bounded-weight
versions of 2-ECSS and WTAP seem to be unsuitable to directly tackle FGC,
as they were not found to provide good ratios for both 2-ECSS and WTAP

simultaneously. It is natural to conclude that a good ratio for FGC can only
be achieved by a combination of techniques suitable for both 2-ECSS and
WTAP.

To summarize, it seems that while the only known techniques for simulta-
neously approximating both 2-ECSS and WTAP within a factor two rely on
rounding natural linear programming relaxations of a more general network de-

109

(a) FGC instance. (b) Optimal integral
solution of cost 2.

(c) Optimal fractional
solution of cost 3/4.

Figure 5.2: FGC instance for which ILP (5.1) has integrality gap 8/3. Gray

edges are unsafe and have cost 0. Black edges are safe and have cost 1. The

dashed (safe) edges are fractional with value 1/4.

sign problem (such as the survivable network design problem [GGP+94, Jai01]),
the integrality gaps of such natural LPs for FGC are considerably larger than
two. At the same time, due to its strong motivation, it is desirable to achieve a
factor close to two, which is the state of the art for both 2-ECSS and WTAP.

In this chapter we show that this goal can be achieved by properly combining
algorithms for 2-ECSS and WTAP. Our algorithms are simple and black-box
to such an extent that results for restricted versions of WTAP (e.g., bounded
cost) can be directly applied to FGC with the same restrictions, thus leading
to improved bounds for these restricted versions of FGC as well. At the
same time, the analysis is complex and requires careful charging arguments,
generalizations of the notion of exchange bijections of spanning trees, and
factor revealing optimization problems, as we elaborate next.

Summary of Algorithmic Techniques. We present here a high-level
overview of some of the technical ingredients that go into our algorithm and
analysis used to prove Theorem 5.2. The algorithm carefully combines the
following three rather simple algorithms for FGC, each having an approxima-
tion ratio significantly worse than the one exhibited in Theorem 5.2. A more
detailed description of the algorithms will be given later on. Each of the algo-
rithms establishes 2-edge-connectivity in a modified graph, where a subset of
safe edges is contracted. In order to be able to establish 2-edge connectivity,
we need to add a parallel unsafe edge e′ for each safe edge e of the same cost.
It can easily be observed that optimal solutions for the new instance are also

110

optimal solutions for the old instance and vice versa. The three algorithms are
stated below.

Algorithm A Compute a 2-edge-connected spanning subgraph.
Algorithm B Compute a minimum spanning tree, contract its safe edges

and make it 2-edge-connected by solving the corresponding
WTAP instance.

Algorithm C Compute a minimum spanning tree, contract its safe edges,
then compute a 2-edge-connected spanning subgraph on
the resulting graph. Return the union of this solution and
the safe edges of the spanning tree.

It is not hard to show that Algorithms A, B, and C are polynomial-time
approximation algorithms for FGC, with approximation ratios of 4, 3, and
5, respectively, given that 2-ECSS and WTAP admit polynomial-time 2-
approximation algorithms. We defer the details to the later sections and in-
stead present a road map for proving the main result.

Our approximate solution is obtained from returning the best of many so-
lutions, each computed by one of the above three algorithms on an instance
that is computed from the original instance by appropriately scaling the costs
of the safe edges. The motivation for making safe edges cheaper is that buying
a similarly priced unsafe edge instead likely incurs extra costs, since one safe
edge or at least two edges have to cross each cut. The technical challenge is
to determine the most useful scaling factors.

The main idea in the analysis is to relate the costs of edges in an optimal
solution to the costs of edges in the computed solutions based on a proper
generalization of exchange bijections between spanning trees. Exchange bijec-
tions ϕ : A→ B are bijections between bases A,B of a matroid (e.g., spanning
trees in a connected graph), such that for any a ∈ A, the set A \ {a} ∪ {ϕ(a)}
is again a basis of the matroid. It is well known that an exchange bijection
always exists. We introduce our generalized notion of α-monotone exchange
bijections, where α is a scaling factor used in the algorithm, and prove that
they always exist between a spanning tree of the optimal and a spanning tree
of a computed solution. We then combine the properties of such bijections
with additional technical ideas to derive an upper bound on the cost of the
computed solution. The bound is expressed in terms of several parameters

111

problem general weights bounded weights unweighted

FGC 2.523 (Thm. 5.2) 2.404 (Thm. 5.3) 3/2 (Thm. 5.4)
2-ECSS 2 [Jai01] 2 [Jai01] 4/3 [SV14]
WTAP 2 [FJ81] 3/2 [GKZ18] 1.46 [GKZ18]

Table 5.1: Approximation ratios for FGC and some special cases.

that represent proportions of costs associated with parts of the computed and
an unknown optimal solution, defined through the exchange bijections.

The final step is to combine all obtained upper bounds. Since we have the
choice of selecting the scaling factors, but have no control over the param-
eters appearing in the upper bounds, we can compute a conservative upper
bound on the approximation ratio by solving a three-stage factor-revealing
min-max-min optimization problem. The inner minimum is taken over the
upper bounds on the values of the solutions computed by Algorithms A, B,
and C. The maximum is taken over the parameters that depend on an un-
known optimal solution. Finally, the outer minimum is taken over the choice
of scaling factors. One interesting aspect of our factor-revealing optimization
problem is that its solution gives not only a bound on the approximation ratio
of the algorithm (as in, e.g., [JMM+03, ABWZ14]), but it also suggests op-
timal instance-independent scaling factors to be used by the algorithm itself.
One can show that by computing the scaling factors it is possible to fur-
ther constrain the unknown parameters in the problem, thus obtaining better
instance-specific bounds. While we can compute these factors in polynomial
time, we will not elaborate on this approach in this work.

Since the overall factor-revealing optimization problem is a three-stage min-
max-min program, we can only provide analytic proof for its optimal value for
very small sizes. However, we are still able to give an analytic bound of 2.523

in order to prove Theorem 5.2 by combining only Algorithms A and C, but
using the optimal choices of scaling factors for a given instance. To achieve
the factor 2.404 for bounded-weight instances we use all three Algorithms A,
B, and C to bound the optimal solution of the min-max-min problem. Clearly,
using all three algorithms yields better bounds, but we cannot give an analytic
upper bound. Instead we give a computational upper bound on the min-max-
min problem using the BARON solver [The19], which is a global optimization

112

software and is based on branch-and-bound techniques to compute optimal so-
lutions. An overview of our approximation guarantees along with some related
results can be found in Table 5.1.

Further Results. We also consider several generalizations and special cases
of FGC. First, we show that the unweighted version of the problem admits
a 3/2-approximation algorithm. We note that Unweighted FGC does not
contain unweighted WTAP as special case, and hence, our result does not
imply a 3/2-approximation algorithm for unweighted WTAP. In particular,
we prove the following theorem for a generalization of FGC, which we call
k-FGC. The problem k-FGC asks for the minimum weight connected subgraph
of a given graph that can withstand the failure of at most k unsafe edges. Note
that 1-FGC is simply FGC.

Theorem 5.4. Unweighted k-Flexible Graph Connectivity admits
a polynomial-time

(
ϑk+1 · 2k+1

2k+2
+ 1

k+1

)
-approximation algorithm.

By ϑk+1 we denote the approximation ratio of an approximation algorithm
for the minimum (k + 1)-edge-connected spanning subgraph problem. In par-
ticular this implies a polynomial-time 3/2-approximation algorithm for Un-

weighted FGC. Note that the approximation guarantee in Theorem 5.4
tends to 1 as k tends to infinity. We prove this result in Section 5.2.

We contrast our algorithmic results by showing in Section 5.4 that a natural
generalization of FGC to matroid optimization is NP-hard to approximate
within any sublogarithmic factor.

Notation. We denote by ϑk the ratio of an approximation algorithm for
the problem of finding a minimum-cardinality k-edge-connected spanning sub-
graph. Similarly, we denote by c2EC (cTAP, resp.) the ratio of an approximation
algorithm for 2-ECSS (WTAP, resp.).

For the remainder of this chapter we consider an instance I = (G,w, F) of
FGC and some optimal solution Z∗ ⊆ E(G) of I. To avoid technicalities, we
add to each safe edge a parallel unsafe edge of the same cost. It is readily
seen that this modification preserves optimal solutions (a solution that uses
both edges of a parallel pair is not optimal and we may always just pick
the safe edge in an optimal solution). Observe that the solution Z∗ has the

113

following structure: for some r ∈ N, the graph (V (G), Z∗) consists of r 2-edge-
connected components C1, C2, . . . , Cr that are joined together by safe edges
E ′ := {f 1, f 2, . . . , f r−1} ⊆ F in a tree-like fashion. That is, if we contract each
component Ci to a single vertex, the remaining graph is a tree T ∗ with edge
set E ′. On the other hand, if we contract E ′ , we obtain a 2-edge-connected
spanning subgraph of the resulting graph. We let δ := w(E ′)/OPT(I). That
is, the value δ is the proportion of the cost of the safe cut edges E ′ relative to
the total cost of the optimal solution Z∗.

Organization of the Chapter. In the next section we consider the un-
weighted case and prove the result for Unweighted k-FGC. Section 5.3 deals
with the weighted case. Therein, we first give in Section 5.3.1 the three basic
algorithms mentioned in the introduction followed by the overall algorithm
(Algorithm 4) for FGC in Section 5.3.2. In Section 5.3.3 we present the tech-
nical tools to bound the cost of Algorithm 4. Section 5.3.4 contains the rather
easy proof that Algorithm 4 is a 2.8-approximation. In Sections 5.3.5 and 5.3.6
we prove Theorem 5.2 and Theorem 5.3. To complement the approximation
result, we give an o(log n) inapproximability result in Section 5.4. Finally,
Section 5.5 concludes the chapter.

5.2 Unweighted k-Flexible Graph Connectivity

In this section we give an approximation algorithm for Unweighted k-FGC,
which asks for a minimum-cardinality subgraph of a given graph, such that the
removal of any k unsafe edges results in a connected graph. Note that 1-FGC

is simply FGC.

Recall that we denote by ϑk the approximation ratio of a polynomial-time
algorithm for the problem Unweighted k-ECSS. Currently, the best known
values for ϑk are 4/3 for k = 2 due to a result of Sebő and Vygen [SV14],
1 + 2/(k + 1) for 3 ≤ k ≤ 6 due to Cheriyan and Thurimella [CT00], and
1 + 1/2k+O(1/k2) for k ≥ 7 due to Gabow and Gallagher [GG12]. Note that
if k tends to infinity then ϑk tends to 1. In the remainder of this section we
prove the following theorem.

114

Theorem 5.4. Unweighted k-Flexible Graph Connectivity admits
a polynomial-time

(
ϑk+1 · 2k+1

2k+2
+ 1

k+1

)
-approximation algorithm.

Note that with the current best value for ϑ2 from [SV14], Theorem 5.4 gives
a 3/2-approximation guarantee for Unweighted FGC.

The approximation algorithm proceeds as follows. First, we compute a
maximum forest X on the safe edges F . We then compute a ϑk+1-approximate
(k + 1)-edge-connected spanning subgraph Y of G/X and output X ∪ Y .

Lemma 5.5. Let H ⊆ G be a feasible solution to I. Then H/(F ∩ E(H)) is
(k + 1)-edge-connected.

Proof. Suppose for a contradiction that G′ := H/(F∩E(H)) is at most k-edge-
connected. That is, there are two vertices v, w ∈ V (G′) that are connected
by at most k edge-disjoint paths. Therefore, there is a cut F ′ ⊆ E(G′) of
size at most k separating v and w. But then F ′ is also a cut of size at most
k in H and F ′ consists only of unsafe edges. Therefore, H is not feasible, a
contradiction. �

We are now ready to prove Theorem 5.4.

Proof of Theorem 5.4. Let H = X ∪ Y be a solution computed by the algo-
rithm described above. Suppose that a maximum forest in G − F has size
` = |E(X)|. Let Y ∗ be a minimum (k+ 1)-edge-connected spanning subgraph
of G/E(X). We may compute in polynomial-time a (k+ 1)-ECSS of G/E(X)

of size ϑk+1 · |E(Y ∗)|. Therefore, the solution X ∪ Y output by the algorithm
has size

|E(X)|+ |E(Y)| ≤ `+ ϑk+1 · |E(Y ∗)| ≤ `+ ϑk+1 · OPT(I) .

On the other hand, we have that

|E(X)|+ |E(Y)| ≤ `+ 2(k + 1)(n− `) ≤ 2OPT(I)− (2k + 1)` .

Hence,

|X|+ |Y | ≤min{`+ ϑk+1 · OPT(I), 2OPT(I)− (2k + 1)`}

≤ 2 + ϑk+1(2k + 1)

2k + 2
· OPT(I)

=

(
ϑk+1 ·

2k + 1

2k + 2
+

1

k + 1

)
· OPT(I) ,

as claimed. This concludes the proof of Theorem 5.4. �

115

5.3 Weighted Flexible Graph Connectivity

In this section we present our two main results: a polynomial-time 2.523-
approximation algorithm for FGC (Theorem 5.2) and a polynomial-time 2.404-
approximation algorithm for bounded-weight FGC (Theorem 5.3).

As pointed out in the introduction of this chapter, we first state three sim-
ple algorithms which turn out to perform poorly on their own. Then, we
show how we can improve on these simple algorithms by applying them to a
large amount of modified instances, where we scale the cost of some of the
edges. The algorithm then simply outputs the best among all these solutions.
After introducing some useful technical properties used throughout this sec-
tion, we then show how we can bound the cost of each solution computed by
the algorithm. Finally, we combine all these bounds and obtain the proposed
approximation factors.

5.3.1 Three Simple Approximation Algorithms for FGC

We introduce three basic approximation algorithms for FGC that use in a
black-box fashion approximation algorithms for 2-ECSS and WTAP. With
the best known algorithms for these problems, it is readily seen that the first
has an approximation guarantee of (2 + 2δ) and the second has a guarantee
of 3. Using our technical tools from Section 5.3.3 one can show that the third
algorithm is a 5-approximation algorithm for FGC. Interestingly, it performs
much better precisely when the other two algorithms exhibit their worst-case
behavior. Note that none of the three algorithms attains the integrality gap
of 8/3 exhibited by the instance shown in Figure 5.2.

Algorithm A: a (2 + 2δ)-approximation algorithm. Algorithm A com-
putes (in polynomial time) a c2EC-approximate 2-edge-connected spanning
subgraph, e.g., by Jain’s algorithm [Jai01]. Algorithm A then removes all
unsafe edges that are parallel to safe edges of the spanning subgraph and re-
turns the resulting edge set. Observe that the returned solution is feasible.
We now argue that Algorithm A is a (2 + 2δ)-approximation algorithm. By
adding a copy of each edge in E ′ to the optimal solution Z∗ we obtain a 2-
edge-connected spanning subgraph H∗1 of G. The cost w(H∗1) of H∗1 is given

116

by

w(H∗1) =
∑

e∈Z∗\E′
w(e) + 2 ·

∑
e∈E(Z∗)∩E′

w(e) .

Since w(H1) ≤ 2w(H∗1), it follows that

w(H1) ≤ 2w(H∗1) = 2(1− δ) · OPT(I) + 4δOPT(I) = (2 + 2δ) · OPT(I)

as claimed. Observe that Algorithm A performs best if the weight of the safe
edges E ′ is small.

Algorithm B: a 3-approximation algorithm. Algorithm B computes a
minimum spanning tree T of G and then computes a cTAP-approximate so-
lution to the WTAP instance (G, T ′, w), where the tree T ′ is obtained by
contracting each safe edge of T . The solution of the WTAP instance together
with the tree T is a feasible solution for I by Lemma 5.5. Since w(T) ≤ OPT(I),
the best available algorithms for WTAP (see Table 5.1) give a 3-approximation
for FGC, and a 5/2-approximation for FGC on bounded-weight instances.

Algorithm C: a 5-approximation algorithm. Algorithm C first com-
putes a minimum spanning tree T of G. Let G′ be the graph obtained from
G by contracting the safe edges of T , that is, G′ := G/(E(T) ∩ F). Algo-
rithm C then computes a c2EC-approximate 2-edge-connected spanning sub-
graph H ′ ⊆ E(G′) and returns the edge set (E(T) ∩ F) ∪ H ′. It is readily
seen that Algorithm C computes a feasible solution and that the safe edges
of T have cost at most OPT(I). Using exchange bijections from Section 5.3.3,
it can be shown that w(H ′) ≤ 4OPT(I), so Algorithm C is a 5-approximation
algorithm for FGC.

5.3.2 An Improved Approximation Algorithm

In this section we describe our improved approximation algorithm for FGC,
which hybridizes the three basic algorithms for FGC discussed in Section 5.3.1.
We first illustrate why Algorithm B, which has the best approximation guar-
antee of the three simple algorithms, may perform poorly. Recall that Algo-
rithm B first computes a minimum spanning tree of G and then approximates

117

Algorithm 4: Improved Approximation Algorithm for FGC
input : Instance I = (G,w, F) of FGC

compute threshold values W := {αe | e ∈ E(G)} ∪ {0, 1}
run Algorithm A on I to obtain solution ZA

for threshold value α ∈ W do
run Algorithms B and C with scaling factor α to obtain solutions
ZB
α and ZC

α , respectively

return solution with lowest cost among ZA and {ZB
α , Z

C
α | α ∈ W}

the WTAP instance (G, T ′, w), where the tree T ′ is obtained from the mini-
mum spanning tree by contracting its safe edges. Consider a cut edge e ∈ F of
an optimal solution to I. If Algorithm B chooses instead of e a slightly cheaper
unsafe edge f across the same cut in the MST computation, then to make this
cut “safe” in the second step we need to buy either the edge e or another edge
of similar cost across the cut. However, we can only cTAP-approximate this
step. Hence, if Algorithm B chooses f instead of e, it may result in cost of
up to 3w(e). We try to avoid such a situation by scaling the weight of all safe
edges by a suitable factor α ∈ [0, 1], hence making safe edges more attractive.

Algorithm 4, our improved approximation algorithm for FGC, proceeds as
follows. It first computes suitable scaling factors W ⊆ [0, 1] (called “threshold
values”) for the costs of the safe edges. Then, Algorithm 4 runs Algorithm A
using the original weights w to obtain solution ZA. We say that we run Al-
gorithm B (resp., C) with scaling factor α if the minimum spanning tree in
Algorithm B (resp., C) is computed with respect to weights obtained from w

by scaling the costs of the safe edges by α. Algorithm 4 runs Algorithms B
and C with each scaling factor α ∈ W ∪ {0, 1} and returns a solution of min-
imal weight among all the different solutions computed by Algorithms A, B,
and C.

From the discussion in Section 5.3.1 it follows that Algorithm 4 returns a
feasible solution. As we will later see (and is pointed out in Algorithm 4) we
use only |E| many threshold values. Since we can compute the threshold values
in polynomial-time it follows that Algorithm 4 runs in polynomial-time. We
defer the proofs of the running-time to Section 5.3.3.

Let us denote by A(I) the weight of the solution returned by Algorithm 4.

118

Using properties of the threshold values we show that the selection of the
scaling factors in Algorithm 4 is best possible.

Lemma 5.6. LetW ′ ⊆ [0, 1] and let A′(I) be the weight of the solution returned
by Algorithm 4 run with W set to W ′. Then A(I) ≤ A′(I).

The proof of Lemma 5.6 will be given in Section 5.3.3. A detailed analysis
of the approximation ratio of Algorithm 4 is deferred to Section 5.3.5. Here,
we give a high-level overview. Our starting point is Lemma 5.6, which allows
us to assume that Algorithm 4 tries all scaling factors in [0, 1]. We show that
the approximation ratio of Algorithm 4 is bounded from above by the optimal
value of a min-max-min optimization problem. For an instance I of FGC and
some N ∈ N, the optimization problem has the following data.

• Scaling factors α1, α2, . . . , αN ∈ [0, 1]. Due to the discussion above, in
our analysis of Algorithm 4 we are free to choose these values.

• Parameters β1, β2, . . . , βN , γ1, γ2, . . . , γN ∈ [0, 1], which depend on the
structure of an optimal solution. These parameters additionally satisfy∑N

j=1 βj +
∑N

j=1 γj = 1.

• Functions fA, as well as fB1 , fB2 , . . . , fBN and fC1 , fC2 , . . . , fCN that bound
from above in terms of αi, βi, γi, 1 ≤ i ≤ N , c2EC and cTAP, the cost of
the solutions.

Precise definitions of the parameters and the functions will be given in Sec-
tion 5.3.5. We note that Algorithm B is only used in the proof of Theorem 5.3.
Technically, we show that for a proper choice of functions fA, fBi , and fCi the
approximation guarantee of Algorithm 4 is bounded by the optimal value of
the following optimization problem.

min
αi∈[0,1] : 1≤i≤N

max
βi∈[0,1] : 1≤i≤N
γi∈[0,1] : 1≤i≤N

min
1≤i≤N

{fA(·), fBi (·), fCi (·)}

subject to
N∑
j=1

βj +
N∑
j=1

γj = 1

(5.2)

Our goal is to provide suitable functions fA, fBi , and fCi for our analysis.
In Section 5.3.5 we will give an analytic upper bound of 2.523 on the optimal
value of (5.2).

119

5.3.3 α-MSTs, Thresholds, and Exchange Bijections

In this section we present our main technical tools that are needed for the
analysis of Algorithm 4.

We first show that safe edges and unsafe edges exhibit a “threshold” behavior
with respect to MSTs if the costs are scaled by some α ∈ [0, 1]. Furthermore,
we show that i) the used threshold values can be computed in polynomial time,
which is essential to ensure that Algorithm 4 runs in polynomial time, and ii)
these are the best choice of scaling factors for Algorithm 4, which allows us
to assume in our analysis that we execute Algorithm 4 for all scaling factors
α ∈ [0, 1]. For α ∈ [0, 1], we denote by

wα(e) =

α · w(e), if e ∈ F , and

w(e), otherwise

the weight function obtained from w by scaling the costs of the safe edges by α.
A spanning tree T is called α-minimum spanning tree (α-MST) if E(T) has
minimal weight with respect to wα.

Consider changing the scaling factor α smoothly from 0 to 1. We observe
that for any safe edge e, if there is an α-MST containing e, then there is also
an α′-MST containing e for any α′ ≤ α ≤ 1. On the other hand, if there is an
α-MST containing an unsafe edge f then there is also an α′-MST containing f
for any α ≤ α′ ≤ 1. We formally capture this notion in the following definition.

Definition 5.7. Let e ∈ E and αe ∈ [0, 1]. We say that αe is a lower threshold
for e if for any α ∈ [0, 1] there is an α-MST containing e if and only if α ≥ αe.
If e is in no α-MST for 0 ≤ α ≤ 1, we define the lower threshold value of
e to be ∞. Similarly, αe is an upper threshold for e if for α ∈ [0, 1] there is
an α-MST containing e if and only if α ≤ αe. The threshold values of an
instance I = (G,w, F) are the collection of all threshold values for all edges,
i.e. {αe | e ∈ E(G)}.

The following technical lemma ensures the existence of threshold values for
safe and unsafe edges.

Lemma 5.8. For each unsafe edge f ∈ F there is a lower threshold
αf ∈ [0, 1] ∪ {∞}. For each safe edge e ∈ F there is an upper threshold
αe ∈ [0, 1].

120

Proof. We first prove the following claim.

Claim 1. Let f ∈ F be an unsafe edge. If f is in some α-MST then for any
α′ ≥ α, there is some α′-MST containing f .

Proof. Let α′ ≥ α and let us fix some α′-MST Tα′ . Suppose for a contradiction
that f is in Tα but not in Tα′ and assume that f has smallest weight among all
such edges. Consider the edges e1, e2, . . . , em of G ordered non-decreasingly by
their weight wα and suppose f = ei. Similarly, let e′1, e′2, . . . , e′m be the edges of
G ordered non-decreasingly by wα′ and suppose that f = e′i′ . Note that due to
the construction of the weight function, the weights of all edges in F are scaled
by the same factor α and the weights of the edges in F are the same for wα
and wα′ . Therefore, we have that i′ ≤ i and that {e′1, . . . , e′i′} ⊆ {e1, . . . , ei}.

For 1 ≤ i ≤ m, let T iα (T iα′ , resp.) be the restriction of Tα (Tα′ , resp.) to
e1, e2, . . . , ei (e′1, e′2, . . . , e′i, resp.). Since f = ei′ is not in T i

′

α′ , the graph T i
′

α′ + f

contains a unique cycle Cf . Let S := E(Cf) \ E(T iα). The set S is non-empty
since f = ei is in T iα. For each e ∈ S, the graph T iα + e contains a unique cycle
Ce. Hence, the edge set

C ′ := (E(Cf) \ S) ∪
⋃
e∈S

E(Ce)− e

contains a cycle, but C ′ ⊆ E(T iα), which contradicts our assumption that Tα
is a tree. This proves Claim 1. �

Let f ∈ F be an unsafe edge. If f is not contained in some 1-MST, then
it is not contained in any α-MST for 0 ≤ α ≤ 1. Therefore, the edge f has a
lower threshold value αf =∞. Consider the case that f is contained in some
α-MST, where 0 ≤ α ≤ 1. We choose αf to be the smallest value α ∈ [0, 1],
such that there is an α-MST containing f . By Claim 1, we have that αf is a
lower threshold value for f .

We now prove the existence of an upper threshold value for safe edges. The
proof of the following claim is analogous to the proof of Claim 1.

Claim 2. Let e ∈ F be a safe edge. If e is an edge of some α-MST then for
any α′ ≤ α, there is some α′-MST containing e.

Let e ∈ F be a safe edge. Observe that for α = 0, there is an α-MST
containing e. We let αe be the largest value of α ∈ [0, 1], such that there is

121

an α-MST containing f . By Claim 2, we have that αe is an upper threshold
value for e. This concludes the proof of Lemma 5.8. �

It is easily seen that there are O(|V (G)|2) threshold values. This implies in
particular that Algorithm 4 runs in polynomial time. In fact, according to the
next proposition there are at most |V (G)| − 1 different threshold values.

Proposition 5.9. For each safe edge e ∈ F (unsafe edge f ∈ F , resp.), the
upper threshold αe (lower threshold αf , resp.) can be computed in polynomial
time. Furthermore, there are at most |V (G)| − 1 threshold values.

Proof. Let T1 be a 1-MST of G and let F1 := {f1, f2, . . . , f`} = F∩E(T1) be the
unsafe edges of T1. For each e ∈ F and fi ∈ F1, we initialize αei := w(fi)/w(e).
Thus, for α = αei we have wα(e) = wα(fi). We keep a set W of all such
αei (actually triples (e, i, αei)). Since |F | ≤ |E| and |E(T1)| < |V |, we have
that W has cardinality at most |E| · |V |. Additionally, we define a mapping
% : F1 → F \ E(T1). Whenever for some α ∈ [0, 1], an edge f ∈ F1 is replaced
in some α-MST by a safe edge f ∈ F \ E(T1), we set %(f) := f .

We perform at most |V | · |E| iterations. In iteration j we do the following.
We pick some αei ∈ W of largest value and check whether the safe edge e is in
some αei -MST Tαei . If this is not the case, we remove αei from W and continue
with the next iteration. Otherwise, we set %(fi) := e and αfi := αei and for
each 1 ≤ i ≤ ` we delete αei from W and for each e′ ∈ F \E(T1) we delete αe′i
from W . Note that we can distinguish between the two cases in polynomial
time by computing minimum-weight spanning trees.

Observe that after the above algorithm terminates, the mapping % assigns
to each safe edge e ∈ F \E(T1) at most one partner f ∈ F1, and to each unsafe
edge fi ∈ F1 at most one partner e′ ∈ F \ E(T1). For each e ∈ F ∩ E(T1),
we let αe := 1 and for each f ∈ F \ E(T1), we let αf := ∞. Now, for each
fi ∈ F1 = F ∩ E(T1) with %(fi) = e, we let αe = αfi := αei . Finally, for each
e ∈ F \T1 that is not in the image of % (for each f ∈ F∩E(T1) that is not in the
domain of %, resp.), we let αe := 0 (αf := 0, resp.). It is readily verified that
these choices are in accordance with the definition of lower and upper threshold
values (Definition 5.7). Finally, since there are at most |V (G)|−1 many unsafe
edges in T1, there are at most |V (G)| − 1 many threshold values. �

122

We now prove that threshold values are optimal scaling factors for Algo-
rithm 4, as claimed in Lemma 5.6.

Proof of Lemma 5.6. Let α ∈ W ′ and let αL (αR, resp.) be the largest (resp.,
smallest) item in W , such that αL ≤ α (αR ≥ α, resp.). Then, since W
contains a threshold value for each edge of G and by the properties of the
threshold values given in Definition 5.7, the tree Tα is either an αL-MST or
an αR-MST of G. Therefore, Algorithm 4 has computed an α-MST and a
corresponding augmentation for each α ∈ W ′. We conclude that A(I) ≤ A′(I),
proving Lemma 5.6. �

In our analysis of Algorithm 4 we will use a charging argument based on
the notion of monotone exchange bijections, which we now introduce. Let G
be a connected graph and let T and T ′ be spanning trees of G. A bijection
ϕ : E(T ′)→ E(T) is called exchange bijection, if for each e ∈ E(T ′), the graph
T ′ − e + ϕ(e) is a spanning tree of G. An exchange bijection ϕ is monotone
if for each edge e ∈ E(T ′) we have w(e) ≤ w(ϕ(e)). For any two spanning
trees T and T ′ a canonical exchange bijection exists: note that the edge sets
of spanning trees of G are the bases of the graphic matroid M(G) of G. By
the strong basis exchange property of matroids there is a bijection between
E(T) \ E(T ′) and E(T ′) \ E(T) with the required properties, which can be
extended to an exchange bijection by mapping each item in E(T) ∩ E(T ′) to
itself. Furthermore, if T ′ is an MST then for any spanning tree T , a canonical
exchange bijection is monotone.

We generalize monotone exchange bijections as follows.

Definition 5.10. Let α ∈ [0, 1] and let T , T ′ be spanning trees of G. An
exchange bijection ϕ : E(T ′)→ E(T) is α-monotone if for each edge e ∈ E(T ′)

we have

1. w(e) ≤ 1
α
w(ϕ(e)), if e ∈ F and ϕ(e) ∈ F ,

2. w(e) ≤ w(ϕ(e)), if either e, ϕ(e) ∈ F or e, ϕ(e) ∈ F , and

3. w(e) ≤ αw(ϕ(e)), if e ∈ F and ϕ(e) ∈ F .

For any spanning tree T of G, there is an α-monotone exchange bijection
from an α-MST to T .

123

Lemma 5.11. Let α ∈ [0, 1], let Tα be an α-MST of G and let T be any
spanning tree of G. Then there is an α-monotone exchange bijection
ϕ : E(Tα)→ E(T).

Proof. By the discussion above we have that there is a monotone exchange
bijection ϕ : Tα → T between an α-MST Tα and any spanning tree T of G
with respect to the weight function wα. By substituting wα with w we observe
that ϕ is α-monotone with respect to w. �

The following technical lemma is key to our charging argument in the
analysis of Algorithm 4 in Sections 5.3.5 and 5.3.6.

Lemma 5.12. Let α, α′ ∈ [0, 1], let T be a spanning tree contained in an
optimal solution to I, and let Tα (resp., Tα′) be an α-MST (resp., α′-MST)
of G. Then, for an α-monotone exchange bijection ϕ : E(Tα)→ E(T) there is
an α′-monotone exchange bijection ϕ′ : E(Tα′)→ E(T), such that ϕ(e) = ϕ′(e)

for each e ∈ E(Tα) ∩ E(Tα′).

Proof. Without loss of generality, let α ≤ α′ and let ϕ : E(Tα) → E(T) be
an α-monotone exchange bijection. Let 0 ≤ q1 < q2 < . . . < qn ≤ 1 be the
threshold values for E(G) with respect to the weights w. By the definition
of threshold values, for each threshold value q there are at least two q-MSTs.
Furthermore, we may assume without loss of generality that for each threshold
value q, there are precisely two q-MSTs. If this is not the case, then the reason
is that there are at least two different pairs of edges, such that the two edges
of each pair have the same scaled cost. We may break ties in an arbitrary
but consistent way by slightly perturbing the weights and hence obtain two
different thresholds, one for each pair. By iterating this argument, we have the
claimed property that there are at most two q-MSTs for a threshold value q
and furthermore, that Tα (resp., Tα′) is an α-MST (resp., α′-MST) and ϕ is
an α-monotone exchange bijection.

Observe that Tα is a qi-MST, where qi is the smallest threshold value such
that α ≤ qi. Similarly, the tree Tα′ is a qj-MST, where qj is the largest
threshold value such that qj ≤ α′. We will reduce the task of constructing an
α′-monotone exchange bijection ϕ′ : E(Tα′) → E(T) with the desired proper-
ties to the case that the symmetric difference of Tα and Tα′ has size at most
two. If qi = qj then this is the case. Otherwise, note that by our assumption

124

above there is precisely one qi+1-MST Ti+1 that is also a qi-MST. Furthermore,
the size of the symmetric difference of Ti+1 and Tα is at most two. We construct
a qi+1-monotone exchange bijection ϕi+1 : E(Ti+1)→ E(T) that agrees with ϕ
on E(Tα)∩E(Ti+1). We then replace Tα by Ti+1 and ϕ by ϕi+1 and iterate our
argument. In each step we reduce the size of the symmetric difference with Tα′

by two.

We now show how to construct an exchange bijection ϕ2 with the desired
properties, given two qi-MSTs T1 and T2 and a qi-monotone exchange bijection
ϕ1 : E(T1) → E(T), such that the symmetric difference of E(T1) and E(T2)

has size exactly two. Note that if there is a threshold value qi+1, then without
loss of generality the tree T2 is also a qi+1-MST. Let E(T1) \E(T2) = {e} and
E(T2) \ E(T1) = {e′}. Consider the bijection ϕ2 : E(T2) → E(T) such that
ϕ2(f) := ϕ1(f) for each f ∈ E(T1) ∩ E(T2) and ϕ2(e′) := ϕ1(e) otherwise. We
first show that ϕ2 is an exchange bijection. By the definition of ϕ2 it suffices to
consider the edge e′. Since e /∈ E(T2) but e ∈ E(T1) we have that e′ and e are
contained in a cycle of T2 +e. Since ϕ1 is an exchange bijection, the edge ϕ1(e)

is on a cycle of T1 +ϕ1(e). Therefore, the graph T2 +ϕ1(e) = T1−e+e′+ϕ1(e)

contains a cycle visiting e′. We conclude that ϕ2 is an exchange bijection.

It remains to show that ϕ2 is qi-monotone. Since e′ is contained in the
qi-MST T2, we have that wqi(e′) ≤ wqi(ϕ1(e)). Therefore ϕ2 is a qi-monotone
exchange bijection such that ϕ1 and ϕ2 agree on each edge in E(Ti)∩E(Ti+1).
Furthermore, if there is a threshold value qi+1, then the exchange bijection ϕ2

is also qi+1-monotone. This concludes the proof of Lemma 5.12. �

It will be more convenient for us to apply the following corollary rather than
Lemma 5.12.

Corollary 5.13. Let 0 ≤ α1 ≤ α2 ≤ . . . ≤ αN ≤ 1 and for 1 ≤ i ≤ N let
Ti be an αi-MST. Furthermore let T be a spanning tree in an optimal solution
to I and let ϕ1 : E(T1) → E(T) be an α1-monotone exchange bijection. Then
for 1 < i ≤ N there are αi-monotone exchange bijections ϕi : E(Ti) → E(T),
such that ϕi−1(e) = ϕi(e) for each e ∈ E(Ti−1) ∩ E(Ti).

Proof. For 1 < i ≤ N inductively apply Lemma 5.12 in order to obtain
αi-monotone exchange bijections ϕi : E(Ti) → E(T) with the desired proper-
ties. �

125

5.3.4 Simple Analysis of Algorithm 4:

A 2.8-approximation

In this section we give an analytic upper bound of 14/5 on the approximation
ratio of Algorithm 4. In our analysis we consider just the contribution of
Algorithms A and B and ignore the contribution of Algorithm C. We obtain an
analytic upper bound on the value of the min-max-min optimization problem
(5.2) in terms of cTAP and c2EC, which gives in turn an upper bound on the
approximation ratio of Algorithm 4. Note that the combined worst-case of
Algorithm A and C is much better than their individual ratios. One of the
key insights is that the two algorithms exhibit their worst-case performance if
Algorithm B runs with a scaling factor of 1/2.

Let us fix some α ∈ [0, 1] and let Tα be an α-MST of G. We consider the
graph Gα = (V ′, Eα) obtained from Tα by identifying for 1 ≤ j ≤ r the vertex
set of the 2-edge-connected component Cj of the optimal solution Z∗ with a
single vertex, discarding loops but not parallel edges. Since Tα is a tree, the
graph Gα is connected. Let T be a spanning tree of Z∗ and let ϕ : Tα → T

be an α-monotone exchange bijection, which exists according to Lemma 5.11.
Since every spanning tree of Z∗ contains E ′ we have that E ′ ⊆ ϕ(Eα).

We partition the edge set of Tα into four parts Dα, Oα, Fα, and Sα as
follows.

• Dα := {e ∈ E(Tα) ∩ F | ϕ(e) ∈ E ′}

• Oα := {e ∈ E(Tα) ∩ F | ϕ(e) ∈ E ′}

• Fα := {e ∈ E(Tα) ∩ F | ϕ(e) ∈ E(T) \ E ′}

• Sα := {e ∈ E(Tα) ∩ F | ϕ(e) ∈ E(T) \ E ′}

Note that the partition of E(Tα) depends on the optimal solution Z∗ and
the spanning tree T of Z∗, so we cannot expect to compute it efficiently. We

126

now define the following variables.

bα :=
w(ϕ(Oα))

OPT(I)
and cα :=

w(ϕ(Sα))

OPT(I)

b0 :=
w(E ′)− w(ϕ(Oα))

OPT(I)
and c0 :=

w(T − E ′)− w(ϕ(Sα))

OPT(I)

ξ =
OPT(I)− w(T)

OPT(I)

So bα (cα, resp.) is the fraction of the weight of OPT(I) of the safe edges in Tα
that are mapped to safe cut edges in T (resp., edges of E(T)−E ′). The value
b0 (resp., c0) represents the fraction of the weight of OPT(I) of unsafe edges in
Tα that are charged to safe cut edges in T (resp., edges of E(T)−E ′). Finally,
ξ is the fraction of the weight of OPT(I) that is not contributed by E(T).

Observe that the following holds.

1. bα, cα, b0, c0, ξ ∈ [0, 1],

2. bα + b0 = w(E ′)/OPT(I),

3. cα + c0 = w(T − E ′)/OPT(I), and

4. b0 + bα + c0 + cα + ξ = 1

We use the properties of α-monotone exchange bijections to show that the
minimum weight of the solution computed by Algorithm B run with scaling
factor α and the solution computed by Algorithm A can be bounded in terms
of bα, b0, cα, c0, ξ, and OPT(I) as follows.

Lemma 5.14. Suppose we run Algorithm 4 with a single scaling factor
α ∈ [0, 1] (i.e., W = {α}) and let ZB

α be the solution computed by Algorithm B
with scaling factor α in Algorithm 4. Then

w(ZB
α) ≤

(
(cTAP + α)b0 + bα + (cTAP + 1)c0

+ (cTAP + 1/α)cα + cTAP · ξ
)
· OPT(I) .

Proof. Let Tα be the α-MST computed by Algorithm B and let Hα be the
solution to the WTAP instance (G, T ′α, w) computed by Algorithm B. The
following bound on w(Tα) follows in a straight-forward manner from Defini-
tion 5.7.

127

Claim 1. We have w(Tα) ≤ (αb0 + bα + c0 + cα/α) · OPT(I) .

Proof. Since Tα is an α-MST and ϕ : Tα → T is an α-monotone exchange
bijection, we have that for each edge e of Tα exactly one of the following cases
applies.

1. If e ∈ Dα, then we have w(e) ≤ α · ϕ(e), or

2. if e ∈ Oα ∪ Fα, then we have w(e) ≤ w(ϕ(e)), or

3. if e ∈ Sα, then w(e) ≤ 1
α
w(ϕ(e)) .

By summing over the above inequalities and applying the definition of
b0, bα, c0, cα we have

w(Tα) ≤ (α · w(ϕ(Dα)) + w(E ′ \ ϕ(Dα)) + ϕ(Sα)/α + ϕ(Fα)) · OPT(I)

≤ (α · b0 + bα + c0 + cα/α) · OPT(I)

as claimed. This proves Claim 1. �

It remains to bound the cost of Hα. Note that Hα is a cTAP-approximate
solution of an optimal solution for the augmentation problem. To bound the
cost of an optimal augmentation we demonstrate the existence of a feasible
augmentation. We show that Yα := ϕ(Dα) ∪ ϕ−1(Z∗ − E ′) is such a feasible
augmentation.

Claim 2. Tα ∪ Yα is a feasible solution to I.

Proof. Clearly E(Tα) ∪ Yα is a connected spanning subgraph since it contains
the tree Tα. It remains to show that E(Tα) ∪ Yα − f is connected for each
f ∈ F ∩ (E(Tα) ∪ Yα). This is clearly true for the edges in Fα since we added
ϕ−1(Z∗ − E ′). Thus let f ∈ Dα. Since f ∈ F and ϕ(f) ∈ F , we have that
f 6= ϕ(f). By the definition of exchange bijections there is a cycle in Tα∪ϕ(f)

going through f . This concludes the proof of Claim 2. �

By the definition of b0, bα, c0, cα, and ξ we have

w(Yα) ≤ w(ϕ(Dα)) + w(Z∗ − E ′)

≤ w(ϕ(Dα)) + w(ϕ(Fα)) + w(ϕ(Sα)) + ξ

≤ (b0 + c0 + cα + ξ) · OPT(I) .

128

Since Algorithm 4 uses a cTAP-approximation for WTAP, we have that
w(Hα) ≤ cTAP · w(Yα).

Using these bounds and Claims 1 and 2, we obtain

w(ZB
α) ≤

(
(cTAP + α)b0 + bα + (cTAP + 1)c0

+ (cTAP + 1/α)cα + cTAP · ξ
)
· OPT(I) .

as claimed. This proves Lemma 5.14. �

Next, we provide a bound on the cost of the solution returned by Algo-
rithm A.

Lemma 5.15. Let α ∈ [0, 1] and let ZA be a solution computed by Algorithm A
in Algorithm 4. Then

w(ZA) ≤ (c2EC + c2EC · (α · b0 + bα)) · OPT(I) .

Proof. We demonstrate the existence of a feasible solution Y ⊆ E to I. Recap
that Algorithm A computes a 2-ECSS solution to I where each safe edge e ∈ F
has a parallel edge e′. Let Y := Z∗ ∪ ϕ(Dα) ∪ {e′ : e ∈ E ′ \ ϕ(Dα)}. Since
Z∗ ⊆ Y , each edge in Z∗ \ E ′ is contained in a 2-edge-connected component.
Furthermore, since Y additionally contains ϕ(Dα)∪{e′ : e ∈ E ′ \ϕ(Dα)}, each
edge in E ′ is also contained in a 2-edge-connected component. Thus, Y is a
2-edge connected spanning subgraph.

It remains to bound the cost of Y . We bound the cost of each part indi-
vidually. Clearly we have w(Z∗) = OPT(I). By the definition of b0 and bα, we
have w(ϕ(Dα)) ≤ α · b0 · OPT(I) and w({e′ : e ∈ E ′ \ ϕ(Dα)}) ≤ bα · OPT(I).

Since Algorithm A uses a c2EC-approximation for the 2-ECSS problem, we
obtain

w(ZA) ≤ (c2EC + c2EC · (α · b0 + bα)) · OPT(I) .

�

Proposition 5.16. Algorithm 4 is an approximation algorithm for FGC with
ratio

min

{
1+cTAP,

c2EC(4c2
TAP +

√
1 + 4cTAP − 2cTAP − 1)

(1− c2EC)
√

1 + 4cTAP + (cTAP + c2EC − 1)2cTAP − 1 + c2EC

}
.

129

Proof. The guarantee of Algorithm 4 is clearly bounded by the weight of the
solution computed by Algorithm B. This weight is at most 1+cTAP, which is the
first part of the minimum. For the second part we know that w(ZA) = w(ZB

α).
By Lemmas 5.14 and 5.15 we have

w(ZB
α) ≤

(
(cTAP + α)b0 + bα + (cTAP + 1)c0

+ (cTAP +
1

α
)cα + cTAP · ξ

)
· OPT(I)

and

w(ZA) ≤ (c2EC + c2EC · (α · b0 + bα)) · OPT(I) .

Let A(I) be the cost of a solution computed by Algorithm 4. An upper bound
on the approximation ratio of Algorithm 4 is

A(I) ≤ max
b0,bα,c0,cα,ξ∈[0,1]

min
α∈[0,1]

{w(ZA), w(ZB
α)}

subject to b0 + bα + c0 + cα + ξ = 1.
(5.3)

It is easy to see that the maximum is obtained if c0 = ξ = 0. By substituting
cα = 1− b0 − bα we obtain

w(ZB
α) ≤ ((cTAP + α)b0 + bα + (cTAP + 1/α)(1− b0 − bα)) · OPT(I) .

By putting w(ZA) = w(ZB
α) we obtain

b0 =
(−bα · c2EC − c2EC) · α− α · bα · cTAP + bα · α + cTAPα− bα + 1

α2 · c2EC − α2 + 1
.

Plugging this into w(ZA) and setting α = −1+
√

1+4cTAP
2cTAP

(recall that we are free
to choose α) we obtain

A(I) ≤ c2EC(4c2
TAP +

√
1 + 4cTAP − 2cTAP − 1)

(1− c2EC)
√

1 + 4cTAP + (cTAP + c2EC − 1)2cTAP − 1 + c2EC
.

�

By setting c2EC = cTAP = 2 we directly obtain the following result.

Corollary 5.17. Algorithm 4 is a polynomial-time 14/5-approximation algo-
rithm for FGC for cTAP = c2EC = 2.

130

5.3.5 Refined Analysis of Algorithm 4:

A 2.523-approximation

In this section we give an analytic upper bound of 2.523 on the approximation
ratio of Algorithm 4. For our analysis it suffices to run Algorithm A together
with Algorithm C. Using α-monotone exchange bijections from Section 5.3.3,
we determine bounds fA(·) and fC(·) for the optimization problem (5.2), where
fC(·) depends on a selection of scaling factors and some other parameters to
be introduced shortly. We then transform problem (5.2) into a maximization
problem, which we solve analytically. Recall that according to Lemma 5.6, the
selection of scaling factors in Algorithm 4 is optimal. Surprisingly, a worst-case
instance for our bounds fA(·) and fC(·) in fact has a single threshold value
which is 1/

√
c2EC. However, to obtain the approximation ratio of 2.523 it is

crucial to execute Algorithm 4 with all threshold values of the given instance.

Let I(N) be a class of instances of FGC with at most N threshold val-
ues in the sense of Definition 5.7. In the following, suppose that I ∈ I(N)

and recall that an optimal solution Z∗ ⊆ E(G) of I consists of r 2-edge-
connected components C1, C2, . . . , Cr that are joined together by safe edges
E ′ := {f 1, f 2, . . . , f r−1} ⊆ F in a tree-like fashion. Moreover, for any span-
ning tree T contained in the optimal solution Z∗ we have E ′ ⊆ T .

Observe that since there is an unsafe edge for each safe edge of the same
weight in G, we have that each threshold value of the safe edges is in [0, 1]. Let
0 ≤ α1 ≤ α2 ≤ . . . ≤ αN ≤ 1 be the N threshold values of I in non-decreasing
order. To prepare our analysis, we consider for i ∈ {1, 2, . . . , N} an αi-MST
Ti, an αi-monotone exchange bijection ϕi : Ti → T and a weight wi := wαi .
For 2 ≤ i ≤ N we choose ϕi such that for each e ∈ E(Ti−1) ∩ E(Ti) we have
ϕi−1(e) = ϕi(e) (in accordance with Corollary 5.13). In order to define the
parameters of the optimization problem (5.2), for 1 ≤ i ≤ N , we partition the
edge set of the αi-MST Ti into four parts Di, Oi, Fi, and Si as follows. This
is similar to the partition described in Section 5.3.4.

• Di := {e ∈ E(Ti) ∩ F | ϕi(e) ∈ E ′}

• Oi := {e ∈ E(Ti) ∩ F | ϕi(e) ∈ E ′}

• Fi := {e ∈ E(Ti) ∩ F | ϕi(e) ∈ E(T) \ E ′}

131

• Si := {e ∈ E(Ti) ∩ F | ϕi(e) ∈ E(T) \ E ′}

The parameters of problem (5.2) are given as follows. For 1 ≤ i ≤ N we let
EF̄
i (resp., EF

i) be the set of edges in E ′ (resp., E(T)−E ′) that have threshold
value αi, i.e. EF̄

i := {e ∈ E ′ | αe = αi} and EF
i := {e ∈ E(T)− E ′ | αe = αi}.

For 1 ≤ i ≤ N we let βi = w(EF̄
i)/OPT(I) and γi = w(EF

i)/OPT(I) be the
fraction of the weight of the optimal solution that is contributed by the edges
in EF̄

i (resp., EF
i). Finally, let ξ ∈ [0, 1] be the the fraction of the weight of the

optimal solution that is not contributed by the tree T ; e.g., ξ := w(Z∗)−w(T)

OPT(I) .
The following properties of βi, γi, 1 ≤ i ≤ N , and ξ are readily verified:

1. β1, β2, . . . βN , γ1, γ2, . . . γN , ξ ∈ [0, 1],

2.
∑N

j=1 βj = w(E′)
OPT(I) ,

3.
∑N

j=1 γj = w(T−E′)
OPT(I) , and

4. ξ = 1−
∑N

j=1 βj −
∑N

j=1 γj .

We now bound the cost of the solutions ZC
i and ZA returned by Algorithm C

(Algorithm A, resp.) in terms of the parameters.

Lemma 5.18. Suppose we run Algorithm 4 with the optimal threshold values
W = {αi}1≤i≤N . Let ZC

i be the solution computed by Algorithm C with scaling
factor αi in Algorithm 4. Then

w(ZC
i) ≤

(
1 +

i−1∑
j=1

(c2EC + c2ECαj − 1)βj + (c2EC − 1) ·
N∑
j=1

γj

+
N∑
j=i

1

αj
γj + (c2EC − 1) · ξ

)
· OPT(I) .

Proof. Let T Si be the safe edges of the tree Ti and let ϕi : E(Ti) → E(T) be
an αi-monotone exchange bijection, where T is a spanning tree of the optimal
solution Z∗ to the instance (G,w, F).

By contracting each edge of T Si in G we obtain the graph GS
i := G/E(T Si).

Algorithm C computes a c2EC-approximate solution to the instance (GS
i) of

2-ECSS.

132

Claim 1. The set

Yi :=

 ⋃
e∈E′\ϕi(E(TSi))

{e, ϕ−1
i (e)}

 ∪ ⋃
1≤j≤r

E(Cj)

of edges is a feasible solution to the 2-ECSS instance (GS
i).

Proof. Clearly (V, Yi) is a connected graph. It remains to argue that each edge
e ∈ Yi is contained in some cycle. This is certainly true for each edge e
of a component Cj, 1 ≤ j ≤ r. It remains to show that the edges in⋃
e∈E′\ϕi(E(TSi)){e, ϕ

−1
i (e)} are contained in some cycle of GS

i . Since ϕi is an
exchange bijection, an edge e ∈ E ′ \ϕi(E(T Si)) and its preimage ϕ−1(e) are on
a cycle in E(T) ∪ {e}. Since GS

i is obtained from G by contracting the edges
of the safe forest T Si , the edges e and ϕ−1(e) are also on a cycle in GS

i . This
proves Claim 1. �

We now bound the cost of ZC
i . By Claim 1 we have that T Si ∪ Yi is a

feasible solution to the FGC instance (G,w, F). The algorithm then returns
in polynomial time a solution ZC

i of cost at most w(ZC
i) ≤ w(T Si)+c2ECw(Yi).

We first bound the cost of each edge of T Si as follows.

Claim 2. Let e ∈ E(T Si) and let αe be its threshold value. Then we have

w(e) ≤

 1
αe
· w(ϕi(e)) if ϕi(e) /∈ E ′, and

w(ϕi(e)) otherwise .

Proof. First suppose that ϕi(e) ∈ E ′. Since ϕi(e) ∈ F and ϕi is an αi-monotone
exchange bijection it follows that w(e) ≤ w(ϕi(e)). Now let ϕi(e) /∈ E ′. Since
ϕi is an αi-monotone exchange bijection and since the threshold value of e is
αe, we have that w(e) ≤ 1

αe
w(ϕi(e)). This concludes the proof of Claim 2. �

Observe that if e ∈ T Si , we also have e ∈ T Sj for each j ≤ i. Since the
exchange bijections ϕ1, ϕ2, . . . , ϕN are in accordance with Corollary 5.13, we

133

then have ϕj(e) = ϕi(e) for every j ≤ i. Thus, according to Claim 2 we have

w(T Si) =
∑
e∈TSi

w(e) =
∑
e∈TSi

∑
j:αe=αj

w(e)

=
∑

e∈TSi :ϕi(e)∈E′

∑
j:αe=αj

w(e) +
∑

e∈TSi :ϕi(e)/∈E′

∑
j:αe=αj

w(e)

≤
∑

e∈TSi :ϕi(e)∈E′

∑
j:αe=αj

w(ϕi(e)) +
∑

e∈TSi :ϕi(e)/∈E′

∑
j:αe=αj

1

αe
· w(ϕi(e))

≤

(
N∑
j=i

βj +
N∑
j=i

γj
αj

)
· OPT(I)

=

(
1−

i−1∑
j=1

βj −
N∑
j=1

γj − ξ +
N∑
j=i

γj
αj

)
· OPT(I) ,

where the last equality holds due to ξ+
∑N

j=1 βj+
∑N

j=1 γj = 1. We additionally
bound the cost of Yi.

Claim 3.

w(Yi) ≤

(
i−1∑
j=1

(1 + αj)βj +
N∑
j=1

γj + ξ

)
· OPT(I)

Proof. We need to bound the cost of

Yi =

 ⋃
e∈E′\ϕi(E(TSi))

{e, ϕ−1
i (e)}

 ∪ ⋃
1≤j≤r

E(Cj) .

We first bound the cost of
⋃
e∈E′\ϕi(E(TSi)){e, ϕ

−1
i (e)}. According to the def-

inition of β1, β2, . . . , βN we can bound the cost of {e | e ∈ E ′ \ ϕi(E(T Si))}
by
∑i−1

j=1 βj · OPT(I). Additionally, for each e ∈ E ′ \ ϕi(E(T Si)) we have
w(ϕ−1

i (e)) ≤ αew(e). Therefore we can bound the cost of the edge-set
{ϕ−1

i (e) | e ∈ E ′ \ ϕi(E(T Si))} by
∑i−1

j=i αjβj · OPT(I). Finally we bound
the cost of

⋃
1≤j≤r E(Cj) by (ξ +

∑N
j=1 γj) · OPT(I). Putting things together

we obtain

w(Yi) ≤

(
i−1∑
j=1

(1 + αj)βj +
N∑
j=1

γj + ξ

)
· OPT(I) .

This concludes the proof of Claim 3. �

134

Finally, since the algorithm computes a c2EC-approximate solution to the
2-ECSS instance, we have

w(ZC
i) ≤w(T Si) + c2EC · w(Yi)

≤
((

1−
i−1∑
j=1

βj −
N∑
j=1

γj − ξ +
N∑
j=i

γj
αj

)

+

(i∑
j=1

(c2EC + c2ECαj)βj +
N∑
j=1

c2ECγj + c2ECξ

))
· OPT(I)

≤
(

1 +
i−1∑
j=1

(c2EC + c2ECαj − 1)βj + (c2EC − 1) ·
N∑
j=1

γj

+
N∑
j=i

1

αj
γj + (c2EC − 1) · ξ

)
· OPT(I) ,

which concludes the proof of Lemma 5.18. �

Lemma 5.19. Suppose we run Algorithm 4 with the optimal threshold values
W = {αi}1≤i≤N . Let ZA be the solution computed by Algorithm A with scaling
factor αi in Algorithm 4. Then

w(ZA) ≤

(
c2EC + c2EC ·

N∑
j=1

αjβj

)
· OPT(I) .

Proof. The algorithm computes a 2-edge-connected spanning subgraph. Recall
that for each safe edge e ∈ F there is a parallel unsafe copy e′ of the same
cost. We construct a feasible solution YA to the 2-ECSS instance to bound the
cost of ZA.

Claim 1. YA := Z∗ ∪ {ϕ−1
N (e)) | e ∈ E ′} is a feasible solution to the 2-ECSS

instance of cost at most

w(YA) ≤

(
1 +

N∑
j=1

αjβj

)
· OPT(I) .

Proof. We first show the feasibility. Clearly (V, YA) is connected since it
contains Z∗. We now show that each e ∈ E ′ is contained in some cycle in YA.
Since for each safe edge there is an unsafe edge of the same cost, we can assume
that ϕ−1

N (e) 6= e. Then, by the definition of ϕN , the edge e and its preimage
ϕ−1
N (e) are contained in a cycle.

135

It remains to bound the cost of YA. We partition YA into two disjoint sets
YA = Z∗ ∪X1, where X1 = {ϕ−1

N (e) | e ∈ E ′}, and bound the cost of each part
individually. Clearly we have w(Z∗) = OPT(I).

To bound the cost of X1, observe that for some ϕ−1
N (e) ∈ X1 we have

w(ϕ−1
N (e)) ≤ αew(e). Thus, we may bound the cost of X1 by

w(X1) =
∑

ϕ−1
N (e)∈X1

w(e) =
∑

ϕ−1
N (e)∈X1

∑
j:αe=αj

w(ϕ−1
N (e))

≤
∑

ϕ−1
N (e)∈X1

∑
j:αe=αj

αew(e) =
N∑
j=1

αjβj · OPT(I) .

Combining both bounds we obtain

w(YA) ≤ w(Z∗) + w(X1) ≤

(
1 +

N∑
j=1

αjβj

)
· OPT(I) .

This proves Claim 1. �

Since the algorithm computes a c2EC-approximation, we have that

w(ZA) ≤ c2ECw(YA) ≤

(
c2EC + c2EC ·

N∑
j=1

αjβj

)
· OPT(I) .

This concludes the proof of Lemma 5.19. �

With the bounds from Lemmas 5.18 and 5.19 we show in the next theorem
that Problem (5.2) can be simplified to the following maximization problem.

max c2EC ·

(
1 +

N∑
j=1

αjβ̂j

)

subject to
N∑
j=1

β̂j · (1 + αj(c2EC − 1 + c2ECαj)) = 1 ,

0 ≤ α1 ≤ α2 ≤ . . . ≤ αN ≤ 1 ,

β̂j ∈ [0, 1] for all j ∈ {1, . . . , N} .

(5.4)

Theorem 5.20. The approximation guarantee of Algorithm 4 for instances
with at most N threshold values is upper bounded by the optimal value of Prob-
lem (5.4).

136

Proof. With the bounds from Lemmas 5.18 and 5.19 and Properties 1–4 above,
for instances with at most N threshold values, we can rewrite Problem (5.2)
as the following max-min optimization problem.

max
ξ∈[0,1]

αi∈[0,1] : 1≤i≤N
βi∈[0,1] : 1≤i≤N
γi∈[0,1] : 1≤i≤N

min
1≤i≤N

{w(ZA), w(ZC
i)}

subject to
N∑
j=1

βj + γj + ξ = 1 ,

α1 ≤ α2 ≤ . . . ≤ αN .

(5.5)

We obtain from (5.5) a simple maximization problem as follows. Since
c2EC ≥ 1, each βj, γj, j ∈ [N] as well as ξ has a positive coefficient in the
bounds of the Lemmas 5.18 and 5.19. Moreover, since we maximize over
β1, β2, . . . , βN , γ1, γ2, . . . , γN , and ξ we may assume ξ = 0. To see this, sup-
pose we have an optimal choice of the variables where ξ > 0. Then, consider
the following new variables. Let β′j = βj for j ∈ [N], γ′j = γj for j ∈ [N − 1],
γ′N = γN + ξ and ξ′ = 0. Now observe that the value of the minimum over
w(ZA) and w(ZC

i), i ∈ [N] for the new variables is at least as large as for the
old ones. Thus we can assume that ξ = 0 and have

N∑
j=1

βj +
N∑
j=1

γj = 1 .

Hence, it follows that the approximation guarantee of Algorithm 4 is upper
bounded by the following optimization problem

max
αi∈[0,1] : 1≤i≤N
βi∈[0,1] : 1≤i≤N
γi∈[0,1] : 1≤i≤N

min
1≤i≤N

{w(ZA), w(ZC
i)}

subject to
N∑
j=1

βj + γj = 1 ,

α1 ≤ α2 ≤ . . . ≤ αN ,

where

w(ZC
i) = 1 +

i−1∑
j=1

(c2EC − 1 + c2ECαj)βj + (c2EC − 1) ·
N∑
j=1

γj +
N∑
j=i

γj
αj

137

for each i ∈ [N] and

w(ZA) = c2EC + c2EC ·
N∑
j=1

αjβj .

Let us assume that the optimal value for this optimization problem is
ρ ∈ [c2EC, 2c2EC] and let β∗1 , . . . , β∗N and γ∗1 , . . . , γ

∗
N be the optimal values of

the respective variables. Since Algorithm C gives a 5-approximation only, we
know that the minimum of the optimization problem above is equal to w(ZA).
Thus we have

ρ = c2EC ·

(
1 +

N∑
j=1

αjβ
∗
j

)
.

Therefore we have that

w(ZC
N)− w(ZA) = 1 +

N−1∑
j=1

(c2EC − 1 + c2ECαj)β
∗
j + (c2EC − 1) ·

N∑
j=1

γ∗j

+
γ∗N
αN
− (c2EC + c2EC ·

N∑
j=1

αjβ
∗
j)

= 1 +
N∑
j=1

(c2EC − 1 + c2ECαj)β
∗
j − (c2EC − 1 + c2ECαN)β∗N

+ (c2EC − 1) ·
N∑
j=1

γ∗j +
γ∗N
αN
− c2EC − c2EC ·

N∑
j=1

αjβ
∗
j

=
γ∗N
αN
− (c2EC − 1 + c2ECαN)β∗N

≥ 0 ,

where the third equality follows from
∑N

j=1 βj+γj = 1. In fact, we may assume
that the last inequality is an equality. If not, then we can reduce γ∗N by some
fraction and increase γN−1 by the same fraction. This yields a feasible solution
but may increase the weight of the maximum. Recursively, for 1 ≤ i ≤ N − 1

138

we obtain

w(ZC
i)− w(ZA) = 1 +

i−1∑
j=1

(c2EC − 1 + c2ECαj)βj + (c2EC − 1) ·
N∑
j=1

γj

+
N∑
j=i

γj
αj
− c2EC + c2EC ·

N∑
j=1

αjβj

=
γ∗i
αi
− (c2EC − 1 + c2ECαi)β

∗
i

= 0 .

Thus we obtain γ∗i = αi · (c2EC − 1 + c2ECαi) · β∗i for 1 ≤ i ≤ N . Substituting
this for γ∗j in

∑N
j=1 β

∗
j + γ∗j = 1, we obtain

N∑
j=1

(1 + αi(c2EC − 1 + c2ECαi))β
∗
i = 1 .

Hence, in summary the optimization problem (5.2) with bounds w(ZA) and
w(ZC

i) from Lemmas 5.18 and 5.19 can be written as maximization Prob-
lem (5.4). This proves Theorem 5.20. �

Next, we give an analytic solution to problem (5.4) in terms of c2EC which
yields a ratio of (8 + 4

√
2)/(4 +

√
2) < 2.523 for Algorithm 4 for c2EC = 2, the

best known approximation guarantee for 2-ECSS. This is the bound claimed
in Theorem 5.2.

Theorem 5.21. Algorithm 4 has an approximation guarantee of

c2EC · (c2EC + 2
√
c2EC)

2
√
c2EC + c2EC − 1

.

Proof. Consider an optimal solution to Problem (5.4) with optimal values
α∗1 < α∗2 < . . . < α∗N and β̂∗1 , β̂

∗
2 , . . . , β̂

∗
N . It is easy to see that an optimal

solution has only one β̂∗k 6= 0, k ∈ [N]. We then have

β̂∗k =
1

1 + αk(c2EC − 1 + c2ECαk)
,

where αk ∈ [0, 1]. Optimizing over αk ∈ [0, 1] yields the optimal value
αk = 1/

√
c2EC. Thus we obtain β̂∗k =

√
c2EC

2
√
c2EC+c2EC−1

and the optimal value

for Problem (5.4) is c2EC·(c2EC+2
√
c2EC)

2
√
c2EC+c2EC−1

. Now observe that the solution does
not depend on the number N of threshold values. Hence the bound holds for
instances with any number of threshold values. �

139

5.3.6 Improved Analysis of Algorithm 4 for

Bounded-weight Instances: A 2.404-approximation

In this section we give a computational proof for an upper bound of 2.404 on
the approximation ratio of Algorithm 4 for bounded-weight instances. Simi-
larly to Section 5.3.5 we give an upper bound on the value of the min-max-min
optimization problem (5.2), which gives in turn an upper bound on the ap-
proximation ratio of Algorithm 4. In contrast to our previous analysis, we also
use Algorithm B in order to exploit recent progress in the approximation of
WTAP on bounded-weight instances. Hence, we consider the simultaneous
worst-case behavior of all three algorithms. However, this prevents us from
giving an improved analytic upper bound on the approximation ratio of Al-
gorithm 4 in this setting. Instead, we give a computational upper bound on
the approximation ratio of Algorithm 4, which is obtained by a non-linear
programming (NLP) solver. Since such problems tend to be hard to solve, we
relax the first min in the Problem (5.2) by selecting appropriate scaling factors
and transform the relaxation into a quadratic maximization problem, which
we solve computationally. A proof that our claimed upper bound indeed holds
is given by the branch-and-bound tree of the solver. Nevertheless, we encour-
age the reader to independently verify the bound by solving (5.6). Finding an
analytic proof of the improved approximation guarantee is an interesting open
problem.

We start similarly to Section 5.3.5. Let N ∈ N be any natural number and
let 0 = α0 ≤ α1 ≤ α2 ≤ . . . ≤ αN+1 = 1 (not necessarily the threshold values
of the given instance) be N + 2 values in [0, 1] in non-decreasing order. For
i ∈ {0, 1, . . . , N + 1}, let Ti be an αi-MST, let ϕi : Ti → T be an αi-monotone
exchange bijection, where T is a spanning tree of Z∗ and let wi := wαi . For
1 ≤ i ≤ N + 1, we choose ϕi in accordance with Corollary 5.13, that is, we
have ϕi−1(e) = ϕi(e) for each e ∈ E(Ti−1)∩E(Ti). This will be useful later on
for our charging argument. For 0 ≤ i ≤ N + 1, we partition the edge set of Ti
into four parts Di, Oi, Fi, and Si as in Section 5.3.5.

• Di := {e ∈ E(Ti) ∩ F | ϕi(e) ∈ E ′}

• Oi := {e ∈ E(Ti) ∩ F | ϕi(e) ∈ E ′}

140

• Fi := {e ∈ E(Ti) ∩ F | ϕi(e) ∈ E(T) \ E ′}

• Si := {e ∈ E(Ti) ∩ F | ϕi(e) ∈ E(T) \ E ′}

Similarly to Section 5.3.5 we define the parameters of Problem (5.2). Since
we consider arbitrary values of α in our analysis instead of the threshold values
of the given instance, these parameters are defined slightly differently. The key
difference is that in Section 5.3.5 we defined the β and γ values according to
the precise threshold values that we also used in the analysis. Since we do
not consider the threshold values in the analysis of this section, we define the
parameters according to the closest upper and lower α values to the threshold
value instead.

More formally, for 0 ≤ i ≤ N , we let EF̄
i (EF

i , resp.) be the set of edges in
E ′ (E(T)−E ′, resp.) that have threshold values between αi and αi+1. That is,
EF̄
i := {e ∈ E ′ | αi < αe ≤ αi+1} and EF

i := {e ∈ E(T)−E ′ | αi < αe ≤ αi+1}.
For 0 ≤ i ≤ N , we let βi = w(EF̄

i)/OPT(I) and γi = w(EF
i)/OPT(I) be the

fraction of the weight of the optimal solution that is contributed by the edges
in EF̄

i (resp., EF
i). Finally, let ξ ∈ [0, 1] be the fraction of the weight of the

optimal solution that is not contributed by the tree T ; e.g., ξ := w(Z∗)−w(T)

OPT(I) .
The following properties of βi, γi, 0 ≤ i ≤ N , are readily verified:

1. β1, β2, . . . βN , γ1, γ2, . . . γN , ξ ∈ [0, 1],

2.
∑N

j=0 βj = w(E′)
OPT(I) ,

3.
∑N

j=0 γj = w(T−E′)
OPT(I) , and

4. ξ = 1−
∑N

j=0 βj −
∑N

j=0 γj .

With all these parameters we can now bound the cost of the solutions com-
puted by Algorithms A, B, and C. We start with the solution ZC

i returned by
Algorithm C.

Lemma 5.22. Suppose we run Algorithm 4 with threshold
values W = {αi}0≤i≤N . For 1 ≤ i ≤ N , let ZC

i be the solution computed by

141

Algorithm C with scaling factor αi in Algorithm 4. Then

w(ZC
i) ≤

(
1 +

i−1∑
j=0

(c2EC − 1 + c2ECαj+1)βj + (c2EC − 1) ·
N∑
j=0

γj

+
N∑
j=i

γj
αj

+ (c2EC − 1) · ξ
)
· OPT(I) .

Proof. The proof is similar to the one of Lemma 5.18. Let T Si be the safe
edges of the tree Ti and let ϕi : E(Ti) → E(T) be an αi-monotone exchange
bijection, where T is a spanning tree of the optimal solution Z∗ to the instance
(G,w, F).

By contracting each edge of T Si in G we obtain the graph GS
i := G/E(T Si).

Algorithm C then computes a c2EC-approximate solution to the instance (GS
i)

of 2-ECSS. The next claim is identical to Claim 1 in the proof of Lemma 5.18.

Claim 1. The set

Yi :=

 ⋃
e∈E′\ϕi(E(TSi))

{e, ϕ−1
i (e)}

 ∪ ⋃
1≤j≤r

E(Cj)

of edges is a feasible solution to the 2-ECSS instance (GS
i).

We now bound the cost of ZC
i . The algorithm then returns in polynomial

time a solution ZC
i of cost at most w(ZC

i) ≤ w(T Si) + c2ECw(Yi). The next
claim is very similar to Claim 2 of Lemma 5.18. The only difference is that we
consider arbitrary values of α in our analysis instead of the threshold values
of the given instance. Thus we need to bound the cost of w(e) in terms of
the largest α ∈ W such that α ≤ αe. The rest of the proof is analogous. We
bound the cost of each edge of T Si as follows.

Claim 2. Let e ∈ E(T Si) and let αe be its threshold value. Then we have

w(e) ≤

 1
αj
· w(ϕi(e)) if ϕi(e) /∈ E ′, and

w(ϕi(e)) otherwise ,

where αj is the largest α ∈ W satisfying α ≤ αe.

142

Using the above claim we now bound the cost of the edges in T Si . For
1 ≤ i ≤ N we have

w(T Si) =
∑
e∈TSi

w(e) =
∑
e∈TSi

∑
arg maxj{αe≥αj}

w(e)

=
∑

e∈TSi :ϕi(e)∈E′

∑
arg maxj{αe≥αj}

w(e) +
∑

e∈TSi :ϕi(e)/∈E′

∑
arg maxj{αe≥αj}

w(e)

≤
∑

e∈TSi :ϕi(e)∈E′

∑
arg maxj{αe≥αj}

w(ϕi(e))

+
∑

e∈TSi :ϕi(e)/∈E′

∑
arg maxj{αe≥αj}

1

αj
· w(ϕi(e))

≤

(
N∑
j=i

βj +
N∑
j=i

γj
αj

)
· OPT(I)

=

(
1−

i−1∑
j=0

βj −
N∑
j=0

γj − ξ +
N∑
j=i

γj
αj

)
· OPT(I) ,

where the first inequality follows from Claim 2 and the last equality holds due
to ξ +

∑N
j=1 βj +

∑N
j=1 γj = 1.

Furthermore, we bound the cost of the solution Yi to the 2-ECSS in-
stance (GS

i) as follows.

Claim 3.

w(Yi) ≤

(
i−1∑
j=0

(1 + αj+1)βj +
N∑
j=0

γj + ξ

)
· OPT(I) .

The proof of Claim 3 is analogous to the proof of Claim 3 in Lemma 5.18.
However, for each e ∈ E ′ \ ϕi(E(T Si)), we have w(ϕ−1

i (e)) ≤ αj+1w(e). Here,
αj is the largest αj ∈ W satisfying αj ≤ αe. Thus we can bound the cost of
{ϕ−1

i (e) | e ∈ E ′ \ ϕi(E(T Si))} by
∑i−1

j=i αj+1βj.

Finally, since the algorithm computes a c2EC-approximate solution to the

143

2-ECSS instance, we have

w(ZC
i) ≤ w(T Si) + c2EC · w(Yi)

≤

((
1−

i−1∑
j=0

βj −
N∑
j=0

γj − ξ +
N∑
j=i

γj
αj

)

+

(
i∑

j=1

(c2EC + c2EC · αj+1)βj +
N∑
j=0

c2ECγj + c2EC · ξ

))
· OPT(I)

≤

(
1 +

i−1∑
j=0

(c2EC + c2EC · αj+1 − 1)βj + (c2EC − 1) ·
N∑
j=0

γj

+
N∑
j=i

1

αj
γj + (c2EC − 1) · ξ

)
· OPT(I) ,

which concludes the proof of Lemma 5.22. �

Next, we bound the cost of the solution ZA computed by Algorithm A.

Lemma 5.23. Suppose we run Algorithm 4 with threshold
values W = {αi}0≤i≤N . Let ZA be the solution computed by Algorithm A in
Algorithm 4. Then

w(ZA) ≤

(
c2EC + c2EC ·

N∑
j=0

αj+1βj

)
· OPT(I) .

Proof. The proof is similar to the one of Lemma 5.19. The only difference is
an index shift in the bound of the following claim, compared to Claim 1 of
Lemma 5.19.

Claim 1. YA := Z∗ ∪ {ϕ−1
N (e)) | e ∈ E ′} is a feasible solution to the 2-ECSS

instance of cost at most

w(YA) ≤

(
1 +

N∑
j=0

αj+1βj

)
· OPT(I) .

Proof. The proof for feasibility can be found in Claim 1 of Lemma 5.19.
It remains to bound the cost of YA. We partition YA into two disjoint sets

YA = Z∗ ∪X1 ,

where X1 =
⋃
e∈E′ ϕ

−1
N (e) and bound the cost of each part individually. Clearly

we have w(Z∗) = OPT(I). To bound the cost of X1, observe that for some

144

ϕ−1
N (e) ∈ X1 we have w(ϕ−1

N (e)) ≤ αj+1w(e), where αj is the largest α ∈ W
satisfying αj ≤ αe. We can bound the cost of X1 by

w(X1) =
∑

ϕ−1
N (e)∈X1

w(e) =
∑

ϕ−1
N (e)∈X1

∑
arg maxj{αe≥αj}

w(ϕ−1
N (e))

≤
∑

ϕ−1
N (e)∈X1

∑
arg maxj{αe≥αj}

αj+1w(e) =
N∑
j=0

αj+1βj · OPT(I) .

Combining both bounds we obtain

w(YA) ≤ w(Z∗) + w(X1) ≤

(
1 +

N∑
j=0

αj+1βj

)
· OPT(I) .

This proves Claim 1. �

Since the algorithm computes a c2EC-approximation, we have that

w(ZA) ≤ c2ECw(YA) ≤

(
c2EC + c2EC ·

N∑
j=0

αj+1βj

)
· OPT(I) .

This proves Lemma 5.23. �

Finally, we bound the cost of the solution output by Algorithm B.

Lemma 5.24. Suppose we run Algorithm 4 with threshold values
W = {αi}0≤i≤N . For 1 ≤ i ≤ N let ZB

i be the solution computed by Algo-
rithm B with scaling factor αi in Algorithm 4. Then

w(ZB
i) ≤

(
1 +

i−1∑
j=0

(cTAP − 1 + αj+1)βj + (cTAP − 1) ·
N∑
j=0

γj

+
N∑
j=i

γj
αj

+
i−1∑
j=0

γj + (cTAP − 1) · ξ

)
· OPT(I) .

Proof. Let T Si be the safe edges of the tree Ti and let ϕi : E(Ti) → E(T) be
an αi-monotone exchange bijection, where T is a spanning tree of the optimal
solution Z∗ to the instance (G,w, F).

By contracting each edge of T Si in Ti and G we obtain the tree T ′i and the
graph GS

i := G/E(T Si). Algorithm B computes a cTAP-approximate solution
to the instance (GS

i , T
′
i) of WTAP.

145

Claim 1. The set

Yi := (E ′ \ ϕi(E(T Si))) ∪
⋃

1≤j≤r

E(Cj)

of edges is a feasible solution to the WTAP instance (GS
i .T

′
i).

Proof. Clearly (V, Yi) is a connected graph. It remains to argue that each edge
e ∈ Yi is contained in some cycle. This is certainly true for each edge e of a
component Cj, 1 ≤ j ≤ r. It remains to show that the edges in E ′ \ϕi(E(T Si))

are contained in some cycle of GS
i . Since ϕi is an exchange bijection, an edge

e ∈ E ′ \ϕi(E(T Si)) and its preimage ϕ−1(e) are on a cycle in E(T)∪{e}. This
concludes the proof of Claim 1. �

We now bound the cost of ZB
i . By Claim 1 we have that Ti ∪ Yi is a

feasible solution to the FGC instance (G,w, F). The algorithm then returns
in polynomial time a solution ZB

i of cost at most w(ZB
i) ≤ w(Ti) + cTAPw(Yi).

We first bound the cost of each edge of Ti as follows.

Claim 2. Let e ∈ E(Ti) and let αe be its threshold value. Then we have

w(e) ≤


1
αj
· w(ϕi(e)) if ϕi(e) /∈ E ′,

αj+1 · w(ϕi(e)) if ϕi(e) ∈ E ′ and e ∈ F , and

w(ϕi(e)) otherwise ,

where αj is the largest α ∈ W satisfying α ≤ αe.

Proof. It remains to prove w(e) ≤ αj+1w(ϕi(e)) if ϕi(e) ∈ E ′ and e ∈ F since
the other part is proven in Claim 2 of Lemma 5.22. Since e is an unsafe edge
and ϕi(e) ∈ E ′, it holds that w(e) ≤ αew(ϕi(e)). Since e is contained in Tj but
not contained in Tj+1 (by the definition of j), we have that αe ≤ αj+1. This
proves Claim 2. �

Recall that by Lemma 5.22 we have

w(T Si) ≤

(
N∑
j=i

βj +
N∑
j=i

γj
αj

)
· OPT(I) .

146

According to Claim 2 we obtain for 1 ≤ i ≤ N that

w(Ti ∩ F) =
∑

e∈Ti∩F

w(e) =
∑

e∈Ti∩F

∑
arg maxj{αe≥αj}

w(e)

=
∑

e∈Ti∩F :ϕi(e)∈E′

∑
arg maxj{αe≥αj}

w(e)

+
∑

e∈Ti∩F :ϕi(e)/∈E′

∑
arg maxj{αe≥αj}

w(e)

≤
∑

e∈Ti∩F :ϕi(e)∈E′

∑
arg maxj{αe≥αj}

αj+1w(ϕi(e))

+
∑

e∈Ti∩F :ϕi(e)/∈E′

∑
arg maxj{αe≥αj}

w(ϕi(e))

≤

(
i−1∑
j=0

αj+1βj +
i−1∑
j=0

γj

)
· OPT(I) .

Thus, we obtain

w(Ti) = w(T Si) + w(Ti ∩ F)

≤

(
i−1∑
j=0

αj+1βj +
N∑
j=i

βj +
i−1∑
j=0

γj +
N∑
j=i

γj
αj

)
· OPT(I)

=

(
1 +

i−1∑
j=0

(αj+1 − 1)βj −
N∑
j=0

γj − ξ +
i−1∑
j=0

γj +
N∑
j=i

γj
αj

)
· OPT(I) ,

where the last equality holds due to ξ+
∑N

j=0 βj+
∑N

j=0 γj = 1. We additionally
bound the cost of Yi.

Claim 3.

w(Yi) ≤

(
i−1∑
j=0

βj +
N∑
j=0

γj + ξ

)
· OPT(I)

Proof. We need to bound the cost of

Yi =
(
E ′ \ ϕi(E(T Si))

)
∪
⋃

1≤j≤r

E(Cj) .

We first bound the cost of E ′ \ ϕi(E(T Si)). According to the definition of
β0, β1, . . . , βN we can bound

⋃
e∈E′\ϕi(E(TSi))w(e) by

∑i−1
j=1 βj. Additionally, we

147

bound
⋃

1≤j≤r w(E(Cj)) by (ξ +
∑N

j=1 γj) · OPT. Putting things together, we
obtain

w(Yi) ≤

(
i−1∑
j=0

βj +
N∑
j=0

γj + ξ

)
· OPT(I) .

This concludes the proof of Claim 3. �

Finally, since the algorithm computes a cTAP-approximate solution for the
WTAP instance, we have

w(ZB
i) ≤ w(Ti) + cTAP · w(Yi)

≤

(
1 +

i−1∑
j=0

(αj+1 − 1)βj −
N∑
j=0

γj − ξ +
i−1∑
j=0

γj +
N∑
j=i

γj
αj

+
i−1∑
j=0

βj +
N∑
j=0

γj + ξ

)
· OPT(I)

≤

(
1 +

i−1∑
j=0

(cTAP − 1 + αj+1)βj + (cTAP − 1) ·
N∑
j=0

γj

+
N∑
j=i

γj
αj

+
i−1∑
j=0

γj + (cTAP − 1) · ξ

)
· OPT(I) ,

which concludes the proof of Lemma 5.24. �

With a similar argument as in Section 5.3.5 we can argue that ξ = 0. For
the sake of completeness, we state it here again. Since c2EC, cTAP ≥ 1, each
βj, γj, j ∈ [N] as well as ξ has a positive coefficient in the bounds of the
Lemmas 5.22, 5.23 and 5.24. Moreover, since we maximize over β1, β2, . . . , βN ,
γ1, γ2, . . . , γN , and ξ, we may assume ξ = 0. To see this, suppose we have an
optimal choice of the variables, where ξ > 0. Then, consider the following new
variables. Let β′j = βj for j ∈ [N], γ′j = γj for j ∈ [N − 1], γ′N = γN + ξ, and
ξ′ = 0. Now observe that the value of the minimum over w(ZA) as well as
w(ZC

i) and w(ZB
i), i ∈ [N] for the new variables is at least as large as for the

old ones. Thus, we can assume that ξ = 0 and have

N∑
j=1

βj +
N∑
j=1

γj = 1 .

Hence we found suitable functions for fA(·), fBi (·), fCi (·). These are given in
Lemmas 5.23, 5.24 and 5.22, respectively (with ξ set to 0).

148

Next, using these bounds, we will provide a computational proof of Theo-
rem 5.3. Note that even though we use the optimal threshold values in our
algorithm, in our analysis we cannot use instance specific scaling factors. How-
ever, since we minimize over the number and choice of scaling factors, we can
relax the minimization problem by simply choosing some “good“ scaling factors.
Eventually, we can turn the resulting max min problem into a maximization
problem. This is presented in the following proof.

Computational proof of Theorem 5.3. We choose N = 58 and let cTAP = 1.5

and c2EC = 2 and

(αi)0≤i≤N+1 = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.51, 0.52, 0.53,

0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.60, 0.61, 0.62, 0.63, 0.64, 0.65,

0.67, 0.68, 0.69, 0.7, 0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.78,

0.79, 0.8, 0.81, 0.82, 0.83, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.9,

0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 1 .

With these choices we obtain the following optimization problem from (5.2).

maximize z

subject to z ≤ c2EC + c2EC ·
N∑
j=0

αj+1βj

z ≤ 1 +
i−1∑
j=0

(cTAP − 1 + αj+1)βj

+ (cTAP − 1) ·
N∑
j=0

γj +
N∑
j=i

γj
αj

+
i−1∑
j=0

γj for 1 ≤ i ≤ N

z ≤ 1 +
i−1∑
j=0

(c2EC − 1 + c2ECαj+1)βj

+ (c2EC − 1) ·
N∑
j=0

γj +
N∑
j=i

γj
αj

for 1 ≤ i ≤ N

N∑
j=1

βj + γj = 1

βj, γj ∈ [0, 1] for 1 ≤ j ≤ N

(5.6)

149

The constraints are given by the bounds from Lemmas 5.22 – 5.24. The
solution of the problem is an upper bound on the approximation ratio of Algo-
rithm 4 due to Lemma 5.6. We obtain a computational upper bound of 2.404

and lower bound of 2.4035 on the optimal value of the non-linear program
above using the NLP solver baron [The19]. �

Note that we did not investigate the complexity of Problem 5.6, since we
were mainly interested in its solution. However, for a larger number N of
scaling factors, the time it took BARON to solve Problem 5.6 grew fast. Hence,
it might be true that BARON does not solve this problem in polynomial-time.

However, we are able to solve instances with about 60 scaling factors in
roughly 30 minutes on a standard computer. As one might expect, when
refining the choice of scaling factors, the solution became better, but converged
very fast to roughly 2.4. It would be interesting to find an exact upper bound
similar to the one presented in Section 5.3.5.

5.4 Approximation Hardness on Transversal

Matroids

Our main technical tools in the analysis of our approximation algorithm for
FGC are exchange bijections, which are based on a matroid basis exchange
argument. So it is natural to ask whether our results can be transferred to a
matroid setting entirely. Let us consider a generalization of FGC as follows.

Problem 5.25 (Flexible Matroid Basis). Given a matroidM on a ground
set X, weights w ∈ ZX≥0, and unsafe items F ⊆ X, the task is to find a
minimum-weight set of elements E ⊆ X such that for each f ∈ F , the set
E − f contains a basis of M .

Observe that for graphic matroids this problem corresponds to FGC. Note
also that α-MSTs and their threshold properties as well as α-monotone ex-
change bijections (Section 5.3.3) generalize in a natural way to matroids by
replacing “spanning tree” by “matroid basis” in the respective lemmas. We show
that despite these promising observations, under some standard complexity as-
sumption, we cannot hope for a polynomial-time constant-factor approxima-

150

tion algorithm for Flexible Matroid Basis. Let G = (U, V,E) be a bipar-
tite graph and let I := {F ⊆ U | there is a matching M of G that covers F}.
Then I is the set of independent sets of a matroid. Matroids that can be ob-
tained in this manner are called transversal matroids, see for instance [Oxl06]
for an introduction to the theory of transversal matroids. The next theorem
shows that Flexible Matroid Basis on transversal matroids is as hard to
approximate as Set Cover.

Theorem 5.26. Flexible Matroid Basis on transversal matroids admits
no polynomial-time (1−ε) log |X|-approximation algorithm for any ε > 0 unless
P = NP.

Proof. Consider an instance I = (U,S) of Set Cover with ground set
U = {u1, u2, . . . , un} and a family of subsets S = {S1, S2, . . . , Sm}. We con-
struct an instance I′ := (M(G), w, F) of Flexible Matroid Basis as follows.
Let G = (A,B,E) be a bipartite graph given by

A :={u1, u2, . . . , un} ∪ {S1, S2, . . . , Sm} ,

B :={v1, v2, . . . , vn} ,

E :={Sivj | uj ∈ Si, 1 ≤ i ≤ m, 1 ≤ j ≤ n} .

Let M(G) be the transversal matroid that arises from the subsets of A that
are covered by a matching of G. Clearly, the set U is a basis of M(G). Let
F := A \U be the set of unsafe items and let the weights w ∈ ZA≥0 be given by
w(e) = 0 if e ∈ U and w(e) = 1 otherwise. This concludes the construction of
the instance I′ = (M(G), w, F) of Flexible Matroid Basis.

Let Z∗ ⊆ A be an optimal solution to the instance I′. We may assume
that Z∗ contains U . We claim that Z∗ \ U is an optimal solution to the
instance I. First, suppose that Z∗ \ U is not a cover. Then there is an item
u ∈ U that is not covered by Z∗ \ U . But then Z∗ − u does not contain a
basis of M(G). Now suppose that Z∗ \ U is not optimal for I. Then there
is a family C ⊆ S of sets that cover U which is cheaper than Z∗ \ U . But
then U ∪ C is a cheaper solution to I′ than Z∗, contradicting the optimality
of Z∗. We conclude that the values of optimal solutions to I and I′ are the
same. Therefore, any polynomial-time ρ-approximation algorithm for Robust

Matroid Basis gives a polynomial-time ρ-approximation algorithm for Set

151

Cover. Hence, the approximation hardness result for Set Cover by Dinur
and Steurer [DS14] implies that there is no polynomial-time (1 − ε) log |X|-
approximation algorithm for Robust Spanning Tree unless P = NP. �

By a theorem of Piff and Welsh [PW70], any transversal matroid is rep-
resentable over any sufficiently large field. Therefore, Flexible Matroid

Basis is Set Cover-hard to approximate on vector matroids. Note that
in the proof of Theorem 5.26, we essentially show approximation hardness of
a generalization of WTAP to matroids. It is an interesting open question
whether this generalization admits constant-factor approximation algorithms
for subclasses of transversal or vector matroids, for instance, regular, binary,
and bicircular matroids.

5.5 Conclusion

We studied Flexible Graph Connectivity, a problem that encapsulates
the problems Minimum Spanning Tree, 2-Edge Connected Spanning

Subgraph, and many more. We provided an approximation algorithm that
uses approximation algorithms for 2-ECSS and WTAP as a black-box. Using
the current best known approximation factors for these problems, we obtained
approximation factors of 2.523 for general instances and 2.404 for bounded-
weight instances.

We are not aware of examples that actually reach these upper bounds. An
interesting open question is whether there are such examples or to show that
the approximation guarantees are indeed better than the ones presented here.

Of course, the main open problem is whether one can achieve an approxi-
mation factor close to 2 (current best approximation factor for 2-ECSS). One
way to tackle this problem is to “open the box“ instead of simply using the
approximation algorithms for 2-ECSS and WTAP as a black-box.

152

Chapter 6

Conclusion and Outlook

In this thesis we investigated three bulk-robust combinatorial optimization
problems on graphs, namely the problems Robust Matching Augmenta-

tion, Bulk-robust k-Disjoint Paths and Flexible Graph Connec-

tivity. We presented efficient exact and approximation algorithms as well
as FPT and XP algorithms, complemented by hardness and inapproximability
results. In our opinion, the case of single-edge failure is well understood for
most questions that sprang up in the analysis of the three problems. Clearly,
as indicated in Chapter 4 the main open question is whether Directed 1-

robust k-Disjoint Paths admits a polynomial-time algorithm or not. An-
other interesting question is whether it is possible to obtain a polynomial-time
approximation algorithm for Flexible Graph Connectivity with guaran-
tee 2.

A possible further direction for research could be to consider edge failure
of constant size. Note that if we consider edge failure of ’large’ size the bulk-
robust counterpart of almost any combinatorial optimization problem becomes
as hard as Set Cover [ASZ15]. However, instead of edge failure one could
also consider vertex failure and the corresponding bulk-robust version. Besides
the work of Bindewald [Bin18] who considered the assignment problem with
vertex failure, we are not aware of any other work considering vertex failure.

Another direction for further research could be to investigate bulk-robust
counterparts of other combinatorial optimization problems. So far, only bulk-
robust counterparts of polynomial-time solvable problems have been consid-
ered. For example, the problem Steiner Tree could be a promising problem

153

154

as it generalizes the problem Minimum Spanning Tree. Therefore, the
bulk-robust version of Steiner Tree would generalize Flexible Graph

Connectivity and it would be interesting to see if the methods presented in
Chapter 5 could also be applied to this problem.

Bibliography

[ABM16] David Adjiashvili, Viktor Bindewald, and Dennis Michaels. Robust
Assignments via Ear Decompositions and Randomized Rounding.
In 43rd International Colloquium on Automata, Languages, and
Programming, volume 55, pages 71:1–71:14, Dagstuhl, Germany,
2016.

[ABM17] David Adjiashvili, Viktor Bindewald, and Dennis Michaels.
Robust assignments with vulnerable nodes. arXiv preprint
arXiv:1703.06074, 2017.

[ABV05a] Hassene Aissi, Cristina Bazgan, and Daniel Vanderpooten. Ap-
proximation complexity of min-max (regret) versions of shortest
path, spanning tree, and knapsack. In European Symposium on
Algorithms, pages 862–873. Springer, 2005.

[ABV05b] Hassene Aissi, Cristina Bazgan, and Daniel Vanderpooten. Com-
plexity of the min–max and min–max regret assignment problems.
Operations research letters, 33(6):634–640, 2005.

[ABV05c] Hassene Aissi, Cristina Bazgan, and Daniel Vanderpooten.
Pseudo-polynomial algorithms for min-max and min-max regret
problems. 5th ISORA, pages 171–178, 2005.

[ABV08] Hassene Aissi, Cristina Bazgan, and Daniel Vanderpooten. Com-
plexity of the min–max (regret) versions of min cut problems. Dis-
crete optimization, 5(1):66–73, 2008.

[ABWZ14] David Adjiashvili, Sandro Bosio, Robert Weismantel, and Rico
Zenklusen. Time-expanded packings. In International Colloquium

155

156

on Automata, Languages, and Programming, pages 64–76. Springer
Berlin Heidelberg, 2014.

[Adj12] David Adjiashvili. Structural robustness in combinatorial optimiza-
tion. PhD thesis, ETH Zurich, 2012.

[Adj18] David Adjiashvili. Beating approximation factor two for weighted
tree augmentation with bounded costs. ACM Transactions on Al-
gorithms (TALG), 15(2):19, 2018.

[AHM20] David Adjiashvili, Felix Hommelsheim, and Moritz Mühlenthaler.
Flexible graph connectivity. In International Conference on Inte-
ger Programming and Combinatorial Optimization, pages 13–26.
Springer, 2020.

[ASZ15] David Adjiashvili, Sebastian Stiller, and Rico Zenklusen. Bulk-
robust combinatorial optimization. Mathematical Programming,
149(1-2):361–390, 2015.

[AZ06] Amitai Armon and Uri Zwick. Multicriteria global minimum cuts.
Algorithmica, 46(1):15–26, 2006.

[BBI14] Frank Baumann, Christoph Buchheim, and Anna Ilyina. A la-
grangean decomposition approach for robust combinatorial opti-
mization. Optimization Online, 2014.

[BBM+13] Piotr Berman, Arnab Bhattacharyya, Konstantin Makarychev, So-
fya Raskhodnikova, and Grigory Yaroslavtsev. Approximation al-
gorithms for spanner problems and directed steiner forest. Infor-
mation and Computation, 222:93–107, 2013. 38th International
Colloquium on Automata, Languages and Programming (ICALP
2011).

[BCKN15] Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper
Nederlof. Deterministic single exponential time algorithms for con-
nectivity problems parameterized by treewidth. Information and
Computation, 243:86–111, 2015.

157

[Bel58] Richard Bellman. On a routing problem. Quarterly of applied
mathematics, 16(1):87–90, 1958.

[BGA20] Jarosław Byrka, Fabrizio Grandoni, and Afrouz Jabal Ameli.
Breaching the 2-approximation barrier for connectivity augmen-
tation: a reduction to steiner tree. In Proceedings of the 52nd An-
nual ACM SIGACT Symposium on Theory of Computing, pages
815–825, 2020.

[BGRS13] Jarosław Byrka, Fabrizio Grandoni, Thomas Rothvoß, and Laura
Sanità. Steiner tree approximation via iterative randomized round-
ing. Journal of the ACM (JACM), 60(1):1–33, 2013.

[BHT12] Andreas Björklund, Thore Husfeldt, and Nina Taslaman. Shortest
cycle through specified elements. In Proceedings of the twenty-third
annual ACM-SIAM symposium on Discrete Algorithms, pages
1747–1753. SIAM, 2012.

[Bin18] Viktor Bindewald. Bulk-robust assignment problems: hardness,
approximability and algorithms. PhD thesis, Fakultät für Mathe-
matik, TU Dortmund University, 2018.

[BK18] Christoph Buchheim and Jannis Kurtz. Robust combinatorial opti-
mization under convex and discrete cost uncertainty. EURO Jour-
nal on Computational Optimization, 6(3):211–238, 2018.

[Bod96] Hans L. Bodlaender. A linear-time algorithm for finding tree-
decompositions of small treewidth. SIAM Journal on Computing,
25(6):1305–1317, 1996.

[Buc20] Christoph Buchheim. A note on the nonexistence of oracle-
polynomial algorithms for robust combinatorial optimization. Dis-
crete Applied Mathematics, 285:591 – 593, 2020.

[CCC+99] Moses Charikar, Chandra Chekuri, To-yat Cheung, Zuo Dai,
Ashish Goel, Sudipto Guha, and Ming Li. Approximation al-
gorithms for directed steiner problems. Journal of Algorithms,
33(1):73–91, 1999.

158

[CDG+19] J. Cheriyan, J. Dippel, Fabrizio Grandoni, Arindam Khan,
and V. Narayan. The matching augmentation problem: a 7

4
-

approximation algorithm. Mathematical Programming, 04 2019.

[CEGS08] Chandra Chekuri, Guy Even, Anupam Gupta, and Danny Segev.
Set connectivity problems in undirected graphs and the directed
steiner network problem. In Proceedings of the Nineteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’08, pages
532–541. Society for Industrial and Applied Mathematics, 2008.

[CFK+15] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Loksh-
tanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and
Saket Saurabh. Parameterized Algorithms. Springer, 2015.

[CLNV14] Joseph Cheriyan, Bundit Laekhanukit, Guyslain Naves, and
Adrian Vetta. Approximating rooted steiner networks. ACM
Transactions on Algorithms (TALG), 11(2):1–22, 2014.

[Coo71] Stephen A Cook. The complexity of theorem-proving procedures.
In Proceedings of the third annual ACM symposium on Theory of
computing, pages 151–158, 1971.

[CT00] Joseph Cheriyan and Ramakrishna Thurimella. Approximat-
ing minimum-size k-connected spanning subgraphs via matching.
SIAM Journal on Computing, 30(2):528–560, 2000.

[D+59] Edsger W Dijkstra et al. A note on two problems in connexion
with graphs. Numerische mathematik, 1(1):269–271, 1959.

[DGRS05] Kedar Dhamdhere, Vineet Goyal, R Ravi, and Mohit Singh. How
to pay, come what may: Approximation algorithms for demand-
robust covering problems. In 46th Annual IEEE Symposium
on Foundations of Computer Science (FOCS’05), pages 367–376.
IEEE, 2005.

[Die12] Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Grad-
uate texts in mathematics. Springer, 2012.

159

[DKL76] E.A. Dinits, A.V. Karzanov, and M.V. Lomonosov. On the struc-
ture of a family of minimal weighted cuts in a graph. Studies in
Discrete Optimization, pages 290–306, 1976.

[DMP+15] Mitre C. Dourado, Dirk Meierling, Lucia D. Penso, Dieter Raut-
enbach, Fabio Protti, and Aline Ribeiro de Almeida. Robust re-
coverable perfect matchings. Networks, 66(3):210–213, 2015.

[DS14] Irit Dinur and David Steurer. Analytical approach to parallel rep-
etition. In Proceedings of the Forty-sixth Annual ACM Symposium
on Theory of Computing, pages 624–633. ACM, 2014.

[DW71] Stuart E Dreyfus and Robert A Wagner. The steiner problem in
graphs. Networks, 1(3):195–207, 1971.

[Edm65] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of
mathematics, 17:449–467, 1965.

[ET76] Kapali P. Eswaran and Robert E. Tarjan. Augmentation problems.
SIAM Journal on Computing, 5(4):653–665, 1976.

[FF09] Lester Randolph Ford and Delbert R Fulkerson. Maximal flow
through a network. In Classic papers in combinatorics, pages 243–
248. Springer, 2009.

[FGKS18] Samuel Fiorini, Martin Groß, Jochen Könemann, and Laura San-
ità. Approximating weighted tree augmentation via Chvátal-
gomory cuts. In Proceedings of the Twenty-Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’18, pages 817–
831. Society for Industrial and Applied Mathematics, 2018.

[FJ56] Lester R Ford Jr. Network flow theory. Technical report, Rand
Corp Santa Monica Ca, 1956.

[FJ81] Greg N Frederickson and Joseph JáJá. Approximation algorithms
for several graph augmentation problems. SIAM Journal on Com-
puting, 10(2):270–283, 1981.

160

[FJ15] András Frank and Tibor Jordán. Graph connectivity augmenta-
tion. In Handbook of Graph Theory, Combinatorial Optimization,
and Algorithms, chapter 14, pages 313–346. CRC Press, 2015.

[FJMM07] Uriel Feige, Kamal Jain, Mohammad Mahdian, and Vahab Mir-
rokni. Robust combinatorial optimization with exponential sce-
narios. In International Conference on Integer Programming and
Combinatorial Optimization, pages 439–453. Springer, 2007.

[FKN09] Moran Feldman, Guy Kortsarz, and Zeev Nutov. Improved ap-
proximating algorithms for directed steiner forest. In Proceedings
of the Twentieth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, pages 922–931. Society for Industrial and Applied Math-
ematics, 2009.

[FR06] Jon Feldman and Matthias Ruhl. The directed steiner network
problem is tractable for a constant number of terminals. SIAM
Journal on Computing, 36(2):543–561, 2006.

[GG12] Harold N Gabow and Suzanne R Gallagher. Iterated rounding
algorithms for the smallest k-edge connected spanning subgraph.
SIAM Journal on Computing, 41(1):61–103, 2012.

[GGAS19] Waldo Gálvez, Fabrizio Grandoni, Afrouz Jabal Ameli, and
Krzysztof Sornat. On the cycle augmentation problem: Hardness
and approximation algorithms. In Workshop on Approximation
and Online Algorithms (WAOA), 2019.

[GGP+94] Michel X Goemans, Andrew V Goldberg, Serge A Plotkin, David B
Shmoys, Éva Tardos, and David P Williamson. Improved approx-
imation algorithms for network design problems. In Proceedings of
the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 223–232, 1994.

[GGP+15] Daniel Golovin, Vineet Goyal, Valentin Polishchuk, R Ravi, and
Mikko Sysikaski. Improved approximations for two-stage min-cut
and shortest path problems under uncertainty. Mathematical Pro-
gramming, 149(1-2):167–194, 2015.

161

[GJ79] Michael R Garey and David S Johnson. Computers and intractabil-
ity, volume 174. freeman San Francisco, 1979.

[GKZ18] Fabrizio Grandoni, Christos Kalaitzis, and Rico Zenklusen. Im-
proved approximation for tree augmentation: Saving by rewiring.
In Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2018, pages 632–645, New York, NY,
USA, 2018. ACM.

[GNS11] Jiong Guo, Rolf Niedermeier, and Ondřej Suchỳ. Parameterized
complexity of arc-weighted directed steiner problems. SIAM Jour-
nal on Discrete Mathematics, 25(2):583–599, 2011.

[GT88] Andrew V. Goldberg and Robert E. Tarjan. A new approach to
the maximum-flow problem. J. ACM, 35:921–940, 1988.

[HK03] Eran Halperin and Robert Krauthgamer. Polylogarithmic inap-
proximability. In Proceedings of the 35th Annual ACM Symposium
on Theory of Computing, pages 585–594, 2003.

[HKS85] Alan J. Hoffman, Anthonius W. J. Kolen, and Michel Sakarovitch.
Totally-balanced and greedy matrices. SIAM Journal on Algebraic
Discrete Methods, 6(4):721–730, 1985.

[HMS19] Felix Hommelsheim, Moritz Mühlenthaler, and Oliver Schaudt.
How to secure matchings against edge failures. In 36th Inter-
national Symposium on Theoretical Aspects of Computer Science.
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2019.

[Jai01] Kamal Jain. A factor 2 approximation algorithm for the general-
ized Steiner network problem. Combinatorica, 21(1):39–60, 2001.

[JMM+03] Kamal Jain, Mohammad Mahdian, Evangelos Markakis, Amin
Saberi, and Vijay V. Vazirani. Greedy facility location algorithms
analyzed using dual fitting with factor-revealing LP. Journal of
the ACM, 50(6):795–824, 2003.

162

[KN16] Guy Kortsarz and Zeev Nutov. A simplified 1.5-approximation
algorithm for augmenting edge-connectivity of a graph from 1 to
2. ACM Transactions on Algorithms, 12(2):23, 2016.

[KN18] Guy Kortsarz and Zeev Nutov. LP-relaxations for tree augmenta-
tion. Discrete Applied Mathematics, 239:94–105, 2018.

[Kol09] Vladimir Kolmogorov. Blossom v: a new implementation of a mini-
mum cost perfect matching algorithm. Mathematical Programming
Computation, 1(1):43–67, 2009.

[KR08] Subhash Khot and Oded Regev. Vertex cover might be hard to
approximate to within 2- ε. Journal of Computer and System
Sciences, 74(3):335–349, 2008.

[KRT94] Valerie King, Satish Rao, and Rorbert Tarjan. A faster determin-
istic maximum flow algorithm. Journal of Algorithms, 17(3):447–
474, 1994.

[Kru56] Joseph B Kruskal. On the shortest spanning subtree of a graph
and the traveling salesman problem. Proceedings of the American
Mathematical society, 7(1):48–50, 1956.

[KY13] Panos Kouvelis and Gang Yu. Robust discrete optimization and its
applications, volume 14. Springer Science & Business Media, 2013.

[LMMP12] Mathieu Lacroix, A. Ridha Mahjoub, Sébastien Martin, and
Christophe Picouleau. On the np-completeness of the perfect
matching free subgraph problem. Theoretical Computer Science,
423:25–29, 2012.

[MV80] Silvio Micali and Vijay V Vazirani. An o (sqrt(|v|) |e|) algoithm
for finding maximum matching in general graphs. In 21st An-
nual Symposium on Foundations of Computer Science (sfcs 1980),
pages 17–27. IEEE, 1980.

[Nut17] Zeev Nutov. On the tree augmentation problem. In 25th An-
nual European Symposium on Algorithms (ESA 2017), volume 87,
page 61. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2017.

163

[OPT93] James B Orlin, Serge A Plotkin, and Éva Tardos. Polynomial dual
network simplex algorithms. Mathematical programming, 60(1-
3):255–276, 1993.

[Orl13] James B. Orlin. Max flows in o(nm) time, or better. In Pro-
ceedings of the Forty-Fifth Annual ACM Symposium on Theory of
Computing, pages 765–774. Association for Computing Machinery,
2013.

[Oxl06] James G Oxley. Matroid theory, volume 3. Oxford University
Press, USA, 2006.

[Pri57] Robert Clay Prim. Shortest connection networks and some gen-
eralizations. The Bell System Technical Journal, 36(6):1389–1401,
1957.

[PW70] Mike J Piff and Dominic JAWelsh. On the vector representation of
matroids. Journal of the London Mathematical Society, 2(2):284–
288, 1970.

[Sch03] Alexander Schrijver. Combinatorial optimization: polyhedra and
efficiency, volume 24. Springer Science & Business Media, 2003.

[SV14] András Sebő and Jens Vygen. Shorter tours by nicer ears: 7/5-
approximation for the graph-tsp, 3/2 for the path version, and 4/3
for two-edge-connected subgraphs. Combinatorica, 34(5):597–629,
2014.

[The19] The Optimization Firm. baron, 2019.

[WN99] Laurence A. Wolsey and George L. Nemhauser. Integer and Com-
binatorial Optimization. Wiley Series in Discrete Mathematics and
Optimization. Wiley, 1999.

[WS11] David P Williamson and David B Shmoys. The design of approx-
imation algorithms. Cambridge university press, 2011.

	Introduction
	Preliminaries and Related Work
	Graph Theory
	Complexity Theory
	Combinatorial Optimization on Graphs
	Connectivity Problems
	Matching and Covering Problems

	Robust Combinatorial Optimization
	Structural Robustness
	Cost Robustness
	Demand Robustness

	Robust Matchings
	Introduction
	Robust Matchings and Strong Connectivity Augmentation
	Unweighted Robust Matching Augmentation
	Complexity
	Main Result
	The Source Cover Problem

	Weighted Robust Matching Augmentation
	Complexity and Approximation
	Dichotomy Result

	Conclusion

	Robust Disjoint s-t-Paths
	Introduction
	-Robust k-Disjoint Paths
	Complexity of -Robust k-Disjoint Paths
	An Approximation Algorithm for Undirected -Robust k-Disjoint Paths
	Directed -Robust k-Disjoint Paths

	1-Robust k-Disjoint Paths
	Complexity of Directed 1-robust k-Disjoint Paths
	A (k+1)-approximation Algorithm for Directed 1-Robust k-Disjoint Paths
	Solving the Augmentation Problem
	Connection to Other Famous Open Problems

	Conclusion

	Robust Spanning Trees
	Introduction
	Unweighted k-Flexible Graph Connectivity
	Weighted Flexible Graph Connectivity
	Three Simple Approximation Algorithms for FGC
	An Improved Approximation Algorithm
	-MSTs, Thresholds, and Exchange Bijections
	Simple Analysis of Algorithm 4: A 2.8-approximation
	Refined Analysis of Algorithm 4: A 2.523-approximation
	Improved Analysis of Algorithm 4 for Bounded-weight Instances: A 2.404-approximation

	Approximation Hardness on Transversal Matroids
	Conclusion

	Conclusion and Outlook

