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Chapter 1

Random Schrödinger operators

In statistical physics and in particular in solid state physics, one is interested in the
behavior and properties of matter which consists of many atoms or molecules. The
challenge is to derive macroscopic properties of a material like electrical conductivity
or insulation from the interactions of its microscopic constituents. The proper
description on the microscopic level is provided by quantum mechanics.

A moderately sized system involves 1023 and more particles, which have to be
modeled on the configuration space (R3)1023 . Naturally, one tries to simplify this
model. From the point of view of one electron, the rest of the solid can be modeled
as an external potential. This approach reduces the configuration space to R3,
but neglects the influence of the electron on the crystal, which is a reasonable
simplification. The external potential captures the influence of the nuclei and the
remaining electrons on the electron and is often called background potential. We
will also assume that the material does not change over time, i. e., the background
potential will be constant in time. This simplification is justified by the fact that
the nuclei are much heavier than the electron and accordingly move much slower.

Many solids are crystals, where the atoms are arranged in a periodic lattice
structure, so periodic background potentials seem to be a good choice. To take
full advantage of the lattice structure, the crystal is assumed to extend to infinity.
The study of wave phenomena in such periodic potentials is called Bloch–Floquet
theory. A fundamental result is that the energy the electron can have is restricted
to certain intervals, called bands. This band structure allows to explain many
physical properties of solids, including electrical conductivity of metals and even
optical properties.

Of course not all physical effects are captured by this model. An example is
superconductivity, which specifically needs the interactions within pairs of electrons.
For many materials, the assumption of perfect periodicity is an oversimplification,
too. In most crystals, the periodic arrangement of atoms is only a local property,
the regular regions are separated by grain boundaries. And even in supposedly
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10 CHAPTER 1. RANDOM SCHRÖDINGER OPERATORS

periodic domains, there are irregularities in form of impurities, foreign atoms or
missing atoms.

To study the effects which are suppressed by ignoring the non-periodicity,
Philip Warren Anderson introduced the so-called Anderson model in [And58]. The
formerly periodic background potential is now perturbed by random impurities.
The distribution of the impurities is chosen homogeneously to ensure that the
material remains homogeneous. The task is now again to study the motion of one
electron in this random potential. If we interpret the impurities as foreign atoms,
we can model a mixture of different metals and thus alloys, too. Accordingly, the
model is also known as alloy-type model. Anderson argued that enough randomness
changes the electrical behavior of the matter under consideration from conductor to
insulator. This phase transition caught the attention of many researchers in physics
and in mathematics and lead to numerous publications in the field of random
Schrödinger operators.

To continue the discussion on a slightly more technical level, we briefly review
some standard notions and notation from quantum mechanics. A quantum particle
is represented by its wave function ϕ, also called the state of the particle, which
is a normalized vector in the Hilbert space L2(R3) with inner product 〈ϕ1, ϕ2〉 :=∫
ϕ1(x)ϕ2(x) dx. For each measurable set A ⊆ R

3, ‖ϕ1A‖2 =
∫
A
|ϕ(x)|2 dx is

the probability of the particle to be found in the region A. Note that due to
the normalization, the probability for the particle to be somewhere in space is∫
R3|ϕ(x)|2 dx = ‖ϕ‖2

2 = 1. The state of the particle will change over time, so it is
a function ψ : R→ L2(R3). Given an initial state ψ0 at time 0, the time evolution
of the particle is governed by Schrödinger’s equation

iψ̇ = Hψ, ψ(0) = ψ0,

where ψ̇ is the time derivative of ψ and H is the Hamiltonian. We use physical
units to suppress Planck’s constant and the mass of the particle.

Mathematically, a Hamiltonian is a self-adjoint operator on L2(R3), and this
immediately implies that the solution operator to Schrödinger’s equation is a unitary
and thus preserves the normalization of states. Physically, the Hamiltonian is the
observable for the total energy of the particle. This means that the expectation
value of the energy of a particle in the state ϕ is 〈ϕ,Hϕ〉. The total energy is the
sum of the kinetic energy T and the potential energy V , i. e. H = T + V . We do
not take spin and magnetic fields into account, so the kinetic energy is the Laplace
operator T = −∆. The potential energy is a multiplication operator with the
potential

V : L2(R3)→ L2(R3), (V ϕ)(x) := V (x)ϕ(x).
As custom, we use the same symbol for the potential as a function of space and
the potential as an operator on L2(R3). The domain of the multiplication operator
has of course to be restricted if the potential is unbounded.



11

This is the point where the modeling discussed above enters the formalism. Let
the contribution of one atom located at the origin to the potential be encoded in
the single site potential f ∈ L2(R3). Then an infinite crystal with atoms of this
type at every site of the lattice Z3 has the Z3-periodic potential

Vper(x) :=
∑

k∈Z3

f(x− k).

Of course, we assume that this sum converges almost everywhere. In the alloy-type
model, each lattice site is assigned an atom randomly:

Vω(x) :=
∑

k∈Z3

λk(ω)f(x− k).

Here, f is the shape of an atom, but the charge of the nucleus is changed by the
independent and identically distributed random coefficient λk(ω). There are many
other random potentials considered in the literature. A Hamiltonian which is the
sum of the Laplace operator and a random potential is called a random Schrödinger
operator.

Formally, Schrödinger’s equation is solved by

ψ(t) = e−iHtψ0.

But apart from the fact that e−iHt is unitary, it is very hard to actually determine
the behavior of the solution, especially for long times. The RAGE theorem, named
after Ruelle [Rue69], Amrein and Georgescu [AG73], and Enss [Ens78], states that
the long time behavior of solutions to Schrödinger’s equation is intimately related
to the spectrum of the Hamiltonian, see e. g. [Cyc+87]. More precisely, absolutely
continuous spectrum corresponds to scattering states, while point spectrum indicates
localized eigenstates. Thus, roughly speaking, absolutely continuous spectrum
corresponds to a material that allows the electron to travel, a behavior which makes
the material an electrical conductor, while localized eigenstates trap the electron
and make the material an insulator. There are several precise notions of Anderson
localization but the intricate details are beyond the scope of this introduction.

According to the RAGE theorem, it is vital to study the spectrum of random
Schrödinger operators. For periodic potentials, the spectrum consists of intervals of
absolutely continuous spectrum. Therefore, if a periodic crystal provides electrons
in such a band, the material is a conductor, which is the case for metals. For
random Schrödinger operators like the alloy-type model, the situation is more
complicated.

One might expect that the spectrum of a random operator is random. But
for the Anderson model and in fact many random Schrödinger operators, spatial
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homogeneity makes the spectrum almost surely constant, meaning that there is a
closed set Σ ⊆ R such that, for almost all realizations of the random potential, this
set Σ is the spectrum of the corresponding Schrödinger operator. From an ergodic
theory point of view, this is understandable as follows. The homogeneity of the
material makes the operator family ergodic. In the alloy-type model, the choice
of i. i. d. random variables λk is the reason for this. Now, similar to the fact that
invariant R-valued random variables on an ergodic dynamical system are almost
surely constant, the invariance of the spectrum, i. e. a set-valued random variable,
under translations guarantees that it is deterministic, too. By the same reasoning,
the components of the spectral measure according to the Lebesgue decomposition
are deterministic, too.

To study the spectrum and its types, one needs efficient tools. One such tool is
the integrated density of states (IDS). The IDS is a function that assigns each energy
threshold the number of quantum mechanical states per unit volume with energy
below its argument. To fill this description with life, we describe one common
way to construct the IDS rigorously. First, we fix a large rectangular box in the
configuration space and define the operator HL

ω := −∆+Vω on (a domain in) L2(ΛL)
using suitable boundary conditions, for example Dirichlet or Neumann boundary
conditions, such that HL

ω is a self-adjoint operator. We call the operator HL
ω the

restriction of the operator Hω to the box ΛL with Dirichlet or Neumand boundary
conditions and use the notation HL

ω := Hω|ΛL
. We also refer to HL

ω as finite volume
operator or finite volume approximation of Hω. Next, it is well-known that the
finite volume operator has discrete spectrum consisting purely of eigenvalues. We
count the eigenvalues below a given energy threshold with multiplicity, and the
resulting number is the value of the eigenvalue counting function corresponding to
this finite volume operator. Then, we normalize the eigenvalue counting function
with the volume of the box we restricted the original Hamiltonian to. Finally,
we take the limit L→∞ of box size to infinity. This procedure gives a limiting
function, which is the IDS, and illustrates the interpretation of the IDS given above.

By construction, the normalized eigenvalue counting functions are monotonically
increasing, and the IDS is too. Its Stieltjes derivative is a positive measure, called
the density of states measure (DoS). The topological support of the DoS is the
spectrum of the Hamiltonian, so the IDS encodes spectral information, even though
it cannot distinguish between the spectral types.

A natural question to ask is whether or not the IDS can distinguish between
random and non-random operators. For a deterministic Schrödinger operator like
the Laplace operator without a potential or with a periodic potential, the IDS
usually behaves like a polynomial close to the infimum of the spectrum. For example,
straightforward Fourier analysis shows that the IDS of the Laplace operator −∆
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on Rd is
R 3 E 7→ τd

(2π)d
Ed/21(0,∞)(E),

where τd is the volume of the unit ball in Rd, see [RS78, p. XIII.15].
In contrast, for random Schrödinger operators like the Anderson model, the

IDS behaves radically different at the infimum of the spectrum. Typically, the
IDS of a random Schrödinger operator with sufficiently strong randomness is, close
to the bottom of the spectrum, exponentially small. This phenomenon is called
Lifshitz tails in honor of [Lif65].

To understand this change of behavior of the IDS at the bottom of the spectrum,
we return to the definition of the IDS. The first step in order to count eigenvalues is
to restrict the Hamiltonian to a large but finite box with, say, Neumann boundary
conditions. For Lifshitz tails, we are interested in small energies. We study the
ground state of the random Schrödinger operator HL

ω = (−∆ + Vω)|ΛL
restricted to

the box ΛL := [0, L)d of side length L with the minimax principle:

E1(HL
ω ) = inf

‖ϕ‖2=1
〈ϕ,HL

ωϕ〉 = inf
‖ϕ‖2=1

(
〈ϕ,−∆ϕ〉+ 〈ϕ, Vωϕ〉

)
,

where ϕ ranges over all normalized functions in the domain of the Laplace operator
which are supported in ΛL. For the sum to be small, both the expected kinetic
and potential energy have to be small. In order for the kinetic energy 〈ϕ,−∆ϕ〉 to
be small, ϕ has to be close to the ground state of −∆. Let us try the ground state
ϕ = |ΛL|−1/21ΛL

as a test function. If the support of the single site potential f is
contained in Λ1, the potential energy is

〈ϕ, Vωϕ〉 =
1

|ΛL|

∫

ΛL

Vω(x) dx =
1

|ΛL|
∑

k∈ΛL∩Zd

λk(ω)

∫
f(x) dx, (1.1)

which is the average of the potential over the box ΛL. Now we isolated the cause of
the phenomenon of Lifshitz tails. Since, for averages of i. i. d. random variables, the
probability concentrates around the expectation, the probability of the average to
be small, in particular smaller than its expectation, is exponentially small. Morally,
this is the reason why states with small energy are exponentially rare, and this
translates to Lifshitz tails of the IDS.

When we add a non-negative potential, we shift the spectrum upwards, and
the IDS decreases. In order to prove Lifshitz tails at the appropriate location, we
have to identify the bottom of the spectrum. In the i. i. d. alloy-type model, a
sufficient condition on the random variables λk in order to not move the infimum
of the spectrum is that the topological support of the law of λk contains 0. This
condition can be rephrased as follows: each neighborhood of 0 contains λk with
positive probability. With the help of independence and the second Borel–Cantelli



14 CHAPTER 1. RANDOM SCHRÖDINGER OPERATORS

lemma, one finds a sequence of increasing boxes in configuration space with very
low potential. A Weyl sequence argument on these boxes shows that the infimum
of the spectrum remains unperturbed, i. e. inf σ(Hω) = 0 almost surely.

This qualitative argument can be strengthened quantitatively. In fact, one can
give a lower bound on the IDS matching the upper bound on a logarithmic scale.
Of course, quantitative conditions on the random variables are needed. A typical
result states that if the probability of λk being less than a threshold ε > 0 is at
least polynomial in ε, then the limit

ν := lim
E↘E0

log|logN(E)|
log(E − E0)

exists almost surely and is strictly negative. This means in a sense that N(E)
behaves like exp(−(E − E0)ν) as E ↘ E0.

In most of this thesis, the quantum mechanic setup is simplified once more using
the tight-binding approximation. There, instead of the configuration space R3,
one considers the discrete lattices Zd, d ≥ 2, or more general discrete groups,
see Chapter 2. Let us explain the quantum mechanical construction for Zd here.
The wave functions will be normalized vectors in the Hilbert space `2(Zd). The
observable for the kinetic energy is the discrete Laplace operator −∆: `2(Zd)→
`2(Zd) given by

(−∆ϕ)(z) :=
∑

y∈Zd,‖y−z‖1=1

(
f(z)− f(y)

)
.

This bounded operator mimics the negative sum of second derivatives on Rd because

(∆ϕ)(z) =
d∑

j=1

(f(z + ej)− f(z)

1
− f(z)− f(z − ej)

1

)
/1,

where the standard basis vectors e1, . . . , ed.
Potentials are functions V : Zd → R, and the corresponding observables their

multiplication operators on `2(Zd). The discrete alloy-type potential is, as before,
composed of a single site potential f : Zd → R and independent and identically
distributed random variables λk, k ∈ Zd, via

Vω(x) :=
∑

k∈Zd

λk(ω)f(x− k)

The Schrödinger operator H = −∆ + V is, as before, the sum of the kinetic
and the potential energy. The IDS is obtained as the limit of the normalized
eigenvalue counting functions of H restricted to finite boxes ΛL := [0, L)d ∩ Zd,
L ∈ N. The restricted operator H|ΛL

acts on the finite dimensional Hilbert space
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`2(ΛL). We usually use the basis (δv)v∈ΛL
of Kronecker delta functions to describe

the finite volume operators by their representing matrices. The total number of
eigenvalues is the volume of ΛL with respect to the counting measure. Thus, in the
discrete setting, all normalized eigenvalue counting functions map into the interval
[0, 1], and so does the IDS. These effects and the fact that H is bounded are the
main technical advantages of the discrete model with respect to the continuous
one. Luckily, the physical phenomena we are interested in also appear in discrete
models. The interested reader can consult e. g. [Kir07] for more details on random
Schrödinger operators including a discussion of boundary conditions for restrictions
of discrete operators.

There is another way to express the IDS which is particularly simple in the
discrete setting. Consider the spectral distribution function (SDF), which is defined
as follows. Given a random Schrödinger operator Hω, denote by 1(−∞,E](Hω)
its spectral projection on the interval (−∞, E]. The SDF is then the function
N : R→ R,

N (E) := E[〈δ0,1(−∞,E](Hω)δ0〉],
where δ0 ∈ `2(Zd) is the Kronecker delta function on 0. There is an analogue formula
for the continuous setting, too, see e. g. Chapter 8. The famous Pastur–Shubin
formula states that the IDS equals the SDF, see [Pas71; Shu79; PF92], and connects
the infinite operator and its finite volume approximations. Note that the SDF
does not rely on the choices made in the construction of the IDS like the boundary
conditions for the finite volume approximations or the sequence of bounded cubes
([−L,L] or [0, L]), but only on the operator Hω. When we generalize the setting in
Chapter 6 to more general groups than Zd, the Pastur–Shubin formula serves as a
test that we found the correct function.

Properties and the behavior of the IDS at the bottom of the spectrum have
also been studied for discrete models. For Laplace operators on discrete graphs see
e. g. [PT18], for a comparison of periodic and random operators with Lifshitz tails
see [AV09].
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Chapter 2

Groups

One key feature of the configuration space R3 of quantum mechanics is that R3 is
also a group and acts on itself by translations. The laws of physics are invariant
under translations, see e. g. [APP18], a fact that leads to conservation of momentum
and the theory of relativity. We also use the group structure of R3, or rather the
group action of its subgroup Z3 on R3 in the construction of periodic and random
potentials. Under this point of view, the simplification to Z3, or more generally Zd,
introduced at the end of the previous section, is quite natural.

The underlying geometry has of course some impact on the physical systems
built on it. From a physical point of view, Zd with d ∈ {1, 2, 3} are the most
relevant configuration spaces. On the other hand, many results of ergodic theory
have been generalized to more general group actions. It is valuable to study if and
how results for Zd carry over to different geometries and to see which features of Zd
are responsible for which physical properties. Here is how one has to modify the
basic definitions, in particular the Laplace operator, on finitely generated groups.
A group G is finitely generated if there is a finite subset S ⊆ G such that all g ∈ G
can be expressed as a product of elements of S. See Figure 2.1 for an illustration
with G = Z

2. Note that it is common practice to denote the group operation of an
abelian group as sum and the group operation of a non-abelian group as product.

Usually, we assume without loss of generality that S is symmetric with respect
to the group inversion: S = S−1 := {s−1 | s ∈ S}, and that S does not contain the
identity element id ∈ G. The Cayley graph Γ(G,S) of a finitely generated group G
with respect to a symmetric set of generators S has as a vertex set the group G
itself, and two vertices g, h ∈ G are connected with an edge if and only if gh−1 ∈ S,
or equivalently, if there is an s ∈ S such that g = sh. The edge (g, h) is then
labeled with the generator s = gh−1 ∈ S. Consequently, the set of neighbors of g is
S−1g = Sg. Note that Cayley graphs are regular, which means that every node has
the same degree, i. e. the same number of neighbors. Cayley graphs are directed
graphs, which is necessary for the labeling. But since S is symmetric, all directed

17
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e1

e2

−e1

−e2

(5, 1) = e1 + e1 + e1 + e1 + e2 + e1

Figure 2.1: Z2 is generated by {(1, 0), (0, 1), (−1, 0), (0,−1)}

edges occur in pairs with opposing orientation, which can be easily visualized as
undirected edges, if we decide to ignore the labels in an appropriate context.

Each undirected graph comes with a metric on its set of vertices, which measures
the length of the shortest path in the graph between points, counting each edge
with length one. In the case of Cayley graphs with respect to symmetric generating
sets, this metric is called word metric, because the distance between g, h ∈ G is
the length of the shortest word representing gh−1:

dS(g, h) = inf
{
r ∈ N0 | ∃s1, . . . , sr ∈ S : gh−1 =

∏r

j=1
sj

}
.

We also denote |g|S := dS(id, g).
As an example for a Cayley graph, consider G = Z

d and S = {±e1, . . . ,±ed},
where ej is the j-th standard basis unit vector, which is indicated in Figure 2.1 for
d = 2. Figure 2.2 shows a finite part of the Cayley graph of Z2 with respect to the
generator {±e1,±e2,±(e1 − e2)} with directed edges.

Regular tree graphs, see Figure 2.3, are examples for Cayley graphs, too. If the
degree d = 2k of the tree is even, then it is the Cayley graph of the free group Fk
generated by the symmetric set S = {a±1

1 , . . . , a±1
k }, see Figure 2.4. For odd

degree d = 2k− 1, one can use the group generated by k generators a1, . . . , ak (and
their inverses), but subject to the relation ak = a−1

k . In the resulting Cayley graph,
the two branches labeled with ak and a−1

k are identified, so the degree is 2k− 1 = d.
Another possible construction is as follows. Consider the group generated by d
generators a1, . . . , ad subject to the relations a2

j = id for all j ∈ {1, . . . , d}. This
last approach actually works for even and odd degree d.

There are many definitions of Laplace operators on graphs, but for regular
graphs like Cayley graphs, most of them are equivalent to each other. We will focus
on the following straightforward generalization of the previous definition on `2(Zd).
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s1

s2s3

−s1

−s2 −s3

Figure 2.2: The Cayley graph of Z2 with respect to the generating set
{s1, s2, s3,−s1,−s2,−s3} with s1 = (1, 0), s2 = (0, 1), s3 = (−1, 1). The la-
bels of the edges are indicated by the arrows: horizontally and dotted is the label s1,
while diagonally and dashed is labeled −s3, for example.

Figure 2.3: Regular trees with degree d ∈ {3, 4}.
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id aA

b

B

a2

ba

Ba

A2

bA

BA

abAb
b2

aBAB
B2

a3
ba2

Ba2

aba

Aba

b2a

aBa

ABa
B2a

A3

bA2

BA2

abA

AbA

b2A

aBA

ABA

B2A

a2b
bab

Bab
A2b

bAb

BAb

ab2Ab2 b3

a2B
baB

BaB
A2B

bAB

BAB aB2AB2B3

Figure 2.4: The Cayley graph of the ball B3 of radius 3 in F2, with a := a1, b := a2,
A := a−1 and B := b−1. The arrows indicate the corresponding generator: x→ y
means ax = y, x� y is synonymous for bx = y.

For a finitely generated group G with symmetric generator S, we will call

∆: `2(G)→ `2(G), (∆f)g := (∆Sf)g :=
∑

h∈Sg

(
f(h)− f(g)

)

the Laplace operator on `2(G) or on G, for short. Of course, it depends on S, too,
but we often suppress S in the notation. It is now straightforward to generalize
the alloy-type model and the SDF to finitely generated groups. For the IDS, we
also need ergodicity and an analogue for cubes.

The group action of G on itself from the right, i. e.,

G×G→ G, (g, h) 7→ hg−1,

extends to the Cayley graph: G× Γ(G,S)→ Γ(G,S). On vertices, the action is
(g, h) 7→ hg−1, while on edges, it is (g, (h, h′)) 7→ (hg−1, h′g−1). Note that for all
g, h, h′ ∈ G, we have (h′g−1)(hg−1)−1 = h′h−1, so edges map to edges. Even more,
the group G acts transitively on the vertices and on the labeled edges of its Cayley
graph, and all graph isomorphisms which preserve the labels stem from the group
action. Note also, the Laplace operator commutes with the group action, which
can be of great help to understand the spectrum of the Laplace operator.

Ergodic theory provides a large toolbox to deal with group actions. Especially
amenable groups are well understood. A group G is amenable if it contains finite
subsets with arbitrarily small boundary to volume ratio. In a discrete group, there
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n = 4
n = 5

n = 7

n = 10

Figure 2.5: In Zd, the interior S-boundary of a box Fn of side length n satisfies
|∂SintFn| = 4(n− 1). The boxes form a Følner sequence: |∂

S
intFn|
|Fn| = 4(n−1)

n2

n→∞−−−→ 0.

are different notions of boundary. For a finite set K ⊆ G, the K-boundary of a set
F ⊆ G is the union of its interior and its exterior K-boundary :

∂KintF :=
⋃

g∈K

(
F \ (gF )

)
, ∂KextF :=

⋃

g∈K

(
(gF ) \ F

)
= (KF ) \ F ,

∂KF := (∂KintF ) ∪ (∂KextF ).

A Følner sequence is a sequence of non-empty finite subsets Fn ⊆ G, n ∈ N, such
that

lim
n→∞

|∂SintFn|
|Fn|

= 0

where S is a finite generating set. A group is amenable if and only if it contains
a Følner sequence, see [Føl55]. We will see soon that whether or not a sequence
is Følner is independent of the choice of the generating set S. The Euclidean
lattices Zd are examples of amenable groups. The cubes Fn := ([0, n) ∩ Z)d can
serve as a Følner sequence, see Figure 2.5.

For all finite K ⊆ G, the K-boundaries along Følner sequence (Fn)n get small:

lim
n→∞

|∂KFn|
|Fn|

= 0. (2.1)

In particular, this shows that amenability is independent of the choice of the
symmetric finite generating set S. To see (2.1), note that A\C ⊆ (A\B)∪(B\C) for
arbitrary sets A,B,C, so that, by induction, (gF )\F ⊆ ⋃|g|Sk=1

((∏k−1
j=1 sj

)
((skF )\F )

)

for all g =
∏|g|S

j=1 sj ∈ K with sj ∈ S. We estimate for F ⊆ G

|(gF ) \ F | ≤
|g|S∑

k=1

|F \ (s−1
k F )| ≤ |g|S|∂SintF |,
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and analogously

|F \ (gF )| ≤
|g|S∑

k=1

∣∣∣∣
(∏k−1

j=1
sj

)
(F \ (skF ))

∣∣∣∣ ≤
|g|S∑

k=1

|F \ (skF )| ≤ |g|S|∂SintF |.

Combined, we get

|∂KF | ≤
∑

g∈K

(
|F \ (gF )|+ |(gF ) \ F |

)
≤ 2|∂SintF |

∑

g∈K
|g|S,

which proves (2.1).
Another interpretation for a Følner sequence is the following. For g ∈ G, the

boundary ∂{g}Fn = (gFn)4Fn is the symmetric difference between F and F shifted
by g. We can thus rephrase (2.1) as follows: A Følner sequence is asymptotically
invariant with respect to the shift by g ∈ G.

Studying amenable groups is useful in order to see how far one can get only
with this one feature of Zd. Here are some properties of amenable groups and their
actions. A finitely generated group G is amenable if and only if for each compact
space X and every measurable G-action on X, there exists a G-invariant probability
measure on X, see [Wei00]. Amenable groups are the natural setting for Birkhoffs
pointwise ergodic theorem, see [Lin99]: Assume that an amenable group G acts
measure preservingly on a probability space X. Lindenstrauss’ theorem states that
for a (tempered) Følner sequence (Fn)n and an integrable observable f ∈ L1(X),
the averages

x 7→ 1

|Fn|
∑

g∈Fn

f(xg−1)

converge for almost all x ∈ X. This theorem is extraordinarily useful when dealing
with averages, for example in equation (1.1).

In amenable groups, Følner sequences are the natural generalization of cubes
in Zd, and they can be used to define the IDS. As in Zd, one restricts the random
Schrödinger operator to the set Fn with small boundary and counts the eigenvalues
of the resulting matrix. The limit of the eigenvalue counting functions along a
Følner sequence exists, see Chapter 5.

As mentioned above, Anderson predicted transport for low randomness and
insulation for large randomness. While the latter has been proven in a variety of
settings, the former is still out of reach, at least on Euclidean geometries like R3

or Zd. But on regular trees, [Kle98] showed that the alloy-type model exhibits
absolutely continuous spectrum for low randomness. This is another reason to
consider different geometries, it might help to develop tools in random Schrödinger
operators applicable in Euclidean lattices as well.
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Figure 2.6: The S-boundary of balls in trees is large.

Figure 2.7: The canopy tree with branching number 2 has many leaves. The next
zoom level extends along the dashed line.

Unfortunately, free groups are not amenable, and regular trees allow no Følner
sequences. For example, the interior S-boundary of balls in the 4-regular tree
graph contains more than half of the balls vertices, see Figure 2.6. Of course,
there might be more cleverly chosen subsets with smaller boundaries. To eliminate
this possibility, let us consider the spectrum of the Laplace operator on amenable
groups. The `2-normalized indicator functions of sets of a Følner sequence form a
Weyl sequence, and its Rayleigh ratio converges to 0. Since −∆ is a non-negative
operator, the infimum of its spectrum on amenable groups is 0: inf σ(−∆) = 0.
This property actually characterizes amenable groups, see [Kes59a]. But on a tree of
degree d ≥ 3, the infimum of the spectrum of the operator −∆ is (

√
d− 1−1)2 > 0,

see [Bro91; War13]. Therefore, free groups can not be amenable.
In [AW06], the authors study the eigenvalue counting functions on the balls of

a regular tree and their limit. The limiting function equals the SDF on an infinite
graph that they call canopy tree, see Figure 2.7. The canopy tree is isomorphic to a
horoball of the regular tree, a concept which is analogous to horoballs in hyperbolic
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Figure 2.8: The discrete torus Z18 × Z6 is the image of a homomorphism that
separates the points in all balls of radius 2.

geometry, see [Woe00, (12.13)]. We saw in Figure 2.6 that each ball in the tree
contains many leaves, and that means that the leaves are still visible in the limiting
graph. In order to define the IDS on free groups and regular trees, we need a
different concept.

A group G is residually finite if the group homomorphisms from G onto finite
groups separate points in G. This means, for each g, g′ ∈ G, g 6= g′, there is a finite
group Hg,g′ and a homomorphism hg,g′ : G → Hg,g′ such that hg,g′(g) 6= hg,g′(g

′)

in Hg,g′ . For each finite subset K ⊆ G, the product homomorphism h̃K :=∏
g,g′∈K,g 6=g′ hg,g′ : G→

∏
g,g′∈K,g 6=g′ Hg,g′ is one-to-one on K. Let HK := h̃K(G) be

the image ofG under h̃K , which is a finite group, and hK : G→ HK , hK(g) := h̃K(g).
For a generator S of G, hK(S) is a generator of HK , because each hK is onto. The
Cayley graph of HK with respect to hK(S) induces a graph of hK(K), and the
Cayley graph of G with respect to S induces a graph on K. By construction, these
two induced graphs are isomorphic. This allows us to use the Laplace operators
on HKn with Kn ↗ G as a substitute for the restrictions of Laplace operators on a
Følner sequence. The construction is illustrated by the example of Z2 and finite
tori (Z/nZ)× (Z/n′Z) as quotients, see Figure 2.8.

Free groups happen to be residually finite. For example, each element s of a
generator S and n ∈ N, n ≥ 2, give a homomorphism G → Z/(nZ) as follows.
Write g as a word in the generator, count how often s occurs and substract the
number of occurrences of s−1. The difference modulo n is well defined and will
be the image of g. These homomorphisms separate already all group elements
which can not be written as words with the same letters in different order. Explicit
constructions to separate all words in Fk can be found in Chapter 6. The notion
of residually finite groups allows us to define the IDS of the Laplace operator on
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Figure 2.9: Amenable Gruppen und residuell endliche Gruppen sind sofisch.

trees, and indeed, with this construction, the Pastur–Shubin formula holds true,
see also Chapter 6.

As we saw, free groups are not amenable but residually finite. There are
also examples of amenable groups which are not residually finite. In [Gro99],
Gromov introduced a class of groups which contains all amenable and all residually
finite groups and many more. Weiss coined the term sofic groups for this class
in [Wei00], see Figure 2.9. A finitely generated group G with generating set S
is sofic if its S-edge-labeled Cayley graph is well approximated by finite S-edge-
labeled graphs Γ = (V,E), in the following sense. Consider a vertex v ∈ V and a
non-negative integer r. The balls of radius r around v in Γ and around id ∈ G
in the Cayley graph Γ(G,S) induce S-edge-labeled subgraphs of Γ and Γ(G,S),
respectively. Let us call v an r-inner vertex if these subgraphs are isomorphic
with an isomorphism that preserves the labels. The r-boundary ∂rΓ consists of all
vertices of Γ which are not r-inner vertices, see Figure 2.10. The group is sofic
if there are finite S-edge-labeled graphs Γn = (Vn, En), n ∈ N, such that, for all
r ∈ N,

lim
n→∞

|∂rΓn|
|Vn|

= 0.

For amenable groups, the approximating finite S-edge-labeled graphs are induced
by the Cayley graph of G on the sets of a Følner sequence. For residually finite
groups, the approximating graphs are the Cayley graphs of the finite groups HK

from above, where we choose K as the ball of radius r around id ∈ G. In this case,
the r-boundary is empty since HK acts transitively on the vertices of its Cayley
graph and preserves the labels, so all r-balls are isomorphic as labeled graphs.
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Figure 2.10: Two 2-inner vertices v and v′′, while w is in the interior 2-boundary.

The class of sofic groups is quite large. In fact, so far no discrete group has
been identified to be not sofic, to the authors best knowledge. With the local graph
isomorphisms, the approximation of the Cayley graphs can be lifted to approximate
operators on sofic groups by matrices on the finite S-edge-labeled graphs. We
explain this strategy to define the IDS on sofic groups in the next Section 3.1. See
also Chapter 6 for more details.



Chapter 3

Concentration inequalities

3.1 McDiarmid’s inequality and sofic groups

We summarize the results of Chapter 6 and highlight the use of McDiarmid’s
concentration inequality. For this section let G denote a sofic group. As detailed
above, this encompasses amenable and residually finite groups. We consider a
deterministic and translation invariant operator A : `2(G) → `2(G) and ask how
to construct approximating matrices. Recall that on a sofic group G, there are
approximating graphs with many interior points. For each interior point v of the
approximating graph Γ = (V,E), there is a local graph isomorphism Ψv that maps v
to id ∈ G and the, say, r-ball around v to the r-ball of id in G while preserving
the S-labels on the edges, see Figure 2.10. With the local isomorphisms, we copy
the matrix elements of A in order to define an operator on `2(V ). By construction,
this resulting resembles A for nearby vertices.

Of course, each matrix element can be copied with many local isomorphisms,
so there is a question of well-definedness to address. Luckily, translation invari-
ance comes to the rescue and resolves this issue. The local isomorphisms locally
preserve the group structure, as the paths from h to g are preserved by all local
isomorphisms which preserve large enough balls. The labels effectively prohibit
the local isomorphisms from rotating the graph and from swapping vertical and
horizontal edges, see Figure 3.1. By translation invariance, the matrix element
〈δg, Aδh〉 between two vertices g, h ∈ G depends only on gh−1, so it is safe to use
any local isomorphism. The eigenvalue counting functions of the matrices obtained
by this construction indeed converge and define the IDS. The limit equals the SDF,
that is: The Pastur–Shubin formula holds true. For more details, including precise
formulas, see Chapter 6.

For random operators, the situation is more complicated because the matrix
elements are random variables themselves and their values are no longer translation

27
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Figure 3.1: Labels and translation invariance guarantee well-defined matrices.

invariant. Only the probability distribution of the random variables is invariant.
So, instead of copying the values of the matrix elements, we have to copy the
distribution of the matrix elements. We use the distributions to independently
sample new matrix elements for the finite dimensional approximation, see Chapter 6
for the exact procedure. By this construction, the eigenvalue counting functions
of the operators on the finite graphs are independent of the matrix elements of
the original operator. But the expectation of the eigenvalue counting functions
converges, and the limiting function equals the SDF.

The next step is to improve the convergence of the expectations to almost sure
convergence of the random variables themselves. This is where the phenomenon of
concentration of probability enters. Consider the eigenvalue counting functions with
a fixed argument as functions of the random entries of the matrix to R. We need
that the eigenvalue counting function viewed in this way concentrates its image
measure around its expectation. The suitable tool is the following concentration
inequality due to McDiarmid.

Theorem 3.1.1. Let X = (X1, . . . , Xn) be a family of independent random vari-
ables with values in R, and let f : Rn → R satisfy the bounded differences assump-
tion, i. e., there is a constant c ∈ R such that, whenever x, x′ ∈ Rn differ only in
one coordinate, we have

|f(x)− f(x′)| ≤ c.

Then, for µ := E[f(X)] and any ε ≥ 0,

P(|f(X)− µ| ≥ ε) ≤ 2 exp

(
− 2ε2

nc2

)
.

Different proofs can be found in numerous places, e. g. [McD89, Lemma 1.2],
[McD98, Theorem 3.1], and [BLM13, Theorem 6.2]. For our application at hand,
we need that the eigenvalue counting functions meet the bounded differences
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assumption. The following proposition allows to control how much eigenvalue
counting functions change by the rank of a perturbation.

Proposition 3.1.2. Self-adjoint n× n-matrices A and C satisfy

‖NA+C −NA‖∞ ≤ rgC/n.

The proof in [LSV11, Proposition 7.1] relies on the minimax principle for
eigenvalues of self-adjoint operators, see e. g. [RS78, Theorem XIII.1]. To apply
the proposition in our context, we consider the eigenvalue counting functions as
functions of the random matrix elements. Each such matrix element accounts for a
perturbation of at most rank 2, because of the symmetry of self-adjoint matrices,
so that eigenvalue counting functions satisfy the bounded differences assumption
and McDiarmid’s inequality applies. From here, standard calculations reveal the
almost sure convergence of the eigenvalue counting functions, see Chapter 6.

3.2 Glivenko–Cantelli theory and uniform conver-
gence

In the following, we want to motivate the results of Chapters 4 and 5. For the
Euclidean lattices, the IDS of the Laplacian can be calculated, see [PT18], and it
turns out to be continuous. For the regular tree with degree k + 1, the DoS of the
Laplacian is explicitly known as

R 3 E 7→ 1I(E)
k + 1

2π

√
4k − (E − k − 1)2

(k + 1)2 − (E − k − 1)2
, (3.1)

where I = [(
√
k − 1)2, (

√
k + 1)2] is the spectrum of the Laplacian, see [Kes59b;

McK81]. Its antiderivative, the IDS, is thus continuous, too, see Figure 3.2. A
simple argument in [DS84] shows that the IDS is continuous for many ergodic
random Schrödinger operators on amenable groups. Also, Wegner estimates can
be used to see the continuity of the IDS. But there are also random Schrödinger
operators with discontinuous IDS. Examples are the Laplacians on percolation
graphs and certain Anderson models on percolation graphs, see [SSV19].

Continuity of the IDS is important for many reasons, in particular, for continuous
IDS the limit in the construction of the IDS is actually better than pointwise: The
pointwise limit of probability distribution functions on R to a continuous limiting
probability distribution function f is actually uniform, see [Bau92, 30.13 Satz]. The
argument uses finitely many sampling points and interpolates between them with
the monotony of probability distribution functions. Unfortunately, this strategy
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Figure 3.2: The denstity of states and the integrated density of states of the
Laplacian on a regular tree of degree 3

seems to be not suitable to derive error estimates and a speed of convergence of
the IDS.

In Chapters 4 and 5, we prove almost sure uniform convergence of the eigenvalue
counting functions for a large class of random Schrödinger operators on amenable
groups without taking advantage of continuity of the IDS. In fact, our results
apply to random Schrödinger operators with discontinuous IDS, too. To explain
the strategy, let us first consider the Anderson model with independent matrix
elements and increasingly relax our assumptions.

Our key ingredient is Glivenko–Cantelli theory. Recall the classical Glivenko–
Cantelli theorem:

Theorem 3.2.1 (Glivenko–Cantelli). Let X,Xj : Ω→ R, j ∈ N, be independent
and identically distributed random variables with probability distribution function
F∞ := P(X ≤ · ) : R → [0, 1]. The empirical distribution functions are Fn :=
1
n

∑n
j=1 1[Xj ,∞) : R→ [0, 1]. Then, we have E[Fn] = F∞ and

‖Fn − F∞‖∞
n→∞−−−→ 0 almost surely.

The quantitative version of this classical theorem is a concentration inequality:

Theorem 3.2.2 (Dvoretzky–Kiefer–Wolfowitz [DKW56; Mas90]). Under the as-
sumptions of Theorem 3.2.1 and for all ε > 0, there is a sequence of events Ωε,n,
n ∈ N, such that

P(Ωε,n) ≥ 1− 2e−2nε2 and ‖Fn − F∞‖∞1Ωε,n ≤ ε (n ∈ N).

If one can make sure that the set {ω ∈ Ω | ‖Fn − F∞‖∞ ≤ ε} is measurable,
one can write this shorter as

P(‖Fn − F∞‖∞ ≤ ε) ≥ 1− 2e−2nε2 .
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For a direct application of these two classical results, we consider a diagonal
random operator V : `2(Zd) → `2(Zd), (V ψ)(z) := V (z)ψ(z), where the matrix
elements V (z), z ∈ Zd, are independent and identically distributed. This is actually
the potential of the classical Anderson model. Its eigenvalues are exactly the
values V (z), and the eigenfunctions are δz, z ∈ Zd. The eigenvalue counting
functions along a sequence (ΛL)L are thus the empirical distribution functions of
the i. i. d. family of random variables {V (z) | z ∈ ΛL}, and Theorem 3.2.2 provides
almost sure uniform convergence and an estimate for the speed of convergence,
even for discontinuous limiting functions.

In order to treat more general random Schrödinger operators, for example
the Anderson model with the random Schrödinger operator −∆ + Vω, we have
off-diagonal matrix elements to take into account, and the eigenfunctions are not
as localized as in the previous example.

Consider the one-dimensional case d = 1 and a finite discrete interval ΛL =
{0, 1, . . . , L − 1}, L ∈ Z, L ≥ 2. Instead of considering each element of ΛL

individually, we form larger chunks Λk of length k ∈ Z, k < L and partition ΛL =⊎
t∈kZ Λk(t) with Λk(t) := ΛL ∩ (Λk + t). On each Λk(t), we count the eigenvalues,

and then we compare the sum of these with the one of ΛL. Proposition 3.1.2 allows
to bound the difference to the order k−1.

Now we need a more powerful Glivenko–Cantelli-type theorem to deal with the
sample of independent eigenvalue counting functions.

Theorem 3.2.3 ([DeH71; Wri81]). Let X,Xj : Ω→ R
k, j ∈ N, be i. i. d. random

variables with independent components and

M := {f : Rk → [−1, 1] | f is monotone in each coordinate of its argument}.
Then, almost surely,

sup
f∈M

∣∣∣ 1
n

n∑

j=1

f(Xj)−E[f(X)]
∣∣∣ n→∞−−−→ 0.

Furthermore, for all ε > 0, there are constants aε, bε > 0 and a sequence of events
(Ωε,n)n such that

P(Ωε,n) ≥ 1− bεe−aεn and sup
f∈M

∣∣∣ 1
n

n∑

j=1

f(Xj)−E[f(X)]
∣∣∣1Ωε,n ≤ ε.

To recognize Theorem 3.2.3 as a generalization of Theorems 3.2.1 and 3.2.2,
consider the case k = 1 and note thatM1 := {1(−∞,t] | t ∈ R} is a subset ofM
and that

‖Fn − F‖∞ = sup
t∈R
|Fn(t)− F (t)| = sup

f∈M1

∣∣∣ 1
n

n∑

j=1

f(Xj)−E[f(X)]
∣∣∣.
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In the case k ≥ 2, the assumption that the components of the random vectors
are independent can be weakened but not dropped. There are counterexamples
that show that some condition of this kind is necessary, see Chapter 4.

For our application we have to check that eigenvalue counting functions are
monotone in the random potential. This can be done with the minimax principle.
In fact, increasing the potential means increasing the Rayleigh quotient. This
monotony survives the minimum and the maximum and thus carries over to the
eigenvalues.

Up to now, we know how to compare the eigenvalue counting function on ΛL to
the expected eigenvalue counting function on Λk, and that, in the limit L→∞,
the error we make is of the order 1/k. The last and final step towards almost
sure uniform convergence with error estimate is to perform the limit k →∞ and
to see that the expectation of the eigenvalue counting function on Λk converges.
In fact, we prove that the expected eigenvalue counting functions on Λk form a
Cauchy sequence in the Banach space of bounded and right continuous functions,
see Chapter 4. To identify the limit as the spectral distribution function, we refer
back to the results about sofic groups.

In higher dimensions d ≥ 2, the ordering of the base (δv)v∈Zd is not given. As a
consequence, the block diagonal structure of the representing matrix of the sum
of the operators on Λk(t) is not that obvious. Nonetheless, the generalization to
d ≥ 2 is straightforward. We cover large cubes ΛL = {0, . . . , L− 1}d with smaller
cubes Λk with an error estimate of the order of 1/k which corresponds to the
boundary to volume ratio of cubes. By Theorem 3.2.3, the average of the eigenvalue
counting functions on the smaller cubes converges uniformly to a their expectation
with high probability. The expectations form a Cauchy sequence, and the limit is
identified as above.

The results in Chapters 4 and 5 are actually more general than indicated above.
We use an abstract framework of what we call almost additive fields which includes
the setting of the IDS of alloy type model but also, for example, Laplacians of site
percolation graphs and their IDS.

In Chapter 5, we generalize the almost sure uniform convergence to amenable
groups and face various geometric and probabilistic challenges. As outlined in
Chapter 2, the substitute for cubes in Zd are Følnersequences. Unfortunately, we
used more properties of cubes than their small boundary to volume ratio: We also
used cubes as tiles to cover larger cubes without overlap. It is unknown if there
is a Følner sequence with the additional property that every set in the sequence
covers the group in a similar fashion as the cubes in Zd. Instead, we utilize quasi
tilings as introduced in [OW87] and studied quantitatively in [PS16]. A quasi tiling
relaxes the properties of tilings in several ways. Instead of one tile which covers
each group element exactly once, one uses several tiles of different sizes to cover

https://dict.leo.org/englisch-deutsch/utilize
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Figure 3.3: One circle covers 90.69%, two circles cover 95.03%, and three circles
cover 97.17% of the plane. The radii are 1, 0.15, and 6.28 · 10−2.

most of the group, and one even allows for some controlled overlap between certain
shifted tiles. An impression of how much of the plane can be covered with only a
few circular tiles is given in Figure 3.3.

To deal with quasi tilings is more laborious than working with tilings. The
possible overlap of certain tiles destroys the independence of the sample. If we
remove the overlap from the sample, we loose the identical distribution. The
solution is to independently resample the overlap conditioned on the rest of the
tile. The geometric control of the size of the overlap allows us to estimate the error.
For details, see Chapter 5.

Our results do not only apply to the IDS. Instead, we employ a framework
which is suitable to treat the IDS but also different intensive quantities like relative
clustersize in percolation theory.

3.3 Hoeffding’s inequality and Lifshitz tails of the
Anderson model on the Bethe lattice

In Chapter 7 we prove Lifshitz tails of the Anderson model on regular trees. In
the physics literature, a regular tree graph is called Bethe lattice in honor of Hans
Bethe. The conjecture about Lifshitz tails on the Bethe lattice was made in [KH85].

As described above, for Lifshitz tails the concentration inequality is a central
part of the argument, even more, concentration of probability is the moral source
for the phenomenon of Lifshitz tails. But due to the geometry of the Bethe lattice,
the application of the actual inequality is buried deep in the proof. We will unpack
some of the stumbling blocks here. This will also explain why it took so long to
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implement a rigorous proof even though Lifshitz tails were studied before in a wide
variety of settings including Cayley graphs of exponential volume growth, see e. g.
[AV09].

The exponential growth of the balls and the non-amenability of the Bethe
lattice create major problems for the traditional reasoning behind Lifshitz tails. The
heuristic outlined in Chapter 1 works only in an amenable setting. One compares the
restriction of the operators with Dirichlet and with Neumann boundary conditions
along a Følner sequence. Because the boundary is negligible in the limit when
compared to the volume, the choice of boundary conditions does not change the
limiting object. The contrary happens on the Bethe lattice. The fraction of nodes
in the boundary is bounded from below, so the choice of boundary conditions
manifests itself in the limit. One says that the Dirichlet-Neumann bracket does
not close.

Another efficient tool in the amenable setting is perturbation theory. A key
requirement for this to work is a spectral gap between the ground state energy and
the second eigenvalue, which does not close too rapidly with the growing size of
the box. In Euclidean settings, the gap is of the order of L−2, while the distance
between the infimum of the spectrum of the unrestricted Schrödinger operator and
the ground state energy of the restricted operator itself is of order of L−2, too.
On the Bethe lattice, the gap is of the order of L−3, and the shift of the ground
state energy with respect to the infimum of the unrestricted operator is L−2. This
discrepancy fails perturbation techniques.

Instead, we reformulate the problem of Lifshitz tails with the Laplace transform
of the IDS. From there, we can relate the problem to the location of the ground
state energy on the finite box using techniques from mathematical physics. Instead
of a box, though, we use balls of the Bethe lattice, see Figure 2.4, or, to be precise,
symmetric rooted trees, which are balls that miss one of the branches from their
center, see Figure 3.4. The symmetric rooted trees have the advantage that one
can write down an orthonormal basis of eigenfunctions of −∆. The ground state,
see Figure 3.5, has an interpretation for the symmetric random walk with killing
terms in the root and on the leaves. The symmetry of the trees helps to split the
degeneration of the eigenvalues.

In the light of Chapter 6, our usage of balls in the Bethe lattice might seem
surprising. The result there suggests to use the sofic approximations in order to
deal with the IDS of the Bethe lattice instead of the canopy tree, see Figure 2.7. In
Chapters 4 to 6, we use inequalities involving the rank of matrices. This approach
is to blunt in the current setting. Instead, we rely on spectral information. Close
to the leaves, the eigenfunctions with low eigenvalue are exponentially small in the
height of the tree. In fact, the eigenfunctions suppress the boundary of the tree so
that, at least at the bottom of the spectrum, the spectral behavior of the Bethe
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Figure 3.4: A symmetric rooted tree, left: embedded in the Bethe lattice and right:
with the root at the top and the generations below

Figure 3.5: The ground state on the symmetric rooted tree.



36 CHAPTER 3. CONCENTRATION INEQUALITIES

lattice and the canopy tree coincide.
After having dealt with all these difficulties, we have to, similarly to the amenable

case outlined in Chapter 1, bound the probability that the potential energy 〈ϕ, Vωϕ〉
is smaller than its expectation for states ϕ with low kinetic energy. This is where
the Hoeffding’s concentration inequality enters. In general, Hoeffding’s inequality
states that the sum Sn of independent random variables Xj with values in bounded
intervals [aj, bj], j ∈ {1, . . . , n}, satisfies

P(Sn ≥ κ) ≤ exp

(
−2(κ−E[Sn])2

∑
j(bj − aj)2

)

for all κ ≥ E[Sn]. As a random variable, 〈ϕ, Vωϕ〉 has expectation µ := E〈ϕ, Vωϕ〉 =
‖ϕ‖2

2 ·E[Vω] and variance Var〈ϕ, Vωϕ〉 = ‖ϕ‖4
4 · VarVω. Furthermore, Hoeffding’s

inequality specializes as follows. For all κ ≥ µ, we have

P
(
〈ϕ, Vωϕ〉 ≥ κ

)
≤ exp

(
− (κ− µ)2

2‖ϕ‖4
4 · ‖Vω −E[Vω]‖L∞(P)

)
.

Here, we see the influences of three different ingredients on the exponential decay:
the distance to the expectation κ− µ, the size of the potential ‖Vω −E[Vω]‖L∞(P),
and the term ‖ϕ‖4

4 which is proportional to the variance of the potential energy
of ϕ. States with low kinetic energy are more or less flat, and indeed, the smallest
value of ‖ϕ‖4

4 of all normalized ϕ ∈ `2(1, . . . , n) is attained at the constant wave
function ϕconst = (n−1/2)j, with the value ‖ϕconst‖4

4 = n−1. In symmetric rooted
trees, the number n of random variables grows exponentially in the height of the
tree. Therefore, small potential energy is double exponentially unlikely in the
height of the tree. This strong result is barely enough to prove Lifshitz tails for the
Anderson model on the Bethe lattice. For more details please refer to Chapter 7.

3.4 Bernstein’s inequality and Lifshitz tails in Eu-
clidean space

Chapter 8 establishes Lifshitz tails in full generality for continuous random Schrödinger
operators onRd with non-negative random potential. First, we consider the breather
model, where the single site potential is given by

fλ := 1λ·A

for a measurable set A ⊆ (−1
2
, 1

2
)d ⊆ Rd and a real parameter λ ∈ [0, 1]. The

random breather potential

Vω(x) :=
∑

k∈Zd

fλk(ω)(x− k)
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is not linear in the randomness. In fact, its derivative in the sense of distributions
is not even a measure. Classical results about Lifshitz tails employ Temple’s
inequality, which treats the randomness as perturbation, see [KM83; Sto01; KV10].
It is unclear whether this approach can be implemented for the breather model.
The perturbation result which is robust enough to be applied to the breather model
is an inequality by Thirring. It allows us to extract the average over the random
variables λk. We then apply Bernstein’s concentration inequality, which states
that the sum Sn of n non-negative i. i. d. random variables with positive and finite
expectation satisfies

P
(
Sn ≤ 1

2
E[Sn]

)
≤ exp(−Cn)

for a suitable constant C > 0 independent of n.
Despite its apparent simplicity, the breather model turns out to include all

major obstacles one has to tackle to address Lifshitz tails in a positive random
potential. The Thirring argument does in fact not rely on the breathing structure.
The important property to shift the eigenvalues and produce Lifshitz behavior is
that the potential is strictly positive on a set with positive measure with a positive
probability. The lower bound for the potential translates into an upper bound for
the IDS and is used in Chapter 8 to prove Lifshitz tails. Said strategy applies to
general non-negative random potentials. The formulation of conditions for a lower
bound is more involved because the random potential is more general. A suitable
version is contained in Chapter 8.

About this thesis
This thesis is a collection of five original research articles, which form the remaining
chapters. For convenience, we give a short overview.

Chapter 4 is devoted to uniform convergence of the IDS on lattices, cf. Section 3.2.
It is taken without changes from [SSV17].

Chapter 5 generalizes Chapter 4 to the setting of amenable groups and coincides
with [SSV18].

Chapter 6 establishes the IDS on sofic groups, see Section 3.1. It has appeared
in [SS15].

Chapter 7 proves Lifshitz tails behavior for the IDS of the Anderson Hamiltonian
on the Bethe lattice, cf. Section 3.3. It has not been published yet, but a preprint
can be found in [HS14].

Chapter 8 deals with Lifshitz tails of continuous random Schrödinger operators
with monotone random potentials, as described in Section 3.4. Part of this material
has been published in [SV17], the whole work [SV] is in preparation.
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Abstract

We develop a Glivenko–Cantelli theory for monotone, almost additive functions of i.i.d. sequences of
random variables indexed by Zd . Under certain conditions on the random sequence, short range correlations
are allowed as well. We have an explicit error estimate, consisting of a probabilistic and a geometric part. We
apply the results to yield uniform convergence for several quantities arising naturally in statistical physics.
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1. Introduction

The classical Glivenko–Cantelli theorem states that the empirical cumulative distribution
functions of an increasing set of independent and identically distributed random variables
converge uniformly to the cumulative population distribution function almost surely. Due to
its importance to applications, e.g. statistical learning theory, the Glivenko–Cantelli theorem
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is also called the “fundamental theorem of statistics”. The theorem has initiated the study of
so-called Glivenko–Cantelli classes as they feature, for instance, in the Vapnik–Chervonenkis
theory [24]. Generalizations of the fundamental theorem rewrite the uniform convergence with
respect to the real variable as convergence of a supremum over a family (of sets or functions) and
widen the family over which the supremum is taken, making the statement “more uniform”.
However, there are limits to this uniformization: For instance, if the original distribution is
continuous, there is no convergence if the supremum is taken w.r.t. the family of finite subsets
of the reals. Thus, a balance has to be found between the class over which the supremum is
taken and the distribution of the random variables, the details of which are often dictated by the
application in mind. Another important extension are multivariate Glivenko–Cantelli theorems,
where the i.i.d. random variables are generalized to i.i.d. random vectors with possibly dependent
coordinates. Such results have been obtained e.g. in [18,22,2,30]. In contrast to the classical one-
dimensional Glivenko–Cantelli theorem, where no assumptions on the underlying distribution
is necessary, in the higher dimensional case, one has to exclude certain singular continuous
measures, cf. Theorem 5.3. The multidimensional version of the Portmanteau theorem provides
a hint why such conditions are necessary. We apply these results in Section 5.

To avoid confusion, let us stress that uniform convergence in the classical Glivenko–Cantelli
Theorem and in our result involves discontinuous functions, so it is quite different to uniform
convergence of differentiable functions, as it is encountered e.g. with power series.

In many models of statistical physics one shows that certain random quantities are self-
averaging, i.e. possess a well defined non-random thermodynamic limit. This is not only
true for random operators of Schrödinger type, cf. e.g. [21,16,27], but also for spin systems,
cf. e.g. [5,6,28,29,1]. Note however that the latter papers, studying the free energy (and derived
quantities), heavily use specific properties of the exponential function (entering the free energy)
like convexity and smoothness. We lack these properties in the Glivenko–Cantelli setting and are
thus dealing with a completely different situation. The geometric ingredients of the proof of the
thermodynamic limit can be traced back to papers by Van Hove [23] and Følner [4]. This is why
the exhaustion sets used in the thermodynamic limit are associated with their names.

While standard statistical problems concern i.i.d. samples, an independence assumption
quickly appears unnatural in statistical physics. Neighboring entities in solid state models (such
as atoms or spins) are unlikely to not influence each other. In order to treat physically relevant
scenarios one introduces a geometry to encode location and adjacency relations between the
random variables, which in turn are used to allow dependencies between close random variables.
In the present paper we choose Zd as our model of physical space, although our methods should
apply to amenable groups as well, at least with an additional monotile condition. The focus on
Zd allows us to avoid technicalities of amenable groups with monotiles and can thus present our
results in a simpler, more transparent manner. Furthermore, we can achieve more explicit error
bounds due to the simple geometry of Zd .

Our main result is Theorem 2.6, which is a Glivenko–Cantelli type theorem for a class
of monotone, almost additive functions and suitable distributions of the random variables,
allowing spatial dependencies. Our precise hypotheses are spelled out in Assumption 2.1 and
Definition 2.3. The theorem can be interpreted as a multi-dimensional ergodic theorem with
values in the Banach space of right continuous and bounded functions with sup-norm, i.e. a
uniform convergence result. Under slightly strengthened assumptions we obtain an explicit
error term for the convergence, which is a sum of a geometric and a probabilistic part,
cf. Theorem 2.8. While earlier Banach space valued ergodic theorems, e.g. [10,11], have been
restricted to a finite set of colors, we are able to treat the real-valued case. To do this, we have
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to assume a monotonicity property, which is satisfied in most cases of interest. We obtain a
more explicit convergence estimate than [10], as well. This is due to the fact that we assume a
short range correlation condition, while [10] assumes the existence of limiting frequencies. The
Glivenko–Cantelli result is applied to several examples from statistical physics in Sections 7 and
8. The flexibility and generality of our probabilistic model is displayed in the Appendix.

For the proof we use two sets of ideas. The first one concerns geometric approximation
and tiling arguments for almost additive functions based on the amenability of the group Zd

going back to the mentioned seminal papers of Van Hove [23] and Følner [4]. In the context of
Banach space valued ergodic theorems they have been used for instance in [9,12,13,10,11,17].
The second ingredient of the proof is multivariate Glivenko–Cantelli theory, as developed in
[18,22,2,30]. Our Theorem 5.5 shows that in our setting a large deviations type estimate derived
by Wright can be applied. The latter is a modification of the Dvoretzky–Kiefer–Wolfowitz
inequality [3,14].

The structure of the paper is as follows: In Section 2 we present our notation and the two
main theorems. Section 3 contains an intuitive sketch of the proof in the case Zd

= Z, Section 4
geometric tiling and approximation arguments, Section 5 multivariate Glivenko–Cantelli theory,
Section 6 the proof of the main theorem, and Sections 7 and 8 examples.

2. Notation and main results

The geometric setting of this paper is given via Zd , which gives in a natural way rise to a graph
(Zd , E). Here, the set of edges E is the subset of the power set of Zd , consisting exactly of those
{x, y} ⊆ Zd which satisfy ∥y − x∥1 = 1. As usual ∥x∥1 =

d
i=1 |xi | denotes the ℓ1-norm in

Zd . By F we denote the (countable) set which consists of all finite subsets of Zd . For Λ ∈ F , we
write |Λ| for the number of elements in Λ. The metric on the set of vertices d : Zd

×Zd
→ N0 is

defined via the ℓ1-norm, i.e. for x, y ∈ Zd we set d(x, y) := ∥y − x∥1. For two sets Λ1,Λ2 ⊆ Zd

we write d(Λ1,Λ2) := min{d(x, y) | x ∈ Λ1, y ∈ Λ2}. In the case that Λ1 = {x} contains only
one element we write d(x,Λ2) for d({x},Λ2).

For Λ ⊆ Zd we write Λ + z := {x + z | x ∈ Λ}. A cube of side length n ∈ N is a set which is
given by ([0, n)d ∩ Zd)+ z for some z ∈ Zd .

Using the metric d, we define for r ∈ N0 the r -boundary of a set Λ ⊆ Zd by

∂r (Λ) := {x ∈ Λ | d(x,Zd
\Λ) 6 r} ∪ {x ∈ Zd

\Λ | d(x,Λ) 6 r}.

Moreover, we set

Λr
:= Λ\∂r (Λ) = {x ∈ Λ | d(x,Zd

\Λ) > r}. (2.1)

If (Λn)n∈N (or short (Λn)) is a sequence of subsets of Zd , we write (Λr
n)n∈N or (Λr

n) instead of
((Λn)

r )n∈N.
Note that for a cube Λn of side length n and r 6 n/2 we have

|Λn| = nd , |Λr
n| = (n − 2r)d and |∂r (Λn)| = (n + 2r)d − (n − 2r)d .

In the following we introduce colorings of the elements of Zd . To this end, let A ⊆ R be the
set of possible colors. The sample set, which describes the set of all possible colorings of Zd is
given by

Ω := AZd
:= {ω = (ωz)z∈Zd | ωz ∈ A} ⊆ RZd

.
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For each z ∈ Zd we define the translation

τz : Ω → Ω , (τzω)x = ωx+z, (z ∈ Zd), (2.2)

i.e. Zd acts on Ω via translations. For Λ ∈ F we set ΩΛ := AΛ
:= {ω = (ωz)z∈Λ | ωz ∈ A} and

define ΠΛ : Ω → ΩΛ by

ΠΛ(ω) := ωΛ := (ωz)z∈Λ for ω = (ωz)z∈Zd ∈ Ω .

We simplify Πz := Π{z} for z ∈ Zd . As usual, A is equipped with the Borel σ -algebra B(A)
inherited from R. Let B(Ω) be the product σ -algebra on Ω . Let P be a probability measure on
(Ω ,B(Ω)) satisfying:

Assumption 2.1. (M1) Translation invariance: For each z ∈ Zd we have P ◦ τ−1
z = P.

(M2) Existence of densities: There are σ -finite measures µz , z ∈ Zd , on (A,B(A)) such that
for each Λ ∈ F the measure PΛ := P ◦ Π−1

Λ is absolutely continuous with respect to
µΛ :=


z∈Λ µz on (ΩΛ,B(ΩΛ)). We denote the density function by ρΛ :=

dPΛ
dµΛ

. The

measure PΛ is called a marginal measure of P. It is defined on (ΩΛ,B(ΩΛ)), where
B(ΩΛ) is again the product σ -algebra.

(M3) Independence at a distance: There exists r > 0 such that for all n ∈ N and non-empty
Λ1, . . . ,Λn ⊆ Zd with min{d(Λi ,Λ j ) | i ≠ j} > r we have ρΛ =

n
j=1 ρΛ j , where

Λ =
n

j=1 Λ j .

Remark 2.2. • The constant r > 0 in (M3) can be interpreted as correlation length. In
particular, if r = 0 this property implies that the colors of the vertices are independent.

• Conditions (M2) and (M3) are trivially satisfied, if P is a product measure.
• For examples of measures P satisfying (M1), (M2) and (M3) we refer to Appendix.

In the following we deal with partial orderings on Ω and ΩΛ, Λ ∈ F . We write ω 6 ω′ for
ω,ω′

∈ Ω if we have ωz 6 ω′
z for all z ∈ Zd , and analogously for ΩΛ.

We consider the Banach space

B := {F : R → R | F right-continuous and bounded},

which is equipped with supremum norm ∥ · ∥ := ∥ · ∥∞.
We now introduce a certain class of B-valued functions.

Definition 2.3. A function f : F × Ω → B is called admissible if the following conditions are
satisfied

(i) translation invariance: For Λ ∈ F , z ∈ Zd and ω ∈ Ω we have

f (Λ + z, ω) = f (Λ, τzω).

(ii) locality: For all Λ ∈ F and ω,ω′
∈ Ω satisfying ΠΛ(ω) = ΠΛ(ω

′) we have

f (Λ, ω) = f (Λ, ω′).

(iii) almost additivity: There exists a function b = b f : F → [0,∞) such that for arbitrary
ω ∈ Ω , pairwise disjoint Λ1, . . . ,Λn ∈ F and Λ :=

n
i=1 Λi we have f (Λ, ω)−

n
i=1

f (Λi , ω)

 6 n
i=1

b(Λi ),

and b satisfies
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• b(Λ) = b(Λ + z) for arbitrary Λ ∈ F and z ∈ Zd ,

• ∃D = D f > 0 with b(Λ) 6 D|Λ| for arbitrary Λ ∈ F ,

• limi→∞ b(Λi )/|Λi | = 0, if (Λi )i∈N is a sequence of cubes with strictly increasing side
length.

(iv) coordinatewise monotonicity: There exists a sign vector s ∈ {−1, 1}
Zd

such that for all
Λ ∈ F and all ω,ω′

∈ Ω , z ∈ Λ and E ∈ R we have

ωΛ\{z} = ω′

Λ\{z}, ωz 6 ω′
z

=⇒


f (Λ, ω)(E) 6 f (Λ, ω)(E) if s(z) = 1, whereas
f (Λ, ω)(E) > f (Λ, ω)(E) if s(z) = −1.

(v) boundedness: We have

sup
ω∈Ω

∥ f ({0}, ω)∥ < ∞.

Remark 2.4. • Property (ii) can be formulated as follows: f (Λ, ·) : Ω → B is ΠΛ-measurable.
Property (ii) also enables us to define fΛ : ΩΛ → B by fΛ(ωΛ) := f (Λ, ω) with Λ ∈ F and
ω ∈ Ω . If |Λ| = 1, we can identify ΩΛ = AΛ and A. With this notation, (v) above translates
into

sup
a∈A

∥ f{0}(a)∥ < ∞.

• In our examples in Sections 7 and 8, b(Λ) from (iii) can be chosen proportional to |∂1Λ|,
the size of the 1-boundary of Λ ∈ F . Accordingly, we call the function b = b f boundary
term for f . For quantitative estimates it is handy to require additionally that there exists
r ′

= r ′

f ∈ N and D′
= D′

f > 0 such that

b(Λ) 6 D′
|∂r ′

Λ|

for all cubes Λ ∈ F . We call such a function b a proper boundary term.

• It is natural to call f with the property

f (Λ, ω) =

n
i=1

f (Λi , ω)

additive with respect to the disjoint decomposition (Λi )i=1,...,n of Λ ∈ F . Hence, it is again
natural to call (iii) almost additive, since the error term

n
i=1 b(Λi ) is in some sense small.

Alternatively, (iii) could be called low complexity or semi-locality of f . The information
contained in f (Λ1), . . . , f (Λn) does not differ much from the information contained in f (Λ).

• Our examples in Sections 7 and 8 deal with antitone admissible functions, i.e. (iv) is satisfied
with s(z) = −1 for all z ∈ Zd .

• If f is admissible, then

K f := sup


∥ f (Λ,ω)∥
|Λ|

 ω ∈ Ω ,Λ ∈ F\{∅}


< ∞. (2.3)
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To see this, we choose Λ ∈ F and ω ∈ Ω arbitrarily and calculate as follows:

∥ f (Λ, ω)∥ 6
 f (Λ, ω)−


z∈Λ

f ({z}, ω)
 +


z∈Λ

f ({z}, ω)


6

z∈Λ

b({z})+


z∈Λ

∥ f ({z}, ω)∥

6 D|Λ| +


z∈Λ

∥ f ({0}, τ−zω)∥ 6

D + sup

ω∈Ω
∥ f ({0}, ω)∥


|Λ|.

Thus, K f 6 D + supω∈Ω ∥ f ({0}, ω)∥ < ∞.

Definition 2.5. For K , D, D′ > 0 and r ′
∈ N, we form the set

UK ,D,D′,r ′ = { f : F × Ω → B | f admissible with K f 6 K , D f 6 D, D′

f 6 D′

and r ′

f 6 r ′
}

where K f , D f , D′

f and r ′

f are the constants from Definition 2.3 associated to f .

Let us state the main theorem of this paper.

Theorem 2.6. Let A ⊆ R, Ω := AZd
and (Ω ,B(Ω),P) a probability space such that P

satisfies (M1), (M2) and (M3) with correlation length r ∈ N0, and let f : F × Ω → B be an
admissible function. Let further Λn := [0, n) ∩ Zd for n ∈ N. Then there exists a set Ω̃ ∈ B(Ω)
of full measure and a function f ∗

∈ B such that for every ω ∈ Ω̃ we have

lim
n→∞

 f (Λn, ω)

|Λn|
− f ∗

 = 0. (2.4)

Remark 2.7. • The following special case illustrates the relation to the Glivenko–Cantelli
theorem. Let P :=


z∈Z µ be a product measure on

Ś

Z R, where µ is a probability measure
on R, and let f (Λ, ω)(E) :=


z∈Λ χ(−∞,E](ωz) for Λ ∈ F , ω ∈ Ω and E ∈ R. Then f is an

admissible function. The quantities f (Λn, ω)(E)/|Λn| = |Λn|
−1 

z∈Λn
δωz ((−∞, E]) turn

out to be the distribution functions of empirical measures. Theorem 2.6 now states that the
empirical distribution functions converge uniformly. The limit f ∗ is of course the distribution
function of µ: f ∗(E) = µ((−∞, E]) for all E ∈ R.

• We emphasize that the statement of Theorem 2.6 does not contain the measurability of the set
ω ∈ Ω

 lim
n→∞

 f (Λn ,ω)
|Λn |

− f ∗

 = 0

.

Instead, the claim is that this set contains a measurable subset Ω̃ of full measure. If the
probability space was complete, the above set would be measurable, too. We write all
almost sure statements in explicit fashion, in order to avoid a completeness assumption and
measurability issues.

• The limit function f ∗ inherits the boundedness from f , since there exists ω ∈ Ω such that

∥ f ∗
∥ 6 lim sup

n→∞

 f (Λn ,ω)
|Λn |

− f ∗

 +

 f (Λn ,ω)
|Λn |


6 K f .

• Note that Theorem 2.6 readily generalizes to absolutely convergent linear combinations of
admissible functions in the following sense. Let K , α j ∈ R, j ∈ N such that


j∈N |α j | < ∞
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and f j , j ∈ N, admissible functions such that K f j 6 K for all j ∈ N. For each j ∈ N,
Theorem 2.6 provides a limit function f ∗

j . We let f :=

α j f j and f ∗

:=

α j f ∗

j . Now fix
ε > 0, find J ∈ N such that


∞

j=J |α j | <
ε

2K and note that by the triangle inequality for all
ω ∈ Ω̃ we have

lim sup
n→∞

 f (Λn ,ω)
|Λn |

− f ∗

 6 lim sup
n→∞

J−1
j=1

|α j |

 f j (Λn ,ω)

|Λn |
− f ∗

j


+

∞
j=J

|α j |
 f j (Λn ,ω)

|Λn |

 + ∥ f ∗

j ∥


< ε.

This shows that the coordinate-wise monotonicity (iv) can be somewhat weakened.
• By a Borel–Cantelli argument employing Theorem 5.3, the sequence of cubes Λn can in fact

be replaced by an arbitrary van Hove sequence (Λn)n∈N, as long as for each Λn there exists a
collection of translates which tiles Zd . The set Ω̃ will depend on the sequence, of course.

Next, we state that for functions with proper boundary terms the convergence in Theorem 2.6
can be quantified by error terms. For the definition of the empirical measure Lr,ω

m,n see (4.6) and
the notation ⟨ f, ν⟩ is introduced in (4.7).

Theorem 2.8. Let A ⊆ R, Ω := AZd
and (Ω ,B(Ω),P) a probability space such that P

satisfies (M1), (M2) and (M3) with correlation length r ∈ N0, and let Λn := [0, n) ∩ Zd

for n ∈ N. Let K , D, D′ > 0 and r ′
∈ N. Then, there exists a set Ω̃ ∈ B(Ω) of full probability

such that, for each m, n ∈ N with n > 2m > 4r and ω ∈ Ω̃ , we have

sup
f ∈UK ,D,D′,r ′

 f (Λn, ω)

|Λn|
− f ∗


6 22d+1

 (2K + D)md
+ D′r ′d

n − 2m
+

2(K + D)rd
+ 3D′r ′d

m − 2r


+ sup

f ∈UK ,D,D′,r ′

⟨ fΛr
m
, Lr,ω

m,n − PΛr
m
⟩


|Λm |
,

where f ∗ is the limit given by Theorem 2.6 applied to f . Furthermore, for all m ∈ N and
ω ∈ Ω̃ ,

lim
n→∞

sup
f ∈UK ,D,D′,r ′

⟨ fΛr
m
, Lr,ω

m,n − PΛr
m
⟩
 = 0.

Even more, for each ε > 0 there exist a = a(ε,m, K ) > 0 and b = b(ε,m, K ) such that for all
n ∈ N there is a measurable set Ω(ε, n) with P(Ω(ε, n)) > 1 − b exp(−a⌊n/m⌋

d) and

sup
f ∈UK ,D,D′,r ′

⟨ fΛr
m
, Lr,ω

m,n − PΛr
m
⟩
 6 ε for all ω ∈ Ω(ε, n).

Remark 2.9. • It would be interesting to find an optimal explicit expression for a and b in terms
of ε, m, and K .
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• As before, the monotonicity can be weakened, see Remark 2.7. Note in particular, that a
convex combination of functions in UK ,D,D′,r ′ still obeys the quantitative estimates given by
K , D, D′ and r ′. The statement of Theorem 2.8 remains valid for the convex combination
since the geometric part is derived without the use of monotonicity and the argument from
Remark 2.7 applies to the probabilistic part.

Corollary 2.10. Under the conditions of Theorem 2.8, there exists a set Ω̃ ∈ B(Ω) with
P(Ω̃) = 1 such that for all ω ∈ Ω̃ , we have

sup
f ∈UK ,D,D′,r ′

sup
E∈R

 f (Λn, ω)(E)
|Λn|

− f ∗(E)
 n→∞
−−−→ 0. (2.5)

If furthermore for an admissible f , f (Λn, ω) : R → R is an isotone function for all Λn and
ω ∈ Ω̃ , then the limit function f ∗

∈ B is isotone, too. In particular, cumulative distribution
functions are preserved.

Proof. By Theorem 2.8, we have

0 6 lim
n→∞

sup
f ∈UK ,D,D′,r ′

 f (Λn, ω)

|Λn|
− f ∗

 6 22d+1 2(K + D)rd
+ 3Dr ′d

m − 2r
m→∞
−−−−→ 0.

Recall that the norm in B is the sup norm ∥ · ∥ = supE∈R | · (E)| to see (2.5).
If the functions fn,ω := f (Λn, ω)/|Λn| : R → R are increasing, then for all E, E ′

∈ R with
E < E ′ and ε > 0 we find n ∈ N such that ∥ fn,ω − f ∗

∥ < ε/2 and

f ∗(E) 6 fn(E)+ ε/2 6 fn(E ′)+ ε/2 6 f ∗(E ′)+ ε.

Since ε > 0 was arbitrary, f ∗ is increasing, too. �

3. Illustration of the idea of proof

Let us consider the exemplary situation of dimension d = 1 and independently chosen colors,
i.e., the constant r from (M3) equals 0. In this case, the idea of the proof of Theorem 2.6 is
illustrated in the following line:

1
mk

f

[0,mk), ω

 (1)
≈

1
m

⟨ fm, Lωm,mk⟩
(2)
≈

1
m

⟨ fm,Pm⟩
(3)
≈ f ∗, (3.1)

where 0 ≪ m ≪ k. Assume that n = mk and Λn = [0, n). Then the left hand side in (3.1)
equals the approximant in Theorem 2.6. The function fm : Ω[0,m) → B is defined by fm(ω) :=

f ([0,m), ω′) for ω′
∈ Π−1

[0,m)({ω}), cf. Remark 2.4. Lωm,n(B) is the empirical probability
measure counting the number of occurrences of elements of B ∈ B(Ω[0,m)) at the positions
[ jm, ( j + 1)m), j = 0, 1, . . . , k − 1 in ω, i.e.

Lωm,n : B(Ω[0,m)) → [0, 1], Lωm,n :=
1
k

k−1
j=0

δ(τ jmω)[0,m) =
1
k

k−1
j=0

δΠ[0,m) (τ jmω). (3.2)

We use the shortcut notation

⟨ fm, Lωm,n⟩ :=


Ω[0,m)

fm(ω
′) dLωm,n(ω

′) =
1
k

k−1
j=0

f

[ jm, ( j + 1)m), ω


.
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Let us discuss the three approximation steps separately.

(1) The “
(1)
≈” means that the two expressions are getting close to each other if m increases. To

see this we use almost additivity of an admissible function, cf. (iii) of Definition 2.3. The
detailed calculations will be presented in Section 4.

(2) In the second step we compare the empirical measure Lωm,mk with the marginal measure
Pm := P[0,m) . The method of choice is a multivariate Glivenko–Cantelli theorem, which
we apply in a version of DeHardt and Wright. In this particular situation it shows that
for increasing k the expression ⟨ fm, Lωm,mk⟩ converges to ⟨ fm,Pm⟩ almost surely. This
approximation step is explicitly discussed in Section 5.

(3) In the last step we make intensive use of almost additivity of f in order to obtain that
(⟨ fm,Pm⟩/m)m is Cauchy sequence in B. As B is a Banach space, we can identify the limit
with an element f ∗

∈ B. The details are found in Section 6.

Remark 3.1 (Frequencies). From the discussion of step (1) above it is clear that the empirical
measure counts occurrences of patterns at the positions [ jm, ( j + 1)m) for j = 0, 1, . . . , k − 1.
Thus, the corresponding sets are disjoint and their union covers the whole interval [0, n),
n = mk. In this sense, the present technique of counting occurrences differs from the counting
in certain papers. For instance in [10,11], the authors count occurrences of patterns at each
possible consecutive position, ignoring the fact that they may overlap. In our setting, this would
correspond to the situation where the empirical measure is defined to count occurrences at all
positions [ j, j + m), j = 0, 1, . . . ,m(k − 1), i.e.,

L̄ωm,n : B(Ω[0,m)) → [0, 1], L̄ωm,n :=
1

m(k − 1)+ 1

m(k−1)
j=0

δ(τ jω)[0,m) . (3.3)

However, both ways of counting can be related to each other. The link can be seen best by
comparing with the average

1
m(k − 1)

m(k−1)
j=1

δ(τ jω)[0,m) =
1
m

m
i=1

1
k − 1

k−2
j=0

δ(τ jm+iω)[0,m) , (3.4)

where the first observation δω[0,m) is discarded. Indeed, for large n = mk, the difference be-
tween L̄ωm,n and (3.4) vanishes. The right hand side of (3.4) shows that L̄ωm,n is essentially a con-
vex combination of empirical measures of the type (3.2). As k → ∞, all the empirical measures
of type (3.2) in (3.4) converge to the same limit Pm , rendering the convex combination harmless.
Recall that in the approximation first the limit k → ∞ and afterwards the limit m → ∞ is
performed. This shows that the empirical measure defined in (3.3) converges to the same limit as
the empirical measures in (3.2).

4. Approximation via the empirical measure

In the following we show how to estimate an admissible function f in terms of the empirical
measure. As in Theorem 2.6, let Λn = ([0, n) ∩ Z)d for each n ∈ N.

Our aim is to approximate for m ≪ n the set Λn using translates of the set Λm . To this end,
we define the grid

Tm,n := {t ∈ mZd
| Λm + t ⊆ Λn}. (4.1)
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Thus, we have |Tm,n| = ⌊n/m⌋
d , Λ⌊n/m⌋m =

̇
t∈Tm,n

(Λm + t) = Λm + Tm,n , and

Λn\Λ⌊n/m⌋m ⊆ ∂m(Λn) or equivalently Λm
n ⊆ Λ⌊n/m⌋m . (4.2)

As in Remark 2.4, define for an admissible f and Λ ∈ F the function

fΛ : ΩΛ → B, fΛ(ω) := f (Λ, ω′) where ω′
∈ Π−1

Λ ({ω}). (4.3)

By locality (ii) of Definition 2.3, fΛ is well-defined. In the case Λ = Λn , we write

fn := fΛn and f m
n := fΛm

n
(4.4)

for m ∈ N0. Next, we introduce the empirical measure Lωm,n by setting for ω ∈ Ω and m, n ∈ N:

Lωm,n : B(ΩΛm ) → [0, 1], Lωm,n =
1

|Tm,n|


t∈Tm,n

δ(τtω)Λm
. (4.5)

Here, δω : B(ΩΛm ) → [0, 1] is the point measure on ω ∈ ΩΛm . In the same manner, we define
Lr,ω

m,n as an adaption of Lωm,n which ignores the r -boundary of Λm . The precise definition is the
following: for r ∈ N0 we set

Lr,ω
m,n : B(ΩΛr

m
) → [0, 1], Lr,ω

m,n =
1

|Tm,n|


t∈Tm,n

δ(τtω)Λr
m
. (4.6)

The variable r we used here will eventually be the constant from (M3), but here in Section 4 we
do not need that specific value.

As illustrated before in Section 3 we use for Λ ∈ F , a bounded and measurable f : ΩΛ → B,
and a measure ν on (ΩΛ,B(ΩΛ)) the notation

⟨ f, ν⟩ :=


ΩΛ

f (ω) dν(ω). (4.7)

Lemma 4.1. Recall Λn := ([0, n) ∩ Z)d . For any admissible function f : F ×Ω → B we have,
for all ω ∈ Ω and all n,m, r ∈ N with n > 2m, f (Λn, ω)

nd −
⟨ f r

m, Lr,ω
m,n⟩

md

 6 b(Λ⌊n/m⌋m)

|Λ⌊n/m⌋m |
+
(2K f + D)|∂m(Λm

n )|

|Λm
n |

+
b(Λm)+ b(Λr

m)+ (K f + D)|∂r (Λm)|

|Λm |
. (4.8)

Moreover,

lim
m→∞

lim
n→∞

 f (Λn, ω)

nd −
⟨ f r

m, Lr,ω
m,n⟩

md

 = 0. (4.9)

Proof. Let ω ∈ Ω and n,m, r ∈ N be given such that n > 2m. This condition ensures that
Λm

n ≠ ∅. First we verify (4.8), and afterwards we show that this implies (4.9). By the triangle
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inequality we obtain f (Λn, ω)

nd −
⟨ f r

m, Lr,ω
m,n⟩

md

 6  f (Λn, ω)

|Λn|
−

f (Λn, ω)

|Λ⌊n/m⌋m |


+

 f (Λn, ω)− f (Λ⌊n/m⌋m, ω)

|Λ⌊n/m⌋m |

 +

 f (Λ⌊n/m⌋m, ω)

|Λ⌊n/m⌋m |
−

⟨ fm, Lωm,n⟩

md


+

∥⟨ fm, Lωm,n⟩ − ⟨ f r
m, Lr,ω

m,n⟩∥

md . (4.10)

We bound the four terms on the right hand side separately. To estimate the first term, we use
|Λ⌊n/m⌋m | > |Λm

n |, see (4.2), and obtain

0 6 1
|Λ⌊n/m⌋m |

−
1

|Λn|
6 1

|Λm
n |

−
1

|Λn|
=

|Λn| − |Λm
n |

|Λn||Λm
n |
6 |∂m(Λm

n )|

|Λn||Λm
n |
.

Applying the bound given by (2.3) in Remark 2.4, we get f (Λn, ω)

|Λn|
−

f (Λn, ω)

|Λ⌊n/m⌋m |

 6 K f
|∂m(Λm

n )|

|Λm
n |

. (4.11)

In order to find an appropriate upper bound for the second term in (4.10) we use almost
additivity (iii), the inclusion (4.2) and Λ̂m,n := Λn\Λ⌊n/m⌋m to obtain f (Λn, ω)− f (Λ⌊n/m⌋m, ω)

|Λ⌊n/m⌋m |

 6 b(Λ⌊n/m⌋m)

|Λ⌊n/m⌋m |
+

b(Λ̂n,m)

|Λ⌊n/m⌋m |
+

∥ f (Λ̂n,m, ω)∥

|Λ⌊n/m⌋m |

6 b(Λ⌊n/m⌋m)

|Λ⌊n/m⌋m |
+

D|Λ̂n,m |

|Λ⌊n/m⌋m |
+

K f |Λ̂n,m |

|Λ⌊n/m⌋m |

6 b(Λ⌊n/m⌋m)

|Λ⌊n/m⌋m |
+
(K f + D)|∂m(Λm

n )|

|Λm
n |

. (4.12)

To approximate the third term in (4.10), we calculate using translation invariance (i) of admissible
functions

⟨ fm, Lωm,n⟩ =


ΩΛm

fm(ω
′) dLωm,n(ω

′) =
1

|Tm,n|


t∈Tm,n


ΩΛm

fm(ω
′) dδ(τtω)Λm

(ω′)

=
1

|Tm,n|


t∈Tm,n

fm((τtω)Λm ) =
1

|Tm,n|


t∈Tm,n

f (Λm + t, ω). (4.13)

This and (iii) of Definition 2.3 give f (Λ⌊n/m⌋m, ω)

|Λ⌊n/m⌋m |
−

⟨ fm, Lωm,n⟩

|Λm |

 =
1

|Tm,n||Λm |

 f (Λ⌊n/m⌋m, ω)−


t∈Tm,n

f (Λm + t, ω)


6 1
|Tm,n||Λm |


t∈Tm,n

b(Λm + t) =
b(Λm)

|Λm |
. (4.14)

Finally, we estimate the fourth term. In the same way as in (4.13) we obtain

⟨ f r
m, Lr,ω

m,n⟩ =
1

|Tm,n|


t∈Tm,n

f (Λr
m + t, ω).
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Application of the triangle inequality, Λm\Λr
m = Λm ∩ ∂r (Λm) ⊆ ∂r (Λm) and (iii) of

Definition 2.3 as well as (2.3) lead to

∥⟨ fm, Lωm,n⟩ − ⟨ f r
m, Lr,ω

m,n⟩∥ 6 1
|Tm,n|


t∈Tm,n

∥ f (Λm + t, ω)− f (Λr
m + t, ω)∥

6 1
|Tm,n|


t∈Tm,n


b(Λr

m)+ b(Λm\Λr
m)+ ∥ f ((Λm\Λr

m)+ t, ω)∥


6 b(Λr
m)+ (K f + D)|∂r (Λm)|. (4.15)

It remains to combine (4.10) with the bounds (4.11), (4.12), (4.14) and (4.15) to obtain (4.8).
Let us turn to (4.9). As required, we first perform the limit n → ∞. In (4.8), the bounding

terms affected by this limit vanish, due to property (iii) and the fact that Zd is amenable:

lim
n→∞


b(Λ⌊n/m⌋m)

|Λ⌊n/m⌋m |
+
(2K f + D)|∂m(Λm

n )|

|Λm
n |


= 0.

Secondly, we let m → ∞. Since b(Λr
m)/|Λm | 6 b(Λr

m)/|Λ
r
m | for m > 2r , this takes care of the

remaining terms of the upper bound in (4.8).

lim
m→∞

b(Λm)+ b(Λr
m)+ (K f + D)|∂r (Λm)|

|Λm |
= 0.

Thus, (4.9) follows. �

Remark 4.2. Let us emphasize that the statement of the lemma is not an “almost sure”-
statement, but rather holds for all ω ∈ Ω .

5. Application of multivariate Glivenko–Cantelli theory

We briefly restate multivariate Glivenko–Cantelli results in Theorem 5.3 and apply this result
to our setting in Theorem 5.6. To do so, we need some notions concerning monotonicity in Rk .

Definition 5.1. Let k ∈ N.

• Let s ∈ {−1, 1}
k . The closed cone Cs with sign vector s is the set

Cs := {x = (x j ) j=1,...,k ∈ Rk
| ∀ j ∈ {1, . . . , k} : x j s j > 0}.

The closed cone with sign vector s and apex x ∈ Rk is Cs(x) := x + Cs .
• A function f : Rk

→ R is monotone, if it is monotone in each coordinate, i.e. there exists
s ∈ {−1, 1}

k such that, for all x, y ∈ Rk ,

y ∈ Cs(x) =⇒ f (y) > f (x).

• A set Υ ⊆ Rk is a monotone graph, if there exists a sign vector s ∈ {−1, 1}
k such that, for all

x ∈ Υ ,

Υ ∩ Cs(x) ⊆ ∂Cs(x),

where ∂C denotes the boundary of C in Rk .
• A set Υ ⊆ Rk is a strictly monotone graph, if there exists a sign vector s ∈ {−1, 1}

k such
that, for all x ∈ Υ ,

Υ ∩ Cs(x) = {x}.
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Remark 5.2. • This notion of monotonicity is compatible with (iv) in Definition 2.3.
• We want to emphasize that in the above definition a second meaning of the notion of a graph

was used. In Section 2 a graph was introduced as a pair consisting of a set of vertices and a
set of edges. In contrast to that, Definition 5.1 states that a monotone graph is a certain subset
of Rk . In order to distinguish both meanings we will always insert the term monotone when
speaking about subsets of Rk .

The following theorem is proven in [30, Theorems 1 and 2]. Recall that the continuous part µc
of a measure µ on Rk is given by µc(A) := µ(A)−


x∈A µ{x} for all Borel sets A ∈ B(Rk).

Theorem 5.3 (DeHardt, Wright). Let (Ω ,A,P) be a probability space and X t : Ω → Rk ,
t ∈ N, independent and identically distributed random variables with distribution µ, i.e.,
µ(A) := P(X1 ∈ A) for all A ∈ B(Rk). For each J ⊆ {1, . . . , k}, J ≠ ∅, let µJ be
the distribution of the vector (X j

1) j∈J consisting of the coordinates j ∈ J of the vector
X1 = (X j

1) j∈{1,...,k}, i.e. a marginal of µ. We denote by

Ln : Ω × B(Rk) → R, L(ω)n (A) :=
1
n

n
t=1

δX t (ω)

the empirical distribution corresponding to the sample (X1, . . . , Xn), n ∈ N. Fix further M > 0
and let

M := { f : Rk
→ R | f monotone and sup | f (Rk)| 6 M}.

Then the following assertions are equivalent:
(i) For all J ⊆ {1, . . . , k}, J ≠ ∅, the continuous part µJ

c of the marginal µJ of µ vanishes
on every strictly monotone graph Υ ⊆ RJ :

µJ
c (Υ) = 0.

(ii) There exists a set Ω ′
∈ A of full probability P(Ω ′) = 1 such that, for all ω ∈ Ω ′,

sup
f ∈M

|⟨ f, L(ω)n − µ⟩|
n→∞
−−−→ 0.

(iii) For all ε > 0, there are a = a(ε) > 0 and b = b(ε) > 0 such that for all n ∈ N there exists
an Ωε,n ∈ A, such that for all ω ∈ Ωε,n , we have

sup
f ∈M

|⟨ f, L(ω)n − µ⟩| 6 ε and P(Ωε,n) > 1 − b exp(−an).

Remark 5.4. Note that if we knew that the set {ω ∈ Ω | sup f ∈M |⟨ f, L(ω)n − µ⟩| > ε} was
measurable, we could rephrase (iii) as follows. For all ε > 0, the probabilities P(sup f ∈M
|⟨ f, L(ω)n − µ⟩| > ε) converge exponentially fast to zero as n → ∞.

We provide a sufficient condition for (i) in Theorem 5.3 and apply the theorem to our setting.
The idea to use product measures in the context of Glivenko–Cantelli type theorems appears
already in [22].

Theorem 5.5. Let µ be a measure on Rk which is absolutely continuous with respect to a
product measure

k
j=1 µ j on Rk , where µ j , j ∈ {1, . . . , k} are measures on R. Then, for each

strictly monotone graph Υ ⊆ Rk we have µc(Υ) = 0, where µc is the continuous part of µ.
Moreover, (i) from Theorem 5.3 is satisfied.
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Proof. Let ρ be the density of µ with respect to
k

j=1 µ j . We define the set of atoms of µ,

S := {x ∈ Rk
| µ{x} > 0}, and S j := {x j ∈ R | µ j {x j } > 0} ( j ∈ {1, . . . , k}).

Then we have S ⊆ S1 × · · · × Sk , and for each x = (x1, . . . , xk) ∈ S1 × · · · × Sk , we have

µ{x} = ρ(x)
k

j=1

µ j {x j }. (5.1)

This implies in particular that for all x ∈ S1 × · · · × Sk\S, we have ρ(x) = 0.
In order to prove µc(Υ) = 0 it is sufficient to show

µ(Υ) =


x∈S∩Υ

µ{x}. (5.2)

We will prove this by induction over k. If k = 1 then a strictly monotone graph is a singleton,
i.e. Υ = {x} for some x ∈ R. Thus, (5.2) holds true. In the case k > 1 we assume that (5.2)
holds for k − 1 and proceed by disintegration. Note that, for z ∈ R, the cross section Υz :=

{y ∈ Rk−1
| (y, z) ∈ Υ } is itself a strictly monotone graph in Rk−1. Using the cross section

ρz : Rk−1
→ R, ρz(y) := ρ(y, z), z ∈ R, of the density, we define the cross section µz :=

ρz
k−1

j=1 µ j of the measure µ. By Fubini’s Theorem, the disintegration of µ is

µ(d(y, z)) = ρz(y)
k−1
j=1

µ j (dy j )⊗ µk(dz).

By the induction hypothesis we obtain

µ(Υ) =


R


Rk−1

χΥz (y) µz(dy)

µk(dz)

=


R
µz(Υz) µk(dz) =


R


y∈S̄∩Υz

µz{y}µk(dz), (5.3)

where S̄ := S1 × · · · × Sk−1. The next aim is to show that the set Z := {z ∈ R | S̄ ∩ Υz ≠ ∅} is
countable. To this end, we will use that S̄ is countable, define two mappings

ϕ : S̄ → (S̄ × R) ∩ Υ and ψ : (S̄ × R) ∩ Υ → Z
and show that they are surjective. We first define ϕ. Let (y, z), (y, z′) ∈ (S̄ × R) ∩ Υ be given
and assume without loss of generality that z 6 z′. Let s ∈ {−1, 1}

k be the sign vector of Υ from
Definition 5.1, and, again without loss of generality, consider the case s(k) = 1. Then we have

Cs(y, z) ∩ Υ = {(y, z)} and Cs(y, z′) ∩ Υ = {(y, z′)}.

As z 6 z′ and s(k) = 1, we have Cs(y, z) ⊇ Cs(y, z′), such that we obtain

{(y, z)} = Cs(y, z) ∩ Υ ⊇ Cs(y, z′) ∩ Υ = {(y, z′)}.

This shows that if y ∈ S̄ is such that there exists an element z ∈ R with (y, z) ∈ Υ , then this z is
unique. Let h ∈ (S̄ × R) ∩ Υ be arbitrary but fixed and set

ϕ : S̄ → (S̄ × R) ∩ Υ , ϕ(y) :=


(y, z) if (y, z) ∈ Υ , and
h if ({y} × R) ∩ Υ = ∅.
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This ϕ is well-defined and surjective. The mapping ψ is defined by

ψ : (S̄ × R) ∩ Υ → Z, ψ(y, z) := z.

To check that ψ is surjective let z ∈ Z be given. Then there exists y ∈ S̄∩Υz . Thus, by definition
of Υz we have (y, z) ∈ Υ and (y, z) ∈ S̄ × R. This shows that (y, z) is in the domain of ψ and
ψ(y, z) = z.

The surjectivity of ϕ andψ and the fact that S̄ is countable show that Z is countable. Therefore
the last integral in (5.3) is actually a sum:

µ(Υ) =


R


y∈S̄∩Υz

µz{y}µk(dz) =


z∈Sk


y∈S̄∩Υz

µz{y}µk{z} =


x∈S∩Υ

µ{x}.

Here, the last equality follows from (5.1),


z∈Sk
(S̄ ∩ Υz) × {z} ⊇ S ∩ Υ , and the fact that ρ

vanishes on
z∈Sk

(S̄ ∩ Υz)× {z}\(S ∩ Υ) ⊆ S1 × · · · × Sk\S.

This finishes the induction and we obtained (5.2) and µc(Υ) = 0.
Let J ⊆ {1, . . . , k} such that J ≠ ∅ and J c

:= {1, . . . , k}\J ≠ ∅. Define ρ J
: RJ

→ R via

ρ J (x J ) :=


RJc

ρ(x) d

j∈J c

µ j (x J c
),

where x = (x J , x J c
) ∈ RJ

× RJ c
. The function ρ J is the density of the marginal µJ of µ with

respect to


j∈J µ j , since by Fubini for all A ∈ B(RJ )

µJ (A) =


Rk
χA(x J )ρ(x) d

k
j=1

µ j (x) =


A
ρ J (x J ) d


j∈J

µ j (x J ).

Thus, the above calculation applies for all marginals of µ, too. This shows (i) from
Theorem 5.3. �

Now we approximate the empirical measure Lr,ω
m,n using the measure Pr

m , see step (2) in
Section 3. The connection to Assumption 2.1 is established by Theorem 5.5. As announced
before we apply the multivariate Glivenko–Cantelli Theorem 5.3 for the proof of Theorem 5.6.

Theorem 5.6. Let Λn := [0, n) ∩ Zd , n ∈ N, a set A ⊆ R, Ω := AZd
, a probability space

(Ω ,B(Ω),P) such that P satisfies (M1), (M2) and (M3) and an admissible function f be given.
Besides this let for m, n ∈ N and ω ∈ Ω the empirical measure Lr,ω

m,n be given as in (4.6) and let
Pr

m := PΛr
m

be the marginal measure, where r is the constant given by (M3). Then there exists a
set Ω̃ ∈ B(Ω) of full measure, such that for all ω ∈ Ω̃ and all m ∈ N:

lim
n→∞

∥⟨ f r
m, Lr,ω

m,n − Pr
m⟩∥ = 0. (5.4)

Furthermore, for K , D, D′ > 0 and r ′
∈ N, we have for all ω ∈ Ω̃ and m ∈ N

lim
n→∞

sup
f ∈UK ,D,D′,r ′

∥⟨ f r
m, Lr,ω

m,n − Pr
m⟩∥ = 0. (5.5)
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Additionally, for each ε > 0 there exist a = a(ε,m, K ) > 0 and b = b(ε,m, K ) such that for
all n ∈ N there is a measurable set Ω(ε, n) with P(Ω(ε, n)) > 1 − b exp(−a⌊n/m⌋

d) and

sup
f ∈UK ,D,D′,r ′

∥⟨ f r
m, Lr,ω

m,n − Pr
m⟩∥ 6 ε for all ω ∈ Ω(ε, n). (5.6)

Proof. Let m ∈ N be given. We set k := |Λr
m | and embed ΩΛr

m
⊆ Rk . Fix an admissible

function f . For each E ∈ R, there exists a monotone and bounded function gr
m,E : Rk

→ R
which extends f r

m(·)(E) : ΩΛr
m

→ R, i.e. f r
m(ω)(E) = gr

m,E (ω) for all ω ∈ ΩΛr
m

. In fact, gr
m,E

can be bounded by kK f , where K f is the constant introduced in (2.3). Thus, the set M f :=

{gr
m,E | E ∈ R} is monotone and bounded by kK f , see Remark 2.4.
In order to apply the Glivenko–Cantelli Theorem 5.3, we enumerate [0,∞)d ∩ mZd with a

sequence (tℓ)ℓ∈N such that, for all q ∈ N,

{t1, . . . , tqd } = [0,mq)d ∩ mZd .

Consider further for each ℓ ∈ N the mapping

Xr
ℓ : Ω → ΩΛr

m
⊆ Rk, Xr

ℓ(ω) := ΠΛr
m
(τ−1

tℓ ω).

By (M3) the random variables Xr
ℓ , ℓ ∈ N are independent with respect to the measure P on

(Ω ,B(Ω)). Moreover, applying (M1) shows that Xr
ℓ , ℓ ∈ N, are identically distributed. By

definition, the empirical measure of Xr
ℓ , ℓ ∈ {1, . . . , |Tm,n|}, where |Tm,n| = ⌊n/m⌋

d , is exactly
the empirical measure Lr,ω

m,n given in (4.6). According to (M2), the measure Pr
m is absolutely

continuous with respect to a product measure on ΩΛr
m

. We trivially extend Pr
m and Lr,ω

m,n to
measures on Rk (and use the same names for the extensions). This allows to apply Theorem 5.5,
which gives (i) of Theorem 5.3. Thus, the Glivenko–Cantelli theorem implies that (for the m ∈ N
chosen above) there is a set Ωm ∈ B(Ω) of probability one such that for each ω ∈ Ωm we have⟨ f r

m, Lr,ω
m,n − Pr

m⟩
 = sup

g∈M f

⟨g, Lr,ω
m,n − Pr

m⟩
 n→∞
−−−→ 0,

since the supremum is bounded by the supremum in (ii) from Theorem 5.3. By the same token,

sup
f ∈UK ,D,D′,r ′

⟨ f r
m, Lr,ω

m,n − Pr
m⟩

 = sup
f ∈UK ,D,D′,r ′

sup
g∈M f

⟨g, Lr,ω
m,n − Pr

m⟩
 n→∞
−−−→ 0.

In the light of that, the claimed convergences in (5.4) and (5.5) hold independently from m for
all ω ∈ Ω̃ :=


m∈N Ωm . To obtain (5.6) we apply Theorem 5.3, (iii). �

6. Almost additivity and limits, Proof of Theorem 2.6

Next we investigate the expression ⟨ f r
m,Pr

m⟩ for large m. This is the third and last step in our
approximation scheme. Thus, this step brings us in the position to prove our main results, namely
Theorems 2.6 and 2.8.

Lemma 6.1. Let A ⊆ R, Ω := AZd
, a probability space (Ω ,B(Ω),P) such that P satisfies

(M1), (M2) and (M3), an admissible function f and the sequence (Λn) with Λn = ([0, n) ∩

Z)d , n ∈ N be given. Besides this, let r be the constant from (M3) and let for m ∈ N the
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marginal measure Pr
m := PΛr

m
and the function f r

m be given as in (4.4). Then there exists a
function f ∗

∈ B with

lim
m→∞

 ⟨ f r
m,Pr

m⟩

md − f ∗

 = 0. (6.1)

Furthermore, we have, with b and D from Definition 2.3 and K f from Remark 2.4, for all
m ∈ N ⟨ f r

m,Pr
m⟩

md − f ∗

 6 b(Λr
m)

md + (K f + D)
|∂r (Λm)|

md .

Proof. Let us define F : F → B by setting for each Λ ∈ F :

F(Λ) := ⟨ fΛ,PΛ⟩ =


ΩΛ

fΛ(ω) dPΛ(ω) =


Ω

f (Λ, ω) dP(ω).

With this notation, it is sufficient to show that (F(Λr
m)/md)m∈N is a Cauchy sequence.

First, we note that F is translation invariant, i.e. F(Λ + t) = F(Λ). To see this, use (M1) and
(i) of Definition 2.3. Note also, that F is almost additive with the same b and D as f , see (iii) of
the same definition. Furthermore, it follows from Remark 2.4 that F is bounded in the following
sense: For all Λ ∈ F , we have F(Λ) 6 K f |Λ| with the same constant K f as in (2.3).

Next, assume that two integers m,M with m 6 M are given. As in (4.1), set

Tm,M := {t ∈ (mZ)d | Λm + t ⊆ ΛM }.

We are interested in an estimate of the difference

δ(m,M) :=

 F(Λr
M )

Md −
F(Λr

m)

md

. (6.2)

To study this we use the triangle inequality and get

δ(m,M) 6 α(m,M)
Md + β(m,M) (6.3)

with

α(m,M) :=

F(Λr
M )−


t∈Tm,M

F(Λr
m + t)

,
β(m,M) :=

 F(Λr
m)

md −


t∈Tm,M

F(Λr
m + t)

Md

.
In order to estimate α(m,M), note that

Λr
M =

̇
t∈Tm,M

(Λr
m + t)∪̇


Λr

M ∩

̇
t∈Tm,M

((Λm ∩ ∂r (Λm))+ t)

∪̇Λr

M\(Λ⌊M/m⌋m).

This and (iii) of Definition 2.3 yield

α(m,M) 6


t∈Tm,M


b(Λr

m)+ b

Λr

M ∩ ((Λm ∩ ∂r (Λm))+ t)


+
F


Λr

M ∩ ((Λm ∩ ∂r (Λm))+ t)


+ b(Λr
M\Λ⌊M/m⌋m)+ ∥F(Λr

M\Λ⌊M/m⌋m)∥

6 |Tm,M |b(Λr
m)+ (K f + D)|Tm,M ||∂r (Λm)| + (K f + D)|Λr

M\Λ⌊M/m⌋m |.
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Here, we also used translation invariance of F and property (v) of Definition 2.3. Dividing this
term by Md and using |Tm,M |md 6 Md as well as (4.2) leads to

α(m,M)
Md 6 b(Λr

m)

md + (K f + D)
|∂r (Λm)|

md + (K f + D)
|∂m(ΛM )|

Md .

To estimate β(m,M) we apply again translation invariance of F and obtain

β(m,M) =

 F(Λr
m)

md −
|Tm,M |F(Λr

m)

Md

 =


1

md −
⌊M/m⌋

d

Md


∥F(Λr

m)∥.

Using the properties of the boundary term b, the above bounds on α(m,M) and β(m,M)
yield

lim
m→∞

lim
M→∞

δ(m,M) = 0. (6.4)

This is equivalent to (F(Λr
m)/md)m∈N being a Cauchy sequence. To see this in detail, choose

ε > 0 arbitrarily. Then, by (6.4), there exists m0 ∈ N such that limM→∞ δ(m0,M) 6 ε/4.
Therefore, we find M0 ∈ N satisfying δ(m0,M) 6 ε/2 for all M > M0. Now, let j, k > M0 be
arbitrary. Then we obtain using the triangle inequality F(Λr

j )

jd −
F(Λr

k)

kd

 6  F(Λr
j )

jd −
F(Λr

m0
)

md
0

 +

 F(Λr
m0
)

md
0

−
F(Λr

k)

kd


= δ(m0, j)+ δ(m0, k) 6 ε.

This shows that (F(Λr
m)/|Λm |)m∈N is a Cauchy sequence and hence convergent in the Banach

space B.
Now, that we know that the limit f ∗ exists, we can study the speed of convergence. ⟨ f r

m,Pr
m⟩

md − f ∗

 = lim
M→∞

 ⟨ f r
m,Pr

m⟩

md −
⟨ f r

M ,P
r
M ⟩

Md

 = lim
M→∞

δ(m,M)

6 lim
M→∞

α(m,M)
Md + β(m,M)


6 b(Λr

m)

md + (K f + D)
|∂r (Λm)|

md . �

Now we are in the position to prove the main theorem of this paper.

Proof of Theorems 2.6 and 2.8. The proof is basically a combination of Lemmas 4.1 and 6.1
and Theorem 5.6. We choose Ω̃ as in Theorem 5.6, r as the constant from (M3) and f ∗

∈ B
according to Lemma 6.1. Then we have for arbitrary m ∈ N and ω ∈ Ω̃ : f (Λn, ω)

nd − f ∗

 6  f (Λn, ω)

nd −
⟨ f r

m, Lr,ω
m,n⟩

md

 +

 ⟨ f r
m, Lr,ω

m,n⟩

md −
⟨ f r

m,Pr
m⟩

md


+

 ⟨ f r
m,Pr

m⟩

md − f ∗

.
Each of the above mentioned results controls one of the error terms on the right hand side, which
leads to f (Λn, ω)

|Λn|
− f ∗

 6 G(m, n)+ m−d⟨ f r
m, Lr,ω

m,n⟩ − ⟨ f r
m,P

r
m⟩


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with

G(m, n) :=
b(Λ⌊n/m⌋m)

|Λ⌊n/m⌋m |
+
(2K + D)|∂m(Λm

n )|

|Λm
n |

+
2b(Λr

m)+ b(Λm)+ 2(K + D)|∂r (Λm)|

|Λm |
.

Taking first the limit n → ∞ and afterwards the limit m → ∞ on both sides proves Theorem 2.6.
To establish Theorem 2.8, we use the additional hypotheses on the boundary term and

estimate G(m, n). First we note for n > 2r

|∂r (Λn)| = (n + 2r)d − (n − 2r)d =

d
j=0


d
j


(1 − (−1)k)(2r) j nd− j 6 22d+1rdnd−1.

Therefore,

b(Λn)

|Λn|
6 |∂r ′

(Λn)|D′

|Λn|
6 22d+1r ′d D′

n

holds for all n > 2r ′. With Λm
n = Λn−2m + (m,m, . . . ,m), it is now straightforward to verify

G(m, n) 6 22d+1
 (2K + D)md

+ D′r ′d

n − 2m
+

2(K + D)rd
+ 3D′r ′d

m − 2r


.

The two claims about sup f ∈UK ,D,D′,r ′

⟨ f r
m, Lr,ω

m,n⟩ − ⟨ f r
m,Pr

m⟩
 follow from Theorem 5.6. �

7. Eigenvalue counting functions for the Anderson model

In the following, we introduce the Anderson model on Zd or, more precisely, on the graph
with nodes Zd and nearest neighbor bonds. For the corresponding Schrödinger operators we
show that the associated eigenvalue counting functions almost surely converge uniformly.

The Laplace operator ∆ : ℓ2(Zd) → ℓ2(Zd) is given by

(1ϕ)(z) =


x :d(x,z)=1


ϕ(x)− ϕ(z)


(z ∈ Zd).

In order to define a random potential, we introduce the corresponding probability space. We fix
the canonical space Ω := AZd

, where A ⊆ R is an arbitrary subset of R. As before we equip Ω
with B(Ω), the σ -algebra on Ω generated by the cylinder sets. Moreover, we chose a probability
measure P : B(Ω) → [0, 1] satisfying (M1), (M2) and (M3). In particular, a product measure
P =


z∈Z µ is allowed, where µ : B(A) → [0, 1] is a measure on (A,B(A)). An alternative

way to specify such a product measure is to say that the projections Ω ∋ (ωx )x∈Z → ωz , z ∈ Z,
are A-valued i.i.d. random variables.

The random potential V = (Vω)ω∈Ω is now defined by setting for each ω = (ωz)z∈Zd ∈ Ω :

Vω : ℓ2(Zd) → ℓ2(Zd), (Vωϕ)(z) = ωzϕ(z) (ϕ ∈ ℓ2(Zd), z ∈ Zd). (7.1)

Together, the Laplace operator and the random potential form the random Schrödinger operator
H = (Hω)ω∈Ω :

Hω : ℓ2(Zd) → ℓ2(Zd), Hω := −∆ + Vω. (7.2)

This operator is almost surely self-adjoint and ergodic by (M1) and (M3). Thus, the spec-
trum σ(Hω) of Hω is a non-random subset of R, cf. [16]. In the following we are interested in the
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distribution of σ(Hω) on R. The function which describes this distribution is called integrated
density of states.

Let us define finite dimensional restrictions of H . To this end, consider for a given set Λ ∈ F
the projection

pΛ : ℓ2(Zd) → ℓ2(Λ), (pΛϕ)(z) := ϕ(z), (ϕ ∈ ℓ2(Zd), z ∈ Λ) (7.3)

and the inclusion

iΛ : ℓ2(Λ) → ℓ2(Zd), (iΛϕ)(z) :=


ϕ(z) if z ∈ Λ,
0 otherwise, (ϕ ∈ ℓ2(Λ), z ∈ Zd). (7.4)

Now, for any ω ∈ Ω and Λ ∈ F we set

HΛ
ω : ℓ2(Λ) → ℓ2(Λ), HΛ

ω := pΛHωiΛ.

The corresponding eigenvalue counting function is given by

f (Λ, ω) :=


R ∋ x → Tr


χ(−∞,x](HΛ

ω )

. (7.5)

Here, χ(−∞,x](HΛ
ω ) denotes the spectral projection of HΛ

ω on the interval (−∞, x]. Thus,
f (Λ, ω)(x) equals the number of eigenvalues (counted with multiplicities) of HΛ

ω which do
not exceed x .

Lemma 7.1. The eigenvalue counting function f : F × Ω → B given by (7.5) is admissible in
the sense of Definition 2.3. It admits a proper boundary term, and possible constants for f are
D = D′

= 8, K = 9 and r ′
= 1.

Proof. We verify (i)–(v) of Definition 2.3.

(i) Let Λ ∈ F and z ∈ Zd be given. Using the definitions of the potential Vω in (7.1), the
translation τz in (2.2), the projection pΛ in (7.3) and the inclusion iΛ in (7.4) we obtain

pΛVτzωiΛ = pΛ+z VωiΛ+z .

This generalizes to HΛ
τzω

= HΛ+z
ω and hence implies for each x ∈ R

f (Λ, τzω)(x) = Tr

χ(−∞,x](HΛ

τzω
)


= Tr

χ(−∞,x](HΛ+z

ω )


= f (Λ + z, ω)(x).

(ii) Let Λ ∈ F be given. Obviously, for all ω,ω′
∈ Ω with ΠΛ(ω) = ΠΛ(ω

′) we have HΛ
ω =

HΛ
ω′ . Thus, we obtain f (Λ, ω) = f (Λ, ω′).

(iii) In order to show almost additivity, we make use of the following estimate, which holds for
Λ′

⊆ Λ ∈ F and arbitrary ω ∈ Ω :

∥ f (Λ, ω)− f (Λ′, ω)∥ 6 4|Λ\Λ′
|. (7.6)

This bound can be verified using the min–max-principle, cf. appendix of [11]. Now let
n ∈ N, disjoint sets Λi ∈ F , i = 1, . . . , n and Λ :=

n
i=1 Λi ∈ F be given. With triangle
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inequality and (7.6) we obtain for each ω ∈ Ω : f (Λ, ω)−

n
i=1

f (Λi , ω)


6

 f (Λ, ω)− f
 n

i=1

Λ1
i , ω

 +

 f
 n

i=1

Λ1
i , ω


−

n
i=1

f

Λi , ω


6 4

n
i=1

|∂1(Λi )| +

 f
 n

i=1

Λ1
i , ω


−

n
i=1

f

Λ1

i , ω


+

n
i=1

 f (Λ1
i , ω)− f (Λi , ω)


6 8

n
i=1

|∂1(Λi )| +

 f
 n

i=1

Λ1
i , ω


−

n
i=1

f

Λ1

i , ω
.

In order to deal with the last difference, we use that the operator in consideration has hopping
range 1, which gives for Λ̃ :=

n
i=1 Λ

1
i :

H Λ̃
ω =

n
i=1

H
Λ1

i
ω .

Thus, the eigenvalues of H Λ̃
ω are exactly the union of the eigenvalues of the operators H

Λ1
i

ω ,
i = 1, . . . , n. This implies

f (Λ̃, ω) =

n
i=1

f (Λ1
i , ω)

and hence f (Λ, ω)−

n
i=1

f (Λi , ω)

 6 8
n

i=1

|∂1(Λi )|.

We set b : F → [0,∞) and b(Λ) := 8|∂1(Λ)|. Let Λ ∈ F and z ∈ Zd . Then obviously
b(Λ+ z) = b(Λ) and b(Λ) 6 8|Λ|, and for any sequence of cubes (Λn) with increasing side
length, we have b(Λn)/|Λn| → 0 as n → ∞.

(iv) For Λ ∈ F and ω ∈ Ω we denote the |Λ| eigenvalues of HΛ
ω (counted with multiplicities)

by E1(HΛ
ω ) 6 · · · 6 E|Λ|(HΛ

ω ). Choose n ∈ {1, . . . , |Λ|} and ω 6 ω′, i.e. for each z ∈ Zd

we have ωz 6 ω′
z . By the min–max-principle we get for the nth eigenvalue:

En(HΛ
ω ) = min

U⊆RΛ,
dim(U )=n

max
ϕ∈U,
∥ϕ∥=1

⟨HΛ
ω ϕ, ϕ⟩

= min
U⊆RΛ,

dim(U )=n

max
ϕ∈U,
∥ϕ∥=1


⟨HΛ

ω′ϕ, ϕ⟩ − ⟨(Vω′ − Vω)ϕ, ϕ⟩

6 En(HΛ

ω′).

Therefore, we have for each x ∈ R the inequality f (Λ, ω)(x) > f (Λ, ω′)(x).
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(v) Let arbitrary ω ∈ Ω be given. Since the operator H {0}
ω has exactly one eigenvalue, we have

∥ f ({0}, ω)∥ = 1. �

Let us state the main result of this section.

Theorem 7.2. Let Λn := [0, n)d ∩ Zd . Moreover, let A ⊆ R, Ω := AZd
and (Ω ,B(Ω),P) be a

probability space satisfying (M1)–(M3). Consider the random Schrödinger operator H defined
in (7.2) and the associated f given in (7.5). Then there exists a set Ω̃ ∈ B(Ω) of full measure,
such that for all ω ∈ Ω̃ :

lim
n→∞

 f (Λn, ω)

|Λn|
− f ∗

 = 0, (7.7)

where f ∗
∈ B is given by

f ∗(x) := E(⟨δ0, χ(−∞,x](Hω)δ0⟩). (7.8)

Here, δ0 ∈ ℓ2(Zd) is given by δ0(0) = 1 and δ0(x) = 0 for x ≠ 0. Moreover, χ(−∞,x](Hω) is the
spectral projection of Hω on the interval (−∞, x]. The convergence is quantified by f (Λn, ω)

|Λn|
− f ∗

 6 2d+1
26md

+ 8
n − m

+
34rd

+ 24
m − r


+ sup

f ∈UK ,D,D′,r ′

⟨ fΛr
m
, Lr,ω

m,n − PΛr
m
⟩


|Λm |
(7.9)

for n,m ∈ N, m < n.

Proof. By Lemma 7.1 we know that the eigenvalue counting function f : F × Ω → B is
admissible. Thus we can apply Theorem 2.6 and obtain that there exists a function f̄ ∈ B and a
set Ω1 ∈ B(Ω) of full measure such that for each ω ∈ Ω1 we have

lim
n→∞

 f (Λn, ω)

|Λn|
− f̄

 = 0. (7.10)

Thus, it remains to show that f̄ equals the function

f ∗
: R → [0, 1], f ∗(x) := E(⟨δ0, χ

ω
(−∞,x]

δ0⟩).

Here we use ergodicity of H and infer from [16, Theorem 4.8] that the there is a set Ω2 ∈ B(Ω)
of full measure such that for each ω ∈ Ω2

lim
n→∞

f (Λn, ω)(x)
|Λn|

= f ∗(x) (7.11)

for all x ∈ R which are continuity points of f ∗. By definition, this is weak convergence of
distribution functions. Thus, as for all ω ∈ Ω1 ∩ Ω2 we have that f (Λn, ω)/|Λn| converges
weakly to f ∗ and uniformly to f̄ , which implies f̄ = f ∗. �

Remark 7.3. • The limit f ∗ of the normalized eigenvalue counting functions is called the
integrated density of states or spectral distribution function of the operator H . The fact that f ∗

can be expressed as the function given in (7.8) is often referred to as the Pastur–Shubin trace
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formula, named after the pioneering works [15,20]. For more recent results in the specific
context we are treating here, c.f. [27,19,13] and the references therein.

• Let us also emphasize that the f ∗ is a deterministic function. On the one hand this is
interesting as this implies that the normalized eigenvalue counting function converges for
almost all realizations to same limit function. On the other hand this is not surprising as we
mentioned that H is ergodic, and in this setting it is well-known that the spectrum (as a set) is
deterministic, see for instance [16].

• The result is easily generalized to sequences of cubes (Λn)n of diverging side length with
Λn ( Λn+1. The validity of the Pastur–Shubin formula shows that the limit f ∗ is independent
of the specific choice sequence of cubes (Λn)n .

• The statement of Theorem 7.2 has been obtained before in a different setting. In [10,13]
ergodic random operators have been considered. The assumption of ergodicity concerns the
measure P (in our notation) and is weaker than the assumptions (M1)–(M3) which we use
here. With this regard the result of [13] is more general than the one obtained here. However,
under the mere assumption of ergodicity it is not possible to obtain explicit error estimates as
in (7.9). The paper [10] obtains an error estimate, similar to, but weaker then (7.9). There the
setting is also different from ours here: A needs to be countable and instead of a probability
measure properties of frequencies are used.

• Similar, but weaker results have been proven for Anderson-percolation Hamiltonians in [25,
26,13]. These models are particularly interesting since their integrated density of states
exhibits typically an infinite set of discontinuities, which lie dense in the spectrum. The
random variables entering the Hamiltonian may take uncountably many different values.

8. Cluster counting functions in percolation theory

We introduce briefly percolation on Zd . Percolation comes in two flavors, site and bond
percolation. We focus on site percolation here. Part of the results have already been obtained
in [17]. However, we go far beyond since we not only obtain convergence of densities, but are
even able to identify the limit objects.

As before, we let Ω := RZd
. We fix the alphabet A := {0, 1} and a probability measure

P : B(Ω) → [0, 1] which is supported in AZd
∈ B(Ω), i.e. P(AZd

) = 1. A configuration ω ∈

AZd
⊆ Ω determines a percolation graph Γω = (Zd , Eω) as follows. The set of vertices of Γω

is Zd , and an edge connects two vertices if and only if they have distance 1 and are both “switched
on” in the configuration ω = (ωz)z∈Zd :

Eω :=

{x, y} ⊆ Zd  d(x, y) = 1, ωx = ωy = 1


.

By this, the percolation graph Γω is well-defined for P-almost all ω ∈ Ω , and Γω is a random
graph. For our purposes, we want P to satisfy (M1), (M2) and (M3). This setting includes but is
not limited to the product measure P =


z∈Zd µ, where µ : B(R) → [0, 1] is any probability

measure supported on A.
We need some standard terminology of graph theory. Let Γ = (V, E) be a graph. For each

subset Λ ⊆ V of the set of nodes, Γ induces a graph ΓΛ
:= (Λ, EΛ) by

EΛ := {e ∈ E | e ⊆ Λ}.

A walk of length n ∈ N ∪ {0,∞} in the graph Γ is a sequence of nodes (z j )
n
j=0 ∈ (Zd)n+1 such

that {z j , z j+1} is an edge of Γ , i.e. {z j , z j+1} ∈ E , for all j ∈ N ∪ {0}, j < n. Note that a finite
walk of length n contains n edges but n + 1 nodes.
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If the walk (z j )
n
j=0 has finite length n < ∞, we say that it connects the points z0 and zn .

Being connected by a walk is an equivalence relation on the nodes. We denote the fact that two

points x, y ∈ Zd are connected in the graph Γ as x Γ! y.
The equivalence classes of! are called clusters. Let Λ ⊆ Zd and x ∈ Λ. The cluster of x

in the percolation graph ΓΛ
ω restricted to Λ consists of all nodes which are connected to x by a

walk in ΓΛ
ω :

CΛ
x (ω) := {y ∈ Zd

| x
ΓΛ
ω! y},

again for ω ∈ AZd
, Λ ⊆ Zd and x, y ∈ Λ.

8.1. Convergence of cluster counting functions

We now define a cumulative counting function for clusters. As before, let F be the set of finite
subsets of Zd and B the set of bounded functions from R to R which are continuous from the
right. The function f : F × Ω → B counts the number of clusters in ΓΛ

ω which are smaller then
the given threshold:

f (Λ, ω)(λ) :=
CΛ

z (ω)
 z ∈ Λ, |CΛ

z (ω)| 6 λ
. (8.1)

Note that f counts clusters and not vertices in clusters.

Lemma 8.1. The cluster counting function f : F × Ω → B given by (8.1) is admissible in the
sense of Definition 2.3 and permits a proper boundary term. Possible constants are D = D′

= 2,
r ′

= 1 and K = 3.

Proof. We verify (i)–(v) of Definition 2.3.

(i) Let Λ ∈ F and x, z ∈ Zd be given. The percolation graph Γω is determined by the
configuration ω ∈ Ω , for almost all ω ∈ Ω . The shifted configuration gives shifted clusters,
i.e.

|CΛ
x (τzω)| = |CΛ+z

x+z (ω)|

for all x, z ∈ Zd . Accordingly, for all λ ∈ R,

f (Λ, τzω)(λ) =
 

CΛ
x (τzω)

 x ∈ Λ, |CΛ
x (τzω)| 6 λ

 
=

 
CΛ+z

x+z (ω)
 x ∈ Λ, |CΛ+z

x+z (ω)| 6 λ
 = f (Λ + z, ω)(λ).

(ii) Fix Λ ∈ F and ω,ω′
∈ Ω with ωΛ = ω′

Λ, where ωΛ := (ωx )x∈Λ as before. The edges of
ΓΛ
ω are determined by ωΛ. Hence, ΓΛ

ω = ΓΛ
ω′ , thus CΛ

z (ω) = CΛ
z (ω

′) for all z ∈ Λ, and we
obtain f (Λ, ω) = f (Λ, ω′).

(iii) In order to show almost additivity, fix ω ∈ Ω , n ∈ N and disjoint sets Λ j ∈ F , j ∈

{1, . . . , n}. We name the union Λ :=
n

j=1 Λ j . For x ∈ R,

n
j=1

f (Λ j , ω)(x)
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is the total number of clusters of size not larger than x in the graphs Γ
Λ j
ω . Whenever

d(Λ j ,Λk) = 1, the graph ΓΛ
ω could contain edges connecting a point in Λ j with a point

in Λk , depending on ω. Each of these edges join two possibly different clusters, so for each
edge, there are two less small clusters and one more large one. By this mechanism, the
number of clusters below the threshold x changes at most by twice the number of added
edges. We noteEΛω \

n
j=1

EΛ j
ω

 6 n
j=1

|∂1Λ j |

and conclude f (Λ, ω)(x)−

n
j=1

f (Λ j , ω)(x)

 6 2
n

j=1

|∂1Λ j |

for all x ∈ R. The choice b(Λ) := 2|∂1Λ| for Λ ∈ F gives a proper boundary term for f ,
cf. Lemma 7.1.

(iv) Let Λ ∈ F and ω,ω′
∈ Ω , ω 6 ω′. Then each edge of Γω is also an edge in Γω′ : Eω ⊆ Eω′ .

As reasoned in (iii), a new edge never increases the number of clusters below a threshold
x ∈ R, so

f (Λ, ω)(x) > f (Λ, ω′)(x).

(v) For all ω ∈ Ω , f ({0}, ω)(x) = 0 for x < 1 and f ({0}, ω)(x) = 1 for x > 1. �

Theorem 2.6 and Lemma 8.1 immediately give the following.

Corollary 8.2. Let Λn := [0, n)d ∩Zd for n ∈ N and f : F ×Ω → B be the cumulative cluster
counting function given in (8.1). There exists a set Ω̃ ⊆ Ω of full measure and a function f ∗

∈ B
such that, for each ω ∈ Ω̃ ,

lim
n→∞

 f (Λn, ω)

|Λn|
− f ∗

 = 0.

For all m, n ∈ N, m < n, we have f (Λn, ω)

|Λn|
− f ∗

 6 2d+1
8md

+ 2
n − m

+
10rd

+ 6
m − r


+ sup

f ∈UK ,D,D′,r ′

⟨ fΛr
m
, Lr,ω

m,n − PΛr
m
⟩


|Λm |
.

8.2. Identification of the limit

In the previous section we studied the convergence of the counting function in (8.1)
normalized with |Λn|. Next, we give a brief overview on closely related convergence results.
We sketch the proofs only briefly since these results are not in the main focus of this paper. The
heart of the section is that we do not just give statements about convergence, but even present
closed expressions of the limits.

We start with defining

Kω(Λ) := |{CΛ
x (ω) | x ∈ Λ}|, (8.2)



204 C. Schumacher et al. / Stochastic Processes and their Applications 127 (2017) 179–208

which counts the number of all clusters in ΓΛ
ω . Using this quantity we set:

a(m)n (ω) := |Λn|
−1

|{CΛn
x (ω) | x ∈ Λn, |CΛn

x (ω)| = m}|,

b(m)n (ω) := Kω(Λn)
−1

|{CΛn
x (ω) | x ∈ Λn, |CΛn

x (ω)| = m}|, and

c(m)n (ω) := |Λn|
−1

|{x ∈ Λn | |CΛn
x (ω)| = m}|,

where again Λn := [0, n)d ∩ Zd for n ∈ N.

Lemma 8.3. In the above setting, we have almost surely

lim
n→∞

a(m)n (ω) =
1
m
P(|C0| = m),

lim
n→∞

b(m)n (ω) =
1
κm

P(|C0| = m), and

lim
n→∞

c(m)n (ω) = P(|C0| = m),

where κ := E(|C0|
−1).

Note that the existence of the limit in the case corresponding to a(m)n was treated in Section 8.1.
The existence of the limits in Lemma 8.3 has already been proved in [17] in the setting of bond
percolation. However, the authors did not give explicit expressions for the limit objects. For the
proof of Lemma 8.3 one may use Theorem 2.6 in combination with the d-dimensional version
of Birkhoff’s ergodic theorem, see [8], and the fact [7] that for almost all ω:

lim
n→∞

Kω(Λn)

|Λn|
= κ.

The above convergence results can again be extend to the associated distribution functions. To
formulate the corresponding result, we introduce for n ∈ N and ω ∈ Ω the maps Θn

ω,Φ
n
ω,Ψ

n
ω :

R → R by setting for each m ∈ N

Θn
ω(m) :=

⌊m⌋
j=1

a( j)
n (ω) =

|{CΛn
x (ω) | x ∈ Λn, |C

Λn
x (ω)| 6 m}|

|Λn|

Φn
ω(m) :=

⌊m⌋
j=1

b( j)
n (ω) =

|{CΛn
x (ω) | x ∈ Λn, |C

Λn
x (ω)| 6 m}|

Kω(Λn)
, and

Ψn
ω(m) :=

⌊m⌋
j=1

c( j)
n (ω) =

|{x ∈ Λn | |Cx (ω)| 6 m}|

|Λn|
.

Moreover, we define the deterministic functions Θ,Φ,Ψ : R → R by

Θ(m) :=

⌊m⌋
j=1

1
j
P(|C0| = j), Φ(m) :=

1
κ
Θ(m), and Ψ(m) := P(|C0| 6 m) (8.3)

for m ∈ N.
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Theorem 8.4. In the above setting, we can find a set Ω̃ ⊆ Ω of full measure such that for all
ω ∈ Ω̃ we have

lim
n→∞

∥Θn
ω − Θ∥ = 0, lim

n→∞
∥Φn

ω − Φ∥ = 0 and lim
n→∞

∥Ψn
ω − Ψ∥ = 0.

Here ∥ · ∥ denotes the supremum norm in B(R).

Let us give a brief sketch of the proof. The convergence of Θn
ω and Φn

ω follows rather direct
from Theorem 2.6 and Lemma 8.3. However, in order to obtain the convergence of Ψn

ω one has
to apply a different scheme, which was used in the context of the eigenvalue counting function
in [13, Section 6]. The strategy consist of the following steps: One first verifies weak convergence
of the distribution functions and second, shows that νn

ω({λ}) → ν({λ}) for each λ ∈ R. Here ν
and νn

ω are the measures corresponding to Ψ and Ψn
ω , respectively. Both steps together imply

uniform convergence. To verify these convergences one applies again Lemma 8.3 as well as
Birkhoff’s ergodic theorem.

Remark 8.5. The first statement of Theorem 8.4 identifies the limit f ∗ from Corollary 8.2,
namely it shows f ∗

= Θ , where Θ is given in (8.3).

Appendix. Examples of measures

Let us discuss three classes of examples of measures P satisfying (M1), (M2) and (M3).

(a) Countable colors: Consider the case d = 1 and let A = N0. Let Ω = RZ and fix an arbitrary
product measure P̃ : B(Ω) → [0, 1] with support

supp P̃ ⊆ AZ.

We define a transformation of P̃. To this end, let constants c, β, α−c, α−c+1, . . . , αc ∈ N0 be
given and consider the function

ϕ : Ω → Ω , (ϕ(ω))z := β +

c
k=−c

αkωz−k .

We define P := P̃ ◦ ϕ−1. Let us check the conditions (M1), (M2) and (M3) for P. In order to
check (M1) let z ∈ Z be given. Then, using stationarity of the product measure P̃,

P ◦ τ−1
z = P̃ ◦ ϕ−1

◦ τ−1
z = P̃ ◦ (τz ◦ ϕ)−1

= P̃ ◦ (ϕ ◦ τz)
−1

= P̃ ◦ τ−1
z ◦ ϕ−1

= P̃ ◦ ϕ−1
= P.

Let us verify condition (M2) for P. We define for each Λ ∈ F the function

ρΛ : AΛ
→ R, x = (xz)z∈Λ → ρΛ(x) = P(Π−1

Λ ({x})).

Then ρΛ is the density of the marginal measure PΛ with respect to the counting measure
on N0, since we have for each Λ ∈ F and A ∈ B(AΛ)

PΛ(A) =


x∈A

P(Π−1
Λ ({x})) =


x∈A

ρΛ(x).
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It remains to verify condition (M3). To this end, let Λ1, . . . ,Λn ⊆ Z with min{d(Λi ,Λ j ) |

i ≠ j} > 2c be given. Then, using the definition of ϕ, we have for each x = (xz)z∈Λ ∈ Λ :=n
i=1 Λi

P(Π−1
Λ ({x})) = (P̃ ◦ ϕ−1

◦ Π−1
Λ )({x}) =

n
i=1

(P̃ ◦ ϕ−1
◦ Π−1

Λi
)({x}),

which proves that ρΛ =
n

i=1 ρΛi .
(b) Normal distribution: Here, we treat the case d = 1, A = R, Ω = RZ and set P̃ :=

z∈ZN (0, 1) : B(Ω) → [0, 1], where N (0, 1) is the standard normal distribution. For
c ∈ N0 and β, α−c, α−c+1, . . . , αc ∈ R we use

ϕ : Ω → Ω , (ϕ(ω))z = β +

c
k=−c

αkωz−k

to define P := P̃ ◦ ϕ−1. As before, the conditions (M1) and (M3) are implied by the choice
of ϕ and the product structure of P̃. For (M2), let Λ ⊆ Z be finite and first assume that
Λ = [a, b] ∩ Z, a, b ∈ Z. We define the matrix

AΛ ∈ RΛ×{a−c,...,b+c}, (AΛ)i, j = αi− j ,

where αk := 0 if k ∉ {−c, . . . , c}. Recall that PΛ = P̃ ◦ ϕ−1
◦ Π−1

Λ = P̃ ◦ (ΠΛ ◦ ϕ)−1. For
ω ∈ Ω we get

ΠΛ(ϕ(ω)) = AΛΠ[a−c,b+c](ω)+ βeΛ,

where eΛ = (1, . . . , 1)⊤ ∈ RΛ. Now, it follows that PΛ is normal distributed with mean
βeΛ and covariance matrix AΛA⊤

Λ. Note that AΛA⊤

Λ is invertible since the rows of AΛ

are linearly independent. Thus, the measure PΛ is absolutely continuous with respect to the
multi-dimensional Lebesgue measure.

In the situation where Λ is not of the form [a, b] ∩ Z, consider the interval I :=

[minΛ,maxΛ]∩Z. The measure PΛ is a marginal measure of PI and therefore has a density.
(c) Abstract densities and finite range: In the following we develop a more general example

with densities. Again, we consider for simplicity reasons the case d = 1, however this
is easily generalized to higher dimensions. Choose A,B ∈ B(R) and independent B-
valued random variables X ′

x , x ∈ Z with density g : A → R+. We use the abbreviation
X[m,ℓ] := (Xm, . . . , Xℓ). We utilize a function ϕ : Bk+1

→ A to introduce the A-valued
random variables

Xx := ϕ(X ′

[x,x+k]
) x ∈ Z.

We require from ϕ, that there is a function ψ : A × Bk
→ B such that

ψ(ϕ(x[0,k]), x[1,k]) = x0

for all x[0,k] ∈ Bk+1. Further, ψ shall be continuously differentiable w.r.t. its first argument:
ψ ′

:= D1ψ . An example of such a pair of functions is

ϕ(x[0,k]) :=
1

k + 1

k
j=0

x j , ψ(ξ0, x[1,k]) := (k + 1)ξ0 −

k
j=1

x j ,

where A := B := [0, 1] and ψ ′(ξ0, x[1,k]) = k + 1. In this example, (Xx )x is a moving
average process. By suitable modifications, all moving average processes are seen to be
included in our setting.
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Proposition A.1. Fix a finite set Λ ⊆ Z. Under the specified circumstances, the joint distribution
of (Xx )x∈Λ, is absolutely continuous with respect to Lebesgue measure on AΛ.

Proof. Without loss of generality, we treat only the case Λ = {1, . . . , ℓ}. By construction, for
A1, . . . , Aℓ ⊆ A measurable,

p := P(X1 ∈ A1, . . . , Xℓ ∈ Aℓ)

=


Bℓ+k

dx[1,ℓ+k]

ℓ
m=1

χAm (ϕ(x[m,m+k])) ·

ℓ+k
m=1

g(xm).

By Fubini and induction on j ∈ {0, . . . , ℓ}, we see

p =


A1×···×A j

dξ[1, j]


Bℓ− j+k

dx[ j+1,ℓ+k]

×

j
m=1


g(ψ(x̃ ( j)

m ))|ψ ′(x̃ ( j)
m )|


·

ℓ
m= j+1

χAm (ϕ(x[m,m+k])) ·

ℓ+k
m= j+1

g(xm),

where x̃ ( j)
j := (ξ j , x[ j+1, j+k]) and, for 1 6 m < j , the term x̃ ( j)

m := x̃ ( j−1)
m |x j →ψ(ξ j ,x[ j+1, j+k] )

is generated from x̃ ( j−1)
m by substituting x j by ψ(ξ j , x[ j+1, j+k]). For the induction step use the

substitution ξ j := ϕ(x[ j, j+k]) or x j = ψ(ξ j , x[ j+1, j+k]) in
B

dx jχA j (ϕ(x[ j, j+k])) f j (x j )g(x j )

=


A j

dξ j f j (ψ(ξ j , x[ j+1, j+k]))g(ψ(ξ j , x[ j+1, j+k]))|ψ
′(ξ j , x[ j+1, j+k])|,

for any x[ j+1, j+k] ∈ Bk and suitable f j : B → R+. For j = ℓ, we conclude

p =


A1×···×Aℓ

dξ[1,ℓ]


Bk

dx[ℓ+1,ℓ+k]

ℓ
m=1


g(ψ(x̃ (ℓ)m ))|ψ ′(x̃ (ℓ)m )|


·

ℓ+k
m=ℓ+1

g(xm).

We hereby identified the density with respect to the product Lebesgue measure on Aℓ. �
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TU Dortmund∗ and HTW Dresden†

We consider random fields indexed by finite subsets of an amenable dis-
crete group, taking values in the Banach-space of bounded right-continuous
functions. The field is assumed to be equivariant, local, coordinate-wise
monotone and almost additive, with finite range dependence. Using the the-
ory of quasi-tilings we prove an uniform ergodic theorem, more precisely,
that averages along a Følner sequence converge uniformly to a limiting func-
tion. Moreover, we give explicit error estimates for the approximation in the
sup norm.

1. Introduction. Ergodic theorems for Banach space valued functions or
fields have been studied among others in [6, 7, 11] in a combinatorial setting. The
three quoted papers consider different group actions in increasing generality: the
lattice Zd , monotilable amenable discrete groups and general amenable discrete
groups, respectively. Note that amenability is a natural assumption for the validity
of the ergodic theorem, as shown explicitly in [14]. Already before that combina-
torial ergodic theorems for Banach space valued functions have been proven in the
context of Delone dynamical systems; see [8] and the references therein.

The combinatorial framework offers the advantage of a minimum of probabilis-
tic or measure theoretic assumptions, the necessary one being that frequencies or
densities of finite patterns are well defined and can be approximated by an exhaus-
tion (corresponding to a law of large numbers). A disadvantage of the combina-
torial approach chosen is that the range of colors (or the alphabet corresponding
to the values of the random variables) needs to be finite. Also, the derived ergodic
theorems are in a sense conditional: The convergence bound depends on the speed
of convergence of the pattern frequencies.

Our present research aims at dispensing with the finiteness condition on the set
of colors. The price to pay is that we have to assume more probabilistic structure
and in particular independence or at least finite range correlations. In return, this
structure yields automatically quantitative approximation error bounds. No extra
assumptions on the speed of convergence of the pattern frequencies are needed.

Received June 2017.
MSC2010 subject classifications. 60F99, 60B12, 62E20, 60K35.
Key words and phrases. Følner sequence, amenable group, quasi-tilings, Glivenko–Cantelli the-

ory, Uniform convergence, Empirical measures.
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For the case of fields defined over Zd and Zd -actions, we have established such an
ergodic theorem in [12], which takes on the form of a Glivenko–Cantelli theorem,
and which we recall now in an informal way.

THEOREM A ([12]). Let �n = [0, n)d ∩ Zd , and ω = (ωg)g∈Zd ∈ RZd
be an

i.i.d. sequence of real random variables. Assume the field

f : P(
Zd) × RZd → B := {D : R → R | D right-continuous and bounded}

is Zd -equivariant, monotone in each coordinate ωg , local and almost additive, that
is, for disjoint Q1, . . . ,Qn ⊆ Zd and Q := ⋃n

i=1 Qi we have∥∥∥∥∥f (Q,ω) −
n∑

i=1

f (Qi,ω)

∥∥∥∥∥∞
≤

n∑
i=1

|∂Qi |,

where ∂Qi denotes the boundary set. Assume furthermore that f∞ := supω ‖f (id,

ω)‖∞ < ∞.
Then there is a function f ∗ : R → R such that for each m ∈ N, there exist

a(m), b(m) > 0, such that for all j ∈ N, j > 2m, there is an event �j,m ⊆ RZd
,

with the properties

P(�j,m) ≥ 1 − b(m) exp
(−a(m)|�j |)

and

∀ω ∈ �j,m :
∥∥∥∥f (�j ,ω)

|�j | − f ∗
∥∥∥∥∞

≤ 22d+1
(

(6d + 3 + 2f∞)md + 1

j − 2m
+ 4

m

)
.

In particular, almost surely we have limn→∞ ‖f (�n,•)
|�n| − f ∗‖∞ = 0.

For a precise formulation of the properties of the field f , see Section 2. Let us
note that in our theorem f takes values in the Banach space B of right continuous
and bounded functions with sup-norm while in [6, 7, 11] an arbitrary Banach space
was allowed. This restriction is due to our use of the Glivenko–Cantelli theory in
the proof, and currently we do not know how to extend it to arbitrary Banach
spaces.

Naturally, one asks whether the above result and its proof extend to general
finitely generated amenable groups. In this case, obviously, the boundary has to be
taken with respect to a generating set S ⊆ G, and the sequence of squares �n has
to be replaced by a Følner sequence. Indeed, if G satisfies additionally,

(�) There exists a Følner sequence (�n)n∈N in G, and a sequence of symmetric
grids Tn = T −1

n ⊆ G such that G = ⋃̇
t∈Tn

�nt is a disjoint union.

the proofs of [12] apply with technical, but no strategic, modifications, as sketched
in Appendix B.
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However, it is not clear in which generality assumption (�) holds. In fact, the
existence of tiling Følner sequences (for general amenable groups) has been in-
vestigated in several instances. It turned out that there exist useful additional con-
ditions which imply the validity of (�); cf. [5, 16]. For instance, a group which
is residually finite and amenable contains a tiling Følner sequence. Unfortunately,
there is a lack of the complete picture: It is still an open question whether there
exists a tiling Følner sequence in each amenable group.

Since this question seems hard to answer, Ornstein and Weiss invented in [10]
the theory of ε-quasi tilings. The idea is to consider a tiling which is in several
senses weaker as the one in (�). For a given ε > 0, one has the following proper-
ties:

• the group is not tiled with one element of a Følner sequence, but with finitely
many elements of this sequence; the number of these elements depends on ε;

• the tiles are allowed to overlap, but the proportion of the part of any tile which
is allowed to intersect other tiles is at most of size ε. This property is called
ε-disjointness;

• each element of a Følner sequence with a sufficiently large index is, up to a
proportion of size ε the union of ε-disjoint tiles.

The authors showed that each amenable group can be ε-quasi tiled. In [11], these
ideas have been developed further in order to obtain quantitative estimates on the
portion which is covered by translates of one specific element of the tiles. The
proof of our main result, which we state now in an informal way, is based on these
results on quasi tilings.

THEOREM B. Let (�n) be a Følner sequence in a finitely generated group G.
Let ω = (ωg)g∈G ∈ RG be an i.i.d. sequence of real random variables. Assume the
field

f : P(G) × RG → {D : R → R | D right-continuous and bounded},
is G-equivariant, monotone in each coordinate ωg , local and almost additive, that
is, for disjoint Q1, . . . ,Qn ⊆ G and Q := ⋃n

i=1 Qi we have∥∥∥∥∥f (Q,ω) −
n∑

i=1

f (Qi,ω)

∥∥∥∥∥∞
≤

n∑
i=1

|∂Qi |,

where ∂Qi denotes the boundary relative to a set of generators S ⊆ G. Assume
furthermore, that f∞ := supω ‖f (id,ω)‖∞ < ∞.

Then there is a function f ∗ : R → R such that for each δ ∈ (0,1), there exists
a(δ) > 0, such that for all sufficiently large j ∈ N, there is an event �j,δ ⊆ RG,
with the properties

P(�j,δ) ≥ 1 − exp
(−a(δ)|�j |)
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and

∀ω ∈ �j,δ

∥∥∥∥f (�j ,ω)

|�j | − f ∗
∥∥∥∥∞

≤ (
37f∞ + 84|S| + 131

)
δ.

In particular, almost surely we have limn→∞ ‖f (�n,•)
|�n| − f ∗‖∞ = 0.

For a precise formulation, see Definition 2.2 and Theorem 2.5. To achieve the
error bound in the theorem, we work with an ε-quasi tiling with ε = δ2.

REMARK 1.1. Let us sketch the difference between the proof of Theorem B
(see also Theorem 2.5 below) and the Theorem 2.8 of [12] sketched as Theorem A
above. There we heavily relied on the fact that Zd can be tiled exactly with any
cube of integer length. Since a general discrete amenable group need not have such
a tiling, we have to modify the geometric parts of the proof and use ε-quasi tilings
as in [10, 11]. Since quasi tilings in general overlap, we lose independence of the
corresponding random variables. This requires a change in the probabilistic part
of the proof and in particular the use of resampling.

The structure of the paper is as follows. In Section 2, we precisely describe the
model and our result. In Section 3, we summarize results about ε-quasi tilings,
which are fundamental for our proof. The error estimate in the main theorem and
the corresponding approximation procedure naturally split in three parts, which are
treated consecutively in Sections 4 to 6. Section 4 is of geometric nature. Section 5
is based on multivariate Glivenko–Cantelli theory. Section 6 is geometric in spirit
again. In the Appendix, we prove a resampling lemma and indicate how the proof
of [12] could be adapted to cover monotileable amenable groups.

2. Model and main results. We start this section with the introduction of
the geometric and probabilistic setting: We recall the notion of a Cayley graph
of an amenable group G, introduce random colorings of vertices, and define so-
called admissible fields, which are random functions mapping finite subsets of G

to functions on R and satisfying a number of natural properties; cf. Definition 2.2.
We are then in the position to formulate our main Theorem 2.5.

Let G be a finitely generated group and S = S−1 ⊆ G \ {id} a finite generating
system. Obviously, G is countable. The set of all finite subsets of G is denoted
by F and is countable as well. Throughout this paper, we will assume that G is
amenable, that is, there exists a sequence (�n)n∈N of elements in F such that for
each K ∈ F one has

(2.1)
|�n�K�n|

|�n|
n→∞−−−→ 0.

Here, K�n := {kg | k ∈ K,g ∈ �n} is the pointwise group multiplication of sets,
�n�K�n denotes the symmetric difference between the sets �n and K�n and |A|
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denotes the cardinality of the finite set A. A sequence (�n)n∈N satisfying property
(2.1) is called Følner sequence.

The pair (G,S) gives rise to an undirected graph �(G,S) = (V ,E) with vertex
set V := G and edge set E := {{x, y} | xy−1 ∈ S}. The graph �(G,S) is known
as the Cayley graph of G with respect to the generating system S. Note that by
symmetry of S the edge set E is well defined. Let d : G×G → N0 denote the usual
graph metric of �(G,S). The distance between two nonempty sets �1,�2 ⊆ G is
given by

d(�1,�2) := min
{
d(x, y) | x ∈ �1, y ∈ �2

}
.

In the case where �1 = {x} consists of only one element, we write d(x,�2) for
d({x},�2). The diameter of a nonempty set � ∈ F is defined by diam(�) :=
max{d(x, y) | x, y ∈ �}.

Given r ≥ 0, the r-boundary of a set � ⊆ G is defined by

∂r(�) := {
x ∈ � | d(x,G \ �) ≤ r

} ∪ {
x ∈ G \ � | d(x,�) ≤ r

}
and besides this we use the notation:

�r := � \ ∂r(�) = {
x ∈ � | d(x,G \ �) > r

}
.

It is easy to verify that for a given Følner sequence (�n)n∈N, or (�n) for short,
and r ≥ 0 we have

(2.2) lim
n→∞

|∂r(�n)|
|�n| = 0 and lim

n→∞
|�r

n|
|�n| = 1.

Moreover, if (�n) is a Følner sequence, then for arbitrary r ≥ 0 the sequence (�r
n)

is a Følner sequence as well. Conversely, in order to show that a given sequence
(�n) is a Følner sequence, it is sufficient [1, 13] to show for n → ∞ either

|�n�S�n|
|�n| → 0 or

|∂1(�n)|
|�n| → 0.(2.3)

Let us introduce colorings of the group G [or equivalently colorings of the ver-
tices of �(G,S)]. We choose a (finite or infinite) set of possible colors A ∈ B(R).
The sample set,

� = AG = {
ω = (ωg)g∈G | ωj ∈ A}

,

is the set of all possible colorings of G. Note that G acts in a natural way via
translations on �. To be precise, we define for each g ∈ G

(2.4) τg : � → �, (τgω)x = ωxg (x ∈ G).

Next, we introduce random colorings. As the σ -algebra, we choose B(�), the
product σ -algebra on � generated by cylinder sets. Oftentimes, we are interested
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in (finite) products of A embedded in the infinite product space �. To this end, we
set for � ⊆ G

�� := A� := {
(ωg)g∈� | ωg ∈ A}

and define

�� : � → �� by
(
��(ω)

)
g := ωg for each g ∈ �.

As shorthand notation, we write ω� instead of ��(ω). Having introduced the mea-
surable space (�,B(�)), we choose a probability measure P with the following
properties:

(M1) equivariance: For each g ∈ G, we have P ◦ τ−1
g = P.

(M2) existence of densities: There is a σ -finite measure μ0 on (A,B(A)), such
that for each � ∈ F the measure P� := P ◦ �−1

� is absolutely continuous with re-
spect to μ� := ⊗

g∈� μ0 on ��. We denote the corresponding probability density
function by ρ�.

(M3) independence condition: There exists r ≥ 0 such that for all n ∈ N
and nonempty �1, . . . ,�n ∈ F with min{d(�i,�j ) | i �= j} > r we have ρ� =∏n

j=1 ρ�j
, where � = ⋃n

j=1 �j .

The measure P� is called the marginal measure of P. It is defined on (��,B(��)),
where again B(��) is generated by the corresponding cylinder sets.

REMARK 2.1. (a) The constant r ≥ 0 in (M3) can be interpreted as the cor-
relation length. In particular, if r = 0 this property implies that the colors of the
vertices are chosen independently.

(b) (M2) is trivially satisfied, if P is a product measure.

In the following, we consider partial orderings on � and on Rk , respectively.
Here, we write ω ≤ ω′ for ω,ω′ ∈ �, if for all g ∈ G we have ωg ≤ ω′

g . The notion
x ≤ x′ for x, x′ ∈ Rk is defined in the same way. We consider the Banach space

B := {F : R → R | F right-continuous and bounded},
which is equipped with supremum norm ‖ · ‖ := ‖ · ‖∞.

DEFINITION 2.2. A field f : F ×� → B is called admissible if the following
conditions are satisfied:

(A1) equivariance: for � ∈ F , g ∈ G and ω ∈ � we have

f (�g,ω) = f (�, τgω).

(A2) locality: for all � ∈ F and ω,ω′ ∈ � satisfying ��(ω) = ��(ω′) we
have

f (�,ω) = f
(
�,ω′).
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(A3) almost additivity: for arbitrary ω ∈ �, pairwise disjoint �1, . . . ,�n ∈ F
and � := ⋃n

i=1 �i we have∥∥∥∥∥f (�,ω) −
n∑

i=1

f (�i,ω)

∥∥∥∥∥ ≤
n∑

i=1

b(�i),

where b : F → [0,∞) satisfies:

• b(�) = b(�g) for arbitrary � ∈ F and g ∈ G,
• ∃Df > 0 with b(�) ≤ Df |�| for arbitrary � ∈ F ,
• limi→∞ b(�i)/|�i | = 0, if (�i)i∈N is a Følner sequence.
• for �,�′ ∈ F , we have b(�∪�′) ≤ b(�)+ b(�′), b(�∩�′) ≤ b(�)+ b(�′),

and b(� \ �′) ≤ b(�) + b(�′).
(A4) monotonicity: f is antitone with respect to the partial orderings on � ⊆

RG and B, that is, if ω,ω′ ∈ � satisfy ω ≤ ω′, we have

f (�,ω)(x) ≥ f
(
�,ω′)(x) for all x ∈ R and � ∈ F .

(A5) boundedness:

sup
ω∈�

∥∥f ({id},ω)∥∥ < ∞.

REMARK 2.3. • Locality (A2) can be formulated as follows: f (�, · ) is
σ(��)-measurable. This enables us to define f� : �� → B by f�(ω�) :=
f (�,ω) with � ∈ F and ω ∈ �.

• We call the function b in (A3) boundary term. Note that the fourth assumption
on b in (A3) was not made in [12]. Indeed, this inequality is used to separate
overlapping tiles and is unnecessary as soon as the group has the tiling property
(�). This fourth point is used only in Lemmas 3.5 and 5.3.

• The antitonicity assumption in (A4) can be weakened. In particular, our proofs
apply to fields which are monotone in each coordinate, where the direction of
the monotonicity can be different for distinct coordinates. For simplicity reasons
and as our main example (see [12]) satisfies (A4), we restrict ourselves to this
kind of monotonicity.

• As shown in [12], a combination of (A1), (A3) and (A5) implies that the bound

Kf := sup
{∥∥f (�,ω)

∥∥/|�| | ω ∈ �,� ∈ F}
≤ Df + sup

ω∈�

∥∥f ({id},ω)∥∥ < ∞.
(2.5)

DEFINITION 2.4. A set U of admissible fields is called admissible set, if their
bound is uniform:

KU := sup
f ∈U

Kf < ∞

and each for each f ∈ U condition (A3) is satisfied with the same boundary term b.
In this situation, we denote the constant in (A3) by DU .
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Let us state the main theorem of this paper.

THEOREM 2.5. Let G be a finitely generated amenable group with a Følner
sequence (�n). Further, let A ∈ B(R) and (� = AG,B(�),P) a probability space
such that P satisfies (M1) to (M3). Finally, let U be an admissible set.

(a) Then there exists an event �̃ ∈ B(�) such that P(�̃) = 1 and for any
f ∈ U there exists a function f ∗ ∈ B, which does not depend on the specific Følner
seqeunce (�n), with

∀ω ∈ �̃ : lim
n→∞

∥∥∥∥f (�n,ω)

|�n| − f ∗
∥∥∥∥ = 0.

(b) Furthermore, for each ε ∈ (0,1/10), there exist j0(ε) ∈ N, independent
of KU , and a(ε,KU ), b(ε,KU ) > 0, such that for all j ∈ N, j ≥ j0(ε), there is an
event �j,ε,KU ∈ B(�), with the properties

P(�j,ε,KU ) ≥ 1 − b(ε,KU ) exp
(−a(ε,KU )|�j |)

and ∥∥∥∥f (�j ,ω)

|�j | − f ∗
∥∥∥∥

≤ (37KU + 47DU + 47)
√

ε for all ω ∈ �j,ε,KU and all f ∈ U .

For examples of measures P satisfying (M1) to (M3) and of admissible
fields, we refer to [12]. The generalization of the geometry from the lattice
Zd to an amenable group G does not affect the examples. See also [9, 15]
for a discussion of models giving rise to a discontinuous integrated density of
states, which nevertheless can be uniformly approximated by almost additive
fields.

3. Outline of ε-quasi tilings. Let us give a brief introduction to the theory of
ε-quasi tilings. The main ideas go back to Ornstein and Weiss in [10]. However,
the specific results we use here are taken from [11]; see also [13].

Let (Qn) be a Følner sequence. This sequence is called nested, if for all n ∈ N
we have {id} ⊆ Qn ⊆ Qn+1. Using translations and subsequences, it is easy to
show that every amenable group contains a nested Følner sequence; cf. [11],
Lemma 2.6.

We will use the elements of the nested Følner sequence (Qn) to ε-quasi tile ele-
ments of a given Følner sequence (�j ) for (very) large index j . The next definition
provides the notion of an α-covering, ε-disjointness and ε-quasi tiling.

DEFINITION 3.1. Let G be a finitely generated group, α, ε ∈ (0,1) and I

some index set.
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• The sets Qi ∈ F , i ∈ I , are said to α-cover the set � ∈ F , if:

(i)
⋃

i∈I Qi ⊆ �, and
(ii) |� ∩ ⋃

i∈I Qi | ≥ α|�|.
• The sets Qi ∈ F , i ∈ I are called ε-disjoint, if there are subsets Q̊i ⊆ Qi , i ∈ I ,

such that for all i ∈ I we have:

(i) |Qi \ Q̊i | ≤ ε|Qi |, and
(ii) Q̊i and

⋃
j∈I\{i} Q̊j are disjoint.

• The Ki ∈ F , i ∈ I , are said to ε-quasi tile � ∈ F , if there exist Ti ∈ F , i ∈ I ,
such that:

(i) the elements of {KiTi | i ∈ I } are pairwise disjoint,
(ii) for each i ∈ I , the elements of {Kit | t ∈ Ti} are ε-disjoint, and

(iii) the family {KiTi | i ∈ I } (1 − 2ε)-covers �.

The set Ti is called center set for the tile Ki , i ∈ I .

Actually, the details in this definition are adapted to our needs in this paper, as
is the following theorem. The general and more technical versions as well as the
proof of can be found [11]. See also [10] for earlier results.

Roughly speaking, the following theorem provides, in the setting of finitely gen-
erated amenable groups, ε-quasi covers for every set with small enough boundary
compared to its volume. Additionally, the theorem also provides control over the
fraction covered by different tiles with uniform almost densities. To quantify these
densities, we use the standard notation �b� := inf{z ∈ Z | z ≥ b} = inf Z ∩ [b,∞)

for the smallest integer above b ∈ R and define, for all ε > 0 and i ∈ N,

(3.1) N(ε) :=
⌈

ln(ε)

ln(1 − ε)

⌉
and ηi(ε) := ε(1 − ε)N(ε)−i .

THEOREM 3.2. Let G be a finitely generated amenable group, (Qn) a nested
Følner sequence and ε ∈ (0,1/10). Then there is a finite and strictly increasing
selection of sets Ki ∈ {Qn | n ∈ N}, i ∈ {1, . . . ,N(ε)}, with the following quasi
tiling property. For each Følner sequence (�j ), there exists j0(ε) ∈ N such that for
all j ≥ j0(ε), the sets Ki , i ∈ {1, . . . ,N(ε)}, are an ε-quasi tiling of �j . Moreover,
for all j ≥ j0(ε) and all i ∈ {1, . . . ,N(ε)}, the proportion of �j covered by the tile
Ki satisfies

(3.2)
∣∣∣∣ |KiT

j
i |

|�j | − ηi(ε)

∣∣∣∣ ≤ ε2

N(ε)
,

where T
j
i denotes the center set of the tile Ki for the ε-quasi cover of �j .

To make full use of Theorem 3.2, we need some properties of the densities ηi(ε).
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LEMMA 3.3. For N(ε) and ηi(ε) as in (3.1), the following hold true:

(a) For each ε ∈ (0,1), we have

1 − ε ≤
N(ε)∑
i=1

ηi(ε) = 1 − (1 − ε)N(ε) ≤ 1.

(b) For each ε ∈ (0,1/10) and i ∈ {1, . . . ,N(ε)}, we have
ε

N(ε)
≤ ηi(ε) ≤ ε.

(c) For a bounded sequence (αi)i∈N and ε ∈ (0,1/10), we have the inequality∣∣∣∣∣
N(ε)∑
i=1

αiηi(ε)

∣∣∣∣∣ ≤ A
√

ε + Aε,

where A := sup{|αi | | i ∈ N} and Aε := sup{|αi | | i ∈ N, i ≥ ε−1/2}. In particular,

lim
ε↘0

N(ε)∑
i=1

αiηi(ε) ≤ lim inf
i→∞ |αi |.

PROOF. Part (a) is an easy implication of the sum formula for the geometric
series. We refer to [11], Remark 4.3, for the details.

Let us prove (b). By definition of ηi(ε), we have ηi(ε) ≤ ε. In order to see the
other inequality, we note that

ηi(ε) ≥ ε(1 − ε)N(ε)−1 ≥ ε(1 − ε)
ln(ε)

ln(1−ε) = ε2.

Thus, it is sufficient to show that ε ≥ 1/N(ε). To this end, note that by definition
of N(ε) the following holds true:

εN(ε) ≥ ε ln(ε)

ln(1 − ε)
.

Using the assumption ε ∈ (0,1/10), a short and elementary calculation shows that
the last expression is bounded from below by 1.

To verify part (c), set N∗
ε := �ε−1/2� := sup Z ∩ (−∞, ε−1/2], and calculate as

follows:∣∣∣∣∣
N(ε)∑
i=1

αiηi(ε)

∣∣∣∣∣ ≤
∣∣∣∣∣
N∗

ε∑
i=1

αiηi(ε)

∣∣∣∣∣ +
∣∣∣∣∣

N(ε)∑
i=N∗

ε +1

αiηi(ε)

∣∣∣∣∣ ≤ AN∗
ε ε + Aε ≤ A

√
ε + Aε.

Note that it is easy to show that for 0 < ε < 1/10 we have N(ε) > N∗
ε > 0, such

that both sums are nonempty. �

Next, we derive a useful corollary of Theorem 3.2.
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COROLLARY 3.4. Let a finitely generated group G, a subset � ∈ F and ε ∈
(0,1/2) be given. Assume furthermore that the sets Ki ∈ F , i ∈ {1, . . . ,N(ε)}
are an ε-quasi tiling of � with almost densities ηi(ε) and center sets Ti ∈ F ,
i ∈ {1, . . . ,N(ε)}, satisfying (3.2). Then we have for each i ∈ {1, . . . ,N(ε)}, the
inequality estimating the “density” of the tile Ki :∣∣∣∣ |Ti |

|�| − ηi(ε)

|Ki |
∣∣∣∣ ≤ 4ε

ηi(ε)

|Ki | .

PROOF. We fix i ∈ {1, . . . ,N(ε)}, employ ε-disjointness and the density esti-
mate (3.2) and deduce

(1 − ε)
|Ki ||Ti |

|�| ≤ |KiTi |
|�| ≤ ηi(ε) + ε2

N(ε)
.

Therefore, with part (b) of Lemma 3.3, we get

|Ti |
|�| − ηi(ε)

|Ki | ≤ ηi(ε) + ε2

N(ε)

(1 − ε)|Ki | − ηi(ε)

|Ki |

= εηi(ε) + ε2

N(ε)

(1 − ε)|Ki |
≤ 2εηi(ε)

(1 − ε)|Ki | ≤ 4εηi(ε)

|Ki | .

Equation (3.2) gives also a bound for the other direction. To be precise, we use

(3.3) ηi(ε) − ε2

N(ε)
≤ |KiTi |

|�| ≤ |Ki ||Ti |
|�|

and again part (b) of Lemma 3.3 to obtain

|Ti |
|�| − ηi(ε)

|Ki | ≥ ηi(ε) − ε2

N(ε)

|Ki | − ηi(ε)

|Ki | = − ε2

N(ε)|Ki | ≥ −εηi(ε)

|Ki | .

This implies the claimed bound. �

Finally, we provide a generalization of almost additivity for sets which are not
disjoint, but only ε-disjoint. The proof can be found in [13], Lemma 5.23.

LEMMA 3.5. Let G be a finitely generated group, f an admissible field with
boundary term b and ε ∈ (0,1/2). Then for any ε-disjoint sets Qi , i ∈ {1, . . . , k},
we have for each ω ∈ �∥∥∥∥∥f (Q,ω) −

k∑
i=1

f (Qi,ω)

∥∥∥∥∥ ≤ ε(3Kf + 9Df )|Q| + 3
k∑

i=1

b(Qi),

where Q := ⋃k
i=1 Qi and Df is the constant from (A3) of Definition 2.2.
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4. Approximation via the empirical measure. Given some Følner sequence
(�j ) and an admissible field f , the aim of this section is the approximation of the

expression f (�j ,ω)

|�j | using elements of a second Følner sequence (Qn) and asso-
ciated empirical measures; cf. Lemma 4.3. This second sequence needs to satisfy
certain additional assumptions, namely we need that (Qn) is nested and satisfies
for the correlation length r ∈ N0 from (M3) that the sequences(

b(Qn)

|Qn|
)
,

(
b(Qr

n)

|Qn|
)

and

( |∂r(Qn)|
|Qn|

)
converge monotonically to 0.

(4.1)

That these sequences converge to zero is clear by the fact that (Qn) is a Følner
sequence and b a boundary term in the sense of Definition 2.2. In order to obtain
the monotonicity in (4.1), we choose a subsequence of (Qn). These considerations
show that each amenable group admits a nested Følner sequence (Qn) which sat-
isfies (4.1). These terms will be used in the error estimates in the approximations
throughout this text. To abbreviate the notation, we define

(4.2) β ′
n := max

{
b(Qn)

|Qn| ,
b(Qr

n)

|Qn| ,
|∂r(Qn)|

|Qn|
}

and β(ε) := β ′
1
√

ε + β ′
�1/

√
ε�

for n ∈ N and ε ∈ (0,1/10). Note that (β ′
n)n is a monotone sequence and converges

to 0, and that by Lemma 3.3(c)

(4.3)
N(ε)∑
i=1

β ′
iηi(ε) ≤ β(ε)

ε↘0−−→ 0.

REMARK 4.1. For the proof of Theorem 2.5, we additionally have to ensure
β ′

n ≤ (2n)−1 for all n ∈ N while taking the subsequences above. We will track the
boundary terms throughout the paper and use β(ε) until the very end, where we
simplify the result by applying

β(ε) = β ′
1
√

ε + β ′
�1/

√
ε� ≤ 1

2

√
ε + 1

2�1/
√

ε� ≤ √
ε.

The cost of this additional condition on the boundary terms is that, via Theo-
rem 3.2, j0(ε) in Theorem 2.5 will potentially increase. But up to here, we deal
only with the geometry of G and still have that j0(ε) depends only on ε.

Moreover, let us emphasize that when considering an admissible set U the value√
ε gives a uniform bound on β(ε) for all f ∈ U , since in this situation all f ∈ U

are almost additive with the same boundary term b.

Define for an admissible field f and � ∈ F the function

(4.4) f� : �� → B, f�(ω) := f
(
�,ω′) where ω′ ∈ �−1

�

({ω}).
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Note that by (A2) of Definition 2.2 we see that f� is well defined (and measurable).
In the situation where we insert elements of the Følner sequence (�n) or (�r

n), for
some r ∈ N0, we write

(4.5) fn := f�n or f r
n := f�r

n
.

For given K,T ∈ F and ω ∈ �, we define the empirical measure by

(4.6) Lω(K,T ) : B(�KT ) → [0,1], Lω(K,T ) = 1

|T |
∑
t∈T

δ(τtω)K .

Given ε ∈ (0,1/10) and sequences (�j ) and (Qj ) as above, we obtain by The-
orem 3.2 finite sets Ki(ε), i = 1, . . . ,N(ε) and (for j large enough) center sets
T

j
i (ε) which form an ε-quasi tiling of �j . In this setting, we use for given ω ∈ �,

ε ∈ (0,1/10), r > 0, i ∈ {1, . . . ,N(ε)} and j ∈ N large enough the notation

(4.7) Lω
i,j (ε) := Lω(

Ki(ε), T
j
i (ε)

)
and fi(ε) := fKi(ε)

as well as

(4.8) L
r,ω
i,j (ε) := Lω(

Kr
i (ε), T

j
i (ε)

)
and f r

i (ε) := fKr
i (ε).

Here, the reader may recall that Kr
i (ε) = Ki(ε) \ ∂r(Ki(ε)).

Moreover, we use for � ∈ F , a measurable f : �� → B and a measure ν on
(��,B(��)) the notation

〈f, ν〉 :=
∫
��

f (ω)dν(ω).

LEMMA 4.2. Let f be an admissible field and let K,T ∈ F and ω ∈ �. Then

〈
fK,Lω(K,T )

〉 = 1

|T |
∑
t∈T

f (Kt,ω).

PROOF. We calculate using linearity and (A1) of Definition 2.2:〈
fK,Lω(K,T )

〉 = ∫
�K

fK

(
ω′) dLω(K,T )

(
ω′)

= 1

|T |
∑
t∈T

∫
�K

fK

(
ω′) dδ(τtω)K

(
ω′)

= 1

|T |
∑
t∈T

fK

(
(τtω)K

)

= 1

|T |
∑
t∈T

f (Kt,ω).
�

We proceed with the first approximation lemma.
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LEMMA 4.3. Let G be a finitely generated amenable group, let f be an admis-
sible field and let (�n) and (Qn) be Følner sequences, where (Qn) is additionally
nested and satisfies (4.1). Then we have for all ω ∈ � that

(4.9) lim
ε↘0

lim
j→∞

∥∥∥∥∥f (�j ,ω)

|�j | −
N(ε)∑
i=1

ηi(ε)
〈f r

i (ε),L
r,ω
i,j (ε)〉

|Ki(ε)|
∥∥∥∥∥ = 0,

where Ki(ε), i ∈ {1, . . . ,N(ε)} are given by Theorem 3.2. Moreover, we have for
arbitrary ε ∈ (0,1/10) and j ≥ j0(ε), with j0(ε) from Theorem 3.2, the inequality∥∥∥∥∥f (�j ,ω)

|�j | −
N(ε)∑
i=1

ηi(ε)
〈f r

i (ε),L
r,ω
i,j (ε)〉

|Ki(ε)|
∥∥∥∥∥

≤ (9Kf + 15Df )ε + 12(2 + Kf + Df )β(ε).

PROOF. Let ε ∈ (0,1/10) and j ≥ j0(ε) ∈ N be given, where j0(ε) is the
constant given by Theorem 3.2. We estimate using the triangle inequality∥∥∥∥∥f (�j ,ω)

|�j | −
N(ε)∑
i=1

ηi(ε)
〈f r

i (ε),L
r,ω
i,j (ε)〉

|Ki(ε)|
∥∥∥∥∥

≤ a(ε, j) +
N(ε)∑
i=1

bi(ε, j) +
N(ε)∑
i=1

ci(ε, j),

(4.10)

where

a(ε, j) := 1

|�j |
∥∥∥∥∥f (�j ,ω) −

N(ε)∑
i=1

∑
t∈T

j
i (ε)

f
(
Ki(ε)t,ω

)∥∥∥∥∥,

bi(ε, j) :=
∥∥∥∥ ∑
t∈T

j
i (ε)

f (Ki(ε)t,ω)

|�j | − ηi(ε)
〈fi(ε),L

ω
i,j (ε)〉

|Ki(ε)|
∥∥∥∥ and

ci(ε, j) := ηi(ε)

|Ki(ε)|
∥∥〈

fi(ε),L
ω
i,j (ε)

〉 − 〈
f r

i (ε),L
r,ω
i,j (ε)

〉∥∥.
Here, the expressions Lω

i,j (ε) and fi(ε) are given by (4.7). Let us estimate the
term a(ε, j). To this end, denote the part which is covered by translates of Ki(ε),
i ∈ {1, . . . ,N(ε)} by

R
j
i (ε) :=

N(ε)⋃
i=1

Ki(ε)T
j
i (ε) ⊆ �j .

Then we have, using the properties of the ε-quasi tiling and part (a) of Lemma 3.3,

∣∣Rj
i (ε)

∣∣ =
N(ε)∑
i=1

∣∣Ki(ε)T
j
i (ε)

∣∣ ≥ |�j |
N(ε)∑
i=1

(
ηi(ε) − ε2

N(ε)

)
≥ (1 − 2ε)|�j |,
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which in turn gives |�j \R
j
i (ε)| ≤ 2ε|�j |. We use this and Lemma 3.5 to calculate

|�j |a(ε, j) ≤ (3Kf + 9Df )ε|�j | + 3b
(
�j \ R

j
i (ε)

)
+ ∥∥f (

�j \ R
j
i (ε)

)∥∥ + 3
N(ε)∑
i=1

∑
t∈T

j
i (ε)

b
(
Ki(ε)t

)

≤ (3Kf + 9Df )ε|�j | + (Kf + 3Df )
∣∣�j \ R

j
i (ε)

∣∣
+ 3

N(ε)∑
i=1

∣∣T j
i (ε)

∣∣b(
Ki(ε)

)

≤ (5Kf + 15Df )ε|�j | + 3
N(ε)∑
i=1

∣∣T j
i (ε)

∣∣b(
Ki(ε)

)
.

By ε-disjointness and (3.2), we obtain

1

2

∣∣Ki(ε)
∣∣∣∣T j

i (ε)
∣∣ ≤ (1 − ε)

∣∣Ki(ε)
∣∣∣∣T j

i (ε)
∣∣

≤ ∣∣Ki(ε)T
j
i (ε)

∣∣
≤

(
ηi(ε) + ε2

N(ε)

)
|�j |,

(4.11)

which together with (b) of Lemma 3.3 gives

N(ε)∑
i=1

∣∣T j
i (ε)

∣∣b(
Ki(ε)

)

≤ 2|�j |
N(ε)∑
i=1

(
ηi(ε) + ε2

N(ε)

)
b(Ki(ε))

|Ki(ε)|

≤ 4|�j |
N(ε)∑
i=1

ηi(ε)
b(Ki(ε))

|Ki(ε)| .

This implies the following bound:

a(ε, j) ≤ (5Kf + 15Df )ε + 12
N(ε)∑
i=1

ηi(ε)
b(Ki(ε))

|Ki(ε)| .(4.12)

To estimate the second term in (4.10), we apply Lemma 4.2 to obtain∑
t∈T

j
i (ε)

f
(
Ki(ε)t,ω

) = ∣∣T j
i (ε)

∣∣ · 〈
fi(ε),L

ω
i,j (ε)

〉
.
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Thus, by Corollary 3.4 and the fact ‖〈fi(ε),L
ω
i,j (ε)〉‖ ≤ Kf |Ki(ε)|, we have for

each i ∈ {1, . . . ,N(ε)}

bi(ε, j) =
∥∥∥∥ |T j

i (ε)|〈fi(ε),L
ω
i,j (ε)〉

|�j | − ηi(ε)
〈fi(ε),L

ω
i,j (ε)〉

|Ki(ε)|
∥∥∥∥

=
∣∣∣∣ |T

j
i (ε)|
|�j | − ηi(ε)

|Ki(ε)|
∣∣∣∣∥∥〈

fi(ε),L
ω
i,j (ε)

〉∥∥(4.13)

≤ 4
εηi(ε)

|Ki(ε)|Kf

∣∣Ki(ε)
∣∣ = 4Kf εηi(ε).

Let us finally estimate the term ci(ε, j). By Lemma 4.2, we have for each i ∈
{1, . . . ,N(ε)}:∥∥〈

fi(ε),L
ω
i,j (ε)

〉 − 〈
f r

i (ε),L
r,ω
i,j (ε)

〉∥∥
≤ 1

|T j
i (ε)|

∑
t∈T

j
i (ε)

∥∥f (
Ki(ε)t,ω

) − f
(
Kr

i (ε)t,ω
)∥∥

≤ 1

|T j
i (ε)|

∑
t∈T

j
i (ε)

b
(
Kr

i (ε)
) + b

(
∂r(Ki(ε)

) ∩ Ki(ε)
)

+ ∥∥f (
∂r(Ki(ε)

)
t ∩ Ki(ε)t,ω

)∥∥
≤ b

(
Kr

i (ε)
) + (Kf + Df )

∣∣∂r(Ki(ε)
)∣∣.

(4.14)

Together with (4.10), the estimates for a(ε, j) in (4.12), for bi(ε, j) in (4.13) and
for ci(ε, j) in (4.14) yield

∥∥∥∥∥f (�j ,ω)

|�j | −
N(ε)∑
i=1

ηi(ε)
〈f r

i (ε),L
r,ω
i,j (ε)〉

|Ki(ε)|
∥∥∥∥∥

≤ (5Kf + 15Df )ε + 12
N(ε)∑
i=1

ηi(ε)
b(Ki(ε))

|Ki(ε)|

+
N(ε)∑
i=1

ηi(ε)

(
4Kf ε + b(Kr

i (ε)) + (Kf + Df )|∂r(Ki(ε))|
|Ki(ε)|

)

≤ (9Kf + 15Df )ε

+ 12
N(ε)∑
i=1

ηi(ε)
b(Ki(ε)) + b(Kr

i (ε)) + (Kf + Df )|∂r(Ki(ε))|
|Ki(ε)| .
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To verify (4.9), recall that we assumed that (Qn) satisfies (4.1). By the choice of
Ki(ε) in Theorem 3.2, this gives∥∥∥∥∥f (�j ,ω)

|�j | −
N(ε)∑
i=1

ηi(ε)
〈f r

i (ε),L
r,ω
i,j (ε)〉

|Ki(ε)|
∥∥∥∥∥

≤ (9Kf + 15Df )ε

+ 12
N(ε)∑
i=1

ηi(ε)
b(Qi) + b(Qr

i ) + (Kf + Df )|∂r(Qi)|
|Qi |︸ ︷︷ ︸

≤(2+Kf +Df )β ′
i

≤ (9Kf + 15Df )ε + 12(2 + Kf + Df )β(ε).

The last inequality follows from (4.3). As this bound holds for arbitrary ε ∈
(0,1/10) and j ≥ j0(ε), this particularly proves (4.9). �

5. Approximation via Glivenko–Cantelli. In this section, we aim to apply
a multivariate Glivenko–Cantelli theorem in order to approximate the empirical
measure using the theoretical measure. Recall that a Glivenko–Cantelli theorem
compares the empirical measure of a normalized sum of independent and identi-
cally distributed random variables with their distribution. At the end of this section,
we will apply the following Glivenko–Cantelli theorem which was proved in [12]
based on results by DeHardt and Wright; see [3, 17]. Monotone functions on Rk

were defined in (A4).

THEOREM 5.1. Let (�,A,P) be a probability space and Xt : � → Rk ,
t ∈ N, independent and identically distributed random variables such that the
distribution μ := P(X ∈ · ) is absolutely continuous with respect to a prod-
uct measure

⊗k
�=1 μ� on Rk , where μ�, � ∈ {1, . . . , k}, are σ -finite measures

on R. For each n ∈ N, we denote by L
(ω)
n := 1

n

∑n
t=1 δXt the empirical dis-

tribution of (Xt)t∈{1,...,n}. Further, fix M ∈ R and let M := {g : Rk → R |
g is monotone, and supx∈Rk |g(x)| ≤ M}.

Then, for all κ > 0, there are a = a(κ,M) > 0 and b = b(κ,M) > 0 such that
for all n ∈ N, there exists an event �κ,n,M ∈ A with large probability P(�κ,n,M) ≥
1 − b exp(−an), such that for all ω ∈ �κ,n,M , we have

sup
g∈M

∣∣〈g,L(ω)
n − μ

〉∣∣ ≤ κ.

In particular, there exists a set �0 ∈ A with P(�0) = 1 and supg∈M |〈g,

L
(ω)
n − μ〉| n→∞−−−→ 0 for all ω ∈ �0.

In the present situation, we encounter several challenges when applying Theo-
rem 5.1, caused by our tiling scheme:
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• Each �j is tiled using N(ε) different shapes. Thus, the corresponding random
variables (for different shapes) are not identically distributed.

• In an ε-quasi tiling, translates of the same shape Ki are allowed to overlap.
Thus, the corresponding random variables are not necessarily independent.

The first point can be handled by applying Glivenko–Cantelli theory for each
shape Ki separately. The second point is more challenging. The core of the fol-
lowing approach is the “generation of independence” by resampling of the over-
lapping areas using conditional probabilities and controlling errors introduced on
the altered areas with their volume. Let us explain this in detail.

Fix ε > 0, i ∈ {1, . . . ,N(ε)} and j ∈ N, j ≥ j0(ε) (cf. Theorem 3.2), and con-
sider Figure 1, which sketches a tile K = Ki , a finite set � = �j , and the transla-

tions Kt , t ∈ T := T
j
i (ε), of K = Ki from an ε-quasi tiling. The sets

(5.1) Ui,j,t := (
Kr

i t
) \ (

Ki

(
T

j
i (ε) \ {t})) ⊆ G, t ∈ T ,

are marked with stripes. Their distance is at least

(5.2) d
(
Ui,j,t ,Ui,j,t ′) ≥ d

(
Kr

i t,G \ Kit
)
> r, t �= t ′,

so the colors there are P-independent from each other. Unfortunately, if we take
only the values on Ui,j,t , t ∈ T , we will end up with an independent, but not identi-
cally distributed sample. We therefore resample independent colors in Kr \ Ui,j,t .

FIG. 1. ε-covering and independence structure: The set � = �j ⊆ G is ε-quasi covered by copies

of K = Ki with centers in T = T
j
i (ε) = {t1, . . . , t5}. The sets Ut = Ui,j,t , t ∈ T , here marked by

diagonal stripes, have at least distance r and satisfy |Ut | ≥ (1 − ε)|K|.
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Fortunately, the sets Ui,j,t are large enough to compensate this small random per-
turbation. The following lemma specifies the resampling procedure.

LEMMA 5.2. Let ε > 0 and I := ⋃N(ε)
i=1

⋃∞
j=j0(ε)

{(i, j)} × T
j
i (ε). There ex-

ists a probability space (�,B(�),P) and random variables X,Xi,j,t : � → �,
(i, j, t) ∈ I , such that for all (i, j, t) ∈ I :

(i) X and Xi,j,t have distribution P,
(ii) X and Xi,j,t agree on Ui,j,t P-almost surely, and

(iii) the random variables in the set {Xi,j,t ′ }
t ′∈T

j
i (ε)

are P-independent.

PROOF. Theorem A.1 solves the problem of resampling in an abstract set-
ting. We apply the result here as follows. Since we use the canonical proba-
bility space in our construction, we apply Theorem A.1 with (S,S) := (�,A),
X := id�, I := ⋃N(ε)

i=1
⋃∞

j=j0(ε)
{(i, j)} × T

j
i (ε), and Yj ′ := σ(�

Uj ′ ), j ′ ∈ I .
Theorem A.1 provides the following quantities, which we here want to use as
(�,A,P) := (�,A,P), X := X0, and Xi,j,t := Xj ′ for all j ′ = (i, j, t) ∈ I . The
properties (i) and (ii) follow directly from Theorem A.1(i), (ii). With (5.2), Theo-
rem A.1(iv) implies (iii). �

Next, we control the error we introduce by using our independent samples in-
stead of the dependent ones.

LEMMA 5.3. Fix ε > 0, an admissible f and U ⊆ K ∈ F . For ω, ω̃ ∈ � with
ωU = ω̃U , we have∥∥f (ω,K) − f (ω̃,K)

∥∥ ≤ 2b(K) + 2(2Df + Kf )|K \ U |.
In particular, in the notation from (4.4)–(4.8) and with the corresponding empirical
measure

L
r,ω
i,j (ε) := 1

|T j
i (ε)|

∑
t∈T

j
i (ε)

δ(τtXi,j,t (ω))Ki (ε)
(ω ∈ �),

we have for P-almost all ω ∈ � that∥∥〈
f r

i (ε),L
r,X(ω)
i,j (ε) − L

r,ω
i,j (ε)

〉∥∥ ≤ 2b
(
Kr

i (ε)
) + 2(2Df + Kf )ε

∣∣Kr
i (ε)

∣∣.
PROOF. The values of ω on U determine f (ω,K) up to∥∥f (ω,K) − f (ω,U)

∥∥
≤ ∥∥f (ω,K) − f (ω,U) − f (ω,K \ U)

∥∥ + ∥∥f (ω,K \ U)
∥∥

≤ b(U) + b(K \ U) + ∥∥f (ω,K \ U)
∥∥

≤ b(U) + (Df + Kf )|K \ U |.
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With the fourth point in (A3), we can continue this estimate with

b(U) ≤ b
(
K \ (K \ U)

) ≤ b(K) + b(K \ U) ≤ b(K) + Df |K \ U |.
We now employ the triangle inequality to show the first claim: For ω, ω̃ ∈ � with
ωU = ω̃U , we have∥∥f (ω,K) − f (ω̃,K)

∥∥
≤ ∥∥f (ω,K) − f (ω,U)

∥∥ + ∥∥f (ω̃,U) − f (ω̃,K)
∥∥

≤ 2
(
b(K) + (2Df + Kf )|K \ U |).

This calculation allows us to change ω on K \ U to the independent values pro-
vided by Lemma 5.2. To implement this, observe that for P-almost all ω ∈ � and
all i ∈ {1, . . . ,N(ε)}, j ∈ N, j ≥ j0(ε) and t ∈ T

j
i (ε), the set Ui,j,t from (5.1) ex-

hausts Kr
i (ε)t up to a fraction of ε: |Kr

i (ε)t \ Ui,j,t | ≤ ε|Kr
i (ε)|. By construction,

on Ui,j,t , the colors are preserved: Ui,j,t ⊆ {g ∈ Kr
i (ε)t | Xg(ω) = X

i,j,t
g (ω)}. To-

gether with Lemma 4.2 and the triangle inequality, this immediately implies for
P-almost all ω ∈ � that∥∥〈

f r
i (ε),L

r,X(ω)
i,j (ε) − L

r,ω̃
i,j (ε)

〉∥∥
≤ 1

|T j
i (ε)|

∑
t∈T

j
i (ε)

∥∥f (
Kr

i (ε)t,ω
) − f

(
Kr

i (ε)t,Xi,j,t (ω)
)∥∥

≤ 2b
(
Kr

i (ε)
) + 2(2Df + Kf )ε

∣∣Kr
i (ε)

∣∣. �

The empirical measure L
r,X(ω)
i,j formed by independent samples should converge

to

Pr
i (ε) := PKr

i (ε).

The following result makes this notion precise. It is the main result of this section.

PROPOSITION 5.4. Let G be a finitely generated amenable group, let A ∈
B(R) and (� := AG,B(�),P) a probability space such that P satisfies (M1) to
(M3). Moreover, let (�n) and (Qn) be Følner sequences, where (Qn) is nested
and satisfies (4.1). For given ε ∈ (0,1/10), let Ki(ε), i ∈ {1, . . . ,N(ε)}, and j0(ε)

be given by Theorem 3.2. Furthermore, let U be an admissible set of admissible
fields.

Then, for all κ > 0, there exist a(ε, κ,KU ), b(ε, κ,KU ) > 0 such that for all
j ≥ j0(ε), there is an event �j,ε,κ,KU ∈ B(�) with large probability

P(�j,ε,κ,KU ) ≥ 1 − b(ε, κ,KU ) exp
(−a(ε, κ,KU )|�j |)
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and the property that for all ω ∈ �j,ε,κ,KU and f ∈ U , it holds true that∥∥∥∥∥
N(ε)∑
i=1

ηi(ε)
〈f r

i (ε),L
r,ω
i,j (ε)〉

|Ki(ε)| −
N(ε)∑
i=1

ηi(ε)
〈f r

i (ε),Pr
i (ε)〉

|Ki(ε)|
∥∥∥∥∥

≤ 2β(ε) + 2(2Df + Kf )ε + κ.

In particular, there is an event �̃ ∈ B(�) with P(�̃) = 1 such that for all ω ∈ �̃,
we have

lim
ε↘0

sup
f ∈U

∥∥∥∥∥
N(ε)∑
i=1

ηi(ε)
〈f r

i (ε),L
r,ω
i,j (ε)〉

|Ki(ε)| −
N(ε)∑
i=1

ηi(ε)
〈f r

i (ε),Pr
i (ε)〉

|Ki(ε)|
∥∥∥∥∥ = 0.

PROOF. Fix f ∈ U . For ε ∈ (0,1/10), j ∈ N and ω ∈ �, two applications of
the triangle inequality give

�f (ε,ω) :=
∥∥∥∥∥
N(ε)∑
i=1

ηi(ε)
〈f r

i (ε),L
r,ω
i,j (ε)〉

|Ki(ε)| −
N(ε)∑
i=1

ηi(ε)
〈f r

i (ε),Pr
i (ε)〉

|Ki(ε)|
∥∥∥∥∥

≤
N(ε)∑
i=1

ηi(ε)

|Ki(ε)|
∥∥〈

f r
i (ε),L

r,ω
i,j (ε) − Pr

i (ε)
〉∥∥(5.3)

≤ inf
ω∈X−1({ω})

(
N(ε)∑
i=1

ηi(ε)γ1(i, j, ε,ω) +
N(ε)∑
i=1

ηi(ε)γ2(i, j, ε,ω)

)
,

where ω ∈ � extends ω, that is, X(ω) = ω in the notation of Lemma 5.2, and

γ1(i, j, ε,ω) := ‖〈f r
i (ε),L

r,ω
i,j (ε) − L

r,ω
i,j (ε)〉‖

|Ki(ε)| and

γ2(i, j, ε,ω) := ‖〈f r
i (ε),L

r,ω
i,j (ε) − Pr

i (ε)〉‖
|Ki(ε)| .

By Lemma 5.3 and assumption (4.1), we see that for all ω ∈ � with X(ω) = ω

γ1(i, j, ε,ω) ≤ 2b(Kr
i (ε))

|Kr
i (ε)| + 2(2Df + Kf )ε ≤ 2b(Qi)

|Qi | + 2(2Df + Kf )ε.

With Lemma 3.3(a) and (4.3), we yield the deterministic upper bound

N(ε)∑
i=1

ηi(ε)γ1(i, j, ε,ω) ≤ 2β(ε) + 2(2Df + Kf )ε

for all ω ∈ X−1(ω) ⊆ �. By now, our overall inequality (5.3) reads

(5.4) �f (ε,ω) ≤ 2β(ε) + 2(2Df + Kf )ε + inf
ω∈X−1({ω})

N(ε)∑
i=1

ηi(ε)γ2(i, j, ε,ω).
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To deal with γ2, recall that the norm on the Banach space B our admissible fields
map into is the sup-norm. We translate the sup-norm into the Glivenko–Cantelli
setting as follows. Let

Mf := {
gr

i,E : R|Kr
i (ε)| → R, gr

i,E(ω) := f r
i (ω)(E)/

∣∣Ki(ε)
∣∣ | E ∈ R

}
.

Therefore, we can write

γ2(i, j, ε,ω) = sup
g∈Mf

∣∣〈g,L
r,ω
i,j (ε) − Pr

i (ε)
〉∣∣ ≤ sup

f ∈U
sup

g∈Mf

∣∣〈g,L
r,ω
i,j (ε) − Pr

i (ε)
〉∣∣.

From (2.5), we see that the fields in MU := ⋃
f ∈U Mf are bounded by KU . As

assumed in (A4), the fields in MU are also monotone. By Lemma 5.2(iii), the
samples are independent, also. This is crucial in order to invoke Theorem 5.1.
We thus obtain that, for each κ > 0, ε ∈ (0,1/10), i ∈ {1, . . . ,N(ε)} and j ∈ N,
j ≥ j0(ε), there are ai ≡ a(i, ε, κ,KU ) > 0, bi ≡ b(i, ε, κ,KU ) > 0 and �i,j ≡
�i,j,ε,κ,KU ∈ B(�) such that

P(�i,j ) ≥ 1 − bi exp
(−ai

∣∣T j
i (ε)

∣∣) and sup
ω∈�i,j

γ2(i, j, ε,ω) ≤ κ.

We need this estimate for all i ∈ {1, . . . ,N(ε)} simultaneously and consider

�j ≡ �j,ε,κ,KU :=
N(ε)⋂
i=1

�i,j .

To estimate the probability of �j is the next step. From (3.3) and Lemma 3.3(b),
we note that ∣∣T j

i (ε)
∣∣ ≥

(
ηi(ε) − ε2

N(ε)

) |�j |
|Ki(ε)| ≥ (1 − ε)ε

N(ε)|Ki(ε)| |�j |.
With the definition

a ≡ aε,κ,KU := (1 − ε)ε

N(ε)
min

i∈{1,...,N(ε)}
ai

|Ki(ε)| and b ≡ bε,κ,KU := 2
N(ε)∑
i=1

bi,

we get P(�i,j ) ≥ 1 − bi exp(−a|�j |) and

P(�j ) = 1 − P
(

N(ε)⋃
i=1

� \ �i,j

)
≥ 1 −

N(ε)∑
i=1

P(� \ �i,j ) ≥ 1 − b exp(−a|�j |)
2

.

Next, we should transition from (�,B(�),P) to (�,B(�),P). The set X(�j) ⊆
� seems to be a good candidate, because for all ω ∈ X(�j), there exists ω ∈
X−1({ω}) ∩ ⋂N(ε)

i=1 �i,j , and thus we can estimate

inf
ω∈X−1({ω})

N(ε)∑
i=1

ηi(ε)γ2(i, j, ε,ω) ≤
N(ε)∑
i=1

ηi(ε)κ ≤ κ.
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Together with (5.4), this inequality shows the claimed bound on �f (ε,ω) for all
ω ∈ X(�j).

Unfortunately, the image of a measurable set under a measurable map is not
necessarily measurable, but only analytic; see [2], Theorem 10.23. At least the
outer measure of our candidate is bounded from below by

P∗(
X(�j)

) := inf
B∈B(�),X(�j )⊆B

P(B)

= inf
B∈B(�),X(�j )⊆B

P(X ∈ B)

≥ inf
B∈B(�),X(�j )⊆B

P(�j )

= P(�j ) ≥ 1 − b exp
(−a|�j |)/2.

From [2], Lemma 10.36, we learn that P∗ is a nice capacity, and the Choquet
capacity theorem [2], Theorem 10.39, states for the analytic set X(�j) that

P∗(
X(�j)

) = sup
K⊆X(�j ) compact

P(K).

Thus, there exists a compact subset �j,ε,κ,KU ⊆ X(�j) with probability at least
1 − b exp(−a|�j |).

We complete the proof with a standard Borel–Cantelli argument to show that �̃

exists as claimed. For all κ > 0, the events

Aκ :=
∞⋃

n=j0(ε)

∞⋂
j=n

�j,ε,κ,KU

have probability 1, since

∞∑
j=j0(ε)

P(� \ �j,ε,κ,KU ) ≤
∞∑

j=j0(ε)

b exp
(−a|�j |) ≤ b

∞∑
j=j0(ε)

exp(−a)j < ∞.

Note that by (5.4), β(ε) → 0 and by construction of Ak , for all ω ∈ Aκ , we have

lim
ε↘0

sup
f ∈U

�f (ε,ω) ≤ κ.

Thus, the event �̃ := ⋂
k∈N A1/k has full probability P(�̃) = 1, and for all ω ∈ �̃,

we have limε↘0 supf ∈U �f (ε,ω) = 0. �

6. Almost additivity and Cauchy sequences. The following calculations are
devoted to a Cauchy sequence argument to obtain the desired limit function f ∗.
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LEMMA 6.1. Let G be a finitely generated amenable group, let A ∈ B(R) and
(� = AG,B(�),P) a probability space such that P satisfies (M1) to (M3). More-
over, let f be an admissible field and (Qn) a nested Følner sequence satisfying
(4.1). Then there exists f ∗ ∈ B with

lim
ε↘0

∥∥∥∥∥
N(ε)∑
i=1

ηi(ε)
〈f r

i (ε),Pr
i (ε)〉

|Ki(ε)| − f ∗
∥∥∥∥∥ = 0,

where for k ∈ N and ε ∈ (1/(k + 1),1/k) the sets Ki(ε), i ∈ {1, . . . ,N(ε)} are
extracted from the sequence (Qn+k)n via Theorem 3.2. The approximation error is
bounded by∥∥∥∥∥

N(ε)∑
j=1

ηj (ε)
〈f r

j (ε),Pr
j (ε)〉

|Kj(ε)| − f ∗
∥∥∥∥∥ ≤ (9Kf + 11Df )ε + 5(4 + Kf + Df )β(ε).

PROOF. In order to prove the existence of f ∗, we study for ε, δ ∈ (0,1/10)

the difference

D(ε, δ) :=
∥∥∥∥∥
N(ε)∑
j=1

ηj (ε)
〈f r

j (ε),Pr
j (ε)〉

|Kj(ε)| −
N(δ)∑
i=1

ηi(δ)
〈f r

i (δ),Pr
i (δ)〉

|Ki(δ)|
∥∥∥∥∥.

Our aim is to show limδ↘0 limε↘0 D(ε, δ) = 0. To prove this, we insert terms
which interpolate between the minuend and the subtrahend. These terms will be
given using Theorem 3.2. For each ε ∈ (1/(k + 1),1/k], we apply Theorem 3.2
to choose the sets Kj(ε), j = 1, . . . ,N(ε), from the Følner sequence (Qn+k)n∈N.
The particular choice of the sets Kj(ε), j = 1, . . . ,N(ε), as elements of the se-
quence (Qn+k)n ensures that for given δ > 0 we find ε0 > 0 such that for arbitrary
ε ∈ (0, ε0) each Kj(ε), j = 1, . . . ,N(ε), can be δ-quasi tiled with the elements
Ki(δ), i = 1, . . . ,N(δ). As in Theorem 3.2, we denote the associated center sets
by T

j
i (δ), where we emphasize the dependence on the parameter δ.

For K ∈ F , we use the notation

F(K) := 〈fK,PK〉(6.1)

and hence for the tiles Kj(ε), i = 1, . . . ,N(ε), we write F(Kr
i (ε)) := 〈f r

i (ε),

Pr
i (ε)〉. The function F is translation invariant, that is, for all K ∈ F and t ∈ G we

have F(Kt) = F(K).
With the convention (6.1) and using the triangle inequality, we obtain D(ε, δ) ≤

D1(ε, δ) + D2(ε, δ), where

D1(ε, δ) :=
∥∥∥∥∥
N(ε)∑
j=1

ηj (ε)
F (Kr

j (ε)) − ∑N(δ)
i=1 |T j

i (δ)|F(Kr
i (δ))

|Kj(ε)|
∥∥∥∥∥, and

D2(ε, δ) :=
∥∥∥∥∥
N(ε)∑
j=1

ηj (ε)

∑N(δ)
i=1 |T j

i (δ)|F(Kr
i (δ))

|Kj(ε)| −
N(δ)∑
i=1

ηi(δ)
F (Kr

i (δ))

|Ki(δ)|
∥∥∥∥∥.
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The translation invariance of F and the triangle inequality yield

(6.2) D1(ε, δ) ≤
N(ε)∑
j=1

ηj (ε)

|Kj(ε)|
∥∥∥∥∥F (

Kr
j (ε)

) −
N(δ)∑
i=1

∑
t∈T

j
i (δ)

F
(
Kr

i (δ)t
)∥∥∥∥∥.

We decompose Kr
j (ε) in the following way:

Kr
j (ε) =

N(δ)⋃
i=1

⋃
t∈T

j
i (δ)

Kr
i (δ)t ∪̇Kr

j (ε) \
N(δ)⋃
i=1

Ki(δ)T
j
i (δ)

∪̇
((

Kr
j (ε)

∖ N(δ)⋃
i=1

Kr
i (δ)T

j
i (δ)

)
∩

N(δ)⋃
i=1

(
Ki(δ) ∩ ∂r(Ki(δ)

))
T

j
i (δ)

)

=: α1 ∪̇α2 ∪̇α3.

By definition of the function F , the almost additivity of the admissible field
f inherits to F . Note that δ-disjointness of the sets Kit , t ∈ T

j
i (δ) implies δ-

disjointness of the sets Kr
i t , t ∈ T

j
i (δ). Therefore, applying almost additivity,

Lemma 3.5 and the properties of admissible fields and the boundary term we obtain∥∥∥∥∥F (
Kr

j (ε)
) −

N(δ)∑
i=1

∑
t∈T

j
i (δ)

F
(
Kr

i (δ)t
)∥∥∥∥∥

≤
∥∥∥∥∥F (

Kr
j (ε)

) −
3∑

i=1

F(αi)

∥∥∥∥∥ +
∥∥∥∥∥F(α1) −

N(δ)∑
i=1

∑
t∈T

j
i (δ)

F
(
Kr

i (δ)
)∥∥∥∥∥

+ ∥∥F(α2)
∥∥ + ∥∥F(α3)

∥∥
≤

3∑
i=1

b(αi) + δ(3Kf + 9Df )
∣∣Kj(ε)

∣∣

+ 3
N(δ)∑
i=1

∑
t∈T

j
i

b
(
Kr

i (δ)
) + Kf |α2| + Kf |α3|

≤ δ(3Kf + 9Df )
∣∣Kj(ε)

∣∣
+ 4

N(δ)∑
i=1

∑
t∈T

j
i (δ)

b
(
Kr

i (δ)
) + (Kf + Df )|α2| + (Kf + Df )|α3|.

Next, we estimate the sizes of α2 and α3. For α3, we drop some of the intersections
in its definition. In order to give a bound on the size of α2, we use that Kr

j (ε) is
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(1 − 2ε)-covered by {Kr
i (δ) | i}, more specifically, part (iii) in Definition 3.1. We

obtain

|α2| ≤ 2δ
∣∣Kj(ε)

∣∣ and |α3| ≤
N(δ)∑
i=1

∣∣T j
i (δ)

∣∣∣∣∂r(Ki(δ)
)∣∣,

and therewith achieve∥∥∥∥∥F (
Kr

j (ε)
) −

N(δ)∑
i=1

∑
t∈T

j
i (δ)

F
(
Kr

i (δ)t
)∥∥∥∥∥

≤ δ(5Kf + 11Df )
∣∣Kj(ε)

∣∣
+

N(δ)∑
i=1

∣∣T j
i (δ)

∣∣(4b
(
Kr

i (δ)
) + (Kf + Df )

∣∣∂r(Ki(δ)
)∣∣).

This together with (6.2) and part (a) of Lemma 3.3 yields

D1(ε, δ)

≤
N(ε)∑
j=1

(
δ(5Kf + 11Df )ηj (ε)

+
N(δ)∑
i=1

ηj (ε)|T j
i (δ)|

|Kj(ε)|
(
4b

(
Kr

i (δ)
) + (Kf + Df )

∣∣∂r(Ki(δ)
)∣∣))

≤ δ(5Kf + 11Df )

+
N(ε)∑
j=1

N(δ)∑
i=1

ηj (ε)|T j
i (δ)|

|Kj(ε)|
(
4b

(
Kr

i (δ)
) + (Kf + Df )

∣∣∂r(Ki(δ)
)∣∣).

As δ is assumed to be smaller than 1/10, we can apply Corollary 3.4, which gives
for arbitrary i ∈ {1, . . . ,N(δ)} and j ∈ {1, . . . ,N(ε)}

|T j
i (δ)|

|Kj(ε)| ≤ ηi(δ)

|Ki(δ)| + 4
δηi(δ)

|Ki(δ)| ≤ 5
ηi(δ)

|Ki(δ)| .

Inserting this in the last estimate for D1(ε, δ) implies together with part (a) of
Lemma 3.3 that

D1(ε, δ) ≤ δ(5Kf + 11Df )

+
N(δ)∑
i=1

5ηi(δ)

|Ki(δ)|
(
4b

(
Kr

i (δ)
) + (Kf + Df )

∣∣∂r(Ki(δ)
)∣∣).
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Now, we use the monotonicity assumption in (4.1), which allows to replace the
elements Kr

i (δ) and Ki(δ) by Qr
i and Qi , respectively,

D1(ε, δ) ≤ δ(5Kf + 11Df )

+
N(δ)∑
i=1

5ηi(δ)

|Qi |
(
4b

(
Qr

i

) + (Kf + Df )
∣∣∂r(Qi)

∣∣).(6.3)

Let us proceed with the estimation of D2(ε, δ):

D2(ε, δ) =
∥∥∥∥∥
N(δ)∑
i=1

F
(
Kr

i (δ)
)(N(ε)∑

j=1

ηj (ε)
|T j

i (δ)|
|Kj(ε)| − ηi(δ)

|Ki(δ)|
)∥∥∥∥∥.(6.4)

With the triangle inequality, Corollary 3.4 and part (a) of Lemma 3.3 we obtain∣∣∣∣∣
N(ε)∑
j=1

ηj (ε)
|T j

i (δ)|
|Kj(ε)| − ηi(δ)

|Ki(δ)|
∣∣∣∣∣

≤
N(ε)∑
j=1

ηj (ε)

∣∣∣∣ |T
j
i (δ)|

|Kj(ε)| − ηi(δ)

|Ki(δ)|
∣∣∣∣ +

∣∣∣∣∣
N(ε)∑
j=1

ηj (ε) − 1

∣∣∣∣∣ ηi(δ)

|Ki(δ)|

≤
N(ε)∑
j=1

ηj (ε)
4δηi(δ)

|Ki(δ)| + εηi(δ)

|Ki(δ)| ≤ 4δηi(δ)

|Ki(δ)| + εηi(δ)

|Ki(δ)| .

This together with (6.4) gives the bound

D2(ε, δ) ≤
N(δ)∑
i=1

Kf

∣∣Kr
i (δ)

∣∣(4δηi(δ)

|Ki(δ)| + εηi(δ)

|Ki(δ)|
)

≤ 4Kf δ + Kf ε.(6.5)

Thus, the estimates of D1(ε, δ) and D2(ε, δ) in (6.3) and (6.5) together yield

D(ε, δ) ≤ Kf ε + δ(9Kf + 11Df )

+
N(δ)∑
i=1

5ηi(δ)

|Qi |
(
4b

(
Qr

i

) + (Kf + Df )
∣∣∂r(Qi)

∣∣)(6.6)

for all δ > 0 and ε ∈ (0, ε0(δ)). Applying part (c) of Lemma 3.3, we see

lim
δ↘0

lim
ε↘0

D(ε, δ) = 0.

Using a Cauchy argument and the fact that B is a Banach space, we obtain that
there exists an element f ∗ ∈ B with

lim
ε↘0

∥∥∥∥∥
N(ε)∑
j=1

ηj (ε)
〈f r

j (ε),Pr
j (ε)〉

|Kj(ε)| − f ∗
∥∥∥∥∥ = 0.
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In order to get the error estimate for finite δ > 0, we use (6.6), Lemma 3.3(c) and
(4.1) as follows:∥∥∥∥∥

N(δ)∑
j=1

ηj (δ)
〈f r

j (δ),Pr
j (δ)〉

|Kj(δ)| − f ∗
∥∥∥∥∥

= lim
ε↘0

D(ε, δ)

≤ (9Kf + 11Df )δ +
N(δ)∑
i=1

5ηi(δ)

|Qi |
(
4b

(
Qr

i

) + (Kf + Df )
∣∣∂r(Qi)

∣∣)
≤ (9Kf + 11Df )δ + 5(4 + Kf + Df )β(δ). �

7. Proof of the main theorem. We will prove a slightly more explicit state-
ment which tracks the geometric error in terms of ε and the probabilistic error in
terms of κ separately. Theorem 2.5 is implied by the choice κ := √

ε. Recall that
B is the Banach space of bounded and right-continuous functions from R to R.

THEOREM 7.1. Let G be a finitely generated amenable group. Further, let
A ∈ B(R) and (� = AG,B(�),P) a probability space such that P satisfies (M1)
to (M3). Finally, let U be an admissible set of admissible fields with common bound
KU ; cf. Definition 2.2.

Then there exists a limit element f ∗ ∈ B with the following properties. For each
Følner sequence (�n), ε ∈ (0,1/10) and κ > 0, there exist j0(ε) ∈ N, which is
independent of κ and KU , and a(ε, κ,KU ), b(ε, κ,KU ) > 0, such that for all j ∈
N, j ≥ j0(ε), there is an event �j,ε,κ,KU ∈ B(�) with the properties

P(�j,ε,κ,KU ) ≥ 1 − b(ε, κ,KU ) exp
(−a(ε, κ,KU )|�j |)

and∥∥∥∥f (�j ,ω)

|�j | − f ∗
∥∥∥∥

≤ (37Kf + 47Df + 46)
√

ε + κ for all ω ∈ �j,ε,κ,KU and all f ∈ U .

PROOF. We follow the path prescribed in the previous chapters and:

• quasi tile �j , j ≥ j0(ε), with Ki(ε), i = 1, . . . ,N(ε) (see Theorem 3.2),
• approximate |�j |−1f (�j ,ω) with the empirical measures L

r,ω
i,j (ε); cf.

(4.8) and Lemma 4.3,
• express the empirical measures by their limiting counterparts Pr

i (ε) with
Lemma 5.4, and

• use the Cauchy property of the remaining terms to obtain a limiting function
f ∗; see Lemma 6.1.



GLIVENKO–CANTELLI THEORY OVER AMENABLE GROUPS 2445

To confirm the error estimate, we employ the triangle inequality∥∥∥∥f (�j ,ω)

|�j | − f ∗
∥∥∥∥

≤
∥∥∥∥∥f (�j ,ω)

|�j | −
N(ε)∑
i=1

ηi(ε)
〈f r

i (ε),L
r,ω
i,j (ε)〉

|Ki(ε)|
∥∥∥∥∥

+
∥∥∥∥∥
N(ε)∑
i=1

ηi(ε)
〈f r

i (ε),L
r,ω
i,j (ε)〉

|Ki(ε)| −
N(ε)∑
i=1

ηi(ε)
〈f r

i (ε),Pr
i (ε)〉

|Ki(ε)|
∥∥∥∥∥

+
∥∥∥∥∥
N(ε)∑
i=1

ηi(ε)
〈f r

i (ε),Pr
i (ε)〉

|Ki(ε)| − f ∗
∥∥∥∥∥ =: �(ε, j,ω).

By Lemmas 6.1 and 4.3 and Proposition 5.4, we immediately get that there is an
event �̃ ∈ B(�) with full probability P(�̃) = 1 such that limε↘0 limj→∞ �(ε,

j,ω) = 0 for all ω ∈ �̃. Furthermore, Lemma 5.4 provides the event �j,ε,κ,KU
with probability as large as claimed, and by collecting all the error terms and by
Remark 4.1, we see that for all ε ∈ (0,1/10), j ≥ j0(ε), κ > 0, f ∈ U and ω ∈
�j,ε,κ,KU (see Lemma 5.4),∥∥∥∥f (�j ,ω)

|�j | − f ∗
∥∥∥∥ ≤ (20Kf + 30Df )ε + (17Kf + 17Df + 46)β(ε) + κ

≤ (37Kf + 47Df + 46)
√

ε + κ.

Note the uniformity of the last inequality for all f ∈ U is also discussed in Re-
mark 4.1.

To see that the limit f ∗ does not depend on the specific choice of (�j ) use the
following argument: Every two Følner sequences can be combined two one Følner
sequence, which yields by our theory a limit f ∗ ∈ B. As the two original sequences
are subsequences, they lead to the same limit function f ∗. �

APPENDIX A: CONDITIONAL RESAMPLING

In Lemma 5.2, we need to remove the dependent parts of samples. We achieve
this by resampling the critical parts of the samples, keeping the large enough al-
ready independent parts. This is done by augmenting the probability space to pro-
vide room for more random variables. The problem of resampling turned out to be
treatable in a much broader setting, so a general tool is provided here.

THEOREM A.1 (Resampling). Let (�,A,P) be a Borel probability space,
(S,S) a Borel space and X : � → S an S-valued random variable with distri-
bution PX := P ◦ X−1 : S → [0,1]. Further, let I be an index set, and for each
j ∈ I , let Yj ⊆ S be a σ -algebra.
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Then there is a probability space (�,A,P), such that for all j ∈ I , maps as
indicated in the following diagram exist and are measure preserving, and all the
diagrams commute almost surely:

This means in particular that �0 is measure preserving, and that, for all j ∈ I :

(i) the random variable Xj has distribution PX ,
(ii) for each measure space (T ,T ) and each Yj -T -measurable map g : (S,

Yj ) → (T ,T ), we have g(X0) = g(Xj ) P-almost surely.

Furthermore, the joint distribution of (Xj )j∈I has the following properties:

(iii) For each finite subset F ⊆ I and AF = Ś
j∈F Aj , where Aj ∈ S , we have

PX-almost surely that

P(XF ∈ AF | X0 = · ) = ∏
j∈F

P(Xj ∈ Aj | X0 = · ) = ∏
j∈F

PX(Aj | Yj ).

In particular, the random variables Xj , j ∈ I , are independent when conditioned
on X0.

(iv) If, for a (not necessarily finite) subset J ⊆ I , the σ -algebras Yj , j ∈ J , are
PX-independent, then the random variables Xj , j ∈ J , are P-independent.

Since �0 is measure preserving, (�,A,P) extends (�,A,P). Property (i) justi-
fies the name resampling. Statement (ii) says that in Xj the information contained
in Yj is preserved throughout the resampling, j ∈ I . Point (iii) states that the new
random variables copied only the information from Yj , j ∈ I , and not more. In
(iv), we learn how to provide independence of the resampling random variables.

PROOF. We define the spaces and maps as follows:

� := � × SI , A := A ⊗ S⊗I ,

�0 : � → �, �0
(
ω, (sj )j∈I

) := ω,

X0 : � → S, X0
(
ω, (sj )j∈I

) := X(ω),

Xj : � → S, Xj

(
ω, (sk)k∈I

) := sj .

We now define the measure P via Kolmogorov’s extension theorem; see [4], The-
orem 14.36. We need a consistent family of probability measures. For a more uni-
fying notation, we augment I0 := {0} ∪̇ I . Fix a finite subset F ⊆ I0. If 0 ∈ F , we
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define a probability measure PF : A⊗S⊗F\{0} → [0,1]. In the case 0 /∈ F , we de-
fine a probability measure PF : S⊗F → [0,1]. If 0 ∈ F , then choose A0 ∈ A; oth-
erwise, let A0 := �. For all j ∈ F \ {0}, we let Aj ∈ S . Now let AF := Ś

j∈F Aj

and

(A.1) PF (AF ) := E
[
1A0

∏
j∈F\{0}

PX(Aj | Yj ) ◦ X

]
.

Here, E denotes integration with respect to P. By the extension theorem for mea-
sures (see [4], Theorem 1.53), (A.1) defines a probability measure. The family
(PF )F ⊆ I finite is consistent. For example, for finite subsets 0 /∈ F ⊆ J ⊆ I

with the projection �J
F : SJ → SF and AF = Ś

j∈F Aj with Aj ∈ S , we have

(�J
F )−1(AF ) = AF × Ś

j∈J\F S. Thus,

PJ ((
�J

F

)−1
(AF )

) = EX

[ ∏
j∈F

PX(Aj | Yj )
∏

j∈J\F
PX(S | Yj )

]
= PF (AF ),

where EX is integration with respect to PX . The remaining cases 0 ∈ F ⊆ J , and
0 /∈ F but 0 ∈ J work analogously. By Kolmogorov’s extension theorem, we have
exactly one measure P := lim←−F⊆I

PF : A → [0,1].
We now verify the properties of P. Let us first check that �0 is measure pre-

serving. Indeed, for A ∈ A, we have

P(�0 ∈ A) = P{0}(A) = E[1A] = P(A).

Now we already know that X0 = X ◦ �0 is measure preserving, also.

Ad (i): For all j ∈ I and B ∈ S , we have

P(Xj ∈ B) = P{j}(B) = EX

[
PX(B | Yj )

] = EX[1B] = PX(B).

Ad (ii): Let j ∈ I , (T ,T ) be a measure space and g : S → T be Yj -T -
measurable. We determine the joint distribution of X and Xj . By (A.1), we have,
for B,B ′ ∈ T , that A := g−1(B) ∈ Yj as well as A′ := g−1(B ′) ∈ Yj , and

P
(
g(X0) ∈ B,g(Xj ) ∈ B ′) = P

(
X0 ∈ A,Xj ∈ A′)

= P{0,j}(X−1(A) × A′)
= E

[
1X−1(A)PX

(
A′ | Yj

) ◦ X
]

= EX[1A1A′ ]
= PX

(
A ∩ A′)

= P
(
X0 ∈ A ∩ A′)

= P
(
g(X0) ∈ B ∩ B ′),

(A.2)
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where in the last line, we used that A ∩ A′ = g−1(B) ∩ g−1(B ′) = g−1(B ∩
B ′). Now, since the rectangles {B × B ′ | B,B ′ ∈ T } are stable under inter-
sections and generate T ⊗ T , equation (A.2) determines the distribution of
(g(X0), g(Xj )) : � → T 2. Note that the measure which is concentrated on the
diagonal {(t, t) | t ∈ T } with both marginals equal to PX ◦g−1 satisfies (A.2), also.
Therefore, P(g(X0) = g(Xj )) = 1.

Ad (iii): Fix a finite subset F ⊆ I and Aj ∈ S for j ∈ F , and let AF :=Ś
j∈F Aj . For all B ∈ S , we have

E
[
1{X0∈B}P(XF ∈ AF | X0)

] = E
[
1{X0∈B}E[1{XF ∈AF } | X0]]

= E[1{X0∈B}1{XF ∈AF }]
= P[X0 ∈ B,XF ∈ AF ]
= P{0}∪F (

X−1(B) × AF

)
= E

[
1X−1(B)

∏
j∈F

PX(AF | Yj ) ◦ X

]

= E
[
1{X0∈B}

∏
j∈F

PX(AF | Yj ) ◦ X0

]
.

Since σ(X0) = {{X0 ∈ B} | B ∈ S}, this proves

P(XF ∈ AF | X0) = ∏
j∈F

PX(Xj ∈ Aj | Yj ) ◦ X0

P-almost surely. For F = {j}, we get P(Xj ∈ Aj | X0) = PX(Xj ∈ Aj | Yj ), also.
The claim is the factorized version of these statements, which exist because (S,S)

is a Borel space.
Ad (iv): For F ⊆ J finite and AF = Ś

j∈F Aj with Aj ∈ S , we use (iii) to get

P(XF ∈ AF ) = E
[
P(XF ∈ AF | X0)

]
= E

[ ∏
j∈F

PX(Aj | Yj ) ◦ X0

]

= EX

[ ∏
j∈F

PX(Aj | Yj )

]
.

The σ -algebras Yj , j ∈ F ⊆ J , are PX-independent. This independence is inher-
ited by Yj -measurable functions like PX(Aj | Yj ). We can therefore continue the
calculation with

P(XF ∈ AF ) = ∏
j∈F

EX

[
PX(Aj | Yj )

] = ∏
j∈F

PX(Aj ) = ∏
j∈F

P(Xj ∈ Aj).

Since the cylinder sets generate S⊗J , this is the claimed P-independence. �



GLIVENKO–CANTELLI THEORY OVER AMENABLE GROUPS 2449

APPENDIX B: PROOF SUMMARY FOR MONTILABLE AMENABLE
GROUPS

The proofs of [12] concerning the case G = Zd can be generalized to apply to a
finitely generated amenable group G if it satisfies the tiling property (�).

We list the major changes which are necessary for this purpose:

(a) Instead of defining the set Tm,n using multiples of m (cf. equation (4.1) in
[12]), we employ the grid Tm, namely, we set

Tm,n := {t ∈ Tm | �mt ⊆ �n}(B.1)

Thus, Tm,n contains the elements of Tm which correspond to translates of �m

which are completely contained in �n. Using this definition, the empirical
measures are Lω

m,n and Lω,r
m,n are given accordingly.

(b) One needs to verify the following basic result. Given a tiling Følner sequence
(�n), we have:

(i) for each m ∈ N, the sequence (�mTm,n)n∈N is a Følner sequence;
(ii) for each m,n ∈ N, we have �n ⊆ ∂ρ(m)(�n)∪�mTm,n, where ρ(m) =

diam(�m); and
(iii) for each m ∈ N we have limn→∞ |�n|/|Tm,n| = |�m|.

(c) Points (a) and (b) allow to prove an equivalent version of Lemma 4.1 of [12] in
the situation of amenable groups with property (�), by following exactly the
steps of the proof presented therein.

(d) Besides Lemma 4.1 in [12], also Lemma 6.1 in [12] needs to be slightly
changed. In fact, again by using (a) and (b) the proof can directly be adapted
to the situation where G is amenable and (�n) is a tiling Følner sequence.

(e) In the end, the proof of the main theorem reduces basically to an application
of the triangle inequality, the new versions of Lemma 4.1 and Lemma 6.1 as
well as Theorem 5.6 in [12]. Note that Theorem 5.6 need not to be adapted as
it is independent of the geometry.
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Abstract. In this paper, we study spectral properties of self-adjoint op-
erators on a large class of geometries given via sofic groups. We prove
that the associated integrated densities of states can be approximated
via finite volume analogues. This is investigated in the deterministic as
well as in the random setting. In both cases, we cover a wide range of
operators including in particular unbounded ones. The large generality of
our setting allows one to treat applications from long-range percolation
and the Anderson model. Our results apply to operators on Zd, amenable
groups, residually finite groups and therefore in particular to operators on
trees. All convergence results are established without an ergodic theorem
at hand.

1. Introduction

The study of self-adjoint operators on discrete structures has a long history
in mathematical physics, both in the deterministic as well as in the random
case. The investigation of spectral properties of such operators is motivated
as essential features of solutions of differential equations are encoded in the
spectrum of the corresponding operator. However, it is in many cases hard to
obtain results on the spectrum by directly studying the operator. One way to
overcome this difficulty is to study the integrated density of states (IDS) as a
rather simple object which still carries much information about the spectrum
of the operator.

In order to define the IDS, one chooses a sequence of finite-dimensional
self-adjoint operators approximating the original operator in a suitable sense
and considers their eigenvalue counting functions. For each λ ∈ R, this func-
tion returns the number of eigenvalues of the approximating operator (counting
multiplicity) not larger than λ. The IDS is then defined as the pointwise limit
of the normalized eigenvalue counting functions, if the limit exists. In this sit-
uation, it is in many cases possible to show that the IDS equals the so-called
spectral distribution function (SDF), given via a trace of certain projections,



1068 C. Schumacher and F. Schwarzenberger Ann. Henri Poincaré

see (2.3). This equality is called the Pastur–Shubin trace formula. Depending
on the context, the SDF is sometimes called von Neumann trace, see for in-
stance [23], and in other situations, the associated measure is known as the
Plancherel measure or Kesten spectral measure, see e.g. [9].

Two questions arise:

(a) Does the limit of the eigenvalue counting functions exist?
(b) Does the Pastur–Shubin trace formula hold?

The investigation of these questions has a long history. In the seminal
papers, [33,42], the existence of the limit was first rigorously studied. The
authors studied random ergodic and almost periodic operators in Euclidean
space. To the present day, many results were obtained in random as well as
in the deterministic settings and for various geometries. Convergence results
on manifolds for random and periodic Schrödinger operators are studied in [2,
22,37,44,45] and in the discrete case for finite difference operators on periodic
graphs in [9,13,30,31,47]. Note that the approximability of the zeroth �2-
Betti number can be interpreted as the evaluation of the IDS at one single
point. Therefore, it is important to mention the works [14–16,24,27], where
this problem was studied.

In the present paper, we study the questions (a) and (b) in a very broad
background. First, the class of operators we treat is very large, in the de-
terministic as well as in the random setting. The operators are defined on
�2(G), where G is a finitely generated group, which is detailed in the follow-
ing paragraph. We assume the deterministic operators to be self-adjoint and
translation invariant, and we require that the finitely supported functions are
a core. In the random situation, we require translation invariance in distribu-
tion, some independence and a classical moment condition (3.2) on the matrix
elements. These assumptions imply essential self-adjointness of the random
operators on the compactly supported functions. This class of random Hamil-
tonians includes famous random models from mathematical physics such as
the Anderson model on Cayley graphs and the Laplacian of percolation graphs.
Note that our methods allow for unboundedness of the operators and of their
hopping range in the random and in the non-random case.

Second, our geometry is very general: We can treat any finitely generated
sofic group, cf. Definition 1.1. The notion of sofic groups goes back to Gromov
[19] and Weiss [48] and was later on studied for instance in [7,8,11,17,34,
43,46]. This class of groups contains all amenable groups, all residually finite
groups and therefore especially all groups of sub-exponential growth as well
as some exponentially growing groups, as for instance the free group. It was
shown in [11] that there exist sofic groups which are not limits of amenable
groups. Moreover, there is no group which is known to be non-sofic.

The Cayley graph of a sofic group with a finite generating set can be
approximated with a sequence of finite graphs. We extend this approximation
to the level of operators, leading to an appropriate definition of the IDS. We
establish the Pastur–Shubin trace formula in the deterministic and in the ran-
dom settings. Hence, we give positive answers to the questions (a) and (b) in
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very general situations. The deterministic result Theorem 2.4 should be com-
pared to [27, Theorem 2.3.1]. While Lück covers residually finite groups and
bounded operators, we treat the more general class of sofic groups and allow
for unboundedness of the operators. The random results have, to the best of
our knowledge, never been achieved in this generality.

With stronger assumptions on the geometry, uniform convergence of
the eigenvalue counting functions can be obtained. For example, sufficient
conditions are G = Zd [21] or amenability of G [26,36]. For a survey on
uniform convergence for operators on groups and additional references, we
recommend [41]. Similar results are possible for operators on Delone sets
[25].

The physical relevance of our results is underlined by Theorem 3.10, which
states that the topological support of the measure associated with the SDF
equals the spectrum of the operator. For a detailed study of related results,
we refer to [23] and the references therein.

As mentioned, our results apply to the free group and therefore to regular
trees. The approximation of trees via finite volume graphs is an intensively
studied problem, see e.g. [4] and references therein.

The main obstacle is the non-amenability of trees, i.e., the average over
a ball depends drastically on the contribution of the boundary sphere of the
ball. The sphere of the ball has nodes of altered degree and that prevents
good approximation properties. As a result, instead of the Cayley graph of the
free group, [4] approximated the canopy tree, which highlights the leaves of
degree 1. The analogous phenomenon was encountered in [44,45] in the con-
tinuous setting. In order to construct good approximating graphs for regular
trees, one resorts to regular graphs. As shown by [29], the correct strategy
in order to approximate the regular tree is to avoid large quantities of small
cycles. Other possibilities to improve the approximation properties of balls
are studied in [18]. There the authors insert weighted edges connecting the
boundary elements.

Our results show that the definition of sofic groups gives a natural crite-
rion for the choice of the approximating finite objects. We hereby open the way
to explore phenomena like eigenvalue statistics, which depend by definition on
suitable approximations, for a wide variety of models. In [4], the authors study
Poisson statistics vs. level repulsion for the canopy tree. We expect sofic ap-
proximations to be a good starting point to treat this topic in more models
with absolutely continuous spectrum.

Let us describe the content of the paper in detail. First, we detail the
setting, give the definition of sofic groups and fix notation. Section 2 is de-
voted to the proof of Theorem 2.4, the convergence result for deterministic
operators. In Sect. 3, we study questions (a) and (b) for random operators on
sofic groups. We define the class of random operators we study henceforth on
sofic groups. Section 3.1 is the version of Sect. 2 for random Hamiltonians.
Here, we define the finite-dimensional approximating operators and show the
convergence of their eigenvalue counting functions in expectation, see Theo-
rem 3.5. In Sect. 3.2, we improve the convergence of the expectation values
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to almost sure convergence. The means of choice here is a well-known concen-
tration inequality by McDiarmid. Note that all of our convergence results are
established without an ergodic theorem at hand.

Section 4 contains an example, namely long-range percolation on sofic
groups, in Sect. 4.1. For free groups, the IDS is known explicitly. We give two
explicit constructions of deterministic sofic approximations for the free group
in Sect. 4.2. We illustrate our deterministic convergence result for the free
group with two generators with numerical implementations.

Four appendices finish the paper. Thanks to M. Hansmann, Appendix A
presents a class of deterministic, unbounded operators on Z which fit in the
setting of Sect. 2. In Appendix C, we explicitly construct random self-adjoint
operators on countable groups, which are translation invariant in distribution,
employing techniques from [35]. The proofs in Appendices B and D are rather
folklore. We include them since we did not find appropriate references.

1.1. Setting and Notation

Let G be a group and S ⊆ G a finite and symmetric set of generators. The
Cayley graph Γ = Γ(G,S) is the graph with vertices G and a directed edge
from g ∈ G to h ∈ G, if gh−1 ∈ S. We label the edge between g and h with
gh−1. For any graph (V,E) the graph distance d(V,E) : V ×V → N0 is given as
the length of the shortest path between the arguments, ignoring the direction
of the edges. We denote the ball around v ∈ V of radius r ≥ 0 with respect
to d(V,E) by BV

r (v). If (V,E) = Γ(G,S), we write BG
r := BV

r (id), where id is
the identity of G.

Definition 1.1 (cf. [48]). In the above setting, G is sofic, if for all ε > 0 and
r ∈ N there is a finite directed graph (Vr,ε, Er,ε), edge labeled by S, which has

a finite subset V
(0)
r,ε ⊆ Vr,ε such that:

(S1) sofic]S1 for all v ∈ V
(0)
r,ε the r-ball around v in the graph distance of

(Vr,ε, Er,ε) is isomorphic as a labeled graph to Γ|BG
r
,

(S2) sofic]S2 |V (0)
r,ε | ≥ (1 − ε)|Vr,ε|.

The approximating graphs (Vr,ε, Er,ε) are called sofic approximations.
Note that the property of being sofic is independent of the specific choice of
the symmetric generating system S, cf. [48]. The class of sofic groups is quite
large. In fact, there is no known example for a (finitely generated) group which
fails to be sofic. As already proven by Weiss, amenable as well as residually
finite groups are sofic. In particular, finitely generated free groups are residually
finite and hence sofic.

Except otherwise mentioned, we assume that the group G is infinite and
sofic. In order to simplify notation, we choose some function ε : N → (0,∞)
with limr→∞ ε(r) = 0 and fix for each r ∈ N a graph (Vr,ε(r), Er,ε(r)) and a

subset V
(0)
r,ε(r) satisfying (S1) and (S2). We abbreviate

Γr = (Vr, Er) = (Vr,ε(r), Er,ε(r)), V (0)
r = V

(0)
r,ε(r), dr = d(Vr,Er). (1.1)
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Figure 1. Illustration of Lemma 2.2. Note that all paths stay
inside the solid balls

Throughout the paper, we deal with the Hilbert space �2(G) of square sum-
mable functions on G. We denote the Kronecker delta δg ∈ �2(G) at g ∈ G
by δg : G → {0, 1}, i.e., δg(h) = 1 iff g = h. The set of compactly sup-
ported functions on G is D0 := lin{δg | g ∈ G}. In this sense, a function
φ ∈ �2(G) is called compactly supported (or finitely supported) if the set
spt(φ) := {x ∈ G | φ(x) �= 0} is finite.

2. Deterministic Approximation Results

Let A : D ⊆ �2(G) → �2(G) be a self-adjoint operator satisfying

(A1) assumption]core The set of compactly supported functions D0 is a core
for A.

(A2) assumption]transl A is translation invariant, i.e. a(g, h) = a(gh′, hh′) for
all g, h, h′ ∈ G,

where a(g, h) := 〈δg, Aδh〉 is the matrix element of A at g, h ∈ G. Note that
Assumption (A1) implies ‖Aδg‖22 =

∑
h∈G|a(g, h)|2 < ∞ for all g ∈ G.

Remark 2.1. The operators fulfilling Assumptions (A1) and (A2) can be un-
bounded. An example of such an operator on Z is constructed in Appendix A.

Since G is sofic, we have, for each v ∈ V
(0)
r , an isomorphism of labeled

graphs

Ψr,v : B
Vr
r (v) → BG

r . (2.1)

Note that for v, w ∈ V
(0)
r with dr(v, w) < r, we have

Ψr,v(w) = (Ψr,w(v))
−1, (2.2)

since the labels along a path from v to w are preserved and equal the inverse
labels of the reversed path. In particular, we have Ψr,v(v) = id ∈ G for all v.
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Figure 2. Illustration of Remark 2.3

Lemma 2.2. Let r ∈ N. If x, y ∈ Vr and v, w ∈ V
(0)
r fulfill x, y ∈ BVr

r/2(v) ∩
BVr

r/2(w), then we have

Ψr,v(x)(Ψr,v(y))
−1 = Ψr,w(x)(Ψr,w(y))

−1.

Proof. Let x, y ∈ Vr and v, w ∈ V
(0)
r be such that x, y ∈ BVr

r/2(v) ∩ BVr

r/2(w).

Then k := dr(x, y) ≤ r and hence all shortest paths in Γr connecting x and y
are completely contained in BVr

r (v) as well as in BVr
r (w) (Fig. 1). We consider

one of these shortest (directed) paths from x to y. Let (s1, . . . , sk) be the vector
of the labels of this path. Then, we have, by the properties of Ψr,v,

Ψr,v(x)(Ψr,v(y))
−1 = s1 · · · sk(Ψr,v(y))(Ψr,v(y))

−1 = s1 · · · sk.

As we also have Ψr,w(x) = s1 · · · sk(Ψr,w(y)), the claim follows. �

We define the approximating operator Ar : �
2(Vr) → �2(Vr) on the graph

Γr by

(Arf)(x) :=
∑

y∈Vr

ar(x, y)f(y), where

ar(x, y) :=

{
a(Ψr,v(x),Ψr,v(y)) if ∃v ∈ V

(0)
r : x, y ∈ BVr

r/6(v)

0 otherwise.

This operator is well-defined by Lemma 2.2. Note that Ar is a symmetric and
hence self-adjoint operator on �2(Vr).

Remark 2.3. The reason why we use r/6 instead of r/2 is the following. In the

proofs of Theorems 2.4 and 3.5, we need to ensure that y ∈ BVr

r/2(w) whenever

w ∈ V
(0)
r , x ∈ BVr

r/6(w) and ar(x, y) �= 0, see Fig. 2.

We can then use Lemma 2.2 and Assumption (A2) to change the reference
point v in the definition of ar(x, y) to w. As BVr

r (w) is the domain of Ψr,w,
we have a corresponding statement in BG

r . Note that r/6 is an upper bound.
Any function ρ(r) ≤ r/6 with limr→∞ ρ(r) = ∞ is permissible, see Eq. (3.4).
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Define for each r ∈ N the normalized eigenvalue counting function Nr

of Ar by

Nr : R → [0, 1], Nr(λ) :=
|{eigenvalues of Ar not larger than λ}|

|Vr|
,

where the eigenvalues are counted with multiplicity. If the limit of these func-
tions for r → ∞ exists (in an appropriate sense), this limit is called the inte-
grated density of states (IDS) of A. We denote by Eλ the spectral projection
of the operator A on the interval (−∞, λ]. With its help, we define

N : R → [0, 1], N(λ) := 〈δid, Eλδid〉. (2.3)

This is a distribution function for a probability measure and is called the
spectral distribution function (SDF) of A. The next theorem shows that the
integrated density of states exists and equals the spectral distribution function.
In other words, we prove the Pastur–Shubin trace formula.

Theorem 2.4. Let N and Nr be given as above. Then

lim
r→∞

Nr(λ) = N(λ)

at all continuity points λ of N .

In the proof of Theorem 2.4, we will use the following well-known lemmas.

Lemma 2.5. Let H : D(H) → �2(G) be a self-adjoint operator with domain
D(H) ⊆ �2(G), and assume that D0 ⊆ D(H) is a core of H. Then, for all
z ∈ C\R,

(z −H)(D0) = {ψ ∈ �2(G) | (z −H)−1ψ ∈ D0}
is dense in �2(G).

Proof. Since D0 is a core of H, it is dense in D(H) with respect to the graph
norm ξ �→ ‖ξ‖H := ‖ξ‖ + ‖Hξ‖. The map

z −H : (D(H), ‖ · ‖H) → (�2(G), ‖ · ‖2)
is continuous and subjective. The statement follows. �

Lemma 2.6. Let N,N1, N2, . . . : R → [0, 1] be probability distribution functions.
Then the following are equivalent.

(i) limr→∞Nr(λ) = N(λ) for all continuity points λ of N .
(ii) limr→∞

∫
(z − λ)−1dNr(λ) =

∫
(z − λ)−1dN(λ) for all z ∈ C\R.

For the proof of Lemma 2.6 we refer to Appendix B.

Remark 2.7. If one of the assertions holds true, the sequence Nr is said to
converge weakly to N . The function C\R → C, z �→

∫
(z−λ)−1dN(λ) is called

Stieltjes transform of the distribution function N . One can rephrase (ii) as
follows. The Stieltjes transforms of Nr converge pointwise toward the Stieltjes
transform of N .
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Proof of Theorem 2.4. Fix z ∈ C\R and define

Dr :=
∣∣∣
∫

R

(z − λ)−1dNr(λ) −
∫

R

(z − λ)−1dN(λ)
∣∣∣.

By Lemma 2.6 it suffices to show that limr→∞Dr = 0. As a first step, we
denote the multiplicity of λ ∈ σ(Ar) by mλ and calculate

∫

R

(z − λ)−1dNr(λ) =
1

|Vr|
∑

λ∈σ(Ar)

mλ(z − λ)−1 =
1

|Vr|
Tr((z −Ar)

−1)

=
1

|Vr|
∑

v∈Vr

〈δv, (z −Ar)
−1δv〉. (2.4)

On the other hand, the spectral theorem gives
∫

R

(z − λ)−1dN(λ) = 〈δid, (z −A)−1δid〉.

Therefore, by the Cauchy–Schwarz inequality, the bound ‖(z−A)−1‖ ≤ |�z|−1

and Condition (S2), we obtain

Dr =
∣∣∣ 1

|Vr|
∑

v∈Vr

〈δv, (z −Ar)
−1δv〉 − 〈δid, (z −A)−1δid〉

∣∣∣

≤ 1

|Vr|
∑

v∈V
(0)
r

|〈δv, (z −Ar)
−1δv〉 − 〈δid, (z −A)−1δid〉|

+
1

|Vr|
∑

v∈Vr\V (0)
r

|〈δv, (z −Ar)
−1δv〉 − 〈δid, (z −A)−1δid〉|

≤ sup
v∈V

(0)
r

|〈δv, (z −Ar)
−1δv〉 − 〈δid, (z −A)−1δid〉| +

2ε(r)

|�z| . (2.5)

Note that the resolvents live on different spaces, which makes their matrix
elements difficult to compare. We overcome this difficulty by introducing local

analogues of Ar on �2(G). To this end, we extend for each v ∈ V
(0)
r the graph

isomorphism form (2.1) to an injective map

Ψ′
r,v : Vr → G.

Note that we do not require that Ψ′
r,v is a graph isomorphism but an injection

of the set Vr into the set G. This map induces a projection

Φr,v : �
2(G) → �2(Vr), Φr,v(f) := f ◦ Ψ′

r,v. (2.6)

We use this projection to transport Ar to �2(G) from the point of view of v:

Âr,v := Φ∗
r,vArΦr,v : �

2(G) → �2(G),

and set âr,v(g, h) := 〈δg, Âr,vδh〉 for g, h ∈ G. The operator z − Âr,v has block
structure, and with Ψ′

r,v(v) = id, one easily verifies

〈δv, (z −Ar)
−1δv〉 = 〈δid, (z − Âr,v)

−1δid〉.
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We plug this into (2.5) and insert ψ ∈ �2(G) for later optimization. Use the
second resolvent identity to deduce

Dr ≤ sup
v∈V

(0)
r

|〈δid,
(
(z − Âr,v)

−1 − (z −A)−1
)
ψ〉| + 2(ε(r) + ‖δid − ψ‖2)

|�z|

≤ sup
v∈V

(0)
r

|〈δid, (z − Âr,v)
−1(A− Âr,v)(z −A)−1ψ〉| + 2(ε(r) + ‖δid − ψ‖2)

|�z|

≤ 1

|�z| sup
v∈V

(0)
r

‖(A− Âr,v)(z −A)−1ψ‖2 +
2(ε(r) + ‖δid − ψ‖2)

|�z| . (2.7)

Let us choose ψ appropriately. For an arbitrary κ > 0, Lemma 2.5 provides
ψ ∈ �2(G) with

‖δid − ψ‖2 < κ and φ := (z −A)−1ψ ∈ D0.

For r ≥ 6 diam(sptφ), we continue to estimate, using the properties of the

approximation Âr,v, v ∈ V
(0)
r , and the Cauchy–Schwarz as well as the triangle

inequality:

‖(A− Âr,v)φ‖2 =

( ∑

g∈G\BG
r/6

∣∣∣
∑

h∈sptφ

〈δg, (A− Âr,v)δh〉φ(h)
∣∣∣
2
)1/2

≤ ‖φ‖2
( ∑

g∈G\BG
r/6

∑

h∈sptφ

|a(g, h) − âr,v(g, h)|2
)1/2

≤ ‖φ‖2
(( ∑

g∈G\BG
r/6

h∈sptφ

|a(g, h)|2
)1/2

+
( ∑

g∈G\BG
r/6

h∈sptφ

|âr,v(g, h)|2
)1/2)

. (2.8)

By Remark 2.3, âr,v(g, h) �= 0 with h ∈ sptφ ⊆ Br/6 implies g ∈ BG
r/2.

Therefore, employing Lemma 2.2, we can estimate
∑

h∈sptφ

∑

g∈G\BG
r/6

|âr,v(g, h)|2

=
∑

y∈Ψ−1
r,v(sptφ)

∑

x∈BVr
r/2(v)\B

Vr
r/6(v)

|ar(x, y)|2

≤
∑

y∈Ψ−1
r,v(sptφ)

∑

x∈BVr
r/2(v)\B

Vr
r/6(v)

|a(Ψr,v(x),Ψr,v(y))|2

≤
∑

h∈sptφ

∑

g∈G\BG
r/6

|a(g, h)|2. (2.9)

These considerations lead to

‖(A− Âr,v)φ‖2 ≤ 2‖φ‖2
( ∑

h∈sptφ

∑

g∈G\BG
r/6

|a(g, h)|2
)1/2

.
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By Assumption (A1) and |sptφ| < ∞, the last expression converges to 0 as
r → ∞. According to (2.7),

lim sup
r→∞

Dr ≤ 2κ/|�z|.

Since κ was chosen arbitrary, we obtain limr→∞Dr = 0. �

3. Approximation Results in the Random Setting

We study the existence of the IDS for random operators on sofic groups. First,
we introduce the random operators and state relevant properties. Detailed def-
initions are given in Appendix C. Then, we investigate the eigenvalue counting
functions of suitable approximating matrix operators. Proceeding in two steps,
we first show convergence in mean, see Sect. 3.1, and improve this to almost
sure convergence in Sect. 3.2. Through this, we again obtain a Pastur–Shubin
trace formula.

For the construction of the random operators, we proceed as follows. Let
G be a finitely generated sofic group. Further, let P1,2 := {e ⊆ G | |e| ∈ {1, 2}}
be the set of all edges of the complete undirected graph with vertex set G.
Moreover, fix independent random variables Xe : Ω → R, e ∈ P1,2, such that
for each x ∈ G the random variables in

{X{g,h} | g, h ∈ G, x ∈ {gh−1, hg−1}} (3.1)

are identically distributed. Note that in (3.1), x = id ∈ G gives the set of all
random variables X{g} = X{g,g}, g ∈ G. We require further

E
[(∑

g∈G

|X{id,g}|
)2]

< ∞. (3.2)

Using these random variables, we define

a(g, h) := X{g,h} − αδg(h)
∑

g′∈G\{g}
X{h,g′} (3.3)

for g, h ∈ G and a parameter α ∈ R. In the following lemma, we use these
random variables a(g, h) to define an adapted random operator. Afterward,
we discuss the particular choice of the matrix elements a(g, h) in (3.3).

Lemma 3.1. There exists a random operator A = (A(ω))ω∈Ω with the following
properties.

(i) For all ω ∈ Ω, the operator A(ω) : D(A(ω)) → �2(G) is self-adjoint, and
the compactly supported functions D0 are a core for A(ω).

(ii) For almost all ω ∈ Ω, the matrix elements of A(ω) are given by

〈δg, A(ω)δh〉 = a(ω)(g, h).

(iii) We have

E
[
‖Aδid‖21

]
= E

[(∑

g∈G

|a(g, id)|
)2]

< ∞.
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(iv) The operator A is translation invariant in distribution.
(v) The resolvents ω → (z −A(ω))−1, z ∈ C\R, are strongly measurable.

Remark 3.2. By (ii), the operator A is, for almost all ω ∈ Ω, uniquely deter-
mined by the matrix elements (3.3).

Proof. The moment condition (3.2) implies

E
[(∑

x∈G

|a(x, id)|
)2]

≤ E
[(∑

x∈G

|X{id,x}| + α
∑

z∈G

|X{id,z}|
)2]

= (1 + α)2E
[(∑

x∈G

|X{id,x}|
)2]

< ∞.

Thus, the lemma follows from Appendix C. �
In the case α = 0, the operator is a version of the adjacency matrix on

graphs with vertices in G and random edge weights. For α = 1 and X{g} = 0
a.s. we obtain randomly weighted Laplace operators on such graphs. More
generally, one interprets the diagonal terms X{g} as random potential. This
well-studied setting is known as Anderson model. For all these reasons, we call
the random operators (A(ω))ω∈Ω random Hamiltonians.

Remark 3.3. The spectrum of our random Hamiltonians is almost surely de-
terministic. In e. g. [10,23,35], statements of this kind are a consequence of
ergodicity. Since our operators share their probability space with the finite ap-
proximations, they are not ergodic. However, with an adapted choice for the
probability space, the operators of Lemma 3.1 are seen to be ergodic. For the
case of G = Zd, this is implemented in [35]. Unfortunately, such a probabil-
ity space is to small to support the independent approximating operators. Of
course, the spectral properties of the operators persist when represented on a
different probability space.

Note that the argument to establish deterministic spectrum does not
require an ergodic theorem but only the fact that invariant functions are almost
surely constant. One can adapt the proof of [23, Theorem 5.1] to our setting
of non-ergodic operators, too. The group G acts equivariant on �2(G) and the
probability space. As a substitute for ergodicity of the action of G on the
probability space, one uses that all G-invariant random variables which are
measurable with respect to the σ-Algebra generated by the matrix elements
of A are almost surely constant. For more details see [23] or the references
therein.

The next well-known lemma gives sufficient conditions for boundedness
and for unboundedness of the operators in consideration. The proof is deferred
to Appendix D.

Lemma 3.4. Let A be the random Hamiltonian defined above with the random
variables X{g,h}, g, h ∈ G, and D := supg∈G‖X{id,g}‖∞ ∈ [0,∞].

(i) If D = ∞, then A is unbounded.
(ii) If D < ∞ and A is of finite hopping range, i.e. X{g,h} = 0 whenever

d(g, h) ≥ R for some fixed R ∈ N, then A is bounded.
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3.1. Approximation in Mean

Let A = (A(ω))ω∈Ω be a random Hamiltonian, as outlined in Lemma 3.1.
We consider the approximating graphs Γr, r ∈ N, and use the simplified no-
tation (1.1). Recall the graph isomorphisms Ψr,v : B

Vr
r (v) → BG

r , v ∈ Vr,
from (2.1), too.

Let us define finite-dimensional approximations Ar : �
2(Vr) → �2(Vr)

of A. For Sect. 3.2, we generalize r �→ r/6 from Remark 2.3 to ρ : N → R
satisfying

ρ(r) ≤ r

6
and ρ(r)

r→∞−−−→ ∞. (3.4)

Let

Cr(e) :=
{
v ∈ V (0)

r

∣∣ x, y ∈ BVr

ρ(r)(v)
}

for each e = {x, y} ∈ P(r)
1,2 := {e ⊆ Vr | |e| ∈ {1, 2}}. For each such edge e =

{x, y}, we fix a random variable Xr
e . If there exists a vertex v ∈ Cr(e), let X

r
e

have the same distribution as X{Ψr,v(x),Ψr,v(y)}. Otherwise, set Xr
e := 0. We

also require all random variables in
{
Xe

∣∣ e ∈ P1,2

}
∪
{
Xr

e

∣∣ r ∈ N, e ∈ P(r)
1,2

}

to be independent. Use Lemma 2.2 and (3.1) to see that the distribution of Xr
e

does not depend on the choice of v ∈ Cr(e).

We are now in position to define the approximating operator A
(ω)
r :

�2(Vr) → �2(Vr), ω ∈ Ω, by its matrix elements. With the same α ∈ R as
in (3.3), we set

a(ω)
r (x, y) := Xr

{x,y}(ω) − αδx(y)
∑

z∈Vr\{x}
Xr

{x,z}(ω)

for all x, y ∈ Vr. This operator is symmetric and hence self-adjoint. Note, too,

that A
(ω)
r has hopping range 2ρ(r), i.e. ar(x, y) = 0, as soon as dr(x, y) > 2ρ(r).

As in Sect. 2, we define eigenvalue counting functions. For each ω ∈ Ω
and r ∈ N, we set

N (ω)
r : R → [0, 1], N (ω)

r (λ) :=
|{eigenvalues of A(ω)

r not larger than λ}|
|Vr|

,

where the eigenvalues are counted with multiplicity. Similarly as before, we
define

N (ω) : R → [0, 1], N (ω)(λ) := 〈δid, E(ω)
λ δid〉, (3.5)

where E
(ω)
λ is the spectral projection of A(ω) on the interval (−∞, λ].

We also need their expectation values, i.e., the functions N̄r, N̄ : R →
[0, 1],

N̄(λ) = E[N(λ)] and N̄r(λ) = E[Nr(λ)]. (3.6)

The function N̄ is called spectral distribution function of the random opera-
tor A.
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Theorem 3.5. Let N̄r, N̄ : R → [0, 1] be as above. Then

lim
r→∞

N̄r(λ) = N̄(λ)

at all continuity points λ of N̄ .

The proof of Theorem 3.5 largely follows the lines of the proof of
Theorem 2.4. Lemma 2.6 is ready for use, but Lemma 2.5 needs a rather
technical upgrade. Lemma 3.6 states in essence that the compactly supported
random vectors constitute a core of A.

Lemma 3.6. Let A = (A(ω))ω∈Ω be a random operator such that all realiza-
tions A(ω) are self-adjoint and share D0 as a core. Let further κ > 0 and
z ∈ C\R. Then there exist a radius n ∈ N and a random vector ψ : Ω → �2(G),
such that

E
[
‖ψ − δid‖2

]
≤ κ and spt

(
(z −A(ω))−1ψ(ω)

)
⊆ BG

n

for all ω ∈ Ω.

Proof. Fix κ > 0. For each n ∈ N, we define the set

Mn,κ :=
{
ω ∈ Ω

∣∣ ∃f ∈ �2(G) : spt
(
(z −A(ω))−1f

)
⊆ BG

n , ‖f − δid‖2 ≤ κ
2

}
.

The measurability of Mn,κ ⊆ Ω follows from the strong measurability of the

resolvents of A = (A(ω))ω∈Ω and

Mn,κ =
⋂

m∈N

⋃

f∈B

⋂

g∈G\BG
n

{
ω ∈ Ω

∣∣ |〈δg, (z −A(ω))−1f〉| < 1
m

}
, (3.7)

where B ⊆ {f ∈ �2(G) | ‖f − δid‖2 < κ
2 + 1

m} is countable and dense. To
prove (3.7), we note that the inclusion “⊆” holds because of the continuity
of f �→ 〈δg, (z −A(ω))−1f〉 uniformly in g. The reverse inclusion “⊇” requires
more care. For each ω in the set on the right-hand side of (3.7), we find for
all m ∈ N a function fm ∈ B, such that |((z − A(ω))−1fm)(g)| < 1

m for all

g ∈ G\BG
n (id). The condition fm ∈ B implies in particular

sup
m∈N

‖fm‖∞ ≤ sup
m∈N

‖fm‖2 ≤ sup
m∈N

‖fm − δid‖2 + ‖δid‖2 ≤ 2 + κ
2 .

Thus, (fm(g))m∈N is a bounded sequence for all g ∈ G. A diagonal argument
extracts a subsequence (fmk

)k∈N for which (fmk
(g))k∈N converges for all g ∈ G.

Let f := limk→∞ fmk
be the pointwise limit of these functions. Then, we obtain

by Fatou’s Lemma that f ∈ �2(G) and

‖f − δid‖2 ≤ κ
2 and spt

(
(z −A(ω))−1f

)
⊆ BG

n .

This shows ω ∈ Mn,κ and (3.7).
For each ω ∈ Ω, the compactly supported functions D0 are a core for

A(ω). Hence, for each ω ∈ Ω, Lemma 2.5 provides a function f ∈ �2(G) with

‖f − δid‖2 < κ
2 and (z −A(ω))−1f ∈ D0.

We rephrase this as ⋃

n∈N
Mn,κ = Ω.
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In fact, the sequence (Mn,κ)n∈N increases, so we conclude P(Mn,κ)
n→∞−−−−→ 1.

This enables us to choose n ∈ N large enough such that P(M c
n,κ) <

κ
2 .

For the choice of ψ, note that the set

M̃n,κ

:=
{
(ω, f) ∈ Mn,κ × �2(G)

∣∣ spt
(
(z −A(ω))−1f

)
⊆ BG

n , ‖f − δid‖2 < κ
2

}

=
⋂

g∈G\BG
n

{
(ω, f) ∈ Ω × �2(G)

∣∣ 〈(z −A(ω))−1δg, f〉 = 0, ‖f − δid‖2 < κ
2

}

is measurable, since the factors of the scalar product are measurable, see Propo-
sition C.3. The measurable choice theorem by R. J. Aumann, see [1, 18.27
Corollary], hands us a measurable section, i.e., a random vector

ψ′ : Mn,κ → �2(G) whose graph is contained in M̃n,κ. We extend ψ′ to ψ : Ω →
�2(G) by 0 on Mn,κ, which has the required properties:

E
[
‖ψ − δid‖2

]
≤ E

[
κ
2 · χMn,κ

]
+ E

[
χMc

n,κ

]
= κ

and spt
(
(z −A(ω))−1ψ(ω)

)
⊆ BG

n for all ω ∈ Ω. �

Equipped with this keen edge tool, we proceed to the proof of
Theorem 3.5.

Proof of Theorem 3.5. Fix z ∈ C\R and let

Dr :=
∣∣∣
∫

R

(z − λ)−1dN̄r(λ) −
∫

R

(z − λ)−1dN̄(λ)
∣∣∣.

By Lemma 2.6, we need to show limr→∞Dr = 0.
The following integral is in fact a finite sum. Thus, by linearity of E and

the calculation (2.4),

∫

R

(z − λ)−1dN̄r(λ) = E

⎡
⎣
∫

R

(z − λ)−1dNr(λ)

⎤
⎦

= E
[ 1

|Vr|
∑

v∈Vr

〈δv, (z −Ar)
−1δv〉

]
.

By definition, the Riemann-Stieltjes integral is the limit of a sum. The bound-
edness of λ �→ (z − λ)−1 and dominated convergence allow us to interchange
limit and expectation. We thus obtain

∫

R

(z − λ)−1dN̄(λ) = E

⎡
⎣
∫

R

(z − λ)−1dN(λ)

⎤
⎦ = E

[
〈δid, (z −A)−1δid〉

]
. (3.8)

The last equality follows from the spectral theorem. Analogous to (2.5), we
achieve

Dr ≤ sup
v∈V

(0)
r

∣∣∣E
[
〈δv, (z −Ar)

−1δv〉
]
− E

[
〈δid, (z −A)−1δid〉]

]∣∣∣+ 2ε(r)

|�z| . (3.9)
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As before, we use Φr,v from (2.6) to transport A
(ω)
r to �2(G) from the point of

view of v:

A(ω)
r,v := Φ∗

r,vA
(ω)
r Φr,v : �

2(G) → �2(G).

Again, we have, for all v ∈ V
(0)
r ,

〈δv, (z −A(ω)
r )−1δv〉 = 〈δid, (z −A(ω)

r,v )
−1δid〉.

The matrix elements of Ar,v and A are independent and will thus not
cancel each other at the end of the proof. But we arranged that corresponding
matrix elements have the same distribution. Under the expectation and from
the point of view of v, we can adapt the approximation to A. Define a substi-

tute approximating operator Â
(ω)
r,v : �2(G) → �2(G) of A(ω) by copying matrix

elements from A(ω):

â(ω)
r,v (g, h) :=

⎧
⎪⎨
⎪⎩

a(ω)(g, h) if g, h ∈ BG
ρ(r), g �= h

X{g}(ω) − α
∑

h′∈G\{g} â
(ω)
r,v (g, h′) if g = h ∈ BG

ρ(r)

a
(ω)
r,v (g, h) otherwise.

Here, X{g}(ω) is the first summand in the definition of the matrix element

a(ω)(g, g), see (3.3), and a
(ω)
r,v (g, h) := 〈δg, A(ω)

r,v δh〉 is the matrix element of A
(ω)
r,v .

By construction, the distribution of ar,v(g, h) equals the distribution of
âr,v(g, h) for g, h ∈ G. Thereby, as intended,

E[〈δid, (z −Ar,v)
−1δid〉] = E[〈δid, (z − Âr,v)

−1δid〉].
This is the point, where Lemma 3.6 enters. We fix κ > 0 arbitrarily and

get a radius n ∈ N and a random vector ψ : Ω → �2(G) such that

E[‖ψ − δid‖2] ≤ κ.

Furthermore, φ(ω) := (z − A(ω))−1ψ(ω), ω ∈ Ω, is supported in BG
n and

bounded by

‖φ(ω)‖2 ≤ ‖(z −A(ω))−1ψ(ω)‖2 ≤ (1 + κ)/|�z|.
Following the strategy from (2.7), we introduce ψ into (3.9) and apply the
second resolvent identity:

Dr ≤ sup
v∈V

(0)
r

∣∣E
[
〈δid, (z − Âr,v)

−1δid〉
]
− E

[
〈δid, (z −A)−1δid〉

]∣∣+ 2ε(r)

|�z|

≤ sup
v∈V

(0)
r

∣∣E
[
〈δid,

(
(z − Âr,v)

−1 − (z −A)−1
)
ψ〉
]∣∣+ 2

ε(r) + E[‖ψ − δid‖2]
|�z|

≤ 1

|�z| sup
v∈V

(0)
r

E
[
‖(A− Âr,v)(z −A)−1ψ‖2

]
+ 2

ε(r) + κ

|�z| . (3.10)

We study the expectation in the last line. Use the subadditivity of the
square root in

E
[
‖(A− Âr,v)φ‖2

]
= E

[(∑

g∈G

∣∣(A− Âr,v)φ(g)
∣∣2
)1/2]

≤ T v
1 (r) + |α|T v

2 (r)



1082 C. Schumacher and F. Schwarzenberger Ann. Henri Poincaré

to separate the off-diagonal terms in T v
1 (r) and the diagonal terms in T v

2 (r).
The expressions T v

1 (r) and T
v
2 (r) are detailed in the subsequent paragraphs.

For r > n, bound T v
1 (r) as in (2.8):

T v
1 (r) := E

[( ∑

g∈G\BG
ρ(r)

∣∣∣
∑

h∈BG
n

(
a(g, h) − âr,v(g, h)

)
φ(h)

∣∣∣
2)1/2]

≤ E
[
‖φ‖2

( ∑

g∈G\BG
ρ(r)

∑

h∈BG
n

∣∣a(g, h) − âr,v(g, h)
∣∣2
)1/2]

≤ 1 + κ

|�z|

(( ∑

g∈G\BG
ρ(r)

h∈BG
n

E
[
|a(g, h)|2

])1/2
+
( ∑

g∈G\BG
ρ(r)

h∈BG
n

E
[
|âr,v(g, h)|2

])1/2)
.

In the last step, we used Jensen’s inequality. We proceed as in (2.9), using
E[âr,v(g, h)] = E[ar,v(g, h)], and obtain

sup
v∈V

(0)
r

T v
1 (r) ≤ 2

1 + κ

|�z|
( ∑

h∈BG
n

E
[ ∑

g∈G\BG
ρ(r)

∣∣a(g, h)
∣∣2
])1/2 r→∞−−−→ 0

by dominated convergence, since E
[
‖Aδg‖22

]
< ∞.

For α �= 0, the diagonal term

T v
2 (r) := |α|−1E

[( ∑

h∈BG
n

∣∣(a(h, h) − âr,v(h, h)
)
φ(h)

∣∣2
)1/2]

is dealt with as follows, using Jensen’s inequality and ‖φ‖∞ ≤ ‖φ‖2,

T v
2 (r) ≤ E

[
‖φ‖∞

( ∑

h∈BG
n

∣∣∣
∑

g∈G\BG
ρ(r)

(
âr,v(h, g) − a(h, g)

)∣∣∣
2)1/2]

≤ 1 + κ

|�z| E
[( ∑

h∈BG
n

( ∑

g∈G\BG
ρ(r)

|âr,v(h, g)| +
∑

g∈G\BG
ρ(r)

|a(h, g)|
)2)1/2]

≤
√
2
1 + κ

|�z|

( ∑

h∈BG
n

(
E
[( ∑

g∈G\BG
ρ(r)

|âr,v(h, g)|
)2

+
( ∑

g∈G\BG
ρ(r)

|a(h, g)|
)2]))1/2

.

Broadening the argument from (2.9) and taking advantage of the independence
of the involved matrix elements, we see for h ∈ BG

n :

E
[( ∑

g∈G\BG
ρ(r)

|âr,v(h, g)|
)2]

= E
[ ∑

g,g′∈BG
r \BG

ρ(r)

|âr,v(h, g)||âr,v(h, g′)|
]

=
∑

g �=g′∈BG
r \BG

ρ(r)

E
[
|âr,v(h, g)|

]
E
[
|âr,v(h, g′)|

]
+

∑

g∈BG
r \BG

ρ(r)

E
[
|âr,v(h, g)|2

]
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≤
∑

g �=g′∈G\BG
ρ(r)

E
[
|a(h, g)|

]
E
[
|a(h, g′)|

]
+

∑

g∈G\BG
ρ(r)

E
[
|a(h, g)|2

]

= E
[( ∑

g∈G\BG
ρ(r)

|a(h, g)|
)2]

.

We deduce

sup
v∈V

(0)
r

T v
2 (r) ≤ 2

√
2
1 + κ

|�z|
( ∑

h∈BG
n

E
[( ∑

g∈G\BG
ρ(r)

∣∣a(h, g)
∣∣
)2])1/2 r→∞−−−→ 0,

again by Lebesgue, this time with E
[
‖Aδh‖21

]
< ∞. Now conclude from (3.10)

lim sup
r→∞

Dr ≤ 2κ

|�z| .

Since κ > 0 was arbitrary, we reached Dr
r→∞−−−→ 0. �

3.2. Almost Sure Weak Convergence

In Theorem 3.5, we achieved weak convergence of the eigenvalue counting
functions in expectation. Here, we improve this result to weak convergence for
almost all realizations. Again, this results in a Pastur–Shubin trace formula.

The following concentration inequality from [28, Theorem 3.1] is our main
tool.

Theorem 3.7 ([28, Theorem 3.1]). Let X = (X1, . . . , Xn) be a family of inde-
pendent random variables with values in R, and let f : Rn → R be a function,
such that whenever x, x′ ∈ Rn differ only in one coordinate, we have

|f(x) − f(x′)| ≤ c.

Then, for μ := E[f(X)] and any ε ≥ 0,

P(|f(X) − μ| ≥ ε) ≤ 2 exp
(
− 2ε2

nc2

)
.

We need to strengthen the assumptions (3.4) on ρ, namely, ρ must not
grow too fast:

ρ(r) ≤ ln r

4 ln|S| − 1 and ρ(r)
r→∞−−−→ ∞. (3.11)

This is a conservative approach. See Remark 3.9 for possible relaxations in
more restricted settings.

Theorem 3.8. Let Nr and N̄ be as in (3.5) and (3.6) and ρ according to (3.11).

Then there is a set Ω̃ ∈ A with full probability, P(Ω̃) = 1, and

lim
r→∞

N (ω)
r (λ) = N̄(λ)

at continuity points λ of N̄ , for all ω ∈ Ω̃.
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Proof. Denote the set of continuity points of N̄ by C and let λ ∈ C and ε > 0.
For r large enough, we have by Theorem 3.5

P
(
|Nr(λ) − N̄(λ)| ≥ ε

)
≤ P

(
|Nr(λ) − N̄r(λ)| ≥ ε− |N̄r(λ) − N̄(λ)|

)

≤ P
(
|Nr(λ) − N̄r(λ)| ≥ ε/2

)
. (3.12)

We want to apply Theorem 3.7. Each random variable on a bond of the
graph Γr in a sofic approximation has bounded effect on the eigenvalue count-
ing function, namely

|N (ω)
r (λ) −N (ω′)

r (λ)| ≤ cr := 2/|Vr|
for all ω, ω′ ∈ Ω which differ only on a single bond. This is clear as the
associated operators differ only by a rank 2 perturbation, see [26, Appendix].
We conclude from (3.12) and Theorem 3.7

∑

r∈N
P(|Nr(λ) − N̄(λ)| ≥ ε) ≤ 2

∑

r∈N
exp

(
−ε2|Vr|2

8nr

)
, (3.13)

where nr is the number of random variables entering Nr.
By construction, nr is bounded by

nr ≤ |Vr||S|2(ρ(r)+1) = |Vr||S| ln r
2 ln|S| = |Vr|

√
r ≤ |Vr|2/

√
r.

Use r ≤ |Vr| for the last step. We conclude from (3.13)
∑

r∈N
P(|Nr(λ) − N̄(λ)| ≥ ε) ≤ 2

∑

r∈N
exp

(
−ε2√r/8

)
< ∞.

This is by definition almost complete convergence of Nr(λ) to N̄(λ) and
implies almost sure convergence, i.e., the existence of Ωλ ∈ A with P(Ωλ) = 1
and

N (ω)
r (λ)

r→∞−−−→ N̄(λ) (ω ∈ Ωλ).

Since N̄ is monotone, the set of discontinuities R\C is at most countable.

Let M be countable and dense subset in C. Then, the set Ω̃ :=
⋂

λ∈M Ωλ has

probability 1, too. Now fix ω ∈ Ω̃. We know for all λ ∈ R

lim sup
r→∞

N (ω)
r (λ) ≤ inf

λ′∈M∩[λ,∞)
lim
r→∞

N (ω)
r (λ′) = inf

λ′∈M∩[λ,∞)
N̄(λ′) = N̄(λ),

since N̄ is monotone and continuous from the right, and M is dense. In the
other direction, for all λ ∈ C, we have

lim inf
r→∞

N (ω)
r (λ) ≥ sup

λ′∈M∩(−∞,λ]

lim
r→∞

N (ω)
r (λ′) = sup

λ′∈M∩(−∞,λ]

N̄(λ′) = N̄(λ).

Hereby, limr→∞N
(ω)
r (λ) exists and equals N̄(λ) for all ω ∈ Ω̃ and λ ∈ C. �

Remark 3.9. In many cases, we can allow ρ to grow much faster than permitted
by (3.11). Let mρ(r) denote the number of non-trivial random variables in
{a(x, y) | x, y ∈ BG

ρ(r)}. The condition
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∑

r∈N
q|Vr|/mρ(r) < ∞

for all q ∈ (0, 1) is sufficient for (3.13) to be finite.
Assume that A has finite hopping range, i.e., there exists R ∈ N such

that a(x, y) = 0 whenever d(x, y) ≥ R. For instance, this is the case in the

well-known Anderson model. Then mr ≤
(|S|R

2

)
, and consequently

∑

r∈N
q|Vr|/mρ(r) ≤

∑

r∈N
qr/(

|S|R
2 ) < ∞

for all q ∈ (0, 1), since r ≤ |Vr|. Thus, for operators with finite hopping range,
ρ(r) := r/6 suffices, as in the deterministic setting.

Complementary to Remark 3.3, Theorem 3.8 shows that the integrated
density of states is deterministic. The following result sheds more light on the
relation between the spectrum and the IDS.

Theorem 3.10. The topological support of the measure ν associated to the
IDS N̄ equals the almost sure spectrum of the random operator (A(ω))ω∈Ω.

Proof. The proof is a boiled down version of [23, Corollary 5.4]. The key ob-
servation is that the measure ν is a spectral measure for (A(ω))ω∈Ω, i. e., for
any Borel set B ∈ B(R),

ν(B) :=

∫

B

dN̄ = 0 ⇐⇒ E
(ω)
B = 0 for almost all ω ∈ Ω, (3.14)

where E
(ω)
B := χB(A

(ω)) is the spectral projection of A(ω) corresponding to B.

If E
(ω)
B = 0 for almost all ω ∈ Ω, then, analogous to (3.8),

ν(B) =

∫

B

dN̄ = E[〈δid, E(ω)
B δid〉] = 0.

In the opposite direction, we are given

0 = ν(B) = E[〈δid, E(ω)
B δid〉] = E[〈δg, E(ω)

B δg〉]
for all g ∈ G. We obtain 〈δg, E(ω)

B δg〉 = 0 for all g ∈ G and for almost all
ω ∈ Ω, since the integrand is never negative. The Cauchy–Schwarz inequality
gives, for all g, h ∈ G and almost all ω ∈ Ω,

|〈δg, E(ω)
B δh〉|2 ≤ 〈δg, E(ω)

B δg〉〈δh, E(ω)
B δh〉 = 0.

Thus, ν is a spectral measure of (A(ω))ω.
Now, choose B := R\ spt ν to be the complement of the topological

support of ν. By (3.14), E
(ω)
B = 0 for almost all ω ∈ Ω. This means that

B ∩σ(A(ω)) = ∅ for almost all ω ∈ Ω. So σ(A(ω)) ⊆ spt ν for almost all ω ∈ Ω.
By Remark 3.3, the spectrum of the operators A(ω), ω ∈ Ω, is almost

surely equal to a non-random set Σ. We let B := R\Σ be the almost sure
resolvent set and conclude ν(B) = 0 by (3.14). Thus, the topological support
of ν does not intersect the resolvent set, and we see spt ν ⊆ Σ. �
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4. Examples and Applications

As an application, we show in Sect. 4.1 that the well-known percolation model
on sofic groups is covered by our abstract theory. In Sect. 4.2, we describe two
approaches to obtain sofic approximations for the free group.

4.1. Percolation

In this section, we apply our results to percolation models on graphs. We
will study the approximability of the IDS of the corresponding Laplacian.
The models in consideration will contain short-range as well as long-range
percolation on sofic groups.

Let G be a finitely generated sofic group and S a finite, symmetric set
of generators. Let Γco = (V,Eco) be the complete graph over the vertex set
V = G, i.e., the edge set is

Eco = P2 = {e ⊆ G | |e| = 2}.
Furthermore, let p ∈ �1(G) be such that

0 ≤ p(g) = p(g−1) ≤ 1

for all g ∈ G, and consider, for distinct g, h ∈ G, independent Bernoulli random
variablesX{g,h} with P(X{g,h} = 1) = p(gh−1). For each ω, we define a random
subgraph Γω = (V,Eω) of Γco by

Eω = {e ∈ Eco | Xe(ω) = 1}.
The size of the support of p distinguishes different cases. If spt(p) = S, we deal
with the (typical) percolation model of the Cayley graph Γ = Γ(G,S). If spt(p)
is a finite set, the model is referred to as short-range percolation. Note that
under this assumption, Γω is of uniformly bounded vertex degree. Otherwise,
|spt(p)| = ∞ leads to long-range percolation. An application of the first lemma
of Borel–Cantelli shows that p ∈ �1(G) implies that Γω is almost surely locally
finite, see [3, Lemma 3.2]. However, there is almost surely no uniform bound
for the vertex degree. Also, there exist with probability one edges of arbitrary
length, measured in the word metric induced by the generating system S. This
implies that the Laplacian that we define now is almost surely unbounded and
not of finite hopping range.

The matrix elements of the Laplacian are given by

a(ω)(x, y) =

{
X{x,y} if x �= y,

−∑
z �=xX{x,z}(ω) otherwise.

(4.1)

Obviously, we are in the setting of (3.3). In order to apply Lemma 3.1, it
remains to observe that (3.2) follows from

E
[(∑

x∈G

X{id,x}
)2]

≤
∑

x,y∈G

E[X{id,x}]E[X{id,y}] +
∑

x∈G

E[X{id,x}] = ‖p‖21 + ‖p‖1.
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id aA

b

B

a2

ba

Ba

A2

bA

BA

abAb
b2

aBAB
B2

a3

ba2

Ba2

aba

Aba

b2a

aBa

ABa

B2a

A3

bA2

BA2

abA

AbA

b2A

aBA

ABA

B2A

a2b
bab

Bab
A2b

bAb

BAb

ab2Ab2 b3

a2B
baB

BaB
A2B

bAB

BAB
aB2AB2

B3

Figure 3. The Cayley graph of the ball B3 of radius 3 in F2,
with a := a1, b := a2, A := a−1 and B := b−1. The arrows
indicate the corresponding generator: x → y means ax = y,
x � y is synonymous for bx = y

Therefore, there exists a random Hamiltonian Δ = (Δω)ω∈Ω with the proper-
ties (i)–(v) of Lemma 3.1 and matrix elements given by (4.1) almost surely.
This operator is the Laplacian of random graph Γ = (Γω)ω∈Ω. Theorem 3.8
gives almost sure weak convergence of distribution functions for almost all ω ∈
Ω. Of course, the same holds for Schrödinger operators.

In more restricted settings, stronger results are available. For instance,
in [3,40], the authors consider long-range percolation models over amenable
groups and obtain uniform convergence of the eigenvalue counting functions.
However, their methods rely massively on the existence of sets with an arbi-
trary small boundary, which is per definition not the case for non-amenable
groups.

4.2. The Free Group

The free group Fs = 〈Ss〉 with s ∈ N generators Ss := {a1, . . . , as, a−1
1 ,

. . . , a−1
s }, see Fig. 3, is an example of a sofic group, which is residually fi-

nite but not amenable.
We provide two explicit constructions for sofic approximations, along

which the eigenvalue counting functions converge. The first approach is rather
geometric and goes back to [5], while the second one uses algebraic properties
of special linear groups. A relevant property of a graph is the length of the
smallest circle, called girth. Both presented strategies construct finite Cayley
graphs with arbitrarily large girth. In [20], a third approach is suggested, but
it seems not as straightforward.
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id aA

b

B

id aA

b

B

a2

ba

Ba

A2

bA

BA

abAb
b2

aBAB

B2

Figure 4. The action of the permutation p
(1)
a on B1 and of

p
(2)
a on B2

4.2.1. Geometric Approach. Let Br be the ball of radius r ∈ N in Fs centered
at the identity id, with respect to the metric on the Cayley graph Γ(Fs, Ss).
A short calculation reveals

|Br| =
s(2s− 1)r − 1

s− 1
. (4.2)

For each generator x ∈ Ss, we define the permutation p
(r)
x on Br by

p(r)x (w) :=

{
xw (xw ∈ Br)

w−1
1 w−1

2 . . . w−1
m (xw /∈ Br)

for reduced words w = w1w2 . . . wm ∈ Br with wj ∈ Ss, j ∈ {1, . . . ,m}, see
Fig. 4.

The permutation p
(r)
x maps elements of Br−1 to their neighbors in direc-

tion x and members of the sphere Br\Br−1 are sent into Br\Br−2.

The group Hr := 〈{p(r)x | x ∈ Ss}〉 generated by this permutations is a
subgroup of the symmetric group SBr

on Br.

The map Ss � x �→ p
(r)
x ∈ SBr

has an extension to a group homomor-

phism �r : Fs → Hr ⊆ SBr
via �r(w1 . . . wm) := p

(r)
w1 ◦ · · · ◦ p(r)wm . We consider

the normal subgroups Gr := ker �r of Fs.
Observe that a non-empty reduced word w = w1 . . . wm ∈ Gr is either

the identity w = id or has at least length m ≥ 2r + 1, since the orbit of the
identity id ∈ Br passes each sphere: �r(w1 . . . wj)(id) ∈ Bj\Bj−1 for j ≤ r
and �r(w1 . . . wj)(id) ∈ Br\B2r−j for j > r. Therefore, the girth of Hr is at
least 2r + 1 and

⋂
r Gr = {id}.
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We have now checked that Fs is residually finite. The corresponding sofic
approximations of Fs are the Cayley graphs of Hr with respect to the genera-

tors {p(r)x | x ∈ Ss}, r ∈ N. Note that since Hr is a group, all balls in Hr are

isomorphic, and we set V
(0)
r := Hr, r ∈ N.

The Cayley graph of (Fs, Ss) is a regular tree. For such graphs, the deriva-
tive of the spectral distribution function for the adjacency operator is explicitly
calculated in [29] as

x �→ s
√

4(2s− 1) − x2

π(4s2 − x2)
χ[0,2

√
2s−1](|x|). (4.3)

This shows in particular that the spectral distribution function, which equals
according to Theorem 2.4 the integrated density of states, is continuous. We
conclude that the limit in Theorem 2.4 exists for all λ ∈ R and is actually
uniform in λ.

A criterion for the quality of the approximation should measure the
growth of the radius r in Condition (S1) relative to the growth |Vr| of the

approximating graphs as well as the proportion of |V (0)
r | in Condition (S2). In

the case of the free group, we have V
(0)
r = Vr, so the growth of the girth γ(Hn)

compared with the growth of the groups Hn appears to be a reasonable choice.
The best possible situation is

γ(Hr) ≥ C ln |Hr| (4.4)

for some C > 0.
This is so, because an s-regular graph with girth γ contains at least

|B
(γ−1)/2�| vertices, so
ln|Hr| ≥ ln|B
(γ(Hr)−1)/2�| ≈ �(γ(Hr) − 1)/2� ln(2s− 1).

Equations like (4.4) have far reaching implications, see e.g. [6]. The trivial
upper bound to |Hr| is the number of permutations on Br:

|Hr| ≤ |Br|! =
(s(2s− 1)r − 1

s− 1

)
! .

The geometric approach does not provide the optimal bound (4.4). This suc-
ceeds in the following section using an algebraic approach.

4.2.2. Algebraic Approach. According to [32, Theorem 4] and the Nielsen-
Schreier theorem, the group

F2 := 〈( 1 2
0 1 ) , (

1 0
2 1 )〉 ⊆ SL(2,Z)

is (a faithful representation of) the free group with two generators. Note that
for all such matrices, the diagonal elements are odd, while the off-diagonal
entries are even. The set S := {( 1 2

0 1 ), (
1 0
2 1 ),

(
1 −2
0 1

)
,
(

1 0
−2 1

)
} is a symmetric

generator.
To see that F2 is residually finite, we introduce the normal subgroups

Gn := {A ∈ F2 | A ≡ 1 (mod 2n)}
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(a) The Cayley graph of H7 has 336 nodes and girth 6. The ball of radius 2 around
the identity is marked with black nodes. Each node is center of an F2-ball of radius 2.
The red and the blue lines indicate shortest circles. The high symmetry of the graph is
indicated by these colored paths which are translates of each other. The nodes were
found by a breadth-first search. Whenever an already found node was encountered
again, a gray line was added to indicate the neighborship in the Cayley graph of H7.
H7 is Ramanujan.

-4 -2 0 2 4
0

0.2

0.4

0.6

0.8

1

(b) n = 7

-4 -2 0 2 4
0

0.2

0.4

0.6

0.8

1

(c) n= 11

Figure 5. a Cayley graph of H7, b, c numeric visualisations
of the density of states (green), the integrated density of states
(red) and the eigenvalue counting function of the adjacency
matrix of Hn (blue). Colors appear only in the online version
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of F2, where 1 = ( 1 0
0 1 ) and A ≡ 1 (mod 2n) ⇐⇒ ∃B ∈ Mat(2,Z) : A =

2nB + 1. We further utilize the component-wise norm

m(
a b
c d

) := max{|a|, |b|, |c|, |d|}.

Multiplication by any generator increases this norm at most by a factor 3:

m(
a b
c d

)
( 1 2
0 1 )

= m(
a 2a+b
c 2c+d

) ≤ 3m(
a b
c d

).

By induction, a word s1 · · · sr of length r ≥ 2, composed of generators
s1, . . . , sr ∈ S, is bounded by

ms1···sr ≤ 5 · 3r−2,

since ms1s2 ≤ 5 for all s1, s2 ∈ S. This means that all entries of words of length
at most r are confined to {−5·3r−2, . . . , 5·3r−2} ⊆ {1−2·3r−1, . . . , 2·3r−1−1}.
Therefore, for 2n ≥ 2 ·3r−1, we have BF2

r ∩Gn = {id}. By this, F2 is residually
finite.

The corresponding sofic approximations Vr are the Cayley graphs of

Hn := F2/Gn = {A mod 2n | A ∈ F2}
with respect to the generating set S, where n ≥ 3r−1. As in Sect. 4.2.1, we can

choose V
(0)
r := Vr.

The size of Hn is at most |Hn| ≤ n3, since each matrix element is either
an even or an odd number between 0 and 2n− 1, and by detA = 1, the fourth
entry is determined by the other three. So for n := 3r−1, we obtain

|Hn| ≤ 33(r−1) ≤ 33(γ(Hn)−3)/2 ≤ 33γ(Hn)/2,

since the girth γ(Hn) is at least 2r+1. Therefore, (4.4) holds with C1 = 3
2 ln 3.

See Fig. 5 for numerical visualization of the eigenvalue counting function of
the adjacency operator of the Cayley graphs of H7 and H11 in comparison
with the integrated density of states of F2, cf. (4.3).
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Appendix A. An Unbounded Translation Invariant Operator

We present an example of a self-adjoint, translation invariant, and unbounded
operator A on Z for which D0 is a core. The operator is constructed in Fourier
space as multiplier M : D(M) → L2(S1) with an unbounded real-valued func-
tion m ∈ Lp(S1), p ∈ (2,∞). By this, A is self-adjoint, translation invariant,
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and unbounded. To prove that D0 is a core, it suffices to show that the trigono-
metric polynomials T are a core of M . To this end, we verify

M ⊆ M |L∞(S1), M |L∞(S1) ⊆ M |C(S1) and M |C(S1) ⊆ M |T .

For the third inclusion, let f ∈ C(S1) be given. Note that by Weierstraß’
theorem, the trigonometric polynomials are dense in C(S1) with respect to
supremum norm, cf. [39, Theorem 4.25]. Thus, we find a sequence (fn) of ele-
ments in T with limn→∞‖f − fn‖∞ = 0. This implies limn→∞‖f − fn‖L2 = 0.
Moreover, we obtain

lim
n→∞

‖Mf −Mfn‖L2 = lim
n→∞

‖m(f − fn)‖L2 ≤ lim
n→∞

‖m‖L2‖f − fn‖∞ = 0.

This proves the third inclusion.
To show the second inclusion, let f ∈ L∞(S1) and r ∈ (2,∞) such that

1
2 = 1

r + 1
p . We choose a sequence fn ∈ C(S1) with fn

Lr

−−−−→
n→∞

f . Then,

‖Mfn −Mf‖2 ≤ ‖m‖p‖fn − f‖r r→∞−−−→ 0.

Thereby, f ∈ D(M |C(S1)) and M |C(S1)f =Mf .

To prove the first inclusion, let f ∈ D(M) be given, i.e., f ∈ L2(S1) and
Mf ∈ L2(S1). Split

m =
1

m1
+m2 with m2 := (χ[0,1] ◦ |m|) ·m.

Note m1,m2 ∈ L∞(S1) and 1
m1
f ∈ L2(S1). Therefore, we find gn ∈ L∞(S1)

with gn
L2

−−→ f/m1. Set fn := m1gn ∈ L∞(S1). We obtain

fn
L2

−−→ f and Mfn = gn +m2fn
L2

−−→ 1

m1
f +m2f =Mf .

Thus, D0 is a core for A.

Appendix B. Weak Convergence

We thank the referee for simplifications in this proof.

Proof of Lemma 2.6. LetN,N1, N2, . . . : R → [0, 1] be probability distribution
functions. By the portmanteau theorem, (i) is equivalent to

lim
r→∞

∫
f dNr =

∫
f dN for all f ∈ C0(R). (B.1)

Thus, (i) implies (ii). Conversely, consider the set

S :=
{
f : R → C

∣∣∣ lim
r→∞

∫

R

fdNr =

∫

R

fdN
}
.

This is a linear space and closed with respect to ‖ · ‖∞-limits. By (ii),

R := {R � x �→ (z − x)−1 | z ∈ C\R} ⊆ S,
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and since S is a closed linear space, it contains the ‖ · ‖∞-closure of the linear
span of R, too:

linR ⊆ S.
Note now that R separates points and is closed under conjugation, and for
any x ∈ R, we find f ∈ R with f(x) �= 0. Below we show that linR is an
algebra. These facts allow us to apply the Stone–Weierstrass theorem [12],
which implies C0(R) = linR ⊆ S, establishes (B.1), and finishes the proof.

To show that linR is in fact an algebra, we first verify R2 ⊆ linR, i. e.,
that products of functions in R are contained in linR. For f(x) = (z − x)−1

and g(x) = (w − x)−1 with w, z ∈ C\R, w �= z, we see, by partial fraction
expansion,

x �→ f(x)g(x) =
1

w − z

( 1

z − x
− 1

w − x

)
∈ linR ⊆ linR.

For f(x) = g(x) = (w − x)−1, w ∈ C\R, choose a sequence (wn)n, wn ∈ C\R,
with wn �= w for all n ∈ N, converging to w and note that

sup
x∈R

∣∣∣ 1

(w − x)2
− 1

(wn − x)(w − x)

∣∣∣ ≤ |wn − w|
|�w|2|�wn|

n→∞−−−−→ 0.

Thus, R2 ⊆ linR, and consequently (linR)2 ⊆ lin(R2) ⊆ lin(linR) = linR.
Now let f, g ∈ linR. By definition, we find sequences (fn) and (gn)

in linR converging to f and g, respectively, with respect to ‖ · ‖∞.
We obtain

‖fg − fngn‖∞ ≤ ‖(f − fn)g‖∞ + ‖fn(g − gn)‖∞

≤ ‖f − fn‖∞‖g‖∞ + ‖fn‖∞‖g − gn‖∞
n→∞−−−−→ 0,

since the convergent sequence (‖fn‖∞)n is bounded. For each n ∈ N, we know
fngn ∈ (linR)2 ⊆ linR, so there is a sequence (hnk )k∈N in linR with

‖fngn − hnk‖∞
k→∞−−−−→ 0.

By a diagonal argument, fg ∈ linR. More precisely, for all ε > 0 there are
n, k ∈ N such that ‖fg − fngn‖∞ ≤ ε/2 and ‖fngn − hnk‖∞ ≤ ε/2. Then, we
have

‖fg − hnk‖∞ ≤ ‖fg − fngn‖∞ + ‖fngn − hnk‖∞ ≤ ε.

We conclude (linR)2 ⊆ linR, i. e., linR is an algebra. �

Appendix C. Random Operators on Countable Groups

Let G be a countable group. Let (Ω,A,P) be a probability space and let
{
a(x, y) = a(y, x) : Ω → C

∣∣ x, y ∈ G
}

be a set of random variables on (Ω,A,P), such that for each z ∈ G

a(x, y)
d
= a(xz, yz), (C.1)
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i.e., a(x, y) and a(xz, yz) are identically distributed. We assume further

E
[(∑

x∈G

|a(x, id)|
)2]

< ∞. (C.2)

Lemma C.1. For almost all ω ∈ Ω, the matrix operator Ã(ω), acting on D0

via

(Ã(ω)f)(x) :=
∑

y∈G

a(ω)(x, y)f(y) (x ∈ G), (C.3)

is well defined. The family Ã := (Ã(ω))ω∈Ω is a random operator and satisfies
for each x ∈ G

E
[
‖Ãδx‖22

]
≤ E

[
‖Ãδid‖21

]
< ∞.

Proof. According to [35], an operator valued function Ã : ω �→ Ã(ω) with a
common core D0 is measurable, if the functions

ω �→ 〈v, Ã(ω)w〉 = lim
r→∞

∑

x∈BG
r (id)

vx
∑

y∈sptw

a(ω)(x, y)wy

are measurable for all v ∈ �2(G) and w ∈ D0. Since limits of sums of random

variables are again measurable, Ã is measurable.
From (C.1) and (C.2) follows

E
[
‖Ãδx‖22

]
≤ E

[
‖Ãδx‖21

]
= E

[(∑

z∈G

|a(z, id)|
)2]

< ∞.

for each x ∈ G. A direct consequence is P(‖Ãδx‖2 = ∞) = 0 for all x ∈ G,

which implies that Ã is P-a.s. well defined on D0. �

Since our operators are up to now only defined on D0, we need the mul-
tiplication operators πF : �2(G) → D0, πF (f) := χF f with the indicator func-
tions χF of finite sets F ⊆ G. The following lemma is adapted from [35,
Proposition 4.1].

Lemma C.2. Let A,B : D0 → �2(G) be random operators. Assume joint trans-
lation invariance of A and B and E[‖Aδid‖1],E[‖Bδid‖1] < ∞. Then, for all
x ∈ G and r ∈ N,

E
[
‖AπBG

r
Bδx‖22

]
≤ ‖B‖2∞E

[
‖Aδid‖21

]
,

where ‖B‖∞ is the �∞-norm of the random variable ω �→ ‖B(ω)‖ with operator
norm.

We say that the operators A and B, with matrix elements a(x, y), b(x, y),
x, y ∈ G respectively, are jointly translation invariant, if

P
((
a(x, y), b(x, y)

)
x,y∈F

∈ E
)
= P

((
a(xz, yz), b(xz, yz)

)
x,y∈F

∈ E
)

for all z ∈ G, F ⊆ G finite and E ∈ B(CF × CF ).
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Proof. Let a(x, y) := 〈δx, Aδy〉 and b(x, y) := 〈δx, Bδy〉, x, y ∈ G, be the matrix
elements of A and B. Then we get

E
[
‖AπBG

r
Bδx‖22

]
= E

[
〈AπBG

r
Bδx, AπBG

r
Bδx〉

]

≤
∑

y,z∈G

E
[
|〈Aδy, Aδz〉b(y, x)b(z, x)|

]

=
∑

y,z
E
[
|〈Aδyz−1 , Aδid〉b(yz−1, xz−1)b(id, xz−1)|

]
,

where we used joint translation invariance of A and B. We re-index the sums
to rearrange the terms and use the Cauchy–Schwarz inequality:

. . . =
∑

y′,z
E
[
|〈Aδy′ , Aδid〉b(y′, xz−1)b(id, xz−1)|

]

=
∑

y′
E
[
|〈Aδy′ , Aδid〉|

∑
z′

|b(y′, z′)b(id, z′)|
]

≤
∑

y′
E
[
|〈Aδy′ , Aδid〉|‖Bδy′‖2‖Bδid‖2

]

≤ ‖B‖2∞
∑

y′
E
[
|〈Aδy′ , Aδid〉|

]
.

Now, as B is out of the way, we expand the scalar product and use translation
invariance again and re-index the sums once more:

. . . = ‖B‖2∞
∑

y′
E
[∣∣∣
∑

z
a(z, y′)a(z, id)

∣∣∣
]

= ‖B‖2∞
∑

y′
E
[∣∣∣
∑

z
a(id, y′z−1)a(id, z−1)

∣∣∣
]

≤ ‖B‖2∞
∑

y′,z
E
[
|a(id, y′z−1)a(id, z−1)|

]

= ‖B‖2∞E
[∑

y′′
|a(id, y′′)|

∑
z′

|a(id, z′)|
]

= ‖B‖2∞E
[(∑

y
|a(id, y)|

)2]
= ‖B‖2∞E

[
‖Aδid‖21

]
.

�

Proposition C.3. There exists Ω̃ ∈ A of full measure such that for all ω ∈ Ω̃
the operator Ã(ω) defined in (C.3) is essentially self-adjoint. In particular, D0

is a core for Ã(ω).

Proof. The proof of [35, (4.2) Theorem] for essential self-adjointness generalizes
to our more general setting.

The operators are symmetric. By the basic criterion for self-adjointness,
[38, Theorem VIII.3, p. 256f], for all z ∈ C\R, we have to show that (z −
Ã(ω))D0 is dense in �2(G) with probability 1. For this, it suffices to approxi-
mate δg for arbitrary g ∈ G.

Define for r ∈ N the bounded random matrix operator Ã
(ω)
r , acting onD0,

via its matrix elements

ã(ω)
r (x, y) := χ[0,r]

(
|a(ω)(x, y)|

)
χBG

r (x)(y)a
(ω)(x, y).



1096 C. Schumacher and F. Schwarzenberger Ann. Henri Poincaré

Using Lebesgue’s dominated convergence theorem, continuity of squaring and

monotone convergence, we see that the operators Ã
(ω)
r approximate Ã(ω) in

the following sense:

lim
r→∞

E
[
‖(Ã− Ãr)δid‖21

]
= lim

r→∞
E
[(∑

h∈G

|a(h, id) − ãr(h, id)|
)2]

= E
[(∑

h∈G

lim
r→∞

|a(h, id) − ãr(h, id)|
)2]

= 0,

since
∑

g∈G

|a(ω)(g, id) − ã(ω)
r (g, id)| ≤ 2

∑

g∈G

|a(ω)(g, id)| = 2‖Ã(ω)δid‖1

uniformly in r ∈ N and E
[
‖2Ãδid‖21

]
< ∞. Consider for r, n ∈ N the element

f
(ω)
g,r,n := πBG

n (id)(z − Ã
(ω)
r )−1δg ∈ D0. We will show that its image under

z− Ã(ω) converges to δg for a suitable limit in n and r. Therefore, we estimate

‖(z − Ã(ω))f (ω)
g,r,n − δg‖2

=
∥∥(z − Ã(ω))πBG

n
(z − Ã(ω)

r )−1δg

−(z − Ã(ω)
r )(πBG

n
+ πG\BG

n
)(z − Ã(ω)

r )−1δg
∥∥
2

≤ ‖(Ã(ω)
r − Ã(ω))f (ω)

g,r,n‖2 + C(r)‖πG\BG
n
(z − Ã(ω)

r )−1δg‖2 a.s. (C.4)

with C(r) := supω∈Ω‖z − Ã
(ω)
r ‖2 < ∞. Note limn→∞‖πG\BG

n
(z − Ã

(ω)
r )−1δg‖2

= 0 and

‖πG\BG
n
(z − Ã(ω)

r )−1δg‖2 ≤ |�z|−1

uniformly in n ∈ N. By Lebesgue, there exists for all r > 0 an ñ = ñ(r, g) ∈ N
such that

C(r)E
[
‖πG\BG

ñ
(z − Ãr)

−1δg‖2
]

≤ 1/r. (C.5)

Also, in expectation, the first summand in (C.4) can be controlled by

Lemma C.2 and ‖(z − Ã
(ω)
r )−1‖ ≤ |�z|−1 with the bound

(
E[‖(Ãr − Ã)fg,r,ñ‖2]

)2 ≤ E
[
‖(Ãr − Ã)fg,r,ñ‖22

]

≤ ‖(z − Ãr)
−1‖2∞E

[
‖(Ãr − Ã)δid‖21

]

≤ |�z|−2E
[
‖(Ãr − Ã)δid‖21

] r→∞−−−→ 0.

Together with (C.5), we infer from (C.4)

E
[
‖(z − Ã)fg,r,ñ − δg‖2

] r→∞−−−→ 0,

i.e., convergence in L1. Thereby we find a subsequence (rk)k∈N and a set Ω̃ ⊆ Ω

of full measure, such that for all ω ∈ Ω̃

lim
k→∞

‖(z − Ã(ω))f
(ω)
g,rk,ñ(rk,g)

− δg‖2 = 0,

and essential self-adjointness of Ã(ω) is shown. �
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Given the set Ω̃ from PropositionC.3, denote for all ω ∈ Ω̃ the self-adjoint
extension of Ã(ω) by Ā(ω) and define the random operator A = (A(ω))ω∈Ω by

A(ω) :=

{
Ā(ω) for ω ∈ Ω̃

Id for ω ∈ Ω\Ω̃.

For the sake of completeness, we state the following well-known Corollary.

Corollary C.4. The resolvents ω �→ (z − A(ω))−1, z ∈ C\R, are strongly mea-
surable.

Proof. Fix z ∈ C\R and denote for ω ∈ Ω by A
(ω)
r : �2(G) → �2(G) the self-

adjoint operator with matrix elements

a(ω)
r (x, y) := χ[0,r]

(
|〈δx, A(ω)δy〉|

)
χBG

r (id)(x)χBG
r (id)(y)〈δx, A(ω)δy〉.

Note that this is operator is not translation invariant in distribution but has
only finitely many nonzero matrix elements.

By Cramer’s rule, the resolvent ω �→ (z −A
(ω)
r )−1 is weakly measurable.

Since �2(G) is separable, by Pettis’ measurability theorem, the resolvent is in
fact strongly measurable. We will now show that the resolvents of Ar converge
strongly to the corresponding resolvents of A. This will show measurability
of A.

Since A(ω) and A
(ω)
r are self-adjoint, ‖(z − A(ω))−1‖ ≤ 1/|�z| and anal-

ogously for A
(ω)
r . Therefore, fix some ω ∈ Ω, ξ ∈ �2(G) and κ > 0. By

Lemma 2.5, there exists ψ ∈ �2(G) with

‖ξ − ψ‖2 < κ and φ := (z −A(ω))−1ψ ∈ D0.

Thus, by the second resolvent identity,

∥∥((z −A(ω))−1 − (z −A(ω)
r )−1

)
ξ
∥∥
2

≤
∥∥((z −A(ω))−1 − (z −A(ω)

r )−1
)
ψ
∥∥
2
+ 2‖ξ − ψ‖2/|�z|

≤ ‖(z −A(ω)
r )−1(A(ω) −A(ω)

r )(z −A(ω))−1ψ‖2 + 2κ/|�z|
≤
(
‖(A(ω) −A(ω)

r )φ‖2 + 2κ
)
/|�z|.

Now, we use that for all x, y ∈ G

a(ω)
r (x, y)

r→∞−−−→ 〈δx, A(ω)δy〉

to obtain, employing dominated convergence,

lim sup
r→∞

∥∥((z −A(ω))−1 − (z −A(ω)
r )−1

)
ξ
∥∥
2

≤ 2κ/|�z|.

As κ > 0 was arbitrary, this concludes the proof. �
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Appendix D. Conditions for (Un-)Boundedness

Proof of Lemma 3.4. Let D = ∞ and let m > 0 be given. Note that condi-
tion (3.2) implies that

k := E
[∑

z �=id

|X{id,z}|
]
< ∞.

Without loss of generality, we assume m ≥ 2k|α|. As D is assumed to be
infinite, there exists z ∈ G such that

‖X{id,z}‖∞ ≥ m. (D.1)

Let us distinguish two case. In the first case, we consider the situation where
there exists z ∈ G\{id} satisfying (D.1). Then obviously the probability
P(a(id, z) ≥ m) is strictly positive. In the case where there exists no z ∈ G\{id}
satisfying (D.1) the same holds true, however, we need a short calculation to
see this. In this situation, we have ‖X{id}‖∞ = ∞. By definition of a(id, id),
we have by triangle inequality

P(|a(id, id)| ≥ m) ≥ P
(

|X{id}| −
∣∣∣α

∑

z∈G\{id}
X{id,z}

∣∣∣ ≥ m

)

≥ P
(

|X{id}| ≥ 2m,
∣∣∣α

∑

z∈G\{id}
X{id,z}

∣∣∣ ≤ m

)

= P
(
|X{id}| ≥ 2m

)
P
(∣∣∣α

∑

z∈G\{id}
X{id,z}

∣∣∣ ≤ m

)
.

As ‖X{id}‖∞ = ∞ we get P(|X{id}| ≥ 2m) > 0. We use the Tschebyscheff
inequality to obtain

P
(∣∣∣α

∑

z∈G\{id}
X{id,z}

∣∣∣ ≤ m

)
≥ 1 − |α|

m
E
[ ∑

z∈G\{id}
X{id,z}

]
≥ 1

2
.

This gives P(|a(id, id)| ≥ m) > 0. Together with the previous case, we showed
that whenever D = ∞, there exists z ∈ G such that P(|a(id, z)| > m) is posi-
tive. Furthermore, by construction we have that the random variables a(x, zx),
x ∈ G, are independent and identically distributed, such that we get

∑

x∈G

P(|a(x, zx)| > m) = ∞.

Now, Borel-Cantelli gives that for almost all ω ∈ Ω there are infinitely many
x ∈ G such that |a(ω)(x, zx)| > m. For each such ω, we choose one of these x
and obtain (A(ω)δzx)(x) = a(ω)(x, zx). Hence,

‖A(ω)‖ ≥ ‖A(ω)δzx‖2 ≥ m.
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Let D < ∞ and A be of finite hopping range R. We set m := (1 +
|α||BR|)D. Then, we have

P(∃x, y ∈ G with a(x, y) ≥ m) = P
( ⋃

x,y∈G

{
ω ∈ Ω | a(x, y) ≥ m

})

≤
∑

x,y∈G

P
({
ω ∈ Ω | a(x, y) ≥ m

})
= 0.

Using this we get for f ∈ �2(G) and almost all realizations ω ∈ Ω

‖A(ω)f‖22 =
∑

v∈G

∣∣∣
∑

w∈BG
R (v)

a(ω)(v, w)f(w)
∣∣∣
2

≤
∑

v∈G

m2
∣∣∣
∑

w∈BG
R (v)

|f(w)|
∣∣∣
2

≤
∑

v∈G

m2|BG
R |

∑

w∈BG
R (v)

|f(w)|2 ≤ m2|BG
R |2‖f‖22.

�
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grated density of states for randomly weighted Hamiltonians on long-range
percolation graphs. Math. Phys. Anal. Geom (2012) online first. doi:10.1007/
s11040-013-9133-2

[4] Aizenman, M., Warzel, S.: The canopy graph and level statistics for random
operators on trees. Math. Phys. Anal. Geom. 9(4), 291–333 (2008)

[5] Biggs, N.L.: Girth and residual finiteness. Combinatorica 8(4) 307–312 (1988).
MR 981888 (90c:05105)

[6] Brooks, S., Lindenstrauss, E.: Non-localization of eigenfunctions on large regular
graphs. Israel J. Math. 193(1), 1–14 (2013)

[7] Bowen, L.: Measure conjugacy invariants for actions of countable sofic groups. J.
Am. Math. Soc. 23(1), 217–245 (2010)

[8] Bowen, L.: Sofic entropy and amenable groups. Ergod. Theor. Dyn. Syst. 32, 427–
466 (2012)

[9] Bartholdi, L., Woess, W.: Spectral computations on lamplighter groups and
Diestel-Leader graphs. J. Fourier Anal. Appl. 11(2), 175–202 (2005). MR 2131635
(2006e:20052)

[10] Cycon, H., Froese, R., Kirsch, W., Simon, B.: Schrödinger Operators, 3rd edn.
Springer, Berlin (2008)

[11] Cornulier, Y.: A sofic group away from amenable groups. Math. Ann. 350, 269–
275 (2011)

[12] de Branges, L.: The Stone-Weierstrass theorem. Proc. Amer. Math. Soc. 10,
822–824 (1959). MR 0113131 (22 #3970)



1100 C. Schumacher and F. Schwarzenberger Ann. Henri Poincaré
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[26] Lenz, D., Schwarzenberger, F., Veselić, I.: A Banach space-valued ergodic theo-
rem and the uniform approximation of the integrated density of states. Geom.
Dedicata 150, 1–34 (2011). MR 2753695 (2012c:22010).

[27] Lück, W.: Approximating l2-invariants by their finite-dimensional analogues.
Geom. Funct. Anal. 4(4), 455–481 (1994)

[28] McDiarmid, C.: Concentration. In: Probabilistic Methods for Algorithmic Dis-
crete Mathematics, pp. 1–46 (1998)

[29] McKay, B.D.: The expected eigenvalue distribution of a large regular
graph. Linear Algebra Appl. 40, 203–216 (1981)

[30] Mathai, V., Schick, T., Yates, S.: Approximating spectral invariants of Harper
operators on graphs II. Proc. Amer. Math. Soc. 131(6), 1917–1923 (2003)

[31] Mathai, V., Yates, S.: Approximating spectral invariants of Harper operators on
graphs. J. Funct. Anal. 188(1), 111–136 (2002)

[32] Newman, M.: Free subgroups and normal subgroups of the modular group. Am.
J. Math. 86(1), 262–265 (1964)

[33] Pastur, L.A.: Selfaverageability of the number of states of the Schrödinger
equation with a random potential. Mat. Fiz. i Funkcional. Anal. 238(2), 111–
116 (1971)



Vol. 16 (2015) Approximation of the Integrated Density 1101

[34] Pestov, V.: Hyperliner and sofic groups: a brief guide. B. Symb. Log. 14(4), 449–
480 (2008)

[35] Pastur, L., Figotin, A.: Spectra of random and almost-periodic operators. In:
Grundlehren der mathematischen Wissenschaften, vol. 297. Springer, Berlin
(1992)

[36] Pogorzelski, F., Schwarzenberger, F.: A banach space-valued ergodic theorem
for amenable groups and applications. J. Anal. Math. 55 (2014, to appear)
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THE ANDERSON MODEL ON THE BETHE LATTICE:
LIFSHITZ TAILS

FRANCISCO HOECKER-ESCUTI AND CHRISTOPH SCHUMACHER

Abstract. This paper is devoted to the study of the (discrete) Anderson
Hamiltonian on the Bethe lattice, which is an infinite tree with constant vertex
degree. The Hamiltonian we study corresponds to the sum of the graph Laplacian
and a diagonal operator with non-negative bounded, i. i. d. random coefficients
on its diagonal. We study in particular the asymptotic behavior of the integrated
density of states near the bottom of the spectrum. More precisely, under a
natural condition on the random variables, we prove the conjectured double-
exponential Lifshitz tail with exponent 1/2. The result is a consequence of
some estimates on the Laplace transform of the density of states, which is also
related to the solution of the parabolic Anderson problem on the tree. These
estimates are linked to the asymptotic behavior of the ground state energy of
the Anderson Hamiltonian restricted to trees of finite length. The proofs make
use of Tauberian theorems, a discrete Feynman–Kac formula, a discrete IMS
localization formula, the spectral theory of the free Laplacian on finite rooted
trees, an uncertainty principle for low-energy states, an epsilon-net argument
and standard concentration inequalities.
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5.3. Concentration inequalities 54
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1. Introduction

In this paper we are interested in a tight-binding, one-body Hamiltonian of a
disordered alloy. This Hamiltonian is known as the Anderson model, and it was
introduced in its most simple form by the American physicist Phillip W. Anderson
in 1958 [And58]. Given the extensive mathematical and physical literature on the
subject, see e. g. [Abr10, and references therein], we defer the discussion and review
of the literature until after the rigorous statement of our results.

The underlying physical space of our model is assumed to be a Bethe lattice, this
is, an infinite regular graph with no loops and constant coordination number k + 1
(see fig. 1). The Anderson model in this setting was introduced very early by
Abou-Chacra, Thouless and Anderson in [ATA73]. A number of physical and
numerical (e. g. [KH85; MF91; MD94; BAF04; AF05; MG09]) as well as rigorous
mathematical works (e. g. [KS83; Aiz94; AK92; Kle96; Kle98; ASW06; AW11b;
AW11a; War13]) in this setting have been since published.

Figure 1. The Bethe lattices with coordination numbers k + 1 ∈ {3, 5}.

The study of transport properties of disordered models leads to the spectral theory
of random Schrödinger operators. The prototypical example of these operators
is the Anderson Hamiltonian. An important quantity of study is the integrated
density of states, which is a function we denote by N . The numerical value N (E)
counts the available energy levels below the energy E per unit volume. Under very
general assumptions, the support of the derivative of this function coincides with
the spectrum of the Hamiltonian in consideration. The study of its asymptotic
behavior when we approach the bottom of the spectrum E0 has attracted a lot of
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attention since Lifshitz’ remark [Lif65]. The physicist noted that in presence of
disorder this asymptotic behavior is drastically different from the one of the free
operator. Indeed, as soon as the disorder is non-trivial, this function exhibits a very
fast decay at the bottom of the spectrum E0. This behavior has also drawn the
attention of many mathematicians, as it can be used as one of the main ingredients
of the rigorous proofs of the occurrence of Anderson localization. In the setting
of our paper, it was conjectured, see [KH85; BST10; BS11], that the integrated
density of states exhibits a double exponential decay with exponent 1/2, i. e. that
for some suitable ε > 0

(1.1) exp
(
−eε

−1(E−E0)−1/2) 6 N (E) 6 exp
(
−eε(E−E0)−1/2)

for E ∈ (E0, E0 + ε).

In the literature (e. g. [War13, eq. 5]) one also finds this written in the somewhat
weaker form

lim
E↘E0

log log|logN (E)|
log(E − E0)

= −1

2
.

The purpose of this paper is to prove this conjecture. To do so, we study the
Laplace transform t 7→ Ñ (t) of the measure dN ( · ) and we establish asymptotic
bounds for large t. We will see that for a suitable ε > 0 and all t large enough

(1.2) exp

(
−t
(
E0 +

ε−1

(log t)2

))
6 Ñ (t) 6 exp

(
−t
(
E0 +

ε

(log t)2

))
.

These bounds are of independent interest, as they are related to the long-time
behavior of the so called parabolic Anderson problem in the annealed regime. This
long-time behavior is in turn related to the location of the ground state energy
of suitable finite-dimensional approximations of the Anderson Hamiltonian. We
discuss this circle of ideas, which is well known in the literature, after stating
rigorously our results.

Most of the novelty of this work lies in the proof of the bounds on the ground
state energy EL

GS of the Hamiltonian restricted to finite symmetric rooted trees T L
of length L (see fig. 2, where L =∞). In absence of disorder, it behaves as

(1.3) E0 + CL−2,

up to smaller terms. In presence of disorder, one expects heuristically that the
ground state of the disordered Hamiltonian restricted to T L lives in some smaller
subtree of length r = C ′ logL on which the random potential is essentially zero.
Hence, with good probability we should have

(1.4) EL
GS = E0 + C ′′(logL)−2,

which is the order of the ground state energy of the free operator restricted to
this subtree. The length scale logL appears naturally as one balances out the
probability that the random potential is small in a subtree, which is exponential
in the number of random variables (we find about kr of them in a subtree of
length r), and the number of trees of length r (there are about kL−r 6 kL) in
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Boole’s inequality. As for the shape of this region, symmetry considerations might
suggest that the ground state localizes to a ball. As it turns out, symmetric rooted
trees provide a tractable, good approximation for the balls of the Bethe lattice
(which are also finite trees).

Let us finish this short summary by emphasizing that the usual rigorous argument
does not work in our setting, the culprit being (i) the exponential growth of the
trees and (ii) the spectral gap of the free Laplacian restricted to trees, which is of
order L−3 and thus too small, compared with (1.3) and (1.4). As a consequence of
(i) we are not able to use Dirichlet–Neumann bracketing and (ii) renders impossible
the approximation of the ground state of the perturbed operator by the ground
state of the free one. We discuss later the new ideas required to overcome these
two problems.

Let us now introduce some notation and the rigorous statements of our results.

1.1. Main results. Let Γ be an infinite graph and denote by `2(Γ) the space of
square summable functions defined on the vertices of Γ. Let ∆Γ be the associated
(negative definite) Laplacian operator, i. e.

∆Γ : `2(Γ)→ `2(Γ)

(∆Γϕ)(v) :=
∑

w∼v

(
ϕ(w)− ϕ(v)

)
, v ∈ Γ.

Here the index w ∼ v runs over all neighboring nodes w ∈ Γ of the node v ∈ Γ.
Let us define a random potential on this graph, i. e. a diagonal operator

V Γ
ω : `2(Γ)→ `2(Γ)

(V Γ
ω ϕ)(v) := ωvϕ(v), v ∈ Γ,

where ω := {ωv}v∈Γ is a sequence of non-trivial, bounded, non-negative, independent
and identically distributed random variables. We will also assume that

ess inf ω0 = 0.

This is no additional restriction given that we can always shift the energy through
a translation. We are interested in the random operator

(1.5) HΓ
ω := −∆Γ + λV Γ

ω ,

where λ denotes a (strictly) positive coupling constant. We will call this Hamiltonian
the Anderson model on Γ. Choose some 0 ∈ Γ and let us define its associated
integrated density of states as

(1.6) N Γ(E) := E[〈δ0,1(−∞,E](H
Γ
ω )δ0〉],

which is a function of the energy E ∈ R. Here, and in the rest of the paper, 1S
denotes the indicator function of the set S, the operator 1(−∞,E](H

Γ
ω ) is the spectral

projector on (−∞, E], defined by functional calculus, and δ0 ∈ `2(Γ) denotes
Kronecker’s delta. The function E 7→ N Γ(E) is positive, increasing, and takes
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values in [0, 1]. It is the cumulative distribution function of the density of states
measure, which we denote by dN .

If one assumes that HΓ
ω is ergodic [PF92; CL90], then (1.6) is independent of the

choice of 0 ∈ Γ, and we know that there exists some set Σ ⊂ R such that

Σ = σ(HΓ
ω ) = σ(−∆Γ) + λ suppω0 = supp dN Γ,(1.7)

for almost every ω. This is the case if Γ is the graph Zd or the Bethe lattice B
defined below. We will denote by E0 the bottom of the almost sure spectrum, i. e.

E0 := inf Σ = inf σ(−∆Γ).

It is well known that the asymptotic behavior of the integrated density of states
close to the bottom of the spectrum E0 is very different in the presence of disorder
(see remark 1.2 below or [KM06] for a survey). In this work, we study this behavior
on a graph known as the Bethe lattice, which we define as an infinite connected
undirected graph, with no closed loops and degree constant and equal to k + 1.
For k = 1, we obtain with this definition the graph Z. From now on we fix k > 2
for the rest of this paper and we denote this graph by B. Whenever we omit the
index Γ it will be assumed that Γ = B.

This paper is devoted to the proof of the following theorem.

Theorem 1.1. Let k > 2 and Hω be the Anderson model on the Bethe lattice of
degree k + 1. If

(1.8) ν := lim sup
κ↘0

√
κ log

∣∣logP(ω0 6 κ)
∣∣ < 1,

then inequalities (1.1) hold true, and thus

(1.9) lim
E↘E0

log log|logN (E)|
log(E − E0)

= −1

2
.

Remark 1.2.
• The fact that the integrated density of states decays faster in presence of

disorder has been known to hold rigorously since the works of Nakao [Nak77] and
Pastur [Pas77] on Rd. Analogous results have also been obtained in the discrete
setting Γ = Zd. In this case, if λ = 0 in (1.5), then

lim
E↘E0

logN Zd(E)

log(E − E0)
=
d

2
, (Van Hove singularity)

while as soon as λ 6= 0, (and with a restriction analogous to (1.8))

lim
E↘E0

log|logN Zd(E)|
log(E − E0)

= −d
2
. (Lifshitz tails)
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• In absence of disorder, the density of states of the free Laplacian on the Bethe
lattice can be calculated explicitly, see [Kes59; McK81],

dN0(E) = d〈δ0,1(−∞,E](−∆B)δ0〉(1.10)

= 1I(E)
k + 1

2π

√
4k − (E − k − 1)2

(k + 1)2 − (E − k − 1)2
dE

with I := σ(−∆B) = supp dN0 = [(
√
k − 1)2, (

√
k + 1)2]. In particular, we see that

for any k > 2

lim
E↘E0

logN0(E)

log(E − E0)
=

3

2
.

• The double exponential decay of the integrated density of states in (1.9) stems
from concentration inequalities, which are exponential in the volume of shells of
the Bethe lattice, and the fact that the volume of these shells grows exponentially
with their radius.
• Condition (1.8) tells us that the distribution of the random variables should

not decay too fast when we approach 0. It is satisfied, for example, by uniform or
Bernoulli random variables. We provide in the text a slightly weaker version for
which we can prove (1.9) but not (1.1). If this last condition is not satisfied, it is
indeed possible to show that the lower bound fails (see lemma 2.3). Similar results
are known to hold true in the Euclidean settings (see [KM06]).

To establish our main result, we will study the Laplace transform of dN . The
study of the integrated density of states through the Laplace transform of its
derivative goes back at least to Pastur [Pas71]. This last work together with the
celebrated result of Donsker and Varadhan [DV75] on the asymptotic of the Wiener
sausage were used to give the first rigorous proof of the existence Lifshitz tails
for the continuous Anderson model with Poisson impurities, see [Pas77; Nak77].
Similar ideas work in the discrete setting [BK01]. The spectral theorem shows
that the Laplace transform of the density of states measure dN is the continuous
solution u : [0,+∞)× B → [0,+∞) of a heat equation associated to Hω evaluated
at one point. Thus, the proof of our main theorem will be a consequence of our
next result, which is related to the following Cauchy problem:

(1.11)





∂

∂t
u(t, v) = ∆Bu(t, v)− Vωu(t, v), for (t, v) ∈ (0,∞)× B
u(0, v) = δ0(v) for v ∈ B.

The solution t 7→ u(t, · ) is the solution to the heat equation with random coefficients
and localized initial datum δ0. Again, 0 ∈ Γ is here any point of the lattice and
the results are independent of this choice.
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0

Figure 2. The infinite rooted tree with two children per parent.

Theorem 1.3 (Annealed regime). Assume (1.8). Then there exist ε > 0 and
t∗ > 0 such that for all t > t∗,

(1.12) exp

(
−t
(
E0 +

ε−1

(log t)2

))
6 E

[
u(t, 0)

]
6 exp

(
−t
(
E0 +

ε

(log t)2

))
.

Remark 1.4. Obviously exp(−t(E0 + |O((log t)−2)|)) = exp(−|O(t(log t)−2)|) but
the quantity E0 + |O((log t)−2)| should be regarded as an energy in the spectrum Σ
close to the bottom E0.

The long term behavior (1.12) at the node 0 ∈ Γ of the solution to the heat
equation (1.11) is well approximated by finite volume versions of the same problem
(using e. g. Feynman–Kac formula). More precisely, we will look at the solution
to the Cauchy problem on a ball BL of radius L � t with Dirichlet boundary
conditions, i. e. we require that the solution is zero outside this ball. The solution
of the finite dimensional problem is then bounded above by a term of the form
e−tEGS(Hω |BL), where EGS(Hω|BL) denotes the smallest eigenvalue of Hω restricted
to the ball BL. A crucial ingredient of our proof consists in replacing the balls BL
by finite symmetric rooted trees T L.

Let us introduce some more notation. We let T be a rooted tree with branching
number k, this is an infinite connected graph which has no closed loops and such
that the degree is constant and equal to k+ 1 on every site, except at one particular
site 0, which has degree k and is called the root of the tree (see fig. 2). Note that
we can embed this infinite graph into the Bethe lattice B. In this note we consider
finite versions of this tree, namely, for any integer number L > 0 we denote by T L
the subtree of T of finite depth L, consisting of all those sites at a distance L− 1
or smaller from the root 0:

T L := {v ∈ T : dT (0, v) 6 L− 1}.
Here dΓ( · , · ) denotes the graph distance associated to the graph Γ. By introducing
the notation (which we repeatedly use later) |v| = dT (0, v) + 1 for the “level” of the
node v, we can also write T L = {v ∈ T : |v| 6 L}.

These finite symmetric rooted trees look like the balls BL ⊂ B, centered at 0,
after removing entirely one of the branches attached to the center of the ball. Note
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that T L is a finite connected graph which has no closed loops and such that the
degree is constant at each site except at the root and at the leaves {|v| = L}. We
also picture these finite subtrees as subsets of the infinite Bethe lattice B. Let now

HL
ω := Hω|T L

be the Hamiltonian Hω restricted to the subtree T L of length L with Dirichlet
(also called simple) boundary conditions. We denote by EL

GS the random ground
state energy of HL

ω , i. e.
EL

GS := inf
‖ϕ‖2=1

〈
HL
ωϕ, ϕ

〉
.

We can now state our last main result.

Theorem 1.5. Assume (1.8). Then there exist ε > 0 and L∗ > 1 such that for all
L > L∗ we have

E0 + ε(logL)−2 6 EL
GS 6 E0 + ε−1(logL)−2

with probability at least
1− exp(−εL).

To finish the presentation of our results, let us note that an immediate corollary
of theorem 1.5 is that

(1.13) lim
L→∞

log(EL
GS − E0)

log logL
= −2 a. s.

In fact, the Borel–Cantelli lemma implies this, since
∞∑

L=L∗
P
( log(EL

GS − E0)

log logL
> −2− log ε

log logL

)
6

∞∑

L=L∗
exp(−εL) <∞,

so that lim supL→∞
log(ELGS−E0)

log logL
6 −2 a. s., and analogously for the other direction.

For comparison, in absence of disorder we obtain (see section 3):

(1.14) EL
0 := EGS(−∆B|T L) = E0 +

√
kπ2

(L+ 1)2
+O(L−4)

which implies

lim
L→∞

log(EL
0 − E0)

logL
= −2.

1.2. Discussion. The results we presented concern an operator which appears
naturally in the study of the macroscopic properties of crystals, alloys, glasses, and
other materials. If one looks at the Schrödinger equation

(1.15)

{
idϕ
dt

= HΓ
ωϕ, i2 = −1

ϕ(0) = ϕ0 ∈ `2(Γ), ‖ϕ0‖2
2 = 1

,

then the Anderson model HΓ
ω defined by (1.5) describes the Hamiltonian governing

the behavior of a quantum particle having an initial state ϕ0 in a disordered
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medium. Its integrated density of states measures the “number of energy levels
per unit volume” and is a concept of fundamental importance in condensed matter
physics, as it encodes various thermodynamical quantities of the material, spectral
features of the operator and properties of the underlying geometry.

The Anderson model has been the subject of hundreds of physical and mathe-
matical papers. One of the most studied mathematical features of this model is
the phenomenon known as Anderson localization, i. e. that the spectrum of the
random operator exhibits pure point spectrum with probability 1, for any strength
of disorder, whereas the free operator has only absolutely continuous spectrum.
We invite the interested reader to consult the monographs [CL90; PF92; Sto01;
His08; Kir07].

One of the hallmarks of Anderson localization is the so-called Lifshitz tails
behavior, i. e. the exponential decay of the integrated density of states at the bottom
of the spectrum. It is well known that such a decay, together with additional
assumptions on the regularity of the random variables, provides one of the main
ingredients to start the multi-scale analysis, see e. g. [GK13], or to satisfy the
fractional moment criterion ([AM93]). These strategies have been successfully
applied to prove the existence of localization in a neighborhood of the spectral
edges, for example when the graph is Zd (the model introduced originally by P. W.
Anderson in [And58]) or its continuous version on Rd.

The Bethe lattice is of interest in statistical mechanics because of its symmetry
properties and the absence of loops. It allows to obtain closed solutions for some
models, e. g. in percolation theory and the non-rigorous scaling theory of Anderson
localization. In our setting, the resolvent of the operator Hω on the Bethe lattice
admits a recursive representation (see e. g. [Ros12]), but in this work we make
no use of these formulas. It was for these reasons that the model was studied
in [ATA73], and it enjoys some renewed interest in the physical community (see
e. g. [BST10; BS11]). Because of its exponential growth, it is also of interest in
connection with the configuration space of many-body problems [Alt+97].

Perhaps one of the most striking features of the operator defined on the infinite
tree B is the absence of pure point spectrum at weak disorder [Kle96; AW11b;
AW11a]. For a survey on recent progress on the spectral properties of the Anderson
model on the Bethe lattice see [War13]. At weak disorder, thus, this model exhibits
no Anderson localization, even near the spectral edges where Lifshitz tails take
place. For the Anderson model on the Bethe lattice, the existence of a Lifshitz tail
does not imply localization. We remind the reader that in the Euclidean case, the
absence of localization at higher energies and therefore the existence of a spectral
transition is still an open problem.

The parabolic problem (1.11) is the heat equation associated with the Anderson
Hamiltonian and is well studied under the name of Parabolic Anderson model. It
describes a random particle flow in the tree B through a random field of soft sinks,
which can also be seen as traps or obstacles via the Feynman–Kac formula. There
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is an additional interpretation in terms of a branching process in a field of random
branching rates. We refer the reader to [GK05; KW] for a survey. In this context,
one is usually interested in the behavior of the total mass ‖u(t, · )‖1 of the solution
for large t > 0, which is also the behavior of the solution to the heat equation with
initial datum u( · , 0) ≡ 1 at one point. Because of the exponential growth of the
graph, we were not able to study this quantity. However, theorem 1.3 is a first step
in this direction.

A related question of interest, which remains unanswered in this paper, is whether
there is intermittency in this setting. Following the heuristics described in [KW],
intermittency can be understood as a consequence of Anderson localization. On
the other hand, Lifshitz tails have been proved as a by-product of the proof of
intermittency in the parabolic Anderson model in [BK01]. Given that we may have
absolutely continuous spectrum in spite of the existence of Lifshitz tails, the answer
to this question is an interesting subject for further studies.

This discussion would not be complete without citing some previous results. The
Lifshitz tails behavior for a percolation model on the Bethe lattice was studied in
[Rei09], see also [MS11]. In [Sni89] similar bounds to ours are obtained for N and
for Ñ in the hyperbolic space, which is the continuous analog of the Bethe lattice.
In our setting, Lifshitz tails were studied in [BS11; Ros12], where in particular a
rigorous lower bound

lim inf
E→E0

log log|logN (E − E0)|
log(E − E0)

> −1

2
.

is established. A proof of any type of decay other than the trivial one has resisted
several attempts to be rigorously proved. We will try to explain now why.

The first problem concerns the finite-dimensional approximation of the infinite
dimensional operator. In the standard setting of the Anderson model Γ = Zd, if we
let

ΛL := {v ∈ Zd : ‖v‖∞ 6 L},
then the thermodynamic limit of the normalized eigenvalue counting functions

lim
L→∞

#(σ(Hω|ΛL) ∩ [0, E])

#ΛL

= lim
L→∞

tr1[0,E](Hω|ΛL)

#ΛL

(1.16)

exists almost surely for every E where N is continuous. In this setting as well
as in the continuous version on Rd, the limit defined in (1.16) is independent of
the boundary conditions. That this limit coincides with the averaged spectral
function N at these points is known as the Pastur–Shubin formula. There is a
wealth of results in this direction in different settings. It holds in particular on any
amenable graph Γ (like Zd) if we choose the sequence ΛL as a Føllner sequence.

The limit (1.16) may have different limits depending on the choice of boundary
conditions when the graph is not amenable [AW06]. In particular, the usual
Dirichlet–Neumann bracketing is of no hope. A similar phenomenon occurs on the
hyperbolic space [Sni89; Sni90]. This leaves us with the problem of finding the



THE ANDERSON MODEL ON THE BETHE LATTICE: LIFSHITZ TAILS 11

right finite volume approximations. In [SS14] it is proved that the Pastur–Shubin
formula holds in great generality. This setting includes the Cayley graph of a
free group. The finite volume approximations are the analogs of the periodic
boundary conditions in the Euclidean case. Unfortunately, the rate of convergence
of the approximations to the averaged spectral function (1.6) is unknown. An
approach of a different vein was explored in [Gei14]. Here one looks at this problem
on random regular graphs. It is indeed known, since the pioneering works of
Kesten [Kes59] and McKay [McK81], that the density of eigenvalues of the free
Laplacian of random regular graphs converges to the measure given by (1.10). This
approach introduces another source of randomness and seems difficult to study. We
avoid these difficulties altogether by approximating the integrated density of states
only at low energies. This strategy works because low energy eigenfunctions have
exponentially small values on the leaves and counter the exponentially growing
number of leaves, see section 3.1 and [Bro91].

In this work we consider Dirichlet restrictions of the operator to finite trees T L.
We show that these are good approximations as long as we look at the bottom
of the spectrum. The problem then reduces, as usual, to that of finding good
upper bounds on the ground state energy EGS(Hω|T L) with good probability. In
the standard Anderson model on Zd, one usually uses Temple’s inequality, [Sim85],
or Thirring’s inequality, [KM83], or perturbation theory, [Sto99]. Unfortunately,
they are all based on the premise that the ground state of the perturbed operator,
modulo some small error, should look like the one of the free operator. This reduces
the problem to study only the effect of the random potential on the ground state of
the free operator. The error term in these methods is related to the spectral gap of
the free operator, i. e. the distance between the first and the second eigenvalue. In
the Euclidean setting both the first and the second eigenvalue of the free operator
with Dirichlet boundary conditions are of the same order L−2, whereas in our
setting we have (1.14) but the second eigenvalue of −∆B|T L behaves as

EGS(−∆B|T L) +O(L−3).

See section 3 for these calculations. This behavior renders the use of the methods
named above impossible. Also, the ground state of the perturbed operator is
fundamentally different from the ground state of the free operator. Roughly
speaking, the random potential restricts the ground state to a subtree of length on
the scale of the logarithm of the radius of the ball, see section 2. Therefore, the
ground state of the free operator is not a good test function to compare with the
one of the random operator.

1.3. Strategy of proof. In order to make the reading of this paper easier, we
provide here a road map for the proofs and a table of notations in page 16. This
will also allow us to comment on some results and acknowledge some sources. To
simplify the (not necessarily rigorous) exposition, we assume k = 2 and ε > 0 a
small constant which may change from line to line. We also write A . B, B & A
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if there exists a constant c such that A < cB; A � B if A . B and A & B. As
usual, to prove theorem 1.1 we prove lower and upper bounds separately.

1.3.1. Lower bound. We first prove lower bounds on the integrated density of states,
which is easier. This is done in section 2. Note that a rigorous proof of the lower
bound was already obtained in [BS11] and [Ros12]. Our method is not very different
from the one in [Ros12], but we do identify the sharper condition (1.8). Another
novelty is that we also obtain a precise lower bound for the ground state energy
on finite rooted trees. Indeed, as will be clear, to obtain the lower bound of the
Lifshitz tails it is enough to prove that for large L

(1.17) EL
GS 6 E0 + ε−1(logL)−2

holds with not too small probability (we actually prove that this holds with
probability 1 − exp(−kεL), see proposition 2.1). This is, as usually, proved by
finding a suitable test function.

Our proposition 2.1 corresponds to the upper bound in theorem 1.5. It is proved
by localizing the test function to a subtree of length logL (see fig. 3 in page 18).
This is crucial to prove that the almost sure behavior of EL

GS is of order (logL)−2

for large L. We show then that this upper bound implies the lower bound in (1.2)
(corollary 2.5) and a Tauberian theorem (lemma 2.6 and proposition 2.7) gives the
lower bound in (1.1).

1.3.2. Upper bound. In section 3, we introduce some elements and tools we will need
in the course of the proof. Because these calculations make no use of randomness,
we decided to isolate them in their own section.

We first study the spectral theory of the free Laplacian on finite trees, calculating
explicitly all the eigenvalues and an orthonormal basis of eigenfunctions (lemmas 3.1
to 3.3 and 3.5). The eigenfunctions have their support confined to disjoint subtrees.
This property is crucial when we study the action of the random potential in
section 4.

We then prove an analog of the Ismagilov–Morgan–Sigal (IMS) localization
formula on trees (proposition 3.6). The proof is of interest on its own as it can be
adapted to very general discrete settings (see remark 3.8). In this work, we have
decided to prove it only for functions in `2(Z) (lemma 3.7) and then carry it over
to the tree by means of the spectral theory of the free Laplacian developed earlier
in this section.

We finally prove in this section an uncertainty relation for truncated eigenfunc-
tions on the tree. Explaining the details here would make this road map too long,
but see below how this truncation is used. We also prove first this property for
functions in `2(Z) and then use the spectral theory to prove it on `2(T L).

In section 4 we prove the upper bound in (1.1). It proceeds roughly as follows.
The first step is a Tauberian theorem. It is an elementary consequence of an upper
bound on the integrated density of states for energies close to E0 using the large
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time decay of the Laplace transform Ñ (t) of its derivative (proposition 4.2). We
include it for the sake of completeness. It says the following: if for some c > 0

(1.18) Ñ (t) 6 exp(−t(E0 + c(log t)−2)) for t� 1

then
N (E) 6 exp(−eε(E−E0)−1/2

) for E − E0 � 1.
We then do a reduction to a finite scale (proposition 4.3). We show that we can

restrict the operator to a ball, as long as the ball grows linearly with the time t:

Ñ (t) = E〈δ0, e
−tHωδ0〉 6 E〈δ0, e

−tHω |BLδ0〉+ e−ζt with t = ζL and ζ � 1.

The approximations Hω|BL considered in this step correspond to the Hamilton-
ian Hω restricted to balls of radius L with simple (also called Dirichlet) boundary
conditions. A proof using the Feynman–Kac formula is contained in [Ros12] (follow-
ing [BK01]). We provide a somewhat elementary proof of this fact, which appears
to be new in this context. The idea is to compare the series expansion of both
e−tHω and e−tHω |B

L and expand the matrix products of the terms 〈δ0, (−tHω)nδ0〉
as products of paths from δ0 to δ0 of length at most n/2. This is a discrete version
of the Feynman–Kac formula. Because the coefficients of both Hω and its approxi-
mation coincide in a large ball, the error we make is easily estimated by the tail of
the exponential series.

The next step consists in simply replacing the operator by its ground state energy
(lemma 4.4). Using a spectral decomposition of δ0 in terms of the eigenfunctions
of Hω leads to an upper bound of the form

(1.19) 〈δ0, e
−tHω |BLδ0〉 6 e−tEGS(Hω |BL).

It is easy to see (lemmas 4.5 and 4.6) that every ball is embedded in a finite
symmetric rooted tree and that we can replace the ball by a tree T L because

exp(−tEGS(Hω|BL)) 6 exp(−tEGS(H
L
ω )) where HL

ω = Hω|T L.
This is crucial in our argument, as we are able to use the spectral theory on the
tree as a makeshift “Fourier transform” in the probability estimates we describe
below. Using the two last inequalities and taking the expectation in (1.19) we see
that (lemma 4.7) for any E > 0

E〈δ0, e
−tHω |BLδ0〉 6 e−tE + e−tE0P(EL

GS 6 E).

As (1.18) and the proved lower bound (1.17) suggest, one should take E = E0 +
C(logL)−2 in the last inequality. Note that EGS(−∆|T L) = E0 + CL−2 is not
even of the same order. We perform then a reduction to a yet smaller scale.
By using the IMS localization formula we go from the scale L to r = ε−1 logL
(proposition 4.9). By doing this, we trade energy for probability: the number of
subtrees of length logL is about kL−logL � kL = kexp(εr) and thus

P(EL
GS 6 E0 + C(logL)−2) 6 kexp(εr)P(Er

GS 6 E0 + Cr−2).
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It is clear now (replacing r � 1 by L� 1 below) that we need to prove

(1.20) P(EL
GS 6 E0 + CL−2) 6 e− exp(ε′L), L� 1,

for some ε′ > 0. After choosing 0 < ε < ε′, we obtain (1.18). Proving this last
bound occupies the last section of this paper.

To prove (1.20) we proceed as follows. We first note that functions with low
kinetic energy average the random potential and this pushes their energy away from
the bottom of the spectrum. First we show that (up to an error) we can assume
that the (random) ground state ϕL of HL

ω is a linear combination of low energy
eigenfunctions. Using our uncertainty relation, we can furthermore replace these
eigenfunctions by truncated versions. The rest of the proof is a careful analysis
of the action of the random potential on functions of this type. The truncation is
necessary to exploit the averaging properties of the eigenfunctions away from the
root in the concentration inequalities.

Let us be more precise. Every eigenfunction of ∆|T L is supported in some subtree
of T Lv of length L−|v| rooted at v ∈ T L (see section 3). We index the eigenfunctions
Ψv,m by their anchor v ∈ T L and their mode (or frequency) m = 1, . . . L− |v|. It
is not hard to see (lemma 3.3) that the eigenfunctions Ψv,m close to the bottom E0

satisfy

〈∆TΨv,m,Ψv,m〉 ≈ E0 +
( Cm

L− |v|+ 1

)2

We deduce then that the eigenfunctions Ψv,m having small energy, i. e. those for
which ( Cm

L− |v|+ 1

)2

6 βL−2

satisfy both that their modes are bounded by β (uniformly in L), i. e.

(1.21) m 6 β

and that the distance of their anchors to the root of T L is bounded linearly in L,
i. e.

(1.22) |v| 6 CAL, 0 < CA < 1.

The subscript A here stands for “anchor”. The reader may imagine that the ground
state is (up to an error) “bandlimited in Fourier space”.

After this projection in “Fourier space”, we introduce a truncation in physical
space. This is necessary because low energy functions are not “flat” in the usual
sense. The reader will convince herself by looking at the ground state of ∆T L , which
is radially symmetric and thus exponentially decaying from the root. Nevertheless,
these functions distribute evenly their `2-mass in the transversal direction. We can
thus throw away some of the mass close to the anchor and control precisely the error
by doing so with our uncertainty principle. Let us call ϕL the (random) ground
state of HL

ω we obtain after applying the spectral projection and the truncation.
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Most of the averaging now takes place away from the anchor in the radial
direction. Let us look at the potential energy of ϕL. If we center the random
variables

〈VωϕL, ϕL〉 = 〈(Vω − Eω0)ϕL, ϕL〉+ (Eω0)‖ϕL‖2

then the first term in the sum is close to zero with good probability. The second
term of the sum is of order 1, which implies that we are far from the bottom of the
spectrum.

We proceed now to explain the probability estimates. To show that the potential
energy is concentrated around its mean we may use Hoeffding’s inequality, which
tells us that for fixed ϕ ∈ `2(T L) and κ > 0 we have
(1.23) |〈(Vω − Eω0)ϕ, ϕ〉| . κ

with probability at least
1− exp

(
−O(κ2/Var[〈(Vω − Eω0)ϕ, ϕ〉])

)
.

Cauchy–Schwarz then tells us that
Var[〈(Vω − Eω0)ϕ, ϕ〉] . ‖ϕ‖2

4.
We cannot apply this inequality with ϕL directly because it depends on the
realization ω. To get rid of this problem, we exploit first the spectral theory of the
free Laplacian. Because some spectral projectors have disjoint support, we are able
to reduce the metric entropy in the second step, which is a classical ε-net argument.
The problem is now reduced to estimate the probability that inequality (1.23) holds
for every ϕ chosen from a fixed ε-net. The last part of the calculation is thus a
uniform estimation of the `4-norm of functions both restricted in “Fourier” space
and truncated in physical space, which decay exponentially fast in kεL.

This finishes our presentation of the proofs and the introduction.
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Table of Notation

Γ , A graph. When it is missing from the notation we assume that Γ = B
−∆Γ , Graph Laplacian of the graph Γ

B , Bethe lattice of degree k (infinite graph)
BL , Ball of radius L of the Bethe lattice B
T L , Rooted tree of length L (every node has k children but the leaves)
E0 , Bottom of the spectrum, E0 := inf σ(−∆B) = (

√
k−1)2 a. s.

= inf σ(Hω)

EGS(H) , Ground state energy of H, i. e. EGS(H) := inf‖ϕ‖2=1〈ϕ,Hϕ〉
N , Integrated density of states of Hω on B
N L , Expected integrated density of states of Hω on BL
dN , Density of states measure
Ñ , Laplace transform of the density of states measure dN

H|Γ , Restriction of the operator H with simple b. c.
P , Probability
E , Expectation
δi , Kronecker’s delta, i. e. δi(j) = 1 for i = j and zero elsewhere

dΓ( · , · ) , Graph distance associated to Γ

BLv , Ball of the Bethe lattice of radius L centered at v
T Lv , The subtree of T L with root in v (of length L− |v|+ 1)
T L∗ , Augmented finite tree, i. e. T L∗ := T L ] {∗} and d(∗, 0) = 1

|v| , Distance to ∗ ∈ T L∗ , i. e. |v| = d(∗, v) = d(0, v) + 1.
HL
ω , Anderson Hamiltonian restricted to T L with simple b. c.
1S , Indicator function of the set S

u ∼ v , u and v are neighbors, i. e. d(u, v) = 1

AΓ , Adjacency matrix of the graph Γ

∇,∇∗ , Forward gradient on Z and its adjoint
ηa , Partition of unity on Z
ηa,r , r-scaled, radially symmetric partition of unity on T
CIMS , The constant in the error of the IMS formula
E

(L)
β , An energy defined as E(L)

β := 2
√
k cos

( (β+1)π
L+1

)
, see lemma 3.3.

Π
(L)
E , Π

(L)
E := 1(−∞,E](k + 1 + ∆L

B|T L) = 1[E,+∞)(A
L
B|T L)

q(L)
E , q(L)

E := 1− Π
(L)
E

B(L) , unit ball of `2(T L)

B
(L)
v , unit ball of `2(T Lv )

ωv , One of the non-trivial, bounded, i. i. d. random variables
ω̄ , Expectation of the random variable ωv

p. t. o.
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Table of Notation (continued)

ω̃v , Centered random variable ω̃v := ωv − ω̄
ω+ , Sup-norm of the random variables ω+ := ‖ω0‖∞
ω̃+ , Sup-norm of the centered random variables ω̃+ := ‖ω0 − ω̄‖∞

2. Lifshitz tails: The lower bound

In this section we prove the upper bound in theorem 1.5, the lower bound in
theorem 1.3 and the lower bound in theorem 1.1.

2.1. Locating the ground state on a finite rooted tree: The upper bound.
Denote by E0 the infimum of the spectrum of the free Laplacian ∆ on the infinite
rooted tree with k children at each node, i. e. E0 := (

√
k − 1)2. As we will see in

section 3.1, the ground state energy of the free Laplacian restricted to the finite
tree T L of length L (with the root on level 1) reads

EGS(−∆|T L) = E0 + 2
√
k
(
1− cos(

π

L+ 1
)
)
> E0.

The distance between these two values is thus of the order of L−2 as L→∞. By
adding a nonnegative random potential Vω, we increase the ground state energy by
at least inf Vω(T L). Our first proposition gives a probabilistic upper bound on the
random ground state energy EL

GS of the random operator HL
ω := −∆L + Vω on T L.

Proposition 2.1. Assume that the single-site potentials Vω(v), v ∈ T , satisfy
(2.1) ν := lim sup

κ↘0

√
κ log

∣∣logP(Vω(v) 6 κ)
∣∣ < 1.

Fix C1 > 1 + π2
√
k(log k)2/(1 − ν)2 and ε ∈ (0, 1). Then there is a scale L0 =

L0(k, ν, C1, ε) such that, for all L > L0, we have

P
(
EL

GS 6 E0 + C1(logL)−2
)
> 1− exp

(
−kεL

)
.

Remark 2.2.
• Condition (2.1) restricts the tail behavior of the distribution function of
the single site potentials at 0. This guarantees large enough probability for
small single site potentials. The result shows that the ground state is shifted
from the scale L−2 not further than (logL)−2 with probability exponentially
close to 1 as L→∞. Without condition (2.1) the distribution of the single
site potentials could have topological support bounded away from 0, which
would shift the spectrum by a positive distance almost surely.
• The upper bound on the ground state provides a lower bound on the
integrated density of states, see proposition 2.7. The classical assumption
for a lower bound on the IDS on Zd is that the cumulative distribution
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bγ logLc

L− 1

{ v } = SL−γ logL

Figure 3. Support of test function ϕv in the tree based at v ∈ SL−γ logL.

function of the single site potentials vanishes not faster than a polynomial
at 0:

(2.2) ∃C2, ν
′ > 0: ∀κ > 0: P(ω 6 κ) > (C2κ)ν

′
.

This is e. g. satisfied for the uniform distribution on an interval [0, a], a > 0,
and all non-degenerate Bernoulli laws. Condition (2.2) implies ν = 0 and
thus (2.1).

Proof of proposition 2.1. Let γ := π 4
√
k/
√
C1 − 1 and note that

0 6 γ < (1− ν)/ log k.

We denote by
SL−γ logL := {v ∈ T L : |v| = dL− γ logLe}

the sphere of T L at level dL− γ logLe and by T Lv the subtree of T L rooted at v.
Define the function ϕv ∈ `2(T L) by

ϕv(w) := 1T Lv (w)

√
2

(L− |v|+ 2)k|w|−|v|+1
sin
(
π
|w| − |v|+ 1

L+ |v|+ 2

)
, (w ∈ T L).

The support of the function is then T Lv , see fig. 3. In section 3 we will see that ϕv
is the normalized ground state of the free Laplacian restricted to T Lv , trivially
embedded in T L. We also see that the corresponding eigenvalue is

k + 1− 2
√
k cos

( π

bγ logLc+ 1

)
= (
√
k − 1)2 + 2

√
k
(

1− cos
( π

bγ logLc+ 1

))
.

We will use the states ϕv, v ∈ SL−γ logL, as test functions to probe for the ground
state energy ofHL

ω . In the quadratic form 〈−∆ϕv, ϕv〉, we sum only over the support
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of ϕv. Hence, 〈−∆ϕv, ϕv〉 is the eigenvalue of ϕv on T Lv . Since 1− cos(x) 6 x2/2
for all x ∈ R, we see that

〈−∆ϕv, ϕv〉 6 E0 +
π2
√
k

(bγ logLc+ 1)2
6 E0 +

π2
√
k

γ2(logL)2
.

We ask the potential to be small on at least one of the subtrees T Lv , v ∈ SL−γ logL.
To this end, let κ := (logL)−2 and

Ω′L := {ω : ∃v ∈ SL−γ logL : max
w∈T Lv

Vω(w) 6 κ}.

For all ω ∈ Ω′L, we have

EL
GS 6 inf

v∈SL−γ logL

(
〈−∆ϕv, ϕv〉+ 〈Vωϕv, ϕv〉

)

6 E0 +
π2
√
k

γ2(logL)2
+ κ 6 E0 + C1(logL)−2.

For the probabilities, this implies

P(Ω′L) 6 P
(
EL

GS 6 E0 + C1(logL)−2
)
.

We have to estimate P(Ω′L) from below. Choose δ ∈ (0, 1− ν − γ log k). From
ν < 1 and (2.1), we get an L′0 > 0 such that, for all L > L′0 and all w ∈ T L,

|logP(Vω(w) 6 κ)| 6 exp(κ−1/2(ν + δ)) = Lν+δ.

We use this to build a lower bound of P(Ω′L) in several steps. Note that for each
v ∈ SL−γ logL, the subtree T Lv rooted at v has #T Lv =

∑bγ logLc
i=0 ki 6 kbγ logLc+1 6

kLγ log k nodes. Therefore, we have
∣∣logP

(
max
w∈T Lv

Vω(w) 6 κ
)∣∣ =

∑

w∈T Lv

∣∣logP(Vω(w) 6 κ)
∣∣ 6 kLγ log k+ν+δ.

Together with #SL−γ logL = kdL−γ logLe−1 > kL−γ logL−1, we get the lower bound

P(Ω′L) = 1−
∏

v∈SL−γ logL

(
1− P(max

w∈T Lv
Vω(w) 6 κ)

)

= 1−
∏

v∈SL−γ logL

(
1− exp(−|logP(max

w∈T Lv
Vω(w) 6 κ)|)

)

> 1−
(

1− exp
(
−kLγ log k+ν+δ

))#SL−γ logL

> 1−
(

1− exp
(
−kLγ log k+ν+δ

))kL−γ logL−1

.

From log(1− p) = −∑∞j=1 p
j/j 6 −p, we see

(1− p)x = exp(x log(1− p)) 6 exp(−px)
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for all p ∈ [0, 1] and x > 0. This yields

P(Ω′L) > 1− exp
(
− exp

(
−kLγ log k+ν+δ

)
kL−γ logL−1

)

= 1− exp
(
− exp

(
L log k − kLγ log k+ν+δ+1 − (γ logL+ 1) log k

))
.

The important fact here is γ log k+ ν+ δ < 1. Thus, for all ε ∈ (0, 1), the exponent
satisfies

L log k − kLγ log k+ν+δ − (γ logL+ 1) log k > εL log k

as soon as L is large enough, say L > L0 > L′0. The proposition readily follows. �

We address briefly the question of the optimality of condition (2.1). Let us first
note that to prove the lower bound for the Lifshitz tails with exponent 1/2 it is
enough to prove that for every η ∈ (0, 2) we have

EL
GS 6 E0 + (logL)−η, L� 1

with good probability (compare this to the consequence of proposition 2.1). This
leads us to consider the slightly weaker condition

∀η ∈ (0, 2) : lim sup
κ↘0

κ1/η log
∣∣logP(Vω(v) 6 κ)

∣∣ = 0,

which is implied by condition (2.1). The following lemma shows that we can not
expect to do better than this.

Lemma 2.3. Suppose that for some η > 0

(2.3) lim sup
κ↘0

κ1/η log
∣∣logP(Vω(v) 6 κ)

∣∣ > 0.

Then, if η′ > η and ζ > 0, there is a sequence Lj →∞ for which

P
(
E
Lj
GS > E0 + (logLj)

−η′) > 1− exp
(
−ζLj

)
.

Proof. We start with the simple bound

EL
GS > E0 + min

v∈T L
Vω(v).

Then, it is enough to prove that for η′ > η and ζ > 0, there is a sequence Lj →∞
satisfying

(2.4) P
(

min
v∈T Lj

Vω(v) > (logLj)
−η′) > 1− exp

(
−ζLj

)
.

Condition (2.3) implies for any η′′ > 0 such that η < η′′ < η′ there exists some
sequence κj → 0 satisfying

∣∣logP(Vω(v) 6 κj)
∣∣ > exp(κ

−1/η′′

j ).
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We can always assume that the κj are small enough by removing some elements
of the sequence. Letting Lj = dexp(κ

−1/η′

j )e this implies that for any ζ > 0 there
exists some L∗ such that for all Lj > L∗

∣∣logP(Vω(v) 6 (logLj)
−η′)
∣∣ > exp((logLj)

η′/η′′) > ζLj.

Using the independence of the random variables and the fact that |log(1− p)| 6 2p
for 0 < p� 1, we see that for any ζ > 0 there is some sequence Lj → +∞ so that

logP
(

min
v∈T Lj

Vω(v) > (logLj)
−η′) =

∑

v∈T Lj
log
(
1− P

(
Vω(v) 6 (logLj)

−η′))

= #T Lj log
(
1− P

(
Vω(0) 6 (logLj)

−η′))

> −2kLj+1P
(
Vω(0) 6 (logLj)

−η′)

> −2ke(log k)Lj−ζLj(2.5)

In particular, using that (2.5) is small and exp(−x) = 1− x+O(x2), we see that
for any ζ > 0 there exists some sequence Lj → ∞ satisfying (2.4). This finishes
the proof. �

If we assume condition (2.3) with η < 2, this last result and the methods we
introduce later in section 4 can be used to prove that there exists some sequence
E ′j ↘ 0 for which

lim sup
j→∞

log log|logN (E ′j)|
log(E ′j − E0)

< −1

2
.

It is thus impossible to obtain the lower bound in proposition 2.7 under this
assumption.

2.2. The lower bound on N (E). The upper bound on the ground state in
proposition 2.1 implicates a lower bound on the integrated density of states N ,
formulated in proposition 2.7. The strategy of proof is the same as in [Ros12,
section 2.1]. Nonetheless, proposition 2.7 improves the prerequisites under which
the lower bound holds, cf. remark 2.2.

The following lemma is taken from [Ros12, section 2.1.1] and adapted for trees T L
instead of balls of the Bethe lattice. Please keep in mind that the integrated density
of state N does not depend on L. Nonetheless, the finite trees are useful to estimate
the Laplace transform of dN .

Lemma 2.4. For all L ∈ N, t > 0 and E ′ > E0, it holds true that

Ñ (t) > e−tE
′P(EL

GS 6 E ′)/#T L.
Due to the change of notation and for the convenience of the reader, we repeat

and detail the proof.
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Proof. Let L ∈ N and E ∈ R. Denote by ΠE := 1(−∞,E](Hω) the spectral projection
of Hω. According to (1.6), the integrated density of states is given by

N (E) = E[〈δ0,ΠEδ0〉] = (#T L)−1
∑

v∈T L
E[〈δv,ΠEδv〉] = (#T L)−1E[tr(1T LΠE1T L)].

For the Laplace transform of N , the spectral theorem gives

Ñ (t) =

∫
e−λtdN (λ) = (#T L)−1E[tr(1T L exp(−tHω)1T L)]

for t > 0. [Sim05, Theorem 8.9] states

(2.6) tr(1T L exp(−tHω)1T L) > tr(exp(−tHL
ω )),

where HL
ω := 1T LHω1T L . This is easily seen with help of spectral measures. Due

to the convexity of λ 7→ e−tλ, for each v ∈ T L, Jensen’s inequality gives

〈δv, exp(−tHω)δv〉 =

∫
exp(−tλ) dµδv(λ) > exp

(
−t
∫
λ dµδv(λ)

)

= exp(−t〈δv, Hωδv〉) = exp(−t〈δv,1T LHω1T Lδv〉)
= 〈δv, exp(−tHL

ω )δv〉,

where µδv is the spectral measure of Hω with respect to δv. Summing over v ∈ T L,
we obtain (2.6). The Laplace transform is thus bounded by

Ñ (t) > (#T L)−1E[tr(exp(−tHL
ω ))] > (#T L)−1E[exp(−tEL

GS)].

The Markov inequality reduces the last expectation to a probability

P(EL
GS 6 E ′) 6 etE

′E[exp(−tEL
GS)]

and finishes the proof. �

The following corollary provides the inequality on the left hand side of (1.2).

Corollary 2.5. We assume (2.1) and let C1 be the constant in proposition 2.1.
Then we have for t > 0 large enough that

Ñ (t) > 1

2
exp

(
−t
(
E0 +

5C1

(log t)2

))

Proof. We choose L = b
√
tc. Note that for t > 1

#T L =
L−1∑

i=0

ki 6 kL 6 e
√
t log k.
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From proposition 2.1 we see that P(EL
GS 6 E0 + C1(logL)−2) > 1/2 for t > 0 large

enough. Now use lemma 2.4 with the choice E ′ := E0 +C1(logL)−2 > E0 to obtain

Ñ (t) > exp
(
−t(E0 + C1(logL)−2)

)
P(EL

GS 6 E0 + C1(logL)−2)/#T L

> 1

2
exp
(
−t(E0 + C1(logb

√
tc)−2)−

√
t log k

)

> 1

2
exp
(
−t(E0 + 5C1(log t)−2)

)
.

In the last line we have used that
t(C1(logb

√
tc)−2) +

√
t log k

t(5C1(log t)−2)
→ 4/5 < 1

as t→ +∞. �
As known from Tauberian theorems, the behavior of Ñ (t) as t → ∞ and the

behavior of N (E) as E ↘ E0 are related. The following is taken almost verbatim
from [Ros12, (2.27)].

Lemma 2.6. For all t > 0 and E > E0, it holds true that

N (E) > etE0Ñ (t)− e−t(E−E0).

For completeness, we give the short proof.

Proof. Integration by parts, with vanishing boundary terms since N (E0) = 0, gives

Ñ (t) =

∫ ∞

E0

e−tλdN (λ) =

∫ ∞

E0

te−tλN (λ) dλ

6 N (E)

∫ E

E0

te−tλ dλ+

∫ ∞

E

te−tλ dλ 6 e−tE0N (E) + e−tE.

This is equivalent to the claim. �
Together with proposition 2.1, lemmas 2.4 and 2.6 are all that is needed to prove

the lower bound of the Lifshitz tails. More precisely, we obtain the following.

Proposition 2.7. Assume (2.1) and fix C1 as in proposition 2.1. Then there exists
λ > E0 such that, for all E ∈ (E0, λ), it holds true that

N (E) > k
−2−2 exp

(√
2C1/(E−E0)

)
/16.

In particular,

lim inf
E↘E0

log log|logN (E)|
log(E − E0)

> −1

2
.

Proof. Lemmas 2.4 and 2.6 concatenate to

N (E) > (#T L)−1e−t(E
′−E0)P(EL

GS 6 E ′)− e−t(E−E0)

=
(
(#T L)−1et(E−E

′)P(EL
GS 6 E ′)− 1

)
e−t(E−E0),
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which is true for all t > 0 and E,E ′ > E0. We choose E ′ := (E0 + E)/2. This
ensures E − E ′ > 0 and will enable us to choose t large enough to make the lower
bound positive.

But first we have to deal with the probability. In order to apply proposition 2.1,
we let L :=

⌈
exp
(√

2C1/(E − E0)
)⌉
. That way, E ′ > E0 + C1/(logL)2 and,

provided E − E0 is small enough so that L is large enough,

P
(
EL

GS 6 E ′
)
> P

(
EL

GS 6 E0 + C1(logL)−2
)
> 1− exp(−kL/2) > 1/2.

Up to now we know, for all t > 0 and L large enough,

N (E) >
(
(2#T L)−1et(E−E0)/2 − 1

)
e−t(E−E0).

It is time to choose t := 2 log(4#T L)/(E − E0), that is, (2#T L)−1et(E−E0)/2 = 2
and

N (E) > exp
(
−2 log(4#T L)

)
=

(#T L)−2

16
> k−2L

16
> 1

16
k−2−2 exp

(√
2C1/(E−E0)

)
.

It is now easy to read the exponent of E − E0 from the limit inferior of this lower
bound on the Lifshitz tail behavior, i. e. −1/2. This finishes the proof. �

3. Deterministic preparations

We develop the spectral theory of finite rooted trees. The spectrum was already
calculated in [RR07], but we need the eigenfunctions, too. The radially symmetric
generalized eigenfunctions for the (infinite) Bethe lattice were calculated in [Bro91].

Recall that we denote by T L the (nodes of the) rooted tree of length L with k
children at each node except the leaves, by 0 the root of the tree and by |v| =
d(0, v)+1 the “level” of the node v. For indexing reasons, we introduce the notation
T L∗ := T L ] {∗} for the (nodes of the) rooted tree of length L augmented by a
vertex ∗ with |∗| = 0, such that ∗ is a parent of the root. Any function in `2(T L)
is understood as an element of `2(T L∗ ), too, with the value 0 on ∗.

3.1. The spectrum of the adjacency matrix on a finite rooted tree.

Lemma 3.1. For each m ∈ {1, . . . , L}, the radially symmetric function defined by

T L 3 v 7→ ψLm(v) =

√
2

(L+ 1)k|v|−1
sin
( mπ

L+ 1
|v|
)

is a normalized eigenfunction of the adjacency matrix A(L) of the rooted tree T L
with eigenvalue

λLm := 2
√
k cos

( mπ

L+ 1

)
.
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Proof. Let θ := mπ
L+1
∈ R. We check first the eigenvalue equation for v ∈ T L:

A(L)ψLm(v) =
∑

w∈T L,w∼v
ψLm(w)

=
√

2
(L+1)k|v|−2 sin((|v| − 1)θ) + k

√
2

(L+1)k|v| sin((|v|+ 1)θ)

=
√

2
(L+1)k|v|−2 · 2 sin(|v|θ) cos(θ) = λLmψ

L
m(v).

The third equation employs sin(α + β) = sin(α) cos(β) + cos(α) sin(β), α, β ∈ R.
We check now that they are normalized. This is seen via

‖ψLm‖2
2 =

∑

v∈T L
|ψLm(v)|2 =

L∑

`=1

2 sin2(θ`)

L+ 1
=

1

2(L+ 1)

L∑

`=1

(
2− e2iθ` − e−2iθ`

)

=
1

2(L+ 1)

(
2L− e2iθ − e2i(L+1)θ

1− e2iθ
− e−2iθ − e−2i(L+1)θ

1− e−2iθ

)
= 1,

where we used e±2i(L+1)θ = e±2πim = 1 in the last step. �

Since the radially symmetric functions on T L form a linear subspace of `2(T L) of
dimension L, lemma 3.1 lists all radially symmetric eigenfunctions of A(L). We now
construct the remaining non-radially symmetric eigenfunctions on T L. Recall that,
for each v ∈ T L, we denote by T Lv the subtree of T L rooted at v and of length
L− |v|+ 1.

Let v ∈ T L−1 ⊆ T L and u ∈ T Lv , u ∼ v. The node u is the root of a subtree T Lu
isomorphic to T L−|v|. According to lemma 3.1, we have L− |v| radially symmetric
eigenfunctions ψL−|v|u,m , m ∈ {1, . . . , L− |v|}, of the adjacency matrix of T Lu , given
by

(3.1) ψL−|v|u,m (w) =

√
2

(L+ 1− |v|)k|w|−|v|−1
sin
( mπ

L+ 1− |v|(|w| − |v|)
)

for w ∈ T Lu . We trivially extend ψ
L−|v|
u,m to a function on T L by assigning 0

to the complement of T Lu . For a given v ∈ T L, we will agglutinate below the
functions ψL−|v|u,m , u ∈ T Lv , u ∼ v, at v, see (3.2).

Note that T |v|+1
v = {v} ∪ {u ∈ T Lv : u ∼ v} is isomorphic to T 2 as a graph. The

matrix representation of A(2) with respect to a basis (δv; v ∈ T 2) with the root as
the first entry is 



0 1 1 . . . 1
1 0 0 . . . 0
1 0 0 . . . 0
...

...
... . . . ...

1 0 0 . . . 0



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with dimensions (k+1)×(k+1). The kernel of A(2) on T 2 has dimension k−1, so we
can find k − 1 normalized and orthogonal real eigenvectors ψ⊥v,j , j ∈ {1, . . . , k − 1},
of A(2) associated to the eigenvalue 0 on T |v|+1

v . These eigenvectors assign the
value 0 to v, since for any u ∈ T |v|+1

v , u 6= v, we have

ψ⊥v,j(v) = A(2)ψ⊥v,j(u) = 0 · ψ⊥v,j(u) = 0.

We set

(3.2) ΨL
v,j,m :=

∑

u∈T Lv ,u∼v
ψ⊥v,j(u)ψL−|v|u,m .

To unify notation, we define ΨL
∗,1,m := ψLm and ψ⊥∗,1(v) := 1 for the root v of T L,

too, as well as

Jv :=

{
{1} for v = ∗ and
{1, . . . , k − 1} if v ∈ T L−1.

We call a triple (v, j,m) L-admissible if v ∈ T L−1
∗ , j ∈ Jv, m ∈ {1, . . . , L− |v|}.

Lemma 3.2. The vectors ΨL
v,j,m with (v, j,m) L-admissible are normalized eigen-

vectors of A(L) with eigenvalues λLv,j,m := λ
L−|v|
m = 2

√
k cos

(
mπ

L+1−|v|
)
, respectively,

and form an orthonormal basis of `2(T L).

Proof. Let (v, j,m) be a L-admissible. In the case v = ∗, lemma 3.1 tells us that
ΨL
v,j,m = ψLm is a normalized eigenfunction of A(L). From now on, we let v ∈ T L−1.

Note that

(3.3)
∑

u∈T Lv ,u∼v
ψ⊥v,j(u) = A(2)ψ⊥v,j(v) = 0 · ψ⊥v,j(v) = 0.

Since ΨL
v,j,m is pieced together from eigenfunctions on trees with the same eigenvalue,

the only node we need to check is v itself. We use (3.3) to see that

A(L)ΨL
v,j,m(v) =

∑

u∈T Lv ,w∼v
ψ⊥v,j(u)ψL−|v|u,m (u) = 0 = λLv,j,mΨL

v,j,m(v).

Thus, all ΨL
v,j,m are eigenfunctions of A(L).

Orthonormality is our next goal. For v ∈ T L−1, m ∈ {1, . . . , L − |v|}, m′ ∈
{1, . . . , L} and j ∈ {1, . . . , k − 1}, we have

〈ΨL
∗,1,m′ ,Ψ

L
v,j,m〉 =

∑

u∈T Lv ,u∼v
ψ⊥v,j(u)〈ψLm′ , ψL−|v|u,m 〉 = 0,

since 〈ψLm′ , ψ
L−|v|
u,m 〉 is constant in u and (3.3). For (v, j,m) and (v′, j′,m′) L-

admissible with v, v′ ∈ T L−1 we distinguish the following cases.
• If λLv,j,m 6= λLv′,m′,j′ , then 〈ΨL

v,j,m,Ψ
L
v′,m′,j′〉 = 0, since A(L) is symmetric.
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• Let v 6= v′. If v ∈ T Lv′ or v′ ∈ T Lv , then the argument from above for v′ = ∗
applies. If v and v′ have disjoint subtrees, then the supports of ΨL

v,j,m

and ΨL
v′,m′,j′ are disjoint. Either way we reach 〈ΨL

v,j,m,Ψ
L
v′,m′,j′〉 = 0.

• Assume v = v′, λLv,j,m = λLv′,m′,j′ . We thus have cos( mπ
L+1−|v|) = cos( m′π

L+1−|v|).
Since mπ

L−|v|+1
∈ (0, π) and cos |(0,π) is injective, we deduce m = m′. Conse-

quently,

〈ΨL
v,j,m,Ψ

L
v,j′,m〉 =

∑

u,u′∈T Lv ,u,u′∼v
ψ⊥v,j(u)ψ⊥v,j′(u

′)〈ψL−|v|u,m , ψ
L−|v|
u′,m 〉

=
∑

u∈T Lv ,u∼v
ψ⊥v,j(u)ψ⊥v,j′(u) = δj,j′ ,

since ψ⊥v,j and ψ⊥v,j′ are orthonormal and ψ⊥v,j(v) = 0.
We now know that the set of all ΨL

v,j,m with (v, j,m) L-admissible is orthonormal.
To identify this orthonormal set as a basis, we simply count all L-admissible

triples:

∑

v∈T L−1
∗

∑

j∈Jv

L−|v|∑

m=1

1 =
L∑

m=1

1 +
∑

v∈T L−1

k−1∑

j=1

L−|v|∑

m=1

1

= L+
L−1∑

`=1

k`−1(k − 1)(L− `) = L+ (k − 1)
(
L
L−1∑

`=1

k`−1 −
L−1∑

`=1

`k`−1
)

= L+ (k − 1)
(
L
kL−1 − 1

k − 1
− LkL−1(k − 1)− (kL − 1)

(k − 1)2

)
=
kL − 1

k − 1
.

This is exactly the dimension #T L =
∑L

`=1 k
`−1 = kL−1

k−1
of `2(T L). �

We study the behavior of the principal eigenvalue λL∗,1,1 of A(L) as a function
of L and identify the states in its vicinity. This will be used in section 5, and it is
a crucial part of our argument.

Lemma 3.3. Let L ∈ N. For β ∈ R we define E(L)
β := 2

√
k cos

(
(β+1)π
L+1

)
. For

L-admissible (v, j,m) and β ∈ [0, L], we have

λLv,j,m ∈ [E
(L)
β , λL∗,1,1] ⇐⇒ |v| 6 (L+ 1)

(
1− m

β+1

)
=⇒ m ∈ {1, . . . , bβ + 1c}.

Remark 3.4. Note that E(L)
0 = E

(L)
β |β=0 = λL∗,1,1.

Proof. Remember that 1− x2

2
6 cosx 6 1− x2

2
+ x4

24
for all x ∈ R. This reveals

− 1

24

((β + 1)π

L+ 1

)4

6 cos
( π

L+ 1

)
− cos

((β + 1)π

L+ 1

)
− π2β(β + 2)

2(L+ 1)2
6 1

24

( π

L+ 1

)4

.
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∗

v1

v2

v4 v5

v3

v6 v7

∗ v1 v2 v3 v4 v5 v6 v7

1 •

2 • •

3 • • • •

4 • • • • • • • •

· − · · /2

Figure 4. The action of the map ·̂ is indicated with the dotted arrows.

For β 6 L, we use that cos |[0,π] is strictly decreasing to obtain

λLv,j,m > E
(L)
β ⇐⇒ m

L+ 1− |v| 6
β + 1

L+ 1
⇐⇒ m

β + 1
+
|v|

L+ 1
6 1

⇐⇒ |v| 6 (L+ 1)
(

1− m

β + 1

)
=⇒ m 6 bβ + 1c. �

Next, we study the spectral projections

(3.4) Pv,j : `2(T L)→ `2(T L), Pv,jϕ :=

L−|v|∑

m=1

〈ϕ,ΨL
v,j,m〉ΨL

v,j,m

of A(L) for v ∈ T L−1
∗ and j ∈ Jv. We introduce the map

·̂ : `2(T L)→
⊕

v∈T L−1
∗

⊕

j∈Jv
`2({|v|+ 1, . . . , L}),

ψ̂v,j(z) := k−(z−|v|−1)/2
∑

u∈T Lv ,u∼v
ψ⊥v,j(u)

∑

w∈T Lu ,|w|=z
(Pv,jψ)(w)(3.5)

for z ∈ {|v|+ 1, . . . , L}. For a rough illustration see fig. 4. The map ·̂ has been
sketched in [AW06, Proposition A.2] and it is similar to an infinite dimensional
version in [AF00].

The action of ·̂ is best illustrated on radially symmetric eigenfunctions ψLm
of A(L). As we will see in lemma 3.5, they are mapped to functions supported on
{1, . . . , L}, and in the process, the exponential weights k(|v|−1)/2 are removed:

(ψ̂Lm)∗,1(z) =

√
2

L+ 1
sin
( mπ

L+ 1
z
)



THE ANDERSON MODEL ON THE BETHE LATTICE: LIFSHITZ TAILS 29

for z ∈ {1, . . . , L} and m ∈ {1, . . . , L}. The result is an eigenfunction of the
adjacency matrix of Z restricted to {1, . . . , L}. Given a non-radially symmetric
eigenfunction ΨL

v,j,m of A(L), ·̂ reconstructs the underlying radially symmetric
eigenfunction, removes the exponential weight and presents the result as a function
on the copy of {|v|+ 1, . . . , L} which is indexed by (v, j):

(3.6) (Ψ̂L
v,j,m)v,j(z) =

√
2

L+ 1− |v| sin
( mπ

L+ 1− |v|(z − |v|)
)

for z ∈ {|v|+ 1, . . . , L} and (v, j,m) L-admissible. This is again an eigenfunction
of the adjacency matrix of Z restricted to {|v|+ 1, . . . , L}.

We define the adjacency matrix on the image of ·̂ , which is the Hilbert sum of
the `2-spaces of segments of Z. The direct sum of the adjacency matrices of the
segments of Z is the natural choice. For ϕ ∈⊕v,j `

2({|v|+ 1, . . . , L}), it is given by

(Âϕ)v,j(z) := (AZϕv,j)(z) = ϕv,j(z − 1) + ϕv,j(z + 1)

for v ∈ T L−1, j ∈ Jv, z ∈ {|v|+1, . . . , L}, and with the boundary values ϕv,j(|v|) :=
ϕv,j(L+ 1) := 0.

Lemma 3.5. For all ψ ∈ `2(T L), we have the following.
(i) The map ·̂ conjugates A(L) and

√
kÂ: Â(L)ψ =

√
kÂψ̂.

(ii) The map ·̂ is unitary: ‖ψ‖2 = ‖ψ̂‖2. In particular, σ(A(L)) =
√
kσ(Â).

(iii) Let v ∈ T L−1
∗ and j ∈ Jv. The subspace Pv,j`2(T L) contains ψ if and only if

supp(ψ) ⊆ T Lv \ {v} and

ψ(w)ψ⊥j,v(u
′) = ψ(w′)ψ⊥j,v(u)

for all u, u′ ∈ T Lv with u, u′ ∼ v and all w ∈ T Lu , w′ ∈ T Lu′ such that |w| = |w′|.
(iv) For all radially symmetric functions η : T L → C, i. e. η(w) = ηZ(|w|) for all

w ∈ T L and an ηZ : {1, . . . , L} → C, we have Pv,jη = ηPv,j and (η̂ψ)v,j =

ηZψ̂v,j for all v ∈ T L−1
∗ , j ∈ Jv. Here, ηZ denotes the multiplication with the

function ηZ|{|v|+1,...,L}.

Proof. Ad (i). We study the linear map ·̂ on the orthonormal basis ΨL
v,j,m. To

this end, let (v, j,m) be admissible, v′ ∈ T L−1
∗ , j′ ∈ Jv′ and z ∈ {|v′|+ 1, . . . , L}.

For v′ 6= v or j′ 6= j, we have Pv′,j′ΨL
v,j,m = 0 and ergo (Ψ̂L

v,j,m)v′,j′(z) = 0, too. So
from now on, we assume v′ = v and j′ = j. We then have Pv,jΨL

v,j,m = ΨL
v,j,m. For

u ∈ T Lv , u ∼ v and w ∈ T Lu , we find

ΨL
v,j,m(w) =

∑

u′∈T Lv ,u′∼v
ψ⊥v,j(u

′)ψL−|v|u′,m (w) = ψ⊥v,j(u)x|w|,|v|,m,L
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with x|w|,|v|,m,L :=
√

2
(L+1−|v|)k|w|−|v|−1 sin

(
mπ

L+1−|v|(|w| − |v|)
)
. We now see

(Ψ̂L
v,j,m)v,j(z) = k−(z−|v|−1)/2

∑

u∈T Lv ,u∼v
ψ⊥v,j(u)

∑

w∈T Lu ,|w|=z
ΨL
v,j,m(w)

= k−(z−|v|−1)/2
∑

u∈T Lv ,u∼v
ψ⊥v,j(u)ψ⊥v,j(u)

∑

w∈T Lu ,|w|=z
xz,|v|,m,L

= k−(z−|v|−1)/2kz−|v|−1xz,|v|,m,L

=

√
2

L+ 1− |v| sin
( mπ

L+ 1− |v|(z − |v|)
)
.

We now identify Ψ̂L
v,j,m as an eigenfunction of Â. Let ϕ := mπ

L+1−|v| and note that,
for z ∈ {|v|1, . . . , L}, by the angle sum and difference identities,

sin(ϕ(z − 1− |v|)) + sin(ϕ(z + 1− |v|))
= sin(ϕ(z − |v|)) cos(ϕ) + cos(ϕ(z − |v|)) sin(ϕ)

+ sin(ϕ(z − |v|)) cos(ϕ)− cos(ϕ(z − |v|)) sin(ϕ)

= 2 cos(ϕ) sin(ϕ(z − |v|)).

The boundary values sin(ϕ(|v|−|v|)) = 0 and sin(ϕ(L+1−|v|)) = 0 are satisfied, too.
Thus,

√
kÂΨ̂L

v,j,m = λLv,j,mΨ̂L
v,j,m = ̂λLv,j,mΨL

v,j,m = ̂A(L)ΨL
v,j,m for all L-admissible

(v, j,m).
Ad (ii). We have to check that the image of an orthonormal basis is again an

orthonormal basis. Let (v, j,m) be admissible. The fact that ‖Ψ̂L
v,j,m‖2

2 = 1 is
seen exactly as the normalization part in lemma 3.1. Let (v′, j′,m′) be another
admissible triple. For (v, j) 6= (v′, j′), Ψ̂L

v,j,m and Ψ̂L
v,j,m have disjoint support and

are thus orthogonal. In case (v, j) = (v′, j′) and m 6= m′, Ψ̂L
v,j,m and Ψ̂L

v,j,m are
orthogonal, too, since the corresponding eigenvalues λLv,j,m 6= λLv′,j′,m′ with respect
to the symmetric operator

√
kÂ are not equal. Finally, ·̂ is surjective, since the

dimensions of its preimage and its image agree.
Ad (iii). Fix v ∈ T L−1

∗ and j ∈ Jv. We denote the linear subspace defined by
the condition in (iii) by Dv,j. By construction, ΨL

v,j,m ∈ Dv,j, so Pv,j`2(T L) ⊆ Dv,j.
Furthermore, dim(Dv,j) = L− |v|, since the condition allows one degree of freedom
per sphere of T Lv \ {v}. On the other hand, dim(Pv,j`

2T Lv ) = L− |v|, because the
vectors ΨL

v,j,m, m ∈ {|v|+ 1, . . . , L}, are a basis of Pv,j`2T Lv . The statement follows.
Ad (iv). Let ψ ∈ `2(T L) and η, ηZ be given as in the statement. Because of (iii),

ηPv,jψ ∈ Pv,j`2(T L). This and the fact that the spectral projectors are orthogonal
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implies that Pv,j and multiplication with ηZ commute:

Pv,j(ηψ) = Pv,j

(
η
∑

v′,j′

Pv′,j′ψ
)

=
∑

v′,j′

Pv,j(ηPv′,j′ψ) = ηPv,jψ.

We use this in

η̂ψv,j(z) = k−(z−|v|−1)/2
∑

u∈T Lv ,u∼v
ψ⊥v,j(u)

∑

w∈T Lu ,|w|=z
(Pv,j(ηψ))(w)

= ηZ(z)k−(z−|v|−1)/2
∑

u∈T Lv ,u∼v
ψ⊥v,j(u)

∑

w∈T Lu ,|w|=z
(Pv,jψ)(w)

= ηZ(z)ψ̂v,j(z). �
3.2. The IMS localization formula. In this subsection we provide a proof of
the following proposition. It will be needed in section 4 (proposition 4.9).

Proposition 3.6 (IMS localization formula). There is a constant CIMS > 0 such
that for each r > 2, we have a partition of unity {ηa,r}a>0 ⊆ `2(T L), consisting
of radially symmetric functions normalized to

∑
a>0 η

2
a,r = 1, such that for all

ψ ∈ `2(T L) we have
〈
A(L)ψ, ψ

〉
>
∑

a>0

〈
A(L)(ηa,rψ), ηa,rψ

〉
− CIMS

r2
‖ψ‖2

2.

Furthermore, the support of ηa,r is a union of disjoint trees of length at most r.

The proof of proposition proposition 3.6 is made in two steps. We first prove this
formula for the discrete, one-dimensional Laplacian. Then, we carry this formula
onto the tree by means of the spectral theory of the rooted tree.

3.2.1. The IMS localization formula on Z. In this subsection we consider the
discrete Laplacian

∆Z := τ−1 − 2 + τ

on `2(Z), where τ is the translation operator, i. e. given by (τf)(x) = f(x+ 1) for
f : Z→ C and x ∈ Z. Note that on `2(Z) we have τ−1 = τ ∗. We will also employ
the discrete gradient

∇ := τ − 1.

Lemma 3.7. Let f ∈ `2(Z). For any partition of unity {ηa}, normalized so that∑
a η

2
a = 1, we have

〈
−∆Zf, f

〉
6
∑

a

〈
−∆Z(ηaf), ηaf

〉
+
∥∥∥
∑

a
(∇ηa)2

∥∥∥
∞
‖f‖2

2.

Remark 3.8. (1) In the proof, we actually show the operator equality

−∆Z −
∑

a
ηa(−∆Z)ηa = −1

2

∑
a

(
(∇ηa)2 τ + (∇∗ηa)2 τ ∗

)
.

Thus, the reverse inequality holds, too.
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(2) On Zd, the Laplacian decomposes: ∆Zd =
∑d

j=1 ∆Zj . Thus, we immediately
get the d-dimensional IMS formula

−∆Zd −
∑

a
ηa(−∆Zd)ηa = −1

2

∑
a

∑d

j=1

(
(∇jηa)

2 τj + (∇∗jηa)2 τ ∗j
)
,

where (τjf)(z) = f(z + ej)− f(z), and ∇j = τj − 1 is a discrete partial derivative.
(3) Actually, the above formula holds on the Cayley graph of any finitely gener-

ated group, as long as the generator does not contain an idempotent element. This
is proved basically with the exact same proof as given below for Z, except that
one has to read the notation higher dimensional. To be more precise, let S be the
generator corresponding to the Cayley graph. Since the group acts on itself, we get
for each s ∈ S a translation τsf(z) := f(zs). We treat

τ := (τs)s∈S , ∇ := (∇s)s∈S

as columns and ∇∗ as row and use matrix multiplication when interpreting

−∇∗∇ =
∑

s∈S
∇∗s∇s = ∆.

We also have to write sums whenever appropriate.
(4) The formulation of lemma 3.7 with the quadratic form instead of the operators

has the advantage, that it is easily restricted to subgraphs, e. g. G = {1, . . . , L}.
All we have to do is to note that `2(G) is embedded trivially into `2(Z). The
corresponding operator to the restricted quadratic form is the restriction with
simple boundary conditions.

(5) Thanks to the simple boundary conditions, the adjacency operator AZ :=
τ−1 + τ = ∆Z + 2 is only a shift of the Laplacian ∆Z. Lemma 3.7 transfers to AZ:〈

AZf, f
〉

=
〈
∆Zf, f

〉
+ 2‖f‖2

2

>
∑

a

〈
∆Zηaf, ηaf

〉
−
∥∥∥
∑

a
(∇ηa)2

∥∥∥
∞
‖f‖2

2 + 2‖f‖2
2

>
∑

a

〈
AZηaf, ηaf

〉
−
∥∥∥
∑

a
(∇ηa)2

∥∥∥
∞
‖f‖2

2,

since
∑

a η
2
a = 1.

(6) Another noteworthy generalization of lemma 3.7 is the following. Note
that any multiplication operator commutes with the multiplication of ηa. Thus,
lemma 3.7 holds for Schrödinger operators, i. e. −∆+V with a potential V : Z→ R
acting via multiplication.

Proof of lemma 3.7. We follow the proof of [Sim83, Lemma 3.1], the analogous
statement on Rd. With the above definitions,

∆Z = −∇∗∇.
For f, g ∈ `2(Z), it is easy to check that

∇(fg) = (∇f) τg + f (∇g) and ∇∗(fg) = (∇∗f) τ ∗g + f (∇∗g).
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Using this and −∇∗τ = ∇ as well as −τ ∗∇ = ∇∗, we immediately calculate

∆Z(fg) = −∇∗∇(fg) = −∇∗
(
∇f τg + f ∇g

)

= ∆Zf g −∇f ∇∗τg −∇∗f τ ∗∇g + f ∆Zg

= ∆Zf g +∇f ∇g +∇∗f ∇∗g + f ∆Zg.

Consequently,
[f,−∆Z] = (∆Zf) + (∇f)∇+ (∇∗f)∇∗.

To compute [f, [f,−∆Z]], consider, for g ∈ `2(Z),

[f,−∆Z](fg) = (∆Zf)fg +∇f ∇(fg) +∇∗f ∇∗(fg)

= f(∆Zf)g +∇f (∇f τg + f ∇g) +∇∗f (∇∗f τ ∗g + f ∇∗g)

= f
(
∆Zf + (∇f)∇+ (∇∗f)∇∗

)
g + (∇f)2 τg + (∇∗f)2 τ ∗g

= f [f,−∆Z]g + (∇f)2 τg + (∇∗f)2 τ ∗g.

Thus,
[f, [f,−∆Z]] = −(∇f)2 τ − (∇∗f)2 τ ∗.

On the other hand, expanding the commutators yields

[f, [f,−∆Z]] = [f, f(−∆Z) + ∆Zf ] = −f 2∆Z + 2f∆Zf −∆Zf
2.

We combine the last two formulas for f := ηa, sum over a and use
∑

a η
2
a = 1 to

derive
−∆Z −

∑
a
ηa(−∆Z)ηa = −1

2

∑
a

(
(∇ηa)2 τ + (∇∗ηa)2 τ ∗

)
.

For f ∈ `2(Z), we see

1
2

∣∣∣
〈
−1

2

∑
a

(
(∇ηa)2 τ + (∇∗ηa)2 τ ∗

)
f, f
〉∣∣∣

6 1
2

(∥∥∥
∑

a
(∇ηa)2

∥∥∥
∞

+
∥∥∥
∑

a
(∇∗ηa)2

∥∥∥
∞

)
‖f‖2

2 =
∥∥∥
∑

a
(∇ηa)2

∥∥∥
∞
‖f‖2

2.

Thus, ∣∣∣〈−∆Zf, f〉 −
∑

a
〈−∆Z(ηaf), ηaf〉

∣∣∣ 6
∥∥∥
∑

a
(∇ηa)2

∥∥∥
∞
‖f‖2

2.

The triangle inequality finishes the proof. �

3.2.2. The IMS localization formula on the tree. The discrete IMS formula is also
valid on trees, in a very general setting. Indeed, points 3 and 4 of Remark 3.8 hint
at the following way of proving the IMS localization formula on a tree of bounded
degree. First note that the Cayley graph of the free group with s generators is a
tree of degree 2s. Then we can embed the bounded degree tree into the Cayley
graph of a free group, and restrict to the subgraph again. It is enough for our
purposes to consider a radially symmetric partition of unity, so that instead we
will use in this section the spectral theory of the rooted trees to extend the IMS
formula on Z to trees.
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Proof of proposition 3.6. Step I. Fix ηR ∈ C1(R, [0, 1]) with support supp(ηR) ⊆
[−1, 1] such that, for any x ∈ R,

∑

a∈Z

(
ηR(x− a)

)2
= 1.

We define a partition of unity on Z as follows. For r > 2, let

(3.7) ηZ,r,a : Z→ R, ηZ,r,a(x) := ηR

(
2x

r
− a
)
.

This gives a partition on Z satisfying # supp ηZ,r,a 6 r. Furthermore, by the mean
value theorem and supp ηR ⊆ [−1, 1], we get

|∇ηZ,r,a(x)| =
∣∣ηR
(
2r−1(x+ 1)− a

)
− ηR

(
2r−1x− a

)∣∣
6 2r−1 sup

ξ∈[0,1]

∣∣η′R
(
2r−1(x+ ξ)− a

)∣∣

6 2r−1 sup|η′R(R)| · 1[2r−1x−1,2r−1(x+1)+1](a).

There are at most two values of a ∈ Z where the gradient is nonzero, since r > 2
and 2r−1(x + 1) + 1 − (2r−1x − 1) = 2 + 2/r. We can thus bound the following
sum by

∑

a∈Z
(∇ηZ,r,a(x))2 6 4 sup|η′R(R)|2r−2

∑

a∈Z
1[2r−1x−1,2r−1(x+1)+1](a) 6 C3r

−2

with C3 := 8 sup|η̃′(R)|2.
Step II. We now define the partition on the tree. Let

(3.8) ηr,a : T → [0, 1], ηr,a(v) := ηZ,r,a(|v|).
With this definition we have ∑

a∈N
(ηr,a)

2 = 1

on T . The support of each ηr,a is a disjoint union of rooted trees of length at
most r, see fig. 5. For ψ ∈ `2(T L), we employ remark 3.8 and learn that

〈A(L)ψ, ψ〉 =
〈
Â(L)ψ, ψ̂

〉
=
√
k
〈
Âψ̂, ψ̂

〉

=
√
k
∑

v,j

〈
(Âψ̂)v,j, ψ̂v,j

〉
=
√
k
∑

v,j

〈
AZψ̂v,j, ψ̂v,j

〉

>
√
k
∑

v,j

(∑
a

〈
AZ(ηZ,r,aψ̂v,j), ηZ,r,aψ̂v,j

〉
− C3‖ψ̂v,j‖2

2/r
2
)

=
∑

a

√
k
∑

v,j

〈
AZ(̂ηr,aψ)v,j, η̂r,aψv,j

〉
− CIMS‖ψ̂‖2

2/r
2

=
∑

a

〈 ̂A(L)(ηr,aψ), η̂r,aψ
〉
− CIMS‖ψ̂‖2

2/r
2

=
∑

a

〈
A(L)(ηr,aψ), ηr,aψ

〉
− CIMS‖ψ̂‖2

2/r
2,

where CIMS := C3

√
k. �



THE ANDERSON MODEL ON THE BETHE LATTICE: LIFSHITZ TAILS 35

s

sx
7→

η R
(2
r−

1
x
−
a
)

Figure 5. Shells of a tree split in trees

3.3. An uncertainty principle.

3.3.1. On a finite segment of Z. Let us first prove a one-dimensional version of propo-
sition 3.10. Afterwards, we transfer the result to the tree with lemma 3.5. To this
end, let L ∈ N and v ∈ T L−1

∗ . Consider a function ϕ ∈ `2({|v|+ 1, . . . , L}), which
can be written in the orthonormal basis of eigenfunctions of −∆Z|{|v|+ 1, . . . , L}
as

ϕ(z) =
∑

16m6L−|v|
αm

√
2

L+ 1− |v| sin
(mπ(z − |v|)
L− |v|+ 1

)
.

Given β > 0, we define the spectral projector P̂ |v|,Lβ on `2({|v|+ 1, . . . , L}) via

P̂
|v|,L
β ϕ(z) =

∑

16m6β+1

αm

√
2

L+ 1− |v| sin
(mπ(z − |v|)
L− |v|+ 1

)
,

z ∈ {|v|+ 1, . . . , L}.

Lemma 3.9. Let L ∈ N, β > 0, 0 < δ < 1 and v ∈ T L∗ be fixed, such that
|v|+ 1 + δL 6 L. Define, for ϕ ∈ `2(|v|+ 1, . . . , L}), the truncation

T ′|v|,δϕ := 1{|v|+1+dδLe,...,L}ϕ.

Then, for |v| 6
(
1− 1

β+1

)
(L+ 1), we have

‖(1− T ′|v|,δ)P̂ |v|,Lβ ϕ‖2 6
√

2πδ3/2(β + 1)3‖P̂ |v|,Lβ ϕ‖2.
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Proof. We fix ϕ ∈ `2(|v|+ 1, . . . , L}) and calculate, using Cauchy–Schwarz,

‖(1− T ′|v|,δ)P̂ |v|,Lβ ϕ‖2
2 =

2

L+ 1− |v|

|v|+dδLe∑

z=|v|+1

∣∣∣
bβ+1c∑

m=1

αm sin
(mπ(z − |v|)
L+ 1− |v|

)∣∣∣
2

6 2

L+ 1− |v|

dδLe∑

z=1

(bβ+1c∑

m=1

|αm|2
) bβ+1c∑

m=1

(
sin
( mπz

L+ 1− |v|
))2

.

Now using ‖P̂ |v|,Lβ ϕ‖2
2 =

∑bβ+1c
m=1 |αm|2, and sin(t) 6 |t|, valid for all t ∈ R, the last

line is smaller than

2‖P̂ |v|,Lβ ϕ‖2
2

L+ 1− |v|

dδLe∑

z=1

bβ+1c∑

m=1

( mπz

L+ 1− |v|
)2

=
2π2‖P̂ |v|,Lβ ϕ‖2

2

(L+ 1− |v|)3

dδLe∑

z=1

z2

bβ+1c∑

m=1

m2

6 2π2(δL)3(β + 1)3

(L+ 1− |v|)3
‖P̂ |v|,Lβ ϕ‖2

2.

Note that the assumption |v| 6
(
1− 1

β+1

)
(L+ 1) implies

L

L+ 1− |v| 6
β + 1

L+ 1
L 6 β + 1.

This bound and taking the square root yields the result. �

3.3.2. On a finite rooted tree. For any β > 0, we recall the definition of

(3.9) E
(L)
β := 2

√
k cos

(β + 1

L+ 1
π
)

from lemma 3.3. We want to study the neighborhood [E
(L)
β , E

(L)
0 ] of the principal

eigenvalue E(L)
0 of the adjacency matrix on the rooted tree T L. We define the

spectral projector of A(L) on the energy interval [E
(L)
β ,∞) as

Π
(L)

E
(L)
β

: `2(T L)→ `2(T L), Π
(L)

E
(L)
β

ϕ :=
∑

v,j,m : λLv,j,m>E
(L)
β

〈ϕ,ΨL
v,j,m〉ΨL

v,j,m.

We also define the space truncations

T|v|,δ : `2(T L)→ `2(T L), T|v|,δϕ := ϕ1{x∈T L:|x|>|v|+1+δL}

and a truncated version of Π
(L)

E
(L)
β

Π̃
(L)

E
(L)
β

: `2(T L)→ `2(T L), Π̃
(L)

E
(L)
β

ϕ :=
∑

v,j,m : λLv,j,m>E
(L)
β

〈ϕ,ΨL
v,j,m〉T|v|,δΨL

v,j,m.
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∗

L δL

v

Figure 6. Illustration of (3.10). The subtree T Lv is indicated with
solid edges. Nodes in the support of functions truncated with T|v|,δ
in T Lv are filled black.

It is straightforward to check on the eigenbasis that Π̃
(L)

E
(L)
β

Pv,j = T|v|,δPv,jΠ
(L)

E
(L)
β

, so

(3.10) Π̃
(L)

E
(L)
β

=
∑

v,j

T|v|,δPv,jΠ
(L)

E
(L)
β

.

Proposition 3.10. Let L ∈ N, β > 0 and 0 < δ < 1. Then, for any ϕ ∈ `2(T L),

‖Π(L)

E
(L)
β

ϕ− Π̃
(L)

E
(L)
β

ϕ‖2 6
√

2πδ3/2(β + 1)3‖Π(L)

E
(L)
β

ϕ‖2.

Proof. We will show equivalently that

∀ϕ ∈ Π
(L)

E
(L)
β

`2(T L) : ‖ϕ− Π̃
(L)

E
(L)
β

ϕ‖2 6
√

2δ3/2(β + 1)2‖ϕ‖2.

Indeed, it follows from (3.10) that if Π
(L)

E
(L)
β

ϕ = 0 then Π̃
(L)

E
(L)
β

ϕ = 0. We assume thus

from now on that ϕ = Π
(L)

E
(L)
β

ϕ. For such ϕ, we see, by (3.10),

(
Π

(L)

E
(L)
β

− Π̃
(L)

E
(L)
β

)
ϕ =

∑

v,j

(1T L − T|v|,δ)Pv,jϕ.

By lemma 3.5, we know that Pv,δ commutes with the radially symmetric truncation.
Thus, by the orthogonality of the projections Pv,j,
∥∥(Π(L)

E
(L)
β

ϕ− Π̃
(L)

E
(L)
β

)
ϕ
∥∥2

2
=
∥∥∥
∑

v,j

Pv,j(1T L − T|v|,δ)ϕ
∥∥∥

2

2
=
∑

v,j

∥∥Pv,j(1T L − T|v|,δ)ϕ
∥∥2

2
.
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We study this norms via the unitary ·̂ , see (3.5) and lemma 3.5. For each v, j, we
have
∥∥Pv,j(1T L − T|v|,δ)ϕ

∥∥
2

=
∥∥(Pv,j(1T L − T|v|,δ

)
ϕ)∧
∥∥

2
=
∥∥((1T L − T|v|,δ)ϕ

)∧
v,j

∥∥
2

=
∥∥(1{|v|+1,...,L} − T ′|v|,δ

)
ϕ̂v,j
∥∥

2
.

We learn from lemma 3.3 that the coefficients (αv,j,m)v,j,m of

ϕ = Π
(L)

E
(L)
β

ϕ =
∑

v,j,m

αv,j,mΨL
v,j,m

vanish as soon as |v| > (L + 1)(1 − m
β+1

) or m > β + 1. Therefore, we have
ϕ̂v,j = P̂

|v|,L
β ϕ̂v,j, and we can thus invoke lemma 3.9 to conclude

∥∥(Π(L)

E
(L)
β

ϕ− Π̃
(L)

E
(L)
β

)
ϕ
∥∥2

2
6 2π2δ3(β + 1)6

∑

v,j

‖ϕ̂v,j‖2
2 = 2π2δ3(β + 1)6‖ϕ‖2

2.

Since ϕ = Π
(L)

E
(L)
β

ϕ, this is what we set out to prove. �

4. Lifshitz tails: The upper bound

This section is devoted to the proof of the following theorem.

Theorem 4.1. Let E0 := (
√
k − 1)2. Then,

lim sup
E→E0

log log|logN (E)|
log(E − E0)

6 −1

2
.

This theorem provides the converse to proposition 2.7. Note that no condition
on the random variables is needed for the upper bound.

4.1. Bound by a probability. We remind that E 7→ N (E) denotes the integrated
density of states given by (1.6), which is monotone and thus the cumulative
distribution function of the measure dN called the density of states measure,
and 0 6 t 7→ Ñ (t) is the Laplace transform of dN . We start by proving the
following Tauberian theorem, which links the long time behavior of Ñ to the low
energy asymptotic of N .

Proposition 4.2. Let Ñ be the Laplace transform of the density of states mea-
sure dN . Suppose that for some η > 0,

(4.1) lim sup
t→∞

et(E0+(log t)−η)Ñ (t) 6 1

with E0 := (
√
k − 1)2. Then,

lim sup
E→E0

log log|logN (E)|
log(E − E0)

6 −1

η
.
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Proof. Assume that inequality (4.1) holds. Then, there exists some t∗ such that
for all t > t∗,

(4.2) Ñ (t) 6 2 exp(−t(E0 + (log t)−η)).

Clearly, for E > E0,

N (E) =

∫ E

E0

dN (λ) 6 etE
∫ E

E0

e−tλdN (λ) 6 etE
∫ ∞

E0

e−tλdN (λ) = etEÑ (t),

and by (4.2), for large t,

N (E) 6 2 exp(t(E − E0)− t(log t)−η).

Now we choose t as follows

t = t(E) := exp
(

(2(E − E0))−1/η
)
.

We see that, for small E − E0,

N (E) 6 2 exp
(
−(E − E0) exp

(
(2(E − E0))−1/η

))

6 exp

(
−1

2
(E − E0) exp

(
(2(E − E0))−1/η

))
,

and
log|logN (E)| > log((E − E0)/2) + (2(E − E0))−1/η.

Now we take another logarithm and divide by log(E − E0) < 0:

log log|logN (E)|
log(E − E0)

6 log(log((E − E0)/2) + (2(E − E0))−1/η)

log(E − E0)

=
log
(
(E − E0)1/η log((E − E0)/2) + 2−

1
η
)

log(E − E0)
− 1

η

E↘E0−−−−→ −1

η
.

Taking the lim sup proves the proposition. �
The rest of this section will be devoted to prove that, as a consequence of

theorem 4.10, condition (4.1) holds for any η > 2. This proves theorem 4.1.
Our next proposition compares Ñ to a finite dimensional analog Ñ L. For any

Γ ⊂ B, we denote by Hω|Γ the operator Hω with simple (sometimes called Dirichlet)
boundary conditions, i. e. the operator defined by

Hω|Γ := 1ΓHω1Γ,

or equivalently, writing Hω(v, w), v, w ∈ B, for the matrix coefficients, it can be
defined by

(4.3) (Hω|Γ)(v, w) :=

{
Hω(v, w) if v, w ∈ Γ

0 elsewhere.
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Remember that BL denotes the ball of radius L of the Bethe lattice. Let us define
the averaged spectral density N L of Hω|BL by

N L(E) := E〈δ0,1(−∞,E](Hω|BL)δ0〉.
In particular, its Laplace transform can be written

Ñ L(t) = E
[
〈δ0, e

−tHω |BLδ0〉
]
.

Note also that, using functional calculus, we have

Ñ (t) = E
[
〈δ0, e

−tHωδ0〉
]
.

In the following proposition we compare these two quantities. We define ω+ :=
‖ω0‖∞ for further use.

Proposition 4.3. Let Ñ L be the Laplace transform of dN L. Pick some positive
constant ζ > e2‖Hω‖ = e2((

√
k + 1)2 + ω+) and let L = dζte. Then, for any t > 1

the following holds:
|Ñ (t)− Ñ L(t)| 6 e−ζt.

Here, ‖Hω‖ = sup Σ.

Proof. Assume ζ > e2‖Hω‖ and t > 1. First let us note that Hω is a bounded
operator and (we actually have ‖Hω‖ = (k + 1 + 2

√
k) + ‖Vω‖∞). This allows us

to expand the exponential as a sum like

〈δ0, e
−tHωδ0〉 =

L∑

n=0

(−t)n
n!
〈δ0, H

n
ωδ0〉+

∑

n>L

(−t)n
n!
〈δ0, H

n
ωδ0〉,

which is also valid if we replace Hω by Hω|BL. It is easy to see that the two first
terms of this sum are 1 and −tHω(0, 0) = −t(Hω|BL)(0, 0) respectively. Expanding
the matrix product, we see that, for n ∈ N, 2 6 n 6 L

〈δ0, H
n
ωδ0〉 =

∑

x1,...,xn−1∈B
Hω(0, x1)Hω(x2, x3) · · ·Hω(xn−2, xn−1)Hω(xn−1, 0).

Now, using that Hω(v, w) = 0 for v, w ∈ BL satisfying d(v, w) > 1, the last sum
reduces to

(4.4)
∑

(p0,...,pn):0 0

Hω(p0, p1)Hω(p2, p3) · · ·Hω(pn−2, pn−1)Hω(pn−1, pn),

where we have written (p0, . . . , pn) : 0 0 to denote a path (p0, . . . , pn) ∈ (B)n+1

(which may include loops) starting at 0 and ending at 0. In particular, if (p0, . . . , pn) :
0 0,

d(p0, pi) 6
∑

06j6n−1

d(pj, pj+1) 6 n 6 L for any 0 6 i 6 n,
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i. e. the paths in the sum (4.4) are entirely contained in BL. Using (4.3), we see
that for 2 6 n 6 L

〈δ0, H
n
ωδ0〉 =

∑

(p0,...,pn):0 0

∏

16i6n
(Hω|BL)(pi−1, pi) = 〈δ0, (Hω|BL)nδ0〉.

Thus, the first L+ 1 terms of the expansions of 〈δ0, e
−tHωδ0〉 and 〈δ0, e

−tHω |BLδ0〉
coincide, and
∣∣〈δ0, e

−tHωδ0〉 − 〈δ0, e
−tHω |BLδ0〉

∣∣ 6
∑

n>L

tn

n!
|〈δ0, H

n
ωδ0〉|+

∑

n>L

tn

n!
|〈δ0, (Hω|BL)nδ0〉|

6 2
∑

n>L

tn

n!
‖Hω‖n.

Here, we used the Cauchy–Schwarz inequality and ‖Hω|BL‖ 6 ‖Hω‖. Let us
estimate this error with

2
∑

n>L

tn

n!
‖Hω‖n = 2

∑

n>1

tL+n

(L+ n)!
‖Hω‖L+n 6

∑

n>1

tL+n

(L+ n)(L+n)e−(L+n)
‖Hω‖L+n

6
∑

n>1

(
et‖Hω‖
L

)L+n

,

where we have used n! >
√

2πn(n/e)n > 2nne−n and (L+n)−1 6 L−1. In particular,
if L = dζte, we see that

(
et‖Hω‖
L

)L+n

6 (e‖Hω‖/ζ)dζte+n,

and as ζ > e2‖Hω‖ and t > 1, we can bound the error as
∣∣〈δ0, e

−tHωδ0〉 − 〈δ0, e
−tHω |BLδ0〉

∣∣ 6
∑

n>L

tn

n!
‖Hω‖n 6

∑

n>1

e−(dζte+n) 6 e−ζt.

The geometric series
∑

n>1 e−n = (e− 1)−1 6 1 enters in the last inequality. Taking
the expectation ends the proof. �

We will now study the large time behavior of Ñ L.

Lemma 4.4. Let Γ ⊂ B be finite and Hω|Γ the restriction of Hω with simple
boundary conditions. Then

E
[
〈δ0, e

−tHω |Γδ0〉
]
6 E

[
e−tEGS(Hω |Γ)

]
.

Proof. Fix a realization ω and let {λi;ψi}i∈Γ = {λi(ω);ψi(ω)}i∈Γ be a complete set
of (eigenvalues, eigenfunctions) of Hω|Γ. Then, writing

δ0 =
∑

αi(ω)ψi(ω)
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v

Figure 7. A ball B3
v centered at v, indicated with solid edges and

filled nodes, is contained in the tree T 7.

we see that, as EGS(Hω|Γ) = mini∈Γ λi(ω) and
∑|αi|2 = 1,

〈δ0, e
−tHω |Γδ0〉 =

∑

i∈Γ

|αi(ω)|2e−tλi(ω) 6
∑

i∈Γ

|αi(ω)|2e−tEGS(Hω |Γ) = e−tEGS(Hω |Γ).

Taking the expectation in this inequality yields the desired result. �
The following two lemmas link the behavior of the ground state energy of the

Hamiltonian on a ball to the one on a finite rooted tree. This is needed in order to
use the spectral theory developed in section 3. The trick is to embedd a ball in the
Bethe lattice in a finite symmetric rooted tree, cf. fig. 7. Of course, the ball is not
centered at the root of the tree, but taking advantage of the translation invariance
of the Anderson Hamiltonian on the Bethe lattice, as soon as we take expectations,
the location of the ball is arbitrary.

Lemma 4.5. Let L > 1 and BLv a ball of radius L centered at v ∈ B, i. e.
BLv := {w ∈ B : dB(w, v) 6 L}.

Then, for every v ∈ B with |v| = L+ 2 there exists a rooted tree T 3L ⊂ B, of length
3L, which contains BLv .
Proof. Label the k branches of the Bethe lattice by the nodes x ∈ T L satisfying
|x| = 1 and assume that d(0, v) = L + 1. Then, there exists a unique minimal
path [0, v] = (0, v1, v2, . . . , v) of length L+ 1. Because d(v1, v) = L, we know that
v1 ∈ BL. In particular the whole ball is contained in the branch of the Bethe lattice
v1. Now choose k − 1 other branches to form the infinite rooted tree T . The result
is now clear because by definition T L := {v ∈ T : |v| 6 L} and for any x ∈ BLv we
have |x| 6 2L+ 1 6 3L. �

Conversely, it is easy to see that T L ⊂ BL, for all L > 1. This leads to the
following lemma.



THE ANDERSON MODEL ON THE BETHE LATTICE: LIFSHITZ TAILS 43

Lemma 4.6. For any L > 1 and |v| = L+ 2,

EGS(Hω|BLv ) 6 EGS(Hω|T 3L) 6 EGS(Hω|B3L)

Here T 3L is the tree satisfying BLv ⊆ T 3L ⊆ B3L.

Proof. Let v ∈ B with |v| = L+ 2 and T 3L be the rooted tree containing BLv . Then
EGS(Hω|BLv ) = inf

ϕ∈`2(BLv )
‖ϕ‖2=1

〈Hωϕ, ϕ〉 6 inf
ϕ∈`2(T 3L)
‖ϕ‖2=1

〈Hωϕ, ϕ〉

= EGS(Hω|T 3L) 6 EGS(Hω|T 3L).
The second inequality is proved analogously. �

Using translation invariance, we can translate the point where we calculate the
integrated densities of states N and N L. Proposition 4.3 tells us then that it is
enough to study, for some v ∈ B with |v| = L+ 2,

Ñ L(t) = E
[
〈δv, e−tHω |B

L
v δv〉

]
.

We remind that BLv is the ball centered at v.
From now on we write HL

ω := Hω|T L. The next lemma is a simple bound on the
expectation by a probability.

Lemma 4.7. For any ε > 0, L > 1 and t > 1, we have

E
[
e−tEGS(HL

ω )
]
6 e−t(E0+2ε(log t)−2) + e−tE0P

(
EGS(H

L
ω ) < E0 + 2ε(log t)−2

)
.(4.5)

Proof. We have indeed for all E > E0

E
[
e−tEGS(HL

ω )
]

= E
[
(1{EGS(HL

ω )>E} + 1{EGS(HL
ω )<E})e

−tEGS(HL
ω )
]

6 e−tE + e−tE0P(EGS(H
L
ω ) < E). �

We summarize the results of this section in the following proposition.

Proposition 4.8. Assume that ε > 0 and ζ > e2‖Hω‖2 = e2((
√
k + 1)2 + ω+)

satisfy

(4.6) lim sup
L→∞

eεL/ζP
(
EGS(H

L
ω ) < E0 + 4ε(logL)−2

)
6 1.

Then, we have

(4.7) lim sup
t→∞

et(E0+ε(log t)−2)Ñ (t) 6 1.

Proof. Let t > 1 and L = dζte. Then,
exp(t(E0 + ε(log t)−2))Ñ (t)

6 exp(t(E0 + ε(log t)−2))(Ñ L(t) + e−ζt) by proposition 4.3

6 exp(t(E0 + ε(log t)−2))(E[e−tEGS(H3L
ω )] + e−ζt) using lemmas 4.4 to 4.6

6 e−εt(log t)−2

+ e−t(ζ−E0−ε(log t)−2) + eεt(log t)−2P
(
EGS(H

3L
ω ) < E0 + 2ε(log t)−2

)
,



44 FRANCISCO HOECKER-ESCUTI AND CHRISTOPH SCHUMACHER

using lemma 4.7. Note that ζ > E0, so for the first two terms in this sum we have

e−εt(log t)−2

+ e−t(ζ−E0−(log t)−2)) t→∞−−−→ 0.

For the third term, noting that eεt(log t)−2 6 eε(3L)/ζ and that

2ε(log t)−2

4ε(log(3L))−2
=

1

2

(
log(3dζte)

log t

)2
t→∞−−−→ 1

2
< 1

yields the result. �
It is not hard to see that (4.7) implies (4.1) for every η > 2, so that theorem 4.1

is a consequence of condition (4.6).

4.2. Reduction to a smaller scale. In the following lemma we trade energy for
probability. The IMS localization formula (proposition 3.6) furnishes a crucial
ingredient of the proof.

Proposition 4.9. For every ε > 0 there exists L∗ > 1 so that for any L > L∗ and
r = bε−1/2 logLc,

P
(
EGS(H

L
ω ) 6 E0 +

4ε

(logL)2

)
6 kexp((r+1)

√
ε)P
(
EGS(H

r
ω) 6 E0 +

4 + CIMS
r2

)
.

Proof. Assume both

(4.8) r = bε−1/2 logLc = r > 2

and

(4.9) EGS(H
L
ω ) 6 E0 +

4ε

(logL)2
6 E0 +

4

r2
.

Let {ηa,r}a be the family of spherically symmetric functions on T L given by
proposition 3.6. They satisfy

∑

a

(ηa,r(v))2 = 1

for all v ∈ T L, and
Sa,r := supp ηa,r ⊆ T L.

If ϕLGS is the normalized the ground state of HL
ω , then the IMS formula and the

normalization
∑

a‖ϕLGSηa,r‖2
2 = 1 yield

EGS(H
L
ω ) = 〈ϕLGS, HL

ωϕ
L
GS〉 >

∑

a

EGS(H
L
ω |Sa,r)‖ϕLGSηa,r‖2

2 −
CIMS
r2
‖ϕLGS‖2

2

> min
a
EGS(H

L
ω |Sa,r)−

CIMS
r2
‖ϕLGS‖2

2

> min
v∈T L : T rv ⊆T L

EGS(H
L
ω |T rv )− CIMS

r2
‖ϕLGS‖2

2.
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The last estimate is true by proposition 3.6, which states that Sa,r is the disjoint
union of finite subtrees of length at most r. From (4.9) we deduce then

min
v∈T L : T rv ⊆T L

EGS(H
L
ω |T rv ) 6 E0 +

4 + CIMS
r2

and thus

P
(
EGS(H

L
ω ) 6 E0 +

4ε

(logL)2

)

6
∑

v∈T L : T rv ⊆T L
P
(
EGS(H

L
ω |T rv ) 6 E0 +

4 + CIMS
r2

)

6 kLP
(
EGS(H

r
ω) 6 E0 +

4 + CIMS
r2

)
.

To end the proof, note from (4.8) that L 6 e(r+1)
√
ε. �

We state the main probability estimate, which we will prove in the next section.

Theorem 4.10. For every β′ > 0 there exists some εβ′ > 0 and L∗ > 1 so that for
any L > L∗,

P
(
EGS(H

L
ω ) 6 E0 + β′L−2

)
6 exp(− exp(εβ′L)).(4.10)

We first state and prove the following important corollary.

Corollary 4.11. For any ε > 0 small enough and any ζ > 1 there exists some
L∗ > 1 such that for all L > L∗

P
(
EGS(H

L
ω ) 6 E0 +

4ε

(logL)2

)
6 e−ζL.

In particular, condition (4.6) of proposition 4.8 holds.

Proof. Let β′ > 4(4 +CIMS). Then, by theorem 4.10, which we assume to hold true,
we get εβ′ > 0 and r∗ > 1 such that for all r > r∗, we have

(4.11) P
(
EGS(H

r
ω) 6 E0 +

4 + CIMS
r2

)
6 exp(− exp(εβ′r)).

Now fix 0 < ε < ε2β′ and let r := bε−1/2 logLc. In order to make sure that r > r∗,
we need L > exp((r∗ + 1)

√
ε). We estimate, using proposition 4.9, (4.11),

√
ε < εβ′ ,

and L > L∗

P
(
EGS(H

L
ω ) 6 E0 +

4ε

(logL)2

)
6 exp

(
exp((r + 1)

√
ε) log k − exp(εβ′r)

)

6 exp
(
− exp(εβ′r)/2

)
6 exp(−e−εβ′Lεβ′/

√
ε/2) 6 exp(−ζL)

with L∗ := max{exp((r∗+1)
√
ε), exp

(
( log(2e

√
ε log k)

εβ′−
√
ε

+1)
√
ε
)
, (2eεβ′ζ)

√
ε/(εβ′−

√
ε)}. �
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5. Main probability estimate

We remind the reader that

−∆B := k + 1− AB
where AB is the adjacency matrix of the infinite Bethe lattice B with symmetric
spectrum σ(AB) = [−2

√
k, 2
√
k]. Thus, the Anderson Hamiltonian Hω defined by

(1.5) satisfies
Hω = k + 1− AB + Vω.

We introduce the restriction of AB to the finite rooted tree T L, which we denote
by A(L). Note that A(L) is also the adjacency matrix of T L. Any property
of the ground state energy EGS(H

L
ω ) can be restated in terms of the principal

eigenvalue Λ
(L)
ω of the operator A(L)

ω = A(L) − V (L)
ω , which we define as

Λ(L)
ω := sup

‖ϕ‖2=1

〈ϕ,A(L)
ω ϕ〉 = k + 1− EGS(H

L
ω ).

We have indeed for L ∈ N and β > 0 the equivalence

EGS(H
L
ω ) 6 E0 + βL−2 ⇐⇒ Λ(L)

ω > 2
√
k − βL−2.

If we take β <
√
kπ2, then this inequality almost surely does not hold (trivial and

obviously not very useful for our purposes). We restate theorem 4.10 as follows.

Theorem 5.1. For every β > 0 there exists some εβ > 0, L∗ > 1 so that for any
L > L∗,

Λ(L)
ω < 2

√
k − βL−2

with probability at least
1− exp(−eεβL).

This section will be devoted to the proof of theorem 5.1. Note that it furnishes
the lower bound of theorem 1.5.

5.1. Cutoffs in energy and space. We claim first that, in order to attain an
energy E0 + O(L−2) close to the bottom of the spectrum of HL

ω (i. e. the top of
the spectrum of A(L)

ω ), a state must have both low kinetic energy and its potential
energy close to the bottom of the spectrum. This will force the potential energy to
deviate considerably from its mean, see proposition 5.4, which happens only with
double exponentially small probability, see proposition 5.5.

To exploit the low energy of the states considered, we cut off all energies above
a threshold. We implement this with the spectral projectors

Π
(L)
E : `2(T L)→ `2(T L)

Π
(L)
E ϕ = 1[E,+∞)(A

(L))ϕ =
∑

λLv,j,m>E

〈ΨL
v,j,m, ϕ〉ΨL

v,j,m,
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where E ∈ R and the sum is taken over L-admissible indexes (v, j,m) with
eigenvalue bounded below by E, see lemma 3.2.

Recall that at the beginning of section 3 we introduced a vertex ∗ and the
notation T L∗ . We used them to index the eigenvalues and eigenfunctions on the
tree, see lemma 3.2.

Definition 5.2. For every v ∈ T L−1
∗ , define the orthogonal spectral projectors

(5.1) Pv :=
∑

j∈Jv
Pv,j

using the notation from (3.4).

Remark 5.3. Here are some properties of these projectors. Let v ∈ T L−1
∗ . Then

• If χv = 1T Lv is the characteristic function of the subtree T Lv , then for any
w ∈ T L−1

v ,
Pw = Pwχv = χvPw.

In particular Pv = Pvχv = χvPv.
• If we denote by suppϕ the support of ϕ ∈ `2(T L), then for any w ∈
T L−1
∗ \ T L−1

v

supp
(
Pvϕ

)
∩ supp

(
Pwϕ

)
= ∅.

Given δ ∈ (0, 1), the truncated spectral projector Π̃
(L)

E
(L)
β

, see (3.10), can be written

with this notation as

(5.2) Π̃
(L)
E =

∑

v∈T L−1
∗

T|v|,δPvΠ
(L)
E .

We note, for further use, that for any v ∈ T L−1
∗ ,

(5.3) Π̃
(L)
E Pv = T|v|,δPvΠ

(L)
E .

This is easily seen using the commutativity and orthogonality of the spectral
projectors. Using lemma 3.3, we also note that if |v| > (1− 1

β+1
)(L+ 1) then

(5.4) PvΠ
(L)
E = 0.

We finally introduce a notation for the centered potential:

(5.5) V
(L)

ω := V (L)
ω − ω̄1T L ,

where ω̄ is the expected value of the potential. We remind that the quantity
E

(L)
β := 2

√
k cos

( (β+1)π
L+1

)
was introduced in lemma 3.3. Let us now state the

proposition.
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Proposition 5.4. Let β′ > 0. For every β � β′ large enough, there exists some
δ = δβ > 0 and L∗ > 1, so that for any L > L∗, then, the following inequality holds:

P
(
Λ(L)
ω > 2

√
k − β′L−2

)
6 P

(
sup
‖ϕ‖261

∣∣〈Ṽ (L)
ω ϕ, ϕ〉

∣∣ > ω̄

16

)
,

where we have introduced the notation

Ṽ (L)
ω := (Π̃

(L)

E
(L)
β

)∗V
(L)

ω Π̃
(L)

E
(L)
β

,

with Π̃
(L)
E defined as in (5.2).

The key estimate is then given by the following proposition.

Proposition 5.5. For any β > 0 large enough, let δ = δβ > 0 given by proposi-
tion 5.4. Then, for L large enough,

P
(

sup
‖ϕ‖261

∣∣〈Ṽ (L)
ω ϕ, ϕ〉

∣∣ > ω̄

16

)
6 exp

(
−Ck,ω̃+,ω̄,βk

δβL
)
.

Let us first prove proposition 5.4. We thereby reduce theorem 5.1 to proposi-
tion 5.5. The proof of proposition 5.5 is at the very end of this section. It hinges
upon a series of lemmas and propositions which occupy the rest of this paper.

Proof of proposition 5.4. Fix a realization ω of the random potential with the
property

Λ(L)
ω > 2

√
k − β′L−2.

Then, there exists a ϕ ∈ `2(T L) with ‖ϕ‖2 = 1 such that

〈A(L)
ω ϕ, ϕ〉 > 2

√
k − β′L−2,

or, equivalently,

〈(2
√
k − A(L))ϕ, ϕ〉+ 〈V (L)

ω ϕ, ϕ〉 6 β′L−2,

using ‖ϕ‖2 = 1. Note that the principal eigenvalue of A(L) is smaller than 2
√
k.

Thus, both 2
√
k − A(L) and V (L)

ω are non-negative operators. This implies that we
have both

(5.6) 〈(2
√
k − A(L))ϕ, ϕ〉 6 β′L−2

and

(5.7) 〈V (L)
ω ϕ, ϕ〉 6 β′L−2.

We now proceed as follows. In a first step, we introduce the energy cutoff Π
(L)

E
(L)
β

into (5.7). Here, (5.6) tells us how to choose β in order to keep the truncated
version of (5.7) powerful enough. In a second step, we bring the spatial cutoff
in Π̃

(L)

E
(L)
β

into play. This time, we have to choose δ > 0 small enough, depending

on β.
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For the first step, let us write

(5.8) q(L)

E
(L)
β

:= 1`2(T L) − Π
(L)

E
(L)
β

and ω+ := ‖Vω‖∞. Then, we find that

〈V (L)
ω ϕ, ϕ〉 = 〈V (L)

ω Π
(L)

E
(L)
β

ϕ,Π
(L)

E
(L)
β

ϕ〉+ 2<〈V (L)
ω Π

(L)

E
(L)
β

ϕ,q(L)

E
(L)
β

ϕ〉+

+ 〈V (L)
ω q(L)

E
(L)
β

ϕ,q(L)

E
(L)
β

ϕ〉

> 〈V (L)
ω Π

(L)

E
(L)
β

ϕ,Π
(L)

E
(L)
β

ϕ〉 − 2ω+‖Π(L)

E
(L)
β

ϕ‖2‖q(L)

E
(L)
β

ϕ‖2.

This, (5.7) and ‖Π(L)

E
(L)
β

ϕ‖2 6 1 imply that

〈V (L)
ω Π

(L)

E
(L)
β

ϕ,Π
(L)

E
(L)
β

ϕ〉 6 β′L−2 + 2ω+‖q(L)

E
(L)
β

ϕ‖2.

We use now def. (5.5) in order to center the random variables so that their mean is
zero. This gives,

(5.9) 〈V (L)

ω Π
(L)

E
(L)
β

ϕ,Π
(L)

E
(L)
β

ϕ〉 6 β′L−2 + 2ω+‖q(L)

E
(L)
β

ϕ‖2 − ω̄‖Π(L)

E
(L)
β

ϕ‖2
2.

Using the non-negativity of the operator 2
√
k − A(L), we see that

〈
(2
√
k − A(L))q(L)

E ϕ,q(L)
E ϕ

〉
=

∑

λLv,j,m>E

(2
√
k − λLv,j,m)|〈ΨL

v,j,m, ϕ〉|2

6
∑

λLv,j,m>−∞
(2
√
k − λLv,j,m)|〈ΨL

v,j,m, ϕ〉|2

= 〈(2
√
k − A(L))ϕ, ϕ〉.

We use this with (5.6) to deduce that
〈
(2
√
k − A(L))q(L)

E
(L)
β

ϕ,q(L)

E
(L)
β

ϕ
〉
6 β′L−2

and thus, using the definitions (5.8) and (3.9), this implies that
(
2
√
k − E(L)

β

)∥∥q(L)

E
(L)
β

ϕ
∥∥2 6 β′L−2.

Hence, using cos(x) > 1− x2/2,

2
√
k

(β + 1)2π2

(L+ 1)2

∥∥q(L)

E
(L)
β

ϕ
∥∥2 6 β′L−2,

and thus
∥∥q(L)

E
(L)
β

ϕ
∥∥ 6 L+ 1

L(β + 1)π

√
β′

2
√
k
6 2

(β + 1)π

√
β′

2
√
k
.
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From now on we assume we have chosen β so large that

1

(β + 1)π

√
2β′√
k
< min{1/

√
2, ω̄/(8ω+)}.

This choice implies

1/2 6 ‖Π(L)

E
(L)
β

ϕ‖2
2 6 1 and 2ω+‖Π(L)

E
(L)
β

ϕ‖2‖q(L)

E
(L)
β

ϕ‖2 6 ω̄/4.

We deduce from (5.9) that, for L2 > 8β′/ω̄,

〈V (L)

ω Π
(L)

E
(L)
β

ϕ,Π
(L)

E
(L)
β

ϕ〉 6 − ω̄
8
.

For the second step, let us now replace Π
(L)

E
(L)
β

by Π̃
(L)

E
(L)
β

. We denote ω̃+ := ‖Vω− ω̄‖∞.
Choose 0 < δ < 1 satisfying

√
2πδ3/2(β + 1)3 6 ω̄/(32ω̃+).

Then, proposition 3.10 tells us that

2ω̃+‖Π(L)

E
(L)
β

ϕ− Π̃
(L)

E
(L)
β

ϕ‖2 6
ω̄

16
‖Π(L)

E
(L)
β

ϕ‖2 6
ω̄

16
.

Using this and ‖Π̃(L)

E
(L)
β

ϕ‖2 6 1, we deduce

〈V (L)

ω Π̃
(L)

E
(L)
β

ϕ, Π̃
(L)

E
(L)
β

ϕ〉 = 〈V (L)

ω Π
(L)

E
(L)
β

ϕ,Π
(L)

E
(L)
β

ϕ〉+ 〈V (L)

ω (Π̃
(L)

E
(L)
β

− Π
(L)

E
(L)
β

ϕ,Π
(L)

E
(L)
β

ϕ〉+

+ 〈V (L)

ω Π̃
(L)

E
(L)
β

ϕ, (Π̃
(L)

E
(L)
β

− Π
(L)

E
(L)
β

ϕ〉

6 − ω̄
8

+ 2ω̃+‖Π(L)

E
(L)
β

ϕ− Π̃
(L)

E
(L)
β

ϕ‖2 6 −
ω̄

16
.

We have thereby proved that, for L large enough,
{
ω : Λ(L)

ω > 2
√
k − β′L−2

}
⊆
{
ω : sup

‖ϕ‖261

∣∣〈V (L)

ω Π̃
(L)

E
(L)
β

ϕ, Π̃
(L)

E
(L)
β

ϕ〉
∣∣ > ω̄

16

}
.

This proves proposition 5.4. �

The spatial truncation we introduced into Ṽ (L)
ω is adapted to the energy decom-

position of the argument. More specifically, eigenfunctions with different anchors
are treated differently. We therefore split the probability into different components
depending on the anchors, see lemma 5.7.

We now prove a simple lemma.

Lemma 5.6. Let L > 1 and ϕ ∈ `2(T L). Then:
∑

v∈T L−1
∗

‖χvϕ‖2
2 6 (L+ 1)‖ϕ‖2

2.
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Proof. We have v ∈ T L∗ and w ∈ T Lv if and only if v lies in the shortest path from ∗
to w, which we write v ∈ [∗, w]. Thus,

∑

v∈T L−1
∗

‖χvϕ‖2
2 6

∑

v∈T L∗

‖χvϕ‖2
2 =

∑

v∈T L∗

∑

w∈T L∗

χv(w)|ϕ(w)|2 =
∑

w∈T L∗

|ϕ(w)|2
∑

v∈[∗,w]

1.

Now it suffices to remark that the maximum length of any shortest path from ∗ to
any point of the tree is smaller or equal to L+ 1. �

We introduce the following quantity. For any given L > 1, v ∈ T L, and w ∈ T Lv ,
define

(5.10) Ξ(L, v, w) :=
1

2
(L+ 1)−1k−(|w|−|v|)/2.

We also adopt the convention 0/0 = 0.

Lemma 5.7. Let L > 1, κ > 0, B(L) the unit ball of `2(T L) and E ,F ⊆ B(L).
Then the following inequality holds true

P
(

sup
ϕ∈E,ψ∈F

|〈Ṽ (L)
ω ϕ, ψ〉| > κ

)

6
∑

v∈T L−1
∗

∑

w∈T L−1
v

P
(

sup
ϕ∈E,ψ∈F

|〈Ṽ (L)
ω Pvϕ, Pwψ〉|
‖Pvϕ‖2‖Pwψ‖2

> κΞ(L, v, w)
)
.

Proof. First let us remark that for any ϕ ∈ `2(T L) we have ϕ =
∑

v∈T L−1
∗

Pvϕ and
thus, using remark 5.3, we see that

sup
ϕ∈E,ψ∈F

|〈Ṽ (L)
ω ϕ, ψ〉| 6 sup

ϕ∈E,ψ∈F

∣∣∣
〈
Ṽ (L)
ω

∑

v∈T L−1
∗

Pvϕ,
∑

w∈T L−1
v

Pwψ
〉∣∣∣

6 2 sup
ϕ∈E,ψ∈F

∑

v∈T L−1
∗

∑

w∈T L−1
v

|〈Ṽ (L)
ω Pvϕ, Pwψ〉|.(5.11)

The proof now proceeds as follows. In order to prove the inequality P(A) 6∑
j P(Bj), we will show that

⋂
j B

c
j ⊆ Ac. To do so, fix ω with the following

property: for all ϕ ∈ E , ψ ∈ F , v ∈ T L−1
∗ , w ∈ T L−1

v ,

(5.12) |〈Ṽ (L)
ω Pvϕ, Pwψ〉| 6 κΞ(L, v, w)‖Pvϕ‖2‖Pwψ‖2.
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Then, for any ϕ ∈ E , ψ ∈ F , we can use assumption (5.12) to bound

2
∑

v∈T L−1
∗

∑

w∈T L−1
v

|〈Ṽ (L)
ω Pvϕ, Pwψ〉|

6 κ(L+ 1)−1
∑

v∈T L−1
∗

‖Pvϕ‖2

∑

w∈T L−1
v

k−(|w|−|v|)/2‖Pwψ‖2

6 κ(L+ 1)−1
( ∑

v∈T L−1
∗

‖Pvϕ‖2
2

)1/2( ∑

v∈T L−1
∗

B2
v

)1/2

,(5.13)

where we have used Cauchy–Schwarz in the last line and furthermore defined

Bv :=
∑

w∈T L−1
v

k−(|w|−|v|)/2‖Pwψ‖2.

Using Cauchy–Schwarz and Pw = Pwχv (remark 5.3) in this last quantity, we see
that ∑

v∈T L−1
∗

B2
v 6

∑

v∈T L−1
∗

∑

w∈T L−1
v

k−(|w|−|v|)
∑

w∈T L−1
v

‖Pwχvψ‖2
2.

We can use polar coordinates to estimate the first sum over w. Indeed, note that,
for n > |v|, the number of elements of the sphere {w ∈ T L−1

v : |w| = n} is bounded
by kn−|v|. Thus,

∑
w∈T L−1

v
k−(|w|−|v|) 6

∑L
n=|v| 1 6 L + 1. With the orthogonality

of the Pw and lemma 5.6, we see that
∑

v∈T L−1
∗

B2
v 6 (L+ 1)

∑

v∈T L−1
∗

‖χvψ‖2
2 6 (L+ 1)2‖ψ‖2

2.

We insert this bound into (5.13), apply
∑

v∈T L−1
∗
‖Pvϕ‖2

2 = ‖ϕ‖2
2 once more, and

plug the result into (5.11), to see that assuming (5.12) for all ϕ ∈ E , ψ ∈ F , v ∈
T L−1
∗ , w ∈ T L−1

v leads to

sup
ϕ∈E,ψ∈F

|〈Ṽ (L)
ω ϕ, ψ〉| 6 κ.

This finishes the proof. �
5.2. The epsilon-net argument. The next problem we deal with is the fact that
the ground state of Hω is random. This is reflected in proposition 5.4 as follows.
The supremum is inside the probability, so that ϕ and ψ are adapted to ω. In order
to remove the supremum, we approximate the ball with a finite ε-net and show,
with a union bound, that it suffices to consider only the elements of the net. The
following two lemmas implement a classical ε-net argument.

Lemma 5.8. Let v ∈ T L−1
∗ and B

(L)
v be the unit ball of ImPv = Pv

(
`2(T L)

)
.

Then there exists a finite setMv ⊆ B
(L)
v so that for any ϕ ∈ B(L)

v there exists some
ϕ̃ ∈Mv so that

‖ϕ− ϕ̃‖2 6 1/8
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and furthermore

#Mv 6 32k(L−|v|).

Proof. The existence of an ε-covering of the unit ball of a finite dimensional space
having a cardinality smaller than (4/ε)d, where d is the dimension of the space, is a
well-known fact, which can be established by scaling and volume counting, see for
example [Pis99, formula (4.22)]. It suffices now to remark from the definition (5.1)
that

dim ImPv 6 k(L− |v|)
to establish the result. �

Lemma 5.9. Let a scale L > 1, a constant κ > 0, B(L) the unit ball of `2(T L) and
sets E ,F ⊆ B(L) be given. Further, we fix, for each v ∈ T L−1

∗ , some setMv given
by lemma 5.8. Then, the following inequality

P
(

sup
ϕ∈E,ψ∈F

|〈Ṽ (L)
ω Pvϕ, Pwψ〉|
‖Pvϕ‖2‖Pwψ‖2

> κΞ(L, v, w)
)

6
∑

i∈N

∑

ϕ̃∈Mv ,ψ̃∈Mw

P
(
|〈Ṽ (L)

ω Pvϕ̃, Pwψ̃〉| > 2iκΞ(L, v, w)‖Pvϕ̃‖2‖Pwψ̃‖2

)

holds for all v ∈ T L−1
∗ , w ∈ T L−1

v .

Proof. Fix v ∈ T L−1
∗ , w ∈ T L−1

v . Using the fact that P 2
v = Pv, we see that

〈Ṽ (L)
ω Pvϕ, Pwψ〉 =

〈
Ṽ (L)
ω Pv

Pvϕ

‖Pvϕ‖2

, Pw
Pwψ

‖Pwψ‖2

〉
‖Pvϕ‖2‖Pwψ‖2.

We deduce that

sup
ϕ∈E,ψ∈F

|〈Ṽ (L)
ω Pvϕ, Pwψ〉|
‖Pvϕ‖2‖Pwψ‖2

6 sup
ϕ∈B(L)

v ,ψ∈B(L)
w

|〈Ṽ (L)
ω Pvϕ, Pwψ〉|.

We remind the reader that 0/0 = 0.
LetMv,Mw be the 1

8
-coverings of B(L)

v , B
(L)
w given by lemma 5.8, respectively.

Suppose that κ′ > 0 and that

(5.14) |〈Ṽ (L)
ω Pvϕ̃, Pwψ̃〉| 6

κ′

2
‖Pvϕ̃‖2‖Pwψ̃‖2

for all ϕ̃ ∈Mv, ψ̃ ∈Mw. Assume furthermore that

(5.15) |〈Ṽ (L)
ω Pvϕ, Pwψ〉| 6 2κ′‖Pvϕ‖2‖Pwψ‖2
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for every ϕ ∈ B(L)
v , ψ ∈ B(L)

w . Using the definition ofMv,Mw, we see that for any
ϕ ∈ B(L)

v , ψ ∈ B(L)
w , there exists some ϕ̃ ∈Mv, ψ̃ ∈Mw such that

|〈Ṽ (L)
ω Pvϕ, Pwψ〉| 6 |〈Ṽ (L)

ω Pvϕ̃, Pwψ̃〉|+ |〈Ṽ (L)
ω Pv

(
ϕ̃− ϕ), Pwψ̃〉|

+ |〈Ṽ (L)
ω Pvϕ, Pw

(
ψ̃ − ψ)〉|

6 κ′/2 + 2κ′‖Pv
(
ϕ̃− ϕ)‖2 + 2κ′‖Pw(ψ̃ − ψ)‖2

6 κ′/2 + κ′/4 + κ′/4 = κ′.

We deduce that if |〈Ṽ (L)
ω Pvϕ, Pwψ〉| > κ′ then we cannot have both (5.14) and (5.15).

We use this below with κ′, 2κ′, 4κ′, . . . . Thus,

P
(

sup
ϕ∈E,ψ∈F

|〈Ṽ (L)
ω Pvϕ, Pwψ〉|
‖Pvϕ‖2‖Pwψ‖2

> κ′
)
6 P

(
sup

ϕ∈B(L)
v ,ψ∈B(L)

w

|〈Ṽ (L)
ω Pvϕ, Pwψ〉| > κ′

)

6
∑

ϕ̃∈Mv ,ψ∈Mw

P
(
|〈Ṽ (L)

ω Pvϕ̃, Pwψ̃〉| > κ′‖Pvϕ̃‖2‖Pwψ̃‖2

)

+ P
(

sup
ϕ∈B(L)

v ,ψ∈B(L)
w

|〈Ṽ (L)
ω Pvϕ, Pwψ〉| > 2κ′

)

6
∞∑

i=1

∑

ϕ̃∈Mv ,ψ̃∈Mw

P
(
|〈Ṽ (L)

ω Pvϕ̃, Pwψ̃〉| > 2iκ′‖Pvϕ̃‖2‖Pwψ̃‖2

)
.

Now we choose κ′ := κΞ(L, v, w), and lemma 5.9 is proved. �

5.3. Concentration inequalities. With the lemmas we have up to now, we
can attack the probability in proposition 5.5, but we will accumulate sums over
v ∈ T L−1

∗ , w ∈ T L−1
v , i > 1, φ̃ ∈ Mv and ψ̃ ∈ Mw. The probabilities we sum

over in the end should be very small in order to get a meaningful upper bound.
We estimate these probabilities in proposition 5.10, which is the main probability
estimate.

We remind the reader that Ξ(L, v, w) was defined in (5.10) just before lemma 5.7,
and that Ṽ (L)

ω = (Π
(L)

E
(L)
β

)∗V
(L)

ω Π
(L)

E
(L)
β

. We further recall that V (L)

ω is the centered

potential, see (5.5), and that the random variables ωv are bounded almost surely,
so |V (L)

ω | 6 ω̃+ := ‖ω0 − ω̄‖∞ almost surely.

Proposition 5.10. Let L ∈ N, β ∈ (0, L], v ∈ T L−1
∗ , w ∈ T L−1

v , δ ∈ (0, 1), and
ϕ̃ ∈Mv, ψ̃ ∈Mw. Then

|〈Ṽ (L)
ω Pvϕ̃, Pwψ̃〉| > κΞ(L, v, w)

∥∥PvΠ(L)

E
(L)
β

ϕ̃
∥∥

2

∥∥PwΠ
(L)

E
(L)
β

ψ̃
∥∥

2

holds true with probability smaller than

2 exp
(
−Ck,ω̃+,βκ

2kδL
)
.
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Here,
Ck,ω̃+,β := (64ω̃2

+k
6(β + 1)4)−1 > 0.

To prove proposition 5.10 we will need the following two lemmas, the proofs
of which are just below the proof of proposition 5.10. The first one is just an
application of a well-known sub-Gaussian estimate.

Lemma 5.11. For all L > 1, κ > 0 and any ϕ, ψ ∈ `2(TL), we have

P
(
|〈V (L)

ω ϕ, ψ〉| > κ
)
6 2 exp

(
− κ2

2ω̃2
+‖ϕ‖2

4‖ψ‖2
4

)
.

After applying lemma 5.11, we will be interested in certain `4-norms. The
following estimate is tailored to our needs.

Lemma 5.12. For all L ∈ N, β ∈ (0, L], v ∈ T L−1
∗ , x ∈ T L−1

v satisfying |x| > |v|,
and ϕ ∈ `2(T L),

∥∥χxPvΠ(L)

E
(L)
β

ϕ
∥∥4

4
6 8k6(β + 1)4

(L+ 1)2
k−2(|x|−|v|)∥∥PvΠ(L)

E
(L)
β

ϕ
∥∥4

2

holds true.

We now prove proposition 5.10.

Proof of proposition 5.10. First, recall (5.3). This allows us to write

PwṼ
(L)
ω Pv = Pw(Π̃

(L)

E
(L)
β

)∗V
(L)

ω Π̃
(L)

E
(L)
β

Pv

= Π
(L)

E
(L)
β

PwT|w|,δV
(L)

ω T|v|,δPvΠ
(L)

E
(L)
β

,

since the operators T|•|,δ, P•, and χ• are self-adjoint. Furthermore, note that
T|w|,δ = T 2

|w|,δ and recall from remark 5.3 that Pw = Pwχw. The diagonal operators

T|w|,δ, χw and V (L)

ω commute, so

PwṼ
(L)
ω Pv = Π

(L)

E
(L)
β

PwT|w|,δV
(L)

ω χwT|w|,δT|v|,δPvΠ
(L)

E
(L)
β

.

Finally, compute T|w|,δT|v|,δ = T|w|,δ. This leads us to study the quantity

X(x, v, w) := 〈Ṽ (L)
ω Pvϕ̃, Pwψ̃〉

= 〈V (L)

ω χwT|w|,δPvΠ
(L)

E
(L)
β

ϕ̃, T|w|,δPwΠ
(L)

E
(L)
β

ψ̃〉,

which is a sum of independent, bounded random variables. Note that the number
of nodes in {x ∈ T L−1

w : |x| = |w| + dδLe} is smaller than or equal to kdδLe. Use
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this and lemma 5.12 to calculate
∥∥T|w|,δPwΠ

(L)

E
(L)
β

ψ̃
∥∥4

4
=

∑

x∈T L−1
w

|x|=|w|+dδLe

∥∥χxPwΠ
(L)

E
(L)
β

ψ̃
∥∥4

4
6 kdδLe max

x∈T L−1
w
|x|=l

∥∥χxPwΠ
(L)

E
(L)
β

ψ̃
∥∥4

4

6 8k6 (β + 1)4

(L+ 1)2
k−dδLe

∥∥PwΠ
(L)

E
(L)
β

ψ̃
∥∥4

2

and
∥∥χwT|w|,δPvΠ(L)

E
(L)
β

ϕ̃
∥∥4

4
=

∑

x∈T L−1
w

|x|=|w|+dδLe

∥∥χxPvΠ(L)

E
(L)
β

ϕ̃
∥∥4

4
6 kdδLe max

x∈T L−1
w
|x|=l

∥∥χxPvϕ̃
∥∥4

4

6 8k6 (β + 1)4

(L+ 1)2
k−2|w|−dδLe+2|v|∥∥PvΠ(L)

E
(L)
β

ϕ̃
∥∥4

2
.

With these estimations, lemma 5.11, tells us that, if κ′ > 0,

log
(
P
(
|X(x, v, w)| > κ′

)
/2
)
6 − κ′2

2ω̃2
+

∥∥χxPvΠ(L)

E
(L)
β

ϕ̃
∥∥2

4

∥∥χxPwΠ
(L)

E
(L)
β

ψ̃
∥∥2

4

6 − κ′2(L+ 1)2k|w|−|v|+dδLe

16ω̃2
+k

6(β + 1)4
∥∥PvΠ(L)

E
(L)
β

ϕ̃
∥∥2

2

∥∥PwΠ
(L)

E
(L)
β

ψ̃
∥∥2

2

.

We plug in

κ′ = κΞ(L, v, w)
∥∥PvΠ(L)

E
(L)
β

ϕ̃
∥∥

2

∥∥PwΠ
(L)

E
(L)
β

ψ̃
∥∥

2

and get

log
(1

2
P
(
|X(l, v, w)| > κΞ(L, v, w)

∥∥PvΠ(L)

E
(L)
β

ϕ̃
∥∥

2

∥∥PwΠ
(L)

E
(L)
β

ψ̃
∥∥

2

))

6 − κ2kdδLe

64ω̃2
+k

6(β + 1)4
.

This finishes the proof. �

Proof of lemma 5.11. Fix ϕ, ψ ∈ `2(T L). The expression

〈V (L)

ω ϕ, ψ〉 =
∑

v∈T L
(ωv − ω̄)ϕ(v)ψ(v)

is a sum of #T L independent random variables, namely {(ωv − ω̄)ϕ(v)ψ(v)}v∈T L ,
all of them having mean zero. For every v ∈ T L, we have almost surely

|(ωv − ω̄)ϕ(v)ψ(v)| 6 ω̃+|ϕ(v)ψ(v)|.
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To bound the probability in question, we use Hoeffding’s inequality ([Hoe63]) and
Cauchy–Schwarz:

P
(
|〈(V (L)

ω − ω̄)ϕ, ψ〉| > κ
)
6 2 exp

( −2κ2

∑
v∈T L(2ω̃+|ϕ(v)||ψ(v)|)2

)

6 2 exp
( −κ2

2ω̃2
+‖ϕ‖2

4‖ψ‖2
4

)
. �

Proof of lemma 5.12. Let ϕ ∈ `2(T L). To simplify notation, we let ϕ ∈ PvΠ(L)

E
(L)
β

`2(T L).

For any L-admissible (v, j,m), let αv,j,m be defined by

ϕ =

bβ+1c∑

m=1

∑

j∈Jv
αv,j,mΨL

v,j,m,

and thus
∑

j,m|αv,j,m|2 = ‖ϕ‖2
2.

Using Cauchy–Schwarz,

‖χxϕ‖4
4 =

∑

w∈T Lx

∣∣∣
bβ+1c∑

m=1

∑

j∈Jv
αv,j,mΨL

v,j,m(w)
∣∣∣
4

6
(bβ+1c∑

m=1

∑

j∈Jv
|αv,j,m|2

)2 ∑

w∈T Lx

(bβ+1c∑

m=1

∑

j∈Jv

∣∣ΨL
v,j,m(w)

∣∣2
)2

= ‖ϕ‖4
2

∑

w∈T Lx

(bβ+1c∑

m=1

∑

j∈Jv

∣∣∣
∑

u∈T Lv ,u∼v
ψ⊥v,j(u)ψL−|v|u,m (w)

∣∣∣
2
)2

.

Again with Cauchy–Schwarz and then with the definition (3.1) of ψL−|v|u,m we see
∑

j∈Jv

∣∣∣
∑

u∈T Lv ,u∼v
ψ⊥v,j(u)ψL−|v|u,m (w)

∣∣∣
2

6
∑

j∈Jv

∑

u∈T Lv ,u∼v
|ψ⊥v,j(u)|2

∑

u∈T Lv ,u∼v
|ψL−|v|u,m (w)|2

6 2k2

(L+ |v| − 1)k|w|−|v|−1
.

We use all this in the estimate above and derive

‖χxϕ‖4
4 6

4k4

(L+ |v| − 1)2
‖ϕ‖4

2

∑

w∈T Lx

(bβ+1c∑

m=1

k−(|w|−|v|−1)

)2

6 4k4bβ + 1c2
(L+ |v| − 1)2

‖ϕ‖4
2

∑

w∈T Lx

k−2(|w|−|v|−1)
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The remaining sum can be treated with radial coordinates:

∑

w∈T Lx

k−2(|w|−|v|−1) 6
L∑

l=|x|
kl−|x|k−2(l−|v|−1) = k−|x|−2|v|+2

L∑

l=|x|
k−l

6 k−|x|−2|v|+2 k−|x|

1− k−1
=

k3

k − 1
k−2(|x|−|v|).

Since k > 2, we can beautify k3/(k − 1) 6 2k2 and get

‖χxϕ‖4
4 6

8k6bβ + 1c2
(L+ |v| − 1)2

‖ϕ‖4
2k
−2(|x|−|v|).

Because of (5.4), we can assume |v| 6 (1 − 1
β+1

)(L + 1). This is equivalent to
1

L+1−|v| 6
β+1
L+1

, and the claim follows. �

We finally are in position to finish the proof of the key probability estimate.

Proof of proposition 5.5. We need to bound

p := P
(

sup
‖ϕ‖261

∣∣〈Ṽ (L)
ω ϕ, ϕ〉

∣∣ > ω̄

16

)
6 P

(
sup
‖ϕ‖261

∣∣〈Ṽ (L)
ω ϕ, ϕ〉

∣∣ > ω̄

32

)

from above. Let us define

E := F :=
{
ϕ ∈ Π

(L)

E
(L)
β

(
`2(T L)

)
: ‖ϕ‖2 6 1

}
.

By definition of Ṽ (L)
ω , see proposition 5.4, and by (5.3), we have

sup
‖ϕ‖261

∣∣〈Ṽ (L)
ω ϕ, ϕ〉

∣∣ 6 sup
ϕ∈E

sup
ψ∈F

∣∣〈Ṽ (L)
ω ϕ, ψ〉

∣∣.

Using this, we can estimate with the help of lemma 5.7 and see

(5.16) p 6
∑

v∈T L−1
∗

∑

w∈T L−1
v

P
(

sup
ϕ∈E,ψ∈F

|〈Ṽ (L)
ω Pvϕ, Pwψ〉|
‖Pvϕ‖2‖Pwψ‖2

>
ω̄

32
Ξ(L, v, w)

)
.

The terms in the sum (5.16) can be bounded using lemma 5.9,

P
(

sup
ϕ∈E,ψ∈F

|〈Ṽ (L)
ω Pvϕ, Pwψ〉|
‖Pvϕ‖2‖Pwψ‖2

>
ω̄

32
Ξ(L, v, w)

)

6
∑

i∈N

∑

ϕ̃∈Mv ,ψ̃∈Mw

P
(
|〈Ṽ (L)

ω Pvϕ̃, Pwψ̃〉| > 2i
ω̄

32
Ξ(L, v, w)‖Pvϕ̃‖2‖Pwψ̃‖2

)
,(5.17)
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where, for v ∈ T L, Mv ⊆ `2(T Lv ) with #Mv 6 32kL, see lemma 5.8. Using
‖Pvϕ̃‖2 >

∥∥PvΠ(L)

E
(L)
β

ϕ̃
∥∥

2
, valid for all ϕ̃ ∈ `2(T L), proposition 5.10 tells us that

P
(
|〈Ṽ (L)

ω Pvϕ̃, Pwψ̃〉| > 2i
ω̄

32
Ξ(L, v, w)‖Pvϕ̃‖2‖Pwψ̃‖2

)

6 P
(
|〈Ṽ (L)

ω Pvϕ̃, Pwψ̃〉| > 2i
ω̄

32
Ξ(L, v, w)

∥∥PvΠ(L)

E
(L)
β

ϕ̃
∥∥

2

∥∥PwΠ
(L)

E
(L)
β

ψ̃
∥∥

2

)

6 2 exp
(
−Cκ,ω̃+,β22i ω̄

2

1024
kδL
)
.

Plugging back into (5.17) and using #Mv 6 32kL,

P
(

sup
ϕ∈E,ψ∈F

|〈Ṽ (L)
ω Pvϕ, Pwψ〉|
‖Pvϕ‖2‖Pwψ‖2

>
ω̄

16
Ξ(L, v, w)

)

6
∑

i∈N

∑

ϕ̃∈Mv ,ψ̃∈Mw

2 exp
(
−Cκ,ω̃+,β

ω̄2

1024
22ikδL

)

6 2 · 322kL
∑

i∈N
exp
(
−Cκ,ω̃+,β22i ω̄

2

1024
kδL
)
.

The remaining sum can be bounded with a geometric series, since for all x > log 2,
we have ∑

i∈N
exp(−x22i) 6

∞∑

i=1

(e−x)
i

=
e−x

1− e−x
6 2e−x.

Finally, put this back into (5.16), to get, for all L ∈ N large enough,

p 6
∑

v∈T L−1
∗

∑

w∈T L−1
v

4 · 322kL exp
(
−Cκ,ω̃+,β

ω̄2

1024
kδL
)

6 4k2L322kL exp
(
−Cκ,ω̃+,β

ω̄2

1024
kδL
)
.

Taking L large enough, we get

p 6 exp
(
−Cκ,ω̃+,β

ω̄2

2024
kδL
)
.

The end. �
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LIFSHITZ ASYMPTOTICS IN CASE OF MONOTONE RANDOM
BREATHER POTENTIALS

IVAN VESELIĆ AND CHRISTOPH SCHUMACHER

Abstract. We recall the construction of the integrated density of states
(IDS) of random Schrödinger operators on Rd with periodic background
potential. For all non–negative random potentials, we prove Lifshitz behav-
ior at the bottom of the spectrum, which is that for low energies, the IDS is
exponentially small. The theory is developed for the breather potential and
generalized to all non–negative random potentials in a second step. We use
the Lifshitz tails result to prove an initial length scale estimate which may
in turn be useful in a proof of Anderson localization via multiscale analysis.
Finally, we use complement the Lifshitz behavior with a lower bound.
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1. Introduction

1.1. Random Schrödinger operators and the IDS. We consider Schrödinger
operators on L2(Rd) with a random, Zd-ergodic potential. More precisely, we
fix a measurable space (Ω0,A0) and a jointly measurable single site potential
u : Ω0 × Rd → R. With the notiation uλ := u(λ, · ) : Rd → R, λ ∈ Ω0, it
becomes obvious that Ω0 serves as an index set for a whole family of single site
potentials.

The single site potentials are combined randomly on Rd. To this end, we
use the canonical probability space (Ω,A,P) with Ω :=

⊗
Zd Ω0 and an i. i. d.

1



2 IVAN VESELIĆ AND CHRISTOPH SCHUMACHER

family of random variables λk : Ω→ Ω0, indexed by k ∈ Zd, via
(1.1) Wω : Rd → R, Wω(x) =

∑

k∈Zd
uλk(ω)(x− k) (ω ∈ Ω).

We assume that there exists p > max{2, d/2} such that

ess supP |uλ0 | ∈ Lp(`1),

where Lp(`1) is the set of all (equivalence classes of) functions f : Rd → R

such that
∥∥χD

∑
k∈Zd |f( · − k)|

∥∥
Lp

< ∞ with the indicator function χD of
the fundamental domain D := [0, 1)d of Zd. Under this assumption, the ran-
dom potential (1.1) is in Lploc,unif(R

d), uniformly in ω ∈ Ω. An application of
the Kato–Rellich theorem, see e. g. [RS78, Theorem XIII.96], for a Zd-periodic
potential Vper ∈ L∞(Rd,R), the operators

(1.2) Hper := −∆ + Vper and Hω := Hper +Wω

are self-adjoint on the domain dom ∆ of ∆ and lower bounded uniformly in ω ∈
Ω.

The joint measurability of the single site potential implies the measurablilty of
the family (Hω)ω∈Ω, cf. [KM82b]. Moreover, (Hω)ω∈Ω forms an ergodic family
of operators in the following sense. Let U : Zd → B(L2(Rd)), (U(z)f)(x) =
f(x+ z) be the unitary representation of Zd, acting by translation. There is an
ergodic Zd-action ϑ : Zd × Ω→ Ω on (Ω,A,P), which satisfies

Hϑ(x,ω) = U(x)−1HωU(x) (x ∈ Zd, ω ∈ Ω).

Hence there exists a closed set Σ ⊆ R and an event Ω′ ∈ A of full probability,
such that for all ω ∈ Ω′, the spectrum of Hω coincides with Σ, cf. [KM82b].

For the definition of the integrated density of states (IDS) N : R → R for
(Hω)ω∈Ω we follow [Pas80; KM82a]. Denote for L ∈ N and x ∈ Rd

ΛL := [−L,L)d, ΛL(x) := ΛL + x, F := {ΛL(x) | x ∈ Zd, L ∈ N}.
Neumann (N), Dirichlet (D), periodic (P ) and Mezincescu (M) boundary con-
ditions, a specific choice of Robin boundary conditions, see Section 1.2, give rise
to self-adjoint restrictions HΛ,], ] ∈ {N,D,P,M}, of an operator H to the
box Λ ∈ F . We defer detailed definitions to Section 1.2. We write in short
HL,] := HΛL,].

It is well known, see [KM82a; Ves08], that the finite volume restrictions ofHω,
ω ∈ Ω, have compact resolvents, so that their spectrum is purely discrete. The
eigenvalue counting functions

n](E,Hω,Λ) := Tr
(
χ(−∞,E](H

Λ,]
ω )
)

and its normalized versions

N ](E,Hω,Λ) := |Λ|−1n](E,Hω,Λ),

are thereby well defined for ω ∈ Ω, E ∈ R, Λ ∈ F and ] ∈ {N,D,P,M}. Again
we write briefly n]L(E,Hω) := n](E,Hω,ΛL), L ∈ N, and analogously N ]

L.
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The eigenvalue counting functions are equivariant, i. e. for all k ∈ Zd, E ∈ R,
Λ ∈ F , ω ∈ Ω and ] ∈ {D,N,P,M} we have

N ](E,Hϑ(k,ω),Λ) = N ](E,Hω,Λ + k).

Moreover, as we will see in Section 1.2, nN and nM are subadditive, i. e. for any
Λ ∈ F given as a finite disjoint union Λ =

⋃
j Λj of cubes Λj ∈ F ,

n](E,Hω,Λ) ≤
∑

j
n](E,Hω,Λj) (] ∈ {N,M})

holds. Together with the ergodicity of (Hω)ω∈Ω, it follows that there exists for
each E ∈ R an event ΩE ∈ A of probability 1, such that for all ω ∈ ΩE

lim
L→∞

N ]
L(E,Hω) = inf

L∈N
E[N ]

L(E,H•)] (] ∈ {N,M}).

Analogously, nD is superadditive, and, w. l. o. g., for the same event ΩE we have

lim
L→∞

ND
L (E,Hω) = sup

L∈N
E[ND

L (E,H•)] (ω ∈ ΩE , E ∈ R),

cf. [KM82a].
We are now in position to define the IDS of (Hω)ω∈Ω in two steps. For

] ∈ {D,N,M} and ω ∈ Ω̃ :=
⋂
E∈QΩE , the function

Ñ ] : Q→ R, Ñ ](E′) := lim
L→∞

N ]
L(E′, Hω)

is well-defined, non-decreasing and does not depend on ω almost surely. The
IDS N : R→ R of (Hω)ω∈Ω is the right continuous version of Ñ ]:

N(E) := lim
Q3E′↘E

Ñ ](E′) = inf
{
Ñ ](E′) | E′ ∈ Q ∩ (E,∞)

}
.

As indicated by the notation, the IDSN is independent of the choice of bound-
ary conditions. This can be infered from [KM82a; HS04] as follows. See also
[Hup+01; DIM01]. Since Neumann and Dirichlet boundary conditions bracket
Mezincescu boundary conditions, it suffices to show

NN
L (E,Hω)−ND

L (E,Hω)
L→∞−−−−→ 0 (for a. a. ω and all E ∈ R).

This is proved in [KM82a, Theorem 3.3] under the additional assumption that
the Laplace transform

E
[
Tr exp(−t0(−∆N,D + q(Vper +W•)))

]
<∞

for some q > 1, t0 > 0. Here, Tr denotes the trace of operators. If we split
Vper = V+−V−, V+, V− ≥ 0, by [HS04], the above condition is satisfied as soon
as V− is relatively form bounded with respect to −∆N,D, V+ +Wω ∈ L1

loc(D),
and

Tr exp(∆N,D − 2V−) <∞.
But all this follows from Vper ∈ L∞(Rd) and [KM82a, Proposition 2.1].

The right continuity of N implies

N(E) ≥ inf
L∈N

E[N ]
L(E,H•)] (] ∈ {N,M})



4 IVAN VESELIĆ AND CHRISTOPH SCHUMACHER

for all E ∈ R. Indeed, for all ε > 0 we find an E′ ∈ Q∩ (E,∞) and an L ∈ N
with

N(E) + 2ε ≥ Ñ ](E′) + ε ≥ E[N ]
L(E′, H•)] ≥ E[N ]

L(E,H•)].

Actually, for every continuity point E ∈ R of N we have

(1.3) N(E) = inf
L∈N

E[N ]
L(E,H•)] (] ∈ {N,M}).

Indeed, by continuity of N in E, there exists for all ε > 0 a δ > 0 such that for
all L ∈ N and E′, E′′ ∈ Q such that E − δ < E′ < E′′ < E, and ] ∈ {N,M},

N(E)− ε ≤ N(E′) ≤ Ñ ](E′′) ≤ E[N ]
L(E′′, H•)] ≤ E[N ]

L(E,H•)].

By an analogous argument we have for continuity points E ∈ R of N

(1.4) N(E) = sup
L∈N

E[ND
L (E,H•)].

Note, that in [BK11] the continuity of N is proved for d ∈ {1, 2, 3} and
bounded Wω. For specific types of Wω, Wegner estimates are available, im-
plying the continuity of the IDS, see e. g. [Ves08; Nak+15].

1.2. Boundary Conditions. We have used above that the eigenvalue counting
functions are equivariant and sub- resp. superadditive. These properties are
inherited from the corresponding properties of the respective operator family
(HΛ,]

ω )ω∈Ω,Λ∈F . The latter is equivariant, if U(x)−1HΛ+x,]
ω U(x) = HΛ,]

ϑ(x,ω), for
all x ∈ Zd, all Λ ∈ F and almost all ω ∈ Ω. All boundary conditions we consider
lead to equivariant operator families.

With Dirichlet boundary conditions, the family (HΛ,D
ω )ω∈Ω,Λ∈F is subadditive,

meaning that for all disjoint unions Λ =
⋃

Λj ∈ F of cubes Λj ∈ F , we have

HΛ,D
ω ≤

⊕
H

Λj ,D
ω ,

see [RS78, p. 270, Proposition 4]. Superadditivity is defined with the opposite
inequality and applies for Neumann boundary conditions:

⊕
H

Λj ,N
ω ≤ HΛ,N

ω .

Covariance of N ] is implied by equivariance of (HΛ,]
ω )ω∈Ω,Λ∈F . Superaddi-

tivity of (HΛ,]
ω ) implies subadditivity of n], and subadditivity of (HΛ,]

ω ) implies
superadditivity of n]. This is because the smaller operator has more eigenvalues
below a given threshold.

In the case Vper = 0, Neumann boundary conditions work well for our pur-
poses. Otherwise we have to resort to Mezincescu boundary conditions. Like
Neumann boundary conditions they lead to equivariance and superadditivity.
But they additionally preserve the ground state energy of the periodic operator:
inf σ(HΛ,M

per ) = inf σ(Hper), Λ ∈ F .
Following [Mez87; KW05; KW06; KV10], we define Mezincescu boundary

conditions as Robin boundary conditions with a specific function ρΛ ∈ L∞(∂Λ, σ),
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where σ is the surface measure on the boundary ∂Λ. This means, −∆Λ,M is the
operator associated with the sesquilinear form

(1.5) (ϕ,ψ) 7→
∫

Λ
∇ϕ(x)∇ψ(x) dx+

∫

∂Λ
ϕ(x)ψ(x)ρΛ(x)σ(dx)

with the Sobolev space H1(Λ) as its form domain. Here and in the following,
we use the same name for a function on Λ and for its trace on ∂Λ. The domain
of −∆Λ,M turns out to be the set of ϕ ∈ H2(Λ) which satisfy ρΛϕ + ∂ϕ

∂n = 0

on ∂Λ, where ∂
∂n is the outer normal derivative. Also, on its domain, −∆Λ,M

acts as usual as the negative of the sum of the second derivatives. The details
for case of von Neumann boundary conditions ρΛ = 0 can be found found in
e. g. [Sch12a, section 10.6.2]. The general case ρΛ ∈ L∞(Λ) can be established
analogously.

Note that for all ρΛ ∈ L∞(∂Λ), we have

(1.6) HΛ,D
ω ≥ HΛ,M

ω

in the form sense, where HΛ,M
ω := −∆Λ,M +Vper +Vω. In fact, the form which

defines the Dirichlet Laplace operator is the restriction of (1.5) to H1
0 (Λ).

Mezincescu’s choice for the function ρΛ is constructed as follows. Note that
the restriction HD,Pper of Hper to D = [0, 1)d with periodic boundary conditions
has a positive and normed ground state ΨD ∈ H1(D), ‖ΨD‖2 = 1. If we extend
ΨD periodically to Rd, we obtain

(1.7) Ψ ∈ L∞(Rd) ∩H1
loc(R

d).

In fact, by [Sim82, Theorem B.3.5], Ψ is continuously differentiable with a Hölder
continuous gradient. Since −∆ is elliptic, Harnack’s inequality, see [Sim82,
Theorem C.1.3], applies:

(1.8) 0 < Ψ− := min Ψ(Rd) ≤ Ψ+ := max Ψ(Rd) <∞.

We now define ρΛ := − 1
Ψ
∂Ψ
∂n on ∂Λ. Equivariance of (HΛ,M

ω )ω∈Ω,Λ∈F is clear
from construction, and superadditivity is shown in [Mez87, Proposition 1].

Next, we argue that, for all Λ ∈ F ,

(1.9) E1(HΛ,P
per ) = E1(HΛ,M

per ) = inf σ(Hper).

By construction, Ψ satisfies the eigenvalue equation HperΨ = E1(HD,Pper )Ψ.
Since Ψ is bounded, [Sim82, Theorem C.4.1] implies E1(HD,Pper ) ∈ σ(Hper).
On the other hand, Ψ is positive, so that E1(HD,Pper ) ≤ inf σ(Hper) by [Sim82,
Theorem C.8.1]. Thus we conclude E1(HΛ,P

per ) = inf σ(Hper). Furthermore,
for all Λ ∈ F , the function ΨΛ := |Λ|−1/2χΛΨ is in the domains of HΛ,P

per and
of HΛ,M

per , and an eigenvector with the eigenvalue E1(HD,Pper ). Again by positivity
and [Sim82, Theorem C.8.1], ΨΛ the ground state of HΛ,M

per and of HΛ,M
per . That

proves (1.9)
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A = suppu1

suppu2/3
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Figure 1. Support of single site potential uλ for different val-
ues of λ with circular base set A

For Vper = 0 we have E2(−∆L,N ) = π2

4L2 . The spectral gap between the two
lowest eigenvalues of HL,M

per satisfies, for some C1 > 0 and all L ∈ N,

(1.10) E2(HL,M
per )− E1(HL,M

per ) ≥ C1/L
2,

cf. [KS87].

2. The breather model

For the breather model, we consider a specific measurable space Ω0 := [0, 1]
and a specific single site potential u : [0, 1] × Rd → R. Choose a measurable
set A ⊆ D := [−1

2 ,
1
2)d ⊆ Rd of positive Lebesgue measure and a coupling

strength µ > 0. The single site potential is defined via

(2.1) u(λ, x) := µχλA(x),

see Figures 1 and 2 for illustrations. As in Section 1.1, the random variables
λk : Ω → [0, 1], k ∈ Z, shall be independent and identically distributed. We
require 0 to be in the support of the distribution of λ0:

(2.2) ∀ε > 0: P{λ0 ≤ ε} > 0,

but of cause we want randomness, so we assume

(2.3) P{λ0 = 0} < 1.

Note that the distribution of λ0 may but does not have to have an atom at 0 ∈ R.
Choosing this specific type of single site potential (2.1) in the random potential
in (1.1) and the corresponding random Schrödinger operator (Hω)ω∈Ω gives rise
to the random breather model.

The basic main result of this chapter is the following.

Theorem 1. The IDSN of the random breather model with single site potentials
given by (2.1) satisfies a Lifshitz bound, i. e. ∃C2, C3 > 0, E′ > E0 : ∀E ∈
(E0, E

′] :

(2.4) N(E) ≤ C2(E − E0)d/2 exp
(
−C3(E − E0)−d/2

)
.

Before we prove Theorem 1 in Section 2.2, we show that the support condi-
tion (2.2) ensures the following well known lemma.



LIFSHITZ ASYMPTOTICS FOR RANDOM BREATHER MODELS 7

Lemma 2. For the random breather model with (2.2), we have

(2.5) E0 = inf σ(Hω) for P-a. a. ω ∈ Ω.

Proof. We have Wω ≥ 0. Hence by the min-max-principle inf σ(Hω) ≥ E0.
For the other inequality, namely inf σ(Hω) ≤ E0 for a. a. ω ∈ Ω, we construct

for a. a. ω ∈ Ω an approximate eigenfunction for Hω. We use a mollyfier χ̃ ∈
C∞(Rd, [0, 1]) with χD ≤ χ̃ ≤ χΛ1 , or rather χ̃x,L(y) := χ̃((y−x)/L), x ∈ Zd,
L ∈ N. Our ansatz for the approximate eigenfunction is

Ψx,L := Ψ · χ̃x,L/‖Ψ · χ̃x,L‖2 ∈ dom(∆),

with Ψ from (1.7), for suitable x ∈ Zd and L ∈ N to be choosen later. We have
to bound

‖(Hω − E0)ψx,L‖2 ≤ ‖(Hper − E0)ψx,L‖2 + ‖Wωψx,L‖2.
Lemmas 3 and 4 provide for P-almost all ω ∈ Ω and all L ∈ N an x ∈ Zd such
that

‖(Hω − E0)ψx,L‖2 ≤ (C4 + 1)/L.

This suffices to conclude inf σ(Hω) ≤ E0. �

The following lemma provides the non–random estimate used in Lemma 2.

Lemma 3. There exists a constant C4 > 0 such that all L ∈ N
‖(Hper − E0)Ψx,L‖2 ≤ C4/L.

Proof. We use (−∆ + Vper)Ψ = E0Ψ for

‖(Hper − E0)(Ψχ̃x,L)‖2 = ‖2∇Ψ · ∇χ̃x,L + Ψ∆χ̃x,L‖2
≤ 2‖χΛL(x)∇Ψ‖2‖∇χ̃x,L‖∞ + ‖Ψ‖∞‖∆χ̃x,L‖2.

A short calculation shows

‖∇χ̃x,L‖∞ = L−1‖∇χ̃‖∞ and ‖∆χ̃x,L‖2 = Ld/2−2‖∆χ̃‖2.
Furthermore,

‖χΛL(x)∇Ψ‖2 = Ld/2‖χΛ1∇Ψ‖2 and ‖Ψχ̃x,L‖2 ≥ Ld/2‖ΨχD‖2 = Ld/2.

We combine this to get

‖(Hper − E0)Ψx,L‖2 ≤
2‖χΛ1∇Ψ‖2‖∇χ̃‖∞ + Ψ+‖∆χ̃‖2/L

L

and choose C4 := 2‖χΛ1∇Ψ‖2‖∇χ̃‖∞ + Ψ+‖∆χ̃‖2. �

Lemma 4 deals with the random part in the estimate from Lemma 2.

Lemma 4. There exists a set ΩBC ∈ A of full probability P(ΩBC) = 1, such
that for all ω ∈ ΩBC , ε > 0 and L ∈ N, there exist x ∈ Zd satisfying

‖WωΨx,L‖2 ≤ ε.
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Figure 2. Support of single site potential uλ for different val-
ues of λ with arbitrary base set A

Proof. Let IL := Zd ∩ ΛL and IL(x) := x + IL. For all α > 0 and L ∈ N,
the Borel–Cantelli lemma provides us with a set Ωα,L ∈ A of full measure, such
that for all ω ∈ Ωα,L, there exists x = xL,α,ω ∈ Zd such that

(2.6) sup
k∈IL(x)

λk(ω) ≤ α.

We let ΩBC :=
⋂
α∈Q,α>0

⋂
L∈NΩα,L ∈ A and note that P(ΩBC) = 1, and

that (2.6) holds for all α > 0, L ∈ N, and ω ∈ ΩBC . Furthermore, (2.6) implies
supk∈IL(x)‖uλk(ω)‖2 ≤ µ

√
αd|A|. Hence,

‖WωχΛL(x)‖2 ≤
∑

k∈IL(x)

‖uλk(ω)( · − k)‖2 ≤ µ
√
αd|A|# IL

and

‖WωΨx,L‖2 ≤
‖Ψ‖∞
‖Ψχ̃x,L‖2

‖WωχΛL(x)‖2 ≤
Ψ+µ

√
αd|A|# IL

‖Ψχ̃x,L‖2
.

Now choose α :=
(
ε‖Ψχ̃x,L‖2/(Ψ+µ

√
|A|# IL)

)2/d to finish the proof. �

2.1. Temple vs. Thirring. The method of [KV10] is not applicable to the
potential (2.1), at least not directly, because of the use of Temple’s inequal-
ity [Tem28]. Provided that ψ is a vector in the domain of a lower bounded
self-adjoint operator A with E1(A) = inf σ(A) being a simple eigenvalue and
E2(A) = inf(σ(A) \ {E1(A)} being an eigenvalue, and ν ∈ R a number such
that inf σ(A) ≤ 〈ψ,Aψ〉 < ν ≤ E2(A), then Temple’s inequality states that
the lowest eigenvalue E1(A) of A is lower bounded by

E1(A) ≥ 〈ψ,Aψ〉 − ‖Aψ‖
2 − (〈ψ,Aψ〉)2

ν − 〈ψ,Aψ〉 .

Here 〈ψ,Aψ〉 can be considered as the first order approximation to E1(A). In-
deed, it is a true upper bound. To obtain a lower bound one has to subtract
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a normalization of the second order correction ‖Aψ‖2 − (〈ψ,Aψ〉)2. This ex-
pression is non-negative, since it is a variance. In our application, considering
eigenvalues close to zero, 〈ψ,Aψ〉 is small, consequently is (〈ψ,Aψ〉)2 quadrat-
ically small and thus negligible. If the single site potential u(λ, x) = χλA(x) is
a characteristic function of λA, we have

〈ψ, u(λ, ·)2ψ〉 = 〈ψ, u(λ, ·)ψ〉

and if the translates k + λA, k ∈ Zd, do not overlap for any allowed value of λ,
e. g. is A is small, then we have for the resulting breather potential Wω in (1.1)
again

〈ψ,W 2
ωψ〉 = 〈ψ,Wωψ〉

The natural choice of a test function ψ is the ground state of HL,M
per with eigen-

value E1(HL,M
per ) = 0. Then we have

‖HL,M
ω ψ‖ = 〈ψ,HL,M

ω ψ〉

hence the second moment is equal to the first one and cannot be considered as
small correction. Note that the difference ν − 〈ψ,HL,M

ω ψ〉 is bounded by the
gap between the first two eigenvalues of HL,M

ω , typically of order L−2. Thus,
dividing by this number actually makes the correction term even larger.

It turns out that Thirring’s inequality [Thi94, p. 3.5.32] is better adapted to
the model under consideration. It was used before in [KM83] in a similar context.
For the readers convenience we reprove Thirring’s inequality here.

Lemma 5 (Thirring). Let V be an invertible, positive operator on the Hilbert
space H, P : H → P (H) ⊆ H an orthogonal projection and suppose, that the
operator PV −1P ∗ ∈ B(PH) is invertible. Then

P ∗(PV −1P ∗)−1P ≤ V .

In consequence, if H is a self-adjoint operator on H, bounded from below, and

E1(H) ≤ E2(H) ≤ E3(H) ≤ · · · ≤ E∞(H) := inf σess(H)

is the sequence of eigenvalues of H below E∞(H), counted with multiplicity,
then for all n ∈ N

En
(
H + P ∗(PV −1P ∗)−1P

)
≤ En(H + V ).

Proof. Let Q := V −
1
2P ∗(PV −1P ∗)−1PV −

1
2 . Note that because of

Q2 = V −
1
2P ∗(PV −1P ∗)−1PV −1P ∗(PV −1P ∗)−1PV −

1
2 = Q = Q∗,

Q is itself an orthogonal projection. Therefore Q ≤ IdH, i. e. 〈ψ,Qψ〉 ≤ 〈ψ,ψ〉
for all ψ ∈ H. This directly implies

P ∗(PV −1P ∗)−1P = V
1
2QV

1
2 ≤ V .
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By the min-max-principle, see e. g. [Thi94, 3.5.21], for all n ∈ N
En
(
H + P ∗(PV −1P ∗)−1P

)

= inf
H′⊆H

dim(H′)=n

sup
ψ∈H′
‖ψ‖=1

〈ψ, (H + P ∗(PV −1P ∗)−1P )ψ〉

≤ inf
H′⊆H

dim(H′)=n

sup
ψ∈H′
‖ψ‖=1

〈ψ, (H + V )ψ〉 = En(H + V ) �

We actually need only the following special case of Lemma 5.

Corollary 6. Let ψ ∈ H be a (normalised) ground state of H, i. e. Hψ =
E1(H)ψ and ‖ψ‖ = 1, and P = Pψ the orthogonal projection onto span{ψ} ⊆
H. Then

min{E1(H) + 〈ψ, V −1ψ〉−1, E2(H)} ≤ E1(H + V ).

Proof. Since PH is one dimensional,

PV −1P ∗ = 〈Pψ, PV −1P ∗Pψ〉 = 〈P ∗Pψ, V −1P ∗Pψ〉 = 〈ψ, V −1ψ〉,
where the scalar on the right hand side is interpreted as multiplication operator
on PH. We use the min-max-principle to show

E1(H + P ∗(PV −1P ∗)−1P ) ≥ min{E1(H) + 〈ψ, V −1ψ〉−1, E2(H)}.
Then Corollary 6 follows from Lemma 5.

In order to apply the min-max-principle, we decompose the arbitrary vec-
tor ϕ ∈ H of unit length ‖ϕ‖ = 1 into ϕ = αψ + ψ⊥ with ψ⊥ orthogonal
to ψ. Self-adjointness of H gives us 〈ψ,Hψ⊥〉 = 0. In addition we know
〈ψ⊥, Hψ⊥〉 ≥ E2(H)‖ψ⊥‖2 = E2(H)(1− |α|2). We now see

〈ϕ, (H + P ∗(PV −1P ∗)−1P )ϕ〉
= |α|2〈ψ,Hψ〉+ |α|2〈ψ, V −1ψ〉−1 + 〈ψ⊥, Hψ⊥〉
≥ |α|2

(
E1(H) + 〈ψ, V −1ψ〉−1

)
+ (1− |α|2)E2(H).

The last expression is affine linear in |α|2 ∈ [0, 1], so the minimum is realised for
|α|2 ∈ {0, 1}. �

2.2. Proof for the breather model.

Proof of Theorem 1. We adapt the notation of the introduction to the present
situation. For this, we shift the fundamental domain Dc := [−1

2 ,
1
2)d of Zd.

The advantage is that suppuλ ⊆ Dc for all λ ∈ [0, 1]. We define a relevant
index set IL := [−L,L)d ∩Zd for L ∈ N and shift the box ΛL := IL +Dc, too.
With | · | for Lebesgue measure and # for cardinality of sets we have in particular
# IL ·|Dc| = |ΛL|. Since we will only use Mezincescu boundary conditions in this
proof, we drop the M in the notation for finite volume restrictions of operators:
HL := HL,M := HΛL,M .
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By adding a constant to the periodic potential Vper, we can without loss of
generality assume

(2.7) E0 = 0.

We also need to show (2.4) only for points E of continuity of N , since N is
monotone and the right hand side is continuous in E.

We single out the following properties of the single site potential:

(2.8) uλk = µχsuppuλk
≤ µχDc Lebesgue-a. e., and E[|suppuλk |] > 0,

where the first conditions holds P-almost surely. These are the properties of u
we will actually use. This will be useful in Theorem 10, where we can recycle
large parts from here. Note that we do not require precise information about the
level set {x ∈ Rd | uλ(x) = µ}. In particular, the breathing structure is actually
irrelevant.

For non–negative single site potentials it is well known that, using (1.3),

N(E) ≤ E[NL(E,H•)] = E
[
χ{E1(HL• )≤E}NL(E,H•)

]

≤ E
[
χ{E1(HL• )≤E}NL(E,Hper)

]

≤ NL(E,Hper)P{ω : E1(HL
ω ) ≤ E}

for L ∈ N and points E ∈ R of continuity of N . Since NL

(
E,Hper

)
∼ C2E

d/2

as E ↘ E0 = 0 uniformly in L ∈ N, see [Sto01, p. 4.1.8], it is sufficient to
derive an exponential bound on the probability that the first eigenvalue E1(HL

ω )
of HL

ω does not exceed E for a suitably chosen L = LE .
In order to apply Thirring’s Corollary 6, we need the potential to be strictly

positive. We therefore regularise the potential by letting

HL
0 := −∆L + Vper − γL and Vω := Wω + γL

with γL := C1/(2L
2) and C1 from (1.10). This shift by γL scales like the gap

between the first and the second eigenvalue of (−∆ + Vper)
L, cf. (1.10).

Recall from (1.7) the Zd-periodic function Ψ: Rd → (0,∞). As pointed
out in Section 1.2, the normalised ground state ΨL of HL

0 is given by ΨL =

|ΛL|−1/2χΛLΨ. Due to the normalisation (2.7), the ground state energy of HL
0

is E1(HL
0 ) = −γL. Furthermore, by (1.10),

(2.9) E2(HL
0 ) ≥ C1

L2
− γL = γL (L ∈ N).

We define for all k ∈ Zd, L ∈ N the random variables Xk, SL : Ω→ [0, 1],

(2.10) Xk(ω) :=
1

|Dc|

∫

suppuλk(ω)

|Ψ(x)|2 dx and SL :=
1

# IL

∑

k∈IL
Xk.

The values of Xk and SL are in [0, 1] because of ‖ΨχDc‖2 = 1. The next lemma
employs the properties (2.8) of the single site potential. We postpone the proof
to page 13.
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Lemma 7. For all L ∈ N, L ≥ L0 :=
⌈√

C1
2µ

⌉
,

γL
2
SL(ω) ≤ E1(HL

0 ) + 〈ΨL, V
−1
ω ΨL〉−1.

From Ψ(x) ≥ Ψ− > 0 and (2.8) we have E[X0] > 0. We define the crucial
length L̂E :

L̂E :=
⌊√

C1/(2E)
⌋

and see, using (2.9), that for all L ∈ N, L ≤ L̂E ,

E ≤ C1

2L̂2
E

= γL̂E ≤ γL ≤ E2(HL
0 ).

On the event {ω : E1(H L̂E
ω ) ≤ E}, Thirring’s inequality Corollary 6 implies for

all L ∈ N, L0 ≤ L ≤ L̂E ,
γL
2
SL(ω) ≤ E1(HL

0 ) + 〈ΨL, V
−1
ω ΨL〉−1 ≤ E1(HL

ω ) ≤ E < E2(HL
0 ).

Let LE :=
⌈√

C1E[X0]/(8E)
⌉
. We use X0 ≤ 1 to check that for E small

enough, L0 ≤ LE ≤ L̂E . Hence, since E[X0] = E[SL] ist constant in L,

P{ω : E1(HLE
ω ) ≤ E} ≤ P

{γLE
2 SLE ≤ E

}
≤ P{SLE ≤ 1

2E[SLE ]}.
Finally, observe that the random variables Xk, k ∈ Z, are independent

by (2.8). The standard large deviation estimate in Lemma 8 bounds this proba-
bility by e−2dC5LdE with some positive constant C5, since # ILE = (2LE)d. We
see, from the definition of LE ,

N(E) ≤ C2E
d/2 exp

(
−2dC5L

d
E

)
≤ C2E

d/2 exp
(
−C3E

−d/2)

with C3 = C5

(
2
√
C1E[X0]/8

)d, which is (2.4). �
Lemma 8. Given a sequenceXk, k ∈ N, of non–negative i. i. d. random variables
with 0 < E[X1] <∞. Let Sn := 1

n

∑n
k=1Xk. Then there exists C5 > 0 with

P{Sn ≤ E[Sn]/2} ≤ e−C5n.

Proof. Observe that for all non–negative numbers t ≥ 0 by independence

P
{
Sn ≤ 1

2E[Sn]
}

= E
[
χ{exp(nt(E[Sn]−2Sn))≥1}

]

≤ E
[
exp
(
nt(E[Sn]− 2Sn)

)]

=
n∏

k=1

E
[
exp
(
t(E[Xk]− 2Xk)

)]
.

The identical distribution of the random variables Xk shows

P
{
Sn ≤ 1

2E[Sn]
}
≤
(
E
[
exp
(
t(E[X1]− 2X1)

)])n
= exp

(
n logM(t)

)
,

employing the moment generating function

M(t) := E
[
exp
(
t(E[X0]− 2X0)

)]
(t ∈ R)

of the random variable E[X0]− 2X0.
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Note, that M(0) = 1 and M ′(0) = E
[
E[X0] − 2X0

]
= −E[X0] < 0.

Therefore we find s > 0 with M(s) < 1, which proves the claim with C5 :=
|logM(s)|. �

Proof of Lemma 7. As Vω does not vanish, V −1
ω is well-defined as a multiplica-

tion operator. By construction, we have

〈ΨL, V
−1
ω ΨL〉 =

∫

ΛL

|ΨL(x)|2
Vω(x)

dx =
1

|ΛL|

∫

ΛL

|Ψ(x)|2
Vω(x)

dx

=
1

# IL

∑

k∈IL

1

|Dc|

∫

Dc+k

|Ψ(x)|2
Vω(x)

dx.

Using ‖ΨχDc‖22 = 1, we treat the summand, introducing Xk:

1

|Dc|

∫

Dc+k

|Ψ(x)|2
Vω(x)

dx =
1

|Dc|

∫

Dc

|Ψ(x)|2
uk,ω(x) + γL

dx

=

(
Xk(ω)

µ+ γL
+

1−Xk(ω)

γL

)
=

1

γL

µ+ γL − µXk(ω)

µ+ γL
.

The average over k ∈ IL now reads

〈ΨL, V
−1
ω ΨL〉 =

µ+ γL − µSL(ω)

(µ+ γL)γL
.

The inequality L ≥ L0 implies γL ≤ µ. Hence, using SL ≥ 0, too,

E1(HL
0 ) + 〈ΨL, V

−1
ω ΨL〉−1 = γL

µSL(ω)

µ+ γL − µSL(ω)
≥ γL

2
SL(ω). �

3. Reduction to the breather model

In the present section we reduce a far more general situation to the set-
ting (2.8). This shows Lifshitz tails for a broad family of random potentials. In
the generalization we keep the independence of the single site potentials, but we
do not require them to be identically distributed any more. For well–definedness
of the random Schrödinger operator and to be able to perform the mentioned
reduction we need to impose some uniformity conditions on the single site po-
tential.

We start with some notions capturing a kind of uniformness of the single site
potentials.

Definition 9. Let λk : Ω→ Ω0, k ∈ Zd, be a family of random variables on the
probability space (Ω,A,P) and u : Ω0 ×Rd → [0,∞) measurable.

• A measurable function U : Rd → R is an (almost sure) bound on u, if

sup
k∈Zd

uλk ≤ U P-a. s.
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• A bound U ∈ Lp(`1) on u with p > max{2, d/2} is a localizer for u.
As usual, U ∈ Lp(`1) means

‖U‖Lp(`1) :=
∥∥∥
∑

k∈Zd

∣∣U( · − k)
∣∣
∥∥∥
Lp(Dc)

<∞,

where Dc := [−1
2 ,

1
2)d is a fundamental domain of the lattice Zd.

• The function u is µ-non–degenerate with µ > 0, if

inf
k∈Zd

P
{
|{x ∈ Dc | uλk(x) ≥ µ}| ≥ µ

}
≥ µ.

We say that u is non–degenerate, if there exists a µ > 0 such that u is
µ-non–degenerate.

Note that u is non–degenerate if and only if

inf
k∈Zd

E

∫

Dc
min{uλk(x), 1} dx > 0.

Under the additional assumption that uλk , k ∈ Zd, are identically distributed,
this is furthermore equivalent to uλk 6= 0 on Dc with positive probability. Note
also that the single site potential of the breather model (2.1) is µ-non–degenerate
for some µ > 0 and has as a localizer U := µχDc .

Let u : Ω0×Rd → [0,∞) be a measurable, non–degenerate single site poten-
tial with a localizer. Via (1.1) we form the random potential (Wω)ω∈Ω, and by
(1.2) we get the operator Hper with periodic background potential and the ran-
dom operator (Hω)ω∈Ω. Both operators are well defined on the domain of −∆,
see [Kir81, p. 19, Satz 1].

Since we dropped the assumption of identical distribution, translational in-
variance is lost, too, and the IDS may cease to exist. We therefore state the
conclusion in the following theorem directly on the probabilities of low eigenval-
ues for finite volume restrictions of a suited scale. We will again consider only
Mezincescu boundary conditions and suppress the superscript M .

Theorem 10. Let u : Ω0 × Rd → [0,∞) be measurable and non–degenerate
with a localizer, and let λk : Ω→ Ω0, k ∈ Zd, be independent random variables.
For (Hω) as in (1.1) and (1.2), there exist C7, δ ≥ 0 and E′ > E0 such that for
all E ∈ (E0, E

′]

(3.1) P
{
ω ∈ Ω : E1(HLE

ω ) ≤ E
}
≤ exp

(
−C7(E − E0)−

d
2
)
,

where LE =
⌈√

δ/(E − E0)
⌉
and E0 := inf σ(Hper).

Remark 11. In the case of an ergodic operator family (Hω)ω∈Ω, the IDS N
exists, and a direct consequence of Theorem 10 is Lifshitz behavior at E0:

∃C2, C3 > 0, E′ > E0 : ∀E ∈ (E0, E
′] :

N(E) ≤ C2(E − E0)d/2 exp(−C3(E − E0)−
d
2 ) ≤ exp(−C3(E − E0)−

d
2 ).
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Remark 12. Of course, (3.1) is only interesting if E0 ∈ σ(Hω) almost surely.
This holds true, if additionally

(3.2) ∀ε > 0: inf
k∈Zd

P
{
‖uλk‖L2(`1) ≤ ε

}
> 0.

This is a generalization of (2.2), where we assumed translational invariance.
To prove E0 ∈ σ(Hω), proceed as in the proof of Lemma 2. All we have to

change is the proof of Lemma 4.

Proof of (3.2) =⇒ Lemma 4. Let L ∈ N and denote the localizer of u by U .
We estimate

‖Wωχ̃x,L‖2 ≤ ‖WωχΛL+x‖2 ≤
∑

j∈IL(x)

∥∥∥
∑

k∈Zd
uλk(ω)( · − k)χDc+j

∥∥∥
2

=
∑

j∈IL(x)

∥∥∥
∑

k∈Zd
uλk(ω)( · − j − k)χDc

∥∥∥
2

=
∑

j∈IL(x)

∥∥∥
∑

`∈Zd
uλ`−j(ω)( · − `)χDc

∥∥∥
2

≤
∑

j∈IL(x)

(∥∥∥
∑

`∈IR
uλ`−j(ω)( · − `)χDc

∥∥∥
2

+
∥∥∥
∑

`∈Zd\IR

uλ`−j(ω)( · − `)χDc
∥∥∥

2

)

≤
∑

j∈IL+R(x)

∥∥∥
∑

`∈IR
uλj(ω)( · − `)χDc

∥∥∥
2

+ # IL ·
∥∥∥
∑

`∈Zd\IR

U( · − `)χDc
∥∥∥

2

≤
∑

j∈IR+L

‖uλj(ω)‖L2(`1) + # IL ·
∥∥∥
∑

k∈Zd\IR

U( · − k)χDc
∥∥∥

2
.

Because of U ∈ Lp(`1) ⊆ L2(`1), the last term vanishes for R → ∞. We fix
ε > 0 and choose R ∈ N so large that

∥∥∥
∑

`∈Zd\IR

U( · − `)χDc
∥∥∥

2
≤ ε‖Ψχ̃x,L‖2

2Ψ+ # IL
.

By (3.2), the Borel-Cantelli lemma provides us again with a set ΩBC ∈ A of
full probability with the following property. For all ω ∈ ΩBC and L ∈ N we find
x = xω,L ∈ Zd such that for all j ∈ IL+R(x)

‖uλj(ω)‖L2(`1) ≤
ε‖Ψχ̃x,L‖2

2Ψ+ # IL+R
.

Combined this reads:

‖WωΨx,L‖2 ≤ Ψ+‖Wωχ̃x,L‖2/‖Ψχ̃x,L‖2 ≤ ε. �

Example 13 (general breather model). Let Ω0 := [0,∞) and u1 ∈ L∞(Rd,Ω0)
be non–vanishing and compactly supported, and define for λ ≥ 0 the breather
type single site potential

u : [0,∞)×Rd → [0,∞) , u(λ, x) :=

{
u1(x/λ) (λ > 0)

0 (λ = 0) .

Further let λk, k ∈ Zd, be independent and identically distributed non–negative
random variables, such that P{λ0 < ε} > 0 for all ε > 0 and P{λ0 = 0} < 1.
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Then, the family (Hω)ω∈Ω is ergodic, and consequently the IDS N is well-defined
and shows Lifshitz behavior as in Theorem 1.

Proof of Theorem 10. As in Section 2.2 we use Dc := [−1
2 ,

1
2 ]d for the funda-

mental domain, IL := [−L,L)d ∩ Zd for a relevant index set with L ∈ N and
ΛL := IL + Dc for the closed cube of side length 2L. The superscript L de-
notes the restriction of operators to ΛL with Mezincescu boundary conditions,
cf. Section 1.2.

Without loss of generality we assume that E0 = inf σ(Hper) = 0.
We will reduce the model to a random Schrödinger operator with simplified

single site potential with properties described in (2.8). For this purpose we
employ for µ > 0, such that u is µ-non–degenerate, the cut–off operator

(3.3) Aµ : Lp(Rd, [0,∞))→ Lp(Rd, {0, µ}), Aµu := µχ{q∈Dc|u(q)≥µ}.

The non–linear operator Aµ is weakly measurable, since it maps measurable
functions u on measurable images ũ := Aµu = µχDc · (χ[µ,∞) ◦u). The random
Schrödinger operator

H̃ω := −∆ + Vper + Ṽω with Ṽω :=
∑

k∈Zd
ũλk(ω)( · − k)

has bounded potential and is thus well defined on the domain of −∆.
Since ũ ≤ u and thereby Ṽω ≤ Vω, we have H̃ω ≤ Hω for P-almost all ω ∈ Ω.

And since Mezincescu boundary conditions depend on Vper and the periodic
background is the same for (H̃ω) and (Hω), for all the finite volume restrictions

H̃L
ω ≤ HL

ω

for P-a. a. ω ∈ Ω and all L ∈ N. It therefore suffices to show the upper bound
of the theorem for H̃ω instead of Hω. By the non–degeneracy of the single
site potential, we henceforth reduce ourselves without loss of generality to the
situation (2.8) and skip from now on the ˜ in the notation.

The random variables Xk, k ∈ Z, defined in (2.10), are now no longer iden-
tically distributed. But their expectations still share a positive infimum:

E[Xk] = E

∫

suppuλk

|Ψ(x)|2 dx ≥ Ψ2
−E|suppuλk | ≥ Ψ2

−µ
2 =: β > 0.

Of course, E[SL] ≥ β, too. We adapt the definition of LE , substituting β
for E[X0]:

LE :=

⌈√
C1β

8E

⌉
, i. e. δ :=

C1β

8
.

With this change we can inherit a large part of the proof of Theorem 1. In
particular, we get for all E > 0 small enough

P{ω : E1(HLE
ω ) ≤ E} ≤ P{SLE ≤ β/2}.
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Lemma 8 is replaced by the Bernstein inequality Lemma 14, cf. [Sch12b], and
gives

P{ω : E1(HLE
ω ) ≤ E} ≤ P{SLE ≤ β

2 }
≤ exp

(
−β2

16 # ILE
)
≤ exp

(
−C7E

−d/2),

with C7 := β2δd/2/16. �

Lemma 14. Given independent and non–negative random variables Xk : Ω →
[0, α], k ∈ N, with 0 < β ≤ E[Xk] ≤ 1. Let Sn := 1

n

∑n
k=1Xk. Then

P
{
Sn ≤ β

2

}
≤ exp

(
− β2

16α2n
)
.

Proof. Let

Yk :=
Xk −E[Xk]

α
∈ [−1, 1] (k ∈ N).

The exponential moments of Yk are, for |h| ≤ 1/2, bounded by

E[exp(hYk)] =

∞∑

m=0

hmE[Y m
k ]

m!
≤ 1 +

h2

2

∞∑

m=0

|h|m ≤ 1 + h2 ≤ eh
2
.

Therefore we have

E
[
exp
(
t(Sn −ESn)

)]
=

n∏

k=1

E
[
exp
(
αt
n Yk

)]
≤ exp

(
(αt)2/n

)

for all |t| ≤ n
2α . Now we employ Markov’s inequality with a parameter t ∈ [0, n2α ]:

P{Sn ≤ β
2 } ≤ P{Sn −ESn ≤ −

β
2 }

= P{exp(−t(Sn −ESn)) ≥ exp(βt/2)}
≤ exp(−βt/2)E[exp(−t(Sn −ESn))]

≤ exp((αt)2/n− βt/2).

The minimum is achieved for t = β
4α2n ≤ n

2α and establishes the Lemma. �

4. Initial Length Scale Estimate

We state and prove an initial length scale estimate. Such estimates serve
as base in an induction scheme called multiscale analysis to proof localization,
cf. [KSS98; Sto01]. As for other random Schrödinger operators, initial length
scale estimates follows from our main result, low probability for low eigenvalues,
by a Combes–Thomas estimate, Lemma 15. We therefore state the initial length
scale estimate as a Corollary to Theorem 10.

In this section, we have to deal with Dirichlet and Mezincescu boundary con-
ditions, and we denote them explicitly again. We further denote the distance
between two sets A,B ⊆ Rd by

dist(A,B) := inf
{
|x− y|

∣∣ x ∈ A, y ∈ B
}
.
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We will use the following Combes–Thomas estimate, as found e. g. in [Sto01,
Theorem 2.4.1 and Remark 2.4.3], with Dirichlet boundary conditions and adapt-
ed to our needs:

Lemma 15. Let ω ∈ Ω. Let further p, Wω and Hω be as in (1.1) and (1.2),
and let MW ≥ supx∈Rd‖Wωχ[x,x+1]d‖p. Then there exist C8 = C8(MW ) and
C9 = C9(MW ) such that the conditions

(i) Λ ⊆ Rd an open cube, A,B ∈ B(Λ) s. t. δ := dist(A,B) > 0, and
(ii) E < E1(HΛ,D

ω ),
imply the estimate

‖χA(E −HΛ,D
ω )−1χB‖ ≤

C8

E1(HΛ,D
ω )− E

exp
(
−C9(E1(HΛ,D

ω )− E)δ
)
.

With this tool we prove the following corollary to Theorem 10.

Corollary 16 (Initial Length Scale Estimate). Let (Hω)ω∈Ω andE0 := inf σ(Hper)
be as in Theorem 10, `, κ ∈ N, and L := `κ. Let further A,B ∈ B(ΛL) be as
in Lemma 15 with distance δ := dist(A,B) > 0.

Then there exists C10 > 0 such that with C8, C9 from Lemma 15:

P
{
ω : ‖χA(E0 + L−2/κ −HL,D

ω )−1χB‖ ≤ C8L
2/κ exp

(
−C9δ/L

2/κ
)}

≥ 1− 2dL(1−1/κ)d exp
(
−C10L

d/κ
)
.

Remark 17. Usually one arranges δ ≥ L/3. In this case, the upper bound in
the event

C8L
2/κ exp

(
−C9δ/L

2/κ
)
≤ C8L

2/κ exp
(
−C9L

1−2/κ/3
)

vanishes exponentially, given κ > 2.

Proof of Corollary 16. Let E := E0 + `−2. For all ω ∈ Ω with E1(HL,D
ω ) ≥

E0 + 2`−2, we have by Lemma 15

‖χA(E0 + `−2 −HL,D
ω )−1χB‖ ≤ C8`

2 exp
(
−C9δ/`

2
)
.

Therefore we estimate

q := P
{
ω : ‖χA(E0 + L−2/κ −HL,D

ω )−1χB‖ > C8L
2/κ exp

(
−C9δ/L

2/κ
)}

≤ P
{
ω : E1(HL,D

ω ) ≤ E0 + 2`−2
}

from above. By (1.6), E1(HL,M
ω ) ≤ E1(HL,D

ω ), so

q ≤ P
{
ω : E1(HL,M

ω ) ≤ E0 + 2`−2
}
.

We now introduce more Mezincescu boundary conditions and lower the eigen-
values further: HL,M

ω ≥⊕k∈IL,` H
Λ`+k,M
ω , where IL,` := ΛL ∩ `Zd. Thus:

q ≤ P
{
ω : E1

( ⊕

k∈IL,`
HΛ`+k,M
ω

)
≤ E0 + 2`−2

}

≤
∑

k∈IL,`
P{ω : E1(H`,M

ω ) ≤ E0 + 2`−2}.
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Now we invoke Theorem 10 and conclude

q ≤ (2`(κ−1))d exp
(
−c(2`−2)−d/2

)
= 2dL(1−1/κ)d exp

(
−C10L

d/κ
)
. �

5. The lower bound

For an ergodic operator family (Hω)ω∈Ω the IDS N exists and in the setting of
Theorem 10 shows Lifshitz behavior at E0. A lower bound onN is more involved.
If we strive only for the exponent in the exponent, we have by l’Hôpital’s rule

lim sup
E↘E0

ln
(
− ln(N(E))

)

ln(E − E0)
≤ lim

E↘E0

ln
(
C3(E − E0)−

d
2

)

ln(E − E0)

= lim
E↘E0

(E − E0)(−d
2C3(E − E0)−

d
2
−1)

C3(E − E0)−
d
2

= −d
2
.

Under moderate additional conditions, Theorem 18 shows that the limit of the
logarithms actually exists and equals −d/2. We use the norm ‖f‖`1(Lp) :=∑

k∈Zd‖f‖p,D+k.

Theorem 18. Let (Hω)ω∈Ω be an ergodic random operator with measurable
single site potential u : Ω0 ×Rd → [0,∞) and IDS N : R→ [0, 1]. We assume
that the random variables λk are i. i. d., again. The single site potential has a
summable decay:

(5.1) ∃C, ε > 0: ∀k ∈ Zd : ‖uλ0‖p,D+k ≤ C‖k‖−(d+ε) a. s.,

and low values of the single site potential are not too improbable:

(5.2) ∃α0, η > 0: ∀α ∈ [0, α0] : P
{
‖uλ0‖`1(Lp) ≤ α

}
≥ αη.

Then we have

(5.3) lim inf
E↘E0

ln(− ln(N(E)))

ln(E − E0)
≥ − d

min{2, ε} .

Remark 19. To understand the decay condition (5.1) better, note that it is
a quantitative version of an upper bound, see Definition 9. Also, consider its
following consequence. There exists C11 ≥ 0 such that for almost all ω ∈ Ω and
R > 0

‖Wω‖p,D =
∥∥∥
∑

k∈Zd
uλk(ω)( · − k)

∥∥∥
p,D
≤
∑

k∈Zd
‖uλk(ω)‖p,D+k

≤ C11

εRε
+
∑

k∈IR
‖uλk(ω)‖`1(Lp).

We can hereby controll the norm of Wω on D with the norm of the single site
potential in a box of side length 2R, where R is determined by the allowed error.

Remark 20. The requirement (5.2) is a quantitative version of (3.2). Note
also, that in the case ε ≥ 2 the limit exists and is equal to −d/2. In specific
models (alloy type with long range single site potentials) one can derive upper
bounds on the IDS which match the bound (5.3) also in the case ε ∈ (0, 2).
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Proof of Theorem 18. The proof follows the line of [KS86]. We denote the
restriction of Hω to ΛL with Dirichlet boundary condition by HL,D

ω . By (1.4)
and Čebyšev’s inequality we see

N(E) ≥ L−dE
[
ND
L (E,H•)

]

≥ L−dP
{
ω ∈ Ω: ND

L (E,Hω) ≥ 1
}

= L−dP
{
ω ∈ Ω: inf σ(HL,D

ω ) ≤ E
}
.

(5.4)

For all ϕ ∈ D(HL,D
ω ) \ {0} holds by the min-max-principle for a. a. ω ∈ Ω

inf σ(HL,D
ω ) ≤ 〈ϕ,H

L,D
ω ϕ〉
‖ϕ‖2 .

To continue estimate (5.4), we use a smoothly truncated Version ϕ = χ̃LΨ of
the periodic solution Ψ: Rd → R of (−∆ + Vper)Ψ = 0 with ‖Ψ‖2,D = 1,
see (1.7). Here, χ̃L = χ̃( · /L) is a properly scaled mollifier function, i. e.
χ̃ ∈ C∞(Rd, [0, 1]) such that χ̃|Λ1/2 = 1 and supp(χ̃) ⊆ interior Λ1.

Lemma 21. There exists a constant C12 > 0 such that for a. a. ω ∈ Ω and all
L ∈ N

〈χ̃LΨ, HL,D
ω (χ̃LΨ)〉

‖χ̃LΨ‖22
− E0 ≤

〈χ̃LΨ,Wωχ̃LΨ〉
‖χ̃LΨ‖22

+
C12

L2
.

Proof. It suffices to show

〈χ̃LΨ, (HL,D
per − E0)(χ̃LΨ)〉
‖χ̃LΨ‖22

≤ C12

L2
.

We use (−∆ + Vper)Ψ = E0Ψ, the fact that Ψ is real-valued and Ψ(Rd) =
[Ψ−,Ψ+] ⊆ (0,∞), cf. (1.8):

D := 〈χ̃LΨ, (−∆ + Vper)(χ̃LΨ)〉 − E0‖χ̃LΨ‖22
= −〈χ̃LΨ, (∆χ̃L)Ψ + 2(∇χ̃L)∇Ψ〉
= −〈χ̃LΨ2,∆χ̃L〉 − 2〈χ̃LΨ∇Ψ,∇χ̃L〉.

Now partial integration gives

D = 〈∇(χ̃LΨ2),∇χ̃L〉 − 2〈χ̃LΨ∇Ψ,∇χ̃L〉
= 〈(∇χ̃L)Ψ2,∇χ̃L〉 = ‖Ψ∇χ̃L‖22.

Finally, the rescaling produces the needed factor:

D = L−2‖
(
(∇χ̃)( · /L)

)
Ψ‖22 = Ld−2‖Ψ(L · )∇χ̃‖22 ≤ Ld−2‖∇χ̃‖22Ψ2

+.

Combined with

‖χ̃LΨ‖22 = Ld‖Ψ(L · )χ̃‖22 ≥ Ld‖χ̃‖22Ψ2
−,

we see that C12 :=
(‖∇χ̃‖2Ψ+

‖χ̃‖2Ψ−

)2 is a valid choice. �
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Remark 22. Note, that Lemma 21 does neither follow from nor imply Lemma 3,
since

〈χ̃LΨ, (HL,D
per − E0)(χ̃LΨ)〉
‖χ̃LΨ‖22

≤ ‖(Hper − E0)(χ̃LΨ)‖2
‖χ̃LΨ‖2

≤ C4

L

is not strong enough, while ‖(Hper − E0)(χ̃LΨ)‖2 cannot be controlled by
〈χ̃LΨ, (HL,D

per − E0)(χ̃LΨ)〉.
Lemma 21 and the choice LE := d

√
2C12/(E − E0)e allow us to continue

the estimate (5.4):

N(E) ≥ L−dE P
{
ω : inf σ(HLE ,D

ω ) ≤ E
}

≥ L−dE P
{
ω :
〈χ̃LEΨ,Wωχ̃LEΨ〉
‖χ̃LEΨ‖22

+
C12

L2
E

≤ E − E0

}

≥ L−dE P
{
ω :
‖WωΨ2‖1,ΛLE
‖χ̃LEΨ‖22

≤ E − E0

2

}
.

(5.5)

Next we break ΛLE into copies of the fundamental domain D := [0, 1)d, using
p, q ∈ [1,∞], 1

p + 1
q = 1:

‖WωΨ2‖1,ΛLE
‖χ̃LEΨ‖22

≤
‖Ψ2‖q,ΛLE ‖Wω‖p,ΛLE

LdEΨ2
−

=
2d

Ψ2
−

(
1

(2LE)d

∫

ΛLE

Ψ(x)2q dx

) 1
q
(

1

(2LE)d

∫

ΛLE

Wω(x)p dx

) 1
p

=
2d‖Ψ2‖q,D

Ψ2
−

(
1

# ILE

∑

k∈ILE

∫

D+k
Wω(x)p dx

) 1
p

,

for P-a. a. ω ∈ Ω, L ∈ N. We return to inequality (5.5) and use C13 :=
Ψ2
−

2d+1‖Ψ2‖q,D
:

N(E) ≥ L−dE P
{
ω :
( 1

# ILE

∑

k∈ILE

‖Wω(x)‖pD+k

) 1
p ≤ (E − E0)C13

}

≥ L−dE P
{
ω : ∀k ∈ ILE : ‖Wω‖p,D+k ≤ (E − E0)C13

}
.

(5.6)

The next step is to reduce the condition on Wω to a condition the single
site potentials uλk(ω), using the decay estimate from Remark 19. To garantee
‖Wω‖p,D+k ≤ (E − E0)C13 for all k ∈ ILE , it suffices to establish

C11

εRε
≤ (E − E0)C13

2
and ‖uλk(ω)‖`1(Lp) ≤

(E − E0)C13

2 # ILE+R

for all k ∈ ILE+R. The first condition is met for

R = RE :=
⌈( 2C11

(E − E0)C13ε

)1/ε⌉
.
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To establish the second condition, we use the equivalence relation “aE ∼ bE
as E ↘ E0” defined as limE↘E0 aE/bE ∈ (0,∞). Observe that, as E ↘ E0,

LE +RE ∼ (E − E0)−1/2 + (E − E0)−1/ε ∼ (E − E0)−1/ε̄,

where we let ε̄ := min{2, ε}. Since # ILE+RE = 2d(LE + RE)d and (E −
E0)1+(d/ε̄) ∼ (E−E0)C13

2d(LE+RE)d
as E ↘ E0, the second condition is implied by

‖uλk(ω)‖`1(Lp) ≤ C14(E − E0)1+(d/ε̄)

with a suitable C14 > 0 and E − E0 small enough.
We continue (5.6), using the independence of λk and (5.2):

N(E) ≥ L−dE P
{
ω : ∀k ∈ ILE : ‖Wω‖p,D+k ≤ (E − E0)C13

}

≥ L−dE
∏

k∈ILE+RE

P
{
‖uλk‖`1(Lp) ≤ C14(E − E0)1+(d/ε̄)

}

≥ L−dE
(
C14(E − E0)1+(d/ε̄)

)η # ILE+RE ,

By assumption, the estimate for the probability works for E − E0 < α0. With
C15, C5 > 0 such that # ILE+RE ≤ C15(E−E0)−d/ε̄ and L−dE ≥ C5(E−E0)d/2

we see

N(E) ≥ C5(E − E0)d/2
(
C14(E − E0)1+ d

ε̄
)ηC15(E−E0)−d/ε̄ .

We isolate the topmost exponent by

ln
(
− ln(N(E))

)

ln(E − E0)
≥

ln
(
− ln(C5(E − E0)d/2)− ηC15(E − E0)d/ε̄ ln

(
C14(E − E0)1+ d

ε̄

))

ln(E − E0)

E↘E0−−−−→ −d
ε̄
,

as l’Hôpital’s rule shows. Note ln(E − E0) < 0 for E − E0 < 1. �
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