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Abstract

In this thesis, we analyze several standard model extensions involving one or multiple dark
matter candidates and link the dark matter problem to different other standard model short-
comings such as neutrino mass generation and flavor anomalies. First we discuss the leptonic
flavor structure of an extra dimensional seesaw mechanism, which does not include a dark mat-
ter candidate. However, the mechanism suppresses couplings to the new right-handed neutrino
state. This serves as a motivation to investigate a feebly coupled neutrino portal to dark matter
model where the right-handed neutrino both generates the observed neutrino masses and medi-
ates between the standard model and the dark sector. We classify the dark matter production
regimes of the model and point out its phenomenological implications. Furthermore, we apply
consistency conditions to strongly coupled versions of the neutrino portal to dark matter. We
find that the consistency conditions induce an upper limit on the dark matter mass in such a
scenario. We continue by discussing the effects of a bound state that can form in a heavy dark
sector. We find that the bound state can facilitate particle number transfer from the dark sector
to other sectors even if they are only feebly coupled. We also explore a class of models in this
thesis that is dedicated to one-loop solutions to the RK anomaly in the light of dark matter
searches. We find that current dark matter direct detection experiments can test the one-loop
solutions to the RK anomaly.

Zusammenfassung

In dieser Arbeit werden Erweiterung des Standard Modells thematisiert, die einen oder mehrere
dunkle Materie Kandidaten beinhalten. Des Weiteren wird die Suche nach einem dunklen Ma-
terie Kandidaten mit der Modellbildung im Bereich der Neutrinomassengeneration und Flavo-
ranomalien verknüpft. Zunächst wird ein extra dimensionaler Seesaw Mechanismus diskutiert,
der keinen dunklen Materie Kandidaten beinhaltet, aber zu einer Unterdrückung der Yukawa
Kopplungen des rechtshändigen Neutrinos führt. Diese kleinen Kopplungen sind eine Motiva-
tion für die Untersuchung des schwach gekoppelten Bereich des Neutrino Portals zu dunkler
Materie. Es werden unterschiedliche dunkle Materie Produktionsbereiche klassifiziert und die
phänomenologischen Implikationen des Modells untersucht. Zusätzlich wird geprüft, ob stark
gekoppelte Versionen des Neutrino Portals zu dunkler Materie theoretischen Konsistenzbedin-
gungen genügen. Diese Konsistenzbedingungen führen zu einer oberen Massenschranke für den
dunklen Materie Kandidaten des Modells. Das nächste Modell beschäftigt sich mit gebundenen
Zuständen, die sich in einem schweren dunklen Sektor bilden. Es stellt sich heraus, dass die
Bindunzustände zu einem effizientem Teilchentransfer vom schweren dunklen Sektor zu einem
anderen Sektor führen können. Das ist sogar der Fall, wenn die beiden Sektoren nur sehr schwach
miteinander gekoppelt sind. Das letzte Modell dieser Arbeit analysiert ein-schleifen Lösungen der
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RK Anomalie im Hinblick auf dunkle Materie. Es zeigt sich, dass direkte Suchen nach dunkler
Materie das betrachtete Modell stark einschränken können.
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1. Introduction

Both the observation of neutrino masses and the existence of dark matter (DM), are
long-standing evidences for the existence of beyond standard model (BSM) physics.
This thesis addresses various models including one or multiple DM candidates and its
connection to neutrino physics. A typical approach to allow for the production of DM is
to couple a DM candidate via the weak interaction, or a new gauge interaction of roughly
the same interactions strength, to the SM. However, DM production can proceed via
a wide range of coupling strengths and masses. During this thesis, we outline several
production mechanisms and their phenomenological consequences. On the other hand,
the existence of neutrino masses requires the introduction of new field content to the
SM. Already the simplest extension involves a new fermionic electrically neutral singlet
state and therefore a DM candidate. As both the DM and the neutrino mass problem
require additional particle content, it is appealing to link both ideas which constitutes
the main part of this thesis in form of the discussion of the neutrino portal to DM.
In this chapter, we introduce the standard model of particle physics (SM) as well as the
standard model of cosmology and motivate the existence of BSM physics. In Chapter
2, we discuss several neutrino mass generation mechanisms. Afterwards, we give a
detailed overview over DM production in models using a portal interaction to connect
DM and the SM. Chapter 3 presents an extradimensional neutrino mass model and its
phenomenological consequences. The small couplings arising in the extra dimensional
model serve as a motivation to investigate the neutrino portal to DM in its feebly coupled
regime in Chapter 4. Furthermore, this chapter discusses consistency conditions such as
the stability of the scalar vacuum in strongly coupled version of the neutrino portal to
DM. In Chapter 5, we examine the effects of a Yukawa bound state that can form in a
heavy dark sector. In Chapter 6, we present an analysis of the DM phenomenology of a
model which was constructed to provide a solution to a flavor anomaly in the b-sector
at one-loop level. Finally, in Chapter 7, we summarize our results.

1.1. The Standard Model of Particle Physics

The SM of particle physics describes the elementary particles and their interactions
within the framework of a quantum field theory (QFT). A QFT combines aspects of
a classical field theory and quantum mechanics. The fundamental forces, namely the
electromagnetic, the weak and the strong force, are embedded in the form of gauge sym-
metries rendering the theory invariant under transformations of the SU (3)C⊗SU (2)L⊗
U (1)Y symmetry group.
Since the first works in the early 60’s by Glashow and Weinberg [6,7], the SM was tested
with great success, eventually resulting in the discovery of the Higgs boson in 2012 by
the ATLAS and CMS collaborations [8, 9]. In this section, the particle content is sum-
marized and the electroweak theory, including electroweak symmetry breaking via the
Higgs mechanism are reviewed briefly.
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Requiring gauge invariance implies that the Lagrangian of the theory must be invariant
under gauge transformations of all fields according to their charge assignment. Within
the electroweak theory, gauge transformations of any field φj are of the form

φj → exp

(︄
i

3∑︂
a=1

αa (x) t
a
j

)︄
exp

(︃
iYj

β (x)

2

)︃
φj , (1.1.1)

with taj the generators of the SU (2)L given in the representation of particle j, Yj is the
hypercharge and αa (x) and β (x) are the local parameters of the SU (2)L and U (1)Y
gauge transformations respectively. In addition, the derivatives of all fields must be
promoted to so called covariant derivatives depending on their representation under the
respective gauge transformation

Dµ = ∂µ − ig
3∑︂

a=1

Aaµt
a
j − i

g′

2
YjBµ , (1.1.2)

where Aaµ and Bµ are the gauge fields of the SU (2)L and U (1)Y , while g and g′ are
their coupling constants.
The particles of the SM can be classified within three categories: Fermions, gauge bosons
and scalars. Fermions are further divided into quarks and leptons. While quarks carry a
color charge, i.e. they transform non-trivial under the SU (3)C , leptons are color-neutral
and therefore are SU (3)C singlets. In total, there are six quarks. Three up-type quarks
(u,c,t) with an electrical charge of Q = 2

3 , and three down type quarks (d,s,b) with
Q = −1

3 . Similarly, the leptons are divided into three charged leptons (e, µ, τ) with
Q = −1, and three neutrinos (νe,νµ,ντ ) with Q = 0.
Since gauge transformations are local transformations, each gauge symmetry introduces
a given number of gauge bosons. The SU (3)C has eight massless gauge bosons called
gluons g. The electroweak force SU (2)L⊗U (1)Y introduces a total of four gauge bosons:
The W±, Z0 and the photon γ. All of those particles but the photon receive a mass after
the electroweak symmetry breaking (EWSB), which requires the existence of a scalar
field charged under the gauge groups of the electroweak symmetry, the Higgs field.
Another crucial feature of the electroweak symmetry in the SM is that the SU (2)L
distinguishes between particles of different chirality.1 The left-handed up- and down-
type quarks are arranged into three SU (2)L doublets, defining three generations of
fermions in the SM. Likewise, the left-handed charged leptons and neutrinos form three
additional SU (2)L doublets. On the contrary, all right-handed SM fermions are singlets
under SU (2)L. The particle content with the respective charges under the SM gauge
groups is summarized in table 1.1.

Explicit mass terms of both, fermions and gauge bosons, break the electroweak gauge
symmetry. The introduction of the Higgs scalar field, transforming as a doublet under
SU (2)L with a hypercharge of Y = +1, allows for breaking the electroweak symmetry
via a non-zero vacuum expectation value (vev) without breaking the symmetry explicitly
in the Lagrangian. With a Higgs vev of

⟨φ⟩ = 1√
2

(︃
0
v

)︃
, (1.1.3)

1In extensions of the SM this is not necessarily the case.
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Fields SU (3)C SU (2)L Y Q(︃
u

d

)︃
L

,
(︃
c

s

)︃
L

,
(︃
t

b

)︃
L

3 2 1
3

2/3

−1/3(︃
νe
e

)︃
L

,
(︃
νµ
µ

)︃
L

,
(︃
ντ
τ

)︃
L

1 2 −1
0

−1

uR, cR, tR 3 1 4
3

2/3

dR, sR, bR 3 1 − 2
3

−1/3

eR, µR, τR 1 1 −2 −1

Table 1.1.: Charge Assignment of the fermions in the SM. The second and third column denote the
representation under SU (3)C and SU (2)L, respectively. Y is the hypercharge and Q the
electrical charge. In this convention, the electric charge is related to the hypercharge via
Q = T3 +

Y
2

.

the masses of the vector bosons arise from the kinetic term of the Higgs

L ⊃ 1

2

v2

4

⎡⎢⎢⎢⎢⎣2g2 1√
2

(︁
A1
µ + iA2

µ

)︁
⏞ ⏟⏟ ⏞

=W+
µ

1√
2

(︁
A1
µ − iA2

µ

)︁
⏞ ⏟⏟ ⏞

=W−
µ

+
(︁
g2 + g′2

)︁
⎛⎜⎜⎜⎜⎝g

′Bµ − gA3
µ√︁

g2 + g′2⏞ ⏟⏟ ⏞
=Z0

µ

⎞⎟⎟⎟⎟⎠
2⎤⎥⎥⎥⎥⎦ . (1.1.4)

Thus we find

mW = g
v

2
, mZ =

√︁
g2 + g′2

v

2
. (1.1.5)

The remaining gauge boson is the photon

Aµ =
1√︁

g2 + g′2

(︁
g′A3

µ − gBµ
)︁
, (1.1.6)

which remains massless. Thus EWSB corresponds to SU (2)L × U (1)Y → U (1)em.
The fermion masses emanate from Yukawa couplings of the SM fermions with the Higgs
field:

L ⊃ − (Yu)ij
(︁
Q̄L
)︁
i
φ̃ (uR)j − (Yd)ij

(︁
Q̄L
)︁
i
φ (dR)j − (Yl)ij

(︁
L̄L
)︁
i
φ̃ (eR)j , (1.1.7)

where φ̃ = iσ2φ
∗ is the hypercharge conjugate of the Higgs doublet, (QL)i and (LL)i

correspond to the left-handed quark and lepton doublets of the i-th generation and (uR)i,
(dR)i and (eR)i are the right handed up- and down quarks and the right-handed leptons
of the i-th generation respectively. In Eq. (1.1.7), we sum over the generation indices i
and j. After EWSB the mass matrices of the up- and down quarks as well as the masses
of the charged leptons read (︁

Mu/d/l

)︁
ij
=

v√
2

(︁
Yu/d/l

)︁
ij
. (1.1.8)

These mass matrices are not necessarily diagonal. Actually, (Mu)ij and (Md)ij cannot
be diagonalized simultaneously. This mismatch generates a mixing between different
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generations mediated by the W± boson, that is parametrized by the Cabibbo-Kobayashi-
Maskawa (CKM) matrix. If Vu and Vd are the unitary matrices transforming uL and dL
into their mass eigenstates u′L and d′L, the CKM matrix is given by

VCKM = VuV
†
d , (1.1.9)

and the interaction of the quark mass eigenstates mediated by the W can be written as

L ⊃ (VCKM )ij

(︂
u′̄L

)︂
i
γµW+

µ

(︁
d′L
)︁
j
+ h.c. . (1.1.10)

Similarly, the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix arises in the lepton
sector and is discussed in chapter 1.3.1
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1.2. The Standard Model of Cosmology

The standard model of cosmology relies on the hypothesis that the universe is homoge-
neous and isotropic on large scales, the so called cosmological principle which is supported
by the cosmic microwave background (CMB). This assumption induces the Friedmann-
Lemaître-Robertson-Walker metric

ds2 = dt2 − a (t)2
(︃

dr2

1− kr2
− r2dθ2 − r2 sin2 (θ) dφ2

)︃
, (1.2.1)

where a (t) is the scale factor that parametrizes the relative expansion of the universe
and k is a constant describing the curvature. Due to the isotropy, it can only take three
values representing different geometries

k =

⎧⎨⎩
−1, hyperbolic
0, flat
1, spherical

. (1.2.2)

Combined with the Einstein equations and assuming the stress-energy tensor Tµν to
resemble the stress-energy tensor of a perfect fluid, the Friedmann-Lemaître-Robertson-
Walker metric results in the time evolution of the scale factor, known as the Friedmann
equations. The Friedman equations are related to the conservation of the stress-energy
tensor DµT

µν = 0 via the Bianchi identity. Together, they yield two independent equa-
tions

d
(︁
ρa3
)︁
= −pd

(︁
a3
)︁
, (1.2.3)

H2 +
k

a2
=

8πG

3
. (1.2.4)

Eq. (1.2.3) resembles the first law of thermodynamics and the second one is typically
referred to as the Friedmann equation. Here H = ȧ

a is the Hubble parameter. By
introducing the critical density ρC = 3H2

8πG the Friedmann equation results in

k

H2a2
= Ω− 1 , (1.2.5)

where we defined Ω ≡ ρ
ρC

. Thus, the sign of Ω− 1 is in direct correspondence with the
curvature k. Measurements of Ω via the CMB are strongly favoring k = 0, hence a (close
to) flat universe [10].
Equation (1.2.3) allows to find the dependence of the different energy contents (radiation,
non-relativistic matter, vacuum energy) on the scale factor

ρi (a) ∼

⎧⎨⎩
a−4, for radiation
a−3, for non-relativistic matter
a0, for vacuum energy

. (1.2.6)

Then, the Friedmann equation can be conveniently expressed in terms of the density
parameters of the various energy contents measured today Ωi =

ρi,0
ρC,0

with

H2 = H2
0

[︃
ΩR

(︂a0
a

)︂4
+ΩM

(︂a0
a

)︂3
+Ωk

(︂a0
a

)︂2
+ΩΛ

]︃
. (1.2.7)
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Here, the index 0 indicates the evaluation of the quantity today and we have i ∈
{M,R,Λ} corresponding to non-relativistic matter, radiation and vacuum energy2, re-
spectively. The definition of Ωk differs, as Ωk = − k

a20H
2
0
.

The Planck collaboration determined, amongst other parameters, the density parameters
Ωi and the Hubble parameter H0, using the measurements of the CMB by the Planck
satellite [10]. They approximately find ΩΛ ≈ 0.69, ΩM ≈ 0.31 and ΩR ≈ 10−5 indicating
Ωk = 0.001± 0.002. Thus, the universe today is dominated by vacuum energy.
Employing Eq. (1.2.7), we can conclude that at earlier times, that is a < a0, all con-
tributions but the vacuum energy were larger. As we have ΩR ∼ a−4 and ΩM ∼ a−3,
the universe was radiation dominated at very early times and after a period of matter
domination entered the vacuum energy dominated phase we observe today. However,
while not confirmed experimentally yet, it is widely assumed and accepted that the uni-
verse experienced a phase of exponential growth at very early times, known as inflation.
Inspecting Eq. (1.2.7) again, we find that H must be independent of the scale factor
a (t) to provide exponential growth, thus requiring a dominant contribution from vac-
uum energy.
Typically, inflation is modeled introducing a scalar field φ, the inflaton, with a specific
potential V (φ). The potential must provide a sizable vev for a sufficiently long period
of time to guarantee a successful inflation. The period of inflation is introduced to solve
the so called horizon problem: We observe areas in the sky to be extremely homogeneous
even within separations that could not have been in causal contact without inflation. It
appears highly unlikely that those areas look similar if they were not correlated at some
point. If inflation provides a sufficiently large expansion at early times it can address
this problem.
The era of inflation ends, when the inflaton decays into relativistic (SM) particles and
the universe enters a radiation dominated era. The process of the inflaton-decay is usu-
ally referred to as reheating, as the temperature of the plasma increases with the energy
that is injected into it by the inflaton decays. Afterwards the temperature decreases and
the universe undergoes phase transition(s), e.g. the electroweak phase transition.
When the photon temperature drops below Tγ ∼ 0.1MeV, the photons are not able to
break up nucleons anymore and light elements, such as deuterium, are formed. This
procedure is called big bang nucleosynthesis (BBN).
For a photon temperature of Tγ ≲ 0.1 eV, atoms like the hydrogen atom are not effi-
ciently ionized by photons and therefore their number increases significantly, a period
referred to as recombination. Since after recombination most of the electrons are bound
in neutral atoms, photons can propagate freely afterwards. These photons are the ones
that constitute the CMB, which therefore provides information about the time of recom-
bination. Roughly at the time of recombination the universe enters its matter dominated
phase in which the gravitational induced evolution of matter perturbations leads to the
formation of structures we observe today, before it finally evolves into the era of vacuum
energy domination.

2The abbreviation Λ instead of V for vacuum energy became common as a vacuum energy contribution to the stress-
energy tensor can be absorbed into the cosmological constant.
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1.3. Evidence for Physics Beyond the Standard Model

While the SM has provided extremely successful predictions and consistent result over
the past decades, a few shortcoming serve as motivation for BSM physics. This work is
mainly motivated by the pressing evidence for particle DM, reviewed in Section 1.3.3,
and the fact that neutrinos have a non-zero but small mass presented in Section 1.3.1.
Beside that, we mention in Section 1.3.2 the flavor problem in the SM, describing the
hierarchic structures in the couplings and masses arising in the flavor sector and the
tensions within experimental data, hinting at lepton flavor non-universality.

1.3.1. Neutrino Oscillations

Neutrino oscillations were first proposed by Pontecorvo in 1957 [11] and eventually dis-
covered in 2001 by the Sudbury Neutrino Observatory [12] and by the Super-Kamiokande
experiment [13]. The phenomenon of neutrino oscillations describes the oscillatory tran-
sition of a certain neutrino flavor to another, for instance νe → νµ. For the sake of
simplicity, we assume neutrino mass generation via the Higgs mechanism. More evolved
neutrino mass generation mechanisms are the subject of Section 2.1. In the case of mass
generation via the Higgs mechanism, the mass terms in the lepton sector after EWSB
are given by

L ⊃ − (Mν)ij (ν̄L)i (νR)j − (Ml)ij
(︁
l̄L
)︁
i
(lR)j + h.c. . (1.3.1)

The mass matrices Mν and Ml are in general not diagonal. In direct analogy to the
quark sector they can be diagonalized via transformations of the fields νL/R and lL/R,
ν ′L/R = Uν/Vν νL/R and l′L/R = Ul/Vl lL/R with the unitary matrices Uν/l and Vν/l, such
that the resulting mass matrices

M̃ν/l = Uν/lMν/lV
†
ν/l , (1.3.2)

are diagonal. This affects the interaction of charged leptons and neutrinos via the W±

L ⊃ (UPMNS)ij

(︂
ν ′̄L

)︂
i
W+
µ

(︁
l′L
)︁
j
, (1.3.3)

with UPMNS = UνU
†
l . Typically, one chooses Ul = 1 and thus has UPMNS = Uν . An

essential quantity for neutrino oscillations is the probability for a neutrino of a certain
flavor to oscillate into a neutrino of a different flavor, given by Pνα→νβ . Already a
calculation on the level of basic quantum mechanics, which we sketch in the following,
yields the oscillation probability. Note, however, that considerations employing quantum
field theoretical methods obtain the same result [14]. We find

Pνα→νβ = | ⟨νβ (t) |να⟩ |2 (1.3.4)

The states |να⟩ are given as superpositions of mass eigenstates |νi⟩ in terms of the PMNS
matrix U , |νi⟩ =

∑︁
α

(︁
U †)︁

iα
|να⟩ and the time evolution of the mass eigenstates satisfies

|νi (t)⟩ = exp (Eit− p⃗ix⃗) |νi (t = 0)⟩ (1.3.5)
pi≫mi≈ exp

(︃
−im

2
iL

2E

)︃
|νi (t = 0)⟩ , (1.3.6)
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where the second line assumes the ultra-relativistic limit and therefore L ≈ t. This
assumption is justified as the neutrino mass, though non-zero, is very small compared
to the energy scales of the experiments. The oscillation probability results in

Pνα→νβ = δαβ − 4
∑︂
k>j

Re
[︂
(U)kα (U)∗kβ (U)∗jα (U)jβ

]︂
sin

(︄
m2
k −m2

j

4E
L

)︄2

+ 2
∑︂
k>j

Im
[︂
(U)kα (U)∗kβ (U)∗jα (U)jβ

]︂
sin

(︄
m2
k −m2

j

4E
L

)︄2

. (1.3.7)

Remarkably, there are no flavor transitions if there are no mass differences between
the different neutrino mass eigenstates. Hence, the observation of neutrino oscillations
implies a non-vanishing neutrino mass for at least two neutrino mass eigenstates since
the oscillation probability only depends on the mass differences and not on the absolute
neutrino mass scale.
In fact, neutrino oscillations measure two mass squared differences ∆m2

21 = m2
2 − m2

1

and ∆m2
31 = m2

3 −m2
1. However, the sign of ∆m2

31 is unknown allowing for two types of
orderings along the neutrino mass eigenstates, the normal hierarchy (NH) and inverted
hierarchy (IH) with

NH : m3 ≫ m2 > m1 , IH : m2 > m1 ≫ m3 . (1.3.8)

A democratic mixing with
∑︁

imi ≫
√︁
∆m2

31 can be excluded by means of measurements
of the sum of the neutrino masses that place upper bounds on this quantity. While direct
detection experiments such as KATRIN can only place a limit of

∑︁
mi < 1.1 eV [15],

results from the Planck satellite find
∑︁
mi < 0.12 eV [10]. An improvement on this

upper bound can potentially rule out the IH in the near future, as
∑︁

imi ≳ 0.1 eV in
the IH.
The neutrino oscillation experiments further constrain the elements of the PMNS matrix,
which is typically parametrized as

UPMNS =

⎛⎝ c12c13 s12c13 s13e−iδCP

−s12c23 − c12s23s13e−iδCP c12c23 − s12s23s13e−iδCP s23c13
s12s23 − c12c23s13e−iδCP −c12s23 − s12c23s13e−iδCP c23c13

⎞⎠ ,

(1.3.9)

with sij = sin θij and cij = cos θij . If δCP ̸= 0 neutrino oscillations violate charge
parity conjugation symmetry (CP). In case that neutrinos are Majorana particles the
PMNS matrix obtains to additional phases resulting in UPMNS = UνU

†
l diag

(︁
1, eiα, eiβ)︁.

Neutrino oscillations, however, are insensitive to these Majorana phases α and β. The
Majorana nature of neutrinos is probed e.g. in experiments trying to observe the neu-
trinoless double-beta decay.

1.3.2. Flavor Physics

The SM contains six flavors of quarks and leptons, which are categorized within three
generation, only distinguished by their mass. This mass, however, varies over several
orders of magnitude. For instance, the ratio of the electron and top Yukawa coupling
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Figure 1.1.: One-loop contribution to the rare decay µ → eγ mediated by the W . The νi refer to the
different neutrino mass eigenstates.

t
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µ+
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Figure 1.2.: One-loop diagrams contributing to the rare decay b→ sll.

is roughly ye
yt

∼ 10−6. The discrepancy between the Yukawa couplings becomes even
more pronounced if neutrino masses are purely Dirac and generated via Yukawa cou-
plings yν to right-handed neutrinos, resulting in yν

yt
∼ 10−13. These hierarchies, are the

foundation of a vast number of neutrino mass models and motivate the introduction of
flavor symmetries such as SN and AN [16, 17]. This approach not only allows for an
explanation of the large mass hierarchies but also gives rise to certain patterns in the
CKM and PMNS matrix.
Moreover, already the electroweak interaction allows for flavor transitions such as quark
decays resulting in meson or hadron decays or neutrino oscillations. Often, however,
these decays are forbidden on tree-level or come with a large number of electroweak ver-
tices, resulting in a large suppression. This, in return, is a great opportunity to search
for new physics as the new particles may give rise to lower order contributions.

For instance, the rare decay µ → eγ was not observed by the experiment so far
B (µ→ eγ) < 4.2 · 10−13 [18] and can serve as a tight constraint on new physics scenar-
ios. Within the SM the decay is mediated at one-loop by the W boson and neutrinos
and is illustrated in figure 1.1. Processes of this type are referred to as charged lepton
flavor violating.
A recent topic of interest are rare B-meson decays, in particular the decay of a B-meson
into a kaon and two charged leptons, induced by the process b→ sll, which is generated
at one-loop level in the SM, illustrated in figure 1.2. Within ratios of branching ratios of
this process into different lepton pairs hadronic uncertanties cancel efficiently and result
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in a SM prediction of the RK observable close to one [19]:

RK =

∫︁ q2max
q2min

dBr(B→Kµµ)
dq2

dq2∫︁ q2max
q2min

dBr(B→Kee)
dq2

dq2

SM
= 1.00± 0.01 . (1.3.10)

The LHCb collaboration, however, reported a 2.5σ deviation from the SM in this ob-
servable and found for the di-lepton mass squared range of 1.1GeV2 < q2 < 6.0GeV2 a
best fit value of [20,21]

RK = 0.846+0.060+0.016
−0.054−0.014 . (1.3.11)

Here, the coupling to the different lepton flavors is non-universal. Thus, these processes
are categorized as lepton flavor universality violating. The most popular explanations
of this anomaly involve BSM physics generating tree level contributions to b→ sll, such
as leptoquark models, possibly emerging from a grand unified theory (GUT), or models
involving additional U (1)′ gauge groups. Models employing one-loop solutions to the
RK anomaly are subject to chapter 6.

1.3.3. Dark Matter

Most of the content of this work is dedicated to models involving DM candidates. While
a direct detection signal of particle DM has not been observed yet, there exist a number
of observations indicating the existence of DM. In this section, some of these observa-
tions are summarized.
Historically, the first observations hinting at the existence of DM were made in the
1930’s [22] and observed that part of the universe mass does not interact electromagnet-
ically. Roughly fourty years later these measurements were supported by Vera Rubin [23],
who investigated galaxy rotation curves and found that those could not be explained by
the observed distribution of visible matter.
The most pressing evidence today, however, is given by the measurement of the CMB,
which was released at the time of recombination, when photons were propagating freely
from this point on. Before, the free propagation of the photons was not possible due
to efficient photon-electron scattering. Since after recombination electrons are mostly
bound in neutral hydrogen the interaction rate of photons is significantly suppressed.
The CMB provides a map of the sky in terms of the photon temperature and is al-
most perfectly homogeneous. Only on small scales fluctuations in the temperature, that
originate from density perturbations at the time of recombination, exist. Utilizing a
perturbed form of the Boltzmann equation, the size of the temperature fluctuations
gives rise to the size of the corresponding density fluctuations which, in return, allow
to determine the amount of electromagnetically interacting (baryonic) and dark matter.
Broadly speaking, baryonic matter, due to repulsive interactions between particles with
a same sign charge, tends to delay the formation of structures in the universe. Since
for DM electromagnetic interactions are absent, or at least significantly smaller, it can
accelerate structure formation, thereby creating larger fluctuations in the CMB. The
CMB provides the most precise measurement of the DM energy density today and the
PLANCK collaboration [10] finds

ΩDMh
2 = 0.120± 0.001 , (1.3.12)
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where h is the dimensionless Hubble parameter H = h · 100 km
s Mpc and the PLANCK

collaboration finds h = 0.674 ± 0.005 today. In this sense, roughly 25% of the energy
content of the universe today are made up of DM and approximately 5% of baryonic
matter.
Another observation supporting the existence of DM is the measurement of the abun-
dances of light elements in the universe. The formation of nuclei is commonly referred to
as BBN and starts at the temperature TN after the interaction rate for the dissociation
of nuclei, e.g. d+γ → p+n, becomes small compared to the Hubble parameter. At this
point, however, the ratio of protons and neutrons can differ from one, if the temperature
is comparable to the mass difference of proton and neutron, TN ≲ mn −mp. In addi-
tion, the neutron, in contrast to the proton, is not stable. Consequently, a part of the
neutrons can decay into protons before they are bound in nuclei. Hence, the efficiency
of nuclei formation, given by the ratio of its interaction rate compared to the Hubble
parameter, has a significant impact on the ratios of light elements, for instance the ratio
of hydrogen and deuterium. As the interaction rate is proportional to the square of the
baryon density, Γbsf ∼ n2B, and the Hubble parameter depends on both the baryon and
DM density, the amount of light elements is determined by an interplay of both of these
quantities. Measurements of the light elements in the universe find that only a fraction
of the matter density in the universe can consist of baryonic matter [24], thereby indi-
cating the existence of DM.
A different type of observation employs the effect of gravitational lensing. When light
emitted from a distant source passes a massive object it can be bent depending on the
mass distribution of the object. This effect allows to determine this distribution by in-
specting the image of the source we receive on earth. Gravitational lensing is a purely
gravitational effect and does not distinguish between baryonic matter and DM. Compar-
ing these results with the mass distribution of visible matter, information about the DM
distribution can be extracted. A famous example of such a measurement is the Bullet
cluster [25], where gravitational lensing is induced by two colliding galaxy clusters. They
find an offset between visible and gravitating matter, hinting at DM without any sizable
self-interactions.
While there exist other observations, such as simulation of structure formation in the
early universe, already the evidence reviewed above, indicates a universe whose mat-
ter density is dominated by a BSM particle, as the SM neutrinos are found to provide
only a non-significant contribution. Although, theories of non-Newtonian gravity, e.g.
MOND [26], provide a good explanation to observed rotation curves of galaxies they
struggle to explain the CMB and gravitational lensing measurements without the intro-
duction of particle DM. Within this thesis, we stick to the well motivated idea of DM
consisting of one or more BSM particles. The different ways to produce DM and how
its properties are constrained by various observations is subject to the Sections 2.3 and
2.4.
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2. Relevant Concepts and Models

2.1. Neutrino Mass Models

In Section 1.3.1 we reviewed evidence for the existence of massive neutrinos. Here, we
review the most common models for neutrino mass generation. For a more detailed
discussion the reader is referred to [27–30].
In the SM, no renormalizable neutrino mass term exists due to the lack of a right-
handed neutrino field νR. The simplest extension allowing for neutrino masses evolves
in complete analogy to the rest of the SM fermions and requires the existence of a right-
handed neutrino νR. In this case, a Dirac-type neutrino mass term is induced by the
Yukawa coupling yν of the left-handed to the right-handed neutrino after EWSB

Lν−mass = − (yν)ij L̄iφ̃νRj + h.c.
EWSB

⊃ − (mν)ij νLiνRj + h.c. , (2.1.1)
with (mν)ij = (yν)ij

v√
2
, i = 1, 2, 3 and j = 1, . . . , n. Already this simple model allows

for an explanation of the observed neutrino mass squared differences and mixing angles
if at least two right-handed neutrino fields (n = 2) are introduced. If all neutrino mass
eigenstates have a non-zero mass, three right-handed neutrino fields are required, as
pointed out in for instance [31]. To reproduce the observed neutrino masses, one expects
yν ∼ O

(︁
10−12

)︁
, which is much smaller than the Yukawa couplings present in the SM.

In addition, the right-handed neutrino transforms as a singlet under the SM gauge
groups, allowing for a Majorana mass term, which for a fermion field ψ generally is of
the form

Lmajorana = −Mψcψ + h.c. , (2.1.2)
where ψc = iγ2ψ∗. If ψ transforms under a gauge transformation of the form ψ →
ψ exp (itaα

a (x)) the Majorana mass term is only gauge invariant if ta = 0, meaning that
ψ transforms as a gauge singlet. Thus, Majorana mass terms are not present in the
SM at the renormalizable level. If, however, a right-handed neutrino is introduced, it
naturally comes with a Majorana mass term if no further restrictions are imposed. The
neutrino mass is then generated via an interplay of the Dirac and Majorana mass terms.
If for instance the Majorana mass term is much larger than the Dirac mass term, neu-
trino mass generation is governed by the well known type-I seesaw scenario, described
in more detail in Section 2.1.1.
Allowing for non-renormalizable operators, Majorana masses for neutrinos can be in-
duced via higher-dimensional operators of odd dimension starting from dimension five.
At dimension five there is only one unique operator, known as the Weinberg operator [32]

Ldim-5 =
κij
Λ

(︂
(LL)

c
i φ̃

∗)︂(︂
φ̃
†
(LL)j

)︂
. (2.1.3)

Here, Λ is a large mass scale with Λ ≫ v, where the effective description of the theory
breaks down1 and κij is a coefficient function depending on the properties of the UV-

1In case of e.g. the type-I seesaw, this scale is given by the mass of the heavy neutrino mass state.
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Figure 2.1.: Feynman diagrams associated with the type I (left), type II (middle) and type III (right)
seesaw.

complete theory. After EWSB this operator generates a mass of

(mν)ij =
(κ)2ij v

2

2Λ
, (2.1.4)

for the active neutrinos. All models of Majorana neutrinos can be reduced to this
operator. In the following we discuss various tree-level realizations of the Weinberg
operator in the Sections 2.1.1 and 2.1.2 and possible extensions at one-loop level in
Section 2.1.3.

2.1.1. Type I/II/III Seesaw

The minimal UV completions of the Weinberg operator are known as the type I-III
seesaw. They are minimal in terms of their field content as only one additional field is
introduced. In the type I seesaw [33], a SM singlet Weyl fermion νR is added, commonly
referred to as the right-handed neutrino. The type II seesaw [34] employs a scalar SU(2)
triplet ∆ with hypercharge Y = 2, while the type III seesaw [35] relies on a fermionic
SU(2) triplet Σ with hypercharge Y = 0. The Feynman diagrams associated with the
neutrino mass generation within the different seesaw variations are given in Figure 2.1.
The parts of the Lagrangian relevant to neutrino mass generation in the context of the
type I seesaw after EWSB are given by

Lmν ⊃ −νLi (mD)ij νRj −
1

2
νRj (MM )jj′ ν

c
Rj′ + h.c. , (2.1.5)

with the flavor indices i = 1, 2, 3 and j, j′ = 1, . . . , n for n additional right-handed
neutrinos. If not indicated differently by parentheses, the object ψcL/R is evaluated by
first applying the projection operator and then charge conjugation. Thus, the object ψcL
is a right-handed field.
This expression can be conveniently rewritten in terms of the (3+n) dimensional vector
nL = (νL, ν

c
R), where we suppressed the flavor indices. It carries the index L, as only

left-handed fields are present. With this definition we find

Lmν = −1

2
ncLMnL + h.c. (2.1.6)
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with

M =

(︃
0 mD

mT
D MM

)︃
. (2.1.7)

The mass matrix M is quadratic and of dimension (3 + n). To arrive at the form given
above, the following relations are useful

νcLmDν
c
R = νRm

T
DνL , (2.1.8)

(νcRM
∗
MνR)

† = νRMνcR . (2.1.9)

The mass matrix is diagonalized by a a rotation with the unitary matrix U , which is
defined as (︃

νL
νcR

)︃
=

(︃
UP A
B C

)︃
⏞ ⏟⏟ ⏞

U

(︃
χνL
χNL

)︃
, (2.1.10)

with χν/N representing the (light/heavy) neutrino mass eigenstates and UP and C are
quadratic matrices of dimension 3 and n respectively, while A and B are (3× n) and
(n× 3) matrices respectively. The explicit form of U can be extracted from the fact that
it diagonalizes M, i.e.

UTMU =

(︃
Mν 0
0 MN

)︃
, (2.1.11)

and its unitarity. We choose the subscripts ν and N for the diagonal mass matrices,
as we will refer to the light neutrino mass eigenstates as ν, while heavy neutrino mass
eigenstates are referred to as N later in this thesis. In the limit of MM ≫ mD

2 and in
the basis of vRj , where MM is diagonal, we find

A = m∗
DM

−1
N , B = −A†UP , C = 1−O

(︃
m2
D

M2
N

)︃
, (2.1.12)

and

MN =MM +O
(︃
m2
D

MN

)︃
Mν = −UTPmDM

−1
N mT

DUP . (2.1.13)

In this sense, UP can be identified with the PMNS matrix, as it diagonalizes the mass
matrix of the light neutrinos. Note, however, that UP is not exactly unitary anymore
and deviates from unitarity by corrections of O

(︂
m2
D

M2
N

)︂
. This has important consequences

for the phenomenology of massive neutrinos, discussed in more detail in Section 2.2.
Examining eq. (2.1.6) in its diagonal form we find

Lmν = −1

2

(︁
χcνLMνχνL + χcNLMNχNL

)︁
+ h.c. (2.1.14)

2This has to be understood in the sense that the eigenvalues of the matrix MM are much larger than the eigenvalues of
mD.
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The entries of the diagonal matrices Mν/N are real but not necessarily positive. This
issue can be addressed by defining the Majorana fields χν and χN as

χν = χνL + ηνχ
c
νL , χN = χNL + ηNχ

c
NL , (2.1.15)

where ην/N is a diagonal matrix with a phase factor for each field on its main diagonal.
The phase factor is chosen according to the sign of the associated mass. More precisely
it is

(︁
ην/N

)︁
ii
= ±1 if sign

[︂(︁
Mν/N

)︁
ii

]︂
= ±1. Hence we have

Lmν = −
⃓⃓⃓
(Mν)ij

⃓⃓⃓
χνiχνj −

⃓⃓⃓
(MN )ij

⃓⃓⃓
χNiχNj + h.c. . (2.1.16)

In the one generation scenario, we thus obtain the well known seesaw formula of Mν =
m2
D

MN
, which displays the origin of the seesaw label, as a heavier heavy neutrino state N

implies a lighter light neutrino state ν.
Finally, we study the limiting case MM → 0, where the Dirac neutrino is recovered. In
this case, we find Mν = −MN = mD in eq. (2.1.14). In general, a Dirac type mass
eigenstate arises if two Majorana mass eigenstates with a mass of opposite sign exist,
i.e.

Lmν = −m
2

(︁
χc1Lχ1L − χc2Lχ2L + h.c.

)︁
. (2.1.17)

Then, it is possible to define the Dirac state ψD = ψL + ψR with

ψL =
1√
2
(χ1L + χ2L) , ψR =

1√
2
(χc1L − χc2L) , (2.1.18)

so that eq. (2.1.17) reads

Lmν = −m
(︁
ψDψD

)︁
. (2.1.19)

Note, that this definition of the Dirac state is valid for any type of neutrino mass model
that yields two Majorana states with a mass of opposite sign. In the case of the type I
seesaw we recover the familiar result ψL = νL and ψR = νR.
After this more detailed discussion of the type I seesaw, we briefly give the results for the
type II/III seesaw. The type II seesaw scenario relies on the coupling of two neutrinos
to the uncharged component of the scalar triplet ∆, which in turn couples to two Higgs
fields

Lmν = (Y∆)ij ν
c
Li∆

0νLj + µφT (iσ2)∆
†φ+ h.c. , (2.1.20)

with

∆ =

(︄
∆+

2 ∆++

∆0 −∆+

2

)︄
. (2.1.21)

Depending on the shape of the scalar potential V (φ,∆), both φ and ∆ can acquire a
vev. Each of these contributes to the neutrino mass and results in

Mν ∼ (Y∆)ij µ
v2φ
M2

∆

, Mν ∼ (Y∆)ij v∆ . (2.1.22)
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The vev of the scalar triplet, however, is tightly constrained from electroweak precision
observables like the ρ parameter [36], measuring the mass ratio of the W and Z bosons,
resulting in an upper bound of v∆ ≲ 4.8GeV. This implies v∆ ≪ vφ and therefore the
contribution of vφ to the neutrino mass typically dominates.
The type III seesaw scenario is very similar to the type I seesaw. The mass terms of the
Lagrangian read

Lmν = − (YΣ)ij Σiφ̃
†
LLj + h.c.− 1

2
Tr
[︁
ΣMΣΣ

c
]︁
+ h.c . (2.1.23)

After EWSB the neutrino mass term results in

Mν =
(︁
Y T
Σ

)︁
ik
(YΣ)kj

v2

MΣ
. (2.1.24)

The main difference between the type I and type III seesaw scenarios is the coupling of
Σ to the electroweak gauge bosons. However, we only discuss the phenomenology of the
type I seesaw in Section 2.2, as the type II and type III seesaw are not subject to the
models discussed in this work.

2.1.2. Inverse Seesaw

The inverse seesaw mechanism can be understood as an extension of the type I seesaw
scenario. In addition to the introduction of a certain number of right-handed neutrinos
νR, the model is enlarged by additional left-handed gauge singlet fermions sL, typically
matching the number of right-handed neutrinos. When considering the type I seesaw
setup, electroweak signatures of the additional heavy neutrino states tend to be sup-
pressed by either their large mass or the tiny Yukawa couplings in case of lighter heavy
neutrinos. Models utilizing the inverse seesaw mechanism for neutrino mass generation
typically allow for a larger mixing between the new states and the SM neutrinos, thus
making it more accessible in experiments. In many of these models, a global or local
U (1)L, a lepton number symmetry, is imposed under which νL, νR and sL all carry the
charge +1. If this symmetry is unbroken, it forbids all possible Majorana mass terms,
which in return leads to vanishing light neutrino masses. Only after the U (1)L is broken,
e.g. by the vev of an additional scalar field often referred to as the Majoron, the induced
Majorana masses allow to reproduce the observed neutrino masses.
Considering the the case of an unbroken U (1)L at first, the Lagrangian relevant to the
neutrino mass generation via the inverse seesaw scenario after EWSB reads [37–40]

Lmν = −1

2
ncLMnL , (2.1.25)

with

nL =

⎛⎝νLνcR
sL

⎞⎠ , M =

⎛⎝ 0 m 0
m 0 M
0 M 0

⎞⎠ . (2.1.26)
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For simplicity, we assumed only one generation of neutrinos as well as one additional νR
and sL. Diagonalizing M yields

L⇕ν = −
√
m2 +M2

2

(︁
χc1L χc2L χc3L

)︁⎛⎝0 0 0
0 −1 0
0 0 1

⎞⎠⎛⎝χ1L

χ2L

χ3L

⎞⎠ . (2.1.27)

Thus we obtain one massless Majorana neutrino and two Majorana states with a mass
of opposite sign, i.e. one Dirac neutrino. Now, we can define the Dirac state according
to (2.1.18) as

NL =
1√

1 + θ2
(sL + θνL) , (2.1.28)

NR = νR , (2.1.29)

with θ = m
M . Thus, depending on the size of θ the new heavy neutral lepton state can

have large admixtures of νL, which interacts via the electroweak gauge interactions. As
discussed in Chapter 2.2, this mixing angle can be constrained by the experiment and
is therefore known to be relatively small, hence motivating the simplifying limit θ ≪ 1.
Up to linear order in θ we find

NL = sL + θνL , NR = νR , χ1L = −νL + θsL . (2.1.30)

Here, χ1L forms the massless Majorana state χ1 = χ1L + χc1L, while NL and NR form a
Dirac state with mass mN =M +O

(︁
θ2
)︁
.

Accounting for the observed light neutrino masses requires the existence of a Majorana
mass term. Three possible Majorana mass terms are νcRνR + h.c., scLsL + h.c. or νcLsL +
h.c.. If we e.g. consider the presence of the mass term µscLsL and furthermore assume
the hierarchies µ,m ≪ M , we find a non-zero mass mν ̸= 0 of the formerly massless
Majorana mass state, which amounts to

mν = θ2µ . (2.1.31)

A comparison of this formula with its counterpart in the type I seesaw scenario displays
the key difference between the two mechanisms. Both expressions for the neutrino mass
can be written in the form of mixing angle squared times a mass scale. However, in
contrast to the type I seesaw the mass scale µ is unrelated to the mixing angle itself,
allowing for sizable active-sterile neutrino mixing angles due to a small µ.
Additionally, the degeneracy in the absolute value of the mass of the remaining two
Majorana mass states is lifted by a correction proportional to µ

M , thereby spoiling the
possibility to form a Dirac state. As the degeneracy is only slightly broken this case is
often referred to as a pseudo-Dirac neutrino.
Moreover, the composition of the mass eigenstates receives a correction due to the small
Majorana mass term µ. Expanding the heavy pseudo-Dirac states up to first order in
both θ and µ

M yields

NL = sL + θνL − 1

4

µ

M
νcR , NR = νR +

1

4

µ

M
scL . (2.1.32)

This result indicates that the influence on the electroweak phenomenology is not sizable,
as the leading order admixture of electroweak non-singlets, namely νL, remains approx-
imately the same.
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For a realistic version of the inverse seesaw, more than one pair of νR and sL is mandatory.
To accommodate the neutrino oscillation data, at least two νR and sL are required [40].
Enlarging the vector nL in Eq. (2.1.26) to describe three generations, allowing for a larger
number of νR and sL and promoting m, M and µ to matrices3, we find the leading order
contribution to the active neutrino mass to be

Mν = mTM−1µMT−1
m. (2.1.33)

Accordingly, Eq. (2.1.32) is still valid if the scalar parameters are promoted to matrices.

2.1.3. Radiative Neutrino Mass Models

The discussion of neutrino mass generation so far was limited to tree level realizations.
The main motivation for the construction of models beyond the simplest tree level re-
alizations of the Weinberg operator is the difficulty to falsify the latter. The inverse
seesaw scenario already demonstrated one way to generate an additional suppression
mechanism for the neutrino mass in the form of a small lepton number violation (LNV).
Another possibility is to suppress the neutrino mass by only allowing contributions at
loop level. There exists a large number of radiative neutrino mass models. A catego-
rization of one-loop models is given in [41] and two-loop models were classified in [42].
A well known one-loop model is the scotogenic model [43], which we review briefly in
the following, as it will be used for neutrino mass generation in some models subject to
Chapter 6.
The model includes right-handed SM singlet fermions Ni, which, in contrast to the type
I seesaw, are charged under an unbroken global symmetry. All SM fields are uncharged
under this global symmetry. Consequently, Dirac masses for the new SM singlet fermions
Ni and the SM neutrino fields are forbidden. Neutrino mass generation is allowed for via
a second Higgs doublet η, which is also charged under the new global symmetry, such
that a Yukawa coupling between the SM neutrinos and the singlet fermions is possible.
The new scalar field interacts with the Higgs field via quartic interactions in the scalar
potential, the so called Higgs portal couplings. Due to the global symmetry, the lightest
particle charged under this symmetry is stable and, if electrically neutral, is a viable DM
candidate.
The Lagrangian relevant for the neutrino mass generation is given by

Lmν = −hij
(︁
LL
)︁
i
η̃Nj + h.c.− V (φ, η) , (2.1.34)

with

V (φ, η) =− µ2φφ
†φ+ µ2ηη

†η + λ1

(︂
φ†φ

)︂2
+ λ2

(︂
η†η
)︂2

+ λ3

(︂
φ†φ

)︂(︂
η†η
)︂

+ λ4

(︂
φ†η
)︂(︂

η†φ
)︂
+ λ5

[︃(︂
φ†η
)︂2

+ h.c.

]︃
. (2.1.35)

Due to the presence of the quartic coupling λ5, the two neutral scalar fields resulting
from the scalar doublet η differ in mass after EWSB

m2
R −m2

I = 2λ5v
2 , (2.1.36)

3Note that the mass matrix must be symmetric.
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Nk

η0/η0
′

νi νcj

Figure 2.2.: Feynman diagram generating neutrino masses radiatively in the scotogenic model. Any
combination ofNi and the real or imaginary part of the neutral component of η can propagate
in the loop.

where mR/I refers to the mass of the real/imaginary part of the neutral η component.
The neutrino mass is generated at one-loop via the diagram illustrated in Figure 2.2.
Both, the particle associated with the real part and the one corresponding to the imag-
inary part of the neutral component of η can propagate in the loop. The diagrams
contribute with a different sign and thus cancel exactly if λ5 vanishes. In the limit of
m2
R+m

2
I

2 ≈MNi and m2
R+m

2
I

2 ≫ 2λ5v
2 we find

Mν =
λ5v

2

16π2

∑︂
k

hikhjk
MNk

. (2.1.37)

This limit allows for a direct comparison with the corresponding type I seesaw formula
and we find an additional suppression of λ5

16π2 .

2.2. Phenomenological Implications of Neutrino Physics

The introduction of neutrino masses can also affect observables other than the neutrino
mass itself. In this section, we sketch some important impacts of neutrino mass models
on these observables. Note, however, that this list is not a complete catalogue of the
possible phenomenological implications. A more detailed discussion can be found in
e.g. [44, 45].
As we discussed in the section before, many neutrino mass models, e.g. the type I/III
or inverse seesaw scenario, induce a mixing of the electroweakly charged left-handed
neutrino states with BSM fermions, typically electroweak gauge singlets, that is encoded
in the leptonic mixing matrix U . The upper left 3 × 3 submatrix UP of U is in general
not unitary, which has an impact on the neutral and charged current interactions in the
leptonic sector. The interactions with the W and Z take the form

LW ⊃
3+n∑︂
i=1

∑︂
α=e,µ,τ

g√
2
lαγµW

µPLUαiχi + h.c. , (2.2.1)

LZ ⊃
3+n∑︂
i,j=1

∑︂
α=e,µ,τ

g

2cw
χiU

†
iαγµZ

µPLUαjχj . (2.2.2)

Here, cw is the cosine of the Weinberg angle, lα are the charged leptons, χi are the
neutrino mass eigenstates with i = 1, 2, 3 corresponding to the light active neutrinos and
i = 4, . . . , 3 + n correspond to the heavier neutrino states.
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W−

µ−

χi

χj

e−

Figure 2.3.: Leading order Feynman diagram inducing the µ decay. Any kinematically allowed neutrino
mass eigenstate can appear in the final state.

If we e.g. consider the fijZνiνj vertex, where νi refers to one of the three light neutrinos
within the type I seesaw scenario, we find

fαβ ∼
(︁
1−mT

DM
−2
N mD

)︁
αβ

, (2.2.3)

using Eq. (2.1.12) and the unitarity of the complete leptonic mixing matrix U .
In this sense, the non-unitarity of the 3× 3 mixing matrix UP induces lepton flavor non-
universality and within the charged current allows for charged lepton flavor violation,
which can exceed the SM predictions by many orders of magnitude. Moreover, elec-
troweak precision variables like the Fermi constant GF can be altered. In the following,
we review the constraints from electroweak precision tests of the SM and charged lepton
flavor violation.

2.2.1. Electroweak Precision Variables

The Fermi constant GF can be extracted from µ decays, which are altered due to the
effects of the new neutral heavy leptons. The tree level diagram contributing to the µ
decay is illustrated in Figure 2.3. The final state includes all neutrino mass eigenstates
χi that are kinematically allowed, i.e. mχi +mχj < mµ −me. If we order the neutrino
mass eigenstates such that mχ1 ≤ mχ2 ≤ · · · ≤ mχ3+n , there exists an i = imax so that
χimax+1 is not kinematically allowed anymore. Then, Fermi’s constant obtained from the
µ decay including the effects of heavy neutrino states Gµ amounts to [46]

G2
µ = G2

F

imax∑︂
i,j=1

|Uµi|2|Uej |2 , (2.2.4)

where GF is Fermis constant obtained assuming only three massless neutrino states. If
imax = 3 + n, i.e. all neutrino states are light enough to contribute to the µ decay, the
sums in Eq. (2.2.4) yield exactly 1 due to the unitarity of the complete leptonic mixing
matrix. In this case, measurements of Fermis constant do not constrain the neutrino
mass model in question. However, if e.g. in the type I seesaw, as discussed in Section
2.1, only the three light neutrino states are light enough to appear in the final state, we
find

G2
µ = G2

F

(︂
U †
PUP

)︂
ee

(︂
U †
PUP

)︂
µµ

= G2
F

(︁
1−mT

DM
−2
N mD

)︁
ee

(︁
1−mT

DM
−2
N mD

)︁
µµ

.

(2.2.5)
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A similar expression can be found for the inverse seesaw scenario.
As a rough estimate for the corrections, we assume mD and MN to be proportional to
the unit matrix. Hence, it is

G2
µ

G2
F

= (1− θ)2 =

(︃
1− mν

MN

)︃2

, (2.2.6)

where θ = mD
MN

. Thus, in the type I seesaw, the corrections to GF are typically negligible.
In scenarios like the inverse seesaw however, the mixing angle is potentially much larger
and therefore constrained by electroweak precision tests, which involve also measure-
ments of the Weinberg angle and the ρ parameter. Amongst others, these parameters
are related via the Fermi constant and therefore also influenced by the altered leptonic
mixing matrix.

2.2.2. Lepton Flavor Violation

The most prominent example for charged lepton flavor violation is the decay µ → eγ,
as its branching ratio is tightly constrained by the MEG-experiment [18], more precisely
Brµ→eγ < 4.2 · 10−13. Furthermore, the SM prediction for this process, illustrated in
Figure 1.1, is tiny. Due to the unitarity of the PMNS matrix, the contributions of the
different neutrino mass eigenstates mostly cancel each other, as their mass is very small
compared to the mass of the W . The decay width in the SM including three massive
neutrinos is given by [47]

Brµ→eγ =
3α

32π

⃓⃓⃓⃓
⃓∑︂
i

U∗
µiUeiF

(︄
m2
νi

M2
W

)︄⃓⃓⃓⃓
⃓
2

∼ 10−54 , (2.2.7)

with

F (x) =
10− 43x+ 78x2 − 49x3 + 4x4 + 18x3 log (x)

3 (x− 1)4
. (2.2.8)

Therefore, any measurable contribution to this process would be a clear signal for new
physics.
Considering a new physics scenario, where the heavy neutrino states are roughly degen-
erate in mass allows to estimate the contribution to µ → eγ in terms of the unitarity
violation of the 3× 3 submatrix UP of the leptonic mixing matrix.

Brµ→eγ ≈ 3α

32π

⎛⎝⃓⃓⃓⃓⃓
3∑︂
i=1

U∗
µiUeiF (0)

⃓⃓⃓⃓
⃓
2

+

⃓⃓⃓⃓
⃓
3+n∑︂
i=4

U∗
µiUeiF

(︃
M2
N

M2
W

)︃⃓⃓⃓⃓
⃓
2
⎞⎠

=
3α

32π

⃓⃓⃓⃓
⃓

3∑︂
i=1

U∗
µiUei

⃓⃓⃓⃓
⃓
2(︄

F (0)2 − F

(︃
M2
N

M2
W

)︃2
)︄
, (2.2.9)

where MN is the mass scale of the heavy neutrino and we used
∑︁3+n

i=1 U
∗
µiUei = 0 in the

second step. Considering a scenario where MN ≫MW , the mixing matrix elements can
be constrained to ⃓⃓⃓⃓

⃓
3∑︂
i=1

U∗
µiUei

⃓⃓⃓⃓
⃓ ≤ 2.2 · 10−5 . (2.2.10)
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Furthermore, the elements of the matrix Rαβ =
∑︁3

i=1 U
∗
αiUβi can be constrained by

other observables, such as ratios of the decay width of the W into leptons of different
flavor or lepton flavor violating three-body decays like µ→ eee. The Rτµ element, e.g.,
is constrained by the ratio Γ(W→τντ )

Γ(W→µνµ)
[46]. To conclude, the leptonic mixing matrix can

be constrained by different measurements, while the element Rµe, typically, is subject
to the tightest constraints resulting from the small upper bound on µ→ eγ.

2.3. Dark Matter Production

A central part of any DM model is the underlying DM production mechanism. From
astrophysical observations we know the DM energy density ΩDM precisely and that it
must have been present at the time of the creation of the CMB. In this work, we discuss
production mechanisms relying on interactions of DM with SM particles or itself. These
processes are usually described in terms of the evolution of the phase space densities
of the different particle species. The dynamics of this evolution are governed by the
Boltzmann equation.
In the following we introduce some relevant thermodynamical quantities and discuss
the Boltzmann equation. Subsequently, we present various coupling regimes that can
provide the observed DM relic density. The discussion of the thermodynamics in the
early universe and the introduction of the Boltzmann equation can be found in various
textbooks, e.g. [48]. The description of the four basic ways to produce DM and the
figures included are based on [49,50].

2.3.1. Thermodynamics in the Early Universe

The different particle species i in the universe are described by their single particle
phase space densities fi (r⃗, p⃗, t). The Friedmann-Robertson-Walker universe is based on
the assumption of isotropy and homogeneity. Thus, the phase space density cannot
depend on r⃗ and the dependency on p⃗ reduces to dependency on p = |p⃗| only. Often, we
are only interested in global quantities such as the number or energy density of a certain
particle species. These quantities can be obtained from the phase space density via

ni (t) =
gi

(2π)3

∫︂
d3p f (p, t) , (2.3.1)

ρi (t) =
gi

(2π)3

∫︂
d3pE (p) f (p, t) . (2.3.2)

Here, gi measures the internal degrees of freedom for a particle species, e.g. gi = 2 for a
fermion of spin 1

2 due to the two spin degrees of freedom.
If a particle species is in kinetic equilibrium, i.e. energy is efficiently transferred between
the particle species and the thermal bath, their phase space densities take the form of
the so called equilibrium distributions

f eq
i (p, t) =

1

exp
(︂
E−µ
T

)︂
± 1

. (2.3.3)
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The ± in the denominator distinguishes between fermions and boson and yields the
Fermi-Dirac and Bose-Einstein statistics respectively, and µ is the chemical potential.
If a reaction i1 + i2 + · · · ↔ f1 + f2 + . . . is in chemical equilibrium the corresponding
chemical potentials fulfill ∑︂

n

µin =
∑︂
n

µfn . (2.3.4)

Enforcing chemical equilibrium requires processes, that change the number of a certain
particle species, to be efficient. Chemical potentials are associated with charges, such
as the electric charge or the baryon number. Anti particles carry an opposite sign
chemical potential with respect to the corresponding particle, as long as processes such
as e+ + e− ↔ γγ are efficient, since µγ = 04.
Furthermore, all chemical potentials can be set to zero to a good approximation as long
as asymmetries such as that of the baryon number are negligible. In fact, in all studies
of this work beside Chapter 5 the impact of asymmetries is negligible.
When in the following a process is classified to be in thermal equilibrium, it refers to
a process which is in kinetic and chemical equilibrium. Moreover, if we refer to an
equilibrium phase space or number density, we refer to (2.3.3) and the resulting number
density (2.3.5) with µ = 0, if not explicitly stated otherwise.
The integral in Eq. (2.3.1) cannot be solved for the general case of a Fermi-Dirac or
Bose-Einstein statistics. However, in the common case of E ≫ T both statistics are well
approximated by the Boltzmann distribution f eq

i = exp
(︁
−E
T

)︁
, and the integral can be

performed yielding 5

neq
i (T ) =

gi
2π2

m2
iTK2

(︂mi

T

)︂
, (2.3.5)

where Kj (x) is the Bessel-K function of the j-th kind.
In the relativistic case T ≫ m, both Fermi-Dirac and Bose-Einstein statistics can be
integrated and result in

ρi (T ) =

{︄
7
8
π2

30 giT
4

π2

30 giT
4

, ni (T ) =

{︄
3
4
ζ(3)
π2 giT

3, Fermions
3
4
ζ(3)
π2 giT

3, Bosons
(2.3.6)

This allows us to find the temperature dependence of the Hubble Parameter in the
radiation dominated phase of the universe:

H ≈ 1.66
√
geff

T 2

MPl
, (2.3.7)

with geff counting the relativistic degrees of freedom with T ≫ mi and defined as

geff =
∑︂

Bosons
gi
T 4
i

T 4
+

7

8

∑︂
Fermions

gi
T 4
i

T 4
, (2.3.8)

where T is the temperature of the thermal bath and Ti the temperature of a certain
species, which can deviate from T if this species has decoupled from the bath. For

4Consider for instance e− → e− + γ to be efficient. It follows directly µγ = 0. This also holds true for any other gauge
boson.

5The chemical potential would just enter as an overall factor of exp
(︁
− µ
T

)︁
.
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T ≳ 300GeV all SM particles are relativistic and it is geff = 106.75.
Finally, one finds that the entropy in a comoving volume a3 within a thermal bath

S = a3
ρ+ p

T
, (2.3.9)

is a conserved quantity. Moreover, it is also dominated by the contribution of relativistic
particles and thus the entropy density s = Sa−3 can be expressed as

s =
2π2

45
gseffT

3 , (2.3.10)

where gseff counts the effective entropy degrees of freedom and is defined in complete
analogy to geff. The conservation of S allows us to define the useful quantity

Yi =
ni
s
. (2.3.11)

The advantage of Y compared to the number density n is that Y remains constant if
the particle number in a comoving volume does not change. Thus, Y does not change if
no particle-number-changing interactions are present.

2.3.2. The Boltzmann Equation

The Boltzmann equations play a crucial role in cosmology, as they describe the time
evolution of the phase space densities of the different particle species. The relativistic
version of the Boltzmann equation takes the form

dfX
dλ

= CX [{f}] . (2.3.12)

Here, CX [{f}] is the collision term for the phase space density fX , which includes effects
from all possible interactions between the different particle species, {f} is the set of the
phase space distributions of all different particle species and λ is an affine parameter
which can be taken proportional to the proper time τ .
Firstly, we examine the left-hand side and recall that the phase space densities are
functions of only the time t and the absolute value of the momentum p or equivalently
the energy E. Then, after expanding the total derivative d

dλ and employing the geodesic
equation dpµ

dλ = Γµαβp
αpβ in case of the Robertson-Walker metric we find

dfX
dλ

=

(︃
EX

∂

∂t
−Hp2X

∂

∂EX

)︃
fX (pX , t) . (2.3.13)

This quantity can also be expressed in terms of the number density. Dividing by the
energy EX and integrating over d3pX results in

gX

(2π)3

∫︂
d3pX

1

EX

dfX
dλ

=
dnX
dt

+ 3HnX (t) . (2.3.14)

If collisions are absent, i.e. C [{f}] = 0, Eq. (2.3.14) implies the conservation of the
particle number per comoving volume, d

dt

(︁
a3nX

)︁
= 0.
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Next, the collision term is given by

CX [{f}] =−
∑︂

Processes

∏︂
i∈I∪F

gi
d3pi

2Ei (2π)
3 (2π)

4 δ4

⎛⎝PX +
∑︂
j∈I

Pj −
∑︂
k∈F

Pk

⎞⎠
×

⎡⎣|MX+I→F |2fX
∏︂
j∈I

fj
∏︂
k∈F

(1± fk)

−|MF→X+I |2 (1± fX)
∏︂
j∈F

fj
∏︂
k∈I

(1± fk)

⎤⎦ , (2.3.15)

where I refers to the particles in the initial state except X, F are all particles in the
final state, Pi is the four-momentum of the particle species i, |MX+I→F |2 is the squared
matrix element averaged over initial and final state for the process under considera-
tion and the factors (1± fi) are blocking and stimulated emission factors in the case of
bosons(+) and fermions(−). Note that the matrix element includes symmetry factors
1
n! for identical particles in the initial and final state to avoid double counting from the
integration over final and initial state momenta6.
In general, the Boltzmann equations are a set of coupled integral-partial differential
equations. In many cases, however, their form can be simplified significantly. If the pro-
cess in question conserves CP and CPT invariance implies |MX+I→F |2 = |MF→X+I |2.
Moreover, typically one approximates 1± fi ≈ 1, which holds true in the case of a small
chemical potential and E ≫ T . Furthermore, in this case, the phase space distribu-
tions of particle species in kinetic equilibrium can be assumed to be proportional to a
Boltzmann distribution fi ∼ exp

(︂
−Ei

T

)︂
. Then, the collision term reduces to

CX [{f}] =−
∑︂

Processes

∏︂
i∈I∪F

gi
d3pi

2Ei (2π)
3 (2π)

4 δ4

⎛⎝PX +
∑︂
j∈I

Pj −
∑︂
k∈F

Pk

⎞⎠
× |MX+I↔F |2

⎡⎣fX∏︂
j∈I

fj −
∏︂
j∈F

fj

⎤⎦ . (2.3.16)

Often, we are not interested in the exact shape of the phase space distribution but
only in the evolution of the number density. Then, as in Eq. (2.3.14), we can integrate
the Boltzmann equation, including the collision term, over the three-momentum d3pX .
Following the notation used in [51], we rewrite the collision term as

gX

(2π)3

∫︂
d3pX
EX

CX [{f}] = −
∑︂

Processes
γeq (X + I ↔ F)

⎛⎝nX
neq
X

∏︂
i∈I

ni
neq
i

−
∏︂
j∈F

nj
neq
j

⎞⎠ ,

(2.3.17)

6The situation differs from a particle collider where the initial state is known and therefore not integrated over.
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with

γeq (X + I ↔ F) =

∫︂
d3pX

(2π)3 2EX

∏︂
i∈I∪F

d3pi

(2π)3 2Ei
f eq
X

∏︂
j∈I

f eq
j

|MX+I↔F |2δ4
⎛⎝PX +

∑︂
j∈I

Pj −
∑︂
k∈F

Pk

⎞⎠ . (2.3.18)

In those steps, we assumed that every species is in kinetic equilibrium fi = αi exp
(︂
−Ei

T

)︂
=

αif
eq
i and CP-conserving interactions, which in combination with the δ-function implies

f eq
X

∏︁
i∈I f

eq
i =

∏︁
j∈F f

eq
j . In the following, we refer to γeq as the thermal rate. The

thermal rate for a CP-conserving decay results in

γeq (X ↔ F) = neq
X

K1 (x)

K2 (x)
ΓX , (2.3.19)

while for a two-body initial state we find

γeq (X + i↔ F) =
T

64π4

∞∫︂
smin

ds
√
sσ̂ (s)K1

(︃√
s

T

)︃
, (2.3.20)

where ΓX is the decay width ofX induced by the processX → F , σ̂ (s) = 2sσλ
(︂
1, s

m2
X
, s
m2
i

)︂
is the reduced cross section, while σ is the cross section of the process X + i → F
summed over initial and final states, it is λ (x, y, z) = (x− y − z)2 − 4xy and smin =

max
{︂
(mX +mi)

2 , (mf1 +mf2)
2
}︂

is the minimal center of mass energy and we defined
x = mX

T .
In certain cases, information about the shape of the phase space distribution is required,
for example to estimate the impact of a DM model on structure formation. In these cases
the momentum integration d3pX cannot be carried out, leading to a more complicated
differential equation. Following the lines of [52, 53], we illustrate a solution strategy to
obtain a solution to the Boltzmann equation at the level of phase space distributions.
We aim at rewriting the Liouville operator, the left-hand side of the Boltzmann equation,
given in Eq. (2.3.13) such that it is a differential operator depending on one variable only.
First we express the Liouville operator in terms of the absolute value of the momentum
pX and the time t

d

dλ
fX (p, t) =

∂

∂t
−Hp

∂

∂p
fX (p, t) . (2.3.21)

Then, we perform a transformation of variables (t, p) → (r, ξ) such that we have a
differential operator depending on r only. This is the case if

r = F (t) , ξ = G

(︃
a (t)

a (t0)
pX

)︃
, (2.3.22)

with F as an arbitrary function of the time only, G being an arbitrary function of
a redshifted momentum and t0 a reference time scale. In this work, we choose the
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SM DM

Figure 2.4.: Illustration of a portal DM model. The lines indicate the interactions between the different
sectors. In the Figures 2.6, 2.8 and 2.10, a dotted line refers to a feeble interaction not
sufficient to keep the to sectors in thermal equilibrium. A one headed arrow indicates a slow
particle number transfer from one sector to another while a double headed arrow indicates
that the corresponding two sectors are in thermal equilibrium.

functions F and G as in [53], i.e.

r =
m0

T (t)
, ξ =

1

T0

a (t)

a (t0)
pX , (2.3.23)

with reference mass m0 and reference temperature T0. Note that r is a function of t in
the sense that the time is directly related to the temperature via T ∼ t−1.7 With that
the Liouville operator reads

d

dλ
fX (p, t) =

∂r

∂t

∂

∂r
fX (ξ, r) = rH

(︃
T

3gseff

dgseff
dT

+ 1

)︃−1 ∂

∂r
fX (ξ, r) . (2.3.24)

The operator simplifies further if we only consider temperature intervals where the en-
tropy degrees of freedom are constant, which is the case for temperatures of T ≳ 300GeV.
For the Boltzmann equation we eventually find

∂

∂r
fX (ξ, r) =

1

Hr

(︃
1− r

3

∂

∂r
log (gseff)

)︃
CX [{f}] . (2.3.25)

2.3.3. Production Mechanisms of Dark Matter via a Portal

In this section, we analyze several production regimes of DM coupled either directly or
via a portal to the SM. In a portal model, DM does not necessarily couple to the SM
directly but via one or multiple mediators. The different sectors of a DM model are
illustrated in Figure 2.4 [49, 50]. We classify the interactions between the three sectors
in three types. Consider first the case of a coupling sufficiently large to keep the two
sectors in thermal equilibrium for a certain time. More precisely, this means that the
interaction rate Γ of a particle-number-transferring process between two sectors, such as
an annihilation āa ↔ b̄b where the particles a and b belong to different sectors, is large

7The exact relation can be extracted from the fact that the entropy is conserved in a comoving volume.
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compared to the Hubble parameter. Broadly speaking, if Γ ≪ H a particle interacts
on average less than once during a time span of the order of the age of the universe,
which scales as the inverse of the Hubble parameter. If, on the other hand, Γ ≫ H,
interactions occur rapidly, allowing for an efficient energy and particle number transfer
between the two sectors. To estimate the coupling between two sectors required to keep
them in thermal equilibrium, we define the interaction rate in thermal equilibrium Γeq,
by inspecting the Boltzmann equation in a form obtained by combining the equations
(2.3.14), (2.3.17) and (2.3.11). Then, one obtains

dYX
dt

= −γ
eq (X + I ↔ F)

s

⎛⎝nX
neq
X

∏︂
i∈I

ni
neq
i

−
∏︂
j∈F

nj
neq
j

⎞⎠ . (2.3.26)

Comparing this expression with Ẏ X = ΓXYX , we find

ΓX =
γeq (X + I ↔ F)

neq
X

⎛⎝−
∏︂
i∈I

ni
neq
i

+
neq
X

nX

∏︂
j∈F

nj
neq
j

⎞⎠ . (2.3.27)

Thus, if in thermal equilibrium the interaction rate for both directions results in

Γeq
X =

γeq (X + I ↔ F)

neq
X

. (2.3.28)

Given the mass scales of the considered sectors we can use the criterion Γeq
XH

−1 = 1 to
find the coupling κth required to thermalize the two sectors. If this condition cannot be
fulfilled, κ < κth must hold and we refer to the sectors as feebly coupled. In this case, we
distinguish between two scenarios. First, the case where the coupling κ is large enough
to transfer particle number in one direction (from a populated to an underpopulated
sector) and second the case where the coupling is so tiny that no sizable particle number
transfer in any direction takes place. Within the illustration of Figure 2.6 and 2.8, a
coupling of κ > κth is indicated by a double-headed arrow, the slow particle number
density transfer from one sector to another with a coupling of κ < κth is indicated by
a one-headed arrow into the direction of the flow of particle number and the decoupled
case is illustrated by a dashed line.
In the following, we discuss the various production regimes arising in a portal model.
We assume a thermalized SM and negligible number densities of the mediators and the
dark sector as our initial conditions after reheating. The dependence of the different
production mechanisms on these initial conditions is discussed in the paragraph for the
respective production mechanism. The different production regimes are displayed in
Figure 2.5.

Freeze-Out production of DM

If DM is in thermal equilibrium with SM particles either directly or indirectly via the
mediators8, DM is produced via the freeze-out mechanism. More precisely this means
that either the DM-SM coupling or the DM-mediator and SM-mediator coupling must

8In this case, DM is in thermal equilibrium with the mediator(s), which must be in thermal equilibrium with SM
particles themselve(s).
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Figure 2.5.: A schematic ’phase space’ diagram for DM production displaying the different DM produc-
tion regimes in the plane spanned by the DM-SM coupling and the DM-mediator coupling
as introduced in [49]. It is assumed that the DM-SM coupling is proportional to the prod-
uct of the SM-mediator and mediator-DM coupling. The blue, green and red dashed lines
indicate the coupling strength κth, that is sufficient to thermalize the two sectors, for the
DM-SM, DM-mediator and SM-mediator interaction respectively. Constant values for the
SM-mediator interaction follow lines parallel to the red dashed line and increase in value
to the bottom right corner. Furthermore, the SM is assumed to be in thermal equilibrium
initially, while the number densities in the dark sector and of the mediators are assumed
to be negligible. This directly results in the kink within the green dashed line, since as
soon as neither DM nor the mediators are not in thermal equilibrium with the SM(and
therefore both sectors are underpopulated), a larger coupling is mandatory to thermalize
the two sectors. The different production regimes, freeze-out, freeze-in, dark freeze-out and
reannihilation, as well as the subcatogeries A and B, are discussed in the main text.
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Figure 2.6.: Three coupling structures allowing for freeze-out production of DM. The double-headed
arrow indicates a coupling of κ > κth, while a dashed line or single-headed arrow corresponds
to κ < κth. In all cases, DM is in thermal equilibrium with the SM directly or indirectly.

exceed its thermalization value. The various coupling structures allowing for freeze-out
production are illustrated in Figure 2.6.
Typically, DM freeze-out proceeds via pair annihilations of the DM candidate or pair

annihilations of other dark sector particles, that are only slightly heavier than the DM
candidate itself. The latter case is referred to as coannihilation. By definition the
dark sector particles annihilate into particles that follow their equilibrium densities, i.e.
nf = neq

f if f ∈ F . Consider first the case of pair annihilation of the DM candidate
X itself only. Then, the Boltzmann equation for the evolution of the comoving number
density YX in terms of the dimensionless variable x = mX

T reads

dYX
dx

= −
γeq (︁X̄X → F

)︁
sxH

[︄(︃
YX
Y eq
X

)︃2

− 1

]︄
. (2.3.29)

Qualitatively speaking, as long as the interaction rate Γeq
X exceeds the Hubble expansion

H, DM tracks its equilibrium number density, i.e. YX = Y eq
X and freezes out if Γeq

X ≲ H,
therefore plummeting at a constant value. A typical evolution of the DM particle number
is shown in Figure 2.7. When the temperature drops below the DM mass, DM can no
longer be efficiently produced and the number density decreases exponentially. At some
point the interaction rate of the DM annihilations is too strongly suppressed by the small
number density and therefore also DM annihilation ceases, resulting in the well known
freeze-out picture.
In general, Eq. (2.3.29) cannot be solved analytically. However, to a good approximation
the relic density can be conveniently estimated in terms of the thermally averaged cross
section

⟨σv⟩ =
γeq (︁X̄X → F

)︁(︁
neq
X

)︁2 , (2.3.30)

with σ referring to the cross section of the process X̄X → F summed over initial and
final degrees of freedom and v the Møller velocity. Given the fact that after freeze-
out the DM density is much larger than its equilibrium number density, the second
term in Eq. (2.3.29) can be neglected for x > xf , where xf is defined by the condition
YX (xf ) = (c+ 1)Y eq

X (xf ). If we further assume the thermally averaged cross section
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Figure 2.7.: The comoving number density of DM is plotted against the dimensionless variable x =
mXT

−1 in a generic freeze-out scenario. The dashed black line indicates the evolution of
the particle number in thermal equilibrium. The colored lines refer to the evolution of the
DM particle number given DM-SM couplings of different strengths. A larger coupling leads
to a smaller DM density.

to be of the form ⟨σv⟩ = σ0x
−n, the equation can be integrated by parts [48, 54]. The

choice c (c+ 2) = n+1 yields a result within 5% accuracy with the numerical result and
yields

xf = ln

[︃
0.038 (n+ 1)

gX√
geff

MPlmXσ0

]︃
−
(︃
n+

1

2

)︃
ln

(︃
ln

[︃
0.038 (n+ 1)

gX√
geff

MPlmXσ0

]︃)︃
, (2.3.31)

Y∞ =
3.79 (n+ 1)xn+1

f
gseff√
geff
MPlmXσ0

. (2.3.32)

Here, Y∞ = YX (x→ ∞) is the comoving DM number density today.
Note that the expansion of ⟨σv⟩ in x can be related to an expansion in the velocity

⟨σv⟩ =
⟨︁
a+ bv2 + cv4 +O

(︁
v6
)︁⟩︁

= a+
3

2
bx−1 +

15

8
cx−2 +O

(︁
x−3

)︁
. (2.3.33)

This expansion is suitable as the DM freeze-out typically takes place at temperatures at
least one order of magnitude smaller than the DM mass. The case of a dominant zeroth
order contribution in v is typically referred to as s-wave annihilation, while if the leading
order contribution is of second order in v we have a p-wave annihilation. In Eq. 2.3.32
we observe the well known σ−1

0 dependence of the DM particle number today, neglecting
the logarithmic contribution induced by the factor xn+1

f . Given Y∞, we find ΩDM via

ΩDM =
Y∞mXstoday

ρc
∼
xn+1
f

σ0
, (2.3.34)

where ρc and stoday are the critical energy density and entropy density measured today
respectively.
Although the approximation discussed above provides accurate results for a large part
of the parameter space of the freeze-out regime, there exist three well known excep-
tions [55] where the approximation breaks down: Resonances, threshold effects and
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coannihilations. Resonances appear if the annihilation takes place near a pole in the
cross section, threshold effects describe scenarios where the annihilation products are
slightly heavier than the annihilating DM and coannihilations contribute to the anni-
hilation cross section if annihilations of dark sector particles close in mass to the DM
candidate are present. As coannihilations are essential to the discussion in the Chapters
4.3 and 6, we will review the effects of coannihilations in the following.
For our discussion we assume the dark sector consists of particles Xi with X1 as the
lightest particle and therefore the DM candidate. In case of a small mass splitting
in the dark sector, in addition to the direct annihilation of the DM matter candidate
X1, X1X1 → SM , also annihilations with or of other dark sector particles such as
XiXj → SM can effectively contribute to the annihilation cross section. If conversions
of different dark sector particles, such as XiSM ↔ XjSM

′ remain efficient during the
time of annihilation, the effective thermally averaged DM annihilation cross section σeff
results in

⟨σeffv⟩ =
∑︂
ij

⟨σijv⟩ rirj , (2.3.35)

with

ri =
gi
gco

eff

(︃
mXi

mX1

)︃ 3
2

exp

(︃[︃
1− mXi

mX1

]︃
mX1

T

)︃
, (2.3.36)

where we defined σij = σ
(︁
χiχj → SM

)︁
and

gco
eff =

∑︂
i

gi

(︃
mXi

mX1

)︃ 3
2

exp

(︃[︃
1− mXi

mX1

]︃
mX1

T

)︃
. (2.3.37)

Thus, for almost degenerate dark sector particles the annihilation cross section can even
be dominated by the coannihilation contributions while for mass splittings larger than
∼ 20% their contributions can be neglected.
Lastly, a few remarks on the dependence of freeze-out production on the initial con-
ditions after reheating and the different freeze-out regimes depicted in Figure 2.5 are
needed. As the couplings are large enough to guarantee a thermalization of the dark
sector, freeze-out production is independent of the assumption of initially empty dark
and mediator sectors. The two subregimes arising in Figure 2.5 distinguish between sce-
narios where an annihilation of DM into SM particles (Freeze-Out A) or into mediator
particles (Freeze-Out B) decouples last.

Freeze-In production of DM

If DM is thermalized with neither the SM nor the mediator sector, DM production
can proceed via the freeze-in mechanism. Therefore both the SM-DM and DM-mediator
couplings are smaller than their thermalization value. Various coupling structures al-
lowing for freeze-in production are illustrated in Figure 2.8. In freeze-in scenarios, the
dark sector never reaches equilibrium with another sector and therefore nX ≪ neq

X for
dark sector particles. Due to this assumption contributions to the relic density of differ-
ent production channels directly add up to a very good approximation. Inspecting the
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Figure 2.8.: Three coupling structures allowing for freeze-in production of DM. The double headed arrow
indicates a coupling of κ > κth, while a dashed line or single-headed arrow corresponds to
κ < κth. In case of a single-headed arrow the coupling is sufficiently large to transport
number density from a populated sector to an underpopulated one. DM is never in thermal
equilibrium with the SM directly or indirectly.

collision term in the form of Eq. (2.3.17), we find

dYX
dx

=
1

sxH

∑︂
processes

γeq (F → X + I)
∏︂
f∈F

nf
neq
f

, (2.3.38)

for the evolution of the comoving number density of the DM candidate, where we neglect
backreactions due the suppression induced by nX ≪ neq

X . Already at this point we can
conclude that in case of no hierarchy in the thermal rates γeq for different production
channels, the production is dominated by channels involving only non dark sector par-
ticles in the state F . The resulting differential equation is much less complicated than
in the case of freeze-out production and can be integrated for a given thermal rate γeq.
Considering first the case of a (inverse) decay 1 ↔ n process (either the inverse decay
into the DM candidate or the decay into n dark sector particles). Using Eq. (2.3.19)
and assuming the initial state particles follow their equilibrium number densities, i.e.
nf = neq

f , we find

YX (xf ) =
ΓP
K

gP
2π2

m2
P

m4
X

xf∫︂
xi

dxx3K1

(︃
x
mP

mX

)︃
. (2.3.39)

We use K = sHT−5, x = mX
T , ΓP is the decay rate of the parent particle and mP is the

parent particle’s mass. Note that also the DM candidate itself can be the parent particle
so that mP = mX and gP = gX . The integral boundaries are given by xi =

mX
TR

, with
TR the reheating temperature, and xf = mX

T0
, with T0 the temperature today. Assuming

a large reheating temperature TR ≫ mX and T0 ≪ mX the expression for the comoving
number density today simplifies to

YX (xf → ∞) =
3gP
4πK

ΓP
m2
P

. (2.3.40)

In case of a production channel involving a 2 ↔ n process, the thermal rate is given
by Eq. (2.3.20) and the integration of the Boltzmann equation involves an additional
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Figure 2.9.: The comoving number density of DM is plotted against the dimensionless variable x =
mXT

−1 in a generic freeze-in scenario. The dashed black line indicates the evolution of
the particle number in thermal equilibrium. The colored lines refer to the evolution of the
DM particle number given DM-SM/DM-mediator couplings of different strengths. A larger
coupling leads to a larger DM density.

integration over the center of mass energy. Performing the integration over x results in

YX (xf → ∞) =
3

128Kπ3

∞∫︂
smin

ds
σ̂ (s)

s
3
2

, (2.3.41)

with σ̂ the reduced cross section and smin the minimal center of mass energy as defined
below Eq. (2.3.20). If DM is produced via freeze-in out of a sector that is underpopu-
lated itself, as for instance indicated in the second illustration in Figure 2.8, the formulas
given above do not apply, since in this case we have nf

neq
f
< 1 in Eq. (2.3.38), resulting in

an additional suppression of the relic density. In the illustrations of the different produc-
tion regimes in Figure 2.5, the freeze-in regime is separated into two areas distinguishing
between freeze-in production with mediators in (Freeze-In A) and out (Freeze-In B) of
thermal equilibrium with the SM. Inspecting the Eqs. (2.3.40) and (2.3.41), we find
that, in contrast to freeze-out production, the DM density increases with an increasing
coupling to the mediators or the SM. A typical time evolution in case of freeze-in produc-
tion is displayed in Figure 2.9. Note that freeze-in production is sensitive to our initial
conditions after reheating. In the expressions given in the Eqs. (2.3.40) and (2.3.41)
we assume YX (xi) = 0. Any non-zero initial contribution to the DM density must be
added to the yield generated via freeze-in. In this sense any given freeze-in coupling
that can reproduce the observed DM energy density for a vanishing initial abundance
can be understood as an upper bound on the freeze-in coupling in case of a non-negligible
initial density. Finally, we comment on an interesting scaling behavior that can be ex-
tracted out of the freeze-in yields given in Eq. (2.3.40) and (2.3.41). If the production
process involves a dominant mass scale, the freeze-in yield will be inversely proportional
to this mass scale. For the decay the dominant mass scale mMax can only be set by the
mass of the parent particle mP and leads to ΓP ∼ mP directly resulting in the m−1

P
scaling in Eq. (2.3.40). For the scattering we have to investigate the integral over the
center of mass energy in Eq. (2.3.41). The minimally allowed center of mass energy
scales like smin ∼ m2

max. After the s integration the term is of mass dimension −1 and
the only available mass scale is mmax, resulting in the m−1

max scaling for the freeze-in yield.
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Figure 2.10.: Three coupling structures allowing for dark freeze-out or reannihilation production of DM.
The double headed arrow indicates a coupling of κ > κth, while a dashed line or single
headed arrow corresponds to κ < κth. In case of a single headed arrow the coupling is
sufficiently large to transport number density from a populated sector to an underpopulated
one. DM is never in thermal equilibrium with the SM but is in equilibrium with the
mediators where it can undergo a freeze-out process.

Dark Freeze-Out and Reannihilation

The remaining regime is governed by a large DM-mediator interaction, while neither
the dark sector nor the mediators reach thermal equilibrium with the SM. This regime
combines elements of freeze-in and freeze-out production of DM. Assuming initially neg-
ligible abundances in the dark sector and for the mediators, either the dark sector, the
mediators or both sectors become populated via freeze-in processes. Then however, in
contrast to the freeze-in scenario, the DM-mediator coupling is sufficiently large to estab-
lish thermal equilibrium between the mediators and the dark sector. Various coupling
structures that allow for a dark freeze-out or reannihilation scenario are presented in
Figure 2.10. Within the equilibrium of the dark sector and the mediators, DM can now
undergo a freeze-out process. If the freeze-out takes place after the freeze-in processes
populating the dark sector and the mediators become inefficient the scenario is dubbed
dark freeze-out. If, however, after the freeze-out in the dark sector freeze-in production
is still efficient, the scenario is called reannihilation as DM is still being produced after its
number density was decreased by annihilations. The evolution of the number densities
is schematically illustrated in Figure 2.11. The calculation of the freeze-out temperature
and the resulting yield can proceed similarly to the standard freeze-out picture, but with
a different temperature T ′. This is due to the fact that the SM equilibrates with neither
the dark sector nor the mediators, causing T = TSM ̸= T ′. The dark sector temperature
can be obtained by solving the Boltzmann equations for the energy transfer from the SM
to the dark sector via the freeze-in processes. The corresponding Boltzmann equation
is obtained by multiplying both the Liouville operator in Eq. (2.3.13) and the collision
term in Eq. (2.3.15) with the respective particle energy density and integrating over all
three momenta. From the dark sector energy density ρ′ the dark sector temperature T ′

can be extracted and allows to describe the equilibrium densities via neq (T ′), where T ′

is a function of the SM temperature T . Eventually, the calculation of the freeze-out yield
must be adjusted to the new equilibrium densities. Further details on the computation
can be found in [49].
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Figure 2.11.: The comoving number density of DM is plotted against the dimensionless variable x =
mXT

−1 in a generic dark freeze-out (left) and reannihilation (right) scenario. The red line
indicates the freeze-in yield given a vanishing DM-mediator coupling. In both cases DM
(black line) is produced from SM particles via freeze-in. The large DM-mediator coupling
equilibrates the mediator (blue line) with the DM. The latter undergoes a freeze-out via
annihilations into the mediator. On the left hand side the freeze-out takes place after the
freeze-in production ceases to work, while on the right hand side it is the other way around.

Finally, the scaling behavior combines features from both freeze-in and freeze-out pro-
duction of dark matter. A larger DM-mediator coupling decreases the relic density, while
a larger SM-DM or SM-mediator coupling increases it.

2.4. Phenomenological Implications of Dark Matter

If DM couples to the SM non-gravitationally, it can lead to various different imprints,
which we review in the following. There are three different ways to observe phenomeno-
logical implications of DM, that are schematically illustrated in Figure 2.12:

1. The idea of using sensitive detectors to search for DM recoiling with targets on earth
is referred to as DM direct detection. Direct detection experiments can constrain
the DM-SM coupling.

2. The production of DM via SM particle scattering on earth, as e.g. at the Large
Hadron Collider (LHC). Again, the DM-SM interaction can be restricted from
above. However, in contrast to direct detection experiments where due to the
required instability of the non-DM candidates only DM can potentially scatter with
the targets on earth, at colliders in addition to DM itself also other dark sector
particles or particles of the mediator sector can be produced. Therefore, collider
experiments have the potential to constrain large SM-mediator interactions.

3. The detection of DM annihilation or decay products from dense regions in the
universe, that could be observed in for instance γ-rays from the galactic center.
These types of experiments are referred to as indirect detection of DM.

In Figure 2.13, we illustrate how the different observational methods can constrain the
parameter space of the various production mechanisms of a portal model for DM.
Beside these three main groups, various other methods to constrain the parameter space
of a given DM model exist, including implications of the new dark sector particles for
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Figure 3.1 – An illustration of the three main ways of searching for
particle dark matter, with the blob representing the interaction that
connects dark matter and the SM and the arrow direction indicating
the time direction. In collider searches, one collides SM particles in
the hope of producing dark matter particles, in direct detection one
tries to detect the recoils of dark matter particles scattering on the
nuclei in the detector and in indirect detection one searches with tele-
scopes in astrophysical environments for signs of dark matter particles
annihilating into SM particles.

• Indirect detection, where one searches for the annihilation
products of WIMPs in astrophysical environments of high dark
matter density.

• Collider searches, where one attempts to create WIMPs di-
rectly in collisions between SM particles.

Direct detection

The idea of using sensitive detectors to search for WIMPs recoiling
against the detector material was developed in a paper by Goodman
and Witten [71], building on previous ideas on neutrino detectors
[72].

In Ref. [71], a separation was made, as is still customary, into the
two cases of spin-independent and spin-dependent WIMP scattering

Figure 2.12.: An illustration of three different methods to observe DM. The arrows indicate the position of
the initial and the final state and the blob in the middle refers to the interaction connecting
DM and the SM. The figure is taken from [56].
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Figure 2.13.: The figure shows schematically how the different type of experiments can potentially con-
strain a given DM model. As elaborated on in the main text, direct detection experiments
constrain the DM-SM interaction from above and therefore result in the vertical gray band
on the right side. Collider experiments on the other hand not only constrain large DM-SM
interaction but in addition provide the possibility to put upper bounds on the SM-mediator
interactions, since also the mediators could be produced at colliders. Note that this also
offers the possibility to constrain very small DM-SM interactions in the freeze-in regime
via searches for collider-(meta)stable long lived particles, given a sizable SM-mediator in-
teraction. For more details we refer the reader to [57]. Thus, collider experiments constrain
the area indicated by the gray triangular shape in the bottom right. The gray excluded
area on top is induced by gravitational lensing experiments resulting in an upper bound
on the DM self interaction. Note that this bound only applies for light dark sectors, i.e.
mDM ≲ 1GeV.
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the BBN, on the development of structures in the early universe or constraints on the
DM self interaction from gravitational lensing experiments. In the following, we focus
mainly on the particle physics of DM direct detection experiments and sketch a method
to estimate the impact of a given DM candidate on the structure formation in the early
universe.

2.4.1. Direct Detection

Direct detection experiments are one of the cornerstones of DM searches and aim to
observe recoils of nuclei induced by scattering of nuclei with DM on earth, that are
caused by the motion of the solar system through the milky way. In case of a small
DM self interaction, where DM can be treated collisionless, the induced DM ’wind’
has a typical velocity of roughly v ∼ 10−3 and its properties are set by its gravitational
properties. The kinematics and therefore the expected nucleon-DM cross section depends
on the DM velocity and thus the assumption about its velocity distribution. While we
do not discuss the astrophysical properties of direct detection experiments here, they
are addressed in e.g. [58, 59].
The particle physics determining the expected event rate in the detector can be tracked
down to the effective nucleon-DM cross section. Typically, this quantity is split up into
a (nucleon) spin independent (SI) and spin dependent (SD) part. In the non-relativistic
limit, one finds

σSI
0 ∼ (Zfp + (A− Z) fn)

2 , (2.4.1)

for the DM-nuclei interaction. The number of protons in the nuclei is given by Z, while
the total number of nucleons is given by A and fp/n describe the coupling strength of the
proton and neutron to the mediator. For an isospin independent interaction, i.e. fn = fp,
we find σSI

0 ∼ A2. Since the SD cross section does not increase as fast with the nucelon
content, experiments with massive nuclei, as e.g. XENON1T, typically provide stronger
limits for SI cross sections. Throughout this work we will employ the limits provided by
XENON1T [60] on the SI cross section several times and therefore subsequently discuss,
closely following the lines of [61], how the spin independent cross section can be derived
from the DM interactions with quark and gluons.
Assuming a bosonic mediator, which is heavy compared to the transferred energy that
typically ranges from a few keV to a few MeV, we can integrate out the heavy mediator

LDD ⊃ ODMPropmedOq →
1

m2
DM

ODMOn , (2.4.2)

where ODM encodes the DM current interacting with the mediator and Oq represents the
interaction of the mediator with quarks, while On gives the interaction of the nucleons
with the mediator. The main task is to relate the operators Oq and On.
Consider first the case of a scalar mediator, so that scalar or pseudoscalar interactions can
arise. The pseudoscalar interaction Oq = t̃q q̄γ

5q, leads to a SD and velocity suppressed
interaction in the non-relativistic limit and therefore is not further investigated here.
Note however, that a discussion of this case can be found in [61].
The scalar interaction Oq = f̃ q q̄q, results in a SI contribution to the DM-nucleon cross
section and the resulting nucleon level operator is of the form On = f̃nn̄n. Then, the
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coupling to nucleons reads

f̃n = mn

∑︂
q=u,d,s

fnTq
fq̃
mq

+
2

27

⎛⎝1−
∑︂

q=u,d,s

fnTq

⎞⎠ ∑︂
q=c,b,t

f̃ q
mq

, (2.4.3)

where the fnTq describe the nuclear quark content. Lattice calculations [62] find fpTu =

0.20, fpTd = 0.026 and fpTs = 0.043 for the proton and the same values for the neutron
but with the up and down quarks interchanged. In the case of a coupling to a scalar
that is proportional to the quark mass itself, as in important case of the SM Higgs, we
find with f̃ q =

mq
v

f̃n =
mn

v

⎡⎣7
9

∑︂
q=u,d,s

fnTq +
2

9

⎤⎦ . (2.4.4)

Next consider the case of a vector mediator, allowing for vector and axial-vector cou-
plings. The axial-vector interaction leads to a SD interaction but, in contrast to a
pseudoscalar interaction, is not velocity suppressed. Nevertheless, it is not further in-
vestigated here, as we will not employ limits on the SD DM-nucleon cross section.
The vector coupling, on the other hand, results in a contribution to the SI cross section
and an operator of the form Oq = b̃q q̄γ

µq results in an nucleon level operator of the form
On = b̃nn̄γ

µn. The relation between the b̃q and b̃n is simply given by the summation
over the valence quarks of the given nucleon, since in the case of an vector interaction
only the valence quarks contribute

b̃p = 2b̃u + b̃d , and b̃n = b̃u + 2b̃d . (2.4.5)

In the case of a SM Z boson mediating the interaction we find

b̃u = g2

(︃
1

cW
−

2s2W
3cW

)︃
and b̃d = g2

(︃
− 1

cW
+

s2W
3cW

)︃
, (2.4.6)

with sW and cW corresponding to the sine and cosine of the Weinberg angle respectively.
Now, given the interaction of DM with the mediator, we are able to find the SI DM-
nucleon cross section. Following appendix B of [61] we summarize the non-velocity-
suppressed contributions to the SI cross section for several relevant cases.

Fermionic DM: Scalar mediator
The interaction of Dirac DM via a scalar mediator S takes the form

L ⊃
[︁
χ̄
(︁
λχs + λχpiγ

5
)︁
χ+ f̄

(︁
λfs + λfpiγ

5
)︁
f
]︁
S . (2.4.7)

The mixed terms, more precisely the scalar-pseudoscalar or pseudoscalar-scalar interac-
tions, are velocity suppressed with v2, while the scalar-scalar and pseudoscalar-pseudoscalar
interactions result in non-velocity suppressed contributions to both the SI and SD DM-
nucleon cross section. We find

σSIs,s =
µχN2λ2χs
πm4

S

(︄
Zf̃p + (A− Z) f̃n

A

)︄2

. (2.4.8)
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Here the f̃n/p are the dimensionless coupling constants to the neutron and proton given
in Eq. (2.4.3) and µχN is the reduced mass of the χ-nuclei system. In case of Majorana
DM the SI cross section takes the same form as in Eq. (2.4.8) but with the replacement
λχs → 1

2λχs in the Lagrangian.

Fermionic DM: Vector mediator
The interaction of Dirac DM with the vector mediator Vµ is given by

L ⊃
[︁
χ̄γµ

(︁
gχs + gχpγ

5
)︁
χ+ f̄γµ

(︁
gfs + gfpγ

5
)︁
f
]︁
Vµ . (2.4.9)

Similarly to the case of a scalar mediator the vector-axialvector interactions are velocity
suppressed and only the vector-vector interaction contributes to the SI cross section with

σSIv,v =
µχN2g2χv
πm4

V

⎛⎝Z
(︂
2b̃u + b̃d

)︂
+ (A− Z)

(︂
b̃u + 2b̃d

)︂
A

⎞⎠2

. (2.4.10)

In case of Majorana DM the contribution to the SI cross section vanishes, as the vector
coupling vanishes for a Majorana fermion, i.e. gχv = 0.

Complex scalar DM: Scalar mediator
The interaction of complex scalar DM via a scalar mediator S is given by

L ⊃
[︁
µ2φ|φ|2 + f̄

(︁
λfs + λfpiγ

5
)︁
f
]︁
S . (2.4.11)

The scalar interaction contributes to the SI cross section with

σSIs =
µ2φNm

2
φµ

2
φ

4πm4
S

(︄
Zf̃p + (A− Z) f̃n

A

)︄2

, (2.4.12)

while the pseudoscalar interaction contributes to the SD cross section. For the case of
real scalar DM, the cross section takes the same form if µφ is replaced by 1

2µφ in the
Lagrangian.

Complex Scalar DM: Vector mediator
The interaction is of the form

L ⊃
[︂
igφ

(︂
(∂µφ)φ

† + φ (∂µφ)
†
)︂
+ f̄γµ

(︁
gfs + gfpγ

5
)︁
f
]︂
V µ . (2.4.13)

Again, the vector coupling contributes to the SI cross section with

σSIs =
µ2φNg

2
φ

4πm4
V

⎛⎝Z
(︂
2b̃u + b̃d

)︂
+ (A− Z)

(︂
b̃u + 2b̃d

)︂
A

⎞⎠2

. (2.4.14)

For a real scalar the contribution vanishes.

The SI DM-nucleon cross section is constrained by multiple experiments. Current
limits on the SI cross section are shown in Figure 2.14. The strongest limit for DM
masses larger than 5GeV is provided by the XENON1T experiment [65], that excludes
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Figure 2.14.: Limits on the SI DM-nucleon cross section from various experiments. The figure is taken
from [59]. For DM masses above 5GeV the strongest limits come from the XENON1T
experiment. The yellow area at the bottom indicates the so called neutrino floor, which
describes the irreducible background induced by coherent neutrino nucleus scattering with
neutrinos from the sun. The two red contours are two interpretations of the observed
annual modulation signal by DAMA [63,64] and are in contradiction with a large number
of experiments.

cross sections as small as 10−46 cm2 for DM masses of O (10− 100GeV). In our later
studies we will use the results of XENON1T on the SI cross section to constrain the
parameters of our models.
The SD cross section is limited by several experiments and the results are summarized
in Figure 2.15. However, the limits are roughly six orders of magnitude weaker than
for the SI cross section, which is also the reason why we rely on the SI cross section to
constrain our models.

2.4.2. Structure Formation

The addition of a DM candidate which is present during the time of structure formation,
can alter the form and scale of structures that we expect to observe in the universe. If
a DM particle travels, it might interfere with the gravitational collapse of structure
[66], leading to a washout of structures below the free streaming length λfs of the DM
candidate, as it is the case for light neutrinos. Hence structures at small scales would
not expected to be seen. Thus, the observation of quasi-stellar objects (quasars) at high
redshifts directly contradicts a hot DM candidate.
The observation of distant quasars manifests itself in the so called Lyman-α forest. Light
emitted by these quasars excites the Lyman-α transition in neutral hydrogen atoms
when passing by structures. This line is then missing in the quasar’s spectrum. While
propagating further, the photons are redshifted and by the time the next stricture is
passed, the Lyman-α line can be absorbed again. In this way, light from distant quasars
allows for a picture of the structures in the universe. From this data a one-dimensional
matter-power spectrum can be extracted [67] and subsequently be compared to the
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Figure 13. Current status of the searches for spin-dependent couplings. (Top)

WIMP-proton interactions. The search is dominated by bubble chambers and

superheated droplet detectors which contain the isotope 19F. The results from the

much larger LXe detectors are an order of magnitude weaker. Also shown are limits

from indirect searches [144, 145]. (Bottom) WIMP-neutron interactions. The best

results are from LXe TPCs.

SuperCDMS operating one Ge-crystal (600 g) in Neganov-Luke mode (“CDMS-

Lite”) put constraints on spin-dependent WIMP-proton and WIMP-neutron interactions

extending to mχ = 1.5 GeV/c2 [142], however, the results are more than six (five) orders

of magnitude weaker than the best high-mass results for proton (neutron)-couplings

(and thus do not fit to the axis chosen for Figs. 13). Recent results from a 2.66 g

Li2MoO4 cryogenic scintillating crystal calorimeter prototype operated by the CRESST

collaboration place limits down to 0.8 GeV/c2 [143], however, are much weaker than the

one from SuperCDMS.

Direct Detection of Dark Matter 34

Figure 13. Current status of the searches for spin-dependent couplings. (Top)

WIMP-proton interactions. The search is dominated by bubble chambers and

superheated droplet detectors which contain the isotope 19F. The results from the

much larger LXe detectors are an order of magnitude weaker. Also shown are limits

from indirect searches [144, 145]. (Bottom) WIMP-neutron interactions. The best

results are from LXe TPCs.

SuperCDMS operating one Ge-crystal (600 g) in Neganov-Luke mode (“CDMS-

Lite”) put constraints on spin-dependent WIMP-proton and WIMP-neutron interactions

extending to mχ = 1.5 GeV/c2 [142], however, the results are more than six (five) orders

of magnitude weaker than the best high-mass results for proton (neutron)-couplings

(and thus do not fit to the axis chosen for Figs. 13). Recent results from a 2.66 g

Li2MoO4 cryogenic scintillating crystal calorimeter prototype operated by the CRESST

collaboration place limits down to 0.8 GeV/c2 [143], however, are much weaker than the

one from SuperCDMS.

Figure 2.15.: Limits on the SD DM-proton (left) and DM-neutron cross section from various experiments.
The constraints are several order of magnitude weaker than for the SI cross section.

matter-power spectrum predicted for a given DM model. This requires the usage of
codes for solving the evolution of density fluctuations in the early universe, e.g. the
CLASS code. We, however, follow a highly simplified but also less accurate approach.
We employ the results of [68], who translated the analysis of the one-dimensional matter-
power spectrum from [69] into an upper bound on the free streaming length. They find
λfs ≲ 0.10Mpc for a DM candidate that fully accounts for the observed DM relic density.
This upper bound constrains the free streaming length of the DM candidate of a given
model. The free streaming length of a particle produced at redshift z = zprod is given
by

λfs =

∫︂ zprod

zquasar

dz
v (z)

H (z)
, (2.4.15)

where v is the velocity of the particle and H the Hubble parameter. The lower bound
of the integration typically is given by zquasar ∼ 2 − 5. Note that in practice this lower
bound can be set to zero, as the integral is usually dominated by contributions from larger
redshifts, justifying the lower boundary of exactly zero. For the estimate of a typical
free streaming length of the DM candidate we take zprod at the temperature where most
of the DM is produced or becomes freely propagating. For freeze-out production this
temperature is given by the freeze-out temperature Tfo itself. At higher temperatures
T > Tfo, DM is even more abundant but does not stream freely as annihilations into e.g.
SM particles occur rapidly before freeze-out. In a freeze-in scenario, DM gets produced
over a large time period, but the production is most efficient at the freeze-in scale given
by the largest mass scale involved in the production process. In the case of a particle
decay, this scale would for instance be given by the mass of the parent particle. Lastly,
we approximate the velocity in Eq. (2.4.15) with the average velocity of a DM particle at
zprod. After production in case of freeze-in production or decoupling in case of freeze-out
production, the velocity becomes red shifted via

v (z) =
p (z)√︂

p (z)2 +m2
DM

, (2.4.16)
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and

p (z) = pprod
1 + z

1 + zprod
. (2.4.17)

The average momentum at the time of production pprod is determined by

pprod =

∫︁
dp p3fDM (p, Tprod)∫︁
dp p2fDM (p, Tprod)

, (2.4.18)

where fDM (p, T ) describes the phase space density of the DM candidate. Finally, the
Hubble parameter in terms of the redshift is given by

H (z) = H0

√︂
ΩM (1 + z)3 +ΩR (1 + z)4 +ΩΛ . (2.4.19)

Using Eq. (2.4.15), we are now able to calculate the free streaming length of our DM
candidate given its phase space distribution fDM. In this sense, the limit derived from
the upper bound of the free streaming length crucially depends on the production mech-
anism. For freeze-out production DM is following its equilibrium density, and therefore
a Boltzmann distribution9. This does not apply to scenarios where DM does not reach
thermal equilibrium with the SM, as for instance in freeze-in production of DM. In the
latter instance, the Boltzmann equations have to be solved on the level of momentum
distribution functions, as described in the end of Section 2.3.2.

2.4.3. Self Interactions, Indirect Detection, the BBN and Colliders

In this section, we briefly discuss the possibilities to constrain DM models from self in-
teractions of DM, indirect detection probes, the BBN, and colliders.

Self Interactions
When a galaxy moves through a region of large DM density, for instance another galaxy,
a separation between the DM halo and the visible matter of the galaxy can be caused
due to the possibly smaller self interaction of DM compared to the electromagnetically
charged SM particles. This separation can be observable via gravitational lensing effects.
The most prominent astrophysical object that is used to constrain the self interactions
of DM is the Bullet Cluster. Different groups analyzing the Bullet cluster [70–73] found
an upper bound of order σDM

mDM
≲ 1 cm2

g . Note however, that these results are still subject
to an ongoing discussion. The authors of [74] for example can fit the observed separation
of DM and visible matter in Abell 3827 with a DM self interaction of σDM

mDM
∼ 1.5−3 cm2

g ,
which is in tension with the upper bound extracted from the Bullet cluster. Both observa-
tion could of course also be caused by an effect different from small DM self interactions.
In the following, we assume an upper bound on the DM self interaction cross section
of σDM

mDM
≲ 1 cm2

g . The resulting limit on the couplings depends on the model itself but
typically constrains the DM-mediator coupling to be smaller than an O (1) number for
DM masses smaller than a few GeV.

9More precisely, it is following a Fermi-Dirac or Bose-Einstein distribution, that can be approximated with a Boltzmann
distribution in most cases.
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Indirect Detection
Indirect Detection probes rely on the detection of annihilation or decay products from
DM emerging from dense regions of the universe. The decay or annihilation products
depend on the DM model and can potentially involve any SM particle. The produced
SM particles however will subsequently decay into lighter and eventually stable SM par-
ticles. Therefore, possibly detectable signatures involve photons, electrons, positrons,
protons, antiprotons, and neutrinos.
From these candidates the neutral particles, the neutrino and the photon, have the ad-
vantage that they are not influenced by the cosmic magnetic fields and travel to earth
in basically straight lines. Collecting information about their directionality and origin
much easier than in case of charged particles. Additionally, charged particles are more
likely to lose large amounts of energy on their way to earth, making their signals more
difficult to model. Let us consider a DM candidate that annihilates into photon or
neutrinos with the thermally averaged cross section ⟨σvrel⟩ and the energy spectrum(︂
dNγ
dE

)︂
0
. In this scenario, we expect to observe the following spectrum on earth (see [75]

for a more detailed and pedagogical discussion):

dNγ

dEdt
=

A

4π

(︃
dNγ

dE

)︃
0

⟨σvrel⟩
2m2

DM

∫︂
dr dΩ ρ (r)2 , (2.4.20)

where A is the surface area of the detector and ρ (r) describes the distribution of the
DM mass density of the source. Typically, the expression above is factorized into two
contributions

1

A

dNγ

dEdt
=

(︃
dNγ

dE

)︃
0

⟨σvrel⟩
m2

DM
Jann , (2.4.21)

with Jann = 1
8π

∫︁
dr dΩ ρ (r)2, the J-factor, encoding the astrophysical contribution to

the predicted spectrum. The J-factor depends crucially on the presumed density profile
ρ, that can be obtained from gravitational probes or via numerical multi particle simula-
tions. Given the J-factor and the experimentally observed neutrino or photon spectrum
the particle physics component

(︂
dNγ
dE

)︂
0

⟨σvrel⟩
m2

DM
can be constrained. Typically J-factors,

e.g. for the satellite dwarf galaxies of the milky way can range over multiple orders of
magnitude, Jann ∼ 1017−20 GeV2

cm5 . Note that the formulas given above assume the absence
of redshift effects in the produced neutrinos or photons during their way to earth, which
is only a good approximation for nearby sources like milky way satellites or the galactic
center.
The observation of neutral annihilation products proves to be especially powerful, if the
annihilations are s-wave and therefore not suppressed by the small velocities of v ∼ 10−3,
and if the resulting annihilation products are photon rich. This is the case for any an-
nihilation into gauge boson or quarks. For example, in a DM model with a dominant
annihilation into a bb̄ pair, DM masses of mDM ≲ 100GeV are excluded by the γ-rays
from the Milky Ways dwarf galaxies observed by Fermi [76].
For cosmic rays of charged particles the analysis is, as mentioned above, more elaborated
and therefore not further discussed here. Lastly, we mention the possibility to search
for indirect probes of DM in the CMB via investigating its anisotropies, which could be
affected by a larger ionization fraction induced by DM annihilation products during the
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time when the CMB formed.

Big Bang Nucleosynthesis
The introduction of a DM candidate that remains in thermal equilibrium with the SM
during the time of the BBN can alter the predictions for the amount of light elements in
the universe by the injection of its energetic annihilation or decay products. As already
mentioned in Section 1.3.3, this is caused by the interplay of multiple factors. Firstly,
new degrees of freedom can alter the expansion rate of the universe, especially if they
are relativistic since H ∼ √

ρ. The expansion rate plays a crucial role in determining
the time when certain nuclear processes, such as nνe ↔ pe−, cease to work efficiently
and therefore freeze-out which in turn alters the time window in which the various ele-
ments are produced. In this way additional relativistic degrees of freedom take a direct
influence on the observed abundances of light elements. Secondly, depending on their
coupling strength to electrons and neutrinos, they can alter the photon to neutrino tem-
perature ratio, which in return changes the proton to neutron conversion rates. Lastly,
light and therefore relativistic particles can significantly increase the entropy and thus
dilute the number densities of light elements if this entropy is injected after or during
BBN. If we for example consider a weakly interacting massive particle (WIMP) DM
that directly annihilates electrophilic (into electrons) or neutrinophilic (into neutrinos),
the authors of [77] find the following constraints in different mass regions:
Light (below 10MeV) neutrinophilic DM potentially increases the neutron to proton and
therefore deuterium to hydrogen ratio. Electrophilic DM in this mass range tends to
inject sizable amounts of entropy, leading to a dilution of the baryon to photon density.
Furthermore, they find that for DM masses of mDM ≳ 30MeV the parameter space of
the model remains unconstrained from the BBN, as the annihilations freeze-out before
the BBN takes place. Note that similar effects can also occur due to the late decay of a
mediator or metastable DM particle if it decays efficiently during the time of the BBN.
In the models discussed in this work, we take the approach to only consider WIMP DM
of large enough masses so that the BBN is not perturbed or ensure that any annihilation
or decay decouples before the onset of the BBN. If this was not the case, we would be
required to solve the Boltzmann equations governing the density evolution of the light
elements utilizing BBN codes like PRIMAT [78] and compare the results to the experi-
mental observations.

Collider Constraints
In particle colliders DM or mediators can be produced via SM particle scattering if the
coupling to the SM is large enough. Therefore in addition to the SM-DM coupling, the
SM-mediator coupling can be constrained. As DM particles in many cases do not carry
a SM charge, typical signatures involve signals with missing energy that come along
with the radiation of a photon or a jet from the initial state, such as Mono-jet or Mono-
photon searches. If the final state consists of both DM and SM particles, depending
on the model also Mono-W/Z, Mono-Higgs or Mono-Top searches can be employed. In
cases that involve a SM-charged mediator or dark sector particle, typically masses up
to the TeV range and couplings within the freeze-out regime are subject to constraints.
Consider for instance the effective four fermion operator χ̄Γµχq̄Γ′

µq, with χ as the DM
candidate, Γ(′)

µ a given Lorentz structure and q a SM quark that is also constrained by
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Figure 7. Summary of the LHC constraints for the lepton-like (upper panel) and the quark-like
(lower panel) FIMP scenarios. The lines correspond to contours of Ωsh

2 = 0.12 for the values of
ms and TR given in the legend.

events leave only a few hits in the inner detector. Further lowering TR leads into the region
that can be well covered by the DL search, and thus the mass reach goes up to 400 GeV
for cτ ∼ 1 cm.

We now turn to the small reheating temperatures that indicate the limit below which
one can probe specific baryogenesis models. While supercooled scenarios (TR < 50 GeV)
cannot be falsified with our analysis since the corresponding parameter space is almost
already probed (except for a tiny region around mF ∼ 400 GeV), there is still parameter

developed in [133].

– 21 –

Figure 2.16.: Exclusion plot for a DM candidate coupling to the SM leptons via a mediator of mass mF

and with a lifetime τ . For masses below 650GeV large lifetimes and therefore arbitrarily
small couplings can be excluded.

direct detection experiments. Typically the results of the ATLAS and CMS collabora-
tions can compete with the limits of the direct detection experiments for the Lorentz
structures resulting in a SD DM-nucleon cross section, but they cannot reach the sensi-
tivity of direct detection experiments in case of operators yielding a SI cross section. In
a simple Higgs portal model, however, with a SM singlet scalar as the DM candidate, the
CMS limits on the invisible decay width of the Higgs [79] exceed the ones of XENON1T
for masses below 20GeV.
A complementary approach is the search for long-lived particles. Given a large SM-
mediator interaction, these searches can constrain tiny DM-mediator interactions of the
freeze-in regime. The idea is to pair produce the mediator, which exclusively decays into
final states involving DM. This approach applies to models that involve a SM-charged
mediator that also carries a charge under the DM stabilizing symmetry, a scenario that
was investigated in [57]. Various analysis methods can be employed, including the search
for the track of heavy (collider) stable charged particles, disappearing tracks in case of
a particle that decays within the collider, as well as the search for displaced leptons
and vertices with missing energy. The constraints are given in plane spanned by the
mediator mass mF and its lifetime, which is directly correlated to its coupling to DM.
In Figure 2.16 we show the results obtained in [57] for a DM candidate coupling to SM
leptons. Interestingly the search for charged collider stable particles results in an upper
bound on the mediator particle’s lifetime and, in return, in a lower bound on the freeze-
in coupling to DM, hence excluding tiny couplings for a given mass range. Note that
these kind of searches can only be applied for models involving a SM-charged mediator
or large SM-mediator couplings.
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3. An Extradimensional Seesaw Model

This chapter contains material that was already part of the author’s master thesis. This
applies to most of the content in Section 3.1. It is presented for the sake of a better
understanding of the follow up in Section 3.2 which mainly consists of results obtained
during the PhD.

The problem of the small non-zero neutrino masses observed in neutrino oscillation
experiments has been addressed widely in the literature over the past decades. Some
of the most common model building approaches were addressed in Section 2.1. In this
chapter, we investigate the leptonic flavor structure of an extra dimensional model gen-
erating light neutrino masses via a type-I seesaw variant with one SM singlet neutrino
propagating in an extra dimension.
A key feature of this extra dimensional setup is the suppression of the five dimensional
neutrino Yukawa coupling in the effective four dimensional theory, resulting from a re-
duced wave function overlap, as the SM particles, in contrast to the bulk neutrino, are
confined to a (3+1) dimensional subspace. Furthermore, when integrating out the extra
dimension, a infinite number of Kaluza-Klein (KK) excitations with masses ∼ R−1 ap-
pears, with R the radius of the compactified extra dimension.
The model was originally introduced in [80,81] but only studied in a one generation sce-
nario. Here, we investigate a realistic three generation setup and focus on the question
if the observed neutrino oscillation data can be realized and study the phenomenological
implications of this model, such as rare lepton decays.

3.1. The Model

In this section, we briefly introduce the particle content of the model [1,80,81] and discuss
the interactions arising in the effective 4D theory. The 5D SM singlet bulk neutrino and
the SM lepton fields are described by

N (xµ, y) =

(︃
Ψ1 (x

µ, y)
Ψ̄2 (x

µ, y)

)︃
, L (x) =

(︃
νl (x

µ)
l (xµ)

)︃
, lR (xµ) . (3.1.1)

L (x) and lR (x) are the SM lepton fields with l = e, µ, τ . The xµ are the usual coordi-
nates, with µ = 0, 1, 2, 3, y is the extra dimensional coordinate and Ψ1 and Ψ2 are 5D two
component spinors. 1 The extra dimension is compactified on an S1/Z2 orbifold and Ψ1

is is even and Ψ2 is odd under a y → −y transformation. While we only consider a setup
with a bulk neutrino propagating in one extra dimension, this is not necessarily the case

1Here the notation, ψ̄2 for a particle transforming under the (0, 1
2 ) representation of the Lorentz algebra is chosen in

analogy to earlier works on this model. One might be more familiar with the ψ†
2 notation that is used in [82] which

is a useful reference for the two component spinor notation.
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for gravity that can experience the presence of n extra dimensions2. The Planck scale
MPl is related to the new fundamental scale of gravity MF via MP = (2πMFR)

n
2 MF .

The Lagrangian of the model is given by [81,85]:

L =

2πR∫︂
0

dy

{︃
N̄
(︁
iγµ∂µ + γ5∂y

)︁
N − M

2

(︂
NTC(5)−1N + h.c.

)︂

+δ (y − a)

[︄
hl1

M
1/2
F

LΦ̃
∗
Ψ1 +

hl2

M
1/2
F

LΦ̃
∗
Ψ2

]︄
+ δ (y − a)LSM

}︄
. (3.1.2)

Here Φ̃ = iσ2Φ
∗ is the hypercharge conjugate of the SM Higgs doublet Φ and LSM is

the SM Lagrangian. The 5D γ matrices and the charge conjugation operator are defined
as [85]:

γµ =

(︃
0 σµ

σ̄µ 0

)︃
γ5 =

(︃
−12 0
0 12

)︃
C5 = −γ1γ3 =

(︃
−iσ2 0
0 −iσ2

)︃
,

where hl1,2 are fundamental 5D Yukawa couplings, σµ = (12, σ) and σ̄µ = (12,−σ) with
σ being the usual 4D Pauli matrices and C5 is the 5D analog to charge conjugation in
4D while, as discussed in [85], the gauge invariant mass term NTC(5)−1N is not a true
Majorana mass term. However, after integrating out the extra dimension a Majorana
mass term in the effective 4D theory is obtained.
Note, that the SM brane is not necessarily located at one of the orbifold fixed points but
at positions y = a, with a being a free parameter of the model parameterizing the brane
shift. The fields Ψ1 and Ψ2 are symmetric and antisymmetric, respectively, under the y
to −y transformation and therefore can be expanded in a Fourier series:

Ψ1 (x
µ, y) =

1√
2πR

S0 (x
µ) +

1√
πR

∞∑︂
k=1

Sk (x
µ) cos

(︃
ky

R

)︃
(3.1.3)

Ψ2 (x
µ, y) =

1√
πR

∞∑︂
k=1

Ak (x
µ) sin

(︃
ky

R

)︃
. (3.1.4)

With this expansion, we can perform the y integration the Lagrangian (3.1.2). After
introducing the weak basis for Kaluza-Klein spinors

χ±k =
1√
2
(Sk ±Ak) , (3.1.5)

we find the kinetic term in the effective 4D theory after EWSB:

L = χ̄iσ̄µ∂µχ−
(︃
1

2
χTMχ+ h.c.

)︃
, (3.1.6)

2Such a scenario can be realized by embedding the SM 3-brane into a 4-brane which itself is embedded into a 3 + n
dimensional space. The bulk neutrino is confined to the 4-brane while gravity feels the entire 4 + n dimensional
spacetime. The realization of such scenarios is discussed e.g. in [83] or [84]
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with

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 me
0 me

+1 me
−1 · · ·

0 0 0 mµ
0 mµ

+1 mµ
−1 · · ·

0 0 0 mτ
0 mτ

+1 mτ
−1 · · ·

me
0 mµ

0 mτ
0 M 0 0 · · ·

me
+1 mµ

+1 mτ
+1 0 M + 1

R 0 · · ·
me

−1 mµ
−1 mτ

−1 0 0 M − 1
R · · ·

...
...

...
...

...
... . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

(︃
0 Y T

Y MKK

)︃
, (3.1.7)

and χT = (νel , ν
µ
l , ν

τ
l , χ0, χ+1, χ−1, . . .). The mk are a combination of the Yukawas h(k)1

and h
(k)
2 :

ml
k =

v√
2

[︃
h̄
l
1 cos

(︃
ka

R

)︃
+ h̄

l
2 sin

(︃
ka

R

)︃]︃
= Al cos

(︃
ka

R
+Φl

)︃
. (3.1.8)

where Al = v√
2

√︃(︂
h̄
l
1

)︂2
+
(︂
h̄
l
2

)︂2
, Φl = − arctan

(︂
hl2
hl1

)︂
, v is the vev of the Higgs and

h̄
l
i =

(︂
MF
MP

)︂ 1
n
hli. At this point, we can observe the suppression of the maximal possible

value for the effective Yukawa coupling Al relative to the 5D Yukawa couplings hli, which

results in a factor
(︂
MF
MP

)︂ 1
n .

We further rewrite the Lagrangian by introducing the four component spinor vector

ΨT
ν =

(︃(︃
νl
ν̄l

)︃
,

(︃
χk0
χ̄k0

)︃
,

(︃
χk0+1

χ̄k0+1

)︃
,

(︃
χk0−1

χ̄k0−1

)︃
, · · ·

)︃
, (3.1.9)

with k0 chosen in a way such that M0 = M + k0
R is the minimum of |M + k

R |. This
reordering causes a redefinition of the phases Φl to

Φl = − arctan

(︃
hl2
hl1

)︃
− k0a

R
. (3.1.10)

Eventually, we find the Lagrangian in the familiar form

Lkin =
1

2
Ψ̄ν

(︁
i/∂ −M

)︁
Ψν , (3.1.11)

but with the replacement M → M0 in the matrix M. In this form we can find the
masses of the light and heavy neutrino states by diagonalizing the matrix M. The three
light neutrino masses are given by the solution to the equation

∑︁3
i=0Kiλ

i = 0, with

K2 =
∑︂
F

S1 (F, F, λ) , K1 =
∑︂
F1>F2

S1 (F1, F1, λ)S1 (F2, F2, λ)− S1 (F1, F2, λ)
2 ,

K3 = 1 , K0 = −
∑︂

F1,F2,F3

εF1F2F3S1 (e, F1, λ)S1 (µ, F2, λ)S1 (τ, F3, λ) = 0,
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and
S1 (F1, F2, λ)

πRAF1AF2
=
[︁
cot (πR [M0 − λ]) cos

(︁
ΦF1 − a [M0 − λ]

)︁
cos
(︁
ΦF2 − a [M0 − λ]

)︁
− 1

2
sin
(︁
ΦF1 +ΦF2 − 2a [M0 − λ]

)︁]︃
. (3.1.12)

A more detailed discussion of the derivation can be found in [1]. Examining the coef-
ficients of the polynomial, we see that we always find one zero mass eigenstate due to
K0 = 0. Furthermore, the linear coefficient vanishes, if the Dirac like masses mf

k factor-
ize in the sense that mf

k = g (k)h (f). This is the case if we find Φe = Φµ = Φτ and/or
a = 0, πR2 , πR. Consequently, it is not possible to generate two neutrino mass differences
without a brane shift away from the orbifold fixed points, resulting in a ̸= 0, πR.
Let us consider first the case of equal phases Φl = Φ and thus only one non-vanishing
light neutrino mass. Then, this mass is given by

λ3 ≈ πR
∑︂
F

(︁
AF
)︁2 cos (aM0 − Φ) cos (aM0 −M0πR− Φ)

sin (M0πR)

= πR
∑︂
F

(︁
AF
)︁2
f (a,M0, R,Φ) . (3.1.13)

We find a formula comparable with the well known type-I seesaw result. The mass
scale of the right-handed neutrino is substituted by the inverse of the radius of the
extra dimension R−1 and the Dirac mass contribution is given by

(︁
Al
)︁2. Additionally,

we find a factor of the form of the extra dimension f . As pointed out before, the Al
are suppressed by a volume factor emerging from the reduced wave function overlap.
Therefore, we expect smaller mass scales R−1 compared to the typical type-I seesaw
scales given a non-divergent f . In this sense, the extra dimensional seesaw mechanism
provides a natural realization of a low scale type-I seesaw.
To accommodate for the observed two neutrino mass differences, we allow for small
changes in the phases Φl, which we parametrize with

Φe = Φ Φµ = Φ+ δΦ Φτ = Φ+ rδΦ . (3.1.14)

Expanding the masses in δφ, we find the following leading order result for the three
lightest eigenvalues of M

λ1 = 0 , (3.1.15)

λ2 = −πRY
2

4

w (cµ, cτ , r)

s (cµ, cτ ) f (a,M0, R,Φ)
δΦ2 , (3.1.16)

λ3 = πRY 2s (cµ, cτ ) f (a,M0, R,Φ) , (3.1.17)

with

s (cµ, cτ ) = 1 + c2µ + c2τ , (3.1.18)
w (cµ, cτ , r) = c2µ + c2τr

2 + c2µc
2
τ (r − 1)2 , (3.1.19)

and we define AF = cFY , with ce = 1.
To conclude our discussion about the neutrino mass, we comment on current collider
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bounds on large extra dimensions [86]. The ATLAS collaboration found an lower bound
on the fundamental scale of gravity MF of MF

TeV ≥ (5.25, 4.11, 3.57, 3.27, 3.06) for n =
(2, 3, 4, 5, 6) extra dimensions. These limits can be translated into upper bounds on the
radius. The limits are compatible with the observed neutrino masses within the presented
framework. The correct neutrino mass scale can be achieved by either choosing a small
R (corresponding to a larger MF ) or a small δφ since λ2λ3 ∼ πRY 2δφ2, while the correct
ratio for the eigenvalues can be accommodated for by choosing a suitable f (a,M0, R,Φ)

since λ2
λ3

∼
(︂

δφ
f(a,M0,R,Φ)

)︂2
.

Next we discuss the constraints imposed by the observed neutrino mixing parameters
(see Table 3.1) [87]. In total we find six distinct orderings of the mass eigenvalues λi, two

Param. NO Best Fit NO 3σ IO Best Fit IO 3σ

sin2 (Θ12) 0.304 0.270 → 0.344 0.304 0.270 → 0.344

sin2 (Θ23) 0.452 0.382 → 0.643 0.579 0.389 → 0.644

sin2 (Θ13) 0.0218 0.0186 → 0.0250 0.0219 0.0188 → 0.0251

∆m2
21/10

−5 eV2 7.50 7.02 → 8.09 7.50 7.02 → 8.09

∆m2
31/10

−3 eV2 2.457 2.317 → 2.607 −2.449 −2.590 → −2.307

Table 3.1.: Three-flavor oscillation parameters from [87]

corresponding to a normal ordering while the other two generate an inverse ordering.
The two remaining cases are already excluded since it is λ1 = 0 and m2

2 > m2
1 has to be

satisfied. The four viable cases are:

• Case I: m1 = |λ1| < m2 = |λ2| < m3 = |λ3| (NO)

• Case II: m1 = |λ1| < m2 = |λ3| < m3 = |λ2| (NO)

• Case III: m1 = |λ2| < m2 = |λ3| > m3 = |λ1| (IO)

• Case IV: m1 = |λ3| < m2 = |λ2| > m3 = |λ1| (IO)

For each of them we have to compare the resulting prediction for the mixing matrix
with the observed values to extract the viable parameter space. Remarkably, the mixing
matrix in leading order in δΦ is only dependent on three (complex) parameters cµ, cτ
and r. In this work, we considered only the case of a vanishing CP phase δ and therefore
real Yukawa couplings. In the light of the hint for a non-vanishing δ ≈ −π

2 , it might be
interesting to investigate the influence of a non-zero CP phase on the parameter space
of the model and therefore on the lepton flavor violating (LFV) observables discussed
in Section 3.2. For the case of a vanishing CP phase, the 3σ ranges for the parameters
relevant to the mixing matrix are given in Table 3.2.

3.2. Lepton Flavor Violation

In the previous section, we gave an approximated unitary mixing matrix for the SM
neutrinos. However, including the additional degrees of freedoms in form of the Kaluza-
Klein excitations, the 3 × 3 submatrix identified with the PMNS matrix is not unitary
anymore. As it was pointed out in Section 2.2, the unitarity violation of the PMNS
matrix causes several phenomenological implications, such as deviations of electroweak
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Case c2µ BF c2µ 3σ c2τ BF c2τ 3σ r BF r 3σ

I 20.3 14.9 → 33.9 24.6 13.9 → 32.6 1.6 1.45 → 1.80

I 20.3 14.9 → 33.9 24.6 13.9 → 32.6 0.64 0.55 → 0.69

II 0.59 0.31 → 0.74 1.78 1.52 → 2.28 -0.12 -0.14 → -0.04
II 0.46 0.16 → 0.62 1.91 1.64 → 2.48 -0.48 -0.59 → -0.20
II 1.08 0.41 → 1.33 1.29 1.10 → 2.09 -1.62 -1.84 → -0.52
II 1.63 0.86 → 1.97 0.73 0.61 → 1.51 -1.17 -1.18 → -0.41
III 1.22 0.89 → 1.97 1.14 0.55 → 1.62 1.22 1.18 → 1.28

III 1.22 0.89 → 1.97 1.14 0.55 → 1.62 0.82 0.78 → 0.85

IV 0.30 0.23 → 0.45 0.17 0.07 → 0.25 1.56 1.45 → 1.80

IV 0.30 0.23 → 0.45 0.17 0.07 → 0.25 0.62 0.45 → 0.68

Table 3.2.: Allowed Parameter regions which reproduce the observed neutrino mixing for the different
possible orderings of the mass eigenvalues. The first two cases correspond to the NO and the
last two to the IO. The values are obtained by using the best fit values for the mixing angles
and the 3σ regions, respectively.

precision variables or the presence of rare LFV decays. In this section, we discuss the
implications for the latter in detail and point out the predictions of the model for the
correlations between different rare decays. Eventually, we give a lower bound on the
fundamental scale of gravity induced by the upper bounds on rare lepton decays in case
of 5D Yukawa couplings of O (1).
The deviation of unitarity is given by (for a detailed calculation see appendix B):

(E)F1F2
= −

(︁
Y TM−2

KKY
)︁
F1F2

= −
∞∑︂

k=−∞

mF1
k m

F2
k(︁

M0 +
k
R

)︁2
=: −S2 (F1, F2) =

d

dM0
S1 (F1, F2, 0) . (3.2.1)

The decay width of rare lepton decays lα → lβγ, mediated at one-loop level, strongly
depends on the unitarity violation. Furthermore, the ratio of its decay width to the
decay width of lα → ναν̄βlβ is given by [45,46]:

Γ (lα → lβγ)

Γ (lα → lβ ν̄βνα)
=

3α

32π

|
∑︁∞

k=1 UαkU
†
kβF (xk) |2

(UU †)αα (UU
†)ββ

. (3.2.2)

The matrix U is the mixing matrix as defined in Section 2.1.1. In the sum over k, k =
1, 2, 3 correspond to the mass eigenvalues of the active neutrinos. The ones corresponding
to k > 3 are the ones close to the masses of the KK excitations. The function F (xk) is a
loop function with xk =

m2
νk

m2
W

, where mνk is the mass of the k-th neutrino mass eigenstate
and F (xk) is given by:

F (x) =
10− 43x+ 78x2 − 49x3 + 4x4 + 18x3 ln (x)

3 (x− 1)4
. (3.2.3)
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If the sum
∞∑︁
k=1

UαkU
†
kβF (xk) is split into

3∑︁
k=1

UαkU
†
kβF (xk) +

∞∑︁
k=4

UαkU
†
kβF (xk), it is

reasonable to assume F (xk) ≈ 10
3 for k = 1, 2, 3, since mνk ≪ mW . Thus, we find

3∑︂
k=1

UαkU
†
kβF (xk) ≈

10

3

(︁
UPU

T
P

)︁
αβ

≈ 10

3
(E)αβ . (3.2.4)

Since the complete mixing matrix is unitary,
∞∑︁
k=4

UαkU
†
kβ = − (E)αβ holds for α ̸= β.

Assuming mW ≪ M0 and using the fact that F (x) decreases monotonously, allows to
find an upper bound on the branching ratio by setting F (xk) =

4
3 for k ≥ 4:

Γ (lα → lβγ)

Γ (lα → lβ ν̄βνα)
≈ 3α

32π

⃓⃓⃓⃓ 3∑︂
k=1

UαkU
†
kβF (xk) +

∞∑︂
k=4

UαkU
†
kβF (xk)

⃓⃓⃓⃓2
≤ 3α

8π
(E)2αβ . (3.2.5)

Next, we derive lower bounds on the decay rate for M0 ≈ mW and M0 ≪ mW . To this
end we assume F (xk) = F

(︂
M2

0

m2
W

)︂
for k ≥ 4. This is justified since the loop function

F
(︂
m2
i

m2
W

)︂
is decreasing with an increasing mi. Thus, by choosing mi =M0, which is the

lowest KK mass, for all i ≥ 4, a lower bound on the decay rate is obtained. We discuss
the following cases:

• M0 ≈ mW

With F (1) = 17
6 , the lower bound results in:

Γ (lα → lβγ)

Γ (lα → lβ ν̄βνα)
≥ 3α

128π
(E)2αβ (3.2.6)

In comparison with the upper bound, a factor 1
16 is multiplied to the upper bound.

• M0 ≪ mW

A series expansion for small arguments of F (xk) up to first order yields F
(︂
M2

0

m2
W

)︂
≈

10
3 − M2

0

m2
W

. Thus, the lower bound results in:

Γ (lα → lβγ)

Γ (lα → lβ ν̄βνα)
≥ 3α

32π

M2
0

m2
W

(E)2αβ . (3.2.7)

In this case, the lower bound is additionally suppressed by the small factor M2
0

m2
W

.

Using the experimental values for the branching ratios of the processes lα → lβ ν̄βνβ, see
e.g. [88], we find an expression for the branching ratios of the three LFV decays:

Bµe ≤
3α

8π
(E)2µe , Bτe ≤

1

5.6

3α

8π
(E)2τe and Bτµ ≤ 1

5.9

3α

8π
(E)2τµ . (3.2.8)

In the limit of a small δΦ, Eαβ is given in leading order in δΦ by:

Eαβ
cαcβ

=
(πRY )2

2 sin (y)2
[1− (q − 1) cos (2yq − 2Φ) + q cos (2 [y − qy +Φ])] (3.2.9)

= (πRY )2 h (q, y,Φ) , (3.2.10)

55



Case Bτµ
Bµe analytic 3σ Bτe

Bµe analytic 3σ

I cot(Θ13)
2 cos(Θ23)

2

5.9
[2.36, 5.53] cot(Θ23)

2

5.6
[0.10, 0.29]

II No analytic expression [0.10, 0.42] No analytic expression [0.06, 2.77]

III cos(Θ23)
2[sin(Θ13) tan(Θ13)−tan(Θ23)]

5.9 cos(Θ13)
2 tan(Θ12)

2 [0.09, 0.27] 1
5.6

(︂
tan(Θ23)−sin(Θ13) tan(Θ12)
1+sin(Θ13) tan(Θ12) tan(Θ23)

)︂2

[0.07, 0.23]

IV cos(Θ23)
2[sin(Θ13)−tan(Θ12) tan(Θ23)]

2

5.9 cos(Θ13)
2 [0.01, 0.04] 1

5.6

(︂
sin(Θ13)−tan(Θ12) tan(Θ23)
tan(Θ12)+sin(Θ13) tan(Θ23)

)︂2

[0.03, 0.15]

Table 3.3.: Analytic expressions (LO in δΦ) for the ratios of the branching ratios of the rare lepton
decays in terms of the mixing angles and their 3σ regions for the different cases. Case I and
II correspond to NO and Case III and IV to IO.

where q = a
πR and y = πM0R. Remarkably, the only dependence on the flavor is given

by the factors cα, cβ. Thus, the ratio of two different branching ratios of rare lepton
decays is to leading order in δΦ given by Bαβ

Bγδ =
c2αc

2
β

c2γc
2
δ
.

Note that the ratios of the LFV decays in leading order δφ are independent of any
simplifications of the loop function, for instance F (xk) = F

(︂
M2

0

m2
W

)︂
for k ≥ 4. This is the

case since UαkU †
kβ ∼ cαcβ+O (δφ) holds. Consequently, the only flavor dependent terms,

the factors cαcβ, can be pulled out of the sum in Eq. (3.2.2) and therefore the ratios of
the decay rates in leading order δφ are independent of the approximations adopted in
the loop functions. The results for all four cases for the ratios Bτµ

Bµe = c2τ
5.9 and Bτe

Bµe = c2τ
5.6c2µ

are presented in Table 3.3. This implies that all of the LFV rare lepton decay branching
ratios can be expected within two orders of magnitude and that their ratios are directly
related to the mixing angles and the mass ordering in the neutrino sector.

However, for a scenario generating branching ratios close to the experimental limits,
a certain configuration of phases is mandatory, as the branching ratio is suppressed
by the ratio of the neutrino mass to the mass of the W . As we elaborated on above,
the branching ratio is highly dependent on the mass of the lightest KK excitation M0.
A numerical analysis shows that the branching ratio is maximized for M0 ∼ mW and
results in

Bµe ≈
3α

128π

c2µ

s (cµ, cτ )
2

(︃
mν

mW

)︃2

y2
h (q, y,Φ)2

f (q, y,Φ)2
≈ 2× 10−31y2

h (q, y,Φ)2

f (q, y,Φ)2
. (3.2.11)

In the last step, we adopted the best fit values for scenario I for cµ and cτ (see Table
3.2). Thus, an observation of a rare lepton decay requires an enhancement by the factor
h(q,y,Φ)2

f(q,y,Φ)2
, which can be realized for three different special cases, which are displayed in

table 3.4. Since the factor diverges for these three configurations of the parameters q,
y and Φ, a small deviation ϵ from these configurations is needed concerning a large
Bµe. The dependence on ϵ is shown in table 3.4. Additionally, the influence of these
configurations on the value for the phase shift δΦ is presented, which is required to
be small to reproduce the observed neutrino masses. The ϵ dependence of the phase
shift can be estimated by the ratio of the non-vanishing eigenvalues λ2 (3.1.16) and λ3
(3.1.17), which has to be ∼ 1 for the IO and ∼ 5 or ∼ 0.2 for the NO, respectively.
To conclude, the extra dimensional setup allows for Bµe close to experimental limits if
the phases of the Yukawa couplings are close to ΦF ≈ 2n+1

2 π+qy or Φ = 2n+1
2 π+qy−y.
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Configuration h2f−2 δΦ

y = 0 ϵ−2 cos (Φ)2 ϵ−1

Φ = 2n+1
2
π + qy q2ϵ−2 ϵ

Φ = 2n+1
2
π + qy − y (q − 1)2 ϵ−2 ϵ

Table 3.4.: Dependence of h2f−2 and δΦ on the deviation ϵ of the presented configurations. Since h2f−2

is always ∼ ϵ−2, ϵ ≈ 10−7 is required to generate Bµe ≈ 10−13 − 10−14. Consequently, this
would lead to a large δΦ for the first case, which is not desirable since δΦ ≪ 1 was assumed
before. The remaining two cases have δΦ ∼ ϵ, thus leading to a very small δΦ for a large Bµe.
The ϵ dependence of δΦ is calculated by taking the ratio of λ2 and λ3, leading to δΦ ∼ f .

n 2 6 10 20 50

Lower Limit on MF 1.5EeV 3.4PeV 660TeV 166TeV 68TeV

Lower Limit on R−1 5.6GeV 2.4TeV 12.7TeV 50.3TeV 123TeV

Table 3.5.: Lower Limits for the fundamental scale of gravity MF for different number of extra dimensions
n.

Furthermore, it predicts a correlation between different decay channels depending on the
present mass hierarchy in the neutrino sector and its mixing angles.

If we furthermore assume 5D Yukawa couplings of hli ∼ 1, we can use the tight
constraints on the branching ratio for the decay µ → eγ to constrain the fundamental
scale of gravity MF for a given number of extra dimensions. In the case of M0 ≫ mW ,
using MP = (2πMFR)

n
2 MF and the expression for the neutrino mass scale given in Eq.

(3.1.16), we find

MF =

(︄√︄
3αc2µ

512πBµe
v2M

2
n
P

)︄ n
2(n+1)

≥
(︃
1.33× 109GeV2M

2
n
P

)︃ n
2(n+1)

. (3.2.12)

For some values of n, the lower limit of MF is presented in table 3.5. For a small number
of extra dimensions the fundamental scale of gravity is constrained more severely than by
the LHC limits provided by the ATLAS collaboration [86], given the case of 5D Yukawa
couplings of O (1). Note, however, that the limit can easily be relaxed by allowing
for smaller 5D Yukawa couplings h, as the lower bound is proportional to h1+

1
n . For

example, the ATLAS limit of 5.25TeV for n = 2 becomes more constraining as soon as
the 5D Yukawa couplings are below h ≲ 10−5.

3.3. Conclusion

In this work, we have studied an extra dimensional seesaw mechanism with a single right-
handed bulk neutrino. The SM particles are confined to a four dimensional brane. Shift-
ing the brane away from the orbifold fixed points allows to generate two non-vanishing
mass-squared differences as required by neutrino oscillation experiments.
In particular, we have worked out the flavor structure without adopting a unitary ap-
proximation of the 3 × 3 submatrix. This allows us to study the phenomenological
consequences of the bulk neutrino.
In a first step, we studied the neutrino mass generation and mixing. We further sim-
plified the analysis by assuming CP conversation and that the ratios of the Yukawa
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coupling of the Z2 even component and Z2 odd component of the right-handed neutrino
to the SM neutrinos hl2

hl1
are almost the same for all three generations, resulting in nearly

degenerated phases Φl in the Dirac-masses between the KK states and the left-handed
neutrinos of the SM. The allowed parameter space is presented in table 3.2.
It is pointed out that the model is capable of generating Bµe close to the experimental
bounds. As discussed in section 3.2, the contribution to li → ljγ is maximized if the
lightest KK excitation has roughly the W-Boson mass. Due to the suppression of the
Yukawa coupling by the extra dimension it is still possible to generate the observed
neutrino mass with a Yukawa coupling of order one in this case. However, this effect
is not strong enough to produce Bµe close to 10−13. Therefore, some fine tuning of the
brane shift, the ratio of the lowest KK mass to R−1 and hl2

hl1
is necessary. Note that

this behavior is not an exclusive feature of the brane shifted model and is also possible
without a brane shift. In this case, M0 close to 1

2R
−1 is required to generate a sizable

Bµe. However, the brane shift is mandatory to generate two neutrino mass squared dif-
ferences.
A strong prediction of the model within the approximations mentioned above are the
ratios of flavor violating charged lepton decay branching ratios which are correlated with
the neutrino mixing angles and the neutrino mass hierarchy. Thus, the model could be
tested by the next generation of experiments looking for charged LFV. Furthermore,
it could allow for a distinction of the neutrino mass hierarchies by the measurement of
lepton flavor violating processes.
In the following chapter, we will discuss a class of DM models built around additional
right-handed SM singlet neutrinos as the mediators to DM. In the first study, we focus
on models that are only feebly coupled to the SM. The work presented in this chapter
provides a natural realization of a feebly coupled model, as already the coupling of the
bulk neutrino to the SM is suppressed as soon the lightest KK excitation has a mass
below the Planck scale. The coupling of DM to the bulk neutrino could easily be sup-
pressed in the same manner if the DM candidate itself is confined to a lower dimensional
subspace.
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4. The Neutrino Portal to Dark Matter

In the Sections 2.3 and 2.4, we gave an overview of the DM production and phenomenol-
ogy of models involving a portal to DM. Such a scenario typically arises if the DM
candidate is a SM singlet and therefore does not interact with the SM via gauge in-
teractions. This, in turn, necessitates an additional particle to mediate the interactions
between DM and the SM. If we are about to construct renormalizable operators including
a non-SM field that can couple to singlet DM, we are left with three possible choices:

1. Higgs Portal
The Higgs portal arises if an additional scalar η is introduced. This allows for the
quartic scalar interaction λ3

(︁
η†η
)︁ (︁
φ†φ

)︁
, where φ is the SM Higgs doublet. In its

simplest realization η itself can contain the DM candidate. In more elaborated
Higgs portal models η can couple to a larger dark sector, a topic that is extensively
covered in the literature [89].

2. Vector Portal
If an additional U (1) gauge group is added to the model, it introduces an additional
vector boson, which can mix with the gauge boson of the U (1)Y of the SM via
ϵBµνVµν . Here, Vµν and Bµν refer to the field strength tensor of the new and the
SM U (1) respectively. If DM is charged under the new U (1) gauge group, the
mixing induces a electric charge for the DM candidate, which is tightly constrained
by the experiment. Therefore, the mixing between the two gauge bosons must be
small, motivating the term milicharged DM. An analysis of a vector portal with
fermionic milicharged DM can be found in [49,50].

3. Neutrino Portal
If a SM singlet fermion N is added to the SM, it can couple to the SM neutrinos
and the Higgs via a Yukawa coupling yνN̄ φ̃νL. In addition to the potential coupling
to a DM candidate this term generates masses for the SM neutrinos after EWSB.

This chapter is dedicated to the analysis of the neutrino portal to dark matter (NPDM).
It is based on the publication [2] and the forthcoming publication [4]. We start our
discussion by introducing the model and its particle content and give an overview over
the different interactions that can arise. Subsequently, in Section 4.2, we give a detailed
analysis of the feebly coupled regime of the NPDM and determine the parameter space
in agreement with the DM energy density measurement of the Planck satellite and the
phenomenological consequences of the model. In Section 4.3, we enlarge the analysis
to already existing strongly coupled freeze-out solutions of the NPDM and test their
robustness against certain consistency conditions, such as the stability of the scalar
vacuum and perturbativity at high scales.
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4.1. The Model

The NPDM arises if an additional singlet fermion is added to the particle content of
the SM. Already at this stage a potential DM candidate is introduced to the model.
After EWSB, the new fermion mixes with the SM neutrinos. If the resulting heavy
neutrino N ′ fulfills MN ′ < 2me, it can be cosmological stable, as the decay N ′ → νγ
only arises at one-loop level and is suppressed by the small mixing angle resulting from
the tiny Yukawa coupling. This scenario is typically referred to as sterile neutrino DM.
The simplest realization of sterile neutrino dark matter involving direct production via
the feeble coupling (or equivalently the small mixing angle) is already excluded due to a
combination of the Lyman-α measurement and indirect detection experiments, looking
for the decay products of the decay N ′ → νγ in γ-rays from the galactic center. However,
there exist more elaborated production mechanisms, for instance via the decay of an
additional heavy scalar particle as discussed in [53, 90]. Sterile neutrino DM is subject
to an ongoing discussion and a review on this topic can be found in [91].
In this work, however, we take a different approach. We assume that the heavy neutrino
is not the DM candidate itself, as for instance in the case of MN ′ > 2me. In this case,
due to its singlet nature, the additional fermion is perfectly suited to couple to a dark
sector. In the following, we consider a dark sector consisting of a fermion χ and a scalar η.
Both are singlets under the SM gauge groups but must be charged under a global or local
symmetry to guarantee the stability of the DM candidate. Here, we consider a global
symmetry, in turn implying the absence of any vector portal contribution and thereby
allowing for a more clear picture of the effects of the neutrino portal itself. To this end,
we additionally assume in Section 4.2 that the Higgs portal coupling λ3

(︁
η†η
)︁ (︁
φ†φ

)︁
only

has subleading effects compared to the neutrino portal. The implied limits on the Higgs
portal coupling are specified later on and we assume λ3 = 0 during the first part of
the discussion. Note that we do not employ this assumption during the analysis of the
consistency conditions within Section 4.3.
The singlet fermion N couples to the dark sector via a Yukawa coupling yχχ̄ηN and
due to the stabilizing symmetry, the lightest particle of the dark sector constitutes the
DM candidate. Due to the mixing of the new fermion state with the SM neutrinos, the
neutrino portal allows for neutrino mass generation. In the following, we consider the
type-I seesaw, as it requires the smallest number of additional particles, more precisely
two right-handed singlet fermions (N)i. However, in analogy to the three generation
present in the SM, we consider the presence of three right-handed fermions (N)i. For
the moment, we specify on the type-I seesaw NPDM1 with the Lagrangian

L = LSM + (Yν)ij N iφ̃
†
Lj + (Yχ)ij N iη χLj

− 1

2
(MN )ij N iN

C
j − (Mχ)ij χRi χLj + h.c.− V ,

(4.1.1)

and with the potential

V = m2
H φ

†φ+m2
η η

†η +
λ1
2

(φ†φ)2 +
λ2
2

(η†η)2 + λ3 (φ
†φ)(η†η) . (4.1.2)

1For the consistency conditions discussed in Section 4.3.2, we additionally consider a simplified one generation version
of the inverse seesaw mechanism, involving one Dirac fermion N
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After EWSB the active neutrino masses are generated via the type-I seesaw, as discussed
in Section 2.1.1. To ensure that the observed neutrino masses and mixing angles are
reproduced we utilize the following parametrization of the Yukawa coupling matrix Yν
[92]:

Yν =

√
MN

v
R
√
mνU

†
PMNS =

√
MN∆mν

v⏞ ⏟⏟ ⏞
≡yν

R
1√
∆mν

√
mν⏞ ⏟⏟ ⏞

≡R′

U †
PMNS , (4.1.3)

where we assumed the Majorana mass matrix MN to be diagonal with degenerated
eigenvalues, that is MN = diag (MN ,MN ,MN ). Here, UPMNS is the PMNS matrix, v
is the vev of the Higgs field, √

mν is a diagonal matrix with the square root of the
neutrino masses as eigenvalues, R is an orthogonal complex 3 × 3 matrix and ∆mν is
the square root of the large mass squared difference ∆mν =

√︁
∆m2

ν . Note that after
EWSB, the singlet fermion N is not a mass eigenstate anymore. The resulting neutrino
mass eigenstates, ν and N ′ are given by

(︃
νL
N

)︃
= U

(︃
ν
N ′

)︃
≈
(︃

UPMNS Y T
ν vM

−1
N

−YνUPMNS vM
−1
N 1

)︃(︃
ν
N ′

)︃
, (4.1.4)

and the masses of the heavy states are in leading order given by MN . For the sake of a
simpler notation, we refer to the heavy mass eigenstate N ′ as N in the following.
The mixing between the left and right-handed neutrinos causes an interaction between
ν, N and the Higgs as well as a coupling of N to the SU(2)L gauge bosons. As presented
in [29], the resulting interactions between the heavy and the light neutrinos are given
by:

LW ⊃− gW

2
√
2
liW

−
µ γ

µ (1− γ5)BliNjNj + h.c. , (4.1.5)

LZ ⊃− gW
4 cos (ΘW )

Z0
µ

{︁
νīγ

µ
[︁
iIm

(︁
CνiNj

)︁
− γ5Re

(︁
CνiNj

)︁]︁
Nj (4.1.6)

Ni
¯ γµ

[︁
iIm

(︁
CNiNj

)︁
− γ5Re

(︁
CNiNj

)︁]︁
Nj + h.c.

}︁
,

LH ⊃− gW
4MW

h
{︁
2νī
[︁(︁
mνi +MNj

)︁
Re
(︁
CνiNj

)︁
+ iγ5

(︁
MNj −mνj

)︁
Im
(︁
CνiNj

)︁]︁
Nj

(4.1.7)
+Ni

¯
(︁
MNi +MNj

)︁
Re
(︁
CNiNj

)︁
Nj

}︁
.

The matrices B and C are defined as in [29]. In case of real Yukawa couplings, as we
will assume no CP violation from now on, they are given by:

BliNj ≈
v

MN

(︁
Y T
ν

)︁
ij
, CνiNj ≈

v

MN

(︁
UTPMNSY

T
ν

)︁
ij
, CNiNj ≈

v2

M2
N

(︁
YνY

T
ν

)︁
ij
.

(4.1.8)
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Thus, the couplings relevant for heavy neutrino production are given by

LW ⊃ −MW yν√
2MN

(︁
UPMNSR

′T )︁
ij
līW

−
µ γ

µ (1− γ5)Nj + h.c. , (4.1.9)

LZ ⊃ MW yν
2 cos (ΘW )MN

(︁
R′T )︁

ij
Z0
µνīγ

µγ5Nj , (4.1.10)

LH ⊃ −yνh
(︁
R′T )︁

ij
ν̄iNj − y2ν

v

MN
h
(︁
R′TR′)︁

ij
Ni
¯ Nj , (4.1.11)

whereas the coupling of the heavy neutrino to the dark sector is governed by:

Lχ ⊃ −yχηχ̄Ni + h.c . (4.1.12)

Note that the parameters yν and MN are not independent and related by the seesaw
mechanism requiring yν =

√
∆mνMNv

−1. Therefore, the couplings in Eq.(4.1.9)-(4.1.11),
excluding the flavor dependent matrices, can be rewritten as:

ghνN = yν =
√
mνMN
v gWlN,ZνN = yν

MW
MN

=
√︂

mν
MN

MW
v

ghNN = y2ν
v
MN

= mν
v gZNN = gZνN

yνv
MN

= mν
MN

MW
v

(4.1.13)

Thus, for MN ≥MW , the coupling ghνN can be expected to be the largest and the hνN
vertex is the most relevant one for DM production. On the other hand, for MN ≤MW ,
the WlN and ZνN vertices are expected to provide the dominant contribution to the
DM production processes as long as MN ≳ mν .

4.2. A feebly interacting Neutrino Portal to Dark Matter

In this section, we study the part of the parameter space of the model specified above
leading to a freeze-in production of DM. Thus, we require small couplings yν and yχ. In
the context of the type-I seesaw, the coupling yν takes small values for heavy neutrino
masses in the GeV and TeV ranges, as yν ∼ 4 · 10−8

√︁
MN/GeV. On the other hand,

the dark Yukawa yχ is completely unconstrained. In the following, we determine its
value by matching the freeze-in yield to the experimentally observed DM relic density.
The different production channels contributing to the DM abundance are illustrated in
Figure 4.1. The production channels can be classified into two categories: SM Particle
Scattering and Heavy Neutrino Scattering. The SM particle scattering processes involve
two SM particles in the initial state, have χ and η in the final state and are mediated
by the heavy neutrino. As a consequence, the cross section scales as σ ∼ y2νy

2
χ.

The heavy neutrino scattering processes involve two heavy neutrinos in the initial state
and produce a pair of χ or η. Hence the cross section only depends on the dark Yukawa,
σ ∼ y4χ.
As a first approach, we derive analytic one generation results for the relic density in
different limiting cases before solving the Boltzmann equation numerically in a realistic
three generation scenario. Note that the one generation results can be easily translated
to the three generations setup due to the assumption of degenerated heavy neutrino
masses MNi =MN and the universal coupling of the singlet fermions to the dark sector.
In the case of dominant SM particle scattering process νih → χη mediated by Nj , the
one generation result, utilizing a neutrino Yukawa coupling of yν =

√
∆mνMNv

−1, has
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Figure 4.1.: Feynman diagrams for the DM production processes. The upper row shows processes with
SM particles in the initial state, while the lower row displays DM production from heavy
neutrino states.

to be multiplied by
∑︁

i |
∑︁

j

(︁
R′T )︁

ij
|2 = f1 (θ). Here, θ is a vector containing the in our

case three real angles parameterizing the orthogonal matrix R. Choosing the standard
parametrization for an orthogonal three by three matrix we find 10−16 ≲ f1 (θ) ≤ 3.
Note that on average we find f1 (θ) ∼ 1 and roughly 1% of the θ configurations generate
f1 (θ) < 10−2.
The ZνiNj-vertex has the same flavor structure as the hνiNj-vertex, thus the one gen-
eration result for the Zν initial state is multiplied by the same factor as the hν initial
state.
For the Wl initial state, the factor encoding the effects of three generations of singlet
fermions Nj differs and results in f2 (θ) =

∑︁
i |
∑︁

j

(︁
UPMNSR

′T )︁
ij
|2 . Here, we find

10−18 ≲ f2 (θ) ≲ 7.65. A scan over various randomly chosen configurations of the angles
θ for both f1 and f2 shows that on average f2 ≈ 2.5f1. Nevertheless, excluding the
rare cases where f1 is close to its lower bound, the contribution of the hνi initial state
is still dominating the DM production due to the following reason: The production via
the scattering of the SM gauge bosons is only viable for temperatures below the critical
temperature, where the SU(2)L×U(1)Y symmetry of the SM is broken. At larger tem-
peratures initial states involving the Z and W do not contribute to DM production, as
the new fermionic singlet state does not mix with the SM neutrinos. Hence, the time
period of DM production via those initial states is small compared to one of the Higgs
neutrino scattering. Additionally, before EWSB, the Higgs contributes with four degrees
of freedom to the Higgs neutrino scattering. Therefore, we only consider the production
via hνi → χη and the heavy neutrino scattering for the analytic estimates, while all
production channels are taken into account in the numerical solution.

4.2.1. The Relic Density in the case of feeble Interactions

For the rest of the discussion of the freeze-in regime of the NPDM, we assume that the
dark sector particles have roughly the same mass and thus replace mη = Mχ. There-
fore, the relic density is given by the sum of the relic density of η and χ. If one of
the particles is heavier, the relic density is still given by the sum of both quantities, as
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the heavier particle will eventually decay into the lighter one, for instance via η → Nχ,
if mη > MN +Mχ or via a multi-body decays mediated by an off-shell N otherwise.
Firstly, we present the resulting freeze-in yields for the SM particle scattering followed
by the results from the heavy neutrino scattering. Subsequently, the implications of the
results are discussed.

SM Particle Scattering
The reduced cross section for the dominant production channel is given by:

σ̂vh↔χη (s) = y2χy
2
ν

(︂
1− m2

h
s

)︂
s2
√︃(︂

1− 4
M2
χ

s

)︂
16π

[︂(︁
s−M2

N

)︁2
+ Γ2

NM
2
N

]︂ . (4.2.1)

Here, ΓN is the total decay width of the propagating neutrino. There are two cases to
be distinguished:

• The resonant case with MN ≥ 2Mχ, where M2
N ≥ smin.

• The non-resonant case with MN < 2Mχ, where M2
N < smin.

First, we discuss the non-resonant case. In the case of mh ≪Mχ, we can use Eq.(2.3.41)
to determine the relic density analytically. We find

YDM = Yχ + Yη =
34

211π5
y2νy

2
χ√

geffg
s
eff

Mpl

4

√︂[︁
4M2

χ −M2
N

]︁2
+ Γ2

NM
2
N

(4.2.2)

MN≪Mχ
=

34

212π5
y2νy

2
χ√

geffg
s
eff

Mpl
Mχ

, (4.2.3)

where g(s)eff are the number of effective relativistic (entropy) degrees of freedom which
are both assumed to be constant during this calculation with g

(s)
eff = 106.75. This is a

good approximation as long as the production is mainly efficient for temperatures above
100GeV. Note that in the process of obtaining this result the reduced cross section was
multiplied by an additional factor of four arising from the four degrees of freedom of the
Higgs doublet before the electroweak phase transition.
Before we proceed with the discussion of the resonant production we want to comment
on the validity of the approximation of mh ≪Mχ taken in order to arrive at the result
in Eq.(4.2.2). In principle, the z integral appearing in the derivation of Eq.(2.3.41) has
to be split into two parts, namely from z = 0 to z (Tc) with mh ̸= 0 and from z (Tc)
to z → ∞ with mh = 0. Here, Tc is the critical temperature where the SU(2) × U(1)
symmetry is broken and the Higgs and the gauge bosons become massive. For Mχ >

1
2mh

and Mχ ≫MN the integration is still solvable analytically and shows that the deviation
of the approximated result (4.2.3) is 6% at Mχ = mh

2 and goes to zero for Mχ ≫ mh.
Thus, the result is trustworthy as long as Mχ >

mh
2 .

Next, we discuss the resonant case, that is MN ≥ 2Mχ. As it was pointed out in [93], it
is useful to approximate the Breit-Wigner peak in Eq.(4.2.1) with:∫︂ ∞

c
dx

f (x)

(x− a)2 + b2
≈ f (a)

b
, (4.2.4)
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which is valid as long as b≪ a, i.e. ΓN ≪MN .
Then, the integration in Eq.(2.3.41) results in:

YDM (z → ∞) =
27

4π5gseff
√
geff

(yνyχ)
2

y2ν + y2χ

Mpl
MN

, (4.2.5)

where we already used MN ≫Mχ to simplify the result.
Comparing the results given in the Eqs. (4.2.3) and (4.2.5) we find that the DM relic
density scales with M−1

χ in the non-resonant production regime, while in the resonant
production regime we find YDM ∼M−1

N .

Heavy Neutrino Scattering
The cross sections for heavy neutrino scattering in the case of MN ≪Mχ result in

σNN→χχ = y4χ

√︂
1− 4M2

χ

s

8πs
, (4.2.6)

σNN→ηη =
y4χ
2π

⎡⎣(︄1 + 4
M2
χ

s

)︄
log

⎛⎝s− 2M2
χ −

√︂
s2 − sM2

χ

2M2
χ

⎞⎠+ 2

√︄
1− 4

M2
χ

s

⎤⎦ . (4.2.7)

By employing Eq.(2.3.41) again we find:

YDM = Yχ + Yη =
35 · 33y4χ

213π5
√
geffg

s
eff

MPl
Mχ

. (4.2.8)

As for the SM particle scattering in the limit of MN ≪Mχ, the DM density is inversely
proportional to its mass.
In the case where the SM scattering processes are in the resonant regime we cannot find
an analytic estimate for the DM relic density. In terms of masses and couplings it scales
as

YDM ∼
y4χMPl√
geffg

s
effMN

. (4.2.9)

Although the factor of proportionality is unknown we expect this contribution to be
much smaller compared to the contribution of the SM particle scattering. This is due
to the resonance enhancement of the production via SM particle scattering. Hence, we
neglect this contribution for the discussion of the analytic results.

Discussion of the Analytic Results
In the limit of MN ≪Mχ ∼ mη we found analytic solutions for the DM relic density for
both SM particle scattering and heavy neutrino scattering. Combining the results given
in the Eqs. (4.2.3) and (4.2.5) yields:

YDM (z → ∞) =
33

213π5gseff
√
geff

MPl
Mχ

(︁
6y2νy

2
χ + 35y4χ

)︁
. (4.2.10)
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This prediction has to be compared to the experimentally observed DM energy density
by the PLANCK satellite, that results in

YDM,exp =
ΩDM
ΩB

mB

mDM
YB = (4.6± 0.1) 10−10mB

Mχ
. (4.2.11)

The experimental data is taken from [10,94] and in the following, mB, the average baryon
mass, is taken as the mass of the proton.
Since in the non-resonant production regime the DM mass itself is the dominant mass
scale, the relic density scales like M−1

χ . In turn, generating the observed DM energy
density is independent of the DM mass. By comparing the Eqs. (4.2.10) and (4.2.11),
we find (︁

6y2νy
2
χ + 35y4χ

)︁
= (3.9± 0.1) · 10−21 . (4.2.12)

Since the coupling yν is a function of MN only, the coupling yχ is fixed by the heavy
neutrino mass MN . Moreover, we find yχ ≲ 10−5 in order not to overproduce DM. Note,
however, that the latter statement must be relaxed if we consider the fact that the heavy
neutrinos can be out of equilibrium at the time of DM production. In return, this allows
for a larger yχ. The effects of this sequential freeze-in process are investigated during
the discussion of the numerical solution to the Boltzmann equations.
In principle, the couplings yχ and yν are unrelated otherwise. However, both describe
a coupling to the new fermionic singlet and - if the heavy neutrino is lighter than
O
(︁
1015GeV

)︁
- both couplings are required to be relatively small. This motivates the

idea that they might be suppressed by the same mechanism, resulting in yν ≈ yχ.2 Con-
sidering a model that generates yχ ∼ yν allows for constraining the mass of the heavy
neutrino since in such a scenario Eq.(4.2.12) reads

41y4ν = 41

(︃
mνMN

v2

)︃2

= (3.9± 0.1) · 10−21 . (4.2.13)

Thus, in order to generate the observed DM density (4.2.11), MN ∼ 10TeV is required.
Due to the requirement of MN < 2mDM in the non-resonant regime we find a lower
bound on the DM mass of mDM ≳ 5TeV, if we naively assume the behavior for large
DM masses to be also correct for parameters close to the transition of the non-resonant
to the resonant regime.
We arrived at the results discussed above by assuming nN = neq

N , Mχ ≫ MN and by
taking only the dominant process of the SM particle scattering into account. From
Eq.(4.2.10), we see that in the case of yχ = yν the contribution of the heavy neutrino
scattering processes accounts for roughly eighty percent of the produced DM. Thus, the
result will be altered significantly if the heavy neutrinos are out of equilibrium during
the time when the production of DM via heavy neutrino scattering is efficient. Also, we
expect a significant change in areas of the parameter space when Mχ ∼ MN . On the
other hand, taking the subdominant processes into account is not expected to have a
significant impact, as they are suppressed by M2

W

M2
N

and are only accessible after EWSB.
2As an example, such a mechanism could be the extra dimensional model, that we discussed in Chapter 3, where

the fermionic singlet in contrast to all other particles propagates in an extra dimension. Thereby, its coupling gets
suppressed by the reduced wave function overlap [1, 95]. However, a one on one correspondence with the model
presented in Chapter 3 would require R−1 ≫ TReheating, as otherwise all Kaluza-Klein excitations needed to be
considered in the calculation of the relic density.
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For these reasons, we solve the Boltzmann equations numerically for various coupling
structures and present the results in a later discussion.
Additionally, we found an analytic solution for the DM relic density in the limit MN ≫
Mχ, where the SM particle scattering processes are in the resonant regime:

YDM (z → ∞) =
27

4π5gseff
√
geff

(yνyχ)
2

y2ν + y2χ

Mpl
MN

. (4.2.14)

In the case of yχ ≪ yν , the observed DM energy density is reproduced if yχ ≈ 10−12
√︂

MN
Mχ

.
Such a tiny coupling is necessary to remain in the freeze-in regime since the production
cross section is significantly enhanced by the resonance.
However, if yχ ≪ yν does not hold, the approximation of Yχ ≪ Y eq

χ which we used to
derive (4.2.10) does not apply anymore. To illustrate this we inspect the case yχ = yν ,
yielding

YDM (z → ∞) ≈ 33

22π5gseff
√
geff

mνMPl
v2

≈ 10−1 , (4.2.15)

for Eq.(4.2.10). Using Eq.(2.3.5), we find Y eq
DM ≲ 10−2. Therefore, Yχ ≪ Y eq

χ cannot
be satisfied. Hence, the freeze-in scenario does not apply here. Nevertheless, it is still
possible to account for the correct amount of DM. In this configuration, we recover a
freeze-out like scenario. Due to the resonance enhancement of the interaction even small
couplings suffice to equilibrate DM with the SM for temperatures where the resonance
is accessible. Thus, DM comes into equilibrium with the SM at large T and freezes out
as soon as the interaction becomes inefficient. This occurs approximately at T = MN .3
Consequently, the number density can be estimated by the equilibrium density at the
freeze-out temperature

YDM (z → ∞) = Y eq
χ (T ≈MN )

MN≫Mχ
=

45gχ
2π4gseff

≈ 10−3 . (4.2.16)

Equating this result with Eq.(4.2.11) yields a DM mass of Mχ = O (100 eV). In con-
trast to the non-resonant case, this DM mass violates the Tremaine–Gunn bound, that
restricts fermionic DM to have a mass of at least roughly a keV [96]. Therefore, in this
case DM must be bosonic. However, this case is in tension with observations of the
Lyman-α forest, which allows to probe structures in the universe that are of the size
100−2h−1Mpc [97]. This issue is addressed in more detail in Section 4.2.2.
We summarized our results for the case yχ = yν in a schematic plot illustrated in Fig.
4.2.

Numerical Analysis
In this section, we present the results of a numerical solution to the Boltzmann equations
in the non-resonant production regime for different coupling structures yχ = (0.1, 1, 10)yν
and DM masses of Mχ ∈ [102, 1010] GeV assuming different flavor structures, that is
f1 (θ) = (10−1, 1) and f2 (θ) = 2.46 and a normal mass hierarchy in the neutrino sector,

3This is due to the fact that the main contribution to the interaction rate comes from the resonance at s = M2
N . Hence,

as soon as the temperature drops below MN the resonance cannot be reached efficiently anymore and therefore the
interaction rate decreases significantly.
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Figure 4.2.: Parameter space for yχ = yν : The black line divides the plane spanned by the DM mass
Mχ and the mediator mass MN into two halves. The upper (lower) half corresponds to
the resonant (non-resonant) DM production regime. The red and green line show where the
correct amount of DM is produced for the non-resonant and the resonant regime, respectively.
In the non-resonant regime, producing the correct density only depends on the mediator
mass, whereas it only depends on the DM mass in the resonant region.

mν1 < mν2 < mν3 . Additionally, we set mν1 = 0 in the results presented in figure 4.3.
Since we investigate a feebly coupled sector, the back reactions in the DM production
processes can be neglected. Only for the processes N ↔ νh, which produce the mediator
N , the back reactions are relevant, since for most of the parameter space N equilibrates
with the SM.
Therefore, we solve the Boltzmann equation in two steps:

1. The N production via N ↔ νh is solved at the level of the momentum distribution
function, thereby taking into account the non-thermal shape of the distribution. The
details of solving the Boltzmann equations at the level of momentum distribution
functions are given in the end of Section 2.3.2. The collision term for the process
in question is given in Eq.(A.23). Eventually, this procedure results in the quantity
nN
neq
N
(T )4. We take nN

neq
N
(T → ∞) = 0 as our initial condition.

2. Next, we solve the Boltzmann equations for the DM production via heavy neutrino
and SM particle scattering employing the formalism described in Section 2.3.2.
We take vanishing number densities for the DM particles as our initial conditions.
The SM particles are assumed to follow their equilibrium densities throughout the
production process. The heavy neutrino number density is given by the quantity
nN
neq
N
(T ) which we found in step one. The final result is given by YDM = Yχ + Yφ

for T → 0. Note that the independent solution of the Boltzmann equations for
the dark sector particles and the heavy neutrino is only possible due to the tiny
interaction rate, which allows to neglect the back reactions from DM production
via heavy neutrino scattering.

The results are summarized in Figure 4.3. From our earlier considerations in this section,
we expect the setup to reproduce the experimental observations for a constant mediator

4Note that we defined the quantity nN as the sum over all three heavy neutrinos, i.e. nN =
∑︁
j nNj .
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Figure 4.3.: The numerically obtained DM density Yth is compared to the observed DM density Yexp for
different values of the DM mass Mχ and the mediator mass MN : The different colored solid
lines represent the points where the observed DM density is reproduced for a certain coupling
structure. A parameter point above a specific line overproduces DM for the corresponding
coupling structure while points below do not generate enough DM. Lines of the same color
have the same coupling structure. A solid line represents a scenario with of f1 (θ) = 1, while
a dotted represents a scenario with f1 (θ) = 0.1. The black line separates the plane into
the non-resonant (lower right) and resonant (upper left) regime. The latter one was not
scanned. We assumed normal ordering and one massless neutrino.

mass MN as long as Mχ ≫ MN . This constant value can be obtained by solving
Eq.(4.2.12) for a given coupling structure. Consider, for instance, the case yν = yχ, where
Eq.(4.2.12) results in MN ∼ 10TeV. This case is illustrated by the solid blue line in
Figure 4.3. For 10TeV ≤Mχ ≤ 104TeV the prediction is met by the numerical solution.
However, for larger DM masses a larger mediator mass is required to accommodate the
observed relic density. This is due to the following reason: The freeze-in mechanism
produces DM efficiently down to temperatures around the heaviest mass scale involved
in the production process. For the non-resonant regime this mass scale is given by the
DM mass itself. Therefore, DM production is efficient for T ≳Mχ. The mediator mass,
and thereby the neutrino Yukawa coupling yν , required to generate the observed DM
relic density start to increase as soon as nN

neq
N
(T ) ≪ 1 for T ≳ Mχ, since this suppresses

DM production via heavy neutrino scattering. In the case of yν = yχ heavy neutrino
scattering accounts for 35

41 of the produced DM if the heavy neutrinos are following their
equilibrium density during the time of production. If this contribution is missing, it has
to be compensated by a larger neutrino Yukawa coupling resulting in a larger mediator
mass MN .
The heavy neutrinos reach thermal equilibrium with the SM via the inverse decay νih→
Nj for a temperature Teq ∼ cMN . The factor c is independent of the neutrino Yukawa
coupling yν and the parameters θ, which encode the flavor structure of the neutrino
Yukawas. However, it depends on the sum of the three active neutrino masses since
the decay rate is proportional to this sum. The evolution of the heavy neutrino number
density is shown in Figure 4.4. Here, the heavy neutrinos reach equilibrium for T ≈
10−3MN . Therefore, the lines in Figure 4.3 indicating the observed value of the relic
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density start to deviate significantly from a constant value of MN for Mχ > 103MN , since
in this case nN

neq
N
(T ) < 1 for the complete time of production taking place for T ≳ Mχ.

A constant value of MN is reached again when the contribution of the heavy neutrino
scattering becomes negligible.
For f1 (θ) = 0.1, the contribution of SM particle scattering is suppressed by a factor
of 10. Thus, a larger coupling compared to the case of f1 (θ) = 1 is required. This
effect can be seen in Figure 4.3 where all dotted lines lie above the solid line of the same
color. The effect is more pronounced for large DM masses, as the SM particle scattering
dominates the DM production for Mχ ≳ 103MN .
The different couplings structures result in larger (smaller) mediator masses for a small
(large) dark Yukawa coupling compared to the neutrino Yukawa. Additionally, the
effect of a small f1 (θ) differs for a small (large) dark Yukawa. While the increase of the
mediator mass with a larger DM mass becomes less significant for a small dark Yukawa,
the absolute difference between the small and large f1 cases becomes stronger. This is
due to the varying relative contributions to the DM production from heavy neutrino and
SM particle scattering for the different coupling structures. For instance, the coupling
structure yχ = 0.1yν has a larger contribution to the DM production from the SM
scattering and therefore results in a larger discrepancy between the dotted and solid
green line.
For small DM masses close to the transition to the resonant regime, the correct DM
relic density is obtained for values of MN very close to MN = 2Mχ. In Figure 4.3,
all lines follow the black line down to small DM masses until the enhancement close to
the resonance is not strong enough to generate a sufficient amount of DM. However,
the numerical solution is not trustworthy in this area due to numerical instabilities
and therefore not presented here. We estimate the lower bound on Mχ by evaluating
Eq.(4.2.2) in the limit MN → 2Mχ. In the case of yχ = αyν , we obtain Mχ ≳ α− 4

3 MeV.

4.2.2. Constraints on the feebly coupled Neutrino Portal to Dark Matter

In this section, we discuss several constraints on the model, arising from structure for-
mation and direct detection experiments. We also comment on rare lepton decays as
well as indirect detection experiments.

Structure Formation
As briefly discussed in Section 2.4.2, DM interacts only weakly with the SM and thus can
escape from gravitational wells formed in the early universe, thereby delaying structure
formation below their free-streaming scale. Given the redshift zprod and the average
momentum pprod at the production time, the average the free-streaming scale is given
by

λfs =

zprod∫︂
0

dz
v (z)

H (z)
, (4.2.17)

where v (z) is the DM velocity at a given redshift z. Here, we use the upper bound on
the free streaming length, λfs ≲ 0.1Mpc, derived in [68] to constrain the DM mass. As
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Figure 4.4.: The ratio of the heavy neutrino density to its equilibrium density against the dimensionless
quantity z = MNT

−1 for
∑︁
imνi = 0.06 eV (

∑︁
imνi = 0.23 eV) [94], corresponding to the

lower (upper) bound on the sum of the three active neutrino masses. Since the production
rate of N is proportional to the sum of the active neutrino masses this choice shows the
earliest and latest point of equilibration. The heavy neutrinos reach equilibrium for T ≈
10−3MN in both cases. In Figure 4.3, the lower bound on the sum of the neutrino masses
was used, but the results are negligibly different when considering the upper bound.

it was pointed out in [53], the free-streaming scale should be understood as an order-of-
magnitude estimate in the case of a non-thermal DM momentum distribution and may
differ up to O (1) factors from results obtained with dedicated tools like the CLASS-code.
The latter computes the linear-matter-power spectrum resulting from the addition of the
DM candidate.
For the purposes of this work, a rough estimate of the free-streaming length suffices,
firstly because the non-thermal momentum distribution produced by the resonant freeze-
in process, Eq.(A.21), is close to a thermal shape and secondly because the resonantly
produced DM for the freeze-out case will be excluded by this method by roughly two
orders-of-magnitude.
In the case of resonant production with yν ≲ yχ, we can assume DM to have a Boltzmann
like momentum distribution, that is f (p, T ) = exp

(︁
−EpT−1

)︁
. We take the time of

production as the freeze-out temperature since the interactions of DM with the SM
cease to be efficient from this point on. For this momentum distribution the average
momentum is given by

pprod =
M2
χ + 3MχTprod + 3T 2

prod
Mχ + Tprod

. (4.2.18)

Comparing the interaction rate Γ of the process vh → χφ in the resonant regime to
the Hubble parameter we find Tprod ∼ MN . For mediator masses MN ≳ MeV, the
free-streaming scale becomes insensitive to the mediator mass itself. In this case, we
find a lower bound on the DM mass of Mχ ≳ 10 keV. However, we found in Section
4.2 that a DM mass of 0.1 keV is required in order not to overproduce DM within this
scenario. This is two orders of magnitude below the estimated lower bound. Therefore,
the resonant production regime with yν ≲ yχ is excluded by the Lyman-α measurement.
On the other hand, if yχ ≪ yν , DM does not equilibrate with the SM even in the reso-
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Figure 4.5.: 1-Loop diagram generating the effective coupling of DM to the Z. The indices i, j run from
1 to 3.

nant production regime. Therefore the spectrum is non-thermal and given by Eq.(A.21).
We take zprod (Tprod) as the temperature where the derivative of the total particle num-
ber with respect to the time is maximized. We find Tprod = 3.36MN , which results in
pprod = 0.4Tprod. Again, for MN ≫ Mχ, the free-streaming scale is insensitive to the
mediator mass and the lower bound on the mass results in Mχ ≳ 3 keV.
To summarize, the Lyman-α measurement strongly constraints the resonant production
regime of this model. While the case where the resonant enhancement of the production
cross section is strong enough to equilibrate DM with the SM is completely ruled out,
the freeze-in regime remains accessible for couplings yχ ≲ 10−12

√︂
MN
keV , with Mχ ≳ 3 keV.

Note that recently the free-streaming length has been constrained by a comprehensive
study of the Milky Way’s satellite galaxies and the DES collaboration [98] finds λfs ≲
0.01h−1MPc. If we consider this upper limit on the free streaming length instead, we
find Mχ ≳ 35 keV for the case of resonantly produced DM with yχ ≲ 10−12

√︂
MN
keV ≪ yν .

The case of resonantly produced DM with yχ ≳ yν remains excluded.

Direct Detection
Direct detection experiments search for interactions of DM with nuclei. In this model,
a coupling of DM to the Z boson is generated at one-loop level. The corresponding
Feynman diagram is shown in Figure 4.5. The coupling to the Z is then given by
L ⊃ gZχχχ̄γ

µPLχZµ with [99]

gZχχ =−
y2χ

16π2
gw

4 cos θw

∆mν

MN
2.3 · g

(︄
M2
N

m2
φ

)︄
, (4.2.19)

and

g (x) =
x [(x+ 2) log (x) + 3 (1− x)]

2 (1− x)2
, (4.2.20)

where we have used the best fit values of [100] for the parameters of the PMNS matrix

in the case of normal ordering yielding
3∑︁

k,m=1

(︁
Y T
ν Yν

)︁
km

≈ 2.3 ·y2ν . As DM couples to the

SM quarks via the Z, we can use the results from Section 2.4.1 for the vector mediated
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Figure 4.6.: The expected direct detection signals for the coupling structures investigated within chapter
4.2 are compared to the current bounds from XENON1T [60] (dashed black curve). The dip
in the red curve is due to a cancellation appearing in the loop function.

SI cross section, given in Eq.(2.4.10), to compare the predicted DM-nucleon cross section
to the experimental constraints from the XENON1T [60]. The results are illustrated in
Figure 4.6. The model is clearly not constrained by direct detection experiments, which
is typically the case for DM produced via freeze-in. There exist scenarios which allow
for a large direct detection signature even in a freeze-in scenario [101]. In [101], the cross
section is enhanced by a resonance induced by a light mediator.5 Since the interaction
in our model is mediated by a Z boson, this does not apply here.

Indirect Detection and Lepton Flavor Violation
Prospects for indirect detection of DM, such as the observations of γ-rays from the galac-
tic center or the precise measurement of the CMB, all rely on the efficient annihilation
of DM into SM particles. In the case of neutrino portal DM this usually occurs via
DM first annihilating into heavy neutrinos which subsequently decay or annihilate into
SM particles. Several prospects for indirect detection were investigated in [102] in the
case of freeze-out production of DM. For the freeze-in scenario investigated in this work,
the process is efficient only in the direction of DM production due to tiny couplings in-
volved. This leads to a suppression of the annihilation cross section < σv > which enters
all observables of indirect detection considered in [102], since the couplings yν and yχ
are required to be feeble. For this reason we do not study indirect detection observables
within this work. Note however, that decays of a meta-stable slightly heavier dark sector
scalar, η → χν could potentially constrain parts of the parameter space, as was shown
in [103].
The minimal version of the type-I seesaw mechanism employed here induces couplings
of the SM gauge bosons and the Higgs to the heavy neutrino states. This can modify
electroweak precision observables and induce charged LFV as well as additional Higgs
decay channels in the case of a light heavy neutrino [46,104]. The strongest constraints
come from the decay µ → eγ with B (µ→ eγ) ≤ 4.2 · 10−13 [94]. Within this setup the
decay is mediated at one-loop level by a W boson and a neutrino. The branching ratio

5More precisely this refers to a case where the mediator is not more massive than the typical recoil energies involved in
DM-nuclei scattering.
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of this process results in [45]:

Γ (µ→ eγ)

Γ (µ→ νµeν̄e)
=

3α

32π

|
6∑︁

k=1

UµkU
†
ekF (xk) |2

3∑︁
k,j=1

UµkU
†
µkUelU

†
el

, (4.2.21)

where F (xk) is a loop function with xk = m2
kM

−2
W . Since we assumed the heavy neutrinos

to be mass-degenerate and the light neutrino mass is tiny compared to mW we split the
sum in the numerator into two parts with F (0) = 10

3 and F
(︂
M2
N

M2
W

)︂
. Additionally we

neglect the small deviation from one in the diagonal elements of UPMNSU
†
PMNS in the

denominator. Since the mixing matrix U is unitary we find

Γ (µ→ eγ)

Γ (µ→ νµeν̄e)
=

3α

32π

∆m2
ν

M2
N

(︃
F (0)− F

(︃
M2
N

M2
W

)︃)︃2 ⃓⃓⃓⃓ (︃
UPMNS

mν

∆mν
U †

PMNS

)︃
µe

⃓⃓⃓⃓2
.

(4.2.22)

Taking the best fit values from [100] we find
(︂
UPMNS

mν
∆mν

U †
PMNS

)︂
µe

= 0.12. Thus, we
can give the branching ratio as a function of the heavy neutrino mass only since the free
parameters of the orthogonal matrix R cancel within this setup [92]. This expression is
maximized for MN = 1.36MW and results in

Γ (µ→ eγ)

Γ (µ→ νµeν̄e)
=

3α

32π

∆m2
ν

M2
W

0.122 · 0.266 ≈ 10−31 , (4.2.23)

which is far below the experimental limit. For this reason, we also expect other LFV
and electroweak precision observables not to significantly constrain the scenario.
Another imprint of this model could be found in additional decay channels of the Higgs if
MN < mh

2 . In this case the decays h→ νiNj and h→ NiNj are kinematically accessible.
As pointed out in [105, 106], the dominant contribution of those to decay comes from
the decay into a heavy and a light neutrino. However, branching ratios of this process
larger than 10−2 are already ruled out and are typically much smaller due to the tiny
Yukawa coupling [106]. Therefore, the contribution is negligible.

4.2.3. Conclusion

In this section, we have investigated a minimal NPDM model. The SM is extended
by three SM singlet fermions which generate the neutrino masses via a type I seesaw
mechanism and, furthermore, act as mediators between the SM and DM. The dark sector
consists of a boson η and fermion χ coupled to the singlet fermions N via a Yukawa
coupling yχ. In the light of the small couplings arising in type-I seesaw scenarios in case
of small heavy neutrino masses of MN ≲ O (PeV), we studied DM production via the
freeze-in mechanism.
We derived analytic solutions for the number density in the resonant (MN > Mχ +mη)
and non-resonant (MN < Mχ+mη) DM production regime. Depending on the coupling
structure, more precisely the ratio of the dark Yukawa coupling to the neutrino Yukawa
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coupling α =
yχ
yν

, we can predict the heavy neutrino mass in the non-resonant regime.
For instance, we find MN ∼ 10TeV in the case of α ∼ 1 or MN ∼ 10TeV ·α−1 in case of
α≫ 1. The non-resonant regime was studied in more detail numerically and the results
are illustrated in Figure 4.3.
In the resonant regime, for α ≳ 1, the resonant enhancement of the DM production
cross section brings the dark sector into equilibrium with the SM. Thus, the freeze-out
mechanism is recovered although the couplings between DM and the SM are feeble.
Moreover, in this scenario we can predict a DM mass of Mχ ∼ 100 eV. This result
directly contradicts measurements of the Lyman-α forest that put a lower bound on of
Mχ ≳ 10 keV on the DM mass in this scenario. Hence, resonant DM production via
the neutrino portal with α ≳ 1 is excluded by the experiment. For α ≪ 1, nonetheless,
DM production can still proceed via freeze-in production within the resonant regime.
To satisfy the observed DM energy density the coupling of the fermionic singlets to DM
must be of order yχ ∼ 10−12

√︂
MN
Mχ

. Additionally, the Lyman-α measurement requires
Mχ ≳ 3 keV in this scenario and limits on the free-streaming length derived from a recent
study of the Milky Way’s satellite galaxies result in the more restrictive lower bound of
Mχ ≳ 35 keV. Charged LFV, Higgs decays, indirect detection and direct detection have
little impact on our parameter space due to the feeble coupling of the SM to the dark
sector and the singlet nature of the mediator. The resonant production regime and the
non-resonant production regime with α ≫ 1 require heavy neutrino states in the GeV
mass range that could be potentially probed by upcoming hidden-sector searches, such
as SHIP [107]. This possibility, however, will be addressed in a future work.
In the next Section, we generalize our analysis to a more strongly interacting version of
the NPDM, as studied for example in [105,108].

4.3. Consistency Conditions on the strongly coupled Neutrino Portal to Dark
Matter

In this Section, we discuss several consistency conditions on the class of NPDM mod-
els utilizing the type-I seesaw mechanism. The corresponding Lagrangian is given in
Eq.(4.1.1). In addition to the feebly coupled version investigated in the previous section,
we devote the largest part of our discussion to the freeze-out regime of the NPDM, as it
will be more severely constrained by the considered consistency conditions. Please note
that the results presented in this section are part of an ongoing project.
Whereas the DM and LHC phenomenology of those models has been partially addressed
in the literature and allows to constrain the parameter space [2,102,105,108], an impor-
tant theoretical consistency check is missing so far. Already the type-I seesaw can render
the scalar vacuum unstable, as it introduces a new fermion loop as a correction to the
Higgs self-energy [109]. Since the NPDM introduces an additional scalar, the form of
the scalar potential is altered. This scalar mediates the DM-heavy neutrino interaction.
Thus, its mass term and quartic coupling receive negative contributions from a fermion
loop consisting of the dark fermion and the heavy neutrino. The corresponding Feynman
diagrams are illustrated in Figure 4.7. At high scales this contribution can flip the sign
of the mass term or the quartic coupling of the dark scalar. While the former can break
a potential DM stabilizing symmetry, the latter leads to an unstable vacuum. Note that
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Figure 4.7.: One-loop diagrams contributing with a negative sign to the β function of m2
η (left hand side

diagram) and λ2 (right hand side diagram). Both contributions are more significant for a
larger dark Yukawa coupling yχ, as they scale like y2χ and y4χ, respectively.

we do not include an analysis of metastable regions of the scalar potential in our study
and only investigate if absolute stability criteria of the scalar vacuum are violated. Simi-
lar effects are observed in the scotogenic model where either the stabilizing Z2 symmetry
can be broken [110] or the vacuum becomes unstable [111]. The renormalization group
equations (RGE) for the scotogenic model were first discussed in [112, 113] and in [114]
an extension of the scotogenic model avoiding Z2 breaking was presented. While the
Z2 symmetry is restored at large temperatures the quartic coupling remains unaffected
by thermal corrections at leading order [115, 116]. Thus, the unstable vacuum remains
problematic.
In the following, we randomly generate a set of data points reproducing the observed

relic density and satisfying the bounds from direct detection and collider experiments.
We take those data points as the initial condition at the DM scale, which is defined be-
low, for a numerical solution of the RGE. Afterwards, we check if the solution satisfies
the following criteria:

1. Stability of the scalar vacuum: In the case of the scalar potential given in Eq. 4.1.2,
this requirement directly translates to lower bounds on the quartic couplings of the
scalar potential, namely

λ1 > 0 , λ2 > 0 , λ3 > −
√︁
λ1λ2 . (4.3.1)

2. Perturbative couplings: This for instance requires λi < (4π)2 for quartic couplings
and yi < 4π.

4.3.1. Dark Matter Phenomenology in the strongly interacting Type-I Seesaw Neutrino
Portal to Dark Matter

The Lagrangian of the model is given in Eq. (4.1.1). The new parameters relevant for
the DM phenomenology and the RGE running are the Yukawa matrices (Yχ)i and (Yν)ij ,
the quartic coupling of the new scalar λ2, the Higgs portal coupling λ3, the masses of the
dark sector particles Mχ and mη and the masses of the new heavy neutrino states (MN )i.
We assume the different generations of heavy neutrinos to be of the same mass and to
couple universally to the dark sector, that is (Yχ)i = yχ. The neutrino Yukawa matrix is
again parametrized by Eq.(4.1.3) and therefore given in terms of the parameters yν and
θ which is a vector of three (complex) angles. Thus, a data point contains the following
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parameters

(MN ,Mχ,mη, yν , θ, yχ, λ3, λ2, µDM) , (4.3.2)

where µDM is the energy scale of DM production.
The available parameter space for the freeze-in production of DM in the context of the
type-I seesaw NPDM was at length discussed in Section 4.2. We generate the data points
using the approximated analytic solutions given Section 4.2.1 and check if the point sat-
isfies the Lyman-α constraints. We further require that the dominant contribution to the
relic density comes from the neutrino portal and therefore set the Higgs portal coupling
to λ3 = 0 in all freeze-in data points.
In the context of freeze-out production of DM, the model was investigated in [105,117].
We repeat and improve their analysis in the following by discussing the constraints on
the parameter space from invisible Higgs decays, direct detection experiments and the
observed relic density.

Higgs Decays
All new particles couple at tree or one-loop level to the Higgs. Thus, if MN ≤ mh

2 ,
Mχ ≤ mh

2 or mη ≤ mh
2 , invisible Higgs decays into a pair of the new particles might

provide sizable contributions to the Higgs decay width. The branching ratio of invisi-
ble Higgs decays is constrained by the CMS collaboration to B (H → inv) < 0.19 with
ΓH = 4.1MeV [79].
If H → ηη, H → χχ and H → νN are kinematically allowed, the decay width for
invisible Higgs decays results in

ΓH→inv =
λ23
8π

v2

m2
H

√︄
1− 4

m2
η

m2
H

mH +
λ2eff
8π

(︄
1− 4

M2
χ

m2
H

)︄ 3
2

mH

+
M2
N

8πv2
|
∑︂
α,i,j

UαiU
∗
αj |2

(︃
1−

M2
N

m2
H

)︃2

mH , (4.3.3)

with

λeff =
3y2χλ3

32π2

M2
χ −

(︁
m2
η − 3M2

χ

)︁
log
(︂

m2
η

m2
η−M2

χ

)︂
M2
χ

, (4.3.4)

the effective χ̄χΦ coupling at one-loop, Uαi are elements of the leptonic mixing matrix
and the sum is evaluated for all combinations for i, j that refer to one light and one
heavy neutrino. Note that the expression for λeff assumes MN = 0 and does not include
contributions stemming from light neutrinos propagating in the loop, which come with
an mixing angle suppression compared to the heavy neutrino contribution. In our nu-
merical calculation we include the full loop integral with MN ̸= 0. Furthermore, the
effective coupling differs from the one given in [117], as Mχ = 0 was assumed in their
work. We consider the case Mχ ̸= 0 since the masses of the dark sector particles χ
and η are comparable in many scenarios, for instance in a setup allowing for efficient
coannihilation.
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Figure 4.8.: Different contributions to the SI direct detection cross section. For fermionic DM the in-
teraction is mediated at one-loop level, while for scalar DM a tree level contribution exists,
which is generated by the Higgs portal coupling.

In addition, we neglected any contributions to the Higgs invisible decay width from fi-
nal states involving either two light or two heavy neutrinos, as they are subdominant
compared to the mixed decay. Within the type-I seesaw setup, the decay width into a
heavy and a light neutrino scales as ΓH ∼ mν

v ∼ 10−11 and is thus negligible as well.
For mη ≪ mH the H → ηη channel alone yields the constraint λ3 ≲ 7 · 10−3. Hence
the Higgs portal contribution is expected to be small for light dark sectors. For our
numerical analysis we use the decay width given in Eq.(4.3.3).

Direct Detection
The XENON1T experiment provides stringent limits on the DM nucleon scattering cross
sections for mDM ≳ GeV. In the case of scalar DM η, DM-nucleon scattering is induced
at tree-level by a t-channel exchange of a SM Higgs. For fermionic DM χ, interactions
with quarks arise at one-loop level via Higgs or Z boson exchange. The various con-
tributing diagrams are displayed in Figure 4.8.

Using the result for the spin-independent cross section in case of a scalar mediated
coupling of scalar DM to quarks given in Eq.(2.4.8) and (2.4.4), we find for the SI
DM-nucleon cross section in case of scalar DM η

σSI =
µ2ηNλ

2
3v

2

8πm4
Hm

2
η

(︄
Zf̃

2
p + (A− Z) f̃

2
n

A

)︄2

, (4.3.5)

where µηN is the reduced mass of the DM-XENON system, Z is the number of protons in
XENON and A its number of nucleons. Therefore, direct detection directly constraints
the Higgs portal coupling λ3 in the case of scalar DM and we find that for 10GeV ≲
mη ≲ 3TeV a dominant Higgs portal contribution to DM annihilations is excluded by
the XENON experiment.
For fermionic DM, on the other hand, the interaction is mediated at one-loop level via
Z or Higgs exchange. The Higgs mediated diagram can again be evaluated by means of
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Eq.(2.4.8) and (2.4.4) and results in

σSI =
µ2ηNλ

2
effv

2

2πm4
H

(︄
Zf̃p + (A− Z) f̃n

A

)︄2

. (4.3.6)

In this case, direct detection constrains the coupling combination y2χλ3 and due to the
one-loop suppression the constraints are significantly weaker.
The contribution of the Z mediated diagram can be derived from Eq.(2.4.10) and yields

σSI =
µ2χNg

2
v

πm4
Z

[︂
Zb̃p + (A− Z) b̃n

]︂2
A2

. (4.3.7)

In the limit of zero outer momentum, the effective vector coupling of χ to the Z is given
by

gV ≈ 1√
2

yνv

MN

y2χ
16π2

m2
η

M2
N
− 1− log

(︂
m2
η

M2
N

)︂
4
(︂
1− m4

η

M4
N

)︂ . (4.3.8)

Due to the typically small values for yν in the context of the type-I seesaw, this contri-
bution is subdominant compared to the contribution arising from the Higgs exchange.
Thus, for fermionic DM the Higgs portal potentially provides a sizable contribution to
the DM annihilation rate, given a small dark Yukawa coupling yχ. Note, however, that
for a dominant Higgs portal contribution, in the case of fermionic DM, coannihilation
effects must be efficient and therefore require a mass degenerate dark sector Mχ ∼ mη.

Relic Density
In a freeze-out scenario and in the absence of coannihilations, the relic density is deter-
mined by the thermally averaged annihilation cross section of the annihilation channel
that decouples latest. Within the type-I seesaw the neutrino Yukawa matrix Yν is given
by Eq.(4.1.3), and its entries are of order yν =

√
MN∆mν

v . This requirement already rules
out a scenario in which the heavy neutrinos are heavier than the DM candidate, more
precisely MN > min [mη,Mχ]. Given this mass hierarchy, DM annihilations into a pair
of heavy neutrinos are kinematically suppressed and the dominant annihilation channel,
annihilations into light neutrinos χ̄/η̄ χ/η → ν̄ν, arises at one-loop level. Therefore,
the annihilation cross section is suppressed by the loop factor and the small neutrino
Yukawa6 and we find σ ∼ y4ν [118]. In such a scenario, DM would be far too abundant
in the universe, as thermal freeze-out would occur too early. Thus, we restrict our study
to cases where the heavy neutrino is lighter than the DM candidate. Additionally, we
do not take into account effects stemming from resonant enhancement in s-channel pro-
duction via the Higgs portal, for example in case of mDM = mH

2 .
We distinguish two scenarios, namely fermionic and scalar DM. The dark fermion mainly
annihilates via χ̄χ → N̄N , while the dark scalar has two competing annihilation chan-
nels: η∗η → N̄N via the dark Yukawa yχ and η∗η → Φ†Φ via the Higgs portal coupling
λ3. Additionally, in the case of mη < mH , contributions from Higgs mediated s-channel

6A large neutrino Yukawa coupling requires very massive heavy neutrinos, which as well would suppress the annihilation
cross section as the heavy neutrino propagates in the loop.
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annihilations into SM fermions with a mass smaller than the DM candidate, η∗η → f̄f ,
arise.
As discussed in Section 2.3.3, the relic density in the case of an s-wave annihilation can
be estimated by the inverse of the leading order contribution σ0 in the relative velocity
v of < σAv >. Using the results of [105], we arrive at

ΩDM =

√
geff

geff,s

3.79xf
MPlmBσ0

ΩB
YB

, (4.3.9)

with

xf = ln

[︃
0.038

geff,s√
geff

MχMPlσ0

]︃
− 1

2
ln

(︃
ln

[︃
0.038

geff,s√
geff

MχMPlσ0

]︃)︃
, (4.3.10)

and σ0 is the zeroth order contribution to the thermally averaged annihilation cross
section. In the case of fermionic DM it is [105]

σ0
(︁
χ̄χ→ N̄N

)︁
=

y4χ
πM2

χ

(︃
1 +

MN

Mχ

)︃2

√︃
1−

(︂
MN
Mχ

)︂2
(︂
1 +

m2
η

M2
χ
− M2

N
M2
χ

)︂2 , (4.3.11)

while for scalar DM the two contributing annihilations result in [105]

σ0
(︁
η∗η → N̄N

)︁
=

y4χ
2πm2

η

(︃
1 +

MN

mη

)︃2

√︃
1−

(︂
MN
mη

)︂2
(︂
1 +

M2
χ

m2
η
− M2

N
m2
η

)︂2 , (4.3.12)

and

σ0

(︂
η∗η → Φ†Φ

)︂
= λ23

√︂
m2
η −m2

h

64πm3
η

. (4.3.13)

Further we include the Higgs mediated s-channel annihilations η∗η → W+W−/ZZ/f̄f
that scale as λ23g22 and λ23y

2
f respectively. The corresponding thermally averaged cross

section are given in [119]. In our numerical analysis all of these contributions are in-
cluded.
Next, we estimate the minimally allowed neutrino portal coupling in the case of a vanish-
ing λ3. Aiming for an analytic lower bound on yχ in the case of fermionic DM, we neglect
the logarithmic mass dependence in the freeze-out temperature given in Eq.(4.3.10) and
assume xf = xf,0 ∼ 30. CMB measurements indicate ΩDM = 0.265 and here we shall
rule out a model if it exceeds this value.7 Using Eq.(4.3.9), we find

σ0 >

√
geff

geff,s

3.79xf,0
MPlmB

ΩB
YB

1

0.265
≡ K ≈ 6.72 · 10−11xf,0 . (4.3.14)

7A lower value is not in disagreement with the measurement in the sense that the missing energy density could be
accommodated for by another DM component.
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The right-hand side of this equation is independent of the dark Yukawa and the dark
sector masses. In the case of fermionic DM, λ3 = 0 and mη ≫Mχ, σ0 amounts exactly
to the contribution given in Eq.(4.3.11) and therefore we find

y4χ
M2
χ

· f
(︃
MN

Mχ
,
mη

Mχ

)︃
> K . (4.3.15)

To find a lower bound on yχ in terms of Mχ we need to find the maximum of f , which
is given by f (0.82, 1) ≈ 0.10. Thus we expect

yχ ≳ 0.012

√︃
Mχ

GeV
. (4.3.16)

However even in the case λ3 = 0, this value can potentially be further decreased by
coannihilations if Mχ ∼ mη. In such a scenario, annihilations of the dark scalar can
effectively enhance the annihilation cross section resulting in

σeff
0 = σ0

(︁
χ̄χ→ N̄N

)︁
+ r212σ0

(︁
η∗η → N̄N

)︁
, (4.3.17)

where r12 is given in Eq.(2.3.36) and the indices 1 and 2 refer to χ and η respectively.
Evaluating Eq.(4.3.17) at T = Tfo, so that Mχ

T = xf,0 ∼ 30, again employing Eq.(4.3.9)
and determining the mass ratios MN

Mχ
and mη

Mχ
so that σeff

0 is maximized, results in the
minimally allowed dark Yukawa yχ. The changes due to coannihilations in the case of
λ3 = 0 are small and the effect on the lower bound presented in Eq.(4.3.16) is negligible.
Note that, for a sizable λ3, coannihilations via Higgs-portal-mediated annihilations can
dominate the effective annihilation cross section. This, however, requires a small mass
splitting in the dark sector, as the scalar annihilation contribution is suppressed by
exp

(︂
−mη−Mχ

Mχ
xf,0

)︂
.

Similarly, for scalar DM with λ3 = 0 we find

yχ ≳ 0.012

√︃
mη

GeV
, (4.3.18)

which resembles the case of fermionic DM. To sum up, we expect viable data points for
sets of DM masses and yχ that satisfy the lower bounds given in the Eqs. (4.3.16) and
(4.3.18). In a scalar DM scenario, we do not expect sizable Higgs portal contributions
for mη ≲ 3TeV due to the tight constraints on λ3 from the XENON1T experiment. For
mη ≳ 3TeV, however, large Higgs portal contributions may generate viable data points
with a smaller yχ than allowed for by the lower bound that assumed a vanishing λ3.
On the other hand, fermionic DM is not as tightly constrained by direct detection ex-
periments due to the one-loop suppression of its coupling to the Higgs. Thus, even for
Mχ ≲ 3TeV Higgs portal contributions might be sizable given a small yχ. For Mχ <

mh
2 ,

the constraints on the Higgs invisible decay width still rule out any sizable Higgs portal
contribution.

4.3.2. Analytic and Numerical Results to the Renormalization Group Equations

In this section, we present analytic and numerical solutions to the RGEs for the randomly
generated data points that are in agreement with the DM phenomenology discussed in
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the previous section.
We take the generated values as the initial conditions for the couplings and masses at
the scale µDM that determines the scale of DM production. In the case of freeze-in
production of DM, this mass scale is given by the maximal mass scale involved in the
production process. Conversely, for freeze-out production µDM is set by the freeze-out
temperature, which is given by mDMx

−1
f and xf is determined during the numerical

computation of the relic density. A typical value is xf ∼ 30. Thus

µDM =

{︃
Max [Mχ,mη,MN ] , for freeze-in production.
Min [Mχ,mη]x

−1
f , for freeze-out production. (4.3.19)

We computed the RGEs for the type-I seesaw NPDM with ARGES at one-loop level
and the relevant β-functions are given in Appendix C.
Consider first the Higgs quartic λ1, and assume that the renormalization group flow of the
gauge and Yukawa couplings of the SM is approximately unaltered. This approximation
is justified in the fact that the running of these couplings is typically logarithmic with
the energy. Hence, βλ1 is then only modified by a term proportional to λ23, which is
positive, and thus can only help to stabilize the vacuum. The remaining new terms are
proportional to Tr[Y †

ν Yν ] and Tr[(Y †
ν Yν)

2], which are typically small in the context of the
type-I seesaw. Thus, we expect the new sector not to introduce important deviations in
λ1.
In the case of λ2, the contribution from the dark Yukawa, proportional to Tr[(Y †

χYχ)
2],

may drive the coupling to negative values; an analogous effect was described in [111] for
the scotogenic model. Taking yχ to be approximately constant, the scale µλ2 at which
λ2 approaches negative values may be estimated by only considering the contributions
from the term quartic in the dark Yukawa. We obtain

ln
µλ2
µDM

∼ 4π2λ2(µDM)

y4χ
, (4.3.20)

Demanding the vacuum to be stable up to the Planck scale, that is µλ2 > MPl, places
constraints on yχ for a given µDM.
Next we consider yχ, the running of which depends only on the neutrino Yukawa Yν
and yχ itself. If we assume yχ ≫ yν , the beta function for yχ βχ can be integrated and
|yχ| increases with the energy scale. Thus, we can estimate the scale µyχ at which yχ
becomes unperturbative, more precisely |yχ

(︁
µyχ
)︁
| = 4π. We find

ln
µyχ
µDM

∼
16π2 − y2χ,0

8y2χ,0
, (4.3.21)

with yχ,0 = yχ (µDM). Using this result allows for a more precise estimate of the scale µλ2 .
In addition to Tr[(Y †

χYχ)
2], we include the terms proportional to λ22 and λ2Tr[(Y

†
χYχ)]

in βλ2 to account for the stabilizing effects of a sizable λ2. While we cannot find an
expression for ln

µλ2
µDM

, we can determine a lower bound on yχ above which the sign of λ2
can be potentially flipped at some energy scale. We obtain

yχ,0 ≥

√︄
16 +

√
31

3
(︁
1 +

√
31
)︁√︁λ2(µDM) . (4.3.22)
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If this condition is not fulfilled λ2 can become unperturbative λ2 > (4π)2. In the case of
yχ = 0 we find an estimate for the maximal value of λ2 such that it remains perturbative
up to MPl:

λ2 (µDM) ≲
16π2

1 + 10 ln
(︂
MPl
µDM

)︂ . (4.3.23)

Hence we can estimate the maximal value of yχ,0 which does not lead to an unstable
vacuum while λ2 (µDM ) is small enough to remain perturbative up to MPl. We find

yχ,0 ≤

√︄
16 +

√
31

3
(︁
1 +

√
31
)︁ 4π√︃

1 + 10 ln
(︂
MPl
µDM

)︂ . (4.3.24)

For instance, in the case of µDM ∼ 1TeV the upper bound results in yχ,0 ≲ 0.7. In combi-
nation with the lower bound on the dark Yukawa derived from the DM phenomenology
given in the Eqs (4.3.16) and (4.3.18), we can find an upper limit on the DM mass.
Assuming xf ∼ 30, we find an order of magnitude estimate of

MDM ≲ 3TeV . (4.3.25)

In the following, we present the results of our numerical analysis for different data
sets demonstrating some of the properties of the model discussed above. Each point
represents a certain configuration of parameters and is additionally assigned a mass scale
Λmax corresponding to the highest scale at which no consistency conditions are violated
by the numerical solution to the RGE. If, for instance, λ2 became negative at 100TeV
while all other consistency condition were fulfilled, we would assign Λmax = 100TeV.
The color of each point refers to the consistency condition that is violated first. In the
case of a purple data point, the model is consistent at least up to MPl. Our example of a
negative λ2 would result in a yellow point and therefore unstable vacuum. For the case
of freeze-out production we consider four different data sets. For both fermionic and
scalar DM we create one data set with λ3 = 0 and another one with λ3 ̸= 0 where the
former only includes contributions from the neutrino portal, while the latter illustrates
where Higgs portal contributions can arise. We generate data points for the parameter
ranges given in Table 4.1. All values are drawn logarithmically.

MDM MDS MN yi λa
Lower Bound 10GeV MDM 10−2MDM 10−5 10−5

Upper Bound 1000TeV 102MDM MDM 4π (4π)2

Table 4.1.: Parameter ranges for the randomly generated data sets. All parameters are drawn logarith-
mically. The mass mDS refers to the mass of the heavier dark sector particle. The coupling
yi refers to the Yukawa couplings yχ and yν while λa gives the parameter ranges for λ2 and
λ3.
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Scatter Plots in the µDM − yχ Plane
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Figure 4.9.: Phenomenologically viable data points of the NPDM colored according to their behavior at
high energy scales. The data points are presented in the µDM−yχ plane where yχ = yχ (µDM).
The color code indicates if the data set leads to a model that is consistent up to the Planck
scale (purple), an unstable vacuum (yellow) or results in a non-perturbative coupling (green
and blue). The left (right) panel shows the results for data points involving scalar (fermionic)
DM. The corresponding plots for the case of a vanishing λ3 are given in Figure D.1 in
Appendix D.

In Figure 4.9, the data points are scattered in the µDM − yχ plane. We clearly observe
the distinct features of scalar (left panel) and fermionic (right panel) DM described in
Section 4.2.1. Both scenarios feature a triangle-like shape that contains the largest part of
the viable data points. The boundaries of these triangles are set by the lower bounds for
the dark Yukawa coupling given in the Eqs. (4.3.16) and (4.3.18) for fermionic and scalar
DM respectively. Data points above this line can be understood by an suppression of the
annihilation cross section by, for instance, a large mass of the other dark sector particle.
Points that lie outside of this area involve scenarios where the annihilation cross section
is dominated by Higgs portal contributions, thereby allowing for a smaller yχ. In the
case of scalar DM this effect only arises for large DM masses and therefore large µDM due
to the tight constraints from the XENON1T collaboration on the interaction of DM with
the Higgs. For fermionic DM this interaction is loop suppressed and thus Higgs portal
contributions can be sizable as long as the Higgs decays into dark sector particles are
kinematically forbidden. Note that nevertheless the points with sizable λ3 are far more
abundant in the scalar DM scenario. This results from the necessity of a nearly mass-
degenerate dark sector in the case of fermionic DM to allow for efficient coannihilation,
which, in that case, is a requirement for a sizable Higgs portal contribution. This does
not apply to scalar DM. As seen in Figure 4.9, no data points were found with a sizable
Higgs portal contribution that run up the Planck scale without violating any consistency
condition (purple points).
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Scatter Plots in the yχ − λ2 Plane
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Figure 4.10.: The data set for the case of scalar DM with a vanishing λ3 is displayed in the yχ − λ2

plane. The values of both λ2 and yχ are given at the scale µDM. The cases of non-zero λ3

for fermionic and scalar DM are depicted in Figure D.3 in Appendix D, while the case of
λ3 = 0 for fermionic DM is shown in Figure D.2.

In Figure 4.10, we show the data set with vanishing λ3 and fermionic DM in the
yχ − λ2 plane. There, the upper bound on yχ in order to provide a consistent model up
to the Planck scale can be clearly seen. The crucial parameter in this case is the dark
scalar quartic λ2, which can become non-perturbative or negative leading to an unstable
vacuum. A sizable λ2 tends to create unperturbative λ2 at high energy scales. This, in
turn, requires a sizable yχ to safe the perturbativity of λ2. If however, yχ becomes too
large it drives λ2 towards negative values. For large values of yχ this balance cannot be
found anymore. Thus, if yχ exceeds a certain value the model becomes inconsistent. For
fermionic DM with λ3 = 0, we find yχ ≲ 0.8.
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Scatter Plots in the µDM − Λmax Plane

10 1 100 101 102 103 104 105

DM (GeV)

100

103

106

109

1012

1015

1018

m
ax

 (G
eV

)

Freeze-Out
Type-I see-saw
Scalar DM

max > MPl

2 > 2(4 )2

3 > (4 )2

2 < 0

10 1 100 101 102 103 104 105

DM (GeV)

100

103

106

109

1012

1015

1018

m
ax

 (G
eV

)

Freeze-Out
Type-I see-saw
Fermionic DM

max > MPl

2 > 2(4 )2

3 > (4 )2

2 < 0

Figure 4.11.: The data sets for scalar (left panel) and fermionic (right panel) DM with λ3 ̸= 0 are
displayed in the µDM − Λmax plane. The scale Λmax describes the scale where the first
inconsistency appears. The color code again denotes which specific inconsistency arises or
if the model is safe up to the Planck scale. The dotted line indicates where Λmax = µDM,
which is the starting point for the numerical solution of the RGE. The corresponding
figures for the case of λ3 = 0 are given in Figure D.4.

In Figure 4.11, we illustrate for the fermionic and scalar DM λ3 ̸= 0 data sets at which
energy scale a certain data point runs into its first inconsistency. It is apparent that
most of the previously viable data points run into inconsistencies. We observe a DM
energy scale above which we do not find any points that do not develop inconsistencies.
In the case of fermionic DM this is the case for µDM ≳ 20GeV, which translates into an
upper bound on the DM mass of roughly 600GeV.
For a majority of the data points the first inconsistency is reached within one or two
orders magnitude. This result makes the inconsistencies even more concerning. For data
points that develop inconsistencies for energy scales µ≫ max [mη,Mχ], one might argue
that the model could be extended by additional field content that does not interfere with
the DM phenomenology but cures the arising inconsistencies by altering the RGEs above
the mass scale of this new physics. However, this approach does fail if the inconsistency
arises for scales that are comparable to the largest mass scale involved in the model. In
such a scenario, the model as considered in this chapter is not consistent and would have
to be extended with particle content of the same or even smaller mass. Considering that
the scale µDM is at least one order of magnitude smaller than the DM mass itself rules out
parts of the previously viable parameter space of the NPDM. This in particular holds
true for µDM ≳ 100GeV, where we only find data points with Λmax ≲ max [mη,Mχ].
This implies that all phenomenologically viable data points develop inconsistencies at
mass scales that appear in the formulated model itself.
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4.3.3. Conclusion and further Studies

We presented results of an analysis of the type-I seesaw NPDM that checked if phe-
nomenological viable data points are consistent. We classified a data point inconsistent
if it leads to an unstable vacuum or non-perturbative couplings at energy scales below
MPl. We generated data points in agreement with collider and direct detection limits
while reproducing the observed DM relic density and numerically solved the RGEs from
the DM production scale, given by the freeze-out temperature, up to the Planck scale.
We found that the dark Yukawa coupling yχ tends to destabilize the scalar vacuum,
which yields the approximate upper limit on yχ given in Eq.(4.3.24). For instance, in
the case of µDM = 1TeV we find yχ ≲ 0.7. On the other hand, the requirement to fit
the observed relic density makes a relatively large dark Yukawa coupling mandatory in
order to sufficiently deplete the DM relic abundance. This statement is quantified in
the Eqs. (4.3.16) and (4.3.18). Those required minimal values for the Yukawa couplings
increase with the mass and in combination with the necessity of a consistent model rule
out large DM mass scales. For the case of fermionic DM we did not find consistent data
points with µDM ≳ 20GeV, while for scalar DM this is the case for µDM ≳ 80GeV.
Furthermore, the scan allows for contributions from the Higgs portal as well as from the
neutrino portal. However, we found that all consistent data points are dominated by
the neutrino portal coupling, as Higgs-portal-dominated data points tend to generate an
unperturbative λ3 for scales that are comparable to the mass scales of the model itself.
Thus, we conclude that the type-I seesaw neutrino portal can provide parameter space
that allows for producing the observed relic density while satisfying collider and direct
detection constraints. The applied consistency conditions rule out sizable Higgs portal
contributions and further exclude heavy DM realizations above a TeV. In ongoing stud-
ies we work towards extending this analysis to the case of inverse seesaw NPDM. The
RGE for the model [102,108] can be found in in Appendix C.
We, however, plan to address the consistency conditions in the version of the model dis-
cussed in [102,108] where the SM is extended by a right-handed and a left-handed singlet
fermion. Such a model, however, as elaborated on in Section 2.1, cannot reproduce the
observed neutrino oscillation parameters, since only one non-zero mass difference is gen-
erated. Nevertheless, the study proves interesting as it indicates where potential signals
of (a realistic version of) the model can be expected. As shown in Section 2.1, the inverse
seesaw does allow for much larger neutrino Yukawa couplings Yν and therefore also a
richer phenomenology. In the context of the consistency conditions addressed in the
previous sections, the larger neutrino Yukawa might drive the Higgs quartic λ1 towards
negative values and alters the running of the dark Yukawa, which indirectly influences
the running of λ2.
The potentially large neutrino Yukawa opens up an additional annihilation channel of
DM into light SM neutrinos, for instance χ̄χ→ ν̄ν, which typically dominates the ther-
mally averaged annihilation cross section. Further the mixing angle of the SM neutrinos
and the resulting heavy pseudo-Dirac neutrino can be sizable and allow for constraints
from several sterile neutrino observables such as from µ/τ decays, rare meson decays
involving dark sector particles or from invisible Z or Higgs decays. Thus, the model is
expected to be more tightly constrained compared to the type-I seesaw neutrino por-
tal. However, both rely on large Yukawa couplings to match the observed relic density.
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Consequently, we expect the effects on the scalar vacuum to be sizable and allow for a
further restriction of this model. These effects are subject of ongoing studies [4].
Finally, we would like to outline several directions in which the analysis presented in this
section can be improved in future works. Firstly, the vacuum stability analysis carried
out here involves only tree-level interactions, while effects arising from the effective scalar
potential could be included. Secondly, the absolute stability criteria used here could be
refined by considering metastability regions, which might open up part of the parameter
space. Next, here the RGE running was computed including one relevant scale, the scale
of DM production. A more detailed analysis with matching at the potentially different
scales featured by each particular data point would be beneficial. Lastly, one could study
the impact of including 2-loop effects in the RGEs of the scalar couplings, which were
here computed at 1-loop.
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5. Effects of a long-lived Yukawa Bound State on Dark Matter
Production

In this chapter, we investigate the effects of a Yukawa bound state formed in the dark
sector. In contrast to a Coulomb potential, which is repulsive for particle-particle or
antiparticle-antiparticle interactions, the Yukawa potential is always attractive. Thus, if
the Yukawa interaction of the form ψ̄φψ is mediated by a light scalar φ, in addition to
ψψ̄ bound states, also ψψ and ψ̄ψ̄ bound states can form, as long as a potential repulsive
gauge interaction can be overcome.
Some effects of bound state formation (BSF) in a dark sector were already studied. The
existence of bound states among the DM candidates gives rise to the so called Som-
merfeld enhancement [120,121], which effectively increases the annihilation rate of DM,
thereby leading to a smaller relic density. Additionally, the bound state itself can assist
in depleting the relic density via bound state annihilations or decays and this effect was
considered in the context of coannihilation scenarios [122–125]. Such BSF can even be
mediated by the SM Higgs if it is significantly lighter than the particles forming the
bound state [126,127].
In this work, we examine the effect of a bound state in a heavy dark sector that is only
feebly coupled to the SM or another hidden sector. In many scenarios, the interaction
rates of processes transferring particle number from the dark sector to the SM or another
hidden sector are suppressed by both the tiny portal coupling and the a potentially small
number density of the dark sector partic les. We consider a scenario where due to a large
Yukawa interaction within the dark sector bound states can form efficiently. Broadly
speaking, the bound state confines two particles close to each other, thereby effectively
erasing the suppression by the small dark sector number density for two dark sector
particle annihilation. This, in turn, can allow for efficient particle number transfer from
the dark sector to another sector by the decay of the bound state. This effect, as we
will demonstrate later on, can take place although the transfer by direct annihilations
of dark sector particles is not efficient by many orders of magnitude.
In a DM portal model involving symmetric1 DM, as for instance described in Section
2.3.3, this effect might be impactful if the couplings to the SM are small but the DM-
mediator interaction is sizable, corresponding to a reannihilation or dark freeze-out sce-
nario, or at the transition region to a freeze-in scenario. In such scenarios, the efficient
BSF might significantly increase the annihilation into SM particles or mediators, thereby
depleting the relic density. This issue might be addressed in a future project. In this
work, however, we consider the case of asymmetric DM where either more particle or
antiparticle DM exists. We demonstrate how the existence of a bound state of heavy
DM can shift an existing asymmetry from one sector into another although the coupling
connecting these two sectors is feeble. For this purpose, we investigate a model where

1The case of symmetric DM describes a scenario where the relic density consists of equal contributions of DM particles
and antiparticles, while the scenario of asymmetric DM refers to a setup where the relic density is dominated by either
particles or antiparticles.
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two feebly coupled dark sectors share an asymmetry generated by an unspecified mecha-
nism in Section 5.2. Before we proceed with the discussion of this model, we review how
to obtain an approximated BSF cross section in case of a Yukawa interaction in Section
5.1.

5.1. Bound State Formation and Dissociation

In this section, we discuss the computation of the bound state dissociation (BSD) cross
section for a bound state Rψψ, which consists of a pair of fermions ψ, and is formed
via the attractive Yukawa potential arising from an interaction with a light scalar φ
that is of the form L ⊃ yψ̄φψ. In our calculation we are closely following the for-
malism described in Ref. [128], where the BSD for the hydrogen atom is derived. The
bound state is broken via a scattering with the mediator φ that results in two free ψ.
The thermal rate for the BSF can be obtained from the thermal rate of the BSD via
γeq (ψψ → Rψψφ) = γeq (Rψψφ→ ψψ), which holds true as long as the interactions un-
der consideration are CP-conserving.
The computation of the amplitude for the process of BSD requires the wave function
overlap between the initial and final states. Therefore, the wave function of the bound
ψ particles in the presence of a Yukawa potential is required. In general, this problem
is not solvable analytically, as discussed for example in [129, 130]. To simplify the cal-
culation, we focus on regions of the parameter space where the Yukawa potential can
be well approximated by a Coulomb potential, of which the resulting wave function for
a bound particle is well known. In the following, we derive the BSD cross section for
a non-relativistic and ultra-relativistic free ψ, which are matched for the subsequent
numerical solution of the Boltzmann equations.

Non-Relativistic Case
We start our discussion with the case of a non-relativistic ψ. The Yukawa potential is
given by

V (r) = − y2

4π

exp (−mφr)

r
= − y2

4π

1

r

[︃
1−mφr +O

(︁
(mφr)

2
)︁]︃
, (5.1.1)

where y is the Yukawa coupling and mφ is the mass of the scalar mediator φ. In
case the mediator mass is much smaller than the inverse of the Bohr radius a0 (=
8π/(y2mψ)), the Yukawa potential will be dominated by the leading term since mφr ∼
mφa0 ≪ 1, resulting in a Coulomb potential. Under this approximation, we can solve
the Schrödinger equation for the Coulomb potential and obtain the ground state wave
function

Ψi (r) =
m

3/2
ψ y3

16
√
2π2

exp

(︃
−
mψy

2

8π
r

)︃
, (5.1.2)

where the subscript i refers to the initial state. Further, for the binding energy of the
ground state, we find

EB = −
mψy

4

64π2
+
mφy

2

4π
. (5.1.3)
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The differential cross-section for the process of Rψψ + φ→ ψ + ψ is given by

dσ

dΩ
=

|Vfi|2

(2π)2
µψ|p| , (5.1.4)

where p ≡ µψ(pψ,1/mψ − pψ,2/mψ) is the relative momentum between the two ψ par-
ticles. Conservation of energy requires |p| =

√︁
2µψ(EB + Eφ) and the matrix element

Vfi is defined as:

Vfi = y

√︄
2π

Eφ

∫︂
Ψ∗
i exp (ikr)Ψf ≡ y

√︄
2π

Eφ
Mfi , (5.1.5)

where k is the momentum of φ. The form of the matrix element differs from the one
presented in Chapter 56 of [128]. This is due to the presence of a Yukawa-type inter-
action, L ⊃ yφψ̄ψ, instead of the Coulomb interaction that is mediated by the photon,
L ⊃ eψ̄γµψA

µ. Since we assume the unbound ψ to be non-relativistic, it is sufficient
to use the solution of the Schrödinger equation with a positive energy eigenvalue in the
description of the unbound final state Ψf :

Ψf =
mψy

2

4
√
2π|p|

exp (−i|p|r)√︁
v [1− exp (2πv)]

1F1 (1 + iv, 2, 2i|p|r) . (5.1.6)

Here, we use v = y2m/(8π|p|) and only the l = 0 component contributes due to the
conservation of angular momentum. Furthermore, we assume exp (ikr) ≈ 1, which is
a good approximation as long as the Yukawa potential can be approximated with a
Coulomb potential, which is the case for mφ ≪ y2mψ/(8π). From Eqs. (5.1.2) and
(5.1.6), the integral in Eq. (5.1.5) becomes

Vfi = −
y6
√
mψ

2
√
2πE

5
2
φ

√︃
v

1− exp (−2πv)

exp
(︁
2v arctan

[︁
v−1
]︁)︁

1 + v2
. (5.1.7)

Note that we have made a replacement of r → 2r in the wave functions ψi and ψf in
the integral (5.1.5), since dr is defined as the position relative to the center of mass of
the bound state, whereas the relative position is used before in the bound state wave
functions (5.1.2) and (5.1.6). Since we are dealing with a bound state consisting of two
particles of equal mass, there is a factor of 2 difference between these two quantities.

Finally, by integrating Eq. (5.1.4) over the solid angle and employing the conservation
of the kinetic energy, Eφ = |p|2

2µ + my2

64π2 = |p|2
mψ

(︁
1 + v2

)︁
, the cross section for the non-

relativistic BSD is obtained:

σ =
y12m

5
2
ψ

√︁
EB + Eφ

2π3E5
φ

v exp
(︁
4v arctan

[︁
v−1
]︁)︁

(1− exp (−2πv)) (1 + v2)2
. (5.1.8)

For the BSD of Rψ̄ψ, we have to include an additional factor2 of 1/2 to Eq. (5.1.8).
Moreover, it is convenient to rewrite the result in terms of the center-of-mass energy s

2The symmetry factor for Rψψ is 1
2 (2 × 2)2, where 1/2 comes from the identical outgoing particles (phase-space integral

reduced by 1/2) and (2 × 2) is owing to the different ways for the Yukawa interaction to annihilate the initial state
and create the final state: < ψψ|φψ̄ψ|φψψ >. By contrast, Rψ̄ψ only has a symmetry factor of (2)2 coming from two
ways of annihilating and creating the initial state and final state: < ψ̄ψ|φψ̄ψ|φψ̄ψ >. As a consequence, there is a
relative factor of 2 between the cases of Rψψ and Rψ̄ψ .
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in order to apply Eq. (2.3.20). In the rest frame of the bound state the center of mass
energy is s = m2

R + 2mREφ +m2
φ. Thus, the cross section becomes:

σ (s) =
24y12m

5
2
ψm

5
R(︂

s−m2
R −m2

φ

)︂5
√︄
s+mR (mR − 4mψ)−m2

φ

2mR

v exp
(︁
4v arctan

[︁
v−1
]︁)︁

(1− exp (−2πv)) (1 + v2)2
,

(5.1.9)
with

v =
y2mψ

8π|p|
=
y2

8π

√︄
2mψmR

s+mR (mR − 4mψ)−m2
φ

.

Relativistic Case
For the case of relativistic ψ, we follow Chapter 57 of Ref. [128], where results of the
hydrogen atom have to be adapted for the Yukawa coupling as above. To calculate
the matrix element Mfi, defined in Eq. (5.1.5), again the initial and final state wave
functions are required. The unbound, outgoing ψ is assumed to be highly relativistic.
Therefore, the wave function is taken to be a plane wave:

ψf =

√︄
1

2Eψ
uf exp (ipr) . (5.1.10)

Since the initial state is also relativistic now, the first-order relativistic correction should
be included:

ψi =

(︃
1− i

2µψ
γ0γ⃗ ▽⃗

)︃
ui√︁
2µψ

ψnr , (5.1.11)

where the wave function is derived in Chapter 39 of Ref. [128] and ψnr is simply the
ground state wave function in Eq. (5.1.2). Substituting these equations into (5.1.5) yields

Mfi =
1

2
√︁
µEψ

∫︂
d3x ūf

(︃
γ0 − i

2µψ
γ⃗ ▽⃗

)︃
uiψnre

−i(p−k)r , (5.1.12)

that results in

|Mfi|2 =
y10m4

ψ

256π4Eψ (p− k)4
ūfAui (ūfAui)

† , (5.1.13)

with

A =
γ0

(p− k)2
+ γ

k− p

2µψ (k− p)2
. (5.1.14)

Here k corresponds to the momentum of φ and p stands for the momentum of the
unbound ψ in the rest frame of the bound state before the collision. After summing over
the final spins and averaging over the initial ones, we obtain

dσ

dΩ
=

y12m5
ψ|p|

256π5Eφ (p− k)6

(︄
Eψ +mψ

(p− k)2
+
Eψ
m2
ψ

− p2 − k2

mψ (p− k)2

)︄
. (5.1.15)
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In contrast to the case of the hydrogen atom, neither of the two particles forming the
bound state can be treated at rest in this system. We have to first calculate k′ and p′

in the center-of-mass system of the collision, and then perform a Lorentz boost back
into the rest frame of the bound state afterwards. The procedures are lengthy but
straightforward, and will not be shown here. Additionally, the integral over the solid
angle dΩ in Eq. (5.1.15) can only be computed numerically. The resulting cross section
is a function of the center-of-mass energy (s = m2

R + 2mREφ +m2
φ), the mass of ψ and

the Yukawa coupling.

5.2. Asymmetry Transfer between feebly coupled sectors via a Bound State

In this section, we consider a model of two-component asymmetric DM where the two
DM components are of very different mass. These kind of models are attractive in the
sense that the heavy component that can accumulate in the galactic center or the center
of the sun can annihilate in the highly relativistic light component. This, in turn, can
enhance the DM-nuclei cross section in direct detection experiments [131–133].
The idea of asymmetric DM [134] is to connect the origin of the DM relic density and
the baryon asymmetry of the universe, neither of which can be generated without BSM
physics. In such a scenario, only DM particles or antiparticles remain in the universe
due to a (broken) global or local symmetry, which is analogous to the procedure of
baryogenesis. If the generation mechanisms of those asymmetries are interwoven, they
typically lead to comparable amounts of asymmetries in the dark sector and the SM
baryons. This, in turn, implies a DM mass of roughly 5GeV.
If we consider a scenario where we meld those two ideas of asymmetric and two-component
DM of different mass, for instance ∼ 1GeV and ≳ 100GeV, we will generate an exces-
sive relic density if the light and heavy component share the same amount of asymmetry
as the SM baryons. The problem can be circumvented if the asymmetry generation
mechanisms for the two DM species are not related or the amounts of asymmetry are
controlled by independent parameters. For instance, they could be generated by decays
of two different heavy bosons or of the same heavy boson but with different couplings 3.
In this situation, the number density of the heavy component can be arbitrarily small
without exceeding the observed DM density.
In this work, however, we investigate an alternative scenario demonstrating that BSF
via a long-ranged mediator can efficiently transfer the asymmetry from the heavy to the
light DM sector even in a scenario where the two sectors are only feebly coupled.
In our setup, we have two dark sectors separately containing the heavy DM component
ψ and the light DM component χ. Further, we assume that a particle-antiparticle asym-
metry was generated by an unspecified mechanism at early times that is shared by χ,
ψ and the SM baryons. Realizing a scenario that does not overproduce DM, relies on
a long-range interaction among the heavy DM ψ, induced by the Yukawa coupling to a
light scalar φ. The resulting ψ-ψ̄ bound state facilitates the depletion of the symmetric
DM component and the remaining asymmetric part is composed of free ψ and the ψ-ψ
bound state Rψψ. As we detail below, the ratio of bound states Rψψ to free ψ crucially

3It has been demonstrated that asymmetric DM can have a very different mass from GeV in the context of two-sector
leptogenesis [135, 136], where the right-handed neutrinos decay both into the SM and DM particles with dissimilar
amounts of asymmetry. Models of asymmetric DM with a much heavier mass can also be realized in the context of
bosonic technicolor [137].
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depends on the binding energy of the bound state. Due to the tiny coupling connecting
the two sectors, the bound state is long-lived but eventually decays into a pair of χ via
annihilations of the constituents of the bound state. In case of a large Yukawa coupling,
a large part of the asymmetry is stored in bound states, leading to a disparity in the
number densities nψ ≪ nχ. Hence, the corresponding energy densities can be of the
same order Ωχ ∼ Ωψ.
Both DM components are charged under a global U (1)′ symmetry to ensure their sta-
bility, as all SM particles are singlets under the U (1)′. Both χ and ψ are individually in
thermal equilibrium with the SM via annihilations into SM fermions that are assumed
to be sufficiently efficient to deplete the symmetric components of χ and ψ.
Additionally, there is a real scalar φ and complex scalar φ′. The particle φ is a pure
singlet, and mediates the long-range interactions among ψ and ψ̄. This interaction re-
sults in BSF, i+ j → Rij + φ, where i and j are referring to ψ and/or ψ̄, and Rij is the
bound state composed of the fields i and j, and BSD, which is the inverse process. On
the other hand, φ′ has a U(1)′ charge of −2 and induces an interaction that can shift
asymmetry between χ and ψ 4. The particle content is summarized in Table 5.1. The
relevant Lagrangian reads

L ⊃− y φψ̄ψ − y′ φf̄f − κχ φ
′χcχ− κψ φ

′ψcψ +
χ̄γµχf̄γµf

Λ2
χ

+
ψ̄γµψf̄γµf

Λ2
ψ

−mχχ̄χ−mψψ̄ψ − 1

2
m2
φφ

2 −m2
φ′φ

′∗φ′ (5.2.1)

where the superscript c denotes charge conjugation. This explicitly indicates that the φ′-
Yukawa interactions allow for an asymmetry transfer via χχ (χ̄χ̄) ↔ ψψ (ψ̄ψ̄). Note that
we consider a scenario where the couplings κχ/ψ are small and therefore do not allow
for an efficient direct asymmetry transfer. The two four-fermion effective operators
characterize interactions between DM and SM fermions, mediated by an unspecified
heavy gauge boson. These interactions not only keep both χ and ψ in the thermal bath
but also eliminate the symmetric components of χ and ψ 5 when T ≲ mχ ,mψ. In case of
mχ ∼ GeV and mψ ∼ TeV, one requires Λχ ≲ 350GeV and Λψ ≲ 6.5TeV to annihilate
away the symmetric components. To avoid potential experimental constraints on the
underlying gauge boson, one can simply assume the gauge boson only couples to the
third-generation SM fermions. We do not specify the identity of the gauge boson, as
the details of the interactions are not relevant to our discussions as long as the resulting
cut-off scales Λχ and Λψ are small enough to keep the interactions in equilibrium.
The real scalar φ decays into SM fermions via the Yukawa coupling y′ 6 if kinematically
allowed. Those decays keep φ in thermal equilibrium with the SM until T drops well
below mφ. As mentioned above, the bound states form in the ψ sector due to the
Yukawa interaction with φ. Since the interaction is always attractive among particles

4Instead of including φ′, one can assume feeble ψψ → f̄f which breaks the U(1)′ symmetry and makes the bound state
decay at a later time, reducing Yψ to achieve Ωψ ∼ Ωχ. In this case, the stability of ψ is still protected by a residual
Z2 symmetry. Notwithstanding, the freeze-in process of ψψ → χχ under consideration can give rise to boosted χ
which entails rich phenomenological consequences.

5The heavy component ψ has an additional annihilation channel ψ̄ψ → φφ.
6The coupling can arise, e.g., via the mixing between the SM Higgs boson and φ, leading to y′ ≈ ySM

f sin θ, where θ is
the mixing angle and ySM

f is the SM Yukawa coupling. To ensure φ is in the thermal bath for T ≲ mφ ∼ GeV (scale
of interest in this work), we have y′ ≳ 10−9, indicating sin θ ≳ 10−7, depending on the final state fermions. Such a
small mixing angle is well below the current experimental sensitivity.
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χ ψ φ φ′

Mass O (GeV) O (≳ 100 GeV) ≲ GeV > TeV

U (1)D +1 +1 0 −2

Table 5.1.: The particle contents in the dark sectors where all particles are singlets under the SM gauge
groups. See the text for details.

and antiparticles, there exist three types of the bound states: Rψψ, Rψ̄ψ̄ and Rψ̄ψ. We
only consider the ground state with a binding energy given in Eq. (5.1.3). The bound
state mass results in mR = 2mψ + EB, with mRψψ=mRψ̄ψ̄=mRψ̄ψ ≡ mR. The three
types of bound states are not stable. The Rψ̄ψ bound state decays quickly into either a
pair of φ or SM fermions. The Rψψ and Rψ̄ψ̄ bound states decay into a pair of χ or χ̄
mediated by the U (1)′ charged scalar φ′. Due to the asymmetry in the ψ sector and the
efficient annihilation ψ̄ψ → f̄f , for temperatures T < mψ only Rψψ exists if nψ > nψ̄
initially.
In the following, we first detail how the asymmetry is shifted between the free ψ, bound
states Rψψ and χ in Section 5.2.1. Afterwards, in Section 5.3, we present the results
of a numerical solution of the Boltzmann equation for the species φ, ψ, ψ̄, Rψψ, Rψ̄ψ̄
and Rψ̄ψ considering the interactions of BSF, BSD, ψ̄ψ ↔ f̄f , ψ̄ψ ↔ φφ, Rψ̄ψ ↔ φφ,
Rψψ ↔ χχ (Rψ̄ψ̄ ↔ χ̄χ̄) and φ↔ f̄f .

5.2.1. Asymmetry Transfer

In this Section, we give a qualitative discussion of the asymmetry transfer between the
different sectors, which is schematically illustrated in Figure 5.1. Further, the time
evolution of the densities of the relevant species are shown in Fig. 5.2, in which for
demonstration we choose (mψ,mφ′ ,Λψ) = (1, 10, 10) TeV with a massless φ and f , and
(y, κχ, κψ) = (1, 10−4, 10−4), implying a binding energy of |EB| = 1.58 GeV. The solid
green (red, blue) line corresponds to Yφ (Yψ, YRψψ), while the dashed red (blue) line
represents Yψ̄ (YRψ̄ψ̄ and YRψ̄ψ

7). The vertical dashed grey lines mark the absolute value
of the binding energy and the catch-up temperature, defined below. For T ≲ 10−2 GeV,
the light (dark) blue line refers to the case of stable (decaying) Rψψ. Subsequently, we
describe the different phases and effects taking place in the time evolution of the system
illustrated in Figure 5.2.

1. At a high temperature T ≫ mψ, both χ and ψ are in thermal equilibrium with the
SM. An unspecified mechanism is presumed to generate asymmetries in χ, ψ and
the SM baryons, for instance by the out-of-equilibrium decays of heavy gauge or
Higgs bosons [138–141]. In addition, we assume that the total initial asymmetry of
the three sectors adds up to zero:

∆YB +∆Y i
ψ +∆Y i

χ = 0 , (5.2.2)

where the superscript i refers to the initial values and ∆Yf ≡ Yf−Yf̄ . Furthermore,
it is assumed that the generated baryon asymmetry accounts for the observed value,
i.e. ∆YB = (8.6± 0.7) × 10−11 [10] and remains constant once being created 8. In

7The lines corresponding to YR
ψ̄ψ̄

and YR
ψ̄ψ

are on top of each other.
8In fact, our conclusions do not rely on these assumptions.

95



T ≫ mψ

∆ψ ∆R ∆χ

T ≲ TCU

∆ψ ∆R ∆χ

T < Tdecay

∆ψ ∆R ∆χ

T

Figure 5.1.: Illustration of the asymmetry transfer between the heavy (ψ) and light (χ) DM components
with the help of the bound state R. At a high temperature, an asymmetry is generated and
shared by both the dark and SM sectors. Below the temperature TCU (catch-up temperature
at which YR = Yψ/2), more than half of the ψ asymmetry has been stored in the bound states.
The bound states later decay into χ, thereby transferring the majority of the asymmetry
from ψ into χ, leading to Yχ ≫ Yψ but with Ωχ ≈ Ωψ as mψ ≫ mχ.
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Figure 5.2.: The time evolution of the densities for particles in the dark sectors, where (mψ,mφ′ ,Λψ) =
(1, 10, 10) TeV with a massless φ and (y, κχ, κψ) = (1, 10−4, 10−4) are assumed. The solid
green (red, blue) line represents Yφ (Yψ, YRψψ ). The dashed red (blue) line refers to Yψ̄ (YRψ̄ψ̄
and YRψ̄ψ ), demonstrating that the symmetric components are annihilated away. The hori-
zontal light blue line at small T stands for the case of a stable Rψψ, while the final density of
ψ (red line) is unaffected by the decay, as BSF already ceases before the onset of the decay.
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the following, we set ∆Y i
ψ ∼ ∆Y i

χ > 0, which directly implies that there exist more
ψ (χ) than ψ̄ (χ̄).

2. The processes of BSF and BSD are efficient for a large part of the time period of
interest. In this case, Eq. (2.3.17) implies

n2ψ(︂
neq
ψ

)︂2 ≈
nRψψ
neq
Rψψ

nφ
neq
φ

. (5.2.3)

Hence, R follows its equilibrium density when T ≳ mψ, as both ψ and φ are in
thermal equilibrium with the SM.

3. For |EB| ≲ T ≲ mψ, the production of ψ̄ and ψ out of φ and SM fermions is
kinematically suppressed compared to the annihilation of ψ̄ and ψ into SM parti-
cles. Thus, the number density of ψ experiences a Boltzmann suppression. At a
certain point in time, when the equilibrium number density of ψ becomes smaller
than the asymmetry stored in ψ, the symmetric component of ψ has been mostly
obliterated. Hence only the asymmetric component remains, which in our case are
ψ particles. The depletion of the symmetric component of the bound states takes
place at roughly the same time, since the number densities, due to the efficient BSF,
are connected by Eq. (5.2.3). In our example, this occurs around T = 41GeV but
with YRψψ ≪ Yψ because the bound state density experiences a double Boltzmann
suppression due to exp(−mR/T ) ≈ exp(−2mψ/T ) ≪ exp(−mψ/T ). The relative
suppression can alternatively be understood by inspecting Eq. (5.2.3), which results
in nR ∼ (mψT )

−3/2(nψ)
2 ≪ nψ, given nφ = neq

φ .

4. For T ≲ |EB| + mφ, we observe a sharp increase in the density YRψψ , leading to
catch-up with the density Yψ, as shown in Fig. 5.2. The catch-up behavior can
be perceived via the interplay between the BSF and the conservation of the total
asymmetry. While the process ψψ ↔ Rψψ φ changes the number densities of Rψψ
and ψ individually, the total asymmetry remains constant before Rψψ decays:

∆Y i
ψ = Yψ + 2YR . (5.2.4)

Furthermore, if the interactions caused by φf̄f in Eq. (5.2.1) are faster than the
expansion rate of the universe, φ is in equilibrium with the SM, resulting in nφ = neq

φ .
As a consequence, combining Eq. (5.2.3) and (5.2.4), we can extract the number
density of Rψψ, provided that BSF and BSD are effective:

YR =
∆Y i

ψ

2
+R

⎛⎝1−

√︄
1 +

∆Y i
ψ

R

⎞⎠ , (5.2.5)

with

R =

(︂
neq
ψ

)︂2
8neq

R sen
. (5.2.6)
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For small temperatures we find R ∼ (mψ/T )
− 3

2 exp
(︂
− |EB |

T

)︂
→ 0 in the limit of

T → 0, and consequently YR
T→0
=

∆Y iψ
2 . Thus, BSF is favored over BSD and the

asymmetry would be transferred completely to the bound states if the BSF was
efficient for all times. The reason behind this effect is that when the temperature
falls below |EB|, it becomes less and less likely that a φ particle has a sufficiently
large energy to overcome the binding energy, which is a requirement to break the
bound state. A larger Yukawa coupling and hence a larger |EB|, will therefore
cause a larger fraction of ψ particles to be converted into Rψψ. This eventually
leads to more asymmetry being stored in χ after Rψψ decays. In this sense, the
existence of the bound states allows for two-component asymmetric DM of very
different mass scales but with comparable energy densities. In fact, the situation
here is comparable to the period of recombination at which electrons and protons
started to form neutral hydrogen atoms. In case of a massive φ, its number density
also experiences an exponential suppression at T < mφ such that the absence of φ
particles renders BSD ineffective.

5. We define the catch-up temperature TCU as the temperature when the asymmetry is
equally shared by Rψψ and free ψ, which translates to Yψ/2 = YRψψ at T = TCU. By
setting YR = ∆Y i

ψ/4 in Eq. (5.2.5), the value of TCU can be numerically calculated.
In our exemplary case shown in Fig. 5.2, we find TCU = 0.05 GeV. Assuming mφ = 0,
we found an empirical expression for TCU that results in

TCU ≈ 0.03 |EB| y1/5 , (5.2.7)

and has an accuracy above 90% for 0.1 ≲ y ≲ 5.

6. During the catch-up of the bound state, the ψ density decreases and it becomes
harder and harder for them to find each other to form a bound state. Eventually,
below a certain temperature, denoted by TD, BSF ceases to work, similar to the
freeze-out of thermal DM. The temperature TD depends on the parameters mφ and
y and in our example TD is around 12MeV, below which Yψ stops decreasing and
levels off as shown in Fig. 5.2. The asymmetry stored in the bound states after
the asymmetry transfer is given by YRψψ (TD), while the final asymmetry stored
in ψ, represented by ∆Y f

ψ , is simply Yψ(TD). After the decay of Rψψ, the final χ
asymmetry is given by

∆Y f
χ = −∆YB −∆Y f

ψ , (5.2.8)

where we have used Eq. (5.2.2) and

∆Y i
χ +∆Y i

ψ = ∆Y f
χ +∆Y f

ψ . (5.2.9)

As a result, the ratio of the total energy density of DM to that of the SM baryons
reads

ΩDM
ΩB

=

⃓⃓⃓⃓
⃓∆Y

f
ψ

∆YB

⃓⃓⃓⃓
⃓ mψ −mχ

mB
+
mχ

mB
, (5.2.10)
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and in order to reproduce the observed relic density⃓⃓⃓⃓
⃓∆Y

f
ψ

∆YB

⃓⃓⃓⃓
⃓ = mB

mψ −mχ

(︃
ΩDM
ΩB

− mχ

mB

)︃
mψ≫mχ

=
mχ

mψ

[︃
mB

mχ

ΩDM
ΩB

− 1

]︃
, (5.2.11)

must be met. If we further require that the energy densities of ψ and χ are compa-
rable (mψ∆Yψ,f ∼ mχ∆Yχ,f ), the mass of χ can be inferred

mχ ∼
mψmB

2mψ −mB
ΩDM
ΩB

ΩDM
ΩB

mψ≫mB
= mB

ΩDM
2ΩB

= 2.66GeV . (5.2.12)

This implies ⃓⃓⃓⃓
⃓∆Y

f
ψ

∆YB

⃓⃓⃓⃓
⃓ ∼ mχ

mψ
, (5.2.13)

given ΩDM = 5.4ΩB and mB ≈ 1 GeV. Therefore, the final density of ψ (solid red
line) in Fig. 5.2 is too small to have any impact on the relic density.

To summarize, when the temperature falls below mψ, the symmetric components of ψ
and R will be destroyed by the processes of ψ̄ψ → φφ , f̄f and Rψ̄ψ → φφ, and only
the asymmetric component remains. Further, we find Yψ ≫ YRψψ due to the larger
Boltzmann suppression of the bound state. At T ≲ |EB|, YRψψ begins to catch-up with
Yψ caused by the lack of energetic φ that are mandatory to dissociate the bound state,
resulting in BSF being kinematically preferred over BSD. With the continuous decrease
in Yψ, the BSF eventually becomes ineffective since the BSF rate is proportional to Y 2

ψ .
Afterwards, the density Yψ stays constant, while the bound state decays into a pair of
χ. The Yukawa coupling y determines when BSF stops and therefore the final value of
Yψ. In the following, we discuss the conditions for realizing two-component asymmetric
DM with comparable energy densities in case of different mass scales for the two DM
components. Throughout our analyses, we always assume mχ = 2.66 GeV unless stated
otherwise.

5.3. Numerical Solution to the Boltzmann Equation

In this Section we present numerical solutions of the coupled Boltzmann equations in-
volving the (anti)particles of ψ and R as well as φ. Firstly, we discuss the individual
effects of the Yukawa coupling y, the mediator mass mφ and the decay width ΓRψψ on
the amounts of asymmetry that are stored in ψ and Rψψ (χ) eventually. Subsequently,
we present four benchmark scenarios, where the correct relic density is reproduced with
Ωχ ∼ Ωψ.

5.3.1. Effect of the Yukawa coupling y

The effect of a varying Yukawa coupling y on the final number densities of ψ and Rψψ is
illustrated in Fig. 5.3, where we present numerical solutions to the Boltzmann equation
for the Yukawa couplings y = (0.2, 0.3, 0.4), while assuming a massless φ, a TeV ψ and
a stable bound state with an initial condition of ∆Y i

ψ = ∆YB at high T . The final
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abundance of ψ decreases as y increases. As the BSF cross section is proportional to
y12, a larger Yukawa coupling corresponds to a significantly larger BSF rate. Hence
more ψ form bound states, which implies a smaller final density for ψ. Besides, from
Eq. (5.2.7) we know that the catch-up temperature scales as |EB|y1/5 ∼ y21/5. Thus, a
larger Yukawa coupling causes an earlier catch-up as shown in Figure 5.3. For y = 0.2,
the BSF processes cease to work for a temperature T > TCU. Thus, in this scenario only
a negligible amount of asymmetry is transferred to the bound states. However, given a
mass of the heavy DM component mψ that exceeds multiple GeVs, a sizable asymmetry
transfer is required to not overproduce DM energy density. Consequently, for a given
mψ, a lower bound on the value of y is implied.
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Figure 5.3.: The numerical solutions of the Boltzmann equations for the Yukawa couplings y =
(0.2, 0.3, 0.4), given mχ = 2.66GeV, mψ = 1TeV and ΓRψψ = 0 with a massless φ. The
red (blue) lines represent the number density of ψ (Rψψ) normalized to the baryon density.
The different line styles correspond to the different values of y. Comparable energy densities
Ωχ ≈ Ωψ can be accommodated by taking y ≈ 0.33. The initial condition of ∆Y iψ = ∆YB
at large T is presumed.

For instance, in case of mχ = 2.66 GeV and mψ = 1 TeV, the Yukawa coupling
must satisfy y ∼ 0.33 to reproduce a correct value of ∆Y f

ψ that fulfills Eq. (5.2.13) and
additionally attains Ωψ ∼ Ωχ. The corresponding plummet of Yψ for the cases of y = 0.3
and y = 0.4 takes place around T ≲ 1 MeV. The bound states eventually decay and
potentially create highly energetic χ particles below the scale of the BBN that occurs
at temperatures of roughly 1MeV. Moreover, if the presumed asymmetry generation
mechanism instead creates more χ̄ than χ, then annihilations of the χ resulting from
the bound state decay with pre-existing χ̄ into the SM fermions will potentially inject a
sizable amount of entropy into the thermal bath. Thus, as described Section 2.4.3, the
model possibly disturbs the BBN [142–144].

Since most of the bound states are produced around T = TCU, we have to raise TCU
above temperatures of a MeV such that the subsequent decay of the bound state takes
place before the onset of the BBN. Naively thinking, one may enlarge y, which in return
leads to an earlier catch-up and also puts an end to BSF above the BBN scale. The
increase on y, nonetheless, will also decrease significantly the final density Yψ. Note,
for instance that there is a difference of more than four orders of magnitude in Y f

ψ

between the cases of y = 0.3 and y = 0.4, resulting in
⃓⃓⃓
∆Y f

ψ /∆YB

⃓⃓⃓
≪ mχ/mψ and hence
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Ωψ ≪ Ωχ. One possibility to avoid this issue is to allow for a massive mediator φ in
combination with a large value of y as discussed below.

5.3.2. Effect of a non-zero mediator mass
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Heavy DM mΦ=10 GeV

Figure 5.4.: The solutions of the Boltzmann equations for mψ = 1TeV, y = 1.5 and the different values
of mφ = (0, 8, 10) GeV. We find a binding energy, which partially depends on mφ as shown
in Eq. (5.1.3), of roughly 8 GeV. The red (blue) lines represent the number density of
ψ (Rψψ) normalized to the baryon asymmetry. The different styles of the lines correspond
to the different mediator masses. The density Y fψ increases with a larger mψ, and the mass
dependence is striking.

The final densities of ψ and Rψψ depend on the value of the decoupling temperature
TD below which BSF stops. In case of a massless φ, the BSF process ψψ → Rψψφ is
always kinematically allowed since 2mψ > mR. However, it becomes ineffective when
Yψ is diminutive, as the interaction rate scales with y2ψ. Increasing Y f

ψ requires to halt
BSF earlier. Considering mφ > |EB|, in addition to the suppression induced by the
small number density of free particles, BSF also suffers from a kinematical suppression
by virtue of 2mψ < mR +mφ when T < mφ, leading to a higher TD and hence a larger
Y f
ψ . Figure 5.4 illustrates that a larger mass of φ gives rise to a larger final density of ψ.

For the density evolution displayed in Figure 5.4, we fixed y = 1.5 and mψ = 1 TeV with
the same initial condition ∆Y i

ψ = ∆YB as above. The dependence of the final density Y f
ψ

on the mass mφ is quite remarkable. An increase of mφ from 8 to 10 GeV is accompanied
by a factor of nearly 104 on the final density of ψ. Conversely, the catch-up temperature
TCU decreases in the presence of massive φ, as shown in Fig. 5.4. This effect can be
understood by noticing that YRψψ begins to rise when φ no longer has enough energy to
break apart the bound states. As the mass of φ itself can also be used to destroy the
bound states, involving a massive φ delays the catch-up and in turn lowers TCU. As a
result, a large value of y together with a nonzero mass of φ with mφ ≳ |EB| is necessary
to increase both TCU and TD. In this way, it can be ensured that the majority of the
bound states decays before the BBN, while attaining a sizable final density of free ψ.

101



100 10-1 10-2

1

10-3

T@GeVD

Y
D

Y
B

Bound State Κ Χ ΚΨ=0

Heavy DM Κ Χ ΚΨ=0

Bound State Κ Χ ΚΨ=10-6

Heavy DM Κ Χ ΚΨ=10-6

Bound State Κ Χ ΚΨ=10-4

Heavy DM Κ Χ ΚΨ=10-4

Figure 5.5.: The results of the Boltzmann equations, given mψ = 1TeV, mφ = 9GeV, y = 1.5 and
different values of κχκψ =

(︁
0, 10−6, 10−4

)︁
, that correspond to different decay widths ΓRψψ as

ΓRψψ ∼ (κψκχ)
2. The red (blue) lines represent the number density of ψ (Rψψ) normalized

to the baryon density.

5.3.3. Effect of a non-zero Decay Width

Lastly, we study the influence of the bound state decay width on the final densities of
ψ and χ. The effect is illustrated in Fig. 5.5, again using the same initial condition
∆Y i

ψ = ∆YB. The decay eliminates the bound state population and stops BSD at an
earlier time, which in turn leads to a larger TCU, when compared to the situation of a
stable Rψψ, since there are fewer bound states left to dissociate. That is to say, only
BSF is active and causes more ψ being converted into the bound states that subsequently
decay into χ. Note that if the bound state decays only after BSF ceases to work, the
final ψ density will not be affected by the decay as displayed in Fig. 5.2.

The decay width of Rψψ is partially controlled by the product of the couplings κχ and
κψ. In Fig. 5.5, the decay takes place during the catch-up period, and a larger decay
width corresponds to fewer ψ but more χ particles – increasing the product κχκψ from
10−6 to 10−4 makes Y f

ψ more than ten times smaller. Again, we focus on feebly coupled
scenarios where ψψ ↔ χχ was not in thermal equilibrium at high T and therefore cannot
transfer asymmetry from one sector into the other.

5.3.4. Benchmark Scenarios

To conclude, we present four benchmark sets of the parameters, listed in Table 5.2,
which are capable of reproducing the observed ΩDM with Ωχ ≈ Ωψ. The corresponding

mχ[GeV] mψ[GeV] mφ[GeV] mφ′ [GeV] y κψ κχ
2.66 10000 5.7 10000 0.75 3 · 10−4 3 · 10−4

2.66 1000 9 1000 1.5 1.2 · 10−4 1.2 · 10−4

2.66 500 8.25 500 1.75 1.5 · 10−4 1.5 · 10−4

2.66 100 5.75 100 2.5 7 · 10−5 7 · 10−5

Table 5.2.: Sets of parameters reproducing the observed relic density with comparable energy densities
for ψ and χ, assuming the initial condition ∆Y iχ = ∆Y iψ = −∆YB/2.

time evolution of the particle densities is shown in Fig. 5.6. The mass of χ is fixed
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Figure 5.6.: The results of the Boltzmann equations with mψ = 10TeV (upper left panel), mψ =
1TeV (upper right), mψ = 500GeV (bottom left) and mψ = 100GeV (bottom right).
These plots are similar to Fig. 5.2 but with Ωχ ≈ Ωψ. We choose ∆Yψi = ∆Yχi = −∆YB/2
as the initial condition at large T . The symmetric components of ψ and R are rapidly de-
pleted via the annihilations into φ and the SM fermions. The relative distribution of the
final asymmetric components of ψ and R is determined by when BSF and BSD decouple.
Finally, the bound state decay shifts asymmetry into χ.

at 2.66 GeV, while mψ ranges from 100 GeV to 10 TeV. It is assumed that the initial
asymmetry created at T ≫ mψ is initially distributed as ∆Y i

χ = ∆Y i
ψ = −∆YB/2. The

rest of parameters are chosen to fulfill Ωχ ≈ Ωψ. To ensure that Rψψ decays before the
onset of the BBN, TCU ≳ 1MeV is mandatory. As the catch-up temperature TCU scales
as |EB| y1/5 ∼ mψ y

21/5, a smaller mψ requires a larger value of y, as demonstrated in
Table. 5.2. However, due to the fact that the density Y f

ψ is extremely sensitive to y, as
illustrated in Fig. 5.3, a considerable value of y will often make the final density of ψ
vanishingly small. Therefore, as discussed in Section 5.3.2, a massive φ with mφ ≳ |EB|
is involved to disrupt the BSF, preventing an utter depletion of ψ. In fact, we have
found that for mψ ≲ O(TeV), a massive φ is requisite to obtain Ωχ ∼ Ωψ.
Lastly, the product κχκψ, that determines the decay width of Rψψ, has to be chosen
such that the correct relic density is obtained and the bound states decay before the
onset of the BBN.

5.4. Conclusion

In this Chapter, we investigated the dynamics of a long-lived Yukawa bound state that
can form in a dark sector. The setup is comparable to the one of recombination where
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hydrogen was formed out of protons and electrons. However, there are some key dif-
ferences. Firstly, the underlying interaction allowing for BSF is a Yukawa interaction
instead of the Coulomb interaction. Hence in addition to particle-antiparticle bound
states, particle-particle bound states can arise. Further, in contrast to neutral hydrogen,
the resulting bound states are not stable and decay eventually due to feeble interactions
with less massive particles. Lastly, the particle mediating the interaction can be mas-
sive.
We demonstrated that the presence of a Yukawa bound state in a heavy dark sector
can compensate a feeble portal coupling and efficiently transfer particles from a heavy
sector into a less massive one, given a sizable Yukawa coupling and hence efficient BSF.
The basic reason for this phenomenon is that the bound state confines its constituents
close to each other, thereby eliminating the number density suppression that otherwise
renders the direct annihilation of these particles inefficient. In this sense, a large DM self
interaction can eliminate the barrier of a small DM coupling to a different less massive
sector. In the context of the DM portal models discussed in Section 2.3, the effects dis-
cussed in this Chapter are especially interesting for models that utilize DM production
mechanisms that rely on a large DM-mediator interaction, hence the reannihilation and
the dark freeze-out regime.
We applied this variant of particle number transfer to a model of two-component asym-
metric DM. A common feature of existing asymmetric DM models is that the baryon
asymmetry is closely correlated with that of DM, and quite often the amounts of asym-
metry stored in the DM and SM sectors are of the same order, implying the DM mass
is of order O(GeV) given ΩDM = 5.4ΩB. In the framework of two-component asym-
metric DM, if an asymmetry created at an early time is equally shared among a light
DM component χ, a heavy DM component ψ and the SM baryons, the energy density
of the heavy ψ alone will certainly exceed the observed DM energy density. The ψ and
χ sectors are only feebly coupled and therefore a direct asymmetry transfer is not effi-
cient. The ψ however, can form bound states due to a Yukawa interaction via a light
mediator φ. Depending on the value of the bound state forming Yukawa coupling y, the
asymmetry partially gets stored in the bound states and is eventually transferred to the
χ sector via late decays. The process of asymmetry transfer is illustrated in Figure 5.1.
Moreover, we found several benchmark points, summarized in Table 5.2, that succeed in
creating a scenario of asymmetric two-component DM of different mass but comparable
energy densities. Such a setup might have interesting phenomenological implications in
the context of boosted DM searches that are not investigated here but can serve as a
subject of future work.
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6. A Systematic Analysis of One-Loop Solutions to RK in the
Light of Dark Matter

In this chapter, we present the first results of the analysis of a class of models addressing
the observed 2.6σ discrepancy [20] with the SM in the observable RK [145] in the light of
the observed DM relic density. More precisely we investigate if the anomaly in RK and
the relic density can be simultaneously explained by the considered class of models with-
out contradicting the current direct detection limits provided by XENON1T [10, 146].
While we only present the results of one specific model in this work, the complete study
will be given in the forthcoming publication [5].
The anomaly in RK has been addressed extensively in the past, including very different
approaches, for instance the tree level exchange of leptoquarks [17, 147–149], possibly
emerging from a grand unified theory, or via the introduction of a new U (1) gauge
group [150,151].
Our work builds on a class of models introduced in [152]. The authors analyze a scenario
where contributions to b → sµµ are realized at one-loop level via three new particles
charged under the SM gauge groups. Allowing for representations up to the adjoint of
each SM gauge group, they find and analyze 48 different models. Several of those models
include an electrically neutral color singlet, which if stabilized by a symmetry1, can be
a valid DM candidate. In this work, we enlarge the analysis of this class of models and
address the question if both the RK anomaly and the observed DM relic density can
be explained within this framework, provided the models include a bosonic or fermionic
singlet.
Typically, in this setup, explaining the RK anomaly requires a relatively large coupling
of the new particles to µ’s, since, in comparison to tree level realizations, the one-loop
suppression has to be compensated. Additionally, the coupling of the new particles to
the b and the s quark is constrained by B-B mixing. This, in return, can lead to an
underpopulated dark sector, as the strong coupling to µ’s delays the thermal freeze-out.
Moreover, the large coupling to µ’s can generate a large vector coupling of DM to the Z
at one-loop level that is subject to the constraints from the XENON1T experiment [146].
However, in models with a fermionic singlet DM candidate, DM can be either a Dirac or
Majorana particle, where the latter forbids the vector coupling to the Z and weakens the
constraints from B-B mixing. Thus, these models seem especially promising and are the
main subject of our ongoing studies. In these cases, we also check if the observed light
neutrino masses can be generated at one-loop level. The exemplary model we present in
this thesis, contains a SM singlet fermion as its DM candidate.
The chapter is structured as follows: In Section 6.1, we briefly review the class of models
presented in [152] and consider the model addressed in this work in more detail. Fur-

1In many of those models, couplings of a new dark sector particle to for instance the SM up-type quarks must be
forbidden as they would lead to a mixing of the SM quarks with the new state. A symmetry that forbids this type of
couplings could serve as the DM stabilizing symmetry. In the simplest scenario, all new particles are odd under a Z2

symmetry.
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thermore, we give the constraints on the model parameters from the requirement to fit
the RK anomaly and to produce a stable scalar potential. In Section 6.2, we present our
analysis strategy and sketch the procedure to obtain the relic density and direct detec-
tion cross sections. In Section 6.3, we analyze the DM phenomenology of the exemplary
model. We conclude in Section 6.4.

6.1. Model and Constraints from Lepton Flavor Universality Violation

The model classes proposed by [152] as a one-loop solution to the b→ sµ−µ+ anomalies
are distinct in their particle content. In either of the two model realizations the SM is
enlarged by three additional fields. In realization a), two heavy scalar fields, φQ and φL,
and a vector-like fermion field ψ are present, whereas in realization b) there exist two
vector-like fermion fields, ψQ and ψL, and a scalar field φ. The indices Q and L denote
their coupling to quarks and leptons respectively. The corresponding Lagrangians for
each realization are

La)int = ΓQiQ̄iPRψφQ + ΓLiL̄iPRψφL + h.c. (6.1.1)

Lb)int = ΓQiQ̄iPRψQφ+ ΓLiL̄iPRψLφ+ h.c. , (6.1.2)

where Qi and Li denote the left-handed quark/lepton doublets, while i is a flavor index.
The Eqs. (6.1.1) and (6.1.2) reveal that the additional heavy particles couple only to
left-handed SM fermions. This is a phenomenologically driven feature, implemented to
ensure that the Wilson coefficients C9 and C10 fulfill C9 = −C10, which is the preferred
scenario to fit the b anomalies. The Wilson coefficients belong to the operators O9 and
O10 that are part of the flavor changing |∆B| = |∆S| = 1 effective Hamiltonian

Heff = −4
GF√
2
VtbV

∗
ts

αe
4π

∑︂
i

CiOi , (6.1.3)

that is obtained by integrating out the heavy degrees of freedom, namely the

t

, H, Z and W . The operators O9 and O10 are given by

O9 = [s̄γµPLb]
[︁
l̄γµl

]︁
, (6.1.4)

O10 = [s̄γµPLb]
[︁
l̄γµγ5l

]︁
. (6.1.5)

For the sake of simplicity, we assume vanishing couplings to the first generation.
The model classification up to the adjoint representation can be extracted from Table 6.1,
where the representations of the new particles under the SM gauge groups are presented.
The arising contributions to the decay b→ sµ+µ− and b→ sνν are illustrated in Figure
6.1.
In the context of Table 6.1, X is defined as the hypercharge of ψ in model class a), while

it is defined as the negative hypercharge of φ in model realization b). The parameter X
can be freely chosen in units of 1/6 in the interval X ∈ (−1, 1).
In this work, we want to analyze whether the model classes presented above contain a
viable DM candidate, while still being able to explain the b anomalies. A DM candidate
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SU(2) φQ, ψQ φL, ψL ψ, φ

I 2 2 1
II 1 1 2
III 3 3 2
IV 2 2 3
V 3 1 2
VI 1 3 2

SU(3)

A 3 1 1
B 1 3 3
C 3 8 8
D 8 3 3
Y

1/6 ∓X −1/2 ∓X ±X

Table 6.1.: All possible choices for the combinations of representation of the new particles such that
they allow for a one-loop contribution to b → sµ+µ−. The first (second) subtable gives the
possible combination of representations of the new particle content under the SU (3) (SU (2))
gauge group. The last line summarizes the possible hypercharge assignment and X is a free
parameter. The upper (lower) sign applies to the a)(b)) type models.

ψ

φQ

ψ

φL

b L

s̄ L̄

φ

ψQ

φ

ψL

b L

s̄ L̄

Figure 6.1.: Box diagram contribution to the decay b → sµ+µ−(νν) for model type (a) on the left and
model type (b) on the right.

is constrained to be a colorless, electrically neutral, massive particle 2. This statement
alone eliminates half of the 48 possible model configurations, since in the categories C
and D there is not a single colorless particle. The remaining 24 models can be classified
in terms of the properties of their DM candidates. In the upcoming article [5], we limit
ourselves to models with a singlet dark matter candidate. All singlet DM models are
categorized in Table 6.2. In the context of this thesis, we further specify on the model
b)IIA.

2In fact, DM could be colored and exist in form of eventually colorless bound states. We, however, only consider single
particle DM. Please also note, that in principle DM could possess a small electric charge, such as in scenarios of
millicharged DM.
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fermionic singlet scalar singlet
a)IA a)IIA
b)IIA a)IIB
b)IIB a)VA
b)VA a)VIB
b)VIB b)IA

Table 6.2.: Models containing at least one singlet DM candidate. The model discussed in this thesis is
highlighted in blue.

Following [152], we obtain constraints on the couplings Γµ relevant for the DM pro-
duction cross section from constraints on the Wilson coefficients C9 and CBB̄, which are
obtained from fitting the RK observables and the observed B-B̄ oscillations. Addition-
ally, the new Yukawas must be chosen small enough to evade limits from B-B̄-mixing.
In this work, we use the updated constraints from [153]. The contributions to C9 and
C10 from the box diagrams illustrated in Figure 6.1 and the Wilson coefficients relevant
to the B-B̄-mixing are given in Appendix E. We neglect the influence of photon penguin
diagram contributions to C9 and therefore assume C9 ≈ Cbox

9 . The current 2σ bounds
on C9 and CBB̄ are

C9 ∈ [−0.62,−0.17] (6.1.6)
CBB̄ ∈ [−2.1, 0.6] · 10−5 TeV−2 . (6.1.7)

Starting from these premises we can construct an upper bound on ΓsΓ
∗
b from B-B̄ mixing

and use this to construct a lower bound on Γµ by taking into account the bounds on C9.
In the following, we specify on the model b)IIA and only give results concerning this
model. We choose X = 1/2, such that ψL constitutes the DM candidate. We assume
mass degeneracy between the new non-dark matter particles ψQ and φ. For convenience,
we introduce the dimensionless parameter

κ =
mψQ

mψL

=
mφ

mψL

> 1 . (6.1.8)

Moreover, we introduce a global Z2 under which all SM particles are even, while the
three BSM particles are odd. This renders ψL stable if it is the lightest of the new
particles, which is the case for κ > 1. Note, that this symmetry also forbids Yukawa
couplings of the ψQ to the SM up-type quarks which would be present otherwise, as the
field ψQ transforms like a right-handed SM up-type quark. This coupling would lead to
a mass mixing of the new state with SM quarks.
From the bounds on C9 and CBB̄ we find

Γs · Γ∗
b ≤ 1.508 · 10−4κ

mψL

GeV
, (6.1.9)

Γµ ≥ 0.608 ·

(︄
κ
−230.91 + 307.88κ2 − 76.97κ4 − 153.94 · log

(︁
κ2
)︁

(κ2 − 1)3

)︄− 1
2
√︃
mψL

GeV
.

(6.1.10)

Additionally, we enlarge the scalar sector of the theory, thereby altering the form of
the scalar potential. In addition to the SM Higgs doublet H, there exists another scalar
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doublet φ in the considered model. The most general form (again respecting a stabilizing
symmetry) of the scalar potential in this scenario is

Vscalar =m
2
HH

†H +m2
φφ

†φ+ λH

(︂
H†H

)︂2
+ λφ

(︂
φ†φ

)︂2
+ λφ,H,1

(︂
φ†φ

)︂(︂
H†H

)︂
+ λφ,H,2

(︂
φ†H

)︂(︂
H†φ

)︂
+

[︃
λφ,H,3

(︂
φ†H

)︂2
+ h.c.

]︃
.

(6.1.11)

To ensure the stability of the scalar vacuum on tree-level, we adopt the limits of [111,154],
leading to

λH > 0, (6.1.12)
λφ > 0, (6.1.13)

λφ,H,1 > −2
√︁
λφλH , (6.1.14)

λφ,H,1 + λφ,H,2 − |2λφ,H,3| > −2
√︁
λφλH . (6.1.15)

Note that for the model b)IIA discussed in this thesis, the coupling λφ,H,3 vanishes as
the new scalar has a different hypercharge than the SM Higgs field. This also implies the
absence of non-zero neutrino masses in this model. While the fermion ψL is a SM singlet
and could potentially couple to the SM Higgs and neutrino via a Yukawa coupling, this
coupling is forbidden by the Z2 charge assignment that ensures the stability of the DM
candidate. However, neutrino masses could still be generated via the scotogenic mass
mechanism described in Section 2.1, if λφ,H,3 ̸= 0 which, however, does not apply here.

6.2. Analysis Strategy and DM Phenomenology

We intend to examine whether the aforementioned models, in addition to providing an
explanation to the RK anomaly, can simultaneously create the correct DM relic density
ΩDMh

2 = 0.120± 0.001 (at 68% CL) observed by Planck [10] and withstand the bounds
set by DM direct detection experiments like XENON1T [146]. For our phenomeno-
logical analysis we use FeynRules [155, 156] and its interface with FeynArts [157]
and FormCalc [158] and/or FeynCalc to calculate contributions to direct detection
cross sections up to one-loop level. We also operate another FeynRules interface with
CalcHEP [159] to compute direct detection cross sections with micrOMEGAs, which
uses said CalcHEP output. We also use micrOMEGAs to numerically solve Boltz-
mann’s equations [160, 161] and obtain the relic density. Since the Yukawa coupling
required to generate the observed RK is sizable, DM production can only proceed via
the freeze-out mechanism.
The model features two regions of parameters space for κ ≳ 1.2 and κ ≲ 1.2 that are
distinct in terms of DM production. For κ ≳ 1.2, coannihilations of the heavier dark
sector particles, an effect described in Section 2.3.3, are not efficient due to the sizable
mass difference between the DM candidate ψL and the other dark sector particles ψQ
and φ. Thus, the annihilation cross section is typically dominated by direct annihilation
of ψL into a pair of µ’s or neutrinos.
On the other hand, for κ ≲ 1.2, coannihilations are efficient and annihilations of ψQ and
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Figure 6.2.: The first line shows the dominant DM annihilation channel for a non-coannihilating scenario.
The second line gives three exemplary annihilation channels that can contribute in a scenario
involving coannihilation, that is κ ≲ 1.2.

φ can effectively dominate the annihilation cross section of ψL. Typically, the annihi-
lations of ψQ mediated by the couplings Γs/b to the second and third quark generation
and the strong gauge coupling g3 provide larger contributions to the annihilation cross
section than the annihilation of the dark scalar φ via the Higgs portal couplings λφ,H,1.
Various Feynman diagrams of the contributions to the annihilation cross section are il-
lustrated in Figure 6.2. In case of κ ≳ 1.2, we can find a simple estimate for the relic
density using Eq. (2.3.32), as the matrix element of the dominant annihilation channel
ψLψ̄L → L̄L only depends on Γµ, mψL and κ. The thermally averaged cross section ⟨σv⟩
of this process expanded in powers of the relative velocity v to leading order results in

⟨σv⟩ = 2
Γ4
µ

8πM2
ψL

(1 + κ2)−2 +O(v1) = σ0 +O(v1) . (6.2.1)

As in Section 4.3, we can relate σ0 to the observed relic density ΩDM via

ΩDM =

√
geff

geff,s

3.79xf
MPlmBσ0

ΩB
YB

. (6.2.2)

If we simultaneously want to provide an explanation for the anomaly in RK , the coupling
of ψL to muons must satisfy Eq. (6.1.10). Both the lower bound on Γµ as well as the
value for Γµ required to reproduce the measured relic density scale like

√︁
MψL . Thus,

we can find an upper bound on the relic density that only depends on the parameter
κ besides the logarithmic mass dependence of xf . A numerical evaluation reveals that
only for κ ≳ 12, the model can account for both the relic density and an explanation to
RK . We illustrate the behavior in Figure 6.3.
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Figure 6.3.: Approximation of the correct relic density requirement in the non-coannihilation scenario
with κ ∈ (7, 10, 15) in (red,blue,green). The shaded areas show the configurations, where
RK can potentially be explained. The solid lines indicate where the correct relic density is
reproduced. Only the κ = 15 configuration can explain the observed Ωh2 and RK simulta-
neously.

Beside the relic density, we check if a certain data point violates the limits on the
SI DM-nucleon cross section provided by XENON1T. In this model, the leading order
contributions to the direct detection cross section σDD are one-loop processes. Sizable
contributions to σDD mainly arise from Z/γ/H-penguin diagrams. The corresponding
amplitudes of these diagrams are proportional to Γ2

µ. Further contributions arise from
box diagrams that induce scattering with the quarks of the second and third generation.
The different contributions are illustrated in Figure 6.4. For our numerical results we
compute the effective vertices ψ̄LZµψL and ψ̄LHψL at zero outer momentum utilizing
FeynArts [157] and FormCalc [158] and/or FeynCalc. The DM cross sections with
nucleons are calculated with micrOMEGAs. The resulting cross sections have to be
compared to the limits provided by XENON1T illustrated in Figure 2.14. However, these
limits must be rescaled according to the relic density of the respective data point. The
limits from XENON1T on the DM-nucleon cross section assume that for a given DM mass
the particle species fully accounts for the measured relic density. This, however, is not
the case for the majority of our data points. If for instance the data point underproduces
DM, a lower number density of DM particles than the one assumed for the exclusion
plot from XENON1T is implied. As the scattering process involves one DM particle, we
naively rescale the bound from XENON1T, in the following referred to as Xe1T (MψL),
inversely linear with the relic density predicted by the model. Thus, a data point must
fulfill

Ω0

Ω
Xe1T(MψL) ≥ σSI

DD , (6.2.3)

not to be excluded by the experiment. In the formula above, Ω0 refers to the measured
DM energy density, while Ω corresponds to the DM energy density predicted by the
specific data point.
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Figure 6.4.: The three types of one-loop contributions to direct detection arising in this model.

6.3. Results

For our scan we either randomly generate data points or only vary the parameters MψL
and Γµ, allowing for a compact presentation in the MψL-Γµ plane. For the randomly
generated data sets we scan over the parameters given in Table 6.3 but with a constant
coannihilation parameter. For all data sets, we take λφ = 1 as it is irrelevant for the DM
phenomenology. We further assume λφ,H,2 = 0, which directly results in mass-degenerate
components of the scalar doublet φ, that is mη0 = mη− . As mentioned in Section 6.1,
the coupling λφ,H,3, given in the general scalar potential in Eq. (6.1.11), is absent in this
model, as the two scalar doublets have a different hypercharge.

Mψl Γµ Γb λφ,H,1

Lower Bound 100GeV 10−4 max
[︃
10−4, 1.5

4π
10−4

√︂
κ
MψL
GeV

]︃
10−4

Upper Bound min
[︂
105 GeV, 16π2

1.5κ
104 GeV

]︂
4π 4π 2

M2
ψL
v2

κ2

Table 6.3.: Parameter ranges for the scatter plots given in Appendix F. The lower bound on Γb and
the upper bound on MψL result from the requirement of perturbative couplings Γs and Γb,
while still fulfilling Eq. (6.1.9). The upper bound on λφ,H,1 ensures that the DM stabilizing
symmetry is not broken by a vev of φ.

The main result is summarized in Figure 6.5, where we present four data sets with
κ = (1.01, 1.1, 5, 15), constant λφ,H,1 = 0.1 and Γb = Γs =

√
1.5 · 10−2

√︂
κ
MψL
GeV while

varying MψL and Γµ in the ranges MψL ∈
(︁
100, 3 · 104

)︁
GeV and Γµ ∈

(︁
10−4, 4π

)︁
.
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Figure 6.5.: The regions that respect the current XENON1T limits (purple), allow for an explanation of
RK (gray) and reproduce the observed relic density (yellow) are presented in the MψL −Γµ
plane for data sets with four different coannihilation parameters. Note that below a given
yellow line, DM is overproduced thereby excluding the model. Above a yellow line DM is
underproduced. The different boundary lines correspond to the different data sets, namely:
κ = 15 (solid), κ = 5 (dotted), κ = 1.1 (finely dashed) and κ = 1.01 (roughly dashed). Only
the case κ = 15 allows for an simultaneous explanation of RK and the correct relic density.
However, this scenario is excluded by direct detection experiments. Additionally, we do not
find a region that explains the RK anomaly and is not excluded by direct detection, as we
do not observe an overlapping gray and purple area. In this sense, direct detection tests if
this model can explain the anomaly in RK . Thus, in the form presented here, the model
cannot serve as an explanation to RK . Further, we find that only coannihilating scenarios
allow to reproduce the observed relic density, while being in agreement with direct detection
experiments.

For large κ, we observe the feature described in the previous subsection. Both the
boundary of the region that provides an explanation to RK (gray) and the line repre-
senting the observed relic density (yellow) shift to larger Γµ for an increasing κ. The
relic density, however, increases in a higher rate with increasing κ, such that at a given
κ0 ∼ 12 both lines overlap. Thus, we find that the correct relic density can be repro-
duced in a model with κ = 15 while also allowing for a solution to RK . Note that for
the other three cases, the scenarios providing a solution to RK are not excluded by the
measurement of the relic density, as above the yellow lines DM is underproduced due to
the larger coupling to the SM. The missing DM energy density could be accommodated
by an additional DM component.
However, we do not observe any overlap between the purple regions that indicate the
parts of the parameter space in agreement with direct detection experiments and the
gray regions allowing for an explanation to RK . Thus, direct detection experiments
exclude this version of the model as an explanation to RK . Although DM tends to be
underproduced in these regions, thereby relaxing the exclusion limit from XENON1T,
the coupling of ψL to muons is too sizable to evade those constraints. Note that the
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direct detection limits only apply if a DM stabilizing symmetry is imposed on the model.
However, such a symmetry also forbids mass mixing of the new fermion ψQ with the SM
quarks. Without this symmetry the couplings inducing the mass mixing would have to
be set to zero or a tiny value by hand.
Note that we also did not find any data points that allow for an explanation of RK that
are in agreement with direct detection in a scan using a randomly generated data set
with parameters that were varied within the ranges given in Table 6.3, although the
limits arising from direct detection experiments are weaker, when Γs ̸= Γb. In Appendix
F, we provide the same type of plot as illustrated in Figure 6.5 but with Γs = 4π and
Γb chosen such that the model is not excluded by B-B̄ mixing. This scenario provides
the weakest limits from direct detection experiments, as discussed in Appendix F.
Moreover, we find that coannihilations are mandatory in this model to fully account
for the observed relic density. This can be seen in Figure 6.5 from the fact that the
only yellow lines that enter the purple colored areas belong to coannihilating scenarios.
For large masses and couplings, the coannihilating scenarios behave in the same way as
non-coannihilating configurations. However, we find a lower bound on the DM mass in
coannihilating scenarios in case they account for the observed relic density. This stems
from the fact that in those sets we did not vary the couplings Γs/b and λφ,H,1 that in
combination with the strong gauge coupling g3 determine the strength of the coannihila-
tion channels. This contribution is independent of Γµ and even exists in case of Γµ = 0.
Thus, as the effective annihilation cross section is bounded from below, we find a lower
bound on the DM mass. This lower bound also exists for Γs/b = λφ,H,1 = 0, due to the
contribution from the strong gauge coupling.
The dependence of the lower bound on the mass ratio κ, can be understood by means of
the formula for the effective cross section given in Eq. (2.3.35). Since the contribution
of the coannihilation channels to the effective annihilation cross section is suppressed by
a factor of exp (−xf [κ− 1]), the lower bound on the effective annihilation cross section,
and thus the lower bound on the DM mass, are relaxed for a larger κ.
The tight constraints from direct detection stem from the vector coupling of ψL to the Z
boson. The discussed b)IIA model, however, also allows ψL to be a Majorana fermion.
This forbids the vector coupling to the Z and therefore might relax the constraints from
direct detection. Again we calculated the contributions of the model to the effective
vertices ψ̄LZµψL and ψ̄LHψL at zero outer momentum utilizing FeynArts [157] and
FormCalc [158] and/or FeynCalc but for a Majorana fermion ψL instead of a Dirac
fermion. Due to the absence of the vector coupling, the contribution to the SI DM-
nucleon cross section is much smaller than in the case of Dirac DM. As a consequence,
the constraints from XENON1T and IceCube on the SD DM-nucleon cross section, aris-
ing from the axial-vector coupling, are more restricting than the ones on the SI cross
section despite being several orders of magnitude less stringent. Therefore, we use the
bounds on the DM-proton cross section from IceCube [162] and on the DM-neutron cross
section from XENON1T [146] to constrain the model in case of Majorana DM.
In Figure 6.6, we show the results of a scan with fixed Γs/b and λφ,H,1 as in the case
of Dirac DM for coannihilation parameters κ = (1.01, 1.1, 5, 15). Beside the relaxed
constraints from direct detection experiments, the results in the case of Majorana DM
are similar to the findings for Dirac DM. The observed relic density and RK can be
reproduced simultaneously for κ ≳ 5. The value differs from the case of Dirac DM,
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Figure 6.6.: The regions that respect the current limits on the SD DM-nucleon cross section (purple),
allow for an explanation of RK (gray) and reproduce the observed relic density (yellow) are
presented in the MψL −Γµ plane for data sets with four different coannihilation parameters
in the case of Majorana DM. The purple regions arise from a combination of the constraints
from IceCube [162] and XENON1T [146]. The constraints from direct detection are much
weaker than in the case of Dirac DM. Nevertheless, only the strongly coannihilating scenario
with κ = 1.01 allows for an explanation of RK in agreement with direct detection exper-
iments. Even in this scenario small masses of MψL ≲ 110GeV are mandatory, implying
ψQ in a similar mass range. Those masses can be in contradiction with collider bounds on
vector-like quarks [163]. As in the case of Dirac DM, only coannihilating scenarios allow for
the observed relic density in agreement with direct detection experiments.

since the s-wave annihilation is suppressed in case of Majorana DM. Thus, the leading
order contribution of the annihilation cross section is velocity suppressed, resulting in
larger required values for Γµ compared to the case of Dirac DM. This, in turn, allows
for a simultaneous explanation of RK and the relic density for κ ≳ 5 instead of κ ≳ 13.
However, such a scenario is still excluded by direct detection experiments.
In contrast to the case of Dirac DM, the relaxed direct detection constraints allow for
an explanation of RK in the case of a strongly coannihilating scenario with κ = 1.01
if MψL ≲ 110GeV. As shown in Appendix F, this region can extend up to 850GeV
in the case of a hierarchical coupling structure with Γs = 4π. However, the model also
introduces a vector-like fermion with the quantum numbers of a right-handed up quark.
As this particle couples to the SM gluons, it can be constrained from collider searches,
for instance by mono-jet searches. While a collider analysis is planned to be part of the
future work [5], it is not presented in this thesis. If we adopt an estimated lower bound
on the mass of a SU (2) singlet vector-like up-type quark of 600GeV taken from [163], we
would directly exclude the only working scenario for an explanation of RK in agreement
with direct detection experiments for democratic coupling structures Γs ∼ Γb.
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6.4. Conclusion

In this chapter, we have analyzed the b)IIA version of a class of models introduced
in [152] to address the observed anomaly in the RK observable. The model adds a
singlet fermion ψL, a color triplet and SU (2)L singlet fermion ψQ with hypercharge
Y = 2

3 and a scalar doublet φ with hypercharge Y = −1
2 to the SM. All new particles

are odd under a Z2 symmetry, while the SM fields are even. Thus, the electrically neutral
fermion ψL is a DM candidate if it is the lightest particle in the dark sector. We found
that coannihilations are necessary to reproduce the observed relic density in agreement
with current direct detection experiments. Coannihilations only take place if the mass
ratio of the dark sector particles, parametrized by κ =

MψQ

MψL
, fulfills κ ≲ 1.2.

The model relies on a large coupling of ψL to muons to explain the RK anomaly. This
leads to an underproduction of DM in most of the cases capable of explaining the anomaly
in RK . Only for the case of heavy dark sector partner particles, more precisely κ ≳ 13 for
Dirac DM and κ ≳ 5 for Majorana DM, scenarios explainingRK can provide the observed
relic density. Those scenarios, however, are excluded by direct detection experiments.
Remarkably, direct detection experiments even prove to be more powerful in this setup.
Although DM is underproduced in most scenarios providing an explanation to RK , the
large coupling to muons still leads to an exclusion by the XENON1T experiment. Even
if, as in the case of Majorana DM, the vector coupling to the Z boson is forbidden the
constraints on the SD DM-nucleon cross section, taking into account the lower bound on
the mass of the vector-like up-type quark ψQ, might be sufficient to exclude the b)IIA
model as an explanation of the anomaly in RK . For the case of Dirac DM the model in
this form is excluded as an explanation for the RK anomaly. For the case of Majorana
DM the collider study, which is a subject of an ongoing study, is mandatory to make a
definite statement about the capability of the model to serve as an explanation to the
RK anomaly.
The study of the remaining models including a singlet DM candidate, summarized in
Table 6.2, is still ongoing and will be discussed in [5].
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7. Conclusion

The measurement of the CMB provides strong and precise evidence for the existence of
energy density in the universe in form of DM. In this thesis, we invesitgated several SM
model extensions including a DM candidate and their connection to neutrino and flavor
physics.
In Chapter 2, we reviewed several neutrino mass generation mechanism, as the mod-
els investigated in the Chapters 3 and 4, and partially in Chapter 6, are constructed
to generate the observed neutrino masses and mixing parameters. Furthermore, we
provided an overview of different DM production mechanisms and pointed out various
phenomenological implications of DM models.
Chapter 3 was dedicated to a model involving a SM singlet fermion propagating in an
extra dimension. The resulting suppression of couplings to the SM particle conent, con-
fined on a (3+1) dimensional subspace, allows for a neutrino mass generation via the
type-I seesaw involving heavy neutrino masses down to a few GeV.
Motivated by the small couplings arising in the type-I seesaw for heavy neutrinos with
masses around the electroweak scale, we constructed a feebly coupled neutrino portal to
DM model in Chapter 4. We found two distinct DM production regimes: non-resonant
and resonant production of DM. The latter is strongly constrained by the measure-
ment of the Lyman-α forest and a large part of the parameter space can be ruled out.
Conversely, the non-resonant production regime remains basically unconstrained but
provides a prediction of the heavy neutrino mass scale, given the coupling structure of
the model. If for instance the coupling of the heavy neutrino to DM is significantly
larger than the one to the SM, heavy neutrinos in the GeV range are predicted. These
could potentially be probed by future hidden sector searches such as SHIP.
In the second part of Chapter 4, we extended our analysis to more strongly coupled
version of the neutrino portal to DM and checked if phenomenolgical viable data points
provide a model that is theoretically consistent in the sense that the scalar vacuum re-
mains stable and couplings are perturbative also at large energy scales. The freeze-out
realizations of the neutrino portal to DM are severly constrained by the applied consis-
tency conditions. We find that sizable contributions of the Higgs portal are excluded,
as they would lead to non-perturbative couplings. Further we find an upper bound on
the DM mass of a few hundred GeV for a fermionic DM candidate and an upper bound
of 2TeV for a scalar DM candidate. In the future, we plan to analyze an inverse seesaw
realization of the neutrino portal to DM concerning the consistency conditions given
above.
While freeze-in scenarios are unconstrained by the consistency conditions, the renor-
malization group running of the model parameters provides an interesting prospect for
future work. As freeze-in production can be efficient for very different energy scales, the
effects induced by the running of the coupling relevant for DM production can change
the prediction for the generated relic density.
In Chapter 5, we investigated the effect of a Yukawa bound state that can form in a
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heavy dark sector. We found that the bound state can facilitate the interaction of the
heavy dark sector with a lighter dark sector or the SM. The bound state can even
generate an efficient particle transfer between to sectors if the connecting interaction is
too small to provide a direct particle transfer. The bound state effectively enhances the
annihilation cross section by confining its constituents close to each other.
Eventually, in Chapter 6, we discussed the capability of one-loop solutions to the RK
anomaly to additionally generate the observed relic density. We specified on the model
version b)IIA and found that this model cannot explain RK and DM in agreement with
current DM direct detection experiments. Furthermore, we found that direct detection
experiments are even more restrictful in this case. As long as the lightest dark sector
particle is stable, direct detection experiments exclude this model as an explanation for
the RK anomaly for Dirac DM. The analyis will be extended to the remaining one-loop
solutions to the RK anomaly including a singlet DM candidate.
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A. Momentum Distribution Function of resonantly produced
DM in the Neutrino Portal to Dark Matter

A common simplifying assumption (e.g. in [51]) to solve the Boltzmann equation is
to perform the momentum integration by assuming that if a particle distribution devi-
ates from its equilibrium density it differs only by a momentum-independent factor, i.e.
fi = αif

th
i with ∂αi

∂pi
= 0. Furthermore, the equilibrium densities of bosons and fermions

are approximated by a Boltzmann distribution.
Following the lines of [53,164] we solve the Boltzmann equations at the level of momen-
tum distribution functions. This has the advantage of a more accurate solution and the
exact shape of the momentum distribution allows for more insights into the process of
structure formation. Throughout the calculation we approximate the equilibrium den-
sities of any particle species by a Boltzmann distribution. The Boltzmann equation is
given by: (︃

∂

∂t
−Hp

∂

∂p

)︃
f (p, T (t)) = C (p, T ) . (A.1)

Here t is the time, H the Hubble parameter, f is the momentum distribution function of
the particle species whose evolution is described by this Boltzmann equation, p is their
momentum and C (p, T ) is the collision term which describes the impact of interactions.
For the integration of this equation it is convenient to perform a coordinate transforma-
tion (t, p) → (r, x) such that the differential operator on the left-hand side contains a
derivative with respect to one of the new variables only. If r only depends on t and

∂x

∂t
−Hp (r, x)

∂x

∂p
= 0 , (A.2)

the left-hand side of Eq. (A.1) results in

∂r

∂t

∂

∂r
. (A.3)

The condition (A.2) is fulfilled if

x (p, t) = x

(︃
a (t)

a (t0)
p, t0

)︃
(A.4)

A convenient choice for x is

x (p, t) =
1

T0

a (t)

a (t0)
p =

(︃
gs (T0)

gs (T )

)︃ 1
3 p

T
. (A.5)

For the last equality we used the conservation of entropy s(T0)a(T0) = s(T )a(T ) = const.
and gs are the entropy degrees of freedom. The conservation of entropy also allows us
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to relate the temperature T to the time t via

dT

dt
= −HT

(︃
1 +

T

3

dgs
dT

g−1
s

)︃−1

. (A.6)

Since T is only a function of t and not of p we can choose

r (T ) =
m0

T
, (A.7)

with m0 as an arbitrary mass scale. Combining these results, the Boltzmann equation
reads

rH

(︃
1− T

3

∂

∂r
ln (gs)

)︃−1 ∂

∂r
f (p (r, x) , T (r)) = C (p (r, x) , T (r)) . (A.8)

Since in this work DM production is mainly governed by 2 ↔ 2 scattering processes, we
discuss the collision term for these type of processes in more detail. For a A + B →
C + DM scattering the collision term for the evolution of the momentum distribution
function of DM is given by:

CDM (p) =
gAgBgC
2EDM

∫︂
d3pA

2EA (2π)3
d3pB

2EB (2π)3
d3pC

2EC (2π)3
(2π)4 δ4 (pA + pB − pC − pDM )×

× |M|2 (fAfB − fCfDM ) . (A.9)

Here, Ei =
√︂
p2
i +m2

i , M is the matrix element for the process A + B → C + DM

which is the same in both directions since we are assuming CP invariant interactions
and fi is the distribution function of particle species i. We assume that fCfDM ≪ fAfB
which is justified in the context of freeze-in production of DM, as discussed in Chapter
4. Furthermore, we take fA/B = f thA/B assuming the interactions of A and B are efficient
enough to keep them in thermal equilibrium. Moreover, taking f eq

A/B to be a Boltzmann
distribution, shifting the integration over pc to pC + pDM = P and multiplying the
equation by 1 =

∫︁
dP0δ (P0 − EC − EDM ) yields

C (pDM ) =
gAgBgC
4EDM

∫︂
d4P

(2π)3
exp (−P0/T )

EC
δ (P0 − EC − EDM )×

×
∫︂

d3pA

2EA (2π)3
d3pB

2EB (2π)3
(2π)4 δ4 (pA + pB − pC − pDM ) |M|2 (A.10)

The equation above can be simplified by rewriting it in terms of the reduced cross
section [165]:

gAgBgCgDM

∫︂
d3pA

2EA (2π)3
d3pB

2EB (2π)3
(2π)4 δ4 (pA + pB − pC − pDM ) |M|2

=
σ̂ (s)√︃[︂

1− (mC+mDM )2

s

]︂ [︂
1− (mC−mDM )2

s

]︂ . (A.11)

Moreover, we change the variables of integration from d4P to an integration over the
zeroth component of the center of mass momentum vector P0, the center of mass energy
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s and the angle θ between center of mass momentum P and the momentum of the DM
candidate pDM , d4P = 2πP2dP0dPd cos (θ) = 2π

√︁
P 2
0 − sdP0dsd cos (θ). To eliminate

the remaining δ function we express its argument in terms of cos (θ):

δ (EC + EDM − P0) = δ

(︃√︂
P2 + p2

DM − 2PpDM cos (θ) +m2
C + EDM − P0

)︃
=

EC
PpDM

δ (cos (θ)− cos (θ0)) , (A.12)

where cos (θ0) is the value required for cos (θ) for a vanishing argument of the δ function.
Therewith, Eq. (A.10) results in

C (pDM ) =
1

4gDMEDMpDM

∞∫︂
smin

ds
σ̂ (s)√︃[︂

1− (mC+mDM )2

s

]︂ [︂
1− (mC−mDM )2

s

]︂×

×
∞∫︂

√
smin

dP0

(2π)2
exp

(︃
−P0

T

)︃ 1∫︂
−1

d cos (θ) δ (cos (θ)− cos (θ0))

⏞ ⏟⏟ ⏞
= 1, if cos (θ0) ∈ [−1, 1]

(A.13)

The last integral basically restricts the boundaries of either P0 or s in the sense that if√︂
P2 + p2

DM − 2PpDM cos (θ0) +m2
C + EDM − P0 = 0 (A.14)

is fulfilled | cos (θ0) | ≤ 1 must hold. This requirement yields the inequality(︁
s+m2

DM −m2
C − 2P0EDM

)︁2 ≤ 4p2
DM

(︁
P 2
0 − s

)︁
. (A.15)

In case of mC = mDM
1 this results in a lower (relative minus sign) and upper bound

(relative plus sign) of the P0 integration of

P±
0 =

EDMs

2m2
DM

[︄
1± pDM

EDM

√︃
1− 4

m2
DM

s

]︄
mDM=0

=

{︃
P+
0 → ∞
P−
0 = s

4pDM
+ pDM

. (A.16)

The last equality shows that in case of mDM = 0 only a lower bound exists, as was
shown in [164], while for finite DM masses there is also an upper bound. Thus, we have

C (pDM ) =
1

4gDMEDMpDM

∞∫︂
smin

ds
σ̂ (s)√︂

1− 4
m2
DM
s

P+
0∫︂

P−
0

dP0

(2π)2
exp

(︃
−P0

T

)︃
. (A.17)

The s integral and the following integration of the differential equation for an arbitrary
cross section cannot be performed analytically. However, in case of a light DM candidate
(mDM ≈ 0) and a resonant production process with Γmediator ≪ Mmediator the integral
can be evaluated analytically. Moreover, this case is of special interest for this thesis
since for resonant production discussed in Chapter 4 the DM mass can be considered as

1This is a good approximation for this work since we assume the dark sector to be almost degenerate in mass.
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small. Therefore, the exact shape of the momentum distribution is required to quantify
the impact of DM on structure formation. In this case, we have P+

0 → ∞ and

σ̂ (s) ≈ δ
(︁
s−M2

N

)︁√︃
1− 4

m2
DM

s
σ̂BW (s) . (A.18)

Hence the collision term yields

C (pDM ) =
T

32π2gDMp2
DM

σ̂BW
(︁
M2
N

)︁
exp

(︃
−

M2
N

4pDMT
− pDM

T

)︃
. (A.19)

Transforming the variables according to Eq. (A.7) and Eq. (A.5) and taking gs to be a
constant, i.e. x = pDM

T , leads to

C (pDM ) =
1

32π2gDM

r

x2m0
σ̂BW

(︁
M2
N

)︁
exp

(︃
−
M2
Nr

2

4xm2
0

− x

)︃
. (A.20)

A collision term of this form can be integrated and results in the following momentum
distribution function:

f (p, T ) =
Mplσ̂BW

(︁
M2
N

)︁
64π2gDMcH

exp (−p/T )
M3
N

T 2

p2

[︃√︃
πp

T
erf
(︃
MN√
pT

)︃
− 2

MN

T
exp

(︃
−
M2
N

Tp

)︃]︃
,

(A.21)

where erf (x) is the error function. Therewith, the number density is given by the
integration over the momentum

n (T ) = 4πgDM

∞∫︂
0

p2f (p, T )
T≪MN=

Mplσ̂BW
(︁
M2
N

)︁
8cH

T 3

M3
N

. (A.22)

In the last step, we assumed that the temperature where we observe the DM density
is much smaller than the mass of the resonant particle. As mentioned above, to derive
this analytic result we took the effective entropy degrees of freedom to be a constant.
Hence the formula given above is only a good approximation as long as T is large
enough to allow for a constant value of gs (T ) ≈ 100 during the time of DM production.
The result remains a good approximation if the main part of the production has been
finished before gs (T ) starts to vary significantly since for a collisionless particle species
the quantity Y = n

s is a constant.
By comparing the number of produced DM particles at temperature T to the number of
particles for T → 0, n(T )T 3

lim
T→0

n(T )T 3 , with an unapproximated n (T ) we find that for T ≈ MN
4

already over 0.99 of DM particle have been produced. Thus, as long as MN ≥ 100GeV
the result (A.22) serves as a good estimate.
Beside collision terms for 2 ↔ 2 scattering processes, the collision term for the (inverse)
decay N ↔ νh is required. The procedure for performing the integration over the
particle momenta follows the same lines as for the 2 ↔ 2 scattering. Thus, we only give
the result for the collision term resulting from the decay that appears in the Boltzmann
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equation for the heavy neutrino N :

CN (pN ) =
MN√︂

p2N +M2
N

⎡⎣y2νgνgh
16π

MN exp

⎛⎝−

√︂
p2N +M2

N

T

⎞⎠− ΓN→νhfN (pN , T )

⎤⎦ .
(A.23)
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B. Neutrino Masses and Unitarity Violation in the extra
dimensional Seesaw Mechanism

In Chapter 3 sums of the form

AF1AF2

∞∑︂
k=−∞

cos
(︁
ka
R +ΦF1

)︁
cos
(︁
ka
R +ΦF2

)︁
M0 +

k
R − λ

≡ S (F1, F2) = S (F2, F1) . (B.1)

have to be solved. In the following, we employ the methods described in [80]. The
central point is to express the brane shift a such that a

πR becomes a rational number,
that is

a =
rπR

q
r, q ∈ N and q > r . (B.2)

For the following calculation we choose r = 1 but the calculation works in a similar way
with r ̸= 1. Using the periodicity of the Yukawa couplings of the KK modes to the SM
neutrinos, the infinite sum over k is split into two sums: An infinite sum over n and
another finite sum over l.
The old and new summation variables are related by k = qn+ l. Since a step in n causes
a step of q in k, the second sum over l had to be introduced. This sum has to fill the
gaps between a given k and k + q. Hence, this sum has to run from l = 0 to l = q − 1.
we find

S (F1, F2)

AF1AF2
=

q−1∑︂
l=0

∞∑︂
n=−∞

cos
(︂
nπ + l

qπ +ΦF1

)︂
cos
(︂
nπ + l

qπ +ΦF2

)︂
M0 +

qn
R + l

R − λ

⇒ S (F1, F2)

AF1AF2
=

q−1∑︂
l=0

∞∑︂
n=−∞

cos
(︂
l
qπ +ΦF1

)︂
cos
(︂
l
qπ +ΦF2

)︂
M0 +

qn
R + l

R − λ

⇒ S (F1, F2)

AF1AF2
=

q−1∑︂
l=0

cos

(︃
l

q
π +ΦF1

)︃
cos

(︃
l

q
π +ΦF2

)︃ ∞∑︂
n=−∞

1

M0 +
qn
R + l

R − λ
.

In the calculation above ka
R = qn+l

R a = nπ + l
qπ is used. Using the periodicity of the

cosine, the dependence of the numerator on n is eliminated. Consequently, the numerator
can be pulled out of the sum over n.
Then, we find a solution for the sum over n:

∞∑︂
n=−∞

1

B + qn
R

=
1

B
+

∞∑︂
n=1

(︃
1

B + qn
R

+
1

B − qn
R

)︃
=

1

B
+

∞∑︂
n=1

2B

B2 − q2

R2n2

where B =M0 +
l
R − λ holds.

Comparing the result with the series representation of cot (x) leads to the following
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result:

1

B
+

∞∑︂
n=1

2B

B2 − q2

R2n2
=
R

q
π cot

(︃
R

q
πB

)︃
.

Thus, it is possible to write the sum as:

S (F1, F2)

AF1AF2
=

q−1∑︂
l=0

cos

(︃
l

q
π +ΦF1

)︃
cos

(︃
l

q
π +ΦF2

)︃
R

q
π cot

(︃
πR [M0 − λ]

q
+
l

q
π

)︃

=
R

q
π

q−1∑︂
l=0

cos

(︃
l

q
π +ΦF1

)︃
cos

(︃
l

q
π +ΦF2

)︃ cos
(︂
Θ
q + l

qπ
)︂

sin
(︂
Θ
q + l

qπ
)︂ ,

where Θ = πR (M0 − λ). The finite sum over l remains:

Rπ

q

q−1∑︂
l=0

[︃
cos

(︃
2
l

q
π +ΦF1 +ΦF2

)︃
+ cos

(︁
ΦF1 − ΦF2

)︁]︃
cos

(︃
Θ

q
+
l

q
π

)︃ q−1∏︁
m ̸=l

sin
(︂
Θ
q + m

q π
)︂

q−1∏︁
k=0

sin
(︂
Θ
q + k

qπ
)︂ .

In this form, we can exploit the following relations used in [80]:

q−1∏︂
k=0

sin

(︃
Θ

q
+
k

q
π

)︃
= 21−q sinΘ

q−1∑︂
l=0

cos

(︃
Θ

q
+
l

q
π

)︃ q−1∏︂
m̸=l

sin

(︃
Θ

q
+
m

q
π

)︃
= 21−qq cosΘ

q−1∑︂
l=0

cos

(︃
2
l

q
π +ΦF1 +ΦF2

)︃
cos

(︃
Θ

q
+
l

q
π

)︃ q−1∏︂
m ̸=l

sin

(︃
Θ

q
+
m

q
π

)︃
=

21−qq cos

(︃
ΦF1 +ΦF2 +

q − 2

q
Θ

)︃
.

Those relations lead to

S (F1, F2)

AF1AF2
=
πR

2

⎡⎣cos
(︂
ΦF1 +ΦF2 + q−2

q Θ
)︂

sinΘ
+ cos

(︁
ΦF1 − ΦF2

)︁
cotΘ

⎤⎦ .
Eventually, q = πR

a is resubstituted and we find:

S (F1, F2)

πRAF1AF2
=
[︁
cot (πR [M0 − λ]) cos

(︁
ΦF1 − a [M0 − λ]

)︁
cos
(︁
ΦF2 − a [M0 − λ]

)︁
− 1

2
sin
(︁
ΦF1 +ΦF2 − 2a [M0 − λ]

)︁]︃
. (B.3)
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The second sum, which is to solve, is:

AF1AF2

∞∑︂
k=−∞

cos
(︁
ka
R +ΦF1

)︁
cos
(︁
ka
R +ΦF2

)︁(︁
M0 +

k
R − λ

)︁2 = S2 (F1, F2) . (B.4)

We find the solution by differentiating S (F1, F2) with respect to Θ.

d

dΘ
S (F1, F2) =

d

dΘ
AF1AF2

∞∑︂
k=−∞

cos
(︁
ka
R +ΦF1

)︁
cos
(︁
ka
R +ΦF2

)︁
k
R + Θ

πR

= −A
F1AF2

πR

∞∑︂
k=−∞

cos
(︁
ka
R +ΦF1

)︁
cos
(︁
ka
R +ΦF2

)︁(︁
k
R + Θ

πR

)︁2 = − 1

πR
S2 (F1, F2)

⇒S2 (F1, F2) = −πR d

dΘ
S (F1, F2) .

The derivative with respect to Θ results in

S2 (F1, F2)

π2 ∗R2AF1AF2
=

cos
(︁
ΦF1 − a [M0 − λ]

)︁
cos
(︁
ΦF2 − a [M0 − λ]

)︁
sin (πR [M0 − λ])2

−

a

πR
cot (πR [M0 − λ])

(︄
cos
(︁
ΦF1 − a [M0 − λ]

)︁
sin (ΦF2 − a [M0 − λ])

+
cos
(︁
ΦF2 − a [M0 − λ]

)︁
sin (ΦF1 − a [M0 − λ])

)︄
a

πR
cos
(︁
ΦF1 +ΦF2 − 2a [M0 − λ]

)︁
. (B.5)
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C. Renormalization Group Equations in the Neutrino Portal to
Dark Matter

Type-I seesaw Neutrino Portal to Dark Matter
We summarize the relevant one-loop β-functions of the type-I seesaw neutrino portal to
DM, normalized as dg/d lnµ = (4π)−2βg for any coupling g appearing in the Lagrangean.
In the Yukawa sector we find

βYe = Ye

[︃
3

2
(Y †
e Ye − Y †

ν Yν) + T − 15

4
g21 −

9

4
g22

]︃
,

βYν = Yν

[︃
3

2
(Y †
ν Yν − Y †

e Ye) + T − 3

4
g21 −

9

4
g22

]︃
+

1

2
YχY

†
χYν ,

βYχ =

[︃
YχY

†
χ + YνY

†
ν + Tχ

]︃
Yχ ,

(C.1)

where we have defined T ≡ Tr[Y †
e Ye + Y †

ν Yν + 3Y †
uYu + 3Y †

d Yd] and Tχ ≡ Tr[Y †
χYχ].

The RGEs of the fermion mass terms read

βMN
=MN (YνY

†
ν )

∗ + (YνY
†
ν )MN +

1

2

(︁
MN (YχY

†
χ )

∗ + (YχY
†
χ )MN

)︁
,

βMχ =
1

2
MχY

†
χYχ .

(C.2)

For the scalar sector RGEs it is useful to define Tνχ ≡ Tr[Y †
ν YνY

†
χYχ], T4 ≡ Tr[(Y †

e Ye)
2+

(Y †
ν Yν)

2 + 3(Y †
uYu)

2 + 3(Y †
d Yd)

2] and Tχ4 ≡ Tr[Y †
χYχY

†
χYχ]. Using these, we obtain

βλ1 = 12λ21 + 2λ23 +
3

4

(︁
g41 + 2g21g

2
2 + 3g42

)︁
− 3λ1(g

2
1 − 3g22) + 4λ1T − 4T4 ,

βλ2 = 10λ22 + 4λ23 + 12g41 − 12g21λ2 + 4λ2Tχ − 4Tχ4 ,

βλ3 = 4λ23 + 2λ3(3λ1 + 2λ2)−
3

2
λ3(g

2
1 + 3g22) + 2λ3(T + Tχ)− 4Tνχ .

(C.3)

Finally, the scalar mass parameters obey

βm2
H
= 6λ1m

2
H + 2λ3m

2
η −

3

2
m2
H (g21 + 3g22) + 2m2

H T − 4Tνν ,

βm2
η
= 4λ2m

2
η + 4λ3m

2
H − 6m2

η g
2
1 + 2m2

η Tχ − 4Tνχ − 4Tχχ ,
(C.4)

where Tνν ≡ Tr[M2
NY

†
ν Yν ] and βm2

η
is given in the limit of diagonal Mχ, which allows

to define Tχχ ≡ Tr[M2
χY

†
χYχ].
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We summarize the relevant one-loop β-functions of the inverse seesaw neutrino portal to
DM, using the same notation and abbreviations as above. The parts of the Lagrangian
involving new physics are given by [108]

L = LSM + (λ)αNRφ̃
†
Lα +

(︁
(YL)NL + (YR)NR

)︁
η χ

− 1

2
MN NRNL −Mχ χR χL + h.c.− V ,

(C.5)

and the potential V is again given by Eq. (4.1.2). In contrast to the type-I seesaw N is
describing a Dirac singlet fermion and, as in [108], only one generation of dark fermions
χ and new fermionic singlet states N is considered.
In the Yukawa sector we find

βλe =

[︃
− 3

4
g21 −

9

4
g22 +

1

2
y2R +

5

2

(︁
λ2µ + λ2τ + T

)︁ ]︃
λe −

3

2
(Y †
e Ye)α1λα ,

βYL =

[︃
2Y 2

L + Y 2
R

]︃
YL ,

βYR =

[︃
2Y 2

R + Y 2
L +

∑︂
α

λ2α

]︃
YR .

(C.6)

For the scalar sector we obtain

βλ1 = 48λ21 + 2λ23 +
3

4

(︁
g41 + 2g21g

2
2 + 3g42

)︁
− 3λ1(g

2
1 − 3g22)

+ λ1

[︃
− 6λ1 − 18g21 + 8

∑︂
α

λ2α + 8T

]︃
− 4

∑︂
α ̸=β

λ2αλ
2
β − 4T4 ,

βλ2 = −4Y 4
L + 8λ2Y

2
L − 4Y 2

R + 40λ22 + 4λ23 + 8Y 2
Rλ2 ,

βλ3 =

[︃
− 4

∑︂
α

λ2α + 2λ3

]︃
Y 2
R + 4λ23

+ λ3

[︃
− 3

2
g21 −

9

2
g22 + 2Y 2

L + 2
∑︂
α

λ2α + 2T + 12λ1 + 8λ2

]︃
.

(C.7)

The new scalar mass parameter obeys

βm2
η
= 2m2

η

(︁
Y 2
L + Y 2

R + 8λ2
)︁
− 4Y 2

R

(︁
M2
N +M2

χ

)︁
+ 4m2

hλ3 . (C.8)
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D. Additional Plots for the Consistency of the Neutrino Portal
to Dark Matter

In this Appendix we provide scatter plots for the scenarios omitted in Section 4.3.2.
Scatter Plots in the µDM-yχ plane
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Figure D.1.: Phenomenologically viable data points of the NPDM colored according to their behavior
at high energy scales. The data points are presented in the µDM − yχ plane where yχ =
yχ (µDM). The color code indicates if the data set leads to a model that is consistent up
to the Planck scale (purple), an unstable vacuum (yellow) or results in a non-perturbative
coupling (green and blue). The left (right) panel shows the results for data points involving
scalar (fermionic) DM.

131



Scatter Plots in the yχ-λ2 Plane
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Figure D.2.: The data set for the case of fermionic DM with a vanishing λ3 is displayed in the yχ − λ2

plane. The values of both λ2 and yχ are given at the scale µDM.
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Figure D.3.: The data set for the case of scalar (fermionic) DM with λ3 ̸= 0 is displayed in the yχ − λ2

plane. The values of both λ2 and yχ are given at the scale µDM.
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Scatter Plots in the µχ-Λmax Plane
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Figure D.4.: The data sets for scalar (left panel) and fermionic (right panel) DM with λ3 = 0 are displayed
in the µDM − Λmax plane. The scale Λmax describes the scale where the first inconsistency
appears. The color code again denotes which specific inconsistency arises or if the model
is safe up to the Planck scale. The dotted line indicates where Λmax = µDM, which is the
starting point for the numerical solution of the RGE.
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E. Relevant Wilson Coefficients

Here, we give the Wilson coefficients relevant to the for the model discussed in Chapter
6. The box diagrams given in Figure 6.1 contribute to the Wilson coefficients C9 and
C10 with C9 = −C10. Further, C9 is given by [152]

C
box, a)
9 =

√
2

4GFVtbV
∗
ts

ΓsΓ
∗
b |Γµ|2

32παemm2
ψ

(χηF (xQ, xl) + 2χMηMG(xQ, xl)) (E.1)

C
box, b)
9 = −

√
2

4GFVtbV
∗
ts

ΓsΓ
∗
b |Γµ|2

32παemm2
φ

(χη − χMηM )F (yQ, yl) (E.2)

with xQ/L =
m2
φQ/L

m2
ψ

and yQ/L =
m2
ψQ/L

m2
φ

. F and G are the dimensionless loop-functions

F (x, y) =
1

(1− x)(1− y)
+

x2 lnx

(1− x)2(1− y)
+

y2 ln y

(1− x)(1− y)2
(E.3)

G(x, y) =
1

(1− x)(1− y)
+

x lnx

(1− x)2(1− y)
+

y ln y

(1− x)(1− y)2
. (E.4)

The SU(2/3)-factors ηM , χM can be extracted from table E.1 [152].

SU(2) η ηM ηBB̄ ηMBB̄
I 1 1 1 1

II 1 0 1 0

III 5
16

0 5
16

1
16

IV 5
16

1
16

5
16

1
16

V 1
4

0 5
16

0

VI 1
4

0 1 0

SU(2) χ χM χBB̄ χMBB̄
A 1 1 1 1

B 1 0 1 0

Table E.1.: SU(2) and SU(3) factors entering Wilson coefficients Cbox
9 and CBB̄ . The factors relevant

for the model in this thesis are highlighted in blue.

Further the model induces B − B̄ mixing and the new physics contribution reads

C
a)

BB̄
=

(ΓsΓ
∗
b)

2

1282M2
ψ

(︁
χBB̄ηBB̄F (xQ, xQ) + 2χMBB̄η

M
BB̄G (xQ, xQ)

)︁
, (E.5)

C
b)

BB̄
=

(ΓsΓ
∗
b)

2

1282M2
φ

(︂
χBB̄ηBB̄ − χBB̄

M
ηMBB̄

)︂
F (yQ, yQ) . (E.6)
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F. Additional Plots for the Dark Matter Phenomenology in the
one-loop Solutions to RK

In Section 6.3, we gave a summary plot for the one-loop solution to the RK anomaly in
the light of DM. The plot assumed a democratic coupling structure in the quark sector
for the second and third generation couplings to the new particle content, more precisely
Γs = Γb. Additionally, Γs and Γb are chosen in a way such that they satisfy the limit
induced from B-B̄ mixing given in Eq. (6.1.9). This couplings structure generates the
most stringent constraints from direct detection for the following reason:
The limits provided by XENON1T on the SI DM-nucleon cross section are rescaled with
the relic density generated by a given data point according to Eq. (6.2.3). This directly
implies less stringent constraints for a small relic density. In highly coannihilating sce-
narios, the effective annihilation cross section can be dominated by annihilations of the
form ψQψ̄Q → qq̄ mediated by the couplings Γs and Γb and the corresponding Feynman
diagram is shown in Figure fig:Appf. The final state quarks can be from the second
and/or third generation. As their masses are negligible in the annihilation process, the
annihilation cross section scales as

⟨σv⟩ ∼ Γ4
b + 2Γ2

bΓ
2
s + Γ4

s . (F.1)

Thus, as the product ΓsΓb remains constant, the annihilation cross section is minimized
for Γb = Γs and maximized for Γb or Γs at its perturbative limit of 4π. Thus the latter
case leads to the smallest relic density and therefore weakest constraints from direct
detection. A scan in the MΨL-Γµ plane with the same parameters that were used in
Figure 6.5 but with Γs = 4π shows that for the case of Dirac DM the model b)IIA
cannot provide an explanation for the RK anomaly in agreement with direct detection.
The results of this scan are presented in Figure F.2.

φ

b ψQ

b̄ψ̄Q

Figure F.1.: Feynman diagram for the process ψQψ̄Q → qq̄.
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Figure F.2.: The regions that respect the current XENON1T limits (purple), allow for an explanation of
RK (gray) and reproduce the observed relic density (yellow) are presented in the MψL −Γµ
plane for data sets with four different coannihilation parameters. Note that below a given
yellow line, DM is overproduced thereby excluding the model. Above a yellow line DM is
underproduced. The different boundary lines correspond to the different data sets, namely:
κ = 15 (solid), κ = 5 (dotted), κ = 1.1 (finely dashed) and κ = 1.01 (roughly dashed).
Only the case κ = 15 allows for an simultaneous explanation of RK and the correct relic
density. However, this scenario is excluded by direct detection experiments. As for the case
of Γs = Γb, we do not find a region that explains the RK anomaly and is not excluded by
direct detection, as we do not observe an overlapping gray and purple area. Thus, in the
form presented here, the model cannot serve as an explanation to RK . Note that the figure
does not show a yellow line for the case of κ = 1.01, as all data points underproduce DM in
this case.

The same effect also applies to the case of Majorana DM where the limits on the SD
DM-nucleon cross section are relaxed in case of a smaller relic density. The result of
a parameter scan in the MΨL-Γµ plane with Γs = 4π is presented in Figure F.3. We
observe that the model might provide region of parameter space that explain the RK
anomaly and are in agreement with direct detection experiments. These regions extend
up to roughly 850GeV. Note however that this mass region might be constrained by
collider mono-jet searches, which are subject to an ongoing study.
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Figure F.3.: The regions that respect the current XENON1T limits (purple), allow for an explanation of
RK (gray) and reproduce the observed relic density (yellow) are presented in the MψL −Γµ
plane for data sets with four different coannihilation parameters. Note that below a given
yellow line, DM is overproduced thereby excluding the model. Above a yellow line DM is
underproduced. The different boundary lines correspond to the different data sets, namely:
κ = 15 (solid), κ = 5 (dotted), κ = 1.1 (finely dashed) and κ = 1.01 (roughly dashed). In
this scenarios the areas allowing for an explanation of the RK anomaly that are in agreement
with direct detection experiments extend up to roughly 850GeV. However, coannihilation
remains mandatory.
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