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ABSTRACT 

As its first identified member, Interleukin-12 (IL-12) named a whole family of cytokines. In response to pathogens, 

the heterodimeric protein, consisting of the two subunits p35 and p40, is secreted by phagocytic cells. Binding of 

IL-12 to the IL-12 receptor (IL-12R) on T and natural killer (NK) cells leads to signaling via signal transducer and 

activator of transcription 4 (STAT4) and subsequent interferon gamma (IFN-γ) production and secretion. Signaling 

downstream of IFN-γ includes activation of T-box transcription factor TBX21 (Tbet) and induces pro-inflamma-

tory functions of T helper 1 (TH1) cells, thereby linking innate and adaptive immune responses. Initial views on 

the role of IL-12 and clinical efforts to translate them into therapeutic approaches had to be re-interpreted following 

the discovery of other members of the IL-12 family, such as IL-23, sharing a subunit with IL-12. However, the 

importance of IL-12 with regard to immune processes in the context of infection and (auto-) inflammation is still 

beyond doubt. In this review, we will provide an update on functional activities of IL-12 and their implications for 

disease. We will begin with a summary on structure and function of the cytokine itself as well as its receptor and 

outline the signal transduction and the transcriptional regulation of IL-12 secretion. In the second part of the re-

view, we will depict the involvement of IL-12 in immune-mediated diseases and relevant experimental disease 

models, while also providing an outlook on potential translational approaches.  
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INTRODUCTION 

Dozens of cytokines have meanwhile 

been described and the knowledge on the 

stimuli that induce their release, the signaling 

they trigger and the cellular responses they 

cause has substantially increased our under-

standing of immune processes in the organ-

ism. Cytokines are regarded as crucial para- 

or autocrine mediators of inter-cellular com-

munication regulating functions like prolifer-

ation, differentiation and maturation 

(Neurath, 2014).  
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One important group of cytokines are in-

terleukins, in which the twelfth to be de-

scribed in 1989 was Interleukin-12 (IL-12). In 

more than three decades, numerous papers 

have reported effects and functions of IL-12. 

Here, we will briefly point out the biochemis-

try of IL-12 before reviewing its involvement 

in immune-mediated pathologies. 

 

INTERLEUKIN-12 

Two groups independently described IL-

12: Kobayashi et al. reported the identifica-

tion of the natural killer cell stimulating factor 

(NKSF) in 1989 (Kobayashi et al., 1989) and 

Stern et al. discovered the cytotoxic lympho-

cyte maturation factor (CLMF) in 1990 (Stern 

et al., 1990). Soon thereafter, CLMF and 

NKSF were found to be identical (Gubler et 

al., 1991) and the name IL-12 was proposed. 

IL-12 consists of two subunits, which are 

connected by disulphide-bonds (Kobayashi et 

al., 1989; Stern et al., 1990). The smaller p35 

monomer (35 kDa α-chain) is encoded on 

chromosome 3, while the gene for the larger 

p40 monomer (40 kDa β-chain) is located on 

chromosome 5 (Sieburth et al., 1992). Co-ex-

pression results in the formation of the biolog-

ically active p70 heterodimer (Gubler et al., 

1991). 

Within the ‘IL-12 family’ of cytokines, 

monomers combine with different partners to 

create various cytokines. While p35 may also 

pair with Epstein-Barr virus induced gene 3 

(EBI3) to yield IL-35 (Niedbala et al., 2007), 

the p40 subunit in combination with the p19 

monomer leads to the formation of IL-23 

(Lupardus and Garcia, 2008). The fourth 

member of the family is IL-27, which is com-

posed of EBI3 and the p28 subunit (Vignali 

and Kuchroo, 2012) (Figure 1). 

Due to the lower expression of the IL-12 

α-chain compared to the β-chain, only free β-

chains, p40 homodimers or the heterodimer 

are secreted (D'Andrea et al., 1992). Structur-

ally, the p40 subunit shares some features 

with the IL-6 receptor, whereas the p35 subu-

nit is similar to the granulocyte colony-stimu-

lating factor (G-CSF) and IL-6 (Gubler et al., 

1991). It has been demonstrated in mice that 

p40 homodimers regulate the activity of IL-

12 by counteracting IL-12-induced signaling 

via competition with IL-12p70 for binding to 

the receptor (Gately et al., 1996). Further 

functions of p40 homodimers have been de-

scribed, e.g. roles in the migration of dendritic 

cells (DCs), allograft rejection or chemotactic 

activity with regard to macrophages (Cooper 

and Khader, 2007; Ha et al., 1999).  

 

 

 
 

Figure 1: The IL-12 family. Schematic representation of IL-12 family members, their associated recep-
tors and corresponding subunits 
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THE INTERLEUKIN-12 RECEPTOR 

Reflecting the heterodimeric structure of 

the cytokines of the IL-12 family, the corre-

sponding receptors also consist of two subu-

nits. IL12-receptor β1 (IL-12Rβ1) is encoded 

on chromosome 19 and has a molecular 

weight of 100 kDa. It is a transmembrane pro-

tein with the extracellular domain consisting 

of 516 amino acids that is responsible for the 

interaction with IL-12p40 (Chua et al., 1994; 

Presky et al., 1996). Consistently, it is also 

part of the receptor for IL-23, where it pairs 

with IL-23R (Parham et al., 2002). The gene 

for IL-12Rβ2 is located on chromosome 1 and 

is translated to a 130 kDa transmembrane pro-

tein, with 595 amino acids forming the extra-

cellular domain. Signal transduction into the 

cell derives from IL-12Rβ2, which interacts 

with IL-12p35 (Presky et al., 1996; Zou et al., 

1997) and is, thus, in combination with glyco-

protein 130 (gp130), also part of the IL-35 re-

ceptor (Collison et al., 2012). The IL-27 re-

ceptor as the fourth receptor of the family is 

composed of gp130 together with the interleu-

kin 27 receptor subunit alpha (WSX1) (Pflanz 

et al., 2004) (Figure 1). 

Since NK cells and T cells are the main 

targets of IL-12, the expression of IL-12R is 

predominantly confined to these cell types 

(Desai et al., 1992). In particular, antigen con-

tact of naïve T cells induces upregulation of 

IL-12Rβ2, which is subsequently maintained 

by interferon gamma (IFN-γ) signaling, but 

may be counteracted by IL-4 (Szabo et al., 

1997). This hints at a vital role for the com-

mitment of T cells to different effector T (Teff) 

cell lineages such as cells with a T helper type 

1 (TH1), but not a TH2  phenotype and, con-

sistently, only the former cells express IL-

12Rβ2. 

 

REGULATION OF IL-12 SECRETION 

IL-12 is primarily produced by profes-

sional antigen-presenting cells (APCs) such 

as B cells and DCs as well as phagocytes in-

cluding monocytes, macrophages and granu-

locytes (Hsieh et al., 1993; Heufler et al., 

1996; Macatonia et al., 1993).  

While the production of IL-12p35 is pre-

dominantly regulated at the translational 

level, transcriptional regulation is responsible 

for the amount of IL-12p40 expressed. The in-

itial signal triggering IL-12 expression is the 

exposure of the above mentioned cells to bac-

teria, viruses, fungi or parasites. Pathogen as-

sociated molecular patterns (PAMPs) such as 

lipopolysaccharide (LPS) or CpG DNA ex-

pressed or contained in such commensals or 

pathogens are recognized by pattern recogni-

tion receptors (PRRs) of the toll like receptor 

(TLR) family. This leads to the activation of 

several transcription factors regulating IL-12 

production, most importantly NF-κB and in-

terferon regulatory elements (IRFs) (Goriely 

et al., 2008).  

Due to the different chromosomal loca-

tions (Liu et al., 2003) and as mentioned 

above, there are important differences in the 

regulation of p40 and p35 production. The 

synthesis of the p40 chain greatly exceeds the 

production of the p35 chain, suggesting that 

the synthesis of the p35 chain is the rate-lim-

iting step of IL-12 secretion (Snijders et al., 

1996). Moreover, most of the TLRs are linked 

to the expression of IL-12p40, while expres-

sion of p35 is induced by only a limited subset 

of these receptors, including TLR3, 4 and 8. 

In addition to direct regulation of IL-12 pro-

duction, activation of TLRs also leads to the 

secretion of IFN-β and IFN-γ, whose signal-

ing, in turn, induces activation of IRF-1, IRF-

7 and IRF-8 (Goriely et al., 2008; Najar et al., 

2017; Gautier et al., 2005). All three IRFs in-

duce p35 and IRF-7 and IRF-8 also induce 

p40 (Ma et al., 2015; Zhao et al., 2017).  

The IL12A gene is transcribed through-

out, however, the mRNA contains an inhibi-

tory ATG codon blocking its translation. 

Upon TLR signaling as described above, tran-

scription is initiated from different genomic 

positions. Since ATG codons are missing in 

the resulting mRNA, translation into IL-

12p35 proceeds (Wang et al., 2000).  

The IL12B gene is subject to transcrip-

tional regulation by a number of transcription 

factors, most importantly NF-κB and Ets. 

Moreover, Spi-1, AP-1, IRF-1, erythroid 
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Krüppel-like factor 1 (KLF-1), nuclear factor 

in activated T cells (NFAT) and interferon 

consensus sequence-binding protein (ICSBP) 

have been described to be involved (Ma et al., 

2015; Zhao et al., 2017). Furthermore, some 

groups showed an inhibitory effect of Nuclear 

Receptor Subfamily 4 Group A Member 1 

(NR4A1) on the expression of IL-12p40 

(Murphy and Crean, 2015; Ipseiz et al., 2014). 

In addition, IL-12 expression is regulated 

via interaction of APCs with T-cells through 

CD40 and its ligand CD40L. CD40 signaling 

through H-Ras and K-Ras enhances p38 mi-

togen-activated protein kinase (MAPK)-me-

diated pro-inflammatory IL-12 production 

(Snijders et al., 1996; Nair et al., 2020). 

An important positive feedback loop in-

creasing IL-12 secretion is so-called IFN-γ 

priming (Liu et al., 2003; Ma et al., 2015). 

IFN-γ release downstream of IL-12 further 

boosts IL-12 production via induction of IL-

12p35 by IRF-1 and of p40 by ICSBP (Wang 

et al., 2000; Grumont et al., 2001).  

Taken together, the high degree of regula-

tory mechanisms involved in IL-12 secretion 

illustrates the complexity of the processes, in 

which this cytokine is involved and under-

scores that dysregulation might be a 

switchpoint for disease development.  

 

IL-12 SIGNAL TRANSDUCTION 

Binding of the two IL-12 subunits to the 

two chains of the IL-12 receptor, IL-12Rβ1 

and IL-12Rβ2, activates the Janus kinase 

(JAK)-signal transducer and activator of tran-

scription (STAT) pathway of signal transduc-

tion. Specifically, IL‐12Rβ-1 subsequently 

recruits the JAK family member tyrosine ki-

nase 2 (TYK2), whereas IL-12Rβ2 associates 

with JAK2, resulting in phosphorylation of 

JAK2 (Bacon et al., 1995; Zou et al., 1997). 

This activates the kinase activity of JAK2, 

which now, vice versa, phosphorylates a tyro-

sine residue of the associated receptor subu-

nit. STAT molecules contain SRC homology 

domains (SH2), which, in a next step, bind to 

phospho-IL-12Rβ2 exposing the STATs to 

JAK and leading to their phosphorylation. As-

sociation of these activated transcription fac-

tors to homo- or heterodimers enables subse-

quent nuclear translocation. By binding to 

specific DNA sequences, they promote or re-

press gene transcription (Naeger et al., 1999; 

Zhong et al., 1994; Xu et al., 1996; Jacobson 

et al., 1995; Lamb et al., 1996) (Figure 2). 

STAT4 is the most important downstream tar-

get of IL-12, while effects on STAT1, STAT3 

and STAT5 molecules play minor roles 

(Trinchieri, 2003).  

Moreover, IL-12R signaling activates mi-

togen-activated protein kinase kinase 3/6 

(MKK) and p38 MAPK, which support the 

secretion of IFN-γ in activated T cells and 

TH1 cells. Importantly, this pathway is medi-

ated by a STAT4-independent mechanism 

and correlates with increased STAT2 (Zhang 

and Kaplan, 2000).  

 

CELLULAR FUNCTIONS OF IL-12 

As already mentioned, a main effect of IL-

12 is the induction of IFN-γ production, by 

which the cytokine is importantly implicated 

in adaptive as well as innate immune pro-

cesses (Figure 3) (Trinchieri, 2003; Lyakh et 

al., 2008).  

While having no proliferative effect on 

resting peripheral T cells or NK cells, IL-12 

directly induces proliferation of these cells in 

case of pre-activation. Moreover, by inducing 

the transcription of genes of cytotoxic gran-

ule-associated molecules, such as perforin 

and granzymes, and by upregulation of the ex-

pression of adhesion molecules, IL-12 en-

hances the generation and cytotoxic activity 

of cytotoxic T lymphocytes (CTLs), lympho-

kine-activated killer (LAK) cells and NK 

cells, which also secrete IFN-γ (Trinchieri, 

1998, 2003; Tait Wojno et al., 2019). Even 

low concentrations of IL-12 promote IFN-γ 

production in a highly efficient way. Further-

more, IL-12 is also very important as IFN-γ-

inducer in synergy with other activating stim-

uli. E.g., for T cells and NK cells, IL-12 acts 

synergistically with IL-2 to rapidly upregulate 
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IFN-γ (Trinchieri, 2003; Chan et al., 1992). 

While the cytokine IL-18 alone is ineffective 

in regulating IFN-γ, in synergy with IL-12, it 

induces gene transcription via the transcrip-

tion factors STAT4 and AP-1. This is partic-

ularly important for the induction of IFN-γ by 

cell types such as macrophages, DCs or B 

cells that are no conventional sources of this 

cytokine (Trinchieri, 2003; Walker et al., 

1999; Barbulescu et al., 1998). Interestingly, 

STAT4 is required for the production of IFN-

γ downstream of IL-12 in both CD4+ and 

CD8+ T cells, but only CD4+ T cells require 

IL-12 and STAT4 for the production of IFN-

γ following antigen recognition and T cell re-

ceptor (TCR) signaling suggesting alternative 

regulatory pathways in different lymphocyte 

subsets (Trinchieri, 2003; Carter and Murphy, 

1999). It was also shown that IL-12 pre-treat-

ment of CD4+ and CD8+ T cells enhances 

TCR-induced IFN-γ, tumor necrosis factor al-

pha (TNF-α), IL-13, IL-4 and IL-10 produc-

tion and intensifies oxidative metabolism 

(Vacaflores et al., 2016, 2017). 

Due to and related to its predominant ef-

fect on IFN-γ transcription, IL-12 is a potent 

inducer of TH1 cell development. However, it 

is not sufficient to guide this process, since 

previous signaling downstream of IL-27 re-

leased by DCs is required in naïve T cells to 

make the cells “IL-12-sensitive” by expres-

sion of IL12Rβ2 (Pot et al., 2010). After re-

lease of IL-12 and induction of IFN-γ, IFN-γ 

signaling activates STAT1, which together 

with IFN-α, IFN-β and IL-12 induces the T-

box transcription factor 21 (TBX21/Tbet), the  

 

Figure 2: Secretion and sig-
naling of IL-12. Antigen-pre-
senting cells (APCs) like den-
dritic cells sense PAMPs (path-
ogen-associated molecular pat-
terns) through toll like receptors 
(TLRs). Subsequently, several 
transcription factors are acti-
vated to induce the transcription 
of IL-12p35 and IL-12p40 (for 
more details confer text). The 
secreted IL-12 heterodimer 
binds to its receptor on NK and 
T cells, recruits the tyrosine ki-
nases JAK2 and TYK2 and acti-
vates JAK2 by tyrosine phos-
phorylation. Activated JAK2 
phosphorylates the IL12Rβ2 
subunit, which in turn activates 
STAT4 via phosphorylation. 
Subsequently, phosphorylated 
STAT4 homo- or heterodimer-
izes, enabling translocation to 
the nucleus, where it regulates 
gene transcription by binding to 
target DNA. A main target gene 
is IFN-γ, which in turn induces 
transcriptional activation of IL-
12 production via IRF-1 and 
ICSBP.  
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Figure 3: Role of IL-12 in TH1 differentiation. Naïve T cells exposed to IL-27 express the IL-12 recep-
tor heterodimer, sensitizing the cells for the influence of IL-12, which – together with IFN-γ from NK cells 
and feedback loops, IFN-α and IFN-β induces upregulation of the transcription factor Tbet and down-
regulation of GATA3 leading to a preliminary TH1 commitment. Further exposure to IL-12 leads to the 
upregulation of STAT4 in these early TH1 cells, followed by their differentiation into TH1 effector and 
memory T cells. IL-18 and IL-23 contribute to the fixation, amplification and maintenance of the TH1 cell 
effector functions. Differentiated TH1 cells produce IFN-γ to enhance Tbet expression via STAT1, thus 
closing a positive feedback loop. Further, they are able to promote IL-10 secreting Tr1 cells, a process 
probably mediated by IL-12 and IL-27 signaling. 

 

 

key transcription factor for T cell commit-

ment to preliminary TH1 cells (Trinchieri, 

2003). For this early phase of TH1 polariza-

tion, some exceptions seem to exist, in which 

IL-12 might not be an absolute requirement 

and coordinated action of other pathways 

might compensate, if IL-12 is missing. IL-12, 

however, is essential for the subsequent mat-

uration phase (Noble et al., 2001) and, to-

gether with IL-18 and IL-23 fixes, amplifies 

and maintains a TH1 phenotype during clonal 

expansion to effector and memory TH1 cells 

(Trinchieri, 2003). Furthermore, it has been 

shown that the expression of genes promoting 

the induction of IFN-γ- and IL-21-secreting 

TH1-biased T follicular helper (TFH1)-like 

cells are also dependent on IL-12 signals, es-

pecially on the expression of Bcl-6 and induc-

ible T-cell costimulator (ICOS) (Powell et al., 

2019). 

Additionally, it has been shown that IL-12 

also primed  CD4+ and CD8+ T cells to pro-

duce IL-10, when present early during clonal 

expansion (Gerosa et al., 1996). This might 

result in the development of IL-10 secreting 

Type 1 regulatory (Tr1) cells in response to 

IL-12 and IL-27 (Tait Wojno et al., 2019; Pot 
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et al., 2010; Wang et al., 2011), which is con-

sistent with the observation of IL-12-depend-

ent Tr1 cell development in visceral leish-

maniasis patients (Montes de Oca et al., 

2016). TH2 differentiation, to the contrary, is 

counteracted by IL-12, since GATA binding 

protein 3 (GATA3), which is indispensable 

for TH2 polarization, is repressed in CD4+ and 

CD8+ T cell populations upon treatment with 

IL-12 or in vivo expansion in the presence of 

IL-12-producing DCs (Billerbeck et al., 

2014). 

Taken together, IL-12 is a potent cytokine 

to regulate the immune response in different 

ways. Thus, its implication in immune-medi-

ated diseases is obvious and will be addressed 

in the following part. 

 

RELEVANCE OF IL-12 IN DIFFERENT 

DISEASES AND DISEASE MODELS 

Consistent with its central role in orches-

trating immune responses, various studies in 

animal models and humans confirmed that IL-

12 contributes to the pathogenesis of several 

immune-mediated inflammatory diseases. In 

the following paragraphs, we outline the cur-

rent knowledge on the impact of IL-12 in the 

context of inflammatory bowel diseases, pso-

riasis, diabetes mellitus, multiple sclerosis, 

rheumatoid arthritis, cancer, lupus erythema-

tosus, primary biliary cholangitis and 

Sjögren’s syndrome.  

 

Inflammatory Bowel Diseases 

The inflammatory bowel diseases (IBDs) 

Crohn’s disease (CD) and ulcerative colitis 

(UC) have a multifactorial pathogenesis and 

are marked by a misdirected and dysregulated 

immune response, which arises due to factors 

such as genetic predisposition, intestinal 

dysbiosis and a disruption of the intestinal ep-

ithelial barrier. Experimental colitis can be 

observed in genetic knockout models leading 

to spontaneous development of colitis as well 

as following the administration of chemicals 

like oxazolon, trinitrobenzene sulfonic acid 

(TNBS) or dextran sodium sulfate (DSS). 

Further, a so called T cell transfer colitis 

model can be induced by transfer of colito-

genic T cells to immunodeficient mice 

(Neurath, 2014).  

TH1-like colonic lymphocytes have been 

identified as predominant in TNBS-induced 

colitis and anti-IL-12p40 administration was 

able to eliminate inflammation (Hurtubise et 

al., 2019) as well as to re-establish tolerance 

towards the intestinal microbiota (Duchmann 

et al., 1996). Fuss et al. suggested that Fas 

pathway activation inducing apoptosis of TH1 

cells might be a leading mechanism (Fuss et 

al., 1999). Corroborating these results on tran-

scription factor level, mice adoptively receiv-

ing CD4+ T cells from STAT4-transgenic 

mice developed pronounced colitis and 

STAT4-transgenic mice themselves showed 

higher STAT4 expression in their lamina pro-

pria lymphocytes and were more susceptible 

to colitis (Wirtz et al., 1999). Consistently, 

spontaneous colitis observed in IL-10-/- mice 

was rescued by additional knockout of IL-

12R and IL-23R (Hurtubise et al., 2019) as 

well as by administration of a neutralizing 

anti-IL-12 antibody (Davidson et al., 1998). 

Blocking IL-12 was also able to avert T cell 

transfer-induced colitis in immunodeficient 

mice which received CD4+ T cells from IL-

10-/- donors, however this was not the case for 

the blockade of IFN-γ (Davidson et al., 1998) 

indicating that IFN-γ-independent pathways 

are involved. In conclusion, TH1-dependent 

colitis models seem to be clearly dependent 

on IL-12, but IFN-γ as a major cytokine of 

TH1 cells seemed to be non-essential. An ex-

planation for this redundancy might be that 

many of these studies focused on IL12p40 at 

a time, when IL-23 and its effects on IL-17-

producing TH17 cells were not yet described 

(Moschen et al., 2019). 

Following the identification of IL-23, in-

tensive research tried to dissect the mecha-

nisms exerted by IL-12 and IL-23 on their 

own, although some aspects cannot finally be 

separated. In murine models, IL-23 was, like 

IL-12, able to induce STAT4 activation and 

overexpression was followed by colitis. Fur-

thermore, p40 and IL-23 induction occurred 

subsequent to bacteria intake in DCs in the 
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terminal ileum (Becker et al., 2003). In stud-

ies focusing on the differences between IL-12 

and IL-23, depletion of p19, but not p35 in IL-

10-/- mice led to protection from colitis devel-

opment (Yen et al., 2006). Consistently, while 

treatment with anti-p40 antibodies protected 

from systemic inflammatory disease and ex-

perimental colitis, treatment with anti-p19 al-

leviated intestinal but did not affect systemic 

pathology, suggesting a contribution of IL-23 

to local inflammation and an IL-12-regulated 

systemic inflammation (Uhlig et al., 2006). In 

TNBS colitis, to the contrary, p19 knockout 

was not protective due to upregulation of IL-

12 suggesting that both cytokines might inter-

act in the pathogenesis of colitis (Becker et 

al., 2006). A recent study building on a genet-

ically induced intestinal barrier impairment 

phenotype added further complexity by show-

ing that inflammation in this model was me-

diated by IL-12 and IL-23 in a temporally dis-

tinct, biphasic manner. While inflammation in 

the early stages was driven by IL-12, the in-

flammatory response shifted towards IL-23 in 

older mice (Eftychi et al., 2019). This is con-

sistent with the assumption of some experts 

that the early stages of CD pathogenesis are 

driven by TH1 activation mediated by IL-12 

and the following IFN-γ signaling cascade, 

whereas the continuation of disease is more 

likely driven by IL-23 (Becker et al., 2005). 

What is further complicating a clear separa-

tion of IL-12- and IL-23-induced functions is 

T cell plasticity. It has been shown that IL-12 

exposure shifted the phenotype of TH17 effec-

tor memory cells from the mesenteric lymph 

nodes of CD as well as UC patients towards a 

TH1-like profile suggesting that TH17 plastic-

ity is taking place at inductive sites before T 

cell homing to gut tissues (Bsat et al., 2019).  

Taken together, undoubtedly, IL-12 as 

well as IL-23 are implicated in the pathogen-

esis of IBD. Hence, they are promising targets 

for IBD therapy, which has further been sup-

ported by observations in IBD patients. IL-12 

transcription is increased in both subtypes of 

IBD (Nemeth et al., 2017). Additionally, CD 

is marked by high levels of IFN-γ produced 

by lamina propria lymphocytes (Fuss et al., 

1996) substantiating the view that CD seems 

to be a partly TH1-driven disease. Moreover, 

it was shown that the expression patterns of 

the IL-12A and IL-12B genes differed be-

tween flare-ups and remission phases and 

might therefore be suitable biomarkers of dif-

ferent disease phases (Norouzinia et al., 

2018).  

All these observations led to efforts to 

translate anti-IL-12/IL-23 strategies into clin-

ical practice. Ustekinumab is a neutralizing 

p40 antibody. While early clinical studies 

suggested effects in CD patients with previ-

ous anti-TNF treatment, phase III trials com-

pleted in recent years have demonstrated 

broad efficacy and safety in inducing and 

maintaining remission in CD and recently 

also in UC (Sands et al., 2019; Feagan et al., 

2016; Sandborn et al., 2012; Adedokun et al., 

2018; Hanauer et al., 2020). Moreover, a 

number of anti-p19 antibodies blocking IL-23 

(e.g., risankizumab, guselkumab) are cur-

rently in phase III trials following promising 

data in phase II (Sandborn et al., 2020; Sands 

et al., 2017). Once finished, they will further 

help to understand the specific contribution of 

IL-12 and IL-23 to disease pathogenesis.  

 

Multiple sclerosis 

Multiple sclerosis (MS) is considered as a 

TH1-, TH17-, B- and innate immune cell-me-

diated disorder of the central nervous system 

(CNS), in which immune cell infiltration to 

the CNS leads to inflammatory lesions, ax-

onal demyelination and enhanced production 

of pro-inflammatory cytokines (von Essen et 

al., 2019; Segal et al., 1998). Early studies fo-

cussing on p40 postulated IL-12 as a critical 

pro-inflammatory cytokine for MS (Adorini, 

1999; Karp et al., 2000). Consistently, during 

the acute paralytic phase of experimental au-

toimmune encephalomyelitis (EAE), a com-

mon animal model for MS, mice showed in-

creased expression of IL-12p40 mRNA in 

brain and spinal cord as well as in spleen, 

lymph node and liver. Furthermore, in vivo 

administration of recombinant IL-12 led to 

higher IFN-γ production and inflammation, 

which was decreased by treatment with anti-
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IL-12 antibodies (Bright et al., 1998; 

Vandenbroeck et al., 2004). However, later 

studies showed that p35–/– animals were not 

protected from EAE, whereas p40–/– mice 

were resistant to disease development 

(Becher et al., 2002; Gran et al., 2002). Thus, 

these effects could not be attributed to IL-

12p70, but later be explained by IL-23 and 

protection of p19-/- mice in the EAE model 

(Gran et al., 2004).  

However, also here, the picture is not 

completely clear, since it was shown with an 

adoptive transfer strategy that IL-12-modu-

lated TH1 cells may induce EAE via an IL-23-

independent pathway, while IL-23-modulated 

TH17 cells may induce EAE through an IL-

12-independent way. This indicates, that clin-

ically similar forms of EAE may be mediated 

by distinct autoreactive T cell subsets point-

ing at synergistic or alternative functions of 

these parallel inflammatory pathways 

(Grifka-Walk et al., 2015; Kroenke et al., 

2008).  

Recently, a huge amount of single-nucle-

otide polymorphisms (SNPs) with suggestive 

evidence of association with MS were identi-

fied by meta-analyses. These include, among 

others, loci which are related to IL-12 and the 

IL-12 family, e.g. IL-12A (rs4680534), or 

their downstream signaling, e.g. JAK1 

(rs72922276), STAT4 (rs6738544) and 

TYK2 (rs34536443) (von Essen et al., 2019; 

Ban et al., 2009; IMSGC, 2010). Moreover, 

significantly elevated levels of IL-12 were 

found in sera of MS patients and in cultured 

peripheral blood mononuclear cells 

(PBMCs), which were even higher in chronic 

progressive compared to relapsing-remitting 

MS (Musabak et al., 2011; Balashov et al., 

1997). Moreover, an indirect effect of IL-12 

on the pathogenesis of MS was postulated: 

IL-12p70 and p35 subunit, but not p40, led to 

increased expression of IL-7 in the CNS, 

which is associated with MS and EAE (Jana 

et al., 2014). 

Also, considerably enhanced expression 

of adhesion molecules involved in leukocyte 

recruitment to the CNS like C-C-motif-chem-

okine-receptor 5 (CCR5) and P-selectin gly-

coprotein ligand where induced by IL-12 

(Bagaeva et al., 2003; Rabinowich et al., 

1993; Deshpande et al., 2006). The pathoge-

netic relevance of such immune cell homing 

has been demonstrated by the therapeutic 

anti-CD49d antibody natalizumab (Tysa-

bri®), a recombinant humanized IgG4 mono-

clonal antibody, which blocks adhesion and 

homing via α4β1 and α4β7 integrin and is in 

successful clinical use for the treatment of MS 

(Nelson et al., 2018; Benkert et al., 2012).  

Surprisingly, clinical trials with the neu-

tralizing anti-IL-12/23 p40 subunit antibody 

ustekinumab could not show the expected 

therapeutic benefits in MS treatment in phase 

II studies (Segal et al., 2008). Moreover, an-

other monoclonal anti-IL-12/23 antibody, 

ABT-874, demonstrated efficacy in reducing 

inflammatory lesions and prevention relapses, 

but the effect size was low compared to other 

agents and, hence, it was not further devel-

oped (Vollmer et al., 2011). Although anti-

IL23 monotherapy ameliorated EAE (Chen et 

al., 2006), anti-p19 antibodies have so far not 

been tested in MS, probably due to the disap-

pointing results observed with anti-p40 anti-

bodies. 

 

Cancer 

Due to its ability to activate cytotoxic 

cells both from the innate (NK cells) and 

adaptive (cytotoxic T lymphocytes) immune 

system, IL-12 appears to be a promising me-

diator of anti-tumoral immunotherapy, which 

has been the subject of many reviews (Tait 

Wojno et al., 2019; Golab and Zagozdzon, 

1999; Lasek et al., 2014; Tugues et al., 2015; 

Yan et al., 2018). Taken together, the main 

anti-tumoral mechanisms of IL-12 are 

thought to be the increase of IFN-γ produc-

tion, which has anti-proliferative and pro-

apoptotic effects (Castro et al., 2018); the ac-

tivation of proliferation and cytotoxicity of 

NK cells and CD4+ and CD8+ T cells; the en-

hancement of antibody-dependent cellular cy-

totoxicity (ADCC); the induction of anti-an-

giogenic cytokines and chemokines such as 
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IFN-γ; the remodeling of the peritumoral ex-

tracellular matrix resulting in collapse of the 

tumor stroma; and the modulation of anti-tu-

moral immune response by influencing the 

major histocompatibility complex (MHC) 

class I molecules as well as  reprogramming 

myeloid-derived suppressor cells (Lasek et 

al., 2014; Campbell et al., 2015). Moreover, it 

was found that IL-12 inhibits metastasis de-

velopment in experimental tumor models in a 

dose-dependent way without showing signs 

of toxicity (Brunda et al., 1993; Yue et al., 

2016). Interestingly, induction of IL-12 seems 

to mimic the natural anti-tumoral immune re-

sponse and induces a very specific anti-tumor 

reaction (Smyth et al., 2000). Consistently, 

neoplastic immune evasion strategies from 

IL-12-induced anti-tumor immunity exist, 

since  B cells in various chronic lymphopro-

liferative disorders may silence the gene for 

IL-12Rβ2 (Il12rb2) by methylation (Airoldi 

et al., 2004), which was associated with en-

hanced tumor-cell survival and proliferation 

in vivo (Airoldi et al., 2005). 

Additionally, it has been described that 

the IL-12 p40 monomer is released in higher 

amounts than p40 homodimer or IL-12p70 in 

mouse and human cancer cells. Accordingly, 

its serum level in patients with prostate cancer 

is higher compared to healthy controls. Since 

p40 monomer helps cancer cells to escape 

from cell death via internalization of IL-

12Rβ1, p40 neutralization stimulated apopto-

sis of different cancer cells in vitro and in vivo 

(Kundu et al., 2017).  

Possible links between IL-12 polymor-

phisms and various cancers have been ex-

plored in many epidemiological studies. One 

of the cancer-risk loci frequently identified 

was the SNP rs3212227 in IL12B, which 

shows significant association to overall can-

cer risk, especially among Asians, and, partic-

ularly, to hepatocellular and nasopharyngeal 

cancer. Additionally, the rs568408 polymor-

phism increases overall cancer risk among 

Caucasians and the risk for cervical cancer, 

while rs2243115 enhances the risk for brain 

tumors (Zheng et al., 2017). 

It has also been postulated that the effect 

of immunotherapy with monoclonal antibod-

ies against the checkpoint receptor pro-

grammed cell death protein 1 (PD1) requires 

intratumoral DCs producing IL-12. In this 

context, the anti-PD1 antibody indirectly ac-

tivates these DCs through IFN-γ released 

from drug-activated T cells (Garris et al., 

2018; Yin et al., 2016). 

When using IL-12 as systemic therapy, it 

shows toxic inflammatory responses and even 

lethal side effects in some cases (Ansell et al., 

2002; Lenzi et al., 2007; Portielje et al., 

1999). Several studies could show that this is 

due to IFN-γ (Car et al., 1995), but also TNF-

α induction (Barrios et al., 2014). To circum-

vent the adverse effects, different working 

groups established targeted transport strate-

gies to limit the toxicity associated with sys-

temic application. One example is a vector, in 

which IL-12 expression is under control of a 

composite promotor-containing binding motif 

for nuclear factor of activated T cells (NFAT), 

which was very effective in a murine mela-

noma model (Zhang et al., 2011). Further-

more, gene electrotransfer, which was also 

used for anti-tumor in situ vaccination with 

TNF-α and IL-12 plasmid DNA in a murine 

melanoma model, and focused ultrasound 

therapy can be helpful in a more targeted 

treatment (Shirley et al., 2015; Chen et al., 

2015; Kamensek et al., 2018). Another ap-

proach is the delivery of IL-12 messenger 

RNA via lipid nanoparticles, which supressed 

tumorigenesis in MYC oncogene-driven 

hepatocellular carcinoma (Lai et al., 2018). 

Besides, redesigning of the IL-12 molecule 

with deletion of the N-terminal signal peptide 

keeps the anti-tumor efficiency, but reduces 

the toxicity of the cytokine (Wang et al., 

2017). Moreover, the efficacy of tumor ther-

apy with oncolytic viruses (OVs), which pref-

erentially replicate in cancer cells and kill 

them while sparing healthy cells, was en-

hanced through viral expression of IL-12 

(Nguyen et al., 2020). One of these modified 

OVs, genetically engineered Herpes Simplex 

Virus-1, is used in a phase I clinical trial for 
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the treatment of recurrent malignant glioma 

(NCT02062827). 

Additionally, specific tumor receptors 

seem to be a good target for genetically mod-

ified immunotherapeutics. One example is 

MUC16ecto, which is highly expressed on 

most epithelial ovarian carcinomas but at low 

levels on normal tissues. This observation has 

been translated into a chimeric antigen recep-

tor specific T cell strategy with autologous 

IL-12 secretion, which is investigated for the 

treatment of ovarian cancer (phase I trial: 

NCT02498912) (Koneru et al., 2015). 

IL-12 also seems to have great potential as 

adjuvant for tumor therapy especially in com-

bination with other substances like doxorubi-

cin (DOX), decorin (DOC) or oncolytic ade-

novirus expressing suicide genes, resulting in 

better anti-tumor immune response as shown 

in murine colorectal cancer, prostate cancer or 

4T1 orthotopic breast cancer models (Oh et 

al., 2017; Hu et al., 2014; Ahn et al., 2016; 

Freytag et al., 2013). An IL-12-DOX-combi-

nation now in clinical evaluation is GEN-1 

(EGEN-001, phase I/II trial: NCT03393884), 

a novel immunotherapeutic agent comprising 

a human IL-12-expressing plasmid encom-

passed within a synthetic polyethyleneglycol-

polyethyleneimine-cholesterol (PPC) DNA 

delivery system to facilitate plasmid delivery 

in vivo and administered with pegylated lipo-

somal doxorubicin. It showed encouraging 

clinical benefit and biological activity in re-

current or persistent epithelial ovarian, fallo-

pian tube or primary peritoneal cancers 

(Thaker et al., 2017).  

 

Psoriasis 

Psoriasis is a chronic inflammatory skin 

disease with a multifactorial etiology includ-

ing genetic predisposition, environmental 

triggers and dysfunctions of TNF-α, dendritic 

cells and T cells (Griffiths and Barker, 2007). 

Characteristic traits are infiltration of leuko-

cytes into the skin, hyperplastic blood vessels 

and hyperproliferation of keratinocytes. Pso-

riasis vulgaris with chronic plaque formation 

is the most common manifestation of psoria-

sis (Cai et al., 2012), which has long been 

considered to be a TH1-like disease. Consist-

ently, in biopsies from psoriatic lesions high 

levels of IFN-γ mRNA could be detected and, 

furthermore, epidermal T cells produced IFN-

γ (Schlaak et al., 1994). Also, peripheral 

blood T cells from psoriasis patients were ca-

pable of producing significantly more IFN-γ 

compared to cells from healthy controls 

(Austin et al., 1999). Anti-CD3/CD28 acti-

vated PBMCs, which were subsequently 

stimulated with IL-12 showed 233 signifi-

cantly dysregulated genes after 4 h of stimu-

lation, among these 28 IL-12-responsive 

genes. IL-12 stimulation was also found to 

significantly increase IFN-γ gene expression 

in anti-CD3/CD28-stimulated PBMCs and 

therefore might be of functional relevance for 

systemic inflammation in psoriasis (Enerbäck 

et al., 2018). Furthermore, IL-12 and IL-23 

levels were enhanced in lesional psoriatic skin 

compared to healthy and non-lesional skin 

(Yawalkar et al., 2009). Further evidence sug-

gests that susceptibility to psoriasis is associ-

ated with IL-12, although inter-ethnic differ-

ences exist. In an Egyptian cohort, the inter-

action of the single nucleotide polymor-

phisms rs610604 (IL-12B) and rs11209026 

(IL-23R) showed a significant association 

with psoriasis. Moreover, the association of 

IL-12B with psoriasis was highly significant, 

whereas no association between rs20541 (IL-

13) and psoriasis could be observed (Haase et 

al., 2015). Consistently, a case-control analy-

sis of psoriatic patients and controls from a 

Polish population revealed an association of 

IL12B rs3212227 and IL23R rs11209026 mi-

nor allele carrier status with reduced odds for 

psoriasis, therefore having a protective effect 

(Bojko et al., 2018). Interestingly, it has been 

postulated that IL-12 together with IL-17, IL-

2 and adiponectin plasma levels predicted 

psoriasis with a 100 % sensitivity and speci-

ficity (Cataldi et al., 2019). 

In experimental disease models, mice 

with imiquimod-induced psoriasis-like der-

matitis, which were treated with an anti-IL-

12/IL-23p40 monoclonal antibody (p40 

mAb) showed reduced epidermal thickness 

and increased transepidermal water loss, as 
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well as suppression of IL-23p19, IL-17A, IL-

22 and keratin 16 gene expression, suggesting 

that p40 mAb not only improves dermatitis 

symptoms, but is also effective against skin 

barrier dysfunction in those mice (Takahashi 

et al., 2018).  

However, later data showed that IL-12 re-

ceptor signaling in keratinocytes initiates a 

protective transcriptional program that limits 

skin inflammation, therefore the use of anti-

p40 monoclonal antibodies and thereby col-

lateral targeting of IL-12 might be counter-

productive for psoriasis therapy (Kulig et al., 

2016). Consistently, the picture of psoriasis as 

a TH1-biased disease has been redrawn in the 

meantime, since TH17 cells were predomi-

nantly found in the dermis of psoriatic skin le-

sions (Yawalkar et al., 2009; Lowes et al., 

2008), and IL-22 expression was also in-

creased (Nograles et al., 2009), suggesting 

that besides TH1 cells, TH17 and TH22 cells 

have a major influence on disease develop-

ment. Thus, different T cell subsets probably 

contribute to plaque formation caused by im-

mune dysregulation (Cai et al., 2012).  

This matches the translational experiences 

made with ustekinumab. This anti-p40 anti-

body targeting IL-12 and IL-23 turned out to 

be efficient and safe in the treatment of psori-

asis (Papp et al., 2008; Jeon et al., 2017). In 

accordance with the above mentioned data on 

genetic predisposition, IL-12-associated gene 

loci also seem to affect therapeutic success, 

since patients heterozygous (CT) for the 

IL12B variant (rs3213094) showed a better 

response to ustekinumab than the homozy-

gous reference group (CC) (van den Reek et 

al., 2017). Additionally, briankinumab as an 

additional anti-IL-12/23 antibody has been 

approved for the treatment of psoriasis 

(Gordon et al., 2012). Moreover, ustekinumab 

has also been demonstrated to be effective in 

psoriatic arthritis often associated with psori-

atic skin lesions. The phase III clinical trial 

PSUMMIT-1 (NCT01009086) resulted in 

more ustekinumab-treated than placebo-

treated patients achieving the primary end-

point of 20 % or greater improvement in 

American College of Rheumatology response 

(ACR20) at week 24  (McInnes et al., 2013).  

Further therapeutic developments in the 

last years have questioned the pathogenetic 

role of TH1 cells, as anti-IL-17 antibodies like 

secukinumab and ixekizumab demonstrated 

comparably efficacy to anti-IL-12/23 anti-

bodies (Langley et al., 2014). Moreover, a 

phase II trial revealed clinical activity of the 

monoclonal anti-IL23p19 antibody risanki-

zumab that was superior to ustekinumab 

(Papp et al., 2017). Thus, taken together, it 

seems that - from a clinical standpoint - TH17 

cells seem to be more important in the patho-

genesis of psoriasis than IL-12-driven TH1 

cells.  

 

Diabetes mellitus 

There are two types of diabetes mellitus, 

type 1 (T1D) and type 2 diabetes mellitus 

(T2D). Characteristic for T1D is the autoim-

mune destruction of pancreatic islet cells. 

Without intervention, this leads to hypergly-

cemia as a result of insulin deficiency. T1D is 

considered to develop as a result of a reduc-

tion in immunosuppressive regulatory T cells 

(Tregs), promoting the expansion of autoreac-

tive CD4+ and CD8+ T cells (Marwaha et al., 

2014). On the other hand, insulin resistance, 

decreased insulin secretion relative to hyper-

glycemia, pancreatic β-cell dysfunction, dis-

turbed renal glucose transport and incretin ef-

fects, induced by genetic and environmental 

risk factors are causative for T2D (Aghaei 

Meybodi et al., 2017). Several reports provide 

evidence for a contribution of IL-12 to the 

pathogenesis of both types of diabetes melli-

tus.  

A frequently used murine model for T1D 

are nonobese diabetic (NOD) mice. Adoptive 

transfer of diabetogenic TH1 but not TH2 cells, 

as well as IL-12 administration to NOD mice 

actively promoted diabetes (Katz et al., 1995; 

Trembleau et al., 1995). Nevertheless, the lit-

erature shows that the pathogenesis of diabe-

tes mellitus is more complex and an interplay 

of IL-12 with other molecules is involved and 

still not completely understood. For instance, 

IFN-γ production upon IL-12 stimulation is 
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not sufficient to drive disease development, 

since IFN-γ knockdown induces alternative 

IL-12-mediated pathways. Surprisingly, IFN-

γ also seems to prevent the infiltration of pan-

creatic β cells and the ability of APCs to acti-

vate T cells in T1D, suggesting a rather pro-

tective function of IFN-γ (Trembleau et al., 

2003). To the contrary, it has been shown that 

β-catenin accumulates in DCs of NOD mice 

due to hyperphosphorylation at serine 552, 

which is followed by activation of protein ki-

nase Akt, driving IL-12 production and sub-

sequent development of pathogenic IFN-γ-

producing T cells (Zirnheld et al., 2019). 

Hence, it seems that IL-12 has pathogenic as 

well as beneficial effects at different stages of 

T1D progression (Fujihira et al., 2000; 

Nicoletti et al., 1999).  

Additionally, TH17 cells were shown to be 

diabetogenic after conversion into TH1 cells 

(Mensah-Brown et al., 2006; Emamaullee et 

al., 2009; Martin-Orozco et al., 2009; 

Bending et al., 2009), leading to the assump-

tion that T1D pathogenesis is driven by col-

laborative immune responses of TH1 cells (IL-

12, IFN-γ) and TH17 cells (IL-23, IL-17) 

(Marwaha et al., 2014). A study in NOD mice, 

which were protected from experimental au-

toimmune diabetes by double deficiency of 

the IL-17 and IFN-γ receptors, further sup-

ports this assumption (Kuriya et al., 2013).  

Several studies confirmed the importance 

of IL-12 for human T1D. For example, neo-

natal levels of IL-12 were positively associ-

ated with the risk of developing T1D in child-

hood (Thorsen et al., 2017) and children with 

T1D had increased IL-12 levels. Moreover, 

pediatric T1D patients had decreased levels of 

circulating Tregs, which was negatively corre-

lated with the abundance of IL-12 (Ryba-

Stanisławowska et al., 2014). Consistently, 

IFN-γ as well as IL-12 were found to be ele-

vated in T1D patients without microvascular 

complications (MVC), the latter significantly 

(Shruthi et al., 2016). Furthermore, a model of 

T1D pathogenesis has been proposed, 

wherein IL-12 and IL-18 synergistically en-

hance cytotoxic T lymphocyte and NK cell 

cytotoxic activity and disrupt immune regula-

tion by Tregs (Dean et al., 2020).  

As mentioned above, IL-12 does also play 

a role in the pathogenesis of T2D. A number 

of cytokines , including IL-6, IL-8, IL-10, IL-

12 and secreted frizzled related protein 4 

(SFRP4), as well as some microRNAs were 

described to be deregulated and associated 

with measures of pancreatic islet β cell func-

tion and glycemic control (Nunez Lopez et 

al., 2016). Moreover, it has been found that 

the repressive histone methylation mark, 

H3K27me3, is decreased at the IL-12 promo-

tor of bone marrow progenitors and passed 

down to wound macrophages in diet-induced 

obese glucose-intolerant mice. Under diabetic 

conditions, IL-12 production in macrophages 

is driven by the H3K27 demethylase Jmjd3 

and can be modulated by its inhibition 

(Gallagher et al., 2015). Furthermore, in a 

high-fat-diet murine model for T2D it has 

been shown that the disruption of IL-12 pro-

motes angiogenesis and increases blood flow 

recovery (Ali et al., 2017). A murine model 

for the treatment of T2D showed that inhibit-

ing accumulation of group 1 innate lymphoid 

cells (ILC1) in the adipose tissue via IL-12-

neutralizing antibodies alleviates adipose tis-

sue fibrosis and is able to improve glycemic 

tolerance (Wang et al., 2019). Another study 

revealed, that supplementation of vitamin D3 

may be beneficial for T1D and T2D patients 

with additional autoimmune thyreoiditis. Fol-

lowing vitamin D3 supplementation, concen-

trations of inflammatory TH1 cytokines (IFN-

γ, TNF-α, IL-2, IL-6 and IL-12) decreased, 

whereas levels of anti-inflammatory TH2-pro-

file cytokines (IL-4, IL-5), IL-10 and IL-17 

increased (Komisarenko and Bobryk, 2018). 

To revolutionize the treatment options for 

T1D, new approaches have focussed on tar-

geting IL-12 to at least partially replace or 

complement the exogenous administration of 

insulin. As part of this, ustekinumab is inves-

tigated in new-onset T1D and following a pi-

lot trial demonstrating safety of ustekinumab 

in T1D, a phase II/III trial is under way 

(NCT03941132).  
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Systemic lupus erythematosus 

Systemic lupus erythematosus (SLE) is an 

autoimmune disease characterized by anti-

bodies to double-stranded DNA that can af-

fect various parts of the body including for in-

stance skin, joints, kidneys or nervous system 

(Wang and Xia, 2019).  

Several studies demonstrated that IL-12 

levels are increased in SLE patients (Uzrail et 

al., 2019; Zhou et al., 2019; Guimarães et al., 

2017) and that risk loci for IL12RB (You et 

al., 2015) and genetic variants of IL12B 

(Paradowska-Gorycka et al., 2016) are asso-

ciated with SLE. On the other hand, however, 

it has been shown that there is a TH17/Treg im-

balance in patients with SLE (Talaat et al., 

2015) as well as a shift in the TH1/TH2 balance 

towards TH2 cytokines (Uzrail et al., 2019), 

suggesting that IL-12 is one cytokine among 

others in disease pathogenesis.  

Recently, ustekinumab has been evalu-

ated in patients with SLE in addition to stand-

ard-of-care treatment. It resulted in better ef-

ficacy in clinical and laboratory endpoints 

than placebo, with a safety profile comparable 

with ustekinumab therapy in other diseases 

and might therefore be an option to improve 

SLE therapy (van Vollenhoven et al., 2018).  

 

Primary biliary cholangitis  

Primary biliary cholangitis (PBC) is an 

autoimmune disease which specifically af-

fects small bile ducts of the liver, previously 

known as primary biliary cirrhosis. Intrahe-

patic small bile ducts are destroyed by lym-

phocyte and plasma cell infiltration and anti-

mitochondrial autoantibody (AMA) as well as 

high serum levels of IgM are characteristic for 

the disease (Tsuneyama et al., 2017).  

As outlined for the diseases described 

above, IL-12 also plays an important role for 

the pathogenesis of PBC. In an experimental 

model of PBC, using dnTGFβRII mice which 

have a dominant-negative transforming 

growth factor β receptor restricted to T cells, 

deletion of IL-12p35 resulted in reduced in-

flammation, whereas the deletion of IL-12p40 

resulted in a complete protection against liver 

inflammation and bile duct damage (Tsuda et 

al., 2013). Consistently, another study in mice 

could show that depletion of p40, leading to a 

decrease of the IL-12/TH1 as well as the IL-

23/TH1 pathway, completely prevented the 

development of portal inflammatory cell infil-

trates and biliary epithelial cell damage, sug-

gesting that TH1 and TH17 effector responses 

affect the autoimmunity to biliary epithelial 

cells (Kawata et al., 2013).  

Furthermore, several investigations 

showed that specific genetic predispositions 

are associated with PBC. Importantly, SNPs 

in the three IL-12-related genes IL12A, 

IL12RB2 and STAT4 are associated with 

PBC (Lleo et al., 2012; Hirschfield et al., 

2009; Wasik et al., 2017). Moreover, PBC 

Treg cells were shown to be more sensitive to 

IL-12-induced IFN-γ expression, fostering 

the notion that the IL-12-IL-12Rβ2-STAT4 

pathway in Tregs is important for disease path-

ogenesis and potentially treatment (Liaskou et 

al., 2018).  

As for other IL-12-related diseases, 

ustekinumab was tested for the therapy of 

PBC patients with inadequate response to the 

standard therapy with ursodeoxycholic acid. 

Although no patient met the primary endpoint 

of a 40 % decline in alkaline phosphatase 

(ALP), the reduction of IL-17A, IFN-γ and 

IFN-α2 levels in patients’ serum demon-

strated a pharmacodynamic effect of IL-

12p40 inhibition (Hirschfield et al., 2016).  

 

Sjögren’s syndrome 

Sjögren’s syndrome (SS) is an autoim-

mune disorder resulting in dryness of mouth, 

eyes and other exocrine gland-connected sur-

faces, caused by mononuclear cell infiltra-

tions. Further, it is associated with the produc-

tion of specific autoantibodies (Jonsson et al., 

2018). It is classified as primary Sjögren’s 

syndrome (pSS), when symptoms appear 

without associated condition, whereas sec-

ondary Sjörgen’s syndrome (sSS) occurs to-

gether with another underlying autoimmune 

disorder, like rheumatoid arthritis, lupus ery-

thematosus or scleroderma (Ramos-Casals et 

al., 2012).  
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Several mice models have been developed 

to investigate the role of IL-12 in the patho-

genesis of SS. For example, McGrath-Mor-

row et al. generated a transgenic mouse model 

that overexpresses IL-12 in the lungs, which 

resulted in bronchial and alveolar abnormali-

ties similar to those observed in Sjögren pa-

tients (McGrath-Morrow et al., 2006). More-

over, in IL-12-transgenic SJL mice pilocar-

pine-stimulated salivary flow was signifi-

cantly reduced and the number and size of 

lymphocytic foci was increased. IL-12 over-

expression in CBA mice led to mononuclear 

infiltration of salivary and lacrimal glands, 

expansion of bronchial lymphoid tissue and 

decreased mucociliary clearance reminiscent 

of SS (Vosters et al., 2009). Besides, IL-12 

mRNA was predominantly expressed in the 

proinflammatory stage of autoimmune sialad-

enitis in MRL/lpr mice with experimental SS 

(Yanagi et al., 1996) and plasma IL-12 was 

significantly increased in SS-like NOD mice, 

while anti-IL-12 alleviated the SS-like symp-

toms (Qi et al., 2019).  

Furthermore, it has been shown that the 

IL12A rs485497 polymorphism is associated 

with pSS and that IL-12p70 serum levels in 

patients with active disease are higher than in 

control subjects, whereas serum IL-35 levels 

were associated with low disease activity, in-

dicating an involvement of the IL-12/IL-35 

balance in the pathogenesis of pSS (Fogel et 

al., 2018). Another study revealed increased 

serum concentrations of IL-10 and IL-12 in 

pSS patients, which were both significantly 

correlated with pro-inflammatory IL-6. Addi-

tionally, the TH1/TH2 ratio was significantly 

decreased in those patients (Girón-González 

et al., 2009). Moreover, it has been shown that 

IL-12p40 and IL-15 levels were significantly 

decreased, while IL-1β and TNF-α were sig-

nificantly elevated in the plasma of SS pa-

tients. In addition, significant differences in 

IL-12p40 were described between patients 

with or without extra-glandular manifesta-

tions (Szodoray et al., 2004) and high expres-

sion of IL-12 by mononuclear cell infiltrates 

in minor salivary glands has been observed 

(Manoussakis et al., 2007). Interestingly, 

mesenchymal stem cell transplantation 

(MSCT), an experimental therapeutic strategy 

proposed for SS, downregulated TH17 and 

TFH cells, but upregulated Tregs and reduced 

IL-12 production in SS patients as well as in 

mice, indicating that MSCs improve SS by 

suppressing the production of IL-12 in DCs 

(Shi et al., 2018). Taken together, IL-12 might 

be a potential therapeutic target for SS that de-

serves further research. 

 

Rheumatoid arthritis 

Rheumatoid arthritis (RA) is caused by 

genetic as well as environmental factors. 

Characteristics include synovial inflamma-

tion and swelling possibly leading to skeletal 

deformation caused by destruction of carti-

lage and bones (McInnes and Schett, 2011). 

As for the other conditions discussed, RA 

manifestation is influenced by TH1 and TH17 

cells, associated with IL-12 and IL-23 

(Cornelissen et al., 2009). 

Collagen-induced arthritis (CIA) is a 

common mouse model for RA. The incidence 

and severity of CIA is significantly reduced in 

IL-12p40-deficient mice (McIntyre et al., 

1996). Similarly, treatment of type II collagen 

immunized DBA/1 mice with a neutralizing 

anti-IL-12 (p40) antibody mitigated the clini-

cal and histopathological disease severity ex-

tensively (Malfait et al., 1998). However, 

later studies dissecting the role of IL-12 and 

IL-23 rather provided evidence for a protec-

tive function of IL-12 by showing that mice 

specifically lacking IL-23 (p19-/-) were pro-

tected from developing clinical signs of dis-

ease, whereas a specific lack of IL-12 (p35-/-) 

resulted in aggravated collagen-induced ar-

thritis (Murphy et al., 2003). Consistently,  

IL-12 administration at the time of arthritis 

onset had a stimulatory effect on disease ac-

tivity, while it seems to be suppressive in es-

tablished CIA (Joosten et al., 1997). Never-

theless, IL-12 does not remain uninvolved. 

Several gene polymorphism studies showed 

that IL-12B gene polymorphisms have an im-

pact on RA pathogenesis, since, for instance, 

investigations in the Polish population 

showed that frequencies of the rs3212227 CC 
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of the IL12B gene were statistically higher in 

RA patients compared to controls and that the 

IL12B 1188A/C allele as well as IL-12p70 

protein levels are likely to be associated with 

RA (Paradowska-Gorycka et al., 2017). Fur-

ther, in a Bulgarian population, the IL12B 

rs17860508 polymorphism was associated 

with RA and RA patients with rs3212227 AA 

genotype of IL12B showed increased serum 

levels of IL-12p40 and IL-23 (Manolova et 

al., 2020). By contrast, a meta-analysis of 17 

case-control studies demonstrated that IL-

12B rs3212227 and rs6887695 polymor-

phisms do not confer susceptibility to RA 

(Yang et al., 2017). However, compared with 

healthy controls higher IL-12 levels can be 

found in the synovia (Morita et al., 1998) and 

serum (Paradowska-Gorycka et al., 2017; 

Cordero et al., 2001) of RA patients. Quite a 

number of drugs are used for the treatment of 

RA and some of their mechanisms have been 

linked with IL-12. For example, it has been 

suggested that methotrexate induces a down-

regulation of IL-12 (Hobl et al., 2011) and 

modulates the TH1/TH2 balance towards a TH2 

profile by induction of IL-10 secretion and re-

duction of IL-12R and C-X-C motif chemo-

kine receptor 3 (CXCR3) (Herman et al., 

2008). Moreover, the phosphodiesterase 4 

(PDE4) inhibitor Apremilast (Otezla®) 

strongly inhibited IL-12/IL-23p40 in cultured 

synovial fluid mononuclear cells from pa-

tients with active RA, psoriatic arthritis or pe-

ripheral spondyloarthritis (Kragstrup et al., 

2019). Another PDE4 inhibitor, Ibudilast, re-

duced the expression and/or secretion of TNF 

and IL-12/IL-23p40 in activated human leu-

kocytes and RA synovial fibroblasts and fur-

ther inhibited TH17 cell responses in vivo 

(Clanchy and Williams, 2019). Sinomenine, 

an alkaloid extracted from the Chinese medi-

cal plant Sinomenium acutum, which is ap-

proved in China, suppressed RA progression 

by regulating the secretion of several inflam-

matory cytokines, such as IL-12p40, IL-6, 

TNF-α (Liu et al., 2018). However, therapeu-

tic strategies specifically targeting IL-12 have 

not been considered so far, since the role of 

IL-12 in RA does not seem to be essential. 

CONCLUDING REMARKS 

The history of IL-12 is marked by ups and 

downs. While it was associated with lots of 

pathological conditions shortly after its 

discovery based on methods and strategies 

detecting or targeting the p40 subunit, the 

diversification of the IL-12 family led to re-

attribution of many of the functions initially 

assigned to IL-12 and other members like IL-

23 gained more attention. 

However, it must not be forgotten that 

targeting IL-12 together with IL-23 has 

become an established therapeutic strategy in 

IBD, psoriasis and peripheral spondylo-

arthritis, while experiences with anti-p19 

antibodies are still limited. Thus, IL-12 is a 

key cytokine to consider in these diseases. 

Moreover, there are areas, where it seems to 

be “rediscovered”, particularly in the cancer 

field, where several promising approaches 

related to IL-12 are currently investigated. 

Taken together, this cytokine positioned 

at an important nexus between the innate and 

adaptive response displays crucial functions 

in health and disease that are translationally 

relevant. Despite being known for more than 

30 years now, we are still far away from 

completely understanding its involvement in 

physiological and pathological processes. 
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