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Zusammenfassung

Viele Materialien im Bereich der Kontinuumsmechanik lassen sich in guter Näherung als, zumin-
dest teilweise, raten-unabhängig ansehen. Solche Systeme sind in aller Regel getrieben durch
äußere Kräfte und dabei unabhängig von deren Geschwindigkeit (Rate) wohl aber abhängig von
deren Bewegungsrichtung. In der vorliegenden Dissertation werden wir im Speziellen solche raten-
unabhängigen Systeme betrachten, die sich mittels einer, im Allgemeinen, nichtkonvexen Energie
und einer positiv homogenen Dissipation beschreiben lassen. Die Kombination beider Eigen-
schaften erlaubt, trotz sich gleichmäßig entwickelnder äußerer Kräfte, die Ausbildung abrupter
Zustandsänderungen. Mathematisch gesehen bedeutet dies, dass sich zeitliche Unstetigkeiten
(Sprünge) entwickeln können. Um solche Phänomene widerzuspiegeln, sind zunächst geeignete
(schwache) Lösungsbegriffe notwendig.
Wir werden uns daher im ersten Abschnitt dieser Dissertation mit eben solchen Lösungskonzepten
beschäftigen. Neben den mittlerweile vielfältig untersuchten energetischen Lösungen werden wir
uns dabei im Besonderen den sogenannten parametrisierten Lösungen zuwenden, die fortan im
Fokus dieser Arbeit stehen. Die wesentliche Idee dieses Lösungskonzeptes besteht grob gesagt
darin, die zeitlichen Unstetigkeiten nicht als instantane Änderung von einem Zustand in den näch-
sten aufzufassen, sondern als (sehr schnell durchlaufene) kontinuierliche Verbindung zwischen eben
diesen zwei Zuständen. Die entsprechende Verbindungslinie bildet folglich einen integralen Be-
standteil dieses Lösungskonzeptes. Man kann dies auch als eine Art Parametrisierung der gesamten
Lösungskurve inklusive seiner Sprünge auffassen, was nebenbei auch den Namen parametrisierte
Lösungen begründet. Mit der Einführung dieses Lösungsbegriffs stellt sich in natürlicher Weise die
Frage nach der Existenz (und Eindeutigkeit) von Lösungen dieses Typs. In der Regel gibt es hierzu
zwei unterschiedliche Ansätze. Einerseits ließe sich die Ausgangsgleichung geeignet regularisieren
und eine anschließende Grenzwertanalyse durchführen. Im Kontext raten-unabhängiger Systeme
bezeichnet man dieses Vorgehen auch als vanishing viscosity. Auf der anderen Seite - und aus
anwendungsspezifischer Sicht der womöglich interessantere Ansatz - steht die Diskretisierung des
ursprünglichen Problems mittels eines geeigneten Zeitschritt-Verfahrens.
In Anlehnung an das in [EM06] eingeführte local incremental minimization scheme, werden wir
im zweiten Abschnitt dieser Arbeit ein in Zeit und Ort diskretes Schema zur Lösung eines raten-
unabhängigen Systems analysieren. Im Vergleich zum vorher genannten Verfahren müssen hierbei
lediglich stationäre Punkte anstatt (lokaler) Minima bestimmt werden. Damit ist dieses Schema,
welches wir im Weiteren local incremental stationarity scheme (LISS) nennen, äußerst zugänglich
für numerische Verfahren. Neben dieser praktischen Anwendbarkeit, liefert unsere Konvergenzanal-
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yse für LISS gleichfalls die Existenz parametrisierter Lösungen und zwar auch bei unbeschränkter
Dissipation. Damit lassen sich mittels des local incremental stationarity schemes selbst unidirek-
tionale Prozesse, wie sie beispielweise in Schädigungsmodellen auftreten, approximieren.
Im dritten Abschnitt dieser Arbeit werden wir uns dann mit a priori Fehlerabschätzungen für
LISS beschäftigen, wobei wir hier auf eine Diskretisierung im Ort verzichten. Ein entscheiden-
der Bestandteil dabei ist die uniforme Konvexität der Energie. Ohne diese sind Lösungen des
raten-unabhängigen System im Allgemeinen weder eindeutig noch stetig, sodass Konvergenzraten
in diesem Fall nicht zu erwarten sind. Unter hinreichenden Konvexitätsannahmen hingegen wer-
den wir Konvergenzraten der Ordnung O(

√
τ) für ein allgemeines Setting und der Ordnung O(τ)

für den Fall einer semilinearen Energie beweisen. Außerdem erweitern wir letzteres Resultat auf
den sogenannten lokalkonvexen Fall, bei dem sich die Lösungstrajektorie nur auf einen Bereich
uniformer Konvexität der Energie beschränkt.
Der letzte Abschnitt dient schlussendlich der Darlegung einer möglichen Realisierung des einge-
führten Approximationsschematas LISS, sowie der Visualisierung der numerischen Ergebnisse. Ins-
besondere die im dritten Abschnitt gefundenen Konvergenzordnungen werden hier durch die nu-
merischen Bespiele gestützt.
Abschließend sei erwähnt, dass Teile dieser Arbeit bereits in Veröffentlichungen erschienen sind.
Dies betrifft insbesondere den Abschnitt 3.2, welches in weiten Teilen auf den Ausarbeitungen in
[MS19a] basiert, sowie Kapitel 3.3, welches in [MS20] erschienen ist.
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Abstract

Many materials in the field of continuum mechanics can be considered, at least in parts, as rate-
independent. Such systems are generally driven by external forces and thereby independent of
their speed (rate) but still dependent on their direction. In this dissertation, we will consider those
rate-independent systems that can be described by means of a, in general, nonconvex energy and a
positively homogeneous dissipation. Both properties in combination allow the formation of abrupt
changes in state, even if the external forces evolve smoothly. Mathematically speaking, this means
that temporal discontinuities (jumps) may develop. In order to be able to reflect such phenomena,
suitable (weak) notions of solutions are required.
The first section of this dissertation is therefore devoted to the presentation of precisely such solu-
tion concepts. In addition to the energetic solutions, which are by now widely known and analyzed,
we will particularly focus on the so-called parametrized solutions. The essential idea of this solution
concept is to resolve the possible temporal discontinuities by making the path from one state to
the other an integral part of the solution. This can also be seen as a kind of parameterization
of the solution curve including its jumps, which also explains the name parametrized solutions.
Following the introduction of this solution concept, the question of the existence of solutions of
this type naturally arises. There are usually two different approaches to this. On the one hand,
one may regularize the initial equation appropriately and perform a limit analysis afterwards. In
the context of rate-independent systems, this is commonly referred to as vanishing viscosity. On
the other hand - and from an application point of view the possibly more interesting approach -
one can discretize the original problem by means of a suitable time step method.
In the second section of this work, we will analyze a scheme that provides a discretization in time
and space based on the local incremental minimization scheme introduced in [EM06]. The main
difference compared to the one in [EM06] is that, instead of solving a minimization problem, only
stationary points have to be determined here. This scheme, which we will subsequently denote
as local incremental stationarity scheme (LISS), is therefore well suited for numerical methods.
Beyond this practical applicability, the convergence analysis for LISS also provides the existence
of parametrized solutions, even in the case of an unbounded dissipation. Therefore, the local in-
cremental stationarity scheme can also be used to approximate unidirectional processes, such as
those that occur in damage models for example.
In the third section of this work, we will then deal with a priori error estimates for LISS, whereby
we do not incorporate the discretization in space here. A crucial assumption in this context is
the uniform convexity of the energy. Without this, solutions are, in general, not unique and not
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continuous, so that convergence rates are not to be expected in this case. With sufficient convexity
assumptions, on the other hand, we will prove convergence rates of the order O(

√
τ) for a general

setting and of the order O(τ) in case of a semilinear energy. We also extend the latter result to
the so-called locally convex case, in which the solution trajectory remains in an area of uniform
convexity of the energy.
The last section, finally, is devoted to the presentation of a possible realization of the introduced
approximation scheme LISS and to visualize the numerical results. In particular, we will provide
several examples that illustrate the theoretical findings of the preceding section.
After all, it should be mentioned that parts of this work have already appeared in publications.
This particularly applies to the Section 3.2, which is based on the elaborations in [MS19a], and
the Section 3.3, which has been published in [MS20].
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Chapter 1

Introduction

The effect of rate-independence occurs in various different areas of mechanics. Coulomb, for in-
stance, already asserted around 1781 that the kinetic friction is independent of the sliding velocity1.
About 100 years later, mechanical engineers and mathematicians started to investigate the elasto-
plastic behavior of different materials as well as its mathematical description and came across a
similar phenomenon. Namely, they observed that the plastic deformation does not depend on the
velocity with which the external force is applied, see, e.g., [Tre64, SV70, HK09, Mis13]. Rate-
independence thus describes the fact that a system is independent of the rate at which some
external force is applied while it might still depend on the direction of the force. The actual
term rate-independence, however, first came up in the middle of the 1960’s in two different def-
initions by Pipkin and Rivlin [PR65] as well as Truesdell and Noll [TN65]2, which turned out
to be equivalent soon after; cf. [OW68]. It lasted another few years until Moreau brought this
field of research on a mathematical fundament using techniques known from convex analysis, see
[Mor70, Mor71]. Based on this, Halphen and Nguyen introduced the concept of so-called standard
generalized materials (see [HN75]) and therewith provided a general setting for the modeling of
materials. From this point on lots of further research areas have been investigated and the notion
of rate-independent systems has been established as a well suited formalism describing real life
problems in the field of elastoplasticity, damage and shape-memory, to only mention a few (see,
e.g., [KRZ13, FM06, Mai04, AMS08, MM09]). The interested reader is also referred to the book
of Mielke and Roubíc̆ek [MR15], which provides a good starting point for further insights into the
field of rate-independent systems and includes a multitude of further applications.

One main characteristic of rate-independent systems is the fact that changes in the state are
solely driven by an external force. Besides, as the name already suggests, the system is independent
of the rate at which the loading is applied, that is to say, whenever z is a solution to some external
load `, then z ◦α is a solution to `◦α for every monotone increasing function α. Before we actually
start with the general setting, we take a look at a simple and prototypical example for such a
rate-independent system, which, in this case, is also known under the name sweeping process, see

1The original work dates back to the year 1781. In the revised version [Cou21, p. 42] from 1821 it says: " [...]
il paraît que, dans tous les cas de pratique, l’on peut regarder le frottement comme étant indepéndant du degré de
vitesse."

2To be precise, they used the term "hyper-elasticity".

12
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z⟮t⟯ �⟮t⟯

Fn

Fext
Ffric

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1.5

-1

-0.5

0

0.5

1

1.5

Figure 1.0.1: Left: Examplary setting of a sliding block. Right: Solution for the external load
`(t) = sin(2πt) and ratio µ = 1

2 .

[Mor77]. For a realization, we put a block on a solid surface and attach a spring to one of its sides,
see Figure 1.0.1. The extension of the spring is prescribed by the external load `(t). Using Hooke’s
law, the stored energy in the system is described by I(t, z) = κ

2 (z − `(t))2, wherein κ denotes the
characteristic stiffness factor of the spring. Due to the friction between the block and the surface, a
certain frictional force must be overcome in order to move the block. According to Coulomb’s law,
this frictional force is proportional to the normal force (normal w.r.t. the surface) but independent
of the velocity and opposite to its direction of motion. The behavior of the system can thus be
described by the following cases:

• As long as the magnitude of the external force Fext is smaller than the magnitude of the
frictional force Ffric, i.e., |Fext| ≤ |Ffric|, the block stays in its position. Since the frictional
force is proportional to the normal force, again by Coulomb’s law, we end up with the
inequality |Fext| ≤ µ|Fn|, where µ denotes the coefficient of friction, i.e., the ratio between
Ffric and Fn.

• As the external force reaches the frictional force, the block starts moving. However, during
the movement, the forces Ffric and Fext remain in equilibrium, i.e., Fext = −Ffric. Once
more, Coulomb’s law implies that this frictional force is always exerted in a direction opposite
to the movement. Moreover, it is independent of the velocity, so that Ffric = −µ sgn(z′)|Fn|.
Combining these properties we have Fext = µ sgn(z′)|Fn| whenever z′ 6= 0.

In sum, we have the two observations:

• if z′ = 0, then |Fext| ≤ µ|Fn|,

• if z′ 6= 0, then Fext = µ sgn(z′)|Fn|.

In particular, we see that the external force never exceeds the frictional one. For simplicity, let us
assume that the block is pressed onto the ground only by the gravitation and that the corresponding
gravitational force is equal to −1, which implies that Fn = −1. Including Fext = −DzI(t, z) =

`(t)− z, both cases are easily brought together into one differential inclusion

0 ∈ µ sgn(z′) + z − `(t), z(0) = 0, (1.0.1)
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wherein sgn : R ⇒ R denotes the multivalued sign-operator, that is,

sgn(x) =


1, if x > 0,

[−1, 1], if x = 0,

−1, if x < 0.

Except for the fact that (1.0.1) is an inclusion rather than an equation this still has the form of
a typical force balance law. The term µ sgn(z′) describes the dissipative forces, in this case the
frictional force, while the term z − `(t) corresponds to the (external) potential force coming from
the energy functional.

Of course, this example is greatly simplified - e.g., we tacitly assumed that the coefficient of
friction is the same for static and kinetic friction, which does not hold true in most of the cases.
However, this example suffices to illustrate some important features as well as the main structure
for rate-independent systems that will occur in this thesis. For the specific loading `(t) = sin(2πt)

and coefficient µ = 1
2 , Figure 1.0.1 shows the solution for the rate-independent system (1.0.1). We

observe that it is Lipschitz continuous but does not provide further (temporal) regularity. Moreover,
we see that the solution follows the external load with some delay. Both of these observations are
well-known phenomenons for rate-independent systems.

Now, bringing (1.0.1) into a broader setting, we consider the differential inclusion

0 ∈ ∂R(z′(t)) +DzI(t, z(t)), t ∈ [0, T ], z(0) = z0. (RIS)

As indicated above, one can still see this inclusion as a balance of forces, which means that the
dissipative force ∂R and the potential force−DzI(t, z) must annihilate each other. Beyond that, we
note that the potential energy only depends on the time t and the state z and is thus, in particular,
independent of the velocity z′. Physically, one can interpret this as a quasistatic description, which
means that the load is applied slowly enough so that inertial forces can be ignored. In the above
example of the moving block, this means that the spring is pulled slowly along the path so that the
magnitude of the acceleration is negligible. The characteristic feature of the formulation in (RIS) is
the positive 1-homogeneity of the dissipationR. It is this property which induces that (RIS) is rate-
independent. Indeed, it can be easily shown (see Lemma 2.1.1) that, in this case, the subdifferential
∂R(·) is positively 0-homogenous, i.e., ∂R(λv) = ∂R(v) for all λ > 0. Thus, assuming that z(t) is a
sufficiently regular solution and α : [0, S]→ [0, T ] is any (differentiable) monotone rescaling of the
time, we obtain by the chain rule that (z ◦α)′(s) = (z′ ◦α(s))α′(s). Since α is monotone, we have
α′ ≥ 0, so that the positive 0-homogeneity of ∂R(·) implies that z̃(s) = (z ◦α)(s) is also a solution
but to the external load ` ◦ α. Nevertheless, at first glance, it seems slightly more restrictive to
consider only dissipative forces that can be represented by a potential R. We might more generally
allow for set-valued, monotone and 0-homogeneous operators A : Z ⇒ Z∗. However, it can be
shown that if such a mapping A is given, which is additionally maximal monotone, there exists a
proper, lower semicontinuous, convex and 1-homogeneous function R : Z → R ∪ {∞} such that
A(v) = ∂R(v), see [MR15, Prop. 3.2.1]. Thus, this requirement is natural in the context of rate-
independent systems. Though, we do not want to hold back that there exist applications which do
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not exhibit the structure from (RIS). This applies, for example, to the model of crack growth in
brittle material, cf. [DMFT05]. We will briefly elaborate on this at the end of Section 2.3 about
energetic solutions. Now, before we proceed with the assumptions on the involved quantities, we
want to give a further example dealing with the case of an energy that is nonconvex in z.

Example 1.0.1. [Existence of discontinuous solutions] In this example, we consider the nonconvex
energy I : R×R→ R with I(t, z) = E(z)−tz, wherein E(z) = 2|z|3− 5

2z
2 +( 5

6 )3 and the dissipation
R(z) = |z|. By direct calculations, one obtains the following solution for (RIS) (we will see in the
next section, that this is in fact a so-called BV solution):

z(t) =


− 1

2 , t ∈ [0, 3
2 ),

− 1
6 (2 +

√
10− 6t), t ∈ [ 3

2 ,
5
3 ),

1
6 (2 +

√
6t− 2), t ∈ [ 5

3 , 2].

In particular, we observe that this solution is no longer continuous but performs a jump at t = 5/3

from z− = − 1
3 to z+ = 1

3 (1+
√

2). This missing regularity makes it necessary to develop appropriate
concepts of solutions that are able to handle these kind of discontinuities.

-1.5 -1 -0.5 0 0.5 1 1.5
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Figure 1.0.2: Left: Energy landscape for t = 0. Right: Solution z of the nonconvex energy
I depending on the time t. The gray region is defined by {(t, z) : −DzI(t, z) ∈ ∂R(0)} =
∪t∈[0,2](t,Sloc(t)), where Sloc(t) is the so-called set of local stability (see (2.1.11)).

Assumptions

Let us now introduce the assumptions on the quantities in (RIS)3. We assume that Z and X are
Banach spaces with Z ⊂ X . In parts of this thesis, we additionally require an intermediate Hilbert
space Z

c,d
↪→ V ↪→ X , where ↪→d and ↪→c refer to dense and compact embedding, respectively. We

equip V with the norm ‖v‖V := 〈Vv, v〉1/2V∗,V , where V ∈ L(V,V∗) is a self-adjoint and coercive
operator, i.e., there exists a constant γ > 0 such that 〈Vv, v〉V∗,V ≥ γ‖v‖2V for all v ∈ V, where
‖ · ‖V denotes the natural norm associated with the scalar product in V. Moreover, the energy
I(t, z) is supposed to fulfill:

3The following assumptions are valid throughout the whole thesis and will be strenghtened, if necessary, at the
appropriate positions.
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(E1) I ∈ C1([0, T ]×Z;R).

(E2) For all t ∈ [0, T ] the energy I(t, ·) is weakly lower semicontinuous and coercive on Z with
I(t, z) ≥ c1‖z‖Z − c0 for some constants c0, c1 > 0.

(E3) There exists β > 0 and µ ∈ L1(0, T ) with µ ≥ 0 such that for all t ∈ [0, T ]:

|∂tI(t, z)| ≤ µ(t)(I(t, z) + β) ∀z ∈ Z.

(E4) For all sequences tk → t and zk ⇀ z in Z it holds:

∂tI(tk, zk)→ ∂tI(t, z).

Note that the combination of (E1)–(E2) already yields that, for all sequences tk → t and zk ⇀ z

in Z, it holds
I(t, z) ≤ lim inf

k→∞
I(tk, zk). (1.0.2)

Regarding the dissipation R : X → [0,∞], we assume that

(R1) R is proper, convex and lower semicontinuous,

(R2) R is positively 1-homogeneous, i.e., R(λv) = λR(v) ∀v ∈ X , λ > 0,

(R3) ∃ ρ > 0 : ρ ‖v‖X ≤ R(v).

Combining the convexity and the positive 1-homogeneity of R, it is easy to verify the following
triangle inequality

R(u− w) ≤ R(u− v) +R(v − w) ∀u, v, w ∈ Z. (1.0.3)

Note that, on the one hand, these conditions are formulated in such a way that they are general
enough to be applied to various different examples, and, on the other hand, also sufficiently rigorous
to allow for a concise description of the notions of solutions and their correlations. Depending on the
actual setting and the solution concept slightly weaker forms of the above assumptions exist, see,
e.g., [KZ18]. In further parts of this thesis, especially for the a priori error analysis in Section 3.3,
we need to specify an additional condition on the energy, namely:

Definition 1.0.2 (κ-uniform convexity). We say that I is κ-uniformly convex if for all t ∈ [0, T ]

it holds that I(t, ·) ∈ C2(Z;R) and there exists a constant κ > 0 such that

〈D2
zI(t, z)v, v〉Z∗,Z ≥ κ‖v‖2Z

for all z, v ∈ Z.

This in particular implies that for every λ ∈ [0, 1] it holds

I(t, λz1 + (1− λ)z2) + λ(1− λ)
κ

2
‖z1 − z2‖2Z ≤ λI(t, z1) + (1− λ)I(t, z2) ∀z1, z2 ∈ Z. (1.0.4)

In the same context we will need to assume that I(t, ·) provides slightly more regularity than
C2(Z;R), precisely:



17 1. Introduction

Definition 1.0.3. We write I(t, ·) ∈ C2,1
loc (Z;R) if for all t ∈ [0, T ] and all r > 0 there exists

C(r) ≥ 0, only depending on r, such that for all z1, z2 ∈ BZ(0, r) it holds

〈
[
D2
zI(t, z1)−D2

zI(t, z2)
]
v, v〉Z∗,Z ≤ C(r)‖z1 − z2‖Z‖v‖2Z . (1.0.5)

Finally, we assume that the initial state z0 satisfies z0 ∈ Z and 0 ∈ ∂R(0) +DzI(0, z0).

Notation

In the subsequent chapters, we use the following notation:
Given two normed linear spaces X,Y , we denote by 〈·, ·〉X∗,X the dual pairing and suppress the
subscript if there is no risk for ambiguity. By ‖ · ‖X , we denote the norm in X and by L(X,Y )

the space of linear and bounded operators from X to Y . Furthermore, BX(x, r) is the open ball
in X around x ∈ X with radius r > 0. If X is embedded in Y we write X ↪→ Y , as well as X↪→dY

and X↪→cY , if these embeddings are dense and compact, respectively. Given a convex functional
f : X → R ∪ {+∞}, we denote the (convex) subdifferential of f at x by ∂f(x) ⊂ X∗ and its
conjugate functional by f∗ : X∗ → R ∪ {+∞}. In addition, for a given function f : R ×X → R
depending on time and space, we denote by ∂tf(t, x) its partial time derivative and by Dzf(t, x)

the Fréchet derivative with respect to the underlying space X. Moreover, we denote by z′ the time
derivative of a time dependent function z : R → X. Concerning the one-sided limit of functions,
we let t+ := lims→t,s>t s and z(t+) := lims→t,s>t z(s) and t− as well as z(t−) correspondingly.
For T > 0 and p ∈ [1,∞] we furthermore write Lp(0, T ;X) for the Bochner space of p-integrable
functions and W 1,p(0, T ;X) for the Bochner-Sobolev space. Additionally, the space of continuous
functions and the space of functions of bounded variation mapping from [0, T ] into X are denoted
by C(0, T ;X) and BV (0, T ;X), respectively. Beyond this, |Ω| stands for the Lebesgue measure of
a set Ω ⊂ Rd, d ∈ N. In the context of discretization, bold face letters always describe column
vectors. Furthermore, c and C always stand for positive generic constants which may also change
within one row. We will additionally write C(·) to highlight that the constant is dependent on
some variable and use subscripts to denote specific fixed constants. Finally, we remark that, for
the sake of clarity, we sometimes omit super- and subscripts for the dual pairing and/or variables
if it becomes clear from the context.



Chapter 2

Solution concepts

In this chapter, we provide suitable notions of weak solutions for rate-independent systems in the
form of (RIS) starting with the rather restrictive concept of differential solutions. These should be
seen as a sort of strong solutions in the context of PDEs, i.e., they provide the necessary smoothness
such that (RIS) holds for almost all t ∈ [0, T ]. However, as indicated in Example 1.0.1, solutions
might lack sufficient regularity to give (RIS) a reasonable meaning. In order to handle such cases,
several (distinct) notions of solutions have been developed throughout the last 30 years, starting
from the seminal paper [MT99]. Herein, the authors provide a general and widely used concept
called (global) energetic solutions, which will be addressed in Section 2.3. In some sense opposite to
this notion, we introduce the so-called parametrized solutions that are based on the work [EM06]
and will form the fundamental concept of solutions throughout this thesis. We focus on this type of
notion in the Section 2.4 and afterwards give a brief overview of two further concepts, namely local
and BV solutions, in Section 2.5. Note that, in any case, while some of the conditions are supposed
to hold almost everywhere in [0, T ], the solutions are defined for all t ∈ [0, T ]. We conclude this
chapter with some remarks on the relations between the presented concepts in Section 2.6.

2.1 Equivalent formulations for RIS

Before we actually enlarge upon the different concepts of solutions, we give several equivalent
reformulations of the original problem

0 ∈ ∂R(z′(t)) +DzI(t, z(t)), z(0) = z0. (RIS)

On the one hand, this allows for a certain flexibility while handling (RIS) and, on the other hand,
forms the basis for the definition of the different types of solutions. Note that, in all subsequent
reformulations, we will tacitly assume that the involved terms are well-defined, in particular that
z′(t) and −DzI(t, z(t)) provide appropriate regularity (e.g., for the validity of the chain rule).
We start by inserting the definition of the convex subdifferential, which directly leads us to the

18
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following evolutionary variational inequality

〈DzI(t, z(t)), w − z′(t)〉Z∗,Z +R(w)−R(z′(t)) ≥ 0 ∀w ∈ Z, (2.1.1)

which has to hold for almost all t ∈ [0, T ]. Such time-dependent variational inequalities have been
studied, for example, in [Kre99] or [BKS04] for some general settings as well as in [Wac11] for
quasistatic plasticity. By employing standard results from convex analysis, we see that (RIS) can
also be written as a generalized gradient flow, that is,

z′(t) ∈ ∂R∗(−DzI(t, z(t))). (2.1.2)

In this case, the choice R(v) = 1
2 〈Vv, v〉V yields the known (viscous) gradient flow, cf. [RS06,

AGS08, San17], which is no longer rate-independent. In fact, this reformulation is a useful access
point in order to prove existence results for a viscous regularization of (RIS) such as (2.4.1), see, e.g.,
[MRS16, Prop. 4.17] or the argumentation in the proof of [MS19b, Thm. 3.23]. Another standard
result from convex analysis, more specifically the Fenchel-Young inequality (A.3.2), additionally
implies that (RIS) is equivalent to the sole inequality

R(z′(t)) +R∗(−DzI(t, z(t))) ≤ 〈−DzI(t, z(t)), z′(t)〉Z∗,Z . (2.1.3)

Now, by exploiting a chain rule for the energy functional, precisely

d
dt
I(t, z(t)) = 〈DzI(t, z(t)), z′(t)〉Z∗,Z + ∂tI(t, z(t)),

see also Appendix A.2.6, we find the upper energy estimate

I(t, z(t)) +

∫ t

0

R(z′(s)) +R∗(−DzI(s, z(s)))ds ≤ I(0, z0) +

∫ t

0

∂tI(s, z(s)) ds, (2.1.4)

which is in fact an equality. Indeed, this energy inequality is already equivalent to (RIS). To see
this, we exploit, again, the Fenchel-Young inequality as well as the chain rule to obtain from (2.1.4)
that

〈−DzI(t, z(t)), z′(t)〉Z∗,Z ≤ R(z′(t)) +R∗(−DzI(t, z(t))) a.e. in [0, T ]

and
∫ T

0

R(z′(r)) +R∗(−DzI(r, z(t))) dt ≤
∫ T

0

〈−DzI(t, z(t)), z′(t)〉Z∗,Z dt ,

which immediately implies

〈−DzI(t, z(t)), z′(t)〉Z∗,Z = R(z′(t)) +R∗(−DzI(t, z(t))) a.e. in [0, T ],

and therefore also (RIS). This observation is useful in various existence proofs for solutions of rate-
independent system and will also be taken up at some points in this thesis, see, e.g., Lemma 2.4.6.

In addition, all of the above reformulations do not rely on any special structure of R except
convexity. To be more precise, R needs to be proper, lower semicontinuous and convex. However,
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for rate-independent systems, the dissipation provides an additional property, namely the positive
1-homogeneity. Taking into account this property, we obtain the following characteristics, which
we will frequently exploit throughout the thesis.

Lemma 2.1.1. Let R : Z → [0,∞] be a positively 1−homogeneous, convex and lower semicontin-
uous function. Then, for all v ∈ Z and ξ ∈ Z∗,

∂R(v) ⊂ ∂R(0), (2.1.5)

∂R(0) = {η ∈ Z∗ : R(w) ≥ 〈η, w〉Z∗,Z ∀w ∈ V}, (2.1.6)

∂R(v) = {η ∈ ∂R(0) : 〈η, v〉Z∗,Z = R(v)}, (2.1.7)

R∗(ξ) = I∂R(0)(ξ) (2.1.8)

holds. In particular, the subdifferential ∂R(·) is 0-homogeneous.

Proof. By the definition of the subdifferential we have that

ξ ∈ ∂R(v) ⇐⇒ R(w) ≥ R(v) + 〈ξ, w − v〉Z∗,Z ∀w ∈ Z . (2.1.9)

Thus, the statement (2.1.6) directly follows from R(0) = 0. Testing (2.1.9) with w = 0 and
w = 2v and exploiting the positive 1-homogeneity of R implies (2.1.7). Thereby, (2.1.5) is an
easy consequence of the characterizations in (2.1.7) and (2.1.6). Finally, exploiting once more the
1-homogeneity of R, we obtain

R∗(ξ) = sup
v∈Z

(〈ξ, v〉Z∗,Z −R(v))

= sup
α>0

sup
v∈Z

(〈ξ, αv〉Z∗,Z −R(αv))

= sup
α>0

α sup
v∈Z

(〈ξ, v〉Z∗,Z −R(v))

=

{
0, if 〈ξ, v〉Z∗,Z −R(v) ≤ 0 ∀v ∈ Z
+∞, else

= I∂R(0)(ξ),

which proves (2.1.8). The 0−homogeneity of ∂R(·) is now a direct consequence of the statement
in (2.1.7) and the 1-homogeneity of R.

This characterization of the subdifferential of R allows us to reformulate (RIS) by means of the
following two conditions, which have to hold almost everywhere in [0, T ]:

−DzI(t, z(t)) ∈ ∂R(0), (2.1.10a)

R(z′(t)) = 〈−DzI(t, z(t)), z′(t)〉Z∗,Z . (2.1.10b)

The inclusion (2.1.10a) is referred to as the condition of local stability and the corresponding state
z satisfying (2.1.10a) is said to be locally stable. In this context we also define
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Sloc(t) := {z ∈ Z : −DzI(t, z) ∈ ∂R(0)}, (2.1.11)

the so-called set of local stability.

Let us additionally note that by applying the chain rule from (A.2.6) in (2.1.10b) and integrating
the resulting term, we find that (RIS) can be written as

R(v) ≥ 〈−DzI(t, z(t)), v〉Z∗,Z ∀v ∈ Z f.a.a. t ∈ [0, T ], (2.1.12a)

I(t, z(t)) +

∫ t

0

R(z′(s)) ds = I(0, z0) +

∫ t

0

∂tI(s, z(s)) ds ∀t ∈ [0, T ]. (2.1.12b)

Again, it suffices to require "≤" in (2.1.12b). This reformulation, in particular the energy inequality,
is the basis for most of the solution concepts for rate-independent systems. Moreover, it forms the
fundament for the convergence analysis of approximation schemes, cf. Section 3.2.4. Lastly, in
view of Section 2.3, we highlight that in the case of a convex energy I(t, ·) condition (2.1.10a) is
equivalent to

I(t, z(t)) ≤ I(t, z) +R(z − z(t)) ∀z ∈ Z. (2.1.13)

In this context, we define the set of global stability as

Sglob(t) := {z ∈ Z : I(t, z) ≤ I(t, v) +R(v − z) ∀v ∈ Z} (2.1.14)

and accordingly call a state z ∈ Sglob(t) globally stable. For convex energies, any locally stable
point is also globally stable, that means the set of local stability and the set of global stability
coincide. However, in the general case, these sets differ from each other and thus provide distinct
notions of solutions in a natural way, see also [Ste09]. Indeed, we have:

Lemma 2.1.2. If I(t, ·) ∈ C1(Z;R), then Sglob(t) ⊂ Sloc(t) holds. If additionally I(t, ·) is convex,
then even Sglob(t) = Sloc(t) holds.

Proof. Let z ∈ Sglob(t), which means that

I(t, z) ≤ I(t, v) +R(v − z) ∀v ∈ Z,

and furthermore let ε > 0 and w ∈ Z be arbitrary. Testing the above inequality with v = z + εw,
exploiting the 1-homogeneity of R and rearranging terms leads to I(t, z)− I(t, z + εw) ≤ εR(w).

Dividing by ε and taking the limit ε to zero, we then obtain 〈−DzI(t, z), w〉Z∗,Z ≤ R(w). Since
w was arbitrary this gives −DzI(t, z) ∈ ∂R(0) by the characterization in Lemma 2.1.1, which is
equivalent to saying z ∈ Sloc(t). If now I(t, ·) is additionally convex, then

〈DzI(t, z), v − z〉Z∗,Z ≤ I(t, v)− I(t, z) ∀v ∈ Z

holds. Therefore, if z ∈ Sloc(t), then −DzI(t, z) ∈ ∂R(0) or equivalently

〈−DzI(t, z), w〉Z∗,Z ≤ R(w) ∀w ∈ Z,
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and testing with w = v − z as well as inserting the inequality from above, we get z ∈ Sglob(t).

Overall, we visualize the different formulations in Figure 2.1.1.

0 ∈ ∂R(z′(t)) +DzI(t, z(t))

−DzI(t, z(t)) ∈ ∂R(0)

I(t, z(t)) +

∫ t

0

R(z′(s)) ds = I(0, z0) +

∫ t

0

∂tI(s, z(s)) ds

I(t, z(t)) ≤ I(t, z) +R(z − z(t)) ∀z ∈ Z

I(t, z(t)) +

∫ t

0

R(z′(s)) ds = I(0, z0) +

∫ t

0

∂tI(s, z(s)) ds

Figure 2.1.1: Overview of the essential reformulations for (RIS), that will become important in the
definition of the solution concepts. Here, the dashed lines denote a direction that holds if I(t, ·) is
convex.

2.2 Differential solutions

Historically, first existence results for solutions of (RIS) have been developed, e.g., in [Bré73]
for quadratic and in [CV90] for general smooth and uniformly convex energies. Therein, the
authors provide solutions inW 1,∞(0, T ;Z) and H1(0, T ;Z), respectively, satisfying the differential
inclusion pointwise almost everywhere in [0, T ]. However, in order to actually ensure that (RIS)
is well-defined and the reformulations in Section 2.1 hold, we require that z ∈ W 1,1(0, T ;Z) as
minimal regularity. In accordance with most of the literature, we will subsequently denote this
type of solution by differential solution.

Definition 2.2.1. We call z : [0, T ] → Z a differential solution if z ∈ W 1,1(0, T ;Z) with
z(0) = z0 and

0 ∈ ∂R(z′(t)) +DzI(t, z(t))

holds for almost all t ∈ [0, T ].

Note that this type of solution also provides solutions of the evolutionary variational inequality,
that is,

〈DzI(t, z(t)), w − z′(t)〉Z∗,Z +R(w)−R(z′(t)) ≥ 0 ∀w ∈ V (2.2.1)

holds for almost all t ∈ [0, T ]. Naturally, there arises the question under which assumptions we can
guarantee the existence of a differential solution. As we have already seen in the Example 1.0.1,
this is not the case for general nonconvex energy functionals. However, under strong convexity and
smoothness assumptions, we have the following positive result.
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Theorem 2.2.2. Let I(t, ·) ∈ C2,1
loc (Z;R) (see Definition 1.0.3) be κ-uniformly convex. Moreover,

let there be a constant c > 0 such that for all z1, z2 ∈ Z

|∂tI(t, z1)− ∂tI(t, z2)| ≤ c‖z1 − z2‖Z (2.2.2)

holds for almost all t ∈ [0, T ]. Finally, assume that one of the following properties is fulfilled:

R is weakly continuous on Z (2.2.3a)

or

DzI(·, ·) is (strong,weak)-weak continuous from Z to Z∗, i.e., ∀ tk → t, zk ⇀ z in Z :

DzI(tk, zk) ⇀ DzI(t, z) in Z∗.
(2.2.3b)

Then there exists for every initial state z0 ∈ Z with 0 ∈ ∂R(0) + DzI(0, z0) a unique differential
solution z ∈W 1,∞(0, T ;Z), i.e., it holds

0 ∈ ∂R(z′(t)) +DzI(t, z(t)) f.a.a. t ∈ [0, T ]. (2.2.4)

Proof. The idea of this proof is to, first, apply Theorem 2.3.4, which guarantees the existence of an
energetic solution (see Definition 2.3.1), and then show that this solution is, in fact, more regular,
precisely Lipschitz continuous, by exploiting the uniform convexity of the energy functional. This
will then allow us to deduce the existence of a differential solution. In the end, we provide a
uniqueness result based on [MT04, Thm. 7.4]. At this point, the reader may excuse that the proof
relies on a result, which is proven only at a later point.

1. Existence of energetic solution
In order to take advantage of Theorem 2.3.4, we need to verify condition (2.3.10) on the closedness
of the global stability set. To this end, let tk → t and zk ∈ Sglob(tk) with zk ⇀ z. We distinguish
the two cases from (2.2.3a) and (2.2.3b).
We start with (2.2.3a). Since zk ∈ Sglob(tk) it holds I(tk, zk) ≤ I(tk, v) +R(v − zk) for all v ∈ Z.
Now let v ∈ Z be given. For the right-hand side of this inequality we exploit assumption (E1) and
the weak continuity of R to obtain that limk→∞ I(tk, v) +R(v− zk) = I(t, v) +R(v− z). By the
lower semicontinuity of I from (1.0.2) we therefore have

I(t, z) ≤ lim inf
k→∞

I(tk, zk) ≤ lim inf
k→∞

I(tk, v) +R(v − zk) = I(t, v) +R(v − z). (2.2.5)

Since this holds for every v ∈ Z we find z ∈ Sglob(t).
Now, assume that condition (2.2.3b) is satisfied. We then take advantage of Lemma 2.1.2, which
gives Sglob(tk) = Sloc(tk). Hence, zk ∈ Sglob(tk) is equivalent to −DzI(tk, zk) ∈ ∂R(0) and as-
sumption (2.2.3b) as well as the weak closedness of ∂R(0) directly yields −DzI(t, z) ∈ ∂R(0).
Thus z ∈ Sloc(t) and another application of Lemma 2.1.2 gives z ∈ Sglob(t).
In any case, we can apply Theorem 2.3.4 which yields the existence of an energetic solution.
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2. Temporal regularity
The following part is based on [MR15, Thm. 7.4.4] and aims at proving that the energetic solution
is in fact Lipschitz continuous. For this purpose, let s, t ∈ [0, T ] with t > s be fixed. From the
global stability, that is, z(s) ∈ Sglob(s), and the uniform convexity of I(s, ·), cf. inequality (1.0.4),
we obtain

I(s, z(s)) ≤ I(s, (1− λ)z(s) + λz(t)) +R((1− λ)z(s) + λz(t)− z(s))

≤ (1− λ)I(s, z(s)) + λI(s, z(t)) + λR(z(t)− z(s))

− λ(1− λ)
κ

2
‖z(t)− z(s)‖2Z

for all λ ∈ [0, 1]. Subtracting I(s, z(s)), dividing by λ and taking the limit λ to zero, we end up
with

κ

2
‖z(t)− z(s)‖2Z ≤ I(s, z(t))− I(s, z(s)) +R(z(t)− z(s)).

To proceed, we slightly rewrite the above inequality in the following form

κ

2
‖z(t)− z(s)‖2Z ≤ I(s, z(t))− I(t, z(t)) + I(t, z(t))− I(s, z(s)) +R(z(t)− z(s))

= −
∫ t

s

∂tI(r, z(t)) dr + I(t, z(t))− I(s, z(s)) +R(z(t)− z(s)).

Clearly, due to the additivity of the dissipation term DissR, the energy identity (E) also holds
for [s, t] instead of [0, t]. Thus, by inserting the shifted energy identity as well as the inequality
R(z(t)−z(s)) ≤ DissR(z; [s, t]), which is an easy consequence of the definition of DissR, see (2.3.1),
we can further estimate

κ

2
‖z(t)− z(s)‖2Z ≤ −

∫ t

s

∂tI(r, z(t)) dr + I(t, z(t))− I(s, z(s)) +R(z(t)− z(s))

=

∫ t

s

∂tI(r, z(r))− ∂tI(r, z(t)) dr −DissR(z; [s, t]) +R(z(t)− z(s))

≤
∫ t

s

|∂tI(r, z(r))− ∂tI(r, z(t))| dr.

Incorporating the assumption in (2.2.2), we ultimately arrive at

κ

2
‖z(t)− z(s)‖2Z ≤

∫ t

s

c ‖z(r)− z(t)‖Z dr. (2.2.6)

In order to obtain from this the Lipschitz continuity of z, we define

δ(τ) := ‖z(t)− z(t− τ)‖Z , τ ∈ [0, t].

First of all, we can conclude from (2.2.6) and the boundedness of energetic solutions in Z (see
Definition 2.3.1), that z and therefore also δ are continuous. The inequality (2.2.6) thus gives

δ(τ)2 ≤ C
∫ t

t−τ
‖z(t)− z(r)‖Z dr = C

∫ τ

0

‖z(t)− z(t− r)‖Z dr = C

∫ τ

0

δ(r) dr.
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An application of Lemma A.4.2 consequently yields δ(τ) ≤
∫ τ

0
C dr = C τ . By setting τ := t− s ∈

[0, t], we ultimately find
‖z(t)− z(s)‖Z = δ(t− s) ≤ C |t− s|.

This proves the Lipschitz continuity of the solution z, which also gives z ∈W 1,∞(0, T ;Z).

3. Differential solution
We have already shown that z is an energetic solution and provides the extra regularity z ∈
W 1,∞(0, T ;Z) ↪→ C(0, T ;Z). Strictly speaking it would suffice to have z ∈ W 1,1(0, T ;Z), which
also embeds into C(0, T ;Z), in order to proceed. In any case, we need to verify that z fulfills the
differential inclusion (RIS) pointwise almost everywhere. For this, we first of all choose ε > 0 and
v ∈ Z and test (S) with z = z(t) + ε v to obtain

I(t, z(t))− I(t, z(t) + ε v) ≤ R(ε v) = εR(v). (2.2.7)

Dividing by ε and taking the limit ε → 0 yields 〈−DzI(t, z(t)), v〉Z∗,Z ≤ R(v). Since v ∈ Z was
arbitrary, we find −DzI(t, z(t)) ∈ ∂R(0) for all t ∈ [0, T ] by the characterization in Lemma 2.1.1.
In particular, we have R∗(−DzI(t, z(t))) = 0 for all t ∈ [0, T ] due to (2.1.8). Combining this with
Lemma 2.3.2, the energy identity (E) becomes

I(T, z(T )) +

∫ T

0

R(z′(s)) +R∗(−DzI(s, z(s)) ds = I(0, z0) +

∫ T

0

∂tI(s, z(s)) ds.

Applying the chain rule from Lemma A.2.6 and reordering terms, we finally get∫ T

0

R(z′(s)) +R∗(−DzI(s, z(s)))− 〈−DzI(s, z(s)), z′(s)〉Z∗,Z ds = 0.

Since by the Fenchel-Young inequality the integrand is nonnegative, we deduce

R(z′(t)) +R∗(−DzI(t, z(t))) = 〈−DzI(t, z(t)), z′(t)〉Z∗,Z

and hence 0 ∈ ∂R(z′(t))+DzI(t, z(t)) for almost all t ∈ [0, T ], by standard convex analysis results.
Overall, this shows that z is a differential solution.

4. Uniqueness
Assume that there exists two differential solutions z1, z2 ∈ W 1,∞(0, T ;Z). We define γ(t) :=

〈DzI(t, z1(t)) −DzI(t, z2(t)), z1(t) − z2(t)〉Z∗,Z . Writing the variational inequality (2.2.1) for z1,
inserting z2 and vice versa and adding up the resulting inequalities, we obtain

0 ≥ 〈DzI(t, z1(t))−DzI(t, z2(t)), z′1(t)− z′2(t)〉Z∗,Z .

Exploiting the estimate from Section A.4 we therefore have

γ′(t) ≤ C‖z1(t)− z2(t)‖2Z + 2〈DzI(t, z1(t))−DzI(t, z2(t)), z′1(t)− z′2(t)〉Z∗,Z
≤ C‖z1(t)− z2(t)‖2Z . (2.2.8)
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The κ-uniform convexity of I implies that γ(t) ≥ κ‖z1(t) − z2(t)‖2Z , so that (2.2.8) gives the
estimate γ′(t) ≤ C/κγ(t) and we obtain the uniqueness result by applying the Gronwall inequality
from Lemma A.4.1.

Remark 2.2.3. It is easy to see that one may replace assumptions (E3) and (E4) by the following
slightly weakened time regularity and still obtain a differential solution (see also assumption (E2),
condition (C2) and Theorem 2.1.6 in [MR15]):

∃NI ⊂ [0, T ] with L1(NI) = 0 so that ∀t ∈ [0, T ] \NI it holds:

∂tI(t, z) exists and satisfies (E3) for all z ∈ Z,
(2.2.9a)

∀t ∈ [0, T ] \NI and for all sequences zk ⇀ z it holds: ∂tI(t, zk)→ ∂tI(t, z). (2.2.9b)

Remark 2.2.4. Due to the 1-homogeneity of R, it holds ∂R(v) ⊂ ∂R(0) for all v ∈ V, see
Lemma 2.1.1. Thus, since W 1,1(0, T ;Z) ↪→ C(0, T ;Z) and DzI is continuous by assumption (E1),
a differential solution fulfills 0 ∈ ∂R(0) + DzI(t, z(t)) for all t ∈ [0, T ]. In particular, we can
reformulate 0 ∈ ∂R(z′(t)) +DzI(t, z(t)) as

∀v ∈ Z : R(v) ≥ 〈−DzI(t, z(t)), v〉Z∗,Z ∀t ∈ [0, T ], (2.2.10a)

R(z′(t)) = 〈−DzI(t, z(t)), z′(t)〉Z∗,Z f.a.a. t ∈ [0, T ]. (2.2.10b)

This type of solution will play a crucial role in our a priori error analysis in Section 3.3.

2.3 (Global) energetic solutions

The general notion of global energetic solutions has first been developed in the paper [MTL02]
in 2002 but was used earlier in, e.g., [MTL98, MT99] for the specific case of hysteresis in elastic
materials. This formulation is originally based on a mechanical extremum principle for phase trans-
formations, that is, a transition between two states will occur as soon as it is thermodynamically
possible, cf. [Lev97, p. 929] the postulate of realizability. However, one can also view this notion of
solutions as a generalization of the form in (2.1.12b) combined with the global stability (2.1.13). In
any case, it provides a mathematical fundament for a broad class of problems. The main advantage
of this concept is that it does not require any differentiability of the involved quantities (except for
a time derivative of the energy) and is thus amenable to handle cases without a linear structure of
the underlying spaces. Nevertheless, we will formulate the actual definition in the context of our
setting.

Definition 2.3.1. We call z : [0, T ] → Z an energetic solution of (RIS) if z ∈ L∞(0, T ;Z) ∩
BV (0, T ;X) and for all t ∈ [0, T ] the global stability condition (S) and energy balance (E) hold,
i.e.,

I(t, z(t)) ≤ I(t, z) +R(z − z(t)) ∀z ∈ Z, (S)

I(t, z(t)) + DissR(z; [0, t]) = I(0, z(0)) +

∫ t

0

∂tI(s, z(s)) ds. (E)
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Thereby, the dissipation DissR(q; [0, t]) is defined as

DissR(q; [0, t]) := sup

{ n∑
k=1

R(q(tk)− q(tk−1)) :

0 = t0 < t1 < · · · < tn−1 < tn = t, n ∈ N
}
. (2.3.1)

The condition (S) is called the condition of global stability, since it has to hold for all z ∈ Z,
i.e., z(t) is the global minimum of the functional I(t, ·) + R(· − z(t)) (see also the Definition of
the set of global stability). In particular, this means that the release of energy I(t, z(t))− I(t, z)

for all possible states z ∈ Z is compensated by the dissipation. The second condition (E), which
is the energy balance, is based on the energy equality (2.1.12b), where the term

∫ T
0
R(z′(s)) ds is

replaced by the dissipation DissR(z; [0, t]) due to the lack of differentiability of z. However, if z is
an element of W 1,1(0, T ;X ) both terms coincide, which is subject of the next lemma.

Lemma 2.3.2. Let R : X → [0,∞] be given as in (R1)-(R3). If z ∈ W 1,1(0, T ;X ), then
DissR(z; [0, t]) =

∫ t
0
R(z′(r)) dr holds for all t ∈ [0, T ].

Proof. First, we note that due to Lebesgue’s differentiation theorem (see, e.g., [Wac11, Thm.
3.1.40]), it holds

z′(t) = lim
h↘0

z(t+ h)− z(t)
h

f.a.a. t ∈ (0, T ).

Now, let t ∈ [0, T ] be given and 0 = t0 < t1 < · · · < tn = t be any partition of [0, t]. By Jensen’s
inequality from (A.3.3) we have for all i = 1, . . . , n

R(z(ti)− z(ti−1)) = R

(∫ ti

ti−1

z′(r)dr

)
≤
∫ ti

ti−1

R(z′(r)) dr.

Summing up this estimate yields
∑n
i=1R(z(ti)− z(ti−1)) ≤

∫ t
0
R(z′(r)) dr, which in turn implies

DissR(z; [0, t]) ≤
∫ t

0

R(z′(r)) dr . (2.3.2)

For the opposite inequality, we observe that, by the 1-homogeneity of R, it holds for any partition
{ti}ni=0 with h := max{(ti − ti−1) : i = 1, . . . , n} and 0 = t0 < t1 < · · · < tn = t that

DissR(z; [0, t]) ≥
n∑
i=1

R(z(ti)− z(ti−1))

=

n∑
i=1

(ti − ti−1)R
(
z(ti)− z(ti−1)

ti − ti−1

)

=

n∑
i=1

∫ ti

ti−1

R
(
z(ti)− z(ti−1)

ti − ti−1

)
dr.

(2.3.3)

Let us define the approximation

ξh(t) := z(ti)−z(ti−1)
ti−ti−1

, t ∈ [ti−1, ti),
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so that (2.3.3) implies DissR(z; [0, t]) ≥
∫ t

0
R(ξh(r)) dr and, moreover, it holds

ξh(t)→ z′(t) in X

pointwise almost everywhere in [0, T ]. Hence, by the lower semicontinuity of R, we also have that
lim infh→0R(ξh(t)) ≥ R(z′(t)) for almost all t ∈ [0, T ]. Since R is nonnegative, we can apply
Fatou’s lemma to obtain

lim inf
h↘0

∫ t

0

R(ξh(r)) dr ≥
∫ t

0

R(z′(r)) dr

which proves the claim. Note that the measurability of r 7→ R(z′(r)) can be discussed analogous
to the proof of Lemma A.3.5.

Before we come to the main existence result, we want to draw our attention to an approximation
scheme for energetic solutions. One natural approach is to use a time-discretization for (S) and
rewrite it as a minimization problem. In this way, one arrives at the following global incremental
minimization problem

zk ∈ arg min{I(tk, z) +R(z − zk−1) : z ∈ Z}. (2.3.4)

The existence of minimizers of (2.3.4) can be easily shown using the assumptions on I and R and
applying the direct method of the calculus of variations. Moreover, from the global optimality of
zk and (E1), we obtain

I(tk, zk) +R(zk − zk−1) ≤ I(tk, zk−1) = I(tk−1, zk−1) +

∫ tk

tk−1

∂tI(s, zk−1) ds. (2.3.5)

The assumptions on I and R, additionally, allow us to obtain the following a priori estimate,
whose proof will be kept brief at this point. A more detailed derivation can, for example, be found
in [MR15, Thm. 2.1.5] or in the proofs of Lemma 3.2.5 and Lemma 3.2.6 under slightly different
assumptions.

Lemma 2.3.3. Let I and R comply with (E1)-(E4) and (R1)-(R3), respectively. Then the fol-
lowing a priori estimate

I(tk, zk) +

k∑
i=1

R(zi − zi−1) ≤ exp

(∫ tk

0

µ(s) ds
)

(I(0, z0) + β) (2.3.6)

holds true for all k ∈ N.

Proof. For the sake of brevity, we set m(t) =
∫ t

0
µ(s) ds where µ denotes the L1-function from

assumption (E3). Inequality (2.3.5) in combination with the assumption (E3) now yields

I(tk, zk) +R(zk − zk−1)

≤ I(tk−1, zk−1) + (I(tk−1, zk−1) + β)
(

exp(m(tk)−m(tk−1))− 1
)

(2.3.7)

= (I(tk−1, zk−1) + β) exp(m(tk)−m(tk−1))− β. (2.3.8)
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The nonnegativity of R and a summation over k for (2.3.8) thus implies

I(tk, zk) + β ≤ (I(0, z0) + β) exp(m(tk)) ∀k ∈ N. (2.3.9)

By rewriting (2.3.7) in the form

I(ti, zi) +R(zi − zi−1)− I(ti−1, zi−1) ≤ (I(ti−1, zi−1) + β)
(

exp(m(ti)−m(ti−1))− 1
)

another summation gives

I(tk, zk) +

k∑
i=1

R(zi − zi−1) ≤ I(0, z0) +

k∑
i=1

(I(ti−1, zi−1) + β)
(

exp(m(ti)−m(ti−1))− 1
)

≤ I(0, z0) +

k∑
i=1

(I(0, z0) + β)
(

exp(m(ti))− exp(m(ti−1))
)

≤ (I(0, z0) + β) exp(m(tk)),

where we took advantage of (2.3.9). Since this holds for all k ∈ N, we end up with (2.3.6).

These a priori bounds will allow us to extract a converging subsequence and afterwards pass
to the limit in a discrete energy balance in order to obtain energetic solutions. Therefore, this
minimization scheme forms an essential element of the following existence result. Despite its
theoretical interest, it can, however, also be effectively used to numerically approximate energetic
solutions.

Theorem 2.3.4 (Existence of energetic solution). Let I fulfill the assumptions (E1)-(E4) and
assume that

∀{(tk, zk)k∈N} ⊂ R×Z with zk ∈ Sglob(tk) and tk → t, zk ⇀ z in Z : z ∈ Sglob(t). (2.3.10)

Moreover, let R comply with assumptions (R1)-(R3) and z0 satisfy z0 ∈ Sglob(0). Then there exists
an energetic solution of (RIS).

Sketch of proof. We will just briefly explain the main steps to prove this result in our setting. The
fully, generalized version is given for example in [MR15, Thm. 2.1.6]. Note that the condition
on the initial state, i.e., z0 ∈ Sglob(0), is needed in order to guarantee that the global stability
(S) is satisfied for all t ∈ [0, T ]. For convenience, the proof is divided into five steps. The time
interval [0, T ] is divided into N subintervals [tk−1, tk), where tk describes the discrete time points
in (2.3.4) and we set τ = max{(tk − tk−1) : k ∈ {1, ..., N}} as the fineness of the approximation.
Furthermore, we define the (right-continuous) piecewise constant interpolant zτ (t) := zk−1 for
t ∈ [tk−1, tk), where zk−1 denotes the corresponding solution of the minimization problem (2.3.4)
at time tk−1.

1. A priori estimates
Taking into account the definition of zτ (t) as well as assumption (E2), we easily obtain from
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Lemma 2.3.3 the following a priori estimates

I(t, zτ (t)) + DissR(zτ ; [0, T ]) ≤ C and ‖zτ (t)‖Z ≤ C ∀t ∈ [0, T ]. (2.3.11)

Moreover, the (local) discrete energy identity (2.3.5) can be written as

I(tk, zτ (tk)) +R(zk − zk−1) ≤ I(tk−1, zτ (tk−1)) +

∫ tk

tk−1

∂tI(s, zτ (tk−1)) ds (2.3.12)

for all k = 1, ..., N . Now, let n ∈ {1, ..., N − 1} and t ∈ [tn, tn+1) be arbitrary. By summing up the
above inequality from k = 1 to n, we find the discrete energy inequality

I(t, zτ (t)) + DissR(zτ ; [0, t])

= I(tn, zτ (tn)) + I(t, zτ (t))− I(tn, zτ (tn)) +

n∑
k=1

R(zk − zk−1)

= I(tn, zn) +

n∑
k=1

R(zk − zk−1) +

∫ t

tn

∂tI(s, zn) ds

≤ I(0, z0) +

∫ tn

0

∂tI(s, zτ (s)) ds+

∫ t

tn

∂tI(s, zn) ds

= I(0, z0) +

∫ t

0

∂tI(s, zτ (s)) ds.

2. Selection of subsequences
By the Generalized Helly selection theorem (see Lemma A.2.11), we can extract a subsequence,
w.l.o.g. denoted by the same symbol, so that

∀t ∈ [0, T ] : zτ (t) ⇀ z(t) and DissR(zτ ; [0, t])→ δ(t)

and DissR(z; [0, t]) ≤ δ(t). Furthermore, (E3), (E4) and the bound from (2.3.11), allow us to apply
Lebesgue’s dominated convergence theorem, so that

∂tI(t, zτ (t))→ ∂tI(t, z(t)) in L1(0, T ). (2.3.13)

3. Global Stability of the limit function
From the global minimality of zk and the triangle inequality for R from (1.0.3) we obtain

I(tk, zk) +R(zk − zk−1) ≤ I(tk, z) +R(z − zk−1)

≤ I(tk, z) +R(z − zk) +R(zk − zk−1) ∀z ∈ Z.

Subtracting R(zk − zk−1) on both sides gives I(tk, zk) ≤ I(tk, z) +R(z − zk) for all z ∈ Z which
in turn implies zk ∈ Sglob(tk). Hence, the global stability of z(t), that is, z(t) ∈ Sglob(t), is an
immediate consequence of the assumption (2.3.10) on the closedness of the stability set.

4. Upper energy estimate
The upper energy estimate follows from the weak lower semicontinuity of I(t, ·) and the convergence
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of ∂tI(t, zτ (t)) in L1(0, T ). We therefore have

I(t, z(t)) + DissR(z; [0, t]) ≤ I(t, z(t)) + δ(t)

≤ lim inf
τ→0

I(t, zτ (t)) + DissR(zτ ; [0, t])

≤ I(0, z0) + lim inf
τ→0

∫ t

0

∂tI(s, zτ (s)) ds

= I(0, z0) +

∫ t

0

∂tI(s, z(s)) ds.

5. Lower energy estimate
In order to gain a lower estimate for the energy, we fix t ∈ [0, T ] and take a partition of [0, t], that
is, 0 = t0 < t1 < · · · < tn = t. For each tj ∈ {tk : k = 0, . . . , n}, we have z(tj) ∈ Sglob(tj) and thus

I(tj−1, z(tj−1)) ≤ I(tj−1, z(tj)) +R(z(tj)− z(tj−1)).

Adding I(tj , z(tj)) on both sides and reordering terms, we end up with

I(tj , z(tj))− I(tj−1, z(tj)) ≤ I(tj , z(tj))− I(tj−1, z(tj−1)) +R(z(tj)− z(tj−1)).

Summing up this inequality over j = 1, . . . , n and exploiting the definition of DissR, we arrive at

I(t, z(t)) + DissR(z; [0, t])− I(0, z0)

≥ I(t, z(t)) +

n∑
j=1

R(z(tj)− z(tj−1))− I(0, z0)

≥
n∑
j=1

I(tj , z(tj))− I(tj−1, z(tj))

=

n∑
j=1

∫ tj

tj−1

∂tI(s, z(tj)) ds =

∫ t

0

∂tI(s, zn(s)) ds,

where zn is the left-continuous approximation of z, i.e., zn(t) = z(tj) for t ∈ (tj−1, tj ]. Now, in
order to conclude that z is indeed an energetic solution, we need to show that

∫ t
0
∂tI(s, z(s)) ds

is bounded from above using integrals of the form
∫ t

0
∂tI(s, zn(s)) ds. Indeed, one can prove such

an estimate by applying a generalized version of Lusin’s theorem to z (see, e.g., [Wac11, Thm.
3.1.7]) and using suitable partitions of [0, t]. However, the details would go beyond the scope of
this sketch of proof and we refer the interested reader to [MR15, Lem. 2.1.21] at this point. Having
established this property, we end up with the lower energy estimate

I(t, z(t)) + DissR(z; [0, t]) ≥ I(0, z0) +

∫ t

0

∂tI(s, z(s)) ds.

Overall, this implies the existence of an energetic solution.

Note that the closedness of Sglob in (2.3.10) is, for instance, fulfilled if R maps X into [0,∞)

(rather than [0,∞]) and is weakly continuous on Z, cf. Step 1 in the proof of Theorem 2.2.2. For
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several further conditions guaranteeing the closedness of Sglob we refer to [MR15, Sec. 2.1.5]. We
now illustrate the above Definition 2.3.1 by the following example.

Example 2.3.5. We consider (RIS) with the energy functional I(t, z) = 2|z|3− 4z2 + (4
3 )3− tz and

the dissipation potential R(z) = |z|. One can verify by direct calculations that

z(t) =

− 1
3 (2 + 1√

2

√
11− 3t), t ∈ [0, 1],

1
3 (2 + 1√

2

√
5 + 3t), t ∈ (1, 3],

is an energetic solution. Its graph is depicted in Figure 2.3.1 (left) and we can observe that it
performs a jump at t = 1 from z(1) = − 4

3 to z(1+) = 4
3 . The corresponding energy landscape

at the jump time is shown in Figure 2.3.1 (right). Here we see that the transition takes place,
although the state z(1) is still locally stable. Moreover, the solution jumps over a potential barrier
that exists between the two states. Both of these phenomena are traced back to the global stability
condition (S). In fact, this condition forces the system to change its state once the release in energy
exceeds the amount of energy that is dissipated by the transition. This is a major disadvantage of
the concept of energetic solutions, namely the fact that solutions will, in general, jump as soon as
possible, ignoring potential barriers in between.
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Figure 2.3.1: Left: Graph of the energetic solution z. Right: Energy landscape at the jump time
t = 1 and the two state z(1) (red) and z(1+) (gray)

At the end of this section, we briefly comment on how energetic solutions can be generalized
to apply in models, which do not exhibit the structure in (RIS). As can be seen in the definition
of energetic solutions, the only part where a derivative is needed, is the time component, which
obviously exhibits a linear structure. One can thus also define this concept on a topological space
Z. Instead of using the dissipation potential R, one introduces a so-called dissipation distance
D : Z× Z→ [0,∞]. The actual Definition 2.3.1 however remains the same. One specific example
of this is the crack growth in brittle materials, see [Mie11, Sec. 7.6] and [MR15, Sec. 4.2.4.1].
While the energy functional I(t, y,Γ) mainly consists of the elastic energy in the body plus some
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external loading, the dissipation distance reads

D(Γ0,Γ1) =

Hd−1(Γ1 \ Γ0), if Γ0 ⊂ Γ1,

+∞, else.

Thereby Γ ⊂ Ω describes the crack surface, Hd−1 is the (d−1)-dimensional Hausdorff measure and
the condition Γ0 ⊂ Γ1 represents the fact that the crack can only grow. This setting does certainly
not exhibit a Banach space structure, but we can still consider (y(t),Γ(t)) as an energetic solution
if it satisfies the stability condition (S) and the energy equality (E).

2.4 Parametrized solutions

The concept of parametrized solutions is a very recent notion of solutions. To motivate its defini-
tion, we want to derive the involved terms by performing (formally) the vanishing viscosity limit,
i.e., ε↘ 0 for

0 ∈ ∂R(z′(t)) + εVz′(t) +DzI(t, z(t)) . (2.4.1)

In this context εVz′ denotes the so-called viscosity term and V ∈ L(V,V∗) is supposed to be
a norm-preserving bijection. A detailed limit analysis would go beyond the scope of this work,
which is why we only sketch the arguments leading to the definition of a parametrized solution. A
rigorous convergence analysis can, for instance, be found in [MRS13, MRS16, MZ14, KRZ13]. The
advantage in investigating (2.4.1) rather than (RIS) is that, while the original problem (RIS) does
not necessarily exhibit a unique solution, (2.4.1) can be shown to be uniquely solvable providing
solutions zε ∈ W 1,1(0, T ;V) under rather mild assumptions (see, e.g., [Col92, MRS13, MRS16,
MZ14] in the case of a bounded dissipation and [KRZ13] in the case of a damage model). Beyond
that, one can also interpret (2.4.1) as a regularization of the rate-independent system (RIS). Thus,
it is natural to investigate (2.4.1) and perform the passage to the limit ε→ 0 in order to (hopefully)
obtain solutions of the original problem (RIS). We illustrate this by means of the following example.

Example 2.4.1 (Vanishing viscosity limit (cf. [MR15, Ex. 1.8.3])).
In this example we consider Z = X = R and I : R× R→ R,

I(t, z) = E(z)− `(t) z with E(z) =


1
2 (z + 4)2, z ≤ −2,

4− 1
2z

2, |z| < 2,

1
2 (z − 4)2, z ≥ 2,

as well as R(z) = |z| and perform the vanishing viscosity limit. We additionaly set z0 = −2 and
`(t) = t+ 1. For ε > 0 the solution of the viscous regularized problem (2.4.1) reads

zε(t) =


−2, t ∈ [0, 2],

ε(exp(t−2)/ε−1)− t, t ∈ (2, t∗ε],

(ε− 2− t∗ε) exp−(t−t∗ε)/ε−ε+ t+ 4, t ∈ (t∗ε, 5],
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Figure 2.4.1: Viscous solutions for different viscosity parameters ε as well as the limit function z
(black).

where t∗ε ≈ 2 is the solution of the equation ε(exp(t−2)/ε−1)− t = 2. One can, for example, deduce
this by concatenating solutions of ordinary differential equations. Taking ε to zero, we therefore
obtain the limit

z(t) =

−2, t ∈ [0, 2],

t+ 4, t ∈ (2, 5].

However, one easily checks that

I(t, z(t)) + DissR(z, [0, t])− I(0, z0)−
∫ t

0

∂tI(s, z(s)) ds =

0, t ∈ [0, 2],

−16, t ∈ (2, 5],

so that the energy identity is consequently not fulfilled in this example. This follows from the
fact that the release of energy during the jump is not compensated by the dissipation, that is,
I(2, z(2)) − I(2, z(2+)) = 24 > 8 = R(z(2+) − z(2)). As we will see, this transition is so fast
that viscous effects must be taken into account. In fact, we will show in the subsequent analysis
that this extra dissipation is a remnant of the viscous regularization term. Thus, during such a
fast transition, which can be seen as a jump, the system will switch into a viscous behavior and
dissipate the extra energy through this term.

Example 2.4.1 indicates that we need suitable limit equations in order to characterize such
solutions, which can be obtained by the vanishing viscosity approach. This particularly refers to
the resolution of (possibly) appearing jumps. Therefore, instead of performing the limit process
directly, one introduces a suitable arc-length parametrization for zε and performs the passage to
the limit afterwards. The main advantage here is that jumps do not shrink down to a single
point in time. We rather obtain a whole jump curve in {t} × Z that describes the transition
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between the two states. This idea was first applied in [MMMG94, MSGMM95, Bon96] for systems
with dry friction and later on generalized in [EM06] and [MRS09, MZ14] for finite and infinite
dimensional problems, respectively. Thus, as in [EM06], we first define the viscous regularized
dissipation Rε(v) := R(v) + ε

2‖v‖
2
V. The corresponding Fenchel-conjugate is calculated exactly as

in Lemma A.3.8, which gives R∗ε(ξ) = 1
2 ε distV∗{ξ, ∂R(0)}2. From the equivalence of the inclusion

(2.4.1) to the energy identity (see Section 2.1, particularly (2.1.4)), we obtain here

I(T, zε(T )) +

∫ T

0

Rε(z′ε(s)) +R∗ε(−DzI(s, zε(s))) ds = I(0, zε(0)) +

∫ T

0

∂tI(s, zε(s)) ds.

Now, for a solution zε of (2.4.1), we parameterize its graph by arc-length using the viscous norm
‖·‖V = (〈·,V ·〉V)1/2. That is, we define sε(t) := t+

∫ t
0
‖z′ε(r)‖V dr, so that the function sε : [0, T ]→

[0, Sε], where Sε := sε(T ), is strictly monotone on [0, T ]. Hence, it provides an inverse function
t̂ε : [0, Sε] → [0, T ], by which we then introduce the rescaled function ẑε(s) := zε(t̂ε(s)). By
transforming the energy identity in terms of the "new" function ẑε and inserting the definition of
Rε and R∗ε, we obtain

I(t̂ε(Sε), ẑε(Sε))

+

∫ Sε

0

R(ẑ′ε(s)) +
ε

2 t̂′ε(s)
‖ẑ′ε‖2V +

t̂′ε(s)

2 ε
distV∗{−DzI(t̂ε(s), ẑε(s)), ∂R(0)}2 ds

= I(t̂ε(0), ẑε(0)) +

∫ Sε

0

∂tI(t̂ε(s), ẑε(s)) t̂
′
ε(s) ds. (2.4.2)

In order to extract weakly convergent subsequences, we essentially need to bound the artificial end
time Sε uniformly in ε. The estimates on ẑε and t̂ε then basically follow directly from the arc-
length parametrization. However, this uniform bound does not follow readily from the analysis of
the regularized problem (cf. [Mie11, Ex. 4.13]) but requires more sophisticated a priori estimates
for solutions of (2.4.1), which itself need further restrictions on the energy (see Section 3.1). With
this at hand, however, we can focus on the convergence of the transformed energy identity (2.4.2).
Therefore, we reformulate (2.4.2) as

I(tε(Sε), ẑε(Sε)) +

∫ Sε

0

Mε(t̂
′
ε(s), ẑ

′
ε(s), distV∗{−DzI(tε(s), ẑε(s)), ∂R(0)}) ds

= I(t̂ε(0), ẑε(0)) +

∫ Sε

0

∂tI(t̂ε(s), ẑε(s)) t̂
′
ε(s) ds

withMε(α, v, µ) := R(v) + ε
2α‖v‖

2
V +

α

2 εµ
2. Following [KRZ13, MRS09], the termMε(α, v, µ) is

Γ-convergent to

M0(α, v, µ) :=

R(v) + µ‖v‖V, if α = 0,

R(v) + I0(µ), if α > 0,

where I0 denotes the indicator function of the singleton {0}. On the basis of this result and a weak
lower semicontinuity result from [KRZ13, Lem. 6.1], [MRS12, Lem. 3.1], we define the notion of
parametrized solutions as follows:
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Definition 2.4.2. Let an initial value z0 ∈ Z be given. We call the tuple (t̂, ẑ) a V-parametrized
solution of (RIS) if there exists an artificial end time S ≥ T such that the following conditions
are satisfied:

(i) Regularity:

t̂ ∈W 1,∞(0, S), ẑ ∈W 1,∞(0, S;V) ∩ L∞(0, S;Z). (2.4.3)

(ii) Initial and end time condition:

t̂(0) = 0, ẑ(0) = z0, t̂(S) = T. (2.4.4)

(iii) Complementarity-like relations:

t̂′(s) ≥ 0, t̂′(s) + ‖ẑ′(s)‖V ≤ 1, (2.4.5a)

t̂′(s) distV∗{−DzI(t̂(s), ẑ(s)), ∂R(0)} = 0 f.a.a. s ∈ (0, S), (2.4.5b)

where distV∗{η, ∂R(0)} = inf{‖η − w‖V−1 : w ∈ ∂R(0)} and ‖η‖2V−1 = 〈η,V−1η〉V∗,V , see
also Lemma A.3.8.

(iv) Energy Identity:

I(t̂(s), ẑ(s)) +

∫ s

0

R(ẑ′(r)) + ‖ẑ′(r)‖V distV∗{−DzI(t̂(r), ẑ(r)), ∂R(0)} dr

= I(0, z0) +

∫ s

0

∂tI(t̂(r), ẑ(r)) t̂′(r) dr ∀ s ∈ [0, S].

(2.4.6)

If, in addition to the second inequality in (2.4.5a), there exists a constant δ > 0 such that t̂′(s) +

‖ẑ′(s)‖V > δ f.a.a. s ∈ (0, S), then the solution is called nondegenerate V-parametrized solution,
otherwise we call it degenerate V-parametrized solution. In the special case where the second
inequality in (2.4.5a) is fulfilled with equality, we call the solution normalized.

Note that this definition of parametrized solutions hides its rate-independent structure in the
condition t̂′(s) + ‖ẑ′(s)‖V ≤ 1 of the arc-length parameterization. Indeed, a rescaling of the time
does certainly not change the graph {(t̂(s), ẑ(s)) : s ∈ [0, S]} ⊂ [0, T ]×Z of (t̂, ẑ). However, some
more remarks on this definition are in order.

Remark 2.4.3. First of all, we note that the name V-parametrized solutions is supposed to highlight
the fact, that the parameterization is done with respect to the norm V. Similarly, one may also con-
sider Z-parametrized solutions, as it is for example the case in [KRZ13]. Beyond this, there exists a
further popular way of reparameterizing the viscous solutions of (2.4.1). This includes the so-called
vanishing viscosity contact potential, which is defined as p(v, w) := R(v) + ‖v‖V distV∗{w, ∂R(0)},
see, e.g., [MRS12, Sec. 5]. One may interpret this as an "energy arc-length". The main advantage
of this parameterization is the fact that a priori estimates come straight from the assumptions and
even the normalization is preserved in the limit. However, in the context of (numerical) approxima-
tion, this construction is far less amenable and one loses the descriptive character of this solution
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concept. Moreover, since it merely holds R(v) ≥ ‖v‖X we no longer have control of the derivative
of zε in the stronger V-norm. Since X might not provide the Radon-Nikodým property (see, e.g.,
[DU77]), this energy arc-length enforces us to use spaces of absolutely continuous functions instead
of the Sobolev space W 1,1(0, T ;X ), see, e.g., [KT18]. Unfortunately, the distinction between these
two parameterizations is not that strictly present in the literature so that both versions are some-
times referred to as merely parametrized solutions. What is more, these concepts are also denoted
by parametrized BV solutions, which is due to the close connection with the so-called BV solutions,
that we will take a look at in the next section. One, therefore, has to be careful when using these
terms. Though, to ease the notation, we simply write parametrized solution for short in the rest
of the thesis.

Remark 2.4.4. The regularity conditions in the above definition do not contain any information
about the derivative of ẑ in Z, which might be useful with a view to the application of a chain rule,
cf. Lemma 2.4.6. In fact, the regularity conditions here are chosen in such a way, that all terms
contained are well-defined. Again, depending on the actual setting, particularly the choice of R
and I, there might exist slightly different requirements, see, e.g., [MRS16, Def. 4.2]. Nevertheless,
a parametrized solution actually provides a certain weak continuity, that is,

if s̃→ s then ẑ(s̃) ⇀ ẑ(s) in Z. (2.4.7)

To see this, we first of all show that ‖ẑ(s̃)‖Z ≤ M for all s̃ ∈ [0, S] for some M > 0 independent
of s̃. For this, we exploit the nonnegativity of the dissipation term in the energy identity (2.4.6),
t̂′ ≤ 1 and assumption (E3) to get

I(t̂(s), ẑ(s)) + c ≤ I(0, z0) +

∫ s

0

∂tI(t̂(r), ẑ(r)) t̂′(r) dr

≤ I(0, z0) + c+

∫ s

0

µ(r)(I(t̂(r), ẑ(r)) + c) dr.

An application of the Gronwall lemma (Lemma A.4.1) and the lower estimate in (E2) thus implies

c‖ẑ(s̃)‖Z ≤ I(t̂(s̃), ẑ(s̃)) + C ≤ (I(0, z0) + c) exp

(∫ s̃

0

µ(r) dr

)
≤M.

Now, let s̃→ s. By the embedding W 1,∞(0, S;V) ↪→ C(0, S;V) we conclude that ẑ(s̃) converges to
ẑ(s) in V. Since, moreover, ẑ(s̃) is uniformly bounded in Z, we may extract a weakly converging
subsequence with limit z∗ ∈ Z. Since weak and pointwise limit coincide, we conclude that ẑ(s) =

z∗, which overall verifies (2.4.7).

Let us now put the parametrized solutions into some more context. We note that the additional
term ‖ẑ′(r)‖V distV∗{−DzI(t̂(r), ẑ(r)), ∂R(0)} which does not occur in the definition of energetic
solutions (see Definition 2.3.1), can be interpreted as a viscous contribution, since it is a remnant
of the vanishing viscosity approach. In particular, due to (2.4.5), this term is only present if
t̂′(s) = 0, which means that the physical time stands still and the system switches into a viscous
behavior. This formulation serves as the basis for the convergence analysis of the local iterated
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minimization scheme, cf. Section 3.2 below. However, one could also directly pass to the limit
in the viscous regularized system (2.4.1) and obtain again a subdifferential inclusion instead of
the energy equality. The following Proposition shows that both approaches lead to equivalent
formulations.

Proposition 2.4.5. Let (t̂, ẑ) with ẑ ∈W 1,1(0, S;Z) be given. Then the tupel (t̂, ẑ) is a nondegen-
erate parametrized solution of (RIS) if and only if there exists a measurable function λ : [0, S]→
[0,∞), such that for almost all s ∈ [0, S] it holds

t(0) = 0, z(0) = z0, t′(s) + ‖ẑ′(s)‖V ≤ 1, (2.4.8a)

0 ∈ ∂R(ẑ′(s)) + λ(s)Vẑ′(s) +DzI(t̂(s), ẑ(s)), (2.4.8b)

t̂′(s) ≥ 0, λ(s) ≥ 0, λ(s)t̂′(s) = 0. (2.4.8c)

Proof. Let (t̂, ẑ) be a nondegenerate parametrized solution, i.e., there exists a δ > 0 such that
t̂′(s) + ‖ẑ′(s)‖V ≥ δ almost everywhere in [0, S]. We then have

I(t̂(s), ẑ(s)) +

∫ s

0

R(ẑ′(r)) + ‖ẑ′(r)‖V distV∗{−DzI(t̂(r), ẑ(r)), ∂R(0)} dr

= I(0, z0) +

∫ s

0

∂tI(t̂(r), ẑ(r)) t̂′(r) dr ∀ s ∈ [0, S].

(2.4.9)

By applying the parametrized version of the chain rule from Lemma A.2.5, we get∫ s

0

R(ẑ′(r)) + ‖ẑ′(r)‖V distV∗{−DzI(t̂(r), ẑ(r)), ∂R(0)} dr

=

∫ s

0

〈−DzI(t̂(r), ẑ(r)), ẑ′(r)〉Z∗,Z dr ∀ s ∈ [0, S].

In fact, this is the point where the additional regularity of ẑ is needed. To proceed, we exploit
Lemma A.1.7 to obtain

R(ẑ′(s)) + ‖ẑ′(s)‖V distV∗{−DzI(t̂(s), ẑ(s)), ∂R(0)}

= 〈−DzI(t̂(s), ẑ(s)), ẑ′(s)〉Z∗,Z
(2.4.10)

for almost all s ∈ [0, S]. Now, let s ∈ [0, S] be a point where (2.4.10), (2.4.5b) and t̂′(s) +

‖ẑ′(s)‖V ≥ δ hold. If ‖ẑ′(s)‖V = 0, then t̂′(s) > 0 by the nondegeneracy, which in turn implies that
distV∗{−DzI(t̂(s), ẑ(s)), ∂R(0)} = 0 by the complementarity in (2.4.5b) and we can set λ(s) = 0

so that (2.4.8b) and (2.4.8c) are satisfied. If otherwise τ := ‖ẑ′(s)‖V > 0, we set

Rτ (v) := R(v) + Iτ (v), Iτ (v) =

0, if ‖v‖V ≤ τ,

+∞, else,

and Corollary A.3.9 implies

〈−DzI(t̂(s), ẑ(s)), ẑ′(s)〉Z∗,Z = R(ẑ′(s)) + ‖ẑ′(s)‖V distV∗{−DzI(t̂(s), ẑ(s)), ∂R(0)}

= Rτ (ẑ′(s)) +R∗τ (−DzI(t̂(s), ẑ(s))).
(2.4.11)
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From the Fenchel duality in Lemma A.3.3, we thus get

−DzI(t̂(s), ẑ(s)) ∈ ∂Rτ (ẑ′(s)). (2.4.12)

We may now use the sum rule for convex subdifferentials (see Theorem A.3.6), which is applicable
since 0 ∈ dom(R) ∩ dom(Iτ ) and Iτ is continuous in 0. Consequently, Lemma A.3.11 implies the
existence of a λ(s) ∈ R with λ(s) ≥ 0 such that

−DzI(t̂(s), ẑ(s)) ∈ ∂R(ẑ′(s)) + λ(s)Vẑ′(s). (2.4.13)

Since this holds for almost all s ∈ [0, S], we conclude that there exists a function λ : [0, S]→ [0,∞)

with
0 ∈ ∂R(ẑ′(s)) + λ(s)Vẑ′(s) +DzI(t̂(s), ẑ(s)) (2.4.14)

for almost all s ∈ [0, S]. Finally, we want to convince ourselves that λ is indeed measurable. For
this, we again take a point where the inclusion (2.4.14) holds. By the characterization of ∂R from
Lemma 2.1.1 we thus have −DzI(t̂(s), ẑ(s))− λ(s)Vẑ′(s) ∈ ∂R(0) so that R∗(−DzI(t̂(s), ẑ(s))−
λ(s)Vẑ′(s)) = 0 by Lemma 2.1.1 and consequently

〈−DzI(t̂(s), ẑ(s))− λ(s)Vẑ′(s), ẑ′(s)〉Z∗,Z = R(ẑ′(s))

⇐⇒ 〈−DzI(t̂(s), ẑ(s)), ẑ′(s)〉Z∗,Z = R(ẑ′(s)) + λ(s)‖ẑ′(s)‖2V.

Comparing this with (2.4.10) we conclude

λ(s)‖ẑ′(s)‖2V = ‖ẑ′(s)‖V distV∗{−DzI(t̂(s), ẑ(s)), ∂R(0)}. (2.4.15)

We therefore set

λ(s) =

distV∗{−DzI(t̂(s), ẑ(s)), ∂R(0)}/‖ẑ′(s)‖V, if ‖ẑ′(s)‖V > 0,

0, else.
(2.4.16)

Since distV∗{−DzI(t̂(r), ẑ(r)), ∂R(0)} and ‖ẑ′(s)‖V are measurable functions, this also transfers
to λ. (Note that as indicated above, if ‖ẑ′(s)‖V = 0, then t̂′(s) > 0 by the nondegeneracy and
therefore distV∗{−DzI(t̂(r), ẑ(r)), ∂R(0)} = 0 due to the complementarity (2.4.5). This justifies
the choice λ(s) = 0 whenever ‖ẑ′(s)‖V = 0.) The opposite dircection is proven by reversing the
steps from above. That is, from (2.4.14) we find (2.4.12) with τ = ‖ẑ′(s)‖V > 0 and therewith
also (2.4.11). Then integrating and applying the chain rule from Lemma A.2.5 gives (2.4.9) and
consequently (t̂, ẑ) is a parametrized solution.

The assumption on the nondegeneracy in the aforementioned lemma is essential in order to
obtain a function λ that allows us to reformulate the energy identity as the differential inclusion
(2.4.8b). Indeed, one easily notices that whenever −DzI(t̂(s), ẑ(s)) 6∈ ∂R(0) but t̂′(s)+‖ẑ′(s)‖V =

0, then there cannot exist a λ(s) ∈ R such that the inclusion (2.4.8b) is fulfilled. Nevertheless, it
is always possible to retransform any parametrized solution in a way, such that the transformed
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version is still a parametrized solution, but nondegenerate and even normalized. The key idea here
is to cut out all intervals where t̂′(s) + ‖ẑ′(s)‖V = 0 and to scale the artificial time appropriately.
However, since the normalization plays only a minor role in this thesis, the proof of this fact is
postponed to the Appendix, see Lemma A.4.3. As indicated in Section 2.1 by the upper energy
estimate (2.1.12b), it suffices to require that a parametrized solution (t̂, ẑ) fulfills the energy identity
(2.4.6) with "≤" instead of "=". Indeed, the following lemma, whose statement concerns exactly
this equivalence, is an essential component in order to show existence of parametrized solutions.
We will accordingly also take advantage of this fact in the proof of Theorem 3.2.19 in Section 3.2.4.

Lemma 2.4.6. Let (t̂, ẑ) be a pair with t̂ ∈ W 1,∞(0, S) and ẑ ∈ W 1,∞(0, S;V) ∩W 1,1(0, S;Z)

satisfying (2.4.4) and (2.4.5). Then (t̂, ẑ) is a parametrized solution if and only if the following
energy inequality is fulfilled:

I(t̂(s), ẑ(s)) +

∫ s

0

R(ẑ′(r)) + ‖ẑ′(r)‖V distV∗{−DzI(t̂(r), ẑ(r)), ∂R(0)} dr

≤ I(0, z0) +

∫ s

0

∂tI(t̂(r), ẑ(r)) t̂′(r) dr ∀ s ∈ [0, S].

(2.4.17)

Proof. The proof of this lemma is based on [KRZ13, Lem. 6.6]. Since every parametrized solution
satisfies the above inequality with equality, the first implication is trivial. Hence, let (t̂, ẑ) be given
as in the assumptions, in particular ẑ ∈ W 1,1(0, S;Z). This allows us to apply the parametrized
chain rule from Lemma A.2.5, which gives for almost all s ∈ [0, S]:

d
ds
I(t̂(s), ẑ(s)) = 〈DzI(t̂(s), ẑ(s)), ẑ′(s)〉Z∗,Z + ∂tI(t̂(s), ẑ(s)) t̂′(s). (2.4.18)

Since ‖ẑ′(s)‖V distV∗{−DzI(t̂(s), ẑ(s)), ∂R(0)} is integrable, it must be finite almost everywhere.
Thus, assume first that distV∗{−DzI(t̂(s), ẑ(s)), ∂R(0)} < ∞, then there exists ξ(s) ∈ ∂R(0)

such that distV∗{−DzI(t̂(s), ẑ(s)), ∂R(0)} = ‖−DzI(t̂(s), ẑ(s)) − ξ(s)‖V−1 , cf. Lemma A.3.8.
Exploiting the characterization of ∂R(0) from (2.1.6), we may consequently estimate

− d
ds
I(t̂(s), ẑ(s)) + ∂tI(t̂(s), ẑ(s)) t̂′(s)

= 〈−DzI(t̂(s), ẑ(s))− ξ(s), ẑ′(s)〉Z∗,Z + 〈ξ(s), ẑ′(s)〉Z∗,Z
≤ ‖−DzI(t̂(s), ẑ(s))− ξ(s)‖V−1‖ẑ′(s)‖V +R(ẑ′(s))

= ‖ẑ′(s)‖V distV∗{−DzI(t̂(s), ẑ(s)), ∂R(0)}+R(ẑ′(s)).

Otherwise ‖ẑ′(s)‖V = 0 must hold and the former estimate clearly remains valid since R ≥ 0.
Integration with respect to time and inserting the energy inequality, we obtain

I(0, z0)− I(t̂(s), ẑ(s)) +

∫ s

0

∂tI(t̂(r), ẑ(r))t̂′(r) dr

≤
∫ s

0

‖ẑ′(r)‖V distV∗{−DzI(t̂(r), ẑ(r)), ∂R(0)}+R(ẑ′(r)) dr

≤ I(0, z0) +

∫ s

0

∂tI(t̂(r), ẑ(r)) t̂′(r) dr − I(t̂(s), ẑ(s))
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for all s ∈ [0, S]. Hence, (t̂, ẑ) also satisfies the energy identity in (2.4.6) and, consequently, is a
parametrized solution.

Note that we need to have an additional regularity for ẑ, namely W 1,1(0, S;Z) instead of
L∞(0, S;Z), in order to be able to apply the chain rule from Lemma A.2.5. This regularity
for example holds for the limit of the approximate parametrized solution in Chapter 3, see the
enhanced convergence in (3.2.65). Strictly speaking, it certainly suffices to verify (2.4.18) with
"≥" for the equivalence of energy identity and energy inequality to hold. Clearly, the result also
remains valid if (2.4.18) holds true with 〈·, ·〉V∗,V instead of 〈·, ·〉Z∗,Z . In this case, the additional
regularity ẑ ∈ W 1,1(0, S;Z) is no longer necessary. This approach is usual, for example, if R is
bounded from above, i.e., R(·) ≤ C‖·‖V since then ∂R(0) is a bounded subset of V, see, e.g.,
[MRS16, Thm. 4.4], but has also been applied to some damage model, see [KRZ19, Lem. 2.16].
Nevertheless, the energy identity (2.4.6) itself can still be formulated without the extra regularity
of ẑ, which is why we chose this definition of parametrized solutions.

Remark 2.4.7. The reformulation in Lemma 2.4.5 in terms of a subdifferential inclusion allows
to identify three different regimes and ascribe them a physical meaning (see [MR15] and the
Figure 2.4.2 below):

• Sticking:
In this case, the potential forces are too small so that ẑ′(s) = 0 and t̂′(s) = 1 and the state
does not change.

• Rate-independent slip:
Here, it holds 0 < ‖ẑ′(s)‖V < 1 and 0 < t̂′(s) < 1 so that the state indeed changes, but in
such a manner that the dissipation is strong enough to compensate the driving forces.

• Viscous-jump:
In this case, we have ‖ẑ′(s)‖V = 1 and t̂′(s) = 0 which means that the system may switch
into a viscous behavior. Meanwhile, the physical time stands still (t̂′(s) = 0) so that this
viscous transition is seen as a jump.

To conclude this section, we take a further look at the Example 2.4.1 from the beginning of
this section.

Example 2.4.8. The considerations from above suggest that the solution z from Example 2.4.1
should be seen as a parametrized or, to be more precise, BV solution (see Section 2.5, Defini-
tion 2.5.3). In fact, we can specify the corresponding parametrized solution, namely by

ẑ(s) =


−2, s ∈ [0, 2],

s− 4, s ∈ (2, 10],

(s+ 2)/2, s ∈ (10, 16],

and t̂(s) =


s, s ∈ [0, 2],

2, s ∈ (2, 10],

(s− 6)/2, s ∈ (10, 16],
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and the factor

λ(s) =



0, s ∈ [0, 2],

2− s, s ∈ (2, 6],

s− 10, s ∈ (6, 10],

0, s ∈ (10, 16].

We note that during the viscous jump, we obtain the additional viscous dissipation λ(s)‖ẑ′(s)‖2

which is missing in Example 2.4.1.
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Figure 2.4.2: Left: Plot of the functions ẑ, t̂ and λ (from top to bottom) depending on the artificial
time s. The numbers indicate the different regimes Sticking Ê, Rate-independent slip Ë and Viscous
jump Ì. Right: Graph {(t̂(s), ẑ(s)) : s ∈ [0, S]} ⊂ [0, T ]× R of the parametrized solution (t̂, ẑ).

2.5 Further concepts in brief

There exist further notions of solutions for (RIS), for example CD, local, semi-energetic or BV
solutions (see, e.g., [MR15, pp.131, p.229]). However, we restrict our presentation here to the
concepts of local and BV solutions. We start with the former of them.

Definition 2.5.1. We call z : [0, T ]→ Z a local solution of (RIS) if

0 ∈ ∂R(0) +DzI(t, z) f.a.a. t ∈ [0, T ] and (2.5.1a)

I(t, z(t)) + DissR(z; [0, t]) ≤ I(0, z(0)) +

∫ t

0

∂tI(s, z(s)) ds ∀t ∈ [0, T ]. (2.5.1b)

The difference compared to the definition of energetic solutions is obviously the local stability
in (2.5.1a), which replaces its global counterpart (S), and the energy inequality (2.5.1b). In fact,
local solutions might exhibit a possible loss of energy, i.e., (2.5.1b) can be strict. In contrast, this
is not possible for energetic or parametrized solutions, see Lemma 2.4.6 and Step 5 in the proof of
Theorem 2.3.4. This concept of solutions is a very broad one, that means, it contains all the other
notions of solutions presented in this thesis. This is easy to see for the differential and energetic
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solutions but less so for parametrized solutions, since they are defined in the extended state space
[0, T ] × Z. Therefore, we define the following set of projections for a parametrized solution (t̂, ẑ)

with t̂(0) = 0 and t̂(S) = T as well as t̂′ ≥ 0 (see [MR15, p. 222], [Mie11, p. 89]):

P(t̂, ẑ) := {z : [0, T ]→ Z |∀t ∈ [0, T ]∃s ∈ [0, S] : (t, z(t)) = (t̂(s), ẑ(s))}. (2.5.2)

This set contains all functions z whose graph is a subset of the image of the curve (t̂, ẑ). In
particular, z is unique on parts where t̂ is strictly monotone, whereas at the plateaus of t̂, which
are exactly the viscous jump parts, the function z may take any of the states in between the
jump. Beyond this, for any given parametrized solution (t̂, ẑ), the corresponding projections fulfill
z ∈ BV (0, T ;V), since VarV(z, [0, T ]) ≤ VarV(ẑ, [0, S]) < ∞ by the Lipschitz continuity of ẑ.
Hence, we may define the continuity and jump set as

C(z) := {t ∈ [0, T ] : z(t−) = z(t) = z(t+)} and J(z) := [0, T ] \ C(z) (2.5.3)

where z(t−) = lims↗t z(s) and z(t+) = lims↘t z(s) is the left-hand and right-hand limit, respec-
tively. Now, as already mentioned, there holds the following proposition.

Proposition 2.5.2. Let (E1)-(E4) and (R1)-(R3) hold for I and R, respectively. If (t̂, ẑ) is a
parametrized solution in the sense of Definition 2.4.2, then every z ∈ P(t̂, ẑ) is a local solution.

Proof. Since z ∈ BV (0, T ;V) the jump set J(z) is countable and thus has measure zero. In order
to prove (2.5.1a) we define G := {s ∈ [0, S] : distV∗{−DzI(t̂(s), ẑ(s)), ∂R(0)} > 0}. From the
complementarity in (2.4.5b), we deduce that t̂′(s) = 0 holds almost everywhere in G and thus
t̂(G) has measure zero. Hence, the set [0, T ] \ t̂(G) is dense in [0, T ] and we can conclude from
the closedness of ∂R(0) and the regularity of I in (E1), particularly the continuity of DzI, that
0 ∈ ∂R(0) + DzI(t, z(t)) holds for every t ∈ [0, T ] where z is continuous, i.e., for every t ∈ C(z).
Since J(z) has measure zero, this already proves (2.5.1a). For the second condition (2.5.1b) we
observe that on account of Lemma 2.3.2 and the monotonicity of t̂ we have

∫ s
0
R(ẑ′(r)) dr =

DissR(ẑ; [0, s]) ≥ DissR(z, [0, t̂(s)]). The change of variable formula in Appendix A.2.10, moreover,
yields that

∫ s
0
∂tI(t̂(σ), ẑ(σ))t̂′(σ) dσ =

∫ t̂(s)
0

∂tI(r, z(r)) dr. Thus, by the nonnegativity of the
term ‖ẑ′(s)‖V distV∗{−DzI(t̂(r), ẑ(r)), ∂R(0)} in (2.4.6), we conclude that (2.5.1b) is also valid
which proves that z is, indeed, a local solution.

As indicated above, the energy inequality can be strict, which stems from an additional dis-
sipation during a jump. Hence, in order to further restrict the set of local solutions, we need to
specify this additional term. This, however, comes directly from the definition of parametrized
solutions. Indeed, let t ∈ J(z), which induces that there exists s(t)

1 < s
(t)
2 depending on t, such

that t̂−1({t}) = [s
(t)
1 , s

(t)
2 ]. Then we have for v(s) := ẑ(s

(t)
1 + s (s

(t)
2 − s

(t)
1 )) that

∫ s
(t)
2

s
(t)
1

R(ẑ′(s)) + ‖ẑ′(s)‖V distV∗{−DzI(t, ẑ(s)), ∂R(0)} ds

=

∫ 1

0

p(v̇(σ),−DzI(t, v(σ))) dσ,
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with the vanishing viscosity contact potential p(v, ξ) := R(v) + ‖v‖V distV∗{ξ, ∂R(0)} (see [MR15,
p. 224]), which we have already introduced in the context of parametrized solutions. Moreover,
exploiting (2.5.11) in combination with the chain rule in Lemma A.2.5 it is easy to obtain the lower
estimate∫ 1

0

p(v̇(σ),−DzI(t, v(σ))) dσ ≥ I(t, v(0))− I(t, v(1)) = I(t, ẑ(s
(t)
1 ))− I(t, ẑ(s

(t)
2 )),

see (2.5.12). Now, taking into account that t̂′(s) = 0 for almost all s ∈ [s
(t)
1 , s

(t)
2 ], the energy

identity (2.4.6) for parametrized solutions implies

I(t, ẑ(s
(t)
1 ))− I(t, ẑ(s

(t)
2 )) =

∫ s
(t)
2

s
(t)
1

R(ẑ′(s)) + ‖ẑ′(s)‖V distV∗{−DzI(t, ẑ(s)), ∂R(0)} ds (2.5.4)

and we observe that this dissipation is minimal compared to all possible transitions between ẑ(s(t)
1 )

and ẑ(s(t)
2 ). Therefore, we define

∆p(t, z1, z2) := inf

{∫ 1

0

p(v̇(s),−DzI(t, v(s)))ds : v ∈W 1,1(0, 1;Z),

v(0) = z1, v(1) = z2

}
,

(2.5.5)

which somehow describes an augmented "dissipative" distance between two points z1 and z2.
Indeed, the term ∆p(t, z1, z2) contains as well the dissipation due to R as the viscous effects that
may arise during the jumps and consequently fulfills ∆p(t, z1, z2) ≥ R(z2 − z1). Summing up this
augmented "dissipative" distance at every jump and adding it to the remaining dissipation, we
arrive at the following

Dissp(z; [0, t]) := DissR(z, [0, t]) + ∆p(t, z(0), z(0+)) + ∆p(t, z(t
−), z(t))

+
∑

s∈J(z)∩(0,t)

∆p(s, z(s
−), z(s)) + ∆p(s, z(s), z(s

+))

−R(z(0+)− z(0))−R(z(t)− z(t−))

−
∑

s∈J(z)∩(0,t)

R(z(s)− z(s−)) +R(z(s+)− z(s)).

(2.5.6)

Note that the subtraction ofR(z(s)−z(s−)) andR(z(s+)−z(s)) is necessary since these dissipative
parts already contribute to the terms ∆p(s, z(s

−), z(s)) and ∆p(s, z(s), z(s
+)), respectively. In

comparison with the local solutions, this augmented dissipation takes into account the missing
viscous dissipation during a jump. All in all, we are led to the following definition.

Definition 2.5.3. We call z ∈ BV (0, T ;V) ∩ L∞(0, T ;Z) a V-parameterizable balanced vis-
cosity (BV) solution if

∀t ∈ C(z) : z ∈ Sloc(t) (2.5.7)

and ∀t ∈ [0, T ] : I(t, z(t)) + Dissp(z; [0, t]) = I(0, z(0)) +

∫ t

0

∂tI(s, z(s)) ds, (2.5.8)



45 2. Solution concepts

where Dissp(z; [0, t]) is defined as in (2.5.6), and, moreover,

∀t ∈ J(z)∃vt ∈W 1,1(0, 1;Z) : vt(0) = z−, vt(1) = z+, ∃r ∈ [0, 1] : vt(r) = z(t)

and I(t, z+)− I(t, z−) = ∆p(t, z
−, z+),

(2.5.9)

∑
t∈J(z)

∫ 1

0

‖v′t(r)‖V dr <∞. (2.5.10)

Remark 2.5.4. Similar to the parametrized solutions, cf. Remark 2.4.3, one has to distinguish
between BV and V-parameterizable BV solutions and the reader is referred to [MRS16, Def.
3.10] for the definition of general BV solutions. Indeed, this distinction is heavily related to
the one for parametrized solutions. Loosely speaking, the additional conditions in (2.5.9) and
(2.5.10) are required since the sole dissipation ∆p does not necessarily contain information about
the term

∫ 1

0
‖v′t(r)‖V dr of the jump paths vt. This is for example the case if R(·) = ‖·‖X and

distV∗{−DzI(t, vt(s)), ∂R(0)} = 0 along the jump path, cf. Example 2.6.2. Hence, it is a priori
not clear if there even exist jump paths connecting z− and z+ and whether or not their V-length is
additionally summable. Beyond this, the notion of connectable BV solutions, which only requires
(2.5.9), has been introduced in [Mie11, Def. 4.21]. This concept merely requires z ∈ BV (0, T ;X )

and neglects condition (2.5.10). However, in order to show that a connectable BV solution can be
turned into a V-parametrized solution, the missing regularity z ∈ BV (0, T ;V) and the summability
from (2.5.10) thus become an additional assumption (cf. Proposition 4.24 and condition (44) in
[Mie11]), see also Proposition 2.5.5.

Note that from the sole definition of ∆p, there must not exist an optimal path that realizes the
infimum. This condition thus becomes a crucial ingredient in the Definition 2.5.3. Indeed, it allows
us to obtain the following equivalence of V-parameterizable BV and V-parametrized solutions. To
shorten the notation, we denote G := ∪t∈J(z) t̂

−1({t}) ⊂ [0, S].

Proposition 2.5.5 (Equivalence between parametrized and BV solutions). For I and R fulfilling
(E1)-(E4) and (R1)-(R3), respectively, it holds:

(i) If (t̂, ẑ) is a V-parametrized solution which satisfies ẑ ∈ W 1,1(a, b;Z) for every connected
component [a, b] ⊆ G, then every z ∈ P(t̂, ẑ) is a V-parametrizable BV solution in the sense
of Definition 2.5.3.

(ii) If conversely z ∈ BV (0, T ;V) ∩ L∞(0, T ;Z) is a V-parameterizable BV solution, then there
exists a V-parametrized solution (t̂, ẑ) such that z ∈ P(t̂, ẑ).

Sketch of Proof. First of all, we observe that by the Corollary A.3.9 and the Fenchel-Young in-
equality in (A.3.2), it holds for all v ∈ Z, ξ ∈ Z∗ that

p(v, ξ) = R(v) + ‖v‖V distV∗{ξ, ∂R(0)} = R‖v‖V(v) +R∗‖v‖V(ξ) ≥ 〈ξ, v〉Z∗,Z . (2.5.11)

For the first assertion (i) let (t̂, ẑ) be a parametrized solution that satisifies z ∈ W 1,1(a, b;Z) for
every connected component [a, b] of G. Condition (2.5.7) can be derived exactly as for Proposi-
tion 2.5.2. Moreover, z ∈ BV (0, T ;V) is an easy consequence of the fact that VarV(z, [0, T ]) ≤
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VarV(ẑ, [0, S]) < ∞ by the Lipschitz continuity of ẑ. Concerning the second condition (2.5.8) we
proceed as follows: By (2.5.11) and the chain rule (A.2.5) we have∫ 1

0

p(v′(σ),−DzI(t, v(σ))) dσ ≥
∫ 1

0

〈−DzI(t, v(σ)), v′(σ)〉Z∗,Z dσ

= I(t, z1)− I(t, z2)

(2.5.12)

for every v ∈ W 1,1(0, 1;Z) with v(0) = z1 and v(1) = z2. Thus, ∆p(t, z1, z2) ≥ I(t, z1) − I(t, z2)

holds true. Combining the energy identity (2.4.6) with (2.5.4), we see that this estimate holds
with equality for the transition defined by the parametrized solution. Thus, the infimum in (2.5.5)
is attained and coincides with the left-hand side in (2.5.4), which gives (2.5.9) and, due to ẑ ∈
W 1,∞(0, S;V), also (2.5.10). This, particularly, implies that

Dissp(z; [0, t]) =

∫ t̂(s)

0

R(ẑ′(σ)) + ‖ẑ′(σ)‖V distV∗{−DzI(t̂(s), ẑ(σ)), ∂R(0)} dσ,

where s ∈ [0, S] is chosen such that (t̂(s), ẑ(s)) = (t, z(t)), which exists by construction of z.
Therewith, condition (2.5.8) is now an easy consequence of (2.4.6).
Concerning the second assertion (ii), we refer the reader to [MRS16, Prop. 4.9], [Mie11, Prop.
4.24]. However, we want to remark that the proof is mainly based on the fact that (again) there
exists an optimal transition curve for the jump points, which can be concatenated to the part
where the BV solution is continuous. The resulting graph is then reparameterized by arc-length
such that we find a parametrized solution (t̂, ẑ) with z ∈ P(t̂, ẑ). More precisely, we define

s(t) := t+ VarV(z, [0, t]) +
∑

s∈J(z)∩[0,t]

{∫ 1

0

‖v′s(r)‖V dr − ‖z(s+)− z(s)‖V − ‖z(s)− z(s−)‖V
}
,

so that s : [0, T ] → [0, S] with S = s(T ) is strictly increasing (but not necessarily continuous).
Note that the sum in the above definition is clearly positive and, moreover, the jump set of s
coincides with the one of z, i.e., J(s) = J(z) =: {tn}n∈N. Let us denote In := (s(t−n ), s(t+n )). Since
s is increasing, we may apply [Leo17, Thm. 1.8] to obtain a left-inverse function t̂ : [0, S]→ [0, T ],
which is constant on I := ∪n∈NIn. In addition, it is easy to see that |In| ≥

∫ 1

0
‖v′tn(r)‖V dr. By

[AGS08, Lem. 1.1.4(b)], there exists an increasing absolutely continuous map rn : (0, 1)→ [0, Ln]

with Ln =
∫ 1

0
‖v′tn(r)‖V dr so that vtn = v̂tn ◦ rn for some Lipschitz continuous function v̂tn with

‖v̂′tn‖V = 1 almost everywhere in [0, Ln]. Therewith, we define

ẑ(r) :=

z(t̂(r)), if r ∈ [0, S] \ I,

v̂tn(σn(r)), if r ∈ In ⊂ I,

whereby σn : In → [0, Ln] is the unique affine and strictly increasing function mapping In to
[0, Ln]. By direct calculations, one verifies that t̂ and ẑ are Lipschitz continuous with 0 ≤ t̂′(s) and
t̂′(s) + ‖ẑ′(s)‖V ≤ 1. Since t̂ is constant on the jump set of z, we additionally find (2.4.5b). The
initial conditions as well as the regularity are now obvious and, finally, the energy identity (2.4.6)
is a consequence of (2.5.8)
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We remark that the results in the above Proposition 2.5.5 also hold true in the case of (general)
BV solutions and we refer the reader to [MRS16] for more details. Note that, here, the additional
regularity, i.e., z ∈ W 1,1(a, b;Z) for every connected component of G, is necessary since we do
not exclude the possibility of an unbounded dissipation as it is the case in [MRS16]. In fact,
the equivalence as given in Proposition 2.5.5 relies on a chain rule argument which is valid here
only if z provides a derivative in Z. In view of this, it is possible to modify the definition of
V-parameterizable BV solutions, i.e., Definition 2.5.3, if one can guarantee a chain rule for I to
hold in a different space (e.g. V instead of Z), cf. [KRZ19] particularly Remark 5.2 therein. The
existence of these various slightly different notions, which, in general, depend on the actual setting
of the rate-independent system, makes it difficult to bring all these into one single definition.
Nevertheless, due to the above result, one should regard the notions of V-parameterizable BV and
V-parametrized solutions as two naturally related concepts.

2.6 Relations between different concepts

As indicated in the previous section, there exist even further concepts of solutions for (RIS), for
example local, semi energetic or approximable solutions, see [MR15] and the references therein.
Nevertheless, we will focus on those concepts presented in Sections 2.2–2.4. In this last part of
the chapter, we want to highlight the connections between these different notions of solutions. An
overview hereof is given at the end of this section. We start with the simple case of a uniformly
convex energy, see Definition 1.0.2. In this case, all notions provide the same solution.

Lemma 2.6.1. Let I and R satisfy assumptions (E1)-(E4) and (R1)-(R3), respectively. More-
over, let I(t, ·) ∈ C2,1

loc (Z;R) (see Definition 1.0.3) be κ-uniformly convex, satisfy the Lipschitz
condition in (2.2.2) and either of the two conditions (2.2.3a) or (2.2.3b). Then there exists a
unique differential solution z and, denoting by (t̂, ẑ) a parametrized solution, the following holds
true:

i) Differential and energetic solution coincide.

ii) Every z ∈ P(t̂, ẑ) is a differential solution and, conversely, the arc-length parametrization of
z is a parametrized solution.

Proof. First of all, the existence and uniqueness of a differential solution is provided by Theo-
rem 2.2.2. In addition, the fact that, under the given assumptions, every energetic solution is
also a differential one, is proven exactly as in the Steps 2 and 3 of the proof to Theorem 2.2.2.
For the opposite inclusion, we note that due to Lemma 2.1.2 the global and local stability sets
coincide, which gives condition (S), see also Remark 2.2.4. Moreover, by exploiting the chain rule
from Lemma A.2.5 we deduce from the characterization R(z′(t)) = 〈−DzI(t, z(t)), z′(t)〉Z∗,Z in
(2.2.10a) that

I(t, z(t)) +

∫ t

0

R(z′(s)) ds = I(0, z0) +

∫ t

0

∂tI(s, z(s)) ds.

Thus, by Lemma 2.3.2, we ultimately have that z is also an energetic solution. Regarding (ii), we
combine Lemma 2.6.4 and (i) to obtain that every z ∈ P(t̂, ẑ) is a differential solution. For the
opposite direction, we refer to Lemma 2.6.6.
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We proceed with investigating an energy functional which is merely convex. In this case, it is
no longer guaranteed that there exists a differential solution. Even further, the existence of such
a solution does not imply that it is unique, as the following Example shows.

Example 2.6.2 (Existence of two differential solutions). We set Z = X = R as well as

I : R× R→ R, I(t, z) = E(z)− `(t) z with E(z) =


1
2 (z − 1)2, z ≥ 1,

0, |z| < 1,

1
2 (z + 1)2, z ≤ −1.

Furthermore, we take z0 = −2 and

`(t) =


t, t ∈ [0, 1],

1, t ∈ (1, 2),

t− 1, t ∈ [2, 3].

For this problem, one can easily verify by direct calculations, that

z1(t) =


t− 2, t ∈ [0, 1],

2t− 3, t ∈ (1, 2],

t− 1, t ∈ (2, 3],

and z2(t) =



t− 2, t ∈ [0, 1],

4t− 5, t ∈ (1, 3
2 ],

1, t ∈ ( 3
2 , 2],

t− 1, t ∈ (2, 3],

are two distinct differential solutions.

Nevertheless, for convex energies, we still obtain from each differential solution an energetic one.
This is proven exactly as in Lemma 2.6.1. The same also holds for parametrized solutions, that is,
every differential solution provides a parametrized one, see Lemma 2.6.6. The opposite direction,
however, does not have to hold. In fact, even though we will show in the proof of Lemma 2.6.4 that
distV∗{−DzI(t̂(s), ẑ(s)), ∂R(0)} in (2.4.8b) vanishes for convex energies, this does not guarantee
that the solution has no jumps, as can be seen in the following example.

Example 2.6.3 (Convex energies can have jumping solutions). We take up again the setting from
Example 2.6.2. Additionally to the two differential solutions given there, we find the energetic
solution

z3(t) =


t− 2, t ∈ [0, 1),

1, t ∈ [1, 2),

t− 1, t ∈ [2, 3],

which performs a jump at time t = 1 from z(1−) = −1 to z(1+) = 1. In particular, it does not
suffice to require I to be merely convex in order to obtain exclusively continuous solutions.

For convex energies, however, parametrized solutions can still be transformed into energetic
solutions by the same projection that is used to derive BV solutions, see (2.5.2).
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Lemma 2.6.4. Let I and R comply with (E1)-(E4) and (R1)-(R3), respectively. Moreover, let
I(t, ·) be convex for all t ∈ [0, T ] and let (t̂, ẑ) be a parametrized solution to (RIS) with ẑ ∈
W 1,1(0, S;Z). Then every z ∈ P(t̂, ẑ) is an energetic solution.

Proof. Let (t̂, ẑ) be a parametrized solution with ẑ ∈ W 1,1(0, S;Z). W.l.o.g. we may assume
that (t̂, ẑ) is nondegenerate (otherwise we rescale (t̂, ẑ) according to Lemma A.4.3 and obtain a
normalized solution (t̃, z̃), whose projection remains unaltered, i.e., z ∈ P(t̃, z̃) = P(t̂, ẑ)). More-
over, for the sake of brevity, we define m(s) := distV∗{−DzI(t̂(s), ẑ(s)), ∂R(0)}. Now, due to
the embedding W 1,1(0, S;Z) ↪→ C(0, S;Z), the function ẑ is continuous and therewith, by the
continuity of DzI(·, ·), also DzI(t̂(·), ẑ(·)). The closedness of ∂R(0) thus implies that the set
S := {s ∈ [0, S] : −DzI(t̂(s), ẑ(s)) ∈ ∂R(0)} is closed and consequently T := [0, S]\S is relatively
open. Now let G be any connected component of T . By the complementarity in (2.4.5b) there
must hold t̂′(s) = 0 almost everywhere in G. Given any s̃ ∈ G, we set t := t̂(s̃) and take

s1 := inf{s ∈ [0, S] : t̂(s) = t} as well as s2 := sup{s ∈ [0, S] : t̂(s) = t}.

We then have s1 < s2 and it holds t̂(s) ≡ t for all s ∈ [s1, s2] as well as −DzI(t̂(s1), ẑ(s1)) ∈ ∂R(0).
Indeed, it must hold s1 ∈ S since otherwise s1 ∈ T and as T is relatively open, there exists s < s1

with s ∈ G ⊂ T . Thus, t̂(s) = t again due to the complementarity (2.4.5b), which holds on G, and
consequently s1 cannot be infimal. After these preparatory steps, we start with Jensen’s inequality,
cf. (A.3.3), to obtain

R(ẑ(s2)− ẑ(s1)) = R
(∫ s2

s1

ẑ′(r) dr
)
≤
∫ s2

s1

R(ẑ′(r)) dr. (2.6.1)

Exploiting the energy identity (2.4.6) and taking into account that t̂′(s) = 0 almost everywhere in
[s1, s2], we further estimate∫ s2

s1

R(ẑ′(r)) dr = I(t̂(s1), ẑ(s1))− I(t̂(s2), ẑ(s2))−
∫ s2

s1

‖ẑ′(r)‖Vm(r) dr

≤ I(t̂(s1), ẑ(s1))− I(t̂(s2), ẑ(s2)),

(2.6.2)

where we also used the nonnegativity of m. Since, by construction, t̂(s1) = t̂(s2) = t, the convexity
of I(t, ·) yields

I(t̂(s1), ẑ(s1))− I(t̂(s2), ẑ(s2)) = I(t, ẑ(s1))− I(t, ẑ(s2))

≤ 〈−DzI(t, ẑ(s1)), ẑ(s2)− ẑ(s1)〉Z∗,Z .
(2.6.3)

As indicated above, we have ∂R(0) 3 −DzI(t̂(s1), ẑ(s1)) = −DzI(t, ẑ(s1)). Thus, following the
inequalities (2.6.1), (2.6.2) and (2.6.3) and exploiting the characterization of ∂R(0) from (2.1.6)
with v = ẑ(s2)− ẑ(s1), we find

R(ẑ(s2)− ẑ(s1)) ≤ I(t̂(s1), ẑ(s1))− I(t̂(s2), ẑ(s2))−
∫ s2

s1

‖ẑ′(r)‖Vm(r) dr

≤ 〈−DzI(t, ẑ(s1)), ẑ(s2)− ẑ(s1)〉Z∗,Z ≤ R(ẑ(s2)− ẑ(s1)).
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Hence, all these inequalities hold in fact with equality which implies that ‖ẑ′(s)‖m(s) = 0 almost
everywhere in [s1, s2]. Exploiting the nondegeneracy of (t̂, ẑ), we conclude that already m(s) = 0

for almost all s ∈ [s1, s2]. Again by the continuity of −DzI(t̂(s), ẑ(s)) and the closedness of ∂R(0),
we find m(s) = 0 everywhere in [s1, s2] and, since G was chosen arbitrary in T , also in [0, S].
Therefore

−DzI(t̂(s), ẑ(s)) ∈ ∂R(0) ∀s ∈ [0, S],

which means that ẑ(s) ∈ Sloc(t̂(s)). Thus, exploiting Lemma 2.1.2 we get z(t) ∈ Sglob(t) for all
t ∈ [0, T ]. It remains to show that the energy identity (E) holds. More precisely, it suffices to show
the lower energy estimate, that is, "≤" in (E), since the opposite inequality is proven by adapting
the arguments from Step 5 in the proof of Theorem 2.3.4. To proceed, we note that given t ∈ [0, T ]

there exists st ∈ [0, S], depending on t, with t̂(st) = t by the construction of z. Consequently,
Lemma 2.3.2 applied to ẑ leads to

DissR(z; [0, t]) ≤ DissR(ẑ; [0, st]) =

∫ st

0

R(ẑ′(r)) dr. (2.6.4)

Therewith, we obtain from the energy identity for parametrized solutions (2.4.6):

I(t, z(t)) + DissR(z, [0, t])

≤ I(t̂(st), ẑ(st)) +

∫ st

0

R(ẑ′(r)) dr

≤ I(t̂(st), ẑ(st)) +

∫ st

0

R(ẑ′(r)) + ‖ẑ′(r)‖V distV∗{−DzI(t̂(r), ẑ(r)), ∂R(0)} dr

= I(0, z0) +

∫ st

0

∂tI(t̂(r), ẑ(r))t̂′(r) dr

= I(0, z0) +

∫ t

0

∂tI(r, z(r)) dr,

where we used the change of variable formula from Appendix A.2.8 in the last line. Overall this
proves that z ∈ P(t̂, ẑ) is an energetic solution.

Remark 2.6.5. The additional regularity ẑ ∈ W 1,1(0, S;Z) in the previous lemma, is in fact only
necessary in order to obtain that the set S is closed. Hence, we may preserve the statement of
Lemma 2.6.4 if one of the following two conditions is fulfilled (see also (2.2.3a) and (2.2.3b)):

(i) R is weakly continuous on Z

(ii) DzI(·, ·) is (strong,weak)-weak continuous from Z to Z∗, i.e. ∀ tk → t, zk ⇀ z in Z :

DzI(tk, zk) ⇀ DzI(t, z) in Z∗.

Indeed, in the first case, we apply Lemma 2.1.2 and adapt the argumentation in Step 1 of The-
orem 2.2.2. For the second case, we combine the weak continuity from (2.4.7) and the weak
closedness of ∂R(0).

The problem with the transformation of an energetic solution z into a parametrized one is the
missing regularity. Indeed, if z could be shown to be more regular, e.g., if z is an element of



51 2. Solution concepts

BV (0, T ;V), then we would also obtain the opposite direction in Lemma 2.6.4. The idea here is
to "fill up" the jumps of z using affine interpolation and to parameterize the obtained function by
arc-length. Nevertheless, for convex energies, it holds that every differential solution also leads to a
parametrized one, as it is seen by the subsequent Lemma 2.6.6. Moreover, parametrized solutions
are a subset of the energetic solutions in the sense of Lemma 2.6.4, that is, after projecting them
onto the physical time. Note that all dependencies are also visualized at the end of this section.

Now, let us turn to the general nonconvex case. Here, the existence of a differential solution is
no longer guaranteed. However, if it does exist, then it also gives rise to a parametrized solution.

Lemma 2.6.6. Let R comply with (R1)-(R3) and I be as in (E1)-(E4), but not necessarily convex.
If there exists a differential solution z ∈W 1,1(0, T ;Z) to (RIS), then its arc-length parametrization
(t̂, ẑ) is a parametrized solution.

Proof. We define s(t) := t +
∫ t

0
‖z′(r)‖V dr and S = s(T ). Then s : [0, T ] → [0, S] is strictly

monotone and Lipschitz continuous and therefore provides an inverse function which we denote by
t̂ : [0, S]→ [0, T ]. In particular t̂ is again Lipschitz continuous, since |s(t2)− s(t1)| ≥ |t2 − t1|. For
ẑ(s) := z(t̂(s)), we have that ẑ′(s) = z′(t̂(s)) t̂′(s) almost everywhere and consequently, since z is
a differential solution,

∂R(ẑ′(s)) +DzI(t̂(s), ẑ(s)) = ∂R(z′(t̂(s))) +DzI(t̂(s), z(t̂(s))) 3 0. (2.6.5)

Here we used the 0-homogeneity of ∂R(·) and the fact that t̂′(s) > 0. By the construction
we have t̂′(s) + ‖ẑ′(s)‖V = 1 almost everywhere in [0, S], which gives the regularity (t̂, ẑ) ∈
W 1,∞(0, S;R) ×W 1,∞(0, S;V). The additional property ẑ ∈ L∞(0, S;Z) follows easily from the
embedding W 1,1(0, T ;Z) ↪→ L∞(0, T ;Z). Using the characterization in (2.1.7), we obtain from
(2.6.5) that R(ẑ′(s)) = 〈−DzI(t̂(s), ẑ(s)), ẑ′(s)〉Z∗,Z almost everywhere, so that an application
of the chain rule from Lemma A.2.5 and integration in time gives the energy identity (2.4.6) for
parametrized solutions with distV∗{−DzI(t̂(s), ẑ(s)), ∂R(0)} = 0 (cf. the argumentation in the
context of (2.1.12b)). Overall, we see that (t̂, ẑ) is indeed a parametrized solution.

In contrast, this does, in general, not hold for the concept of energetic solutions, as can be seen
in the subsequent Example. Moreover, parametrized and energetic solutions should be regarded as
two opposite solution concepts for rate-independent systems. Indeed, the global character of the
energetic solution via the global stability property induces that these solutions jump as soon as
possible, ignoring the local behavior of the energy landscape, cf. Example 2.3.5. In contrast, the
concept of parametrized solution coming from the analysis of vanishing viscosity produces solutions
that try to delay jumps. This is due to the local character of this concept and reflects itself in the
additional viscosity term λVẑ′.

Example 2.6.7 (Differential and energetic solutions differ, cf. [MR15, Ex. 1.8.2]).
Here we use the same setting as in Example 2.4.1, that is, Z = X = R and

I : R× R→ R, I(t, z) = E(z)− `(t) z with E(z) =


1
2 (z + 4)2, z ≤ −2,

4− 1
2z

2, |z| < 2,

1
2 (z − 4)2, z ≥ 2,
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but take z0 = −5 and `(t) = min(t, 4− t). Then there exists both a differential solution z1 and an
energetic solution z2, namely

z1(t) =

t− 5, , t ∈ [0, 2],

−3, t ∈ (2, 4],
and z2(t) =


t− 5, t ∈ [0, 1],

t+ 3, t ∈ (1, 2],

5, t ∈ (2, 4],

which obviously do not coincide on the considered time horizon. In particular, the energetic
solution cannot be brought into a differential one, since the state z(t) = t− 5 is not locally stable
for t ∈ (1, 2]. We also refer to [Ste09, Sec. 3] for another example showing that the global and
local stability set do not have to coincide. This naturally implies that differential solutions are not
necessarily energetic ones and vice versa.

We close this chapter with Figure 2.6.1, which illustrates the connections between the different
solution concepts. Loosely speaking, we have the three cases:

• I(t, ·) uniformly convex: differential sol. = parametrized sol. = energetic sol.

• I(t, ·) convex: differential sol. ⊂ parametrized sol. ⊂ energetic sol.

• I(t, ·) nonconvex: differential sol. ⊂ parametrized sol. 6= energetic sol.

In general, it is possible to obtain the opposite inclusion in the above listing if the solutions provide
the necessary regularity. So, for example if a parametrized solution (t̂, ẑ) fulfills t̂′(s) ≥ δ > 0 then
there exists an inverse function t̂−1 and the corresponding transformed function ẑ ◦ t̂−1 =: z̃ is a
differential solution. A similar result also holds for energetic solutions, provided they have at least
the regularity W 1,1(0, T ;Z) (see proof of Lemma 2.6.1).

Local
Solutions

Parametrized
Solutions

Differential
Solutions

Energetic
Solutions

BV
Solutions

Figure 2.6.1: Overview of different solution concepts. Note that the parametrized solutions stand
outside of the other notions of solutions, since they are defined on an artificial time. However, as
shown in the previous section, their projections as defined in (2.5.2) are directly related to all the
other concepts.



Chapter 3

Local minimization scheme for
parametrized solutions

Subsequent to this introduction into the various different types of solutions, or at least the ones most
commonly used, we now consider their approximability by discretization. For the class of global
energetic solutions, there exists multiple papers on this topic. We only refer to [MR15, MR09]
and the references therein. In contrast, less is known for parametrized solutions to the best of
the author’s knowledge. In [EM06], the authors introduced the following time-incremental local
minimization scheme in order to approximate parametrized solutions:

zk ∈ arg min{I(tk−1, z) +R(z − zk−1) : z ∈ Z, ‖z − zk−1‖V ≤ τ}, (3.0.1a)

tk = min{tk−1 + τ − ‖zk − zk−1‖V, T}. (3.0.1b)

The motivating background for this scheme is best explained by a comparison with the scheme
(2.3.4) introduced in Section 2.3 for the approximation of global energetic solutions:

zk ∈ arg min{I(tk−1, z) +R(z − zk−1) : z ∈ Z}, (3.0.2a)

tk = tk−1 + τ. (3.0.2b)

Thanks to the positive homogeneity of R, the stationarity condition of (3.0.2a) is given by

0 ∈ ∂R
(
zk − zk−1

τ

)
+DzI(tk−1, zk), (3.0.3)

which, in view of (RIS), motivates the scheme in (3.0.2). However, in general, the global minimiza-
tion in (3.0.2a) may induce unphysical discontinuities. Consider for instance a situation, where the
energy difference between a local minimum of I(tk−1, ·) in the vicinity of zk−1 to a global minimum
of I(tk−1, ·) is so large that it cannot be compensated by the dissipation. Then the iteration will
jump to a global minimizer which is certainly not physically meaningful in many applications, cf.
Example 2.3.5. This motivates the additional inequality constraint in (3.0.1a) which enforces the
search for local minimizers in the neighborhood of the old iterate. If, however, there is no such

53
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local minimizer so that the inequality constraint in (3.0.1a) is active (i.e., fulfilled with equality),
then the stationarity condition in (3.0.3) will (in general) not be fulfilled. In this case, one there-
fore interrupts the evolution of the physical time (see the update in (3.0.1b)) until the state z
fulfills the stationarity condition (3.0.3) again. This may be seen as a discrete analogon to the
viscous jump described in Remark 2.4.7. As indicated above, the literature on the approximation
of parametrized solutions is rather scarce. In the aforementioned work [EM06], a convergence
theory for the local minimzation scheme (3.0.1) is developed for the finite dimensional case, where
dim(Z) < ∞. The authors prove that, for τ ↘ 0, subsequences of discrete solutions (weakly)
converge to a parametrized solution. However, it is not shown that the sequence {tk}, generated
by (3.0.1b), reaches the desired final time in a finite number of iterations. The same holds for a
variant of (3.0.1), which is investigated in [Neg14]. Another modification of (3.0.1), which does not
account for the adaptive time discretization in (3.0.1b), is considered in [MS17]. For this variant,
the authors show that the final time is reached after a finite number of iterations. Recently, the
original scheme in (3.0.1) was investigated in [Kne19] for a certain class of infinite dimensional
problems (i.e., dim(Z) =∞), providing a comprehensive convergence analysis. In particular, it is
shown that the final time is reached in a finite number of steps and that subsequences of iterates
(weakly) converge to a parametrized solution.

The following chapter is concerned with the analysis of the minimization scheme in (3.0.1) and
relies on the papers [MS19a] and [MS20]. To be precise, we consider a scheme which is based on
(3.0.1) but requires only stationary points instead of global minima, see LISS below. In addition,
we treat a full discretization in time and space in Section 3.2. Here, the recent work [Kne19] serves
as a starting point and we include the additional errors induced by the discretization of the infinite
dimensional state space Z into the convergence analysis. Moreover, we relax the assumption on
the boundedness of the dissipation and thus allow for more general settings, e.g., damage models
(see Section 3.2.5). In the subsequent Section 3.3, we focus on a priori error estimates for (3.0.1)
without the additional space discretization. The actual numerical realization of the scheme, as well
as numerical results, are presented in Chapter 4.

3.1 General assumptions

Before we actually start with the convergence analysis of the local minimization scheme, we need
to slightly strenghten the assumptions on the energy from the Introduction. We furthermore set
the requirements on the spatial discretization. A prototypical example fulfilling all assumptions is
given in Section 3.2.5 below. Concerning the underlying spaces, we take the same setting as in the
Introduction, that is, X is a Banach space and Z,V are Hilbert spaces such that Z

c,d
↪→ V ↪→ X .

Energy. The energy functional I is supposed to have the following form:

I : [0, T ]×Z → R, I(t, z) =
1

2
〈Az, z〉Z∗,Z + F(z)− f(t, z) . (I0)

Herein, A ∈ L(Z,Z∗) is a self-adjoint and coercive operator, i.e., there is a constant α > 0 such
that 〈Az, z〉Z∗,Z ≥ α‖z‖2Z . The bilinear form a : Z × Z → R induced by a(y, z) = 〈Ay, z〉Z∗,Z ,
y, z ∈ Z, is thus bounded and coercive, too. Moreover, we assume that the time-dependent part
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f : [0, T ]×Z → R fulfills for some cf , µ > 0:

f ∈ C1([0, T ]×Z;R)

with f(t, z) ≤ cf (‖z‖Z + 1) and |∂tf(t, z)| ≤ µ(‖z‖Z + 1)
(If1)

for all t ∈ [0, T ] and z ∈ Z. For the derivative with respect to z we assume that there exists an
intermediate space Z ⊂ W ⊂ V with Z ↪→c W, such that

|〈Dzf(t1, z1)−Dzf(t2, z2), v〉V∗,V | ≤ ν(|t1 − t2|+ ‖z1 − z2‖W)‖v‖V . (If2)

Finally, for the time-dependent part of the energy, we suppose that

f(0, ·) is weakly continuous and

for all sequences tk → t and zk ⇀ z in Z it holds: ∂tf(tk, zk)→ ∂tf(t, z).
(If3)

Writing f(t, zk) = f(0, zk) +
∫ t

0
∂tf(s, zk) ds and exploiting both properties from (If3) above, we

conclude by Lebesgue’s dominated convergence Theorem that, in fact, f(t, ·) is weakly continuous
for all t ∈ [0, T ].

Remark 3.1.1. The assumptions on the external force are for example fulfilled if f(t, z) has a linear
structure, i.e., f(t, z) = 〈`(t), z〉V∗,V for some ` ∈ C1(0, T ;V∗). A more sophisticated example is
given in Section 3.2.5

Remark 3.1.2. As described in the Introduction, a rate-independent system is solely driven by
an external load. In our setting, this load is contained in the time-dependent part f(t, z), i.e.,
f(t, z) = f̃(`(t), z) for some f̃ : V × Z → R. However, in order to keep the notation short, we do
not use this explicit dependence (see also the damage example in Section 3.2.5 below).

Regarding the nonlinearity F : Z → R we require

F ∈ C2(Z;R) with F ≥ 0,

as well as DzF ∈ C1(Z,V∗), ‖D2
zF(z)v‖V∗ ≤ C(1 + ‖z‖qZ)‖v‖Z

(IF1)

for some q ≥ 1 so that, for every z ∈ Z, DzF(z) can uniquely be extended to a bounded and linear
functional on V, which we denote by the same symbol for convenience. In particular, this implies
that I ∈ C1([0, T ] × Z;R). Moreover, DzF : Z → Z∗ is supposed to be weak-weak continuous,
i.e.,

for all sequences zk ⇀ z in Z it holds: DzF(zk) ⇀ DzF(z). (IF2)

Again, this property together with the fact that DzF ∈ C1(Z,V∗) and the compact embedding
V ↪→ Z yields that F is also weakly continuous from Z to R. Hence, I(t, ·) is weakly lower-
semicontinuous. Furthermore, the weak continuity of DzF and (If2) in combination with the
compact embedding Z ↪→c W implies that DzI(·, ·) is (strong,weak)-weak continuous from Z to
Z∗, i.e.,

for all sequences tk → t and zk ⇀ z in Z it holds: DzI(tk, zk) ⇀ DzI(t, z) in Z∗, (3.1.1)
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see also Remark 2.6.5. The above assumptions on the involved functionals allow us to obtain the
following estimates on the energy. By setting c0 := (cf + 1)2/(4α) + cf we obtain the estimate

I(t, z) ≥ α‖z‖2Z − cf (‖z‖Z + 1) ≥ ‖z‖Z − c0 ∀ t ∈ [0, T ], z ∈ Z , (3.1.2)

which in turn implies that

|∂tI(t, z)| ≤ µ(‖z‖Z + 1) ≤ µ(I(t, z) + β) f.a.a. t ∈ [0, T ], z ∈ Z ,

with β := c0 + 1. Gronwall’s lemma thus gives for all t, s ∈ [0, T ], z ∈ Z that

I(t, z) + β ≤ (I(s, z) + β) exp(µ|t− s|) (3.1.3)

and |∂tI(t, z)| ≤ µ(I(s, z) + β) exp(µ|t− s|), (3.1.4)

Remark 3.1.3. Note that (I0), (If1) and (IF1) as well as the weak continuity of F and f(t, ·) imply
(E1) and (E2). Moreover, assumption (If3) directly yields (E4) and finally, (E3) is guaranteed
by the estimate in (If1). Thus, the energy I in (I0) perfectly fits into the setting from the
Introduction.

Dissipation. For the dissipation R, we basically take the same assumptions as in the intro-
duction, i.e., (R1)-(R3). We merely strengthen the continuity of R in the following sense:

R is continuous on dom(R). (R0)

Hence, we have that R : Z → [0,∞] is lower semicontinuous (l.s.c.), convex, and positively
homogeneous of degree one and additionally continuous on its domain.

Remark 3.1.4. Note that from now on, we consider R as mapping from Z into R. In fact, we will
subsequently always evaluate R at a point in Z. Thus, the space X is not used in the convergence
analysis.

Initial state. The initial value z0 is supposed to satisfy z0 ∈ Z and Az0 ∈ V∗, which implies
some additional regularity for z0.

Spatial discretization. For the (spatial) discretization let Zh ⊂ Z be a finite dimensional
subspace, where h > 0 indicates the fineness of the approximation, and denote by Πh : V → Zh
the associated orthogonal projection w.r.t. the V-norm. Then we assume that Πh is stable w.r.t.
the Z-norm, i.e.,

‖Πh(z)‖Z ≤ C‖z‖Z ∀z ∈ Z (3.1.5)

with a constant C > 0 independent of h. Note that this already implies the best approximation
property of the orthogonal projection, i.e.,

‖z −Πh(z)‖Z ≤ inf
zh∈Zh

(1 + C)‖z − zh‖Z . (3.1.6)

The stability assumption in (3.1.5) is fulfilled in prominent cases such as finite element discretiza-
tions based on shape-regular triangulations, as we will see in Section 4.1.1 below. In the following,
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we will frequently consider Πh as an operator in V and Z, respectively, denoted for simplicity by
the same symbol.

We further introduce the Ritz-projection Ph : Z → Zh as unique solution of

Ph(u) ∈ Zh , a(Ph(u), v) = a(u, v) ∀v ∈ Zh ,

where a is the bilinear form induced by A. For the inital value of the algorithm, we set zτ,h0 :=

Ph(z0) ∈ Zh.
Furthermore, it is assumed that, for all v ∈ V and all z ∈ Z, respectively, it holds

Πh(v)→ v in V and Ph(z)→ z in Z (3.1.7)

as h↘ 0. Note that the stability property in (3.1.6) then automatically yields for all z ∈ Z that

Πh(z)→ z in Z. (3.1.8)

Lastly, we allow that the dissipation functional R is not evaluated exactly for the discrete
iterate zτ,hk , but merely approximated by a functional Rh : Zh → [0,∞] satisfying the following
conditions:

(a) Analogously to R, its approximation Rh is convex, lower semicontinuous and positively
homogeneous.

(b) Furthermore, for every vh ∈ Zh, it holds R(vh) ≤ Rh(vh). This particularly implies that
Rh ≥ 0 as well.

(c) There is a dense subset U ⊂ dom(R) such that, for every v ∈ U , there holdsRh(Πhv)→ R(v)

as h↘ 0.

Note that the choice Rh = R (i.e., no additional approximation of R) fulfills all these assumptions.
Another example that complies with all the assumptions (a)-(c) but satisfies Rh 6= R is given in
Section 4.1.1 below.

3.2 Convergence analysis

The ultimate goal of this section is to prove that the subsequent algorithm, which is based on the
local incremental minimization scheme (3.0.1), provides an approximation scheme for parametrized
solutions. The difference compared to (3.0.1) is that we search for stationary points of the con-
strained problem (alg1) rather than global minima. Beyond that, we consider a full discretization in
space and time. Thus, for a given time-discretization parameter τ > 0, the fully discrete algorithm
reads as follows:

Fully discrete local incremental stationarity scheme (LISS).

1: Set zτ,h0 = Ph(z0), t0 = 0, and k = 1

2: while tτ,hk < T do
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3: Compute a stationary point zτ,hk , i.e.,

0 ∈ ∂Zh(Rh + Iτ )(zk − zk−1) +DzI(tk−1, zk) (alg1)

with the indicator function Iτ (see (3.2.2)), which, additionally, satisfies

I(tτ,hk−1, z
τ,h
k ) +Rh(zτ,hk − zτ,hk−1) ≤ I(tτ,hk−1, z

τ,h
k−1). (alg2)

4: Time update:
tτ,hk = tτ,hk−1 + τ − ‖zτ,hk − zτ,hk−1‖V. (alg3)

5: Set k → k + 1.
6: end while

Note that merely for technical reasons, we do not use the "min" from (3.0.1b) in the time-
update. The proposed method is closely related to (3.0.1), since a local minimizer of

min{I(tτ,hk−1, z) +Rh(z − zτ,hk−1) : z ∈ Zh, ‖z − zτ,hk−1‖V ≤ τ} (3.2.1)

necessarily satisfies (alg1) as we will see in the subsequent Lemma 3.2.1. Moreover, thanks to the
assumptions on I and Rh, in particular weak lower semicontinuity, the existence of a global mini-
mum of (3.2.1) and therefore also the existence of a stationary point fulfilling (alg2) is guaranteed
by the direct method in the calculus of variations.

Lemma 3.2.1. If zτ,hk is a local minimizer of (3.2.1), then (alg1) is satisfied. If zτ,hk is even a
global minimizer, then (alg1) and (alg2) hold true.

Proof. For the ease of readability, we suppress the superscript τ, h throughout the proof. We
moreover define Iτ : V → [0,∞] as the indicator functional associated with the constraints in
(3.2.1), i.e.,

Iτ (v) :=

0, if 〈Vv, v〉 ≤ τ2,

+∞, else.
(3.2.2)

Now, let zk be a local minimum of (3.2.1). Then it holds

I(tk−1, zk) +Rh(zk − zk−1) + Iτ (zk − zk−1)

≤ I(tk−1, z) +Rh(z − zk−1) + Iτ (z − zk−1) ∀z ∈ Zh.

For arbitrary w ∈ Zh and t ∈ (0, 1] we test this inequality with z = zk + t(w− zk). In combination
with the convexity of Iτ and Rh and after rearranging terms, we thus obtain

(1− t)Rh(zk − zk−1) + tRh(w − zk−1) + (1− t)Iτ (zk − zk−1) + t Iτ (w − zk−1)

≥ I(tk−1, zk)− I(tk−1, zk + t(w − zk)) +Rh(zk − zk−1) + Iτ (zk − zk−1) ∀w ∈ Zh.
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Another rearrangement of terms and division by t yields

Rh(w − zk−1) + Iτ (w − zk−1)

≥ I(tk−1, zk)− I(tk−1, zk + t(w − zk))

t
+Rh(zk − zk−1) + Iτ (zk − zk−1).

Substituting herein w = v + zk−1 and passing to the limit t↘ 0 we eventually end up with

Rh(v) + Iτ (v)

≥ Rh(zk − zk−1) + Iτ (zk − zk−1) + 〈−DzI(tk−1, zk), v − (zk − zk−1)〉Z∗,Z ∀v ∈ Zh,

which is equivalent to saying

−DzI(tk−1, zk) ∈ ∂Zh(Rh + Iτ )(zk − zk−1).

The fact that a global minimizer satisfies (alg2) is obvious.

The reason for investigating LISS instead of (3.0.1), is the fact that a numerical algorithm
for solving (3.0.1a) or rather (3.2.1) naturally provides a stationary point zτ,hk that satisfies
I(tτ,hk−1, z

τ,h
k ) + Rh(zτ,hk − zτ,hk−1) ≤ I(tτ,hk−1, z

τ,h
k−1) but, in case of a nonconvex energy, is not guar-

anteed to be a global optimum of (3.0.1a) and (3.2.1), respectively. Moreover, the concept of
parametrized solutions is based on a local stability condition. It is thus consistent to look for
locally stable points, which are exactly the stationary points of (3.0.1a). Despite its necessity for
the convergence analysis, the inequality in (alg2) is also physically meaningful since it enforces the
system to look for energetically preferable states, i.e., states with a lower energy cost. Concerning
the exploration of this algorithm, particularly with a view to convergence, we proceed as follows:
We start with characterizing properties of the stationary points. Afterwards, we turn to the essen-
tial a priori estimates that will allow a passage to the limit in the discrete version of the energy
identity in (2.4.6), which is deduced in Section 3.2.3. The limit procedure itself is elaborated in
the final Section 3.2.4.

3.2.1 Approximate discrete parametrized solution

The foundation for both, the a priori estimates and the discrete version of the energy identity, is
given by the following Lemma 3.2.2. It provides various properties of a stationary point zτ,hk in
(alg1) and shows some similarities with the formulation in (2.4.8). Indeed, we will see that one can
interpret the stationarity condition as a discrete version of (2.4.8).

Lemma 3.2.2 (Discrete optimality System). Let k ≥ 1 and zτ,hk be an arbitrary stationary point in
the sense of (alg1) with associated tτ,hk−1 given by (alg3). Then the following properties are satisfied:
There exists a Lagrange multiplier λτ,hk ≥ 0 such that

λτ,hk (‖zτ,hk − zτ,hk−1‖V − τ) = 0, (3.2.3a)

τ distV∗{−Π∗hDzI(tτ,hk−1, z
τ,h
k ), ∂(Rh ◦Πh)(0)} = λτ,hk ‖z

τ,h
k − zτ,hk−1‖

2
V, (3.2.3b)
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Rh(zτ,hk − zτ,hk−1) + τ distV∗{−Π∗hDzI(tτ,hk−1, z
τ,h
k ), ∂(Rh ◦Πh)(0)}

= 〈−DzI(tτ,hk−1, z
τ,h
k ), zτ,hk − zτ,hk−1〉Z∗,Z

}
(3.2.3c)

Rh(Πh(v)) ≥ −〈λτ,hk V(zτ,hk − zτ,hk−1) + Π∗hDzI(tτ,hk−1, z
τ,h
k ), v〉Z∗,Z ∀v ∈ Z. (3.2.3d)

Herein, distV∗{ · , ∂(Rh ◦Πh)(0)} denotes the extended distance as defined in Lemma A.3.8

Proof. Again, to shorten the notation, we suppress the superscripts τ, h throughout the proof.
Hence, let zk ∈ Zh be a stationary point as in (alg1), i.e., zk satisfies

0 ∈ ∂Zh(Rh + Iτ )(zk − zk−1) +DzI(tk−1, zk) (3.2.4)

with the indicator functional Iτ from (3.2.2). By definition this is equivalent to

Rh(vh) + Iτ (vh) ≥ Rh(zk − zk−1) + Iτ (zk − zk−1)

+ 〈−DzI(tk−1, zk), vh − (zk − zk−1)〉Z∗h,Zh ∀vh ∈ Zh.
(3.2.5)

Note that the term ∂ZhRh in (3.2.5) corresponds to the subdifferential of Rh with respect to
the space Zh, see Definition A.3.1. However, in view of the forthcoming convergence analysis, we
transform ∂ZhRh into a subdifferential with respect to the space Z and its dual pairing. Therefore,
we make use of the projection operator Πh : Z → Zh, whose surjectivity allows us to formulate
(3.2.5) as

Rh(Πh(v)) + Iτ (Πh(v)) ≥ Rh(Πh(zk − zk−1)) + Iτ (Πh(zk − zk−1))

+ 〈−DzI(tk−1, zk),Πh(v)−Πh(zk − zk−1)〉Z∗h,Zh ∀v ∈ Z.
(3.2.6)

Since zk, zk−1 ∈ Zh, we have Πh(zk−zk−1) = zk−zk−1 so that the nonexpansivity of the projection
Πh implies the equivalence of (3.2.6) and

Rh(Πh(v)) + Iτ (v) ≥ Rh(Πh(zk − zk−1)) + Iτ (zk − zk−1)

+ 〈−DzI(tk−1, zk),Πh(v)−Πh(zk − zk−1)〉Z∗h,Zh ∀v ∈ Z.
(3.2.7)

Using the abbreviation Rτ,h := Rh ◦Πh + Iτ , we have

(3.2.7) ⇐⇒

{
Rτ,h(v) ≥ Rτ,h(zk − zk−1)

+ 〈−Π∗hDzI(tk−1, zk), v − (zk − zk−1)〉Z∗,Z
∀v ∈ Z

⇐⇒ −Π∗hDzI(tk−1, zk) ∈ ∂Rτ,h(zk − zk−1) ⊂ Z∗. (3.2.8)

Thus, an arbitrary solution zk of (3.2.4) also satisfies the stationary condition

0 ∈ ∂Rτ,h(zk − zk−1) + Π∗hDzI(tk−1, zk). (3.2.9)

This describes an equation in Z∗ and not in Z∗h, which is the essential advantage in (3.2.9) compared
to (3.2.4). Now, we can follow the lines of [MS19a]:
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Thanks to a classical result of convex analysis (see Lemma A.3.3), (3.2.9) is equivalent to

Rτ,h(zk − zk−1) +R∗τ,h(−Π∗hDzI(tk−1, zk))

= 〈−Π∗hDzI(tk−1, zk), zk − zk−1〉Z∗,Z
= 〈−DzI(tk−1, zk),Πh(zk − zk−1)〉Z∗,Z
= 〈−DzI(tk−1, zk), zk − zk−1〉Z∗,Z .

(3.2.10)

Again Πh(zk − zk−1) = zk − zk−1 and the fact that ‖zk − zk−1‖V ≤ τ yield

Rτ,h(zk − zk−1) = Rh(zk − zk−1). (3.2.11)

Moreover, from Lemma A.3.8, we infer

R∗τ,h(−Π∗hDzI(tk−1, zk)) = τ distV∗{−Π∗hDzI(tk−1, zk), ∂(Rh ◦Πh)(0)}.

Inserting this together with (3.2.11) in (3.2.10) gives (3.2.3c).
To prove (3.2.3a), we consider (3.2.7) once more. Since 0 ∈ dom(Rh ◦ Πh) ∩ dom(Iτ ) and Iτ is
continuous in 0, the sum rule for convex subdifferentials is applicable giving the existence of a
ζk ∈ ∂Iτ (zk − zk−1) (note Lemma A.3.10), such that

0 ∈ ∂(Rh ◦Πh)(zk − zk−1) + ζk + Π∗hDzI(tk−1, zk) (3.2.12)

and thereby

Rh(zk − zk−1) + (Rh ◦Πh)∗(−ζk −Π∗hDzI(tk−1, zk))

= −〈ζk + Π∗hDzI(tk−1, zk), zk − zk−1〉V∗,V
= −〈ζk, zk − zk−1〉V∗,V − 〈DzI(tk−1, zk), zk − zk−1〉Z∗,Z .

A comparison with (3.2.3c), shows that

(Rh ◦Πh)∗(−ζk −Π∗hDzI(tk−1, zk))

= τ distV∗{−Π∗hDzI(tk−1, zk), ∂(Rh ◦Πh)(0)} − 〈ζk, zk − zk−1〉V∗,V .
(3.2.13)

Now, the fact that ζk ∈ ∂Iτ (zk − zk−1), and the characterization in Lemma A.3.11 imply the
existence of a multiplier λk ∈ R with

λk ≥ 0 , ζk = λkV(zk − zk−1), λk(‖zk − zk−1‖V − τ) = 0. (3.2.14)

which is just (3.2.3a).
Next, we verify (3.2.3b). For this purpose, first observe that J := Rh ◦ Πh is also convex and
positively 1-homogeneous so that Lemma 2.1.1 implies ∂(Rh ◦ Πh)(zk − zk−1) ⊂ ∂(Rh ◦ Πh)(0).
The characterization of the conjugate functional from Lemma 2.1.1 in combination with (3.2.12)
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thus yields

−ζk −Π∗hDzI(tk−1, zk) ∈ ∂(Rh ◦Πh)(zk − zk−1) ⊂ ∂(Rh ◦Πh)(0) (3.2.15)

=⇒ (Rh ◦Πh)∗(−ζk −Π∗hDzI(tk−1, zk)) = 0. (3.2.16)

Inserting this and the second equation in (3.2.14) into (3.2.13) we arrive at (3.2.3b).
Finally, (3.2.3d) is an immediate consequence of (3.2.15), i.e.,

Rh(Πh(v)) ≥ −〈ζk + Π∗hDzI(tk−1, zk), v〉Z∗,Z ∀v ∈ Z

and the characterization of ζk in (3.2.14).

Remark 3.2.3. In fact, since (3.2.4) and (3.2.9) are equivalent and (3.2.9) is in turn equivalent
to the properties (3.2.3a)–(3.2.3d), we observe that zτ,hk is a stationary point for (alg1) if and
only if it satisfies (3.2.3a)–(3.2.3d). Hence, for the actual numerical realization of LISS, it might be
practical to exploit the characterization via (3.2.3a)–(3.2.3d) instead of (3.2.4) in order to calculate
a stationary point. Moreover, we will solely build upon this discrete optimality system (and the
inequality (alg2)) for the convergence analysis.

Let us take a further look at (3.2.12). Inserting the characterization of ζτ,hk from (3.2.14), we
find

0 ∈ ∂(Rh ◦Πh)(zτ,hk − zτ,hk−1) + λτ,hk V(zτ,hk − zτ,hk−1) + Π∗hDzI(tτ,hk−1, z
τ,h
k ) . (3.2.17)

Since λτ,hk > 0 only if the local stability 0 ∈ ∂(Rh◦Πh)(zτ,hk −z
τ,h
k−1)+Π∗hDzI(tτ,hk−1, z

τ,h
k ) is violated,

we can interpret this inclusion as a discrete version of (2.4.8b). Moreover, due to the time update
(alg3) we have tτ,hk − t

τ,h
k−1 = τ −‖zτ,hk − zτ,hk−1‖V ≥ 0 such that the complementarity-like conditions

from (3.2.14) yield

λτ,hk ≥ 0 ,
tτ,hk − tτ,hk−1

τ
≥ 0, λτ,hk

(
tτ,hk − tτ,hk−1

τ

)
= 0.

This can as well be seen as a discretization of the complementarity conditions in (2.4.8c). These
observations will be taken up again in Section 3.2.3 in order to derive, similarly to the continuous
case (see [MR15, MRS12]), a discrete version of the energy equality in (2.4.6). Finally, we note
that combining (3.2.3a) and (3.2.3b) allows to characterize λk as

λk =
1

τ
distV∗{−Π∗hDzI(tτ,hk−1, z

τ,h
k ), ∂(Rh ◦Πh)(0)}. (3.2.18)

3.2.2 A priori estimates

Based on the previous Lemma 3.2.2, we subsequently provide several a priori estimates that will
allow a passage to the limit in the discrete energy identity in Section 3.2.3 and 3.2.4, respectively.
Furthermore, we show that the discrete physical time tτ,hk given the time update in (alg3) reaches
the final time T in a finite number of iterations, see Proposition 3.2.12 below. We start with the
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following result, whose proof is actually the only point, where one uses that zτ,hk is energetically
preferred, that means (alg2) holds, and not only a stationary point satisfying (3.2.3a)–(3.2.3d).

Lemma 3.2.4 (Local energy inequality). For all h, τ > 0 and all k ∈ N, it holds

I(tτ,hk , zτ,hk ) +Rh(zτ,hk − zτ,hk−1) ≤ I(tτ,hk−1, z
τ,h
k−1) +

∫ tτ,hk

tτ,hk−1

∂tI(s, zτ,hk ) ds . (3.2.19)

Proof. Adding the term I(tτ,hk , zτ,hk ) to both sides of the energy inequality I(tτ,hk−1, z
τ,h
k ) +R(zτ,hk −

zτ,hk−1) ≤ I(tτ,hk−1, z
τ,h
k−1) from (alg2) and using the continuous differentiability of f(·, zτ,hk ), we find

I(tτ,hk , zτ,hk ) +Rh(zτ,hk − zτ,hk−1) ≤ I(tτ,hk−1, z
τ,h
k−1) + I(tτ,hk , zτ,hk )− I(tτ,hk−1, z

τ,h
k )

= I(tτ,hk−1, z
τ,h
k−1) +

∫ tτ,hk

tτ,hk−1

∂tI(s, zτ,hk ) ds ,
(3.2.20)

which gives the assertion.

More or less as a direct consequence of the prior lemma and the assumptions on I, in particular
the estimate (3.1.4), we obtain the following.

Lemma 3.2.5 (Boundedness for energy and dissipation). For all h, τ > 0 and all k ∈ N, it holds

I(tτ,hk , zτ,hk ) +

k∑
i=1

Rh(zτ,hi − zτ,hi−1) ≤ (β + I(0, zτ,h0 )) exp(µT ), (3.2.21)

where β and µ are the constants from Section 3.1.

Proof. For the ease of clarity we suppress the superscripts τ, h, except for zτ,h0 in order to avoid
confusion with the initial value. We start by employing (3.1.4) into (3.2.19) to estimate

I(tk, zk) +Rh(zk − zk−1)

≤ I(tk−1, zk−1) +

∫ tk

tk−1

µ(I(tk−1, zk) + β) exp(µ (s− tk−1)) ds

= I(tk−1, zk−1) + (I(tk−1, zk) + β)(exp(µ (tk − tk−1))− 1).

From the nonnegativity of Rh by assumption (b) in combination with (alg2) we find I(tk−1, zk) ≤
I(tk−1, zk−1) so that

I(tk, zk) +Rh(zk − zk−1)

≤ I(tk−1, zk−1) + (I(tk−1, zk−1) + β)(exp(µ (tk − tk−1))− 1)
. (3.2.22)

holds. By exploiting once again Rh ≥ 0, this implies

I(tk, zk) ≤ (I(tk−1, zk−1) + β) exp(µ (tk − tk−1))− β
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such that induction over k already gives the desired result for the energy:

I(tk, zk) ≤ (I(0, zτ,h0 ) + β)

k∏
j=1

exp(µ (tj − tj−1))− β

≤ (I(0, zτ,h0 ) + β) exp(µ tk)− β.

(3.2.23)

To include the dissipation in the estimate, we sum up (3.2.22) to obtain

I(tk, zk) +

k∑
j=1

Rh(zj − zj−1) ≤ I(0, zτ,h0 ) +

k∑
j=1

(I(tj−1, zj−1) + β)(exp(µ(tj − tj−1))− 1).

Inserting (3.2.23) and adding β on both sides, we finally obtain

I(tk, zk) +

k∑
j=1

Rh(zj − zj−1) + β

≤ (I(0, zτ,h0 ) + β) +

k∑
j=1

(I(0, zτ,h0 ) + β) exp(µtj−1)(exp(µ (tj − tj−1))− 1)

= (I(0, zτ,h0 ) + β) exp(µtk) ≤ (I(0, zτ,h0 ) + β) exp(µT ),

which is the claimed estimate.

We therefore see that the energy is bounded along the iterates zτ,hk . Since by the estimate in
(3.1.2) the energy is coercive, we infer that the iterates itself are uniformly bounded.

Lemma 3.2.6 (Uniform a priori estimate for iterates). The iterates of Algorithm LISS fulfill

sup
h,τ>0, k∈N

‖zτ,hk ‖Z <∞. (3.2.24)

Proof. The lower bound on I from (3.1.2) implies for every t ∈ [0, T ] and every z ∈ Z that

‖z‖Z ≤ I(t, z) + c0 .

Combining this with (3.2.21) and using Rh ≥ 0, we arrive at

‖zτ,hk ‖Z ≤ c0 + I(tτ,hk , zτ,hk )

≤ c0 + (I(0, zτ,h0 ) + β) exp(µT ).

Due to (3.1.7) and the continuity of I by assumption, I(0, zτ,h0 ) converges to I(0, z0) and is thus
bounded, which gives the assertion.

Remark 3.2.7. As a consequence of Lemma 3.2.6 we have that zτ,hk ∈ BZ(0, R) for some R > 0

independent of τ and h.

The estimate (3.2.24) will, on the one hand, provide us with a uniform L∞-bound for the linear
interpolants and, on the other hand, allows us to obtain a bound for the nonlinearity DzF as the
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following Lemma 3.2.8 reveals.

Lemma 3.2.8. For every r > 0 and ε > 0, there exists Cr,ε > 0, independent of h, such that

|〈DzF(zh1 )−DzF(zh2 ), zh1 − zh2 〉V∗,V | ≤ ε‖zh1 − zh2 ‖2Z + Cr,εRh(zh1 − zh2 )‖zh1 − zh2 ‖V

for all zh1 , zh2 ∈ Zh ∩BZ(0, r).

Proof. The proof is analogous to the nondiscretized case in [Kne19], one just has to employ As-
sumption (b) on Rh from Section 3.1 at the end. For convenience of the reader, we explain the
arguments in detail. According to Ehrling’s lemma, see Lemma A.2.1, for every δ > 0, there exists
a constant Cδ (obviously independent of h) such that

‖z‖V ≤ δ‖z‖Z + Cδ‖z‖X ∀ z ∈ Z. (3.2.25)

Now, let zh1 , zh2 ∈ BZ(0, r) ∩ Zh be arbitrary. Using the growth condition on D2
zF in (IF1) and

the above inequality for δ = ε/(2C(1 + rq)) together with Young’s inequality gives

|〈DzF(zh1 )−DzF(zh2 ), zh1 − zh2 〉V∗,V |

≤ ‖DzF(zh1 )−DzF(zh2 )‖V∗‖zh1 − zh2 ‖V
≤ C(1 + rq)‖zh1 − zh2 ‖Z(δ‖zh1 − zh2 ‖Z + Cδ‖zh1 − zh2 ‖X )

≤ ε‖zh1 − zh2 ‖2Z + C̃r,ε‖zh1 − zh2 ‖2X

with a constant C̃r,ε depending only on ε and r. Finally, (R3) and assumption (b) on the dis-
cretization of R result in

‖zh1 − zh2 ‖X ≤
1

ρ
R(zh1 − zh2 ) ≤ 1

ρ
Rh(zh1 − zh2 ), (3.2.26)

which, together with the embedding V ↪→ X , completes the proof.

Remark 3.2.9. In fact, combining Lemma 3.2.8 and Lemma 3.2.6, precisely Remark 3.2.7, we find
that

|〈DzF(zτ,hk )−DzF(zτ,hk−1), zτ,hk − zτ,hk−1〉V∗,V |

≤ δ‖zτ,hk − zτ,hk−1‖
2
Z + CδRh(zτ,hk − zτ,hk−1)‖zτ,hk − zτ,hk−1‖V (3.2.27)

for all k ∈ N with Cδ only depending on the choice of δ, particularly independent of τ and h.

In the same way, we also find:

Lemma 3.2.10. For every ε > 0 there exists cε,ν > 0 independent of h, such that

|〈Dzf(t1, z1)−Dzf(t2, z2), v〉V∗,V | ≤ ν|t1 − t2|‖v‖V + cε,νRh(z1 − z2)‖v‖V + ε‖z1 − z2‖Z‖v‖V

for all t1, t2 ∈ [0, T ], z1, z2 ∈ Zh and v ∈ V.
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Proof. Again, by Ehrling’s lemma A.2.1, we obtain for every δ > 0 a constant Cδ (obviously
independent of h) such that ‖z‖W ≤ δ‖z‖Z + Cδ‖z‖X for all z ∈ Z. Taking herein δ = ε

ν and
combining the resulting estimate with (If2) and the lower bound on Rh in (3.2.26), we arrive at

〈Dzf(t1, z1)−Dzf(t2, z2), v〉V∗,V ≤ ν(|t1 − t2|+ ‖z1 − z2‖W)‖v‖V

≤ ν(|t1 − t2|+ Cα,ν‖z1 − z2‖X +
ε

ν
‖z1 − z2‖Z)‖v‖V

≤ ν|t1 − t2|‖v‖V + cα,νRh(z1 − z2)‖v‖V + ε‖z1 − z2‖Z‖v‖V

which holds for all t1, t2 ∈ [0, T ], z1, z2 ∈ Zh and v ∈ V.

As a last preparatory lemma, before we turn to the essential a priori estimates that will allow
a passage to the limit, we prove a weak convergence result for Π∗hDzI(0, zτ,h0 ) in V∗, which then
also provides us with a uniform bound of the same term.

Lemma 3.2.11. Let z0 ∈ Z be such that Az0 ∈ V∗. Then it holds

Π∗hDzI(0, zτ,h0 ) ⇀ DzI(0, z0) in V∗, as h↘ 0 .

Proof. First of all, we note that, by construction, we have

zτ,h0 = Ph(z0)→ z0 in Z. (3.2.28)

Furthermore, the energy functional is continuously differentiable in Z with

DzI(0, zτ,h0 ) = Azτ,h0 +DzF(zτ,h0 )−Dzf(0, zτ,h0 ) ∈ Z∗.

We consider each term separately. For the nonlinear part, we exploit (3.2.28) and DzF ∈ C(Z;V∗),
cf. (IF1), so that, for every v ∈ V,

〈Π∗h(DzF(zτ,h0 )), v〉V∗,V = 〈DzF(zτ,h0 ),Πh(v)〉Z∗,Z
= 〈DzF(zτ,h0 ),Πh(v)〉V∗,V → 〈DzF(z0), v〉V∗,V ,

(3.2.29)

where we also used that Πh(v)→ v in V by (3.1.7). Moreover, the definition of the Ritz-projection
and the fact that Az0 ∈ V∗ by assumption imply for every v ∈ V that

〈Π∗h(Azτ,h0 ), v〉V∗,V = 〈APh(z0),Πhv〉Z∗,Z = 〈Az0,Πhv〉Z∗,Z
= 〈Az0,Πhv〉V∗,V → 〈Az0, v〉V∗,V .

Finally, for the term involving Dzf(0, zτ,h0 ), we exploit the assumption in (If2) and once again the
convergence Πh(v)→ v in V to obtain

〈Π∗h(Dzf(0, zτ,h0 )), v〉V∗,V = 〈Dzf(0, zτ,h0 ),Πh(v)〉Z∗,Z
= 〈Dzf(0, zτ,h0 ),Πh(v)〉V∗,V → 〈Dzf(0, z0), v〉V∗,V .

Altogether, this yields the assertion.
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As indicated in the introduction, one major issue in the convergence analysis for parametrized
solutions concerns the boundedness of the artificial time, even in the continuous setting, see also
the discussion in [MR15, p. 218]. For the discrete counterpart, the artificial time reads sn =∑n
k=1 tk−tk−1+‖zk−zk−1‖V. In order to bound this term, we need to estimate

∑n
k=1‖zk−zk−1‖V,

which is purpose of the next proposition. Note that we will prove this boundedness even in
the stronger Z-norm, which might raise the question, whether the assumptions made are too
restrictive. However, this is a well-known problem in the context of parametrized solutions, see,
e.g., [KRZ13, Mie11]. Moreover, we will show that the physical end time T is reached after a finite
number of iterations, which guarantees that the algorithm finishes in a finite number of steps.

Proposition 3.2.12 (Bound on artificial time). For every parameter h, τ > 0 there exists an index
N(τ, h) ∈ N such that tτ,hN(τ,h) ≥ T . Moreover, there are constants C1, C2, C3 > 0 independent of
τ, h such that, for all h, τ > 0, it holds

N(τ,h)∑
i=1

‖zτ,hi − zτ,hi−1‖V ≤ C1, (3.2.30)

N(τ,h)∑
i=1

‖zτ,hi − zτ,hi−1‖
2
Z ≤ C2 τ, (3.2.31)

and distV∗{−Π∗hDzI(tk−1, zk), ∂(Rh ◦Πh)(0)} ≤ C3 ∀ k = 0, ..., N(τ, h). (3.2.32)

Proof. The arguments are similar to [Kne19]. However, we additionally provide the estimate
(3.2.31) and we also have to take account of the discretization at several points. Therefore, we
present the arguments in detail. Let k ∈ N be arbitrary. For convenience, we again suppress the
superscript τ, h throughout the proof, except for zτ,h0 in order to avoid confusion with the initial
data. We start by testing (3.2.3d) with v = zk+1 − zk to obtain

Rh(zk+1 − zk) ≥ −〈λkV(zk − zk−1) + Π∗hDzI(tk−1, zk), zk+1 − zk〉Z∗,Z
= −〈λkV(zk − zk−1), zk+1 − zk〉V∗,V − 〈DzI(tk−1, zk), zk+1 − zk〉Z∗,Z .

(3.2.33)

Inserting (3.2.3b) into (3.2.3c) and rewriting this identity for the index k + 1 (instead of k) gives
Rh(zk+1 − zk) + λk+1‖zk+1 − zk‖2V = 〈−DzI(tk, zk+1), zk+1 − zk〉Z∗,Z , so that (3.2.33) can be
written as

0 ≥ λk+1‖zk+1 − zk‖2V − λk〈V(zk − zk−1), zk+1 − zk〉V∗,V
+ 〈DzI(tk, zk+1)−DzI(tk−1, zk), zk+1 − zk〉Z∗,Z .

With this inequality at hand, we can now follow the lines of [Kne19, Proposition 2.3]: On account
of DzF(·) ∈ V∗ by assumption, inserting the definition of I into this inequality gives

〈DzF(zk)−DzF(zk+1), zk+1 − zk〉V∗,V − 〈Dzf(tk−1, zk)−Dzf(tk, zk+1), zk+1 − zk〉V∗,V
≥ λk+1‖zk+1 − zk‖2V − λk〈V(zk − zk−1), zk+1 − zk〉V∗,V + 〈A(zk+1 − zk), zk+1 − zk〉Z∗,Z
≥ λk+1‖zk+1 − zk‖2V − λk‖zk − zk−1‖V‖zk+1 − zk‖V + α ‖zk+1 − zk‖2Z , (3.2.34)
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where we used the coercivity of A for the last inequality. We now estimate each term on the
left-hand side of (3.2.34) separately. For the first term, we apply Lemma 3.2.8, precisely (3.2.27)
from Remark 3.2.9, with ε = α/4 to get

〈DzF(zk)−DzF(zk+1), zk+1 − zk〉V∗,V

≤ α

4
‖zk+1 − zk‖2Z + Cα‖zk+1 − zk‖VRh(zk+1 − zk),

(3.2.35)

with a constant Cα > 0, which is independent of τ , h, and k. Concerning the second term on the
left-hand side of (3.2.34), we use Lemma 3.2.10 with ε = α/4 to estimate

〈Dzf(tk−1, zk)−Dzf(tk, zk+1), zk+1 − zk〉V∗,V
≤ ν((tk − tk−1)‖zk+1 − zk‖V + cα,νRh(zk+1 − zk)‖zk+1 − zk‖V

+
α

4
‖zk+1 − zk‖Z‖zk+1 − zk‖V .

(3.2.36)

Hence, inserting (3.2.35) and (3.2.36) in (3.2.34) yields

λk+1‖zk+1 − zk‖2V − λk‖zk − zk−1‖V‖zk+1 − zk‖V +
α

2
‖zk+1 − zk‖2Z

≤ C‖zk+1 − zk‖VRh(zk+1 − zk)

+ ν((tk − tk−1)‖zk+1 − zk‖V + cα,νRh(zk+1 − zk)‖zk+1 − zk‖V ,

(3.2.37)

which, thanks to the continuous embedding Z ↪→ V and the norm equivalence of ‖·‖V and ‖·‖V, in
turn implies

λk+1‖zk+1 − zk‖V − λk‖zk − zk−1‖V + c‖zk+1 − zk‖Z ≤ C (Rh(zk+1 − zk) + (tk − tk−1)) .

Summing up this estimate with respect to k we thus have

λk+1‖zk+1 − zk‖V + c

k∑
i=1

‖zi+1 − zi‖Z ≤ λ1‖z1 − zτ,h0 ‖V + C
(
tk +

k∑
i=1

Rh(zi+1 − zi)
)
. (3.2.38)

On account of (3.2.21), this inequality already nearly gives (3.2.30), provided that the term λ1‖z1−
zτ,h0 ‖V is bounded independent of τ and h, which is shown next. To this end, we again insert (3.2.3b)
into (3.2.3c) to obtain for k = 1:

Rh(z1 − z0) + λ1‖z1 − zτ,h0 ‖2V = 〈−DzI(0, z1), z1 − zτ,h0 〉Z∗,Z .

Adding a zero, using Rh ≥ 0, and rearranging terms yields

〈DzI(0, z1)−DzI(0, zτ,h0 ), z1 − zτ,h0 〉Z∗,Z + λ1‖z1 − zτ,h0 ‖2V
≤ 〈−DzI(0, zτ,h0 ), z1 − zτ,h0 〉Z∗,Z = 〈−Π∗hDzI(0, zτ,h0 ), z1 − zτ,h0 〉V∗,V . (3.2.39)

The first term on the left-hand side is treated completely analogous to above, that is, inserting
the concrete form of I, exploiting the coercivity of A and estimating as in (3.2.35) and (3.2.36),



69 3. Local minimization scheme for parametrized solutions

resulting in

α

2
‖z1 − zτ,h0 ‖2Z + λ1‖z1 − zτ,h0 ‖2V

≤ CRh(z1 − zτ,h0 )‖z1 − zτ,h0 ‖V + 〈−Π∗hDzI(0, zτ,h0 ), z1 − zτ,h0 〉V∗,V . (3.2.40)

Hence, using again Z ↪→ V and the norm equivalence of ‖·‖V and ‖·‖V , we obtain

λ1‖z1 − zτ,h0 ‖V + c‖z1 − zτ,h0 ‖Z ≤ C
(
Rh(z1 − zτ,h0 ) + ‖Π∗hDzI(0, zτ,h0 )‖V∗

)
. (3.2.41)

By adding (3.2.41) to (3.2.38) and applying (3.2.21), we arrive at

λk+1‖zk+1 − zk‖V + c

k∑
i=0

‖zi+1 − zi‖Z

≤ C
(
tk +

k∑
i=0

Rh(zi+1 − zi) + ‖Π∗hDzI(0, zτ,h0 )‖V∗
)

≤ C
(
T + (I(0, zτ,h0 ) + β) exp(µT ) + ‖Π∗hDzI(0, zτ,h0 )‖V∗

)
,

(3.2.42)

where we used that tτ,hk ≤ T by the time update in (alg3) for the last estimate. On account
of Lemma 3.2.11, we know that Π∗hDzI(0, zτ,h0 ) converges weakly in V∗ and is thus bounded.
Moreover, as already seen at the end of the proof of Lemma 3.2.6, I(0, zτ,h0 ) is bounded independent
of h, which yields

T + (I(0, zτ,h0 ) + β) exp(µT ) + ‖Π∗hDzI(0, zτ,h0 )‖V∗ ≤ C. (3.2.43)

This in turn implies

λk+1‖zk+1 − zk‖V + c

k∑
i=0

‖zi+1 − zi‖Z ≤ C, (3.2.44)

i.e., (3.2.30) for k ≥ 0. Note that the constant C is independent of τ , h, and k. Now, let us turn
towards (3.2.31), whose proof is very similar to the steps above. To this end, we consider (3.2.37)
once more. Thanks to the constraint ‖zk+1 − zk‖V ≤ τ and (3.2.3a), we have

−λk‖zk+1 − zk‖V ≥ −λkτ = −λk‖zk − zk−1‖V,

which in turn implies

λk+1‖zk+1 − zk‖2V − λk‖zk − zk−1‖2V + c‖zk+1 − zk‖2Z ≤ C τ (Rh(zk+1 − zk) + (tk − tk−1)) .

Again, summing up this estimate with respect to k we find

λk+1‖zk+1 − zk‖2V + c

k∑
i=1

‖zi+1 − zi‖2Z

≤ λ1‖z1 − zτ,h0 ‖2V + C τ
(
tk +

k∑
i=1

Rh(zi+1 − zi)
)
.

(3.2.45)
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Combining this with (3.2.40) and exploiting ‖z1 − zτ,h0 ‖V ≤ τ gives exactly as in (3.2.42)

λk+1‖zk+1 − zk‖2V + c

k∑
i=0

‖zi+1 − zi‖2Z

≤ C τ
(
tk +

k∑
i=0

Rh(zi+1 − zi) + ‖Π∗hDzI(0, zτ,h0 )‖V∗
)

≤ C τ
(
T + (I(0, zτ,h0 ) + β) exp(µT ) + ‖Π∗hDzI(0, zτ,h0 )‖V∗

)
.

As seen in (3.2.43), the last term is bounded independent of τ and h, so that the nonnegativity of
the multiplier λk+1 yields

c

k∑
i=0

‖zi+1 − zi‖2Z ≤ C τ (3.2.46)

for all k ≥ 0, which proves (3.2.31). We proceed with showing (3.2.32). For this purpose, we first
note that, since ‖zk − zk−1‖V ≤ τ by the constraint in (alg1), the identity (3.2.3b) implies

distV∗{−Π∗hDzI(tk−1, zk), ∂(Rh ◦Πh)(0)} ≤ λk‖zk − zk−1‖V . (3.2.47)

The estimate in (3.2.32) is thus an easy consequence of (3.2.44). Finally, we show that the final
time T is reached after a finite number of steps. For this, we observe that by the embedding Z ↪→ V
and the norm equivalence of ‖·‖V and ‖·‖V estimate (3.2.44) implies that

∑∞
k=1‖zk − zk−1‖V is

convergent, thus bounded. Summing up (alg3) from k = 1 to n and exploiting (3.2.30) we therefore
obtain

tn = t0 + nτ −
n∑
k=1

‖zk − zk−1‖V ≥ t0 + nτ − C →∞ for n→∞.

Hence, there must exist a finite index N(τ, h), possibly depending on τ and h, so that tN(τ,h) ≥ T .
Lastly, since (3.2.44) and (3.2.46) hold for every k, we obtain (3.2.30) and (3.2.31), respectively.

In what follows we will abbreviate the index N(τ, h) simply by N having in mind that the
number N of time steps always depends on τ and h. We close this section with a remark on the
regularity assumption for the initial state z0.

Remark 3.2.13. Revisiting the above proof, we may alternatively assume that the discrete initial
state zτ,h0 fulfills

−DzI(0, zτ,h0 ) ∈ ∂Rh(0) and zτ,h0 → z0 (h↘ 0),

and the dissipation satisfies

Rh(v) ≤ c‖v‖V ∀v ∈ dom(Rh) for all h ≥ 0

for some c > 0 independent of h. Moreover, in this case, we may also relax the assumption in (If2)
to

|〈Dzf(t1, z1)−Dzf(t2, z2), v〉Z∗,Z | ≤ ν(|t1 − t2|+ ‖z1 − z2‖W)‖v‖Z . (I ′f2)

Indeed, in this case, the above assumptions guarantee that
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〈−DzI(0, zτ,h0 ), z1 − zτ,h0 〉Z∗,Z ≤ Rh(z1 − zτ,h0 ) ≤ c‖z1 − zτ,h0 ‖V.

Hence, from (3.2.39) and (3.2.40) it follows

α

2
‖z1 − zτ,h0 ‖2Z + λ1‖z1 − zτ,h0 ‖2V ≤ CRh(z1 − zτ,h0 )‖z1 − zτ,h0 ‖V + c‖z1 − zτ,h0 ‖V

so that (3.2.44) and therewith Lemma 3.2.12 remain valid. This is in particular noteworthy in terms
of generalizations for the structure of the energy functional, e.g., quasilinear instead of semilinear,
see also the note after the proof of Theorem 3.2.19.

3.2.3 Discrete energy identity

In the following section, we aim at deriving a discrete analogon to the energy identity (2.4.6).
To this end, we introduce the piecewise affine as well as the left- and right-continuous piecewise
constant interpolants associated with the iterates zτ,hk . As depicted in the context of parametrized
solutions in Section 2.4, potential discontinuities of the solution are resolved by introducing an
artificial time. The physical time is accordingly interpreted as a function of the very same and
jumps are characterized by the plateaus of this function. This is also reflected by the time-
incremental stationarity scheme (LISS), where, loosely speaking, the artificial time is divided into
equidistant subintervals with step size τ and the approximation of the parametrized solution is
implicitly defined through the optimization in (LISS). To be more precise, we set sτ,hk := kτ , so
that

sτ,hN = Nτ =

N∑
i=1

(tτ,hi − tτ,hi−1 + ‖zτ,hi − zτ,hi−1‖V)

= tτ,hN +

N∑
i=1

‖zτ,hi − zτ,hi−1‖V ≤ T + τ +

N∑
i=1

‖zτ,hi − zτ,hi−1‖V ≤ CS
(3.2.48)

by Proposition 3.2.12 with a constant CS > 0 which is neither depending on τ nor h so that the
artificial time interval is indeed bounded independent of the discretization. Hence, we can proceed
with the construction of the interpolants. For s ∈ [sτ,hk−1, s

τ,h
k ) ⊂ [0, sτ,hN ), the continuous and

piecewise affine interpolants are defined through

ẑτ,h(s) := zτ,hk−1 +
(s− sτ,hk−1)

τ
(zτ,hk − zτ,hk−1),

t̂τ,h(s) := tτ,hk−1 +
(s− sτ,hk−1)

τ
(tτ,hk − tτ,hk−1),

(3.2.49)

while the piecewise constant interpolants are given by

zτ,h(s) := zτ,hk , tτ,h(s) := tτ,hk , zτ,h(s) := zτ,hk−1, tτ,h(s) := tτ,hk−1. (3.2.50)

Moreover, we define the artificial end time Sτ,h as that point where t̂ reaches the end time T , i.e.,
it holds (see also Figure 3.2.1)

t̂τ,h(Sτ,h) = T, sτ,hN−1 < Sτ,h ≤ sτ,hN and Sτ,h ≤ CS , (3.2.51)
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sτ,hN−2 sτ,hN−1
Sτ,h sτ,hN S̃

0

T

tτ,hN

Figure 3.2.1: Qualitative illustration of the affine interpolant t̂, the choice of the artificial end time
Sτ,h via the equality t̂(Sτ,h) = T and the upper bound S̃.

whereby the boundedness follows directly from (3.2.48). Since the artificial end time Sτ,h depends
on the chosen discretization level, we extend all interpolants constantly onto [0, S̃] with S̃ :=

supτ,h Sτ,h where this is necessary, i.e., where sτ,hN < S̃. Hence, we let

zτ,h(s) = zτ,h(s)= ẑτ,h(s) := zτ,hN

and tτ,h(s) = tτ,h(s) = t̂τ,h(s) := T

}
∀ s ∈ [sτ,hN , S̃] . (3.2.52)

Observe that still S̃ ≤ CS by (3.2.51). Moreover, due to the time update in (alg3), we clearly
have that (t̂τ,h, ẑτ,h) ∈W 1,∞(0, S̃;R)×W 1,∞(0, S̃;V), but we even obtain the following pointwise
properties.

Lemma 3.2.14 (Properties of affine interpolants). For almost all s ∈ [0, Sτ,h], the affine inter-
polants from (3.2.49) fulfill

t̂′τ,h(s) ≥ 0, t̂′τ,h(s) + ‖ẑ′τ,h(s)‖V = 1, (3.2.53)

t̂′τ,h(s) distV∗{−Π∗hDzI(tτ,h(s), zτ,h(s)), ∂(Rh ◦Πh)(0)} = 0. (3.2.54)

Proof. The first statement in (3.2.53) is a direct consequence of the constraint in (alg1) and the
time update in (alg3), which immediately implies tτ,hk − tτ,hk−1 ≥ 0. To prove the second one, we
again exploit (alg3) to obtain for every s ∈ [sτ,hk−1, s

τ,h
k ) that

t̂′τ,h(s) + ‖ẑ′τ,h(s)‖ =
(tτ,hk − tτ,hk−1)

τ
+
‖zτ,hk − zτ,hk−1‖V

τ
= 1,

which gives (3.2.53). Finally the complementarity in (3.2.54) is a direct consequence of (3.2.3a),
since

0 = λτ,hk (τ − ‖zτ,hk − zτ,hk−1‖V) = τ λτ,hk (1− ‖ẑ′τ,h(s)‖V)

for s ∈ [sτ,hk−1, s
τ,h
k ). Thus, inserting (3.2.18) and exploiting the identity in (3.2.53) yields (3.2.54).

Once more, we note the similarity between the continuous case in (2.4.5a) and (2.4.5b) and
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its discrete version in Lemma 3.2.14. In the subsequent, last preparatory lemma, we collect the
main a priori bounds of our interpolants, which will be essential to pass to the limit in the discrete
energy identity, which is elaborated afterwards.

Lemma 3.2.15. There exists C > 0, independent of τ and h, so that

‖t̂τ,h‖W 1,∞(0,S̃), ‖ẑτ,h‖W 1,∞(0,S̃;V), ‖ẑτ,h‖L∞(0,S̃;Z), ‖ẑτ,h‖H1(0,S̃;Z) ≤ C.

Proof. While the first three bounds are an immediate consequence of the results in Lemma 3.2.14
and Lemma 3.2.6, the last one requires some slighlty more explanation. Due to the bound in
L∞(0, S̃;Z), it suffices to estimate the L2(0, S̃;Z)-norm of the time-derivative ẑ′τ,h. Hence, insert-
ing the definition of ẑ from (3.2.52) and keeping in mind that Sτ,h ≤ sτ,hN , we have

‖ẑ′τ,h‖L2(0,S̃;Z) =

∫ S̃

0

‖ẑ′τ,h(r)‖2Z dr =

∫ Sτ,h

0

‖ẑ′τ,h(r)‖2Z dr

≤
N∑
k=1

∫ sτ,hk

sτ,hk−1

∥∥∥∥∥z
τ,h
k − zτ,hk−1

τ

∥∥∥∥∥
2

Z

dr =
1

τ

N∑
k=1

‖zτ,hk − zτ,hk−1‖
2
Z .

Lemma 3.2.12, precisely (3.2.31), thus implies that this term is bounded independent of τ and h,
which proves the desired H1(0, S̃;Z) estimate.

Eventually, we are now in the position to show a discrete version of the energy equality. Its
proof is based on Lemma 3.2.14, the a priori estimates derived in Section 3.2.2 and assumption (a)
on the discretization of R, which essentially ensures that Rh has the same properties as R.

Lemma 3.2.16 (Discrete energy equality). For all s ∈ [0, Sτ,h], it holds

I(t̂τ,h(s), ẑτ,h(s))

+

∫ s

0

Rh(ẑ′τ,h(σ)) + distV∗{−Π∗hDzI(tτ,h(σ), zτ,h(σ)), ∂(Rh ◦Πh)(0)} dσ

= I(t̂τ,h(0), ẑτ,h(0))

+

∫ s

0

∂tI(t̂τ,h(σ), ẑτ,h(σ)) t̂′τ,h(σ) dσ +

∫ s

0

rτ,h(σ) dσ ,

(3.2.55)

where
rτ,h(s) := 〈DzI(t̂τ,h(s), ẑτ,h(s))−DzI(tτ,h(s), zτ,h(s)), ẑ′τ,h(s)〉Z∗,Z . (3.2.56)

Moreover, the complementarity condition

t̂′τ,h(s) distV∗{−Π∗hDzI(tτ,h(s), zτ,h(s)), ∂(Rh ◦Πh)(0)} = 0 (3.2.57)

is fulfilled f.a.a. s ∈ (0, Sτ,h), and there exists a constant C > 0 such that the remainder rτ,h
satisfies for all h, τ > 0 and all s ∈ [0, Sτ,h]∫ s

0

rτ,h(σ) dσ ≤ Cτ. (3.2.58)
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Proof. The complementarity in (3.2.57) has already been proven in Lemma 3.2.14. Hence, we turn
to the discrete energy identity. Since the affine interpolants in (3.2.49) are by construction elements
of W 1,∞(0, Sτ,h) and W 1,∞(0, Sτ,h;Z), respectively, and due to I ∈ C1([0, T ]×Z) by assumption,
the chain rule is applicable and gives for s ∈ (sτ,hk−1, s

τ,h
k ) that

d
ds
I(t̂τ,h(s), ẑτ,h(s))

= ∂tI(t̂τ,h(s), ẑτ,h(s)) t̂′τ,h(s) + 〈DzI(t̂τ,h(s), ẑτ,h(s)), ẑ′τ,h(s)〉Z∗,Z

= ∂tI(t̂τ,h(s), ẑτ,h(s)) t̂′τ,h(s) +
1

τ
〈DzI(tτ,h(s), zτ,h(s)), zτ,hk − zτ,hk−1〉Z∗,Z

+ 〈DzI(t̂τ,h(s), ẑτ,h(s))−DzI(tτ,h(s), zτ,h(s)), ẑ′τ,h(s)〉Z∗,Z .

From (3.2.3c), we have in combination with the 1-homogeneity of Rh that

− 1

τ
〈DzI(tτ,h(s), zτ,h(s)), zτ,hk − zτ,hk−1〉Z∗,Z

=
1

τ

(
R(zτ,hk − zτ,hk−1) + τ distV∗{−Π∗hDzI(tτ,hk−1, z

τ,h
k ), ∂(Rh ◦Πh)(0)}

)
= Rh(ẑ′τ,h) + distV∗{−Π∗hDzI(tτ,hk−1, z

τ,h
k ), ∂(Rh ◦Πh)(0)}).

By taking into account the definition of rτ,h in (3.2.56), integration over (σ1, σ2) then yields (3.2.55).
It remains to estimate rτ,h. To this end, first observe that the definition of the affine and constant
interpolants in (3.2.49) and (3.2.50) implies for every k ∈ {1, ..., N} and every s ∈ [sτ,hk−1, s

τ,h
k ) that

ẑτ,h(s)− zτ,h(s) = (s− sτ,hk )ẑ′τ,h(s) and t̂τ,h(s)− tτ,h(s) = (s− sτ,hk−1)t̂′τ,h(s),

which is frequently used in the following estimates. Now, let k ∈ {1, ..., N} and s ∈ [sτ,hk−1, s
τ,h
k )

be arbitrary. Then, by inserting the concrete form of I into the definition of rτ,h in (3.2.56) and
employing the coercivity of A together with (s− sτ,hk ) < 0, we arrive at

rτ,h(s) = (s− sτ,hk )〈A(ẑ′τ,h(s)), ẑ′τ,h(s)〉Z∗,Z

+ 〈DzF(ẑτ,h(s))−DzF(zτ,h(s)),
ẑτ,h(s)− zτ,h(s)

(s− sτ,hk )
〉V∗,V

− 〈Dzf(t̂τ,h(s), ẑτ,h(s))−Dzf(tτ,h(s), zτ,h(s)), ẑ′τ,h(s)〉V∗,V
≤ α(s− sτ,hk )‖ẑ′τ,h(s)‖2Z

+
1

|s− sτ,hk |
|〈DzF(zτ,h(s))−DzF(ẑτ,h(s)), zτ,h(s)− ẑτ,h(s)〉V∗,V |

+ |〈Dzf(t̂τ,h(s), ẑτ,h(s))−Dzf(tτ,h(s), zτ,h(s)), ẑ′τ,h(s)〉V∗,V |.

(3.2.59)

We apply Lemma 3.2.8 with ε = α/4 to the second term on the right-hand side to obtain

1

|s− sτ,hk |
|〈DzF(zτ,h(s))−DzF(ẑτ,h(s)), zτ,h(s)− ẑτ,h(s)〉V∗,V |

≤ α

4
|s− sτ,hk | ‖ẑ

′
τ,h(s)‖2Z + Cα |s− sτ,hk |Rh(ẑ′τ,h(s)) ‖ẑ′τ,h(s)‖V,



75 3. Local minimization scheme for parametrized solutions

where we also used the positive homogeneity of Rh. Likewise, using Lemma 3.2.10 with ε = α/4,
the third term is estimated by

|〈Dzf(t̂τ,h(s), ẑτ,h(s))−Dzf(tτ,h(s), zτ,h(s)), ẑ′τ,h(s)〉V∗,V |

≤ ν(|t̂τ,h(s)− tτ,h(s)|+ ‖ẑτ,h(s)− zτ,h(s)‖W)‖ẑ′τ,h(s)‖V

≤ ν|s− sτ,hk−1|t̂
′
τ,h(s)‖ẑ′τ,h(s)‖V +

α

4
|s− sτ,hk | ‖ẑ

′
τ,h(s)‖2Z + Cα |s− sτ,hk |Rh(ẑ′τ,h(s)) ‖ẑ′τ,h(s)‖V.

By inserting both estimates in (3.2.59) and using again that (s−sτ,hk ) < 0 as well as ‖ẑ′τ,h(s)‖V ≤ 1,
one deduces

rτ,h(s) ≤ C
(
Rh(ẑ′τ,h(s)) (sτ,hk − s) + t̂′τ,h(s) (s− sτ,hk−1)

)
≤ C τ

(
Rh(ẑ′τ,h(s)) + t̂′τ,h(s)

)
.

Integrating and exploiting the definition of ẑτ,h and t̂τ,h, respectively, then yields

∫ s

0

rτ,h(σ) dσ ≤
N∑
i=1

∫ sτ,hi

sτ,hi−1

C τ
(
Rh(ẑ′τ,h(s)) + t̂′τ,h(s)

)
ds

= C τ

N∑
i=1

{
Rh

(
zτ,hi − zτ,hi−1

sτ,hi − sτ,hi−1

)
+
tτ,hi − tτ,hi−1

sτ,hi − sτ,hi−1

}
(sτ,hi − sτ,hi−1)

≤ C τ
(
T +

N∑
i=1

Rh(zτ,hi − zτ,hi−1)
)
.

Thanks to Lemma 3.2.5, the bracket on the right-hand side is bounded independent of τ and h so
that (3.2.58) is proven, too.

Remark 3.2.17. A comparison of the discrete energy identity in (3.2.55) and the continuous one
in (2.4.6) shows that the coefficient ‖ẑ′τ,h‖ is missing in front of the distance. It would be possible
to reformulate the optimality conditions in Lemma 3.2.2 in a way such that this coefficient would
arise in (3.2.55). This, however, would complicate the passage to the limit in the next section. As
we will see at the end of the proof of Theorem 3.2.19, (3.2.55) is sufficient to obtain the desired
energy identity in (2.4.6).

3.2.4 Convergence theorem

Before we come to the main result, i.e., the passage to the limit in the discrete energy identity and
therewith ultimately the existence of parametrized solutions, we need one last preparatory result,
which guarantees the weak lower semicontinuity of the distance term in (3.2.55).

Lemma 3.2.18. Let ξh ∈ Z∗ with ξh ⇀ ξ in Z∗ for h→ 0. Suppose, moreover, that the distance
is uniformly bounded, i.e., distV∗{−ξh, ∂(Rh ◦ Πh)(0)} ≤ C with C independent of h. Then the
following weak lower semicontinuity result holds true:

lim inf
h→0

distV∗{−ξh, ∂(Rh ◦Πh)(0)} ≥ distV∗{−ξ, ∂R(0)}. (3.2.60)
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Proof. First of all, thanks to Lemma A.3.8, we know that the minimum in the definition of the
distance is attained so that there exists µh ∈ ∂Rh(0) with

distV∗{−ξh, ∂(Rh ◦Πh)(0)} = ‖µh + ξh‖V−1 . (3.2.61)

Therewith, we define ηh := µh + ξh and infer ‖ηh‖V∗ ≤ C by assumption. Hence, we may extract
a weakly convergent subsequence ηhn ⇀ η in V∗ for n → ∞. In particular, due to the lower
semicontinuity of the norm ‖·‖V−1 , it holds

‖η‖V−1 ≤ lim inf
n→∞

‖ηhn‖V−1 = lim inf
n→∞

distV∗{−ξhn , ∂(Rhn ◦Πhn)(0)}. (3.2.62)

We proceed with showing that η = µ + ξ for some µ ∈ ∂R(0). To this end, we first note that by
V∗ ⊂ Z∗ and the weak convergence of ξhn it holds µhn = ξhn − ηhn ⇀ ξ − η in Z∗ and we define
µ = ξ − η. Now, µhn ∈ ∂(Rhn ◦Πhn)(0) is equivalent to

Rhn(Πhnz) ≥ 〈µhn , z〉Z∗,Z ∀ z ∈ Z.

By weak convergence, the right-hand side converges to 〈µ, z〉Z∗,Z . The left-hand side converges
to R(z) on a dense subset U by assumption (c) on the approximation of the dissipation potential.
By density of U ⊂ dom(R) and continuity of R on dom(R), we thus obtain R(z) ≥ 〈µ, z〉Z∗,Z for
all z ∈ dom(R) and therefore clearly for all z ∈ Z, so that µ ∈ ∂R(0). Hence, we conclude from
(3.2.62) that

distV∗{−ξ, ∂R(0)} ≤ ‖µ+ ξ‖V−1 = ‖η‖V−1 ≤ lim inf
n→∞

distV∗{−ξhn , ∂(Rhn ◦Πhn)(0)}.

Since this holds for all subsequence of ηh, we ultimately arrive at the desired lower semicontinuity
in (3.2.60).

We now have everything at hand to prove our main convergence result.

Theorem 3.2.19 (Convergence towards parametrized solutions). There exists a sequence of pa-
rameters {τn, hn}n∈N ⊂ R+ × R+ converging to zero so that the affine interpolants generated by
the fully discrete local stationarity scheme (LISS) and the artificial end time defined in (3.2.51)
satisfy

Sτn,hn → S, (3.2.63)

t̂τn,hn
∗
⇀ t̂ in W 1,∞(0, S;R), (3.2.64)

ẑτn,hn
∗
⇀ ẑ in W 1,∞(0, S;V) ∩H1(0, S;Z), (3.2.65)

ẑτn,hn(s) ⇀ ẑ(s) in Z for every s ∈ [0, S], (3.2.66)

and the limit (t̂, ẑ) is a parametrized solution in the sense of Definition 2.4.2.
Moreover, every accumulation point (t̂, ẑ) of sequences in the sense of (3.2.63)–(3.2.66) is a

parametrized solution.

Proof. The arguments are similar to the semi-discrete case without a spatial discretization and
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with bounded dissipation, discussed in [Kne19]. However, we have to include the passage to limit
h↘ 0 and take care of the unboundedness of ∂R(0).
The existence of a (sub-)sequence satisfying (3.2.63)–(3.2.65) is an immediate consequence of the
uniform estimates in Lemma 3.2.6, Lemma 3.2.15, and (3.2.51). By the Aubin-Lions lemma
W 1,∞(0, S;V)∩L∞(0, S;Z) compactly embeds in C(0, S;V) so that ẑτn,hn uniformly converges in
V to ẑ. However, Lemma 3.2.6 tells us that, for every s ∈ [0, S], {ẑτn,hn(s)}n∈N is bounded in Z
and therefore there is a weakly convergent subsequence. Due to the uniform convergence in V, the
pointwise limit equals ẑ(s), which implies (3.2.66).
It remains to show that every (weak) limit is a parametrized solution. For this purpose, let {τn, hn}
be an arbitrary null sequence and assume that the convergences in (3.2.63)–(3.2.66) hold. In order
to simplify the notation, we indicate by {·}n the sequence of {·}τ,h corresponding to {τn, hn}.
Analogously, we abbreviate the index hn simply by n. We proceed in several steps and start with
the following:

Convergence of piecewise constant interpolants. First, we show that the piecewise
constant interpolants converge pointwise to the same limit. We exemplarily consider zτ,h. Because
of (3.2.24), there is a subsequence, for convenience also denoted by zn, converging in every s ∈ [0, S]

weakly in Z to some z̃(s). Hence, the compact embedding of Z in V implies zn(s)→ z̃(s) in V for
all s ∈ [0, S]. Moreover, by (3.2.49) and (3.2.50), we have for all k ∈ {1, ..., N} and all s ∈ [snk−1, s

n
k )

that
‖ẑn(s)− zn(s)‖V = |s− snk | ‖ẑ′n(s)‖V ≤ τ → 0,

where we used (3.2.53) and (3.2.51) for the last estimate. Hence, we obtain z̃(s) = ẑ(s) for all
s ∈ [0, S] and the uniqueness of the weak limit implies the weak convergence of the whole sequence
{zn}. For the other piecewise constant interpolants, one argues completely analogously so that

tn(s), tn(s)→ t̂(s), zn(s), zn(s) ⇀ ẑ(s) in Z ∀ s ∈ [0, S] (3.2.67)

is obtained, as desired.
Initial and end time conditions. Since the Ritz projection trivially fulfills

ẑn(0) = zτ,h0 = Pn(z0)→ z0 in Z, (3.2.68)

the pointwise convergence in (3.2.66) implies ẑ(0) = z0 as desired. Moreover, thanks to (3.2.64),
t̂n converges uniformly to t̂ so that

0 = t̂n(0)→ t̂(0) and T = t̂n(Sn)→ t̂(S),

where we also used (3.2.63).
Complementarity relations. We continue with the complementarity-like relations in (2.4.5).

First, the set

{(τ, ζ) ∈ L2(0, S)× L2(0, S;V) : τ(s) ≥ 0, τ(s) + ‖ζ(s)‖V ≤ 1 f.a.a. s ∈ (0, S)}

is clearly convex and closed, thus weakly closed and consequently, we obtain that the weak limit
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(t̂, ẑ) satisfies the inequalities in (2.4.5a). Next, we turn to (2.4.5b), whose derivation is by far
more involved. On account of the weak continuity assumptions for Dzf and DzF , it follows from
(3.2.67) that

DzI(tn(s), zn(s)) ⇀ DzI(t̂(s), ẑ(s)) in Z∗ ∀ s ∈ [0, S].

Thanks to (3.1.8), i.e., Πn(z)→ z in Z for every z ∈ Z, this also gives

〈Π∗nDzI(tn(s), zn(s)), z〉Z∗,Z
= 〈DzI(tn(s), zn(s)),Πnz〉Z∗,Z → 〈DzI(t̂n(s), ẑ(s)), z〉Z∗,Z ∀ z ∈ Z,

(3.2.69)

i.e., weak convergence of Π∗nDzI(tn(s), zn(s)) to DzI(t̂(s), ẑ(s)) in Z∗. Now we can take a closer
look at the distance in (2.4.5b). The weak convergence of Π∗nDzI(tn(s), zn(s)) and the uniform
boundedness of the distance from (3.2.32) allow us to apply Lemma 3.2.18, which gives

lim inf
n→∞

distV∗{−Π∗nDzI(tn(s), zn(s)), ∂(Rn ◦Πn)(0)}

≥ distV∗{−DzI(t̂(s), ẑ(s)), ∂R(0)}.
(3.2.70)

To show (2.4.5b), let us abbreviate

ξn(s) := distV∗{−Π∗nDzI(tn(s), zn(s)), ∂(Rn ◦Πn)(0)},

ξ(s) := distV∗{−DzI(t̂(s), ẑ(s)), ∂R(0)},

so that (3.2.70) reads
lim inf
n→∞

ξn(s) ≥ ξ(s) ≥ 0 ∀ s ∈ [0, S]. (3.2.71)

We next address the measurability of ξ. The embedding H1(0, S;Z) ↪→ C(0, T ;Z) and the con-
tinuity of DzI imply that s 7→ −DzI(t̂(s), ẑ(s)) is continuous. Exploiting Lemma 3.2.18, we can
conclude that ξ is lower semicontinuous and therefore, indeed, measurable.
Now, consider an arbitrary κ ≥ 0 and define ξn,κ(s) := min{ξn(s), ξ(s), κ} such that ξn,κ(s)

converges to ξκ(s) := min{ξ(s), κ} almost everywhere in (0, S). Since ξκ is measurable (as ξ is so)
and κ ≥ ξn,κ(s), Lebesgue’s dominated convergence theorem gives

ξn,κ → ξκ in L1(0, S).

Thus, thanks to ξn(s) ≥ ξn,κ(s) and the weak∗ convergence of t̂′, we obtain from (3.2.57) that

0 = lim inf
n→∞

∫ S

0

t̂′n(s) ξn(s) ds ≥ lim inf
n→∞

∫ S

0

t̂′n(s) ξn,κ(s) ds =

∫ S

0

t̂′(s) ξκ(s) ds.

Since κ ≥ 0 was arbitrary, this inequality holds for every κ so that Fatou’s lemma yields

0 ≥ lim inf
κ→∞

∫ S

0

t̂′(s) ξκ(s) ds ≥
∫ S

0

t̂′(s) ξ(s) ds ≥ 0.

Because of ξ ≥ 0 and t̂′ ≥ 0 a.e. in (0, S), cf. (2.4.5a), this gives (2.4.5b).
Energy identity. Let s ∈ [0, S] be arbitrary. Thanks to the weak lower semicontinuity of
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I(t, ·) and assumption (If3), (3.2.64) and (3.2.66) yield

I(t̂(s), ẑ(s) ≤ lim inf
n→∞

I(t̂n(s), ẑn(s)).

Moreover, the lower semicontinuity from Lemma A.3.5 and assumption (b) on the discretization
of R imply, in view of (3.2.65), that∫ s

0

R(ẑ′(σ)) dσ ≤ lim inf
n→∞

∫ s

0

R(ẑ′n(σ)) dσ ≤ lim inf
n→∞

∫ s

0

Rn(ẑ′n(σ)) dσ.

Lastly, we obtain from ‖ẑ′(s)‖V ≤ 1, (3.2.70) and Fatou’s lemma∫ s

0

‖ẑ′(σ)‖V distV∗{−DzI(t̂(σ), ẑ(σ)), ∂R(0)} dσ

≤
∫ s

0

distV∗{−DzI(t̂(σ), ẑ(σ)), ∂R(0)} dσ

≤ lim inf
n→∞

∫ s

0

distV∗{−Π∗nDzI(tn(s), zn(s)), ∂(Rn ◦Πn)(0)} dσ

so that, altogether, Lemma 3.2.16 yields

I(t̂(s), ẑ(s)) +

∫ s

0

R(ẑ′(σ)) + ‖ẑ′(σ)‖V distV∗{−DzI(t̂(σ), ẑ(σ)), ∂R(0)} dσ

≤ lim inf
n→∞

(
I(t̂n(s), ẑn(s))

+

∫ s

0

Rn(ẑ′n(σ)) + distV∗{−Π∗nDzI(tn(s), zn(s)), ∂(Rn ◦Πn)(0)} dσ
)

= lim inf
n→∞

(
I(t̂n(0), ẑn(0)) +

∫ s

0

∂tI(t̂n(σ), ẑn(σ)) t̂′n(σ) dσ +

∫ s

0

rn(σ) dσ
)
.

In order to eventually arrive at the energy inequality (2.4.17), we investigate the three terms on
the right-hand side separately. Due to the continuity of I and the strong convergence of ẑn(0) to
z0 in Z, we have I(t̂n(0), ẑn(0)) = I(0, ẑn(0)) → I(0, z0). In addition, exploiting (3.2.58) from
Lemma 3.2.16, it holds

lim sup
n→∞

∫ s

0

rn(σ) dσ ≤ 0.

Finally, concerning the second term, we make use of assumption (If3) and the convergences (3.2.64)
and (3.2.66), which guarantees that for almost all s ∈ [0, S] it holds

∂tI(t̂n(s), ẑn(s)) = ∂tf(t̂n(s), ẑn(s))→ ∂tf(t̂(s), ẑ(s)).

On account of assumption (If1), i.e., |∂tf(t̂n(s), ẑn(s))| ≤ µ(‖ẑn(s)‖Z + 1), and the L∞(0, S;Z)-
bound for ẑn, we may therefore apply Lebesgue’s dominated convergence theorem to obtain

∂tI(t̂n(s), ẑn(s))→ ∂tI(t̂(s), ẑ(s)) in L1(0, S).
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Overall, exploiting the weak-∗ convergence of t̂′n in L∞(0, S), we end up with

I(t̂(s), ẑ(s)) +

∫ s

0

R(ẑ′(σ)) + ‖ẑ′(σ)‖V distV∗{−DzI(t̂(σ), ẑ(σ)), ∂R(0)} dσ

≤ I(0, z0) +

∫ s

0

∂tI(t̂(σ), ẑ(σ)) t̂′(σ) dσ, (3.2.72)

which is the desired energy inequality. Taking into account that ẑ ∈ H1(0, S;Z), it follows from
Lemma 2.4.6 that the sole inequality (3.2.72) is already equivalent to the energy identity (2.4.6),
which completes the proof.

Unfortunately, we do not obtain the nondegeneracy let alone normalization of the limit (t̂, ẑ)

here. The main problem is the fact that the weak convergence of ẑn in H1(0, S;Z) from (3.2.65) is
not sufficient in order to pass to the limit in (3.2.53), that is, t̂′n(s) + ‖ẑ′n(s)‖ = 1, and still obtain
equality in the end. In [MZ14, EM06], the authors therefore provide sufficient conditions, which
guarantee the nondegeneracy of the limit function. Moreover, in [EM06], a condition is given, which
also preserve the normalization. Nevertheless, as shown in Lemma A.4.3, it is always possible to
reparameterize a parametrized solution and obtain in order to normalize it. Regardless of this fact,
we note that the above Theorem, while dedicated to the convergence analysis of the fully discrete
local stationarity scheme, also provides an existence result for parametrized solutions in case of an
unbounded dissipation R (choose Zh = Z). Moreover, it is to be expected that relaxations on the
form of the energy I and the regularity of the time-dependent part (e.g., Dzf(t, z) ∈ Z∗ instead
of V∗) are possible, if the energy still fulfills some Gårding-like inequality, i.e.,

〈DzI(t, z1)−DzI(t, z2), z1 − z2〉Z∗,Z ≥ α‖z1 − z2‖2Z − λ‖z1 − z2‖2V .

Indeed, the specific form of I and the additional regularity of its components Dzf and DzF are
mainly used in order to get this Gårding-like inequality (see, e.g., (3.2.34)-(3.2.35) to find (3.2.37))
and in order to obtain the weak-convergence of the spatial approximations in Lemma 3.2.11.
However, this is purpose of further research.

3.2.5 Two examples

The purpose of this last section within Chapter 3 is to present two different examples fitting into
the setting given in Section 3.1. The first of these possesses the classical semilinear structure for
the energy, which has also been investigated in various papers on parametrized solutions, see, e.g.,
[Mie11, MZ14, KT18, Kne19]. More specifically:

Semilinear example. We consider a bounded domain Ω ⊂ Rd with d = 2, 3 and choose
the spaces Z = H1

0 (Ω), V = L2(Ω), and X = L1(Ω). For the operator V : L2(Ω) → L2(Ω)∗

corresponding to the viscosity part we use the Riesz isomorphism and, moreover, we let

A = −∆ : H1
0 (Ω)→ H−1(Ω),
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the usual Laplace operator, such that the coercivity constant α equals Poincaré’s constant. For
the nonlinear part F we choose a scaled version of the well-known double well potential, i.e.,

F(z) := 48

∫
Ω

(
1− z(x)2

)2 dx,

which is nonnegative and twice Fréchet-differentiable as a functional in L4(Ω) and, via Sobolev
embeddings, also in H1

0 (Ω) with

DzF(z)h = −192

∫
Ω

(1− z(x)2)z(x)h(x) dx.

Due to H1
0 (Ω) ↪→ L6(Ω), the derivative can be extended to a linear functional on L2(Ω) and is

continuous in these spaces. Moreover, the second derivative is given by

D2
zF(z)[h, v] = −192

∫
Ω

(1− 3z(x)2)v(x)h(x) dx.

Using once again Sobolev embeddings and Hölder’s inequality, one thus finds

|D2
zF(z)[v, h]| ≤ C

(
1 + ‖z‖2H1(Ω)

)
‖v‖H1(Ω) ‖h‖L2(Ω) ∀ z, v ∈ H1

0 (Ω), h ∈ L2(Ω),

which is (IF1) with q = 2. Lastly, we let the time-dependent part f(t, z) itself only depend on
some external load `(t, x) with ` ∈ C1(0, T ;L2(Ω)), so that

f(t, z) = 〈`(t, ·), z〉V =

∫
Ω

`(t, x)z(x) dx, t ∈ [0, T ].

It is easy to see that f(t, z) satisfies the regularity requirements in (If1)–(If3). Overall, we have

I : [0, T ]×H1(Ω)→ R, I(t, z) =

∫
Ω

|∇z(x)|2 + 48(1− z(x)2)2 − `(t, x)z(x) dx.

To complete this setting, we set the dissipation functional to the L1-norm, i.e.,

R(v) = ‖v‖L1(Ω),

so that (R3) is fulfilled with ρ = 1. Hence, all the assumptions from Section 3.1 are satisfied and we
will come back to this example in Section 4.1 about the actual realization of the local stationarity
scheme. As a second example we consider a rate-independent damage model as described in
[MS19c, KRZ13].

Damage Model. In this case, we let Ω ⊂ R2 be a domain that corresponds to an elastic
body. Within the time interval [0, T ], time dependent boundary conditions uD as well as external
boundary and volume forces ` are applied, which lead to a certain displacement u and possibly
even to a damage, represented by the variable z, of the body. Usually, z is supposed to take
values in [0, 1] whereby z(t, x) = 0 means the body is completely sound and, correspondingly,
z(t, x) = 1 means the body is comletely damaged. With view to the energy functional, we define
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U = {v ∈ H1(Ω,R2) : v|ΓD = 0}, Z = H1(Ω), V = L2(Ω) and set E : [0, T ]× V ×Z → R as

E(t, u, z) =
1

2

∫
Ω

|∇z|2 dx+

∫
Ω

f(z) dx

+
1

2

∫
Ω

g(z)Cε(u+ uD(t)) : ε(u+ uD(t)) dx− 〈`(t), u〉U

= I1(z) + E2(t, u, z).

where C is the usual elasticity tensor and ε(u) = 1
2 (∇u + ∇u>) the linearized strain tensor.

Moreover, the dissipation R : L1(Ω)→ [0,∞] is given by

R(v) =

κ
∫

Ω
|v(x)| dx, if v ≥ 0 a.e. in Ω,

+∞, else,

with the so-called fracture toughness κ > 0. The aim at this point is not to give a detailed descrip-
tion of the model, let alone prove the subsequent statements, but rather provide an application-
oriented example that fits into the general setting from Section 3.1. The interested reader is
therefore referred to the elaborations in [MS19c, KRZ13]. However, let us mention that the func-
tion g, which somehow represents the preservation of the elasticity of the material depending on
the state of damage, is supposed to fulfill:

g ∈ C2(R), with g′, g′′ ∈ L∞(R), and ∃γ1, γ2 > 0 : ∀z ∈ R : γ1 ≤ g(z) ≤ γ2.

In particular, the lower bound g ≥ γ1 > 0 is to be noted here. It implies that even if the material
is completely damaged, it does not lose all its rigidity. This is often referred to as partial damage
model. Now, in order to bring this model into the form in (I0), it is convenient to reduce the
system to the damage variable. This means that we require the displacement u(t) to minimize the
energy E(t, ·, z(t)) at every time point t ∈ [0, T ], i.e.,

u(t) ∈ arg min{E(t, v, z(t)) : v ∈ U}. (3.2.73)

Hence, we define I2 : [0, T ]×Z → R by I2(t, z) = infv∈U E2(t, v, z) and let I(t, z) = I1(z)+I2(t, z).
Taking for example f(z) = (1−z)2, which is a common choice in this context, we observe that I1 is
exactly of the form 1

2 〈Az, z〉+F(z). Concerning the assumptions (If1)-(If3) on the time-dependent
part, we rely on the following result.

Lemma 3.2.20 ([KRZ13, Lem. 2.4, Lem. 2.6, Lem. 2.8 and Cor. 2.9]). Let the assumptions
from [KRZ13, Lem. 2.8] hold and assume that p > 4 in [KRZ13, Eq. (2.15)]. Then there exist
constants C1, C2, c3 > 0 such that

I2(t, z) ≥ −C1 and |∂tI2(t, z)| ≤ C2 (3.2.74)

as well as

〈DzI2(t1, z1)−DzI2(t2, z2), v〉L2(Ω) ≤ c3(|t2 − t1|+ ‖z1 − z2‖Lr(Ω))‖v‖L2(Ω).
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for every r ∈ [ 6p
p−4 ,∞). Moreover, for any sequences tk → t and zk ⇀ z in Z, it holds

DzI2(tk, zk) ⇀ DzI2(t, z) in Z∗, (3.2.75)

I2(tk, zk)→ I2(t, z) and ∂tI2(tk, zk)→ ∂tI2(t, z). (3.2.76)

This guarantees that the time-dependent part f(t, z) = −I2(t, z) indeed complies with the
assumptions in Section 3.1. Unfortunately, the assumption on the exponent p in the above lemma,
which relates to the integrability of the minimizer in (3.2.73), is rather restrictive and results in
this direction have only been obtained under additional conditions, see also [KRZ13, Sec. 2.4].
Nevertheless, relying on [KRZ13, Cor. 2.10], the energy I in this example fulfills the already
mentioned Gårding-like inequality (see end of Section 3.2.4)

〈DzI(t, z1)−DzI(t, z2), z1 − z2〉Z∗,Z ≥ α‖z1 − z2‖2Z − λ‖z1 − z2‖2V

for any p > 2. On that basis, we expect that a convergence result in the sense of Theorem 3.2.19
can still be obtained. However, since it was not the main purpose of this thesis to incorporate the
model above into the setting from Section 3.1, this gives rise to further research.

3.3 A priori error analysis

Theorem 3.2.19 above shows that the local incremental stationarity scheme LISS provides approxi-
mate parametrized solutions whose (weak) limits converge to exactly this type of solution as τ ↘ 0.
In this sense, the described algorithm is thus consistent. Nevertheless, let us mention that there
exist other discretization methods to approximate parametrized solutions, such as relaxed local
minimization schemes as proposed in [ACFS17] or alternating minimization schemes, if a second
variable enters the energy functional, as for example in the damage model from Section 3.2.5, see
also, e.g., [Rou15, KN17, Alm20]. Moreover, time discretization and viscous regularization can be
coupled to approximate a parametrized solution, see [KS13, MRS16]. For a detailed overview, the
reader is referred to [Kne19]. However, when it comes to rates of convergence for discretizations
using either (3.0.1) or LISS, the literature becomes rather scarce. Since in the case of nonconvex
energies the (parametrized) solutions of (RIS) are, in general, not unique (not even locally) as
there might be a whole continuum of solutions, one can, in general, hardly expect any a priori
estimates. The situation changes if one turns to uniformly convex energies. In this case, however,
there is no need for a localized scheme as in (3.0.1) so that one can drop the additional constraint
in (3.0.1a) and simply use the a time update of the form tk = tk−1 + τ . The method arising in this
way is the global incremental minimization scheme from (3.0.2) and can be shown to converge to
the global energetic solution, which is unique in case of a uniformly convex energy, see the proof
of Theorem 2.2.2. Additionally, in [MT04, MPPS10], the authors show that the error between the
discrete solution of this scheme and the global energetic solution is of order O(

√
τ). This result has

been improved in [Mie06] and, slightly more general, in [Bar14] to rates of order O(τ) for the case
of a quadratic and coercive energy. An energy functional with these properties arises for instance
in case of quasistatic elastoplasticity with linear kinematic hardening, where several convergence
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results have been obtained by various authors, see, e.g., [HR99, AC00] and the references therein.
Recently, in [RSS17], the authors provide an a priori error estimate for the global minimization
scheme in case of a semilinear and uniformly convex energy including a spatial discretization.

In contrast, to the best of the author’s knowledge, there exist no such convergence results for
the local incremental stationarity scheme in (3.0.1), not even in the case of a uniformly convex
energy. The ultimate goal of the present Section 3.3 is therefore exactly this, to derive an a priori
estimate for the approximations based on LISS. Moreover, we provide an a priori estimate if the
energy functional is only locally uniformly convex along a given solution trajectory. At this point,
the local incremental stationarity scheme turns out to be superior to the global minimization one,
since the latter, in general, does not satisfy such an a priori estimate as we will demonstrate by
means of a counterexample. Note that, however, we do not incorporate a spatial discretization in
the a priori analysis.

The plan of this section looks as follows: First of all, we will convince ourselves, by means of
a simple one-dimensional example, that, indeed, one cannot expect any convergence result for the
whole sequence of discrete solutions without any further restrictions on the energy such as (local)
uniform convexity. Hence, we will subsequently state some additional assumptions on the involved
quantities and provide some basic estimates that are frequently used throughout the convergence
analysis. The following Sections 3.3.3 and 3.3.4 are then devoted to the derivation of the a priori
estimates. We start by considering a semilinear energy functional with the additional assumption
that the driving force is Lipschitz continuous with a sufficiently small Lipschitz constant. Here, we
derive a priori estimates of optimal order, first in the case that the energy is (globally) uniformly
convex and afterwards also for the case of local uniform convexity. In Section 3.3.4, we then
consider slightly more general energies in the form of (I0) and also drop the smallness assumption
on the Lipschitz constant. Despite of a global uniform convexity condition, we do not obtain
the optimal order of convergence in this case, see Remark 3.3.18 below. The actual numerical
experiments of our theoretical findings are illustrated in Chapter 4, particularly Section 4.1.3 and
Section 4.2. Lastly, it is to be noted that several of the subsequent results have already been
published in [MS20], particularly the ones in Sections 3.3.1–3.3.3.

3.3.1 A counterexample in the case of a nonconvex energy

Before we actually start our error analysis, let us take a look at a first numerical example for the
local minimization algorithm, which illustrates that one cannot expect any convergence result going
beyond Theorem 3.2.19 without further assumptions. For this example, we set Z = V = X = R
as well as

R(v) = |v| and I(t, z) =
1

2
z2 + F(z)− `(t)z (3.3.1)

with

F(z) = 2|z|3 − 5/2 z2 + 1 and `(t) = −24(t− 1/4)2 + 5/3.
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We already considered this type of energy functional several times in Chapter 2, particularly in
order to demonstrate that solutions might be discontinuous in the case of nonconvex energies.
Nevertheless, the lack of convexity also implies that solutions are, in general, not unique, see, e.g.,
Example 2.6.2. However, it is not clear beforehand, whether or not the discrete approximations
may not actually converge to some particular parametrized solution (potentially even with some
rate) or not. The following example demonstrates that this is, in general, not the case. For
z0 = −1/3, straightforward calculations show that

z1(t) ≡ −1/3 and z2(t) =

{
−1/3, t ∈ [0, 1/4),

1/3(1 +
√

2), t ∈ [1/4, 1/2],

are BV-solutions of the rate-independent system (3.3.1). The two numerical results depicted in
Figure 3.3.1, which can be obtained by the algorithm LISS, show that, although z1 is continuous,
the discrete solution approximates either z1 or z2 depending on the choice of the parameter τ . As
indicated above, it is therefore not clear if any of the solutions is preferred by the algorithm, without
any further restrictions on the energy functional, particularly some kind of (uniform) convexity.
In addition, an a priori error estimate can hardly be expected. As a consequence of this example,
we will impose additional assumptions on the energy to derive a priori error estimates. On the
one hand, we will assume that the energy is uniformly convex (Sections 3.3.3 & 3.3.4) and later on
generalize our results for the case of locally uniformly convex energies (Section 3.3.3).
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Figure 3.3.1: Approximations of two different parametrized solutions. Depending on the choice of
τ either of two solutions is approximated. The set of local stability, i.e., ∪t∈[0,0.5]S(t), is depicted
in gray.

3.3.2 Additional assumptions

As already mentioned above, we need to sharpen the assumptions on the quantities in Section 3.1.
This means that, in addition to (I0),(If1)-(If3) and (IF1)-(IF2), we require:

Spaces. Concerning the underlying spaces, we stick with the Banach space X and the Hilbert
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spaces Z,V whereby Z
c,d
↪→ V ↪→ X . However, for convenience, we will assume w.l.o.g. that the

embedding constant cZ of Z → V fulfills cZ = 1. Otherwise only the constants in the corresponding
estimates will change. For the same reason, we will use the natural norm in V rather than V as
carried out in Section 3.2. The Riesz isomorphism associated with V is denoted by JV : V → V∗.

Energy. For the energy functional we also maintain the semilinear form:

I : [0, T ]×Z → R, I(t, z) =
1

2
〈Az, z〉Z∗,Z + F(z)− f(t, z) .

Still, A ∈ L(Z,Z∗) is a self-adjoint and coercive operator but concerning f and F we additionally
assume that for all r > 0 there exists CF (r) ≥ 0 such that for all z1, z2 ∈ BZ(0, r) it holds

〈
[
D2
zF(z1)−D2

zF(z2)
]
v, v〉Z∗,Z ≤ C(r)‖z1 − z2‖Z‖v‖2Z . (3.3.2)

Moreover, we require the same property to hold for f , i.e., f(t, ·) ∈ C2(Z;R) and

〈
[
D2
zf(t, z1)−D2

zf(t, z2)
]
v, v〉Z∗,Z ≤ Cf (r)‖z1−z2‖Z‖v‖2Z ∀t ∈ [0, T ], ∀z1, z2 ∈ BZ(0, r) (3.3.3)

for some constant Cf (r) ≥ 0 depending only on the radius r. Additionally, we suppose that

|∂tf(t, z1)− ∂tf(t, z2)| ≤ c‖z1 − z2‖Z ∀z1, z2 ∈ Z, (3.3.4)

for all t ∈ [0, T ] and some constant c ≥ 0. Note that these assumptions imply that I(t, ·) ∈
C2,1
loc (Z;R), see Definition 1.0.3. Lastly, we require I to be (at least locally) uniformly convex,

see the Assumption GCκ and Assumption LCκ below. This will be indicated at the appropriate
places, though.

Initial data. Finally, we assume that the initial state z0 satisfies z0 ∈ Z and 0 ∈ ∂R(0) +

DzI(0, z0), i.e., z0 is locally stable.

Remark 3.3.1. Due to the convexity of I(t, ·) and the assumption on the initial state z0, i.e.,
0 ∈ ∂R(0) + DzI(0, z0), there holds I(0, z0) ≤ I(0, z) +R(z − z0) for all z ∈ Z so that z1 = z0

is the unique minimizer of (3.0.1a), and consequently the first iterate of the local stationarity
algorithm always equals the initial state. This also entails t1 = t1 − t0 = τ . We will use this fact
at some places throughout the thesis. Note that the uniform convexity of I(0, ·) on BZ(z0, τ) is
perfectly sufficient for the above argument, which will become important in Section 3.3.3 below.

The convexity of I moreover implies that any iterate zk of LISS is in fact a minimizer of the
(local) minimization in (3.0.1). The scheme in LISS thus turns into the local minimization scheme
(3.0.1), which is why we will subsequently use the terms local minimizer and locally minimal in
order to denote a point satisfying the stationarity conditions in (3.3.6a)-(3.3.6d).

Before we start with our error analysis, let us recall three essential results from the previous
Section 3.2 that are frequently used in what follows (without the additional spatial discretization;
i.e., we have Rh = R, Zh = Z and Πh = Id):
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• The iterates of Algorithm 3.0.1 fulfill (see Lemma 3.2.6):

sup
τ>0, k∈N

‖zk‖Z <∞. (3.3.5)

This particularly implies that zk ∈ BZ(0, r0) for all k ∈ N for some r0 independent of τ .

• Let k ≥ 1 and zk be an arbitrary solution of (3.0.1a) with associated tk given by (3.0.1b).
Then the following optimality properties are satisfied, see also Lemma 3.2.2: There exists a
Lagrange multiplier λk ≥ 0 such that

λk(‖zk − zk−1‖V − τ) = 0, (3.3.6a)

τ distV∗{−DzI(tk−1, zk), ∂R(0)} = λk‖zk − zk−1‖2V , (3.3.6b){
R(zk − zk−1) + τ distV∗{−DzI(tk−1, zk), ∂R(0)}

= 〈−DzI(tk−1, zk), zk − zk−1〉Z∗,Z ,
(3.3.6c)

R(v) ≥ −〈λkJV(zk − zk−1) +DzI(tk−1, zk), v〉V∗,V ∀v ∈ V. (3.3.6d)

In particular
0 ∈ ∂R(zk − zk−1) + λkJV(zk − zk−1) +DzI(tk−1, zk). (3.3.7)

In addition, (3.3.6a) and (3.3.6b) give

λk =
1

τ
distV∗{−DzI(tk−1, zk), ∂R(0)}. (3.3.8)

• From Proposition 3.2.12, particularly (3.2.44), we also have: For every τ > 0, there exists an
index N(τ) ∈ N such that tN(τ) ≥ T . Moreover, it holds

N(τ)∑
k=1

‖zk − zk−1‖Z ≤ CΣ (3.3.9)

for some CΣ = CΣ(α,F , |`|Lip, z0, T ) > 0 independent of τ .

As a consequence thereof, we henceforth denote by N(τ) the number of necessary iterates to reach
the final time T at fineness τ .

Remark 3.3.2. In order to keep the following arguments concise, we will proceed with the it-
eration for tN(τ) until we find zN(τ)+n ∈ Z, which is locally stable again, i.e., 0 ∈ ∂R(0) +

DzI(tN(τ), zN(τ)+n). Since, tN(τ) might be strictly larger than T , we extend f(·, z) onto [0,∞) by
constant continuation, i.e., f(t, z) = f(T, z) for all t ≥ T and z ∈ Z. In Lemma 3.3.8 below, we
will see that, under suitable assumptions, a locally stable point is found after a finite number of
steps, which is bounded independent of τ . Eventually, we denote N̂(τ) := N(τ) + n.

As a preliminary point, before we start with the basic estimates used in this section, let us
briefly recall the definition of the interpolants for the approximation of parametrized solutions as
given in (3.2.49):



3.3. A priori error analysis 88

For s ∈ [sk−1, sk), the continuous and piecewise affine interpolants are defined through

ẑτ (s) := zk−1 +
(s− sk−1)

τ
(zk − zk−1), t̂τ (s) := tk−1 +

(s− sk−1)

τ
(tk − tk−1). (3.3.10)

We moreover define, again, the artificial end time Sτ as that point where t̂ reaches the end time
T , i.e., it holds

t̂(Sτ ) = T, sN(τ)−1 < Sτ ≤ sN(τ) and Sτ ≤ CS , (3.3.11)

whereby the boundedness of Sτ is easily obtained following the estimates in (3.2.48) and exploiting
(3.3.9), see also Figure 3.2.1.

Basic estimates

As mentioned above, large parts of the subsequent error analysis are based on the following

Assumption GCκ (κ-uniform convexity). The energy functional I is κ-uniformly convex, that
is, there exists a κ > 0 such that, for all t ∈ [0, T ] and all z, v ∈ Z, it holds 〈D2

zI(t, z)v, v〉Z∗,Z ≥
κ‖v‖2Z .

This property especially implies that

〈DzI(t, z2)−DzI(t, z1), z2 − z1〉Z∗,Z ≥ κ‖z2 − z1‖2Z ∀z1, z2 ∈ Z.

Later on, in Section 3.3.3, we will relax this assumption and turn to locally uniformly convex
energies, see Assumption LCκ below.

We now state some basic estimates, which will be used at several points in the subsequent
analysis. The first of these already occurred in a very similar form in Lemma 3.2.8 and does not
require any kind of convexity.

Lemma 3.3.3. There exists CF,r0 > 0, such that for all z1, z2 ∈ BZ(0, r0) it holds that

|〈DzF(z1)−DzF(z2), v − w〉V∗,V | ≤ CF,r0 ‖z1 − z2‖Z ‖v − w‖V

for all v, w ∈ Z.

Proof. The result is a direct consequence of the growth-condition on D2
zF . Let v, w ∈ Z be

arbitrary. Using the aforementioned growth condition in (IF1) together with the embedding Z ↪→ V
yields

|〈DzF(z1)−DzF(z2), v − w〉V∗,V | ≤ C(1 + rq0) ‖z1 − z2‖Z ‖v − w‖V .

Taking CF,r0 = C(1 + rq0) we end up with the assertion.

Remark 3.3.4. In what follows, Lemma 3.3.3 is commonly used with z1, z2 being iterates of the
local stationarity scheme. Hence, Lemma 3.2.6, i.e., the uniform boundedness of the iterates (see
(3.3.5)), allows to specialize Lemma 3.3.3 as follows: There exists a constant C > 0 such that, for
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all iterates zk, zj ∈ Z it holds

|〈DzF(zk)−DzF(zj), v − w〉V∗,V | ≤ C ‖zk − zj‖Z ‖v − w‖Z .

We proceed with the following result, whose proof is more or less a direct consequence of the
κ-uniform convexity of I.

Lemma 3.3.5. Under the Assumption GCκ we have for all iterates k ∈ N, k ≤ N(τ):

0 ≥ κ‖zk+1 − zk‖2Z − ν(tk − tk−1)‖zk+1 − zk‖V + (λk+1 − λk)τ2. (3.3.12)

Proof. First, we observe that, due to the complementarity condition in (3.3.6a), it holds that
λk‖zk − zk−1‖2V = λkτ

2. Now, by inserting (3.3.6b) in (3.3.6c) and writing the resulting equation
for the iteration k + 1, we obtain

R(zk+1 − zk) = 〈−DzI(tk, zk+1), zk+1 − zk〉Z∗,Z − λk+1τ
2. (3.3.13)

Testing the inequality (3.3.6d) with v = zk+1 − zk yields

R(zk+1 − zk) ≥ 〈−DzI(tk−1, zk), zk+1 − zk〉Z∗,Z − λk‖zk − zk−1‖V‖zk+1 − zk‖V
≥ 〈−DzI(tk−1, zk), zk+1 − zk〉Z∗,Z − λkτ2.

Subtracting hereof the terms in (3.3.13), exploiting the κ-uniform convexity of I(t, ·) and estimate
(If2), we obtain

0 ≥ 〈DzI(tk, zk+1)−DzI(tk, zk), zk+1 − zk〉Z∗,Z
+ 〈DzI(tk, zk)−DzI(tk−1, zk), zk+1 − zk〉Z∗,Z + (λk+1 − λk)τ2

≥ κ‖zk+1 − zk‖2Z − ν(tk − tk−1)‖zk+1 − zk‖V + (λk+1 − λk)τ2, (3.3.14)

which was claimed.

Remark 3.3.6. Revisiting the proof of Lemma 3.3.5, we observe that the κ-uniform convexity is
only necessary in order to obtain the last estimate in (3.3.14). Since we will take advantage of this
fact in Section 3.3.3, it is useful to state this estimate explicitly here for reference purposes: For
all k ∈ N, k ≤ N(τ), it holds (without assuming that I is uniformly convex) that

0 ≥ 〈DzI(tk, zk+1)−DzI(tk, zk), zk+1 − zk〉Z∗,Z
+ 〈DzI(tk, zk)−DzI(tk−1, zk), zk+1 − zk〉Z∗,Z + (λk+1 − λk)τ2. (3.3.15)

Finally, the uniform convexity of the energy functional allows us to estimate the difference of
two consecutive iterates with respect to the difference in the time points.

Lemma 3.3.7. Under Assumption GCκ it holds for any k ∈ N with k ≤ N(τ) that

0 ∈ ∂R(0) +DzI(tk−1, zk) =⇒ ‖zk+1 − zk‖Z ≤
ν

κ
(tk − tk−1).
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Proof. Let 0 ∈ ∂R(0) + DzI(tk−1, zk), which directly implies that λk = 0, due to (3.3.6a) and
(3.3.6b). Thanks to Lemma 3.3.5 and the nonnegativity of the multiplier λk+1, we thus arrive at
κ‖zk+1−zk‖2Z−ν(tk−tk−1)‖zk+1−zk‖Z ≤ 0, where we used the embedding Z ↪→ V with constant
cZ = 1.

3.3.3 Linear time dependence in energy functional

For the first part of this a priori analysis we let

f : [0, T ]×Z → R, f(t, z) = 〈`(t), z〉V∗,V

for some ` ∈W 1,∞(0, T ;V∗) whose Lipschitz constant is denoted by |`|Lip. By the structure of f ,
it is easy to see that (3.3.3) is valid with Cf (r) = 0. In combination with assumption (3.3.2) this
implies that the energy functional I indeed fulfills for all z1, z2 ∈ BZ(0, r)

〈
[
D2
zI(t, z1)−D2

zI(t, z2)
]
v, v〉Z∗,Z ≤ C(r)‖z1 − z2‖Z‖v‖2Z (3.3.16)

with a constant C(r) > 0 only depending on the radius r > 0 and particularly not on the time
t. Note that, again, this induces I(t, ·) ∈ C2,1

loc (Z;R) which is the necessary regularity in order
to obtain existence and uniqueness results for differential solutions, see also Definition 1.0.3 and
Theorem 2.2.2. Moreover, the special structure of f also allows us to refine the estimate (If2) as
follows:

|〈Dzf(t1, z1)−Dzf(t2, z2), v〉V∗,V | = 〈`(t1)− `(t2), v〉V∗,V ≤ |`|Lip |t1 − t2| ‖v‖V . (3.3.17)

Hence, f(t, z) = 〈`(t), z〉V∗,V fulfills (If2) with ν = |`|Lip. Clearly, assumptions (If1) and (If3) as
well as (3.3.4) also hold true.

Globally uniformly convex energy functional

We are now in the position to actually start our error analysis. We begin with the case of a
uniformly convex energy, see Assumption GCκ. Beside this, we additionally assume:

Assumption ALip (Bound on the Lipschitz constant of the driving force).
There exists δ ∈ (0, κ] so that |`|Lip ≤ κ− δ.

We will drop this condition in Section 3.3.4 for the price of losing the optimal rate of conver-
gence, see Theorem 3.3.17 below.

The basic idea of our convergence proof is to first transform the affine interpolant back into the
physical time and then to compare it with the unique differential solution of the rate-independent
system (RIS), whose existence is ensured by Theorem 2.2.2. In order to guarantee that the back-
transformation is well-defined and fulfills some upper bounds, we need the subsequent lemma.
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Lemma 3.3.8. Let Assumption GCκ and Assumption ALip be fulfilled. Then it holds that

‖zk+1 − zk‖Z ≤
κ− δ
κ

(tk − tk−1) ∀ 1 ≤ k ≤ N(τ), (3.3.18)

and (1− κ−δ
κ ) = δ

κ ≤ t̂
′
τ (s) ≤ 1 for almost all s ∈ [0, Sτ ]. Moreover, it holds N̂(τ) = N(τ) + 1.

Proof. We argue by induction. Since z1 = z0 holds by Remark 3.3.1, we have that ∂R(z1 − z0) +

DzI(t0, z1) = ∂R(0) +DzI(t0, z0) 3 0 so that Lemma 3.3.7 and Assumption ALip imply

‖z2 − z1‖Z ≤
|`|Lip
κ

(t1 − t0) ≤ κ− δ
κ

(t1 − t0),

which is (3.3.18) for k = 1. Now, let k ≥ 2 be arbitrary and assume that (3.3.18) holds for k − 1,
i.e., ‖zk − zk−1‖Z ≤ κ−δ

κ (tk−1 − tk−2) < τ . Consequently, the complementarity conditions in
(3.3.6a) and (3.3.7) imply

0 ∈ ∂R(zk − zk−1) +DzI(tk−1, zk) ⊂ ∂R(0) +DzI(tk−1, zk).

Thus, by applying again Lemma 3.3.7 and Assumption ALip, we obtain (3.3.18) for the next
iteration.
For s ∈ (0, τ), the lower bound on t̂′(s) follows immediately from t1−t0 = τ , see Remark 3.3.1. For
s > τ , it is a direct consequence of (3.3.18), the embedding Z ↪→ V, and the time update formula
(alg3). Finally, by (3.3.18) and the complementarity condition (3.3.6a), we have λN(τ)+1 = 0, so
that indeed N̂(τ) = N(τ) + 1 thanks to (3.3.6b).

We are now in the position to prove our main result on the convergence rate for parametrized
solutions. By the lemma above, there exists a unique inverse function ŝτ (t) : [0, T ] 7→ [0, Ŝτ ] of t̂τ .
We will then denote by zτ (t) := ẑτ (sτ (t)) the retransformed discrete parametrized solution (see
also end of the proof of Theorem 3.3.9).

Theorem 3.3.9. Let Assumption GCκ and Assumption ALip hold. Moreover, assume that ` ∈
W 1,∞(0, T ;V∗) with `′ ∈ BV (0, T ;V∗). Then the sequence {zτ}τ>0 of retransformed discrete
parametrized solutions satisfies the a priori error estimate

‖zτ (t)− z(t)‖Z ≤ K τ ∀t ∈ [0, T ], (3.3.19)

where K = K(α, κ, `, z0, T,F , ‖A‖L(Z,Z∗)) > 0 is independent of τ .

Proof. For convenience of the reader we split the rather lengthy proof into eight parts, which are
as follows:

0. First, we will see that, due to the uniform convexity of the energy, (RIS) even admits a
unique differential solution and not only a parametrized one.

1. Based on Lemma 3.3.8, we can transform the piecewise affine interpolants introduced above
into the physical time. This allows us to compare the discrete solution with the exact (dif-
ferential) solution, which, of course, also “lives” in the physical time. The error analysis,
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however, uses a slightly different piecewise affine interpolant, denoted by z̃τ providing a
certain shift in the time steps.

2. In analogy to [MT04], we introduce a quantity γ(t), which dominates the pointwise error
‖z̃τ (t) − z(t)‖Z . This error measure enables us to deal with uniformly convex energy func-
tionals instead of just quadratic and coercive ones.

3. The error measure is essentially estimated by two contributions, denoted by E(t) and R(t).
Both contributions depend only differences of DzI evaluated at different time points and
different discrete solutions.

4./5. E(t) and R(t) are estimated by using the smoothness properties of F and the load `. In
addition, the uniform convexity of I plays an essential role for the estimate of R. In this
way, one obtains an estimate of O(τ2) for the L1-norms of E and R.

6. Together with Gronwall’s lemma, this estimate yields a bound of O(τ) for the error indicator
γ and thus also for the error ‖z̃τ (t)− z(t)‖Z .

7. Finally, we relate ‖z̃τ (t) − z(t)‖Z with the auxiliary interpolant z̃τ to the “true error” con-
taining the “correct” interpolant zτ = ẑτ ◦ sτ as introduced above.

Step 0: Differential solution
First of all, we want to exploit Theorem 2.2.2 in order to obtain a unique differential solution of the
rate-independent system (see also Remark 2.2.3). To this end, we need to verify assumptions (2.2.2)
and (2.2.3b). Clearly, (2.2.2) is satisfied due to the structure of I and the assumptions on `, see also
(3.3.17). Moreover, since I complies with the requirements in Section 3.1, the (strong,weak)-weak
convergence of DzI, i.e., (2.2.3b), is also valid in this case; cf. (3.1.1). Hence, there exists a unique
(differential) solution z ∈W 1,∞(0, T ;Z) of the rate-independent system. In particular, it holds for
almost all t ∈ [0, T ] that 0 ∈ ∂R(z′(t)) +DzI(t, z(t)), which can be reformulated as (see (2.2.10)):

∀v ∈ Z : R(v) ≥ 〈−DzI(t, z(t)), v〉Z∗,Z ∀t ∈ [0, T ], (3.3.20a)

R(z′(t)) = 〈−DzI(t, z(t)), z′(t)〉Z∗,Z f.a.a. t ∈ [0, T ]. (3.3.20b)

Since z ∈W 1,∞(0, T ;Z), it additionally holds that

‖z′(t)‖Z ≤ C f.a.a. t ∈ [0, T ]. (3.3.21)

Step 1: Construction of interpolants in the physical time
Given t ∈ [tk−1, tk) with k ≤ N(τ), we define the following affine interpolant

z̃τ (t) = zk +
t− tk−1

tk − tk−1
(zk+1 − zk). (3.3.22)

Note that [tk−1, tk) is nonempty and that λk = 0 due to Lemma 3.3.8. Thus, from the stationarity
condition, i.e., (3.3.7), we know that 0 ∈ ∂R(z̃′τ (t)) + DzI(tk, zk+1). Analogously to Step 0, this
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can be reformulated as

∀v ∈ Z : R(v) ≥ 〈−DzI(tk, zk+1), v〉Z∗,Z ∀k ∈ {0, . . . , N(τ)}, (3.3.23a)

R(z̃′τ (t)) = 〈−DzI(tk, zk+1), z̃′τ (t)〉Z∗,Z f.a.a. t ∈ [0, T ]. (3.3.23b)

Exploiting Lemma 3.3.8, we additionally have

‖z̃′τ (t)‖Z ≤ C f.a.a. t ∈ [0, T ]. (3.3.24)

Step 2: Introduction of an error measure
We now basically follow along the lines of [MT04, Thm 7.4], but we have to adapt the underlying
analysis at some points. Therefore we present the arguments in detail. Let us define

γ(t) := 〈DzI(t, z̃τ (t))−DzI(t, z(t)), z̃τ (t)− z(t)〉Z∗,Z . (3.3.25)

Due to the κ-uniform convexity of I(t, ·), we have

γ(t) ≥ κ‖z̃τ (t)− z(t)‖2Z , (3.3.26)

so that γ measures the discretization error. In full analogy to [MT04, Thm 7.4], we can estimate
(see Appendix A.4)

γ̇(t) ≤ C ‖z̃τ (t)− z(t)‖2Z + 2〈DzI(t, z̃τ (t))−DzI(t, z(t)), z̃′τ (t)− z′(t)〉Z∗,Z (3.3.27)

for almost all t ∈ [0, T ]. We split the second term into two parts, namely

e1(t) := 2 〈DzI(t, z(t))−DzI(t, z̃τ (t)), z′(t)〉Z∗,Z
and e2(t) := 2 〈DzI(t, z̃τ (t))−DzI(t, z(t)), z̃′τ (t)〉Z∗,Z .

Step 3: Estimates for the error ei
Let again k ≤ N(τ) and t ∈ [tk−1, tk) be arbitrary. First, observe that due to the convexity of
∂R(0), it holds for

θ(t) =
t− tk−1

tk − tk−1

that
−(1− θ(t)) ξk−1 − θ(t) ξk ∈ ∂R(0)

with ξk−1 := DzI(tk−1, zk) and ξk := DzI(tk, zk+1). From the characterization of ∂R(0), we infer
R(v) ≥ −〈(1− θ(t)) ξk−1 + θ(t) ξk, v〉Z∗,Z for all v ∈ Z. Inserting herein v = z′(t) and subtracting
(3.3.20b), we can estimate

e1(t) = 2 〈DzI(t, z(t))− (1− θ(t)) ξk−1 − θ(t) ξk, z′(t)〉Z∗,Z
+ 2〈(1− θ(t)) ξk−1 + θ(t) ξk −DzI(t, z̃τ (t)), z′(t)〉Z∗,Z

≤ 2 ‖(1− θ(t)) ξk−1 + θ(t) ξk −DzI(t, z̃τ (t))‖Z∗‖z′(t)‖Z (3.3.28)
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for almost all t ∈ [tk−1, tk).
Next, we turn to the term e2. Similarly, we take v = z̃′τ (t) in (3.3.20a) and subtract (3.3.23b) to
obtain 0 ≥ 〈DzI(tk, zk+1)−DzI(t, z(t)), z̃′τ (t)〉Z∗,Z , from which we deduce

e2(t) ≤ 2 〈DzI(t, z̃τ (t))−DzI(tk, zk+1), z̃′τ (t)〉Z∗,Z
≤ 2〈DzI(t, z̃τ (t))− (1− θ(t)) ξk−1 − θ(t) ξk, z̃′τ (t)〉Z∗,Z

+ 2〈(1− θ(t)) ξk−1 + θ(t) ξk −DzI(tk, zk+1), z̃′τ (t)〉Z∗,Z

≤ 2 ‖(1− θ(t)) ξk−1 + θ(t) ξk −DzI(t, z̃τ (t))‖Z∗‖z̃′τ (t)‖Z
+ 2(1− θ(t))〈DzI(tk−1, zk)−DzI(tk, zk+1), z̃′τ (t)〉Z∗,Z .

(3.3.29)

Next, let us define

E(t) := ‖(1− θ(t)) ξk−1 + θ(t) ξk −DzI(t, z̃τ (t))‖Z∗ (3.3.30)

and R(t) := 2(1− θ(t))〈DzI(tk−1, zk)−DzI(tk, zk+1), z̃′τ (t)〉Z∗,Z . (3.3.31)

Then we insert (3.3.30) and (3.3.31) into (3.3.28) and (3.3.29). The resulting estimates for e1 and
e2 are, in turn, inserted in (3.3.27), which, together with the boundedness of ‖z′(t)‖Z and ‖z̃′τ (t)‖Z
by (3.3.21) and (3.3.24), yields

γ′(t) ≤ C(‖z̃τ (t)− z(t)‖2Z + E(t) +R(t)). (3.3.32)

The aim now is to provide an estimate for the additional error terms E and R, which is done next.

Step 4: Estimate for E(t)

The particular structure of I, together with the linearity of A and the definition of z̃τ gives

E(t) ≤ ‖(1− θ(t))DzF(zk) + θ(t)DzF(zk+1)−DzF ((1− θ(t))zk + θ(t)zk+1)‖Z∗

+ ‖(1− θ(t))`(tk−1) + θ(t)`(tk)− `(t)‖Z∗

=: I1(t) + I2(t).

Exploiting the regularity of F , in particular (3.3.2), we can estimate

I1(t) =
∥∥∥θ(t)(DzF(zk+1)−DzF(zk))

− θ(t)
∫ 1

0

D2
zF(zk + sθ(t)(zk+1 − zk))[zk+1 − zk] ds

∥∥∥
Z∗

≤ θ(t)‖zk+1 − zk‖Z∫ 1

0

∥∥D2
zF(zk + s(zk+1 − zk))−D2

zF(zk + sθ(t)(zk+1 − zk))
∥∥
L(Z,L(Z,Z∗)) ds

≤ C‖zk+1 − zk‖2Z ,

where we also used θ(t) ∈ [0, 1] and the boundedness of the iterates zk in Z independent of τ from
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(3.3.5). For I2, we proceed similarly by exploiting the regularity of `:

I2(t) ≤
∫ t

tk−1

∥∥∥∥`(tk)− `(tk−1)

tk − tk−1
− `′(s)

∥∥∥∥
V∗

ds ≤ τ‖`′‖BV (tk−1,tk;V∗).

Since ‖zk+1 − zk‖Z ≤ Cτ by Lemma 3.3.8, the above estimates for I1(t) and I2(t) imply for all
t ∈ [tk−1, tk) that E(t) ≤ Cτ2 + τ‖`′‖BV (tk−1,tk;V∗). Now integrating E yields

∫ T

0

E(t) dt ≤ Cτ2 + τ2‖`′‖BV (0,T ;V∗) ≤ Cτ2. (3.3.33)

Step 5: Estimate for R(t)

First, we abbreviate E(z) := 〈Az, z〉Z∗,Z + F(z) so that I(t, z) = E(z) − 〈`(t), z〉V∗,V . Moreover,
we set

∆tk := tk − tk−1, dτ `k :=
`(tk)− `(tk−1)

∆tk
, k = 1, ..., N(τ),

dτzk+1 :=
zk+1 − zk

∆tk
, dτDzEk+1 :=

DzE(zk+1)−DzE(zk)

∆tk
, k = 1, ..., N(τ),

as well as dτ `0 = 0, dτz1 = 0, and dτDzE1 = 0. Note that by Remark 3.3.2 and Lemma 3.3.8, the
quantities dτzN(τ)+1 and dτEN(τ)+1 are well-defined. By Lemma 3.3.8, we have

‖dτzk‖Z ≤ C ∀k = 1, ..., N(τ) + 1. (3.3.34)

Now, on account of −DzI(tk−1, zk) ∈ ∂R(zk−zk−1), we deduce from (3.3.23a) tested with zk−zk−1

that 0 ≥ 〈DzI(tk−1, zk) − DzI(tk, zk+1), zk − zk−1〉Z∗,Z . Inserting the definitions of z̃ and θ(t),
we thus obtain for t ∈ [tk−1, tk) that

R(t) = 2(1− θ(t))〈DzI(tk−1, zk)−DzI(tk, zk+1), z̃′τ (t)〉Z∗,Z
= 2(tk − t)〈(∆tk)−1[DzI(tk−1, zk)−DzI(tk, zk+1)],dτzk+1 − dτzk〉Z∗,Z

+ 2(tk − t)〈(∆tk)−1[DzI(tk−1, zk)−DzI(tk, zk+1)], dτzk〉Z∗,Z
≤ 2(tk − t)〈(∆tk)−1[DzI(tk−1, zk)−DzI(tk, zk+1)],dτzk+1 − dτzk〉Z∗,Z
= 2(tk − t)〈−dτDzEk+1 + dτ `k,dτzk+1 − dτzk〉Z∗,Z .

Integrating then gives

∫ T

0

R(t) dt ≤
N(τ)∑
k=1

(∆tk)2〈−dτDzEk+1 + dτ `k,dτzk+1 − dτzk〉Z∗,Z

≤ τ2

N(τ)∑
k=1

〈−dτDzEk+1, dτzk+1 − dτzk〉Z∗,Z + 〈dτ `k,dτzk+1 − dτzk〉Z∗,Z . (3.3.35)
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For the terms involving ` we have

N(τ)∑
k=1

〈dτ `k, dτzk+1 − dτzk〉V∗,V

=

N(τ)∑
k=1

〈dτ `k, dτzk+1〉V∗,V − 〈dτ `k − dτ `k−1, dτzk〉V∗,V − 〈dτ `k−1, dτzk〉V∗,V ,

where we used dτ `0 = 0. The second term is estimated analogously to I2, exploiting the regularity
of ` as well as the boundedness of ‖dτzk‖V from (3.3.34), which yields

|〈dτ `k − dτ `k−1, dτzk〉V∗,V |

=
∣∣∣ ∫ 1

0

〈`′(tk−1 + s(tk − tk−1))− `′(tk−2 + s(tk−1 − tk−2)) ds,dτzk〉V∗,V
∣∣∣

≤ ‖`′‖BV (tk−2,tk;V∗) ‖dτzk‖V
≤ C‖`′‖BV (tk−2,tk;V∗).

Hence, thanks to dτ `0 = 0 and (3.3.34), we have

N(τ)∑
k=1

〈dτ `k, dtzk+1 − dtzk〉V∗,V

≤
N(τ)∑
k=1

〈dτ `k, dτzk+1〉V∗,V − 〈dτ `k−1, dτzk〉V∗,V + C‖`′‖BV (tk−2,tk;V∗)

≤ 〈dτ `N(τ), dτzN(τ)+1〉V∗,V + 2C‖`′‖BV (0,T ;V∗) (3.3.36)

≤ C(|`|Lip + ‖`′‖BV (0,T ;V∗)). (3.3.37)

Now, for the terms involving DzE , we first calculate

〈dτDzEk+1, dτzk〉Z∗,Z =
〈DzE(zk+1)−DzE(zk)

tk − tk−1
,dτzk

〉
Z∗,Z

=

∫ 1

0

〈D2
zE(zk + s(zk+1 − zk))[dτzk+1], dτzk〉Z∗,Z ds.

Since D2
zE is symmetric, we obtain

2

∫ 1

0

〈D2
zE(zk + s(zk+1 − zk))[dτzk+1], dτzk〉Z∗,Z ds

= −
∫ 1

0

〈D2
zE(zk + s(zk+1 − zk))[dτzk+1 − dτzk], dτzk+1 − dτzk〉Z∗,Z ds

+

∫ 1

0

〈D2
zE(zk + s(zk+1 − zk))[dτzk+1], dτzk+1〉Z∗,Z ds

+

∫ 1

0

〈(D2
zE(zk + s(zk+1 − zk))−D2

zE(zk−1 + s(zk − zk−1)))[dτzk],dτzk〉Z∗,Z ds

+

∫ 1

0

〈D2
zE(zk−1 + s(zk − zk−1))[dτzk], dτzk〉Z∗,Z ds.
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Thus, thanks to the convexity and regularity of E , we have

〈dτDzEk+1, dτzk〉Z∗,Z ≤
1

2
〈dτDzEk, dτzk〉Z∗,Z +

1

2
〈dτDzEk+1, dτzk+1〉Z∗,Z

+
1

2
C‖dτzk‖2Z(‖zk+1 − zk‖Z + ‖zk − zk−1‖Z).

Combining (3.3.9) with Lemma 3.3.8 for k = N(τ), we clearly have
∑N(τ)
k=1 ‖zk+1− zk‖Z ≤ CΣ + τ .

Thus, exploiting (3.3.34), we eventually end up with

N(τ)∑
k=1

〈dτDzEk+1, dτzk〉 − 〈dτDzEk+1, dτzk+1〉Z∗,Z

≤ 1

2

N(τ)∑
k=1

{〈dτDzEk,dτzk〉Z∗,Z − 〈dτDzEk+1, dτzk+1〉Z∗,Z
+ C‖dτzk‖2Z(‖zk+1 − zk‖Z + ‖zk − zk−1‖Z)}

≤ 1

2
C(2CΣ + τ) +

1

2
〈dτDzE1, dτz1〉Z∗,Z −

1

2
〈dτDzEN(τ)+1, dτzN(τ)+1〉Z∗,Z ≤ C,

wherein the last estimate is due to Remark 3.3.1, i.e., 〈dτDzE1,dτz1〉 = 0, and the convexity of
E , that is, 〈dτDzEN(τ)+1, dτzN(τ)+1〉 ≥ 0. Inserting this together with (3.3.37) into (3.3.35) and
combining the resulting estimate with (3.3.33), overall we have shown that∫ T

0

E(t) dt+

∫ T

0

R(t) dt ≤ Cτ2. (3.3.38)

With this inequality at hand, we return to the estimate in (3.3.32) in order to, eventually, obtain
a bound for the error measure γ.

Step 6: Obtain convergence rate by Gronwall’s lemma
Exploiting the fact that γ(t)/κ ≥ ‖z̃τ (t)− z(t)‖2Z in (3.3.32), one obtains

γ′(t) ≤ C(γ(t) + E(t) +R(t)) .

Integrating this and using Gronwall’s inequality from Lemma A.4.1 as well as the estimates (3.3.38)
on E and R yields

γ(t) ≤ (γ(0) + Cτ2) expCt ≤ C(γ(0) + τ2) .

Due to z̃τ (0) = z(0) = z0, we have γ(0) = 0. Using another time the κ-uniform convexity of I, we
therefore finally obtain

‖z̃τ (t)− z(t)‖2Z ≤ γ(t)/κ ≤ Cτ2. (3.3.39)

Step 7: Comparing interpolants
By ẑτ we denote the affine interpolation of the discrete approximations with step size τ in the
artificial time, see (3.3.10). From Lemma 3.3.8, we conclude that t̂τ (s) is monotonically increasing
and t̂′τ (s) ≥ 1 − κ−δ

κ holds almost everywhere in [0, Sτ ] (for the definition of Sτ see (3.3.11)).
Thus, there exists a unique inverse function sτ : [0, T ] → [0, Sτ ] with 1 ≤ s′τ (t) ≤ 1

1−κ−δκ
almost

everywhere in [0, T ]. Given this inverse, one can define zτ as the retransformed affine interpolant,
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i.e.,
zτ (t) := ẑτ (sτ (t)).

By elementary calculations, one verifies that the explicit formula for zτ reads as follows:

zτ (t) = zk−1 +
t− tk−1

tk − tk−1
(zk − zk−1), t ∈ [tk−1, tk),

i.e., zτ is just the affine interpolant in the physical time. Comparing zτ with z̃τ from (3.3.22)
results in

‖zτ (t)− z̃τ (t)‖Z = ‖zk−1 + θ(t)(zk − zk−1)− zk − θ(t)(zk+1 − zk)‖Z
≤ (1− θ(t))‖zk−1 − zk‖Z + θ(t)‖zk − zk+1‖Z ≤ τ,

where we exploited (3.3.18) once more. Since k ≤ N(τ) was arbitrary, we have ‖zτ (t)− z̃τ (t)‖Z ≤ τ
for all t ∈ [0, T ]. In combination with (3.3.39), this finally gives

‖zτ (t)− z(t)‖Z ≤ Kτ,

which is the desired result. A careful analysis of the used estimates and the corresponding constants
yields that K provides the claimed dependencies.

Some remarks and comments concerning the assertion of Theorem 3.3.9 and its proof are in
order.

Remark 3.3.10. In preparation for the following section, we note that the uniform convexity of
the energy is only needed at three places in the above analysis: first for the estimate in (3.3.18);
second for the lower bound on γ in (3.3.26); and third for the inequality∫ 1

0

〈D2
zE(zk + s(zk+1 − zk))[dτzk+1 − dτzk], dτzk+1 − dτzk〉Z∗,Z ds ≥ 0. (3.3.40)

However, estimates (3.3.18) and (3.3.40) remain valid if I(tk, ·) is only κ-uniformly convex on a
ball BZ(z(tk),∆) with radius ∆ > τ > 0 and zk, zk+1 ∈ BZ(z(tk),∆). To see this, note that
(3.3.18) follows from estimate (3.3.12), see proof of Lemma 3.3.8, which itself is a consequence of
〈DzI(tk, zk+1)−DzI(tk, zk), zk+1 − zk〉Z∗,Z ≥ κ‖zk+1 − zk‖2Z . This inequality, just as inequality
(3.3.40), only requires that zk and zk+1 lay in a region of uniform convexity of I. The estimate on
γ finally necessitates that z̃τ (t) ∈ BZ(z(t),∆) and that I is uniformly convex on BZ(z(t),∆) for
all t ∈ [0, T ]; cf. the definition of γ in (3.3.25).

Remark 3.3.11. In view of the regularity of the differential solution, i.e., z ∈ W 1,∞(0, T ;Z), the
convergence rate of O(τ) in Theorem 3.3.9 can be regarded as optimal, since the piecewise affine
interpolation of the solution does not yield a better convergence rate.

Remark 3.3.12. It is to be expected that a spatial discretization can also be included in the above
a priori estimates, following, e.g., the lines of [MPPS10].
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Locally uniformly convex energy functional

As already mentioned in the introduction, the local incremental minimization algorithm is actu-
ally not necessary if the energy is globally uniformly convex. In this case, one could also use
the global incremental minimization scheme, which is easier to implement, since the additional
inequality constraint in (3.0.1a) is omitted. The situation changes, however, if the energy is no
longer globally uniformly convex, but only locally around a given evolution z. Then the local incre-
mental minimization scheme still approximates the (local) solution with optimal order (provided
that |`|Lip is not too large), while the global scheme might fail to converge to this solution, as we
will demonstrate by means of a numerical example in Section 4.2.2. Our precise notion of local
uniform convexity is as follows:

Assumption LCκ (Local κ-uniform convexity). We call I locally κ-uniformly convex around
z : [0, T ] → Z if there exist κ,∆ > 0, independent of t, such that I(t, ·) is κ-uniformly convex on
BZ(z(t),∆) for all t ∈ [0, T ], i.e.,

〈D2
zI(t, z̃)v, v〉Z∗,Z ≥ κ‖v‖2Z ∀z̃ ∈ BZ(z(t),∆), v ∈ Z. (3.3.41)

Note that local uniform convexity is always referred to an evolution z. The Assumption LCκ

especially implies that

〈DzI(t, z2)−DzI(t, z1), z2 − z1〉Z∗,Z ≥ κ‖z2 − z1‖2Z ∀z1, z2 ∈ BZ(z(t),∆) (3.3.42)

holds. Indeed, using (3.3.41), we obtain

〈DzI(t, z2)−DzI(t, z1), z2 − z1〉Z∗,Z

=

∫ 1

0

〈D2
zI(t, z1 + s(z2 − z1))[z2 − z1], z2 − z1〉Z∗,Zds ≥ κ‖z2 − z1‖2Z ,

where we used the fact that z1 + s(z2 − z1) ∈ BZ(z(t),∆) for all s ∈ [0, 1]. Now, in order to prove
a convergence rate in the local uniform convex case, we again have to estimate the difference of
iterates in the Z-norm. Since it is not a priori clear that the iterate remains in the neighborhood
of convexity of I, we need to alter the proof of Lemma 3.3.7.

Lemma 3.3.13. Let 0 ∈ ∂R(0) +DzI(tk−1, zk) for some k ∈ N. Then ‖zk+1 − zk‖Z ≤ Cloc τ for
some constant Cloc = Cloc(F , α, |`|Lip) > 0.

Proof. Let k ∈ N be given. From (3.3.15) we know that

0 ≥ 〈DzI(tk, zk+1)−DzI(tk, zk), zk+1 − zk〉Z∗,Z
+ 〈DzI(tk, zk)−DzI(tk−1, zk), zk+1 − zk〉Z∗,Z + (λk+1 − λk)τ2.

Since 0 ∈ ∂R(0) + DzI(tk−1, zk) holds by assumption, (3.3.8) implies λk = 0. Inserting the
definition of I and exploiting Remark 3.3.4, we can thus further estimate
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0 ≥ 〈A(zk+1 − zk), zk+1 − zk〉Z∗,Z + 〈DzF(zk+1)−DzF(zk), zk+1 − zk〉Z∗,Z
+ 〈`(tk−1)− `(tk), zk+1 − zk〉V∗,V + λk+1τ

2

≥ α‖zk+1 − zk‖2Z − CF‖zk+1 − zk‖Z‖zk+1 − zk‖V − |`|Lip(tk − tk−1)‖zk+1 − zk‖V .

Therefore, by applying the generalized Young-inequality, it follows from the constraint in (3.0.1a)
that

0 ≥ α‖zk+1 − zk‖2Z −
α

2
‖zk+1 − zk‖2Z − CF,α‖zk+1 − zk‖2V − |`|Lip τ2

≥ α

2
‖zk+1 − zk‖2Z − CF,ατ2 − |`|Lip τ2,

so that, indeed, C2
loc τ

2 ≥ ‖zk+1 − zk‖2Z with C2
loc = 2

α (CF,α + |`|Lip).

With this at hand, we can now show an a priori estimate in the case of an energy functional,
which is only locally uniformly convex around a differential solution.

Theorem 3.3.14. Let z ∈ W 1,∞(0, T ;Z) be a (differential) solution. Furthermore, let I be
locally κ-uniformly convex around z with radius ∆ > 0, and assume that ` ∈ W 1,∞(0, T ;V∗) with
|`|Lip ≤ κ−δ (see Assumption ALip) and `′ ∈ BV (0, T ;V∗). Then there exists a constant Kloc > 0,
independent of τ , such that for the back-transformed parametrized solution zτ : [0, T ]→ Z and all
τ ≤ τ̄ with τ̄ sufficiently small, it holds that

‖zτ (t)− z(t)‖Z ≤ Kloc τ ∀t ∈ [0, T ]. (3.3.43)

Proof. The proof basically follows the steps in the proof of Theorem 3.3.9, though we need to ensure
that the iterates remain in the region of uniform convexity of I; see Remark 3.3.10. Therefore,
we will show by means of induction, that zk, zk+1 ∈ BZ(z(t),∆) for t ∈ [tk−1, tk]. As an easy
consequence, the affine interpolant z̃τ , defined in (3.3.45) below, fulfills z̃τ (t) ∈ BZ(z(t),∆) for
t ∈ [tk−1, tk], which yields that the estimates in Remark 3.3.10 also hold in the local convex case
and we can proceed as in the proof of Theorem 3.3.9.

Step 0: Preparation
We start by choosing

τ ≤ min

(
∆

3Cloc
,

∆

3K ′
,

∆

3 |z|Lip
,

∆

3

)
=: τ̄ , (3.3.44)

where Cloc denotes the constant from Lemma 3.3.13, and K ′ is the constant from Theorem 3.3.9.
To be precise here, assume that I is globally κ-uniform convex. Then, by Theorem 3.3.9, there
would exist a constant K ′ such that the a priori estimate (3.3.19) would hold on [0, T ]. This is the
constant we refer to here. In order to prove (3.3.43), we will now successively show that the affine
interpolant defined by

z̃τ (t) := zk +
t− tk−1

tk − tk−1
(zk+1 − zk), t ∈ [tk−1, tk), (3.3.45)
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fulfills (3.3.43) on every interval [tk−1, tk]. Since we might have [tk−1, tk) = ∅, this definition
is, at first, only formal. However, we will successively show by means of induction w.r.t k, that
tk − tk−1 ≥ ετ for some fixed ε ∈ (0, 1) independent of τ .

Step 1: Initialization
We show (3.3.43) for t ∈ [t0, t1]. To do so, we observe that due to the choice of τ , we have
BZ(z0, τ) ⊂ BZ(z0,∆). Hence, I(0, ·) is convex on BZ(z0, τ) and consequently, we can argue
exactly as in Remark 3.3.1 to obtain z1 = z0 ∈ BZ(z(0),∆) and t1 − t0 = τ . The choice of τ ,
again, and the Lipschitz continuity of z imply that z0 = z1 ∈ BZ(z(t1),∆/3). This together with
Lemma 3.3.13 gives

‖z2 − z(t1)‖Z ≤ ‖z2 − z1‖Z + ‖z1 − z(t1)‖Z ≤ Clocτ + |z|Lipτ ≤ ∆/3 + ∆/3 < ∆.

Hence, z2, z1 ∈ BZ(z(t1),∆) and the κ-uniform convexity of I(t1, ·) on BZ(z(t1),∆) imply that
the estimates (3.3.18) and (3.3.40) hold for k = 1 (see Remark 3.3.10), in particular

‖z2 − z1‖V ≤ ‖z2 − z1‖Z ≤
κ− δ
κ

(t1 − t0) ≤ κ− δ
κ

τ,

so that z̃τ is well-defined on [t0, t1) and satisfies ‖z̃′τ (t)‖Z ≤ C for all t ∈ [t0, t1). Moreover, due to
the Lipschitz continuity of z and the choice of τ , we have

‖z̃τ (t)− z(t)‖Z ≤ ‖z1 − z(t1)‖Z + ‖z(t1)− z(t)‖Z +
t− t0
t1 − t0

‖z2 − z1‖Z ≤ ∆/3 + |z|Lipτ + τ ≤ ∆,

and thus z̃τ (t) ∈ BZ(z(t),∆) for all t ∈ [t0, t1]. Therefore, we can exploit the convexity of I(t, ·) on
BZ(z(t),∆), giving that (3.3.26) holds for t ∈ [t0, t1], too. Then, as illustrated in Remark 3.3.10,
we can argue analogous to the proof of Theorem 3.3.9 (Steps 2–6 ) to obtain ‖z̃τ (t)−z(t)‖Z ≤ K ′ τ
for all t ∈ [t0, t1].

Step 2: Induction
Let k ≥ 2 be given with

‖zk − zk−1‖V ≤
κ− δ
κ

τ, (3.3.46)

‖z̃τ (t)− z(t)‖Z ≤ K ′ τ ∀ t ∈ [t0, tk−1]. (3.3.47)

In the first step of the proof, we have seen that these conditions are fulfilled for k = 2 and we
will now show that these estimates can be extended to [t0, tk]. For this, we observe that, since
τ ≤ ∆

3K′ , the inequality (3.3.47) gives zk = z̃τ (tk−1) ∈ BZ(z(tk−1),∆/3). Thus, by exploiting the
Lipschitz continuity of z and the choice of τ from (3.3.44), it follows that ‖zk − z(tk)‖Z ≤ 2∆

3 .
Combining this with Lemma 3.3.13 and exploiting again (3.3.44), we find ‖zk+1 − z(tk)‖Z ≤
‖zk+1 − zk‖Z + ‖zk − z(tk)‖Z ≤ ∆, so that zk+1, zk ∈ BZ(z(tk),∆). Hence, the estimates (3.3.18)
and (3.3.40) hold true (see Remark 3.3.10). It remains to show that z̃τ (t) ∈ BZ(z(t),∆) for all
t ∈ [tk−1, tk] so that we have (3.3.26) on the next time interval, see again Remark 3.3.10. By
(3.3.46) and (3.3.6a) λk = 0 holds such that the inequality (3.3.15), in combination with λk+1 ≥ 0,
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reduces to

0 ≥ 〈DzI(tk, zk+1)−DzI(tk, zk), zk+1 − zk〉Z∗,Z
+ 〈DzI(tk, zk)−DzI(tk−1, zk), zk+1 − zk〉Z∗,Z .

The κ-uniform convexity of I(tk, ·) on BZ(z(tk),∆) together with zk, zk+1 ∈ BZ(z(tk),∆) thus
gives 0 ≥ κ‖zk+1 − zk‖2Z − |`|Lip(tk − tk−1)‖zk+1 − zk‖V , which implies

‖zk+1 − zk‖V ≤ ‖zk+1 − zk‖Z ≤ |`|Lip/κ τ ≤
κ− δ
κ

τ (3.3.48)

by the assumption on |`|Lip. By the time update (alg3) and (3.3.46), we have

tk − tk−1 ≥ δ/κ τ, (3.3.49)

which consequently gives the well-posedness of our interpolant and the boundedness of its derivative
in Z due to (3.3.48). From (3.3.48) and, again, the choice of τ , we moreover conclude for t ∈
[tk−1, tk] that

‖z̃τ (t)− z(t)‖Z ≤ ‖zk − z(tk−1)‖Z + ‖z(tk−1)− z(t)‖Z +
t− tk−1

tk − tk−1
‖zk+1 − zk‖Z

≤ K ′ τ + |z|Lip(tk − tk−1) + τ ≤ ∆/3 + ∆/3 + ∆/3 = ∆ .

Hence, z̃τ (t) ∈ BZ(z(t),∆) for all t ∈ [t0, tk] so that the uniform convexity of I(t, ·) on BZ(z(t),∆)

implies that (3.3.26) holds on [t0, tk]. Thus, we can again argue as in the proof of Theorem 3.3.9
(Steps 2–6 ) to show (3.3.47) on the extended time interval [t0, tk]. In summary, we have shown
that (3.3.46)–(3.3.47) holds with k instead of k − 1, which completes the induction step. Hence,
we find ‖z̃τ (t)− z(t)‖Z ≤ K ′ τ on the whole time interval [0, T ].

Step 3: Comparing interpolants
We again define the affine interpolant t̂τ as in (3.3.10). From (3.3.49), it follows that t̂′τ ≥ δ/κ

for almost all s ∈ [0, Sτ ]. Thus, there exists a unique inverse function sτ : [0, T ] → [0, Sτ ] with
1 ≤ s′τ (t) ≤ 1

1−κ−δκ
almost everywhere in [0, T ]. In full analogy to the proof of Theorem 3.3.9 (Step

7 ), we obtain ‖zτ (t) − z̃τ (t)‖Z ≤ τ , where again zτ is the retransformed affine interpolation, i.e.,
zτ (t) := ẑτ (sτ (t)). Thus, we finally get

‖zτ (t)− z(t)‖Z ≤ ‖zτ (t)− z̃τ (t)‖Z + ‖z̃τ (t)− z(t)‖Z ≤ Kloc τ,

which was claimed.

3.3.4 General time dependence in energy functional

The second part of the a priori analysis is concerned with the case of a general time-dependent
part f(t, z). While we do not impose further requirements on f , we suppose again that I complies
with the Assumption GCκ, i.e., I is κ-uniformly convex. Recall that this means that there exists
a κ > 0 such that, for all t ∈ [0, T ] and all z, v ∈ Z, it holds 〈D2

zI(t, z)v, v〉Z∗,Z ≥ κ‖v‖2Z , which
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particularly implies

〈DzI(t, z2)−DzI(t, z1), z2 − z1〉Z∗,Z ≥ κ‖z2 − z1‖2Z ∀z1, z2 ∈ Z.

Now, in the case, where the Lipschitz constant, or more general the constant ν does not neces-
sarily fulfill ν < κ, we can no longer guarantee that the algorithm always makes progress w.r.t. time,
which implies that the back-transformation onto the physical time need not be continuous. In order
to handle these cases, we will transform the differential solution into the artificial time interval of
the discrete parametrized solution. By this means, both solutions "live" on the same time horizon
and we can adapt the arguments from Theorem 3.3.9. However, we still have to guarantee that
the multipliers λk are uniformly bounded, which is part of the following lemma.

Lemma 3.3.15. Let Assumption GCκ hold. Then the Lagrange multipliers λk are bounded, i.e.,
λk ≤ ν for all k ∈ N, k ≤ N(τ) with ν from (If2).

Proof. W.l.o.g. let k be the last iterate with λk = 0. By Remark 3.3.1 we have t1 − t0 > 0 and
therefore λ0 = 0, so that there always exists such an index k ≤ N(τ). We will first show that
λk+1 is bounded by the constant ν of f . Afterwards, we will show that the sequence {λk+l}l≥1 is
monotonically decreasing by some constant value. Since all multipliers are nonnegative, this will
give some index m ≥ 1 so that λk+m = 0. Consequently there exists, again, an index k̃ > k with
λk̃ = 0 and we may repeat the same steps showing that, indeed, all λk are bounded.

Step 1: Boundedness of λk+1

Since λk = 0, Lemma 3.3.5 gives

0 ≥ κ‖zk+1 − zk‖2Z − ν(tk − tk−1)‖zk+1 − zk‖V + λk+1τ
2

≥ −ν(tk − tk−1)‖zk+1 − zk‖V + λk+1τ
2 ≥ −ντ2 + λk+1τ

2,

so that, indeed, λk+1 ≤ ν.

Step 2: Monotonicity of {λk+l}l≥1

To proceed, let l ≥ 2 iterations be given with λk+l > 0. Due to the time update (3.0.1b) and the
complementarity in (3.3.6a) this implies

tk+l = tk+l−1 = · · · = tk (3.3.50)

and ‖zk+l − zk+l−1‖V = ‖zk+l−1 − zk+l−2‖V = · · · = τ. (3.3.51)

We will now show that the sequence {λk+l}l≥1 is monotonically decreasing by some constant value.
Together with (3.3.12) for the index k + l − 1, (3.3.50) implies

0 ≥ κ‖zk+l − zk+l−1‖2Z + λk+lτ
2 − λk+l−1τ

2.

Using the embedding Z ↪→ V and inserting (3.3.51), we obtain 0 ≥ κτ2 + λk+lτ
2 − λk+l−1τ

2.
Combining this with the bound on λk+1 from above and rearranging terms then yields

λk+l ≤ λk+l−1 − κ =⇒ λk+l ≤ λk+1 − (l − 1)κ ≤ ν − (l − 1)κ,
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which finally gives that λk+m = 0 for m = dν/κe + 1 due to the nonnegativity of the multipliers.
Hence, we are in the situation of Step 1, which ultimately proves the claim.

Finally, we need an estimate for the iterates in the stronger Z-norm, in order to get a uniform
bound for the derivative of the linear interpolants.

Lemma 3.3.16. Let Assumption GCκ be satisfied. Then there exists a constant C = C(ν, κ) > 0

such that ‖zk − zk−1‖Z ≤ C τ for all iterations k ≤ N̂(τ).

Proof. For k = 1 this easily follows from Remark 3.3.1. Hence, let k ≥ 2. In the proof of
Lemma 3.3.15, we have seen that the multipliers λk are bounded by ν for all k ≤ N(τ). Another
application of Lemma 3.3.5 thus gives

κ‖zk − zk−1‖2Z ≤ ν(tk−1 − tk−2)‖zk − zk−1‖V − (λk − λk−1)τ2 ≤ ν τ2 + λk−1 τ
2 ≤ 2 ν τ2,

where we exploited the positivity of the multiplier λk.

Before we actually state the a priori estimate in the general case, let us once more stress the basic
idea of its proof. First, the differential solution z, whose existence and uniqueness is guaranteed
by Theorem 2.2.2, is transformed into the artificial time of the approximate parametrized solution.
Here, techniques from Section 3.3.3 can be used to derive a pointwise estimate similar to (3.3.19)
but in the artificial rather than the physical time. However, the fact that we obtain a pointwise
characterization also allows us to provide an estimate between a suitably chosen interpolant in the
physical time and the "original" differential solution afterwards.

Theorem 3.3.17. Let Assumption GCκ hold. Moreover, let t̂τ be defined as in (3.3.10). Then the
sequence of approximate parametrized solutions {ẑτ}τ>0 generated by the scheme in LISS satisfies
the a priori error estimate

‖ẑτ (s)− z(t̂τ (s))‖Z ≤ C
√
τ ∀s ∈ [0, Sτ ], (3.3.52)

with C > 0 independent of τ .

Proof. For convenience of the reader we split the rather lengthy proof into eight parts, which are
as follows:

0. First, we will see that z(t̂τ (s)) is also a differential solution but in the artificial time horizon
[0, Sτ ].

1. For the error analysis we use, again, a slightly different piecewise affine interpolant, denoted
by z̃τ providing a certain shift in the time steps.

2. Similar to [MT04], we introduce a quantity γ(s), which dominates the pointwise error ‖z̃τ (s)−
z(t̂τ (s))‖Z .

3. The error measure is essentially estimated by two contributions, denoted by E(s), R(s) and
r(s). Compared to the proof of Theorem 3.3.17, a "new" term r(s) occures here. This
quantity contains additional errors that arise from the multipliers λk.
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4./5. E(s) and R(s) are estimated by using the smoothness properties of F and f , while the bound
for r is based on Lemma 3.3.15.

6. Together with Gronwall’s lemma, these estimates yield a bound of O(τ) for the error indicator
γ and thus also for the error ‖z̃τ (s)− z(t̂τ (s))‖2Z .

7. Finally, we relate the auxiliary interpolant z̃τ to the “true error” containing the “correct”
interpolant ẑτ .

Note that we will denote by z̃ the differential solution which is transformed into the artificial time
[0, Sτ ] and by z̃τ the auxiliary interpolant which also "lives" in [0, Sτ ].

Step 0: Differential solution
First of all, due to Theorem 2.2.2, there exists a unique (differential) solution z ∈ W 1,∞(0, T ;Z)

of the rate-independent system. Applying Lemma A.2.7, we find z̃ := z ◦ t̂τ ∈ W 1,∞(0, Sτ ;Z) so
that, by the 0-homogeneity of ∂R, it holds

0 ∈ ∂R(z̃′(s)) +DzI(t̂τ (s), z̃(s))

for almost all s ∈ [0, Sτ ]. This can be reformulated as (see (2.2.10)):

∀v ∈ Z : R(v) ≥ 〈−DzI(t̂τ (s), z̃(s)), v〉Z∗,Z ∀s ∈ [0, Sτ ], (3.3.53a)

R(z̃′(s)) = 〈−DzI(t̂τ (s), z̃(s)), z̃′(s)〉Z∗,Z f.a.a. s ∈ [0, Sτ ]. (3.3.53b)

Since z̃ ∈W 1,∞(0, Sτ ;Z), it additionally holds

‖z̃′(s)‖Z ≤ C f.a.a. s ∈ [0, Sτ ]. (3.3.54)

Step 1: Construction of auxiliary interpolants in the artificial time
Given s ∈ [sk−1, sk) with k ≤ N(τ), we define the following affine interpolant, which, in comparison
to the ones in (3.3.10), incorporates a shift in the iterates

z̃τ (s) = zk +
s− sk−1

sk − sk−1
(zk+1 − zk). (3.3.55)

Moreover, we define zN(τ)+1 = zN(τ) and extend the affine interpolant by constant continuation
onto [0, sN(τ) + τ ], i.e., z̃τ (s) = zN(τ) for s ∈ [sN(τ), sN(τ) + τ ]. Note that sk − sk−1 = τ for all
k ≤ N(τ) so that z̃′τ (s) = (zk+1 − zk)/τ and we can reformulate (3.3.6b)-(3.3.6d) as

∀k ∈ {0, . . . , N(τ)} ∀v ∈ Z :

{
R(v) ≥〈−DzI(tk, zk+1)

− λk+1 JV(zk+1 − zk), v〉Z∗,Z ,
(3.3.56a)

f.a.a. t ∈ [0, Sτ ] : R(z̃′τ (s)) = 〈−DzI(tk, zk+1)− τ λk+1 JV(z̃′τ (s)), z̃′τ (s)〉Z∗,Z . (3.3.56b)

Exploiting Lemma 3.3.16, we additionally have

‖z̃′τ (s)‖Z ≤ C f.a.a. s ∈ [0, Sτ ]. (3.3.57)



3.3. A priori error analysis 106

Step 2: Introduction of an error measure
We now basically follow the lines of [MT04, Thm 7.4], but have to adapt the underlying analysis
at some points. Therefore we present the arguments in detail. Let us define

γ(s) := 〈DzI(t̂τ (s), z̃τ (s))−DzI(t̂τ (s), z̃(s)), z̃τ (s)− z̃(s)〉Z∗,Z . (3.3.58)

Due to the κ-uniform convexity of I(t, ·), we have

γ(s) ≥ κ‖z̃τ (s)− z̃(s)‖2Z , (3.3.59)

so that γ measures the discretization error. Analogous to Appendix A.4 we find

γ′(s) ≤ C ‖z̃τ (s)− z̃(s)‖2Z + 2〈DzI(t̂τ (s), z̃τ (s))−DzI(t̂τ (s), z̃(s)), z̃′τ (s)− z̃′(s)〉Z∗,Z , (3.3.60)

for almost all s ∈ [0, Sτ ]. Again, we split the second term into two parts, namely

e1(s) := 2 〈DzI(t̂τ (s), z̃(s))−DzI(t̂τ (s), z̃τ (s)), z̃′(s)〉Z∗,Z
and e2(s) := 2 〈DzI(t̂τ (s), z̃τ (s))−DzI(t̂τ (s), z̃(s)), z̃′τ (s)〉Z∗,Z .

Both terms can be estimated analogous to Step 3 in the proof of Theorem 3.3.9. For convenience,
we briefly repeat the arguments.

Step 3: Estimates for the error ei
Let again k ≤ N(τ) and s ∈ [sk−1, sk) be arbitrary. First observe that, due to the convexity of
∂R(0), it holds for

θ(s) =
s− sk−1

sk − sk−1

that
−(1− θ(s)) ξk−1 − θ(s) ξk ∈ ∂R(0)

with ξk−1 := DzI(tk−1, zk)+λk JV(zk−zk−1) and ξk := DzI(tk, zk+1)+λk+1 JV(zk+1−zk). From
the characterization of ∂R(0), we infer R(v) ≥ −〈(1 − θ(s)) ξk−1 + θ(s) ξk, v〉Z∗,Z for all v ∈ Z.
Inserting herein v = z̃′(s) and subtracting (3.3.53b), we can estimate

e1(s) = 2 〈DzI(t̂τ (s), z̃(s))− (1− θ(s)) ξk−1 − θ(s) ξk, z̃′(s)〉Z∗,Z
+ 2 〈(1− θ(s)) ξk−1 + θ(s) ξk −DzI(t̂τ (s), z̃τ (s)), z̃′(s)〉Z∗,Z

≤ 2 〈(1− θ(s)) ξk−1 + θ(s) ξk −DzI(t̂τ (s), z̃τ (s)), z̃′(s)〉Z∗,Z
≤ 2 ‖(1− θ(s))DzI(tk−1, zk) + θ(s)DzI(tk, zk+1)−DzI(t̂τ (s), z̃τ (s))‖Z∗‖z̃′(s)‖Z

+ 2 (1− θ(s))λk〈JV(zk − zk−1), z̃′(s)〉V∗,V + 2 θ(s)λk+1〈JV(zk+1 − zk), z̃′(s)〉V∗,V
(3.3.61)

for almost all s ∈ [sk−1, sk). By the complementarity (3.3.6a) and the time update (3.0.1b) we
moreover have 0 = λk(τ − ‖zk − zk−1‖V) = λk(tk − tk−1). The chain rule from Lemma A.2.7 thus
implies that λkz̃′(s) = λk t̂

′
τ (s)z′(t̂τ (s)) = 0 almost everywhere in [sk−1, sk). Therefore, employing
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zk+1 − zk = τ z̃′τ (s+ τ), it holds

e1(s) ≤ 2 ‖(1− θ(s))DzI(tk−1, zk) + θ(s)DzI(tk, zk+1)−DzI(t̂τ (s), z̃τ (s))‖Z∗‖z̃′(s)‖Z
+ 2 θ(s)λk+1 τ 〈JV(z̃′τ (s+ τ)), z̃′(s)〉V∗,V .

Next, we turn to the term e2. Similarly, we take v = z̃′τ (s) in (3.3.53a) and subtract (3.3.53b) to
obtain

0 ≥ 〈DzI(tk, zk+1)−DzI(t̂τ (s), z̃(s)), z̃′τ (s)〉Z∗,Z + λk+1τ‖ẑ′τ (s)‖2V
≥ 〈DzI(tk, zk+1)−DzI(t̂τ (s), z̃(s)), z̃′τ (s)〉Z∗,Z ,

from which we deduce

e2(s) ≤ 2 〈DzI(t̂τ (s), z̃τ (t))−DzI(tk, zk+1), ẑ′τ (t)〉Z∗,Z
≤ 2 〈DzI(t̂τ (s), z̃τ (s))− (1− θ(s))DzI(tk−1, zk)− θ(s)DzI(tk, zk+1), z̃′τ (s)〉Z∗,Z

+ 2 〈(1− θ(s))DzI(tk−1, zk) + θ(s)DzI(tk, zk+1)−DzI(tk, zk+1), z̃′τ (s)〉Z∗,Z
≤ 2 ‖(1− θ(s))DzI(tk−1, zk) + θ(s)DzI(tk, zk+1)−DzI(t̂τ (s), z̃τ (s))‖Z∗‖z̃′τ (s)‖Z

+ 2 (1− θ(s))〈DzI(tk−1, zk)−DzI(tk, zk+1), z̃′τ (s)〉Z∗,Z .

(3.3.62)

Next, we define

E(s) := ‖(1− θ(s))DzI(tk−1, zk) + θ(s)DzI(tk, zk+1)−DzI(t̂τ (s), z̃τ (s))‖Z∗ , (3.3.63)

R(s) := 2(1− θ(s))〈DzI(tk−1, zk)−DzI(tk, zk+1), ẑ′τ (s)〉Z∗,Z (3.3.64)

and r(s) := 2θ(s)λk+1τ〈JV(z̃′τ (s+ τ)), z̃′(s)〉V∗,V . (3.3.65)

Then we insert (3.3.63), (3.3.64) and (3.3.65) in (3.3.61) and (3.3.62), respectively. The resulting
estimates for e1 and e2 are in turn inserted in (3.3.60), which, together with the boundedness of
‖z̃′(s)‖Z and ‖z̃′τ (s)‖Z by (3.3.54) and (3.3.57), yields

γ′(s) ≤ C(‖z̃τ (s)− z̃(s)‖2Z + E(s) +R(s) + r(s)). (3.3.66)

Step 4: Estimate for E(s)

The particular structure of I together with the linearity of A and the definition of z̃τ gives

E(s) ≤ ‖(1− θ(s))DzF(zk) + θ(s)DzF(zk+1)−DzF ((1− θ(s))zk − θ(s)zk+1)‖Z∗

+ ‖(1− θ(s))Dzf(tk−1, zk) + θ(s)Dzf(tk, zk+1)−Dzf(t̂τ (s), z̃τ (s))‖Z∗

=: I1(s) + I2(s).

The term I1 can be estimated exactly as in Theorem 3.3.9. For I2, we exploit assumption (If2),
which, in combination with the embedding Z ↪→W, implies

‖Dzf(tk−1, zk)−Dzf(tk, zk+1)‖Z∗ ≤ c (|tk−1 − tk|+ ‖zk+1 − zk‖Z)
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and therefore

I2(s) ≤ θ(s)‖(Dzf(tk, zk+1)−Dzf(tk−1, zk))‖Z∗

+ ‖Dzf(tk−1, zk)−Dzf(t̂τ (s), z̃τ (s))‖Z∗

≤ θ(s) c (|tk−1 − tk|+ ‖zk+1 − zk‖Z) + c (|tk−1 − t̂τ (s)|+ ‖zk − z̃τ (s)‖Z)

≤ c τ + C‖zk+1 − zk‖Z .

Since ‖zk+1 − zk‖Z ≤ Cτ by Lemma 3.3.8, the above estimates for I1(s) and I2(s) imply for all
s ∈ [sk−1, sk) that E(s) ≤ Cτ . Now, integrating E and exploiting the boundedness of Sτ from
(3.3.11) yields ∫ Sτ

0

E(s) ds ≤ Cτ. (3.3.67)

Step 5: Estimate for R(s)

First of all, we observe that

R(s) = 2(1− θ(s))〈DzI(tk−1, zk)−DzI(tk, zk+1), ẑ′τ (s)〉Z∗,Z

= 2(1− θ(s)) 1

τ
〈DzI(tk−1, zk)−DzI(tk−1, zk+1), zk+1 − zk〉Z∗,Z

+ 2(1− θ(s)) 〈DzI(tk−1, zk+1)−DzI(tk, zk+1), ẑ′τ (s)〉Z∗,Z .

Using the κ-uniform convexity for I(tk−1, ·), we find

2(1− θ(s)) 1

τ
〈DzI(tk−1, zk)−DzI(tk−1, zk+1), zk+1 − zk〉Z∗,Z

≤ −2κ(1− θ(s)) 1

τ
‖zk+1 − zk‖2Z ≤ 0. (3.3.68)

Thus, by exploiting, once more, the assumption (If2), the embedding Z ↪→W and the boundedness
of ‖z̃′τ (s)‖V , we obtain

R(s) ≤ 2(1− θ(s)) 〈DzI(tk−1, zk+1)−DzI(tk, zk+1), ẑ′τ (s)〉Z∗,Z
= 2(1− θ(s)) 〈Dzf(tk−1, zk+1)−Dzf(tk, zk+1), ẑ′τ (s)〉V∗,V
≤ 2 c (|tk−1 − tk|)‖z̃′τ (s)‖V ≤ Cτ.

Hence, we have ∫ Sτ

0

R(s) ds ≤ Cτ. (3.3.69)

again by the bound on Sτ .

Step 6: Estimate for r(s)
Here, we take advantage of (3.3.57), (3.3.54) and the boundedness of the multiplier λk+1 by (3.3.15)
which gives

r(s) ≤ 2λk+1 τ ‖z̃′τ (s+ τ)‖V‖z̃′(s)‖V ≤ C τ. (3.3.70)

Integrating, exploiting again the boundedness of Sτ and combining the resulting estimate with
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(3.3.67) and (3.3.69), we have overall shown that∫ Sτ

0

E(s) ds+

∫ Sτ

0

R(s) ds+

∫ Sτ

0

r(s) ds ≤ Cτ. (3.3.71)

Step 7: Obtain convergence rate by Gronwall’s lemma
Exploiting that γ(s)/κ ≥ ‖z̃τ (s)− z̃(s)‖2Z in (3.3.66), one obtains

γ′(s) ≤ C(γ(s) + E(s) +R(s) + r(s)).

Integrating this and using Gronwall’s lemma as well as the estimates (3.3.71) and (3.3.11) on
E,R, r and Sτ yields

γ(s) ≤ (γ(0) + Cτ) expCs ≤ C(γ(0) + τ).

Due to z̃τ (0) = z1 = z0, see Remark 3.3.1, we have γ(0) = 0. Using another time the κ-uniform
convexity of I, we therefore finally obtain

‖z̃τ (s)− z̃(s)‖2Z ≤ γ(s)/κ ≤ Cτ. (3.3.72)

Taking into account the definition of z̃τ (s), we arrive at (3.3.52) by repeating the Step 7 in Theo-
rem 3.3.9.

Some remarks and comments concerning the assertion of Theorem 3.3.17 and its proof are in
order.

Remark 3.3.18. In contrast to Theorem 3.3.9, we do not obtain the optimal rate of convergence
here. The reason for this is twofold. On the one hand, we rely on less restrictive assumptions on
the time-dependent part, which entails that the estimates on E and R are merely of order O(τ)

instead of O(τ2). The crucial part of the proof, though, is the estimate of r. Unfortunately, this
term does not contain any parts of the energy, so that we cannot exploit their regularity. Hence,
a first potential way out could be to find sufficient conditions such that λk = 0 for all k ≤ N(τ).
In fact, this corresponds to the Assumption ALip from Section 3.3.3. A second potential way out
could be to replace (t̂τ , z̃τ ) by a more sophisticated interpolant. Indeed, one major issue is the
fact that the complementarity does not carry over to the last term in (3.3.61). More precisely,
we see that the term λk t̂

′(s) still vanishes in [sk−1, sk) (cf. the explanation after (3.3.61)) but
this does unfortunately not hold for λk+1t̂

′(s). In this context, it might therefore also be useful
to directly construct an interpolant in the physical time as it is done in [MS20]. Nevertheless, it
is to be noted that, due to the 1−homogeneity of the dissipation, it is always possible to achieve
|`|Lip < κ by rescaling the time accordingly. Then Theorem 3.3.9 is applicable giving the optimal
order in the rescaled time scale. Of course, depending on the Lipschitz constant of `, the rescaled
time scale might become rather small so that a large number of iterations is necessary, but this
rescaling argument indicates that it should be possible to achieve the optimal order in the case of
large |`|Lip, too. This, however, gives rise to future research.

As a direct consequence of the pointwise estimate in Theorem 3.3.17, we also obtain a pointwise
estimate in the physical time for the following affine interpolant, which will only include the iterates
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tk(j−1) tk(j) tk(j+1)

zk(j)

zk(j+1)

zk(j+2)

zj

Figure 3.3.2: Qualitative illustration of the affine interpolant t̂, the choice of the artificial end time
Sτ via the equality t̂(Sτ ) = T and the upper bound S̃.

for which the time update proceeds. Thus, we set (cf. [MS20])

• N(τ) = number of iterations to reach the end time T (with step size τ),

• N (τ) := {k ∈ {1, . . . , N(τ)} : tk − tk−1 > 0}.

The iterations in N (τ)∪ {0} are then numbered from 0 to |N (τ)| and the corresponding mapping
is denoted by k, i.e.,

k : {0, 1, . . . , |N (τ)|} → N (τ) ∪ {0} so that (N (τ) ∪ {0}) = {k(0), k(1), . . . , k(|N (τ)|)}.

Therewith, we define for t ∈ [tk(j−1), tk(j)), j = 1, . . . , |N (τ)| − 1,

zτ (t) = zk(j) +
t− tk(j−1)

tk(j) − tk(j−1)

(
zk(j+1) − zk(j)

)
(3.3.73)

as well as zτ (t) = zN(τ) for t ∈ [tk(|N (τ)|), T ]. It then holds:

Corollary 3.3.19. Let I(t, ·) ∈ C2,1
loc (Z;R) (see (1.0.5)) as well as Assumption GCκ hold. Then

{zτ}τ>0 as defined in (3.3.73) satisfies the a priori error estimate

‖zτ (t)− z(t)‖Z ≤ C
√
τ ∀t ∈ [0, T ], (3.3.74)

for some C > 0 independent of τ .

Proof. By Step 6 in the proof of Theorem 3.3.17, particularly the estimate (3.3.72), we know that
‖z̃τ (s) − z(t̂τ (s))‖Z ≤ C

√
τ holds for all s ∈ [0, Sτ ] where z̃τ denotes the interpolant given in

(3.3.55). Since this estimate is valid pointwise, we conclude that

‖zk − z(tk−1)‖Z = ‖z̃τ (sk−1)− z(t̂τ (sk−1))‖Z ≤ C
√
τ

is valid for all k ≤ N(τ). To proceed, observe that, by construction, we have tk = tk(j−1) for all
k ∈ {k(j − 1), k(j − 1) + 1, . . . , k(j)− 1}, so that
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‖zτ (tk(j−1))− z(tk(j−1))‖Z = ‖zk(j) − z(tk(j−1))‖Z
= ‖zk(j) − z(tk(j)−1)‖Z ≤ C

√
τ ∀j ∈ {0, 1, . . . , |N (τ)|}.

Combining this with the Lipschitz continuity of z, we finally arrive at (3.3.74).

It is to be expected that, in the locally uniformly convex case, the corresponding results from
Theorem 3.3.17 can be obtained by carrying out the same arguments as in the proof of Theo-
rem 3.3.14.



Chapter 4

Numerical results

This chapter is devoted to the presentation of numerical results that can be obtained using the
discrete local stationarity scheme LISS. Section 4.1 is concerned with the actual realization of
the scheme in the case of the semilinear example from Section 3.2.5. This particularly includes
the finite element discretization and the approximation Rh of the dissipation potential, which is
performed by a mass lumping scheme. This mass lumping in fact induces that the subdifferential of
Rh admits a component-wise characterization, so that the stationarity conditions (3.3.6a)-(3.3.6d)
can be written as a system of nonsmooth equations. This system is then solved by means of
a semismooth Newton method. A numerical test is presented in Section 4.1.3. In the ensuing
Section 4.2 we provide three numerical examples in order to illustrate the theoretical findings of
the Section 3.3.

4.1 Numerical realization

To test the fully discrete local stationarity scheme numerically, we choose the semilinear setting
from Section 3.2.5, that is:

• Ω ⊂ Rd, d = 2, 3, is a bounded domain.

• The spaces are chosen to be Z = H1
0 (Ω), V = L2(Ω), and X = L1(Ω).

• For the operator V : L2(Ω)→ L2(Ω)∗, we just choose the Riesz isomorphism.

• The operator A within the energy functional is set to A = −∆ : H1
0 (Ω)→ H−1(Ω).

• The nonlinearity F in the energy is defined as the well-known double well potential

F(z) := 48

∫
Ω

(
1− z(x)2

)2dx.
• The external loads are only depending on t and given by

`(t, x) = `(t) := −48 sin(2πt), (t, x) ∈ [0, T ]× Ω.

112
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• The dissipation functional is given by the L1-norm, i.e., R(v) = ‖v‖L1(Ω) .

4.1.1 Finite Element discretization

We employ classical linear finite elements (FE) to discretize the energy and the dissipation func-
tional. For this purpose, assume that a family {Th}h>0 of shape-regular triangulations of the
domain Ω be given. Herein, h denotes the mesh size defined by h := maxT∈Th diam(T ). To keep
the discussion concise, we assume that Ω is a polygon and polyhedron, respectively, and that the
triangulations exactly fit the boundary. For the discrete space, we choose the space of piecewise
linear and continuous test functions, i.e.,

Zh := {v ∈ C(Ω̄) ∩H1
0 (Ω) : v|T ∈ P1 ∀T ∈ Th}.

By classical results on Lagrange and quasi-interpolation, respectively, the best approximation
properties of the orthogonal and the Ritz projection show that the approximation assumptions
in (3.1.7) are fulfilled. Moreover, as shown in [GHS16], the shape-regularity of the triangulation
guarantees that the stability assumption in (3.1.5) is satisfied.

The discretization of the dissipation potential in form of the L1-norm is performed by a mass
lumping scheme, which turns out to be advantageous for the numerical calculation of a stationarity
point of (alg1), as we will see in Section 4.1.2. Let us denote the nodes of the triangulation Th
and the associated nodal basis by xi and ϕi, i = 1, ..., Nh. Moreover, given a function zh ∈ Zh,
we denote the coefficient vector of zh w.r.t. the nodal basis by z = (z1, ..., zNh) ∈ RNh , i.e.,
zh(x) =

∑Nh
i=1 zi ϕi(x). Then the discrete dissipation potential Rh : Zh → R is defined by

Rh(zh) :=

∫
Ω

Nh∑
i=1

|zi|ϕi(x) dx. (4.1.1)

It remains to verify the assumptions in (a)–(c) on Rh, which is done next.

Proposition 4.1.1. The discrete dissipation potential defined in (4.1.1) satisfies the conditions
(a)–(c) from Section 3.1.

Proof. Due to the positivity of the nodal basis, Rh is only a scaled version of the |·|1-norm on RN

and consequently, it fulfills assumption (a). Moreover, the nonnegativity of the nodal basis directly
implies for every vh ∈ Zh that

R(vh) =

∫
Ω

∣∣∣ Nh∑
i=1

viϕi(x)
∣∣∣ dx ≤ ∫

Ω

Nh∑
i=1

|vi|ϕi(x) dx = Rh(vh),

which is the second assumption (b). Before we proceed with showing (c), we make the following
observation: Taking as FT : T̂ → T the affine transformation to the reference element T̂ =

conv((0, 0), (1, 0), (0, 1)), we obtain

Rh(zh) =
∑
T∈Th

∫
T̂

∑
xi∈T

|zi| (ϕi ◦ FT )(x̂) |det(DFT (x̂))| dx̂.
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Let us denote the transformed basis functions by ϕ̂j , j = 1, ..., d. Due to the nonnegativity of the
nodal basis, each of the mappings

Rd 3 (vj)
d
j=1 7→

∫
T̂

d∑
j=1

|vj |ϕ̂j(x̂) dx̂ and Rd 3 (vj)
d
j=1 7→

∫
T̂

∣∣∣ d∑
j=1

vjϕ̂j(x̂)
∣∣∣ dx̂

forms a norm on Rd. Thus, by the norm-equivalence in finite dimensions, there exists a constant
c > 0, only dependening on d = dim(Ω), such that

Rh(zh) ≤
∑
T∈Th

c

∫
T̂

∣∣∣ ∑
xi∈T

zi (ϕi ◦ FT )(x̂) |det(DFT (x̂))|
∣∣∣ dx̂ = c ‖zh‖L1(Ω) . (4.1.2)

Now, concerning the convergence in (c), we set U = C∞c (Ω) and estimate for all u ∈ U :

|Rh(Πhu)−R(u)|

≤ |Rh(Πh(u))−Rh(Ih(u))|+ |Rh(Ih(u))−R(Ih(u))|+ |R(Ihu)−R(u)|

=: e1 + e2 + e3,

where Ih : C(Ω̄) → Zh denotes the Lagrange interpolation operator. Using the reverse triangle
inequality in combination with (4.1.2), the first difference can be estimated by

e1 =
∣∣∣ ∫

Ω

Nh∑
i=1

(
|(Πhu)(xi)| − |(Ihu)(xi)|

)
ϕi(x) dx

∣∣∣
≤ Rh(Πh(u)− Ih(u))

≤ c ‖Πh(u)− Ih(u)‖L1(Ω) ≤ C ‖Πh‖L(L2(Ω),L1(Ω)) ‖u− Ih(u)‖L2(Ω) → 0, as h↘ 0.

Thanks to the partition-of-unity property of the nodal basis, we obtain for the second difference
by applying the reverse triangle inequality once again

e2 ≤
∑
T∈Th

∫
T

Nh∑
i=1

|(Ihu)(xi)− (Ihu)(x)|ϕi(x) dx

≤
∑
T∈Th

h ‖Ihu‖W 1,∞(T )

∫
T

Nh∑
i=1

ϕi(x) dx ≤ C h ‖u‖W 1,∞(Ω) → 0, as h↘ 0.

Using the reverse triangle inequality a third time, we estimate the last difference by

e3 ≤ R(Ihu− u) ≤ C ‖Ihu− u‖L2(Ω) → 0, as h↘ 0.

Overall, we thus obtain assumption (c) with U = C∞c (Ω), which is clearly dense in L2(Ω).

4.1.2 Numerical solution of the stationarity system

The essential advantage of the discretization of R = ‖ · ‖L1(Ω) in (4.1.1) is that its subdifferential
admits a component-wise characterization. This allows to rewrite the first-order optimality condi-
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tions associated with (alg1) as a system of nonsmooth equations, which is amenable to semismooth
Newton methods. To see this, note that the discrete dissipation potential can equivalently be
rewritten as

Rh(zh) = R(z) := m>|z| with m = (m1, ...,mNh) := M1, (4.1.3)

where Mij =
∫

Ω
ϕi ϕj dx ∈ RNh×Nh is the mass matrix, 1 = (1, ..., 1) ∈ RNh , and |z| =

(|z1|, . . . , |zNh |). Therefore, the convex subdifferential of Rh can be expressed as follows:

q = (q1, ..., qNh) ∈ ∂R(zh) ⇐⇒ |qi| ≤ mi, qi zi = mi|zi| ∀ i = 1, ..., Nh,

which can equivalently be formulated as

max{|qi| −mi,mi|zi| − qi zi} = 0 ∀ i = 1, ..., Nh . (4.1.4)

To reformulate the optimality conditions of (alg1) as nonsmooth equation, let us abbreviate the
coefficient vector associated with zτ,hk by zk. Moreover, we denote the energy functional considered
as mapping acting on the coefficient vector by I : RNh → R. Then Step 3 in LISS corresponds
to the calculation of a stationary point of the following minimization problem for the coefficient
vector zk:  min

z∈RNh
I(tk−1, z) +R(z − zk−1)

s.t. G(z) ≤ 0,
(4.1.5)

with G(z) = 1
2 ((z−zk−1)>M(z−zk−1)− τ2). Here and for the rest of this section, we abbreviate

tτ,hk−1 simply by tk−1. Based on the above description of the convex subdifferential of R, we find
the following conditions for a stationary point of this finite dimensional problem:

Lemma 4.1.2. If zk ∈ RNh is a stationary point of (4.1.5) in the sense of (alg1), then there
exists multipliers q ∈ RNh and λ ≥ 0 such that

DzI(tk−1, z
k) + λG′(zk) + q = 0, (4.1.6a)

max{|qi| −mi,mi|zki − zk−1
i | − qi(zki − zk−1

i )} = 0 ∀ i = 1, ..., Nh, (4.1.6b)

max{−λ,G(zk)} = 0. (4.1.6c)

Proof. Since the arguments are quite standard, we will be brief at this point. First, we define

I−(r) :=

0, if r ≤ 0,

+∞, else.

By the sum rule for convex functions, which is clearly applicable here, we find that (alg1) can
be written as 0 ∈ ∂R(zk − zk−1) + ∂(I− ◦ G)(zk) + DzI(tk−1, z

k). Hence, there exists q ∈
∂R(zk − zk−1) such that

DzI(tk−1, z
k) + ∂(I− ◦G)(zk) + q 3 0.
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It is easy to see that the chain rule for convex subdifferentials (see, e.g., [SW11, Lem. 3.4]) can be
used here to obtain

∂(I− ◦G)(zk) = G′(zk)∗∂I−(G(zk)).

This gives the existence of λ ∈ ∂I−(G(zk)) so that

DzI(tk−1, z
k) +G′(zk)∗λ+ q = 0.

Since this equation is precisely an equation in the dual space of RNh we may write it, with a little
abuse of notation (particularly identifying the dual space of RNh with itself), as

DzI(tk−1, z
k) + λG′(zk) + q = 0.

Finally, λ ∈ ∂I−(G(zk)) is equivalent to the conditions

λ ≥ 0, λG(zk) = 0, G(zk) ≤ 0,

so that, by exploiting the characterization of q from (4.1.4), we overall end up with the system in
(4.1.6).

Remark 4.1.3. Clearly, Lemma 4.1.2 provides an analogous result compared to Lemma 3.2.2.
Indeed, equation (4.1.6b), which just says that q is an element of ∂R(zk − zk−1), in combination
with (4.1.6a) corresponds to the properties (3.2.3c) and (3.2.3d). Moreover, (4.1.6c) describes a
discrete version of the complementarity in (3.2.3a).

Remark 4.1.4. Denoting (with a little abuse of notation) the stiffness matrix associated with the
FE discretization of the Laplacian by A ∈ RNh×Nh , (4.1.6a) is equivalent to

Azk − 192
(∫

Ω

(1 − zτ,hk (x)2)zτ,hk (x)ϕi(x) dx
)Nh
i=1

+ `(tk−1)m + λM(zk − zk−1) + q = 0.

Thus, by employing an appropriate quadrature rule, equation (4.1.6a) can be evaluated without
any additional discretization error.

The optimality system in (4.1.6) is solved numerically by a semismooth Newton algorithm,
see, e.g., [HPUU08]. To describe this in detail, let us denote the left-hand side of (4.1.6) by
F : R2Nh+1 → R2Nh+1 so that (4.1.6) becomes F (z, q, λ) = 0. Of course, F depends on time
discretization level k, but we suppress this dependency for the time being to shorten the notation.
Now, given an iterate xn = (zn, qn, λn), we compute the next one by solving the following semi-
smooth Newton equation

Hn (xn+1 − xn) = −F (xn) with Hn ∈ ∂NF (xn),

where ∂NF denotes the Newton-derivative according to [IK08]. As a composition of Newton-
differentiable functions, F itself is Newton-differentiable, see [HPUU08, Thm. 2.10]. For our im-
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plementation, we choose

Hn :=


D2
zzI(tk−1, z

n) + λnM IdNh×Nh M(zn − zk−1)

diag(αn) diag(βn) 0Nh

χn(zn − zk−1)>M 0>Nh −1 + χn

 (4.1.7)

with

αni :=

0, mi|zni − z
k−1
i | − qni (zni − z

k−1
i )− |qni |+mi ≤ 0,

mi s̃gn(zni − z
k−1
i )− qni , mi|zni − z

k−1
i | − qni (zni − z

k−1
i )− |qni |+mi > 0,

βni :=

s̃gn(qni ), mi|zni − z
k−1
i | − qni (zni − z

k−1
i )− |qni |+mi ≤ 0,

zk−1
i − zni , mi|zni − z

k−1
i | − qni (zni − z

k−1
i )− |qni |+mi > 0,

as well as

χn :=

1, G(zn) > −λn,

0, G(zn) ≤ −λn,
and s̃gn(x) :=

1, x ≥ 0,

−1, x < 0.

According to [IK08], s̃gn constitutes an element of the Newton-derivative of the absolute value
function. We choose this particular element instead of the sgn-function satisfying sgn(0) = 0 in
order to avoid the appearance of zero rows in Hn. With this choice, all matrices Hn appearing in
the numerical test have shown to be invertible and the semismooth Newton method performed well
with respect to both, robustness and efficiency. In particular, no globalization efforts are needed
to ensure convergence of the method.

4.1.3 Numerical results

For the numerical test, we choose the unit square Ω = (0, 1)2 as computational domain. Moreover,
the initial state is set to z0 ≡ 0 and the final time is T = 1.0. Note that the initial state thus
satisfies Az0 ≡ 0 ∈ L2(Ω) as required by the standing assumptions in Section 3.1. The domain is
discretized by a Friedrich-Keller triangulation with mesh size h =

√
2/50. For the time step size,

we choose τ = 0.01. The numerical computations are performed with Matlab c© and the linear
systems of equations arising in each semismooth Newton step are solved byMatlab’s inbuilt direct
solver based on UMFPACK.

We compare the local minimization algorithm with the global minimization scheme from (3.0.2),
which is discretized in the same way as (alg1) by using piecewise linear finite elements. The
minimization problem in (3.0.2a) is also solved by means of the semismooth Newton method. In
order to ensure the convergence to global minimizers, we choose the two global minimizers of the
nonlinear function F (i.e., z ≡ 1 and z ≡ −1) as starting points for the semismooth Newton
method.

Let us first comment on the results of the local minimization iteration from algorithm LISS.
Since `(0) ≡ 0, the initial state z0 = Phz0 is locally stable, meaning −DzI(0, z0) ∈ ∂Rh(0).
Consequently, the state does not change in the first iteration and, thanks to the time update
in (alg3), the physical time proceeds by τ = 0.01. However, z0 ≡ 0 is only a local maximum
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of the nonlinearity F and therefore, the external load enforces the state to jump immediately
after the first time step into a local minimum in the subsequent iterations. In case of the local
minimization algorithm, this jump evolves as a viscous transition, while the physical time stagnates,
see Figure 4.1.2. The state after this viscous transition is shown in Figure 4.1.1b. Afterwards the
system evolves in a time continuous manner until t ≈ 0.6724. At this time, a second jump occurs
and the system switches into a viscous behavior, which can be observed in Figures 4.1.1d-4.1.1h,
finally yielding the state in Figure 4.1.1i. Meanwhile, the physical time again stands still (see
Figure 4.1.2), so that the solution in fact changes in a jump-like fashion. The end state is shown
in Figure 4.1.1j.

Let us now turn to the results of the global minimization scheme from (3.0.2). Just as in case of
the algorithm LISS, the state jumps to a global minimum immediately after the first time step and
evolves continuously afterwards. However, as the time evolves, both solutions show a quite different
behavior. While the second discontinuity of the parametrized solution shows up at t ≈ 0.6724,
as depicted above, the global energetic solution already jumps at t ≈ 0.51. In view of the global
minimization in (3.0.2a), it is intuitively expected that the global energetic solution jumps as soon
as possible (cf. also [MRS12, Mie03] and the references therein). The difference between the global
energetic and the parametrized solution can even be further enhanced. For instance, by choosing
`(t) = −32 sin(2πt), the global energetic solution still provides a discontinuity at t ≈ 0.51, while
the parametrized one remains continuous until the end time is reached.

4.2 A priori error estimates

This last section of Chapter 4 is devoted to presentation of several numerical examples under the
aspect of a priori error estimates. In particular, the results from Section 3.3 are visualized here.

4.2.1 Quadratic case

We start with an infinite-dimensional example. For that, we let Ω = [0, 1]2 and choose

I(t, z) =
1

2
〈Az, z〉Z∗,Z − 〈`(t), z〉V

with A = −∆ : H1
0 (Ω) 7→ H−1(Ω) and `(t, x) = 1Ω − 1

π cos(π t/2)f(x), wherein f(x) = 2(x1(1 −
x1) + x2(1 − x2)). Moreover, the dissipation functional is given by the L1-norm, i.e., R(v) =

‖v‖L1(Ω). Consequently, the underlying spaces are Z = H1
0 (Ω), V = L2(Ω), and X = L1(Ω). In

this setting, the unique (differential) solution to (RIS) reads

z(t, x) =


0 , t ∈ [0, 1),

− 1
π cos(π2 t) v(x) , t ∈ [1, 2),

− 1
π v(x) , t ∈ [2, 3],

(4.2.1)

with v(x) = x1x2(1 − x1)(1 − x2). For the spatial discretization of this system, we choose again
linear finite elements on a Friedrich–Keller triangulation with mesh size h =

√
2/100 and the mass-
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Figure 4.1.1: Computed parametrized solution to the problem described in Section 4.1.2. Fig-
ures 4.1.1c–4.1.1i show the viscous transition corresponding to the discontinuity at time t ≈ 0.6724.
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Figure 4.1.2: Evolution of the physical time as function of the artificial time. The physical time
stands still during the viscous transitions at time t ≈ 0.01 and t ≈ 0.6724

lumping scheme for the discretization of R as described in Section 4.1.2. The resulting errors are
shown in Figure 4.2.1. It can be seen that the error decreases in a linear fashion (w.r.t. the time
parameter τ) until the error of the spatial-discretization is dominant.
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Figure 4.2.1: Errors for the approximation of the parametrized solution (4.2.1) using the local
minimization scheme.

4.2.2 Local case

1D-Example

We next give a one-dimensional example, in which the energy is not globally uniformly convex. In
particular, the energetic solution will no longer be continuous in time, which is seen in Figure 4.2.2.
However, the parametrized solution is still Lipschitz continuous and, moreover, remains in a region,
where the energy is uniformly convex, see Figure 4.2.2. For this example, we set Z = V = X = R
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as well as

R(v) = |v| and I(t, z) =
1

2
z2 + F(z)− `(t)z (4.2.2)

with

F(z) = 2|z|3 − 5/2 z2 + 1 and `(t) = −1/2(t− 3/2)2 + 3/2.

For z0 = −2/3, a (differential) solution to (RIS) with (4.2.2) reads

z(t) =


−2/3 , t ∈ [0, 1/2),

− 1
3 (1 + 1/2

√
1 + 3(t− 3/2)2) , t ∈ [1/2, 2),

−1/2 , t ∈ [2, 3].

(4.2.3)

By direct calculations, one verifies that z, indeed, stays in a region where I is uniformly convex.
Thus, from the analysis in Section 3.3.3, we expect the error in the approximation to be of order
O(τ), which can be nicely observed in Figure 4.2.2. In contrast, due to the time discontinuity,
an L∞-error estimate in the form of (3.3.43) cannot hold for the global minimization scheme (see
Figure 4.2.2, right). Recall that the iterates of the global scheme are defined by

zk ∈ arg min{I(tk−1, z) +R(z − zk−1) : z ∈ Z}, tk = tk−1 + τ. (4.2.4)
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Figure 4.2.2: Left: Errors for the approximation of a parametrized solution using the local mini-
mization scheme depending on the step size τ . Right: Corresponding differential solution (black)
as well as the numerical approximations using the global (blue) and the local iterated minimization
scheme (red) as functions of the time t.

2D-Example

In view of the previous example, one may wonder if it is possible to obtain error estimates in an Lp-
norm, 1 ≤ p <∞, for the global minimization scheme, provided that the energy is locally uniformly
convex. The following two-dimensional example demonstrates that this is not the case for any p ≥ 1
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at least not for the whole sequence of approximations. To this end, we set Z = V = X = R2 as
well as

R(v) = |v|1 and I(t, z) =
1

2
‖z‖2 + F(z)− `(t)z (4.2.5)

with

F(z) = 2‖z‖4 + 12z2
1z

2
2 − 9/2‖z‖2 + 3 and `(t) =

−1

128
(l(t), l(t))>,

where l(t) = t3 − 27t2 + 179t− 25. For z0 = (1, 0)>, a (differential) solution to (RIS) with (4.2.5)
reads

z(t) =

{
(1, 0)>, t ∈ [0, 1),

(1 + (1− t)/16, (1− t)/16)>, t ∈ [1, 2].
(4.2.6)

Again, z stays in a region where I is uniformly convex, and thus the approximation error of the local
minimization scheme is of order O(τ), see Figure 4.2.3. In contrast to this, the global minimization
scheme does not, in general, converge in any Lp-norm, p ≥ 1, because of the ambiguity of the global
minimizers. To be more precise, while the global minimization problem in (4.2.4) admits a unique
global minimizer in z∗0 = z0 for t < 1, it exhibits three different global minima at t = 1, namely
z∗0 = z0, z∗1 = (−1, 0)>, and z∗2 = (0,−1)> (see Figure 4.2.3, right). For t > 1, the global minimum
z∗0 vanishes, but z∗1 and z∗2 both remain globally minimal. Thus, when the algorithm reaches
t = 1, the iterates either jump to z∗1 or z∗2 , depending on the concrete algorithmic realization (e.g.,
choice of the optimization algorithm, initial value, etc). Therefore, either of two different energetic
solutions is approximated by the global minimization scheme illustrating that an Lp-error estimate,
1 ≤ p ≤ ∞, cannot, in general, be expected for this discretization scheme, at least not for the whole
sequence of discrete solutions.
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Figure 4.2.3: Left: Errors for the approximation of a parametrized solution using the local mini-
mization scheme depending on the step size τ . Right: Surface and contour plot of I(t, z)+R(z−z0)
at time t = 1 with I and R from (4.2.5).



Chapter 5

Conclusion and outlook

As we have seen at several points in this thesis, rate-independent systems naturally inhere a certain
nonsmoothness which also transfers to possible solutions of the very same. In the first part of this
work, we therefore concerned ourselves with some concepts of solutions being capable of handling
time discontinuities. Hereby, we primarily focused on the notions of differential, energetic and
parametrized solutions. While each of these provides their own characteristics, we brought out
several interrelations depending on the properties of the underlying energy functional, particularly
convexity.
With all the necessary foundations at hand, we subsequently presented a full space and time
discretization scheme (LISS) based on the local incremental minimization scheme introduced in
[EM06]. The major differences between these two are, on the one hand, that we allow for unbounded
dissipation functionals here and, on the other hand, that we merely require the iterates to be
stationary points of the underlying minimization problem. The latter property, especially, has the
essential advantage that it is a natural outcome in the context of optimization algorithms (limit
points are, in general, stationary). By adapting the analysis of the recent contribution [Kne19]
and using arguments from [KRZ13], we proved that (weak) accumulation points of the sequence of
discrete solutions for mesh and time step size tending to zero exist and are parametrized solutions
of the original rate-independent system. While this is at first glance a result that verifies the
consistency of the local incremental stationarity scheme, we, moreover, gain an existence result for
parametrized solutions in the case of a nonconvex energy and unbounded dissipation.
We subsequently turned our attention to the derivation of a priori estimates for the local incremental
stationarity scheme. Here we proved that for the semilinear energy functional, i.e., I(t, z) =
1
2 〈Az, z〉+F(z)−〈`(t), z〉, the optimal convergence rate of O(τ) can be obtained if I is additionally
(globally) uniformly convex or if I is only locally uniformly convex along a given solution trajectory
and the time step τ is sufficiently small. Unfortunately, both cases additionally require some
smallness assumption on the external load `. In the general case, i.e., I(t, z) = 1

2 〈Az, z〉+ F(z)−
f(t, z), this convergence rate reduces to O(

√
τ). In summary, the overall picture concerning the a

priori estimates (at least in the semilinear case) for the local incremental stationarity scheme now
looks as follows:

• For an arbitrary nonconvex energy, there exists a subsequence of discrete solutions that

123



124

converges (weakly) to a parametrized solution as τ ↘ 0.

• If the energy is locally uniformly convex along a solution trajectory, then the discrete solution
converges with optimal rate to this solution, provided that the time step size is sufficiently
small. At this point, the local incremental minimization scheme turns out to be superior to
the global one, since the latter does, in general, not satisfy such an a priori estimate.

• If the energy is uniformly convex, one obtains the same convergence rates as for the global
incremental minimization scheme.

Finally, we turned to the actual realization of the local incremental stationarity scheme, where
we employed standard piecewise linear finite elements for the spatial discretization. For the dis-
cretization of the dissipation functional, we made use of a mass lumping scheme which, on the
one hand, turned out to be advantageous for the numerical realization of the algorithm and, on
the other hand, can be incorporated into the (abstract) convergence analysis. This mass lumping
allows a reformulation of the discrete optimality system arising in each step of the local stationar-
ity scheme as nonsmooth equation, which is amenable for semismooth Newton methods. For the
case of a double-well potential, we compared the local minimization scheme with another time dis-
cretization scheme known to converge to global energetic solutions. We observe that both schemes,
indeed, provide different solutions which jump at different points in time.

After all, there remain several unanswered questions:

• This concerns for example the generalization of the convergence theorem for more general
energy functionals, in particular quasilinear instead of semilinear. As already indicated, the
main ingredient of the convergence analysis is a Gårding-like inequality, so that an improve-
ment in this direction might be possible.

• Moreover, the gap between the semilinear and the general setting remains as an open problem
here. However, under suitable smoothness assumptions on f and applying arguments from
the proof in the semilinear case, it should be possible to extend the results. Still, this does
not affect the rather unsatisfactory smallness assumption on ` and some more investigations
into this direction are needed.

• Finally, as we did not include the spatial discretization into the a priori analysis, one might
take a deeper look into a priori estimates combining both, discretization in space and time.

Clearly, this short list is by far not complete. Despite the problems arising in this thesis, it is for
example interesting to investigate dissipation functionals which are also depending on the state
z, i.e., R = R(z, z′). Nevertheless, it hopefully gives some impulses for problems that can be
addressed in future research on this topic.



Appendix

Throughout this appendix, X denotes a normed vector space over R if not otherwise specified.
Moreover, we adopt the setting from the introduction, that is, Z,V are Hilbert spaces and X is a
Banach space with Z ↪→c,d V ↪→ X .

A.1 Spaces

We use this section in order to briefly recall some of the function spaces used in this thesis as well
as some minor results. Preliminary, we define the set of partitions of [a, b] as

P(a, b) := {{t0, t1, . . . , tn} : a = t0 < t1 < · · · < tn = b} (A.1.1)

and call {t0, t1, . . . , tn} ∈ P(a, b) a partition.

Definition A.1.1. Let [a, b] ⊂ R and z : [a, b]→ X. We define the variation of z as

VarX(z, [a, b]) := sup
P(a,b)

{
n∑
i=1

‖z(ti)− z(ti−1)‖X

}
.

Therewith, we denote

BV (a, b;X) := {z : [a, b]→ X : VarX(z, [a, b]) <∞},

the space of functions of (pointwise) bounded variation.

If the space X in the above definition is a Banach space, then BV (a, b;X) is a Banach space en-
dowed with the norm ‖z‖BV (a,b;X) := ‖z(a)‖+ VarX(z, [a, b]). Moreover, we simply write BV (a, b)

if X = R. The next result is a well-known property of functions with bounded variation and can
for example be found in [Leo17, Thm. 2.17].

Lemma A.1.2. Let X be a Banach space and z ∈ BV (a, b;X). Then z is continuous at all but
countably many points and there exist

z(t+) = lim
s→t, s>t

z(s) and z(t−) = lim
s→t,s<t

z(s)

for all t ∈ [a, b] with obvious modifications if t = a, b.
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Additionally, a function in BV allows the following estimate

Lemma A.1.3. Let z ∈ BV (a, b;X) and h ∈ (0, b− a). Then

1

h

∫ b

a+h

‖z(t)− z(t− h)‖X ds ≤ VarX(z, [a, b]). (A.1.2)

Proof. see [Kre99, Thm. 8.12].

We next turn to the Bochner Sobolev spaces. For these, we do not explictly repeat the definition
but merely refer the reader to [GGZ74]. In this context [Wac11] also provides a well chosen
composition of various results. Nevertheless, we recall some properties. For the rest of this section,
we let X be a Banach space. Then W 1,p(0, T ;X) is also a Banach space and, moreover, reflexive
provided p ∈ (1,∞) and X is also reflexive.

Lemma A.1.4. Let z : [a, b]→ X be Bochner integrable, then∥∥∥∥∥
∫ b

a

z(t) dt

∥∥∥∥∥
X

≤
∫ b

a

‖z(t)‖X dt.

If furthermore Y is a second Banach space and A : X → Y is a linear continuous operator, then

A

(∫ b

a

z(t) dt

)
=

∫ b

a

A(z(t)) dt.

As in the real-valued case, we also obtain the Lebesgue’s dominated convergence theorem:

Theorem A.1.5 (Lebesgue dominated convergence). Let p ∈ [1,∞) and zn ∈ Lp(a, b;X) as well
as mn ∈ Lp(a, b) be two sequences with

mn → m ∈ Lp(a, b),

zn(t)→ z(t) f.a.a. t ∈ [a, b],

∀n ∈ N ‖zn(t)‖X ≤ mn(t) f.a.a. t ∈ [a, b].

Then zn converges to z in Lp(a, b;X).

Moreover, we have the following properties:

Lemma A.1.6. There holds:

• Let p ∈ [1,∞) then C∞(a, b;X) is dense in W 1,p(a, b;X).

• If v ∈ L1(a, b;X) and z(t) = z0 +
∫ b
a
v(s) ds, then z ∈ C(a, b;X)∩W 1,1(a, b;X) with z′(t) =

v(t) almost everywhere in [a, b]. Moreover, z is absolutely continuous.

• If, in contrast, z ∈ W 1,1(a, b;X) then z(t) = z(a) +
∫ b
a
z′(s) ds holds almost everywhere in

[a, b].

• Furthermore, if z ∈W 1,1(a, b;X) with z′(t) = 0 almost everywhere in [a, b], then z is constant
almost everywhere.
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• There holds the following continuous embedding: W 1,1(a, b;X) ↪→ C(a, b;X).

• If additionally p ∈ (1,∞] and Y is another Banach space with Y ↪→d X, then it holds
W 1,p(a, b;Y ) ↪→c C(a, b;X).

In particular, we have:

Lemma A.1.7. Let f ∈ L1(0, T ;X) and
∫ t
s
f(r)dr = 0 for all 0 ≤ s < t ≤ T hold, then f = 0

almost everywhere in [0, T ].

Proof. We define w(t) :=
∫ t

0
f(s)ds. Then w ∈ W 1,1(0, T ) by construction and, moreover, w ≡ 0.

Hence, since the weak derivative is unique, we obtain 0 = w′ = f almost everywhere in [0, T ].

Finally, we recall the following version of the Lebesgue differentiation theorem for Bochner-
Sobolev functions:

Theorem A.1.8. Let z ∈W 1,1(a, b;X) be given. Then

z′(t) = lim
h↘0

z(t+ h)− z(t)
h

(A.1.3)

holds for almost all t ∈ (a, b).

A.2 Elements of functional analysis

Ehrling lemma

The following estimate on the norm of the intermediate space Z ⊂ V ⊂ X is an essential ingredient
in the convergence analysis of the local stationarity scheme LISS. Although there exist slightly
more general versions as for example in [Alt12, p. 365] or [Rou13, Lem. 7.6], we stick with this
one:

Lemma A.2.1. Let X ,V and Z be Banach spaces with V ↪→ X and Z ↪→c V. Then for every
δ > 0 there exists Cδ > 0 such that

‖v‖V ≤ δ‖v‖Z + Cδ‖v‖X (A.2.1)

for all v ∈ Z.

Proof. by contradiction. Thus, let ε > 0 be given. Then there exists vk ∈ Z with

‖vk‖V > ε ‖vk‖Z + k ‖vk‖X .

Due to the embedding V ↪→ X , particularly ‖vk‖X ≤ c ‖vk‖V , we may w.l.o.g. assume that
‖vk‖Z > 0. Hence, taking ṽk := vk/‖vk‖Z it holds

‖ṽk‖V > ε+ k ‖ṽk‖X .
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Since ṽk is bounded in Z and Z ↪→c V, there exists a subsequence (again denoted by ṽk) with
ṽk → ṽ for some ṽ ∈ V. In particular, ṽk is bounded and also converges to ṽ in X , so that we can
conclude

0←− 1

k
‖ṽk‖V ≥ ‖ṽk‖X → ‖ṽk‖X .

This implies that ṽ = 0 and therefore 0 < ε < ‖ṽk‖V → 0, which proves the claim.

Chain rules and change of variables formula

We now turn to the different versions of the chain rule, occurring at several points in this thesis.
In preparation for this, however, we need to specify the following definition, wherein H1 denotes
the onedimensional Hausdorff measure.

Definition A.2.2 (Lusin (N) property ([Leo17, Def. 3.34])). Let I ⊂ R and (X, d) be a metric
space. Moreover, let u : I → X. We say that u satisfies the Lusin (N) property if

H1(u(J)) = 0

for every set J ⊆ I with Lebesgue-measure zero, i.e., L1(J) = 0.

Now, we can state the following very general result, which can be found in [Leo17]:

Theorem A.2.3 (General chain rule). Let I, J ⊂ R be two intervals, let X be a normed space,
and let f : J → X and u : I → J be such that f, u, and f ◦ u are differentiable almost everywhere
in their respective domains. If f satisfies the Lusin (N) property, then for almost every x ∈ I,

(f ◦ u)′(x) = f ′(u(x))u′(x), (A.2.2)

where f ′(u(x))u′(x) is interpreted to be zero whenever u′(x) = 0 (even if f is not differentiable at
u(x)).

Proof. see [Leo17, Thm 3.59]

From this, we easily deduce:

Corollary A.2.4. Let f, u be as in Theorem A.2.3. Let additionally f be Lipschitz continuous.
Then (A.2.2) holds true, i.e.,

(f ◦ u)′(x) = f ′(u(x))u′(x), (A.2.3)

where f ′(u(x))u′(x) is interpreted to be zero whenever u′(x) = 0 (even if f is not differentiable at
u(x)).

Proof. Since Lipschitz continuous functions provide the Lusin (N) property, this is an immediate
consequence of Theorem A.2.3.

Now, we turn to more concrete versions of the chain rule.
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Lemma A.2.5. Let I ∈ C1([0, S] × Z,R) and (t, z) ∈ W 1,∞(0, S) × W 1,1(0, S;Z). Then the
following chain rule

d
dt
I(t(s), z(s)) = ∂tI(t(s), z(s))t′(s) + 〈DzI(t(s), z(s), z′(s)〉Z∗,Z a.e. in [0, S]

holds. In particular, it holds

I(t(s2), z(s2))− I(t(s1), z(s1))

=

∫ s2

s1

∂tI(t(s), z(s)) t′(s) + 〈DzI(t(s), z(s), z′(s)〉Z∗,Z ds (A.2.4)

for all 0 ≤ s1 < s2 ≤ S.

Proof. From the theory for vector-valued Sobolev spaces we haveW 1,1(0, S;Z) ↪→ C(0, S;Z). Now
let t ∈W 1,1(0, S) and z ∈W 1,1(0, S;Z) be arbitrary. Then, by density, there exist tn ∈ C∞(0, S)

and zn ∈ C∞(0, S;Z) converging strongly to t in W 1,1(0, S) and z in W 1,1(0, S;Z), respectively.
From the above embedding we infer that this convergence is even pointwise, so that for all s ∈ [0, S]

DzI(tn(s), zn(s))→ DzI(t(s), z(s)) in Z∗,

∂tI(tn(s), zn(s))→ ∂tI(t(s), z(s)),

since I ∈ C1([0, T ]×Z;R). Since both terms are also uniformly bounded, we have weak∗ conver-
gences of DzI(tn(s), zn(s)) to DzI(s, z(s)) and ∂tI(tn(s), zn(s)) to ∂tI(t(s), z(s)) in L∞(0, S;Z∗)
and L∞(0, S), respectively. In combination with the strong convergence of z′n to z′ in L1(0, S;Z)

we obtain

〈DzI(s, zn(s)), z′n(s)〉Z∗,Z → 〈DzI(s, z(s)), z′(s)〉Z∗,Z in L1(0, S)

and correspondingly

∂tI(tn(s), zn(s)) t′n(s)→ ∂tI(t(s), z(s)) t̂′(s) in L1(0, S) .

For every tn, zn we can therefor apply the chain rule so that in the end

I(tn(s2), zn(s2))− I(tn(s1), zn(s1))

=

∫ s2

s1

d
ds
I(tn(s), zn(s)) ds

=

∫ s2

s1

∂tI(tn(s), zn(s)) t′n(s) + 〈DzI(tn(s), zn(s)), z′n(s)〉Z∗,Z ds

→
∫ s2

s1

∂tI(t(s), z(s)) t′(s) + 〈DzI(t(s), z(s)), z′(s)〉Z∗,Z ds

Finally, since I is continuous, it holds

I(tn(s2), zn(s2))− I(tn(s1), zn(s1))→ I(t(s2), z(s2))− I(t(s1), z(s1)),
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which proves the claim.

Thereof, we can easily conclude the following variant.

Corollary A.2.6. Let I ∈ C1([0, T ]×Z,R) and z ∈W 1,1(0, T ;Z). Then the following chain rule
holds

d
dt
I(t, z(t)) = ∂tI(t, z(t)) + 〈DzI(t, z(t), z′(t)〉Z∗,Z a.e. in [0, T ]. (A.2.5)

Lastly, we state a chain rule for the composition of a W 1,p(0, T ;Z)-function with a time-
transformation in W 1,∞(0, S).

Lemma A.2.7. Let Z be a reflexive Banach space. Moreover, suppose that z ∈ W 1,p(0, T ;Z)

and t̂ ∈ W 1,∞(0, S) with t̂(0) = 0, t̂(S) = T and t̂′(s) ≥ 0 for almost all s ∈ [0, S]. Then
z ◦ t̂ ∈W 1,p(0, T ;Z) with (z ◦ t̂)′(s) = z′(t̂(s))t̂′(s) for almost all s ∈ [0, S].

Proof. We let δ ∈ (0, 1] be fixed but arbitrary and extend z to R by constant continuation (for
simplicity also denoted by z). Moreover, we set t̂δ(s) := t̂(s) + δ s so that t̂′ ≥ δ > 0 by the
assumption on t̂. Hence, an application of [Leo17, Cor. 3.64] implies that (z ◦ t̂δ) is differentiable
almost everywhere and it holds

(z ◦ t̂δ)′(s) = z′(t̂δ(s))t̂
′
δ(s) = z′(t̂δ(s))(t̂

′(s) + δ) f.a.a. s ∈ [0, S]. (A.2.6)

This leads to
‖(z ◦ t̂δ)′‖Lp(0,S;Z) ≤

(
‖t̂′‖L∞(0,S) + δ

)
‖z′‖Lp(0,T ;Z) ≤ C <∞.

so that (z ◦ t̂δ) ∈ W 1,p(0, S + δS;Z). Now, consider a sequence δ ↘ 0. Then {z ◦ t̂δ} is bounded
in W 1,p(0, S;Z) and consequently, there is a subsequence converging weakly(∗) in W 1,p(0, S;Z).
On the other hand, t̂δ converges uniformly to t̂ on [0, S] so that the continuity of z (due to the
embedding of W 1,p(0, T +S;Z) ↪→ C(0, T +S;Z)) gives the pointwise convergence of z ◦ t̂δ to z ◦ t̂
on [0, S]. Since the weak and the pointwise limit coincide, this gives z ◦ t̂ ∈W 1,p(0, T ;Z). Finally,
the identity (z ◦ t̂)′(s) = z′(t̂(s))t̂′(s) follows from Theorem A.2.3 by exploiting that z is absolutely
continuous and therefore satisfies the Lusin (N) property; cf. [Leo17, Thm. 8.42].

We close this section with the following two versions of the change of variable formula. The
first of these can be found in [EG92] in a slightly more general form.

Theorem A.2.8 (Change of variables). Let t : [0, S]→ [0, T ] with S ≥ T be Lipschitz continuous
and monotone increasing. Then for every p ∈ L1(0, T ) it holds

∫ S

0

p(s)t′(s) ds =

∫ T

0

 ∑
x∈t−1(y)

p(x)

dy. (A.2.7)

Proof. see [EG92, p. 99].

If the function t in the prior theorem is not necessarily Lipschitz continuous, we may still obtain
the subsequent result, which is the only point where the space of absolutely continuous functions
AC(a, b) is mentioned, so that we refer to [Leo17, Def. 3.1] for a definition.
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Theorem A.2.9. Let t : [a, b]→ [c, d] be differentiable almost everywhere and p ∈ L1(c, d). Then
(p ◦ t) t′ is integrable and it holds

∫ t(β)

t(α)

p(s) ds =

∫ β

α

p(t(σ)) t′(σ) dσ (A.2.8)

for all α, β ∈ [a, b] if and only if the function f ◦ t belongs to AC(a, b), where

f(r) =

∫ r

c

p(x) dx.

Proof. see [Leo17, Thm. 3.75].

Corollary A.2.10. Let t : [a, b] → [c, d] be monotone increasing and absolutely continuous and
p ∈ L1(c, d). Then (p ◦ t) t′ is integrable and the change of variables formula (A.2.8) holds.

General Helly selection theorem

The following result is an essential ingredient in the existence proof of energetic solutions.

Lemma A.2.11 (General Helly selection theorem [MR15, Thm. B.5.13]). Let R comply with
assumptions (R1)-(R3) and DissR be defined as in (2.3.1). Moreover, let K be a weakly sequentually
compact subset of Z and zk : [0, T ]→ Z be a sequence with

zk(t) ∈ K ∀t ∈ [0, T ] and k ∈ N, (A.2.9)

sup
k∈N

DissR(zk, [0, T ]) <∞. (A.2.10)

Then there exists a subsequence {zkl}l∈N, a limit function z : [0, T ] → Z and a nondecreasing
function δ : [0, T ]→ [0,∞) so that for all t ∈ [0, T ]:

δ(t) = lim
l→∞

DissR(zkl , [0, t]), (A.2.11)

zkl(t) ⇀ z(t) and z(t) ∈ K, (A.2.12)

DissR(z, [s, t]) ≤ δ(t)− δ(s) ∀0 ≤ s < t. (A.2.13)

Proof. see [MR15, Thm. B.5.13].

A.3 Elements of convex analysis

A crucial ingredient of the thesis at hand is the convex subdifferential. In order to clarify the
notation, we give a Definition of the very same.

Definition A.3.1. Let f : X → R ∪ {+∞} be a convex function. Then we denote by

∂f(x) := {g ∈ X∗ : f(v) ≥ f(x) + 〈g, v − x〉 ∀v ∈ X} ⊂ X∗
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the convex subdifferential of f at x ∈ X. Sometimes, we will also write ∂Xf(x) in order to
stress the underlying space.

Moreover, we denote the domain of a functional f by dom(f), i.e.,

dom(f) := {x ∈ X : f(x) < +∞}. (A.3.1)

Finally, we introduce the concept of conjugate and biconjugate functionals and refer to [BV10]
for more details. Since the degenerate cases are rather uninteresting, we restrict our definition to
proper functionals f , i.e., f(x) > −∞ for all x ∈ X and there exists at least one x ∈ X with
f(x) <∞.

Definition A.3.2. Let f : X → (−∞,∞] be a proper functional. We denote by f∗ : X∗ →
(−∞,∞] the conjugate functional

f∗(x∗) := sup
x∈X

(〈x∗, x〉X∗,X − f(x)) .

Moreover, we define f∗∗ : X → (−∞,∞] as

f∗∗(x) := sup
x∗∈X∗

(〈x∗, x〉X∗,X − f∗(x∗))

and call it the biconjugate functional.

An easy consequence of the definition of the conjugate functional is the following Fenchel-Young
inequality :

Lemma A.3.3 (Fenchel-Young inequality). Let f : X → R be a proper functional. Let moreover
denote f∗ the conjugate of f . Then

f(x) + f∗(ξ) ≥ 〈ξ, x〉X∗,X ∀v ∈ X, ξ ∈ X∗ (A.3.2)

and equality holds if and only if ξ ∈ ∂f(x).

Lemma A.3.4 (Jensen inequality). Let f : X → R ∪ {+∞} be a proper, convex and lower
semicontinuous functional. Then, for every integrable z : [0, T ]→ X , it holds

f

(
1

(t− s)

∫ t

s

z(r) dr
)
≤ 1

(t− s)

∫ t

s

f(z(r)) dr (A.3.3)

for all 0 ≤ s < t ≤ T . Note that we define the right-hand side to equal ∞ if f ◦ z is not integrable.

Proof. Let s, t ∈ [0, T ] with s < t be given. We define z0 := 1
(t−s)

∫ t
s
z(r) dr ∈ X. It is easy to see

that, if z0 6∈ dom(f) then there exists E ⊂ (s, t) with nonzero measure, such that z(r) 6∈ dom(f)

for almost all r ∈ (s, t). In this case, (A.3.3) is trivial. Thus let z0 ∈ dom(f). Since f is proper,
convex and lower semicontinuous, a well-known result from convex analysis gives f∗∗ = f , that
is, for all x ∈ X it holds f(x) = supx∗∈X∗ (〈x∗, x〉X∗,X − f∗(x∗)). Now, let x∗ ∈ X∗ be arbitrary.
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Then f(x) ≥ (〈x∗, x〉X∗,X − f∗(x∗)) and therefore∫ t

s

f(z(r)) dr ≥
∫ t

s

(〈x∗, z(r)〉X∗,X − f∗(x∗)) dr

= 〈x∗,
∫ t

s

z(r) dr〉X∗,X dr − (t− s)f∗(x∗)

= (t− s) (〈x∗, z0〉X∗,X − f∗(x∗)) .

Taking the supremum, we find

1

(t− s)

∫ t

s

f(z(r)) dr ≥ sup
x∗∈X∗

(〈x∗, z0〉X∗,X − f∗(x∗)) = f(z0) = f

(
1

(t− s)

∫ t

s

z(r) dr
)
.

This gives (A.3.3).

The integration of the superposition with a convex functional as in the Jensen inequality (A.3.3)
occurs at various points throughout this thesis, which is why we take a look at its properties now.

Lemma A.3.5. Let f : X → R∪ {+∞} be a proper, convex and lower semicontinuous functional
and [a, b] ⊂ R. If, moreover, f is nonnegative, then the functional

F : L1(a, b;X)→ R ∪ {+∞}, v 7→


∫ b
a
f(v(t)) dt , if f ◦ v ∈ L1(a, b)

∞ , else

is proper, convex and lower semicontinuous.

Proof. Obviously, since f is proper, there exists a v0 ∈ X with f(v0) <∞ so that for v ≡ v0 we have
F (v) <∞ and thus F is proper. For the convexity of F we argue as follows: Let v, w ∈ L1(a, b;X)

and λ ∈ [0, 1] be given. W.l.o.g. we may assume that v, w ∈ dom(F ). Clearly, λv + (1 − λ)w

is an element of L1(a, b;X) and thus Bochner–measurable. Since f is lower semicontinuous, it
is Borel–measurable, so that f ◦ (λv + (1 − λ)w) is also measurable. By the convexity of f , we
additionally have

0 ≤ f(λv(t) + (1− λ)w(t)) ≤ λf(v(t)) + (1− λ)f(w(t))

for almost all t ∈ [a, b]. Since v, w ∈ dom(F ) it therefore holds

F (λv + (1− λ)w) =

∫ b

a

f(λv(t) + (1− λ)w(t)) dt

≤
∫ b

a

λf(v(x)) + (1− λ)f(w(x)) dt = λF (v) + (1− λ)F (w),

which proves the convexity of F . We finally turn to the lower semicontinuity property. For this, it
suffices to show that the epigraph (see, e.g., [BV10]) is closed. Hence, let (vn, rn) ∈ epi(F ) ⊂ X×R
with vn → v in L1(a, b;X) and rn → r. Then there exists a subsequence (denoted by the same
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symbol) such that vn(t) → v(t) in X for almost all t ∈ [a, b]. The nonnegativity of f allows us to
apply Fatou’s lemma, which, together with the lower semicontinuity of f , gives

F (v) =

∫ b

a

f(v(t)) dt ≤
∫ b

a

lim inf
n→∞

f(vn(t)) dt ≤ lim inf
n→∞

∫ b

a

f(vn(t)) dt ≤ lim sup
n→∞

tn = t.

The measurability of f ◦ v follows again by the measurability of v and f as above. Thus, we have
(v, t) ∈ epi(F ) which overall proves that F is indeed proper, convex and lower semicontinuous.

With a view to calculus rules for the convex subdifferential, we state the following sum and
chain rule which may be found in [ET99, Prop. I.5.6 and I.5.7].

Theorem A.3.6. Let f1, f2 : X → R ∪ {+∞} be convex. Moreover, let there exist x̂ ∈ X with
x ∈ (dom(f1) ∩ dom(f2)) and either f1 or f2 is continuous in x̂. Then it holds

∂(f1 + f2)(x) = ∂f1(x) + ∂f2(x) ∀x ∈ X. (A.3.4)

Theorem A.3.7. Let Y be another normed vector space, A ∈ L(X,Y ) and f : Y → R ∪ {+∞}
proper and convex. Moreover, let there be an x̂ ∈ X so that f is finite and continuous in Ax̂. Then
it holds

∂(f ◦A)(x) = A∗∂f(Ax) ∀x ∈ X,

where A∗ denotes the adjoint operator of A.

After these more or less general results, we turn to more concrete statements concerning the
dissipation R and Rh, respectively. As in the proof of Lemma 3.2.2 we abbreviate Rτ,h = Rh ◦
Πh + Iτ , where Iτ is as defined in (3.2.2). Analogously, we set Rhτ := Rh + Iτ (v).

Lemma A.3.8. For every η ∈ Z∗, there holds

(Rτ,h)∗(η) = τ distV∗{η, ∂(Rh ◦Πh)(0)}, (A.3.5)

where distV∗{η, ∂(Rh ◦Πh)(0)} = min{‖η−w‖V−1 : w ∈ ∂(Rh ◦Πh)(0)} and ‖η‖2V−1 = 〈η,V−1η〉.
Note that distV∗{η, ∂(Rh◦Πh)(0)} = +∞ if there exists no w ∈ ∂(Rh◦Πh)(0) such that η−w ∈ V∗.

Proof. We use the inf-convolution formula (see [Att84, Prop. 3.4]), which is applicable, since both
functions are proper, convex and closed and we have dom(Iτ ) = BV(0, τ). This gives

(Rh ◦Πh + Iτ )
∗

(η) = inf
w∈Z∗

((Rh ◦Πh)∗(w) + I∗τ (η − w)) . (A.3.6)

For I∗τ , direct calculation leads to

I∗τ (µ) =

τ‖µ‖V−1 , if µ ∈ V∗,

+∞, if µ ∈ Z∗ \ V∗.
(A.3.7)

To calculate the conjugate functional of (Rh◦Πh)∗, note that by the linearity of Πh the composition
Rh ◦ Πh is again convex and positively 1−homogeneous. Therefore, Lemma 2.1.1 implies that
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(Rh ◦Πh)∗(η) = I∂(Rh◦Πh)(0)(η). Inserting this together with (A.3.7) in (A.3.6) finally yields

(Rh ◦Πh + Iτ )∗(η) = inf
w∈∂(Rh◦Πh)(0)

{τ‖η − w‖V−1} = τ distV∗{η, ∂(Rh ◦Πh)(0)},

which is (A.3.5). The fact that the infimum, if it is finite, is attained, follows from the weak-
closedness of ∂(Rh ◦Πh)(0) and the weak lowersemicontinuity of ‖·‖V−1 .

From the previous lemma it is easy to conclude the following corollary, where we abbreviate
Rτ = R+ Iτ and again Iτ denotes the indicator function as defined in (3.2.2).

Corollary A.3.9. For every η ∈ Z∗, there holds

(Rτ )∗(η) = τ distV∗{η, ∂R(0)}, (A.3.8)

where distV∗{η, ∂R(0)} = min{‖η − w‖V−1 : w ∈ ∂R(0)} and ‖η‖2V−1 = 〈η,V−1η〉. Note, again,
that distV∗{η, ∂R(0)} = +∞ if there exists no w ∈ ∂R(0) such that η − w ∈ V∗.

Lemma A.3.10. Let v ∈ Z be arbitrary. Then ∂ZIτ (v) = ∂VIτ (v).

Proof. If v 6∈ BV(0, τ), then ∂VIτ (v) = ∅ = ∂ZIτ (v). Thus, let v ∈ BV(0, τ) and ξ ∈ ∂ZIτ (v) ⊂ Z∗,
which, by definition, means

Iτ (w) ≥ Iτ (v) + 〈ξ, w − v〉Z∗,Z ∀w ∈ Z

⇐⇒ 0 ≥ 〈ξ, w − v〉Z∗,Z ∀w ∈ BV(0, τ) ∩ Z. (A.3.9)

Since v ∈ Z, we can estimate 〈ξ, w〉Z∗,Z ≤ 〈ξ, v〉Z∗,Z ≤ ‖ξ‖Z∗‖v‖Z for all w ∈ BV(0, τ) ∩ Z.
Testing with w = τw̃/‖w̃‖V, we find 〈ξ, w̃〉Z∗,Z ≤ τ‖ξ‖Z∗‖v‖Z‖w̃‖V =: C‖w̃‖V for all w̃ ∈ Z.
Hence, the density of Z in V allows us to extend ξ ∈ Z∗ in a unique way to a subgradient in V∗,
i.e., ξ ∈ ∂VIτ (v). In this sense, it holds ∂ZIτ (v) ⊂ ∂VIτ (v). Note that the opposite inclusion is a
direct consequence of Z ⊂ V.

The lemma above allows us to simply use ∂Iτ (v) and neglect the underlying space V and Z,
respectively. Now, we come to the actual characterization of ∂Iτ .

Lemma A.3.11. Let v ∈ Z be arbitrary. Then ξ ∈ ∂Iτ (v) if and only if there exists a multiplier
λ ∈ R such that ξ = λVv and

‖v‖V ≤ τ, λ(‖v‖V − τ) = 0, λ ≥ 0.

Proof. According to a classical result of convex analysis in combination with (A.3.7), it holds

ξ ∈ ∂Iτ (v) ⇐⇒ Iτ (v) + I∗τ (ξ) = 〈ξ, v〉 ⇐⇒

{
‖v‖V ≤ τ,

τ‖ξ‖V−1 = 〈ξ, v〉.
(A.3.10)

Now, the Cauchy-Schwarz-Inequality implies 〈ξ, v〉 = 〈V(V−1ξ), v〉 ≤ ‖ξ‖V−1‖v‖V ≤ τ‖ξ‖V−1 so
that the equivalence in (A.3.10) can only hold if V−1ξ = λv for some λ ∈ R. Inserting this into
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(A.3.10), we conclude that λ ≥ 0. Moreover, if ‖v‖V < τ , then ξ = 0 so that λ fulfills also
λ(‖v‖V − τ) = 0 as claimed.

A.4 Auxiliary results

Some Gronwall inequalities

Lemma A.4.1 (Standard Gronwall inequality). Let m ∈ L1(a, b) with m ≥ 0 almost everywhere
in [a, b] and α ≥ 0 a positive constant. If u : [a, b]→ R is a continuous function satisfying

u(t) ≤ α+

∫ b

a

m(s)u(s) ds ∀t ∈ [a, b],

then u(t) ≤ α exp
(∫ t

a
m(s) ds

)
for all t ∈ [a, b].

Proof. See, e.g., [Bré73, Lem. A.4].

Lemma A.4.2. Let m ∈ L1(a, b) with m ≥ 0 almost everywhere in [a, b], α ≥ 0 a positive constant
and let u : [a, b]→ R be a continuous function satisfying

u(t)2 ≤ α2 +

∫ t

a

m(s)u(s) ds ∀t ∈ [a, b].

Then |u(t)| ≤ α+
∫ t
a
m(s) ds.

Proof. See [Bré73, Lem. A.5].

Normalization of parametrized solutions

Lemma A.4.3. Any V-parametrized solutions (t̂, ẑ) can be reparameterized such that its reparam-
eterization (t̃, z̃) is normalized, i.e., it fulfills t̃′(s) + ‖z̃′‖V = 1 for almost all s ∈ [0, S̃], and (t̃, z̃)

is still a V-parametrized solution.

Proof. The proof is based on [Mie11, Lem. 4.12] and [KRZ13, Rem. 6.5]. Let (t̂, ẑ) by a non-
normalized parametrized solution with artificial end time S. We define

m(s) :=

∫ s

0

t̂′(r) + ‖ẑ′(r)‖V dr, (A.4.1)

so that m′(s) = t̂′(r) + ‖ẑ′(r)‖V for almost all s ∈ [0, S] and m ∈ W 1,∞(0, S). We moreover let
r(µ) := inf{σ ≥ 0 : m(σ) = µ} as well as t̃(µ) = t̂(r(µ)) and z̃(µ) = ẑ(r(µ)). Note that r is
monotone increasing, so that Lebesgue’s differentiation theorem (see, e.g., [Leo17, Thm. 1.18])
implies that r is differentiable almost everywhere with r′ ≥ 0. By construction, we additionally
have m(r(µ)) = µ for all µ ∈ [0, R], where R = r(m(S)). To proceed, we observe that t̃ and z̃ are
Lipschitz continuous. Indeed, it holds for all 0 ≤ µ1 < µ2 ≤ S that
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|t̃(µ2)− t̃(µ1)|+ ‖z̃(µ2)− z̃(µ1)‖V
= |t̂(r(µ2))− t̂(r(µ1))|+ ‖ẑ(r(µ2))− ẑ(r(µ1))‖V

=

∣∣∣∣∣
∫ r(µ2)

r(µ1)

t̂′(s) ds

∣∣∣∣∣+

∥∥∥∥∥
∫ r(µ2)

r(µ1)

ẑ′(s) ds

∥∥∥∥∥
V

≤
∫ r(µ2)

r(µ1)

|t̂′(s)|+ ‖ẑ′(s)‖V ds = m(r(µ2))−m(r(µ1)) = µ2 − µ1.

Briefly summarized, we have m, t̃ and z̃ differentiable almost everywhere since they are Lipschitz-
continuous and so is r due to Lebesgue’s differentiation theorem. The chain rule from Theo-
rem A.2.3 thus gives

t̃′(µ) = t̂′(r(µ))r′(µ) and z̃′(µ) = ẑ′(r(µ))r′(µ)

for almost all µ ∈ [0, R]. Combining all this, we end up with

µ = m(r(µ)) =

∫ µ

0

(m ◦ r)′(s) ds

=

∫ µ

0

m′(r(s))r′(s) ds

=

∫ µ

0

(t̂′(r(s)) + ‖ẑ′(r(s))‖V r′(s) ds

=

∫ µ

0

(t̂′(r(s)) r′(s) + ‖ẑ′(r(s))r′(s)‖V ds

=

∫ µ

0

(t̂ ◦ r)′(s) + ‖(ẑ ◦ r)′(s))‖V ds =

∫ µ

0

t̃′(s) + ‖z̃′(s)‖ ds.

for all µ ∈ [0, R], which eventually proves that (t̃, z̃) is normalized. The fact that (t̃, z̃) is still
a parametrized solution is now easy to check by exploiting the change of variable formula in
Theorem A.2.9.

Estimate on γ(t)

Proof. Let z1, z2 ∈W 1,∞(0, T ;Z) and, again,

γ(t) := 〈DzI(t, z1(t))−DzI(t, z2(t)), z1(t)− z2(t)〉Z∗,Z .

First of all, using the symmetry of D2
zI, we calculate

γ′(t) = 〈∂tDzI(t, z1(t))− ∂tDzI(t, z2(t)), z1(t)− z2(t)〉Z∗,Z
+ 〈D2

zI(t, z1(t))[z1(t)− z2(t)], z′1(t)〉Z∗,Z
− 〈D2

zI(t, z2(t))[z1(t)− z2(t)], z′2(t)〉Z∗,Z
+ 〈DzI(t, z1(t))−DzI(t, z2(t)), z′1(t)− z′2(t)〉Z∗,Z .
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Rearranging terms, we arrive at

γ′(t) = 〈∂tDzI(t, z1(t))− ∂tDzI(t, z2(t)), z1(t)− z2(t)〉Z∗,Z
+ 〈D2

zI(t, z1(t))[z1(t)− z2(t)] +DzI(t, z2(t))−DzI(t, z1(t)), z′1(t)〉Z∗,Z
− 〈D2

zI(t, z2(t))[z1(t)− z2(t)] +DzI(t, z1(t))−DzI(t, z2(t)), z′2(t)〉Z∗,Z
+ 2〈DzI(t, z1(t))−DzI(t, z2(t)), z′1(t)− z′2(t)〉Z∗,Z .

Now, due to z1, z2 ∈W 1,∞(0, T ;Z) and the regularity on I(t, ·) (see (1.0.5)), we find that

γ′(t) ≤ c‖z1(t)− z2(t)‖2Z
+ C‖z1(t)− z2(t)‖2Z‖z′1(t)‖Z + C‖z1(t)− z2(t)‖2Z‖z′2(t)‖Z
+ 2〈DzI(t, z1(t))−DzI(t, z2(t)), z′1(t)− z′2(t)〉Z∗,Z
≤ C‖z1(t)− z2(t)‖2Z + 2〈DzI(t, z1(t))−DzI(t, z2(t)), z′1(t)− z′2(t)〉Z∗,Z ,

which is the desired estimate.
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