
Mario R. Eden, Marianthi Ierapetritou and Gavin P. Towler (Editors) Proceedings of the 13th 
International Symposium on Process Systems Engineering – PSE 2018 
July 1-5, 2018, San Diego, California, USA © 2018 Elsevier B.V. All rights reserved. 

Price-based coordination of interconnected systems 
with access to external markets 
Lukas S. Maxeinera*, Simon Wenzela, and Sebastian Engella 
a Process Dynamics and Operations Group, Department of Biochemical and Chemical 
Engineering, TU Dortmund, Emil-Figge Straße 70, 44227 Dortmund, Germany 
{lukas.maxeiner;simon.wenzel;sebastian.engell}@tu-dortmund.de 

Abstract 
Many industrial processes are coupled via multiple networks of energy and materials to 
achieve a resource and energy efficient production. In many cases however, setting up 
an integrated optimization problem for all units or plants that are directly connected to 
the networks is not possible, especially when not all information can be shared. In such 
cases, dual decomposition or price-based coordination can be used, where optimal 
transfer prices are iteratively determined at which the networks are balanced and the 
resources are allocated optimally between the participants. 

In this contribution, price-based coordination is extended to include the situation where 
limited resources can be bought or sold at predefined prices from external markets (e.g. 
via pipelines) and the resulting algorithms are demonstrated for a realistic example. 

Keywords: Distributed optimization, Price-based coordination, Dual decomposition, 
External resources, Shared-resource allocation. 

1. Introduction 
Many industrial production sites consist of individual plants or units, which are tightly 
coupled by streams of energy and material. Especially in the chemical industry, these 
streams, e.g., energy in the forms of steam and electricity as well as raw materials and 
intermediate products, are exchanged via networks that link consuming and producing 
systems, where the holdups usually are very small. In order to optimize the overall 
economic performance as well as the resource efficiency of the site, it is not sufficient to 
optimize each plant or unit individually, but rather a joint optimization of the production 
plants or site, taking into account the balancing of the resource networks, is necessary.  

However, finding the solution to the overall optimization problem in a centralized 
manner may not be realizable. Due to various reasons, such as robustness and local 
autonomy or confidentiality, when systems belong to different business units or 
companies, optimizing each plant independently is preferred. One method to coordinate 
the individual optimization problems is dual decomposition, which uses transfer prices 
to balance the interconnecting streams, instead of solving the whole problem at once. 
An optimal solution is determined by iterating between setting the transfer prices (dual 
variables) and each system optimizing its response, until equilibrium transfer prices are 
found (Everett III, 1963). This method has various applications and can be used, for 
instance, to manage the energy flow in electrical micro grids (Zhang et al., 2013) or to 
optimally allocate resources in chemical production sites (Wenzel et al., 2016, 2017).  

Considering all the networks of such a production process as closed systems is not 
realistic, since usually at least some of the networks are connected to external sources or 



2  L.S. Maxeiner et al. 

sinks, where, on the spot market or according to contracts, amounts can be purchased or 
sold at certain price levels. The topic of optimal procurement for chemical process 
networks was already discussed by Calfa and Grossmann (2015) for a centralized 
optimization. In this contribution, the distributed optimization framework of dual 
decomposition is extended such that it solves this type of problem in a distributed 
manner by a modified update of the dual variables. We derive this update mechanism 
and provide a graphical interpretation for the one-dimensional case. Furthermore, we 
demonstrate the proposed update scheme using an example. 

The following syntax is used: Italic lower case letters represent scalar functions or 
values. Bold lower case letters represent column vectors or vectored functions and bold 
upper case letters represent matrices. The transpose of vector  is denoted by . We 
use [k] to identify the k-th row of vectors and matrices. Absolute values and norms are 
denoted by  and . To ease the notation, we here assume that all systems have the 
same number of variables and constraints, which however is not required in general. 

2. Problem formulation 
The joint optimization of N systems with network constraints can be written as 
Eqs.(1a) – (1d): 

 
The objectives of the sub-problems i are denoted by . The sub-problems are 
constrained by Eq.(1b) and in Eq.(1c) the states  are bounded by lower and upper 
bounds. Overall, the network constraint Eq.(1d) has to be satisfied. The interaction of 
system i with the network is given by . 

In Eqs.(2a) – (2e), the network constraint is extended to include access to M external 
resources or sinks j, where the amounts , limited by  and , can be bought or 
sold at predefined prices .  

3. Distributed solution 
The problem shown in Eqs.(1a) – (1d) can be solved using dual decomposition, splitting 
the problem into N independent sub-problems and an overarching coordination problem 
by relaxation of the network constraints Eq.(1d). The local contributions to the network 
constraint are multiplied by the corresponding dual variable  and added to the 
objective of the sub-problem. Locally, Eq.(3) is solved for a given value of : 
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It is assumed that the subsystems do not share their objectives or constraints due to 
confidentiality reasons, only the responses to transfer prices , are communicated. 

In Figure 1a, a one-dimensional example of an aggregated supply, which is defined as 
the sum of all positive contributions to the network constraint, i.e., , 
and an aggregated demand, defined as , depending on the value of  
are shown. 

 
Feasibility, i.e., satisfaction of the network constraint Eq.(1d), is achieved by adjusting 
the dual variables  in an iterative procedure. Economically, this can be interpreted as 
finding the intersection between supply and demand, cf. Figure 1a. However, in the 
considered case this cannot be done explicitly, since the individual objectives and 
constraints are not known in the coordination problem, only the responses to the transfer 
prices. Hence the sub-gradient method is used for the optimization where transfer prices 

 are adjusted proportionally to the difference between supply and demand 

               
Iterating between local optimizations and the update of the transfer prices is done until a 
stopping criterion is met, e.g., that the maximum residuum  is less 
than a predefined tolerance . The update of the transfer prices is done using the step 
size parameter . Careful selection of the step size parameter is necessary to 
ensure convergence, especially when local constraints  are active. If all objectives 
and constraint functions are convex, the solution found upon convergence is the global 
optimum. 

The augmented problem from Eqs.(2a) – (2e) can also be solved using dual 
decomposition. While the local optimization can still be done using Eq.(3), on the 
coordination layer, additionally to finding the optimal transfer prices, the cost for 
interaction with external markets, , has to be minimized. Finding the optimal 
values for  can either be done separately from the price adjustment or in a combined 
step. In Eqs.(5) and (6), the new transfer prices  and the amounts to be bought or sold 

 are calculated separately using the sub-gradient method: 
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The other approach is to update both variables at the same time. The complete algorithm 
for balancing multiple networks with several external resources and outlets at different 
fixed prices is shown in Algorithm 1. In the example in Figure 1a, this corresponds to 
evaluating different realizations for  using Eq.(5), based on the minimum and 
maximum values for . If the price range given by  and  is below the price for the 
external resource , then  will be at the lower bound, and the maximum value for  is 
used in the next iteration, cf. Case 1 in Algorithm 1. If the price range includes , Case 
2, the difference between supply and demand can be covered by the external resources 
and therefore . If the price range is above the price for the external resources, 
Case 1 also applies and the external resource  is at the upper bound. Case 3 is only 
required, if the step size  is too large. The residuum vector  
is used for the evaluation of the stopping criterion in both approaches. 

 

4. Example 
In the following, an example is used to demonstrate the proposed extension of the dual 
decomposition approach. Quadratic objective functions with positive diagonal scaling 
matrices and affine constraints of the following form are assumed: 
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Five subsystems ( ) are connected via three shared resources ( ). For 
each resource, there are three different sources from which they can be bought ( ). 
Each subsystem has four independent variables  and is subject to two local 
constraints . The transfer prices  are initialized with , the step size 
is chosen as , and the tolerance is set to . The matrices and vectors 

, , , , , , and   are generated from a random seed and the lower 
bound for flows of external resources is . 

 
In Figure 2, the change of the residuals  and of the transfer prices  over the iterations 
can be seen for both, the separate (filled) and combined, update rules. The distributed 
solutions converge towards the optimum of the centralized solution, which can be seen 
from the vanishing residuals on the left and the matching of the transfer prices at 
convergence with those from the centralized solution (shown in grey thick lines) on the 
right. Furthermore, it can be seen that upon convergence [1] (square) is less than, [2] 
(triangle) is equal to, and [3] (circle) is larger than the prices at which external 
resources can be bought (dash-dotted lines), i.e., this example covers all three scenarios 
from Figure 1b. Comparing the two different methods, it becomes evident that the 
method with separate steps requires more iterations and oscillates towards the optimum.  

5. Discussion and Conclusion 
The significantly larger number of iterations in the approach with separate steps is due 
to  being equal to the external price. Since the variables are set consecutively, an 
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overshoot is necessary because otherwise the sub-gradient for the usage of the external 
resource does not change. For the combined approach, after 90 iterations the network 
constraint of resource 2 is balanced by the external market and hence the residuum is 0.  

In general, it can be said that distributed optimization can be used when there is access 
to external markets. What the authors observed running a suite of test cases with 1000 
additional randomly generated examples is that the number of iterations of the 
combined approach is in a similar range as for a price-based optimization without 
external markets. Additionally, using this method bounds on the transfer prices of 
resources can be imposed by setting  and  to a low/ high values. The authors 
found this to be necessary to avoid excessive prices in real applications. 

6. Outlook 
Future work includes investigating the influence of a dynamic adaptation of the step 
size parameter , in order to enable an arbitrary starting value for  and to speed up 
convergence. From a practical perspective, the distribution of the gains from the usage 
of external markets needs to be investigated, since here these are only realized at the 
coordination level. Another topic of interest is the implementation of other contracts, 
such as take or pay, minimum required amounts, discounts for large amounts, etc. 
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