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Abstract

The thesis is concerned with an optimal control problem with an evolution variational in-
equality (EVI), involving a maximal monotone operator, as a constraint. This abstract setting
can be applied to various cases of elasto plasticity.

It is shown that elasto and homogenized plasticity, elasto plasticity with an inertia term and
also perfect plasticity can be transformed into a certain EVI. Such an EVI is analyzed in the
context of optimal control. Then optimal control problems for each of the mentioned plasticity
systems are considered, where the findings in the abstract case are either directly applied (elasto
and homogenized plasticity and partly elasto plasticity with an inertia term) or at least partially
used (perfect plasticity).

In each case, the existence of a global solution to the corresponding optimal control prob-
lem is shown. The state equations, and thus the control problems, are then regularized and
results regarding approximation of global minimizers by global minimizers of the regularized
problems are proved. For the optimal control problem, constrained by the abstract EVI, first
and second order optimality conditions are derived, whereas only first order conditions are
investigated for optimal control problems governed by plasticity systems.

A certain difficulty arises in the case of perfect plasticity due to the non-uniqueness of the
displacement and the fact that it is only of bounded deformation. This is the main reason for
restricting the optimal control problem to the stress as the only state variable when it comes to
optimality conditions. Moreover, for this case numerical experiments are presented. The finite
element toolbox FEniCS was used to solve the involved partial differential equations.
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Part I Introduction

The thesis at hand is concerned with the optimal control of four different plasticity systems,
namely

(P.i) small-strain quasistatic elasto plasticity with linear kinematic hardening, for short
elasto plasticity,

(P.ii) small-strain quasistatic homogenized plasticity with linear kinematic hardening,
for short
homogenized plasticity,

(P.iii) small-strain elasto plasticity with an inertia term and linear kinematic hardening,
for short
plasticity with inertia
and

(P.iv) small-strain quasistatic elasto perfect plasticity, for short
perfect plasticity.

We will always use the short term for these systems in what follows. Moreover, we will simply
say hardening instead of linear kinematic hardening.

In all four systems a certain equation, respectively inclusion, is present, the so called flow
rule. All systems have in common, that they can be transformed into an evolution variational
inequality (EVI) due to the flow rule. In the case of elasto, homogenized and perfect plasticity,
this EVI is essentially the flow rule and the solution to it the plastic strain. In these three cases,
the stress depends linearly on the displacement and the plastic strain. Therefore the systems can
be reduced such that the stress is not present anymore. Then, the balance of momentum can be
solved and the displacement be obtained if the plastic strain is known. Hence, the displacement
and the balance of momentum can be replaced with a solution operator. Inserting this solution
operator in the flow rule yields the mentioned EVI. In the case of homogenized plasticity, these
steps can also be performed, but one has to take the variables representing the micro structure
into account. This idea of the transformation into an EVI originated in [45], at least to the
author’s knowledge. The case of plasticity with inertia has to be treated differently, the whole
system has to be rewritten such that it is equivalent to an EVI. An analog method was also
proposed in [45], however, therein the equations were transformed into a second order EVI .

The arising EVI reads as follows:
.
𝑧 ∈ 𝐴(𝑅𝓁 −𝑄𝑧), 𝑧(0) = 𝑧0. (EVI)

Therein, 𝐴 is a maximal monotone operator, 𝑅 and 𝑄 are linear and continuous operators and 𝑧0
is the initial condition. In the case of elasto, homogenized and perfect plasticity, the maximal
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Part I Introduction

monotone operator might be the subdifferential of an indicator function representing the von-
Mises flow rule. In the case of plasticity with inertia it will be a certain maximal monotone
operator which is in fact not a subdifferential. In the case of elasto, homogenized and perfect
plasticity, the operator 𝑅 is a solution operator of the equations of linear elasticity. It maps
possible external forces and a potential Dirichlet displacement, both contained in the variable
𝓁, into the space of the plastic strain 𝑧. The operator 𝑄 consists also of a solution operator, but
also of the elasticity tensor and the hardening parameter (except in the case of perfect plasticity,
where the hardening parameter is zero). The case of plasticity with inertia is again different.
The operators 𝑅 and 𝑄 are simpler, due to the more complex maximal monotone operator, and
𝑧 is not only (a transformed version of) the plastic strain but contains also the displacement and
the velocity of the displacement.

Of course, the description above of the transformation into an EVI and the description of this
EVI has only the purpose to give a rough introduction to the idea on which this thesis is mostly
based on. Throughout the thesis, we will give rigorous definitions of the mentioned plasticity
systems, lay out the transformation into an EVI in detail and present an in-depth analysis of
this EVI.

Organization of the Thesis

The thesis is organized as follows: Besides the abstract at the beginning and the conclusion
and outlook, the appendix and several lists at the end, it consists of five parts, each part con-
taining two or more chapters. All chapters except Chapter 1 are divided further into two or
more sections.

In the current part we present the notation and standing assumptions in Chapter 1 and
proceed then with an introduction into elasto plasticity in Chapter 2. Therein, we will apply
the above described idea to transform the system of elasto plasticity into an EVI of the form of
(EVI).

Part II is devoted to the analysis and optimal control of (EVI). At first we will introduce
maximal monotone operators with a closer look at subdifferentials. After this, we will analyse
EVIs. We prove the existence of solutions and convergence results in two different settings,
in the first one we use a boundedness assumption on the maximal monotone operator. In the
second setting, we drop this assumption, but use instead more regular loads, that is, loads
which are 𝐻2 in time. The first setting is useful for elasto, homogenized and perfect plasticity,
the second is tailored for plasticity with inertia. With the existence and convergence results at
hand, we finally consider an optimal control problem with an EVI as a constraint. Besides an
existence and approximation result, first and second order optimality conditions are proved.

In Part III we apply the abstract results obtained in Part II to the case of elasto and homoge-
nized plasticity. In the case of elasto plasticity, we can use the results from Chapter 2 to consider
straightway an optimal control problem. This problem fits exactly into the setting considered
in Part II, therefore the results are directly applicable and first order optimality conditions in
the form of a KKT system are provided. In Chapter 7 the equations of homogenized plasticity
are transformed into an EVI. This chapter is kept rather short, we focus only on the transforma-
tion, an application of the general theory developed in Part II is possible and would be similar
as the one presented for elasto plasticity. For this reason and the fact that such an application
was provided in [71], Part III ends after the transformation of homogenized plasticity into an
EVI.

Plasticity with inertia is the topic of Part IV. In contrast to elasto and homogenized plastic-
ity, the findings concerned with optimal control in Part II cannot be applied directly and the
transformation into an EVI is different. Nonetheless, the results concerning the existence and
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convergence of EVIs in the setting with more regular loads, provided in Part II, can be used.
This part concludes with first order optimality conditions again in the form of a KKT system.

Finally, in Part V the case of perfect plasticity is handled. The equations are identical to the
ones of elasto plasticity, except that the hardening parameter is set to zero. Therefore the equa-
tions of perfect plasticity can still be transformed into an EVI of the form of (EVI). As described
above, the operator 𝑄 consists of a solution operator, the elasticity tensor and, in the case of
elasto plasticity, the hardening parameter. As we will see in Chapter 2, the solution operator
together with the elasticity tensor is positive, but only the presence of the hardening parameter
makes the operator𝑄 coercive . This coercivity will be vital in Part II, hence, most of the results
developed in this part are not applicable for perfect plasticity. Moreover, it is also known that
the equations of perfect plasticity in general only admits solutions where the displacement is
of bounded deformation and also not unique. Due to these facts, the existence and approximation
of solutions have to be investigated in detail before we can turn to an optimal control problem.
The approximation of global minimizers by global minimizers of regularized optimal control
problems is, due to the lesser regularity and non-uniqueness of the displacement, all but stan-
dard. This is why we then reduce the problem under consideration to the stress, that is, we
drop the displacement as a state. For this reduced problem optimality conditions are provided
and we finally present numerical experiments.

Comparison with the Literature

As can be inferred from the description above, the objective of the thesis at hand is the
study of optimal control problems constrained by the four mentioned plasticity systems. Since
these plasticity systems are composed of partial differential equations (PDEs) and variational
inequalities (VIs), the optimal control of these systems falls under the topic of optimal control
of PDEs and VIs. Such problems are investigated in the literature, let us refer to [100, 54, 23,
1, 16, 17, 94, 79] and the references therein. We also note that the plasticity systems we are
considering are rate-independent, for a servey of rate-independent systems see [76]. Optimal
control problems with rate-independent systems are, e.g., also investigated in [81, 75, 82, 35].
However, when it comes to optimal control problems governed by quasi-static plasticity the
literature becomes rather scarce. In the static case there are various articles, for example, [52,
70], but in the quasi-static case, we are only aware of [104, 105, 107, 108].

Beside these references, the articles [71, 72, 73] also deal with optimal control of homoge-
nized and perfect plasticity and serve as a basis for this thesis. In particular, the content of
Part II and Chapter 7 is based on [71] and Part V on [72, 73]. Note that some of the substance
of these papers can be found one to one in this thesis. Nonetheless, optimal control of plas-
ticity with inertia presented in Part IV, which had also an impact on the content of Part II, is
completely new and not published yet. Moreover, the treatment of the existence and approxi-
mation of solutions to perfect plasticity in Chapter 11 contains external forces in contrast to the
findings in [72, 73], which is a delicate issue due to the so called safe-load condition (cf. Defini-
tion 11.13). Besides this, the approximation of optimal controls shown in Section 12.1 differs
from the one presented in [73], see Remark 12.2. Moreover, the papers [71, 72, 73] give also a
good overview of related literature, which again serve as a foundation for our comparison.

Note also that the case of elasto plasticity presented in Chapter 6 was already dealt with in
[104, 105, 107, 108]. However, our approach is completely different and elasto plasticity is only
one case which fits in the abstract setting considered in Part II.

Throughout the thesis, we compare some of our findings in more detail with the above and
further references.
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Part I Introduction

Some Comments on Assumptions

Before we can dive into the mathematical content of our work, we have to elaborate on one
speciality regarding our assumptions. At first, we introduce the standing assumptions for the
whole thesis in the upcoming chapter. These assumptions are tacitly assumed throughout the
thesis without mentioning them every time. Furthermore, we collect all assumptions needed
in a certain part right at the beginning of that part. We agree upon the following:

The Assumption Agreement. In the assumption collection at the beginning of a part, each item is
denoted with a roman or arabic number. The roman number refers to a part and the arabic number to
a chapter or section. The part, chapter or section associated with an item by its number is the scope in
which the assumption is valid. An assumption may be strengthened by a further assumption or weakened
inside a certain result.

Let us give an example how to get all assumptions for a specific result. Consider for ex-
ample Theorem 5.21. Clearly, at first we have to look at the statement of a result, in case of
Theorem 5.21 we have the assumption that a 𝛿 > 0 exists such that (5.34) is fulfilled. Next, we
look for the assumption collection at the beginning of Part II, namely Assumption II. Since The-
orem 5.21 is contained in Section 5.3, Assumptions ⟨5.3.i⟩ to ⟨5.3.iv⟩ are necessary. Notice that
Assumption ⟨5.3.i⟩ also includes Assumptions ⟨5.2.i⟩ to ⟨5.2.v⟩. Furthermore, since Section 5.3
belongs to Chapter 5, also Assumptions ⟨5.i⟩ to ⟨5.iv⟩ are required for Theorem 5.21, where
Assumption ⟨5.i⟩ includes Assumption ⟨4.i⟩ and Assumption ⟨4.ii⟩. Finally, Chapter 5 is con-
tained in Part II, hence, Assumption ⟨II.i⟩ and Assumption ⟨II.ii⟩ have to be taken into account.
Beside all these assumptions from Assumption II, the standing assumptions in Chapter 1 are
additionally necessary. Now we have collected every assumption which is required, such that
the statement in Theorem 5.21 holds true.

We have decided to present our assumptions according to The Assumption Agreement due
to two reasons. At first, it is always clear how to get all assumptions required for a specific
result, hence, we do not have to go through a whole section, chapter or part to check if there is
an assumption which has to be taken into account. Secondly, our agreement lifts the burden to
state many assumptions inside a specific result, possibly repeating previously made assump-
tions. Of course, our agreement also has a drawback. Some assumptions made for a specific
section, chapter or part of the thesis is not necessary for each finding therein. However, the
assumptions are always required for the main results, thus it is reasonable to simply suppose
that they hold in the whole section, chapter or part.

Note also that the assumptions in the collections are tacitly assumed throughout the associ-
ated section, chapter or part. Nonetheless, at various passages we will recall some assumptions
to point out important issues. Moreover, they may contain notation and notions which are only
defined later. However, these assumptions will not be used until the mentioned terms were in-
troduced. Thus the reader may skip the assumption collections and come back to it when a
new chapter or section starts.

Let us now state the assumption collection for this part.

Assumption I. We impose the following assumptions according to The Assumption Agreement above.

⟨2.i⟩ Suppose that 𝑧0 ∈ 𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) is given.⟨2.ii⟩ Let 𝑓, 𝑔 ∈ 𝐻1(𝐻−1

𝐷 (Ω;ℝ𝑑)) and 𝑢𝐷 ∈ 𝐻1(𝐻1(Ω;ℝ𝑑)) be given.

Note that Assumption I, and also Assumption III, is quite sparse due to the nature of these
parts. In Part II, Part IV and Part V quite the contrary is the case. Moreover, the assumption
collections for all other parts appear right at the beginning of the corresponding part, Assump-
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Chapter 1 Notation and Standing Assumptions

tion I is an exception.
We can now proceed to lay out our notation and state the standing assumptions in the up-

coming chapter.

Chapter 1 Notation and Standing Assumptions

In this chapter we introduce the notation we use and impose all standing assumptions. As said
above, these standing assumptions are valid in the whole thesis and will be assumed tacitly,
that is, we do not mention them again except for clarification.

Before we start, let us point to the List of Symbols on Page 159. This list gives a good
overview of the most used symbols in this thesis. Let us shortly discuss one feature of our
notation. Some of the used symbols are defined multiple times. Consider the structure of the
thesis into five parts, a symbol has the same definition in one part but may be redefined in
another, with the exception of Part III, where the redefinition may happen in Chapter 6 and
Chapter 7. Consider for instance the space  in the List of Symbols. It is an arbitrary Banach
space in Part II, but defined in Chapter 6 and Part V (respectively Chapter 13) differently and
also referred to in Chapter 7 and Part IV. This has the following reason: In Part II we consider
a general setting with given data (loads) in  . In the four considered cases of plasticity, this
general setting can be (partly) applied, where in each case the space, corresponding to  from
the general setting, is different. Thus, it is reasonable to denote all these spaces by  . Such
“multi” symbols are tagged with a small m in the List of Symbols.

Let us now continue to introduce our notation and impose the standing assumptions.

Numbers: We use the usual notation for numbers. By ℕ we denote the natural numbers with-
out zero and by ℝ the real numbers. When 𝑎, 𝑏 ∈ ℝ, then [𝑎, 𝑏] ⊂ ℝ is the closed interval and
(𝑎, 𝑏) ⊂ ℝ the open interval. Half closed or open intervals are denoted analogously. Further-
more, 𝑐 > 0 and 𝐶 > 0 denote generic constants, that is, they may change their values during a
calculation.

General Notation: When 𝑋 is a normed vector space we denote its norm by ‖ ⋅ ‖𝑋 . For
normed vector spaces 𝑋 and 𝑌 we denote the space of linear and continuous functions on 𝑋
with values in 𝑌 by (𝑋; 𝑌 ). We abbreviate (𝑋) ∶= (𝑋;𝑋). The dual space of𝑋 is denoted by
𝑋∗ = (𝑋;ℝ). The inner product of a Hilber space𝐻 is denoted by (⋅, ⋅)𝐻 . We may leave out the
index 𝑋 or 𝐻 of norms and inner products when it is clear from the context. Given a coercive
and symmetric operator 𝐺 ∈ (𝐻) on the Hilbert space 𝐻 , we denote its largest coercivity
constant by 𝛾𝐺 (which equals inf‖ℎ‖𝐻=1 (𝐺ℎ, ℎ)𝐻 ), i.e., (𝐺ℎ, ℎ)𝐻 ≥ 𝛾𝐺‖ℎ‖2𝐻 for all ℎ ∈ 𝐻 . With
this operator, we can define a new scalar product by𝐻 ×𝐻 ∋ (ℎ1, ℎ2) ↦

(
𝐺ℎ1, ℎ2

)
𝐻 ∈ ℝ, which

induces an equivalent norm. We denote the Hilbert space equipped with this scalar product by
𝐻𝐺, that is,

(
ℎ1, ℎ2

)
𝐻𝐺

∶=
(
𝐺ℎ1, ℎ2

)
𝐻 for all ℎ1, ℎ2 ∈ 𝐻 . Moreover, we use common terms of

functional analysis, e.g. such as weak convergence. We refer to [109, 13, 33, 111, 112, 113, 110,
6, 61, 86].

Matrices: For 𝑑 ∈ ℕ, the 𝑑 × 𝑑-dimensional matrices are denoted by ℝ𝑑×𝑑 . Given a matrix
𝜏 ∈ ℝ𝑑×𝑑 , the transpose is denoted by 𝜏⊤ and we define its deviatoric (i.e., trace-free) part as

𝜏𝐷 ∶= 𝜏 − 1
𝑑
tr(𝜏)𝐼,

where 𝐼 is the identity matrix. We use the same notation for matrix-valued functions. The
Frobenius norm is denoted by |𝐴|2 ∶=

∑𝑑
𝑖,𝑗=1𝐴

2
𝑖,𝑗 for 𝐴 ∈ ℝ𝑑×𝑑 and for the associated scalar
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Part I Introduction

product, we write 𝐴 ∶ 𝐵 ∶=
∑𝑑
𝑖,𝑗=1𝐴𝑖,𝑗𝐵𝑖,𝑗 , for all 𝐴,𝐵 ∈ ℝ𝑑×𝑑 . By ℝ𝑑×𝑑

𝑠 ⊂ ℝ𝑑×𝑑 , we denote the
space of symmetric matrices, that is, 𝐴 ∈ ℝ𝑑×𝑑

𝑠 if and only if 𝐴𝑖,𝑗 = 𝐴𝑗,𝑖 for all 𝑖, 𝑗 ∈ {1, ..., 𝑑} (so
that 𝐴 = 𝐴⊤).

Tensors: Fourth-order tensors, that is, linear and continuous mappings on ℝ𝑑×𝑑 , are denoted
by blackboard symbols. We denote the adjoint of a tensor 𝔼 ∈ (ℝ𝑑×𝑑) by 𝔼⊤ (that is, we adopt
the notation from matrices instead of using the ∗-symbol). The elasticity tensor and hardening
parameter are denoted by ℂ ∶ ℝ𝑑×𝑑

𝑠 → ℝ𝑑×𝑑
𝑠 and 𝔹 ∶ ℝ𝑑×𝑑

𝑠 → ℝ𝑑×𝑑
𝑠 , respectively. They are both

linear and continuous, ℂ,𝔹 ∈ (ℝ𝑑×𝑑
𝑠 ). Moreover, both are symmetric and coercive, where

symmetry, for instance for ℂ, means

ℂ𝜎 ∶ 𝜏 = 𝜎 ∶ ℂ𝜏

for all 𝜎, 𝜏 ∈ ℝ𝑑×𝑑
𝑠 . In addition, we set 𝔸 ∶= ℂ−1 and note that (𝔸𝜏, 𝜏)ℝ𝑑×𝑑

𝑠
≥ 𝛾ℂ∕‖ℂ‖2‖𝜏‖2ℝ𝑑×𝑑

𝑠
for all

𝜏 ∈ ℝ𝑑×𝑑
𝑠 holds, i.e., 𝔸 is coercive with coercivity constant 𝛾𝔸 ≥ 𝛾ℂ∕‖ℂ‖2. Let us note that ℂ and

𝔹 could also have a spatial dependency, however, to keep the discussion concise, we restrict
ourselves to this setting.

Domain: The domain Ω is an open and connected subset of ℝ𝑑 , where 𝑑 ∈ ℕ is the dimension.
It is bounded by a Lipschitz boundary Γ, also denoted by 𝜕Ω. The boundary consists of two
disjoint measurable parts, the Neumann boundary Γ𝑁 and the Dirichlet boundary Γ𝐷, such that
Γ = Γ𝑁 ∪ Γ𝐷. While Γ𝑁 is a relatively open subset, Γ𝐷 is a relatively closed subset of Γ with
positive boundary measure. The setting Γ𝐷 = Γ and Γ𝑁 = ∅ would be possible. In addition,
the set Ω∪Γ𝑁 is regular in the sense of Gröger, cf. [46]. The outward unit normal vector on the
boundary of Ω is denoted by 𝜈 ∶ 𝜕Ω → ℝ𝑑 . Let us already mention that we will not directly use
the precise properties of the domain. They are actually mostly used to solve (usually linear)
elasticity, see e.g. Theorem 2.5, respectly Corollary 2.6, and in Corollary 8.9. As described
above, mostly with the help of Corollary 2.6, we can exchange the balance of momentum with
a solution operator which allows the transformation into an EVI.

Lebesgue Spaces: Let 𝑘 ∈ ℕ, 𝑝 ∈ [1,∞] with conjugate exponent 𝑝′, that is, 1∕𝑝+ 1∕𝑝′ = 1, where
1∕∞ ∶= 0, and 𝑋 be a finite dimensional space. Throughout the thesis, by 𝐿𝑝(Ω;𝑋) we denote
Lebesgue spaces and by 𝐿𝑝(Γ𝑁 ;𝑋) Lebesgue spaces on the Neumann boundary with values in
𝑋. For 𝑢 ∈ 𝐿1(Ω;𝑋), we abbreviate ∫Ω 𝑢 ∶= ∫Ω 𝑢(𝑥)𝑑𝑥, that is, we do not write “𝑑𝑥” when
the argument of the function is not present. Let us refer to [85, 37] for the notion of Lebesgue
spaces.

Sobolev Spaces: Sobolev spaces which are 𝑘-times (weakly) differentiable are denoted by
𝑊 𝑘,𝑝(Ω;𝑋). The set 𝑊 1,𝑝

𝐷 (Ω;𝑋) is the subspace of 𝑊 1,𝑝(Ω;𝑋) which contains all functions

whose traces are zero on Γ𝐷. The dual space of 𝑊 1,𝑝′
𝐷 (Ω;𝑋), for 𝑝 ∈ (1,∞), is denoted

by 𝑊 −1,𝑝
𝐷 (Ω;𝑋). We use the usual abbreviations 𝐻𝑘(Ω;𝑋) ∶= 𝑊 𝑘,2(Ω;𝑋) and 𝐻1

𝐷(Ω;𝑋) ∶=
𝑊 1,2
𝐷 (Ω;𝑋). We only refer to [2] for further information about Sobolev spaces.
Continuous Functions on Ω: The set of continuous functions on Ω is denoted by 𝐶(Ω). The

subset of functions which can be extended to 𝐶(Ω) and are zero on 𝜕Ω are denoted by 𝐶0(Ω).
The set 𝐶𝑐(Ω) contains continuous functions with compact support, 𝐶𝑘(Ω) continuous functions
which are 𝑘-times differentiable, 𝐶∞(Ω) continuous functions which belong to 𝐶𝑘(Ω) for every
𝑘 ∈ ℕ and 𝐶∞

𝑐 (Ω) is the intersection between 𝐶𝑐(Ω) and 𝐶∞(Ω). The set 𝐶(Ω;𝑋) contains con-
tinuous functions into the finite dimensional space𝑋, for the other sets of continuous functions
we use an analog notation.

Bochner(-Sobolev) Spaces: Let now 𝑋 be an arbitrary Banch space, possibly with infinite
dimension. By 𝑇 > 0 we denote the end time of the considered time horizon [0, 𝑇 ]. For 𝑡 >
0 we denote the space of square-integrable Bochner functions on the time interval [0, 𝑡] by
𝐿2(0, 𝑡;𝑋) and abbreviate 𝐿2(𝑋) ∶= 𝐿2(0, 𝑇 ;𝑋). We use this abbreviation with the exception
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Chapter 2 A First Glance at Elasto Plasticity

of the space 𝐿2(0, 𝑇 ;ℝ), where our abbreviation might be confusing. The space of Bochner-
Sobolev functions is denoted by 𝐻1(0, 𝑡;𝑋) and we also abbreviate 𝐻1(𝑋) ∶= 𝐻1(0, 𝑇 ;𝑋). We
use further the rather unusual notation 𝐻1

0 (𝑋) ∶= {𝑣 ∈ 𝐻1(𝑋) ∶ 𝑣(0) = 0} and 𝐻1
00(𝑋) ∶= {𝑣 ∈

𝐻1(𝑋) ∶ 𝑣(0) = 𝑣(𝑇 ) = 0}. For the notion and properties of Bocher and Bochner-Sobolev spaces
we refer to [104, Chapter 3.1], [31], [41, Kapitel IV, §1], [109, Chapter V, 5] and [86, Chapter 2.1].

Continuous Functions on [0, 𝑇 ]: Similarly, the space of continuous functions is denoted by
𝐶(0, 𝑡;𝑋) and we write 𝐶(𝑋) ∶= 𝐶(0, 𝑇 ;𝑋).

Extension of Linear Operators: For two Banach spaces 𝑋, 𝑌 , when 𝐺 ∈ (𝑋; 𝑌 ) is a linear
and continuous operator, we can define an operator in (𝐿2(𝑋);𝐿2(𝑌 )) by 𝐺(𝑢)(𝑡) ∶= 𝐺(𝑢(𝑡))
for all 𝑢 ∈ 𝐿2(𝑋) and for almost all 𝑡 ∈ [0, 𝑇 ], we denote this operator also by 𝐺, that is,
𝐺 ∈ (𝐿2(𝑋);𝐿2(𝑌 )), and analog for Bochner-Sobolev spaces and the space of continuous
functions on [0, 𝑇 ], i.e., 𝐺 ∈ (𝐻1(𝑋);𝐻1(𝑌 )) and 𝐺 ∈ (𝐶(𝑋);𝐶(𝑌 )), respectively. We do the
same in the case of Lebesgue spaces. For instance, given the elasticity tensor ℂ ∈ (ℝ𝑑×𝑑

𝑠 ), we
have ℂ ∈ (𝐿𝑝(Ω;ℝ𝑑×𝑑

𝑠 )) by (ℂ𝑣)(𝑥) ∶= ℂ𝑣(𝑥) for all 𝑣 ∈ 𝐿𝑝(Ω;ℝ𝑑×𝑑
𝑠 ).

We moreover note that some new notation is presented throughout the thesis at appropriate
places.

Let us now start with the introduction of elasto plasticity.

Chapter 2 A First Glance at Elasto Plasticity

We start by considering the equations of elasto plasticity, see Part I Item (P.i). The equations
can be stated in a formal and strong formulation as follows:

−∇ ⋅ 𝜎 = 𝑓 in Ω, (2.1a)
𝜈 ⋅ 𝜎 = 𝑔 on Γ𝑁 , (2.1b)

𝑢 = 𝑢𝐷 on Γ𝐷 (2.1c)
𝜎 = ℂ(∇𝑠𝑢 − 𝑧) in Ω, (2.1d)
.
𝑧 ∈ 𝜕𝐼(Ω)(𝜎 − 𝔹𝑧), 𝑧(0) = 𝑧0 in Ω. (2.1e)

Herein the unknown variables are the displacement 𝑢 ∶ [0, 𝑇 ] × Ω → ℝ𝑑 , the stress 𝜎 ∶
[0, 𝑇 ] ×Ω → ℝ𝑑×𝑑

𝑠 and 𝑧 ∶ [0, 𝑇 ] ×Ω → ℝ𝑑×𝑑
𝑠 , an internal variable representing the plastic strain.

The given variables are the body or volume force 𝑓 ∶ [0, 𝑇 ]×Ω → ℝ𝑑 , the force on the Neumann
boundary 𝑔 ∶ [0, 𝑇 ] × Γ𝑁 → ℝ𝑑 and the prescribed displacement on the Dirichlet boundary
𝑢𝐷 ∶ [0, 𝑇 ] × Γ𝐷 → ℝ𝑑 . Moreover, the elasticity tensor ℂ ∶ ℝ𝑑×𝑑

𝑠 → ℝ𝑑×𝑑
𝑠 and hardening

parameter 𝔹 ∶ ℝ𝑑×𝑑
𝑠 → ℝ𝑑×𝑑

𝑠 are given (see Chapter 1). The (Von-Mises) flow rule is stated by
using the multivalued mapping 𝜕𝐼(Ω) ∶ ℝ𝑑×𝑑

𝑠 → 2ℝ𝑑×𝑑
𝑠 , given in Definition 2.2. We will give a

more detailed physical interpretation after the definition of a solution below. The presentation
of elasto plasticity in (2.1) is only one possibility, it can also be found in HAN AND REDDY [49,
Chapter 7], WACHSMUTH [104, Chapter 2.2] or SCHWEIZER [87, Chapter 27.3]. Another option,
for example, is to consider the dual problem as in HAN AND REDDY [49, Chapter 8].

We also note that elasto plasticity is a certain type of hysteresis, see e.g. [102, 64, 19, 63]. Since
we are only interested in plasticity, we do not have a closer look at the concept of hysteresis.

The reason to consider (2.1) is the following: It is our goal to transform (2.1) into an EVI of
the form of (EVI). To this end, we use (2.1d) and insert 𝜎 into the other equations. Then we
solve, for a known plastic strain 𝑧, (2.1a) to (2.1c). Using the obtained solution operator, we
have then reduced (2.1) to (2.1e), which is then equivalent to (EVI).

9



Part I Introduction

This is essentially the same procedure as in GRÖGER [45, Section 4] or ALBER [3, Chapter
4] and therefore not new. However, since we use this transformation, respectively the idea
behind it, throughout the thesis (see for example Chapter 6, Chapter 7, Proposition 11.11 or
Proposition 12.17), it is fundamental for us and we thus present it in detail.

Let us finally refer to [49, 104, 80, 67, 47] for the notion of plasticity, elasticity and continuum
mechanics in general.

2.1 Definition of a Solution
At first we give the definition of a solution to (2.1). To this end, we formulate the definition of
(2.1a) and (2.1b) in a weak sense and afterwards consider the flow rule (2.1e).

Definition 2.1 (Balance of momentum). Let 𝑝 ∈ [1,∞] and define the symmetrized gradient

∇𝑠 ∶ 𝑊 1,𝑝(Ω;ℝ𝑑) → 𝐿𝑝(Ω;ℝ𝑑×𝑑
𝑠 ), ∇𝑠𝑣 ∶= 1

2
(∇𝑣 + (∇𝑣)⊤)

for all 𝑣 ∈ 𝑊 1,𝑝(Ω;ℝ𝑑) and the divergence operator

div ∶ 𝐿𝑝(Ω;ℝ𝑑×𝑑
𝑠 ) → 𝑊 −1,𝑝

𝐷 (Ω;ℝ𝑑), ⟨div 𝜏, 𝜉⟩ ∶= −⟨𝜏,∇𝑠𝜉⟩𝐿𝑝(Ω;ℝ𝑑×𝑑
𝑠 )

for all 𝜏 ∈ 𝐿𝑝(Ω;ℝ𝑑×𝑑
𝑠 ) and 𝜉 ∈ 𝑊 1,𝑝′

𝐷 (Ω;ℝ𝑑), which is the adjoint of the symmetrized gradient re-
stricted to 𝑊 −1,𝑝

𝐷 (Ω;ℝ𝑑). We do not incorporate the exponent 𝑝 into the notation of div, it will always
be clear from the context.

We say that a stress 𝜏 ∈ 𝐿𝑝(Ω;ℝ𝑑×𝑑
𝑠 ) fulfills the balance of momentum or equilibrium condition

with respect to 𝐿 ∈ 𝑊 −1,𝑝
𝐷 (Ω;ℝ𝑑), when

−div 𝜏 = 𝐿. (2.2)

Note that when 𝐿 ∈ 𝐿𝑝(Ω;ℝ𝑑) or 𝐿 ∈ 𝐿𝑝(Γ𝑁 ;ℝ𝑑), we identify 𝐿 with 𝑊 1,𝑝′
𝐷 (Ω;ℝ𝑑) ∋ 𝜑 ↦⟨𝐿,𝜑⟩𝐿𝑝(Ω;ℝ𝑑 ) or 𝑊 1,𝑝′

𝐷 (Ω;ℝ𝑑) ∋ 𝜑↦ ⟨𝐿,𝜑⟩𝐿𝑝(Γ𝑁 ;ℝ𝑑 ), respectively, so that we can also write (2.2).

Let us shortly and formally explain the connection between the div operator and (2.1a) and
(2.1b). Let us simply assume that 𝜎 is of class 𝐶1(Ω;ℝ𝑑×𝑑

𝑠 ) and fulfills (2.1a) and (2.1b). After
testing (2.1a) with a smooth test function and integrating over Ω, we can apply the divergence
theorem to see that (2.2) with 𝐿 = 𝑓 + 𝑔 holds. On the other hand, one can analog obtain (2.1a)
and (2.1b) from (2.2) with the reversed argumentation. We emphasize that the forces 𝑔 on the
Neumann boundary are incorporated in the div operator, see (2.3a) and (2.4). We come back to
this connection when we have a closer look at the physical interpretation below.

To give a definition for (2.1e), we now describe the operator 𝜕𝐼(Ω) in

Definition 2.2 (Von-Mises flow rule). Let the uniaxial yield stress, or just the yield stress, 𝛾 > 0
be given and abbreviate

𝐾 ∶= {𝜏 ∈ ℝ𝑑×𝑑
𝑠 ∶ |𝜏𝐷| ≤ 𝛾}

and

(Ω) ∶= {𝜏 ∈ 𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) ∶ 𝜏(𝑥) ∈ 𝐾 f.a.a. 𝑥 ∈ Ω}.

We say to both sets the set of admissible stresses. The multivalued operator 𝜕𝐼(Ω) ∶ 𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) →

2𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) is defined by

𝜕𝐼(Ω)(𝜎) ∶= {𝜏 ∈ 𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) ∶ 0 ≥ (𝜏(𝑥), 𝑣 − 𝜎(𝑥))ℝ𝑑×𝑑 ∀𝑣 ∈ 𝐾, f.a.a. 𝑥 ∈ Ω}
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Chapter 2 A First Glance at Elasto Plasticity

when 𝜎 ∈ (Ω) and by

𝐼(Ω)(𝜎) ∶= ∅

when 𝜎 ∉ (Ω).

The above defined operator 𝜕𝐼(Ω) is in fact the subdifferential of the indicator functional of
the convex set (Ω), as we will see in Section 3.2. However, for the purpose of this chapter, it
is sufficient to simply define 𝜕𝐼(Ω) as above (in fact, 𝜕𝐼(Ω) could be exchanged with any other
multivalued operator mapping from𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) to 2𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ), the concrete form is unimportant

for Theorem 2.9).
In what follows, recall that 𝑧0 ∈ 𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) is given in Assumption ⟨2.i⟩ and 𝑓, 𝑔 ∈
𝐻1(𝐻−1(Ω;ℝ𝑑)) and 𝑢𝐷 ∈ 𝐻1(𝐻1(Ω;ℝ𝑑)) in Assumption ⟨2.ii⟩.
Definition 2.3 (Solution to an EVI). Let 𝜎 ∈ 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )). Then 𝑧 ∈ 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )) is called

solution of (2.1e), if
.
𝑧(𝑡) ∈ 𝜕𝐼(Ω)(𝜎(𝑡) − 𝔹𝑧(𝑡))

holds for almost all 𝑡 ∈ [0, 𝑇 ], and 𝑧(0) = 𝑧0. Note that, due to the continuous embedding
𝐻1(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )) ↪ 𝐶(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )) (see [104, Theorem 3.1.41]), the evaluation of 𝑧 in 0 is well

defined.

Clearly, the definition of a solution to (2.1e) is quite intuitive, therefore in the rest of this
thesis the definitions of EVIs similar to (2.1e) will be analog. Thus, there is no need to give
definitions, for example, for (2.17), (EVI𝑞), (EVI𝑠) or (4.4).

Now we are in a position to give the definition of a solution to (2.1) in

Definition 2.4 (Solution to elasto plasticity). The functions 𝑢 ∈ 𝐻1(𝐻1(Ω;ℝ𝑑)), 𝜎 ∈
𝐻1(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )) and 𝑧 ∈ 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )) are called solution of (2.1) if

−div 𝜎 = 𝑓 + 𝑔, (2.3a)

𝑢 − 𝑢𝐷 ∈ 𝐻1(𝐻1
𝐷(Ω;ℝ

𝑑)), (2.3b)
𝜎 = ℂ(∇𝑠𝑢 − 𝑧), (2.3c)
.
𝑧 ∈ 𝜕𝐼(Ω)(𝜎 − 𝔹𝑧), 𝑧(0) = 𝑧0. (2.3d)

Later in Section 6.1 the forces 𝑓 and 𝑔 will belong to the spaces 𝐿2(Ω;ℝ𝑑) and 𝐿2(Γ𝑁 ;ℝ𝑑),
respectively, then (2.3a) is, according to Definition 2.1, equivalent to

(𝜎,∇𝑠𝜁 )𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) = (𝑓, 𝜁 )𝐿2(Ω;ℝ𝑑 ) + (𝑔, 𝜁 )𝐿2(Γ𝑁 ;ℝ𝑑 ) ∀𝜁 ∈ 𝐻1

𝐷(Ω;ℝ
𝑑). (2.4)

Due to this reason, we have used 𝑓 and 𝑔 in (2.3a) instead of some 𝐿 = 𝑓 +𝑔 ∈ 𝐻1(𝐻−1
𝐷 (Ω;ℝ𝑑)).

Physical Interpretation

The equations (2.1a) and (2.1b), respectively (2.3a), are called balance of momentum. The in-
ternal forces, that is the stress 𝜎, must be in equilibrium with the external forces, that is the
volume force 𝑓 and the force 𝑔 on the Neumann boundary. To see how this “equilibrium” can
be interpreted, we assume that 𝜎 is sufficient regular and use, as already described after Defi-
nition 2.1, the divergence theorem in (2.4) to obtain (2.1a) and (2.1b). Taking now an (sufficient
regular) arbitrary subset 𝑉 of Ω, integrating (2.1a) over 𝑉 and using the divergence theorem
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once again we get ∫𝜕𝑉 𝜈 ⋅𝜎+∫𝑉 𝑓 = 0. Setting Γ𝑉 ,𝑁 ∶= 𝜕𝑉 ∩Γ𝑁 and Γ𝑉 ,𝜎 ∶= 𝜕𝑉 ⧵Γ𝑉 ,𝑁 we finally
obtain

∫Γ𝑉 ,𝜎
𝜈 ⋅ 𝜎 + ∫𝑉 𝑓 + ∫Γ𝑉 ,𝑁

𝑔 = 0. (2.5)

Equation (2.5) can be read as “the sum of all forces on the cutout 𝑉 equals zero”, which
is Newton’s second law of motion for an not accelerated body, see Figure 1 for an illustra-
tion of the described situation. Therein the whole body Ω with the indicated cutout 𝑉 is
depicted on the left side and the cutout 𝑉 on the right side. Here the internal forces 𝜈 ⋅ 𝜎
must be applied on the new boundary Γ𝑉 ,𝜎 of the cutout such that the deformation is kept.

Figure 1: Depiction of the body Ω and the
cutout 𝑉 .

We have thus derived (2.5) for all subsets
𝑉 ⊂ Ω from (2.4). Vice versa, when (2.5) holds
for all subsets 𝑉 ⊂ Ω, we obtain (2.4) with the
reversed argumentation. Note that in general
our body will be accelerated, in this case the
second time derivative of the displacement
multiplied by the density of the body has to
be added in (2.1a), which would carry over
to (2.5). However, the classical argumenta-
tion to derive (2.1a), is that the acceleration is
small and can thus be neglected. This is also
the reason why (2.1) is called quasistatic (see
Item (P.i)). Nonetheless, in Part IV we will
also consider the case where the acceleration
is present.

Equation (2.1c), respectively (2.3b), simply
represents the fact that the displacement 𝑢 should equal the prescribed Dirichlet displacement
on the Dirichlet boundary. An interpretation is, that the body Ω is “being held” on the Dirichlet
boundary.

The split of the symmetrized gradient in (2.3c) can be rewritten as

∇𝑠𝑢 = 𝑒 + 𝑧, (2.6)

where

𝑒 ∶= ℂ−1𝜎 = 𝔸𝜎. (2.7)

The unknown variable 𝑒 is called elastic strain, so that (2.6) represents the assumption that the
overall strain ∇𝑠𝑢 can be split by addition into an elastic part 𝑒 and a plastic part 𝑧. Now (2.7),
respectively 𝜎 = ℂ𝑒, is Hooke’s law, the internal force, that is the stress 𝜎, is linearly dependent
on the (elastic) strain 𝑒 (whereas the plastic strain 𝑧 is not).

Finally, the flow rule (2.3d) can be interpreted as follows: As long as 𝜎 stays in the interior
of (Ω), the plastic strain 𝑧 remains equal to 𝑧0 (typically set to zero in applications, see also
Chapter 13). When, due to the external forces and the Dirichlet displacement, the stress reaches
the boundary of (Ω), also called yield surface, then the plastic strain flows in the direction
normal to the yield surface and the stress can take values outside the set of admissible stresses,
only 𝜎 − 𝔹𝑧 has to be admissible.

Clearly, there are many more facets in elasto plasticity and its modeling, for a more thorough
survey, we again refer, for example, to HAN AND REDDY[49].
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2.2 Transformation into an EVI
After we have given the notion of a solution in Definition 2.4, we can now turn to the trans-
formation into an EVI of the type (EVI). As described at the beginning of this chapter, we will
replace (2.3a) and (2.3b) with a solution operator. In this chapter we only need to obtain a solu-
tion in𝐻1(Ω;ℝ𝑑), however, since we need to solve it in𝑊 1,𝑝(Ω;ℝ𝑑) in Section 6.1, Corollary 8.9
and Proposition 12.17, we present the result already here. This finding was proven in HERZOG

ET AL.[50] but we will use it in detail in Corollary 8.9, so we recite it in the following

Theorem 2.5 (Nonlinear elasticity). Let 𝑏 ∶ Ω × ℝ𝑑×𝑑
𝑠 → ℝ𝑑×𝑑

𝑠 be a function such that HERZOG ET

AL. [50, Assumption 1.5 (2)] holds, that is,

𝑏(⋅, 0) ∈ 𝐿∞(Ω;ℝ𝑑×𝑑
𝑠 ), (2.8)

𝑏(⋅, 𝜏) is measurable , (2.9)

(𝑏(𝑥, 𝜏) − 𝑏(𝑥, 𝜏))∶ (𝜏 − 𝜏) ≥ 𝑚|𝜏 − 𝜏|2, (2.10)|𝑏(𝑥, 𝜏) − 𝑏(𝑥, 𝜏)| ≤𝑀|𝜏 − 𝜏| (2.11)

for almost all 𝑥 ∈ Ω and all 𝜏, 𝜏 ∈ ℝ𝑑×𝑑
𝑠 with constants 0 < 𝑚 ≤𝑀 .

Then there exists 𝑝 ∈ (2,∞) such that for every 𝑝 ∈ [2, 𝑝] and 𝐿 ∈ 𝑊 −1,𝑝
𝐷 (Ω;ℝ𝑑) there exists a

unique 𝑢 ∈ 𝑊 1,𝑝
𝐷 (Ω;ℝ𝑑) such that

−div 𝑏(⋅,∇𝑠𝑢(⋅)) = 𝐿.

Moreover, there exists a constant 𝐶 such that‖𝑢1 − 𝑢2‖𝑊 1,𝑝
𝐷 (Ω;ℝ𝑑 ) ≤ 𝐶‖𝐿1 − 𝐿2‖𝑊 −1,𝑝

𝐷 (Ω;ℝ𝑑 )

holds for all 𝐿1, 𝐿2 ∈ 𝑊 −1,𝑝
𝐷 (Ω;ℝ𝑑), where 𝑢1 and 𝑢2 are the corresponding solutions.

Proof. The claim follows from HERZOG ET AL. [50, Theorem 1.1 and Remark 1.3]. Note that
[50, Assumption 1.5 (1)] holds according to Chapter 1.

Corollary 2.6 (Linear elasticity). Let 𝑝 be from Theorem 2.5. Then for all 𝑝 ∈ [𝑝′, 𝑝], 𝐿 ∈
𝑊 −1,𝑝
𝐷 (Ω;ℝ𝑑) and 𝑢𝐷 ∈ 𝑊 1,𝑝(Ω;ℝ𝑑), there exists a unique 𝑢 ∈ 𝑊 1,𝑝(Ω;ℝ𝑑) such that

−divℂ∇𝑠𝑢 = 𝐿, (2.12a)

𝑢 − 𝑢𝐷 ∈ 𝑊 1,𝑝
𝐷 (Ω;ℝ𝑑). (2.12b)

We define the solution operator

 ∶ 𝑊 −1,𝑝
𝐷 (Ω;ℝ𝑑) ×𝑊 1,𝑝(Ω;ℝ𝑑) → 𝑊 1,𝑝(Ω;ℝ𝑑) (𝐿, 𝑢𝐷) ↦ 𝑢.

Furthermore,  is linear and continuous and we denote it with the same symbol for different 𝑝.

Proof. Obviously, the mapping

𝑏 ∶ Ω ×ℝ𝑑×𝑑
𝑠 → ℝ𝑑×𝑑

𝑠 (𝑥, 𝜏) ↦ ℂ𝜏

fulfills (2.8) and (2.9). Since ℂ is coercive, (2.10) is fulfilled with 𝑚 = 𝛾ℂ and (2.11) holds with
𝑀 = ‖ℂ‖. Thus, in the case 𝑝 ∈ [2, 𝑝], we can apply Theorem 2.5 to obtain the unique existence
of 𝑣 ∈ 𝑊 1,𝑝

𝐷 (Ω;ℝ𝑑) such that

−divℂ∇𝑠𝑣 = 𝐿 + divℂ∇𝑠𝑢𝐷.

That the same is true for 𝑝 ∈ [𝑝′, 2) follows from the fact that the adjoint operator of an invertible
linear and continuous operator is also invertible. Thus we obtain the assertion with 𝑢 ∶= 𝑣 +
𝑢𝐷.
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Part I Introduction

Now, by eliminating 𝜎 in (2.1), we obtain the following equivalent equations:

−div(ℂ∇𝑠𝑢 − ℂ𝑧) = 𝑓 + 𝑔,
𝑢 − 𝑢𝐷 ∈ 𝐻1(𝐻1

𝐷(Ω;ℝ
𝑑)),

.
𝑧 ∈ 𝜕𝐼(Ω)(ℂ∇𝑠𝑢 − (ℂ + 𝔹)𝑧), 𝑧(0) = 𝑧0.

(2.13)

We can divide the first equation and inclusion into

−divℂ∇𝑠𝑢𝓁 = 𝑓 + 𝑔,
𝑢𝓁 − 𝑢𝐷 ∈ 𝐻1(𝐻1

𝐷(Ω;ℝ
𝑑))

(2.14)

and

−divℂ∇𝑠𝑢𝑧 = −divℂ𝑧,
𝑢𝑧 ∈ 𝐻1(𝐻1

𝐷(Ω;ℝ
𝑑)),

(2.15)

to see that, when 𝑧 ∈ 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )) is given, 𝑢 ∈ 𝐻1(𝐻1

𝐷(Ω;ℝ
𝑑)) is a solution of the first

equation and inclusion in (2.13) if and only if 𝑢𝓁 ∈ 𝐻1(𝐻1
𝐷(Ω;ℝ

𝑑)) is a solution of (2.14) and
𝑢𝑧 ∈ 𝐻1(𝐻1

𝐷(Ω;ℝ
𝑑)) is a solution of (2.15) and we have 𝑢 = 𝑢𝓁 + 𝑢𝑧 (which also follows from

the linearity of  ). Thanks to Corollary 2.6, we can eliminate the first equation and inclusion in
(2.13) and describe the split 𝑢 = 𝑢𝓁 + 𝑢𝑧 by using the solution operator  , that is,

𝑢 =  (𝑓 + 𝑔 − divℂ𝑧, 𝑢𝐷) =  (𝑓 + 𝑔, 𝑢𝐷) +  (− divℂ𝑧, 0) = 𝑢𝓁 + 𝑢𝑧,

and obtain the equivalent inclusion

.
𝑧 ∈ 𝜕𝐼(Ω)(ℂ∇𝑠 (𝑓 + 𝑔, 𝑢𝐷) + ℂ∇𝑠 (− divℂ𝑧, 0) − (ℂ + 𝔹)𝑧), 𝑧(0) = 𝑧0 (2.16)

Let us shorten the notation with the operators in the following

Definition 2.7 (Operators 𝑅 and 𝑄 for elasto plasticity). We define the operators

𝑅 ∶ 𝐻−1
𝐷 (Ω;ℝ𝑑) ×𝐻1(Ω;ℝ𝑑) → 𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ), (𝐿, 𝑢𝐷) ↦ ℂ∇𝑠 (𝐿, 𝑢𝐷)

and

𝑄 ∶ 𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) → 𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ), 𝑧 ↦ (ℂ + 𝔹)𝑧 − ℂ∇𝑠 (− divℂ𝑧, 0).

These operators are, according to Corollary 2.6, linear and continuous.

With these operators, (2.16) is equivalent to

.
𝑧 ∈ 𝜕𝐼(Ω)(𝑅𝓁 −𝑄𝑧), 𝑧(0) = 𝑧0 (2.17)

with 𝓁 ∶= (𝑓 + 𝑔, 𝑢𝐷). Before we summarize our findings, let us prove that the operator 𝑄 is
symmetric and coercive , which is crucial, as we will see in Part II.

Lemma 2.8 (Symmetry and coercivity of 𝑄). The operator

ℂ − ℂ∇𝑠 (− divℂ⋅, 0) = 𝑄 − 𝔹 ∈ (𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ))

is positive and 𝑄 is symmetric and coercive.
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Proof. At first we address the symmetry of 𝑄. Since ℂ and 𝔹 are symmetric, it remains to prove
the symmetry of ℂ∇𝑠 (− divℂ⋅, 0),(

ℂ∇𝑠 (− divℂ𝑧1, 0), 𝑧2
)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) =
(
∇𝑠 (− divℂ𝑧1, 0),ℂ𝑧2

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )

= ⟨ (− divℂ𝑧1, 0),−divℂ𝑧2⟩
= ⟨ (− divℂ𝑧1, 0),−divℂ∇𝑠 (− divℂ𝑧2, 0)⟩
=
(
ℂ∇𝑠 (− divℂ𝑧1, 0),∇𝑠 (− divℂ𝑧2, 0)

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )

for all 𝑧1, 𝑧2 ∈ 𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ).

Let us now come to the positivity of ℂ − ℂ∇𝑠 (− divℂ⋅, 0). We have

divℂ(𝑧 − ∇𝑠 (− divℂ𝑧, 0)) = divℂ𝑧 − divℂ∇𝑠 (− divℂ𝑧, 0) = 0,

hence

(ℂ𝑧 − ℂ∇𝑠 (− divℂ𝑧, 0), 𝑧)𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) = (ℂ(𝑧 − ∇𝑠 (− divℂ𝑧, 0), 𝑧)𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )

= (ℂ(𝑧 − ∇𝑠 (− divℂ𝑧, 0), 𝑧 − ∇𝑠 (− divℂ𝑧, 0))𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )

= ‖𝑧 − ∇𝑠 (− divℂ𝑧, 0)‖𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )ℂ ≥ 0

for all 𝑧 ∈ 𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ). The coercivity of 𝑄 follows now from its definition.

Let us finally collect our results in the following

Theorem 2.9 (Transformation of elasto plasticity into an EVI). The tuple (𝑢, 𝜎, 𝑧) ∈
𝐻1(𝐻1(Ω;ℝ𝑑)×𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )×𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )), is a solution of (2.1), if and only if 𝑧 ∈ 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )))
is a solution of (2.17), with 𝓁 ∶= (𝑓 + 𝑔, 𝑢𝐷) ∈ 𝐻1(𝐻−1

𝐷 (Ω;ℝ𝑑) × 𝐻1(Ω;ℝ𝑑)), 𝑢 =  (𝑓 + 𝑔, 𝑢𝐷) + (− divℂ𝑧, 0) and 𝜎 = ℂ(∇𝑠𝑢 − 𝑧). Moreover, the operator 𝑄, involved in (2.17) and given in
Definition 2.7, is symmetric and coercive .

Proof. The assertion follows from the definition of 𝑅 and 𝑄 and Lemma 2.8.

Having seen that the equations of elasto plasticity can be reduced to an EVI, it is now nat-
ural to consider this EVI in a general and abstract setting and derive optimality conditions for
an optimal control problem constraint by such an EVI. However, let us emphasize that, as al-
ready noted in the beginning of Part I, an optimal control problem with elasto plasticity as a
constraint was already analyzed in WACHSMUTH [104, Chapter 5] and is therefore not new.
Nonetheless, the analysis in the upcoming part can also be applied (partly) for homogenized
plasticity, plasticity with inertia and perfect plasticity, where all three applications were, to the
author’s current knowledge, until now not considered in the context of optimal control (except
in [71, 72, 73]). Furthermore, we will also generalize the EVI by exchanging the operator 𝜕𝐼(Ω)
with a general, maximal monotone operator. Since in all our applications we will always choose
a subdifferential of an indicator function, this generalization seems at first only to be of theo-
retical interest. However, as it turns out in Part IV, we will actually need this generalization,
see Remark 8.16.
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Part II Evolution Variational Inequalities
(EVIs)

As agreed upon at the beginning of Part I, we start by collecting all assumptions needed in this
part.

Assumption II. We impose the following assumptions according to The Assumption Agreement in the
beginning of Part I.

⟨II.i⟩ By  we denote a Hilbert space and by  a Banach space.⟨II.ii⟩ The multivalued operator 𝐴 ∶  ↦ 2 is maximal monotone (see Definition 3.1), if not
otherwise said.

⟨4.i⟩ The operators 𝑅 ∶  →  and 𝑄 ∶  →  are linear and continuous. Furthermore, 𝑄 is
self-adjoint and coercive .⟨4.ii⟩ The initial condition 𝑧0 belongs to .⟨4.iii⟩ The initial condition 𝑞0 belongs to the domain of 𝐴, that is, 𝑞0 ∈ 𝐷(𝐴), see Definition 3.1.

⟨5.i⟩ Suppose that Assumption ⟨4.i⟩ and Assumption ⟨4.ii⟩ hold.⟨5.ii⟩ The maximal monotone operator 𝐴 ∶  ↦ 2 has the boundedness property (see Defini-
tion 3.5).⟨5.iii⟩ The set 𝑀 is a nonempty and closed subset of 𝐷(𝐴).⟨5.iv⟩ There exists a space  such that  is a subspace of  and the injection  ↪  is
continuous. Furthermore, the space 𝑐 is reflexive and compactly embedded into  . By

𝐽 ∶ 𝐻1() ×𝐻1(𝑐) → ℝ

we denote the objective function.

⟨5.1.i⟩ The objective function consists of two parts,

𝐽 ∶ 𝐻1() ×𝐻1(𝑐) → ℝ, (𝑧,𝓁) ↦ Ψ(𝑧,𝓁) + Φ(𝓁),

where Ψ∶ 𝐻1() ×𝐻1(𝑐) → ℝ and Φ∶ 𝐻1(𝑐) → ℝ are both weakly lower semicontin-
uous. Moreover, Ψ is bounded from below and continuous in the first argument, while Φ is
coercive.
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⟨5.1.ii⟩ Let {𝐴𝑛}𝑛∈ℕ be a sequence of Lipschitz continuous operators from  to  such that,
together with a sequence {𝜆𝑛}𝑛∈ℕ ⊂ (0,∞), which converges towards zero, it holds

1
𝜆𝑛

exp
(𝑇 ‖𝑄‖𝐿(;)

𝜆𝑛

)
sup
ℎ∈ ‖𝐴𝑛(ℎ) − 𝐴𝜆𝑛(ℎ)‖ → 0, (2.18)

i.e., the requirements in Lemma 4.17 are fulfilled.

⟨5.2.i⟩ Additional to  ,  and  are Banach spaces, such that the embeddings  ↪  ↪  ↪ are continuous. We also suppose that  is dense in ,  dense in  and  dense in  .
Furthermore, we assume that  is separable.⟨5.2.ii⟩ The operator 𝑄 is extendable to an element of () and (), and 𝑅 to an element of( ;). We denote all operators again by 𝑄 and 𝑅, respectively.⟨5.2.iii⟩ Let 𝑧0 ∈  such that −𝑄𝑧0 ∈ 𝐷(𝐴). The set 𝑀 in the definition of the set of admissible
controls is given by the singleton 𝑀 = {−𝑄𝑧0} such that

 ∶= 
(
𝑧0; {−𝑄𝑧0}

)
=
{
𝓁 ∈ 𝐻1()∶ 𝓁(0) ∈ ker 𝑅

}
.

⟨5.2.iv⟩ The operator𝐴𝑠 ∶  →  is Lipschitz continuous and Fréchet differentiable from  to .
Moreover, the extension of𝐴′

𝑠(𝑦) to elements of () and (), respectively, are denoted by the
same symbol. There exists a constant 𝐶 such that these extensions satisfy ‖𝐴′

𝑠(𝑦)𝑧‖ ≤ 𝐶‖𝑧‖
and ‖𝐴′

𝑠(𝑦)ℎ‖ ≤ 𝐶‖ℎ‖ for all 𝑦 ∈  , 𝑧 ∈ , and ℎ ∈ .⟨5.2.v⟩ The objective function 𝐽 ∶ 𝐻1() ×𝐻1(𝑐) → ℝ is Fréchet differentiable.

⟨5.3.i⟩ We suppose that Assumptions ⟨5.2.i⟩ to ⟨5.2.v⟩ hold.⟨5.3.ii⟩ The Fréchet-derivative 𝐴′
𝑠 is Lipschitz continuous from  to (). Moreover, for every

𝑦 ∈  , the extension of 𝐴′
𝑠(𝑦) to an element of () is Lipschitz continuous from  to ().

Furthermore, there is a constant 𝐶 > 0 such that ‖𝐴′
𝑠(𝑦)𝑤‖ ≤ 𝐶‖𝑤‖ holds for all 𝑦 ∈ 

and all 𝑤 ∈  .⟨5.3.iii⟩ 𝐴′
𝑠 is Fréchet-differentiable from  to (;). For all 𝑦 ∈  , the extension of 𝐴′′

𝑠 (𝑦)
to an element of (;(;)) is such that the mapping 𝑦 ↦ 𝐴′′

𝑠 (𝑦) is continuous in these
spaces. Moreover, there exists a constant 𝐶 such that ‖𝐴′′

𝑠 (𝑦)[𝑧1, 𝑧2]‖ ≤ 𝐶‖𝑧1‖‖𝑧2‖ for
all 𝑦 ∈  and all 𝑧1, 𝑧2 ∈ .⟨5.3.iv⟩ 𝐽 ∶ 𝐻1() ×𝐻1(𝑐) → ℝ is twice continuously Fréchet differentiable.

Let us shortly comment on Assumption II. The assumptions made for Chapter 5 are for the
optimal control problem and we will discuss them later. Aside from these assumptions, there
are only assumptions for the whole Part II and for Chapter 4, which are all in connection with
(EVI) considered in Chapter 4. When we apply our results in Chapter 6, the space  will be
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) and  a negative Sobolev space. We will further choose 𝐴 to be the subdifferential
of an indicator function and 𝑅 and 𝑄 as in Definition 2.7, see Chapter 2.

The present part is concerned with an optimal control problem constraint by an abstract
evolution variational inequality (EVI). We mention that most of the presented results are
either known from the literature (that is, the results we build upon,) or were presented in
MEINLSCHIDT ET AL.[71]. At first we will deal with maximal monotone operators, and in particu-
lar with subdifferentials of an indicator function, in Chapter 3. Then, in Chapter 4 we investigate
the abstract EVI and the convergence properties of the corresponding solution operator. It is
noteworthy that we do not prove the existence of a solution in 𝐻1() for an arbitrary maximal
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monotone operator and loads in 𝐻1() (see also BREZIS [15, Chapter II], here only the exis-
tence of a weak solution in 𝐶() was proved). We will either need that the maximal monotone
operator satisfies the boundedness property (see Definition 3.5) or that the loads belong to 𝐻2().
Where the first criterion is fulfilled by subdifferentials of an indicator function so that the re-
sults can be applied for elasto and homogenized plasticity, we will see in Part IV that there the
second criterion holds naturally. Finally, in Chapter 5 we tackle an optimal control problem
constraint by the previously analyzed EVI.

As said above and elaborated on in Part I, the foundation of the content in this part is given
in [71]. We moreover will compare our results in particular in the beginning of each chapter.

Chapter 3 Maximal Monotone Operators

In this chapter we deal with maximal monotone operators and subdifferentials.
Let us note that there exists many more examples of maximal monotone operators and ap-

plications as given in this thesis, we refer for example to ZEIDLER [113, Chapter 32]. Moreover,
this chapter gives only a rudimentary introduction to the topic, for a more detailed presentation
of maximal monotone operators and subdifferentials we refer to the literature about monotone
operators and convex analysis, cf. [15, 113, 110, 90, 10, 103, 84, 34].

We also note that this chapter only deals with maximal monotone operators which are inde-
pendent of time. There exists also analysis for EVIs where the maximal monotone operator is
dependent on time, see for example [10, 77, Chapter III §4] or [77, Chapter 6 §4]. Another topic
which is strongly related to maximal monotone operators are semigroups, which can be found
in most of the references mentioned above. Since we do not need them in what follows, we
also do not investigate them.

We first give the definition of a maximal monotone operator and present some basic proper-
ties and then consider a special operator, the subdifferential. Since this chapter serves only as
a reference for the results we need in the following, all presented findings can be found in the
literature. Thus, readers who are already familiar with maximal monotone operators and the
subdifferential may skip this chapter and consult it only when needed later.

3.1 Definition and Properties
We start by giving the definition of a maximal monotone operator. A maximal monotone opera-
tor is a multivalued and a monotone operator which cannot be extended. That is, one can think
of a maximal monotone operator as a monotone operator which does not have any “holes”, see
the explanation after the following definition.

Definition 3.1 (Maximal monotone operator). A multivalued operator

𝐴 ∶  → 2
is called monotone when (

𝑎1 − 𝑎2, ℎ1 − ℎ2
)
 ≥ 0

for all ℎ1, ℎ2 ∈  and all 𝑎1 ∈ 𝐴(ℎ1), 𝑎2 ∈ 𝐴(ℎ2).
The operator 𝐴 is called maximal monotone when it is monotone and has no proper extension, that

is, when for two elements ℎ1, 𝑎1 ∈  the inequality(
𝑎1 − 𝑎2, ℎ1 − ℎ2

)
 ≥ 0
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holds for all ℎ2 ∈  and 𝑎2 ∈ 𝐴(ℎ2), then 𝑎1 ∈ 𝐴(ℎ1).
Morevoer, the set

𝐷(𝐴) ∶= {ℎ ∈  ∶ 𝐴(ℎ) ≠ ∅}

is called effective domain or just domain of 𝐴 and

𝑅(𝐴) ∶= ∪ℎ∈𝐻𝐴(ℎ)

is called the range of 𝐴.

Let us shortly have a look at Figure 2. Therein, we see on the left a monotone operator
(mapping from ℝ to 2ℝ) which is not maximal monotone. Its extension to a maximal monotone
operator is depicted on the right (note that this is the subdifferential of the indicator functional
of the interval [−1, 1], cf. Definition 3.11 and (3.4) below).

−1

1

1

2

−1

1

1

2

Figure 2: Example of a monotone (left) and a maximal monotone (right) operator.

Recall that 𝐴 is always a maximal monotone operator in what follows, except when other-
wise said, as stated in Assumption ⟨II.ii⟩.

In the following we will for convenience often write 𝐴(ℎ1) instead of 𝑎1 and then "for all
𝑎1 ∈ 𝐴(ℎ1)", that is, for example, the definition of monotonicity would then read(

𝐴(ℎ1) − 𝐴(ℎ2), ℎ1 − ℎ2
)
 ≥ 0

for all ℎ1, ℎ2 ∈ .
As the example in Figure 2 indicates, 𝐴(ℎ) is, for all ℎ ∈ , closed and convex. To see this

let ℎ, 𝑎 ∈  and 𝑎𝑛 ∈ 𝐴(ℎ) for all 𝑛 ∈ ℕ such that 𝑎𝑛 → 𝑎. Since 𝐴 is monotone, we have(
𝑎𝑛 − 𝐴(ℎ̃), ℎ − ℎ̃

)
 ≥ 0

for all 𝑛 ∈ ℕ and all ℎ̃ ∈ , hence, letting 𝑛 → ∞, we see that the same is true for 𝑎, which
implies, thanks to maximal monotonicity of 𝐴, 𝑎 ∈ 𝐴(ℎ). Let now ℎ ∈  and 𝑎, 𝑏 ∈ 𝐴(ℎ). Then(

(𝜆𝑎 + (1 − 𝜆)𝑏) − 𝐴(ℎ̃), ℎ − ℎ̃
)


= 𝜆
(
𝑎 − 𝐴(ℎ̃), ℎ − ℎ̃

)
 + (1 − 𝜆)

(
𝑏 − 𝐴(ℎ̃), ℎ − ℎ̃

)
 ≥ 0

for all 𝜆 ∈ [0, 1] and all ℎ̃ ∈ , which shows (𝜆𝑎 + (1 − 𝜆)𝑏) ∈ 𝐴(ℎ).
Thanks to this observation and the fact that the projection onto closed and convex sets in

Hilbert spaces is well defined, we may make the following
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Chapter 3 Maximal Monotone Operators

Definition 3.2 (Selection operator). We define the following mapping, which takes the element with
the smallest norm of the set 𝐴(ℎ),

𝐴0 ∶ 𝐷(𝐴) → , ℎ ↦ argmin
𝑣∈𝐴(ℎ)

‖𝑣‖ , (3.1)

that is, 𝐴0(ℎ) is the projection of 0 onto 𝐴(ℎ), 𝐴0(ℎ) = 𝜋𝐴(ℎ)(0), for all ℎ ∈ .

In Chapter 4 we will often transform the occurring EVI so that the operator 𝑄𝐴 appears.
Thus, it is convenient to give this operator a new name. Recall that the space 𝑄−1 is the set 
equipped with the scalar product (⋅, ⋅)𝑄−1

=
(
𝑄−1⋅, ⋅

)
 , as defined in Chapter 1.

Definition 3.3 (Transformed maximal monotone operator). We define the mapping

𝐴𝑄 ∶ 𝑄−1 → 2𝑄−1 , ℎ ↦ 𝑄𝐴(ℎ),

where 𝑄𝐴(ℎ) = {𝑔 ∈  ∶ ∃𝑔̃ ∈ 𝐴(ℎ) with 𝑔 = 𝑄𝑔̃} for all ℎ ∈ .

Lemma 3.4 (𝐴𝑄 is maximal monotone). The mapping 𝐴𝑄 ∶ 𝑄−1 → 2𝑄−1 is a maximal monotone
operator and

(i)
√
𝛾𝑄−1‖ℎ‖ ≤ ‖ℎ‖𝑄−1

≤ √‖𝑄−1‖‖ℎ‖ and

(ii)
√𝛾𝑄−1‖𝑄−1‖ ‖𝐴0(ℎ)‖ ≤ ‖𝐴0

𝑄(ℎ)‖𝑄−1
≤ √‖𝑄−1‖‖𝑄‖‖𝐴0(ℎ)‖

hold for all ℎ ∈ .

Proof. The monotonicity of 𝐴𝑄 follows from(
𝐴𝑄(ℎ1) − 𝐴𝑄(ℎ2), ℎ1 − ℎ2

)
𝑄−1 =

(
𝐴(ℎ1) − 𝐴(ℎ2), ℎ1 − ℎ2

) ≥ 0.

To prove the maximal monotonicity of 𝐴𝑄 let ℎ1, 𝑎1 ∈  such that(
𝑎1 − 𝐴𝑄(ℎ2), ℎ1 − ℎ2

)
𝑄−1

≥ 0

for all ℎ2 ∈ . Setting 𝑏1 ∶= 𝑄−1𝑎1 we get(
𝑏1 − 𝐴(ℎ2), ℎ1 − ℎ2

)
 ≥ 0

for all ℎ2 ∈ , hence, 𝑏1 ∈ 𝐴(ℎ1), which implies 𝑎1 ∈ 𝐴𝑄(ℎ1) as desired.
The first inequality in Item (i) follows from the coercivity of 𝑄−1 and the second inequality

from the continuity of 𝑄−1.
From the definition of 𝐴0 we obtain ‖𝐴0(ℎ)‖ ≤ ‖𝑣‖ for all 𝑣 ∈ 𝐴(ℎ), choosing 𝑣 =

𝑄−1𝐴0
𝑄(ℎ) and applying the first inequality in (i) we derive

‖𝐴0(ℎ)‖ ≤ ‖𝑄−1‖‖𝐴0
𝑄(ℎ)‖ ≤ ‖𝑄−1‖√

𝛾𝑄−1
‖𝐴0

𝑄(ℎ)‖𝑄−1
,

so that the first inequality in Item (ii) holds. To verify the second inequality in Item (ii) we can
argue analoguously to get

‖𝐴0
𝑄(ℎ)‖𝑄−1

≤ ‖𝑄𝐴0(ℎ)‖𝑄−1
≤ √‖𝑄−1‖‖𝑄𝐴0(ℎ)‖ ≤ √‖𝑄−1‖‖𝑄‖‖𝐴0(ℎ)‖ ,

which completes the proof.

21



Part II Evolution Variational Inequalities (EVIs)

As already noted at the beginning of this part, we will need either an assumption on 𝐴 or
more regular loads to prove the existence of a solution to an EVI . This additional assumption
is the boundedness property given in

Definition 3.5 (Boundedness property). We say that 𝐴 has the boundedness property when the
domain 𝐷(𝐴) is closed and 𝐴0 is bounded on bounded subsets of 𝐷(𝐴).

In Chapter 5 we derive optimality conditions for an optimal control problem with an EVI
as a constraint. A typically approach is to regularize the optimal control problem, respectively
the constraint, prove convergence of global minimizers of the regularized problems towards a
global minimizer of the original problem to justify the “replacement” of the original problem
with the regularized one, and finally to derive optimality conditions for the regularized prob-
lem. This is also the way we take in Chapter 5. For this purpose, we regularize the maximal
monotone operator 𝐴, the classical regularization is

The Yosida Approximation

To define the Yosida approximation we need the so called resolvent of a multivalued operator.
For every multivalued operator the resolvent can be defined itself as a multivalued operator.

Definition 3.6 (Resolvent of a multivalued operator). Let 𝜆 > 0. The resolvent 𝑅𝜆 ∶  → 2 of a
multivalued operator 𝐴 ∶  → 2 is defined by

𝑅𝜆 ∶= (𝐼 + 𝜆𝐴)−1,

that is, 𝑟 ∈ 𝑅𝜆(ℎ) if and only if ℎ ∈ 𝑟 + 𝜆𝐴(𝑟). Note that 𝑅𝜆(ℎ) ⊂ 𝐷(𝐴) holds for all ℎ ∈ .

For an illustration of the resolvent we consider Figure 3. On the left we see the mapping
(𝐼 + 𝜆𝐴) ∶ ℝ → 2ℝ, where 𝐴 is the maximal monotone operator from Figure 2. On the right the
resolvent is shown. Note that both mappings do not depend on 𝜆 since 𝜆𝐴 = 𝐴 in this case.
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1

1

−1

−1

1

1

−1

Figure 3: Example of (𝐼 + 𝜆𝐴) (left) and the resolvent (right) of 𝐴, where 𝐴 is the maximal
monotone operator from Figure 2.

The resolvent depicted in Figure 3 is a single valued mapping on the whole space (the real
numbers in this case). Moreover, its range is contained in the domain of the corresponding
maximal monotone operator. This holds in fact for every maximal monotone operator as we
will now see in

22



Chapter 3 Maximal Monotone Operators

Proposition 3.7 (Equivalence of maximal monotonicity). Let 𝐴 ∶  → 2 be a multivalued
operator. Then the following properties are equivalent:

(i) 𝐴 is maximal monotone.

(ii) 𝐴 is monotone and 𝑅(𝐼 + 𝐴) = 𝐻 .

(iii) For all 𝜆 > 0, the resolvent 𝑅𝜆 maps  into 𝐷(𝐴), that is, the set 𝑅𝜆(ℎ) consists of one
element for all ℎ ∈ . Additionally, 𝑅𝜆 is nonexpansive.

Proof. This is the statement in ZEIDLER [110, Proposition 55.1 (B)]

The equivalence between Item (i) and Item (iii) in Proposition 3.7 makes it possible to define
the Yosida approximation.

Definition 3.8 (Yosida approximation). Let 𝜆 > 0. The Yosida approximation 𝐴𝜆 ∶  →  of the
maximal monotone operator 𝐴 is defined by

𝐴𝜆 ∶=
1
𝜆
(𝐼 − 𝑅𝜆). (3.2)

For ease of notation, in particular in Part V, we abbreviate

𝐴0 ∶= 𝐴

(not to be confused with 𝐴0 given in Definition 3.2).

Let us continue the example presented in Figure 2 and Figure 3. In Figure 4 the Yosida
approximation of the maximal monotone operator from Figure 2 is shown. Clearly, the Yosida
approximation seems to be the natural single valued approximation of this maximal monotone
operator.

−2 −1

1 2

1
𝜆

− 1
𝜆

Figure 4: Example of the Yosida approximation of the maximal monotone operator from Fig-
ure 2.

Note that the Yosida approximation in Figure 4 has some nice properties, e.g., it is Lips-
chitz continuous with Lipschitz constant 1∕𝜆 and itself (maximal) monotone. These properties,
among others, hold in fact for every maximal monotone operator as stated in

Proposition 3.9 (Properties of the Yosida approximation). For all 𝜆, 𝜇 > 0 and ℎ1, ℎ2 ∈  the
following holds:
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Part II Evolution Variational Inequalities (EVIs)

(i) 𝐴𝜆(ℎ1) ∈ 𝐴(𝑅𝜆(ℎ1)),

(ii) ‖𝐴𝜆(ℎ1) − 𝐴𝜆(ℎ2)‖ ≤ 1
𝜆
‖ℎ1 − ℎ2‖ ,

(iii) 𝐴𝜆 and 𝑅𝜆 are maximal monotone.

(iv) (𝐴𝜆)𝜇 = 𝐴𝜆+𝜇

Proof. Only the maximal monotonicity of 𝑅𝜆 is not stated in ZEIDLER [110, Proposition 55.2],
however, by Item (i) we have(

𝐴𝜆(ℎ1) − 𝐴𝜆(ℎ2), 𝑅𝜆(ℎ1) − 𝑅𝜆(ℎ2)
)
 ≥ 0

which is equivalent to

‖𝑅𝜆(ℎ1) − 𝑅𝜆(ℎ2)‖2 ≤ (
𝑅𝜆(ℎ1) − 𝑅𝜆(ℎ2), ℎ1 − ℎ2

)


for all ℎ1, ℎ2 ∈ , hence, 𝑅𝜆 is monotone and continuous, the claim follows now as in ZEIDLER

[113, Example 32.4].

The Yosida approximation, as the name already says, approximates the corresponding max-
imal monotone operator in a certain sense, cf. [110, Corollary 55.3]. These approximation prop-
erties are used to prove the existence of an EVI , see e.g. [15, Proposition 3.4] or [110, Theorem
55.A]. However, we will only use these existence results so that there is no need to repeat the
approximation properties here. Note also that throughout the thesis we use the Yosida approx-
imation to approximate solutions of an EVI, see, e.g. Section 4.2, Section 8.3 or Section 11.2. The
approximation method involving the Yosida approximation is also called vanishing viscosity.

Let us end this section with a result concerning a “double” Yosida approximation. Due
to Proposition 3.9 Item (iv) it might seem at first irrelevant to consider the Yosida approxi-
mation twice, however, as we will see in Theorem 4.12, this can actually be utilized, cf. also
Remark 4.13.

Lemma 3.10 (Double Yosida inequality). The inequality

‖(𝐴𝜇)𝜆(ℎ) − 𝐴𝜆(ℎ)‖ ≤ ( 𝜇
𝜆 + 𝜇

+ 𝜆
𝜆 + 𝜇

√
𝜇

2𝜆 − 𝜇

)‖𝐴𝜆(ℎ)‖
holds for all 2𝜆 > 𝜇 > 0 and all ℎ ∈ .

Proof. At first we prove that, for all 2𝜆 > 𝜇 > 0 and ℎ ∈ , the following inequality holds

‖𝑅𝜆(ℎ) − 𝑅𝜆+𝜇(ℎ)‖ ≤
√

𝜇
2𝜆 − 𝜇

‖ℎ − 𝑅𝜆(ℎ)‖ . (3.3)

For this purpose, let ℎ ∈  be arbitrary and set 𝑦1 ∶= 𝑅𝜆(ℎ) and 𝑦2 ∶= 𝑅𝜆+𝜇(ℎ). Then we have
ℎ ∈ 𝑦1 + 𝜆𝐴(𝑦1), hence, ℎ−𝑦1

𝜆
∈ 𝐴(𝑦1) and analogously ℎ−𝑦2

𝜆+𝜇 ∈ 𝐴(𝑦2). The monotonicity of 𝐴 thus
implies

0 ≤
(
𝜆 + 𝜇
𝜆

(ℎ − 𝑦1) − (ℎ − 𝑦2), 𝑦1 − 𝑦2

)


=
𝜇
𝜆
(
ℎ − 𝑦1, 𝑦1 − 𝑦2

)
 +

(
𝑦2 − 𝑦1, 𝑦1 − 𝑦2

)


≤ 𝜇
2𝜆

(‖ℎ − 𝑦1‖2 + ‖𝑦1 − 𝑦2‖2) − ‖𝑦1 − 𝑦2‖2
=
( 𝜇
2𝜆

− 1
)‖𝑦1 − 𝑦2‖2 +

𝜇
2𝜆

‖ℎ − 𝑦1‖2 ,
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Chapter 3 Maximal Monotone Operators

hence, ‖𝑦1 − 𝑦2‖2 ≤ 𝜇
2𝜆 − 𝜇

‖ℎ − 𝑦1‖2 ,
which yields (3.3). With this inequality and Proposition 3.9 Item (iv) at hand, we obtain

‖(𝐴𝜇)𝜆(ℎ) − 𝐴𝜆(ℎ)‖ = ‖ 1
𝜇 + 𝜆

(ℎ − 𝑅𝜇+𝜆(ℎ)) −
1
𝜆
(ℎ − 𝑅𝜆(ℎ))‖

≤ 1
𝜇 + 𝜆

‖𝑅𝜆(ℎ) − 𝑅𝜆+𝜇(ℎ)‖ +
(1
𝜆
− 1
𝜇 + 𝜆

)‖ℎ − 𝑅𝜆(ℎ)‖
≤ ( 𝜇

𝜆 + 𝜇
+ 𝜆
𝜆 + 𝜇

√
𝜇

2𝜆 − 𝜇

)‖𝐴𝜆(ℎ)‖
which completes the proof.

3.2 The Subdifferential
The subdifferential is a concept in the theory of convex analysis. It generalizes the concept of a
derivative. In fact, one can prove that the subdifferential coincides with the Gâteaux derivative
when a function is Gâteaux differentiable. When a function is not differentiable in the clas-
sical sense, one can still take affin linear mappings which are “below” of the function, these
mappings are called subgradients and the set of all subgradients is the subdifferential.

Let us note that one can also derive optimality conditions with the help of the subdifferential,
however, we do not make use of the subdifferential in this way, we will only use it for the von-
Mises flow rule, see Definition 2.2.

As mentioned above, we present only the results which we need for our analysis, for a more
extensive presentation of the subdifferential and convex analysis in general we refer to [84, 34,
55].

Definition 3.11 (The subdifferential). Let 𝑓 ∶  → ℝ ∪ {∞} be a functional. Then the subdiffer-
ential at 𝑢 ∈  is the set

𝜕𝑓 (𝑢) ∶= {ℎ ∈  ∶ 𝑓 (𝑣) ≥ 𝑓 (𝑢) + (ℎ, 𝑣 − 𝑢) ∀𝑣 ∈ }.

Important for the upcoming analysis is the fact that certain subdifferentials are maximal
monotone, this is the content of

Proposition 3.12 (Subdifferentials are maximal monotone). Let 𝑓 ∶  → ℝ ∪ {∞} be a convex,
lower semicontinuous and proper functional, that is, 𝑓 ≠ ∞. Then the multivalued map

𝜕𝑓 ∶  → 2 , ℎ ↦ 𝜕𝑓 (ℎ)

is maximal monotone.

Proof. This was proven in ROCKAFELLAR [83, Theorem A].

The von-Mises Flow Rule as a Subdifferential

In Definition 2.2 we have simply defined the multivalued operator 𝜕𝐼(Ω). By considering
the indicator functional

𝐼𝑀 ∶  → {0,∞}, ℎ ↦

{
0, ℎ ∈𝑀,
∞, ℎ ∉𝑀

(3.4)

for a set 𝑀 ⊂ , we see that the operator given in Definition 2.2 coincides in the case  =
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) with the subdifferential of the indicator functional with 𝑀 = (Ω).
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Lemma 3.13 (Subdifferentials fulfill the boundedness property). Let (Ω) be a nonempty, closed
and convex set. Then the subdifferential 𝜕𝐼(Ω) ∶ 𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) → 2𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) fulfills the boundedness

property .

Proof. According to the definition of the subdifferential and the indicator functional, we have

𝜕𝐼(Ω)(𝜎) = {𝜏 ∈ 𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) ∶ 𝐼(Ω)(𝑣) ≥ 𝐼(Ω)(𝜎) + (𝜏, 𝑣 − 𝜎) ∀𝑣 ∈ 𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )}

for all 𝜎 ∈ 𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ). Hence, the domain 𝐷(𝜕𝐼(Ω)) = (Ω) is closed and we have 0 ∈

𝜕𝐼(Ω)(𝜎) for all 𝜎 ∈ 𝐷(𝜕𝐼(Ω)), thus 𝜕𝐼0(Ω) ≡ 0 is trivially bounded on bounded subsets of
𝐷(𝜕𝐼(Ω)(𝜎)).

Let us summarize our findings in the following

Proposition 3.14 (Properties of subdifferentials). Let (Ω) be a nonempty, closed and convex subset
of 𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ). Then the subdifferential 𝜕𝐼(Ω) ∶ 𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) → 2𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) is a maximal monotone
operator which fulfills the boundedness property .

Proof. It is obvious that 𝐼(Ω) is convex, lower semicontinuous and proper, hence, 𝜕𝐼(Ω) is
maximal monotone according to Proposition 3.12 and fulfills the boundedness property thanks
to Lemma 3.13.

In view of Theorem 2.9 and Proposition 3.14, we see that the equations of elasto plasticity
can be transformed into (2.17), which is an EVI with the maximal monotone operator 𝜕𝐼(Ω),
Chapter 4 and Chapter 5 are concerned with exactly this type of inclusion in a general setting.

Before we continue with this general setting, let us consider the Yosida approximation of
𝜕𝐼(Ω), respectively 𝐼(Ω), where (Ω) is given in Definition 2.2. We denote the Yosida approxi-
mation of 𝜕𝐼(Ω) by 𝜕𝐼𝜆 for 𝜆 > 0. In this case the function

𝐼𝜆 ∶=
1
2𝜆

‖𝐼 − 𝜋(Ω)‖2 ∶  → ℝ,

where 𝜋(Ω) ∶ 𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) → 𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) is the projection onto (Ω), is Fréchet differentiable
and we have

𝜕𝐼𝜆 = 𝐼 ′𝜆 =
1
𝜆
(𝐼 − 𝜋(Ω)), (3.5)

here the properties of 𝐼𝜆 and the first equation above follows from Moreau’s theorem (see
SHOWALTER [90, Chapter IV, Proposition 1.8]) and the second equation from HAN AND REDDY

[48, Lemma 8.6]. Note that

𝐼𝜆 =
𝜆
2
‖𝜕𝐼𝜆‖2 (3.6)

holds. From (3.5) and from the definition of the Yosida approximation (Definition 3.8) we get
𝑅𝜆 = 𝜋(Ω). We mention that this identity can also be obtained by using the definition of the
resolvent, one easily checks that, for 𝑦, ℎ ∈ , 𝑦 = 𝑅𝜆(ℎ) (∈ 𝐷(𝐴)) holds if and only if 𝑦 ∈ (Ω)
(= 𝐷(𝐴)) and

0 ≥
(
ℎ − 𝑦
𝜆

, 𝑣 − 𝑦
)


is satisfied for all 𝑣 ∈ (Ω). Multiplying this inequality with 𝜆 gives exactly the necessary
and sufficient first order optimality condition of the minimization problem associated with the
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projection 𝜋(Ω), cf. [54, Lemma 1.10] or [42, Satz 2.18]. Note also that, since (Ω) is defined
pointwise,

𝜕𝐼𝜆(𝜏)(𝑥) = 𝜑𝜆(𝜏(𝑥)) =
1
𝜆
(𝜏(𝑥) − 𝜋𝐾 (𝜏(𝑥))) (3.7)

for all 𝜏 ∈  and almost all 𝑥 ∈ Ω, where 𝜋𝐾 ∶ ℝ𝑑×𝑑
𝑠 → ℝ𝑑×𝑑

𝑠 is the projection onto 𝐾 and we
have abbreviated 𝜑𝜆 ∶=

1
𝜆
(𝐼 − 𝜋𝐾 ) ∶ ℝ𝑑×𝑑

𝑠 → ℝ𝑑×𝑑
𝑠 .

In what follows, with a slight abuse of notation, we denote both 𝐼 ′𝜆 and 𝜑𝜆 by 𝜕𝐼𝜆.
Until now, the precise structure of 𝐾 was not important, we only needed (Ω) = {𝜏 ∈

𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) ∶ 𝜏(𝑥) ∈ 𝐾 f.a.a. 𝑥 ∈ Ω}. However, when 𝐾 has in fact the form in Definition 2.2,

that is, 𝐾 = {𝜏 ∈ ℝ𝑑×𝑑
𝑠 ∶ |𝜏𝐷| ≤ 𝛾}, then a straightforward computation shows that

𝜕𝐼𝜆(𝜏) =
1
𝜆
max

(
0, 1 −

𝛾|𝜏𝐷|)𝜏𝐷 (3.8)

for all 𝜏 ∈ ℝ𝑑×𝑑
𝑠 . Herein, again with a slight abuse of notation, we denote the Nemyzki operator

in 𝐿∞(Ω) associated with the pointwise maximum, i.e., ℝ ∋ 𝑟 ↦ max{0, 𝑟} ∈ ℝ, by the same
symbol. In addition, we set max{0, 1 − 𝛾∕𝑟} ∶= 0, if 𝑟 = 0.

Regularity in Space

The operator 𝜕𝐼𝜆 has the property that it maps 𝐻1(Ω;ℝ𝑑×𝑑
𝑠 ) into 𝐻1(Ω;ℝ𝑑×𝑑

𝑠 ) and it also
preserves two properties associated with the Lipschitz continuity and the monotonicity, this is
the content of Lemma 3.15 and Corollary 3.17. This regularity in space will come into play in
Section 12.1.

Lemma 3.15 (Space regularity of 𝜕𝐼𝜆). Let 𝜆 > 0. The operator 𝜕𝐼𝜆 maps 𝐻1(Ω;ℝ𝑑×𝑑
𝑠 ) into

𝐻1(Ω;ℝ𝑑×𝑑
𝑠 ). For 𝜏 ∈ 𝐻1(Ω;ℝ𝑑×𝑑

𝑠 ) the weak derivative of 𝜎 ∶= 𝜕𝐼𝜆(𝜏) in direction 𝑥𝑗 , 𝑗 ∈ {1, ..., 𝑛},
is given by

𝜕𝑗𝜎 = 1
𝜆
max

{
0, 1 −

𝛾|𝜏𝐷|}(𝜕𝑗𝜏)𝐷 + 1
𝜆
𝜒𝑀

𝛾|𝜏𝐷|3 (𝜏𝐷 ∶ (𝜕𝑗𝜏)𝐷)𝜏𝐷, (3.9)

where 𝑀 ∶= {𝑥 ∈ Ω ∶ |𝜏(𝑥)𝐷| > 𝛾}.

Proof. We note at first that 𝜆(𝜕𝐼𝜆(𝜏))𝑖,𝑘 is the product of 𝑢 ∶= max
{
0, 1 − 𝛾|𝜏𝐷|

}
and 𝜏𝐷𝑖,𝑘 for 𝑖, 𝑘 ∈

{1, ..., 𝑑}. We have 𝜏𝐷𝑖,𝑘 ∈ 𝐻1(Ω;ℝ), if additionally 𝑢 ∈ 𝐻1(Ω;ℝ) with

𝜕𝑗𝑢 = 𝜒𝑀
𝛾|𝜏𝐷|3 (𝜏𝐷 ∶ (𝜕𝑗𝜏)𝐷)

for all 𝑗 ∈ {1, ..., 𝑛}, then a product rule for Sobolev functions (see for instance [87, Page 57])
gives 𝑢𝜏𝐷𝑖,𝑘 ∈ 𝑊 1,1(Ω;ℝ) and we obtain (3.9). From (3.9) we can derive further that 𝜕𝐼𝜆(𝜏) ∈
𝐻1(Ω;ℝ). So it remains to prove the above properties of 𝑢.

To this end we select a sequence 𝜏𝑛 ∈ 𝐶∞
𝑐 (ℝ𝑑 ;ℝ𝑑×𝑑

𝑠 ) such that 𝜏𝑛 → 𝜏 in 𝐻1(Ω;ℝ𝑑×𝑑
𝑠 ), 𝜏𝑛(𝑥) →

𝜏(𝑥) and 𝜕𝑗(𝜏𝑛)(𝑥) → 𝜕𝑗(𝜏)(𝑥) for all 𝑗 ∈ {1, ..., 𝑛} and almost all 𝑥 ∈ Ω. Let 𝑠 > 0, we define

max𝑠 ∶ ℝ → ℝ 𝑟↦

{
max{0, 𝑟}, |𝑟| ≥ 𝑠,
1
4𝑠 (𝑟 + 𝑠)

2, |𝑟| < 𝑠, (3.10)
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so that max𝑠 ∈ 𝐶1(ℝ,ℝ). For 𝜙 ∈ 𝐶∞
𝑐 (Ω;ℝ) we have

∫Ω
𝜕𝑗𝜙(𝑥)max𝑠

(
1 −

𝛾|𝜏𝑛(𝑥)𝐷|
)
𝑑𝑥

= ∫Ω
𝜙(𝑥)max′𝑠

(
1 −

𝛾|𝜏𝑛(𝑥)𝐷|
) 𝛾|𝜏𝑛(𝑥)𝐷|3 (𝜏𝑛(𝑥)𝐷 ∶ (𝜕𝑗𝜏𝑛(𝑥))𝐷)𝑑𝑥,

considering the limit 𝑛 → ∞ and then 𝑠 → 0 and using Lebesgue’s dominated convergence
theorem yields the assertion.

Lemma 3.16 (Deviatoric properties). We have|𝜏𝐷| ≤ |𝜏|
and

𝜏𝐷 ∶ 𝜎 = 𝜏𝐷 ∶ 𝜎𝐷

for all 𝜏, 𝜎 ∈ ℝ𝑑×𝑑
𝑠 .

Proof. We can simply calculate

|𝜏𝐷|2 = |𝜏|2 − 2 tr(𝜏)
𝑛
𝐼 ∶ 𝜏 + | tr(𝜏)

𝑛
𝐼|2 = |𝜏|2 − tr(𝜏)2

𝑛
≤ |𝜏|2

and

𝜏𝐷 ∶ 𝜎 = 𝜏𝐷 ∶ 𝜎𝐷 + (𝜏 − tr(𝜏)
𝑛
𝐼)∶ tr(𝜎)

𝑛
𝐼 = 𝜏𝐷 ∶ 𝜎𝐷

for all 𝜏, 𝜎 ∈ ℝ𝑑×𝑑
𝑠 .

Corollary 3.17 (𝐻1 properties of 𝜕𝐼𝜆). Let 𝜆 > 0, then

(i) ‖𝜕𝐼𝜆(𝜏)‖𝐻1(Ω;ℝ𝑑×𝑑
𝑠 ) ≤ 3

𝜆
‖𝜏‖𝐻1(Ω;ℝ𝑑×𝑑

𝑠 ) and

(ii) 𝜕𝑗(𝜕𝐼𝜆(𝜏))∶ 𝜕𝑗𝜏 ≥ 0

hold for all 𝑗 ∈ {1, ..., 𝑛} and all 𝜏 ∈ 𝐻1(Ω;ℝ𝑑×𝑑
𝑠 ).

Proof. Both claims follow easily from Lemma 3.15 using Lemma 3.16.

The results in Lemma 3.15 and Corollary 3.17 can be used to obtain more regularity of a solu-
tion to a particular EVI when the given data is also more regular. We note that these results can
be extended to more general Sobolev spaces and settings than the von-Mises flow rule, see [73,
Lemma 5.2]. Moreover, the assertion in Lemma 3.15 can also be deduced from the chain rule
for Sobolev functions (using the Lipschitz continuity of the Yosida approximation), see [114,
Thm 2.1.11]. However, the results presented above are sufficient for us, see also Remark 12.8,
and we decided to provide a direct proof for Lemma 3.15.

Let us also mention that 𝜕𝐼𝜆 is neither Lipschitz continuous on 𝐻1(Ω;ℝ𝑑×𝑑
𝑠 ) nor is 𝜕𝑗𝜕𝐼𝜆

monotone on 𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ). This is already the case for the max-function on 𝐻1(Ω;ℝ), one may

choose 𝜎 ∈ 𝐻1(Ω;ℝ) with 𝜎(𝑥) < 0 for almost all 𝑥 ∈ Ω and 𝜏 = 𝜎 + 𝜀 such that 𝜏(𝑥) >
0 for almost all 𝑥 ∈ Ω. Now, the difference max(0, 𝜎) − max(0, 𝜏) may be arbitrary large in
𝐻1(Ω;ℝ) (due to the derivative) but the difference 𝜎−𝜏 remains small, thus the operator cannot
be Lipschitz continuous. One sees with a similar argument that 𝜕𝑗𝜕𝐼𝜆 is not monotone on
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ).
This regularity will be needed to construct a recovery sequence in Section 12.1, which is used

to prove the global optimality of an accumulation point of global minimizers of certain regu-
larized optimal control problems in Theorem 12.9.

Let us now finish this section with the
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Smoothing of the von-Mises Flow Rule

Clearly, while 𝜕𝐼𝜆 is globally Lipschitz continuous, it is not differentiable due to the non-
smoothness of the max function. Since we aim for optimality conditions in Chapter 6, we now
smoothen 𝜕𝐼𝜆 further to obtain a differentiable mapping. To this end, we define

𝜕𝐼𝜆,𝑠 ∶  → , 𝜏 ↦
1
𝜆
max𝑠

(
1 −

𝛾|𝜏𝐷|)𝜏𝐷, (3.11)

where max𝑠 is given in (3.10) for a smoothing parameter 𝑠 ∈ (0, 1). One easily checks that
max𝑠 ∈ 𝐶1(ℝ) with

max′𝑠(𝑟) =

⎧⎪⎨⎪⎩
0, 𝑟 ≤ 𝑠,
𝑟+𝑠
2𝑠 , |𝑟| < 𝑠
1, 𝑟 ≥ 𝑠

and that |max𝑠(𝑟) − max(0, 𝑟)| ≤ 𝑠
4 holds for all 𝑟 ∈ ℝ. Moreover, using the fact that |1 − 𝛾∕|𝑟|| < 𝑠

if and only if |𝑟| ∈ (𝛾∕1+𝑠, 𝛾∕1−𝑠) for 𝑟 ∈ ℝ, we obtain

‖𝜕𝐼𝜆,𝑠(𝜏) − 𝜕𝐼𝜆(𝜏)‖𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )

≤ 1
𝜆

(
∫Ω

|||max𝑠
(
1 −

𝛾|𝜏(𝑥)𝐷|) − max
(
0, 1 −

𝛾|𝜏(𝑥)𝐷|)|||2 |𝜏(𝑥)𝐷|2)1∕2

≤ |Ω|𝛾𝑠
4𝜆(1 − 𝑠)

and in particular

‖𝜕𝐼𝜆,𝑠(𝜏) − 𝜕𝐼𝜆(𝜏)‖𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) ≤ |Ω|𝛾 𝑠

𝜆 (3.12)

for 𝑠 ∈ (0, 3∕4] and all 𝜏 ∈ 𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ). This inequality shows that 𝜕𝐼𝜆,𝑠 and 𝜕𝐼𝜆 are globally

close when 𝑠 is small (relative to 𝜆). This property will come in Chapter 6 into play when we
prove convergence of global minimizers of a smoothed optimization problem.

For later reference (see Example 9.16) we define

𝑅𝑠 ∶  → , 𝜏 ↦ 𝜏 − max𝑠
(
1 −

𝛾|𝜏𝐷|)𝜏𝐷, (3.13)

that is, 𝑅𝑠 = 𝐼 − 𝜆𝜕𝐼𝜆,𝑠 or equivalently 𝜕𝐼𝜆,𝑠 = 1∕𝜆(𝐼 − 𝑅𝑠) (see also the relationship between
the Yosida approximation and the resolvent in Definition 3.8). We denote, again with a slight

abuse of notation, the pointwise operator, ℝ𝑑×𝑑
𝑠 ∋ 𝜏 ↦ 1

𝜆
max𝑠

(
1 − 𝛾|𝜏𝐷|

)
𝜏𝐷 ∈ ℝ𝑑×𝑑

𝑠 also by 𝜕𝐼𝜆,𝑠,
and do the same for 𝑅𝑠.

Let us collect properties concerning monotonicity and Lipschitz continuity of 𝜕𝐼𝜆,𝑠 and 𝑅𝑠
in the following

Lemma 3.18 (Properties of 𝜕𝐼𝜆,𝑠). For every 𝜆 > 0 and 𝑠 ∈ (0, 1), the following properties hold:

(i) The mapping 𝜕𝐼𝜆,𝑠 is maximal monotone.

(ii) The mapping 𝜕𝐼𝜆,𝑠 is Lipschitz continuous with constant 1∕𝜆.

(iii) The mapping 𝑅𝑠 is maximal monotone.

(iv) The mapping 𝑅𝑠 is Lipschitz continuous with constant 1.
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The mappings can be taken from ℝ𝑑×𝑑
𝑠 to ℝ𝑑×𝑑

𝑠 or from 𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) to 𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ).

Proof. It is well known that, since max𝑠 is continuously differentiable and convex,

max𝑠(𝑥) − max𝑠(𝑦) ≥ max𝑠(𝑦)′(𝑥 − 𝑦) (3.14)

holds for all 𝑥, 𝑦 ∈ ℝ.
Let 𝜏, 𝜎 ∈ ℝ𝑑×𝑑

𝑠 , w.l.o.g. we can assume that |𝜎𝐷| ≥ |𝜏𝐷| > 0 and

max𝑠
(
1 −

𝛾|𝜎𝐷|) ≥ max𝑠
(
1 −

𝛾|𝜏𝐷|),
then, using (3.14) with 𝑥 = 1 − 𝛾|𝜏𝐷| and 𝑦 = 1 − 𝛾|𝜎𝐷| , we get

|max𝑠
(
1 −

𝛾|𝜏𝐷|)𝜏𝐷 − max𝑠
(
1 −

𝛾|𝜎𝐷|)𝜎𝐷|
≤ (max𝑠

(
1 −

𝛾|𝜎𝐷|) − max𝑠
(
1 −

𝛾|𝜏𝐷|)) |𝜏𝐷| + max𝑠
(
1 −

𝛾|𝜎𝐷|)|𝜏𝐷 − 𝜎𝐷|
≤ 𝛾 max′𝑠

(
1 −

𝛾|𝜎𝐷|)|𝜏𝐷| | 1|𝜏𝐷| − 1|𝜎𝐷| | + max𝑠
(
1 −

𝛾|𝜎𝐷|)|𝜏𝐷 − 𝜎𝐷|,
taking into account that

𝛾|𝜏𝐷| | 1|𝜏𝐷| − 1|𝜎𝐷| | = 𝛾||| |𝜏𝐷| − |𝜎𝐷||𝜎𝐷| ||| ≤ 𝛾|𝜎𝐷| |𝜏𝐷 − 𝜎𝐷|
and using the first inequality in Lemma 3.16, we obtain

|max𝑠
(
1 −

𝛾|𝜏𝐷|)𝜏𝐷 − max𝑠
(
1 −

𝛾|𝜎𝐷|)𝜎𝐷|
≤ (

max′𝑠
(
1 −

𝛾|𝜎𝐷|) 𝛾|𝜎𝐷| + max𝑠
(
1 −

𝛾|𝜎𝐷|))|𝜏𝐷 − 𝜎𝐷|
≤ max𝑠(1)|𝜏 − 𝜎| = |𝜏 − 𝜎|,

where we used (3.14) again with 𝑥 = 1 and 𝑦 = 1 − 𝛾|𝜎𝐷| . This proves Item (ii) from which one
also immediately deduces Item (iv). We also get

(𝑅𝑠(𝜏) − 𝑅𝑠(𝜎))∶ (𝜏 − 𝜎)

= |𝜏 − 𝜎|2 − (
max𝑠

(
1 −

𝛾|𝜏𝐷|)𝜏𝐷 − max𝑠
(
1 −

𝛾|𝜎𝐷|)𝜎𝐷)∶ (𝜏 − 𝜎)

≥ |𝜏 − 𝜎|2 − |𝜏 − 𝜎|2 = 0

which shows the monotonicity of 𝑅𝑠. Let us finally address the monotonicity of 𝜕𝐼𝜆,𝑠. We have

𝜆(𝜕𝐼𝜆,𝑠(𝜎) − 𝜕𝐼𝜆,𝑠(𝜏)) ∶ (𝜎 − 𝜏)

=
(
max𝑠

(
1 −

𝛾|𝜎𝐷|)𝜎𝐷 − max𝑠
(
1 −

𝛾|𝜏𝐷|)𝜏𝐷) ∶ (𝜎𝐷 − 𝜏𝐷)

=
(
max𝑠

(
1 −

𝛾|𝜎𝐷|) − max𝑠
(
1 −

𝛾|𝜏𝐷|))𝜎𝐷 ∶ (𝜎𝐷 − 𝜏𝐷)

+ max𝑠
(
1 −

𝛾|𝜏𝐷|)(𝜎𝐷 − 𝜏𝐷) ∶ (𝜎𝐷 − 𝜏𝐷)

≥ (
max𝑠

(
1 −

𝛾|𝜎𝐷|) − max𝑠
(
1 −

𝛾|𝜏𝐷|))(|𝜎𝐷|2 − 𝜏𝐷 ∶ 𝜎𝐷)

≥ (
max𝑠

(
1 −

𝛾|𝜎𝐷|) − max𝑠
(
1 −

𝛾|𝜏𝐷|))|𝜎𝐷|(|𝜎𝐷| − |𝜏𝐷|)
≥ 0,
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so that 𝜕𝐼𝜆,𝑠 is monotone. The maximal monotonicity of 𝜕𝐼𝜆,𝑠 and𝑅𝑠 follows now as in ZEIDLER

[113, Example 32.4].

Now we address the desired differentiability of 𝜕𝐼𝜆,𝑠 in

Lemma 3.19 (Differentiability of 𝜕𝐼𝜆,𝑠). Let 𝜆, 𝑠 > 0. The operator 𝜕𝐼𝜆,𝑠 is continuously Fréchet
differentiable from 𝐿𝑝1(Ω;ℝ𝑑×𝑑

𝑠 ) to 𝐿𝑝2(Ω;ℝ𝑑×𝑑
𝑠 ) with 1 ≤ 𝑝2 < 𝑝1 < ∞ and its directional derivative

at 𝜏 ∈ 𝐿𝑝1(Ω;ℝ𝑑×𝑑
𝑠 ) in direction ℎ ∈ 𝐿𝑝2(Ω;ℝ𝑑×𝑑

𝑠 ) is given by

𝜕𝐼 ′𝜆,𝑠(𝜏)ℎ = 1
𝜆
max′𝑠

(
1 −

𝛾|𝜏𝐷|) 𝛾|𝜏𝐷|3 (𝜏𝐷 ∶ ℎ𝐷)𝜏𝐷 + 1
𝜆
max𝑠

(
1 −

𝛾|𝜏𝐷|)ℎ𝐷.
Moreover, 𝜕𝐼 ′𝜆,𝑠(𝜏) is extendable to an element of (𝐿𝑝(Ω;ℝ𝑑×𝑑

𝑠 )) for all 𝑝 ∈ [1,∞], and is, in the
case 𝑝 = 2, self-adjoint .

Proof. This can be proven as in HERZOG ET AL. [51, Proposition 2.11] by using the general
result in GOLDBERG ET AL. [44, Theorem 7].

Remark 3.20 (𝜕𝐼𝜆,𝑠 is twice differentiable). The operator 𝜕𝐼𝜆,𝑠 is also twice continuously Fréchet dif-
ferentiable from 𝐿𝑝1(Ω;ℝ𝑑×𝑑

𝑠 ) to 𝐿𝑝3(Ω;ℝ𝑑×𝑑
𝑠 ) when 1 ≤ 𝑝3 < 𝑝1∕2 and max𝑠 is more regular, this was

shown in [71, Lemma 7.26] (respectively [106] and [44, Theorem 9]), therein also the second derivative
of 𝜕𝐼𝜆,𝑠 is given. An example of the more regular max𝑠 is given in [71, Example 7.21]. This operator
satisfies the Assumptions ⟨5.3.i⟩ to ⟨5.3.iv⟩, as was shown in [71, Corollary 7.27] (in the case of homog-
enized plasticity, that is, 𝜕𝐼𝜆,𝑠 was considered as a mapping on 𝐿𝑝1(Ω × 𝑌 ;ℝ𝑑×𝑑

𝑠 ), where 𝑌 = [0, 1]𝑑 ,
but it clearly also holds in our case). Since we will not apply the second order optimality conditions,
developed in Section 5.3, in detail in one of the plasticity cases, this remark is sufficient for us, see also
the end of Chapter 6.

Having collected all results about maximal monotone operators and subdifferentials which
we will need, we can finally turn to EVIs .

Chapter 4 Analysis of EVIs

After collecting important properties of maximal monotone operators in the last chapter, we
can start the analysis of a generalized version of the EVI obtained in Theorem 2.9, that is, we
consider

.
𝑧 ∈ 𝐴(𝑅𝓁 −𝑄𝑧), 𝑧(0) = 𝑧0, (EVI)

where 𝓁 is the given input and 𝑧 the desired solution. In the following we will say load to 𝓁,
this is based on the application given in Chapter 2 where 𝓁 contains the exterior forces and
the Dirichlet displacement, cf. Theorem 2.9. Recall Assumption ⟨II.ii⟩, Assumption ⟨4.i⟩ and
Assumption ⟨4.ii⟩ where the properties of 𝐴,𝑅,𝑄 and 𝑧0 are given.

To the author’s knowledge, there exists no analysis for this EVI in the literature, however,
as we will see in Lemma 4.3, (EVI) can be equivalently transformed into (EVI𝑞) and there ex-
ists an extensive analysis in the literature for EVIs of this form. We have already given some
references at the beginning of Chapter 3 which can also be consulted regarding EVIs, but our
main references are [15, 113, 110], which are sufficient for our analysis of (EVI). Nonetheless,
we cannot draw all needed results for Chapter 5 from them. Where the existence of a solution
and a priori estimates (Theorem 4.5 and Theorem 4.7) can be somewhat easily deduced from
the results in [15, 110], the desired convergence results of the solution operator, presented in
Section 4.2, will require a more carefull inspection.
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4.1 Definition and Existence of a Solution
Despite that this section carries the word “definition” we do not give a definition of a solution
to (EVI) since it is analog to Definition 2.3, as we have agreed upon right after Definition 2.3.

Before we transform (EVI) into an EVI which form occurs in the literature, let us shortly
consider the space of loads. It is obvious that it is not sufficient to require only 𝓁 ∈ 𝐿∞(), due
to the possible jumps in time and the regularity 𝑧 ∈ 𝐻1() ⊂ 𝐶() it is immediately clear that
there cannot exist a solution in general. Therefore the load has to be at least continuous, since
in the context of optimal control, we are interested in loads which are contained in a Hilbert
space, it is natural to consider loads in 𝐻1(), which embeds continuously into 𝐶(), see [104,
Theorem 3.1.41]. The regularity of the load after the announced transformation is then also in
accordance with the desired regularity in the literature.

One important property is the uniqueness of a solution, this can be shown easily for an EVI
as we now see in

Lemma 4.1 (Uniqueness of a solution). Let 𝓁 ∈ 𝐻1(). Assume that 𝑧1, 𝑧2 ∈ 𝐻1() are two
solutions of (EVI). Then 𝑧1 = 𝑧2.

Proof. We observe that( .
𝑧1(𝑡) −

.
𝑧1(𝑡), 𝑄(𝑧1(𝑡) − 𝑧2(𝑡))

)
 =

( .
𝑧1 −

.
𝑧2, 𝑄𝑧1(𝑡) − 𝑅𝓁(𝑡) −𝑄𝑧2(𝑡) + 𝑅𝓁(𝑡)

)
 ≤ 0

holds for almost all 𝑡 ∈ [0, 𝑇 ], where we have used the monotonicity of 𝐴. Integrating this
inequality and using the coercivity of 𝑄 gives the desired result.

Transformation

For the following transformation it is convenient to introduce some abbreviations.

Definition 4.2 (𝑧 to 𝑞 mapping). We define

𝔔 ∶  ×  → , (𝑧,𝓁) ↦ 𝑅𝓁 −𝑄𝑧

and

ℨ ∶  ×  → , (𝑞,𝓁) ↦ 𝑄−1(𝑅𝓁 − 𝑞)

such that 𝔔(⋅,𝓁)−1 = ℨ(⋅,𝓁) for a fixed 𝓁 ∈  .

We are now in the position to present the transformation. We note that this transformation
was also used in GRÖGER [45, Theorem 4.1]. Recall that 𝑞0 is given in Assumption ⟨4.iii⟩.
Lemma 4.3 (Transformation of an EVI). Let 𝓁 ∈ 𝐻1(). Then 𝑧 ∈ 𝐻1() is the solution of (EVI) if
and only if 𝑞 ∈ 𝐻1() is the solution of

.
𝑞 + 𝐴𝑄(𝑞) ∋ 𝑅

.
𝓁, 𝑞(0) = 𝑞0 (EVI𝑞)

with 𝑞0 = 𝔔(𝑧0,𝓁(0)), and we have 𝑧 = ℨ(𝑞,𝓁) or, equivalently, 𝑞 = 𝔔(𝑧,𝓁), where the maximal
monotone operator 𝐴𝑄 is given in Definition 3.3 (see also Lemma 3.4).

Proof. This follows immediately from the definitions of 𝔔 and ℨ.
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Existence of a Solution and A Priori Estimates

To prove the existence of a solution to (EVI) it is obvious that the value at 𝑡 = 0 of the load
has to be in compliance with the initial condition. This is captured in

Definition 4.4 (Admissible loads). For 𝑧0 ∈  and 𝑀 ⊂ 𝐷(𝐴), we define the set

(𝑧0,𝑀) ∶= {𝓁 ∈ 𝐻1()∶ 𝑅𝓁(0) −𝑄𝑧0 ∈𝑀}

of admissible loads.

Now we can prove the existence of a solution, at first under the boundedness property
and then with 𝐻2 loads. Clearly, since the subdifferential of an indicator function fulfills the
boundedness property (Proposition 3.14) and the loads 𝓁 in Theorem 2.9 are𝐻1 in time, the first
result is sufficient for the application to elasto plasticity (and also to homogenized plasticity as
we will see in Chapter 7). However, for the application of plasticity with an inertia term in
Part IV we will need the second result.

Theorem 4.5 (Existence of a solution under the boundedness property). We assume that 𝐴 has
the boundedness property (see Definition 3.5).

Let 𝓁 ∈ (𝑧0, 𝐷(𝐴)). Then there exists a unique solution 𝑧 ∈ 𝐻1() of (EVI). Furthermore, there
exists a constant 𝐶 , independent of 𝑧0 and 𝓁, such that

‖𝑧‖𝐶() ≤ 𝐶
(
1 + ‖𝑧0‖ + ‖𝓁‖𝐶() + ‖ .

𝓁‖𝐿1()
)
, (4.1)‖ .

𝑧‖𝐿2() ≤ 𝐶
(‖ .
𝓁‖𝐿2() + sup

𝜏∈[0,𝑇 ]
‖𝐴0(𝑅𝓁(𝜏) −𝑄𝑧(𝜏))‖), (4.2)

where 𝐴0 is given in Definition 3.2.

Proof. Since 𝐴 has the boundedness property (thus 𝐴𝑄 has it also, according to Lemma 3.4) and
𝑅𝓁(0) − 𝑄𝑧0 ∈ 𝐷(𝐴), we can apply BREZIS [15, Proposition 3.4] to obtain a unique solution
𝑞 ∈ 𝐻1() of (EVI𝑞). Thanks to Lemma 4.3, this gives also the existence of a unique solution of
(EVI).

To verify the estimate in (4.1), we employ BREZIS [15, Lemme 3.1], which gives

‖𝑞(𝑡) − 𝑞(𝑡)‖𝑄−1
≤ ‖𝑅𝓁(0) −𝑄𝑧0 − 𝑎‖𝑄−1

+ ∫
𝑡

0
‖𝑅 .

𝓁(𝜏)‖𝑄−1
𝑑𝜏

for all 𝑡 ∈ [0, 𝑇 ], where 𝑞 is the unique solution of

.
𝑞 + 𝐴𝑄(𝑞) ∋ 0, 𝑞(0) = 𝑎

with an arbitrary element 𝑎 ∈ 𝐷(𝐴). The inequality

‖𝑧(𝑡)‖ = ‖ℨ(𝑞(𝑡),𝓁(𝑡))‖ ≤ ‖𝑄−1‖(‖𝑅‖‖𝓁(𝑡)‖ + ‖𝑞(𝑡)‖)
together with

‖𝑞(𝑡)‖ ≤ 1√
𝛾𝑄−1

‖𝑞(𝑡) − 𝑞(𝑡)‖𝑄−1
+ ‖𝑞(𝑡)‖ ,

where we have used Lemma 3.4, gives (4.1).
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To prove (4.2), we deduce from BREZIS [15, Proposition 3.4] and the associated proof that

‖𝑞(𝑡) − 𝑞(𝑠)‖𝑄−1
≤ ∫

𝑡

𝑠
‖𝑅 .

𝓁(𝜏)‖𝑄−1
𝑑𝜏 + sup

𝜏∈[0,𝑇 ]
‖𝐴0

𝑄(𝑞(𝜏))‖𝑄−1
(𝑡 − 𝑠).

Dividing this inequality by (𝑡 − 𝑠) and letting 𝑡→ 𝑠 yields

‖ .
𝑞(𝑠)‖𝑄−1

≤ ‖𝑅 .
𝓁(𝑠)‖𝑄−1

+ sup
𝜏∈[0,𝑇 ]

‖𝐴0
𝑄(𝑞(𝜏))‖𝑄−1

for almost all 𝑠 ∈ [0, 𝑇 ]. Taking once again Lemma 3.4 and Lemma 4.3 into account, we get
(4.2).

Remark 4.6 (Weakend boundedness property). In order to prove Theorem 4.5, it is sufficient to
require that 𝐴0 is bounded on compact subsets (in addition to the closedness of 𝐷(𝐴)), cf. BREZIS [15,
Proposition 3.4]. However, the boundedness on bounded sets of 𝐴0 is needed to prove Theorem 4.11
below, therefore we have required it right away.

Theorem 4.7 (Existence of a solution with 𝐻2 loads). Let 𝓁 ∈ 𝐻2(). Then there exists a unique
solution 𝑞 ∈ 𝐻1() of (EVI𝑞). Furthermore, there exists a constant 𝐶 such that

‖ .
𝑞‖𝐿2() ≤ 𝐶

(‖𝐴0(𝑞0)‖ + ‖ .
𝓁‖𝐻1()

)
(4.3)

holds, where the constant 𝐶 is independent of 𝑞0 and 𝓁.

Proof. Since 𝓁 ∈ 𝐻2() we have 𝑅
.
𝓁 ∈ 𝐻1(), therefore we can apply ZEIDLER [110, Theorem

55.A] to obtain the existence of a unique solution 𝑞 ∈ 𝐻1() to (EVI𝑞).
To verify (4.3), we consider the solution 𝑞𝜆 ∈ 𝐶1() of

.
𝑞𝜆 + 𝐴𝑄,𝜆(𝑞𝜆) = 𝑅

.
𝓁, 𝑞𝜆(0) = 𝑞0.

That this equation obtains a unique solution follows from Theorem A.7. According to the proof
of ZEIDLER [110, Theorem 55.A], the inequality

‖ .
𝑞𝜆‖𝐿2(𝑄−1 )

≤ 𝐶
(‖𝐴0

𝑄(𝑞0)‖𝑄−1
+ ‖ .

𝓁‖𝐻1()
)

holds for all 𝜆 > 0. Since 𝑞𝜆 ⇀ 𝑞 in 𝐻1(𝑄−1) (cf. again ZEIDLER [110, Theorem 55.A]), we can
let 𝜆↘ 0 and use Lemma 3.4 to get (4.3).

Note that the solution 𝑞 in Theorem 4.7 has the regularity
.
𝑞 ∈ 𝐿∞() according to ZEIDLER

[110, Corollary 55.4], however, we do not need this regularity in the following.

4.2 Convergence of Solutions
In the context of optimal control it is necessary to obtain results concerning the sensitivity of
solutions to a state equation with respect to controls. This becomes already clear in the proof
of the existence of optimal solutions in Theorem 5.2, where we use the direct method of the
calculus of variations.

This section is devoted to such a sensitivity analysis, we start by providing a result regarding
the Yosida approximation but for fixed data. This will come in handy in Lemma 4.9 because
this essentially enables a “replacement” of the maximal monotone operator with the Yosida
approximation.

We emphasize that in both Proposition 4.8 and Lemma 4.9 we simply assume that there
exists a solution to (EVI). These findings can then be applied in the case of the boundedness
property, where the existence is provided by Theorem 4.5, but also in the case of 𝐻2 loads,
where the existence is guaranteed by Theorem 4.7.
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Proposition 4.8 (Convergence of the Yosida approximation for fixed data). Let 𝓁 ∈ 𝐻1() and
assume that 𝑧 ∈ 𝐻1() is the solution of (EVI). Moreover, let 𝑧𝜆 ∈ 𝐻1() be the solution of

.
𝑧𝜆 = 𝐴𝜆(𝑅𝓁 −𝑄𝑧𝜆), 𝑧𝜆(0) = 𝑧0 (4.4)

for all 𝜆 > 0. Then 𝑧𝜆 → 𝑧 in 𝐻1() as 𝜆↘ 0 and the following inequality holds

‖𝑧𝜆 − 𝑧‖2𝐶() +
𝜆
𝛾𝑄

‖ .
𝑧𝜆‖2𝐿2() +

𝜆
𝛾𝑄

‖ .
𝑧𝜆 −

.
𝑧‖2𝐿2() ≤ 𝜆

𝛾𝑄
‖ .
𝑧‖2𝐿2(). (4.5)

Proof. The proof in principle follows the lines of BREZIS [15, Proposition 3.11], but our assump-
tions and assertions are different.

First of all, since 𝑧 ↦ 𝐴𝜆(𝑅𝓁 − 𝑄𝑧) is Lipschitz continuous by Proposition 3.9 Item (ii), the
existence of a unique solution of (4.4) follows from Theorem A.7. Moreover, Proposition 3.9
Item (i) and the definition of 𝐴𝜆 (see Definition 3.8) give

𝑑
𝑑𝑡

(
𝑄(𝑧𝜆(𝑡) − 𝑧(𝑡)), 𝑧𝜆(𝑡) − 𝑧(𝑡)

)
 = 2

( .
𝑧𝜆(𝑡) −

.
𝑧(𝑡), 𝑄(𝑧𝜆(𝑡) − 𝑧(𝑡))

)


= −2
( .
𝑧𝜆(𝑡) −

.
𝑧(𝑡), 𝑅𝜆

[
𝑅𝓁(𝑡) −𝑄𝑧𝜆(𝑡)

]
−
[
𝑅𝓁(𝑡) −𝑄𝑧(𝑡)

])


− 2
( .
𝑧𝜆(𝑡) −

.
𝑧(𝑡), 𝑅𝓁(𝑡) −𝑄𝑧𝜆(𝑡) − 𝑅𝜆

[
𝑅𝓁(𝑡) −𝑄𝑧𝜆(𝑡)

])


≤ −2𝜆
( .
𝑧𝜆(𝑡) −

.
𝑧(𝑡),

.
𝑧𝜆(𝑡)

)


= 𝜆
(‖ .
𝑧(𝑡)‖2 − ‖ .

𝑧𝜆(𝑡)‖2 − ‖ .
𝑧𝜆(𝑡) −

.
𝑧(𝑡)‖2).

By integrating this inequality and using the coercivity of 𝑄, we obtain the desired inequality.
In order to prove the strong convergence of 𝑧𝜆 to 𝑧 in 𝐻1(), we note that 𝑧𝜆 → 𝑧 in 𝐶()

and ‖ .
𝑧𝜆‖𝐿2() ≤ ‖ .

𝑧‖𝐿2() follow from the gained inequality. Hence, 𝑧𝜆 ⇀ 𝑧 in 𝐻1() and the
desired strong convergence follows from Lemma A.3.

Let us already say that in the following lemma the operators 𝐴𝑛 will be later simply set to
𝐴 or to the yosida approximation for 𝜆𝑛 > 0, that is, 𝐴𝑛 = 𝐴𝜆𝑛 , see Remark 4.10. Moreover,
this lemma is the key to prove convergence results under the boundedness property in Theo-
rem 4.11 and Theorem 4.12, and also with 𝐻2 loads in Theorem 4.14.

Lemma 4.9 (Key result for convergence properties). Let 𝓁 ∈ 𝐻1() and assume that 𝑧 ∈ 𝐻1()
is the solution of (EVI). Moreover, let {𝑧𝑛,0}𝑛∈ℕ ⊂  and {𝓁𝑛}𝑛∈ℕ ⊂ 𝐻1() be sequences such that
𝑧𝑛,0 → 𝑧0 in  and 𝓁𝑛 → 𝓁 in 𝐿1(). Assume further that {𝐴𝑛}𝑛∈ℕ is a sequence of maximal monotone
operators such that for every 𝜆 > 0 the convergence

𝐴𝑛,𝜆(ℎ) → 𝐴𝜆(ℎ) (4.6)

holds for all ℎ ∈ (𝑅𝓁 − 𝑄𝑧𝜆)([0, 𝑇 ]), as 𝑛 → ∞, where 𝑧𝜆 is the solution of (4.4) and 𝐴𝑛,𝜆 denotes the
Yosida approximation of 𝐴𝑛. Furthermore, if the sequence {𝑧𝑛}𝑛∈ℕ ⊂ 𝐻1() satisfies

.
𝑧𝑛 ∈ 𝐴𝑛(𝑅𝓁𝑛 −𝑄𝑧𝑛), 𝑧𝑛(0) = 𝑧𝑛,0 (4.7)

and the derivatives
.
𝑧𝑛 are bounded in 𝐿2(), then 𝑧𝑛 ⇀ 𝑧 in 𝐻1() and 𝑧𝑛 → 𝑧 in 𝐶().

Before we continue with the proof, let us shortly depict the idea of it in Figure 5. Therein, 𝑧𝜆
and 𝑧𝑛,𝜆 are the solutions of (4.8) and (4.9), respectively. As we can see, choosing at first a small
𝜆 and afterwards a large 𝑛 yields essentially the assertion (see also (4.10)).
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𝑧 𝑧𝑛

𝑧𝜆 𝑧𝑛,𝜆

Close for all 𝑛 and small fixed 𝜆 by (4.5) and boundedness of
.
𝑧𝑛

Close for large 𝑛 and fixed 𝜆 by
(4.6) and convergence of 𝓁𝑛 and 𝑧𝑛,0

Figure 5: Idea of the proof of Lemma 4.9.

Proof of Lemma 4.9. Let 𝜆 > 0 be fixed, but arbitrary and define 𝑧𝜆, 𝑧𝑛,𝜆 ∈ 𝐻1() as solutions of
.
𝑧𝜆 = 𝐴𝜆(𝑅𝓁𝑛 −𝑄𝑧𝜆), 𝑧𝜆(0) = 𝑧0, (4.8)

and
.
𝑧𝑛,𝜆 = 𝐴𝑛,𝜆(𝑅𝓁𝑛 −𝑄𝑧𝑛,𝜆), 𝑧𝑛,𝜆(0) = 𝑧𝑛,0, (4.9)

respectively. In both cases, existence and uniqueness follows from Theorem A.7. Owing to
Proposition 3.9 Item (ii), we obtain‖ .

𝑧𝜆(𝑡) −
.
𝑧𝑛,𝜆(𝑡)‖ ≤ ‖𝐴𝜆(𝑅𝓁(𝑡) −𝑄𝑧𝜆(𝑡)) − 𝐴𝑛,𝜆(𝑅𝓁(𝑡) −𝑄𝑧𝜆(𝑡))‖

+ ‖𝐴𝑛,𝜆(𝑅𝓁(𝑡) −𝑄𝑧𝜆(𝑡)) − 𝐴𝑛,𝜆(𝑅𝓁𝑛(𝑡) −𝑄𝑧𝑛,𝜆(𝑡))‖≤ ‖𝐴𝜆(𝑅𝓁(𝑡) −𝑄𝑧𝜆(𝑡)) − 𝐴𝑛,𝜆(𝑅𝓁(𝑡) −𝑄𝑧𝜆(𝑡))‖
+

‖𝑄‖𝐿(;)

𝜆
‖𝑧𝜆(𝑡) − 𝑧𝑛,𝜆(𝑡)‖ +

‖𝑅‖𝐿( ;)

𝜆
‖𝓁(𝑡) − 𝓁𝑛(𝑡)‖ ,

and therefore, Lemma A.8 Item (i) (with 𝑢 ∶= 𝑧𝜆 − 𝑧𝑛,𝜆 and 𝛼 ∶= ‖𝐴𝜆(𝑅𝓁 − 𝑄𝑧𝜆) − 𝐴𝑛,𝜆(𝑅𝓁 −
𝑄𝑧𝜆)‖ − ‖𝑅‖𝐿( ;)

𝜆
‖𝓁 − 𝓁𝑛‖ ) implies

‖𝑧𝜆 − 𝑧𝑛,𝜆‖𝐶() ≤ 𝐶(𝜆)
(‖𝑧0 − 𝑧𝑛,0‖ + ‖𝓁 − 𝓁𝑛‖𝐿1()

+ ‖𝐴𝜆(𝑅𝓁 −𝑄𝑧𝜆) − 𝐴𝑛,𝜆(𝑅𝓁 −𝑄𝑧𝜆)‖𝐿1()

)
.

The operators 𝐴𝑛,𝜆 are uniformly Lipschitz continuous with Lipschitz constant 𝜆−1. Thus,
thanks to (4.6), we can apply Lemma A.1 with  ∶= (𝑅𝓁 − 𝑄𝑧𝜆)[0, 𝑇 ],  ∶= , 𝐺𝑛 ∶= 𝐴𝑛,𝜆
and 𝐺 ∶= 𝐴𝜆. Together with the assumptions on 𝓁𝑛 and 𝑧𝑛,0 this gives that the right side of the
inequality above converges to zero as 𝑛→ ∞. Using this, Proposition 4.8, and (4.5) (with 𝐴 = 𝐴
but also with 𝐴 = 𝐴𝑛), we conclude

lim sup
𝑛→∞

‖𝑧 − 𝑧𝑛‖𝐶() ≤ ‖𝑧 − 𝑧𝜆‖𝐶() + lim sup
𝑛→∞

‖𝑧𝑛,𝜆 − 𝑧𝑛‖𝐶()

≤
√

𝜆
𝛾𝑄

(‖ .
𝑧‖𝐿2() + sup

𝑛∈ℕ
‖ .
𝑧𝑛‖𝐿2()

)
.

(4.10)

Now, since 𝜆was arbitrary, (4.10) holds for every 𝜆 > 0. Therefore, as
.
𝑧𝑛 is bounded in 𝐿2() by

assumption, we obtain 𝑧𝑛 → 𝑧 in 𝐶(). Moreover, again due to the boundedness assumption
on

.
𝑧𝑛, there is a weakly converging subsequence in 𝐻1(). Due to 𝑧𝑛 → 𝑧 in 𝐶(), the weak

limit is unique and hence, the whole sequence 𝑧𝑛 converges weakly to 𝑧 in 𝐻1().

Remark 4.10 (Choice of 𝐴𝑛). In what follows, we will either choose 𝐴𝑛 ∶= 𝐴 or 𝐴𝑛 ∶= 𝐴𝜆𝑛 , where
{𝜆𝑛}𝑛∈ℕ ⊂ (0,∞) converges towards zero. In the case 𝐴𝑛 ∶= 𝐴𝜆𝑛 , the requirement (4.6) is fulfilled
thanks to Lemma 3.10.
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Convergence under the Boundedness Property

In Section 4.1 we have proven the existence of a solution to (EVI) once with the boundedness
property and once with 𝐻2 loads. Therefore, we also need at least one of these assumptions to
prove convergence of solutions, we start with two results under the boundedness property.

Theorem 4.11 (Convergence under the boundedness property). We assume that 𝐴 has the bound-
edness property (see Definition 3.5).

Let 𝓁 ∈ (𝑧0, 𝐷(𝐴)) and 𝑧 ∈ 𝐻1() the solution of (EVI) (whose existence is guaranteed by
Theorem 4.5). Let {𝓁𝑛}𝑛∈ℕ ⊂ (𝑧𝑛,0, 𝐷(𝐴)) be a sequence such that 𝑧𝑛,0 → 𝑧0 in , 𝓁𝑛 ⇀ 𝓁 in 𝐻1()
and 𝓁𝑛 → 𝓁 in 𝐿1(). Moreover, denote the solution of

.
𝑧𝑛 ∈ 𝐴(𝑅𝓁𝑛 −𝑄𝑧𝑛), 𝑧𝑛(0) = 𝑧𝑛,0

by 𝑧𝑛 ∈ 𝐻1() (whose existence is again guaranteed by Theorem 4.5). Then 𝑧𝑛 ⇀ 𝑧 in 𝐻1() and
𝑧𝑛 → 𝑧 in 𝐶().

If additionally 𝓁𝑛 → 𝓁 in𝐻1(), 𝐴 is a subdifferential of a convex, lower semicontinuous and proper
functional (see Section 3.2), that is, 𝐴 = 𝜕𝜙, and 𝜙(𝑅𝓁𝑛(0) − 𝑄𝑧𝑛,0) → 𝜙(𝑅𝓁(0) − 𝑄𝑧0), then 𝑧𝑛 → 𝑧
in 𝐻1().

Proof. Thanks to Theorem 4.5, to be more precise (4.1), {𝑧𝑛} is bounded in 𝐶([0, 𝑇 ];). Since
𝐴 has the boundedness property , 𝐴0 is bounded on bounded sets, hence, (4.2) then gives that
{
.
𝑧𝑛} is bounded in 𝐿2(). Therefore, we can apply Lemma 4.9 with 𝐴𝑛 ∶= 𝐴 for all 𝑛 ∈ ℕ to

obtain 𝑧𝑛 ⇀ 𝑧 in 𝐻1() and 𝑧𝑛 → 𝑧 in 𝐶().
If the additional requirements hold, we can follow the lines of GRÖGER [45, Theorem 4.2

step 3)] to get

lim sup
𝑛→∞

‖ .
𝑧𝑛‖2𝐿2(𝑄)

= lim sup
𝑛→∞ ∫

𝑇

0

(
𝑄

.
𝑧𝑛,

.
𝑧𝑛
)
 𝑑𝑡

= lim sup
𝑛→∞

−
(
𝑅

.
𝓁𝑛 −𝑄

.
𝑧𝑛,

.
𝑧𝑛
)
𝐿2()

+
(
𝑅

.
𝓁,

.
𝑧
)
𝐿2()

= lim sup
𝑛→∞

𝜙(𝑅𝓁𝑛(0) −𝑄𝑧𝑛,0) − 𝜙(𝑅𝓁𝑛(𝑇 ) −𝑄𝑧𝑛(𝑇 )) +
(
𝑅

.
𝓁,

.
𝑧
)
𝐿2()

≤ 𝜙(𝑅𝓁(0) −𝑄𝑧0) − 𝜙(𝑅𝓁(𝑇 ) −𝑄𝑧(𝑇 )) +
(
𝑅

.
𝓁,

.
𝑧
)
𝐿2()

= ∫
𝑇

0

(
𝑄

.
𝑧,

.
𝑧
)
 𝑑𝑡 = ‖ .

𝑧‖2𝐿2(𝑄)

where the third and fifth equation follows from [15, Lemme 3.3]. Hence, the strong convergence
𝑧𝑛 → 𝑧 in 𝐻1(𝑄) (and thus in 𝐻1()) follows from Lemma A.3 with 𝐻 = 𝐿2() and 𝑥𝑛 =
.
𝑧𝑛.

Theorem 4.12 (Convergence of the Yosida approximation under the boundedness property).
The assertion in Theorem 4.11 holds true when 𝑧𝑛 is, for every 𝑛 ∈ ℕ, the solution of

.
𝑧𝑛 = 𝐴𝜆𝑛(𝑅𝓁𝑛 −𝑄𝑧𝑛), 𝑧𝑛(0) = 𝑧𝑛,0, (4.11)

where {𝜆𝑛}𝑛∈ℕ ⊂ (0,∞) is a sequence converging to zero.

Proof. According to Lemma 3.10, the sequence of maximal monotone operators 𝐴𝑛 ∶= 𝐴𝜆𝑛 ful-
fills (4.6) so that it only remains to prove that

.
𝑧𝑛 is bounded in 𝐿2() to apply again Lemma 4.9.

To this end, let 𝑣𝑛 ∈ 𝐻1() be the solution of
.
𝑣𝑛 ∈ 𝐴(𝑅𝓁𝑛 −𝑄𝑣𝑛), 𝑣𝑛(0) = 𝑧𝑛,0,
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whose existence is guaranteed by Theorem 4.5 (note that 𝓁𝑛 ∈ (𝑧𝑛,0, 𝐷(𝐴)) by assumption).
Thanks to Theorem 4.11, it holds 𝑣𝑛 ⇀ 𝑧 in 𝐻1(). From Proposition 4.8, it follows ‖ .

𝑧𝑛‖𝐿2() ≤‖ .
𝑣𝑛‖𝐿2() and consequently,

.
𝑧𝑛 is bounded in 𝐿2(). Thus, Lemma 4.9 yields 𝑧𝑛 ⇀ 𝑧 in 𝐻1()

and 𝑧𝑛 → 𝑧 in 𝐶(), as claimed.
If the additional requirements hold, then Theorem 4.11 implies 𝑣𝑛 → 𝑧 in 𝐻1() so that

Lemma A.3 gives the strong convergence 𝑧𝑛 → 𝑧 in 𝐻1() because of ‖ .
𝑧𝑛‖𝐿2() ≤ ‖ .

𝑣𝑛‖𝐿2() as
seen above.

Remark 4.13 (Double Yosida approximation). The assertions of Theorem 4.11 and Theorem 4.12 are
remarkable due to the following: As a first approach to prove the (strong) convergence of the states in
𝐻1(), one is tempted to follow the lines of the proofs of BREZIS [15, Lemme 3.1] and Proposition 4.8,
respectively. This would however require the strong convergence of the derivatives of the given loads,
which we want to avoid in order to enable less regular controls. The detour via the Yosida approximation
in Lemma 4.9 (see also Figure 5), which most notably implies that in the case of Theorem 4.12 a “double”
Yosida approximation is used, allows to overcome this issue. The same is also true for Theorem 4.14 when
𝑞𝑛 is the solution of (4.13). This method was also used in BREZIS [15, Theoreme 3.16], however, this
result is not usable for us, since it is concerned with weak solutions of EVIs .

Convergence with 𝐻2 Loads

We continue with two convergence results with 𝐻2 loads. In the first one we treat both
solutions for the original problem and for the regularized problems, the arguments are similar
to the ones used in Theorem 4.11 and Theorem 4.12, but, of course, we use Theorem 4.7 instead
of Theorem 4.5. Note that Theorem 4.14 and also Corollary 4.15 is formulated in the 𝑞-variable,
this is (almost) exactly the formulation we need in Theorem 8.17 and Proposition 8.18 when
treating plasticity with inertia.

Theorem 4.14 (Convergence with𝐻2 loads). Let 𝓁 ∈ 𝐻2() and 𝑞 ∈ 𝐻1() the solution of (EVI𝑞)
(whose existence is guaranteed by Theorem 4.7). Let {𝑞𝑛,0}𝑛∈ℕ ⊂ 𝐷(𝐴) and {𝓁𝑛}𝑛∈ℕ ⊂ 𝐻2() be
sequences such that 𝑞𝑛,0 → 𝑞 in , 𝐴0(𝑞𝑛,0) is bounded in , 𝓁𝑛 ⇀ 𝓁 in 𝐻2(), 𝓁𝑛 → 𝓁 in 𝐿1() and
𝓁𝑛(0) → 𝓁(0) in  . Moreover, by 𝑞𝑛 ∈ 𝐻1() we denote either the solution of

.
𝑞𝑛 + 𝐴𝑄(𝑞𝑛) ∋ 𝑅

.
𝓁𝑛, 𝑞𝑛(0) = 𝑞𝑛,0 (4.12)

(whose existence is again guaranteed by Theorem 4.7) or the solution of
.
𝑞𝑛 + 𝐴𝜆𝑛,𝑄(𝑞𝑛) = 𝑅

.
𝓁𝑛, 𝑞𝑛(0) = 𝑞𝑛,0, (4.13)

where we have abbreviated 𝐴𝜆𝑛,𝑄 ∶= (𝐴𝜆𝑛)𝑄 = 𝑄𝐴𝜆𝑛 . Then 𝑞𝑛 ⇀ 𝑞 in 𝐻1() and ℨ(𝑞𝑛,𝓁𝑛) → ℨ(𝑞,𝓁)
in 𝐶().

Proof. At first we assume that 𝑞𝑛 is the solution of (4.12) and employ Theorem 4.7, to be more
precise, (4.3), to obtain the boundedness of 𝑞𝑛 in 𝐻1(). According to Lemma 4.3, 𝑧𝑛 ∶=
ℨ(𝑞𝑛,𝓁𝑛) ∈ 𝐻1() is the solution of

.
𝑧𝑛 ∈ 𝐴(𝑅𝓁𝑛 −𝑄𝑧𝑛), 𝑧𝑛(0) = 𝑧𝑛,0,

with 𝑧𝑛,0 ∶= ℨ(𝑞𝑛,0,𝓁𝑛(0)) = 𝑄−1(𝑅𝓁𝑛(0) − 𝑞𝑛,0). We can now apply Lemma 4.9 to derive 𝑧𝑛 ⇀
ℨ(𝑞,𝓁) in 𝐻1() and 𝑧𝑛 → ℨ(𝑞,𝓁) in 𝐶().

Let us now assume that 𝑞𝑛 is the solution of (4.13). As above, thanks to Lemma 4.3, 𝑧𝑛 ∶=
ℨ(𝑞𝑛,𝓁𝑛) ∈ 𝐻1() is the solution of

.
𝑧𝑛 = 𝐴𝜆𝑛(𝑅𝓁𝑛 −𝑄𝑧𝑛), 𝑧𝑛(0) = 𝑧𝑛,0,
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with 𝑧𝑛,0 ∶= ℨ(𝑞𝑛,0,𝓁𝑛(0)) = 𝑄−1(𝑅𝓁𝑛(0) − 𝑞𝑛,0). Similar as in the proof of Theorem 4.12, we
consider the solution of

.
𝑣𝑛 ∈ 𝐴(𝑅𝓁𝑛 −𝑄𝑣𝑛), 𝑣𝑛(0) = 𝑧𝑛,0,

then, thanks to the first part of this proof, 𝑣𝑛 is bounded in 𝐻1(). Using Proposition 4.8,
we obtain the boundedness of

.
𝑧𝑛 in 𝐿2(), hence, Lemma 4.9 gives the desired result (with

𝐴𝑛 ∶= 𝐴𝜆𝑛 , which is a possible choice since it fulfills (4.6), according to Lemma 3.10).

The assumption that the loads are contained in 𝐻2() enables us to consider a general,
maximal monotone operator, this is exactly what we need in Part IV. Unfortunately, in order
to prove the strong convergence of solutions to the regularized equations in Theorem 4.12, we
needed that𝐴 is a subdifferential, but this will not be the case in Part IV, see Remark 8.16. How-
ever, the strong convergence of solutions by fixed loads is sufficient in Theorem 9.3 (respectively
Theorem 5.4) and this can be directly obtained from Proposition 4.8 as shown in

Corollary 4.15 (Convergence of the Yosida approximation with fixed 𝐻2 loads). Let 𝓁 ∈ 𝐻2()
and 𝑞 ∈ 𝐻1() the solution of (EVI𝑞) (whose existence is guaranteed by Theorem 4.7). Furthermore,
let {𝜆𝑛}𝑛∈ℕ ⊂ (0,∞) be a sequence converging towards zero and 𝑞𝑛 ∈ 𝐻1() the solution of

.
𝑞𝑛 + 𝐴𝜆𝑛,𝑄(𝑞𝑛) = 𝑅

.
𝓁, 𝑞𝑛(0) = 𝑞0,

where we have again abbreviated 𝐴𝜆𝑛,𝑄 ∶= (𝐴𝜆𝑛)𝑄 = 𝑄𝐴𝜆𝑛 . Then 𝑞𝑛 → 𝑞 in 𝐻1().

Proof. Note that the existence and uniqueness of 𝑞𝑛 follows from Theorem A.7. Applying
Lemma 4.3 with 𝐴 = 𝐴𝜆𝑛 , we see that 𝑧𝑛 ∶= ℨ(𝑞𝑛,𝓁) ∈ 𝐻1() is the solution of

.
𝑧𝑛 = 𝐴𝜆𝑛(𝑅𝓁 −𝑄𝑧𝑛), 𝑧𝑛(0) = 𝑧0,

with 𝑧0 ∶= ℨ(𝑞0,𝓁(0)) = 𝑄−1(𝑅𝓁(0) − 𝑞0). We can now apply Proposition 4.8 to obtain 𝑧𝑛 → 𝑧,
therefore 𝑞𝑛 = 𝔔(𝑧𝑛,𝓁) → 𝔔(𝑧,𝓁) = 𝑞 in 𝐻1().

Remark 4.16 (Extension to general Bochner-Sobolev spaces). It is to be noted that most of the above
results can also be shown in more general Bochner-Sobolev spaces, that is, when loads are contained
in 𝑊 1,𝑟() and states in 𝑊 1,𝑟() for some 𝑟 ∈ [1,∞). However, since a Hilbert space setting is
advantageous when it comes to the derivation of optimality conditions, we focus on the case 𝑟 = 2.

We end this chapter with a result concerning a further smoothing of the Yosida approxima-
tion. Later we apply this result with 𝐴𝑛 = 𝜕𝐼𝜆𝑛,𝑠𝑛 with suitable sequences {𝜆𝑛}𝑛∈ℕ and {𝑠𝑛}𝑛∈ℕ,
see Section 6.1. As will become clear in the next chapter, we use this further smoothing to
derive optimality conditions.

Lemma 4.17 (Convergence of the regularized Yosida approximation). Consider a sequence
{𝜆𝑛}𝑛∈ℕ ⊂ (0,∞), which converges to zero, and a sequence of Lipschitz continuous operators 𝐴𝑛 ∶  →, 𝑛 ∈ ℕ, such that

1
𝜆𝑛

exp
(𝑇 ‖𝑄‖𝐿(;)

𝜆𝑛

)
sup
ℎ∈ ‖𝐴𝑛(ℎ) − 𝐴𝜆𝑛(ℎ)‖ → 0. (4.14)

Let moreover {𝓁𝑛}𝑛∈ℕ ⊂ 𝐶() be given and denote by 𝑧𝑛, 𝑧𝜆𝑛 ∈ 𝐶1() the solutions of
.
𝑧𝑛 = 𝐴𝑛(𝑅𝓁𝑛 −𝑄𝑧𝑛), 𝑧𝑛(0) = 𝑧0,
.
𝑧𝜆𝑛 = 𝐴𝜆𝑛(𝑅𝓁𝑛 −𝑄𝑧𝜆𝑛), 𝑧𝜆𝑛(0) = 𝑧0.

Then ‖𝑧𝑛 − 𝑧𝜆𝑛‖𝐶1() → 0.
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Proof. Again, thanks to the Lipschitz continuity of 𝐴𝑛 and 𝐴𝜆𝑛 , the existence and uniqueness
of 𝑧𝑛 and 𝑧𝑛,𝜆 follows from Theorem A.7. Moreover, the continuity of 𝓁𝑛 carries over to the
continuity of

.
𝑧𝑛 and

.
𝑧𝑛,𝜆. Let us abbreviate 𝑐𝑛 ∶= supℎ∈ ‖𝐴𝑛(ℎ) − 𝐴𝜆𝑛(ℎ)‖ . Then, according to

the definition of 𝑧𝑛 and 𝑧𝜆𝑛 , we find

‖ .
𝑧𝑛(𝑡) −

.
𝑧𝜆𝑛(𝑡)‖ ≤ 𝑐𝑛 +

‖𝑄‖𝐿(;)

𝜆𝑛
‖𝑧𝑛(𝑡) − 𝑧𝜆𝑛(𝑡)‖

for all 𝑡 ∈ [0, 𝑇 ], so that Lemma A.8 Item (ii) yields

‖ .
𝑧𝑛(𝑡) −

.
𝑧𝜆𝑛(𝑡)‖ ≤ ‖𝑄‖𝐿(;)

𝜆𝑛

(
𝑇 exp

(‖𝑄‖𝐿(;)

𝜆𝑛
𝑇
)
+ 1

)
𝑐𝑛

for all 𝑡 ∈ [0, 𝑇 ], which completes the proof.

Chapter 5 Optimal Control

The last chapter was devoted to the state equation, the evolution variational inequality (EVI),
of the optimal control problem which will be considered in this chapter. We have collected all
results we need for the investigation of such an optimal control problem, which is the purpose
of this chapter.

The optimal control of this EVI is the core of the thesis at hand. As we have seen in Chapter 2
and will see in Chapter 7, the optimal control of this EVI has a direct application in elasto and
homogenized plasticity. Moreover, it is also related to the problem considered in Part IV for
plasticity with inertia and some of the results in this chapter can also be used in the case of
perfect plasticity in Part V.

We note that we require 𝐴 to have the boundedness property, see Assumption ⟨5.ii⟩. We do
this since in all applications we will choose 𝐴 to be the subdifferential of an indicator function,
which has the boundedness property (cf. Proposition 3.14, note also that the arising operator in Part IV does not have it, the results in Chapter 4 about 𝐻2 loads are tailored to this case).
However, it is also possible to require loads to be 𝐻2 in time and to drop the boundedness
property of 𝐴. The analysis in Section 5.1 would not much be affected and in Section 5.2 and
Section 5.3 the boundedness property plays no role (Assumption ⟨5.ii⟩ could also only be re-
quired in Section 5.1 but we decided to suppose it in the whole chapter to make clear that we
consider optimal control with respect to the boundedness property).

At first we will prove the existence of optimal controls and then a result regarding the ap-
proximation of optimal controls with optimal controls of a smoothed problem, this is the con-
tent of Section 5.1. With this result at hand, it is reasonable to “replace” the original problem
with the regularized one in Section 5.2 and provide optimality conditions only for the regular-
ized problem. Second-order sufficient conditions are finally addressed in Section 5.3.

As said in the beginning of this part, its content, and thus the content of this chapter, is
based on [71]. Let us follow the comparison with the literature therein to put our work into
perspective. To this end, we assume that 𝐴 is in fact the convex subdifferential of a proper,
convex, and lower semicontinuous functional 𝜙. Then, by convex duality (cf. [84, 34]), the state
equation is equivalent to

0 ∈ 𝜕𝜙∗(
.
𝑧) +  ′(𝑧), 𝑧(0) = 𝑧0, (5.1)
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where  is the quadratic energy functional given by

(𝑧) ∶= 1
2 (𝑄𝑧, 𝑧) − ⟨𝑅𝓁, 𝑧⟩.

The literature on optimization problems with (5.1) as a constraint is rather scarce. The first in-
vestigation on optimal control of equations of type (5.1) is probably the sweeping process, see
[78], which is a special case of (5.1). Optimal control problems of this type with a certain func-
tion 𝜙 and 𝑅 = 𝑄 = 𝐼 are examined in [16, 17, 18, 1, 24, 25, 26, 8], where the underlying Hilbert
space is mostly finite dimensional, the infinite dimensional case is investigated in [94, 43]. As
already elaborated in Part I, optimal control problems governed by quasi-static elastoplastic-
ity with linear kinematic hardening and the von Mises yield condition are treated in [105, 107,
108]. All mentioned problems can be seen as special cases of the problem we are considering.
Our analysis is therefore a generalization of existing results on optimal control for non-smooth
evolution problems, but can also be applied to problems that were not treated in the literature
so far. We also mention that optimal control problems governed by (5.1) with a non-convex
energy are investigated in [81, 82], however, these problems are not covered by our analysis.

5.1 Existence and Approximation of Optimal Controls
Unsurprisingly, the optimal control problem under consideration reads

⎧⎪⎨⎪⎩
min 𝐽 (𝑧,𝓁) = Ψ(𝑧,𝓁) + Φ(𝓁),

s.t.
.
𝑧 ∈ 𝐴(𝑅𝓁 −𝑄𝑧), 𝑧(0) = 𝑧0,

(𝑧,𝓁) ∈ 𝐻1() ×
(
𝐻1(𝑐) ∩(𝑧0;𝑀)

)
.

(5.2)

Herein, the properties of the objective function and the maximal monotone operator𝐴 are given
in Assumptions ⟨5.ii⟩ to ⟨5.iv⟩ and Assumption ⟨5.1.i⟩. Note that we require loads in 𝐻1(𝑐)
and not only in 𝐻1(). In Theorem 5.2 and Theorem 5.4 we will use the compact embedding

𝑐 𝑐
←←←←→  to obtain the desired strong convergence of loads in 𝐿1(), required in Theorem 4.11

and Theorem 4.12, for an otherwise only bounded sequence.

Existence of Optimal Controls

Clearly, the first step is to prove the existence of optimal controls. Before we do so, let us
define the solution operator of (EVI), which will become later in handy when we prove the
convergence of global minimizers.

Definition 5.1 (Solution operator of (EVI)). Due to Theorem 4.5, there exists for every 𝓁 ∈ 𝐻1(𝑐)∩(𝑧0;𝑀) a solution 𝑧 ∈ 𝐻1() of the state equation (EVI). Consequently, we may define the solution
operator  ∶ 𝐻1(𝑐) ∩(𝑧0;𝑀) ∋ 𝓁 → 𝑧 ∈ 𝐻1().

This operator will be frequently called control-to-state map.

With the definition above, problem (5.2) is equivalent to the reduced problem:

(5.2) ⟺

{
min 𝐽 ((𝓁),𝓁),
s.t. 𝓁 ∈ 𝐻1(𝑐) ∩(𝑧0;𝑀).

Theorem 5.2 (Existence of a global solution). There exists a global solution of (5.2).
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Proof. Based on Theorem 4.11, the proof follows the standard direct method of the calculus of
variations. First of all, since Ψ is bounded from below and Φ is coercive, every infimal sequence
of controls is bounded in𝐻1(𝑐) and thus admits a weakly converging subsequence (recall that
we assumed 𝑐 to be reflexive in Assumption ⟨5.iv⟩). Due to the compact embedding of 𝑐
in  , this sequence converges strongly in 𝐶() so that the weak limit belongs to (𝑧0;𝑀),
due the closeness of 𝑀 . Moreover, thanks to the weak convergence in 𝐻1() and the strong
convergence in 𝐶(), Theorem 4.11 gives weak convergence of the associated states in 𝐻1()
and shows that the limit is admissible. The weak lower semicontinuity of Ψ and Φ together
with  ↪  then implies the optimality of the weak limit.

It is obvious that in view of the nonlinear state equation, one cannot expect the optimal
solution to be unique. Note that, since 𝐷(𝐴) is closed by Assumption ⟨5.ii⟩, the choice 𝑀 =
𝐷(𝐴) is feasible.

Convergence of Global Minimizers

In Section 5.2 and Section 5.3 we will derive optimality conditions for a regularized optimal
control problem, that global minimizers of these regularized problems are related the global
minimizers of the original problem is the topic in the following. The regularized problems
read as follows ⎧⎪⎨⎪⎩

min 𝐽 (𝑧,𝓁),

s.t.
.
𝑧 = 𝐴𝑛(𝑅𝓁 −𝑄𝑧), 𝑧(0) = 𝑧0,

(𝑧,𝓁) ∈ 𝐻1() ×
(
𝐻1(𝑐) ∩(𝑧0;𝑀)

)
,

(5.3)

that is, the operator 𝐴 is exchanged by 𝐴𝑛, where the properties of 𝐴𝑛 are given in Assump-
tion ⟨5.1.ii⟩. Since 𝐴𝑛 is Lipschitz continuous, the equation

.
𝑧 = 𝐴𝑛(𝑅𝓁 −𝑄𝑧), 𝑧(0) = 𝑧0

admits a unique solution for every 𝓁 ∈ 𝐿2(), according to Theorem A.7. Similar to Defini-
tion 5.1, we denote the associated solution operator by

𝑛 ∶ 𝐿2() → 𝐻1(). (5.4)

Moreover, the solution operator associated with the Yosida approximation, i.e., the solution
operator of

.
𝑧 = 𝐴𝜆𝑛(𝑅𝓁 −𝑄𝑧), 𝑧(0) = 𝑧0, is denoted by

𝜆𝑛 ∶ 𝐿2() → 𝐻1(). (5.5)

Proposition 5.3 (Existence of optimal solutions of the regularized problems). Let 𝑛 ∈ ℕ, then
there exists a global solution of (5.3).

Proof. Let 𝓁1,𝓁2 ∈ 𝐿2() be arbitrary and define 𝑧𝑖 ∶= 𝑛(𝓁𝑖), 𝑖 = 1, 2. Then, due to the Lipschitz
continuity of 𝐴𝑛, we have for almost all 𝑡 ∈ [0, 𝑇 ]

‖ .
𝑧1(𝑡) −

.
𝑧2(𝑡)‖ = ‖𝐴𝑛(𝑅𝓁1(𝑡) −𝑄𝑧1(𝑡)) − 𝐴𝑛(𝑅𝓁2(𝑡) −𝑄𝑧2(𝑡))‖

≤ 𝑐
(‖𝑙1(𝑡) − 𝑙2(𝑡)‖ + ‖𝑧1(𝑡) − 𝑧2(𝑡)‖), (5.6)

which yields, according to Lemma A.8 Item (iii), the Lipschitz continuity of 𝑛. Using this
together with the fact that 𝑐 is compactly embedded into  , one can argue as in the proof of
Theorem 5.2 to obtain the existence of a global solution of (5.3) for all 𝑛 ∈ ℕ.
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Theorem 5.4 (Weak approximation of global minimizers). Let {𝓁𝑛}𝑛∈ℕ be a sequence of globally
optimal controls of (5.3). Then there exists a weak accumulation point and every weak accumulation
point is a global solution of (5.2).

Proof. Due to 𝑀 ⊂ 𝐷(𝐴), Proposition 4.8 gives 𝜆𝑛(𝓁1) → (𝓁1) in 𝐻1() so that Lemma 4.17

yields 𝑛(𝓁1) → (𝓁1) in 𝐻1() and thus

lim sup
𝑛→∞

Ψ(𝑛(𝓁𝑛),𝓁𝑛) + Φ(𝓁𝑛) = lim sup
𝑛→∞

𝐽 (𝑛(𝓁𝑛),𝓁𝑛) ≤ lim sup
𝑛→∞

𝐽 (𝑛(𝓁1),𝓁1) = 𝐽 ((𝓁1),𝓁1).

Hence, by virtue of the boundedness of Ψ from below and the coercivity of Φ, {𝓁𝑛} is bounded
and therefore admits a weak accumulation point in 𝐻1(𝑐).

Let us now assume that a given subsequence of {𝓁𝑛}𝑛∈ℕ, denoted by the same symbol for
simplicity, converges weakly to 𝓁 in 𝐻1(𝑐). Since 𝑐 is compactly embedded in  , we obtain
𝓁𝑛 → 𝓁 in 𝐶() and consequently, 𝓁 ∈ (𝑧0;𝑀). In addition, the strong convergence in 𝐶()
in combination with Theorem 4.12 and Lemma 4.17 yields weak convergence of the states, i.e.,
𝑛(𝓁𝑛) ⇀ (𝓁) in 𝐻1() and thus also in 𝐻1(). Now, let 𝓁 be a global solution of (5.2). We
can again use Proposition 4.8 and Lemma 4.17 to obtain 𝑛(𝓁) → (𝓁) in 𝐻1(). This, together
with the weak lower semicontinuity of Ψ and Φ, and the continuity of Ψ in the first argument,
implies

𝐽 ((𝓁),𝓁) = Ψ((𝓁),𝓁) + Φ(𝓁)

≤ lim inf
𝑛→∞

Ψ(𝑛(𝓁𝑛),𝓁𝑛) + Φ(𝓁𝑛)

≤ lim sup
𝑛→∞

𝐽 (𝑛(𝓁𝑛),𝓁𝑛) ≤ lim sup
𝑛→∞

𝐽 (𝑛(𝓁),𝓁) = 𝐽 ((𝓁),𝓁),
(5.7)

giving in turn the optimality of the weak limit.

Corollary 5.5 (Strong approximation of global minimizers). Suppose that Φ∶ 𝐻1(𝑐) → ℝ is such
that, if a sequence {𝓁𝑛}𝑛∈ℕ satisfies 𝓁𝑛 ⇀ 𝓁 in 𝐻1(𝑐) and Φ(𝓁𝑛) → Φ(𝓁), then 𝓁𝑛 → 𝓁 in 𝐻1(𝑐).
Then every weak accumulation point of a sequence of globally optimal controls of (5.3) is also a strong
one.

Moreover, if in addition, at least one of the following holds

(i) 𝐴 is a subdifferential of a convex, lower semicontinuous and proper functional 𝜙 (see Sec-
tion 3.2), that is 𝐴 = 𝜕𝜙, and 𝜙 is continuous on 𝑀 or

(ii) Ψ∶ 𝐻1() ×𝐻1(𝑐) → ℝ is such that, if sequences {𝑧𝑛}𝑛∈ℕ and {𝓁𝑛}𝑛∈ℕ satisfy 𝑧𝑛 ⇀ 𝑧 in
𝐻1() and 𝓁𝑛 → 𝓁 in 𝐻1(𝑐) and Ψ(𝑧𝑛,𝓁𝑛) → Ψ(𝑧,𝓁), then 𝑧𝑛 → 𝑧 in 𝐻1(),

then the associated sequence of states also converges strongly in 𝐻1().

Proof. Consider an arbitrary accumulation point 𝓁 of a sequence of global minimizers of (5.3),
i.e., 𝓁𝑛 ⇀ 𝓁 in 𝐻1(𝑐). From the previous proof, we know that then (5.7) holds, giving in turn

Ψ(𝑛(𝓁𝑛),𝓁𝑛) + Φ(𝓁𝑛) → Ψ((𝓁),𝓁) + Φ(𝓁).

Since 𝑛(𝓁𝑛) ⇀ (𝓁), as seen in the previous proof, and both, Ψ and Φ, are weakly lower
semicontinuous by assumption, this implies Φ(𝓁𝑛) → Φ(𝓁) and Ψ(𝑛(𝓁𝑛),𝓁𝑛) → Ψ((𝓁),𝓁). The
hypothesis on Φ thus yields 𝓁𝑛 → 𝓁 in 𝐻1(𝑐) so that 𝓁 is indeed a strong accumulation point
as claimed.

Due to 𝑐 ↪  , the strong convergence carries over to 𝐻1() and therefore, we deduce
from Theorem 4.12 that 𝜆𝑛(𝓁𝑛) → (𝓁) in 𝐻1(), provided that 𝐴 is a subdifferential and
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𝜙(𝑅𝓁𝑛(0) − 𝑄𝑧0) → 𝜙(𝑅𝓁(0) − 𝑄𝑧0) holds. If the additional requirements on Ψ are fulfilled, we
also obtain the strong convergence 𝜆𝑛(𝓁𝑛) → (𝓁) in 𝐻1(), since we already showed 𝓁𝑛 → 𝓁

in 𝐻1(𝑐). Thus, in both cases, Lemma 4.17 gives 𝑛(𝓁𝑛) → (𝓁) in 𝐻1(), which is the second
assertion.

Remark 5.6 (Approximation of local minimizers). By standard localization arguments, the above
convergence analysis can be adapted to approximate local minimizers. Following the lines of, for in-
stance, [20], one can show that, under the assumptions of Corollary 5.5, every strict local minimum
of (5.2) can be approximated by a sequence of local minima of (5.3). A local minimizer 𝓁 of (5.2),
which is not necessarily strict, can be approximated by replacing the objective in (5.3) by 𝐽 (𝑧, 𝑙) ∶=
𝐽 (𝑧, 𝑙)+‖𝓁−𝓁‖2

𝐻1(𝑐 ), which is of course only of theoretical interest, cf. e.g. [9]. Since these results and
their proofs are standard, we omitted them.

5.2 First-Order Optimality Conditions
Due to the results from the last section, it is reasonable to “exchange” (5.2) with (5.3). To this
end, we consider ⎧⎪⎨⎪⎩

min 𝐽 (𝑧,𝓁),

s.t.
.
𝑧 = 𝐴𝑠(𝑅𝓁 −𝑄𝑧), 𝑧(0) = 𝑧0,

(𝑧,𝓁) ∈ 𝐻1() ×
(
𝐻1(𝑐) ∩

)
,

(5.8)

where 𝐴𝑠 is supposed to be equal to 𝐴𝑛 for one 𝑛 ∈ ℕ, however, to derive optimality conditions
for (5.8), this is not important, we only need Assumption ⟨5.2.iv⟩.

Let us shortly comment on the Assumptions ⟨5.2.i⟩ to ⟨5.2.v⟩. At first it is well known that
a norm gap is often indispensable to ensure Fréchet-differentiability, see Lemma 3.19 and in
particular [44, Section 3.1]. Since we will use 𝜕𝐼𝜆,𝑠 (see (3.11)) in our applications, this will be
the case therein, see Section 6.2, Section 9.2 (cf. Example 9.16) and Section 12.3, which is the
reason for considering the space  in context of the Fréchet-differentiability of 𝐴𝑠. Moreover,
since we are interested in deriving second order optimality conditions, we will need a second
norm gap (cf. Remark 3.20), which is the purpose of the space . Clearly, then we also need to
solve the regularized equation in these spaces so that Assumption ⟨5.2.ii⟩ becomes necessary.
The additional requirements in Assumption ⟨5.2.iv⟩ for 𝐴𝑠 are technical details, which we will
use for the (twice) differentiability in Theorem 5.9 and Proposition 5.17. Finally, in Assump-
tion ⟨5.2.iii⟩ we reduce the set of admissible loads to , that is, when we assume for a moment
that 𝑅 is injective (which is the case in our applications, see Definition 2.7, Definition 7.5, Def-
inition 8.5 and Proposition 12.17), we consider loads which are zero at the initial time 𝑡 = 0.
Thanks to this reduction the set of admissible controls is a linear subspace of 𝐻1(𝑐) and thus
itself a Hilbert space. We note that one could allow for additional control constraints in our
analysis such as, for example, box constraints over the whole time interval or vanishing final
loading, i.e., 𝓁(𝑇 ) = 0, which is certainly meaningful for many applications. However, since the
differentiability of the control-to-state map is the essential issue in the derivation of optimality
conditions and additional control constraints can be incorporated by standard argument, we
choose to omit them to keep the discussion more concise.

Differentiability of the Regularized Control-to-State Mapping

Theorem A.7 immediately implies that the state equation in (5.8), i.e.,
.
𝑧 = 𝐴𝑠(𝑅𝓁 −𝑄𝑧), 𝑧(0) = 𝑧0, (EVI𝑠)
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admits a unique solution 𝑧 ∈ 𝐻1() for every right hand side 𝓁 ∈ 𝐿2(), provided that 𝑧0 ∈  .
Therefore, similar to above, we can define the associated solution operator

𝑠 ∶ 𝐿2() → 𝐻1() (5.9)

(for fixed 𝑧0 ∈ ). We will frequently consider this operator with different domains, e.g. 𝐻1(),
and ranges, in particular 𝐻1(). With a little abuse of notation, these operators are denoted by
the same symbol.

Lemma 5.7 (Lipschitz continuity of 𝑠). The solution operator 𝑠 is globally Lipschitz continuous
from 𝐿2() to 𝐻1().

Proof. This can be proven completely analogously to the Lipschitz continuity of 𝑛 from 𝐿2()
to 𝐻1() in the proof of Proposition 5.3.

Lemma 5.8 (Existence of the derivative of 𝑆𝑠). Let 𝑦 ∈ 𝐿2() and 𝑤 ∈ 𝐿2() be given. Then there
exists a unique solution 𝜂 ∈ 𝐻1() of

.
𝜂 = 𝐴′

𝑠(𝑦)(𝑤 −𝑄𝜂), 𝜂(0) = 0. (5.10)

Proof. Let us define

𝐵∶ [0, 𝑇 ] × → , (𝑡, 𝜂) ↦ 𝐴′
𝑠(𝑦(𝑡))(𝑤(𝑡) −𝑄𝜂)

so that (5.10) becomes
.
𝜂(𝑡) = 𝐵(𝑡, 𝜂(𝑡)) a.e. in [0, 𝑇 ], 𝜂(0) = 0. Now, given 𝜂 ∈ 𝐿2(), [0, 𝑇 ] ∋

𝑡 ↦ 𝐵(𝑡, 𝜂(𝑡)) ∈  is Bochner measurable, which can be seen as follows: At first, it is Bochner
measurable as a pointwise limit of Bochner measurable functions when the direction 𝑤 − 𝑄𝜂
is an element of 𝐿2(), thanks to the differentiability of 𝐴𝑠. When only 𝑤 − 𝑄𝜂 ∈ 𝐿2(), then
we can approximate with a sequence contained in 𝐿2() (note that 𝐿2() is dense in 𝐿2()
due to Assumption ⟨5.2.i⟩). The measurability follows then from the fact that the function is a
pointwise limit of measurable functions.

Furthermore, Assumption ⟨5.2.iv⟩ implies for almost all 𝑡 ∈ [0, 𝑇 ] and all 𝜂1, 𝜂2 ∈  that‖𝐵(𝑡, 𝜂1) − 𝐵(𝑡, 𝜂2)‖ ≤ 𝐶 ‖𝜂1 − 𝜂2‖. Therefore, we can apply once again Theorem A.7, which
gives the assertion.

With the above result at hand we can proceed with the differentiability of 𝑠. The prove
of the differentiability is rather technical, but also uses essentially only Assumption ⟨5.2.iv⟩,
Gronwall’s inequality and Lebesgues dominated convergence theorem.

Theorem 5.9 (Fréchet-differentiability of 𝑠). The solution operator 𝑠 is Fréchet differentiable from
𝐻1() to𝐻1(). Its directional derivative at 𝓁 ∈ 𝐻1() in direction ℎ ∈ 𝐻1() is given by the unique
solution of

.
𝜂 = 𝐴′

𝑠(𝑅𝓁 −𝑄𝑧)(𝑅ℎ −𝑄𝜂), 𝜂(0) = 0, (5.11)

where 𝑧 ∶= 𝑠(𝓁) ∈ 𝐻1(). Moreover, there exists a constant 𝐶 such that ‖ ′
𝑠(𝓁)ℎ‖𝐻1() ≤ 𝐶‖ℎ‖𝐿2()

holds for all 𝓁, ℎ ∈ 𝐻1().

Proof. Let 𝓁, ℎ ∈ 𝐻1() be arbitrary and abbreviate 𝑧ℎ ∶= 𝑠(𝓁 + ℎ). Thanks to Lemma 5.8,
there exists a unique solution 𝜂 ∈ 𝐻1() of (5.11). Clearly, the solution operator of (5.11) is
linear with respect to ℎ. Moreover, Assumption ⟨5.2.iv⟩ implies for almost all 𝑡 ∈ [0, 𝑇 ] that

‖ .
𝜂(𝑡)‖ ≤ 𝐶

(‖ℎ(𝑡)‖ + ‖𝜂(𝑡)‖),
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so that Lemma A.8 Item (iii) gives ‖𝜂‖𝐻1() ≤ 𝐶‖ℎ‖𝐿2(), i.e., the continuity of the solution
operator of (5.11). This also proves the asserted inequality (after having proved that 𝜂 =  ′

𝑠(𝓁)ℎ,
which we do next).

It remains to verify the remainder term property. For this purpose, let us denote the remain-
der term of 𝐴𝑠 by 𝑟1, i.e.,

𝐴𝑠(𝑦 + 𝜁 ) = 𝐴𝑠(𝑦) + 𝐴′
𝑠(𝑦)𝜁 + 𝑟1(𝑦; 𝜁 ) with

‖𝑟1(𝑦; 𝜁 )‖‖𝜁‖ → 0 as 𝜁 → 0 in  .
Moreover, we abbreviate

𝑦 ∶= 𝑅𝓁 −𝑄𝑧 ∈ 𝐻1() and 𝜁 ∶= 𝑅ℎ −𝑄(𝑧ℎ − 𝑧) ∈ 𝐻1().

Then, in view of the definition of 𝑧, 𝑧ℎ, and 𝜂 (as solution of (5.11)), we find for almost all
𝑡 ∈ [0, 𝑇 ]

‖ .
𝑧ℎ(𝑡) −

.
𝑧(𝑡) −

.
𝜂(𝑡)‖

= ‖𝐴𝑠(𝑦(𝑡) + 𝜁 (𝑡)) − 𝐴𝑠(𝑦(𝑡)) − 𝐴′
𝑠(𝑦(𝑡))(𝜁 (𝑡) +𝑄(𝑧ℎ(𝑡) − 𝑧(𝑡) − 𝜂(𝑡)))‖≤ ‖𝐴′

𝑠(𝑦(𝑡))𝑄(𝑧ℎ(𝑡) − 𝑧(𝑡) − 𝜂(𝑡))‖ + ‖𝑟1(𝑦(𝑡); 𝜁 (𝑡))‖.
Hence, Assumption ⟨5.2.iv⟩ and Lemma A.8 Item (iii) yield

‖𝑧ℎ − 𝑧 − 𝜂‖𝐻1() ≤ 𝐶‖𝑟1(𝑦; 𝜁 )‖𝐿2() (5.12)

(note that 𝑟1(𝑦; 𝜁 ) ∈ 𝐿2() by its definition as remainder term). Furthermore, thanks to
Lemma 5.7 and the definition of 𝜁 , we obtain

‖𝜁‖𝐻1() ≤ 𝐶‖ℎ‖𝐻1() (5.13)

such that ℎ → 0 in 𝐻1() implies 𝜁 → 0 in 𝐻1(). The continuous embedding 𝐻1() ↪ 𝐶()
and the remainder term property of 𝑟1 thus give for almost all 𝑡 ∈ [0, 𝑇 ] that‖𝑟1(𝑦(𝑡); 𝜁 (𝑡))‖‖ℎ‖𝐻1()

≤ 𝐶
‖𝑟1(𝑦(𝑡); 𝜁 (𝑡))‖‖𝜁 (𝑡)‖ ‖𝜁‖𝐻1()‖ℎ‖𝐻1()

→ 0 (5.14)

as ℎ → 0 in 𝐻1(). Moreover, the Lipschitz continuity of 𝐴𝑠 ∶  →  together with Assump-
tion ⟨5.2.iv⟩,  ↪ , and (5.13) yield for almost all 𝑡 ∈ [0, 𝑇 ] that‖𝑟1(𝑦(𝑡); 𝜁 (𝑡))‖‖ℎ‖𝐻1()

=
‖(𝐴𝑠(𝑦 + 𝜁 ) − 𝐴𝑠(𝑦) − 𝐴′

𝑠(𝑦)𝜁 )(𝑡)‖‖ℎ‖𝐻1()
≤ 𝐶

‖𝜁 (𝑡)‖‖ℎ‖𝐻1()
≤ 𝐶.

In combination with (5.14) and Lebesgue’s dominated convergence theorem, this yields‖𝑟1(𝑦; 𝜁 )‖𝐿2()‖ℎ‖𝐻1()
→ 0

as ℎ→ 0 in 𝐻1(), which, in view of (5.12) finishes the proof.

One might wonder why we did not employ the implicit function theorem to show the differ-
entiability of 𝑠. The reason is that𝐻 ∶ 𝑧↦

.
𝑧−𝐴𝑠(𝑅𝓁−𝑄𝑧) is Fréchet-differentiable from𝐻1()

to 𝐿2(), but the derivative 𝐻 ′(𝑧) is not continuously invertible in these spaces, cf. Lemma 5.8.
On the other hand, due to the differentiability properties of 𝐴𝑠 arising from the norm gap (see
the discussion at the beginning of this section), 𝐻 is not differentiable from 𝐻1() to 𝐿2(),
which would be the right spaces for the existence result from Lemma 5.8. The same observa-
tion for a more abstract setting was already made in [106].
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Adjoint Equation

A typical approach to make the purely primal necessary optimality conditions (see
Lemma 5.10 below) more accessible is to use the so called adjoint state. We refer for instance to
TRÖLTZSCH [100, Section 1.4.4, 2.13.3] or HINZE ET AL. [54, Section 1.6.2].

Regarding the purely primal necessary optimality conditions, the chain rule immediately
gives that the reduced objective function defined by

𝐹 ∶ 𝐻1(𝑐) → ℝ, 𝓁 ↦ 𝐽 (𝑠(𝓁),𝓁) (5.15)

is Fréchet-differentiable, too. Thus, by standard arguments, one derives the following

Lemma 5.10 (Purely primal necessary optimality conditions). If a control 𝓁 ∈ 𝐻1(𝑐) ∩ with
associated state 𝑧 = 𝑠(𝓁) is locally optimal for (5.8), then

𝐹 ′(𝓁)ℎ = 𝐽 ′
𝑧(𝑧,𝓁) ′

𝑠(𝓁)ℎ + 𝐽 ′
𝓁(𝑧,𝓁)ℎ = 0, (5.16)

for all ℎ ∈ 𝐻1(𝑐) ∩.

Next, to reformulate (5.16) in terms of a KKT system, we introduce an adjoint equation, which
formally reads

.
𝜑 = 𝑄𝐴′

𝑠(𝑦)
∗𝜑 + 𝑣, 𝜑(𝑇 ) = 0. (5.17)

Depending on the regularity of the right hand side 𝑣, we define different notions of solutions:

Definition 5.11 (Weak solution of an ODE). Let 𝑦 ∈ 𝐿2() and 𝑣 ∈ 𝐻1()∗ be given. A function
𝜑 ∈ 𝐿2() is called weak solution of (5.17), if

−
(
𝜑,

.
𝜂
)
𝐿2()

=
(
𝜑,𝐴′

𝑠(𝑦)𝑄𝜂
)
𝐿2() + 𝑣(𝜂) (5.18)

holds for all 𝜂 ∈ 𝐻1() with 𝜂(0) = 0. Note that the measurability of 𝐴′
𝑠(𝑦)𝑄𝜂 can be shown as in

Lemma 5.8.
If 𝑣 takes the form

𝑣(𝜂) =
(
𝑣1, 𝜂

)
𝐿2() +

(
𝑣2, 𝜂(𝑇 )

)
 (5.19)

with some 𝑣1 ∈ 𝐿2() and 𝑣2 ∈ , then we call 𝜑 ∈ 𝐻1() strong solution of (5.17), if, for almost
all 𝑡 ∈ [0, 𝑇 ],

.
𝜑(𝑡) =

(
𝑄𝐴′

𝑠(𝑦)
∗𝜑

)
(𝑡) + 𝑣1(𝑡), 𝜑(𝑇 ) = −𝑣2. (5.20)

Before formulating the KKT system in Theorem 5.13 with the help of the adjoint state as
the solution of the adjoint equation, we first prove the existence of a solution of the adjoint
equation in

Lemma 5.12 (Existence of weak solutions). Let 𝑦 ∈ 𝐿2() and 𝑣 ∈ 𝐻1()∗. Then there is a unique
weak solution of (5.17), which is given by 𝜑 ∶= −𝑣◦𝑦 ∈ 𝐿2()∗ = 𝐿2(), where 𝑦 ∶ 𝐿2() →
𝐻1() is the solution operator of

.
𝜂 = −𝐴′

𝑠(𝑦)𝑄𝜂 +𝑤, 𝜂(0) = 0, (5.21)

that is, 𝑦(𝑤) = 𝜂.
Moreover, if 𝑣 is of the form (5.19), then there exists a unique strong solution of (5.17), and the weak

and the strong solution coincide.
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Proof. At first note that the existence of a solution of (5.21) can be proven exactly as in
Lemma 5.8. Let 𝜂 ∈ 𝐻1() with 𝜂(0) = 0 be arbitrary and define 𝑤 ∶=

.
𝜂 + 𝐴′

𝑠(𝑦)𝑄𝜂 ∈ 𝐿2(),
hence, 𝜂 = 𝑦(𝑤). By the definition of 𝑤 and 𝜑, it follows that( .

𝜂 + 𝐴′
𝑠(𝑦)𝑄𝜂, 𝜑

)
𝐿2()

= (𝜑,𝑤)𝐿2() = −𝑣(𝑦(𝑤)) = −𝑣(𝜂),

i.e., (5.18) holds. Since 𝜂 was arbitrary, we see that 𝜑 is a weak solution of (5.17).
To prove uniqueness, let 𝜑̃ ∈ 𝐿2() be another weak solution. Then, we choose an arbitrary

𝑤 ∈ 𝐿2() and set 𝜂 ∶= 𝑦(𝑤) to see that

(𝜑,𝑤)𝐿2() = −𝑣(𝜂) =
(
𝜑̃,

.
𝜂 + 𝐴′

𝑠(𝑦)𝑄𝜂
)
𝐿2()

= (𝜑̃, 𝑤)𝐿2() ,

and therefore 𝜑 = 𝜑̃.
Now we turn to the strong solution and suppose that 𝑣 is given as in (5.19). Existence

and uniqueness of a strong solution follows from Theorem A.7, as we will elaborate in the
following. Let us consider the affine-linear operator

𝐵∶ [0, 𝑇 ] × → , 𝐵(𝑡, 𝜑) = 𝑄𝐴′
𝑠(𝑦(𝑡))

∗𝜑 + 𝑣1(𝑡).

Since  is separable by Assumption ⟨5.2.i⟩ (this is the only time we need the separability of ),
we can apply [41, Chap. IV, Thm. 1.4] to obtain that, for every 𝜑 ∈ 𝐿2(), the mapping [0, 𝑇 ] ↦
𝐵(𝑡, 𝜑(𝑡)) is Bochner measurable (note that the measurability of [0, 𝑇 ] ∋ 𝑡 ↦ 𝐴′

𝑠(𝑦(𝑡))𝑄ℎ ∈ 
for ℎ ∈  follows as in Lemma 5.8). Moreover, since ‖𝐴′

𝑠(𝑦)
∗‖𝐿(;) = ‖𝐴′

𝑠(𝑦)‖𝐿(;), Assump-
tion ⟨5.2.iv⟩ yields that 𝐵 is also Lipschitz continuous w.r.t. the second variable for almost all
𝑡 ∈ [0, 𝑇 ]. Therefore, we can apply Theorem A.7 to establish the existence of a unique strong
solution.

Finally, if we test (5.20) with an arbitrary 𝜂 ∈ 𝐻1() with 𝜂(0) = 0 and integrate by parts,
then we see that every strong solution is also a weak solution. Since the latter one is unique, as
seen above, we deduce that weak and strong solution coincide.

Theorem 5.13 (KKT-Conditions for (5.8)). Let 𝓁 ∈ 𝐻1(𝑐) ∩  be a locally optimal control for
(5.8) with associated state 𝑧 = 𝑠(𝓁). Then there exists a unique adjoint state 𝜑 ∈ 𝐿2() such that the
following optimality system is fulfilled

.
𝑧 = 𝐴𝑠(𝑅𝓁 −𝑄𝑧), 𝑧(0) = 𝑧0, (5.22a)

−
(
𝜑,

.
𝜂
)
𝐿2()

=
(
𝜑,𝐴′

𝑠(𝑅𝓁 −𝑄𝑧)𝑄𝜂
)
𝐿2()

+ 𝐽 ′
𝑧(𝑧,𝓁)𝜂 ∀𝜂 ∈ 𝐻1()∶ 𝜂(0) = 0 (5.22b)(

𝜑,𝐴′
𝑠(𝑅𝓁 −𝑄𝑧)𝑅ℎ

)
𝐿2()

= 𝐽 ′
𝓁(𝑧,𝓁)ℎ ∀ℎ ∈ 𝐻1(𝑐) ∩. (5.22c)

If 𝐽 enjoys extra regularity, namely

𝐽 (𝑧,𝓁) = Ψ1(𝑧,𝓁) + Ψ2(𝑧(𝑇 ),𝓁(𝑇 )) + Φ(𝓁) (5.23)

with two Fréchet-differentiable functionals Ψ1 ∶ 𝐿2() × 𝐻1(𝑐) → ℝ and Ψ2 ∶  × 𝑐 → ℝ, then
𝜑 ∈ 𝐻1() is a strong solution of

.
𝜑(𝑡) =

(
𝑄𝐴′

𝑠(𝑅𝓁 −𝑄𝑧)∗𝜑
)
(𝑡) + Ψ′

1,𝑧(𝑧,𝓁),

𝜑(𝑇 ) = −Ψ′
2,𝑧(𝑧(𝑇 ),𝓁(𝑇 )).

(5.24)

48



Chapter 5 Optimal Control

Proof. Since 𝐽 ′
𝑧(𝑧,𝓁) ∈ 𝐻1()∗ ↪ 𝐻1()∗, Lemma 5.12 gives the existence of a unique solution

of (5.22b). Now, let ℎ ∈ 𝐻1(𝑐) ∩  be arbitrary and define 𝜂 ∶=  ′
𝑠(𝓁)ℎ ∈ 𝐻1() ⊂ 𝐻1().

The weak form of the adjoint equation then implies(
𝜑,𝐴′

𝑠(𝑅𝓁 −𝑄𝑧)𝑅ℎ
)
𝐿2()

=
(
𝜑,

.
𝜂 + 𝐴′

𝑠(𝑅𝓁 −𝑄𝑧)𝑄𝜂
)
𝐿2()

= −𝐽 ′
𝑧(𝑠(𝓁),𝓁)𝜂. (5.25)

This together with Lemma 5.10 shows that (𝑧,𝓁, 𝜑) fulfills the optimality system (5.22). If 𝐽 is
of the form in (5.23), then Lemma 5.12 implies that the weak solution of the adjoint equation is
in fact a strong solution and solves (5.24).

As the following corollary shows, the existence of an adjoint state is not only necessary for
(5.16), but also sufficient.

Corollary 5.14 (KKT equivalence). The function 𝓁 ∈ 𝐻1(𝑐) ∩ with associated state 𝑧 = 𝑠(𝓁)
fulfills (5.16) if and only if there exists an adjoint state 𝜑 ∈ 𝐿2() such that (𝑧,𝓁, 𝜑) satisfies the
optimality system (5.22).

Proof. The proof of Theorem 5.13 already shows that (5.16) implies the optimality system in
(5.22).

To prove the reverse implication, assume that (𝑧,𝓁, 𝜑) fulfills the optimality system (5.22).
Then choose an arbitrary ℎ ∈ 𝐻1(), define 𝜂 ∶=  ′

𝑠(𝓁)ℎ, and use the fact that 𝜑 is the weak
solution of (5.22b) to obtain (5.25). This together with (5.22c) finally give (5.16).

Example 5.15 (Specified objective function). Under suitable additional assumptions, it is possible
to further simplify the gradient equation (5.22c). For this purpose assume that 𝑅 is injective (so that = {𝓁 ∈ 𝐻1(0, 𝑇 ,)∶ 𝓁(0) = 0}), 𝑐 is a Hilbert space, and

𝐽 (𝑧,𝓁) = Ψ1(𝑧,𝓁) + Ψ2(𝑧(𝑇 ),𝓁(𝑇 )) +
𝛼
2
‖ .
𝓁‖2𝐿2(𝑐 ), (5.26)

where Ψ1 ∶ 𝐻1() × 𝐿2(0, 𝑇 ;𝑐) → ℝ and Ψ2 ∶  × 𝑐 → ℝ are Fréchet-differentiable and 𝛼 > 0.
This type of objective will also appear in the application problem in Chapter 6. Then (5.22c) becomes

𝛼(𝜕𝑡𝓁, 𝜕𝑡ℎ)𝐿2(𝑐 ) − ∫
𝑇

0
⟨𝑅∗𝐴′

𝑠(𝑅𝓁 −𝑄𝑧)∗𝜑, ℎ⟩∗,𝑑𝑡

+ ∫
𝑇

0
Ψ′

1,𝓁(𝑧,𝓁)ℎ𝑑𝑡 + Ψ′
2,𝓁(𝑧(𝑇 ),𝓁(𝑇 ))ℎ(𝑇 ) = 0

∀ℎ ∈ 𝐻1(𝑐) with ℎ(0) = 0,

(5.27)

where we identified 𝜕𝓁Ψ1(𝑧,𝓁) ∈ (𝐿2(𝑐))∗ = 𝐿2(𝑐) (note that 𝑐 as a Hilbert space satisfies the
Radon-Nikodým-property). Since 𝑐 ↪  , we may identify 𝑅∗𝐴′

𝑠(𝑅𝓁 − 𝑄𝑧)∗𝜑 with an element of
𝐿2(𝑐), too, which we denote by the same symbol. Then, if we choose ℎ(𝑡) = 𝜓(𝑡) 𝜉 with 𝜓 ∈ 𝐶∞

𝑐 [0, 𝑇 ]
and 𝜉 ∈ 𝑐 arbitrary, we obtain(

− ∫
𝑇

0

[
𝛼𝜕𝑡𝜓𝜕𝑡𝓁 + 𝑅∗𝐴′

𝑠(𝑅𝓁 −𝑄𝑧)∗𝜑𝜓 − Ψ′
1,𝓁(𝑧,𝓁)𝜓

]
𝑑𝑡, 𝜉

)
𝑐 = 0.

Now, since 𝜉 ∈ 𝑐 was arbitrary, we find that the second distributional time derivative of 𝓁 is a regular
distribution in 𝐿2(𝑐), i.e., 𝓁 ∈ 𝐻2(0, 𝑇 ;𝑐), satisfying for almost all 𝑡 ∈ [0, 𝑇 ]

𝛼𝜕2𝑡 𝓁(𝑡) + 𝑅
∗𝐴′

𝑠
(
𝑅𝓁(𝑡) −𝑄𝑧(𝑡)

)∗𝜑(𝑡) = Ψ′
1,𝓁(𝑧,𝓁)(𝑡) in 𝑐 . (5.28)
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Since 𝑐 is supposed to be a Hilbert space, we can apply integration by parts to (5.27). Together with
𝓁 ∈  = {𝓁 ∈ 𝐻1() ∶ 𝓁(0) = 0} and (5.28), this implies the following boundary conditions:

𝓁(0) = 0, 𝛼𝜕𝑡𝓁(𝑇 ) = −Ψ′
2,𝓁(𝑧(𝑇 ),𝓁(𝑇 )), (5.29)

where we again identified 𝜕𝓁Ψ2(𝑧(𝑇 ),𝓁(𝑇 )) ∈ ∗
𝑐 with its Riesz representative. In summary, we have

thus seen that the gradient equation in (5.22c) becomes an operator boundary value problem in 𝑐 ,
namely (5.28)–(5.29).

5.3 Second-Order Sufficient Conditions
Having derived first order optimality conditions in Theorem 5.13, we want to go further and
strive for second order sufficient conditions. The approach in this section is analog to the one
in the last section, we first tend to the Lipschitz continuity and the differentiability of  ′

𝑠 and
then turn to the desired optimality conditions.

Lemma 5.16 (Lipschitz continuity of  ′
𝑠). The derivative  ′

𝑠 is Lipschitz continuous from 𝐻1() to
𝐿(𝐻1();𝐻1()).

Proof. Let 𝓁1,𝓁2, ℎ ∈ 𝐻1() be arbitrary and abbreviate

𝑧𝑖 ∶= 𝑠(𝓁𝑖), 𝜂𝑖 ∶=  ′
𝑠(𝓁𝑖)ℎ, and 𝑦𝑖 ∶= 𝑅𝓁𝑖 −𝑄𝑧𝑖, 𝑖 = 1, 2.

Using the first Lipschitz-assumption in Assumption ⟨5.3.ii⟩, we deduce for almost all 𝑡 ∈ [0, 𝑇 ]
that ‖ .

𝜂1(𝑡) −
.
𝜂2(𝑡)‖

= ‖𝐴′
𝑠(𝑦1(𝑡))(𝑅ℎ(𝑡) −𝑄𝜂1(𝑡)) − 𝐴

′
𝑠(𝑦2(𝑡))(𝑅ℎ(𝑡) −𝑄𝜂2(𝑡))‖

= ‖(𝐴′
𝑠(𝑦1(𝑡)) − 𝐴

′
𝑠(𝑦2(𝑡))

)
(𝑅ℎ(𝑡) −𝑄𝜂1(𝑡)) + 𝐴′

𝑠(𝑦2(𝑡))𝑄(𝜂1(𝑡) − 𝜂2(𝑡))‖≤ 𝐶
(‖𝑦1(𝑡) − 𝑦2(𝑡)‖𝑌 ‖𝑅ℎ(𝑡) −𝑄𝜂1(𝑡)‖ + ‖𝜂1(𝑡) − 𝜂2(𝑡)‖).

Lemma A.8 together with the definition of 𝑦1 and 𝑦2 yields‖𝜂1 − 𝜂2‖𝐻1() ≤ 𝐶‖𝑅(𝓁1 − 𝓁2) −𝑄(𝑧1 − 𝑧2)‖𝐿2()‖𝑅ℎ −𝑄𝜂1‖𝐻1()

≤ 𝐶‖𝓁1 − 𝓁2‖𝐿2()‖ℎ‖𝐻1(),

where we used the continuous embedding 𝐻1() ↪ 𝐶() (see [104, Theorem 3.1.41]),
Lemma 5.7 and the estimate in Theorem 5.9.

The proof of the following proposition is analog to the one of Theorem 5.9. As it was already
the case for Theorem 5.9, the proof is rather technical and uses only fundamental mathematical
concepts such as Gronwall’s inequality and Lebesgues dominated convergence theorem.

Proposition 5.17 (Second derivative of the solution operator). The solution operator 𝑠 ∶ 𝐻1() →
𝐻1() is twice Fréchet differentiable. Given 𝓁, ℎ1, ℎ2 ∈ 𝐻1(), its second derivative  ′′

𝑠 (𝓁)[ℎ1, ℎ2] ∈
𝐻1() is given by the unique solution of

.
𝜉 = 𝐴′′

𝑠 (𝑅𝓁 −𝑄𝑧)[𝑅ℎ1 −𝑄𝜂1, 𝑅ℎ2 −𝑄𝜂2] − 𝐴′
𝑠(𝑅𝓁 −𝑄𝑧)𝑄𝜉, 𝜉(0) = 0, (5.30)

where 𝑧 ∶= 𝑠(𝓁) ∈ 𝐻1() and 𝜂𝑖 ∶=  ′
𝑠(𝓁)ℎ𝑖 ∈ 𝐻1(), 𝑖 = 1, 2.

Moreover, there exists a constant 𝐶 such that‖ ′′
𝑠 (𝓁)[ℎ1, ℎ2]‖𝐻1() ≤ 𝐶‖ℎ1‖𝐻1()‖ℎ2‖𝐻1() (5.31)

for all 𝓁, ℎ1, ℎ2 ∈ 𝐻1().
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Proof. Let 𝓁, ℎ1, ℎ2 ∈ 𝐻1() be arbitrary and define 𝑧 ∶= 𝑠(𝓁), 𝑧1 ∶= 𝑠(𝓁 + ℎ1), 𝜂𝑖 ∶=  ′
𝑠(𝓁)ℎ𝑖 ∈

𝐻1(), 𝑖 ∈ {1, 2}, and 𝜂1,2 ∶=  ′
𝑠(𝓁 + ℎ1)ℎ2.

We first address the existence of solutions to (5.30). We argue similarly to Lemma 5.8 and
set

𝑤∶ [0, 𝑇 ] →  , 𝑡 ↦ 𝐴′′
𝑠 (𝑅𝓁(𝑡) −𝑄𝑧(𝑡))[𝑅ℎ1(𝑡) −𝑄𝜂1(𝑡), 𝑅ℎ2(𝑡) −𝑄𝜂2(𝑡)].

From the estimate in Assumption ⟨5.3.iii⟩ it follows that

‖𝑤(𝑡)‖ ≤ 𝐶‖𝑅ℎ1(𝑡) −𝑄𝜂1(𝑡)‖‖𝑅ℎ2(𝑡) −𝑄𝜂2(𝑡)‖,
and, since 𝑤 is Bochner measurable, which can be shown as in Lemma 5.8, we obtain 𝑤 ∈
𝐿2(). Since 𝐴′

𝑠(𝑦) is assumed to be bounded in  by Assumption ⟨5.3.ii⟩, we can now follow
the proof of Lemma 5.8 (with  instead of ) to deduce the existence of a unique solution
𝜉 ∈ 𝐻1() of (5.30). The (bi-)linearity of the associated solution operator w.r.t. ℎ1 and ℎ2 is
straightforward to see. For its continuity, we calculate

‖ .
𝜉(𝑡)‖ ≤ 𝐶‖𝑅ℎ1(𝑡) −𝑄𝜂1(𝑡)‖‖𝑅ℎ2(𝑡) −𝑄𝜂2(𝑡)‖ + 𝐶‖𝜉(𝑡)‖

so that Lemma A.8, the continuous embedding 𝐻1() ↪ 𝐶() (see [104, Theorem 3.1.41]) and
the estimate in Theorem 5.9 give

‖𝜉‖𝐻1() ≤ 𝐶‖ ‖𝑅ℎ1 −𝑄𝜂1‖‖𝑅ℎ2 −𝑄𝜂2‖ ‖𝐿2(0,𝑇 ;ℝ)

≤ 𝐶‖𝑅ℎ1 −𝑄𝜂1‖𝐻1()‖𝑅ℎ2 −𝑄𝜂2‖𝐻1()

≤ 𝐶‖ℎ1‖𝐻1()‖ℎ2‖𝐻1().

This shows also (5.31) (after having proved that 𝜉 =  ′′
𝑠 (𝓁)[ℎ1, ℎ2]).

It only remains to prove the remainder term property. To this end, we define

𝑦 ∶= 𝑅𝓁 −𝑄𝑧, 𝜁 ∶= 𝑅ℎ1 −𝑄(𝑧1 − 𝑧).

Then, the equations for 𝜂1,2, 𝜂2, and 𝜉 lead to

.
𝜂1,2 −

.
𝜂2 −

.
𝜉 = 𝐴′

𝑠(𝑦 + 𝜁 )(𝑅ℎ2 −𝑄𝜂1,2) − 𝐴
′
𝑠(𝑦)(𝑅ℎ2 −𝑄𝜂2)

− 𝐴′′
𝑠 (𝑦)[𝑅ℎ1 −𝑄𝜂1, 𝑅ℎ2 −𝑄𝜂2] + 𝐴

′
𝑠(𝑦)𝑄𝜉

=
(
𝐴′
𝑠(𝑦 + 𝜁 ) − 𝐴

′
𝑠(𝑦)

)
(𝑅ℎ2 −𝑄𝜂1,2)

− 𝐴′′
𝑠 (𝑦)[𝑅ℎ1 −𝑄𝜂1, 𝑅ℎ2 −𝑄𝜂2] − 𝐴

′
𝑠(𝑦)𝑄(𝜂1,2 − 𝜂2 − 𝜉)

= 𝐴′′
𝑠 (𝑦)[𝜁, 𝑅ℎ2 −𝑄𝜂1,2] + 𝑟2(𝑦; 𝜁 )(𝑅ℎ2 −𝑄𝜂1,2)
− 𝐴′′

𝑠 (𝑦)[𝑅ℎ1 −𝑄𝜂1, 𝑅ℎ2 −𝑄𝜂2] − 𝐴
′
𝑠(𝑦)𝑄(𝜂1,2 − 𝜂2 − 𝜉)

= 𝐴′′
𝑠 (𝑦)[𝜁,𝑄(𝜂2 − 𝜂1,2)] − 𝐴

′′
𝑠 (𝑦)[𝑄(𝑧1 − 𝑧 − 𝜂1), 𝑅ℎ2 −𝑄𝜂2]

+ 𝑟2(𝑦; 𝜁 )(𝑅ℎ2 −𝑄𝜂1,2) − 𝐴′
𝑠(𝑦)𝑄(𝜂1,2 − 𝜂2 − 𝜉),

where 𝑟2(𝑦; 𝜁 ) ∶= 𝐴′
𝑠(𝑦+𝜁 )−𝐴

′
𝑠(𝑦)−𝐴

′′
𝑠 (𝑦)𝜁 ∈ 𝐿2(𝐿(;)) denotes the corresponding remainder

term. The estimate in Assumption ⟨5.3.iii⟩ thus implies

‖ .
𝜂1,2(𝑡) −

.
𝜂2(𝑡) −

.
𝜉(𝑡)‖

≤ 𝐶
(‖𝜁 (𝑡))‖‖𝜂2(𝑡) − 𝜂1,2(𝑡)‖ + ‖𝑧1(𝑡) − 𝑧(𝑡) − 𝜂1(𝑡)‖‖𝑅ℎ2(𝑡) −𝑄𝜂2(𝑡)‖
+ ‖𝑟2(𝑦(𝑡), 𝜁 (𝑡))‖𝐿(;)‖𝑅ℎ2(𝑡) −𝑄𝜂1,2(𝑡)‖ + ‖𝜂1,2(𝑡) − 𝜂2(𝑡) − 𝜉(𝑡)‖)
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for almost all 𝑡 ∈ [0, 𝑇 ], such that Lemma A.8 Item (iii) yields‖𝜂1,2 − 𝜂2 − 𝜉‖𝐻1()

≤ 𝐶
(‖𝑅ℎ1 −𝑄(𝑧1 − 𝑧)‖𝐿∞(0,𝑇 ;)‖𝜂2 − 𝜂1,2‖𝐿2()

+ ‖𝑧1 − 𝑧 − 𝜂1‖𝐿∞(0,𝑇 ;)‖𝑅ℎ2 −𝑄𝜂2‖𝐿2()

+ ‖𝑟2(𝑦; 𝜁 )‖𝐿2(𝐿(;))‖𝑅ℎ2 −𝑄𝜂1,2‖𝐻1()
)

≤ 𝐶‖ℎ2‖𝐻1()
(‖ℎ1‖2𝐻1() + ‖𝑧1 − 𝑧 − 𝜂1‖𝐻1() + ‖𝑟2(𝑦; 𝜁 )‖𝐿2(𝐿(;))

)
,

where we used Lemma 5.7, Lemma 5.16 and the estimate in Theorem 5.9. Denoting the solution
operator of (5.30) already by  ′′

𝑠 (𝓁)[ℎ1, ℎ2], we have thus shown

‖ ′
𝑠(𝓁 + ℎ1) −  ′

𝑠(𝓁) −  ′′
𝑠 (𝓁)ℎ1‖𝐿(𝐻1();𝐻1())

≤ 𝐶
(‖ℎ1‖2𝐻1() + ‖𝑠(𝓁 + ℎ1) − 𝑠(𝓁) −  ′

𝑠(𝓁)ℎ1‖𝐻1()

+ ‖𝑟2(𝑦; 𝜁 )‖𝐿2(𝐿(;))
)
.

Therefore, thanks to the Fréchet-differentiability of 𝑠 ∶ 𝐻1() → 𝐻1(), it only remains to
show that ‖𝑟2(𝑦; 𝜁 )‖𝐿2(𝐿(;))‖ℎ1‖𝐻1()

→ 0, (5.32)

as 0 ≠ ℎ1 → 0 in𝐻1(). To this end, we note that the embedding𝐻1() ↪ 𝐶() and Lemma 5.7
yield for all 𝑡 ∈ [0, 𝑇 ]‖𝜁 (𝑡)‖‖ℎ1‖𝐻1()

≤ 𝐶
‖𝜁‖𝐻1()‖ℎ1‖𝐻1()

= 𝐶
‖𝑅ℎ1 −𝑄(𝑧1 − 𝑧)‖𝐻1()‖ℎ1‖𝐻1()

≤ 𝐶 (5.33)

Hence, thanks to the Fréchet-differentiability of 𝐴′
𝑠 ∶  → 𝐿(;), we have for almost all

𝑡 ∈ [0, 𝑇 ] ‖𝑟2(𝑦; 𝜁 )(𝑡)‖𝐿(;)‖ℎ1‖𝐻1()
≤ 𝐶

‖𝑟2(𝑦; 𝜁 )(𝑡)‖𝐿(;)‖𝜁 (𝑡)‖ → 0

as 0 ≠ ℎ1 → 0 in 𝐻1(). Furthermore, using the Lipschitz continuity of 𝐴′
𝑠 ∶  → 𝐿(;), the

estimate for 𝐴′′
𝑠 in Assumption ⟨5.3.iii⟩ and again (5.33), we deduce‖𝑟2(𝑦; 𝜁 )(𝑡)‖𝐿(;)‖ℎ1‖𝐻1()

=
‖𝐴′

𝑠(𝑦(𝑡) + 𝜁 (𝑡)) − 𝐴
′
𝑠(𝑦(𝑡)) − 𝐴

′′
𝑠 (𝑦(𝑡))𝜁 (𝑡)‖𝐿(;)‖ℎ1‖𝐻1()

≤ 𝐶
‖𝜁 (𝑡)‖‖ℎ1‖𝐻1()

≤ 𝐶

for almost all 𝑡 ∈ [0, 𝑇 ]. The convergence in (5.32) now follows from Lebesgue’s dominated
convergence theorem (see [104, Theorem 3.1.29]).

In Theorem 5.21 we will use a general result from the literature to derive second order op-
timality conditions, for this result we need the continuity of the second derivative. A first step
in this direction provides

Lemma 5.18 (Continuity estimate of  ′′
𝑠 ). There exists a constant 𝐶 such that‖ ′′

𝑠 (𝓁1) −  ′′
𝑠 (𝓁2)‖𝐿(𝐻1();𝐿(𝐻1();𝐻1()))

≤ 𝐶
(‖𝐴′′

𝑠 (𝑅𝓁1 −𝑄𝑧1) − 𝐴
′′
𝑠 (𝑅𝓁2 −𝑄𝑧2)‖𝐿2(𝐿(;𝐿(;))) + ‖𝓁1 − 𝓁2‖𝐻1()

)
holds for all 𝓁1,𝓁2 ∈ 𝐻1(), where 𝑧𝑖 ∶= 𝑠(𝓁𝑖), 𝑖 = 1, 2.
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Proof. Let 𝓁1,𝓁2, ℎ1, ℎ2 ∈ 𝐻1() be arbitrary. We again abbreviate 𝑧𝑖 ∶= 𝑠(𝓁𝑖), 𝜂𝑖,𝑗 ∶=  ′
𝑠(𝓁𝑖)ℎ𝑗 ,

𝜉𝑖 ∶=  ′′
𝑠 (𝓁𝑖)[ℎ1, ℎ2], and 𝑦𝑖 ∶= 𝑅𝓁𝑖 − 𝑄𝑧𝑖 for 𝑖, 𝑗 ∈ {1, 2}. By the equation for  ′′

𝑠 , we obtain for
almost all 𝑡 ∈ [0, 𝑇 ]

.
𝜉1 −

.
𝜉2 = 𝐴′′

𝑠 (𝑦1)[𝑅ℎ1 −𝑄𝜂1,1, 𝑅ℎ2 −𝑄𝜂1,2] − 𝐴
′
𝑠(𝑦1)𝑄𝜉1

− 𝐴′′
𝑠 (𝑦2)[𝑅ℎ1 −𝑄𝜂2,1, 𝑅ℎ2 −𝑄𝜂2,2] − 𝐴

′
𝑠(𝑦2)𝑄𝜉2

=
(
𝐴′′
𝑠 (𝑦1)(𝑅ℎ1 −𝑄𝜂1,1) − 𝐴

′′
𝑠 (𝑦2)(𝑅ℎ1 −𝑄𝜂2,1)

)
(𝑅ℎ2 −𝑄𝜂1,2)

+ 𝐴′′
𝑠 (𝑦2)[𝑅ℎ1 −𝑄𝜂2,1, 𝑄(𝜂2,2 − 𝜂1,2)]

+
(
𝐴′
𝑠(𝑦2) − 𝐴

′
𝑠(𝑦1)

)
𝑄𝜉1 + 𝐴′

𝑠(𝑦2)𝑄(𝜉2 − 𝜉1).

With the help of

𝐴′′
𝑠 (𝑦1)(𝑅ℎ1 −𝑄𝜂1,1)−𝐴

′′
𝑠 (𝑦2)(𝑅ℎ1 −𝑄𝜂2,1)
=
(
𝐴′′
𝑠 (𝑦1) − 𝐴

′′
𝑠 (𝑦2)

)
(𝑅ℎ1 −𝑄𝜂1,1) + 𝐴′′

𝑠 (𝑦2)𝑄(𝜂2,1 − 𝜂1,1),

we obtain

‖ .
𝜉1(𝑡) −

.
𝜉2(𝑡)‖ ≤ 𝐶

(‖𝐴′′
𝑠 (𝑦1(𝑡)) − 𝐴

′′
𝑠 (𝑦2(𝑡))‖𝐿(;𝐿(;))‖𝑅ℎ1(𝑡) −𝑄𝜂1,1(𝑡)‖

+ ‖𝜂1,1(𝑡) − 𝜂2,1(𝑡)‖)‖𝑅ℎ2(𝑡) −𝑄𝜂1,2(𝑡)‖
+ 𝐶‖𝑅ℎ1(𝑡) −𝑄𝜂2,1(𝑡)‖‖𝜂1,2(𝑡) − 𝜂2,2(𝑡)‖
+ 𝐶‖𝑦1(𝑡) − 𝑦2(𝑡)‖‖𝜉1(𝑡)‖ + 𝐶‖𝜉1(𝑡) − 𝜉2(𝑡)‖ .

Therefore we can use once again Lemma A.8 Item (iii) and the continuous embedding𝐻1() ↪
𝐶() to arrive at

‖𝜉1 − 𝜉2‖𝐻1() ≤ 𝐶
[‖𝑅ℎ1 −𝑄𝜂2,1‖𝐻1()‖𝜂1,2 − 𝜂2,2‖𝐻1() + ‖𝑦1 − 𝑦2‖𝐻1()‖𝜉1‖𝐻1()

+
(‖𝐴′′

𝑠 (𝑦1) − 𝐴
′′
𝑠 (𝑦2)‖𝐿2(𝐿(;𝐿(;)))‖𝑅ℎ1 −𝑄𝜂1,1‖𝐻1()

+ ‖𝜂1,1 − 𝜂2,1‖𝐻1()

)‖𝑅ℎ2 −𝑄𝜂1,2‖𝐻1()

]
≤ 𝐶

(‖𝐴′′
𝑠 (𝑦1) − 𝐴

′′
𝑠 (𝑦2)‖𝐿2(𝐿(;𝐿(;))) + ‖𝓁1 − 𝓁2‖𝐻1()

)‖ℎ1‖𝐻1()‖ℎ2‖𝐻1(),

where we also used the estimate in Theorem 5.9, (5.31), and the Lipschitz continuity of  ′
𝑠

according to Lemma 5.16.

Clearly, if 𝐴′′
𝑠 were Lipschitz continuous from  to 𝐿(;𝐿(;)), then Lemma 5.18 would

immediately imply the Lipschitz continuity of  ′′
𝑠 . However, to obtain the continuity of the

second derivative, this additional assumption is not necessary as the following theorem shows.

Theorem 5.19 (Second-order continuous Fréchet-differentiability of the solution operator). The
solution operator 𝑠 ∶ 𝐻1() → 𝐻1() is twice continuously Fréchet-differentiable. Its second deriva-
tive at 𝓁 ∈ 𝐻1() in directions ℎ1, ℎ2 ∈ 𝐻1() is given by the unique solution of (5.30).

Proof. Thanks to Proposition 5.17, we only have to show that the operator  ′′
𝑠 ∶ 𝐻

1() →
𝐿(𝐻1();𝐿(𝐻1();𝐻1())) is continuous. For this let {𝓁𝑛}𝑛∈ℕ ⊂ 𝐻1() and 𝓁 ∈ 𝐻1() be
given such that 𝓁𝑛 → 𝓁 in 𝐻1() so that in particular 𝓁𝑛 → 𝓁 in 𝐶() (see [104, Theorem
3.1.41]). Then, Lemma 5.7 implies 𝑧𝑛 ∶= 𝑠(𝓁𝑛) → 𝑠(𝓁) =∶ 𝑧 in 𝐶(). With this convergence
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results at hand, we can apply Lemma A.2 with 𝑀 = [0, 𝑇 ], 𝑁 =  , 𝐺𝑛 = 𝑅𝓁𝑛 − 𝑄𝑧𝑛 and
𝐺 = 𝑅𝓁 −𝑄𝑧 to see that

𝑈 ∶=
( ∞⋃
𝑛=1

(𝑅𝓁𝑛 −𝑄𝑧𝑛)([0, 𝑇 ])
)
∪
(
(𝑅𝓁 −𝑄𝑧)([0, 𝑇 ])

)
is compact. Therefore, thanks to the continuity assumption in Assumption ⟨5.3.iii⟩, 𝐴′′

𝑠 ∶  →
𝐿(;𝐿(;)) is uniformly continuous on 𝑈 . Consequently, 𝐴′′

𝑠 (𝑅𝓁𝑛 − 𝑄𝑧𝑛) converges to
𝐴′′
𝑠 (𝑅𝓁 −𝑄𝑧) in 𝐶(𝐿(;𝐿(;))), which, together with Lemma 5.18, yields the assertion.

Remark 5.20 (Solutions are more regular). It is to be noted that the regularized state equation (EVI𝑠)
and the equations corresponding to the derivatives of 𝑠, i.e., (5.11) and (5.30), provide more regular
solutions under the hypothesis of Assumption ⟨5.2.iv⟩ and Assumption ⟨5.3.ii⟩ & Assumption ⟨5.3.iii⟩.
Indeed, if 𝓁, ℎ1, ℎ2 ∈ 𝐻1(), then the solutions of all three equations can be shown to be continuously
differentiable in time with values in the respective spaces ( , , and  , respectively). Moreover, the
time derivatives of 𝑧 and 𝜂 are absolutely continuous and the same would hold for 𝜉, if 𝐴′′

𝑠 were Lipschitz
continuous. However, we did not exploit this additional regularity, since the original unregularized
problem (5.2) does not provide this property in general.

Theorem 5.21 (Second-order sufficient optimality conditions for (5.8)). Let (𝑧,𝓁, 𝜑) ∈ 𝐻1() ×
(𝐻1(𝑐) ∩) × 𝐿2() be a solution of the optimality system (5.22). Moreover, suppose that there is a
𝛿 > 0 such that

𝐹 ′′(𝓁)ℎ2 ≥ 𝛿‖ℎ‖2𝐻1(𝑐 ) (5.34)

for all ℎ ∈ 𝐻1(𝑐) ∩ , where 𝐹 is the reduced objective function from (5.15). Then (𝑧,𝓁) is locally
optimal for (5.8) and there exist 𝜀 > 0 and 𝜏 > 0 such that the following quadratic growth condition

𝐹 (𝓁) ≥ 𝐹 (𝓁) + 𝜏‖𝓁 − 𝓁‖2𝐻1(𝑐 ) (5.35)

holds for all 𝓁 ∈ 𝐻1(𝑐) ∩ with ‖𝓁 − 𝓁‖𝐻1(𝑐 ) ≤ 𝜀.

Proof. Thanks to the assumptions on 𝐽 and Theorem 5.19, the chain rule implies that the
reduced objective function 𝐹 (⋅) = 𝐽 (𝑠(⋅), ⋅)∶ 𝐻1(𝑐) → ℝ is twice continuously Fréchet-
differentiable and, according to Corollary 5.14, the equation in (5.16) holds for all ℎ ∈
𝐻1(𝑐) ∩. Since  is a linear subspace, the claim then follows from standard arguments,
see e.g. [100, Satz 4.23].

Remark 5.22 (Second-order necessary optimality conditions for (5.8)). If a control 𝓁 ∈ 𝐻1(𝑐) ∩ with associated state 𝑧 = 𝑠(𝓁) is locally optimal for (5.8), then

𝐹 ′′(𝓁)ℎ2 ≥ 0

must hold for all ℎ ∈ 𝐻1(𝑐) ∩. This follows also from standard arguments, see for instance [100,
Satz 4.27].

Corollary 5.23 (Specified form of 𝐹 ′′). Assume in addition to the hypothesis of Assumption ⟨5.3.iii⟩
that ‖𝐴′′

𝑠 (𝑦)[𝑧1, 𝑧2]‖ ≤ 𝐶‖𝑧1‖‖𝑧2‖ for all 𝑦 ∈  and 𝑧1, 𝑧2 ∈ , i.e., the last inequality in Assump-
tion ⟨5.3.iii⟩ holds in  instead of the (possible) weaker space  . Then it holds for all 𝓁, ℎ ∈ 𝐻1()
that

𝐹 ′′(𝓁)ℎ2 = Ψ′′(𝑧,𝓁)(𝜂, ℎ)2 + Φ′′(𝓁)ℎ2 −
(
𝜑,𝐴′′

𝑠 (𝑅𝓁 −𝑄𝑧)(𝑅ℎ −𝑄𝜂)2
)
𝐿2() ,

where 𝑧 = 𝑠(𝓁), 𝜂 =  ′
𝑠(𝓁)ℎ, and 𝜑 solves the adjoint equation in (5.22b).
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Chapter 5 Optimal Control

Proof. Let us again abbreviate 𝑦 = 𝑅𝓁 −𝑄𝑧. According to the chain rule, the second derivative
of the reduced objective is given by

𝐹 ′′(𝓁)ℎ2 = 𝐽 ′′
𝓁𝓁(𝑧,𝓁)ℎ

2 + 𝐽 ′′
𝑧𝑧(𝑧,𝓁)𝜂

2 + 2𝐽 ′′
𝓁𝑧(𝑧,𝓁)[ℎ, 𝜂] + 𝐽

′
𝑧(𝑧,𝓁)𝜉

= Ψ′′(𝑧,𝓁)(𝜂, ℎ)2 + Φ′′(𝓁)ℎ2 + 𝐽 ′
𝑧(𝑧,𝓁)𝜉

with 𝑧 = 𝑠(𝓁), 𝜂 =  ′
𝑠(𝓁)ℎ, and 𝜉 =  ′′

𝑠 (𝓁)ℎ
2. Now, since 𝐴′′

𝑠 (𝑦) is a bilinear form on  by
assumption, we obtain that 𝜉 ∈ 𝐻1(). Therefore, we are allowed to test the adjoint equation
in (5.22b) (in its weak form) with 𝜉, which results in

𝐽 ′
𝑧(𝑧,𝓁)𝜉 = −

(
𝜑,

.
𝜉 + 𝐴′

𝑠(𝑦)𝑄𝜉
)
𝐿2()

= −
(
𝜑,𝐴′′

𝑠 (𝑦)(𝑅ℎ −𝑄𝜂)2
)
𝐿2() ,

where we used the precise form of  ′′
𝑠 (𝓁) in (5.30) for the last identity.

Remark 5.24 (Coercivity of 𝑄). For the analysis of the original equation (EVI) the coercivity of 𝑄 was
vital (see Section 4.1), however, we never used it in Section 5.2 and this section, so that all findings in
these two sections still hold when we drop the coercivity of 𝑄.

With the result concerning the second order sufficient optimality conditions in Theorem 5.21
we arrived at the end of this part of the thesis. It was devoted to the analysis and optimal
control of (EVI) with the main results given in Theorem 5.2 (existence of global minimizers),
Theorem 5.4 & Corollary 5.5 (approximation of global minimizers), Theorem 5.13 (first order
optimality conditions) and Theorem 5.21 (second order optimality conditions). As been said
in the introduction to Chapter 5, this part and in particular Chapter 5 plays a central role in
the thesis at hand. In what follows, we will use the mentioned and more results from this part
to analyze the optimal control of elasto and homogenized plasticity, plasticity with inertia and
perfect plasticity. To apply the analysis from this part to these different plasticity systems, it
was held abstract and general. This stays in contrast to the following parts, where we consider
mostly specific spaces and operators.

We continue with elasto plasticity followed by the similar (with respect to the transformation
into an EVI) homogenized plasticity.
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Part III Elasto and Homogenized Plasticity

In Chapter 6 we use the observations from Chapter 2 and apply the findings from Part II. In
Chapter 7 we transform the system of homogenized plasticity into an EVI as we did in Chapter 2
for elasto plasticity. In both cases, the necessary assumptions and requirements are presented
throughout the corresponding chapter, therefore no assumptions are needed in the assumption
collection agreed upon in The Assumption Agreement for this part.

Assumption III. All assumptions are presented throughout Chapter 6 and Chapter 7, respectively.

Both cases, the elasto plasticity in Chapter 6 and homogenized plasticity in Chapter 7, fit
perfectly into the general setting analyzed in Part II, which is the reason for presenting it before
plasticity with inertia and perfect plasticity. Due to this fact, there is only little analysis required
in this part, so it as rather short in comparison to the last one. We start with the continuation of
Chapter 2.

Chapter 6 Elasto Plasticity

Since we have already presented the equations of elasto plasticity in Section 2.1 and trans-
formed them into an EVI in Section 2.2, we can continue straightaway with the optimal control
problem.

6.1 Optimal Control Problem
The concrete optimization problem we consider reads as follows

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

min 𝐽 (𝑧, 𝑓 , 𝑔, 𝑢𝐷) =
1
2
‖𝑧(𝑇 ) − 𝑧𝑑‖2𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) +
𝛼
2
‖( .𝑓, .𝑔, .𝑢𝐷)‖2𝐿2(𝐿2(Ω;ℝ𝑑 )×𝐿2(Γ𝐷;ℝ𝑑 )×𝐻2(Ω;ℝ𝑑 )),

s.t. − div 𝜎 = 𝑓 + 𝑔
𝑢 − 𝑢𝐷 ∈ 𝐻1

𝐷(Ω;ℝ
𝑑×𝑑
𝑠 )

𝜎 = ℂ(∇𝑠𝑢 − 𝑧)
.
𝑧 ∈ 𝜕𝐼(Ω)(𝜎 − 𝔹𝑧), 𝑧(0) = 0

(𝑢, 𝜎, 𝑧) ∈ 𝐻1(𝐻1(Ω;ℝ𝑑) × 𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) × 𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ))
(𝑓, 𝑔, 𝑢𝐷) ∈ 𝐻1

0 (𝐿
2(Ω;ℝ𝑑) × 𝐿2(Γ𝐷;ℝ𝑑) ×𝐻2(Ω;ℝ𝑑)),

(6.1)
where 𝑧𝑑 ∈ 𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) is a desired state and 𝛼 > 0 is the Tikhonov parameter.
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Part III Elasto and Homogenized Plasticity

Let us shortly comment on our choice of this optimization problem. At first it is to be noted
that we have chosen the plastic strain 𝑧 as the state variable. Clearly, one might want to control
the stress or the displacement, however, these can be easily added as states in (6.1), one only
has to be a bit more careful when it comes to the transformation for example in the proof of
Theorem 6.3. We have only chosen the plastic strain as the only state variable because then
the results from Part II can be applied more directly, which keeps the discussion more focused
on the essentials. We note that an optimal control problem with the displacement and the
(two scale) stress of homogenized plasticity as states was considered in MEINLSCHMIDT ET

AL. [71, Section 7.3]. Secondly, we have chosen 𝐻1
0 (𝐻

2(Ω;ℝ𝑑)) as the control space for the
Dirichlet displacement to obtain a compact embedding into 𝐿1(𝐻1(Ω;ℝ𝑑)), as is necessary to
apply some results from Part II, see Assumption ⟨5.iv⟩. This might be undesirable, for example
for numerical experiments, since then the 𝐻2(Ω;ℝ𝑑)-norm appears in the objective function.
This can be avoided by adding a linear and continuous mapping which is compact from some
space into 𝐻1(Ω;ℝ𝑑), this mapping, for example, can be created by solving the equations of
elasticity, then the control 𝑢𝐷 can be exchanged by controls which also belong to a Lebesgue
space. This is exactly what we will do in Part V. We have simply chosen directly the Dirichlet
displacement in 𝐻2(Ω;ℝ𝑑) only for simplicity so that we can, once again, keep the discussion
more concise. Moreover, for the same reasoning, we set the initial condition to zero.

Now we define most of the necessary operators, spaces and parameters from Part II to apply
the results therein. We set

 ∶= 𝑊 −1,𝑝1
𝐷 (Ω;ℝ𝑑) ×𝑊 1,𝑝1(Ω;ℝ𝑑), 𝑐 ∶= 𝐿2(Ω;ℝ𝑑) × 𝐿2(Γ𝑁 ;ℝ𝑑) ×𝐻2(Ω;ℝ𝑑),

 ∶=  ∶= 𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ),

Ψ(𝑧, 𝑓 , 𝑔, 𝑢𝐷) ∶= ‖𝑧(𝑇 ) − 𝑧𝑑‖ , Φ(𝑓, 𝑔, 𝑢𝐷) ∶=
𝛼
2
‖( .𝑓, .𝑔, .

𝑢𝐷)‖𝐿2(𝑐 )
𝐴 ∶= 𝜕𝐼(Ω), 𝑀 ∶= {0},
𝐴𝑛 ∶= 𝜕𝐼𝜆𝑛,𝑠𝑛 , 𝑧0 ∶= 0,

with 𝑝1 ∈ (2, 𝑝], where 𝑝 is from Theorem 2.5, and 2 > 𝑑𝑝1∕(𝑑+𝑝1) (such that𝐿2(Ω;ℝ𝑑) is compactly
embedded into 𝑊 −1,𝑝1

𝐷 (Ω;ℝ𝑑)) and 2 > (𝑑−1)𝑝1∕𝑑 (such that 𝐿2(Γ𝑁 ;ℝ𝑑) is compactly embedded
into 𝑊 −1,𝑝1

𝐷 (Ω;ℝ𝑑)), so that 𝑐 is compactly embedded into  via the canonical embedding

𝑐 ∋ (𝑓, 𝑔, 𝑢𝐷) ↦ ((𝑓, ⋅)𝐿2(Ω;ℝ𝑑 ) + (𝑔, ⋅)𝐿2(Γ𝑁 ;ℝ𝑑 ) , 𝑢𝐷) ∈  .
Moreover, the set (Ω) is given in Definition 2.2 and the mapping 𝜕𝐼𝜆𝑛,𝑠𝑛 in (3.11), where {𝜆𝑛}𝑛∈ℕ
and {𝑠𝑛}𝑛∈ℕ are sequences such that

1
𝜆𝑛

exp
(𝑇 ‖𝑄‖

𝜆𝑛

)|Ω|𝛾 𝑠𝑛
𝜆𝑛

→ 0,

as 𝑛 → ∞. With this choice and in view of (3.12), the requirement in Lemma 4.17 and thus
Assumption ⟨5.1.ii⟩ holds.

Let us also recall the operators 𝑅 and 𝑄 from Definition 2.7. Note that there 𝑅 is defined
on 𝐻−1

𝐷 (Ω;ℝ𝑑) × 𝐻1(Ω;ℝ𝑑), thanks to Corollary 2.6 we can also define the same operator on , with a slight abuse of notation we denote both operators by 𝑅. We also denote the same
mapping defined on 𝑐 by 𝑅. Clearly, Assumption ⟨4.i⟩ holds according to Corollary 2.6 and
Lemma 2.8.

Moreover, Assumption ⟨II.ii⟩ and Assumption ⟨5.ii⟩ is fulfilled due to Proposition 3.14, and
it is easy to verify Assumptions ⟨5.iii⟩ to ⟨5.iv⟩ and Assumption ⟨5.1.i⟩.
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Chapter 6 Elasto Plasticity

Now, since the optimization problems (5.2) and (6.1) are equivalent according to Theo-
rem 2.9, with 𝓁 = (𝑓, 𝑔, 𝑢𝐷), we are in a position to apply the results given in Section 5.1. To this
end, we also consider the regularized problems

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min 𝐽 (𝑧, 𝑓 , 𝑔, 𝑢𝐷) =
1
2
‖𝑧(𝑇 ) − 𝑧𝑑‖2𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )

+ 𝛼
2
‖( .𝑓, .𝑔, .𝑢𝐷)‖2𝐿2(𝐿2(Ω;ℝ𝑑 )×𝐿2(Γ𝑁 ;ℝ𝑑 )×𝐻2(Ω;ℝ𝑑 )),

s.t. − div 𝜎 = 𝑓 + 𝑔
𝑢 − 𝑢𝐷 ∈ 𝐻1

𝐷(Ω;ℝ
𝑑×𝑑
𝑠 )

𝜎 = ℂ(∇𝑠𝑢 − 𝑧)
.
𝑧 = 𝜕𝐼𝜆𝑛,𝑠𝑛(𝜎 − 𝔹𝑧), 𝑧(0) = 0

(𝑢, 𝜎, 𝑧) ∈ 𝐻1(𝐻1(Ω;ℝ𝑑) × 𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) × 𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ))
(𝑓, 𝑔, 𝑢𝐷) ∈ 𝐻1

0 (𝐿
2(Ω;ℝ𝑑) × 𝐿2(Γ𝑁 ;ℝ𝑑) ×𝐻2(Ω;ℝ𝑑)),

(6.2)

which are also equivalent to (5.3).

6.2 Application of the General Theory

We start with the application of the findings in Section 5.1.

Theorem 6.1 (Existence and convergence of global minimizers for elasto plasticity). There exists
a global minimizer of (6.1) and of (6.2) for every 𝑛 ∈ ℕ.

Moreover, if (𝑧𝑛, 𝑓𝑛, 𝑔𝑛, 𝑢𝐷,𝑛) is a global minimizer of (6.2) for every 𝑛 ∈ ℕ, then every weak accumu-
lation point is a strong accumulation point and a global minimizer of (6.1). Futhermore, there exists an
accumulation point.

Proof. The assertions follow from Theorem 5.2, Proposition 5.3, Theorem 5.4 and Corollary 5.5.
Note that the requirement on Φ = 𝛼‖ ⋅ ‖𝐻1(𝑐 ) is fulfilled since 𝑐 = 𝐿2(Ω;ℝ𝑑) × 𝐿2(Γ𝐷;ℝ𝑑) ×
𝐻2(Ω;ℝ𝑑) is a Hilbert space.

Let us now turn to the results in Section 5.2, in particular Theorem 5.13. At first we have to
verify Assumptions ⟨5.2.i⟩ to ⟨5.2.v⟩. To this end, we define

 ∶= 𝐿𝑝1(Ω;ℝ𝑑×𝑑
𝑠 ),  ∶= 𝐿𝑝2(Ω;ℝ𝑑×𝑑

𝑠 ), 𝐴𝑠 ∶= 𝜕𝐼𝜆,𝑠

with 2 < 𝑝2 < 𝑝1 (recall the requirements on 𝑝1 from above) and 𝜆 > 0, 𝑠 ∈ (0, 1). Clearly,
Assumption ⟨5.2.i⟩, Assumption ⟨5.2.iii⟩ and Assumption ⟨5.2.v⟩ are fulfilled and Corollary 2.6
shows that Assumption ⟨5.2.ii⟩ also holds. Thanks to Lemma 3.18, 𝐴𝑠 is Lipschitz continuous
and Lemma 3.19 shows that it is also Fréchet differentiable from  to . The other requirements
in Assumption ⟨5.2.iv⟩ can be easily verified, hence, Assumption ⟨5.2.iv⟩ is also fulfilled.

59



Part III Elasto and Homogenized Plasticity

Now we consider

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min 𝐽 (𝑧, 𝑓 , 𝑔, 𝑢𝐷) =
1
2
‖𝑧(𝑇 ) − 𝑧𝑑‖2𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )

+ 𝛼
2
‖( .𝑓, .𝑔, .𝑢𝐷)‖2𝐿2(𝐿2(Ω;ℝ𝑑 )×𝐿2(Γ𝑁 ;ℝ𝑑 )×𝐻2(Ω;ℝ𝑑 )),

s.t. − div 𝜎 = 𝑓 + 𝑔
𝑢 − 𝑢𝐷 ∈ 𝐻1

𝐷(Ω;ℝ
𝑑×𝑑
𝑠 )

𝜎 = ℂ(∇𝑠𝑢 − 𝑧)
.
𝑧 = 𝜕𝐼𝜆,𝑠(𝜎 − 𝔹𝑧), 𝑧(0) = 0

(𝑢, 𝜎, 𝑧) ∈ 𝐻1(𝐻1(Ω;ℝ𝑑) × 𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) × 𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ))
(𝑓, 𝑔, 𝑢𝐷) ∈ 𝐻1

0 (𝐿
2(Ω;ℝ𝑑) × 𝐿2(Γ𝑁 ;ℝ𝑑) ×𝐻2(Ω;ℝ𝑑)),

(6.3)

which is again the same problem as (5.8). Before we can apply Theorem 5.13 we have to deter-
mine the adjoint operator of 𝑅 in

Lemma 6.2 (Adjoint operator of 𝑅 in the case of elasto plasticity). Let 𝜏 ∈ , 𝑓 ∈ 𝐻1
𝐷(Ω;ℝ

𝑑) the
solution of

−divℂ∇𝑠𝑓 = −divℂ𝜏

(that is, 𝑓 =  (− divℂ𝜏, 0)), 𝑔 ∈ 𝐿2(Γ𝑁 ,ℝ𝑑) defined by 𝑔 ∶= 𝑓 |Γ𝑁 and 𝑢𝐷 ∈ 𝐻2(Ω;ℝ𝑑×𝑑
𝑠 ) the solution

of (
𝑢𝐷, 𝑣

)
𝐻2(Ω;ℝ𝑑 ) = (ℂ(𝜏 − ∇𝑠𝑓 ),∇𝑠𝑣)𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )

for all 𝑣 ∈ 𝐻2(Ω;ℝ𝑑) (which existence is guaranteed by the Riesz representation theorem). Then we
have 𝑅∗𝜏 = (𝑓, 𝑔, 𝑢𝐷) (where 𝑅∗ is the adjoint operator of 𝑅 ∈ (𝑐 ,)).

Proof. Let (𝜉𝑓 , 𝜉𝑔, 𝜉𝑢𝐷) ∈ 𝑐 be arbitrary and 𝑣 ∶=  (𝜉𝑓 + 𝜉𝑔, 𝜉𝑢𝐷) ∈ 𝐻1(Ω;ℝ𝑑), according to the
definition of 𝑅 we have 𝑅(𝜉𝑓 , 𝜉𝑔, 𝜉𝑢𝐷) = ℂ∇𝑠𝑣. Using the fact that  is a solution operator, we
get (

𝑅(𝜉𝑓 , 𝜉𝑔, 𝜉𝑢𝐷), 𝜏
)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) =
(
∇𝑠(𝑣 − 𝜉𝑢𝐷),ℂ𝜏

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) +
(
∇𝑠𝜉𝑢𝐷 ,ℂ𝜏

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )

=
(
ℂ∇𝑠𝑓,∇𝑠(𝑣 − 𝜉𝑢𝐷)

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) +
(
∇𝑠𝜉𝑢𝐷 ,ℂ𝜏

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )

= (∇𝑠𝑓,ℂ∇𝑠𝑣)𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) +

(
∇𝑠𝜉𝑢𝐷 ,ℂ(𝜏 − ∇𝑠𝑓 )

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )

=
(
𝑓, 𝜉𝑓

)
𝐿2(Ω;ℝ𝑑 ) +

(
𝑔, 𝜉𝑔

)
𝐿2(Γ𝑁 ;ℝ𝑑 ) +

(
𝑢𝐷, 𝜉𝑢𝐷

)
𝐻2(Ω;ℝ𝑑 )

=
(
(𝜉𝑓 , 𝜉𝑔, 𝜉𝑢𝐷), (𝑓, 𝑔, 𝑢𝐷)

)
𝑐 ,

which proves the assertion.

Theorem 6.3 (KKT-conditions for elasto plasticity). Let (𝑧, 𝑓 , 𝑔, 𝑢𝐷) ∈ 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) ×

𝐿2(Ω;ℝ𝑑) × 𝐿2(Γ𝑁 ;ℝ𝑑) × 𝐻2(Ω;ℝ𝑑)) be a locally optimal solution for (6.3). Then there exists
𝑢 ∈ 𝐻1(𝐻1(Ω;ℝ𝑑×𝑑

𝑠 )), 𝜎 ∈ 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )), a unique adjoint state (𝜑, 𝜁, 𝑣𝐷) ∈ 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) ×
𝐻1
𝐷(Ω;ℝ

𝑑×𝑑
𝑠 ) ×𝐻2(Ω;ℝ𝑑)) such that the following optimality system is fulfilled
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State equation:

−div 𝜎 = 𝑓 + 𝑔 (6.4a)

𝑢 − 𝑢𝐷 ∈ 𝐻1
𝐷(Ω;ℝ

𝑑×𝑑
𝑠 ) (6.4b)

𝜎 = ℂ(∇𝑠𝑢 − 𝑧) (6.4c)
.
𝑧 = 𝜕𝐼𝜆,𝑠(𝜎 − 𝔹𝑧), 𝑧(0) = 0 (6.4d)

Adjoint equation :
.
𝜑 = (ℂ + 𝔹)𝜕𝐼 ′𝜆,𝑠(𝜎 − 𝔹𝑧)𝜑 − ℂ∇𝑠𝜁 (6.4e)

−divℂ∇𝑠𝜁 = −divℂ𝜕𝐼 ′𝜆,𝑠(𝜎 − 𝔹𝑧)𝜑 (6.4f)

𝜑(𝑇 ) = 𝑧(𝑇 ) − 𝑧𝑑 (6.4g)

Gradient equation:

𝛼𝜕2𝑡 (𝑓, 𝑔, 𝑢𝐷) + (𝜁, 𝜁 |Γ𝑁 , 𝑣𝐷) = 0 (6.4h)(
𝑣𝐷(𝑡), 𝑣

)
𝐻2(Ω;ℝ𝑑 ) =

(
ℂ(𝜕𝐼 ′𝜆,𝑠(𝜎(𝑡) − 𝔹𝑧(𝑡))𝜑(𝑡)) − ∇𝑠𝜁 (𝑡)),∇𝑠𝑣

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )

∀𝑡 ∈ [0, 𝑇 ],∀𝑣 ∈ 𝐻2(Ω;ℝ𝑑),
(6.4i)

(𝑓, 𝑔, 𝑢𝐷)(0) = 𝜕𝑡(𝑓, 𝑔, 𝑢𝐷)(𝑇 ) = 0. (6.4j)

Proof. Using Theorem 5.13 and Example 5.15 (with Ψ1 = 0 and Ψ2 = Ψ), we see that if
(𝑧, 𝑓 , 𝑔, 𝑢𝐷) ∈ 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )×𝐿2(Ω;ℝ𝑑)×𝐿2(Γ𝑁 ;ℝ𝑑)×𝐻2(Ω;ℝ𝑑)) is a locally optimal solution
for (6.3), then there exists an unique adjoint state 𝜑 ∈ 𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) such that

.
𝑧 = 𝜕𝐼𝜆,𝑠(𝑅𝓁 −𝑄𝑧), 𝑧(0) = 𝑧0,
.
𝜑 = 𝑄𝜕𝐼 ′𝜆,𝑠(𝑅𝓁 −𝑄𝑧)∗𝜑,

𝜑(𝑇 ) = −Ψ′
𝑧(𝑧(𝑇 ),𝓁(𝑇 )).

𝛼𝜕2𝑡 𝓁 + 𝑅∗𝜕𝐼 ′𝜆,𝑠(𝑅𝓁 −𝑄𝑧)∗𝜑 = 0

𝓁(0) = 0, 𝛼𝜕𝑡𝓁(𝑇 ) = −Ψ′
𝓁(𝑧(𝑇 ),𝓁(𝑇 ))

holds with 𝓁 = (𝑓, 𝑔, 𝑢𝐷). Taking the concrete form of the objective function and the operators𝑅
and 𝑄 into account, using Lemma 3.19 (to see that 𝜕𝐼 ′𝜆,𝑠(𝜏) is self-adjoint for all 𝜏 ∈ 𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ))
and applying Lemma 6.2, one obtians the desired optimality system.

Let us now look at the results in Section 5.3. To shorten the discussion, we will not apply the
results therein in detail, but only comment on them. Clearly, we can also apply Theorem 5.21
and Corollary 5.23 when we verify Assumptions ⟨5.3.ii⟩ to ⟨5.3.iv⟩. Here it is notable that a
difficulty arises due to the second derivative of 𝜕𝐼𝜆,𝑠. As was discussed in Remark 3.20, 𝜕𝐼𝜆,𝑠 is
from 𝐿𝑝1(Ω;ℝ𝑑×𝑑

𝑠 ) to 𝐿𝑝3(Ω;ℝ𝑑×𝑑
𝑠 ) twice differentiable only when 1 ≤ 𝑝3 < 𝑝1∕2 (and, of course,

max𝑠 is sufficient regular). Taking into account that, when we choose  = 𝐿𝑝1(Ω;ℝ𝑑×𝑑
𝑠 ) and = 𝐿𝑝3(Ω;ℝ𝑑×𝑑

𝑠 ), the operators𝑅 and𝑄 also have to be well defined on  and  , Corollary 2.6
gives 𝑝′ ≤ 𝑝3 < 𝑝1∕2 ≤ 𝑝∕2 which results in

1 = 1
𝑝
+ 1
𝑝′
> 3
𝑝
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so that

𝑝 > 3.

Since Corollary 2.6 ensures only 𝑝 > 2 and one cannot expect 𝑝 to be significantly larger than
2, see e.g. [36, 89, 74], the requirement 𝑝 > 3 is quite restrictive. Furthermore, when 𝑝 is not
greater than 4, the necessity 2𝑝3 < 𝑝1 gives that 𝑝3 < 2 so that we cannot choose  =  and
the concrete objective function from this chapter is no possible choice. However, we note that
it is possible to use an objective function involving the displacement with a 𝐿2(Ω;ℝ𝑑)-norm, cf.
[71, Remark 7.20] (but one still requires 𝑝 > 3). Nonetheless, when we want to use the objective
from this chapter, we need 𝑝 > 4.

We also mention that in MEYER ET AL. [71, Section 7.4], in particular in Remark 7.28 therein,
the case of homogenized plasticity was analyzed (the topic of the next chapter) with analog
results for 𝑝.

We summarize the discussion and the results given in this chapter. The results presented
in Section 5.1 and Section 5.2 can be applied in the case of elasto plasticity leading to Theo-
rem 6.1 and Theorem 6.3. The results from Section 5.3 can also be applied, however, 𝑝 from
Corollary 2.6 then needs to satisfy 𝑝 > 3 or, depending on the desired objective function, even
𝑝 > 4, which is quite restrictive.

Chapter 7 Homogenized Plasticity

In this chapter, we show that a system of equations that arises as homogenization limit in
elasto plasticity, which was derived in SCHWEIZER [88, Theorem 2.2], can also be transformed
into an EVI of the type (EVI). It describes the evolution of plastic deformation in a material
with periodic microstructure. We emphasize that this chapter contains only the transformation
into an EVI, we will not consider an optimal control problem to shorten the thesis and since the
analysis would be similar to the one in Chapter 6. We also elaborate on this in more detail at
the end of this chapter.

In [88], the so called two-scale convergence was used to derive the homogenized system. Since
we are only interested in applying our results from Part II to this limit system, we do not
elaborate on two-scale convergence, but only refer to [4], which also gives more insight into
homogenization. We also note that in [88] the obtained system contains the inertia term, that is
the second time derivative of the displacement. In contrast, we are considering the quasistatic
case by neglecting this term.

7.1 Definition and Notation
As usual, at first we present the equations formally in its strong form, namely

−∇𝑥 ⋅ 𝜋Σ = 𝑓 in Ω, (7.1a)
−∇𝑦 ⋅ Σ = 0 in Ω × 𝑌 , (7.1b)

𝜈 ⋅ 𝜋Σ = 𝑔 on Γ𝑁 , (7.1c)
𝑢 = 0 on Γ𝐷, (7.1d)
Σ = ℂ(∇𝑠

𝑥𝑢 + ∇𝑠
𝑦𝑣 − 𝐵𝑧) in Ω × 𝑌 , (7.1e)

.
𝑧 ∈ 𝐴(𝐵⊤Σ − 𝔹𝑧), 𝑧(0) = 𝑧0 in Ω × 𝑌 . (7.1f)
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Herein, 𝑌 = [0, 1]𝑑 is the unit cell. The mapping 𝑢∶ (0, 𝑇 ) × Ω → ℝ𝑑 is the displacement on the
macro level, while 𝑣∶ (0, 𝑇 ) × Ω × 𝑌 → ℝ𝑑 is the displacement reflecting the micro structure.
The stress tensor is denoted by Σ∶ (0, 𝑇 ) × Ω × 𝑌 → ℝ𝑑×𝑑

𝑠 and 𝑧∶ (0, 𝑇 ) × Ω × 𝑌 → 𝕍 is the
internal variable describing changes in the material behavior under plastic deformation (such
as hardening ), where 𝕍 is a finite dimensional Banach space. Moreover, ∇𝑠

𝑥 ∶=
1
2 (∇𝑥+∇⊤

𝑥 ) is the
linearized strain in Ω and ∇𝑠

𝑦 is defined analogously. The elasticity tensor and the hardening
parameter satisfy ℂ ∈ 𝐿∞(Ω × 𝑌 ;(ℝ𝑑×𝑑

𝑠 )) and 𝔹 ∈ 𝐿∞(Ω × 𝑌 ;(𝕍 )) and are symmetric and
uniformly coercive , i.e., there exist constants 𝑐 > 0 and 𝑏 > 0 such that

ℂ(𝑥, 𝑦)𝜎 ∶ 𝜎 ≥ 𝑐‖𝜎‖2ℝ𝑑×𝑑 ∀𝜎 ∈ ℝ𝑑×𝑑
𝑠 , f.a.a. (𝑥, 𝑦) ∈ Ω × 𝑌 ,

𝔹(𝑥, 𝑦)𝜁 ∶ 𝜁 ≥ 𝑏‖𝜁‖2𝕍 ∀𝜁 ∈ 𝕍 , f.a.a. (𝑥, 𝑦) ∈ Ω × 𝑌 .

It is to be noted that this is an exception from the general requirement on ℂ and 𝔹 made in
Chapter 1. As we have noted there, in the other cases of plasticity, one could also assume that
the elasticity tensor and hardening parameter have a spatial dependency, but we neglected this
for convenience. In the case of homogenized plasticity, the spatial dependency is however vital
since it represents the micro structure of the material. In addition, 𝐵 ∈ 𝐿∞(Ω × 𝑌 ;(𝕍 ;ℝ𝑑×𝑑

𝑠 ))
is a given linear mapping by which one recovers the plastic strain from the internal variables
𝑧. Once again, such a mapping could also be integrated in elasto plasticity in Chapter 2 and
Chapter 6 but we omitted this also for the sake of simplicity. The evolution of the internal
variables is determined by a maximal monotone operator 𝐴∶ 𝐿2(Ω × 𝑌 ;𝕍 ) → 2𝐿2(Ω×𝑌 ;𝕍 ). This
maximal monotone mapping can also be chosen, similar as in the case of elasto-plasticity in
Definition 2.2, as a subdifferential to represent the case of linear kinematic hardening with the
von-Mises flow rule . However, let us simply write 𝐴 for the sake of convenience. Finally, 𝑧0 is
a given initial state and 𝜋 is the averaging over the unit cell, i.e.,

𝜋 ∶ Σ ↦ ⨏𝑌 Σ(⋅, 𝑦)𝑑𝑦 ∶= 1|𝑌 | ∫𝑌 Σ(⋅, 𝑦)𝑑𝑦.

For a precise notion of a solution for the homogenized elastoplasticity system in (7.1), we
define the function space for the micro displacement:

Definition 7.1 (Space for the micro displacement). The function space for the micro displacement is
defined as

𝑉0 ∶= {𝑣 ∈ 𝐿2(Ω × 𝑌 ;ℝ𝑑) ∶ 𝑣(𝑥, ⋅) ∈ 𝐻1
𝑝𝑒𝑟(𝑌 ;ℝ

𝑑),∇𝑠
𝑦𝑣 ∈ 𝐿2(Ω × 𝑌 ;ℝ𝑑)

and ∫𝑌 𝑣(𝑥, 𝑦) 𝑑𝑦 = 0 f.a.a. 𝑥 ∈ Ω},

where 𝐻1
𝑝𝑒𝑟(𝑌 ;ℝ

𝑑) is the subspace of 𝐻1(𝑌 ;ℝ𝑑) consisting of 𝑌 -periodic functions. With the scalar
product (

𝑣1, 𝑣2
)
𝑉0(Ω×𝑌 ;ℝ𝑑 ) ∶=

(
𝑣1, 𝑣2

)
𝐿2(Ω×𝑌 ;ℝ𝑑 ) +

(
∇𝑠
𝑦𝑣1,∇

𝑠
𝑦𝑣2

)
𝐿2(Ω×𝑌 ;ℝ𝑑×𝑑

𝑠 )

this space becomes a Hilbert space. Note that the scalar product is well defined according to Korn’s and
Poincaré’s inequality for functions with zero mean value.

With this definition at hand, we are now in the position to define our precise notion of
solutions to (7.1):
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Definition 7.2 (Weak solutions of homogenized plasticity). Let 𝑓, 𝑔 ∈ 𝐻1(𝐻−1
𝐷 (Ω;ℝ𝑑)) and 𝑧0 ∈

𝐿2(Ω × 𝑌 ;𝕍 ). Then we say that a tuple

(𝑢, 𝑣, 𝑧,Σ) ∈ 𝐻1(𝐻1
𝐷(Ω;ℝ

𝑑)) ×𝐻1(𝑉0) ×𝐻1(𝐿2(Ω × 𝑌 ;𝕍 )) ×𝐻1(𝐿2(Ω × 𝑌 ;ℝ𝑑×𝑑
𝑠 ))

is a solution of (7.1), if, for almost all 𝑡 ∈ [0, 𝑇 ], there holds(
𝜋Σ(𝑡),∇𝑠

𝑥𝜑
)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) = ⟨(𝑓 + 𝑔)(𝑡), 𝜑⟩ ∀𝜑 ∈ 𝐻−1
𝐷 (Ω;ℝ𝑑), (7.2a)(

Σ(𝑡),∇𝑠
𝑦𝜓

)
𝐿2(Ω×𝑌 ;ℝ𝑑×𝑑

𝑠 )
= 0 ∀𝜓 ∈ 𝑉0, (7.2b)

Σ = ℂ(𝜋−1𝑟 ∇𝑠
𝑥𝑢 + ∇𝑠

𝑦𝑣 − 𝐵𝑧), (7.2c)
.
𝑧 ∈ 𝐴(𝐵⊤Σ − 𝔹𝑧), 𝑧(0) = 𝑧0, (7.2d)

where

𝜋−1𝑟 ∶ 𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) ∋ 𝜀↦

(
Ω × 𝑌 ∋ (𝑥, 𝑦) ↦ 𝜀(𝑥) ∈ ℝ𝑑×𝑑

𝑠

)
∈ 𝐿2(Ω × 𝑌 ;ℝ𝑑×𝑑

𝑠 ).

In the following, we will frequently consider 𝜋−1𝑟 in different domains and ranges, for simplicity denoted
by the same symbol.

7.2 Transformation into an EVI
In what follows, we reduce the system (7.1) to an equation in the internal variable 𝑧 only and it
will turn out that this equation has exactly the form of the general equation (EVI). To this end,
we proceed similar to Chapter 2 (that is, we use the idea in GRÖGER [45, Chapter 4]). For this
purpose, let us define the following operators:

Definition 7.3 (Symmetrized gradient and divergence operator for homogenized plasticity).
We define the symmetrized gradient (for homogenized plasticity)

∇𝑠
(𝑥,𝑦) ∶ 𝐻

1
𝐷(Ω;ℝ

𝑑) × 𝑉0 → 𝐿2(Ω × 𝑌 ;ℝ𝑑×𝑑
𝑠 ), ∇𝑠

(𝑥,𝑦)(𝑢, 𝑣) ∶= 𝜋−1𝑟 ∇𝑠
𝑥𝑢 + ∇𝑠

𝑦𝑣.

For its adjoint, that is, the divergence operator (for homogenized plasticity), we write

div(𝑥,𝑦) ∶ 𝐿2(Ω × 𝑌 ;ℝ𝑑×𝑑
𝑠 ) → 𝐻−1

𝐷 (Ω;ℝ𝑑) × 𝑉 ∗
0 ,⟨div(𝑥,𝑦) 𝜎, (𝜑,𝜓)⟩ ∶= −⟨∇𝑠

(𝑥,𝑦)
∗𝜎, (𝜑,𝜓)⟩

= −∫Ω×𝑌
𝜎(𝑥, 𝑦)∶ (∇𝑠

𝑥𝜑(𝑥) + ∇𝑠
𝑦𝜓(𝑥, 𝑦))𝑑(𝑥, 𝑦).

For the replacement of (7.1a) to (7.1e), respectively (7.2a) to (7.2c), with a solution operator,
we need the following

Lemma 7.4 (Existence for linear elasticity). For every (𝐿1, 𝐿2) ∈ 𝐻−1
𝐷 (Ω;ℝ𝑑) × 𝑉 ∗

0 , there exists a
unique solution (𝑢, 𝑣) ∈ 𝐻1

𝐷(Ω;ℝ
𝑑) × 𝑉0 of

− div(𝑥,𝑦) ℂ∇𝑠
(𝑥,𝑦)(𝑢, 𝑣) = (𝐿1, 𝐿2) (7.3)

and there is a constant 𝐶 > 0, independent of 𝐿1 and 𝐿2, such that

‖(𝑢, 𝑣)‖𝐻1
𝐷(Ω;ℝ

𝑑 )×𝑉0 ≤ 𝐶
(‖𝐿1‖𝐻−1

𝐷 (Ω;ℝ𝑑 ) + ‖𝐿2‖𝑉 ∗
0

)
.
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Proof. The left hand side of (7.3) gives rise to a bilinear form 𝑏 on the Hilbert space 𝐻1
𝐷(Ω;ℝ

𝑑) ×
𝑉0:

𝑏
(
(𝑢, 𝑣), (𝜑,𝜓)

)
∶=

(
ℂ∇𝑠

(𝑥,𝑦)(𝑢, 𝑣),∇
𝑠
(𝑥,𝑦)(𝜑,𝜓)

)
𝐿2(Ω×𝑌 ;ℝ𝑑×𝑑

𝑠 )
.

Clearly, 𝑏 is bounded. Using Korn’s and Poincaré’s inequality for functions with zero mean
value, we obtain

𝑏
(
((𝑢, 𝑣), (𝑢, 𝑣)

) ≥ 𝑐‖∇𝑠
(𝑥,𝑦)(𝑢, 𝑣)‖2𝐿2(Ω×𝑌 ;ℝ𝑑×𝑑

𝑠 )

= 𝑐|𝑌 | ‖∇𝑠
𝑥𝑢‖2𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) + 𝑐‖∇𝑠
𝑦𝑣‖2𝐿2(Ω×𝑌 ;ℝ𝑑×𝑑

𝑠 )

≥ 𝐶
(‖𝑢‖𝐻1

𝐷(Ω;ℝ
𝑑 ) + ‖𝑣‖𝑉0(Ω×𝑌 ;ℝ𝑑 )

)2
for all (𝑢, 𝑣) ∈ 𝐻1

𝐷(Ω;ℝ
𝑑)×𝑉0, where we additionally used the 𝑌 -periodictiy of 𝑣 in the equation.

Hence, 𝑏 is also coercive so that the claim follows from the Lax-Milgram lemma.

Now we are in the position to reduce (7.1) to an equation in the variable 𝑧 only. For this
purpose, we need the following

Definition 7.5 (Operators 𝑅 and 𝑄 for homogenized plasticity). By Lemma 7.4, the solution oper-
ator associated with (7.3) and denoted by

 ∶=
(
− div(𝑥,𝑦) ℂ∇𝑠

(𝑥,𝑦)
)−1 ∶ 𝐻−1

𝐷 (Ω;ℝ𝑑) × 𝑉 ∗
0 → 𝐻1

𝐷(Ω;ℝ
𝑑) × 𝑉0,

is well defined, linear and bounded. Now, we have everything at hand to define the mappings 𝑅 and 𝑄
from our general equation (EVI) for the special case of homogenized plasticity:

𝑅∶ 𝐻−1
𝐷 (Ω;ℝ𝑑) ∋ 𝐿↦ 𝐵⊤ℂ∇𝑠

(𝑥,𝑦) (𝐿, 0) ∈ 𝐿2(Ω × 𝑌 ;𝕍 ),

𝑄∶ 𝐿2(Ω × 𝑌 ;𝕍 ) ∋ 𝑧↦ (𝐵⊤ℂ𝐵 + 𝔹)𝑧 − 𝐵⊤ℂ∇𝑠
(𝑥,𝑦) (− div(𝑥,𝑦)(ℂ𝐵𝑧)) ∈ 𝐿2(Ω × 𝑌 ;𝕍 ).

The reason for defining the operators 𝑄 and 𝑅 in the way we did in Definition 7.5 is the
following: Owing to Lemma 7.4, given 𝑧 ∈ 𝐿2(Ω × 𝑌 ;𝕍 ), one can solve (7.2a) to (7.2c) so that
the tuple (𝑢, 𝑣,Σ) ∈ 𝐻1

𝐷(Ω;ℝ
𝑑) × 𝑉0 × 𝐿2(Ω × 𝑌 ;ℝ𝑑×𝑑

𝑠 ) is uniquely determined by 𝑧. Even more,
using the operators from Definition 7.5, we see that the solution of (7.2a) to (7.2c) for given 𝑧
is

(𝑢, 𝑣) =  (𝑓 + 𝑔 − div(𝑥,𝑦)(ℂ𝐵𝑧), 0),
Σ = ℂ(∇𝑠

(𝑥,𝑦)(𝑢, 𝑣) − 𝐵𝑧).

Using the last equation and employing the definition of 𝑅 and 𝑄 in Definition 7.5 then yields

.
𝑧 ∈ 𝐴(𝐵⊤Σ − 𝔹𝑧) = 𝐴(𝑅𝓁 −𝑄𝑧), 𝑧(0) = 𝑧0, (7.4)

with 𝓁 = 𝑓 + 𝑔, i.e., exactly an evolution equation of the general form of (EVI). This shows
that the system (7.1) of homogenized plasticity fits into the setting analyzed in Part II. Let
us consider the operator 𝑄 and prove in particular the important coercivity in the following
lemma. Note that the proof is analog to Lemma 2.8, however, we present it for the sake of
completeness.

Lemma 7.6 (Properties of 𝑄). The operator 𝑄 from Definition 7.5 is self-adjoint and coercive .
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Proof. Since 𝔹 is symmetric and coercive, it is sufficient to prove that the operator 𝐵⊤ℂ𝐵 −
𝐵⊤ℂ∇𝑠

(𝑥,𝑦) (− div(𝑥,𝑦)(ℂ𝐵⋅)) = 𝑄 − 𝔹 ∈ (𝐿2(Ω × 𝑌 ;𝕍 )) is symmetric and positive. To prove the
symmetry, first observe that 𝐵⊤ℂ𝐵 is symmetric by the symmetry of ℂ. The symmetry of ℂ
moreover implies that  , i.e., the solution operator of (7.3), is self-adjoint . Therefore, we have
for all 𝑧1, 𝑧2 ∈ 𝐿2(Ω × 𝑌 ;𝕍 ) that

⟨𝐵⊤ℂ∇𝑠
(𝑥,𝑦) (− div(𝑥,𝑦)(ℂ𝐵𝑧1)), 𝑧2⟩𝐿2(Ω×𝑌 ;𝕍 )

= ⟨−div(𝑥,𝑦)(ℂ𝐵𝑧2),  (− div(𝑥,𝑦)(ℂ𝐵𝑧1))⟩
= ⟨ (− div(𝑥,𝑦)(ℂ𝐵𝑧2)),−div(𝑥,𝑦)(ℂ𝐵𝑧1)⟩
= ⟨𝑧1, 𝐵⊤ℂ∇𝑠

(𝑥,𝑦) (− div(𝑥,𝑦)(ℂ𝐵𝑧2))⟩𝐿2(Ω×𝑌 ;𝕍 )

so that 𝐵⊤ℂ∇𝑠
(𝑥,𝑦) (− div(𝑥,𝑦)(ℂ𝐵⋅)) is also symmetric. To show the positivity of 𝐵⊤ℂ𝐵 −

𝐵⊤ℂ∇𝑠
(𝑥,𝑦) (− div(𝑥,𝑦)(ℂ𝐵⋅)), let 𝑧 ∈ 𝐿2(Ω × 𝑌 ;𝕍 ) be arbitrary. To shorten the notation, we

abbreviate (𝑢𝑧, 𝑣𝑧) ∶=  (− div(𝑥,𝑦)(ℂ𝐵𝑧)). Then, by testing the equation for (𝑢𝑧, 𝑣𝑧), i.e., (7.3) with
(𝐿1, 𝐿2) = − div(𝑥,𝑦)(ℂ𝐵𝑧), with (−𝑢𝑧,−𝑣𝑧), we arrive at(

ℂ(𝐵𝑧 − ∇𝑠
(𝑥,𝑦)(𝑢𝑧, 𝑣𝑧),−∇

𝑠
(𝑥,𝑦)(𝑢𝑧, 𝑣𝑧)

)
𝐿2(Ω×𝑌 ;ℝ𝑑×𝑑

𝑠 )
= 0.

The coercivity of ℂ therefore implies(
𝐵⊤ℂ𝐵𝑧 − 𝐵⊤ℂ∇𝑠

(𝑥,𝑦)(𝑢𝑧, 𝑣𝑧), 𝑧
)
𝐿2(Ω×𝑌 ;𝕍 )

=
(
ℂ(𝐵𝑧 − ∇𝑠

(𝑥,𝑦)(𝑢𝑧, 𝑣𝑧), 𝐵𝑧
)
𝐿2(Ω×𝑌 ;ℝ𝑑×𝑑

𝑠 )

=
(
ℂ(𝐵𝑧 − ∇𝑠

(𝑥,𝑦)(𝑢𝑧, 𝑣𝑧), 𝐵𝑧 − ∇𝑠
(𝑥,𝑦)(𝑢𝑧, 𝑣𝑧)

)
𝐿2(Ω×𝑌 ;ℝ𝑑×𝑑

𝑠 )

≥ 0.

Since 𝑧 was arbitrary, this proves the positivity.

Let us collect our findings in the following

Theorem 7.7 (Transformation of homogenized plasticity into an EVI). Let 𝑓, 𝑔 ∈ 𝐻1(𝐻−1
𝐷 (Ω;ℝ𝑑))

and 𝑧0 ∈ 𝐿2(Ω × 𝑌 ;𝕍 ). Then (𝑢, 𝑣,Σ, 𝑧) ∈ 𝐻1(𝐻−1
𝐷 (Ω;ℝ𝑑) × 𝑉0 × 𝐿2(Ω × 𝑌 ;ℝ𝑑×𝑑

𝑠 ) × 𝐿2(Ω × 𝑌 ;𝕍 ))
is a solution of (7.1), if and only if 𝑧 ∈ 𝐻1(𝐿2(Ω × 𝑌 ;𝕍 ))) is a solution of (7.4) with 𝓁 = 𝑓 + 𝑔,
(𝑢, 𝑣) =  (𝓁 − div(𝑥,𝑦)(ℂ𝐵𝑧), 0) and Σ = ℂ(∇𝑠

(𝑥,𝑦)(𝑢, 𝑣) − 𝐵𝑧). Moreover, the operator 𝑄, involved in
(7.4) and given in Definition 7.5, is symmetric and coercive .

One can now proceed as in Chapter 6, that is, apply the general results from Part II to an
optimal control problem with (7.1) as a constraint. Since this procedure is similar to the one in
Chapter 6, we do not present this and only refer to MEINLSCHMIDT ET AL.[71], therein such an
optimal control problem was analyzed. As we already noted at the end of Chapter 6, the same
issue regarding a necessary norm gap will arise when using the findings in Section 5.3. Let us
additionally mention that one needs an analogon for Corollary 2.6 (when 𝑝 ≠ 2) for the case
of homogenized plasticity, however, this was also addressed in MEINLSCHMIDT ET AL. [71,
Lemma 7.6].

With the presentation of the transformation of homogenized plasticity into an EVI, exactly
of the form analyzed in Part II, this part already ends. As we have seen, both elasto and ho-
mogenized plasticity can be treated with the analysis given in Part II. In contrast, this will not
be the case in the upcoming part, where we will still be able to use results concerning 𝐻2 loads
from Chapter 4 but, in particular since the in Part IV arising operator  does not have the
boundedness property, the findings in Chapter 5 will not be directly applicable.
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As before and agreed upon in the beginning of Part I, we collect at first all needed assumptions
for this part.

Assumption IV. We impose the following assumptions according to The Assumption Agreement in
the beginning of Part I.

⟨IV.i⟩ Suppose that 𝐴 ∶ 𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) → 2𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) is a maximal monotone operator. Moreover,
for every 𝜆 > 0 the resolvent 𝑅𝜆 can be expressed pointwise, that is, there exists 𝑅̃𝜆 ∶ ℝ𝑑×𝑑

𝑠 →
ℝ𝑑×𝑑
𝑠 such that

𝑅𝜆(𝜏)(𝑥) = 𝑅̃𝜆(𝜏(𝑥)) f.a.a. 𝑥 ∈ Ω and ∀𝜏 ∈ 𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ). (7.5)

With a slight abuse of notation we denote also 𝑅̃𝜆 by 𝑅𝜆.
It is to be noted that this is the case in Section 3.2 for the subdifferential of an indicator

function of the pointwise defined set (Ω), where the resolvent is simply the projection onto
this set, see also (3.7).⟨IV.ii⟩ The density of Ω is given by 𝜌 > 0.⟨IV.iii⟩ We choose 𝑢0, 𝑣0 ∈ 𝐻1

𝐷(Ω;ℝ
𝑑) and 𝑧0 ∈ 𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) and define 𝑞0 ∶= ℂ∇𝑠𝑢0 − (ℂ +
𝔹)𝑧0 ∈ 𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ). Moreover, we assume that (𝑢0, 𝑣0, 𝑞0) is an element of 𝐷(), where
𝐷() is given in Definition 8.5.⟨IV.iv⟩ We set

𝔻 ∶= 𝔹(ℂ + 𝔹)−1ℂ and 𝔼 ∶= ℂ(ℂ + 𝔹)−1 (7.6)

and note that 𝔻 is symmetric and coercive , according to Lemma 8.4.

⟨8⟩ Let 𝑓 ∈ 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )) be given.

⟨9⟩ By 𝐽 ∶ 𝐿2() × 𝔛𝑐 → ℝ, 𝐽 (𝑢, 𝑣, 𝑧, 𝑓 ) ∶= Ψ(𝑢, 𝑣, 𝑧) + 𝛼
2‖𝑓‖2𝔛𝑐

we denote the objec-
tive function, where  is given in Definition 8.5 and the control space 𝔛𝑐 is a subspace of
𝐻1(𝐿2(Ω;ℝ𝑑)). We assume that Ψ ∶ 𝐿2() → ℝ is weakly lower semicontinuous, continu-
ous and bounded from below and that the Tikhonov paramenter 𝛼 is a positive constant.

⟨9.1⟩ Let the control space 𝔛𝑐 ↪ 𝐻1(𝐿2(Ω;ℝ𝑑)) be a Hilbert space such that  ∶ 𝐻1(𝐿2(Ω;ℝ𝑑)) →
𝐻2(𝐿2(Ω;ℝ𝑑)) with  (𝑓 )(𝑡) = ∫ 𝑡

0 𝑓 (𝑠)𝑑𝑠 (given in Definition 8.14) is compact from 𝔛𝑐 into
𝐿1(𝐿2(Ω;ℝ𝑑)).
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⟨9.2.i⟩ Let 𝑅𝑠 ∶ ℝ𝑑×𝑑
𝑠 → ℝ𝑑×𝑑

𝑠 be monotone, Lipschitz continuous and Fréchet differentiable.⟨9.2.ii⟩ We fix 2 < 𝑝̂ < 𝑝 < 𝑝, where 𝑝 is from Theorem 2.5, such that 2 − 𝑑
2 ≥ −𝑑

𝑟
.⟨9.2.iii⟩ Let (𝑢0, 𝑣0, 𝑞0) be an element of 𝑝, where 𝑝 is given in Assumption ⟨9.2.ii⟩ and 𝑝 in

Definition 8.5.

In this part we consider the case of plasticity with inertia, that is, we do not neglect the
second time derivative of the displacement, as was done in Chapter 2. That said, the system
of equations considered in Chapter 8 is the same as in Chapter 2 except that the inertia term
is added to the balance of momentum. Nonetheless, the system cannot be transformed into
an EVI as we did in Chapter 2, therein we used the fact that the balance of momentum, af-
ter replaceing the stress with the displacement and the plastic strain, can be solved when the
plastic strain is known, that is, the balance of momentum could be replaced with a solution
operator depending on the plastic strain (and, of course, the external forces and the prescribed
displacement). Clearly, due to the inertia term we cannot proceed analog. However, as we will
see in Lemma 8.6, one can still transform the system of plasticity with inertia into an EVI. To
this end, a new maximal monotone operator is introduced in Definition 8.5. Unfortunately, this
operator is not a subdifferential (Remark 8.16) and it can be easily seen that it does not even
fulfill the boundedness property (see Definition 3.5). Due to these facts, we cannot directly
apply the results given in Chapter 5. Nonetheless, since in Section 5.2 a regularized operator
was considered, we can still use the findings therein. To this end, after we have proven the
existence of a solution and given an a priori estimate in Section 8.2 and used the convergence
results presented in Section 4.2, we regularize the maximal monotone operator in Section 9.2 to
derive finally first order optimality conditions in form of a KKT system.

As we elaborated on in the beginning of Part I, the existing results about optimal control
of plasticity are rather scarce and, to the knowledge of the author, there are none concerning
plasticity with inertia. The findings given in this part are also not yet published.

Chapter 8 State Equation

We begin our investigation with the state equation. At first we give the definition of a solution
and then transform the state equation into an EVI with a new (maximal monotone) operator .
In Section 8.2 we prove the existence of a solution by showing that the operator  is maximal
monotone, then we can apply Theorem 4.7.

Let us note that the existence of a solution was already proven in GRÖGER [45, Theorem 5.1]
by using essentially the same transformation into an EVI as we will do. However, there it was
transformed into a second order EVI and the maximal monotonicity of the (slightly different)
operator given therein was proven in another way. In contrast, we consider a first order EVI
and will provide the concrete form of the resolvent in Proposition 8.11 (which will be also used
later in Section 9.2), the fact that  is maximal monotone will then follow easily.
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The formal strong formulation of the state equation reads

𝜌
..
𝑢 − ∇ ⋅ 𝜎 = 𝑓 in Ω, (8.1a)

𝜈 ⋅ 𝜎 = 0 on Γ𝑁 , (8.1b)
𝑢 = 0 on Γ𝐷, (8.1c)
𝜎 = ℂ(∇𝑠𝑢 − 𝑧) in Ω, (8.1d)
.
𝑧 ∈ 𝐴(𝜎 − 𝔹𝑧) in Ω, (8.1e)

(𝑢,
.
𝑢, 𝑧)(0) = (𝑢0, 𝑣0, 𝑧0) in Ω. (8.1f)

In contrast to elasto plasticity, the second time derivative of the displacement, multiplied with
the density 𝜌, is now present in (8.1a). Note that we have assumed that the density is constant
in Ω, see Assumption ⟨IV.ii⟩. It is possible to consider a density which has a spatial depen-
dency (that is, a function from Ω to (0,∞]), one has then in particular to verify that 𝑄, given
in Definition 8.5, is well defined, that is, the multiplication of 𝜌 (and also 1∕𝜌) with a Sobolev
function is again a Sobolev function. However, for simplicity we assume that 𝜌 is constant.
The description and physical interpretation of (8.1) are almost identical as in the case of elasto
plasticity, see Chapter 2.

Note that we consider only volume forces in (8.1). An adaption of the upcoming analysis to
include Neumann boundary forces and prescribed Dirichlet displacements is not straightfor-
ward, see Remark 8.8.

8.1 Definition and Transformation
Let us begin with the definition of a solution to the state equation (8.1), all necessary tools were
already established in Chapter 2.

Definition 8.1 (Solution to plasticity with inertia). We call 𝑢 ∈ 𝐻1(𝐻1
𝐷(Ω;ℝ

𝑑)) ∩𝐻2(𝐿2(Ω;ℝ𝑑)),
𝜎 ∈ 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )) and 𝑧 ∈ 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )) solution of (8.1) if

𝜌
..
𝑢 − divℂ(∇𝑠𝑢 − 𝑧) = 𝑓,

.
𝑧 ∈ 𝐴(ℂ∇𝑠𝑢 − (ℂ + 𝔹)𝑧),

(𝑢,
.
𝑢, 𝑧)(0) = (𝑢0, 𝑣0, 𝑧0)

(8.2)

holds, where the div operator is given in Definition 2.1, and we have 𝜎 = ℂ(∇𝑠𝑢 − 𝑧). Since 𝜎 can be
obtained directly from 𝑢 and 𝑧, we will also call (𝑢, 𝑧) a solution of (8.1) when it fulfills (8.2).

Before we can transform the state equation into an EVI we need to reformulate it, to this end
we introduce the following

Definition 8.2 (𝑧 to 𝑞 mapping). We define

𝔔 ∶ 𝐻1(Ω;ℝ𝑑) × 𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) → 𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ), (𝑢, 𝑧) ↦ ℂ∇𝑠𝑢 − (ℂ + 𝔹)𝑧

and its inverse (for fixed 𝑢)

ℨ ∶ 𝐻1(Ω;ℝ𝑑) × 𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) → 𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ), (𝑢, 𝑞) ↦ (ℂ + 𝔹)−1(ℂ∇𝑠𝑢 − 𝑞).

Note that we have defined these operators already in Definition 4.2, thus, with a slight abuse
of notation, we have redefined them above. However, these operators are strongly related, to
see this let us consider for a moment the case of elasto plasticity from Chapter 2. Due to (2.1d)
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and Theorem 2.9 we see that 𝑅𝓁 − 𝑄𝑧 = ℂ∇𝑠𝑢 − (ℂ + 𝔹)𝑧 holds, where 𝑅 and 𝑄 are given
in Definition 2.7. This justifies our notation for 𝔔 and we have defined ℨ again such that
𝔔(𝑢, ⋅)−1 = ℨ(𝑢, ⋅) holds for a fixed 𝑢 ∈ 𝐻1(Ω;ℝ𝑑).

For the following lemma recall the definition of 𝔻 and 𝔼 given in Assumption ⟨IV.iv⟩, that
is, 𝔻 = 𝔹(ℂ + 𝔹)−1ℂ and 𝔼 = ℂ(ℂ + 𝔹)−1.

Lemma 8.3 (Transformation of 𝑧 to 𝑞). We consider

𝜌
..
𝑢 − div(𝔻∇𝑠𝑢 + 𝔼𝑞) = 𝑓,

(ℂ + 𝔹)−1
.
𝑞 + 𝐴(𝑞) − 𝔼⊤∇𝑠 .𝑢 ∋ 0,

(𝑢,
.
𝑢, 𝑞)(0) = (𝑢0, 𝑣0, 𝑞0) = (𝑢0, 𝑣0,𝔔(𝑢0, 𝑧0))

(8.3)

for functions 𝑢 ∈ 𝐻1(𝐻1
𝐷(Ω;ℝ

𝑑))∩𝐻2(𝐿2(Ω;ℝ𝑑)), 𝑞 ∈ 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )). Recall that 𝔼⊤ is the adjoint

of 𝔼. Then the following holds:
When (𝑢, 𝑧) is a solution of (8.1), then (𝑢, 𝑞) = (𝑢,𝔔(𝑢, 𝑧)) solves (8.3). Vice versa, when (𝑢, 𝑞) solves

(8.3), then (𝑢, 𝑧) = (𝑢,ℨ(𝑢, 𝑞)) is a solution of (8.1).

Proof. Both implications can be immediately obtained by using the definition of 𝔔 and ℨ and
inserting 𝑧 in (8.2) and 𝑞 in (8.3), respectively (note that ℂ−ℂ(ℂ+𝔹)−1ℂ = (𝐼 −ℂ(ℂ+𝔹)−1)ℂ =
𝔹(ℂ + 𝔹)−1ℂ = 𝔻).

Lemma 8.4 (Properties of 𝔻). The tensor 𝔻 = 𝔹(ℂ + 𝔹)−1ℂ is symmetric and coercive .

Proof. Let 𝜏 ∈ ℝ𝑑×𝑑
𝑠 be arbitrary. Following GRÖGER [45, Lemma 4.2] we have

𝔹(ℂ + 𝔹)−1ℂ = 𝔹(ℂ + 𝔹)−1(ℂ + 𝔹 − 𝔹)
= 𝔹 − 𝔹(ℂ + 𝔹)−1𝔹
= 𝔹 − (ℂ + 𝔹 − ℂ)(ℂ + 𝔹)−1𝔹
= ℂ(ℂ + 𝔹)−1𝔹,

hence,

𝔹(ℂ + 𝔹)−1ℂ𝜏 ∶ 𝜏 = 𝔹(ℂ + 𝔹)−1ℂ𝜏 ∶
(
(ℂ + 𝔹)−1ℂ𝜏 + (ℂ + 𝔹)−1𝔹𝜏

)
= 𝔹(ℂ + 𝔹)−1ℂ𝜏 ∶ (ℂ + 𝔹)−1ℂ𝜏 + ℂ(ℂ + 𝔹)−1𝔹𝜏 ∶ (ℂ + 𝔹)−1𝔹𝜏
≥ 𝛾𝔹‖(ℂ + 𝔹)−1ℂ𝜏‖2ℝ𝑑×𝑑

𝑠
+ 𝛾ℂ‖(ℂ + 𝔹)−1𝔹𝜏‖2ℝ𝑑×𝑑

𝑠
.

Furthermore, we have

‖𝜏‖ℝ𝑑×𝑑
𝑠

= ‖ℂ−1(ℂ + 𝔹)(ℂ + 𝔹)−1ℂ𝜏‖ℝ𝑑×𝑑
𝑠

≤ ‖ℂ−1(ℂ + 𝔹)‖ ‖(ℂ + 𝔹)−1ℂ𝜏‖ℝ𝑑×𝑑
𝑠

and analog

‖𝜏‖ℝ𝑑×𝑑
𝑠

≤ ‖𝔹−1(ℂ + 𝔹)‖ ‖(ℂ + 𝔹)−1𝔹𝜏‖ℝ𝑑×𝑑
𝑠
,

so that we finally arrive at

𝔹(ℂ + 𝔹)−1ℂ𝜏 ∶ 𝜏 ≥ ( 𝛾𝔹‖ℂ−1(ℂ + 𝔹)‖2 +
𝛾ℂ‖𝔹−1(ℂ + 𝔹)‖2)‖𝜏‖2ℝ𝑑×𝑑

𝑠
,

which completes the proof.
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We are now in the position to introduce the EVI, respectively the operator .

Definition 8.5 (The operator ). For 𝑝 ∈ [1,∞] we set

𝑝 ∶= 𝑊 1,𝑝
𝐷 (Ω;ℝ𝑑) × 𝐿2(Ω;ℝ𝑑) × 𝐿𝑝(Ω;ℝ𝑑×𝑑

𝑠 ) and  ∶= 2

The scalar product on  is defined by(
(𝑢1, 𝑣1, 𝑞1), (𝑢2, 𝑣2, 𝑞2)

)
 ∶=

(
𝔻∇𝑠𝑢1,∇𝑠𝑢2

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) +
(
𝑣1, 𝑣2

)
𝐿2(Ω;ℝ𝑑 ) +

(
𝑞1, 𝑞2

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) .

We define

 ∶ 𝐷() → 2 , (𝑢, 𝑣, 𝑞) ↦
⎛⎜⎜⎝

−𝑣
−div(𝔻∇𝑠𝑢 + 𝔼𝑞)
𝐴(𝑞) − 𝔼⊤∇𝑠𝑣

⎞⎟⎟⎠
with the domain

𝐷() ∶= {(𝑢, 𝑣, 𝑞) ∈ 𝐻1
𝐷(Ω;ℝ

𝑑) ×𝐻1
𝐷(Ω;ℝ

𝑑) ×𝐷(𝐴) ∶ div(𝔻∇𝑠𝑢 + 𝔼𝑞) ∈ 𝐿2(Ω;ℝ𝑑)}.

Moreover, we set

𝑅 ∶ 𝐿2(Ω;ℝ𝑑) → ∞, 𝑓 ↦ (0, 𝑓 , 0)

and

𝑄 ∶= (𝐼, (1∕𝜌)𝐼,ℂ + 𝔹).

Lemma 8.6 (Transformation into an EVI). The tuple (𝑢, 𝑞) solves (8.3) if and only if (𝑢, 𝑣, 𝑞) =
(𝑢,

.
𝑢, 𝑞) ∈ 𝐻1() is a solution of

𝑄−1(
.
𝑢,

.
𝑣,

.
𝑞) +(𝑢, 𝑣, 𝑞) ∋ 𝑅𝑓, (𝑢, 𝑣, 𝑞)(0) = (𝑢0, 𝑣0, 𝑞0). (8.4)

Proof. This follows immediately from the definition of .

We emphasize that this is essentially the same EVI as (EVI𝑞) but with 𝑓 instead of
.
𝓁, that

is, we gain regularity in time so that plasticity with inertia fits into the setting of Part II with
𝐻2-loads.

Remark 8.7 (Consequences of the transformation). We note that this transformation has some con-
sequences for the optimal control problem and its regularization discussed in Chapter 9. A first approach
to regularize (8.1) would be to simply regularize the operator 𝐴, as we did in the case of elasto plasticity.
However, our approach is different, due to the transformation into an EVI we can regularize the operator, this is our method in Section 8.3 and Chapter 9. We also mention that the fact that 𝑣 =

.
𝑢 will be lost

after the regularization (cf. Corollary 9.4 and Definition 9.6) and that we will transform our objective
function in Definition 9.1, so that we obtain an optimal control problem with respect to the state (𝑢, 𝑣, 𝑞)
in (9.2). The KKT-conditions given in Theorem 9.13 below are then also formulated for this transformed
problem.

Remark 8.8 (Neumann surface forces and Dirichlet displacement). Let us shortly discuss some
issues with possible surface forces and Dirichlet displacements. Regarding surface forces, they are cur-
rently equal to zero and contained in the domain 𝐷() by the requirement div(𝔻∇𝑠𝑢+𝔼𝑞) ∈ 𝐿2(Ω;ℝ𝑑)
(see Definition 2.1 and the explanation thereafter). Allowing now surface forces which are time depen-
dent, the domain, and thus  itself, would also depend on the time.
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An approach for Dirichlet displacements would be to exchange the displacement with a “new” dis-
placement minus the Dirichlet displacement, then one could still define the domain 𝐷() as a subset of
𝐻1
𝐷(Ω;ℝ

𝑑) ×𝐻1
𝐷(Ω;ℝ

𝑑) × 𝐷(𝐴). However, this would again make the domain and the operator itself
time dependent (the Dirichlet displacement would occur also in the operator).

In both cases one could still show that the arising operator is maximal monotone for a fixed time,
but for different points in time the monotonicity would be perturbed by the time dependent functions.
Having now a closer look at Theorem 4.7, respectively ZEIDLER [110, Theorem 55.A], we see that a
comparison of two different points in time is used to derive a priori estimates. Following this proof, the
time depend functions would occur and a straightforward adaption is not possible.

At this juncture, let us also elaborate on the underlying spaces of the operator . One might try to
exchange 𝐿2(ℝ; Ω) with a negative Sobolev space in the definition of  to allow surface forces. However,
with this definition of , for instance, the proof of Lemma 8.12 (which is used to show the monotonicity
of ) would not be valid anymore. Thus, our choice of  seems reasonable.

8.2 Existence of a Solution
We prove now the existence of a solution to (8.1) by using Theorem 4.7, thus we need to
show that  is maximal monotone. Since the monotonicity of  can be easily obtained (cf.
Lemma 8.12), it remains to prove that the resolvent exists (cf. the proof of Proposition 8.13).
For this it is sufficient to show the existence of a solution to (8.9) in the case 𝑝 = 2. However,
since the existence and Lipschitz continuity for 𝑝 > 2 is needed to derive optimality conditions
in Section 9.2, we already provide the following corollary for later needed results.

Corollary 8.9 (Extended nonlinear elasticity). Let 𝜆 > 0 and 𝑝 ∈ [2, 𝑝], where 𝑝 is from Theorem 2.5,
with 2 − 𝑑

2 ≥ −𝑑
𝑝

. We assume that there exist 𝑚,𝑀,𝐷 ∈ ℝ, 𝐷 ≥ 0 < 𝑚 ≤ 𝑀 , such that the family of
functions {𝑏𝜎 ∶ Ω ×ℝ𝑑×𝑑

𝑠 → ℝ𝑑×𝑑
𝑠 }𝜎∈ℝ𝑑×𝑑

𝑠
has the following properties:

𝑏0(⋅, 0) ∈ 𝐿∞(Ω;ℝ𝑑×𝑑
𝑠 ), (8.5)

𝑏𝜎(⋅, 𝜏) is measurable, (8.6)

(𝑏𝜎(𝑥, 𝜏) − 𝑏𝜎(𝑥, 𝜏))∶ (𝜏 − 𝜏) +𝐷(|𝜎 − 𝜎| + |𝜏 − 𝜏|)|𝜎 − 𝜎| ≥ 𝑚|𝜏 − 𝜏|2, (8.7)|𝑏𝜎(𝑥, 𝜏) − 𝑏𝜎(𝑥, 𝜏)| ≤𝑀
(|𝜏 − 𝜏| + |𝜎 − 𝜎|) (8.8)

for almost all 𝑥 ∈ Ω and all 𝜎, 𝜎, 𝜏, 𝜏 ∈ ℝ𝑑×𝑑
𝑠 .

Then for every 𝜑 ∈ 𝐿𝑝(Ω;ℝ𝑑×𝑑
𝑠 ) and 𝐿 ∈ 𝑊 −1,𝑝

𝐷 (Ω;ℝ𝑑) there exists a unique solution 𝑢 ∈
𝑊 1,𝑝
𝐷 (Ω;ℝ𝑑) of

−div 𝑏𝜑(⋅,∇𝑠𝑢) + 𝑢
𝜆2

= 𝐿.

Moreover, there exists a constant 𝐶 such that the inequality

‖𝑢1 − 𝑢2‖𝑊 1,𝑝(Ω;ℝ𝑑 ) ≤ 𝐶
(‖𝜑1 − 𝜑2‖𝐿𝑝(Ω;ℝ𝑑×𝑑

𝑠 ) + ‖𝐿1 − 𝐿2‖𝑊 −1,𝑝
𝐷 (Ω;ℝ𝑑 )

)
holds for all 𝜑1, 𝜑2 ∈ 𝐿𝑝(Ω;ℝ𝑑×𝑑

𝑠 ) and 𝐿1, 𝐿2 ∈ 𝑊 −1,𝑝
𝐷 (Ω;ℝ𝑑), where 𝑢1 and 𝑢2 are the solutions with

respect to (𝜑1, 𝐿1) and (𝜑2, 𝐿2).

Proof. Note that 𝑏𝜎(⋅, 𝜏) ∈ 𝐿𝑝(Ω;ℝ𝑑×𝑑
𝑠 ) holds for all 𝜏, 𝜎 ∈ 𝐿𝑝(Ω;ℝ𝑑×𝑑

𝑠 ) (and in fact for all 𝑝 ∈
[1,∞]), which follows from (8.5), (8.6) and (8.8) (taking into account that a pointwise limit of
measurable functions is also measurable, see [104, Corollary 3.1.5]).

72



Chapter 8 State Equation

Let us at first consider the case 𝑝 = 2. Then the existence of a solution follows from the
Browder-Minty theorem, Korn’s inequality and the Poincaré inequality. In order to verify the
inequality, let 𝜑1, 𝜑2 ∈ 𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ),𝐿1, 𝐿2 ∈ 𝐻−1(Ω;ℝ𝑑) and 𝑢1, 𝑢2 ∈ 𝐻1
𝐷(Ω;ℝ

𝑑) the correspond-
ing solutions. Then we obtain

⟨𝐿1 − 𝐿2, 𝑢1 − 𝑢2⟩ = (
𝑏𝜑1(⋅)(⋅,∇

𝑠𝑢1(⋅)) − 𝑏𝜑2(⋅)(⋅,∇
𝑠𝑢2(⋅)),∇𝑠(𝑢1 − 𝑢2)

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) +
‖‖‖‖𝑢1 − 𝑢2𝜆

‖‖‖‖2𝐿2(Ω;ℝ𝑑 )

≥ 𝑚‖∇𝑠(𝑢1 − 𝑢2)‖2𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) −𝐷‖𝜑1 − 𝜑2‖2𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )

−𝐷 ∫Ω
|∇𝑠(𝑢1 − 𝑢2)| |𝜑1 − 𝜑2| + 1

𝜆2
‖𝑢1 − 𝑢2‖2𝐿2(Ω;ℝ𝑑 ),

hence, the asserted inequality is fulfilled.
For the general case let now 𝜑 ∈ 𝐿∞(Ω;ℝ𝑑×𝑑

𝑠 ) and 𝐿 ∈ 𝑊 −1,𝑝
𝐷 (Ω;ℝ𝑑), we define 𝑏 ∶ Ω ×

ℝ𝑑×𝑑
𝑠 → ℝ𝑑×𝑑

𝑠 by

𝑏(𝑥, 𝜏) ∶= 𝑏𝜑(𝑥)(𝑥, 𝜏)

and 𝐿𝑢 ∈ 𝑊 −1,𝑝
𝐷 (Ω;ℝ𝑑) by

⟨𝐿𝑢, 𝑣⟩ ∶= ⟨𝐿, 𝑣⟩ − 1
𝜆2

(𝑢, 𝑣)𝐿2(Ω;ℝ𝑑 ) ,

where 𝑢 ∈ 𝐻1
𝐷(Ω;ℝ

𝑑) ↪ 𝐿𝑞(Ω;ℝ𝑑), with 1 − 𝑑
2 = −𝑑

𝑞
when 𝑑 > 2 and 𝑞 = ∞ otherwise, is the

solution in the case 𝑝 = 2 and 𝑣 ∈ 𝑊 1,𝑝′(Ω;ℝ𝑑) ↪ 𝐿𝑞′(Ω;ℝ𝑑) (note that 1 − 𝑑
𝑝′
+ 𝑑

𝑞′
= 1 + 𝑑

𝑝
− 𝑑

𝑞
=

2 + 𝑑
𝑝
− 𝑑

2 ≥ 0 when 𝑑 > 2 and 1 − 𝑑
𝑝′
+ 𝑑

𝑞′
= 1 − 𝑑

𝑝′
+ 𝑑 ≥ 1 ≥ 0 otherwise). We can now apply

Theorem 2.5 (here we need 𝜑 ∈ 𝐿∞(Ω;ℝ𝑑×𝑑
𝑠 ) to satisfy (2.8)) to obtain 𝑢 ∈ 𝑊 1,𝑝

𝐷 (Ω;ℝ𝑑) such that(
𝑏(⋅,∇𝑠𝑢),∇𝑠𝑣

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) = ⟨𝐿𝑢, 𝑣⟩,
that is, (

𝑏𝜑(⋅,∇𝑠𝑢),∇𝑠𝑣
)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) +
1
𝜆2

(𝑢, 𝑣)𝐿2(Ω;ℝ𝑑 ) = ⟨𝐿, 𝑣⟩,
holds for all 𝑣 ∈ 𝑊 1,𝑝′

𝐷 (Ω;ℝ𝑑), we get in particular 𝑢 = 𝑢 ∈ 𝑊 1,𝑝
𝐷 (Ω;ℝ𝑑) since 𝑢 is the unique

solution of the equation above for all 𝑣 ∈ 𝐻1
𝐷(Ω;ℝ

𝑑).
To prove the asserted inequality let 𝜑1, 𝜑2 ∈ 𝐿∞(Ω;ℝ𝑑×𝑑

𝑠 ), 𝐿1, 𝐿2 ∈ 𝑊 −1,𝑝
𝐷 (Ω;ℝ𝑑) and 𝑢1, 𝑢2 ∈

𝑊 1,𝑝(Ω;ℝ𝑑) the corresponding solutions and define 𝐿𝑢1 , 𝐿𝑢2 as before. Considering the proof
of HERZOG ET AL. [50, Theorem 1.1] (GRÖGER [46, Theorem 1], respectively) one can see that
there exists a constant 𝑐 > 0, depending only on 𝑝, 𝑚 and 𝑀 (thus not on 𝐿1, 𝐿2, 𝜑1, 𝜑2), such
that

‖𝑢1 − 𝑢2‖𝑊 1,𝑝(Ω;ℝ𝑑 ) ≤ 𝑐‖𝐴1(𝑢2) − 𝐴2(𝑢2) − 𝐿𝑢1 + 𝐿𝑢2‖𝑊 −1,𝑝
𝐷 (Ω;ℝ𝑑 ),

where 𝐴𝑖 ∶ 𝑊 1,𝑝(Ω;ℝ𝑑) → 𝑊 −1,𝑝
𝐷 (Ω;ℝ𝑑) is defined by

⟨𝐴𝑖(𝑣1), 𝑣2⟩ ∶= (
𝑏𝜑𝑖(⋅,∇

𝑠𝑣1),∇𝑠𝑣2
)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )
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for all 𝑣1 ∈ 𝑊 1,𝑝(Ω;ℝ𝑑), 𝑣2 ∈ 𝑊 1,𝑝′(Ω;ℝ𝑑) and for 𝑖 ∈ {1, 2}. We finally obtain

‖𝑢1 − 𝑢2‖𝑊 1,𝑝(Ω;ℝ𝑑 ) ≤ 𝑐
(‖𝐴1(𝑢2) − 𝐴2(𝑢2)‖𝑊 −1,𝑝

𝐷 (Ω;ℝ𝑑 ) + ‖𝐿𝑢1 − 𝐿𝑢2‖𝑊 −1,𝑝
𝐷 (Ω;ℝ𝑑 )

)
≤ 𝑐

(
𝑀‖𝜑1 − 𝜑2‖𝐿𝑝(Ω;ℝ𝑑×𝑑

𝑠 ) + ‖𝐿1 − 𝐿2‖𝑊 −1,𝑝
𝐷 (Ω;ℝ𝑑 )

+ 𝐶
𝜆2

‖𝑢1 − 𝑢2‖𝐻1(Ω;ℝ𝑑 )

)
,

where we have used again the embeddings 𝐻1(Ω;ℝ𝑑) ↪ 𝐿𝑞(Ω;ℝ𝑑) and 𝑊 1,𝑝′(Ω;ℝ𝑑) ↪
𝐿𝑞′(Ω;ℝ𝑑). Taking into account that the assertion is already proven in the case 𝑝 = 2, we
see that the desired inequality holds.

One can now obtain the result for all 𝜑1, 𝜑2 ∈ 𝐿𝑝(Ω;ℝ𝑑×𝑑
𝑠 ) by an approximation (using the

just proven inequality to see that the corresponding sequence 𝑢𝑛 is a Cauchy sequence).

The operator 𝑅0 in the following proposition will later be the resolvent, or a smoothed ver-
sion of the resolvent, of 𝐴 and should not be confused with 𝑅 from Definition 8.5.

Proposition 8.10 (Solution operator 𝑅0
). Let 𝜆 > 0 and 𝑝 ≥ 2 as in Corollary 8.9 and ℎ =

(ℎ1, ℎ2, ℎ3) ∈ 𝑝. Moreover, let 𝑅0 ∶ ℝ𝑑×𝑑
𝑠 → ℝ𝑑×𝑑

𝑠 be Lipschitz continuous and monotone. Then
there exists a unique solution 𝑢 ∈ 𝑊 1,𝑝

𝐷 (Ω;ℝ𝑑) of

−div(𝔻∇𝑠𝑢 + 𝔼𝑅0(𝔼⊤∇𝑠(𝑢 − ℎ1) + ℎ3)) =
ℎ2
𝜆

+
ℎ1 − 𝑢
𝜆2

. (8.9)

We denote the solution operator of this equation by 𝑅0
∶ 𝑝 → 𝑊 1,𝑝

𝐷 (Ω;ℝ𝑑), that is, 𝑅0
(ℎ) = 𝑢.

Furthermore, 𝑅0
is Lipschitz continuous. Note that the dependency of 𝑅0

on 𝜆 and 𝑝 will always be
clear from the context.

Proof. For all 𝜎 ∈ ℝ𝑑×𝑑
𝑠 we define 𝑏𝜎 ∶ Ω ×ℝ𝑑×𝑑

𝑠 → ℝ𝑑×𝑑
𝑠 by

𝑏𝜎(𝑥, 𝜏) ∶= 𝔻𝜏 + 𝔼𝑅0(𝔼⊤𝜏 + 𝜎),

then the assertion follows from Corollary 8.9 (with 𝜑 ∶= −𝔼⊤∇𝑠ℎ1 + ℎ3 for a given ℎ ∈ 𝑝), let
us only prove that (8.7) is fulfilled, the other requirements can be easily checked. To this end
let 𝜎, 𝜎, 𝜏, 𝜏 ∈ ℝ𝑑×𝑑

𝑠 , then

(𝑏𝜎(𝑥, 𝜏) − 𝑏𝜎(𝑥, 𝜏))∶ (𝜏 − 𝜏)

≥ 𝛾𝔻|𝜏 − 𝜏|2 + (
𝑅0(𝔼⊤𝜏 + 𝜎) − 𝑅0(𝔼⊤𝜏 + 𝜎)

)
∶
(
𝔼⊤(𝜏 − 𝜏) + (𝜎 − 𝜎)

)
−
(
𝑅0(𝔼⊤𝜏 + 𝜎) − 𝑅0(𝔼⊤𝜏 + 𝜎)

)
∶ (𝜎 − 𝜎)

≥ 𝛾𝔻|𝜏 − 𝜏|2 − 𝐿𝑅0
|𝜎 − 𝜎|2 − 𝐿𝑅0

‖𝔼‖ |𝜏 − 𝜏| |𝜎 − 𝜎|
holds, where 𝐿𝑅0

is the Lipschitz constant of 𝑅0.

Note that 𝑅𝜆 ∶ ℝ𝑑×𝑑
𝑠 → ℝ𝑑×𝑑

𝑠 (see Assumption ⟨IV.i⟩) fulfills the requirements in Propo-
sition 8.10 since 𝑅𝜆 ∶ 𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) → 𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) is Lipschitz continuous and also monotone

(Proposition 3.7 Item (iii) and Proposition 3.9 Item (iii)) and due to (7.5) these properties carry
over to 𝑅𝜆 ∶ ℝ𝑑×𝑑

𝑠 → ℝ𝑑×𝑑
𝑠 .

Let us also mention that 𝑅0 in Proposition 8.10 does not have to be monotone, the inequality

(𝑅0(𝑎) − 𝑅0(𝑏))∶ (𝑎 − 𝑏) ≥ −𝜀|𝑎 − 𝑏|2
for 𝑎, 𝑏 ∈ ℝ𝑑×𝑑

𝑠 with 𝜀 < 𝛾𝔻∕‖𝔼⊤‖2 would be sufficient.
We can now prove the existence of the resolvent of , from which we can then derive the

maximal monotonicity of  in Proposition 8.13 below.
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Proposition 8.11 (Existence of the resolvent of ). For every 𝜆 > 0 and ℎ = (ℎ1, ℎ2, ℎ3) ∈ , the
tuple

⎛⎜⎜⎝
𝑢
𝑣
𝑞

⎞⎟⎟⎠ =
⎛⎜⎜⎝

𝑅𝜆(ℎ)
1
𝜆
(𝑅𝜆(ℎ) − ℎ1)

𝑅𝜆(𝔼⊤∇𝑠(𝑅𝜆(ℎ) − ℎ1) + ℎ3)
⎞⎟⎟⎠

is contained in 𝐷() and the unique solution of (𝑢, 𝑣, 𝑞) + 𝜆(𝑢, 𝑣, 𝑞) ∋ ℎ.

Proof. Using the definition of 𝑅𝜆 we get

−𝜆 div(𝔻∇𝑠𝑢 + 𝔼𝑞) = ℎ2 − 𝑣,

which is the second row in (𝑢, 𝑣, 𝑞) + 𝜆(𝑢, 𝑣, 𝑞) ∋ ℎ and we also get (𝑢, 𝑣, 𝑞) ∈ 𝐷() (note that
𝑟𝑔(𝑅𝜆) ⊂ 𝐷(𝐴)). That the first and last row in (𝑢, 𝑣, 𝑞) + 𝜆(𝑢, 𝑣, 𝑞) ∋ ℎ is also fulfilled follows
immediately from the definitions of 𝑢, 𝑣 and 𝑞.

Furthermore, when (𝑢, 𝑣, 𝑞) is a solution of (𝑢, 𝑣, 𝑞) + 𝜆(𝑢, 𝑣, 𝑞) ∋ ℎ, then one verifies analog
that (𝑢, 𝑣, 𝑞) must have the claimed form, therefore the uniqueness follows from the uniqueness
of a solution to (8.9).

Lemma 8.12 (Monotonicity of ). The equation((𝑢1, 𝑣1, 𝑞1) −(𝑢2, 𝑣2, 𝑞2), (𝑢1, 𝑣1, 𝑞1) − (𝑢2, 𝑣2, 𝑞2)
)
 =

(
𝐴(𝑞1) − 𝐴(𝑞2), 𝑞1 − 𝑞2

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )

holds for all (𝑢1, 𝑣1, 𝑞1), (𝑢2, 𝑣2, 𝑞2) ∈ 𝐷().

Proof. Using the definition of  and the scalar product in  we obtain((𝑢1, 𝑣1, 𝑞1), (𝑢1, 𝑣1, 𝑞1) − (𝑢2, 𝑣2, 𝑞2)
)


= −
(
𝔻∇𝑠𝑣1,∇𝑠(𝑢1 − 𝑢2)

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) −
(
div(𝔻∇𝑠𝑢1 + 𝔼𝑞1), 𝑣1 − 𝑣2

)
𝐿2(Ω;ℝ𝑑 )

+
(
𝐴(𝑞1) − 𝔼⊤∇𝑠𝑣1, 𝑞1 − 𝑞2

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )

=
(
𝔻∇𝑠𝑣1,∇𝑠𝑢2

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) −
(
𝔻∇𝑠𝑢1,∇𝑠𝑣2

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) −
(
𝔼⊤∇𝑠𝑣2, 𝑞1

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )

+
(
𝔼⊤∇𝑠𝑣1, 𝑞2

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) +
(
𝐴(𝑞1), 𝑞1 − 𝑞2

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) ,

evaluating now
((𝑢2, 𝑣2, 𝑞2), (𝑢1, 𝑣1, 𝑞1) − (𝑢2, 𝑣2, 𝑞2)

)
 and taking the difference yields the as-

sertion.

Proposition 8.13 ( is maximal monotone). The operator  ∶  → 2 is maximal monotone.

Proof. The monotonicity of  follows immediately from Lemma 8.12 and the monotonicity of
𝐴.

To prove that  is maximal monotone, it is, according to Proposition 3.7, sufficient that
𝑅(𝐼+) = , that is, we have to show that for every (ℎ1, ℎ2, ℎ3) ∈  there exists (𝑢, 𝑣, 𝑞) ∈ 𝐷()
such that (𝑢, 𝑣, 𝑞) +(𝑢, 𝑣, 𝑞) ∋ (ℎ1, ℎ2, ℎ3). This follows from Proposition 8.11 with 𝜆 = 1.

In what follows it is convenient to give the integration operator a name.

Definition 8.14 (Integration operator). We define  ∶ 𝐻1(𝐿2(Ω;ℝ𝑑)) → 𝐻2(𝐿2(Ω;ℝ𝑑)) by
(𝑓 )(𝑡) ∶= ∫ 𝑡

0 𝑓 (𝑠)𝑑𝑠 for all 𝑓 ∈ 𝐻1(𝐿2(Ω;ℝ𝑑)). Moreover, we abbreviate 𝜌 ∶= ∕𝜌. As usual,
we denote the operators with different inverse images and ranges with the same symbol, for instance ∶ 𝐿2(𝐿2(Ω;ℝ𝑑)) → 𝐻1(𝐿2(Ω;ℝ𝑑)).
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Theorem 8.15 (Existence of a solution to the state equation). There exists a unique solution
(𝑢, 𝑣, 𝑞) ∈ 𝐻1() of (8.4). Moreover, the inequality

‖( .𝑢, .𝑣, .𝑞)‖𝐿2() ≤ 𝐶(1 + ‖𝑓‖𝐻1(𝐿2(Ω;ℝ𝑑 )))

holds, where the constant 𝐶 does not depend on 𝑓 .

Proof. The tuple (𝑢, 𝑣, 𝑞) is a solution of (8.4) if and only if 𝑤 ∈ 𝐻1() solves

.
𝑤 +𝑄(𝑤) ∋ 𝑅

.
𝐹 , 𝑤(0) = (𝑢0, 𝑣0, 𝑞0),

where 𝐹 ∶= 𝜌𝑓 ∈ 𝐻2(𝐿2(Ω;ℝ𝑑)), and 𝑤 = (𝑢, 𝑣, 𝑞) (recall the notation of 𝑄 given in Defini-
tion 3.3 and note that 𝑄𝑅 = (0, 𝜌 ⋅, 0)). The assertion follows now from Theorem 4.7.

Remark 8.16 ( is not a subdifferential). Let us show that the maximal monotone operator  ∶  → is not a subdifferential, that is, there exists no proper, convex and lower semicontinuous function
Φ ∶  → (−∞,∞] such that

(𝑢, 𝑣, 𝑞) = 𝜕Φ(𝑢, 𝑣, 𝑞) = {(𝑐, 𝑑, 𝑒) ∈  ∶ Φ(𝑢̂, 𝑣̂, 𝑞) ≥ Φ(𝑢, 𝑣, 𝑞)
+ ((𝑐, 𝑑, 𝑒), (𝑢̂ − 𝑢, 𝑣̂ − 𝑣, 𝑞 − 𝑞)) ∀(𝑢̂, 𝑣̂, 𝑞) ∈ }

holds for all (𝑢, 𝑣, 𝑞) ∈ . In fact, there exists even not any function Φ ∶  → (−∞,∞] such that the
equation above holds, which can be seen as follows:

Let us assume that such a Φ exists and recall that (𝑢0, 𝑣0, 𝑞0) ∈ 𝐷() according to Assump-
tion ⟨IV.iii⟩. Then, using Lemma 8.12 with (𝑢1, 𝑣1, 𝑞1) = (𝑢 + 𝑢0, 𝑣, 𝑞0) and (𝑢2, 𝑣2, 𝑞2) = (𝑢0, 0, 𝑞0),

Φ(𝑢0, 0, 𝑞0) ≥ Φ(𝑢 + 𝑢0, 𝑣, 𝑞0) −
((𝑢 + 𝑢0, 𝑣, 𝑞0), (𝑢, 𝑣, 0)

)


= Φ(𝑢 + 𝑢0, 𝑣, 𝑞0) −
((𝑢0, 0, 𝑞0), (𝑢, 𝑣, 0)

)
≥ Φ(𝑢0, 0, 𝑞0) +

((𝑢0, 0, 𝑞0), (𝑢, 𝑣, 0)
)
 −

((𝑢0, 0, 𝑞0), (𝑢, 𝑣, 0)
)


= Φ(𝑢0, 0, 𝑞0)

holds for all (𝑢, 𝑣) such that (𝑢 + 𝑢0, 𝑣, 𝑞0) ∈ 𝐷(), hence,((𝑢0, 0, 𝑞0), (𝑢̂ − 𝑢, 𝑣̂ − 𝑣, 0)
)
 = Φ(𝑢̂ + 𝑢0, 𝑣̂, 𝑞0) − Φ(𝑢 + 𝑢0, 𝑣, 𝑞0)
≥ ((𝑢 + 𝑢0, 𝑣, 𝑞0), (𝑢̂ − 𝑢, 𝑣̂ − 𝑣, 0)

)


which gives

0 ≥ (𝔻∇𝑠𝑢,∇𝑠𝑣̂) − (𝔻∇𝑠𝑢̂,∇𝑠𝑣)
for all (𝑢̂, 𝑣̂), (𝑢, 𝑣) such that (𝑢 + 𝑢0, 𝑣, 𝑞0), (𝑢̂ + 𝑢0, 𝑣̂, 𝑞0) ∈ 𝐷(). Choosing now an arbitrary 𝑢 ∈
𝐶∞
𝑐 (Ω;ℝ𝑑), 𝑢 ≠ 0, 𝑣̂ = 𝑢 and 𝑢̂ = 𝑣 = 0, we obtain the desired contradiction.

In light of Remark 8.16, the case of plasticity with inertia essentially differs from elasto and
homogenized plasticity in two aspects. First, we gain more regularity in time as explained
after Lemma 8.6. Second, we lose the fact that  has the boundedness property (which is easily
seen by its definition) and it is not a subdifferential. This is exactly the second case we have
considered in Chapter 4. It is also to be noted that Remark 8.16 is independent of the operator
𝐴.
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8.3 Regularization and Convergence Results

As explained above, the case of plasticity of inertia fits into the case of EVIs with 𝐻2-loads con-
sidered in Part II (as was already the case for Theorem 8.15) so that we can apply Theorem 4.14
and Corollary 4.15.

Theorem 8.17 (Weak convergence of the state). Let {𝑓𝑛}𝑛∈ℕ ⊂ 𝐻1(𝐿2(Ω;ℝ𝑑)) such that 𝑓𝑛 ⇀ 𝑓
in 𝐻1(𝐿2(Ω;ℝ𝑑)) and 𝑓𝑛 → 𝑓 in 𝐿1(𝐿2(Ω;ℝ𝑑)). Moreover, let (𝑢, 𝑣, 𝑞) ∈ 𝐻1() be the solution of
(8.4) and (𝑢𝑛, 𝑣𝑛, 𝑞𝑛) ∈ 𝐻1(), for every 𝑛 ∈ ℕ, the solution of

𝑄−1(
.
𝑢𝑛,

.
𝑣𝑛,

.
𝑞𝑛) +(𝑢𝑛, 𝑣𝑛, 𝑞𝑛) ∋ 𝑅𝑓𝑛, (𝑢𝑛, 𝑣𝑛, 𝑞𝑛)(0) = (𝑢0, 𝑣0, 𝑞0)

or

𝑄−1(
.
𝑢𝑛,

.
𝑣𝑛,

.
𝑞𝑛) +𝜆𝑛(𝑢𝑛, 𝑣𝑛, 𝑞𝑛) = 𝑅𝑓𝑛, (𝑢𝑛, 𝑣𝑛, 𝑞𝑛)(0) = (𝑢0, 𝑣0, 𝑞0),

where {𝜆𝑛}𝑛∈ℕ ⊂ (0,∞), 𝜆𝑛 ↘ 0.
Then (𝑢𝑛, 𝑣𝑛, 𝑞𝑛) ⇀ (𝑢, 𝑣, 𝑞) in𝐻1() and (𝑢𝑛, 𝑣𝑛, 𝑞𝑛) → (𝑢, 𝑣, 𝑞) in 𝐶(𝐻1(Ω;ℝ𝑑))×𝐿1(𝐿2(Ω;ℝ𝑑))×

𝐶(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )). If additionally 𝑓𝑛 → 𝑓 in 𝐶(𝐿2(Ω;ℝ𝑑)), then 𝑣𝑛 → 𝑣 in 𝐶(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )).

Proof. We can apply a transformation analog to the one in Theorem 8.15, the assertion follows
then from Theorem 4.14 (where 𝑞 therein takes the form (𝑢, 𝑣, 𝑞) and 𝑞𝑛 the form (𝑢𝑛, 𝑣𝑛, 𝑞𝑛)). Note
that the convergence ℨ(𝑞𝑛,𝓁𝑛) → ℨ(𝑞,𝓁) in Theorem 4.14 then means 𝑄−1(𝑅𝑓𝑛 − (𝑢𝑛, 𝑣𝑛, 𝑞𝑛)) →
𝑄−1(𝑅𝑓 − (𝑢, 𝑣, 𝑞)) in 𝐶(), so that the convergence (𝑢𝑛, 𝑣𝑛, 𝑞𝑛) → (𝑢, 𝑣, 𝑞) in 𝐶(𝐻1(Ω;ℝ𝑑)) ×
𝐿1(𝐿2(Ω;ℝ𝑑)) × 𝐶(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )) follows from the fact that the range of 𝑅 is a subset of {0} ×
𝐿2(Ω;ℝ𝑑) × {0}.

Proposition 8.18 (Strong convergence for fixed forces). Let (𝑢, 𝑣, 𝑞) ∈ 𝐻1() be the solution of
(8.4) and (𝑢𝑛, 𝑣𝑛, 𝑞𝑛) ∈ 𝐻1(), for every 𝑛 ∈ ℕ, the solution of

𝑄−1(
.
𝑢𝑛,

.
𝑣𝑛,

.
𝑞𝑛) +𝜆𝑛(𝑢𝑛, 𝑣𝑛, 𝑞𝑛) = 𝑅𝑓, (𝑢𝑛, 𝑣𝑛, 𝑞𝑛)(0) = (𝑢0, 𝑣0, 𝑞0).

where {𝜆𝑛}𝑛∈ℕ ⊂ (0,∞), 𝜆𝑛 ↘ 0.
Then (𝑢𝑛, 𝑣𝑛, 𝑞𝑛) → (𝑢, 𝑣, 𝑞) in 𝐻1().

Proof. Again, we apply a transformation analog to the one in Theorem 8.15, then the assertion
follows from Corollary 4.15 (where 𝑞 therein takes the form (𝑢, 𝑣, 𝑞) and 𝑞𝑛 the form (𝑢𝑛, 𝑣𝑛, 𝑞𝑛)).

With these results we have collected everything we need to analyze an optimal control prob-
lem with plasticity with inertia as a constraint in the upcoming chapter.

Chapter 9 Optimal Control

The procedure in this chapter is similar to the one in Chapter 5. Since the smoothed operator𝑠, given in Definition 9.6, possesses the required properties for 𝐴𝑠 in Section 5.2, we can apply
the finding concerned with the differentiability of the solution operator associated with the
EVI therein (the boundedness property of 𝐴 is not necessary in Section 5.2, see the beginning of
Chapter 5). Before we give the details in Section 9.2, we tend to the existence and approximation
of optimal controls.
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9.1 Existence and Approximation of Optimal Controls
We consider the following optimal control problem:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

min 𝐽 (𝑢,
.
𝑢, 𝑧, 𝑓 ) = Ψ(𝑢,

.
𝑢, 𝑧) + 𝛼

2
‖𝑓‖2𝔛𝑐

,

s.t. 𝜌
..
𝑢 − divℂ(∇𝑠𝑢 − 𝑧) = 𝑓,
.
𝑧 ∈ 𝐴(ℂ∇𝑠𝑢 − (ℂ + 𝔹)𝑧),
(𝑢,

.
𝑢, 𝑧)(0) = (𝑢0, 𝑣0, 𝑧0),

𝑢 ∈ 𝐻1(𝐻1
𝐷(Ω;ℝ

𝑑)) ∩𝐻2(𝐿2(Ω;ℝ𝑑)),
𝑧 ∈ 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )),
𝑓 ∈ 𝔛𝑐 .

(9.1)

Note that the stress is not present in (9.1) but can be easily integrated in Ψ due to 𝜎 = ℂ(∇𝑠𝑢−𝑧).
Moreover, we require in Assumption ⟨9⟩ that Ψ is defined on 𝐿2() and not on 𝐻1(), which
excludes for example evaluations at certain points in time. Analog to Section 5.2 we could also
consider an objective function on𝐻1(), then we would only obtain a (possible) weak solution
𝜙 of the adjoint state in Theorem 9.13 as in Theorem 5.13. We decided to define Ψ on 𝐿2()
only for simplicity and to keep the discussion concise.

Since we have transformed our state equation (8.1) into (8.3) by introducing the new variable
𝑞, it is reasonable to do the same with the optimal control problem. To this end, we need the
following

Definition 9.1 (Transformed objective function). We define

Ψ𝑧 ∶ 𝐿2() → ℝ, (𝑢, 𝑣, 𝑞) ↦ Ψ(𝑢, 𝑣,ℨ(𝑢, 𝑞))

and the transformed objective function

𝐽𝑧 ∶ 𝐿2() ×𝔛𝑐 → ℝ, (𝑢, 𝑣, 𝑞, 𝑓 ) ↦ Ψ𝑧(𝑢, 𝑣, 𝑞) +
𝛼
2
‖𝑓‖2𝔛𝑐

Using the definition above and the transformation of the state equation into (8.4), we obtain
the equivalence of (9.1) and⎧⎪⎪⎨⎪⎪⎩

min 𝐽𝑧(𝑢, 𝑣, 𝑞, 𝑓 ) = Ψ𝑧(𝑢, 𝑣, 𝑞) +
𝛼
2
‖𝑓‖2𝔛𝑐

,

s.t. 𝑄−1(
.
𝑢,

.
𝑣,

.
𝑞) +(𝑢, 𝑣, 𝑞) ∋ 𝑅𝑓, (𝑢, 𝑣, 𝑞)(0) = (𝑢0, 𝑣0, 𝑞0),

(𝑢, 𝑣, 𝑞) ∈ 𝐻1(𝐻1
𝐷(Ω;ℝ

𝑑) × 𝐿2(Ω;ℝ𝑑) × 𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )),

𝑓 ∈ 𝔛𝑐 .

(9.2)

Let us shortly interrupt the discussion and give two examples for the control space 𝔛𝑐 .

Example 9.2 (Control space). In order to satisfy Assumption ⟨9.1⟩, we can use the lemma of Lions-
Aubin (cf. SHOWALTER [90, III. Proposition 1.3]) and for instance choose 𝔛𝑐 = 𝐻1(𝐿2(Ω;ℝ𝑑)) ∩
𝐿2(𝐻1(Ω;ℝ𝑑)) or 𝔛𝑐 = {𝑓 ∈ 𝐻1(𝐿2(Ω;ℝ𝑑)) ∶ 𝑓 ∈ 𝐿2(𝐻1(Ω;ℝ𝑑))} with corresponding norms.

Let us now select a sequence {𝜆𝑛}𝑛∈ℕ ⊂ (0,∞) such that 𝜆𝑛 ↘ 0. We consider the regularized
optimization problem

⎧⎪⎪⎨⎪⎪⎩

min 𝐽𝑧(𝑢, 𝑣, 𝑞, 𝑓 ) = Ψ𝑧(𝑢, 𝑣, 𝑞) +
𝛼
2
‖𝑓‖2𝔛𝑐

,

s.t. 𝑄−1(
.
𝑢,

.
𝑣,

.
𝑞) +𝜆𝑛(𝑢, 𝑣, 𝑞) = 𝑅𝑓, (𝑢, 𝑣, 𝑞)(0) = (𝑢0, 𝑣0, 𝑞0)

(𝑢, 𝑣, 𝑞) ∈ 𝐻1(𝐻1
𝐷(Ω;ℝ

𝑑) × 𝐿2(Ω;ℝ𝑑) × 𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )),

𝑓 ∈ 𝔛𝑐 .

(9.3)
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Theorem 9.3 (Existence and approximation of optimal solutions). There exists a global solution of
(9.2) (and thus of (9.1)) and of (9.3) for every 𝑛 ∈ ℕ.

Moreover, let (𝑢𝑛, 𝑣𝑛, 𝑞𝑛, 𝑓 𝑛)𝑛∈ℕ be a sequence of global solution of (9.3). Then there exists a weak
accumulation point (𝑢, 𝑣, 𝑞, 𝑓 ) and every weak accumulation point is a global solution of (9.2). The
subsequence of states which converges weakly towards (𝑢, 𝑣, 𝑞) in 𝐻1() converges also strongly in
𝐶(𝐻1(Ω;ℝ𝑑)) ×𝐿1(𝐿2(Ω;ℝ𝑑)) ×𝐶(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )) and, when  is compact from 𝔛𝑐 into 𝐶(𝐿2(Ω;ℝ𝑑)),
then the subsequence of 𝑣𝑛 converges also strongly in 𝐶(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )). Moreover, the subsequence of
controls converges strongly to 𝑓 in 𝔛𝑐 .

Proof. The existence of a global solution to (9.2) follows from the standard direct method of
the calculus of variations using Theorem 8.17 and Assumption ⟨9.1⟩, the proof is analog to the
proof of Theorem 5.2. The existence of a global solution to (9.3) follows easily using the Lip-
schitz continuity of 𝜆𝑛 (which implies the Lipschitz continuity of the corresponding solution
operator), see Proposition 5.3.

The convergence result can also be obtained by standard arguments using again Theo-
rem 8.17 and Proposition 8.18, the proof is analog to the one from Theorem 5.4 and Corol-
lary 5.5. Note that the strong convergence of the states in 𝐶(𝐻1(Ω;ℝ𝑑)) × 𝐿1(𝐿2(Ω;ℝ𝑑)) ×
𝐶(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )), and also of 𝑣𝑛 in 𝐶(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )) when  is compact from 𝔛𝑐 into 𝐶(𝐿2(Ω;ℝ𝑑)),

follows directly from Theorem 8.17.

Note that a strong convergence result of the states (in𝐻1()) is not provided in the theorem
above. In Corollary 5.5 we were able to prove the strong convergence either when the associ-
ated maximal monotone operator is a subdifferential, which is here not the case (Remark 8.16),
or when it can be deduced from the weak convergence and the convergence of the evaluations
of Ψ. Since we supposed that Ψ is defined on 𝐿2(), this cannot be the case. However, as
elaborated on at the beginning of this section, it is possible for instance to consider a different
Ψ defined on 𝐻1() such that this property holds.

Having dealt with the existence and approximation of optimal solutions we turn to the op-
timality condition for a further smoothed problem.

9.2 Optimality Conditions

In order to derive first order optimality conditions we smoothen at first the optimal control
problem further. Then we prove the differentiability of the smoothed solution operator and
can after that finally present our main result in this part, the KKT conditions for the smoothed
optimization problem.

Smoothed Optimization Problem

Thanks to Proposition 8.11, we can give the precise form of the resolvent and Yosida approx-
imation of  in the following

Corollary 9.4 (Precise form of the resolvent). Let 𝜆 > 0 and denote the resolvent of  by 𝜆. Then

𝜆(ℎ) =
⎛⎜⎜⎝

𝑅𝜆(ℎ)
1
𝜆
𝑅𝜆(ℎ) − ℎ1

𝜆
𝑅𝜆(𝔼⊤∇𝑠(𝑅𝜆(ℎ) − ℎ1) + ℎ3)

⎞⎟⎟⎠
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so that

𝜆(ℎ) =
1
𝜆

⎛⎜⎜⎝
ℎ1 − 𝑅𝜆(ℎ)

ℎ2 −
1
𝜆
𝑅𝜆(ℎ) + ℎ1

𝜆
ℎ3 − 𝑅𝜆(𝔼⊤∇𝑠(𝑅𝜆(ℎ) − ℎ1) + ℎ3)

⎞⎟⎟⎠
for every ℎ = (ℎ1, ℎ2, ℎ3) ∈ .

The Yosida approximation 𝜆 is in view of Proposition 8.10 Lipschitz continuous from 𝑝
to 𝑝, where 𝑝 is given in Assumption ⟨9.2.ii⟩. Therefore the state equation in (9.3) admits a
solution in 𝑝 (note that 𝑅 maps into ∞). However, since this regularity is not present in (9.1),
we did not use it. In contrast, the same is true for the smoothed Yosida approximation, which
is given below in Definition 9.6 (see Definition 9.10), but here this additional regularity will be
used to prove the differentiability of the smoothed solution operator in Proposition 9.11.

In order to smoothen the Yosida approximation, respectively the resolvent, of , we
smoothen the resolvent of 𝐴 and then define the smoothed resolvent for  analog to 𝜆.
We denote this smoothed resolvent of 𝐴 by 𝑅𝑠 ∶ ℝ𝑑×𝑑

𝑠 → ℝ𝑑×𝑑
𝑠 (which indicates that the resol-

vent of 𝐴 can be expressed pointwise), from the properties given in Assumption ⟨9.2.i⟩ one can
easily derive the following inequalities, which will be useful when proving the differentiability
of 𝑅𝑠 in Lemma 9.8 below.

Lemma 9.5 (Properties of 𝑅′
𝑠). There exists a constant 𝐶 such that |𝑅′

𝑠(𝜎)𝜏| ≤ 𝐶|𝜏| and 0 ≤
𝑅′
𝑠(𝜎)𝜏 ∶ 𝜏 holds for all 𝜎, 𝜏 ∈ ℝ𝑑×𝑑

𝑠 . Moreover, the same is true for 𝑅′
𝑠(⋅)

∗.

Proof. Let 𝜎, 𝜏 ∈ ℝ𝑑×𝑑
𝑠 be arbitrary. The Lipschitz continuity and Fréchet differentiability of 𝑅𝑠

gives

|||𝑟(𝑡𝜏)𝑡 + 𝑅′
𝑠(𝜎)𝜏

||| = |𝑅𝑠(𝜎 + 𝑡𝜏) − 𝑅𝑠(𝜎)|
𝑡

≤ 𝐿|𝜏|
for all 𝑡 ∈ ℝ ⧵ {0}, where 𝑟 is the remainder term of 𝑅𝑠. The limit 𝑡→ 0 yields the first assertion.

The second claim follows using the monotonicity,

0 ≤ 𝑅𝑠(𝜎 + 𝑡𝜏) − 𝑅𝑠(𝜎)
𝑡

∶ 𝜏 → 𝑅′
𝑠(𝜎)𝜏 ∶ 𝜏

as 0 ≠ 𝑡→ 0.
Now, by definition we have 𝑅′

𝑠(𝜎)𝜏 ∶ 𝜂 = 𝜏 ∶ 𝑅′
𝑠(𝜎)

∗𝜂 for all 𝜎, 𝜏, 𝜂 ∈ ℝ𝑑×𝑑
𝑠 , so that the second

assertion also holds for 𝑅′
𝑠(⋅)

∗. Choosing in particular 𝜏 = 𝑅𝑠(𝜎)∗𝜂 we get

|𝑅′
𝑠(𝜎)

∗𝜂|2 = |𝑅′
𝑠(𝜎)𝑅

′
𝑠(𝜎)

∗𝜂∶ 𝜂| ≤ 𝐶|𝑅′
𝑠(𝜎)

∗𝜂| |𝜂|,
which yields the first assertion for 𝑅′

𝑠(⋅)
∗.

Definition 9.6 (Smoothed resolvent). Let 𝜆𝑠 ∈ (0,∞). We define

𝑠 ∶ 𝑝 → 𝑝, ℎ = (ℎ1, ℎ2, ℎ3) ↦

⎛⎜⎜⎜⎝
𝑅𝑠(ℎ)

1
𝜆𝑠
𝑅𝑠(ℎ) − ℎ1

𝜆𝑠
𝑅𝑠(𝔼⊤∇𝑠(𝑅𝑠(ℎ) − ℎ1) + ℎ3)

⎞⎟⎟⎟⎠
and 𝑠 ∶= 1

𝜆𝑠
(𝐼 − 𝑠) (see Assumption ⟨9.2.ii⟩ for 𝑝). According to Proposition 8.10 and Assump-

tion ⟨9.2.i⟩, 𝑠 and 𝑠 are well defined and Lipschitz continuous. As usual, with a slight abuse of
notation, we denote operators for different 𝑝 with the same symbol.
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Let us now consider the smoothed optimization problem⎧⎪⎪⎨⎪⎪⎩

min 𝐽𝑧(𝑢, 𝑣, 𝑞, 𝑓 ) = Ψ𝑧(𝑢, 𝑣, 𝑞) +
𝛼
2
‖𝑓‖2𝔛𝑐

,

s.t. 𝑄−1(
.
𝑢,

.
𝑣,

.
𝑞) +𝑠(𝑢, 𝑣, 𝑞) = 𝑅𝑓, (𝑢, 𝑣, 𝑞)(0) = (𝑢0, 𝑣0, 𝑞0)

(𝑢, 𝑣, 𝑞) ∈ 𝐻1(𝐻1
𝐷(Ω;ℝ

𝑑) × 𝐿2(Ω;ℝ𝑑) × 𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )),

𝑓 ∈ 𝔛𝑐 .

(9.4)

Analog to Theorem 9.3 one can analogously prove that there exists a global solution of (9.4).
As we did in Theorem 5.4, when 𝑠 and 𝜆𝑠 are globally “close together”, one can prove a

result analog to the convergence result in Theorem 9.3 with a sequence (𝑢𝑠, 𝑣𝑠, 𝑞𝑠, 𝑓 𝑠)𝑠>0 of global
solutions to (9.4) when supℎ∈ ‖𝜆𝑠(ℎ) −𝑠(ℎ)‖ tends fast enough to zero relative to 𝜆𝑠. The
following lemma shows that this is the case when the same is true for 1

𝜆𝑠
sup𝜏∈𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) ‖𝐴𝜆𝑠(𝜏)−
𝐴𝑠(𝜏)‖𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) with 𝐴𝑠 = 1
𝜆𝑠
(𝐼 − 𝑅𝑠), which holds in the case of the von-Mises flow rule for

suitable sequences {𝜆𝑠}𝜆𝑠>0 and {𝑠}𝑠>0, cf. (3.12). Note also that Lemma 4.17 was used in The-
orem 5.4, so that it was in particular required that sup𝜏∈𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) ‖𝐴𝜆𝑠(𝜏) −𝐴𝑠(𝜏)‖𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) tends

faster to zero than exp( 1
𝜆𝑠
), thus the additional factor 1

𝜆𝑠
does not play a big role.

Lemma 9.7 (Convergence of the smoothed resolvent). The inequality

‖𝜆𝑠(ℎ) −𝑠(ℎ)‖ ≤ 𝐶

√
1 + 1

𝜆2𝑠
sup

𝜏∈𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )

‖𝐴𝜆𝑠(𝜏) − 𝐴𝑠(𝜏)‖𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )

holds for all ℎ ∈ 𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ), where 𝐴𝑠 ∶=

1
𝜆𝑠
(𝐼 − 𝑅𝑠) and the constant does only depend on ℂ and 𝔹,

𝐶 = 𝐶(ℂ,𝔹).

Proof. Let us abbreviate

𝑀 ∶= sup
𝜏∈𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )
‖𝑅𝜆𝑠(𝜏) − 𝑅𝑠(𝜏)‖𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ).

Due to the definitions of 𝑠 and 𝐴𝑠 we only have to prove that

‖𝜆𝑠(ℎ) −𝑠(ℎ)‖ ≤ 𝐶

√
1 + 1

𝜆2𝑠
𝑀 (9.5)

holds for all ℎ ∈ . To this end let ℎ ∈  be arbitrary and abbreviate 𝑢 ∶= 𝑅𝜆𝑠 (ℎ), 𝑢𝑠 ∶=
𝑅𝑠(ℎ) ∈ 𝐻1

𝐷(Ω;ℝ
𝑑), hence, 𝑢 is the solution of (8.9) with respect to 𝑅𝜆𝑠 and 𝑢𝑠 with respect to

𝑅𝑠, testing both equations with 𝑢 − 𝑢𝑠 and subtracting the second from the first, we get

‖∇𝑠(𝑢 − 𝑢𝑠)‖2𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )𝔻

+
‖‖‖‖𝑢 − 𝑢𝑠𝜆𝑠

‖‖‖‖2𝐿2(Ω;ℝ𝑑 )

= −
(
𝔼(𝑅𝜆𝑠(𝑤) − 𝑅𝑠(𝑤𝑠)),∇𝑠(𝑢 − 𝑢𝑠)

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )

= −
(
(𝑅𝜆𝑠(𝑤𝑠) − 𝑅𝑠(𝑤𝑠)), 𝑤 −𝑤𝑠

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )
−
(
(𝑅𝜆𝑠(𝑤) − 𝑅𝜆𝑠(𝑤𝑠)), 𝑤 −𝑤𝑠

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )

≤ −
(
𝔻−1𝔼(𝑅𝜆𝑠(𝑤𝑠) − 𝑅𝑠(𝑤𝑠)),∇𝑠(𝑢 − 𝑢𝑠)

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )𝔻

≤ 1
2
‖𝔻−1𝔼(𝑅𝜆𝑠(𝑤) − 𝑅𝑠(𝑤𝑠))‖2𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )𝔻
+ 1

2
‖∇𝑠(𝑢 − 𝑢𝑠)‖2𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )𝔻

≤ ‖𝔼⊤𝔻−1𝔼‖
2

𝑀2 + 1
2
‖∇𝑠(𝑢 − 𝑢𝑠)‖2𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )𝔻
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with 𝑤 ∶= 𝔼⊤∇𝑠(𝑢 − ℎ1) + ℎ3) and 𝑤𝑠 ∶= 𝔼⊤∇𝑠(𝑢𝑠 − ℎ1) + ℎ3), where we used in particular the
monotonicity of 𝑅𝜆𝑠 . Thus we obtain

‖∇𝑠(𝑢 − 𝑢𝑠)‖2𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )𝔻

+
‖‖‖‖𝑢 − 𝑢𝑠𝜆𝑠

‖‖‖‖2𝐿2(Ω;ℝ𝑑 )
≤ 𝐶𝑀2. (9.6)

We get further

‖𝑅𝜆𝑠(𝑤) − 𝑅𝑠(𝑤𝑠)‖𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) ≤ ‖𝑅𝜆𝑠(𝑤) − 𝑅𝜆𝑠(𝑤𝑠)‖𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) + ‖𝑅𝜆𝑠(𝑤𝑠) − 𝑅𝑠(𝑤𝑠)‖𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )

≤ 𝐶
𝜆𝑠
𝑀 +𝑀

where we have used (9.6). We arrive at

‖𝜆𝑠(ℎ) −𝑠(ℎ)‖2 ≤ 𝐶𝑀2 + 𝐶
𝜆2𝑠
𝑀2

which implies (9.5).

KKT-Conditions

To establish KKT conditions we first need to prove the Fréchet differentiability of the
smoothed solution operator of the constraint in (9.4). To this end, we need two norm gaps in
Lemma 9.8 and Proposition 9.9, recall that the corresponding coefficients are fixed in Assump-
tion ⟨9.2.ii⟩.
Lemma 9.8 (Fréchet differentiability of 𝑅𝑠). The operator 𝑅𝑠 is from 𝑝 into 𝑊 1,𝑝̂

𝐷 (Ω;ℝ𝑑) Fréchet
differentiable and, for ℎ, 𝑔 ∈ 𝑝, 𝜂 ∶=  ′

𝑅𝑠
(ℎ)𝑔 is of class 𝑊 1,𝑝

𝐷 (Ω;ℝ𝑑) and the unique solution of

− div(𝔻∇𝑠𝜂 + 𝔼𝑅′
𝑠(𝔼

⊤∇𝑠(𝑢 − ℎ1) + ℎ3)(𝔼⊤∇𝑠(𝜂 − 𝑔1) + 𝑔3))) =
𝑔2
𝜆𝑠

+
𝑔1 − 𝜂
𝜆2𝑠

, (9.7)

where 𝑢 ∶= 𝑅𝑠(ℎ).
Moreover, there exists a constant𝐶 such that the extension of  ′

𝑅𝑠
(ℎ) to an element of𝐿(;𝐻1

𝐷(Ω;ℝ
𝑑))

fulfills ‖ ′
𝑅𝑠
(ℎ)𝑔‖𝐻1

𝐷(Ω;ℝ
𝑑 ) ≤ 𝐶‖𝑔‖ for all ℎ ∈ 𝑝 and 𝑔 ∈ .

Proof. Let ℎ, 𝑔 ∈ 𝑝. At first we prove that (9.7) has a unique solution 𝜂 ∈ 𝑊 1,𝑝
𝐷 (Ω;ℝ𝑑) with

respect to ℎ and 𝑔. For 𝜎 ∈ ℝ𝑑×𝑑
𝑠 we define 𝑏𝜎 ∶ Ω ×ℝ𝑑×𝑑

𝑠 → ℝ𝑑×𝑑
𝑠 by

𝑏𝜎(𝑥, 𝜏) ∶= 𝔻𝜏 + 𝔼𝑅′
𝑠(𝔼

⊤∇𝑠(𝑢(𝑥) − ℎ1(𝑥)) + ℎ3(𝑥)))(𝔼⊤𝜏 + 𝜎)

for almost all 𝑥 ∈ Ω and all 𝜏 ∈ ℝ𝑑×𝑑
𝑠 . The existence of 𝜂 follows now from Corollary 8.9

(with 𝜑 ∶= −𝔼⊤∇𝑠𝑔1 + 𝑔3), when we have verified the requirements on 𝑏𝜎 therein. Moreover,
Corollary 8.9 also shows that the solution operator of (9.7) is continuous with respect to 𝑔 ∈ 𝑝
(clearly, it is also linear).

Clearly, 𝑏0(𝑥, 0) = 0 ∈ 𝐿∞(Ω;ℝ𝑑×𝑑
𝑠 ) and 𝑏𝜎(⋅, 𝜏) is measurable as a pointwise limit of measur-

able functions (see [104, Corollary 3.1.5]), for all 𝜏, 𝜎 ∈ ℝ𝑑×𝑑
𝑠 . Moreover, we have

(𝑏𝜎(𝑥, 𝜏) − 𝑏𝜎(𝑥, 𝜏))∶ (𝜏 − 𝜏)
≥ 𝛾𝔻|𝜏 − 𝜏|2 + 𝑅′

𝑠(𝑤(𝑥))(𝔼
⊤(𝜏 − 𝜏) + (𝜎 − 𝜎))∶ 𝔼⊤(𝜏 − 𝜏)

≥ 𝛾𝔻|𝜏 − 𝜏|2 − 𝐶|𝜎 − 𝜎| |𝜏 − 𝜏|,
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with 𝑤 ∶= 𝔼⊤∇𝑠(𝑢 − ℎ) + ℎ3), and

|𝑏𝜎(𝑥, 𝜏) − 𝑏𝜎(𝑥, 𝜏)| ≤ 𝐶
(|𝜏 − 𝜏| + |𝜎 − 𝜎|)

for all 𝜎, 𝜎, 𝜏, 𝜏 ∈ ℝ𝑑×𝑑
𝑠 and almost all 𝑥 ∈ Ω, where we have used Lemma 9.5 in both estima-

tions. Therefore (8.5) to (8.8) are fulfilled.
Considering now the equations for 𝑢𝑔 ∶= 𝑅𝑠(ℎ + 𝑔) and 𝑢 ∶= 𝑅𝑠(ℎ), we see that

−div(𝔻∇𝑠(𝑢𝑔 − 𝑢 − 𝜂)) +
𝑢𝑔 − 𝑢 − 𝜂

𝜆2𝑠
= div(𝔼(𝑅𝑠(𝜇 + 𝜈𝑔) − 𝑅𝑠(𝜇) − 𝑅′

𝑠(𝜇)𝜈𝑔))

+ div(𝔼𝑅′
𝑠(𝜇)((𝔼

⊤∇𝑠(𝑢𝑔 − 𝑢 − 𝜂))),

where

𝜇 ∶= 𝔼⊤∇𝑠(𝑢 − ℎ1) + ℎ3),
𝜈𝑔 ∶= 𝔼⊤∇𝑠(𝑢𝑔 − 𝑢 − 𝑔1) + 𝑔3) ∈ 𝐿𝑝(Ω;ℝ𝑑×𝑑

𝑠 ),

hence,

− div(𝔻∇𝑠(𝑢𝑔 − 𝑢 − 𝜂) − 𝔼𝑅′
𝑠(𝜇)((𝔼

⊤∇𝑠(𝑢𝑔 − 𝑢 − 𝜂))) +
𝑢𝑔 − 𝑢 − 𝜂

𝜆2𝑠
= div𝔼𝑟𝜇(𝜈𝑔),

where 𝑟𝜇(𝜈𝑔) is the remainder term of 𝑅𝑠 at 𝜇 in direction 𝜈𝑔. Applying Corollary 8.9 (Theo-
rem 2.5 is in fact sufficient at this point) once again with

𝑏𝜎(𝑥, 𝜏) ∶= 𝔻𝜏 + 𝔼𝑅′
𝑠(𝜇(𝑥))𝔼

⊤𝜏

(and 𝑝 = 𝑝̂) we obtain

‖𝑢𝑔 − 𝑢 − 𝜂‖𝑊 1,𝑝̂(Ω;ℝ𝑑 )‖𝑔‖𝑝 ≤ 𝐶
‖𝑟𝜇(𝜈𝑔)‖𝐿𝑝̂(Ω;ℝ𝑑×𝑑

𝑠 )‖𝑔‖𝑝 ≤ 𝐶
‖𝑟𝜇(𝜈𝑔)‖𝐿𝑝̂(Ω;ℝ𝑑×𝑑

𝑠 )‖𝜈𝑔‖𝐿𝑝(Ω;ℝ𝑑×𝑑
𝑠 )

→ 0,

as 𝑔 → 0 in 𝑝, where we also used the Lipschitz continuity of 𝑅𝑠 and the fact that 𝑅𝑠 ∶
𝐿𝑝(Ω;ℝ𝑑×𝑑

𝑠 ) → 𝐿𝑝̂(Ω;ℝ𝑑×𝑑
𝑠 ) is Fréchet differentiable (cf. GOLDBERG [44, Theorem 7]).

That the extension of  ′
𝑅𝑠
(ℎ) to an element of 𝐿(;𝐻1

𝐷(Ω;ℝ
𝑑)) fulfills the asserted inequality,

can be proven as above (one can simply test (9.7) with 𝜂 ∈ 𝐻1
𝐷(Ω;ℝ

𝑑) and use Lemma 9.5).

Proposition 9.9 (Fréchet differentiability of 𝑠). The mapping 𝑠 is from 𝑝 to  Fréchet differen-
tiable and there exists a constant 𝐶 such that the extension of ′

𝑠(ℎ) ∈ (𝑝,) to an element of ()
fulfills ‖′

𝑠(ℎ)𝑔‖ ≤ 𝐶‖𝑔‖ for all ℎ ∈ 𝑝 and 𝑔 ∈ .
For ℎ ∈ 𝑝 and 𝑔 ∈  we have

′
𝑠(ℎ)𝑔 =

⎛⎜⎜⎜⎝
 ′
𝑅𝑠
(ℎ)𝑔

1
𝜆𝑠
 ′
𝑅𝑠
(ℎ)𝑔 − 𝑔1

𝜆𝑠
𝑅′
𝑠(𝔼

⊤∇𝑠(𝑅𝑠(ℎ) − ℎ1) + ℎ3)(𝔼⊤∇𝑠( ′
𝑅𝑠
(ℎ)𝑔 − 𝑔1) + 𝑔3)

⎞⎟⎟⎟⎠
The same is true for 𝑠 =

1
𝜆𝑠
(𝐼 −𝑠) with ′

𝑠(ℎ)𝑔 = 1
𝜆𝑠
(𝑔 −′

𝑠(ℎ)𝑔) for all ℎ ∈ 𝑝 and 𝑔 ∈ .

Proof. The assertion follows from Lemma 9.8, Lemma 9.5 for the estimate of (′
𝑠(ℎ)𝑔)3, the fact

that 𝑅𝑠 ∶ 𝐿𝑝̂(Ω;ℝ𝑑×𝑑
𝑠 ) → 𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) is Fréchet differentiable (cf. GOLDBERG [44, Theorem 7])
and the chain rule.
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Now, we can use Theorem 5.9 to derive the differentiability of the solution operator of the
constraint in (9.4) from the differentiability of 𝑠. To this end, we first introduce the solution
operator in

Definition 9.10 (Smoothed solution operator). We denote the solution operator of

𝑄−1(
.
𝑢,

.
𝑣,

.
𝑞) +𝑠(𝑢, 𝑣, 𝑞) = 𝑅𝑓, (𝑢, 𝑣, 𝑞)(0) = (𝑢0, 𝑣0, 𝑞0) (9.8)

by 𝑠 ∶ 𝐿2(𝐿2(Ω;ℝ𝑑)) → 𝐻1(𝑝), that is, 𝑠(𝑓 ) = (𝑢, 𝑣, 𝑞), which existence follows from Theorem A.7
since 𝑠 is Lipschitz continuous according to Definition 9.6. Here we use the improved regularity of
(𝑢0, 𝑣0, 𝑞0), see Assumption ⟨9.2.iii⟩.
Proposition 9.11 (Fréchet differentiability of the smoothed solution operator). The solution oper-
ator 𝑠 ∶ 𝐿2(𝐿2(Ω;ℝ𝑑)) → 𝐻1(𝑝) is Lipschitz continuous, 𝑠 ∶ 𝐻1(𝐿2(Ω;ℝ𝑑)) → 𝐻1() is Fréchet
differentiable and, for 𝑓, 𝑔 ∈ 𝐻1(𝐿2(Ω;ℝ𝑑)), 𝜂 ∶=  ′

𝑠(𝑓 )𝑔 ∈ 𝐻1() is the unique solution of

𝑄−1 .
𝜂 +′

𝑠(𝑤)𝜂 = 𝑅𝑔, 𝜂(0) = 0, (9.9)

where 𝑤 ∶= 𝑠(𝑓 ). Moreover, there exists a constant 𝐶 , such that ‖ ′
𝑠(𝑓 )𝑔‖𝐻1() ≤ 𝐶‖𝑔‖𝐿2(𝐿2(Ω;ℝ𝑑 ))

holds for all 𝑓, 𝑔 ∈ 𝐻1(𝐿2(Ω;ℝ𝑑)).

Proof. Our goal is to use Theorem 5.9, to this end we first consider a transformed equation. We
set 𝑝0 ∶= 𝑄−1(𝑅𝐹 (0) − (𝑢0, 𝑣0, 𝑞0)) = −𝑄−1(𝑢0, 𝑣0, 𝑞0) and denote the solution operator of

.
𝑝 = 𝑠(𝑅𝐹 −𝑄𝑝), 𝑝(0) = 𝑝0 (9.10)

by ̃𝑠 ∶ 𝐿2(𝐿2(Ω;ℝ𝑑)) → 𝐻1(𝑝), that is, ̃𝑠(𝐹 ) = 𝑝. We can now transform (9.8) into

(
.
𝑢,

.
𝑣,

.
𝑞) + (𝑠)𝑄(𝑢, 𝑣, 𝑞) = 𝑅

.
𝐹 , (𝑢, 𝑣, 𝑞)(0) = (𝑢0, 𝑣0, 𝑞0), (9.11)

where 𝐹 ∶= 𝜌𝑓 ∈ 𝐻2(𝐿2(Ω;ℝ𝑑)) (note that 𝑄𝑅 = (0, 𝜌 ⋅, 0)). The equivalence between (9.10)
and (9.11) can be shown as in Lemma 4.3, therefore 𝑠(𝑓 ) = 𝑅𝜌𝑓 − 𝑄̃𝑠(𝜌𝑓 ) for all 𝑓 ∈
𝐿2(𝐿2(Ω;ℝ𝑑)).

We can now apply Lemma 5.7 and Theorem 5.9 (with  = 𝐿2(Ω;ℝ𝑑),  = 𝑝,  = ,
𝑧 = 𝑝 and 𝑧0 = 𝑝0), note that Assumptions ⟨5.2.i⟩ to ⟨5.2.iv⟩ are fulfilled. In particular, Assump-
tion ⟨5.2.iv⟩ is satisfied thanks to Proposition 9.9 and Assumption ⟨5.2.iii⟩ holds according to
Assumption ⟨9.2.iii⟩ (since 𝑝0 = −𝑄−1(𝑢0, 𝑣0, 𝑞0) we acutally have −𝑄𝑝0 = (𝑢0, 𝑣0, 𝑞0) ∈ 𝐷()
by Assumption ⟨IV.iii⟩, which is the second requirement in Assumption ⟨5.2.iii⟩ (the set 
therein is here not important), however, this is not necessary for Lemma 5.7 and Theorem 5.9).
Moreover, Assumption ⟨5.2.v⟩ is clearly uninportant and it can be easily seen that the require-
ments made in Assumption II for the whole Part II and Chapter 5 are either fulfilled or also not
necessary. Thus the solution operator ̃𝑠 ∶ 𝐿2(𝐿2(Ω;ℝ𝑑)) → 𝐻1(𝑝) is Lipschitz continuous and̃𝑠 ∶ 𝐻1(𝐿2(Ω;ℝ𝑑)) → 𝐻1() is Fréchet differentiable, hence, the desired Lipschitz continuity
and Fréchet differentiability also hold for 𝑠. Furthermore, the asserted inequality holds and
we have 𝜂 = 𝑅𝜌𝑔 −𝑄𝜂̃, where 𝜂 ∶=  ′

𝑠(𝑓 )𝑔 and 𝜂̃ ∶= ̃ ′
𝑠(𝜌𝑓 )𝜌𝑔. Theorem 5.9 also shows that

𝜂̃ is the unique solution of

𝜕𝑡𝜂̃ = ′
𝑠(𝑅𝜌𝑓 −𝑄𝑝)(𝑅𝜌𝑔 −𝑄𝜂̃), 𝜂̃(0) = 0,

where 𝑝 ∶= ̃𝑠(𝜌𝑓 ). Taking into account that 𝜂̃ = 𝑅𝑔−𝑄−1𝜂 and 𝜕𝑡𝑔 = 𝑔, we see that 𝜂 is the
solution of (9.9).
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Remark 9.12 (Control space). As seen in the proposition above, the smoothed solution operator defined
on 𝐻1(𝐿2(Ω;ℝ𝑑)) is Fréchet differentiable. The norm gaps, which arise from the exponents in Assump-
tion ⟨9.2.ii⟩, are only needed for the differentiability of 𝑅𝑠 but not in the control space. Unfortunately,
we still require the compactness property imposed on 𝔛𝑐 in Assumption ⟨9.1⟩ to use the convergence
results in Section 8.3 so that the findings in Section 9.1 hold true. However, we can avoid taking a
subspace of 𝐻1(𝐿𝑝̃(Ω;ℝ𝑑)), for a certain 𝑝̃ > 2, as the control space.

Let us now consider the following reduced optimization problem

min
𝑓∈𝔛𝑐

𝐹𝑧(𝑓 ), (9.12)

where the reduced objective function 𝐹𝑧 ∶ 𝔛𝑐 → ℝ is defined by 𝐹𝑧(𝑓 ) ∶= 𝐽𝑧(𝑠(𝑓 ), 𝑓 ). Clearly,
(9.12) and (9.4) are equivalent.

We can finally present the main result of Part IV.

Theorem 9.13 (KKT-conditions for (9.12)). Let 𝑓 ∈ 𝔛𝑐 and abbreviate (𝑢, 𝑣, 𝑞) ∶= 𝑠(𝑓 ) ∈ 𝐻1(𝑝)
and 𝑤 ∶= 𝑅𝑠(𝑢, 𝑣, 𝑞) ∈ 𝐻1(𝑊 1,𝑝

𝐷 (Ω;ℝ𝑑×𝑑
𝑠 )). Then the variational equation

𝐹 ′
𝑧(𝑓 )𝑔 = Ψ′

𝑧(𝑠(𝑓 )) ′
𝑠(𝑓 )𝑔 + 𝛼

(
𝑓, 𝑔

)
𝔛𝑐

= 0 (9.13)

holds for all 𝑔 ∈ 𝔛𝑐 if and only if there exists an unique adjoint state (𝜑, 𝜂∗) = (𝜑1, 𝜑2, 𝜑3, 𝜂∗) ∈
𝐻1( ×𝐻1

𝐷(Ω;ℝ
𝑑)) such that the following optimality system is satisfied:

State equation:

⎛⎜⎜⎜⎝
.
𝑢
.
𝑣
.
𝑞

⎞⎟⎟⎟⎠ =
1
𝜆𝑠

⎛⎜⎜⎝
𝑤 − 𝑢

(𝑤−𝑢)∕(𝜌𝜆𝑠) − 𝑣∕𝜌
(ℂ + 𝔹)(𝑝 − 𝑞)

⎞⎟⎟⎠ +
⎛⎜⎜⎝
0
𝑓∕𝜌
0

⎞⎟⎟⎠ (9.14a)

−div(𝔻∇𝑠𝑤 + 𝔼𝑝) = 𝑣∕𝜆𝑠 + (𝑤−𝑢)∕𝜆𝑠 (9.14b)
𝑝 = 𝑅𝑠(𝔼∇𝑠(𝑤 − 𝑢) + 𝑞) (9.14c)

(𝑢, 𝑣, 𝑞)(0) = (𝑢0, 𝑣0, 𝑞0) (9.14d)

Adjoint equation :

⎛⎜⎜⎝
.
𝜑1.
𝜑2.
𝜑3

⎞⎟⎟⎠ = 1
𝜆𝑠

⎛⎜⎜⎝
𝜂∗ − 𝜑1

(𝜂∗−𝜑1)∕(𝜌𝜆𝑠) − 𝜑2∕𝜌
(ℂ + 𝔹)(𝑟∗ − 𝜑3)

⎞⎟⎟⎠ −𝑄Ψ′
𝑧(𝑢, 𝑣, 𝑞) (9.14e)

−div(𝔻∇𝑠𝜂∗ + 𝔼𝑟∗) = 𝜑2∕𝜆𝑠 + (𝜂∗−𝜑1)∕𝜆𝑠 (9.14f)

𝑟∗ = 𝑅′
𝑠(𝔼

⊤∇𝑠(𝑤 − 𝑢) + 𝑞)∗(𝔼⊤∇𝑠(𝜂∗ − 𝜑1) + 𝜑3) (9.14g)
(𝜑1, 𝜑2, 𝜑3)(𝑇 ) = 0 (9.14h)

Gradient equation: (
𝜑2, 𝑔

)
𝐿2(𝐿2(Ω;ℝ𝑑 )) = 𝛼

(
𝑓, 𝑔

)
𝔛𝑐

∀𝑔 ∈ 𝔛𝑐 . (9.14i)

In particular, if 𝑓 is locally optimal for (9.12), then there exists a unique adjoint state (𝜑, 𝜂∗) ∈
𝐻1( ×𝐻1

𝐷(Ω;ℝ
𝑑)) such that (9.14) is fulfilled.
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Proof. At first we proof that the assertion holds when we exchange (9.14) with

𝑄−1(
.
𝑢,

.
𝑣,

.
𝑞) +𝑠(𝑢, 𝑣, 𝑞) = 𝑅𝑓, (𝑢, 𝑣, 𝑞)(0) = (𝑢0, 𝑣0, 𝑞0),

𝑄−1 .
𝜑 +′

𝑠(𝑢, 𝑣, 𝑞)
∗𝜑 = −Ψ′

𝑧(𝑢, 𝑣, 𝑞), 𝜑(𝑇 ) = 0,(
𝜑2, 𝑔

)
𝐿2(𝐿2(Ω;ℝ𝑑 )) = 𝛼

(
𝑓, 𝑔

)
𝔛𝑐

∀𝑔 ∈ 𝔛𝑐 .

(9.15)

To this end, let 𝜑 be the solution of the second equation in (9.15) (which unique existence
follows as in Lemma 5.12) and 𝜂 ∶=  ′

𝑠(𝑓 )𝑔 ∈ 𝐻1() for an arbitrary 𝑔 ∈ 𝔛𝑐 , then(
𝜑2, 𝑔

)
𝐿2(𝐿2(Ω;ℝ𝑑 )) = (𝜑,𝑅𝑔)𝐿2() =

(
𝜑,𝑄−1 .

𝜂
)
𝐿2()

+
(
𝜑,′

𝑠(𝑢, 𝑣, 𝑞)𝜂
)
𝐿2()

=
(
𝑄−1 .

𝜑, 𝜂
)
𝐿2()

+
(′

𝑠(𝑢, 𝑣, 𝑞)
∗𝜑, 𝜂

)
𝐿2()

= −
(
Ψ′
𝑧(𝑠(𝑓 )), 𝜂

)
𝐿2()

holds for all 𝑔 ∈ 𝔛𝑐 , which implies the equivalence between (9.13) and the last equation in
(9.15). Moreover, it is well known that if 𝑓 is locally optimal for (9.4), then (9.13) must hold (see
also Lemma 5.10).

Let us now prove the equivalence between (9.15) and (9.14). We choose ℎ, 𝜉 ∈  and denote
by 𝜂∗ ∈ 𝐻1

𝐷(Ω;ℝ
𝑑×𝑑
𝑠 ) the solution of

−div(𝔻∇𝑠𝜂∗ + 𝔼𝑅′
𝑠(𝔼

⊤∇𝑠(𝑅𝑠(ℎ) − ℎ1) + ℎ3)∗(𝔼⊤∇𝑠(𝜂∗ − 𝜉1) + 𝜉3))) =
𝜉2
𝜆𝑠

+
𝜉1 − 𝜂∗

𝜆2𝑠
(9.16)

for all 𝜙 ∈ 𝐻1
𝐷(Ω;ℝ

𝑑) (the existence of 𝜂∗ follows as in Lemma 9.8, note that the inequalities in
Lemma 9.5 hold also for the adjoint operator). Then

′
𝑠(ℎ)

∗𝜉 =

⎛⎜⎜⎜⎝
𝜂∗

1
𝜆𝑠
𝜂∗ − 𝜉1

𝜆𝑠
𝑅′
𝑠(𝔼

⊤∇𝑠(𝑅𝑠(ℎ) − ℎ1) + ℎ3)∗(𝔼⊤∇𝑠(𝜂∗ − 𝜉1) + 𝜉3)

⎞⎟⎟⎟⎠
holds, which can be seen as follows: Let 𝑔 ∈  and abbreviate

𝜂 ∶=  ′
𝑅𝑠
(ℎ)𝑔, 𝜂𝑣 ∶=

𝜂 − 𝑔1
𝜆𝑠

, 𝜂𝑞 ∶= 𝑅′
𝑠(𝔼

⊤∇𝑠(𝑅𝑠(ℎ) − ℎ1) + ℎ3)(𝔼⊤∇𝑠(𝜂 − 𝑔1) + 𝑔3),

𝜂∗𝑣 ∶=
𝜂∗ − 𝜉1
𝜆𝑠

, 𝜂∗𝑞 ∶= 𝑅′
𝑠(𝔼

⊤∇𝑠(𝑅𝑠(ℎ) − ℎ1) + ℎ3)∗(𝔼⊤∇𝑠(𝜂∗ − 𝜉1) + 𝜉3).

Testing (9.7) with 𝜙 = 𝜉1 − 𝜂∗ gives(
𝔻∇𝑠𝜂,∇𝑠(𝜉1 − 𝜂∗)

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) +
(
𝜂𝑣 − 𝑔2, 𝜂∗𝑣

)
𝐿2(Ω;ℝ𝑑 )

=
(
𝔼𝜂𝑞,∇𝑠(𝜂∗ − 𝜉1)

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )

=
(
𝔼⊤∇𝑠(𝜂 − 𝑔1) + 𝑔3, 𝜂∗𝑞

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )
−
(
𝜂𝑞, 𝜉3

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) ,

and testing (9.16) with 𝜙 = 𝜂 − 𝑔1 yields(
𝔻∇𝑠𝜂∗,∇𝑠(𝜂 − 𝑔1)

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) +
(
𝜉2 − 𝜂∗𝑣 , 𝜂𝑣

)
𝐿2(Ω;ℝ𝑑 ) =

(
𝔼𝜂∗𝑞 ,∇

𝑠(𝑔1 − 𝜂)
)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )
,
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thus, adding both equations together, we arrive at(
𝔻∇𝑠𝜂,∇𝑠𝜉1

)
𝐻1(Ω;ℝ𝑑 ) +

(
𝜂𝑣, 𝜉2

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) +
(
𝜂𝑞, 𝜉3

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )

=
(
𝔻∇𝑠𝜂∗,∇𝑠𝑔1

)
𝐻1(Ω;ℝ𝑑 ) +

(
𝜂∗𝑣 , 𝑔2

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) +
(
𝜂∗𝑞 , 𝑔3

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )
,

which is equivalent to (′
𝑠(ℎ)𝑔, 𝜉

)
 =

(
𝑔,′

𝑠(ℎ)
∗𝜉
)
 .

Now one only has to use the definitions of 𝑠 and𝑅 to obtain the equivalence between (9.14)
and (9.15).

Let us end this part with examples about a concrete objective function, the gradient equa-
tion in Theorem 9.13 regarding a concrete control space and finally a realization of the max-
imal monotone operator 𝐴 (which will be of course the von-Mises flow rule considered in
Section 3.2).

Example 9.14 (Concrete objective function). Let us consider a tracking type objective function, that
is,

Ψ(𝑢, 𝑣, 𝑧) = 1
2
‖(𝑢, 𝑣, 𝑧) − (𝑢𝑑 , 𝑣𝑑 , 𝑧𝑑)‖2𝐿2()

with a desired state (𝑢𝑑 , 𝑣𝑑 , 𝑧𝑑) ∈ 𝐿2(). Then

Ψ𝑧(𝑢, 𝑣, 𝑞) =
1
2
‖(𝑢, 𝑣, (ℂ + 𝔹)−1(ℂ∇𝑠𝑢 − 𝑞)) − (𝑢𝑑 , 𝑣𝑑 , 𝑧𝑑)‖2𝐿2()

and

Ψ′
𝑧(𝑢, 𝑣, 𝑞) =

⎛⎜⎜⎝
𝑢̂

𝑣 − 𝑣𝑑
(ℂ + 𝔹)−1(ℂ∇𝑠𝑢 − 𝑞)) − 𝑧𝑑 ,

⎞⎟⎟⎠
where 𝑢̂ is such that −div(𝔻∇𝑠(𝑢̂ − 𝑢 + 𝑢𝑑) − ((ℂ + 𝔹)−1(ℂ∇𝑠𝑢 − 𝑞) − 𝑧𝑑)) = 0, hence, in this example
the adjoint equation in (9.14) has to be completed by this equation. Note that when one uses a finite
element approach to solve (9.14) numerically, then one can eliminate this additional equation after mul-
tiplying (9.14e) with a test function, that is, taking the -scalarproduct. When the -scalarproduct of
𝑄Ψ′

𝑧(𝑢, 𝑣, 𝑞) and a test function (𝜂1, 𝜂2, 𝜂3) is evaluated, the term
(
𝔻∇𝑠𝑢̂, 𝜂1

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) arises, then one
can use the additional equation to eliminate 𝑢̂ (respectively the equation).

Example 9.15 (Concrete control space). Let us consider the space

𝔛𝑐 ∶= {𝑓 ∈ 𝐻1(𝐿2(Ω;ℝ𝑑)) ∩ 𝐿2(𝐻1(Ω;ℝ𝑑)) ∶ 𝑓 (0) = 𝑓 (𝑇 ) = 0}

with the scalar product

(𝑓, 𝑔)𝔛𝑐
=
( .
𝑓,

.
𝑔
)
𝐿2(𝐿2(Ω;ℝ𝑑 ))

+ (∇𝑓,∇𝑔)𝐿2(𝐿2(Ω;ℝ𝑑×𝑑 )) ,

see Example 9.2. The Gradient equation in (9.14) then becomes

𝛼
( .
𝑓,

.
𝑔
)
𝐿2(𝐿2(Ω;ℝ𝑑 ))

+ 𝛼 (∇𝑓,∇𝑔)𝐿2(𝐿2(Ω;ℝ𝑑×𝑑 )) =
(
𝜑2, 𝑔

)
𝐿2(𝐿2(Ω;ℝ𝑑 ))

for all 𝑔 ∈ 𝔛𝑐 , which is the weak formulation of
..
𝑓 + Δ𝑓 = −

𝜑2
𝛼
.
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Part IV Plasticity with Inertia

Example 9.16 (Maximal monotone operator𝐴). Also in the case of plasticity with inertia it is reason-
able to consider the case of the von-Mises flow rule introduced in Section 3.2. Let us shortly emphasize
that the concrete choice of 𝐴 has no influence on the facts that  does neither fulfill the boundedness
property, nor is a subdifferential, as we have seen in Remark 8.16. To consider the case of the von-Mises
flow rule, we set 𝐴 = 𝜕𝐼(Ω), where 𝜕𝐼(Ω) is given in Definition 2.2 respectively Section 3.2, and 𝑅𝑠
is given by (3.13). Then Assumption ⟨IV.i⟩ holds according to (3.7) and (3.2). Assumption ⟨9.2.i⟩ is
also fulfilled due to Lemma 3.18 Item (iii) & Item (iv) and Lemma 3.19. Note furthermore, that, as we
already explained before Lemma 9.7, (3.12) shows that Lemma 9.7 can be used to satisfy (4.14).

With the presentation of the first order optimality conditions in the form of a KKT system
in Theorem 9.13 this part ends. We have seen that the abstract theory in Part II can also be
applied in the case of plasticity with inertia. This application was not as straightforward as
in the case of elasto and homogenized plasticity in Part III due to the lack of the boundedness
property of the arising maximal monotone operator , which is moreover not a subdifferential.
However, we could still apply the results in Chapter 4 for 𝐻2-loads and the differentiability
results provided in Section 5.2. In the next part we even move further away from Part II, the
findings in Chapter 4 will not be applicable at all.

Let us finally say that we decided to omit the application of the results about second order
sufficient conditions given Section 5.3 to keep the discussion once again more concise.
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Part V Perfect Plasticity

Also in this last part and agreed upon at the beginning of Part I, we collect at first all needed
assumptions for this part.

Assumption V. We impose the following assumptions according to The Assumption Agreement in the
beginning of Part I.

⟨V.i⟩ Let 𝐾 ⊂ ℝ𝑑×𝑑
𝑠 be convex and closed such that 0 ∈ 𝐾◦. We set

(Ω) ∶= {𝜏 ∈ 𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) ∶ 𝜏(𝑥) ∈ 𝐾 f.a.a. 𝑥 ∈ Ω}

as in Definition 2.2. The precise structure of 𝐾 is otherwise not important until Chapter 13,
see Assumption ⟨13.ii⟩.⟨V.ii⟩ We assume that the boundary of Ω is of class 𝐶1 and that 𝑑 ≥ 2. This assumption is not
necessary in Section 12.2, Section 12.3 and Chapter 13, see Remark 10.3 and also Section 12.2.

⟨11.i⟩ We assume that 𝑢0 ∈ 𝐻1(Ω;ℝ𝑑), 𝜎0 ∈ 𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ).⟨11.ii⟩ Let 𝑓 ∈ 𝐻1(𝐿𝑑(Ω;ℝ𝑑)) and 𝑢𝐷 ∈ 𝐻1(𝐻1(Ω;ℝ𝑑)) such that −div 𝜎0 = 𝑓 (0) and 𝑢0 −

𝑢𝐷(0) ∈ 𝐻1
𝐷(Ω;ℝ

𝑑) holds.

⟨11.1⟩ We require

𝑓𝑛 ⇀ 𝑓 in 𝐻1(𝐿𝑑(Ω;ℝ𝑑))
𝑓𝑛 → 𝑓 in 𝐿2(𝐿𝑑(Ω;ℝ𝑑))
𝑢𝐷,𝑛 ⇀ 𝑢𝐷 in 𝐻1(𝐻1(Ω;ℝ𝑑))
𝑢𝐷,𝑛 → 𝑢𝐷 in 𝐿2(𝐻1(Ω;ℝ𝑑))
𝑢𝐷,𝑛(𝑇 ) → 𝑢𝐷(𝑇 ) in 𝐻1(Ω;ℝ𝑑),

where {𝑓𝑛}𝑛∈ℕ and {𝑢𝐷,𝑛}𝑛∈ℕ are sequences in 𝐻1(𝐿𝑑(Ω;ℝ𝑑)) and 𝐻1(𝐻1(Ω;ℝ𝑑)), respec-
tively.

⟨11.2.i⟩ Let (𝜀, 𝜆) ∈ ℝ2 ⧵ {0}, 𝜀, 𝜆 ≥ 0, such that the following holds

𝜎0 − 𝜀𝔹(∇𝑠𝑢0 −𝔸𝜎0) ∈ (Ω). (9.17)

⟨11.2.ii⟩ Let  ⊂ 𝐻1(𝐿𝑑(Ω;ℝ𝑑)) be a set which fulfills a global safe-load condition with
𝑀 and 𝛿 > 0 (see Definition 11.13). Suppose that 𝑓 ∈  with corresponding
𝜌 ∈ 𝑊 1,∞(𝐿∞(Ω;ℝ𝑑×𝑑

𝑠 )) from Definition 11.13.
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Part V Perfect Plasticity

⟨11.3.i⟩ Let 𝜎0 ∈ (Ω).⟨11.3.ii⟩ We again suppose that Assumption ⟨11.2.ii⟩ and Assumption ⟨11.1⟩ holds and that
{𝑓𝑛}𝑛∈ℕ ⊂ . Furthermore, let −div 𝜎0 = 𝑓𝑛(0) and 𝑢0−𝑢𝐷,𝑛(0) ∈ 𝐻1

𝐷(Ω;ℝ
𝑑) for all 𝑛 ∈ ℕ.⟨11.3.iii⟩ Let {(𝜀𝑛, 𝜆𝑛)}𝑛∈ℕ ⊂ ℝ2 ⧵ 0 be a sequence such that (𝜀𝑛, 𝜆𝑛) → 0 and

𝜎0 − 𝜀𝑛𝔹(∇𝑠𝑢0 −𝔸𝜎0)) ∈ (Ω)

for all 𝑛 ∈ ℕ.⟨11.3.iv⟩ We abbreviate 𝑢𝑛 ∶= 𝑢𝜀𝑛,𝜆𝑛 , 𝜎𝑛 ∶= 𝜎𝜀𝑛,𝜆𝑛 and 𝑧𝑛 ∶= 𝑧𝜀𝑛,𝜆𝑛 , where (𝑢𝜀𝑛,𝜆𝑛 , 𝜎𝜀𝑛,𝜆𝑛 , 𝑧𝜀𝑛,𝜆𝑛) is
the solution of (11.9) with 𝑢𝐷 = 𝑢𝐷,𝑛, 𝑓 = 𝑓𝑛 and 𝑔 = 0.

⟨12.i⟩ The initial condition 𝑢0 belongs to 𝐻1(Ω;ℝ𝑑) and 𝜎0 to (Ω) and fulfills −div 𝜎0 = 0.⟨12.ii⟩ The space 𝑐 is a Hilbert space and the control space is given by𝐻1
00(𝑐) = {𝔩 ∈ 𝐻1(𝑐) ∶

𝔩(0) = 𝔩(𝑇 ) = 0}.
The space 𝑐 is compactly embedded into a Banach space  . The elements 𝔩 in 𝑐 ,  and

𝐻1
00(𝑐) are called pseudo forces .⟨12.iii⟩ The function Ψ ∶ 𝐻1(𝐻1(Ω;ℝ𝑑) × 𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )) × 𝐻1
00(𝑐) is weakly lower semicon-

tinuous, continuous and bounded from below. The objective function 𝐽 ∶ 𝐻1(𝐻1(Ω;ℝ𝑑) ×
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )) ×𝐻1
00(𝑐) is given in (12.1), where 𝛼 > 0 is the Tikhonov parameter.⟨12.iv⟩ The operator  ∶  → 𝐻1(Ω;ℝ𝑑) maps pseudo forces to Dirichlet displacements and is

linear and continuous. As usual, we denote  restricted to 𝑐 with the same symbol.⟨12.v⟩ The offset 𝔞 ∈ 𝐻1(𝐻1(Ω;ℝ𝑑)) fulfills 𝑢0 − 𝔞(0) ∈ 𝐻1
𝐷(Ω;ℝ

𝑑).

⟨12.1.i⟩ Let the initial condition 𝜎0 be of class 𝐻1(Ω;ℝ𝑑×𝑑
𝑠 ) and 𝑈 ∈ 𝐿2(𝐻1(Ω;ℝ𝑑×𝑑

𝑠 )).⟨12.1.ii⟩ Let 𝜃 ∈ (0, 1) and 𝛿 ∈ (0, 12 ) be given. The definition of the regularized objective function

𝐽𝜆 ∶ 𝐻1(𝐻1(Ω;ℝ𝑑)×𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ))×𝐻1

00(𝑐)×(𝐿2(𝐻− 1
2−𝛿(Ω;ℝ𝑑))∩𝐻1

0 (𝐻
−1(Ω;ℝ𝑑))) → ℝ

is given in (12.2).

⟨12.2⟩ With a slight abuse of notation, we denote the objective function 𝐽 ∶ 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )) ×

𝐻1
00(𝑐), defined in (12.12), again by 𝐽 , where we also defined Ψ ∶ 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )) → ℝ by
Ψ(𝜎) ∶= 1∕2‖𝜎(𝑇 ) − 𝜎𝑑‖𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ), where 𝜎𝑑 ∈ 𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) is the desired stress field.

⟨12.3.i⟩ We again suppose that Assumption ⟨12.2⟩ is satisfied and choose 𝜀 ≥ 0, 𝜆, 𝑠 > 0. More-
over, the pseudo force to Dirichlet boundary displacements mapping  maps  linear and
continuous into 𝑊 1,𝑝(Ω;ℝ𝑑) and we have 𝔞 ∈ 𝐻1(𝑊 1,𝑝(Ω;ℝ𝑑)) for one 𝑝 ∈ (2, 𝑝], where 𝑝 is
from Theorem 2.5.⟨12.3.ii⟩ The initial stress fulfills the regularity 𝜎0 ∈ 𝐿𝑝(Ω;ℝ𝑑×𝑑

𝑠 ), where 𝑝 is from Assump-
tion ⟨12.3.i⟩, and we have 𝑢0 = 𝔞(0) ∈ 𝑊 1,𝑝(Ω;ℝ𝑑).

⟨13.i⟩ The boundary 𝜕Ω can be split into a pseudo Dirichlet boundary Λ𝐷 and a pseudo
Neumann boundary Λ𝑁 . As for Γ𝐷 and Γ𝑁 , we require that Λ𝑁 is relatively open in 𝜕Ω,
while Λ𝐷 is relatively closed and has positive boundary measure. Moreover, we also assume
that Ω ∪ Λ𝑁 is regular in the sense of Gröger, cf. [46] (these assumptions are again needed to
solve linear elasticity, see also Chapter 1). Furthermore, we require that Γ𝐷 ⊂ Λ𝑁 and that Γ𝐷
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and Λ𝐷 have positive distance to each other, i.e.,

dist(Γ𝐷,Λ𝐷) = inf
𝑥∈Λ𝐷,𝜉∈Γ𝐷

|𝑥 − 𝜉| > 0. (9.18)

⟨13.ii⟩ We choose 𝛾 > 0 (specified in Section 13.3) and set 𝐾 ∶= {𝜏 ∈ ℝ𝑑×𝑑
𝑠 ∶ |𝜏𝐷| ≤ 𝛾} as in

Definition 2.2.

This last part is simultaneously also the most extensive one. This has several reasons.

At first we have to introduce the space of bounded deformation, denoted by 𝐵𝐷(Ω), since in
the case of perfect plasticity the existence of a displacement can only be shown in this space
and not in 𝐻1(Ω;ℝ𝑑). The space of bounded deformation does not have the Radon-Nikodým
property (see [31, Definition III.1.3] or [29, Appendix D] for the notion of this property and
Remark A.9 for the fact that the space of bounded deformation lacks it) and is thus also not
reflexive, which follows from the Dunford-Pettis theorem, see [29, Page 516]. Although it can
be shown that 𝐵𝐷(Ω) is the dual of a normed space (see [69, 97]), 𝐿2(𝐵𝐷(Ω)) is not the dual
space of the square integrable functions with values in the primal space of 𝐵𝐷(Ω) due to the
lack of the Radon-Nikodým property (cf. [31, Theorem IV.1.1]). The dual space of the square
integrable functions with values in the primal space of 𝐵𝐷(Ω) are only the weakly measurable
functions (cf. EDWARDS [33, p. 8.14.1]), also called scalarwise measurable functions (which is
however a different concept in EDWARDS [33, p. 8.14.1])), with values in 𝐵𝐷(Ω), denoted by
𝐿2
𝑤(𝐵𝐷(Ω)) (this notation is adopted from SUQUET [95]), see EDWARDS [33, 8.20.3 Theorem]

or TULCEA [101, Chapter VII section 5]. Due to these facts we need to consider the space
𝐿2
𝑤(𝐵𝐷(Ω)) to use, for instance results about weakly convergent subsequences. As the reader

may not be familiar with the concept of weakly measurable functions, we introduce the space
for the displacement from the ground up in Chapter 10 instead of referring only to the abstract
results for example given in [33, 101].

A second cause of the length of this part is the fact that most of the results in Part II are
not applicable. As we have seen in Lemma 2.8, the in Definition 2.7 introduced operator 𝑄
is only coercive when hardening is present. Since hardening is absent in the case of perfect
plasticity (which is actually the only difference between elasto and perfect plasticity), the lack
of the coercivity of the operator𝑄 prevents us from using the majority of the findings in Part II.
This is the reason why we have to go into details when we tend to the definition, regularization
and existence of solutions to perfect plasticity in Chapter 11.

Finally, after considering an optimal control problem in Chapter 12 we also present numer-
ical experiments in Chapter 13, which stretches this part further.

Similar as in the case of homogenized plasticity and plasticity with inertia considered in
Chapter 7 and Part IV, respectively, except MEYER ET AL. [72, 73] there are no results about
optimal control of perfect plasticity present in the literature, at least to the knowledge of the
author. The present part follows [72, 73] but also differs in several aspects, see e.g. Remark 12.2.
Concerning the (time dependent) equations of perfect plasticity itself, there are many results
available in the literature, see e.g. [57, 60, 95, 27, 28, 11, 40, 92]. We will comment on and use
some of the findings in these references throughout this part.
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Part V Perfect Plasticity

The formal strong formulation reads as follows:

−∇ ⋅ 𝜎 = 𝑓 in Ω, (9.19a)
𝜈 ⋅ 𝜎 = 0 on Γ𝑁 , (9.19b)

𝑢 = 𝑢𝐷 on Γ𝐷, (9.19c)
𝜎 = ℂ(∇𝑠𝑢 − 𝑧) in Ω, (9.19d)
.
𝑧 ∈ 𝜕𝐼(Ω)(𝜎) in Ω (9.19e)

(𝑢, 𝜎)(0) = (𝑢0, 𝜎0) in Ω. (9.19f)

Herein, we do not consider Neumann boundary forces, see also Remark 11.20. We emphasize
that the difference between (9.19) and (2.1) lies only in the absence of hardening, that is, the
hardening parameter 𝔹 is simply set to zero in (9.19). Therefore the physical interpretation for
perfect plasticity is analog to the given one in Chapter 2 for elasto plasticity except that the
flow rule (9.19e) prohibits the stress to go beyond the yield surface, that is, the stress must stay
inside the set (Ω).

Chapter 10 Displacement Space

This chapter is devoted to the introduction of the control space for the displacement. At first
we recall the definition and some properties of the space of bounded deformation from the
literature in Section 10.1. After that we can develop the space of velocity fields from which we
can then derive the space for the displacement in Section 10.2 and Section 10.3, respectively.

Note that the space of bounded deformation is well studied in the literature, the content
of Section 10.1 can be found in [85, 37] (measures) and [98] (the space of bounded defor-
mation). Moreover, the space of velocity fields (Ω) developed in Section 10.2 is in fact the

space {𝑣 ∈ 𝐿2(𝐿
𝑑
𝑑−1 (Ω;ℝ𝑑)) ∶ ∇𝑠𝑣 ∈ 𝐿2

𝑤(𝑀(Ω;ℝ𝑑×𝑑
𝑠 ))}, where 𝐿2

𝑤(𝑀(Ω;ℝ𝑑×𝑑
𝑠 ) (the notation is

again adopted from SUQUET [95]) is the space of weakly measurable functions with values in
𝑀(Ω;ℝ𝑑×𝑑

𝑠 ), which is the set of regular real Borel measures (see the next section below). We
already commented on the space of weakly measurable functions at the beginning of this part,
one sees with analog arguments that 𝐿2

𝑤(𝑀(Ω;ℝ𝑑×𝑑
𝑠 )) is the dual space of 𝐿2(𝐶0(Ω;ℝ𝑑×𝑑

𝑠 )). Due
to these observations the reader may skip Section 10.1 and / or Section 10.2 if she is already
familiar with the mentioned concepts. Moreover, let us note that our development of the space
of displacement fields is similar to the development of Bochner spaces, see for instance [87,
Kapitel 10.1] (see also Remark 10.9 below), and also borrows some techniques from [33, 101].

10.1 The Space of Bounded Deformation

The space of bounded deformation is the subspace of 𝐿1(Ω;ℝ𝑑) where the symmetrized gra-
dient (which exists as a distribution) is a (regular real Borel) measure. Thus we first introduce
(regular real Borel) measures before we can tend to the space of bounded deformation.

Regular real Borel Measures

For the introduction of regular real borel measures we follow [85, 37], see in particular [85,
1.18 Definition, 2.15 Definition & Chapter 6] and [37, Kapitel VIII]. This introduction is inten-
tionally kept as short as possible.
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Chapter 10 Displacement Space

Let us denote the (smallest) 𝜎-Algebra containing all open sets in Ω by (Ω). The elements
of (Ω) are called Borel sets of Ω (later we will also consider Borel sets of a time interval). A
system of Borel sets {𝐵𝑖}𝑖∈ℕ is called partition of 𝐵 ∈ (Ω) if

⋃∞
𝑖=1 𝐵𝑖 = 𝐵 and 𝐵𝑖 ∩ 𝐵𝑗 = ∅ for all

𝑖, 𝑗 ∈ ℕ, 𝑖 ≠ 𝑗. A function 𝜇 ∶ (Ω) → ℝ is now called real Borel Measure if

𝜇(𝐵) =
∞∑
𝑖=1

𝜇(𝐵𝑖)

for all 𝐵 ∈ (Ω) and all partitions {𝐵𝑖}𝑖∈ℕ ⊂ (Ω) of 𝐵. To define the norm of a real Borel
measure we need the total variation |𝜇| ∶ (Ω) → [0,∞) of a real Borel measure 𝜇, which is
defined by

|𝜇|(𝐵) ∶= sup
{ ∞∑

𝑖=1
|𝜇(𝐵𝑖)| ∶ {𝐵𝑖}𝑖∈ℕ ⊂ (Ω) is a partition of 𝐵

}
.

Note that |𝜇(𝐵)| ≤ |𝜇|(𝐵) ≤ |𝜇|(Ω) holds for all 𝐵 ∈ (Ω). Moreover, notice that it is a priori not
clear that |𝜇|(Ω) < ∞, however, that this is actually the case is proven in [85, 6.4 Theorem]. It
is evident that the set of all real Borel measures is a vector space and a Banach space with the
norm

‖𝜇‖ ∶= |𝜇|(Ω).
Now we need to consider a special subspace of the real Borel measures, the set of regular real
Borel measures, denoted by 𝑀(Ω), where a Borel measure is called regular if

|𝜇(𝐵)| = sup{|𝜇(𝐾)| ∶ 𝐾 ⊂ 𝐵,𝐾 is compact} (inner regular)
= inf{|𝜇(𝑈 )| ∶ 𝐵 ⊂ 𝑈,𝑈 is open} (outer regular)

for all 𝐵 ∈ (Ω).
As can be found in [85, 6.19 Theorem] or [37, 2.23 Satz],𝑀(Ω) can be identified with the dual

space of the space of all continuous functions “vanishing at infinity”, denoted by 𝐶0(Ω). That
is, a function 𝑓 ∶ Ω → ℝ belongs to 𝐶0(Ω) if and only if

∀𝜀 > 0 ∃𝐾 ⊂ Ω, compact, ∶ |𝑓 (𝑥)| ≤ 𝜀 ∀𝑥 ∈ Ω ⧵𝐾. (10.1)

Since Ω is open and bounded, the set 𝐶0(Ω) can be identified with {𝑓 ∈ 𝐶(Ω) ∶ 𝑓 |𝜕Ω = 0}.
Moreover, 𝐶0(Ω) equipped with the supremum norm is a separable Banach space, a closed
subspace of 𝐶(Ω) and the closure of 𝐶𝑐(Ω) (the continuous functions which have a compact
support). Let us formulate the duality between 𝐶0(Ω) and 𝑀(Ω) in the following

Theorem 10.1 (𝑀(Ω) is the dual space of 𝐶0(Ω)). The mapping

Φ ∶𝑀(Ω) → 𝐶0(Ω)∗, 𝜇 ↦
[
𝐶0(Ω) ∋ 𝑓 ↦ ∫Ω

𝑓𝑑𝜇
]

is an isometry, that is, Φ is bijective, linear and

‖Φ(𝜇)‖𝐶0(Ω)∗ = ‖𝜇‖𝑀(Ω)

holds for all 𝜇 ∈𝑀(Ω).
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The term ∫Ω 𝑓𝑑𝜇 in the theorem above is the integral of 𝑓 with respect to 𝜇, for more details
we refer to [85, 37, Chapter 1, Kapitel IV].

For simplicity, we will say that 𝑀(Ω) is the dual space of 𝐶0(Ω), 𝑀(Ω) = 𝐶0(Ω)∗. Moreover,
we will also say simply measure instead of regular real Borel measure. In the following, when
𝜇 ∈ 𝑀(Ω) and 𝑓 ∈ 𝐶0(Ω), ⟨𝜇, 𝑓 ⟩ = ∫Ω 𝑓𝑑𝜇 denotes the dual pairing between 𝑀(Ω) and 𝐶0(Ω).
Further we define

𝑀(Ω;ℝ𝑑×𝑑
𝑠 ) ∶= {𝜇 ∶ (Ω) → ℝ𝑑×𝑑

𝑠 ∶ (𝜇)𝑖,𝑗 ∈𝑀(Ω)},

which is the dual space of 𝐶0(Ω;ℝ𝑑×𝑑
𝑠 ). The norm on this is space is simply

‖𝜇‖𝑀(Ω;ℝ𝑑×𝑑
𝑠 ) ∶=

𝑑∑
𝑖,𝑗=1

‖(𝜇)𝑖,𝑗‖𝑀(Ω)

for 𝜇 ∈𝑀(Ω;ℝ𝑑×𝑑
𝑠 ). Again, for simplicity we also denote by

⟨𝜇, 𝑓 ⟩ = ∫Ω
𝑓𝑑𝜇 =

𝑑∑
𝑖,𝑗=1

∫Ω
𝑓𝑖,𝑗𝑑𝜇𝑖,𝑗 ,

where 𝜇 ∈ 𝑀(Ω;ℝ𝑑×𝑑
𝑠 ) and 𝑓 ∈ 𝐶0(Ω;ℝ𝑑×𝑑

𝑠 ), the dual pairing between 𝑀(Ω;ℝ𝑑×𝑑
𝑠 ) and

𝐶0(Ω;ℝ𝑑×𝑑
𝑠 ).

We mention that there are more duality results similar to the one given in Theorem 10.1, cf.
e.g. [37, Kapitel VIII §2], however, we only need the one in Theorem 10.1.

With the definition of measures at hand, we can now introduce

The Space of Bounded Deformation and its Properties

In the following our main resource is TEMAM [98, Chapter II.2 & II.3]. All mentioned prop-
erties can be found therein.

At first, the space of bounded deformation is defined as

𝐵𝐷(Ω) ∶= {𝑢 ∈ 𝐿1(Ω;ℝ𝑑) ∶ (∇𝑠𝑢)𝑖,𝑗 =
1
2
(𝜕𝑗𝑢𝑖 + 𝜕𝑖𝑢𝑗) ∈𝑀(Ω)} (10.2)

= {𝑢 ∈ 𝐿1(Ω;ℝ𝑑) ∶ ∇𝑠𝑢 ∈𝑀(Ω;ℝ𝑑×𝑑
𝑠 )}, (10.3)

where the partial derivatives are understood as distributions. That is, for all 𝑢 ∈ 𝐵𝐷(Ω) and all
𝑖, 𝑗 ∈ {1, ..., 𝑑} there exists a measure 𝜇𝑖,𝑗 ∈𝑀(Ω) such that

∫Ω
𝜑𝑑𝜇𝑖,𝑗 = ∫Ω

𝜑𝑑(∇𝑠𝑢)𝑖,𝑗 =
1
2 ∫Ω

𝜑𝑑(𝜕𝑗𝑢𝑖 + 𝜕𝑖𝑢𝑗) = −1
2 ∫Ω

𝑢𝑖𝜕𝑗𝜑 + 𝑢𝑗𝜕𝑖𝜑 (10.4)

for all 𝜑 ∈ 𝐶∞
𝑐 (Ω), where we set 1

2 (𝜕𝑗𝑢𝑖 + 𝜕𝑖𝑢𝑗) ∶= (∇𝑠𝑢)𝑖,𝑗 ∶= 𝜇𝑖,𝑗 . We emphasize that 𝜕𝑗𝑢𝑖 does
not has to be a measure, but only the sum 𝜕𝑗𝑢𝑖 + 𝜕𝑖𝑢𝑗 (which is the difference to the space of
bounded variation, see below).

With the norm ‖𝑢‖𝐵𝐷(Ω) ∶= ‖𝑢‖𝐿1(Ω;ℝ𝑑 ) + ‖∇𝑠𝑢‖𝑀(Ω;ℝ𝑑×𝑑
𝑠 ),

the space of bounded deformation becomes a Banach space. Moreover, we say that a sequence
{𝑢𝑛}𝑛∈ℕ ⊂ 𝐵𝐷(Ω) converges weakly∗ to 𝑢 ∈ 𝐵𝐷(Ω), 𝑢𝑛 ⇀∗ 𝑢, when

𝑢𝑛 → 𝑢 in 𝐿1(Ω;ℝ𝑑) and

∇𝑠𝑢𝑛 ⇀
∗ ∇𝑠𝑢 in 𝑀(Ω;ℝ𝑑×𝑑

𝑠 ).
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Let us additionally mention that when one requires in (10.2) that the full gradient is a mea-
sure, then one obtains the space of bounded variation (to be more precise, one obtains 𝐵𝑉 (Ω)𝑑 ,
where 𝐵𝑉 (Ω) is the space of bounded deformation which contains single valued functions).
We refer e.g. to [7] for more information about the space of bounded variation. Note that it is
known that these two spaces are in fact different (cf. TEMAM [98, page 145]).

We collect the for our analysis important properties of 𝐵𝐷(Ω) in the following

Theorem 10.2 (Properties of 𝐵𝐷(Ω)). We collect some properties of 𝐵𝐷(Ω):

(i) There exists a continuous, surjective and linear operator 𝛾0 ∶ 𝐵𝐷(Ω) → 𝐿1(𝜕Ω;ℝ𝑑) such that

𝛾0(𝑢) = 𝑢|𝜕Ω ∀𝑢 ∈ 𝐵𝐷(Ω) ∩ 𝐶(Ω;ℝ𝑑).

This operator is not weakly∗ continuous, that is, 𝑢𝑛 ⇀∗ 𝑢 does not imply 𝛾0(𝑢𝑛) ⇀ 𝛾0(𝑢).
Moreover, for all 𝑖, 𝑗 ∈ {1, ..., 𝑑} and all 𝜑 ∈ 𝐶(Ω) we have the generalised Green’s formular

1
2 ∫Ω

𝑢𝑖𝜕𝑗𝜑 + 𝑢𝑗𝜕𝑖𝜑 + ∫Ω
𝜑 d(∇𝑠𝑢)𝑖,𝑗 = ∫𝜕Ω 𝜑

1
2
(𝛾0(𝑢)𝑖𝜈𝑗 + 𝛾0(𝑢)𝑗𝜈𝑖),

where 𝜈 is the outward normal unit vector on 𝜕Ω. In the following we will simply write 𝑢
instead of 𝛾0(𝑢).

(ii) The space 𝐵𝐷(Ω) is continuously embedded into 𝐿
𝑑
𝑑−1 (Ω;ℝ𝑑), 𝐵𝐷(Ω) ↪ 𝐿

𝑑
𝑑−1 (Ω;ℝ𝑑). It is

compactly embedded into 𝐿𝑝(Ω;ℝ𝑑), 𝐵𝐷(Ω)
𝑐
←←←←→ 𝐿𝑝(Ω;ℝ𝑑), for all 𝑝 ∈ [1, 𝑑

𝑑−1 ).

(iii) There exists a constant 𝐶 such that

‖𝑢‖𝐵𝐷(Ω) ≤ 𝐶
[
∫Γ𝐷

|𝑢| + ‖∇𝑠𝑢‖𝑀(Ω;ℝ𝑑×𝑑
𝑠 )

]
for all 𝑢 ∈ 𝐵𝐷(Ω).

Remark 10.3 (Regularity of the boundary of Ω). Assumption ⟨V.ii⟩ is only needed for the results
in Theorem 10.2 and thus mainly in the construction of the space of velocity and displacement fields
in Section 10.2 and Section 10.3, respectively. This means in particular that Assumption ⟨V.ii⟩ can be
dropped when we restrict ourself to stress fields in Section 12.2.

In light of Theorem 10.2 Item (ii), a bounded sequence in 𝐵𝐷(Ω) has a subsequence which
converges strongly to a limit 𝑢 in 𝐿1(Ω;ℝ𝑑). This subsequence further admits another sub-
sequence such that the symmetric gradients converge weakly∗ to a limit 𝑤 in 𝑀(Ω;ℝ𝑑×𝑑

𝑠 ). By
taking the limit in (10.4), one easily verifies that 𝑢 ∈ 𝐵𝐷(Ω) with ∇𝑠𝑢 = 𝑤, hence, every bounded
sequence in 𝐵𝐷(Ω) admits a weakly∗ convergent subsequence.

This concludes our introduction to the space of bounded deformation. We continue with the
space of velocity fields.

10.2 The Space of Velocity Fields
As we elaborated in the beginning of this part and chapter, the space of velocity fields is the

subspace of𝐿2(𝐿
𝑑
𝑑−1 (Ω;ℝ𝑑)) such that the symmetric gradient is weakly measurable with values

in 𝑀(Ω;ℝ𝑑×𝑑
𝑠 ). We specify this in

Definition and Lemma 10.4 (Space of velocity fields). We define the space of velocity fields  as

the linear subspace of 𝐿2(𝐿
𝑑
𝑑−1 (Ω;ℝ𝑑)) such that 𝑣 ∈  if and only if
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(i) Pointwise regularity. We have 𝑣(𝑡) ∈ 𝐵𝐷(Ω) for almost all 𝑡 ∈ [0, 𝑇 ].

(ii) Weakly measurability . The symmetric gradient ∇𝑠𝑣 is weakly measurable, that is,
the mapping [0, 𝑇 ] ∋ 𝑡 ↦ ⟨∇𝑠𝑣(𝑡), 𝑔(𝑡)⟩ ∈ ℝ is an element of 𝐿1(0, 𝑇 ;ℝ) for every 𝑔 ∈
𝐿2(𝐶0(Ω;ℝ𝑑×𝑑

𝑠 )), where ⟨⋅, ⋅⟩ denotes the dual pairing between 𝑀(Ω;ℝ𝑑×𝑑
𝑠 ) and 𝐶0(Ω;ℝ𝑑×𝑑

𝑠 ).

(iii) Finite integrability of the norm. The mapping [0, 𝑇 ] ∋ 𝑡 ↦ ‖∇𝑠𝑣(𝑡)‖𝑀(Ω;ℝ𝑑×𝑑
𝑠 ) ∈ ℝ is an

element of 𝐿2(0, 𝑇 ;ℝ).

Moreover, the norm

‖ ⋅ ‖ ∶  → ℝ, 𝑣 ↦
(
∫

𝑇

0
‖𝑣(𝑡)‖2𝐵𝐷(Ω)𝑑𝑡

) 1
2

is well defined.

Proof. Clearly, if 𝑣,𝑤 ∈  and 𝛼 ∈ ℝ, the element (𝛼𝑣 + 𝑤) ∈ 𝐿2(𝐿
𝑑
𝑑−1 (Ω;ℝ𝑑)) fulfills Item (i)

and Item (ii). In order to see that Item (iii) is fulfilled, we select a dense and countable subset
{𝑔𝑘}𝑘∈ℕ of 𝐶0(Ω;ℝ𝑑×𝑑

𝑠 ), such that 𝑔𝑘 ≠ 0 for all 𝑘 ∈ ℕ, and note that

‖∇𝑠(𝛼𝑣 +𝑤)(𝑡)‖𝑀(Ω;ℝ𝑑×𝑑
𝑠 ) = sup

𝑘∈ℕ

(
𝛼⟨∇𝑠𝑣(𝑡), 𝑔𝑘∕‖𝑔𝑘‖⟩ + ⟨∇𝑠𝑤(𝑡), 𝑔𝑘∕‖𝑔𝑘‖⟩)

for almost all 𝑡 ∈ [0, 𝑇 ], hence, as a pointwise supremum of countable measurable functions,‖∇𝑠(𝛼𝑣+𝑤)(⋅)‖𝑀(Ω;ℝ𝑑×𝑑
𝑠 ) is measurable (cf. [85, 1.14 Theorem]). Moreover, the triangle inequality

gives a majorant.
Since ‖ ⋅ ‖𝐵𝐷(Ω) = ‖ ⋅ ‖𝐿1(Ω;ℝ𝑑 ) + ‖ ⋅ ‖𝑀(Ω;ℝ𝑑×𝑑

𝑠 ), the norm ‖ ⋅ ‖ is well defined.

Note that we have chosen the space 𝐿
𝑑
𝑑−1 (Ω;ℝ𝑑) in the definition and Lemma above due to

Theorem 10.2 Item (ii). Moreover, similar as in the proof of Definition and Lemma 10.4, Item (ii)
therein gives the measurability of ‖𝑣(⋅)‖𝑀(Ω;ℝ𝑑×𝑑

𝑠 ) for 𝑣 ∈  , therefore the actual requirement in
Item (iii) is only the finiteness of the integral (thus the name of Item (iii)).

Having defined the space of velocity fields, we continue with the definition of the weak
convergence in this space and a result about weak compactness.

Definition 10.5 (Weak∗ convergence in ). Let {𝑣𝑛}𝑛∈ℕ ⊂  and 𝑣 ∈  . We say that 𝑣𝑛 converges

weakly∗ towards 𝑣 in  , and write 𝑣𝑛 ⇀∗ 𝑣 in  , if and only if 𝑣𝑛 ⇀ 𝑣 in 𝐿2(𝐿
𝑑
𝑑−1 (Ω;ℝ𝑑)) and

∫
𝑇

0
⟨∇𝑠𝑣𝑛(𝑡), 𝑔(𝑡)⟩𝑑𝑡→ ∫

𝑇

0
⟨∇𝑠𝑣(𝑡), 𝑔(𝑡)⟩𝑑𝑡 (10.5)

for all 𝑔 ∈ 𝐿2(𝐶0(Ω;ℝ𝑑×𝑑
𝑠 )), as 𝑛→ ∞.

Proposition 10.6 (Weak compactness of ). Let 𝐶 > 0 be a constant and {𝑣𝑛}𝑛∈ℕ ⊂  a sequence
such that

‖𝑣𝑛‖ ≤ 𝐶

for all 𝑛 ∈ ℕ.
Then there exists a subsequence {𝑣𝑛𝑘}𝑘∈ℕ and a weak∗ limit 𝑣 ∈ 𝐵

𝐶 (0) such that 𝑣𝑛𝑘 ⇀
∗ 𝑣 in  , as

𝑘→ ∞.
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Proof. In the following we will select several subsequences of {𝑣𝑛}𝑛∈ℕ and denote them all with
the same symbol.

Step (i). Convergence of the symmetric gradient. Let 𝑆 = {𝑔𝑘}𝑘∈ℕ be a dense set in 𝐶0(Ω;ℝ𝑑×𝑑
𝑠 ),

such that 𝑔𝑘 ≠ 0 for all 𝑘 ∈ ℕ. Since ‖∇𝑠𝑣𝑛(⋅)‖𝑀(Ω;ℝ𝑑×𝑑
𝑠 ) is bounded in 𝐿2(0, 𝑇 ;ℝ), we can select

a subsequence and a weak limit 𝑧 ∈ 𝐿2(0, 𝑇 ;ℝ), such that ‖∇𝑠𝑣𝑛(⋅)‖𝑀(Ω;ℝ𝑑×𝑑
𝑠 ) ⇀ 𝑧 in 𝐿2(0, 𝑇 ;ℝ).

Moreover, the mappings

𝑧𝑘𝑛 ∶ [0, 𝑇 ] → ℝ, 𝑡 ↦ ⟨∇𝑠𝑣𝑛(𝑡), 𝑔𝑘⟩
are bounded in 𝐿2(0, 𝑇 ;ℝ) with respect to 𝑛 for every 𝑘 ∈ ℕ. By a diagonal method we can
extract a subsequence and weak limits 𝑧𝑘 ∈ 𝐿2(0, 𝑇 ;ℝ) such that 𝑧𝑘𝑛 ⇀ 𝑧𝑘 in 𝐿2(0, 𝑇 ;ℝ), as
𝑛→ ∞, for all 𝑘 ∈ ℕ.

For almost all 𝑡 ∈ [0, 𝑇 ] and all 𝐺 ∈ span(𝑆), 𝐺 =
∑𝑚
𝑖=1 𝛼𝑖𝑔𝑖, we define

(𝑉 (𝑡))(𝐺) ∶=
𝑚∑
𝑖=1

𝛼𝑖𝑧
𝑖(𝑡) ∈ ℝ.

Choosing an arbitrary Borel set 𝐵 ∈ ([0, 𝑇 ]) and 𝐺 ∈ span(𝑆) we obtain

∫𝐵(𝑉 (𝑡))(𝐺)𝑑𝑡 =
𝑚∑
𝑖=1

𝛼𝑖 ∫𝐵 𝑧
𝑖(𝑡)𝑑𝑡 =

𝑚∑
𝑖=1

𝛼𝑖 lim𝑛→∞∫𝐵 𝑧
𝑖
𝑛(𝑡)𝑑𝑡 = lim

𝑛→∞∫𝐵 ⟨∇𝑠𝑣𝑛(𝑡), 𝐺⟩𝑑𝑡,
so that

∫𝐵(𝑉 (𝑡))(𝐺)𝑑𝑡 ≤ lim
𝑛→∞∫𝐵 ‖∇𝑠𝑣𝑛(𝑡)‖𝑀(Ω;ℝ𝑑×𝑑

𝑠 )‖𝐺‖𝐶0(Ω;ℝ𝑑×𝑑
𝑠 )𝑑𝑡 = ∫𝐵 𝑧(𝑡)‖𝐺‖𝐶0(Ω;ℝ𝑑×𝑑

𝑠 )𝑑𝑡,

hence,

|(𝑉 (𝑡))(𝐺)| ≤ 𝑧(𝑡)‖𝐺‖𝐶0(Ω;ℝ𝑑×𝑑
𝑠 ) (10.6)

for almost all 𝑡 ∈ [0, 𝑇 ] and all 𝐺 ∈ span(𝑆).
Since 𝑉 (𝑡) is linear by definition, inequality (10.6) proves that 𝑉 (𝑡) ∈ (span(𝑆);ℝ) for almost

all 𝑡 ∈ [0, 𝑇 ]. Furthermore, because 𝑆, and therefore span(𝑆), is dense in 𝐶0(Ω;ℝ𝑑×𝑑
𝑠 ), we can

extend 𝑉 (𝑡) uniquely to an element of 𝐶0(Ω;ℝ𝑑×𝑑
𝑠 )∗ =𝑀(Ω;ℝ𝑑×𝑑

𝑠 ), using (10.6) again we obtain

‖𝑉 (𝑡)‖𝑀(Ω;ℝ𝑑×𝑑
𝑠 ) ≤ 𝑧(𝑡) (10.7)

for almost all 𝑡 ∈ [0, 𝑇 ]. Moreover, since

‖𝑉 (𝑡)‖𝑀(Ω;ℝ𝑑×𝑑
𝑠 ) = sup

𝑘∈ℕ

⟨𝑉 (𝑡), 𝑔𝑘⟩‖𝑔𝑘‖𝐶0(Ω;ℝ𝑑×𝑑
𝑠 )

= sup
𝑘∈ℕ

𝑧𝑘(𝑡),

‖𝑉 (⋅)‖𝑀(Ω;ℝ𝑑×𝑑
𝑠 ) is measurable as the pointwise supremum of countable measurable functions

(cf. [85, 1.14 Theorem]), thus ‖𝑉 (⋅)‖𝑀(Ω;ℝ𝑑×𝑑
𝑠 ) ∈ 𝐿2(0, 𝑇 ;ℝ).

Let us select a finite partition {𝐵𝑖}𝑖∈{1,...,𝑚} ⊂ ([0, 𝑇 ]) of [0, 𝑇 ], elements 𝑔𝑖 ∈ 𝑆, 𝑖 ∈ {1, ..., 𝑚},
and a simple function

𝑔 ∶ [0, 𝑇 ] → 𝐶0(Ω;ℝ𝑑×𝑑
𝑠 ), 𝑡 ↦

𝑚∑
𝑖=1

𝜒𝐵𝑖(𝑡)𝑔𝑖,
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where 𝜒𝐵𝑖 is the characteristic function of 𝐵𝑖. Then

∫
𝑇

0
⟨𝑉 (𝑡), 𝑔(𝑡)⟩𝑑𝑡 = 𝑚∑

𝑖=1
∫𝐵𝑖 𝑧

𝑖(𝑡)𝑑𝑡 = lim
𝑛→∞∫

𝑇

0
⟨∇𝑠𝑣𝑛(𝑡), 𝑔(𝑡)⟩𝑑𝑡. (10.8)

Let now 𝑓 ∈ 𝐿2(𝐶0(Ω;ℝ𝑑×𝑑
𝑠 )) be arbitrary. Because 𝑆 is dense in 𝐶0(Ω;ℝ𝑑×𝑑

𝑠 ), there exists a
sequence {𝑓𝑛}𝑛∈ℕ of simple functions with values in 𝑆 and 𝑓𝑛 → 𝑓 in 𝐿2(𝐶0(Ω;ℝ𝑑×𝑑

𝑠 )) and
𝑓𝑛(𝑡) → 𝑓 (𝑡) for almost all 𝑡 ∈ [0, 𝑇 ]. We have for almost all 𝑡 ∈ [0, 𝑇 ]⟨𝑉 (𝑡), 𝑓𝑛(𝑡)⟩ → ⟨𝑉 (𝑡), 𝑓 (𝑡)⟩,
and |⟨𝑉 (𝑡), 𝑓𝑛(𝑡)⟩| ≤ 1

2

[‖𝑉 (𝑡)‖2𝑀(Ω;ℝ𝑑×𝑑
𝑠 ) + ‖𝑓𝑛(𝑡)‖2𝐶0(Ω;ℝ𝑑×𝑑

𝑠 )

]
,

hence, Lebesgue’s dominated convergence theorem (cf. [104, Theorem 3.1.29]) gives ⟨𝑉 (⋅), 𝑓𝑛(⋅)⟩ →⟨𝑉 (⋅), 𝑓 (⋅)⟩ in 𝐿1(0, 𝑇 ;ℝ), as 𝑛 → ∞. Now, for 𝜀 > 0 we select 𝑘 ∈ ℕ such that, using (10.8), we
get

lim sup
𝑛→∞

|||∫ 𝑇

0
⟨𝑉 (𝑡), 𝑓 (𝑡)⟩𝑑𝑡 − ∫

𝑇

0
⟨∇𝑠𝑣𝑛(𝑡), 𝑓 (𝑡)⟩𝑑𝑡|||

≤ 𝜀 + lim sup
𝑛→∞

|||∫ 𝑇

0
⟨𝑉 (𝑡), 𝑓𝑘(𝑡)⟩𝑑𝑡 − ∫

𝑇

0
⟨∇𝑠𝑣𝑛(𝑡), 𝑓𝑘(𝑡)⟩𝑑𝑡|||

+ lim sup
𝑛→∞

|||∫ 𝑇

0
⟨∇𝑠𝑣𝑛(𝑡)), 𝑓𝑘(𝑡) − 𝑓 (𝑡)⟩𝑑𝑡||| ≤ 𝜀 + 𝐶𝜀,

hence,

∫
𝑇

0
⟨∇𝑠𝑣𝑛(𝑡), 𝑓 (𝑡)⟩𝑑𝑡 → ∫

𝑇

0
⟨𝑉 (𝑡), 𝑓 (𝑡)⟩𝑑𝑡

for all 𝑓 ∈ 𝐿2(𝐶0(Ω;ℝ𝑑×𝑑
𝑠 )), as 𝑛 → ∞.

Step (ii). Convergence of the full function. Since𝐵𝐷(Ω) is continuously embedded in𝐿
𝑑
𝑑−1 (Ω;ℝ𝑑)

(Theorem 10.2 Item (ii)), 𝑣𝑛 is bounded in 𝐿2(𝐿
𝑑
𝑑−1 (Ω;ℝ𝑑)) and we can select another subse-

quence and a weak limit 𝑣 ∈ 𝐿2(𝐿
𝑑
𝑑−1 (Ω;ℝ𝑑)) such that 𝑣𝑛 ⇀ 𝑣 in 𝐿2(𝐿

𝑑
𝑑−1 (Ω;ℝ𝑑)). For every

𝜑 ∈ 𝐶∞
𝑐 (Ω;ℝ), every Borel set 𝐵 ∈ ([0, 𝑇 ]) and all 𝑖, 𝑗 ∈ {1, ..., 𝑛} we have

1
2 ∫𝐵 ∫Ω

𝑣𝑖(𝑡, 𝑥)𝜕𝑗𝜑(𝑥) + 𝑣𝑗(𝑡, 𝑥)𝜕𝑖𝜑(𝑥)𝑑𝑥𝑑𝑡

= lim
𝑛→∞

1
2 ∫𝐵 ∫Ω

𝑣𝑖,𝑛(𝑡, 𝑥)𝜕𝑗𝜑(𝑥) + 𝑣𝑗,𝑛(𝑡, 𝑥)𝜕𝑖𝜑(𝑥)𝑑𝑥𝑑𝑡

= lim
𝑛→∞

−∫𝐵 ∫Ω
𝜑𝑑(∇𝑠𝑣𝑛(𝑡))𝑖,𝑗𝑑𝑡 = −∫𝐵 ∫Ω

𝜑𝑑(𝑉 (𝑡))𝑖,𝑗𝑑𝑡,

therefore 𝑉 (𝑡) = ∇𝑠𝑣(𝑡) for almost all 𝑡 ∈ [0, 𝑇 ].
Step (iii). Boundedness of the limit. To prove that ‖𝑣‖ ≤ 𝐶 we note that ‖𝑣𝑛(⋅)‖𝐿1(Ω;ℝ𝑑 ) is

bounded in 𝐿2(0, 𝑇 ;ℝ), thus, for another subsequence, we obtain 𝑧̃ ∈ 𝐿2(0, 𝑇 ;ℝ) such that‖𝑣𝑛(⋅)‖𝐿1(Ω;ℝ𝑑 ) ⇀ 𝑧̃ in 𝐿2(0, 𝑇 ;ℝ). For an arbitrary Borel set 𝐵 ∈ ([0, 𝑇 ]) and 𝜑 ∈ 𝐿∞(Ω;ℝ𝑑) we
have

∫𝐵 ∫Ω
𝑣(𝑡, 𝑥) ⋅ 𝜑(𝑥)𝑑𝑥𝑑𝑡 = lim

𝑛→∞∫𝐵 ∫Ω
𝑣𝑛(𝑡, 𝑥) ⋅ 𝜑(𝑥)𝑑𝑥𝑑𝑡

≤ ‖𝜑‖𝐿∞(Ω;ℝ𝑑 ) lim𝑛→∞∫𝐵 ‖𝑣𝑛(𝑡)‖𝐿1(Ω;ℝ𝑑 )𝑑𝑡 = ‖𝜑‖𝐿∞(Ω;ℝ𝑑 ) ∫𝐵 𝑧̃(𝑡)𝑑𝑡,
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thus

∫Ω
𝑣(𝑡, 𝑥) ⋅ 𝜑(𝑥)𝑑𝑥 ≤ ‖𝜑‖𝐿∞(Ω;ℝ𝑑 )𝑧̃(𝑡)

for almost all 𝑡 ∈ [0, 𝑇 ]. Choosing in particular 𝜑𝑖(𝑥) = 𝜒{𝑥∈Ω|𝑣𝑖(𝑡,𝑥)≥0} − 𝜒{𝑥∈Ω|𝑣𝑖(𝑡,𝑥)<0} we get‖𝑣(𝑡)‖𝐿1(Ω;ℝ𝑑 ) ≤ 𝑧̃(𝑡) for almost all 𝑡 ∈ [0, 𝑇 ].
Since (‖𝑣𝑛(⋅)‖𝐿1(Ω;ℝ𝑑 )+‖∇𝑠𝑣𝑛(⋅)‖𝑀(Ω;ℝ𝑑×𝑑

𝑠 )) converges weakly towards (𝑧̃+𝑧) in 𝐿2(0, 𝑇 ;ℝ) and

‖ ‖𝑣𝑛(⋅)‖𝐿1(Ω;ℝ𝑑 ) + ‖∇𝑠𝑣𝑛(⋅)‖𝑀(Ω;ℝ𝑑×𝑑
𝑠 )‖𝐿2(0,𝑇 ;ℝ) = ‖𝑣𝑛‖ ≤ 𝐶

we obtain

‖𝑣‖ ≤ ‖𝑧̃ + 𝑧‖𝐿2(0,𝑇 ;ℝ) ≤ 𝐶,

where we also have used (10.7), hence, the proof is complete.

We shortly give some comments on the proof of the proposition above. At first, the gradients
of elements of  are weakly measurable, that is, they belong to 𝐿𝑤(𝑀(Ω;ℝ𝑑×𝑑

𝑠 )) (we do not use
this notation in our development, it was used in SUQUET [95] and we only adopt it here to
compare our results with the literature). According to Theorem 10.1 and [33, 8.20.3 Theorem],
𝐿2
𝑤(𝑀(Ω;ℝ𝑑×𝑑

𝑠 )) is the dual space of 𝐿2(𝐶0(Ω;ℝ𝑑×𝑑
𝑠 )), the convergence in (10.5) is then just the

weak* convergence in 𝐿2
𝑤(𝑀(Ω;ℝ𝑑×𝑑

𝑠 )). With this result one obtains the existence of a weak*
limit of symmetric gradients from a bounded sequence in  , which we have proven in step
(i) of the proof of Proposition 10.6. However, as already said in the beginning of this part,
we decided to provide the full proofs without citing results from [33] (or [101]) about weakly
measurability.

Let us finally show that the space of velocity fields is complete, for this task the following
lemma is useful.

Lemma 10.7 (Limit of the symmetrized gradient). Let {𝑣𝑛}𝑛∈ℕ ⊂  , 𝑣 ∈  and 𝑉 ∶ [0, 𝑇 ] →
𝑀(Ω;ℝ𝑑×𝑑

𝑠 ) such that 𝑣𝑛 ⇀∗ 𝑣 in  and ‖∇𝑠𝑣𝑛(⋅) − 𝑉 (⋅)‖𝑀(Ω;ℝ𝑑×𝑑
𝑠 ) → 0 in 𝐿1(0, 𝑇 ;ℝ).

Then ∇𝑠𝑣 = 𝑉 .

Proof. We have for all 𝑔 ∈ 𝐿∞(𝐶0(Ω;ℝ𝑑×𝑑
𝑠 ))

∫
𝑇

0
⟨∇𝑠𝑣(𝑡) − 𝑉 (𝑡), 𝑔(𝑡)⟩𝑑𝑡 = lim

𝑛→∞∫
𝑇

0
⟨∇𝑠𝑣𝑛(𝑡) − 𝑉 (𝑡), 𝑔(𝑡)⟩𝑑𝑡

≤ lim
𝑛→∞∫

𝑇

0
‖∇𝑠𝑣𝑛(𝑡) − 𝑉 (𝑡)‖𝑀(Ω;ℝ𝑑×𝑑

𝑠 )𝑑𝑡‖𝑔‖𝐿∞(𝐶0(Ω;ℝ𝑑×𝑑
𝑠 )) = 0,

thus

∫
𝑇

0
⟨∇𝑠𝑣(𝑡) − 𝑉 (𝑡), 𝑔(𝑡)⟩𝑑𝑡 = 0.

Choosing in particular 𝑔 = 𝐺𝜒𝐵 for an arbitrary Borel set 𝐵 ∈ ([0, 𝑇 ]) and 𝐺 ∈ 𝐶0(Ω;ℝ𝑑×𝑑
𝑠 ) we

get

⟨∇𝑠𝑣(𝑡) − 𝑉 (𝑡), 𝐺⟩ = 0

hence, ‖∇𝑠𝑣(𝑡) − 𝑉 (𝑡)‖𝑀(Ω;ℝ𝑑×𝑑
𝑠 ) = 0, for almost all 𝑡 ∈ [0, 𝑇 ].

Proposition 10.8 (Banach space). The space ( , ‖ ⋅ ‖ ) is complete.
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Proof. Let {𝑣𝑛}𝑛∈ℕ ⊂  be a Cauchy sequence. Since 𝐵𝐷(Ω) is continuously embedded in

𝐿
𝑑
𝑑−1 (Ω;ℝ𝑑), 𝑣𝑛 is a Cauchy sequence in 𝐿2(𝐿

𝑑
𝑑−1 (Ω;ℝ𝑑)) and there exists a strong limit 𝑣 ∈

𝐿2(𝐿
𝑑
𝑑−1 (Ω;ℝ𝑑)). Because 𝑣𝑛 is also bounded in  , Proposition 10.6 gives 𝑣 ∈  and 𝑣𝑛 ⇀∗ 𝑣 in (for the whole sequence since 𝑣 is already determined).

We select now a subsequence such that

∫
𝑇

0
‖∇𝑠𝑣𝑚(𝑡) − ∇𝑠𝑣𝑛(𝑡)‖2𝑀(Ω;ℝ𝑑×𝑑

𝑠 )𝑑𝑡 ≤ 1
2𝑛

for all 𝑛 ∈ ℕ and 𝑚 ≥ 𝑛. The function

𝑈𝑛 ∶ [0, 𝑇 ] → ℝ, 𝑡 ↦
𝑛∑
𝑖=1

‖∇𝑠𝑣𝑖+1(𝑡) − ∇𝑠𝑣𝑖(𝑡)‖𝑀(Ω;ℝ𝑑×𝑑
𝑠 )

is then bounded in 𝐿2(0, 𝑇 ;ℝ) (due to the triangle inequality) and pointwise monotonically
increasing, hence, according to Beppo Levi’s monotone convergence theorem (cf. [37, Kapitel
IV Satz 2.7]), there exists a limit𝑈 ∈ 𝐿2(0, 𝑇 ;ℝ) such that𝑈𝑛 → 𝑈 in𝐿2(0, 𝑇 ;ℝ) and𝑈𝑛(𝑡) → 𝑈 (𝑡)
for almost all 𝑡 ∈ [0, 𝑇 ]. Due to

‖∇𝑠𝑣𝑛(𝑡) − ∇𝑠𝑣𝑚(𝑡)‖𝑀(Ω;ℝ𝑑×𝑑
𝑠 ) ≤ |𝑈𝑛−1(𝑡) − 𝑈𝑚−1(𝑡)| (10.9)

for all 𝑛, 𝑚 ∈ ℕ, 𝑛 ≥ 𝑚, the sequence ∇𝑠𝑣𝑛(𝑡) is a Cauchy sequence and has therefore a limit 𝑉 (𝑡)
in 𝑀(Ω;ℝ𝑑×𝑑

𝑠 ) for almost all 𝑡 ∈ [0, 𝑇 ]. Considering the limit 𝑚→ ∞ in (10.9) we obtain

‖∇𝑠𝑣𝑛(𝑡) − 𝑉 (𝑡)‖𝑀(Ω;ℝ𝑑×𝑑
𝑠 ) ≤ |𝑈𝑛(𝑡) − 𝑈 (𝑡)|,

and Lebesgue’s dominated convergence theorem gives ‖∇𝑠𝑣𝑛(⋅) − 𝑉 (⋅)‖𝑀(Ω;ℝ𝑑×𝑑
𝑠 ) ∈ 𝐿2(0, 𝑇 ;ℝ)

for all 𝑛 ∈ ℕ. Yet another application of Lebesgue’s dominated convergence theorem yields‖∇𝑠𝑣𝑛(⋅) − 𝑉 (⋅)‖𝑀(Ω;ℝ𝑑×𝑑
𝑠 ) → 0 in 𝐿2(0, 𝑇 ;ℝ), thus Lemma 10.7 gives ∇𝑠𝑣 = 𝑉 .

Remark 10.9 (Completeness of Bochner spaces). The proof of Proposition 10.8 is similar to the proof
of the completeness of Bochner spaces, see for instance [87, Theorem 10.4].

With the completeness result, we have collected all in the following needed results about the
space of velocity fields. In the next section we will integrate functions from  in time to obtain
the space of displacement fields.

10.3 The Space of Displacement Fields

When a function 𝑣 belongs to  , then, by definition, it also belongs to 𝐿2(𝐿
𝑑
𝑑−1 (Ω;ℝ𝑑×𝑑

𝑠 )). There-

fore we can simply (Bochner-)integrate this function to obtain a function in 𝐻1(𝐿
𝑑
𝑑−1 (Ω;ℝ𝑑)).

This is the method we use to define the space of displacement fields. Before we formulate this
in Definition and Lemma 10.11, we show that these functions are absolutely continuous with
values in 𝐵𝐷(Ω).

Lemma 10.10 (Absolutely continuous). Let 𝑣 ∈  and 𝑢0 ∈ 𝐵𝐷(Ω).
Then the function 𝑢 ∈ 𝐻1(𝐿

𝑑
𝑑−1 (Ω;ℝ𝑑)) defined by

𝑢(𝑡) ∶= 𝑢0 + ∫
𝑡

0
𝑣(𝑠)𝑑𝑠 (10.10)

for almost all 𝑡 ∈ [0, 𝑇 ], is an element of 𝐴𝐶(𝐵𝐷(Ω)), that is, 𝑢 ∶ [0, 𝑇 ] → 𝐵𝐷(Ω) is absolutely
continuous.
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Proof. We define the function 𝑈 ∶ [0, 𝑇 ] →𝑀(Ω;ℝ𝑑×𝑑
𝑠 ) by

⟨𝑈 (𝑡), 𝑔⟩ ∶= ⟨∇𝑠𝑢0, 𝑔⟩ + ∫
𝑡

0
⟨∇𝑠𝑣(𝑠), 𝑔⟩𝑑𝑠

for all 𝑔 ∈ 𝐶0(Ω;ℝ𝑑×𝑑
𝑠 ). Then

‖𝑈 (𝑡) − 𝑈 (𝑠)‖𝑀(Ω;ℝ𝑑×𝑑
𝑠 ) = sup

𝑔∈𝐶0(Ω;ℝ𝑑×𝑑
𝑠 ),‖𝑔‖≤1∫

𝑡

𝑠
⟨∇𝑠𝑣(𝜏), 𝑔⟩𝑑𝜏 ≤ ∫

𝑡

𝑠
‖∇𝑠𝑣(𝑡)‖𝑀(Ω;ℝ𝑑×𝑑

𝑠 )𝑑𝜏,

hence, 𝑈 ∈ 𝐴𝐶(𝑀(Ω;ℝ𝑑×𝑑
𝑠 )). Furthermore, for all 𝜑 ∈ 𝐶∞

𝑐 (Ω) we have

1
2 ∫Ω

𝑢𝑖(𝑡)𝜕𝑗𝜑 + 𝑢𝑗(𝑡)𝜕𝑖𝜑 = 1
2 ∫Ω

𝑢0,𝑖𝜕𝑗𝜑 + 𝑢0,𝑗𝜕𝑖𝜑 + 1
2 ∫Ω ∫

𝑡

0
𝑣𝑖(𝑠)𝜕𝑗𝜑 + 𝑣𝑗(𝑠)𝜕𝑖𝜑𝑑𝑠

= −∫Ω
𝜑𝑑(∇𝑠𝑢0)𝑖,𝑗 − ∫

𝑡

0 ∫Ω
𝜑𝑑(∇𝑠𝑣(𝑡))𝑖,𝑗𝑑𝑠

= −∫Ω
𝜑𝑑(𝑈 (𝑡))𝑖,𝑗 ,

therefore 𝑢(𝑡) ∈ 𝐵𝐷(Ω) and ∇𝑠𝑢(𝑡) = 𝑈 (𝑡) for almost all 𝑡 ∈ [0, 𝑇 ]. Since

‖𝑢(𝑡) − 𝑢(𝑠)‖𝐵𝐷(Ω) = ‖𝑢(𝑡) − 𝑢(𝑠)‖𝐿1(Ω;ℝ𝑑 ) + ‖𝑈 (𝑡) − 𝑈 (𝑠)‖𝑀(Ω;ℝ𝑑×𝑑
𝑠 ),

we get 𝑢 ∈ 𝐴𝐶(0, 𝑇 ;𝐵𝐷(Ω)).

In the following we actually do not need the fact that a function defined by (10.10) is ab-
solutely continuous with values in 𝐵𝐷(Ω). However, in DAL MASO ET AL. [27, Theorem 5.2]
it was shown that solutions to perfect plasticity are absolutely continuous in time (therein a
different notion of a solution was used, as we will discuss in the beginning of the next chapter),
Lemma 10.10 gives the same regularity.

Definition and Lemma 10.11 (Space of displacement fields). We define the space of displacement
fields

 ∶= {𝑢 ∈ 𝐻1(𝐿
𝑑
𝑑−1 (Ω;ℝ𝑑)) ∶ 𝑢(0) ∈ 𝐵𝐷(Ω) and

.
𝑢 ∈ }.

The space of displacement fields is a linear subspace of𝐻1(𝐿
𝑑
𝑑−1 (Ω;ℝ𝑑))∩𝐴𝐶(0, 𝑇 ;𝐵𝐷(Ω)) and becomes

with the norm

‖ ⋅ ‖ ∶  → ℝ, 𝑢 ↦ ‖𝑢(0)‖𝐵𝐷(Ω) + ‖ .
𝑢‖

a Banach space. Moreover, if 𝐶 > 0 is a constant and {𝑢𝑛}𝑛∈ℕ ⊂  a sequence such that

‖𝑢𝑛‖ ≤ 𝐶

for all 𝑛 ∈ ℕ, then there exists a subsequence {𝑢𝑛𝑘}𝑘∈ℕ and a weak∗ limit 𝑢 ∈  such that 𝑢𝑛𝑘 ⇀
∗ 𝑢 in , as 𝑘→ ∞, where the weak convergence in  is defined as follows:

𝑤𝑛 ⇀
∗ 𝑤 in  if and only if

.
𝑤𝑛 ⇀

∗ .
𝑤 in  and 𝑤𝑛(0) ⇀∗ 𝑤(0) in 𝐵𝐷(Ω).

Furthermore, if it is known that 𝑢𝑛(0) → 𝑢(0) in 𝐵𝐷(Ω), then 𝑢 ∈ 𝐵
𝐶 (0).
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Proof. Since  is a linear subspace of 𝐿2(𝐿
𝑑
𝑑−1 (Ω;ℝ𝑑)) and  ⊂ 𝐴𝐶(0, 𝑇 ;𝐵𝐷(Ω)),  is a linear

subspace of 𝐻1(𝐿
𝑑
𝑑−1 (Ω;ℝ𝑑)) ∩ 𝐴𝐶(0, 𝑇 ;𝐵𝐷(Ω)). That ‖ ⋅ ‖ is a norm on  is obvious. If

{𝑢𝑛}𝑛∈ℕ ⊂  is a Cauchy sequence in  ,
.
𝑢𝑛 is a Cauchy sequence in  and 𝑢𝑛(0) in 𝐵𝐷(Ω),

hence, there exists 𝑣 ∈  and 𝑢0 ∈ 𝐵𝐷(Ω) such that
.
𝑢𝑛 → 𝑣 in  and 𝑢𝑛(0) → 𝑢0 in 𝐵𝐷(Ω), then

the function defined by (10.10) for almost all 𝑡 ∈ [0, 𝑇 ], is the limit of 𝑢𝑛 in  .
If {𝑢𝑛}𝑛∈ℕ ⊂  is bounded by the constant 𝐶 > 0, then

.
𝑢𝑛 is bounded in  and 𝑢𝑛(0) in𝐵𝐷(Ω),

thus there exists a subsequence, 𝑣 ∈  and 𝑢0 ∈ 𝐵𝐷(Ω) such that
.
𝑢𝑛 ⇀∗ 𝑣 in  , 𝑢𝑛(0) ⇀∗ 𝑢0 in

𝐵𝐷(Ω). Then we can define again the function 𝑢 ∈  by (10.10) for almost all 𝑡 ∈ [0, 𝑇 ] and
obtain 𝑢𝑛 ⇀∗ 𝑢 in  .

Let us now assume that 𝑢𝑛(0) → 𝑢0 = 𝑢(0) in 𝐵𝐷(Ω). Then there exists for every 𝜀 > 0 a
number 𝑛0 ∈ ℕ such that

‖ .
𝑢𝑛‖ ≤ 𝐶 − ‖𝑢(0)‖𝐵𝐷(Ω) + 𝜀

for all 𝑛 ∈ ℕ, 𝑛 ≥ 𝑛0, hence, Proposition 10.6 gives

‖ .
𝑢‖ ≤ 𝐶 − ‖𝑢(0)‖𝐵𝐷(Ω) + 𝜀.

Since 𝜀 > 0 was arbitrary we obtain 𝑢 ∈ 𝐵
𝐶 (0).

Corollary 10.12 (Weakly lower∗ semicontinuity). Let 𝑢0 ∈ 𝐵𝐷(Ω) be given. Then the  -norm is
weakly lower∗ semicontinuous on 𝑀 ∶= {𝑢 ∈  ∶ 𝑢(0) = 𝑢0}.

Proof. Let 𝑢𝑛 be a sequence in 𝑀 such that 𝑢𝑛 ⇀∗ 𝑢 for one 𝑢 ∈𝑀 . We have to prove that

‖𝑢‖ ≤ lim inf
𝑛→∞

‖𝑢𝑛‖ . (10.11)

To this end we consider a subsequence 𝑢𝑛𝑘 such that

lim
𝑘→∞

‖𝑢𝑛𝑘‖ = lim inf
𝑛→∞

‖𝑢𝑛‖ .
Let now 𝜀 > 0 be arbitrary and select 𝑘0 ∈ ℕ such that

‖𝑢𝑛𝑘‖ ≤ lim inf
𝑛→∞

‖𝑢𝑛‖ + 𝜀

for all 𝑘 ≥ 𝑘0. Since 𝑢𝑛𝑘(0) = 𝑢0 holds for all 𝑘 ∈ ℕ, Definition and Lemma 10.11 gives

‖𝑢‖ ≤ lim inf
𝑛→∞

‖𝑢𝑛‖ + 𝜀,

which yields, thanks to the arbitrariness of 𝜀, (10.11).

With the corollary above, we have completed the introduction of the space of displacement
fields and thus of the control space (for displacements). In the next chapter we can address the
equations of perfect plasticity, different solution concepts and the existence of a solution.

Chapter 11 Definition, Regularization and Existence

One of the first (mathematical) works concerning (time dependent) perfect plasticity are [57,
60]. Therein, the flow rule ∇𝑠 .𝑢 − 𝔸

.
𝜎 ∈ 𝜕𝐼(Ω)(𝜎) (obtained from (9.19e) by using (9.19d)) was

weakened by using integration by parts to remove the derivatives from the displacement. Then
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the existence of displacements in 𝐻1(𝐿
𝑑
𝑑−1 (Ω;ℝ𝑑)) for 𝑑 = 2, 3 was proven (and of stresses in

𝐻1(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ))). In the early eighties this work was extended by SUQUET [95], he used essen-

tially the same technique to obtain a weak formulation of the flow rule and proved existence
of the velocity of a displacement in 𝐿2

𝑤(𝐵𝐷(Ω)) (see the beginning of this part, the beginning of
Chapter 10 and the comment after Proposition 10.6 for the space 𝐿2

𝑤(𝐵𝐷(Ω))). In both works
the Yosida approximation was used (this method is also known as vanishing viscosity) to prove
the existence.

After the work of Suquet the mathematical contributions to perfect plasticity subsided until
the paper of DAL MASO ET AL. [27] in 2006. Therein, perfect plasticity was analyzed in the
context of quasistatic evolutions, also called energetic solutions of rate-independent systems (see,
e.g., [76]). However, as was proven in [27], their notion of a solution is equivalent to the one
given in SUQUET [95, 1.4 Formulations. Résultats] (cf. [27, Theorem 6.1 and Remark 6.3]).

After that, several other works concerning perfect plasticity were published, e.g. [28, 11, 40,
92]. The introduction in [40] gives also a good overview of the history of perfect plasticity.

For the optimal control of perfect plasticity, we will follow SUQUET [95] by using the def-
inition given therein and using also the Yosida approximation to regularize the equations of
perfect plasticity in Section 11.2. Although the existence of a solution was proven in this paper,
we tend to this topic in Section 11.3 in particular to extend this result with varying data, to add
hardening and to show the strong convergence of the stresses of regularized solutions. Before
we do this, we give the definition of a solution and provide some auxiliary results in the next
section.

11.1 Weak Formulation of the Flow Rule
At first we give the definition of a solution to (9.19). The main idea in this definition is, as
already said above, to weaken the flow rule (9.19e) by removing the derivatives of the dis-
placement (and also to drop the boundary conditions (9.19c)). That the original flow rule can
be recovered under certain assumptions will be shown in Lemma and Definition 11.2. Recall
Assumption ⟨11.i⟩ and Assumption ⟨11.ii⟩.
Definition 11.1 ((Weak) solution of perfect plasticity). The tuple (𝑢, 𝜎) ∈  ×𝐻1(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )) is
called a weak solution or just solution of (9.19), if the following conditions hold:

(i) The initial condition 𝜎(0) = 𝜎0 is fulfilled and we have

−div 𝜎(𝑡) = 𝑓 (𝑡), 𝜎(𝑡) ∈ (Ω)

for all 𝑡 ∈ [0, 𝑇 ], where the div operator was introduced in Definition 2.1 and the set (Ω) in
Assumption ⟨V.i⟩.

(ii) The initial condition 𝑢(0) = 𝑢0 is fulfilled and the weak flow rule inequality(
𝔸

.
𝜎(𝑡) − ∇𝑠 .𝑢𝐷(𝑡), 𝜏 − 𝜎(𝑡)

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )
+
( .
𝑢(𝑡) −

.
𝑢𝐷(𝑡), div(𝜏 − 𝜎(𝑡))

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )
≥ 0

∀𝜏 ∈ (Ω) with div 𝜏 ∈ 𝐿𝑑(Ω;ℝ𝑑) and f.a.a. 𝑡 ∈ [0, 𝑇 ]
(11.1)

is satisfied.

Moreover, 𝜎 ∈ 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )) is called reduced solution of (9.19) if Item (i) and the reduced

weak flow rule inequality(
𝔸

.
𝜎(𝑡) − ∇𝑠 .𝑢𝐷(𝑡), 𝜏 − 𝜎(𝑡)

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )
≥ 0

∀𝜏 ∈ (Ω) with − div 𝜏 = 𝑓 (𝑡) and f.a.a. 𝑡 ∈ [0, 𝑇 ]
(11.2)
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holds.

Note that the definitions above correspond to JOHNSON [57, Plasticity Problem I & II] and
the definition given in SUQUET [95, 1.4 Formulations. Résultats].

It follows immediately from the definition, that if (𝑢, 𝜎) is a solution, then 𝜎 is a reduced
solution of (9.19). As hinted above, a solution to (9.19) is equivalent to a strong solution when
the displacement is more regular and the Dirichlet boundary conditions are satisfied:

Lemma and Definition 11.2 (Equivalence between a solution and a strong solution). A tuple
(𝑢, 𝜎) ∈ 𝐻1(𝐻1(Ω;ℝ𝑑) × 𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )) is a strong solution of (9.19), that is,

−div 𝜎 = 𝑓,

∇𝑠 .𝑢 −𝔸
.
𝜎 ∈ 𝜕𝐼(Ω)(𝜎),

(𝑢 − 𝑢𝐷)(𝑡) ∈ 𝐻1
𝐷(Ω;ℝ

𝑑) ∀𝑡 ∈ [0, 𝑇 ],
(𝑢, 𝜎)(0) = (𝑢0, 𝜎0)

(11.3)

holds, if and only if it is a (weak) solution of (9.19) and (𝑢− 𝑢𝐷)(𝑡) ∈ 𝐻1
𝐷(Ω;ℝ

𝑑) holds for all 𝑡 ∈ [0, 𝑇 ].

Proof. Let (𝑢, 𝜎) ∈ 𝐻1(𝐻1(Ω;ℝ𝑑) × 𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )) be a strong solution of (9.19), we only have to

prove that (𝑢, 𝜎) fulfills the flow rule inequality (11.1) which follows from the definition of the
subdifferential and the fact that (𝑢 − 𝑢𝐷)(𝑡) ∈ 𝐻1

𝐷(Ω;ℝ
𝑑) for all 𝑡 ∈ [0, 𝑇 ],

0 ≥ (
∇𝑠 .𝑢(𝑡) − 𝔸

.
𝜎(𝑡), 𝜏 − 𝜎(𝑡)

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )

=
(
∇𝑠 .𝑢𝐷(𝑡) − 𝔸

.
𝜎(𝑡), 𝜏 − 𝜎(𝑡)

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )
−
( .
𝑢(𝑡) −

.
𝑢𝐷(𝑡), div(𝜏 − 𝜎(𝑡))

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )

for all 𝜏 ∈ (Ω) with div 𝜏 ∈ 𝐿𝑑(Ω;ℝ𝑑) and for almost all 𝑡 ∈ [0, 𝑇 ].
Let us now assume that (𝑢, 𝜎) ∈ 𝐻1(𝐻1(Ω;ℝ𝑑) × 𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )) is a (weak) solution of (9.19)
and that (𝑢 − 𝑢𝐷)(𝑡) ∈ 𝐻1

𝐷(Ω;ℝ
𝑑) holds for all 𝑡 ∈ [0, 𝑇 ]. As above we obtain

0 ≥ (
∇𝑠 .𝑢(𝑡) − 𝔸

.
𝜎(𝑡), 𝜏 − 𝜎(𝑡)

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )

for all 𝜏 ∈ (Ω) with div 𝜏 ∈ 𝐿𝑑(Ω;ℝ𝑑) and for almost all 𝑡 ∈ [0, 𝑇 ]. When we can show that
this inequality holds even for all 𝜏 ∈ (Ω), the proof is complete. To this end, we note that the
inequality holds in particular for all 𝜏 ∈ 𝐶1

𝑐 (Ω;ℝ
𝑑×𝑑
𝑠 ) ∩ (Ω), thus, it is sufficient to show that

𝐶∞
𝑐 (Ω;ℝ𝑑×𝑑

𝑠 ) ∩(Ω) is dense in (Ω).
To prove this, let 𝜏 ∈ (Ω) and 𝜀 ∈ (0, 1) be arbitrary. We set 𝜏 ∶= (1 − 𝜀)𝜏 and select a

sequence {𝜏𝑛}𝑛∈ℕ ∈ 𝐶∞
𝑐 (Ω;ℝ𝑑×𝑑

𝑠 ) such that ‖𝜏𝑛 − 𝜏‖2𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )

≤ 𝛿2𝜀3

2𝑛 for all 𝑛 ∈ ℕ, where 𝛿 > 0 is

chosen such that 𝐵𝛿(0) ⊂ 𝐾 (cf. Assumption ⟨V.i⟩). We define

𝑆𝑐𝑛 ∶= {𝑥 ∈ Ω ∶ 𝜏𝑛(𝑥) ∈ 𝜕𝐾 ∪ (ℝ𝑑×𝑑
𝑠 ⧵𝐾)},

𝑆𝑜𝑛 ∶= {𝑥 ∈ Ω ∶ 𝜏𝑛(𝑥) ∈ (ℝ𝑑×𝑑
𝑠 ⧵ (1 − 𝜀

2
)𝐾)}

(thus 𝑆𝑐𝑛 is compact (𝜏𝑛 has a compact support so that 𝑆𝑐𝑛 is a subset of this support) and 𝑆𝑜𝑛
open with 𝑆𝑐𝑛 ⊂ 𝑆

𝑜
𝑛) and note that

𝜏𝑛(𝑥)
1 − 𝜀

2

= 𝜆𝜏(𝑥) + (1 − 𝜆)𝜎(𝑥),
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with 𝜆 ∶= (1−𝜀)
(1− 𝜀

2 )
and 𝜎(𝑥) ∶= 𝜏𝑛(𝑥)−𝜏(𝑥)

(1−𝜆)(1− 𝜀
2 )

, is an element of𝐾 whenever 𝜏(𝑥) ∈ 𝐾 and |𝜏𝑛(𝑥)− 𝜏(𝑥)| ≤
𝛿(1 − 𝜆)(1 − 𝜀

2 ) =
𝛿𝜀
2 . Therefore we obtain

‖𝜏𝑛 − 𝜏‖2𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) ≥ ∫𝑆𝑜𝑛 |𝜏𝑛 − 𝜏|2 ≥ 𝛿2𝜀2

2
|𝑆𝑜𝑛|

so that

|𝑆𝑐𝑛| ≤ |𝑆𝑜𝑛| ≤ 𝜀
𝑛
.

Due to Lebesgue’s dominated convergence theorem, there exists 𝑁 = 𝑁(𝜀) ∈ ℕ such that

‖𝜏‖𝐿2(𝑆𝑜𝑁 ;ℝ𝑑×𝑑
𝑠 ) ≤ ‖𝜏‖𝐿2(𝑆𝑜𝑁 ;ℝ𝑑×𝑑

𝑠 ) ≤ 𝜀.

We select 𝑣 ∈ 𝐶∞(ℝ𝑑 ;ℝ) such that 𝑣(𝑥) = 1 for all 𝑥 ∈ ℝ𝑑 ⧵ 𝑆𝑜𝑁 , 𝑣(𝑥) = 0 for all 𝑥 ∈ 𝑆𝑐𝑁 and
𝑣(𝑥) ∈ [0, 1] otherwise. The function 𝜏𝑠 ∶= 𝑣𝜏𝑁 then fulfills

‖𝜏 − 𝜏𝑠‖𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) ≤ ‖𝜏 − 𝜏‖𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) + ‖𝜏 − 𝜏𝑁‖𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) + ‖𝜏𝑁 − 𝜏𝑠‖𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )

≤ 𝜀‖𝜏‖𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) +

√
𝛿𝜀√
2𝑁

+ ‖𝜏𝑁‖𝐿2(𝑆𝑜𝑁 ;ℝ𝑑×𝑑
𝑠 )

≤ 𝜀‖𝜏‖𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) +

√
𝛿𝜀√
2𝑁

+ ‖𝜏 − 𝜏𝑁‖𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) + ‖𝜏‖𝐿2(𝑆𝑜𝑁 ;ℝ𝑑×𝑑

𝑠 )

≤ 𝜀(‖𝜏‖𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) +

2
√
𝛿√

2𝑁
+ 1)

and also 𝜏𝑠 ∈ (Ω) ∩ 𝐶∞
𝑐 (Ω;ℝ𝑑×𝑑

𝑠 ).

Let us note that the unknown plastic strain 𝑧 in (9.19) does not occur in Definition 11.1
and we have also excluded it in (11.3), however, it can be obtained from 𝑢 and 𝜎. Analog to
DALMASO ET AL. [27, 2.3 Stress and strain, (2.21) & (2.22)], the plastic strain can be set to

𝑧(𝑡) = ∇𝑠𝑢(𝑡) − 𝑒(𝑡) in Ω (11.4)

𝑧(𝑡) = ((𝑢𝐷(𝑡) − 𝑢(𝑡))⊛ 𝜈)𝑛−1 on Γ𝐷 (11.5)

for 𝑡 ∈ [0, 𝑇 ], where the elastic strain is simply 𝑒 = 𝔸𝜎 and the symmetrized tensor product
is defined by 𝑎 ⊛ 𝑏 ∶= (𝑎𝑏⊤+𝑎⊤𝑏)∕2 for all 𝑎, 𝑏 ∈ ℝ𝑑 . Here, (11.5) corresponds to the fact that
when the displacement field does not equal the Dirichlet displacement on the boundary (which
is possible according to Definition 11.1), then this is due to plastic deformation. For more
insight on this definition we refer to the discussion after Corollary 3.5 in [73] and DAL MASO

ET AL.[27]. We emphasize that from a mechanical standpoint of view, it makes sense to drop
the Dirichlet boundary condition in Definition 11.1. This allows plastic slips on the boundary.

Auxiliary Results

We start with the uniqueness of the stress. The prove is straightforward and can be found
in JOHNSON [57, Theorem 1] but we provide it for the convenience of the reader.

Lemma 11.3 (Reduced solutions are unique). Assume that 𝜎1, 𝜎2 ∈ 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )) are two re-

duced solutions of (9.19).
Then 𝜎1 = 𝜎2.
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Proof. We have (
𝔸

.
𝜎𝑖(𝑡) − ∇𝑠 .𝑢𝐷(𝑡), 𝜏 − 𝜎𝑖(𝑡)

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )
≥ 0

for 𝑖 = 1, 2, for almost all 𝑡 ∈ [0, 𝑇 ] and for all 𝜏 ∈ (Ω) with −div 𝜏 = 𝑓 (𝑡). Testing the
inequality for 𝑖 = 1 with 𝜏 = 𝜎2(𝑡), the inequality for 𝑖 = 2 with 𝜏 = 𝜎1(𝑡) and adding both
inequalities together gives(

𝔸(
.
𝜎1(𝑡) −

.
𝜎2(𝑡)), 𝜎1(𝑡) − 𝜎2(𝑡)

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )
≤ 0

for almost all 𝑡 ∈ [0, 𝑇 ]. Integrating this inequality with respect to time and using the coercivity
of 𝔸, we get

‖𝜎1(𝑡) − 𝜎2(𝑡)‖2𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) ≤ 0,

thus 𝜎1 = 𝜎2.

Remark 11.4 (The displacement is not unique). In Lemma 11.3 it was easily seen that the stress field
of a solution to (9.19) is unique. However, the same is not true for the displacement field (and thus not
for the plastic strain in (11.5)), in SUQUET [95, 2.1 Exemples] this was shown for a most trivial example
in the one dimensional space, see also [73, Example 3.10].

The following two statements are devoted to a reformulation of the flow rule inequality for
time dependent functions. This reformulation is more convenient when taking the limit in the
flow rule inequality, for example in Proposition 11.10.

Lemma 11.5 (Time dependent flow rule inequality). Let (𝑢, 𝜎) ∈ 𝐻1(𝐻1(Ω;ℝ𝑑) × 𝐿2(Ω,ℝ𝑑×𝑑
𝑠 )).

Then(
𝔸

.
𝜎 − ∇𝑠 .𝑢𝐷, 𝜏 − 𝜎

)
𝐿2(𝐿2(Ω,ℝ𝑑×𝑑

𝑠 ))
+
( .
𝑢 −

.
𝑢𝐷, div(𝜏 − 𝜎)

)
𝐿2(𝐿2(Ω,ℝ𝑑 ))

≥ 0

∀𝜏 ∈ 𝐿2(𝐿2(Ω,ℝ𝑑×𝑑
𝑠 )) with div 𝜏 ∈ 𝐿2(𝐿𝑑(Ω;ℝ𝑑)) and 𝜏(𝑡) ∈ (Ω) f.a.a. 𝑡 ∈ [0, 𝑇 ]

(11.6)

holds if and only if (11.1) holds.

Proof. Clearly, if (11.1) holds, then also (11.6).
Assume now that (11.6) holds. Let 𝜏0 ∈ (Ω) with div 𝜏0 ∈ 𝐿𝑑(Ω;ℝ𝑑) be arbitrary and

𝑆 ∈ ([0, 𝑇 ]) the Borel set containing all 𝑡 ∈ [0, 𝑇 ] with(
𝔸

.
𝜎(𝑡) − ∇𝑠 .𝑢𝐷(𝑡), 𝜏0 − 𝜎(𝑡)

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )
+
( .
𝑢(𝑡) −

.
𝑢𝐷(𝑡), div(𝜏0 − 𝜎(𝑡))

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )
< 0

(for a particular choice of representatives of 𝜎, 𝑢𝐷 and 𝑢.) When we define 𝜏(𝑡) ∶= 𝜏0 for all 𝑡 ∈ 𝑆
and 𝜏(𝑡) ∶= 𝜎(𝑡) for all 𝑡 ∈ [0, 𝑇 ] ⧵ 𝑆, we see, thanks to (11.6), that 𝑆 has measure zero.

Corollary 11.6 (Time dependent reduced flow rule inequality). Let 𝜎 ∈ 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )). Then(

𝔸
.
𝜎 − ∇𝑠 .𝑢𝐷, 𝜏 − 𝜎

)
𝐿2(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ))
≥ 0

∀𝜏 ∈ 𝐿2(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )) with − div 𝜏 = 𝑓 and 𝜏(𝑡) ∈ (Ω) f.a.a. 𝑡 ∈ [0, 𝑇 ]

(11.7)

holds if and only if (11.2) holds.

Proof. The proof is analog to the one from Lemma 11.5.
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In the following lemma, we will put the norm of the stress in relationship to the given data.
This enables us to obtain a priori estimates for the stress and it is also important to prove
strong convergence in Proposition 11.10 Item (ii) and Theorem 11.19 below (using weak and
norm convergence).

Lemma 11.7 (Norm of the stress). Assume that (𝑢, 𝜎) ∈  ×𝐻1(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )) is a solution of (9.19).

Then the equation

‖ .
𝜎(𝑡)‖2𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )𝔸
=
(
∇𝑠 .𝑢𝐷(𝑡),

.
𝜎(𝑡)

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )
+
( .
𝑢(𝑡) −

.
𝑢𝐷(𝑡),

.
𝑓 (𝑡)

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )

holds for almost all 𝑡 ∈ [0, 𝑇 ].

Proof. There exists a set 𝑁 ⊂ [0, 𝑇 ] with measure zero, such that

lim
ℎ→0

𝜎(𝑡 + ℎ) − 𝜎(𝑡)
ℎ

=
.
𝜎(𝑡), lim

ℎ→0

𝑓 (𝑡 + ℎ) − 𝑓 (𝑡)
ℎ

=
.
𝑓 (𝑡)

(cf. [104, Theorem 3.1.40]) and(
𝔸

.
𝜎(𝑡) − ∇𝑠 .𝑢𝐷(𝑡), 𝜏 − 𝜎(𝑡)

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )
+
( .
𝑢(𝑡) −

.
𝑢𝐷(𝑡), div(𝜏 − 𝜎(𝑡))

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )
≥ 0

hold for all 𝑡 ∈ (0, 𝑇 ) ⧵𝑁 and all 𝜏 ∈ (Ω) with div 𝜏 ∈ 𝐿𝑑(Ω;ℝ𝑑). Testing this inequality with
𝜎(𝑡 ± ℎ) for a sufficient small ℎ > 0, we get(

𝔸
.
𝜎(𝑡) − ∇𝑠 .𝑢𝐷(𝑡), 𝜎(𝑡 ± ℎ) − 𝜎(𝑡)

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )
≥ ( .

𝑢(𝑡) −
.
𝑢𝐷(𝑡), 𝑓 (𝑡 ± ℎ) − 𝑓 (𝑡)

)
𝐿2(Ω;ℝ𝑑 )

,

dividing by ℎ and letting ℎ↘ 0, we obtain the desired equation for all 𝑡 ∈ (0, 𝑇 ) ⧵𝑁 .

The result above uses the same method as was used in [104, Lemma 3.2.7 and Theorem
3.2.10] and probably originated in [64, Proposition I.3.9].

Corollary 11.8 (Boundedness of the stress). Assume that (𝑢𝑛, 𝜎𝑛) ∈  ×𝐻1(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )) are weak

solutions of (9.19) with respect to 𝑢𝐷,𝑛 and 𝑓𝑛, and assume that at least one of the following conditions
hold:

(i)
.
𝑢𝑛 is bounded in 𝐿2(𝐿

𝑑
𝑑−1 (Ω;ℝ𝑑)).

(ii)
.
𝑓 𝑛 = 0 for all 𝑛 ∈ ℕ.

Then the sequence 𝜎𝑛 is bounded in 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )).

Proof. Due to Lemma 11.7 we have

‖ .
𝜎𝑛(𝑡)‖2𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )𝔸
=
(
∇𝑠 .𝑢𝐷,𝑛(𝑡),

.
𝜎𝑛(𝑡)

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )
+
( .
𝑢𝑛(𝑡) −

.
𝑢𝐷,𝑛(𝑡),

.
𝑓 𝑛(𝑡)

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )

for almost all 𝑡 ∈ [0, 𝑇 ] and all 𝑛 ∈ ℕ. Integrating this equation with respect to time and using
the coercivity of 𝔸, we get

‖ .
𝜎𝑛‖2𝐿2(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )) ≤ 1
𝛾𝔸

((
∇𝑠 .𝑢𝐷,𝑛,

.
𝜎𝑛
)
𝐿2(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ))
+
( .
𝑢𝑛 −

.
𝑢𝐷,𝑛,

.
𝑓 𝑛

)
𝐿2(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ))

)
≤ 1
𝛾𝔸

(‖∇𝑠 .𝑢𝐷,𝑛‖𝐿2(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ))‖ .

𝜎𝑛‖𝐿2(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ))

+ ‖ .
𝑢𝑛 −

.
𝑢𝐷,𝑛‖𝐿2(𝐿

𝑑
𝑑−1 (Ω;ℝ𝑑 ))

‖ .
𝑓 𝑛‖𝐿2(𝐿𝑑 (Ω;ℝ𝑑 ))

)
,

this together with 𝜎𝑛(0) = 𝜎0 for all 𝑛 ∈ ℕ yields the desired boundedness of 𝜎𝑛 in
𝐻1(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )).
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Remark 11.9 (Boundedness of the displacement). It is also possible to prove the boundedness of
the displacement, cf. [73, Lemma 4.3]. Such a result was also proven in DAL MASO ET AL. [27,
Theorem 5.2]. However, this result would be of little use for us since we do not have an analogon in the
regularized case (at least without the safe-load condition, see Section 11.2) and we also require that the
displacement is of class 𝐻1(Ω;ℝ𝑑×𝑑

𝑠 ) in Chapter 12 so that we could not use such a boundedness result
(in  ), see also Remark 12.2.

In the following proposition we prove some continuity properties which in particular show
that weak limits of solutions to (9.19) are also solutions. Note that the convergence properties
in Assumption ⟨11.1⟩ are only needed for this result.

Proposition 11.10 (Continuity properties of solutions to perfect plasticity). Suppose that the tu-
ples (𝑢𝑛, 𝜎𝑛) ∈  × 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )) are solutions to (9.19) with respect to 𝑢𝐷,𝑛 and 𝑓𝑛. Then the
following two assertions hold:

(i) Assume additionally that 𝑢𝑛 converges weakly∗ towards 𝑢 ∈  . Then there exists 𝜎 ∈
𝐻1(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )) such that (𝑢, 𝜎) is a solution of (9.19) with respect to 𝑢𝐷 and 𝑓 and we
have the weak convergence 𝜎𝑛 ⇀ 𝜎 in 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )).

(ii) Assume that additionally

𝑓 ≡ 0 and 𝑓𝑛 ≡ 0

holds for all 𝑛 ∈ ℕ. Then there exists a reduced solution 𝜎 ∈ 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) of (9.19) with

respect to 𝑢𝐷 and 𝑓 and the weak convergence 𝜎𝑛 ⇀ 𝜎 holds in 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )).

Moreover, in both cases, when 𝑓𝑛 → 𝑓 in 𝐻1(𝐿𝑑(Ω;ℝ𝑑)) and 𝑢𝐷,𝑛 → 𝑢𝐷 in 𝐻1(𝐻1(Ω;ℝ𝑑)) then
𝜎𝑛 → 𝜎 in 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )).

Proof. In both cases, Corollary 11.8 gives the boundedness of 𝜎𝑛, thus we can select a sub-
sequence, again denoted by 𝜎𝑛, which converges to a weak limit 𝜎 in 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )). Since
reduced solutions are unique according to Lemma 11.3, we obtain the convergence of the whole
sequence by a standart argument once we have shown that 𝜎 is a reduced solution. Hence, in
both cases we have the weak convergence 𝜎𝑛 ⇀ 𝜎.

Now, since 𝑓𝑛 → 𝑓 in 𝐿2(𝐿𝑑(Ω;ℝ𝑑)), we can select a subsequence such that 𝑓𝑛(𝑡) → 𝑓 (𝑡) for
almost all 𝑡 ∈ [0, 𝑇 ], thus, using that (𝑢𝑛, 𝜎𝑛) ∈  × 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )) are reduced solutions of
(9.19), we have −div 𝜎𝑛(𝑡) = 𝑓𝑛(𝑡) for all 𝑡 ∈ [0, 𝑇 ] and 𝑛 ∈ ℕ, passing to the limit 𝑛 → ∞ we
obtain −div 𝜎(𝑡) = 𝑓 (𝑡). Because 𝜎𝑛(𝑡) ∈ (Ω) for all 𝑡 ∈ [0, 𝑇 ], we get 𝜎(𝑡) ∈ (Ω) since (Ω)
is weakly closed and 𝜎𝑛(𝑡) ⇀ 𝜎(𝑡), according to Lemma A.4, for all 𝑡 ∈ [0, 𝑇 ]. That the initial
conditions 𝑢(0) = 𝑢0 (only for Item (i)) and 𝜎(0) = 𝜎0 are fulfilled follows also from Lemma A.4.

Moreover, for the case of Item (i), Lemma 11.5 gives(
𝔸

.
𝜎𝑛 − ∇𝑠 .𝑢𝐷,𝑛, 𝜏 − 𝜎𝑛

)
𝐿2(𝐿2(Ω,ℝ𝑑×𝑑

𝑠 ))
+
( .
𝑢𝑛 −

.
𝑢𝐷,𝑛, div(𝜏 − 𝜎𝑛)

)
𝐿2(𝐿2(Ω,ℝ𝑑 ))

≥ 0 (11.8)

for all 𝑛 ∈ ℕ and all 𝜏 ∈ 𝐿2(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )) such that div 𝜏 ∈ 𝐿2(𝐿𝑑(Ω;ℝ𝑑)) and 𝜏(𝑡) ∈ (Ω) for

almost all 𝑡 ∈ [0, 𝑇 ]. We can apply Lemma A.6 to see that(
∇𝑠 .𝑢𝐷,𝑛, 𝜎𝑛

)
𝐿2(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ))
→

(
∇𝑠 .𝑢𝐷, 𝜎

)
𝐿2(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ))
,

so that Lemma A.5 with

𝑎𝑛 ∶= −
(
𝔸

.
𝜎𝑛 − ∇𝑠 .𝑢𝐷,𝑛, 𝜏

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )
−
(
∇𝑠 .𝑢𝐷,𝑛, 𝜎𝑛

)
𝐿2(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ))

−
( .
𝑢𝑛 −

.
𝑢𝐷,𝑛, div(𝜏 − 𝜎𝑛)

)
𝐿2(𝐿2(Ω;ℝ𝑑 ))
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yields that (𝑢, 𝜎) is a solution of (9.19) with respect to 𝑢𝐷 and 𝑓 .
To prove that the reduced flow rule inequality (11.2) in case that Item (ii) is fulfilled, one can

use Corollary 11.6 instead of Lemma 11.5 and argue as above.
Furthermore, to verify the strong convergence 𝜎𝑛 → 𝜎 in 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )) under the con-
ditions 𝑓𝑛 → 𝑓 in 𝐻1(𝐿𝑑(Ω;ℝ𝑑)) and 𝑢𝐷,𝑛 → 𝑢𝐷 in 𝐻1(𝐻1(Ω;ℝ𝑑)), we can simply apply
Lemma 11.7.

With the continuity properties given in Proposition 11.10 we have collected all auxiliary
results and can continue to regularize (9.19) and provide a priori estimates.

11.2 Regularization
As already announced at the beginning of this chapter, we will follow SUQUET [95] to prove
the existence of a solution to (9.19). To this end, we first regularize (9.19) and provide a priori
estimates. Then in Section 11.3 we can show the existence of a solution. For the regularization,
we use besides the Yosida approximation (which was employed by Suquet) also vanishing
hardening. This approach was used in [11] (in the context of quasistatic evolutions), note that
our method is more general since we allow for mixed vanishing viscosity and hardening, see
(11.10) below. We further provide a strong convergence result for the stress in Theorem 11.19,
which is neither in SUQUET [95] nor in [11] present.

In order to prove the existence of a solution to (9.19), we consider for (𝜀, 𝜆) ∈ ℝ2⧵{0}, 𝜀, 𝜆 ≥ 0
(see Assumption ⟨11.2.i⟩) the following regularized problem:

−∇ ⋅ 𝜎𝜀,𝜆 = 𝑓 in Ω, (11.9a)
𝜈 ⋅ 𝜎𝜀,𝜆 = 𝑔 on Γ𝑁 , (11.9b)
𝑢𝜀,𝜆 = 𝑢𝐷 on Γ𝐷, (11.9c)
𝜎𝜀,𝜆 = ℂ(∇𝑠𝑢𝜀,𝜆 − 𝑧𝜀,𝜆) in Ω, (11.9d)
.
𝑧𝜀,𝜆 ∈ 𝜕𝐼𝜆(𝜎𝜀,𝜆 − 𝜀𝔹𝑧𝜀,𝜆) in Ω, (11.9e)

(𝑢𝜀,𝜆(0), 𝜎𝜀,𝜆(0)) = (𝑢0, 𝜎0) in Ω. (11.9f)

Recall that we identify 𝐼0 with the indicator function of (Ω), 𝐼0 = 𝐼(Ω), see Definition 3.8.
When 𝜆𝑛 > 0, the inclusion 𝑎 ∈ 𝜕𝐼𝑛(𝑏) is simply an equation, 𝑎 = 𝜕𝐼𝑛(𝑏), for 𝑎, 𝑏 ∈ 𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ).
We emphasize that the following settings are possible

𝜆 > 0, 𝜀 = 0 (vanishing viscosity),
𝜆 = 0, 𝜀 > 0 (vanishing hardening ),
𝜆 > 0, 𝜀 > 0 (mixed vanishing viscosity and hardening).

(11.10)

The definition of a solution to (11.9) is analog to the one given in Definition 2.4. Note that
we only need 𝑓, 𝑔 ∈ 𝐻1(𝐻−1

𝐷 (Ω;ℝ𝑑)) and not the requirement in Assumption ⟨11.2.ii⟩ (and the
regularity supposed in Assumption ⟨11.ii⟩), see also Proposition 11.11 and Corollary 11.12. We
will need this less regularity later in Section 12.1 for the regularized problem (12.2).

Now, we use the operator 𝑅 from Definition 2.7, and define analogously

𝑄𝜀 ∶ 𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) → 𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ), 𝑧 ↦ (ℂ + 𝜀𝔹)𝑧 − ℂ∇𝑠 (− divℂ𝑧, 0), (11.11)

where  is from Corollary 2.6. As in Theorem 2.9, we can transform (11.9) into (EVI), however,
we have to take care of the initial conditions since here they are given for 𝑢 and 𝜎 and not for 𝑧.
This is the content of the following
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Proposition 11.11 (Transformation of regularized perfect plasticity into an EVI). Let 𝑓, 𝑔 ∈
𝐻1(𝐻−1

𝐷 (Ω;ℝ𝑑)) be given (that is, 𝑓 does not need the regularity supposed in Assumption ⟨11.2.ii⟩ and
Assumption ⟨11.ii⟩) such that −div 𝜎0 = (𝑓 + 𝑔)(0).

Then the tuple (𝑢𝜀,𝜆, 𝜎𝜀,𝜆, 𝑧𝜀,𝜆) ∈ 𝐻1(𝐻1(Ω;ℝ𝑑)×𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )×𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )) is a solution of (11.9)
if and only if 𝑧𝜀,𝜆 is a solution of

.
𝑧𝜀,𝜆 ∈ 𝜕𝐼𝜆

(
𝑅(𝑓 + 𝑔, 𝑢𝐷) −𝑄𝜀𝑧𝜀,𝜆

)
, 𝑧𝜀,𝜆(0) = ∇𝑠𝑢0 −𝔸𝜎0 (11.12)

and 𝑢𝜀,𝜆 and 𝜎𝜀,𝜆 are defined through 𝑢𝜀,𝜆 =  (− div(ℂ𝑧𝜀,𝜆) + (𝑓 + 𝑔), 𝑢𝐷) and 𝜎𝜀,𝜆 = ℂ(∇𝑠𝑢𝜀,𝜆 − 𝑧𝜀,𝜆).
Moreover, if 𝜀 > 0, then 𝑄𝜀 is coercive .

Proof. In view of the definition of 𝑄𝜀 and  , we only have to verify that the initial conditions
are fulfilled, cf. Chapter 2. Clearly, if (𝑢𝜀,𝜆, 𝜎𝜀,𝜆, 𝑧𝜀,𝜆) is a solution of (11.9), 𝑧𝜀,𝜆(0) = ∇𝑠𝑢0 − 𝔸𝜎0
follows immediately from (11.9d).

On the other hand, if 𝑧𝜀,𝜆 is a solution of (11.12), then 𝜎𝜀,𝜆 = ℂ(∇𝑠𝑢𝜀,𝜆 − 𝑧𝜀,𝜆), −div 𝜎0 =
(𝑓 + 𝑔)(0) and 𝑢0 − 𝑢𝐷(0) ∈ 𝐻1

𝐷(Ω;ℝ
𝑑) implies

𝑢𝜀,𝜆(0) =  (− div(ℂ𝑧𝜀,𝜆(0)) + (𝑓 + 𝑔)(0), 𝑢𝐷(0)) =  (− div(ℂ∇𝑠𝑢0), 𝑢0)

hence, 𝑢𝜀,𝜆(0) = 𝑢0 and 𝜎𝜀,𝜆(0) = ℂ(∇𝑠𝑢0 − 𝑧𝜀,𝜆(0)) = 𝜎0.
The coercivity of 𝑄𝜀 was proven in Lemma 2.8.

Corollary 11.12 (Existence of a solution to regularized perfect plasticity). Let again 𝑓, 𝑔 ∈
𝐻1(𝐻−1

𝐷 (Ω;ℝ𝑑)) be as in Proposition 11.11.
Then there exists a unique solution (𝑢𝜀,𝜆, 𝜎𝜀,𝜆, 𝑧𝜀,𝜆) ∈ 𝐻1(𝐻1(Ω;ℝ𝑑) ×𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) ×𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )),

of (11.9).

Proof. In view of Proposition 11.11, the assertion follows from Theorem 4.5. Note that, for
𝜆 = 0 (thus 𝜀 > 0 and 𝑄𝜀 is coercive ), 𝜕𝐼𝜆 = 𝜕𝐼(Ω) fulfills the boundedness property and it is
also fulfilled for 𝜆 > 0 since 𝜕𝐼𝜆 is Lipschitz continuous according to Proposition 3.9 (however,
in this case the assertion also follows from Theorem A.7). Moreover, the requirement 𝓁 ∈(𝑧0, 𝐷(𝐴)) in Theorem 4.5 means 𝑅(𝑓 (0) + 𝑔(0), 𝑢𝐷(0)) − 𝑄𝜀(∇𝑠𝑢0 − 𝔸𝜎0) ∈ (Ω), which is
fulfilled thanks to

𝑅(𝑓 (0) + 𝑔(0), 𝑢𝐷(0)) −𝑄𝜀(∇𝑠𝑢0 −𝔸𝜎0) = ℂ∇𝑠 (− divℂ(∇𝑠𝑢0 −𝔸𝜎0) + (𝑓 + 𝑔)(0), 𝑢𝐷(0))
− (ℂ + 𝜀𝔹)(∇𝑠𝑢0 −𝔸𝜎0)

= ℂ∇𝑠 (− divℂ∇𝑠𝑢0, 𝑢0)) − (ℂ + 𝜀𝔹)(∇𝑠𝑢0 −𝔸𝜎0)
= 𝜎0 − 𝜀𝔹(∇𝑠𝑢0 −𝔸𝜎0)

and (9.17).

A Priori Estimates

To prove the existence of a solution in the next section, we provide now a priori estimates.
It is well known that the so called safe-load condition is necessary for such a priori estimates
(cf. SUQUET [95, Hypothése 3] or DAL MASO ET AL. [27]). That this is to be expected can be
easily seen, in Definition 11.1 we required that the stress is admissible (an element of (Ω)) and
fulfills the balance of momentum in every time point. Loosely speaking, due to the balance of
momentum, the stress directly corresponds to the external forces (cf. Figure 1) and when they
are “very large” it seems reasonable that the stress cannot be admissible anymore. Thus an
additional condition is needed.
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Since we are interested in the behaviour of solutions of the regularized problem under vary-
ing data (additional to varying regularization), we will extend the definition of the safe-load
condition to a set of functions in

Definition 11.13 (Global safe-load condition). We say that a set  ⊂ 𝐻1(𝐿𝑑(Ω;ℝ𝑑)) fulfills a
global safe-load condition, if it is not empty, weakly closed and there exist two constants 𝑀 and
𝛿 > 0 such that for every 𝑓 ∈  there exists 𝜌 ∈ 𝑊 1,∞(𝐿∞(Ω;ℝ𝑑×𝑑

𝑠 )) with

−div 𝜌(𝑡) = 𝑓 (𝑡), 𝜌(𝑡) + 𝜏 ∈ (Ω)

for all 𝑡 ∈ [0, 𝑇 ] and all 𝜏 ∈ 𝐿∞(Ω;ℝ𝑑×𝑑
𝑠 ) with ‖𝜏‖𝐿∞(Ω;ℝ𝑑×𝑑

𝑠 ) ≤ 𝛿 , and

‖𝜌‖𝑊 1,∞(𝐿∞(Ω;ℝ𝑑×𝑑
𝑠 )) ≤𝑀

[
1 + ‖𝑓‖𝐻1(𝐿𝑑 (Ω;ℝ𝑑 ))

]
.

Remark 11.14 (Space of 𝜌). We have chosen the space 𝑊 1,∞(𝐿∞(Ω;ℝ𝑑×𝑑
𝑠 )) in the Definition above

in compliance with [95, Hypothèse 3]. However, it is well known that 𝐿∞(0, 𝑇 ;𝐿∞(Ω)) is smaller than
𝐿∞([0, 𝑇 ] × Ω). Thus, it might be beneficial to choose a different space, note that the regularity of 𝜌 is
essentially only used in (11.16). Nonetheless, we decided to follow [95].

Before we continue with the a priori estimates let us shortly interrupt the discussion and
comment on some possibilities for a set which fulfills a global safe-load condition. We will keep
these comments rather vague since we will drop volume forces and the safe-load condition later
in Chapter 12, see also Remark 12.3 and Remark 12.14.

At first, it is obvious that the set {0} fulfills a global safe-load condition. Moreover, one can
also simply take a set containing only a finite number of elements such that for each exists a
suitable 𝜌.

Another possibility is to solve the equations of linear elasticity and then define 𝜌 ∶= ℂ∇𝑠𝑢
such that −div 𝜌 = 𝑓 holds. Then one needs a regularity result which gives the desired regular-
ity of 𝜌 (from a volume force with a suitable regularity) and also an estimate with respect to the
volume force. When the higher order terms of the volume force are now bounded one should
get a boundedness of 𝜌 in 𝑊 1,∞(𝐿∞(Ω;ℝ𝑑×𝑑

𝑠 )) and the extended admissibility of 𝜌 should also
be obtained, at least for a sufficient small norm of the volume force. The regularity result given
in [21, Theorem 6.3-6] might be used such that the described method works, however, the ob-
tained set would be a (possibly very small) ball with respect to higher derivates.

One may also choose the set  so that it contains all volume forces such that there exists 𝜌
which fulfills all requirements, but is even more regular and bounded with respect to this reg-
ularity (to be able to select a weakly converging subsequence). When there is then a sequence
of volume forces in  with corresponding 𝜌𝑛, we can select a subsequence and a weak limit
𝜌 such that all conditions are fulfilled for this weak limit. With this approach one obtains the
weakly closedness of the set. The drawback is that it is not quite clear which functions belong
to this set (however, with a regularity result of the form of [21, Theorem 6.3-6] it should be
possible to get the desired regularity of 𝜌 from a sufficient regular 𝑓 , and simply scaling 𝑓 (and
thus 𝜌) gives the desired boundedness of 𝜌).

In what follows, the precise structure of  is not important, we simply assume that it is a
set which fulfills a safe-load condition, see Assumption ⟨11.2.ii⟩.

In order to prove a priori estimates, we additonally need the following result.

Lemma 11.15 (Chain rule). Let 𝜆 ≥ 0 and 𝜏 ∈ 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )). Then

∫
𝑏

𝑎

(
𝜉(𝑡),

.
𝜏(𝑡)

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )
𝑑𝑡 = 𝐼𝜆(𝜏(𝑏)) − 𝐼𝜆(𝜏(𝑎))
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holds for all 𝜉 ∈ 𝐿2(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )) such that 𝜉(𝑡) ∈ 𝜕𝐼𝜆(𝜏(𝑡)) for almost all 𝑡 ∈ [0, 𝑇 ] and all 0 ≤ 𝑎 ≤

𝑏 ≤ 𝑇 .

Proof. Note that 𝐼𝜆 is Fréchet differentiable for 𝜆 > 0 (cf. (3.5)), hence,

𝑑
𝑑𝑡
𝐼𝜆(𝜏(𝑡)) =

(
𝜕𝐼𝜆(𝜏(𝑡)),

.
𝜏(𝑡)

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )

holds for almost all 𝑡 ∈ [0, 𝑇 ] and thus the claim holds in this case. The assertion for 𝜆 = 0
can now be proven by an approximation argument, the full proof can be found in BREZIS [15,
Lemme 3.3].

Lemma 11.16 (A priori estimates). Let (𝑢𝜀,𝜆, 𝜎𝜀,𝜆, 𝑧𝜀,𝜆) ∈ 𝐻1(𝐻1(Ω;ℝ𝑑)×𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )×𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ))
be the unique solution of (11.9).

Then the equation(
𝔸(

.
𝜎𝜀,𝜆(𝑡) −

.
𝜌(𝑡)), 𝜎𝜀,𝜆(𝑡) − 𝜌(𝑡)

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )
+ 𝜀

( .
𝑧𝜀,𝜆(𝑡),𝔹𝑧𝜀,𝜆(𝑡)

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )

+
( .
𝑧𝜀,𝜆(𝑡), 𝜎𝜀,𝜆(𝑡) − 𝜀𝔹𝑧𝜀,𝜆(𝑡) − 𝜌(𝑡)

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )
=
(
∇𝑠 .𝑢𝐷(𝑡) − 𝔸

.
𝜌(𝑡), (𝜎𝜀,𝜆(𝑡) − 𝜌(𝑡))

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )

(11.13)

and the inequalities

𝛾𝔸
2
‖𝜎𝜀,𝜆(𝑡) − 𝜌(𝑡)‖2𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) +
𝜀𝛾𝔹
2

‖𝑧𝜀,𝜆(𝑡)‖2𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) +

( .
𝑧𝜀,𝜆, 𝜎𝜀,𝜆 − 𝜀𝔹𝑧𝜀,𝜆 − 𝜌

)
𝐿2(0,𝑡;𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ))

≤ 𝛾𝔸
2
‖𝜎0 − 𝜌(0)‖2𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) +
𝜀𝛾𝔹
2

‖𝑧0‖2𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )

+
(‖∇𝑠 .𝑢𝐷 −𝔸

.
𝜌‖𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ), ‖𝜎𝜀,𝜆 − 𝜌‖𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ))

)
𝐿2(0,𝑇 ;ℝ)

,

(11.14)

with 𝑧0 ∶= ∇𝑠𝑢0 −𝔸𝜎0,

‖ .
𝑧𝜀,𝜆(𝑡)‖𝐿1(Ω;ℝ𝑑×𝑑

𝑠 ) ≤ 1
𝛿

( .
𝑧𝜀,𝜆(𝑡), 𝜎𝜀,𝜆(𝑡) − 𝜀𝔹𝑧𝜀,𝜆(𝑡) − 𝜌(𝑡)

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )
(11.15)

and

𝛾𝔸
2
‖ .
𝜎𝜀,𝜆 −

.
𝜌‖2𝐿2(0,𝑡;𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )) + 𝜀𝛾𝔹‖ .
𝑧𝜀,𝜆‖2𝐿2(0,𝑡;𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )) + 𝐼𝜆(𝜎𝜀,𝜆(𝑡) − 𝜀𝔹𝑧𝜀,𝜆(𝑡))

≤ 1
2𝛾𝔸

‖∇𝑠 .𝑢𝐷 −𝔸
.
𝜌‖2𝐿2(0,𝑡;𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ))

+ ‖ .
𝑧𝜀,𝜆‖𝐿1(0,𝑡;𝐿1(Ω;ℝ𝑑×𝑑

𝑠 ))‖ .
𝜌‖𝐿∞(0,𝑡;𝐿∞(Ω;ℝ𝑑×𝑑

𝑠 ))

(11.16)

hold for almost all 𝑡 ∈ [0, 𝑇 ]. Moreover, the inequality

‖ .
𝜎𝜀,𝜆‖2𝐿2(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )𝔸)
≤ ( .

𝜎𝜀,𝜆(𝑡),∇𝑠 .𝑢𝐷(𝑡)
)
𝐿2(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ))
+
( .
𝑓 (𝑡),

.
𝑢𝜀,𝜆(𝑡) −

.
𝑢𝐷(𝑡)

)
𝐿2(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ))
(11.17)

holds.

Proof. We use (11.9d), 𝑢𝜀, 𝜆−𝑢𝐷 ∈ 𝐻1(𝐻1(Ω;ℝ𝑑)) and the fact that div(𝜎𝜀,𝜆(𝑡)−𝜌(𝑡)) = 0 to obtain
(11.13). Integrating (11.13) with respect to time and using the coercivity of 𝔸 and 𝔹 gives (11.14).
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To prove (11.15) we define 𝜏 ∈ 𝐿∞(Ω;ℝ𝑑×𝑑
𝑠 ) for a fixed 𝑡 ∈ [0, 𝑇 ] via

(𝜏(𝑥))𝑖,𝑗 ∶=

{
𝛿 , if (

.
𝑧𝜀,𝜆(𝑡))𝑖,𝑗 ≥ 0,

−𝛿 , if (
.
𝑧𝜀,𝜆(𝑡))𝑖,𝑗 < 0,

}
,

for 𝑖, 𝑗 ∈ {1, ..., 𝑛}. Then we can use (11.9e) and the monotonicity of 𝜕𝐼𝜆 to obtain

‖ .
𝑧𝜀,𝜆(𝑡)‖𝐿1(Ω;ℝ𝑑×𝑑

𝑠 ) =
1
𝛿

( .
𝑧𝜀,𝜆(𝑡), 𝜏

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )

= 1
𝛿

(( .
𝑧𝜀,𝜆(𝑡) − 𝜕𝐼𝜆(𝜌(𝑡) + 𝜏)), 𝜌(𝑡) + 𝜏 − 𝜎𝜀,𝜆(𝑡) + 𝜀𝔹𝑧𝜀,𝜆(𝑡)

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )

+
( .
𝑧𝜀,𝜆(𝑡), 𝜎𝜀,𝜆(𝑡) − 𝜀𝔹𝑧𝜀,𝜆(𝑡) − 𝜌(𝑡)

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )

)
≤ 1
𝛿

( .
𝑧𝜀,𝜆(𝑡), 𝜎𝜀,𝜆(𝑡) − 𝜀𝔹𝑧𝜀,𝜆(𝑡) − 𝜌(𝑡)

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )
,

(using 𝜌(𝑡) + 𝜏 ∈ (Ω) and 0 ∈ 𝜕𝐼𝜆(𝜌(𝑡) + 𝜏)) when 𝜆 = 0) so that (11.15) holds for almost all
𝑡 ∈ [0, 𝑇 ].

In order to obtain (11.16) we argue as above to get(
𝔸(

.
𝜎𝜀,𝜆(𝑡) −

.
𝜌(𝑡),

.
𝜎𝜀,𝜆(𝑡) −

.
𝜌(𝑡)

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )
+ 𝜀

( .
𝑧𝜀,𝜆(𝑡),𝔹

.
𝑧𝜀,𝜆(𝑡)

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )

+
( .
𝑧𝜀,𝜆(𝑡),

.
𝜎𝜀,𝜆(𝑡) − 𝜀𝔹

.
𝑧𝜀,𝜆(𝑡)

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )

=
(
∇𝑠 .𝑢𝐷(𝑡) − 𝔸

.
𝜌(𝑡),

.
𝜎𝜀,𝜆(𝑡) −

.
𝜌(𝑡)

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )
+
( .
𝑧𝜀,𝜆(𝑡),

.
𝜌(𝑡)

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )

for almost all 𝑡 ∈ [0, 𝑇 ]. Integrating this equation again with respect to time, using the coercivity
of 𝔸 and 𝔹, applying Lemma 11.15 and using (9.17) yields

𝛾𝔸‖ .
𝜎𝜀,𝜆 −

.
𝜌‖2𝐿2(0,𝑡;𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )) + 𝜀𝛾𝔹‖ .
𝑧𝜀,𝜆‖2𝐿2(0,𝑡;𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )) + 𝐼𝜆(𝜎𝜀,𝜆(𝑡) − 𝜀𝔹𝑧𝜀,𝜆(𝑡))

≤ ‖∇𝑠 .𝑢𝐷 −𝔸
.
𝜌‖𝐿2(0,𝑡;𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ))‖ .
𝜎𝜀,𝜆 −

.
𝜌‖𝐿2(0,𝑡;𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ))

+ ‖ .
𝑧𝜀,𝜆(𝑡)‖𝐿1(0,𝑡;𝐿1(Ω;ℝ𝑑×𝑑

𝑠 ))‖ .
𝜌‖𝐿∞(0,𝑡;𝐿∞(Ω;ℝ𝑑×𝑑

𝑠 )),

this together with‖∇𝑠 .𝑢𝐷 −𝔸
.
𝜌‖𝐿2(0,𝑡;𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ))‖ .
𝜎𝜀,𝜆 −

.
𝜌‖𝐿2(0,𝑡;𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ))

≤ 1
2𝛾𝔸

‖∇𝑠 .𝑢𝐷 −𝔸
.
𝜌‖2𝐿2(0,𝑡;𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )) +
𝛾𝔸
2
‖ .
𝜎𝜀,𝜆 −

.
𝜌‖2𝐿2(0,𝑡;𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ))

gives (11.16).
To see that (11.17) holds, we use (11.9d) and the coercivity of 𝔹 to obtain(

𝔸
.
𝜎𝜀,𝜆(𝑡),

.
𝜎𝜀,𝜆(𝑡)

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )
+
( .
𝑧𝜀,𝜆(𝑡),

.
𝜎𝜀,𝜆(𝑡) − 𝜀𝔹

.
𝑧𝜀,𝜆(𝑡)

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )

≤ ( .
𝜎𝜀,𝜆(𝑡),∇𝑠 .𝑢𝜀,𝜆(𝑡)

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )

=
( .
𝜎𝜀,𝜆(𝑡),∇𝑠 .𝑢𝐷(𝑡)

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )
+
( .
𝑓 (𝑡),

.
𝑢𝜀,𝜆 −

.
𝑢𝐷

)
𝐿2(Ω;ℝ𝑑 )

.

Integrating this inequality with respect to time and using the non-negativity of 𝐼𝜆 and again
Lemma 11.15 and (9.17) yields (11.17).

With these a priori estimates at hand, we are in the position to prove the existence of a
solution in the upcoming section.
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11.3 Existence of a Solution
We prove the existence of a solution in two stages. At first we use the previously provided a
priori estimates to obtain boundedness properties in Proposition 11.18. Then in Theorem 11.19
we show the existence and also a strong convergence result of the stresses. For both results,
recall the definition of (𝑢𝑛, 𝜎𝑛, 𝑧𝑛) given in Assumption ⟨11.3.iv⟩.

In order to prove the admissibility of the limit stress, the following lemma is needed.

Lemma 11.17 (Admissibility by weak convergence). Let 𝜆𝑛 ⊂ [0,∞) be a sequence converging
towards zero, 𝑤 ∈ 𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) and {𝑤𝑛}𝑛∈ℕ ⊂ 𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) such that 𝑤𝑛 ⇀ 𝑤 in 𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ).
Suppose that the sequence 𝐼𝜆𝑛(𝑤𝑛) is bounded. Then 𝑤 ∈ (Ω).

Proof. Clearly, the mapping 𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) ∋ 𝜏 ↦ ‖𝜏 − 𝜋(Ω)(𝜏)‖2𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )
∈ ℝ is convex and

continuous (cf. Moreau’s theorem, see e.g. SHOWALTER [90, Chapter IV Proposition 1.8]) and
thus weakly lower semicontinuous, hence,

0 ≤ ‖𝑤 − 𝜋(Ω)(𝑤)‖2𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) ≤ lim inf

𝑛→∞
‖𝑤𝑛 − 𝜋(Ω)(𝑤𝑛)‖2𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) = lim inf
𝑛→∞

2𝜆𝑛𝐼𝜆𝑛(𝑤𝑛) = 0,

which implies 𝑤 = 𝜋(Ω)(𝑤).

Proposition 11.18 (Boundedness of regularization sequences). The sequence {𝑢𝑛}𝑛∈ℕ is bounded
in  and {𝜎𝑛}𝑛∈ℕ in 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )). Furthermore, there exists 𝜎 ∈ 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )) and a subse-

quence such that

𝜎𝑛 ⇀ 𝜎 in 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ))

and 𝜎 fulfills Item (i) in Definition 11.1.

Proof. Let 𝜌𝑛 ∈ 𝑊 1,∞(𝐿∞(Ω;ℝ𝑑×𝑑
𝑠 )) be from Definition 11.13, for 𝑛 ∈ ℕ, corresponding to 𝑓𝑛.

Employing (11.14), with 𝜀 = 𝜀𝑛, 𝜆 = 𝜆𝑛 and 𝜌 = 𝜌𝑛, and the monotonicity of 𝜕𝐼𝜆𝑛 yields the
boundedness of 𝜎𝑛 and

√
𝜀𝑛𝑧𝑛 in 𝐿∞(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )) and 𝜑𝑛, defined by

𝜑𝑛(𝑡) ∶=
( .
𝑧𝑛(𝑡), 𝜎𝑛(𝑡) − 𝜀𝔹𝑧𝑛(𝑡) − 𝜌𝑛(𝑡))

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )
,

in𝐿1(0, 𝑇 ;ℝ). Now, by virtue of (11.15),
.
𝑧𝑛 is bounded in𝐿1(𝐿1(Ω;ℝ𝑑×𝑑

𝑠 )) and thus (11.16) yields
the boundedness of

.
𝜎𝑛 in 𝐿2(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )) and
√
𝜀𝑛

.
𝑧𝑛 in 𝐿2(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )). Due to|||𝜀𝑛 ( .
𝑧𝑛(𝑡),𝔹𝑧𝑛(𝑡)

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )

||| ≤ ‖√𝜀𝑛 .𝑧𝑛(𝑡)‖𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )‖𝔹‖ ‖√𝜀𝑛𝑧𝑛(𝑡)‖𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )

we get the boundedness of [0, 𝑇 ] ∋ 𝑡 ↦ 𝜀𝑛
( .
𝑧𝑛(𝑡),𝔹𝑧𝑛(𝑡))

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )
∈ ℝ in 𝐿2(0, 𝑇 ;ℝ), so that

(11.13) gives the boundedness of 𝜑𝑛 in 𝐿2(0, 𝑇 ;ℝ) (note that we explicitly use the bound-
edness of 𝜎𝑛 and

√
𝜀𝑛𝑧𝑛 in 𝐿∞ in time (which however also follows by the embedding

𝐻1(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )) ↪ 𝐶(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )))). Using again (11.15) we see that
.
𝑧𝑛 is bounded in

𝐿2(𝐿1(Ω;ℝ𝑑×𝑑
𝑠 )), hence ∇𝑠 .𝑢𝑛 is also bounded in 𝐿2(𝐿1(Ω;ℝ𝑑×𝑑

𝑠 )) ⊂ 𝐿2(𝑀(Ω;ℝ𝑑×𝑑
𝑠 )). Thanks

to Theorem 10.2 Item (iii) and the boundedness of
.
𝑢𝐷,𝑛 in 𝐿2(𝐻1(Ω;ℝ𝑑)), we see that

.
𝑢𝑛 is

bounded in  which immediately yields the boundedness of 𝑢𝑛 in  due to 𝑢𝑛(0) = 𝑢0 for all
𝑛 ∈ 𝑁 .

We can now select 𝜎 ∈ 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )) such that for a subsequence, again denoted by the

same symbol,

𝜎𝑛 ⇀ 𝜎
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in 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )) and 𝜎𝑛(𝑡) ⇀ 𝜎(𝑡) in 𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) for all 𝑡 ∈ [0, 𝑇 ], as 𝑛 → ∞ (according to
Lemma A.4). Clearly, since −div 𝜎𝑛(𝑡) = 𝑓𝑛(𝑡) for all 𝑛 ∈ ℕ, we also have −div 𝜎(𝑡) = 𝑓 (𝑡) for all
𝑡 ∈ [0, 𝑇 ]. Since

√
𝜀𝑛𝑧𝑛 is bounded in 𝐿∞(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )), we have

𝜎𝑛(𝑡) − 𝜀𝑛𝔹𝑧𝑛(𝑡) ⇀ 𝜎(𝑡)

in 𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ). Moreover, (11.16) gives the boundedness of 𝐼𝜆𝑛(𝜎𝑛(𝑡) − 𝜀𝑛𝔹𝑧𝑛(𝑡)), so that

Lemma 11.17 yields 𝜎(𝑡) ∈ (Ω) for almost all 𝑡 ∈ [0, 𝑇 ].

Theorem 11.19 (Existence and approximation of solutions to perfect plasticity). We have

𝜎𝑛 ⇀ 𝜎 in 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ))

and there exists a subsequence such that

𝑢𝑛 ⇀
∗ 𝑢 in  ,

as 𝑛→ ∞, where (𝑢, 𝜎) is a solution of (9.19).
Furthermore, if 𝑢𝐷,𝑛 → 𝑢𝐷 in 𝐻1(𝐻1(Ω;ℝ𝑑)) and 𝑓𝑛 → 𝑓 in 𝐻1(𝐿𝑑(Ω;ℝ𝑑×𝑑

𝑠 )), then

𝜎𝑛 → 𝜎 in 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )),

as 𝑛→ ∞.

Proof. According to Proposition 11.18 we can select 𝑢 ∈  , 𝜎 ∈ 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )) and subse-

quences such that

𝑢𝑛 ⇀
∗ 𝑢 in  𝜎𝑛 ⇀ 𝜎 in 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ))

(where the definition of the weak∗ convergence in  is given in Definition and Lemma 10.11),
and 𝜎 fulfills Item (i) in Definition 11.1. Choosing an arbitrary 𝜏 ∈ 𝐿2(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )) with div 𝜏 ∈
𝐿2(𝐿𝑑(Ω;ℝ𝑑×𝑑

𝑠 )) and 𝜏(𝑡) ∈ (Ω) for almost all 𝑡 ∈ [0, 𝑇 ], we obtain from the definition of the
subdifferential

0 = ∫
𝑇

0
𝐼𝜆𝑛(𝜏(𝑡))𝑑𝑡

≥ ∫
𝑇

0
𝐼𝜆𝑛(𝜎𝑛 − 𝜀𝑛𝔹𝑧𝑛(𝑡)) +

( .
𝑧𝑛(𝑡), 𝜏(𝑡) − 𝜎𝑛(𝑡) + 𝜀𝑛𝔹𝑧𝑛(𝑡))

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )
𝑑𝑡

≥ 𝜀𝑛
2
(
𝑧𝑛(𝑇 ),𝔹𝑧𝑛(𝑇 )

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) −
𝜀𝑛
2
(
𝑧0,𝔹𝑧0

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) +
(
∇𝑠 .𝑢𝑛 −𝔸

.
𝜎𝑛, 𝜏 − 𝜎𝑛

)
𝐿2(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ))

≥ −
𝜀𝑛
2
(
𝑧0,𝔹𝑧0

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) −
(
𝔸

.
𝜎𝑛, 𝜏 − 𝜎𝑛

)
𝐿2(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ))

+
(
∇𝑠 .𝑢𝐷,𝑛, 𝜏 − 𝜎𝑛

)
𝐿2(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ))
−
( .
𝑢𝑛 −

.
𝑢𝐷,𝑛, div(𝜏 − 𝜎𝑛)

)
𝐿2(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ))

(11.18)

where we have abbreviated 𝑧0 ∶= ∇𝑠𝑢0 − 𝔸𝜎0 and used the positivity of 𝐼𝜆𝑛 and the coercivity
of 𝔹. Defining

𝑎𝑛 ∶= −
𝜀𝑛
2
(
𝑧0,𝔹𝑧0

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) −
(
𝔸

.
𝜎𝑛, 𝜏

)
𝐿2(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ))
+
(
∇𝑠 .𝑢𝐷,𝑛, 𝜏 − 𝜎𝑛

)
𝐿2(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ))

−
( .
𝑢𝑛 −

.
𝑢𝐷,𝑛, div(𝜏 − 𝜎𝑛)

)
𝐿2(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ))
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we see that

−
(
𝔸

.
𝜎𝑛, 𝜎𝑛

)
𝐿2(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ))
≥ 𝑎𝑛 (11.19)

holds for all 𝑛 ∈ ℕ, thus, an argumentation as in the proof of Proposition 11.10 shows that (𝑢, 𝜎)
is a solution of (9.19). Due to the uniqueness of a reduced solution (Lemma 11.3), we obtain the
convergence 𝜎𝑛 ⇀ 𝜎 in 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )) for the whole sequence by standard arguments.
Let us now assume that 𝑢𝐷,𝑛 → 𝑢𝐷 in 𝐻1(𝐻1(Ω;ℝ𝑑)) and 𝑓𝑛 → 𝑓 in 𝐻1(𝐿𝑑(Ω;ℝ𝑑×𝑑

𝑠 )). Ac-
cording to (11.17), the inequality

‖ .
𝜎𝑛‖𝐿2(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )𝔸) ≤
( .
𝜎𝑛,∇𝑠 .𝑢𝐷,𝑛

)
𝐿2(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ))
+
( .
𝑓 𝑛,

.
𝑢𝑛 −

.
𝑢𝐷,𝑛

)
𝐿2(𝐿2(Ω;ℝ𝑑 ))

(11.20)

holds for all 𝑛 ∈ ℕ. Thanks to Lemma 11.7, the limit of the right side above is ‖ .
𝜎‖𝐿2(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )𝔸),
hence, Lemma A.3 yields the desired strong convergence.

Remark 11.20 (Safe-load condition and surface forces). It is also possible to consider surface forces
(Neumann boundary forces) in the definition of a solution to (9.19), cf. SUQUET [95, 1.4 Formulations.
Résultats]. The global safe-load condition has then to be adapted (analog to SUQUET [95, Hypothése 3] or
DAL MASO ET AL. [27]). However, the proofs of some of the results in Section 11.1, in particular those
of Lemma 11.7 and more impartantly Proposition 11.10, cannot be adapted so easily. In Lemma 11.7 it
is not possible anymore to test with 𝜎(𝑡±ℎ) (since the test function has to fulfill the Neumann boundary
condition, see the definition in SUQUET [95, 1.4 Formulations. Résultats]) and in Proposition 11.10 the
test function 𝜏 in the inequality (11.8) would depend on the varying surface forces and thus on 𝑛. A
similar problem arises in the proof of Theorem 11.19. In (11.18) one can indeed test with a function 𝜏
such that 𝜏𝜈 equals a given surface force 𝑔 on the Neumann boundary. Then the term( .

𝑢𝑛 −
.
𝑢𝐷,𝑛, 𝑔 − 𝑔𝑛

)
𝐿2(𝐿2(Γ𝑁 ;ℝ𝑑 ))

would occur in the last inequality in (11.18), where 𝑔𝑛 is the boundary force related to 𝜎𝑛. Since the trace
operator is not weakly∗ continuous (see Theorem 10.2 Item (i)), it is not clear, even under strong con-
vergence assumptions on 𝑔𝑛, that this term vanishes (except when 𝑔𝑛 ≡ 𝑔). Compare also the definition
in SUQUET [95, 1.4 Formulations. Résultats], where the surface forces do not appear in the variational
inequality, but instead are integrated in the set of test functions.

Due to these reasons we decided to drop the surface forces altogether in this part.
Another noteworthy matter which should be discussed is the fact that we will drop the volume forces

in the upcoming chapter, for the reason see Remark 12.3. Thus, one may ask why we have considered
volume forces in the first place. This has two reasons, at first it still possible to prove some results in the
context of optimal control, see again Remark 12.3 and also Remark 12.14. Secondly, our fidnings extend
the present results in the literature (due to the mixed vanishing viscosity and hardening and the strong
convergence of the stress, see also the beginning of this section), thus it seems reasonable to give a more
complete presentation with volume forces.

We end this chapter with two direct consequences of Theorem 11.19.

Corollary 11.21 (Existence of a solution to perfect plasticity). There exists a solution of (9.19).

Proof. This follows directly from Theorem 11.19, we can simply choose 𝑓𝑛 ≡ 𝑓 and 𝑢𝐷,𝑛 ≡ 𝑢𝐷
for all 𝑛 ∈ ℕ.

Corollary 11.22 (Solution and reduced solution). The function 𝜎 ∈ 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )) is a reduced

solution of (9.19) if and only if there exists 𝑢 ∈  such that (𝑢, 𝜎) is a solution of (9.19).
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Proof. If there exists 𝑢 ∈  such that (𝑢, 𝜎) is a solution of (9.19), then (11.2) follows immediately
from (11.1).

Let now 𝜎 be a reduced solution. Due to Theorem 11.19 there exists a solution (𝑢, 𝜎̂) of (9.19).
According to the first part of the proof, 𝜎̂ is a reduced solution of (9.19), Lemma 11.3 then yields
𝜎 = 𝜎̂.

Chapter 12 Optimal Control

This chapter is devoted to an optimal control problem with the equations of perfect plasticity
as the constraint. At first we will deal with the existence and approximation of optimal controls
in Section 12.1. Instead of presenting then optimality conditions we reduce the optimal control
problem to the stress as the only state variable. The reason for this reduction will be explained
in Section 12.2 in detail. After this reduction we present optimality conditions in Section 12.3.

The optimization problem under consideration reads as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

min 𝐽 (𝑢, 𝜎, 𝔩) ∶= 1
2
‖𝑢 − 𝑢𝑑‖2𝐻1(𝐻1(Ω;ℝ𝑑 )) + Ψ(𝑢, 𝜎, 𝔩)

+ 𝛼
2
‖ .
𝔩‖2𝐿2(𝑐 ),

s.t. 𝔩 ∈ 𝐻1
00(𝑐) and (𝑢, 𝜎) ∈ 𝐻1(𝐻1(Ω;ℝ𝑑) × 𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ))
is a solution of (9.19) with respect to (𝑓, 𝑢𝐷) = (0,𝔩 + 𝔞)

(12.1)

Note that this is not an optimal control problem in the classical sense since the displacement
is not unique for a given Dirichlet displacement. However, it will be one after dropping the
displacement as a state in Section 12.2 and we will also call it an optimal control problem in the
next section out of convenience.

Let us comment on the precise choice of this problem, for that recall Assumptions ⟨12.ii⟩
to ⟨12.v⟩. At first, we have chosen a tracking type for the displacement since we have no
boundedness result. Note that we have chosen 𝐻1(𝐻1(Ω;ℝ𝑑)) as the control space of the dis-
placement, for the reason see Remark 12.2 below. Moreover, it is possible to prove a bounded-
ness result (in  ), see Remark 11.9 and again Remark 12.2. Secondly, it is important to note that
we use pseudo forces 𝔩 together with an offset 𝔞 and the pseudo force to Dirichlet map  instead
of Dirichlet displacements as the control variable. This direct use of Dirichlet displacements as
the control variable may be realized by choosing  = 𝐻1(Ω;ℝ𝑑), 𝑐 = 𝐻2(Ω;ℝ𝑑) and  = 𝑖𝑑.
However, in this case the 𝐻2(Ω;ℝ𝑑) would be present in the objective function and we want to
avoid this for the numerical experiments in Chapter 13. In Chapter 13 the operator  will be
a solution operator of the linear elasticity equations and the space  a negative Sobolev space
(see Section 13.1), thus the name “pseudo forces”. Moreover, the requirement 𝔩(0) = 𝔩(𝑇 ) = 0
and the additional offset 𝔞 are motivated by our application in Section 13.3. In this application,
we will set the initial boundary displacement to zero and fix it at time 𝑡 = 𝑇 (that is, 𝔞(𝑇 ) is
the fixed boundary displacement at end time). The pseudo forces then only have the ability to
alter the boundary displacement during the process, but not at the end (or beginning), see also
Section 13.3 for a more detailed description. Clearly, for our analysis the offset 𝔞 and the precise
requirements on the pseudo forces are not necessary and a generalization is straightforward.
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12.1 Existence and Approximation of Optimal Controls
At first we prove the existence of optimal controls which is very brief due to our convergence
results in Proposition 11.10. Next, we tackle the approximation of global minimizers which is
more intricate, as we will see.

Existence

We prove the existence of a solution in the next theorem, note that Theorem 11.19 does
not guaranty that the admissible set of (12.1) is not empty, due to the requirement 𝑢 ∈
𝐻1(𝐻1(Ω;ℝ𝑑)). Nonetheless, when considering a slightly different problem without the off-
set 𝔞 and only 𝔩 ∈ 𝐻1(𝑐) (with 𝑢0 − 𝔩(0) ∈ 𝐻1

𝐷(Ω;ℝ
𝑑×𝑑
𝑠 )), then one can simply choose

(𝑢, 𝜎, 𝔩) ≡ (𝑢0, 𝜎0, 𝔩0), on condition that there exists 𝔩0 ∈ 𝐻1(𝑐) such that 𝔩0 = 𝑢0. However,
as said above, we have chosen (12.1) due to our application in Chapter 13 and therein the
admissible set is not empty since we only consider the stress as a state.

Theorem 12.1 (Existence of a global solution). When the admissable set of (12.1) is not empty, then
there exists a global solution of (12.1).

Proof. This follows from the standard direct method of the calculus of variations analog to
Theorem 5.2. Note that when (𝑢𝑛, 𝜎𝑛, 𝔩𝑛) is a minimizing sequence, then the boundedness of 𝜎𝑛
follows from Item (i) in Proposition 11.10 (respectively Corollary 11.8), which also shows that
the weak limit (of a subsequence) is admissible (the necessary covergences of 𝑢𝐷,𝑛 = 𝔩𝑛 + 𝔞

follow from the compact embedding 𝑐 𝑐
←←←←→ ).

Before we continue with the regularization of (12.1) let us give two remarks concerning the
regularity of the displacement and possible volume forces.

Remark 12.2 (Displacement in  ). We note that Theorem 12.1 would also hold when the displace-
ment has only the regularity 𝑢 ∈  and we exchange the 𝐻1(𝐻1(Ω;ℝ𝑑))-norm with the  -norm,
Proposition 11.10 Item (i) then still holds. There is only one additional aspect to heed, the displacement
𝑢𝑛 of a minimizing sequence then converges only weakly∗ in the sense of Definition and Lemma 10.11,
hence, we need the lower weakly∗ semicontinuity of the  -norm with respect to this weak∗ convergence,
but this was shown in Corollary 10.12.

It is also to be noted that the admissible set of (12.1) is then not empty, Corollary 11.21, respectively
Theorem 11.19, gives the existence of a solution for every control 𝔩.

Moreover, one could even drop the norm of the displacement in the objective function since it is
possible to proof the boundedness when the Dirichlet displacements are bounded, see Remark 11.9. This
setting was considered in [73].

However, we will make use of the regularity 𝑢 ∈ 𝐻1(𝐻1(Ω;ℝ𝑑)) in Theorem 12.9 (see also Re-
mark 12.13) and it is not straightforward to reduce the regularity to 𝑢 ∈  , thus we required 𝑢 ∈
𝐻1(𝐻1(Ω;ℝ𝑑)) already in (12.1). Note that in [73] a different approach was used to prove the approx-
imation of global minimizers and with this approach it is possible to consider displacements only in (the tracking type for the displacement is still needed). But this comes at the cost of an additional
requirement on the stress.

Remark 12.3 (Volume forces). It is also possible to consider volume forces in (12.1). Then, in particu-
lar, these forces have to belong to a set which fulfills a global safe-load condition so that Corollary 11.21,
respectively Theorem 11.19, gives the existence of a solution to (9.19) for given volume forces (and
Dirichlet displacements). Moreover, the volume forces have to belong to a space which embeds compactly
into 𝐿2(𝐿𝑑(Ω;ℝ𝑑)), so that we can employ Proposition 11.10 Item (i) to see that the weak limit of a
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minmizing sequence in Theorem 12.1 is admissible. Thus, Theorem 12.1 would still hold, however, with
volume forces the construction of a recovery sequence in the proof of Theorem 12.9 would not work (at
least with our method), hence, we excluded them already in (12.1).

Regularization

Now we want to regularize (12.1) and prove in particular the convergence of global mini-
mizers of the regularized problems to a global minimizer of (12.1), this will be the content of
Theorem 12.9. A standard procedure is to prove the existence of a weak accumulation point of
such a sequence of global minimizers of the regularized problems, show that this weak limit is
admissible for (12.1) and then prove the global optimality by using a so called recovery sequence.
The construction of this recovery sequence is simple when one has a strong convergence of
states by fixed controls, this was the case in Theorem 5.4, therein (𝑛(𝓁),𝓁) was the recovery se-
quence. In our case the strong convergence of states by fixed controls would be (𝑢𝜆, 𝜎𝜆) → (𝑢, 𝜎),
where (𝑢𝜆, 𝜎𝜆) is the solution for the smoothed equation (11.9) (with 𝜀 = 0) and (𝑢, 𝜎) is a solution
of (9.19) for fixed 𝑢𝐷.

However, this is here not the case, in Proposition 11.10 we only obtained a strong conver-
gence for the stress, but not for the displacement, which does not even has to be unique. To
overcome this problem and construct a recovery sequence, we will fix 𝑢𝜆 = 𝑢 (where (𝑢, 𝜎, 𝑢𝐷)
is a certain global minimizer of (12.1)) and then calculate 𝜎𝜆 through the flow rule in (11.9), see
(i) in the proof of Theorem 12.9. The problem which then arises is that −div 𝜎𝜆 = 0 does not has
to be fulfilled, hence, we need to consider a regularized optimization problem where forces are
allowed, namely

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

min 𝐽𝜆(𝑢𝜆, 𝜎𝜆, 𝔩𝜆,𝓁𝜆) ∶= 𝐽 (𝑢𝜆, 𝜎𝜆, 𝔩𝜆) + 𝜆−𝜃‖𝓁𝜆‖2𝐿2(𝐻−1
𝐷 (Ω;ℝ𝑑 ))

+ ‖𝓁𝜆‖2
𝐿2(𝐻− 1

2 −𝛿(Ω;ℝ𝑑 ))
+ ‖ .

𝓁𝜆‖2𝐿2(𝐻−1
𝐷 (Ω;ℝ𝑑 ))

,

s.t. 𝔩 ∈ 𝐻1
00(𝑐),

𝓁𝜆 ∈ (𝐿2(𝐻
− 1

2−𝛿
𝐷 (Ω;ℝ𝑑)) ∩𝐻1

0 (𝐻
−1
𝐷 (Ω;ℝ𝑑))),

and (𝑢𝜆, 𝜎𝜆, 𝑧𝜆) ∈ 𝐻1(𝐻1(Ω;ℝ𝑑) × 𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) × 𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ))
is a solution of (11.9) with respect to (𝑓 + 𝑔, 𝑢𝐷) = (𝓁𝜆,𝔩𝜆 + 𝔞),

(12.2)

where 𝜃 ∈ (0, 1) and 𝛿 ∈ (0, 12 ), see Assumption ⟨12.1.ii⟩. Recall that 𝐻1
0 (𝐻

−1
𝐷 (Ω;ℝ𝑑)) is the

subspace of 𝐻1(𝐻−1
𝐷 (Ω;ℝ𝑑)) whose functions are zero at 𝑡 = 0 and that 𝐻1

00(𝑐) is the subspace
of 𝐻1(𝑐) whose functions are zero at 𝑡 = 0 and 𝑡 = 𝑇 .

Note that we have decided to drop the hardening in (12.2), that is, we focus only on van-
ishing viscosity. It is also possible to include vanishing hardening, then Proposition 12.7 (and
also Lemma 12.6) needs to be extended. Nevertheless, for the sake of convenience, we omitted
the hardening in (12.2). Moreover, since we require 𝓁𝜆(0) = 0, there exists for every pair (𝔩𝜆,𝓁𝜆)
of controls a unique solution (𝑢𝜆, 𝜎𝜆, 𝑧𝜆) of (11.9) according to Corollary 11.12 (the requirements
therein on 𝓁𝜆 = 𝑓 + 𝑔 hold according to Assumption ⟨12.i⟩ and the condition on 𝔩𝜆 + 𝔞 = 𝑢𝐷 in
Assumption ⟨11.ii⟩ is satisfied due to Assumption ⟨12.v⟩).

Why we have selected this objective function and control space for 𝓁𝜆 will become clear in
the proof of Theorem 12.9. As a part of the control space we have chosen 𝐻−𝑠

𝐷 (Ω;ℝ𝑑) with
𝑠 = 1

2 + 𝛿 ∈ ( 12 , 1), which is the dual space of 𝐻𝑠
𝐷(Ω;ℝ

𝑑) = {𝑢 ∈ 𝐻𝑠(Ω;ℝ𝑑) ∶ 𝑢|Γ𝐷 = 0} (note

that 𝑢 ∈ 𝐻𝑠(Ω;ℝ𝑑) has a trace for 𝑠 ∈ ( 12 , 1), cf. Lemma 12.4 below). The space 𝐻𝑠(Ω;ℝ𝑑),
for 𝑠 ∈ (0, 1), is a fractional Sobolev space, in the literature also called Aronszajn, Gagliardo or
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Part V Perfect Plasticity

Slobodeckij space. The concrete definition of this space is not relevant for us, only the properties
mentioned below. For fractional Sobolev spaces in general and its definition we refer to [2, 99,
12, 96, 30, 14] and the references therein. The properties of fractional Sobolev spaces, which are
needed in the following, are collected in

Lemma 12.4 (Properties of fractional Sobolev spaces). The following holds for 1
2 < 𝑠 < 𝑟 < 1:

(i) 𝐻𝑠(Ω;ℝ𝑑) is a subspace of 𝐿2(Ω;ℝ𝑑) and a Hilbert space. Moreover,𝐻1(Ω;ℝ𝑑) is a subspace
of 𝐻𝑠(Ω;ℝ𝑑) (it is continuously embedded).

(ii) 𝑢 ∈ 𝐻𝑠(Ω;ℝ𝑑) has a trace in 𝐻𝑠− 1
2 (𝜕Ω;ℝ𝑑) ⊂ 𝐿2(𝜕Ω;ℝ𝑑) and the trace operator is bounded

and linear.

(iii) 𝐻 𝑟(Ω;ℝ𝑑) is compactly embedded into 𝐻𝑠(Ω;ℝ𝑑).

Proof. The first assertion in Item (i) follows from the definition of 𝐻𝑠(Ω;ℝ𝑑) and the second
can be found in HITCHHIKER’S GUIDE [30, Section 3]. The claim in Item (ii) is proven in [32,
Theorem 1]. The statement in Item (iii) follows from the fact that 𝐻𝑠(Ω;ℝ𝑑) is compactly em-
bedded into 𝐿2(Ω;ℝ𝑑), see HITCHHIKER’S GUIDE [30, Theorem 7.1], and the inequality given
in BREZIS ET AL. [14, Theorem 1] or TRIEBEL [99, Section 1.3.3 Theorem (g) & Section 4.3.1
Theorem 2].

With these results at hand, we can prove the existence of a solution to (12.2).

Proposition 12.5 (Existence of a global solution to regularized problems). For every 𝜆 > 0 there
exists a global solution of (12.2).

Proof. This can be proven as in Proposition 5.3 (see also Proposition 11.11), using the lemma

of Lions-Aubin (cf. SHOWALTER [90, III. Proposition 1.3]) to see that (𝐿2(𝐻
− 1

2−𝛿
𝐷 (Ω;ℝ𝑑)) ∩

𝐻1(𝐻−1
𝐷 (Ω;ℝ𝑑))) is compactly embedded into 𝐿2(𝐻−1

𝐷 (Ω;ℝ𝑑)) (and by using the compact em-
bedding 𝑐 ↪  to obtain the required strong convergence of the corresponding Dirichlet
diplacements derived from the pseudo loads).

The fractional Sobolev space in (12.2), (only) needed to prove the existence of a global solu-
tion in the proposition above, has repercussions on the construction of the mentioned recovery
sequence. The obtained stress in (iii) of the proof of Theorem 12.9 needs to be more regular,
so that the derived forces also gain the necessary regularity. Thus, before we can prove the
approximation of global minimizers, we need to provide the desired regularity results.

Regularity of the Stress

At first we supply a regularity of the stress when the given input is also more regular, recall
Assumption ⟨12.1.i⟩. After this we collect all necessary regularity findings in Proposition 12.7.

Lemma 12.6 (Regularity of the stress). Let 𝜆 > 0 and 𝜎 ∈ 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )) the solution of

𝑈 −𝔸
.
𝜎 = 𝜕𝐼𝜆(𝜎), 𝜎(0) = 𝜎0, (12.3)

where 𝑈 is given in Assumption ⟨12.1.i⟩. Then 𝜎 ∈ 𝐻1(𝐻1(Ω;ℝ𝑑×𝑑
𝑠 )).

Proof. At first we consider the case 𝑈 ∈ 𝐶(𝐻1(Ω;ℝ𝑑×𝑑
𝑠 )).
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Chapter 12 Optimal Control

We apply a time discretization scheme, namely the explicit Euler method. For 𝑁 ∈ ℕ and
𝑛 ∈ {0, ..., 𝑁} we set 𝑑𝑁𝑡 ∶= 𝑇

𝑁
and 𝑡𝑁𝑛 ∶= 𝑛𝑑𝑁𝑡 such that 0 = 𝑡𝑁0 < 𝑡𝑁1 < ... < 𝑡𝑁𝑁 = 𝑇 . Now we can

define 𝜎𝑁0 ∶= 𝜎0 ∈ 𝐻1(Ω;ℝ𝑑×𝑑
𝑠 ) and

𝜎𝑁𝑛 ∶= 𝜎𝑁𝑛−1 + 𝑑
𝑁
𝑡 ℂ(𝑈 (𝑡𝑁𝑛−1) − 𝜕𝐼𝜆(𝜎

𝑁
𝑛−1)) ∈ 𝐻1(Ω;ℝ𝑑×𝑑

𝑠 )

(recall that 𝜕𝐼𝜆 maps 𝐻1(Ω;ℝ𝑑×𝑑
𝑠 ) into 𝐻1(Ω;ℝ𝑑×𝑑

𝑠 ), according to Lemma 3.15) such that

𝔸
𝜎𝑁𝑛 − 𝜎𝑁𝑛−1

𝑑𝑁𝑡
+ 𝜕𝐼𝜆(𝜎𝑁𝑛−1) = 𝑈 (𝑡𝑁𝑛−1) (12.4)

for all 𝑁 ∈ ℕ and 𝑛 ∈ {1, ..., 𝑁}. We define the piecewise linear interpolation 𝜎𝑁 ∈
𝐻1(𝐻1(Ω;ℝ𝑑×𝑑

𝑠 )) by

𝜎𝑁 (𝑡) ∶= 𝜎𝑁𝑛−1 +
𝑡 − 𝑡𝑁𝑛−1
𝑑𝑁𝑡

(𝜎𝑁𝑛 − 𝜎𝑁𝑛−1)

and the piecewise constant interpolation 𝜎̃𝑁 ∈ 𝐿∞(𝐻1(Ω;ℝ𝑑×𝑑
𝑠 )) by 𝜎̃𝑁 (𝑡) ∶= 𝜎𝑁𝑛−1 for 𝑡 ∈

[𝑡𝑁𝑛−1, 𝑡
𝑁
𝑛 ). The estimate

‖𝜎𝑁𝑛 ‖𝐻1(Ω;ℝ𝑑×𝑑
𝑠 ) ≤ ‖𝜎𝑁𝑛−1‖𝐻1(Ω;ℝ𝑑×𝑑

𝑠 )

+ 𝑑𝑁𝑡 𝐶(‖𝜎𝑁𝑛−1‖𝐻1(Ω;ℝ𝑑×𝑑
𝑠 ) + ‖𝑈‖𝐶(𝐻1(Ω;ℝ𝑑×𝑑

𝑠 )))

≤ ... ≤ ‖𝜎0‖𝐻1(Ω;ℝ𝑑×𝑑
𝑠 ) + 𝑑𝑁𝑡 𝐶

( 𝑛−1∑
𝑖=0

‖𝜎𝑁𝑖 ‖𝐻1(Ω;ℝ𝑑×𝑑
𝑠 )

)
+ 𝐶‖𝑈‖𝐶(𝐻1(Ω;ℝ𝑑×𝑑

𝑠 ),

where we have used (i) in Corollary 3.17, together with the discrete Gronwall lemma (cf. HEY-
WOOD AND RANNACHER [53, Lemma 5.1 and the following remark]) shows that 𝜎𝑁 is bounded

in 𝐶(𝐻1(Ω;ℝ𝑑×𝑑
𝑠 )). Thus

.
𝜎
𝑁
(𝑡) =

𝜎𝑁𝑛 −𝜎𝑁𝑛−1
𝑑𝑁𝑡

, 𝑡 ∈ (𝑡𝑁𝑛−1, 𝑡
𝑁
𝑛 ), is, according to (12.4), bounded in

𝐻1(Ω;ℝ𝑑×𝑑
𝑠 ) and we obtain

∫
𝑡𝑁𝑛

𝑡𝑁𝑛−1

‖ .
𝜎
𝑁
(𝑡)‖2𝐻1(Ω;ℝ𝑑×𝑑

𝑠 )𝑑𝑡 = 𝑑𝑁𝑡
‖‖‖‖‖
𝜎𝑁𝑛 − 𝜎𝑁𝑛−1

𝑑𝑁𝑡

‖‖‖‖‖
2

𝐻1(Ω;ℝ𝑑×𝑑
𝑠 )

≤ 𝑑𝑁𝑡 𝐶.

Taking the sum over 𝑛 we see that 𝜎𝑁 in bounded in 𝐻1(𝐻1(Ω;ℝ𝑑×𝑑
𝑠 )), hence, there exists a

subsequence, again denoted by 𝜎𝑁 , and a limit 𝜎 ∈ 𝐻1(𝐻1(Ω;ℝ𝑑×𝑑
𝑠 )) such that 𝜎𝑁 ⇀ 𝜎 in

𝐻1(𝐻1(Ω;ℝ𝑑×𝑑
𝑠 )) and 𝜎𝑁 → 𝜎 in 𝐶(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )). One also verifies easily that 𝜎̃𝑁 → 𝜎 in
𝐿2(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )), therefore

‖𝔸 .
𝜎
𝑁
+ 𝜕𝐼𝜆(𝜎𝑁 ) − 𝑈‖𝐿2(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ))

≤ ‖𝔸 .
𝜎
𝑁
+ 𝜕𝐼𝜆(𝜎̃𝑁 ) − 𝑈̃𝑁‖𝐿2(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ))

+ ‖𝜕𝐼𝜆(𝜎𝑁 ) − 𝜕𝐼𝜆(𝜎̃𝑁 )‖𝐿2(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )) + ‖𝑈̃𝑁 − 𝑈‖𝐿2(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ))

≤ 1
𝜆
‖𝜎𝑁 − 𝜎̃𝑁‖𝐿2(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )) + ‖𝑈̃𝑁 − 𝑈‖𝐿2(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )) → 0

as 𝑁 → ∞, where 𝑈̃𝑁 is defined as 𝜎̃𝑁 , that is, 𝑈̃𝑁 is the piecewise constant interpolation of 𝑈 .
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Let now 𝑈 ∈ 𝐿2(𝐻1(Ω;ℝ𝑑×𝑑
𝑠 )) and 𝑈𝑛 ∈ 𝐶(𝐻1(Ω;ℝ𝑑×𝑑

𝑠 )) be a sequence such that 𝑈𝑛 → 𝑈 in
𝐿2(𝐻1(Ω;ℝ𝑑×𝑑

𝑠 )). Let 𝜎 ∈ 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )) be the solution of (12.3) and 𝜎𝑛 ∈ 𝐻1(𝐻1(Ω;ℝ𝑑×𝑑

𝑠 ))
for every 𝑛 ∈ ℕ the solution of

𝑈𝑛 −𝔸
.
𝜎𝑛 = 𝜕𝐼𝜆(𝜎𝑛), 𝜎𝑛(0) = 𝜎0. (12.5)

Since 𝜕𝐼𝜆 ∶ 𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) → 𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) is monotone, one obtains

𝔸(
.
𝜎𝑛(𝑡) −

.
𝜎(𝑡)))∶ (𝜎𝑛(𝑡) − 𝜎(𝑡)) ≤ (𝑈𝑛(𝑡) − 𝑈 (𝑡))∶ (𝜎𝑛(𝑡) − 𝜎(𝑡))

for almost all 𝑡 ∈ [0, 𝑇 ], integrating this inequality with respect to time and using the coer-
civity of 𝔸 shows that 𝜎𝑛 → 𝜎 in 𝐶(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )). Considering now again (12.3) and (12.5)
and using the Lipschitz continuity of 𝜕𝐼𝜆 (on 𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )) yields the strong convergence in
𝐶1(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )) ↪ 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )). Using Item (ii) in Corollary 3.17 we get

𝔸𝜕𝑗
.
𝜎𝑛(𝑡)∶ 𝜕𝑗𝜎𝑛(𝑡) ≤ 𝔸𝜕𝑗

.
𝜎𝑛(𝑡)∶ 𝜕𝑗𝜎𝑛(𝑡) + 𝜕𝑗(𝜕𝐼𝜆(𝜎𝑛(𝑡)))∶ 𝜕𝑗𝜎𝑛(𝑡)

= 𝜕𝑗𝑈𝑛(𝑡)∶ 𝜕𝑗𝜎𝑛(𝑡)

for almost all 𝑡 ∈ [0, 𝑇 ]. Once again, integrating this inequality with respect to time and taking
the coercivity of 𝔸 into account gives the boundedness of 𝜎𝑛 in 𝐶(𝐻1(Ω;ℝ𝑑×𝑑

𝑠 )). Thanks to
Item (i) in Corollary 3.17 and (12.5) we finally obtain the boundedness of 𝜎𝑛 in𝐻1(𝐻1(Ω;ℝ𝑑×𝑑

𝑠 )).

Proposition 12.7 (Regularity and convergence of the stress). Let 𝜎𝜆 ∈ 𝐻1(𝐻1(Ω;ℝ𝑑×𝑑
𝑠 )) be the

solution of

𝑈 −𝔸
.
𝜎𝜆 = 𝜕𝐼𝜆(𝜎𝜆), 𝜎𝜆(0) = 𝜎0 (12.6)

for every 𝜆 > 0, and 𝜎 ∈ 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )) the solution of

𝑈 −𝔸
.
𝜎 ∈ 𝜕𝐼(Ω)(𝜎), 𝜎(0) = 𝜎0. (12.7)

Then 𝜎𝜆 is bounded in 𝐶(𝐻1(Ω;ℝ𝑑×𝑑
𝑠 )),

𝜎𝜆 → 𝜎 in 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )),

𝜎𝜆 ⇀
∗ 𝜎 in 𝐿∞(𝐻1(Ω;ℝ𝑑×𝑑

𝑠 )),

as 𝜆↘ 0, and the inequality

‖𝜎𝜆 − 𝜎‖2𝐶(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )) ≤ 𝜆

‖ℂ‖2
𝛾ℂ

‖𝑈 −𝔸
.
𝜎‖2𝐿2(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )).

holds.

Proof. At first we note that, analog to Lemma 4.3, 𝜎𝜆 is a solution of (12.6) if and only if 𝑞𝜆 ∈
𝐻1(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )) is a solution of

.
𝑞𝜆 = 𝜕𝐼𝜆(ℂ𝑈 − ℂ𝑞𝜆), 𝑞𝜆(0) = 𝑞0 ∶= −𝔸𝜎0

with 𝑞𝜆 = 𝑈 − 𝔸𝜎𝜆, respectively 𝜎𝜆 = ℂ(𝑈 − 𝑞𝜆), and 𝜎 is a solution of (12.7) if and only if
𝑞 ∈ 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )) is a solution of

.
𝑞 ∈ 𝜕𝐼(Ω)(ℂ𝑈 − ℂ𝑞), 𝑞(0) = 𝑞0,
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with 𝑞 = 𝑈 − 𝔸𝜎, respectively 𝜎 = ℂ(𝑈 − 𝑞), where 𝑈 ∈ 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )) is defined by

𝑈 (𝑡) ∶= ∫ 𝑡
0 𝑈 (𝑠)𝑑𝑠.

The existence of 𝜎, respectively 𝑞, follows now from Theorem 4.5 (note that the subdiffer-
ential has the boundedness property according to Proposition 3.14) and Proposition 4.8 (with
𝑧 = 𝑞, 𝑧𝜆 = 𝑞𝜆, 𝑧0 = 𝑞0,𝐴 = 𝜕𝐼(Ω) and  = 𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )) can be employed to get the convergence
𝜎𝜆 → 𝜎 in 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )) and the estimate

‖𝔸(𝜎𝜆 − 𝜎)‖2𝐶(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )) ≤ 𝜆

𝛾ℂ
‖𝑈 −𝔸

.
𝜎‖2𝐿2(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )).

The desired inequality follows now easily using ‖𝜎𝜆−𝜎‖𝐶(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )) = ‖ℂ𝔸(𝜎𝜆−𝜎)‖𝐶(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )) ≤‖ℂ‖‖𝔸(𝜎𝜆 − 𝜎)‖𝐶(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )).

We can now prove the boundedness of 𝜎𝜆 in𝐶(𝐻1(Ω;ℝ𝑑×𝑑
𝑠 )) by applying (ii) in Corollary 3.17

as in the end of the proof of Lemma 12.6.

Remark 12.8 (Extension of the regularity). The results in Proposition 12.7 can be extended to more
general Sobolev spaces and also to more general settings than the von-Mises flow rule, cf. [73, Lemma
5.2 & 5.3]. These extensions were needed in [73], but since we consider a slightly different optimization
problem in (12.2), the results above are sufficient for us.

Approximation

Having dealt with the regularity of the stress, we are finally in the position to provide the
approximation result in the next theorem. Let us emphasize that the method we use to con-
struct a recovery sequence is new and not present in the literature (except in [73]), at least to
the knowledge of the author.

Theorem 12.9 (Approximation of global minimizers). We assume that there exists a global min-

imizer (𝑢, 𝜎, 𝔩) of (12.1) such that 𝑢 has the regularity ∇𝑠
.
𝑢 ∈ 𝐿2(𝐻1(Ω;ℝ𝑑×𝑑

𝑠 )) and (𝑢 − (𝔩 + 𝔞)) ∈
𝐻1(𝐻1

𝐷(Ω;ℝ
𝑑)).

Let {𝑢𝜆, 𝜎𝜆, 𝔩𝜆,𝓁𝜆}𝜆>0 be a sequence of global minimizers of (12.2). Then every weak accumulation
point of {𝑢𝜆, 𝜎𝜆, 𝔩𝜆,𝓁𝜆}𝜆>0 is a strong accumulation point which has the form (𝑢̃, 𝜎̃, 𝔩̃, 0), that is 𝓁 ∶=
lim𝜆↘0 𝓁𝜆 = 0, and (𝑢̃, 𝜎̃, 𝔩̃) is a global minimizer of (12.1). Moreover, there exists an accumulation
point.

Proof. (i) Construction of a recovery sequence. Let (𝑢, 𝜎, 𝔩) be a global minimizer of (12.1) such that
𝑢 has the supposed improved regularity. Then we define 𝜎𝜆 ∈ 𝐻1(𝐻1(Ω;ℝ𝑑×𝑑

𝑠 )) as the solution
of

∇𝑠
.
𝑢 −𝔸

.
𝜎𝜆 = 𝜕𝐼𝜆(𝜎𝜆), 𝜎𝜆(0) = 0

(see Lemma 12.6 for the regularity of 𝜎𝜆) and 𝓁𝜆 ∈ 𝐻1(𝐻
− 1+𝛿

2
𝐷 (Ω;ℝ𝑑)) by

⟨𝓁𝜆(𝑡), 𝜑⟩ ∶= ∫Ω
(−∇ ⋅ 𝜎𝜆(𝑡)) ⋅ 𝜑 + ∫Γ𝑁

(𝜎𝜆(𝑡)𝜈) ⋅ 𝜑 (12.8)

for all 𝜑 ∈ 𝐻
1+𝛿
2

𝐷 (Ω;ℝ𝑑) (thanks to Lemma 12.4 Item (ii), 𝜑 has a trace in 𝐿2(𝜕Ω;ℝ𝑑)), that is,
𝓁𝜆 = 𝑓𝜆 ∶= −∇ ⋅ 𝜎𝜆 in Ω and 𝓁𝜆 = 𝑔𝜆 ∶= 𝜎𝜆𝜈 on Γ𝑁 , thus

⟨𝓁𝜆(𝑡), 𝜑⟩ = ∫Ω
𝜎𝜆(𝑡)∶ ∇𝑠𝜑
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for all 𝜑 ∈ 𝐻1
𝐷(Ω;ℝ

𝑑) and all 𝑡 ∈ [0, 𝑇 ], which also shows, thanks to Assumption ⟨12.i⟩, that
𝓁𝜆(0) = 0 so that 𝓁𝜆 is admissible for (12.2). Thanks to Lemma and Definition 11.2, we can apply

Proposition 12.7 with 𝑈 = ∇𝑠
.
𝑢 to get 𝜎𝜆 → 𝜎 in 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )), 𝓁𝜆 → 0 in 𝐻1(𝐻−1
𝐷 (Ω;ℝ𝑑))

(since div 𝜎 = 0), 𝓁𝜆 ⇀ 0 in 𝐿2(𝐻
− 1+𝛿

2
𝐷 (Ω;ℝ𝑑)) and ‖𝓁𝜆‖2𝐶(𝐻−1(Ω;ℝ𝑑 ))

≤ 𝐶𝜆. The lemma of Lions-

Aubin (cf. SHOWALTER [90, III. Proposition 1.3]) then also gives 𝓁𝜆 → 0 in 𝐿2(𝐻
− 1

2−𝛿
𝐷 (Ω;ℝ𝑑))

(thanks to Lemma 12.4 Item (iii) and the fact that if an operator is compact, then its adjoint

operator is also compact, see [65, 8.2-5 Theorem], 𝐻− 1+𝛿
2 (Ω;ℝ𝑑) is compactly embedded into

𝐻− 1
2−𝛿(Ω;ℝ𝑑)), hence,

𝐽𝜆(𝑢, 𝜎𝜆, 𝔩,𝓁𝜆) → 𝐽 (𝑢, 𝜎, 𝔩)

(note that (𝑢, 𝜎𝜆, 𝔩,𝓁𝜆) is admissible for (12.2) by construction).
(ii) Existence of an accumulation point. Since {𝑢𝜆, 𝜎𝜆, 𝔩𝜆,𝓁𝜆}𝜆>0 is a global solution of (12.2), we

get

𝐽𝜆(𝑢𝜆, 𝜎𝜆, 𝔩𝜆,𝓁𝜆) ≤ 𝐽𝜆(𝑢, 𝜎𝜆, 𝔩,𝓁𝜆), (12.9)

which yields the boundedness of {𝑢𝜆, 𝔩𝜆,𝓁𝜆}𝜆>0 so that the boundedness of {𝜎𝜆}𝜆>0 follows
from (11.17) (note that this inequality still holds when 𝑓𝑛 ∈ 𝐻1(𝐿𝑑(Ω;ℝ𝑑)) is exchanged by
𝓁𝜆 ∈ 𝐻1(𝐻−1(Ω;ℝ𝑑)), see the last part of the proof of Lemma 11.16), hence, there exists a weak
accumulation point.

(iii) Admissibility of an accumulation point. Let us assume that a given subsequence of
{𝑢𝜆, 𝜎𝜆, 𝔩𝜆,𝓁𝜆}𝜆>0, denoted by the same symbol for simplicity, converges weakly to (𝑢̃, 𝜎̃, 𝔩̃,𝓁).
Considering again (12.9), we see that 𝜆−𝜃‖𝓁𝜆‖2𝐿2(𝐻−1(Ω;ℝ𝑑 ))

is bounded, hence, 𝓁𝜆 → 𝓁 = 0
in 𝐿2(𝐻−1(Ω;ℝ𝑑)) and div 𝜎̃(𝑡) = 0 for all 𝑡 ∈ [0, 𝑇 ]. Due to Lemma A.4, we also obtain
(𝑢̃, 𝜎̃)(0) = (𝑢0, 𝜎0). According to the boundedness of (𝑢𝜆, 𝜎𝜆, 𝔩𝜆,𝓁𝜆), we get the boundedness of
𝜕𝐼𝜆(𝜎𝜆) in 𝐿2(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )) by (11.9d) and (11.9e). Thanks to (3.6) we get

‖𝐼𝜆(𝜎𝜆)‖𝐿1(0,𝑇 ;ℝ) =
𝜆
2
‖𝜕𝐼𝜆(𝜎𝜆)‖2𝐿2(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )) ≤ 𝐶𝜆,

hence, 𝐼𝜆(𝜎𝜆) → 0 in 𝐿1(0, 𝑇 ;ℝ) and we can select a subsequence such that 𝐼𝜆(𝜎𝜆(𝑡)) → 0 for
almost all 𝑡 ∈ [0, 𝑇 ] (cf. [37, 2.7 Korollar]). Because we also have 𝜎𝜆(𝑡) ⇀ 𝜎̃(𝑡) in 𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) by
Lemma A.4, Lemma 11.17 gives 𝜎̃(𝑡) ∈ (Ω) for all 𝑡 ∈ [0, 𝑇 ]. To see that (𝑢̃, 𝜎̃, 𝔩̃) is admissible
for (12.1), it remains to show that (𝑢̃, 𝜎̃) fulfills (11.6) with 𝑢𝐷 = 𝔩̃ + 𝔞. To this end we set
𝑢𝐷,𝜆 ∶= 𝔩𝜆 + 𝔞 and use again (11.9d) and (11.9e) to obtain

0 = ∫
𝑇

0
𝐼𝜆(𝜏(𝑡))𝑑𝑡

(11.9e)≥ ∫
𝑇

0
𝐼𝜆(𝜎𝜆(𝑡))𝑑𝑡 +

( .
𝑧𝜆, 𝜏 − 𝜎𝜆

)
𝐿2(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ))

(11.9d)≥
(
∇𝑠

.
𝑢𝜆 −𝔸

.
𝜎𝜆, 𝜏 − 𝜎𝜆

)
𝐿2(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ))

=
(
∇𝑠

.
𝑢𝐷,𝜆 −𝔸

.
𝜎𝜆, 𝜏 − 𝜎𝜆

)
𝐿2(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ))
−
( .
𝑢𝜆 −

.
𝑢𝐷,𝜆, div 𝜏

)
𝐿2(𝐿2(Ω;ℝ𝑑 ))

− ∫
𝑇

0
⟨𝓁𝜆(𝑡), .𝑢𝜆(𝑡) − .

𝑢𝐷,𝜆(𝑡)⟩𝑑𝑡,
(12.10)
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for all 𝜏 ∈ 𝐿2(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )) with div 𝜏 ∈ 𝐿2(𝐿𝑑(Ω;ℝ𝑑)) and 𝜏(𝑡) ∈ (Ω) for almost all 𝑡 ∈ [0, 𝑇 ].

We can now argue analog as in the prove of Theorem 11.19 to see that (11.6) is fulfilled, using
𝓁𝜆 → 0 in 𝐿2(𝐻−1(Ω;ℝ𝑑)) and the boundedness of 𝑢𝜆 and 𝑢𝐷,𝜆 in 𝐻1(𝐻1(Ω;ℝ𝑑)).

(iv) Strong accumulation point and global minimizer. The proven convergence properties of the
recovery sequence (𝑢, 𝜎𝜆, 𝑢𝐷,𝓁𝜆) give

𝐽 (𝑢̃, 𝜎̃, 𝔩̃) ≤ lim inf
𝜆↘0

𝐽 (𝑢𝜆, 𝜎𝜆, 𝔩𝜆) ≤ lim sup
𝜆↘0

𝐽 (𝑢𝜆, 𝜎𝜆, 𝔩𝜆)

≤ lim sup
𝜆↘0

𝐽𝜆(𝑢𝜆, 𝜎𝜆, 𝔩𝜆,𝓁𝜆) ≤ lim sup
𝜆↘0

𝐽𝜆(𝑢, 𝜎𝜆, 𝔩,𝓁𝜆) = 𝐽 (𝑢, 𝜎, 𝔩),
(12.11)

which implies that (𝑢̃, 𝜎̃, 𝔩̃) is a global minimizer of (12.1) and that 𝐽 (𝑢𝜆, 𝜎𝜆, 𝔩𝜆) → 𝐽 (𝑢̃, 𝜎̃, 𝔩̃),
from which we can deduce that (𝑢𝜆, 𝔩𝜆) → (𝑢̃, 𝔩̃), since we already have the weak conver-
gence. Furthermore, the convergence 𝜎𝜆 → 𝜎̃ can be proven as in the end of the proof of
Theorem 11.19, note that the inequality (11.20) still holds when 𝑓𝑛 ∈ 𝐻1(𝐿𝑑(Ω;ℝ𝑑)) is ex-
changed by 𝓁𝜆 ∈ 𝐻1(𝐻−1(Ω;ℝ𝑑)) (see again the last part of the proof of Lemma 11.16) and

that ∫ 𝑇
0 ⟨𝓁𝜆(𝑡), .𝑢𝜆(𝑡) − .

𝑢𝐷,𝜆(𝑡)⟩𝑑𝑡 converges to zero as seen in (iii). From (12.11) we can conclude
further that

𝐽 (𝑢̃, 𝜎̃, 𝔩̃) = lim sup
𝜆↘0

𝐽𝜆(𝑢𝜆, 𝜎𝜆, 𝔩𝜆,𝓁𝜆)

= 𝐽 (𝑢̃, 𝜎̃, 𝔩̃) + lim sup
𝜆↘0

𝜆−𝜃‖𝓁𝜆‖2𝐿2(𝐻−1(Ω;ℝ𝑑 )) + ‖𝓁𝜆‖2
𝐿2(𝐻− 1

2 −𝛿(Ω;ℝ𝑑 ))
+ ‖ .

𝓁𝜆‖2𝐿2(𝐻−1(Ω;ℝ𝑑 )),

so that 𝓁𝜆 → 0 in (𝐿2(𝐻− 1
2−𝛿(Ω;ℝ𝑑)) ∩𝐻1(𝐻−1(Ω;ℝ𝑑))) (and 𝜆−

𝜃
2𝓁𝜆 → 0 in 𝐿2(𝐻−1(Ω;ℝ𝑑))).

Let us conclude this section with some remarks.

Remark 12.10 (Existence of an accumulation point). Let {𝑢𝜆, 𝜎𝜆, 𝔩𝜆,𝓁𝜆}𝜆>0 be the sequence from
Theorem 12.9. Note that there might exist 𝜆 > 0 such that

𝐽𝜆(𝑢𝜆, 𝜎𝜆, 𝔩𝜆,𝓁𝜆) > 𝐽𝜆(𝑢0, 𝜎0, 0, 0)

since (𝑢0, 𝜎0, 0, 0) is not admissible for (12.2) due to the offset 𝔞. Fortunately, additionally to use in
(iv) of the proof of Theorem 12.9, we could utilize the recovery sequence to obtain the boundedness in
(12.9). Of course, when considering a slightly different problem, for instance the one described before
Theorem 12.1, this problem does not arise.

Remark 12.11 (Weaker regularity constraint). The regularity assumption in Theorem 12.9 can be
weakened, it is sufficient when there exists a sequence (𝑢𝑛, 𝜎𝑛, 𝔩𝑛) of admissible points of (12.1) such that
𝑢𝑛 has the regularity ∇𝑠 .𝑢𝑛 ∈ 𝐿2(𝐻1(Ω;ℝ𝑑×𝑑

𝑠 )), 𝑢𝑛(𝑡) − 𝔩𝑛 − 𝔞(𝑡) ∈ 𝐻1
𝐷(Ω;ℝ

𝑑×𝑑
𝑠 ) and (𝑢𝑛, 𝜎𝑛, 𝔩𝑛) →

(𝑢, 𝜎, 𝔩), where (𝑢, 𝜎, 𝔩𝐷) is a global solution of (12.1). One can argue as in the proof of Theorem 12.9 but
exchange (𝑢, 𝜎, 𝔩) with (𝑢𝑛, 𝜎𝑛, 𝔩𝑛) and then obtain

𝐽 (𝑢̃, 𝜎̃, 𝔩̃) ≤ lim inf
𝜆↘0

𝐽 (𝑢𝜆, 𝜎𝜆, 𝔩𝜆)

≤ lim sup
𝜆↘0

𝐽 (𝑢𝜆, 𝜎𝜆, 𝔩𝜆) ≤ lim sup
𝜆↘0

𝐽𝜆(𝑢𝜆, 𝜎𝜆, 𝔩𝜆,𝓁𝜆) ≤ 𝐽 (𝑢𝑛, 𝜎𝑛, 𝔩𝑛)

as in (12.11). After passing to the limit 𝑛 → ∞, we can proceed as before.
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Remark 12.12 (Characteristics of approximable global minimizers). Since every global minimizer
(𝑢𝜆, 𝜎𝜆, 𝔩𝜆,𝓁𝜆) of (12.2) fulfills 𝑢𝜆 − (𝔩𝜆 + 𝔞) ∈ 𝐻1(𝐻1

𝐷(Ω;ℝ
𝑑)), every accumulation point (𝑢̃, 𝜎̃, 𝔩̃, 0)

of such a sequence, hence every approximable global minimizer of (12.1), also fulfills 𝑢̃𝜆 − (𝔩̃𝜆 + 𝔞) ∈
𝐻1(𝐻1

𝐷(Ω;ℝ
𝑑)).

In light of this observation one could reduce the admissible set of (12.1) to displacements, which also
fulfill the boundary condition. Then, thanks to Lemma and Definition 11.2, it would be equivalent to
consider strong solutions of (9.19) instead of solutions. Moreover, it is obvious that Proposition 11.10
would still hold and therefore also Theorem 12.1. However, since from a mechanical standpoint of view
solutions of (9.19) does not need to fulfill the boundary condition (see also the discussion after Lemma
and Definition 11.2), we did not include them in (12.1).

Remark 12.13 (Regularity of the displacement). Since we have proven in Theorem 11.19 the ex-
istence of a solution to (9.19) such that 𝑢 ∈  , there might not exist a (weak) solution (𝑢, 𝜎) with
𝑢 ∈ 𝐻1(𝐻1(Ω;ℝ𝑑)). We restricted the space of the displacement to 𝐻1(𝐻1(Ω;ℝ𝑑)) to obtain the con-
vergence

∫
𝑇

0
⟨𝓁𝜆(𝑡), .𝑢𝜆(𝑡) − .

𝑢𝐷,𝜆(𝑡)⟩𝑑𝑡 → 0

in (12.10). When we would have required only the regularity
.
𝑢 ∈  for the displacement, then the strong

convergence 𝓁𝜆 → 0 in 𝐿2(𝐿𝑑(Ω;ℝ𝑑)) would also yield the convergence above (see Definition 10.5), this
could be achieved by adding a suitable norm of 𝓁 to our objective function. However, we would also need
to prove this regularity (and the boundedness) of 𝓁𝜆, defined in (12.8), which cannot be concluded from
our results in Proposition 12.7.

Let us note again that in [73] the regularity 𝑢 ∈  was sufficient, the mentioned problem does not
occur since the considered optimization problem is slightly different (imposing an additional constraint
on the stress), cf. Remark 12.2.

12.2 Reduction to the Stress
In the last section we already neglected volume forces in order to avoid the (global) safe-load
condition. Where it is possible to consider volume forces for the existence of optimal controls in
Section 12.1, they would result in great issues for the approximation of such, cf. Remark 12.3.
Despite the omission of volume forces, we needed to go to great lengths to provide an approxi-
mation result for global minimizers in Theorem 12.9 by adding volume forces which belong to a
fractional Sobolev space. Furthermore, the specific form of the objective function in (12.2) was
important in Theorem 12.9. Due to these facts, the study of the optimization problem (12.2)
is rather of theoretical interest (but still relevant due to the new idea to construct a recovery
sequence).

Moreover, it is also to be noted that, since the displacement field is not unique (see Re-
mark 11.4), one might argue that it does not make much sense to consider the optimal control
problem (12.1), at least from an application perspective.

Due to these facts and our intention to investigate and to present numerical experiments
for a more applied problem, we will drop the displacement as a state variable in this section
so that only the stress field remains as a state. Since, in contrast to the displacement field, the
stress is unique, as shown in Lemma 11.3, and we have the strong convergence result from
Theorem 11.19 at hand, it is straightforward to prove a result analog to Theorem 12.9.

Since the to the stress reduced optimal control problem is similar to (12.1) (see also (12.12)
below), we do not state it. The objective function is simply reduced to 𝐽 (𝜎, 𝔩) ∶= 1

2‖𝜎(𝑇 ) −
𝜎𝑑‖2𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )
+ 𝛼

2‖ .
𝔩‖𝐿2(𝑐 ) (see Assumption ⟨12.2⟩) and for the admissible set we only require
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that 𝜎 is a reduced solution of (9.19). Moreover, let us again mention that Assumption ⟨V.ii⟩
can be dropped in what follows. This assumption was only needed for Theorem 10.2, see
Remark 10.3, and therefore mainly in the construction of the space of displacement fields  .
Thus, it is straightforward to see that the results in Chapter 11 concerning the stress are still
valid, see also [72].

As mentioned above, it is comparatively simple to prove an existence and an approximation
result for optimal controls of the mentioned problem. We start with the

Existence of Optimal Controls

As in the proof of Theorem 12.1, the existence of optimal controls follows from the direct
method of the calculus of variations. Here, to obtain the boundedness of the stresses, we make
use of Proposition 11.10 Item (ii), which also shows that the limit is admissible. Note, according
to Corollary 11.22, that for a reduced solution 𝜎 there exists a displacement 𝑢, such that (𝑢, 𝜎) is
a solution and thus Proposition 11.10 Item (ii) is applicable (however, it is easily seen that the
result can be directly proven for reduced solutions).

Approximation of Optimal Controls

The proof of a result, analog to Theorem 12.9 is much simpler than the proof thereof. In
contrast to (12.2) one does not need the additional forces 𝓁 and can simply consider solutions of
(11.9) with respect to (𝑓+𝑔, 𝑢𝐷) = (0,𝔩+𝔞). Now we can follow the proof of Theorem 12.9, only
the construction of a recovery sequence in (i) has to be adapted (note also that the admissibility
of an accumulation point in (ii) follows from Theorem 11.19 where 𝑓𝑛 ≡ 𝑓 ≡ 0, this result could
not be used in the prove of Theorem 12.9 due to the additional forces 𝓁 which regularity were
to weak). However, thanks to the strong convergence result of stresses in Theorem 11.19, one
can take simply the solutions with respect to the fixed optimal pseudo force 𝔩 and 𝑓 ≡ 0 to
obtain the desired recovery sequence.

Let us also refer to Theorem 5.4, where the argumentation was similar and Proposition 4.8
was used to obtain a recovery sequence.

Note also that it is straightforward to add hardening to the state equation as in (11.9).

Remark 12.14 (Volume forces). In Remark 12.3 we argued that we dropped the volume forces due
to the delicate construction of a recovery sequence in Theorem 12.9. As said above, the construction
of a recovery sequence after dropping the displacement as a state is much simpler due to the strong
convergence in Theorem 11.19 which also holds for (fixed) volume forces when they belong to a set which
fulfills a global safe-load condition. Therefore, it is also possible to prove the approximation of global
minimizers analog to Theorem 12.9 when volume forces are present. We only have to take care of the
boundedness of a minimizing sequence when proving the existence of a global minimizer. Corollary 11.8
is not applicable anymore, but, for example, a tracking type objective function for the stress would be
sufficient.

It would also be an interesting task to derive optimality conditions when volume forces are present
(but, loosely speaking, the safe-load condition seems to prevent large volume forces so that the more
interesting control is the Dirichlet displacement). Note that the findings in Section 5.2 are not applicable
in this case since a set which fulfills a global safe-load condition is not a linear subspace. One would need
to extend the results given in Section 5.2 so that sets which fulfill a global safe-load condition are covered,
which might not be trivial due to the intricate structure of the global safe-load condition. However, such
an extension is beyond the scope of this work.
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Remark 12.15 (Approximation by smoothed problems). As in Section 5.2, we want to smoothen the
state equation further by using 𝜕𝐼𝜆,𝑠 (see (3.11)) instead of 𝜕𝐼𝜆 to obtain a differentiable solution operator
so that we can derive optimality conditions. Therefore the approximation result of global minimizers
should also hold when we consider such smoothed problems. However, this is the case and can be shown
as in Theorem 5.4 by using Lemma 4.17 with 𝐴 = 𝜕𝐼(Ω) and 𝐴𝑛 = 𝜕𝐼𝜆𝑛,𝑠𝑛 for suitable sequences
{𝜆𝑛}𝑛∈ℕ and {𝑠𝑛}𝑛∈ℕ such that (4.14) can be obtained by (3.12).

This concludes the reduction to the stress and we can bring our attention to the derivation
of optimality conditions.

12.3 Optimality Conditions
In the previous section we have reduced the optimization problem (12.1) such that only the
stress is present as a state variable. However, we did not state the reduced optimization
problem(s) due to the similarity to (12.1) (and (12.2)). Nonetheless, since we investigate the
smoothed optimal control problem in more detail in this section, let us do this now for the sake
of clarity:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

min 𝐽 (𝜎, 𝔩) ∶= 1
2
‖𝜎(𝑇 ) − 𝜎𝑑‖2𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) +
𝛼
2
‖ .
𝔩‖2𝐿2(𝑐 ),

s.t. − div 𝜎 = 0
𝑢 − (𝔩 + 𝔞) ∈ 𝐻1(𝐻1

𝐷(Ω;ℝ
𝑑×𝑑
𝑠 ))

𝜎 = ℂ(∇𝑠𝑢 − 𝑧)
.
𝑧 = 𝜕𝐼𝜆,𝑠(𝜎 − 𝜀𝔹𝑧),

(𝑢(0), 𝜎(0)) = (𝔞(0), 𝜎0)
𝑢 ∈ 𝐻1(𝐻1(Ω;ℝ𝑑))

𝜎, 𝑧 ∈ 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ))

𝔩 ∈ 𝐻1
00(𝑐),

(12.12)

Our main goal in this section is to give a concrete form of the derivative of the reduced
objective function in Proposition 12.20 by means of the adjoint equation. This derivative will be
then used in Chapter 13 to implement a gradient descent method. Thanks to Proposition 12.20,
it is then easy to derive optimality conditions in the form of a KKT system in Theorem 12.21.

Let us point to the similarity between (12.12) and (6.3). The difference is that we have now
only the Dirichlet displacement, respectively the pseudo forces, as a control variable and the
stress instead of the plastic strain as the state. Otherwise, these problems behave similar, even
when 𝜀 = 0 (see Assumption ⟨12.3.i⟩) due to the Lipschitz continuity of 𝜕𝐼𝜆,𝑠 (cf. Lemma 3.18
Item (ii)). In particular, one could apply the results given in Section 5.2 by using 𝜎 = 𝜎(𝑧, 𝔩) with
an analog transformation as in Theorem 2.9. Still, we only use Theorem 5.9 to obtain the dif-
ferentiability of the solution operator of the state equation and then derive the differentiability
of the reduced objective function and the mentioned KKT system from this result. A rigorous
application of the results in Section 5.2 by means of the transformation 𝜎 = 𝜎(𝑧, 𝔩) would likely
not shorten the argumentation.

Differentiability of the Regularized Solution Operator

At first we introduce the solution operator of the state equation of (12.12) in the following
definition. After that, we prove the differentiability in Proposition 12.17 by using the abstract
result given in Theorem 5.9 as mentioned above.
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Definition 12.16 (Smoothed solution operator). According to Corollary 11.12, for 𝔩 ∈ 𝐻1
00(𝑐)

there exists a unique solution (𝑢, 𝜎, 𝑧) of the state equation in (12.12). We denote the with 𝜎 associated
solution operator by

𝑠 ∶ 𝐻1
00(𝑐) → 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )) 𝔩 ↦ 𝜎.

Of course, this operator depends on 𝜀 and 𝜆, but we suppress this dependency to ease notation.

With this solution operator at hand, we can define the reduced objective function

𝐹 ∶ 𝐻1
00(𝑐) → ℝ, 𝔩 ↦ 𝐽 (𝑠(𝔩), 𝔩).

The problem (12.12) is then equivalent to

min
𝔩∈𝐻1

00(𝑐 )
𝐹 (𝔩). (12.13)

Proposition 12.17 (Differentiability of the smoothed solution operator). The solution operator 𝑠
is Fréchet differentiable from 𝐻1

00(𝑐) to 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )). Its directional derivative at 𝔩 ∈ 𝐻1

00(𝑐)
in direction ℎ ∈ 𝐻1

00(𝑐), denoted by 𝜏 =  ′
𝑠(𝓁)ℎ, is the second component of the unique solution

(𝑣, 𝜏, 𝜂) ∈ 𝐻1(𝐻1(Ω;ℝ𝑑) × 𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) × 𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )) of

−div 𝜏 = 0,
𝜏 = ℂ(∇𝑠𝑣 − 𝜂),
.
𝜂 = 𝜕𝐼 ′𝜆,𝑠(𝜎 − 𝜀𝔹𝑧)(𝜏 − 𝜀𝔹𝜂),

𝑣 − ℎ ∈ 𝐻1(𝐻1
𝐷(Ω;ℝ

𝑑)),
(𝑣, 𝜏)(0) = (0, 0),

(12.14)

where (𝑢, 𝜎, 𝑧) is the solution of the state equation in (12.12) associated with 𝔩.

Proof. As in Proposition 11.11, one can transform the state equation in (12.12) equivalently in
.
𝑧 = 𝜕𝐼𝜆,𝑠

(
𝑅(0,𝔩 + 𝔞) −𝑄𝜀𝑧

)
, 𝑧(0) = ∇𝑠𝔞(0) − 𝔸𝜎0, (12.15)

𝑢 =  (− div(ℂ𝑧),𝔩 + 𝔞) (12.16)
𝜎 = ℂ(∇𝑠𝑢 − 𝑧). (12.17)

The first equation (12.15) has the form of the general equation (EVI) with 𝑅 = 𝑅(0,(⋅) + 𝔞).
At first we consider the solution mapping ̃𝑧 ∶ 𝐻1(𝑊 1,𝑝(Ω;ℝ𝑑)) → 𝐻1(𝐿𝑝(Ω;ℝ𝑑×𝑑

𝑠 )), where
𝑝 > 2 is given in Assumption ⟨12.3.i⟩, of

.
𝑧 = 𝜕𝐼𝜆,𝑠

(
𝑅(0, 𝑢𝐷) −𝑄𝜀𝑧

)
, 𝑧(0) = ∇𝑠𝔞(0) − 𝔸𝜎0,

that is, ̃𝑧(𝑢𝐷) = 𝑧 (here we use Assumption ⟨12.3.ii⟩). Note that, completely analog to the
discussion in Section 6.2, one verifies that we can apply Theorem 5.9 (the operator 𝑄𝜀 is not
coercive when 𝜀 = 0 which was required in Assumption ⟨4.i⟩, however, Theorem 5.9 still holds
as discussed in Remark 5.24). Thus, the solution mapping ̃𝑧 is Fréchet-differentiable from
𝐻1(𝑊 1,𝑝(Ω;ℝ𝑑)) to 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )) and its derivative at 𝑢𝐷 ∈ 𝐻1(𝑊 1,𝑝(Ω;ℝ𝑑)) in direction
ℎ𝐷 ∈ 𝐻1(𝑊 1,𝑝(Ω;ℝ𝑑)) is the unique solution of

.
𝜂̃ = 𝜕𝐼 ′𝜆,𝑠(𝑅(0, 𝑢𝐷) −𝑄𝜀𝑧̃)(𝑅(0, ℎ𝐷) −𝑄𝜀𝜂̃), 𝜂̃(0) = 0,

where 𝑧̃ ∶= ̃𝑧(𝑢𝐷).
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Now, taking into account that the solution operator of (12.15) is simply the concatenation of̃𝑧 with the affine mapping 𝐻1
00(𝑐) ∋ 𝔩 ↦ 𝔩 + 𝔞 ∈ 𝐻1(𝑊 1,𝑝(Ω;ℝ𝑑)) (here we use Assump-

tion ⟨12.3.i⟩), we see that the solution mapping of (12.15) is Fréchet-differentiable from 𝐻1
00(𝑐)

to 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )) and its derivative at 𝔩 in direction ℎ is the unique solution of

.
𝜂 = 𝜕𝐼 ′𝜆,𝑠(𝑅(0,𝔩 + 𝔞) −𝑄𝜀𝑧)(𝑅(0,ℎ) −𝑄𝜀𝜂), 𝜂(0) = 0,

where 𝑧 is the solution of (12.15). Since all mappings in (12.16) and (12.17) are linear and affine,
they are trivially Fréchet-differentiable in their respective spaces and the respective derivatives
are given by 𝑣 =  (− div(ℂ𝜂),ℎ) and 𝜏 = ℂ(∇𝑠𝑣 − 𝜂). In view of the definition of  , 𝑅 and 𝑄𝜀,
we finally end up with (12.14).

Adjoint Equation

To give a concrete form of the derivative of the reduced objective function, we need the
following adjoint equation. With this adjoint equation at hand, we can provide the desired
differentiability in Proposition 12.20.

Definition 12.18 (Adjoint equation). Let 𝔩 ∈ 𝐻1
00(𝑐) be given and (𝑢, 𝜎, 𝑧) the solution of the state

equation in (12.12). We define the adjoint state (𝑣𝜑, 𝜑, 𝑣𝑇 ) ∈ 𝐻1(𝐻1
𝐷(Ω;ℝ

𝑑)) ×𝐻1(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )) ×

𝐻1
𝐷(Ω;ℝ

𝑑) as the solution of the adjoint equation,

−divℂ∇𝑠𝑣𝜑 = −divℂ𝜕𝐼 ′𝜆,𝑠(𝜎 − 𝜀𝔹𝑧)𝜑, (12.18a)
.
𝜑 = (ℂ + 𝜀𝔹)𝜕𝐼 ′𝜆,𝑠(𝜎 − 𝜀𝔹𝑧)𝜑 − ℂ∇𝑠𝑣𝜑, (12.18b)

𝜑(𝑇 ) = ℂ(𝜎(𝑇 ) − 𝜎𝑑 − ∇𝑠𝑣𝑇 ), (12.18c)
−divℂ∇𝑠𝑣𝑇 = −divℂ(𝜎(𝑇 ) − 𝜎𝑑), (12.18d)

Lemma 12.19 (Existence of an adjoint state). For every (𝜎, 𝑧) ∈ 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) × 𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )),
there exists a unique adjoint state.

Proof. Thanks to the definition of 𝑄𝜀 and  in Definition 2.7 and Corollary 2.6, the adjoint
equation is equivalent to

.
𝜑 = 𝑄𝜀𝜕𝐼

′
𝜆,𝑠(𝜎 − 𝜀𝔹𝑧)𝜑, 𝜑(𝑇 ) = ℂ

[
𝜎(𝑇 ) − 𝜎𝑑 − ∇𝑠 (− div(ℂ(𝜎(𝑇 ) − 𝜎𝑑)), 0)

]
.

This is an operator equation backward in time, whose existence can be proven by using Theo-
rem A.7. Alternatively, the existence of solutions can be deduced via duality as in Lemma 5.12.

Proposition 12.20 (Differentiability of the reduced objective function). The functional 𝐹 is Fréchet
differentiable and

𝐹 ′(𝔩)ℎ =
( .
𝜓 + 𝛼

.
𝔩,

.
ℎ
)
𝐿2(𝑐 )

holds for all 𝔩, ℎ ∈ 𝐻1
00(𝑐), that is, 𝐹 ′(𝔩) = 𝜓+𝛼𝔩 (Riesz representation), where 𝜓 ∈ 𝐻1

00(𝑐)∩𝐻2(𝑐)
is given by

𝜓(𝑡) ∶= ∫
𝑡

0 ∫
𝑠

0
𝐿(𝑟)𝑑𝑟𝑑𝑠 − 𝑡

𝑇 ∫
𝑇

0 ∫
𝑠

0
𝐿(𝑟)𝑑𝑟𝑑𝑠, (12.19)

𝐿 ∶= (ℂ∇𝑠)∗(𝜕𝐼 ′𝜆,𝑠(𝜎 − 𝜀𝔹𝑧)𝜑 − ∇𝑠𝑣𝜑) ∈ 𝐿2(𝑐) (12.20)

where (𝑢, 𝜎, 𝑧) is the solution of the state equation in (12.12) and (𝑣𝜑, 𝜑, 𝑣𝑇 ) the adjoint state ((ℂ∇𝑠)∗ ∈(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 );𝑐) is the adjoint operator of ℂ∇𝑠 ∈ (𝑐 , 𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ))).
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Proof. We have Ψ(𝔩) = 1
2‖𝑠(𝔩)(𝑇 ) − 𝜎𝑑‖2𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )
for all 𝔩 ∈ 𝐻1

00(𝑐). Let 𝔩, ℎ ∈ 𝐻1
00(𝑐), (𝑢, 𝜎, 𝑧)

the solution of the state equation in (12.12), (𝑣, 𝜏, 𝜂) the solution of (12.14) and (𝑣𝜑, 𝜑, 𝑣𝑇 ) the
adjoint state. Then we have

Ψ′(𝔩)ℎ =
(
𝜎(𝑇 ) − 𝜎𝑑 , 𝜏(𝑇 )

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )

=
(
𝜎(𝑇 ) − 𝜎𝑑 − ∇𝑠𝑣𝑇 , 𝜏(𝑇 )

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )

=
(
ℂ(𝜎(𝑇 ) − 𝜎𝑑 − ∇𝑠𝑣𝑇 ),∇𝑠𝑣(𝑇 ) − 𝜂(𝑇 )

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )

=
(
ℂ(𝜎(𝑇 ) − 𝜎𝑑),∇𝑠𝑣(𝑇 )

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) −
(
ℂ∇𝑠𝑣𝑇 ,∇𝑠𝑣(𝑇 )

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) − (𝜑(𝑇 ), 𝜂(𝑇 ))𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )

= −
(
(𝜑(𝑇 ), 𝜂(𝑇 ))𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) − (𝜑(0), 𝜂(0))𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )

)
= −

(( .
𝜑, 𝜂

)
𝐿2(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ))
+
(
𝜑,

.
𝜂
)
𝐿2(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ))

)
= −

(
(ℂ + 𝜀𝔹)𝜕𝐼 ′𝜆,𝑠(𝜎 − 𝜀𝔹𝑧)∗𝜑 − ℂ∇𝑠𝑣𝜑, 𝜂

)
𝐿2(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ))

−
(
𝜑, 𝜕𝐼 ′𝜆,𝑠(𝜎 − 𝜀𝔹𝑧)(𝜏 − 𝜀𝔹𝜂)

)
𝐿2(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ))

= −
(
(ℂ + 𝜀𝔹)𝜕𝐼 ′𝜆,𝑠(𝜎 − 𝜀𝔹𝑧)∗𝜑 − ℂ∇𝑠𝑣𝜑, 𝜂

)
𝐿2(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ))

−
(
𝜑, 𝜕𝐼 ′𝜆,𝑠(𝜎 − 𝜀𝔹𝑧)(ℂ∇𝑠𝑣 − (ℂ + 𝜀𝔹)𝜂)

)
𝐿2(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ))

=
(
ℂ∇𝑠𝑣𝜑, 𝜂

)
𝐿2(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )) −
(
ℂ𝜕𝐼 ′𝜆,𝑠(𝜎 − 𝜀𝔹𝑧)∗𝜑,∇𝑠𝑣

)
𝐿2(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ))

=
(
ℂ∇𝑠𝑣𝜑, 𝜂

)
𝐿2(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )) −
(
ℂ𝜕𝐼 ′𝜆,𝑠(𝜎 − 𝜀𝔹𝑧)∗𝜑,∇𝑠(𝑣 − ℎ))

𝐿2(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ))

−
(
ℂ𝜕𝐼 ′𝜆,𝑠(𝜎 − 𝜀𝔹𝑧)∗𝜑,∇𝑠ℎ)

𝐿2(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ))

=
(
ℂ∇𝑠𝑣𝜑, 𝜂 − ∇𝑠𝑣 + ∇𝑠ℎ)𝐿2(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )) −
(
ℂ𝜕𝐼 ′𝜆,𝑠(𝜎 − 𝜀𝔹𝑧)∗𝜑,∇𝑠ℎ)

𝐿2(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ))

= −
(
∇𝑠𝑣𝜑, 𝜏

)
𝐿2(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )) +
(
ℂ(∇𝑠𝑣𝜑 − 𝜕𝐼 ′𝜆,𝑠(𝜎 − 𝜀𝔹𝑧)∗𝜑),∇𝑠ℎ)

𝐿2(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ))

=
(
∇𝑠𝑣𝜑 − 𝜕𝐼 ′𝜆,𝑠(𝜎 − 𝜀𝔹𝑧)∗𝜑,ℂ∇𝑠ℎ)

𝐿2(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ))

=
(
(ℂ∇𝑠)∗(∇𝑠𝑣𝜑 − 𝜕𝐼 ′𝜆,𝑠(𝜎 − 𝜀𝔹𝑧)∗𝜑), ℎ

)
𝐿2(𝑐 )

= − (𝐿, ℎ)𝐿2(𝑐 ) ,

hence, ( .
𝜓,

.
ℎ
)
𝐿2(𝑐 ) = −

( ..
𝜓, ℎ

)
𝐿2(𝑐 ) = − (𝐿, ℎ)𝐿2(𝑐 ) = Ψ′(𝔩)ℎ

as claimed.

Let us finally derive first order optimality conditions in the form of a KKT system by us-
ing the finding in the proposition above. We emphasize once again that we do not need the
KKT system for the numerical experiments in the upcoming chapter. Therein, we will apply
a gradient descent algorithm and thus will only make use of the above provided form of the
derivative of the reduced objective function.
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Theorem 12.21 (KKT-conditions for (12.13)). Let 𝔩 ∈ 𝐻1
00(𝑐), (𝑢, 𝜎, 𝑧) the solution of the state

equation in (12.12) and (𝑣𝜑, 𝜑, 𝑣𝑇 ) the adjoint state . Then following assertions are equivalent:

(i) 𝐹 ′(𝔩)ℎ = 𝐽 ′
𝜎(𝜎, 𝔩) ′

𝑠(𝔩)ℎ + 𝐽 ′
𝔩 (𝜎, 𝔩)ℎ = 0 for all ℎ ∈ 𝐻1

00(𝑐),
(ii) 𝔩 ∈ 𝐻2(𝑐) and

(
∇𝑠𝑣𝜑 − 𝜕𝐼 ′𝜆,𝑠(𝜎 − 𝜀𝔹𝑧)𝜑,ℂ∇𝑠ℎ)

𝐿2(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ))

=
(
𝛼
..
𝔩, ℎ

)
𝐿2(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ))
for

all ℎ ∈ 𝐻1
00(𝑐),

(iii) 𝔩 ∈ 𝐻2(𝑐) and
(
𝜑, 𝜕𝐼 ′𝜆,𝑠(𝑅(0,𝔩 + 𝔞) −𝑄𝜀𝑧)𝑅(0,ℎ)

)
𝐿2(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ))
= 𝛼

( .
𝔩,

.
ℎ
)
𝐿2(𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ))

for all ℎ ∈ 𝐻1
00(𝑐).

Moreover, if 𝔩 is a locally optimal control for (12.13), then the assertions above hold.

Proof. Thanks to Proposition 12.20 we get

𝐼𝑡𝑒𝑚 (𝑖) ⟺
( .
𝜓 + 𝛼

.
𝔩,

.
ℎ
)
𝐿2(𝑐 ) = 0 ∀ℎ ∈ 𝐻1

00(𝑐), (12.21)

where 𝜓 is defined by (12.19). Therefore, analog to Example 5.15, we find that the second
distributional time derivative of 𝜓 + 𝛼𝔩 is a regular distribution in 𝐿2(𝑐), i.e., 𝜓 + 𝛼𝔩 ∈ 𝐻2(𝑐)
and thus 𝔩 ∈ 𝐻2(𝑐) since 𝜓 ∈ 𝐻2(𝑐). The equivalence of the right side in (12.21) and Item (ii)
is now easily obtained through integration by parts and the definition of 𝜓 .

To verify the equivalence between Item (ii) and Item (iii) we note that(
∇𝑠𝑣𝜑 − 𝜕𝐼 ′𝜆,𝑠(𝜎 − 𝜀𝔹𝑧)𝜑,ℂ∇𝑠ℎ)

𝐿2(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ))

=
(
∇𝑠𝑣𝜑 − 𝜕𝐼 ′𝜆,𝑠(𝜎 − 𝜀𝔹𝑧)𝜑,𝑅(0,ℎ))

𝐿2(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ))

( by (12.18a) & (2.12b) )

= −
(
𝜕𝐼 ′𝜆,𝑠(𝜎 − 𝜀𝔹𝑧)𝜑,𝑅(0,ℎ))

𝐿2(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ))

, ( by (2.12a) )

where we have used Definition 2.7 and Corollary 2.6, which (using again integration by parts)
yields the assertion since 𝜎 − 𝜀𝔹𝑧 = 𝑅(0,𝔩 + 𝔞) − 𝑄𝜀𝑧 and 𝜕𝐼 ′𝜆,𝑠(𝜏) is self-adjoint for all 𝜏 ∈
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) (see Lemma 3.19).

Remark 12.22 (Relationship to Theorem 5.13). The equation in Theorem 12.21 Item (iii) corresponds
to (5.22c).

Remark 12.23 (Second-order sufficient conditions). Since the smoothed state equation (11.9) is
equivalent to (11.12), we could apply the analysis in Section 5.3 to derive second-order sufficient condi-
tions for (12.13). However, as in Chapter 6 and Chapter 9, since we do not want to go beyond the scope
of this thesis, we omit this. Let us also refer to the end of Section 6.2, the discussion there applies almost
one to one to the scenario considered here.

Chapter 13 Numerical Experiments

We proceed with the presentation of the numerical experiments. We start with a realization
of  and then describe how we approximate the solution of (12.12). Finally, we choose a test
setting and end this thesis by presenting our results for this test setting.
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Regarding the literature, we refer to [48, 58, 59, 91] for a survey of numerical analysis con-
cerning plasticity with hardening. Moreover, in [11, Section 5 & 6] the numerical approximation
of perfect plasticity is considered in the context of rate-independent systems, see also the in-
troduction in Chapter 11. Numerical approximation of optimal control problems can be found,
e.g., in [62, 54, 56]. Regarding optimal control of perfect plasticity, there are no results about
numerical approximation available in the literature to the author’s knowledge, except the ones
given in [72]. These results serve as a basis in what follows, we use in particular the same test
setting. However, we extend them with more details.

Note that we only present experiments, but do not provide any numerical analysis as in the
references above. This is beyond the scope of this thesis.

13.1 A Realization of the Operator 
Recall the definition of the pseudo Dirichlet and Neumann boundary in Assumption ⟨13.i⟩.
Analog to 𝑊 1,𝑝

𝐷 (Ω;ℝ𝑑) we define 𝑊 1,𝑝
Λ (Ω;ℝ𝑑) as the subset of functions of 𝑊 1,𝑝(Ω;ℝ𝑑) which

traces are zero on Λ𝐷. We also denote the dual space by 𝑊 −1,𝑝′
Λ (Ω;ℝ𝑑) and abbreviate

𝐻1
Λ(Ω;ℝ

𝑑) ∶= 𝑊 1,2
Λ (Ω;ℝ𝑑) and 𝐻−1

Λ (Ω;ℝ𝑑) ∶= 𝑊 −1,2
Λ (Ω;ℝ𝑑). Clearly, Corollary 2.6 also holds

when Γ𝐷 is exchanged with Λ𝐷. The exponent 𝑝 for Γ𝐷 does not have to be the same as for Λ𝐷,
however, we can assume that they are equal by taking the minimum of both.

Let us now fix 𝑝 ∈ (2, 𝑝] and assume in addition that 2 > 𝑑𝑝∕(𝑑+𝑝) and 2 > (𝑑−1)𝑝∕𝑑, we define

 ∶= 𝑊 −1,𝑝
Λ (Ω;ℝ𝑑) and 𝑐 ∶= 𝐿2(Ω;ℝ𝑑) × 𝐿2(Λ𝑁 ;ℝ𝑑),

so that 𝑐 is compactly embedded into  via the canonical embedding 𝑐 ∋ (𝑓, 𝑔) ↦
(𝑓, ⋅)𝐿2(Ω;ℝ𝑑 ) + (𝑔, ⋅)𝐿2(Λ𝑁 ;ℝ𝑑 ) ∈  .

Finally we define  ∶  → 𝑊 1,𝑝
Λ (Ω;ℝ𝑑) ⊂ 𝑊 1,𝑝(Ω;ℝ𝑑) as the solution operator of(

ℂ∇𝑠𝑢𝐷,∇𝑠𝜙
)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) = ⟨𝔩, 𝜙⟩ ∀𝜙 ∈ 𝑊 1,𝑝′
Λ (Ω;ℝ𝑑), (13.1)

that is, 𝔩 = 𝑢𝐷. In particular,  solves linear elasticity. Note also that the requirement on  in
Assumption ⟨12.3.i⟩ is satisfied. The following result ensures that our control space is “large
enough”.

Lemma 13.1 (Control space covers 𝐻2(Ω;ℝ𝑑)). We have

(i)  (0,()) =  (0,𝑊 1,𝑝(Ω;ℝ𝑑)) and

(ii)  (0,(𝑐)) ⊃  (0,𝐻2(Ω;ℝ𝑑)).

Proof. Due to (9.18), there is a function 𝜙 ∈ 𝐶∞(ℝ𝑑 ;ℝ) such that 0 ≤ 𝜙 ≤ 1, 𝜙 ≡ 1 on Γ𝐷 and
𝜙 ≡ 0 on Λ𝐷.

Let 𝑢𝐷 ∈ 𝑊 1,𝑝(Ω;ℝ𝑑) be arbitrary and set 𝑢̃𝐷 ∶= 𝜙𝑢𝐷 ∈ 𝑊 1,𝑝
Λ (Ω;ℝ𝑑) ⊂ 𝑊 1,𝑝(Ω;ℝ𝑑). It

is easy to see that  (0, 𝑢𝐷) =  (0, 𝑢̃𝐷). We define 𝔩 ∈  by ⟨𝔩, 𝜙⟩ ∶=
(
ℂ∇𝑠𝑢̃𝐷,∇𝑠𝜙

)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )

for all 𝜙 ∈ 𝑊 1,𝑝′
Λ (Ω;ℝ𝑑), thus, 𝔩 = 𝑢̃𝐷 and therefore  (0,𝔩) =  (0, 𝑢̃𝐷) =  (0, 𝑢𝐷) which

proves  (0,()) ⊃  (0,𝑊 1,𝑝(Ω;ℝ𝑑)). Since we have () ⊂ 𝑊 1,𝑝(Ω;ℝ𝑑) by definition, the first
assertion is proved.

Let now 𝑢𝐷 ∈ 𝐻2(Ω;ℝ𝑑), we define again 𝑢̃𝐷 ∶= 𝜙𝑢𝐷 ∈ 𝐻2(Ω;ℝ𝑑) ∩ 𝑊 1,𝑝
Λ (Ω;ℝ𝑑) such

that  (0, 𝑢𝐷) =  (0, 𝑢̃𝐷) holds. Similar as above we can define 𝑓 ∈ 𝐿2(Ω;ℝ𝑑) by 𝑓 (𝑥) ∶=
−∇ ⋅ ℂ∇𝑠𝑢̃𝐷(𝑥) and 𝑔 ∈ 𝐿2(Λ𝑁 ;ℝ𝑑) by 𝑔(𝑥) ∶= ℂ∇𝑠𝑢̃𝐷|Λ𝑁 (𝑥) for almost all 𝑥 ∈ Ω. Due to this
definition we have (𝑓, 𝑔) = 𝑢̃𝐷, hence,  (0,(𝑓, 𝑔)) =  (0, 𝑢̃𝐷) =  (0, 𝑢𝐷), which proves the
second assertion.

133



Part V Perfect Plasticity

Let us now investigate the adjoint operator of ℂ∇𝑠, which is needed in (12.20) to calculate
the derivative of the reduced objective function.

Lemma 13.2 (Adjoint operator of ℂ∇𝑠). Let 𝜏 ∈ 𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) be given and 𝔩 ∈ 𝐻1

Λ(Ω;ℝ
𝑑) the

solution of

(ℂ∇𝑠𝔩,∇𝑠𝜙)𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) = (ℂ𝜏,∇𝑠𝜙)𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) (13.2)

for all 𝜙 ∈ 𝐻1
Λ(Ω;ℝ

𝑑). Then we have (ℂ∇𝑠)∗𝜏 = (𝔩, 𝔩|Λ𝑁 ) ∈ 𝑐 .
Proof. Let us abbreviate (𝑓, 𝑔) ∶= (ℂ∇𝑠)∗𝜏. We have(

𝑓, 𝑓𝜁
)
𝐿2(Ω;ℝ𝑑 ) +

(
𝑔, 𝑔𝜁

)
𝐿2(Λ𝑁 ;ℝ𝑑 ) =

(
(𝑓, 𝑔), (𝑓𝜁 , 𝑔𝜁 )

)
𝑐 =

(
𝜏,ℂ∇𝑠(𝑓𝜁 , 𝑔𝜁 ))𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )

holds for all (𝑓𝜁 , 𝑔𝜁 ) ∈ 𝑐 . Using the definition of  and testing (13.2) with 𝜙 = (𝑓𝜁 , 𝑔𝜁 ) we see
that(

𝔩, 𝑓𝜁
)
𝐿2(Ω;ℝ𝑑 ) +

(
𝔩, 𝑔𝜁

)
𝐿2(Λ𝑁 ;ℝ𝑑 ) =

(
ℂ∇𝑠𝔩,∇𝑠(𝑓𝜁 , 𝑔𝜁 ))𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) =
(
𝜏,ℂ∇𝑠(𝑓𝜁 , 𝑔𝜁 ))𝐿2(Ω;ℝ𝑑×𝑑

𝑠 )

=
(
𝑓, 𝑓𝜁

)
𝐿2(Ω;ℝ𝑑 ) +

(
𝑔, 𝑔𝜁

)
𝐿2(Λ𝑁 ;ℝ𝑑 )

holds for all (𝑓𝜁 , 𝑔𝜁 ) ∈ 𝑐 .
The lemma above together with Proposition 12.20 shows that the derivative of the smoothed

reduced objective function 𝐹 at (𝑓, 𝑔) = (𝔩, 𝔩|Λ𝑁 ) with 𝔩 ∈ 𝐻1(𝐻1
Λ(Ω;ℝ

𝑑)) has again the same
form. This is in particular convenient for a gradient based optimization method since the two
controls 𝑓 and 𝑔 are essentially reduced to one control 𝔩. Let us capture this in the following
definition and corollary.

Definition 13.3 (Essential control space). We define the essential control space by

𝐻1
00(𝑐)𝔩 ∶= {𝔩̃ ∈ 𝐻1

00(𝑐) ∶ ∃𝔩 ∈ 𝐻1(𝐻1
Λ(Ω;ℝ

𝑑)), 𝔩̃ = (𝔩, 𝔩|Λ𝑁 )}.
With a slight abuse of notation, when 𝔩̃ ∈ 𝐻1

00(𝑐)𝔩 and 𝔩 ∈ 𝐻1(𝐻1
Λ(Ω;ℝ

𝑑)) is the corresponding
function, we also denote 𝔩̃ by 𝔩, that is, we identify 𝐻1

00(𝑐)𝔩 with 𝐻1
00(𝐻

1
Λ(Ω;ℝ

𝑑)).

Corollary 13.4 (Preservation of the essential control space). We have

(i) (ℂ∇𝑠)∗({𝜏 ∈ 𝐻1(𝐿2(Ω;ℝ𝑑×𝑑
𝑠 )) ∶ 𝜏(0) = 𝜏(𝑇 ) = 0}) ⊂ 𝐻1

00(𝑐)𝔩 and

(ii) 𝐹 ′(𝐻1
00(𝑐)𝔩) ⊂ 𝐻1

00(𝑐)𝔩.
Having clarified the definition of , we can proceed with the approximation of (12.12), re-

spectively (12.13).

13.2 Approximation

Let us now describe the method we use to approximate solutions of (12.13). We start with the
optimization problem and then turn to the state and adjoint equation and the solution operators and ∗.
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Algorithm 1 Steepest deescent method

1: Choose 𝔩 ∈ 𝐻1
00(𝑐)𝔩; 𝜎0 > 0; 𝛽, 𝛾𝑎 ∈ (0, 1); 0 < 𝑇𝑂𝐿 ≪ 1 and 𝑚𝑖 ∈ ℕ.

2: for 𝑗 = 1, ..., 𝑚𝑖 do

3: if ‖𝐹 ′(𝔩)‖𝐻1(𝑐 )∗ = ‖ .
𝜓 + 𝛼

.
𝔩‖𝐿2(𝑐 ) < 𝑇𝑂𝐿 then

4: return 𝔩
5: end if
6: 𝜎 = 𝜎0
7: 𝑠 = −𝐹 ′(𝔩)
8: while 𝐹 (𝔩) − 𝐹 (𝔩 + 𝜎𝑠) < 𝛾𝑎𝜎‖ .

𝑠‖2
𝐿2(𝑐 ) do

9: 𝜎 = 𝛽𝜎
10: end while
11: 𝜎0 = 𝜎∕𝛽
12: 𝔩 = 𝔩 + 𝜎𝑠.
13: end for

Optimization Problem

For the numerical approximation of the solution of (12.13) we use a standard steepest de-
scent method, with an Armijo line search, which is probably one of the most simplest gradient
based optimization methods. In the following we use the notation from Proposition 12.20 and
Definition 13.3 (see also Corollary 13.4). The method is shown in Algorithm 1 as pseudo code.

Since the steepest descent method and the Armijo line search are well known (see e.g. [62,
42, 93]), there is little need for explanation. Only in Line 11 the update of the initial step size
of the Armijo line search is not standard. This update adjusts the initial step size for the next
Armijo line search according to the last step size and, loosely speaking, enables the algorithm
to find the "correct" step size after some iterations, see also Figure 13.

In order to realize Algorithm 1 we need to evaluate the objective function 𝐹 and its deriva-
tive (respectively the Riesz representative) 𝐹 ′. To this end, we first describe how to solve the
equations needed for these evaluations.

State and Adjoint Equation,  and ∗

Let us refer to the state equation (12.12), the adjoint equation (12.18), and the equations
defining  and its adjoint, (13.1) and (13.2), as the equations.

To obtain a time discretized version of the equations we divide the time Interval [0, 1] (we
set 𝑇 = 1 as later in Section 13.3) in 𝑛𝑡 ∈ ℕ parts, each of length 𝑑𝑡 ∶= 1∕𝑛𝑡. For a discretization of
a function 𝑢 ∈ 𝐻1(𝑋), where 𝑋 is a normed space, we choose the point evaluation

𝑢𝑖 = 𝑢(𝑖∕𝑛𝑡), 𝑖 ∈ {0, ..., 𝑛𝑡}

and the piecewise affine linear interpolation

𝑢̃(𝑡) ∶=
𝑡 − (𝑖 − 1)𝑑𝑡

𝑑𝑡
𝑢𝑖 +

𝑖𝑑𝑡 − 𝑡
𝑑𝑡

𝑢𝑖−1 (13.3)

for 𝑡 ∈ [(𝑖 − 1)𝑑𝑡, 𝑖𝑑𝑡]. Note that the number of time steps 𝑛𝑡 is not integrated in our notation, it
will always be clear from the context.

In order to approximate the solutions of the state and adjoint equation, we apply at first an
implicit Euler method to obtain a time discretized version of the state and adjoint equation.
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For a time discretized version of (13.1) and (13.2) one simply evaluates the functions in 𝑖𝑑𝑡 for
𝑖 ∈ {1, ..., 𝑛𝑡}. As a solution of the time discretized equations, one obtains 𝑛𝑡 + 1 elements in the
corresponding spaces and can obtain an 𝐻1 function in time by (13.3).

Let us now discuss the discretization in space. To discretize Ω = (0, 4) × (0, 1) (see again
Section 13.3) we choose 𝑛𝑥, 𝑛𝑦 ∈ ℕ and divide Ω in 𝑛𝑥 ⋅ 𝑛𝑦 equal rectangles where 𝑛𝑥 is the
number of rectangles in 𝑥-direction and 𝑛𝑦 in 𝑦-direction. Each rectangle is then divided into
four triangles by the two diagonals. Furthermore, to solve the smoothed state equation we
reduce the unknowns to the displacement 𝑢 and plastic strain 𝑧, that is, we eliminate 𝜎 by
using 𝜎 = ℂ(∇𝑠𝑢−𝑧). We are aware that this type of discretization will in general lead to locking
effects, but we assume that these can be neglected, as we do not consider “thin” computational
domains. We use piecewise linear and continuous elements to approximate the displacement
and piecewise constant elements for the stress and plastic strain.

To solve the discretized equations we use the finite element toolbox FEniCS (version
2018.1.0), see [39, 5, 66, 68] and [115, 116, 22] for the finite element method in general. For
the nonlinear systems of equations we use the in FEniCS integrated standard newton solver
with a relative and absolute tolerance of 10−10.

Let us now describe the

Calculation of 𝜓

We depict the implementation of (12.19), that is, we assume that 𝐿 ∈ 𝐿2(𝑐) is a given
piecewise and affine linear function and integrate this function twice such that the boundary
conditions are fulfilled. To this end, we consider piecewise affine linear functions in the follow-
ing

Lemma 13.5 (Integration of an affine linear function). Let 𝑛𝑡 ∈ ℕ and set 𝑑𝑡 ∶= 𝑇∕𝑛𝑡.
Let 𝐿 ∶ [0, 𝑇 ] → 𝑐 be piecewise affine linear, that is, there exists 𝐿𝑖 ∈ 𝑐 , for 𝑖 ∈ {0, ..., 𝑛𝑡}, with

𝐿(𝑡) =
𝑡 − (𝑖 − 1)𝑑𝑡

𝑑𝑡
(𝐿𝑖 − 𝐿𝑖−1) + 𝐿𝑖−1

for 𝑡 ∈ [(𝑖 − 1)𝑑𝑡, 𝑖𝑑𝑡], 𝑖 ∈ {1, ..., 𝑛𝑡}.
Then the following holds:

(i) ‖ .
𝐿‖2

𝐿2(𝑐 ) =
1
𝑑𝑡

∑𝑛𝑡
𝑖=1 ‖𝐿𝑖 − 𝐿𝑖−1‖2𝑐 .

(ii) We define 𝜓̆(𝑡) ∶= ∫ 𝑡
0 ∫ 𝑠

0 𝐿(𝑥)𝑑𝑥𝑑𝑠 −
𝑡
𝑇
∫ 𝑇
0 ∫ 𝑠

0 𝐿(𝑥)𝑑𝑥𝑑𝑠, then we have

𝜓̆(𝑖𝑑𝑡) =
𝑑2𝑡
6

𝑖∑
𝑗=1

𝑗−1∑
𝑘=1

3(𝐿𝑘 + 𝐿𝑘−1) + 𝐿𝑗 + 2𝐿𝑗−1

−
𝑖𝑑2𝑡
6𝑛𝑡

𝑛𝑡∑
𝑗=1

𝑗−1∑
𝑘=1

3(𝐿𝑘 + 𝐿𝑘−1) + 𝐿𝑗 + 2𝐿𝑗−1

(13.4)

for all 𝑖 ∈ {0, ..., 𝑛𝑡}.

Proof. We have

‖ .
𝐿‖2𝐿2(𝑐 ) =

1
𝑑𝑡

𝑛𝑡∑
𝑖=1

1
𝑑𝑡 ∫

𝑖𝑑𝑡

(𝑖−1)𝑑𝑡
‖𝐿𝑖 − 𝐿𝑖−1‖2𝑐𝑑𝑡 = 1

𝑑𝑡

𝑛𝑡∑
𝑖=1

‖𝐿𝑖 − 𝐿𝑖−1‖2𝑐 ,
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which proves the first assertion.
To prove the second assertion we first calculate for 𝑖 ∈ {1, ..., 𝑛𝑡} and 𝑠 ∈ [(𝑖 − 1)𝑑𝑡, 𝑡𝑑𝑡]

∫
𝑠

(𝑖−1)𝑑𝑡
𝐿(𝑥)𝑑𝑥 = ∫

𝑠

(𝑖−1)𝑑𝑡

𝑥 − (𝑖 − 1)𝑑𝑡
𝑑𝑡

(𝐿𝑖 − 𝐿𝑖−1) + 𝐿𝑖−1𝑑𝑥

=
(𝑠 − (𝑖 − 1)𝑑𝑡)2

2𝑑𝑡
(𝐿𝑖 − 𝐿𝑖−1) + (𝑠 − (𝑖 − 1)𝑑𝑡)𝐿𝑖−1

thus

∫
𝑖𝑑𝑡

(𝑖−1)𝑑𝑡
𝐿(𝑥)𝑑𝑥 =

𝑑𝑡
2
(𝐿𝑖 + 𝐿𝑖−1).

We have further

∫
𝑖𝑑𝑡

(𝑖−1)𝑑𝑡
∫

𝑠

(𝑖−1)𝑑𝑡
𝐿(𝑥)𝑑𝑥𝑑𝑠 = ∫

𝑖𝑑𝑡

(𝑖−1)𝑑𝑡

(𝑠 − (𝑖 − 1)𝑑𝑡)2

2𝑑𝑡
(𝐿𝑖 − 𝐿𝑖−1) + (𝑠 − (𝑖 − 1)𝑑𝑡)𝐿𝑖−1𝑑𝑠

=
(𝑖𝑑𝑡 − (𝑖 − 1)𝑑𝑡)3

6𝑑𝑡
(𝐿𝑖 − 𝐿𝑖−1) +

(𝑖𝑑𝑡 − (𝑖 − 1)𝑑𝑡)2

2
𝐿𝑖−1

=
𝑑2𝑡
6
(𝐿𝑖 − 𝐿𝑖−1) +

𝑑2𝑡
2
𝐿𝑖−1

=
𝑑2𝑡
6
(𝐿𝑖 + 2𝐿𝑖−1)

for 𝑖 ∈ {1, ..., 𝑛𝑡}, therefore

∫
𝑖𝑑𝑡

0 ∫
𝑠

0
𝐿(𝑥)𝑑𝑥𝑑𝑠 =

𝑖∑
𝑗=1

∫
𝑗𝑑𝑡

(𝑗−1)𝑑𝑡

( 𝑗−1∑
𝑘=1

∫
𝑘𝑑𝑡

(𝑘−1)𝑑𝑡
𝐿(𝑥)𝑑𝑥 + ∫

𝑠

(𝑗−1)𝑑𝑡
𝐿(𝑥)𝑑𝑥

)
𝑑𝑠

=
𝑖∑

𝑗=1
𝑑𝑡

𝑗−1∑
𝑘=1

𝑑𝑡
2
(𝐿𝑘 + 𝐿𝑘−1) + ∫

𝑗𝑑𝑡

(𝑗−1)𝑑𝑡
∫

𝑠

(𝑗−1)𝑑𝑡
𝐿(𝑥)𝑑𝑥𝑑𝑠

=
𝑖∑

𝑗=1

𝑑2𝑡
2

𝑗−1∑
𝑘=1

(𝐿𝑘 + 𝐿𝑘−1) +
𝑑2𝑡
6
(𝐿𝑗 + 2𝐿𝑗−1)

=
𝑑2𝑡
6

𝑖∑
𝑗=1

𝑗−1∑
𝑘=1

3(𝐿𝑘 + 𝐿𝑘−1) + 𝐿𝑗 + 2𝐿𝑗−1

for 𝑖 ∈ {0, ..., 𝑛𝑡}, which yields finally the second assertion.

Now, let 𝐿 be given as in Lemma 13.5, we can use (13.4) to calculate the piecewise affine
linear function 𝜓 as described in Algorithm 2.

Note that the algorithm only returns the values at 𝑖𝑑𝑡. Since 𝐿 is piecewise affine linear, the
actual function 𝜓̆ in Lemma 13.5 is a piecewise cubic function, however, we simply take the
piecewise affine linear function which has the same values at 𝑖𝑑𝑡.

Let us shortly interrupt the discussion of the implementation to have a closer look at the
integration of 𝜓 in (12.19) when 𝐿 is piecewise affine linear. Instead of integrating 𝐿 directly
as in Lemma 13.5, one could also take the projection of −𝐿 into the space of piecewise affine
linear functions which fulfill the boundary condition equipped with the 𝐻1(𝑐) norm, that is,
solving ( .

𝜙,
.
ℎ
)
𝐿2(𝑐 ) = − (𝐿, ℎ)𝐿2(𝑐 ) (13.5)
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Algorithm 2 Calculation of 𝜓
1: 𝑠 = 0
2: 𝜓0 = 0
3: 𝜓1 =

𝑑2𝑡
6 (𝐿1 + 2𝐿0)

4: for 𝑖 = 2, ..., 𝑛𝑡 do

5: 𝑠 = 𝑠 + 𝑑2𝑡
2 (𝐿𝑖−1 + 𝐿𝑖−2)

6: 𝜓𝑖 = 𝜓𝑖−1 + 𝑠 +
𝑑2𝑡
6 (𝐿𝑖 + 2𝐿𝑖−1)

7: end for
8: for i = 1, ..., 𝑛𝑡 - 1 do
9: 𝜓𝑖 = 𝜓𝑖 −

𝑖
𝑛𝑡
𝜓𝑛𝑡

10: end for
11: 𝜓𝑛𝑡 = 0
12: return 𝜓0, ..., 𝜓𝑛𝑡

for all piecewise affine linear functions ℎ with ℎ(0) = ℎ(1) = 0. Similar to Lemma 13.5 Item (i),
one easily verifies that

( .
𝜙,

.
ℎ
)
𝐿2(𝑐 ) =

1
𝑑𝑡

𝑛𝑡∑
𝑖=1

(
𝜙𝑖 − 𝜙𝑖−1, ℎ𝑖 − ℎ𝑖−1

)
𝑐

holds. For the right hand side in (13.5) a straightforward calculation gives

− (𝐿, ℎ)𝐿2(𝑐 ) = −
𝑛𝑡∑
𝑖=1

𝑑2𝑡
6

[
2
(
𝐿𝑖, ℎ𝑖

)
𝑐 +

(
𝐿𝑖, ℎ𝑖−1

)
𝑐 +

(
𝐿𝑖−1, ℎ𝑖

)
𝑐 + 2

(
𝐿𝑖−1, ℎ𝑖−1

)
𝑐

]
.

Setting now ℎ𝑖 = 0 for all 𝑖 ∈ {1, ..., 𝑛𝑡 − 1} ⧵ {𝑗} for one 𝑗 ∈ {1, ..., 𝑛𝑡 − 1}, one arrives at

−𝜙𝑗−1 + 2𝜙𝑗 − 𝜙𝑗+1 = −
𝑑2𝑡
6

[
𝐿𝑗−1 + 4𝐿𝑗 + 𝐿𝑗+1

]
,

thus, (𝜙1, ..., 𝜙𝑛𝑡−1) (recall that 𝜙0 = 𝜙𝑛𝑡 = 0) is the solution of

⎡⎢⎢⎢⎢⎢⎣

2 −1 0 ⋯ 0
−1 2 −1 ⋱ ⋮
0 −1 2 ⋱ 0
⋮ ⋱ ⋱ ⋱ −1
0 ⋯ 0 −1 2

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

𝜙1
𝜙2
𝜙3
⋮

𝜙𝑛𝑡−1

⎤⎥⎥⎥⎥⎥⎦
= −

𝑑2𝑡
6

⎡⎢⎢⎢⎢⎢⎣

𝐿0 + 4𝐿1 + 𝐿2
𝐿1 + 4𝐿2 + 𝐿3
𝐿2 + 4𝐿3 + 𝐿4

⋮
𝐿𝑛𝑡−1 + 4𝐿𝑛𝑡−1 + 𝐿𝑛𝑡

⎤⎥⎥⎥⎥⎥⎦
. (13.6)

However, as it turns out, the piecewise affine linear function 𝜙 obtained by (13.6) is the same
as the piecewise affine linear function 𝜓 obtained in Algorithm 2 respectively (13.4). To see this,
let 𝜓̆ be the function from Lemma 13.5 Item (ii), that is, the piecewise cubic function such that
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(13.4) holds. Then we have in particular 𝜓̆ ∈ 𝐻2(𝑐), hence,

− (𝐿, ℎ)𝐿2(𝑐 ) = −
( ..
𝜓̆ , ℎ

)
𝐿2(𝑐 ) =

( .
𝜓̆ ,

.
ℎ
)
𝐿2(𝑐 )

=
𝑛𝑡∑
𝑖=1

∫
𝑖𝑑𝑡

(𝑖−1)𝑑𝑡

( .
𝜓̆(𝑡),

ℎ𝑖 − ℎ𝑖−1
𝑑𝑡

)
𝑐
𝑑𝑡

= 1
𝑑𝑡

𝑛𝑡∑
𝑖=1

(
∫

𝑖𝑑𝑡

(𝑖−1)𝑑𝑡

.
𝜓̆(𝑡)𝑑𝑡, ℎ𝑖 − ℎ𝑖−1

)
𝑐

= 1
𝑑𝑡

𝑛𝑡∑
𝑖=1

(
𝜓̆(𝑖𝑑𝑡) − 𝜓̆((𝑖 − 1)𝑑𝑡), ℎ𝑖 − ℎ𝑖−1

)
𝑐

= 1
𝑑𝑡

𝑛𝑡∑
𝑖=1

(
𝜓𝑖 − 𝜓𝑖−1, ℎ𝑖 − ℎ𝑖−1

)
𝑐 =

( .
𝜓,

.
ℎ
)
𝐿2(𝑐 )

for all piecewise affine linear functions ℎ with ℎ(0) = ℎ(1) = 0, therefore we obtain 𝜓 = 𝜙.

All in all, one can calculate 𝜓 by (13.4) or by (13.6), we have chosen the first alternative in
Algorithm 2.

Let us now continue with the

Evaluation of the Objective Function

Thanks to Corollary 13.4, the control 𝔩 in Algorithm 1 always belongs to the essential con-
trol space 𝐻1

00(𝑐)𝑙, provided that the initial value does the same. For our experiments we
will choose the initial value to be zero, so that this requirement is fulfilled. Thus, using the
agreement in Definition 13.3, we have 𝔩 ∈ 𝐻1

00(𝐻
1
Λ(Ω;ℝ

2)).

Using Lemma 13.5 Item (i), we can now evaluate the objective function,

𝐹 (𝔩) = 1
2
‖𝜎𝑛𝑡 − 𝜎𝑑‖2𝐿2(Ω;ℝ2×2) +

𝛼
2

(‖ .
𝔩‖2𝐿2(𝐿2(Ω;ℝ2)) + ‖ .

𝔩‖2𝐿2(𝐿2(Λ𝑁 ;ℝ2))

)
= 1

2
‖𝜎𝑛𝑡 − 𝜎𝑑‖2𝐿2(Ω;ℝ2×2) +

𝛼
2𝑑𝑡

( 𝑛𝑡∑
𝑖=1

‖𝔩𝑖 − 𝔩𝑖−1‖2𝐿2(Ω;ℝ2) +
𝑛𝑡∑
𝑖=1

‖𝔩𝑖 − 𝔩𝑖−1‖2𝐿2(Λ𝑁 ;ℝ2)

)
,

where the evaluation of the norms ‖ ⋅ ‖𝐿2(Ω;ℝ2) and ‖ ⋅ ‖𝐿2(Λ𝑁 ;ℝ2) are implemented in FEniCS and
𝜎𝑛𝑡 = 𝜎(1) is obtained by solving the state equation in (12.12) as described above.

Reduced Gradient

Since Algorithm 1 makes use of the gradient of 𝐹 , we need to implement the gradient ac-
cording to Proposition 12.20. The procedure is depicted in Algorithm 3 as pseudo code.
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Algorithm 3 Computation of the reduced gradient

Require: control function 𝔩 ∈ 𝐻1(𝑐)𝔩.
1: Compute the Dirichlet data 𝑢𝐷 by solving for all 𝑡 ∈ [0, 𝑇 ](

ℂ∇𝑠𝑢𝐷(𝑡),∇𝑠𝜁
)
𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) = (𝔩(𝑡), 𝜁 )𝐿2(Ω;ℝ𝑑 ) + (𝔩(𝑡), 𝜁 )𝐿2(Λ𝑁 ;ℝ𝑑 )

for all 𝜁 ∈ 𝑊 1,𝑝′
Λ (Ω;ℝ𝑑).

2: Compute the state (𝑢, 𝜎, 𝑧) as solution of the state equation in (12.12) with 𝔩 + 𝔞 = 𝑢𝐷 + 𝔞
where 𝑢𝐷 is from step 1.

3: Solve the adjoint equation in (12.18) with solution (𝑣𝜑, 𝜑, 𝑣𝑇 ).
4: Compute 𝐿 as solution of (12.20).
5: Integrate 𝐿 according to (12.19) to obtain 𝜓 .
6: return 𝜓 + 𝛼𝔩 as Riesz representative of 𝐹 ′(𝔩).

Herein, the equations are solved according to our description above and for the integration
of 𝐿 to obtain 𝜓 we use Algorithm 2.

Remark 13.6 (Mismatch between the discretization of the continuous derivative and the deriva-
tive of the discretization). Let us emphasize, that we have discretized the continuous derivative to
obtain 𝜓 from Algorithm 2, this procedure is also called “first optimize, then discretize”-approach. How-
ever, the so calculated gradient does not coincide with the gradient of the discretized objective function.
Nonetheless, the mismatch does only play a minor role in our numerical experiments, see Figure 11,
Table 5 and Table 6.

13.3 Test Setting
Let us now describe our test setting, we specify the domain Ω and fix the other parameters.

Domain

We set

Ω ∶= (0, 4) × (0, 1) ⊂ ℝ2

with the boundaries

Γ𝐷 ∶= [{0} ∪ {4}] × [0, 1], Λ𝐷 ∶= (1, 3) × [{0} ∪ {1}]

and Γ𝑁 ∶= 𝜕Ω ⧵ Γ𝐷, Λ𝑁 ∶= 𝜕Ω ⧵ Λ𝐷. See Figure 6, therein also the prescribed boundary at 𝑡 = 1
is depicted, the definition of 𝔞 is given below. The length unit of Ω is chosen as [mm].

Ω

-0.01 0 2 4 4.01

0

1
𝔞(1,Γ𝐷) + Γ𝐷

Λ𝐷

Γ𝐷

Figure 6: Domain, real (green) and pseudo (red) Dirichlet boundary. The prescribed Dirichlet
boundary at 𝑡 = 1 is depicted in blue.
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Elasticity Tensor and Hardening Parameter

We choose typical material parameters of steel:

𝐸 = 210
[

kN∕mm2
]

(Young’s modulus), (13.7)

𝜈 = 0.3 (Poisson’s ratio), (13.8)

𝜆 = 𝐸𝜈
(1 + 𝜈)(1 − 2𝜈)

≈ 121.1538
[

kN∕mm2
]
, (13.9)

𝜇 = 𝐸
2 + 2𝜈

≈ 80.7692
[

kN∕mm2
]

(Lamé parameters), (13.10)

𝛾 = 0.45
[

kN∕mm2
]

(uniaxial yield stress) (13.11)

and define the elasticity tensor

ℂ𝜏 ∶= 𝜆tr(𝜏)𝐼 + 2𝜇𝜏

for all 𝜏 ∈ ℝ𝑑×𝑑
𝑠 .

We choose the hardening parameter to be the identity, 𝔹 ∶= 𝐼 .

Initial Condition, End Time and Dirichlet Displacement Offset

We set 𝜎0 = 0 and 𝑇 = 1. Moreover, let 𝔞 be given by 𝔞(𝑡) ∶= 𝑡𝔞1 for 𝑡 ∈ [0, 1] with 𝔞1(𝑥, 𝑦) ∶=
((𝑥−2)∕200, 0) for (𝑥, 𝑦) ∈ Ω.

Optimization Problem

We set the desired stress to zero, 𝜎𝑑 = 0, and the Tikhonov parameter 𝛼 to 10−4. The param-
eters for the Armijo line search are chosen as typical values: 𝜎0 = 1, 𝛽 = 0.5 and 𝛾𝑎 = 0.01. The
tolerance 𝑇𝑂𝐿 in Algorithm 1 is set to 5 ∗ 10−4 and the maximal numbers of iterations 𝑚𝑖 is set
to 100.

Regarding this setting our optimization problem can be interpreted as follows. The left and
right boundary of the body under consideration Ω is constantly in time pulled apart. The con-
trol 𝔩, respectively 𝑢𝐷, can alter this process for 𝑡 ∈ (0, 1), but at the end (and also the beginning)
the control is zero, hence, the position of the Dirichlet boundary at 𝑡 = 1 is predefined. A so-
lution of the optimization problem minimizes the stress at the end of the process and the used
pseudo forces, respectively the Dirichlet displacement, where the focus on the minimization is
on the stress (Tikhonov paramenter).

In short, a body is pulled apart and we try to minimize the stress at the end of the process
by altering the movement of the Dirichlet boundary during the process.

13.4 Results
Let us finally present the numerical results. The parameters

𝜀, 𝜆, 𝑠 (smoothing parameters),
𝑛𝑡, 𝑛𝑥, 𝑛𝑦 (discretization parameters)

(13.12)

are not fixed and will vary during our numerical experiments. We will measure different val-
ues, in particular the calculated directional derivative in the direction of the anti gradient (that
is, our search direction),

∇𝑐𝑎𝑙𝑐(𝔩ℎ) ∶= 𝐹 ′(𝔩ℎ)(−𝐹 ′(𝔩ℎ)) = −
(
𝐹 ′(𝔩ℎ), 𝐹 ′(𝔩ℎ)

)
𝐻1(𝑐 ) = −‖ .

𝜓 + 𝛼
.
𝔩‖2𝐿2(𝑐 ), (13.13)
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the real directional derivative (approximated by the difference quotient, thus it is not the real
directional derivative but we will call it so),

∇𝑟𝑒𝑎𝑙(𝔩ℎ, 𝜏) ∶=
𝐹 (𝔩ℎ − 𝜏 𝑔ℎ) − 𝐹 (𝔩ℎ)

𝜏
, (13.14)

the relative error between the calculated and the real directional derivative,

∇𝑒𝑟𝑟(𝔩ℎ, 𝜏) ∶=
|||||∇𝑐𝑎𝑙𝑐(𝔩ℎ) − ∇𝑟𝑒𝑎𝑙(𝔩ℎ, 𝜏)

∇𝑟𝑒𝑎𝑙(𝔩ℎ, 𝜏)

|||||, (13.15)

and also the relative distance between the supremum norm of the deviatoric stress and the
uniaxial yield stress,

dist(Ω)(𝔩ℎ) ∶= sup
(𝑡,𝑥)∈(0,𝑇 )×Ω

|𝜎𝐷ℎ (𝑡, 𝑥)| − 𝛾
𝛾

, (13.16)

Herein, 𝜎ℎ is the discrete stress, which depends on the discrete pseudo force 𝔩ℎ. Note that these
values also depend on the parameters in (13.12).

Before we present the results for the optimal control problem, let us show some tests regard-
ing our calculated gradient.

Gradient Tests

For the gradient tests we have chosen

𝜀 = 0, 𝜆 = 1, 𝑠 = 10−8,
𝑛𝑡 = 128, 𝑛𝑥 = 64, 𝑛𝑦 = 16

(13.17)

as the standard values. The actual values only differ from these standard values when other-
wise said, for example depicted in a table.

Let us at first have a look at Figure 7. In each of the three figures the values of our calculated
and the real directional derivative at zero in the direction of the anti gradient, that is, ∇𝑐𝑎𝑙𝑐(0)
and ∇𝑟𝑒𝑎𝑙(0, 𝜏), are depicted with blue triangles and green circles, respectively. Note that the
calculated directional derivative does not depend on 𝜏, thus we only see a horizontal line. We
have chosen 𝑛𝑡 to be 128, 256 and 512 in the upper figure, middle figure and bottom figure,
respectively. As we have agreed upon, the other parameters are chosen as in (13.17). What
we already see is that ∇𝑟𝑒𝑎𝑙(0, 𝜏) and ∇𝑐𝑎𝑙𝑐(0) come closer when the number of time steps is
increased, at least for moderate step size 𝜏. Furthermore, the behavior of ∇𝑟𝑒𝑎𝑙(0, 𝜏) dependent
on 𝜏 is as expected, it seems to converge to a specific value until the numerical error becomes
large for small 𝜏 (note that the change for 𝜏 ∈ {10−11, 10−10, ..., 1} is very small which is not
visible in the figures).

Let us now describe the Tables 1 to 4. In each table one of the parameters in (13.12), except
𝑛𝑥 and 𝑛𝑦, take different values as in (13.17), as depicted in the left columns. There are further
shown the values (13.13) to (13.16). Moreover, in the columns 𝛼𝑡, 𝛼𝜀, 𝛼𝜆 and 𝛼𝑠 we see the
negative convergence rate of ∇𝑒𝑟𝑟(0, 10−8), that is,

𝛼𝑥 = −
log

(
∇𝑒𝑟𝑟(0,10−8)(𝑘)

∇𝑒𝑟𝑟(0,10−8)(𝑘−1)

)
log

(
𝑥(𝑘)
𝑥(𝑘−1)

) ,

where ∇𝑒𝑟𝑟(0, 10−8)(𝑘), respectively 𝑥(𝑘), is the corresponding value in 𝑘-th row, for 𝑥 = 𝑛𝑡, 𝜀, 𝜆, 𝑠.
Note that we consider the directional derivative at zero in the direction of the calculated anti
gradient, which is the first descent direction of the steepest descent method.
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𝜏

∇𝑟𝑒𝑎𝑙(𝜏, 0)

∇𝑐𝑎𝑙𝑐(0)

𝜏

∇𝑟𝑒𝑎𝑙(𝜏, 0)

∇𝑐𝑎𝑙𝑐(0)

𝜏

∇𝑟𝑒𝑎𝑙(𝜏, 0)

∇𝑐𝑎𝑙𝑐(0)

Figure 7: Comparison of the calculated and real directional derivative (in the first step of the
steepest descent method).

As we can see in Table 1, when the number of time steps is increased, the relative error
between the calculated and real gradient seems to go linearly to zero while the relative distance
of the deviatorc stress to the yield surface reaches ≈ 0.05375. This indicates that the main
reason for the mismatch between the calculated and real gradient (see Remark 13.6) is the time
discretization.

In Table 2 we see the gradient test for different hardening parameters. It is clearly visible that
the hardening seems to have almost no effect on the observed values (at least for small hard-
ening parameters). Based on this observation and the goal to approximate solutions without
hardening, we have set the hardening parameter to zero for the other experiments.

Table 3 shows the gradient test for different values of the Yosida approximation parameter.
Here we can observe that the error between the calculated and the real directional derivative
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𝑛𝑡 ∇𝑐𝑎𝑙𝑐(0) ∇𝑟𝑒𝑎𝑙(0, 10−8) ∇𝑒𝑟𝑟(0, 10−8) 𝛼𝑡 dist(Ω)(0)
4 -17.184163 -0.122446 139.340454 - 0.033011
8 -3.447526 -0.083112 40.480437 1.783317 0.039628

16 -0.773857 -0.053864 13.366766 1.598574 0.044344
32 -0.220765 -0.036898 4.983085 1.423539 0.047053
64 -0.084185 -0.027514 2.059685 1.274615 0.049776

128 -0.042897 -0.022322 0.921712 1.160036 0.051767
256 -0.027937 -0.019484 0.433841 1.087149 0.052683
512 -0.021746 -0.017969 0.210140 1.045816 0.053199

1024 -0.018956 -0.017180 0.103385 1.023329 0.053475
2048 -0.017636 -0.016776 0.051278 1.011619 0.053615
4096 -0.016995 -0.016572 0.025528 1.006230 0.053687
8192 -0.016679 -0.016469 0.012727 1.004155 0.053723

16384 -0.016522 -0.016417 0.006395 0.992925 0.053741
32768 -0.016444 -0.016391 0.003187 1.004852 0.053750

Table 1: Gradient tests with different numbers of time steps.

𝜀 ∇𝑐𝑎𝑙𝑐(0) ∇𝑟𝑒𝑎𝑙(0, 10−8) ∇𝑒𝑟𝑟(0, 10−8) 𝛼𝜀 dist(Ω)(0)
1 -0.042569 -0.021908 0.943067 - 0.053682

1e-04 -0.042897 -0.022322 0.921682 -0.002490 0.051767
1e-08 -0.042897 -0.022321 0.921768 1e-05 0.051767
1e-12 -0.042897 -0.022322 0.921709 -7e-06 0.051767
1e-16 -0.042897 -0.022322 0.921715 1e-06 0.051767

Table 2: Gradient tests with different hardening parameters.

seems again to go linearly to zero when 𝜆 is increased (which could be caused by the non-
smoothness in the case 𝜆 = 0), while the distance of the deviatoric stress to the yield surface
increases. The choice of 𝜆 then depends on the desired distance of the deviatoric stress to the
yield surface, while the error between the calculated and the real directional derivative has to
be kept in sight (it could be reduced by increasing the number of time steps).

𝜆 ∇𝑐𝑎𝑙𝑐(0) ∇𝑟𝑒𝑎𝑙(0, 10−8) ∇𝑒𝑟𝑟(0, 10−8) 𝛼𝜆 dist(Ω)(0)
0.001 -484.727737 -0.004376 110766.355335 - 0.000308

0.01 -5.392447 -0.004739 1136.799665 1.988724 0.001965
0.1 -0.128744 -0.006565 18.611006 1.785914 0.007489

1 -0.042897 -0.022322 0.921712 1.305175 0.051767
10 -0.189500 -0.174434 0.086372 1.028222 0.278028

100 -0.126870 -0.125766 0.008779 0.992936 1.168526

Table 3: Gradient tests with different Yosida approximation parameters.

Finally, in Table 4 we can observe once again that the smoothing parameter 𝑠 seems to have
only little effect on the observed values, therefore we set 𝑠 = 10−8 for all other experiments.

As said above, we do not show gradient tests for varying values of the space discretization.
The reason is that one observes a similar behavior as in the case of 𝜀 and 𝑠, it seems that they
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𝑠 ∇𝑐𝑎𝑙𝑐(0) ∇𝑟𝑒𝑎𝑙(0, 10−8) ∇𝑒𝑟𝑟(0, 10−8) 𝛼𝑠 dist(Ω)(0)
1 -0.024448 -0.019244 0.270470 - -0.359187

1e-04 -0.042897 -0.022322 0.921709 0.133119 0.051766
1e-08 -0.042897 -0.022322 0.921712 0.0 0.051767
1e-12 -0.042897 -0.022322 0.921714 0.0 0.051767
1e-16 -0.041693 -0.021776 0.914627 -0.000838 0.051767

Table 4: Gradient tests with different smoothing parameters.

have only little effect on the observed values.
All in all, the time step size 𝑛𝑡 and the value of the Yosida approximation 𝜆 are mainly of

interest among the parameters in (13.12). While an increase of the number of time steps has
only a positive effect, namely the reduction of the error between the calculated and the real
directional derivative, a decrease of 𝜆 yields a desired smaller distance of the deviatoric stress
to the yield surface but has also the negative effect of an increased error between the calculated
and the real directional derivative. Note that ∇𝑒𝑟𝑟 is relatively large, even for a moderate num-
ber of time steps and moderate 𝜆, for example, in Table 1 it is almost one hundred percent for
128 time steps (and 𝜆 = 1). However, as it turns out, this error is only in the first few iterations
of the steepest descent method so large, in further iterations it is much smaller (see Figure 11,
Table 5 and Table 6), which relativizes the impact of this error.

Steepest Descent Method

The parameters are again chosen as in (13.17) if not otherwise said. We will consider in
particular only different values for 𝑛𝑡 and 𝜆 due to the observations of the gradient tests above.

Recall that we have set the tolerance 𝑇𝑂𝐿 in Algorithm 1 to 5 ∗ 10−4 and the maximal
numbers of iterations 𝑚𝑖 to 100.

Let us start with the description of Figures 9 to 13. Therein, the values of 𝜆 are chosen as
depicted in Figure 8.

Figure 8: Symbols for different values of 𝜆.

In Figure 9 we see the typical behavior of the steepest descent method. In the first few
iterations it makes rapid progress. Then the progress in each iteration decreases until it is quite
cumbersome to reduce the value of the objective function further, probably due to the well
known slow convergence of the steepest descent method (zigzagging effect) see [62, Chapter
3.2.2] or [42, Kapitel 8.2].

In the case of the norm of the gradient (that is, ‖𝐹 ′(⋅)‖𝐻1(𝑐 ) = ‖𝜕𝑡𝐹 ′(⋅)‖𝐿2(𝑐 )) in Figure 10 we
see a similar progression. However, in particular in the bottom figure we observe an “up and
down” of the norm of the gradient, again indicating the zigzagging effect.

As already mentioned in the description of the gradient tests above, in Figure 11 we see
that the error between the calculated and real derivative is in the first few iterations is much
larger as in the following iterations, in which it is acceptable. Note that the top figure starts at
iteration two.
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Number of iterations

𝐹 (⋅)

Number of iterations

𝐹 (⋅)

Figure 9: Comparison of the objective evaluation for different values of 𝜆.

In Figure 12 the relative distance between the deviatoric stress and the yield surface is de-
picted. As was expected, the distance decreases when 𝜆 becomes smaller. Furthermore, for
every 𝜆 we can observe that the distance increases in the first few iterations until the maximum
is reached and it then stays almost constant. This can be explained as follows: A possible so-
lution to the optimal control problem is to stretch the domain even further in 𝑥-direction and
then to press it back so that the prescribed displacement on the Dirichlet boundary at 𝑡 = 1
is fulfilled. Clearly, when this is the case, the maximal distance between the deviatoric stress
and the yield surface will be larger as when the pseudo force, and thus the additional Dirich-
let displacement, is zero. Hence, during the iterations the domain is stretched more and more
until a good displacement was found and then only minor changes occur, which results in the
behavior we see in Figure 12. See also Figure 15 and the description thereof below.

Finally, in Figure 13 we see the initial Armijo step size 𝜎0. Recall that 𝜎0 is adjusted in each
iteration, see Algorithm 1 Line 11. Here we can observe at first a constant increase of 𝜎0 and
then an “up and down” behavior. This is again an indicator of the zigzagging effect.

Let us now have a look at Table 5 and Table 6. These tables are similar to Table 1 and Table 3,
except that we now have a column with the number of iterations instead of a column with a
negative convergence rate. The calculated and real directional derivative, their error and the
distance of the deviatoric stress to the yield surface are evaluated at the final iteration.

Once again, in Table 5 we can observe that the relative error between the calculated and
real directional derivative decreases when the number of time steps increases while the relative
distance of the deviatoric stress to the yield surface seems to reach ≈ 0.1339. As we have already
seen in Figure 11, ∇𝑒𝑟𝑟(⋅, 10−8) is much smaller at the end of the iteration as in the beginning,
which we observed during the gradient tests.
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Number of iterations

‖𝐹 ′(⋅)‖𝐻1(𝑐 )

Number of iterations

‖𝐹 ′(⋅)‖𝐻1(𝑐 )

Number of iterations

‖𝐹 ′(⋅)‖𝐻1(𝑐 )

Figure 10: Comparison of the norm of the gradient for different values of 𝜆.

Similar as in Table 3, we observe in Table 6 a decrease of ∇𝑒𝑟𝑟(⋅, 10−8) and an increase of
dist(Ω)(⋅) when 𝜆 becomes larger. Regarding the magnitude of ∇𝑒𝑟𝑟(⋅, 10−8) in the last iteration,

we see the same as described above. Note that 𝑇𝑂𝐿2 = 2.5 ∗ 10−7 and −∇𝑐𝑎𝑙𝑐(𝔩) = ‖ .
𝜓 +𝛼

.
𝔩‖2
𝐿2(𝑐 )

(see (13.13)), in view of Algorithm 1 this explains that the algorithm stopped after 100 iterations
in the cases 𝜆 = 0.001 and 𝜆 = 10.

Let us finally reflect upon Figure 15 and Figure 16. The color corresponds to the norm of the
stress as depicted in Figure 14. In both figures we see the evolution after optimization. Here we
have not stopped when the tolerance 𝑇𝑂𝐿 or the maximal number of iterations was reached,
but simply after 150 iterations. Moreover, the displacement was scaled by a factor 20 for the
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Number of iterations

∇𝑒𝑟𝑟(⋅, 10−8)

Number of iterations

∇𝑒𝑟𝑟(⋅, 10−8)

Figure 11: Comparison of the relative error between the calculated and the real directional
derivative for different values of 𝜆.

𝑛𝑡 iteration ∇𝑐𝑎𝑙𝑐(⋅) ∇𝑟𝑒𝑎𝑙(⋅, 10−8) ∇𝑒𝑟𝑟(⋅, 10−8) dist(Ω)(⋅)
4 55 -2.4601e-07 -3.1816e-07 0.226817 0.0502
8 51 -2.3590e-07 -2.8903e-07 0.183828 0.0478

16 52 -2.4577e-07 -2.6541e-07 0.074012 0.0497
32 45 -2.4318e-07 -2.5225e-07 0.035941 0.1066
64 77 -2.4627e-07 -2.5056e-07 0.017121 0.1017

128 58 -2.1643e-07 -2.1790e-07 0.006773 0.1365
256 34 -2.4476e-07 -2.4562e-07 0.003481 0.1417
512 48 -2.2542e-07 -2.2541e-07 0.000045 0.1318

1024 43 -1.9258e-07 -1.9225e-07 0.001736 0.1339
2048 41 -2.3150e-07 -2.3165e-07 0.000662 0.1339

Table 5: Comparison of the numerical results for the steepest descent method with different
numbers of time steps.

sake of visibility and we have chosen the following parameters:

𝜀 = 0, 𝜆 = 1, 𝑠 = 10−8,
𝑛𝑡 = 256, 𝑛𝑥 = 128, 𝑛𝑦 = 32

In Figure 15 the evolution of the displacement (form of the beam) and the norm of the stress
(color) is shown at specific points in time. We observe that until 𝑖 = 84 the norm of the stress
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Number of iterations

dist(Ω)(⋅)

Number of iterations

dist(Ω)(⋅)

Figure 12: Comparison of relative distance between the supremum norm of the deviatoric stress
and the uniaxial yield stress for different values of 𝜆.

Number of iterations

𝜎0

Figure 13: Comparison of the initial Armijo step size for different values of 𝜆.

0.0 0.2 0.4 0.6 0.8 1.0

Figure 14: Legend; values in
[

kN∕mm2
]
.

increases constantly in time. Afterwards, between 𝑖 = 84 and 𝑖 = 240, the yield surface is
reached and the norm of the stress stays almost constant. Moreover, until 𝑖 = 240 the beam is
slowly but constantly pulled apart. From 𝑖 = 240 on, the beam is fast pressed together and the
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𝜆 iteration ∇𝑐𝑎𝑙𝑐(⋅) ∇𝑟𝑒𝑎𝑙(⋅, 10−8) ∇𝑒𝑟𝑟(⋅, 10−8) dist(Ω)(⋅)
0.001 100 -4.7174e-07 -4.8520e-07 0.027751 0.00048
0.01 25 -2.0089e-07 -2.0869e-07 0.037369 0.00192

0.1 33 -2.4687e-07 -2.5552e-07 0.033854 0.01781
1 58 -2.1643e-07 -2.1790e-07 0.006773 0.13652

10 100 -2.0106e-06 -2.0122e-06 0.000833 0.62584
100 62 -2.4884e-07 -2.4876e-07 0.000338 5.31148

Table 6: Comparison of the numerical results for the steepest descent method with different
values of 𝜆.

norm of the stress shrinks to almost zero as desired.
Figure 16 shows a zoom to the left Dirichlet boundary. We observe that the approximated

optimal displacement of the Dirichlet boundary is not constant in vertical direction. Instead,
there is a slight curvature of the Dirichlet boundary, i.e., the approximated optimal Dirichlet
displacement pulling the beam in horizontal direction slightly varies in vertical direction dur-
ing the evolution.
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(a) 𝑖 = 0, 𝑡 = 0 (b) 𝑖 = 21, 𝑡 ≈ 0.0820

(c) 𝑖 = 42, 𝑡 ≈ 0.1641 (d) 𝑖 = 63, 𝑡 ≈ 0.2461

(e) 𝑖 = 84, 𝑡 ≈ 0.3281 (f) 𝑖 = 136, 𝑡 ≈ 0.5312

(g) 𝑖 = 188, 𝑡 ≈ 0.7343 (h) 𝑖 = 240, 𝑡 ≈ 0.9375

(i) 𝑖 = 244, 𝑡 ≈ 0.9531 (j) 𝑖 = 248, 𝑡 ≈ 0.9688

(k) 𝑖 = 252, 𝑡 ≈ 0.9844 (l) 𝑖 = 256, 𝑡 = 1

Figure 15: Evolution of |𝜎(𝑥, 𝑡)| at the 𝑖-th time step.
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(a) 𝑖 = 188, 𝑡 ≈ 0.7343 (b) 𝑖 = 240, 𝑡 ≈ 0.9375

(c) 𝑖 = 252, 𝑡 ≈ 0.9844 (d) 𝑖 = 256, 𝑡 = 1

Figure 16: Zoom to the left part of the beam from Figure 15.
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Conclusion and Outlook

As we have seen in Chapter 2 and in Chapter 7, elasto and homogenized plasticity can
both be transformed into an EVI of the form (EVI). Such an EVI was analyzed in an abstract
setting in Chapter 4 and an optimal control problem constraint by this EVI was studied in
Chapter 5. Therein we have provided first and second order optimality conditions and then
applied the general theory up to first order optimality conditions to the case of elasto plasticity
in Chapter 6. We have seen that second order sufficient conditions need the critical assumption
that the exponent 𝑝 in Theorem 2.5 is greater than 4 (or at least 3), see the end of Chapter 6. An
application in the case of homogenized plasticity would also be possible, but this was omitted
due to the similarity to elasto plasticity and the fact that this was already addressed in [71].

The findings in Chapter 4 were also used in Part IV. In contrast to elasto and homogenized
plasticity, we transformed the system of plasticity with inertia into an EVI with a new maximal
monotone operator . As it turned out, this operator is no subdifferential and also does not
satisfy the boundedness property, but we had more regular loads at hand to make use of the
results in Chapter 4. This operator had also a huge impact on the first order optimality con-
ditions in the form of a KKT system. The special structure of this system arose from the form
of the Yosida approximation in which the solution operator 𝑅𝜆 (𝜆 being the resolvent of )
occurred.

In perfect plasticity the displacement is not unique and only of bounded deformation. More-
over, the lack of hardening immediately implies that the operator 𝑄 (from Definition 2.7) is not
coercive and thus most of the findings in Part II are not applicable anymore. These are the main
reasons for the need for a weaker definition of a solution (essentially a weaker flow rule) and
the necessity to prove again the existence and convergence properties of solutions in Chap-
ter 11. We then provided the existence and an approximation result of global minimizers, but
without external forces to avoid the safe-load condition. Due to the seen difficulty of this task,
we reduced the control problem to the stress as the only state variable, which simplified the
control problem thanks to the uniqueness and strong convergence properties of the stress. We
thus could finally derive optimality conditions by using the findings in Section 5.2. The last
chapter was devoted to numerical experiments.

In short, we have analyzed an abstract EVI in the context of optimal control and applied
this to elasto and homogenized plasticity. With some variations, the case of plasticity with
inertia could also be handled, but needed further treatment due to the structure of the new
maximal monotone operator and its resolvent. To cover perfect plasticity, the equations needed
to be analyzed in more detail and several difficulties arose due to the lesser regularity of the
displacement and the safe-load condition, which resulted in a stress reduced problem for which
we have proved optimality conditions and presented numerical experiments.

Nonetheless, there are still open problems and questions which may be answered in future
research. Let us list some of them:

(i) The equations of homogenized plasticity arose in [88] as a (two scale) limit of equa-
tions of elasto plasticity where the material has a micro structure. Do optimal solutions
to control problems constrained by these equations of elasto plasticity also converge
to an optimal solution of a control problem governed by the limit system?

(ii) In [88] the inertia term was not neglected, is it possible to proceed analog to Part IV in
the case of homogenized plasticity to handle an inertia term in the context of optimal
control? Can convergence results analog to Item (i) be shown?

(iii) We have only considered volume forces in Part IV. As elaborated on in Remark 8.8,
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a straightforward adoption of the analysis, including surface forces and Dirichlet dis-
placements is not possible since the proposed maximal monotone operator is then
time dependent. Is it possible to extend the analysis in Chapter 4 to handle this case?

(iv) In Part V we have neglected surface forces altogether, see Remark 11.20. Could these
be incorporated?

(v) In Remark 12.14 we have seen that volume forces could be added as controls in the
stress reduced problem such that the approximation of optimal solutions is still possi-
ble. Is it then possible to derive optimality conditions?

(vi) In Chapter 13 we have only presented numerical experiments, it might be interesting
to prove convergence results.

(vii) In all cases we have only provided optimality conditions for the regularized prob-
lem. An often performed procedure is to consider the limit of these optimality con-
ditions with respect to the regularization parameter(s) to derive optimality conditions
for the original problem. We have neglected this completely, such an analysis could
be worthwhile.

This list of possible subjects of future research concludes the thesis.
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Appendix

We collect some auxiliary results for the convenience of the reader. The necessary require-
ments are given in each result, therefore no assumption collection is needed.

Lemma A.1 (Uniformly convergence by pointwise convergence and Lipschitz estimate). Let 
be a compact metric space and  a metric space. Furthermore, let {𝐺𝑛}𝑛∈ℕ ⊂ 𝐶(; ),𝐺 ∈ 𝐶(; )
with 𝐺𝑛(𝑥) → 𝐺(𝑥) for all 𝑥 ∈  and suppose that 𝐺𝑛 is uniformly Lipschitz continuous, that is, there
exists a constant 𝐿 such that

𝑑 (𝐺𝑛(𝑥), 𝐺𝑛(𝑦)) ≤ 𝐿𝑑(𝑥, 𝑦)

for all 𝑛 ∈ ℕ, 𝑥, 𝑦 ∈ .
Then 𝐺𝑛 → 𝐺 in 𝐶(; ).

Proof. We argue by contradiction. Assume that there exists 𝜀 > 0 and a strictly monotonically
increasing function 𝑛∶ ℕ → ℕ, such that for all 𝑘 ∈ ℕ there exists 𝑥𝑘 ∈  with

𝜀 ≤ 𝑑 (𝐺𝑛(𝑘)(𝑥𝑘), 𝐺(𝑥𝑘))

for all 𝑘 ∈ ℕ. Since  is compact, we can extract a subsequence 𝑥𝑘𝑗 of 𝑥𝑘 such that 𝑥𝑘𝑗 → 𝑥 in
, thus

𝑑 (𝐺𝑛(𝑘𝑗 )(𝑥𝑘𝑗 ), 𝐺(𝑥𝑘𝑗 )) ≤ 𝑑 (𝐺𝑛(𝑘𝑗 )(𝑥𝑘𝑗 ), 𝐺𝑛(𝑘𝑗 )(𝑥)) + 𝑑 (𝐺𝑛(𝑘𝑗 )(𝑥), 𝐺(𝑥𝑘𝑗 ))

≤ 𝐿𝑑(𝑥𝑘𝑗 , 𝑥) + 𝑑 (𝐺𝑛(𝑘𝑗 )(𝑥), 𝐺(𝑥𝑘𝑗 )) → 0,

which gives the contradiction.

Lemma A.2 (Compactness of ranges). Let  be a compact metric space and  a metric space.
Furthermore, let {𝐺𝑛}𝑛∈ℕ ⊂ 𝐶(; ), 𝐺 ∈ 𝐶(; ) with 𝐺𝑛 → 𝐺 in 𝐶(; ). Define 𝑈𝑛 ∶=
𝐺𝑛() and 𝑈0 ∶= 𝐺(). Then the set 𝑈 ∶= ∪∞

𝑛=0𝑈𝑛 is compact.

Proof. Let {𝑦𝑘}𝑘∈ℕ ⊂ 𝑈 . Since a finite union of compact sets is compact, we can assume that
there exists a subsequence {𝑦𝑘𝑗}𝑗∈ℕ and a strictly monotonically increasing function 𝑛∶ ℕ → ℕ,
such that 𝑦𝑘𝑗 ∈ 𝑈𝑛(𝑗). Then there exists a sequence {𝑥𝑗}𝑗∈ℕ ⊂ , with 𝑦𝑘𝑗 = 𝐺𝑛(𝑗)(𝑥𝑗). Because
 is compact, we can select a subsequence, again denoted by 𝑥𝑗 , and a limit 𝑥 ∈ , such that
𝑥𝑗 → 𝑥, hence,

𝑑 (𝑦𝑘𝑗 , 𝐺(𝑥)) ≤ 𝑑 (𝑦𝑘𝑗 , 𝐺(𝑥𝑗)) + 𝑑 (𝐺(𝑥𝑗), 𝐺(𝑥)) → 0,

thus the proof is complete.

The following lemma is a special case of [13, Proposition 3.32], however, for the convenience
of the reader we provide the simple proof.

Lemma A.3 (Strong convergence by weak convergence and norm boundedness). Let 𝐻 be a
Hilbert space, {𝑥𝑛}𝑛∈ℕ ⊂ 𝐻 , and 𝑥 ∈ 𝐻 . If 𝑥𝑛 ⇀ 𝑥 and lim sup𝑛→∞ ‖𝑥𝑛‖𝐻 ≤ ‖𝑥‖𝐻 , then 𝑥𝑛 → 𝑥.

Proof. This follows immediately from the weakly lower semicontinuity of the norm,

lim sup
𝑛→∞

‖𝑥𝑛‖𝐻 ≤ ‖𝑥‖𝐻 ≤ lim inf
𝑛→∞

‖𝑥𝑛‖𝐻 ≤ lim sup
𝑛→∞

‖𝑥𝑛‖𝐻 ,
which gives norm convergence and thus the desired strong convergence.
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Lemma A.4 (Pointwise weak convergence). Let 𝑋 be a Banach space, {𝑥𝑛}𝑛∈ℕ ⊂ 𝐻1(𝑋) a sequence
and 𝑥 ∈ 𝐻1(𝑋) such that 𝑥𝑛 ⇀ 𝑥 in 𝐻1(𝑋).

Then 𝑥𝑛(𝑡) ⇀ 𝑥(𝑡) in 𝑋 for all 𝑡 ∈ [0, 𝑇 ].

Proof. According to WACHSMUTH [104, Theorem 3.1.41], the embedding 𝐻1(𝑋) ↪ 𝐶(𝑋) is
linear and continuous, thus, for 𝑥∗ ∈ 𝑋∗, 𝐸𝑥∗ ∶ 𝐻1(𝑋) → ℝ, 𝐸(𝑥) ∶= ⟨𝑥∗, 𝑥(𝑡)⟩, for a fixed
𝑡 ∈ [0, 𝑇 ], is an element of 𝐻1(𝑋)∗.

Lemma A.5 (Inequality preservation by weak convergence). Let 𝐻 be a Hilbert space, 𝜎0 ∈ 𝐻 ,
{𝑎𝑛}𝑛∈ℕ ⊂ ℝ and {𝜏𝑛}𝑛∈ℕ ⊂ 𝐻1(𝐻) such that 𝜏𝑛(0) = 𝜎0 for all 𝑛 ∈ ℕ, 𝑎𝑛 → 𝑎 in ℝ and 𝜏𝑛 ⇀ 𝜏 in
𝐻1(𝐻). Moreover, assume that 𝑎𝑛 ≤ −

(
𝔸

.
𝜏𝑛, 𝜏𝑛

)
𝐿2(𝐻)

for all 𝑛 ∈ ℕ.

Then 𝑎 ≤ −
(
𝔸

.
𝜏, 𝜏

)
𝐿2(𝐻)

holds.

Proof. Using the lower weakly semicontinuity of ‖ ⋅ ‖𝐻𝔸
and Lemma A.4, we deduce

lim inf
𝑛→∞

(
𝔸

.
𝜏𝑛, 𝜏𝑛

)
𝐿2(𝐻)

= 1
2
lim inf
𝑛→∞

‖𝜏𝑛(𝑇 )‖2𝐻𝔸
− 1

2
‖𝜎0‖2𝐻𝔸

≥ 1
2
‖𝜏(𝑇 )‖2𝐻𝔸

− 1
2
‖𝜎0‖2𝐻𝔸

=
(
𝔸

.
𝜏, 𝜏

)
𝐿2(𝐻)

,

which immediately gives the claim.

Lemma A.6 (Weak plus weak convergence). Let 𝐻 be a Hilbert space, 𝑣, 𝜏 ∈ 𝐻1(𝐻) and
{𝑣𝑛}𝑛∈ℕ, {𝜏𝑛}𝑛∈ℕ ⊂ 𝐻1(𝐻) such that 𝜏𝑛 ⇀ 𝜏 in 𝐻1(𝐻), 𝜏𝑛(0) → 𝜏(0), 𝑣𝑛 → 𝑣 in 𝐿2(𝐻), 𝑣𝑛(0) ⇀ 𝑣(0)
and 𝑣𝑛(𝑇 ) → 𝑣(𝑇 ) in 𝐻 . Then ( .

𝑣𝑛, 𝜏𝑛
)
𝐿2(𝐻)

→
( .
𝑣, 𝜏

)
𝐿2(𝐻)

.

Proof. This follows immediately from integration by parts:( .
𝑣𝑛, 𝜏𝑛

)
𝐿2(𝐻)

= −
(
𝑣𝑛,

.
𝜏𝑛
)
𝐿2(𝐻)

+
(
𝑣𝑛(𝑇 ), 𝜏𝑛(𝑇 )

)
𝐻 −

(
𝑣𝑛(0), 𝜏𝑛(0)

)
𝐻

→ −
(
𝑣,

.
𝜏
)
𝐿2(𝐻)

+ (𝑣(𝑇 ), 𝜏(𝑇 ))𝐻 − (𝑣(0), 𝜏(0))𝐻 =
( .
𝑣, 𝜏

)
𝐿2(𝐻)

,

where we also used Lemma A.4 to see that 𝜏𝑛(𝑇 ) ⇀ 𝜏(𝑇 ) in 𝐻 .

In the next theorem we follow the lines of [38, Satz 7.2.5].

Theorem A.7 (Picard-Lindelöf for Banach spaces). Let 𝑋 be a Banach space, 𝑟 ∈ [1,∞), 𝑢0 ∈ 𝑋,
and 𝐵 ∶ [0, 𝑇 ] ×𝑋 → 𝑋 a function which is Lipschitz continuous in the second argument, that is, there
exists a constant 𝐿 > 0 such that for all 𝑡 ∈ [0, 𝑇 ] and all 𝑣,𝑤 ∈ 𝑋

‖𝐵(𝑡, 𝑣) − 𝐵(𝑡, 𝑤)‖𝑋 ≤ 𝐿‖𝑣 −𝑤‖𝑋 .
Assume further that for an arbitrary 𝑢 ∈ 𝐿𝑟(𝑋) the function

[0, 𝑇 ] ∋ 𝑡↦ 𝐵(𝑡, 𝑢(𝑡)) ∈ 𝑋

is an element of 𝐿𝑟(𝑋).
Then there exists a unique solution 𝑢 ∈ 𝑊 1,𝑟(𝑋) of

.
𝑢(𝑡) = 𝐵(𝑡, 𝑢(𝑡)), 𝑢(0) = 𝑢0.
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Proof. Let 𝑡0 ∶= min{𝐿2 , 𝑇 } and define

 ∶ 𝐿𝑟(0, 𝑡0;𝑋) → 𝐿𝑟(0, 𝑡0;𝑋), ((𝑢))(𝑡) ∶= 𝑢0 + ∫
𝑡

0
𝐵(𝑠, 𝑢(𝑠))𝑑𝑠.

We have for all 𝑢1, 𝑢2 ∈ 𝐿𝑟(0, 𝑡0;𝑋)

‖(𝑢1) − (𝑢2)‖𝑟𝐿𝑟(0,𝑡0;𝑋) = ∫
𝑡0

0

‖‖‖‖‖∫
𝑡

0
𝐵(𝑠, 𝑢1(𝑠)) − 𝐵(𝑠, 𝑢2(𝑠))𝑑𝑠

‖‖‖‖‖
𝑟

𝑋
𝑑𝑡

≤ 𝐿𝑟 ∫
𝑡0

0
‖𝑢1 − 𝑢2‖𝑟𝐿1(0,𝑡;𝑋)𝑑𝑡 ≤ 𝐿𝑟𝑡

1+ 𝑟
𝑟′

0 ‖𝑢1 − 𝑢2‖𝑟𝐿𝑟(0,𝑡0;𝑋),

where we used the Lipschitz continuity of 𝐵 and Hölder’s inequality with the conjugate expo-
nent 𝑟′. Thus we arrive at

‖(𝑢1) − (𝑢2)‖𝐿𝑟(0,𝑡0;𝑋) ≤ 𝐿𝑡0‖𝑢1 − 𝑢2‖𝐿𝑟(0,𝑡0;𝑋) ≤ 1
2
‖𝑢1 − 𝑢2‖𝐿𝑟(0,𝑡0;𝑋),

hence, Banach fixed-point theorem yields the existence of a unique solution on [0, 𝑡0]. Since 𝑡0
does not depend on the initial value, one obtains a unique solution on the whole time interval
after applying the above finitely many times with suitable initial values and linear shifts of
𝐵.

Lemma A.8 (Gronwall). Let 𝑋 be a Banach space, 𝑟 ∈ [1,∞), 𝑢 ∈ 𝑊 1,𝑟(𝑋) and 𝛼 ∈ 𝐿𝑟(ℝ) such that

‖ .
𝑢(𝑡)‖𝑋 ≤ 𝐶‖𝑢(𝑡)‖𝑋 + 𝛼(𝑡)

for almost all 𝑡 ∈ [0, 𝑇 ]. Then the following inequalies hold

(i) ‖𝑢‖𝐶(𝑋) ≤
(‖𝑢(0)‖𝑋 + ‖𝛼‖𝐿1(0,𝑇 ;ℝ)

)
𝑒𝐶𝑇 ,

(ii) ‖ .
𝑢(𝑡)‖𝑋 ≤ 𝐶

(‖𝑢(0)‖𝑋 + ‖𝛼‖𝐿1(0,𝑇 ;ℝ)

)
𝑒𝐶𝑇 + 𝛼(𝑡) for almost all 𝑡 ∈ [0, 𝑇 ] and

(iii) ‖𝑢‖𝑊 1,𝑟(𝑋) ≤ (1 + 𝐶)
(‖𝑢(0)‖𝑋 + ‖𝛼‖𝐿1(0,𝑇 ;ℝ)

)
𝑒𝐶𝑇𝑇

1
𝑟 + ‖𝛼‖𝐿𝑟(ℝ).

Proof. We have for all 𝑡 ∈ [0, 𝑇 ]

‖𝑢(𝑡)‖𝑋 ≤ ‖𝑢(0)‖𝑋 + ∫
𝑡

0
‖ .
𝑢(𝑠)‖𝑋𝑑𝑠 ≤ ‖𝑢(0)‖𝑋 + 𝐶 ∫

𝑡

0
‖𝑢(𝑠)‖𝑋𝑑𝑠 + ‖𝛼‖𝐿1(0,𝑇 ;ℝ),

Gronwall’s lemma (cf. [15, Lemme A.4]) yields

‖𝑢(𝑡)‖𝑋 ≤ (‖𝑢(0)‖𝑋 + ‖𝛼‖𝐿1(0,𝑇 ;ℝ)

)
𝑒𝐶𝑇

so that Item (i) and thus Item (ii) hold. Using these two inequalities, we get

‖𝑢‖𝑊 1,𝑟(𝑋) ≤ ‖𝑢‖𝐿𝑟(𝑋) + ‖ .
𝑢‖𝐿𝑟(𝑋)

≤ (1 + 𝐶)
(‖𝑢(0)‖𝑋 + ‖𝛼‖𝐿1(0,𝑇 ;ℝ)

)
𝑒𝐶𝑇𝑇

1
𝑟 + ‖𝛼‖𝐿𝑟(ℝ),

which completes the proof.
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Remark A.9 (𝐵𝐷(Ω) lacks the Radon-Nikodým property). The space of bounded deformation
𝐵𝐷(Ω) does not have the Radon-Nikodým property.

To see this we use two equivalent statements to the Radon-Nikodým property given in [31, VII.6 (3)
& (5)] (there are actually over 20 equivalent statements). At first we use the fact that 𝐵𝐷(Ω) has the
Radon-Nikodým property if and only if every separable closed linear subspace has it and consider

𝐿𝐷(Ω) ∶= {𝑢 ∈ 𝐵𝐷(Ω) ∶ ∇𝑠𝑢 ∈ 𝐿1(Ω;ℝ𝑑×𝑑
𝑠 )}.

Note that this space is treated in TEMAM [98, Chapter I.1.3] and that it is a closed subspace of 𝐵𝐷(Ω)
(cf. TEMAM [98, Chapter II.2 Equation 2.31]). Now we use the second equivalent statement from
which follows that 𝐿𝐷(Ω) has the Radon-Nikodým property if and only if every absolutely continous
function 𝑓 ∶ [0, 1] → 𝐿𝐷(Ω) is differentiable almost everywhere with 𝑓 (𝑏) − 𝑓 (𝑎) = ∫ 𝑏

𝑎 𝑓
′(𝑡)𝑑𝑡 for any

𝑎, 𝑏 ∈ [0, 1]. To contradict this we consider for simplicity the one dimensional case Ω = [0, 1] and define

𝑓 ∶ [0, 1] → 𝐿𝐷(Ω), 𝑡 ↦

[
[0, 1] ∋ 𝑥↦

{
𝑥, if 𝑥 ≤ 𝑡
𝑡, if 𝑥 > 𝑡

]
with the derivative

∇𝑠(𝑓 (𝑡)) = 𝟙[0,𝑡]

for all 𝑡 ∈ [0, 1], that is, ∇𝑠(𝑓 (𝑡)) is one on [0, 𝑡] and otherwise zero. One easily verifies that

‖𝑓 (𝑡 + ℎ) − 𝑓 (𝑡)‖𝐿1([0,1];ℝ) =
(
(1 − (𝑡 + ℎ∕2)

)
ℎ ≤ ℎ

and

‖∇𝑠(𝑓 (𝑡 + ℎ) − 𝑓 (𝑡))‖𝐿1([0,1];ℝ) = ℎ

for all 𝑡, ℎ ∈ [0, 1] with 𝑡 + ℎ ∈ [0, 1], so that 𝑓 is in particular absolutely continuous. If 𝑓 were
differentiable in 𝑡 ∈ [0, 1), then for the function

𝑔 ∶ [0, 1 − 𝑡] → 𝐿1([0, 1];ℝ), ℎ ↦
∇𝑠(𝑓 (𝑡 + ℎ) − 𝑓 (𝑡))

ℎ

the convergence 𝑔(ℎ) → 𝐺, as ℎ ↘ 0, would hold in 𝐿1([0, 1];ℝ) for some 𝐺 ∈ 𝐿1([0, 1];ℝ). However,
we also have

∫
1

0
𝜙(𝑥)𝑔(ℎ)(𝑥)𝑑𝑥 = 1

ℎ ∫
𝑡+ℎ

𝑡
𝜙(𝑥)𝑑𝑥 → 𝜙(𝑡),

as ℎ↘ 0, for all 𝜙 ∈ 𝐶([0, 1];ℝ), which gives the contradiction.
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List of Symbols

Numbers

ℕ Natural numbers without zero
ℝ Real numbers
∞ Infinite
𝑑 The dimension of the domain Ω, an element of ℕ

𝐸 Young’s modulus, defined in (13.7)
𝜈 Outward unit normal vector (see Page 8), also Poisson’s ratio given in

(13.8)
𝜆 Mostly used for the regularization parameter of the Yosida approximation,

also used for one of the Lamé parameters, given in (13.9)
𝜇 Used for the regularization parameter of the Yosida approximation, also

used for one of the Lamé parameters, given in (13.10)
𝛾 Uniaxial yield stress, see Definition 2.2 and (13.11)

𝜌 Density, used in Part IV
𝜀 Used for different purposes, in particular for vanishing hardening in

Part V
𝑠 Used as a smoothing parameter, see Section 3.2

𝑝′ Conjugate exponent of 𝑝 ∈ [1,∞], that is, 1∕𝑝 + 1∕𝑝′ = 1, where 1∕∞ ∶= 0

𝑇 End time of the considered time horizon
𝛼 Tikhonov parameter, present in most of the considered optimal control

problems

𝜎0 Armijo line search parameter, see Algorithm 1
𝛽 Armijo line search parameter, see Algorithm 1
𝛾𝑎 Armijo line search parameter, not to be confused with the uniaxial yield

stress 𝛾 , see Algorithm 1

𝛾𝐺 Coercivity constant corresponding to a coercive operator 𝐺 ∈ (𝐻) on a
Hilbert space 𝐻 , not to be confused with the uniaxial yield stress 𝛾 or the
Armijo line search parameter 𝛾𝑎

𝑛𝑡 Number of time steps in Chapter 13
𝑛𝑥 Number of rectangles in 𝑥-direction in the Discretization in Chapter 13
𝑛𝑦 Number of rectangles in 𝑦-direction in the Discretization in Chapter 13
𝑑𝑡 Time discretization step length in Chapter 13, equals 1∕𝑛𝑡

Sets
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List of Symbols

𝐾 Set of admissible stresses in ℝ𝑑×𝑑
𝑠 , given in Definition 2.2

(Ω) Set of admissible stresses in 𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ), given in Definition 2.2

𝐷(𝐴) Domain of a maximal monotone operator 𝐴
𝑅(𝐴) Range of a maximal monotone operator 𝐴
𝑀 Nonenempty and closed subset of 𝐷(𝐴), used only in Part II

(𝑧0,𝑀) Set of admissible loads, given in Definition 4.4 Subset of (𝑧0,𝑀) which contains only loads which belong to the kernel
of 𝑅 at 𝑡 = 0, given in Assumption ⟨5.2.iii⟩ A set which fulfills a global safe-load condition, see Definition 11.13 and
Assumption ⟨11.2.ii⟩, only used in Chapter 11

(𝑆) The (smallest) 𝜎-Algebra containing all open sets in 𝑆
span(𝑆) The set of all (finite) linear combinations of elements in 𝑆
𝐵𝑋𝑟 (𝑦) The ball around 𝑦 with radius 𝑟 in a normed space 𝑋, that is, the set {𝑥 ∈

𝑋 ∶ ‖𝑥 − 𝑦‖𝑋 ≤ 𝑟}, may be simply written as 𝐵𝑟(𝑦)

Domain

Ω The domain, a subset of ℝ𝑑 . It represents mostly a deformable, continu-
ously distributed body

𝜕Ω Boundary of Ω
Γ The same as 𝜕Ω
Γ𝐷 Dirichlet boundary
Γ𝑁 Neumann boundary
Λ𝐷 Pseudo Dirichlet boundary, only used in Chapter 13
Λ𝑁 Pseudo Neumann boundary, only used in Chapter 13

Spaces

𝕍 Finite dimensional Banach space, used for homogenized plasticity, repre-
senting internal variables (such as hardening) in Chapter 7

𝐿𝑝(Ω;𝑋) The space of 𝑝-integrable Lebesgue functions into a finite dimensional Ba-
nach space 𝑋

𝐿𝑝(Γ𝑁 ;𝑋) The space of 𝑝-integrable Lebesgue functions on the Neumann boundary
into a finite dimensional Banach space 𝑋

𝑊 𝑘,𝑝(Ω;𝑋) The space of 𝑝-integrable Sobolev functions, which are 𝑘-times differen-
tiable, into a finite dimensional Banach space 𝑋

𝑊 1,𝑝
𝐷 (Ω;𝑋) Subspace of𝑊 1,𝑝(Ω;𝑋) which contains all functions whose traces vanishes

on the Dirchlet boundary
𝑊 1,𝑝

Λ (Ω;𝑋) Analog to 𝑊 1,𝑝
𝐷 (Ω;𝑋) but with vanishing traces on the pseudo Dirichlet

boundary, only used in Chapter 13
𝑊 −1,𝑝
𝐷 (Ω;𝑋) Dual space of 𝑊 1,𝑝′

𝐷 (Ω;𝑋)
𝑊 −1,𝑝

Λ (Ω;𝑋) Dual space of 𝑊 1,𝑝′
Λ (Ω;𝑋), only used in Chapter 13
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𝐻𝑘(Ω;𝑋) Abbreviation for 𝑊 𝑘,2(Ω;𝑋)
𝐻1
𝐷(Ω;𝑋) Abbreviation for 𝑊 1,2

𝐷 (Ω;𝑋)
𝐻1

Λ(Ω;𝑋) Abbreviation for 𝑊 1,2
Λ (Ω;𝑋), only used in Chapter 13

𝐻−𝑘(Ω;𝑋) Abbreviation for 𝑊 −𝑘,2(Ω;𝑋)
𝐻−1
𝐷 (Ω;𝑋) Abbreviation for 𝑊 −1,2

𝐷 (Ω;𝑋)
𝐻−1

Λ (Ω;𝑋) Abbreviation for 𝑊 −1,2
Λ (Ω;𝑋), only used in Chapter 13

𝐶(Ω) Continuous functions on Ω
𝐶0(Ω) Continuous functions on Ω which are “zero on the boundary” (see (10.1))
𝐶𝑐(Ω) Continuous funcitons on Ω which have compact support
𝐶𝑘(Ω) Continuous funcitons on Ω which are 𝑘-times differentiable (𝑘 ∈ ℕ)
𝐶∞(Ω) Continuous funcitons on Ω which belong to 𝐶𝑘(Ω) for every 𝑘 ∈ ℕ
𝐶∞
𝑐 (Ω) Intersection between 𝐶𝑐(Ω) and 𝐶∞(Ω).

𝐶(Ω;𝑋) Continuous functions on Ω with values in a finite dimensional Banach
space 𝑋, an analog notation is used for the subsets of 𝐶(Ω) above

𝑉0(Ω×𝑌 ;ℝ𝑑) Function space for the micro displacement in homogenized plasticity,
given in Definition 7.1, used only in Chapter 7

𝑀(Ω) Set of regular real Borel measures, dual space of 𝐶0(Ω), only used in Part V
𝑀(Ω;𝑋) Regular real Borel measures with values in a finite dimensional Banach

space 𝑋, dual space of 𝐶0(Ω;𝑋), only used in Part V
𝐵𝐷(Ω) The space of bounded deformation, only used in Part V

 m A Banach space in Part II, set to 𝑊 −1,𝑝1
𝐷 (Ω;ℝ𝑑) × 𝑊 1,𝑝1(Ω;ℝ𝑑) in Chap-

ter 6 and to 𝑊 −1,𝑝
Λ (Ω;ℝ𝑑) in Chapter 13, a possible choice in Chapter 7 is

𝐻−1
𝐷 (Ω;ℝ𝑑) and 𝐿2(Ω;ℝ𝑑) in Part IV𝑐 m A Banach space which is compactly embedded into  in Part II, set

to 𝐿2(Ω;ℝ𝑑) × 𝐿2(Γ𝐷;ℝ𝑑) × 𝐻2(Ω;ℝ𝑑) in Chapter 6 and to 𝐿2(Ω;ℝ𝑑) ×
𝐿2(Λ𝑁 ;ℝ𝑑) in Chapter 13, a possible choice in Chapter 7 is 𝐿2(Ω;ℝ𝑑) ×
𝐿2(Γ𝐷;ℝ𝑑)

 m A Banach space in Part II which is continuously embedded into , set to
𝐿𝑝1(Ω;ℝ𝑑×𝑑

𝑠 ) in Chapter 6, denoted by 𝑝 in Part IV and the choice in Part V
would be 𝐿𝑝(Ω;ℝ𝑑×𝑑

𝑠 )
𝑝 Set to 𝑊 1,𝑝

𝐷 (Ω;ℝ𝑑) × 𝐿2(Ω;ℝ𝑑) × 𝐿𝑝(Ω;ℝ𝑑×𝑑
𝑠 ), used only in Part IV m A Banach space in Part II which is continuously embedded into , only

needed for second order optimality conditions in Part II, set to  in all
other parts m A Hilbert space in Part II, set to 𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) in Chapter 6 (which would
also be the choice in Part V), the obvious choice in Chapter 7 would be
𝐿2(Ω × 𝑌 ;𝕍 ), and set to 𝐻1

𝐷(Ω;ℝ
𝑑) × 𝐿2(Ω;ℝ𝑑) × 𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ) in Part IV m A Banach space in Part II such that  is continuously embedded into  ,
only needed for second order optimality conditions in Part II, set to  in
all other parts
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List of Symbols

𝐿2(0, 𝑡;𝑋) The space of square-integrable Bochner functions on the time intervall
[0, 𝑡] into a Banach space 𝑋

𝐿2(𝑋) Abbreviation for 𝐿2(0, 𝑇 ;𝑋)
𝐻1(0, 𝑡;𝑋) The space of Bochner-Sobolev functions on the time intervall [0, 𝑡] into a

Banach space 𝑋
𝐻1(𝑋) Abbreviation for 𝐻1(0, 𝑇 ;𝑋)
𝐻1

0 (𝑋) Subset of 𝐻1(𝑋) which contains all functions who vanishes at 𝑡 = 0
𝐻1

00(𝑋) Subset of 𝐻1
0 (𝑋) which contains all functions who vanishes at 𝑡 = 0 and

𝑡 = 𝑇
𝐶(0, 𝑡;𝑋) The space of continuous functions on the time intervall [0, 𝑡] into a Banach

space 𝑋
𝐶(𝑋) Abbreviation for 𝐶(0, 𝑇 ;𝑋)

𝔛𝑐 Subspace of 𝐻1(𝐿2(Ω;ℝ𝑑)), used as a control space in Part IV, later as-
sumed to have a certain compactness into 𝐿1(𝐿2(Ω;ℝ𝑑)), possible choices
are given in Example 9.2 The space of velocity fields in the case of perfect plasticity in Part V The space of displacement fields in the case of perfect plasticity in Part V

(𝑋; 𝑌 ) The space of linear and continuous operators from a Banach space 𝑋 into
another Banach space 𝑌(𝑋) Abbreviation for (𝑋;𝑋)

Functions

𝑓 Volume force applied on Ω
𝑔 Neumann boundary force applied on Γ𝑁
𝑢𝐷 Dirichlet displacement

𝑢 Displacement of Ω
𝑒 Elastic strain, relationship to 𝜎 is 𝑒 = 𝔸𝜎 (Hooke’s law), rarely used
𝜎 Stress, that is, internal forces of Ω
𝑧 Plastic strain
Σ Stress in the case of homogenized plasticity, used only in Chapter 7
𝑣 Displacement reflecting the microstructure in the case of homogenized

plasticity, used only in Chapter 7

𝑢0 Initial condition for the displacement
𝜎0 Initial condition for the stress
𝑧0 Initial condition for the plastic strain

𝑢𝑑 Desired displacement, used in (12.1)
𝜎𝑑 Desired stress, used in (12.12)
𝑧𝑑 Desired plastic strain, used in (6.1)

𝓁 Abstract loads \ forces, mostly set to one or more of the functions 𝑓 , 𝑔 or
𝑢𝐷

𝔩 Pseudo forces, used only in Part V to generate Dirichlet displacements

162



𝔞 Offset of the Dirichlet displacement, used only in Part V, required only in
the application in Chapter 13

Tensors

ℂ m Elasticity tensor, given in Chapter 1 for all cases except homogenized plas-
ticity and on Page 63 for homogenized plasticity

𝔸 Inverse of the elasticity tensor (the one for all cases except homogenized
plasticity)

𝔹 m Hardening parameter given in Chapter 1 for all cases except homogenized
plasticity and on Page 63 for homogenized plasticity

𝔻 Combination of ℂ and 𝔹, used for plasticity with inertia, defined in (7.6)
𝔼 Combination of ℂ and 𝔹, used for plasticity with inertia, defined in (7.6)

Operators

∇𝑠 Symmetrized gradient (for elasto plasticity), given in Definition 2.1
∇𝑠
𝑥 Symmetrized gradient (for homogenized plasticity) with respect to the 𝑥-

variable, defined on Page 63
∇𝑠
𝑦 Symmetrized gradient (for homogenized plasticity) with respect to the 𝑦-

variable, defined on Page 63
∇𝑠

(𝑥,𝑦) Symmetrized gradient (for homogenized plasticity) with respect to the 𝑥-
and 𝑦-variable, given in Definition 7.3

div Divergence operator (for elasto plasticity), given in Definition 2.1
div(𝑥,𝑦) Divergence operator (for homogenized plasticity) with respect to the 𝑥-

and 𝑦-variable, given in Definition 7.3

max The maximum of a given function and zero
max𝑠 Smoothing of max, given in (3.10)
dist𝑆 The distance to a set 𝑆
argmin The argument which minimizes a further specified function
ker Kernel of a following operator

𝔔 m Maps 𝑧 to 𝑞 for certain given data, given in Definition 4.2 for general EVIs
and in Definition 8.2 for plasticity with inertia

ℨ m Maps 𝑞 to 𝑧 for certain given data, given in Definition 4.2 for general EVIs
and in Definition 8.2 for plasticity with inertia

𝜕𝐼(Ω) Subdifferential of the indicator function of the set (Ω)
𝜕𝐼𝜆 Yosida approximation of 𝜕𝐼(Ω), given in (3.5), see also (3.8)
𝜕𝐼𝜆,𝑠 Smoothing of 𝜕𝐼𝜆, defined in (3.11)
𝜋𝐾 Projection onto a convex set 𝐾 ⊂ 𝐻 in a Hilbert space 𝐻

𝐴 Maximal monotone operator, set to 𝜕𝐼(Ω) in most cases
𝐴𝑛 A sequence of maximal monotone operators, set to the (smoothed) Yosida

approximation in most cases
𝐴0 Projection operator of 𝐴(⋅) onto zero
𝐴𝜆 Yosida approximation of a maximal monotone operator 𝐴
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List of Symbols

𝐴0 Abbreviation for 𝐴
𝐴𝑠 Smoothing of 𝐴𝜆, when 𝐴 = 𝜕𝐼(Ω) then we choose 𝐴𝑠 = 𝜕𝐼𝜆,𝑠 where 𝜕𝐼𝜆,𝑠

is given in (3.11) A special Maximal monotone operator, given in Definition 8.5, used only
in Part IV𝜆 Yosida approximation of , specified in Corollary 9.4𝑠 Smoothing of the Yosida approximation of , given in Definition 9.6

𝑅𝜆 Resolvent of a maximal monotone operator 𝐴
𝑅𝑠 Smoothing of 𝑅𝜆, given in (3.13) in the case of the von-Mises flow rule𝜆 Resolvent of , specified in Corollary 9.4𝑠 Smoothing of the resolvent of , given in Definition 9.6

 Integral operator, given in Definition 8.14, used only in Part IV (and Propo-
sition 12.7)𝜌 Equals  divided by the density 𝜌, given in Definition 8.14, used only in
Part IV

 m Solution operator of linear elasticity or a variation, given in the case of
elasto (and perfect) plasticity in Corollary 2.6 and in the case of homoge-
nized plasticity in Definition 7.5, for the case of plasticity with inertia see𝑅0

below
𝑅0

Solution operator of certain nonlinear elasticity with respect to a mono-
tone and Lipschitz continuous operator𝑅0, given in Proposition 8.10, used
only in Part IV Used in Part V as the pseudo force to Dirichlet displacement mapping
whereby a realization is given in (13.1)

𝑅 m Linear and continuous operator from  to , not to be confused with the
resolvent of a maximal monotone operator, assumed to map into  to de-
rive optimality conditions, given in Definition 2.7 for elasto plasticity, in
Definition 7.5 for homogenized plasticity, in Definition 8.5 for plasticity
with inertia and the choice for perfect plasticity would be the concatena-
tion of 𝑅 from elasto plasticity and the pseudo force to Dirichlet displace-
ment mapping  introduced in Assumption ⟨12.iv⟩

𝑄 m Linear and continuous operator from  to , assumed to map from 
into  and from  into  to derive optimality conditions, given in Defi-
nition 2.7 for elasto plasticity, in Definition 7.5 for homogenized plasticity
and in Definition 8.5 for plasticity with inertia

𝑄𝜀 Linear and continuous mapping from 𝐿2(Ω;ℝ𝑑×𝑑
𝑠 ) into 𝐿2(Ω;ℝ𝑑×𝑑

𝑠 ), given
in (11.11), used ony in Part V for vanishing viscosity

 Solution operator of the state equation, given in Definition 5.1 for general
EVIs𝑛 Solution operator of an EVI with respect to a maximal monotone operator
𝐴𝑛, defined in (5.4)𝜆𝑛 Solution operator of an EVI with respect to a Yosida approximation 𝐴𝜆𝑛 ,
defined in (5.5)
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𝑠 m Solution operator for a smoothed EVI, defined in (5.9) for general EVIs, in
Definition 9.10 for plasticity with inertia and in Definition 12.16 for perfect
plasticity

Objective Functions

𝐽 m The objective function, mostly composed of two parts Ψ and Φ, given in
Assumption ⟨5.iv⟩ for general EVIs, in (6.1) for elasto plasticity, in As-
sumption ⟨9⟩ for plasticity with inertia, in Assumption ⟨12.iii⟩ for perfect
plasticity and in Assumption ⟨12.2⟩ for stress reduced perfect plasticity

Ψ m Part of the objective function 𝐽 , depends on the state(s), may also depend
on the control(s), for usages see 𝐽

Φ m Part of the objective function 𝐽 , depends only on the control(s), for usages
see 𝐽

Miscellaneous Symbols

→ Used for (strong) convergence
⇀ Used for weak convergence
↪ Continuously embedded
𝑐
←←←←→ Compactly embedded
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maximal monotone operators, 18
measure, 94
monotone, 19

N
Neumann boundary, 8
Numbers, 7

P
partition of a Borel set, 93
perfect plasticity, 3
plastic slips, 105
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