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Chapter 1

Introduction

Feature selection is one of the most fundamental problems in data analysis, machine learning,
and data mining. Recently, it has drawn increasing attention due to high-dimensional data
sets emerging from many different fields. Especially for high-dimensional data sets, it is
often advantageous with respect to predictive performance, run time, and interpretability to
disregard the irrelevant and redundant features. This can be achieved by choosing a suitable
subset of features that are relevant for target prediction. In the context of this thesis, relevant
features are features that are important for target prediction, that is, features that allow
building predictive models with high predictive accuracy. Redundant features are features
that carry the same information as other features. So, if irrelevant or redundant features are
removed from a predictive model, the prediction accuracy on new data does not decrease
(John et al., 1994).

In fields like bioinformatics, feature selection often allows identifying the features that
are important for biological processes of interest. Particularly in domains where the selected
features will be analyzed in expensive experimental studies, it is desired to keep the number
of selected features as small as possible. In such situations, the goal is to select a subset of
features so that all relevant information is captured while avoiding the selection of irrelevant
or redundant features. In other words, the task of feature selection is to select the smallest
subset of features that has maximal predictive quality for an outcome of interest. Also, it is
important that the feature selection is stable. This means that the set of selected features is
robust with respect to different data sets from the same data generating distribution. An
example for an unstable feature selection are sets of selected features differing strongly for
data sets obtained with the same experiment conducted at different places such that the
assumption of the data sets coming from the same data generating process is valid. An
unstable feature selection can make practitioners question the reliability of the resulting
models (Kalousis et al., 2007).

This thesis deals with four aspects connected to feature selection: The first contribution
of the thesis is a benchmark of filter methods for feature selection. The second aspect is a
comparison of measures for the assessment of feature selection stability. In the third part, a
multi-criteria approach for obtaining desirable models is proposed. In this context, models
with high predictive accuracy, high feature selection stability and a small number of selected
features are considered desirable. The fourth part is about fitting models as well, but with
focus on data sets with many similar, for example highly correlated, features. In this part,
the goal is fitting models that possess high predictive accuracy and that include all relevant
information but no irrelevant or redundant features.
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1.1 Benchmark of Filter Methods
There exists a variety of methods for feature selection. Feature selection methods can be
categorized into three classes (Guyon and Elisseeff, 2003): Filter methods rank features by
calculating a score for each feature independent of a model. Either the l features with the
highest scores or all the features whose scores exceed a threshold τ are selected (with l ∈ N
or τ ∈ R being pre-specified). For many filter methods, the score calculation can be done
in parallel. Wrapper methods (for example sequential forward search) consider subsets of
the set of all features. For each of the subsets, a predictive model is fitted. The subsets
are evaluated by a performance measure calculated on the resulting model (for example
classification accuracy). Embedded methods like lasso regression include the feature selection
in the model fitting process. Regarding the comparison of different methods, benchmark
studies have gained increasing attention in the machine learning community.

The first part of this thesis focuses on the comparison of filter methods for feature
selection. The focus is based on the following considerations. Most wrapper methods are
computationally infeasible for high-dimensional data sets. Embedded methods require that
a certain predictive model is used. Most filter methods, however, are fast to calculate and
can be combined with any kind of predictive method, even methods with embedded feature
selection, see Bommert et al. (2017). Also, they can heavily reduce the run time of machine
learning algorithms. So, for data sets with really large numbers of features, it can be necessary
to pre-filter the data set in order to make further analyses possible.

In this thesis, 20 filter methods from different toolboxes are benchmarked based on
12 data sets from various domains. The filter methods are representatives of the most
prominent general concepts for filter methods. These classes of filter methods are univariate
statistical tests, univariate predictive performance indicators, feature variance, random forest
importance, and information theoretic measures. Most of the compared filter methods have
been integrated into the machine learning R package mlr (Bischl et al., 2016) and are ready to
use. mlr is a comprehensive package for machine learning and a standard in the R community.

The aim of benchmarking the filter methods is finding the best filter methods, so that
these methods can be employed in future data analyses. The best filter methods are assessed
with respect to predictive performance when combined with a predictive model and with
respect to run time. Additionally, the empirical similarity of the filter methods is analyzed.
For finding groups of similar filter methods, it is investigated which methods select the
features of a data set in a similar order. Also, the scaling behavior of the filter methods is
compared. All of these analyses are based on the analyses in Bommert et al. (2020).

1.2 Comparison of Stability Measures
For the assessment of feature selection stability, many stability measures exist and it is
unclear which measure is best for evaluating the stability. To find out which measure should
be used, 20 stability measures are compared both theoretically and empirically.

For the theoretical comparison, it is investigated which of the desirable theoretical
properties defined in Nogueira (2018) and in this thesis are fulfilled by the measures. For the
empirical comparison, both a small example, for which all combinations of feature sets can
be taken into account, and feature sets selected from real data sets are considered. One part
of the empirical comparison is finding out which of the measures assess the stability similarly,
that is, consider the same situations as stable or unstable. Another part is investigating the
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impact of the number of selected features on the stability measures. These analyses extend
the analyses in Bommert et al. (2017) and Bommert and Rahnenführer (2020).

1.3 Finding Desirable Configurations by Multi-Criteria
Tuning

Finding a good predictive model for a data set can be challenging. The predictive
accuracy of a predictive model is important and is usually the only criterion considered in
model selection. When trying to discover relevant features, for example for understanding
the underlying biological process, the reliability and the interpretability of the model are
important as well. For data from such domains, it is not only necessary to find a model with
high predictive accuracy, but it is also relevant that the model includes only few features and
that the selection of these features is stable.

To reach all three goals simultaneously, in this thesis, the following strategy is suggested:
perform the hyperparameter tuning of the considered methods in a multi-criteria fashion
with respect to predictive accuracy, stability of the feature selection, and number of selected
features. This strategy is evaluated on 12 data sets from various domains. It is investigated,
whether it is possible to find configurations that perform a more stable selection of fewer
features without losing much predictive accuracy compared to model fitting only considering
the predictive performance. These analyses extend the analyses in Bommert et al. (2017). In
this thesis, the term “configuration” is used when talking about a predictive method with
specific hyperparameter values while the term “model” refers to a configuration fitted to the
data.

1.4 Fitting Models on Data Sets with Similar Features
In many applications, data sets with similar features are generated. An example are gene
expression data sets where genes of the same biological processes are often highly positively
correlated. For continuous features, the Pearson correlation is often used to quantify the
similarity between features. Other criteria, possibly also measuring non-linear associations,
can be considered as well. For categorical features, information theoretic quantities like
mutual information can be employed.

For data sets with similar features, feature selection is very challenging, because it is
more difficult to avoid the selection of relevant but redundant features. Most established
methods like univariate filters, lasso, boosting methods, and random forests are not able
to select only one feature out of a group of similar features. They select either several or
none of the similar features. One method that is able to perform such a selection among
similar features is L0-regularized regression. L0-regularized regression is a state-of-the-art
technique for fitting sparse models. A different approach for the analysis of data sets with
similar features would be pre-processing the data by keeping only one feature per group of
similar features. The huge disadvantage of this procedure is that it is not guaranteed that
the best features for prediction are kept.

For data sets with similar features, also the evaluation of feature selection stability is
more difficult. The commonly used stability measures see features with different identifiers
as different features. Consider a situation with one set containing a feature XA and another
set not including XA but instead an almost identical feature XB. Even though XA and XB

provide almost the same information, traditional stability measures consider the selection of
XB instead of XA (or vice versa) as a lack of stability. Existing stability measures that take
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into account similarities between features have major theoretical drawbacks. To overcome
this deficiency of stability measures for data sets with similar features, we have defined
new stability measures. In this thesis, stability measures that consider similarities between
features are called “adjusted”, the others are called “unadjusted”.

The goal in this part of the thesis is to find sparse models that have a high predictive
accuracy for data sets with similar features. These models are supposed to include a subset
of features such that all relevant information is captured while not including irrelevant or
redundant features. For achieving this, we propose the following approach: Use L0-regularized
regression as predictive method and tune its hyperparameter considering both the predictive
accuracy and the feature selection stability. Assess the stability of the feature selection
with an adjusted stability measure. For choosing the best configuration, that is, the best
hyperparameter value, employ ε-constraint selection, an algorithm introduced in this thesis
that focuses on predictive accuracy and employs the stability as a secondary criterion.

Performing hyperparameter tuning with respect to predictive accuracy is state-of-the-art.
Considering also the feature selection stability works as a regularization, avoiding the selection
of irrelevant or redundant features. In the proposed approach, L0-regularized regression could
potentially be replaced by any other feature selection method that is able to select only one
feature out of a group of similar features, like a sequential forward search taking into account
similarities between features. This, however, is out of scope for this thesis.

The proposed approach is evaluated based on both simulated and real data sets of different
sizes and with different similarity structures between the features. It is investigated whether
the approach is beneficial for fitting models with high predictive accuracy on independent
data and that do not include irrelevant or redundant features.

1.5 Structure of the Thesis
The remainder of this thesis is organized as follows: Chapter 2 contains the current state
of research in the fields that are considered in this thesis. In Chapter 3, the filter and
classification methods used in this thesis are explained (Sections 3.1 and 3.2). Also, feature
selection stability is explained in detail, stability measures are defined, and stability selection
is described (Section 3.3). Details about multi-criteria optimization are given in Section 3.4.
In Chapter 4, the data sets that are used for the following analyses are presented. Chapters 5
to 8 contain the four analysis parts of the thesis. In Chapter 5, the benchmark of filter methods
is conducted. The stability measures are compared both theoretically and empirically in
Chapter 6. In Chapter 7, the multi-criteria approach for finding desirable models is evaluated.
In Chapter 8, the approach for fitting models to data sets with similar features is analyzed.
Chapter 9 contains a summary and a discussion of the results as well as an outlook for further
aspects of research.
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Chapter 2

Current State of Research

The current state of the research in the fields that are considered in this thesis is presented in
this chapter. An overview of the literature of feature selection and especially of filter methods
for feature selection is given in Section 2.1. Section 2.2 provides references to literature
related to feature selection stability. Literature about feature selection for data sets with
similar features is discussed in Section 2.3.

2.1 Filter Methods for Feature Selection
In the past decades, many feature selection methods have been proposed. The methods can
be categorized into three classes (Guyon and Elisseeff, 2003): Filter methods rank features
by calculating a score for each feature independent of a model. Lazar et al. (2012) give an
extensive overview of existing filter methods. Wrapper methods (Kohavi and John, 1997)
consider subsets of the set of all features. For each of the subsets, a predictive model is
fitted and the subsets are evaluated by a performance measure calculated on the resulting
model. Wrapper methods include simple approaches like greedy sequential searches (Kittler,
1978), but also more elaborate algorithms like recursive feature elimination (Huang et al.,
2018b) as well as evolutionary and swarm intelligence algorithms for feature selection (Yang
and Honavar, 1998; Xue et al., 2016; Brezočnik et al., 2018). Embedded methods include
the feature selection in the model fitting process. Examples for predictive methods that
perform embedded feature selection are lasso regression (Izenman, 2013, pp. 150 ff.), tree
based methods like classification and regression trees (Izenman, 2013, pp. 281 ff.) or random
forests (Izenman, 2013, pp. 536 ff.), and gradient boosting (Hofner et al., 2014; Bühlmann
and Yu, 2003). There are many overview papers that describe in detail, categorize, and
suggest how to evaluate existing feature selection methods, for example Guyon and Elisseeff
(2003), Liu and Yu (2005), Saeys et al. (2007), Chandrashekar and Sahin (2014), Tang et al.
(2014), Hira and Gillies (2015), Jović et al. (2015), Cai et al. (2018), Li et al. (2018), and
Venkatesh and Anuradha (2019).

There are also several papers in which feature selection methods are compared. In many
of these, the feature selection methods are combined with classification methods in order to
assess the predictive performance of the selected features. Liu et al. (2002) compare filter
methods based on two gene expression data sets, counting the number of misclassified samples.
Bolón-Canedo et al. (2013) analyze the classification accuracy of different filter, wrapper, and
embedded methods on several artificial data sets. Bolón-Canedo et al. (2014) and Inza et al.
(2004) compare filter methods with respect to classification accuracy based on microarray
data sets. Forman (2003) and Aphinyanaphongs et al. (2014) conduct extensive comparisons
based on text classification data sets. They analyze filter and wrapper methods, respectively.
Darshan and Jaidhar (2018) compare filter methods with respect to classification accuracy
on malware detection data. Liu (2004) and Peng et al. (2005) study filter methods on large



6 Chapter 2. Current State of Research

data sets, analyzing the predictive accuracy with respect to the number of features to select.
Dash and Liu (1997) and Sánchez-Maroño et al. (2007) use small artificial data sets to assess
whether the correct features are selected. Dash and Liu (1997) compare different feature
selection methods while Sánchez-Maroño et al. (2007) consider filter methods only. Wah et al.
(2018) compare filter and wrapper methods on large simulated data sets with respect to the
correctness of the selected features. Additionally, they conduct comparisons with respect to
classification accuracy on real data sets. Xue et al. (2015) comprehensively compare filter
and wrapper methods with respect to classification accuracy and run time, considering each
of the two objectives separately. Most of the data sets on which the comparison is based
contain a small or medium number of features.

In some papers, only filter methods whose scores are based on similar concepts are
compared. Both Meyer et al. (2008) and Brown et al. (2012) compare several filter methods
that are based on mutual information. Meyer et al. (2008) analyze the accuracy and the run
time of the methods separately. Additionally, they take into account theoretical properties
and look at the percentages of correctly identified features on artificial data. Brown et al.
(2012) analyze the classification accuracy with respect to the number of selected features and
search for Pareto optimal methods considering the accuracy and feature selection stability.
Hall (1999) conducts an extensive study of correlation based feature selection. The author
analyzes the classification accuracy based on real data sets as well as the choice of relevant
or irrelevant features based on artificial data sets.

Several authors introduce new feature selection methods and compare them in a benchmark
study to competing approaches. Zhu et al. (2007) and Mohtashami and Eftekhari (2019)
present new wrapper methods. The comparisons they conduct for the new methods also
include some filter methods. The authors assess the classification accuracy of the methods
on several data sets. Zhu et al. (2007) also consider the number of features for which the
best performance is achieved. Fleuret (2004), Yu and Liu (2004), and Ke et al. (2018)
present new filter methods and conduct a comparison of their new methods with established
feature selection methods. All of them consider the classification accuracy of the feature
selection methods and the run time separately. Hoque et al. (2018) develop an ensemble
filter method that aggregates the scores of several filter methods and compare it to the single
filter methods. They compare the methods with respect to classification accuracy considering
both small and high-dimensional data sets. Ghosh et al. (2019) create an ensemble filter
method for guiding an evolutionary feature selection algorithm. This algorithm is compared
to evolutionary algorithms guided by single filter methods with respect to classification
accuracy. The comparison is based on high-dimensional data sets and small numbers of
features to select.

In Bommert et al. (2020), we conduct an extensive comparison of 22 filter methods
on 16 large or high-dimensional data sets with respect to both classification accuracy and
run time jointly. Also, we analyze the empirical similarity of the filter methods based on
the rankings of all features of all considered data sets. To the best of our knowledge, the
approaches of examining the accuracy and the run time jointly as well as studying the
similarity of the feature rankings have not been analyzed before by researchers in a filter
comparison study.

2.2 Feature Selection Stability
Over the past decade, a variety of frameworks for stability evaluation has been proposed.
References for measures for the evaluation of feature selection stability are given in Subsec-
tion 3.3.2 where several stability measures are presented. Overviews of existing stability
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measures are given in He and Yu (2010) and Lausser et al. (2013). The theoretical properties
of different stability measures are studied in Nogueira and Brown (2016) and Nogueira (2018).
Pitfalls with respect to interpreting the values of stability measures are discussed in Alelyani
et al. (2011). Experimental setups for stability evaluation are presented in Wang et al. (2012).
Ensemble methods for making feature selection more stable than a single feature selection
method are proposed in Meinshausen and Bühlmann (2010), Boulesteix and Slawski (2009),
and Lee et al. (2014). The research that has been done in all of the aforementioned aspects
of stability assessment is reviewed in Awada et al. (2012).

Various feature selection methods including ensemble methods are analyzed with respect
to stability for example in Davis et al. (2006), Saeys et al. (2008), Abeel et al. (2010), Somol
and Novovičová (2010), Dittman et al. (2011), Haury et al. (2011), Dessì et al. (2013), and
Lee et al. (2013). Schirra et al. (2016) show that conducting a stable feature selection before
fitting a classification model can increase the predictive performance of the model. Most of
the works that analyze feature selection methods consider both a high stability and a high
predictive accuracy of a resulting classification model as target criteria. But they do not
consider the number of selected features as a third target criterion.

In Bommert et al. (2017), we investigate two aspects. First, we conduct an extensive
empirical comparison of 9 stability measures based on 3 high-dimensional data sets. We
analyze whether the stability measures consider the same situations as stable or unstable.
Also, we analyze the connection between the stability values attained for real feature sets and
the number of selected features. Moreover, we discuss whether the considered measures fulfill
the theoretical properties defined in Nogueira and Brown (2016). Second, we propose and
evaluate the approach of performing multi-criteria optimization with respect to predictive
accuracy, feature selection stability, and number of selected features for obtaining desirable
models. To the best of our knowledge, a similar comparison of stability measures has not
been conducted and the approach for obtaining desirable models has not been proposed
before.

2.3 Feature Selection on Data Sets with Similar Fea-
tures

Performing feature selection on data sets with similar features is an issue that has received
comparably little attention in the literature. Some benchmarks for feature selection methods
include scenarios with similar features, see for example Koller and Sahami (1996), Dash
and Liu (1997), and Hall (1999). Also, feature selection methods for selecting relevant
and avoiding redundant features have been defined, for example in Yu and Liu (2004) and
Brown et al. (2012). These methods are greedy forward search algorithms that measure the
redundancy of features by their similarity to the already selected features.

For high-dimensional data sets from the bioinformatics’ domain, mostly the Pearson
correlation between features is considered to measure their similarity (Toloşi and Lengauer,
2011; Zuber and Strimmer, 2009). Toloşi and Lengauer (2011) report the instability of
established feature selection methods such as lasso regression or random forest for data sets
with correlated features. They criticize that such methods select an arbitrary feature out of
a group of similar features. However, their claim does not coincide with the observations
that we have made in preliminary studies. We have observed that with such methods, several
of the similar and relevant features are selected, see Section 8.1. Selecting all of the similar
and relevant features is what Toloşi and Lengauer (2011) find desirable. This can also be
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achieved with techniques such as group lasso (Meier et al., 2008), where groups of similar
features are only allowed to enter or leave the model jointly.

In contrast to Toloşi and Lengauer (2011) and in accordance with Yu and Liu (2004) and
Brown et al. (2012), we find it desirable to have only one feature per group of relevant and
similar features included in the model. This way, redundant features are avoided which allows
an easier interpretation, because the model is more sparse, and also reduces over-fitting. A
method that is able to perform such a selection among similar features is L0-regularized
regression. For recent work on best subset selection and efficient computation of L0-regularized
regression, see for example Bertsimas et al. (2016), Huang et al. (2018a), and Hazimeh and
Mazumder (2020).

The lack of stability stated by Toloşi and Lengauer (2011) is in our opinion a deficiency
of the stability measure that considers almost identical features as different. With adjusted
stability measures, that is, stability measures that take into account similarities between
features, the feature selection stability can be assessed better for such data sets. Zucknick
et al. (2008), Zhang et al. (2009), and Sechidis et al. (2020) define stability measures that
consider correlations between features. In Bommert and Rahnenführer (2020), we define and
analyze new adjusted stability measures.



9

Chapter 3

Statistical Methods

The statistical methods used in this thesis are explained in this chapter. In Section 3.1,
filter methods for feature selection are described. In Section 3.2, classification methods
are explained. Section 3.3 contains various aspects related to feature selection stability. In
Section 3.4, details about multi-criteria optimization are given.

3.1 Filter Methods for Feature Selection
For feature selection, filter methods play an important role. They can be combined with any
machine learning model and they can heavily reduce run time of machine learning algorithms.
All filter methods described in this section are applicable for classification data sets with
continuous features. Some of the methods also work for categorical features and require a
discretization of continuous features. Two kinds of filter methods are presented: Most filter
methods calculate a score for all features and then select the features with the highest scores.
Some filter methods, however, select features iteratively in a greedy forward fashion. For
these filters, in each iteration, the feature with the maximal score is selected but the scores
of different iterations are not comparable. Notation-wise, a data set with n observations
of the p features X1, . . . , Xp and class variable Y is considered. The filter methods in
Subsections 3.1.1 to 3.1.3 are univariate, that is, they do not consider interactions between
the p features. Most of the filter methods in Subsections 3.1.4 and 3.1.5 are multivariate.

3.1.1 Univariate Statistical Tests
Filter anova.test performs for each feature an analysis of variance (Rasch et al., 2011,
pp. 241 ff.) where the class variable is explained by the respective feature. The value of the
F statistic is used as filter score. The higher the value of the F statistic, the more different
are the mean values of the corresponding feature between the classes.

Both filters limma and sam perform a moderated version of the F test. The basic idea of
both approaches is to stabilize the estimation of the standard deviation by using information
about the variation of all features. For limma, this is done with a linear regression model
(Smyth, 2004). For sam, the observed statistics are compared to the expected values of the
statistics based on permutations (Tusher et al., 2001). Both methods are popular for gene
expression data analysis.

Filter kruskal.test applies for each feature a Kruskal-Wallis rank sum test (Kruskal and
Wallis, 1952) which is the non-parametric equivalent of an analysis of variance. Analogously,
the test statistic is used as the filter score and higher values of this test statistic mean that
the values of the corresponding feature differ more between the classes.

Filter chi.squared performs for each feature a χ2 test of independence (Rasch et al., 2011,
pp. 221 ff.) between a dichotomized transformation of this feature and the class variable.
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The value of the χ2 statistic is used as the score. The higher the value of the χ2 statistic,
the higher the dependency between the corresponding feature and the class variable. To
calculate this test, continuous features have to be discretized. For the implementation in the
toolbox FSelector (Romanski and Kotthoff, 2018), this is done with the MDL method, see
Subsection 3.1.6.

3.1.2 Univariate Predictive Performance
The score of the auc filter represents the classification accuracy when each feature is used
directly and separately for class prediction for data sets with two classes. For each feature Xk,
the following prediction rule for the class variable Y is used: Ŷ = I[c,∞)(Xk), with I denoting
the indicator function. The receiver operating curve displays the sensitivity and specificity of
a classification rule for all choices of a threshold c, see Sammut and Webb (2011). The area
under the receiver operating curve (AUC) of the classification rule Ŷ = I[c,∞)(Xk) measures
how well each feature separates the target variable. An AUC value of 1 means that there is a
threshold c for which the prediction rule is perfectly accurate. An AUC value of 0 means
that there is a threshold c for which the rule predicts all labels wrongly which implies that
Xk can achieve perfect classification with the rule Ŷ = I(−∞,c)(Xk). A value of 0.5 is the
worst possible in this application. When the feature and the class variable are independent,
the expected AUC value is 0.5. Therefore, |0.5 − AUC| is used as the AUC filter score. This
filter is only applicable for two-class data sets.

The idea of the simple association rule filter oneR is to predict the class based on the
value of a single feature. For this, continuous features have to be discretized in advance. For
the implementation in the toolbox FSelector (Romanski and Kotthoff, 2018), this is done
using the MDL method, see Subsection 3.1.6. The score of a feature Xk is calculated in
the following way: Let V (k) denote the set of possible values for feature Xk. For each value
v ∈ V (k), let n

(k)
vi denote the number of observations with Xk = v and class i, i ∈ {1, . . . , l}.

A simple classification rule for observations with Xk = v is predicting the class i with the
highest count n

(k)
vi . The proportion of correctly classified observations by this rule without

conducting any resampling,
1
n

∑
v∈V (k)

max
i∈{1,...,l}

n
(k)
vi ,

is used as filter score. The higher the accuracy of the rule, the more feature Xk is considered
to be suitable for univariate class prediction.

3.1.3 Feature Variance
The variance filter uses the variance of a feature as its score. The idea of this filter is to
remove features that only consist of noise and therefore have very little variation. This filter
only makes sense for data sets where the features are measured on the same scale and have
not been scaled to unit variance.

3.1.4 Random Forest Importance
Random forests are bagging ensembles with trees as base learners, see Subsection 3.2.5. There
are two popular ways of measuring feature importance based on a random forest: permutation
importance and impurity importance. To calculate the permutation importance, the out of
bag (oob) observations for each tree, that is, the observations that were not used for fitting
this tree, are considered. For the oob observations of each tree, feature Xk is permuted. Then,
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the permuted observations are classified by the corresponding trees. The resulting predictive
accuracy is compared to the predictive accuracy without permuting feature Xk. The score
of a permutation importance filter is the decrease in predictive accuracy of the random
forest from original oob observations to permuted observations (Izenman, 2013, pp. 542 ff.).
Features that are important for class prediction cause a large decrease in accuracy because
their relevant information is not available when the feature is permuted. Filter permutation
is a permutation importance filter for a forest of classification trees.

Filter impurity considers the node impurities of the trees. Nodes containing only obser-
vations of one class are called pure, nodes with many observations of different classes are
called impure. For each node in each tree of the forest, the impurity is measured before
and after the split is made. This can be done for example with the Gini index. The filter
score of feature Xk is the mean decrease in impurity due to the splits based on Xk (Izenman,
2013, pp. 542 ff.). A feature that is important for class prediction causes on average a large
decrease in impurity.

3.1.5 Mutual Information
Let X and Y be two discrete variables with respective (empirical) probability mass function p.
Then the entropy of Y is defined as

H(Y ) = −∑
y

p(y) log2 (p(y))

and the conditional entropy of Y given X is given by

H(Y |X) =
∑

x

p(x)H(Y |X = x) =
∑

x

p(x)
(

−∑
y

p(y|x) log2 (p(y|x))
)

.

The entropy measures the uncertainty of the variable. When all possible values occur with
roughly the same probability, the entropy is high. If the probabilities of occurrence are very
different from each other, the entropy is low. The mutual information of two variables is
defined as

I(Y ; X) = H(Y ) − H(Y |X).
It can be interpreted as the decrease in uncertainty about Y conditional on knowing X.
Considering the symmetry property I(Y ; X) = I(X; Y ), it can also be seen as the amount of
information shared by X and Y . There are several filter methods based on mutual information,
see Hall (1999) and Brown et al. (2012). Continuous features have to be discretized before
applying these filters. In the following, filters from two toolboxes are described. They
calculate similar scores but differ in the way they discretize the features. The filters info.gain,
gain.ratio, and sym.uncert from the toolbox FSelectorRcpp (Zawadzki and Kosinski, 2018)
use the MDL method for discretization, while the filters MIM, MRMR, JMI, JMIM, DISR,
NJMIM, and CMIM from the toolbox praznik (Kursa, 2018) perform a discretization into
equally spaced intervals. Both discretization methods are explained in Subsection 3.1.6.

Filter info.gain uses
Jinfo.gain(Xk) = I(Y ; Xk),

the reduction of uncertainty about the class variable Y due to feature Xk, as the score for Xk.
The score of filter gain.ratio is the ratio of the mutual information and the entropy of

feature Xk

Jgain.ratio(Xk) = I(Y ; Xk)
H(Xk) .
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Out of two features with the same information about Y , this filter favors the feature with
the smaller entropy, for example the feature that attains less different values. The reason for
dividing by the entropy is to balance out the bias of the mutual information towards selecting
features that take many different values like credit card numbers or similar.

For filter sym.uncert, the score

Jsym.uncert(Xk) = 2 · I(Y ; Xk)
H(Xk) + H(Y )

is used. This score also reduces the bias towards features with many values and additionally,
the score is normalized to the range [0,1].

Filter MIM ranks all features according to the information they share with the class
variable Y

JMIM(Xk) = I(Y ; Xk).
This is the same score that filter info.gain uses as well. However, the filters differ in the way
they discretize the features.

The following filter methods calculate the scores of all features iteratively. Thus, the
features are selected in a greedy forward manner. Let S denote the set of features that are
already selected. S is initialized as S = {Xk} with k = argmax

j∈{1,...,p}
I(Y ; Xj). In each iteration,

the feature that maximizes the respective score is added to S.
Filter MRMR uses the score

JMRMR(Xk) = I(Y ; Xk) − 1
|S|

∑
Xj∈S

I(Xk; Xj).

The term I(Y ; Xk) measures the relevance of the feature based on the information this feature
has about Y . The term 1

|S|
∑

Xj∈S I(Xk; Xj) judges the redundancy of Xk by assessing the
mean information that the feature shares with the features in S. The idea is to find maximally
relevant and minimally redundant (MRMR) features.

For filter JMI, the score

JJMI(Xk) =
∑

Xj∈S

I(Y ; Xk, Xj)

is employed. I(Y ; Xk, Xj) is the amount of information about Y that Xk and Xj provide
jointly. This quantity can be calculated by using the multivariate variable X = (Xk, Xj)� and
its multivariate probability mass function in the definition of mutual information. The idea
of this score is to include features that are complementary to the already selected features.

Filter JMIM is a modification of filter JMI. The score

JJMIM(Xk) = min
Xj∈S

{I(Y ; Xk, Xj)}

considers the minimal joint information over all already selected features instead of the sum.
For filter DISR, the score

JDISR(Xk) =
∑

Xj∈S

I(Y ; Xk, Xj)
H(Y, Xk, Xj)

is used. Like JMI, it uses the information about Y provided jointly by Xk and Xj. But
additionally, this information is divided by the joint entropy of Y , Xk, and Xj. To obtain



3.1. Filter Methods for Feature Selection 13

this entropy, consider the multivariate variable Ỹ = (Y, Xk, Xj)� and plug it into the above
definition of the entropy. The reason for dividing by the entropy is avoiding the selection of
features that for example attain many different values, see filter gain.ratio.

Filter NJMIM is a modification of filter DISR. Its score

JNJMIM(Xk) = min
Xj∈S

{
I(Y ; Xk, Xj)
H(Y, Xk, Xj)

}

considers the minimal relative joint information over all already selected features instead of
the sum.

Filter CMIM has the score

JCMIM(Xk) = min
Xj∈S

{I(Y ; Xk|Xj)} .

It uses the conditional mutual information

I(Y ; Xk|Xj) = H(Y |Xj) − H(Y |Xk, Xj)

that can be interpreted as the difference in uncertainty about Y before and after Xk is known,
while Xj is known anyway. The idea is to select features that provide much information
about the class variable, given the information of the already selected features.

3.1.6 Discretization
Fayyad and Irani (1993) define the minimal description length (MDL) discretization method
for continuous features. Their discretization method works recursively: A feature is split into
two categories at an optimal cut point. Then, these categories are split recursively until a
stopping condition is reached. Let a1 < . . . < am denote the distinct attained values of the
feature to be discretized. Then the points 1

2 (a1 + a2) , . . . , 1
2 (am−1 + am) are considered as

cut points. The criterion for determining which of these cut points is optimal is the difference
in entropy of the class variable before and after the split. The cut point with the greatest
decrease in entropy is considered the best cut point. However, this split is only made if the
decrease in entropy exceeds a threshold. This threshold is chosen such that the decrease in
entropy is greater than the threshold if and only if the costs of performing the split are lower
than the costs of not performing it. The costs are assessed by the minimal description length,
which is an information theoretic measure. For details and formulas see Fayyad and Irani
(1993). Not carrying out a split because of falling below the threshold works as stopping
condition. When all recursions have stopped, the cut points ã1 < . . . < ãk have been selected.
The feature is then discretized into the categories (−∞, ã1], (ã1, ã2], . . . , (ãk, ∞). Note that
this method discretizes all values of a feature into one single category if the best cut point
does not cause enough decrease in entropy.

Kursa (2018) discretizes continuous features by cutting their ranges into q equally spaced
intervals and uses these intervals as categories. The number of intervals is determined as
q = max

{
min

{
n
3 , 10

}
, 2
}

where n is the number of observations in the data set.

3.1.7 Overview of all Considered Filter Methods
Table 3.1 gives an overview of all filter methods considered in this thesis. If the class variable
can be of type multi-class, also binary class variables are allowed. If categorical features are
required, continuous features are automatically discretized by the filter methods.
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Filter Concept Class
Variable

Features

anova.test univariate statistical test multi-class continuous or binary
limma univariate statistical test multi-class continuous or binary
sam univariate statistical test multi-class continuous or binary
kruskal.test univariate statistical test multi-class continuous or binary
chi.squared univariate statistical test multi-class categorical
auc univariate predictive performance two-class continuous
oneR univariate predictive performance multi-class categorical
variance feature variance arbitrary continuous
permutation random forest importance multi-class continuous or categorical
impurity random forest importance multi-class continuous or categorical
info.gain mutual information multi-class categorical
gain.ratio mutual information multi-class categorical
sym.uncert mutual information multi-class categorical
MIM mutual information multi-class categorical
MRMR mutual information multi-class categorical
JMI mutual information multi-class categorical
JMIM mutual information multi-class categorical
DISR mutual information multi-class categorical
NJMIM mutual information multi-class categorical
CMIM mutual information multi-class categorical

Table 3.1: Requirements on the class variable and on the features for all filter methods.

3.2 Classification Methods
Consider a data set with numeric features X1, . . . , Xp and class variable Y . In this thesis,
only data sets with two classes are considered. Classification methods aim to predict the
class of a new observation, given the values of the features X1, . . . , Xp. For this, they learn a
classification rule based on training data for which both the values of the features and the
class variable are available. In the following, different classification methods are presented.

3.2.1 Support Vector Machine
Support vector machines (Izenman, 2013, pp. 369 ff.) use the hyperplane in feature space
which is optimal with respect to the maximum margin principle as decision boundary for
class prediction. An illustration of this principle is given in Figure 3.1. If the classes are
linearly separable, the maximum margin principle means finding the hyperplane for which
all observations of the same class lie on the same side of the hyperplane and for which the
distance between the hyperplane and the closest observations per class is maximal. For an
illustration of the linear separable case, see Figure 3.1 and ignore the grey points. If the
classes are not linearly separable, slack variables are introduced to quantify how far the
observations lie on the wrong side of the separating hyperplane or inside the margin. This is
depicted by the grey points in Figure 3.1. Support vector machines have one hyperparameter
C > 0 that balances the maximization of the margin and the sum of the values of the
slack variables, that is, the importance of all observations lying on the correct side of the



3.2. Classification Methods 15

ξ1

ξ2

ξ3

ξ4

margin

Figure 3.1: Illustration of linear support vector machines. Circles denote observations of the
one class, triangles observations of the other class. Linear separable case: without
grey points, linear non-separable case: with grey observations. ξ1, . . . , ξ4 are slack
variables.

hyperplane and outside the margin. The larger the value of C, the less importance is given
to the maximization of the margin.

To change the shape of the separating hyperplane into something non-linear, kernel
functions are used. A popular type of kernel functions are radial basis functions (RBF).
Radial basis functions have an additional hyperparameter σ > 0 that determines the kernel
width and therefore the shape of the transformed hyperplane. Support vector machines use
all features, so no embedded feature selection is conducted.

3.2.2 k Nearest Neighbors
The method k nearest neighbors classifies a new observations by a majority vote of the k
closest observataions in the training data set (Larose and Larose, 2014, pp. 149 ff.). For
measuring the distance between observations, the Euclidean norm based on all features is
used. k ∈ N is a hyperparameter. For small values of k, only few observations that lie close
to the new observation are considered for the majority vote. For large values of k, many
observations are included in the vote, some of them possibly lying far away from the new
observation.

3.2.3 Regularized Logistic Regression
The ordinary logistic regression model is given by

P (Y = 1|x1, . . . , xp) = exp(β0 + β1x1 + β2x2 + · · · + βpxp)
1 + exp(β0 + β1x1 + β2x2 + · · · + βpxp)

with Y ∈ {0, 1} denoting the class variable and x1, . . . , xp are the values of the features
X1, . . . , Xp for a given observation. The regression coefficients β0, . . . , βp are estimated by
maximizing the log likelihood (LL) of the model (Izenman, 2013, pp. 250 ff.). If the number
of features exceeds the number of observations in the training data set, the estimation of
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the regression coefficients is not possible. To overcome this problem, regularization can be
applied. Regularization means that for the estimation of β := (β0, . . . , βp)� the function

rq(β) = LL − λ ||β||q
instead of just the log likelihood is maximized (Izenman, 2013, pp. 150 ff.). ||β||q denotes the
Lq-norm of β with q ∈ N0. λ ≥ 0 is a hyperparameter that balances the goodness of the fit
and the size of the regression coefficients. The larger the value of λ, the more importance is
given to a small size of the regression coefficients measured by the Lq-norm.

For q = 2, the regularization corresponds to the ridge penalty. The ridge penalty is known
to shrink all coefficients towards zero but it does not perform feature selection. For q = 1,
the regularization corresponds to the lasso penalty. With the lasso penalty, typically only a
subset of the coefficients obtains non-zero estimates. By this, embedded feature selection
is conducted. Depending on the implementation, the L1-penalty fails at picking only one
feature out of a group of identical features. The reason is that the L1-penalty attains the
same value if only one of these features has a non-zero coefficient or if this coefficient value is
divided among several of the features.

For q = 0, the penalty term counts the number of non-zero coefficients. This leads to
sparse models, also in the case of identical features. Finding the optimum of r0 is NP-hard but
can be achieved with mixed integer optimization for data sets with less than 1 000 features
(Hazimeh and Mazumder, 2020). To solve the optimization problem also for larger data
sets within acceptable run time, Hazimeh and Mazumder (2020) present an approximate
algorithm based on coordinate descent and local combinatorial optimization. For numerical
reasons, in this thesis, r̃0(β) = LL − λ ||β||0 − 0.01 ||β||2 is optimized instead of r0.

3.2.4 Gradient Boosting
Gradient boosting (Hofner et al., 2014; Bühlmann and Yu, 2003) combines many weak
classification methods, so called base learners, into one strong classification method. The
resulting classification rule minimizes the mean misclassification costs on the training data
measured by an arbitrary loss function. For generalized linear models (glm) boosting, the
loss function is chosen as the negative log likelihood that is used for the estimation of the
regression coefficients of the generalized linear model. So, the minimization problem can be
written as

R(f) = 1
n

n∑
i=1

ρ(yi, f(xi1, . . . , xip)) → min!

where f denotes the optimal classification rule to be found, ρ is the loss function, and
yi, xi1, . . . , xip are the observed values for the i-th observation, i = 1, . . . , n. To solve
the minimization problem, gradient descent is applied. Gradient descent is an iterative
optimization method that starts with a solution f [0] and updates this solution in each
iteration by taking a step of length ν in the direction of steepest descent:

f [j] = f [j−1] − ν
∂̂R(f)

∂f

∣∣∣∣∣
f=f [j−1]

.

Let h1, . . . , hb denote the b base learners. Typically, b = p and each base learner uses only
one of the features X1, . . . , Xp. Each base learner has a parameter vector θ. For example,
h1, . . . , hb can be univariate linear models and θ1, . . . , θb the respective regression coefficients.
For initialization, f [0] is chosen as the constant function that minimizes R among all constant
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functions. It serves as an offset and the base learners consequently do not need an intercept
term. In the j-th iteration, the negative gradient

− ∂R(f)
∂f

∣∣∣∣∣
f=f [j−1]

= 1
n

n∑
i=1

−∂ρ (yi, f)
∂f

∣∣∣∣∣
f=f [j−1](xi1,...,xip)︸ ︷︷ ︸
:=ui

needs to be approximated by a base learner. To do so, all base learners are fitted to predict
the ui based on the values xi1, . . . , xip, i = 1, . . . , n. That is, for each base learner hk, θ̂k is
chosen such that

U(hk) = 1
n

n∑
i=1

ρ
(
ui, hk

(
θ̂k, xi1, . . . , xip

))
is minimal. Among the fitted base learners, the one that approximates the negative gradient
best, that is, the one with smallest value U(hk) is chosen and denoted as h

[j]
∗ . Then the

gradient descent update is calculated as

f [j] = f [j−1] + νh[j]
∗ .

After n.iter iterations, gradient descent terminates. The final classification rule is

f̂ = f [0] +
n.iter∑
j=1

νh[j]
∗ .

For class prediction of a new observation, the n.iter fitted base learners h
[1]
∗ , . . . , h

[n.iter]
∗

classify the new observation. Then, the vote

f̂(x1, . . . , xp) = f [0](x1, . . . , xp) +
n.iter∑
j=1

νh[j]
∗ (x1, . . . , xp)

is calculated and the class is predicted as ŷ = sign(f̂(x1, . . . , xp)), assuming that the classes
are labeled “1” and “-1”. Note that the predicted values of the base learners are not required
to equal 1 or −1.

The number of boosting iterations n.iter is a hyperparameter. It is an upper limit for
the number of base learners and thereby for the number of features that can be part of
the classification rule. So, embedded feature selection is performed by the selection of the
corresponding base learners in the boosting update iterations.

3.2.5 Random Forest
Random forests (Izenman, 2013, pp. 536 ff.) are ensembles of classification trees (Izenman,
2013, pp. 281 ff.). For class prediction, a new observation is classified by all trees and then a
majority vote is conducted. To construct a random forest, ntree classification trees are built.
For each tree, a bootstrap sample of the training data set is drawn and the tree is built using
only these observations. For finding the best split in each node, mtry randomly selected
features are considered. Splitting is conducted until further splits would lead to terminal
nodes with less than nodesize observations. The trees are not pruned. Due to the randomness
in its construction process, the resulting random forest is not deterministic. That is, two
random forests constructed with the same values of the hyperparameters for the same data
set will generally be different, unless the same seed for the random number generator is used.
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The more trees there are in the forest, the better the model is fitted to the training data
set. The larger the value of mtry, the less diverse are the trees. The larger the value of
nodesize, the lower is the depth of the trees. For more details about the influence of the
hyperparameters see Probst et al., 2019. The features that are included in a random forest
model can be assessed by checking which features are assigned variable importance values
(see Subsection 3.1.4) greater than 0.

3.2.6 Classification Accuracy
To evaluate the predictive performance of a classification method on a binary classification
data set, the accuracy is defined as

accuracy = number of correctly classified observations
number of all classified observations .

The accuracy takes values in the interval [0, 1]. The higher the accuracy, the better the
predictive performance of the classification method.

3.3 Feature Selection Stability
This section is about feature selection stability. In Subsection 3.3.1, feature selection stability
is explained. Many measures for the assessment of feature selection stability are defined in
Subsection 3.3.2. In Subsection 3.3.3, stability selection is described.

3.3.1 Definition of Feature Selection Stability
Kalousis et al. (2007) define the stability of a feature selection algorithm as the robustness
of the set of selected features towards different data sets from the same data generating
distribution. They explain that feature selection stability indicates how strongly different
training data sets affect the sets of selected features. For similar data sets, a stable feature
selection algorithm selects similar sets of features. An example for similar data sets could
be data coming from different studies measuring the same features, possibly conducted at
different places and times, as long as the assumption of the same underlying distribution is
valid. Another example is that one data set is split into parts for resampling.

Especially in domains where the selected features are subject to further research, the
stability of feature selection is very important. If for similar training data sets very different
sets of features are selected, this questions not only the reliability of the resulting models but
could also lead to unnecessary expensive experimental research.

A lack of stability has three main reasons: too few observations in a data set, highly
similar features and equivalent sets of features. Consider a group of data sets, for which the
number of observations does not greatly exceed the number of features, from the same data
generating process. The subsets of features with maximal predictive quality on the respective
data sets often differ between these data sets. One reason is that there are features that seem
beneficial for prediction, but that only help on the specific data set and not on new data
from the same process. Selecting such features and including them in a predictive model
typically causes over-fitting. Another reason is that there are features with small differences
in predictive quality even though they are unrelated with respect to their content. Due to
the small number of observations, chance has a large influence on which of these features has
highest predictive quality. The instability of feature selection resulting from both reasons is
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undesirable. Regarding the case of highly similar and therefore almost identical features, it is
likely that for some data sets from the underlying data generating process, one feature is
selected and for other data sets from the same process, another one of the similar features is
selected. As the features are almost identical, it makes sense to label this as stable because
the feature selection algorithm always chooses a feature with the same information - just
with a different identifier. Therefore, it is desirable to have a stability measure that takes
into account the reason for the differences in the sets of selected features. However, most
existing stability measures treat both situations equally: if the identifiers of the selected
features are different, the feature selection is rated unstable. Regarding the case of equivalent
feature sets, for some data sets, there are different sets of features that contain exactly the
same information. Finding all equivalent optimal subsets of features is an active field of
research, see for example Statnikov et al. (2013), and worst-case intractable. The selection
of equivalent subsets of features is evaluated as unstable by all existing stability measures.
Creating stability measures that can recognize equivalent sets of features is out of scope for
this thesis.

3.3.2 Stability Measures
In this subsection, 20 stability measures are defined. For this, the following notation is used:
Assume that there is a data generating process that generates observations of the p features
X1, . . . , Xp. Further, assume that there are m data sets that are generated by this process.
A feature selection method is applied to all data sets. Let Vi ⊆ {X1, . . . , Xp}, i = 1, . . . , m,
denote the set of selected features for the i-th data set and |Vi| the cardinality of this set.
The feature selection stability is assessed based on the similarity of the sets V1, . . . , Vm.

Stability measures that only allow for m = 2 sets or require |V1| = . . . = |Vm| are not
considered in this thesis because they are not suitable for the applications in Chapters 7
and 8. Remarks on the requirements with respect to the sets V1, . . . , Vm in order for each
stability measure to be well-defined are given in Appendix B.1. Most stability measures are
undefined in some extreme situations with all or no features being selected which invokes a
division by zero. For all stability measures, large values correspond to high stability and small
values correspond to low stability. Properties of the measures are discussed in Section 6.1.

3.3.2.1 Intersection Based Stability Measures

The following stability measures assess the similarity of the sets V1, . . . , Vm based on the
cardinalities of all pairwise intersections |Vi ∩ Vj|. Two sets Vi and Vj are considered to
be similar if their overlap is large, that is, if |Vi ∩ Vj| takes a large value. The measures
standardize the cardinalities of the intersections in different ways. Then, they calculate the
average of all standardized scores. Three simple intersection based stability measures are

SMJ = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

|Vi ∩ Vj|
|Vi ∪ Vj| (Jaccard, 1901),

SMD = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

|Vi ∩ Vj|
1
2 (|Vi| + |Vj|) (Dice, 1945), and

SMO = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

|Vi ∩ Vj|√
|Vi| · |Vj|

(Ochiai, 1957).
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The scores differ in the choice of denominator. All of the denominators are upper bounds for
|Vi ∩ Vj|, making 1 the maximum value of each score.

Dunne et al. (2002) present a stability measure that is based on the Hamming distance
between Vi and Vj and therefore considers both the number of features that are included in
both Vi and Vj and the number of features that is included in neither of them:

SMH = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

|Vi ∩ Vj| +
∣∣∣V c

i ∩ V c
j

∣∣∣
p

.

For all of the aforementioned measures, the expected value for a random feature selection
depends on the number of selected features, see Section 6.1. The more features are selected,
the larger is the expected stability value. To avoid this, the following stability measures
subtract |Vi|·|Vj |

p
in the numerator. This is the expected value of |Vi ∩ Vj| for two random sets

of cardinalities |Vi| and |Vj| and equal selection probabilities for all features. By doing this,
the expected stability values for a random feature selection becomes 0, independent of the
number of selected features. The measures differ in the way they normalize the pairwise
scores in the denominator.

SML = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

|Vi ∩ Vj| − |Vi|·|Vj |
p

min{|Vi| , |Vj|} − max{0, |Vi|+ |Vj|−p} (Lustgarten et al., 2009)

SMW = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

|Vi ∩ Vj| − |Vi|·|Vj |
p

min{|Vi| , |Vj|} − |Vi|·|Vj |
p

(Wald et al., 2013)

SMU = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

|Vi ∩ Vj| − |Vi|·|Vj |
p√

|Vi| · |Vj| − |Vi|·|Vj |
p

(Bommert and Rahnenführer, 2020)

SMK = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

|Vi ∩ Vj| − |Vi|·|Vj |
p

|Vi|+|Vj |
2 − |Vi|·|Vj |

p

(Carletta, 1996)

SMP = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

|Vi ∩ Vj| − |Vi|·|Vj |
p√

|Vi| ·
(
1 − |Vi|

p

)
· |Vj| ·

(
1 − |Vj |

p

) (Nogueira and Brown, 2016)

For SMK and SMP, the pairwise scores are coefficients for the agreement in contingency
tables. They correspond to the κ-coefficient (SMK) and to the φ-coefficient (SMP).

3.3.2.2 Frequency Based Stability Measures

Frequency based stability measures assess the stability based on the selection frequencies
of all features X1, . . . , Xp. They evaluate such situations as stable in which all features are
either selected for all of the sets or for none of them. A feature that is only selected for some
of the m sets decreases the stability score. Let hj, j = 1, . . . , p, denote the number of sets Vi

that contain feature Xj so that hj is the absolute frequency with which feature Xj is selected.
Also, let q = ∑p

j=1 hj = ∑m
i=1 |Vi| denote the total number of selected features.

Novovičová et al. (2009) present the entropy-based stability measure

SME = 1
q log2(m)

∑
j:Xj∈

⋃m

i=1 Vi

hj log2(hj).
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Davis et al. (2006) define the stability measure

SMD-α = max
⎧⎨⎩0,

1
|⋃m

i=1 Vi|
p∑

j=1

hj

m
− α

p
· median (|V1| , . . . , |Vm|)

⎫⎬⎭ .

The minuend rewards high selection frequencies while the subtrahend penalizes large sets of
selected features. The larger the value of α ≥ 0, the more important it is to the stability
measure that only few features are selected.

The relative weighted consistency is defined by Somol and Novovičová (2008) as

SMS =

(
p∑

j=1

hj

q

hj−1
m−1

)
− cmin

cmax − cmin
with

cmin = q2 − p(q − q mod p) − (q mod p)2

pq(m − 1) ,

cmax = (q mod m)2 + q(m − 1) − (q mod m) m

q(m − 1) .

Calculating hj−1
m−1 scales the positive absolute frequencies to [0,1]. All scaled frequencies with

hj > 0 are assigned the weight hj

q
. The standardization with cmin and cmax makes 0 the

minimum and 1 the maximum attainable value for SMS.
Nogueira (2018) presents a stability measure that is based on the variances s2

j of the
Bernoulli variables that describe the selection of the features:

SMN = 1 −
1
p

p∑
j=1

s2
j

q
mp

(
1 − q

mp

) with

s2
j = m

m − 1
hj

m

(
1 − hj

m

)
.

3.3.2.3 Adjusted Stability Measures

All of the previously defined stability measures do not take into account similarities between
the features X1, . . . , Xp. These measures are called “unadjusted” in this thesis. Now, stability
measures that include an adjustment for similar features are presented. The basic idea of
adjusted stability measures is to adjust the scores |Vi ∩ Vj| in a way that different but highly
similar features count towards stability.

Zucknick et al. (2008) extend the stability measure SMJ, considering the correlations
between the features:

SMZ = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

|Vi ∩ Vj| + C(Vi, Vj) + C(Vj, Vi)
|Vi ∪ Vj| with

C(Vi, Vj) =
∑
x∈Vi

1
|Vj|

∑
y∈Vj\Vi

|Cor(x, y)| I[θ,∞) (|Cor(x, y)|) .

|Cor(x, y)| is the absolute Pearson correlation between x and y, θ ∈ [0, 1] is a threshold,
and I denotes the indicator function. This stability measure can be generalized by allowing
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arbitrary similarity values in the interval [0, 1] instead of the absolute correlations. If there
are no similar features, SMZ is identical to SMJ.

Sechidis et al. (2020) extend the stability measure SMN so that it takes into account
feature similarities. They call their new measure “effective stability” because it measures the
stability of the information effectively contained in the sets of selected features. The stability
measure is defined as

SMES = 1 − trace(CS)
trace(CΣ) .

C ∈ Rp×p denotes the matrix of feature similarities. Matrix C can be chosen arbitrarily as
long as the requirements cij = cji ∀i 
= j, cij ∈ [0, 1] ∀i 
= j, and cii = 1 ∀i ∈ {1, . . . , p} are
met. The matrices S ∈ Rp×p and Σ ∈ Rp×p are defined as

Sij = m

m − 1

(
hij

m
− hi

m

hj

m

)
,

Σij =

⎧⎪⎪⎨⎪⎪⎩
q

mp

(
1 − q

mp

)
, i = j,

1
m

m∑
i=1

|Vi|2− q
m

p2−p
− q2

m2p2 , i 
= j,

with hj denoting the number of sets that include feature Xj, hij indicating the number of
sets that include both Xi and Xj, and q = ∑p

j=1 hj = ∑m
i=1 |Vi|. Matrix S is an empirical

covariance matrix, generalizing the variance terms s2
j in SMN. Matrix Σ is the theoretical

covariance matrix under the assumption of a random feature selection with identical selection
probabilities for all features and generalizes the denominator in SMN. If C equals the identity
matrix, SMES is identical to SMN.

Zhang et al. (2009) also present stability measures that take into account similarities.
Their scores are developed for the comparison of two gene lists. The scores they define are

nPOGRij = K + Oij − E [K + Oij]
|Vi| − E [K + Oij]

with ij ∈ {12, 21}. K is defined as the number of genes that are included in both lists and
regulated in the same direction. Oij denotes the number of genes in list i that are not in
list j but significantly positively correlated with at least one gene in list j. For each pair of
gene lists, two stability scores are obtained.

Yu et al. (2012) combine the two scores nPOGRij and nPOGRji into one score for the
special case |Vi| = |Vj|:

nPOGR =
K + Oij+Oji

2 − E
[
K + Oij+Oji

2

]
|Vi| − E

[
K + Oij+Oji

2

]
We generalize this score to be applicable in the general context of feature selection with
arbitrary feature sets V1, . . . , Vm by . . .

1. . . . replacing the quantity K by |Vi ∩ Vj|.
2. . . . allowing the similarities between the features to be assessed by an arbitrary similarity

measure instead of only considering significantly positive correlations, that is, replacing
Oij+Oji

2 by A(Vi,Vj)+A(Vj ,Vi)
2 with A defined below.
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3. . . . replacing |Vi|, which is the maximum value of K + Oij+Oji

2 , by |Vi|+|Vj |
2 , the maximum

value of |Vi ∩ Vj| + A(Vi,Vj)+A(Vj ,Vi)
2 (see Appendix B.1, p. 159 f.).

4. . . . calculating the average of the scores for all pairs Vi, Vj, i < j.

As a result, the stability measure

SMY = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

|Vi ∩ Vj| + A(Vi,Vj)+A(Vj ,Vi)
2 − E

[
|Vi ∩ Vj| + A(Vi,Vj)+A(Vj ,Vi)

2

]
|Vi|+|Vj |

2 − E
[
|Vi ∩ Vj| + A(Vi,Vj)+A(Vj ,Vi)

2

]
with A(Vi, Vj) = |{x ∈ (Vi \ Vj) : ∃y ∈ (Vj \ Vi) with similarity(x, y) ≥ θ}|

is obtained. E denotes the expected value for a random feature selection and can be assessed
with the same Monte-Carlo procedure as described on page 25 for SMA. Similarity(x, y) ∈ [0, 1]
quantifies the similarity of the two features x and y and θ ∈ [0, 1] is a threshold.

If there are no similar features, SMY is identical to SMK. In situations where Vi and Vj

greatly differ in size and contain many similar features, the value of SMY may be misleading.
Consider a scenario with |Vi| � |Vj|, |Vi ∩ Vj| = 0, A(Vi, Vj) = |Vi|, and A(Vj, Vi) = |Vj|. In
such situations, there are many features in the larger set that are similar to the same feature
in the smaller set. Even though the sets Vi and Vj greatly differ with respect to feature
redundancy and resulting effects for model building such as over-fitting, the stability score
attains its maximum value.

To overcome this drawback, in Bommert and Rahnenführer (2020), we define a new
stability measure employing an adjustment Adj(Vi, Vj) different from A(Vi,Vj)+A(Vj ,Vi)

2 that
fulfills

max [|Vi ∩ Vj| + Adj(Vi, Vj)] ≤ max
[∣∣∣Ṽi ∩ Ṽj

∣∣∣] with
∣∣∣Ṽi

∣∣∣ = |Vi| and
∣∣∣Ṽj

∣∣∣ = |Vj| .

This means that the adjusted score for Vi and Vj cannot exceed the value of
∣∣∣Ṽi ∩ Ṽj

∣∣∣ that
would be obtained if two sets Ṽi and Ṽj with

∣∣∣Ṽi

∣∣∣ = |Vi| and
∣∣∣Ṽj

∣∣∣ = |Vj| were selected such
that their overlap is maximal. This happens when Ṽi ⊆ Ṽj or Ṽj ⊆ Ṽi. The resulting measure
is

SMA = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

|Vi ∩ Vj| + Adj(Vi, Vj) − E [|Vi ∩ Vj| + Adj(Vi, Vj)]
UB [|Vi ∩ Vj|] − E [|Vi ∩ Vj| + Adj(Vi, Vj)]

with UB [|Vi ∩ Vj|] denoting an upper bound for |Vi ∩ Vj|. Four different adjustments are
considered. They are listed in Table 3.2.

For the adjustment of SMA-MBM, a graph is constructed. In this graph, each feature
of (Vi \ Vj) ∪ (Vj \ Vi) is represented by a vertex. Vertices x ∈ Vi \ Vj and y ∈ Vj \ Vi are
connected by an edge, if and only if similarity(x, y) ≥ θ. Figure 3.2 shows an example of such
a graph. An edge in the graph means that the corresponding features of the two connected
vertices should be seen as exchangeable for stability assessment. A matching of a graph is
defined as a subset of its edges such that none of the edges share a vertex (Rahman, 2017,
p. 63). A maximum matching is a matching that contains as many edges as possible. The
size of the maximum matching is the number of edges that are included in the maximum
matching. In Figure 3.2, the size of the maximum matching is 2. The size of the maximum
matching can be interpreted as the maximum number of features in Vi \ Vj and Vj \ Vi that
should be seen as exchangeable for stability assessment with the restriction that each feature
in Vi \ Vj may only be seen as exchangeable with at most one feature in Vj \ Vi and vice versa.
There are no edges between vertices that both correspond to features of Vi \ Vj or Vj \ Vi, so
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Name Adjustment
SMA-MBM AdjMBM(Vi, Vj) = size of maximum bipartite matching (Vi \ Vj, Vj \ Vi)
SMA-Greedy AdjGreedy(Vi, Vj) = greedy choice of most similar pairs of features

determined by Algorithm 3.1 (introduced on page 25)
SMA-Count AdjCount(Vi, Vj) = min{A(Vi, Vj), A(Vj, Vi)} with A as defined for SMY
SMA-Mean AdjMean(Vi, Vj) = min{M(Vi, Vj), M(Vj, Vi)}

with M(Vi, Vj) = ∑
x∈Vi\Vj :|Gij

x |>0

1
|Gij

x |
∑

y∈Gij
x

similarity(x, y)

and Gij
x = {y ∈ Vj \ Vi : similarity(x, y) ≥ θ}

Table 3.2: Adjustment functions for the stability measure SMA.

the graph is bipartite (Rahman, 2017, p. 17). For the calculation of a maximum matching
for a bipartite graph, there exist suitable algorithms (Hopcroft and Karp, 1973).

The calculation of the maximum bipartite matching has the computational complex-
ity O

(
(number of vertices + number of edges) · √

number of vertices
)

(Hopcroft and Karp,
1973) and hence can be very time consuming. Therefore, a new greedy algorithm for choosing
the most similar pairs of features is introduced in Algorithm 3.1. It is used to calculate the
adjustment in SMA-Greedy. The return value of the algorithm is always smaller than or
equal to the size of the maximum bipartite matching of the corresponding graph, as shown in
Appendix B.1 on page 160. The computational complexity of the algorithm is dominated by
the sorting of the edges and therefore equals O (number of edges · log(number of edges)).

For SMA-Count, A(Vi, Vj) is the number of features in Vi that are not included in Vj but
that have a similar feature in Vj \ Vi. The minimum min{A(Vi, Vj), A(Vj, Vi)} is used in order
to guarantee that the adjusted score for Vi and Vj cannot exceed the value of

∣∣∣Ṽi ∩ Ṽj

∣∣∣ that
would be obtained if two sets Ṽi and Ṽj with

∣∣∣Ṽi

∣∣∣ = |Vi| and
∣∣∣Ṽj

∣∣∣ = |Vj| were selected such

1

2

3

4

Vi \ Vj

5

6

7

Vj \ Vi

Figure 3.2: Example for a maximum bipartite matching. The bold edges belong to the
maximum matching. The maximum matching is not unique for this graph.
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input : Sets Vi and Vj and similarity values similarity(x, y) ∀x ∈ Vi \ Vj, y ∈ Vj \ Vi

output : AdjGreedy(Vi, Vj)
1 size = 0
2 LA = [X, Y, S] = list of tuples x ∈ Vi \ Vj, y ∈ Vj \ Vi, similarity(x, y) with

similarity(x, y) ≥ θ, sorted decreasingly by similarity values
3 LB = empty list
4 while length of LA > 0 do
5 [x, y, s] = first tuple of LA

6 add [x, y, s] to LB

7 remove all tuples in LA that contain x or y

8 end
9 return length of LB

Algorithm 3.1: Greedy choice of the most similar pairs of features.

that their overlap is maximal. For the situation in Figure 3.2, the adjustment of SMA-Count
also has the value 2, because A(Vi, Vj) = 4 and A(Vj, Vi) = 2. min{A(Vi, Vj), A(Vj, Vi)} is
always larger than or equal to the size of the maximum bipartite matching, see Appendix B.1
page 160 f. In Figure 3.2, min{A(Vi, Vj), A(Vj, Vi)} would be larger than the size of the
maximum bipartite matching if an edge between the vertices 1 and 7 was added.

The adjustment of SMA-Mean is very similar to the one of SMA-Count. While A(Vi, Vj)
counts the number of features in Vi \ Vj that have a similar feature in Vj \ Vi, M(Vi, Vj) sums
up the mean similarity values of the features in Vi \ Vj to their similar features in Vj \ Vi.
If there are no similarity values of features in Vi \ Vj and Vj \ Vi in the interval [θ, 1), the
adjustments of SMA-Count and SMA-Mean are identical. Otherwise, the adjustment of
SMA-Mean is smaller than the adjustment of SMA-Count, see Appendix B.1 page 160 f.

The expected values E [|Vi ∩ Vj| + Adj(Vi, Vj)] cannot be calculated with a universal
formula as they depend on the data specific similarity structure. However, they can be
estimated by repeating the following Monte-Carlo procedure N times: 1. Randomly draw sets
Ṽi ⊆ {X1, . . . , Xp} and Ṽj ⊆ {X1, . . . , Xp}, with

∣∣∣Ṽi

∣∣∣ = |Vi|,
∣∣∣Ṽj

∣∣∣ = |Vj|, and equal selection
probabilities for all features. 2. Calculate the score

∣∣∣Ṽi ∩ Ṽj

∣∣∣+Adj(Ṽi, Ṽj). An estimate for the
expected value E [|Vi ∩ Vj| + Adj(Vi, Vj)] is the average of the N scores. Zhang et al. (2009)
suggest conducting N = 10 000 repetitions. In situations with very small values of p and m,
the expected values can be determined exactly by considering all possible combinations of
sets Ṽi ⊆ {X1, . . . , Xp} and Ṽj ⊆ {X1, . . . , Xp} with

∣∣∣Ṽi

∣∣∣ = |Vi| and
∣∣∣Ṽj

∣∣∣ = |Vj|.
Concerning the upper bounds UB [|Vi ∩ Vj|], it can easily be seen that min{|Vi| , |Vj|}

is the tightest upper bound for |Vi ∩ Vj|. However, this upper bound is not a good choice
for UB [|Vi ∩ Vj|] because the stability measure could attain its maximum value for sets
Vi � Vj or Vj � Vi. To avoid this, UB [|Vi ∩ Vj|] must depend on both |Vi| and |Vj|.
Possible choices are for example |Vi|+|Vj |

2 or
√

|Vi| · |Vj|. These choices are upper bounds for
|Vi ∩ Vj| and they are met if and only if Vi = Vj. For |Vi| 
= |Vj|, the bounds differ and
min {|Vi| , |Vj|} ≤

√
|Vi| · |Vj| ≤ |Vi|+|Vj |

2 holds (see Appendix B.1, p. 150 f.) which makes√
|Vi| · |Vj| more suitable. Therefore, we use UB [|Vi ∩ Vj|] =

√
|Vi| · |Vj|. If there are no

similar features in the data set, all SMA variants are identical to SMU, independent of the
choice of adjustment.
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3.3.3 Stability Selection
Stability selection (Meinshausen and Bühlmann, 2010; Shah and Samworth, 2013) is a flexible
framework for selecting a stable subset of features. It can be combined with any feature
selection algorithm for which the number of features to choose can be set. The basic idea is
to repeatedly apply the feature selection algorithm on subsamples of a given data set and to
finally select the features that have been selected for sufficiently many subsamples.

More precisely, B subsamples of size �n/2�, with n denoting the number of observations
in the data set, are drawn and the remaining parts of the data set are used as subsamples as
well (complementary pairs, Shah and Samworth, 2013), resulting in 2B subsamples. For each
of the subsamples, the feature selection algorithm is applied and selects q features. Then,
for each feature Xi, the selection frequency π̂i, that is, the fraction of subsamples for which
feature Xi has been selected, is calculated. The set of finally selected features is defined as
{Xi : π̂i ≥ πthr} where πthr ∈ [0, 1] is an arbitrary threshold. This procedure controls the
per-family error rate (PFER), that is, the expected number of uninformative features that
are selected. An upper bound is given by PFER ≤ q2

(2πthr−1)p (Meinshausen and Bühlmann,
2010) where p denotes the total number of features in the data set. q, πthr, and PFER are
hyperparameters and it is not obvious to which values they should be set. It is sufficient to
set two of them, the third one can be calculated based on the upper bound for PFER. A
major drawback of stability selection is its enormous run time.

3.4 Multi-Criteria Optimization
In this section, the multi-criteria optimization problem is defined and an algorithm for solving
it is presented. As the solution of a multi-criteria optimization problem usually is a set of
points, an algorithm for automatically selecting a good point from this set is introduced.

3.4.1 Optimization Problem
Let M be some finite set and f : M → Rt an objective function to maximize. For example,
M could be the set of configurations of classification methods that have been evaluated
and f1, . . . , ft could be t performance criteria. Note that each minimization problem can
be transformed into a maximization problem by multiplication with −1. If t = 1 holds, all
points in the image f(M) = {y ∈ Rt : ∃x ∈ M with f(x) = y} are comparable and therefore
f(M) has a distinct maximum. However, when t ≥ 2 holds, some of the elements of f(M)
may not be comparable: they may be smaller in one component and larger in another one.
The set f(M) thus does not necessarily have a distinct maximum. Instead, there will likely
be a set of incomparable maximal points which is called the Pareto front. A point y ∈ Rt

Pareto dominates another point z ∈ Rt if and only if ∀i = 1, . . . , t : yi ≥ zi and ∃j ∈
{1, . . . , t} : yj > zj. The Pareto front is the subset of f(M) that contains no dominated
points: PF = {y ∈ f(M) : �z ∈ f(M) that dominates y}. The set {x ∈ M : f(x) ∈ PF} is
called Pareto set. For a more detailed introduction in multi-criteria optimization and Pareto
optimality see Miettinen (2004, pp. 5 ff.).

3.4.2 Optimization Algorithm
There exist many optimization algorithms for finding the Pareto front or the Pareto set,
respectively. Popular approaches include evolutionary and model-based algorithms. Coello
Coello et al. (2007) present an overview of evolutionary algorithms and Horn et al. (2015)
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give an overview of model-based algorithms for multi-objective optimization. All of these
optimization strategies are iterative procedures and therefore have long run times, especially
if the evaluation of the objective function f takes long.

A very simple optimization algorithm is random search (Bergstra and Bengio, 2012): N
values x ∈ M are drawn at random and f(x) is calculated. N denotes a given budget of
evaluations of f . Then, the Pareto front and the Pareto set are estimated by calculating
the subset of non-dominated points of the set of evaluated x-values. For N → ∞, these
estimates converge with probability 1 to the true Pareto front and Pareto set (Laumanns
and Zenklusen, 2011). The main advantage of a random search is that the calculations of
f(x) for the N randomly selected x-values can be conducted in parallel. Therefore, on high
performance compute clusters, performing a random search is faster than the more elaborate
iterative algorithms by orders of magnitude.

3.4.3 Selection of Points from Pareto Front
Having obtained a Pareto front, it often is desirable to choose one point from the front
that provides a good compromise between the objectives. In the following, an algorithm for
choosing such a point in an automated way is presented for the bi-objective maximization
problem of finding a configuration with maximal predictive accuracy and maximal feature
selection stability. The algorithm can be used for arbitrary bi-objective maximization problems
and it can easily be extended for more than two objectives. Here, accuracy and stability are
used as objectives, because this is the use case in this thesis.

Algorithm 3.2 states the algorithm “ε-constraint selection”. It implements an a posteriori
ε-constraint scalarization method, see Miettinen (2008) for more details on scalarization
methods. Figure 3.3 illustrates the procedure of Algorithm 3.2. With ε-constraint selection,
only the configurations that achieve high predictive accuracy are considered. More precisely,
only configurations, whose predictive accuracy deviates at most acc.const from the best
accuracy that was observed among all configurations, are considered. If acc.const is set
to 0, this corresponds to single-objective optimization of the predictive accuracy. Of the
remaining configurations, the configurations with comparably low feature selection stability
are discarded. Then, the best configuration is chosen based on predictive accuracy. So,
the focus of ε-constraint selection is selecting a configuration with high predictive accuracy.
Avoiding configurations with low stability is the secondary criterion.
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input : All configurations, constants acc.const, stab.const ∈ [0, 1]
output : Best configuration

1 Determine maximal accuracy acc.max among all configurations.
2 Remove all configurations with accuracy < acc.max − acc.const.
3 Among the remaining configurations, determine the maximal stability stab.max.
4 Remove all configurations with stability < stab.max − stab.const.
5 Among the remaining configurations, determine the maximal accuracy acc.max.end.
6 Remove all configurations with accuracy < acc.max.end.
7 if more than one configuration left then
8 Among the remaining configurations, determine the maximal stability stab.max.end.
9 Remove all configurations with stability < stab.max.end.

10 end
11 if more than one configuration left then
12 Randomly choose one of the remaining configurations.
13 end
14 return Best configuration.

Algorithm 3.2: ε-constraint selection

−0.25

0.00

0.25

0.50

0.75

1.00

0.850 0.875 0.900 0.925 0.950
Accuracy

St
ab

ilit
y

Line 1

−0.25

0.00

0.25

0.50

0.75

1.00

0.850 0.875 0.900 0.925 0.950
Accuracy

St
ab

ilit
y

Line 2

−0.25

0.00

0.25

0.50

0.75

1.00

0.850 0.875 0.900 0.925 0.950
Accuracy

St
ab

ilit
y

Line 3

−0.25

0.00

0.25

0.50

0.75

1.00

0.850 0.875 0.900 0.925 0.950
Accuracy

St
ab

ilit
y

Line 4

−0.25

0.00

0.25

0.50

0.75

1.00

0.850 0.875 0.900 0.925 0.950
Accuracy

St
ab

ilit
y

Line 5 + 6

acc.max acc.max − acc.const acc.max.end stab.max stab.max − stab.const

Figure 3.3: Illustration of Algorithm 3.2.
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Chapter 4

Data Sets and Software

In this chapter, the data sets and software used for the analyses in the following chapters are
presented.

4.1 Data Sets
Most analyses are based on 12 classification data sets from various domains. These data sets
have been selected considering four categories of data set sizes with p denoting the number
of features and n denoting the number of observations in the data sets:

small p ≤ n: p ∈ [50, 500] and n ∈ [p, 3 000]
large p ≤ n: p ∈ (500, 2 000] and n ∈ [p, 5 000]
small p > n: p ∈ (100, 3 000] and n ∈ (100, p)
large p > n: p ∈ (3 000, 15 000] and n ∈ (100, p)

To find suitable data sets for all categories, a search on the machine learning platform
OpenML (Vanschoren et al., 2013; Casalicchio et al., 2017) and within the R package
datamicroarray (Ramey, 2016) has been conducted. Data sets with more than two classes
were converted into two-class data sets by choosing two classes whose discrimination is not
trivial. For all data sets, constant features were removed. The criteria and characteristics
that are considered in the following, were assessed for the selected part of the data sets. The
search has been performed according to the following criteria:

1. The data sets must contain real data (not artificial data).

2. There must not be any missing values.

3. The data sets may only consist of numeric features. Not more than half of the features
per data set may have five or less unique values.

4. The data sets should not be extremely unbalanced: the majority class must not contain
more than 75% of all observations.

For all candidate data sets, the matrix of absolute Pearson correlations between all features
was analyzed as a measure of similarity between the features. For each feature, the number
of highly correlated other features (absolute correlation of at least 0.9) was assessed. For
aggregation, the mean number of highly correlated other features per feature was calculated
for each data set. For each of the four categories of data sets, it was aimed to choose one
data set with (almost) no similar features, one data set with a medium number of similar
features, and one data set with many similar features. For the data set categories “small
p ≤ n”, “large p ≤ n”, and “large p > n” this could be achieved, but for category “small
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p > n”, no data sets with a medium number of similar features could be found. Therefore,
two data sets with almost no similar features were chosen instead. An overview of the data
set characteristics of all 12 data sets is given in Table 4.1.

The task of data set sonar (Gorman and Sejnowski, 1988) is to discriminate between a
metal cylinder and an approximately cylindrical rock based on sonar signals. The features
correspond to the off bouncing sonar signals transmitted from various angles and under
different conditions.

The context of data set kc1-binary (Koru and Liu, 2005) is the prediction of the defective
modules in the NASA product KC1. The observations of this data set are classes (units of
object oriented software) and the features describe properties of these classes. Originally, the
properties were assessed separately for all methods1 of a class. The data set contains the
information aggregated over all the methods of a class by using several aggregation functions
(minimum, maximum, sum, and average).

The task of data set tecator (Borggaard and Thodberg, 1992; Thodberg, 1993) is to
predict the fat content of a meat sample based on its near infrared absorbance spectrum. The
data was recorded on a Tecator Infratec Food and Feed Analyzer. The features of the data
set are 100 near infrared absorbance values, the first 22 principal components of these values
(with weights calculated only on part of the data set), the protein content of the meat, and
its moisture. To define two classes, the mean fat content was calculated and an observation
was classified as “positive” if its fat content was below the average fat content, otherwise it
was classified as “negative”.

The task of data set har is to recognize human activities based on data recorded with
a smartphone. The data was obtained in an experiment. Volunteers performed different
activities wearing a smartphone around their waist and were recorded on video for label-
ing. The sensor signals obtained with the smartphone (accelerometer and gyroscope) were
preprocessed by applying noise filters and then sampled in fixed-width sliding windows of
2.56 seconds and 50% overlap. From each window, a vector of features was obtained by
calculating variables from the time and frequency domain. Here, only the two classes “sitting”
and “standing” are considered to obtain a two-class-data set. These are two classes whose
separation is not trivial (Anguita et al., 2013).

The task of data set gina_agnostic (Guyon, 2006) is to discriminate between even and
odd handwritten two-digit-numbers. For each number, 485 pixels describe the first digit and
485 the second digit. The features state the grayness of the pixels. The data set was part of
the Agnostic Learning vs. Prior Knowledge Challenge.

The data set dilbert was part of the AutoML challenge (Guyon et al., 2016). The identity
of the data set and the type of data are concealed. However, it is known that it is a real
world data set. The original data set consists of 5 classes. Here, to obtain a two-class-data
set, only the two largest classes are considered because no further information is available.

The task of data set lsvt (Tsanas et al., 2014) is to assess whether voice rehabilitation
treatment of Parkinson’s disease patients leads to phonations considered acceptable or
unacceptable. The features of this data set are various dysphonia measures of the speech
input.

The task of data set christensen (Christensen et al., 2009) is to discriminate between
DNA from different anatomic sites based on methylation data. Non-pathologic human tissues
from 10 anatomic sites were analyzed at various autosomal CpG sites that are associated
with cancer-related genes using Illumina GoldenGate methylation bead arrays. Each feature
contains the methylation information obtained at one autosomal CpG site. The data set is

1Methods in object oriented programming are similar to functions in R. Each method is defined within a
class and belongs to this class.
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Name Reference p n PP MHCF ID
sonar Gorman and Sejnowski, 1988 60 208 0.53 0.10 40
kc1-binary Koru and Liu, 2005 86 145 0.59 6.81 1 066
tecator Borggaard and Thodberg, 1992 124 240 0.57 91.40 851
har Anguita et al., 2013 561 3 683 0.52 5.28 1 478
gina_agnostic Guyon, 2006 970 3 468 0.51 0.00 1 038
dilbert Guyon et al., 2016 2 000 4 095 0.50 66.24 41 163
lsvt Tsanas et al., 2014 307 126 0.67 18.42 1 484
christensen Christensen et al., 2009 1 413 217 0.61 1.00 –
gravier Gravier et al., 2010 2 905 168 0.66 0.13 –
eating Hantke et al., 2016 6 365 273 0.51 4.51 1 233
arcene Guyon et al., 2004 9 961 200 0.56 29.97 1 458
chiaretti Chiaretti et al., 2004 12 625 128 0.74 0.05 –

Table 4.1: Information about the data sets: number of features (p), number of observations (n),
proportion of majority class (PP), mean number of highly correlated other features
per feature (MHCF), and identification number of the data set on OpenML (ID).

available in the R package datamicroarray, which downloads it from Array Express (Athar
et al., 2019). In the R package datamicroarray, the DNA from blood and placenta are
considered as separate classes, while all the other tissues are combined to one class called
“other”. To obtain a two-class data set, the samples from placenta (the smaller of the two
separate classes) are added to the class “other” here.

The task of data set gravier (Gravier et al., 2010) is to discriminate between two groups of
breast cancer patients. The two groups are patients with no event at 5 years after diagnosis and
patients with early metastasis. The tissue of small invasive ductal carcinomas without axillary
lymph node involvement (T1T2N0) was analyzed with comparative genomic hybridization
(CGH) array. Array CGH compares the patients’ genomes against a reference genome
with respect to copy number variations, utilizing the principle of competitive fluorescence.
The features of the data set describe the differences between the two genomes based on
the fluorescence data. The data set is available in the R package datamicroarray, which
downloads it from Array Express (Athar et al., 2019).

The task of data set eating (Hantke et al., 2016) is to determine what a person is
eating while speaking. The data comes from volunteers eating different types of food while
speaking. The features are computed from the recorded speech sounds using the software
openSMILE (Eyben et al., 2010). The data set was part of the Interspeech 2015 Computational
Paralinguistics Challenge (Schuller et al., 2015). The original data set contains 7 classes
(types of food). Here, only the classes “apple” and “nectarine” are considered to obtain a
two-class-data set. These are two classes whose separation is not trivial (Wagner et al., 2015).

The task of data set arcene (Guyon et al., 2004) is to distinguish cancer from normal
patterns based on mass-spectrometric data. The data set was part of the NIPS 2003 feature
selection challenge. It was created by merging three mass-spectrometry data sets to obtain
enough samples. The samples include patients with cancer (ovarian or prostate cancer) and
healthy or control patients. The original features indicate the abundance of proteins with
a given mass value in human sera. For the challenge, a number of distractor features was
added. The distractor features were drawn at random from a distribution resembling the
distribution of the real features, but carrying no information about the class labels. 30% of
the features in the data set are distractor features. The order of the features and patterns
was randomized.
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The task of data set chiaretti (Chiaretti et al., 2004) is to discriminate between T-cell
and B-cell acute lymphocytic leukemia based on microarray data. The gene expression data
was measured on Affimetrix HGU95aV2 chips. The features contain the gene expression
information corresponding to the different positions on the microarray chip. The data set is
available in the R package ALL (Li, 2018). Here, a logarithm transformation is applied to
the gene expression data for normalization. The data set is also available in the R package
datamicroarray, but there the various genetic translocations (instead of T-cell and B-cell) are
used as classes.

Figures 4.1 and 4.2 show PCA plots of the data sets. For Figure 4.1, the data is not
scaled for the computation of the principal components. For Figure 4.2, all features are scaled
to unit variance. The data sets kc1-binary, lsvt, and eating contain outlying observations,
which make the scaled plots more suitable for interpretation. The plots provide insight into
the distribution of the classes and give an impression about how easy discriminating between
the two classes per data set will be. However, it should be kept in mind that only part of
the data variation can be displayed in two dimensions. For data sets sonar, kc1-binary, lsvt,
gravier, eating, and arcene, the classes seem quite difficult to separate. For the data sets har
and gina_agnostic, the class discrimination tasks appear to be at medium difficulty. For data
sets tecator, dilbert, christensen, and chiaretti, the classes seem to be separable easily. The
PCA plots for data sets christensen and arcene show different clusters within the classes, that
is, the distributions are not homogeneous within the classes. Figure A.1 in Appendix A.1
shows the PCA plots for data set christensen with all original classes being indicated. It can
be observed that the two clusters of class “blood” are formed by the two subclasses “blood”
and “guthrie blood” (blood from newborn infants). The subcluster of class “other”, which is
visible in the plot with the unscaled data, contains the measurements from placenta tissue.
For data set arcene, the cluster structure is likely due to arcene being created by merging
three data sets.

4.2 Software

All of the following analyses have been conducted with R version 3.5.1 (R Core Team,
2018). The experiments have been run on the high performance Linux HPC cluster at TU
Dortmund University (LiDO3) using the R package batchtools (Lang et al., 2017). Within
the experiments, the machine learning framework provided by the R package mlr (Bischl
et al., 2016) was used. For calculations related to feature selection stability, the R package
stabm (Bommert and Lang, 2020) was employed. The graphics for the analyses were created
with the R package ggplot2 (Wickham, 2016). Further R packages that were only used for some
analyses are indicated in the respective chapters. The R source code for all analyses presented
in this thesis is publicly available at https://github.com/bommert/phd-thesis.
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Figure 4.1: PCA plots of all 12 data sets. The data is not scaled for the computation of the
principal components.



34 Chapter 4. Data Sets and Software

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

● ●

●
●

●

●
●

●●
● ●

● ●

●

●

●

●
●

●

●

●
●
●●●

●●●●
●

● ● ● ●
●

●

●

●
●
●●
●

●
●● ●●

●

● ●
●

●●

●

● ●

●

●

●
●

●

●

● ●
●

−5

0

5

10

−5 0 5 10
PC1 (20.35% of Data Variation)

PC
2 

(1
8.

9%
 o

f D
at

a 
Va

ria
tio

n)

Class ● Rock Mine

sonar

●
●

●

●

●
●

●

●
●●
●

● ●

●

● ●

●

●

● ●

●●
●●

●

● ●
●

●

●

●

●
●

●

●
●●●

●
●●

●●
●

●

●

●

●
●

●
●●●

●
●

●

●
●

●

●
0

10

20

30

0 10 20 30
PC1 (49.03% of Data Variation)

PC
2 

(1
2.

82
%

 o
f D

at
a 

Va
ria

tio
n)

Class ● Defective Working

kc1−binary

●
●
●

●●

● ●

●

●● ●
●●

●●● ● ●
●● ●

●
●

●
●

●

●

●● ●● ●●● ●●
●●● ●● ●●● ● ● ●

●● ●
●●

●
● ●●●

●
●

● ●
●

●
●

●

● ● ● ●
● ●●● ●

●●

●●●
●

●
●

●

●

● ●
●●● ●●●● ●

● ●
●
● ●

●● ●

−20

−10

0

10

20

30

−20 −10 0 10 20 30
PC1 (86.52% of Data Variation)

PC
2 

(2
.5

9%
 o

f D
at

a 
Va

ria
tio

n)

Class ● Positive Negative

tecator

●

●
●

●
●

●

●●
●●●
●●

●●●●●●●●●●●

●
●
●●●●
●●●●●

●
●●

●●●●●●●●●

●

●
●●●●

● ●
●

●
●●

●●●
●●●●●●●●
●●●

●

●●●
●●●●●●●
●

●
●

●●●●●●●●
●

●●●

●

●●
●●
● ●●●●
●

●●●
●●●●●●●● ●●●●

●●●●●●●●
●

●●●●●●●●● ●
●
●●●●●●
●●●●●● ●

●●●●

●
●

●

●●●●●●●

●

●

●●

●●●●●●●

●

●
●●●●●●●

●●●●●●

●
●●●●●●●●●●●

●

●
●●●●●●●●●●●●

●

●● ●●●●●●●●●

●

●
●●●
●●●●●

●

●
●●●●●●

●
●
●●●●●●●●●●●●

●

●
●●●●●●●
●●

●●●
●●●●●●●
●

●●

●

●
●●
●●●●●●●●●●

●

●●
●●●●●●●●●

●
●
●●●
●●●●●●●●
●●

●
●●●●
●●●●●●●

●●●
●●●●●●●●●

●●●●●●●●●●●●
●●

●

●●●●
●●●●●●●●●

●●●●●●● ●●●●●●●

●

●
●●
●●●●●●●●

●
●●

●●●●●●●●●●●●

●

●●
●●●●●●●●●●●●

●

●
●●●●●●●●●

●●●●●●

●

●
● ●

●
●

●

●
●●●●●●●

●
●●

●●●●●●●●●●●● ●●●
●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●● ●

●
●
●●●
●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●

●
●●
●●●●●●●

●●●●●●

●
●●
●●●●●●●●●●●●

●

●●●
●●●●●●●●●●●●●●●

●

●●●●
●●●●●●●●●●●●● ●●●

●●●●●●●●●●●●

●

●●
●●●● ●●●●●●●●
●●●●● ●●●

●●●●●
●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●
●●●●●●●●●●●

●
●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●

●
●●●●
●●●●●●●●●
●
●●

●

●
●● ●

●●

●●●●●●
●

●

●●

●●
●●●
●●

●●● ●● ●●●

●●
●●●●●●●●●●●●●

●

●●
●●●●●
●●●●●●●●
●●●● ●

●

●●
●●●●●●●●●●
●

●
●
●●●●●●●
● ●

●
●

●
●●

●

●
●●●
●●●●●●●●●●●

●

●
●●●●●●●●●●●●●●●●

●

●●●●●
●●●●●●●●●●

●●●●
●●●●●●●●
●●●

●

●
●
●

●●
●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●

●

●
●●
●●●●●●●●●●●●

●

●●
●●●●●●●●●●●●●●
●

●

●
●●●●

●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●
●●●●●●

●●●●●
●
●●●●●●●●●●●
●●

●●●●●
●●●●●●●
●●●

●●●

●●●●●●●●●
●●●●●●●●●●
●●●●

●●●
●●●●

●●●●●●●
●

●●
●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●
●●●●●●●●●
●●

●
●●
●●●●●●●●●●●●●

●
●
●●●●●●●●●●●●●●

●
●●

●
●
●

●●●
●●●●●

●●
●●●●●●

●●●●●●●●●●
●●
●●●●●●●●●●

●
●●●●

●●●●●●●●●●●●● ●●●●●
●●●●●●●●

●●●
●●●●●●●●

●
●●●
●●●●●●●

●

●●
●●●●●●●●

●
●●●●
●●●●●●● ●●●●●
●●
●●●●●

●

●●●●
●●●●●●●●●

●●
●●●●● ●● ●●●●●●●●●●●●●●
●

●●●●●●
●●●●●●●

●

●
●

●
●

●

●
●●

●●●

●
●●

●●●●●
●●●●●

●

●
●●●●●●●●●●

●
●●

●●●●●●●●●

●

●
●●
●●●●●●●●●●●●●

●
●
●●●
●●●●●●●●

●
●●●
●●●●●●●●

●●●
●●●●●●
●● ●●●●●●●●●●●●● ●●●●●●●●●●
●●●●●

●

●
●
●●●●
●●●●●●

●
●●
●●●●●●●●

●●
●●●●●●●●

●

●●●
●●●●●●●●●●● ●●●
●●●●●●●●●●●

●●●●
●●●●●●●●●●●● ●●●
●●●●●●●●●●

●
●●●●●

●●●●●●●●

●

●
●●●●●●

●●●●●●●●●●●●

●

●
●●●● ● ●●●●●●●●●

●●
●●●●●●●●●●●
●●
●●●●●●

●●●
●●●●●●

●
●● ●●●●●●●●●●●●●
●●●
●
●●●●●●●●●●●●●● ●●●

●●●●●●●●●●●

●

●●
●●●●●●●●●●●●●●●●●0

100

0 100
PC1 (37.45% of Data Variation)

PC
2 

(8
.1

4%
 o

f D
at

a 
Va

ria
tio

n)

Class ● Sitting Standing

har

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●● ●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●●
●
● ●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●●●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●●●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●
●

●

●

●

●
●

● ●

●

●
●

●
●

●

●

●

●

●

●
● ●

● ●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●
● ●

●

●

●

●
●

●

●

●
●

●●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●
●

●

●

●

● ●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●
●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●●

●
●

●●

●

●

●

●

●
●

●

● ●

●

● ●

●

●

●
●

●

●

● ●●
●

●

●
●

●

●

●
●

●
●

● ●

●

●

●

●

●

● ●●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●
●

●

● ●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●
●

●

●

●

●
●●
●

●

●
●

●

●●

●

●

●
● ●●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●
●

●

●

● ● ●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●●
●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●
● ●
●
●

●
●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
● ●●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●
●●
●

●

●
●

●

●

●●●

●

●

●
●

●
●●

●

● ●

●

●●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●●●

●
●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●
●

●●
●
● ●
●

●●

●

● ●
●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

● ●●

●

● ●

●

●

●

●

●

●

●
●

●

●
●
●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

● ●

●
●
●

●
●

●

●
●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

● ●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●

●
●●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●

● ●
●

●

●●

●

●

●●

●

●

●
●

●

●

●
● ●

●

●

●

● ●

●

●

●

●
●

●

●●
●

●
●

●●

●
●●

● ●

●
●

●

●
●

●

●

●
●

●
●●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●●

● ●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●●●

●
●

●●
●

●

●●

●

●

●

● ●

●●

● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●●●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

● ●
●

●
●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●
●

●

●●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

● ●●

●

●

●

●
●

●

●

● ●
●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●●
●

●
●

●

● ●

● ●

●

●

●
●

●●

●
● ●

●

−30

−20

−10

0

10

20

30

−30 −20 −10 0 10 20 30
PC1 (4.29% of Data Variation)

PC
2 

(4
.1

8%
 o

f D
at

a 
Va

ria
tio

n)

Class ● −1 1

gina_agnostic

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
● ●

●

●

● ●●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●●

●

●

●
● ●

●

●

●
●
●

●

●
● ●

●● ●

●

●

●

●

●

●

●

●

●
●●
●

●●

●

●

●

●
●

●

●●

●

●

●●●

●

●

●●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

● ● ●

●●

● ●
● ●

●● ●●

●

●

●
●

●

●

●
●
●●●

●

●

●

●

●

●

●

●●

●

●

●●

●

● ●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●
●

●
●●

●

●

●
●

● ●

● ●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●●

● ●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●
● ●●

●

●

●

●●
●

●

●●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

● ●

●
●

●● ●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●
●

●

●
● ●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

● ●
●

●●
●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●●●
●

●

●
●

●
●●●

●● ●

●

●

●
●

●
●

●

●●

●

●

● ●●
●

●

●

●

●

●

●

●

●
● ●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●●
●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

● ●
● ●

●

●●
●

●
●

●

●

●●

●

●

●

● ●
●

●●

●

●

●

●
●

●

●

●

●

●●

●

●●
●

●

●

●●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●●●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●
●●

●
●
●

●

●

●
●

●

●

●

●
●

● ●

●
●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●
●

●●

●

●

● ●●
●

●

●

●●

●
●

●●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●●●
●●

●●

●
●

●

●●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●
●

●

●
●

●●

●

●

●

●

●●

●

●
●

●

●●

●

●●

●

●

●
●

●●
●

●

●

●

●

●
●

●
●

●

●

●●●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

● ●

●●
●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●● ●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●● ●
●●

●

●●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●● ●

●

●●

●

●
●

●
●
●

●

●
●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●
●

●

●
● ●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●
●

● ●
● ●

●
●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

● ●

●

●

●

●●●

●

●
●
●

●

●
●

●

●

●

●●

●

●

●
●
●

●

●
●

●

●

●

●●

●

●

●

●●
●

●●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●
●

●
●
●

●
●

●●

●●
●

●●●

● ●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●
●
●
●

●

●●●
●

●

●
●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●
●

●

●
●●

●

●
●●

●

●

●

●

●

●

●●
●

●
●

●●

●

●
●

●

●
●

●●

●

●
●

●●

●

●●

●

●

●
●

●
●●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●
●

●
●

●

●

● ●

● ●

●

●

●● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

● ●●

●

●

●

●●●

●

●

●

●

●

●
●

●
●

●

●
●
●●

●●
●●

●
●

●

●●

●
●●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●●
●●

●

●

● ●

●

●

●
●●

●

●

● ●

●●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●●●

●

●

●
● ●

●●

●

●

●

●

●●
●

●

●
●

●

●
●

●

●

●

● ● ●

●

●●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●●
●

●

●

●
●

●●

●

●
●

●
●

●●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●●

●

●

● ●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●●
●

●

●

●

●
●

●
●●●

●
●

● ●●

●

●

●
●

●●

●

●

● ●

●

●

●●

●
●

●

●●

●

●●

●
● ●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●
●●

●●
●

●

●

●

●●

●

●
●

● ●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●
●
●

●

●

●
●

●
●

●
●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●●

●
●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●●

●

●●
●
● ●

●●
●

●●

●
●

●
●

●

●

●

●●

●
●●

● ●
●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●
●

−100

−50

0

50

−100 −50 0 50
PC1 (37.84% of Data Variation)

PC
2 

(7
.0

7%
 o

f D
at

a 
Va

ria
tio

n)

Class ● 1 3

dilbert

●

●
●

●
●●
●
●●

●●

●
●● ●
●
●

●

●

●●

●
●

●

● ●

●●

●

●●

●●
●●
●●

●
●●
●●

0

30

60

90

0 30 60 90
PC1 (32.43% of Data Variation)

PC
2 

(1
9.

82
%

 o
f D

at
a 

Va
ria

tio
n)

Class ● Acceptable Unacceptable

lsvt

●●

●

●●
●●

●

●

●

●
●

●
●

●
●●
●●●

●

●

●

●

●

●●
●

● ●●
●

●

●

● ●

●●

●
●● ●●

●●●

●

●

●●
●●

●

●
●●●

●

●

●●

●

●●●
●
●
●●

●
●

●
●

●●
●●
●

●

●●

●

●●

●
●

●
●●●

●

● ●●
●

●●

●
●

●

●●●
●

●

●
●

●●
●

●●●

●

●

●
●
●
●

●

●
●●●

●●●●●
●

●

●

−60

−40

−20

0

20

−60 −40 −20 0 20
PC1 (25.37% of Data Variation)

PC
2 

(1
0.

39
%

 o
f D

at
a 

Va
ria

tio
n)

Class ● Other Blood

christensen

●

●

●
●

●●●
●
●

●

●

●

●
●

●● ●

●

●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●
●●
●

● ●

●
●

●●

●

●

●
●
●

●●

●

●

●

●●
●

●
●

●●
●

●
●

●

●

●
●

●

●●●

●

●

●

●
●●

●●

●

●●●●
●●

●

●
●
●

●●

●

●

●

●

●

●

●

●
●●

●

●

● ●●

−60

−30

0

30

60

−60 −30 0 30 60
PC1 (8.28% of Data Variation)

PC
2 

(6
.8

4%
 o

f D
at

a 
Va

ria
tio

n)

Class ● Good Poor

gravier

●

●

●

●

●

●

●●

●

●
●

●

●

●

● ●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

● ●

●

●
●

● ●

●

●

● ●

● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

● ●

−50

0

50

−50 0 50
PC1 (11.14% of Data Variation)

PC
2 

(1
0.

19
%

 o
f D

at
a 

Va
ria

tio
n)

Class ● Apple Nectarine

eating

●●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
−50

0

50

100

−50 0 50 100
PC1 (21.65% of Data Variation)

PC
2 

(1
0.

29
%

 o
f D

at
a 

Va
ria

tio
n)

Class ● Cancer Control

arcene

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●●
● ●●

●

●

●

●

●

● ●

●

●
●

●

●

−100

−50

0

50

100

150

−100 −50 0 50 100 150
PC1 (18.19% of Data Variation)

PC
2 

(1
0.

93
%

 o
f D

at
a 

Va
ria

tio
n)

Class ● B T

chiaretti

Figure 4.2: PCA plots of all 12 data sets. The data is scaled for the computation of the
principal components.
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Chapter 5

Benchmark of Filter Methods

The filter methods presented in Section 3.1 are compared and benchmarked in this chapter.
The aim of these analyses is selecting the best filter methods, so that these methods can be
employed in future analyses, instead of having to try all filter methods. In Section 5.1, the
scaling behavior of the filter methods is analyzed. In Section 5.2, the filters are compared
empirically with respect to the orders in which they select the features. The goal of this
analysis is finding groups of filter methods that rank the features in a similar way. In
Section 5.3, the best filter methods with respect to predictive performance when combined
with a predictive model and with respect to run time are assessed.

For all of the filter methods described in Section 3.1, there are already implementations
in R packages and most of them have been integrated into the machine learning package
mlr (Bischl et al., 2016). Table 5.1 lists for all filter methods the R package in which they
are implemented and their names in mlr.

The analyses conducted in this chapter are based on the analyses in Bommert et al. (2020).
In Bommert et al. (2020), all of the filter methods in Table 5.1 as well as two additional
methods are analyzed. The filter methods omitted here are a random forest permutation
importance filter and a filter based on univariate model scores. The first one is left out
because it takes very long to compute and there already is a random forest permutation
importance filter in this study. The second one is omitted because it is not clear which
model and which resampling strategy for performance evaluation should be used. Its default
implementation in mlr is subject to strong variations due to stochastic effects. The data
sets, based on which the filter methods are compared, differ between this thesis and the
study in Bommert et al. (2020). Four data sets are used in both studies. Eight data sets are
considered in this thesis, but not in Bommert et al. (2020); twelve data sets are considered in
Bommert et al. (2020), but not in this thesis. In both works, the analyses of the filters are
conducted in analogous ways and the results are similar.

5.1 Comparison with Respect to Scaling Behavior
In this section, all filters are analyzed with respect to their scaling behavior. First, it is
investigated how the run times change, when for a given data set the number of features
to select is increased. Second, the run times for calculating the scores for all features for
data sets with an increasing number of observations or an increasing number of features are
analyzed.

5.1.1 Experimental Setup
All run time analyses are based on a reduced version of data set gina_agnostic. The number
of observations is reduced to 970, so that the number of observations equals the number of
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Filter Name in mlr R package
anova.test anova.test mlr (Bischl et al., 2016)
limma — limma (Ritchie et al., 2015)
sam — samr (Tibshirani et al., 2011)
kruskal.test kruskal.test mlr (Bischl et al., 2016)
chi.squared FSelector_chi.squared FSelector (Romanski and Kotthoff,

2018)
auc auc mlr (Bischl et al., 2016)
oneR FSelector_oneR FSelector (Romanski and Kotthoff,

2018)
variance variance mlr (Bischl et al., 2016)
permutation ranger_permutation ranger (Wright and Ziegler, 2017)
impurity ranger_impurity ranger (Wright and Ziegler, 2017)
info.gain FSelectorRcpp_information.gain FSelectorRcpp (Zawadzki and

Kosinski, 2018)
gain.ratio FSelectorRcpp_gain.ratio FSelectorRcpp (Zawadzki and

Kosinski, 2018)
sym.uncert FSelectorRcpp_symmetrical.uncertainty FSelectorRcpp (Zawadzki and

Kosinski, 2018)
MIM praznik_MIM praznik (Kursa, 2018)
MRMR praznik_MRMR praznik (Kursa, 2018)
JMI praznik_JMI praznik (Kursa, 2018)
JMIM praznik_JMIM praznik (Kursa, 2018)
DISR praznik_DISR praznik (Kursa, 2018)
NJMIM praznik_NJMIM praznik (Kursa, 2018)
CMIM praznik_CMIM praznik (Kursa, 2018)

Table 5.1: Names of the filter methods as introduced in Section 3.1, names in mlr, and
R packages from which the implementations are taken.

features in the resulting data set. For creating the reduced data set, 970 observations are
selected at random, such that 50% of the observations of the new data set belong to the
positive and 50% to the negative class. The reduced data set is called “base data set” for the
remainder of this section.

For the first analysis scenario, all filter methods are applied to the base data set. The
filter hyperparameter, which indicates the percentage of features to select, is varied from
10% to 100% in steps of 10%. For the second analysis, new data sets of different sizes are
created from the base data set. For the study with an increasing number of observations,
new data sets with all features and 10% to 100% of the observations (with steps of 10%) are
generated. All of these newly created data sets consist of 50% positive and 50% negative
observations. For the analysis with an increasing number of features, new data sets with all
observations and 10% to 100% of the features (with steps of 10%) are created. Then, all filter
methods are applied to these new data sets, calculating scores for all features. For all run
time analyses, the median run time of 1 000 repetitions is computed. These repetitions are
computed on exactly the same data sets. The time measurements have been conducted on a
high performance compute cluster in a randomized order.
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5.1.2 Results
Regarding the first analysis scenario, Figure A.2 in Appendix A.2 displays the run times of
all filter methods for the different percentages of features to select. For each filter method,
an individual plot is shown because of the large differences in run time. Many of the run
time lines are very jagged. For these filter methods, the run time does not depend on the
number of features to select. The scores for all features are calculated and then, the best
features are selected. The differences in run times are due to effects of the high performance
compute cluster. Also, the differences are very small, as the scales of the y-axes show. For
the filter methods from the praznik package except for MIM, the run times increase with
the number of features to select. As described in Section 3.1, the praznik filters except for
MIM perform an iterative forward selection and hence only calculate as many filter scores as
needed. To compare the differences in scaling behavior between the filter methods, Figure 5.1
shows relative run times for all filter methods. For each filter, the run times are divided
by the respective run time for selecting 10% of the features. So, the relative run time for
selecting 10% of the features equals 1 for all filter methods. The run time of filter CMIM
increases the strongest among all filter methods. For NJMIM and JMIM, strong increases in
run time can be observed as well. For DISR, MRMR, and JMI, the run times increase only
slightly. For all other filter methods, the run times are constant with respect to the number
of selected features.
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Figure 5.1: Relative run time for filtering with respect to the percentage of features to select.
For each filter, the run times are divided by the respective run time for selecting
10% of the features.
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Regarding the second analysis scenario, Figure A.3 in Appendix A.2 displays the run
times for the calculation of the scores of all features for data sets with an increasing number
of observations. For all filter methods, the increase in run time is linear with respect to the
number of observations in the data set. For a comparison of the scaling behaviors between
filter methods, Figure 5.2 shows relative run times. For each filter, the run times are divided
by the respective run time for a data set with 10% of the observations of the base data set.
The increase in run time is the strongest for filter permutation. For the filters sym.uncert,
info.gain, gain.ratio, and impurity, strong increases in run time are observed as well. For the
other filters, the run time increases only slightly with the number of observations in the data
set. The smallest increases in run time are observed for filters anova.test and variance.

Figure A.4 in Appendix A.2 displays the run times for the calculation of the scores of all
features for data sets with an increasing number of features. For all filter methods except for
the iterative praznik filters (MRMR, JMI, JMIM, DISR, NJMIM, and CMIM ), the increases
in run time are linear with respect to the number of features in the data set. For the iterative
praznik filters, the run times increase more than linearly, possibly quadratically. To compare
the scaling behaviors between the filters, Figure 5.3 shows relative run times. For each filter,
the run times are divided by the respective run time for a data set with 10% of the features
of the base data set. It can be observed that there are large differences in the increases in run
time between the iterative praznik filters and the rest of the filters. For the iterative filters,
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different numbers of observations (identical numbers of features). For each filter,
the run times are divided by the respective run time for a data set with 10% of
the observations of the base data set.
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Figure 5.3: Relative run time for calculating the scores for all features for data sets with
different numbers of features (identical numbers of observations). For each filter,
the run times are divided by the respective run time for a data set with 10% of
the features of the base data set.

the run times increase much more than for the other filters. Within the two groups, the
increasements in run time with respect to the number of features in the data set are similar.

5.2 Comparison with Respect to Feature Ranking
In this analysis, the aim is finding out which filter methods are similar with respect to feature
ranking. The question behind this analysis is if the filter methods can be grouped into sets
with similar behavior and if these groups contain redundant information such that some
members of each group can be neglected. For each filter method and each data set presented
in Section 4.1, the filter scores for all features are computed.

To assess the similarity of the filter methods, the orders in which they select the features
are compared. For each data set, the Spearman rank correlations between the selection orders
of all pairs of filter methods are determined. Rank correlations are considered because the
associations between different filter scores are not necessarily linear. The results are displayed
in Figures A.5 and A.6 in Appendix A.2. To draw conclusions based on all data sets, the rank
correlations are averaged across data sets with the arithmetic mean. Figure 5.4 displays the
mean rank correlations between all pairs of filter methods. The higher the rank correlation
between two filter methods, the more similar they are.
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Figure 5.4: Rank correlations between the selection order of all features for all pairs of
filter methods on all 12 data sets, averaged by the arithmetic mean. The filter
methods are ordered by average linkage hierarchical clustering using the mean
rank correlation as similarity measure.

Figure 5.4 shows four groups of similar filter methods. The first group consists of 6
out of the 7 praznik filters: NJMIM, DISR, MIM, JMIM, JMI, and CMIM. The second
group is formed by the filters limma, anova.test, sam, kruskal.test, and auc. The third group
contains the filters sym.uncert, gain.ratio, info.gain, chi.squared, and oneR from the toolboxes
FSelector and FSelectorRcpp. The fourth group consists of the random forest importance
filters permutation and impurity. The filter methods MRMR and variance are not similar to
any other filter method.

The average similarity value in Figure 5.4 is 0.5241. The highest mean rank correlations
are observed between info.gain and chi.squared (0.9950), kruskal.test and auc (0.9931),
limma and anova.test (0.9903), sym.uncert and info.gain (0.9892), sym.uncert and gain.ratio
(0.9860), sym.uncert and chi.squared (0.9813), limma and sam (0.9798), anova.test and sam
(0.9758), gain.ratio and info.gain (0.9618), and gain.ratio and chi.squared (0.9513).

The similarity of the filters limma, anova.test, sam, kruskal.test, and auc is easy to
understand. The Kruskal-Wallis test can be seen as the non-parametric equivalent of the
analysis of variance. The filters limma and sam perform a moderated version of the F test
conducted by filter anova.test. Also, there are strong links between the area under the curve
and the Kruskal-Wallis test (Hanley and McNeil, 1982).

Considering the group of similar praznik filters, it appears plausible that they select
features in a similar order because their scores are all based on mutual information. Within
this group, JMIM and JMI as well as NJMIM and DISR are especially similar to each other.
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This makes sense as the scores are modified versions of each other, see Section 3.1. The
filter MRMR comes from the same toolbox, but does not appear to be very similar to the
other praznik filters. In contrast to the other praznik filters, MRMR also considers mutual
information between features, see Section 3.1.

The filters MIM and info.gain use the same score. However, the different discretization
methods used by the two toolboxes cause an average rank correlation of only 0.6272 between
the two filter methods. The filters from the toolboxes FSelector and FSelectorRcpp use
different filter criteria but all employ the same discretization method. This makes it seem
likely that the similarity of these filter methods is due to the same discretization method.

All of the previous analyses are based on the averaged rank correlations. A brief analysis
of the plots in Figures A.5 and A.6 in Appendix A.2 shows that the similarity structure
displayed in Figure 5.4 does not represent the similarity structure for all single data sets.
Instead, there are mainly two groups of data sets. In the first group, the similarity structure
resembles the one in Figure 5.4. For the data sets gravier, eating, arcene, and chiaretti,
the resemblance is very strong. The data sets sonar, tecator, har, and lsvt also show the
group structure, but less clearly. The second group consists of the data sets kc1-binary,
gina_agnostic, dilbert, and christensen. In the second group, most filter methods select the
features in a similar order. There are only few filter methods that are not similar to the other
methods, and these methods differ between the data sets of the second group. The data sets
gravier, eating, arcene, and chiaretti, which show the filter group structure very clearly, are
the four data sets that contain the most features. The other groups of data sets cannot be
explained by the data set characteristics given in Table 4.1.

5.3 Optimal Filter Methods with Respect to Predic-
tive Performance and Run Time

In the previous section, groups of similar filter methods have been discovered. For deciding
which of the filter methods in the groups of similar filters can be neglected, all filter methods
are compared with respect to their predictive performance and run time.

5.3.1 Experimental Setup
For determining the predictive performance of subsets of features selected by a filter method,
the three classification methods support vector machine, k nearest neighbors, and ridge
logistic regression are considered. Specifically these classification methods are chosen because
they are popular methods that do not perform embedded feature selection. This is important
for judging the direct impact of the feature selection conducted by the filter on the prediction
performance, not in combination with a subsequent embedded feature selection by the
classification algorithm.

Each filter method is combined with a classification method such that the combined
methods first apply the filter, selecting a given percentage of features, and then learn the
classification rule using only the remaining features. To ensure a fair comparison of the
filter methods, the predictive performances of the filters are compared in combination with
the best classifier and the best hyperparameters per filter. More precisely, the classification
method to be combined with a filter method is considered as a hyperparameter as well,
which results in a hierarchical search space. For each filter method and each data set, the
classification method, the corresponding hyperparameters and the percentage of features to
select are tuned simultaneously. Possible configurations of the search space are for example



42 Chapter 5. Benchmark of Filter Methods

(12%, KNN, k = 7) or (94%, SVM, C = 2−1.3, σ = 213.28). Percentages of features to select
are allowed in the range [0%, 100%]. The sets of considered values for the hyperparameters
of the classification methods are given in Table 5.2. To find the best configuration, a random
search with 100 iterations is conducted. To obtain unbiased estimates of the performances of
the filters, nested cross-validation with 10 outer and 10 inner iterations is performed (Bischl
et al., 2012). It is made sure that the considered configurations are identical for all filter
methods on the same data set in the same outer iteration, in order not to favor any filter
method because it happens to be evaluated in combination with better configurations. Also,
all filter methods use the same cross-validation splits.

For each filter method and each data set, the following is done: In each outer iteration, 10%
of the data set is used as evaluation data. On the remaining 90% of the data, 10-fold cross-
validation is conducted to estimate the performance of 100 randomly drawn configurations.
The best configuration is selected based on maximal mean classification accuracy. Ties are
resolved by choosing the configuration with the smallest run time. Either the median time
for training the combined model or the median time for filtering only are considered. For
the analyses taking into account the time for filtering, the respective tuning results are used.
For all other analyses, the tuning results with ties resolved by the times for training the
combined models are employed. The median is used for aggregating the run times in order to
obtain an estimate that is robust against variation caused by the high performance compute
cluster. Note that this tuning procedure makes sense because in practice, one is interested in
filter methods that allow a good predictive performance, and among these methods, one is
interested in methods with short run times.

The selected configuration is then evaluated on the evaluation data, calculating the
classification accuracy and measuring the time for training the combined model and for
filtering. This way, for each data set and each filter method, 10 evaluations of the best
configurations from the 10 outer iterations are obtained. The performance values are
aggregated by calculating the mean classification accuracy and the median run times. So, in
the end there are three performance values per filter method and data set: mean classification
accuracy, median time for filtering, and median entire run time. Note that with the two
strategies for resolving ties during tuning, different configurations may be chosen, so the
accuracies on the test data may differ.

As an important baseline, the results of the filters are compared to results without filtering.
For classification without filtering, a random search with the same cross-validation splits and
configurations as above (ignoring the percentage of features to select) is conducted. The
same performance measures are assessed and the best configurations are selected with respect
to the same criteria.

There are 14 configurations for which no results could be obtained. As all filters try
the same configurations, this means that for all filters the results for the corresponding

Method Hyperparameters R package
Support Vector Machine C, σ ∈ {2x : x ∈ [−15, 15]} kernlab (Karatzoglou et al.,

2004)
k Nearest Neighbors k ∈ {1, 2, . . . , 20} kknn (Schliep and

Hechenbichler, 2016)
Ridge Logistic Regression λ ∈ {2x : x ∈ [−15, 15]} glmnet (Simon et al., 2011)

Table 5.2: Classification methods with corresponding hyperparameters and sets of values
used for tuning as well as the R packages in which the methods are implemented.
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configurations are missing. Of theses configurations, 7 are tried on data set sonar, 3 on
kc1-binary, 3 on tecator, and 1 on lsvt. The failing of all configurations is caused by the
selection of less than two features by the filters and the implementation of ridge logistic
regression in glmnet, which requires at least two features. The configurations for which no
results were obtained are ignored for the analyses.

5.3.2 Results
First, the filter methods are compared only with respect to predictive performance. Fig-
ure 5.5 shows for two data sets the classification accuracies of the 10 best configurations
corresponding to the 10 outer cross-validation iterations, separately for all filter methods. As
the performances are evaluated on data that is not used for tuning, the performance values
may be interpreted as unbiased estimates of the performances on new data from the data
generating process that created the respective data set. The results for the other 10 data
sets are displayed in Figures A.7 and A.8 in Appendix A.2.

The most obvious observation from all plots is that there are large differences in predictive
performance for the same filter method across cross-validation iterations, compared to the
differences between the filter methods. For some data sets, there are noticeable differences
between the filter methods, for others there are not. Figure 5.5 displays an example for each
situation. The left plot in Figure 5.5 shows that for data set gina_agnostic, some filters
perform considerably better than others. The filter impurity performs quite well while the
filters DISR, MRMR, and variance perform comparably bad. All filters lead on median to a
better predictive performance than “no filter”. The right plot in Figure 5.5 demonstrates that
for data set sonar, there are only little differences in the central locations of the classification
accuracies, taking into account the variations. These variations should be kept in mind, when
the predictive performance of the filter methods will be expressed by the mean classification
accuracy across cross-validation iterations in the following analyses.

Figure 5.6 shows the number of times that the filter methods outperform each other based
on the mean accuracies. The number displayed in the row of filter A and the column of
filter B indicates the number of data sets on which filter A is better than filter B with respect
to the mean classification accuracy. Given that two filter methods are equally good but never
have exactly the same performance, it is expected that each of the filters outperforms the
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Figure 5.5: Boxplots of the classification accuracies of the best configurations in the 10 outer
cross-validation iterations per filter method and data set.
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Figure 5.6: Number of data sets on which the filter method in the row has a higher mean
classification accuracy than the filter method in the column. Ties are counted as
0.5 for both filters. The filter methods are sorted decreasingly by row sums.

other on approximately 6 of the 12 data sets. It is marked in red when a filter method is
better than another filter method more often than 6 times and in blue when this happens less
than 6 times. Note that there are several ties with respect to the classification accuracy of
the filter methods. It can be observed that filters JMIM, JMI, impurity, and DISR perform
best across data sets. However, there is no filter method that is better than all the other
methods on all data sets. The filters anova.test, MRMR, sam, oneR, variance, gain.ratio,
limma, kruskal.test, and chi.squared are outperformed by many other filter methods.

Now, the filter methods are compared with respect to both predictive performance and
run time across data sets. For the analysis presented in Figure 5.6, it was only looked at
good or bad predictive performances in comparison to the other filter methods. This analysis
also takes into account how much the filter methods differ in performances. In the following,
first, the run time for filtering only and later the entire run time for filtering and fitting the
best classification model are considered.

Figure A.9 in Appendix A.2 displays the mean classification accuracies and the median
run times for filtering, separately for all data sets. Figure 5.7 aggregates the information of
Figure A.9 into one graphic. To compare the predictive accuracy across data sets, relative
accuracies are considered. More precisely, the difference between the mean classification
accuracy of each filter method and the highest mean classification accuracy observed on the
same data set is calculated. The filter method with the best predictive performance per data
set has relative mean classification accuracy 0. The smaller the relative classification accuracy,
the better the predictive performance of the filter method when combined with the best
configuration. Because some very long run times are observed (see Figure A.9), logarithmic
run times are considered. To be able to apply the logarithm, a small constant is added to all
run times, as not filtering at all has zero run time. The lowest logarithmic median run time
for filtering per data set is subtracted from all logarithmic median run times for filtering
on the same data set. So, the lowest relative logarithmic median run time for filtering per
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Figure 5.7: Relative mean classification accuracy and relative logarithmic median run time
for filtering of the filter methods with best configurations aggregated over all 12
data sets. The median of both performance measures (relative mean classification
accuracy and relative logarithmic median filtering time) across all data sets is
displayed by a symbol. The upper and lower quartiles are located at the respective
ends of the horizontal and vertical lines. The best filter method would be located
in (0, 0)�.

data set is 0. Regarding the interpretation of the transformed performance criteria, a relative
mean classification accuracy of x means that the mean classification accuracy of the filter
(with the best configuration found) is worse than the mean classification accuracy of the best
filter on the same data set by an additive factor of x. A relative logarithmic median run
time of x means that the median run time of the filter equals the median run time of the
best filter on the same data set multiplied with 10x. The transformed performance criteria
are aggregated over the data sets by computing the median values as well as the upper and
lower quartiles. The median value provides information about the central location of the
performance measures. The distance of the quartiles shows the variation of the performances
across data sets. Figure 5.7 displays for each filter method the median of the performance
criteria values by a symbol. The quartiles are located at the respective ends of the horizontal
and vertical lines. The longer the lines, the larger the variation across data sets. The best
filter method would be located in (0, 0)�.

Figure 5.7 shows that the relative mean classification accuracy and the relative logarithmic
median run time for filtering vary a lot across data sets for all filter methods. Compared
to the differences between the filter methods, the variations across data sets are quite large.
Considering the median values in both criteria, it can be seen that the filters JMI, impurity,
and MIM as well as “no filter” are Pareto optimal. Pareto optimality means that there is
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no other method that performs as good in both criteria and better in at least one criterion.
Considering the non-Pareto optimal filter methods in Figure 5.7, at least one of the Pareto
optimal filters performs better in both criteria. Filter JMI is Pareto optimal because it has the
best median relative classification accuracy among all filter methods. Filter methods impurity
and MIM have a good median relative classification accuracy and a low median relative run
time for filtering. Applying no filter takes no time, which is always faster than applying any
filter and therefore this is always Pareto optimal, independent of its classification accuracy.
If instead of the median performance values the upper quartiles are considered, only filter
impurity and “no filter” are Pareto optimal. It should be noted that the configurations have
been chosen primarily based on classification accuracy. Because the run times of the filters
from package praznik depend on the number of selected features (see Section 5.1), it might
be possible to make them Pareto optimal by selecting fewer features. This would make them
faster at the cost of predictive accuracy. As the run times depend on the implementation,
any filter method could potentially become Pareto optimal if it was implemented efficiently
enough.

Now, the predictive accuracy is analyzed in combination with the entire run time for
filtering and fitting the best classification model. Considering the entire run time makes sense
because it also assesses how long it takes to fit the best classification model with the features
selected by the filter. As most filters rank all features and because there are groups of filters
with very similar run times (see Section 5.1), it is likely that many filters achieve similar run
times even if they select different numbers of features. However, selecting more features may
have a huge impact on the run time for fitting the predictive model of interest.

Figure A.10 in Appendix A.2 shows the mean classification accuracies and the median run
times for fitting the combined models for all data sets. Figure 5.8 aggregates the information
of Figure A.10, resulting in an analogous plot to Figure 5.7. In comparison to Figure 5.7,
for example the relative run times for auc and sam are lower, compared to the other filter
methods. For these filters, the filtering takes comparably long but the best predictive model
using the selected features can be fitted comparably fast. When considering the median
values of the performance measures, the filter methods JMIM, JMI, impurity, and MIM
are Pareto optimal. Compared to the Pareto set resulting from Figure 5.7, “no filter” is
replaced by JMIM and the rest is left unchanged. With respect to the upper quartiles of the
performance measures, here JMI, impurity, and MIM are Pareto optimal. Compared to the
respective Pareto set from Figure 5.7, “no filter” is replaced by JMI and MIM. Like in the
discussion of Figure 5.7, it also has to be mentioned that filter methods could become Pareto
optimal by sacrificing classification accuracy and thus saving run time. Here, this is possible
for all filter methods by choosing a configuration that is faster but provides less predictive
accuracy.

5.4 Stochasticity of Filter Scores
The scores of the filter methods impurity and permutation are stochastic. For both filters,
random forests are constructed which is a process subject to randomness, see Section 3.1. For
permutation, the feature importance values are determined based on random permutations
which adds even more stochasticity. The other filter methods are deterministic.

For impurity and permutation, the number of trees has an influence on how much the
filter scores vary when the same filter is applied several times to exactly the same data set.
Figure 5.9 and Figure A.11 in Appendix A.2 show the variation of the filter scores for random
forests with different numbers of trees. To generate the plots, the filter methods impurity and
permutation are applied 10 times to each data set. Then, for each feature, the ranks of the
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Figure 5.8: Relative mean classification accuracy and relative logarithmic median run time
for filtering and model fitting of the filter methods with best configurations
aggregated over all 12 data sets. The median of both performance measures
(relative mean classification accuracy and relative logarithmic median run time)
across all data sets is displayed by a symbol. The upper and lower quartile are
located at the respective ends of the horizontal and vertical lines. The best filter
method would be located in (0, 0)�.

filter scores are assessed and their variation is quantified by calculating the interquartile range.
Finally, for each data set, the interquartile ranges of the ranks are sorted increasingly. So, the
resulting functions can be interpreted as quantile functions of the variations in the feature
ranks. For most data sets, the variation in the filter scores decreases with an increasing
number of trees in the forest. Based on these results, it seems advisable to use a large number
of trees. However, no clear conclusion can be drawn on how many trees are enough.

Figure A.12 in Appendix A.2 shows the run times for calculating the filter scores for
random forests with different numbers of trees. The run times of the 10 replications are
aggregated using the median. The increase in run time with respect to the number of trees
in the forest is linear for both impurity and permutation. Especially for filter permutation,
the run times become unbearably long for large numbers of trees, compared to the benefit in
reduced variation. In the previous sections, impurity and permutation have been used with
500 trees which provides a good compromise between variability and run time. Also, this is
the default in the software implementation.
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5.5 Conclusions
Based on empirical analyses, the filter methods can be divided into groups of filter methods
that rank the features similarly. One group consists of the praznik filters NJMIM, DISR,
MIM, JMIM, JMI, and CMIM. Another group is formed by the filters limma, anova.test,
sam, kruskal.test, and auc, which are all related to the analysis of variance. The next group
contains the filters sym.uncert, gain.ratio, info.gain, chi.squared, and oneR from the toolboxes
FSelector and FSelectorRcpp. The last group consists of the random forest importance filters
permutation and impurity. The filter methods MRMR and variance are not similar to any
other filter method.

With respect to the scaling behavior, the filters NJMIM, DISR, JMIM, JMI, CMIM, and
MRMR deviate from all other filters. For these filters, the filter scores are calculated in an
iterative way, whereas for all other methods, the scores of all features are calculated at once.

There is no subset of filter methods that outperforms all other filter methods with respect
to predictive accuracy. Which filters work best, depends on the data set. The results are
subject to variation within and across data sets. Nevertheless, the filter methods JMI, MIM,
and impurity work well in most data situations.

Regarding the question whether some of the filter methods can be neglected when searching
for a good filter method, it seems reasonable to limit the search space to JMI, MIM, and
impurity. JMI and MIM are representatives of the group of praznik filters. JMI selects the
features in an iterative way, while MIM calculates all scores at once. Filter impurity is a
representative of the group of random forest filters. One could add auc and sym.uncert to the
search space as representatives of their groups of filter methods, because they are the ones
that perform best within these groups with respect to predictive accuracy. Filters MRMR
and variance can be neglected due to bad predictive performance.

Choosing the best filter method for a new data set also is a matter of available compu-
tational resources. Based on the analyses, the following recommendations can be made: If
the computational resources only allow trying one filter method, impurity is a good choice.
This filter method allowed fitting classification models with high classification accuracy on
most of the data sets. If some computational resources are available for finding a suitable
filter method, JMI, MIM, and impurity should be tried. If the resources allow trying all filter
methods, this is recommended, because only this way the very best filter method for a new
data set can be found.





51

Chapter 6

Comparison of Stability Measures

The 20 stability measures presented in Subsection 3.3.2 are compared both theoretically and
empirically in this chapter. The goal of the analyses is finding the best measures for stability
assessment. In Section 6.1, a set of desirable theoretical properties is given and it is analyzed
which of these properties are fulfilled by each measure. In the empirical comparison, the
empirical behavior of the stability measures is investigated. One aim of the comparison is
finding groups of similar stability measures. For this, it is analyzed, whether the stability
measures consider the same situations as stable or unstable. Another aim of the analyses
is investigating the impact of the number of selected features on the stability measures. In
Section 6.2, the stability measures are compared based on a small example for which all
combinations of feature sets can be taken into account. In Section 6.3, the comparison of the
stability measures is conducted based on feature sets selected for real data sets.

The analyses in this chapter extend the analyses in Bommert et al. (2017) and Bommert
and Rahnenführer (2020). In Bommert et al. (2017), only 9 stability measures are considered.
Here, all of these measures and 11 additional stability measures are investigated. The analyses
in Bommert et al. (2017) are based on feature sets resulting from 3 gene expression data sets.
In this chapter, both artificial feature sets and real feature sets obtained for the 12 data sets
presented in Section 4.1 are used. For the 9 stability measures that have been analyzed in
Bommert et al. (2017) as well, similar results are obtained here. In Bommert et al. (2017),
theoretical properties of the stability measures are stated and motivated, but no extensive
proofs are given. Here, all proofs of properties are given in Section 6.1 or Appendix B.
In Bommert and Rahnenführer (2020), 6 of the adjusted stability measures presented in
Subsection 3.3.2.3 are compared to each other and to an unadjusted stability measure. The
comparisons are based on the artificial feature sets introduced in Section 6.2 as well as
on a subset of the feature sets considered in Section 6.3. The analyses in Bommert and
Rahnenführer (2020) are a subset of the analyses in this thesis. Here, more stability measures
and data sets are considered and more analyses are conducted.

6.1 Theoretical Comparison
In this section, the stability measures are compared with respect to theoretical properties.
For this, the notation of Subsection 3.3.2 is used. Nogueira (2018) defines five properties that
are desirable for stability measures:

1. Fully defined: The stability measure should not require the cardinalities |V1| , . . . , |Vm|
to be identical.

2. Monotonicity: The stability measure should be a strictly decreasing function of the
sample variance s2

j of the selection of each feature. Nogueira (2018) shows that this
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property is equivalent to asking for the stability measure to be a strictly increasing
function of all cardinalities of pairwise intersections |Vi ∩ Vj|.

3. Correction for chance: The expected value of the stability measure for a random feature
selection with equal selection probabilities should be constant and therefore not depend
on the number of selected features.

4. Bounds: The stability measure should have an upper and a lower bound. Both bounds
should be finite and neither depend on p nor on the number of selected features.

5. Maximum: Maximum stability ⇔ deterministic selection: The stability measure should
attain its maximum value if and only if V1 = . . . = Vm.

The idea of the monotonicity property is to assess whether a stability measure takes larger
values in situations that are intuitively considered to be “more stable”. The properties 3 to 5
serve the assessment whether the stability values can be interpreted well. In addition to the
five properties stated by Nogueira (2018), we define three further properties:

6. Adjusted: The stability measure takes into account similarities between the features,
such that different but highly similar features count towards stability.

7. Adjusted monotonicity: The stability measure should be a strictly increasing function of
all cardinalities of pairwise adjusted intersections |Vi ∩ Vj|+Adj(Vi, Vj). The adjustment
depends on the stability measure and for unadjusted stability measures, Adj(Vi, Vj) ≡ 0.

8. Maximum for equal cardinalities: The maximum value should only be attainable in
situations where all feature sets have the same cardinality, that is, |V1| = . . . = |Vm|.
Also, there should exist situations with |V1| = . . . = |Vm| in which the stability measure
attains its maximum value.

For adjusted stability measures, it is not desirable to fulfill the monotonicity or the maximum
property. These measures are specifically designed so that similar features are viewed as
exchangeable for stability assessment. Therefore, the measures should not only increase
when the cardinality of a pairwise intersection increases and the maximum value should
not only be attainable for identical sets. The “adjusted monotonicity” property extends the
monotonicity property such that similar features are considered. The “maximum for equal
cardinalities” property is a relaxation of the maximum property. Note that for all properties,
only such feature sets and similarities between the features are considered for which the
stability measures are well-defined. The necessary conditions for each stability measure to be
well-defined are stated in Appendix B.1.

Table 6.1 shows for the 20 stability measures if they fulfill the 8 properties. For SMJ,
SMD, SMO, SMH, SML, SMW, SMP, SMD-α, SMS, and SMN, the properties 1 to 5 are
analyzed in Nogueira (2018) or Nogueira and Brown (2016). Two proofs given in Nogueira
(2018) are incorrect. They are based on the statement that SMD-α with α = 0 would be
equal to another stability measure not considered in this thesis, but this statement is wrong.
Therefore, proofs for the two properties of SMD-α are given in this thesis. The properties
1 to 5 for the stability measures SMU, SMK, SME, SMZ, SMES, SMY, and SMA as well
as the properties 6 to 8 for all measures are discussed in this thesis. The results for all
measures are reported in Table 6.1. Because the four considered variants of SMA (SMA-MBM,
SMA-Greedy, SMA-Count, and SMA-Mean) do not differ with respect to these properties,
they are analyzed jointly as SMA.
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Fully Defined The stability measures SMU, SMK, SME, SMZ, SMY, and SMA are fully
defined. Only stability measures that are fully defined are introduced in Subsection 3.3.2.

Monotonicity The monotonicity property holds for SMU and SMK. These measures are
defined as averages of normalized versions of |Vi ∩ Vj| such that they are strictly increasing
functions of |Vi ∩ Vj|, see Subsection 3.3.2.1. For SME, the monotonicity property is fulfilled
as well: hj log2 (hj) for hj ∈ {1, . . . , m} is a convex function with minimum in hj = m

2 and s2
j

is a concave function of hj with maximum in hj = m
2 . So, if s2

j increases, the value of SME
decreases. In Appendix B.2, a proof for SMD-α not fulfilling the monotonicity property is
given. The adjusted measures SMZ, SMES, SMY, and SMA do not fulfill the monotonicity
property, see Appendix B.2.

Correction for Chance SMU, SMK, SMY, and SMA are corrected for chance. For these
measures, in the pairwise scores, the expected value of |Vi ∩ Vj| (or |Vi ∩ Vj| + adjustment,
respectively) for a random feature selection with equal selection probabilities is subtracted
in the numerator. Because of this, the expected values of all pairwise scores are 0 and
consequently, the expected values of the stability measures are 0, too. This holds independent
of the number of selected features. SMZ is not corrected for chance. The more features are
selected, the higher the expected value of SMZ. In the special case where there are no highly
correlated features in ⋃m

i=1 Vi, SMZ and SMJ are identical and SMJ is not corrected for chance
(Nogueira, 2018). SME and SMES are not corrected for chance either. The expected values
of SME and SMES for a random feature selection depend on the number of selected features,
see Appendix B.3. Regarding the stability measure SMS, Nogueira (2018) shows that SMS is
not corrected for chance, but it is asymptotically corrected for chance for m → ∞.

Bounds Table 6.2 displays the ranges of possible values for all stability measures considered
in this thesis. Before the bounds property is discussed, first, we analyze the upper and lower
bounds and their tightness for all stability measures. Proofs are given in Appendix B.1. For
all measures except SMES, the maximum value is 1 and it is attained if all sets V1, . . . , Vm

are identical, independent of the value of m or the number of selected features. For SML,
the upper bound is only attained asymptotically for p → ∞. For SMD-α, the upper bound
is only tight for α = 0. For SMES, no upper bound that is independent of p and the data
specific similarity structure can be given, see Appendix B.1. This is a problem with respect to
interpretability, because it cannot be known if a stability value obtained with SMES indicates
rather high or rather low stability.

All lower bounds are tight if m = 2. The lower bound of SML is only tight asymptotically
for p → ∞. For SMD-α, the lower bound can only be attained if α is large enough, see
Appendix B.1. For the measures SML, SMW, SMU, SMK, and SMP, tight lower bounds are
not known for m > 2. This, however, is not a problem with respect to the interpretability of
the stability values. For these measures, a value of 0 means that a feature selection algorithm
is as stable as a random feature selection and lower values indicate an even worse stability.

For SMY and SMA, universal lower bounds cannot be given, as they depend on the data
specific similarities between the features. The more similar features there are, the closer
are the expected values to the maximum values and therefore, the smaller is the minimum
stability value. For the same reasons as for SML, SMW, SMU, SMK, and SMP, this is not
a problem with respect to the interpretability of the stability values. For SMES, no lower
bound is known either. The value that SMES attains for a random feature selection is not
constant. It depends on the number of selected features, see the discussion of the “correction
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Name Reference Lower
Bound

Upper
Bound

Tightness of Lower
Bound for m > 2

SMJ Jaccard (1901) 0 1 yes
SMD Dice (1945) 0 1 yes
SMO Ochiai (1957) 0 1 yes
SMH Dunne et al. (2002) 0 1 no
SML Lustgarten et al. (2009) −1 1 no
SMW Wald et al. (2013) 1 − p 1 no
SMU Bommert and Rahnenführer (2020) −1 1 no
SMK Carletta (1996) −1 1 no
SMP Nogueira and Brown (2016) −1 1 no
SME Novovičová et al. (2009) 0 1 yes
SMD-α Davis et al. (2006) 0 1 depends on α
SMS Somol and Novovičová (2008) 0 1 yes
SMN Nogueira (2018) −1

m−1 1 yes
SMZ Zucknick et al. (2008) 0 1 yes
SMES Sechidis et al. (2020) — — —
SMY Yu et al. (2012) — 1 —
SMA Bommert and Rahnenführer (2020) — 1 —

Table 6.2: Ranges of the stability measures.

for chance” property. Therefore, for SMES, the lack of a lower bound is a problem with
respect to interpretability.

Regarding the bounds property, SMU, SMK, SME, and SMZ fulfill this property because
they have finite upper and lower bounds. For SMES, SMY, and SMA, the bounds property
does not hold because for them, universal lower bounds are not known. For SMES, a finite
upper bound is not known either.

Maximum For SMU, SMK, and SME, the maximum value is reached if and only if
V1 = . . . = Vm, see Appendix B.4. For α = 0, SMD-α fulfills the maximum property as shown
in Appendix B.4. For α > 0, SMD-α does not fulfill this property, because the maximum
value is not attained for identical feature sets, see Appendix B.1. For SMZ, SMY, and
SMA, the maximum stability value can also be obtained for sets that are not identical, see
Appendix B.2. For SMES, the maximum property does not hold because for SMES, no
maximum value is known.

Adjusted Out of the 20 stability measures, only SMZ, SMES, SMY, and SMA are adjusted.
The others do not take into account similarities between features.

Adjusted Monotonicity The “adjusted monotonicity” property is equivalent to the
monotonicity property for unadjusted stability measures. Therefore, the unadjusted measures
fulfill the “adjusted monotonicity” property if and only if they fulfill the monotonicity property.
For the adjusted measures SMZ, SMY, and SMA, the “adjusted monotonicity” property holds
because these measures are defined as averages of pairwise scores such that each pairwise
score is a strictly increasing function of the cardinality of the respective adjusted intersection,
see Subsection 3.3.2.3. For SMES, the property holds as well. Sechidis et al. (2020) show that
their stability measure can be rewritten as a function of all pairwise adjusted intersections
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and this function is strictly increasing with respect to the cardinalities of all pairwise adjusted
intersections.

Maximum for Equal Cardinalities The “maximum for equal cardinalities” property is
an implication of the maximum property. If a stability measure attains its maximum value
only for identical feature sets, then it only attains this value for sets with equal cardinalities.
And if a stability measure attains its maximum value for identical feature sets, then the
maximum value is attainable in a situation with all feature sets having the same cardinality.
For SML, the “maximum for equal cardinalities” property is not fulfilled, because SML does
not attain its maximum value for finite values of p, see Appendix B.1. SMW, SMS, and SMY
do not fulfill this property because they can attain their maximum values for feature sets with
unequal cardinalities, see Appendix B.5. SMD-α fulfills the “maximum for equal cardinalities”
property for α = 0 and not for α > 0 due to the same reasons that the maximum property is
fulfilled or not fulfilled, respectively. SMZ fulfills the property because it attains its maximum
value only in situations in which all feature sets have the same cardinality and it attains its
maximum value if all sets are identical, see the discussion of the maximum property for SMZ.
For SMA, the property is fulfilled as well, as shown in Appendix B.5. SMES does not fulfill
the property because no maximum value is known.

Conclusion For the unadjusted stability measures, it is desirable to fulfill all of the
properties defined by Nogueira (2018). Only SMU, SMK, SMP, and SMN possess all
properties. For the adjusted stability measures, it is desirable to fulfill the “maximum
for equal cardinalities” property instead of the maximum property. Among the adjusted
stability measures, SMZ and the four variants of SMA possess the largest number of desirable
properties. However, none of them fulfills all desirable properties. SMZ is not corrected for
chance and for SMA, no universal lower bound is known.

6.2 Empirical Comparison Considering All Combina-
tions of Feature Sets

To compare the stability measures empirically, first, a comparison in a situation with only
7 features is conducted. The advantage of this comparison is that all possible combinations
of 2 sets of selected features can be analyzed, because there are only 27 · 27 = 16 384 possible
combinations. Also, many of these 16 384 combinations are symmetric versions of each other,
that is, they describe the same situation but the features in the two sets have different
identifiers.

6.2.1 Experimental Setup
The values of the 20 stability measures presented in Subsection 3.3.2 are calculated for all
16 384 possible combinations of 2 feature sets being selected from a total number of 7 features.
With the notation of Subsection 3.3.2, this means that p = 7 and m = 2. For SMD-α, the
value α = 0 is used. For the adjusted stability measures presented in Subsection 3.3.2.3, the
similarities between the 7 features have to be defined. The similarity matrix used for this
analysis is displayed in Figure 6.1. For the threshold θ, the value θ = 0.9 is used. There
is one block of three features that are similar to each other, that is, their similarity values
exceed the threshold θ. Also, there are two blocks with two similar features each. For SMZ,
the similarity matrix in Figure 6.1 is assumed to be a matrix of absolute Pearson correlations.
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1 0.95 0.95 0.1 0.1 0.1 0.1

0.95 1 0.95 0.1 0.1 0.1 0.1

0.95 0.95 1 0.1 0.1 0.1 0.1

0.1 0.1 0.1 1 0.95 0.1 0.1

0.1 0.1 0.1 0.95 1 0.1 0.1

0.1 0.1 0.1 0.1 0.1 1 0.95

0.1 0.1 0.1 0.1 0.1 0.95 1

X1

X2

X3

X4

X5

X6

X7

X1 X2 X3 X4 X5 X6 X7

Similarity ≥ 0.9 No Yes

Figure 6.1: Similarity matrix for the 7 features. Similarity values must be within the inter-
val [0, 1].

For SMES, the similarity matrix C (see Subsection 3.3.2.3) is determined by setting all
similarity values in Figure 6.1 that are smaller than the threshold θ = 0.9 to 0. For SMY,
SMA-MBM, SMA-Greedy, SMA-Count, and SMA-Mean, the expected values of the pairwise
scores are determined exactly by considering all possible pairs of sets of the same cardinalities.
Some stability measures are not defined for some of the 16 384 combinations of feature sets.
Table 6.3 displays the number of scenarios with missing values for each stability measure.
The situations in which each stability measure is not defined are stated in Appendix B.1.
Missing values are omitted for the analyses.

6.2.2 Results
To compare all stability measures, in Figure 6.2 scatter plots of all pairs of stability measures
are shown. This plot allows determining three groups of stability measures. In the upper left
corner of Figure 6.2, there is the group of stability measures SMD-0, SMH, SMO, SMD, SME,
SMZ, SMS, and SMJ. All of these measures are not corrected for chance, see Section 6.1. The
second group consists of the stability measures SML, SMK, SMU, SMP, SMW, and SMN.
These measures are corrected for chance, but do not consider similarities between features.
The third group consists of SMA-Mean, SMA-Count, SMA-Greedy, SMA-MBM, SMY, and
SMES. These measures are adjusted and – except for SMES – they are corrected for chance.

Stability measure(s) Number of scenarios
with missing values

SMH 0
SMJ, SMD, SME, SMD-0, SMZ 1
SMK, SMN, SMES, SMY 2
SMS 30
SMO 255
SMU, SMA-MBM, SMA-Greedy, SMA-Count, SMA-Mean 256
SML, SMW, SMP 508

Table 6.3: Number of scenarios with missing values out of all 16 384 scenarios.
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Figure 6.2: Scatter plots of the stability values obtained with the 19 stability measures for the
16 384 combinations. The red line in each plot indicates the identity. The order
of the stability measures is determined by conducting a PCA with the stability
measures as observations and all stability values as features, and ordering the
measures by the values of the first principal component.
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All groups are rather homogeneous. In the first group, especially SMO, SMD, and SME
take almost identical values. SMD-0 and SMJ agree very much with each other and with
SMO, SMD, and SME when considering the ranks of the stability values. SMH takes 8
and SMS only 5 distinct values for the 16 384 combinations. For SMH, there are many
combinations in which SMH takes a value greater than 0 while the other measures of the
group take the value 0. For these combinations, there are no features that are included in
both sets, but there are features that are included in neither of the sets. For SMS, there
are many combinations in which SMS assigns the value 0 and the other measures of the
group take values larger than 0. This effect is due to the attempt of a correction for chance
that SMS includes. SMZ is very different from all the other stability measures. The largest
agreement between SMZ and any other measure can be found between SMZ and SMJ. The
values of SMZ are always larger than or equal to the values of SMJ. This can be explained
by SMZ being a modification of SMJ for taking into account similar features.

In the second group, SMK, SMU, and SMP are almost identical. SML and SMW differ
from the other stability measures of the group due to the way they normalize the pairwise
scores. Their normalizations result in the stability measures not fulfilling the maximum
property, see Section 6.1. SMN takes similar stability values as SMK, SMU, and SMP, when
all of them attain high values. For combinations where SMK, SMU, and SMP take values
around 0 or smaller, the values of SMN can differ quite much. The reason is that SMK, SMU,
and SMP subtract the expected values of |Vi ∩ Vj|, given that feature sets of cardinalities
|Vi| and |Vj| are selected, in the pairwise scores. So, for example, when Vi � Vj and |Vj| = p,
SMK and SMU have the value 0, independent of |Vi|. However, intuitively, in this example
the stability scores should increase with increasing |Vi|. SMN can represent the intuitive
differences in stability by assigning different stability scores.

Comparing the first two groups, it can be observed that the uncorrected measures
take larger or equal values compared to the corrected measures for almost all feature set
combinations. This effect was expected, because the motivation for correcting a measure for
chance is avoiding high stability values that are simply due to the selection of many features.

The adjusted stability measures differ strongly from the unadjusted measures with respect
to their stability assessment behavior. Within the group of adjusted measures, SMA-Mean,
SMA-Count, SMA-Greedy, and SMA-MBM take almost identical values for all combinations.
The values assigned by SMY and by the SMA variants are also quite similar. However, for
combinations that are assigned large stability values by all of these measures, SMY often
attains larger values than the SMA measures. These are combinations for which several
features from the one set are mapped to the same feature of the other set, see the discussion
in Subsection 3.3.2.3. This undesired behavior of SMY occurs for large stability values. This
is problematic because large stability values are what an optimizer will be searching for
later on, see Chapters 7 and 8. Stability measure SMES differs noticeably from the other
measures in the group. In many situations, SMES attains much smaller values. For SMES,
the similarity values of the features included in the same set are important. Table 6.4 provides
an explanatory example. In both of the scenarios in Table 6.4, the intersection of the two
sets of selected features is empty and none of the features in the one set is similar to any of

V1 V2 SMA-
Mean

SMA-
Count

SMA-
Greedy

SMA-
MBM

SMY SMES

{X4, X5} {X1, X7} -1.1238 -1.1832 -1.1832 -1.1832 -1.2500 -1.6686
{X4, X5} {X6, X7} -1.1238 -1.1832 -1.1832 -1.1832 -1.2500 -2.5280

Table 6.4: Stability values for two combinations of sets of selected features, V1 and V2.
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the features in the other set. In the first scenario, the features in set V2 are not similar to
each other, in the second scenario they are, see Figure 6.1. In the second scenario, SMES
takes a much smaller value than in the first scenario. The other stability measures attain the
same value in both scenarios because they do not consider the similarities between features
in the same set. It seems intuitive that a stability measure should attain the same value in
both scenarios because the similarity values of X1 to X4 and X5 are exactly identical to the
similarity values of X6 to X4 and X5.

Now, the dependence of the stability values on the number of selected features is analyzed.
Figure 6.3 displays for each stability measure the attained values for feature sets with different
mean cardinalities. Also, the mean stability value per mean number of selected features
is displayed. Remember that in this analysis, all possible combinations of feature sets are
considered. Therefore, the mean stability value is equal to the expected stability value for a
random feature selection of two sets with the respective mean cardinality. For the corrected
measures, the expected stability value is constant with respect to the number of selected
features. This was expected because this is the definition of correction for chance. For SMN,
the expected value is smaller than 0 whereas it is 0 for all other corrected measures. For
SMD-0, SMO, SMD, SME, SMZ, and SMJ, the expected value increases with the number
of selected features. For SMH, the expected value is smallest for a mean cardinality of
3.5 features, which is half of the 7 existing features. For SMS and SMES, it is largest if
3.5 features are selected on average. For SMES, the expected value varies only little with
respect to the mean number of selected features. This makes it plausible that SMES belongs
to the group of adjusted and corrected stability measures in Figure 6.2, even though it is not
corrected for chance.

Figure 6.3 also provides information about which stability values are attainable with
respect to the number of selected features. All corrected measures, SMH, and SMES can
only attain their smallest values for a mean cardinality of 3.5 features. SMD-0, SMO, SMD,
SME, SMZ, and SMJ can attain their minimum value for all mean cardinalities up to 3.5.
Only SMS can take its minimum value for arbitrary mean numbers of selected features.

SMS, SMW, and SMY can take their maximum value for arbitrary mean numbers of
selected features, also for feature sets of different sizes. These effects have been described in
Section 6.1 with the measures violating the “maximum for equal cardinalities” property. For
all other measures, the maximum values can only be reached for sets of equal cardinalities.
SML does not attain its maximum value. The largest value that SML reaches is attained in
situations where both sets have the same cardinality of 1 or 6. All other stability measures
for which a maximum value is known attain their maximum value.

Another observation of Figure 6.3 is that for the corrected measures, there seem to be
the fewer distinct attainable values, the more the mean number of selected features deviates
from 3.5. The reason is that there are more possibilities for two feature sets to have a mean
cardinality around 3.5 than there are for having a very small or very large mean cardinality.
Also, in this limited scenario with only 7 features, there are only very few combinations with
extreme mean cardinalities that are different from each other and not just symmetric versions
of each other.

6.3 Empirical Comparison on Real Feature Sets
Now, the stability measures are compared based on feature sets that are selected for real
data sets. While in Section 6.2 all possible sets for a limited scenario were considered, this
analysis is based on realistic feature sets resulting from real applications.
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Figure 6.3: Dependence of the stability values on the number of selected features. The red
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order of the stability measures is the same as in Figure 6.2.
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6.3.1 Experimental Setup
The setup of this study is designed so that the results can be used for the analyses in Chapter 7
as well. The analyses are based on all data sets presented in Section 4.1. Each data set is
split into two equally sized halves, with equal class ratios in both halves (stratified split).
The halves will be the training and the test data in Chapter 7. In this analysis, only the
training half of each data set is considered.

For feature selection, combined methods that consist of a filter method and a classification
method, like in Chapter 5, are applied. These combined methods first apply a filter and then
learn the classification rule on the remaining features. Based on the results of the analyses
in Chapter 5, the filter methods JMI, MIM, and impurity as well as applying no filter are
considered. Not filtering at all is included in the search space because in this analysis, also
classification methods that perform an embedded feature selection are employed. The filter
methods have one hyperparameter indicating the percentage of features to select. The range
of this hyperparameter is [0%, 100%]. The classification methods that are considered for this
analysis are displayed in Table 6.5 with their corresponding hyperparameters. The range
for the hyperparameter nodesize is taken from Probst et al. (2019). Note that lasso logistic
regression, random forest, and glm boosting conduct an embedded feature selection, that is,
the set of selected features is determined by both the filter and the classification method.
Support vector machine, k nearest neighbors, and ridge logistic regression use all features, so
the feature selection is only conducted by the filter method. Each filter method is combined
with each classification method, resulting in 4 · 6 = 24 combined methods. For each of the
combined methods, 200 hyperparameter configurations are drawn randomly. So, for each
data set, 24 · 200 = 4 800 configurations are analyzed.

For each data set, 10 parts of this data set are generated from the training half with
10-fold cross-validation. Then, the configurations are applied to the 10 parts. So, for each
original data set, 10 models are fitted. Based on these models, the sets of selected features

Method Hyperparameters R package
Support Vector Machine C, σ ∈ {2x : x ∈ [−15, 15]} kernlab (Karatzoglou

et al., 2004)
k Nearest Neighbors k ∈ {1, 2, . . . , 20} kknn (Schliep and

Hechenbichler, 2016)
Ridge Logistic
Regression

λ ∈ {2x : x ∈ [−15, 15]} glmnet (Simon et al.,
2011)

Lasso Logistic Regression λ ∈ {2x : x ∈ [−15, 15]} glmnet (Simon et al.,
2011)

Random Forest ntree ∈
{100, 200, 500, 1 000, 2 000, 5 000},
nodesize ∈ {[(n · 0.2)x] : x ∈
[0, 1]}, mtry ∈ {1, 2, . . . , pfilter}

ranger (Wright and
Ziegler, 2017)

GLM Boosting n.iter ∈ {[2x] : x ∈ [0, 15]} mboost (Hothorn et al.,
2018)

Table 6.5: Classification methods with corresponding hyperparameters and R package of
which the implementation is used. [·] denotes rounding to the closest integer, pfilter
is the number of features in the data set after filtering and n is the number of
observations in the data set.
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are determined and the mean number of selected features is recorded. In the analyses in this
section, the proportion of selected features is considered instead of the number of selected
features for comparability across data sets. Also, the stability of the feature selection of the
configurations is evaluated with all stability measures based on the 10 feature sets obtained
from the 10 models. For all adjusted stability measures, the similarities between the features
are quantified with the absolute Pearson correlation. For SMES, the similarity matrix C
(see Subsection 3.3.2.3) is determined by setting all values in the correlation matrix that are
smaller than the threshold θ = 0.9 to 0. For SMY, SMA-MBM, SMA-Greedy, SMA-Count,
and SMA-Mean, the expected values of the pairwise scores are estimated based on 10 000
values, as described in Subsection 3.3.2.3. In preliminary studies, 10 000 values have shown to
provide a good compromise between convergence and run time. Here, it is computationally
infeasible to determine the expected values exactly like it has been done in Section 6.2.

For all configurations, the same cross-validation splits are used. The advantage of cross-
validation compared to other resampling strategies is that the overlap of each pair of data set
parts is known. This is relevant for stability assessment, because the similarity of the data
sets influences the stability of the feature selection, see Alelyani et al. (2011). For 10-fold
cross-validation, the data set parts share 80

90 of their observations.
There are 54 configurations for which no results could be obtained: 23 on sonar, 14 on

kc1-binary, 9 on tecator, 1 on har, 1 on gina_agnostic, 2 on dilbert, and 4 on lsvt. Like in
Section 5.3, the failing of all configurations is caused by the selection of less than two features
by the filters and the implementation of ridge logistic regression and lasso logistic regression
in glmnet, which requires at least two features. The configurations for which no results were
obtained are ignored for the analyses.

6.3.2 Results
To start the comparison of the stability measures based on real feature sets, an overview
of the values attained by the stability measures is given. Figure 6.4 shows the values that
the stability measures take for the features selected by the 4 800 configurations per data
set. It illustrates the ranges of attained values with respect to the proportion of selected
features. The plots in Figure 6.4 are similar to the ones in Figure 6.3, but they are based on
the stability values calculated for feature sets resulting from real data.

Like in Figure 6.3, it can be observed here that SME, SMD, SMO, SMD-0, SMJ, and
SMZ do not attain small values if many features are selected. Also, SMH does not take small
values for large or small numbers of selected features and SML does not attain large values
for medium numbers of selected features. For the corrected measures, there are no systematic
restrictions on the attained values. Unlike in Figure 6.3, the corrected but not adjusted
measures SMW, SMN, SMK, SMP, and SMU hardly take any negative values here. So, in
realistic feature selection situations, almost none of the feature selections are less stable than
a random feature selection.

To analyze the similarities between the stability measures, Pearson correlations between
all pairs of stability measures are calculated for all data sets. The resulting plots are shown
in Figures A.13 and A.14 in Appendix A.3. Then, the correlations are aggregated across
data sets by calculating the arithmetic mean. Figure 6.5 displays the results. There are
three groups of similar stability measures. SMH is one group by itself. The rest of the
uncorrected stability measures except for SMS and SMES form the second group. The third
group consists of all corrected measures, SMS, and SMES. All groups are very homogeneous.

This group structure is observed for most data sets. For tecator, lsvt, and arcene, the
group of corrected measures is split into adjusted and unadjusted stability measures. Also,
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Figure 6.4: Dependence of the stability values on the proportion of selected features. The
order of the stability measures is the same as in Figure 6.5.

SMES is a group by itself for these data sets. The data sets tecator, lsvt, and arcene are
the ones with many similar features. It is expected that the adjusted stability measures
only differ noticeably from the unadjusted measures if there is a sufficient number of similar
features in a data set. Also, as demonstrated in Table 6.4, SMES deviates strongly from the
adjusted and corrected stability measures when sets of similar features are selected. The
adjusted but uncorrected measure SMZ belongs to the group of uncorrected and unadjusted
measures for all data sets. So, the existing similarities in the considered data sets do not seem
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Figure 6.5: Mean Pearson correlations between all pairs of stability measures rounded to
two digits. The correlations between the stability measures are averaged across
data sets. The order of the stability measures is determined by average linkage
hierarchical clustering using the mean Pearson correlation as similarity measure
between stability measures.

to be sufficient for showing differences between SMZ and the unadjusted and uncorrected
measures.

Compared to the similarity analysis of the stability measures in Section 6.2, the groups
differ slightly. The main difference is that in this analysis, the stability measures SMH and
SMS are not part of the group of uncorrected stability measures. SMS belonging to the group
of corrected measures can be explained by its asymptotic correction for chance (Nogueira,
2018). The corrected measures, SMS, and SMES being grouped together in Figure 6.5, even
though some of them are adjusted and others are not, is due to the choice of data sets. Many
of the data sets contain only few similar features, while in Section 6.2, a scenario with many
similar features was considered. Also, here, the stability assessment behavior of SMN is
almost identical to the way the other corrected but unadjusted stability measures assign
stability values. This also means that the advantageous behavior of SMN for unstable feature
selections does not come into play for the real data situations considered here. In Section 6.2,
the advantageous behavior was observed for situations in which SMN attained values of 0
and below and such situations hardly occurred for the real data feature sets, see Figure 6.4.

To analyze the differences of the stability measures more in detail, scatter plots of the
stability values are shown in Figure 6.6. Because the members of the groups are so highly
correlated, only representatives of the groups shown. SMJ represents the group of uncorrected
and unadjusted measures, SMU represents the group of corrected and unadjusted measures,
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and SMA-Count represents the group of corrected and adjusted measures. It can be observed
that SMH and SMJ differ especially in situations in which only few features are selected on
average. For such situations, SMH attains large values because the number of features not
included in any of the feature sets is high, while SMJ often attains lower values. If many
features are selected on average, the measures attain very similar values. Compared to SMU,
SMJ takes larger values if many features are selected. For small numbers of selected features,
SMJ and SMU attain fairly similar values. SMH attains larger values than SMU for almost
all of the considered feature sets. Comparing SMU and SMA-Count, it can be observed that
many values are almost identical. These values result from the data sets with only few similar
features. For data sets with many similar features, the measures attain different values and a
tendency can be observed that SMA-Count assigns larger values than SMU in situations with
many selected features. In situations with only few selected features, SMU has a tendency to

Figure 6.6: Scatter plots of the stability values for all configurations and all 12 data sets. The
displayed stability measures are representatives of the groups found in Figure 6.5.
The red line indicates the identity.
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assign larger values than SMA-Count. This can be explained by the probability that features
that are similar to other features in the data set are among the selected features being larger
if more features are selected. If more similar features are among the selected features, it is
more likely that the adjustment takes a positive value and that therefore, SMA-Count attains
a larger value than SMU.

Now, the run times of the stability measures are compared. Figure 6.7 displays the run
times for calculating the values of the stability measures for all data sets. Each boxplot per
data set is based on the same feature sets that are selected by the 4 800 configurations. The
computation of the unadjusted stability measures is very fast. Calculating the value of the
adjusted but uncorrected measures SMZ and SMES takes a bit longer, but still can be done
in less than one second for most data sets. The run times of the corrected and adjusted
measures are much longer than the run times of the other measures. The reason is that
the expected values of the scores have to be estimated, which involves frequently repeated
evaluation of the adjustments.

Figure A.15 in Appendix A.3 displays the run times of the adjusted and corrected stability
measures only to allow a better comparison between these measures. While for the unadjusted
measures, the differences in run time do not really matter because all of them are fast to
compute, the differences do matter for the stability measures that are both adjusted and
corrected. For all data sets, SMY and SMA-Count require the least time for calculation among
the adjusted and corrected measures. For most data sets, the calculation of SMA-Mean,
SMA-Greedy, and SMA-MBM takes much longer. For large data sets, the latter computation
times are not acceptable.

6.4 Conclusions
The empirical comparisons based on both artificial and real feature sets have revealed that
there are groups of stability measures with very similar stability assessment behavior. One
group is formed by the stability measures that are not corrected for chance except SMES.
The second group consists of the measures that are corrected for chance but do not take into
account similarities between features. The third group is composed of the adjusted measures
except SMZ. For the feature sets obtained from real data sets, the uncorrected stability
measure SMH behaves so differently from the other uncorrected measures that it forms a
group by itself. To reduce the number of considered stability measures, one representative of
each group of similar stability measures can be chosen. For selecting a suitable measure for
each group, the theoretical properties analyzed in Section 6.1 and the run times analyzed in
Section 6.3 are taken into account.

For the group of adjusted stability measures, the four variants of SMA fulfill more desirable
properties than SMY and SMES. The sets of desirable properties fulfilled by SMY and SMES
are subsets of the properties fulfilled by SMA-Count, SMA-MBM, SMA-Greedy, and SMA-
Mean. The four variants of SMA fulfill the same theoretical properties. It makes sense
to choose the fastest of these measures, because their run times are quite long. Therefore,
SMA-Count is chosen for the group of corrected and adjusted stability measures. Regarding
the newly proposed stability measure SMA, the four considered variants differ in the way they
take into account similar features when evaluating the stability. Even though the adjustments
for similar features are conceptually different for the four variants, the resulting stability
values are very similar both on artificial and on real feature sets.

Within the group of corrected but unadjusted measures, only SMN, SMK, SMP, and
SMU fulfill all of the desired theoretical properties. These measures have shown to be very
similar, especially in the comparison based on real feature sets, so any of the measure could be



6.4. Conclusions 69

eating arcene chiaretti

lsvt christensen gravier

har gina_agnostic dilbert

sonar kc1−binary tecator

SM
H

SM
E

SM
D

SM
O

SM
D

−0
SM

J
SM

Z
SM

ES
SM

Y
SM

A−
G

re
ed

y
SM

A−
M

BM
SM

A−
C

ou
nt

SM
A−

M
ea

n
SM

L
SM

S
SM

W
SM

N
SM

K
SM

P
SM

U

SM
H

SM
E

SM
D

SM
O

SM
D

−0
SM

J
SM

Z
SM

ES
SM

Y
SM

A−
G

re
ed

y
SM

A−
M

BM
SM

A−
C

ou
nt

SM
A−

M
ea

n
SM

L
SM

S
SM

W
SM

N
SM

K
SM

P
SM

U

SM
H

SM
E

SM
D

SM
O

SM
D

−0
SM

J
SM

Z
SM

ES
SM

Y
SM

A−
G

re
ed

y
SM

A−
M

BM
SM

A−
C

ou
nt

SM
A−

M
ea

n
SM

L
SM

S
SM

W
SM

N
SM

K
SM

P
SM

U

1e−02

1e+00

1e+02

1e−02

1e+00

1e+02

1e+04

1e−02

1e+00

1e+02

1e−02

1e+00

1e+02

1e+04

1e−02

1e+00

1e+02

1e−02

1e+00

1e+02

1e−02

1e+00

1e+02

1e−01

1e+02

1e+05

1e−02

1e+00

1e+02

1e−02

1e+00

1e+02

1e−02

1e+00

1e+02

1e−02

1e+00

1e+02

1e+04

Stability Measure

R
un

 T
im

e 
(in

 S
ec

on
ds

)

Figure 6.7: Run times of all stability measures and all 12 data sets. Note that the y-axis
is scaled logarithmically. The order of the stability measures is the same as in
Figure 6.5.
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selected. Here, SMU is chosen because, if there are no similar features, SMU and SMA-Count
are identical and therefore, the effect of similar features can be seen best.

Of the group of uncorrected measures, SME, SMD, SMO, and SMJ fulfill all theoretical
properties, except for the correction for chance. The run time is not an issue for these
measures, as they are all very fast to compute. One possible choice would be SMJ as the
most popular and the most widely used of these measures. Another possible choice would be
SMD as the measure that is on average the most similar to all other measures of this group.
Here, SMJ is chosen. For further analyses, it should be kept in mind that the uncorrected
stability measures lack an important property, so it can make sense to only consider SMU
and SMA-Count instead of a representative of each group.
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Chapter 7

Finding Desirable Configurations by
Multi-Criteria Tuning

In this chapter, a strategy for finding configurations with high predictive accuracy and a stable
selection of a small number of features is analyzed. The aim of the analysis is investigating
whether it is possible with the proposed approach to find configurations that perform a more
stable selection of fewer features without losing much predictive accuracy compared to model
fitting only considering the predictive performance.

We have proposed this strategy in Bommert et al. (2017) and evaluated it based on 3 gene
expression data sets. In this chapter, the strategy is evaluated on 12 different data sets, but
the same conclusions are drawn.

7.1 Proposed Approach
For finding configurations with high predictive accuracy and a stable selection of a small
number of features, the hyperparameter tuning of the considered predictive methods is
performed in a multi-criteria fashion. First, the Pareto optimal configurations with respect
to maximal predictive accuracy, maximal feature selection stability, and minimal number
of selected features are determined. Then, a subset of these configurations is selected. This
subset consists of the Pareto optimal configurations whose predictive accuracy is not lower
than acc.max − 0.05 where acc.max is the best predictive accuracy observed on the same
data set. In the following, these configurations are called “PA-best” configurations.

It is reasonable to base the analyses on these configurations, because the prediction
accuracy of a predictive model is its most important performance criterion - often the only
one considered during tuning. Allowing configurations with a bit lower accuracy permits
analyzing potential gains in stability and number of selected features when not the very
best configuration with respect to predictive accuracy is chosen. The PA-best configurations
are compared to the best configurations obtained with single-criteria tuning with respect
to predictive accuracy. The latter configurations are named “A-best” configurations for the
remainder of this chapter.

7.2 Experimental Setup
A random search for configurations that lead to sparse and stable models with high predictive
accuracy is conducted. This study builds upon the study conducted in Section 6.3. For the
study in Section 6.3, the 12 data sets presented in Section 4.1 were used. Each of them
was split into two halves of equal size with stratification of the class variable. Here, one
half is used as training data, the other half as test data. Combined methods consisting of
a filter and a classification method were considered. For each of the 24 combined methods,
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200 configurations were drawn randomly for each data set, resulting in 4 800 configurations
to evaluate, see Subsection 6.3.1. There are 54 configurations for which no results could be
obtained and which are ignored for the analyses, see Subsection 6.3.1

Now, for selecting the PA-best and A-best configurations, all configurations are evaluated
on the training data. For this, 10-fold cross-validation is performed, that is, 10 models are
fitted, each based on 90% of the observations. For each model, the class is predicted on
the 10% of the observations that were not used for fitting the model and the classification
accuracy is calculated. Then, the mean value of the 10 classification accuracy rates is assessed
as a measure of the predictive performance of the configuration. Additionally, for each
model, the set of selected features is determined. To assess the mean size of the models, the
mean cardinality of the sets of selected features is determined (mean number of selected
features). Also, the stability of the feature selection of the configuration is evaluated based
on the 10 features sets obtained from the 10 models. For stability assessment, the stability
measures SMU, SMA-Count, SMJ, and SMH are chosen based on the results of the analyses
in Chapter 6.

In Section 6.3, the stability of the feature selection of all configurations was analyzed.
Here, the PA-best and A-best configurations are chosen and evaluated on the test halves
of the data sets. For the evaluation on the test data, 10-fold cross-validation is performed
and the mean classification accuracy, the mean number of selected features, and the stability
are determined. Evaluating the chosen configurations on data that has not been used for
choosing the configurations allows to assess unbiased estimates for the three target criteria.
It is necessary to perform resampling on both halves of the data sets in order to be able to
evaluate the stability on both halves. By using this procedure, the number of observations
is roughly equal for all model fits on both training and test data. For all configurations
evaluated on the same data set, the same cross-validation splits of both the training and the
test data set are used.

7.3 Results
The proposed approach for finding desirable configurations is evaluated. In Subsection 7.3.1,
the PA-best configurations obtained with the different stability measures are compared. In
Subsection 7.3.2, the PA-best configurations are compared to the A-best configurations with
respect to predictive accuracy, feature selection stability, and number of selected features on
the test data.

7.3.1 Comparison of Optimal Configurations Between the Stabil-
ity Measures

As discussed in Chapter 6, the stability measures SMU, SMA-Count, SMJ, and SMH differ
with respect to their stability assessment behavior. These differences also result in different
sets of Pareto optimal configurations when considering the classification accuracy, stability,
and number of selected features. Table 7.1 displays the number of Pareto optimal and
PA-best configurations per data set and stability measure as well as the number of A-best
configurations per data set. For all data sets, using SMJ leads to the largest number of
Pareto optimal and PA-best configurations. For data sets dilbert, christensen, and chiaretti,
many of the 4 800 configurations per data set achieve the same best classification accuracy on
the training data. As discussed in Section 4.1, these are data sets for which the separation of
the classes seems to be comparably easy.
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Data set SMU
(all)

SMA-
Count

(all)

SMJ
(all)

SMH
(all)

SMU
(PA)

SMA-
Count
(PA)

SMJ
(PA)

SMH
(PA)

A-
best

sonar 97 88 132 65 17 16 31 20 1
kc1-binary 95 30 170 51 25 8 38 7 1
tecator 37 41 57 24 31 35 51 23 1
har 507 492 553 502 22 19 68 23 1
gina_agnostic 139 90 260 124 37 36 111 62 1
dilbert 650 551 856 713 137 108 342 209 954
lsvt 558 501 623 475 21 18 42 21 3
christensen 483 483 483 483 67 67 67 67 3414
gravier 687 563 1027 506 6 6 6 4 2
eating 946 867 1139 505 5 4 5 3 1
arcene 825 538 1160 593 69 25 84 7 2
chiaretti 744 549 1010 656 126 64 282 170 2207

Table 7.1: Number of Pareto optimal configurations per data set and stability measure (all),
number of PA-best configurations per data set and stability measure (PA), and
number of A-best configurations per data set (A-best).

To analyze the differences in the sets of optimal configurations between the stability
measures, Figure 7.1 shows the PA-best configurations per stability measure and data set.
For most data sets, there are some configurations that are PA-best for all stability measures,
while most configurations are only PA-best for some of the measures. The agreement on
PA-best configurations is largest for the data sets christensen, gravier, and eating. For most
data sets, there are configurations that are just optimal for SMJ or for SMJ and SMH. For the
data sets tecator and lsvt, which include many similar features, there are some configurations
that are only optimal for the adjusted stability measure SMA-Count.

Figure 7.2 as well as Figures A.16, A.17, and A.18 in Appendix A.3 show the classifi-
cation and filter methods of the PA-best configurations for the different stability measures.
Figure A.19 in Appendix A.3 displays analogous plots for the A-best configurations. The
classification and filter methods of the best configurations differ strongly between the data
sets. For all data sets, it can be observed that for the classification methods that perform
embedded feature selection (lasso logistic regression, random forest, and glm boosting) many
of the best configurations employ a filter. So, even if there already is feature selection
included in the model fitting process, it seems beneficial to apply a filter first. For SMU
and SMA-Count, it can be observed that among the PA-best configurations there are no
methods that do not perform feature selection at all. Such methods would consist of one of
the classification methods that do not perform embedded feature selection (support vector
machine, k nearest neighbors, and ridge logistic regression) and no filter. For SMJ and
SMH, such configurations are Pareto optimal because both stability measures attain their
maximum value if all features are included in all of the 10 models. For some data sets, such
configurations are among the PA-best configurations for SMJ and SMH.

7.3.2 Performances of the Optimal Configurations
The PA-best configurations per data set are determined based on their performance (mean
classification accuracy, mean number of selected features, and stability) on the training data.
Figure 7.3 and Figures A.20 and A.21 in Appendix A.3 display the differences in performance
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Figure 7.1: PA-best configurations per stability measure and data set. Only the configurations
that are PA-best for at least one stability measure are displayed.
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Figure 7.3: Differences in mean classification accuracy between training and test data for
the PA-best and A-best configurations. Values above the dotted line indicate a
higher mean classification accuracy on the test data than on the training data.
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between the training and test data for the PA-best configurations. Figure 7.3 additionally
displays the differences in predictive performance for the A-best configurations.

Figure 7.3 shows that the differences in predictive accuracy for the PA-best configurations
are small for most data sets. For har, gina_agnostic, dilbert, and christensen, the PA-best
configurations have almost the same predictive accuracy on the test data as on the training
data. har, gina_agnostic, and dilbert are data sets with very many observations. For sonar,
kc1-binary, tecator, lsvt, and gravier, the classification accuracy on the test data is noticeably
lower than on the training data. The largest differences are observed for data set lsvt. For
eating, arcene, and chiaretti, there are configurations with higher predictive accuracy on the
test data than on the training data. These are the data sets with very many features and
more features than observations. Especially for sonar, kc1-binary, tecator, and eating, it can
be observed that the decrease in classification accuracy from training to test data is much
larger for the A-best configurations than for the PA-best configurations. This means that the
best configurations found with single-criteria tuning over-fit the training data much more
than the configurations obtained with multi-criteria tuning. This observation applies to all of
the considered data sets, except for the gene expression data sets gravier and chiaretti.

Figure A.20 demonstrates that the numbers of selected features do not differ much between
training and test data for all data sets. This is plausible because the number of selected
features is almost fixed for given hyperparameter values. For the classification methods
without embedded feature selection, the number of selected features is completely determined
by the filter percentage. For the other classification methods, the number of selected features
can vary between training and test data. However, for these methods, the hyperparameters
(for example the number of boosting iterations or the weight of the lasso penalty) only allow
the number of selected features to vary within a small range.

Regarding the differences in feature selection stability, Figure A.21 shows that for most
data sets, the configurations are equally stable on the training and test data. The largest
differences are observed for PA-best configurations determined with the stability measure
SMA-Count on data sets tecator and lsvt as well as for the PA-best configurations for data
set sonar determined with SMU or SMA-Count. In all of these cases, the stability on the
test data is lower than on the training data.

Summarizing the content of Figures 7.3, A.20, and A.21, for most data sets, the perfor-
mances of the PA-best configurations on the training and test data are very similar. In the
following, plots are analyzed, in which the performances of the PA-best configurations on the
test data are shown. For this, it should be kept in mind that the performances on the test
data are most likely very similar to the performances on the training data. Six-dimensional
plots displaying all performance values per configuration cannot be shown.

Figures 7.4 and 7.5 display the performances on the test data of the PA-best configurations
for all considered stability measures and data sets. Also, the performances of the A-best
configurations are shown. The sets of PA-best and A-best configurations overlap. Some of
the A-best configurations are also PA-best configurations, but not all of them, and vice versa.
A-best configurations that have the same classification accuracy but lower stability or a larger
number of selected features than at least one PA-best configuration on the same training
data set are not Pareto optimal and therefore not PA-best either. Whether a configuration
is PA-best, A-best or both is indicated by the shape of its point. The stability and the
mean number of selected features are displayed by the position of the points. The mean
classification accuracy is displayed by color. Optimal configurations with respect to all
three target criteria would be located in the upper left corner (minimal number of selected
features and maximal stability) and their color would be dark green. The performances of
the configurations on the test data can be seen as unbiased estimates for the performance
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Figure 7.4: Stability, mean number of selected features, and mean classification accuracy
on the test data of the PA-best and A-best configurations for data sets sonar,
kc1-binary, tecator, har, gina_agnostic, and dilbert.
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Figure 7.5: Stability, mean number of selected features, and mean classification accuracy
on the test data of the PA-best and A-best configurations for data sets lsvt,
christensen, gravier, eating, arcene, and chiaretti.
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values on new data because they are assessed on data that is not considered for tuning or
model fitting.

To investigate whether multi-criteria tuning and selecting the PA-best configurations
provides an advantage over single-criteria tuning, Figures 7.4 and 7.5 are analyzed. Triangles
indicate configurations that are PA-best but that are not optimal when only considering the
predictive accuracy. If the plots contain triangles located more upper-left than the dots and
stars, this means that with multi-criteria tuning, it is possible to obtain configurations, that
perform a more stable selection and select fewer features, than with single-criteria tuning.
The potential loss in predictive accuracy, which choosing such a configuration instead of an
A-best configuration invokes, can be assessed by comparing the colors of the respective dots,
stars, and triangles. Even though the use of different stability measures leads to different
sets of PA-best configurations, the conclusions regarding the benefit of multi-criteria tuning
over single-criteria tuning are identical.

For data sets sonar, kc1-binary, tecator, har, lsvt, and eating, it is possible to choose PA-
best configurations with higher classification accuracy, higher stability, and a lower number of
selected features on the test data compared to the A-best configurations. For gina_agnostic,
gravier, and arcene, with multi-criteria tuning, configurations can be found that lead to a
more stable selection of fewer features at the cost of a noticeable loss in predictive accuracy
compared to the configurations obtained with single-criteria tuning. For data sets dilbert,
christensen, and chiaretti, there are several configurations that achieve the best classification
accuracy on the training data. When considering the stability and number of selected features
during tuning, it is possible to find configurations with a comparably stable feature selection
of few features without any loss of predictive accuracy.

For data sets tecator, har, and gina_agnostic, differences between the results for the four
stability measures can be observed. For the uncorrected measures SMJ and SMH, the PA-best
configurations include configurations with many selected features. For the corrected measures
SMU and SMA-Count, such configurations are not among the PA-best configurations.

7.4 Conclusions
For finding configurations with high predictive accuracy and with a stable selection of a small
number of features, the strategy of considering all three target criteria simultaneously during
hyperparameter tuning is analyzed. The Pareto optimal configurations with respect to the
three criteria are determined and based on these, the PA-best configurations are selected.
The PA-best configurations are defined in this thesis as the subset of the Pareto optimal
configurations whose predictive accuracy is not lower than acc.max − 0.05 where acc.max is
the best predictive accuracy observed on the same data set.

Summarizing the results for all data sets, it can be concluded that with this strategy, it is
possible to choose configurations with a more stable selection of fewer features without losing
much predictive accuracy compared to model fitting only based on predictive performance.
Depending on the data set, the losses in predictive accuracy range from noticeable over
neglectable to gains in predictive accuracy. With the proposed strategy, models can be
obtained that over-fit the training data less than the models obtained with single-criteria
tuning only with respect to predictive accuracy.

The best results are obtained when the feature selection stability is evaluated with the
stability measures SMU or SMA-Count. The other considered stability measures lack the
theoretical property “correction for chance”, see Section 6.1, and therefore favor models with
a large number of selected features for some data sets.
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Chapter 8

Fitting Models on Data Sets with
Similar Features

For data sets with similar features, feature selection is very challenging. The reason is that
most established feature selection methods are not able to select only one feature out of a
group of similar features. Instead, they select either several or none of the similar features. An
example for this is given in Section 8.1. For data sets with similar features, also the evaluation
of feature selection stability is more difficult. Unadjusted stability measures consider features
that are almost identical as different features. Adjusted stability measures on the other hand
take into account the similarities between the features but take more time for calculation, see
Section 6.3.

In this chapter, strategies for fitting models on data sets with similar features are analyzed.
When fitting a predictive model on a data set, the standard approach is tuning the hyperpa-
rameters only with respect to predictive accuracy. In Section 8.2, the proposed approach of
considering the feature selection stability as a second target criterion during hyperparameter
tuning is described. Also, competing approaches are explained. All approaches are compared
based on both simulated data (Section 8.3) and real data (Section 8.4).

The aim of the analyses on simulated data is finding out whether the proposed approach
allows fitting models that include all features that were used for target generation and no
irrelevant or redundant features. On real data, the features that generate the target variable
are unknown, but the performance of the models with respect to predictive accuracy and
number of selected features can be examined. If the same or higher predictive accuracy is
achieved with fewer features, this can be due to two reasons: 1. The additional features are
irrelevant or redundant and therefore should not be selected. 2. All of the features in the larger
set are relevant and not redundant, but the same information can be captured by a smaller set
of different features. In both cases, the smaller set of features is preferable, for example with
respect to domain specific interpretation of the features and cost for subsequent experimental
analyses. In both the analyses on simulated data and on real data, it is investigated whether
the feature selection stability must be assessed with an adjusted stability measure or if an
unadjusted stability measure suffices for fitting models that achieve the respective goals.

8.1 Feature Selection on Data Sets with Similar fea-
tures

Consider a data set with groups of similar, for example highly correlated, features. Many
feature selection methods are not able to select only one feature out of a group of similar
features. We have observed this behavior for various feature selection methods. For methods
like univariate filter methods, this behavior is intuitive: highly similar features are likely
to be assigned similar filter scores. For predictive methods that perform embedded feature
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selection, the behavior is less intuitive. For lasso regression, it is even stated in the literature
that this method would select only one feature out of a group of similar features, see for
example Toloşi and Lengauer (2011). This, however, is not what we observed. We provide a
small example demonstrating the feature selection behavior of several classification methods
with embedded feature selection on data sets with similar features.

8.1.1 Experimental Setup
Data sets with 15 features and 100 observations are created in the following way. The values
for the 15 features are drawn from the multivariate normal distribution N (0, M) using the
R package mvtnorm (Genz and Bretz, 2009). The covariance matrix M is displayed in
Figure 8.1. Then, the target is created as Y = sign(X1 + X2 + E) with E ∼ N (0, 0.25). X1
is independent of all other features X2, . . . , X15. X2, X3, and X4 are perfectly positively
correlated. X5, X6, X7, and X8 are correlated with X2. The strengths of the correlations
decrease from very high (X5) to moderate (X8). The features X9 to X15 are noise features.
So, X3, and X4 are redundant, X9 to X15 are irrelevant and X5 to X8 are both redundant
and irrelevant to some degree.

The classification methods glm boosting, lasso logistic regression, random forest and
L0-regularized logistic regression are analyzed. The implementations of glm boosting and
random forest are taken from mboost (Hothorn et al., 2018) and ranger (Wright and Ziegler,
2017), respectively. For lasso logistic regression, the implementations in glmnet (Simon et al.,
2011) and LiblineaR (Helleputte, 2017) are considered. The hyperparameters of all methods
are tuned using 10-fold cross-validation. For glm boosting, lasso logistic regression and
random forest, a random search with 50 iterations for the best hyperparameter values is
performed. For L0-regularized logistic regression, the implementation in L0Learn (Hazimeh
and Mazumder, 2018) is used. This implementation has one integer hyperparameter with
feasible values ranging from 1 to the number of features in the data set. Because the number
of features in the data set is smaller than the number of tuning iterations for the other
methods, all feasible values are tried here. For more details on the hyperparameter of L0Learn
see Subsection 8.3.1. The best hyperparameter values are determined based on maximal
classification accuracy. For each classification method, a model with the best hyperparameter

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0.999 0.9 0.75 0.5 0 0 0 0 0 0 0
0 1 1 1 0.999 0.9 0.75 0.5 0 0 0 0 0 0 0
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Figure 8.1: Covariance matrix for the 15 features. Note that the correlation matrix is identical
to the covariance matrix because all features have unit variance.
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values is fitted on the entire data set and the selected features are assessed. This procedure
is repeated 1 000 times based on 1 000 data sets.

8.1.2 Results
Figure 8.2 displays for each feature, how many times it has been selected by each of the
classification methods. The random forest models contain all features on all data sets. So,
even though random forest can perform embedded feature selection, it does not exclude
any of the features here, neither the irrelevant nor the redundant features. For the four
other methods, irrelevant features are included only in some models. Also, the features
X6 to X8 are selected only slightly more frequently than the irrelevant features. The two
implementations of lasso logistic regression lead to different results. With LiblineaR, most
models include all of the features X2 to X5. This means that there are redundant features in
the resulting models. With glmnet, the selection frequencies decrease from X2 to X4. For
both glm boosting and L0-regularized logistic regression, the selection frequencies of X2 to
X4 are quite similar among these features. Only a small decrease from X2 to X4 can be
observed. The relevant feature X1 which has no similar features is included in all models
by all methods. Among the five methods, L0-regularized logistic regression selects irrelevant
features least frequently.

Figure 8.3 permits analyzing the redundancy in the models fitted with all methods. The
first plot displays the number of features selected out of the group of perfectly positively
correlated features X2, X3, and X4. It shows that glm boosting, L0-regularized logistic
regression and lasso with glmnet on median select exactly one feature out of this group, which
is optimal. Lasso with LiblineaR and random forest almost always select all three features.
When analyzing the selection of {X2, . . . , X5}, three perfectly and one highly correlated
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Figure 8.2: Selection frequencies of all 15 features divided by the number of data sets for all
considered classification methods.
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Figure 8.3: Number of selected features out of the sets {X2, . . . , Xi} with i ∈ {4, . . . , 8}.
Optimally, only one of the features is selected per model. Maximally, all i − 1
features can be selected.

features are considered. In this scenario, glm boosting and L0-regularized logistic regression
still select only one of the features on median. Lasso with glmnet on median selects two
of these features. Lasso with LiblineaR and random forest almost always select all of the
features. In the three remaining plots, the features X6, X7 and X8, which are decreasingly
similar to X1, are considered additionally. For all methods, the number of selected features
out of {X2, . . . , Xi} increases noticeably with increasing value of i.

Figure 8.4 allows comparing the five methods more easily. It displays the median number
of selected features presented in Figure 8.3 for all classification methods in one plot. It can
be observed that L0-regularized logistic regression on median selects the optimal number,
which is only one feature, out of all groups {X2, . . . , Xi}, i ∈ {4, . . . , 8}. Glm boosting
and lasso with glmnet select comparably few redundant features. Lasso with LiblineaR and
random forest generate models with many redundant features. Concludingly, L0-regularized
logistic regression performs best at selecting only one feature out of a group of similar
features. Therefore, in the analyses in this chapter, L0-regularized logistic regression is used
as classification and feature selection method.

8.2 Proposed Approach and Competing Approaches
The goal is finding sparse models with high predictive accuracy that include all relevant
information for target prediction but no irrelevant or redundant features. As demonstrated
in the previous section, L0-regularized logistic regression is a method that is able to perform
feature selection among similar features, that is, select only one feature out of a group of
relevant and redundant features. Therefore, for classification data sets with similar features,
we propose the following approach:
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Figure 8.4: Median number of selected features out of the sets {X2, . . . , Xi} with i ∈
{4, . . . , 8}. Optimally, only one of the features is selected per model.

“adj”: Use L0-regularized logistic regression as predictive method and tune its hyper-
parameter with respect to predictive accuracy and to feature selection stability.
This way, a set of Pareto optimal configurations is obtained. Choose the best
configuration with ε-constraint selection, see Subsection 3.4.3. For assessing the
stability of the feature selection during hyperparameter tuning, employ an adjusted
stability measure.

The motivation for tuning the hyperparameter of L0-regularized logistic regression this way is
enhancing the standard approach of single-criteria tuning with respect to predictive accuracy.
Configurations with a stable feature selection select almost the same features for all data sets
(here: cross-validation splits). If the same features are selected for slightly varying data sets,
these features are presumably relevant and not redundant. If the feature selection stability is
low, many features are only included in some of the models. In this case, it is likely that
these features are either redundant or do not carry much information for target prediction.
Therefore, considering the feature selection stability during hyperparameter tuning should
lead to models which include neither irrelevant nor redundant features. For data sets with
similar features, it is expected that the selected features vary such that features with different
identifiers but almost identical information are selected. This is taken into account when
employing an adjusted stability measure. With ε-constraint selection, a configuration with
high feature selection stability is chosen among the configurations that achieve high predictive
accuracy. The proposed approach is compared to three other approaches:

“unadj”: Proceed as in “adj”, but employ an unadjusted stability measure instead of an
adjusted measure.

“acc”: L0-regularized logistic regression with hyperparameter tuning only with respect
to predictive accuracy. Single-criteria hyperparameter tuning with respect to
predictive accuracy is a standard approach and serves as baseline. Either a single
best configuration or a set of configurations with the same predictive accuracy on
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the training data is obtained. In the latter case, one of these configurations is
chosen at random.

“stabs”: Perform feature selection with stability selection. Then fit an unregularized logistic
regression model including the selected features. For stability selection, employ
L0-regularized logistic regression as feature selection method and tune the hyper-
parameters of stability selection with respect to predictive accuracy. Stability
selection, see Subsection 3.3.3, is a popular framework for stable feature selection
and a state-of-the-art method. It does not take into account the similarities between
the features. With this approach, either a single best configuration or a set of
configurations with the same predictive accuracy on the training data is obtained.
In the latter case, one of these configurations is chosen at random.

8.3 Experimental Results on Simulated Data
First, the approaches are compared on simulated data. On simulated data, it is known which
features have been used for creating the target variable and therefore should be selected and
included in a predictive model. In the following, features with an absolute Pearson correlation
of 0.9 or more are interpreted as exchangeable and they are called “similar features”. In many
fields, an absolute correlation of 0.9 or more is interpreted as a “strong” or even “very strong”
association (Akoglu, 2018).

8.3.1 Experimental Setup
Data Sets The data sets are created in the following way. First, a covariance matrix Σ
is defined. Two types of covariance matrices are considered. For matrix type “blocks”, the
features within a block all have correlation 0.95 to each other and 0.1 to features that are not in
this block. For this matrix, the features within a block are interpreted as similar to each other.
For each feature, the number of similar other features is given by the size of the block minus 1
(for excluding the feature itself as a similar feature). For the second matrix type, “Toeplitz”,
the covariance matrix is defined as Σij = ρ|i−j| with ρ = 0.92/(number of similar other features). In
the “Toeplitz” scenario, for the majority of features, the number of other features that have
a correlation of at least 0.9 to the considered feature is given by “number of similar other
features”. This holds if “number of similar other features” is chosen as an even number. The
“number of similar other features”/2 first and last features in the order of the covariance
matrix are similar to less than “number of similar other features” other features. For both
matrix types, all features have unit variance. Therefore, the covariance matrices are equal to
the respective correlation matrices. Given the covariance matrix, the data is drawn from the
multivariate normal distribution N (0, Σ) using the R package mvtnorm (Genz and Bretz,
2009). Then, five features X1, . . . , X5 are chosen such that the absolute correlations between
them are small. Then, the class variable Yi is sampled from a Bernoulli distribution with
probability P (Yi = 1) = exp(ηi)

1+exp(ηi) with ηi = x1,i + x2,i + x3,i + x4,i + x5,i, for i = 1, . . . , n.
In total, 4 · 2 · 4 = 32 simulation scenarios that differ with respect to data set dimensions,
covariance matrix type, and number of similar features in the data set are considered. These
scenarios are defined by all possible combinations of the values given in Table 8.1.

Setup for Tuning L0-Regularized Logistic Regression L0-regularized logistic regres-
sion (see Subsection 3.2.3) has only one hyperparameter that needs to be tuned: λ ∈ R+

0
balances the importance of a good fit in terms of maximum likelihood and the sparsity
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Parameter Values
Number of observations n ×
number of features p

100 × 200, 1 000 × 200,
100 × 2 000, 100 × 10 000

Covariance matrix type “Blocks”, “Toeplitz”
Number of similar other features 0, 4, 14, 24

Table 8.1: Parameters for data set creation.

of the model. The implementation in the R package L0Learn (Hazimeh and Mazumder,
2018), which is used for the experiments, does not allow the user to tune the hyperparameter
λ directly. Instead, one has to specify max.feats, the maximum number of features to be
included in the model. The smaller the value of λ, the more features are selected. L0Learn
uses an increasing sequence of λ-values and attempts to find a model with exactly max.feats
features. Because max.feats is of type integer, a grid search for the best value is performed,
trying all even values from 2 to 100. Note that the value max.feats = 5 is not tried, in
order not to exploit the knowledge that exactly 5 features are used for generating the target
variable. For continuous hyperparameters, a random search is more efficient than a grid
search (Bergstra and Bengio, 2012), but when randomly drawing 50 integer values between 1
and 100, duplicate values are very likely. Ten-fold cross-validation is conducted to evaluate
the performance of each hyperparameter value that is considered.

For “acc”, the mean classification accuracy of the 10 models on the respective left-out
data for the 10 cross-validation iterations is assessed. For “adj” and “unadj”, the mean
classification accuracy and the feature selection stability are evaluated. The feature selection
stability is quantified based on the 10 sets of features that are included in the 10 models. In
the “adj” approach, the stability measure SMA-Count is employed for stability assessment.
For SMA-Count, the absolute Pearson correlation is used as a measure of feature similarity
and the threshold θ is set to θ = 0.9. For estimating the expected values, 10 000 replications
are conducted, like it has been done in Section 6.3 as well. In the “unadj” approach, the
stability measure SMU is employed. The two stability measures are chosen based on the
analyses in Chapter 6.

Based on the performance values, the best configuration, that is, the best value for
max.feats, is selected. For “acc” the configuration with highest cross-validated classification
accuracy is chosen. If there are several configurations that attain the best classification
accuracy, one of these configurations is chosen at random. For “adj” and “unadj”, the best
configuration is chosen based on ε-constraint selection, which is introduced in Subsection 3.4.3.
For the cutoff values, acc.const = 0.025 and stab.const = 0.1 are used. These values have
been determined in preliminary studies on other data sets.

Setup for Tuning Stability Selection Stability selection is combined with L0-regularized
logistic regression as feature selection method. The implementation of stability selection
from the R package stabs (Hofner and Hothorn, 2017) is used with B = 50 complementary
subsamples. The two real-valued hyperparameters PFER and πthr have to be tuned. A random
search with 50 iterations is performed to find the best PFER ∈ [0.1, 10] and πthr ∈ [0.6, 0.9].
The range for πthr is suggested by Hofner and Hothorn (2017). The range for PFER is taken
from Thomas et al. (2017) and slightly extended. To determine the best hyperparameter
values of stability selection, an unregularized logistic regression model with the features
obtained from stability selection is fitted. Its classification accuracy is evaluated using 10-fold
cross-validation. The hyperparameter values of stability selection that lead to the model
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with the highest cross-validated classification accuracy are chosen. If several values lead
to the same best classification accuracy, one of these configurations is chosen at random.
The hyperparameter of L0-regularized logistic regression, max.feats, does not require tuning
because it corresponds to the hyperparameter q of stability selection (see Subsection 3.2.3).
Note that in the implementation of L0Learn, only the maximum number of features to
select can specified, while q denotes the exact number of selected features. However, in most
situations, L0Learn selects exactly the specified maximum number of features, not fewer
features.

Evaluation For each approach, a final model is built based on the entire training data set.
For “adj”, “unadj”, and “acc”, a L0-regularized logistic regression model with the best value of
max.feats is fitted. For “stabs”, stability selection is conducted with the best hyperparameter
values. Then, an unregularized logistic regression model is built with the selected features.
Additionally, an unregularized logistic regression model with the five features that were used
for generating the target variable is fitted. This provides an upper bound for the predictive
accuracy that can be achieved and will be denoted by “truth”.

Based on the final models, three performance measures are calculated: the classification
accuracy on new test data, the number of false positive features, and the number of false
negative features. For evaluating the test accuracy, a new test data set of the same size is
created in the same way as the training data set. Then, the classification accuracy of the
final models is assessed. The number of false positive features is the number of irrelevant or
redundant features that have been selected for the final models. The number of false negative
features is the number of relevant and not redundant features that have not been selected
for the final models. For the assessment of the number of false positive and false negative
features, features with an absolute correlation of at least 0.9 are interpreted as exchangeable.
So, if instead of a feature that was used for generating the target variable, an other feature
with absolute correlation of at least 0.9 is selected, this other feature is accepted as well.
More precisely, the quantity

a = |V ∩ C| + min {A(V, C), A(C, V )} with
A(Vi, Vj) = |{x ∈ (Vi \ Vj) : ∃y ∈ (Vj \ Vi) with | Cor(x, y) |≥ 0.9}|

as defined in Subsection 3.3.2.3 is calculated. V denotes the set of selected features and C
denotes the set consisting of the five features used for target generation. Then,

number of false positive features = number of selected features − a

and
number of false negative features = 5 − a.

From the two performance measures, “number of false positive features” and “number of
false negative features” the number of selected features can be calculated:

n. o. selected features = n. o. false positive features − n. o. false negative features + 5.

Note that the measure A, which is used for determining the number of false positive and
false negative features, is also employed in the stability measure SMA-Count. Also, note that
in the considered simulation scenarios, the data is generated from a logistic regression model
and all approaches fit logistic regression models. In this case, the best subset of features with
respect to predictive accuracy of the resulting model should consist exactly of the features
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used for target creation. In situations where the data generation process and the models
differ, the best subset of features generally depends on the model.

To ensure a fair comparison, all approaches use the same training and test data as well as
the same cross-validation splits. For each simulation scenario, 50 training and test data sets
are created.

8.3.2 Results
The results for the five approaches in the simulation scenarios with n = 100 observations
and p = 200 features are displayed in Figure 8.5. In Appendix A.5, analogous plots for the
scenarios with n = 1 000 and p = 200 (Figure A.22), n = 100 and p = 2 000 (Figure A.23),
and n = 100 and p = 10 000 (Figure A.24) are shown. The columns contain the results for
the different numbers of similar other features per feature in the data set. For each approach,
the classification accuracy on independent test data as well as the number of false positive
and false negative features of the respective best configurations are shown. As 50 replications
have been performed, each boxplot consists of 50 data points.

First, the scenarios with similar features are analyzed. In these scenarios, the predictive
performances of the models obtained with “adj”, “unadj”, and “acc” are very similar. Also,
in the scenarios with p = 200, the classification accuracies are quite close to the upper bound:
the classification accuracy of a model that contains exactly the five features used for target
generation. In the scenarios with p = 2 000 and p = 10 000, the predictive performances of
the models resulting from the three approaches are noticeably lower than the upper bound,
especially in the scenarios with few similar features.

Using the adjusted stability measure during tuning leads to much fewer false positive
features compared to single-criteria tuning and to tuning using the unadjusted stability
measure. So, the models obtained with “adj” contain fewer irrelevant or redundant features
than the models resulting from “unadj” and “acc”. This advantage comes at the small
drawback of a slightly increased number of false negative features which, however, does not
result in a decreased predictive performance. In the situations with n = 100 and p = 200,
these observations can be made for all simulation scenarios with similar features. For n = 1 000
and p = 200, this can only be observed if most features are similar to at least 14 other
features. In the settings with n = 100 and p = 2 000, 4 similar other features are necessary in
the “blocks” scenarios and 14 in the “Toeplitz” scenarios. For n = 100 and p = 10 000, only
the scenario with 24 similar other features and matrix type “blocks” shows the advantage of
the “adj” approach. It should be noted that in the high-dimensional simulation scenarios,
the relative number of similar features is much lower than in the low-dimensional settings.

The stability selection approach performs worse than the other methods in terms of
predictive accuracy in the scenarios with similar features. The low classification accuracy
is due to too few relevant features being selected: the number of false negative features is
high. The models obtained with “stabs” are very sparse. They contain almost no irrelevant
or redundant features, but also not many relevant features.

When there are no similar features, all approaches lead to models with similar classification
accuracy. With the stability selection approach, the resulting models contain the fewest
irrelevant or redundant features among the compared approaches. In the scenarios without
similar features, the proposed approach does not perform worse than the standard approach
“acc”, even though the proposed approach was specifically designed for situations with similar
features. When there are no similar features, the approaches “adj” and “unadj” are identical
because in this situation, the stability measures SMU and SMA-Count are identical.

Figure 8.6 and Figures A.25 to A.29 in Appendix A.5 show the influence of the simulation
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Figure 8.5: Results for the simulation scenarios with n = 100 and p = 200. “# Similar Other
Features”: Number of features in the data set that each feature is similar to (other
than itself). Two features are interpreted as similar if their absolute correlation
is at least 0.9. “Test Accuracy”: classification accuracy on independent test
data. “False Positive”: number of irrelevant or redundant features that have been
selected. “False Negative”: number of relevant and not redundant features that
have not been selected.
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Figure 8.6: Test accuracy for all considered approaches in the simulation scenarios with
matrix type “blocks”.
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scenarios on the performance of each approach. Figures 8.6 and A.25 display the classification
accuracy on test data for all approaches and all simulation scenarios. In the scenarios with
p = 200 and n = 1 000, the highest predictive accuracy values are obtained, followed by the
scenarios with p = 200 and n = 100. This is not surprising as the task of feature selection
usually is easier if the total number of features is smaller.

When the “blocks” covariance matrix is used to generate the data, the predictive accuracy
of the “truth” approach is independent of the number of similar features in the data set.
This seems intuitive as this approach only considers the features used for generating the
target variable. However, in the “Toeplitz” scenarios with p = 200, the predictive accuracy
of “truth” increases with the number of similar features. The reason is that the 5 features
chosen for target creation are correlated comparably strong. If each feature is supposed to be
similar to 14 or 24 other features in a data set with p = 200 features, it simply is not possible
in the “Toeplitz” scenario to find 5 features that are only weakly correlated. If the features
used for target generation are positively correlated, most of the probabilities P (Yi = 1) are
close to 0 or 1. Therefore, the classification tasks are easier than in the other scenarios.

For the approaches “adj”, “unadj”, and “acc” and all settings with p > n, the predictive
accuracy is the higher, the more similar features there are. The increase in predictive accuracy
is stronger in the “Toeplitz” scenarios than in the “blocks” scenarios. The larger the “number
of similar other features”, the more features are similar to the features used for target
generation. So, it becomes easier to select features with information for target prediction,
because there are more of them. In the “Toeplitz” scenarios, this effect is stronger than in
the “blocks” scenarios. In all scenarios, for each relevant feature, there are “number of similar
other features” features that contain almost the same information. For matrix type “blocks”,
the remaining features provide almost no information for target prediction. In the “Toeplitz”
scenarios, the remaining features contain information for target prediction. In order for two
features to be seen as similar, their absolute correlation must at least have the value 0.9.
But even if a feature is not considered to be similar to any of the features used for target
generation, the feature can still contain a lot of information for target prediction.

The predictive accuracy of the “stabs” approach depends on the number of similar features
in the settings with p = 200. For matrix type “blocks”, the predictive accuracy decreases
with an increasing number of similar features. This is due to the increasing number of false
negative features for an increasing number of similar features, see Figures A.28 and A.29. The
omission of many relevant and not redundant features results in missing relevant information
in the predictive model and therefore in a low predictive accuracy. For matrix type “Toeplitz”,
the accuracy increases with the number of similar features. As discussed for “truth”, the
classification tasks are easier in the scenarios with p = 200 and many similar other features
per feature. In the scenarios with p = 2 000 and p = 10 000, the classification accuracy of
“stabs” is more or less constant with respect to the number of similar features in the data set.
This is because the number of false negative features is almost constant in these scenarios,
see Figures A.28 and A.29.

Figures A.26 and A.27 display the effect of the simulation scenarios on the number of
false positive features. These figures do not contain results for “truth” because these models
include exactly the features used for target generation by definition. The more features there
are in the data set, the more false positive features are selected. This is intuitive because
the feature selection task becomes harder with increasing number of features in the data
set. In the settings with n > p, comparably few false positive features are selected. In these
scenarios, there are more observations which makes it easier to identify the relevant and not
redundant features.
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In all scenarios, for “adj”, the number of false positive features decreases with an increasing
number of similar features. The greater the number of similar other features per feature, the
fewer irrelevant and the more redundant features there are in the data set. So, it can be
concluded that with “adj”, especially the selection of redundant features is prevented. For
“unadj” and “acc”, an analogous decrease in the number of false positive features can only be
observed in the settings with p = 10 000 and n = 100. For “stabs” as well as for “unadj” and
“acc” in the other scenarios, no monotonic effect of the number of similar features can be
detected.

Figures A.28 and A.29 show the effect of the simulation scenarios on the number of false
negative features. Here, the number of features in the data set only has a small effect. For the
data sets with 10 000 features, the number of relevant features that have not been selected
is slightly larger than for the other scenarios with the same number of observations. In the
n > p settings, almost no relevant features are omitted by all approaches. As discussed before,
the reason is that more observations allow a better detection of the relevant features.

For “adj”, “unadj”, and “acc”, in almost all scenarios, the number of false negative features
decreases with an increasing number of similar features in the data set. As described before,
the greater the number of similar other features per feature, the more relevant features there
are in the data set. So, it is more likely that the methods succeed at selecting relevant
features. For “stabs”, the number of false negative features increases with the number of
similar features in the scenarios with p = 200. Recall that L0-regularized logistic regression,
which is used as the feature selection method in the “stabs” approach, usually selects only one
feature out of a group of similar features. When repeatedly performing feature selection on
the subsamples, it is likely that each time, only one feature out of each group of similar and
relevant features is selected and that the selection frequencies within a group are fairly equal.
So, if there are many similar features, the selection frequencies become very small. If the
highest of the selection frequencies is below any reasonable value of the threshold πthr, none
of the features is included in the final model. In the scenarios with p = 2 000 and p = 10 000,
the number of false negative features is almost constant with respect to the number of similar
features. Independent of the number of similar features in the data set, comparably many
relevant and not redundant features are not included in the final models. So, the stability
selection approach generally seems not to work well for data sets with many features, even if
there are no similar features among them.

Figure 8.7 shows the run times for all simulation scenarios and all approaches. In all
scenarios, the run times of the stability selection approach are much longer than the run
times of all competing approaches. Also, it can be observed that calculating the unadjusted
stability measure is very fast. So, tuning with respect to classification accuracy and stability
assessed by the unadjusted stability measure is about as fast as tuning only with respect to
classification accuracy. Calculating the adjusted stability measure takes a bit longer. But it
is faster than the stability selection approach by orders of magnitude.

8.4 Experimental Results on Real Data
Now, these findings are validated based on the 12 real data sets given in Section 4.1. Whenever
possible, the analyses here are conducted analogously to the analyses in the previous section.
However, on real data sets, the truly relevant features are not known.
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Figure 8.7: Average sequential run times for all considered simulations scenarios and all
considered approaches. Each symbol represents the average sequential run time
over the 50 replications that have been conducted for the respective scenario and
approach. The sequential run time is the sum of the run times of the 50 iterations
for hyperparameter tuning. Note that the y-axis is scaled logarithmically.

8.4.1 Experimental Setup
In this study, the same approaches are compared as in the simulation study. As far as
possible, tuning and evaluation is performed in the same way. Because it is not possible here
to generate independent test data sets, nested cross-validation with 10 inner and 10 outer
iterations is used (Bischl et al., 2012). The inner iterations are used to determine the best
configurations and the left-out data of the outer iterations is used to evaluate the predictive
accuracy. So, for each approach and each data set, 10 predictive performance values are
obtained. In the simulation study, an upper bound for the classification accuracy is obtained
with a logistic regression model with the features used for target generation. This is not
possible here because the truly relevant features are not known here. For the same reason, it
is not possible to assess the number of false positive and false negative features. Instead, the
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number of features included in the 10 models, whose predictive accuracy is evaluated on the
left-out test data, is recorded.

8.4.2 Results
Figures 8.8 and 8.9 display the evaluation results of the best configurations on real data.
Figure 8.8 shows the classification accuracy of the best configurations. Figure 8.9 displays
the number of features that are selected for these configurations. As nested cross-validation
with 10 outer iterations has been performed, each boxplot consists of 10 data points.

For data sets sonar, tecator, har, dilbert, lsvt, christensen, arcene, and chiaretti, it is
beneficial to perform multi-criteria tuning with respect to both classification accuracy and
stability and choosing the best configuration based on ε-constraint selection, compared to
single-criteria tuning only with respect to classification accuracy. A comparable or even
better predictive performance is achieved with multi-criteria tuning and the fitted models
include fewer features. Among these data sets, for tecator, har, dilbert, lsvt, and arcene, the
adjusted stability measure must be used for achieving this benefit. These data sets contain
many similar features. For data sets sonar, christensen, and chiaretti, which contain only
few similar features, the unadjusted stability measure is sufficient. For data sets kc1-binary,
gina_agnostic, gravier, and eating, multi-criteria tuning does not provide a benefit over
single-criteria tuning. Still, for these data sets considering the feature selection stability
during tuning does not decrease the predictive performance or increase the number of selected
features of the resulting models in comparison to single-criteria tuning.

Comparing the results of the proposed approach and stability selection, the proposed
approach performs better on the majority of data sets. For data sets sonar, har, gina_agnostic,
lsvt, gravier, eating, and arcene, stability selection leads to a worse predictive accuracy than
the other approaches. For data sets christensen and chiaretti, it fails at excluding irrelevant
or redundant features. Only for data set tecator, models with higher predictive accuracy
are obtained with stability selection compared to the other approaches. For kc1-binary and
dilbert, more sparse models with the same predictive quality can be fitted with the stability
selection approach. On most data sets, the stability selection approach leads to comparably
sparse models, often at the expense of a comparably low predictive accuracy. This has been
observed on simulated data as well.

8.5 Conclusions
L0-regularized logistic regression is a classification method with embedded feature selection
that - in contrast to many state-of-the-art feature selection methods - is able to select only
one feature out of a group of similar features in a data set. The approach of tuning its
hyperparameter in a multi-criteria fashion with respect to predictive accuracy and feature
selection stability is proposed and evaluated. It is compared to the standard approach
of single-criteria tuning of the hyperparameter as well as to the state-of-the-art technique
stability selection with L0-regularized logistic regression as feature selection method.

On simulated data, especially in the scenarios with many similar features, tuning the
hyperparameter of L0-regularized logistic regression with respect to both predictive accuracy
and stability is beneficial for avoiding the selection of irrelevant or redundant features
compared to single-criteria tuning. To obtain this benefit, the feature selection stability must
be assessed with an adjusted stability measure. Measuring the stability with an unadjusted
measure does not outperform single-criteria tuning in most scenarios. Also, considering the
stability during tuning does not decrease the predictive accuracy of the resulting models.
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Figure 8.8: Comparison of the approaches on real data. Classification accuracy of the best
configurations on the left-out test data of the outer cross-validation iterations.
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On real data, performing hyperparameter tuning with respect to both predictive accuracy
and feature selection stability is beneficial for fitting models with fewer features without
losing predictive accuracy compared to single-criteria tuning. Possibly, with the proposed
approach, fewer irrelevant or redundant features are selected, but this cannot be known for
sure. For data sets with many similar features, an adjusted stability measure must be used
to obtain this benefit. For data sets with only few similar features, an unadjusted stability
measure suffices and is faster to compute. For all data sets, no predictive accuracy is lost by
additionally considering the stability.

Compared to the stability selection approach, models with higher predictive accuracy
are fitted with the proposed approach, especially in simulation scenarios with many similar
features. On real data sets, the proposed approach outperforms stability selection on many
of the data sets. Both on simulated data and on real data, with the stability selection
approach, comparably sparse models are fitted. These models, however, often do not include
enough relevant features and therefore obtain a comparably low predictive accuracy. Also,
the stability selection approach takes much more time for computing. For large data sets, it
is infeasible without a high performance compute cluster.
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Chapter 9

Summary, Discussion, and Outlook

Feature selection is a key part of data analysis, machine learning, and data mining. Often
it is advantageous with respect to predictive performance, run time, and interpretability to
disregard the irrelevant and redundant features by choosing a suitable subset of features.
Especially in such domains where the selected features are subject to further costly analyses,
it is important to select a subset of features such that all relevant information is captured
while avoiding the selection of irrelevant or redundant features.

In this thesis, four aspects connected to feature selection were analyzed: Firstly, a
benchmark of filter methods for feature selection was conducted. Secondly, measures for the
assessment of feature selection stability were compared both theoretically and empirically.
Thirdly, a multi-criteria approach for obtaining desirable models with respect to predictive
accuracy, feature selection stability, and sparsity was proposed and evaluated. Fourthly, an
approach for finding desirable models for data sets with many similar features was suggested
and evaluated. All analyses that were conducted on real data, were based on the same
12 classification data sets. These data sets come from various domains and differ in size as
well as in the similarity structure between the features.

For the benchmark of filter methods, 20 filter methods were analyzed. The analyses were
based on the analyses in Bommert et al. (2020). First, the filter methods were compared
with respect to the order in which they rank the features and with respect to their scaling
behavior in order to identify groups of similar filter methods. Especially for the data sets that
contain a large number of features, there were four groups of filter methods that rank the
features in a similar way and some filter methods that were not similar to any other method.
For the other data sets, most filter methods were very similar. The filters that were similar
to each other mostly came from the same toolboxes. Regarding the scaling behavior of the
filter methods, there were two groups of filters with similar behaviors: the filter methods that
calculate all scores at the same time and the methods that calculate the scores iteratively.

Next, the predictive accuracy of the filter methods when combined with a predictive
model and the run time needed for feature selection as well as for building a good predictive
model based on the selected features were analyzed. There was no subset of filter methods
that performed better than the rest of the filter methods on all data sets. Instead, the best
filter methods differed between the data sets. Also, the differences in performance between
the filter methods on the same data set were not large for many data sets, compared to the
observed variation. Regarding the aim of choosing a subset of filter methods that perform
well for most data sets, the mutual information based filter methods JMI and MIM as well
as the random forest importance filter impurity seem advisable. For JMI, the best predictive
accuracies and for MIM, the lowest run times among all filter methods were observed across
data sets. When searching for a good filter method for a new data set, it appears reasonable
to limit the search space to JMI, MIM, and impurity.

The analyses could be extended by additionally considering other feature selection methods
apart from pure filter methods, which was out of scope for this analysis. Also, here, tuning
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was performed with respect to predictive performance and then the best configurations not
only with respect to predictive performance but also with respect to run time were analyzed.
In future analyses, one could perform multi-criteria tuning with respect to both performance
criteria at the drawback of a much more complicated aggregation of the results. Another
interesting aspect of research would be discovering data set characteristics that indicate which
filter and classification methods perform best. If such characteristics were available, much
run time could be saved in the tuning process. Ideally, the characteristics should be cheap
to compute in order to obtain a benefit in run time over trying different methods. In the
field of optimization, exploratory landscape analysis (Kerschke and Trautmann, 2019) is an
approach for defining characteristics of objective functions in order to automatically select
the best optimization algorithm. In future research, this approach could be transferred to
model selection.

To find suitable measures for stability assessment, 20 stability measures were compared
based on both theoretical properties and on their empirical behavior. Five of the measures
were newly proposed by us. Regarding the theoretical comparison, it was assessed which of
the desirable criteria for stability measures defined in Nogueira (2018) are fulfilled by the
stability measures. Additionally, new desirable properties were defined and investigated in
this thesis. For the empirical comparison, two scenarios were considered: In the first scenario,
all possible combinations of sets of selected features were analyzed for a very small number
of features. In the second scenario, feature sets selected from real data sets were investigated.
In both scenarios, groups of similar stability measures were identified and the impact of the
number of selected features on the stability values was studied. Additionally, in the scenario
with the real feature sets, the run times for calculating the stability measures were analyzed.
These analyses are extensions of the analyses in Bommert et al. (2017) and Bommert and
Rahnenführer (2020).

When analyzing the stability assessment behavior of the stability measures, it was
investigated whether the measures consider the same feature sets as stable or unstable.
Based on this behavior, four homogeneous groups of stability measures could be identified.
One group was formed by stability measures that do not possess the theoretical property
“correction for chance”. These measures take the higher values, indicating a more stable
feature selection, the more features are selected. The second group consisted of stability
measures that fulfill this property but that do not take into account similarities between
the features. The third group was created by stability measures that both are corrected for
chance and consider similarities between features. These measures were named “adjusted”
(for similar features). The fourth group existed only for the analysis on real feature sets and
only contained one uncorrected stability measure that - in contrast to the other uncorrected
stability measures - is not able to take small values for small numbers of selected features.
The stability measures that are corrected for chance do not have restrictions on attainable
values. The run times for most stability measures were almost neglectable. For the adjusted
and corrected measures however, the run times were quite long, especially for large data sets
with many similar features.

For stability assessment in future analyses, the stability measures SMU, SMA-Count,
SMJ, and SMH were chosen as representatives of the four groups, based on their properties
and on run time considerations. SMU, the representative of the group of corrected but
unadjusted measures, and SMA-Count, the representative of the group of corrected and
adjusted measures, are suitable measures for stability assessment. When employing the
uncorrected measures SMJ and SMH, it should be kept in mind that they do not fulfill the
important theoretical property “correction for chance”.
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When searching for a good predictive model for a given data set, the predictive accuracy is
usually the only criterion considered in the model finding process. In this thesis, the benefits
of not only considering the predictive accuracy but also the feature selection stability and the
number of selected features were investigated. To find desirable configurations with respect
to all three performance criteria, the hyperparameter tuning of combined methods consisting
of a filter and a classification method was performed in a multi-criteria fashion: the subset of
Pareto optimal configurations, whose predictive accuracy is at most 0.05 below the accuracy
of the configuration with highest accuracy obtained for the same data set, was determined.
This way, it could be investigated whether it is possible to find configurations that perform a
more stable selection of fewer features without losing much predictive accuracy compared to
model fitting only considering the predictive performance. These analyses are extensions of
the analyses in Bommert et al. (2017).

It could be concluded that with multi-criteria tuning, it is possible to choose such
configurations. The resulting Pareto fronts gave several options to choose sparse and stable
configurations, which at the same time had high predictive accuracy. The losses in predictive
accuracy that went along with the gains in stability and sparsity were different between the
data sets and ranged from noticeable over neglectable to gains in predictive accuracy. Also,
with multi-criteria tuning, models were obtained that over-fit the training data less than the
models obtained with single-criteria tuning only with respect to predictive accuracy. The
configurations that were obtained with multi-criteria tuning differed a bit when different
stability measures were used. Nevertheless, the conclusions about the benefits of multi-criteria
tuning applied to all of the considered stability measures. All in all, the multi-criteria approach
of considering predictive accuracy, stability, and sparsity jointly during hyperparameter tuning
proved to be advantageous.

In future work, model based optimization could be used instead of a random search for
finding desirable configurations more efficiently. Also, the entire sets of Pareto optimal con-
figurations could be analyzed, accepting the drawback of visualization difficulties. Moreover,
it would be interesting to analyze whether configurations obtained with the multi-criteria
approach select the same features on entirely new data sets from the same application instead
of just considering test data sets created using resampling.

For data sets with many similar, for example highly correlated features, feature selection
is especially challenging. Most established feature selection methods are not able to select
only one feature out of a group of similar features. They select either several or none of
them. L0-regularized logistic regression is a method that is able to perform such a feature
selection. Therefore, for data sets with similar features, we proposed the approach of using
L0-regularized logistic regression and tuning its hyperparameter in a multi-criteria fashion
with respect to both predictive accuracy and feature selection stability. The idea was that
considering also the feature selection stability works as a regularization, avoiding the selection
of irrelevant or redundant features. We suggested to assess the stability with an adjusted
stability measure, that is, a stability measure that takes into account similarities between
features. For selecting the best configuration, the proposed algorithm ε-constraint selection
was employed. The approach was evaluated based on both simulated and real data sets. It was
compared to the standard approach of L0-regularized logistic regression with hyperparameter
tuning only with respect to predictive accuracy, to L0-regularized logistic regression with
hyperparameter tuning with respect to predictive accuracy and stability assessed with an
unadjusted stability measure, and to the state-of-the-art method stability selection with
L0-regularized logistic regression as feature selection method.

Based on simulated data, it was observed that the proposed approach achieved the same
or better predictive performance compared to the two established approaches. Considering
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the stability during tuning did not decrease the predictive accuracy of the resulting models.
The proposed approach succeeded at selecting the relevant features while avoiding irrelevant
or redundant features. With the proposed approach, much fewer irrelevant or redundant
features were selected than with the other approaches. Especially in situations with many
similar features, the proposed approach outperformed the competing approaches. The single-
criteria approach failed at avoiding irrelevant or redundant features and the stability selection
approach failed at selecting enough relevant features for achieving acceptable predictive
accuracy.

On real data, performing hyperparameter tuning with respect to both predictive accuracy
and stability was beneficial for fitting models with fewer features without losing predictive
accuracy compared to single-criteria tuning. For data sets with many similar features, it was
necessary to use an adjusted stability measure for obtaining this benefit. For data sets with
very few similar features, it was still beneficial to consider the stability during tuning, but for
these data sets, an unadjusted stability measure was sufficient and faster to compute. By
additionally considering the stability, no predictive accuracy was lost and for many data sets,
the resulting models were more sparse. The stability selection approach was outperformed
by the proposed approach on many of the data sets. With the stability selection approach,
comparably sparse models were fitted. These models, however, often did not include enough
relevant features and therefore obtained a comparably low predictive accuracy. Also, the
proposed approach could easily be applied to all of the considered data sets while the stability
selection approach would have been infeasible without a high performance compute cluster
for the larger data sets because of its enormous run time.

In future analyses, more simulation scenarios could be investigated. In this thesis, the
data was drawn from a multivariate normal distribution with a specified correlation matrix.
This could have biased the results towards the proposed approach because for the adjusted
stability measure, the similarity between features was quantified using the absolute Pearson
correlation. Likewise, other measures for quantifying the similarity between features could be
employed. Also, in this thesis, the threshold for identifying similar features was set to a fixed
value. In further analyses, the threshold could be considered as an additional hyperparameter
and hence be tuned as well. Moreover, other feature selection methods that are able to select
only one feature out of a group of similar features could be considered. These further methods
could include other L0-regularized methods like L0-regularized support vector machines
or L0-regularized boosting methods. Additionally, other feature selection methods, like a
sequential forward search taking into account similarities between features could be employed.
Furthermore, the number of features that are included in the model could be considered as a
third criterion during hyperparameter tuning. The tuning of integer hyperparameters could
also be conducted with a random search with sampling without replacement instead of a grid
search. Another aspect of research would be modifying stability selection in such a way that
it also takes into account similarities between features.

All of the analyses in this thesis were based on classification data sets. In future analyses,
also regression or survival data sets could be considered. Another aspect for further research
could be the connection between the stability of the feature selection and the similarity of
the data sets on which the feature selection is performed. As pointed out by Alelyani et al.
(2011), the more similar the data sets are, the more stable the feature selection is expected
to be. To investigate this connection, a suitable method for quantifying the similarity of
potentially high-dimensional data sets is needed. Suggestions for methods for assessing the
similarity of data sets include the comparison of the data densities by estimating them based
on classification trees (Ntoutsi et al., 2008) or probability binning (Roederer et al., 2001) and
calculating a similarity measure of the estimated densities (Cha, 2007). Other proposals are
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the assessment of the agreement of predictive models fitted on the data sets (Ganti et al.,
1999) and the analysis if the same predicitve models perform best (Leite et al., 2012). To
deal with high-dimensionality, a dimension reduction technique like calculating principal
components could be applied beforehand.

Summarizing the contributions of this thesis, new stability measures and properties
for stability measures were defined and analyzed, two extensive comparative studies were
conducted, and two strategies for finding desirable predictive models were proposed and
evaluated thoroughly. In this thesis, new stability measures and new theoretical properties for
identifying suitable stability measures were introduced and investigated thoroughly. With the
adjusted stability measures proposed in this thesis, the need for adjusted stability measures
that do not lack important theoretical properties is met. Regarding the comparative studies,
both filter methods for feature selection and measures for the assessment of feature selection
stability were analyzed. These analyses did not only result in recommendations on which of
the methods or measures to use in future analyses but also provided insight into similarities
between the methods or measures. Regarding the proposed strategies for finding desirable
models, first, we suggested a strategy for finding configurations with high predictive accuracy,
high feature selection stability, and a small number of selected features. Second, we proposed
an approach for fitting models on data sets with similar features. The models are supposed
to possess high predictive accuracy and select a subset of features such that all relevant
information is contained but no irrelevant or redundant features are selected. For the second
approach, a newly defined adjusted stability measure was employed. With both proposed
strategies, the respective aims were reached and state-of-the-art strategies were outperformed.
All stability measures considered in this thesis have been implemented and made publicly
available in the open source R package stabm (Bommert and Lang, 2020).
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data is scaled for the computation of the principal components, for the left plot
it is not.
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Figure A.2: Scaling behavior of the filter methods: median time for filtering with respect to
the percentage of features to select.
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Figure A.3: Scaling behavior of the filter methods: median time for calculating the scores
for all features for data sets with different numbers of observations (identical
numbers of features).
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Figure A.4: Scaling behavior of the filter methods: median time for calculating the scores for
all features for data sets with different numbers of features (identical numbers of
observations).
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Figure A.5: Rank correlations between the selection order of all features for all pairs of
filter methods per data set. The filter methods are ordered by average linkage
hierarchical clustering using the mean rank correlation as similarity measure.
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Figure A.6: Rank correlations between the selection order of all features for all pairs of
filter methods per data set. The filter methods are ordered by average linkage
hierarchical clustering using the mean rank correlation as similarity measure.
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Figure A.7: Boxplots of the classification accuracies of the best configurations in the 10 outer
cross-validation iterations per filter method and data set.
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Figure A.8: Boxplots of the classification accuracies of the best configurations in the 10 outer
cross-validation iterations per filter method and data set.
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Figure A.9: Mean classification accuracy and median run time for filtering of all considered
filter methods with optimal configurations per data set.
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Figure A.10: Mean classification accuracy and median run time for fitting the combined
model of all considered filter methods with optimal configurations per data set.
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Figure A.11: Interquartile ranges of the ranks of the scores calculated with filter permutation
for each feature. The features are sorted increasingly by the interquartile range
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Figure A.12: Median run times of the filter methods permutation and impurity depending
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Figure A.13: Pearson correlations between all pairs of stability measures per data set. The
order of the stability measures is the same as in Figure 6.5.



128 Appendix A. Further Figures

SMH
SME
SMD
SMO

SMD−0
SMJ
SMZ

SMES
SMY

SMA−Greedy
SMA−MBM

SMA−Count
SMA−Mean

SML
SMS
SMW
SMN
SMK
SMP
SMU

SM
H

SM
E

SM
D

SM
O

SM
D

−0
SM

J
SM

Z
SM

ES
SM

Y
SM

A−
G

re
ed

y
SM

A−
M

BM
SM

A−
C

ou
nt

SM
A−

M
ea

n
SM

L
SM

S
SM

W
SM

N
SM

K
SM

P
SM

U

−1.0

−0.5

0.0

0.5

1.0
Similarity

lsvt

SMH
SME
SMD
SMO

SMD−0
SMJ
SMZ

SMES
SMY

SMA−Greedy
SMA−MBM

SMA−Count
SMA−Mean

SML
SMS
SMW
SMN
SMK
SMP
SMU

SM
H

SM
E

SM
D

SM
O

SM
D

−0
SM

J
SM

Z
SM

ES
SM

Y
SM

A−
G

re
ed

y
SM

A−
M

BM
SM

A−
C

ou
nt

SM
A−

M
ea

n
SM

L
SM

S
SM

W
SM

N
SM

K
SM

P
SM

U

−1.0

−0.5

0.0

0.5

1.0
Similarity

christensen

SMH
SME
SMD
SMO

SMD−0
SMJ
SMZ

SMES
SMY

SMA−Greedy
SMA−MBM

SMA−Count
SMA−Mean

SML
SMS
SMW
SMN
SMK
SMP
SMU

SM
H

SM
E

SM
D

SM
O

SM
D

−0
SM

J
SM

Z
SM

ES
SM

Y
SM

A−
G

re
ed

y
SM

A−
M

BM
SM

A−
C

ou
nt

SM
A−

M
ea

n
SM

L
SM

S
SM

W
SM

N
SM

K
SM

P
SM

U

−1.0

−0.5

0.0

0.5

1.0
Similarity

gravier

SMH
SME
SMD
SMO

SMD−0
SMJ
SMZ

SMES
SMY

SMA−Greedy
SMA−MBM

SMA−Count
SMA−Mean

SML
SMS
SMW
SMN
SMK
SMP
SMU

SM
H

SM
E

SM
D

SM
O

SM
D

−0
SM

J
SM

Z
SM

ES
SM

Y
SM

A−
G

re
ed

y
SM

A−
M

BM
SM

A−
C

ou
nt

SM
A−

M
ea

n
SM

L
SM

S
SM

W
SM

N
SM

K
SM

P
SM

U

−1.0

−0.5

0.0

0.5

1.0
Similarity

eating

SMH
SME
SMD
SMO

SMD−0
SMJ
SMZ

SMES
SMY

SMA−Greedy
SMA−MBM

SMA−Count
SMA−Mean

SML
SMS
SMW
SMN
SMK
SMP
SMU

SM
H

SM
E

SM
D

SM
O

SM
D

−0
SM

J
SM

Z
SM

ES
SM

Y
SM

A−
G

re
ed

y
SM

A−
M

BM
SM

A−
C

ou
nt

SM
A−

M
ea

n
SM

L
SM

S
SM

W
SM

N
SM

K
SM

P
SM

U

−1.0

−0.5

0.0

0.5

1.0
Similarity

arcene

SMH
SME
SMD
SMO

SMD−0
SMJ
SMZ

SMES
SMY

SMA−Greedy
SMA−MBM

SMA−Count
SMA−Mean

SML
SMS
SMW
SMN
SMK
SMP
SMU

SM
H

SM
E

SM
D

SM
O

SM
D

−0
SM

J
SM

Z
SM

ES
SM

Y
SM

A−
G

re
ed

y
SM

A−
M

BM
SM

A−
C

ou
nt

SM
A−

M
ea

n
SM

L
SM

S
SM

W
SM

N
SM

K
SM

P
SM

U

−1.0

−0.5

0.0

0.5

1.0
Similarity

chiaretti

Figure A.14: Pearson correlations between all pairs of stability measures per data set. The
order of the stability measures is the same as in Figure 6.5.
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Figure A.15: Run times of the adjusted and corrected stability measures for all 12 data sets.
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A.4 Finding Desirable Configurations by Multi-Criteria
Tuning
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Figure A.16: Classification and filter methods of the PA-best configurations per data set for
the stability measure SMA-Count.
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Figure A.17: Classification and filter methods of the PA-best configurations per data set for
the stability measure SMJ.
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Figure A.18: Classification and filter methods of the PA-best configurations per data set for
the stability measure SMH.
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Figure A.20: Differences in mean number of selected features between training and test data
for the PA-best configurations. Values above the dotted line indicate a higher
mean number of selected features on the test data than on the training data.
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Figure A.21: Differences in stability between training and test data for the PA-best configu-
rations. Values above the dotted indicate a higher stability on the test data
than on the training data. The difference in stability is assessed with the same
stability measure that was used to determine the PA-best configurations.
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A.5 Fitting Models on Data Sets with Similar Features
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Figure A.22: Results for the simulation scenarios with n = 1 000 and p = 200. “# Similar
Other Features”: Number of features in the data set that each feature is
similar to (other than itself). Two features are interpreted as similar if their
absolute correlation is at least 0.9. “Test Accuracy”: classification accuracy
on independent test data. “False Positive”: number of irrelevant or redundant
features that have been selected. “False Negative”: number of relevant and not
redundant features that have not been selected.
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Figure A.23: Results for the simulation scenarios with n = 100 and p = 2 000. “# Similar
Other Features”: Number of features in the data set that each feature is
similar to (other than itself). Two features are interpreted as similar if their
absolute correlation is at least 0.9. “Test Accuracy”: classification accuracy
on independent test data. “False Positive”: number of irrelevant or redundant
features that have been selected. “False Negative”: number of relevant and not
redundant features that have not been selected.
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Figure A.24: Results for the simulation scenarios with n = 100 and p = 10 000. “#
Similar Other Features”: Number of features in the data set that each feature
is similar to (other than itself). Two features are interpreted as similar if their
absolute correlation is at least 0.9. “Test Accuracy”: classification accuracy
on independent test data. “False Positive”: number of irrelevant or redundant
features that have been selected. “False Negative”: number of relevant and not
redundant features that have not been selected.
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Figure A.25: Test accuracy for all considered approaches in the simulation scenarios with
matrix type “Toeplitz”.



140 Appendix A. Further Figures

●

●

●●
●
●●

●
●●

●

●

●

●

● ●
●

●

●

●

●
●

●●

●

●
●
●
●

●

●

●
●

●

●

●

●

●

●

●●

●●

●●

●
●

●

● ●●

●●●●●● ●

●

●●
●
●● ●●●● ●●●●●●●●

●●●●●●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●●●
●
●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●
●
● ●

●

●

●
●

●

●
●
●

●

●

●

●

●
●●

●●●
●
●●

●●●

●
●
●

●
●●
●
●

●●

●

●
●

●●
●

●

●

●

●

p = 200

n = 100

p = 200

n = 1000

p = 2000

n = 100

p = 10000

n = 100

adj
unadj

acc
stabs

0 4 14 24 0 4 14 24 0 4 14 24 0 4 14 24

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0

5

10

15

Number of Similar Other Features

N
um

be
r o

f F
al

se
 P

os
iti

ve
 F

ea
tu

re
s

Matrix Type: Blocks

Figure A.26: Number of false positive features for all considered approaches except “truth”
in the simulation scenarios with matrix type “blocks”.
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Figure A.27: Number of false positive features for all considered approaches except “truth”
in the simulation scenarios with matrix type “Toeplitz”.
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Figure A.28: Number of false negative features for all considered approaches except “truth”
in the simulation scenarios with matrix type “blocks”.
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Figure A.29: Number of false negative features for all considered approaches except “truth”
in the simulation scenarios with matrix type “Toeplitz”.
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Proofs of Properties

For all proofs, it is assumed that the stability measures are well-defined. This means that
implicitly only such feature sets V1, . . . , Vm and similarity structures between features are
considered, for which the stability measures are well-defined. In Section B.1, for each stability
measure, the necessary conditions for it to be well-defined are stated.

B.1 Bounds

SMJ
SMJ is well-defined if and only if |Vi ∪ Vj| 
= 0 ∀i < j, that is, if not more than one of the
sets V1, . . . , Vm is empty.
Upper bound:
For arbitrary sets V1, . . . , Vm:

(Vi ∩ Vj) ⊆ (Vi ∪ Vj) ∀i < j ⇒ |Vi ∩ Vj| ≤ |Vi ∪ Vj| ∀i < j

⇒ SMJ = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

|Vi ∩ Vj|
|Vi ∪ Vj|︸ ︷︷ ︸

≤1

≤ 1

For V1 = . . . = Vm:

(Vi ∩ Vj) = (Vi ∪ Vj) ∀i < j ⇒ |Vi ∩ Vj| = |Vi ∪ Vj| ∀i < j

⇒ SMJ = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

|Vi ∩ Vj|
|Vi ∪ Vj|︸ ︷︷ ︸

=1

= 1

Lower bound:
For arbitrary sets V1, . . . , Vm:

|Vi ∩ Vj| ≥ 0 and |Vi ∪ Vj| ≥ 0 ∀i < j

⇒ SMJ = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

|Vi ∩ Vj|
|Vi ∪ Vj|︸ ︷︷ ︸

≥0

≥ 0
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For V1, . . . , Vm pairwise disjoint:

|Vi ∩ Vj| = 0 and |Vi ∪ Vj| ≥ 0 ∀i < j

⇒ SMJ = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

|Vi ∩ Vj|
|Vi ∪ Vj|︸ ︷︷ ︸

=0

= 0

SMD
SMD is well-defined if and only if |Vi| + |Vj| 
= 0 ∀i < j, that is, if not more than one of the
sets V1, . . . , Vm is empty.
Upper bound:
For arbitrary sets V1, . . . , Vm:

(Vi ∩ Vj) ⊆ Vi and (Vi ∩ Vj) ⊆ Vj ∀i < j ⇒ 2 |Vi ∩ Vj| ≤ |Vi| + |Vj| ∀i < j

⇒ SMD = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

2 |Vi ∩ Vj|
|Vi| + |Vj|︸ ︷︷ ︸

≤1

≤ 1

For V1 = . . . = Vm:

(Vi ∩ Vj) = Vi and (Vi ∩ Vj) = Vj ∀i < j ⇒ 2 |Vi ∩ Vj| = |Vi| + |Vj| ∀i < j

⇒ SMD = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

2 |Vi ∩ Vj|
|Vi| + |Vj|︸ ︷︷ ︸

=1

= 1

Lower bound:
For arbitrary sets V1, . . . , Vm:

|Vi ∩ Vj| ≥ 0, |Vi| ≥ 0, and |Vj| ≥ 0 ∀i < j

⇒ SMD = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

2 |Vi ∩ Vj|
|Vi| + |Vj|︸ ︷︷ ︸

≥0

≥ 0

For V1, . . . , Vm pairwise disjoint:

|Vi ∩ Vj| = 0, |Vi| ≥ 0, and |Vj| ≥ 0 ∀i < j

⇒ SMD = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

2 |Vi ∩ Vj|
|Vi| + |Vj|︸ ︷︷ ︸

=0

= 0
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SMO

SMO is well-defined if and only if
√

|Vi| · |Vj| 
= 0 ∀i < j, that is, if none of the sets V1, . . . , Vm

is empty.
Upper bound:
For arbitrary sets V1, . . . , Vm:

(Vi ∩ Vj) ⊆ Vi and (Vi ∩ Vj) ⊆ Vj ∀i < j

⇒ |Vi ∩ Vj| =
√

|Vi ∩ Vj|︸ ︷︷ ︸
≤
√

|Vi|

·
√

|Vi ∩ Vj|︸ ︷︷ ︸
≤
√

|Vj |

≤
√

|Vi| · |Vj| ∀i < j

⇒ SMO = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

|Vi ∩ Vj|√
|Vi| · |Vj|︸ ︷︷ ︸

≤1

≤ 1

For V1 = . . . = Vm:

(Vi ∩ Vj) = Vi and (Vi ∩ Vj) = Vj ∀i < j ⇒ |Vi ∩ Vj| =
√

|Vi| · |Vj| ∀i < j

⇒ SMO = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

|Vi ∩ Vj|√
|Vi| · |Vj|︸ ︷︷ ︸

=1

= 1

Lower bound:
For arbitrary sets V1, . . . , Vm:

|Vi ∩ Vj| ≥ 0, |Vi| ≥ 0, and |Vj| ≥ 0 ∀i < j

⇒ SMO = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

|Vi ∩ Vj|√
|Vi| · |Vj|︸ ︷︷ ︸

≥0

≥ 0

For V1, . . . , Vm pairwise disjoint:

|Vi ∩ Vj| = 0, |Vi| ≥ 0, and |Vj| ≥ 0 ∀i < j

⇒ SMO = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

|Vi ∩ Vj|√
|Vi| · |Vj|︸ ︷︷ ︸

=0

= 0
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SMH
SMH is well-defined for arbitrary sets V1, . . . , Vm.
Upper bound:
For arbitrary sets V1, . . . , Vm:

|Vi ∩ Vj| +
∣∣∣V c

i ∩ V c
j

∣∣∣ ≤ p ∀i < j

⇒ SMH = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

|Vi ∩ Vj| +
∣∣∣V c

i ∩ V c
j

∣∣∣
p︸ ︷︷ ︸

≤1

≤ 1

For V1 = . . . = Vm:

|Vi ∩ Vj| +
∣∣∣V c

i ∩ V c
j

∣∣∣ = |Vi| + |V c
i | = p ∀i < j

⇒ SMH = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

|Vi ∩ Vj| +
∣∣∣V c

i ∩ V c
j

∣∣∣
p︸ ︷︷ ︸

=1

= 1

Lower bound:
For arbitrary sets V1, . . . , Vm:

|Vi ∩ Vj| ≥ 0 and
∣∣∣V c

i ∩ V c
j

∣∣∣ ≥ 0 ∀i < j

⇒ SMH = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

|Vi ∩ Vj| +
∣∣∣V c

i ∩ V c
j

∣∣∣
p︸ ︷︷ ︸

≥0

≥ 0

For m = 2 and V1 = {X1, . . . , Xp} \ V2:

|V1 ∩ V2| = 0 and |V c
1 ∩ V c

2 | = 0

⇒ SMH = |V1 ∩ V2| + |V c
1 ∩ V c

2 |
p

= 0

For m > 2, the lower bound is not tight. It is not possible to choose V1, . . . , Vm such that
|Vi ∩ Vj| = 0 and

∣∣∣V c
i ∩ V c

j

∣∣∣ = 0 ∀i < j for m > 2.

SML
SML is well-defined if and only if min {|Vi| , |Vj|} − max {0, |Vi| + |Vj| − p} 
= 0 ∀i < j, that
is, if none of the sets V1, . . . , Vm is empty or contains all features.
Upper bound:
For arbitrary sets V1, . . . , Vm:

• |Vi ∩ Vj| ≤ min{|Vi| , |Vj|}

• |Vi|·|Vj |
p

≥ max{0, |Vi| + |Vj| − p} because

• |Vi|·|Vj |
p

≥ 0 and

• |Vi|·|Vj |
p

≥ |Vi| + |Vj| − p ⇔ |Vi| · |Vj| ≥ p · |Vi| + p · |Vj| − p2 ⇔ p(p − |Vj|) ≥
|Vi| (p − |Vj|) ⇔ p ≥ |Vi|
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⇒ SML = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

|Vi ∩ Vj| − |Vi|·|Vj |
p

min {|Vi| , |Vj|} − max {0, |Vi| + |Vj| − p}︸ ︷︷ ︸
≤1

≤ 1

For V1 = . . . = Vm:

SML = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

|V1| − |V1|2
p

|V1| − max {0, 2 |V1| − p} =
⎧⎨⎩ 1 − |V1|

p
, |V1| < p

2
|V1|

p
, |V1| ≥ p

2

As 0 < |V1| < p, the upper bound is not tight. For p → ∞, the bound can be reached
asymptotically.
Lower bound:
For arbitrary sets V1, . . . , Vm with w.l.o.g. |Vi| ≤ |Vj| ∀i < j:
If |Vi| + |Vj| ≤ p, then

≥0︷ ︸︸ ︷
|Vi ∩ Vj| − |Vi|·|Vj |

p

min {|Vi| , |Vj|}︸ ︷︷ ︸
=|Vi|

− max {0, |Vi| + |Vj| − p}︸ ︷︷ ︸
=0

≥ − |Vi|·|Vj |
p

|Vi| = −|Vj|
p

≥ −1.

If |Vi| + |Vj| > p, then |Vi ∩ Vj| > 0, more precisely |Vi ∩ Vj| ≥ |Vi| + |Vj| − p. Show that

|Vi ∩ Vj| − |Vi|·|Vj |
p

min {|Vi| , |Vj|} − max {0, |Vi| + |Vj| − p} ≥ −1

by proof by contradiction:

|Vi ∩ Vj| − |Vi|·|Vj |
p

min {|Vi| , |Vj|}︸ ︷︷ ︸
=|Vi|

− max {0, |Vi| + |Vj| − p}︸ ︷︷ ︸
=|Vi|+|Vj |−p

=
|Vi ∩ Vj| − |Vi|·|Vj |

p

p − |Vj| < −1

⇔ |Vi ∩ Vj| < |Vj| − p + |Vi| · |Vj|
p︸︷︷︸

≤1

≤ |Vi| + |Vj| − p ≤ |Vi ∩ Vj| �

⇒ SML = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

|Vi ∩ Vj| − |Vi|·|Vj |
p

min {|Vi| , |Vj|} − max {0, |Vi| + |Vj| − p}︸ ︷︷ ︸
≥−1

≥ −1

For m = 2 and V1, V2 with |V1 ∩ V2| = 0, |V1| = 1, and |V2| = p − 1:

SML =
|V1 ∩ V2| − |V1|·|V2|

p

min {|V1| , |V2|} − max {0, |V1| + |V2| − p} =
−p−1

p

1 = −1 + 1
p

p→∞−→ −1

For m > 2, the lower bound is not tight.
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SMW

SMW is well-defined if and only if min {|Vi| , |Vj|} − |Vi|·|Vj |
p


= 0 ∀i < j, that is, if none of the
sets V1, . . . , Vm is empty or contains all features.
Upper bound:
For arbitrary sets V1, . . . , Vm:

|Vi ∩ Vj| ≤ min {|Vi| , |Vj|} ∀i < j

⇒ SMW = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

|Vi ∩ Vj| − |Vi|·|Vj |
p

min {|Vi| , |Vj|} − |Vi|·|Vj |
p︸ ︷︷ ︸

≤1

≤ 1

For V1 = . . . = Vm:

|Vi ∩ Vj| = min {|Vi| , |Vj|} ∀i < j

⇒ SMW = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

|Vi ∩ Vj| − |Vi|·|Vj |
p

min {|Vi| , |Vj|} − |Vi|·|Vj |
p︸ ︷︷ ︸

=1

= 1

Lower bound:
For arbitrary sets V1, . . . , Vm with w.l.o.g. |Vi| ≤ |Vj| ∀i < j:

≥0︷ ︸︸ ︷
|Vi ∩ Vj| − |Vi|·|Vj |

p

min {|Vi| , |Vj|}︸ ︷︷ ︸
=|Vi|

− |Vi|·|Vj |
p

≥ − |Vi|·|Vj |
p

|Vi| − |Vi|·|Vj |
p

=
− |Vj |

p

1 − |Vj |
p

= 1
1 − p

|Vj|︸︷︷︸
|Vj |<p

≥ 1
1 − p

p−1
= 1 − p

⇒ SMW = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

|Vi ∩ Vj| − |Vi|·|Vj |
p

min {|Vi| , |Vj|} − |Vi|·|Vj |
p︸ ︷︷ ︸

≥1−p

≥ 1 − p

For m = 2 and V1, V2 with |V1 ∩ V2| = 0, |V1| = 1, and |V2| = p − 1, SMW attains the lower
bound 1 − p. For m > 2, the lower bound is not tight.

SMU

SMU is well-defined if and only if
√

|Vi| · |Vj| − |Vi|·|Vj |
p


= 0 ∀i < j, that is, if none of the sets
V1, . . . , Vm is empty and if not more than one set contains all features.
Upper bound:
For arbitrary sets V1, . . . , Vm:

|Vi ∩ Vj| ≤
√

|Vi| · |Vj| ∀i < j (see SMO)

⇒ SMU = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

|Vi ∩ Vj| − |Vi|·|Vj |
p√

|Vi| · |Vj| − |Vi|·|Vj |
p︸ ︷︷ ︸

≤1

≤ 1
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For V1 = . . . = Vm:

|Vi ∩ Vj| =
√

|Vi| · |Vj| ∀i < j (see SMO)

⇒ SMU = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

|Vi ∩ Vj| − |Vi|·|Vj |
p√

|Vi| · |Vj| − |Vi|·|Vj |
p︸ ︷︷ ︸

=1

= 1

Lower bound:
For arbitrary sets V1, . . . , Vm:

|Vi ∩ Vj| − |Vi|·|Vj |
p√

|Vi| · |Vj| − |Vi|·|Vj |
p

≥ −1

as shown by proof by contradiction:

|Vi ∩ Vj| − |Vi|·|Vj |
p√

|Vi| · |Vj| − |Vi| · |Vj|
p︸ ︷︷ ︸

≥0 (�)

< −1

⇔ |Vi ∩ Vj| − |Vi| · |Vj|
p

<
|Vi| · |Vj|

p
−
√

|Vi| · |Vj|

⇔ |Vi ∩ Vj| < 2 · |Vi| · |Vj|
p

−
√

|Vi| · |Vj|

⇔ |Vi ∩ Vj| <

√
|Vi| · |Vj|

p

(
2 ·
√

|Vi| · |Vj| − p
) (��)

≤
√

|Vi| · |Vj|
p︸ ︷︷ ︸

≤1

(|Vi| + |Vj| − p)

≤ |Vi| + |Vj| − p ≤ |Vi ∩ Vj| �
(�): |Vi| ≤ p and |Vj| ≤ p ⇒

√
|Vi| · |Vj| ≤ p ⇔ |Vi|·|Vj |

p
≤
√

|Vi| · |Vj|
(��) holds because

2 ·
√

|Vi| · |Vj| ≤ |Vi| + |Vj| ⇔ 0 ≤
(√

|Vi| −
√

|Vj|
)2

.

⇒ SMU = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

|Vi ∩ Vj| − |Vi|·|Vj |
p√

|Vi| · |Vj| − |Vi|·|Vj |
p︸ ︷︷ ︸

≥−1

≥ −1

For m = 2 and V1, V2 with |V1 ∩ V2| = 0, |V1| = p
2 , and |V2| = p

2 , SMU attains the lower
bound −1. For m > 2, the lower bound is not tight.
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SMK

SMK is well-defined if and only if |Vi|+|Vj |
2 − |Vi|·|Vj |

p

= 0 ∀i < j, that is, if not more than one

of the sets V1, . . . , Vm is empty or contains all features.
Upper bound:
For arbitrary sets V1, . . . , Vm:

|Vi ∩ Vj| ≤ |Vi| + |Vj|
2 ∀i < j (see SMD)

⇒ SMK = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

|Vi ∩ Vj| − |Vi|·|Vj |
p

|Vi|+|Vj |
2 − |Vi|·|Vj |

p︸ ︷︷ ︸
≤1

≤ 1

For V1 = . . . = Vm:

|Vi ∩ Vj| = |Vi| + |Vj|
2 ∀i < j (see SMD)

⇒ SMK = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

|Vi ∩ Vj| − |Vi|·|Vj |
p

|Vi|+|Vj |
2 − |Vi|·|Vj |

p︸ ︷︷ ︸
=1

= 1

Lower bound:
For arbitrary sets V1, . . . , Vm:

|Vi ∩ Vj| − |Vi|·|Vj |
p

|Vi|+|Vj |
2 − |Vi|·|Vj |

p

≥ −1

as shown by proof by contradiction:

|Vi ∩ Vj| − |Vi|·|Vj |
p

|Vi| + |Vj|
2 − |Vi| · |Vj|

p︸ ︷︷ ︸
≥0 (see SMU)

< −1

⇔ |Vi ∩ Vj| < 2 |Vi| · |Vj|
p

− |Vi| + |Vj|
2︸ ︷︷ ︸

≥
√

|Vi|·|Vj |

≤ 2 |Vi| · |Vj|
p

−
√

|Vi| · |Vj| ≤ |Vi| + |Vj| − p, �

see proof of lower bound for SMU.

⇒ SMK = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

|Vi ∩ Vj| − |Vi|·|Vj |
p

|Vi|+|Vj |
2 − |Vi|·|Vj |

p︸ ︷︷ ︸
≥−1

≥ −1

For m = 2 and V1, V2 with |V1 ∩ V2| = 0, |V1| = p
2 , and |V2| = p

2 , SMK attains the lower
bound −1. For m > 2, the lower bound is not tight.
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SMP

SMP is well-defined if and only if
√

|Vi| ·
(
1 − |Vi|

p

)
· |Vj| ·

(
1 − |Vj |

p

)

= 0 ∀i < j, that is, if

none of the sets V1, . . . , Vm is empty or contains all features.
As shown by Nogueira and Brown (2016),

|Vi ∩ Vj| − |Vi|·|Vj |
p√

|Vi| ·
(
1 − |Vi|

p

)
· |Vj| ·

(
1 − |Vj |

p

)
is identical to the Pearson correlation Cor(zi, zj) between the two vectors zi, zj ∈ {0, 1}p that
represent the selected features in a binary way: The k-th component of zl, l ∈ {i, j} has
value 1 if and only if Xk ∈ Vl. The Pearson correlation is known to be bounded by −1 and 1.
Upper bound:
For arbitrary sets V1, . . . , Vm:

SMP = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

|Vi ∩ Vj| − |Vi|·|Vj |
p√

|Vi| ·
(
1 − |Vi|

p

)
· |Vj| ·

(
1 − |Vj |

p

)
︸ ︷︷ ︸

≤1

≤ 1

For V1 = . . . = Vm:

|Vi ∩ Vj| − |Vi|·|Vj |
p√

|Vi| ·
(
1 − |Vi|

p

)
· |Vj| ·

(
1 − |Vj |

p

) =
|Vi| − |Vi|2

p

|Vi|
(
1 − |Vi|

p

) =
|Vi|

(
1 − |Vi|

p

)
|Vi|

(
1 − |Vi|

p

) = 1

⇒ SMP = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

|Vi ∩ Vj| − |Vi|·|Vj |
p√

|Vi| ·
(
1 − |Vi|

p

)
· |Vj| ·

(
1 − |Vj |

p

)
︸ ︷︷ ︸

=1

= 1

Lower bound:
For arbitrary sets V1, . . . , Vm:

SMP = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

|Vi ∩ Vj| − |Vi|·|Vj |
p√

|Vi| ·
(
1 − |Vi|

p

)
· |Vj| ·

(
1 − |Vj |

p

)
︸ ︷︷ ︸

≥−1

≥ −1

For m = 2 and V1, V2 with |V1 ∩ V2| = 0, |V1| = p
2 , and |V2| = p

2 , SMP attains the lower
bound −1. For m > 2, the lower bound is not tight.
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SME
SME is well-defined if and only if q 
= 0, that is, if not more than one of the sets V1, . . . , Vm

is empty.
Upper bound:
For arbitrary sets V1, . . . , Vm:

SME = 1
q log2(m)

∑
j:Xj∈

⋃m

i=1 Vi

hj log2(hj) with q =
p∑

j=1
hj =

m∑
i=1

|Vi|

⇒ SME = 1
q

∑
j:Xj∈

⋃m

i=1 Vi

hj
log2(hj)
log2(m)︸ ︷︷ ︸

≤1

≤ 1
q

∑
j:Xj∈

⋃m

i=1 Vi

hj ≤ 1
q

p∑
j=1

hj︸ ︷︷ ︸
=q

= 1

For V1 = . . . = Vm:

Xj ∈
m⋃

i=1
Vi ⇒ hj = m and Xj /∈

m⋃
i=1

Vi ⇒ hj = 0

⇒ SME = 1
q log2(m)

∑
j:Xj∈

⋃m

i=1 Vi

hj log2(hj) = 1
|V1| · m · log2(m)

∑
j:Xj∈

⋃m

i=1 Vi

m log2(m)

= |⋃m
i=1 Vi|
|V1| = 1

Lower bound:
For arbitrary sets V1, . . . , Vm:

Xj ∈
m⋃

i=1
Vi ⇒ hj ≥ 1

⇒ SME = 1
q log2(m)

∑
j:Xj∈

⋃m

i=1 Vi

hj︸︷︷︸
≥1

log2(hj)︸ ︷︷ ︸
≥0

≥ 0

For Vi = {Xi}, i = 1, . . . , m:
SME = 1

m log2(m) · 0 = 0

SMD-α
SMD-α is well-defined if and only if |⋃m

i=1 Vi| 
= 0, that is, if not more than one of the sets
V1, . . . , Vm is empty.
Upper bound:
For arbitrary sets V1, . . . , Vm:

p∑
j=1

hj

m
= 1

m

m∑
i=1

|Vi| ≤ max {|V1| , . . . , |Vm|} ≤
∣∣∣∣∣

m⋃
i=1

Vi

∣∣∣∣∣

⇒ SMD-α = max

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0,

1
|⋃m

i=1 Vi|
p∑

j=1

hj

m︸ ︷︷ ︸
≤1

− α

p
· median (|V1| , . . . , |Vm|)︸ ︷︷ ︸

≥0

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
≤ 1
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For V1 = . . . = Vm:

SMD-α = max
{

0,
1

|V1| · |V1| − α

p
· |V1|

}
= max

{
0, 1 − α

p
· |V1|

}
= 1 ⇔ α = 0

For α > 0 the upper bound cannot be reached.
Lower bound:
For arbitrary sets V1, . . . , Vm, the lower bound of

SMD-α = max
⎧⎨⎩0,

1
|⋃m

i=1 Vi|
p∑

j=1

hj

m
− α

p
· median (|V1| , . . . , |Vm|)

⎫⎬⎭
is 0 by definition. For small values of α, the lower bound cannot be attained, because

1
|⋃m

i=1 Vi|
p∑

j=1

hj

m
> 0.

If α is large enough, the lower bound can be attained, for example for |V1| = . . . =
∣∣∣∣V�m+1

2 �
∣∣∣∣ = p

and
∣∣∣∣V�m+1

2 �+1

∣∣∣∣ = . . . = |Vm| = 0:

SMD-α = max
⎧⎨⎩0,

1
p

· p
⌈

m+1
2

⌉
m

− α

p
· p

⎫⎬⎭ = 0 ⇔ α ≥
⌈

m+1
2

⌉
m

SMS
SMS is well-defined if and only if cmax 
= cmin. Finding the values for p, q, and m for which
this is true, means solving equations with integer constraints. Computations for all possible
combinations of p ∈ {1, . . . , 10 000} and m ∈ {2, . . . , 100} show that SMS is well-defined if
and only if p > 1, q > 1, and q < pm − 1. That is, the sum of all selected features q =

m∑
i=1

|Vi|
has to be larger than 1 and smaller than pm − 1.
Somol and Novovičová (2008) prove for

SMS =

(
p∑

j=1

hj

q

hj−1
m−1

)
− cmin

cmax − cmin
with

cmin = q2 − p(q − q mod p) − (q mod p)2

pq(m − 1) and

cmax = (q mod m)2 + q(m − 1) − (q mod m) m

q(m − 1)

that
cmin ≤

p∑
j=1

hj

q

hj − 1
m − 1 ≤ cmax.

Therefore, 0 ≤ SMS ≤ 1 holds for arbitrary sets V1, . . . , Vm.
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Both bounds can be attained: For V1 = . . . = Vm:

hj = m ⇔ Xj ∈ V1 ∀j = 1, . . . , p, hj = 0 ⇔ Xj /∈ V1 ∀j = 1, . . . , p, and q = m |V1|

⇒
p∑

j=1

hj

q

hj − 1
m − 1 = |V1| · m

q
· m − 1

m − 1 = 1 and cmax = 02 + q(m − 1) − 0
q(m − 1) = 1

⇒ SMS =

p∑
j=1

hj

q

hj−1
m−1 − cmin

cmax − cmin
= 1

For V1, . . . , Vm pairwise disjoint with |Vi| = p
m

∀i = 1, . . . , m:

hj = 1 ∀j = 1, . . . , p and q = p

⇒
p∑

j=1

hj

q

hj − 1
m − 1 = 0 and cmin = p2 − p(p − 0) − 02

p2(m − 1) = 0

⇒ SMS =

p∑
j=1

hj

q

hj−1
m−1 − cmin

cmax − cmin
= 0

SMN

SMN is well-defined if and only if q
mp

(
1 − q

mp

)

= 0, that is, if at least one of the sets

V1, . . . , Vm is not empty or contains less than p features.
Upper bound:
For arbitrary sets V1, . . . , Vm:

s2
j = m

m − 1
hj

m︸︷︷︸
≥0

(
1 − hj

m

)
︸ ︷︷ ︸

≥0

≥ 0 and q =
m∑

i=1
|Vi| ≤ mp

⇒ SMN = 1 −

≥0︷ ︸︸ ︷
1
p

p∑
j=1

s2
j

q

mp

(
1 − q

mp

)
︸ ︷︷ ︸

≥0

≤ 1

For V1 = . . . = Vm:

hj = m ⇔ Xj ∈ V1 ∀j = 1, . . . , p and hj = 0 ⇔ Xj /∈ V1 ∀j = 1, . . . , p

⇒ s2
j = 0 ∀j = 1, . . . , p ⇒ SMN = 1

Lower bound:
Nogueira (2018) shows that SMN ≥ − 1

m−1 for arbitrary sets V1, . . . , Vm. This bound is
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attained for V1, . . . , Vm pairwise disjoint with |Vi| = p
m

, i = 1, . . . , m:

hj = 1 ∀j = 1, . . . , p ⇒ s2
j = m

m − 1
hj

m

(
1 − hj

m

)
= m

m − 1 · 1
m

(
1 − 1

m

)
= 1

m

q = p ⇒ q

mp

(
1 − q

mp

)
= 1

m

(
1 − 1

m

)
= m − 1

m2

⇒ SMN = 1 −
1
m

m−1
m2

= − 1
m − 1

SMZ
SMZ is well-defined if and only if |Vi ∪ Vj| 
= 0 ∀i < j, that is, if not more than one of the
sets V1, . . . , Vm is empty.
Upper bound:
For arbitrary sets V1, . . . , Vm:

C(Vi, Vj) =
∑
x∈Vi

1
|Vj|

∑
y∈Vj\Vi

|Cor(x, y)| I[θ,∞)(|Cor(x, y)|)︸ ︷︷ ︸
≤1

≤ |Vi|
|Vj| · |Vj \ Vi| and

C(Vj, Vi) ≤ |Vj|
|Vi| · |Vi \ Vj|

⇒ |Vi ∩ Vj| + C(Vi, Vj) + C(Vj, Vi) ≤ |Vi ∩ Vj| + |Vi|
|Vj| · |Vj \ Vi| + |Vj|

|Vi| · |Vi \ Vj|

= |Vi ∩ Vj| + |Vi|
|Vj| · (|Vj| − |Vi ∩ Vj|) + |Vj|

|Vi| · (|Vi| − |Vi ∩ Vj|)

= |Vi ∩ Vj|
(

1 − |Vi|
|Vj| − |Vj|

|Vi|
)

︸ ︷︷ ︸
≤−1(∗)

+ |Vi| + |Vj| ≤ |Vi ∪ Vj|

⇒ SMZ = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

|Vi ∩ Vj| + C(Vi, Vj) + C(Vj, Vi)
|Vi ∪ Vj|︸ ︷︷ ︸

≤1

≤ 1

(∗) : 1 − |Vi|
|Vj| − |Vj|

|Vi| ≤ −1

⇔ |Vi|
|Vj| + |Vj|

|Vi| ≥ 2

⇔ |Vi|2 + |Vj|2
|Vi| · |Vj| ≥ 2

⇔ |Vi|2 + |Vj|2 ≥ 2 · |Vi| · |Vj|
⇔ |Vi|2 + |Vj|2 − 2 · |Vi| · |Vj| = (|Vi| − |Vj|)2 ≥ 0
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For V1 = . . . = Vm:

|Vi ∩ Vj| = |Vi ∪ Vj| , C(Vi, Vj) = 0, and C(Vj, Vi) = 0 ∀i < j

⇒ SMZ = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

|Vi ∩ Vj| + C(Vi, Vj) + C(Vj, Vi)
|Vi ∪ Vj|︸ ︷︷ ︸

=1

= 1

Lower bound:
For arbitrary sets V1, . . . , Vm:

SMZ = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

≥0︷ ︸︸ ︷
|Vi ∩ Vj| +

≥0︷ ︸︸ ︷
C(Vi, Vj) +

≥0︷ ︸︸ ︷
C(Vj, Vi)

|Vi ∪ Vj|︸ ︷︷ ︸
≥0

≥ 0

For V1, . . . , Vm pairwise disjoint and |Cor(x, y)| < θ ∀x, y ∈ {X1, . . . , Xp}:

SMZ = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

=0︷ ︸︸ ︷
|Vi ∩ Vj| +

=0︷ ︸︸ ︷
C(Vi, Vj) +

=0︷ ︸︸ ︷
C(Vj, Vi)

|Vi ∪ Vj|︸ ︷︷ ︸
≥0

= 0

SMES
SMES is well-defined if and only if p > 1 and trace(CΣ) 
= 0 which depends on the data
specific similarity structure. SMES is undefined if all of the sets V1, . . . , Vm are empty or
contain all p features.
Upper bound:
No upper bound is known. It seems that SMES can attain arbitrarily large values, depending
on the number of features in the data set, p, and the similarity matrix C. Consider the
scenario with m = 2, V1 =

{
X1, . . . , X	 p

2 

}
, V2 =

{
X	 p

2 
+1, . . . , Xp

}
, and

Cij =

⎧⎪⎨⎪⎩
1, i = j,
τ, (Xi ∈ V1 and Xj ∈ V2) or (Xi ∈ V2 and Xj ∈ V1), i 
= j,
0, (Xi ∈ V1 and Xj ∈ V1) or (Xi ∈ V2 and Xj ∈ V2), i 
= j.

Such a similarity matrix is plausible if only similarity values that are larger than or equal to
a threshold are kept and the other ones are set to 0. The top plot in Figure B.1 shows the
values that SMES attains in this scenario for p ∈ {2, . . . , 100} and τ ∈ {0.90, 0.91, . . . , 1}. It
can be observed that the value of SMES increases with increasing p and that this increase is
the stronger, the larger the value of τ .
Lower Bound:
No lower bound is known. It seems that SMES can attain arbitrarily small values, depending
on p and C. Consider the scenario with m = 2, V1 = {X1}, V2 = {X2}, and

Cij =

⎧⎪⎨⎪⎩
1, i = j,
τ, i /∈ {1, 2} and j /∈ {1, 2}, i 
= j,
0, i ∈ {1, 2} or j ∈ {1, 2}, i 
= j.
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Figure B.1: Value of SMES, depending on the number of features in the data set, p, and the
similarity matrix C described above with parameter τ .

The two selected features are not similar to each other or to any of the other features.
The remaining features in the data set are similar to each other. The bottom plot in
Figure B.1 displays the values that SMES attains in this scenario for p ∈ {2, . . . , 100} and
τ ∈ {0.90, 0.91, . . . , 1}. The value of SMES decreases with increasing p and this decrease is
the stronger, the larger the value of τ .

SMY
SMY is well-defined if and only if not more than one of the sets V1, . . . , Vm is empty and

E

[
|Vi ∩ Vj| + A(Vi, Vj) + A(Vj, Vi)

2

]
<

|Vi| + |Vj|
2 ∀i < j
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which depends on the data specific similarity structure.
Upper bound:
For arbitrary sets V1, . . . , Vm:

A(Vi, Vj) = |{x ∈ (Vi \ Vj) : ∃y ∈ (Vj \ Vi) with similarity(x, y) ≥ θ}| ≤ |Vi \ Vj| ∀i, j

⇒ |Vi ∩ Vj| + A(Vi, Vj) + A(Vj, Vi)
2 ≤ |Vi ∩ Vj| + |Vi \ Vj| + |Vj \ Vi|

2

= |Vi| + |Vj|
2 ∀i < j

⇒ ScoreSMY(Vi, Vj) :=
|Vi ∩ Vj| + A(Vi,Vj)+A(Vj ,Vi)

2 − E
[
|Vi ∩ Vj| + A(Vi,Vj)+A(Vj ,Vi)

2

]
|Vi|+|Vj |

2 − E
[
|Vi ∩ Vj| + A(Vi,Vj)+A(Vj ,Vi)

2

] ≤ 1

⇒ SMY = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

ScoreSMY(Vi, Vj) ≤ 1

For V1 = . . . = Vm:

• |Vi ∩ Vj| = |Vi|+|Vj |
2 ∀i < j (see SMD)

• A(Vi, Vj) =

∣∣∣∣∣∣∣{x ∈ (Vi \ Vj)︸ ︷︷ ︸
=∅

: ∃y ∈ (Vj \ Vi) with similarity(x, y) ≥ θ}
∣∣∣∣∣∣∣ = 0 ∀i, j

⇒ ScoreSMY(Vi, Vj) =
|Vi ∩ Vj| + A(Vi,Vj)+A(Vj ,Vi)

2 − E
[
|Vi ∩ Vj| + A(Vi,Vj)+A(Vj ,Vi)

2

]
|Vi|+|Vj |

2 − E
[
|Vi ∩ Vj| + A(Vi,Vj)+A(Vj ,Vi)

2

] = 1

⇒ SMY = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

ScoreSMY(Vi, Vj) = 1

SMA
SMA is well-defined if and only if none of the sets V1, . . . , Vm is empty and

E [|Vi ∩ Vj| + Adj(Vi, Vj)] <
√

|Vi| · |Vj| ∀i < j

which depends on the data specific similarity structure.
Upper bound:
For arbitrary sets V1, . . . , Vm:
First, it is shown that AdjCount is the largest of the considered adjustments:

1. AdjGreedy ≤ AdjMBM

2. AdjMBM ≤ AdjCount

3. AdjMean ≤ AdjCount

1. The tuples [x, y, s] in Algorithm 3.1 represent edges in the graph described for SMA-
MBM. LB is constructed in such a way that all its tuples do not share any vertices x or
y. Therefore, LB is a matching. The size of any matching of a graph cannot exceed the
size of the maximum matching of this graph by definition of the maximum matching.
Therefore, AdjGreedy(Vi, Vj) ≤ AdjMBM(Vi, Vj) must hold for arbitrary sets Vi and Vj.
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2. Consider arbitrary sets Vi and Vj. By definition of AdjMBM, there must be AdjMBM(Vi, Vj)
edges in the graph constructed for SMA-MBM that belong to the maximum matching.
This means that there must be AdjMBM(Vi, Vj) vertices that represent features of Vi \ Vj

and AdjMBM(Vi, Vj) vertices that represent features of Vj \ Vi that are connected by the
edges in the matching. Because of the way the graph is constructed, there must be at
least AdjMBM(Vi, Vj) features in Vi \ Vj with a feature in Vj \ Vi with similarity value of
at least θ, that is,

A(Vi, Vj) = |{x ∈ (Vi \ Vj) : ∃y ∈ (Vj \ Vi) with similarity(x, y) ≥ θ}|
≥ AdjMBM(Vi, Vj).

Analogously, A(Vj, Vi) ≥ AdjMBM(Vi, Vj) must hold. Therefore,

AdjCount(Vi, Vj) = min{A(Vi, Vj), A(Vj, Vi)} ≥ AdjMBM(Vi, Vj).

3. Consider arbitrary sets Vi and Vj.

1∣∣∣Gij
x

∣∣∣
∑

y∈Gij
x

similarity(x, y) ≤ 1

holds, because similarity(x, y) ∈ [0, 1]. Therefore,

M(Vi, Vj) =
∑

x∈Vi\Vj :|Gij
x |>0

1∣∣∣Gij
x

∣∣∣
∑

y∈Gij
x

similarity(x, y) ≤
∣∣∣{x ∈ Vi \ Vj :

∣∣∣Gij
x

∣∣∣ > 0
}∣∣∣

with |Gij
x | = |{y ∈ Vj \ Vi : similarity(x, y) ≥ θ}|, that is,

M(Vi, Vj) ≤ |{x ∈ (Vi \ Vj) : ∃y ∈ (Vj \ Vi) with similarity(x, y) ≥ θ}| = A(Vi, Vj).

So, M(Vi, Vj) ≤ A(Vi, Vj) and analogously M(Vj, Vi) ≤ A(Vj, Vi) and therefore

AdjMean(Vi, Vj) = min{M(Vi, Vj), M(Vj, Vi)}
≤ min{A(Vi, Vj), A(Vj, Vi)} = AdjCount(Vi, Vj).

W.l.o.g. assume that |Vi| ≤ |Vj| ∀i < j.
SMA-Count:

A(Vi, Vj) ≤ |Vi \ Vj| and A(Vj, Vi) ≤ |Vj \ Vi| (see SMY)
⇒ AdjCount(Vi, Vj) = min{A(Vi, Vj), A(Vj, Vi)} ≤ min{|Vi \ Vj| , |Vj \ Vi|} = |Vi \ Vj| ∀i < j

⇒ |Vi ∩ Vj| + AdjCount(Vi, Vj) ≤ |Vi ∩ Vj| + |Vi \ Vj| = |Vi| ≤
√

|Vi| · |Vj| ∀i < j

⇒ ScoreCount(Vi, Vj) := |Vi ∩ Vj| + AdjCount(Vi, Vj) − E [|Vi ∩ Vj| + AdjCount(Vi, Vj)]√
|Vi| · |Vj| − E [|Vi ∩ Vj| + AdjCount(Vi, Vj)]

≤ 1

⇒ SMA-Count = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

ScoreCount(Vi, Vj) ≤ 1
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SMA-MBM:

AdjMBM(Vi, Vj) ≤ AdjCount(Vi, Vj) ∀i < j

⇒ |Vi ∩ Vj| + AdjMBM(Vi, Vj) ≤ |Vi ∩ Vj| + AdjCount(Vi, Vj) ≤
√

|Vi| · |Vj| ∀i < j

⇒ ScoreMBM(Vi, Vj) := |Vi ∩ Vj| + AdjMBM(Vi, Vj) − E [|Vi ∩ Vj| + AdjMBM(Vi, Vj)]√
|Vi| · |Vj| − E [|Vi ∩ Vj| + AdjMBM(Vi, Vj)]

≤ 1

⇒ SMA-MBM = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

ScoreMBM(Vi, Vj) ≤ 1

SMA-Greedy:

AdjGreedy(Vi, Vj) ≤ AdjCount(Vi, Vj) ∀i < j

⇒ |Vi ∩ Vj| + AdjGreedy(Vi, Vj) ≤ |Vi ∩ Vj| + AdjCount(Vi, Vj) ≤
√

|Vi| · |Vj| ∀i < j

⇒ ScoreGreedy(Vi, Vj) :=
|Vi ∩ Vj| + AdjGreedy(Vi, Vj) − E

[
|Vi ∩ Vj| + AdjGreedy(Vi, Vj)

]
√

|Vi| · |Vj| − E
[
|Vi ∩ Vj| + AdjGreedy(Vi, Vj)

] ≤ 1

⇒ SMA-Greedy = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

ScoreGreedy(Vi, Vj) ≤ 1

SMA-Mean:

AdjMean(Vi, Vj) ≤ AdjCount(Vi, Vj) ∀i < j

⇒ |Vi ∩ Vj| + AdjMean(Vi, Vj) ≤ |Vi ∩ Vj| + AdjCount(Vi, Vj) ≤
√

|Vi| · |Vj| ∀i < j

⇒ ScoreMean(Vi, Vj) := |Vi ∩ Vj| + AdjMean(Vi, Vj) − E [|Vi ∩ Vj| + AdjMean(Vi, Vj)]√
|Vi| · |Vj| − E [|Vi ∩ Vj| + AdjMean(Vi, Vj)]

≤ 1

⇒ SMA-Mean = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

ScoreMean(Vi, Vj) ≤ 1

For V1 = . . . = Vm:
• Vi \ Vj = ∅ and Vj \ Vi = ∅

⇒ AdjMBM(Vi, Vj) = AdjGreedy(Vi, Vj) = AdjCount(Vi, Vj) = AdjMean(Vi, Vj) = 0 ∀i < j

• |Vi ∩ Vj| =
√

|Vi| · |Vj| ∀i < j (see SMO)
⇒ SMA-MBM = SMA-Greedy = SMA-Count = SMA-Mean = 1

B.2 Monotonicity

SMD-α
Consider the situation with m = 5 and

(a) V1 = {X1, X2} and V2 = V3 = V4 = V5 = {X2}, that is, h1 = 1, h2 = 5, and
hj = 0 ∀j ∈ {3, . . . , p},

(b) V1 = V2 = {X1, X2} and V3 = V4 = V5 = {X2}, that is, h1 = 2, h2 = 5, and
hj = 0 ∀j ∈ {3, . . . , p}.
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In scenario (a):

SMD-α = max
{

0,
1

|{X1, X2}|
(1

5 + 5
5

)
− α

p
· median (|V1| , . . . , |V5|)

}

= max
{

0,
1
2 ·

(1
5 + 5

5

)
− α

p
· 1
}

= max
{

0, 0.6 − α

p

}

In scenario (b):

SMD-α = max
{

0,
1

|{X1, X2}|
(2

5 + 5
5

)
− α

p
· median (|V1| , . . . , |V5|)

}

= max
{

0,
1
2 ·

(2
5 + 5

5

)
− α

p
· 1
}

= max
{

0, 0.7 − α

p

}

So, the value of SMD-α is higher in scenario (b) than in scenario (a) or it is equal for α ≥ 0.7p.
The sample variance s2

j of feature Xj is defined by Nogueira (2018) as

s2
j = m

m − 1
hj

m

(
1 − hj

m

)
.

In scenario (a):
s1 = 5

4 · 1
5 ·

(
1 − 1

5

)
= 0.2

In scenario (b):
s1 = 5

4 · 2
5 ·

(
1 − 2

5

)
= 0.3

As the sample variance of feature X1 is higher in scenario (b) than in scenario (a), SMD-α
cannot be a strictly decreasing function of the sample variance of the selection for each
feature.

SMZ
Consider the situation with p = 9, m = 2, and

Cor(Xi, Xj) =

⎧⎪⎨⎪⎩
1, i = j,
1, i ∈ {6, 7, 8, 9} and j ∈ {6, 7, 8, 9},
0, otherwise.

The features X6 to X9 are similar to each other, while the features X1 to X5 are neither
similar to each other nor to the other features. Now consider the scenarios:

(a) V1 = {X1, X2, X3} and V2 = {X1, X4, X5},

(b) V1 = {X6, X7, X8} and V2 = {X1, X9}.
These sets are chosen such that |V1 ∩ V2| varies while |V1 ∪ V2| remains constant.

SMZ = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

|Vi ∩ Vj| + C(Vi, Vj) + C(Vj, Vi)
|Vi ∪ Vj| with

C(Vi, Vj) =
∑
x∈Vi

1
|Vj|

∑
y∈Vj\Vi

|Cor(x, y)| I[θ,∞) (|Cor(x, y)|) .
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In scenario (a):

|V1 ∩ V2| = 1
C(V1, V2) = 0
C(V2, V1) = 0

⇒ SMZ = 1 + 0 + 0
5 = 0.2

In scenario (b):

|V1 ∩ V2| = 0

C(V1, V2) = 3
(1

2(0 + 1)
)

= 1.5

C(V2, V1) = 1
3 (1 + 1 + 1) + 0 = 1

⇒ SMZ = 0 + 1.5 + 1
5 = 0.5

So, |V1 ∩ V2| is larger in scenario (a), but the value of SMZ is larger in scenario (b). Therefore,
stability measure SMZ cannot be a strictly increasing function of all cardinalites of pairwise
intersections.

SMES
Consider the situation with p = 7, m = 2, and similarity matrix

Cij =

⎧⎪⎨⎪⎩
1, i = j,
1, i ∈ {4, 5, 6, 7} and j ∈ {4, 5, 6, 7},
0, otherwise.

The features X4 to X7 are similar to each other, while the features X1 to X3 are neither
similar to each other nor to the other features. Now consider the scenarios:

(a) V1 = {X1, X2} and V2 = {X1, X3},

(b) V1 = {X4, X5} and V2 = {X6, X7}.

These sets are chosen such that |V1 ∩ V2| varies while |V1| and |V2| remain constant.

SMES = 1 − trace(CS)
trace(CΣ)

with

Sij = m

m − 1

(
hij

m
− hi

m

hj

m

)
,

Σij =

⎧⎪⎪⎨⎪⎪⎩
q

mp

(
1 − q

mp

)
, i = j,

1
m

m∑
i=1

|Vi|2− q
m

p2−p
− q2

m2p2 , i 
= j.
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In scenario (a):

Sij =

⎧⎪⎨⎪⎩
0.5, i = j = 2 or i = j = 3,
−0.5, (i = 2 and j = 3) or (i = 3 and j = 2),
0, otherwise.

trace(CS) = 0 + 0.5 + 0.5 + 0 + 0 + 0 + 0 = 1

Σij =
{ 10

49 , i = j,
−5
147 , i 
= j.

trace(CΣ) = 1
147 (30 + 30 + 30 + 15 + 15 + 15 + 15) = 150

147
⇒ SMES = 1 − 1

150
147

= 3
150 = 0.02

In scenario (b):

Sij =

⎧⎪⎨⎪⎩
0.5, i, j ∈ {4, 5} or i, j ∈ {6, 7},
−0.5, (i ∈ {4, 5} and j ∈ {6, 7}) or (i ∈ {6, 7} and j ∈ {4, 5}),
0, otherwise.

trace(CS) = 0 + 0 + 0 + 0 + 0 + 0 + 0 = 0

Σij =
{ 10

49 , i = j,
−5
147 , i 
= j.

trace(CΣ) = 1
147 (30 + 30 + 30 + 15 + 15 + 15 + 15) = 150

147
⇒ SMES = 1 − 0

150
147

= 1

In scenario (a), |V1 ∩ V2| is larger than in scenario (b), but the value of SMES is larger in
scenario (b) than in scenario (a). Therefore, stability measure SMES cannot be a strictly
increasing function of all cardinalites of pairwise intersections.

SMY
Consider the same scenarios as for SMES on page 164.

SMY = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

|Vi ∩ Vj| + A(Vi,Vj)+A(Vj ,Vi)
2 − E

[
|Vi ∩ Vj| + A(Vi,Vj)+A(Vj ,Vi)

2

]
|Vi|+|Vj |

2 − E
[
|Vi ∩ Vj| + A(Vi,Vj)+A(Vj ,Vi)

2

]
with A(Vi, Vj) = |{x ∈ (Vi \ Vj) : ∃y ∈ (Vj \ Vi) with similarity(x, y) ≥ θ}|
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In scenario (a):

|V1 ∩ V2| = 1
A(V1, V2) = 0
A(V2, V1) = 0

|V1| + |V2|
2 = 2

E

[
|V1 ∩ V2| + A(V1, V2) + A(V2, V1)

2

]
= 8

7

⇒ SMY =
1 + 0 − 8

7
2 − 8

7
= −1

6

In scenario (b):

|V1 ∩ V2| = 0
A(V1, V2) = 2
A(V2, V1) = 2

|V1| + |V2|
2 = 2

E

[
|V1 ∩ V2| + A(V1, V2) + A(V2, V1)

2

]
= 8

7

⇒ SMY =
0 + 2+2

2 − 8
7

2 − 8
7

= 1

Note that for assessing the expected value, the score “
∣∣∣Ṽ1 ∩ Ṽ2

∣∣∣+ A(Ṽ1,Ṽ2)+A(Ṽ2,Ṽ1)
2 ” is calculated

for all 441 combinations of two sets with
∣∣∣Ṽ1

∣∣∣ =
∣∣∣Ṽ2

∣∣∣ = 2 and then the average value is assessed.
In scenario (a), |V1 ∩ V2| is larger than in scenario (b), but the value of SMY is larger in
scenario (b) than in scenario (a). Therefore, stability measure SMY cannot be a strictly
increasing function of all cardinalites of pairwise intersections.

SMA
Consider the same scenarios as for SMES on page 164. In this situation, the four variants
SMA-MBM, SMA-Greedy, SMA-Count and SMA-Mean are identical, because the respective
adjustment functions are identical. As shown in Appendix B.1 on page 160 f., AdjCount and
AdjMean are identical if and only if all non-zero similarity values are equal to 1 which is fulfilled
in the considered situation. Also, AdjGreedy ≤ AdjMBM ≤ AdjCount and in the considered
situation, AdjGreedy = AdjMBM = AdjCount. In the considered situation, there are two sets
with cardinality

∣∣∣Ṽ1
∣∣∣ =

∣∣∣Ṽ2
∣∣∣ = 2.

• If
∣∣∣Ṽ1 ∩ Ṽ2

∣∣∣ = 2, then AdjGreedy and AdjCount take the value 0 because both difference
sets Ṽ1 \ Ṽ2 and Ṽ2 \ Ṽ1 are empty.

• If
∣∣∣Ṽ1 ∩ Ṽ2

∣∣∣ = 1, then there are two cases. W.l.o.g. let Ṽ1\Ṽ2 = {XA} and Ṽ2\Ṽ1 = {XB}.

– If similarity(XA, XB) = 1, then AdjGreedy and AdjCount take the value 1.
– Otherwise they both take the value 0.
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• If
∣∣∣Ṽ1 ∩ Ṽ2

∣∣∣ = 0, then there are six cases which will be presented by their partial
similarity matrices M . W.l.o.g. assume that the first two features in M belong to
Ṽ1 \ Ṽ2 and the last two to Ṽ2 \ Ṽ1. Similarity values of features of the same set are
denoted with � because they are irrelevant for the adjustment functions.

– If M =

⎛⎜⎜⎜⎝
1 � 0 0
� 1 0 0
0 0 1 �
0 0 � 1

⎞⎟⎟⎟⎠, then AdjGreedy and AdjCount take the value 0.

– If M =

⎛⎜⎜⎜⎝
1 � 1 0
� 1 0 0
1 0 1 �
0 0 � 1

⎞⎟⎟⎟⎠, then AdjGreedy and AdjCount take the value 1.

– If M =

⎛⎜⎜⎜⎝
1 � 1 1
� 1 0 0
1 0 1 �
1 0 � 1

⎞⎟⎟⎟⎠, then AdjGreedy and AdjCount take the value 1.

– If M =

⎛⎜⎜⎜⎝
1 � 1 0
� 1 0 1
1 0 1 �
0 1 � 1

⎞⎟⎟⎟⎠, then AdjGreedy and AdjCount take the value 2.

– If M =

⎛⎜⎜⎜⎝
1 � 1 1
� 1 0 1
1 0 1 �
1 1 � 1

⎞⎟⎟⎟⎠, then AdjGreedy and AdjCount take the value 2.

– If M =

⎛⎜⎜⎜⎝
1 � 1 1
� 1 1 1
1 1 1 �
1 1 � 1

⎞⎟⎟⎟⎠, then AdjGreedy and AdjCount take the value 2.

Now, the four variants SMA-MBM, SMA-Greedy, SMA-Count and SMA-Mean are analyzed
jointly as SMA.
In scenario (a):

|V1 ∩ V2| = 1
Adj(V1, V2) = 0√

|V1| · |V2| = 2

E [|V1 ∩ V2| + Adj(V1, V2)] = 156
147

⇒ SMA =
1 + 0 − 156

147
2 − 156

147
= − 9

138
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In scenario (b):

|V1 ∩ V2| = 0
Adj(V1, V2) = 2

A(V2, V1) = 2√
|V1| · |V2| = 2

E [|V1 ∩ V2| + Adj(V1, V2)] = 156
147

⇒ SMA =
0 + 2 − 156

147
2 − 156

147
= 1

Note that for assessing the expected value, the score “
∣∣∣Ṽ1 ∩ Ṽ2

∣∣∣+ Adj(Ṽ1, Ṽ2)” is calculated for
all 441 combinations of two sets with

∣∣∣Ṽ1
∣∣∣ =

∣∣∣Ṽ2
∣∣∣ = 2 and then the average value is assessed.

In scenario (a), |V1 ∩ V2| is larger than in scenario (b), but the value of SMA is larger in
scenario (b) than in scenario (a). Therefore, stability measure SMA cannot be a strictly
increasing function of all cardinalites of pairwise intersections.

B.3 Correction for Chance

SME
If V1, . . . , Vm are random feature sets of cardinality k, the probability that feature Xj is
included in set Vi is k

p
(
(

p−1
k−1

)
of
(

p
k

)
possibilities) for all j = 1, . . . , p and i = 1, . . . , m. As

the sets are independent, the probability that feature Xj is selected exactly hj times equals
(

m

hj

)(
k

p

)hj
(

1 − k

p

)m−hj

.

Calculating the expected value of SME gives

E(SME) = E

⎛⎜⎝ 1
q log2(m)

∑
j:Xj∈

⋃m

i=1 Vi

hj log2(hj)

⎞⎟⎠
= 1

mk log2(m)

p∑
j=1

E
(
I{1,...,m}(hj) hj log2(hj)

)
= p

mk log2(m) · E
(
I{1,...,m}(h1) h1 log2(h1)

)
= p

mk log2(m) ·
m∑

h=1
h log2(h) · P (h1 = h)

= p

mk log2(m) ·
m∑

h=1
h log2(h) ·

(
m

h

)(
k

p

)h (
1 − k

p

)m−h

= 1
m log2(m) ·

m∑
h=1

h log2(h) ·
(

m

h

)(
k

p

)h−1 (
1 − k

p

)m−h

.
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So, the expected value of stability measure SME for a random feature selection depends on
the ratio of selected features k

p
. Figure B.2 illustrates the dependence of the expected value

of SME on the ratio of selected features.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
k/p

E(
SM

E)

m
2

5

10

20

40

100

Figure B.2: Dependence of the expected value of the stability measure SME on the proportion
of selected features k/p for different numbers of feature sets (m).

SMES
Consider the situation with p = 2, m = 2, similarity matrix

C =
(

1 0.95
0.95 1

)
,

and the two scenarios

(a) |V1| = 1 and |V2| = 1,

(b) |V1| = 1 and |V2| = 2.

In scenario (a), there are four cases:

• If V1 = {X1} and V2 = {X1}, then SMES = 1.

• If V1 = {X2} and V2 = {X2}, then SMES = 1.

• If V1 = {X1} and V2 = {X2}, then SMES = −1.

• If V1 = {X2} and V2 = {X1}, then SMES = −1.

The expected value of SMES in this scenario is the average of these four values: E(SMES) = 0.
In scenario (b), there are two cases:

• If V1 = {X1} and V2 = {X1, X2}, then SMES = −39
41 .

• If V1 = {X2} and V2 = {X1, X2}, then SMES = −39
41 .
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The expected value of SMES in this scenario is the average of these two values: E(SMES) =
−39

41 .
So, the expected value of SMES depends on the number of selected features. Therefore,
stability measure SMES is not corrected for chance.

B.4 Maximum

SMU

SMU = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

|Vi ∩ Vj| − |Vi|·|Vj |
p√

|Vi| · |Vj| − |Vi|·|Vj |
p︸ ︷︷ ︸

≤1, see Appendix B.1, page 150 f.

= 1

⇔ ∀i < j :
|Vi ∩ Vj| − |Vi|·|Vj |

p√
|Vi| · |Vj| − |Vi|·|Vj |

p

= 1

⇔ ∀i < j : |Vi ∩ Vj| =
√

|Vi| · |Vj|

⇔ ∀i < j :

√√√√ |Vi ∩ Vj|
|Vi|︸ ︷︷ ︸

≤1

·
√√√√ |Vi ∩ Vj|

|Vj|︸ ︷︷ ︸
≤1

= 1

⇔ ∀i < j : |Vi ∩ Vj|
|Vi| = 1 and |Vi ∩ Vj|

|Vj| = 1

⇔ ∀i < j : |Vi ∩ Vj| = |Vi| = |Vj| ⇔ ∀i < j : Vi = Vj

⇔ V1 = . . . = Vm

SMK

SMK = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

|Vi ∩ Vj| − |Vi|·|Vj |
p

|Vi|+|Vj |
2 − |Vi|·|Vj |

p︸ ︷︷ ︸
≤1, see Appendix B.1, page 152

= 1

⇔ ∀i < j :
|Vi ∩ Vj| − |Vi|·|Vj |

p

|Vi|+|Vj |
2 − |Vi|·|Vj |

p

= 1

⇔ ∀i < j : |Vi ∩ Vj| = |Vi| + |Vj|
2

⇔ ∀i < j : |Vi ∩ Vj|︸ ︷︷ ︸
≤|Vi|

+ |Vi ∩ Vj|︸ ︷︷ ︸
≤|Vj |

= |Vi| + |Vj|

⇔ ∀i < j : |Vi ∩ Vj| = |Vi| = |Vj| ⇔ ∀i < j : Vi = Vj

⇔ V1 = . . . = Vm
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SME

SME = 1
q log2(m)

∑
j:Xj∈

⋃m

i=1 Vi

hj log2(hj) = 1 with q =
p∑

j=1
hj

⇔ ∑
j:Xj∈

⋃m

i=1 Vi

hj log2(hj) =
p∑

j=1
hj log2(m)

⇔
p∑

j=1

⎧⎪⎨⎪⎩
hj log2(hj)︸ ︷︷ ︸

≤log2(m)

, hj > 0

0, hj = 0

⎫⎪⎬⎪⎭ =
p∑

j=1
hj log2(m)

⇔ ∀j ∈ {1, . . . , p} : hj = m or hj = 0
⇔ V1 = . . . = Vm

SMD-0
For α = 0:

SMD-0 = max
⎧⎨⎩0,

1
|⋃m

i=1 Vi|
p∑

j=1

hj

m
− 0

p
· median (|V1| , . . . , |Vm|)

⎫⎬⎭ = 1
|⋃m

i=1 Vi|
p∑

j=1

hj

m

SMD-0 = 1
|⋃m

i=1 Vi|
p∑

j=1

hj

m
= 1

⇔
p∑

j=1

hj

m
=
∣∣∣∣∣

m⋃
i=1

Vi

∣∣∣∣∣ ⇔
p∑

j=1
hj = m

∣∣∣∣∣
m⋃

i=1
Vi

∣∣∣∣∣ ⇔
m∑

j=1
|Vj| =

m∑
j=1

∣∣∣∣∣
m⋃

i=1
Vi

∣∣∣∣∣
⇔

m∑
j=1

(
|Vj| −

∣∣∣∣∣
m⋃

i=1
Vi

∣∣∣∣∣
)

︸ ︷︷ ︸
≤0

= 0 ⇔ ∀j ∈ {1, . . . , m} : |Vj| =
∣∣∣∣∣

m⋃
i=1

Vi

∣∣∣∣∣
⇔ ∀j ∈ {1, . . . , m} : Vj =

m⋃
i=1

Vi ⇔ V1 = . . . = Vm

SMZ

SMZ = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

|Vi ∩ Vj| + C(Vi, Vj) + C(Vj, Vi)
|Vi ∪ Vj|︸ ︷︷ ︸

≤1, see Appendix B.1, page 157

= 1

⇔ ∀i < j : |Vi ∩ Vj| + C(Vi, Vj) + C(Vj, Vi)
|Vi ∪ Vj| = 1

⇔ ∀i < j : |Vi ∩ Vj| = |Vi ∪ Vj| or C(Vi, Vj) + C(Vj, Vi) = |Vj \ Vi| + |Vi \ Vj|
⇔ ∀i < j : Vi = Vj or (|Vi| = |Vj| and |Cor(x, y)| = 1 ∀x ∈ Vi, y ∈ Vj \ Vi

and |Cor(x, y)| = 1 ∀x ∈ Vj, y ∈ Vi \ Vj)
⇔ ∀i < j : Vi = Vj or (|Vi| = |Vj| and |Cor(x, y)| = 1 ∀x, y ∈ Vi ∪ Vj)
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So, consider the situation with m = 2, V1 = {X1}, V2 = {X2}, and Cor(X1, X2) = 1. Then,
|Vi ∩ Vj|, C(V1, V2) = 1, and C(V2, V1), that is, SMZ = 0+1+1

2 = 1. Therefore, SMZ can attain
its maximum value for unequal sets of selected features.

B.5 Maximum for Equal Cardinalities

SMW

Consider the situation with m = 2 and V1 � V2. Then |V1| < |V2| and

SMW =
|V1 ∩ V2| − |V1|·|V2|

p

min{|V1| , |V2|} − |V1|·|V2|
p

=
|V1| − |V1|·|V2|

p

|V1| − |V1|·|V2|
p

= 1.

So, SMW can attain its maximum value for feature sets with unequal cardinalities.

SMS
Consider the example presented in Nogueira (2018): p = 4, m = 4, V1 = V2 = {X1, X2}, and
V3 = V4 = {X1, X2, X3}. So, h1 = h2 = 4, h3 = 2, h4 = 0, and q = ∑4

j=1 hj = 10.

cmin = 102 − 4 · (10 − 10 mod 4) − (10 mod 4)2

4 · 10 · (4 − 1) = 100 − 32 − 4
120 = 8

15

cmax = (10 mod 4)2 + 10 · (4 − 1) − (10 mod 4) · 4
10 · (4 − 1) = 4 + 30 − 8

30 = 13
15

p∑
j=1

hj

q

hj − 1
m − 1 = 2 · 4

10 · 3
3 + 2

10 · 1
3 = 4

5 + 1
15 = 13

15

⇒ SMS =

(
p∑

j=1

hj

q

hj−1
m−1

)
− cmin

cmax − cmin
=

13
15 − 8

15
13
15 − 8

15
= 1

So, SMS can attain its maximum value for feature sets with unequal cardinalities.

SMY
Consider the situation with p = 4, m = 2, V1 = {X1}, V2 = {X2, X3}, and similarity matrix

X1 X2 X3 X4⎛⎜⎜⎝
⎞⎟⎟⎠

X1 1 θ θ 0
X2 θ 1 θ 0
X3 θ θ 1 0
X4 0 0 0 1

Then,

SMY =
|V1 ∩ V2| + A(V1,V2)+A(V2,V1)

2 − E
[
|V1 ∩ V2| + A(V1,V2)+A(V2,V1)

2

]
|V1|+|V2|

2 − E
[
|V1 ∩ V2| + A(V1,V2)+A(V2,V1)

2

]
with A(Vi, Vj) = |{x ∈ (Vi \ Vj) : ∃y ∈ (Vj \ Vi) with similarity(x, y) ≥ θ}|.
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• |V1 ∩ V2| + A(V1,V2)+A(V2,V1)
2 = 0 + 1+2

2 = 1.5

• |V1|+|V2|
2 = 1.5

• E
[
|V1 ∩ V2| + A(V1,V2)+A(V2,V1)

2

]
= 1

24 (3 · 0 + 18 · 1 + 3 · 1.5) = 22.5
24 , see below.

V1 V2 |V1 ∩ V2| + A(V1,V2)+A(V2,V1)
2

{X1} {X1, X2} 1 + 0+0
2 = 1

{X1} {X1, X3} 1 + 0+0
2 = 1

{X1} {X1, X4} 1 + 0+0
2 = 1

{X1} {X2, X3} 0 + 1+2
2 = 3

2{X1} {X2, X4} 0 + 1+1
2 = 1

{X1} {X3, X4} 0 + 1+1
2 = 1

{X2} {X1, X2} 1 + 0+0
2 = 1

{X2} {X1, X3} 0 + 1+2
2 = 3

2{X2} {X1, X4} 0 + 1+1
2 = 1

{X2} {X2, X3} 1 + 0+0
2 = 1

{X2} {X2, X4} 1 + 0+0
2 = 1

{X2} {X3, X4} 0 + 1+1
2 = 1

{X3} {X1, X2} 0 + 1+2
2 = 3

2{X3} {X1, X3} 1 + 0+0
2 = 1

{X3} {X1, X4} 0 + 1+1
2 = 1

{X3} {X2, X3} 1 + 0+0
2 = 1

{X3} {X2, X4} 0 + 1+1
2 = 1

{X3} {X3, X4} 1 + 0+0
2 = 1

{X4} {X1, X2} 0 + 0+0
2 = 0

{X4} {X1, X3} 0 + 0+0
2 = 0

{X4} {X1, X4} 1 + 0+0
2 = 1

{X4} {X2, X3} 0 + 0+0
2 = 0

{X4} {X2, X4} 1 + 0+0
2 = 1

{X4} {X3, X4} 1 + 0+0
2 = 1

⇒ SMY =
1.5 − 22.5

24
1.5 − 22.5

24
= 1

So, SMY can attain its maximum value for feature sets with unequal cardinalities.

SMA
As shown in Appendix B.1, page 160 f., the adjustment AdjCount is the largest of the considered
adjustments, that is AdjMBM ≤ AdjCount, AdjGreedy ≤ AdjCount, and AdjMean ≤ AdjCount. For
Adj ∈ {AdjCount, AdjMBM, AdjGreedy, AdjMean} the following holds:
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SMA = 2
m(m − 1)

m−1∑
i=1

m∑
j=i+1

|Vi ∩ Vj| + Adj(Vi, Vj) − E [|Vi ∩ Vj| + Adj(Vi, Vj)]√
|Vi| · |Vj| − E [|Vi ∩ Vj| + Adj(Vi, Vj)]︸ ︷︷ ︸

≤1, see Appendix B.1, page 160 f.

= 1

⇔ ∀i < j : |Vi ∩ Vj| + Adj(Vi, Vj) − E [|Vi ∩ Vj| + Adj(Vi, Vj)]√
|Vi| · |Vj| − E [|Vi ∩ Vj| + Adj(Vi, Vj)]

= 1

⇔ ∀i < j : |Vi ∩ Vj| + Adj(Vi, Vj) =
√

|Vi| · |Vj|

Consider arbitrary non-empty sets Vi and Vj and w.l.o.g. assume that |Vi| ≤ |Vj|.
• Case 1: Adj(Vi, Vj) = 0:

As shown for SMU on page 170, |Vi ∩ Vj| =
√

|Vi| · |Vj| ⇔ |Vi| = |Vj|
• Case 2: Adj(Vi, Vj) > 0:

Show |Vi| = |Vj| by proof by contradiction:
Assume that |Vi| < |Vj|. Then,

√
|Vi| · |Vj| = |Vi ∩ Vj| + Adj(Vi, Vj) ≤ |Vi ∩ Vj| +

AdjCount(Vi, Vj) ≤ |Vi ∩ Vj| + |Vi \ Vj| = |Vi| <
√

|Vi| · |Vj| �, see Appendix B.1,
page 160 f.

Concludingly, SMA = 1 ⇒ |V1| = . . . = |Vm|. Also, it was shown in Appendix B.1, page 160 f.,
that SMA-Count, SMA-MBM, SMA-Greedy, and SMA-Mean attain their maximum value 1
for V1 = . . . = Vm, which is a situation with all feature sets having the same cardinality.



175

Eidesstattliche Erklärung

Hiermit erkläre ich, Andrea Martina Bommert, dass ich die vorliegende Dissertation mit dem
Titel “Integration of Feature Selection Stability in Model Fitting” selbstständig verfasst und
keine anderen als die angegebenen Hilfsmittel benutzt habe. Die Dissertation ist bisher keiner
anderen Fakultät vorgelegt worden. Ich erkläre, dass ich bisher kein Promotionsverfahren
erfolglos beendet habe und dass keine Aberkennung eines bereits erworbenen Doktorgrades
vorliegt.


