Dissertation zur Erlangung des akademischen
Grades

Dr. rer. nat.

A Selection Framework for LHCb’s
Upgrade Trigger

Niklas Nolte
geboren in Hildesheim, 1994

2020

Lehrstuhl fir Experimentelle Physik V
Fakultat Physik

Technische Universitat Dortmund

Erstgutachter: Prof. Dr. Johannes Albrecht
Zweitgutachter: Dr. Johannes Erdmann
Abgabedatum: 17. Dezember 2020

Kurzfassung

Das LHCb Experiment am Large Hadron Collier am CERN wird momentan fiir die
niachste Datennahme verandert und modernisiert. Die instantane Luminositat wird
um einen Faktor fiinf erhoht, damit mehr Daten in kiirzerer Zeit aufgenommen
werden konnen. Die erste Stufe der Datennahme, der Hardwaretrigger, wird
entfernt. LHCb muss nun eine Kollisionsrate von 30 MHz in Echtzeit verarbeiten.
In dieser Arbeit werden drei Projekte vorgestellt, die signifikant zu der Entwicklung
eines schnellen und effizienten Triggersystems beitragen.

Der erste Beitrag ist ein Scheduling Algorithmus mit vernachlassigharem Overhead
in der neuen Trigger-Applikation. Der Algorithmus steuert das Multi-Threading
des Systems und ist der erste Algorithmus in LHCb, der den technischen Spezifika-
tionen des Systems geniigt. Durch die Restriktion auf Inter-Event Parallelismus
konnen die meisten teuren Entscheidungen schon vor der Laufzeit der Applikation
getroffen werden.

Der zweite Beitrag besteht aus mehreren Algorithmen zur Filterung und Kombina-
tion von Teilchen in der Kollision. Diese Algorithmen sind bis zu mehreren
GroBenordnungen schneller als die aktuellen, etablierten Algorithmen. Der
Einsatz der neuen Algorithmen in der zweiten Trigger-Phase (HLT2) ist ein
wichtiger Schritt zur Vervollstandigung eines Trigger-Systems, dass den erhohten
Anforderungen entspricht.

Das letzte Projekt beschaftigt sich mit der Bandbreite, mit der der Trigger
Kollisionen abspeichert. Dazu wird die wichtigste Selektion im HLT2 betrachtet,
der topologische Trigger. Dieser Trigger versucht, Zerfalle von beauty Hadronen
inklusiv zu selektieren. Zuerst wird der Selektionsalgorithmus selber optimiert.
In einem zweiten Schritt werden die Kollisionen, die der Selektion entsprechen,
getrimmt. Irrelevante Information fir die Analyse von beauty Hadronen in
diesen Kollisionen werden entfernt. Damit kann die Bandbreite pro gespeicherter
Kollision verringert werden.

il

Abstract

The LHCb experiment at the Large Hadron Collider at CERN is planning a major
detector upgrade for the next data taking period. The instantaneous luminosity
is increased by a factor of five to generate more data per time. The hardware
trigger stage preceding detector readout is removed and LHCb now has to process
30 MHz of incoming events in real time. The work presented in this thesis shows
three contributions towards a fast and efficient trigger system.

The first contribution is a multi-threaded scheduling algorithm to work with
negligible overhead in the Upgrade regime. It is the first implementation for
LHCb capable of realizing arbitrary control and data flow at the required speed.
It restricts itself to inter-event concurrency to avoid costly runtime scheduling
decisions.

The second contribution comprises several algorithms to perform particle combi-
nation, vertexing and selection steps in the second HLT stage. These algorithms
show competitive performances which can speed up the selection stage of HLT2
by orders of magnitude. Employing these algorithms marks a significant step
towards an HLT2 application fast enough for the increased event rate.

The third contribution concerns the most important and most costly HLT2
selection at LHCb, the Topological Trigger. It aims to inclusively capture many
beauty-flavored decay chains. First, the algorithm for event selection is optimized.
In a second step, output bandwidth is reduced significantly by employing a
classification algorithm for selecting additional relevant information present in
the event.

v

Contents

1 Intr

n

2 The Standard Model of Particle Physics|

2.1 Obtaining a solution to unsolved problems with LHCb|

3 The LHCb Detector at the LHC

3.1 The Large Hadron Collider|.

3.2 The LHCb detector!

3.2.1

The tracking system|

The Vertex Locator]
The Upstream Tracker|
The magnet|

The Sciki tracker|
Track types in LHCDb reconstruction|

13.2.2 The particle identification system .

'The Ring Imaging Cherenkov Detectors|

Electromagnetic and hadronic calorimeters/.

The muon stations

3.2.3 An overview over the LHCDb softwarel

3.3 LHCb beauty and charm decay topology| .

4 The LHCb Upgrade Trigger

4.1 Why upgrade to a full software trigger?|.

4.2 Upgrade trigger workflow|

421

The first High Level Trigger: HLT1|

4.2.2

The disk buffer, alignment and calibration/

4.2.3

The second HLT stage,

42.4

Building blocks for trigger software

\Configurability and the build modell

11
12
13
14
15
15
16
17
17
18
19
19
21

23
23
27
27
29
31
31
32

Contents

4.3 Computing challenges in the Upgrade HLT,

4.3.1 Bandwidth requirementso 0L

Selective persistence|

4.3.2 Throughput requirements

5 Principles for High Performance Computing in the Trigger,
5.1 Caching and predictability in CPUs
5.2 Dynamic memory allocation|
0.3 Vectorization|

5.4 Multi-core utilization with multi-threading/

Gaudi::Functional

6 A Scheduling Algorithm for the Upgrade Trigger Regime|
6.1 Control and data flow]
6.2 The baseline: A multi-threaded event scheduler for GAUDI
6.3 A new scheduling application, ..

6.3.1 From intra- to inter-event concurrency
6.3.2 The high level workflow
6.3.3 The trigger control flow anatomy|

6.3.4 Representation of data flow

6.4 Event loop preparation - Initialization|

6.5 The event loop - Runtime,
6.5.1 Task packagingl 0oL

6.5.2 Sequence execution|
6.6 The control flow barrier - Sharing work|
6.7 Scheduler performance]o 00000

6.8 Summary and outlook]

|7 Selections and Combinatorics in Upgrade HLT?2|
7.1 Selection algorithms in the trigger workflow,

7.2 Runtime performance in status quo
7.3 The baseline algorithms|
7.3.1 Filtering with LoKi
7.3.2 Basics of combiningo
(.3.3 _Workflow in the baseline combiner
7.4 Improving upon the baseline with new selections
7.4.1 Combining with ThOr|
7.5 A new particlemodel|
7.5.1 Data layouts and LHCb::Particle

vi

37
37
39
39
40
42

43
43
44
46
46
46
47
49
50
23
23
33
o4
o7
o7

Contents

[7.5.2 The SoA particlel 76

7.6 Filtering and combining with the SoA particle model| 79
7.6.1 A Combiner for the SoA Particle 80

The algorithm logic|. 81
.......................... 82
........................... 83

[7.6.2 Benchmarks on combining with the SoA Particle 83

7.7 _Conclusion and Outlook 84

8 The Topological Trigger with Selective Persistence 86
8.1 Inputdatal. 87
8.2 Optimization of the topological event selection/ 88
8.2.1 The metric for optimization: Trigger On Signal efficiency . 89

8.2.2 Topo candidate combination 90

8.2.3 Boosted tree ensembles/. 93

8.2.4 Topological classification - Baseline comparison 95

8.2.5 Topological classification - Full input data] 100

8.3 Selective Persistence in the topological trigger| 105
Selection based on primary vertex relations 106

Selection based on trained classificationl 107

8.4 Summary and outlook 115

9 Conclusion 117
120
\A.1 Description of HLT1 trigger lines 120
'A.2 Additional information on input samples for the Topo|. 122
123

vii

viil

1 Introduction

In Geneva, Switzerland, the European Organization for Nuclear Research (CERN)
operates the largest ever built machine: The Large Hadron Collider (LHC) [1].
This circular particle collider measures 26.7 km in circumference and collides
protons and heavy ions at the TeV energy scale. At four distinct interaction points
around the perimeter, these collisions of unprecedented energy are captured by

four large detectors: ATLAS, CMS, ALICE and LHCb.

Until this day, these experiments have made countless measurements in fundamen-
tal particle physics, including but not limited to the discovery of new particles
and precision measurements of particle properties and interactions. The most
important discovery was achieved in 2012 by the ATLAS and CMS collaborations:
The Higgs-Boson [2, [3]. It is the last found elemental particle predicted by the
best tested fundamental physics theory, the Standard Model (SM) of particle
physics |4} 5, 6, [7].

Although the SM yields incredibly precise predictions all over the high energy
physics landscape, it fails to cover several observed phenomena of our universe,
like the existence of dark matter [8] or the asymmetry of matter and antimatter
[9, 10]. There is also no description of gravity included in the Standard Model.
We must therefore conclude that the SM is, at best, an incomplete model of the
interactions in fundamental physics.

With steadily increasing energies and collision rates, experiments at the LHC try
to find hints for physics Beyond the Standard Model (BSM) in the vast amount of
data they generate. Every measurement gives rise to new theories and discourages
others. The LHCb detector, which is in the focus of this thesis, specializes in
indirect searches for BSM physics in beauty and charm decay processes. Around
1000 engineers and physicists collaborate to operate this detector, to process the
data and to analyze it.

As the LHC is currently in the second long shutdown LS 2, LHCD is undergoing
a major detector upgrade to prepare for a fivefold increase in luminosity in the
third Run of the LHC. Major changes include a new tracking system and a full

1 Introduction

replacement of all readout electronics. Most importantly for this thesis, the LHCb
trigger system is being reworked completely [11].

A trigger system acts as filter for the huge amount of incoming data, as we
cannot afford to persist multiple terabytes per second of collision information. It
reconstructs particles trajectories in different detector components and ultimately
combines them to form decay and collision vertices. To find the interesting physics
needle in the haystack of interactions that a high energy hadronic collision creates,
one can impose requirements on particle trajectories and vertices.

Until the end of Run 2 in 2018, the first selection step was performed by a hardware
trigger, L0, that filtered events with a rate of 1 MHz. The two subsequent High
Level Trigger (HLT) software stages thus had to operate at a much lower rate
than the nominal LHC collision rate.

From 2021 onwards, there will not be a hardware trigger stage in LHCb’s data
processing flow to achieve a higher amount of flexibility and efficiency. This poses
significant challenges to the HLT processing farm, as it has to operate in real
time with a collision rate of 40 million per second. LHCDb is the first of the four
big experiments at the LHC to take the leap towards a software-only trigger
system. Together with the aforementioned fivefold increase of luminosity, the
computational requirements on the HLT computing farm increase by about two
orders of magnitude with respect to previous data taking periods. In contrast to
these requirements, the allocated computing budget does not allow for a farm
that is orders of magnitude more powerful than the one that operated in 2018.

The second big challenge, next to computational load, is the limited output
bandwidth. The trigger needs to efficiently select physics signatures for all
analyses that researchers are interested in. Inclusive selections over such a broad
range of physics signatures results in large bandwidth outputs. Therefore, the
solution is made up by about O(10%) exclusive selections built into the second
HLT stage. The fivefold increase of luminosity implies a fivefold increase of
interesting data to be collected per unit of time, but also a similarly increased
level of noise. Selections need to be very pure to fit into the output bandwidth
while not discarding too much interesting data. Significant efforts are being put
into the optimization of both HLT reconstruction and selection stages to meet
both timing and bandwidth requirements.

Some of these efforts are presented in this thesis. Chapter |2 introduces the SM and
problems that LHCD tries to gain further insight into. Chapters 3| and 4| discuss
the upgrade LHCb detector and the upgrade trigger with its challenges in detail.

Chapter 5| takes a step back from the context of high energy physics to introduce
principles for high performance computing on CPU architectures. Starting from
Chapter |6, specific optimizations proposed for operation in the upgrade trigger
are discussed. Chapter 6| describes the first feature complete implementation
of a new scheduling algorithm to efficiently execute the HLT control flow with
thousands of algorithms in online production. Chapter |7|is concerned with the
implementation of faster algorithms for performing physics selections and decay
chain reconstruction. This work includes the introduction of a new data model for
particles. Finally, Chapter 8 tackles the output bandwidth problem by scrutinizing
the biggest bandwidth contributor, the Topological Beauty Trigger. It aims to
inclusively select beauty decays based on kinematic and topological signatures
only. With a subsequent classification algorithm, only essential data from the
event is filtered to save bandwidth without sacrificing efficiency.

2 The Standard Model of Particle Physics

The Standard Model of particle physics (SM) describes interaction dynamics of
elementary particles as a quantized field theory and is the best tested and verified
particle physics theory to this day. It is capable of modelling three out of the four
fundamental types of interactions, the electromagnetic, the strong and the weak
force. Gravity remains unaccounted for.

The collection of elementary particles within the SM comprise 12 fermions of half
integer spin and 5 bosons of integer spin. We will henceforth imply the existence of
an antiparticle for each mentioned particle, exhibiting the same mass but inverted
quantum numbers.

Six of the fermions are called quarks, which have third integer electric charge.
There are up-type quarks (up, charm, top) which have a charge of +2/3 and
down-type (down, strange, bottom) quarks of charge —1/3. Quarks also carry
another quantum number called color.

The other six fermions are called leptons, which are all colorless. Three of them
(electron, muon, tau) have an electric charge of —1. The other three are called
neutrinos and they are electrically neutral. All fermionic elementary particles
have a common spin of 1/2.

The bosons act as mediator for the fundamental interactions. Photons are ex-
changed during electromagnetic interaction, which couples to the electric charge.
Quarks and charged leptons can interact electromagnetically.

The W+ and Z° bosons propagate the weak interaction, which couples to a
quantum number called weak isospin. Only left-chiral particles and right-chiral an-
tiparticles exhibit weak isospin. Chirality is an abstract concept of transformation
behavior that has a visual analogy for massless particles: Left-chiral means that
spin and momentum point in opposite directions, while for right-chiral particles
they point to the same direction. This analogy cannot be made for massive
particles, as their momentum depends on the observer frame. All particles can
interact under the weak force, given ”correct” chirality. Neutrinos, in fact, only
interact weakly.

The strong force couples to color and is mediated by eight different gluon states,
which also carry color themselves. There are three colors and three anti-colors.
All colors together make, in analogy to the additive color system, a colorless
(or white) state, and so does a color with its anti-color. Because only colorless
systems are stable in nature, we do not find quarks by themselves, but in bound
states called hadrons. The most common hadrons are qq states called Mesons,
and gqq states called baryons, but in principle all integer linear combinations of qq
and gqq are possible. qqqq states called tetraquarks and gqqqq called pentaquarks
have already been found in recent years |12, |13].

The Higgs boson, found in 2012 |2, |3], is the only spin 0 elementary particle. It orig-
inates the Higgs field, giving mass to all particles. A visual summary of elemental
particles and the interactions they take part in can be seen in Figure 2.1.

While the SM gives very accurate predictions and has been tested successfully over
decades, there are several phenomena besides gravity and general relativity that
it fails to explain. The SM predict massless neutrinos, but neutrino oscillation
implying a finite mass has been found around 2000 [14} 15| [16]. The Nobel
Prize was awarded for these findings in 2015. The observable matter-antimatter
asymmetry [9, 10] or the existence of dark matter [8] in our universe are only a
few examples of other unexplainable phenomena in the SM framework. Therefore,
we must conclude that the SM is an incomplete model of the universe and must
be overhauled or at least extended.

2 The Standard Model of Particle Physics

st nd rd electro-weak

1 2 3 generation symmetry breaking
everyday matter exotic matter force particles (mass giving)

s Vs aVa N —

~
]
charge g
color charge (r,g or b) 2
mass (eV) g
spin o
o g
a
: i
& g
]
g
o
&) 8
/3§
&
]
g
=
T
g
@ g
g J ;
-
- 5
=
8
:
v
S
12 fermions (+12 anti-matter) 5 boSONS (+1 opposite charged W)

Figure 2.1: Elementary particles described within the Standard Model. Charge
is shown in green in the upper right corner of each box, color in red and spin
in yellow at the lower right. A particles mass in eV is given at the left upper
part of the respective block. Modified from .

2.1 Obtaining a solution to unsolved problems with
LHCb

With the help of collision experiments, physicists hope to find hints for physics
beyond the Standard Model (BSM physics) that help to develop a model fit-
ting these still unexplainable phenomena. The focus of this thesis, the LHCb
experiment, is one of these collision experiments. By colliding protons with high
energy and luminosity from the LHC, an unprecedented amount of beauty and
charm decays are recorded with the LHCb experiment. The current LHCb dataset
comprises about O(10*') beauty and O(10'?) charm decays [18, [19] [20]. With

2.1 Obtaining a solution to unsolved problems with LHCb

data sets of such statistical power particle and decay properties can be measured
very precisely. Measuring SM parameters helps in two ways. Deviations from
predicted values of these properties aid the invention of extensions to the SM and
new models. A measurement matching the prediction helps with the constraint
and exclusion of other models.

Research within the LHCD collaboration focuses on different observable parameters.
A prominent class of observables are those describing asymmetries under Charge-
and Parity (CP) transformation. This is referred to as CP violation (CPV). CPV
is predicted within the SM to a small degree, but additional sources of CPV are
required to explain the matter-antimatter asymmetry [21]. Precise measurements
of CP observables are thus very valuable in the pursuit of explanations to the
problem. BY — ¢¢ and B® — D™D~ are two examples of decays which are
sensitive to parameters describing CP violation. CP measurements on these decays
are currently limited by statistical power of the analyzed dataset [22] 23].

A second interesting field of research in LHCD are searches for violation of charged
lepton flavor universality. The SM predicts a certain symmetry between lepton
flavors. This implies that, up to differences induced by the lepton mass differences,
branching fractions of decays involving charged leptons should not depend on the
lepton flavor. However, LHCb published measurements that deviate from the SM
with 2-3 standard deviations significance |24} 25, |26, [27]. The uncertainties on
measurements of lepton flavor universality depend on the statistical powers of
datasets recording decays like B — K*0%¢te~ B0 — K®O0y+,~ BY — D1ty
and BY — Dt

To decrease statistical uncertainties of all of these measurements, more data is
needed. During the current shutdown of the LHC, the experiment is upgraded to
be able to record new data at higher rates. The current LHCb dataset corresponds
to an integrated luminosity of 9/fb. With the upgraded detector 50/fb shall be
recorded within the next decade. The new data will be used to perform even more
precise measurements and thus strengthen or negate recently found deviations
and constrain theoretical models even further.

3 The LHCb Detector at the LHC

Hints for physics beyond the Standard Model might be found in various niches of
phase space and it might be very hard to detect or very rare. The physicists’ best
guesses have traditionally been to inspect particle decays at higher and higher
energies to uncover new states, new particles and potentially new physics. Over the
course of many decades, they have therefore built more and more powerful particle
colliders that operate at the highest possible energy. This chapter introduces the
Large Hadron Collider and the LHCb experiment, located at the CERN research
facility. Note that the LHCb detector will be described in its envisioned state
after the current upgrade.

3.1 The Large Hadron Collider

The result of striving towards higher energies ultimately led to the creation of the
Large Hadron Collider (LHC) [1], the largest ever built machine. It is a circular
hadron collider operated by the European Organization for Nuclear Research
(CERN) in Geneva, Switzerland. It measures 26.7 km in circumference, resides in
a tunnel that is 50-175 m underground and accelerates protons and heavy ions to
13TeV and 5 TeV per nucleon, respectively. With such large energies, the LHC
is able to create a unique environment for particle decays. While these and even
higher energies can also be observed from cosmic particles, a particle collider has
the advantage of a controlled environment. 10'! protons per bunch and 40 million
bunch crossing per second generated by two oppositely accelerated beams yield an
instantaneous luminosity of 1 x 103*/(cm?s). This results in an unprecedented
amount of statistics to be gathered by detectors around the LHC in a very stable
environment.

In order to bring the particle beams to such high energies, smaller particle
accelerators are employed as "pre-accelerators” that feed into the LHC. From
Run 3 onwards, protons extracted from the ionization of hydrogen are first fed
into the Linear Accelerator 4 (LINAC4) and then into the first circular collider,

3.1 The Large Hadron Collider

the BOOSTER with a circumference of 157 m, where they reach a maximum
energy of 2 GeV. Before the second long shutdown, the first acceleration process
was taken care of by LINAC2, which was retired after over 40 years of operation.
Larger circular colliders follow in the acceleration chain, starting with the Proton
Synchrotron (PS) with a circumference of 628 m and a maximum operating energy
of 25 GeV. The last pre-accelerator that protons go through before eventually
merging into the LHC is the Super Proton Synchrotron (SPS) with a 7km
circumference, where they are accelerated to about 450 GeV. The full chain of
acceleration and eventual collision is displayed in Figure |3.1.

There are four major experiments at the four distinct interaction points around the
LHC perimeter, ATLAS [29], CMS [30], ALICE [30] and LHCb [31]. ATLAS and
CMS are torroidal general purpose detectors that cover spacial angles of almost
4. They were the first experiments to observe the Higgs boson and currently
focus on precision measurements of Higgs decays and top quark physics.
Researchers in the ALICE collaboration specialize on studying extremely hot
quark-gluon plasma created by heavy ion collisions to better understand conditions
during the big bang and in the very early universe.

The work presented in this thesis is about the fourth detector at the LHC: The
Large Hadron Collider beauty (LHCb) experiment.

3 The LHCD Detector at the LHC

LHC

canclcrail Nor‘th Area

ALICE

LHCDB

SPS
i /\‘iuvlﬂos
ATLAS CNCS
. T80 Gran Sasso
I
AD
ol 999 (152 m)|
T2 - BOOSTER
1972 (157
5P East Area

W wem D
2001

LINAC 2 CT3

neutrons =

Leir
LINAES 2005 (78 m)
lons
proton) » ion » neutrons » P (antiproton) —— proton/antiproton conversion » neutrinos » electron

LHC Large Hadron Collider SPS Super Proton Synchrotron PS Proton Synchrotron

AD Antiproton Decelerator CTF=3 Clic Test Facility CNGS Cern Neutrinos to Gran Sasso 1SOLDE Isotope Separator OnLine DEvice
LEIR Low Energylon Ring LINAC LINear ACcelerator n-ToF Neutrons Time Of Flight

Figure 3.1: The collider complex and the experiments at CERN before
LS 2. Protons are extracted from a hydrogen bottle and are accelerated by the
LINear ACcelerator 2 (LINAC2). They are fed into the BOOSTER, where they
reach an energy of 1.4 GeV. The next stop is the Proton Synchrotron (PS),
followed by the Super Proton Synchrotron (SPS), from where they are injected
into the LHC with an energy of 450 GeV. The major changes for Run 3 include
the replacement of LINAC2 by LINAC4 and the increase in the BOOSTER
energy from 1.4 GeV to 2GeV .

10

3.2 The LHCb detector

3.2 The LHCb detector

The LHCb detector weights about 5600t and is over 20m, long. It is a one
arm forward spectrometer. Unlike the other experiments it does not cover the
full spacial angle, but only an interval from 10 mrad to 250 mrad vertically and
from 10 mrad to 300 mrad horizontally. In high energy physics, spacial angles are
more often displayed in units of pseudorapidity . The LHCb angular coverage
corresponds to a range of 2 < n < 5, with n = —log(tan #/2). One usually finds
asymmetric detectors where collisions happen asymmetrically as in fixed target
experiments. However, LHCD specializes in precision measurements on beauty
and charm decays to study CP violation and rare processes. The motivation for
a forward spectrometer can be seen in the angular distribution of bb production
in a LHC collision in Figure 3.2. Although LHCb covers only part of the 47
spacial angle, it is able to capture about 24 % of all bb pairs. The reason for this
distribution is a high Lorentz boost in beam axis direction for light particles.
Although both hadron bunches participating in the crossing have a symmetric
momentum on average, the actual collision happens on parton level. Partons
within the hadron can have a quite broad relative momentum distribution which
results in a local momentum asymmetry and therefore a boost of all particles
emerging from the collision. As the LHC deals with energies in the TeV scale
and b quarks have a mass in the GeV region, relatively small parton momentum
asymmetries cause a huge boost for the bb pair of interest.

The detector started to take data in 2010. It remained mostly unchanged until
the finalization of Run 2 of the LHC in 2018. During that time, LHCb gathered
data corresponding to a total of 9/fb integrated luminosity, based on which more
than 500 papers have already been published. LHCb operated at an instanta-
neous luminosity of 2 —4 - 1032 /(cm?s), beneath the nominal LHC instantaneous
luminosity, to lower the detector occupancy and minimize radiation damage on
the detector components.

To be able to gather data at a higher rate, the LHCb detector is currently being
upgraded to be able to take data at five times increased instantaneous luminosity.
The hardware trigger preceding readout is removed to achieve greater flexibility
and efficiency. Chapter |4 describes the reasons, the implications and the challenges
associated with the upgrade in greater detail, specifically focussing on the trigger.
To cope with the increased detector occupancy, the upgrade comprises multiple
changes in the detector hardware that are outlined throughout this chapter. The

11

3 The LHCD Detector at the LHC

LHCb MC

Vs =14 TeV

0, [rad] ™2

T 0, [rad]

Figure 3.2: Angular distribution of bb pair production in proton collisions at
a center of mass energy of 14 TeV . The region highlighted in red is the
angular area covered by LHCb.

detector is described as is envisioned and implemented for the beginning of Run 3
of the LHC.

A visual illustration of the detector layout is displayed in Figure Note that,
although it will not be explicitly mentioned for every subdetector, the entire
readout electronics structure is being replaced to meet the challenges of trigger-
less readout. Now follows a description of the subdetectors that LHCb comprises
as of Run 3. Detectors are classified as tracking and particle identification systems.
The conventional LHCb cartesian coordinate system is used: The z-axis extends
along the beam, the z-axis horizontally and the y-axis vertically with respect to
ground level.

3.2.1 The tracking system

The purpose of the tracking system is spacial particle trajectory reconstruction and
momentum estimation. Particles traverse tracking stations and leave evidence of
their traversal through material interaction. On a high level it could be interpreted
as a high frequency camera system that captures the interactions and resulting

12

3.2 The LHCb detector

Magneto—/ -
Sc1F1 K
RICH 2¢ ECAL HCAL MUON

Figure 3.3: Schematic representation of the LHCb detector from the side.
From left to right: Vertex Locator (VELO) where the pp interaction happens,
Ring Imaging Cherenkov detector RICH1, Upstream Tracker (UT), Magnet,
SciFi Tracking stations, RICH2, electromagnetic and hadronic calorimeter
(ECAL/HCAL), and muon stations .

final states as closely as possible.

The LHCD tracking system consists of the Vertex Locator (VELO), the Upstream
Tracker (UT), a big magnet and a completely new detector, the Scintillating Fiber
Tracker (SciF1i).

The Vertex Locator

The silicon VErtex LOcator (VELO) is LHCb’s highest accuracy tracking
device. It measures a bit over 1 m in length, surrounds the interaction point and
comes as close as 5.1 mm to the beam line. The beam pipe is removed to reduce
material interaction before the first measurement. Only a very thin aluminum
foil surrounding the beam protects the 26 VELO stations from electromagnetic
induction. Each station consists of two L shaped modules which can be retracted
during unstable beam conditions to avoid serious damage. The state in which the
modules are retracted is called "open”, as opposed to the default "closed VELO”
state. The VELO hosts roughly 40 million pixels that yield excellent impact
parameter resolutions in the 10 pm scale. A scheme of the VELO detector modules
together with the LHCb angular acceptance can be seen in Figure [3.4. Notably,

13

3 The LHCD Detector at the LHC

the limited number of VELO modules have been placed strategically to further
optimize impact parameter resolution and to assure that particle trajectories
within the LHCDb acceptance traverse at least 4 modules.

Figure 3.4: Alignment of the VELO stations with respect to the LHCb
acceptance (yellow area) ||

The Upstream Tracker

The Upstream Tracker (UT) gets its name from the fact that particles traverse
this tracking station just before they enter the magnet. Silicon microstrips of
varying granularity based on average detector occupancy make up the four planes
of this detector. The region close to the beam pipe has significantly higher
occupancy, as most of the particles have a very high boost in z direction and thus
a small pseudorapidity. A outline of the UT planes can be seen in Figure [3.5|
The finest microstrips are placed just around the beam pipe and the coarsest on
the outside. A particle-microstrip interaction yields one dimensional information,
in the UT case an X position as the microstrips extend in Y direction. The two
inner detector planes are therefore tilted with respect to the outer ones by an
angle of + 5° to allow for Y position information by combining information from

14

3.2 The LHCDH detector

two interactions. This plane configuration is optimized for momentum estimation
of particle trajectories.

1719 mm

| | UTbX y

UTbV Z
X

(2]

o

(o]

3

3
1338 mm

1528 mm

Figure 3.5: The Upstream Tracker planes and their geometrical properties .

The magnet

A big dipole magnet is placed directly after the UT. It is capable of producing
an integrated magnetic field of 4 T m. Charged particles traversing the field are
bent according to the Lorentz force. A calculation of curvature radius enables
a momentum estimation as precise as about 0.5 % relative uncertainty when
taking into account all trajectory position information available within the LHCb
detector. The main magnetic field component of the magnet is in y direction,
which results in particles being bent mostly along the x direction. As oppositely
charged particles mostly end up in different regions of the detector, the magnetic
field is invertible to be able to account for detection asymmetries.

The SciFi tracker

The Scintillating Fiber Tracker (SciF1i) is the last tracker in the particle stream. It
is placed behind the magnet to enable said momentum estimation. The placement
of the SciFi detector relative to the magnet can be seen in Figure 3.6, As its
name suggests, the active detection units are scintillating fibers which extend

15

3 The LHCD Detector at the LHC

mostly along the y axis. Charged particles excite molecules in the fibers, causing
a photon emission that can be detected by SIPMs at the upper and lower end
of the detector modules. In total, over 10 000 km of fiber are being used to build
the SciFi detector. When looking closely at Figure 3.6, one can see that there
are three SciFi stations with four layers each. The middle layers of each station
are tilted by 5° for the same reasons as in the UT. This configuration achieves a
spacial resolution of under 100 pm in x, which is crucial for momentum resolution
as the magnet bends trajectories mostly in this direction.

=

Figure 3.6: The LHCDb SciFi tracker between the magnet and the RICH2

detector .

Track types in LHCb reconstruction

Tracks reconstructed in the LHCb detector are categorized by where they left hits.
Long tracks are the most precisely reconstructed ones as they leave hits in all
tracking detectors. Upstream tracks go out of LHCb acceptance before reaching
the SciFi detector. Downstream tracks which originate from longer lived particles
like K have no hits in the VELO. Unlike the first three categories, T tracks and
VELO tracks are rarely used in later analysis as these are only visible in one of
the detectors and thus miss crucial information.

16

3.2 The LHCb detector

Upstream track

T1 T2 T3
uT
VELO Long track
IIIIK
VELO track Downstream track
T track

Figure 3.7: Track types in LHCDb reconstruction.

3.2.2 The particle identification system

The particle identification (PID) system at LHCb consists of two Ring Imaging
CHerenkov (RICH) detectors, two calorimeters and four muon stations at the very
end. The combined information in these detectors yield particle hypotheses that
are crucial for decay reconstruction. Within the scope of LHCb, the considered
final states for the PID system to distinguish are protons, kaons, pions, electrons
and muons.

The Ring Imaging Cherenkov Detectors

The two RICH detectors at LHCb are placed up- and downstream of the magnet,
respectively. Their positions can be seen in Figure [3.3l If particles traverse a
medium (non-vacuum) faster than light, they emit Cherenkov radiation at an
opening angle

cosf = i, (3.1)

nv
with n being the material’s refractive index and v being the particle’s velocity.
With help of a highly precise mirror system the emitted Cerenkov light cones
are captured and projected onto a photo detector screen to form distinct rings.
The radius of these rings gives direct information about the particles velocity.

17

3 The LHCD Detector at the LHC

Combined with momentum information from the tracking stations, a mass esti-
mation can be calculated to form a particle hypothesis. The RICH detectors are
especially effective in classifying kaons versus pions.

Practically, LHCb produces particles over a momentum range of about two orders
of magnitude. After the upgrade, RICH1 will cover particles with momenta up to
40 GeV [36] at the full LHCb acceptance angle. Higher momentum trajectories
can be effectively classified with the second RICH detector placed further down-
stream. As high momentum tracks mostly exhibit a small pseudorapidity, RICH2
only covers an angle of about 120 mrad.

The RICH detectors employ two different media to work on different momentum
ranges: C,F;0 and C'F, gas. In Figure 3.8/ the opening angle dependent on the
particle momentum is displayed for Pions, Protons and Kaons passing through.

60
_______ RICH1
50 T T
_“Pion _~Kaon,_Proton
540
o
E RICH2
@ 30
Kaon / Proton
20
10 10! 107

Momentum [MeV/c]

Figure 3.8: Opening angle of Cherenkov radiation emittance for w, K and p
in LHCb.

Electromagnetic and hadronic calorimeters

Calorimeter systems gather PID information by observing energy depositions of
incoming particles. LHCb’s calorimeter system consists of an electromagnetic
(ECAL) and a hadronic calorimeter (HCAL) [36]. Both are made up of alternating
layers of scintillators and absorber material. The particle showers resulting from
interaction with the absorbers cause photon emittance in the scintillating material.

18

3.2 The LHCb detector

The intensity of the emitted radiation give information about the amount of
energy deposited. Photons and electrons shower when reaching the lead absorber
present in the ECAL, while hadrons mostly pass through to be stopped at the
iron absorber plates in the HCAL.

LHCDb’s calorimeter system does not change much during for Run3. Only the
readout electronics are replaced to cope with the increased readout frequency, as
is done in all the other subdetectors.

The muon stations

The rear end of LHCb consists of four muon stations that serve the purpose
of distinguishing muon tracks from others, and they do so extremely efficiently.
Previous LHCD results have shown that muon separation is so efficient that beauty
decays as rare as one in 10'! can be extracted from the huge amount of produced
data [37].

Muons tracks are the ones capable of traversing the full detector, any other
particle showers in or before the HCAL. The stations are separated by 80 cm thick
iron plates to make sure that no hadron, even if it managed to pass the HCAL,
traverses more than one station. Notably, a fifth station located before the ECAL
was removed for the start of Run 3.

To summarize LHCb’s PID system, Figure 3.9 shows how different final state
particles interact with the detector and how one can unambiguously classify
particle trajectories based on their traversal.

3.2.3 An overview over the LHCb software

The LHCDb software framework is a versatile amalgamation of multiple packages
that work together, but serve different purposes and different user groups. The
main programming languages are C++ [39] and Python [40].

A high level overview is given here:

1. GAUDI [41] is the base for almost all other packages in LHCb. It imple-
ments an event loop and configurable algorithm and service classes that
may be tweaked after compilation via python. Notably, GAUDI is not only
used within LHCb, but also by ATLAS and other experiments.

19

3 The LHCbB Detector at the LHC

20

Muon stations

electron

photon
charged hadron
neutral hadron__ _
high pr muon

Figure 3.9: Shower pattern of different final states propagating through the
LHCDb PID system. Modified from .

. LHCb is the first LHCb specific software package. It implements

specific reconstruction classes, the trajectory and the particle itself and
many lower level helpers.

. Online is responsible for acquisition of data, managing the event

building, data transfer to the HLT farm and monitoring of the experiment.

. Rec is the reconstruction package, implementing most of the trigger

and offline reconstruction and particle identification algorithms.

. Brunel is a pure python package, implementing tests and runnable

reconstruction sequences on top of Rec, LHCb and GAUDI, acting on the
trajectory implementation.

. Phys implements selection and combination algorithms acting on

particles.

. Moore is a pure python package that configures the entire trigger applica-

tion. This package is run in the HLT farm.

. DaVinci is used to configure offline reconstruction and selection jobs.

It is mostly used as first input to further analysis steps outside the core
framework.

3.3 LHCD beauty and charm decay topology

9. Gauss |48, based on GAUDI, is used to generate hadron interaction simula-
tions via PYTHIA [49] and EVTGEN [50] to mimick actual LHC interactions
at LHCD as precisely as possible.

10. Boole [51] digitizes the output of Gauss. Particles resulting from the
simulated interactions are propagated through a detailed description of the
detector, generating simulated detector response to be able to compare real
data with. Notably, several other experiments choose to unfold the data
rather than implementing a detector response.

11. Allen [52] is a new software package to execute HLT1 on GPU architectures
rather than CPUs. It will be used as baseline HLT1 implementation from
Run 3 onwards. However, it will not be discussed further here.

3.3 LHCb beauty and charm decay topology

Now that the detector has been outlined, this section discusses what the kind of
physical signatures we are interested in. LHCb specializes on beauty and charm
decays. Due to high lifetimes of most B and C hadrons, they fly mm-cm distances
within the detector before decaying. As an example, Figure|3.10 shows the topology
of the decay B? — Df(— KK 7~)h" within the LHCb detector. Final state
particles are reconstructed from hits in the tracking stations and the VELO.
Trajectories from most reconstructed tracks in a typical LHCb event are prompt,
meaning that they extrapolate back to a primary vertex very precisely. However,
final states from beauty and charm decay chains do not. The displacement from
primary vertices thus provides a very clean and fast selection for these decays. To
go further, a selection algorithm can base its decision on whether two or more
tracks extrapolate back to a common point, the decay vertex of the beauty and
charm hadrons. Most often, the reconstructed vertex is also displaced from the
beam pipe. This represents another very distinctive topological feature of these
kinds of decays. Consider for example the selection for the displayed decay. A
trigger selection designed to select this decay starts by selecting kaons and pions
from all final state particles with a PID requirement and displacement cut. The
first task is the reconstruction of the DY vertex by combining two kaons and
one pion. A D} candidate is created with a momentum corresponding to the
three body combination it was reconstructed from. This D candidate is then
combined with hadron final state particles to form BY candidate decay vertices.

21

3 The LHCD Detector at the LHC

If any of these vertices pass a set of requirements like vertex displacement, we
assume to have successfully reconstructed a B? — D (— KTK 7~)h" decay
and the event can be persisted.

Primary Vertex

Figure 3.10: Topology of the exemplary decay BY — Di(— K*K 7)h*
within the LHCD detector [53]

Displaced signatures are so distinctive, that several beauty decays can be selected
solely based on kinematic and topological features, making the selection inclusive
over many decays. The trigger selection that attempts inclusive selections is
presented in detail in Chapter 8. As charm hadrons exhibit a 20 times higher
production rate 20} |18], a similar selection for inclusive charm is impossible.

The next chapter will cover the LHCD trigger system to select these signatures in
detail, considering changes and challenges that the detector upgrade poses for the
real time data processing workflow on the software side.

22

4 The LHCb Upgrade Trigger

The purpose of the LHCb detector is to capture decays as result of hadron-hadron
collisions generated by the LHC and as precisely as possible. As described in Chap-
ter 3, a tracking system is employed to reconstruct particle decays geometrically
and give information about momentum. A particle identification system gathers
information about the mass and the energy of final state particles. Combining
this information, one is able to reconstruct entire decay chains up to the primary
hadron interaction and gain deeper understanding of the basic interactions that
form our universe.

However, the amount of data that 30 million 14 TeV proton bunch interactions
per second yield in the LHCb detector is not to be underestimated. The detector
readout has to cope with a bandwidth of 4 TB/s. Persisting this data over the
course of one year of LHC run time would amount to a size of over 100 EB.
Storing this much information is simply impossible given the resources available.
It is also unnecessary, as the rate for events that physicists at LHCb consider
interesting is below percent level of the incoming rate. We must therefore resort to
distilling down these data substantially via a system called the trigger. A trigger
uses information extracted from the subdetectors to make an educated guess on
whether or not to discard a given event.

4.1 Why upgrade to a full software trigger?

Up to the end of Run2 of the LHC, LHCb’s first trigger selection stage was a
hardware trigger, LO. The logic of this trigger stage was very simple and thus
quickly evaluable, which meant that it was well suited as an initial filter step. L0
used minimum transverse momentum and minimum energy deposition require-
ments as selection criteria to reduce the event rate to 1 MHz. Two subsequent
software-based High Level Trigger stages (HLT1, HLT2) were able to reconstruct

23

4 The LHCb Upgrade Trigger

parts of the event to make a more sophisticated decision with a better signal-
to-noise ratio. Data corresponding to 9/fb of integrated luminosity were taken
between 2010 and 2018.

However, the precision measurements performed by the LHCb researchers require
a large amount of beauty and charm statistics. The statistical uncertainty scales
of these measurements scales with the inverse root of the total amount of beauty
and charm data. The upgraded LHCb will therefore ramp up its instantaneous
luminosity by a factor of five to 2 x 10%3/(cm?s) to significantly increase the
available dataset. The new detector has to embrace about five pp collisions per
bunch crossing, a factor five increase in detector occupancy and a much higher
stress on the readout and computing systems. The LHCb collaboration aims
to collect a dataset of 50/fb integrated luminosity within the next 10 years of
operation.

The initial design for the Upgrade LHCD trigger targeted an instantaneous lumi-
nosity of 1 x 10%3/(cm?s) and involved a new hardware trigger matching the new
readout system, called Low Level Trigger (LLT). It would select similarly simple
signatures as the L0 did in previous data taking periods. After the publication of
the technical design report (TDR) for the upgrade framework[54], the operational
luminosity was decided to be 2 x 103/(cm?s). Three designs were studied to
determine the feasibility of a trigger working at this luminosity level. The LLT
followed by an HLT, a pure software trigger, or a software trigger assisted by
FPGAs to offload certain parts of the tracking sequence to. The FPGA solution
was discarded as its benefits did not outweigh the additional risk implied when
adding complexity to the system.

The LLT solution was rejected because it introduces large inefficiencies in hadronic
beauty and charm channels when scaled up to the operational luminosity. Figure
4.1/ shows the L0 yield of the B meson decays introduced in Chapter 2.1 as function
of luminosity when assuming a constant output event rate. The LLT solution
would yield similar efficiencies. The selections performed in L0 and the LLT are
not discriminative enough to utilize the increased luminosity. After the feasibility
of the software solution was reviewed extensively [55], the LHCb collaboration
decided to implement this solution [11]. The full software trigger has the additional
advantage that it is much more versatile and can adapt to change in conditions
faster and easier than a hardware trigger could. The LLT could be implemented
in software as a backup solution.

Efficiency gains due to hardware trigger removal can be showcased with Figure

24

4.1 Why upgrade to a full software trigger?

4.2 Tt shows efficiencies for a selection of important channels selected by the
most important beauty trigger, the topological trigger, or Topo for short. The
Topo and the decay channels presented in the plots will be outlined in detail in
Chapter 8. The red lines correspond to efficiencies in the Run 1 implementation of
the Topo trigger. The blue lines correspond to different output rate scenarios for
the Topo. Note that these efficiencies are not directly comparable to efficiencies
presented in Chapter 8, because the former are calculated with respect to offline
selections for analyses. The gains in efficiency at the 20 and 50 Hz rate scenarios
can mainly be attributed to the removal of L0 selections. While already significant
in leptonic channels, the efficiency increase in purely hadronic channels is even
more remarkable. This is because hadronic channels are mainly selected by the
L0 hadron trigger selection, which is the least efficient L0 trigger. A green line
representing twice the Run 1 efficiency is integrated into the plots for better
comparison. These plots show that it is of major importance to be able to run a
software trigger without the LLT in production. Note how the B® — K*u*pu~
channel does not gain significantly with respect to Run 1, because the di-muon
signature is mainly triggered by the already highly efficient LO muon trigger.

However, removing LO/LLT implies that the HLT system not only needs to cope
with a higher event occupancy, but also with a factor 30 higher input rate and
the resulting output bandwidth. This Chapter introduces the trigger system in
detail, its workflow and the challenges that LHCb meets with the removal of the
hardware trigger.

25

4 The LHCb Upgrade Trigger

Efficiency

Efficiency

26

Run 2 luminosity

N
ON O W

FITTTTTTTTTTTT [TTITT [T ITTTTTT

nn

eld (Arb.unit)

—
.

.

rg?ger yi

T
o o,

| T N T A A TN O A I T T O
1 2 3 - 5
Luminosity (x10%)

Figure 4.1: L0 yield for different B meson decays assuming a constant output

rate .

. =0 * - -
B’ - D [nD [K*T]lutv, B’ > K[K'Tle'e B! - O[K'’KI[K'K]
5 k>
0.8 ,_.-'J i 208 3 2 08 o B
= =
0.6F & E 0.6) 3 0.6 b
0.4 B 0.4F 3 I T e 4
.
0.2 LHCb b 0.2f LHCb E 0.2F~ L HED
Simulation Simulation Simulation
% —"20 20 60 80 100 %20 20 60 80 100 b 20 40 60 80 100
TOPO Rate [kHz] TOPO Rate [kHz] TOPO Rate [kHz]
B’ - KKl B’ - DK DK] B’ - D [nD KT {m v, v,
3] o . — &]
0.8 208 g 08
= =
0.6 3 0.6 [. 0.6, 3
0.2 LHCb E 0.2 LHCb - 0.2k IJ- LHCb .
Simulation [_J" Simulation _,—' Simulation
%2020 60 80 100 %2030 60 80 100 %20 20 60 80 100
TOPO Rate [kHz] TOPO Rate [kHz] TOPO Rate [kHz]

Figure 4.2: Efficiencies of the Topo trigger implementation for the upgrade as
of 2014, for several beauty decay channels as function of the output bandwidth.
The Run 1 efficiencies are shown as red line. For purely hadronic channels, the
green line corresponds to twice the Run 1 efficiency. |\

4.2 Upgrade trigger workflow

4.2 Upgrade trigger workflow

The planned upgrade trigger workflow can be seen in Figure 4.3 Before a trigger
can run, the detector is read out and the raw event is assembled from the different
subdetectors. HLT1 takes the raw event in small batches and processes in real
time. It sends a first loose selection based on a partially reconstructed event to a
disk buffer storage. HLT2 asynchronously reads from this storage, reconstructs
the complete event and finally decides about the permanent persistence of a given

Inelastic Event HLT 1
30MHz Partial Event IMHz
Rate .
Reconstruction
Disk Storage 2-10 GB/

Figure 4.3: Upgrade trigger data flow. HLT1 has to work synchronously with

event.

Disk Buffer
Alignment &
Calibration

1MHz

Full Event
Reconstruction

the LHC, while a disk buffer enables an asynchronously running HLT2 [58].

4.2.1 The first High Level Trigger: HLT1

The goal of HLT'1 is the first educated event selection based on information from a
partially reconstructed event in real time. The selection is tuned to aim for a factor
thirty rate reduction, from 30 MHz incoming event rate to 1 MHz output[11].

Bunch crossings at the LHC have a highly varying complexity. This variance
comes from the fluctuating number of interactions per crossing and the high range
of possible energies with which the partons collide. Events that have a large
multiplicity and a high occupancy in the LHCb detector typically yield lower
reconstruction efficiencies and worse signal purities. A global event cut (GEC) is
therefore employed as the first step in the trigger. It is designed discard busiest
10 % of all events. The sum of Upstream and SciFi multiplicities is found to be a
good indicator for event complexity [11].

The HLT1 reconstruction starts by reconstructing tracks with hit information
from the VELO. The VELO is far away from the magnetic field, so only straight

27

4 The LHCb Upgrade Trigger

lines need to be fitted. The track candidates help to reduce the multiplicity in
later tracking stages. Based on these candidates and some information of the
current beam line position primary vertices are reconstructed by clustering tracks
that have been extrapolated to the beam line. The next HLT'1 reconstruction step
matches hits in the upstream tracker to a velo track extrapolation through the
first part of the detector. A slightly curved line is fit to the hits in the UT and the
first momentum estimate is extracted from that curvature. Because of the small
magnitude of the magnetic field before and in the UT, the momentum estimate has
relative uncertainties of about 15 %. Taking into account the magnetic field model
and the first momentum estimate, upstream tracks are further extrapolated into
the SciF'i region, where the track candidates are matched to SciFi hits. This pushes
the momentum estimate to a relative uncertainty of about 0.5 %. A Kalman filter
is applied to fit a velo track candidate, taking into account a momentum estimate
from the other tracking stations. This decreases the uncertainty of velo track
parameters. A full Kalman filter application is too expensive for HLT1. These
steps conclude the HLT1 upfront reconstruction that serves as input to almost
every selection criterion applied in HLT1. An outline can be seen in Figure |4.4.

Velo tracking
Primary Vertex reconstruction Upstream tracking
Forward tracking

Selection criteria

Figure 4.4: A simplified scheme of the standard HLT1 data flow.

Selection criteria in the upgrade HLT1 are very similar to the ones employed
in previous data taking periods. We realize the application of these criteria in

28

4.2 Upgrade trigger workflow

so-called trigger or selection lines. A line defines the required reconstruction
steps and requirements on certain signatures in the event topology to form a
final decision. Bandwidth reduction by selections always happens per-event in
the first trigger stage. That means that, whenever any selection considers a
signature interesting, the full event information will be temporarily persisted into
the intermediate disk buffer.

Several lines require thresholds on simple properties of single tracks, others com-
bine tracks to vertices and select based on these. The most prominent single track
line is tuned empirically to select tracks that are likely to originate from a bottom
or charm decay and it involves requirements on transverse momentum, track fit
quality and a minimum displacement from reconstructed primary vertices. A more
sophisticated HLLT1 selection involves additional reconstruction, specifically the
combination of two tracks into a decay vertex candidate and a subsequent vertex
fit. This line can base its decision on not only track, but also vertex properties
like the vertex quality as result of the fit and the vertex displacement from the
beam line. It provides an even more discriminative selection of beauty and charm
decays.

LHCDb’s physics program is not only interested in displaced signatures however.
By requiring matching hits in muon chambers, we can select muonic trajectories
in HLT1 very purely even if they show no PV displacement. This opens up
possibilities like searches for dark photons [59] and also contributes significantly to
the efficiency of most selections involving any muonic final state, like BY — u*pu~.

4.2.2 The disk buffer, alignment and calibration

After events pass the first HLT stage with a rate of about 1 MHz, they reach an
intermediate persistence step within the disk buffer. The information gathered
and processed in HLT1 and stored in the disk buffer is used to perform a real time
alignment and calibration of the detector. Already in Run2 LHCb has operated a
real time alignment and calibration system to enable offline-quality reconstruction
in the trigger [60]. Examples of real time alignment are the adjustment of the beam
line position for a primary vertexing algorithm or the recalibration of the RICH
mirror system to maintain high reconstruction performance for the Cherenkov
cones.

29

4 The LHCb Upgrade Trigger

Most importantly, the disk buffer allows an effective relaxation of the real time
processing requirement to a, to some extent, asynchronous operation of the second
HLT stage. As we can store HLT1 reconstructed data for up to two weeks, HLT2
can be operated much more flexibly and efficiently based on current demands.
To understand why the existence of a disk buffer can lead to increased efficiency,
we must keep in mind that the LHC is not continuously running over the course
of a Run. One reason is the operational cycle of the LHC [61]. It takes at least
two hours to go from initial hydrogen ionization to stable beam conditions and
proton beams are held in the LHC for a maximum of about 12 hours. Practical
problems result in a higher ramp up and a lower stable beam time, resulting in
a stable beam time of less than 50% on average in Run2. Moreover, there are
machine development (MD) periods and technical stops (TS), in which the LHC
also does not run. A HLT2 running synchronously would idle whenever there is
no stable beam. With the disk buffer however, the work can be distributed over
time. Figure 4.5 shows the disk buffer usage in 2016. One can see how during the
shaded periods, the disk buffer got emptier as the data was processed by HLT2.
In conclusion, HLT2 could utilize processing time corresponding to roughly twice
the time in which stable beam conditions were present in the LHC.

100
LHCb trigger

MD
TS

(o2}
o

Disk usage [%0]
5

15 26 25 36 35 40 45
Week in 2016

Figure 4.5: LHCb disk buffer usage in % in 2016. The shaded areas mark
technical stops (T'S) and machine development (MD) [62].

30

4.2 Upgrade trigger workflow

4.2.3 The second HLT stage

As previously mentioned, HLT2 runs asynchronously to the LHC. It takes event
input from the disk buffer and aims to perform offline-quality reconstruction and
selections to bring incoming event rate of 1 MHz down to a bandwidth of 10 GB/s.
Offline quality reconstruction refers to the most precise calculations, taking
into account all calibrations and alignment, even though that might cost more
computing resources than simplified calculations in HLT1. HLT2 employs similar
reconstruction steps as HLT1 and more. Aside from a high precision trajectory
reconstruction, the PID system involving the RICH and both calorimeters helps
to form particle hypotheses and neutral particle candidates.

Like in HLT1, the output bandwidth in HLT2 is controlled by a set of trigger lines.
However, while HLT1 can use O(10) lines to perform the required bandwidth and
rate reduction, HLT2 aims to distill the residing data down by another order of
magnitude. This can hardly be achieved by the type of inclusive requirements
that HLT1 employs. The average type of HLT2 line therefore specializes to select
only a very specific decay structure efficiently, involving requirements on track and
vertex topologies as well as PID variables. Most trigger lines perform secondary
and tertiary vertexing to try to reconstruct the entire decay chain they want to
select, as outlined in 3.3 The main disadvantage of exclusive selections is the lack
of generalization. To satisfy research interests of all LHCb physicists, upgrade
HLT2 needs to account for a total of O(1000) trigger lines that need to make a
decision in every event. A union of all trigger line results will then decide over
the persistence of a given event. This concludes the high level description of the
LHCb trigger system.

4.2.4 Building blocks for trigger software

The framework for LHCD trigger applications defines principles for the workflow
that the HLT farm uses for online event processing. It is called GAUDI. As
base framework, it implements many generic components, the most important
of which will be outlined here. To be able to assemble many different trigger
selections with preceding reconstruction in a modular fashion, GAUDI implements
the basic building block for processing event data, the algorithm. A GAUDI
algorithm is essentially a configurable function with event data input. Every
piece of reconstruction or selection software is built upon this base. Algorithms
in GAUDI interact with a data store, the Transient Event Store (TES), for their

31

4 The LHCb Upgrade Trigger

inputs and outputs. This store has the lifetime of one event. All data that is
exchanged between algorithms during the event reconstruction resides in the TES.
This way, several algorithms can run on the output of another. GAUDI also defines
Services that handle operations which are independent of events, like algorithm
scheduling, detector alignment, process configuration or provision of metadata
like detector conditions.

Configurability and the build model

Although algorithms already represent fairly granular building blocks, the amount
of required configurability is often even finer grained, specifically in selection
algorithms. GAUDI algorithms therefore enable specific configurable parameters
to their implementation. While performance critical code in LHCb is written
in the low level language C++, (GAUDI exposes user defined parameters to the
outside which can be tuned dynamically via a python front end. Over the years
of GAUDI’s existence users have found more and more places, online and offline,
where configurability via python was desirable. Consequentially formed the current
GAuUDI workflow model:

At compilation time, representations of algorithms and services are exported into
a python environment. Algorithm and service developers control the configurable
parts of their code by exposing properties as class members to the respective
algorithm or service. These python representations may be overwritten or changed
at the users leisure in an options file. The parameters set in an options file are
then applied to the GAUDI algorithm whenever a configuration step is invoked.
Chapter |7/ introduces configuration that involves more than mere setting of
parameters to be able to achieve more versatile selection algorithms.

4.3 Computing challenges in the Upgrade HLT

This section presents the computing challenges that we face to produce a software
trigger system capable of processing 30 MHz of incoming event data and distilling
it down to an output rate of 10 GB/s in a signal preserving manner.

32

4.3 Computing challenges in the Upgrade HLT

4.3.1 Bandwidth requirements

Tuning the upgrade trigger towards the desired output bandwidth efficiently
presents a major challenge. The previously introduced concept of exclusive
selections alone does not satisfy the requirements. Up to now, the concepts of rate
and bandwidth have been used quite interchangeably. Rightfully so, assuming a
constant event size and per-event trigger decisions. However, HLT2 employs a
more fine-grained decision technique to help with bandwidth reduction, which is
the ultimately relevant merit. This kind of selective persistence already existed
in Run 2 but will gain much more relevance in the upgrade. The L0 removal is
estimated to cause a factor of two effective signal yield. Together with the fivefold
increase in instantaneous luminosity this combines to an effective tenfold signal
yield per unit time [63]. A factor three increase in event size with respect to Run 2
is estimated based on the average number of interactions per event and the ratio
of event size in a Run 2 signal event with respect to the average event size.

Selective persistence

In pre-upgrade HLT2, trigger line authors made a conceptual decision for the
persistence of events they deem interesting: Full stream or selective persistence
(SP). Whenever a trigger selection configured for full event persistence gives a
positive decision, all available information on the bunch crossing is recorded. If
on the other hand a line is configured for the SP, only a user-specified subset of
information is going to be persisted permanently. The common SP configuration
restricts persistence to information concerning the final state trajectories with
which an exclusive line built a viable beauty or charm candidate. In 2018, roughly
32% of all lines went through SP, reducing event size by about 50 %. In the
upgrade conditions, event size reduction is much more efficient due to the increased
number of interactions per event. In Ref. [63] the event size reduction for an SP
event in the upgrade trigger is estimated to be about a factor seven. To achieve
the bandwidth requirements of 10 GB/s in the upgrade baseline conditions, we
require about 70 % of all lines to persist selectively. A visualization of different
scenarios and their respective output bandwidth can be seen in figure 4.6.

A transition from full stream to selective persistence involves considerable effort
for every trigger line author. One needs to ensure a consistent, efficient and
bug-free selection and assert that relevant information for later analysis does
not get lost in the selective persistence step. There were several occurrences

33

4 The LHCb Upgrade Trigger

30

N
(%

N
o

=
v

Baseline
Run 3
model
10
Full
turbo

Output data volume (GB/s)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fraction of physics programme going to turbo

Figure 4.6: HLT2 output bandwidth in upgrade conditions depending on the
relative fraction of the physics program using selective persistence [63]

in previous runs where data analysts benefited from information that was not
directly related to the signal candidate. As correct reconstruction becomes more
important, the need for error-free software is more important than ever. A bug
in the momentum-correction due to bremsstrahlung made several electron data
unusable in 2016. This would have been correctable in full stream.

Chapter 8 describes possible bandwidth optimizations including selective persis-
tence for the topological B-trigger, a prominent and widely used inclusive trigger
line that takes up the biggest amount of the total bandwidth.

4.3.2 Throughput requirements

Until the end of Run 2 the software HLT successfully processed an event rate of
1 MHz as determined by the output rate of L0. As L0 is removed for Run 3, we
will observe a thirty-fold increase in incoming event rate into HLT1. The fivefold
increase in instantaneous luminosity further increases computational complexity at
least linearly. We therefore require an increase in processing power by two orders
of magnitude with respect to the Run2 HLT computing farm. The technical
design report for the upgrade trigger [11] laid out a detailed plan in 2014 on how
to meet the requirements. More efficient reconstruction algorithms to be used in
upgrade HLT1 had already been developed. A total cost estimate of 2.8 MCHF for

34

4.3 Computing challenges in the Upgrade HLT

the HLT processing farm was calculated under the assumption of a computational
power per price growth of 1.37 per year over ten years, as seen in Figure 4.7,

CPU performance growth

° 50.00 400 -
= -
= 1=
s g
L]
5 E
5 3750 300 >
3 g
- =
2 54
g 25.00 200 g =
S £z
= &
£ g

~ =
2 12,50 100 S
2 3
= = E
7] e =
= 0.00 0 z

20000 2011 22 213 214 2015 2006 2007 2018 2019
year
M Moore's law [l minimal growth expected growth [l #HLT instances

Figure 4.7: Expected CPU computational power growth per time [11].

To general disappointment, the annual growth in performance per price was vastly
overestimated. An updated annual growth rate of 1.1 has been calculated in 2017
in [64].

All considerations taken together, the HLT1 stage was a factor six too slow to
be operating in 2021 with a budget of 2.8 MCHF. The HLT2 stage was not
thoroughly tested in these calculations, but it was assumed to be factors away
from its goal.

The task is thus to achieve a factor six in computational efficiency on the given
resources via more efficient reconstruction implementations and a low-overhead
framework.

The low overhead framework gets much more important when we consider the task
that HLT2 has to achieve. In Run 2, there were about 500 HLT?2 lines acting on
each event at a rate of about 100 kHz. The upgrade HLT2 on the other hand will
have to manage about O(1000) trigger lines at 1 MHz input rate. The increased
number of lines is a result of the higher degree of required exclusivity to fit into
the bandwidth limit. Another contributing factor is the broader physics program
that LHCD physicists envision for the higher data rate, making LHCb almost a
general purpose detector. Running O(1000) lines at ten times the input rate and

35

4 The LHCb Upgrade Trigger

higher luminosity is a challenging task in which computational efficiency of the
framework plays a crucial role.

36

5 Principles for High Performance
Computing in the Trigger

There are many methods to decrease runtime of an algorithm, several of which are
specific to the algorithm itself. This chapter will first describe some general and
higher level principles for code optimization in the dominant CPU architecture
of the last decades, the x86 CPU. Specifically, four phenomena will be looked
at in greater detail: Cache efficiency, predictability, dynamic memory allocation
and vectorization. The last section of this chapter discusses the transition of the
trigger software to multi-threading to set context for the following chapter.

Before diving into the details, I would like to mention the most important code
optimization technique very explicitly: Identify and restrict yourself to necessary
work. All other code optimization techniques only make sense as soon as the logic
of an algorithm is minimal to achieve the task that it is designed to do.

5.1 Caching and predictability in CPUs

The first two phenomena are described together because they are often correlated
when one successfully optimizes an algorithm. To discuss caching, a model of CPU
data storages is shown in Figure 5.1. L1 and L2 caches reside at the core itself,
while L3 is shared between multiple ones. Memory and Disk is shared over all
CPUs in the machine. While the caches have a much smaller capacity than main
memory, they are also much faster to access. When a CPU operation requires
data in form of a memory address, the CPU loads this data from disk or memory
through the caches into the registers the operation works on. Data is loaded in
fixed size chunks to populate the caches. The next time a CPU operation needs
data, it may find these data in one of the caches. The closer the memory address
is to the one required during the first load, the more likely is a so-called cache
hit, meaning required data was found in the cache. A cache hit is very beneficial

37

5 Principles for High Performance Computing in the Trigger

for runtime, because the cache access times are much smaller than a load from
memory and the application can continue processing much faster.

SIZE SPEED
bytes A <ns
kB [L1 Cache] ~1ns
MB [L2 Cache] ~3ns
100 MB [L3 Cache] ~10ns
GB [Memory] ~ 60 ns
B [Disk] O(ms)

Figure 5.1: Data storage in a modern CPU architecture, ordered by physical
distance to the compute units.

The modern CPU tries to prefetch data as much as possible. Whenever it can
see that data is going to be required in the near future, it can prepare the data
beforehand to ensure a continuous utilization of compute units. However, the
CPU goes even further with branch prediction. Applications often branch based
on runtime behavior. Every if statement is an example for that. The branches of
an if statement may require different data to be loaded. A CPU tries to predict
the outcome of the if statement based on historical data and prefetches the data
corresponding to the more likely branch. Applications with many branches can
greatly profit from correct branch prediction, as data dependencies are effectively
reduced and the compute unit spends much less time waiting for data. However,
efficient prefetching can only go right if an algorithm is either not branching
or if branches have very predictable outcome. To summarize, algorithms with
a very linear memory access pattern have both high cache hit efficiency and a
high predictability. They can use prefetching to utilize the available compute
power well. Random accesses on the other hand kill CPU performance. When
the predictor fails to predict the right path, the CPU has to invoke another load
and the computation has to stall for a long while, especially when the load has to
go to memory. In Chapter |7/ a data model is introduced that keeps all necessary
information for computation close together in memory to increase cache efficiency.
We also remove runtime branching wherever possible to reduce reliance on the
branch predictor.

38

5.2 Dynamic memory allocation

5.2 Dynamic memory allocation

Memory allocation in general refers to the reserve of a block of space in memory
to store some data on. There are two types of memory in a CPU, stack and
heap memory. The Stack is a Last-In-First-Out (LIFO) structure on which data
is simply stacked. Only data on top of the stack can be removed. The size for
allocation and deallocation on the stack is defined at compile time. It is therefore
referred to as static memory allocation. If one needs a runtime specified amount
of memory, one can resort to the heap memory and dynamic allocation. The
heap is randomly accessible and as such is much more versatile, but also costly
to operate on. It needs to keep track of allocated and free space and a request
for a contiguous memory with certain size must search for such a block explicitly.
During the course of execution, the heap may become fragmented. This is often
a reason for low cache efficiency and longer searches for free blocks. The CPU
has means to reduce fragmentation, but these also cost CPU cycles. Repeated
dynamic allocation has been and still is a major slowdown in many algorithms in
LHCb. Chapters 8 and |6/ present algorithm designs that have minimal dynamic
memory allocation. If they need it, they will resort to allocation of big chunks at
once as opposed to many small ones.

5.3 Vectorization

Modern CPUs have a vast amount of instructions for loading transforming and
storing data. Vectorization refers to the usage of a specific kind of instructions:
vector instructions. These instructions work on a whole collection (or vector) of
floating point or integer data at once. For most scalar instructions like the add
operation, there is a vector instruction to perform the same logic on multiple
data at once. The effect of a vector operation can be seen in Figure |5.2. Note
that a vector instruction has the same latency as a scalar operation, so one can
theoretically achieve a speed up by a factor equal to the width of the vectors
operated on. In practice, the application needs to be parallelized to the degree that
using vector operations make sense. Data to be operated on needs to be contiguous
in memory. Structures might require reorganization to get the data in question
into the right layout to use vectorization, which often costs more time than
vectorization saves. It is thus only efficient to use if multiple instructions can be

39

5 Principles for High Performance Computing in the Trigger

performed on the contiguous data, because reordering can invoke significant cost.
Chapter [7] will introduce a data structure that can use vectorization effectively.

Scalar Vectorized
i mnnmmmnmnn
operation

Time [NCOCp OOl

vy M 1 I

Figure 5.2: Scalar vs. vectorized CPU operation [65]. All entries in the

collections on the right need to be consecutive in memory.

5.4 Multi-core utilization with multi-threading

The single core performance of CPUs has risen exponentially, by about a factor
two every two years for over 40 years, until around 2005. This exponential growth
stopped at frequencies around O(1 GHz), beyond which heat dissipation is too
much to be cooled by air or water coolers. The key to continual performance
growth was then found in parallelization. The first CPU with a second core
was released around the mid 2000s. That trend of increasing parallelization
has continued to this day. Figure 5.3 summarizes the key indicators for CPU
performance in a 42-year span until 2017. AMD has released its first commercial
64 core CPU in 2019. Additionally, a technique called hyper-threading came up in
2002, which enabled further parallelization by assigning two processing threads to
one CPU core. Two threads share the physical core, but can interleave each other
whenever tasks on the other thread temporarily uses only parts of the resources.
This typically yields a 30 % to 40 % performance boost.

The LHCD trigger application is a great candidate for parallelization as we assume
independence between consecutive events. Independent work is an essential
prerequisite for efficient parallel execution. In Run1l and Run2 the trigger
application launched multiple independent processes, each processing portions of
the full incoming data to make use of the available computing cores. This involves
a large memory footprint as every process has to execute the entire application and
no process can share memory with any other. Another disadvantage is inefficient

40

5.4 Multi-core utilization with multi-threading

42 Years of Microprocessor Trend Data

! ! I ! A

10 i ‘ ‘ ‘ “ Transistors
6 3 : : A a4 (thousands)
Tl e e S S
A VN 4a .
10° o Asaa*s i | Single-Thread
Af‘g‘ﬁ‘ o 008%™ *° | Performance 5
10* b ; : A Y J”" o* | (SpecINT x 107)
AA AA“ .‘ L]
el ““‘A‘A’G} ng IAMP I | Froguency (MH)
‘ ‘ K ‘
‘ A ‘ ‘ ‘ * Typical Power
102 | B A ;’E'v,;v;;v;;gw'vv""’f 'oz | (Wats)
: u® Y_w, - 4 | *
Lt R OTIYEY 7T opd¢ | Number of
10 P A T MV B¢ Logical Cores
m v ‘ cnae
10° —‘ B R L R S]
| | | |
1970 1980 1990 2000 2010 2020

Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 by K. Rupp

Figure 5.3: 42 years trend of computational power in CPUs [66]

handling of CPU blocking operations like 10 [67]. Large efforts have been put
into the development of a GAUDI application that allows multi-threading [68].
This results in a cheaper thread spawn, a higher cache efficiency and a smaller
memory footprint due to shared memory.

When developing a multi-threading application, one must handle the state of
the application carefully when it can be mutated by every thread. Because
execution order of threads is not deterministic, incautious handling of shared state
causes race conditions that result in hardly reproducible problems. Pre-upgrade
algorithms in the GAUDI application used shared state in their class instances for
processing. In a multi-threaded application this does not allow for one algorithm
instance to run on multiple events at once. As creation of new instances for every
event cost time and memory, GAUDI transitions to an algorithm model where one
instance allows processing over multiple events at the same time. This algorithm
model is called "Gaudi::Functional”.

41

5 Principles for High Performance Computing in the Trigger

Gaudi::Functional

As every algorithm may contain (configurable) state, access in a multi-threading
environment should only happen without mutation of said state. To enforce this
crucial requirement as rigorously as possible for developers of reconstruction and se-
lection algorithms, a constrained algorithm base implementation exists in upgrade
GAuUDL: Gaudi::Functional. Inspired by functional languages, Gaudi::Functional
mimics the invocation of a pure function. Pure functions are defined by two
properties:

1. Given the same inputs, it always yields the same output.

2. An invocation of a pure function may never mutate state beyond its own
scope, it is said to have no side-effects.

Gaudi::Functional enforces both requirements as much as the C++ language
allows. Moreover, a functional algorithm can be read much more intuitively. Input
and output data are now part of the call signature. Inputs and outputs to legacy
algorithms may only be found within the function body.

Gaudi::Functional implements many possible input and output structures and
names them accordingly for increased readability. Figure [5.4| displays the most
commonly used categories:

e The Consumer receives data and returns void.

e The Producer generates data without inputs.

o The Transformer receives and produces data.

o The Merger takes a runtime-specified amount of same-typed inputs.

o The Splitter generates a runtime-specified amount of same-typed outputs.

coode

Figure 5.4: Functional algorithm types in GAUDI.

The next chapter introduces a fast scheduling algorithm that multi-threads and
makes use of the features introduced with Gaudi::Functional.

42

6 A Scheduling Algorithm for the Upgrade
Trigger Regime

The most significant recent change in the GAUDI framework has been the uti-
lization of multi-threading as opposed to multi-processing. This change required
the redesign of many low level components to meet requirement of thread-safety.
In the heart of the framework environment sits the algorithm scheduler defining
the logic for event processing. This scheduler must decide when to run which
tasks to achieve the result. A multi-threading application requires the scheduler
to dispatch tasks to different threads such that efficient parallelization over CPU
cores is possible. The first implementation of such an algorithm was defined in
Ref. [69]. This chapter starts by defining some concepts and nomenclature. The
existing scheduler will then be outlined shortly. Afterwards, a new and vastly
different implementation to meet the LHCb Upgrade requirements better will be
presented in greater detail. Most general ideas for the new algorithm were worked
out in a team of 4 people. The lower level ideas, details, and the implementation
were provided by me. It has been published in Ref. [70].

6.1 Control and data flow

Two terms used excessively within this and the next chapter are control flow
and data flow. Data flow refers to the path data takes through a processing
environment. It describes how algorithms depend on each other via the means of
input and output relationship between them. An algorithm is data dependent on
another when its input is produced from the other. It implies that one algorithm
has to run before the other.

Control flow refers to the mechanism of controlling in which direction an application
goes. A basic form of control flow is a branch, for instance implemented via an if
statement. This statement defines that under some condition the algorithm takes
either one of two paths. An equivalent, but more implicit control flow is used

43

6 A Scheduling Algorithm for the Upgrade 'Trigger Regime

often throughout this chapter: Short circuiting. A boolean operation can often
be evaluated without all operands included in the process. Consider a binary
boolean conjunction: A&B. If A turns out to yield false, then the output of B
does not matter for the result, it is false either way. The equivalent happens for a
boolean disjunction A|B when A yields true. Short-circuiting (or lazy) boolean
operations evaluate as soon as possible without requesting unnecessary data. If A
and B both require processing to yield an output, the processing for B would not
happen.

6.2 The baseline: A multi-threaded event scheduler
for Gaudi

Traditionally, sequential GAUDI implemented very basic control flow. Whenever
one algorithm yields a negative control flow decision, the sequence would simply
terminate. The development of a multi-threaded GAUDI involved the creation
of a new event scheduler [69]. The so-called Avalanche scheduler implements
task-based parallelism over and within events. Via inspection of data and control
flow dependency graphs of a given task collection the scheduler can maximize intra-
event occupancy, thus minimize the need for inter-event concurrency. Maximized
intra-event concurrency proved to maximize peak throughput of the pre-upgrade
LHCD reconstruction.

The Avalanche scheduler ranks algorithms by their importance in event processing
graph given data and control flow precedence. At any given decision step, all
available ready-to-run algorithms are scheduled in order of descending importance.
The measure of importance is motivated by the critical path (CP) of the precedence
graph, that can be calculated using the critical path method [71].

The calculation of the CP involves knowledge of the runtime of algorithms in the
graph. Unfortunately, bunch crossings at the LHC vary greatly in occupancy and
topology. As reconstruction algorithms depend on these characteristics, a upfront
calculation of algorithm runtime is nearly impossible. The Avalanche scheduler
therefore assumes a uniform time distribution across all algorithms. Under that
assumption, the critical path is automatically also the longest. The only relevant
importance of a given algorithm becomes the eccentricity in the precedence graph.
Eccentricity of a vertex in a graph is defined as the maximum distance to any
other vertex. Note that in this case it is defined with the precedence direction.

44

6.2 The baseline: A multi-threaded event scheduler for GAUDI

Only paths along the same direction as the arrows are considered. Ranking
according to eccentricity has been shown to yield the best CPU occupancy and
therefore throughput results in pre-upgrade LHCDb reconstruction. A visualization
of the reconstruction precedence graph with encoded node eccentricity can be
seen in Figure [6.1. The more red an algorithm is colored, the higher the rank
in the scheduling logic. The implementation of this scheduler in GAUDI yielded
a 34 % increase in intra-event throughput on pre-upgrade LHCb reconstruction
with respect to previous, reactive scheduling techniques .

Figure 6.1: Pre-upgrade LHCb reconstruction in a precedence graph. More
intense colors correspond to greater eccentricity .

While this scheduler is suitable for performance regimes present in Run1 and
Run 2 LHCDb, it is no option for the upgrade HLT. The dynamic aspect of this
scheduler involves much runtime bookkeeping, like the gathering of algorithms
that have their control and data flow dependencies met at O(100) time steps
throughout the execution of one event. The decision-making time per processed
event, given about 250 tasks, is at least 2.5 ms. This scales roughly linearly with
the number of tasks in the event.

A quick estimation on CPU time per event in upgrade conditions shows that we
have little time to spare for extensive scheduler logic: Assuming roughly 1000

45

6 A Scheduling Algorithm for the Upgrade 'Trigger Regime

CPU nodes in the HLT processing farm, HLT1 has to run at 30 kHz per node.
Let us assume a typical node in the farm to comprise about 30 physical cores.
The CPU time per event calculates as follows:

T #(nodes) - #(cores per node) 1000 - 30

= ~ =1 6.1
event Rtot 30 MHz ms, ()

where R, is the inelastic collision rate going into the HLT. With these assumptions
each event in HLT1 has about 1 ms CPU time to be processed completely. Even
though these assumptions may be off by several factors, the tension between 2.5 ms
decision time and 1 ms processing time renders this scheduling algorithm unsuitable
for HLT1. HLT?2 has about a factor of 30 more time. When extrapolating the
linear decision time of 250 tasks to several thousands per event, the infeasibility
of employing this scheduler becomes apparent in the HLT2 environment aswell.
Even when assuming only 1000 tasks, the 10 ms decision time per event would
take about one third of the entire processing time in HLT2. In conclusion, the
Avalanche scheduler is not suitable for upgrade HLT conditions.

6.3 A new scheduling application

6.3.1 From intra- to inter-event concurrency

The decision time for in-flight scheduling is a show stopper in the Upgrade HLT
regime. One could reduce the decision time by bundling tasks together and thus
effectively reduce the number of decisions made per event. In fact, the most
reasonable task bundling that comes to mind is bundling full events. That means
that scheduling logic within events has to be done statically. However, this also
means that task scheduling decisions become trivial as there are no dependencies
between events. The eccentricity of each task is 0. We call this approach inter-
event concurrency as opposed to the intra-event concurrency in the avalanche
scheduler. The new algorithm outlined in the rest of this chapter builds on this
idea.

6.3.2 The high level workflow

When considering only inter-event concurrency, events can be scheduled in a
fixed manner without computationally intensive checks or calculations during

46

6.3 A new scheduling application

runtime.

A high level workflow for the operation of a new scheduler implementation could
then look as follows:

1. Define the control flow and the data flow of the desired application

2. Generate an order of execution at configuration time that meets all the
precedence rules extracted from the graph

3. Cooperatively push full event tasks to worker threads, where the given
instruction order is executed with minimal runtime overhead.

6.3.3 The trigger control flow anatomy

The trigger application is essentially a sophisticated filter algorithm. It receives
event information as input, reconstructs properties of interest and then decides
based on these properties. On the highest level, the trigger can essentially be
summarized as in Figure [6.2.

Figure 6.2: The trigger, from very far away. The blue arrows represent data
flow.

The decision is ideally true for everything that physicists in LHCb consider
worthy of persistence and false otherwise. As we did not yet manage to find a
discriminative enough heuristic to define "worthy”, the decision is a union of many
parts, mostly exclusive trigger selections (or trigger lines) to reconstruct a specific
set of decays. There were over 500 trigger lines in Run 2. We want to save an
event if any of these lines considers the event interesting. Summarized, one might
depict the trigger work flow as done in Figure [6.3.

47

6 A Scheduling Algorithm for the Upgrade 'Trigger Regime

Persistence

, then

Figure 6.3: The trigger, from not quite so far away. The red arrows indicate
control flow dependency.

When zooming in even further, we will see that lines themselves are made up
of smaller elements of boolean decision, see Figure It becomes apparent
that a tree representation of control flow for the trigger is a suitable choice. The
trigger decision is the first example of a higher level tree node composed of and
exclusively defined by the boolean results of all trigger lines. We will call these
nodes "Composite Nodes”. They combine decisions made by their child nodes. The
nodes filled green in Figure correspond to "Basic Nodes”, they represent leafs
in the control flow tree. These basic nodes make decisions from reconstructed data
by invoking decision-making algorithms and their data dependencies. A trigger
line designed to select BY — u*u~ could define its control flow as follows: First,
check if there are muons that pass some quality and displacement requirements.
If there are any, see if combinations of these can build vertices with reasonable
resolution. Only if both nodes yielded some candidates should the trigger line tag
the event positively.

To be able to define any control flow, composite nodes need to be able to implement
several types of combination logic. We choose lazy-and, lazy-or, eager-and, eager-
or and not. Lazy logic corresponds to short-circuiting execution outlined in
Section Eager logic schedules all children unconditionally. "not” corresponds
to boolean inversion, and requires exactly one child.

We further define optional notion of order. Composite nodes may or may not force
children evaluation order. A forced order of evaluation is interpreted transitively.
Two composite nodes that act as children of an ordered mother imply pairwise
precedence rules on all of their children and grandchildren.

48

6.3 A new scheduling application

Figure 6.4: The trigger, a closer view.

We can thus summarize our two types of nodes:

e A basic node governs one algorithm that makes a control flow decision
and the data dependencies for this algorithm.

« A composite node defines an execution logic and whether it forces evalu-
ation order on its children, which can be either basic or composite nodes
themselves.

With the control flow design established, the next task is the representation of
data flow.

6.3.4 Representation of data flow

Data flow in LHCb is implemented through the TES interaction. Every event
interacts with a TES instance that is local to that event. This is crucial for practical
event independence as we do not have to consider multi-threading synchronizations
in the data flow. Whenever an algorithm produces data, ownership over that data
is transferred to the TES, and they remain there for the processing time of that
event. TES access is done via string key lookup. Algorithms in LHCb and GAUDI
define these keys as configurable via python. Data flow is expressed as edge of
the directed data flow graph by matching strings in output of one algorithm and
input to the other:

49

6 A Scheduling Algorithm for the Upgrade 'Trigger Regime

MyProducer

track_location = "/Event/ProducedTracks"

= MyProducer (OutputTracks = track_location)
b = MyConsumer (InputTracks = track_location)

)
|

The implementation of the pre-upgrade trigger did not allow for automation of
data flow resolution, as TES interaction happened implicitly within the execution
of every algorithm and there was no syntactical difference between properties that
define data flow and miscellaneous parameters. This was changed as part of the
general overhaul of the GAUDI framework to fit future needs.

Thus, implicit data flow is turned explicit via the use of so called "Datahandles”.
Datahandles serve multiple purposes, one of which is that they are distinguishable
as special properties concerning the definition of data flow. They also provide
information of the direction of dataflow, whether they represent output or input.
It is possible to inspect algorithms for their participation in data consumption
and production.

By doing so, data dependencies can automatically be deduced for every decision
that a trigger selection author wants to use. By matching Datahandle Input
to Output, an ordered collection of data dependencies can be built for every
algorithm. The order is such that for every data flow edge between two algorithms,
the data producer appears before the consumer in the collection.

With these ingredients at hand, the initialization and the runtime step of the
scheduler implementation can be defined.

6.4 Event loop preparation - Initialization

One of the biggest differences in this scheduler implementation with respect to the
Avalanche scheduler is that the order of execution is fully defined before running
over events. This is a key feature to achieve low runtime overhead.

Firstly, the control flow tree needs to be defined in the python interface. The
following produces an example control flow that runs two algorithms in a short-
circuiting fashion within a logical conjunction:

20

6.4 Event loop preparation - Initialization

bn1l
bn?2

BasicNode("BN1", decision_makerl)
BasicNode ("BN2", decision_maker2)

root = LAZY_AND("root", children=[bnl, bn2], ordered=True)

register_cf_tree(root)

The root of the tree is registered and traversed through the children to gather
all nodes that one can reach from root. This tree is translated to C++ via
the configurable interface. From that information the algorithm creates C++
instances of all the nodes and save them with fixed positions in memory. Data
dependencies in the basic nodes are filled by matching the Datahandles as discussed
in the previous section. Both composite and basic nodes receive pointers to their
children and parents to be able to traverse the tree upwards and downwards. For all
ordered composite nodes, control flow precedence rules are built pairwise between
all children, represented as control flow edges. A typical two-line configuration may
look as depicted in Figure The red arrows represent control flow precedence,
generated from the ordered mother of the basic nodes.

Decision
unordered
Eager OR

Line_1
ordered

Line_2
ordered

Figure 6.5: The control flow tree of a minimal two line configuration, with

one shared basic node. Red arrows represent control flow edges.

Next, a valid order of execution to use at runtime is produced. All basic nodes
are gathered into a set and then ordered to meet all precedence rules as defined
by the composite nodes. This is done by continuously looping over the initial set
and moving nodes into an ordered collection whenever all nodes that precede this
node are already part of the ordered collection. This way control flow precedence
circles can be detected. A full loop through the set without any move operation
results in error.

o1

6 A Scheduling Algorithm for the Upgrade 'Trigger Regime

We end up with an ordered collection of basic nodes with their data dependencies
as can be seen in Figure [6.6]

Decision
unordered
Eager OR

| >

Order of Execution a . E

Figure 6.6: The control flow tree with the basic nodes ordered as they will

Line 2
ordered
Lazy AND

be executed during runtime.

During runtime, the algorithm needs to maintain the state of every control flow
node to ensure correct execution. Specifically, each node’s state is specified by one
integer and one boolean. With the boolean we track the control flow decision that
every node evaluates, either from the underlying algorithm or from the logical
combination of other nodes. The execution counter will be further explained
in the next section. Notably, the node states are not tracked as members of
node instances. This would require a copy of the control flow tree instance for
each event in flight. Therefore, node states are represented as part of an ordered
collection, and each node is assigned an index in the collection. It is copied into
each event task to enable independent processing.

Although not strictly required, the same trick is performed for algorithm execution
states. At any time during the event, one can inspect algorithms for their control
flow decision and their execution state by querying an algorithm state service that
holds thread local variables to track the states. This is a feature needed for the
avalanche scheduler, but thread-local access is unnecessary overhead in this case,
as the scheduler can work on local instances.

52

6.5 The event loop - Runtime

Finally, a user defined number of threads is initialized. This collection is often
called thread pool. These threads take care of processing events.

6.5 The event loop - Runtime

6.5.1 Task packaging

The event loop is the performance crucial part of the scheduler, as everything that
will be calculated within the loop needs to happen 30 million times per second in
HLT1 and 1 million times per second in HLT2.

One thread, the master thread, takes care of the actual loop over incoming events.
It prepares tasks which represent the processing of one event each. Every event
task receives a context with which it finds metadata about the event. The context
also carries a fresh copy of the node state vector that has been prepared in the
initialization. Event tasks are then pushed into a queue.

Meanwhile, idle workers within the previously initialized thread pool wait for
incoming event tasks. When one arrives, any idle worker is notified, it takes the
task from the queue and immediately starts processing. If there is no free worker,
the first one that finished processing directly takes up the next task. As soon
as a task is done, the worker notifies the master thread about the finished event.
This notification enables cooperative scheduling. Instead of filling the worker
queue indefinitely, the user can define the number of events in flight. That is the
maximum number of unfinished event tasks at any given time. Unconditional filling
would consume more memory than necessary. By just slightly overcommitting
the queue, idle workers are avoided. On the test node with 20 hyper-threads, the
speed optimum is reached with 20 workers and about 24 events in the queue.

6.5.2 Sequence execution

Within the event task, execution of the ordered sequence of basic nodes may now
begin. To explain the algorithm, we define nomenclature:

1. A node is "retired” as soon as its decision is evaluated. For lazy nodes, this
happens as soon as the decision of their children allows it. One negative

23

6 A Scheduling Algorithm for the Upgrade 'Trigger Regime

(positive) decision in a lazy-and causes retirement. For eager nodes, retiring
happens only after all children are retired themselves.

2. A node is "requested” if there is at least one path through the tree from
this node to the root where none of the parents in that path are retired.

The basic node sequence is looped over in the following manner:
1. Is the node requested? If not, continue with the next node

2. Every data dependency in the list assigned to the node is executed if that
has not happened before as part of another basic node. The same is done
for the decision maker algorithm. Note that it is possible that a decision
maker is a data dependency of another node.

3. The control flow decision of the decision maker is propagated to all parents
of the node.

4. All parents update their own state depending on their composite node type.
If one parent is retired, this information is propagated to its parents in turn.

Every request for state goes into the local state collection that has been copied
into the context for the event task. So if the execution state of a node is needed,
the node provides the index to look for in the state collection. The same goes for
algorithm states.

The outlined method of execution guarantees minimal work, and the introduc-
tion of the scheduler into the LHCb software stack has immediately revealed
unnecessary steps in the reconstruction, because data was produced that was not
consumed anywhere.

6.6 The control flow barrier - Sharing work

In the LHCb track and vertex reconstruction the very same task is sometimes
performed on different selections of tracks or vertices. These selections are not
necessarily disjoint, in which case duplicate work is done on the intersection. We
can explore different methods of avoiding duplicated work. One method could
be an upfront reconstruction that considers all tracks or all vertices. This may
save computation in case the intersection is bigger than the amount of data you
additionally consider when not selecting previously.

o4

6.6 The control flow barrier - Sharing work

Here another method is considered: A work sharing barrier. Its job is to gather
the union of all selections to perform the computationally intensive task on, then
execute the task only once and afterwards scatter the data back into multiple
selections accordingly. A sketch of the barrier workflow is depicted in Figure [6.7]
Columns represent independent data flows merged at the gather step. In this
example, the first data flow stopped early, as for instance control flow did not
require further execution of the corresponding line. In order to handle these cases
correctly, the barrier requires the introduction of optional data dependencies. The
gather step needs to work regardless of how many data flows make it to that point.
Only if all executions terminate early, the gathering step should not be invoked.

Figure 6.7: The gathering concept. Black arrows indicate dataflow. The
gather algorithm only considers inputs of active dataflows (second and third
column from the left).

The way this scheduler handles data dependencies and control flow precedence
allows such a barrier by introducing additional precedence rules and strategically
placing the gathering algorithm. A working barrier configuration is shown in

Figure [6.8.

Firstly, optional data dependencies are modelled by never explicitly considering
data dependencies of the gather algorithm. When data dependency lists are build
for basic nodes, the gather algorithm is considered as pure producer. That way
one avoids accidentally invoking a selection algorithm that only serves an already
retired line, like the first column in Figure [6.7. In the example in Figure 6.8, the
gray dotted arrows depict optional dependencies.

Secondly, explicit pairwise precedence rules between the inputs to the gatherer

25

6 A Scheduling Algorithm for the Upgrade 'Trigger Regime

and the receivers of the barrier output data need to be introduced. Otherwise,
one line might be scheduled before the other, and the expensive algorithm runs
before all inputs have been produced. These precedence rules are the reason
this is referred to as a barrier concept. All inputs to the barrier need to have
completed or retired beforehand before the gathering can begin. In other words,
a synchronization step is introduced. The example in Figure 6.8 introduces four
precedence rules, pairwise between Selection 1/2 and Filter 1/2.

All inputs to the gatherer need to be scheduled explicitly as decision maker of a
basic node as opposed to being executed as part of a data dependency resolution.
There are two reasons for that:

Firstly, explicit precedence is part of control flow which is modelled via edges
between tree nodes.

Secondly, these inputs mostly serve the gatherer exclusively. However, inputs to
the gatherer are not considered as part of the data dependency chain due to their
optional nature. Thus, unless explicitly requested as part of a lines control flow,
these inputs would not run at all. With the proposed setup, they are explicitly
requested as long as the parent line has not yet retired. Notably, since these data
producers now participate in control flow as decision makers, they simply yield
an unconditionally positive decision.

Lastly, our barrier should not be part of the explicit control flow, but only play a
role as data dependency of any one of its successors in the data flow. If all lines
retired before reaching any consumer of the output data the expensive algorithm
provides, invocation of the barrier would be unnecessary work.

- O &
‘ 7

~

7 A 7]

[ch in Control Flow Some Data Barrier Expensive Alg

A
- =

Figure 6.8: The barrier concept built into the work flow configuration. Black

arrows represent data dependency, while the gray dotted arrows denote optional
nature. Blue blobs represent basic nodes and green blobs show data producers.

o6

6.7 Scheduler performance

6.7 Scheduler performance

Performance measurements were performed for multiple scenarios to ensure suffi-
cient computational efficiency even in complex scenarios.

The first test involves the execution of the HLT1 reconstruction chain. As it
represents a linear sequence, it can be scheduled explicitly with a minimal logic
scheduler implemented in GAUDI. This scheduler invokes a full event stop whenever
a negative control flow decision is encountered. No throughput difference could
be observed between both schedulers after averaging several runs, meaning that
the logic introduced in the new implementation causes negligible overhead in this
case. This is not a representative stress test however, as the HLT1 reconstruction
only involves linear control flow with about 15 algorithms.

For following tests, the Intel V-Tune Amplifier |[73] is employed to estimate function
execution times in multi-threaded environments without significant overhead to
the application. Fully fledged HLT environments are mocked with algorithms of
configurable busy execution time.

When calibrating the application to the nominal HLT1 throughput requirement
of 30 kHz with 10 lines and 5 nodes per line on 40 threads, the schedulers relative
consumed CPU time stays well under 0.5 %. Doubling the number of lines at the
same throughput level brings the contribution to execution time up to nearly 1 %.
However, other framework overheads surpass the scheduling overhead.

A HLT?2 like scenario is also tested to ensure scalability of the implementation.
500 lines with 10 nodes each are calibrated to a throughput of about 1kHz.
The relative time contribution stays well under 2% here. Unfortunately, other
framework overheads scaling badly with increasing number of algorithms slow
down the application much more. Further framework bottlenecks need to be
investigated until we are ready for a 1 MHz HLT?2 application.

6.8 Summary and outlook

I have presented the first production ready scheduling algorithm that meets the
feature requirements for the upgrade HLT. All in all, the undertaken tests show
promising results that runtime overhead is sufficiently small for use in the online
HLT environment. As of this day, it is the baseline scheduler used in all CPU

57

6 A Scheduling Algorithm for the Upgrade 'Trigger Regime

upgrade configurations. The GPU implementation for HLT1 in Allen is currently
adopting an implementation that has been derived from this one. It enables the
option of packaging multiple events into one task.

The only real test for the overhead of the scheduler implementation will be the
full HLT?2, once it is fully implemented. Until then, there are some changes that
can marginally speed up the scheduling time.

In the HLT many selection algorithms have a long tail of data dependencies
that are similar for many nodes, invoking the full track reconstruction to get the
particle inputs. Even though these algorithms are not actually run multiple times
per event, there are still lots of unnecessary if-statements to go through. One
can therefore explicitly schedule these common reconstruction steps upfront and
invoke the following optimization: Whenever a basic node dominates another,
all shared data dependencies can be removed from the latter. ”A dominates B”
means that execution of B implies previous execution of A.

Secondly, most of the explicit scheduling time is spent in checking whether a
basic node is requested, an operation that has to go up the control flow tree.
Conceptually, an invocation condition in dependence of other basic nodes could be
deduced at configuration time already. This would effectively avoid tree traversal
for that particular operation.

o8

7 Selections and Combinatorics in Upgrade
HLT2

After having written and optimized parts of the underlying application framework
for the upgrade trigger in the last chapter, this chapter focusses on two specific
algorithms of HLT?2 itself, where significant improvements have to be achieved in
order to get the desired runtime efficiency. After an introduction to the use case
for these algorithms in Section 7.1, the performance of status quo is discussed
in Section |7.2. Section |7.3 discusses these algorithms in detail. The following
sections discuss several solutions to optimize the algorithms in question. Lastly, a
summary on the current state and an overview on future work are given. Note
that the work presented in this chapter is the outcome of shared efforts between
Olli Lupton and me. Several other people in the LHCb collaboration helped
forming the ideas.

7.1 Selection algorithms in the trigger workflow

The outlined HLT1 workflow in Figure 4.4 is conceptually similar to HLT2. As
most trigger lines require a common set of reconstruction algorithms, control flow
can be slightly simplified by invoking an unconditional upfront reconstruction
step. Although the specifics of the reconstruction in HLT1 and HLT2 are different,
both trigger stages have one thing in common. After upfront reconstruction, most
of the leftover work is done by selection algorithms, represented as the "selection
criteria” in Figure |4.4.

In HLT2 one mainly differentiates between two types of selecting algorithms. The
first type is the plain selection that takes a collection of particles and returns a
selected collection. These are called "Filters”. An example of a Filter is one that
collects muons with a high transverse momentum from all the input particles.

Algorithms of the second type are called "Combiners”. These algorithms combine
two or more particles to form a candidate for a decaying particle. Although

29

7 Selections and Combinatorics in Upgrade HLT?2

combiners reconstruct vertices, they will be referred to as selection rather than
reconstruction algorithms, because selection criteria with control flow impact are
applied at multiple points during the combination process.

Many Combiner and Filter instances in HLT2 apply tight requirements such
that most invocations end up with an empty output collection, meaning that no
particle passed all selection criteria. Control flow decisions for the trigger are
based on whether at least one particle passed the algorithm. The typical workflow
of a trigger line selecting B® — 7~ K can be seen in Figure 7.1, It is assumed
that charged final state particles are already reconstructed and classified via PID
information. To build B® — 7~ K™, one first needs pions and kaons. Because
they should come from a beauty decay, one may filter based on displacement from
the primary vertices and a high transverse momentum. This is what the Filters
are designed for.

The following workflow is comprised within the implementation of Combiners. If
there are pions and kaons matching the criteria, the next part of the workflow
can be invoked. The selected final state particles can be combined and selections
can be made on these combinations. Examples would be the distance of closest
approach between both particles. If there are good combinations, a decay vertex
for the BY candidate can be fitted. If this vertex passes some more requirements,
a BY candidate is selected for final persistence. The decision of the Combiner
depends on whether any candidate passed all previous criteria.

60

7.1 Selection algorithms in the trigger workflow

Data Flow Control Flow

Particles

Pion selection

At least one
Pion

A
Combine Kaon
+ Pion

K+pi combination

Raw event

< Reconstruct

< tracks +
particles

Particles

Pions

At least one
Kaon

K+pi combination

B candidate

Select
combination

At least one
combination

B candidate
Select B

candidate

At least one

candidate Persist

candidate

Trigger
decision

Figure 7.1: The reconstruction workflow in a trigger line selecting
B — 7= K. Blue arrows mark data flow and red arrows correspond
to control flow.

61

7 Selections and Combinatorics in Upgrade HLT?2

7.2 Runtime performance in status quo

Significant throughput improvements have to be achieved to reach the throughput
goal of 1 MHz in HLT2. Exact numbers are hard to come by, as only about
300 out of an estimated O(1000) trigger lines are currently available in upgrade
software. Current benchmarks with the existing lines show that HLT2 throughput
is off by at least a factor of 2. The Combiners and Filters this chapter focuses on
contribute about 25% to the overall runtime.

The benchmark in Figure compares this to the Run 2 HLT2 implementation on
HLT1 filtered upgrade simulation. On a single core of an Intel Xeon F5-2630-v4
CPU, this configuration processes events at about 2 Hz. Filters and Combiners
together use about 23% of the total runtime, and this configuration only consists
of about 450 lines as opposed to the O(1000) lines expected for the Upgrade.

TrackBestTrackCreator

PatternReco

Combiner

NeutralPatternReco

Rich 5.82%

PID

4.13%

EcalShareForHIt

Filter 3.62%

HItPV3D

EcalClustForHIt 1.09%

0 5 10 15 20 25 30 35
Execution time as fraction of total [%]

Figure 7.2: Relative execution times of the top 10 algorithms in the Run 2
HLT2 on upgrade HLT1 filtered simulation. The Combiner and Filter bars
sum all combiner and filter instances. All other algorithms refer to parts of
the reconstruction. Specifically, the TrackBestTrackCreator is the algorithm
performing the track fit.

62

7.3 The baseline algorithms

7.3 The baseline algorithms

The baseline Filters and Combiners in HLT2 are called "FilterDesktop” and
"CombineParticles”. Both act on collections of particles as inputs. FilterDesktop
returns a selected subset of the input particles, while CombineParticles creates
new candidates from the combination of the inputs.

As these are very generic algorithms, several aspects are configurable through
the python interface, like the decay to be reconstructed in the combiner and all
selection criteria.

7.3.1 Filtering with LoKi

Being able to define generic selection criteria from a python interface to the
C++ code is a non-trivial task. In the early days of LHCb, criteria would still
be hard coded into the algorithms, with configurable parameters only. It was
then possible to change the minimal transverse momentum threshold from the
configuration, but not the fact that it is a minimum transverse momentum cut
without editing C++ code. A dramatic improvement to usability came with the
introduction of the LoKi (Loops & Kinematics) framework [74], which provided
the implementation of so called LoKi-Functors. These allow the definition of
almost arbitrary selection code via specification though a python string or directly
within a GAUDI algorithm. With LoKi, selection code can be defined as follows,
from python:
kaons = reconstruct_kaons ()
MyKaonSelector = FilterDesktop(

input=kaons,

Code="(PT > 1%GeV) & (IP > 1kmm)"

A python interpreter will interpret the Code string at initialization time of the
application. PT and IP are python aliases for C++ classes that are accessible
from python via the cppyy interface [75]. Different kinds of unary and binary
operations on these objects are overloaded to yield composed LoKi functor types.
For instance, PT > 5%GeV constructs a class with a call operator returning a boolean,
checking whether the input has a transverse momentum of more than 5GeV.
Compositions via mathematical operations like +,— *,/, boolean compositions &,|,~
and more are supported in the LoKi framework. Functors can be transformed to

63

7 Selections and Combinatorics in Upgrade HLT?2

a C++ representation of themselves that is accessed from the filter and combiner
algorithms to perform the desired selection. It is thus possible to create arbitrary
selection predicates without any additional compilation, sufficient for almost all
use cases in the LHCb selection framework.

7.3.2 Basics of combining

The process of combining particles to a common parent has been introduced with
the B® — 7~ K example in Section |7.1. This section will go into more technical
detail, starting with a summary of the workflow:

1. Take m input particle collections, where m is the number of different particle
types.

2. Select the children collections with reasonable criteria for the given decay.

3. Build a n-body combination from these particles, where n is the number of
children of the parent to be reconstructed. This is a O(k™) scaling operation.

4. Select combinations with criteria to match a good candidate. These criteria
do not only involve user-specified predicates based on the decay, but also a
pairwise overlap check. When two particles share underlying components
like tracks, a combination can not yield a valid signal candidate, so these
are preemptively discarded.

5. Fit the combination to yield a decay vertex position and a parent momentum
with respective uncertainties.

6. Select good vertices and label them according to the decay requirement.

This workflow is performed in almost every HLTZ2 line in LHCb, often multiple
times per line execution. It is notable that the number of operations involved scale
exponentially with the number of children involved, so critical path efficiency is
crucial for a successful online application. Efficient evaluation of selection criteria
becomes very important as these have to be applied to every combination.

64

7.3 The baseline algorithms

7.3.3 Workflow in the baseline combiner

CombineParticles has worked as the default combiner algorithm throughout all
operational years of LHCb. It is based on the Run 2 HLT?2 particle implementation:
LHCb::Particle. LHCb::Particle is a structure that holds multiple properties like
particle ID information and possibly a decay vertex or a track. As the class is not
specific to the type of particle, a charged final state particle has a nullpointer for the
decay vertex and a composite particle has a nullpointer for the track. The design
of LHCb::Particle is discussed in more detail in Section [7.5.1. CombineParticles
can receive either selections or vectors of particles to be agnostic on whether a
previous selection has been applied to the collection. The algorithm is subdivided
into three stages: Child-, Combination- and Vertexing-stage.

At first, the algorithm parses a decay descriptor. This is a user specified string
that encodes the decay to be reconstructed by the combiner. An example decay
descriptor is given here:

"[B_sO -> D_sO pi+ pi-]ccC"

It encodes several important pieces of information for the combiner: The number
of children (3), the particle id of combined particle (B?), the children particle ids
and their charge configuration. The cc serves as shortcut for charge conjugation.
Wrapping the decay descriptor with brackets and c¢¢ means that the charge
conjugated decay is also to be reconstructed in the same combiner invocation.
CombineParticles generally allows for an arbitrary long list of decay descriptors
to be worked off at the same time. Reconstructed parent particles from all decay
descriptors will later be put into a common collection to be stored on the TES.
Decay descriptor parsing and LoKi cut generation are the two main things that
happen before or during initialization, they do not contribute to runtime costs in
the event loop.

Selection criteria logic for cuts on input particles works as follows: The user
provides a map of particle ID (PID) to criterion. When there is no entry for a
PID that occurs in a decay descriptor, the criterion will fall back to either the
criterion of the charge conjugated PID, or if neither exist, to no selection criterion
at all.

A user can give an arbitrarily long list of input particle collections to the combiner.
In the child stage, input particles are merged into a single container per PID.
According to the decay descriptors and the child cut dictionary, relevant particles
will be selected for consideration in the combination stage.

65

7 Selections and Combinatorics in Upgrade HLT?2

The combination and vertexing stages happen within a loop over all decay de-
scriptors. A n-dimensional loop over the relevant input particles given the current
descriptor is built. It corresponds to the cartesian product of the input vec-
tors. The first check on each combination is for uniqueness. It is trivial for
combinations with disjoint PIDs because particles with different PIDs are per
definition different. However, it is important for any decay descriptor in which one
PID occurs twice, like 'B+ -> pi+ pi+ pi-', where one does not want to consider
both (pi+[x], pi+ly], pi—[z]) and (pi+[y], pi+[x], pi—[z]). X,y,z represent indices into
the pion containers. The uniqueness check asserts that only combinations are
considered in which particles with the same PID are ordered in some way. The
order criteria comprise kinematic and pointer comparisons. The result for selected
combinations is depicted in Figure 7.3, Note that checks for unique entries in
a collection usually scale O(n?) with the number of elements, while this order
requirement can be applied with O(n) scaling. Producing a complete collection
of unique combinations with the order requirement can only work correctly if
the containers of which the combinations are made are exactly the same. This is
the reason for the merge of all inputs according to PID in the child stage. The
combiner functionality is therefore restricted to one cut per PID, not one per
input collection.

same PID different PID
m+ container - container
0 1 2 3 0 1 2 3
o | (00) | (0,1) | (02 | (0,3) o (00 | (0,1) | (02) | (0,3)
? ?
S g
[Q
3™ 120 (1) (22 (@23 3™ (20 (1) (22 (23
“ 130 | 31| (32 (33 “ 130 | (31) (33 (34)

Figure 7.3: Loop structure for combinations of containers with either same
(left) or different (right) PID in a 2D subspace. Assuming the containers
are ordered according to the aforementioned kinematic criteria, green fields
represents considered combinations.

Next, all combinations with an overlap are filtered out. There are multiple
algorithms that define what overlap means, but conceptually one tries to identify

66

7.3 The baseline algorithms

whether multiple particles in the combination have been made from the same
track or with the same calorimeter clusters. Nothing stops two algorithms from
defining two different particles from the same track by assigning two different
particle IDs. No track or cluster information in the detector should go into the
reconstruction of two disjoint particles.

The algorithm proceeds to apply the combination cut, one of previously defined
selection criteria. In HLT2, trigger line authors often require a small distance of
closest approach (DOCA) between the combined particles or that at least one
input particle had a high transverse momentum. The application of selections on
the particle combination serves the purpose of reducing combinatorial load on the
subsequent vertex fit.

The last stage in CombineParticles is the vertexing stage. The few particle
combinations that have made it through all previous checks and selections are
now fitted into a common intersection point, or vertex. Out of a successful vertex
fit comes a vertex position and a covariance and a fit x2, which is then associated
to a new particle, the parent candidate for all children in the combination. Its
PID is set to the parent PID in the decay descriptor. These candidates are then
selected again with a user specified criterion, most often based on the vertex x?2,
invariant mass and vertex position. Particles passing the entire selection chain
are persisted into the TES for further studies.

Next to CombineParticles, there is another set of algorithms called "NBodyDecays”.
These algorithms are, unlike CombineParticles, specialized on the number of
children to be combined. They enable another set of user specified criteria that
we will call sub-combination criteria in this chapter. When combining N children,
cuts on the [2..N-1] combinations may also be specified to reduce the combinatorial
phase space early on. A simplified three body combination loop might look as
follows:

for pO0 in particle_container_O:
for pl in particle_container_1:
do not even enter the third loop if
the two body combination is ”bad”
if not two_body_cut(p0, pl):
continue
for p2 in particle_container_2:
if three_body_cut(p0, pl, p2):
do_vertex_fit_and_cut(p0,pl,p2)

67

7 Selections and Combinatorics in Upgrade HLT?2

7.4 Improving upon the baseline with new
selections

The first version of LoKi has been introduced as the framework for composable
and configurable selections over a decade ago. The functional, multi-threading
framework is however ill-suited for the use of many LoKi features that rely heavily
on internal state. As many people want and require configurable selections, a
rewrite of major parts of the LoKi framework would be necessary for use in the
upgrade HLT. However, benchmarks within HLT'1 selections have uncovered that
LoKi selections often are the bottleneck of the application.

We therefore decided that developing a completely new selection framework is
more sensible. This framework, dubbed ThOr (Throughput Oriented) is being
designed with different levels of parallelism in mind. It is fully functional to
ease multi-threading, and its type system makes the use of vectorization within
selections easier than LoKi does.

While ThOr aims to provide similar functionality, its C++ backend is different to
LoKi’s. LoKi works with cppyy’s python bindings and it resorts to type erasure on
multiple levels to be able to compose functors at runtime without any additional
compilation. While this is a very flexible approach, it comes with a non-negligible
runtime overhead. Every composition adds more costly runtime polymorphism.

The backend of ThOr on the other hand does not try to avoid additional compila-
tion. With the cling compiler [76] that has been developed after the introduction
of LoKi, Just In Time (JIT) compilation is available in the LHCD software stack
natively. Rather than stacking layers of costly polymorphism, ThOrs functors
can get JIT compiled and linked at the initialization time of the HLT application.
There is only one layer of type erasure that enables the use of ThOr functors in
any GAUDI algorithm.

Cling is a JIT compiler currently based on Clang 5. Compared to the currently
used compilers in LHCD software, Clang 9 and GCC 9/10, Clang 5 is fairly old and
does not support the newest C++ standards. This fact in itself poses challenges
due to incompatibility, but that is not the only problem. Code compiled with cling
often executes many factors slower than code compiled with modern gcc or clang
versions, the reason for which is currently under investigation. Moreover, changing
compiler flags to enable different levels of vectorization is highly non-trivial in
cling as it uses pre-compiled headers of ROOT libraries that it depends on. JIT

68

7.4 Improving upon the baseline with new selections

compilation of ThOr criteria is thus done exclusively on a scalar basis, i.e. no
vectorization enabled.

In summary, JIT compilation with cling is currently not efficient for high through-
put scenarios, but it works fast enough for the offline use without the need to
recompile the full software. For the high throughput production application, ThOr
employs a second mode of compilation: The functor cache.

All functors that are defined in python during build and compile time will be
compiled into a cache to be used natively in the application. The usage of these
functors does not need any JIT compilation.

Note that LoKi is also capable of using a functor cache, but the performance
difference is much less pronounced than with ThOr. This has two reasons: Firstly,
the slowdown that Cling introduces with its JIT compilation only applies to ThOr,
as LoKi does not necessarily need to compile anything. Secondly, the extensive
amount of type erasure that enables composability without compilation is still
present in compiled functors. Figure |7.4] summarizes the possibilities to build
configurable selections and their runtime qualitatively. The speed differences have
not been quantified for the two slower options as they can be avoided during
production. Detailed comparisons between compiled LoKi and ThOr are found
later on in this Chapter.

JIT ThOr LoKi cached ThOr

T

cached aster
LoKi

. J L J
Y Y

assembled
during
intialization

pre-compiled

Figure 7.4: Functor implementations sorted by speed (single-core only, quali-
tatively).

ThOr implementations of functors are already put to practice in HLT1 selections
and yield good results there. For the first tests in HLT2, ThOr functors are

69

7 Selections and Combinatorics in Upgrade HLT?2

implemented to work with LHCb::Particle.

Generally, ThOr functors are designed to be agnostic to input and output type to
be flexible on what they operate on. They only assume the existence of certain
accessors needed to compute the desired result. This approach usually referred to
as duck typing. instance.momentum() Or instance.pid() are basic examples. Excep-
tions are sometimes made for more mature models like LHCb::Particle as API
changes there are much more convoluted and would require changes throughout
the entire downstream codebase. In this case, the functor input type is detected
at compile time and another code branch is executed.

Comparisons of runtime in this chapter are all single core tests, as LoKi is
not capable of multi-threading. First order Linear scaling in the number of
physical cores is expected, as there is no inter-event dependency in any of these
algorithms.

The baseline filtering algorithm FilterDesktop using LoKi is compared to an
equivalent filtering algorithm using ThOr called PrFilter. PrFilter is a generic
filtering algorithm which can be specialized on the type of input container. For
this comparison it is specialized on a non-owning masked collection of LHCb::Par-
ticles. Benchmarks of ThOr, LoKi, combiner and filter algorithms depend on
the configuration that is tested. Therefore, performance numbers are not to be
considered representative for the overall HLT application, although the bench-
marked selections closely resemble actual existing HLT2 selections. Note that all
benchmarks are performed with the fastest configurations which are not necessarily
the default.

Table [7.1 shows two benchmarks for each filter type. These and all following
benchmarks in this chapter are performed over 10000 simulated events that
resemble actual production data as closely as possible. These simulations are
referred to as "minimum bias” in LHCb. Charged basic particles are filtered
according to two different criteria. The first number corresponds to a selection
with only one functor, 1sMuoN. This functor simply dereferences some pointers to
check whether a particle has information from the muon stations. This simple
comparison is helpful to identify framework performance differences. Since many of
more complicated functors are implemented differently, the throughput differences
in these originate not only from choosing between ThOr and LoKi, but also by
functors themselves. The other criterion is fairly realistic preselection to many

70

7.4 Improving upon the baseline with new selections

beauty and charm trigger lines that selects high momentum displaced tracks.
Specifically, this preselection selects based on momentum, transverse momentum,
x2(IP) and PID. The speed up in this case can not only be attributed to the
increased framework efficiency. Specifically the calculation of x?(IP) differs. The
ThOr implementation is explicitly specialized and optimized for charged basic
particles while the LoKi employs a more general, but also more costly algorithm
making up about 60% of the 171 ps.

| ISMUON displaced presel.
FilterDesktop | 11.6 ps 171 ps
PrFilter 4.6 ps 12.8 ps

Table 7.1: A benchmark comparing two selections with two different algorithms.

Both Filters work without data copy, only with indices and pointers. PrFilter
employs functors implemented in the ThOr framework.

Overall, there are many places throughout LoKi functor implementations where
performance is sacrificed for generality, convenience or not strictly necessary fea-
tures. For instance, several frequently visited branches in the ISMUON calculation
yield atomic increments of logging counters. In the benchmarked scenario where
one selects muons from all long tracks, counter increments happen about 10 %
of the time. If not explicitly disabled, these increments drive the execution time
from 12 ps to 45 ps.

7.4.1 Combining with ThOr

It is now established that ThOr functor implementations work well in filter
algorithms and yield significant throughput improvements, aided by the increased
efficiency of the ThOr framework itself. The next step is thus to try to apply ThOr
in the other selection algorithms, the combiners. The implementation presented
here is the first multi-threading capable combiner, implemented in the GAUDI
functional framework. Combiners make up a major portion of the HLT2 runtime
and therefore represent a crucial component for optimization.

The algorithm described here is referred to as ThOrParticleCombiner and its
differences to CombineParticles are mainly framework based. It is a Merger as
described in |5.4. It gathers over multiple particle input containers, combines
particles from these according to a decay descriptor and then creates parent

71

7 Selections and Combinatorics in Upgrade HLT?2

particles in a vector collection. ThOr functor specializations are used for selection.
This combiner specializes on the number of children at compile time, similarly
to NBodyDecays. Up to the functor implementations, the children selections are
implemented in the same way as the LoKi combiners. The differences are to find
in the combination loop:

1. NBodyDecays allows for N-1 combination criteria for an N-Body combina-
tion, concerning the first M children, where M goes from 2 to N. A 4-Body
combination allows for combination cuts on children (12), (123), (1234).
The new algorithm allows also for combination cuts on children (13) and
(14). This helps with reducing the combinatorial load even more than in
NBodyDecays. Other combinations of criteria, like (23), make less sense
to implement since they would have to be evaluated as often as the (123)
combination due to the loop order. One could hoist the evaluation out of the
loop by preemptively applying the (23) criterion to the full input collections
and save the result in a 2-dimensional structure, but as combination cuts are
generally expected to have a rather small efficiency, only little information
in the 2d structure would actually be used.

2. The information on whether there are multiple instances of the same PID in
a decay descriptor is only available at runtime. However, the PID check is
performed in LoKi combiners for every combination. The new combiner lifts
this information out of all loops and thus reduce the branching in critical
paths.

The overlap check during combination is done with the same tool as in the
LoKi combiners. The vertexing stage also employs the same logic as LoKi
combiners, which is simply a filter step. Table |7.2| shows how CombineParticles,
NBodyDecays and ThorParticleCombiner compare in runtime when using a
common DT — KTrntr™ selection with similar, but looser selections than in the
Run2 HLT2 Dt — K77~ trigger line. The combinations are made from kaons
and pions selected with the previously benchmarked displaced filtering criteria from
Table [7.1. The combination selection involves minimum transverse momentum,
distance of closest approach (DOCA), invariant mass, summed children momentum,
and several more displacement requirements. After the vertex fit, selection criteria
are based on vertex quality, parent flight distance and direction angle. The big
performance gap between CombineParticles and NBodyDecays is explainable by
the fact that CombineParticles does not allow for sub-combination cuts and thus
has to evaluate many more combinations than the other algorithms.

72

7.5 A new particle model

Dt — KTntn~ execution time

CombineParticles 256 pis

NBodyDecays 77.11s

ThorParticleCombiner | 38.8 s
Table 7.2: A benchmark comparing a typical D™ — K77~ combination
with different combiners. CombineParticles and NBodyDecays use LoKi func-
tors, ThorParticleCombiner uses ThOr.

Overall, the implementation logic is very similar in all combiners that have
been introduced up to now. Many aspects of the logic are constrained by the
LHCb::Particle model. In benchmarks of the algorithms it turns out that the
overlap check is a bottleneck in the baseline combiners. This is even the case
in the combination of basic particles where the implementation boils down to
a couple of pointer comparisons. Dynamic memory allocation appears in every
overlap-check invocation, regardless of the particle type. As overlap checking is
part of the critical path, this contributes a lot to the algorithm runtime.

7.5 A new particle model

The performance improvements in the previous section are promising and motivate
to go further. Several key design choices in the HLT2 data model seem to hinder
performance. Changes in the data layout have already been found to unlock
large gains in HLT1 [77]. These changes mostly concern the minimization of
dynamic memory allocation, the respect of cache locality and a data layout to
enable parallelism on the level of vectorization. As long as the right accessors are
implemented, ThOr functors can work on any data layout.

7.5.1 Data layouts and LHCb::Particle

When designing a model in the object-oriented paradigm, a class usually represents
an object to be described.

struct Point3D {
float x,y,z;

}s

73

7 Selections and Combinatorics in Upgrade HLT?2

When describing multiple points at once, one then resorts to collections over Point
instances:

using N_Points = std::array<Point3D, N>;

This data layout is referred to as Array-of-Structures (AoS). For contiguous
collections, the memory layout of such a collection of points looks as depicted in
the upper half of Figure 7.5, All features of one point are contiguous and spatially
displaced from features of other points.
The LHCb::Particle is designed as such a structure, displayed here in a simplified
manner:
struct Particle {

ParticleID m_pid;

Vertex* m_decay_vertex;

std::vector<Child*> m_children;
Track* m_track;

};...

The second, less intuitive layout is called Structure-of-Arrays (SoA) and is shown
in the bottom half of Figure [7.5] Instead of representing multiple points by a
collection of Point class instances, one can transpose the layout to three collections,
one for each feature of a point:
struct N_Points {

std::array<float , N> x;

std::array<float , N> y;
std::array<float N> z;

}s

This achieves contiguous features in memory as opposed to contiguous structures
in AoS.

Multiple LHCb::Particle instances are always represented in AoS fashion, which
brings advantages as well as disadvantages.

The biggest advantage is intuition and readability. Encapsulating and combining
properties into structures that have meaning is a much more natural step for
a human than packaging features independently. A particle means more to
somebody reading the code than a collection of x positions. Moreover, it is more
natural to represent a single particle in AoS than in SoA, which is useful for many
use cases in LHCb, like traversing a particle’s decay chain.

74

7.5 A new particle model

AoS

x 0 y_ 0 z 0 x_1 XN |yN/|zN
L D pu J
Y Y Y
Point 0 more Points Point N

SoA

. - U

x_0 xN | yoO0 y N | z0

z N

RS RS

all x values all y values

~

all z values

Figure 7.5: Array of Structures (AoS) vs Structure of Arrays (SoA).

The biggest disadvantage is SIMD performance. SIMD, or Single-Instruction-
Multiple-Data, is a programming paradigm where the task can be formulated
as a single sequence of instructions that has to be applied to a lot of data,

element-wise:

//AoS
std::array<Point, N> points, other_points;
array<int, N> x_sums;
for (int i = 0; 1 < N; ++i) {
x_sums[i] = points[i].x + other_points.x[i];

}

//SoA
N_Points points, other_points;
array<int, N> x_sums;
for (int i = 0; i < N; ++i) {
x_sums[i] = points.x[i] + other_points.x[i];

}

While these operations look very similar and accomplish the same thing, there is

5

7 Selections and Combinatorics in Upgrade HLT?2

one crucial difference. The SoA loop accesses contiguous elements as it evolves.
For each new i, one just adds 4 bytes to the previously used memory addresses.
The AoS loop does not access memory contiguously and has to jump the size of
one Point every time to get to the next x value.

There are at least two reasons to prefer the SoA loop. Firstly, the cache hit rate
is very high. The AoS loop on the other hand uses only about one third of the
data received by one cache load, and it gets worse the more members a structure
has.

Secondly, CPU vector instructions operate on contiguous memory. Because the
SoA layout naturally ensures the dense memory structure in each feature, that loop
can be transformed to use vector instructions quite natively. As these instructions
are almost as fast as scalar instructions, speed-ups of up to 8-fold can be achieved
with modern CPU vectorization. Real life use cases naturally bring their caveats,
but they can often be outweighed using vectorization in a sufficiently parallel
task.

Since selections and combinatorics clearly describe a SIMD paradigm, the task
ahead is to create a particle model that lays out its data in a SoA fashion.

7.5.2 The SoA particle

The design of the new particle model presented in this section is based on two
dimensional tables and operations on them. Columns represent features, and one
row represents the corresponding particle. One should be able to

1. create a column

2. merge columns into a table

3. add more columns to an existing table

4. read a row

5. read multiple rows at a time for vectorization

In LHCb::Particle, many of the data members were invalid, depending on what
type of particle is currently represented. For instance, a basic particle does not
have a decay vertex, and composite or neutral particles do not have a corresponding
track. Every optional member, in this case represented by pointers, needs to
be checked for existence whenever acted on. To implement these checks is easy

76

7.5 A new particle model

to forget and nullpointer access results in segmentation violations that can be
difficult to debug. Moreover, every existence check is an additional runtime branch.
To avoid these caveats, every particle type in the new model is represented by a
distinct type. The absence of an accessor yields a compiler error that gives much
more comprehensive information than a segmentation fault.

Charged basic particles are modelled by a very thin wrapper upon a number
of features that define the particle. There are multiple different algorithms
that assemble the features needed to define ChargedBasics throughout different
reconstruction steps. These features are zipped together after reconstruction.
Zipping gets its name from the python zip operation and corresponds to merging
the feature columns into a table that, when iterated over, yields entire rows.

Track ParticlelD Richinfo

e ==
accessor

(& ZLP J

ChargedBasic = Zipped<Track, ParticlelD,
Richinfo, ...>

O = &
acccessor

Figure 7.6: Zipping columns together to mimic charged basic particles.

Every feature column defines a proxy type that acts as front end to the column,
exporting all necessary accessors. The zipped structure then automatically defines
its own proxy that inherits from all columns proxies, thus accumulating all
accessors. A sketch of the zipping operation can be seen in Figure |7.6. A custom
iterator yields proxy instances with an offset and a width. Proxy accessors can
either yield scalars or vectors of any width a vector instruction supports. Instead
of looping over particles, the loop happens implicitly over chunks of columns with
accessors to make it look like an AoS layout:
// vield width 8 vectors
for (auto particle : zipped_particle_structure.with<av2>()) {

auto mask = particle.pt() > S*units::GeV;

store_if (mask, output, particle);

}

7

7 Selections and Combinatorics in Upgrade HLT?2

This code is explicitly vectorized. particle.pt() is an accessor that is made available
by the track that has been zipped into the structure. It yields a custom vector
type that overloads all common arithmetic operations to use appropriate vector
instructions in the background with the intel intrinsics library |78]. Up to control
statements like if, the code has the readability of AoS code but can still run explicit
vectorization and benefit from the cache locality that contiguous memory access
provides. Control statements can not be applied natively, because the condition
for the control statement might be different for different data. Every branch that
dispatches based on information of a single particle needs transformation into a
masked operation. store_if will only store indices where the mask entry is not
zZero.

Although zips are non-owning views, they can invoke a copy operation onto their
storage to be able to create an equivalent, but modifiable structure. This is
mainly used to select and consolidate particles after they were created in the
reconstruction.

Composite Particles are created within combiner algorithms. They are not
assembled column by column and are thus not modelled by a zipped structure
themselves, although they can be used within zips whenever additional per-
particle information is needed. Composite particles are modelled to minimize
dynamic memory allocation and maximize locality. The Composite uses a specific
underlying storage called "SOACollection”. It mimics a table just like a zip, but
with all columns next to each other in memory. The SOACollection only has one
heap memory block, and all columns are fit into it right after each other. This
has the disadvantage that one copy per column has to be performed whenever
the size of the container has to be extended, but only one allocation happens for
all columns. Reallocation is avoidable because the number of particles coming
out of a HLT2 combination is limited.

To further mitigate dynamic memory allocation bottlenecks, a memory pool is
employed with a custom allocator. Every event task has its own pre-allocated
memory pool and every structure with the custom allocator can tap into that
pool to avoid the costly dynamic allocation. The SOACollection supports the
allocator and thus allocates very cheaply.

Just like basic particles, the composites export a proxy with accessors that can
yield information of variable width to enable vectorization. The new composite

78

7.6 Filtering and combining with the SoA particle model

model currently supports a decay vertex information, kinematic properties, child
relations over indices, and covariance matrices.

The zipping infrastructure, the SOACollection and the custom allocator were
initially developed for HLT1 and can now be reused in HLT?2 selections with great
success.

7.6 Filtering and combining with the SoA particle
model

This section presents filter and combination algorithms to exploit the advantages
that the new particle model provides.

Everything needed to efficiently filter particles is already provided by the model
backend. It is sufficient to specialize the PrFilter algorithm to work with the
new particle types. A loop iterates in vector strides and applies a compressed
store operation on the corresponding output storage. Unlike the LHCb::Particle
filters, these explicitly copy and consolidate particle information to maintain a
contiguous memory structure from which one can vectorize natively. This comes
with a cost, but it simplifies following operations if one can assume contiguous
inputs. A benchmark of all filter implementations is shown in Table 7.3 The
performance numbers suggest that most of the time is used to consolidate the
particles. Firstly, the major difference between the two PrFilter implementations
is the consolidation. Secondly, the performance difference between the simple
(ISMUON) and the more complicated selection is negligible in the SoA particle
scenario.

ISMUON displaced presel.
FilterDesktop 11.6 ps 171 ps
PrFilter 4.6 18 12.8 s
PrFilter with SoA Particle | 10.4 ps 10.5 s

Table 7.3: A benchmark comparing two selections with all implemented filter

algorithms. This extends Table |7.1| by PrFilter operating on the SoA particle.

However, the real gains are expected to be found in a combiner algorithm on the
SoA particle model. Vectorization can now be employed efficiently as ThOr and
the new model are designed to support it.

79

7 Selections and Combinatorics in Upgrade HLT?2

7.6.1 A Combiner for the SoA Particle

A new combiner algorithm dubbed "ThOrCombiner” is implemented to work with
ThOr functors and the SoA particle model. It is implemented generically to be
able to handle the different particle types as uniformly as possible.

In contrast to the previously outlined combiners, this one does not implement
a child stage. Child cuts complicate the implementation and have only little
benefit as they can be performed by preceding Filters. Additionally, only one
decay descriptor is allowed per combiner instance. The only exception to this rule
is a global charge conjugation, which results in two descriptors. Child containers
need to be provided in order according to the given decay descriptor. Whenever
there are two children of the same particle ID, the corresponding containers
must match exactly. The typical selection is expected to be invariant over input
permutation. If really needed, any asymmetry of input particles can be expressed
with a combination cut. With this assumption the O(n?) checks for unique
combinations outlined in Section |7.3.2 can be avoided without having to merge
inputs of same particle ID as the other combiners do. The following sections
describe the algorithm in greater detail, once with pseudocode and once on a
higher level with pure text.

80

7.6 Filtering and combining with the SoA particle model

The algorithm logic

The combiner logic is best displayed with pseudocode. Here, 7« assigns, "<+

2

adds to a collection and "#7” evaluates the size of a collection. More details on

the logic can be found in the following subsections.

o W « vector width for vectorization

e N « the number of children in the decay descriptor (at least 2)

o CS «+ empty list. It stores for combination indices in flight. One store for
every n € [2,N]. CS[i] refers to (i+2)-body combinations.

o CANDS < empty list. It stores the fitted candidates.

o loop: decay < decay descriptors

— indices + containers of indices into particle containers that match the

decay descriptor
— loop: p0 « indices|0] (indices of first particle container)

% (triangular) loop: pls <~ W elements of indices|1]

1.

@

CS[0] «—+ combine p0 with every element of pls, filter them
with an overlap check and the two-body combination cut.

if #CS[0] < W: next pls loop iteration

nextCS < move W elements from CS|[0]

if #indices == N:

CANDS -+« vertex fitted and selected nextCS

else: (triangular) loop: p2 < indices|2]

CS[1] <=+« nextCS with p2 added to each combination,
filtered by overlap check and three-body combination cut.
if #CS[1] < W: next p2s loop iteration

nextCS « move W elements from CS[1]

if #indices == N:

CANDS <+« vertex fitted and selected nextCS

else: (triangular) loop: p3 < indices[3] with the equivalent
logic as the loop on indices[2] ... This is implemented
recursively!

— every CS[i] for i < (N-2) still contains [2..N-1]-body combinations due
to the loop break on #CS[i] < W. These are now extended to N-body
combinations and then fitted and appended to CANDS in the same

way as above.
« CS|N-2] still contains (less than W) N-body combinations. These will be

fitted, selected and appended to CANDS.

81

7 Selections and Combinatorics in Upgrade HLT?2

Combining

The combiner algorithm starts by selecting indices from the particle containers
according to the charge and particle ID specified in the decay descriptor. Next,
combinations need to be built from these indices. Conceptually, this corresponds
to a N-dimensional cartesian product where N is the number of children in the
decay descriptor. Combinations are built recursively starting from 2 indices. More
indices are added to every combination until the correct number of children is
reached.

When the same particle ID appears multiple times in the decay descriptor, other
combiners applied a kinematic ordering to avoid combination duplications. In this
combiner, entries in the particle input list are assumed to be unique. One can
select combinations solely based on indices, considering only the lower triangle of
the cartesian tensor. This yields the behavior that is outlined in the left half of
Figure 7.3, independently of ordering in the container. This "triangular” logic
is implemented by starting the second particle loop from the first loops current
index + 1 instead of from 0. That is simpler and cheaper than selecting based
on kinematic properties, and the unique entries assumption is very reasonable in
the normal HLT?2 workflow, as most operations select from a unique collection of
reconstructed particles.

The algorithm always works on a chunk of combinations of a size equal to the
vector width W. These W-sized chunks of [2..N]-body combinations are selected
via a [2..N]-body combination cut and overlap checks in each respective loop. This
causes chunk size reduction. To maintain a high vector instruction utilization,
these chunks are refilled with new combinations to at least size W before being
processed by the next vector instruction.

Overlap checks are trivial in the currently implemented combiners covering com-
bination of charged basic particles. A simple comparison of underlying tracks
can be performed without much runtime branching, as a charged basic type
guarantees the existence of a track. Composite children are envisioned to carry a
flat set of object IDs, and overlap checks can then be implemented by checking
the intersection over these sets. This is computationally much more efficient than
creating these sets on the fly with dynamic allocation in the inner loops of the
combiner.

82

7.6 Filtering and combining with the SoA particle model

Vertexing

Whenever a full vector width of valid N-body combinations is produced, the
vertex fit functionality is invoked in a vectorized fashion. A purely functional
linear algebra library was specifically designed to allow vectorized matrix and
vector operations in the LHCb environment. It is utilized to perform the fit in
a fully vectorized fashion. After the vertex cut is passed, the composite output
particles are filled with all necessary information and added to the output storage.
The vertex fit is always performed on size W combination chunks until the very
end, where the residual (#combinations mod W) combinations are fitted. The
residuals are fitted after the loop over the decay descriptors to ensure the highest
possible vector instruction utilization.

7.6.2 Benchmarks on combining with the SoA Particle

The success of the particle model and the new combiner is immediately apparent
when benchmarking the DT — K77~ selection from Section 7.4.1. A collection
of all results can be seen in Table|7.4. As the new combiner can optionally vectorize
if vector instructions are available, multiple possibilities are shown here: Scalar
execution without vectorization, Vectorization with width 4 (SSE instruction set)
and with width 8 (AVX2 instruction set). While vectorization brings down the
runtime by 35%, it is not the biggest contributor to the increased speed. This
is due to the fact that there are often too few combinations to utilize the vector
instructions well enough. The reduced dynamic memory allocation due to the
specialized overlap check is among the biggest contributors to speed up between
the scalar ThorCombiner and the ThOrParticleCombiner. When selection criteria
are loosened, vectorization becomes more effective.

When the performance displayed in these benchmarks extends to other trigger
selections in a similar manner, the 20-25% contributions from the current selection
algorithms can brought down to percent level. Trigger selection authors need to
utilize the [2..N-1] combination cuts more rigorously than in the past, where they
have often been neglected. When selections implemented in the ThOr and SoA
particle environment are properly tuned, I am confident that the contribution of
selections to the overall runtime stays in the single digit percent level.

83

7 Selections and Combinatorics in Upgrade HLT?2

Implementation D" — K*tn"n~ execution time
CombineParticles 256 ps
NBodyDecays 77.11s

ThorParticleCombiner | 38.8 us

ThOrCombiner Scalar | 10.2 s

ThOrCombiner SSE 7.5p1s

ThOrCombiner AVX2 | 6.9 1s
Table 7.4: A benchmark comparing a typical D™ — K*nt7~ combination
with different combiners. Extends Table |7.2| by the ThOrCombiner implemen-
tation working on the SoA particle and ThOr functors.

7.7 Conclusion and Qutlook

In this chapter several new features for particle selection and combination with
the potential to significantly increase the throughput in the HLT2 application
were presented. Although the outlined benchmarks are not exemplary for all the
HLT2 use cases, the drastic throughput increase suggests overall superiority of
ThOr and the SoA particle model. Moreover, the algorithms working on the new
model scale much better with an increased combinatorial load as they can make
better use of vectorization. This is important since the most expensive combiners
in Run 2 HLT2 were those with high combinatorial load.

The implementation of additional features into ThOr, the model and the combiners
is a top priority in the imminent future. There are still several missing features
to make these new frameworks suitable for a fully operational HLT2. Missing
features include the combination of composite children, an implementation for
neutral basics, related particle information, composite overlap checks and several
ThOr functors.

The functionality used in the benchmarks has been verified during development
and testing. All configurations tested show equivalent efficiencies for all selections
involved. The vertex fit has been verified to yield the same results as the baseline
algorithms up to floating point differences. All validation of physical correctness
beyond efficiency comparisons is yet to be performed.

If time proves too short to cover all these tasks, the ThOr combiner working on
LHCDb::Particle can already give significant speed-ups with a particle model that
has been validated for multiple years. Properly employing sub-combination cuts

84

7.7 Conclusion and Outlook

makes a crucial difference, and these have not been used very regularly in Run 2
combiners. The only thing missing to make that combiner fully functional are
less commonly used ThOr functors.

In conclusion, the work presented here lays the groundwork for a highly efficient
selection framework suitable for a 1 MHz HLT2. Actions to transfer existing lines
to this framework are already being taken. ThOr functors at the very least, but
likely also the SoA particle model will soon become the new baseline for HLT?2
production.

85

8 The Topological Trigger with Selective
Persistence

The previous chapters concerned the increase of throughput for the HLT applica-
tion for online production. This chapter will concentrate on the second biggest
problem of the HLT production environment, the output bandwidth. With the
amount of lines anticipated and the expected physics output for Run 3, the upper
limit for output bandwidth of 10 GB/s represents a tight constraint.

The work presented in this chapter will try to mitigate bandwidth bottlenecks
by scrutinizing the most prominent physics selection in HLT2, the so-called
topological trigger, or Topo for short. It aims to select a wide range of beauty
decays with an inclusive selection focussing on the spatial and kinematical decay
topology. The Topo works by combining an inclusive list of basic particles with
sufficient momentum and impact parameter into vertices and selecting them
based on vertex quality and displacement. It works in two modes, a two- and a
three-body combination. The selections are designed such that also (N>3)-prong
decays can be captured. After combinations have been built, a multivariate
classification algorithm is employed to further distill the selection down to an
acceptable bandwidth. Due to its inclusive nature, the bandwidth output of
this trigger line is orders of magnitude larger with respect to the usual exclusive
HLT2 lines. This chapter aims to construct an algorithm to select a wide list of
beauty decays with high efficiency while maintaining the lowest possible output
bandwidth. Two strategies are employed to achieve this:

1. Select signal with a high efficiency while rejecting background events with
high probability. The precision, that is the number of true positives over
the number of all selected, is to be maximized.

2. Employ selective persistence. The inclusive nature of the topological trigger
makes the selection of relevant decay parts a much harder task than in
exclusive lines, where the decay nature is known beforehand. The task
is to identify parts of the full event that are relevant for future analyses.

86

8.1 Input data

Other parts of the event can then be discarded to lower the bandwidth even
further.

Note that the work presented in this chapter was performed mostly by me, but
the work on selective persistence is based on a similar study performed by Alex
Pearce and Vladislav Belavin [79].

8.1 Input data

The studies presented in this chapter work exclusively with simulated samples to
model the upgrade detector and HLT conditions. Default upgrade collision and
detector conditions have been used. As the Topological trigger aims to select a
wide range of decay signatures inclusively, a collection of decay samples is used as
representation of the signal. The motivation for choosing most of these channels is
given in Chapter 2.1. Next to choosing decays of high physical relevance it is also
important to choose a set of decays that reflects all topological signatures that
one aims to select. This collection contains two-, three- and four-body vertices,
different parent particle flavors, neutral particles and semi-leptonic decays, where
non-reconstructible neutrinos take part. A classifier dealing with this collection
also has to cope with electrons with higher reconstruction uncertainties due to
the increased amount of emitted bremsstrahlung in the detector. For every decay,
the charge conjugated decay is implicitly considered as well. Parentheses are
enclosed around decay products that decay into something specific themselves.
For instance, BY — (¢ — K™K~)(¢ — KTK™) refers to the B? decay into two
¢ mesons which each decay into K™K ~. The samples comprise simulations of
the following decays:

e BY - Ktr~

e B (D" - K ntn™) (D™ — K n7)
e B+ (¢ K"K)(¢p—K'K")

o B = atr (70 — 47)

e BY —efe (K*(892) - Ktn)

« B = (D" = (D = KYK")n)u'v,

e B 5 (D = (D° - K*K)) (" = ntntn v v,

87

8 The Topological 'Trigger with Selective Persistence

« B = (D" - (D° = K"K)n) (v = pho, v)y,
e B -5 (D; - K"K n)K"
o N — (A = pK) (Dy - K"K)

Minimum bias refers to a type of simulation that aims to resemble the data
read out during production as closely as possible. Measured decay probabilities
as defined by the PDG [80] are used for every known process. Minimum bias
simulation is used to estimate rates and to serve as background for classification
purposes.

Simulation of a specific decay at LHCb means that a full event is simulated where
at least one of the present decays involve the listed one. For example, the first
listed signal simulation has at least one B — K*7~ decay in each event, but
the other b quark from the pair production might have hadronized and decayed
differently. There are cuts on the simulation samples making sure that the all
final state particles of the signal decay are in detector acceptance.

All samples in this chapter are filtered by HLT1. They only contain events that
passed at least one HLT'1 trigger line. More information on the simulated samples
can be found in Appendix |A.2.

8.2 Optimization of the topological event selection

The topological trigger, aims to select beauty decays solely based on topological
information so as to be able to generalize over specific particle IDs. Beauty
flavored particles have hundreds of known and unknown decay modes. The Topo
is in place to avoid having to write exclusive lines for each of the known channels
and also capture possibly unknown or forgotten channels implicitly. Due to the
distinctive signatures and comparably low rate of beauty hadrons, the rate of an
inclusive beauty line is acceptable at high signal efficiencies. Due to the higher
cross-section of charm hadrons, an inclusive charm line is not possible with an
acceptable overall efficiency. Ideally, every beauty decay is to be captured and
selected by the Topo trigger line. The workflow is organized as follows:

1. Combine charged basic particles without specific PID requirement into a
2,3-body combination to produce B candidates.

88

8.2 Optimization of the topological event selection

2. Select B candidates based on kinematic properties of the children and the
candidate itself, and vertex fit information.

3. Persist an event whenever there is at least one candidate passing all require-
ments.

First, the metric for optimization will be defined. In Section 8.2.2 the combination
and preselection stage of the Topo is outlined. After Section 8.2.3|introduces some
theory on the used algorithms, Section |8.2.4 outlines the baseline classifier and
how to improve upon it. Section [8.2.5 shows the performance of the improved
algorithm on the full input data set given a fixed output bandwidth.

8.2.1 The metric for optimization: Trigger On Signal
efficiency

To optimize selections in this chapter, the metric for optimization must first be
defined. The final goal is to efficiently select signal decays from the input samples
while keeping the output rate and bandwidth at a defined upper limit. One could
consider a signal decay selected as soon as the event containing the signal decay is
selected by the Topo trigger. This implies that enough information of the event is
persisted to reconstruct the full signal decay if that has not happened. However,
when choosing for trigger requirements to use in an analysis, one needs to be
able to model possible backgrounds appearing in the data to be able to extract
a physical quantity of interest. This might pose a significant problem. If the
selection depends on quantities of the event besides the signal decay itself, the
event itself has to be modelled. To avoid this, most analysts chose to only use
events in which the trigger line selected based on the signal candidate itself. This
is referred to as Trigger On Signal (TOS).

A signal candidate is defined as one in which all basic particles belong to decay
products of the signal decay. This information is produced by matching simulated
to reconstructed particles. The true decay chain of the simulated particle can be
inspected and considered for evaluation of ground truth. The decay is different for
every simulation sample. Minimum bias only consists of background candidates.

In Section 8.2.4] the baseline selection algorithm is introduced. This algorithm
is optimized to select candidates where all children come from the same beauty
hadron as signal. This definition will be referred to as "FromSameB”. It is
different to the definition for a signal candidate because the signal decay may

89

8 The Topological 'Trigger with Selective Persistence

not be the only beauty decay in the event. Simulation generation guarantees one
generated bb pair. Changing this optimization goal is one reason for a defining a
new algorithm.

TOS efficiencies in this chapter are calculated under the assumption that there
is at least one candidate in each event as every simulation sample contains at
least one signal decay. This assumption is arguable as the final state particle
of the signal might not be reconstructed. However, algorithms might manage
to reconstruct and make use of decays using only a subset of the final state
particles. Optimizing for the maximization of this definition of efficiency is not
harmful. Efficiencies for trigger selections have been optimized against common
offline selections in the past [57]. However, as Upgrade LHCD is a completely new
detector, efficiencies should not be biased against possible future offline selections
that are based on experience with the current detector. Thus, every selection
efficiency in this chapter is defined as follows,

_ #fevents with a signal-matched candidate

8.1
#events going into the selection (8.1)

8.2.2 Topo candidate combination

The events considered for this trigger line are ones which passed the HLT1 filter.
Here, specifically at least one of three trigger lines needs to be triggered on
signal:

1. Hlt1TrackMuonM VA
2. Hlt1TrackM VAV Loose
3. Hlt1TwoTrackM VAV Loose

These single track lines select displaced tracks with high transverse momentum.
In this chapter displacement is measured with respect to primary vertices. The
muons are processed separately as they do not need as tight displacement cuts
to control bandwidth. The two-track line makes a combination and selects
based on the x? of the vertex fit (2,), displacement and summed combination
transverse momentum. The exact configuration of these trigger lines can be found
in Appendix |A.1.

The Topo combination starts from long tracks with a x? (IP) of at least 4. This
selection excludes tracks that can be closely extrapolated back to a PV. x? (IP)

90

8.2 Optimization of the topological event selection

is calculated by calculating the x? on a single iteration fit of the track onto the
closest primary vertex. It serves as measure for displacement from the beam.
Tracks that come from beauty mesons mostly exhibit high x? (IP) values because
they extrapolate back to the displaced beauty decay vertex instead of any PV. A
distribution of x? (IP) in B? — ¢¢ events can be seen in Figure 8.1,

from Bs - ¢¢
background

(2]

=107!

=

>

©

p=

21072

©

0 5 10 15 20

X2(IP)

Figure 8.1: x? (IP) distribution of long tracks in BY — ¢¢ simulated events.
The orange distribution corresponds to tracks that do not originate from beauty
hadrons. The blue distribution contains tracks which come from B? — ¢.

The tracks are transformed into particles and combined into B candidate. The
two-body combination is selected to have a distance of closest approach of less than
1mm. If the tracks do not extrapolate to a common point, it becomes much less
likely that they originated from the same decay vertex. Because beauty mesons
have a relatively high mass, the combined transverse momentum of the tracks
in the combination is expected to be larger than for the average combination of
tracks. Therefore, a combined transverse momentum of over 1 GeV is required for
the two-body combination.

The candidates’ selection comprises the following requirements:

1. Flight distance x? greater than 16. This indicates high displacement of
the decay vertex and primary vertices. Because beauty hadrons have high
lifetimes, this cut has high separation power.

2. cos(DirA) with respect to the closest PV greater than 0. DirAis the opening
angle between the candidate momentum and the line between decay vertex
and best PV. This value might differ from 0 significantly if not all tracks
are captured by the combination. However, an angle over 90° is unlikely for
signal decays as this would imply a very large amount of missing momentum.

91

8 The Topological 'Trigger with Selective Persistence

3. Pseudorapidity of the interpolation between best PV and decay vertex with
respect to the beam line between 2 and 5. This is equivalent to the LHCb
detector acceptance. Almost every combination passes this cut.

To motivate the use of cos(DirA) and flight distance x? in the preselection, the
distributions of these variables in BY — ¢¢ events are shown in Figures|8.2. While
the cuts are loose, they can already get rid of a large portion of the background.

. 15.01 .
signal signal

0.06 background 12.51 background
2 8
S = 10.01
>.0.041 2
® < 7.51
£ b=
= Q 1
% 0.02] 5 20

2.51
0.00
0 10 20 30 40 50 000 55 0.0 0.5 1.0
Flight distance x? cos(DIRA)

Figure 8.2: Flight distance x? (left) and cos(DirA) (right) distributions two-
body combinations in Bg — ¢¢ simulated events. The blue distribution
corresponds to signal candidates, truth matched to the signal decay. The
orange distribution shows background candidates.

For the two-body selection, the Topo candidate is required to pass any of the
previously listed HLT1 lines. TOS in single track lines is defined such that
either one of the tracks in the Topo candidate should have passed the lines
requirements.

The three-body combination builds upon the two-body combination. After another
cut on the two-body combination, x2,, smaller than 10, these are combined with
another charged basic particle. The three-body combination is required to have
a combined transverse momentum of over 2 GeV. The same distance of closest
approach requirement and the same vertex cuts as in the two-body case are
applied. Again, at least one child has to pass one of the HLT1 trigger lines. Note
that the two-body combinations considered for the three-body combination do
not need to pass the HLT1 lines by themselves, only in combination with the
third track.

92

8.2 Optimization of the topological event selection

Efficiencies for the outlined combination and selection are displayed in Table 8.1.
The definition of the efficiencies is given in Section 8.2.1, Two-body decays like
BY — K*7~ exhibit a lower efficiency due to combinatorial chance. Reconstruct-
ing exactly the two right tracks is a two-body Topo is less likely than combining
two out of N for a N-body decay with N > 2.

Table 8.1: TOS efficiencies for the preselection.

Decay Efficiency [%]
BY — Ktr 35.9
B® — D*D- 79.1
BY = 6 73.7
B — ntrn® 48.1
B — K*(892)ete™ 63.6
B® - D pty, 33.0
BY — D* (% — 370,)v, 46.6
B = D* (1" = ptv,p)v, 46.3
BY - DIK* 75.9
A9 5 DS 78.2

8.2.3 Boosted tree ensembles

The B candidate selection after reconstruction and combination is a multivariate
binary classification on a relatively small feature space. Ensemble methods,
specifically Boosting, have proven to be very effective in these tasks. Gradient
boosting algorithms have been dominating the Kaggle [81] classification scene for
several years now. LHCb has a history of employing boosting for classification
tasks, mostly in data analyses. The in-house implementation of several ML
algorithms including boosted decision trees, TMVA [82], has been used for over a
decade. Boosted trees have been used to train the topological selection for Run 2
and we will continue to do so here.

The basics of boosting will shortly be outlined in the context of Classification And
Regression Tree (CART) ensembles. Firstly, a CART is a binary tree structure

93

8 The Topological 'Trigger with Selective Persistence

that splits inputs based on their properties, recursively. Figure 8.3 shows an
example tree with weights in the leaves. Regression trees have continuous and
classification trees have discrete output. An input to the tree will traverse it by
applying the selections defined in the nodes. If the input meets the requirement,
it proceeds along a green arrow, otherwise a red. The output is the weight in
the leaf the input ends up in. If weights and criteria are well-adjusted, one
could interpret the output of this tree as an estimation for signal probability for
muons from a B meson. By increasing the depth and the number of leaves, more
sophisticated selections can be encoded in a decision tree. Trees are usually built
by iteratively introducing new nodes. In each step the criterion that can best
optimize an objective function is chosen to form a new node. This is called greedy
optimization.

Figure 8.3: A simple tree with 3 leaves and a depth of 2. It assigns a number
to the input based on which leaf it ends up in. A green arrow corresponds to a
pass of the criterion defined by the node, a red arrow means fail.

To model more complex functions, a single tree needs a huge number of parameters.
Because of this property, they are often referred to as "weak learners”. This is
where boosting algorithms come in. Instead of considering one tree, they build
ensembles of trees, the weights of which are added to achieve arbitrarily good
function approximations. Most boosting algorithms iteratively fit weak learners to
rectify miss-predictions of the previous iteration. Gradient boosting will be used
in all new Topo implementations described in this chapter, so is quickly outlined
here:

1. Training set: N Samples and truth (z;,y, € {—1,1})
2. A differential loss function L(y, 7).

94

8.2 Optimization of the topological event selection

3. Initialize the model F,(z;) = const.
4. for k=1..K

a) Compute residuals (errors) of the current model:

Lo— _8L(yi7 Fia(zy))
' OF)_q(x;)

b) Fit a weak learner hj(z) to model the residuals.

c¢) Choose a weight «;, to minimize the loss on the current model:

Li(y,y) = Z L(y;, (F_q +vehy) (7))

d) Update the model Fj(z) = F},_; + yi.hi(x)

Gradient boosting can be interpreted as generalization to AdaBoost, the algorithm
used in previous implementations of the Topo [83]. It uses an exponential loss
function L(y,y) = ZZ e Yi'Ui. There are many parameters in a gradient boosting
classifier that can be tuned to increase performance. For instance, one can only
consider subsets of the data in each step, or use different factors v, to adjust how
fast and how likely classifiers reach local minima.

8.2.4 Topological classification - Baseline comparison

The heart of the topological trigger is the multivariate selection that acts on the
previously produced and selected Topo candidates. As opposed to other, exclusive
trigger lines, the selections described in Section 8.2.2 are very loose and yield
a high output rate. The multivariate selection aims to optimize efficiency on
reconstructed beauty decays while maintaining a relatively low output rate.

The Run 2 Topological trigger applies the multivariate classifier to each candidate
individually. The resulting trigger decision corresponds to whether at least one of
the candidates passes the classification. The current baseline for the upgrade Topo
as well as the first new implementation described here use the same workflow.
A gradient boosting algorithm proves to be very efficient for the classification
task.

As shortly discussed in Section |8.2.1, the training data for the baseline algorithm
uses the "FromSameB” definition for classification. If all children in the candidate

95

8 The Topological 'Trigger with Selective Persistence

are matched to a simulated basic particle that comes from the same simulated
B hadron, a candidate is considered to be part of the signal data set. This does
not necessarily need to be the signal hadron of the simulated sample. Although it
increases the statistical power of the signal data set, it does not fully represent the
metric to optimize for, namely the efficiency of the signal decay. This is the first
of four motivations to train a new Topo classifier. The second motivation is the
input data. The baseline algorithm is trained on a smaller and less representative
input collection. Thirdly, the input decay signatures are not weighted equally,
but simply uniformly and thus proportionally to the different number of input
samples available for each decay. Lastly, the TMVA implementation boosted
tree ensembles trains rather slowly compared to modern implementations. From
personal experience, it requires significant manual tuning to reach competitive
performance. Instead, the Catboost [84] library is employed for the new algorithms.
During the course of these studies, Catboost and Light GBM [85] were compared
in different scenarios and with different hyperparameters and always yielded
very similar results. Finally, Catboost was chosen because it has the option to
export most of their models to native Python and C++, which greatly eases the
integration into the LHCDb software stack.

This section compares the different optimization methods and implementations.
New algorithms are trained with the same signal definition as the baseline uses.
Only the algorithms and data preprocessing cause performance differences.

In Section [8.2.5 algorithms are optimized for the selection of the signal decay
itself.

Input data to the baseline approach comprises the following decays:
e B = (D" - K ntn™) (D™ — K n7)
e B (¢ K"K)(¢p— K"K")
o B = atr (70 — 47)
e B+ (D; - K"K 7)K"
e B = X v,
e Minimum bias

Each entry in the training sample comprises features presented in Table 8.2 and
the signal label. Distributions of three input features with high separation power
are shown for illustration in Figures |8.4L Signal in BY — ¢¢ events are plotted

96

8.2 Optimization of the topological event selection

against background candidates reconstructed in minimum bias events. Although
these features show significant differences in signal and background, they also
motivate the use of a multivariate classifier. None of these features can be used
for rectangular selections without sacrificing portions of the signal. The boosted
tree ensemble will does a much better job of retaining signal while discarding
background due to exploitation of correlations between these features.

From Bs - ¢¢ 10-1 From Bs - ¢¢
101 Background 9 Background
g g 102
>102 >
o 10 © 1073
p=] E=
e 2
5 101 4 1074
10-3
10° 0 50 100 150 200
0.988 0.990 0.992 0.994 0.996 0.998 : 5
candidate cos(DIRA) candidate vertex x
10-2 From Bs = ¢¢
Background

2

c

=}

1073

o

§

©

1074
500 1000 1500

track minimum x2(IP)

Figure 8.4: Distributions of candidate cos(DIRA), vertex x? and track mini-
mum x?(IP) for B? — ¢¢ signal candidates versus minimum bias background.

To measure and compare performances of different classifying solutions, the True
Positive Rate (TPR) is plotted against the False Positive Rate (FPR). This is
known as Receiver Operator Characteristic (ROC) and is a commonly used for
performance visualization in binary classification tasks because it is independent
of the number of background and signal samples and their ratio. The area under
that curve (AUC) can give a single number score without the need to choose a cut
point. For final evaluation, several realistic cut points will be chosen to measure
efficiency given output rate.

The baseline implementation used the AdaBoost implementation in TMVA with
100 weak learners. The new models use gradient boosting on binary cross-entropy

97

8 The Topological 'Trigger with Selective Persistence

Table 8.2: Input features to the Topo training

Feature Explanation

(2,3)-Body CORRM Corrected invariant mass /M2 + (p7')2 + pl. pi' is
the missing transverse momentum to match the mo-
mentum vector and the linear extrapolation between
corresponding PV and decay vertex.

(2,3)-Body DOCAMAX Maximum distance of closest approach between chil-
dren.

(2,3)-Body FD x?2 Measure for displacement of decay (d) and primary
(p) vertex: (Z4— 2,)(covy + cov,)(Z, — Z,), where
cov,(p) are the covariance matrices for decay or pri-
mary vertex position.

(2,3)-Body P(T) (transverse) momentum of the reconstructed mother

(2,3)-Body cos(DIRA) cos of the direction angle of the reconstructed mother
with respect to the PV

(2,3)-Body x? (IP) x? (IP) of the reconstructed mother
(2,3)-Body x4 X2, of the reconstructed mother

child x? (IP) x? (IP) of the children

child P(T) (transverse) momentum of the children

loss with up to 3000 weak learners. With such a large number of weak learners,
overtraining might become a problem. Overtraining names the phenomenon where
a model becomes sensitive to the statistical fluctuations of its training data, thus
lacks generalization and performs much worse on unseen samples.

Four methods are employed to counter overtraining: Firstly, a threefold cross
validation is used. The data is split three-way, and training is performed on two
thirds while validation happens on the third, unseen sample. This is done thrice,
each time with a different third as validation sample. The model is considered fine
if all three resulting models behave similarly. Secondly, the L2 generalization term
in the loss function adaptively reduces the weights in the leaves when they get
much larger than average. Thirdly, a technique called early stopping constraints
the number of weak learners. When the model does not continue improving on
the validation set, early stopping will stop the training progress and effectively

98

8.2 Optimization of the topological event selection

reduce the number of weak learners. Lastly, the random subspacing helps with
generalization because the model is forced to consider not only the features that
appear very predictive on the training set.

Considering multiple candidates in a Topo event at once might yield more ex-
ploitable correlations for the classification algorithm. Therefore, a second training
workflow was considered: Use the three candidates with the highest prediction
in the previously trained model as one input sample to get a better event wise
discrepancy. This workflow yields an event wise prediction, while the other config-
urations yield candidate wise predictions. The problem with event wise decisions is
that a TOS efficiency cannot be defined. However, the classification performance
can still be compared when ignoring the TOS requirement. To do so, candidate
predictions are translated to event predictions by taking the highest prediction of
all candidates in the event. An event wise label is defined as whether at least one
candidate is present in it. Note that the approach with the three best candidates
is not pursued further within this thesis as the final goal is defined to be TOS
efficiency. It rather serves as showcase for the fact that information besides the
signal candidate helps in selecting signal events more efficiently.

As both two- and three-body classification should run in the trigger, the important
metric to compare is the combined performance. Therefore, predictions on both
datasets are combined by taking the maximum prediction of any two- or three-
body candidate within the event. This maximum aggregation is only negligibly
worse than a brute force threshold optimization for best efficiency given fixed
output rate in a two-dimensional space. The combined performance for baseline
and new models is compared in Figures [8.5.

The data used for these scores represents a slice of the input data that has not been
seen by any of the new models trained within the cross validation scheme. Because
three models have been trained during cross validation, the unseen data will be
classified by taking the mean prediction of all three models. Averaging rather
than predicting with one model changes the scores negligibly, which suggests that
generalization works well. Each plot presents a specific input decay for signal, but
always minimum bias data for the background.

The comparison plots suggest that the newly trained models perform better
in the general case. Specifically the B? — ¢¢ and B — 77 70 decays are
captured up to factors of 2 better, depending on the output bandwidth. The
B? — D* D~ sample is a factor 3 larger than all others. Overtraining might
explain the performance differences over the samples. It is also apparent that

99

8 The Topological 'Trigger with Selective Persistence

considering multiple candidates in an event wise decision generally outperforms
the simple maximum aggregation that the default Topo algorithm employs.

Note that Figures 8.5 show the classification performance in terms of the "From-
SameB” definition, but these do not necessarily reflect the signal efficiency as
defined in Section 8.2.1. Figures 8.6| therefore show signal efficiency given output
rate relative to the input rate. Here, every simulated signal event is counted as
signal since the simulation guarantees at least one signal decay in each simulated
event. The rate is estimated on minimum bias events. One can see that the
increased performance of the new algorithms is reflected in higher signal efficiency
per output rate.

8.2.5 Topological classification - Full input data

The new models showing improved performance can now be applied to the wider
input decay selection described in section [8.1, The training in this chapter
optimizes TOS efficiency of signal events as defined in |8.2.2. Samples are weighted
to ensure balance between the different samples. The performance of the combined
two- and three-body classification algorithms given a minimum bias output rate
can be seen in Figures 8.7.

The output bandwidth envisioned for the Topo amounts to 3GB/s [83]. To
estimate bandwidths given selection efficiencies, multiple factors need to be
determined. The output bandwidth of the default Topo is determined as follows:

b(t) = r(t) - B(t) (8.2)

where b is the bandwidth, r the output rate, ¢ the threshold configuration and /3
the average bandwidth per minimum bias event that passes the Topo selection.
Because the number of Topo candidates vary with the thresholds, g is a function
of t. To determine §(t), the bandwidth of all pieces of information to be persisted
have to be assessed. In the default persistence setting where all information of
the event has to be persisted, 5 comprises the following parts:

,8<t> — Bdownstream + Bupstream + ﬁneutrals + /Blong + ﬁtopo (t) (83)

The contributors to bandwidth are downstream, upstream and long tracks and
neutral particles. Additionally, each reconstructed Topo candidate has some
information to be persisted. The output bandwidth of each contributor has been

100

8.2 Optimization of the topological event selection

estimated by running the baseline Topo as defined in |8.2.4. The persisted size of
final state particles is determined to be

ﬂdownstream =10.2 kB»
ﬁupstream =11.5 kB,
ﬁneutrals = 13.8 kB7

8.4
8.5
8.6
plons = 55kB. 8.7

(
(
(
(

~— N

These numbers represent an average size of all tracks of the specified type in an
event. As the number of Topo candidates depends on the threshold configuration,
the size of these are determined on a per-candidate basis:

t t t
Btopo (t) = Bczggidate ’ nc(;lr)lzidate (t) =360B - ncz,rr)l?iidaute(t)7 <88)
where nzzflzi date 18 the average number of Topo candidates per event, which depends

on the selection thresholds. Thresholds are optimized for highest average TOS
efficiency over the input samples given the bandwidth limit of 3 GB/s. Table 8.3
shows the TOS efficiencies given these thresholds.

Table 8.3: TOS efficiencies for Topo classifiers. For a total efficiency, these
are to be multiplied with the preselection efficiencies in |8.1}

Decay Efficiency [%]
B — Ktn~ 92.2
B - DD~ 35.4
BY s ¢ 75.6
BY — ntg =70 55.3
BY — K*(892)ete” 56.0
B —» D* uty, 43.3
BY —» D (% = 37v,)v, 26.2
B = D* (1" = ptv,p v, 26.8
BY & DK+ 53.1
A9 5 A+ Ds 38.0

101

8 The Topological 'Trigger with Selective Persistence

B°»D*D~-

1.0
803+
©
c
o
2 0.6
=
wn
8
0.41
03) —— baseline, ROC AUC: 0.970
= _--— per candidate, ROC AUC: 0.960
0-21 .77 — three best, ROC AUC: 0.968
el --- Random choice
0.0 =
0.0 0.2 04 0.6 0.8 1.0
False positive rate
B2 - ¢¢
1.0 -
9 o8 ras
© o
c -
o e
2 06 i
E=] e
wn e
g
0.4 .
g —— baseline, ROC AUC: 0.947
= _-~— per candidate, ROC AUC: 0.967
027 -7 — three best, ROC AUC: 0.975
el --- Random choice
0.0 -
0.0 0.2 0.4 0.6 0.8 1.0
False positive rate
0 -+
BO-D K
1.0
8 os
©
c
o
2 0.6
=
wn
8
0.4 -
g —— baseline, ROC AUC: 0.929
I: o per candidate, ROC AUC: 0.946
027 .7 — three best, ROC AUC: 0.959
el --- Random choice
0.0 —= - : ; .
0.0 0.2 04 0.6 0.8 1.0

False positive rate

True positive rate

True positive rate

B - X.uv
1.0
0.81
0.6 1
0.41
—— baseline, ROC AUC: 0.937
o per candidate, ROC AUC: 0.935
0-21 .77 —— three best, ROC AUC: 0.950
el --- Random choice
0.0 =
0.0 0.2 04 0.6 0.8 1.0
False positive rate
B->n*tn-n°
1.0
0.81
0.6 1
0.4
—— baseline, ROC AUC: 0.846
_-~— per candidate, ROC AUC: 0.929
027 -7 —— three best, ROC AUC: 0.950
el --- Random choice
0.0 —=
0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

Figure 8.5: ROC curves and scores for the baseline Topo classifiers and the

new models trained on the same input data. The plots differ only by the

signal sample considered. Each plot considers the classification of one of the

input samples against minimum bias background. Blue represents the baseline

model. Orange and green curves represent two different training methods

employed to train the new models. The blue and orange models are trained on

a

102

per-candidate basis.

8.2 Optimization of the topological event selection

signal efficiency

signal efficiency

signal efficiency

1.04

o
©

o
o

o
>

o
[N

0.0

1.04

o
©

e
o

o
S

e
N

0.0

1.04

o
©

o
o

o
S

e
N

0.0

B°»D*D~-
/,/ —— baseline
/,/ —— per candidate
o —— three best
el --- Random choice
.
0.0 02 04 06 08 1.0
output rate fraction
B2 - ¢¢
el —— baseline
el —— per candidate
o —— three best
el --- Random choice
0.0 02 0.4 06 0.8 1.0
output rate fraction
0 -+
BY-»D_K
// —— baseline
el —— per candidate
o —— three best
el --- Random choice
0.0 02 04 06 08 1.0

output rate fraction

signal efficiency

signal efficiency

1.04

o
o

o
o

o
>

o
N

0.0

1.01

o
©

e
o

o
S

e
N

0.0

B% - X.uv
/," —— baseline
//’ —— per candidate
o —— three best
el --- Random choice
0.0 0.2 0.4 0.6 08
output rate fraction
B-»n*tn—n®
baseline
el —— per candidate
o —— three best
- --- Random choice
0.0 0.2 0.4 0.6 0.8

output rate fraction

1.0

Figure 8.6: Signal efficiency against output event rate using combined two-

and three-body event predictions. Signal efficiency is here defined as the number

of events of the signal decay samples passing the selection. Background is

defined by the fraction of minimum bias events that pass.

103

8 The Topological Trigger with Selective Persistence

signal efficiency

1.0

0.8

4
o

— Random choice
— BYsD K*
—— B°»D*D-
— B~ ¢¢

— B%-K*n-
—— B%-D%v
—— B> D™ (1-3mv)v

°

2

\
\

0.2

—— BY>D"(T-uw)v
1= —— BY»K'ete~
\\\\\\\\\\\\\\ B°-ntn-n®

............................ —— No=ADs

output rate fraction

Figure 8.7: TOS signal efficiency against output event rate using combined
two- and three-body event predictions for all input samples using the maximum
of two- and three-body prediction. The x-axis is in logarithmic scale.

104

8.3 Selective Persistence in the topological trigger

8.3 Selective Persistence in the topological trigger

The goal of this chapter is the reduction of persisted size of an event selected
by the topological trigger. This can be achieved via Selective Persistence (SP)
as opposed to the Full Persistence (FP). Selective Persistence in exclusive lines
has been utilized for several operational years now. Line developers in Run 2 had
the option to persist anything between only the candidate decay chain to the
entire event, depending on physics analysis needs. Figure 8.8|sketches the possible
choices and their impact on output bandwidth.

HLT2
candidate

Increasing persisted event size
Decreasing information

Figure 8.8: Different choices for signal event persistence. The minimum
needed is the signal candidate and its children. One can optionally save more
related information up to every signature in the event [86].

105

8 The Topological 'Trigger with Selective Persistence

Employing SP on the Topo output is significantly harder for two reasons. Firstly,
the inclusive nature of this line implies that it is supposed to be used for many
different analyses. Therefore, a definition of relevant information for offline use
might be too restrictive. Secondly, the decay signatures selected by the Topo
are often more than the reconstructed two- and three-body candidates used for
the actual selection. Unlike in an exclusive line, the decay chain itself is not
specified.

To address the first problem, the following assumption will be made: Relevant
information for offline analyses concerns trajectories that come from a beauty
decay chain. This implies the tracks that come from the other beauty quark
in the bb pair production. Due to the many degrees of freedom and unknowns
in a pp-interaction, information that is not part of the bb pair final states is
uncorrelated to the beauty decay chain and can therefore not contribute any more
information to the signal decay. The approach of trying to select all trajectories
coming from beauty decays automatically tackles the second problem as well, as
these tracks are a superset of the tracks coming from the signal beauty hadron.

The problem now reduces to: How can one efficiently select these tracks? Two
approaches are discussed here.

Selection based on primary vertex relations

The simplest idea utilizes the fact that in the typical upgrade event there are
more than one primary interaction point. However, the bb pair of interest may
only produce tracks that either extrapolate back to that PV very precisely or
tracks that come from a displaced decay vertex. The sketch in Figure 8.8 displays
this. As displacement of tracks is measured by minimum distance to any of the
PVs, a problem arises when displaced tracks extrapolate towards a different from
their actual PV by chance. Concretely, the tested selection criterion to select
tracks is build as follows: Take any track that extrapolates back to the same
primary vertex as the Topo candidate with a small impact parameter to that PV.
Additionally, take all sufficiently displaced vertices as defined by the minimum
impact parameter with respect to all PVs. The performance of this approach can
be measured as every classification problem: A class probability is assigned based
on the outlined logic. The signal probability is assigned as follows:

p, = min(1, §(PV(track), PV(candidate)) 4+ v/x2(IP)(track)/100), (8.9)

106

8.3 Selective Persistence in the topological trigger

where represents the Kronecker delta. The PV function yields the best PV for a
given candidate or track. Conceptually this function should assign high values to
prompt tracks from the same PV as the candidate and displaced tracks of all sorts.
The scaling factor of 100 is chosen rather arbitrarily and defines the maximum
x? (IP) for which the prediction still differs. Everything above an IP of 100 mm
will just be clipped to 1. Because a classification task only depends on differences
in predictions rather than the absolute value, the specific choice for the scaling
factor makes little to no difference as long as it is much larger than a common
value for prompt tracks, because otherwise even prompt tracks might yield a high
prediction. The square root as monotonic function makes no theoretical difference.
It helps when binning the x? distribution as is done for the performance plots.

With a floating point prediction and truth values for whether a track originates
from a beauty decay, a signal efficiency vs. average retention fraction plot gives
information about the prediction quality for all possible working points. The
average retention fraction is estimated on minimum bias samples while the signal
efficiency is based on the respective signal sample. These curves for the different
decays in the input samples are shown in Figures 8.9. Note that the calculation
of p; may be performed multiple times per track in each event, as it has to
be done for every Topo candidate. For a per-track prediction, the maximum
value over all Topo candidates in the event is chosen. Specifically, if two- and
three-body selections yield Topo candidates in the same event, the maximum is
taken over both types of candidates. Note also that events with more than one
bb are discarded from the evaluation. The point of this study is to capture the
tracks coming from the bb pair the Topo candidate refers to.

A high per-track efficiency might not be good enough if one of the tracks that was
not selected carried the crucial information. Therefore, all performance plots in
this section show a second curve made from a per-event prediction. By assigning
an event the minimum prediction value of all signal tracks, we can estimate
the fraction of events where all relevant tracks are being selected with a given
threshold. Notably, tracks which are part of any Topo candidate are always
selected. This explains the offset at the lower left of the performance plots.

Selection based on trained classification

A trained multivariate classifier usually performs better than a manually defined
prediction as Equation (8.9)). To train such a classifier, features from tracks and

107

8 The Topological 'Trigger with Selective Persistence

1.0 1.0
§ 0.8 § 0.8
> >
2 2
@ 0.6 @ 0.6
© ©
b= b=
U 0.4+ U 0.4+
© ©
c c
242 D021
w - —— all signal in event selected w —— all signal in event selected
—— per track efficiency —— per track efficiency
0.0+ - 0.0 1 - : : : :
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
fraction of accepted tracks [%] fraction of accepted tracks [%]
B'»K*ete~ B% = D*(T-3mv)v
1.0 1.0
§ 0.8 § 0.8
> >
g g
@ 0.6 @ 067
S S
E E
L 0.4 L 0.4+
© ©
C C
202 1T D021 1
w —— all signal in event selected w —— all signal in event selected
—— per track efficiency —— per track efficiency
0.0 0.04
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
fraction of accepted tracks [%] fraction of accepted tracks [%]

Figure 8.9: Prediction performance of p,, visualized via long track acceptance
fraction vs. efficiency for combined two- and three-body selections. The orange
curve displays the fraction of tracks from beauty decay chains that are accepted
by the classifier given a total track retention. The blue curve shows the fraction
of events where all tracks from beauty decay chains were captured.

108

8.3 Selective Persistence in the topological trigger

B°-»D*D~-
1.0
§ 0.8
>
[}
2
=
O 0.4
©
c
D02
w —— all signal in event selected
—— per track efficiency
0.0 1
0.0 0.2 0.4 0.6 0.8 1.0
fraction of accepted tracks [%]
B% - D%
1.0
§ 0.8
>
2
@ 0.6
S
=
D 0.4
©
c
D902 ——1—
w —— all signal in event selected
—— per track efficiency
0.0
0.0 0.2 0.4 0.6 0.8 1.0
fraction of accepted tracks [%]
0 -+
B/->DSK
1.0
§ 0.8
>
[}
qc) 0.6 1
S
=
L 0.4
©
c
D92
0 —— all signal in event selected
—— per track efficiency
0.0+

0.0 012 0?4 0?6 0t8 1?0
fraction of accepted tracks [%]

Bo—> D" (T-puwv)vy

1.0
§ 0.8 1
>
[}
2
=
U 0.4
©
c
D902 - -
v —— all signal in event selected
—— per track efficiency
0.0 1
0.0 0.2 0.4 0.6 0.8 1.0
fraction of accepted tracks [%]
0
Bs - ¢¢
1.0
I
& 0.8
>
2
@ 0.61
S
=
U 0.4
©
c
24,
n = —— all signal in event selected
—— per track efficiency
0.0
0.0 0.2 0.4 0.6 0.8 1.0
fraction of accepted tracks [%]
Np = N\:Ds
1.0
§ 0.8 1
>
[}
$ 061
S
=
L 0.4
©
c
D0.21 - -
w —— all signal in event selected
—— per track efficiency
0.01 T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

fraction of accepted tracks [%]

Figure 8.9: Prediction performance of p;, visualized via long track acceptance
fraction vs. efficiency for combined two- and three-body selections. The orange
curve displays the fraction of tracks from beauty decay chains that are accepted
by the classifier given a total track retention. The blue curve shows the fraction
of events where all tracks from beauty decay chains were captured.

109

8 The Topological 'Trigger with Selective Persistence

Topo candidates can be extracted to base a prediction p, on. A selection based
solely on track features has briefly been explored to yield non-competitive results,
and is therefore not further described here. Instead, the data is prepared by
combining each Topo candidate that comes out of the topological trigger line and
its own classifier with each track in an event. For each of these combinations,
features to base the classification on can be determined. The relevant ones include
features related to the candidate, the track, the combination of both and the
primary vertices. Specifically, the features described in Table 8.4 are used for
classification training. Note that two types of classifiers are trained, because
features for two- and three-body Topo candidates come with different features
used in the classifier. The gradient boosting implementation in Light GBM is
used as it trains faster in a CPU environment with the type of data used here.
Classification performances of Catboost and Light GBM implementations yield
negligible differences. For final integration into the LHCb software stack, one may
switch back to Catboost for easy translation to C++. All previously outlined
measures to counter overtraining are taken here as well.

The performance plots for the combined predictions given by both classification
algorithms is shown in Figures |8.10. The overall superiority of the trained
classification is apparent. Using the shown method of selectively persisting tracks
in the Topo trigger line enables one of two things: Either the Topo output rate can
be increased to yield a higher overall signal efficiency or the freed up bandwidth
may be used for other lines struggling with output rate control. For a 50% track
retention working point the event loss would stay under 5% in all signal decay
samples, even in the worst case scenario where only those events are usable in
which all tracks from beauty decay chains have been captured by the classifier.
One can use these bandwidth reductions to change thresholds of the Topo selection.
The efficiency gain is visible in Table 8.3. Otherwise, the freed up bandwidth
could be used to ease requirements on other important trigger lines. A global
optimization has to be conducted to determine a good trade-off for all physics
interests the trigger has to cover.

When removing 50% of the long tracks the Topo thresholds can be adjusted to
increase the overall efficiencies of the signal decays, unless the freed up bandwidth
is used in other trigger lines. Efficiencies for thresholds in both scenarios are
shown in Table 8.5, once with and once without discarding 50% of the long tracks.
The thresholds are optimized for highest TOS efficiency within the bandwidth
limit.

110

8.3 Selective Persistence in the topological trigger

signal efficiency [%]

e
)

signal efficiency [%]

=
=}

o
©

o
o

o
>

0.0

1.04

e
©

o
o

o
S

e
)

0.0+

B®-»K*n~ B-»n*tn-n°
1.0
<
0.8
>
1)
§ os]
2
=
U 0.4
©
c
- - D02 - -
—— all signal in event selected w —— all signal in event selected
—— per track efficiency —— per track efficiency
0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
fraction of accepted tracks [%] fraction of accepted tracks [%]
BsK*ete~ B°-»D*(t-3mv)v
1.0
§ 0.8 1
>
[}
O
=
U 0.4
©
c
. - D02 - i
—— all signal in event selected w —— all signal in event selected
—— per track efficiency —— per track efficiency
0.0 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

fraction of accepted tracks [%] fraction of accepted tracks [%]

Figure 8.10: Prediction performance of p,, equivalent to Figures

111

8 The Topological 'Trigger with Selective Persistence

Table 8.4: Input features to the track classification training

Feature Explanation

Topo-Track-DOCA (x?) Distance (x?) of closest approach between the candi-
date and the track

Topo-Track-P(T) (Transverse) Momentum of the combined Topo and
track candidate.

Topo-Track-n Pseudorapidity of the combined Topo and track can-
didate.

Topo-Track-x?2,, X2, of the Topo and track candidate if a vertex fit
between them converged, otherwise an error value.

Topo-Track-IP (x?) Impact Parameter (x?) between Topo candidate and
track.

Topo-Track-AR? An? + A¢? between Topo and track. ¢ is the angle

in the x-y-plane of the detector
(2,3)-Body DOCA 2 Maximum distance of closest approach y? between

children.

(2,3)-Body FD x? Measure for displacement of decay and primary ver-
tex.

(2,3)-Body MIP Minimum IP of Topo candidate with respect to PVs.

(2,3)-Body VZ z-position of associated primary vertex.

(2,3)-Body 2., X2, of the Topo candidate.

(2,3)-Body PRED Topo classifcation prediction.

Track P(T) Track (transverse) momentum.

Track n Track pseudorapidity.

Track MIP (x?) Impact Parameter (x?) between track and its associ-

ated primary vertex.

Track x? x? of the track fit.

Track GHOSTPROB Predicted probability for the track being a ghost.
This is determined by a neural network.

112

8.3 Selective Persistence in the topological trigger

signal efficiency [%] signal efficiency [%]

signal efficiency [%]

B°>D*D~-

1.04

o
o

o
o

o
>

e
)

0.0 1

—— all signal in event selected
—— per track efficiency

0.0

012 Oj4 0?6 OtS 1.0
fraction of accepted tracks [%]

B% - D%

1.04

0.8 1

0.6

0.4 1

0.2

0.0

/

—— all signal in event selected
—— per track efficiency

0.0

0.2 0.4 0.6 0.8 1.0
fraction of accepted tracks [%]

BO-»D K+

1.01

0.8

0.6

0.4

0.0+

—— all signal in event selected
—— per track efficiency

0.0

0.2 0.4 0.6 0.8 1.0
fraction of accepted tracks [%]

1.0
§ 0.8 1
>
[}
E, 0.6+
O
=
L 0.4
©
c
D024 :]
v —— all signal in event selected
—— per track efficiency
0.0 T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
fraction of accepted tracks [%]
0
Bs - ¢¢
1.0
§ 0.8
>
2
@ 0.61
S
=
U 0.4
©
C
2,1
»n —— all signal in event selected
—— per track efficiency
0.0
0.0 0.2 0.4 0.6 0.8 1.0
fraction of accepted tracks [%]
Ap = ADs
1.0
§ 0.8 1
>
[}
$ 061
S
=
L 0.4
©
c
D024 - -
n —— all signal in event selected
—— per track efficiency
0.0 1

B% > D" (T-puwv)v

0.0 0.2 0.4 0.6 0.8 1.0
fraction of accepted tracks [%]

Figure 8.10: Prediction performance of py, equivalent to Figures

113

8 The Topological 'Trigger with Selective Persistence

Table 8.5: TOS efficiencies for Topo classifiers given different bandwidth
scenarios. For a total efficiency, these are to be multiplied with the preselection
efficiencies in [8.1. The left column is the same as in Table |8.3

Decay Efficiency [%] Efficiency [%]
@ 100% persistence @ 50% long tracks

B - Ktn— 92.2 93.2
B - DD~ 35.4 42.8
BY — ¢¢ 75.6 79.9
BY — ntg— 0 55.3 62.1
B — K*(892)ete™ 56.0 62.8
B — D* pty, 43.3 50.9
BY — D* (1% — 370,), 26.2 36.2
BY = D (t" = pty, v v, 26.8 36.6
BY — D;K* 53.1 58.0
A — AFDy 38.0 46.3

114

8.4 Summary and outlook

8.4 Summary and outlook

This Chapter presented an optimized two- and three-body Topo classification
algorithm to efficiently select a broad range of signal decay channels. It optimizes
TOS efficiency as opposed to overall signal efficiency, because analysts prefer TOS
selections to be able to model backgrounds accurately.

The Topo traditionally persisted all reconstructed information in an event because
the usual implementation of SP is dependent on a fully known reconstructed
decay. In an inclusive line like the Topo, SP is much harder. One wants to
generalize over multiple decay channels, so any SP approach has to do the same.
To try to reduce the output bandwidth per retained event, an approach for SP
using PV association was proposed. Because this approach shows significant
losses even at a high track retention, a second algorithm was proposed to perform
SP. A classification algorithm that predicts whether tracks come from a beauty
decay chain is employed. This algorithm can discard 50% of all long tracks
while retaining a close to 100% efficiency. With the freed up bandwidth, one can
either enable other physics selections in the HLT2 or increase the efficiency of the
Topo.

However, SP has only been tried on long tracks as these are the biggest contributors
to bandwidth. The next step is to evaluate the given method on upstream tracks.
As these also exhibit VELO tracks, the topological information close to the decay
vertex can be used in the same way as with long tracks. Downstream tracks and
neutral particles will need to be handled differently. For Downstream tracks one
might select based on whether they combine to a K or a A particle. Under the
rough assumption that 50% of all particle and track types can be discarded with
minimal loss, the efficiencies under the 3 GB/s bandwidth constraint would look as
shown in Table 8.6l Larger efficiency improvements can be achieved in decays with
a lower Topo efficiency. For instance, the efficiency of B — D*~ (% — 370,)v,
decays could increase by almost a factor of two.

115

8 The Topological 'Trigger with Selective Persistence

Table 8.6: TOS efficiencies for Topo classifiers for all scenarios. The first

scenario assumes full persistence of all basics. The second scenario assumes

that 50% of all long tracks are discarded. The rightmost scenario assumes that

50% of all basic particles can be removed with small loss.

Decay Efficiency [%] Efficiency [%] Efficiency[%]
@ 100% persist. @ 50% long tracks @ 50% all basics
B —» Ktn— 92.2 93.2 93.7
B - D*D~ 35.4 42.8 51.4
BY = 66 75.6 79.9 82.6
BY - gta—q0 55.3 62.1 65.9
B — K*(892)ete™ 56.0 62.8 68.5
BY — D**,uﬁju 43.3 50.9 57.3
B — D* (1" — 377,)v, 26.2 36.2 48.3
B® = D™ (r* = ptu,m)y, 268 36.6 46.7
BY - DK+ 53.1 58.0 62.2
A — AT Dy 38.0 46.3 55.6

116

9 Conclusion

LHCD is currently performing a significant detector upgrade involving a five-fold
increase of instantaneous luminosity and the removal of the hardware trigger stage.
The work presented in this thesis tackles some of the challenges implied by these
changes. Specifically, two challenges are addressed: Firstly, the event throughput
of the current HLT application is factors too low to be processing 30 MHz of input
rate efficiently within the given budget. Secondly, LHCb needs to fit its broad
physics program into an output bandwidth limit of 10 GB/s.

The first contribution described in this thesis is the implementation of the first
feature-complete scheduling algorithm that is fast enough to run in the production
environment without causing significant overheads to the application. Static
scheduling logic is prepared before event evaluation and runtime decisions are
limited to an absolute minimum. The algorithm can operate arbitrary control
flow and implements a barrier concept to be able to share work between algorithm
instances. This scheduling algorithm marks an important contribution to the first
fully functioning HLT1 implementation. It is also the new baseline implementation
for the Upgrade HLT2 solution.

The second contribution is the renewal of the selection framework in HLT2. Algo-
rithms needed for decay chain reconstruction after trajectory reconstruction prove
to be one of the major bottlenecks for the HLT2 application throughput. About
1000 different selection sequences will be using these algorithms in production.
By overhauling the selection system and the particle event model, new implemen-
tations described in this thesis achieve up to 10-fold throughput improvements
in decay chain reconstruction and particle selections. The transition to these
algorithms in production will reduce the contribution of selection lines in HLT?2
to under 5% relative contribution.

The third contribution tackles the second big challenge of the Upgrade HLT: The
output bandwidth. With the constraint of 10 GB/s output bandwidth to perma-
nent storage, many trigger lines have to transition to a selective persistence model.
The Topological beauty selection is an inclusive trigger line with exceptionally high

117

9 Conclusion

bandwidth requirements. Due to its inclusive nature it cannot apply the usual
methods of selective persistence. Methods of optimizing the Topo selection to
either lower bandwidth requirements or increase efficiency are explored. Selective
persistence can be applied by classifying tracks based on whether they originate
from a beauty flavored particle. At more than 95% worst-case efficiency, 50% of
the long tracks in an event can be removed to lower output bandwidth or increase
efficiency accordingly.

Summarized, crucial contributions for the operation of an efficient, fully software
based HLT were presented. As such, they mark important milestones towards the
collection of data corresponding to 50/fb integrated luminosity with unprecedented
efficiencies in beauty and charm decay channels.

To showcase the statistical power of the dataset to be collected in the next 10
years, we compare efficiencies and production rates in several channels that were
considered throughout the thesis. Statistical uncertainties in measurements at
LHCD usually scale roughly with the square root of the number of signal events
retained. The 50/fb dataset already increases the amount of produced beauty
and charm hadrons by more than a factor of 6 with respect to the Run1 and
2 datasets. For muonic channels like B — K*u*p~ and B® — D*~ p*v which
exhibit high efficiencies in both datasets, this corresponds to a factor of at least
/6 improvement in statistical sensitivity.

For channels involving electrons, like B — K*eTe™, the sensitivity is further
improved due to the increased efficiency that the hardware trigger removal yields.
In this case, the efficiency with and without the hardware trigger differs by about
a factor of two. The efficiency increase is most pronounced in channels with purely
hadronic final states like B? — ¢¢, B® — D*D~ and B® — D*~ (" — 377,)v.,,
where improvements of up to factors of 4 due to the removal of the hardware
trigger are expected. This translates to another factor of v/2 — 2 in sensitivity.

The optimization of the Topo further increases the signal efficiency by itself, even
more so if the bandwidth reduction due to selective persistence is utilized to retain
a higher rate of events. This leads to further efficiency improvements of up to

50 %.

To complete the Upgrade trigger, several open tasks remain. Most importantly,
the HLT2 reconstruction has to be sped up by about a factor of two to be able
to process the HLT1 output rate. Secondly, the new selection framework has
to be completed and validated carefully for different decay scenarios to ensure

118

correctness. While there are several other details to be solved in both HLT1 and
HLT2, I am confident that the LHCDb collaboration will successfully operate the
fully software based upgrade trigger as soon as the LHC starts again.

119

A Appendix

A.1 Description of HLT1 trigger lines

This Section describes the HLT'1 trigger lines used as preselection to the topological
trigger presented in Chapter 8.

HIt1(Two)TrackMVAVLoose share a preselection of particles with these require-
ments:

o before track fit:
— PT > 350MeV & P > 4750 MeV
o after track fit:

— PT > 400MeV & P > 5GeV &
x? (Track) < 2.5 & GhostProb < 999

HIlt1TrackM VAV Loose continues with a single track based selection from the
shared preselection:

e GhostProb < 0.2 &

e« (PT > 26GeV & X2 (IP)> 7.4) |
((2GeV < PT < 26GeV) &

2
(log(x* (IP)) > prgev—z + a5aev * (26 GeV —PT) + log(7.4))))

Hlt1TwoTrackM VAV Loose continues by vertexing two tracks pairwise:
e X2 (IP)> 4
o vertex x? < 10 & n € [2,5] & CORRM > 1000 & cos(DIRA) > 0
« MVA (>0.96) based on

— vertex X2

— Flight distance y?

120

A.1 Description of HLT1 trigger lines

— the sum of PT from basic children

— the displacement of basic daughters

Hlt1TrackMuonMVA is a specialized line for reconstructing muons. It is sim-
ilar to Hlt1TrackMVAVLoose but it has a much lower rate due to the muon

requirement:
e PT>1GeV &P >5GeV &
o x? (Track) < 2.5 & GhostProb < 0.2 &
e IsMuon

o ((PT > 25GeV & x2 (IP)> 7.4) |
((PT < 25GeV) &
2
(log(x? (IP)) > PT/éeV_l + miee - (25GeV — PT) + log(7.4))))

121

A Appendix

A.2 Additional information on input samples for the
Topo

Table A.1 shows the number of simulated events for each decay used in Chapter
8. They were produced with simulation version sim-09¢c-up02 and selected with
the HLT1 configuration as defined in TCK Trig0x52000000. They were simulated
with center of mass energy /s = 14 TeV, average number of collisions per event
v = 7.6 and 25 ns bunch spacing with the Pythia version 8.

Table A.1: Event counts for input samples

Decay Number of events
B — Ktn— 124404
B° — DTD~ 277834
BY — ¢¢ 119393
BY — gtp— 70 119986
B — K*(892)ete” 121372
BY — D~ pty, 89423
BY — D* (1% — 370,), 109586
B = D* (17 = ptv,p)v, 113543
BY - DK™ 126719
AY = AT Dy 124458

122

Bibliography

[10]

[11]

Lyndon Evans and Philip Bryant. “LHC Machine.” In: JINST 3 (2008). DOI:
10.1088/1748-0221/3/08/S08001.

CMS Collaboration. “Observation of a new boson at a mass of 125 GeV with
the CMS experiment at the LHC.” In: Phys. Lett. B716 (2012), pp. 30-61.
DOI: 10.1016/j.physletb.2012.08.021. arXiv: 1207.7235 [hep-ex].

ATLAS Collaboration. “Observation of a new particle in the search for the
Standard Model Higgs boson with the ATLAS detector at the LHC.” In:
Phys. Lett. B716 (2012), pp. 1-29. DOI1: 110.1016/j . physletb.2012.08.020.
arXiv: 1207.7214 [hep-ex]!

S. L. Glashow. “Partial-symmetries of weak interactions.” In: Nuclear Physics
22.4 (1961), pp. 579-588.

A. Salam and J.C. Ward. “Electromagnetic and weak interactions.” In:
Physics Letters 13.2 (1964), pp. 168-171.

S. Weinberg. “A Model of Leptons.” In: Phys. Rev. Lett. 19 (21 1967),
pp. 1264-1266.

M. Gell-Mann. The Fightfold Way: A Theory Of Strong Interaction Symme-
try. 1961.

G. Bertone, D. Hooper, and J. Silk. “Particle dark matter: evidence, candi-
dates and constraints.” In: Physics Reports 405.5 (2005), pp. 279-390.

S. Dimopoulos and L. Susskind. “Baryon asymmetry in the very early
universe.” In: Physics Letters B 81.3 (1979), pp. 416-418.

A. D. Sakharov. “Violation of Cp-Invariance C-Asymmetry and Baryon
Asymmetry of the Universe.” In: ed. by Y. A. Trutnev. World Scientific
Publishing Co, 1998, pp. 84-87.

LHCb Collaboration. LHCb Trigger and Online Upgrade Technical Design
Report. Tech. rep. CERN-LHCC-2014-016. 2014. URL: https://cds.cern.
ch/record/1701361.

123

https://doi.org/10.1088/1748-0221/3/08/S08001
https://doi.org/10.1016/j.physletb.2012.08.021
https://arxiv.org/abs/1207.7235
https://doi.org/10.1016/j.physletb.2012.08.020
https://arxiv.org/abs/1207.7214
https://cds.cern.ch/record/1701361
https://cds.cern.ch/record/1701361

Bibliography

[12]

[13]

[18]

[19]

[20]

[21]

[22]

124

R. Aaij et al. (LHCD collaboration). “Observation of the Resonant Character
of the Z(4430) State.” In: Phys. Rev. Lett. 112 (22 2014), p. 222002.

LHCb Collaboration. “Observation of J/¢¥p Resonances Consistent with
Pentaquark States in AY — J/¢¥ K p Decays.” In: Phys. Rev. Lett. 115
(2015), p. 072001. poI: 10.1103/PhysRevLett.115.072001. arXiv: 1507,
03414 [hep-ex].

Q. R. et al Ahmad (SNO collaboration). “Measurement of the Rate of
v, +d— p+ p+ e Interactions Produced by 8B Solar Neutrinos at the
Sudbury Neutrino Observatory.” In: Phys. Rev. Lett. 87 (7 2001), p. 071301.

Q. R. et al Ahmad (SNO collaboration). “Direct Evidence for Neutrino
Flavor Transformation from Neutral-Current Interactions in the Sudbury
Neutrino Observatory.” In: Phys. Rev. Lett. 89 (1 2002), p. 011301.

Y. Fukuda et al. (Super-Kamiokande collaboration). “Evidence for Oscilla-
tion of Atmospheric Neutrinos.” In: Phys. Rev. Lett. 81 (8 1998), pp. 1562
1567.

Why is the Higgs discovery so significant? visited on 13.05.2020. URL: www |
stfc.ac.uk/research/particle-physics-and-particle-astrophysics/
peter —higgs -a-truly -british - scientist /why -is-the -higgs -
discovery-so-significant.

R. Aaij et al. (LHCD collaboration). “Measurement of the b-quark production

cross-section in 7 and 13 TeV pp collisions.” In: Phys. Rev. Lett. 118.5 (2017),
p. 052002. arXiv: [1612.05140 [hep-ex]l

R Aaij et al. “Prompt charm production in pp collisions at sqrt(s)=7 TeV.”
In: Nucl. Phys. B 871 (2013), pp. 1-20. DOI: [10.1016/j .nuclphysb.2013.
02.010. arXiv: 1302.2864 [hep-ex].

R. Aaij et al. “Erratum to: Measurements of prompt charm production
cross-sections in pp collisions at /s = 13 TeV.” In: Journal of High Energy
Physics 2016 (Sept. 2016). DOI: 10.1007/JHEP09(2016)013.

Michael Dine and Alexander Kusenko. “The Origin of the matter - antimatter
asymmetry.” In: Rev. Mod. Phys. 76 (2003), p. 1. DOI: 10.1103/RevModPhys .
76.1. arXiv: hep-ph/0303065.

Roel Aaij et al. “Measurement of CP violation in the B? — ¢¢ decay
and search for the B® — ¢¢ decay” In: JHEP 12 (2019), p. 155. DOI:
10.1007/JHEP12(2019) 155, arXiv: 1907.10003 [hep-ex].

https://doi.org/10.1103/PhysRevLett.115.072001
https://arxiv.org/abs/1507.03414
https://arxiv.org/abs/1507.03414
www.stfc.ac.uk/research/particle-physics-and-particle-astrophysics/peter-higgs-a-truly-british-scientist/why-is-the-higgs-discovery-so-significant
www.stfc.ac.uk/research/particle-physics-and-particle-astrophysics/peter-higgs-a-truly-british-scientist/why-is-the-higgs-discovery-so-significant
www.stfc.ac.uk/research/particle-physics-and-particle-astrophysics/peter-higgs-a-truly-british-scientist/why-is-the-higgs-discovery-so-significant
www.stfc.ac.uk/research/particle-physics-and-particle-astrophysics/peter-higgs-a-truly-british-scientist/why-is-the-higgs-discovery-so-significant
https://arxiv.org/abs/1612.05140
https://doi.org/10.1016/j.nuclphysb.2013.02.010
https://doi.org/10.1016/j.nuclphysb.2013.02.010
https://arxiv.org/abs/1302.2864
https://doi.org/10.1007/JHEP09(2016)013
https://doi.org/10.1103/RevModPhys.76.1
https://doi.org/10.1103/RevModPhys.76.1
https://arxiv.org/abs/hep-ph/0303065
https://doi.org/10.1007/JHEP12(2019)155
https://arxiv.org/abs/1907.10003

Bibliography

23]

[24]

[26]

[27]

[28]

[29]

[30]

[31]

32]

33]

[34]

Roel Aaij et al. “Measurement of C'P violation in B — D* D~ decays.” In:
Phys. Rev. Lett. 117.26 (2016), p. 261801. DOI: 10.1103/PhysRevLett.117.
261801. arXiv: [1608.06620 [hep-ex].

R. Aaij et al. “Search for Lepton-Universality Violation in BT — KI7]~ Decays.
In: Physical Review Letters 122.19 (May 2019). 1SSN: 1079-7114. DOTI: |10.
1103/physrevlett.122.191801. URL: http://dx.doi.org/10.1103/
PhysRevLett.122.191801.

R. Aaij et al. (LHCb collaboration). “Test of lepton universality with
B — K*90T¢~ decays” In: JHEP 08 (2017), p. 055. arXiv: 1705.05802
[hep-ex].

R. Aaij et al. (LHCD collaboration). “Measurement of the ratio of branching
fractions B(B® — D**7r= i)/B(B° — D**p~v,)” In: Phys. Rev. Lett.
115.11 (2015), p. 111803. arXiv: |1506.08614 [hep-ex].

R. Aaij et al. (LHCb collaboration). “Measurement of the ratio of the
B° — D* 7tv_and B® = D* v, branching fractions using three-prong
7-lepton decays.” In: (2017). arXiv: 1708.08856 [hep-ex].

C Lefevre. “LHC: the guide (English version). Guide du LHC (version
anglaise).” 2009. URL: https://cds.cern.ch/record/1165534.

ATLAS Collaboration. “The ATLAS Experiment at the CERN Large Hadron
Collider.” In: JINST 3.08 (2008), S08003-S08003. DOI: 10.1088/ 1748~
0221/3/08/s08003.

CMS Collaboration. “The CMS experiment at the CERN LHC.” In: JINST
3.08 (2008), S08004-S08004. por1: 10.1088/1748-0221/3/08/508004.

LHCb Collaboration. “The LHCb Detector at the LHC.” In: JINST 3 (2008).
DOI: 10.1088/1748-0221/3/08/S08005.

bb production angle plots. URL: https://1lhcb.web.cern. ch/lhcb/
speakersbureau/html/bb_ProductionAngles.html (visited on 08/08/2016).

LHCb Collaboration. LHCb reoptimized detector design and performance:

Technical Design Report. Tech. rep. CERN-LHCC-2003-030. 2003. URL:
https://cds.cern.ch/record/630827.

LHCb Collaboration. LHCb VELO Upgrade Technical Design Report. Tech.
rep. CERN-LHCC-2013-021. 2013. URL: https://cds.cern.ch/record/
1624070.

125

https://doi.org/10.1103/PhysRevLett.117.261801
https://doi.org/10.1103/PhysRevLett.117.261801
https://arxiv.org/abs/1608.06620
https://doi.org/10.1103/physrevlett.122.191801
https://doi.org/10.1103/physrevlett.122.191801
http://dx.doi.org/10.1103/PhysRevLett.122.191801
http://dx.doi.org/10.1103/PhysRevLett.122.191801
https://arxiv.org/abs/1705.05802
https://arxiv.org/abs/1705.05802
https://arxiv.org/abs/1506.08614
https://arxiv.org/abs/1708.08856
https://cds.cern.ch/record/1165534
https://doi.org/10.1088/1748-0221/3/08/s08003
https://doi.org/10.1088/1748-0221/3/08/s08003
https://doi.org/10.1088/1748-0221/3/08/s08004
https://doi.org/10.1088/1748-0221/3/08/S08005
https://lhcb.web.cern.ch/lhcb/speakersbureau/html/bb_ProductionAngles.html
https://lhcb.web.cern.ch/lhcb/speakersbureau/html/bb_ProductionAngles.html
https://cds.cern.ch/record/630827
https://cds.cern.ch/record/1624070
https://cds.cern.ch/record/1624070

Bibliography

[35]

[40]

TN = s
L X N e N e

i~~~
N=)

126

LHCb Collaboration. LHCb Tracker Upgrade Technical Design Report. Tech.
rep. CERN-LHCC-2014-001. 2014. URL: https://cds.cern.ch/record/
1647400.

LHCb Collaboration. LHCb PID Upgrade Technical Design Report. Tech.
rep. CERN-LHCC-2013-022. 2013. URL: https://cds.cern.ch/record/
1624074.

CMS & LHCb Collaboration. “Observation of the rare B? — pu*u~ decay
from the combined analysis of CMS and LHCb data.” In: Nature 522 (2015),
pp. 68-72. DOI: [10.1038/naturel14474. arXiv: |[1411.4413 [hep-ex].

N. Scharmberg. Search for the rare decay B to e+ e- at the LHCb detector.
M.Sc. Thesis, Technische Universitat Dortmund.

ISO. ISO/IEC 14882:2017 Information technology — Programming lan-
guages — C++. Fifth. 2017, p. 1605. URL: https : //www . iso . org/
standard/68564 .html.

Guido Van Rossum and Fred L Drake Jr. Python tutorial. Centrum voor
Wiskunde en Informatica Amsterdam, The Netherlands, 1995.

The Gaudi project. URL: https://gitlab.cern.ch/gaudi/Gaudil
The LHCb project. URL: https://gitlab.cern.ch/1hcb/LHCb.

The Online project. URL: https://gitlab.cern.ch/lhcb/Online.
The Rec project. URL: https://gitlab.cern.ch/lhcb/Rec.

The Brunel project. URL: https://gitlab.cern.ch/lhcb/Brunel.
The Phys project. URL: https://gitlab.cern.ch/lhcb/Phys.

The DaVinci project. URL: https://gitlab.cern.ch/lhcb/DaVinci.
The Gauss project. URL: https://gitlab.cern.ch/lhcb/Gauss!

Torbjorn Sjostrand, Stephen Mrenna, and Peter Skands. “PYTHIA 6.4
physics and manual.” In: Journal of High Energy Physics 2006.05 (2006),
pp- 026-026. DOI: 10.1088/1126-6708/2006/05/026. URL: https://doi.
org/10.1088%2F1126-67087%2F2006%2F05%2F026/

https://cds.cern.ch/record/1647400
https://cds.cern.ch/record/1647400
https://cds.cern.ch/record/1624074
https://cds.cern.ch/record/1624074
https://doi.org/10.1038/nature14474
https://arxiv.org/abs/1411.4413
https://www.iso.org/standard/68564.html
https://www.iso.org/standard/68564.html
https://gitlab.cern.ch/gaudi/Gaudi
https://gitlab.cern.ch/lhcb/LHCb
https://gitlab.cern.ch/lhcb/Online
https://gitlab.cern.ch/lhcb/Rec
https://gitlab.cern.ch/lhcb/Brunel
https://gitlab.cern.ch/lhcb/Phys
https://gitlab.cern.ch/lhcb/DaVinci
https://gitlab.cern.ch/lhcb/Gauss
https://doi.org/10.1088/1126-6708/2006/05/026
https://doi.org/10.1088%2F1126-6708%2F2006%2F05%2F026
https://doi.org/10.1088%2F1126-6708%2F2006%2F05%2F026

Bibliography

[50]

v on
N =

ot
=

[54]

[55]

[56]

[57]

[58]

[59]

[60]

David J. Lange. “The EvtGen particle decay simulation package.” In: Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spec-
trometers, Detectors and Associated Equipment 462.1 (2001). BEAUTY2000,
Proceedings of the 7th Int. Conf. on B-Physics at Hadron Machines, pp. 152—
155. 18SN: 0168-9002. DOI: https://doi.org/10.1016/50168-9002(01)
00089-4. URL: http://www.sciencedirect.com/science/article/pii/
S50168900201000894.

The Boole project. URL: https://gitlab.cern.ch/lhcb/Boole.
The Allen project. URL: https://gitlab.cern.ch/lhcb/Allen.

J Borel et al. The Bs -> Ds pi and Bs -> Ds K selections. Tech. rep. LHCb-
2007-017. CERN-LHCDb-2007-017. LPHE Note 2007-03. Geneva: CERN,
2007. URL: http://cds.cern.ch/record/1027381.

LHCb Collaboration. Framework TDR for the LHCb Upgrade: Technical
Design Report. Tech. rep. CERN-LHCC-2012-007. 2012. URL: https://cds.
cern.ch/record/1443882.

J Albrecht, V V Gligorov, and G Raven. Review Document: Full Software
Trigger. Tech. rep. LHCb-PUB-2014-036. CERN-LHCb-PUB-2014-036. On
behalf of the the HLT software group. Geneva: CERN, May 2014. URL:
http://cds.cern.ch/record/1700271.

LHCb Collaboration. Letter of Intent for the LHCb Upgrade. Tech. rep.
CERN-LHCC-2011-001. 2011. URL: https://cds . cern.ch/record/
1333091.

M Williams et al. Trigger selections for the LHCb upgrade. Tech. rep. LHCb-
PUB-2014-031. CERN-LHCb-PUB-2014-031. Geneva: CERN, Mar. 2014.
URL: http://cds.cern.ch/record/1670992.

Christoph Hasse. “Alternative approaches in the event reconstruction of
LHCb.” Presented 12 Dec 2019. 2019. URL: https://cds.cern.ch/record/
2706588.

LHCb Collaboration. “Search for Dark Photons Produced in 13 TeV pp
Collisions.” In: Phys. Rev. Lett. 120.6 (2018), p. 061801. pOI: 10.1103/
PhysRevLett.120.061801. arXiv: 1710.02867 [hep-ex].

LHCb Collaboration. “Design and performance of the LHCb trigger and
full real-time reconstruction in Run 2 of the LHC.” In: JINST 14.04 (2019),
P04013. por: 10.1088/1748-0221/14/04/P04013. arXiv: 1812.10790
[hep-ex].

127

https://doi.org/https://doi.org/10.1016/S0168-9002(01)00089-4
https://doi.org/https://doi.org/10.1016/S0168-9002(01)00089-4
http://www.sciencedirect.com/science/article/pii/S0168900201000894
http://www.sciencedirect.com/science/article/pii/S0168900201000894
https://gitlab.cern.ch/lhcb/Boole
https://gitlab.cern.ch/lhcb/Allen
http://cds.cern.ch/record/1027381
https://cds.cern.ch/record/1443882
https://cds.cern.ch/record/1443882
http://cds.cern.ch/record/1700271
https://cds.cern.ch/record/1333091
https://cds.cern.ch/record/1333091
http://cds.cern.ch/record/1670992
https://cds.cern.ch/record/2706588
https://cds.cern.ch/record/2706588
https://doi.org/10.1103/PhysRevLett.120.061801
https://doi.org/10.1103/PhysRevLett.120.061801
https://arxiv.org/abs/1710.02867
https://doi.org/10.1088/1748-0221/14/04/P04013
https://arxiv.org/abs/1812.10790
https://arxiv.org/abs/1812.10790

Bibliography

[61] A. Apollonio et al. “Reliability and Availability of Particle Accelerators:
Concepts, Lessons, Strategy.” In: Proc. 9th International Particle Accelera-
tor Conference (IPAC’18), Vancouver, BC, Canada, April 29-May 4, 2018
(Vancouver, BC, Canada). International Particle Accelerator Conference 9.
https://doi.org/10.18429/JACoW-IPAC2018-FRXGBD1. Geneva, Switzer-
land: JACoW Publishing, 2018, pp. 5014-5018. 1SBN: 978-3-95450-184-7.
DOI: doi:10.18429/JACoW-IPAC2018-FRXGBD1. URL: http://jacow.org/
ipac2018/papers/frxgbdl.pdf.

62] LHCb trigger conference diagrams. visited on 25.05.2020. URL: https://
twiki.cern.ch/twiki/bin/view/LHCb/LHCbTriggerConferenceDiagramsPlots.

[63] CERN (Meyrin) LHCb Collaboration. Computing Model of the Upgrade
LHCbY experiment. Tech. rep. CERN-LHCC-2018-014. LHCB-TDR-018.
Geneva: CERN, 2018. URL: http://cds.cern.ch/record/2319756.

[64] Roel Aaij et al. Upgrade trigger: Biannual performance update. Tech. rep.
CERN-LHCb-PUB-2017-005. 2017. URL: https://cds.cern.ch/record/
2244312.

[65] What is vectorization? URL: https://lappweb . in2p3. fr/ ~paubert /
ASTERICS HPC/6-6-1-985.html.

[66] Karl Rupp. 42 Years of Microprocessor Trend Data. URL: https://github.
com/karlrupp/microprocessor-trend-data/tree/master/42yrs (vis-
ited on 06/13/2019).

[67) LHCb Collaboration. Upgrade Software and Computing. Tech. rep. CERN-
LHCC-2018-007. 2018. URL: https://cds.cern.ch/record/2310827.

[68] M Clemencic, B Hegner, and C Leggett. “Gaudi evolution for future chal-
lenges.” In: J. Phys. : Conf. Ser. 898.4 (2017), 042044. 3 p. DOI: |10.1088/
1742-6596/898/4/042044. URL: https://cds.cern.ch/record/2297285.

[69] I. Shapoval et al. “Graph-based decision making for task scheduling in
concurrent Gaudi.” In: 2015 IEEE Nuclear Science Symposium and Medical
Imaging Conference (NSS/MIC). 2015, pp. 1-3.

[70] Niklas Nolte et al. “A new scheduling algorithm for the LHCb upgrade
trigger application.” In: Journal of Physics: Conference Series 1525 (Apr.
2020), p. 012052. DOI: |10.1088/1742-6596/1525/1/012052. URL: https:
//doi.org/10.1088%2F1742-659672F1525%2F1%2F012052.

128

https://doi.org/doi:10.18429/JACoW-IPAC2018-FRXGBD1
http://jacow.org/ipac2018/papers/frxgbd1.pdf
http://jacow.org/ipac2018/papers/frxgbd1.pdf
https://twiki.cern.ch/twiki/bin/view/LHCb/LHCbTriggerConferenceDiagramsPlots
https://twiki.cern.ch/twiki/bin/view/LHCb/LHCbTriggerConferenceDiagramsPlots
http://cds.cern.ch/record/2319756
https://cds.cern.ch/record/2244312
https://cds.cern.ch/record/2244312
https://lappweb.in2p3.fr/~paubert/ASTERICS_HPC/6-6-1-985.html
https://lappweb.in2p3.fr/~paubert/ASTERICS_HPC/6-6-1-985.html
https://github.com/karlrupp/microprocessor-trend-data/tree/master/42yrs
https://github.com/karlrupp/microprocessor-trend-data/tree/master/42yrs
https://cds.cern.ch/record/2310827
https://doi.org/10.1088/1742-6596/898/4/042044
https://doi.org/10.1088/1742-6596/898/4/042044
https://cds.cern.ch/record/2297285
https://doi.org/10.1088/1742-6596/1525/1/012052
https://doi.org/10.1088%2F1742-6596%2F1525%2F1%2F012052
https://doi.org/10.1088%2F1742-6596%2F1525%2F1%2F012052

Bibliography

[84]

[85]

James E. Kelley. “Critical-Path Planning and Scheduling: Mathematical
Basis.” In: Oper. Res. 9.3 (1961), pp. 296-320. 1ssN: 0030-364X. DOI: 10.
1287/opre.9.3.296. URL: https://doi.org/10.1287/opre.9.3.296

M Clemencic et al. “Preparing HEP software for concurrency.” In: Journal of
Physics: Conference Series 513 (June 2014), p. 052028. pDO1: 10.1088/1742~
6596/513/5/052028.

Intel VTune Amplifier. URL: https://software.intel.com/en-us/vtune.
LoKi. URL: https://lhcb-comp.web.cern.ch/Analysis/Loki/doc.html.
CPPYY. URL: https://cppyy.readthedocs.io/en/latest/.

Cling - The interactive C++ Interpreter. URL: https://github.com/root-
project/cling.

“Throughput and resource usage of the LHCb upgrade HLT.” In: (Apr.
2020). URL: https://cds.cern.ch/record/2715210.

Intel Intrinsics Guide. URL: https ://software . intel . com/sites/
landingpage/IntrinsicsGuide.

Vladislav Belavin. “TurboSP and the Topological Trigger.” In: (Aug. 2016).
URL: https://cds.cern.ch/record/2281011.

Particle Data Group et al. “Review of Particle Physics.” In: Progress of
Theoretical and Experimental Physics 2020.8 (2020). 083C01. 1SSN: 2050-
3911. DOI: 10 . 1093/ ptep/ptaall4. eprint: https: //academic . oup .
com/ptep/article-pdf/2020/8/083C01/33653179/ptaall4.pdf. URL:
https://doi.org/10.1093/ptep/ptaalo4.

Kaggle. URL: https://wuw.kaggle.com/.

A Hoécker et al. “TMVA - Toolkit for Multivariate Data Analysis with
ROOT:Users guide.” In: (2010).

Alejandro Alfonso Albero et al. Upgrade trigger selection studies. Tech. rep.
LHCb-PUB-2019-013. CERN-LHCb-PUB-2019-013. Geneva: CERN, Sept.
2019. URL: https://cds.cern.ch/record/2688423.

Anna Dorogush, Vasily Ershov, and Andrey Gulin. “CatBoost: gradient
boosting with categorical features support.” In: (2018).

Guolin Ke et al. “Light GBM: A Highly Efficient Gradient Boosting Decision
Tree.” In: NIPS. 2017.

129

https://doi.org/10.1287/opre.9.3.296
https://doi.org/10.1287/opre.9.3.296
https://doi.org/10.1287/opre.9.3.296
https://doi.org/10.1088/1742-6596/513/5/052028
https://doi.org/10.1088/1742-6596/513/5/052028
https://software.intel.com/en-us/vtune
https://lhcb-comp.web.cern.ch/Analysis/Loki/doc.html
https://cppyy.readthedocs.io/en/latest/
https://github.com/root-project/cling
https://github.com/root-project/cling
https://cds.cern.ch/record/2715210
https://software.intel.com/sites/landingpage/IntrinsicsGuide
https://software.intel.com/sites/landingpage/IntrinsicsGuide
https://cds.cern.ch/record/2281011
https://doi.org/10.1093/ptep/ptaa104
https://academic.oup.com/ptep/article-pdf/2020/8/083C01/33653179/ptaa104.pdf
https://academic.oup.com/ptep/article-pdf/2020/8/083C01/33653179/ptaa104.pdf
https://doi.org/10.1093/ptep/ptaa104
https://www.kaggle.com/
https://cds.cern.ch/record/2688423

Bibliography

[86] R. Aaij et al. “A comprehensive real-time analysis model at the LHCb
experiment.” In: Journal of Instrumentation 14.04 (Apr. 2019), P04006—
P04006. port: 10.1088/1748-0221/14/04/p04006. URL: https://doi.
org/10.1088%2F1748-02217%2F14%2F04%2Fp04006.

130

https://doi.org/10.1088/1748-0221/14/04/p04006
https://doi.org/10.1088%2F1748-0221%2F14%2F04%2Fp04006
https://doi.org/10.1088%2F1748-0221%2F14%2F04%2Fp04006

Acknowledgements

This work has been sponsored by the Wolfgang Gentner Programme of the German
Federal Ministry of Education and Research (grant no. 05E15CHA).

I would like to thank Prof. Johannes Albrecht for making this thesis and going to
CERN possible. Thank you for the fruitful supervision and the time you spent
helping me! T would also like to thank Dr. Johannes Erdmann for taking the time
to be the second assessor.

My biggest gratitude goes to Dr. Sascha Stahl. You always made the time to
help, discuss, guide and assist me in every other way until the very end of the
doctoral period. I cannot have hoped for a better supervisor. You rock!

I also express my thanks to all the awesome workmates that made the time at
CERN truly pleasurable, with whom it was a enjoyable and instructive time to
work with, and who helped me with all my annoying inquiries. In no particular
order: Thank you, Alex, Rosen, Olli, Dominik, Laurent, Claire, Daniel and
specifically my office buddy /girlfriend Christoph!

Next up, a big shout out to my hometown friends. It is a great comfort to know
that I can count on every one of you! Thank you Baran, Faber, Kevin and
Stefan!

Lastly, of course, I want to express my deepest gratitude to my family. Thank
you, Vic, Mama, Papa and Mormor! To you I owe everything.

131

	Introduction
	The Standard Model of Particle Physics
	Obtaining a solution to unsolved problems with LHCb

	The LHCb Detector at the LHC
	The Large Hadron Collider
	The LHCb detector
	The tracking system
	The Vertex Locator
	The Upstream Tracker
	The magnet
	The SciFi tracker
	Track types in LHCb reconstruction

	The particle identification system
	The Ring Imaging Cherenkov Detectors
	Electromagnetic and hadronic calorimeters
	The muon stations

	An overview over the LHCb software

	LHCb beauty and charm decay topology

	The LHCb Upgrade Trigger
	Why upgrade to a full software trigger?
	Upgrade trigger workflow
	The first High Level Trigger: HLT1
	The disk buffer, alignment and calibration
	The second HLT stage
	Building blocks for trigger software
	Configurability and the build model

	Computing challenges in the Upgrade HLT
	Bandwidth requirements
	Selective persistence

	Throughput requirements

	Principles for High Performance Computing in the Trigger
	Caching and predictability in CPUs
	Dynamic memory allocation
	Vectorization
	Multi-core utilization with multi-threading
	Gaudi::Functional

	A Scheduling Algorithm for the Upgrade Trigger Regime
	Control and data flow
	The baseline: A multi-threaded event scheduler for Gaudi
	A new scheduling application
	From intra- to inter-event concurrency
	The high level workflow
	The trigger control flow anatomy
	Representation of data flow

	Event loop preparation - Initialization
	The event loop - Runtime
	Task packaging
	Sequence execution

	The control flow barrier - Sharing work
	Scheduler performance
	Summary and outlook

	Selections and Combinatorics in Upgrade HLT2
	Selection algorithms in the trigger workflow
	Runtime performance in status quo
	The baseline algorithms
	Filtering with LoKi
	Basics of combining
	Workflow in the baseline combiner

	Improving upon the baseline with new selections
	Combining with ThOr

	A new particle model
	Data layouts and LHCb::Particle
	The SoA particle

	Filtering and combining with the SoA particle model
	A Combiner for the SoA Particle
	The algorithm logic
	Combining
	Vertexing

	Benchmarks on combining with the SoA Particle

	Conclusion and Outlook

	The Topological Trigger with Selective Persistence
	Input data
	Optimization of the topological event selection
	The metric for optimization: Trigger On Signal efficiency
	Topo candidate combination
	Boosted tree ensembles
	Topological classification - Baseline comparison
	Topological classification - Full input data

	Selective Persistence in the topological trigger
	Selection based on primary vertex relations
	Selection based on trained classification

	Summary and outlook

	Conclusion
	Appendix
	Description of HLT1 trigger lines
	Additional information on input samples for the Topo

	Bibliography

