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Introduction

Since the seminal contribution of Clive W.J. Granger (1981) that introduced the concept of coin-
tegration, the modeling of multivariate (economic) time series with models and methods that
allow for unit roots and cointegration has become standard econometric practice with applicati-
ons ranging from macroeconomics through finance to climate science. With the early exceptions
of Aoki (1990) and Aoki and Havenner (1991) most authors focus on the VAR framework, most
notably Johansen (1995) who developed vector error correction models for the empirically most
relevant cases, the I(1) and the I(2) case. Johansen and Schaumburg (1999) extended the vector
error correction from the I(1) to the multiple frequency I(1) case, which covers the case of seasonal
integration.
Limiting cointegration analysis to VAR processes may be too restrictive. First, it is well-known
since Zellner and Palm (1974) that VAR processes are not invariant with respect to marginaliza-
tion, i. e., subsets of the variables of a VAR process are in general vector autoregressive moving
average (VARMA) processes. Second, as shown by Amemiya and Wu (1972), aggregation of VAR
processes also leads to VARMA processes, an issue relevant, e. g., in the context of temporal ag-
gregation and in mixed-frequency settings. Third, the linearized solutions to dynamic stochastic
general equilibrium (DSGE) models are typically VARMA rather than VAR processes, see, e. g.,
Campbell (1994). Fourth, a VARMA model may be a more parsimonious description of the data
generating process (DGP) than a VAR model, with parsimony becoming more important with
increasing dimension of the process.
Poskitt (2006) uses an error correction model for VARMA cointegration analysis in the I(1) case.
However, the extension of this model to the case of higher integration orders or multiple unit roots
is not straightforward. One possibility to overcome the difficulties for the cointegration analysis
of VARMA processes is the usage of the state space framework, see, e. g., Hannan and Deistler
(1988). This dissertation provides important tools for cointegration analysis in the state space
framework, namely a continuous parameterization and a pseudo maximum likelihood estimator
for the multiple frequency I(1) case.

Chapter 1 discusses the parameterization of state space processes of arbitrary integration orders.
Since the state space representation of a stochastic process is not unique, a canonical form is
necessary, which selects one unique state space representation. Since this canonical form places re-
strictions on the system matrices, not all entries of the matrices are free parameters. Some entries
are restricted to be zero or depend on other entries. The parametrization is based on the canonical
form of Bauer and Wagner (2012), which is particularly well suited for cointegration analysis. As
shown by Hazewinkel and Kalman (1976), there is no continuous parameterization for all state
space systems of a given system order. Therefore, we partition the set of all systems into subsets on
which a continuous parameterization is possible. For this we use a multi-index, which is chosen in
such a way that properties like the unit roots, integration orders and dimensions of the cointegra-
ting spaces remain constant in each subset. In addition to deriving a continuous parametrization,
which is almost everywhere continuously invertible, we find a generic subset which is open and
dense in the set of all integrated processes with a state space representation of a given system
order. Additionally, we discuss the topological structure of the subsets, defining a partial ordering
of the multi-indices. This is important, since we show that if the multi-index is chosen to large the
true transfer function is in the closure of the transfer functions in the subset, which potentially
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allows for consistent estimation.
Finally, we discuss the implementation of hypotheses on the cointegrating ranks and spaces in
the parametrization for the empirically most relevant cases, the multiple frequency I(1) and the
I(2) case. We show that all hypotheses commonly tested for VAR processes in these cases can be
implemented in the state space framework. This potentially allows for the derivation of pseudo
likelihood ratio tests for these hypotheses.

Chapter 2 examines pseudo maximum likelihood estimation for multiple frequency I(1) processes.
We derive the likelihood function for multiple frequency I(1) processes and show that the pseu-
do maximum likelihood estimator is consistent under relatively mild conditions. Additionally, we
show that setting the starting values of the state process to zero does not affect the asymptotic
properties of the pseudo maximum likelihood estimator. Consistency does not only hold for a cor-
rectly chosen multi-index, but also when the generic multi-index found in Chapter 1 is used. The
cointegrating space is estimated super-consistently. The proof of consistency is independent of the
parameterization, similar to the proof of Hannan and Deistler (1988) in the stationary case. For
the case of a correctly chosen multi-index we additionally derive the asymptotic distribution of
the pseudo maximum likelihood estimator, providing the ground work for pseudo likelihood ratio
tests.
In a simulation study we compare the pseudo maximum likelihood estimator to reduced rank re-
gression on vector autoregressive approximations by Johansen and Schaumburg (1999) and to the
CCA subspace algorithm of Bauer and Buschmeier (2016). In the case of moving average roots
close to the unit circle the pseudo maximum likelihood algorithm estimates the cointegrating space
more precisely and makes better predictions than the other algorithms for our simulated systems.

Finally, Chapter 3 consists of an useful tutorial for the analysis of economic time series using the
state space framework. Using the analysis of King, Plosser, Stock and Watson (1991) as an illus-
trative example, we demonstrate that all economically relevant questions examined by King et al.
(1991) can also be analyzed using the state space framework. The analysis of King et al. (1991)
is based on quarterly US economic data from 1949 to 1988. We compare the methods developed
for the state space framework, namely the pseudo maximum likelihood estimator from Chapter 2
and the tests based upon it from Matuschek, de Matos Ribeiro, Bauer and Wagner (2020) to the
methods used by King et al. (1991), i. e., the DOLS estimator of Stock and Watson (1993) and
the tests for the cointegrating rank of Stock and Watson (1988) and to the vector error correction
model for I(1) processes by Johansen (1995). In doing so, we point out which matlab procedures
we use for the analysis. The results obtained with the three different approaches differ, which in-
dicates that the results of empirical applications to time series of dimension six or more of sample
sizes below two or three hundred should be interpreted with care.
Additionally, we test the robustness of the vector error correction model and the state space frame-
work by repeating the analysis on an extended data set with quarterly US economic data from 1949
to 2018 and on the subset with data from 1989 to 2018. The results of both approaches differ for
the three data sets. This may be a hint that there are structural breaks in the economic time series.

All simulations and computations for empirical applications have been performed in matlab. The
code containing the respective procedures can be obtained from the author upon request.

2
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A Parameterization of Models for
Unit Root Processes: Structure
Theory and Hypothesis Testing

1.1 Introduction

Since the seminal contribution of Clive W.J. Granger (1981) that introduced the concept of coin-
tegration, the modeling of multivariate (economic) time series with models and methods that
allow for unit roots and cointegration has become standard econometric practice with applications
ranging from macroeconomics to finance to climate science.

The most prominent (parametric) model class for cointegration analysis are vector autoregres-
sive (VAR) models, popularized by the important contributions of Søren Johansen and Katarina
Juselius and their co-authors, see, e. g., the monographs Johansen (1995) and Juselius (2006). The
popularity of VAR cointegration analysis stems not only from the (relative) simplicity of the mo-
del class that allows by and large for least squares based estimation, but also from the fact that
the VAR cointegration literature is very well-developed and provides a large battery of tools for
diagnostic testing, impulse response analysis, forecast error variance decompositions and the like.
All this makes VAR cointegration analysis to a certain extent the benchmark in the literature.1

The imposition of specific cointegration properties on an estimated VAR model becomes in-
creasingly complicated as one moves away from the I(1) case. As discussed in Section 1.2, e. g., in
the I(2) case a triple of indices needs to be chosen (fixed or determined via testing) to describe the
cointegration properties. The imposition of cointegration properties in the estimation algorithm
then leads to “switching” type algorithms that come together with complicated parameterization
restrictions with complex inter-relations, compare Paruolo (1996) or Paruolo (2000).2 Mathema-
tically, these complications arise from the fact that the unit root and cointegration properties are
in the VAR setting related to rank restrictions on the autoregressive polynomial matrix and its
derivatives.

Restricting cointegration analysis to VAR processes may be too restrictive. First, it is well-
known since Zellner and Palm (1974) that VAR processes are not invariant with respect to mar-
ginalization, i. e., subsets of the variables of a VAR process are in general vector autoregressive
moving average (VARMA) processes. Second, similar to the first argument, aggregation of VAR
processes also leads to VARMA processes, an issue relevant, e. g., in the context of temporal ag-
gregation and in mixed-frequency settings. Third, the linearized solutions to dynamic stochastic
general equilibrium (DSGE) models are typically VARMA rather than VAR processes, see, e. g.,
Campbell (1994). Fourth, a VARMA model may be a more parsimonious description of the data
generating process (DGP) than a VAR model, with parsimony becoming more important with

1Note that the original contribution to the estimation of cointegrating relationship has been least squares esti-
mation in a non- or semi-parametric regression setting, see, e. g., Engle and Granger (1987). A recent survey of
regression based cointegration analysis is provided by Wagner (2018).

2The complexity of these inter-relations is probably well illustrated by the fact that only Jensen (2013) notes that
“even though the I(2) models are formulated as submodels of I(1) models, some I(1) models are in fact submodels
of I(2) models”.
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increasing dimension of the process.3

If one accepts the above arguments as a motivation for considering VARMA processes in coin-
tegration analysis, it is convenient to move to the – essentially equivalent, see Hannan and Deistler
(1988, Chapters 1 and 2) – state space framework. A key challenge when moving from VAR to
VARMA models – or state space models – is that identification becomes an important issue for the
latter model class, whereas unrestricted VAR models are (reduced-form) identified. In other words,
there are so-called equivalence classes of VARMA models that lead to the same dynamic behavior
of the observed process. As is well-known, to achieve identification, restrictions have to be placed
on the coefficient matrices in the VARMA case, e. g., zero or exclusion restrictions. A mapping
attaching to every transfer function, i.e, the function relating the error sequence to the observed
process, a unique VARMA (or state space) system from the corresponding class of observational-
ly equivalent systems is called canonical form. Since not all entries of the coefficient matrices in
canonical form are free parameters, for statistical analysis a so-called parameterization is required
that maps the free parameters from coefficient matrices in canonical form into a parameter vector.
These issues, including the importance of the properties like continuity and differentiability of pa-
rameterizations, are discussed in detail in Hannan and Deistler (1988, Chapter 2) and, of course,
are also relevant for our setting in this paper.

The convenience of the state space framework for unit root and cointegration analysis stems
from the fact that (static and dynamic) cointegration can be characterized by orthogonality cons-
traints, see Bauer and Wagner (2012), once an appropriate basis for the state vector, which is a
(potentially singular) VAR process of order one, is chosen. The integration properties are governed
by the eigenvalue structure of unit modulus eigenvalues of the system matrix in the state equation.
Eigenvalues of unit modulus and orthogonality constraints arguably are easier restrictions to deal
with or to implement than the interrelated rank restrictions considered in the VAR or VARMA
setting. The canonical form of Bauer and Wagner (2012) is designed for cointegration analysis by
using a basis of the state vector that puts the unit root and cointegration properties to the center
and forefront. Consequently, these results are key input for the present paper and are thus briefly
reviewed in Section 1.3.

An important problem with respect to appropriately defining the “free parameters” in VARMA
models is the fact that no continuous parameterization of all VARMA or state space models of a
certain order n exists in the multivariate case, see Hazewinkel and Kalman (1976). This implies
that the model set, Mn say, has to be partitioned into subsets on which continuous paramete-
rizations exist, i. e., Mn =

⋃
Γ∈GMΓ for some multi-index Γ varying in an index set G. Based

on the canonical form of Bauer and Wagner (2012), the partitioning is according to systems – in
addition to other restrictions like fixed order n – with fixed unit root properties, to be precise
over systems with given state space unit root structure. This has the advantage that, e. g., pseu-
do maximum likelihood (PML) estimation can straightforwardly be performed over systems with
fixed unit root properties without any further ado, i. e., without having to consider (or ignore)
rank restrictions on polynomial matrices. The definition and detailed discussion of the properties
of this parameterization is the first main result of the paper.

The second main set of results, provided in Section 1.4, is a detailed discussion of the relation-
ships between the different subsets of models MΓ for different indices Γ and the parameterization
of the respective model sets. Knowledge concerning these relations is important to understand the
asymptotic behavior of PML estimators and pseudo likelihood ratio tests based upon them. In
particular the structure of the closures of M , M say, of the considered model set M has to be
understood, since the difference M \M cannot be avoided when maximizing the pseudo likelihood
function4. Additionally, the inclusion properties between different sets MΓ need to be understood,

3The literature often uses VAR models as approximations, based on the fact that VARMA processes often can
be approximated by VAR models with the order tending to infinity with the sample size at certain rates. This line
of work goes back to Lewis and Reinsel (1985) for stationary processes and has been extended to (co)integrated
processes by Saikkonen (1992), Saikkonen and Luukkonen (1997) and Bauer and Wagner (2007). In addition to
the issue of the existence and properties of a sequence of VAR approximations, the question whether a VAR
approximation is parsimonious remains.

4Below we often use the term “likelihood” as short form of “likelihood function”.

2
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as this knowledge is important for developing hypothesis tests, in particular for developing hypo-
thesis tests for the dimensions of cointegrating spaces. Hypotheses testing, with a focus on the
MFI(1) and I(2) cases, is discussed in Section 1.5, which shows how the parameterization results
of the paper can be used to formulate a large number of hypotheses on (static and polynomial)
cointegrating relationships as considered in the VAR cointegration literature. This discussion also
includes commonly used deterministic components like intercept, seasonal dummies and linear
trend as well as restrictions on these components.

The paper is organized as follows: Section 1.2 briefly reviews VAR and VARMA models with
unit roots and cointegration and discusses some of the complications arising in the VARMA case
in addition to the complications arising due to the presence of unit roots and cointegration already
in the VAR case. Section 1.3 presents the canonical form and the parameterization based upon
it, with the discussion starting with the multiple frequency I(1) – MFI(1) – and I(2) cases prior
to a discussion of the general case. This section also provides several important definitions like,
e. g., of the state space unit root structure. Section 1.4 contains a detailed discussion concerning
the topological structure of the model sets and Section 1.5 discusses testing of a large number of
hypotheses on the cointegrating spaces commonly tested in the cointegration literature. The dis-
cussion in Section 1.5 focuses on the empirically most relevant MFI(1) and I(2) cases and includes
the usual deterministic components considered in the literature. Section 1.6 briefly summarizes
and concludes. All proofs are relegated to the appendix.

Throughout we use the following notation: L denotes the lag operator, i. e., L({xt}t∈Z) :=
{xt−1}t∈Z, for brevity written as Lxt = xt−1. For a matrix γ ∈ Cs×r, γ′ ∈ Cr×s denotes its
conjugate transpose. For γ ∈ Cs×r with full column rank r ≤ s, we define γ⊥ ∈ Cs×(s−r) of
full column rank such that γ′γ⊥ = 0. Ip denotes the p-dimensional identity matrix, 0m×n the
m times n zero matrix. For two matrices A ∈ Cm×n, B ∈ Ck×l, A ⊗ B ∈ Cmk×nl denotes the
Kronecker product of A and B. For a complex valued quantity x, R(x) denotes its real part, I(x)
its imaginary part and x its complex conjugate. For a set V , V denotes its closure.5 For two sets
V and W , V \W denotes the difference of V and W , i. e., {v ∈ V : v /∈ W}. For a square matrix
A we denote the spectral radius (i. e., the maximum of the moduli of its eigenvalues) by λ|max|(A)
and by det(A) its determinant.

1.2 Vector Autoregressive, Vector Autoregressive Moving
Average Processes and Parameterizations

In this paper we define VAR processes {yt}t∈Z, yt ∈ Rs, as solution of

a(L)yt = yt +

p∑
j=1

ajyt−j = εt + Φdt, (1.1)

with a(L) := Is +
∑p
j=1 ajL

j , where aj ∈ Rs×s for j = 1, . . . , p, Φ ∈ Rs×m, ap 6= 0, a white noise
process {εt}t∈Z, εt ∈ Rs, with Σ := E(εtε

′
t) > 0 and a vector sequence {dt}t∈Z, dt ∈ Rm, comprising

deterministic components like, e. g., the intercept, seasonal dummies or a linear trend. Furthermore,
we impose the non-explosiveness condition det a(z) 6= 0 for all |z| < 1, with a(z) := Is+

∑p
j=1 ajz

j

and z denoting a complex variable.6

Thus, for given autoregressive order p, with – as defining characteristic of the order – ap 6= 0,
the considered class of VAR models with specified deterministic components {dt}t∈Z is given by
the set of all polynomial matrices a(z) such that (i) the non-explosiveness condition holds, (ii)
a(0) = Is and (iii) ap 6= 0; together with the set of all matrices Φ ∈ Rs×m.

5We are confident that this dual usage of notation does not lead to confusion.
6Our definition of VAR processes differs to a certain extent from some widely-used definitions in the literature.

Given our focus on unit root and cointegration analysis we, unlike Hannan and Deistler (1988), allow for determi-
nantal roots at the unit circle that, as is well known, lead to integrated processes. We also include deterministic
components in our definition, i. e., we allow for a special case of exogenous variables, compare also Remark 1.2
below. There is, however, also a large part of the literature that refers to this setting simply as (cointegrated) vector
autoregressive models, see, e. g., Johansen (1995) and Juselius (2006).
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Equivalently, the model class can be characterized by a set of rational matrix functions k(z) :=
a(z)−1, referred to as transfer functions, and the input-output description for the deterministic
variables, i. e.,

Vp,Φ := Vp × Rs×m,

Vp :=

k(z) =

∞∑
j=0

kjz
j = a(z)−1 : a(z) = Is +

p∑
j=1

ajz
j ,det a(z) 6= 0 for |z| < 1, ap 6= 0

 .

The associated parameter space is Θp,Φ := Θp × Rsm ⊂ Rs
2p+sm, where the parameters

θ := [θ′a,θ
′
Φ]′ = [vec(a1)′, . . . , vec(ap)

′, vec(Φ)′]′ (1.2)

are obtained from stacking the entries of the matrices aj and Φ, respectively.

Remark 1.1 In the above discussion the parameters, θΣ say, describing the variance covariance
matrix Σ of εt are not considered. These can be easily included, similarly to Φ by, e. g., parame-
terizing positive definite symmetric s× s matrices via their lower triangular Cholesky factor. This

leads to a parameter space Θp,Φ,Σ ⊂ Rs
2p+sm+

s(s+1)
2 . We omit θΣ for brevity, since typically no

cross-parameter restrictions involving parameters corresponding to Σ are considered, whereas, as
discussed in Section 1.5, parameter restrictions involving – in this paper in the state space rather
than the VAR setting – both elements of Θp and Φ, to, e. g., impose the absence of a linear trend
in the cointegrating space, are commonly considered in the cointegration literature.7 In the absence
of cross-parameter restrictions involving θΣ, the variance covariance matrix Σ is typically either
estimated from least squares or reduced rank regression residuals (in a VAR setting) or concen-
trated out in pseudo maximum likelihood estimation. Thus, explicitly including θΣ and ΘΣ in the
discussion would only overload notation without adding any additional insights, given the simple
nature of the parameterization of Σ.

Remark 1.2 Our consideration of deterministic components is a special case of including exoge-
nous variables. We include exogenous deterministic variables with a static input-output behavior
governed solely by the matrix Φ. More general exogenous variables that are dynamically related
to the output {yt}t∈Z could be considered, thereby considering so-called VARX models rather than
VAR models, which would necessitate considering in addition to the transfer function k(z) also a
transfer function l(z), say, linking the exogenous variables dynamically to the output.

For the VAR case, the fact that the mapping assigning a given transfer function k(z) ∈ Vp, to a
parameter vector θa ∈ Θp – the parameterization – is continuous with continuously differentiable
inverse is immediate.8 Homeomorphicity of a parameterization is important for the properties of
parameter estimators, e. g., the ordinary least squares (OLS) or Gaussian PML estimator, compare
the discussion in Hannan and Deistler (1988, Theorem 2.5.3 and Remark 1, p. 65).

For OLS estimation one typically considers the larger set V OLSp without the non-explosiveness
condition and without the assumption ap 6= 0:

V OLSp :=

k(z) =

∞∑
j=0

kjz
j = a(z)−1 : a(z) = Is +

p∑
j=1

ajz
j

 .

Considering V OLSp allows for unconstrained optimization. It is well-known that for {εt}t∈Z as

given above, the OLS estimator is consistent over the larger set V OLSp , i. e., without imposing

7Of course, the statistical properties of the parameter estimators depend in many ways upon the deterministic
components.

8The set Vp is endowed with the pointwise topology, defined in Section 1.3. For now, in the context of VAR
models, it suffices to know that convergence in pointwise topology is equivalent to convergence of the VAR coefficient
matrices a1, . . . , ap in the Frobenius norm.
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non-explosiveness and also when specifying p too high. Alternatively, and closely related to OLS
in the VAR case, the pseudo likelihood can be maximized over Θp,Φ. With this approach, maxima
respectively suprema can occur at the boundary of the parameter space, i. e., maximization effec-
tively has to consider Θp,Φ. It is well-known that the PML estimator is consistent for the stable
case, cf. Hannan and Deistler (1988, Theorem 4.2.1), but the maximization problem is compli-
cated by the restrictions on the parameter space stemming from the non-explosiveness condition.
Avoiding these complications and asymptotic equivalence of OLS and PML in the stable VAR
case explains why VAR models are usually estimated by OLS.9

To be more explicit, ignore deterministic components for a moment and consider the case where
the DGP is a stationary VAR process, i. e., a solution of (1.1) with a(z) satisfying the stability
condition det a(z) 6= 0 for |z| ≤ 1. Define the corresponding set of stable transfer functions by Vp,•:

Vp,• :=
{
a(z)−1 ∈ Vp : det a(z) 6= 0 for |z| ≤ 1, ap 6= 0

}
.

Clearly, Vp,• is an open subset of Vp. If the DGP is a stationary VAR process, the above-mentioned
consistency result of the OLS estimator over V OLSp implies that the probability that the estimated

transfer function, k̂(z) = â(z)−1 say, is contained in Vp,• converges to one as the sample size tends
to infinity. Moreover, the asymptotic distribution of the estimated parameters is normal, under
appropriate assumptions on {εt}t∈Z.

The situation is a bit more involved, if the transfer function of the DGP corresponds to a point
in the set V p,• \ Vp,•, which contains systems with unit roots, i. e., determinantal roots of a(z) on
the unit circle, as well as lower order autoregressive systems – with these two cases non-disjoint.
The stable lower order case is relatively unproblematic from a statistical perspective. If, e. g., OLS
estimation is performed over V OLSp , while the true model corresponds to an element in Vp∗,•,

with p∗ < p, the OLS estimator is still consistent, since Vp∗,• ⊂ V OLSp . Furthermore, standard
chi-squared pseudo likelihood ratio test based inference still applies. The integrated case, for a
precise definition see the discussion below Definition 1.1, is a bit more difficult to deal with, as
in this case not all parameters are asymptotically normally distributed and nuisance parameters
may be present. Consequently, parameterizations that do not take the specific nature of unit root
processes into account are not very useful for inference in the unit root case, see, e. g., Sims, Stock
and Watson (1990, Theorem 1). Studying the unit root and cointegration properties is facilitated
by resorting to suitable parameterizations that “zoom in on the relevant characteristics”.

In case that the only determinantal root of a(z) on the unit circle is at z = 1, the system
corresponds to a so-called I(d) process, with the integration order d > 0 made precise in Defini-
tion 1.1 below. Consider first the I(1) case: As is well-known, the rank of the matrix a(1) equals
the dimension of the cointegrating space given in Definition 1.3 below – also referred to as the
cointegrating rank. Therefore, determination of the rank of this matrix is of key importance. With
the parameterization used so far, imposing a certain (maximal) rank on a(1) implies complicated
restrictions on the matrices aj , j = 1, . . . , p. This in turn renders the correspondingly restricted
optimization unnecessarily complicated and not conducive to develop tests for the cointegrating
rank. It is more convenient to consider the so-called vector error correction model (VECM) repre-
sentation of autoregressive processes, discussed in full detail in the monograph Johansen (1995).
To this end, let us first introduce the differencing operator at frequency 0 ≤ ω ≤ π

∆ω :=

{
Is − 2 cos(ω)L+ L2 for 0 < ω < π
Is − cos(ω)L for ω ∈ {0, π} . (1.3)

For notational brevity, we omit the dependence on L in ∆ω(L), henceforth denoted as ∆ω. Using

9Note that in case of restricted estimation, i. e., zero restrictions or cross-equation restrictions, OLS is not
asymptotically equivalent to PML in general.

5



6

this notation, the I(1) error correction representation is given by

∆0yt = Πyt−1 +

p−1∑
j=1

Γj∆0yt−j + εt + Φdt (1.4)

= αβ′yt−1 +

p−1∑
j=1

Γj∆0yt−j + εt + Φdt,

with the matrix Π := −a(1) = −(Is +
∑p
j=1 aj) of rank 0 ≤ r ≤ s factorized into the product of

two full rank matrices α, β ∈ Rs×r and Γj :=
∑p
m=j+1 am, j = 1, . . . , p− 1.

This constitutes a reparameterization, where k(z) ∈ Vp is now represented by the matrices
(α, β,Γ1, . . . ,Γp−1) and a corresponding parameter vector θVECM

a ∈ ΘVECM
p,r . Note that stacking the

entries of the matrices does not lead to a homeomorphic mapping from Vp to ΘVECM
p,s , since for 0 <

r ≤ s the matrices α and β are not identifiable from the product αβ′, since αβ′ = αMM−1β′ = α̃β̃′

for all regular matrices M ∈ Rr×r. One way to obtain identifiability is to introduce the restriction
β = [Ir, β

∗′]′, with β∗ ∈ R(s−r)×r and α ∈ Rs×r. With this additional restriction the parameter
vector θVECM

a is given by stacking the vectorized matrices α, β∗,Γ1, . . . ,Γp−1, similarly to (1.2).

Then, ΘVECM

p,r,Φ = ΘVECM
p,r ×Rsm ⊂ Rps2−(s−r)2+sm. Note for completeness that the normalization of

β = [Ir, β
∗′]′ may necessitate a re-ordering of the variables in {yt}t∈Z since – without potential

reordering – this parameterization implies a restriction of generality as, e. g., processes, where the
first variable is integrated, but does not cointegrate with the other variables, cannot be represented.

Define the following sets of transfer functions:

Vp,r :=
{
a(z)−1 ∈ Vp : det a(z) 6= 0 for {z : |z| = 1, z 6= 1}, rank(a(1)) ≤ r,

}
,

V RRRp,r :=
{
a(z)−1 ∈ V OLSp : rank(a(1)) ≤ r

}
.

The dimension of the parameter vector θVECM

a depends on the dimension of the cointegrating
space, thus, the parameterization of k(z) ∈ Vp,r depends on r. The so-called reduced rank regression
(RRR) estimator, given by the maximizer of the pseudo likelihood over V RRRp,r is consistent, see,
e. g., Johansen (1995, Chapter 6). The RRR estimator uses an “implicit” normalization of β and
thereby implicitly addresses the mentioned identification problem. However, for testing hypotheses
involving the free parameters in α or β, typically the identifying assumption given above is used,
as discussed in Johansen (1995, Chapter 7).

Furthermore, since Vp,r ⊂ Vp,r∗ for r < r∗ ≤ s, with ΘVECM
p,r a lower dimensional subset of

ΘVECM
p,r∗ , pseudo likelihood ratio testing can be used to sequentially test for the rank r, starting

with the hypothesis of a rank r = 0 against the alternative of a rank 0 < r ≤ s, and increasing
the assumed rank consecutively until the null hypothesis is not rejected.

Ensuring that {yt}t∈Z generated from (1.4) is indeed an I(1) process, requires on the one hand
that Π is of reduced rank, i. e., r < s and on the other that the matrix

α′⊥Γβ⊥ := α′⊥

Is − p−1∑
j=1

Γj

β⊥ (1.5)

has full rank. It is well-known that condition (1.5) is fulfilled on the complement of a “thin”
algebraic subset of V RRRp,r , and is therefore ignored in estimation, as it is “generically” fulfilled.10

The I(2) case is similar in structure to the I(1) case, but with two rank restrictions and one
full rank condition to exclude even higher integration orders. The corresponding VECM is given
by

∆2
0yt = αβ′yt−1 − Γ∆0yt−1 +

p−2∑
j=1

Ψj∆
2
0yt−j + εt, (1.6)

10A similar property holds for V RRRp,r being a “thin” subset of V OLSp . This implies that the probability that the

OLS estimator calculated over V OLSp corresponds to an element V RRRp,r ⊂ V OLSp is equal to zero in general.
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with α, β as defined in (1.4), Γ as defined in (1.5) and Ψj := −
∑p−1
k=j+1 Γk, j = 1, . . . , p − 2.

From (1.5) we already know that reduced rank of

α′⊥Γβ⊥ =: ξη′, (1.7)

with ξ, η ∈ R(s−r)×m, m < s − r is required for higher integration orders. The condition for the
corresponding solution process {yt}t∈Z to be an I(2) process is given by full rank of

ξ′⊥α
′
⊥

Γβ(β′β)−1(α′α)−1α′Γ + Is −
p−2∑
j=1

Ψj

β⊥η⊥,

which again is typically ignored in estimation, just like condition (1.5) in the I(1) case. Thus, I(2)
processes correspond to a “thin subset” of V RRRp,r , which in turn constitutes a “thin subset” of

V OLSp . The fact that integrated processes correspond to “thin sets” in V OLSp implies that obtai-
ning estimated systems with specific integration and cointegration properties requires restricted
estimation based on parameterizations tailor made to highlight these properties.

Already for the I(2) case, formulating parameterizations that allow to conveniently study the
integration and cointegration properties is a quite challenging task. Johansen (1997) contains se-
veral different (re-)parameterizations for the I(2) case and Paruolo (1996) defines “integration
indices”, r0, r1, r2 say, as the number of columns of the matrices β ∈ Rs×r0 , β1 := β⊥η ∈ Rs×r1
and β2 := β⊥η⊥ ∈ Rs×r2 . Clearly, the indices r0, r1, r2 are linked to the ranks of the above ma-
trices Π and α′⊥Γβ⊥, as r0 = r and r1 = m and the columns of [β, β1, β2] form a basis of Rs,
such that s = r0 + r1 + r2. It holds that {β′2yt}t∈Z is an I(2) process without cointegration and
{β′1yt}t∈Z is an I(1) process without cointegration. The process {β′yt}t∈Z is typically I(1) and in
this case cointegrates with {β′2∆0yt}t∈Z to stationarity. Thus, there is a direct correspondence of
these indices to the dimensions of the different cointegrating spaces – both static and dynamic
(with precise definitions given below in Definition 1.3).11 Note that again, as already before in
the I(1) case, different values of p and ranks r and m, respectively integration indices r0, r1, r2,
lead to parameter spaces of different dimensions. Furthermore, in these parameterizations matri-
ces describing different cointegrating spaces are (i) not identified and (ii) linked by restrictions,
compare the discussion in Paruolo (2000, Section 2.2) and (1.7). These facts render the analysis of
the cointegration properties in I(2) VAR systems complicated. Also, in the I(2) VAR case usually
some forms of RRR estimators are considered over suitable subsets V RRRp,r,m of V RRRp,r , again based
on implicit normalizations. Inference, however, again requires one to consider parameterizations
explicitly.

Estimation and inference issues are fundamentally more complex in the VARMA case than in
the VAR case. This stems from the fact that unrestricted estimation – unlike in the VAR case –
is not possible due to a lack of identification, as discussed below. This means that in the VARMA
case identification and parameterization issues need to be tackled as the first step, compare the
discussion in Hannan and Deistler (1988, Chapter 2).

In this paper we consider VARMA processes as solutions of the vector difference equation

yt +

p∑
j=1

ajyt−j = εt +

q∑
j=1

bjεt−j + Φdt,

with a(L) := Is +
∑p
j=1 ajL

j , where aj ∈ Rs×s for j = 1, . . . , p, ap 6= 0 and the non-explosiveness

condition det(a(z)) 6= 0 for |z| < 1. Similarly, b(L) := Is +
∑q
j=1 bjL

j , where bj ∈ Rs×s for

j = 1, . . . , q, bq 6= 0 and Φ ∈ Rs×m. The transfer function corresponding to a VARMA process is
k(z) := a(z)−1b(z).

It is well-known that without further restrictions the VARMA realization (a(z), b(z)) of the
transfer function k(z) = a(z)−1b(z) is not identified, i. e., different pairs of polynomial matrices

11Below Example 1.3 we clarify how these indices are related to the state space unit root structure defined in
Bauer and Wagner (2012, Definition 2) and link these to the dimensions of the cointegrating spaces in Section 1.5.2.
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(a(z), b(z)) can realize the same transfer function k(z). It is clear that for all non-singular poly-
nomial matrices m(z) the equality k(z) = a(z)−1m(z)−1m(z)b(z) = a(z)−1b(z) holds. Thus, the
mapping π attaching the transfer function k(z) = a(z)−1b(z) to the pair of polynomial matrices
(a(z), b(z)) is not injective.12

Consequently, we refer for given rational transfer function k(z) to the class {(a(z), b(z)) : k(z) =
a(z)−1b(z)} as a class of observationally equivalent VARMA realizations of k(z). To achieve iden-
tification requires to define a canonical form, selecting one member of each class of observationally
equivalent VARMA realizations for a set of considered transfer functions. A first step towards a
canonical form is to only consider left coprime pairs (a(z), b(z)).13 However, left coprimeness is not
sufficient for identification and thus further restrictions are required, leading to parameter vectors
of smaller dimension than Rs2(p+q). A widely-used canonical form is the (reverse) echelon canoni-
cal form, see Hannan and Deistler (1988, Theorem 2.5.1, p. 59), based on (monic) normalizations
of the diagonal elements of a(z) and degree relationships between diagonal and off-diagonal ele-
ments as well as the entries in b(z), which lead to zero restrictions. The (reverse) echelon canonical
form in conjunction with a transformation to an error correction model has been used in VARMA
cointegration analysis in the I(1) case, e. g., in Poskitt (2006, Theorem 4.1), but, as for the VAR
case, understanding the interdependencies of rank conditions already becomes complicated once
one moves to the I(2) case.

In the VARMA case matters are further complicated by another well-known problem that
makes statistical analysis considerably more involved compared to the VAR case. Although there
exists a generalization of the autoregressive order to the VARMA case, such that any transfer
function corresponding to a VARMA system has an order n ∈ N (with the precise definition
given in the next section) it is known since Hazewinkel and Kalman (1976) that no continuous
parameterization of all rational transfer functions of order n exists if s > 1. Therefore, if one
wants to keep the above-discussed advantages that continuity of a parameterization provides, the
set of transfer functions of order n, henceforth referred to as Mn, has to be partitioned into sets
on which continuous parameterizations exist, i. e., Mn =

⋃
Γ∈GMΓ, for some index set G, as

already mentioned in the introduction.14 For any given partitioning of the set Mn it is important
to understand the relationships between the different subsets MΓ, as well as the closures of the
pieces MΓ, since in case of misspecification of MΓ points in MΓ \MΓ cannot be avoided even
asymptotically in, e. g., pseudo maximum likelihood estimation. These are more complicated issues
in the VARMA case than in the VAR case, see the discussion in Hannan and Deistler (1988,
Remark 1 after Theorem 2.5.3).

Based on these considerations, the following section provides and discusses a parameterization
that focuses on unit root and cointegration properties, resorting to the state space framework that
– as mentioned in the introduction – provides advantages for cointegration analysis. In particular
we derive an almost everywhere homeomorphic parameterization, based on partitioning the set of
all considered transfer functions according to a multi-index Γ that contains, among other elements,
the state space unit root structure. This implies that certain cointegration properties are invariant
for all systems corresponding to a subset MΓ, i. e., the parameterization allows to directly impose
cointegration properties like the “cointegration indices” of Paruolo (1996) mentioned before.

12Uniqueness of realizations in the VAR case stems from the normalization m(z)b(z) = Is, which reduces the class
of observationally equivalent VAR realizations of the same transfer function k(z) = a(z)−1b(z), with b(z) = Is, to
a singleton.

13The pair (a(z), b(z)) is left coprime if all its left divisors are unimodular matrices. Unimodular matrices are
polynomial matrices with constant non-zero determinant. Thus, pre-multiplication of, e. g., a(z) with a unimodular
matrix u(z) does not affect the determinantal roots that shape the dynamic behavior of the solutions of VAR
models.

14When using the echelon canonical form, the partitioning is according to the so-called Kronecker indices related
to a basis selection for the row-space of the Hankel matrix corresponding to the transfer function k(z), see, e. g.,
Hannan and Deistler (1988, Chapter 2.4) for a precise definition.
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1.3 The Canonical Form and the Parameterization

As a first step we define the class of VARMA processes considered in this paper, using the diffe-
rencing operator defined in (1.3):

Definition 1.1 The s-dimensional real VARMA process {yt}t∈Z has unit root structure Ω :=
((ω1, h1), . . . , (ωl, hl)) with 0 ≤ ω1 < ω2 < · · · < ωl ≤ π, hk ∈ N, k = 1, . . . , l, l ≥ 1, if it is a
solution of the difference equation

∆Ω(yt − Φdt) :=

l∏
k=1

∆hk
ωk

(yt − Φdt) = vt, (1.8)

where {dt}t∈Z is an m-dimensional deterministic sequence, Φ ∈ Rs×m and {vt}t∈Z is a linearly
regular stationary VARMA process, i. e., there exists a pair of left coprime matrix polynomials
(a(z), b(z)),det a(z) 6= 0, |z| ≤ 1 such that vt = a(L)−1b(L)(εt) =: c(L)(εt) for a white noise
process {εt}t∈Z with E(εtε

′
t) = Σ > 0, with furthermore c(z) 6= 0 for z = eiωk , k = 1, . . . , l.

• The process {yt}t∈Z is called unit root process with unit roots zk := eiωk for k = 1, . . . , l, the
set F (Ω) := {ω1, . . . , ωl} is the set of unit root frequencies and the integers hk, k = 1, . . . , l
are the integration orders.

• A unit root process with unit root structure ((0, d)), d ∈ N, is an I(d) process.

• A unit root process with unit root structure ((ω1, 1), . . . , (ωl, 1)) is an MFI(1), process.

A linearly regular stationary VARMA process has empty unit root structure Ω0 := {}.
As discussed in Bauer and Wagner (2012), the state space framework is convenient for the

analysis of VARMA unit root processes. Detailed treatments of the state space framework are
given in Hannan and Deistler (1988) and - in the context of unit root processes - Bauer and
Wagner (2012).

A state space representation of a unit root VARMA process is15

yt = Cxt + Φdt + εt,
xt+1 = Axt +Bεt,

(1.9)

for a white noise process {εt}t∈Z, εt ∈ Rs, a deterministic process {dt}t∈Z, dt ∈ Rm and the
unobserved state process {xt}t∈Z, xt ∈ Cn, A ∈ Cn×n, B ∈ Cn×s, C ∈ Cs×n and Φ ∈ Rs×m.

Remark 1.3 Bauer and Wagner (2012, Theorem 2) show that every real valued unit root VAR-
MA process {yt}t∈Z as given in (1.8) has a real valued state space representation with {xt}t∈Z
real valued and real valued system matrices (A, B, C). Considering complex valued state space
representations in (1.9) is merely for algebraic convenience, as in general some eigenvalues of
A are complex valued. Note for completeness that Bauer and Wagner (2012) contains a detailed
discussion why considering the A-matrix in the canonical form in (up to reordering) the Jordan
normal form is useful for cointegration analysis. For sake of brevity we abstain from including this
discussion again in the present paper. The key aspect of this construction is its usefulness for coin-
tegration analysis, which becomes visible in Remark 1.4, where the “simple” unit root properties
of blocks of the state vector are discussed.

The transfer function k(z) with real valued power series coefficients corresponding to a real
valued unit root process {yt}t∈Z as given in Definition 1.1 is given by the rational matrix function
k(z) = ∆Ω(z)−1a(z)−1b(z). The (possibly complex valued) matrix triple (A,B,C) realizes the
transfer function k(z) if and only if π(A,B,C) := Is + zC(In − zA)−1B = k(z). Note that, as

15Here and below we will only consider state space systems in so-called innovation representation, with the
same error in both the output equation and the state equation. Since every state space system has an innovation
representation, this is no restriction, compare Aoki (1990, Chapter 7.1).
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for VARMA realizations, for a transfer function k(z) there exist multiple state space realizations
(A,B,C), with possibly different state dimensions n. A state space system (A,B,C) is minimal,
if there exists no state space system of lower state dimension realizing the same transfer function
k(z). The order of the transfer function k(z) is the state dimension of a minimal system (A,B,C)
realizing k(z).

All minimal state space realizations of a transfer function k(z) only differ in the basis of
the state, cf. Hannan and Deistler (1988, Theorem 2.3.4), i. e., π(A,B,C) = π(Ã, B̃, C̃) for two
minimal state space systems (A,B,C) and (Ã, B̃, C̃) is equivalent to the existence of a regular
matrix T ∈ Cn such that A = TÃT−1, B = TB̃, C = C̃T−1. Thus, the matrices A and Ã are
similar for all minimal realizations of a transfer function k(z).

By imposing restrictions on the matrices of a minimal state space system (A,B,C) realizing
k(z), Bauer and Wagner (2012, Theorem 2) provide a canonical form, i. e., a mapping of the set
Mn of transfer functions with real valued power series coefficients defined below onto unique state
space realizations (A,B, C). The set Mn is defined as

Mn :=

{
k(z) = π(A,B,C)

∣∣∣ λ|max|(A) ≤ 1,
A ∈ Rn×n, B ∈ Rn×s, C ∈ Rs×n, (A,B,C) minimal

}
.

To describe the necessary restrictions of the canonical form the following definition is useful:

Definition 1.2 A matrix B = [bi,j ]i=1,...,c,j=1,...,s ∈ Cc×s is positive upper triangular (p.u.t.) if
there exist integers 1 ≤ j1 ≤ j2 ≤ · · · ≤ jc ≤ s + 1, such that for ji ≤ s we have bi,j = 0, j <
ji, ji < ji+1, bi,ji ∈ R+. For ji = s+ 1 it holds that bi,j = 0, 1 ≤ j ≤ s, i. e., B is of the form

B =


0 · · · 0 b1,j1 ∗ . . . ∗
0 . . . 0 b2,j2 ∗

0 . . . 0 bc,jc ∗

 ,
where the symbol ∗ indicates unrestricted complex-valued entries.

A unique state space realization of k(z) ∈Mn is given as follows, cf. Bauer and Wagner (2012,
Theorem 2):

Theorem 1.1 For every transfer function k(z) ∈ Mn there exists a unique minimal (complex)
state space realization (A,B, C) such that

yt = Cxt,C + εt,

xt+1,C = Axt,C + Bεt

with:

(i) A := diag(Au,A•) := diag(A1,C, . . . ,Al,C,A•), Au ∈ Cnu×nu ,A• ∈ Rn•×n• , where it holds
for k = 1, . . . , l that

– for 0 < ωk < π:

Ak,C :=

[
Jk 0
0 Jk

]
∈ C2dk×2dk ,

– for ωk ∈ {0, π}:

Ak,C := Jk ∈ Rd
k×dk ,

10
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with

Jk :=



zkIdk1
[Idk1

, 0dk1×(dk2−d
k
1 )] 0 · · · 0

0dk2×dk1
zkIdk2

[Idk2
, 0dk2×(dk3−d

k
2 )] 0

...

0 0 zkIdk3

. . . 0

...
...

. . .
. . . [Idk

hk−1
, 0dk

hk−1
×(dk

hk
−dk

hk−1
)]

0 0 · · · 0 zkIdk
hk


,

(1.10)

where 0 < dk1 ≤ dk2 ≤ · · · ≤ dkhk .

(ii) B := [B′u,B′•]′ := [B′1,C, . . . ,B′l,C,B′•]′ and C := [Cu, C•] := [C1,C, . . . , Cl,C, C•] are partitioned
accordingly. It holds for k = 1, . . . , l that

– for 0 < ωk < π:

Bk,C :=

[
Bk
Bk

]
∈ C2dk×s and Ck,C :=

[
Ck, Ck

]
∈ Cs×2dk .

– for ωk ∈ {0, π}:

Bk,C := Bk ∈ Rd
k×s and Ck,C := Ck ∈ Rs×d

k

.

(iii) Partitioning Bk,hk in Bk = [B′k,1, . . . ,B′k,hk ]′ as Bk,hk = [B′k,hk,1, . . . ,B
′
k,hk,hk

]′, with Bk,hk,j ∈
C(dkj−d

k
j−1)×s it holds that Bk,hk,j is p.u.t. for dkj > dkj−1 for j = 1, . . . , hk and k = 1, . . . , l.

(iv) For k = 1, . . . , l define Ck = [Ck,1, Ck,2, . . . , Ck,hk ], Ck,j = [CGk,j , CEk,j ], with CEk,j ∈ C
s×(dkj−d

k
j−1)

and CGk,j ∈ C
s×dkj−1 for j = 1, . . . , hk, with dk0 := 0. Further, define CEk := [CEk,1, . . . , CEk,hk ] ∈

Cs×d
k
hk . It holds that (CEk )′CEk = Idkhk

and (CGk,j)′CEk,i = 0 for 1 ≤ i ≤ j for j = 2, . . . , hk and

k = 1, . . . , l.

(v) λ|max|(A•) < 1 and the stable subsystem (A•,B•, C•) of state dimension n• = n − nu is in
echelon canonical form, cf. Hannan and Deistler (1988, Theorem 2.5.2).

Remark 1.4 As indicated in Remark 1.3 and discussed in detail in Bauer and Wagner (2012)
considering complex valued quantities is merely for algebraic convenience. For econometric analy-
sis, interest is, of course, on real valued quantities. These can be straightforwardly obtained from
the representation given in Theorem 1.1 as follows. First, define a transformation matrix (and its
inverse):

TR,d :=

[
Id ⊗

[
1
i

]
, Id ⊗

[
1
−i

]]
∈ C2d×2d, T−1

R,d :=
1

2

[
Id ⊗

[
1,−i

]
Id ⊗

[
1, i

]] .
Starting from the complex valued canonical representation (A, B, C), a real valued canonical
representation

yt = CRxt,R + εt,

xt+1,R = ARxt,R + BRεt,

with real valued matrices (AR,BR, CR) follows from using the just defined transformation matrix.
In particular it holds that:

AR := diag(Au,R,A•) := diag(A1,R, . . . ,Al,R,A•),
BR := [B′u,R,B′•]′ := [B′1,R, . . . ,B′l,R,B′•]′,
CR := [Cu,R, C•] := [C1,R, . . . , Cl,R, C•],

11
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with

(
Ak,R,Bk,R, Ck,R

)
:=

{(
TR,dkAkT−1

R,dk , TR,dkBk, CkT
−1
R,dk

)
if 0 < ωk < π,(

Ak,Bk, Ck
)

if ωk ∈ {0, π}.

Before we turn to the real valued state process corresponding to the real valued canonical repre-
sentation, we first consider the complex valued state process {xt,C}t∈Z in more detail. This pro-
cess is partitioned according to the partitioning of the matrices Ck,C into xt,C := [x′t,u, x

′
t,•]
′ :=

[x′t,1,C, . . . , x
′
t,l,C, x

′
t,•]
′, where

xt,k,C :=

{
[x′t,k, x

′
t,k]′ if 0 < ωk < π,

xt,k if ωk ∈ {0, π},

with

xt+1,k = Jkxt,k + Bkεt, for k = 1, . . . , l.

For k = 1, . . . , l the sub-vectors xt,k are further decomposed into xt,k := [(x1
t,k)′, . . . , (xhkt,k)′]′, with

xjt,k ∈ C
dkj for j = 1, . . . , hk according to the partitioning Ck = [Ck,1, . . . , Ck,hk ].

The partitioning of the complex valued process {xt,C}t∈Z leads to an analogous partitioning of
the real valued state process {xt,R}t∈Z, xt,R := [x′t,u,R, x

′
t,•]
′ := [x′t,1,R, . . . , x

′
t,l,R, x

′
t,•]
′, obtained

from

xt,k,R :=

{
TR,dkxt,k,C if 0 < ωk < π,

xt,k if ωk ∈ {0, π},

with the corresponding block of the state equation given by

xt+1,k,R = Ak,Rxt,k,R + Bk,Rεt.

For k = 1, . . . , l the sub-vectors xt,k,R are further decomposed into xt,k,R := [(x1
t,k,R)′, . . . , (xhkt,k,R)′]′,

with xjt,k,R ∈ R
2dkj if 0 < ωk < π and xjt,k,R ∈ R

dkj if ωk ∈ {0, π} for j = 1, . . . , hk and Ck,R :=
[Ck,1,R, . . . , Ck,hk,R] decomposed accordingly.

Bauer and Wagner (2012, Theorem 3, p. 1328) show that the processes {xjt,k,R}t∈Z have unit
root structure ((ωk, hk − j + 1)) for j = 1, . . . , hk and k = 1, . . . , l. Furthermore, for j = 1, . . . , hk
and k = 1, . . . , l the processes {xjt,k,R}t∈Z are not cointegrated, as defined in Definition 1.3 below.

For ωk = 0, the process {xjt,k,R}t∈Z is the djk-dimensional process of stochastic trends of order

h1 − j + 1, while the 2dkj components of {xjt,k,R}t∈Z, for 0 < ωk < π, and the dkj components of

{xjt,l,R}t∈Z, for ωk = π, are referred to as stochastic cycles of order hk−j+1 at their corresponding
frequencies ωk.

Remark 1.5 Parameterizing the stable part of the transfer function using the echelon canonical
form is merely one possible choice. Any other canonical form of the stable subsystem and suitable
parameterization based upon it can be used instead for the stable subsystem.

Remark 1.6 Starting from a state space system (1.9) with matrices (A,B, C) in canonical form,
a solution for yt, t > 0 (with the solution for t < 0 obtained completely analogously) – for some
x1 = [x′1,u, x

′
1,•]
′ – is given by

yt =

t−1∑
j=1

CuAj−1
u Buεt−j + CuAt−1

u x1,u +

t−1∑
j=1

C•Aj−1
• B•εt−j+

C•At−1
• x1,• + Φdt + εt.

12
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Clearly, the term CuAt−1
u x1,u is stochastically singular and is effectively like a deterministic com-

ponent, which may lead to an identification problem with Φdt. If the deterministic component
Φdt is rich enough to “absorb” CuAt−1

u x1,u, then one solution of the identification problem is to
set x1,u = 0. Rich enough here means, e. g., in the I(1) case with Au = I that dt contains an
intercept. Analogously, in the MFI(1) case dt has to contain seasonal dummy variables correspon-
ding to all unit root frequencies. The term C•At−1

• x1,• decays exponentially and therefore does
not impact the asymptotic properties of any statistical procedure. It is therefore inconsequential
for statistical analysis but convenient (with respect to our definition of unit root processes) to set
x1,• =

∑∞
j=1A

j−1
• B•ε1−j. This corresponds to the steady state or stationary solution of the sta-

ble block of the state equation, and renders {xt,•}t∈N or, when the solution on Z is considered,
{xt,•}t∈Z stationary. Note that these issues with respect to starting values, potential identification
problems and their impact or non-impact on statistical procedures also occur in the VAR setting.

Bauer and Wagner (2012, Theorem 2) show that minimality of the canonical state space reali-
zation (A, B, C) implies full row rank of the p.u.t. blocks Bk,hk,j of Bk,hk . In addition to proposing
the canonical form, Bauer and Wagner (2012) also provide details how to transform any minimal
state space realization into canonical form: Given a minimal state space system (A,B,C) realizing
the transfer function k(z) ∈ Mn, the first step is to find a similarity transformation T such that
Ã = TAT−1 is of the form given in (1.10) by using an eigenvalue decomposition, compare Chate-
lin (1993). In the second step the corresponding subsystem (Ã•, B̃•, C̃•) is transformed to echelon
canonical form as described in Hannan and Deistler (1988, Chapter 2). These two transformations
do not lead to a unique realization, because the restrictions on A do not uniquely determine the
unstable subsystem (Au,Bu, Cu).

For example, in the case Ω = ((ω1, h1)) = ((0, 1)), n• = 0, d1
1 < s, such that (Id1

1
,B1, C1) is

a corresponding state space system, the same transfer function k(z) = Is + zC1(1 − z)−1B1 =
Is + C1B1z(1 − z)−1 is realized also by all systems (Id1

1
, TB1, C1T−1), with some regular matrix

T ∈ Cd1
1×d

1
1 . To find a unique realization the product C1B1 needs to be uniquely decomposed into

factors C1 and B1. This is achieved by performing a QR decomposition of C1B1 (without pivoting)
that leads to C′1C1 = I. The additional restriction of B1 being a p.u.t. matrix of full row rank
then leads to a unique factorization of C1B1 into C1 and B1. In the general case with an arbitrary
unit root structure Ω, similar arguments lead to p.u.t. restrictions on sub-blocks Bk,hk,j in Bu and
orthogonality restrictions on sub-blocks of Cu.

The canonical form introduced in Theorem 1.1 has been designed to be useful for cointegration
analysis. To see this, first requires a definition of static and polynomial cointegration, cf. Bauer
and Wagner (2012, Definitions 3 and 4).

Definition 1.3 (i) Let Ω̃ = ((ω̃1, h̃1), . . . , (ω̃l̃, h̃l̃)) and Ω = ((ω1, h1), . . . , (ωl, hl)) be two unit

root structures. Then Ω̃ � Ω if

– F (Ω̃) ⊆ F (Ω).

– For all ω ∈ F (Ω̃) for k̃ and k such that ω̃k̃ = ωk = ω it holds that h̃k̃ ≤ hk.

Further, Ω̃ ≺ Ω if Ω̃ � Ω and Ω̃ 6= Ω. For two unit root structures Ω̃ � Ω define the decrease
δk(Ω, Ω̃) of the integration order at frequency ωk , for k = 1, . . . , l, as

δk(Ω, Ω̃) :=

{
hk − h̃k̃ ∃k̃ : ω̃k̃ = ωk ∈ F (Ω̃),

hk ωk /∈ F (Ω̃)
.

(ii) An s-dimensional unit root process {yt}t∈Z with unit root structure Ω is cointegrated of order
(Ω, Ω̃), where Ω̃ ≺ Ω, if there exists a vector β ∈ Rs, β 6= 0, such that {β′yt}t∈Z has unit root
structure Ω̃. In this case the vector β is a cointegrating vector (CIV) of order (Ω, Ω̃).
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(iii) All CIVs of order (Ω, Ω̃) span the (static) cointegrating space of order (Ω, Ω̃).16

(iv) An s-dimensional unit root process {yt}t∈Z with unit root structure Ω is polynomially cointe-
grated of order (Ω, Ω̃), where Ω̃ ≺ Ω, if there exists a vector polynomial β(z) =

∑q
m=0 βmz

m,
βm ∈ Rs, m = 0, . . . , q, βq 6= 0, for some integer 1 ≤ q <∞ such that

– β(L)′({yt}t∈Z) has unit root structure Ω̃,

– maxk=1,...,l‖β(eiωk)‖δk(Ω, Ω̃) 6= 0.

In this case the vector polynomial β(z) is a polynomial cointegrating vector (PCIV) of order
(Ω, Ω̃).

(v) All PCIVs of order (Ω, Ω̃) span the polynomial cointegrating space of order (Ω, Ω̃).

Remark 1.7 (i) It is merely a matter of taste whether cointegrating spaces are defined in terms
of their order (Ω, Ω̃) or their decrease δ(Ω, Ω̃) := (δ1(Ω, Ω̃), . . . , δl(Ω, Ω̃)), with δk(Ω, Ω̃) as
defined above. Specifying Ω and δ(Ω, Ω̃) contains the same information as providing the order
of (polynomial) cointegration.

(ii) Notwithstanding the fact that CIVs and PCIVs in general may lead to changes of the inte-
gration orders at different unit root frequencies, it may be of interest to “zoom in” on only
one unit root frequency ωk, thereby leaving the potential reductions of the integration orders
at other unit root frequencies unspecified. This allows to – entirely similarly as in Defini-
tion 1.3 – define cointegrating and polynomial cointegrating spaces of different orders at a
single unit root frequency ωk. Analogously one can also define cointegrating and polynomial
cointegrating spaces of different orders for subsets of the frequencies in F (Ω).

(iii) In principle the polynomial cointegrating spaces defined so far are infinite-dimensional, as
the polynomial degree is not bounded. However, since every polynomial vector β(z) can be
written as β0(z)+βΩ(z)∆Ω(z), where by definition {∆Ωyt}t∈Z has empty unit root structure,
it suffices to consider PCIVs of polynomial degree smaller than the polynomial degree of
∆Ω(z). This shows that it is sufficient to consider finite dimensional polynomial cointegrating
spaces. When considering, as in item (ii), (polynomial) cointegration only for one unit root it
similarly suffices to consider polynomials of maximal degree equal to hk−1 for real unit roots
and 2hk − 1 for complex unit roots. Thus, in the I(2) case it suffices to consider polynomials
of degree one.

(iv) The argument about maximal relevant polynomial degrees given in item (iii) can be made
more precise and combined with the decrease in Ω achieved. Every polynomial vector β(z)
can be written as β0(z) + βωk,δk(z)∆δk

ωk
(z) for δk = 1, . . . , hk. By definition it holds that

{∆δk
ωk
yt}t∈Z has integration order hk−δk at frequency ωk. Thus, it suffices to consider PCIVs

of polynomial degree smaller than δk for ωk ∈ {0, π} or 2δk for 0 < ωk < π when considering
the polynomial cointegrating space at ωk with decrease δk. In the MFI(1) case therefore,
when considering only one unit root frequency, again only polynomials of degree one need to
be considered. This space is often referred to in the literature as dynamic cointegration space.

To illustrate the advantages of the canonical form for cointegration analysis consider

yt =

l∑
k=1

hk∑
j=1

Ck,j,Rxjt,k,R + C•xt,• + Φdt + εt.

By Remark 1.4, the process {xjt,k,R}t∈Z is not cointegrated. This implies that β ∈ Rs, β 6= 0,
reduces the integration order at unit root zk to hk − j if and only if β′[Ck,1,R, . . . , Ck,j,R] = 0 and

16The definition of cointegrating spaces as linear subspaces, allows to characterize them by a basis and implies a
well-defined dimension. These advantages, however, have the implication that the zero vector is an element of all
cointegrating spaces, despite not being a cointegrating vector in our definition, where the zero vector is excluded.
This issue is well-known of course in the cointegration literature.
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β′Ck,j+1,R 6= 0 or equivalently β′[Ck,1, . . . , Ck,j ] = 0 and β′Ck,j+1 6= 0 (using the transformation to
the complex matrices of the canonical form, as discussed in Remark 1.4, and that β′[Ck, Ck] = 0 if
and only if β′Ck = 0). Thus, the CIVs are characterized by orthogonality to sub-blocks of Cu.

The real valued representation given in Remark 1.4 used in its partitioned form just above
immediately leads to necessary orthogonality constraint for polynomial cointegration of degree
one:

β(L)′(yt) =

β(L)′(Cu,Rxt,u,R + C•xt,• + Φdt + εt) =

β′0Cu,Rxt,u,R + β′1Cu,Rxt−1,u,R + β(L)′(C•xt,• + Φdt + εt) =

β′0Cu,R(Au,Rxt−1,u,R + Bu,Rεt−1) + β′1Cu,Rxt−1,u,R + β(L)′(C•xt,• + Φdt + εt) =

(β′0Cu,RAu,R + β′1Cu,R)xt−1,u,R + β′0Cu,RBu,Rεt−1 + β(L)′(C•xt,• + Φdt + εt) =

(β′0CuAu + β′1Cu)xt−1,u + β′0CuBuεt−1 + β(L)′(C•xt,• + Φdt + εt)

follows. Since all terms except the first are stationary or deterministic, a necessary condition for a

reduction of the unit root structure is the orthogonality of [ β′0 β′1 ]′ to sub-blocks of

[
Cu,RAu,R
Cu,R

]
or sub-blocks of the complex matrix

[
CuAu
Cu

]
. Note, however, that this orthogonality condition is

not sufficient for [β′0, β
′
1]′ to be a PCIV, because it does not imply maxk=1,...,l‖β(eiωk)‖δk(Ω, Ω̃) 6= 0.

For a detailed discussion of polynomial cointegration, when considering also higher polynomial
degrees, see Bauer and Wagner (2012, Section 5).
The following examples illustrate cointegration analysis in the state space framework for the
empirically most relevant, i. e., the I(1), MFI(1) and I(2) cases.

Example 1.1 (Cointegration in the I(1) case) In the I(1) case, neglecting the stable subsys-
tem and the deterministic components for simplicity, it holds that

yt = C1xt,1 + εt, yt, εt ∈ Rs, xt,1 ∈ Rd
1
1 , C1 ∈ Rs×d

1
1 ,

xt+1,1 = xt,1 + B1εt, B1 ∈ Rd
1
1×s.

The vector β ∈ Rs, β 6= 0, is a CIV of order ((0, 1), {}) if and only if β′C1 = 0.

Example 1.2 (Cointegration in the MFI(1) case with complex unit root zk) In the MFI(1)
case with unit root structure Ω = ((ωk, 1)) and complex unit root zk, neglecting the stable subsystem
and the deterministic components for simplicity, it holds that

yt = Ck,Rxt,k,R + εt

= [ Ck Ck ]

[
xt,k
xt,k

]
+ εt,

yt, εt ∈ Rs, xt,k,R ∈ R2dk1 , xt,k ∈ Cd
k
1 , Ck,R ∈ Rs×2dk1 , Ck ∈ Cs×d

k
1 ,[

xt+1,k

xt+1,k

]
=

[
zkIdk1

0

0 zkIdk1

] [
xt,k
xt,k

]
+

[
Bk
Bk

]
εt, Bk ∈ Cd

k
1×s.

The vector β ∈ Rs, β 6= 0, is a CIV of order (Ω, {}) if and only if

β′Ck = 0 (and thus β′Ck = 0).

The vector polynomial β(z) = β0 + β1z, with β0, β1 ∈ Rs, [β′0, β′1]′ 6= 0, is a PCIV of order (Ω, {})
if and only if

[β′0, β
′
1]

[
zkCk zkCk
Ck Ck

]
= 0, (1.11)
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which is equivalent to

(zkβ
′
0 + β′1)Ck = 0.

The fact that the matrix in (1.11) has a block structure with two blocks of conjugate complex
columns implies some additional structure also on space of PCIVs, here with polynomial degree one.
More specifically it holds that if β0 +β1z is a PCIV of order (Ω, {}), also −β1 +(β0 +2 cos(ωk)β1)z
is a PCIV of order (Ω, {}). This follows from

(zk(−β1)′ + (β0 + 2 cos(ωk)β1)′)Ck = (β′0 + (2R(zk)− zk)β′1)Ck
= (β′0 + zkβ

′
1)Ck

= zk(zkβ
′
0 + β′1)Ck = 0.

Thus, the space of PCIVs of degree (up to) one inherits some additional structure emanating from
the occurrence of complex eigenvalues in complex conjugate pairs.

Example 1.3 (Cointegration in the I(2) case) In the I(2) case, neglecting the stable subsys-
tem and the deterministic components for simplicity, it holds that

yt = CE1,1xEt,1 + CG1,2xGt,2 + CE1,2xEt,2 + εt,

yt, εt ∈ Rs, xEt,1, xGt,2 ∈ Rd
1
1 , xEt,2 ∈ Rd

1
2−d

1
1 , CE1,1, CG1,2 ∈ Rs×d

1
1 , CE1,2 ∈ Rs×(d1

2−d
1
1),

xEt+1,1 = xEt,1 + xGt,2 + B1,1εt,

xGt+1,2 = xGt,2 + B1,2,1εt,

xEt+1,2 = xEt,2 + B1,2,2εt, B1,1 ∈ Rd
1
1×s,B1,2,1 ∈ Rd

1
1×s,B1,2,2 ∈ R(d1

2−d
1
1)×s.

The vector β ∈ Rs, β 6= 0 is a CIV of order ((0, 2), (0, 1)) if and only if

β′CE1,1 = 0 and β′[CG1,2, CE1,2] 6= 0.

The vector β ∈ Rs, β 6= 0, is a CIV of order ((0, 2), {}) if and only if

β′[CE1,1, CG1,2, CE1,2] = 0.

The vector polynomial β(z) = β0 +β1z, with β0, β1 ∈ Rs is a PCIV of order ((0, 2), {}) if and only
if

[β′0, β
′
1]

[
CE1,1 CE1,1 + CG1,2 CE1,2
CE1,1 CG1,2 CE1,2

]
= 0 and β(1) = β0 + β1 6= 0.

The above orthogonality constraint indicates that the two cases CG1,2 = 0 and CG1,2 6= 0 have to be

considered separately for polynomial cointegration analysis. Consider first the case CG1,2 = 0. In this

case the orthogonality constraints imply β′0CE1,1 = 0, β′1CE1,1 = 0 and (β0 + β1)′CE1,2 = 0. Thus, the
vector β0 + β1 is a CIV of order ((0, 2), {}) and therefore β(z) = β0 + β1z is of “non-minimum”
degree, one in this case rather than zero (β0 + β1). For a formal definition of minimum degree
PCIVs see Bauer and Wagner (2003, Definition 4). In case CG1,2 6= 0 there are PCIVs of degree
one that are not simple transformations of static CIVs. Consider β(z) = β0 +β1z = γ1(1− z) +γ2

such that {γ′1(yt−yt−1)+γ′2yt}t∈Z is stationary. The integrated contribution to {γ′1(yt−yt−1)}t∈Z
is given by γ′1(1 − L)({CE1,1xEt,1}t∈Z) = {γ′1CE1,1xGt−1,2 + γ′1CE1,1B1,1εt−1}t∈Z, with γ′1CE1,1 6= 0. This

term is eliminated by {γ′2CG1,2xGt,2}t∈Z in {γ′2yt}t∈Z, if γ′1CE1,1 + γ′2CG1,2 = 0, which is only possible

if CG1,2 6= 0. Additionally, γ′2[CE1,1, CE1,2] = 0 needs to hold, such that there is no further integrated
contribution to {γ′2yt}t∈Z. Neither γ1 nor γ2 are CIVs since both violate the necessary conditions
given in the definition of CIVs, which implies that β(z) is indeed a “minimum degree” PCIV.
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As has been shown above, the unit root and cointegration properties of {yt}t∈Z depend on
the sub-blocks of Cu and the eigenvalue structure of Au. We therefore define the more encom-
passing state space unit root structure containing information on the geometrical and algebraic
multiplicities of the eigenvalues of Au, cf. Bauer and Wagner (2012, Definition 2).

Definition 1.4 A unit root process {yt}t∈Z with a canonical state space representation as given
in Theorem 1.1 has state space unit root structure

ΩS :=
(
(ω1, d

1
1, . . . , d

1
h1

), . . . , (ωl, d
l
1, . . . , d

l
hl

)
)

where 0 ≤ dk1 ≤ dk2 ≤ · · · ≤ dkhk ≤ s for k = 1, . . . , l. For {yt}t∈Z with empty unit root structure
ΩS := {}.

Remark 1.8 The state space unit root structure ΩS contains information concerning the integra-
tion properties of the process {yt}t∈Z, since the integers dkj , k = 1, . . . , l, j = 1, . . . , hk describe
(multiplied by two for k such that 0 < ωk < π) the numbers of non-cointegrated stochastic trends
or cycles of corresponding integration orders, compare again Remark 1.4. As such, ΩS describes
properties of the stochastic process {yt}t∈Z – and therefore the state space unit root structure ΩS
partitions unit root processes according to these (co-)integration properties. These (co-)integration
properties, however, are invariant to a chosen canonical representation, or more generally inva-
riant to whether a VARMA or state space representation is considered. For all minimal state
representations of a unit root process {yt}t∈Z these indices – being related to the Jordan normal
form – are invariant.

As mentioned in Section 1.2, Paruolo (1996, Definition 3) introduces integration indices at
frequency zero as a triple of integers (r0, r1, r2). These correspond to the numbers of columns of the
matrices β, β1, β2 in the error correction representation of I(2) VAR processes, see, e. g., Johansen
(1997, Section 3). Here, r2 is the number of stochastic trends of order two, i. e., r2 = d1

1. Further, r1

is the number of stochastic trends of order one that do not cointegrate with β′2∆0{yt}t∈Z and hence
r1 = d1

2 − d1
1. Therefore, the integration indices at frequency zero are in one-one correspondence

with the state space unit root structure ΩS = ((0, d1
1, d

1
2)) for I(2) processes and the dimension

s = r0 + r1 + r2 of the process.
The canonical form given in Theorem 1.1 imposes p.u.t. structures on sub-blocks of the matrix

Bu. The occurrence of these blocks – related to dkj > dkj−1 – is determined by the state space unit
root structure ΩS . The number of free entries in these p.u.t.-blocks, however, is not determined
by ΩS . Consequently, we need structure indices p ∈ Nnu0 indicating for each row the position of a
potentially restricted positive element, as formalized below:

Definition 1.5 (Structure indices) For the block Bu ∈ Cnu×s of the matrix B of a state space
realization (A,B, C) in canonical form, define the corresponding structure indices p ∈ Nnu0 as

pi :=

 0 if the i-th row of Bu is not part of a p.u.t. block,
j if the i-th row of Bu is part of a p.u.t. block and its j-th entry is restricted to

be positive.

Remark 1.9 Since sub-blocks of Bu corresponding to complex unit roots are of the form Bk,C =

[B′k,B
′
k]′, the entries restricted to be positive are located in the same columns and rows of both

Bk and Bk. Thus, the structure indices pi of the corresponding rows are identical for Bk and Bk.
Therefore, it would be possible to omit the parts of p corresponding to the blocks Bk. It is, however,
as will be seen in Definition 1.9, advantageous for the comparison of unit root structures and
structure indices that p is a vector with nu entries.

Example 1.4 Consider the following state space system:

yt =
[
CE1,1 CG1,2 CE1,2

]
xt + εt yt, εt ∈ R2, xt ∈ R3, CE1,1, CG1,2, CE1,2 ∈ R2×1 (1.12)

xt+1 =

[
1 1 0
0 1 0
0 0 1

]
xt +

[ B1,1

B1,2,1

B1,2,2

]
εt, x0 = 0, B1,1,B1,2,1,B1,2,2 ∈ R1×2.
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In canonical form B1,2,1 and B1,2,2 are p.u.t. matrices and B1,1 is unrestricted. If, e. g., the second
entry b1,2,1,2 of B1,2,1 and the first entry b1,2,2,1 of B1,2,2 are restricted to be positive, then

B =

[ ∗ ∗
0 b1,2,1,2

b1,2,2,1 ∗

]
,

where the symbol ∗ denotes unrestricted entries. In this case p = [0, 2, 1]′.

For given state space unit root structure ΩS the matrix Au is fully determined. The parame-
terization of the set of feasible matrices Bu for given structure indices p and of the set of stable
subsystems (A•,B•, C•) for given Kronecker indices α•, cf. Hannan and Deistler (1988, Chapter 2.)
is straightforward, since the entries in these matrices are either unrestricted, restricted to zero or
restricted to be positive. Matters are a bit more complicated for Cu. One possibility to parame-
terize the set of possible matrices Cu for a given state space unit root structure ΩS is to use real
and complex valued Givens rotations, cf. Golub and van Loan (1996, Chapter 5.1).

Definition 1.6 (Real Givens rotation) The real Givens rotation Rq,i,j(θ) ∈ Rq×q, θ ∈ [0, 2π)
is defined as

Rq,i,j(θ) :=


Ii−1 0

cos(θ) 0 sin(θ)
0 Ij−1−i 0

− sin(θ) 0 cos(θ)
0 Iq−j

 .
Remark 1.10 Givens rotations allow to transform any vector v = [v1, v2, ..., vq]

′ ∈ Rq into a
vector of the form [ṽ1, 0, ..., 0]′ with ṽ1 ≥ 0. This is achieved by the following algorithm:

1. Set j = 1, v
(1)
1 = v1 and v(1) = v.

2. Represent [v
(j)
1 , vq−j+1]′ using polar coordinates as [v

(j)
1 , vq−j+1]′ = [rj cos(θq−j), rj sin(θq−j)]

′,
with rj ≥ 0 and θq−j ∈ [0, 2π). If rj = 0, set θq−j = 0, cf. Otto (2011, Chapter 1.5.3, p. 39).

Then R2,1,2(θq−j)[v
(j)
1 , vq−j+1]′ = [v

(j+1)
1 , 0]′ such that v(j+1) = Rq,1,q−j+1(θq−j)v

(j) =

[v
(j+1)
1 , v2, . . . , vq−j , 0, . . . , 0]′, with v

(j+1)
1 ≥ 0.

3. If j = q − 1, stop. Else increment j by one (j → j + 1) and continue at step 2.

This algorithm determines a unique vector θ = [θ1, ..., θq−1]′ for every vector v ∈ Rq.

Remark 1.11 The determinant of real Givens rotations is equal to one, i. e., det(Rs,i,j(θ)) = 1
for all s, i, j ∈ N and all θ ∈ [0, 2π). Thus, it is not possible to factorize a orthonormal matrix Q
with det(Q) = −1 into a product of Givens rotations. This obvious fact has implications for the
parameterization of C-matrices as is detailed below.

Definition 1.7 (Complex Givens rotation) The complex Givens rotation Qq,i,j(ϕ) ∈ Cq×q,
ϕ := [ϕ1, ϕ2]′ ∈ ΘC := [0, π/2]× [0, 2π), is defined as

Qq,i,j(ϕ) :=


Ii−1 0

cos(ϕ1) 0 sin(ϕ1)eiϕ2

0 Ij−1−i 0
− sin(ϕ1)e−iϕ2 0 cos(ϕ1)

0 Iq−j

 .
Remark 1.12 Complex Givens rotations allow to transform any vector v = [v1, v2, ..., vq]

′ ∈ Cq
into a vector of the form [ṽ1, 0, ..., 0]′ with ṽ1 ∈ C. This is achieved by the following algorithm:

1. Set j = 1, v
(1)
1 = v1 and v(1) = v.
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2. Represent [v
(j)
1 , vq−j+1]′ using polar coordinates as [v

(j)
1 , vq−j+1]′ = [aje

iϕa,j , bje
iϕb,j ]′, with

aj , bj ≥ 0 and ϕa,j , ϕb,j ∈ [0, 2π). If v
(j)
1 = 0, set ϕa,j = 0 and if vq−j+1 = 0, set ϕb,j = 0

,cf. Otto (2011, Chapter 8.1.3, p. 222).

3. Set

ϕq−j,1 =


tan−1

(
bj
aj

)
if aj > 0,

π/2 if aj = 0, bj > 0,

0 if aj = 0, bj = 0,

ϕq−j,2 = ϕa,j − ϕb,j mod 2π.

Then Q2,1,2(ϕq−j)[v
(j)
1 , vq−j+1]′ = [v

(j+1)
1 , 0]′ such that v(j+1) = Qq,1,q−j+1(θq−1)v(j) =

[v
(j+1)
1 , v2, . . . , vq−j , 0, . . . , 0]′, with v

(j+1)
1 ∈ C.

4. If j = q − 1, stop. Else increment j by one (j → j + 1) and continue at step 2.

This algorithm determines a unique vector ϕ = [ϕ1,1, ϕ1,2, ..., ϕq−1,2]′ for every vector v ∈ Cq.

To set the stage for the general case, we start the discussion of the parameterization of the set
of matrices (A,B, C) in canonical form with the MFI(1) and I(2) cases. These two cases display all
ingredients required later for the general case. The MFI(1) case illustrates the usage of either real
or complex Givens rotations, depending on whether the considered C-block corresponds to a real or
complex unit root. The I(2) case highlights recursive orthogonality constraints on the parameters
of the C-block, which are related to the polynomial cointegration properties (cf. Example 1.3).

1.3.1 The Parameterization in the MFI(1) Case

The state space unit root structure of an MFI(1) process is given by ΩS = ((ω1, d
1
1), . . . , (ωl, d

l
1)).

For the corresponding state space system (A,B, C) in canonical form, the sub-blocks of Au are
equal to Jk = zkIdk1 , the sub-blocks Bk of Bu are p.u.t. and C′kCk = Idk1 , for k = 1, . . . l.

Starting with the sub-blocks of Cu, it is convenient to separate the discussion of the parame-

terization of Cu-blocks into the real case, where ωk ∈ {0, π} and Ck ∈ Rs×d
k
1 , and the complex

case with 0 < ωk < π and Ck ∈ Cs×d
k
1 . For the case of real unit roots the two cases dk1 < s and

dk1 = s have to be distinguished. For brevity of notation refer to the considered real block simply
as C ∈ Rs×d. Using this notation, the set of matrices to be parameterized is

Os,d := {C ∈ Rs×d|C ′C = Id}.

The parameterization of Os,d is based on the combination of real Givens rotations, as given in
Definition 1.6, that allow to transform every matrix in Os,d to the form [Id, 0

′
(s−d)×d]

′ for d < s.

For d = s, Givens rotations allow to transform every matrix C ∈ Os,s either to Is or I−s :=

diag(Is−1,−1), since, compare Remark 1.11, for the transformed matrix C̃(s) it holds that det(C) =
det(C̃(s)) ∈ {−1, 1}. This is achieved with the following algorithm:

1. Set j = 1 and C(1) = C.

2. Transform the entries [cj,j , . . . , cj,d] in the j-th row of C(j), to [c̃j,j , 0, . . . , 0], c̃j,j ≥ 0. Since
this is a row vector, this is achieved by right-multiplication of C(j) with transposed Givens ro-
tations and the required parameters are obtained via the algorithm described in Remark 1.10.
The first j − 1 entries of the j-th row remain unchanged. Denote the transformed matrix by
C(j+1).

3. If j = d− 1 stop. Else increment j by one (j → j + 1) and continue at step 2.
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4. Collect all parameters used for the Givens rotations in steps 1 to 3 in a parameter vector
θR. Steps 1-3 correspond to a QR decomposition of C′ = QC̃′, with an orthonormal matrix
Q given by the product of the Givens rotation. Note that the first j − 1 entries of the j-th
column of C̃ = C(d) are equal to zero by construction.

5. Set j = 0 and C̃(0) = C̃.

6. Collect the entries in column d − j of C̃(j) which have not been transformed to zero by
previous transformations into the vector [cd−j,d−j , cd+1,d−j , . . . , cs,d−j ]

′. Using the algorithm
described in Remark 1.10 transform this vector to [c̃d−j,d−j , 0, . . . , 0]′ by left-multiplication of

C̃(j) with Givens rotations. Since Givens rotations are orthonormal, the transformed matrix
C̃(j+1) is still orthonormal implying for its entries c̃d−j,d−j = 1 and c̃i,d−j = 0 for all i < d−j.
An exception occurs if d = s. In this case cd−j,d−j ∈ {−1, 1} and no Givens rotations are
defined.

7. If j = d− 1 stop. Else increment j by one (j → j + 1) and continue at step 6.

8. Collect all parameters used for the Givens rotations in steps 5 to 7 in a parameter vector
θL.

The parameter vector θ = [θ′L,θ
′
R]′, contains the angles of the employed Givens rotations and

provides one way of parameterizing Os,d. The following Lemma 1.1 demonstrates the usefulness
of this parameterization.

Lemma 1.1 (Properties of the parameterization of Os,d) Define for d ≤ s a mapping θ →
CO(θ) from ΘR

O := [0, 2π)d(s−d) × [0, 2π)d(d−1)/2 → Os,d by

CO(θ) := d∏
i=1

s−d∏
j=1

Rs,i,d+j(θL,(s−d)(i−1)+j)

′ [ Id
0(s−d)×d

]d−1∏
i=1

i∏
j=1

Rd,d−i,d−i+j(θR,i(i−1)/2+j)

 :=

RL(θL)′
[

Id
0(s−d)×d

]
RR(θR),

with θ := [θ′L,θ
′
R]′, where θL := [θL,1, . . . , θL,d(s−d)]

′ and θR := [θR,1, . . . , θR,d(d−1)/2]′. The
following properties hold:

(i) Os,d is closed and bounded.

(ii) The mapping CO(·) is infinitely often differentiable.

For d < s, it holds that

(iii) For every C ∈ Os,d there exists a vector θ ∈ ΘR
O such that

C = CO(θ) = RL(θL)′
[

Id
0(s−d)×d

]
RR(θR).

The algorithm discussed above defines the inverse mapping C−1
O : Os,d → ΘR

O.

(iv) The inverse mapping C−1
O (·) - the parameterization of Os,d - is infinitely often differentiable

on the pre-image of the interior of ΘR
O. This is an open and dense subset of Os,d.

For d = s, it holds that

(v) Os,s is a disconnected space in Rs×s with two disjoint non-empty closed subsets O+
s,s := {C ∈

Rs×s|C ′C = Is, det(C) = 1} and O−s,s := {C ∈ Rs×s|C ′C = Is, det(C) = −1}.
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(vi) For every C ∈ O+
s,s there exists a vector θ ∈ ΘR

O such that

C = CO(θ) = RL(θL)′
[
Id
]
RR(θR) = RR(θR).

In this case, steps 1-4 of the algorithm discussed above define the inverse mapping C−1
O :

O+
s,s → ΘR

O.

(vii) Define v := [π, . . . , π]′ ∈ Rs(s−1)/2. Then a parameterization of Os,s is given by

C±O (C) =

{
v + C−1

O (C) if C ∈ O+
s,s

−(v + C−1
O (CI−s )) if C ∈ O−s,s

The parameterization is infinitely often differentiable with infinitely often differentiable in-
verse on an open and dense subset of Os,s.

Remark 1.13 The following arguments illustrate why C−1
O is not continuous on the pre-image

of the boundary of ΘR
O: Consider the unit sphere O3,1 = {C ∈ R3|C ′C = ‖C‖2 = 1}. One

way to parameterize the unit sphere is to use degrees of longitude and latitude. Two types of
discontinuities occur: After fixing the location of the zero degree of longitude, i. e., the prime
meridian, its anti-meridian is described by both 180◦W and 180◦E. Using the half-open interval
[0, 2π) in our parametrization causes a similar discontinuity. Second, the degree of longitude is
irrelevant at the north pole. As seen in Remark 1.10, with our parameterization a similar issue
occurs when the first two entries of C to be compared are both equal to zero. In this case the
parameter of the Givens rotation is set to zero, although every θ will produce the same result. Both
discontinuities clearly occur on a thin subset of Os,d.

As in the parametrization of the VAR I(1)-case in the VECM framework, where the restriction
β = [Is−d, β

∗]′ can only be imposed when the upper (s − d) × (s − d) block of the true β0 of the
DGP is of full rank, cf. Johansen (1995, Chapter 5.2), the set where the discontinuities occur
can effectively be changed by a permutation of the components of the observed time series. This
corresponds to redefining the locations of the prime meridian and the poles.

Remark 1.14 Note that the parameterization partitions the parameter vector θ into two parts
θL ∈ [0, 2π)d(s−d) and θR ∈ [0, 2π)(d−1)d/2. Since changing the parameter values in θR does not
change the column space of CO(θ), which, as seen above, determines the cointegrating vectors, θL
fully characterizes the (static) cointegrating space. Note that the dimension of θL is d(s− d) and
thus coincides with the number of free parameters in β in the VECM framework ,cf. Johansen
(1995, Chapter 5.2).

Example 1.5 Consider the matrix

C =

 0 1√
2

−1√
2

1
2

1√
2

1
2


with d = 2 and s = 3. As discussed, the static cointegrating space is characterized by the left kernel
of this matrix. The left kernel of a matrix in R3×2 with full rank two is given by a one-dimensional
space, with the corresponding basis vector parameterized, when normalized to length one, by two
free parameters. Thus, for the characterization of the static cointegrating space two parameters are
required, which exactly coincides with the dimension of θL given in Remark 1.14. The parameters in
θR correspond to the choice of a basis of the image of C. Having fixed the two-dimensional subspace
through θL, only one free parameter for the choice of an orthonormal basis remains, which again
coincides with the dimension given in Remark 1.14. To obtain the parameter vector, the starting
point is a QR decomposition of C ′ = RR(θR)C̃ ′. In this example RR(θR) = R2,1,2(θR,1), with θR,1
to be determined. To find θR,1, solve [ 0 1√

2
]R2,1,2(θR,1)′ = [ r 0 ] for r ≥ 0 and θR,1 ∈ [0, 2π).

In other words, find r ≥ 0 and θR,1 ∈ [0, 2π) such that [ 0 1√
2

] = r[ cos(θR,1) sin(θR,1) ],
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which leads to r = 1√
2

, θR,1 = π
2 . Thus, the orthonormal matrix RR(θR) is equal to R2,1,2

(
π
2

)
and

the transpose of the upper triangular matrix C̃ ′ is equal to:

C̃ = C̃(0) = C ·R2,1,2

(π
2

)′
=

 0 1√
2

−1√
2

1
2

1√
2

1
2

[ 0 −1
1 0

]
=

 1√
2

0
1
2

1√
2

1
2
− 1√

2

 .
Second, transform the entries in the lower 1 × 2-sub-block of C̃(0) to zero, starting with the last
column. For this find θL,2 ∈ [0, 2π) such that R3,2,3(θL,2)[ 0 1√

2
− 1√

2
]′ = [ 0 1 0 ]′, i. e.,

[ 1√
2
− 1√

2
]′ = r[ cos(θL,2) sin(θL,2) ]. This yields r = 1, θL,2 = 7π

4 . Next compute C̃(1) =

R3,2,3( 7π
4 )C̃(0):

C̃(1) = R3,2,3

(
7π

4

)
· C ·R2,1,2

(π
2

)′
=

 1 0 0
0 1√

2

−1√
2

0 1√
2

1√
2

 0 1√
2

−1√
2

1
2

1√
2

1
2

[ 0 −1
1 0

]
=

 1√
2

0

0 1
1√
2

0

 .
In the final step, find θL,1 ∈ [0, 2π) such that R3,1,3(θL,1)[ 1√

2
0 1√

2
]′ = [ 1 0 0 ]′, i. e.,

[ 1√
2

1√
2

]′ = r[ cos(θL,1) sin(θL,1) ]. The solution is r = 1, θL,1 = π
4 . Combining the trans-

formations leads to

R3,1,3

(π
4

)
·R3,2,3

(
7π

4

)
· C ·R2,1,2

(π
2

)′
= 1√

2
0 1√

2

0 1 0
−1√
2

0 1√
2

 1 0 0
0 1√

2

−1√
2

0 1√
2

1√
2

 0 1√
2

−1√
2

1
2

1√
2

1
2

[ 0 −1
1 0

]
=

[
1 0
0 1
0 0

]
.

The parameter vector for this matrix is therefore θ = [θ′L,θ
′
R]′ =

[[
π
4 ,

7π
4

]
,
[
π
2

]]′
with θ = C−1

O (C).

In case of complex unit roots, referring for brevity again to the considered block Ck simply as
C ∈ Cs×d, the set of matrices to be parameterized is

Us,d := {C ∈ Cs×d|C ′C = Id}.

The parameterization of this set is based on the combination of complex Givens rotations, as given
in Definition 1.7, which can be used to transform every matrix in Us,d to the form [Dd, 0

′
(s−d)×d]

′

with a diagonal matrix Dd whose diagonal elements are of unit modulus. This transformation is
achieved with the following algorithm:

1. Set j = 1 and C(1) = C.

2. Transform the entries [cj,j , . . . , cj,d] in the j-th row of C(j), to [c̃j,j , 0, . . . , 0]. Since this is a
row vector, this is achieved by right-multiplication of C with transposed Givens rotations and
the required parameters are obtained via the algorithm described in Remark 1.12. The first
j − 1 entries of the j-th row remain unchanged. Denote the transformed matrix by C(j+1).

3. If j = d− 1 stop. Else increment j by one (j → j + 1) and continue at step 2.

4. Collect all parameters used for the Givens rotations in steps 1 to 3 in a parameter vector
ϕR. Step 1-3 corresponds to a QR decomposition of C′ = QC̃′, with a unitary matrix Q given
by the product of the Givens rotations. Note that the first j − 1 entries of the j-th column
of C̃ = C(d) are equal to zero by construction.

5. Set j = 0 and C̃(0) = C̃.

22



23

6. Collect the entries in column d − j of C̃(j) which have not been transformed to zero by
previous transformations into the vector [cd−j,d−j , cd+1,d−j , . . . , cs,d−j ]

′. Using the algorithm
described in Remark 1.12 transform this vector to [c̃d−j,d−j , 0, . . . , 0]′ by left-multiplication

of C̃(j) with Givens rotations. Since Givens rotations are unitary, the transformed matrix
C̃(j+1) is still unitary implying for its entries |c̃d−j,d−j | = 1 and c̃i,d−j = 0 for all i < d− j.
An exception occurs if d = s. In this case |cd−j,d−j | = 1 and no Givens rotations are defined.

7. If j = d− 1 stop. Else increment j by one (j → j + 1) and continue at step 6.

8. Collect all parameters used for the Givens rotations in steps 5 to 7 in a parameter vector
ϕL.

9. Transform the diagonal entries of the transformed matrix C̃(d) = [Dd, 0
′
(s−d)×d]

′ into polar
coordinates and collect the angles in a parameter vector ϕD.

The following lemma demonstrates the usefulness of this parameterization.

Lemma 1.2 (Properties of the parametrization of Us,d) Define for d ≤ s a mapping ϕ→
CU (ϕ) from ΘC

U := Θ
d(s−d)
C ×Θ

(d−1)d/2
C × [0, 2π)d → Us,d by

CU (ϕ) := d∏
i=1

s−d∏
j=1

Qs,i,d+j(ϕL,(s−d)(i−1)+j)

′ [ Dd(ϕD)
0(s−d)×d

]d−1∏
i=1

i∏
j=1

Qd,d−i,d−i+j(ϕR,i(i−1)/2+j)

 :=

QL(ϕL)′
[
Dd(ϕD)
0(s−d)×d

]
QR(ϕR),

with ϕ := [ϕ′L,ϕ
′
R,ϕ

′
D]′, where ϕL = [ϕL,1, . . . , ϕL,d(s−d)]

′, ϕR := [ϕR,1, . . . , ϕR,d(d−1)/2]′ and
ϕD := [ϕD,1, . . . , ϕD,d] and where Dd(ϕD) = diag(eiϕD,1 , . . . , eiϕD,d). The following properties
hold:

(i) Us,d is closed and bounded.

(ii) The mapping CU (ϕ) is infinitely often differentiable.

(iii) For every C ∈ Us,d a vector ϕ ∈ ΘC
U exists such that

C = CU (ϕ) = QL(ϕL)′
[
Dd(ϕD)
0(s−d)×d

]
QR(ϕR).

The algorithm discussed above defines the inverse mapping C−1
U : Us,d → ΘR

U .

(iv) The inverse mapping C−1
U (·) - the parameterization of Us,d - is infinitely often differentiable

on an open and dense subset of Us,d.

Remark 1.15 Note the partitioning of the parameter vector ϕ into the parts ϕL,ϕD and ϕR. The
component ϕL fully characterizes the column space of CU (ϕ), i. e., ϕL determines the cointegrating
spaces.

Example 1.6 Consider the matrix

C =

[ 1−i
2

1−i
2

1+i
2

−1−i
2

0 0

]
.

The starting point is again a QR decomposition of C ′ = QR(ϕR)C̃ ′ = Q2,1,2(ϕR,1)C̃ ′. To find a
complex Givens rotation such that [ 1−i

2
1−i

2 ]Q2,1,2(ϕR,1)′ = [ reiϕa 0 ] with r > 0, transform

the entries of [ 1−i
2

1−i
2 ]′ into polar coordinates. The equation [ 1−i

2
1−i

2 ]′ = [ aeiϕa beiϕb ]′
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has the solutions a = b = 1√
2

and ϕa = ϕb = 7π
4 . Using the results of Remark 1.12, the parameters

of the Givens rotation are ϕR,1,1 = tan−1( ba ) = π
4 and ϕR,1,2 = ϕa − ϕb = 0. Right-multiplication

of C with Q2,1,2

([
π
4 , 0
])′

leads to

C̃ = CQ2,1,2

([π
4
, 0
])′

= C

[
1√
2

1√
2

−1√
2

1√
2

]′
=


1−i√

2
0

0 −1−i√
2

0 0

 =

[
D2(ϕD)

01×2

]
.

Since the entries in the lower 1×2-sub-block of C̃ are already equal to zero, the remaining complex
Givens rotations are Q3,2,3([0, 0]) = Q3,1,3([0, 0]) = I3. Finally, the parameter values correspon-
ding to the diagonal matrix D2(ϕD) = diag(eiϕD,1 , eiϕD,2) = diag( 1−i√

2
, −1−i√

2
) are ϕD,1 = 3π

4 and

ϕD,2 = 5π
4 .

The parameter vector for this matrix is therefore ϕ = [ϕ′L,ϕ
′
R,ϕ

′
D]′ =

[
[0, 0, 0, 0],

[
π
4 , 0
]
,
[

3π
4 ,

5π
4

]]′
,

with ϕ = C−1
U (C).

Components of the Parameter Vector

Based on the results of the preceding sections we can now describe the parameter vectors for
the MFI(1) case. The dimensions of the parameter vectors of the respective blocks of the system
matrices (A,B, C) depend on the multi-index Γ, consisting of the state space unit root structure ΩS ,
the structure indices p and the Kronecker indices α• for the stable subsystem. A parameterization
of the set of all systems in canonical form with given multi-index Γ for the MFI(1) case therefore
combines the following components:

• θB,f := [θ′B,f,1, ...,θ
′
B,f,l]

′ ∈ ΘB,f = RdB,f , with:

θB,f,k :=


[bk

1,pk1+1
, bk

1,pk1+2
, . . . , bk1,s, b

k
2,pk2+1

, . . . , bk
dk1 ,s

]′ for ωk ∈ {0, π},
[R(bk

1,pk1+1
), I(bk

1,pk1+1
),R(bk

1,pk1+2
), . . . , I(bk1,s),R(bk

2,pk2+1
), . . . , I(bk

dk1 ,s
)]′

for 0 < ωk < π,

for k = 1, . . . , l, with pkj denoting the j-th entry of the structure indices p corresponding to
Bk. The vectors θB,f,k contain the real and imaginary parts of free entries in Bk not restricted
by the p.u.t. structures.

• θB,p := [θ′B,p,1, ...,θ
′
B,p,l]

′ ∈ ΘB,p = RdB,p+ : The vectors θB,p,k :=

[
bk
1,pk1

, . . . , bk
dk1 ,p

k

dk1

]′
contain

the entries in Bk restricted by the p.u.t. structures to be positive reals.

• θC,E := [θ′C,E,1, ...,θ
′
C,E,l]

′ ∈ ΘC,E ⊂ RdC,E : The parameters for the matrices Ck as discussed
in Lemma 1.1 and Lemma 1.2.

• θ• ∈ Θ•,α ⊂ Rd• : The parameters for the stable subsystem in echelon canonical form for
Kronecker indices α•.

Example 1.7 Consider an MFI(1) process with ΩS = ((0, 2), (π2 , 2)), p = [1, 3, 1, 2, 1, 2]′, n• = 0,
and system matrices

A = diag(1, 1, i, i,−i,−i),

B =


1 −1 2
0 0 2

1 1 + i 1− i
0 2 i

1 1− i 1 + i
0 2 −i

 , C =

 0 1√
2

1−i
2

1−i
2

1+i
2

1+i
2

−1√
2

1
2

1+i
2

−1−i
2

1−i
2

−1+i
2

1√
2

1
2

0 0 0 0

 ,
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in canonical form. For this example it holds that θB,f = [[−1, 2], [1, 1, 1,−1, 0, 1]]′, θB,p = [[1, 2], [1, 2]]
and

θC,E =

[[[
π

4
,

7π

4

]
,
[π

2

]]
,

[
[0, 0, 0, 0],

[π
4
, 0
]
,

[
3π

4
,

5π

4

]]]′
,

with parameter values corresponding to the C-blocks collected in θC,E considered in Examples 1.5
and 1.6.

1.3.2 The Parameterization in the I(2) Case

The canonical form provided above for the general case has the following form for I(2) processes
with unit root structure Ωs = ((0, d1

1, d
1
2)):

A =


Id1

1
Id1

1
0 0

0 Id1
1

0 0

0 0 Id1
2−d1

1
0

0 0 0 A•

 ,B =


B1,1

B1,2,1

B1,2,2

B•

 ,
C =

[
CE1,1 CG1,2 CE1,2 C•

]
,

where 0 < d1
1 ≤ d1

2 ≤ s, B1,2,1 and B1,2,2 are p.u.t., CE1,1 ∈ Os,d1
1
, CE1,2 ∈ Os,d1

2−d1
1
, (CE1,1)′CE1,2 =

0d1
1×d1

2
, (CE1,1)′CG1,2 = 0d1

1×d1
1
, (CE1,2)′CG1,2 = 0(d1

2−d1
1)×d1

1
and where the stationary subsystem

(A•,B•, C•) is in echelon canonical form with Kronecker indices α•. All matrices are real valued.
The parameterizations of the p.u.t. matrices B1,2,1 and B1,2,2 are as discussed above. The

entries of B1,1 are unrestricted and thus included in the parameter vector θB,f containing also
the free entries in B1,2,1 and B1,2,2. The subsystem (A•,B•, C•) is parameterized using the echelon
canonical form.

The parameterization of CE1,1 ∈ Os,d1
1

proceeds as in the MFI(1) case, using C−1
O (CE1,1). The

parameterization of CE1,2 has to take the restriction of orthogonality of CE1,2 to CE1,1 into account,
thus, the set to be parameterized is given by

Os,d1
2−d1

1
(CE1,1) := {CE1,2 ∈ Rs×(d1

2−d
1
1)|(CE1,1)′CE1,2 = 0d1

1×(d1
2−d1

1), (1.13)

(CE1,2)′CE1,2 = Id1
2−d1

1
}.

The parameterization of this set again uses real Givens rotations. For C ∈ Os,d1
2−d1

1
(CE1,1) it follows

that RL(θL)C = [0′
d1

1×(d1
2−d1

1)
, C̃′]′ for a matrix C̃ such that C̃′C̃ = Id1

2−d1
1

with RL(θL) corresponding

to CE1,1. The matrix C̃ is parameterized as discussed in Lemma 1.1.

Corollary 1.1 (Properties of the parameterization of Os,d1
2−d1

1
(CE

1,1)) Define for d1
1 < d1

2 ≤
s a mapping θ̃ → CO,d1

2−d1
1
(θ̃;CE1,1) from ΘR

O,d1
2

:= [0, 2π)(d1
2−d

1
1)(s−d1

2) × [0, 2π)(d1
2−d

1
1)(d1

2−d
1
1−1)/2

to Os,d1
2−d1

1
(CE1,1) by

CO,d1
2−d1

1
(θ̃; CE1,1) := RL(θL)′

[
0d1

1×(d1
2−d1

1)

CO(θ̃)

]
,

where θL denotes the parameter values corresponding to [θ′L,θ
′
R]′ = C−1

O (CE1,1) as defined in Lem-
ma 1.1. The following properties hold:

(i) Os,d1
2−d1

1
(CE1,1) is closed and bounded.

(ii) The mapping CO,d1
2−d1

1
(θ̃; CE1,1) is infinitely often differentiable.

For d1
2 < s, it holds
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(iii) For every CE1,2 ∈ Os,d1
2−d1

1
(CE1,1) there exists a vector θ̃ = [θ̃

′
L, θ̃

′
R]′ ∈ ΘR

O,d1
2−d1

1
such that

CE1,2 = CO,d1
2−d1

1
(θ̃; CE1,1) = RL(θL)′

 0d1
1×(d1

2−d1
1)

RL(θ̃L)′
[

Id1
2−d1

1

0(s−d1
2)×(d1

2−d1
1)

]
RR(θ̃R)

 .
The algorithm discussed above Lemma 1.1 defines the inverse mapping C−1

O,d1
2−d1

1
.

(iv) The inverse mapping C−1
O,d1

2−d1
1
(·; CE1,1) - the parameterization of Os,d1

2−d1
1
(CE1,1) - is infinitely

often differentiable on the pre-image of the interior of ΘR
O,d1

2−d1
1
. This is an open and dense

subset of Os,d1
2−d1

1
(CE1,1).

For d1
2 = s, it holds that

(v) Os,s−d1
1
(CE1,1) is a disconnected space with two disjoint non-empty closed subsets:

O+
s,s−d1

1
(CE1,1) :=

{CE1,2 ∈ Rs×(s−d1
1)|(CE1,1)′CE1,2 = 0d1

1×(s−d1
1), (CE1,2)′CE1,2 = Is−d1

1
,

det([CE1,1, CE1,2]) = 1},
O−
s,s−d1

1
(CE1,1) :=

{CE1,2 ∈ Rs×(s−d1
1)|(CE1,1)′CE1,2 = 0d1

1×(s−d1
1), (CE1,2)′CE1,2 = Is−d1

1
,

det([CE1,1, CE1,2]) = −1}.

(vi) For every O+
s,s−d1

1
(CE1,1) there exists a vector θ̃ ∈ ΘR

O,d1
2−d1

1
such that

CE1,2 = CO,s−d1
1
(θ̃; CE1,1) = RR(θ̃R).

The first four steps of the algorithm discussed above Lemma 1.1 define the inverse mapping
C−1
O,s−d1

1
(·; CE1,1) : O+

s,s−d1
1
(CE1,1)→ ΘR

O,s−d1
1
.

(vii) Define v := [π, . . . , π]′ ∈ R(s−d1
1)(s−d1

1−1)/2. Then, a parameterization of Os,s−d1
1
(CE1,1) is

given by

C±
O,s−d1

1
(CE1,2; CE1,1) =


v + C−1

O,s−d1
1
(CE1,2; CE1,1)

if C ∈ O+
s,s−d1

1
(CE1,1)

−(v + C−1
O,s−d1

1
(CE1,2I−s−d1

1
; CE1,1))

if C ∈ O−
s,s−d1

1
(CE1,1)

The parameterization is infinitely often differentiable with infinitely often differentiable in-
verse on an open and dense subset of Os,s.

The proof of Corollary 1.1 uses the same arguments as the proof of Lemma 1.1 and is therefore
omitted. It remains to provide a parameterization for CG1,2 restricted to be orthogonal to both CE1,1
and CE1,2. Thus, the set to be parametrized is given by

Os,G(CE1,1, CE1,2) :=

{CG1,2 ∈ Rs×d
1
1 |(CE1,1)′CG1,2 = 0d1

1×d1
1
, (CE1,2)′CG1,2 = 0(d1

2−d1
1)×d1

1
}.

The parameterization of Os,G(CE1,1, CE1,2) is straightforward: Left multiplication of CG1,2 with RL(θL)

as defined in Lemma 1.1 and of the lower (s−d1
1)×d1

1- block with RL(θ̃L) as defined in Corollary 1.1
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transforms the upper d1
2×d1

1-block to zero and collects the free parameters in the lower (s−d1
2)×d1

1-
block. Clearly, this is a bijective and infinitely often differentiable mapping on Os,G(CE1,1, CE1,2) and

thus a useful parameterization, since the matrix CG1,2 is only multiplied with two constant invertible
matrices. The entries of the matrix product are then collected in a parameter vector, as shown in
Corollary 1.2.

Corollary 1.2 (Properties of the parameterization of Os,G(CE
1,1, CE

1,2)) Define a mapping

λ → CO,G(λ; CE1,1, CE1,2) from Rd1
1(s−d1

2) → Os,G(CE1,1, CE1,2) for given matrices CE1,1 ∈ Os,d1
1

and

CE1,2 ∈ Os,d1
2−d1

1
(CE1,1) by

CO,G(λ; CE1,1, CE1,2) := RL(θL)′



0d1
1×d1

1

RL(θ̃L)′


0(d1

2−d1
1)×1 · · · 0(d1

2−d1
1)×1

λ1 · · · λd1
1

λd1
1+1 . . . λ2d1

1

...
...

λd1
1(s−d1

2−1)+1 · · · λd1
1(s−d1

2)




,

where θL denotes the parameter values corresponding to [θ′L,θ
′
R]′ = C−1

O (CE1,1) as defined in Lem-

ma 1.1 and θ̃L denotes the parameter values corresponding to the parameter vector [θ̃
′
L, θ̃

′
R]′ =

C−1
O,d1

2−d1
1
(CE1,2; CE1,1) as defined in Corollary 1.1. The set Os,G(CE1,1, CE1,2) is closed and both CO,G

as well as C−1
O,G(·) - the parameterization of Os,G(CE1,1, CE1,2) - are infinitely often differentiable.

Components of the Parameter Vector

In the I(2) case, the multi-index Γ contains the state space unit root structure ΩS = ((0, d1
1, d

1
2)),

the structure indices p ∈ Nd
1
1+d1

2
0 , encoding the p.u.t. structures of B1,2,1 and B1,2,2, and the

Kronecker indices α• for the stable subsystem. The parameterization of the set of all systems in
canonical form with given multi-index Γ for the I(2) case uses the following components:

• θB,f := θB,f,1 ∈ ΘB,f = RdB,f : The vector θB,f,1 contains the free entries in B1 not
restricted by the p.u.t. structure, collected in the same order as for the matrices Bk in the
MFI(1) case.

• θB,p := θB,p,1 ∈ ΘB,p = RdB,p+ : The vector θB,p,1 :=

[
b1
d1−d1

h1
+1,p1

d1−d1
h1

+1

, . . . , b1
d1

1,p
1

d1
1

]′
contains the entries in B1 restricted by the p.u.t. structures to be positive reals.

• θC,E := [θ′C,E,1,1,θ
′
C,E,1,2]′ ∈ ΘC,E ⊂ RdC,E : The parameters for the matrices CE1,1 as in the

MFI(1) case and CE1,2 as discussed in Corollary 1.1.

• θC,G ∈ ΘC,G = RdC,G : The parameters for the matrix CG1,2 as discussed in Corollary 1.2.

• θ• ∈ Θ•,α ⊂ Rd• : The parameters for the stable subsystem in echelon canonical form for
Kronecker indices α•.

Example 1.8 Consider an I(2) process with ΩS = ((0, 1, 2)), p = [0, 1, 1]′, n• = 0 and system
matrices

A =

[
1 1 0
0 1 0
0 0 1

]
, B =

[ −1 2 −2
1 −1 3
2 0 1

]
, C =

 0 −1 1√
2

−1√
2

1√
2

1
2

1√
2

1√
2

1
2

 .
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In this case, θB,f,1 = [−1, 2,−2,−1, 3, 0, 1]′, θB,p,1 = [1, 2]′. It follows from

R3,1,2

(
7π

4

)
R3,1,3

(π
2

)
CE1,1 = [ 1 0 0 ]′,

R3,1,2

(
7π

4

)
R3,1,3

(π
2

)
CE1,2 =

[
0 1√

2
−1√

2

]′
and R2,1,2

(
7π

4

)[ 1√
2
−1√

2

]
=

[
1
0

]
,

R3,1,2

(
7π

4

)
R3,1,3

(π
2

)
CG1,2 =

[
0 1 1

]′
and R2,1,2

(
7π

4

)[
1
1

]
=

[
0√
2

]
,

that θC,E = [θ′C,E,1,1,θC,E,1,2]′ =
[[
π
2 ,

7π
4

]
,
[

7π
4

]]′
and θC,G = [

√
2].

1.3.3 The Parameterization in the General Case

Inspecting the canonical form shows that all relevant building blocks are already present in the
MFI(1) and the I(2) cases and can be combined to deal with the general case: The entries in
Bu are either unrestricted or follow restrictions according to given structure indices p, and the
parameter space is chosen accordingly, as discussed for the MFI(1) and I(2) cases. The restrictions
on the matrices Cu and its blocks Ck require more sophisticated parameterizations of parts of
unitary or orthonormal matrices as well as of orthogonal complements. These are dealt with in
Lemmas 1.1 and 1.2 and Corollaries 1.1 and 1.2 above. The extension of Corollaries 1.1 and 1.2
to complex matrices and to matrices, which are orthogonal to a larger number of blocks of Ck, is
straightforward.

The following theorem characterizes the properties of parameterizations for sets MΓ of transfer
functions with (general) multi-index Γ and describes the relations between sets of transfer functions
and the corresponding sets ∆Γ of triples (A,B, C) of system matrices in canonical form, defined
below. Discussing the continuity and differentiability of mappings on sets of transfer functions and
on sets of matrix triples also requires the definition of a topology on both sets.

Definition 1.8 (i) The set of transfer functions of order n, Mn, is endowed with the pointwise
topology Tpt: First, identify transfer functions with their impulse response sequences. Then,
a sequence of transfer functions ki(z) = Is +

∑∞
j=1Kj,iz

j converges in Tpt to k0(z) = Is +∑∞
j=1Kj,0z

j if and only if for every j ∈ N it holds that Kj,i
i→∞→ Kj,0.

(ii) The set of all triples (A,B, C) in canonical form corresponding to transfer functions with
multi-index Γ is called ∆Γ. The set ∆Γ is endowed with the topology corresponding to the
distance d((A1, B1, C1), (A2, B2, C2)) := ‖A1 −A2‖Fr + ‖B1 −B2‖Fr + ‖C1 − C2‖Fr.

Note that in the definition of the pointwise topology convergence does not need to be uniform
in j and moreover, the power series coefficients do not need to converge to zero for j → ∞ and
hence, the concept can also be used for unstable systems.

Theorem 1.2 The set Mn can be partitioned into pieces MΓ, where Γ := {ΩS , p, α•}, i. e.,

Mn =
⋃

Γ={ΩS ,p,α•}|nu(ΩS)+n•(α•)=n

MΓ,

where nu(ΩS) :=
∑l
k=1

∑hk
j=1 d

k
j δk, with δk = 1 for ωk ∈ {0, π} and δk = 2 for 0 < ωk < π is

the state dimension of the unstable subsystem (Au,Bu, Cu) with state space unit root structure ΩS
and n•(α•) :=

∑s
i=1 α•,i is the state dimension of the stable subsystem with Kronecker indices

α• = (α•,1, . . . , α•,s), α•,i ∈ N0.
For every multi-index Γ there exists a parameter space ΘΓ ⊂ Rd(Γ) for some integer d(Γ), endowed
with the Euclidean norm, and a function φΓ : ∆Γ → ΘΓ, such that for every (A,B, C) ∈ ∆Γ the
parameter vector θ := φΓ(A,B, C) ∈ ΘΓ is composed of:
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• The parameter vector θB,f = [θ′B,f,1, ...,θ
′
B,f,l]

′ ∈ ΘB,f = RdB,f , collecting the (real and
imaginary parts of) non-restricted entries in Bk, k = 1, . . . , l as described in the MFI(1)
case.

• The parameter vector θB,p = [θ′B,p,1, ...,θ
′
B,p,l]

′ ∈ ΘB,p = RdB,p+ , collecting the entries in
Bk, k = 1, . . . , l, restricted by the p.u.t. forms to be positive reals in a similar fashion as
described for B1 in the I(2) case.

• The parameter vector θC,E = [θ′C,E,1, ...,θ
′
C,E,l]

′ ∈ ΘC,E ⊂ RdC,E , consisting of the vectors

θC,E,k = [θ′C,E,k,1, . . . ,θ
′
C,E,k,hk

]′ collecting the parameters θC,E,k,j for all blocks CEk,j, k =
1, . . . , l and j = 1, . . . , hk, obtained using Givens rotations (see Lemmas 1.1 and 1.2 and
Corollary 1.1 and its extension to complex matrices).

• The parameter vector θC,G = [θ′C,G,1, ...,θ
′
C,G,l]

′ ∈ ΘC,G = RdC,G , consisting of the vectors

θC,G,k = [θ′C,G,k,2, . . . ,θ
′
C,G,k,hk

]′ collecting the parameters θC,G,k,j (real and imaginary

parts for complex roots) for CGk,j, k = 1, . . . , l and j = 2, . . . , hk, subject to the orthogonality
restrictions (see Corollary 1.2 and its extension to complex matrices).

• The parameter vector θ• ∈ Θ• ⊂ Rd• collecting the free entries in echelon canonical form
with Kronecker indices α•.

(i) The mapping ψΓ : MΓ → ∆Γ that attaches a triple (A,B, C) in canonical form to a transfer
function in MΓ is continuous. It is the inverse (restricted to MΓ) of the Tpt-continuous function
π : (A,B,C) 7→ k(z) = Is + zC(In − zA)−1B.
(ii) Every parameter vector θ = [θ′B,f ,θ

′
B,p,θ

′
C,E ,θ

′
C,G,θ

′
•]
′ ∈ ΘΓ ⊂ ΘB,f × ΘB,p × ΘC,E ×

ΘC,G × Θ• corresponds to a triple (A(θ),B(θ), C(θ)) ∈ ∆Γ and a transfer function k(z) =
π(A(θ),B(θ), C(θ)) ∈MΓ. The mapping φ−1

Γ : θ → (A(θ),B(θ), C(θ)) is continuous on ΘΓ.
(iii) For every multi-index Γ the set of points in ∆Γ, where the mapping φΓ is continuous, is open
and dense in ∆Γ.

As mentioned in Section 1.2, the parameterization of Φ is straightforward. The s ×m entries
of Φ are collected in a parameter vector d. Thus, there is a one-to-one correspondence between
state space realizations (A,B, C,Φ) ∈ ∆Γ×Rs×m and parameter vectors τ = [θ′,d′]′ ∈ ΘΓ×Rsm.
The same holds true for parameters used for the symmetric, positive definite innovation matrix
Σ ∈ Rs×s obtained, e. g., from a lower triangular Cholesky factor of Σ.

1.4 The Topological Structure

The parameterization of Mn in Theorem 1.2 partitions Mn into subsets MΓ for a selection of
multi-indices Γ. To every multi-index Γ there exists a corresponding associated parameter set
ΘΓ. Thus, in practical applications, maximizing the pseudo likelihood requires choosing the multi-
index Γ. Maximizing the pseudo likelihood over the set MΓ effectively amounts to including also all
elements in the closure of MΓ, because of continuity of the parameterization. It is thus necessary
to characterize the closures of the sets MΓ.

Moreover, maximizing the pseudo likelihood function over all possible multi-indices is time-
consuming and not desirable. Fortunately, the results discussed below show that there exists a
generic multi-index Γg such that Mn ⊂ MΓg . This generic choice corresponds to the set of all
stable systems of order n corresponding to the generic neighborhood of the echelon canonical
form. This multi-index therefore is a natural starting point for estimation.

However, in particular for hypotheses testing, it will be necessary to maximize the pseudo
likelihood over sets of transfer functions of order n with specific state space unit root structure
ΩS , denoted as M(ΩS , n•) below, where n• denotes the dimension of the stable part of the state.
We show below that also in this case there exists a generic multi-index Γg(ΩS , n•) such that
M(ΩS , n•) ⊂MΓg(ΩS ,n•).
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The main tool to obtain these results is investigating the properties of the mappings ψΓ, that
map transfer functions in MΓ to triples (A,B,C) ∈ ∆Γ, as well as the analyzing the closures
of the sets ∆Γ. The relation between parameter vectors θ ∈ ΘΓ and triples of system matrices
(A,B,C) ∈ ∆Γ is easier to understand than the relation between ∆Γ and MΓ, due to the results
of Theorem 1.2. Consequently, this section focuses on the relations between ∆Γ and MΓ – and
their closures – for different multi-indices Γ.

To define the closures we embed the sets ∆Γ of matrices in canonical form with multi-indices Γ
corresponding to transfer functions of order n into the space ∆n of all conformable complex matrix
triples (A,B,C) with A ∈ Cn×n, where additionally λ|max|(A) ≤ 1. Since the elements of ∆n are

matrix triples, this set is isomorphic to a subset of the finite dimensional space Cn2+2ns, equipped
with the Euclidean topology. Note that ∆n also contains non-minimal state space realizations,
corresponding to transfer functions of lower order.

Remark 1.16 In principle the set ∆n also contains state space realizations of transfer functions
k(z) = Is +

∑∞
j=1Kjz

j with complex valued coefficients Kj. Since the subset of ∆n of state space
systems realizing transfer functions with real valued Kj is closed in ∆n, realizations corresponding
to transfer functions with coefficients with non-zero imaginary part are irrelevant for the analysis
of the closures of the sets ∆Γ.

After investigating the closure of ∆Γ in ∆n, denoted by ∆Γ, we consider the set of corresponding
transfer functions π(∆Γ). Since we effectively maximize the pseudo likelihood over ∆Γ, we have
to understand for which multi-indices Γ̃ the set π(∆Γ̃) is a subset of π(∆Γ). Moreover, we find a
covering of π(∆Γ) ⊂

⋃
i∈IMΓi . This restricts the set of multi-indices Γ that may occur as possible

multi-indices of the limit of a sequence in π(∆Γ) and thus, the set of transfer functions that can
be obtained by maximization of the pseudo likelihood.

The sets MΓ, are embedded into the vector space M of all causal transfer functions k(z) =
Is +

∑∞
j=1Kjz

j . The vector space M is isomorphic to the infinite dimensional space Πj∈NRs×sj

equipped with the pointwise topology. Since, as mentioned above, maximization of the pseudo
likelihood function over MΓ effectively includes MΓ, it is important to determine for any given
multi-index Γ, the multi-indices Γ̃ for which the set MΓ̃ is a subset of MΓ. Note that MΓ is not
necessarily equal to π(∆Γ). The continuity of π, as shown in Theorem 1.2 (i), implies the following
inclusions:

MΓ = π(∆Γ) ⊂ π(∆Γ) ⊂MΓ.

In general all these inclusions are strict. For a discussion in case of stable transfer functions see
Hannan and Deistler (1988, Theorem 2.5.3).

We first define a partial ordering on the set of multi-indices Γ. Subsequently we examine the
closures ∆Γ in ∆n and finally we examine the closures MΓ in M .

Definition 1.9 (i) For two state space unit root structures ΩS and Ω̃S with corresponding ma-
trices Au ∈ Cnu×nu and Ãu ∈ Cñu×ñu in canonical form, it holds that Ω̃S ≤ ΩS if and only
if there exists a permutation matrix S such that

SAuS′ =

[
Ãu J̃12

0 J̃2

]
.

Moreover, Ω̃S < ΩS holds if additionally Ω̃S 6= ΩS.

(ii) For two state space unit root structures ΩS and Ω̃S and dimensions of the stable subsystems
n•, ñ• ∈ N0 we define

(Ω̃S , ñ•) ≤ (ΩS , n•) if and only if Ω̃S ≤ ΩS , ñ• ≤ n•.

Strict inequality holds, if at least one of the two inequalities above holds strictly.
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(iii) For two pairs (ΩS , p) and (Ω̃S , p̃) with corresponding matrices Au ∈ Cnu×nu and Ãu ∈
Cñu×ñu in canonical form, it holds that (Ω̃S , p̃) ≤ (ΩS , p) if and only if there exists a per-
mutation matrix S such that

SAuS′ =

[
Ãu J̃12

0 J̃2

]
, S p =

[
p1

p2

]
,

where p1 ∈ Nñu0 and p̃ restricts at least as many entries as p1, i. e., p̃i ≥ (p1)i holds for all
i = 1, . . . , ñu. Moreover, (Ω̃S , p̃) < (ΩS , p) holds if additionally (Ω̃S , p̃) 6= (ΩS , p).

(iv) Let α• = (α•,1, . . . , α•,s), α•,i ∈ N0 and α̃• = (α̃•,1, . . . , α̃•,s), α̃•,i ∈ N0. Then α̃• ≤ α• if
and only if α̃•,i ≤ α•,i, i = 1, . . . , s. Moreover, α̃• < α• holds, if at least one inequality is
strict, compare Hannan and Deistler (1988, Section 2.5).

Finally, define

Γ̃ = (Ω̃S , p̃, α̃•) ≤ Γ = (ΩS , p, α•) if and only if (Ω̃S , p̃) ≤ (ΩS , p) and α̃• ≤ α•.

Strict inequality holds, if at least one of the inequalities above holds strictly.

Please note that (i) implies that Ω̃S only contains unit roots that are also contained in ΩS ,
with the integration orders h̃k of the unit roots in Ω̃S smaller or equal to the integration orders
of the respective unit roots in ΩS . Thus, denoting the unit root structures corresponding to Ω̃S
and ΩS by Ω̃ and Ω, it follows that Ω̃S ≤ ΩS implies Ω̃ � Ω. The reverse does not hold as, e.g.,
for ΩS = ((0, 1, 1)) (where hence Ω = ((0, 2))) and Ω̃S = ((0, 2)) (with Ω̃ = ((0, 1))) it holds that
Ω̃ � Ω, but neither Ω̃S ≤ ΩS nor ΩS ≤ Ω̃S holds, as here

Au =

(
1 1
0 1

)
, Ãu =

(
1 0
0 1

)
.

This partial ordering is convenient for the characterization of the closure of ∆Γ.

1.4.1 The Closure of ∆Γ in ∆n

Note that the block-structure of A implies that every system in ∆Γ can be separated in two
subsystems (Au,Bu, Cu) and (A•,B•, C•). Define ∆ΩS ,p := ∆(ΩS ,p,{}) as the set of all state space
realizations in canonical form corresponding to state space unit root structure ΩS , structure indices
p and n• = 0. Analogously define ∆α• := ∆({},{},α•) as the set of all state space realizations in

canonical form with ΩS = {} and Kronecker indices α•. Examining ∆ΩS ,p and ∆α• separately
simplifies the analysis.

The Closure of ∆ΩS ,p

The canonical form imposes a lot of structure, i. e., restrictions on the matrices A, B and C. By
definition ∆ΩS ,p = ∆AΩS ,p ×∆BΩS ,p ×∆CΩS ,p and the closures of the three matrices can be analyzed

separately. ∆AΩS ,p and ∆CΩS ,p are very easy to investigate. The structure of A is fully determined

by ΩS and consequently ∆AΩS ,p consists of a single matrix A, which immediately implies that

∆AΩS ,p = ∆AΩS ,p. The matrix C, compare Theorem 1.1 is composed of blocks CEk that are sub-blocks

of unitary (or orthonormal) matrices and blocks CGk that have to fulfill (recursive) orthogonality
constraints. The corresponding sets have been shown to be closed in Lemmas 1.1 and 1.2 and

Corollaries 1.1 and 1.2. Thus, ∆CΩS ,p = ∆CΩS ,p.

It remains to discuss ∆BΩS ,p. The structure indices p defining the p.u.t. structures of the matrices
Bk restrict some entries to be positive. Combining all the parameters - unrestricted with complex
values parameterized by real and imaginary part and the positive entries - into a parameter vector
leads to an open subset of Rm for some m. For convergent sequences of systems with fixed ΩS
and p, limits of entries restricted to be positive may be zero. When this happens, two cases have
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to be distinguished. First, all p.u.t. sub-matrices still have full row rank. In this case the limiting
system, (A0,B0, C0) say, is still minimal and can be transformed to a system in canonical form
(Ã0, B̃0, C̃0) with fewer unrestricted entries in B̃0.

Second, if at least one of the row ranks of the p.u.t. blocks decreases in the limit, the limiting
system is no longer minimal. Consequently, (Ω̃S , p̃) < (ΩS , p) in the limit.
To illustrate this point consider again Example 1.4 with equation (1.12) rewritten as

xt+1,1 = xt,1 + xt,2 + B1,1εt, xt+1,2 = xt,2 + B1,2,1εt, xt+1,3 = xt,3 + B1,2,2εt,

If B1,2,1 = [0, b1,2,1,2] 6= 0 and B1,2,2 = [b1,2,2,1, b1,2,2,2] 6= 0, b1,2,2,1 > 0, it holds that {yt}t∈Z is an
I(2) process with state space unit root structure ΩS = ((0, 1, 2)).
Now, consider a sequence of systems with all parameters except for b1,2,1,2 constant and b1,2,1,2 → 0.
The limiting system is then given by

yt = CE1,1xt,1 + CG1,2xt,2 + CE1,2xt,3 + εt,[
xt+1,1

xt+1,2

xt+1,3

]
=

[
1 1 0
0 1 0
0 0 1

][
xt,1
xt,2
xt,3

]
+

[
b1,1,1 b1,1,2

0 0
b1,2,2,1 b1,2,2,2

]
εt, x1,1 = x1,2 = x1,3 = 0.

In the limiting system xt,2 = 0 is redundant and {yt}t∈Z is an I(1) process rather than an I(2)
process. Dropping xt,2 leads to a state space realization of the limiting system {yt}t∈Z given by

yt = CE1,1xt,1 + CE1,2xt,3 + εt = C̃x̃t + εt, x̃t ∈ R2,

x̃t+1 =

[
xt+1,1

xt+1,3

]
=

[
1 0
0 1

] [
xt,1
xt,3

]
+

[
b1,1,1 b1,1,2
b1,2,2,1 b1,2,2,2

]
εt = x̃t + B̃εt, x1,1 = x1,3 = 0.

In case B̃ has full rank, the above system is minimal. Since b1,2,2,1 > 0, the matrix B̃ needs to
be transformed into p.u.t. format. By definition all systems in the sequence, with b1,2,1,2 6= 0,
have structure indices p = [0, 2, 1]′ as discussed in Example 1.12. The limiting system - in case of
full rank of B̃ - has indices p̃ = [1, 2]′. To relate to Definition 1.9 choose the permutation matrix

S =

[
1 0 0
0 0 1
0 1 0

]
to arrive at

SAuS′ =

[
1 0 1
0 1 0
0 0 1

]
=

[
I2 J̃12
0 J̃2

]
, Sp =

[
0
1
2

]
=

[
(p1)1
(p1)2
p2

]
.

This shows that (p̃)i > (p1)i, i = 1, 2 and thus, the limiting system has a smaller multi-index Γ
than the systems of the sequence. In case B̃ has reduced rank equal to one a further reduction in
the system order to n = 1 along similar lines as discussed is possible, again leading to a limiting
system with smaller multi-index Γ.

The discussion shows that the closure of ∆BΩS ,p is related to lower order systems in the sense
of Definition 1.9. The precise statement is given in Theorem 1.3 after a discussion of the closure
of the stable subsystems.

The Closure of ∆α•

Consider a convergent sequence of systems {(Aj ,Bj , Cj)}j∈N in ∆α• and denote the limiting system
by (A0, B0, C0). Clearly, λ|max|(A0) ≤ 1 holds true for the limit A0 of the sequence {Aj}j∈N with
λ|max|(Aj) < 1 for all j. Therefore, two cases have to be discussed for the limit:

• If λ|max|(A0) < 1, the potentially non-minimal limiting system (A0, B0, C0) corresponds to
a minimal state space realization with Kronecker indices smaller or equal to α•, cf. Hannan
and Deistler (1988, Theorem 2.5.3).
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• If λ|max|(A0) = 1, the limiting matrix A0 is similar to a block matrix Ã = diag(J̃2, Ã•),

where all eigenvalues of J̃2 have unit modulus and λ|max|(Ã•) < 1.

The first case is well understood, compare Hannan and Deistler (1988, Chapter 2), since the limit
in this case corresponds to a stable transfer function. In the second case the limiting system can
be separated into two subsystems (J̃2, B̃u, C̃u) and (Ã•, B̃•, C̃•), according to the block diagonal
structure of Ã. The state space unit root structure of the limiting system (A0, B0, C0) depends on
the multiplicities of the eigenvalues of the matrix J̃2 and is greater (in the sense of Definition 1.9)
than the empty state space unit root structure. At the same time the Kronecker indices of the
subsystem (Ã•, B̃•, C̃•) are smaller than α•, compare again Hannan and Deistler (1988, Chapter 2).
Since the Kronecker indices impose restrictions on some entries of the matrices Aj and thus also

on A0, the block J̃2 and consequently also the limiting state space unit root structure might be
subject to further restrictions.

The Conformable Index Set and the Closure of ∆Γ

The previous subsection shows that the closure of ∆Γ does not only contain systems corresponding
to transfer functions with multi-index smaller or equal to Γ, but also systems that are related in
a different way that is formalized below.

Definition 1.10 (Conformable index set) Given a multi-index Γ = (ΩS , p, α•), the set of con-
formable multi-indices K(Γ) contains all multi-indices Γ̃ = (Ω̃S , p̃, α̃•), where:

• The pair (Ω̃S , p̃) with corresponding matrix Ãu in canonical form extends (ΩS , p) with cor-
responding matrix Au in canonical form, i. e., there exists a permutation matrix S such
that

S ÃuS′ =

[
Au 0

0 J̃2

]
and S p̃ =

[
p
p̃2

]
,

• α̃• ≤ α•.

• ñu + ñ• = nu + n•.

Note that the definition implies Γ ∈ K(Γ). The importance of the set K(Γ) is clarified in the
following theorem:

Theorem 1.3 Transfer functions corresponding to state space realizations with multi-index Γ̃ ≤ Γ
are contained in the set π(∆Γ). The set π(∆Γ) is contained in the union of all sets MΓ̌ for Γ̌ ≤ Γ̃
with Γ̃ conformable to Γ, i. e.,⋃

Γ̃≤Γ

MΓ̃ ⊂ π(∆Γ) ⊂
⋃

Γ̃∈K(Γ)

⋃
Γ̌≤Γ̃

MΓ̌.

Theorem 1.3 provides a characterization of the transfer functions corresponding to systems in
the closure of ∆Γ. The conformable set K(Γ) plays a key role here, since it characterizes the set
of all minimal systems that can be obtained as limits of convergent sequences from within the set
∆Γ. Conformable indices extend the matrix Au corresponding to the unit root structure by the
block J̃2.

The second inclusion in Theorem 1.3 is potentially strict, depending on the Kronecker indices
α• in Γ. Equality holds, e. g., in the following case:

Corollary 1.3 For every multi-index Γ with n• = 0 the set of conformable indices consists only
of Γ, which implies π(∆Γ) =

⋃
Γ̃≤ΓMΓ̃.
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1.4.2 The Closure of MΓ

It remains to investigate the closure of MΓ in M . Hannan and Deistler (1988, Theorem 2.6.5 (ii)
and Remark 3, p. 73) show that for any order n, there exist Kronecker indices α•,g = α•,g(n)
corresponding to the generic neighborhood Mα•,g for transfer functions of order n such that

M•,n :=
⋃

α•|n•(α•)=n

Mα• ⊂ Mα•,g ,

where Mα• := π(∆α•). Here M•,n denotes the set of all transfer functions of order n with state
space realizations (A,B,C) satisfying λ|max|(A) < 1. Every transfer function in M•,n can be
approximated by a sequence of transfer functions in Mα•,g .

It can be easily seen that a generic neighborhood also exists for systems with state space unit
root structure ΩS and without stable subsystem: Set the structure indices p to have a minimal
number of elements restricted in p.u.t. sub-blocks of Bu, i. e., for any block Bk,hk,j ∈ Cnk,hk,j×s,
or Bk,hk,j ∈ Rnk,hk,j×s in case of a real unit root, set the corresponding structure indices to p =
[1, . . . , nk,hk,j ]. Any p.u.t. matrix can be approximated by a matrix in this generic neighborhood
with some positive entries restricted by the p.u.t. structure tending to zero. Combining these
results with Theorem 1.3 implies the existence of a generic neighborhood for the canonical form
considered in this paper:

Theorem 1.4 Let M(ΩS , n•) be the set of all transfer functions k(z) ∈ Mnu(ΩS)+n• with state
space unit root structure ΩS. For every ΩS and n•, there exists a multi-index Γg := Γg(ΩS , n•)
such that

M(ΩS , n•) ⊂ MΓg . (1.14)

Moreover, it holds that M(ΩS , n•) ⊂Mα•,g(n) for every ΩS and n• satisfying nu(ΩS) + n• ≤ n.

Theorem 1.4 is the basis for choosing a generic multi-index Γ for maximizing the pseudo
likelihood function. For every ΩS and n• there exists a generic piece that – in its closure – contains
all transfer functions of order nu(ΩS) + n• and state space unit root structure ΩS : The set of
transfer functions corresponding to the multi-index with the largest possible structure indices p in
the sense of Definition 1.9 (iii) and generic Kronecker indices for the stable subsystem. Choosing
these sets and their corresponding parameter spaces as model sets is therefore the most convenient
choice for numerical maximization, if only ΩS and n• are known.

If, e. g., only an upper bound for the system order n is known and the goal is only to obtain
consistent estimators, using α•,g(n) is a feasible choice, since all transfer functions in the closure of
the set Mα•,g(n) can be approximated arbitrarily well, regardless of their potential state space unit
root structure ΩS , nu(ΩS) ≤ n. For testing hypotheses, however, it is important to understand
the topological relations between sets corresponding to different multi-indices Γ. In the following
we focus on the multi-indices Γg(ΩS , n•) for arbitrary ΩS and n•.

The closure of M(ΩS , n•) contains also transfer functions that have a different state space unit
root structure than ΩS . Considering convergent sequences of state space realizations (Aj , Bj , Cj)j∈N
of transfer functions in M(ΩS , n•), the state space unit root structure of their limits (A0, B0, C0) :=
limj→∞(Aj , Bj , Cj) may differ in three ways:

• For sequences (Aj ,Bj , Cj)j∈N in canonical form rows of Bu,j can tend to zero, which reduces
the state space unit root structure as discussed in Section 1.4.1.

• Stable eigenvalues of Aj may converge to the unit circle, thereby extending the unit root
structure.

• Off-diagonal entries of the sub-block Au,j of Aj = TjAjT
−1
j may be converging to zeros in

the sub-block Au,0 of the limit A0 = T0A0T
−1
0 in canonical form, resulting in a different

attainable state space unit root structure. Here Tj ∈ Cn×n for all j ∈ N are regular matrices
transforming Aj to canonical form and T0 ∈ Cn×n transforms A0 accordingly.
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The first change of ΩS described above results in a transfer function with smaller state space
unit root structure according to Definition 1.9 (ii). The implications of the other two cases are
summarized in the following definition:

Definition 1.11 (Attainable unit root structures) For given n• and ΩS the set A(ΩS , n•)
of attainable unit root structures contains all pairs (Ω̃S , ñ•), where Ω̃S with corresponding matrix
Ãu in canonical form extends ΩS with corresponding matrix Au in canonical form, i. e., there
exists a permutation matrix S such that

S ÃuS′ =

[
Ǎu J12

0 J2

]
,

where Ǎu can be obtained by replacing off-diagonal entries in Au by zeros and where ñ• := n•−dJ
with dJ the dimension of J2 ∈ CdJ×dJ .

Remark 1.17 It is a direct consequence of the definition of A(ΩS , n•) that (Ω̃S , ñ•) ∈ A(ΩS , n•)
implies A(Ω̃S , ñ•) ⊂ A(ΩS , n•).

Theorem 1.5 (i) MΓ is Tpt-open in MΓ.
(ii) For every generic multi-index Γg corresponding to ΩS and n• it holds that

π(∆Γg ) ⊂
⋃

Γ̃∈K(Γg)

⋃
Γ̌≤Γ̃

MΓ̌

⊂
⋃

(Ω̃S ,ñ•)∈A(ΩS ,n•)

⋃
(Ω̌S ,ň•)≤(Ω̃S ,ñ•)

M(Ω̌S , ň•) = MΓg .

Theorem 1.5 has important consequences for statistical analysis, e. g., PML estimation, since
– as stated several times already – maximizing the pseudo likelihood function over ΘΓ effectively
amounts to calculating the supremum over the larger set MΓ. Depending on the choice of Γ the
following asymptotic behavior may occur:

• If Γ is chosen correctly and the estimator of the transfer function is consistent, openness
of MΓ in its closure implies that the probability of the estimator being an interior point of
MΓ tends to one asymptotically. Since the mapping attaching the parameters to the transfer
function is continuous on an open and dense set, consistency in terms of transfer functions
therefore implies generic consistency of the parameter estimators.

• If the multi-index is incorrectly chosen to equal Γ, estimator consistency is still possible if the
true multi-index Γ0 < Γ, as in this case MΓ0 ⊂MΓ. This is in some sense not too surprising
and something that is also well-known in the simpler VAR framework, where consistency of
OLS can be established when the true autoregressive order is smaller than the order chosen
for estimation. Analogous to the lag number in the VAR case, thus, a necessary condition
for consistency is to choose the system order larger or equal to the true system order.

Finally, note that Theorem 1.5 also implies the following result relevant for the determination
of the unit root structure, further discussed in Sections 1.5.1 and 1.5.2:

Corollary 1.4 For every pair (Ω̃S , ñ•) ∈ A(ΩS , n•) it holds that

M(Ω̃S , ñ•) ⊂ M(ΩS , n•).

1.5 Testing Commonly Used Hypotheses in the MFI(1) and
I(2) Cases

This section discusses a large number of hypotheses, respectively restrictions, on cointegrating
spaces, adjustment coefficients and deterministic components often tested in the empirical lite-
rature. Similarly to the VECM framework, as discussed for the I(2) case in Section 1.2, testing
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hypotheses on the cointegrating spaces or adjustment coefficients may necessitate different repa-
rameterizations.

1.5.1 The MFI(1) Case

The two by far most widely used cases of MFI(1) processes are I(1) processes and seasonally inte-
grated processes for quarterly data with state space unit root structure ((0, d1

1), (π/2, d2
1), (π, d3

1)).
In general, assuming for notational simplicity ω1 = 0 and ωl = π, it holds that for t > 0 and
x1,u = 0

yt =

l∑
k=1

Ck,Rxt,k,R + C•xt,• + Φdt + εt =

C1xt,1 +
l−1∑
k=2

(Ckxt,k + Ckxt,k) + Clxjt,l + C•xt,• + Φdt + εt =

C1B1

t−1∑
j=1

εt−j + 2

l−1∑
k=2

R

CkBk t−1∑
j=1

(zk)j−1εt−j

+ ClBl
t−1∑
j=1

(−1)j−1εt−j+

C•
t−1∑
j=1

Aj−1
• B•εt−j + C•At−1

• x1,• + Φdt + εt =

C1B1

t−1∑
j=1

εt−j + 2

l−1∑
k=2

t−1∑
j=1

(
R(CkBk) cos(ωk(j − 1)) + I(CkBk) sin(ωk(j − 1))

)
εt−j+

ClBl
t−1∑
j=1

(−1)j−1εt−j + C•
t−1∑
j=1

Aj−1
• B•εt−j + C•At−1

• x1,• + Φdt + εt.

The above equation provides an additive decomposition of {yt}t∈Z into stochastic trends and cycles,
the deterministic and stationary components. The stochastic cycles at frequency 0 < ωk < π are,
of course, given by the combination of sine and cosine terms. For the MFI(1) case this can also be
directly seen from considering the real valued canonical form discussed in Remark 1.4, with the

matrices Ak,R for k = 2, . . . , l − 1, given by Ak,R = Idk1 ⊗
(

cos(ωk) − sin(ωk)
sin(ωk) cos(ωk)

)
in this case.

The ranks of CkBk are equal to the integers dk1 in ΩS = ((ω1, d
1
1), . . . , (ωl, d

l
1)). The number of

stochastic trends is equal to d1
1, the number of stochastic cycles at frequency ωk is equal to 2dk1

for k = 2, . . . , l − 1 and equal to dl1 if k = l, as discussed in Section 1.3.
Moreover, in the MFI(1) case, dk1 is linked to the complex cointegrating rank rk at frequency

ωk, defined in Johansen (1991) and Johansen and Schaumburg (1999) in the VECM case as the
rank of the matrix Πk := −a(zk). For VARMA processes with arbitrary integration orders the
complex cointegrating rank rk at frequency ωk is rk := rank(−k−1(zk)), where k(z) is the transfer
function, with rk = s−dk1 in the MFI(1) case. Thus, in the MFI(1) case, determination of the state
space unit root structure corresponds to determination of the cointegrating ranks in the VECM
case.

In the VECM setting, the matrix Πk is usually factorized into Πk = αkβ
′
k, as presented for

the I(1) case in Section 1.2. For ωk = {0, π} the column space of βk gives the cointegrating space
of the process at frequency ωk. For 0 < ωk < π the relation between the column space of βk and
the space of CIVs and PCIVs at the corresponding frequency is more involved. The columns of βk
are orthogonal to the columns of Ck, the sub-block of C from a state space realization (A,B, C) in
canonical form corresponding to the VAR process. Analogously, the column space of the matrix
αk, containing the so-called adjustment coefficients, is orthogonal to the row space of the sub-block
Bk of B.
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Both integers dk1 and rk are related to the dimensions of the static and dynamic cointegrating
spaces in the MFI(1) case: For ωk ∈ {0, π}, the cointegrating rank rk = s − dk1 coincides with
the dimension of the static cointegrating space at frequency ωk. Furthermore, the dimension of
the static cointegrating space at frequency 0 < ωk < π is bounded from above by rk = s − dk1 ,
since it is spanned by at most s − dk1 vectors β ∈ Rs orthogonal to the complex valued matrix
Ck. The dimension of the dynamic cointegrating space at 0 < ωk < π is equal to 2rk = 2(s− dk1).
Identifying again β(z) = β0 + β1z with the vector [β′0, β

′
1]′, a basis of the dynamic cointegrating

space at 0 < ωk < π is then given by the column space of the product[
γ0 γ̃0

γ1 γ̃1

]
:=

[
Is 0s×s

− cos(ωk)Is sin(ωk)Is

] [
R(βk) I(βk)
−I(βk) R(βk)

]
,

with the columns of βk ∈ Cs×(s−dk1 ) spanning the orthogonal complement of the column space of
Ck, i. e., βk is of full rank and β′kCk = (R(βk)′− iI(βk)′)Ck = 0. This holds true, since both factors
are of full rank and [γ′0, γ

′
1]′ satisfies (zkγ

′
0+γ′1)Ck = 0, which corresponds to the necessary condition

given in Example 1.2 for the columns of [γ′0, γ
′
1]′ to be PCIVs. The latter implies (zkγ̃

′
0 + γ̃′1)Ck = 0

also for [γ̃′0, γ̃
′
1]′, highlighting again the additional structure of the cointegrating space emanating

from the complex conjugate pairs or eigenvalues (and matrices), as discussed in Example 1.2.
Note that the relations between rk and dk1 discussed above only hold in the MFI(1) and I(1)

special cases. For higher orders of integration no such simple relations exist.
In the MFI(1) setting the deterministic component typically includes a constant, seasonal

dummies and a linear trend. As discussed in Remark 1.6, a sufficiently rich set of deterministic
components allows to absorb non-zero initial values x1,u.

Testing Hypotheses on the State Space Unit Root Structure

Using the generic sets of transfer functions MΓg presented in Theorem 1.4, we can construct
pseudo likelihood ratio tests for different hypotheses H0 : (ΩS , n•) = (ΩS,0, n•,0) against chosen
alternatives. Note, however, that by the results of Theorem 1.5 the null hypothesis includes all
pairs (ΩS , n•) ∈ A(ΩS,0, n•,0) as well as all pairs (ΩS , n•) that are smaller than a pair (Ω̃S , ñ•) ∈
A(ΩS,0, n•,0).

As common in the VECM setting, first consider hypotheses at a single frequency ωk. For an
MFI(1) process, the hypothesis of a state space unit root structure equal to ΩS,0 = ((ωk, d

k
1,0))

corresponds to the hypothesis of the cointegrating rank rk at frequency ωk being equal to r0 =

s − dk1,0. Maximization of the pseudo likelihood function over the set M(((ωk, dk1,0)), n− δkdk1,0)
– with a suitably chosen order n – leads to estimates that may be arbitrary close to transfer
functions with different state space unit root structures ΩS . These include ΩS with additional

unit root frequencies ωk̃, with the integers dk̃1 restricted only by the order n. Therefore, focusing
on a single frequency ωk does not rule out a more complicated true state space unit root structure.
Assume n ≥ δks with δk = 1 for ωk ∈ {0, π} and δk = 2 else. Corollary 1.4 shows that

M({}, n) ⊃M(((ωk, 1)), n− δk) ⊃ · · · ⊃M(((ωk, s)), n− sδk),

since, e. g., (((ωk, 1)), n− δk) ∈ A({}, n).
Analogously to the procedure of testing for the cointegrating rank rk in the VECM setting,

these inclusions can be employed to test for dk1 : Start with the hypothesis of dk1 = s against the
alternative of 0 ≤ dk1 < s and decrease the assumed dk1 consecutively until the test does not reject
the null hypothesis.

Furthermore, one can formulate hypotheses on dk1 jointly at different frequencies ωk. Again,
there exist inclusions based on the definition of the set of attainable state space unit root structures
and Corollary 1.4, which can be used to consecutively test hypotheses on ΩS .

Testing Hypotheses on CIVs and PCIVs

Johansen (1995) considers in the I(1) case three types of hypotheses on the cointegrating space
spanned by the columns of β that are each motivated by examples from economic research: The dif-
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ferent cases correspond to different types of hypotheses related to restrictions implied by economic
theory.

(i) H0 : β = Hϕ, β ∈ Rs×r, H ∈ Rs×t, ϕ ∈ Rt×r, r ≤ t < s: The cointegrating space is known to
be a subspace of the column space of H (which is of full column rank).

(ii) H ′0 : β = [b, ϕ], β ∈ Rs×r, b ∈ Rs×t, ϕ ∈ Rs×r−t, 0 < t ≤ r: Some cointegrating relations are
known.

(iii) H
′′

0 : β = [H1ϕ1, . . . ,Hcϕc], β ∈ Rs×r, Hj ∈ Rs×tj , ϕj ∈ Rtj×rj , rj ≤ tj ≤ s, for j = 1, . . . , c
such that

∑c
j=1 rj = r. Cointegrating relations are known to be in the column spaces of

matrices Hk (which are of full column rank).

As discussed in Example 1.1, cointegration at ωk = 0 occurs if and only if a vector βj satisfies
β′jC1 = 0. In other words, the column space of C1 is the orthocomplement of the cointegrating
space spanned by the columns of β and hypotheses on β restrict entries of C1.

The first type of hypothesis, H0, implies that the column space of C1 is equal to the orthocom-
plement of the column space of Hϕ. Assume w.l.o.g. H ∈ Os,t, ϕ⊥ ∈ Ot,t−r and H⊥ ∈ Os,s−t,
such that the columns of [Hϕ⊥, H⊥] form an orthonormal basis for the orthocomplement of the
cointegrating space. Consider now the mapping:

Cr1(θ̌L,θR) :=

[
H · ŘL(θ̌L)′

[
It−r

0r×(t−r)

]
, H⊥

]
·RR(θR), (1.15)

where ŘL(θ̌L) :=
∏t−r
i=1

∏r
j=1Rt,i,t−r+j(θL,r(i−1)+j) ∈ Rt×t and RR(θR) ∈ R(s−r)×(s−r) as in

Lemma 1.1. From this one can derive a parameterization of the set of matrices Cr1 corresponding
to H0, analogously to Lemma 1.1. The difference of the number of free parameters under the null
hypothesis and under the alternative is the difference between the number of free parameters in
θL ∈ [0, 2π)r(s−r) and θ̌L ∈ [0, 2π)r(t−r), implying a reduction of the number of free parameters of
r(s−t) under the null hypothesis. This necessarily coincides with the number of degrees of freedom
of the corresponding test statistic in the VECM setting, cf. Johansen (1995, Theorem 7.2).

The second type of hypothesis, H ′0, is also straightforwardly parameterized: In this case a
subspace of the cointegrating space is known and given by the column space of b ∈ Rs×t. Assume
w.l.o.g. b ∈ Os,t. The orthocomplement of β = [b, ϕ] is given by the set of matrices C1 satisfying
the restriction b′C1 = 0, i. e., the set Os,d1

(b) defined in (1.13). The parameterization of this set has
already been discussed. The reduction of the number of free parameters under the null hypothesis
is t(s− r) which again coincides with the number of degrees of freedom of the corresponding test
statistic in the VECM setting, cf. Johansen (1995, Theorem 7.3).

Finally, the third type of hypothesis ,H ′′0 , is the most difficult to parameterize in our setting.
As an illustrative example consider the case H

′′

0 : β = [H1ϕ1, H2ϕ2], β ∈ Rs×r, H1 ∈ Rs×t1 , H2 ∈
Rs×t2 , ϕ1 ∈ Rt1×r1 , ϕ2 ∈ Rt2×r2 , rj ≤ tj ≤ s and r1 + r2 = r. W.l.o.g. choose Hb ∈ Os,tb such
that its columns span the tb-dimensional intersection of the column spaces of H1 and H2 and
choose H̃j ∈ Os,t̃j (Hb), j = 1, 2 such that the columns of H̃j and Hb span the column space of Hj .

Define H̃ := [H̃1, H̃2, Hb] ∈ Os,t̃, with t̃ = t̃1 + tb + t̃2. Let w.l.o.g. H̃⊥ ∈ Os,s−t̃(H̃) and define

pj := min(rj , t̃j), qj := max(rj , t̃j) for j = 1, 2 and pb = q1 − t̃1 + q2 − t̃2. A parameterization of
βr ∈ Os,r satisfying the restrictions under the null hypothesis can be derived from the following
mapping:

βr(θH ,θR,β) := H̃ ·RH(θH)′


Ip1 0p1×p2 0p1×pb

0(q1−r1)×p1
0(q1−r1)×p2

0(q1−r1)×pb
0p2×p1

Ip2
0p2×pb

0(q2−r2)×p1
0(q2−r2)×p2

0(q2−r2)×pb
0pb×p1

0pb×p2
Ipb

0(t̃−q1−q2)×p1
0(t̃−q1−q2)×p2

0(t̃−q1−q2)×pb

 ·RR(θR,β),
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where RH(θH) := RH ((θH1 ,θH2 ,θHb)) := RH1(θH1)RH2(θH2)RHb(θHb) ∈ Rt̃×t̃ is a product of
Givens rotations corresponding to the entries in the blocks highlighted by bold font and where
RR(θR,β) ∈ Rr×r as in Lemma 1.1. The three matrices are defined as follows:

RH1
(θH1

) :=

p1∏
i=1

t̃−q2−r1∏
j=1

Rt,i,δH1
(j)+j(θH1,(t̃−q2−r1)(i−1)+j),

δH1(j) :=

{
p1 if j ≤ q1 − r1

t̃1 + t̃2 + pb else,

RH2(θH2) :=

p2∏
i=1

t̃−q1−r2∏
j=1

Rt,p1+i,δH2
(j)+j(θH2,(t̃−q1−r2)(i−1)+j),

δH2
(j) :=

{
t̃1 + p2 if j ≤ q2 − r2

t̃1 + t̃2 + pb else,

RHb(θHb) :=

pb∏
i=1

t̃−q1−q2∏
j=1

Rt,p1+p2+i,t̃1+t̃2+pb+j
(θHb,(t̃−q1−q2)(i−1)+j).

Consequently, a parameterization of the orthocomplement of the cointegrating space is based on
the mapping:

Cr1(θH ,θR,C) :=H̃ ·RH(θH)′



0p1×(q1−r1) 0p1×(q2−r2) 0p1×(t̃−q1−q2)
Iq1−r1 0(q1−r1)×(q2−r2) 0(q1−r1)×(t̃−q1−q2)

0p2×(q1−r1) 0p2×(q2−r2) 0p2×(t̃−q1−q2)
0(q2−r2)×(q1−r1) Iq2−r2 0(q2−r2)×(t̃−q1−q2)

0pb×(q1−r1) 0pb×(q2−r2) 0pb×(t̃−q1−q2)
0(t̃−q1−q2)×(q1−r1) 0(t̃−q1−q2)×(q2−r2) It̃−q1−q2

 , H̃⊥

 ·RR(θR,C),

where RH(θH) ∈ Rt̃×t̃ as above and RR(θR,C) ∈ R(s−r)×(s−r) as in Lemma 1.1. Note that for all
θH , θR,β and θR,C it holds that βr(θH ,θR,β)′Cr1(θH ,θR,C) = 0r×(s−r). The number of parameters

restricted under H ′′0 is equal to r1(q1−r1)+r2(q2−r2)+(r1 +r2)(t̃−q1−q2)+(s−r)(s−r+1)/2,
and thus, through q1 and q2, depends on the dimension tb of the intersection of the columns spaces
of H1 and H2. The reduction of the number of free parameters matches the degrees of freedom of
the test statistics in Johansen (1995, Theorem 7.5), if β is identified, which is the case if r1 ≤ t̃1
and r2 ≤ t̃2.

Using the mapping βr(·) as a basis for a parameterization allows to introduce another type of
hypotheses of the form:

(iv) H
′′′

0 : β⊥ = C1 = [H1ϕ1, . . . ,Hcϕc], β⊥ ∈ Rs×(s−r), Hj ∈ Os,tj , ϕj ∈ Otj ,rj , rj ≤ tj ≤ s, for
j = 1, . . . , c such that

∑c
j=1 rj = s − r. The orthocomplement of the cointegrating space is

contained in the column spaces of the (full rank) matrices Hk.

This type of hypothesis allows, e. g., to test for the presence of cross-unit cointegrating relations,
cf. Wagner and Hlouskova (2009, Definition 1) in, e. g., multi-country data sets.

Hypotheses on the cointegrating space at frequency ωk = π can be treated analogously to
hypotheses on the cointegrating space at frequency ωk = 0.

Testing hypotheses on cointegrating spaces at frequencies 0 < ωk < π has to be discussed in
more detail, as one also has to consider the space spanned by PCIVs, compare Example 1.2. There
are 2(s− dk1) linearly independent PCIVs of the form β(z) = β0 + β1z. Every PCIV corresponds
to a vector zkβ0 + β1 ∈ Cs orthogonal to Ck and consequently hypotheses on the space spanned

by PCIVs can be transformed to hypotheses on the complex column space of Ck ∈ Cs×d
k
1 .
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Consider, e. g., an extension of the first type of hypothesis of the form

Hk
0 :

[
γ0 γ̃0

γ1 γ̃1

]
=

[
Is 0s×s

− cos(ωk)Is sin(ωk)Is

] [
(H̃0φ̃0 − H̃1φ̃1) (H̃0φ̃1 + H̃1φ̃0)

−(H̃0φ̃1 + H̃1φ̃0) (H̃0φ̃0 − H̃1φ̃1)

]
=

[
Is 0s×s

− cos(ωk)Is sin(ωk)Is

] [
H̃0 H̃1

−H̃1 H̃0

] [
φ̃0 φ̃1

−φ̃1 φ̃0

]
,

with H̃0, H̃1 ∈ Rs×t, φ̃0, φ̃1 ∈ Rt×r, r ≤ t < s, which implies that the column space of Ck is equal
to the orthocomplement of the column space of (H̃0 + iH̃1)(φ̃0 + iφ̃1). This general hypothesis
encompasses, e. g., the hypothesis [γ′0, γ

′
1]′ = Hφ = [H ′0, H

′
1]′φ, with H ∈ R2s×t, H0, H1 ∈ Rs×t, φ ∈

Rt×r, by setting φ̃0 := φ̃1 := φ̃, H̃0 := H0 and H̃1 := −(cos(ωk)H0 +H1)/ sin(ωk). The extension is
tailored to include the pairwise structure of PCIVs and to simplify transformation into hypotheses
on the complex matrix Ck used in the parameterization. The parameterization of the set of matrices
corresponding to Hk

0 is derived from a mapping of the form given in (1.15), with ŘL(θ̌L) and
RR(θR) replaced by Q̌L(ϕ̌L) :=

∏t−r
i=1

∏r
j=1Qt,i,t−r+j(ϕL,r(i−1)+j) ∈ Rt×t and Dd(ϕD)QR(ϕR)

as in Lemma 1.2.
Similarly, the three other types of hypotheses on the cointegrating spaces considered above

can be extended to hypotheses on the space of PCIVs in the MFI(1) case. They translate into
hypotheses on complex valued matrices βk orthogonal to Ck. To parameterize the set of matrices
restricted according to these null hypotheses, Lemma 1.2 is used. Thus, the restrictions implied by
the extensions of all four types of hypotheses to hypotheses on the dynamic cointegrating spaces
at frequencies 0 < ωk < π for MFI(1) processes can be implemented using Givens rotations.

A different case of interest is the hypothesis of at least m linearly independent CIVs bj ∈ Rs,
j = 1, . . . ,m with 0 < m ≤ s− dk1 , i. e., an m-dimensional static cointegrating space at frequency
0 < ωk < π, which we discuss as another illustrative example to the procedure for the case of
cointegration at complex unit roots.

For the dynamic cointegrating space, this hypothesis implies the existence of 2m linearly in-
dependent PCIVs of the form β1(z) = bj and β2(z) = bjz, j = 1, . . . ,m. In light of the discussion
above the necessary condition for these two polynomials to be PCIVs is equivalent to b′jCk = 0,
for j = 1, . . . ,m. This restriction is similar to H ′0 discussed above, except for the fact that the
cointegrating vectors bj are not fully specified. This hypothesis is equivalent to the existence of an
m-dimensional real kernel of Ck. A suitable parameterization is derived from the following mapping

C(θb,ϕ) := RL(θb)

[
0m×dk1
CU (ϕ)

]
,

where θb ∈ [0, 2π)m(s−m) and CU (ϕ) := CU (ϕL,ϕD,ϕR) ∈ Us−m,dk1 as in Lemma 1.2. The
difference in the number of free parameters without restrictions and with restrictions is equal to
m(s−m).

The hypotheses can also be tested jointly for the cointegrating spaces of several unit roots.

Testing Hypotheses on the Adjustment Coefficients

As in the case of hypotheses on the cointegrating spaces βk, hypotheses on the adjustment coef-
ficients αk are typically formulated as hypotheses on the column spaces of αk. We only focus on
hypotheses on the real valued α1 corresponding to frequency zero. Analogous hypotheses may be
considered for αk at frequencies ωk 6= 0, using the same ideas.

The first type of hypothesis on α1 is of the form Hα : α1 = Aψ,A ∈ Rs×t, ψ ∈ Rt×r and
therefore can be rewritten as B1Aψ = 0. W.l.o.g. let A ∈ Os,t and A⊥ ∈ Os,s−t. We deal with
this type of hypothesis as with H0 : β = Hϕ in the previous section by simply reversing the roles
of C1 and B1. We therefore consider the set of feasible matrices B′1 as a subset in Os,s−r and use
the mapping B′1(θ̌L,θR) = [AŘL(θ̌L)′[It−r, 0r×(t−r)]

′, A⊥]RR(θR) to derive a parameterization,
while C′1 is restricted to be a p.u.t. matrix and the set of feasible matrices C′1 is parameterized
accordingly.
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As a second type of hypothesis Juselius (2006, Section 11.9, p. 200) discusses H ′α : α1,⊥ = Hψ,
H ∈ Rs×t, ψ ∈ Rt×(s−r), linked to the absence of permanent effects of shocks H⊥εt on any of the
variables of the system. Assume w.l.o.g. H⊥ ∈ Os,s−t. Using the parameterization of Os−r(H⊥)
defined in (1.13) for the set of feasible matrices B′1 and the parameterization of the set of p.u.t.
matrices for the set of feasible matrices C′1, implements this restriction.

The restrictions on Hα reduce the number of free parameters by r(s − t) and the restrictions
implied by H ′α lead to a reduction by t(s− r) free parameters, compared to the unrestricted case,
which matches in both cases the number of degrees of freedom of the corresponding test statistic
in the VECM framework.

Restrictions on the Deterministic Components

Including an unrestricted constant in the VECM equation ∆0yt = εt + Φ0 leads to a linear trend
in the solution process yt =

∑t
j=1(εj + Φ0) + y1 =

∑t
j=1 εj + y1 + Φ0t, for t > 1. If one restricts

the constant to Φ0 = αΦ̃0, Φ̃0 ∈ Rr in a general VECM equation as given in (1.4), with Π = αβ′

of rank r, no summation to linear trends in the solution process occurs, while a constant non-
zero mean is still present in the cointegrating relations, i. e., the process {β′yt}t∈Z. Analogously
an unrestricted linear trend Φ1t in the VECM equation leads to a quadratic trend of the form
Φ1t(t− 1)/2 in the solution process, which is excluded by the restriction Φ1t = αΦ̃1t.

In the VECM framework, compare Johansen (1995, Section 5.7, p. 81), five restrictions related
to the coefficients corresponding to the constant and the linear trend are commonly considered:

1. H(r) : Φdt = Φ1t+ Φ0, i. e., unrestricted constant and linear trend,

2. H∗(r) : Φdt = αΦ̃1t+ Φ0, i. e., unrestricted constant, linear trend restricted to
cointegrating relations,

3. H1(r) : Φdt = Φ0, i. e., unrestricted constant, no linear trend,

4. H∗1 (r) : Φdt = αΦ̃0, i. e., constant restricted to cointegrating relations,
no linear trend,

5. H2(r) : Φdt = 0, i. e., no deterministic components present,

with Φ0,Φ1 ∈ Rs and Φ̃0, Φ̃1,∈ Rr and the following consequences for the solution processes: Under
H(r) the solution process contains a quadratic trend in the direction of the common trends, i. e.,
in {β′⊥yt}t∈Z, and a linear trend in the direction of the cointegrating relations, i. e., in {β′yt}t∈Z.
Under H∗(r) the quadratic trend is not present. H1(r) features a linear trend only in the directions
of the common trends, H2(r) a constant only in these directions. Under H∗1 (r) the constant is also
present in the directions of the cointegrating relations.

In the state space framework the deterministic components can be added in the output equation
yt = Cxt+Φdt+εt, compare (1.9). Consequently, the above considered hypotheses can be imposed
by formulating linear restrictions on Φ. These can be directly parameterized by including the
following deterministic components in the five considered cases:

1. H(r) : Φdt = C1Φ̃2t
2 + Φ1t+ Φ0,

2. H∗(r) : Φdt = Φ1t+ Φ0,

3. H1(r) : Φdt = C1Φ̃1t+ Φ0,
4. H∗1 (r) : Φdt = Φ0,

5. H2(r) : Φdt = C1Φ̃0,

where Φ0,Φ1 ∈ Rs and Φ̃0, Φ̃1, Φ̃2 ∈ Rd
1
1 . The component C1Φ̃0 captures the influence of the initial

value C1x1,1 in the output equation.
In the VECM framework for the seasonal MFI(1) case, with Πk = αkβ

′
k of rank rk for 0 <

ωk < π, the deterministic component usually includes restricted seasonal dummies of the form

αkΦ̃kz
t
k + αkΦ̃k(zk)t, Φ̃k ∈ Crk to avoid summation in the directions of the stochastic trends.

The state space framework allows to straightforwardly include seasonal dummies in the output
equation in the form of Φkz

t
k+Φk(zk)t, Φk ∈ Cs. Again, it is of interest whether these components
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are unrestricted or whether they take the form of CkΦ̃kz
t
k+CkΦ̃k(zk)t, Φ̃k ∈ Cd

k
1 , similarly allowing

for a reinterpretation of these components as influence of the initial values x1,k on the output.

Note that Φkz
t
k + Φk(zk)t is equivalently given by Φ̌k,1 sin(ωkt) + Φ̌k,2 cos(ωkt) using real

coefficients Φ̌k,1, Φ̌k,2 ∈ Rs and the desired restrictions can be implemented accordingly.

1.5.2 The I(2) Case

The state space unit root structure of I(2) processes is of the form ΩS = ((0, d1
1, d

1
2)), where the

integer d1
1 equals the dimension of xEt,1, and d1

2 equals the dimension of [(xGt,2)′, (xEt,2)′]′. Recall that
the solution for t > 0 and x1,u = 0 of the system in canonical form in this setting is given by

yt = CE1,1xEt,1 + CG1,2xGt,2 + CE1,2xEt,2 + C•xt,• + Φdt + εt

= CE1,1B1,2,1

t−1∑
k=1

k∑
j=1

εt−j + (CE1,1B1,1 + CG1,2B1,2,1 + CE1,2B1,2,2)
t−1∑
j=1

εt−j

+C•
t−1∑
j=1

Aj−1
• B•εt−j + C•At−1

• x1,• + Φdt + εt.

For VAR processes integrated of order two the integers d1
1 and d1

2 of the corresponding state space
unit root structure are linked to the ranks of the matrices Π = αβ′ (denoted as r = r0) and
α′⊥Γβ⊥ = ξη′ (denoted as m = r1) in the VECM setting, as discussed in Section 1.2. It holds that
r = s−d1

2 and m = d1
2−d1

1. The relation of the state space unit root structure to the cointegration
indices r0, r1, r2 was also discussed in Section 1.3.

Again, both the integers d1
1 and d1

2 and the ranks r,m, and consequently also the indices
r0, r1 and r2, are closely related to the dimensions of the spaces spanned by CIVs and PCIVs.
In the I(2) case the static cointegrating space of order ((0, 2), (0, 1)) is the orthocomplement of
the column space of CE1,1 and thus of dimension s − d1

1. The dimension of the space spanned by

CIVs of order ((0, 2), {}) is equal to s− d1
2 − rc,G, where rc,G denotes the rank of CG1,2, since this

space is the orthocomplement of the column space of [CE1,1, CG1,2, CE1,2]. The space spanned by the
PCIVs β0 + β1z of order ((0, 2), {}) is of dimension smaller or equal to 2s − d1

1 − d1
2, due to the

orthogonality constraint on [β′0, β
′
1]′ given in Example 1.3.

Consider the matrices β, β1 and β2 as defined in Section 1.2. From a state space realization
(A,B, C) in canonical form corresponding to a VAR process it immediately follows that the columns
of β2 span the same space as the columns of the sub-block CE1,1. The same relation holds true for

β1 and the sub-block CE1,2. With respect to polynomial cointegration, Bauer and Wagner (2012)

show that the rank of CG1,2 determines the number of minimum degree polynomial cointegrating

relations, as discussed in Example 1.3. If CG1,2 = 0, then there exists no vector γ, such that {γ′yt}t∈Z
is integrated and cointegrated with {β′2∆0yt}t∈Z. In this case {β′yt}t∈Z is a stationary process.

The deterministic components included in the I(2) setting are typically a constant and a linear
trend. As in the MFI(1) case, identifiability problems occur, if we consider a non-zero initial state
x1,u: The solution to the state space equations for t > 0 and x1,u 6= 0 is given by:

yt =

t−1∑
j=1

CAj−1Bεt−j + CE1,1(xE1,1 + xG1,2(t− 1)) + CG1,2xG1,2 + CE1,2xE1,2+

C•At−1
• x1,• + Φdt + εt.

Hence, if Φdt = Φ0 + Φ1t, the output equation contains the terms CE1,1xE1,1 + CG1,2xG1,2 + CE1,2xE1,2 −
CE1,1xG1,2 + Φ0 and (CE1,1xG1,2 + Φ1)t. Again, this implies non-identifiability, which is resolved by
assuming x1,u = 0, compare Remark 1.6.
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Testing Hypotheses on the State Space Unit Root Structure

To simplify notation we use

M(d1
1, d

1
2) :=


M(((0, d1

1, d
1
2)), n− d1

1 − d1
2) if d1

1 > 0,

M(((0, d1
2)), n− d1

2) if d1
1 = 0, d1

2 > 0,

M•,n if d1
1 = d1

2 = 0,

with n ≥ d1
1 + d1

2. Here M(d1
1, d

1
2) for d1

1 + d1
2 > 0 denotes the closure of the set of transfer

functions of order n that possess a state space unit root structure of either ΩS = ((0, d1
1, d

1
2)) or

ΩS = ((0, d1
2)) in case of d1

1 = 0, while M(0, 0) denotes the closure of the set of all stable transfer
functions of order n.

Considering the relations between the different sets of transfer functions given in Corollary 1.4
shows that the following relations hold (assuming s ≥ 4; the columns are arranged to include
transfer functions with the same dimension of Au):

M(0, 0) ⊃ M(0, 1) ⊃ M(1, 0)
∪

M(0, 2) ⊃ M(1, 1) ⊃ M(2, 0)
∪ ∪

M(0, 3) ⊃ M(1, 2)
∪

M(0, 4)

Note that M(d1
1, d

1
2) corresponds to Hs−d1

2,d
1
2−d1

1
= Hr,r1 in Johansen (1995). Therefore, the rela-

tionships between the subsets match the ones in Johansen (1995, Table 9.1) and the ones found
by Jensen (2013). The latter type of inclusions appear for instance for M(0, 2), containing transfer
functions corresponding to I(1) processes, which is a subset of the set M(1, 0) of transfer functions
corresponding to I(2) processes.

The same remarks as in the MFI(1) case also apply in the I(2) case: When testing for H0 :
ΩS = ((0, d1

1,0, d
1
2,0)), all attainable state space unit root structures A(((0, d1

1,0, d
1
2,0))) have to be

included in the null hypothesis.

Testing Hypotheses on CIVs and PCIVs

Johansen (2006) discusses several types of hypotheses on the cointegrating spaces of different
orders. These deal with properties of β, joint properties of [β, β1] or the occurrence of non-trivial
polynomial cointegrating relations.

We commence with hypotheses of the form H0 : β = Kϕ and H ′0 : β = [b, ϕ] just as in the
MFI(1) case at unit root one, since hypotheses on β correspond to hypotheses on its orthocom-
plement spanned by [CE1,1, CE1,2] in the VARMA framework:

Hypotheses of the form H0 : β = Kϕ,K ∈ Rs×t, ϕ ∈ Rt×r imply ϕ′K ′[CE1,1, CE1,2] = 0. W.l.o.g.
let K ∈ Os,t and K⊥ ∈ Os,s−t. As in the parameterization under H0 in the MFI(1) case at unit
root one, compare (1.15), use the mapping

[CE,r1,1 , C
E,r
1,2 ](θ̌L,θR) :=

[
K · ŘL(θ̌L)′

[
It−r

0r×(t−r)

]
, K⊥

]
·RR(θR),

to derive a parameterization of the set of feasible matrices [CE1,1, CE1,2], i. e., a joint parameterization

of both sets of matrices CE1,1 and CE1,2, where [CE1,1, CE1,2] ∈ Os,s−r.
Hypotheses of the form H ′0 : β = [b, ϕ], b ∈ Rs×t, ϕ ∈ Rs×(r−t), 0 < t ≤ r are equivalent

to b′[CE1,1, CE1,2] = 0. Assume w.l.o.g. b ∈ Os,t and parameterize the set of feasible matrices CE1,1
using Os,d1

1
(b) as defined in (1.13) and the set of feasible matrices CE1,2 using Os,d1

2−d1
1
([b, CE1,1]).

Alternatively, parameterize the set of feasible matrices jointly as elements [CE1,1, CE1,2] ∈ Os,s−r(b).

43



44

Applications using the VECM framework allow for testing hypotheses on [β, β1]. In the VARMA
framework, these correspond to hypotheses on the orthogonal complement of [β, β1], i. e., CE1,1.
Implementation of different types of hypotheses on [β, β1] proceeds as for similar hypotheses on β
in the MFI(1) case at unit root one, replacing [CE1,1, CE1,2] by CE1,1.

The hypothesis of no minimum degree polynomial cointegrating relations implies the restriction
CG1,2 = 0, compare Example 1.3. Therefore, we can test all hypotheses considered in Johansen (2006)
also in our more general setting.

Testing Hypotheses on the Adjustment Coefficients

Hypotheses on α and ξ as defined in (1.6) and (1.7) correspond to hypotheses on the spaces
spanned by the rows of B1,2,1 and B1,2,2. For VAR processes integrated of order two, the row space
of B1,2,1 is equal to the orthogonal complement of the column space of [α, α⊥ξ], while the row
space of B1,2 := [B′1,2,1,B′1,2,2]′ is equal to the orthogonal complement of the column space of α.
The restrictions corresponding to hypotheses on α and ξ can be implemented analogously to the
restrictions corresponding to hypotheses on α1 in Section 1.5.1, reversing the roles of the relevant
sub-blocks in Bu and Cu accordingly.

Restrictions on the Deterministic Components

The I(2) case is, with respect to the modeling of deterministic components, less well studied than
the MFI(1) case. In most theory papers they are simply left out, with the notable exception
Rahbek, Kongsted and Jorgensen (1999), dealing with the inclusion of a constant term in the I(2)-
VECM representation. The main reason for this appears to be the way deterministic components
in the defining vector error correction representation translate into deterministic components in
the corresponding solution process. An unrestricted constant in the VECM for I(2) processes leads
to a linear trend in {β′1yt}t∈Z and a quadratic trend in {β′2yt}t∈Z, while an unrestricted linear trend
results in quadratic and cubic trends in the respective directions. Already in the I(1) case discussed
above five different cases – with respect to integration and asymptotic behavior of estimators and
tests – need to be considered separately. An all encompassing discussion of the restrictions on the
coefficients of a constant and a linear trend in the I(2) case requires the specification of even more
cases. As an alternative approach in the VECM framework, deterministic components could be
dealt with by replacing yt with yt−Φdt in the VECM equation. This has recently been considered
in Johansen and Nielsen (2018) and is analogous to our approach in the state space framework.

As before, in the MFI(1) or I(1) case, the analysis of (the impact of) deterministic components is
straightforward in the state space framework, which effectively stems from their additive inclusion
in the Granger-type representation, compare (1.9). Choose, e. g., Φdt = Φ0 + Φ1t, as in the I(1)
case. In analogy to Section 1.5.1, linear restrictions of deterministic components in relation to the
static and polynomial cointegrating spaces can be embedded in a parameterization. Focusing on
Φ0, e. g., this is achieved by

Φ0 = [CE1,1, CE1,2]φ0 + C̃1,2φ̃0 + C⊥φ̌0,

where the columns of C̃1,2 are a basis for the column space of CG1,2, which does not necessarily
have full column rank, and the columns of C⊥ span the orthocomplement of the column space of
[CE1,1, CE1,2, C̃1,2]. The matrix Φ1 can be decomposed analogously. The corresponding parametrization
then allows to consider different restricted versions of deterministic components and to study the
asymptotic behavior of estimators and tests for these cases.

1.6 Summary and Conclusions

Vector autoregressive moving average (VARMA) processes, which can be cast equivalently in the
state space framework, may be useful for empirical analysis compared to the more restrictive class
of vector autoregressive (VAR) processes for a variety of reasons. These include invariance with
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respect to marginalization and aggregation, parsimony as well as the fact that the log-linearized
solutions to DSGE models are typically VARMA processes rather than VAR processes. To realize
the potential of these advantages necessitates, in our view, to develop cointegration analysis for
VARMA processes to a similar extent as it is developed for VAR processes. The necessary first
steps of this research agenda are to develop a set of structure theoretical results that allow to
subsequently develop statistical inference procedures. Bauer and Wagner (2012) provide the very
first step of this agenda by providing a canonical form for unit root processes in the state space
framework, which is shown in that paper to be very convenient for cointegration analysis.

Based on the earlier canonical form paper this paper derives a state space model parameteri-
zation for VARMA processes with unit roots using the state space framework. The canonical form
and a fortiori the parameterization based upon it are constructed to facilitate the investigation
of the unit root and (static and polynomial) cointegration properties of the considered process.
Furthermore, the paper shows that the framework allows to test a large variety of hypotheses on
cointegrating ranks and spaces, clearly a key aspect for the usefulness of any method to analyze
cointegration. In addition to providing general results, throughout the paper all results are deve-
loped for or discussed in detail for the multiple frequency I(1) and I(2) cases, which cover the vast
majority of applications.

Given the fact that, as shown in Hazewinkel and Kalman (1976), VARMA unit root processes
cannot be continuously parameterized, the set of all unit root processes (as defined in this paper)
is partitioned according to a multi-index Γ that includes the state space unit root structure. The
parameterization is shown to be a diffeomorphism on the interior of the considered sets. The topo-
logical relationships between the sets forming the partitioning of all transfer functions considered
are studied in great detail for three reasons: First, pseudo maximum likelihood estimation effec-
tively amounts to maximizing the pseudo likelihood function over the closures of sets of transfer
functions, MΓ in our notation. Second, related to the first item, the relations between subsets
of MΓ have to be understood in detail as knowledge concerning these relations is required for
developing (sequential) pseudo likelihood-ratio tests for the numbers of stochastic trends or cy-
cles. Third, of particular importance for the implementation of, e. g., pseudo maximum likelihood
estimators, we discuss the existence of generic pieces. In this respect we derive two results: First,
for correctly specified state space unit root structure and system order of the stable subsystem –
and thus correctly specified system order – we explicitly describe generic indices Γg(ΩS , n•) such
that MΓg(ΩS ,n•) is open and dense in the set of all transfer functions with state space unit root
structure ΩS and system order of the stable subsystem n•. This result forms the basis for establis-
hing consistent estimators of the transfer functions – and via continuity of the parameterization –
of the parameter estimators when the state space unit root structure and system order are known.
Second, in case only an upper bound on the system order is known (or specified), we show the
existence of a generic multi-index Γα•,g(n) for which the set of corresponding transfer functions

MΓα•,g(n)
is open and dense in the set Mn of all non-explosive transfer functions whose order (or

McMillan degree) is bounded by n. This result is the basis for consistent estimation (on an open
and dense subset) when only an upper bound of the system order is known. In turn this estimator
is the starting point for determining ΩS , utilizing the subset relationships alluded to above in
the second point. For the MFI(1) and I(2) cases we show in detail that similar subset relations
(concerning cointegrating ranks) as in the cointegrated VAR MFI(1) and I(2) cases hold, which
suggests constructing similar sequential test procedures for determining the cointegrating ranks
as in the VAR cointegration literature.

Section 1.5 is devoted to a detailed discussion of testing hypotheses on the cointegrating spaces,
again for both the MFI(1) and the I(2) case. In this section particular emphasis is put on modeling
deterministic components. The discussion details how all usually formulated and tested hypotheses
concerning (static and polynomial) cointegrating vectors, potentially in combination with (un-
)restricted deterministic components, in the VAR framework can also be investigated in the state
space framework.

Altogether, the paper sets the stage to develop pseudo maximum likelihood estimators, inves-
tigate their asymptotic properties (consistency and limiting distributions) and tests based upon
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them for determining cointegrating ranks that allow to perform cointegration analysis for coin-
tegrated VARMA processes. The detailed discussion of the MFI(1) and I(2) cases benefits the
development of statistical theory dealing with these cases undertaken in a series of companion
papers.
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Pseudo Maximum Likelihood
Parameter Estimation for
Multiple Frequency I(1)
Processes: A State Space
Approach

2.1 Introduction

Time series in many different scientific disciplines show trending behavior and additionally seaso-
nality that is not adequately modeled using deterministic terms such as sinus and cosinus terms
of different frequencies. Often such time series are analyzed jointly as they show co-trending of
different sort at some or all frequencies.
The predominant approach to modeling such multivariate time series is the vector autoregressive
(VAR) framework of Johansen and coworkers, see, e. g., Johansen and Schaumburg (1999) or Jo-
hansen (1995). The VAR framework uses the vector error correction (VECM) representation for
estimation and inference which is well studied for (seasonally) integrated processes.
It is well known that the more flexible vector autoregressive moving average (VARMA) model
is better suited than the VAR framework for modeling multivariate time series for a number of
reasons: First, VARMA processes are closed under marginalization such that the vector of a subset
of variables of an VARMA process also is a VARMA process, whereas subsets of VAR processes
also are VARMA processes. Second, temporally or spatially aggregating VARMA processes again
leads to a VARMA process. Third, the solutions to dynamic stochastic general equilibrium models,
that are commonly used in economics, are VARMA rather than VAR processes. And finally, the
VARMA framework which in a certain sense is equivalent to the state space framework, arguably
is more parsimonious for high dimensional time series than the VAR framework.
Therefore, this paper deals with the estimation of VARMA models for seasonally integrated pro-
cesses in the state space framework. Recently Bauer and Wagner (2012) provided a canonical
form for such models in state space representation and Bauer, Matuschek, de Matos Ribeiro and
Wagner (2020) discuss a specific parameterization for such models.
While the literature on estimation and inference for (seasonally) integrated processes for the VAR
framework is well developed, the same is not true for the VARMA framework. Early exceptions
are Aoki (1990) and Aoki and Havenner (1997) who focus on processes integrated at frequency 0
(that is, showing a unit root at z = 1) but not at other seasonal frequencies. The same is true for
Yap and Reinsel (1995) who provide estimation algorithms and asymptotic distributions for the
corresponding estimates for I(1) VARMA processes. Another contribution in this respect is given
by Ribarits and Hanzon (2014) who make extensive use of a VECM representation for state space
models. Lütkepohl and Claessen (1997) and Poskitt (2006) provide similar developments for the
VARMA framework based on echelon forms.
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For seasonally integrated processes theory almost exclusively focuses on VAR processes: Johansen
and Schaumburg (1999) extend the VECM representation from the I(1) to the seasonally inte-
grated case of order one (in the following called multiple frequency I(1), see Definition 2.1 for an
explicit definition). Cubadda (2001) and Cubadda and Omtzigt (2005) further develop the esti-
mation algorithms as well as the theory. Further results for more general processes for the VAR
case can be found in Lee (1992) and Gregoir (1999).
In the VARMA case Bauer and Buschmeier (2016) discuss estimation for MFI(1) processes using
so called subspace algorithms. They show that these algorithms can be used under the assumption
of known state space order to obtain consistent estimators for the system for stationary as well
as seasonally integrated processes, but do not provide results on the limiting distribution. These
estimators thus can serve as consistent initial guesses for subsequent pseudo maximum likelihood
estimation which numerically can be performed using the parameterization provided in Bauer
et al. (2020).
Based on these preliminary results this paper discusses the asymptotic properties of pseudo maxi-
mum likelihood (PML) estimators obtained by maximizing the Gaussian pseudo likelihood func-
tion. In particular the contributions of the paper are:

(i) We discuss in depth two different versions of the PML estimator depending on the treat-
ment of initial values. Taking initial values equal to zero leads to so called prediction error
estimation. Alternatively, initial values corresponding to the stationary distributions for the
stationary part of the state can be used. We show that the two different versions are related
but different.

(ii) We formulate sufficient assumptions for the consistency of the estimators. This is done in
a coordinate-free fashion, drawing heavily from Hannan and Deistler (1988, Chapter 4).
Hereby, the pseudo likelihood function is assumed to be maximized over a set of transfer
functions MΓ such that the data generating transfer function k0 is inside the closure MΓ

of this set. Here MΓ denotes the set of all transfer functions with multi-index Γ, defined in
Bauer et al. (2020), see also the explanation above Assumption 2.1 below. We show that
the corresponding estimator in this situation is consistent without requiring compactness of
the set MΓ or the corresponding parameter set. The restriction k0 ∈ MΓ requires that the
state space order is not underestimated. But it does not impose any assumption of correctly
specified integration or cointegration properties such as the cointegrating rank.

(iii) We derive the asymptotic distribution of the estimated parameter vector in the situati-
on of correct specification of the multi-index Γ. As usual, it is shown that all parameters
corresponding to cointegrating spaces are estimated super-consistently with mixed normal
distributions, while the remaining parameters corresponding, e. g., to short term dynamics
are asymptotically normally distributed with the standard rate square root sample size. Our
results cover many different cases with respect to the in- or exclusion of deterministic terms.

(iv) We demonstrate in a simulation study that our approach compares favorably to the sub-
space estimators of Bauer and Buschmeier (2016) as well as VAR approximations in some
situations. The superiority in our simulations increases – as expected – with zeros tending
to the unit circle.

Consequently, the paper clarifies the asymptotic properties of PML estimators for general
MFI(1) processes. Based on the results a number of specification tests can be performed with
more results in this respect being derived in the companion paper Matuschek et al. (2020).

This paper is structured as follows. In Section 2.2 we describe the data generating processes
considered in this paper and the parameter space. In Section 2.3 we show the consistency of the
pseudo maximum likelihood estimator and derive the asymptotic distribution of the parameters.
In Section 2.4 we compare the estimation quality of the cointegrating space and the prediction
performance of the pseudo maximum likelihood, the Johansen Schaumburg, cf. Johansen and
Schaumburg (1999), and the CCA subspace algorithm, cf. Bauer and Buschmeier (2016), in a
small simulation study. Section 2.5 summarizes and concludes the paper. All proofs are relegated
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to the appendix.
Notation in this paper is as follows: Ip denotes the p-dimensional identity matrix, 0m×n the m
times n zero matrix. For a square matrix X we denote the spectral radius (i. e., the maximum of
the modulus of its eigenvalues) by λ|max|(X). We denote the smallest eigenvalue of a symmetric
matrix X by λmin(X). For a m× n matrix X with n < m of full rank X⊥ denotes a m× (m− n)
matrix of full rank such that X ′X⊥ = 0n×(m−n) and X ′⊥X⊥ = Im−n. L denotes the backshift
operator such that L({yt}t∈Z) = {yt−1}t∈Z for a process {yt}t∈Z. The Kronecker delta δi,j is one
if i = j and zero if i 6= j. For two matrices A ∈ Cm×n and B ∈ Ck×l, A⊗B ∈ C(mk)×(nl) denotes
their Kronecker product. For c ∈ C, R(c) denotes its real part and I(c) its imaginary part. For
a matrix or vector X its complex conjugate is denoted by X, its complex conjugate transpose by
X ′. For a set Θ, Θ̄ denotes the closure and Θc denotes the complement (within a suitable ambient

space). Convergence in distribution is denoted by
d→. For x ∈ Rn and r ∈ R, B(x, r) denotes

the open ball with center x and radius r. For finite sequences {at}t=1,...,T , {bt}t=1,...,T , we define

〈at, bt〉 := T−1
∑T
t=1 atb

′
t analogously to Johansen and Nielsen (2018).

2.2 Setup and Assumptions

This paper deals with the same class of VARMA processes {yt}t∈Z, yt ∈ Rs as discussed in Bauer
and Wagner (2012, p. 1316-1317): We refer to a stochastic process {yt}t∈Z as a VARMA process,
if there exist integers p, q ≥ 0 and matrices Aj ∈ Rs×s , j = 1, . . . , p and Bj ∈ Rs×s, j = 1, . . . , q,
where Ap 6= 0, Bq 6= 0, and a real-valued white noise process {εt}t∈Z, with E(εtε

′
t) = Σ > 0

(detailed assumptions are stated below), such that17

yt +A1yt−1 +A2yt−2 + · · ·+Apyt−p = εt +B1εt−1 + · · ·+Bqεt−q, t ∈ Z. (2.1)

Defining the matrix polynomials a(z) := Is +A1z + · · ·+Apz
p and b(z) := Is +B1z + · · ·+Bqz

q

where z ∈ C, the pair (a(z), b(z)) is called a VARMA system corresponding to the stochastic
process {yt}t∈Z. We define the difference operator at frequency 0 ≤ ω ≤ π as

∆ω(L) :=

 1− L, ω = 0
1− 2cos(ω)L+ L2, ω ∈ (0, π)
1 + L, ω = π.

For a set of frequencies Ω := {ω1, . . . , ωl}, we denote zk := eiωk for k = 1, . . . , l and ∆Ω :=∏l
k=1 ∆ωk(L). We are now ready to define MFI(1) processes:

Definition 2.1 A stochastic process {yt}t∈Z is a multiple frequency I(1) process (MFI(1) process)
with unit root frequencies Ω = {ω1, . . . , ωl}, 0 ≤ ω1 < ω2 < · · · < ωl ≤ π, if there exists a
deterministic process18 {dt}t∈Z, dt ∈ Rs such that

∆Ω(L)(yt − dt) = vt, t ∈ Z,

where {vt}t∈Z is the stationary solution of a VARMA system (a(z), b(z)) fulfilling det(a(z)) 6= 0
for |z| ≤ 1, det(b(z)) 6= 0 for all |z| < 1 and b(zk) 6= 0 for k = 1, . . . , l.

Remark 2.1 This definition of MFI(1) processes differs slightly from the definition in Bauer and
Wagner (2012), since we allow the presence of a general deterministic process {dt}t∈Z, where
Bauer and Wagner (2012) only allow for processes such that ∆Ωdt = 0. This is done to account
for a linear trend term that is often included in empirical modeling.
Second, the symbol Ω in this paper is used for the set of frequencies and not for the unit root
structure. In Bauer and Wagner (2012) for an MFI(1) process the unit root structure is denoted
as ((ω1, 1), ..., (ωl, 1)). Since in this paper we only deal with MFI(1) processes, the simpler notation
of only listing the unit root frequencies suffices.

17Note that contrary to definitions in the literature we here do not assume any stability condition. Thus, not all
VARMA processes are stationary in our setting.

18Here and below a process {dt}t∈Z is called deterministic, if dt = E(dt).
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Similar as in Bauer and Wagner (2012, Theorem 2), it can be shown that every MFI(1) process
{yt}t∈Z has a unique state space representation of the form

yt =
[
Cu C•

]︸ ︷︷ ︸
C

[
xt,u
xt,•

]
+ dt + ht + εt (2.2)

[
xt+1,u

xt+1,•

]
=

[
Au 0
0 A•

]
︸ ︷︷ ︸

A

[
xt,u
xt,•

]
+

[
Bu
B•

]
︸ ︷︷ ︸
B

εt

[
x1,u

x1,•

]
=

[
0∑∞
j=0A

j
•B•ε−j

]
where A ∈ Rn×n, B ∈ Rn×s, C ∈ Rs×n, {dt}t∈Z is deterministic and {ht}t∈Z fulfills ∆Ω(L)ht = 0
for all t ∈ Z. Additionally,

• all eigenvalues of Au are simple (i. e., their algebraic and geometric multiplicity coincide)
and have unit modulus;

• λ|max|(A•) < 1 and λ|max|(A) ≤ 1 for A := A− BC;

• the state space system (A, B, C) is minimal, i. e., there is no alternative state space repre-
sentation of {yt}t∈Z with a smaller state dimension;

• the subsystem (Au, Bu, Cu) is of the form

Au = diag(A1, . . . ,Al), Bu =
[
B′1 . . . B′l

]′
, Cu =

[
C1 . . . Cl

]
,

where the blocks correspond to the unit root frequencies Ω of {yt}t∈Z with 0 ≤ ω1 < ω2 <
· · · < ωl ≤ π. If ωk ∈ {0, π} we have Ak := zkIck , Bk := Bk where Bk is positive upper
triangular (p.u.t.)19 and Ck := Ck where C ′kCk = Ick . If ωk /∈ {0, π} we have

Ak :=

[
cos(ωk)Ick − sin(ωk)Ick
sin(ωk)Ick cos(ωk)Ick

]
, Bk :=

[
Brk
Bik

]
, Ck := [ Crk Cik ],

where Bk := 1
2 (Brk − iBik) is p.u.t. and Ck := (Crk + iCik) is such that C ′kCk = Ick ;

• the state space representation of the (stable) subsystem (A•, B•, C•) is in echelon canonical
form.

For notational simplicity we assume throughout the paper ω1 = 0 and ωl = π. Further, we
will use the notation ∆n for the set of all triples of system matrices (A,B,C), A ∈ Rn×n, in the
canonical form, that is fulfilling all restrictions listed above.
This canonical form is associated to a multi-index Γ, whose properties are examined in Bauer et al.
(2020, Theorem 2). Γ determines

• the state space unit root structure ΩS = ((ω1, c1), ..., (ωl, cl)),

• the indices p ∈ Nc with c =
∑l
k=1 ckδk (where δk = 1 for k ∈ {1, l} and δk = 2 else) denoting

the dimension of Au, where pi denotes the column index of the entry of the i-th row of Bu
that is restricted to be a positive real,

• the Kronecker indices (see, e. g., Hannan and Deistler (1988, Chapter 2.4) for a precise
definition) α• of the stable subsystem.

19Here a matrix M = [mi,j ] ∈ Cr×s, r ≤ s, of full row rank is called positive upper triangular (p.u.t.), if there
exists indices 1 ≤ m1 < ... < mr ≤ s such that mi,j = 0 if j < mi,mi,mi ∈ R,mi,mi > 0 for i = 1, ..., r.
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Consequently, Γ also determines the system order n = c+n•, where A• ∈ Rn•×n• . Bauer et al.
(2020) show that the multi-index Γ is a property of the system such that the set of all systems of
order n where all eigenvalues of A are within the closed unit disc can be partitioned into sets ∆Γ.
That is, ∆n = ∪Γ∆Γ where ∆Γ ∩∆Γ̃ = ∅ for Γ 6= Γ̃. Conversely, every process {yt}t∈Z generated
by a state space system (2.2) such that (A,B, C) ∈ ∆Γ and λ|max|(A) ≤ 1 is an MFI(1) process
with unit roots determined by the eigenvalues of A. In this paper we only consider processes of
this form:

Assumption 2.1 The process {yt}t∈Z, yt ∈ Rs, is generated by a state space system (A◦,B◦, C◦) ∈
∆Γ corresponding to k◦(z) = Is + zC◦(In − zA◦)−1B◦ ∈ MΓ using (2.2) where x1,u = 0, x1,• =∑∞
j=0A

j
•B•ε−j where the errors {εt}t∈Z are a strictly stationary martingale difference sequence

satisfying:

• E(εt|Ft−1) = 0, where Ft−1 = σ(εt−1, εt−2, . . . ).

• E(εtε
′
t) = E(εtε

′
t|Ft−1) = Σ◦ > 0.

• E(|εt|4) <∞.

Furthermore, the deterministic process dt is given by

dt := d1 +

l−1∑
k=2

[
drk cos(ωk(t− 1)) + dik sin(ωk(t− 1))

]
+ dl(−1)t−1 (2.3)

+

m∑
k=l+1

[
drk cos(ωk(t− 1)) + dik sin(ωk(t− 1))

]
+ dm+1t

where d1, dl, dm+1 ∈ Rs, and drk, d
i
k ∈ Rs, for k = 2, . . . , l − 1 and k = l + 1, . . . ,m and where

ωl+1, . . . , ωm are frequencies, which are not unit root frequencies in Ω.
Finally, we assume that λ|max|(A◦) < 1 (strict minimum-phase condition).

The properties of processes generated according to Assumptions 2.1 are discussed in detail in
(Bauer and Wagner, 2012). Of particular importance for this paper is the concept of cointegration:

Definition 2.2 An s-dimensional MFI(1) process {yt}t∈Z with unit root frequencies Ω is called
cointegrated of order (Ω, Ω̃), where Ω̃  Ω, if there exists a vector β ∈ Rs, β 6= 0, such that
{β′yt}t∈Z has unit root frequencies Ω̃. In this case the vector β is called cointegrating vector (CIV)
of order (Ω, Ω̃).
An s-dimensional MFI(1) process {yt}t∈Z with unit root frequencies Ω is called polynomially coin-
tegrated of order (Ω, Ω̃), where Ω̃  Ω, if there exists a vector polynomial β(z) :=

∑q
m=0 βmz

m,
βm ∈ Rs, m = 0, . . . , q, βq 6= 0, for some integer 1 ≤ q <∞ such that

(i) β(L)′{yt}t∈Z has unit root frequencies Ω̃ ,

(ii) maxk=1,...,l(|β(zk)|δk) 6= 0 where δk = 1 if ωk /∈ Ω̃ and δk = 0 else.

In this case the vector polynomial β(z) is called polynomial cointegrating vector (PCIV) of order
(Ω, Ω̃).

Remark 2.2 Consider the analysis of PCIVs of order (Ω, Ω̃) with Ω̃ ⊆ Ω \ {ωk}. As discussed in
Bauer and Wagner (2012, Section 5), it is sufficient to consider CIVs if ωk ∈ {0, π} and PCIVs
of degree one else.
The decomposition yt =

∑l
k=1 Ckxt,k + C•xt,•+ dt + ht + εt with xt+1,k = Akxt,k +Bkεt following

from the block diagonality of A implies that for ωk ∈ {0, π} the vector 0 6= β ∈ Rs is a CIV if
and only if β′Ckxt,k is stationary, since the other terms do not contain processes integrated at
frequency ωk. This is the case if and only if β′Ck = 0, because as shown in Bauer and Wagner
(2012, Theorem 2) Ck has full column rank as a consequence of minimality and the state component
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process {xt,k}t∈Z is not cointegrated.

For ωk /∈ {0, π} the polynomial β(z) = β0 + β1z is a PCIV of order (Ω, Ω̃) if and only if condition
(ii) of Definition 2.2 is fulfilled and (β′0 + β′1L)Ckxt,k is stationary, since the other terms do not
contain processes integrated at frequency ωk. Since

(β′0 + β′1L)Ckxt,k = β′0CkBkεt−1 + (β′0CkAk + β′1Ck)xt−1,k,

β(z) is a PCIV if and only if [
β′0 β′1

] [CkAk
Ck

]
= 0

and β(zk) 6= 0.

The following lemma shows that the space of these PCIVs is isomorphic to the left kernel of the
complex matrix Ck.

Lemma 2.1 Let ωk /∈ {0, π} and let γ ∈ Cs be a vector satisfying γ 6= 0 and γ′Ck = 0. Then
β(z) = γ(1 − zkz) + γ(1 − zkz) is a (real valued) PCIV of order (Ω, Ω̃) with Ω̃ ⊆ Ω \ {ωk}.
Conversely, for any PCIV β(z) of polynomial degree 1 of order (Ω, Ω̃) with Ω̃ ⊆ Ω \ {ωk} we find
a vector γ ∈ Cs, γ 6= 0, such that β(z) = γ(1− zkz) + γ(1− zkz) and γ′Ck = 0.

Therefore, the space spanned by CIVs respectively PCIVs of polynomial degree one is linked to
the cointegration and polynomial cointegration properties of the process {yt}t∈Z. This motivates
the following definition linking the integer ck with cointegrating ranks rk:

Definition 2.3 The complex cointegrating space of the process {yt}t∈Z at frequency ωk is defined
as the orthogonal complement of the column space of Ck. The cointegrating rank rk at frequency
ωk is the dimension s− ck of the complex cointegrating space at ωk.

Note that the state space system (A,B, C) is related to the transfer function k(z) = Is + zC(In −
zA)−1B = Is +

∑∞
j=0 CAjBzj+1 ∈Mn. Here, Mn denotes the set of all rational transfer functions

of order20 n with poles inside the closed unit disc. Let MΓ denote the set of all transfer functions
within Mn that correspond to (A,B, C) ∈ ∆Γ. Bauer et al. (2020) show that Mn =

⋃
ΓMΓ.

The inverse transfer function is k−1(z) = Is − zC(In − zA)−1B, where A = A − BC. As in the
VAR framework the matrices Πj = k−1(zj) = αjβ

′
j ∈ Cs×s, αj , βj ∈ Cs×rj , play a big role in this

paper. It follows from the inversion that β′jCj = 0 for all j = 1, ..., l. Furthermore Π1,Πl ∈ Rs×s.
Thus, the complex cointegrating spaces are determined by the values of the transfer function at
the unit roots, as are the cointegrating ranks. If the matrix Πj = k−1(zj) is of full rank, then the
corresponding frequency ωj is not contained in Ω.
In this paper consistency is derived in a coordinate free fashion analogously to the results of Han-
nan and Deistler (1988, Section 2.4). For this we will consider the maximization of the pseudo
likelihood function over the product space MΓ⊗Σ⊗ΘD for appropriate Γ to be discussed below.
Here, Σ ⊂ Rs×s denotes the set of all s× s non-negative definite symmetric matrices. A parame-
terization can be obtained for example using σ ∈ Rs(s+1)/2 of vectorizations of the lower diagonal
part (including the diagonal) of the Cholesky factor. This set can be equipped with the Euclidean
topology.
The set ΘD contains the parameters for the deterministic terms. In this respect note that with
matrices of the form Aj we have:

CjAtjBjx = Cj
[
R(ztjBj)
I(ztjBj)

]
x = Cj

[
cos(ωjt)Brj − sin(ωjt)Bij
cos(ωjt)Bij + sin(ωjt)Brj

]
x = drj cos(ωjt) + dij sin(ωjt)

for appropriate vectors drj = Cjerj , dij = Cjeij ∈ Rs. Consequently, parts of the deterministic terms
could also originate from non-zero state components of x1,u. The results below will show that the

20The order of a transfer function is defined as the state dimension of a minimal state space representation of the
rational transfer function, see Hannan and Deistler (1988, Chapter 2).
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coefficients corresponding to these directions cannot be estimated consistently. Therefore, in the
estimation we will set these directions equal to zero and only estimate the orthogonal complement:
For j = 1, ..., l let drj + idij = [Cj , Cj,⊥][e′j , e

′
j,⊥]. Then, we will use ej = 0 and ej,⊥ ∈ Cs−cj . For

j = 1, l the vector ej,⊥ is real. Consequently, ΘD collects for j = 1, . . . , l the vectors ej,⊥ and for
j = l + 1, . . . ,m the real vectors drj , d

i
j . Also, this space is equipped with the Euclidean topology.

Finally, consider MΓ ⊂Mn. We equip this set with the pointwise topology Tpt.
21

For the multi-index Γ we will consider two different scenarios:

• Γ0(n) = ({}, (), αg,n) where αg,n refers to the generic echelon neighborhood for systems of
order n. This set contains all stable transfer functions of order n corresponding to the generic
Kronecker indices. Bauer et al. (2020, Theorem 4) show that MΓ0(n) = Mn. Thus, even if
all considered systems are stable, the closure contains all systems corresponding to unit root
processes and in particular all MFI(1) systems of order n. Here it is only assumed that the
true order n of the data generating system is known. In fact only n ≥ n0 is required below
such that k◦ ∈MΓ0(n).

• Γ: In this scenario we assume that the whole multi-index Γ is known and used in the esti-
mation.

For the results on the asymptotic distribution of the parameter values we will only use the second
scenario. In this situation of correctly specified multi-index Γ we use the parameterization intro-
duced in Bauer et al. (2020): Let ΘΓ ⊂ ΘC,E ×ΘB,f ×ΘB,p ×Θ• ⊂ Rd(Γ), such that a parameter
vector θ ∈ ΘΓ is composed of

• the parameter vector θC,E ∈ ΘC,E ⊂ Rnu collecting parameters for the block columns of
the unitary matrices Ck = Ck(θu), moreover θC,E = [ θ′C,L θ′C,D θ′C,R ]′ where θC,L =

[ θ′C,L,1 . . . θ′C,L,l ]′ contains the parameters determining the column space of Ck and

thus, the complex cointegrating space for each frequency ωk and θC,D = [ θ′C,D,2 . . . θ′C,D,l−1 ]′

and θC,R = [ θ′C,R,1 . . . θ′C,R,l ]′ describe the choice of the basis of the column space, see
Bauer et al. (2020, Lemmas 1 and 2) for details,22

• the parameter vector θB,f ∈ ΘB,f = CnB,f collecting the non-restricted entries in all Bk,

• the parameter vector θB,p ∈ ΘB,p = RnB,p+ collecting the positive real entries in all Bk
restricted due to the p.u.t. form,

• the parameter vector θ• ∈ Θ• ⊂ Rnsta collecting the free entries in the echelon canonical
form of the stable subsystem (A•, B•, C•) with Kronecker indices α•.

Then, the true parameter vector θ◦ will be assumed to be an inner point of ΘΓ. From Bauer
et al. (2020) it follows that k◦ always is an interior point of MΓ. Hence, θ◦ only is no interior point
of the parameter set, if it refers to a boundary in ΘC,E as all other components of the parameter
space are open sets (or points on the boundary of the strict minimum-phase condition such that
λ|max|(A) = 1). We will always assume that the true system is strictly minimum-phase such that
λ|max|(A◦) < 1). Clearly, the complement of this boundary constitutes an open and dense set such
that points in the interior occur generically. For all other points suitable reparameterizations can
be easily found. We will not deal with these issues here.

21A sequence of transfer functions kn =
∑∞
j=0Kj,nz

j converges in Tpt if and only if Kj,n → Kj,0 for some Kj,0
for j ∈ N0.

22In fact the parameterization is changed slightly: Ck(θk) = RL(θL,k)′[Ick , 0]′RR(θR,k) in the real case where
RL and RR are products of Givens rotations. While in Bauer et al. (2020) the matrix RR is built rowwise, in this
paper we change the ordering of the parameters and build the matrix columnwise. Clearly, this is a simple design
choice not changing any of the results in Bauer et al. (2020).
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2.3 Pseudo Maximum Likelihood Estimation

In this paper we will use the Gaussian likelihood function for estimation. This requires calculations
of the expectation and the variance for the stacked vector of observations. To this end, note that
for t ≥ 1 the equations in (2.2) can be solved for

yt =

t−1∑
j=1

CAj−1Bεt−j + C•At−1
• x1,• + dt + εt

= k(L)εt + C•At−1
• x1,• + dt

where – with slight abuse of notation – we set all processes to zero for t ≤ 0 for notational
convenience. Thus, e. g., k(L)εt =

∑t−1
i=0 Kiεt−i.

For the calculation of the pseudo likelihood function we will consider two different approaches that
are commonly used in the literature: The pseudo maximum likelihood approach (PML) uses the
stationary distribution of the stable part of the state. Accordingly we set x1,u = 0 and x1,• such
that E(x1,•) = 0 and Var(x1,•) = P•(θ, σ), such that P•(θ, σ) solves the Ljapunov equation

P• = A•(θ)P•A•(θ)′ + B•(θ)Σ(σ)B•(θ)′.

This can only be done when maximizing over MΓ and hence the dimension n• of the stable part is
known. Note that consequently, the covariances Cov(yt, yt−j) only depend on the system via the
transfer function k(z) and not on the system matrices (A,B,C) directly.
Alternatively, e. g., in the situation where the multi-index Γ is not considered to be known, the
prediction error method of estimation is used. In this approach state values at time t = 1 are
ignored and instead all of them are set equal to zero, that is x1,• = 0. Consequently, here P•(θ, σ) =
0. While this does not conform with the data generating process, the exponential decay At−1

• x1,•
implies that for the asymptotical analysis the error is negligible in our setting. Furthermore, in
terms of computations the approach is favorable since here instead of running the Kalman filter
only filtering with fixed system is needed.
In order to define the pseudo likelihood function we use YT := [ y′1 . . . y′T ]′ ∈ RTs for denoting
the stacked observations, DT (θD) ∈ RTs is equal to [ d1(θD)′ . . . dT (θD)′ ]′, where

dt(θD) = D(θD)st, st = [1, sin(ω2(t− 1)), cos(ω2(t− 1)), ..., cos(ωm(t− 1)), sin(ωm(t− 1)), t]′

denotes the deterministic terms corresponding to θD given in (2.3). Note that under our assump-
tions Eyt = dt and, moreover, that there exists a matrix S such that st = Sst−1. Further, let
ΓT (k(z),Σ) denote the variance matrix corresponding to YT − DT (θD), which according to the
model is given by

ΓT (k(z),Σ) = TT (k(z)) (IT ⊗ Σ) TT (k(z))′ +OT,•P•(θ, σ)O′T,•,

TT (k(z)) :=


K0 0 . . . 0

K1 K0
. . .

...
...

. . .
. . . 0

KT−1 . . . K1 K0

 ,
where Kj are the coefficients of the power series expansion of the transfer function k(z) =∑∞
j=0Kjz

j . The j− th block row of the observability matrix OT,• of the stable subsystem consists

of C•Aj−1
• .

Using this notation we obtain −2/T times the logarithm of the Gaussian pseudo likelihood function
as (up to a constant)

LT (k(z),Σ, θD;YT ) =

1

T

(
log det ΓT (k(z),Σ) + (YT −DT (θD))′ΓT (k(z),Σ)−1(YT −DT (θD))

)
. (2.4)
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The formulas for the prediction error (PE) approach can be significantly simplified: First, in this
case ΓT (k(z),Σ) = TT (k(z)) (IT ⊗ Σ) TT (k(z))′ such that

det(ΓT (k(z),Σ)) = det(TT (k(z)) (IT ⊗ Σ) TT (k(z))′) = det(TT (k(z)))2 det(Σ)T = det(Σ)T .

Second, noting that due to the block triangular structure TT (k(z))−1 = TT (k−1(z)) we define

εt(k(z), θD) := k−1(L)(yt − dt(θD)) =

t−1∑
j=0

Kj(yt−j − dt−j(θD)),

where Kj = −CAj−1B,A = A − BC, denote the power series coefficients of the inverse transfer

function k−1(z). Letting

T −1(k(z))(YT −DT (θD)) = ET (k(z), θD) = [ ε1(k(z), θD)′ . . . εT (k(z), θD)′ ]′ ∈ RTs,

we obtain in this case that −2/T times the logarithm of the Gaussian likelihood function simplifies
to

LPE,T (k(z),Σ, θD;YT ) = log det Σ + ET (k(z), θD)′ (IT ⊗ Σ)
−1 ET (k(z), θD)/T

= log det Σ +
1

T

T∑
t=1

εt(k(z), θD)′Σ−1εt(k(z), θD) (2.5)

We obtain the pseudo maximum likelihood estimate and the prediction error estimate respec-
tively by minimizing (2.4) over the set MΓ × Σ⊗ΘD:(

k̂(z), Σ̂, θ̂D

)
:= arg min

(k(z)∈MΓ,Σ∈Σ,θD∈ΘD)
LT (k(z),Σ, θD;YT ),(

k̃(z), Σ̃, θ̃D

)
:= arg min

(k(z)∈MΓ,Σ∈Σ,θD∈ΘD)
LPE,T (k(z),Σ, θD;YT ).

Then, using the coordinate free consistency proof in the stationary case of Hannan and Deistler
(1988, Section 4.2.), the following result can be shown, whose proof in connection with some useful
lemmas is given in Appendix B.2.1:

Theorem 2.1 Let {yt}t∈Z be a real valued MFI(1) process generated by a system of the form (2.2)
with dt of the form (2.3) and {εt}t∈Z fulfilling Assumption 2.1, where all frequencies ω1, . . . , ωl
are rational multiples of 2π.
Let k◦(z) ∈MΓ.

Then, the pseudo maximum likelihood estimator k̂(z) = Is +
∑∞
j=1 K̂jz

j converges in probability

to the true transfer function k◦(z) with rate T 1/2, i. e., T γ‖K̂j −Kj,◦‖ → 0 in probability for all
j ∈ N and all 0 < γ < 1/2. Furthermore,

T γ‖Π̂jCj,◦‖ → 0, j = 1, . . . , l

in probability for all 0 < γ < 1 where Π̂j := k̂−1(eiωj ).

For θ̂D the following results hold:

• T γ‖C ′1,◦,⊥(d̂m+1 − dm+1,◦)‖ → 0 in probability for all 0 < γ < 3/2.

• T γ‖C ′1,◦(d̂m+1 − dm+1,◦)‖ → 0 in probability for all 0 < γ < 1/2.

• T γ
[
‖C′1,◦,⊥(d̂1,◦ − d1,◦)‖+

∑l−1
k=2 ‖C

′
k,◦,⊥(d̂rk + id̂ik − drk,◦ − idik,◦)‖+ ‖(C′l,◦,⊥(d̂l,◦ − dl,◦)‖

]
→ 0 in

probability for all 0 < γ < 1/2.

• T γ‖d̂k − dk,◦‖ → 0 in probability for k = l + 1, . . . ,m and all 0 < γ < 1/2.
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The same holds for all prediction error estimators.

Remark 2.3 The restriction of the frequencies being rational multiples of 2π is not necessary.
However, it greatly simplifies the proof since, as will be seen in the appendix, the theorem is in this
case equivalent to the consistency of the pseudo maximum likelihood estimator in the I(1) case.
Since the restriction is fulfilled in all relevant cases like quarterly or monthly data, it is therefore
reasonable to use it.

Remark 2.4 Our result of convergence of the transfer function estimator in suitable sets of trans-
fer functions mirrors the coordinate free consistency theorem in the stationary case of Hannan and
Deistler (1988).

Remark 2.5 Inspecting the results with respect to the deterministic terms a number of facts stick
out: First, for the parameters corresponding to the linear trend term tdm+1 the directions in the
cointegrating space converge faster than 1/T as usual. In the directions of the common trends, ho-
wever, convergence is slower of order 1/

√
T roughly. This corresponds to the difference in the order

of growth between the linear trend term and the stochastic common trends. The same distinction
also holds for deterministic terms with unit root frequency: In the directions of the cointegrating
spaces convergence as in the stationary case occurs, in the direction of the common trends, ho-
wever, not even convergence holds. Here the non-identification with terms due to the initial state
manifests itself.
For all other frequencies the deterministic terms show the usual convergence speed in all directions.
For the rest of the paper thus we use the following notation:

θd,b :=
[
e′1,⊥ R(e2,⊥)′ . . . I(el−1,⊥)′ e′l,⊥

1
2 (drl+1)′ . . . 1

2 (dim)′
]′
,

θd :=
[
θd,b e′m+1 e′m+1,⊥

]′
,

such that θd ∈ Rnd where nd = (s− c1) +
∑l−1
k=2 2(s− ck) + (s− cl) + (m+ 1− l)s. By the above

construction there exists a matrix P(Cu) ∈ Rnd×s(2m−1) such that P(Cu,◦)θD = θd. It follows that

P(Cu,◦)θ̂D is a consistent estimator for θd,◦ := P(Cu,◦)θD,◦.

The theorem states that we achieve consistent estimation of the transfer function both with
the PML and the PE approach, if the data generating transfer function is contained in the closure
of set over which maximization is performed. Since MΓ is open in MΓ for each Γ, see Bauer et al.
(2020, Theorem 5), and since for given correctly specified Γ the parametrization is continuous on
a generic subset, see Bauer et al. (2020, Theorem 2), we obtain the following corollary:

Corollary 2.1 Let {yt}t∈Z be as in Theorem 2.1, where k◦ is in MΓ. Further, assume that k◦ is
a point of continuity of the parameterization θ = φΓ(ψΓ(k◦)).

Then, [ θ̂′ θ̂′d ]′, θ̂ = φΓ(ψΓ(k̂(z))), and [ θ̃′ θ̂′d ]′, θ̃ = φΓ(ψΓ(k̃(z))), converge in probability to

the true parameter vector [ θ′◦ θ′d,◦ ]′.

Therefore, in the case of a correctly specified multi-index (generically) we obtain consistent pa-
rameter estimators. In this case the true parameter vector is an interior point of the parameter
space and we can also develop the asymptotic distribution following standard asymptotic proce-
dures proceeding in two steps: The first step is the derivation of the asymptotic distribution of
the score vector and the second step is to derive convergence of the suitably normalized Hessian
of the log-likelihood function. The proof of the theorem is given in Appendix B.2.2:

Theorem 2.2 (Asymptotic Distribution) Let the assumptions of Theorem 2.1 hold. Additio-
nally, let [ θ′◦ θ′D,◦ ]′, be an interior point of ΘΓ⊗ΘD over which the pseudo likelihood function

is maximized such that θ̂ denotes the PMLE. Assume that the model for the deterministic terms
contains the deterministic terms included in the data generating process.
Split θ̂ = [ θ̂′u θ̂′st ]′ with θu := θC,L ∈ Rnu , and θst := [ θ′C,D θ′C,R θ′B,f θ′B,p θ′• ]′ and let
θd be partitioned as above. Then, the following asymptotic distribution holds for the components
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of θ:
(A)

√
T (θ̂st − θst,◦)

d→ N (0, Vst), Vst = [E∂aεt(θ◦)′Σ−1
◦ ∂bεt(θ◦)]

−1
a,b,

where ∂aεt(θ) denotes the derivative of εt(θ) with respect to the a-th component of θst.
(B) Reorder the remaining parameters θu = [θ′u,1, ..., θ

′
u,l]
′ where θu,k corresponds to Ck(θ) and θd

as τ = [τ ′1, τ
′
2, ..., τ

′
m]′, where τk corresponds to all parameters for unit root (or pair of complex unit

roots) zk. That is,

τ ′1 = [θ′u,1, e
′
1,⊥, e

′
m+1, e

′
m+1,⊥], ..., τ ′l = [θ′u,l, e

′
1,⊥], τ ′l+1 = 0.5[(drl+1)′, (dil+1)′], ..., τ ′m = 0.5[(drm)′, (dim)′].

Here it is understood that only parameters included in the model occur. Further, let DT,k =
diag(TIuk , T

1/2Ifk , T
3/2Igk) denote the corresponding diagonal scaling matrix where uk denotes

the dimension of θu,k, fk the dimension of the parameters for the constant and seasonal dummies
and gk is non-zero only for k = 1 where g1 = s− c1 such that it denotes the dimension of em+1,⊥.
Then, the vectors τ̂k are asymptotically uncorrelated. Their asymptotic distribution is given by:

DT,k(τ̂k − τk,◦)
d→ H−1

k vk.

Here Hk denotes the limit of the suitably normalized entries of the Hessian obtained as the limit
to T−h(a,b)

∑T
t=1 ∂aεt(θ◦)

′Σ−1
◦ ∂bεt(θ◦) and vk denotes the limit to T−g(a,b)

∑
t=1 T∂aεt(θ◦)

′Σ−1
◦ εt,

where the normalization factors h(a, b) and g(a, b) depend on the entries a and b.
(C) For a corresponding to an entry in θu,k we have

∂aεt(θ◦) = k−1(L, θ◦)(∂aCk)xt,k(θ◦), xk,t+1(θ◦) = zkxk,t(θ◦) +Bk,◦εt

for zk = ±1,

∂aεt(θ◦) = −2R{k−1(L, θ◦)(∂aCk)xt,k(θ◦)}, xk,t+1(θ◦) = zkxk,t(θ◦) +Bk,◦εt

for zk 6= ±1 and else

∂aεt(θ◦) = −k−1(L, θ◦)(−∂aD(θd,◦)st(θ)).

(D) Let Wk(u) denote a (real or complex) Brownian motion with variance Σ◦. Then, Hk,∗ depends
on Bk,◦Wk(u), while vk,∗ depends on Bk,◦Wk(u) and α′k,◦Σ

−1
◦ Wk(u). These two Brownian motions

are independent.
Moreover, DT,k(τ̂k−τk,◦) is mixed Gaussian distributed with conditional (on Bk,◦Wk(u)) variance
H−1
k .

(E) For k = 1 we obtain T (θ̂u,1 − θu,1,◦)
d→ H−1

1,∗v1,∗ where

H1,∗,a,b = tr
[
(∂aC

′
1)β′1,◦α

′
1,◦Σ

−1
◦ α1,◦β

′
1,◦(∂bC1)Z1,∗

]
, Z1,∗ = B1,◦

∫ 1

0

W1,∗(u)W1,∗(u)′B′1,◦,

v1,∗,a = tr
[
(∂aC

′
1)β′1,◦α

′
1,◦Σ

−1
◦ X1,∗

]
, X1,∗ =

∫ 1

0

dW1(u)W1,∗(u)′B′1,◦

where W1,∗(u) depends on the specification of the deterministic terms: W1,∗(u) = W1(u), if no

constant or linear trend is included in the model, W1,∗(u) = W1(u) −
∫ 1

0
W1(v)dv, if a constant,

but no linear trend is included and

W1,∗(u) = W1(u)−
∫ 1

0

W1(v)dv − 12(u− 1/0.5)

∫ 1

0

(v − 0.5)W1(v)dv,

if both a linear trend and a constant are included.
(F) The prediction error estimator shows the same asymptotic distribution.
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Remark 2.6 The results of Theorem 2.2 can easily be extended to the case of seasonal trends
corresponding to the unit root frequencies. Since these trends are not relevant in most applications,
this is omitted.

In the special case of an I(1) process with no deterministic terms (both in the data generating
process (DGP) and in the model) with only one common trend, i. e., c1 = 1, and hence s − 1
cointegrating relations β normalized such that c′β = Is−1 Johansen (1995) obtains in the Johansen
setting of a finite order VAR model for estimators β̃, c′β̃ = Is−1 the asymptotic distribution
(compare Theorem 13.3):

T (β̃ − β)
d→ (I − βc′)C1,◦

(
B1,◦

∫ 1

0

W (u)W (u)′duB′1,◦
)−1 ∫ 1

0

B1,◦W (u)dW (u)′Σ−1
◦ α(α′Σ−1

◦ α)−1.

Note that β̂′Ĉ1 = 0 = β′C1,◦ and thus

0 = T (β̂′Ĉ1 − β′C1,◦) = T (β̂ − β)′C1,◦ + Tβ′(Ĉ1 − C1,◦) + oP (1).

Therefore, the PML estimate of the cointegrating space is in this case closely related to the estimate
of the vector C1,◦. Moreover, if c = β it follows that

T (C1(θ̂)− C1,◦)
d→ −β(α′Σ−1

◦ α)−1α′Σ−1
◦

∫ 1

0

W (u)dW (u)′B′1,◦
(
B1,◦

∫ 1

0

W (u)W (u)′duB′1,◦
)−1

is sufficient for equality of the asymptotic distributions.
For c1 = 1 the vectors θC,D and θC,R do not occur. Therefore, all parameters corresponding to
the C1 are contained in θC,L ∈ Rs−1 in this case. We obtain for a derivative of the residuals with
respect to an entry in C1

∂εt(θ◦, θD,◦) = ∂(k−1(L; θ))(yt − dt(θD,◦)) = (∂Π1(θ◦))(C1,◦xt,1) + vt,

where vt collects terms dominated by xt,1. As Π1(θ)C1(θ) = 0, we obtain (∂Π1)C1,◦+ Π1,◦∂C1 = 0.
Thus, the dominant term equals

−Π1,◦(∂C1)xt,1 = −αβ′(∂C1)xt,1 = −αβ′βVCxt,1,

as the derivatives of C1 lie in the orthocomplement of C1, denoted as β and normalized such that
β′β = Is−1. The derivative with respect to the j-th parameter for C1 then has the representation
βVC,j , where thus VC ∈ R(s−1)×(s−1) is a regular matrix.
It follows that T−1 times the diagonal block of the Hessian corresponding to the parameters for
C1 contains as its (i, j)-th entry

tr
[
Σ−1
◦ αVC,iT

−1 〈xt,1, xt,1〉V ′C,jα′
]
,

where the notation 〈at, bt〉 = T−1
∑T
t=1 atb

′
t is used.

Theorem 2.2 shows that T−1 〈xt,1, xt,1〉
d→ Z1,? =

∫ 1

0
B1,◦W (u)(B1,◦W (u))′du for a Brownian

motion W with variance Σ0. The block of the appropriately normalized Hessian of the scaled
negative log-likelihood function then converges to Z1,?V

′
Cα
′Σ−1
◦ αVC .

The derivative of the scaled negative log-likelihood function with respect to the i-th parameter to
C1 is of the form

−tr
[
Σ−1
◦ αVC,i 〈xt,1, εt〉

] d→ −tr
[
Σ−1
◦ αVC,iv

′
1,?

]
= −V ′C,iα′Σ−1

◦ v1,?, v1,? =

∫ 1

0

B1,◦W (u)dW (u)′.

Thus, we obtain

T (θ̂C,L − θC,L,◦)
d→

− (V ′Cα
′Σ−1
◦ αVC)−1V ′Cα

′Σ−1
◦ v1,?Z

−1
1,? =

− V −1
C (α′Σ−1

◦ α)−1α′Σ−1
◦ v1,?Z

−1
1,? =

− V −1
C (α′Σ−1

◦ α)−1α′Σ−1
◦

∫ 1

0

W (u)dW (u)′B′1,◦
(
B1,◦

∫ 1

0

W (u)W (u)′duB′1,◦
)−1

.
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Then, the result follows from

T (C1(θ̂)− C1,◦) = TβVC(θ̂C,L − θC,L,◦) + oP (1).

This has two implications: First, the estimation of the cointegrating space in the VAR framework
and in the VARMA framework achieves the same asymptotic distribution in this case. Therefore,
we do not pay a price asymptotically in terms of accuracy by using the larger VARMA model in
case the true data generating process is an VAR(p). Secondly, in the VARMA context the long
VAR framework also asymptotically achieves the same distribution. Therefore, we do not gain
asymptotically from using the correct model class in terms of the estimation accuracy for the
cointegrating space. This insight is true not only in the specific case above but also in general
as is shown in the companion paper Matuschek et al. (2020). Furthermore, this is also visible in
the simulations in the next section. For the other parameters and prediction, however, using the
parsimonious true model is beneficial, as is also visible in the simulations to follow.
The derivation of the asymptotic distribution allows to test hypotheses on the parameters with
tests similar to the Wald tests. The following corollary, which is proven in Appendix B.2.2, gives
the test statistics and asymptotic distribution for these tests :

Corollary 2.2 (Wald-type test) Let the assumptions of Theorem 2.2 hold.
Let Dθ

T := diag(T 1/2Inst , D
?
T ) with D?

T = diag(DT,1, . . . , DT,l) using the matrices DT,k defined in
Theorem 2.2, nst := n•+ nC,R + nC,D + nB,f + nB,p and nθ := nst + nu + nd. Consider p linearly
independent restrictions collected in H0 : Rθ = r, with R ∈ Rp×nθ of full row rank p, r ∈ Rp and
suppose that there exists a matrix DR

T such that

lim
T→∞

DR
TR(Dθ

T )−1 = R∞,

where R∞ ∈ Rp×nθ has full row rank p. Then, it holds that the Wald-type statistic

ŴR := (Rθ̂ − r)′(R(Ẑ)−1R′)−1(Rθ̂ − r), [Ẑ]ij = T · tr
[
Σ̂−1

〈
∂iεt(θ̂), ∂jεt(θ̂)

〉]
is asymptotically χ2

p distributed under the null hypothesis.

2.4 Simulation Results

In this section we compare the pseudo maximum likelihood estimator to the vector error correction
model (VECM) approach in an VAR setting of Johansen and Schaumburg (1999) and the CCA
subspace estimator of Bauer and Buschmeier (2016). The data generating processes used are of
the form

yt = Π1yt−1 + Π2yt−2 + Π3yt−3 + Π4yt−4 + εt + λεt−4

with

Π1 =

[
γ 0
0 0

]
, Π2 =

[
−0.4 0.4− γ

0 0

]
, Π3 =

[
−γ 0
0 0

]
,Π4 =

[
0.6− 0.1γ 0.4 + γ

0 1

]
and

εt ∼ i.i.d. N

(
0,

[
1 0.5

0.5 1

])
.

In the case λ = 0 the processes correspond to those used in Bauer and Buschmeier (2016) and are
similar to the ones used in Cubadda and Omtzigt (2005). For γ = 0.2 and λ = 0 as well as λ = 0.9
we generate samples of sizes T ∈ {100, 500} with initial values for the state set to zero. For the
simulations we make 5000 replications. All systems have unit root frequencies Ω = (0, π2 , π).
Each algorithm estimates the complex cointegrating space at unit root π

2 . We calculate the gap
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between the true and the estimated cointegrating space, where the gap dg(M,N) between to linear
subspaces M,N ∈ Cs is defined by

dg(M,N) = max

(
sup

x∈M,||x||=1

||(Is −Q)x||, sup
x∈N,||x||=1

||(Is − P )x||

)
,

where P denotes the orthogonal projection on M , Q the orthogonal projection on N and || · || the
Euclidean norm on Cs. Additionally, we make predictions with each algorithm with forecasting
horizon twelve, which corresponds in the case of quarterly data to a three years ahead prediction.
We compare the average (over the twelve prediction horizons) of the root mean squared error.
For the Johansen Schaumburg VECM procedure we minimize the AIC to choose the lag length k.
Since we have four unit roots, we have a lower bound of four for k such that k̂ = max{4, k̂AIC}.
For the CCA subspace algorithm we choose f = p = 2k̂AIC . To choose the system order n, we
minimize a singular value criterion, see Bauer (2001). The number of common cycles introduces
a lower bound n = 4, such that n̂ = max{4, n̂SV C}. Since the CCA subspace algorithm delivers
a stable system as an estimate, in order to obtain a state space system with the true state space
unit root structure we first estimate the matrices CECM

1 (corresponding to unit root z = 1), CECM
2

(corresponding to unit roots z = ±i) and CECM
3 (corresponding to z = −1) separately, using the

state space error correction model described Matuschek et al. (2020). This provides estimates for
the different cointegrating spaces. Next, we reestimate C by a regression in a linear regression
model

yt = Cx̂t + εt x̂t+1 = ACCAx̂t + BCCAyt

under the restrictions

(I − C(I −ACCA)−1BCCA)CECM

1 = 0

(I − iC(I − iACCA)−1BCCA)CECM

2 = 0

(I + C(I +ACCA)−1BCCA)CECM

3 = 0,

where x̂t is computed using (ACCA,BCCA, CCCA), which are the estimated system matrices from the
CCA subspace procedure. Denoting the reestimated matrix by Creg, we also find a new estimate
for the matrix A using the equality A = A− BC. The resulting system is given by

(Areg,BCCA, Creg) = (ACCA + BCCACreg,BCCA, Creg).

This system is also used for the predictions.
For the pseudo maximum likelihood algorithm we use (ACCA ,BCCA , CCCA) as a starting value for
the PML algorithm maximizing over ΘΓ0(n), that is over all state space systems of fixed order
with empty unit root structure, such that the resulting PML estimate is again a stable system.
Applying again the reestimation of the matrix C and A under restrictions as described above, we
use the reestimated system as a starting value for the PML algorithm over systems with the true
unit root structure, that is maximizing over ΘΓ. We use this final estimate to derive the complex
cointegrating spaces and the predictions. In Figure 2.1 the density of the logarithm of the gap
between true and estimated complex cointegrating space for the three algorithms for sample sizes
T = 100 and T = 500 is compared for the VAR case λ = 0. In this case the Johansen Schaumburg
algorithm outperforms the CCA subspace and the PML algorithm for sample size T = 100. For
sample size T = 500 all algorithms perform comparably. This is not surprising, as the data genera-
ting process is a VAR process. The advantage for the Johansen Schaumburg procedure, however,
disappears for sample size T = 500.
In the VARMA case with λ = 0.9, shown in Figure 2.2, the pseudo maximum likelihood algorithm
performs best for sample size T = 100 and the Johansen Schaumburg procedure performs better
than the CCA subspace algorithm. For sample size T = 500 the CCA subspace and the PML algo-
rithm outperform the Johansen Schaumburg procedure. Since the MA-part of the data generating
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Figure 2.1: Density of the logarithm of the gap between estimated and true complex cointegrating
space at unit root frequency π

2 for T = 100 (left) and T = 500 (right) in the VAR case
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Figure 2.2: Density of the logarithm of the gap between estimated and true cointegrating space at
unit root frequency π

2 for T = 100 (left) and T = 500 (right) in the VARMA case with λ = 0.9

process has zeros near the unit circle, the estimated lag length k̂ increases which explains why the
Johansen Schaumburg algorithm is not as good as the other algorithms in this case.
The results for the predictions are similar to the complex cointegrating space estimations. As seen
in Figure 2.3, in the VAR-case λ = 0 the predictions of the Johansen Schaumburg algorithm have
the smallest root mean square error for sample size T = 100 and there are no differences visible
between the algorithms for sample size T = 500. The density of the root mean squared error of
the predictions in the VARMA case with λ = 0.9 is shown in Figure 2.4. In this case for sample
size T = 100 the PML algorithm is best and the Johansen Schaumburg approach is better than
the CCA subspace algorithm. For sample size T = 500 the CCA subspace and the PML algorithm
are better than the Johansen Schaumburg algorithm.
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Figure 2.3: Density of the average (over the two dimensions) of the root mean squared errors for
T = 100 (left) and T = 500 (right) for twelve steps ahead predictions in the VAR case.
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Figure 2.4: Density of the average (over the two dimensions) of the root mean squared errors for
T = 100 (left) and T = 500 (right) for twelve steps ahead predictions in the VARMA case with
λ = 0.9
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2.5 Summary and Conclusion

This paper shows that transfer functions corresponding to MFI(1) processes can be consistently
estimated by maximizing the pseudo likelihood function in the state space framework. As state
space systems correspond in a certain sense to VARMA systems, this overcomes the limitation
in the literature to VAR processes only. Consistent estimates can be obtained even if the unit
root structure is unknown or ignored such that models corresponding to stationary processes are
considered. The model allows for a deterministic constant, a linear trend and seasonal dummies.
The cointegrating space for each unit root is estimated with rate T . If a linear trend is included
in the model the corresponding coefficients in the direction of the cointegrating space at unit root
frequency zero are estimated with rate T 3/2.
The asymptotic distribution of the parameters describing the cointegrating space is a mixture
of Brownian motions. The Brownian motions become demeaned Brownian motions if a constant
and seasonal dummies are included in the model. If a linear trend is included in the model, the
asymptotic distribution of the parameters describing the cointegrating space at unit root frequency
zero is a mixture of demeaned and detrended Brownian motions. The asymptotic distribution of
the coefficients of the trend in the direction of the cointegrating space is also a mixture of Brownian
motions. The other parameters are asymptotically normally distributed.
In the simulation study the pseudo maximum likelihood algorithm, as expected, estimates the
cointegrating space more precisely and leads to better predictions in small samples than the
Johansen Schaumburg approach in the VAR framework and the CCA subspace algorithm for a
VARMA process, where the MA part has roots near the unit circle.
This indicates that state space modeling has the potential to improve estimation of cointegrating
spaces as well as predictions in situations where in the VAR framework a large order is needed,
while more parsimonious approximations in the VARMA framework can be found. The derivation
of the asymptotic distribution in principle opens the door for the derivation of tests for hypotheses
on the parameters provided the multi-index Γ is specified correctly. An investigation of methods
for specifying this multi-index as well as pseudo likelihood ratio tests for cointegrating spaces is
conducted in a companion paper showing that procedures analogous to the Johansen framework
can also be used in the VARMA situation (Matuschek et al., 2020).
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Stochastic Trends and Economic
Fluctuations: Reconsidered From
the State Space

3.1 Introduction

In his seminal paper Granger (1981) introduced the concept of cointegration. Since then the usage
of models and methods that allow for and incorporate unit roots and cointegration has become a
common practice for the modeling of econometric time series with applications in various fields.
There are non-parametric and parametric approaches for cointegration analysis. Non-parametric
approaches as, e. g., Stock and Watson (1988) focus on the estimation and development of hy-
potheses tests for the cointegrating relationships and treat all other characteristics of the data
generating process as nuisance parameters.
Parametric approaches perform cointegration analysis in a fully specified model class. The most
prominent model class for cointegration analysis is the vector error correction model (VECM)
using the vector autoregressive (VAR) framework, popularized by Johansen and his co-authors,
see, e.g., the monograph Johansen (1995).
A less prominent parametric approach is the vector autoregressive moving average (VARMA) fra-
mework, see, e. g., Yap and Reinsel (1995) and Poskitt (2006). This approach can overcome some
limitations of the VAR framework. First, unlike VARMA processes, VAR processes are not closed,
as shown by Amemiya and Wu (1972), with respect to temporal aggregation and, as shown by
Zellner and Palm (1974), with respect to marginalization. Second, as shown by Campbell (1994),
the solutions of dynamic stochastic general equilibrium (DSGE) models are typically VARMA
rather than VAR processes. Third, VARMA models may be more parsimonious than VAR models
in some cases.
With a few early exceptions as, e. g., Aoki and Havenner (1989) and Aoki (1990) the state space
framework, which is, as discussed below, equivalent to the VARMA framework, has not received
a lot of attention. In a recent series of papers, however, the authors have developed several tools
for cointegration analysis in the state space framework. A brief description will be given below for
the I(1) case, see Bauer and Wagner (2012), Bauer et al. (2020), de Matos Ribeiro, Matuschek,
Bauer and Wagner (2020) and Matuschek et al. (2020) for details.
The aim of this paper is to provide a tutorial for the application of these tools. To achieve this,
we repeat the seminal analysis of postwar US economic data by King et al. (1991) using the state
space framework, showing which economically relevant questions can be examined with these me-
thods and explaining which code can be used for this analysis. The results are also compared to
those obtained using the VECM. Additionally, we test the robustness of the VECM and the state
space framework by repeating the analysis on a larger data set with economic data until 2018, not
until 1988 as in King et al. (1991), and on the subsample of the data set from 1989 until 2018.
This paper is structured as follows: Section 3.2 describes cointegration analysis using the state
space framework and the VECM and the methods used by King et al. (1991). The latter two are
only described briefly, since they have been extensively covered elsewhere. Section 3.3 describes
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the data sets used in the analysis. Section 3.4 compares the results of King et al. (1991) to those
obtained using the VECM and the state space framework. Section 3.5 contains the results of the
analysis of the longer data set using the VECM and the state space framework. Section 3.6 con-
tains the analysis of the subsample from 1989 to 2018. Section 3.7 summarizes and concludes the
paper.

3.2 Methods

3.2.1 The State Space Framework

An s-dimensional stochastic process {yt}t∈Z has a state space representation, if there are matrices
A ∈ Rn×n, B ∈ Rs×n, C ∈ Rs×n and Φ ∈ Rs×m, an n-dimensional stochastic process {xt}t∈Z
called the state process, which is in general unobserved, an s-dimensional white noise process
{εt}t∈Z and an m-dimensional deterministic process {dt}t∈Z such that23

yt = Cxt + Φdt + εt
xt+1 = Axt +Bεt.

(3.1)

Every ARMA process has a state space representation. Consider an ARMA process

yt =
∑p
i=1 aiyt−i +

∑q
i=1 biεt−i + εt,

neglecting the deterministic process for simplicity. Choosing

A =



a1 a2 . . . ap−1 ap b1 . . . bq−1 bq
Is 0 . . . 0 0 0 . . . 0 0

0 Is . . . 0 0
...

...
...

...
...

. . .
...

...
...

...
...

0 0 . . . Is 0 0 . . . 0 0
0 0 . . . 0 0 Is . . . 0 0

...
...

...
...

...
...

. . .
...

...
0 0 . . . 0 0 0 . . . Is 0


, B =



Is
0
...
0
Is
0
...
0


, xt =



yt−1

...
yt−p
εt−1

...
εt−q


C =

(
a1 a2 . . . ap b1 b2 . . . bq

)
we get (3.1). Conversely, every process, which has a state space representation, also has an ARMA
representation. Like ARMA representations, the state space representation of a stochastic process
is not unique. There are two sources of non-uniqueness: First, it is possible to introduce superfluous
components in the state space representations without changing the data generating process. For
example

yt = C1xt,1 + Φdt + εt
xt+1 = A1xt +B1εt

with xt ∈ Rn1 and

yt =
(
C1 0

)(xt,1
xt,2

)
+ Φdt+ εt

xt+1 =

(
A1 0
A21 A22

)(
xt,1
xt,2

)
+

(
B1

B2

)
εt

lead to the same {yt}t∈Z for all n2 ∈ N, {xt,2}t∈Z with xt,2 ∈ Rn2 , A21 ∈ Rn2×n1 , A22 ∈ Rn2×n2

and B2 ∈ Rn2×s. The reason is that due to the structure of the matrices there is no feedback from

23We will only consider state space systems in so-called innovation representation, with the same error in both
the output equation and the state equation. Since , as shown by Aoki (1990, Chapter 7.1), every state space system
has an innovation representation, this is no restriction.
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{xt,2}t∈Z to {yt}t∈Z and {xt,1}t∈Z. A state space representation is called minimal, if {yt}t∈Z has
no state space representation with lower dimensional state process. Minimality in the state space
framework is analogue to left coprimeness in the VARMA framework, cf. Hannan and Deistler
(1988, Chapter 2). Second, minimality is not sufficient for uniqueness of the state space represen-
tation, because the basis of the state process can be freely chosen. Since for every regular matrix
T ∈ Rn×n

yt = CT−1Txt + Φdt + εt
Txt = TAT−1Txt + TBεt

is equivalent to (3.1), the matrices (A,B,C) and (TAT−1, TB,CT−1) are observationally equiva-
lent, i. e., they generate the same stochastic process. By Hannan and Deistler (1988, Theorem 2.3.4)
two minimal state space systems are observationally equivalent if and only if such a regular matrix
T exists. The above discussion shows that the state space representation is not unique. To achie-
ve uniqueness, a canonical form is necessary, placing restrictions on the system matrices. Many
canonical forms exists, e. g., the echelon canonical form, cf. Hannan and Deistler (1988, Theo-
rem 2.5.2). Bauer and Wagner (2012) developed a canonical form that separates the integrated
and the stationary subsystem. For the I(1) case the system matrices in Bauer-Wagner canonical
form are

A =

(
Inc 0
0 A•

)
, B =

(
B1

B•

)
, C =

(
C1 C•

)
,

where the absolute value of all eigenvalues of A• is smaller than one, the matrices (A•, B•, C•)
with A• ∈ Rn•×n• , B• ∈ Rn•×s and C• ∈ Rs×n• are in echelon canonical form, C ′1C1 = Inc and
B1 ∈ Rnc×s is a positive upper triangular matrix of full rank, i. e., of the form

B1 =


0 . . . 0 b1j1 ∗ . . . ∗
0 . . . 0 b2j2 ∗ . . . ∗
...

...
0 . . . 0 bncjnc ∗

 ,

where 1 ≤ j1 < j2 < · · · < jnc ≤ s, biji > 0 for i = 1, . . . , nc and ∗ denotes unrestricted entries.
Here (A•, B•, C•) is the stationary subsystem and (A1 = Inc , B1, C1) is the integrated subsys-
tem. Bauer and Wagner (2012) show that β ∈ Rs, β 6= 0 is a cointegrating vector if and only if
β′C1 = 0. Thus, C1 spans the orthocomplement of the cointegrating space and the cointegrating
vectors can be easily derived from the Bauer-Wagner canonical form. The dimension of the coin-
tegrating space, the cointegrating rank, is r = s− nc, where nc is the number of common trends.
As in the VARMA case no continuous parameterization of all state space systems of a certain
state process dimension n exists, see Hazewinkel and Kalman (1976). Thus, we need to partition
the model set into subsets where a continuous parameterization exists. Bauer et al. (2020) use a
partitioning based on the canonical form of Bauer and Wagner (2012) where the relevant parame-
ters are collected in a multi-index Γ. For the I(1) case Γ consists of the number of common trends
nc, the positions of the positive entries of B1, j1, . . . , jnc and the Kronecker indices of the stable
subsystem, see Hannan and Deistler (1988, Chapter 2.4). Bauer et al. (2020) discuss the number of
free parameters for each subset in great detail. The number of parameters of the stable subsystem
depends on the Kronecker indices. Obviously, A1 does not contain any free parameters. For the
calculation of the number of free parameters in C1, consider a parameterization that places re-
strictions on the columns to ensure the normalization and the orthogonality to previous columns.
Using this parameterization, the first column of the matrix C1 contains s− 1 free parameters, due
to the normalization. The second column contains s− 2 free parameters, due to the normalization
and the orthogonality to the first column. By the same argument there are s− i free parameters
in the i-th column.24 Thus, there are nc · s − 1

2nc(nc + 1) free parameters in C1. The number of

24Since Bauer et al. (2020) use Givens rotations and distinguish between the parameters that span the coin-
tegrating space and the ones which choose a basis in the cointegrating space, the parameters are slightly more
complicated. The number of parameters, however, is accurate.
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free parameters in the i-th row in B1 is s + 1 − ji. Thus, B1 contains nc(s + 1) −
∑nc
i=1 ji free

parameters. Consequently, the integrated subsystem contains nc(2s+ 1)− 1
2nc(nc + 1)−

∑nc
i=1 ji

free parameters. In the case ji = i for i = 1, . . . , nc the number of free parameters simplifies to
2nc(s− nc).
Additionally, Bauer et al. (2020, Theorem 4) show that the set of all transfer functions correspon-
ding to I(1)-systems with state dimension n, c common trends, ji = i for i = 1, . . . , nc and generic
Kronecker indices of the stable subsystem is open and dense in the set of all transfer functions
corresponding to I(1)-systems with state dimension n and c common trends. Bauer et al. (2020,
Theorem 4) also show that the set of all stationary systems of state dimension n with generic
Kronecker indices is open and dense in the set of all I(1) systems of state dimension n. These
results provide the basis for consistent estimators for unknown Γ. Denoting the transfer function,
i.e, the function relating the error sequence to the observed process with k(z) de Matos Ribeiro
et al. (2020) use the power series expansion of the inverse transfer function with coefficients Kj

to define the residuals εt(k(z, θ), θD) :=
∑t−1
j=1Kj(yt−j −Φ(θD)dt), where θ is the parameter vec-

tor of the system matrices (A,B,C) and θD is the parameter vector containing the entries of Φ.
de Matos Ribeiro et al. (2020, Section 3) show that if we set x1 = 0 the logarithm of the likelihood
function for given y1, . . . , yT is

LT = − 2
T

(
log det Σ + 1

T

∑T
t=1 εt(k(z, θ), θD)′Σ−1εt(k(z, θ), θD)

)
. (3.2)

A necessary condition for consistency of the pseudo maximum likelihood estimator is the conver-
gence of the sum in (3.2). Since, as discussed in Bauer and Wagner (2012), Kj = −C(A−BC)j−1B,
this is the case if the absolute value of all eigenvalues of A−BC is smaller than one. This condi-
tion is called the strict minimum phase condition. If this condition is fulfilled, de Matos Ribeiro
et al. (2020, Theorem 1) show that the pseudo maximum likelihood estimator is consistent under
relatively mild conditions on εt. The cointegrating space is estimated with rate T , where T is the
sample size. For given multi-index Γ, de Matos Ribeiro et al. (2020, Theorem 2) also derive the
asymptotic distribution.
For the determination of the cointegrating rank r = s− c Matuschek et al. (2020) rewrite (3.1) to
a state space error correction model (SSECM) first introduced by Ribarits and Hanzon (2014)

∆(yt − Φdt) = Π(yt−1 − Φdt−1)− Cvt + εt
vt+1 = Avt + (In −A)−1AB∆(yt − Φdt)

Π = −Is + C(In −A)−1B,
(3.3)

where ∆ := 1− L with the lag operator L{yt}t∈Z := L{yt−1}t∈Z, A := A−BC and v1 = x1. The
matrix Π in the SSECM can be written as Π = αβ′ with α, β ∈ Rs×r of full rank. The columns of
β form a basis of the cointegrating space. Focusing on the case without deterministic terms, i. e.,
Φ = 0 for simplicity concentrating Σ out of (3.2) the likelihood up to a constant is proportional
to

log

(∣∣∣∣∣
T∑
t=1

(∆yt −Πyt−1 + Cvt(θ))(∆yt −Πyt−1 + Cvt(θ))
′

∣∣∣∣∣
)
, (3.4)

where vt(θ) depends on the parameters in A and B. After having estimated A and B with the
pseudo maximum likelihood estimator from (3.2) the authors maximize (3.4) under the constraint
Π = −Is +C(In −A)−1B, using Lagrange multipliers. They then repeat the maximization under
the additional constraint rank(Π) = r. The test statistic is the difference of the log-likelihoods at
these maxima and is

tr

(∫ 1

0

(dW )W ′
(∫ 1

0

WW ′du

)−1 ∫ 1

0

WdW ′

)
distributed, where W is a s− r dimensional Brownian motion. If a deterministic linear trend or a
deterministic constant are included the test statistic is

tr

(∫ 1

0

(dW )H ′
(∫ 1

0

HH ′du

)−1 ∫ 1

0

HdW ′

)

68



69

distributed with H = (W ′, 1)′.
After having determined the cointegrating rank, Matuschek et al. (2020) estimate the basis of the
cointegrating space β by maximizing (3.4) under the constraints Π = −Is + C(In − A)−1B and
rank(Π) = r. To test a hypothesis on the cointegrating space as, e. g., β = Hφ, the authors maxi-
mize (3.4) under this additional constraint. The pseudo likelihood ratio test taking the difference
between the log-likelihoods is χ2-distributed.

3.2.2 The Johansen Vector Error Correction Model

Johansen developed vector error correction models for integrated VAR processes of orders one and
two, see Johansen (1995). In the I(1) case he rewrites the equation of a VAR process

yt =
∑p
i=1 aiyt−i + Φdt + εt,

to the form

∆yt = αβ′yt−1 +
∑p−1
i=1 Γi∆yt−i + Φdt + εt, (3.5)

where α and β are full rank matrices in Rs×r and Γi ∈ Rs×s and εt is white noise. Here, r < s is the
cointegrating rank, i. e., the number of linearly independent cointegrating vectors. The columns of
β span the cointegrating space. The parameters are estimated by projecting ∆yt and yt−1 on the
lagged differences. Then, the pseudo likelihood ratio test statistic for the cointegrating rank uses
a generalized eigenvalue problem of the residual matrices. The eigenvectors corresponding to the
r largest eigenvalues are the estimates of β and, thus, of the cointegrating vectors. Hypotheses on
the cointegrating space can be tested with pseudo likelihood ratio test, which are χ2-distributed
under the null hypotheses.
This approach is more restrictive than the state space framework, since not every process that has
a state space representation is a VAR process. Conversely, every VAR process has a state space
representation. Consider the VAR process

yt =
∑p
i=1 aiyt−i + εt,

neglecting the deterministic process for simplicity. Choosing

A =


a1 a2 . . . ap−1 ap
Is 0 . . . 0 0
0 Is . . . 0 0
...

...
. . .

...
...

0 0 . . . Is 0

 , B =


Is
0
...
0

 , xt =

yt−1

...
yt−p


C =

(
a1 a2 . . . ap

)
we get (3.1). VARMA processes can be written as VAR(∞) processes, see, e.g., Saikkonen (1992).
So the results of the estimator are still valid for VARMA processes for p→∞. An approximation
with a large lag order p still leads to consistent estimators and tests.

3.2.3 The Approach of Stock and Watson

For the DOLS estimator Stock and Watson (1993) assume that the time series {yt}t∈Z has a
partitioning yt = (yt,1, yt,2) such that

∆yt,1 = ut,1
yt,2 = µ+ θyt,1 + ut,2,

(3.6)

where ut := (ut,1, ut,2) is a stationary, linearly regular process. θ cannot be estimated with the OLS
estimator, because yt,1 and ut,2 are correlated. Thus, ut,2 must be replaced by ut,2−E(ut,2|{ut,1}).
E(ut,2|{ut,1}) depends potentially on both future and past lags of yt,1 and is thus of the form
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E(ut,2|{ut,1}) =
∑∞
j=−∞ dj∆yt−j,1. This is approximated by a finite sum

∑q
j=q dj∆yt−j,1. Inser-

ting this in the second equation of (3.6) and using vt,2 := ut,2 − E(ut,2|{ut,1})

yt,2 = µ+ θyt,1 +
∑q
j=q dj∆yt−j,1 + vt,2, (3.7)

follows. Since {vt,2}t∈Z and {ut,1}t∈Z are uncorrelated, the likelihood for given ∆y−q,1, . . . ,∆yT+q,1

can be divided into a factor depending on the marginal distribution of {ut,1}t∈Z and a factor
depending on µ, θ, d−q, . . . , dq and the marginal distribution of {vt,2}t∈Z. If there are no cross

restrictions, θ can be estimated with a OLS estimator. The OLS estimator in (3.7) is called
dynamic OLS (DOLS) estimator. Unlike the parametric approaches in the previous subsections
the DOLS estimator only estimates the cointegrating space and not the other parameters in the
model. Additionally, Stock and Watson (1993, Section 4) derive the asymptotic distribution of the
DOLS estimator.
The rank tests used in King et al. (1991) are from Stock and Watson (1988, Section 3). Stock and
Watson (1988) assume that {∆yt}t∈Z has a MA representation

∆yt = µ+
∑∞
j=0 Cjεt−j

with
∑∞
j=1 jCj <∞, C0 = Is and C(z) :=

∑∞
j=0 Cjz

j . If yt is cointegrated, then C(1) has reduced

rank k < s. Choosing a matrix β ∈ Rs×s−k, whose columns span the cointegrating space, and a
matrix β⊥ ∈ Rs×k, whose columns span the orthocomplement of the cointegrating space, Stock
and Watson (1988) regress Wt := β′⊥yt on Wt−1. Under the null hypothesis of cointegrating rank

s − k the matrix Φ̃ :=
∑
WtWt−1 (

∑
Wt−1Wt−1)

−1
has k unit eigenvalues in the case without

deterministic terms. Under the alternative of cointegrating rank s−m with m < k the real part of
k−m eigenvalues is smaller than one. Thus, ordering the eigenvalues λ1, . . . , λk by the real parts in
decreasing order, the null hypothesis R(λm+1) = 1 is tested against the alternative R(λm+1) < 1.
The distribution under the null is not straightforward. Stock and Watson (1988) assume that ∆Wt

has a finite VAR representation. For known VAR polynomial Ξ and known β⊥ the distribution
of λm+1 is a known function of Brownian motions. If β⊥ and Ξ are unknown, β⊥ is estimated
by estimating the principal components of yt and Ξ is estimated by a VAR(p) regression of ∆Ŵt

onto Ŵt−1, where Ŵt = β̂′⊥yt and β̂⊥ is the estimator of β⊥. Then, the distribution of λ̂m+1, the

eigenvalue of
∑
ŴtŴt−1

(∑
Ŵt−1Ŵt−1

)−1

, is also a function of Brownian motions. For the case

that a deterministic constant and trend is included in the model, Ŵt is replaced by Ŵt− β̂1− β̂2t,
where β̂1 and β̂2 are the OLS estimates of the regression of Ŵt on a constant and t.
For known cointegrating rank the asymptotic distribution of the DOLS estimator allows Wald-type
tests for hypotheses on the cointegrating space.

3.3 Data Set

The original data set as described in King et al. (1991, Section III) is from the homepage of the
authors. It contains seasonally adjusted quarterly data from 1949:1 to 1988:4. The data consist of
the logarithms of per capita real consumption expenditures (c), per capita gross private domestic
fixed investment (i), and per capita ”private”gross national product (y), which is the gross national
product without the government purchases, the money supply (m), the implicit price deflator of
the private GNP (∆p) and the three-month US treasury bill rate (R). Since an extension of the
data set is not available, an analogous data set from 1949:1 to 2018:4 is used, obtained from the site
of the Federal Reserve Bank of St. Louis. It consists of seasonally adjusted quarterly observations
of the logarithm of the US per capita real consumption expenditure c in 2012 dollars, the logarithm
of the US per capita gross private domestic fixed investment i in 2012 dollars, the logarithm of the
US per capita total gross national product y less real total government purchases in 2012 dollars,
the logarithm of the US saving deposits per capita m in 2012 dollars, the logarithm of the implicit
price deflator of the US private GNP ∆p and the three-month US treasury bill rate R in percent.
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Figure 3.1: U.S. economic data and great ratios from 1949 to 2018

Figure 3.1 shows the variables c, i and y and the great ratios c−y and i−y, which are stationary
according to economic theory for the new data set.
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3.4 Analysis of the Data Set of King et al. (1991)

3.4.1 Choice of System Parameters

For all methods some system parameters need to be set before beginning with the estimation. For
the DOLS estimator the number of leads and lags is necessary, for the VECM the VAR order
p of the system and for the state space framework the state dimension n. King et al. (1991) use
q = q = 5, i. e., five leads and five lags. However, they do not explain this choice. To choose the VAR
order of the VECM, we estimate systems of different lag lengths with a pseudo maximum likelihood
estimator and compute the Bayesian information criterion (BIC). For the three-dimensional data
set the BIC is minimal for p = 2. For the six-dimensional data set we do the same. Again, the BIC
is minimal for p = 2. Table C.1 in the appendix contains the BIC for p = 1, . . . , 8 for both data
sets.
Similarly, to determine the state dimension, we compute the BIC for state space systems of order
n = 1, . . . , 10 and compare the BIC for the three-dimensional data set.25 The BIC is minimal for
n = 3. As for the three-dimensional data set we estimate models for different system orders and
compute the BIC for the six-dimensional data set. We use system orders n = 1, . . . , 15. The BIC
is minimal for n = 7. Table C.2 in the appendix contains the BIC for the different system orders
for both data sets.

3.4.2 Deterministic Components

Often, economic time series contain deterministic terms like a deterministic constant and a de-
terministic linear trend. For the economic analysis it is important to find out which of these
deterministic components are present. Johansen (1995) distinguishes five cases of deterministic
components:

1. The VECM equation (3.5) contains an unrestricted linear trend and constant. This leads to
a linear trend in the cointegrating space and a quadratic trend in its orthocomplement.

2. The VECM equation (3.5) contains an unrestricted constant and a linear trend restricted to
the cointegrating space. This leads to a linear trend in all components.

3. The VECM equation (3.5) contains a unrestricted constant. This leads to a constant in the
cointegrating space and a linear trend in its orthocomplement.

4. The VECM equation (3.5) contains a constant restricted to the cointegrating space. This
leads to a constant in all components.

5. The VECM equation (3.5) does not contain any deterministic components.

These five cases can be easily implemented in the state space framework. For the first case, include
a deterministic linear trend in the state equation, i. e., the second equation of (3.1). For the second
case, include a deterministic linear trend in the output equation, i. e., the second equation of (3.1).
For the third case include a deterministic constant in the state equation and for the fourth case
include a deterministic constant in the output equation.26

Figure 3.1 shows a linear trend in the variables, but not in the great ratios, which suggests that
case three might describe our data best. King et al. (1991) sometimes include a constant and a
trend and sometimes only a constant in their analysis. Testing hypotheses on the deterministic
terms is complicated. In the cases two and four the restrictions depend on the dimension of the
cointegrating space. This dimension is not known and the tests to determine it depend on the deter-
ministic components. Both for the VECM and the state space framework we use the cointegrating
rank predicted by economic theory and use pseudo likelihood ratio tests for the determination

25The matlab function for this is optimize estimate.
26For the first case choose the option {’AR’,[0,2]} for the variable deter in optimize estimate, for the second
{’MA’,[0,2]}, for the third {’AR’,[0,1]}, for the fourth {’MA’,[0,1]} and for the fifth {’AR’,[0,0]}.
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Table 3.1: Test statistics and p-values of the hypotheses on the deterministic terms for VECM and
state space framework for the three- and the six dimensional data set until 1988

Null, alternative VECM: test statistic (p-value) state space: test statistic (p-value)
s = 3

case 3, case 2 0.53 (0.767) 0.21 (0.900)
case 4, case 3 12.06 (< 0.001) 12.67 (< 0.001)

s = 6
case 3, case 2 4.35 (0.227) 3.47 (0.324)
case 4, case 3 19.13 (< 0.001) 28.19 (< 0.001)

of the deterministic components. Since Figure 3.1 clearly shows that there is no quadratic trend
and there are deterministic components present, we neglect cases one and five. We test the null
hypotheses that there is only a unrestricted constant against the alternative that there is a trend
restricted to the cointegrating space. If the hypothesis is rejected, we conclude that there is a
trend restricted to the cointegrating space. Otherwise, we test the null hypothesis that there is a
constant restricted to the cointegrating space against the alternative of an unrestricted constant.
For the three-dimensional data set consisting of c, i and y we use a cointegrating rank of two.
Thus, for the first test the linear trend has two coefficients under the alternative, which are zero
under the null. Consequently, the test statistic is χ2

2 distributed under the null. For the second test,
the constant has three coefficients under the alternative and only two under the null. Thus, under
the null one coefficient is zero and the test statistic is χ2

1 distributed under the null. Table 3.1
contains the test statistics and their p-values for both the VECM and the state space framework.27

With both methods the first hypothesis is not rejected at 5%-level, but the second hypothesis is
rejected. Thus, we use the third case for the modeling, which is consistent with the observations
in Figure 3.1.
For the six-dimensional data set we use a three-dimensional cointegrating space. Thus, the test sta-
tistics are χ2

3-distributed under the null for both hypotheses. The test statistics and their p-values
for both the VECM and the state space framework are also shown in Table 3.1. Again, neither the
pseudo likelihood ratio test using the VECM nor the one using the state space framework reject
the null hypothesis of the first test at 5%-level. Again, the null hypothesis of the second test is
rejected. Thus, we use the third case in both models.

3.4.3 Determination of the Cointegrating Rank

A question of economic interest is the determination of the cointegrating vectors. The first step
for this is the determination of the cointegrating rank, i. e., the number of linearly independent
cointegrating vectors. Johansen (1995, Chapter 11) developed a test for the cointegrating rank.
This test does not test directly hypotheses on r, but the number of common trends, i. e., s − r.
Using this procedure, we first test the null hypothesis of cointegrating rank s− r = s, i. e., r = 0
against the alternative of at least one cointegrating relation. Then, we test the null hypothesis
r ≤ 1 against the alternative r ≥ 2. We continue this procedure until one hypothesis is rejected
or until we test the hypothesis r ≤ s − 1 against the alternative r = s. The distributions of the
test statistics under the null hypotheses depend on the deterministic terms. Due to the structure
of the tests the distribution of hypotheses as, e. g., r ≤ 1 depends on s. The critical values for
the third case are shown in Table 3.2. The rank tests of Matuschek et al. (2020) test the same
hypotheses as the ones of Johansen (1995). The authors show that the test statistics of these tests
also have the same distribution under the null hypotheses, such that the critical values of Table 3.2
are also asymptotically valid for these tests. As explained in Section 3.2.3, the rank tests of Stock
and Watson (1988) test the null hypothesis of k common trends against the alternative of m < k

27After having calculated the first case with optimize estimate, we calculate the other cases with optimize ione

and compare the critical values to calculate the test statistic.
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Table 3.2: Critical values for the hypotheses on the cointegrating rank for different levels of signi-
ficance α in the model with a unrestricted constant

Hypothesis H0 : s− r = 6 H0 : s− r ≥ 5 H0 : s− r ≥ 4 H0 : s− r ≥ 3
α = 0.1 89.37 64.74 43.84 26.70
α = 0.05 93.92 68.68 47.21 29.38
α = 0.01 102.95 76.37 53.91 34.87

Hypothesis H0 : s− r ≥ 2 H0 : s− r ≥ 1
α = 0.1 13.31 2.71
α = 0.05 15.35 3.84
α = 0.01 19.69 6.64

Table 3.3: p-values for the rank tests of Stock and Watson (1988) and test statistics for the rank
tests in the VECM and the state space framework for the three-dimensional data set until 1988

Null, p-values of
alternative Stock Watson
r = 0, r = 1 0.21
r = 0, r = 2 < 0.01

Null, test statistic test statistic
alternative VECM state space
r = 0, r ≥ 1 51.08 51.48
r ≤ 1, r ≥ 2 16.53 1.22
r ≤ 2, r = 3 23.05 0.96

common trends. Table 3.3 shows the results of the rank tests for the three-dimensional data set.28

The rank test of Stock and Watson (1988) rejects the null when tested against the alternative
of cointegrating rank two. The tests of Johansen (1995) and Matuschek et al. (2020) both reject
the hypotheses r = 0 and r ≤ 1 at 5%-level. The hypothesis r ≤ 2 is not rejected at 5%-level.
Thus, all three tests find a cointegrating rank of two, which is consistent with economic theory.
Another possibility to examine the cointegrating rank in the state space framework is to look at
the eigenvalues of the matrix A. As discussed above the number of common trends, i. e., s − r
coincides with the eigenvalues of A which are one. Additionally, the eigenvalues of A := A−BC are
of interest, because eigenvalues of A near the unit circle complicate the analysis and because, as
discussed above, the strict minimum phase condition is necessary for pseudo maximum likelihood
estimation. For this reason, we estimate the system matrices without imposing restrictions on the
cointegrating space and examine the eigenvalues of A and A, shown in Table 3.4. One eigenvalue
of A is very close to one and the eigenvalues of A are not near the unit circle. This fits to the
result of the rank tests that the cointegrating rank is two and there is thus one common trend.
For the six-dimensional data set King et al. (1991) do not show all the tests. They just state that
the null hypothesis of cointegrating rank r = 6 is rejected against the alternative r = 3. The
test statistics for the VECM and the state space framework are shown in Table 3.5. The test of
Johansen (1995) rejects the hypothesis r ≤ 3 at 5%-, but not at 1%-level. The hypothesis r ≤ 4
then cannot be rejected at 10%-level. The test of Matuschek et al. (2020) rejects the hypothesis
r ≤ 3 at 1%-level. The hypothesis r ≤ 4 is rejected at 5%, but not at 1%-level. The hypothesis r ≤ 5
cannot be rejected at 5%-level. Thus, using the 5%-level King et al. (1991) find a cointegrating rank
of three, the test of Johansen (1995) finds a cointegrating rank of four and the test of Matuschek
et al. (2020) a cointegrating rank of five. Again, we take a look at the eigenvalues of A and A for
the estimator without restrictions on the cointegrating rank for the state space framework, also
shown in Table 3.4. One eigenvalue of A is 0.994 and thus very close to one, a second eigenvalue is
0.945. This fits to the results of the rank tests, since they find a cointegrating rank of five and thus
only one common trend. The absolute value of two eigenvalues of A is 1.024. Thus, the minimum
phase condition is not fulfilled.

28For the rank test we use the matlab function ranktest real.
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Table 3.4: Eigenvalues of the matrices A and A and their absolute values for the state space system
estimated for the three- and six-dimensional data set until 1988

Eigenvalues of A absolute value Eigenvalues of A absolute value
s = 3

0.997 0.997 -0.401 0.401
0.854+0.087i 0.858 0.005 0.005
0.854-0.087i 0.858 0.232 0.232

s=6
0.467 0.467 0.945+0.394i 1.024

0.873+0.304i 0.924 0.945-0.394i 1.024
0.873-0.304i 0.924 -0.729 0.729
0.883+0.103i 0.889 0.289 0.289
0.883-0.103i 0.889 -0.414 0.414

0.937 0.937 -0.181 0.181
0.994 0.994 -0.030 0.030

Table 3.5: Test statistics for the rank tests in the VECM and the state space framework for the
six-dimensional data set until 1988

Null, alternative test statistic VECM test statistic state space
r = 0, r ≥ 1 151.85 349.63
r ≤ 1, r ≥ 2 98.68 159.13
r ≤ 2, r ≥ 3 54.27 88.57
r ≤ 3, r ≥ 4 30.88 51.20
r ≤ 4, r ≥ 5 11.04 18.16
r ≤ 5, r = 6 1.28 2.01
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3.4.4 Estimation of the Cointegrating Space

It is of economic interest to find cointegrating relations in economic time series. Thus, an estima-
tor of the cointegrating space is useful. After having determined the cointegrating rank the DOLS
estimator and the pseudo maximum likelihood estimators for the VECM and the state space fra-
mework can estimate the cointegrating space. To make the basis of the cointegrating space unique,
we impose the condition that the upper r × r-block is the identity matrix.
For the three-dimensional data set all rank tests found a cointegrating rank of two. Economic theo-
ry predicts a cointegrating space spanned by the two great ratios

(
1 0 −1

)′
and

(
0 1 −1

)′
.

We test with all three methods whether this is the cointegrating space.29 Table 3.6 contains the
results. While the estimates are not exactly identical, they are similar and the hypothesis that the
cointegrating space coincides with the theoretic prediction is not rejected at 5%-level for all three
methods. It is, however, notable that the p-values for the tests using the VECM and the state
space framework are much higher than the one using DOLS.
For the six-dimensional data set the results of the rank tests were different for the different me-
thods. Thus, King et al. (1991) estimate a three-dimensional cointegrating space, we estimate a
four-dimensional cointegrating space using the VECM and a five-dimensional cointegrating space
using the state space framework. Table 3.7 contains the estimates. We notice that the standard
errors of the estimates for the state space framework are very large, in particular for the last entry.

29We use the matlab function optimizeconstr to estimate the system, where the cointegrating space is spanned
by these vectors and calculate the test statistic by taking the difference between this log-likelihood and the one of
the unrestricted estimator, the standard errors are computed with the function standarderror.

Table 3.6: Estimates of the cointegrating space with standard errors in brackets, test statistic of
the test whether the cointegrating space is spanned by (1, 0−1)′ and (0, 1,−1)′ and p-value of the
test for the three-dimensional data set until 1988

method DOLS VECM state space
c
i
y


1 0
0 1

−1.058 −1.004
(0.026) (0.038)




1 0
0 1

−1.113 −1.144
(0.101) (0.188)




1 0
0 1

−1.115 −1.064
(0.091) (0.201)


test statistic 4.96 1.06 1.19
p-value 0.08 0.59 0.55

76



77

Table 3.7: Estimates of the cointegrating space for the different methods with standard errors in
brackets for the six-dimensional data set until 1988

method DOLS VECM
c
i

m− p
y

R

∆p



1 0 0
0 1 0
0 0 1

−1.118 −1.120 −1.152
(0.050) (0.083) (0.063)
0.004 0.002 0.009

(0.003) (0.005) (0.004)
0.004 0.006 0.002

(0.003) (0.004) (0.003)





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0.053 0.069 0.064 0.048
(0.408) (0.436) (0.436) (0.374)
−0.062 −0.071 −0.055 −0.061
(0.329) (0.351) (0.351) (0.301)


state space

c
i

m− p
y
R

∆p



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

−0.065 −0.073 −0.086 −0.063 0.646
(1.301) (1.134) (0.876) (1.224) (37.175)



3.4.5 Testing Hypotheses on the Cointegrating Space

For the three-dimensional data set economic theory predicts that the cointegrating space is spanned
by the two great ratios c − y and i − y. For the six-dimensional data set several hypotheses can
be considered. One hypothesis, which is not tested by King et al. (1991), is that the cointegrating
space is spanned by the great ratios c − y, i − y and m − p − y. We test this hypothesis in the
first line of Table 3.8 for the VECM and the state space framework. Instead, King et al. (1991)
test the hypothesis that the cointegrating vectors are the first two great ratios and a long-run
money-demand relation (line two of Table 3.8). They also test the hypothesis that additionally to
these three cointegrating vectors there are stationary real rates (line three of Table 3.8). Line four
of Table 3.8 tests the hypothesis that the great ratios and real rates are cointegrated, combined
with the money-demand cointegrating vector. Line five of Table 3.8 contains the tests for the
stationary velocity model, which allows cointegration between the great ratios and real rates. The
hypotheses considered in King et al. (1991) are for a three- or four-dimensional cointegrating space.
In the models, where the cointegrating rank is larger than the one considered in the hypothesis, we
test the hypothesis that the proposed space is a subspace of the cointegrating space.30 Table 3.8
shows the hypotheses and their p-values. The hypotheses that the great ratios are contained
in the cointegrating space is rejected by the VECM, but not by state space framework. The
hypothesis that the first two great ratios and a long-run money-demand relation are contained in
the cointegrating space and the hypothesis that the great ratios and real rates are cointegrated,
combined with the money-demand cointegrating vector are not rejected at 5%-level for all three
models. The hypothesis of the stationary velocity model is rejected by King et al. (1991) at
5%-level, but it is not rejected using the VECM or the state space framework. The hypothesis
that additional to the first two great ratios and a long-run money-demand relation there are
stationary real rates is rejected both by King et al. (1991) and using the VECM. For the state
space framework it cannot be tested, because the cointegrating space is five-dimensional and for
every five-dimensional cointegrating space the parameters βy and βR can be chosen in such a way
that the space of second hypothesis is a subspace of the cointegrating space.

30For this we use the matlab function optimize hyptest.
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Table 3.8: Hypotheses on the cointegrating space and their p-values for the six-dimensional data
set until 1988

Hypothesis p-value p-value
King et al. (1991) VECM

(c− y), (i− y), (m− p− y) < 0.01
(c− y), (i− y), m− p− βyy + βRR 0.08 0.12

(c− y), (i− y),m− p− βyy + βRR, R−∆p < 0.01 < 0.01
(c− y)− ϕ1(R−∆p), (i− y)− ϕ2(R−∆p), m− p− βy + βRR 0.18 0.27

(c− y)− ϕ1(R−∆p), (i− y)− ϕ2(R−∆p), m− p− y < 0.01 0.10

Hypothesis p-value state space
(c− y), (i− y), (m− p− y) 0.55

(c− y), (i− y), m− p− βyy + βRR 0.59
(c− y)− ϕ1(R−∆p), (i− y)− ϕ2(R−∆p), m− p− βy + βRR 0.43

(c− y)− ϕ1(R−∆p), (i− y)− ϕ2(R−∆p), m− p− y 0.76

3.5 Full Sample Analysis

In this section we repeat the analysis from the last section with the larger data set until 2018 for
the VECM and the state space framework. We then compare the results obtained with the two
data sets.

3.5.1 Choice of System Parameters

Again, we start by determining the VAR order for the VECMs and the state dimension of the
state space systems.
Again, we estimate VECMs of different VAR orders for the three-dimensional data set and compare
the BIC. As for the data set until 1988, the BIC is minimal for p = 2. For the six-dimensional
data set we do the same. This time the BIC is minimal for p = 1. Thus, we use the VAR order
p = 1 for the analysis of the six-dimensional data set. Table C.1 in the appendix contains the BIC
for p = 1, . . . , 8 for both data sets.
Similarly, to determine the state dimension we compute the BIC for state space systems of order
n = 1, . . . , 10 and compare the BIC for the three-dimensional data set. This time the BIC is
minimal for n = 5. Thus, compared to the data set until 1988 the state dimension increases.
As for the three-dimensional data set we estimate models for different system orders for the six-
dimensional data set and compute the BIC. We use system orders n = 1, . . . , 15. The BIC is
minimal for n = 8. Thus, as for the three-dimensional data set, the state dimension increases
compared to the data set until 1988. Table C.2 in the appendix contains the BIC for the different
state dimensions for both data sets.

3.5.2 Deterministic Components

As for the data set until 1988, we use the cointegrating rank predicted by economic theory to
estimate a model for both the VECM and the state space framework and then use pseudo likelihood
ratio tests for the determination of the deterministic components. Again, we neglect cases one and
five since Figure 3.1 clearly shows that there is no quadratic trend and there are deterministic
components present. We test the null hypothesis that there is only an unrestricted constant against
the alternative that there is a trend restricted to the cointegrating space. If the hypothesis is
rejected, we conclude that there is a trend restricted to the cointegrating space. Otherwise, we
test the null hypothesis that there is a constant restricted to the cointegrating space against the
alternative of an unrestricted constant.
For the three-dimensional data set we use a cointegrating rank of two. Thus, the test statistic

78



79

Table 3.9: Test statistics and p-values of the hypotheses on the deterministic terms for VECM and
state space framework for the three- and six-dimensional data set from 1949 to 2018

Null, alternative VECM: test statistic (p-value) state space: test statistic (p-value)
s = 3

case 3, case 2 3.61 (0.307) 10.55 ( 0.014)
case 4, case 3 8.42 (0.038) 13.14 (0.004)

s = 6
case 3, case 2 35.98 (< 0.001) 74.10 (< 0.001)
case 4, case 3 21.62 (< 0.001) 11.75 (0.008)

for the first test is χ2
2 distributed under the null and the test statistic of the second test is χ2

1

distributed under the null. Table 3.9 contains the test statistics and their p-values for both the
VECM and the state space framework. As in the case of the data set until 1988, the first hypothesis
is not rejected at 5%-level, but the second hypothesis is rejected for the VECM. In the state space
framework, however, the first hypothesis is rejected at 5%-level. Thus, we use an unrestricted
constant for the VECM and a restricted linear trend for the state space framework.
For the six-dimensional data set we use a three-dimensional cointegrating space. Thus, the test
statistics are χ2

3-distributed under the null for both hypotheses. The test statistics and their
p-values for both the VECM and the state space framework are also in Table 3.9. This time
both methods reject the first hypothesis at 5%-level. We thus use the second case, a linear trend
restricted to the cointegrating space for the modeling.

3.5.3 Determination of the Cointegrating Rank

As in the case of the data set until 1988, we first test the null hypothesis of cointegrating rank
s − r = s, i. e., r = 0 against the alternative of at least one cointegrating relation. Then, we test
the null hypothesis r ≤ 1 against the alternative r ≥ 2. We continue this procedure until one
hypothesis is not rejected or until we test the hypothesis r ≤ s− 1 against the alternative r = s.
Since the distributions of the test statistics under the null hypotheses depends on the deterministic
terms, the critical values of the tests for the state space framework in the three-dimensional case
and for the six-dimensional case for both models are not those of Table 3.2, but those shown in
Table 3.10. Table 3.11 shows the results of the rank tests for the three-dimensional data set. Both
tests reject the hypotheses r = 0 and r ≤ 1 at 5%-level. The hypothesis r ≤ 2 is not rejected
at 5%-level. Thus, both tests find a cointegrating rank of two, which is consistent with economic
theory. Again, we estimate the system matrices without imposing restrictions on the cointegrating
space in the state space framework and look at the eigenvalues of A and A, shown in Table 3.12.
One eigenvalue of A is very close to one and the eigenvalues of A are not near the unit circle. This

Table 3.10: Critical values for the hypotheses on the cointegrating rank for different levels of
significance α in the model with a linear trend restricted to the cointegrating space

Hypothesis H0 : s− r = 6 H0 : s− r ≥ 5 H0 : s− r ≥ 4 H0 : s− r ≥ 3
α = 0.1 110.00 82.68 58.96 39.08
α = 0.05 114.96 86.96 62.61 42.20
α = 0.01 124.61 95.38 70.22 48.59

Hypothesis H0 : s− r ≥ 2 H0 : s− r ≥ 1
α = 0.1 22.95 10.56
α = 0.05 25.47 12.39
α = 0.01 30.65 16.39
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Table 3.11: Test statistics for the rank tests in the VECM and the state space framework for the
three- and the six-dimensional data set from 1949 to 2018

Null, alternative VECM, s = 3 state space, s = 3 VECM, s = 6 state space, s = 6
r = 0, r ≥ 1 55.84 77.68 344.94 548.63
r ≤ 1, r ≥ 2 16.16 35.49 127.09 192.14
r ≤ 2, r = 3 2.00 2.95 59.18 79.28
r ≤ 3, r ≥ 4 28.66 28.92
r ≤ 4, r ≥ 5 12.95 11.97
r ≤ 5, r = 6 4.68 2.78

Table 3.12: Eigenvalues of the matrices A and A and their absolute values for the state space
system estimated for the three- and the six-dimensional data set from 1949 to 2018

Eigenvalues of A absolute value Eigenvalues of A absolute value
s = 3

0.973 0.973 -0.865 0.865
0.913+0.098i 0.918 0.394+0.244i 0.463
0.913-0.098i 0.918 0.394-0.244i 0.463

-0.897 0.897 -0.115 0.115
0.806 0.806 -0.003 0.003

s = 6
0.452 0452 -0.578 0.578

0.811+0.274i 0.856 0.608+0.222i 0.647
0.811-0.274i 0.856 0.608-0.222i 0.647

0.743 0.743 0.355+0.337i 0.489
0.936+0.070i 0.939 0.355-0.337i 0.489
0.936-0.070i 0.939 -0.232+0.041i 0.236
0.995+0.005i 0.995 -0.232-0.041i 0.236
0.995-0.005i 0.995 -0.048 0.048
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fits the result of the rank tests that the cointegrating rank is two and there is thus one common
trend.
For the six-dimensional data set the test statistics for the VECM and the state space framework
are also shown in Table 3.11. The test of Johansen (1995) rejects the hypothesis r ≤ 2 at 10%-, but
not at 5%-level. The hypothesis r ≤ 3 then cannot be rejected at 1%-level. The test of Matuschek
et al. (2020) rejects the hypothesis r ≤ 2 at 1%-level. The hypothesis r ≤ 3 cannot be rejected at
5%-level. Thus, using the 5%-level the tests of Johansen (1995) find a cointegrating rank of two
and the tests of Matuschek et al. (2020) a cointegrating rank of three. In both cases the results
differ from the ones obtained for the data set until 1988. Again, we take a look at the eigenvalues
of the estimates of A and A without restrictions on the cointegrating rank for the state space
framework. The eigenvalues are also in Table 3.12. The two eigenvalues 0.995 ± 0.005i are close
to one. This rather indicates two common trends and thus a cointegrating rank of four. This time
the strict minimum phase condition is fulfilled.

3.5.4 Estimation of the Cointegrating Space

Again, we estimate the cointegrating space with a pseudo maximum likelihood estimator for both
the VECM and the state space framework. For the three-dimensional data set both rank tests found
a cointegrating rank of two, which is consistent with economic theory. As for the data set until
1988, we test for both estimates whether

(
1 0 −1

)′
and

(
0 1 −1

)′
span the cointegrating

space. Table 3.13 contains the results. The estimates differ from those for the data set until 1988.
The hypothesis cannot be rejected for the VECM at 5%-level, although the p-value is lower than
the one for the data set until 1988. For the state space framework the hypothesis is rejected at
5%-level, unlike in the analysis for the data set until 1988.
For the six-dimensional data set the results of the rank tests were different for the VECM and the
state space framework. Consequently, we estimate a two-dimensional cointegrating space for the
VECM and a three-dimensional cointegrating space for the state space framework. The estimates
are also shown in Table 3.13. A comparison to the results for the data set until 1988 is not possible,
because the dimensions of the cointegrating spaces differ. It is, however, notable that the standard
errors of the estimates obtained with the VECM are quite large.
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Table 3.13: Estimates of the cointegrating space with standard errors in brackets, test statistic of
the test whether the cointegrating space is spanned by (1, 0 − 1)′ and (0, 1,−1)′ and p-value of
the test for the three-dimensional data set from 1949 to 2018 and estimates for the cointegrating
space for the six-dimensional data set from 1949 to 2018

method VECM state space
s = 3

c
i
y


1 0
0 1

−0.753 −0.964
(0.071) (0.144)




1 0
0 1

−0.701 −1.066
(0.043) (0.145)


test statistic 1.69 15.50
p-value 0.4296 < 0.001

s = 6
c
i

m− p

y

R

∆p



1 0
0 1

−0.068 −5.088
(0.274) (4.690)
−1.087 −3.776
(0.152) (2.599)
0.010 −0.159

(0.008) (0.141)
−0.010 0.502
(0.025) (0.420)





1 0 0
0 1 0
0 0 1

−1.059 −1.728 0.897
(0.072) (0.170) (0.239)
0.009 0.013 0.024

(0.001) (0.003) (0.005)
−0.004 0.005 −0.079
(0.001) (0.003) (0.005)



3.5.5 Testing Hypotheses on the Cointegrating Space

For the state space framework we test the same hypotheses on the cointegrating space as for
the data set until 1988. Table 3.14 shows the hypotheses and their p-values. All hypotheses are
rejected at 1%-level. This is very different from the results for the first data set. For the VECM we
have a two-dimensional cointegrating space. Thus, it does not make sense to test the hypotheses
directly. We could test the hypotheses that the two-dimensional cointegrating space is a subspace
of the spaces suggested by the hypotheses of King et al. (1991). This, however, would not help
answering the question which of the cointegrating vectors suggested by the hypotheses are in fact
cointegrating vectors. It makes thus more sense to test which of the cointegrating vectors suggested
by the hypotheses are in the two-dimensional cointegrating space. Table 3.15 contains the p-values
of the tests. All hypotheses are rejected at 1%-level. This may be a hint that the cointegrating
rank estimated by the model is wrong.
All in all, we get very different results for the two data sets.

Table 3.14: Hypotheses on the cointegrating space and their p-values for the six-dimensional data
set from 1949 to 2018

Hypothesis p-value state space
(c− y), (i− y), (m− p− y) < 0.001

(c− y), (i− y), m− p− βyy + βRR < 0.001
(c− y), (i− y),m− p− βyy + βRR, R−∆p < 0.001

(c− y)− ϕ1(R−∆p), (i− y)− ϕ2(R−∆p), m− p− βy + βRR < 0.001
(c− y)− ϕ1(R−∆p), (i− y)− ϕ2(R−∆p), m− p− y 0.009
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Table 3.15: p-values of the hypotheses that the following vectors are contained in the two-
dimensional cointegrating space estimated with the VECM for the six-dimensional data set from
1949 to 2018

Hypothesis p-value
c− y < 0.001
i− y < 0.001

m− p− y < 0.001
m− p− βyy + βRR < 0.001

R−∆p < 0.001
(c− y)− ϕ1(R−∆p) < 0.001
(i− y)− ϕ2(R−∆p) < 0.001

m− p− y < 0.001

3.6 Analysis of the Data Set From 1989 to 2018

Since the results for the full data set and the subset until 1988 were so different, we analyze the
subset from 1989 to 2018 separately and compare the results to those obtained in the previous
two sections.

3.6.1 Choice of System Parameters

Again, we start by determining the VAR order for the VECMs and the state dimension of the
state space systems.
Again, we estimate VECMs of different VAR orders and compare the BIC. Unlike for the other
two data sets the BIC is minimal for p = 1 in the three-dimensional case. For the six-dimensional
data set we do the same. The BIC is also minimal for p = 1, which coincides with the results
for the full data set, but differs from the VAR order for the data set until 1988. Table C.1 in the
appendix contains the BIC for p = 1, . . . , 8 for both data sets.
Similarly, to determine the state dimension we compute the BIC for state space systems of order
n = 1, . . . , 10 and compare the BIC for the three-dimensional data set. The BIC is minimal for
n = 3. This coincides with the state dimension obtained for the data set until 1988, but differs
from the dimension for the full data set. As for the three-dimensional data set we estimate models
for different system orders for the six-dimensional data set and compute the BIC. We use system
orders n = 1, . . . , 15. This time the BIC is minimal for n = 5. This is lower than the system orders
for the other two six-dimensional data sets. Table C.2 in the appendix contains the BIC for the
different system orders for both data sets.

3.6.2 Deterministic Components

As for the other data sets, we use the cointegrating rank predicted by economic theory to estimate
a model for both the VECM and the state space framework and then use pseudo likelihood ratio
tests for the determination of the deterministic components. Again, we neglect cases one and
five since Figure 3.1 clearly shows that there is no quadratic trend and there are deterministic
components present. We test the null hypotheses that there is only a unrestricted constant against
the alternative that there is a trend restricted to the cointegrating space. If the hypothesis is
rejected, we conclude that there is a trend restricted to the cointegrating space. Otherwise, we
test the null hypothesis that there is a constant restricted to the cointegrating space against the
alternative of an unrestricted constant.
For the three-dimensional data set we use a cointegrating rank of two. Thus, the test statistic
for the first test is χ2

2 distributed under the null and the test statistic of the second test is χ2
1

distributed under the null. Table 3.16 contains the test statistics and their p-values for both the
VECM and the state space framework. In both cases the first hypothesis is rejected at 5%-level.
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Table 3.16: Test statistics and p-values of the hypotheses on the deterministic terms for VECM
and state space framework for the three- and the six-dimensional data set from 1989 to 2018

Null, alternative VECM: test statistic (p-value) state space: test statistic (p-value)
s = 3

case 3, case 2 13.91 (< 0.001) 10.61 (0.005)
case 4, case 3 3.96 (0.047) 4.01 (0.045)

s = 6
case 3, case 2 3.21 (0.360) 52.06 (< 0.001)
case 4, case 3 25.10 (< 0.001) 409.18 (< 0.001)

For the state space framework this coincides with the result for the full data set, for the VECM
this is different from the results of both data sets. Thus, we use a restricted deterministic linear
trend for both the VECM and the state space framework.
For the six-dimensional data set we use again a three-dimensional cointegrating space. Thus, the
test statistics are χ2

3-distributed under the null for both hypotheses. Table 3.16 also contains the
test statistics and their p-values for both the VECM and the state space framework. The state
space framework rejects the first hypothesis at 5%-level, as in the case of the full data set. The
VECM cannot reject the first hypothesis, but rejects the second at 5% level, as in the case of
the data set until 1988. Thus, we use a restricted linear trend in the state space model and an
unrestricted constant in the VECM.

3.6.3 Determination of the Cointegrating Rank

We use the same procedure for the rank tests as for the other two data sets. Due to the choice of the
deterministic terms in the previous subsection, we use the critical values of Table 3.2 for the VECM
of the six-dimensional data set and those of Table 3.10 for the other models. Table 3.17 shows
the results of the rank tests for the three-dimensional data set. Both tests reject the hypotheses
r = 0 at 5%-level. The hypothesis r ≤ 1 is not rejected at 10%-level. Thus, both tests find a
cointegrating rank of one. This is different from the other two data sets, where we have found a
cointegrating rank of two with both methods. Again, we estimate the system matrices without
imposing restrictions on the cointegrating space in the state space framework and look at the
eigenvalues of A and A, shown in Table 3.18. One pair of complex conjugated eigenvalues of A is
very close to one and the eigenvalues of A are not near the unit circle. This fits the result of the
rank tests that the cointegrating rank is one and there are thus two common trends.
The test statistics for the VECM and the state space framework for the six-dimensional data
set are also shown in Table 3.17. The test of Johansen (1995) rejects the hypothesis r ≤ 2 at
5%-, but not at 1%-level. The hypothesis r ≤ 3 then cannot be rejected at 10%-level. The test of
Matuschek et al. (2020) rejects the hypothesis r ≤ 2 at 1%-level. The hypothesis r ≤ 3 cannot be
rejected at 10%-level. Thus, using the 5%-level, both tests find a cointegrating rank of three. The

Table 3.17: Test statistics for the rank tests in the VECM and the state space framework for the
three- and the six-dimensional data set from 1989 to 2018

Null, alternative VECM, s = 3 state space, s = 3 VECM, s = 6 state space, s = 6
r = 0, r ≥ 1 59.00 53.78 201.55 592.64
r ≤ 1, r ≥ 2 14.32 11.32 119.66 166.11
r ≤ 2, r = 3 4.73 3.54 53.50 75.25
r ≤ 3, r ≥ 4 18.08 19.72
r ≤ 4, r ≥ 5 6.04 6.38
r ≤ 5, r = 6 0.52 0.56
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Table 3.18: Eigenvalues of the matrices A and A and their absolute values for the state space
system estimated for the three- and the six-dimensional data set from 1989 to 2018

Eigenvalues of A absolute value Eigenvalues of A absolute value
s = 3

0.959+0.051i 0.961 -0.212 0.212
0.959-0.051i 0.961 0.116 0.116

0.868 0.868 -0.000 0.000
s = 6

0.979 0.979 -0.564 0.564
0.937+0.075i 0.940 -0.292 0.292
0.937-0.075i 0.940 0.073+0.132i 0.150
0.918+0.113i 0.925 0.073-0.132i 0.150
0.918-0.113i 0.925 0.001 0.001

cointegrating rank is thus smaller than the one found in the data set until 1988. For the state space
framework the cointegrating rank coincides with the one found for the full data set. Again, we take
a look at the eigenvalues of the estimates of A and A without restrictions on the cointegrating
rank for the state space framework. The eigenvalues are also in Table 3.18. The eigenvalues of A
rather indicate one common trend and thus a cointegrating rank of five. Since all eigenvalues are
greater than 0.9, however, the number of common trends is difficult to determine by looking at
the eigenvalues. As for the full data set, the strict minimum phase condition is fulfilled.

3.6.4 Estimation of the Cointegrating Space

Again, we estimate the cointegrating space with a pseudo maximum likelihood estimator for both
the VECM and the state space framework. For the three-dimensional data set both rank tests
found a cointegrating rank of one. Thus, we do not test the hypothesis, whether

(
1 0 −1

)′
and(

0 1 −1
)′

span the cointegrating space, but the hypothesis, whether the one-dimensional coin-

tegrating space is contained in the space spanned by
(
1 0 −1

)′
and

(
0 1 −1

)′
. Table 3.19

contains the results. A comparison to the cointegrating spaces of the other data sets is not possible,
since the cointegrating rank is different. It is notable that the standard errors of the estimates are
very large. The hypothesis that the cointegrating space is a subspace of the the space spanned by
(1, 0− 1)′ and (0, 1,−1)′ is rejected by both the VECM and the state space framework.
For the six-dimensional data set we estimate a three-dimensional cointegrating space for both
the VECM and the state space framework. Table 3.19 also contains the estimates for the six-
dimensional data set. The estimated cointegrating spaces are similar and similar to the cointe-
grating space estimated for the full data set using the state space framework, the only other
three-dimensional cointegrating space.
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Table 3.19: Estimates of the cointegrating space with standard errors in brackets, test statistic
of the test whether the cointegrating space is a subspace of the the space spanned by (1, 0 − 1)′

and (0, 1,−1)′ and p-value of the test for the three-dimensional data set from 1989 to 2018 and
estimates of the cointegrating space for the six-dimensional data set from 1989 to 2018

method VECM state space
s = 3

c
i

y


1

11.489
(33.018)
−31.480
(88.672)




1
17.134

(78.287)
−44.922
(202.529)


test statistic 20.10 16.29
p-value < 0.001 < 0.001

s = 6
c
i

m− p
y

R

∆p



1 0 0
0 1 0
0 0 1

−1.269 −2.312 0.845
(0.683) (1.813) (4.997)
0.005 −0.005 0.015

(0.022) (0.059) (0.164)
0.010 −0.049 −0.131

(0.033) (0.087) (0.240)





1 0 0
0 1 0
0 0 1

−1.247 −2.245 1.076
(0.408) (0.732) (2.994)
0.004 −0.022 0.023

(0.012) (0.022) (0.091)
−0.007 −0.048 −0.160
(0.007) (0.012) (0.050)



3.6.5 Testing Hypotheses on the Cointegrating Space

For both the VECM and the state space framework we test the same hypotheses on the cointe-
grating space as for the other two data sets. Table 3.20 shows the hypotheses and their p-values.
As for the full data set, all hypotheses are rejected at 1%-level.

Table 3.20: Hypotheses on the cointegrating space and their p-values for the six-dimensional data
set from 1989 to2018

Hypothesis p-value VECM p-value state space
(c− y), (i− y), (m− p− y) < 0.001 < 0.001

(c− y), (i− y), m− p− βyy + βRR < 0.001 < 0.001
(c− y), (i− y),m− p− βyy + βRR, R−∆p < 0.001 < 0.001

(c− y)− ϕ1(R−∆p), (i− y)− ϕ2(R−∆p), m− p− βy + βRR < 0.001 < 0.001
(c− y)− ϕ1(R−∆p), (i− y)− ϕ2(R−∆p), m− p− y < 0.001 < 0.001
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3.7 Summary and Conclusion

The use of VARMA processes, which can be analyzed using the state space framework, may be
beneficial in cointegration analysis compared to the more restrictive VAR framework. For this re-
ason the authors have provided tools for cointegration analysis using the state space framework in
a series of papers focusing on theory. To illustrate the results of these papers, this paper provides
a tutorial for the application of these results. This paper describes pseudo maximum likelihood
analysis for I(1) processes possessing a state space representation with an eye on application. By
repeating the analysis of US economic data from 1949 to 1988 of King et al. (1991) the authors
demonstrate that all economically relevant questions examined by King et al. (1991) can also be
analyzed using the state space framework. Additionally, this paper points out which matlab func-
tions can be used for cointegration analysis in the state space framework. The economic analysis
includes tests for the presence or absence of deterministic terms, tests for the determination of the
cointegrating rank and pseudo likelihood ratio tests for hypotheses on the cointegrating space.
This paper compares the results of King et al. (1991) to those obtained using the VECM of Jo-
hansen (1995) and the state space framework. While the results for the three-dimensional data set
are similar, the results for the six-dimensional data set differ. For example, employing the three
different methods for the determination of the cointegrating rank leads to three different results
for the six-dimensional data set. This indicates that the results of empirical applications with six
or more variables and sample sizes of about two hundred should be interpreted more carefully
than is commonly done.
Additionally, this paper tests the robustness of the VECM and the state space framework by
repeating the analysis both on a longer data set until 2018 and on the subset of the data set
from 1989 to 2018. For both the VECM and the state space framework the rank tests lead to
a lower cointegrating rank and the pseudo likelihood ratio tests reject hypotheses that were not
rejected for the data set until 1988 for both the full sample and the data set from 1989 to 2018.
Structural breaks are one possible explanation for these differences. This could be investigated
with monitoring methods. This is, however, beyond the scope of this paper.

87



88

88



89

Appendix of the First Chapter

A.1 Proofs of the Results of Section 1.3

A.1.1 Proof of Lemma 1.1

(i) Let Cj be a sequence in Os,d converging to C0 for j →∞. By continuity of matrix multipli-
cation

C ′0C0 = ( lim
j→∞

Cj)
′ lim
j→∞

Cj = lim
j→∞

(C ′jCj) = Id.

Thus, C0 ∈ Os,d, which shows that Os,d is closed. By construction [C ′C]i,i =
∑s
j=1 c

2
j,i. Since

[C ′C]i,i = 1 for all C ∈ Os,d and i = 1, . . . , d, the entries of C are bounded.

(ii) By definition CO(θ) is a product of matrices whose elements are either constant or infinitely
often differentiable functions of the elements of θ.

(iii) The algorithm discussed above Lemma 1.1 maps every C ∈ Os,d to [Id, 0
′
s−d×d]

′. Since
Rq,i,j(θ)

−1 = Rq,i,j(θ)
′ for all q, i, j and θ, C can be obtained by multiplying [Id, 0

′
s−d×d]

′

with the transposed Givens rotations.

(iv) As discussed, C−1
O (·) is obtained from a repeated application of the algorithm described in

Remark 1.10. In each step two entries are transformed to polar coordinates. According to
Amann and Escher (2008, Chapter 8, p. 204) the transformation to polar coordinates is
infinitely often differentiable with infinitely often differentiable inverse for θ > 0 (and hence
r > 0), i. e., on the interior of the interval [0, π). Thus, C−1

O is a concatenation of functions
which are infinitely often differentiable on the interior of ΘR

O and is thus infinitely often
differentiable, if θj > 0 for all components of θ.
Clearly, the interior of ΘR

O is open and dense in ΘR
O. By the definition of continuity the pre-

image of the interior of ΘR
O is open in Os,d. By (iii), there exists a θ0 for arbitrary C0 ∈ Os,d

such that CO(θ0) = C0. Since the interior of ΘR
O is dense in ΘR

O there exists a sequence θj
in the interior of ΘR

O such that θj → θ0. Then, CO(θj) → C0 because of the continuity of
CO. Since CO(θj) is a sequence in the pre-image of the interior of ΘR

O, it follows that the
pre-image of the interior of ΘR

O is dense in Os,d.

(v) For any C ∈ Os,s it holds that 1 = det(C ′C) = det(C)2 and det(C) ∈ R, which implies
det(C) ∈ {−1, 1}. Since the determinant is a continuous function on quadratic matrices,
both sets O+

s,s and O−s,s are disjoint and closed.

(vi) The proof proceeds analogously to the proof of (iii).

(vii) A function defined on two disjoint subsets is infinitely often differentiable if and only if the
two functions restricted to the subsets are infinitely often differentiable. The same arguments
as used in (iv) together with the results in (ii) imply that C−1

O : O+
s,s → ΘR

O and C±O (·)
∣∣
O+
s,s

are infinitely often differentiable with infinitely often differentiable inverse on an open subset
of O+

s,s. Clearly, the multiplication with I−s is infinitely often differentiable with infinitely



90

often differentiable inverse, which implies that C±O (·)
∣∣
O−s,s

is infinitely often differentiable

with infinitely often differentiable inverse on an open subset of O−s,s, from which the result
follows.�

A.1.2 Proof of Lemma 1.2

(i) Let Cj be a sequence in Us,d converging to C0 for j →∞. By continuity of matrix multipli-
cation

C ′0C0 = ( lim
j→∞

Cj)
′ lim
j→∞

Cj = lim
j→∞

(C ′jCj) = Id.

Thus, C0 ∈ Us,d, which shows that Us,d is closed. By construction [C ′C]i,i =
∑s
j=1 |cj,i|2.

Since [C ′C]i,i = 1 for all C ∈ Us,d and i = 1, . . . , d, the entries of C are bounded.

(ii) By definition CU (ϕ) is a product of matrices whose elements are either constant or infinitely
often differentiable functions of the elements of ϕ.

(iii) The algorithm discussed above Lemma 1.2 maps every C ∈ Us,d to [Dd(ϕD), 0′s−d×d]
′ with

Dd(ϕD) = diag(eiϕD,1 , . . . , eiϕD,d). Since Qq,i,j(ϕ)−1 = Qq,i,j(ϕ)′ for all q, i, j and ϕ, C can
be obtained by multiplying [Dd(ϕD), 0′s−d×d]

′ with the transposed Givens rotations.

(iv) The algorithms in Remark 1.12 and above Lemma 1.2 describe C−1
U in detail. The deter-

mination of an element of ϕL or ϕR uses the transformation of two complex numbers into
polar coordinates in step 2 of Remark 1.12, which according to Amann and Escher (2008,
Chapter 8, p. 204) is infinitely often differentiable with infinitely often differentiable inverse
except for non-negative reals, which are the complement of an open and dense subset of
the complex plane. Step 3 of Remark 1.12 uses the formulas ϕ1 = tan−1

(
b
a

)
, which is in-

finitely often differentiable for a > 0, and ϕ2 = ϕa − ϕb mod 2π, which is infinitely often
differentiable for ϕa 6= ϕb, which occurs on an open and dense subset of [0, 2π)× [0, 2π). For
the determination of an element of ϕD a complex number of modulus one is transformed in
polar coordinates which is infinitely often differentiable on an open and dense subset of com-
plex numbers of modulus one, compare again Amann and Escher (2008, Chapter 8, p. 204).
Thus, C−1

U is a concatenation of functions which are infinitely often differentiable on open
and dense subsets of their domain of definition and is thus infinitely often differentiable on
an open and dense subset of Us,d.�

A.1.3 Proof of Theorem 1.2

(i) The multi-index Γ is unique for a transfer function k ∈Mn, since it only contains information
encoded in the canonical form. Therefore, MΓ is well defined. Since, conversely, for every
transfer function k ∈ Mn a multi-index Γ can be found, MΓ constitutes a partitioning of
Mn. Furthermore, using the canonical form, it is straightforward to see that the mapping
attaching the triple (A,B, C) ∈ ∆Γ in canonical form to a transfer function k ∈ MΓ is
homeomorphic (bijective, continuous, with continuous inverse): Bijectivity is a consequence
of the definition of the canonical form. Tpt continuity of the transfer function as a function
of the matrix triples is obvious from the definition of Tpt. Continuity of the inverse can
be shown by constructing the canonical form starting with an overlapping echelon form,
which is continuous according to Hannan and Deistler (1988, Chapter 2), and subsequently
transforming the state basis to reach the canonical form. This involves the calculation of a
Jordan normal form with fixed structure. This is an analytic mapping, cf. Chatelin (1993,
Theorem 4.4.3). Finally, the restrictions on C and B are imposed. For given multi-index Γ
these transformations are continuous (as discussed above they involve QR decompositions to
obtain unitary block columns for the blocks of C, rotations to p.u.t form with fixed structure
for the blocks of B and transformations to echelon canonical form for the stable part).

90



91

(ii) The construction of the triple (A(θ),B(θ), C(θ)) for given θ and Γ is straightforward: Au is
uniquely determined by Γ. Since θB,p contains the entries of Bu restricted to be positive and
θB,f contains the free parameters of Bu, the mapping θB,p × θB,f → Bu is continuous. The
mapping θ• → (A•,B•, C•) is continuous, cf. Hannan and Deistler (1988, Theorem 2.5.3 (ii)).
The mapping θC,E × θC,G → Cu consists of iterated applications of CO, and CU (compare
Lemmas 1.1 and 1.2), which are differentiable and thus continuous and iterated applications
of the extensions of the mappings CO,d2−d1 and CO,G (compare Corollaries 1.1 and 1.2) to
general unit root structures and to complex matrices. The proof that these functions are
differentiable is analogous to the proofs of Lemma 1.1 and Lemma 1.2.

(iii) The definitions of θB,f and θB,p immediately imply that they depend continuously on Bu.
The parameter vector θ• depends continuously on (A•, B•, C•), cf. Hannan and Deistler
(1988, Theorem 2.5.3 (ii)). The existence of an open and dense subset of matrices Cu such
that the mapping attaching parameters to the matrices is continuous follows from arguments
contained in the proofs of Lemma 1.1 and Lemma 1.2.�

A.2 Proofs of the Results of Section 1.4

A.2.1 Proof of Theorem 1.3

For the first inclusion the proof can be divided into two parts, discussing the stable and the un-
stable subsystem separately. The result with regard to the stable subsystem is due to Hannan and
Deistler (1988, Theorem 2.5.3 (iv)). For the unstable subsystem (Ω̃S , p̃) ≤ (ΩS , p) implies the exis-

tence of a matrix S as described in Definition 1.9. Partition S =

[
S1

S2

]
such that S1p = p1 ≥ p̃.

Let k̃ be an arbitrary transfer function in MΓ̃ = π(∆Γ̃) with corresponding state space realization

(Ã, B̃, C̃) ∈ ∆Γ̃. Then, we find matrices B1 and C1 such that for the state space realization given

by A = S

[
Ã J̃12
0 J̃2

]
S′, B = S

[
B̃
B1

]
and C =

[
C̃ C1

]
S′ it holds that (A,B, C) ∈ ∆Γ. Then,

(Aj ,Bj , Cj) = (A, S diag(In1 , j
−1In2)S′B, C) ∈ ∆Γ, where ni is the number of rows of Si for i = 1, 2

converges for j → ∞ to

(
A, S

[
B̃
0

]
, C
)
∈ ∆Γ, which is observationally equivalent to (Ã, B̃, C̃).

Consequently, k̃ = π

(
A, S

[
B̃
0

]
, C
)
∈ π(∆Γ).

To show the second inclusion, consider a sequence of systems (Aj ,Bj , Cj) ∈ ∆Γ, j ∈ N converging

to (A0, B0, C0) ∈ ∆Γ. We need to show Γ̄ ∈
⋃

Γ̃∈K(Γ){Γ̌ ≤ Γ̃}, where Γ̄ is the multi-index corre-

sponding to (A0, B0, C0).
For the stable system we can separate the subsystem (Aj,s, Bj,s, Cj,s) remaining stable in the li-
mit and the part with eigenvalues of Aj tending to the unit circle. As discussed in Section 1.4.1,
(Aj,s, Bj,s, Cj,s) converges to the stable subsystem (A0,•, B0,•, C0,•) whose Kronecker indices can
only be smaller than or equal to α•, cf. Hannan and Deistler (1988, Theorem 2.5.3).

The remaining subsystem consists of the unstable subsystem of (Aj ,Bj , Cj), which converges
to (A0,u, B0,u, C0,u), and the second part of the stable subsystem containing all stable eigenvalues
of Aj converging to the unit circle. The limiting combined subsystem (A0,c, B0,c, C0,c) is such that
A0,c is block diagonal. If the limiting combined subsystem is minimal and B0,u has a structure
corresponding to p, this shows that the pair (Ω̄S , p̄) extends (ΩS , p) in accordance with the defi-
nition of K(Γ).
Since the limiting subsystem is not necessarily minimal and B0,u has not necessarily a structure
corresponding to p, eliminating coordinates of the state and adapting the corresponding structure
indices p may result in a pair (Ω̄S , p̄) that is smaller than the pair (Ω̃S , p̃) corresponding to an
element of K(Γ).�

91



92

A.2.2 Proof of Theorem 1.4

The multi-index Γ contains three components: ΩS , p, α•. For given ΩS the selection of the struc-
tures indices pmax introducing the fewest restrictions, such that in its boundary all possible p.u.t.
matrices occur, has been discussed in Section 1.4.2. Choosing this maximal element pmax then
implies that all systems of given state space unit root structure correspond to a multi-index that
is smaller than or equal to (ΩS , pmax, β•), where β• is a Kronecker index corresponding to state
space dimension n•. For the Kronecker indices of order n• it is known that there exists one index
α•,g such that Mα•,g is open and dense in Mn• . The set MΩS ,pmax,β• is therefore contained in

MΩS ,pmax,α•,g , which implies (1.14) with Γg(ΩS , n•) := (ΩS , pmax, α•,g).
For the second claim choose an arbitrary state space realization (A,B, C) in canonical form

such that π(A,B, C) ∈ M(ΩS , n•) for arbitrary ΩS . Define the sequence (Aj , Bj , Cj)j∈N by Aj =
(1 − j−1)A, Bj = (1 − j−1)B, Cj = C. Then, λ|max|(Aj) < 1 holds for all j, which implies

π(Aj , Bj , Cj) ∈ MΓα•,g(n)
for every n ≥ nu(Ωs) + n• and every j. The continuity of π implies

π(A,B, C) = limj→∞π(Aj , Bj , Cj) ∈MΓα•,g(n)
.�

A.2.3 Proof of Theorem 1.5

(i) Assume that there exists a sequence ki ∈MΓ converging to a transfer function k0 ∈MΓ. For
such a sequence the size of the Jordan blocks for every unit root are identical from some i0
onwards since eigenvalues depend continuously on the matrices, cf. Chatelin (1993): Thus,
the stable part of the transfer functions ki must converge to the stable part of the transfer
function k0, since the sum of the algebraic multiplicity of all eigenvalues inside the open unit
disc cannot drop in the limit. Since Vα (the set of all stable transfer functions with Kronecker
index α) is open in Vα according to Hannan and Deistler (1988, Theorem 2.5.3) this implies
that the stable part of ki has Kronecker index α• from some i0 onwards.

For the unstable part of the transfer function note that in MΓ for every unit root zj the
rank of (A− zjIn)r is equal for every r. Thus, the maximum over MΓ cannot be larger due
to lower semi-continuity of the rank. It follows that for ki → k0 the ranks of (A− zjIn)r for
all |zj | = 1 and for all r ∈ N0 are identical to the ranks corresponding to k0 from some point
onwards showing that ki has the same state space unit root structure as k0 from some i0
onwards. Finally, the p.u.t. structure of sub-blocks of Bk clearly introduces an open set being
defined via strict inequalities. This shows that ki ∈MΓ from some i0 onwards implying that
MΓ is open in MΓ.

(ii) The first inclusion was shown in Theorem 1.3. Comparing Definitions 1.10 and 1.11, we
see

⋃
Γ̃∈K(Γg)MΓ̃ ⊂

⋃
(Ω̃S ,ñ•)∈A(ΩS ,n•)

M(Ω̃S , ñ•). By the definition of the partial ordering

(compare Definition 1.9)
⋃

Γ̃≤Γg
MΓ̃ ⊂

⋃
(Ω̃S ,ñ•)≤(ΩS ,n•)

M(Ω̃S , ñ•) holds. Together these two
statements imply the second inclusion.⋃

(Ω̃S ,ñ•)∈A(ΩS ,n•)

⋃
(Ω̌S ,ň•)≤(Ω̃S ,ñ•)

M(Ω̌S , ň•) ⊂ MΓg is a consequence of the following
two statements:

(a) If M(Ω̃S , ñ•) ⊂M(ΩS , n•), then
⋃

(Ω̌S ,ň•)≤(Ω̃S ,ñ•)
M(Ω̌S , ň•) ⊂M(ΩS , n•).

(b) If (Ω̃S , ñ•) ∈ A(ΩS , n•), then M(Ω̃S , ñ•) ⊂M(ΩS , n•).

For (a) note that for an arbitrary transfer function ǩ ∈M(Ω̌S , ň•) with (Ω̌S , ň•) ≤ (Ω̃S , ñ•)
there is a multi-index Γ̌ such that ǩ ∈MΓ̌. By the definition of the partial ordering (compare
Definition 1.9) we find a multi-index Γ̃ ≥ Γ̌ such that MΓ̃ ⊂ M(Ω̃S , ñ•). By Theorem 1.3

and the continuity of π we have MΓ̌ ⊂ π(∆Γ̃) ⊂ MΓ̃. Since M(Ω̃S , ñ•) ⊂ M(ΩS , n•) by

assumption, ǩ ∈MΓ̃ ⊂M(Ω̃S , ñ•) ⊂M(ΩS , n•) which finishes the proof of (a).

With respect to (b) note that by Definition 1.11, A(ΩS , n•) contains transfer functions with
two types of state space unit root structures. First, Ãu corresponding to state space unit
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root structure Ω̃S may be of the form

S ÃuS′ =

[
Au J12

0 J2

]
. (A.1)

Second, Ǎu corresponding to state space unit root structure Ω̌S may be of the form (A.1),
where off-diagonal elements of Au are replaced by zero. To prove (b), we need to show that
for both cases the corresponding transfer function is contained in M(ΩS , n•).

We start by showing that in the second case the transfer function ǩ is contained inM(Ω̃S , ñ•),
where Ω̃S is the state space unit root structure corresponding to Ãu in (A.1). For this,
consider the sequence

Aj =

[
1 j−1

0 1

]
, Bj =

[
B1

B2

]
, Cj =

[
C1 C2

]
.

Clearly, every system (Aj , Bj , Cj) corresponds to an I(2) process, while the limit for j →∞
corresponds to an I(1) process. This shows that it is possible in the limit to trade one I(2)
component with two I(1) components leading to more transfer functions in the Tpt closure
of MΓg(ΩS ,n•) than only the ones included in π(∆Γg ), where the off-diagonal entry in Aj is
restricted to equal one and hence the corresponding sequence of systems in the canonical
form diverges to infinity. In a sense these systems correspond to “points at infinity”: For the
example given above we obtain the canonical form

Aj =

[
1 1
0 1

]
, Bj =

[
B1

B2/j

]
, Cj =

[
C1 jC2

]
.

Thus, the corresponding parameter vector for the entries in Bj,2 converges to zero and the
ones corresponding to Cj,2 to infinity.

Generalizing this argument shows that every transfer function corresponding to a pair
(Ω̌S , ň•) in A(Ω̃S , ñ•), where Ǎu can be obtained by replacing off-diagonal entries of Au
with zero, can be reached from within M(Ω̃S , ñ•).

To prove k̃ ∈M(ΩS , n•) in the first case, where the state space unit root structure is extended
as visible in equation (A.1), consider the sequence:

Ãj =

[
1 1
0 1− j−1

]
, B̃j =

[
B1

B2

]
, C̃j =

[
C1 C2

]
,

corresponding to the following system in canonical form (except that the stable subsystem
is not necessarily in echelon canonical form)

Ãj =

[
1 0
0 1− j−1

]
, B̃j =

[
B1 + jB2

−jB2

]
, C̃j =

[
C1 C1 − C2/j

]
.

This sequence shows that there exists a sequence of transfer functions corresponding to I(1)
processes with one common trend that converge to a transfer function corresponding to an
I(2) system. Again in the canonical form this cannot happen as there the (1, 2) entry of Ãj
would be restricted to be equal to zero. At the same time note that the dimension of the
stable system is reduced due to one component of the state changing from the stable to the
unit root part.

Now, for a unit root structure Ω̃S such that (Ω̃S , ñ•) ∈ A(ΩS , n•), satisfying

S ÃuS′ =

[
Au J12

0 J2

]
,

the Jordan blocks corresponding to ΩS are sub-blocks of the ones corresponding to Ω̃S ,
potentially involving a reordering of coordinates using the permutation matrix S. Taking
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the approximating sequence of transfer functions k̃j ∈ MΓg(ΩS ,n•) → k0 ∈ MΓg(Ω̃S ,ñ•)
that

have the same structure Ω̃S , but replacing J2 by j−1
j J2 leads to processes with state space

unit root structure ΩS .

For the stable part of k̃j we can separate the part containing poles tending to the unit circle

(contained in J2) and the remaining transfer function k̃j,s, which has Kronecker indices
α̃ ≤ α•. However, the results of Hannan and Deistler (1988, Theorem 2.5.3) then imply that
the limit remains in Mα• and hence allows for an approximating sequence in Mα• .

Both results combined constitute the whole set of attainable state space unit root structures
in Definition 1.11 and prove (b).

As follows from Corollary 1.4, M(ΩS , n•) = MΓg(ΩS ,n•). Thus, (b) implies the inclusion⋃
(Ω̃S ,ñ•)∈A(ΩS ,n•)

M(Ω̃S , ñ•) ⊂ MΓg and (a) adds the second union showing the subset
inclusion.
It remains to show equality for the last set inclusion. Thus, we need to show that for kj ∈
MΓg(ΩS ,n•), kj → k0, it holds that k0 ∈M(Ω̃S , ñ•), where (Ω̃S , ñ•) ≤ (Ω̌S , ň•) ∈ A(ΩS , n•).
To this end note that the rank of a matrix is a lower semi-continuous function such that for
a sequence of matrices Ej with limit E0, we have

rank( lim
j→∞

Ej) = rank(E0) ≤ lim inf
j→∞

rank(Ej).

Then, consider a sequence kj(z) ∈ MΓg(Ωs,n•), j ∈ N. We can find a converging sequence of
systems (Aj , Bj , Cj) realizing kj(z). Therefore, choosing Ej = (Aj − zkIn)r we obtain that

rank((A0 − zkIn)t) ≤ n−
t∑

r=1

dkj,hk−r+1,

since kj(z) ∈ MΓg(Ωs,n•) implies that the number dkj,hk−r+1 of the generalized eigenvalues
at the unit roots is governed by the entries of the state space unit root structure Ωs. This
implies that

∑t
r=1 d

k
j,hk−r+1 ≤

∑t
r=1 d

k
0,hk−r+1 for t = 1, 2, ..., n. Consequently, the limit has

at least as many chains of generalized eigenvalues of each maximal length as dictated by the
state space unit root structure ΩS for each unit root of the limiting system.
Rearranging the rows and columns of the Jordan normal form using a permutation matrix
S, it is then obvious that either the limiting matrix A0 has additional eigenvalues, where
thus

SA0S
′ =

[
Aj J̃12

0 J̃2

]
must hold. Or upper diagonal entries in Aj must be changed from ones to zeros in order to
convert some of the chains to lower order. One example in this respect has been given above:

For Aj =

[
1 1/j
0 1

]
the rank of (Aj − I2)r is equal to 1 for r = 1 and 0 for r = 2. For the

limit we obtain A0 = I2 and hence the rank is zero for r = 1, 2. The corresponding indices
are d1

j,1 = 1, d1
j,2 = 1 for the approximating sequence and d1

0,1 = 0, d1
0,2 = 2 for the limit re-

spectively. Summing these indices starting from the last one, one obtains d1
j,2 = 1 ≤ d1

0,2 = 2

and d1
j,1 + d1

j,2 = 2 ≤ d1
0,1 + d1

0,2 = 2.
Hence, the state space unit root structure corresponding to (A0, B0, C0) must be attainable
according to Definition 1.11. The number of stable state components must decrease accor-
dingly.
Finally, the limiting system (A0, B0, C0) is potentially not minimal. In this case the pair
(Ω̃S , ñ•) is reduced to a smaller one, concluding the proof.�
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Appendix of the Second Chapter

B.1 Preliminaries

Remark B.1 Lukas Matuschek extends the results of the second chapter to the I(2) case in his
dissertation. Since a proof of the results in the I(2) case focusing only on the differences to the
proof in the MFI(1) case would be impossible to understand for everyone who has not read this
proof first, Lukas Matuschek has copied the proof inserting the necessary adaptations. For this
reason the passages in the two theses are very similar.

In particular for the convergence of the appropriately scaled Hessian matrix in a neighborhood
of the true system, we will use a concept of stochastic equicontinuity, as used also in Saikkonen
(1995, Section 5). Instead of Saikkonen’s Condition 3.1., compare Saikkonen (1993, p. 160), we
will use the following uniform equicontinuity condition, that is later shown to hold for the required
quantities:

Condition B.1 (USE - Uniform Stochastic Equicontinuity) A sequence Xn(θ), θ ∈ Θ is
said to fulfill Condition USE, if for every sequence θn → θ and every ε > 0, δ > 0 and η > 0 there
exists an integer n(ε, η, δ) such that P{supt∈B(θn,δ) ‖Xn(t)−Xn(θn)‖ > ε} ≤ ηδ for n ≥ n(ε, η, δ).

This condition ensures that the convergence is uniformly in the parameter space. In the special
case of a compact parameter space we obtain the following consequence:

Lemma B.1 Assume that Xj(θ), θ ∈ Θ fulfills Condition USE, where Θ is compact. Further,
assume that for each fixed θ ∈ Θ the sequence Xj(θ) → 0 in probability for j → ∞. Then,
supθ∈ΘXj(θ)→ 0 in probability for j →∞.

PROOF: Fix ε > 0, δ > 0. Let θ1, . . . , θk denote k points, such that ∪ki=1B(θi, δ) covers Θ. Due to the
assumed compactness of Θ a finite cover exists. Since Xj(θ) fulfills Condition USE, there exists for
each i an integer ji(ε, η, δ) such that the probability that the error supθ′∈B(θi,δ) ‖Xj(θ

′)−Xj(θi)‖ >
ε/2 is smaller than ηδ for j ≥ ji(ε, η, δ). If η = ε/(2kδ) is chosen,

P{sup
θ∈Θ
‖Xj(θ)‖ > ε} ≤ P{ sup

θ∈∪B(θi,δ)

‖Xj(θ)‖ > ε}

≤
k∑
i=1

P{ sup
θ∈B(θi,δ)

‖Xj(θ)−Xj(θi) +Xj(θi)‖ > ε}

≤
k∑
i=1

P{ sup
θ∈B(θi,δ)

‖Xj(θ)−Xj(θi)‖ > ε/2}+ P{‖Xj(θi)‖ > ε/2}

≤ kηδ +

k∑
i=1

P{‖Xj(θi)‖ > ε/2}

and this can be made arbitrarily small by choosing j large, since kηδ = ε/2 and Xn(θi) → 0 in
probability. �
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For the convergence results it is convenient to use complex processes. For the deterministic terms,
for example, note that dt(θD) = Dst where

st = [ 1 cos(ω2t) sin(ω2t) . . . sin(ωl−1t) (−1)t cos(ωl+1t) . . . sin(ωmt) t ]′.

For the following analysis we use the transformation st,C = U−1st where U = diag(1, Il−2 ⊗

u, 1, Im−l ⊗ u, 1) with u = 1
2

[
1 1
i −i

]
to obtain

st,C = [ 1 (z2)t (z̄2)t . . . (z̄l−1)t (−1)t (zl+1)t . . . (z̄m)t t ]′.

with components st(zk) = zkst−1(zk). Note that in the following lemmas we refer to the complex
quantities and accordingly the roots are allowed to vary in the interval [0, 2π). By xt(zk) we denote
the state components corresponding to one potentially complex unit root zk. This is not to be
confused with xt,k, which collects all components corresponding to pairs of complex conjugate unit
roots.

Lemma B.2 Let ω1, . . . , ωl2π denote l2π distinct frequencies in [0, 2π) and let {εt}t∈Z be a mar-
tingale difference sequence fulfilling the assumptions stated in Assumption 2.1 with non-singular
innovation variance Σ◦. Further, let xt+1(zk) = zkxt(zk) + Bk,◦εt, x1(zk) = x1, zk = eiωk and
st+1(zk) = zkst(zk), s1(zk) = 1 for k = 1, . . . , l2π. Here, x1 is a complex valued constant vector.
Let δk = 1 for zk = ±1 and δk = 1√

2
else. Further, let δkWk(u), k = 1, · · · , l2π denote the weak

limit of T−1/2
∑[Tu]
t=1 z

t
kεt, where [Tu] denotes the integer part of Tu. Wk(u) and Wj(u) are in-

dependent for j 6= k. Wk(u) = W r
k (u) + iW i

k(u), where W r
k (u) denotes the real part and W i

k(u)
the imaginary part of the random variable, which are independent real valued random walks with
variance Σ◦.
Then, the following statements hold:

(i) 〈εt, εt+j〉 → δ0,jΣ◦ in probability.

(ii) 〈xt(zk), εt〉
d→ δ2

kBk,◦
∫ 1

0
Wk(u)dWk(u)′ =: X(zk),

〈st(zk), εt〉 → 0.

(iii) T−1〈xt(zk), xt(zk)〉 d→ δ2
kBk,◦

∫ 1

0
Wk(u)Wk(u)′duB′k,◦ =: Z(zk),

〈st(zk), st(zk)〉 = 1.

(iv) For zk 6= zj it holds that T−1〈xt(zk), xt(zj)〉 → 0 in probability and
〈st(zk), st(zj)〉 → 0.

(v) T−1/2〈xt(zk), st(zk)〉 d→ δk
∫ 1

0
Bk,◦Wk(u)du =: Y (zk)

and T−1/2〈xt(zk), st(zj)〉 → 0 in probability for zj 6= zk.

(vi) T−3/2〈t, xt(1)〉 d→
∫ 1

0
uW1(u)′duB′1,◦ =: V (1)

and T−3/2〈t, xt(zk)〉 → 0 in probability for zk 6= 1.

(vii) T−1/2〈t, εt〉
d→
∫ 1

0
udW1(u)′ =: U(1).

PROOF: The proof of the items (i) to (v) is in many parts a direct consequence of results obtained
in Johansen and Schaumburg (1999), Lemma 5, Theorem 6 and Corollary 7. One difference is
the inclusion of starting values, which however does not influence the asymptotic behavior. This
follows, since the initial effects – being solutions to the homogenous equation – are of the form
Dst(zk).
Also the results concerning st(zj) are standard, except for the cross terms with xt(zk). For zj 6= zk
the proof is analogous to the proof of equation (22) in Johansen and Schaumburg (1999) and for
the case zj = zk the continuous mapping theorem leads to the stated results. Items (vi) and (vii)
are direct consequences of Lemma 1 (d) and (a) of Sims et al. (1990) respectively. �
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In the expressions for the pseudo likelihood function, terms that can be represented as filtered
versions of the observations yt show up, where the filters depend upon the parameter values.
Thus, it is necessary to understand the convergence properties of estimated sample covariances
of expressions of the form g(L, θ)xt(zk) =

∑t−1
j=0Gj(θ)xt−j(zk), where g(z, θ) =

∑∞
j=0Gj(θ)z

j

denotes a family of stable transfer functions parametrized by the parameter vector θ. The notation
here somewhat hides the fact that the summation is only performed for t > 0 or equivalently
xt(zk) = 0, t < 0 is assumed. We will use this notation throughout the appendix. A family of
transfer functions g(z, θ), θ ∈ Θ is called uniformly stable, if there exist constants C < ∞, 0 <
ρ < 1, such that supθ∈Θ ‖Gj(θ)‖ ≤ Cρj , i. e., the decay in the transfer function coefficients is
exponential and uniform in the parameter set. For quantities of this form in the following lemma
the asymptotic behavior is clarified and for each of the considered expressions Condition USE
is established. The lemma parallels Theorem 4.2 in Saikkonen (1993, page 167), in which he
establishes his Condition 3.1.

Lemma B.3 Let g(z; θ) =
∑∞
i=0Gi(θ)z

i = π(Ag, Bg, Cg), k(z; θ) =
∑∞
i=0Ki(θ)z

i = π(Ak, Bk, Ck),
θ ∈ Θ be two uniformly stable families of rational transfer functions, of finite orders less or equal
to n, where it is always assumed that the transfer functions are of the correct dimensions needed
in the expressions below. Furthermore (Ag(θ), Bg(θ), Cg(θ)) and (Ak(θ), Bk(θ), Ck(θ)) are conti-
nuously differentiable functions of θ. Let {εt}t∈Z be a martingale difference sequence fulfilling the
assumptions stated in Assumption 2.1 with non-singular innovation variance Σ◦. Furthermore, let
ω1, . . . , ωl2π denote l2π distinct frequencies in [0, 2π) (where ω1 = 0) and let zk = eiωk . Further-
more, xt(zk), st(zk), U(1), V (1), X(zk), Y (zk) and Z(zk) are as defined in Lemma B.2.
The following asymptotic results hold for each fixed θ ∈ Θ.

(i) 〈g(L; θ)εt, k(L; θ)εt〉 →
∑∞
r=0Gr(θ)Σ◦Kr(θ)

′ in probability.
〈g(L; θ)st(zk), k(L; θ)εt〉 → 0.

(ii) 〈g(L; θ)xt(zk), k(L; θ)εt〉
d→

g(zk; θ)X(zk)k(zk; θ)′ − g(zk; θ)zkBk,◦Σ◦k̃(0; θ)′ + lim
t→∞

Eg̃(L; θ)Bk,◦εt−1(k(L; θ)εt)
′,

where g(z; θ) = g(zk; θ) + (1− zkz)g̃(z; θ), k(z; θ) = k(zk; θ) + (1− zkz)k̃(z; θ).

(iii) T−1〈g(L; θ)xt(zk), k(L; θ)xt(zj)〉
d→ δk,jg(zk; θ)Z(zk)k(zk; θ)′.

(iv) 〈g(L; θ)st(zk), k(L; θ)st(zj)〉 → δk,jg(zk; θ)k(zk; θ)′.

(v) T−1/2〈g(L; θ)xt(zk), k(L; θ)st(zj)〉→δk,jg(zk; θ)Y (zk)k(zk; θ)′.

(vi) T−1〈g(L; θ)t, k(L; θ)st(zk)〉 → δk,1
1
2g(1; θ)k(1; θ)′.

T−2〈g(L; θ)t, k(z; θ)t〉 → 1
3g(1; θ)k(1; θ)′.

(vii) T−3/2〈g(L; θ)t, k(L; θ)xt(zk)〉 d→ δk,1g(1; θ)V (1)k(1; θ)′.

(viii) T−1/2〈g(L; θ)t, k(L; θ)εt〉
d→ g(1; θ)U(1)k(1; θ).

All sequences in items (i) to (viii) fulfill condition USE.

PROOF: The proof of the lemma rests upon the results established in Lemma B.2. Item (i) is
standard and its proof is therefore omitted. Analogously to the well known decomposition for the
case zk = 1, decompose g(z; θ) = g(zk; θ) + (1− zkz)g̃(z; θ) for each θ and |zk| = 1. The assumed
uniform stability of g(z, θ) implies that also g̃(z; θ) =

∑∞
j=0 G̃j(θ)z

j is a uniformly stable family
of transfer functions. Using the decomposition we obtain:

g(L; θ)xt(zk) =
∑t−1
i=0 Gi(θ)xt−i(zk)

= g(zk; θ)xt(zk) + g̃(L; θ)(xt(zk)− zkxt−1(zk))

= g(zk, θ)xt(zk) + g̃(L; θ)Bk,◦εt−1 + G̃t−1(θ)x1(zk)
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for t ∈ N. Now, due to the fact that also G̃t−1(θ) converges uniformly in θ ∈ Θ at an exponential
rate to zero, the last term in the above expression can be neglected. Then, item (ii) follows from

〈xt(zk), k(L; θ)εt〉 = 〈xt(zk), k(zk; θ)εt〉+ 〈xt(zk), k̃(L; θ)(1− zkL)εt〉.

The first term converges to X(zk)k(zk; θ)′ according to Lemma B.2. The second term is equal to

T−1
T∑
t=1

[
xt(zk)(k̃(L; θ)εt)

′ − zkxt(zk)(k̃(L; θ)εt−1)′
]

=

zk

(
T−1

T−1∑
t=1

[zkxt(zk)− xt+1(zk)] (k̃(L; θ)εt)
′

)
+ oP (1),

where the oP (1) term is due to T−1xT (zk)(k̃(L; θ)εT )′. This term converges for T → ∞ to
−zkBk,◦Eεt(k̃(L; θ)εt)

′ → −zkBk,◦Σ◦k̃(0; θ)′. Combining this with pre-multiplication of xt(zk)
with g(zk; θ) then delivers the result. Item (iii) can be shown using similar arguments. The proof
of (iv) and (v) follows from

g(L; θ)st(zk) = g(L; θ)ztk =

t−1∑
j=0

Gj(θ)z
t−j
k = ztk

t−1∑
j=0

Gj(θ)z
−j
k = g(zk; θ)st(zk) + o(1),

where the o(1) term is of order O(ρt).
The convergence results in (vi) are standard results for deterministic limits, compare Sims et al.
(1990, Lemma 1(c)).
For the proof of (vii), note that

g(L; θ)t =

t−1∑
j=0

Gj(θ)(t− j) =

t−1∑
j=0

Gj(θ)

 t−
t−1∑
j=0

jGj(θ)

= g(1; θ)t− g∗(1; θ)−

 ∞∑
j=t

Gj(θ)

 t+

∞∑
j=t

jGj(θ),

where g∗(z) =
∑∞
j=1 jGj(θ)z

j−1. Thus, g(L; θ)t essentially equals g(1; θ)t − g∗(1, θ), where the

difference is of order O(tρt). The result then follows from Lemma B.2 (vii). We compute

lim
T→∞

T−3/2〈g(L; θ)t, k(L; θ)xt(zk)〉 = lim
T→∞

T−3/2g(1; θ)〈t, xt(zk)〉(k(zk; θ))′ + op(T
−1)

d→ δk,1g(1; θ)V (1)k(1; θ)′,

where we have used Lemma B.2 (vi) for the limit.
The proof of (viii) is similar. We compute

lim
T→∞

T−1/2〈g(L; θ)t, k(L; θ)εt〉 = lim
T→∞

T−1/2g(1; θ)〈t, εt〉k(1; θ)′ + op(T
−1)

d→ g(1; θ)U(1)k(1; θ)′,

where we have used Lemma B.2 (vii) for the limit.
The fulfillment of Condition USE for the sequences considered in (i) to (viii) is left to be shown.
For (i) the claim follows from standard arguments for stationary processes. The difference for two
parameter vectors (remembering that Condition USE is concerned with the behavior for θn → θ)
can be decomposed in two parts: One part depends only upon the parameter vectors but not
on εt, for which convergence to zero follows immediately due to continuity of the parametrizati-
on. The other part can be bounded by the estimation error from estimating sample covariances
of stationary processes. This expression can be bounded uniformly in the lag, see Hannan and
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Deistler (1988, Theorem 5.3.2). The same decomposition as just mentioned can also be applied
to the terms appearing in the other items. Consider, e. g., g(zk; θ)〈xt(zk), εt〉k(zk; θ)′, which is the
product of three terms. Of these three terms, two are deterministic and depend continuously on
the parameter vector, the third term is stochastic and independent of the parameter vector. This
finishes the proof of the Lemma. �

B.2 Proofs of the Theorems

We start with the proof of Lemma 2.1.
PROOF: For zk /∈ {1,−1} and for a vector γ ∈ Cs, γ 6= 0 satisfying γ′Ck = 0 we have for the
corresponding polynomial β(z) = β0 + β1z = γ(1− zkz) + γ(1− zkz)(
β′0 β′1

)(CkAk
Ck

)
=
(
(γ + γ̄)′ (−γzk − γ̄z̄k)′

)(Crk cosωk + Cik sinωk −Crk sinωk + Cik cosωk
Crk Cik

)
.

The first entry of this matrix is

(γ + γ̄)′(Crk cos(ωk) + Cik sin(ωk))− (γzk + γ̄z̄k)′Crk

= (γ + γ̄)′(Crk cos(ωk) + Cik sin(ωk))− (γ(cos(ωk) + i sin(ωk)) + γ̄(cos(ωk)− i sin(ωk)))′Crk

=
(
(γ + γ̄)′Cik + i(γ̄ − γ)′Crk

)
sin(ωk) = 2I(γ′Ck) sin(ωk) = 0

and the second entry is

(γ + γ̄)′(−Crk sin(ωk) + Cik cos(ωk))− (γzk + γ̄z̄k)′Cik

= (γ + γ̄)′(−Crk sin(ωk) + Cik cos(ωk))− (γ(cos(ωk) + i sin(ωk)) + γ̄(cos(ωk)− i sin(ωk)))′Cik

= −
(
(γ + γ̄)′Crk + i(γ − γ̄)′Cik

)
sin(ωk) = −2R(γ′Ck) sin(ωk) = 0.

Since the polynomial evaluated at zk is γ(1− z2
k) 6= 0, the polynomial is a PCIV of order (Ω, Ω̃).

For a polynomial vector of degree one β(L) = β0 + β1L of order (Ω, Ω̃) with Ω̃ ⊆ Ω \ {ωk} we
find a vector γ ∈ Cs such that β(L) = γ′(1 − zkL) + γ′(1 − zkL) by choosing R(γ) = β0/2 and
I(γ) = (β0R(zk)− β1)/(2I(zk)).
Since β(L) is a PCIV of order (Ω, Ω̃) with Ω̃ ⊆ Ω \ {zk}

0 =
(
β′0 β′1

)(CkAk
Ck

)
=
(
2I(γ′Ck) sin(ωk) −2R(γ′Ck) sin(ωk)

)
.

Since ωk ∈ (0, π) by assumption we have sin(ωk) 6= 0 and thus R(β′Ck) = I(β′Ck) = 0. �

Lemma B.4 Let the MFI(1) process {yt}t∈Z be generated as in Theorem 2.1. Define the pseudo
likelihood function and the prediction error criterion function

LT (θ, θD,Σ;YT ) = LT (k(z; θ),Σ, θD;YT ), LPE,T (θ, θD,Σ, 0;YT ) = LPE,T (k(z; θ),Σ, θD;YT ),

where k(z; θ) = π(A(θ),B(θ), C(θ)). Assume that the pseudo likelihood function LT is maximized
for given multi-index Γ over the parameters θ ∈ ΘΓ, θD ∈ ΘD,Σ ∈ ΘΣ, where all sets are compact
such that infΣ∈ΘΣ λmin(Σ) > 0, supθ∈Θ λ|max|(A(θ)) < 1.
Then,

sup
θ∈ΘΓ,θD∈ΘD,Σ∈ΘΣ

|LT (θ, θD,Σ;YT )− LPE,T (θ, θD,Σ;YT )| = o(T ε−1)

for every ε > 0. The same holds for the difference in the first and second derivatives.

PROOF: Let P1(θ, σ) denote the variance-covariance matrix of x1 according to the model given
as P1(θ, σ) = diag(0, P•(θ, σ)). Moreover, define O′T := [ C′ A′C′ . . . (AT−1)′C′ ]. Then, the
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covariance matrix of YT −DT (θD) corresponding to the parameter vector θ equals (omitting the
arguments for notational simplicity)

ΓT = TT (IT ⊗ Σ)T ′T +OTP1(θ, σ)O′T ⇒ Γ−1
T = (TT (IT ⊗ Σ)T ′T )−1,−OTXTO′T

where OT = (TT (IT ⊗Σ)T ′T )−1OT and XT = (P1(θ, σ)O′TOT + In)−1P1(θ, σ). It thus follows that
‖XT ‖ ≤ λ|max|(P•(θ, σ))µ for appropriate constant µ. Furthermore, the compactness assumption
implies that

O′TOT =

T−1∑
j=0

(Aj)′C′Σ−1CAj →
∞∑
j=0

(Aj)′C′Σ−1CAj <∞

uniformly in the compact parameter space due to the uniform strict minimum-phase assumption.
Therefore,

Γ−1
T = (T̃ ′T )−1(ITs − ÕTXT Õ

′
T )(T̃T )−1,

where T̃T = TT (IT ⊗ Σ1/2) and ÕT = (IT ⊗ Σ−1/2)T −1
T OT . Note that the Ts × Ts matrix

ITs − ÕTXT Õ
′
T has Ts− n eigenvalues equal to 1 and a maximum of n eigenvalues equal to the

inverses of the eigenvalues of P1(θ, σ)O′TOT + In. These are bounded from below by 1 and have
a uniform upper bound due to the assumptions on P1(θ, σ) implied by the compactness of the
parameter space.
Thus,

log det ΓT (θ, P1(θ, σ))−1 = −T log det Σ +O(1)

uniformly in the parameter space. It is easy to see that the same holds for the derivatives with
respect to the parameter coordinates. Furthermore,

O′T (YT −DT (θD)) =

T∑
t=1

(At−1)′C′Σ−1εt(θ, θD).

Here,

T∑
t=1

(At−1)′C′Σ−1εt(θ, θD) =

T∑
t=1

(At−1)′C′Σ−1

(
t−1∑
i=0

Ki(yt−i − dt−i(θD))

)
=

T∑
t=1

(At−1)′C′Σ−1

(
t−1∑
i=0

Ki(Cxt−i + εt−i + dt−i,◦ − dt−i(θD))

)
=

T∑
t=1

(
T−t∑
i=0

(At+i−1)′C′Σ−1Ki

)
(Cxt + εt + dt,◦ − dt(θD)) =

T∑
t=1

(
T−t∑
i=0

(At+i−1)′C′Σ−1Ki

)t−1∑
j=0

Kj,◦εt−j + C◦At−1
◦ x1 + dt,◦ − dt(θD)

 =

T∑
t=1

(
(
T−t∑
i=0

(At+i−1)′C′Σ−1Ki

)
t−1∑
j=0

Kj,◦εt−j +

(
T−t∑
i=0

(At+i−1)′C′Σ−1Ki

)(
C◦At−1

◦ x1 + dt,◦ − dt(θD)
)). (B.1)

Now, the compactness assumptions imply

‖(Aj−1)′C′Σ−1‖ ≤ µAρj−1, ‖Ki‖ ≤ µKρi ⇒

∥∥∥∥∥
(
T−t∑
i=0

(At+i−1)′C′Σ−1Ki

)∥∥∥∥∥ ≤ µAµKµP ρt−1.
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Therefore, these coefficients show an exponential decrease uniformly in the parameter space. This
implies that the terms due to x1 and dt,◦ − dt(θD) both have bounded norm uniformly in T . For
the first term in (B.1) note that this is of the form

α(T ) =

T∑
t=1

Qt(θ)εt,

where supθ,Σ ‖Qt‖ ≤ µQρt. Considering a(T ) = (supθ,Σ |α(T )|−E| supθ,Σ α(T )|) the arguments in
Hannan and Deistler (1988, p. 106+107) show that this term is of order o(T ε) for arbitrary small
ε > 0.
Again taking derivatives with respect to the parameter vector does not change the exponential
decrease uniformly in the parameter set considered. Thus, the difference can be bounded also for
the first and second derivatives. �

B.2.1 Proof of Theorem 2.1

We start by showing that consistency results for the I(1) case carry over to the MFI(1) case if all
unit roots are rational multiples of 2π. This is shown in the following lemma.

Lemma B.5 The results of Theorem 2.1 for the special case of I(1) processes imply the analogous
results for MFI(1) processes where all unit root frequencies are rational multiples of 2π. The
convergence rates of the various terms are the same in both cases.

PROOF: We have to differentiate PMLE and prediction error estimators. We will deal with the
PML case first.
−2/T times the logarithm of the Gaussian likelihood function can be written as

LT (θ, θD,Σ;YT ) = (log det ΓT (θ,Σ) + (YT −DT (θD))′ΓT (θ,Σ)−1(YT −DT (θD)))/T,

where again YT = [ y′1 . . . y′T ]′ ∈ RTs contains all observations,

DT (θD) = [ d1(θD)′ . . . dT (θD)′ ]′

and ΓT (θ,Σ) denotes the corresponding variance matrix.
In the MFI(1) case with all roots zj being rational multiples of 2π, there exists an integer S such
that zSj = 1. Consequently, AS = diag(Inc ,AS• ). Stacking S consecutive observations of yt into a

vector Yt,S = [ y′t y′t+1 . . . y′t+S−1 ]′ ∈ RSs and analogously defining Et,S using the residuals
εt and Dt,S using the deterministic variables dt(θD) we obtain

Yt,S −Dt,S =


C
CA
...

CAS−1

xt +


Is 0 . . . 0

CB Is
. . .

...
...

. . .
. . . 0

CAS−2B . . . CB Is

Et,S ,
xt+S = ASxt +

[
AS−1B AS−2B . . . B

]
Et,S .

(B.2)

This corresponds to an I(1) process {Yj+mS,S}m∈Z with highly structured system matrices driven
by the noise {Ej+mS,S}m∈Z for each j = 0, ..., S−1. Therefore, the likelihood function for T = SM
can be seen as the likelihood function either for {yt}t∈Z or for {YmS,S}m∈Z.
Now, assume that consistency for the I(1) case has been shown such that

θ̂SM → θ◦,

LSM (θ̂SM , θ̂D,SM , Σ̂SM ;YT )→ L∞(θ◦, θD,◦,Σ◦)〈
ÊSm(θ̂SM , θ̂D,SM ), ÊSm(θ̂SM , θ̂D,SM )

〉
→ E(Et,SE

′
t,S)
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for M → ∞. Further, let θ̂T , θ̂D,T , Σ̂T denote the minimizing argument of LT (θ, θD,Σ;YT ) for
T ∈ N. Then, for T = SM + j, 1 ≤ j < S, orthogonalizing the last j observations of yt with
respect to YSN , we obtain

LT (θ, θD,Σ;YT ) =

(log det ΓSM (θ,Σ) + log det ΓT,22(θ,Σ) + (YSM −DSM )′ΓSM (θ,Σ)−1(YSM −DSM )+

ÊT (θ, θD)′ΓT,22(θ,Σ)−1ÊT (θ, θD))/T =

SM

T
LSM (θ, θD,Σ;YT ) +

log det ΓT,22(θ,Σ)

T
+ ÊT (θ, θD)′ΓT,22(θ,Σ)−1ÊT (θ, θD)/T,

where

ÊT (θ, θD) = YSM+1,T−SM −DSM+1,T−SM − βT−SM,SM (YSM −DSM+1,T−SM )

and ΓT,22(θ,Σ) denotes the corresponding variance matrix according to θ, θD,Σ.

For θ̂SM it follows that Γ(S+1)M,22(θ̂SM , Σ̂SM )→ E
(
Et,SE

′
t,S

)
<∞ and therefore, (since ΓT,22(θ̂SM , Σ̂SM )

is a submatrix of Γ(S+1)M,22(θ̂SM , Σ̂SM ))

(log det ΓT,22(θ̂SM , Σ̂SM ))/T = oP (1).

Furthermore,
〈
ÊSm(θ̂SM , θ̂D,SM ), ÊSm(θ̂SM , θ̂D,SM )

〉
→ E(Et,SE

′
t,S) implies that

ÊT (θ̂SM , θ̂D,SM )ÊT (θ̂SM , θ̂D,SM )′/T = oP (1).

Thus, LT (θ̂SM , θ̂D,SM , Σ̂SM ;YT ) = SM
T LSM (θ̂SM , θ̂D,SM ;YT ) + oP (1) → L∞(θ◦, θD,◦,Σ◦). This

implies
LT (θ̂T , θ̂D,T , Σ̂T ;YT ) ≤ LT (θ̂SM , θ̂D,SM , Σ̂SM ;YT )→ L∞(θ◦, θD,◦,Σ◦).

Using the developments of the proof for the I(1) case and Hannan and Deistler (1988) showing

that log det ΓT (θ̂, Σ̂)/T ≥ log det Σ̂T + oP (1), this implies log det Σ̂T ≤ log det Σ0 + oP (1). Then,
following the same arguments as Hannan and Deistler (1988) on the bottom of p. 121 and (4.2.25),
see also below, it is straightforward to show that the smallest eigenvalue of Σ̂T is bounded away
from zero. This follows, since leaving out the last only partially observed time instant reduced the
term QT (θ) while resulting in the same lower bound.

Consequently, ΓT,22(θ̂T , Σ̂T ) ≥ IT−SMλmin(Σ̂T ), where λmin(Σ̂T ) is bounded from below by a

constant c > 0 from above. Therefore, we obtain log det ΓT,22(θ̂T , Σ̂T ) ≥ (T − SM) log c. Conse-
quently,

SM

T
LSM (θ̂T , θ̂D,T , Σ̂T ;YT ) ≤ LT (θ̂T , θ̂D,T , Σ̂T ;YT )− (T − SM) log c

T

≤ LT (θ̂SM , θ̂D,SM , Σ̂SM ;YT ) + oP (1)

≤ SM

T
LSM (θ̂SM , θ̂D,SM , Σ̂SM ;YT ) + oP (1)→ L∞(θ◦, θD,◦,Σ◦).

Thus, it follows that LSM (θ̂T , θ̂D,T , Σ̂T ;YT ) → L∞(θ◦, θD,◦,Σ◦) and hence we found a sequence
such that the likelihood value converges to the minimum of the limiting criterion function. Thus,
from identifiability of the parameters it follows that θ̂T → θ◦, θ̂D,T → θD,◦ and thus consistency
carries over from the I(1) case to the MFI(1) case with unit roots frequencies which are rational
multiples of 2π.
For the prediction error criterion function LPE,T the arguments are almost unchanged (but simpler,
as in this case the log det term equals log det Σ directly) and hence omitted.
With respect to the convergence rates note that the matrix C and Dt,S are contained in the system
representation for Yt,S in (B.2). Therefore, the convergence rates for the I(1) case in (B.2) imply
the ones for the MFI(1) case. �
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It is thus sufficient to prove Theorem 2.1 for the I(1) case. In this case the DGP is given by:

yt = C1xt,1 + C•xt,• + εt + dt,

xt+1,1 = xt,1 +B1εt, x1,1 = 0,

xt+1,• = A•xt,• +B•xt,•, x1,• =

∞∑
j=0

Aj•B•ε−j ,

where C1 ∈ Rs×c, c ≤ s is such that C ′1C1 = Ic. (A•, B•, C•) denotes the stable subsystem of state
order n• = n− c. Let PC = C1C

′
1, P⊥ = Is − PC denote the projection onto the column space of

C1 and its orthocomplement respectively. Then, with dt = Dst, st = [1, t]′

ỹt − d̃t = (PC∆ + P⊥)(yt − dt) = C1∆xt,1 + PCC•∆xt,• + PC∆εt + P⊥C•xt,• + P⊥εt

= C1B1εt−1 + PCC•xt,• − PCC•xt−1,• − PCεt−1 + P⊥C•xt,• + εt

= C1(B1εt−1 − C ′1C•xt−1,• − C ′1εt−1) + C•xt,• + εt

is the sum of a stationary process with a deterministic part

d̃t = (I − PCL)Dst = Dst − PCDst−1 = Dst − PCDS−1st =
(
D − PCDS−1

)︸ ︷︷ ︸
D̃

st

and hence can be written as:

ỹt = k̃(L)εt + (PC∆ + P⊥)Dst = k̃(L)εt +Dst − PCDst−1 = k̃(L)εt + D̃st,

where the solutions processes to the stationary transfer function k̃(z) have the representation:

ỹt − D̃st = C1zt + C•xt,• + εt,

[
zt+1

xt+1,•

]
=

[
0 −C ′1C•
0 A•

] [
zt
xt,•

]
+

[
B1 − C ′1
B•

]
εt.

This follows, since st = Sst−1 for S :=

[
1 1
0 1

]
by construction of the vector st of deterministic

terms.
The transfer function k̃(z) is stable, since A• is. The zeros are the eigenvalues of[

0 −C ′1C•
0 A•

]
−
[
B1 − C ′1
B•

]
[C1 C•] =

[
Ic −B1C1 −B1C•
−B•C1 A• −B•C•

]
.

Note that this equals A − BC, where (A,B,C) denotes the original system in canonical form.
Hence, invertibility of k(z) implies invertibility of k̃(z).
Therefore, the Gaussian likelihood function for YT := [y′1, ..., y

′
T ]′ can be calculated using ỸT :=

[y′1, ỹ
′
2, ..., ỹ

′
T ]′ which – being a linear invertible transformation of YT is also Gaussian distributed.

Note that y1 = C•x1,•+ε1 +Ds1 for x1,1 = 0. Then, −2/T times the Gaussian likelihood function
for YT equals:

LT (k,D,Σ) =
1

T

(
log |ΓT (k,Σ)|+ (YT − (IT ⊗D)DT )′ΓT (k,Σ)−1(YT − (IT ⊗D)DT )′

)
=

1

T

(
log |ΓT (k̃,Σ)|+ (ỸT − (IT ⊗ D̃)DT )′ΓT (k̃,Σ)−1(ỸT − (IT ⊗ D̃)DT )′

)
,

where the dependence of the covariance matrix ΓT on the transfer function k or k̃ respectively
and the noise variance Σ is emphasized, while the influence of the variance of the initial state
diag(0, P•(θ, σ)) is neglected. Except for the inclusion of y1 this is identical to the criterion function
used in Hannan and Deistler (1988, Section 4.2).
The domain of the transfer function k̃ here is defined analogously to the sets Θ in Hannan and
Deistler (1988, p. 110ff.): Let Θ ⊂Mn•×P×D×Σ equal the product of the set of marginally stable
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(having no poles within the closed unit disc) and minimum-phase (no zeros within the closed unit
disc) transfer functions of order smaller or equal to n with the sets P (space of projector matrices
in Rs×s with rank equal to c), the set D (the vectorization of all s× d real matrices) and the set
Σ (the set of all s× s symmetric positive definite matrices). This set is endowed with the product
topology of the pointwise topology for Mn• , with the gap metric for projector matrices and with
the Euclidean topology for the two sets of matrices. Then, Θ denotes the corresponding closure,
Θ̂ ⊂ Θ contains only stable transfer functions and Θ∗ ⊂ Θ̂ in addition strictly minimum-phase
transfer functions without zeros on the unit circle.
Note that for k(z) as in the theorem it follows that k̃(z) ∈ Mn• (see above). Furthermore, given
PC there is a 1-1 mapping between the k and k̃:

k̃(z) = (PC∆ + P⊥)k(z)⇒ k(z) = (PC∆ + P⊥)−1k̃(z).

As seen above under the assumption of stable invertibility of the true transfer function k(z), it
follows that k̃(z) is stably invertible. It further follows that the parameters for the transfer function
k can be partitioned into a set that parameterizes the column space of C1 relating to PC = C1C

′
1

and the remaining ones relating to k̃. This conforms with the parameterization suggested in Bauer
et al. (2020).
The proof of Theorem 2.1 is based on slightly adapting (and punctually slightly extending) the
arguments of Hannan and Deistler (1988, Section 4.2., p. 110 ff) (called HD henceforth). Therefore,
we also use the notation of HD referring to the quadruple (k, PC , D,Σ) as θ in this section. Let us
stress here again that θ thus here is no real valued parameter. As in HD, Section 4.2. our proof
is coordinate independent using only the transfer functions and not the particular form of their
realizations.
The pseudo maximum likelihood estimate θ̂ is obtained by minimizing LT (θ) = L̃T (k̃, PC , D,Σ) =
LT (k,D,Σ) over Θ.
Now follow the proof of Theorem 4.2.1. of HD. As on p. 112 we define u(t, θ) = ỹt−D̃st, t = 2, .., T,
where u(1, θ) = y1 − D̃s1 and uT (θ) = {u(t, θ)}t=1,...,T . Note that here u(1, θ) deviates from the

’regular’ definition ỹ1 − D̃s1 = u(1, θ)− PCy0. Using this, we define

LT (θ) = T−1 log |Γ̃T (θ)|+ T−1uT (θ)Γ̃T (θ)−1uT (θ),

where the dependence on θ = (k, PC , D,Σ) is stressed. Here, Γ̃T (θ) = Γ̃T (k̃,Σ). Note that LT (θ)
depends on k only via k̃ and thus can be seen as a function of θ̃ = (k̃, PC ,Σ, D̃). Consequently,
maximizing LT over θ ∈ Θ is equivalent to maximizing the corresponding function

L̃T (θ̃) = LT (θ) = T−1 log |Γ̃T (θ̃)|+ T−1uT (θ̃)′Γ̃T (θ̃)−1uT (θ̃),

where θ = (k, PC , D,Σ) maps onto θ̃ = (k̃, PC , D̃,Σ) = Λ(θ) over the corresponding set Θ̃ =
Λ(Θ) ⊂ Θ.
Then, using the arguments of HD on p. 112, it follows that L̃T is finite on Θ̂ (as k̃ is stable there).
This follows since all entries are bounded and the matrix Γ̃T (θ) is non-singular. Otherwise there
would be a relation defined via vectors αj , j = 0, ..., T − 1 such that

T−1∑
j=0

α′j(yT−j −DsT−j) = 0 =

T−1∑
j=0

α′j(εT−j + CxT−j).

If α0 6= 0, then the term α′0εT would be contained in the linear span of the past of εt and xt, which
contradicts the white noise assumption.Therefore, α0 = 0. But then α1 = 0 follows. Continuing
the recursion shows that αj = 0,∀j.
Consider Γ̃T (θ̃) in more depth: It is defined as the variance of

uT (θ) = Ỹ1,T (θ̃) +


PCy0

0
...
0

⇒ Γ̃T (θ̃) =

[
V (y1) Cov(y1, Ỹ2,T (θ̃))

Cov(Ỹ2,T (θ̃), y1) ΓT−1(θ̃)

]
,
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where Ỹi,T (θ̃) = [ỹt(θ)− D̃st]t=i,...,T . Here, y1 = C•x1,• + ε1 +Ds1. This implies, using the block
matrix inversion, that

Γ̃T (θ̃)−1 =

[
0 0

0 ΓT−1(θ̃)−1

]
+[

Is
−ΓT−1(θ̃)−1Cov(Ỹ2,T (θ̃), y1)

]
Vπ(θ̃)−1

[
Is −Cov(y1, Ỹ2,T (θ̃))ΓT−1(θ̃)−1

]
,

(B.3)

where Vπ(θ̃) := V (y1) − Cov(y1, Ỹ2,T (θ̃))ΓT−1(θ̃)−1Cov(Ỹ2,T (θ̃)), y1). Now, for stable θ̃ it follows

that Vπ(θ̃) ≥ Isλmin(Σ).
It follows that

uT (θ̃)′Γ̃T (θ)−1uT (θ̃)/T ≥ u2:T (θ̃)′ΓT−1(θ̃)−1u2:T (θ̃)/T,

where u2:T (θ̃) = {ut(θ̃)}t=2,...,T = Ỹ2,T (θ̃) is used in order to be closer to the notation in HD. Note
that the right hand side term has exactly the same form as the second term of the log-likelihood
function dealt with in Chapter 4 of HD. Further, note that the difference between these two terms
equals

y1,π(θ̃)′Vπ(θ̃)−1y1,π(θ̃)/T,

where this equation defines y1,π(θ̃).
It follows that the criterion function to be considered equals

L̃T (θ̃) ≥ log |Γ̃T (θ̃)|+ u2:T (θ̃)′ΓT−1(θ̃)−1u2:T (θ̃)/T = log |Γ̃T (θ̃)|+ Q̃T (θ̃).

In the following we will use the arguments of HD to deal with these two terms.

The log det term

In this subsection the asymptotic behavior of log |Γ̃T (θ̃)| is investigated. This term is relatively
easy to deal with, since it is not influenced by the data or by D̃. Using the definitions above we
obtain [

Is −Cov(y1, Ỹ2,T (θ̃))ΓT−1(θ̃)−1

0 I

]
Γ̃T (θ̃)

[
Is 0

−ΓT−1(θ̃)−1Cov(Ỹ2,T (θ̃), y1) I

]
=[

Vπ(θ̃) 0

0 ΓT−1(θ̃)

]
.

Therefore, the determinant is the product of |Vπ(θ̃)| and |ΓT−1(θ̃)|. From Vπ(θ) ≤ V (y1) we see
that

1

T
log det Γ̃T (θ̃) =

1

T
log |Vπ(θ̃)|+ 1

T
log |ΓT−1(θ̃)| ≤ 1

T
log |ΓT−1(θ̃)|+ 1

T
log |V (y1)|.

The behavior of T−1 log |ΓT−1(θ̃)| follows as in HD, Lemma 4.2.2., p. 116: T−1 log |ΓT−1(θ̃)| ≥
log |Σ| and limT→∞ T−1 log |ΓT−1(θ̃)| = log |Σ| for θ̃ ∈ Θ̂. For θj → θ̃0 ∈ Θ − Θ̂, such that k̃0

contains a pole on the unit circle, where θj ∈ Θ̂, we have log |ΓT−1(θj)| → ∞ as λ|max|(P•)→∞.

For θ̃ ∈ Θ̂ we have

0 < Vπ(θ̃) ≤ V (y1) <∞

such that limT→∞ T−1 log |Γ̃T (θ̃)| = log |Σ|.
For θj → θ̃0 ∈ Θ − Θ̂ we have Vπ(θj) ≥ λmin(Σ)Is, which hence must hold also in the limit.

Consequently, in this case T−1 log |Γ̃T (θj)| → ∞. Thus, we obtain the same asymptotic behavior
as in HD.
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The quadratic term QT

The second component of the criterion function is the term

QT (θ̃) = T−1uT (θ̃)′Γ̃T (θ̃)−1uT (θ̃)

= T−1y1,π(θ̃)′Vπ(θ̃)−1y1,π(θ̃) + T−1u2:T (θ̃)′ΓT−1(θ̃)−1u2:T (θ̃)

≥ T−1u2:T (θ̃)′ΓT−1(θ̃)−1u2:T (θ̃) =: Q̃T (θ̃),

using the block matrix inversion. HD define the function Q(θ̃) as the limit of Q̃T (on Θ∗). Here,
(suppressing the dependence of k̃(e−iω) on the frequency ω)

Q(θ̃) =
1

2π

∫ π

−π
tr[(k̃Σk̃∗)−1(k̃0Σ0k̃

∗
0))]dω.

HD add terms related to exogenous inputs potentially including deterministic terms. We will,
however, deal differently with them here.
The next step in HD is crucial for avoiding problems with non-invertible transfer functions in Θ.
In order to avoid problems with the term involving (k̃Σk̃∗)−1 due to zeros of k̃ on the unit circle,
in Q(θ̃) for k̃(z) = N(z)/c(z), HD introduce a regularization term such that

φη(ω; θ̃) = 2π|c(eiω)|2{N(eiω)ΣN(eiω)∗ + ηIs}−1

≤ 2π|c(eiω)|2{N(eiω)ΣN(eiω)∗}−1 = f−1
u (ω), ∀η > 0,

as a replacement for (k̃Σk̃∗)−1 in the definition of ΓT (θ̃). As the covariances are functions of the
spectrum for stationary processes, HD state that the covariance matrix ΓT (θ̃) can be written as
ΓT (fu), where fu = k̃Σk̃∗. Moreover, they show that for φ−1

η ≥ fu it holds that ΓT (φ−1
η ) ≥ ΓT (fu)

and thus ΓT (φ−1
η )−1 ≤ ΓT (fu)−1, see HD, (4.2.18) on p. 119.

Then, HD consider the regularized version

Q̃T,η(θ̃) := u2:T (θ̃)′ΓT−1(φ−1
η )−1u2:T (θ̃)/T ≤ Q̃T (θ̃) := u2:T (θ̃)′ΓT−1(θ̃)−1u2:T (θ̃)/T.

Lemma 4.2.3. of HD shows that (i) Q̃T (θ)→ Q(θ), θ ∈ Θ∗ and (ii) Q̃T,η(θ)→ Qη(θ) uniformly in

Θc1c2c3 ∩ Θ̂ where c1, c2 denotes constants bounding the eigenvalues of 0 < c1Is ≤ Σ ≤ c2Is for
θ ∈ Θc1c2c3 and c3 bounds the entries of certain matrix polynomials (see HD, p. 118) corresponding
to the transfer functions. These restrictions are sufficient to make Θc1c2c3 a compact set.
The intersection with Θ̂, wherein all transfer functions are stable, is not necessary for the argument.
The only place, where stability enters the proof is in the strict lower bound of P2,i in the first
display on p. 121. However, as Θc1c2c3 potentially also contains transfer functions with unit roots,
the arguments also need to extend to the case where P2,i(ω) = 0 for some ω.
The regularization leads to a uniform lower bound of the eigenvalues of ΓT (φ−1

η ) on Θc1c2c3 such
that the inverse can be uniformly bounded.
With respect to the pointwise convergence of Q̃T (θ) in our setting we use the arguments of HD.
For easier notation in the following we relabel the sample size by replacing T − 1 with T , start
indexing at t = 2 and using θ in place of θ̃ for the remainder of this proof.
The proof of Lemma 4.2.3. proceeds by bounding the spectrum (k̃Σk̃∗)−1 below and above by
spectra, P say, corresponding to autoregressive processes with lag length M . This is possible for
θ ∈ Θ∗ which contains only stable and invertible transfer functions. Now for these autoregressive
processes one finds matrices C such that (see HD, p. 119, bottom display)

ΓT (P−1)−1 = C′


Γ−1
M 0 ... 0

0 Σ−1
P

. . .
...

...
. . .

. . . 0
0 . . . 0 Σ−1

P

 C.
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Here C is a lower triangular matrix, whose first M block rows are identical with the identity matrix
while the remaining ones contain the autoregressive coefficients Cj :

C =



IM
...

· · · · · · · · · .
CM CM−1 ... C0 0

0
. . .

. . .
. . .

. . .
. . .
...

0 ... CM CM−1 ... C0


.

It follows that

uT (θ)′ΓT (P−1)−1uT (θ) = uM (θ)′Γ−1
M uM (θ)/T+T−1

T∑
t=M+1

(

M∑
j=0

Cju(t−j, θ))′Σ−1
P (

M∑
j=0

Cju(t−j, θ)).

The first term clearly tends to zero as T → ∞, since M is fixed, whereas the second can be
rewritten as

tr

(
Σ−1
P [CM , CM−1, ..., C0]

[
T−1

T∑
t=M+1

Ut,M (θ)Ut,M (θ)′

]
[CM , CM−1, ..., C0]′

)
.

Therefore, we need to investigate Ut,M (θ) in more depth: Here,

u(t, θ) = ỹt − D̃st = yt − PCyt−1 − D̃st = (D̃0 − D̃)st + C0xt − PCC0xt−1 + εt − PCεt−1

= (D̃0 − D̃)st + εt − PCεt−1 + C0(A0xt−1 +B0εt−1)− PCC0xt−1

= (D̃0 − D̃)st + εt + (C0B0 − PC)εt−1 + (C0A0 − PCC0)xt−1

= (D̃0 − D̃)st︸ ︷︷ ︸
ϕt(θ)

+ εt + (C0B0 − PC)εt−1 + (C0,•A0,• − PCC0,•)xt−1,•︸ ︷︷ ︸
vt,•(θ)

+ (Is − PC)C0,1xt−1,1︸ ︷︷ ︸
vt,u(θ)

.

Therefore, for every θ ∈ Θ̂ the process ut(θ) contains three components: a deterministic part
ϕt(θ) dominated by (D̃0− D̃), a stationary component (denoted with vt,•(θ) above) and the term
vt,u(θ) := (Is − PC)C0,1xt−1,1 = P⊥C0,1xt−1,1, which is integrated if P⊥C0,1 6= 0 and zero else.
Therefore,

Ut,M (θ) =


u(t−M, θ)

u(t−M + 1, θ)
...

u(t, θ)

 =


ϕt−M (θ) + vt−M,•(θ) + P⊥C0,1xt−M−1,1

ϕt−M+1(θ) + vt−M+1,•(θ) + P⊥C0,1xt−M,1

...
ϕt(θ) + vt,•(θ) + P⊥C0,1xt−1,1



=


ϕt−M (θ)
ϕt−M+1(θ)

...
ϕt(θ)

+


vt−M,•(θ)

vt−M+1,•(θ) + P⊥C0,1B0,1εt−M−1

...

vt,•(θ) + P⊥C0,1B0,1

∑M−1
j=0 εt−j

+

 P⊥C0,1

...
P⊥C0,1

xt−M−1,1

= Dt,M (θ) + Vt,M (θ) +

 P⊥C0,1

...
P⊥C0,1

xt−M−1,1

= Vt,M (θ) +D(θ;M)st + PMxt−M−1,1

= Vt,M (θ) + [D(θ;M), PM ]

(
st

xt−M−1,1

)
= Vt,M (θ) + ΨM (θ)zt,M .
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Here, the last equation defines ΨM (θ) and zt,M . Let in the following the superscript .π denote the
residuals of a regression onto zt,M with the corresponding fitted values denoted as .z such that

Ut,M (θ) = Ut,M (θ)π + Ut,M (θ)z = Vt,M (θ)π + Ut,M (θ)z,

since Dt,M (θ)π = 0, xπt−M−1,1 = 0. It follows that

〈Ut,M (θ), Ut,M (θ)〉 = 〈Vt,M (θ)π, Vt,M (θ)π〉+ 〈Ut,M (θ)z, Ut,M (θ)z〉 ≥ 〈Vt,M (θ)π, Vt,M (θ)π〉 .

Furthermore, for fixed M we have

〈Vt,M (θ)π, Vt,M (θ)π〉 = 〈Vt,M (θ), Vt,M (θ)〉+ oP (1), (B.4)

as regressing out integrated processes, the constant, seasonal terms and a linear trend from statio-
nary processes leads to negligible terms. If no deterministic terms are present, the negligible term
is also o(1).
It is now easy to verify that for D̃ = D̃0 and P⊥C0,1 = 0 the term Q̃T (θ) converges to Q(θ), since
the second moments 〈Vt,M (θ), Vt,M (θ)〉 converge in this case and Ut,M (θ) = Vt,M (θ) holds then.
In the general case we obtain

QT (θ) ≥ Q̃T (θ) ≥ tr
(
Σ−1
P [CM , CM−1, ..., C0] 〈Ut,M (θ), Ut,M (θ)〉 [CM , CM−1, ..., C0]′

)
≥ tr

(
Σ−1
P [CM , CM−1, ..., C0] 〈Vt,M (θ)π, Vt,M (θ)π〉 [CM , CM−1, ..., C0]′

)
= tr

(
Σ−1
P [CM , CM−1, ..., C0] [〈Vt,M (θ), Vt,M (θ)〉+ oP (1)] [CM , CM−1, ..., C0]′

)
.

Jointly we obtain that for fixed θ ∈ Θ∗ for term QT (θ) it holds that

lim inf
T→∞

QT (θ) ≥ Q(θ).

For θ̃0 = Λ(θ0) the additional terms due to D̃ − D̃0 and P⊥C0,1 are zero and hence in this case

QT (θ̃0)→ s.
Replacing Q̃T (θ) with the corresponding Q̃T,η(θ) and noting that QT (θ) ≥ Q̃T (θ) ≥ Q̃T,η(θ) for
all η > 0, θ ∈ Θ, we obtain uniformly in θ ∈ Θc1c2c3 (a compact space) that

lim inf
T→∞

inf
Θc1c2c3

(QT (θ)−Qη(θ)) ≥ 0.

This follows, since by taking the liminf all non-negative terms can be neglected. It is simple to
verify that the convergence in (B.4) is uniform in the parameter set, as vt,•(θ) only depends on the
parameter vector via PC which varies in a compact set. The remaining arguments are as in HD, p.
119-121. In particular we only have to investigate a finite number of spectra P with a corresponding
finite number of lag lengths M , since the set Θc1c2c3 is compact. Then, the convergence results are
standard.
This implies that for each η > 0 the function QT (θ) stays uniformly in Θc1c2c3 above Qη(θ) and
hence also above supη>0Qη(θ).

Restriction to a compact set Θc1c2c3

A central step in HD on p. 121 is to show that the PML estimator is inside Θc1c2c3 a. s. for T
large enough. That is, the eigenvalues of Σ̂ are bounded from below and above and the coefficients
of the polynomial R(z) = adj(b(z))a(z) =

∑r
j=0Rjz

j (where k̃(z) = a−1(z)b(z)) can be bounded
such that

r∑
j=0

‖Rj‖2Fr ≤ c3.

To show this, first note that

lim supLT (θ̂) ≤ log det Σ0 + s a. s.,
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as LT (θ0)→ log det Σ0 + s a. s.. This can be shown, as in this case the log det term converges to
log det Σ0 and for the QT term we have shown Q̃T (θ̃0) → Q(θ̃0) = s. The fact that Vπ(θ̃0) > 0
then shows LT (θ0)→ log det Σ0 + s.
This implies log |Σ̂| ≤ log |Σ0| + s a. s. for T large enough. Next, we use the arguments on the
bottom of p. 121 and (4.2.25) of HD to infer

AΓT (θ)A′ ≤ γ2(IT−r ⊗ Σ), θ ∈ Θ̂

for some constant 0 < γ < ∞, where A denotes the matrix A defined in line 2 of p. 122 of HD.
As in HD it follows that

Q̃T (θ) = uT (θ)′ΓT (θ)−1uT (θ)/T

≥ tr

[
Σ−1[Rr, Rr−1, ..., R0]

[
T−1

T∑
t=r+1

Ut,r(θ)Ut,r(θ)
′

]
[Rr, Rr−1, ..., R0]′

]
γ−2.

Using the arguments above, it follows that the smallest eigenvalue of[
T−1

T∑
t=r+1

Ut,r(θ)Ut,r(θ)
′

]
≥

[
T−1

T∑
t=r+1

Vt,r(θ)
π(Vt,r(θ)

π)′

]
can be bounded from below a. s. for T large enough by a constant c, because it is related to
〈Vt(θ)π, Vt(θ)π〉, whose main component is

vt,•(θ) = εt + (C0B0 − PC)εt−1 + (C0,•A0,• − PCC0,•)xt−1,•,

where xt−r−1,1 and dt are regressed out. Noting that R0 = Is it follows that

uT (θ)′ΓT (θ)−1uT (θ)/T ≥ tr
[
Σ−1[Rr, Rr−1, ..., Is][Rr, Rr−1, ..., Is]

′] cγ−2 ≥ tr(Σ−1)cγ−2.

Consequently, (letting the eigenvalues of Σ̂ be denoted as λj(Σ̂))

tr(Σ̂−1) =

s∑
j=1

1

λj(Σ̂)
≤ (log det Σ0 + s)γ2/c <∞

is bounded a. s. for large enough T . This implies that the smallest eigenvalue of Σ̂ is bounded from
below. Consequently, also the largest eigenvalue of Σ̂ is bounded, since log |Σ̂| ≤ log |Σ0| + s a. s.
for T large enough.
Furthermore, also the third restriction of Θc1c2c3 is valid a. s. for large enough T as the lower
bound on the eigenvalues of Σ̂ implies

uT (θ̂)′ΓT (θ̂)−1uT (θ̂)/T ≥ tr

Σ̂−1[

r∑
j=0

R̂jR̂
′
j ]

 cγ−2 ≥ tr[

r∑
j=0

R̂jR̂
′
j ]cγ

−2/c2.

Therefore, it follows that for large enough T a. s.
̂̃
θT ∈ Θc1c2c3 .

We obtain that for large enough T a. s.
̂̃
θT ∈ Θc1c2c3 ∩ Θ̂, as the criterion function is infinite

for transfer functions k̃ with unit roots in this case, since in this case λ|max|(P•(θj)) → ∞ for

θj → θ ∈ Θ− Θ̂.

Putting the pieces together

Using the uniform convergence of Q̃T,η(θ) to Q̃η(θ) on Θc1c2c3 , we have (using Lemma 4.2.1. of
HD for the last equation)

lim inf
T→∞

LT (θ̂T ) ≥ lim inf
T→∞

(log |Σ̂T |+ Q̃T (θ̂T )) ≥ sup
η>0

lim inf
T→∞

(log |Σ̂T |+ Q̃T,η(θ̂T )) a. s.

≥ inf
θ∈Θc1c2c3

(
log |Σ|+ sup

η>0
Qη(θ)

)
= log |Σ0|+ s.
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Then, as in HD, p. 125, for every sequence θ̂T → θ (choosing a subsequence if necessary) it holds
that

lim inf
T→∞

LT (θ0) ≥ lim inf
T→∞

LT (θ̂T ) ≥ log |Σ0|+ s.

Then, LT (θ̂T ) → L(θ) = L(θ0) = log |Σ0| + s follows, where θ = (k̃, PC ,Σ, D̃). This shows that
Σ = Σ0 and k̃ = k̃0, since L(θ) depends on θ only via Σ and k̃ but not on PC or D̃.

It follows that LT (θ̂T )→ L(θ0) and hence for large enough T it holds that LT (θ̂T ) ≤ c a. s. for a
constant c < log |Σ0|+ s+ ε for every ε > 0.
Inspecting the proof then shows that

Q̃zT (θ̂T ) := tr
(

Σ−1
P [CM , CM−1, ..., C0]

〈
Ut,M (θ̂T )z, Ut,M (θ̂T )z

〉
[CM , CM−1, ..., C0]′

)
< c a. s.

This upper bound implies the following convergence results:

Lemma B.6 Under the assumptions of Theorem 2.1 let DT = diag(T−1/2Ic, DT,d), where DT,d =
diag(T γc+1 , ..., T γK ), where the reals γj are such that (where zt,0 := [x′t,1, s

′
t]
′ ∈ RK)

DT 〈zt,M , zt,M 〉DT
d→ Z > 0

for some non-degenerate random variable Z.
Then, the upper bound Q̃zT (θ̂) ≤ c for some c ∈ R implies (Is − PC)P̂C = oP (T 1−ε).

Moreover, we obtain C ′1,◦,⊥(d̂1−d1,◦)T
+1/2−ε p→ 0, C ′1,◦(d̂m+1−dm+1,◦)T

+1/2−ε p→ 0, C ′1,◦,⊥(d̂m+1−
dm+1,◦)T

+3/2−ε p→ 0 and (d̂j − dj,◦)T+1/2−ε p→ 0, 1 < j < m+ 1.

Note that here only the unit root z1 = 1 is present. Therefore, the deterministic terms corre-
sponding to all other unit roots are estimated consistently, while the constant d1 is only estimated
consistently in the cointegrating space.
PROOF: Recall that Ut,M (θ)z denotes the vector Ut,M (θ) projected onto zt,M := [x′t−M−1,1, s

′
t]
′ ∈

RK for suitable K. Then, the probability that

λ|min|((log T )DT 〈zt,M , zt,M 〉DT ) > 0

tends to 1. If no deterministic terms are contained, then Bauer (2009, Lemma 4) shows that this
also holds a. s.. Otherwise, the lower bound only can be shown to hold in probability. Thus, in

〈Ut,M (θ)z, Ut,M (θ)z〉 = 〈Ut,M (θ), zt,M 〉DT (DT 〈zt,M , zt,M 〉DT )−1DT 〈zt,M , Ut,M (θ)〉

the essential term is

〈Ut,M (θ), zt,M 〉 = 〈Vt,M (θ), zt,M 〉+ ΨM (θ) 〈zt,M , zt,M 〉 ,

such that

〈Ut,M (θ), zt,M 〉DT (DT 〈zt,M , zt,M 〉DT )−1 =

〈Vt,M (θ), zt,M 〉DT (DT 〈zt,M , zt,M 〉DT )−1 + ΨM (θ)D−1
T .

Letting Ψ̃M (θ) := ΨM (θ)D−1
T and Ṽt,M (θ) := 〈Vt,M (θ), zt,M 〉DT (DT 〈zt,M , zt,M 〉DT )−1, we ob-

tain

〈Ut,M (θ)z, Ut,M (θ)z〉 = (Ψ̃M (θ) + Ṽt,M (θ))(DT 〈zt,M , zt,M 〉DT )(Ψ̃M (θ) + Ṽt,M (θ))′.

Now, the lower bound on the eigenvalues of (log T )(DT 〈zt,M , zt,M 〉DT ) jointly with the upper
bound stated in the lemma implies that

‖[CM , CM−1, ..., C0]
(

Ψ̃M (θ̂) + Ṽt,M (θ̂)
)
‖/(log T )1/2 = OP (1),
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where the bound is almost sure, if no linear trend term is present. Thus, investigate this more
closely:

[CM , CM−1, ..., C0][D(θ̂;M), PM ] = [

M∑
j=0

Cj(D̃◦ − D̃)S−j , (
M∑
j=0

Cj)P̂⊥C0,1].

Here, Cj denotes the impulse response to the inverse transfer function k̃−1
0 (z), such that the term∑M

j=0 Cj converges to k̃−1
0 (1) for M → ∞. Thus, M can be chosen large enough to ensure the

non-singularity of this term without loss of generality. With respect to
∑M
j=0 Cj(D̃◦ − D̃)S−j ,

examine S in more depth for ω1 = 0, 0 < ω2 < π, l = m = 2:

st = Sst−1 ⇒ S =


1 0 0 0
0 cos(ω2) sin(ω2) 0
0 − sin(ω2) cos(ω2) 0
1 0 0 1

⇒ S−1 =


1 0 0 0
0 cos(ω2) − sin(ω2) 0
0 sin(ω2) cos(ω2) 0
−1 0 0 1

 .

For l > 2 or m > l additional sine and cosine blocks are added. Changing to complex quantities
we obtain

Dst = DCst,C, st,C = SCst−1,C, S−1
C =


1 0 0 0
0 z2 0 0
0 0 z2 0
−1 0 0 1

 .

Thus, we obtain for the column of
∑M
j=0 Cj(D̃◦− D̃)S−j corresponding to the complex root zk in

the complex representation
∑M
j=0 Cj(D̃C,k,◦ − D̃k,C)z−jk → k−1

◦ (zk)(D̃C,k,◦ − D̃k,C).

Since k̃−1
0 (1) is non-singular and it can be shown that

[CM , CM−1, ..., C0]
〈
Vt,M (θ̂), zt,M

〉
DT (log T )1/2((log T )DT 〈zt, zt〉DT )−1 = oP (1)

implies that

‖[CM , CM−1, ..., C0]
(

Ψ̃M (θ)
)
‖/(log T )1/2 = OP (1),

which in turn implies that (D̃1 − D̃1,◦)(log T )−1 = oP (1), (D̃m+1 −Dm+1,◦)T (log T )−1 = oP (1),

P̂⊥C0,1T
1/2(log T )−1 = oP (1), where D̃j denotes the j-th column of D̃. If no linear trend is present,

the last term is o(1).
Now, note that Ut,M (θ) = Vt,M (θ) + ΨM (θ)zt,M , where we have shown that〈

ΨM (θ̂)zt,M ,ΨM (θ̂)zt,M

〉
= Ψ̃M (θ̂)(DT 〈zt,M , zt,M 〉DT )Ψ̃M (θ̂)′ = OP (1).

Furthermore,〈
Vt,M (θ̂),ΨM (θ̂)zt,M

〉
=
〈
Vt,M (θ̂), zt,M

〉
DT (ΨM (θ̂)D−1

T )′ =
〈
Vt,M (θ̂), zt,M

〉
DT Ψ̃M (θ̂)′ = oP (1),

as
〈
Vt,M (θ̂), zt,M

〉
DT tends to zero, while the remaining factor is bounded. Now, assume that∥∥∥〈Vt,M (θ̂), zt,M

〉
DT

∥∥∥ = oP (‖Ψ̃M (θ̂)‖). Then,〈
Vt,M (θ̂), zt,M

〉
ΨM (θ̂)′ = oP (Ψ̃M (θ̂)(DT 〈zt,M , zt,M 〉DT )Ψ̃M (θ̂)′)

and the squared terms
〈

ΨM (θ̂)zt,M ,ΨM (θ̂)zt,M

〉
dominates, such that〈

Ut,M (θ̂), Ut,M (θ̂)
〉

=〈
Vt,M (θ̂), Vt,M (θ̂)

〉
+
〈

ΨM (θ̂)zt,M ,ΨM (θ̂)zt,M

〉
+ oP

(〈
ΨM (θ̂)zt,M ,ΨM (θ̂)zt,M

〉)
>〈

Vt,M (θ̂), Vt,M (θ̂)
〉
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for large T contradicting the optimality property (note that ΨM (θ0) = 0).

It follows that the order of convergence of the elements of Ψ̃M (θ̂) = ΨM (θ̂)D−1
T must be of order

equal to or smaller than the corresponding ones of
〈
Vt,M (θ̂), zt

〉
DT .

Consider the component xt−M−1,1 of zt,M first: Then,
〈
Vt,M (θ̂), xt−M−1,1

〉
= O(log T ) such that

the columns of ΨM (θ̂) corresponding to this regressor is of order oP ((log T )2T−1) = op(T
−1+ε).

If st = [1, t]′, then (D̃1 − D̃1,◦) corresponding to the constant is of order OP (T−1/2(log T )) =

oP (T−1/2+ε), for (D̃m+1−D̃m+1,◦) corresponding to the linear trend we obtainOP (T−3/2(log T )) =
oP (T−3/2+ε).
Finally, if no linear trend term is present, then the orders are also almost sure.�

The lemma implies the consistency results of the required order also for the entries in P̂C =
Ĉ1Ĉ

′
1 and the matrices D̂ corresponding to the deterministic terms.

The prediction error criterion function

For the prediction error criterion function

LPE,T (k(z),Σ, θD;YT ) = log |Σ|+ uT (θ)′ΓT,PE(θ)−1uT (θ)/T

it follows that

ΓT,PE(θ̃) =


Is 0 ... 0

K1 Is
. . .

...
...

. . .
. . . 0

KT−1 ... K1 Is


︸ ︷︷ ︸

TT (θ)

(IT ⊗ Σ)


Is 0 ... 0

K1 Is
. . .

...
...

. . .
. . . 0

KT−1 ... K1 Is


′

.

Consequently, |ΓT,PE(θ̃)| = |Σ|T in this case such that T−1 log |ΓT (θ̃)| = log |Σ| here. Note that

this does not depend on the poles of k̃ and hence in this case the first part of the criterion function
does not diverge to infinity at the stability boundary of Θ̂.
Following the proof above, it is noted that the log det term in this case is simpler such that we
can directly obtain the result log |ΓT,PE(θ̃)|/T → log |Σ| in this case.
For the second part QT (θ) of the criterion function note that

ΓT,PE(k,Σ) ≤ ΓT (k,Σ)⇒ ΓT,PE(k,Σ)−1 ≥ ΓT (k,Σ)−1.

Therefore, it follows that the second term of the criterion function can be bounded from below by
the arguments given above. This immediately implies that the prediction error estimator lies in
Θc1c2c3 for large enough T . The result then follows from

LPE,T (k◦(z),Σ◦, θD,◦ ;YT )→ log |Σ◦|+ s,

see Lemma B.4 for a proof.

B.2.2 Proof of Theorem 2.2 (Asymptotic Distribution) and Corollary
2.2

Let us repeat also at this point, that in order to derive the asymptotic distribution, the results
are based on using a specific parameterization, whereas the consistency proof has been parame-
terization free. This approach allows us to embed the problem in some Rd1 , for an appropriate
d1. We will use complex matrices in the proof, although we are concerned only with real valued
processes. The relationships between complex and real valued representation in the canonical form
have been discussed in Bauer and Wagner (2012).
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For the applicability of linearization techniques we furthermore assume that the parameters are
introduced in such a way that the true parameter vector

ϕ◦ = [ θ′u,◦ e′m+1,⊥,◦ e′m+1,◦ θ′d,b,◦ θ′st,◦ ]′,

where θu,◦ collects the parameter vector corresponding to the vectors θL,k in the parameterization
for zk ∈ {−1, 1}

Ck(θk) := RL(θL,k)′
[

Ick
0(s−ck)×ck

]
RR(θR,k),

where RL(θL,k) ∈ Rs×s and RR(θC,R,k) ∈ Rck×ck are orthonormal matrices, while for zk 6= ±1 we
use

Ck(θk) := QL(θL,k)′
[

Ick
0(s−ck)×ck

]
QR(θC,R,k)Dck(θC,D,k),

whereQL(θL,k) ∈ Cs×s andDck(θC,D,k), QR(θC,R,k) ∈ Cck×ck are unitary matrices andDck(θC,D,k)
moreover is a diagonal matrix. RL, RR, QL and QR here are products of Givens rotations. For more
details on the parameterization see Bauer et al. (2020).
Furthermore, em+1,⊥,◦ and em+1,◦ denote the parameters for the linear trend term (if it is inclu-
ded), while θd,b,◦ collects all other parameters due to the deterministic terms.
Further,

θst,◦ =
[
θ′C,D,◦ θ′C,R,◦ θ′B,f,◦ θ′B,p,◦ θ′•,◦

]′
.

Then, in the theorem it is assumed that ϕ◦ is an interior point of the parameter set. This requires
that the multi-index Γ is specified correctly.
Let the corresponding parameter estimator minimizing the scaled negative pseudo likelihood func-
tion LT be denoted as ϕ̂. The proof of Lemma B.4 shows that asymptotically the difference between
minimizing LT and the prediction error function LPE,T is negligible for the asymptotic distribu-
tion. Thus, we will in the following use the prediction error form which is easier to investigate.
Furthermore, we will concentrate out the parameters for Σ such that the criterion function equals

LPE,T (ϕ;YT ) = log det 〈εt(ϕ), εt(ϕ)〉 /T,

where

εt(ϕ) = yt −D(ϕ)st −
t−1∑
j=1

Kj(ϕ)(yt−j −D(ϕ)st−j).

In the following we will omit the subscript ’PE’ for notational convenience.
Here, Kj(ϕ) denotes the impulse response corresponding to the inverse transfer function k−1(z).

Note that ‖Kj(ϕ◦)‖ ≤ µKρ
j
0 for some 0 < ρ0 < 1, due to the strict minimum-phase assumption

for the data generating system.
Due to the consistency result it follows that for T large enough, the probability that the estimate
ϕ̂ is contained in Θε (an open neighborhood of ϕ◦) tends to 1, where the exponential decrease of
the impulse response sequence holds uniformly in Θε.
Thus, a necessary condition for a minimum is a zero first derivative and we obtain from the mean
value theorem

∂LT (ϕ̂;YT ) = 0 = ∂LT (ϕ◦;YT ) + ∂2LT (ϕ̄T ;YT )[ϕ̂− ϕ◦],

where ϕ̄T denotes an intermediate point between ϕ̂ and ϕ◦, not necessarily the same in each row.
Let D̃T = diag(I, T−1/2I, T 1/2I), where the sizes of the three blocks of D̃T are equal to the
dimensions of the parameter vectors θu, em+1,⊥ and [ e′m+1 θ′d,b θ′st ]′ respectively. Further, let

DT = diag(TI, T 3/2I, T 1/2I). Then the proof of the theorem proceeds in three steps:

1. Show that D̃T∂LT (ϕ◦;YT ) converges in distribution.
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2. Show that D̃T∂
2LT (ϕ̄T ;YT )D−1

T converges in distribution to a random matrix Z.

3. Show that P{Z > 0} = 1.

Let us start with the first item, i. e., with establishing the asymptotic properties of the score vector.
Denote with ∂if(ϕ◦) the partial derivative of a function f with respect to the i-th component of
the parameter vector ϕ, evaluated at the point ϕ = ϕ◦. With subscript i = st we denote the
subvector of ∂if(ϕ◦) for all i, such that the component θi is contained in θst. With subscript u we
denote differentiation with respect to the entries in θu, with subscript e⊥ we denote differentiation
with respect to the entries in em+1,⊥, with e differentiation with respect to the entries in em+1 and
with db differentiation with respect to the entries in θd,b. Furthermore we will use the notation
∂i,Hf(ϕ) for differentiation with respect to the i-th component of ϕ which corresponds to the
matrix H.
Here and also below the matrices (A,B, C) correspond to the canonical representation of a system
described by the parameter vector θ. We omit the dependency on the parameter θ for simplicity
of notation. Recall that the matrix C = [ C1 . . . Cl C• ] is partitioned according to the blocks
of different unit roots (or pairs of complex roots).

Lemma B.7 The derivatives of εt(ϕ) with respect to the different parameters in θst are given by

• ∂i,A•εt(ϕ) = dki,A•(L, θ)xt,•(θ), where dki,A•(z, θ) = −Cz(I − zA)−1

[
0c×(n−c)
∂i(A•)

]
,

• ∂i,B•εt(ϕ) = dki,B•(L, θ)εt(ϕ), where dki,B•(z, θ) = −Cz(I − zA)−1

[
0c×s
∂i(B•)

]
,

• ∂i,Buεt(ϕ) = dki,Bu(L, θ)εt(ϕ), where dki,Bu(z, θ) = −Cz(I − zA)−1

[
∂i(Bu)

0(n−c)×s

]
,

• ∂i,C•εt(ϕ) = dki,C•(L, θ)xt,•(θ), where dki,C•(z, θ) = k−1(z; θ)(−∂iC•),

• ∂i,θC,Dεt(ϕ) = 2R
{
dki,θC,D (L, θ)εt−1(ϕ)

}
for zk 6= ±1,

where dki,θC,D (z, θ) = k̃(z; θ)(−∂i,θC,DCk)Bk, where k̃(z; θ) is defined through k−1(z; θ) =

k̃(z, θ)(1− zzk) + k−1(zk, θ)z,

• ∂i,θC,Rεt(ϕ) = dki,θC,R(L, θ)εt−1(ϕ) if zk = ±1, where dki,θC,R(z, θ) = k̃(z; θ)(−∂i,θC,RCk)Bk,

where k−1(z; θ) = k̃(z, θ)(1− zzk) + k−1(zk, θ)z,

• ∂i,θC,Rεt(ϕ) = 2R
{
dki,θC,R(L, θ)εt−1(ϕ)

}
if zk 6= ±1,

where dki,θC,R(z, θ) = k̃(z; θ)(−∂i,θC,RCk)Bk.

All the above processes are asymptotically stationary.
The derivatives of εt(ϕ) with respect to parameters in θu are given by

• ∂i,θLεt(ϕ) = dki,θL(L, θ)xt,k(θ) if zk = ±1, where dki,θL(z, θ) = k−1(z; θ)(−∂i,θLCk),

• ∂i,θLεt(ϕ) = 2R{dki,θL(L, θ)xt,k(θ)} if zk 6= ±1, where dki,θL(z, θ) = k−1(z; θ)(−∂i,θLCk).

Finally, the derivatives of εt(ϕ) with respect to parameters in θd are given by

• ∂i,Dεt(ϕ) = −k−1(L; θ)∂i,DD(θd)st(θ).

PROOF: The results follow from taking the derivative of the inverse transfer function. As an exam-
ple, let us analyze derivation with respect to a parameter corresponding to the matrix Ck. The
partial derivatives are:

∂iεt(ϕ) = −(∂iCk)xt,k(θ)− C(∂ixt(θ)),
∂ixt+1(θ) = A∂ixt(θ)− B(∂iCk)xt,k(θ).
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These components of the score are filtered version of xt,k(θ). A possibly non-minimal representation
of the filter is given by dki(z, θ) = −∂iCk + zC(I − zA)−1B∂iCk = k−1(z; θ)(−∂iCk). Decomposing

k−1(z; θ) = k̃(z, θ)(1− zkz) + k−1(zk, θ)z

and noting that k−1(zk, θ)Ck = 0, one sees that the second term cancels for vectors in the column
space of Ck.
Consider now the derivative ∂iCk, which is complex valued if zk 6= ±1. If the derivative is taken
with respect to θC,L, it follows that the column space of −∂i,θC,LCk does not lie in the column
space of Ck. If the derivative is taken with respect to θC,D, then −∂i,θC,DCk lies in the column
space of Ck, such that

k−1(z; θ)(−∂i,θC,DCk) = k̃(z, θ)(1− zkz)(−∂i,θC,DCk).

Define xt+1(zk, θ) = zkxt(zk, θ) + Bk(θ)εt, thus, xt,k(θ) = [2R{xt(zk, θ)}′ ,−2I {xt(zk, θ)}′]′ for
zk 6= ±1. Using

k−1(z; θ)(−∂iCk)xt,k(θ) = R
{
k−1(z; θ)(−∂iCk)xt(zk, θ)

}
and applying k−1(z; θ)(−∂i,θC,DCk) (and k−1(z; θ)(−∂i,θC,DCk)) to xt(zk, θ) (and xt(zk, θ)), im-
plies the result for derivatives with respect to θC,D. If the derivative is taken with respect to θC,R,
then −∂i,θC,RCk also lies in the column space of Ck and the same argument holds.
Derivatives with respect to the other parameters are derived analogously. �
In the following lemma the asymptotic behavior of the score is summarized. In this lemma and the
rest of the document the dependence of the prediction error criterion function on YT is omitted
for notational simplicity.

Lemma B.8 Let the assumptions of Theorem 2.2 hold. Then the following statements hold true:

•
√
T∂stLT (ϕ◦)

d→ N (0, Vst),

where Vst denotes the asymptotic variance matrix.

•

(∂uLT (ϕ◦))i
d→ −2δkR

{
tr
[
(Σ◦)

−1Πk,◦(∂u,iCk,◦)X(zk)
]}

=: (vu)i,

with X(zk) as defined in Lemma B.2 and Πk = k−1(zk).

• For a column Ck,◦,⊥d
k of D corresponding to zk = ±1, one obtains

√
T∂db,kLT (ϕ◦)

d→ −2α′k,◦Σ
−1
◦ Wk(1) =: vdb,k,

where we have used the decomposition Πk,◦ = αk,◦β
′
k,◦. If zk 6= ±1, the vector of derivatives

with respect to the real part of the k-th column Ck,◦,⊥d
k, k ≤ l, of D or the real part of

dk, k > l, respectively, and with respect to the imaginary part of the same column converges
to

√
T∂db,kLT (ϕ◦) =

 −4R
{
α′k,◦Σ

−1
◦ Wk(1)

}
−4I

{
α′k,◦Σ

−1
◦ Wk(1)

}  =: vdb,k,

where Wk(1) = W r
k (1) + iW i

k(1) is as defined in Lemma B.2. Hence the covariance-matrix
VD is block diagonal, where the diagonal blocks are given by the covariance matrices of the
two parts of the vector given above, taking into account the uncorrelatedness of W r

k (1) and
W i
k(1). If k > l, we here use αk,◦ = Is.
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• For the deterministic linear trends we find

1√
T
∂e⊥LT (ϕ◦)

d→ −2α′1,◦Σ
−1
◦ U(1) =: ve⊥,

√
T∂eLT (ϕ◦)

d→ −2(Γ1,◦C1,◦)
′Σ−1
◦ W1(1) =: ve,

where Γ1,◦ is the derivative of k◦(z)
−1 with respect to z evaluated at 1.

• All convergence results hold jointly.

PROOF: In order to establish the asymptotic properties of the score, the partial derivatives of LT (ϕ)
are required. These can be derived from the system equations:

∂iLT (ϕ◦) = ∂i (log det 〈εt(ϕ◦), εt(ϕ◦)〉) = tr[〈εt(ϕ◦), εt(ϕ◦)〉−1
2〈∂iεt(ϕ◦), εt(ϕ◦)〉]

= tr[Σ−1
◦ 2〈∂iεt(ϕ◦), εt(ϕ◦)〉] + oP (1).

Let us start with the coordinates of θst =
[
θ′C,D θ′C,R θ′B,f θ′B,p θ′•

]′
. For every com-

ponent of θst Lemma B.7 above establishes asymptotic stationarity. Asymptotic normality for√
T 〈∂iεt(ϕ◦), εt(ϕ◦)〉 then follows from well established theory for stationary processes, see, e. g.,

Hannan and Deistler (1988, Lemma 4.3.4 ff). It is straightforward to show that the result holds
jointly in all coordinates of θst.
The representation in Lemma B.7 allows for the application of Lemma B.2 and Lemma B.3 to
obtain

∂u,iLT (ϕ◦) = R
{

tr[Σ−1
◦ 2〈k−1(L; θ◦)(−∂u,iCk,◦)xt,k(θ◦), εt〉]

}
+ oP (1)

d→ 2R
{

tr
[
Σ−1
◦ Πk,◦(−∂iCk)X(zk)

]}
, where ∂iCk := ∂u,iCk,◦.

The next step is to derive the asymptotic distribution of the score components corresponding
to θd,b. The matrix DC is parameterized with real parameters using D = R(D) + iI(D), where
both R(D) and I(D) are unconstrained, except for the restriction, that the columns of I(D)
corresponding to zk = ±1 are zero. Consider a specific element of this part of the score vector,
corresponding to component i, say, of θd,b, which corresponds to entry (a, k) in R(D). Because
of the restriction to real valued output processes, only the real part of the derivative has to be
investigated:

∂db,kLT (ϕ◦) = −R

{
2

T

T∑
t=1

(k−1(L; θ◦)Ck,◦,⊥st,k)′Σ−1
◦ εt

}
+ oP (T−1/2),

where {st,k}t∈N denotes a deterministic process satisfying st,k = ztk for all t ∈ N. Note that

k−1(L; θ◦)Ck,◦,⊥st,k = Πk,◦Ck,◦,⊥st,k − C◦(zkA◦)t(I − zkA◦)−1B◦Ck,◦,⊥,

where the second component exhibits exponential decay. Therefore, it follows that

√
T∂db,kLT (ϕ◦) = −R

{
(Πk,◦Ck,⊥)′Σ−1

◦
2√
T

T∑
t=1

zt−1
k εt

}
+ oP (T−1/2)

d→ −2δk R
{

(Πk,◦Ck,◦,⊥)′Σ−1
◦ Wk(1)

}
= −2δk R

{
α′k,◦Σ

−1
◦ Wk(1)

}
,

where we have used Πk,◦ = αk,◦β
′
k,◦, βk,◦ = Ck,◦,⊥ and C ′k,◦,⊥Ck,◦,⊥ = Irk in the last step. If k > l,

such that the deterministic term does not correspond to a unit root, we choose αk,◦ = βk,◦ = Is.
Note finally that if the derivative is with respect to the (a, k)-th entry in I(D), in the above
equation R has to be replaced with I.
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Now, only the asymptotic distribution of the score components corresponding to em+1,⊥ and em+1

are left to be derived. In both cases we have for entry a of dm+1

∂dm+1
LT (ϕ◦) = − 2

T

T∑
t=1

(k−1(L; θ◦)t)
′Σ−1
◦ εt + oP (T−1/2).

Using

k−1(L; θ◦)t =

t−1∑
j=0

Kj(t− j) = (

t−1∑
j=0

Kj)t−
t−1∑
j=0

Kjj = Π1,◦t+ Γ1,◦ + oP (ρt),

we get for the entries in the direction of C1,◦,⊥

1√
T
∂e⊥LT (ϕ◦)

= −2(Π1,◦C1,◦,⊥)′Σ−1
◦ T−3/2

T∑
t=1

tεt − 2(Γ1,◦C1,◦,⊥)′Σ−1
◦ T−3/2

T∑
t=1

εt + oP (T−3/2)

d→ −2(Π1,◦C1,◦,⊥)′Σ−1
◦ U(1)

= −2α′1,◦Σ
−1
◦ U(1),

where we have used Lemma B.3 (viii) for the convergence of the first summand. In the directions
of C1,◦ the first term vanishes because Π1,◦C1,◦ = 0. Consequently, we get

√
T∂eLT (ϕ◦) = −2(Γ1,◦C1,◦)

′Σ−1
◦ T−1/2

T∑
t=1

εt + oP (T−1/2)

d→ −2(Γ1,◦C1,◦)
′Σ−1
◦ W (1)

by the same arguments as in the analysis of the entries of θd,b. This concludes the proof of the
lemma. �
After having established the (asymptotic) properties of the score vector, the next step is the ana-
lysis of the asymptotic behavior of the Hessian. As in Lemma B.8 in the discussion we have to
distinguish with respect to which parameter components θu, θst, em+1,⊥, em+1 or θd,b differen-
tiation takes place. In addition to the previous lemma, we also have to consider the cross terms,
where differentiation takes place, e. g., once with respect to an entry in θu and once with respect
to an entry in θst.

Lemma B.9 Under the conditions of Theorem 2.2 one obtains D̃T∂
2LT (ϕ̄T )D−1

T
d→ Z for each

sequence ϕ̄T → ϕ◦.
In case that no deterministic terms are included in the true data generating process and the model
(i. e., D̂ = D◦ = 0), Z = diag(Z?, Zst) is block diagonal. It holds that Zst > 0 is a constant matrix
and Z? a random matrix, for which P{Z? > 0} = 1 holds.
If the deterministic terms are included in the model, the following asymptotic distribution is ob-
tained: Here, again ϕ = [ θ′u e′m+1,⊥ e′m+1 θ′d,b θ′st ]′. Then

D̃T∂
2LT (ϕT )D−1

T
d→

[
Z? 0
0 Zst

]
=


Zu Y ′e⊥ Y ′e Y ′db 0
Ye⊥ Ze⊥ Y ′e⊥,e Y ′e⊥,db 0

Ye Ye⊥,e Ze Y ′e,db 0

Ydb Ye⊥,db Ye,db Zdb 0
0 0 0 0 Zst


Zu, Zdb and Ydb are block-diagonal, with the diagonal blocks corresponding to different unit roots.
For typical indices i, j (not the same for all the expressions below) corresponding to the same unit
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root zk = ±1 the respective entries are of the form:

[Zu,k]i,j = 2R
{

tr
[
∂jC

′
kΠ′k,◦Σ

−1
◦ Πk,◦∂iCkZ(zk)

]}
,

[Ydb,k]i,j = −2R
{
e′iα
′
k,◦Σ

−1
◦ Πk,◦∂iCkY (zk)

}
,

Zdb,k = 2α′k,◦Σ
−1
◦ αk,◦.

For the entries corresponding to zk 6= ±1 the respective entries are of the form:

[Zu,k]i,j = 4R
{

tr
[
∂jC′kΠ′k,◦Σ

−1
◦ Πk,◦∂iCkZ(zk)

]}
,

Zdb,k = 4

[
α′k,◦Σ

−1
◦ αk,◦ 0

0 α′k,◦Σ
−1
◦ αk,◦

]
,

[Ydb,k]i,j = −4

 R{e′iα′k,◦Σ−1
◦ Πk,◦∂jCkY (zk)

}
I
{
e′iα
′
k,◦Σ

−1
◦ Πk,◦∂jCkY (zk)

}  .
Only the block corresponding to the unit root with zk = 1 of Ye⊥ , Ye, Ye⊥,db and Ye,db is different
from zero. For these blocks we have

Ze⊥ =
2

3
α′1,◦Σ

−1
◦ α1,◦,

Ze = 2(Γ1,◦C1,◦)
′Σ−1
◦ Γ1,◦C1,◦,

Ye⊥,e = α′1,◦Σ
−1
◦ Γ1,◦C1,◦,

Ye⊥,db = α′1,◦Σ
−1
◦ α1,◦,

Ye,db = 2(Γ1,◦C1,◦)
′Σ−1
◦ α1,◦,

[Ye⊥ ]i,j = −2e′iα
′
1,◦Σ

−1
◦ Π1,◦∂jC1V (1),

[Ye]i,j = −2e′iα
′
1,◦Σ

−1
◦ Π1,◦∂jC1Y (1).

It follows that Zu − Y ′DZ
−1
D YD with YD = [ Y ′e⊥ Y ′e Y ′db ]′ and

ZD :=

 Ze⊥ Y ′e⊥,e Y ′e⊥,db
Ye⊥,e Ze Y ′e,db
Ye⊥,db Ye,db Zdb


has the same structure as Zu, where in the expression Z(zk) has to be replaced by Z(zk) −
Y (zk)Y (zk)′ for all zk if there is no linear trend term in the model and for zk 6= 1 else. If a
linear trend is present in the model, Z(1) has to be replaced by Z(1)−12V (1)V (1)′+6Y (1)V (1)′+
6V (1)Y (1)′ − 4Y (1)Y (1)′. Further, Zst > 0 and P{Zu > 0} → 1 respectively P{Zu − Y ′DZ

−1
D YD >

0} → 1.

PROOF: In the proof first convergence of the various parts is shown and in a final step the non-
singularity of Zu is established. First note that:

∂2
i,jLT (ϕ̄T ) = ∂i

(
tr[〈εt(ϕ̄T ), εt(ϕ̄T )〉−1

2〈∂jεt(ϕ̄T ), εt(ϕ̄T )〉]
)

=

− tr[ 〈εt(ϕ̄T ), εt(ϕ̄T )〉−1

(〈∂iεt(ϕ̄T ), εt(ϕ̄T )〉+ 〈εt(ϕ̄T ), ∂iεt(ϕ̄T )〉) 〈εt(ϕ̄T ), εt(ϕ̄T )〉−1
2 〈∂jεt(ϕ̄T ), εt(ϕ̄T )〉 ]

+ tr
[
〈εt(ϕ̄T ), εt(ϕ̄T )〉−1

2
〈
(∂2
i,jεt(ϕ̄T )), εt(ϕ̄T )

〉]
+ tr

[
〈εt(ϕ̄T ), εt(ϕ̄T )〉−1

2 〈(∂jεt(ϕ̄T )), (∂iεt(ϕ̄T ))〉
]

=

− tr
[
Σ−1
◦ (〈∂iεt(ϕ̄T ), εt(ϕ̄T )〉+ 〈εt(ϕ̄T ), ∂iεt(ϕ̄T )〉) Σ−1

◦ 2 〈∂jεt(ϕ̄T ), εt(ϕ̄T )〉
]

+ tr
[
Σ−1
◦ 2

〈
(∂2
i,jεt(ϕ̄T )), εt(ϕ̄T )

〉]
+ tr

[
Σ−1
◦ 2 〈(∂jεt(ϕ̄T )), (∂iεt(ϕ̄T ))〉

]
+ oP (1) (B.5)
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for every sequence ϕ̄→ ϕ◦. This follows from the USE condition, see Lemma B.1 in combination
with 〈εt(ϕ◦), εt(ϕ◦)〉 → Σ◦.
According to the partitioning of ϕ in five sub-vectors in total 15 matrix blocks (taking into account
symmetry of the Hessian) have to be dealt with. The blocks are partitioned according to how often
differentiation takes place with respect to a component of θu, em+1,⊥, em+1, θd,b and θst.

The multiplication of the Hessian with DT and D̃T has the following effect: For each derivative
with respect to an entry in em+1,⊥ an additional scaling factor T−1 is introduced and for each
derivative with respect to an entry in θu an additional scaling factor T−1/2 is introduced, which
results in the proper scaling factor for each of the terms to obtain convergence in distribution.
In the above expression (B.5) the variable εt(ϕT ) appears, in the first and second term to be
precise. This variable has to be evaluated at the point ϕ̄T . Due to the assumptions ϕ̄T converges
to ϕ◦. Hence, applying a mean value expansion again εt(ϕ̄T ) = εt + ∂εt(ϕ̃)(ϕ̄T − ϕ◦), for suitable
intermediate value ϕ̃, it follows that both mentioned terms converge to 0. Look for example at the
second term with essential term

〈
(∂2
i,jεt(ϕ̄T )), εt(ϕ̄T )

〉
=
〈
(∂2
i,jεt(ϕ̄T )), εt

〉
+

dim(ϕ)∑
l=1

〈
(∂2
i,jεt(ϕ̄T )), ∂lεt(ϕ̃)

〉
(ϕ̄l,T − ϕl,◦).

Lemmas B.2 and B.3 show that for this term for all possible combinations of differentiation (inclu-
ding the necessary normalization if differentiation occurs with respect to an entry of θu or em+1,⊥),
that the first term of the above equation converges to 0. Due to the established condition USE
this convergence is uniformly in a compact neighborhood of ϕ◦. Analogous considerations deliver
convergence of the second term to 0 as well. Here, the terms (∂2

i,jεt(ϕ))∂lεt(ϕ̃)′ converge to random
variables, post-multiplying with (ϕ̄l,T − ϕl,◦) then delivers the result. Similar considerations also
apply to the first term of equation (B.5). Hence, we obtain:

∂2
i,jLT (ϕ̄T ) =tr

[
Σ−1
◦ 2〈(∂iεt(ϕ̄T )), (∂jεt(ϕ̄T ))〉

]
+ oP (TNu/2+Ne⊥ ), (B.6)

where Nu counts the number of times differentiation takes place with respect to an element of
θu and Ne⊥ counts the number of times differentiation takes place with respect to an element of
em+1,⊥. Now, starting from equation (B.6), we analyze the asymptotic behavior of the derivatives.
i ∼ θst, j ∼ θst: If differentiation takes place twice with respect to an entry of θst, then all quantities
in the above equation are asymptotically stationary, see also the previous lemma. In this case
convergence to a constant matrix follows, using uniform convergence in a compact neighborhood
of ϕ◦.
i ∼ θst, j ∼ θd,b: If differentiation takes place once with respect to an entry of θst and once with
respect to an entry of θd,b, convergence of ∂2

i,jLT (ϕ̄T )→ 0 follows.
i ∼ θd,b, j ∼ θd,b: If differentiation takes place twice with respect to an entry in θd,b, the relevant
term is given by tr

[
Σ−1
◦ 2〈(k−1(L; θ̄)∂iDst), (k

−1(L; θ̄)∂jDst)〉
]
. This directly implies that the

asymptotic entry in the (limit of the) Hessian is only non-zero, if both entries of db with respect
to which differentiation takes place correspond to elements in the same column of D, k say. For
zk 6= ±1 the corresponding limit block in the Hessian is in this case given by[

4α′k,◦Σ
−1
◦ αk,◦ 0

0 4α′k,◦Σ
−1
◦ αk,◦

]
.

For zk = ±1 the block is equal to 2α′k,◦Σ
−1
◦ αk,◦.

i ∼ θst, j ∼ θu: If differentiation takes place once with respect to an entry of θst and once with
respect to an entry of θu, the corresponding entry is the sum of a product of a stationary process
with an integrated process (integrated of order 1 at the corresponding unit root). The normalization
factor T−3/2, with which these elements are scaled, then implies convergence to zero of the scaled
quantity.
i ∼ θu, j ∼ θu: Next, we examine the case of differentiating twice with respect to an entry in
θu. Note in this respect first that if in differentiating twice with respect to entries of θu, the two
parameters correspond to different unit roots, it holds that T−1∂2

i,jLT (ϕ̄T )→ 0. This follows from
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observing that ∂iεt(ϕ) = k−1(L; θ)(−∂iCk)xt,k(θ), where we assume that the entry with respect
to which differentiation takes place corresponds to the pair of complex conjugate unit roots zk, zk
or to zk = ±1 and xt,k(θ) denotes as before in Lemma B.8 the state vector in the real valued
canonical form. The above expression for the partial derivative can directly be investigated using
Lemma B.3, item (iii). The lemma provides similarly the result for the case that both i and j
correspond to the same unit root or pair of unit roots:

T−1∂2
i,jLT (ϕ̄T )

d→ 2δ2
ktr
{
R
{[
∂jC

′
kΠ′k,◦Σ

−1
◦ Πk,◦∂iCkZ(zk)

]}}
.

i ∼ θu, j ∼ θd,b: Now, consider first differentiation with respect to an entry of θu and then with
respect to an entry of θd,b. Here we have to distinguish two cases, whether j corresponds to
an element of the j-th column of R(D) or to an element in the j-th column of I(D) (which is
corresponding to s1

t,j = zt−1
j ). Suppose for the moment that it corresponds to an element of R(D),

and let i denote a component of θu that corresponds to unit root zk. Then, we obtain

T−1/2∂2
i,jLT (ϕ̄T )

d→ −2 R
{
e′iα
′
k,◦Σ

−1
◦ Πk,◦∂iCkY (zk)

}
and zero else. The expression for an element of θd,b corresponding to an entry in the j-th column
of I(D) is the same, except for replacing R by I.
i ∼ em+1,⊥, j ∼ em+1,⊥: If differentiation takes place with respect to two entries of em+1,⊥, the
dominating term is

T−2∂2
i,jLT (ϕ̄T ) =

2

T 3

T∑
t=1

e′iα
′
1,◦Σ

−1
◦ α1,◦ejt

2

→ 2

3
e′iα
′
1,◦Σ

−1
◦ α1,◦ej ,

where the convergence follows from the second statement of Lemma B.3 (vi).
i ∼ em+1,⊥, j ∼ θst: If differentiation takes place with respect to an entry of em+1,⊥ and an entry
of θst, the dominating term is of the form T−1〈t, ε̃t〉 where ε̃t is a stationary process. Since by
Lemma B.3 (viii) such a sum converges in distribution when the scaling factor is T−3/2, these
terms go to zero.
i ∼ em+1,⊥, j ∼ θd,b: If differentiation takes place with respect to an entry of em+1,⊥ and an entry
of θd,b, the dominating term is

T−2∂2
i,jLT (ϕ̄T ) =

2

T 2

T∑
t=1

e′iα
′
1,◦Σ

−1
◦ α1,◦ejtst(zk)

→ e′iα
′
1,◦Σ

−1
◦ α1,◦ejδk,1,

where the convergence follows from the first statement of Lemma B.3 (vi).
i ∼ em+1,⊥, j ∼ θu: If differentiation takes place with respect to an entry of em+1,⊥ and an entry
of θu, the dominating term is

T−3/2∂2
i,jLT (ϕ̄T ) = − 1

T 5/2

T∑
t=1

e′iα
′
1,◦Σ

−1
◦ Π1,◦∂jC1xt,k(θ◦)t

→ −2e′iα
′
1,◦Σ

−1
◦ Π1,◦∂jC1

∫ 1

0

uW1(u)duB′1,◦,

where we have used Lemma B.3 (vii) for the convergence.
i ∼ em+1, j ∼ em+1: If differentiation takes place with respect to two entries of em+1, the domi-
nating term is

∂2
i,jLT (ϕ̄T ) =

1

T

T∑
t=1

2e′i(Γ1,◦C1,◦)
′Σ−1
◦ Γ1,◦C1,◦ej

→ 2e′i(Γ1,◦C1,◦)
′Σ−1
◦ Γ1,◦C1,◦ej .
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i ∼ em+1, j ∼ em+1,⊥: If differentiation takes place with respect to one entry of em+1 and one
entry of em+1,⊥, the dominating term is

1

T
∂2
i,jLT (ϕ̄T ) =

1

T 2

T∑
t=1

2e′i(Γ1,◦C1,◦)
′Σ−1
◦ α1,◦ejt

→ e′i(Γ1,◦C1,◦)
′Σ−1
◦ α1,◦ej ,

where we have used the first statement of Lemma B.3 (vi) for the convergence.
i ∼ θu, j ∼ em+1: By the same argument as in the case of differentiation with respect to an entry
of θu and an entry of θd,b in the case of differentiation with respect to an entry of θu and an entry
of em+1 we have

T−1/2∂2
i,jLT (ϕ̄T )

d→ 2e′i(Γ1,◦C1,◦)
′Σ−1
◦ Π1◦∂jC1Y (1),

if the entry of θu corresponds to the unit root frequency zero and convergence to zero else.
i ∼ θd,b, j ∼ em+1: If differentiation takes place with respect to an entry of em+1 and an entry of
θd,b, the relevant term is

2

T

T∑
t=1

α′1,◦st,kΣ−1
◦ Γ1,◦C1,◦ → δk,12α′1,◦Σ

−1
◦ Γ1,◦C1,◦.

i ∼ θst, j ∼ em+1: In the case where derivatives are taken with respect to an entry of em+1 and
an entry of θst, the dominating term is of the form

2

T

T∑
t=1

(Γ1,◦C1,◦)
′Σ−1
◦ ε̃t

for some asymptotically stationary process ε̃t. This term goes to zero by the second statement of
Lemma B.3 (i).
It remains to analyze the non-singularity properties of Z. In the case D◦ = D̂ = 0 the block-
diagonality of the asymptotic Hessian implies that it is sufficient to treat the blocks Zu and
Zst separately. If deterministic terms are present it is sufficient to investigate Zst, ZD and Zu −
Y ′DZ

−1
D YD.

Consider the block Zst corresponding to θst first: This block converges in fact to a constant matrix,
i. e., asymptotic non-singularity is shown, if the limiting matrix is non-singular. For the part of θst
corresponding to the parameters for k•(z) this follows again from standard theory for stationary
processes. Since the parameters of the stable and the unstable part of the transfer function are
independent of each other, we can consider the unstable part alone.
Thus, only the derivatives corresponding to θC,D, θC,R, θB,f and θB,p have to be analyzed. The
proof is indirect: If the sub-block of Zst corresponding to θC,D, θC,R, θB,f and θB,p were singular,
there existed a vector x = [ x1 . . . xv ]′ such that

0 =

v∑
r,s=1

xrxstr[Σ
−1
◦ E∂sεt(ϕ◦)∂rεt(ϕ◦)′] = tr

[
Σ−1
◦ E

v∑
r=1

xr∂rεt(ϕ◦)

(
v∑
s=1

xs∂sεt(ϕ◦)

)′]
,

denoting the components of θst corresponding to θC,D, θC,R, θB,f and θB,p with 1, . . . , v for some
integer v. This implies that∑

r

xr∂rεt(ϕ◦) = −k−1
0 (L)

∑
r

xr∂rk(z; θ)εt

is equal to zero and thus that the filters for generating the score are linearly dependent.
The coefficients of the unstable part of the transfer function are of the formKj,u =

∑l
k=1 CkA

j−1
k Bk

with Ck and Bk of full rank. Thus, linear dependence between the derivatives with respect to
parameters corresponding to different unit roots cannot happen. Thus, linear dependence implies

121



122

∑
r xr∂rCkBk = 0. In the following we will show that this implies xr = 0.

We start with the case of a real unit root zk. We show the independence by induction over ck. In

the case ck = 2, s = 2 there are four parameters in θst, the three parameters in Bk =

[
b11 b12

0 b22

]
and the parameter of the Givens rotation in Ck = RR =

[
cos(ω) sin(ω)
− sin(ω) cos(ω)

]
, see Bauer et al.

(2020, Section 3.1) for details. The four derivatives are

∂(CkBk)

∂ω
=

[
−b11 sin(ω) −b12 sin(ω) + b22 cos(ω)
−b11 cos(ω) −b12 cos(ω)− b22 sin(ω)

]
,

∂(CkBk)

∂b11
=

[
cos(ω) 0
− sin(ω) 0

]
,

∂(CkBk)

∂b12
=

[
0 cos(ω)
0 − sin(ω)

]
,

∂(CkBk)

∂b22
=

[
0 sin(ω)
0 cos(ω)

]
.

The first columns of the first two matrices are orthogonal to each other and different from zero,
since b11 > 0, the first columns of the other two matrices are zero. Thus, the coefficients xr of the
first two matrices of a linear combination of the derivatives, which is zero, must be zero. Since the
second columns of the last two matrices are orthogonal and different from zero, their coefficients
must also be zero and the four matrices are linearly independent. This argument is easily extended
to the case ck = 2, s > 2 as well as to the case ck = 1.
Suppose the linear independence has been shown for ck = g. To show the statement for ck = g+1,
write

RR(θC,R,k) =

ck−1∏
i=1

ck−i∏
j=1

Rck,i,i+j(θi(i−1)/2+j) =

ck−1∏
j=1

Rck,1,1+j(θj)

ck−1∏
i=2

ck−i∏
j=1

Rck,i,i+j(θi(i−1)/2+j),

where Rck,i,i+j(θi(i−1)/2+j) is a real Givens rotation, see Bauer et al. (2020, Definition 6). Note
that this is not in the form of RR in Bauer et al. (2020, Lemma 1). It is, however, just a reordering
of the Givens rotations. Since the order is arbitrary, this change does not affect the properties
of the parameterization. Since the matrix RL is of full rank, it is sufficient to show the linear
independence of RRBk. It is easily seen that the entries in the first column of RRBk with non-zero
entries only depend on the parameters θ1 . . . , θck−1 and the first non-zero entry in the first row
of Bk. Since the first columns of the derivatives to these parameters are orthogonal to each other,
the coefficients of these derivatives in a linear combination, which is zero, must be zero. Since the
matrix

∏ck−1
j=1 Rck,1,1+j(θj) is of full rank, the derivatives of

ck−1∏
j=1

Rck,1,1+j(θj)

ck−1∏
i=2

ck−i∏
j=1

Rck,i,i+j(θi(i−1)/2+j)Bk

with respect to the other parameter are independent if and only if the derivatives of

ck−1∏
i=2

ck−i∏
j=1

Rck,i,i+j(θi(i−1)/2+j)Bk =

[
1 0

0
∏ck−1
i=2

∏ck−i
j=1 Rck−1,i−1,i+j−1(θi(i−1)/2+j)

]
Bk

are linearly independent. Then, consider the second column of this matrix. The derivative with
respect to b12 is null outside the first row, while the derivative with respect to any other parameter
is zero in the first row. Thus, clearly, the coefficient corresponding to b12 must be zero. By an
analogous argument the coefficients corresponding to b13, . . . , b1s are zero. Thus, to show that the
coefficients of the derivatives in the linear combination with respect to the other parameters are
zero, it is sufficient to consider the lower right (ck−1)× (s−1) block. This is a direct consequence
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of the induction hypothesis. This finishes the proof for real unit roots.
For a complex unit root the linear independence is also shown by induction over ck. The part
of the matrix QRDck corresponding to θst is with a reordering of the parameters of Bauer et al.
(2020, Lemma 2) of the form

QR(θC,R,k)Dck(θC,D,k) =

ck−1∏
i=1

ck−i∏
j=1

Qck,i,i+j(θR,i(i−1)/2+j)

 diag(θD,1, . . . , θD,ck),

where Qck,i,i+j are complex Givens rotations, compare Bauer et al. (2020, Definition 7), where
again the ordering of the multiplications is changed to simplify the proof. In the case ck = 1,
s = 2 it must be shown that the derivatives of the matrix [ (QRDckBk)′ (QRDckBk)′ ]′ with

Bk =
[
b11 R(b12) + iI(b12)

]
, see Bauer et al. (2020, Section 3.1), with respect to the different

parameters are linearly independent for an inner point of the parameter space. Since ck = 1, the
matrix QR(θC,R,k) does not exist. Thus, we have[

(DckBk)
(DckBk)

]
=

[
eiθDb11 eiθD (R(b12) + iI(b12))
e−iθDb11 e−iθD (R(b12)− iI(b12))

]
.

The derivatives of this matrix are

∂

∂θD
=

[
ieiθDb11 ieiθD (R(b12) + iI(b12))
−ie−iθDb11 −ie−iθD (R(b12)− iI(b12))

]
,

∂

∂b11
=

[
eiθD 0
e−iθD 0

]
,

∂

∂R(b12)
=

[
0 eiθD

0 e−iθD

]
,

∂

∂I(b12)
=

[
0 ieiθD

0 −ie−iθD

]
,

which are clearly linearly independent. The extension to the case ck = 1, s > 2 is straightforward.
The first two columns of the derivatives with respect to the additional parameters are zero, such
that the proof of the linear independence of the other parameters remains unchanged. It is then
easy to see that the derivatives with respect to the additional parameters are linearly independent.
Assume again that the linear independence has been shown for ck = g. To show it for ck = g + 1,
we write

QR(θC,R,k)Dck(θC,D,k) =

ck−1∏
i=1

ck−i∏
j=1

Qck,i,i+j(θR,i(i−1)/2+j)

 diag(θD,1, . . . , θD,ck)

=

ck−i∏
j=1

Qck,1,1+j(θR,j)

 diag(θD,1, 1, . . . , 1)

ck−1∏
i=2

ck−i∏
j=1

Qck,i,i+j(θR,i(i−1)/2+j)

 diag(1, θD,2, . . . , θD,ck),

where we have used that Qck,i,i+j = diag(1, Qck−1,i,i+j) for i ≥ 2 and thus, the first entry of
the diagonal matrix commutes with those Givens rotations. The entries in the first column of
[ (QRDckBk)′ (QRDckBk)′ ]′ only depend on θD,1, θR,1, . . . , θR,ck−1 and the first non-zero entry
of the first row of Bk. Note that θR,j consists of two parameters for every j. It is easily seen that the
first columns of the derivatives with respect to the first non-zero entry of the first row of Bk and to
the first parameter of θR,j are orthogonal to the first columns of the derivatives with respect to the
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other parameters, their coefficients in any linear combination of derivatives must be zero. Since for
an inner point of the parameter vector the first column of the derivative with respect to θD,1 has
only non-zero entries and there are entries in the first columns where the derivatives with respect
to the second parameter of θR,j are zero for all j, the coefficient of the derivative with respect
to θD,1 is zero. Since the derivatives with respect to the second parameter of θR,j have non-zero
entries at different positions in the first column, these derivatives are linearly independent. Thus,
the coefficients of the derivatives with respect to θD,1, θR,1, . . . , θR,ck−1 and the first non-zero entry

of the first row of Bk are all zero. Since the matrix
(∏ck−i

j=1 Qck,1,1+j(θR,j)
)

diag(θD,1, 1, . . . , 1) is

of full rank, the derivatives ofck−i∏
j=1

Qck,1,1+j(θR,j)

 diag(θD,1, 1, . . . , 1)

ck−1∏
i=2

ck−i∏
j=1

Qck,i,i+j(θR,i(i−1)/2+j)

diag(1, θD,2, . . . , θD,ck)

with respect to the other parameters are linearly independent if and only if the derivatives ofck−1∏
i=2

ck−i∏
j=1

Qck,i,i+j(θR,i(i−1)/2+j)

 diag(1, θD,2, . . . , θD,ck)

are linearly independent. The derivatives with respect to the remaining parameters in the first
row of Bk have non-zero entries only in rows one and ck + 1. Thus, to show that the coefficients
of the derivatives with respect to the other parameters, it is sufficient to consider the lower right
(ck−1)×(s−1) block of QRDckBk and of QRDckBk. This is a direct consequence of the induction
hypothesis. It is easy to see that the derivatives with respect to the entries of the first row of Bk
are linearly independent. This finishes the proof.
Next, consider the same kind of argument for the block Zu corresponding to θu. It has been shown
above that if differentiation takes place twice with respect to an entry in θu, the essential term in
equation (B.5) is

T−1∂2
i,jLT (ϕ̄T ) =

1

T

T∑
t=1

tr[Σ−1∂iεt(ϕ◦)∂jεt(ϕ◦)
′] + oP (1)

∂iεt(ϕ) = dki,Ck(L, θ◦)xt,k(θ◦) = −k(L; θ◦)
−1∂iCkxt,k(θ◦).

The resulting matrix is block-diagonal, with the blocks corresponding to the different unit roots
zk. Therefore, again, the crucial fact to prove is the linear independence of the filters dki(z, θ◦) for
all coordinates in θu corresponding to zk = eiωk for all k. Remember that k−1(eiωk ; θ◦)Ck,◦ = 0.
Therefore, a necessary condition is that the derivative of Ck does not lie in the space spanned by
the columns of Ck, and that the set of partial derivatives with respect to all different parameters is
linearly independent. This is ensured by the specific parameterization of Ck as described in Bauer
et al. (2020).
Finally, let us consider Zu − Y ′DZ

−1
D YD. Define

τu,k,i,t := −Σ
−1/2
◦ Πk,◦∂iCkxt,k(θ◦) τu,k,t := [ τ ′u,k,1,t . . . τ ′u,k,nk,t ]′,

where nk denotes the number of parameters for Ck. We see that

T−1∂2
uLT (ϕ̄T ) =

1

T 2

T∑
t=1

τ ′u,k,tτu,k,t + oP (1)→ Zu,k.
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Analogously, we define

τb,k,t := −Σ
−1/2
◦ αk,◦sk,t ∂2

dbLT (ϕ̄T ) =
1

T

T∑
t=1

τ ′b,k,tτb,k,t + oP (1)→ Zdb,k

τe,t := −Σ
−1/2
◦ Γ1,◦C1,◦ ∂2

eLT (ϕ̄T ) =
1

T

T∑
t=1

τ ′e,tτe,t + oP (1)→ Ze

τe⊥,t := −Σ
−1/2
◦ α1,◦t T−2∂2

e⊥
LT (ϕ̄T ) =

1

T 3

T∑
t=1

τ ′e⊥,tτe⊥,t + oP (1)→ Ze⊥

and analogous expressions for the sample covariances between the deterministic terms. These
expressions can be simplified by noting that

1

T

T∑
t=1

τ ′b,k,tτb,k,t =

(
1

T

T∑
t=1

s′k,tsk,t

)
α′k,◦Σ

−1
◦ αk,◦,

1

T

T∑
t=1

s′k,tsk,t = 1,

where α′k,◦Σ
−1
◦ αk,◦ > 0.

Above and in the following Zu,k, Zdb,k, ZD,k and YD,k denotes the blocks in Zu, Zdb, ZD and YD
corresponding to the unit root zk.
Let us first deal with the case, where no linear trend is present or the block corresponding to a
unit root other than zk = 1 is considered. To show the invertibility of Zu,k − Y ′D,kZ

−1
D,kYD,k, we

first investigate the invertibility of the corresponding sample covariance matrices and later take
the limit of these quantities. We find

1

T 2

T∑
t=1

τ ′u,k,tτu,k,t −
1

T
3
2

(
T∑
t=1

τ ′u,k,tτb,k,t

)
︸ ︷︷ ︸

→Y ′
D,k

(
1

T

T∑
t=1

τ ′b,k,tτb,k,t

)−1

︸ ︷︷ ︸
→Z−1

D,k

1

T
3
2

(
T∑
t=1

τ ′b,k,tτu,k,t

)
︸ ︷︷ ︸

→YD,k

=

1

T 2

T∑
t=1

τ ′u,k,tτu,k,t −

(
1

T
3
2

T∑
t=1

τ ′u,k,tsk,t

)
Σ−1/2
◦ αk,◦(α

′
k,◦Σ

−1
◦ αk,◦)

−1α′k,◦Σ
−1/2
◦

(
1

T
3
2

T∑
t=1

sk,tτu,k,t

)
.

Note that, since τu,k,t lies in the span of Σ
−1/2
◦ αk,◦ (since Πk = αk,◦Mk(C⊥k )′ for some matrix

Mk ∈ C(s−ck)×(s−ck)), the regression on τb,k,t is enough to regress out the subspace spanned by sk,t
in τu,k,t. Thus, the above expression is equal to the sample variance of the residuals of a regression
of τu,k,t onto sk,t. Taking the limit, Zu,k and Zu,k−Y ′D,kZ

−1
D,kYD,k have the same structure, where

only Z(zk) is replaced by

Z(zk)− Y (zk)Y (zk)′ = δ2
kBk

∫ 1

0

Wk(u)Wk(u)′duB′k − δ2
kBk

∫ 1

0

Wk(u)du

∫ 1

0

W ′k(u)duB′k

= δ2
kBk

(∫ 1

0

Wk(u)Wk(u)′du−
∫ 1

0

Wk(u)du

∫ 1

0

Wk
′(u)du

)
B′k

= δ2
kBk

∫ 1

0

(
Wk(u)−

∫ 1

0

Wk(v)dv

)(
Wk(u)−

∫ 1

0

Wk(v)dv

)′
duB′k.

It follows immediately that this matrix is positive with probability one.
By an analogous argument the case with the linear trend can be dealt with. Note that the regression
on the constant vector τe,t does not change the residual compared to the above result, since τu
was already corrected for a constant. Thus, we only have to add τe⊥,t as an additional regressor.

For this, we define τD,t := [ τb,1,t τe⊥,t ] and
∑T
t=1 τD,tτ

′
D,t → ZD̃, where ZD̃ is given by

α′1,◦Σ
−1
◦ α1,◦ ⊗

[
2
3 1
1 2

]
.
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Thus, we have

Z−1

D̃
= [α′1,◦Σ

−1
◦ α1,◦]

−1 ⊗
[

6 −3
−3 2

]
.

YD̃ is defined correspondingly. From this it follows by elementary calculations, that Zu,1 and
Zu,1 − Y ′D̃Z

−1

D̃
YD̃ and thus also Zu,1 − Y ′D,1Z

−1
D,1YD,1 have again the same structure, where Z(1)

has to be replaced by Z(1)− 12V (1)V (1)′ + 6Y (1)V (1)′ + 6V (1)Y (1)′ − 4Y (1)Y (1)′. This corre-
sponds to replacing the Brownian motion by a demeaned and detrended Brownian motion. Again
it follows immediately that this matrix is positive definite with probability one. This implies the
invertibility of the Hessian and finishes the proof. �

Combining the results of the previous two lemmas, the asymptotic distributions of T (θ̂? − θ?,◦)
and
√
T (θ̂st − θst,◦) follow immediately.

In any case
√
T (θ̂st − θst,◦)

d→ N (0, Z−1
st VstZ

−1
st ). Therefore, (A) holds.

(B) follows from Lemma B.9 showing that the Hessian asymptotically is block diagonal, where the
blocks correspond to all parameters for one unit root.
(C) has been shown in Lemma B.3, while (D) is contained in the results of Lemma B.7 and Lem-
ma B.9.
With respect to (E) note that if no deterministic terms are included in the estimation it follows,

that the sub-block of θ̂u corresponding to the unit root zk has a limiting distribution of the form
Z−1
u,kvk, where Zu,k is the block of Zu corresponding to the unit root zk and vk is a random vector,

whose entries are given by

(vk)i = 2δktr[Σ−1
◦ (Πk,◦∂iCkX(zk))].

Stacking the vectors vk into a single vector vu =
[

v′1 . . . v′l
]′

, we get the vector from Theo-
rem 2.2. When a constant and seasonal dummies are included in the estimation, Z(zk) has to be
replaced by Z(zk)− Y (zk)Y (zk)′ and X(zk) has to be replaced by

X(zk)− Y (zk)Wk(1)′ = δ2
kBk,◦

∫ 1

0

Wk(u)d(Wk(u))′ − δ2
kBk,◦

∫ 1

0

Wk(u)du

∫ 1

0

1dW ′k(u)du

= δ2
k

∫ 1

0

Bk,◦

(
Wk(u)−

∫ 1

0

Wk(v)dv

)
d(Wk(u))′.

If a linear trend is included, Z(1) has to be replaced by Z(1) − 12V (1)V (1)′ + 6Y (1)V (1)′ +
6V (1)Y (1)′ − 4Y (1)Y (1)′ and X(1) has to be replaced by∫ 1

0

B1,◦

(
W1(u)−

∫ 1

0

W1(v)dv − 12

(
u− 1

2

)∫ 1

0

(
v − 1

2

)
W1(v)dv

)
dWk(u)′,

as follows from straightforward computations. This finally concludes the proof of Theorem 2.2.
To prove Corollary 2.2 let Z = diag(Z?, Zst) and note that

ŴR = (Rθ̂ − r)′(RẐ−1R′)−1(Rθ̂ − r)

= ((DR
TR(Dθ

T )−1)Dθ
T (θ̂ − θ◦))′(DR

TR(Dθ
T )−1

(Dθ
T Ẑ
−1Dθ

T )(Dθ
T )−1R′DR

T )−1(DR
TR(Dθ

T )−1)Dθ
T (θ̂ − θ◦)

d→ [ Z−1
? v′? v′st ](R∞)′(R∞Z−1(R∞)′)−1R∞[ Z−1

? v′? v′st ]′,

where we have used Dθ
T (θ̂ − θ◦) → [ Z−1

? v′? v′st ]′ and Ẑ
d→ Z because of Lemma B.9. Now,

since vst is asymptotically normally distributed with variance Zst and v? conditionally upon
[ B1,◦W

′
1 . . . BlW

′
l,◦ ]′ is asymptotically normally distributed with variance Z?, the test stati-

stic conditionally upon [ B1,◦W
′
1 . . . Bl,◦W

′
l ]′ is asymptotically χ2

p distributed which implies
that the same result holds marginally.
Finally, (F) is immediate from Lemma B.4.
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Appedix of the Third Chapter

C.1 Supplementary Material

Table C.1: BIC for VAR systems of different lag lengths for the different data sets.

lag length 1 2 3 4 5 6 7 8
1949 - 1988

s = 3 -26.40 -26.69 -26.47 -26.36 -26.10 -25.86 -25.65 -25.42
s = 6 -35.20 -35.49 -34.68 -33.99 -33.21 -32.68 -31.96 -31.30

1949 - 2018
s = 3 -26.39 -26.65 -26.42 -26.21 -26.00 -25.68 -25.47 -25.27
s = 6 -35.53 -35.44 -34.46 -33.44 -32.19 -31.16 -30.14 -29.12

1989 - 2018
s = 3 -29.05 -29.03 -28.38 -27.81 -27.13 -26.51 -25.93 -25.52
s = 6 -40.72 -39.16 -36.75 -34.50 -32.17 -29.94 -27.87 -25.77
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Table C.2: BIC for state space systems of different system orders for the different data sets.

1949 - 1988

system order 1 2 3 4 5 6 7 8
s = 3 -23.97 -25.59 -26.53 -26.45 -26.36 -26.38 -26.16 -25.99
s = 6 -28.77 -29.43 -31.55 -34.82 -35.42 -35.46 -35.53 -35.07

system order 9 10 11 12 13 14 15
s = 3 -25.94 -25.68
s = 6 -34.92 -34.99 -34.70 -34.45 -34.71 -33.93 -33.48

1949 - 2018

system order 1 2 3 4 5 6 7 8
s = 3 -22.21 -25.32 -25.22 -26.93 -26.97 -26.91 -26.91 -26.81
s = 6 -24.43 -28.98 -27.24 -34.50 -35.02 -35.49 -36.56 -36.69

system order 9 10 11 12 13 14 15
s = 3 -26.69 -23.50
s = 6 -36.63 -36.36 -36.36 -36.00 -35.95 -36.03 -36.20

1989 - 2018

system order 1 2 3 4 5 6 7 8
s = 3 -26.16 -28.26 -29.19 -29.02 -28.89 -28.95 -28.76 -28.30
s = 6 -32.91 -36.87 -39.35 -41.35 -41.94 -41.72 -41.44 -41.34

system order 9 10 11 12 13 14 15
s = 3 -28.64 -28.49
s = 6 -41.06 -40.68 -40.72 -40.74 -40.13 -40.37 -40.14
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motionsverfahren erfolglos beendet habe und dass keine Aberkennung eines bereits erworbenen
Doktorgrades vorliegt.

Patrick de Matos Ribeiro



130

130



131

Literaturverzeichnis

Amann, H. and Escher, J. (2008). Analysis III, Birkhäuser Basel, Basel.
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