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Abstract

Population means and standard deviations are the most common estimands to quantify
effects in factorial layouts. In fact, most statistical procedures in such designs are built
toward inferring means or contrasts thereof. For more robust analyses, we consider the
population median, the interquartile range (IQR) and more general quantile combina-
tions as estimands in which we formulate null hypotheses and calculate compatible
confidence regions. Based upon simultaneous multivariate central limit theorems and
corresponding resampling results, we derive asymptotically correct procedures in gen-
eral, potentially heteroscedastic, factorial designs with univariate endpoints. Special
cases cover robust tests for the population median or the IQR in arbitrary crossed
one-, two- and higher-way layouts with potentially heteroscedastic error distributions.
In extensive simulations, we analyze their small sample properties and also conduct
an illustrating data analysis comparing children’s height and weight from different
countries.

Keywords Birth cohorts - IQR - Main and interaction effects - Median - Permutation
tests
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1 Introduction

Factorial designs are popular in various fields such as ecology, biomedicine and psy-
chology (Cassidy et al. 2008; Mehta et al. 2010; Kurz et al. 2015) as they allow us to
study interaction effects between different factors alongside their main effects. In fact,
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Lubsen and Pocock (1994) pointed out that “it is desirable for reports of factorial
trials to include estimates of the interaction between the treatments.” The ANOVA-
F-test is the most common tool for this but suffers from restrictive assumptions such
as homoscedasticity and normality. Thus, several tests have been developed that allow
for non-normal errors or are valid for heteroscedastic one- and two-way or even more
general factorial designs (Johansen 1980; Brunner et al. 1997; Bathke et al. 2009;
Pauly et al. 2015; Friedrich et al. 2017a,b; Harrar et al. 2019).

All these procedures describe effects by (contrasts of) means. This is in line with
a phenomenon observed in various areas: Comparisons are mainly based upon means
or variances but not on their robust counterparts. This can be explained in part by
the simplicity and elegance gained by using linear or, under independence, additive
statistics. Nevertheless, it contradicts the important role of statistics based on quantiles,
like the median and the interquartile range (IQR), in data exploration and modeling,
e.g., in boxplots or summary statistics. The interest in analyzing quantiles has led
to the development of quantile regression, which is commonly established nowadays
(Koenker and Hallock 2001; Koenker et al. 2019). However, as, e.g., stressed by
Beyerlein (2014) “it appears to be quite underused in medical research.” One reason
may be that, although there exist several approaches for specific designs (Sen 1962;
Potthoff 1963; Fung 1980; Hettmansperger and McKean 2010; Fried and Dehling
2011; Chung and Romano 2013), there does not exist an equal abundance of methods
based on quantiles for general factorial designs. There are procedures, at least for the
median, but they often require strong distributional assumptions (as symmetry) or, at
least, an extension to factorial designs is missing. Therefore, the main aims of the
present paper are to develop inference procedures (tests and compatible confidence
regions)

(i) for the median, the IQR or any linear combination of quantiles.

(ii) for factorial designs to study robust main and interaction effects.
(ii1) for general heterogeneous or heteroscedastic models beyond normality.
(iv) being theoretically valid and performing satisfactorily for finite samples.

To achieve these goals, we combine and extend the ideas of Chung and Romano (2013)
(tests for equality of medians in one-way ANOVA models) and Pauly et al. (2015)
(mean-based testing procedures in general factorial designs) to (simultaneously) infer
arbitrary linear contrasts of general quantiles. In view of (ii) and (iv), we follow the idea
of permuting studentized Wald-type statistics to obtain methods that are finitely correct
in case of exchangeable data (e.g., under the null hypothesis of equal means/medians
in the classic F-ANOVA normal model) but also asymptotically valid for general
non-exchangeable settings. This alluring technique has originally been developed for
special two-sample models (Neuhaus 1993; Janssen 1997; Janssen and Pauls 2003;
Pauly 2011) and has recently displayed its full strength to obtain accurate methods in
one-way (Chung and Romano 2013) and more general factorial designs (Pauly et al.
2015; Friedrich et al. 2017a; Smaga 2017; Harrar et al. 2019).

However, to derive the fore-mentioned theoretical evidence in our general quantile-
based approaches we could not employ the methods derived in the previously
mentioned papers. In fact, to overcome some technical difficulties that occur when
jointly permuting sample quantiles, we had to take a detour in which we extended
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some results for general permutation empirical processes and uniform Hadamard dif-
ferentiability (van der Vaart and Wellner 1996) that are of own mathematical interest.
Anyhow, this finally results in (i)—(iv), i.e., a flexible toolbox for inferring contrasts
of different quantiles in factorial designs. In the special case of the median and its
bootstrap-based variance estimator, we obtain the one-way permutation test derived
in Chung and Romano (2013).

Outline: We first introduce the model, estimators for population quantiles and how
to formulate null hypotheses in them to test for certain main or interaction effects. In
Sect. 3, we state the theory to handle the joint asymptotics for sample quantiles and their
covariance matrix estimators. As the latter are crucial to obtain the correct dependency
structure, we study different approaches: kernel density estimators, bootstrapping or
certain interval estimates. As they are mostly only known for the sample median,
we explain in Sects. 3.1-3.3 how to extend them to our general situations. From
these findings, we deduce three different asymptotically valid testing procedures. To
improve their small sample performance, we consider their respective permutation
versions in Sect. 4, prove asymptotic exactness and analyze their power under local
and fixed alternatives. To compare the small sample behavior of the resulting tests, we
conducted extensive simulations presented in Sect. 5. Finally, we illustrate the new
methodology by analyzing a recent dataset on height and weight of children from
different countries in Sect. 6. All proofs details to higher-way layouts and additional
simulation results are deferred to supplement.

2 The setup

We consider a general model given by mutually independent random variables, e.g.,
corresponding to the outcome from independent patients in randomized clinical trials,

Xi~F (=1, kj=1,..,n) (1

with absolutely continuous distribution functions F; and densities f;. This setup allows
to incorporate factorial structure of different kinds by adequately splitting up indices.
To accept this, consider, e.g., a two-way design with factors A (a levels) and B (b
levels). Setting k = a - b, we split up the group index i = (i1, i) and model obser-
vations as X;,; ~ Fii, (it = 1,...,a;i2 = 1,...,b). Factorial designs of more
complexity can be incorporated similarly (Pauly et al. 2015).

Having the model fixed, we now turn to the parameters of interest: Choosingm € N
different probabilities 0 < p; < ... < p, < 1, we want to study inference methods
for the corresponding quantiles

gir = F ' (p) =inflt eR: Fi(0) > pr} G =1,....k;r=1,...,m). (2
Pooling them in q = (q},....q})" = (q11,---. q1m. q21. - - - Gkm)', We are particu-
larly interested in testing the QANOVA null hypothesis Ho : Hq = 0, for a contrast

matrix H € R”*k™ of interest. Here, H is called a contrast matrix if Hl,, = 0,,
where 1, and 0 are vectors in R consisting of 1’s and 0’s only. Choosing the con-
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trast matrices in line with the design and the question of interest allows us to test
various hypotheses about main and interaction effects. Moreover, we want to point
out that respective confidence regions for corresponding contrasts of quantiles can be
obtained straightforwardly by inverting the test procedures. In what follows, we will
therefore focus on hypothesis testing but provide some exemplary confidence inter-
vals in the context of the illustrative data analyses in Sect. 6. Turning back to the null
hypothesis, we recall from general ANOVA that it is convenient to re-formulate it as
Ho : Tq = 0Oy, for the unique projection matrix T = H'(HH')™H (Brunner et al.
1997; Pauly et al. 2015; Smaga 2017). Here, A™ denotes the Moore—Penrose inverse of
the matrix A. In fact, both matrices, H and T, describe the same null hypothesis, while T
has preferable properties as being symmetric and idempotent. To infer ¢, we propose
sensitive test statistics in the vector of corresponding sample quantiles. To introduce
them, let F;(1) = n;' Y 1{Xi; <t} and F(1) = n~! 30 Y00, 1{Xy; < 1)
denote the group-specific and pooled empirical distribution function, respectively,
where n = Zf: (ni.Let X il,)% <...<X ,(Q’i):nl. be the order statistics of group i. Then,
the natural estimator of the quantile g;, is

Gir = F'(pr) = inf{t € R: i) 2 pr) = X[y 1 3)

Examples of specific hypotheses To give some examples of hypotheses covered within
this framework, we first consider a one-way design. For m = 1, we obtain the k-sample
null hypothesis

— No group effect: Ho = {Prq = 0} = {q1 = ... = qx} with P = I; — Ji /k.

Here, I; € R¥*k denotes the unit matrix, J; = lkl;c and we suppressed the second
index of the quantiles (m = 1). Choosing p; = 1/2 gives the null hypothesis of equal
medians which reduces to the null hypothesis of equal means in case of symmetric
error distributions.

Setting k = ab, we consider a two-way design with factors A (having levels i} =

1,...,a) and B (with levels i» = 1,...,b) and suppose that we like to formulate
main and interaction effects in terms of quantiles:

— No main effect A: Hyp = {(Haq = 0,5} = {q1. = =qa.}

— No main effect of B: Hyp = (Hpq =045} = {g1 = ... = q»},

— No interaction effect: Hy = {Hapq = 0,4} = {qi. —q.i, — G, + qiyi, =0},

where Hy = P, ® (Jp/b), Hp = (Ju/a) ® P, and Hyp = P, ® P,,. Here, ® is
the Kronecker product and ¢g;,., g.;, and g.. are the means over the dotted indices.
The latter hypotheses can also be described more lucid by utilizing an additive effects

ap
notation. To this end, we decompose the quantile g;,;, = ¢ + ‘1[1 + ql2 + ¢;,;, from
group (i1, i) into a general effect ¢**, main effects qil and qiz as well asan mteractlon
effect qla '?2

le qU = 0. Then, the null hypotheses can be written as {Haq = 045} = {g] =

assuming the usual side conditions }; ¢j = >_;, ql.2 2o ‘11112 =

..q% = 0} or {Hapq = 045} = {qffl.2 = O forall i, i}. This methodology can
be straightforwardly extended to higher-way layouts as described in supplementary
material.
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Beyond working with specific quantiles, it is also possible to infer hypotheses about
linear combinations ¢'q; = Y ' crqir of quantiles. Here, ¢ € R¥ is an arbitrary
vector, e.g., choosing ¢y = —cp = —1 for m = 2 and setting p; = 0.25 and
p2 = 0.75 lead to the group-specific interquartile ranges ¢’q; = I QR;. To obtain
similar hypothesis in these parameters as above, the contrast matrix has to be specified

toH=H®/(ci,...,cr), where H is one of the aforementioned contrast matrices. For
example, H = Py together with the previous choices for ¢ and pp, ps gives the null
hypothesis {IQR; = --- = I Q Ry} of equal IQRs among all k groups. However, the

framework is much more flexible and even allows to infer hypotheses about IQRs and
medians simultaneously by choosing p; = 0.5, p» = 0.25 and p3 = 0.75 together
with adequate contrast matrices.

3 Asymptotic results

To establish the joined asymptotic theory for the sample quantiles and their covariance
matrix estimators, we assume non-vanishing groups throughout:

E—>;ci>0 as min(n; :i =1,...,k) > oo. “4)
n
Recall that the sample median will be asymptotically normal if the underlying density
is positive and continuous in a neighborhood of the true median. This statement can be
extended to the multivariate case (Serfling 2009), e.g., under the following assumption,
which we consider throughout.

Assumption 1 Let F; be continuously differentiable at ¢;- with positive derivative
fi(qgiy) > Oforeveryr =1,...,mandi =1, ... k.

Proposition 1 (Theorem B in Sec. 2.3.3 of Serfling (2009))
We have

ﬁ(@,_qi,)rl Lz G=1,....k), )

=1,..., m

where Z; is a zero-mean, multivariate normal distributed random variable with non-
singular covariance matrix ©© given by its entries

; 1
2 = (py A py— pa bell,....m). (6
ab K; fi(qm)fi(%’b) (P N Db P Pb) (Cl € { m}) ( )

In general, the covariance matrix is unknown and, thus, needs to be estimated. Let us

suppose, for a moment, that a consistent estimator f(l) for @ is available. Then, we
could define a Wald-type statistic for testing Ho : Tq = 0,

. =

Sy (T) = n(T§) (TETHTTG with T =

1

f(i), %)

k
=1
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where @ denotes the direct sum. By Proposition 1, the limiting covariance matrix
T = @ 2@ is positive definite, which implies that the Moore-Penrose inverse
(TfT/ )t converges in probability to (TXT’)*. Thus, S,(T) converges to Z =
Y/ (TXT)TY in distribution under Hy, where Y ~ N (0, TET’). Moreover, the limit
7Z = Y/(TET)TY is Chi-square distributed with rank(TET’) = rank(TX'/?) =
rank(T) degrees of freedom (Rao and Mitra 1971, Theorem 9.2.2). We summarize
this as

Theorem 1 Under Tq = 0,, S,,(T) converges in distribution to Z ~ szank(T)'

Thus, comparing S, (T) with the (1 — «)-quantile of the limiting null distribution
defines an asymptotic exact level « test ¢, = 1{S,(T) > szank(T)’F o) As Propo-
sition 1 is not restricted to the null hypothesis, we can even deduce that n~1S,,(T)
always converges in probability to (Tq)'(TEXT)™Tq. Since Tq # Oy, implies
(Tq)(TET)*Tq > 0 (see Supplement for a verification) consistency follows.

Theorem 2 Under H; : Tq # 0, S, (T) converges in probability to co.

It remains to find appropriate estimators f(l) for the unknown covariance matrices.
For that purpose, we examine different strategies: “Brute force” via plug-in of a kernel
density estimator into (6) or using a different approach that first estimates the diagonal
elements ):5‘; and then employs their following relationship with the remaining matrix
elements:

ZSZ _ /Z((ltgzl(jtg Pa N Pb — PaPb @bell,..  m. )
\/(pa — 2 (py — PP

In the latter case, we consider two ways for estimating the variances 25(,2: Via boot-
strapping (Efron 1979) or with the interval estimator proposed in Price and Bonett
(2001). In the following, we explain all three possibilities in detail.

3.1 Kernel estimator

A popular way to estimate densities is so-called kernel density estimators, which are
based on a Lebesgue density K : R — [0, co) with f K (x)dx = 1 and a bandwidth
h, — 0. For more flexibility, we allow for different choices within the groups and
add the corresponding group index, i.e., we work with K; and A,;. Then, the kernel
density estimator for f; is given by

ni

Frito = ™ S KDY =1, ©)
i=l1

Nadaraya (1965) proved strong uniform consistency of (9), i.e., we have
sup, g | fx,i(x) — fi(x)| — O with probability one, under:
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Assumption 2 Let K; be of bounded variation and f; be uniformly continuous. Fur-
o0

thermore, suppose that ) *° | exp(—ynhﬁl.) converges for any choice of y.

Here, the convergence of the series Y .~ | exp(—ynhy;) is, e.g., implied by choosing
hy; = nl._e for some 6 € (0, 1/2). We further note that Schuster (1969) discussed
necessary and sufficient conditions for the stated uniform consistency. In particular,
all f; need to be uniformly continuous. Moreover, the conditions on the bandwidths
can be weakened when the kernel fulfills additional regularity conditions (Silverman
1978). Anyhow, combining Proposition 1 and the strong consistency of (9) yields
consistency of the plug-in covariance matrix estimators.

Lemma 1 Under Assumption 2, we have

o), K
2:ab

AN — .
L PaBPb " PaPb 5@ iy probability. (10)
ni fx.i(Gia) fx.i Qi)

3.2 Bootstrap estimator

In their one-way tests for equality of medians, Chung and Romano (2013) used
the bootstrap approach of Efron (1979) to estimate the sample median’s asymptotic
variance. We adopt this idea for general quantiles. Therefore, for every group i, let
X f‘l, X ?‘ni denote a bootstrap sample (drawn with replacement) from the obser-
vations X; = (X;j)j=1,...n;- From this, we can calculate bootstrap versions of all
previous estimators which we indicate by a superscript *. The mean squared error of
the bootstrapped sample quantile g, given the data can be explicitly calculated using

3

~% 2 ~% __ ~~ \2 S ~\? o~
() =Boi@r =@ 1 X0 =n > (Xyy = @ir) P(a7 = Xij 1X0)
j=1

i , 2 . .
=n; Z(XEIL, - C]ir) P,'j; Pl/ = P(XFZ;;]"’ = X;l:zl[ | X,)
j=1
Following Efron (1979), the probabilities P;; can be rewritten to

Pij = P(By; (j—y/n; < [nipr1—=1) = P(Bu; jm; < [nip:1—1),

where B, , denotes a binomial distributed random variable with size parameter n
and success probability p. In contrast to the standard jackknife method, the bootstrap
median variance estimator (8‘1.*(1 /2))2 converges to 1/(4 fl.z(Fi_1 (1/2))) as desired
(Efron 1979). Moreover, a detailed proof for strong consistency of this estimator was
given by Ghosh et al. (1984) under

Assumption 3 Let max;—1,_x E(|X;; |‘5) < oo for some § > 0.

@ Springer



M. Ditzhaus et al.

Lemma 2 Under Assumption 3, we have

Pa N Pb — PaPb
Ja = P05 — p})

n __, p i
Lo = n—G (Pa)5;" (pb) £ =0

3.3 Interval-based estimator

McKean and Schrader (1984) introduced an estimator for the sample median standard
deviation based on a standardized confidence interval. Later, Price and Bonett (2001)
suggested to modify this estimator to improve its performance in small sample size
settings. Both estimators are consistent (Price and Bonett 2001) and can compete
with the aforementioned bootstrap approach in simulations (McKean and Schrader
1984; Price and Bonett 2001) with a slightly better performance of the Price—Bonnet
modification. While both papers only treat the median, extensions to general quantiles
follow intuitively and have already been used, e.g., for the 25%- and 75%-quantile in
Bonett (2006). The (extended) McKean—Schrader estimator for the standard deviation
of the pth sample quantile, p € (0, 1), is given by

(z) @)
shs 1/2( wi(pymi — Kby (pym)
(p) = 5
a2

)

where @ € (0, 1) and [;(p) = 1V |n;p — Za/zﬁmj as well as u; (p) =
ni A i p+2za/24/ni~/p(1 — p)] are the lower and upper limits of binomial intervals.
Here, z4 /2 denotes the (1—a/2)-quantile of the standard normal distribution. Typically,
a = 0.05ischosen leading to z, /2 ~ 1.96. A brief discussion on the effect of the choice
o on the estimator can be found in Price and Bonett (2001). In fact, the Price—Bonnet
modification concerns the choice of «: They propose to replace it in the denominator
by the following finite sample correction (for ease of notation we suppressed the
dependency on i)

ui(p)—1
% (p) = P(Fi ) ¢ (Xl(fl()p):ni’ X»(tli)(p):ni)) =1- Z ( ,l)pf(l mon

i=li(p)+1

Clearly, o (p) — « by the central limit theorem. For large sample sizes, the benefit
of the correction is negligible and may even lead to computational problems due to
("J’) > 1, especially for j &~ n;/2. Thus, we only use the modifications for sample
sizes smaller than 100 and recommend to set &) (p) = « for larger values (n; > 100).
Moreover, the simulations of Price and Bonett (2001) reveal that additionally adding
2n; /2 o the denominator results in a slight reduction of bias and mean squared
error. Altogether, we thus define their extended estimator for the respective standard
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deviation as

o) 0
578 (p) = ' Xy — Xii(pyeny)
l

o
—-1/2 °
220z (py2 + 2n;

]

As explained above, this estimator is consistent for the variance, leading to:

Lemma3 We have foralli =1,...,kanda,b=1,...,m:

- (i),PB n _ Y
Eab = rTC’,'PB(Pa)U,'PB(Pb)

’ Ja = 2205 = P

£ 59 (11)

Utilizing the different choices of covariance estimators results in three different
versions of the asymptotic test ¢,,. However, simulation results (Sect. 5) exhibit serious
issues for small to moderate sample sizes which may be due to a rather poor x2-
approximation to the test statistic. To tackle this problem, we propose the initially
mentioned technique of permuting studentized statistics.

4 Permutation test

For a better finite sample performance, it is often advisable to replace the asymp-
totic critical value of the test, here the (1 — «)-quantile of the xrzank(T)-distribution,
by a resampling-based critical value. For the current problem, we promote the per-
mutation approach, which leads to a finitely exact test under exchangeability, i.e.,
under Hoy : F1 = ... = Fy. Moreover, the proper studentization within the Wald-
type statistic makes it possible to transfer the consistency and asymptotic exactness
(under Hog : Tq = 0) of the tests ¢, to their permutation versions. To explain
this, let X* = (X?j)i=l,~..,k;j=l,‘..,ni be a random permutation of the pooled data
X = (Xij)i=1,...k; j=1,....n; - As for Efron’s bootstrap, we draw new samples from the
pooled data, but now without replacement. In other words, we randomly permute the
group memberships of the observations X;;. Pooling the data affects our Assumptions
1 and 2 such that we need to replace the original distribution functions F; and their
densities f; by their pooled versions F = Zi‘: (kiFiand f = Z?:l ki f; describing
the (unconditional) distribution of X Z To be concrete, we postulate

Assumption 4 Let F be differentiable with uniformly continuous derivative f such
that f(F~!(p,)) > 0 for all r, and K; be a kernel fulling Assumption 2.

As in Chung and Romano (2013), it turned out that the asymptotic correctness of the
permutation approach needs a certain convergence rate in (4):

i =o0om V). (12)
n
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Theorem 3 Under Hy : Tq = Oy, as well as under Hy : Tq # Oy, the permutation
version S;} (T) of S,,(T) with any of the covariance estimators (10)—(11) always mimics
its null distribution asymptotically, i.e.,

sup
xeR

P(s,’; (T) < x|X) — Xy (=00, xD| B 0. (13)

Replacing the critical value szank(T)’ |_o Of the asymptotical tests with ch (), the
(1 — a)-quantile of the conditional distribution function x +— P(S7(T) < x|X),
leads to three different permutation tests ¢ = 1{S,(T) > ¢ («)}. Under the assump-
tions given in Theorem 3, it follows that ¢]] («) converges in probability to sza.nk(T), l—a
irrespective whether the null hypothesis is true or not. Thus, we can deduce the asymp-
totic exactness of the permutation test and its consistency for general fixed alternatives
(Janssen and Pauls 2003, Lemma 1 and Theorem 7). In addition, we prove in the next
section that the permutation test has an asymptotic relative efficiency of 1 compared
to the asymptotic test, i.e., the tests’ asymptotic power values coincide for local alter-
natives.

Local alternatives To study local alternatives, we need to replace Model (1) with
its local counterpart given by a triangular array of row-wise independent random

variables Xy;; ~ Fy; (i = 1,...,k;j = 1,...,n;) with absolutely continuous
distribution functions F,;, corresponding densities f,;, quantiles g,;» and quantile
vector 4, = (Gnits .- -» Gnim»> Gn2ls - - - » Guiom) . Within this framework, we discuss

local alternatives Tq, = O(n’l/ 2), i.e., small perturbations of the null hypotheses,
under the following additional regularity conditions:

Assumption 5 Foreveryi =1, ..., k, let F; be an absolutely continuous distribution
function with corresponding density f;. Moreover, set F = Zf: 1 ki Py

(i) For some M > 0 let /n|Fy;i(x) — Fi(x)| < M foralln € Nand all x € R.
(i) Suppose that f; is continuous and positive at g; = F;l (pr) and that f;,; con-
verges uniformly to f; in a compact neighborhood around g;, for all r.
(iii) For the permutation approach, suppose additionally (12), Assumption 4 and
uniform convergence of f,; to f; in a compact neighborhood around ¢, =
F~!(p,) for every r.

While (ii) and (iii) are local versions of the conditions for Model (1), condition (i)
ensures the usual /n-convergence of F,; to F;. Anyhow, the tests’ asymptotic power
functions can be described by means of a non-central x? distribution:

Theorem 4 Under /nTq, — 0 # O, the asymptotic test ¢, and its permu-
tation variant ¢ with any of the covariance estimators (10)—(11) have the same
asymptotic power P(Z > szank(T),l—a) > «a, where Z is szank(T) (8)-distributed with
non-centrality parameter § = ' (TXT)T0 > 0.

5 Simulations

To assess the tests’ small sample performance, we complement our theoretical findings
with numerical comparisons. For ease of presentation, we consider
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1. A one-way layout in which we like to infer the null hypothesis Hp : {IQR| =
.-+ = I QRy4} of equal IQRs, i.e., as described at the end of Sect. 2 we choose
probabilities p; = 0.25 and p> = 0.75 and specify the contrast matrix as H =
Py @ (=1, D).

2. A 2 x 2 layout in which we test for the presence of main or interaction effects
measured in terms of medians, i.e., setting k = a -b = 2-2 we infer the hypotheses
Ho : {Hsq = 045} (no main median effect of factor A) and Hy : {Hapq = 04p}
(no median A x B interaction effect), see Sect. 2.

In addition, we present detailed simulations for a five-factor model in supple-
ment. Data were simulated within Model (1) via X;; = w; + oi(ejj —m;) ~ F;
where we consider (a) balanced and unbalanced settings given by sample size vec-
tors n; = (15,15, 15, 15) and np = (10, 10, 20, 20), respectively. (b) five different
distributions for €;;: the standard normal distribution (Ny,1), Student’s t-distribution
with df = 2,3 degrees of freedom (f;, #3), the Chi-square distribution with df = 3
( X32) and the standard log-normal distribution (LNp 1). All distributions were cen-
tered by subtracting the respective median m; from ¢;;. (c) a homoscedastic setting
o1 = (01,...,04) = (1, 1, 1, 1) and heteroscedastic designs a2 = (1, 1.25, 1.5, 1.75)
and o3 = (1.75, 1.5, 1.25, 1). Together with ny, the latter represent a positive and neg-
ative pairing, respectively.

The simulations were conducted by means of the computing environment R (R Core
Team 2020), version 3.5.0, generating Ngim = 5000 simulation runs and Nperm = 1999
permutation iterations for each setting. The nominal level was set to o = 5%. We
compare the type-1 error rate as well as the power values of our tests below. In both
cases, we include all three variance estimation strategies introduced in Sects. 3.1—
3.2. For the kernel density estimation, we choose the classical Gaussian kernel with
a bandwidth according to Silverman’s rule-of-thumb (Silverman 1986, Eq. (3.31)),
where we applied the function bw.nrd0 from the R package stats to determine the
latter.

In case of the 2 x 2-median design, these methods are additionally compared with
the current state-of-the-art tests for regression parameters in quantile regression: From
the R package quantreg (Koenker et al. 2019), we choose the rank inversion method
by Koenker and Machado (1999) for non-iid errors, the default choice in quantreg, and
the wild bootstrap approach of Feng et al. (2011). For a fair comparison, we include the
main factors A and B and their interaction in the respective regression model. Hence,
regression parameters 84, Sp and B4 p are estimated, and corresponding p-values for
testing Ho : B4 = 0 (no main effect A) and Ho : Bap = 0 (no interaction effect) are
derived by both quantreg approaches.

Type-1 error In this subsection, we discuss the type- 1 error control of all procedures.
To simulate under the corresponding null hypotheses, we set (; = i, = 0 in the
2 x 2-median-based cases and restrict to the homoscedastic setting o = o1 for the
4-sample IQR testing question. The standard error of the estimated sizes in case of
N = 5000 simulation runs is 0.3% if the true type-1 error probability is 5%, i.e.,
estimated sizes outside the interval [4.4%,5.6%] deviate significantly from the nominal
5% significance level.
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Table 1 Type-1 error rate in % (nominal level « = 5%) for testing the median null hypothesis of no main
effect in the 2 x 2 design for the rank-based (Rank) and wild bootstrap (Wild) quantile regression approach
as well as all asymptotic and permutation tests using the interval-based (Int), kernel density (Kern) and
bootstrap (Boot) approach for estimating the covariance matrix

Distr n o Asymptotic Permutation Quantile reg.
Int Kern Boot Int Kern Boot Rank Wild

No.1 ng  op 26 42 3.3 49 51 5.2 6.9 6.6
oy 30 44 3.3 55 5.8 5.5 5.7 7.3

n, o7 22 48 3.6 50 5.6 5.6 25 4.1

oy 20 40 3.0 57 47 4.7 35 36

o3 25 54 4.0 62 64 6.3 3.0 5.2

3 n  op 1.7 27 23 51 52 5.2 6.4 5.5
oy 20 29 2.6 55 52 4.9 5.6 6.0

n, o] 08 3.0 2.1 45 45 35 3.2 4.4

o) 1.1 3.1 2.4 64 47 5.2 3.1 2.8

o3 07 37 2.7 58 65 6.4 3.1 3.9

LNg 1 ng  op 49 40 2.0 54 58 5.7 4.6 6.5
o 52 38 1.8 58 5.8 6.0 4.6 7.6

n, o 31 30 1.7 48 47 4.8 2.8 36

oy 34 34 2.1 59 53 5.4 3.0 37

o3 38 42 25 66 68 6.3 3.0 5.4

X3 ny a1 51 5.0 3.2 55 56 5.8 5.7 7.7
oy 44 47 2.7 51 55 5.2 5.4 7.7

n, o1 3.6 45 2.8 50 5.1 5.2 3.0 4.8

oy 33 37 2.6 51 46 4.8 3.3 3.2

o3 46 57 3.5 72 72 6.4 3.2 5.6

Values inside the 95% binomial interval [4.4, 5.6] are printed bold

The observed type-1 error rates for the 2 x 2-median design are displayed in Table 1
for testing the hypothesis of no main effect. It is readily seen that all asymptotic tests
are rather conservative with type-1 errors reaching down to 1.7% for the bootstrap-
based and 0.7% for the interval-based approaches, respectively. This conservativeness
is less pronounced for the test based upon the kernel density variances estimator that
exhibits values between 2.7% and 5.7% and a reasonable good error control in case of
the standard normal and X32 distribution except for the settings with positive variance
pairing. In contrast, all permutation methods control the type-1 error level reasonably
well except for the situations with a skewed distribution and negative pairing. Here,
we find error rates up to 7.2% for the tests based upon the interval- and kernel-based
variance estimators. For the two quantile regression methods from the R package
quantreg (Koenker et al. 2019), the observations are diverse: The rank-based approach
tends to conservative test decisions in case of unbalanced sample sizes with observed
error rates in the range 2.5—3.5%. However, in case a balanced homoscedastic design
with symmetric errors, a slight liberality (6.4—6.9%) is detected. For all other settings,
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Table 2 Type-1 error rate in % (nominal level @ = 5%) for the four-sample IQR testing problem of our
asymptotic and permutation tests using the interval-based (Int), kernel density (Ker) and bootstrap (Boo)
approach for estimating the covariance matrix

Distr n; (balanced) n, (unbalanced)

Asymptotic Permutation Asymptotic Permutation
Int Ker Boo Int Ker Boo Int Ker Boo Int Ker Boo

No.1 1.3 4.6 1.2 52 51 5.2 1.0 5.0 1.1 4.7 48 4.9
12} 06 37 0.3 51 51 5.1 04 48 0.7 50 5.0 5.2
13 09 37 0.6 49 5.0 53 05 44 0.9 45 46 5.1
LNy, 75 85 1.6 52 49 4.6 43 10.2 1.6 48 52 4.7
X32 51 62 1.8 45 48 4.7 38 8.1 1.7 51 5.0 4.8

Values inside the 95% binomial interval [4.4, 5.6] are printed in bold

the decisions are accurate. In comparison, the wild bootstrap strategy is liberal for
almost all balanced settings (with observed error rates up to 7.7%) and conservative
for all positive pairings (2.8—3.7%). Overall, the permutation procedure that uses a
bootstrap variance estimator exhibits the most robust type-1 error control with values
ranging from 4.7—6.4%.

Summarizing the results for the interaction tests presented in supplement, we get a
similar impression for the wild bootstrap quantile regression strategy and the six Wald-
type procedures. For them, the only major difference is that the permutation methods
also exhibit a fairly well error control for the settings with skewed distributions and
negative pairing. However, the results for the rank-based quantile regression method
are partially different: While the type-1 error rate is still accurate for balanced sample
sizes, the decisions become very liberal in the unbalanced scenarios with estimated
type-1 error rates between 6.1% and 10.1%.

The type-1 error rates in the situation of the four-sample testing problem of equal
IQRs are presented in Table 2. Here, the finite sample behavior of the asymptotic tests
becomes even more extreme: For the symmetric distributions, the type-1 error rates are
between 0.4% and 1.3% for the interval-based estimator and between 0.3 and 1.2% for
the bootstrap approach, i.e., very conservative. In contrast, the decisions for the kernel-
based method are quite accurate with values between 3.7% and 5.0%. Switching to
skewed distribution, however, the type-1 error rates increase, leading to very liberal
decisions in the log-normal case with values up to 10.2% for the kernel-based and
7.5% for the interval-based tests. Here, only the bootstrap-based method remained very
conservative. In comparison, all permutation counterparts lead to satisfactory type-1
error control close to the 5% level. Due to the extreme behavior of the asymptotic tests
in this setting, we conducted additional simulation results in supplement. Therein, all
asymptotic tests for equality of IQRs more or less approach the 5% level for larger
group-specific sample sizes n; > 150.

Power behavior Due to the diverse behavior of the asymptotic tests and the
rank-based quantile regression method under the null hypotheses and for ease of
presentation, we solely focus on permutation tests and the wild bootstrap quantile
regression strategy here. The results for the asymptotic tests are presented in supple-
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Log—normal distribution Normal distribution

QR

Log-normal distribution Normal distribution

Fig. 1 Power curves for the 2 x 2-median testing problem (first two rows) and for the four-sample IQR
testing problem (last row) of the permutation PBK test (dash-dotted), the wild bootstrap quantile regression
test (dashed) and the three permutation tests based on interval-based (long-dashed), kernel density (dotted)
and bootstrap (solid) covariance matrix estimation, respectively, for n = nj, 6 = o and shift alternatives
n = (0,0,0,§) (median) or scale alternatives ¢ = (1, 1, 1, 1 + §) (IQR)

ment, and apart from their different levels under H, their power curves run almost
parallel to the ones of the permutation version.

To achieve a scenario under the alternative in the 2 x 2-median test setting, we
disturbed the respective null setup by adding a shift parameter § = > to the last
group. In addition to the aforementioned methods, we considered the permutation
Wald-type test (PBK) of Pauly et al. (2015) which was developed for testing means
in general factorial designs. Their procedure is implemented in the R package GFD
(Friedrich et al. 2017b). For a fair comparison, we included their PBK test just for
the cases where mean and median coincide, i.e., for the symmetric distributions. The
results for the procedures inferring a main effect are presented in Fig. 1, while the
corresponding power curves of the interaction tests are shown in supplement. Studying
Fig. 1, we observe that the PBK test leads to higher power values compared to our
tests for the normal distribution settings but is less powerful under the #,- and #3-
distributions. An explanation may be given by the (asymptotic) efficiencies of the
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location estimators: While the sample mean is more efficient than the sample median
under normal distributions, the situation is reversed for the two more heavy-tailed
t-distributions. A comparison among the median-based permutation tests shows that
the interval-based approach leads to lower power values than the other two methods
for both z-distributions, while the bootstrap approach is slightly less powerful than
the other two for the skewed log-normal distribution. Under normality, however, the
tests” power functions are almost identical. In comparison, the wild bootstrap quantile
regression method has considerably less power than all other methods for testing main
median effects. The power curves for the interaction effects presented in supplement
show a similar pattern for almost all tests. The only exception is the wild bootstrap
approach which exhibits a similar power behavior as the permutation tests. Moreover,
it is slightly advantageous for shift alternatives with § > 1.

To obtain alternatives for the four-sample IQR testing problem, we consider scale
alternatives 0 = (1, 1, 1, 14 8). For ease of presentation, we only show the results for
normal as well as lognormal distributions here. The resulting power curves are plotted
in Fig. 1. We can observe that the kernel density approach leads to lower power values
compared to the other two methods.

Recommendation Summarizing the findings, we recommend the use of the permu-
tation methods over their asymptotic counterparts as they show a much better type-1
error control in case of small and moderate sample sizes (n; < 200). However, there
is no general recommendation for choosing between the three permutation versions
as their power behavior (slightly) differed with respect to underlying settings, e.g., for
comparing IQRs the interval- and bootstrap-based approaches performed better, while
the kernel method exhibits the largest power for testing medians in a 2 x 2 design with
heavy tails. In comparison with quantile regression, the advantage of the proposed
factorial design approach is the simple incorporation of interaction effects without a
loss in power. This benefit can be seen in the power simulations for the 2 x 2-median
design, as shown in Fig. 1, and becomes even more pronounced in higher-way lay-
outs, see Green et al. (2002) and Green (2012) and the additional simulation results
in supplement.

6 lllustrative data analysis

A typical everyday situation in which we are confronted with quantiles is percentile
curves for child heights and weights. We re-analyzed growth and weight data of chil-
dren from five sites (Brazil, India, Guatemala, the Philippines, South Africa), which
was provided to us by the COHORTS group (Richter et al. 2012). Both, height and
weight, were converted to z-scores regarding the WHO child standards (de Onis et al.
2007). Having a comparison of percentile curves in mind, we test for effects in the
25%-, 50%- and 75%-quantile simultaneously. This also demonstrates the flexibility
of the proposed methodology. For illustrative purposes, we focus on the following
subgroups:

Example T We compare the birth weight of firstborns from the countries (factor A)
Brazil and South Africa including both genders (factor B). To avoid confounding
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Fig.2 Group-wise boxplots (outliers are not displayed) for the birth weight data from Example 1 (left) and
the height data from Example 2 (right)

Table 3 For the effect of the country on the birth weight (Example 1) and the maternal height on the
height at 2 years, the p values (in %) are shown for our asymptotic and permutation approach using the
interval-based (Int), kernel density (Ker) and bootstrap (Boo) strategies for covariance matrix estimation

Asymptotic Permutation

Int Ker Boo Int Ker Boo
Example 1 10.54 8.63 9.83 3.80 4.60 3.50
Example 2 10.95 9.19 8.43 3.30 6.75 3.60

effects regarding age, education or marital status, we restrict our analysis to 30-year-
old or younger married mothers with a comparable education level of 9 completed
school years. The n = 173 children are divided into n; = 65 boys and ny = 46 girls
from Brazil and n3 = 36 boys and n4 = 26 girls from South Africa. We would like
to infer whether there are differences between the countries regarding the boys’ and
girls’ birth weight, respectively.

Example 2 We investigate the effect of the mother’s height (factor A) on the children’s
height at the age of 2 years. Both sexes (factor B) are included. We restrict to firstborns
of unmarried mothers from the Philippines. For this analysis, we divide the women
into the groups “small” and “tall” consisting of the women, respectively, being smaller
and taller than the median height of 150cm. The group “small” consists of data for
n1 = 8 boys and np = 13 girls, and in the group “tall,” there are data for n3 = 12
boys and nq4 = 11 girls.

To get a first graphical impression, the group-specific box plots are presented in
Fig. 2. In both cases, it appears that factor A (country and maternal height, respectively)
leads to a shift of all three empirical quantiles of the children’s height and weight. To
infer this conjecture, we like to check for a main effect of factor A regarding the
three quantiles q; = (g1, gi2,gi3) ' .i = 1, ..., 4 corresponding to the probabilities
(p1, P2, p3) = (0.25,0.5, 0.75) simultaneously. That is, we test Ho : {q1+q2 = q3+
q4}. The p values of all three asymptotic and permutation tests (ignoring multiplicity)
are summarized in Table 3.

It is apparent that the asymptotic and permutation test leads to different decisions
at the nominal level @ = 5%. In fact, the seemingly present effect from Fig. 2 is
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Table 4 Point estimates 6 for the difference 0i, = q2i, — q1i, Of the countries’ median with respect to sex
for Example 1 together with permutation-based 95% confidence intervals

Gender @ Int Ker Boo
Boys —0.15 [—0.44,0.14] [—0.48, 0.18] [—0.43,0.13]
Girls —0.56 [—1.04, —0.08] [—1.10, —0.02] [—1.02, —0.10]

Here, Int (interval-based), Ker (kernel density) and Boo (bootstrap) indicate the applied covariance matrix
estimation technique

not detected by any asymptotic tests with p values around 8-10%. In contrast, the
p values of the permutation approaches are, except for the kernel density method in
Example 2, less than 5%. To investigate the reasons why these decisions are different,
we run additional simulations for the three-quantile testing problem under the sample
size settings of Example 2. The results are presented in supplement and may explain
the above decisions to some extent: As in Sect. 5, the asymptotic tests are quite
conservative with type-1 error rates ranging between 0.8% and 4.2%. Moreover, the
permutation kernel density approach is less powerful than the other two permutation
methods under shift alternatives for skewed distributions.

Beyond hypothesis testing, the theoretical results can also be used to formulate
asymptotically valid confidence regions for contrasts of quantiles by inverting the
corresponding tests. We exemplify this for the difference between two quantiles as
effect parameter of interest. To this end, consider Example 1 and encode factor A
(country) and factor B (gender) as follows: i; = 1 for the boys, i» = 2 for the girls,
i1 = 1 for Brazil and i1 = 2 for South Africa. Then, for a fixed gender i», the
asymptotic correct z- and permutation-(1 — «)-confidence intervals for the difference
0i, = q2i, — q1i, of the countries’ quantiles are

. Za/2 R =R cn (a/2) = —
[(5121'2 q1i,) £ :7_ 1,2 + 0212] [(C]2i2 —q1i,) £ ’”27,/012[.2 + 022[.2],

&) . . . .
respectively. Here, 012”2 = )3111 2 is an estimator for the asymptotic variance of

f(qi,iz — qi,i,) using one of our strategies from Sects. 3.1-3.3 and c” (oz/2) is the

(1—a/2)-quantile of the permutation distribution of \/n(q3;, —q7; T ) (Alzl; Az =172,

To illustrate the application, we calculated the 95% permutation-based conﬁdence
intervals for the median difference separately for gender in Table 4. Ignoring multi-
plicity, we see that all three permutation procedures agree on a significant difference
in the girl’s median birth weight (at level @ = 5%) but do not find a corresponding
effect for the boys.

7 Discussion

While an abundance of methods exists for inferring means and mean vectors in general
heterogeneous factorial designs (Johansen 1980; Brunner et al. 1997; Bathke et al.
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2009; Zhang 2012; Konietschke et al. 2015; Pauly et al. 2015; Harrar et al. 2019),
there are not so many methods for the analysis of medians or quantiles. To this end,
we combined the idea of studentized permutations from heteroscedastic mean-based
(Pauly et al. 2015) and one-way median-based ANOVA (Chung and Romano 2013)
to establish flexible methods for inferring quantiles in general factorial designs which
we coin QANOVA. In fact, we proposed three permutation methods in Wald-type
statistics that only differ in the way the covariance matrix is estimated. All of them are
applicable to construct confidence regions and to test null hypotheses about arbitrary
contrasts of different quantiles.

The resulting procedures are finitely exact under exchangeability of the data and
shown to be asymptotically valid. In doing so, we had to extend some results about per-
mutation empirical processes and uniform Hadamard differentiability (van der Vaart
and Wellner 1996) that are of own mathematical interest. From them, we could deduce
the asymptotic validity as well as results about the procedures’ asymptotics under fixed
and local alternatives. In the special case of the median, these results even reveal new
insights into one-way permutation test of Chung and Romano (2013).

In addition to the theoretical findings, we analyzed the procedures in extensive
simulations. Our results indicate an accurate type-1 error control for the permutation
methods in almost all settings. Only in case of skewed distributions and small unbal-
anced samples with a heteroscedastic negative pairing, a slight liberality was found
when testing for main effects. Beyond this, we can recommend all three permutation
methods with clear conscience. Currently, we work on implementing them within an
R-package. We are confident that the current results can be transferred to questions
about related quantile-based estimands, e.g., coefficients of quartile variation (Bonett
2006) as well as to complex ANOVA settings with correlated variables, e.g., quantile-
based repeated measurements or complex MANOVA designs.

Supplementary Information  The online version contains supplementary material available at https://doi.
org/10.1007/s11749-021-00758-y.
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