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Abstract We present a theory for the self-propulsion of symmetric, half-spherical Marangoni boats (soap
or camphor boats) at low Reynolds numbers. Propulsion is generated by release (diffusive emission or dis-
solution) of water-soluble surfactant molecules, which modulate the air–water interfacial tension. Propul-
sion either requires asymmetric release or spontaneous symmetry breaking by coupling to advection for
a perfectly symmetrical swimmer. We study the diffusion–advection problem for a sphere in Stokes flow
analytically and numerically both for constant concentration and constant flux boundary conditions. We
derive novel results for concentration profiles under constant flux boundary conditions and for the Nusselt
number (the dimensionless ratio of total emitted flux and diffusive flux). Based on these results, we analyze
the Marangoni boat for small Marangoni propulsion (low Peclet number) and show that two swimming
regimes exist, a diffusive regime at low velocities and an advection-dominated regime at high swimmer
velocities. We describe both the limit of large Marangoni propulsion (high Peclet number) and the effects
from evaporation by approximative analytical theories. The swimming velocity is determined by force bal-
ance, and we obtain a general expression for the Marangoni forces, which comprises both direct Marangoni
forces from the surface tension gradient along the air–water–swimmer contact line and Marangoni flow
forces. We unravel whether the Marangoni flow contribution is exerting a forward or backward force dur-
ing propulsion. Our main result is the relation between Peclet number and swimming velocity. Spontaneous
symmetry breaking and, thus, swimming occur for a perfectly symmetrical swimmer above a critical Peclet
number, which becomes small for large system sizes. We find a supercritical swimming bifurcation for a
symmetric swimmer and an avoided bifurcation in the presence of an asymmetry.

1 Introduction

Swimming on the microscale is governed by low Reynolds
numbers and requires special propulsion mechanisms
which are effective in the presence of dominating vis-
cous forces. An important class of low Reynolds num-
ber swimming strategies generates interfacial fluid slip-
velocities at the swimmer surface, which then lead to
self-propulsion because the swimmer must be force-free.
This class of swimming strategies comprises phoretic
and Marangoni mechanisms. Phoretic mechanisms self-
create gradients in concentration (self-diffusiophoresis)
or temperature (self-thermophoresis) [1,2] which, in
turn, give rise to interfacial fluid flow in a thin interac-
tion layer [3].

There are two types of swimmers based on the
Marangoni effect [4]: droplet swimmers with liquid
interfaces, which can operate in the bulk and solid
Marangoni boats or surfers operating at a liquid–air
interface. The liquid droplet swimmer is fully immersed
in a liquid that carries surfactant. Propulsion is gen-
erated by the Marangoni effect, which creates a slip

a e-mail: jan.kierfeld@tu-dortmund.de (corresponding
author)

velocity from a surfactant concentration gradient along
the entire liquid–liquid interface between swimmer and
surrounding liquid. One typical mechanism to main-
tain such a surfactant gradient is that more surfactant
is adsorbed at the front (in swimming direction) of the
swimmer, which depresses the interfacial tension in the
front [5–7]. In Ref. [8], an auto-diffusiophoretic mech-
anism coupled to advection [9,10] has been proposed
to maintain the surfactant concentration gradient. This
propulsion mechanism based on the Marangoni effect
is utilized in different liquid Marangoni swimmers,
for example, active liquid droplets or active emulsions
[6], such as pure water droplets in an oil–surfactant
medium (squalane and monoolein) [8] or liquid crys-
tal droplets in surfactant solutions [6]. Many liquid
Marangoni swimmers are spherically symmetric ini-
tially and swimming spontaneously breaks this sym-
metry. Beyond the instability, advection and/or pre-
ferred adsorption can produce sufficiently strong sur-
factant concentration gradients and swimming veloci-
ties to maintain advection and/or preferred adsorption
[5,7,9]. Also, asymmetric shape changes can give rise to
concentration gradients and sufficient swimming veloc-
ities to maintain asymmetric shapes [11,12].
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Here, we consider Marangoni boats or surfers, which
employ a different propulsion mechanism. Important
examples are soap or camphor boats which have a long
history [13]. The crucial difference to liquid Marangoni
swimmers is that these boats or surfers operate at a
liquid–air interface rather than in the bulk of the liq-
uid. Propulsion is not caused by surfactants that are
anisotropically distributed along the swimmer–liquid
interface but by the anisotropic distribution of surfac-
tant at the liquid–air interface along which the soap
boat propels [14]. The surfactant molecules at the
liquid–air interface are emitted or dissolved from the
swimmer; this can be achieved by depositing them
on the floating swimmer initially [15], by soaking the
swimmer in surfactant [16–21], or by using a swimmer
body made from dissolving surfactant [22]. There are
many examples based on DMF (dimethylformamide)
[23], alcohol [15,21], soap [21], camphor [16–20,24] or
camphene [22] that have also been investigated quanti-
tatively. In a companion paper [25], we discuss alginate
capsules as versatile interfacial Marangoni swimmers
working with many surface tensions reducing “fuels” in
detail, in particular, polyethylene glycol (PEG)-loaded
alginate capsules.

So far, Marangoni boats can be produced down to
radii a ∼ 150µm [25], and quantitative results are
available down to a ∼ 1500µm with Reynolds num-
bers Re ∼ 60, which is still above the low Reynolds
number regime. Miniaturization is approaching the
low Reynolds number regime, which is the regime we
address in detail in the present paper. In a companion
paper [25], we discussed low Reynolds number results
more briefly and aimed to generalize to high Reynolds
numbers using the concept of the Nusselt number in
order to describe experiments on PEG–alginate capsule
swimmers and camphor boats quantitatively. There is a
related system of thermal Marangoni surfers propelled
by the thermal Marangoni effect, which was success-
fully realized only recently [26]. Its theoretical descrip-
tion is equivalent to surfactant-driven Marangoni boats
with thermal advection–diffusion replacing surfactant
advection-diffusion. Because thermal diffusion coeffi-
cients are much higher and swimmer radii reach down
to micrometers, this system operates at low Reynolds
numbers.

The surfactant molecules are emitted or dissolved
from the Marangoni boat, diffuse and advect to fluid
flow in the water phase and adsorb to the air–water
interface, eventually in interplay with evaporation for
volatile surfactants. This creates surface tension gra-
dients and Marangoni stresses on the fluid. Surface
tension gradients give rise to a direct net propul-
sion force (direct Marangoni force in the following).
Marangoni stresses on the fluid give rise to symmetry-
broken Marangoni flows, which also contribute to (or
impede) propulsion via hydrodynamic drag onto the
swimmer (Marangoni flow forces in the following).
Direct Marangoni forces propel into the direction of
higher surface tension, i.e., lower surfactant concen-
tration along the air–water–swimmer contact line. We
note that this is opposite to the propulsion in the direc-

Fig. 1 Side view (top) and top view (bottom) of the half-
spherical Marangoni swimmer geometry with surfactant
concentration field c(r) and coordinates

tion of higher surfactant concentration for the liquid
Marangoni swimmers operating in the bulk [5–9].

A full quantitative theory of Marangoni boats includ-
ing hydrodynamics, surfactant advection, direct
Marangoni forces and Marangoni flows is still elusive
but numerical approaches exist [14,18,27,28]. Theoret-
ical approaches ignore the advection of the surfactant
concentration field [29–31] or even ignore hydrodynamic
flow fields [16,17,24,32] or approximate it by uniform
flow [20], which clearly oversimplifies the description of
surfactant transport. Here, we focus on low Reynolds
numbers as in Refs. [27,29–31] and consider a half-
spherical swimmer geometry (see Fig. 1), which can
simplify the theoretical treatment because axial sym-
metry can be exploited in certain limits. Experimen-
tally, half-spherical swimmers can be fabricated using
the PEG–alginate system [25]. In the limit of weak
Marangoni flows, for example, the fluid flow reduces to
the well-known Stokes flow around a sphere. We fully
include advection of the surfactant concentration field
into our analysis as opposed to Refs. [29–31], where
disks and spheres propelled by the soap boat mech-
anism have been considered previously. If advection
is ignored, the formation of a concentration boundary
layer at higher velocities, as it is well known from the
related problem of mass transfer from a sphere in lam-
inar Stokes flow [33–36], will be missed. This happens
for velocities U � a/D, where a is the sphere radius
and D the surfactant diffusion constant, and is essen-
tial for the resulting swimming velocity, which is the
quantity of main interest in this paper.

In order to obtain the Marangoni forces onto the
swimmer, we have to calculate the surfactant concen-
tration profile and have to revisit the problem of mass
transfer from a sphere in laminar Stokes flow both
for constant concentration and constant flux bound-
ary conditions. In particular, analytical results on the
relevant flux boundary conditions are missing in the
literature. We fill this gap and derive results for con-
centration profiles and for the angular dependence of
the Nusselt number both for isotropic and anisotropic
emission. This allows us to calculate Marangoni propul-
sion forces both in the diffusive and in the advection-
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dominated regime and provide analytical results. There
is a direct Marangoni force, which is propelling the
swimmer into the direction of higher surface tension
and a Marangoni flow force, as has been worked out by
Masoud and Stone [37]. We will unravel, under which
conditions the flow force contribution is propelling or
dragging the swimmer. We can extend our analysis to
large Marangoni propulsion (high Peclet number) and
include effects from evaporation by approximative ana-
lytical theories. This part of the analysis is also the
focus of a companion paper [25]. Therefore, this discus-
sion is shortened in this paper. All analytical results
are corroborated by numerical finite element calcula-
tions employing a novel iterative approach.

As opposed to previous work [14,18,27–31], we
consider here completely symmetric Marangoni boats
with isotropic surfactant emission as motivated by
the experiments in Ref. [25]. Swimming is established
in a symmetry-breaking bifurcation. Similar swim-
ming bifurcations have been analyzed by Michelin and
coworkers [5,7–10], but for a different type of swim-
mer, namely liquid droplet bulk Marangoni swimmers.
For symmetric surface swimmers propelled by ther-
mal Marangoni forces, a related symmetry-breaking
effect has been observed in Ref. [38], where symmetric
microbeads spontaneously circle around a heating laser
beam. Our analysis allows us to obtain the swimming
velocity of Marangoni boats as a function of Marangoni
propulsion strength (Peclet number) and to analyze in
detail the nature of the symmetry-breaking swimming
bifurcation.

2 Model

We introduce coordinates such that the origin r = 0 is
at the center of the planar surface of the half-sphere, the
liquid–air interface is at y = 0 (with y < 0 being the liq-
uid phase), and ez will coincide with the spontaneously
selected swimming direction, see Fig. 1. We also use
spherical coordinates such that θ = 0 is the swimming
direction and the interfacial plane is located at φ = 0, π
(y = 0). The half-sphere has radius a such that the con-
tact line is at r = a and φ = 0, π (and parameterized
by θ). We denote the half-spherical surface of the swim-
mer by S, the circular air–water–swimmer contact line
by L, and the liquid–air interface outside the swimmer
as SInt.

The general strategy to determine the swimming
speed has been outlined in Ref. [25]. We first prescribe a
stationary velocity U = Uez of the swimmer and ana-
lyze the following three coupled problems for its sta-
tionary state:

(i) Surface tension reduction by surfactant adsorption
at the air–water interface; depending on the volatil-
ity of the surfactant, we also need to include evap-
oration.

(ii) Low Reynolds number fluid flow including both
Stokes flow around the half-sphere and additional
surfactant-induced fluid Marangoni flow.

(iii) Diffusive surfactant release or surfactant dissolu-
tion from the swimmer and subsequent diffusion and
advection.

We will start from the diffusion–advection problem
(iii) in the presence of Stokes flow around a sphere
and neglecting Marangoni flow. This will also give new
results for the mass transfer from spheres in laminar
Stokes flow. We later examine the additional effects
of Marangoni flow and evaporation. The fully coupled
problems can also be treated numerically.

Solving these three coupled problems, we can obtain
the Marangoni forces as a function of the prescribed
velocity U from the surfactant concentration profile by
employing the reciprocal theorem. Finally, the actual
swimming velocity U = Uswim is determined from
the condition of a force-free swimmer, i.e., the force
equilibrium between Stokes drag force, direct pro-
pelling Marangoni forces from the surface tension gra-
dient along the air–water–swimmer contact line and
Marangoni flow forces.

We begin with a short recapitulation of the governing
equations [25].

2.1 Coupled adsorption, fluid flow and
diffusion–advection problems

Regarding sub-problem (i), we use a local and linear
relationship for the surface tension reduction

Δγ(r) = −κc(r) (1)

(r is an interfacial vector with y = 0) by the local sur-
factant concentration difference c(r) with respect to a
bulk concentration background value c0 (the concen-
tration at |r| → ∞); κ is a coefficient characterizing
the propulsion strength. In formulating Eq. (1) locally,
we assumed fast on and off kinetics of surfactant to
the interface [39] such that the interfacial concentration
Γ (r) is slaved to the bulk and only a passive “reporter”
of the bulk subsurface concentration c(r)|y=0. This is
appropriate for water-soluble surfactants but, for exam-
ple, the opposite limit of what has been considered in
Refs. [29,31], where surfactant is strictly confined to the
interface.

Fast on and off kinetics also implies that an imbal-
ance of flux to and from the interface into the bulk can
only arise from an additional evaporating flux from the
interface to the gas phase. In the general case including
surfactant evaporation from the interface, the balance
of fluxes to and from the interface gives

jInt = − D∇c(r) · nout
∣
∣
y=0

= −jev = k c(r)|y=0 ,

(2)
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where k is the rate constant for evaporation. This pro-
vides the boundary condition to the diffusion–advection
sub-problem (iii) in the bulk.

Regarding the low Reynolds number fluid flow sub-
problem (ii), we consider the rest frame of the swimmer
and linearly decompose the total fluid flow field into a
field v(r), which is the flow field of a half-sphere pulled
with velocity Uez through the liquid and a correction
vM(r) from Marangoni flows, vtot(r) = v(r) + vM(r).
For low Reynolds numbers, both v(r) and vM(r) (and
the associated pressure fields) fulfill the incompressibil-
ity condition ∇ · v = 0 and the linear Stokes equation
μ∇2v = ∇p, where μ is the fluid viscosity.

The flow field v(r) of an externally pulled half-sphere
is given by “half” (y < 0) the Stokes flow field around a
sphere, which automatically fulfills the boundary con-
dition vy(r)|y=0 = 0 for symmetry reasons. In spherical
coordinates, the axisymmetric Stokes flow field is

v(r) = û(r, θ)er + v̂(r, θ)eθ with

û(r, θ) = U cos θ

[

−1
2

(a

r

)3

+
3
2

a

r
− 1

]

≡ U cos θu(r/a),

(3a)

v̂(r, θ) = U sin θ

[

−1
4

(a

r

)3

− 3
4

a

r
+ 1

]

≡ U sin θv(r/a).

(3b)

The total flow field vtot(r) also has no-slip bound-
ary conditions on the surface of the sphere and assumes
vtot(∞) = −Uez at infinity, but is subject to Marangoni
stresses at the liquid–air interface. Consequently, the
difference vM(r) = vtot(r) − v(r) from Marangoni
flows has no-slip boundary conditions on the surface
of the sphere, has vanishing velocity vM(∞) = 0 at
infinity and is subject to Marangoni stresses at the
liquid–air interface. Moreover, for all three flow fields,
there is no normal flow across the liquid–air interface.
We will assume that the liquid–air interface remains
flat, even if the sphere moves. This requires that typi-
cal viscous forces remain small compared to interfacial
stress, μU � γ, which is fulfilled with μU ∼ 10−5 N/m
for generic Marangoni boats with U ∼ 1 cm/s and
γ ∼ 0.07N/m for the air–water interface. We also
neglect a possible curvature of the interface from wet-
ting effects.

The Marangoni flow is caused by tangential Marangoni
stresses at the liquid–air interface y = 0,

μnout · ∇ vM(r)|y=0 = μ∂y vM(r)|y=0 = ∇SΔγ(r),

(4)

which act both on vM and vtot.
Surfactant diffusion and advection (iii) will play a

central role. Surfactant molecules are emitted from the
half-spherical surface S and diffuse in the liquid phase.
At the same time, they are advected by the total fluid
flow. In the stationary state, the bulk concentration

field is governed by the diffusion–advection equation

0 = ∂tc = D∇2c − (v(r) + vM(r)) · ∇c. (5)

We consider two types of boundary conditions which
seem most important for applications: (A) slow diffu-
sional surfactant release on S leading to a constant flux
boundary condition or (B) surfactant dissolution from
the swimmer or surfactant production by some chemical
reaction by the swimmer leading to a constant concen-
tration boundary condition,

(A) constant flux: j · n|S = −D ∇c · n|S = α,
(6)

(B) constant conc.: c|S = cS (7)

together with c(∞) = 0 and the no-flux boundary con-
dition at the interface SInt. The surface flux α or the
surface concentration cS is assumed to be only slowly
changing on the time scales of the fluid flow and the
surfactant diffusion and approximated as a constant for
the calculation of quasi-stationary fluid flow and con-
centration fields.

We non-dimensionalize sub-problems (i)–(iii) by mea-
suring lengths in units of a, velocities in units of D/a,
concentrations in units of αa/D

ρ ≡ r/a, ∇̄ ≡ a∇ = ∇ρ, v̄ ≡ v
a

D
, Ū ≡ U

a

D
,

c̄ ≡ c
D

αa
, j̄ ≡ j

1
α

, p̄ ≡ p
a2

Dμ
. (8)

The prescribed dimensionless velocity Ū of the swim-
mer is the first control parameter of the problem,1
which is related to the Reynolds number, Re = 2Ū/Sc,
via the Schmidt number Sc ≡ μ/ρD. Low Reynolds
numbers Re � 1 are realized for Ū � Sc/2, which
can still be much larger than unity as typical Schmidt
numbers for surfactants in aqueous solutions are of the
order of 1000. Therefore, we have to discuss both the
diffusive case Ū � 1 and the advective case Ū � 1,
even at low Reynolds numbers.

1 In many publications on the diffusion–advection problem,
such as Refs. [33–35] but also in Refs. [20,28,29,31,40],
Ū is called the Peclet number. Here, we define the Peclet
number as Pe ≡ Ūα, i.e., by the characteristic veloc-
ity Ūα = καa/Dμ for constant flux boundary conditions.
We define it as Pe ≡ Ūcs = κcSa/Dμ for constant con-
centration boundary conditions. Ūα and Ūcs are charac-
teristic velocities, where a typical direct Marangoni force
FM ∼ κa2∂rc(r = a) ∼ κa2α/D for constant flux bound-
ary conditions or FM ∼ κac(r = a) ∼ κcSa/D for constant
concentration boundary conditions is balanced by the typ-
ical Stokes drag force FD ∼ μaU . The Peclet number is
a dimensionless measure of propulsion strength with these
definitions.
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Table 1 Dimensionless parameters. Re or Ū , Sc, Pe, and k̄ are control parameters of the problem

Dimensionless parameter Formula Eqs.

Reynolds number Re = ρU2a/μ = 2Ū/Sc
dimensionless velocity Ū = Ua/D
Schmidt number Sc = μ/ρD
Peclet number Pe = καa2/D2μ (10)
Biot number k̄ = ak/D (11)
swimming velocity Ūswim = Uswima/D (16)
Marangoni Reynolds number ReM = 2Pe/Sc
Nusselt (or Sherwood) number Nu (Sh) = −∂ρc̄0(1)/c̄0(1) (20)

ReM and Nu cannot be independently controlled but characterize the resulting solutions; the swimming velocity Ūswim is
determined by the force balance swimming condition

Our dimensionless set of equations for problems (i)–
(iii) becomes

(i) − ∇̄c̄(ρ) · nout
∣
∣
ȳ=0

≈ 0

without evaporation, (9a)

− ∇̄c̄(ρ) · nout
∣
∣
ȳ=0

≈ k̄ c̄(ρ)|ȳ=0

with evaporation, (9b)
(ii) v̄tot(ρ) = v̄(ρ) + v̄M(ρ),

(iia) v̄(ρ, θ) = Ū cos θu(ρ)er + Ū sin θv(ρ)eθ

Stokes flow field, (9c)

(iib) ∇̄ · v̄M = 0
Marangoni flow field,

∇̄2
v̄M = ∇̄p̄M,

v̄M(∞) = 0,
v̄M(ρ)|ρ=1 = 0,

v̄M,y(ρ)|ȳ=0 = 0,

∂ȳv̄M(ρ)|ȳ=0 = −Pe ∇̄S c̄(ρ)
∣
∣
ȳ=0

, (9d)

(iii) 0 = ∇̄2
c̄ − (v̄(ρ) + v̄M(ρ)) · ∇̄c̄, (9e)

c̄(∞) = 0,
(A) const. flux:

j̄ · n
∣
∣
S

= − ∇̄c̄ · n
∣
∣
S

= 1, (9f)

(B) const. conc.:
c̄|S = 1 (9g)

with the dimensionless Peclet number

(A) const. flux: Pe ≡ PeA ≡ καa2

D2μ
=

κṁ

2πD2μ
,

(B) const. conc.: Pe ≡ PeB ≡ κcSa

Dμ
, (10)

where ṁ = 2πa2α is the mass loss per time of the swim-
mer. We also introduced the dimensionless Biot num-
ber

k̄ ≡ ak

D
(11)

governing possible evaporation. From Eq. (9d), we see
that the Peclet number Pe determines the velocity scale
of the Marangoni flow field. Therefore, we can also
assign a Reynolds number ReM = 2Pe/Sc = RePe/Ū
to the Marangoni flow. In the following, we will address
the low Reynolds number regime implying that both
Re � 1 and ReM � 1 such that both flow con-
tributions fulfill the Stokes equation. Via the advec-
tion with v̄(ρ) + v̄M(ρ), the concentration field c(ρ)
depends both on the dimensionless velocity scale Ū of
the Stokes field and the dimensionless velocity scale Pe
of the Marangoni flow field, in general. All dimension-
less parameters are summarized in Table 1.

2.2 Marangoni forces, energy transduction and
swimming condition

The half-spherical swimmer moving at velocity U must
be force-free and is subject to three forces. First, there
is the drag force, which is given by the standard Stokes
drag for a half-sphere, FD = FDez. In dimensionless
form using F̄ ≡ F/Dμ, this is

F̄D = −3πaŪ . (12)

Second, there is the direct Marangoni propulsion force
FM = FMez from integrating the surface stress
Δγ(r) = −κc(r) along the air–water–swimmer contact
line L around the swimmer at y = 0,

F̄M

Pe
= −

∮

L

ds̄(en · ez)c̄(ρ)

= −2
∫ π

0

dθ cos θc̄(1, θ)|ȳ=0, (13)

in dimensionless form. For constant concentration bound-
ary conditions (B), there is no direct Marangoni force
F̄M = 0 because there are no concentration and, thus,
surface tension gradients along the contact line L by
definition.

Third, there is the Marangoni flow force FM,fl =
FM,flez, which is by definition the force transmitted by
fluid stresses of the Marangoni flow onto the sphere,
FM,fl ≡ − ∫

S
daiσM,iz. For low Reynolds numbers, we
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can employ the reciprocal theorem to calculate the
Marangoni flow force without explicitly calculating the
Marangoni flow vM [37]. In “Appendix” A, we dis-
cuss the reciprocal theorem in terms of energy trans-
duction and find the result (A.10), which states that
the mutual power input by Marangoni stresses via
the Stokes flow field is completely transduced via the
Marangoni flow force onto the sphere, while the power
input by Marangoni stresses via the Marangoni flow
field itself is completely dissipated. This energy trans-
duction statement (A.10) is equivalent to the result
derived by Masoud and Stone [37] for the Marangoni
flow force directly from the reciprocal theorem. In the
rest frame of the sphere, we obtain in dimensionless
form

F̄M,fl

Pe
= −

∫

SInt

dS̄
v̄(ρ) + Ūez

Ū
· ∇̄S c̄(ρ), (14)

where v̄(ρ)/Ū is the dimensionless Stokes flow field
from (3a) and (3b) (in particular, this is independent
of Ū) in the sphere frame.

The total Marangoni force F̄M,tot = F̄M + F̄M,fl is
obtained by using Eqs. (13) and (14) and the Gauss
theorem,

F̄M,tot

Pe
=

∫

SInt

dS̄

(

∇̄S · v̄(ρ)
Ū

)

c̄(ρ)

= −3π

4

∫ ∞

1

dρ

(
1
ρ

− 1
ρ3

)

c̄M (ρ) (15)

withc̄M (ρ) ≡ 2
π

∫ π

0
dθ cos θc̄(ρ, θ)|y=0.

The total Marangoni driving force has to be deter-
mined from the concentration field c̄(ρ, θ) of surfactant
molecules (at the interface y = 0). Note that ∇̄S · v̄(ρ)
is the two-dimensional surface divergence of the 3D
fluid velocity field; therefore, ∇̄S · v̄(ρ) 	= 0 in general,
although ∇̄ · v̄(ρ) = 0 for the 3D divergence of the sta-
tionary velocity field. The contribution from a constant
velocity Ūez of the whole fluid (if all the fluid would
be dragged along by the particle) exactly cancels the
direct Marangoni force in (15), and the velocity v̄(ρ) in
the sphere frame determines the total force.

The sign of the Marangoni flow force F̄M,fl determines
whether it increases or decreases the direct Marangoni
force into the direction of higher surface tension:

– For anisotropic pure 2D surface diffusion without
advection, c̄2D(ρ, θ) = const + 2A1ρ

−1 cos θ + ...
(A1 < 0), as in Refs. [29,37], we find F̄M,tot/Pe =
−πA1 = 1

2 F̄M/Pe, i.e., the total Marangoni force
is half the direct Marangoni force if only the first
cos θ-component is relevant. Here, Marangoni flow
forces drag and decrease the direct driving force
(F̄M,fl < 0). This result will change as we (i) consider
3D diffusion and (ii) as symmetry breaking is only
caused by advection, which can focus the concentra-
tion field and lead to higher Legendre components
becoming relevant in c̄(ρ).

– Because ρ−1 − ρ−3 > 0 for ρ > 1, the total
Marangoni force is always positive for concentration
profiles with c̄M (ρ) < 0, which are increasing toward
the rear side. Vandadi et al. have shown that this
can change in confinement, when the high of the
fluid container becomes comparable to the sphere
radius [31].
For constant concentration boundary conditions
(B), this means that F̄M,tot = F̄M,fl > 0 because
there is no direct Marangoni force F̄M = 0 for these
boundary conditions.
For constant flux boundary conditions (A), the
Marangoni flow contribution F̄M,fl, however, can
have both signs. For F̄M,fl > 0, the flow force
increases the direct Marangoni force resulting in
F̄M,tot > F̄M; for F̄M,fl < 0, the flow force is directed
backward and increases the drag force resulting in
F̄M,tot < F̄M. As opposed to Ref. [29], we will find
that both cases are possible. A backward force is
found for steep radial gradients in the concentra-
tion c̄(ρ), which is the case for high velocities Ū � 1
in the advection-dominated regime, and a forward
force is found at low velocities Ū � 1 in the diffusive
regime.

– Advection leads to a tangential eθ-component of
∇̄S c̄(ρ) pointing from the front to the rear cor-
responding to an increasing surfactant concentra-
tion toward the rear, which gives rise to a forward
Marangoni flow ∼ −eθ. Accordingly, this increases
the driving force (F̄M,fl > 0) because −ez ·∇̄S c̄(ρ) ∼
−ez · eθ ∼ sin θ > 0 in Eq. (14). This effect domi-
nates in the diffusive regime.
A radial er-component of ∇̄S c̄(ρ) pointing inward
corresponding to a radially decaying surfactant con-
centration and, on the other hand, gives rise to to
radially outward Marangoni flows. Because −ez ·
∇̄S c̄(ρ) ∼ ez · er ∝ cos θ in Eq. (14), this increases
the direct force in the front (around θ = 0) but
decreases it in the back (around θ = π). Advec-
tion gives rise to bigger surfactant concentrations in
the back, which lead to bigger radial concentration
gradients on the rear side (in some distance from
the sphere because constant flux boundary condi-
tions assure uniform radial gradients right at the
surface of the sphere). Overall, the radial Marangoni
flows in the back are stronger and decrease the
direct force or increase the drag (F̄M,fl < 0). This
effect dominates in the advective regime for con-
stant flux boundary conditions (A) and is rather
subtle, as can be seen from the fact that it is absent
for the constant concentration boundary conditions
(B), where F̄M,tot = F̄M,fl > 0 always. Then, the
constant concentration at the surface of the sphere
leads to smaller radial concentration gradients on
the rear side, because the concentration decay is
stretched over a larger distance by advection. Then,
radial Marangoni flows in the front are stronger and
increase the direct force.

– The last equality in (15) shows that the effect of
including the Marangoni flow contribution is that
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the total Marangoni forces are dominated by the
concentration profile c̄(ρ, θ) around ρ ∼ 2, where
ρ−1−ρ−3 assumes its maximal value. Concentration
boundary layer profiles concentrated around ρ ≈ 1,
as we will find for large swimmer velocities Ū >
1 in the advection-dominated regime, give a small
total Marangoni force (because ρ−1−ρ−3 ≈ 2(ρ−1)
is small), i.e., Marangoni flows decrease the direct
Marangoni driving force.

– Long-range contributions as, for example, from a
long advection tail can be important, even if they
are limited to a small angular regime around θ ∼
π as for high velocities. The highest total force
is obtained if a long-range − cos θ-component is
present in the concentration profile, as we will find
for small swimmer velocities; then, Marangoni flows
increase the direct Marangoni driving force. This
makes a Marangoni swimmer also susceptible to dis-
turbances in its far-field as, for example, induced by
other swimmers.

These results for Marangoni forces as a function of Ū
are inserted into the force balance or swimming condi-
tion

− F̄D = 3πŪswim = F̄M(Pe, Ūswim) + F̄M,fl(Pe, Ūswim),
(16)

in order to obtain an additional equation whose solution
determines the actual swimmer velocity Ū = Ūswim as a
function of the remaining control parameters Pe (“fuel”
emission) and eventually k̄ (evaporation).

2.3 Control parameters and parameter regimes

The non-dimensionalization reveals that the coupled
problems (i)–(iii) and the Marangoni forces depend on
three dimensionless control parameters (see also Table
1): first, the prescribed dimensionless velocity of the
swimmer Ū ; second, the Peclet number Pe characteriz-
ing the strength α of the surfactant emission, and third,
the Biot number k̄ characterizing the evaporation. A
suitable Peclet number can be defined for both con-
stant flux boundary conditions (A) and constant con-
centration boundary conditions (B). We also see that
the Peclet number both controls the strength of the
Marangoni flow via Eq. (9d) and the strength of all
Marangoni forces. We note, however, that F̄M/Pe and
F̄M,tot/Pe still depend on Ū and Pe via the dependence
of c̄(ρ) on these parameters.

Another important finding from non-dimensionalization
is that the diffusion–advection problem (iii) with bound-
ary conditions (i) decouples from the Marangoni flow
problem (iib) for Pe � Ū or ReM � Re, where
|vM| � |v|, and we can neglect vM in the advection
term. Then, the concentration profile is only deter-
mined by a classic diffusion–advection problem for mass
transfer from a sphere in Stokes flow in the case of con-
stant concentration boundary conditions (B) [33–36],
but with unusual constant flux boundary conditions for

case (A). It becomes axisymmetric and only depends on
Ū . In this limit, the Marangoni flow field need not to
be calculated in order to calculate the total Marangoni
force for the swimming condition. This limit will be the
starting point of several analytical calculations.

All in all, we have the following regimes for a sym-
metric Marangoni boat at low Reynolds numbers:

– Ū < 1 and Pe < 1: The concentration profile is
governed by diffusion, which is slightly perturbed
by advection and described by a linear response in
diffusion–advection (iii) with respect to Ū and Pe.
Only the linear response in Ū is relevant for sym-
metry breaking; therefore, the Marangoni flow can
be neglected for the swimming problem. Only for
Pe � Ū , the Marangoni flow decouples from the
advection problem and strict analytical analysis is
possible. Swimming sets in (starting with Ū = 0)
for a critical Peclet number Pe > Pec; if Marangoni
flows forces are included, we find Pec � 1 and the
symmetry-breaking bifurcation takes place within
this regime.

– Ū < 1 and 1 < Pe < Sc: All fluid flows are still at
low Reynolds numbers, but Marangoni flows are rel-
evant. The concentration profile is governed by sym-
metric Marangoni advection, which is slightly per-
turbed by a linear response in diffusion–advection
(iii) with respect to Ū , which causes symmetry
breaking and swimming.

– 1 < Ū < Sc and Pe < Sc: All fluid flows are
still at low Reynolds numbers, but the concentra-
tion profile is governed by advection by the swim-
ming flow for Ū > 1. Advection leads to the for-
mation of a concentration boundary layer of width
Ū−1/3 around the half-sphere for Ū > 1. Only for
Pe � Ū , the Marangoni flow decouples from the
advection problem and strict analytical analysis is
possible. For Pe > Ū , Marangoni flows are rele-
vant to advection, in principle, but the surfactant is
transported away by the swimming flow field via the
concentration boundary layer before it can advect
to the Marangoni flow field. There are, however,
Marangoni flows in the advection tail, which will
become relevant then.

Figure 2 shows exemplary numerical finite element
results for the concentration field c̄(ρ) and the stream
lines of the Marangoni flow v̄M(ρ)/Pe for different
parameter regimes for constant flux boundary condi-
tions (A). At low velocities Ū � 1, the Marangoni flow
is mostly radial at the interface because the radial con-
centration profile is only slightly perturbed by advec-
tion at the interface; it features a Marangoni roll (vor-
tex) around the swimmer with an upward flow directly
around the particle. For increasing Pe, the normalized
Marangoni flow field v̄M(ρ)/Pe as plotted in Fig. 2
seems unchanged indicating a Marangoni flow v̄M(ρ)
that is simply proportional to Pe in strength but oth-
erwise independent of Pe.
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At high velocities Ū � 1, the Marangoni flow pat-
tern changes because the concentration pattern devel-
ops the typical advection tail. As a result, there forms
a vortex pair within the interface plane, which directs
Marangoni flow from the tail to the front. In front of the
particle, the flow reaches beneath the particle (around
z̄ = 5 in Fig. 2) and resurfaces behind the particle.
This leads to a slightly distorted Marangoni vortex roll
around the particle. Similar vortex patterns (with a vor-
tex pair within the interfacial plane next to the swim-
mer) have been observed in Ref. [21], however, by par-
ticle image velocimetry (PIV) measurements at high
Reynolds numbers. Again, for increasing Pe, the nor-
malized Marangoni flow field v̄M(ρ)/Pe seems more or
less unchanged in Fig. 2.

At small Ū � 1, the Marangoni flow force F̄M,fl > 0
will increase the direct Marangoni force into positive z-
direction because there is a net forward tangential com-
ponent of ∇̄S c̄(ρ) from the symmetry-breaking advec-
tion perturbation proportional to Ū ; the radial compo-
nent of ∇̄S c̄(ρ) increases the drag, but is slowly decay-
ing at small Ū and weaker.

At high Ū � 1, on the other hand, there is a strong
radial component in the concentration boundary layer
around the swimmer, which increases the drag. This
is created by the large radial component of ∇̄S c̄(ρ) in
the concentration boundary layer region of size Ū−1/3

and leads to a Marangoni flow force F̄M,fl < 0 that
decreases the direct Marangoni force. This effect is
counter-intuitive as the large vortex pair suggests a
strong forward Marangoni force on the large scale pic-
ture. The strong radial flows directly around the parti-
cle (which are stronger in the backward direction and,
thus, dragging the particle) are not clearly visible on the
larger scale in Fig. 2. The remaining total Marangoni
force mainly comes from the net forward motion in
the horizontal vortex pairs but will be weaker than the
direct force.

2.4 Legendre decomposition for the decoupled limit
Pe � Ū

In the decoupled limit Pe � Ū , the diffusion–advection
problem becomes axisymmetric. Then, c̄ = c̄(ρ, θ) only
depends on the radial coordinate and one angular coor-
dinate, and we can also employ a decomposition of
the concentration field into Legendre polynomials with
respect to the angle θ: c̄(ρ, θ) =

∑∞
n=0 c̄n(ρ)Pn(cos θ).

As derived in “Appendix” B, the diffusion–advection
equation (9e) only couples coefficients c̄n(ρ) to coef-
ficients c̄n±1(ρ) because the Stokes velocity field (3a)
and (3b) can be written in terms of n = 1 polynomials
only. We find the diffusion–advection equation (9e) in
Legendre representation,

[
1
ρ
∂2

ρ(ρc̄n) − n(n + 1)
ρ2

c̄n

]

= Ūu(ρ)
(

n

2n − 1
∂ρc̄n−1 +

n + 1
2n + 3

∂ρc̄n+1

)

+ Ū
v(ρ)
ρ

(
n(n − 1)
2n − 1

c̄n−1 − (n + 1)(n + 2)
2n + 3

c̄n+1

)

,

c̄0(∞) = c̄∞ , c̄n>0(∞) = 0,
(A) constant flux: ∂ρc̄0(1) = −1 , ∂ρc̄n>0(1) = 0,
(B) constant concentration: c̄0(1) = 1 , c̄n>0(1) = 0

(17)

for n = 0, 1, ..... For small Ū � 1, the Legendre coeffi-
cients will scale as c̄n(ρ) ∼ Ūn and truncation of Legen-
dre decomposition becomes an excellent approximation.
This is one strategy for analytical progress in the linear
response regime. In “Appendix” B, we also show how
the Marangoni forces are expressed by the Legendre
coefficients of the concentration field.

Both types of boundary conditions are completely
isotropic and only n = 0 components are nonzero. We
can include traditional soap boats into our description
by introducing explicitly symmetry-breaking anisotropic
flux components n > 0 into the boundary conditions,
such as

(A) constant flux: ∂ρc̄1(1) = β̄ > 0, (18)
(B) constant concentration:c̄1(1) = c̄S,1 > 0 (19)

in the simplest generic case. Then, the soap boat emits
preferentially on the lower half θ > π/2 in case (A) or
produces surfactant preferentially on the lower half of
its surface in case (B) as in a standard asymmetric soap
boat. Such symmetry-breaking emission will give rise to
an avoided swimming bifurcation.

3 Numerical methods

3.1 Full iterative FEM solution

Numerically, we can consider the problems (i)–(iii)
without further approximations at low Reynolds num-
bers, i.e., solve the coupled diffusion–advection problem
and the Marangoni flow problem for a prescribed swim-
mer velocity Ū .

For the coupled problems of three-dimensional cou-
pled diffusion–advection and Marangoni flow, we use an
iterative scheme of three-dimensional FEM solutions to
both problems, employing FEM-routines from Wolfram
MATHEMATICA in a finite cylindrical or rectangular
domain. We iteratively solve for the Marangoni flow
field (iib) starting from an initial guess for the concen-
tration profile; then, we solve the diffusion–advection
equation (iii) with the resulting total flow field, which
gives an improved approximation for the concentra-
tion profile. With this improved approximation, we go
back into solving for the Marangoni flow field (iib)
and start an iteration, which should converge to the
final Marangoni flow field and surfactant concentration
field. The iterative approach has the advantage that the
Marangoni boundary condition in the fluid flow prob-
lem (iib) is a fixed one at each iterative step and only
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Fig. 2 Contour plots of the concentration c̄(ρ) and the
stream lines of the Marangoni flow field v̄M(ρ)/Pe (in the
comoving frame) for constant flux boundary conditions (A)
and Ū = 0.1, 10 and Pe = 0.1, 20, 40 from numerical iter-
ative three-dimensional FEM result for a half-cylindrical

region (0 < ρ < 8, x̄ > 0, −6 < ȳ < 0). After division by Pe,
the Marangoni flow field v̄M(ρ)/Pe is rather independent of
Pe suggesting that v̄M(ρ)/Pe essentially depends on Ū . The
Marangoni flow forms a roll

adjusts over the iteration; the coupling of the two prob-
lems is correctly established over the iteration. Similar
iterative numerical schemes for coupled problems have
been applied successfully in Refs. [41,42].

The FEM solution of the stationary equations (iib)
and (iii) is obtained on a cylindrical or cubical irregu-
lar tetrahedral mesh. We use cubical (for example, with
edge length 14 in x̄z̄-plane and height 7 in ȳ-direction in
Fig. 9) or cylindrical volumes (for example, with radius
8 in x̄z̄-plane and height 4 in ȳ-direction in Fig. 2) for
the FEM calculations. The maximal volume of mesh
elements is 0.2, and the mean volume is 0.01. Mesh vol-
umes are smaller (< 0.005) in the region −1 < ȳ < 0
below the interface to capture Marangoni advection.
Because of the mirror symmetry x̄ → −x̄, we only
need to solve on half-cubes and half-cylinders x̄ > 0
and apply Neumann boundary conditions ∂x̄c̄|x̄=0 = 0
and ∂x̄v̄M|x̄=0 = 0 to enforce the mirror symmetry.
The boundary conditions at the outer boundaries are
Dirichlet conditions for the concentration c̄ = 0 and the
Marangoni flow v̄M = 0. For sufficiently large cubes or
cylinders, these boundary conditions should not mat-
ter but we still have finite size effects. In particular, at
large Peclet numbers this can trigger numerical insta-
bilities if the Marangoni roll interferes with the system
boundary.

We are interested in the resulting symmetry-breaking
Marangoni forces caused by a symmetry-breaking swim-
ming motion as a function of the velocity Ū . At small Ū ,
there is the problem that artificial symmetry breaking
from lattice irregularities/defects is often larger than
symmetry breaking by swimming. Therefore, we aver-
age all measured quantities over two simulations with Ū
and −Ū to cancel artificial symmetry-breaking effects.

3.2 Two-dimensional FEM solution and Legendre
representation for the decoupled limit Pe � Ū

For Pe � Ū , we obtain the decoupled limit, where
Marangoni flow does not need to be calculated and
the diffusion–advection problem becomes axisymmet-
ric. Then, c̄ = c̄(ρ, θ) only depends on the radial coor-
dinate and one angular coordinate. We can solve the
diffusion–advection problem in a two-dimensional angu-
lar representation using finite element methods (FEM),
i.e., FEM-routines from Wolfram MATHEMATICA.

For a given Ū , we can also employ the Legendre
decomposition (17) of the diffusion—advection equa-
tion and calculate all functions c̄n(ρ) by solving the
resulting coupled ordinary differential equation bound-
ary value problem. We use the MATLAB routine bvp4c
for a domain 1 ≤ ρ ≤ R̄ = 300 [43,44] with Legendre
components up to n = 61. In this way, we obtain all
relevant coefficients c̄n(ρ) to calculate all Marangoni
forces for the force balance.

4 Diffusion–advection equation in the
decoupled limit Pe � Ū and mass transfer
from a sphere in Stokes flow

First, we will consider the limit Pe � Ū , where
the diffusion–advection problem for a half-sphere with
prescribed velocity U decouples from the Marangoni
flow problem because v̄M can be neglected. We also
neglect evaporation in the beginning. This problem is
axisymmetric and equivalent to mass transfer from a
full sphere in laminar Stokes flow [33–36], but with
unusual constant flux boundary conditions for case
(A). Therefore, we first derive new analytical results
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for concentration profiles and for the angular depen-
dence of the Nusselt number for these boundary condi-
tions, both for isotropic and anisotropic emission from
the sphere. In the decoupled limit, the concentration
profile only depends on Ū and is independent of Pe.
Thus, the dimensionless Marangoni forces (13) and (15)
only depend trivially linearly on Pe, but F̄M/Pe and
F̄M,tot/Pe are independent of Pe as well. This will make
analysis of the swimming condition (16) much easier.

4.1 Nusselt number

Diffusive release in an advecting flow can be charac-
terized by the average Nusselt number (or Sherwood
number Sh),

Nu ≡
∫

S
j(r) · n dA

(D/a)
∫

S
c(r) dA

=
−∂ρc̄0(ρ = 1)

c̄0(ρ = 1)
, (20)

which is the dimensionless ratio of the total emitted flux
and the typical diffusive flux [36]. The average Nusselt
number becomes Nu = 1 for a quiescent fluid (Ū = 0),
where the flow is purely diffusive c̄0(ρ) ∝ 1/ρ; as soon
as advection is present (Ū > 0), the current out of the
sphere is increased resulting in Nu > 1. The Nusselt
number thus measures how much the current out of the
sphere is increased by advection over its purely diffu-
sional value. It is an increasing function of the fluid
velocity Ū .

The Nusselt number has been originally defined for
constant concentration boundary conditions (B), for
which the result is well known [33–36],

Nu = −∂ρc̄0(ρ = 1) =

{

1 + 1
2 Ū + ... for Ū � 1

0.6245 Ū1/3 for Ū � 1
(21)

with a prefactor that can be calculated analytically [33,
36].

We address the Nusselt number also for constant flux
boundary conditions (A) and find a very similar result
(see Fig. 3)

Nu =
1

c̄0(ρ = 1)
=

{

1 + 1
2 Ū for Ū � 1

0.65 Ū1/3 for Ū � 1
, (22)

where the prefactor 0.65 is determined numerically from
the data in Fig. 3. This result will be derived below. As
opposed to the case of a constant concentration bound-
ary condition, it is not possible to obtain an analytical
result for the prefactor 0.65. Interestingly, the difference
between both types of boundary conditions is small.
We conclude that the Nusselt number characterizes the
mass transport mechanism by the advecting fluid itself
and is rather robust with respect to the emission mech-
anism (diffusive emission, dissolution or production by
a chemical reaction at the surface) by which the trans-
ported molecules enter the advecting fluid. This is an

Fig. 3 Average Nusselt number as a function of Ū for
constant flux and constant concentration boundary condi-
tions. We compare results from numerical FEM solutions
of the axisymmetric diffusion–advection equation in two-
dimensional angular representation with ρ < R̄ = 30 and
from numerical solutions in Legendre representation with
Legendre components up to n = 61 on a larger domain
ρ < R̄ = 300

important conclusion, which does not only apply to the
microswimmer at hand, but to laminar advective mass
transport phenomena in general.

We can also define a local, i.e., angularly resolved
Nusselt number via

Nu(θ) =
−D∂rc(r = a, θ)
Dc(r = a, θ)/a

=
−∂ρc̄(ρ = 1, θ)

c̄(ρ = 1, θ)
= −∂ρ(ln c̄)(ρ = 1, θ),

(A) constant flux: Nu(θ) =
1

c̄(ρ = 1, θ)
,

(B) constant conc.: Nu(θ) = −∂ρc̄(ρ = 1, θ),
(23)

which is related to the average Nusselt number by Nu =
(
∫

S
Nu(θ) dA)/AS for constant concentration boundary

conditions (B) and Nu−1 = (
∫

S
Nu−1(θ) dA)/AS for

constant flux boundary conditions (A). The local Nus-
selt number characterizes the symmetry breaking by
advection; Nu−1(θ) gives the concentration profile for
constant flux (A), while Nu(θ) gives the emission pro-
file for constant concentration (B). Because Nu and
Nu(θ) are still Ū -dependent (see Eqs. (22) and (21)),
the angular dependence in the Nusselt number profiles
become more clear in the normalized local Nusselt num-
ber Nu(θ)/Nu, which is shown for both types of bound-
ary conditions in Fig. 4. Again, the differences between
constant flux (A) and constant concentration bound-
ary conditions (B) are surprisingly small, at least for
θ < π/2. This becomes also evident by comparing the
snapshots of concentration profiles for constant concen-
tration (B) and for constant flux boundary conditions
(A) in Fig. 5.
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(A) (B)

Fig. 4 Normalized local Nusselt number Nu(θ)/Nu (see
text) as a function of θ for constant flux (left) and con-
stant concentration (right) boundary conditions. Colored
results are from numerical FEM solutions of the axisymmet-

ric diffusion–advection equation in two-dimensional angular
representation with ρ < R̄ = 30. Black lines are the exact
analytical result (34) and the approximate analytical result
(35)

(A) (B)

Fig. 5 Concentration profiles in the z̄x̄-plane for (A) constant flux and (B) constant concentration boundary conditions

4.2 Main results for Marangoni forces

For constant flux boundary conditions (A), the main
results for the Marangoni forces as a function of a pre-
scribed velocity Ū are

F̄M

πPe
=

{
3
16 Ū for Ū � 1

dMŪ−1/3 with dM � 0.8 for Ū � 1
,

(24)

F̄M,tot

πPe
=

{

− 1081
1280 Ū + 3

8 Ū ln R̄ for Ū � 1

dM,flŪ
−2/3 with dM,fl � 1.4 for Ū � 1

,

(25)

where numerical constants dM and dM,tot are obtained
from the numerical results, see Fig. 6.

For constant concentration boundary conditions (B),
there is no direct Marangoni force F̄M = 0 by definition
because there are no concentration and, thus, surface
tension gradients along the contact line L. Then, the
total Marangoni force equals the Marangoni flow force
and is givenby

F̄M,tot

Pe
=

{

− 563
320 Ū + 3

8 Ū ln R̄ for Ū � 1

dM,BŪ−1/3 with dM,B � 0.8 for Ū � 1
,

(26)

where the numerical constant dM,B is obtained from the
numerical results. Numerical results for these boundary
conditions are also shown in Fig. 6.

The numerical result in Fig. 6 clearly confirms the
existence of just two regimes for both types of bound-
ary conditions. At small Ū � 1, the Marangoni forces
are linear in Ū for both types of boundary condi-
tions and can be calculated as linear response in a
perturbative approach. In this limit, diffusion domi-
nates. For Ū � 1, on the other hand, advection domi-
nates, and a concentration boundary layer forms around
the half-sphere. There is a markedly different scaling
for the total Marangoni force comparing both types
of boundary conditions, which we will explain below.
Figure 6 shows that direct and total Marangoni force
reach maximal values F̄M, F̄M,tot ∼ 0.15πPe in the
crossover region Ū ∼ 1 between diffusive and advective
transport.
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Fig. 6 Marangoni forces F̄M/πPe and F̄M,tot/πPe for con-
stant flux boundary conditions and F̄M,tot/πPe for constant
concentration boundary conditions as a function of Ū in
the decoupled limit Pe � Ū . All results are from numeri-
cal FEM solutions of the axisymmetric diffusion–advection
equation in two-dimensional angular representation with
ρ < R̄ = 30

4.3 Small velocity Ū , perturbation theory

At small Ū � 1, there is a linear response of the con-
centration field, which leads to a linear response of the
Nusselt number and Marangoni forces. The coefficients
can be calculated by perturbation theory about the con-
centration field c̄(0)(ρ) = 1/ρ at Ū = 0 in powers of Ū .
A first approach is a naive perturbation series Ansatz

c̄n(ρ) =
∞∑

m=0

Ūmc̄(m)
n (ρ) (27)

for each Legendre coefficient starting with c̄
(0)
0 (ρ) = 1/ρ

and c̄
(0)
n>0(ρ) = 0. It turns out that this will work only

in the “inner region” ρ < 1/Ū of a solution, because in
the “outer region” ρ � 1/Ū , the convection term can no
longer be treated perturbatively, regardless how small
Ū is [34]. The problem that arises in performing such
a naive expansion is that already c̄

(1)
1 (ρ) does not van-

ish at infinity as required by the boundary conditions.
What can be done, however, is to treat a finite system
ρ < R̄ and apply the boundary conditions c̄0(R̄) = 0
and c̄n>0(R̄) = 0 as in the numerical approach. The
above results (24), (25) and (26) are obtained by this
approach. We find excellent agreement between numer-
ics and naive perturbation theory for such finite sys-
tems.

In an infinite system, the situation differs because in
the “outer region” ρ � 1/Ū the convection term can no
longer be treated perturbatively [34]. These effects will
only occur for system sizes R̄ � 1/Ū , which become
extremely large in the perturbative regime Ū → 0 of
interest. To address this problem, in Ref. [34], a system-
atic expansion in inner and outer region and a match-
ing procedure were performed for the constant con-
centration boundary condition (B), which is posed in

typical heat and mass transport problems in laminar
flow [33,34,36]. For the constant flux boundary condi-
tion (A), such calculations do not exist at the moment.
We also adapt this more advanced matching proce-
dure to the constant flux boundary condition (A). In
“Appendix” C, we present the details of the pertur-
bative approach, both the naive perturbation theory
and the matching procedure. We find that in linear
order in Ū , both approaches still agree in the inner
region. For the total Marangoni force, there is a con-
tribution ∝ Ū ln R̄ stemming from a ρ-integration of a
ρ-independent contribution to c̄

(1)
1 (ρ) in naive pertur-

bation theory, see Eq. (25), and (26). In the framework
of the matching procedure, this contribution becomes
∝ −Ū ln Ū as matching provides an upper cutoff R̄ ∼
1/Ū to the otherwise unchanged inner region.

Regardless of whether this contribution is regularized
by system size R̄ or by the boundary ρ ∼ 1/Ū of the
inner region, the log-divergence of this linear contribu-
tion in the total Marangoni force is a remarkable result
of these calculations. Because the linear term for the
direct Marangoni force stays finite, its existence means
that the Marangoni flow forces strongly increase the
direct force for Ū � 1.

4.4 Large velocity Ū , concentration boundary layer

4.4.1 Scaling arguments

For large Ū � 1, advection is strong and a concentra-
tion boundary layer of width Δr develops around the
half-sphere. The width Δr is determined by the dis-
tance that a surfactant molecule can diffuse during the
time Δt ∼ a/v(Δr/a) (see Eq. (3b)) that it takes to be
transported along the sphere by advection: Δr2 ∼ DΔt.
Because v(Δr/a) ∼ UΔr/a for Δr/a � 1 because of
the no-slip boundary condition (see Eq. (3b)), we find

Δρ = Δr/a ∼ Ū−1/3. (28)

This is a classic result for the diffusion–advection prob-
lem for constant concentration boundary conditions
[33,36], but also holds for constant flux boundary con-
ditions.

Because the concentration will drop within the con-
centration boundary layer from its surface value to zero,
we also have −∂ρc̄(ρ = 1, θ) ∼ c̄(ρ = 1, θ)/Δρ. For con-
stant flux boundary conditions (A) with 1 = −∂ρc̄(ρ =
1), this leads to a scaling

Nu−1(θ) =
1

c̄(ρ = 1, θ)
∼ Δρ ∼ Ū−1/3 const. flux (A)

(29)

of the Nusselt number and the symmetry-breaking con-
centration level at the sphere. These scaling properties
directly explain the results (22), Nu ∼ Ū1/3, for the
Nusselt number and (24), F̄M/Pe ∼ c̄(ρ = 1, θ) ∼
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Ū−1/3, for the direct Marangoni force in the limit
Ū � 1.

The result for the total Marangoni force (25) with
constant flux boundary conditions deviates from this
scaling. Here, the expected boundary layer scaling is
F̄M,tot/Pe ∼ Δρ2c̄(ρ = 1) ∼ Ū−1 (see Eq. (15));
this contribution is, however, only sub-dominant. The
leading contribution comes from the advective tail in
this limit of angular width Δθ ∼ Ū1/3, as follows
from inspection of the stream function. The (dimen-
sionless) stream function for a sphere in Stokes flow is
ψ̄ = (Ū/2)(ρ2 + 1/2ρ − 3ρ/2) sin2 θ; in the advection-
dominated regime Ū � 1 fluid particles move along
stream lines ψ = const, and the fluid particles emerg-
ing from the boundary layer of width Δρ ∼ Ū−1/3

around the sphere are transported into the advective
tail of angular width Δθ along a stream line. There-
fore, Δθ follows by equating the respective scaling forms
of the stream function ψ̄ ∝ ρ2Δθ2 in the tail and
ψ̄ ∝ 3Δρ2 sin2 θ/2 in the boundary layer, which gives
ρΔθ ∼ Δρ ∼ Ū−1/3. Therefore, the dominant contribu-
tions in Eq. (15) are F̄M,tot ∼ PeΔθc̄(ρ = 1, θ) ∼ Ū−2/3

in agreement with the numerical results in Fig. 6. This
also means that the Marangoni flow forces strongly
decrease the direct force (or effectively increase the
drag) for Ū � 1.

For constant concentration boundary conditions (B),
the drop of the concentration within the boundary layer
from its surface value c̄(ρ = 1) = 1 to zero means that

Nu(θ) = −∂ρc̄(ρ = 1, θ) ∼ 1
Δρ

∼ Ū1/3 const. conc. (B)

(30)

Again, these scaling properties directly explain the
results (22), Nu ∼ Ū1/3, for the Nusselt number in the
limit Ū � 1. The total Marangoni force should scale
F̄M,tot/Pe ∼ Δρ2c̄(ρ = 1) ∼ Ū−2/3 from the bound-
ary layer contribution (see Eq. (15)), which is again
only subdominant. As for constant flux boundary con-
ditions, the dominant contribution comes from the tail
with F̄M,tot/Pe ∼ Δθc̄(ρ = 1) ∼ Ū−1/3 which is in
agreement with (26).

We also stress that, for both types of boundary con-
ditions, we find

Nu(θ) ∼ 1
Δρ(θ)

, (31)

i.e., the local Nusselt number can be interpreted as the
inverse local boundary layer width, which is also evident
from its definition (23) as an inverse decay length if the
concentration profile drops exponentially as a function
of ρ.

4.4.2 Rescaling and similarity transformation

More stringent arguments are based on a corresponding
scale transformation of the entire diffusion–advection

equation (9e) in the decoupled limit vM ≈ 0. Expect-
ing a boundary layer of thickness Δρ � 1, we can
expand (3a) and (3b) to obtain v(ρ) ≈ 3(ρ − 1)/2 and
u(ρ) ≈ −3(ρ−1)2/2 to leading order. Then, we expand
around the surface of the sphere ρ = 1 by introducing a
rescaled distance ξ ≡ (ρ−1)Ūm. For Ū � 1, the leading
diffusion term is radial diffusion, which scales as Ū2m,
while the advection term scales as Ū1−m. If advection
and diffusion are both retained in the boundary layer
solution m = 1/3 follows, which implies a boundary
layer ρ − 1 ∼ Ū−1/3 as in Eq. (28). If we also scale
c̃ ≡ c̄Ū1/3, the constant flux boundary condition (A)
Ū1/3∂ξ c̄0(0) = −1 becomes Ū -independent again, and
we end up with Ū -independent leading-order equations
in the rescaled variables ξ and c̃, For constant concen-
tration boundary conditions (B), no additional rescal-
ing of c̄ is necessary, c̄ = c̃.

We obtain in the rescaled variables for c̃ = c̃(ξ, θ)

∂2
ξ c̃ = −3

2
ξ2 cos θ∂ξ c̃ +

3
2
ξ sin θ∂θ c̃

= −1
2
ξ2A′(η)∂ξ c̃ + ξA(η)∂η c̃

with A(η) ≡ −3
2
(1 − η2), η ≡ cos θ

c̃(∞, θ) = 0,
(A) constant flux: ∂ξ c̃(0, θ) = −1,

(B) constant conc.: c̃(0, θ) = 1, (32)

i.e., a parameter-free equation confirming all boundary
layer scaling results (28), (29) and (30).

For the constant concentration boundary condition
(B), the equations (32) can actually be solved analyt-
ically by a similarity transformation [33,36], i.e., with
an Ansatz c̃(ξ, θ) = f(ξg(cos θ)) because this bound-
ary condition is compatible to a boundary condition
f(0) = 1 for the function f(x). Exact results can be
obtained for the functions g(η) and f(x). An imme-
diate consequence of the existence of such a solution
is that the local Nusselt number is the inverse of the
function g(cos θ), and that g(cos θ) is identical to the
boundary layer width at angle θ because the function
f(η) is exponentially decaying on a scale of order unity,

Nu(θ) =
1

g(cos(θ))
=

1
Δρ(θ)

. (33)

This confirms the scaling (30) and (31). The exact
results for the functions g(η) and f(x) also give
the exact asymptotics of the Nusselt number in Eq.
(22), Nu = −∂ρc̄0(ξ = 0) ∼ c0Ū

1/3 with c0 =
35/3π2/3/8Γ (1/3) � 0.624572 [34,36].

A similarity transformation is, however, not pos-
sible for the constant flux boundary conditions (A)
∂ξ c̃(0, θ) = −1, which is incompatible with the sim-
ilarity Ansatz c̃(ξ, cos θ) = f(ξg(cos θ)). It turns out
that we can reformulate the results for constant con-
centration boundary conditions in terms of a flux bal-
ance argument, which can also apply to the constant
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flux boundary conditions in order to obtain an approx-
imative result for the local Nusselt number.

4.4.3 Flux balance argument for local Nusselt number

Here, we consider the balance of the diffusive flux out
of the sphere at ρ = 1 with the advective flux assum-
ing that a boundary layer Δρ � 1 exists to which the
advective flux is constrained. We also assume that by its
definition (23), the local Nusselt number can be inter-
preted as an inverse decay length, which is to be iden-
tified with the boundary layer width Nu(θ) ∼ 1/Δρ(θ),
see Eq. (31).

For the flux balance, we consider a volume from θ = 0
up to an angle θ around the sphere ρ = 1. The diffusive
outflux from the sphere gives the particle influx into
this volume. For Ū � 1, outflux from this volume is
dominated by advection in θ-direction, which is limited
to the boundary layer of thickness Δρ(θ) = Nu−1(θ).
Both influx and outflux have to balance in a station-
ary state. In order to show the flux balance explicitly,
we integrate on both sides of equation (32) (for the
unrescaled c̄ rather than c̃). The integrated diffusive
term on the left hand side gives the diffusive influx

Iin = 2π

∫ ∞

0

dξ

∫ 1

η

dη̃∂2
ξ c̄ = −2π

∫ 1

η

dη̃∂ξ c̄(ξ = 0, η)

= 2π

∫ θ

0

dθ̃ sin θ̃Nu(θ)c̄(ξ = 0, θ).

The integrated advective term on the right-hand side
gives the advective outflux

Iout = Ū2π

∫ ∞

0

dξc̄(ξ, η)
3
2
ξ(1 − η2)

∼ 2πŪ sin2 θ
3
2
Nu−2(θ)c̄(ξ = 0, θ),

where we used that outflux is confined to a boundary
layer of size Δρ(θ) = Nu−1(θ), see Eq. (31), in the last
equality. The integrated Eq. (32) thus transforms into
the flux balance Iin(θ) = Iout(θ).

For constant concentration boundary conditions (B),
we obtain after differentiating with respect to θ

1
3constŪ

= cos θ
1

Nu3(θ)
− sin θ

Nu′(θ)
Nu4(θ)

.

Apart from the undetermined constant, this is exactly
the differential equation governing the scaling func-
tion g(cos θ) in the similarity solution [36], which con-
firms Nu(θ) = g(cos θ). The differential equation can be
solved to give the well-known exact result [36]

Nu(θ) =
(

2constŪ
)1/3 sin θ

(θ − 1
2 sin(2θ))1/3

. (34)

For constant flux boundary conditions (A), −∂ξ c̄(ξ =
0, θ) = 1, we have Nu(θ) = 1/c̄(ξ = 0, θ) and flux bal-
ance gives

∫ θ

0

dθ̃ sin θ̃ = constŪ sin2 θ
3
2
Nu−3(θ).

This can be directly integrated to give a new approxi-
mative result for the angular dependence of the Nusselt
number,

Nu(θ) = constŪ1/3 (1 + cos θ)1/3
. (35)

The normalized local Nusselt numbers Nu(θ)/Nu are
plotted as black lines in Fig. 4. The agreement for large
Ū is excellent for constant concentration boundary con-
ditions (B) and approximate for constant flux boundary
conditions (A), as expected. The flux balance approach
also confirms the scaling Nu(θ) ∼ Ū1/3, see Eqs. (29)
and (30).

4.5 Anisotropic emission

Finally, we want to discuss the effect of an anisotropic
emission boundary condition using the example of an
anisotropic diffusive flux as characterized by a param-
eter β̄ > 0 in Eq. (18). In general, we expect higher
Marangoni forces, because these forces are caused by
anisotropies in the concentration profile around the
half-sphere. If anisotropies are present without the
need to create them by advection, this increases the
Marangoni forces as can also be seen in the numeri-
cal results in Fig. 7. These numerical results also show
that increasing the anisotropic emission parameter β̄
beyond β̄ ∼ 1 erases the maximum in the Marangoni
forces in the crossover region Ū ∼ 1 between diffusive
and advective transport.

In the diffusive limit Ū � 1, the anisotropy leads to
an additional zeroth-order term c̄

(0)
1 (ρ) = −β̄/2ρ2 in

the concentration field, which results in

F̄M

πPe
≈ 3

16
Ū +

1
2
β̄, (36)

F̄M,tot

πPe
≈ −1081

1280
Ū +

3
8
Ū ln R̄ +

3
32

β̄, (37)

as derived in Appendix C (see Eqs. (C.5) and (C.6)).
These perturbative results are in excellent agreement
with numerical FEM results as can be seen in Fig. 7. For
sufficiently small Ū , the zeroth-order term dominates. If
this term dominates, Marangoni flow forces decrease the
direct force because 3β̄/32 < β̄/2; this is similar to the
results of Ref. [29], where also an explicitly asymmetric
situation was considered.

In the advective limit Ū � 1, a boundary layer of
width Δρ ∼ Ū−1/3 determines the physics. On the
scale of the boundary layer thickness, the concentra-
tion drops from its surface value c̄(ρ, θ) to zero. For
constant flux boundary conditions (A), this led to a
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Fig. 7 Marangoni forces F̄M/πPe and F̄M,tot/πPe for con-
stant flux boundary conditions as a function of Ū in the pres-
ence of an anisotropy β̄ in the emission. All results are from
numerical FEM solutions of the axisymmetric diffusion–
advection equation in two-dimensional angular representa-
tion with ρ < R̄ = 30. The solid lines for Ū < 1 are the
analytical perturbative results (36) and (37). The solid lines
for Ū > 1 are the scaling results (38) and (39). For β̄ = 0,
we recover the results from Fig. 6

concentration level c̄(ρ, θ) ∼ Δρ ∼ Ū−1/3 (see Eq.
(29)) at the sphere. In the presence of an explicitly
symmetry-breaking emission ∂ρc̄1(ρ = 1) = β̄, this
contribution will also decay on the scale of the bound-
ary layer Δρ, and we expect a corresponding contribu-
tion β̄Ū−1/3 to the concentration level at the sphere,
c̄(ρ = 1, θ) ∼ (const + β̄)Ū−1/3. Because the direct
Marangoni force scales as F̄M/Pe ∼ c̄(ρ = 1, θ), this
leads to

F̄M

πPe
≈ (dM + β̄)Ū−1/3, (38)

which is in good agreement with numerical results as
shown in Fig. 7. The total Marangoni force scaling is
dominated by the advective tail, which led to F̄M,tot ∼
PeΔθc̄(ρ = 1, θ); we find

F̄M,tot

πPe
≈ dM,β

(
dM,fl

dM,β
+ β̄

)

Ū−2/3 with dM,β � 0.2.

(39)

This result is also in good agreement with numerical
results as shown in Fig. 7.

5 Diffusion–advection with strong
Marangoni flow Pe � Ū

For a strong Marangoni flow, Pe � Ū , the linear
response regime Ū � 1 becomes modified. We first have
to address the dominant Marangoni flow problem (iib),
which determines the Marangoni flow vM. For Pe � Ū ,
this is the dominant contribution to the fluid flow in the
diffusion–advection problem (iii). The Marangoni flow
pattern is a stationary Marangoni vortex ring around
the spherical swimmer below and parallel to the fluid
interface SInt as can be seen in Fig. 2. Because this
solution lacks axisymmetry, a complete and analytical
solution is no longer possible.

Applying mass conservation J̄ ∼ 2πc̄v̄Mρl̄c = const
and the Marangoni boundary condition to concentra-
tion profile and Marangoni flow field in a concentration
boundary layer of width l̄c ∼ (ρ/v̄M)1/2 below the fluid
interface SInt, we find a scaling [25]

c̄(ρ) = c̄(1)ρ−2/3 with c̄(1) ∼ Pe−1/3, (40)

v̄M ∼ c̄−2ρ−3 ∼ c̄−2(1)ρ−5/3 ∼ Pe2/3ρ−5/3. (41)

for strong Marangoni flows. Here, we will further test
this result in numerical FEM solutions,

We see that the advective current j̄ ∼ c̄v̄M ∼
Pe1/3ρ−7/3 becomes smaller than the corresponding dif-
fusive current j̄D ∼ −∂ρc̄ ∼ Pe−1/3ρ−5/3 for ρ > Pe.
Then, our assumption of advective transport breaks
down, and this should mark the boundary of the
Marangoni advection-dominated region. Therefore,

ρM ∼ Pe (42)

should be the scaling of the size of the Marangoni vortex
around the sphere for low Reynolds numbers. At larger
distances, a crossover to diffusive transport with c̄ ∝
ρ−1 sets in.

We can also introduce the dimensionless Marangoni
number for the radial Marangoni flow, which exactly
compares advective Marangoni current and diffusive
current by definition,

Ma =
jM
j

=
vMr

D
= v̄Mρ = Pe2/3ρ−2/3, (43)

and see that ρM is determined by the condition that the
regime Ma > 1 determines the size of the Marangoni
vortex.

We can test the predictions (40) and (41) in numer-
ical FEM solutions, see Fig. 8. One problem is that,
for large Peclet numbers, the finite size of the numer-
ical system becomes too small to accommodate the
Marangoni vortex of size ρM ∼ Pe properly. This results
in deviations of the interfacial Marangoni flow field from
Eq. (41). The numerical results for the interfacial con-
centration field show excellent agreement with (40).

So far, we considered the leading order of our problem
by setting Ū ≈ 0; going one order further, we get the
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Fig. 8 Iterative three-dimensional FEM results for Pe =
40 and Ū = 0.1 in a cubic system with −7 < ȳ < 0, 0 < x̄ <
7, −7 < z̄ < 7. Top: Contour plots of the concentration c̄(ρ)
and the stream lines of the Marangoni flow field vM(ρ)/Pe.
Bottom: vM as a function of ρ and c̄ as a function of ρ at
the interface ȳ = 0 along with the predictions (41) and (40)

linear response for small Ū with the ansatz c̄ = c̄(0) +
Ū c̄(1) with c̄(0)(ρ) given by (40). In the total flow v +
vM, the Marangoni flow (41) is the zeroth-order result,
vM = v

(0)
M , while the Stokes swimming flow v = v(1) is

linear in Ū . In an advection-dominated situation, mass
conservation in the boundary layer still holds in the
presence of Stokes flow,

1 ∼ (c̄(0) + Ū c̄(1))(Ū ū cos θ + v̄M)1/2ρ3/2,

where the radial component ū of the Stokes flow is con-
sidered. Expanding up to first order in Ū , we find a
scaling

c̄(1)(ρ) ∼ 1

v̄
1/2
M (ρ)

c̄(0)(ρ)ū(ρ) ∼ Pe−2/3ρ1/6ū(ρ),

which will give rise to a Marangoni force scaling

F̄M

πPe
∼ ŪPe−2/3,

F̄M,tot

πPe
∼ ŪPe−2/3. (44)

Numerical FEM results show that both prefactors are of
order unity (but hard to quantify because of finite size
effects), see Fig. 9. This shows that Marangoni flows
depress the total driving force in the linear response
regime by a factor Pe−2/3 because it is harder to break
the symmetry in the presence of the strong Marangoni
flow advection. Numerical results in Fig. 9 also show
that the total Marangoni force is somewhat larger
than the direct Marangoni force, F̄M,tot > F̄M. In this
respect, our previous results for linear response regime
for Pe � Ū remain unchanged: The Marangoni flow
force increases the direct force.

In the advection-dominated regime Ū � 1, on the
other hand, results are essentially not affected by strong

Fig. 9 Left: Iterative three-dimensional FEM results for
F̄M/πPe (top) and F̄M,tot/πPe (bottom) as a function of
Ū for Pe = 0 − 50 for a cubic system with −7 < ȳ < 0,
0 < x̄ < 7, −7 < z̄ < 7. Blue open circles are results for
Pe = 0 from FEM solutions to the axisymmetric diffusion–
advection equation in two-dimensional angular representa-
tion with R̄ = 30. The slope in the linear response regime
for Ū � 1 is reduced according to Eq. (44). Results for
Ū � 1 are essentially not affected by strong Marangoni
flows Pe � Ū . Right: Corresponding slopes F̄M/ŪπPe and
F̄M,tot/ŪπPe as a function of Pe calculated from the results
for Ū = 0.1

Marangoni flows Pe � Ū as the numerical results in
Fig. 9 show. The flow field v will still give rise to a
concentration boundary layer of thickness Δρ ∼ Ū−1/3

around the sphere. On the scale of the boundary layer,
the Marangoni flows vM are not yet developed; they
develop only further away at 1 � ρ < ρM ∼ Pe because
of the no-slip boundary condition for the Marangoni
flow in (iib). Therefore, the results for Ū � 1 are
essentially unaffected by a strong Marangoni flow for
Pe � Ū .

6 Diffusion–advection in the presence of
evaporation

In the presence of evaporation, we have a convective
(Robin) boundary condition (9b), which is governed by
the dimensionless Biot number (11), instead of the Neu-
mann condition (9a), which is recovered for vanishing
Biot number k̄ = 0. In general, evaporation of sur-
factant depletes the interface of surfactant and, thus,
decreases the Marangoni driving forces (both direct
and flow forces). For volatile camphor, we find a Biot
number k̄ = ak/D ≈ 550 using results from Ref. [18],
whereas other surfactants such as PEG are non-volatile
and have a very small Biot number [25].

The Biot number can also be interpreted as an
extrapolation length scale. The concentration profile
will fall off exponentially perpendicular to the interface
in the outward direction on a dimensionless extrapola-
tion length scale Δȳ ∼ 1/k̄ given by the inverse of the
Biot number.
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In Ref. [25], we developed a qualitative scaling the-
ory based on the assumption that the total evaporation
flux balances the total emission flux of surfactant in a
stationary state. In the diffusive regime Ū � 1, this
leads to

F̄M ∼ F̄M

∣
∣
k̄=0

1
k̄ + 1

, F̄M,tot ∼ F̄M,tot

∣
∣
k̄=0

1
k̄ + 1

.

(45)

In the advection-dominated limit Ū � 1, we find

F̄M ∼ F̄M

∣
∣
k̄=0

Ū1/3

k̄ + Ū1/3
, F̄M,tot ∼ F̄M,tot

∣
∣
k̄=0

Ū1/3

k̄ + Ū1/3
.

(46)

In both limits, Marangoni forces are reduced by evapo-
ration, because it reduces the surfactant concentration.

7 Swimming condition, symmetry breaking
and speed

Now, we have a rather complete picture of the solution
of problems (i)–(iii), i.e., diffusion–advection coupled
to hydrodynamics for a prescribed swimmer velocity
Ū at low Reynolds numbers. In particular, we know
the Marangoni forces as a function of the prescribed
velocity Ū .

7.1 Swimming condition

The swimming condition (16) gives an additional force
balance relation between Marangoni forces and Ū ,
which has to be satisfied in the swimming state and
determines the selected swimming speed Ū = Ūswim as
a function of Peclet number Pe and Biot number k̄. In
general, the swimming velocity increases with Pe and
decreases with k̄.

The force balance condition can be interpreted such
that intersections of the linear Stokes friction relation
−F̄D = 3πŪ and the total Marangoni force F̄M,tot =
F̄M,tot(Ū) relation give the swimming speed Ū = Ūswim.
The resulting swimming state can only be stable if the
Marangoni force curve F̄M,tot(Ū) intersects the straight
Stokes friction line 3πŪ from above. Then, a speed fluc-
tuation δŪ > 0 will give rise to F̄M,tot < −F̄D such
that friction dominates, and the swimming speed is
decreased again.

All curves (F̄M,tot/πPe)(Ū) in Figs. 6, 7 and 9 start
linearly ∝ Ū in the diffusive regime Ū � 1 and then
cross over to sublinear growth and finally decrease in
the advective regime Ū > 1. Therefore, all intersec-
tion points with the linear Stokes friction function will
represent stable swimming states, also if an anisotropic
emission is included. These results remain unchanged if
evaporation is included.

In the decoupled limit Pe � Ū , the total Marangoni
force is always trivially linear in Pe. Then, we can

Fig. 10 Swimming speed Ūswim as a function of the
Peclet number Pe (representing emission strength) based
on Marangoni forces from the FEM solutions in Fig. 7 in
the absence of evaporation and in the decoupled limit. For
β̄ = 0, the blue vertical line of data points ends in the
critical Peclet number Pec at zero swimming speed. In the
presence of an anisotropic emission β̄ > 0, the swimming
bifurcation in the diffusive regime becomes avoided result-
ing in an initial linear relation Ūswim ∝ Pe, crossing over to
Ūswim ∝ Pe3/5 in the advective regime. The solid lines for
Ū < 1 are derived from the analytical perturbative results
(36) and (37). The solid lines for Ū > 1 are derived from
the scaling results (38) and (39)

directly obtain the swimming condition in the form

Pe =
3Ūswim

(F̄M,tot/πPe)(Ūswim)
. (47)

Using the Marangoni forces from Fig. 7 in the decou-
pled limit, which include an asymmetric emission β̄ and
reduce to Eq. (25) for β̄ = 0 and inverting this relation,
we obtain the swimming relation in Fig. 10.

7.2 Swimming bifurcation

For β̄ = 0, i.e., a symmetrically emitting swimmer, we
see a sharp spontaneous symmetry breaking above a
critical Peclet number Pec in the swimming relation in
Fig. 10 (blue vertical line of data points). From Eq.
(25), we obtain the existence of a symmetry-broken
swimming state for Pe > Pec ∼ 8/ ln R̄ → 0, which
approaches zero for large system sizes. Therefore, the
symmetry is essentially always spontaneously broken in
a large swimming vessel.

The swimming bifurcation in the force balance is
governed by the leading-order linear terms ∝ Ū (from
the drag force and the linear response regime of the
Marangoni forces) and the next order correction ∝ Ū3

in the Marangoni force. Therefore, we expect a super-
critical pitchfork bifurcation analogously to a φ4-theory
for a second-order phase transition. In the presence of
the additional symmetry-breaking emission rate, β̄ > 0,
which contributes a constant Ū0-term to the force bal-
ance. This corresponds to an additional symmetry-
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breaking field in the φ4-theory and gives rise to an
avoided bifurcation. This bifurcation scenario is clearly
reflected in Fig. 10.

Figure 10 and Eq. (25) were, however, derived for
the decoupled limit Pe � Ū . At the swimming bifurca-
tion, we have Pe = Pec � Ū ≈ 0, such that the feed-
back of Marangoni flows onto the diffusion–advection
problem has to be taken into account, and the decou-
pling approximation should not be used. Then, Eq. (44)
describes the Marangoni forces in the linear response
regime, which further reduces the critical Peclet num-
ber to Pec ∼ 1/(ln R̄)3 → 0. In the presence of evap-
oration with k̄ � 1, as appropriate for surfactants
such as camphor, the total Marangoni force is fur-
ther depressed according to Eq. (45) resulting in an
increased Pec = k̄3/(ln R̄)3 → 0, which is, however,
still approaching zero for large swimming vessel sizes
R̄.

For strong Marangoni flows and in the presence of
evaporation, we still have a linear response of the
Marangoni forces for small Ū (see Fig. 9 and Eq. (45))
with higher-order correction terms competing with a
linearly Ū -dependent drag force. Therefore, the above
supercritical bifurcation scenario should persist.

7.3 Swimming relation

For Pe > Pec, a spontaneously symmetry-broken swim-
ming state with Ūswim > 0 exists for a symmetrically
emitting swimmer with β̄ = 0. Because the Marangoni
force Eq. (25) remains approximately linear up to Ū ∼
O(1), as can also be seen in Fig. 6, the swimming
velocity rises steeply for Pe � Pec and quickly enters
the asymptotics for the advection-dominated regime
Ūswim � 1 as can be clearly seen in Fig. 10.

In the advective regime, we find the swimming rela-
tions

Ūswim ∼ Pe3/5 for k̄ � Pe1/5, (48a)

Ūswim ∼ k̄−3/4Pe3/4 for k̄ � Pe1/5. (48b)

Also in this regime, we have Pe � Ūswim such that
Marangoni flows are strong, but this has little influence
on the swimming speed because of the concentration
boundary layer that forms in this regime. Evaporation
is significant for k̄ � Pe1/5 and reduces the swimming
speed because it reduces the driving Marangoni forces.

For an anisotropically emitting swimmer with β̄ > 0,
the bifurcation is avoided, and we find a linear swim-
ming relation for small Pe. In the vicinity of the bifur-
cation, the force balance can be written as Ūswim =
(Pe/Pec)Ūswim + Peβ̄/32, which results in the linear
swimming relation

Ūswim =
Pe

1 − Pe/Pec

β̄

32
. (49)

This describes the linear relations Ūswim ∝ Pe for small
Pe in the swimming relation in Fig. 10. In the advective

regime, we still have a crossover to the above swimming
relations (48), but with a slightly increased prefactor,
i.e.,

Ūswim ∼ (const + β̄)Pe3/5, (50a)

Ūswim ∼ k̄−3/4(const + β̄)Pe3/4. (50b)

8 Discussion and conclusion

At low Reynolds numbers, we developed a complete
theory for Marangoni boat propulsion for a completely
symmetric, half-spherical, surfactant emitting swim-
mer. Symmetric PEG–alginate Marangoni surfactant
boats can be produced down to radii a ∼ 150μm [25]
with Reynolds numbers Re ∼ 1 − 10 such that the
low Reynolds number regime becomes accessible for
surfactant-loaded boats. Recently, asymmetric thermal
Marangoni surfers propelled by the thermal Marangoni
effect were successfully realized [26]. Here, the ther-
mal diffusion constant replaces the surfactant diffu-
sion constant and is by a factor O(103) larger. More-
over, radii a ∼ 3μm could be reached. At the same
time, swimming velocities are still in the range above
103−105 μm/s. These parameters correspond to dimen-
sionless velocities Ūswim ∼ 2×10−2−2, which is mostly
in the diffusive regime Ū � 1 and at low Reynolds num-
bers Re ∼ 6 × 10−6. These swimmers were asymmetri-
cally heated with a temperature difference ΔT across
the swimmer corresponding to a constant concentration
asymmetry c̄S,1 ∝ ΔT . We therefore expect to be in a
constant concentration situation, which is analogous to
the linear regime in the constant flux swimming rela-
tion in Fig. 10. This is in accordance with the theo-
retical results of Würger [30], because advection plays
no role in this regime and agrees with the experimental
observations in Ref. [26].

Our theoretical description comprises the coupled
problems of surface tension reduction by surfactant
adsorption at the air–water interface including the
possibility of surfactant evaporation, fluid flow (both
Marangoni flow and flow induced by swimmer motion),
diffusion and advection of the surfactant. Conceptually,
there is no difference for a thermal Marangoni surfer as
realized in Ref. [26]. In previous theoretical approaches
to surfactant [29] or thermal [30] Marangoni boats,
advection has been neglected. For surfactant driven
Marangoni boats, this is typically a bad approximation
as estimates in Ref. [25] show; for thermal Marangoni
boats, this is typically justified as our above estimates
show.

The three coupled problems of surfactant adsorption,
low Reynolds number fluid flow and diffusion–advection
of surfactant are first solved for prescribed swimmer
velocity U ; the actual swimming velocity Uswim is deter-
mined by force balance between the drag force, the
direct Marangoni force from the surface tension contri-
bution at the air–water–swimmer contact line and the
Marangoni flow force. We employ the reciprocal the-
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orem, which we could reinterpret in terms of energy
transduction, to calculate the Marangoni forces.

Non-dimensionalization reveals that two dimension-
less control parameters exist, the Peclet number (10),
which is the dimensionless emission rate of surfactant,
and the Biot number (11), which is the dimensionless
evaporation rate. Evaporation is practically absent for
PEG (Biot number k̄ � 1), but strong for other fre-
quently studied soap boat swimmers such as camphor
boats (Biot numbers k̄ ≈ 550 [18]). In Ref. [25], it is
shown that evaporation is relevant to quantitatively
understand the large differences in the swimming rela-
tion Ūswim = Ūswim(Pe) between PEG–alginate swim-
mers and camphor boats from Ref. [20], but these
Marangoni boats operate at moderate Reynolds num-
bers. For thermal Marangoni surfers [26], evaporation
corresponds to a convective boundary condition for heat
transfer from the water surface to the air; the cor-
responding convection coefficient will depend on the
nature of the air flow that is applied to transfer heat,
which is difficult to quantify. It also depends on the
temperature difference to the surrounding air that can
be established. Because the thermal Marangoni surfers
from Ref. [26] mostly operate in the diffusive regime
Ū � 1, we expect convection to reduce the Marangoni
force according to Eq. (45) if the corresponding Biot
number k̄ is sufficiently high.

Moreover, the dimensionless swimmer velocity Ū
plays an important role as it controls the transition
from a diffusive regime Ū � 1 to an advective regime
Ū � 1. Non-dimensionalization of the coupled equa-
tions also shows a decoupling of the Marangoni flow
problem for weak Marangoni flows Pe � Ū . Then, the
concentration field around the interfacial Marangoni
swimmer with velocity U is essentially equivalent to the
concentration field around a mass emitting sphere mov-
ing with velocity U through a bulk viscous fluid, which
is a classical diffusion–advection problem. We devel-
oped solutions for this diffusion–advection problem for
two types of boundary conditions which seem most
important for applications: constant flux boundary con-
ditions (A) for diffusive emission of surfactant from the
swimmer and constant concentration boundary condi-
tions (B) if the surfactant dissolves from the surface or
is produced by a chemical reaction on the surface. We
could obtain novel results for constant flux boundary
conditions, which are unusual in the diffusion–advection
literature. In particular, we could obtain qualitative
results for the local Nusselt number by a novel flux
balance argument. All theoretical results are supported
by numerical FEM simulations.

Apart from extensive results for the decoupled limit
Pe � Ū , we also addressed strong Marangoni flow in
the limit Pe � Ū and evaporation on the basis of scal-
ing arguments and numerical FEM simulations. This
allowed us to obtain the Marangoni forces as a func-
tion of a prescribed swimmer speed Ū for all relevant
situations, also including a possible anisotropic emis-
sion. For all cases, our theoretical results agree well
with the numerical FEM calculations. Knowledge of the
Marangoni forces is the basis to discuss the swimming

bifurcation and swimming speed as a function of the
Peclet number as main control parameter via the force
balance condition.

We showed that a spontaneous symmetry breaking,
i.e., a spontaneous transition into a swimming state,
is possible also for a completely symmetric swimmer
above a critical Peclet number. The swimming bifurca-
tion is a supercritical pitchfork bifurcation analogous
to a second order symmetry-breaking phase transition,
and the presence of an explicitly symmetry-breaking
emission gives rise to an avoided bifurcation. Spon-
taneous symmetry breaking resulting in propulsion is
possible by establishing an asymmetric surfactant con-
centration profile that is maintained by advection. The
symmetry breaking mechanism is similar to what has
been proposed for autophoretic swimmers [9,10] and
liquid Marangoni swimmers [8] before.

In Eq. (48), we obtain the power-laws governing the
swimming velocity as a function of Peclet and Biot
number, which are Ūswim ∝ Pe3/5, without evapora-
tion (PEG) and Ūswim ∝ k̄−3/4Pe3/4, in the presence of
strong evaporation (camphor). In Eq. (50), the result
is extended in the presence of an explicitly symmetry-
breaking emission. Then, a linear regime emerges in the
diffusive limit Ū � 1, which is caused by the avoided
bifurcation. This regime is observed for the thermal
Marangoni surfers in Ref. [26].
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A Energy transduction and reciprocal
theorem

In this Appendix, we discuss the reciprocal theorem in terms
of energy transduction, in order to see how power input from
Marangoni stresses via the flow fields is transduced to the
sphere for propulsion. This will also provide an alternative
derivation of the results obtained by Masoud and Stone [37]
via the reciprocal theorem.

For this, we switch to the laboratory frame in the
following. We first consider the dissipation rate Φ ≡
2μ

∫
V

dV eijeij of a solution of the Stokes equation in an

arbitrary volume V . Here, eij = 1
2

(∂ivj + ∂jvi) is the strain
tensor, and σij = −pδij + 2μeij is the stress tensor. The
kinetic energy K = 1

2
ρ

∫
V

dV v2 of the fluid changes accord-

ing to dK/dt =
∫

∂V
daivjσij −Φ, i.e., by the external power

input P∂V across the surface of the volume and by dissipa-
tion. In a stationary state, dK/dt = 0 and dissipation and
power input are equal,

Φ = P∂V =

∫

∂V

daivjσij (A.1)

(da is the outward normal to volume V ). Applying this
equality to the Stokes flow field v and the liquid volume
with the boundary ∂V = S + SInt and using σij = 0 at the
liquid–air interface SInt, we find

Φ =

∫

S

daivjσij +

∫

SInt

daivjσij

= PS = Uj

∫

S

daiσij = −UFD > 0 (A.2)

with the Stokes drag force FD ≡ − ∫
S

daiσiz from Eq.
(12). Applying the same dissipation relation (A.1) to the
Marangoni flow field vM and the liquid volume with the
boundary ∂V = S + SInt and using the no-slip condition
vM = 0 at the half-sphere S, we find

ΦM =

∫

SInt

daivM,jσM,ij = PM,SInt . (A.3)

This means that the power input by Marangoni stresses
σM,ij on the interface SInt via the Marangoni flows vM,j

(right hand side) is dissipated entirely within the fluid with-
out transmitting any mechanical power onto the half-sphere
because vM = 0 on S.

Now, we consider the mutual dissipation rate for two solu-
tions v(1)(r) and v(2)(r) to the Stokes equation. The mutual
dissipation can be shown to be given by the mutual power
input in a stationary state,

Φ(12) = 2μ

∫

V

dV e
(1)
ij e

(2)
ij =

∫

∂V

daiv
(2)
j σ

(1)
ij . (A.4)

The symmetry Φ(12) = Φ(21) leads directly to the reciprocal
theorem

∫

∂V

daiv
(2)
j σ

(1)
ij =

∫

∂V

daiv
(1)
j σ

(2)
ij . (A.5)

Now, we can apply this finding to the Stokes and Marangoni
flow fields, which both satisfy the Stokes equation, and to

the liquid volume with the boundary S + SInt resulting in a
mutual dissipation

Φmut =

∫

S+SInt

daivjσM,ij +

∫

S+SInt

daivM,jσij

= 2

∫

S+SInt

daivjσM,ij = 2

∫

S+SInt

daivM,jσij = 0,

(A.6)

because vM,j = 0 on the surface S of the half-sphere and
σij = 0 on the interface SInt such that the last equality
holds. The reciprocal theorem is thus equivalent to a van-
ishing mutual dissipation between Stokes and Marangoni
flow.

This has consequences for the dissipation relation for the
total flow field vtot = v + vM, which also includes the
mutual dissipation Φmut of both contributions. The total
power transmission onto the fluid volume with the bound-
ary ∂V = S + SInt is Ptot,S + Ptot,SInt with

Ptot,SInt =

∫

SInt

dai(vj + vM,j)σM,ij

=

∫

SInt

daivjσM,ij + PM,SInt ,

Ptot,S =

∫

S

daivj(σij + σM,ij) = PS − UFM,fl,

(A.7)

by employing boundary conditions on S and SInt, Eqs. (A.3)
and (A.2), and by introducing the Marangoni flow force

FM,fl ≡ −
∫

S

daiσM,iz (A.8)

as the drag force exerted by the Marangoni flow field onto
the sphere. (da is the inward normal to the sphere.) FM,fl <
0 signals additional Marangoni drag, while FM,fl > 0 signals
an additional Marangoni flow propulsion force. Because of
the vanishing mutual dissipation, we obtain for the total
dissipation

Φtot = Φ + ΦM + 2Φmut

= Φ + ΦM = PS + PM,SInt . (A.9)

The equality Φtot = Ptot,S + Ptot,SInt and Eq. (A.7) finally
gives the energy transduction for the fluid,

PS + PM,SInt = Φtot = Ptot,S + Ptot,SInt

= PS − UFM,fl +

∫

SInt

daivjσM,ij + PM,SInt

or 0 = −UFM,fl +

∫

SInt

daivjσM,ij. (A.10)

This states that the mutual power input by Marangoni
stresses via the Stokes flow field is completely transduced via
the Marangoni flow force onto the sphere, while the power
input by Marangoni stresses via the Marangoni flow field
itself is completely dissipated (see Eq. (A.3)).

B Legendre polynomial decomposition

In the axisymmetric decoupling approximation, we can
employ a decomposition of the diffusion–advection equation
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into Legendre polynomials

c̄(ρ, θ) =
∞∑

n=0

c̄n(ρ)Pn(cos θ),

c̄n(ρ) =
2n + 1

2

∫ π

0

dθ sin θPn(cos θ)c̄(ρ, θ). (B.1)

with Legendre polynomials Pn(cos θ). Derivatives of Leg-
endre polynomials are associated Legendre polynomials
∂θPn(cos θ) = P 1

n(cos θ). The decomposition into Legendre
polynomials is advantageous as the Stokes velocity field (3a)
and (3b) can be written in terms of n = 1 polynomials only,
P1(cos θ) = cos θ and P 1

1 (cos θ) = − sin θ,

¯̂u(ρ, θ) = ŪP1(cos θ)u(ρ) = Ū cos θu(ρ), (B.2)
¯̂v(ρ, θ) = −ŪP 1

1 (cos θ)v(ρ) = Ū sin θv(ρ). (B.3)

Therefore, the diffusion–advection equation (9e) only cou-
ples coefficients c̄n(ρ) to coefficients c̄n±1(ρ).

Both the direct Marangoni force FM (see (13)) and the
total Marangoni force FM,tot (see (15)) can also be written
in terms of Legendre components of the concentration field
at r = a:

F̄M

Pe
= −2

∫ π

0

dθ cos θc̄(1, θ)

= −2
∞∑

n=1

fnc̄n(1) = −πc̄M (1) with (B.4)

c̄M (ρ) ≡ 2

π

∫ π

0

dθ cos θc̄(ρ, θ)

=
2

π

∞∑

n=1

fnc̄n(ρ) ≈ c̄1(ρ) + ...., (B.5)

c̄1(ρ) =
3

2

∫ π

0

dθ sin θ cos θc̄(ρ, θ), (B.6)

fn ≡
∫ π

0

dθP1(cos θ)Pn(cos θ)

= (−1)(1−n)/2π
Γ

(
1 + n

2

)

Γ
(

n+1
2

)
Γ

(
(1 − n

2

)
)Γ

(
n+3
2

)

=

{
n = 2k : 0

n = 2k + 1 π k+1/2
k+1

(2k)!2

k!416k
= π

2
, 3π

16
, 15π

128
, ...

,

(B.7)
FM,tot

Pe
= −π

∫ ∞

1

dρ
3

4

(
ρ−1 − ρ−3) c̄M (ρ)

= −2
∞∑

n=1

fn

∫ ∞

1

dρ
3

4

(
ρ−1 − ρ−3) c̄n(ρ), (B.8)

where we used results from Ref. [45] to calculate the fn in
(B.7). Advection always gives rise to an asymmetry where
c̄(ρ, θ) is an increasing function of θ; it follows that c̄1(ρ) < 0
and c̄M (ρ) < 0 and F̄M > 0 and F̄M,tot > 0. The coefficients
are decreasing and fall off as fn ∼ 2/n for large n. This
motivates to neglect all but the first n = 1 component.
For small Ū � 1, the Legendre coefficients will scale as
c̄n(ρ) ∼ Ūn and this becomes an excellent approximation;
for Ū � 1, this approximation becomes worse. Therefore,
Legendre decomposition is useful for Ū � 1.

Using the decomposition (B.1) and the orthogonality rela-
tions

∫ π

0

dθ sin θPn(cos θ)Pm(cos θ) = δnm
2

2n + 1
, (B.9)

the diffusion–advection equation (9e) becomes

2

2n + 1

[
1

ρ
∂2

ρ(ρc̄n) − n(n + 1)

ρ2
c̄n

]

= Ūu(ρ)
∑

m

(∫
dθ sin θP1PnPm

)

∂ρc̄m

− Ū
v(ρ)

ρ

∑

m

(∫
dθ sin θP 1

1 PnP 1
m

)

c̄m.

The integrals on the right-hand side can be evaluated in
closed form using Wigner 3-j symbols [46]:

∫
dθ sin θP1PnPm = 2

(
1 n m
0 0 0

)2

,

∫
dθ sin θP 1

1 PnP 1
m =

= −2

(
1 n m
0 0 0

) (
1 n m
1 0 −1

)

(2(m + 1)m)1/2 ,

which gives non-vanishing contributions only for m = n±1.
For these values, we find

2

(
1 n n − 1
0 0 0

)2

=
2n

(2n − 1)(2n + 1)

2

(
1 n n + 1
0 0 0

)2

=
2(n + 1)

(2n + 1)(2n + 3)
,

− 2

(
1 n n − 1
0 0 0

) (
1 n n − 1
1 0 −1

)

(2n(n − 1))1/2

= − 2n(n − 1)

(2n − 1)(2n + 1)
,

− 2

(
1 n n + 1
0 0 0

) (
1 n n + 1
1 0 −1

)

(2(n + 1)(n + 2))1/2 =

=
2(n + 1)(n + 2)

(2n + 1)(2n + 3)
.

Finally, we obtain the diffusion–advection equation in Leg-
endre representation Eq. (17).

C Diffusion–advection equation,
perturbation theory for Ū � 1

For small fluid velocities, Ū � 1, we can expand about the
isotropic undisturbed diffusion solution at Ū = 0, which is
given by

c̄
(0)
0 (ρ) =

1

ρ
, c̄(0)n (ρ) = 0 for n > 0 (C.1)

in Legendre representation. A first approach is a naive per-
turbation series Ansatz (27)

c̄n(ρ) =

∞∑

m=0

Ūmc(m)
n (ρ) (C.2)

for each Legendre coefficient.
It turns out that this will work only in the “inner region”

ρ < 1/Ū of a solution, because in the “outer region”
ρ � 1/Ū , the convection term can no longer be treated per-
turbatively. In Ref. [34], a systematic expansion in inner and
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outer region and a matching procedure were performed for
the constant concentration boundary condition (B), which
we will adapt also to the constant flux boundary conditions
(A) in this Appendix.

C.1 Naive perturbation theory

We are most interested in the n = 1 Legendre coeffi-
cient c̄1(ρ), which will give access to both direct and total
Marangoni forces at small Ū because the Legendre coeffi-
cients will scale as c̄n(ρ) ∼ Ūn and the Legendre series (B.4)
and (B.8) for the Marangoni forces can be terminated after
n = 1 if we are interested in the linear response for Ū � 1.
Because of the boundary conditions (A) ∂ρc̄n>0(1) = 0 or
(B) c̄n>0(1) = 0, all n > 0 modes are “generated” in Eq.
(17) from lower-order terms c̄n−1 on the right-hand sides:

1

ρ
∂2

ρ(ρc̄0) = Ū

(

u(ρ)
1

3
∂ρc̄1 − v(ρ)

ρ

2

3
c̄1

)

,

[
1

ρ
∂2

ρ(ρc̄1) − 2

ρ2
c̄1

]

= Ūu(ρ)

(

∂ρc̄0 +
2

5
∂ρc̄2

)

+ Ū
v(ρ)

ρ

(

−6

5
c̄2

)

,

...

c̄0(∞) = c̄∞ , c̄n>0(∞) = 0,

(A) constant flux: ∂ρc̄0(1) = −1 , ∂ρc̄n>0(1) = 0,

(B) constant concentration: c̄0(1) = 1 , c̄n>0(1) = 0.
(C.3)

This hierarchy results in

c̄n(ρ) =
∞∑

m=n

Ūmc̄(m)
n (ρ), (C.4)

i.e., the leading orders are c̄n(ρ) ∝ Ūn.
In a naive perturbative approach, we start with

c̄
(0)
0 (ρ) =

1

ρ
, c̄(0)n = 0 n ≥ 1.

for both boundary conditions. We obtain in first order

[
1

ρ
∂2

ρ(ρc̄
(1)
1 ) − 2

ρ2
c̄
(1)
1

]

= u(ρ)
(
∂ρc̄

(0)
0

)
.

Solving for c̄
(1)
1 and regularizing using a finite system ρ < R

(i.e., the boundary conditions c̄0(R̄) = 0 and c̄n>0(R̄) = 0),
we find up to linear order in Ū

(A) constant flux:

c̄1(ρ) = −1

2
β̄

1

ρ2
+ Ū

(
1

8

1

ρ3
− 9

16

1

ρ2
+

3

4

1

ρ
− 1

2

)

+ O

(
1

R̄

)

,

(B) constant concentration:

c̄1(ρ) = c̄S,1
1

ρ2
+ Ū

(

−3

8

1

ρ2
+

1

8

1

ρ3
+

3

4

1

ρ
− 1

2

)

+ O

(
1

R̄

)

,

which fulfills the more general explicitly symmetry-breaking
flux boundary condition ∂ρc̄1(1) = β̄ (see Eq. (18)) with
β̄ = 0 as constant flux (A) or concentration boundary con-
dition c̄1(1) = c̄S,1 see Eq. (19)) with c̄S,1 = 0 as constant
concentration (B). These more general boundary conditions

just add a zeroth-order U0-term to the n = 1 component
c̄1(ρ).

We obtain for flux boundary conditions (A)

F̄M

πPe
≈ −c̄1(1) =

1

2
β̄ +

3

16
Ū , (C.5)

F̄M,tot

πPe
= −

∫ ∞

1

dρ
3

4

(
ρ−1 − ρ−3) c1(ρ)

=
3

32
β̄ − 1081

1280
Ū +

3

8
Ū ln R̄. (C.6)

This means that the direct Marangoni force F̄M is linear
with a finite linear coefficient for large R̄, whereas the total
Marangoni force F̄M,tot has a logarithmically diverging lin-
ear coefficient for large R̄ (stemming from the ρ-independent

contribution c
(1)
1 (ρ) = −1/2 + ...). The contribution from

explicit symmetry breaking (β̄) to the direct Marangoni
force is always weakened by the presence of Marangoni flows.

For concentration boundary conditions (B), we have

F̄M

πPe
≈ −c̄1(1) = −c̄S,1 + O(Ū3), (C.7)

F̄M,tot

πPe
= −

∫ ∞

1

dρ
3

4

(
ρ−1 − ρ−3) c1(ρ)

= −3

8
c̄S,1 − 563

320
Ū +

3

4
Ū ln R̄. (C.8)

This means that the direct Marangoni force F̄M (see(13))
is only present for explicit symmetry breaking (c̄S,1 
= 0),
whereas the total Marangoni force F̄M,tot [see (15)] has a
logarithmically diverging linear coefficient for large R̄, which
is identical to the constant flux case. The contribution from
explicit symmetry breaking (c̄S,1) to the direct Marangoni
force is always weakened by the presence of Marangoni flows.

C.2 Matching procedure

In order to go beyond naive perturbation theory for the
constant flux boundary condition (A) in the fluid velocity
window 1/R < Ū � 1, we must adapt the matching proce-
dure that was developed for constant-c boundary conditions
(B) in Ref. [34]. This matching procedure employs both the
real space representation and a Legendre decomposition. We
start from the diffusion–advection equation (9e) (neglecting
v̄M in the decoupled limit) in the original angular represen-
tation but in dimensionless form for c̄ = c̄(ρ, θ) or c̄ = c̄(ρ, η)
(η ≡ cos θ). 2

A perturbation expansion

c̄(ρ, η) =
∞∑

n=0

fn(Ū)c̄(n)(ρ, η),

lim
Ū→0

fn+1

fn
= 0 and f0(Ū) = 1 (C.9)

with constant flux boundary conditions

∂ρc̄(0)(1, η) = −1 + β̄η , ∂ρc̄(n≥1)(0, η) = 0

(C.10)

2 Note that in Ref. [34], the angle θ is defined in the oppo-
site sense such that the flow toward the sphere is in negative
θ-direction. This corresponds to η → −η.
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is used in the “inner region” ρ < 1/Ū . In the “outer region”
ρ � 1/Ū , the convection term can no longer be treated per-
turbatively, regardless how small Ū is [34]. Here, we rescale
σ ≡ ρŪ and C̄(σ, η) = c̄(σ/Ū, η) to obtain an equation

∇2
σC̄ = ηu

( σ

Ū

)
∂σC̄ − (1 − η2)

v
(

σ
Ū

)

σ
∂ηC̄

(C.11)

and use an expansion

C̄(σ, η) =

∞∑

n=0

Fn(Ū)C̄(n)(σ, η) , lim
Ū→0

Fn+1

Fn
= 0

(C.12)

with outer boundary conditions

C̄(n)(∞, η) = 0. (C.13)

Both expansions have to match at a large but finite ρ, such
that

c̄(ρ → ∞, η) = c̄(σ/Ū → ∞, η) = C̄(σ → 0, η)

(C.14)

in all orders in Ū and as a function of η or in all Legendre
coefficients.

Plugging the expansions into the inner and outer equa-
tions (9e) and (C.11), respectively, and isolating the Ū0-

terms, the functions c̄(0)(ρ, η) and C̄(0)(σ, η) have to fulfill

∇̄2
c̄(0) = 0,

∇2
σC̄(0) = −η∂σC̄(0) − (1 − η2)

1

σ
∂ηC̄(0)

and constant flux boundary conditions, resulting in

c̄(0)(ρ, η) = B0 +
1

ρ
+ β̄ρP1(η)

+

∞∑

k=1

Bk(ρ−k−1 +
k + 1

k
ρk)Pk(η)

and (unchanged from the constant concentration case [34])

C̄(0)(σ, η) = e−ση/2
(π

σ

)1/2
∞∑

k=0

CkKk+1/2(σ/2)Pk(η)

with the modified Bessel functions

Kk+1/2

(σ

2

)
=

(π

σ

)1/2

e−σ/2
k∑

m=0

(k + m)!

(k − m)!m!σm
.

Matching the zeroth-order contributions according to (C.14)
means

c̄(0)(σ/Ū, η) = B0 +
Ū

σ
+ β̄

σ

Ū
P1(η)

+

∞∑

k=1

Bk
k + 1

k

σk

Ūk
Pk(η)

has to match

F0(Ū)C̄(0)(σ, η) = F0(Ū)
π

σ

[
1 +

σ

2
(−η − 1) + ...

]

×
∞∑

k=0

Ck
(2k)!

k!σk
Pk(η)

for small σ and Ū → 0 for all Legendre coefficients k. This
yields

F0(Ū) = Ū , C0 =
1

π
, B0 = −Ū/2 → 0 , B1 = −β̄/2

Bk≥2 = 0 , Ck≥1 = 0.

B0 = −Ū/2 gives an O(Ū)-contribution to c̄(0), which

should be attributed to the next order c̄(1). The final result
for the zeroth-order contributions is

c̄(0)(ρ, η) =
1

ρ
− β̄

2ρ2
η,

C̄(0)(σ, η) =
1

σ
exp

(ρ

2
(−η − 1)

)
,

which is unchanged from the constant c case [34] (apart from
the different θ-convention leading to η → −η).

Assuming f1(Ū) = Ū and F1(Ū) = Ū2, plugging the
expansions including the already calculated zeroth-order
contributions into the inner and outer equations (9e) and
(C.11), respectively, and isolating the Ū1-terms, we find that

the first-order contributions c̄(1)(ρ, η) and C̄(1)(σ, η) have to
fulfill the same equations as for the constant c case [34],

∇̄2
c̄(1) = u(ρ)P1(η)∂ρc̄(0) =

[

1 − 3

2

1

ρ
+

1

2

1

ρ3

]
η

ρ2
,

∇2
σC̄(1) = −η∂σC̄(1) − (1 − η2)

1

σ
∂ηC̄(1)

+
3

2

η

σ
∂σC̄(0) +

3

4

1 − η2

σ
∂ηC̄(0).

A particular solution for c̄(1) is

c̄(1)p = −
(

1

2
− 3

4ρ
− 1

8ρ3

)

η;

the full solution that fulfills the flux boundary condition
∂ρc̄(1)(0, η) = 0 is

c̄(1) = B0 +

[

(2B1 − 9

8
)ρ +

B1

ρ2
−

(
1

2
− 3

4ρ
− 1

8ρ3

)]

η

+
∞∑

k=2

Bk(r−k−1 +
k + 1

k
rk)Pk(η).

Now, we can determine all Bk by matching all contributions
up to O(Ū) according to (C.14),

c̄(0)(σ/Ū → ∞, η) + Ū c̄(1)(σ/Ū → ∞, η)

= Ū C̄(0)(σ → 0, η)

resulting in

B0 = −1/2 , B1 = −9/16 , Bk≥1 = 0.

B0 = −1/2 for c̄(1) is indeed equivalent to our above B0 =

−Ū/2 for c̄(0); now, this term is consistently attributed to

c̄(1). All in all, we have up to O(Ū)

c̄(0) + Ū c̄(1) =
1

ρ
− β̄

2ρ2
η
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+ Ū

[

−1

2
−

(
1

2
− 3

4ρ
+

9

16ρ2
− 1

8ρ3

)

η

]

.

(C.15)

We can use this result to calculate the first Legendre coeffi-
cient at the boundary −c̄1(ρ = 1), which gives

− c̄1(1) = −3

2

∫ 1

−1

dηη (c̄(0) + Ū c̄(1))
∣
∣
∣
ρ=1

=
β̄

2
+

3

16
Ū

(C.16)

in complete agreement with our above result (C.5) from
naive perturbation theory.

We continue with the next order C(1)(σ, η) of the outer
solution. Here, we obtain the same result as for the constant
concentration case [34],

C̄(1) = e−ση/2

[
(π

σ

)1/2
∞∑

k=0

C∗
kKk+1/2(σ/2)Pk(η)

+

2∑

i=0

R̃i(σ)Pi(η)

]

with functions R̃i(σ) = (−1)iRi(σ) with the functions Ri(σ)
from [34] (because of the different θ-convention leading to
η → −η).

In the variable σ ≡ ρŪ , in which the matching to
the outer solution is performed, the inner solution (C.15)
becomes

c̄(0) + Ū c̄(1) = Ū

[
1

σ
+

1

2
(−η − 1)

]

+ Ū2 1

σ

3

4
η + ...

(C.17)

All terms σ−m (m ≥ 1) of the inner solution from c̄(n≥2)

are of higher order and, thus, at least O(Ū3); only an addi-

tional constant term O(Ū2) from c̄(2) is possible. Therefore,
in order to match (C.17), all terms σ−m for m ≥ 2 of the

outer solution C̄(1) have to be zero and the σ−1-term has to
equal σ−1 3

4
η. We conclude that

C∗
k≥3 = 0,

C∗
2 = − 1

4π
(3 − ln γ) , C∗

1 = − 3

4π
(1 − ln γ),

C∗
0 =

1

2π
ln γ

(where ln γ = 0.577216 is the Euler constant), i.e., only C∗
0

is different from the constant concentration results of [34]
(C∗

1 has an additional minus sign because of η → −η). The
resulting outer solution

Ū C̄(0) + Ū2C̄(1) =

=
Ū

σ
exp

(σ

2
(−η − 1)

)
+ Ū2

(

− ln σ

2
+

(
1

2
− ln γ

4

))

− Ū2

(

− 3

4σ
ln γ − 3

16
(ln γ − 1)

)

η

≈ Ū

σ

[

1 − σ

2
+

σ2

6
−

(
σ

2
− σ2

4

)

η

]

+ Ū2

(

− ln σ

2
+

(
1

2
− ln γ

4

))

P0(η)

+ Ū2

(
3

4σ
ln γ − 3

16
(ln γ − 1)

)

P1(η) (C.18)

contains terms Ū2σ0P0(η) and Ū2 ln σP0(η), which suggests

that the second-order contribution c̄(2) to the inner solution
should also contain constant terms Ū2 and Ū2 ln Ū in order
to match the outer solution.

Now, we turn to this contribution c̄(2)(ρ, η). Plugging the
expansion (C.9) including the already calculated (C.15) up
to the first order into the inner equation (9e) and isolating
the Ū2-terms, we find

∇̄2
c̄(2) = u(ρ)P1(η)∂ρc̄(1) − v(ρ)

ρ
(1 − η2)∂η c̄(1).

Inserting the first-order part from (C.15) on the right-hand
side, we finally obtain

∇̄2
c̄(2) = Z0(ρ)P0(η) + Z2(ρ)P2(η) with

Z0(ρ) =
1

3ρ
− 1

2ρ2
+

23

96ρ4
+

1

16ρ5
− 9

32ρ6
+

1

12ρ7
,

Z2(ρ) = − 1

3ρ
+

7

4ρ2
− 9

4ρ3
+

175

96ρ4

− 5

16ρ5
− 9

32ρ6
+

5

48ρ7
.

A P1(η)-term is absent on the right hand side because c̄(1)

from (C.15) contains no P0(η)-component but is a pure
P1(η)-term. In order to obtain the first two Legendre com-

ponents k = 0, 1 of c̄(2), we thus have to solve

∂2
ρ c̄(2) +

2

ρ
c̄(2) = Z0(ρ)

and find

c̄(2) = B0 + L0(ρ) + ηB1

(

ρ +
1

2ρ2

)

+ P2(η) (...) + ...,

L0(ρ) =
1

240ρ5
− 3

128ρ4
+

1

48ρ3
+

23

192
ρ2

− 9

16ρ
+

527

1920
+

ρ

6
− 1

2
ln ρ.

Using ρ = σ/Ū and matching with Ū C̄(0) + Ū2C̄(1) from
(C.18) gives

B0 =

(
1

2
− ln γ

4

)

− 527

1920
, B1 = 1/4.

Up to the second order, we obtain from (C.15) and c̄(2) a
P1(η)-contribution

c̄1(ρ) = − β̄

2ρ2
− Ū

(
1

2
− 3

4ρ
+

9

16ρ2
− 1

8ρ3

)

+ Ū2 1

4

(

ρ +
1

2ρ2

)

+ O(Ū3).

We can directly obtain the value c̄1(1) of the first Legendre
coefficient at the surface as

−c̄1(ρ = 1) =
β̄

2
+

3

16
Ū − 3

4
Ū2 + O(Ū3). (C.19)

The leading O(Ū)-term agrees with the naive perturba-
tion expansion results (C.5). The matching procedure gives,
however, a non-vanishing second-order contribution O(Ū2),
which is absent in the naive perturbation expansion. The
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matching to the outer solution, which features a P1(η)-
contribution in second order, see (C.18), enforces this term.
Matching is required for R̄ � 1/Ū . For Ū � 1/R̄, the com-
pletely symmetric outer boundary condition c̄(ρ = R̄) = 0
suppresses this term and the naive perturbation expansion
for c̄1(ρ) only contains odd powers of Ū .

For constant concentration boundary conditions (B), we
can directly employ the results from Ref. [34] to obtain up
to the second order a P1(η)-contribution

c̄1(ρ) =
c̄S,1

ρ2
− Ū

(
1

2
− 3

4ρ
+

3

8ρ2
− 1

8ρ3

)

− Ū2

(
7

16ρ2
− 1

4
ρ +

1

4
− 3

8ρ
− 1

16ρ3

)

+ O(Ū3)

leading to

−c̄1(1) = −c̄S,1 + O(Ū3).

This agrees with the naive perturbation expansion result
(C.7).

There is, however, an important difference in evaluating
the ρ-integrals in Eq. (C.6) and (C.8) in order to calculate
the total Marangoni force as compared to the naive pertur-
bation theory. Also, these integrals have to be divided into
inner and outer region in the framework of the matching pro-
cedure, which essentially provides an upper cutoff R̄ ∼ 1/Ū
to the otherwise unchanged inner region. Therefore, contri-
bution ∝ Ū ln R̄ are to be replaced by corresponding contri-
butions ∝ −Ū ln Ū .
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