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Abstract
Merge & Reduce is a general algorithmic scheme in the theory of data structures. Its main purpose is to transform static data
structures—that support only queries—into dynamic data structures—that allow insertions of new elements—with as little
overhead as possible. This can be used to turn classic offline algorithms for summarizing and analyzing data into streaming
algorithms. We transfer these ideas to the setting of statistical data analysis in streaming environments. Our approach is
conceptually different from previous settings where Merge & Reduce has been employed. Instead of summarizing the data,
we combine the Merge & Reduce framework directly with statistical models. This enables performing computationally
demanding data analysis tasks on massive data sets. The computations are divided into small tractable batches whose size
is independent of the total number of observations n. The results are combined in a structured way at the cost of a bounded
O(log n) factor in their memory requirements. It is only necessary, though nontrivial, to choose an appropriate statistical
model and design merge and reduce operations on a casewise basis for the specific type of model. We illustrate our Merge &
Reduce schemes on simulated and real-world data employing (Bayesian) linear regression models, Gaussian mixture models
and generalized linear models.

Keywords Mergeable statistical models · Large data · Streaming · Distributed · Regression analysis

1 Introduction

In recent times, data sets with a massive number of observa-
tions have becomemore andmore present,making scalability
one of themain challenges ofmodern data analysis. Formany
statistical methods, these amounts of data lead to an enor-
mous consumption of resources. A prominent example is
linear regression, an important statistical tool in both fre-
quentist and Bayesian settings. On very large data sets with
n observations and d variables (n � d), carrying out regres-
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sion analysis becomes increasingly demanding concerning
running time and memory consumption making the analysis
practically tedious or even impossible. This is especially true
when the data do not fit into the fast internal memory but has
to be read over and over again from slow external memory
devices or databases, which blows up the wall-clock time,
i.e., the actual elapsed time, by orders of magnitude.

In this paper,we propose amethod calledMerge&Reduce
as a technique to address these scalability limitations in
regression analysis. Merge & Reduce is well known in com-
puter science and has mainly been used for transforming
static data structures to dynamic data structures with little
overhead [8]. This can be leveraged to design streaming algo-
rithms for a computational problem based on coresets. A
coreset is a significantly reduced data set which can be used
instead of the full data set; the same algorithm can run on the
coreset, and the result is approximately the same as on the
full data set [cf. 42]. However, for some statistical problems,
it is known that small coresets do not exist in the worst case.
This is true, e.g., for specific generalized linear models, see
the lower bounds in [37,39]. To overcome such situations, we
conceptionally change the scheme. Instead of reducing the
data, to approximate the full data set with respect to some
model, we propose to use the statistical models derived from
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small batches as concise summaries. Combining these sta-
tistical models via the Merge & Reduce framework, we can
again turn an offline algorithm into a data stream algorithm.

We develop our work in line with the recent overview
given by [51] who identified the areas ofData Science that lie
primarily in the domains of statistics and computer science. In
particular they highlight the importance of combining those
areas toward meaningful statistical models with quantified
uncertainty that can be obtained very efficiently froman algo-
rithmic point of view as well as concerning data storage and
access.

There are different computational models to deal with
massive data sets, e.g., streaming and distributed computing.
We focus on data streaming. A data stream algorithm is given
an input stream of items, like numerical values, points in Rd

or edges of a graph at a high rate. The algorithm is allowed to
make only one single pass over the data. As the items arrive
one by one, it maintains some sort of summary of the data
that is observed so far. This can be a subsample or a summary
statistic. At any time, the memory used by the algorithm is
restricted to be sublinear, usually at most polylogarithmic in
the number of items. For multivariate problems in R

d the
dependence on the dimension d is often restricted to a poly-
nomial of low degree [cf. 40].

Despite our focus on the streaming setting we stress
that the Merge & Reduce scheme can also be implemented
in distributed environments. Our method thus suits the
criteria—identified by [52]—that need to be satisfied when
dealing with Big Data. Specifically, the number of data items
that need to be accessed at a time is only a small sub-
set of the whole data set, particularly independent of the
total number of observations. The algorithms should work
on (possibly infinite) data streams. Moreover, the algorithms
should be amenable to distributed computing environments
like MapReduce [16].

1.1 Our contribution

As our main contribution we develop the first Merge &
Reduce scheme that works directly on statistical models. We
show how to design and implement this general scheme for
the special cases of (Bayesian) linear models, Gaussian mix-
ture models and generalized linear regression models. We
evaluate the resulting streaming algorithms on simulated as
well as real-world data sets. We hereby demonstrate that we
obtain stable regression models from large data streams. Our
Merge & Reduce schemes produce little overhead and are
applicable in distributed settings.

1.2 Related work

Merge & Reduce was first introduced by [8] as a general
method for extending static data structures to handle dynamic

insertions. More recently it has been adapted to the data
streaming setting, working on coresets in [2,27].

Nowadays, it is mainly employed in the design of efficient
streaming and distributed algorithms for the analysis of mas-
sively large data sets. Though often implicitly mentioned,
Merge & Reduce has become a standard technique in the
coreset literature. Coresets have been studied extensively for
nearly two decades as a data aggregation and reduction tool
to address scalability issues for several problems in Compu-
tational Statistics. Coresets were developed, e.g., for shape
fitting problems [1–4,23], clustering [5,21,22,35], classifica-
tion [26,28,44], �2-regression [14,18,19,33], �1-regression
[10,13,46], �p-regression [15,54], M-estimators [11,12] and
generalized linear models [31,37,39,44,50]. See [42] for a
recent and extensive survey and [38] for a technical intro-
duction to coresets.

Merging and reducing techniques, similar to Merge &
Reduce, were employed in the area of physical design for
relational databases [9].

A one-pass streaming algorithm for Bayesian regression
in the n � d casewas proposed by [6]. Similar to ourmethod
it reads the data blockwise and runs a number of steps via
a Markov chain Monte Carlo (MCMC) sampler. When the
next block is read, the algorithm keeps or replaces some of
the samples. The selection criterion is based on weights that
monitor the importance of the data. In our previouswork [24],
we developed a one-pass streaming algorithm for Bayesian
regression via sketching techniques [cf. 53] based on random
projections. The sketching data structure was a linear map,
which makes it easy for data to be dynamically inserted or
modified. New directions in (Bayesian) data analysis in the
context of massive data sets are surveyed in [52].

More recently, [32] studied composable models for
Bayesian analysis of streaming data. The authors address the
asynchrony of sampling frequencies in practical streaming
and distributed settings and thus have a different scope. How-
ever, they propose composition procedures of their Bayesian
models similar to the merging procedures that we develop
here in the Merge & Reduce framework.

The statistical focus in this manuscript lies on regres-
sion models. There is plenty of literature on coresets for
all kinds of computational problems (see [42]) that admit
Merge & Reduce schemes. This does not necessarily extend
to corresponding statistical models. But since we find com-
mon design patterns like tree structures [45], hierarchical
modeling [41] and challenges as accumulation and storage
[47], streaming and distributed computation [49,52] in the
literature, we believe that the statistical models tractable in
Merge&Reduce can inprinciple be extended to classification
[41,45], clustering [49] and topic modeling [7] in Big Text
data mining [47]. We cannot cover this plethora of models
here but point the interested researcher to the casewise design
of appropriate Merge & Reduce schemes.
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1.3 Preliminaries and notation

Most symbols and notations are described in the text close
to their first use, but we give a centralized overview here for
completeness. For any real values a ∝ b indicates that a
is proportional to b, i.e., there exists a constant c such that
a = cb. For any real-valued vector or matrix X , we denote
its transpose by X ′. Throughout the document n denotes the
number of data points or observations, possibly with sub-
script nb indicating the number of points in a block of data. d
denotes the dimension of data points or the dimension of the
regression parameter vector β ∈ R

d , and β̂ ∈ R
d denotes the

vector of estimates. In the context of regression X ∈ R
n×d

denotes the matrix of data points or independent variables,
and Y ∈ R

n denotes the target vector of outcomes. Real-
valued functions like exp(·) (similarly ln(·)) naturally extend
to vectors entrywise

exp(Y ) = (exp(Y1), . . . , exp(Yn))
′ . (1)

Moreover, μ or x̄ denote means, and x̃ denotes medi-
ans. The linear regression error is denoted ε and its standard
deviation is σε, while σ j , j ∈ {1, . . . , d} denote standard
deviations, and s j denote standard errors of the regression
estimators. For random variables Y ∼ D denotes that Y
follows distribution D. By N (μ, σ 2) we denote the (uni-
variate) normal distribution with mean μ ∈ R and variance
σ 2 ∈ R

>0 and by N (ν,�) the multivariate normal distri-
bution with mean ν ∈ R

d and positive definite covariance
matrix � ∈ R

d×d . Finally e2m denotes the squared Euclidean
error of the regression coefficients, see Eq. 21, and f mse
denotes a factor for correcting standard errors, see Eq. 22.

2 Merge & Reduce

2.1 The principle

TheMerge&Reduce principle is a versatile classic technique
in theoretical computer science. It allows us to perform com-
putations on blocks of tractable size one after another and
combine their results in a structured and efficient way, when-
ever the input data are too large to be processed as a whole.
One usually starts with a sufficiently small block size nb that
fits into the main memory of the machine. The blow-up in
the total memory requirements remains bounded by a factor
of O(log n).

On this basis, we develop Merge & Reduce for statisti-
cal data analysis. We iteratively load as many observations
into the memory as we can afford. On each of these blocks,
we apply a classical algorithm to obtain, for instance, the
parameters of a statistical model, some (sufficient) statistics
or a summary of the presented data; in short, amodel. Models

are merged according to certain rules, eventually resulting in
a final model that combines the information from all subsets.
Merge &Reduce leads to stable results where every observa-
tion enters the final model with equal weight, thus ensuring
that the order of the data blocks does not bias the outcome
toward single observations.

In order to design a streaming algorithm for a specific
statistical analysis task, we need to choose an appropriate
model as a summary statistic for each block of data. The two
main ingredients thatwe need to implement for this particular
choice of a model are called merge and reduce.

1. Let M1, M2 be the models obtained from the analysis of
data blocks B1, B2, then the output ofmerge(M1, M2) is
a model M for the union B1∪B2 of the input data blocks.

2. Let M be a model for data block B that has become too
large |M | ≥ 2T for some threshold T (e.g., by repeated
merge operations), then reduce(M) computes a model
M ′ of size |M ′| ≤ T for the same block B.

It is not immediately clear and certainly not a trivial
question how to summarize the statistical analysis and how
to implement the merge and reduce functions on statisti-
cal models. The answer heavily depends on the statistical
method employed and on the representation chosen to store
the model. To the best of our knowledge, Merge & Reduce
has not been applied directly to statistical models yet. Here,
we present this novel, general concept and demonstrate it on
regression models. We will discuss how to design the merge
and reduce functions for linear regression in the frequentist
as well as in the Bayesian setting. We will also deal with
generalized linear models [36], in particular with an applica-
tion to Poisson regression in Sect. 2.2. Before we get to these
details we first describe how the merge and reduce functions
interact in a structured way to perform the statistical analysis
task on the data block-by-block while maintaining a model
for the whole subset of data presented so far.

Algorithm1showspseudo-codeof the algorithmic scheme
behind the Merge & Reduce principle. The data structure
consists of L = O(log n/nb) = O(log n) buckets that store
one statistical model each. Initially they are all empty. One
bucket, theworking bucket B0 is dedicated to store the model
for the current bunch of data, while each of the other buckets
Bi stores onemodel on its corresponding level i ∈ {1, . . . , L}
of a binary tree structure formed by themerge operations (see
Fig. 1). The data structure works in the following way.

First we read one block of data of size nb. We perform the
statistical data analysis on this block only. The model that
summarizes the analysis is stored into B0. We begin to prop-
agate the model in the tree structure from bottom to top by
repeatedly executing merge and reduce operations on each
level. If B1 is empty, then we just copy the model from B0

to B1 and empty B0. Otherwise we have two models that
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Fig. 1 Illustration of the Merge
& Reduce principle. The data
are presented in form of a stream
and subdivided into Blocks 1
through 6 of equal size. Models
M1 to M11 are numbered in
order of their creation
throughout the execution.
Arrows between models indicate
the merge and reduce
operations. Sibling models are
deleted right after their parents’
creation. Thus only one model is
stored on each level, i.e., in
buckets B1 to B3, at a time. The
working bucket B0 acts on all
levels, eventually holding the
final model after postprocessing
at the end of the stream Data

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6

B1 M1 M2 M4 M5 M8 M9

B2 M3 M6 M10

B3 M7

B0
Final Model

M11

Algorithm 1:Maintains a statistical model of the input
data stream.
Input: A stream P = (p1, p2, . . . pn) of data points, pi ∈ R

d

Output: A summary statistic is maintained for the data stream
// initially, all L = O(log n) buckets are

empty
for l ∈ {0, . . . , L} do

Bl ← ∅
// main loop iterates through blocks of

size nb from the input stream
repeat

// process one block of data
Q ← read next nb observations, less if stream ends
B0 ← model(Q)

// propagate through levels of M&R-tree
l ← 1
while Bl �= ∅ do

B0 ← reduce(merge(B0, Bl ))
Bl ← ∅
l ← l + 1

// store model in lowest empty bucket
Bl ← B0
B0 ← ∅

until |Q| < nb
// postprocessing
for l ∈ {1, . . . , L} do

B0 ← reduce(merge(B0, Bl ))
delete Bl

return B0

are siblings in the tree, so we merge the two into B0 and
empty B1 and proceed with B2. Again, if it is empty, then
the model from B0 is stored in B2 and the propagation termi-
nates. Otherwisewe have two siblings that can bemerged and
propagated to the next higher level in the tree. In general, the
propagation stops as soon as the bucket on the current level
is empty. When this happens, the update of the data structure
has completed and we can move on to reading and analyzing

the next block of input data. This is repeated until the end
of the stream. Notice that except for the additional working
bucket, we need to store at most one bucket on each level at
a time since two siblings are merged immediately.

The attentive reader might ask how the reduce function
comes into play. Again, that depends on the type of statisti-
cal model. For instance if the statistic is just the mean of the
data and a merge operation calculates the combined mean as
the (weighted) sum of the two individual means, then there
is nothing to reduce, i.e., reduce is just the Id function, since
the result has the same space complexity as each of the argu-
ments. The situation would be different if, as an example, the
summary comprises a subsample of the data of constant size
C . Implementing the merge function simply as the union of
the subsamples would result in sets of size 2C on level 2, 4C
on level 3, generalizing to 2i−1C on level i . On the highest
level that would result in a total space complexity of �(nC),
which is intractable. Now we might introduce the reduce
operation which takes a subsample of size C of its argument
to ensure that complexities of themodels do not increase. The
effect is that after each merge operation that doubles the size
of a summary to 2C , the reduce operation reduces the model
again to size C . The total space complexity of the Merge &
Reduce structure remains bounded by O(C log n).

It is also important to note that every time two models are
merged and reduced, we can incur an error that can accumu-
late on the path from a leaf of raw data to the root comprising
the final model. By merging only siblings in the stream-
ing phase we establish a binary tree structure with bounded
height h = O(log n). This ensures that in their trade-off,
memoryoverhead and cumulated errorsboth remainbounded
by at most logarithmic factors.

When the streamof input data has come to an end,we need
to go through the whole list of buckets once more and merge
(and reduce, if necessary) them one-by-one into one model
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for the whole data set. We will refer to this as the postpro-
cessing. In the postprocessing phase the binary tree structure
is already established and its height is bounded such that
merging across all O(log n) levels can be applied arbitrarily.

Before running the Merge & Reduce scheme, it is neces-
sary to set the number of observations per block to a number
nb. In a streaming or Big Data setting, the total number of
observations n is typically not known beforehand. For that
reason, nb does not depend on n, but mainly on memory
limitations of the computing device or space requirements
of performing the analysis and similar considerations. The
total number of blocks and levels L , respectively, is then also
unknown beforehand. We thus start with only two buckets
B0, B1 and extend the list of buckets for the higher levels as
it becomes necessary.

In our implementations, every model summarizes the
respective regression analysis of a block or the union of
neighboring blocks. Additionally, all models contain meta-
information; specifically the number of observations the
model is based on. This number is nb for the models on level
1, except for the last block of data which may be smaller.
Whenever two models are merged, the resulting number is
just the sum of observations that the two siblings are based
upon. Merging two models that are not based on the same
number of observations may occur when the last block of
input data is involved or in the postprocessing phase. This
does not pose a problem provided appropriate weighting is
employed in the merge operation. We will also address this
issue in Sect. 2.2.
Example of Merge & Reduce execution Note that the prop-
agation of models through the O(log n) levels mimics the
behavior of a binary counter, as given in pseudocode in
Algorithm 1. However, it might be more accessible to think
of the calculations being done in a postorder traversal of
a binary tree structure. Figure 1 illustrates the principle
of Merge & Reduce from this perspective. Here, all mod-
els are numbered in the order in which they are generated
in a sequential data streaming application. First, Block 1
comprising nb observations is read from the stream into
the memory and the model M1 is derived from its statis-
tical analysis. The same process yields model M2 derived
from the data contained in Block 2 of the stream. Since
M1, M2 are siblings in the tree, they are combined into
M3 := reduce(merge(M1, M2)). At this point M1, M2 are
not necessary anymore and deleted frommemory. Themerge
and reduce operations are indicated by the arrows in Fig. 1.
Now we proceed with M4 derived from Block 3 and M5

derived from Block 4. Since M4, M5 are siblings in the tree,
they are combined intoM6 := reduce(merge(M4, M5)) and
deleted. Again we have siblings M3, M6 on the same level
which are combined toM7 := reduce(merge(M3, M6)) and
deleted thereafter. The procedure is continued in the same
manner until the stream has reached its end. Say this is

the case after processing Block 6. Note that at this point
M8, M9 have been merged and reduced into M10 and have
been deleted. The current state of the data structure is that
it holds only Models M10 in bucket B2, i.e., on level 2, and
M7 in bucket B3, i.e., on level 3, respectively. The buckets
B0 and B1 are empty at this point, and there are no further
levels above level 3. Now the postprocessing step implicitly
merges M11 = reduce(merge(M7, M10)) via the working
bucket B0.

The construction can also be computed in a parallel or
distributed setting. One possible scheme to achieve this is
to compute all models on the same level in parallel, starting
with models M1, M2 M4, M5, M8, M9 on level 1 and pro-
ceeding with parallel computation of M3, M6, M10 on level
2 followed by M7 on level 3 and finally deriving the final
model M11 from M7, M10. Our work thus meets the criteria
that were proposed by [52] for the large n case in stream-
ing as well as distributed computational environments. We
focus on the sequential streaming setting in the remainder
for brevity of presentation.

2.2 Combination of Merge & Reduce with regression
analysis

We will now give a short introduction to different regression
methods that we are going to cover in this article. There-
after we are going to derive three different Merge & Reduce
schemes to implement the algorithmic approach that we have
introduced in previous Sect. 2.1.

Following [25], a linear regression model is given by

Y = Xβ + ε, (2)

where Y ∈ R
n is the dependent variable and X ∈ R

n×d is the
design matrix, which contains the observations of the inde-
pendent variables x1, . . . , xd . The first column of the design
matrix often consists of 1-entries to model an intercept. X
may also contain transformations of or interactions between
variables. The error term ε is assumed to be unobservable and
nonsystematic, usually with the additional assumption of a
normal distribution N (0, σ 2

ε ). The last component, β ∈ R
d ,

is an unknown vector whose true value we wish to estimate.
In a frequentist setting, β is a fixed but unknown quan-

tity. Equation 2 can be solved for β using the ordinary least
squares estimator

β̂ = (X ′X)−1X ′Y , (3)

in the sense that it minimizes the sum of squared residual
errors, i.e., β̂ = argminβ∈R ‖Xβ − Y‖22.

In a Bayesian setting, β is assumed to be a random vec-
tor and thus to follow a distribution itself. In addition to the
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assumption of a Gaussian likelihood, incorporating a priori
knowledge into the model is possible by defining a prior
distribution of β, ppre(β). The likelihood models the infor-
mation given in the data, while the prior models knowledge
that may not be present in X or Y . We are interested in the
posterior distribution

ppost(β|X ,Y ) ∝ L(β|X ,Y ) · ppre(β). (4)

From Eq. 4, we can immediately see that the posterior
distribution ppost(β|X ,Y ) is a compromise between the like-
lihood L(β|X ,Y ), given the observed data, and the prior
distribution ppre(β). For a small class of models, it is pos-
sible to calculate the posterior distribution analytically. In
most cases, though, it is necessary to employ approxima-
tion techniques. We will utilize Markov chain Monte Carlo
(MCMC) methods in this manuscript, more specifically a
modern MCMC algorithm called Hamiltonian Monte Carlo
[30].

Generalized linear models (GLMs) are a class of models
extending strictly linear models [36]. They offer more flexi-
bility by employing a nonlinear link function g, which serves
as connection between the expected value E(Y ) of Y and the
linear predictor Xβ. This results in

g(E(Y )) = Xβ. (5)

Common cases of GLMs are logistic regression, where
Y is a binary variable, and Poisson regression, where Y
is a count variable. Linear regression can also be seen as
a special case of a GLM, where the link function g is
the identity function. In the present paper, we concentrate
on Poisson regression. While other link functions can be
chosen, the so-called canonical link function is the natu-
ral logarithm, resulting in ln(E(Y )) = Xβ or, equivalently,
E(Y ) = exp(Xβ). Poisson regression can be carried out both
in a frequentist and a Bayesian setting.

2.2.1 Implementation in Merge & Reduce

Here we develop concrete approaches of our conceptually
novelMerge&Reduce scheme that acts directly on statistical
models. We will now define our statistical summaries and
the required operations for conducting the analyses within
theMerge & Reduce framework. When looking at the output
that results from the different statistical analyses, the main
difference is whether it is a frequentist or a Bayesian model.
A special case that allows analytical calculations is linear
regression with Gaussian errors. For this reason, we develop
three Merge & Reduce approaches.

Merge & Reduce approach 1 (general frequentist models):
The standard procedure for frequentist linear regression as
well as for GLMs return an estimate β̂, an estimated standard
error ŝ j for every component β̂ j , j = 1, . . . , d as well as a
test statistic and a p-value derived from the estimate and its
standard error. To summarize these values, it is sufficient to
include the estimate and the standard error in the model. Our
summary statistic is thus a vector

S = (β̂1, . . . , β̂d , ŝ1, . . . , ŝd), (6)

together with the number of observations ni it is based on.
Two blocks are merged by calculating the weighted means of
their respective vectors S (see below for a formal introduc-
tion). Merge & Reduce (M&R) approach 1 thus leads to an
unbiased estimation of β provided β̂ is an unbiased estimate
of β in every block. This is the case provided the regres-
sion model employed is suitable for all observations and an
appropriate estimate is available, which is the case for a wide
variety of regression models.

The estimated standard error ŝ usually depends on the
data, e.g., for a linear regression model,

ŝ j =
√

σ 2
ε e

′
j (X

′X)−1e j , j = 1, . . . , d, (7)

where e j ∈ R
d is the j th unit vector. Assuming that the

values of X are realizations from a random distribution with
expected value −∞ < μX < ∞ and variance σ 2

X < ∞ for
all blocks, the standard errors in the reduced data sets are
inflated compared to those on the full data set by a factor
of

√�n/nb�. This can easily be corrected for. If there are
systematic differences between the values of X for different
blocks, the standard error will be underestimated even after
correction.
Merge & Reduce approach 2 (general Bayesian models):
In the Bayesian case, the result is a distribution, which is
approximated by an MCMC sample. The summary values
should be chosen such that they characterize the distribu-
tion in a concise way. In this case, more than one reasonable
and useful solution is possible. In the present manuscript,
we utilize the mean x̄ j and median x̃.5, the upper and lower
quartiles x̃.25, x̃.75, the 2.5% and 97.5% quantiles x̃.025, x̃.975

and the standard deviations σ j of the MCMC sample for
every component β j as summary values. This choice gives a
good indication of the location and variation of the posterior
distribution. However, for some purposes, other summary
valuesmay offer a better representation of the results. Careful
consideration of the requirements of one’s analysis is recom-
mended. Our summary statistic again is a vector

S = (x̄1, . . . , x̄d , x̃ p,1, . . . , x̃ p,d , σ1, . . . , σd), (8)
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where p ∈ {.025, .25, .5, .75, .975} iterates through the
quantiles detailed above. We also store the number of obser-
vations ni which S is based on.
Merge operation (common to Merge & Reduce approaches
1,2): For both M&R approaches 1 and 2, we propose con-
ducting themerge step by taking theweightedmean for every
summary value considered. To this end, let S1 and S2 be the
vectors of summary values for models that wewant tomerge.
The weights are chosen proportional to the number of obser-
vations n1 and n2 the models are based on, respectively. The
new, merged vector of summary values Sm and observation
number nm is then obtained by

Sm = w1S1 + w2S2, (9)

nm = n1 + n2, (10)

where the weights w1 and w2 are given by w1 = n1
nm

and
w2 = n2

nm
.

Merge & Reduce approach 3 (linear regression with Gaus-
sian error): In the case of frequentist linear regression where
we can assume normality for the distribution of the estima-
tors, building products of distributions offers another way of
merging and reducing the models. Let f1, f2 be the density
functions of N (μ1, �1) and N (μ2, �2), respectively. Their
pointwise product fP (x) = f1(x) · f2(x) is proportional to
a normal distribution N (μP , �P ) where the parameters are
obtained by

�−1
P = �−1

1 + �−1
2 (11)

�−1
P μP = �−1

1 μ1 + �−1
2 μ2. (12)

The parameters are implicitly weighted via the inverse
covariance matrices.

Instead of directly calculating the means and covariance
matrices, we proposemaintaining X ′

i Xi , X ′
i Yi , Y

′
i Yi and ni as

summary statistics for each block i . These quantities enable
us to recover the ordinary least squares estimator (Eq. 3)
and its inverse covariance matrix �−1 = 1

σ 2
ε
X ′
i Xi [cf. 25].

Note that the factor σ 2
ε is not explicitly stored until the end

of computations. It can be estimated blockwise as well, but
since it is present in each term of Eq. 12, it can be factored
out and ignored until the last step; see below for details.
Merge operation (Merge & Reduce approach 3):

For M&R approach 3, we propose the following merge
operation. Given data [Xm,Ym], each divided into two
blocks, Xm = [X ′

1, X
′
2]′ and Ym = [Y ′

1,Y
′
2]′, we can merge

their summaries via

X ′
mXm = X ′

1X1 + X ′
2X2, (13)

Y ′
mYm = Y ′

1Y1 + Y ′
2Y2, (14)

Y ′
mXm = Y ′

1X1 + Y ′
2X2, (15)

nm = n1 + n2. (16)

From this, we can reconstruct N (μP , �P ) for the com-
bined block. The maximum likelihood estimate for the mean
[cf. 25] is obtained via the ordinary least squares estimator

μP = β̂m = (X ′
mXm)−1X ′

mYm

= (X ′
mXm)−1(Y ′

mXm)′ (17)

(cf. Eq. 3). The maximum likelihood estimate of the model
variance [cf. 25] is given by

σ̂ 2
ε = ‖Xm β̂ − Ym‖22

nm − d
, (18)

where

‖Xm β̂ − Ym‖22
= β̂ ′

mX ′
mXm β̂m + Y ′

mYm − 2Y ′
mXm β̂m . (19)

Hence, the maximum likelihood estimate of the covariance
matrix can be computed from the summary as

�P = σ̂ 2
ε (X ′

mXm)−1. (20)

Reduce operation (common to all): The above merge oper-
ations ensure by construction that the memory requirement
of merged models does not increase. The reduce step is thus
inherently included in the merge step and can be interpreted
as Id function as discussed previously.

3 Simulation study

Here we assess the performance of the newly developed
methods empirically. To that end, we conduct a series of sim-
ulations with the aim of comparing the results of the original
regression model and the summary values obtained employ-
ing Merge & Reduce for both frequentist and Bayesian
regression. The data sets were created and analyzed using
R, versions 3.1.2, 3.4.1 and 3.4.4 [43]. In addition to that,
the R-package rstan, version 2.14.1 [48], was employed
for the analysis of all Bayesian regression models. We
are developing an R package that provides functionality to
apply Merge & Reduce on regression models. This package
mrregression will be available on CRAN.

3.1 Data generation

The main parameters used to generate data sets for the sim-
ulation study are the number of observations n, the number
of variables d and the standard deviation of the error term
σε. Different numbers of observations per block nb are also
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chosen. The size of nb does not influence the data generation,
but may have an influence on the outcome. An overview of
the range of values is given in Table 1. The setup of the sim-
ulation study and the parameter values are chosen similar to
the simulation study in [24]. Simulated data sets where the
number of observations is less than the number of observa-
tions per block, n < nb, are excluded from the simulation
study. Please note that we include very small block sizes of
nb = 400 and nb = 1000 to examine the limitations of the
method that will be discussed in detail later on.

In addition to these parameters,we consider three different
scenarios. In the first scenario, all assumptions of a linear
regression model are met. A varying fraction of the variables
has an influence (large or small) on the dependent variable
while the remainder is not important for the explanation of
Y . The aim in this scenario is to obtain a general overview
of the roles the parameters play, especially the effect of nb.
This situation is covered in Sect. 3.2.

In the second scenario, each data set consists of two
mixtures, i.e. it has two components where n1 simulated
observations stem from the first mixture component and n2
observations from the other (n1 ≥ n2, n1 + n2 = n). In
our simulation study, we choose n2

n = 0.05. For that reason,
observations belonging to the secondmixture component can
be considered as outliers. These outliers may differ with
regard to X as well as Y . However, both the main body
of observations and the outliers follow the same regression
model. For the second scenario, the two components are put
together in four different ways to simulate different orders—
invariable to the data analyst—inwhich the data are presented
to the Merge & Reduce algorithm:

first outliers first, followed by main body of
observations.

last main body first, followed by outliers;
middle first half of observations from main body,

followed by outliers, followed by second
half of observations from main body;

random random arrangement;

We pursue two aims with the analysis of this scenario.
As mentioned in Sect. 2.1, the order of blocks should not
influence the outcome of the Merge & Reduce result. In our
simulation study,wedonot change theorder of the blocks, but
the order of the observations. Some differences can therefore
be expected, but the results should be comparable for the
first three orders. Additionally, we include both models with
intercept andwithout an intercept to investigate the difference
between linear and affine functions.

This setup also constitutes amild adversarial example. It is
mild, because the underlying true β remains the same for the
whole data set, but it is adversarial, because we both X and
Y now stem from two different data distributions, leading to
additional variation in the data. If the outlying observations

are ordered randomly, both data distributions are expected to
be present in each block. For the other three orders, one or
two structural breaks are present in the data set with regard to
X and Y . We expect these cases to have an inflating effect on
the estimated standard errors for Merge & Reduce, because
the variation in most blocks is less than on the whole data
set by construction. The results from the second scenario are
discussed in Sect. 3.3.

In the third scenario, we generate data sets with count data
as dependent variable, i.e., Yi ∈ N0, i = 1, . . . , n. The true
β is simulated as before. For each observation, the expected
value is computed according to exp (Xβ). Finally, the val-
ues of yi are obtained by drawing n random numbers from
Poisson distributions with the respective expected values. On
these data sets, Poisson regression is employed and all the
assumptions are met. The parameter σε is not applicable in
this scenario as the variance is equal to the expected value by
definition. Section 3.4 presents the outcomes found in this
scenario.

3.2 Linear regression

In this section, we analyze simulated data sets where all
assumptions of a linear model are fulfilled. The aim is to
gain insight into the roles of the parameters n, d, σε, and nb
(see Table 1). In the frequentist case, linear models with Y
as dependent variable and X1, . . . , Xd as independent vari-
ables (possibly including an intercept term) are calculated
for the whole data sets using function lm. The same data sets
are also analyzed using M&R approaches 1 and 3 (confer
Sect. 2.2), again employing lm to obtain the linear model
in each block. In the Bayesian case, we employ a standard
linear model with parameters β1, . . . , βd and σε.
M&R approach 1

In the following, we will evaluate M&R approach 1 using
two criteria for all models m in our simulation study (m =
1, . . . , M). The first criterion e2m is the squared Euclidean
distance between the Gauß–Markov estimate β̂m

orig and the

vector β̂m
MR , obtained from the Merge & Reduce algorithm,

e2m = ‖β̂m
MR − β̂m

orig‖22,m = 1, . . . , M . (21)

Values of e2m close to zero are desirable as this means
Merge and Reduce is able to recover the original model
closely. The second criterion is the corrected standard error
factor

f mse =
⎛
⎝ 1

d

d∑
j=1

smj,MR

smj,orig

⎞
⎠

/√⌈
n

nb

⌉
, (22)
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Table 1 Main parameters in the
simulation study

Parameter Role Range

n Number of observations 20,000–1,000,000

d Number of variables 5–200

σε Standard deviation of error term 0.1–10

nb Observations per block 400–25,000

Fig. 2 Boxplots of squared Euclidean distances between M&R
approach 1 and original model observed in the simulation study, across
all values of n, d, σε , and nb. a Contains all values, b excludes 180 out
of 952 values that lie further than 1.5 times the interquartile range away
from the upper quantile

where smj,orig and smj,MR are the estimated standard errors
for variable j, ( j = 1, . . . , d) according to the maximum
likelihood estimate and M&R approach 1. Here, a value of 1
indicates that the estimated standard errors are the same for all
variables, while values f mse > 1 indicate an inflated estimated
standard error for M&R approach 1. Using the mean over all
smj,MR
smj,orig

in Eq. 22may seem surprising. In our simulation study,

these ratios are almost identical for all variables of a model
m so that using the mean or median or any other measure of
location would return similar results.

Figure 2 showsboxplots for all values of e2m weobserved in
the simulation study. Subfigure (a) contains every value and
is visually dominated by the outliers. Only 3 out of 952 val-
ues exhibit noticeably high levels of e2m with values between
about 2 and 4.5. The majority of values of e2m seems to be
close to 0 with some outliers between 0 and 1. Subfigure (b)
shows only the box of the same boxplot, with all outliers
removed. Here, it becomes clear that 75% of the observed
values of e2m lie between 0 and 0.00054. In total, 180 val-
ues above 0.00127 are considered outliers as they are farther
than 1.5 times the interquartile range away from the upper
quartile.

For the most part, M&R approach 1 is able to recover the
original linear models well. However, there are cases with
unacceptably high values of e2m which will lead to deviations
from the original model. Further analysis of the results indi-
cates that this is driven by two mechanisms. First, the ratio
between the number of observations per block nb and the

Fig. 3 Scatterplot of the effect of observations per block per variable
nb
d on squared Euclidean distances e2m , (m = 1, . . . , M) for M&R
approach 1. x- and y-axes are on a logarithmic scale, and observa-
tions are drawn as partially transparent points: gray points mean single
observations, black points multiple observations at roughly the same
location. Vertical dashed line is at 0.1

number of variables d plays a critical role. In our simulation
study, for some data sets this ratio is only two. As Fig. 3
depicts, for a majority of the cases, this leads to values of
e2m < 0.1, but all cases of exceptionally high values of e2m
are found when the ratio of nb and d is 2. As nb

d increases,
the portion of high values of e2m tends to decrease, and when
nb
d > 25, all values of e2m are less than 0.1.
Second, e2m is dominated by one component of the squared

Euclidean distance, the intercept. Especially for the simu-
lated data sets which lead to high e2m values, the intercept
accounts for at least 70% of the distance in all cases and for
90% in most cases.

The corrected standard error factor f mse also shows a
dependency on nb

d . As Fig. 4a shows, a great majority of
the values of f mse is close to 1, which ensures that the original
model and the Merge & Reduce model return similar results.
There are, however, some data sets where the estimated stan-
dard errors for the Merge & Reduce result are inflated by
more than 40% compared to the original model.

Figure 4b breaks the corrected standard error factor f mse
down according to the ratio of observations per block and
variables in the data set. There is a clear connection between
nb
d and f mse . For low values of nb

d , we can observe the highest
values of f mse . As

nb
d increases, the corrected standard error

factor decreases. If every block contains at least 25 observa-
tions per variable, the estimated standard errors were inflated
by less than 2.5% in our simulation study.
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Fig. 4 a A kernel density estimate of corrected standard error factors
f mse for M&R approach 1 across all settings. bA scatterplot of the effect
of observations per block per variable nb

d on corrected standard error
factors f mse across all other settings for M&R approach 1. y-axis is on
a logarithmic scale, and observations are drawn as partially transpar-
ent points: gray points mean single observations, black points multiple
observations at roughly the same location. The solid vertical line indi-
cates values of f mse = 1, and the two dotted lines stand for relative
deviations of 2.5%, i.e. f mse = 0.975 and f mse = 1.025

Some simulated data sets exhibit values of f mse less than 1.
These are cases, where n

nb
does not result in an integer num-

ber. In Eq. 22, rounding up of that fraction occurs, which
seems to result in an overcorrection. However, this leads to
an underestimation of the estimated standard error of at most
2%, which still approximates the result of the original linear
model well. There are two exceptions with an underestima-
tion of around 3.5%, visible in the upper left corner. These
are two simulated data sets with n = 20,000 and d = 5
where the number of observations per block nb = 15,000 is
very close to n.

In conclusion, M&R approach 1 recovers both estimates
and standard errors of the original linear model well, pro-
vided, the ratio of observations per block and variables, nb

d ,
is large enough. Based on the results of our simulation study,
we recommend nb

d > 25. [29] recommends at least 10 or
20 observations per variable for linear models to be consid-
ered reliable.Merge&Reduce seems to increase the required
number of observations per variable, but in a very moderate
way. In addition, Eq. 22 seems to lead to a slight overcorrec-
tion and thus underestimation of the standard error when the
number of observations per block nb is close to the total num-
ber of observations n in the data set. In a Big Data setting,
both constraints do not pose a problem.
M&R approach 2

In the Bayesian case, we consider both measures of loca-
tion and measures of dispersion. Here, we evaluate all of the
summary values by calculating the squared Euclidean dis-
tance to the corresponding summary value resulting from
the original model. For measures of location, we employ the
values from the MCMC sample representing the posterior

Fig. 5 Scatterplot of the effect of observations per block per variable nb
d

on squared Euclidean distances e2m , (m = 1, . . . , M) between posterior
medians forM&R approach 2. x- and y-axes are drawn on a logarithmic
scale, and observations are drawn as partially transparent points: gray
points mean single observations, black points multiple observations at
roughly the same location. Vertical dashed line is at 0.1

Fig. 6 Scatterplot of the effect of observations per block per variable
nb
d on squared Euclidean distances between posterior lower quartiles for
M&R approach 2. Both x- and y-axis are on a logarithmic scale, and
observations are drawn as partially transparent points: gray points mean
single observations, and black points multiple observations at roughly
the same location. Vertical dashed line is at 0.1

distribution directly, similar to Eq. 21. For quantiles that rep-
resent measures of dispersion such as quartiles and p0.025
and p0.975, we introduce a correction,

x̃corrp, j = x̃ p, j − x̄ j√�n/nb� + x̄ j . (23)

The only exception to this is the posterior standard devia-
tion, which we correct using the factor

√�n/nb� as in Eq. 22.
Figure 5 shows a plot containing the squared Euclidean

distances between the posterior median based on M&R
approach 2 and the original Bayesian model for all simu-
lated data sets grouped according to the ratio nb

d . Similarly to
M&R approach 1, for a small number of simulation settings
we observe values of e2m of up to almost 4, but the majority of
squared distances is close to 0. The distances exhibit the same
pattern we observed in the frequentist case, i.e., the median
is well recovered by M&R approach 2 provided nb

d > 25.
Results for the posterior mean are almost identical.
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Fig. 7 Scatterplot of the effect of observations per block per variable
nb
d on squared Euclidean distances between posterior 97.5% quantiles
forM&R approach 2. Both x- and y-axis are on a logarithmic scale, and
observations are drawn as partially transparent points: gray points mean
single observations, and black points multiple observations at roughly
the same location. Vertical dashed line is at 0.1

Fig. 8 Boxplots of corrected standard error factor f mse based on the
posterior standard deviation. a Effect of block size nb on f mse , b effect
of the number of variables d on f mse . The two dotted lines stand for
relative deviations of 2.5%, i.e., f mse = 0.975 and f mse = 1.025

For x̃0.025, x̃0.25, x̃0.75, and x̃0.975, we employ the correc-
tion given in Eq. 23. This leads to a good recovery of the
quantiles provided the ratio of observations per block and
variables is high enough. Figures 6 and 7 show the squared
Euclidean distances between the originalmodel and the result
of M&R approach 2 for the posterior lower quartiles and
97.5% quantiles in conjunction with the number of observa-
tions per block per variable. Similar to the results observed
before, the distances grow as the ratio nb

d grows. For values
of nb

d > 25, in our simulation study all observed distances
are lower than 0.1, leading to results that are very close to
the original model.

The posterior standard deviation seems to depend on the
value of nb even after applying the correction factor. Figure
8 indicates that only for values of nb = 5000, all val-
ues of the corrected standard deviation fall into the interval
[0.975, 1.025]. Even for nb = 20,000 and nb = 25,000,
cases of undesirably highly inflated posterior standard devi-
ation occur. Contrary to results in the frequentist case, high
values of f mse can also be found for a low number of vari-
ables d and thus for high values of observations per block
per variable nb

d . Because of this, we would recommend not

employing the posterior standard deviation in a Bayesian
Merge & Reduce setting. Instead, using suitable posterior
quantiles is preferable.
M&R approach 3

M&R approach 3 works exceptionally well in the case
where all assumptions are met. Employing the same simu-
lated data sets as forM&Rapproach1,wefind that all squared
Euclidean distances e2m are 0 for m = 1, . . . , M . Both esti-
mators β̂MR and β̂orig thus exhibit the same values for all
variables, up to numerical precision of the machine. Simi-
larly, the standard error factor f mse lies in a range of [0.998, 1]
for all simulated data sets. The small differences are due to
employing the biased maximum likelihood estimator to esti-
mate the variance. The results indicate that M&R approach
3 is able to recover the estimated standard error of the linear
model perfectly.

3.3 Linear regression in the presence of mixtures

Following the analysis of the three differentM&Rapproaches
for standard linear models, we will now examine only M&R
approaches 1 and 3 in the context of mixture distributions.
The simulated data sets are made up of two components,
where the second component, the outliers, may show unusual
values in all of the variables. Still, the linear model used to
obtain the y-values is valid for both components.

The order of items in the simulated data set is varied to
simulate differently ordered data streams presented to the
Merge & Reduce algorithm. As explained in Sect. 3.1, the
order is usually invariable to the data analyst in a streaming
setting. The four different orders are from now on referred
to as position, where the values stand for the position of the
outlying observations:

first outliers first, followed by main body of
observations.

last main body first, followed by outliers;
middle first half of observations from main body,

followed by outliers, followed by second
half of observations from main body;

random random arrangement;

As in Sect. 3.2, M&R approaches 1 and 3, we will com-
pare the values of β̂ according to Merge & Reduce and the
original model using the squared Euclidean distance and the
estimated standard errors via the corrected standard error fac-
tor. In the current section, the ratio of observations per block
and number of variables is greater than 50 for all settings.

Figure 9 shows the squared Euclidean distance between
the estimated parameter vectors split up by the position of
the outlying observations in the data set. The distances are
generally small, but some settings lead to values above 0.1.
There seems to be different behavior depending on the posi-
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Fig. 9 Boxplots of the effect of position of the outlying observations on
squared Euclidean distance e2m in mixture scenario for M&R approach
1. y-axis is on a logarithmic scale, and vertical dashed line is at 0.1

Fig. 10 Boxplots of the effect of position of the outlying observations
on standard error factor f mse in mixture scenario for M&R approach
1. a Contains models and data sets without intercept term, b contains
models and data sets with an intercept term. y-axis is on a logarithmic
scale, and vertical dashed lines are at 0.975 and 1.025

tion of the group of outliers. Data sets with random allocation
of the outlying observations seem to exhibit systematically
smaller distances between the estimated parameter vectors.
The other three ways of putting the data sets together exhibit
larger values of e2m and may also lead to squared Euclidean
distances above 0.1. This indicates that Merge & Reduce is
better able to recover the results of the originalmodel in cases
where the outliers are distributed across more blocks.

Figure 10 shows the corrected standard factor f mse . Here,
the results depend not only on the position, but in particu-
lar on whether the model comprises an intercept term. For
models without intercept, the corrected standard error factor
is close to 1 for all settings of the simulation study, indi-
cating that the estimated standard error is the same for both
the original model and the model based on Merge & Reduce
after correction. If the model does contain an intercept term,
the corrected standard error factor is only close to 1 if the
outliers are randomly inserted into the data set. If the out-
liers occur consecutively in the data set, the standard error is
overestimated by the Merge & Reduce technique. The over-
estimation is considerably higher for the intercept term, but
overestimation of around 8-10% also occurs for the other
variables. This indicates that M&R approach 1 only works
reliably for data with outliers that follow the same model if

Fig. 11 Stripchart (one-dimensional scatterplot) of squared Euclidean
distances e2m for all Poisson regression models for M&R approach 1.
x-axis is on a logarithmic scale. Vertical dashed line at 0.1 is not visible
due to small values of e2m . Values on y-axis are jittered, i.e., small values
of random noise are added

the outliers are distributed evenly around the data set or the
model contains no intercept term.

ForM&Rapproach 3, however, the simulation study again
indicates that the original models can be perfectly recovered,
even when mixtures are present. Even though the presence
of mixtures may increase the variance for some blocks but
not for others, this is taken care of by the merge operations.
When analyzing a frequentist linear regression model with
Merge & Reduce, it is thus advantageous to employ M&R
approach 3.

3.4 Poisson regression

To analyze the results of the Poisson regression models,
we consider M&R approaches 1 and 2. The simulation
study for this case contains a total of six data sets with
values of n ∈ {50,000, 100,000}, d ∈ {5, 10, 20}, and
nb ∈ {400, 1000, 5000, 10,000, 20,000, 25,000}. The error
term variance for Poisson-distributed data is equal to itsmean
and is thus not eligible.

To evaluate how well the Merge & Reduce technique is
able to recover the results of the original model, we again
employ squared Euclidean distance (Eq. 21) for the parame-
ter estimates in the frequentist case aswell as for all summary
values in the Bayesian case. Corrected standard error factor
(Eq. 22) is used for the standard error in the frequentist case
and additionally for the posterior standard deviation in the
Bayesian case.
M&R approach 1

Figure 11 shows the squared Euclidean distances for all
Poisson models in the simulation study. We can clearly see
that all distances take very low values, even for the lower
values of observations per block per variable, which are nb

d =
20 for the Poisson regression models.

Figure 12 shows the corrected standard error factor.
Here, all but two values are within the acceptable range of
[0.975, 1.025]. The two values outside of that range come
from simulated data sets with nb = 400 and d = 20, showing
that the standard error factor exhibits a greater dependence on
nb
d than the parameter estimate. The next observations come
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Fig. 12 Stripchart of corrected standard error factors f mse for all Poisson
regressionmodels forM&R approach 1. Vertical dashed line is at 1.025.
Values on y-axis are jittered

Fig. 13 Stripchart of squared Euclidean distances between posterior
means of original model and Merge & Reduce model for all Bayesian
Poisson regression models forM&R approach 2. x-axis is on a logarith-
mic scale. Vertical dashed line at 0.1 is not visible due to small values
of e2m . Values on y-axis are jittered

Fig. 14 Stripchart of squared Euclidean distances between posterior
25% and 97.5%quantiles of originalmodel andMerge&Reducemodel
for all Bayesian Poisson regressionmodels forM&Rapproach 2. x-axes
are on a logarithmic scale. Vertical dashed lines at 0.1 are not visible
due to small values of e2m . Values on y-axes are jittered

from a simulated data set with nb
d = 40 and lead to compara-

tively high values of f mse , which are nevertheless well below
1.025.
M&R approach 2

To evaluate the performance of Merge & Reduce for
Bayesian Poisson regression models, we first look at the
squared Euclidean distances between the original posterior
means and the posterior means based on Merge & Reduce.
Figure 13 shows a one-dimensional scatterplot of the dis-
tances. All values are very small, and the largest squared
distance lies below 10−4. As in the frequentist case, the pos-
terior location is well-recovered by Merge & Reduce.

To characterize the posterior distribution, in addition to
measures of location, we again look at posterior quantiles
and the posterior standard deviation. Figure 14 contains the
squared Euclidean distances for the lower quartile and the
97.5% quantile as representatives. The quantiles are cor-

Fig. 15 Stripcharts of different measures for the ability of Merge &
Reduce to recover the posterior standard deviation for M&R approach
2. a Squared Euclidean distance between standard deviations based
on original model and Merge & Reduce model, b corrected factor of
posterior standard deviation according toMerge&Reduce and posterior
standard deviation according to original model. Values on y-axes are
jittered

rected according to Eq. 23. With the correction, all squared
distances obtain very low values; again, all lie below 10−4.

This picture is slightly different for the posterior standard
deviation. Figure 15 shows two different measures of how
close the posterior standard deviations based on Merge &
Reduce are to the original models’ posterior standard devi-
ations; subfigure (a) shows the corrected factor (Eq. 22),
subfigure (b) shows the squared Euclidean distance between
the posterior standard deviations. The corrected factor is
close to 1 for all settings of the simulation study. For two
settings the ratio is above 1.025; these are the settings with
the lowest values of nb

d = 20. The squared distance between
the posterior distributions shows a clear concentration close
to 0.With the exception of two settings, all squared distances
are below 0.05, and one of these exceptions is below 0.1.
Interestingly, these relatively high values are inconspicuous
with regard to the ratio. However, these are also data sets
where the number of observations per block is only 400.

4 Bicycle data

We also evaluate the method on a real data set. We follow
the approach taken in [24] and analyze the bicycle rental
data set in [20] to that end. The data set contains information
spanning two years about the number of bikes rented as well
as calendrical and meteorological information on an hourly
basis.

Table 2 gives an overview of all variables we consider in
our models. The data set contains more variables that have
to be excluded for different reasons. Some of the variables
are highly correlated, e.g., the temperature and the apparent
temperature. We exclude other variables, because they pose
a problem when applying the Merge & Reduce technique.
This is the case if the values of factor variables appear in a
very systematic way, e.g., the variable yr, which indicates
whether the observation belongs to the first or second year
under study. This variable exhibits one change (from 2011
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Table 2 Variables from the bike sharing data set used in the models

Variable Description Remark

cnt Number of rental bikes used Y -variable

hour Hour (0 to 23) Factor (24 levels)

holiday Public holiday Factor (2 levels)

weekday Day of the week Factor (7 levels)

weathersit Weather (“clear” to “rain”) Factor (3 levels)

atemp Apparent temperature Standardized

hum Humidity Standardized

windspeed Windspeed Standardized

to 2012) in the middle of the data set, but otherwise stays
constant. Such factor variables introduce problemswith iden-
tifiability when employing Merge & Reduce as not all of the
values are present for some blocks and their effect on the
dependent variable can thus not be estimated. The variable
weathersit contains four levels in the original data set. Level
4, which stands for “heavy rain”, is only present 3 times out
of a total of n = 17,379 observations. As in [24], we combine
levels 3 (“light rain”) and 4 to obtain a new level 3 (“rain”).
For more detailed information about the data set and all vari-
ables, including variables not employed in our model, please
refer to the description of the data set on the UCI Machine
Learning Repository.1

In the following, we consider two sets of variables: a
small subset where only the quantitative independent vari-
ables atemp, hum, and windspeed are included and a second,
larger model that is similar to the model in [24], but excludes
the variables yr and season. For the two sets of variables, we
analyze both a linear and a Poisson regression model. For the
linear model, the dependent variable is transformed using the
logarithm.

The original data set contains a moderate number of
n = 17 379 observations. For that reason we only employ
block sizes of nb ∈ {400, 1000, 5000, 10,000}. Table 3 gives
an overview of how close the results according to Merge &
Reduce are to the original model for the frequentist analysis,
while Table 4 shows the results for the Bayesian analysis.

Tables 3 and 4 indicate that the approximation of the
original model using Merge & Reduce is good for block
sizes of nb ∈ {5000, 10,000} but not good enough for
nb ∈ {400, 1000}, regardless of the subset of variables, for
both linear and Poisson regression and for both frequentist
and Bayesian models.

While the results are similar across all settings, a dif-
ference can be seen between the model including only the
three quantitative variables and the model which includes
factor variables as well. Especially in the Bayesian case, the

1 http://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset.

model with factors shows large deviations from the original
model when the block size is small. On closer inspection,
this is mainly due to the unbalancedness of the variable hol-
iday, which leads to blocks containing no holiday and thus
to divergent models where at least some elements of the pos-
terior distribution of β are meaningless. The problem is also
present in the frequentist case, and here some elements of β̂

cannot be estimated and are thus set to NA. We have omitted
these incomparable differences fromTables 3 and 4. Notably,
this illustrates the importance of careful model selectionwith
possibly little information and indicates that nb should not
be chosen too small.

As mentioned in Sect. 3.2, [29] recommends a ratio of at
least 20 observations per variable for a reliable linear model.
Harrell uses the effective number of observations neff instead
of n. For models that include only quantitative variables,
neff = n, but if factor variables are included in the model,
the effective number of observations changes. Let k be the
number of factor levels and let ni be the number of obser-
vations for level i, (i = 1, . . . , k). The effective number of
observations neff is then given by

neff = min(n1, n2) (24)

for binary variables and by

neff = n − 1

n2

k∑
i=1

n3i (25)

for factor variables with k > 2 levels [see 29][Table 4.1].
We calculate neff for all blocks and for all four values of nb.
For models that only include quantitative variables, neff is
constant except for the last block. For models with factors,
neff typically varies as the frequency of the different levels
varies across blocks. Table 5 reports the smallest number of
neff observed across all blocks with the respective value of
nb as well as the resulting minimal number of observations
per variable.

From Table 5 it becomes clear that 400 and 1000 are
not adequate block sizes for the bicycle rental data set
when employing a model that includes factor variables. For
nb = 400, around half of all blocks do not contain a holiday.
For nb = 1000, this is only the case for one block. However,
even the blocks that do contain a holiday typically include
only one holiday, giving an effective number of observa-
tions of 24, which is less than the number of variables. This
underlines that care should be taken especiallywhen possibly
unbalanced binary variables are present in the model.

When employing a model that only includes the three
quantitative variables atemp, hum, and windspeed as well
as an intercept term, the effective number of observations is
considerably larger and the minimal number of observations
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Table 3 Results of the
frequentist analyses of the
bicycle sharing data set

Quantitative variables only Including factor variables
logarithmic Poisson logarithmic Poisson

nb e2m f mse e2m f mse e2m f mse e2m f mse

10,000 0.0676 1.0078 0.0443 1.0184 0.1595 0.9412 0.0988 1.0139

5000 0.0796 1.0279 0.0316 1.0574 0.0898 0.9193 0.0288 1.0182

1000 2.6690 1.4216 0.3666 1.5174

400 5.9530 1.5078 0.9500 1.6528

Each row headed with e2 gives the squared Euclidean distance between the original model and the model
obtained using Merge & Reduce with the given block size nb, while each row headed with a fse shows
the corrected standard error factor. A total of four models are analyzed: two models using only quantitative
variables as independent variables and twomodels including factor variables as well. For each of thesemodels,
a linear regression (using a logarithmic transformation of the number of shared bikes as dependent variable)
and a Poisson regression analysis are conducted

Table 4 Euclidean squared
distances e2m r for the Bayesian
analyses of the bicycle sharing
data set

Variab. Model nb x̃0.025 x̃0.25 x̄ x̃0.5 x̃0.75 x̃0.975 s

Quant. Log. 10,000 0.0683 0.0683 0.0678 0.0676 0.0672 0.0665 1.0016

Quant. Log. 5000 0.0783 0.0792 0.0810 0.0809 0.0834 0.0872 1.0148

Quant. Log. 1000 2.4053 2.5722 2.6725 2.6761 2.7800 2.9838 1.3290

Quant. Log. 400 5.4856 5.7779 5.9472 5.9437 6.1249 6.4711 1.3973

Quant. Pois. 10,000 0.0445 0.0443 0.0443 0.0443 0.0442 0.0442 1.0262

Quant. Pois. 5000 0.0315 0.0315 0.0316 0.0316 0.0317 0.0317 1.0634

Quant. Pois. 1000 0.3592 0.3641 0.3667 0.3667 0.3694 0.3742 1.5349

Quant. Pois. 400 0.9368 0.9455 0.9502 0.9503 0.9549 0.9635 1.6705

Factors Log. 10,000 0.1674 0.1636 0.1619 0.1622 0.1608 0.1579 0.9298

Factors Log. 5000 0.0999 0.0953 0.0932 0.0933 0.0915 0.0873 0.9128

Factors Pois. 10,000 0.0988 0.0988 0.0989 0.0988 0.0989 0.0991 1.0208

Factors Pois. 5000 0.0291 0.0289 0.0288 0.0288 0.0287 0.0286 1.0141

A total of four models are analyzed: two models using only quantitative variables as independent variables
(“quant.”) and two models including factor variables as well (“factors”). For each of these models, a linear
regression (using a logarithmic transformation of the number of shared bikes as dependent variable) and a
Poisson regression analysis are conducted. Every row shows the results for one of the four models and the
respective block size nb. Given are the approximations of different posterior quantiles x̃ as well as posterior
mean and standard deviation. The models with factor variables and block sizes nb ≤ 1000 did not converge,
resulting in meaningless large deviations from the original model (not shown)

Table 5 Smallest value of
effective number of observations
neff for different block sizes nb
as well as minimal effective
number of observations divided
by number of parameters d,
where d = 36 including all
dummy variables

Block size nb Quantitative variables only Including factor variables
min neff

min neff
d min neff

min neff
d

400 179 44.75 0 0

1000 379 94.75 0 0

5000 2379 594.75 95 2.64

10,000 7379 1844.75 191 5.31

per variable is 44.75 even for a block size of nb = 400.
Despite these relatively high numbers, the approximation of
the approximation is only acceptable for block sizes 5000
and 10,000.

The difference between the model with the three quanti-
tative variables and the model including factor variables is
a considerable discrepancy in goodness of fit. To name just
one example, the time of day plays an important role for the

number of bicycles rented, but this variable is not included
in the smaller model.

The results of our analysis indicate that both the number of
observations per block per variable and themodel’s goodness
of fit play important roles forMerge&Reduce to deliver good
approximations.
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5 Conclusions

In this article, we introduced the general algorithmic scheme
of Merge & Reduce and developed conceptually new
schemes acting directly on statistical models. This enabled
us to perform computationally demanding statistical data
analysis tasks on massive data streams with n observations.
The data are divided into small tractable batches from which
we compute individual models using offline state of the art
or classical data analysis algorithms. The resulting mod-
els are combined in a structured way, such that blow-up in
their memory requirements remains bounded by a negligible
O(log n) factor. It is only necessary to choose an appropriate
statisticalmodel and implementmerge and reduce operations
for the specific type of model. The design of such operations
is not trivial in general.

In particular we showed how to design such operations
for the case of (Bayesian) linear regression, Gaussian mix-
ture models and generalized linear models. We evaluated
our M&R approaches on simulated and real-world data. The
Merge & Reduce algorithm performed well, leading to sta-
ble results very similar to the models one would obtain from
analyzing the entire data set as a whole.

In the case where the data consist of a mixture of two
different locations within X and Y , models that show a
clear break point—as opposed to a homogeneous fraction
of outliers in each block—are more difficult to recover for
Merge & Reduce, especially if the model includes an inter-
cept term. In such a situation, employing approaches like
tests for structural breaks [55] or equivalence testing [17,34]
for regression models might be beneficial. These procedures
typically require access to the whole data set at once, mak-
ing a transfer to the Merge & Reduce framework, possibly
in combination with a suitable measure for the goodness of
fit, an interesting open problem.

M&R approach 3 is suitable for frequentist linear regres-
sion models and is able to recover the original model exactly.
M&R approaches 1 and 2 are suitable for a variety of fre-
quentist and Bayesian regression models, respectively. For
both approaches, the goodness of the approximation depends
on both the ratio of observations per block and variables
nb
d and the goodness-of-fit of the original model. The first
condition can easily be controlled by the data analyst, espe-
cially in a setting with large n. The second condition may
require care when building the model. Both conditions are
also present when employing regular regression analysis,
albeit in slightly weaker form. Future work may focus on
designing and extending the statistical models tractable in
the Merge & Reduce framework to classification [41,45],
clustering [49] and topic modeling [7].

For massively large data not fitting into internal memory,
analyzing the entire data set becomes tedious or may not be
possible at all, whereas theMerge & Reduce scheme enables

the data analysis by performing the computations on small,
efficiently tractable batches. The same is true for analyz-
ingmoderate amounts of data on severely resource-restricted
computational devices like mobile phones or mobile sensors.
Additionally we pointed out that the scheme is also appli-
cable in parallel or distributed settings. This underlines the
versatility of the Merge & Reduce scheme beyond classical
statistical data analysis.
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