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Abstract
Perfluorooctanoic acid (PFOA) and related chemicals among the per- and polyfluoroalkyl substances are widely distributed

in the environment. Adverse health effects may occur even at low exposure levels. A large-scale contamination of drinking

water resources, especially the rivers Möhne and Ruhr, was detected in North Rhine-Westphalia, Germany, in summer

2006. As a result, concentration data are available from the water supply stations along these rivers and partly from the

water network of areas supplied by them. Measurements started after the contamination’s discovery. In addition, there are

sparse data from stations in other regions. Further information on the supply structure (river system, station-to-area

relations) and expert statements on contamination risks are available. Within the first state-wide environmental-epi-

demiological study on the general population, these data are temporally and spatially modelled to assign estimated

exposure values to the resident population. A generalized linear model with an inverse link offers consistent temporal

approaches to model each station’s PFOA data along the river Ruhr and copes with a steeply decreasing temporal data

pattern at mainly affected locations. The river’s segments between the main junctions are the most important factor to

explain the spatial structure, besides local effects. Deductions from supply stations to areas and, therefore, to the residents’

risk are possible via estimated supply proportions. The resulting potential correlation structure of the supply areas is

dominated by the common water supply from the Ruhr. Other areas are often isolated and, therefore, need to be modelled

separately. The contamination is homogeneous within most of the areas.

Keywords Perfluorooctanoic acid � Drinking water contamination � Temporal GLM regression � River modelling �
Two spatial level data

1 Introduction

1.1 Toxicological background

Per- and polyfluoroalkyl substances (PFASs) name a group

of man-made persistent organic chemicals produced since

the 1940s which are used in a wide variety of products used

by consumers and industry (OECD 2004; Buck et al.

2011). Their biochemical persistence and stability have led

to pollution of the environment worldwide and an internal

exposure of the general human population (cf., e.g.,Buck

et al. 2011; OECD 2004). Perfluorooctanoic acid (PFOA)

and perfluorooctane sulphonic acid (PFOS) are readily

absorbed after ingestion or inhalation, not metabolized and

Electronic supplementary material The online version of this
article (https://doi.org/10.1007/s00477-020-01932-8) con-
tains supplementary material, which is available to autho-
rized users.

& Jonathan Rathjens

rathjens@statistik.tu-dortmund.de

1 Chair of Mathematical Statistics with Applications in

Biometrics, TU Dortmund University, Dortmund, Germany

2 Department of Hygiene, Social and Environmental Medicine,

Ruhr-University Bochum, Bochum, Germany

123

Stochastic Environmental Research and Risk Assessment
https://doi.org/10.1007/s00477-020-01932-8(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-3343-3684
https://doi.org/10.1007/s00477-020-01932-8
http://crossmark.crossref.org/dialog/?doi=10.1007/s00477-020-01932-8&amp;domain=pdf
https://doi.org/10.1007/s00477-020-01932-8


slowly excreted via urine and feces. Mean human half-lives

are estimated to be 3.5–3.8 and 4.8–5.4 years, for PFOA

and PFOS, respectively (Olsen et al. 2007). The human

population’s most important source is food, with contam-

inated drinking water predominating if present. Therefore,

an increased water contamination may be used as a sur-

rogate marker of the human internal exposure, where this is

considerably above background level: Consumption of

contaminated drinking water is associated with increased

PFOA-concentrations in human plasma (Hölzer et al.

2008). Tap water contributes to more than 75% of the

estimated daily intake in comparison to other exposure

pathways (diet, air, consumer articles) in highly affected

regions (Vestergren and Cousins 2009).

The toxicity of PFASs is currently being discussed

among toxicologists, epidemiologists and regulatory

agencies. Developmental and liver toxicity (Lau et al.

2004; Lau 2012), elevated blood lipids (Frisbee et al. 2010;

Steenland et al. 2009) and immunotoxicity (NTP 2016)

seem to be major health effects associated with exposure to

PFOA and PFOS. Other relevant impairments to health,

e.g. the incidence of type 2 diabetes in humans (Sun et al.

2018), have been reported. Meta-analyses of animal

experimental and human epidemiological data concluded

that developmental exposure to PFOA adversely affects

human health based on sufficient evidence of decreased

fetal growth in both human and non-human mammalian

species (Johnson et al. 2014; Koustas et al. 2014; Lam

et al. 2014). However, the mechanisms of toxicity have not

yet been sufficiently clarified. Detailed toxicological

assessments have been published lately (EPA 2016;

ATSDR 2018; EFSA CONTAM 2018; UBA HBM Com-

mission 2018; NJDEP 2019).

The European Food Safety Authority (EFSA) lowered

the tolerable daily intake from 1500 (150) (EFSA 2008) to

0.9 (1.9) ng per kg body weight for PFOA (PFOS) and

concluded that a considerable proportion of the population

currently is exceeding these levels (EFSA CONTAM

2018). Only recently, EFSA also evaluated the exposure to

the sum of four different PFASs and recommended an even

lower tolerable weekly intake of 4.4 ng per kg body weight

for the sum of PFOA, PFOS, PFHxS and PFNA (EFSA -

CONTAM 2020). The German Drinking Water Commis-

sion lowered their action guidance value for pregnant

women, breastfeeding mothers and infants under 24

months of age to 50 ng PFOA per litre of drinking water

(Trinkwasserkommission 2020). Among the effects evalu-

ated by the EFSA and the drinking water commission are

lipid metabolism, immunotoxicity and developmental

effects.

1.2 Contamination event and drinking water
data base

A large-scale contamination of drinking water with PFOA

and other PFASs has been discovered in the summer of

2006 in North Rhine-Westphalia (NRW), Germany (Skut-

larek et al. , 2006). The principal cause has been the use of

PFASs-polluted conditioner (fertilizer) on more than 1300

farmlands with subsequent contamination of surface

waters. Further PFOA-contaminations of both surface and

groundwater by sewage plants and other sources like fire

extinguishing foam have occurred in different parts of

NRW (LANUV 2011), though with minor effects on

drinking water.

PFASs are generally not removed during riverbank fil-

tration and conventional water processing; some water

supply stations have subsequently installed activated

charcoal filters in order to reduce the PFOA-concentrations

in drinking water below the guidance value of the German

Drinking Water Commission (Trinkwasserkommission

2016).

Since 2006, the NRW state environmental agency has

implemented an extensive PFASs monitoring programme

for relevant environmental media, including soil, water and

drinking water (LANUV 2011). The resulting drinking

water database has been complemented with data collected

by the authors from water suppliers. These data constitute

the basis for our analyses.

A particularly severe contamination has affected the

river Ruhr and its tributary Möhne (Skutlarek et al. 2006;

Wilhelm et al. 2008)). Both rivers are important resources

of the regional drinking water: More than 20 important

water supply stations are installed along them, supplying a

large region of NRW, especially the Ruhr metropolitan

area with about a quarter of NRW’s 18 million inhabitants.

Human biomonitoring studies have been conducted

(Hölzer et al. 2008, 2009) with a focus on the town of

Arnsberg, supplied by a Möhne-dependent water supply

station near the river’s mouth, where PFOA concentrations

above 500 ng/l have been measured. (The lifelong tolerable

guide value is currently set to 100 ng/l,

(Trinkwasserkommission 2016). Furthermore, adverse

health effects are suspected to occur even in low ranges of

PFOA exposure.)

1.3 Aims

This article describes the first phase of our PerSpat (Per-

fluoroalkyl Spatial) project, which has been designed to

assess the exposure of the residential population to PFOA,

in order to analyse possible associations with relevant
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health indicators like birth registry data by means of tem-

poral and spatial modelling in a second phase.

This environmental-epidemiological study on the gen-

eral population, living in a large region of variable and, in

parts, very high PFOA concentrations in drinking water, is

the first of this kind on state level and, therefore, impor-

tantly contributes to the epidemiological research on

developmental toxicity of PFASs.

This article contains the first comprehensive description

of the collected and processed complex secondary data and

accompanying information on PFOA concentrations mea-

sured in drinking water following the NRW contamination

incident. In this analysis, we focus on PFOA among the

PFASs due to higher data variability, measurements con-

siderably above critical values, and its long half-life.

We evaluate statistical models to find adequate repre-

sentations of these measurements and to predict the PFOA

concentration at particular water supply stations and points

of time. Thereby, we encounter a new and unusual data

situation in terms of the combination of very instationary

temporal processes (in terms of both mean and variance),

two spatial levels of interest, and the connection via rivers.

After fitting Generalized Linear Models (GLMs) for

temporal regression at the stations, we explore the spatial

structure of the results along the well-observed river Ruhr.

A second spatial data level—drinking water supply

areas—is distinguished. We numerically estimate the pro-

portions of drinking water from different stations supplying

the same area, using meta information on the NRW water

supply structure, in order to assess the regional average

PFOA concentrations.

1.4 Related modelling approaches

We start our empirical data analysis rather open-minded

with regard to model classes. Ultimately, we aim at a

model in continuous time and discrete space.

As for approaches in similar scenarios and profound

model developments, see, e.g., White et al. (2017) for

spatial smoothing models for areas being but partially

observed: Data are primarily given on area level with a

Markov property assumed, whereas we have to focus on

the temporal modelling first and also encounter compli-

cated spatial relationships. We consider approaches like

these in future stages of analysis.

Bayesian hierarchical discrete-space approaches, along

with intrinsic CAR prior choice considerations, can be

found in Keefe et al. (2019). Again, the neighbourhood

structure is more specific than found in our situation.

Grollemund et al. (2019) present a regression model using

functional predictors. These could be representations of the

temporal structures in a future spatio-temporal analysis in

our situation; before, we have to explore the temporal data

patters.

As a frequentistic alternative, Tang et al. (2019) develop

a semi-parametric copula model to cope with the spatio-

temporal dependence and to predict values for new points

of time and sites. This is rather restrictive, being Marko-

vian in time, whereas we model continuous, irregularly

measured temporal data. Wang and Sun (2019) propose a

spatial regression model with local polynomials modelling

the coefficients as a function of space, but without an

explicit temporal component.

The set-up of consistent spatial correlationmatrices along

more complex river networks than ours is described as a

particular challenge (cf., e.g., Peterson et al. 2007). With

more data than we have from groundwater-stations not

directly adjacent to a river, the latter could be regarded as an

inhomogeneous line source of contamination (cf., e.g., Ayub

et al. 2019). Another option would be the incorporation of

more detailed river network features, such as water amounts,

stream velocity and smaller tributaries (cf., Ver Hoef et al.

2006), if corresponding data were available.

Further methods and application scenarios for risk

assessment, when measurement data are available at more

steps along water supply systems than in our situation, can

be found in Roozbahani et al. (2013). Causal remote effect

estimation, when both influence and outcome quantities are

measured along a river and over time, unlike in our situ-

ation, is performed by Saul et al. (2019) via the parametric

g-formula.

Article overview

Below, the data are described in more detail in Sect. 2, with

an overview on their amount and features (Sect. 2.1), an

outline of the NRW river network and its usage for drinking

water (Sect. 2.2) as well as the typical temporal structures to

be found in the various locations (Sect. 2.3). In Sect. 3, the

data are explored with regard to both time and space:

Regression models on time are presented in Sect. 3.1, with

some findings concerning the spatial structure along the river

Ruhr. Section 3.2 dealswith the questionwhether and how to

deduce from water supply stations to the contamination of

their supplied areas. Section 4 concludes with a discussion,

including some preliminary spatial modelling approaches,

and perspectives.

2 Data description

The PFOA measurements have been conducted by the local

drinking water suppliers; the data have been collected by

the NRW State Agency for Nature, Environment and

Consumer Protection (Landesamt für Natur, Umwelt und
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Verbraucherschutz; LANUV) and by the Department of

Environmental Medicine of the Ruhr-University Bochum.

All data preprocessing steps, visualisations and analyses

have been conducted using the R environment (R Core

Team 2020) along with its basic packages. Processing of

geographical data and drawing of maps have been con-

ducted using the R packages rgdal (Bivand et al. 2019)

and tmap (Tennekes 2018).

Some of the maps have been produced using geographical

data from the German Federal Agency for Cartography and

Geodesy (� GeoBasis-DE / BKG, 2019; license: www.gov

data.de/dl-de/by-2-0; data: wms_vg250-ew,

wfs_dlm1000. Geographical data on the NRW drinking

water supply (Figs. 1 and 2) have been provided by the

LANUV.

2.1 Data amount and features

The data consist of measurements from completely puri-

fied, ready-to-drink water in both water supply stations

(3349 observations) and networks (536) since summer

2006. Observations are available until 2016 and partially

ongoing. Furthermore, there are some samples drawn from

raw water (418) and during water treatment (87) at the

stations. Many samples, especially the latter, are non-de-

tects. See Fig. 2 for a cross-sectional overview.

NRW is geographically divided in some 450 water

supply areas, with any data available from about 200. For

the stations, many of them being very small, any data are

available from about 250 of 700. There is a complex, nei-

ther injective nor surjective assignment between areas and

stations, with some minor changes in areal division, station

running and assignment over the years. The number of non-

equidistant measurements per time period varies between

locations and periods according to the contamination risk.

More detailed information on the amount of data per

station and their ranges and temporal patterns can be found

in Table 1. According to this, the data availability is sat-

isfying for all affected stations, i.e., along the river Ruhr (a

total of 2484 observations at all of the 27 stations), and all

of them feature at least rather high values; stations not

depending on the river Ruhr are much less observed, typ-

ically with low values, although there are exceptions.

Table 2 details the data availability with respect to water

supply areas: Where some of the stations supplying a

Fig. 1 NRW water supply areas,

water supply stations and main

rivers used as drinking water

resources. An important

contamination discovered in

2006 is located near the Möhne

spring. (Above: NRW within

Germany)
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Fig. 2 PFOA concentration per

water supply area measured in

the respective network. The data

closest to 1 July 2006 are used.

Where no network samples are

available, the respective

supplying stations’

measurements are averaged

with weights according to

Sect. 3.2.1. (With the limit of

quantification at 10 ng/l, the

respective areas in light yellow

are non-detects)

Table 1 Number of water supply stations by data availability and temporal data pattern of the PFOA concentrations. (In this rough classification

of typical observed situations, ‘very high’ means PFOA concentrations about and above the guide value of 100 ng/l, ‘rather high’ values are

about and above 50 ng/l. LoQ: limit of quantification)

Data Availability / Temporal Data Pattern Number of Stations
srehtorhuRnoitamrofnI

many (more than 25 data)

decrease, with very high values 17 1
decrease, with rather high values 6 0
diffuse, with rather high values 4 1
all values below LoQ 0 1

few

single very high value 0 2
decrease, with rather high values 0 3
diffuse, with rather high values 0 1

610seulavwol
all values below LoQ 0 142

raw water / treatment
40seulavwol

all values below LoQ 0 53
expert statement (no contamination risk) 0 56

0—enon ≈ 400
72latot ≈ 675
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particular area are Ruhr dependent, there are typically

enough data to assess the area’s contamination risk by

deduction from the stations.

An important issue with regard to modelling are out-

standing values at the beginning of the observed period of

time: The most affected supply station of Möhnebogen at

the Ruhr’s tributary Möhne near Arnsberg features a PFOA

maximum of 640 ng/l. On the other hand, values below the

limit of quantification (LoQ, mostly 10 ng/l) are frequent in

less affected regions and later periods of time. A certain

discretisation is caused by a data accuracy of 10 ng/l fre-

quently given.

Apart from the measurement data, there is further

information from water supply operators on the most likely

non-existence of PFOA contamination at certain stations or

areas over longer periods of time. For some places, where

there are but a few values, or even just one, the measure-

ment usually confirms the water supplier’s assumption of

no relevant PFASs contamination.

With data being on two spatial levels, stations and areas,

there is also information on their assignment and the sup-

plied and demanded water amounts.

In summary, the PFOA concentrations of all water

supply stations along the river Ruhr are well observed,

beside water network data from many water supply areas

depending on them. For other regions, there are fewer

measurements per station—usually non-detects— or none.

The relationship of stations and areas is explored in

Sect. 3.2.1.

2.2 Spatial connectivities via the river network

The main rivers of NRW, with water supply stations along

them, are shown in Fig. 1. (A graph of their directions of

flow and their junctions is shown in the Online Resource,

Fig. 1: a simplified spatial structure, comprising of river

segments. As explored in Sects. 3.1 and 3.2.2, a certain

homogeneity may be presumed for river-depending stations

within the same segment.)

For the river Ruhr, there are five water supply stations

upstream beyond the Möhne mouth, the station of

Möhnebogen on the river Möhne, and twenty-one stations

downstream from both rivers’ junction. With the main

PFOA source drained off by the Möhne, the former five

stations are less affected and may be neglected in some

analyses, yielding a one-dimensional spatial structure, if

needed for simplified models.

Apart from the main rivers, there are many stations

taking water from smaller tributaries. A weak dependence

between these and the respective main river segments may

be presumed.

2.3 Temporal data patterns for individual water
supply stations

We focus on water supply stations along the river Ruhr,

with numerous measurements covering a longer period of

time. For data availability and patterns, cf., Table 1.

According to this, there are two main types of temporal

data patterns, a rather diffuse one (Fig. 3) and a striking

decrease (Fig. 5).

The first typical temporal structure is found at stations

less affected by the contamination incident, being upstream

beyond the Möhne mouth (like Mengesohl, Fig. 3 left),

partly supplied by groundwater (like Volmarstein, centre)

or far downstream at the river Ruhr (like Styrum West,

right). Measurements observed here feature no or hardly

detectable trends and comparatively small variability. A

certain decline in background pollution may be reflected,

too.

A second type is a more or less smooth decline over the

years, though some short-term trends may be distinguished.

The decrease is considerably stronger for the first couple of

years (e.g., Essen-Überruhr, Fig. 5).

This decrease at the beginning is the strongest at the

outstanding station of Möhnebogen, where some water

filtering measures have taken place after discovery of the

contamination. Filters eliminate all PFASs after installa-

tion, become gradually less efficient and have to be reac-

tivated after a while (Fig. 4). Thus, some outliers, change

points, and even seasonality may be included in analyses of

Table 2 Number of water supply areas by contamination risk and data

availability per station: Considering the water supply stations with a

relevant supply for a particular area (estimated share of more than

5%, Sect. 3.2.1), we distinguish whether all or some of these stations

are potentially affected by the Möhne-Ruhr contamination incident,

and whether any data are available from all or some of these stations

(right the respective numbers of areas with only one supplying sta-

tion)

Ruhr Contamination Cases Trivial Cases
– Data Availability (Areas) (1 Station)

– all with data 23 14
– some with data 0 —
– none with data 0 0

– all with data 8 —
– some with data 1 —
– none with data 0 —

all stations affected 23 14

some stations affected 9 —

no station affected 423 271
– all with data 181 110

– some with data 27 —
– none with data 215 161
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this station—and of some others downstream which have

installed filters too, if filtering data were available.

Apart from these differing observed types of temporal

structures, there are periods of missing data in some

locations: The density of measurements in the course of

time and space varies widely. Thus, extrapolation should

be performed with caution, especially when using rather

simple regression or interpolation methods.

In summary, there are two typical trends in the PFOA

values of water supply stations at the river Ruhr—beside

the special case of Möhnebogen station. In particular, a

characteristic form of ‘decreasing decrease’ can be distin-

guished. Apart from the Ruhr-depending stations, there are

but a few with sufficient data to identify a trend (one

example are the stationary measurements around the limit

of quantification in Haltern, see Fig. 9).

3 Data exploration

The first part of this Section deals with the temporal

modelling of the PFOA concentration data per water sup-

ply station along the river Ruhr: The suitability of various

regression models is studied and the prediction results of

the most appropriate one are discussed with regard to

spatial structures along the river. The water supply areas

are considered in Sect. 3.2, especially whether and how

statements on their PFOA contamination can be deduced

from their respective supplying stations.

Let Xit denote the PFOA concentration at water supply

station i ¼ 1; . . .;m (in our situation, m � 700) for time

t ¼ 1; . . .; T . Reasonable units of time are months or days.

Let j ¼ 1; . . .; n (n � 450) denote the water supply area.
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Fig. 3 Measurement series of PFOA of exemplary water supply stations with comparatively low PFOA values and no or a weak trend. Left:

Mengesohl; centre: Volmarstein; right: Styrum West
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Fig. 4 Measurement series of

PFOA of Möhnebogen with

times of carbon filtering

interventions
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3.1 Temporal regression for individual water
supply stations

3.1.1 Model choice

The data are continuous with respect to time with an

irregular measurement process: There are periods of time

with a high ‘data density’ (up to two measurements within

a few days) and others without any data for several month.

Therefore, we use regression models with the time as a

covariate instead of autoregressive models. We fit models

individually to the data of a water supply station i, but are

mainly interested in obtaining a consistent approach along

the river Ruhr.

An appropriate model has to cope with the varying

shapes of decrease (cf., Figs. 3 and 5), which may also

imply some heteroscedasticity. We consider several Gen-

eralized Linear Models (GLMs, Table 3) with various

distribution families for Xit and link functions

g EXitð Þ ¼ gðlðtÞÞ ¼ gðtÞ ¼ b0 þ b1t

as well as data transformations.

For the latter, a pre-transformation like lnðXitÞ,
ffiffiffiffiffiffi

Xit

p
or

1
ffiffiffiffi

Xit

p and usage of a simple linear regression leads to very

large residuals for periods of high measurements. For the

pre-transformation 1
Xit
, the instability of the estimation is

even worse. Additionally, results are difficult to interpret,

when re-transformed after the model fit.

Instead of that, while sticking with the simple linear

regression, we experimentally transform the time covariate:

Among the usual fractional polynomials, the model
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Fig. 5 (GLM) Regression on time: confidence and prediction intervals of various models fitted to the data of Essen–Überruhr
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EXit ¼ b0 þ b1
1
ffiffi

t
p

results in a particularly good fit. However, it is not trans-

lation invariant and we have to choose a starting point t0,

preferably close to the beginning of the measurements—in

our situation the beginning of the year 2006, consistently

for all stations. From an environmental scientific point of

view, the results are difficult to interpret in terms of the

change of concentration during a given span of time.

For GLMs without pre-transformation of data, at first we

identify all combinations of continuous distribution fami-

lies and link functions such that the model fit converges for

all stations (shown in Table 3). Among these, a Normal

distribution with an inverse link

EXitð Þ�1¼ b0 þ b1t

turns out to yield the best fit in terms of the residual sum of

squares for most of the stations, especially those with the

typical ‘decreasing decrease’. But also the Gamma distri-

bution with its natural inverse link is often close to it in that

sense. Table 3 shows the goodness of fit of the various

models. Fig. 5 illustrates their suitability with regard to the

estimated mean function as well as their capability to

reflect the data’s variance.

While the variance Varðl̂Þ of the mean response esti-

mator is always a function of time and is further affected in

case of non-identity link functions, a proper choice of the

data variance function turns out to be more relevant in

terms of scale: VarðXitÞ is constant for all l in case of the

Normal family, leading to a certain probability of negative

predictions, but also to a closer prediction interval in the

period of high values. For the Gamma family, it holds

Table 3 Goodness of fit of

various GLMs (distribution

families with link functions) in

terms of the residual sum of

squares by water supply station

along the river Ruhr

Normal Gamma Normal, identity

Station Identity Log Inverse Inverse Time transform

Upper Ruhr

Hennenohl 2509 2594 2969 3492 2797

Insel 3960 5205 6991 10,436 8761

Mengesohl 4822 6403 8012 12,069 9204

Stockhausen 9309 8349 8448 8655 8913

Langel 14,313 15,219 18,680 26,437 20,501

Middle Ruhr

Echthausen 88504 45,406 14,310 21,009 27,617

Warmen 113,172 35,174 27,297 92,980 33,468

Fröndenberg 20,550 14,131 16,808 23,934 14,807

Ruhrtal 42,814 30,823 23,334 23,354 23,793

Halingen 52,522 35,329 21,342 24,756 22,985

Hengsen 45,081 26,048 20,154 20,515 20,240

Villigst 117,266 54,163 32,504 33,629 39,224

Ergste 52,451 34,579 22,754 25,543 25,000

Westhofen 1 83,985 39,238 21,610 22,606 29,586

Westhofen 2 52,549 30,258 21,761 21,861 22,315

Lower Ruhr

Hengstey 131,908 79,197 84,974 130,458 81,677

Volmarstein 3501 3207 3110 3110 3122

Ruhrstrasse 6356 5454 5061 5132 5096

Witten 3926 3007 3342 3740 3336

Stiepel 12,004 8328 7003 7146 6886

Essen-Horst 17,017 7938 5645 6071 5572

Essen-Überruhr 16,607 8839 4616 4710 5053

Essen-Kettwig 11,580 6569 4859 5016 5358

Dohne 13,437 11,544 10,594 10,679 10,912

Styrum Ost 7256 7386 7499 7682 7823

Styrum West 5738 5499 5103 5272 5087

Best fitting model per station in bold

Stochastic Environmental Research and Risk Assessment

123



VarðXitÞ ¼ /2l2ðtÞ, so we are able to interpret and estimate

the measurements’ standard error as a constant multiple of

the mean, in accordance with some assumptions on mea-

surement technique and natural fluctuation (LANUV

2011); on the other hand, the prediction interval is very

large in the period of high values (perhaps corresponding

with inferior measurement technique in the early period)

and rather small later on (notwithstanding that an increased

uncertainty is assumed for measurements close the limit of

quantification). However, all models sufficiently cover the

data variance.

The inverse link is very suitable for modelling the ‘de-

creasing decrease’ type of temporal data patterns; for less

definite trends, especially along the upper Ruhr, others

would do (cf. Table 3). In some cases, a slight

heteroscedasticity remains. Outlying data at the measure-

ments’ beginning have a strong leverage that may lead to a

certain instability, especially when ‘predicting the past’.

With the inverse link being superior compared to the log

link, the decrease turns out to be steeper than exponential

for highly contaminated places.

Any such models are applicable for situations without

change points or outliers as described in Sect. 2.3. Where

carbon filtering interventions are known, a piece-wise

regression is applied.

With regard to easy interpretability of the parameters,

the goodness of the predictions, and the perspective model

extension (say, by additional spatial terms), we focus on

the Normal GLM with an inverse link.

3.1.2 Discussion of regression results

Figure 6 shows a cross-section l̂ðt�Þ of the mean response

estimation results along the river Ruhr. (In the Online

Resource, further points of time can be found Fig. 2, a

longitudinal overview in Fig. 3 at the same place.)

The results show a clear distinction between the river’s

segments: The abrupt increase of PFOA concentrations

below the junction of Ruhr and Möhne is reflected as well

as a decrease below the mouth of the Ruhr’s tributary

Lenne. The estimations for most of the stations along the

lower Ruhr tend to feature smaller uncertainty intervals.

Within the segments, no definite trend is recognizable;

local effects of the individual stations seem to overlay a

trend along the river. Potential causes may be the varying

parts of groundwater in relation to surface water used by

the water supply stations as well as their filtering measures.

Another aspect are further minor PFOA discharges, espe-

cially from sewage plants affecting the river Ruhr

(cf. LANUV 2011). In fact, there seems to be a slightly

increasing trend along parts of the lower Ruhr.

To conclude, the GLM with Normal distribution and an

inverse link function is a convenient way of functional

representation of temporal trends in PFOA data of the

water supply stations along the river Ruhr. This also opens

a possibility for integrating spatial trends in the model. The

latter should respect the river segments.
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Fig. 6 Predictions (with

approximate 95% confidence

intervals) of the PFOA values

on 1 January 2007, from GLMs

with Normal distribution and

inverse link, individually for

each water supply station along

the river Ruhr
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3.2 Water supply area assessment

3.2.1 Station-to-area supply proportions

With data and models on two spatial levels—water supply

stations and water supply areas—we are strongly interested

in the proportions, how much of an area’s water stems from

the respective stations, in order to mediate between the two

levels. However, there is no direct information on this

question—apart from rough estimations by a few local

drinking water suppliers.

Instead of this, we estimate these supply proportions

using data on the stations’ water supply amounts and the

areas’ water demands together with the qualitative infor-

mation which stations supply which areas.

Let a ¼ a1; . . .; amð ÞT
be the supply and b ¼

b1; . . .; bnð ÞT
the demands. The data (say, cubic metres per

year) are somewhat vague and, therefore, standardized to

ai :¼
ai

aT1m
and bj :¼

bj

bT1n

; respectively, in order to obtain

matching totals.

Formally, we are in search of a weight matrix

W ¼
w11 . . . w1m

..

. ..
.

wn1 . . . wnm

0

B

B

@

1

C

C

A

2 0; 1½ �n�m;

such that area j gets the wji’s part of its water from station i,

which means that the water amounts wjibj of the areas sum

up to the stations total supply

ai ¼
X

n

j¼1

wjibj; i ¼ 1; . . .;m; ð1Þ

with the area-wise restrictions

X

m

i¼1

wji ¼ 1; j ¼ 1; . . .; n: ð2Þ

Such a deconvolution problem (cf., e.g., Cutler 1978) is

generally not uniquely solvable.

In our situation, the problem is simplified by several

facts:

• Only a small number of stations and areas are

connected at all. And these relations are known at least

qualitatively, albeit not in numbers. Therefore, it is

known for far the most of the cases, that a station i�

does not supply an area j� and we have many further

restrictions wj�i� ¼ 0 when calculating W.

• If an area is supplied by a single station, the respective

weight wj�i� ¼ 1 is known prior to solving the system of

(1) and (2), even if this relation is not bijective.

• Due to the many zeros in W, the equation system of (1)

and (2) is actually split in, often very small, partial

problems

aðlÞ ¼ WT
ðlÞbðlÞ; WðlÞ1ml

¼ 1nl
; l ¼ 1; . . .; L; ð3Þ

solving the non-zero blocks WðlÞ 2 0; 1½ �nl�ml of W

concerning ml stations and nl areas. Moreover, a large

number of supply relations are unique, i.e., ml ¼ nl ¼ 1

(cf., Table 4).

Transforming W to a diagonal structure of non-zero blocks

– with the help of the R packages igraph (Csardi and

Nepusz 2006) and Matrix (Bates and Mächler 2019)—

we obtain L ¼ 322 linear equation systems like (3). Of

these, 27 are non-trivial, i.e., ml; nl � 2. Each comprises of

ml þ nl independent equations to solve a certain number of

unknown quantities wji 2 ð0; 1Þ.
In 6 cases, the system is determined. In 20 systems,

there are more equations than unknowns and we can find a

numerical solution for the least squares problem

aðlÞ �WT
ðlÞbðlÞ

�

�

�

�

�

�

2

2
�! min

WðlÞ
!; WðlÞ1ml

¼ 1nl

using the R package NlcOptim (Chen and Yin 2019) to

perform optimisation with constraints; the obtained esti-

mated proportions are exact enough given the vague data;

in particular, the by far largest system (ml ¼ 72, nl ¼ 82),

containing many of the Ruhr dependent stations, is solv-

able. Only one system is under-determined: it concerns a

small region (ml ¼ 3, nl ¼ 6) not related to the Ruhr and is

not considered further.

The obtained proportions of water supply from stations

to areas are important to estimate the stations’ relevance

for the NRW water supply in general. They are also used to

assess the areas’ PFOA burden and thereby the residents’

risk by weighted averaging. This is particularly relevant if

the PFOA concentration is inhomogeneous within an area,

especially one supplied from both the Ruhr and other rivers

or groundwater (Sect. 3.2.2).

The supply matrix W also illustrates to what extent the

spatial units (water supply areas) are contiguous in terms of

shared water: Fig. 7 shows one large region of potentially

correlated areas (with the river Ruhr in their south) and

Table 4 Water supply relations: relevant ([ 5%) shares

Supplying Stations per Area 1 2 3 4 5 ≥ 6
Cases (Areas) 285 81 46 19 8 16

Supplied Areas per Station none 1 2 3 4 ≥ 5
Cases (Stations) 22 578 73 16 5 8
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several smaller clusters. On the other hand, there is a large

number of single isolated areas.

Therefore, the obtained supply matrix is a key to

understand the unusual discrete spatial structure of NRWs

drinking water supply. It is the basis for models on supply

area level, including analyses of network data.

3.2.2 Data homogeneity of water supply areas

In many cases, PFOA values for water supply areas have to

be deduced from the relevant water supply stations’ data in

order to assess the residents’ exposure. We consider whe-

ther the involved stations’ temporal trends are similar

enough (‘homogeneous’) for joint modelling and whether

these data and the respective network data, if any, are

sufficiently homogeneous in the course of time.

Homogeneity or inhomogeneity are presumed on the

basis of the exploratory results from above, particularly on

the two distinguishable main types of temporal data pat-

terns at the stations (Sect. 2.3), the stations’ locations with

respect to the affected river Ruhr (cf., Sect. 2.2) and the

structures found in predictions for Ruhr-dependent stations

(Sect. 3.1.2).

As illustrated in Table 1, the occurrence of the typical

data patterns is strongly correlated with the stations’

dependence from the river Ruhr, where high values with a

steep decrease in the course of time can be found. More-

over, these patterns are most similar for stations within the

same segment of the river, regarding both data and pre-

dictions, where prediction intervals often overlap or are

near to each other, along the course of time, as shown in

Fig. 6 and in the Online Resource, Fig. 2. In other loca-

tions, there are typically low values and few measurements.

Therefore, we presume an area as homogeneous, if it is

essentially supplied by stations, which are in the same

situation with regard to their location and their temporal

data pattern. Examples for the homogeneity of data, espe-

cially of such with a decreasing pattern, are shown in

Fig. 8.

On the other hand, there are a few areas with some

supplying stations depending on the contaminated river

Ruhr and some being non-affected (cf., the middle part of

Table 2). An example of an inhomogeneously supplied

area is shown in Fig. 9: Three stations supply the COE_3

area, two of them are dependent on the contaminated river

Fig. 7 NRW water supply areas

combined according to their

potential correlation (i.e., two

areas have relevant ([ 5%)

shares of water from the same

station): A coloured area is

correlated with at least one other

area of the same colour and not

correlated with any area of other

colours. White coloured areas

are not correlated with any other

area
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Ruhr, the third (with a water share of about 40%) is non-

affected.

When reliably double-checking the homogeneity, we are

limited to cases with sufficient amounts of data from the

respective stations or from the area’s water network, rep-

resenting the same periods of time. Larger amounts of

station data are mostly given along the river Ruhr (cf.,

Tables 1 and 2). Network data are rare, especially for the

most interesting period of time. (E.g., there are none for the

interesting case of the inhomogeneous COE_3 area.)

Where available, the range of the network data seems not

to substantially differ from the respective concurrent sta-

tion samples (cf., Fig. 8).

For Ruhr-dependent areas, we combine data from the

respective stations, to search for clusters in the space of

time and values (using the R package EMCluster, Chen

and Maitra 2015). The same is done with network data,

where available. It is not possible to distinguish the data

and (re-)discover the stations in this way.

Another approach to check whether concurrent station

data are distinguishable is a regression model similar to

those in Sect. 3.1 for the combined measurement data of an

area’s supplying stations, with additional dummy variables

representing the stations. For areas completely dependent

on (a section of) the river Ruhr, the resulting station effects

are not significant or at most very weak. For inhomoge-

neous areas, we can find such effects.

Both approaches let us conclude for the vast majority of

water supply areas (cf., the upper and lower part of

Table 2), that there is no evidence against a hypothesis of

homogeneity, where adequate data are available (i.e., some

of the about 30 stations with many data according to

Table 1 are involved). This avoids uncertainty by averag-

ing PFOA concentrations. Perspectively, we are able to fit

joint models to the respective water supply stations,
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respecting those without any data, to obtain estimates for a

whole area’s exposure. Where waters from the river Ruhr

and other sources are involved (about 9 areas according to

Table 2), this situation is more difficult.

4 Discussion and conclusions

Given the potential health risks of PFASs, especially

PFOA, and the contamination incident affecting the rivers

Möhne and Ruhr, we explore the measurement data from

water supply stations and within the drinking water

network.

The data comprise of quite complete series along the

river and only few measurements each at other water

supply stations. For the Ruhr, we observe a steeply

decreasing temporal data pattern at mainly affected stations

and a more diffuse structure upstream; later after the con-

tamination, the decrease is weaker. Elsewhere, there are

usually non-detects.

We are interested in a consistent temporal modelling

approach for comparison of results along the river Ruhr

and later building of joint models. A Gaussian Generalized

Linear Model with an inverse link function turns out to

have the best fit to the data among regression approaches,

hinting to a more than exponential contamination decrease

after the incident. If there are crucial events such like

change points or extreme outliers, a piece-wise regression

is applied.

When exploring the spatial structure of the predictions

from this model, we find the important role of the river

segments (between the main junctions): The PFOA

concentration considerably varies between the Ruhr seg-

ments, but less and without clear trends within, where

station-related effects and minor additional PFOA dis-

charges may prevail.

We are ultimately interested in the residents’ PFOA risk

assessment and, therefore, have to deduce from station

level data and predictions to the water supply areas. We use

an approximate supply proportion matrix obtained from

rough information of the water amounts. Furthermore, from

our exploratory results, we can presume homogeneity of

data from stations along the river Ruhr, supplying the same

areas, and find no evidence against it. Therefore, the

uncertainty when aggregating data in such areas is low. For

those supplied by both the river Ruhr and unaffected sta-

tions, it is higher, but aggregation is possible using weights

from the proportion matrix.

The potential state-wide spatial correlation structure is

explored using the supply proportions. We find one large

region of potentially correlated areas near the river Ruhr,

but also many other supply areas which are isolated or

grouped to small clusters. This information is important to

set up a covariance matrix for usage in spatial models, but

there are still relevant additional dependencies, induced by

river or groundwater connections, which are not directly

included.

Useful predictions are not possible for largely unob-

served regions or periods of time. Extrapolations are

challenges for all methods, especially for the early period

prior to the first measurements in 2006. Yet, the duration of

the Brilon contamination may be estimated to several years

from the fertilizer’s quantity, the drainage, and the
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residents’ internal exposure (Hölzer et al. 2009; Skutlarek

et al. 2006).

A lack of data in vast regions also affects the applica-

bility of comprehensive state-wide smoothing models. As a

preliminary spatio-temporal approach, we have used a

Bayesian conjugate-prior Gamma-Gamma model focussing

on the mean surface to predict PFOA values for any water

supply station, water supply area and point of time; its

uncertainty varies widely according to the presence of data.

So, such models are restricted to temporal analyses and to

stations along the well-observed river Ruhr. Moreover,

water supply areas which are isolated within the supply

relationship structure and additional spatial dependencies

would have to be respected.

Kriging approaches—using the R packages Com-

pRandFld (Padoan and Bevilacqua 2015) and geoR

(Ribeiro et al. 2020)—along the river turn out to be inap-

propriate, too, since they do not respect the river segments,

which dominate the spatial data structure. Furthermore,

even for the well observed river Ruhr, the data are too

sparse to analyse proper variograms, and sometimes the

assumption of isotropy seems violated. Ordinary and uni-

versal Kriging lead to sufficient local estimates when cross-

validated along the river Ruhr, but perform worse near the

Möhnebogen water supply station. It is questionable whe-

ther the continuous Kriging solution is an efficient way to

merely estimate concentrations at discrete, definite stations,

as in our situation.

Topological (Top-) Kriging (using the R package rtop,

Skøien et al. 2014; cf., e.g., Laaha et al. 2014) is designed

for prediction on the level of the rivers’ catchment areas.

This would be useful to model measurements along the

NRW river network, thereby summarizing several stations

each. Nonetheless, with the stations’ values connected to

water supply areal units, it does not seem productive to

introduce a third spatial level. Furthermore, we have no

geographical data on the actual catchment areas.

In general and state-wide, the problems of a varying data

density, up to entirely non-observed regions, and of a

regionally different strength of dependence remain hin-

dering for all Kriging approaches. For the river Ruhr, the

rather complicated models, especially Top-Kriging, seem

exaggerated for an ‘linear’ spatial river structure. There-

fore, we drop these approaches because of the non-suit-

able spatial data structure. For problems of the performance

of spatial methods, especially (Top-)Kriging, compared to

regression approaches for river-related catchment area

data, see, e.g., Brunner et al. (2018).

Our station-wise regression results lead to the perspec-

tive to combine the temporal regression models for the

Ruhr data and add a spatial structure. Spatial effects of the

river segments and of the individual water supply

stations—to quantify their influence—may be included

either in a single linear predictor or hierarchically.

Comprehensive spatial models should respect the com-

plex potential state-wide correlation structure. Given the

results in Sect. 3.1, it seems reasonable to focus on the

river segments when building up a neighbourhood structure

of the water supply stations based on their locations along

the NRW river network.

Within our PerSpat project, a fixed correlation matrix

of the water supply areas based on river dependency and

the estimated station-to-area-supply proportions is initially

used to apply an algorithm solving a realignment problem

(Kohlenbach 2019) and also for the preliminary smoothing

approaches. In the future, river-induced correlations may

be estimated from the Ruhr data.

Spatial correlations caused by groundwater may be

relevant, too, and, therefore, are possible extensions of the

neighbourhood structure. The existence of several con-

tamination sources should be taken into account, too.

With our data amount, all such models are reliable only

for the river Ruhr, but generally applicable to all main

rivers of the state. Our modelling approaches are trans-

ferable to other or more complex river systems and to other

substances solute in water or to similar scenarios.

Predicted PFOA concentrations in drinking water will

be used in further phases of our PerSpat project to estimate

PFOA concentrations in plasma of NRW residents,

depending on time and place of residence, and for the

analysis of health related data from the state-wide birth

registry.
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