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Abstract
In many situations, it is crucial to estimate the variance properly. Ordinary variance 
estimators perform poorly in the presence of shifts in the mean. We investigate an 
approach based on non-overlapping blocks, which yields good results in change-
point scenarios. We show the strong consistency and the asymptotic normality of 
such blocks-estimators of the variance under independence. Weak consistency is 
shown for short-range dependent strictly stationary data. We provide recommenda-
tions on the appropriate choice of the block size and compare this blocks-approach 
with difference-based estimators. If level shifts occur frequently and are rather large, 
the best results can be obtained by adaptive trimming of the blocks.

Keywords  Blockwise estimation · Change-point · Trimmed mean

1  Introduction

We consider a sequence of random variables Y1,… , YN generated by the model

Most of the time we assume that X1,… ,XN are i.i.d. random variables with 
E
(
Xt

)
= � and Var

(
Xt

)
= �2 , but this will be relaxed occasionally to allow for a 

short-range dependent strictly stationary sequence. The observed data y1,… , yN 
are affected by an unknown number K of level shifts of possibly different heights 
h1,… , hK at different time points t1,… , tK . Our goal is the estimation of the vari-
ance �2 . Without loss of generality, we will set � = 0 in the following.

(1)Yt = Xt +

K∑

k=1

hkIt≥tk .
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In Sect. 2 we analyse estimators of �2 from the sequence of observations (Yt)t≥1 by 
combining estimates obtained from splitting the data into several blocks. Without the 
need of explicit distributional assumptions the mean of the blockwise estimates turns 
out to be consistent if the size and the number of blocks increases, and the number 
of jumps increases slower than the number of blocks. If many jumps in the mean are 
expected to occur, an adaptively trimmed mean of the blockwise estimates can be used, 
see Sect. 3. In Sect. 4 a simulation study is conducted to assess the performance of the 
proposed approaches. In Sect. 5 the estimation procedures are applied to real data sets, 
while Sect. 6 summarizes the results of this paper.

2 � Estimation of the variance by averaging

When dealing with independent identically distributed data the sample variance is the 
common choice for estimation of �2 . However, if we are aware of a possible presence 
of level shifts at unknown locations, it is reasonable to divide the sample Y1,… , YN 
into m non-overlapping blocks of size n = ⌊N∕m⌋ and to calculate the average of the m 
sample variances derived from the different blocks. A similar approach has been used 
in Dai et al. (2015) in the context of repeated measurements data and in Rooch et al. 
(2019) for estimation of the Hurst parameter.

The blocks-estimator �̂2
Mean of the variance investigated here is defined as

where S2
j
=

1

n−1

∑n

t=1
(Yj,t − Yj)

2,   Yj =
1

n

∑n

t=1
Yj,t and Yj,1,… , Yj,n are the observa-

tions in the jth block. We are interested in finding the block size n which yields a 
low mean squared error (MSE) under certain assumptions.

In what follows, we will concentrate on the situation where all jump heights are pos-
itive. This is a worse scenario than having both, positive and negative jumps, since the 
data are more spread in the former case resulting in a larger positive bias of most scale 
estimators.

2.1 � Asymptotic properties

We will use some algebraic rules for derivation of the expectation and the variance of 
quadratic forms in order to calculate the MSE of �̂2

Mean , see Seber and Lee (2012). 
Let B be the number of blocks with jumps in the mean and K ≥ B the total number of 
jumps. The expected value and the variance of �̂2

Mean are given as follows:

(2)�̂2
Mean =

1

m

m∑

j=1

S2
j
,
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where �4 = E
(
X4
1

)
, A = �n −

1

n
1n1

T
n
 , �n is the unit matrix, 1n = (1,… , 1)T and �j con-

tains the expected values of the random variables in the perturbed block j = 1,… ,B , 
i.e., �j = (�j,1,… ,�j,n)

T = (E(Yj,1),… ,E(Yj,n))
T . The term �T

j
A�j∕(n − 1) is the 

empirical variance of the expected values E(Yj,1),… ,E(Yj,n) in block j. In a jump-
free block, we have �T

j
A�j = 0 , since all expected values and therefore the elements 

of �j are equal.
The blocks-estimator (2) estimates the variance consistently if the number of 

blocks grows sufficiently fast as is shown in Theorem 1.

Theorem 1  Let Y1,… , YN with Yt = Xt +
∑K

k=1
hkIt≥tk from Model (1) be segregated 

into m blocks of size n, where t1,… , tK are the time points of the jumps of size 
h1,… , hK , respectively. Let B out of m blocks be contaminated by K̃1,… , K̃B jumps, 
respectively, with 

∑B

j=1
K̃j = K = K(N) . Moreover, let E(|X1|4) < ∞ , 

K
�∑K

k=1
hk

�2

= o(m) and m → ∞ , whereas the block size n can be fixed or increas-
ing as N → ∞ . Then �̂2

Mean =
1

m

∑m

j=1
S2
j
→ �2 almost surely.

Proof  Without loss of generality assume that the first B out of m blocks are contami-
nated by K̃1,… , K̃B jumps, respectively. Let the term S2

j,0
 denote the empirical vari-

ance of the uncontaminated data in block j, while S2
j,h

 is the empirical variance when 
K̃j level shifts are present. Moreover, Yj,1,… , Yj,n are the observations in the jth 
block, �j,t = E

(
Yj,t

)
 and �j =

1

n

∑n

t=1
E
�
Yj,t

�
 . Then we have

For the second term in the last Eq. (3), we have almost surely

E
(
�̂2

Mean

)
= �2 +

1

m(n − 1)

B∑

j=1

�T
j
A�j,

Var
(
�̂2

Mean

)
=

1

m

(
�4
n

−
�4(n − 3)

n(n − 1)

)
+

4�2

m2(n − 1)2

B∑

j=1

�T
j
A�j,

(3)

�̂2
Mean =

1

m

m∑

j=1

S2
j
=

1

m

m∑

j=B+1

S2
j,0
+

1

m

B∑

j=1

S2
j,h

=
1

m

m∑

j=B+1

S2
j,0
+

1

m

B∑

j=1

1

n − 1

n∑

t=1

(
Xj,t + �j,t − Xj − �j

)2

=
1

m

m∑

j=1

S2
j,0
+

1

m

B∑

j=1

2

n − 1

n∑

t=1

(Xj,t − Xj)(�j,t − �j)

+
1

m

B∑

j=1

1

n − 1

n∑

t=1

(
�j,t − �j

)2
.
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The term 1
B

∑B

j=1

1

n

∑n

t=1

���(Xj,t − Xj)
��� in (4) is a random variable with finite moments 

if n and B are fixed. This random variable converges to the term 
E
�

1

n

∑n

t=1

���(Xj,t − Xj)
���
�
 almost surely if B → ∞ . In the case of B → ∞ and n → ∞ 

this term converges to E
(
|X1|

)
 almost surely due to Theorem 2 of Hu et al. (1989) 

and the condition E(|X1|4) < ∞ , since S2
j
− E

(
S2
j

)
 are uniformly bounded with 

P(|S2
j
− E

(
S2
j

)
| > t) → 0∀t due to Chebyshev’s inequality and Var(S2

j
) → 0 . More-

over, we used the fact that B���
∑K

k=1
hk
��� ≤ K

���
∑K

k=1
hk
��� = o(m).

The following is valid for the third term in (3):

The first term of the last equation in (3) converges almost surely to �2 due to the 
results on triangular arrays in Theorem 2 of Hu et al. (1989), assuming that the con-
dition E(|X1|4) < ∞ holds, since S2

j
− E

(
S2
j

)
 are uniformly bounded with 

P(|S2
j
− E

(
S2
j

)
| > t) → 0∀t due to Chebyshev’s inequality and Var(S2

j
) → 0 . Appli-

cation of Slutsky’s Theorem proves the result. 	�  ◻

Remark 2 

1.	 If the jump heights are bounded by a constant h ≥ hk, k = 1,… ,K, the strongest 
restriction arises if all heights equal this upper bound resulting in the constraint 
K
�∑K

k=1
hk

�2

= K3h2 = o(m) . Consistency is thus guaranteed if the number of 
blocks grows faster than K3.

(4)

||||||

2

m(n − 1)

B∑

j=1

n∑

t=1

(Xj,t − Xj)(�j,t − �j)

||||||

≤
2

m(n − 1)

B∑

j=1

n∑

t=1

|||(Xj,t − Xj)
|||
|||(�j,t − �j)

|||

≤
2

m(n − 1)

B∑

j=1

n∑

t=1

|||(Xj,t − Xj)
|||

||||||

K∑

k=1

hk

||||||

= B

||||||

K∑

k=1

hk

||||||

2

m

n

n − 1

1

B

B∑

j=1

1

n

n∑

t=1

|||(Xj,t − Xj)
||| ⟶ 0.

1

m

B∑

j=1

1

n − 1

n∑

t=1

(
�j,t − �j

)2
≤

1

m

B∑

j=1

1

n − 1

n∑

t=1

(
K∑

k=1

hk

)2

=
B

m

n

n − 1

(
K∑

k=1

hk

)2

⟶ 0.
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2.	 By the Central Limit Theorem, the estimator �̂2
Mean is asymptotically normal if 

no level shifts are present and the block size n is fixed. Its asymptotic efficiency 
relative to the ordinary sample variance is 

in case of i.i.d data with finite fourth moments, where 

(see Angelova (2012) for the variance Var(S2
1
) of the sample variance). 

E.g., under normality the efficiency of the blocks estimater with fixed n is 
(n − 1)n−1 < 1.

3.	 The asymptotic efficiency of the blocks-estimator relative to the sample variance 
is 1 if n → ∞.

The next Theorem shows that �̂2
Mean is asymptotically not only normal but even 

fully efficient in case of a growing block size.

Theorem 3  Assume that the i.i.d. random variables Y1,… , YN are segregated into 
m blocks of size n, with m, n → ∞ such that m = o(n), n = o(N) . Moreover, assume 
that 𝜈4 = E

(
X4
1

)
< ∞ . Then we have

Proof  Rewriting the estimator �̂2
Mean we get

For the second term of the numerator in (5), we have that

Var(S2)

Var
(
�̂2

Mean

) =

�4
N
−

�4(N−3)

N(N−1)

1

m

(
�4
n
−

�4(n−3)

n(n−1)

) =
�4 −

�4(N−3)

(N−1)

�4 −
�4(n−3)

(n−1)

N→∞
⟶

�4 − �4

�4 −
�4(n−3)

(n−1)

Var
(
�̂2

Mean

)
= Var

(
1

m

m∑

j=1

S2
j

)
=

1

m
Var

(
S2
1

)
=

1

m

(
�4
n

−
�4(n − 3)

n(n − 1)

)

√
N
�
�̂2

Mean − �2
�

d
⟶ N

�
0, �4 − �4

�
.

(5)

�̂2
Mean − �2

�
Var

�
�̂2

Mean

� =

1

m(n−1)

∑m

j=1

∑n

t=1

�
Xj,t − Xj

�2

− �2

�
1

m

�
�4
n
−

�4(n−3)

n(n−1)

�

=
√
N

1

m(n−1)

∑m

j=1

∑n

t=1
X2
j,t
−

n

m(n−1)

∑m

j=1
X
2

j
− �2

�
�4 −

�4(n−3)

n−1

.
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since m = o(n) . Convergence of the term (6) in mean implies convergence in prob-
ability to zero. Application of the Central Limit Theorem to the remaining terms of 
(5) yields the desired result. 	�  ◻

Remark 4  In the proof of Theorem 3, we have assumed that m = o(n) , i.e., the block 
size grows faster than the number of blocks. This condition can be dropped using 
the Lyapunov condition under the assumption of finite eighth moments, as will be 
shown in the following. We set

with E(Ti,j) = 0 and 
∑mi

j=1
E(T2

i,j
) = 1 ∀i, where i denotes the ith row of the triangular 

array. The Lyapunov condition [see corollary 1.9.3 in Serfling (1980)] is the 
following:

With � = 2 and existing moments �1,… , �8 of X1 we get

where g is a function of the existing moments �1,… , �8 with g(�1,… , �8) = O(1) . 
See Angelova (2012) for the fourth central moment of the sample variance. There-
fore, the condition m = o(n) can be dropped.

(6)
E

�������

√
N

n

m(n − 1)

m�

j=1

X
2

j

������

�
=

√
N

m

n

n − 1

m�

j=1

E
�
X
2

j

�
=
√
N

n

n − 1

�2

n

=
√
mn

n

n − 1

�2

n
=

�
m

n

n

n − 1
�2

→ 0,

Ti,j =
S2
i,j
− �2

√
mi

ni

(
�4 −

�4(ni−3)

ni−1

) ,

∃𝛿 > 0 ∶ lim
i→∞

mi∑

j=1

E
(
|Ti,j|2+𝛿

)
= 0

mi∑

j=1

E
(
|Ti,j|4

)
=

mi∑

j=1

1

m2
i

n2
i

(
�4 −

�4(ni−3)

ni−1

)2
⋅ E

((
S2
i,j
− �2

)4
)

=
mi

m2
i

n2
i

(
�4 −

�4(ni−3)

ni−1

)2
⋅ O

(
1

n2
i

)
⋅ g(�1,… , �8)

= o

(
1

mi

)
→ 0,
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2.2 � Choice of the block size

When choosing blocks of length n = 2 , the estimator �̂2
Mean

 results in a difference-
based estimator which considers ⌊N∕2⌋ consecutive non-overlapping differences:

Difference-based estimators have been considered in many papers, see Von Neu-
mann et al. (1941), Rice (1984), Gasser et al. (1986), Hall et al. (1990), Dette et al. 
(1998), Munk et al. (2005), Tong et al. (2013), among many others. Dai and Tong 
(2014) discussed estimation approaches based on differences in nonparametric 
regression context, Wang et  al. (2017) considered an estimation technique which 
involves differences of second order, while Tecuapetla-Gómez and Munk (2017) 
proposed a difference-based estimator for m-dependent data. An ordinary difference-
based estimator of first order, which considers all N − 1 consecutive differences, is 
[see, e.g., Von Neumann et al. (1941)]:

where A = ÃTÃ and Ã such that ÃY =
(
Y2 − Y1,… , YN − YN−1

)T
. Theorems 1.5 and 

1.6 in Seber and Lee (2012) are used to calculate the expectation and the variance of 
the estimator �̂2

Diff:

where � = E(Y) , �i = E
(
Xi
1

)
 and a is a vector of the diagonal elements of A.

When no changes in the mean are present both, the difference-based and the 
averaging estimators, are unbiased. For the variance of the estimators we have

For example, for N = 100 and a block size n = 10, we get Var
(
�̂2

Mean

)
= 0.0222 , 

while Var
(
�̂2

Diff

)
= 0.0302 . Therefore, when no changes in the mean are present 

the block-estimator can have smaller variance than the difference-based estimator. In 
Sect.  4 we compare the performance of the proposed estimation procedures with 
that of the difference-based estimator (7) in different change-point scenarios.

�̂2
Mean,n=2 =

1

2⌊N∕2⌋

⌊N∕2⌋�

j=1

�
Y2j − Y2j−1

�2
.

(7)�̂2
Diff =

1

2(N − 1)

N−1∑

j=1

(
Yj+1 − Yj

)2
=

1

2(N − 1)
YTAY ,

E
(
�̂2

Diff

)
= �2 +

1

2(N − 1)
�TA�,

Var
(
�̂2

Diff

)
=

1

4(N − 1)2

(
�4(4N − 6) + 2�4 + 4�2�TA2� + 4�3�

TAa
)
,

Var
(
�̂2

Diff

)
= �4

4N − 6

4(N − 1)2
+

�4

2(N − 1)2
,

Var
(
�̂2

Mean

)
=

�4
N

−
�4(n − 3)

N(n − 1)
.
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In the following, we investigate the proper choice of the block size for the estima-
tor �̂2

Mean . All calculations in this paper have been performed with the statistical 
software +R+, version 3.5.2, R Core Team (2018).

For known jump positions the MSE of the blocks-variance estimator �̂2
Mean 

can be determined analytically. The position of the jump is relevant for the perfor-
mance of this approach. Therefore, it is reasonable to consider different positions 
of the K jumps to get an overall assessment of the performance of the blocks-esti-
mator. For every K ∈ {1, 3, 5} , we generate K jumps of equal heights h = � ⋅ � , 
with � ∈ {0, 0.1, 0.2,… , 4.9, 5} , at positions sampled randomly from a uniform 
distribution on the values maxn (N − ⌊N∕n⌋n) + 1,… ,N −maxn (N − ⌊N∕n⌋n) 
without replacement, and calculate the MSE for every reasonable block size 
n ∈ {2, 3, 4,… , ⌊N∕2⌋} . This is repeated 1000 times, leading to 1000 MSE values 
for every h and n based on different jump positions. The average of these MSE val-
ues is taken for each h and n. Data are generated from the standard normal or the t5
-distribution.

Panel (a) of Fig.  1 shows the block size nopt which yields the least theoretical 
MSE value of the estimator �̂2

Mean depending on the jump height h = � ⋅ � with 
K ∈ {1, 3, 5} jumps for N = 1000 observations and normal distribution. We observe 
that nopt decreases for �̂2

Mean as the jump height grows. Blocks of size 2 (resulting in 
a non-overlapping difference-based estimator) are preferred when h ≈ 4� and K = 5 , 
while larger blocks lead to better results in case of smaller or less jumps.
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Fig. 1   a MSE-optimal block length nopt of �̂2
Mean , b MSE regarding nopt of �̂2

Mean and c MSE of 

�̂2
Mean when choosing n =

√
N

K+1
 for K = 1 (solid line), K = 3 (dashed line) and K = 5 (dotted line) with 

N = 1000 , Y
t
= X

t
+
∑K

k=1
hI

t≥t
k
 , where X

t
∼ N(0, 1) and h = � ⋅ �, � ∈ {0, 0.1,… , 5}.
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Panel (b) of Fig. 1 depicts the MSE of �̂2
Mean for the respective MSE-optimal 

block size nopt . In all three scenarios the MSE increases if the jump height gets 
larger. Different values for the optimal block size nopt are obtained in different 
scenarios, i.e., for different K and h = � ⋅ � . As the true number and height of the 
jumps in the mean are usually not known in practice, we wish to choose a block 
size which yields good results in many scenarios. We do not consider very high 
jumps any further, since they can be detected easily and are thus not very interest-
ing. The square root of the sample size N has proven to be a good choice for the 
block size in many applications, see e.g. Rooch et  al. (2019). Moreover, in the 
upper panel of Fig. 1, we observe that smaller block sizes n are preferred when 
the number of change-points is high. If the estimation of the variance is in the 
focus of the application, we suggest to choose the block size depending on K:

which gets smaller if the number of jumps increases, resulting in many jump-free 
and only few contaminated blocks. Otherwise, if testing is of interest in view of The-
orem  3, we suggest a block size which grows slightly faster than 

√
N , e.g. 

n = max
{⌊

N6∕10

K+1

⌋
, 2
}

 , which yields similar results as (8).

Remark 5  For large N we get m = N∕n =
√
N(K + 1) . In this case the number of 

jumps needs to satisfy K = o
(
m1∕3

)
= o

(
N1∕6K1∕3

)
 , i.e., K = o

(
N1∕4

)
 can be tol-

erated, see Remark  2. An even larger rate of shifts can be tolerated by choosing 
m = N∕c for some constant c, i.e., a fixed block length n. However, this reduces 
the efficiency of the resulting estimator in the presence of a small rate of shifts, see 
Fig.  1. For example, for the standard normal distribution, the asymptotic relative 
efficiency of the blocks-estimator �̂2

Mean is (n − 1)n−1 < 1 and that of the difference-
based estimator [as defined in (7)] is 2/3 [see e.g. Seber and Lee (2012)].

Panel (c) of Fig. 1 shows the MSE of the estimator �̂2
Mean with the block size 

n chosen according to (8). For K ∈ {3, 5} there is only a moderate loss of per-
formance when choosing n according to (8) instead of nopt which depends on the 
number of jumps K and the height h = � ⋅ � . In case of K = 1 change in the mean 
the performance of the blocks-estimator worsens slightly.

Table 1 shows the average MSE of the ordinary sample variance for normally 
distributed data and different values of K and h, with N = 1000 . Again, 1000 sim-
ulation runs are performed where jumps are added to the generated data at ran-
domly chosen positions. We observe that the MSE becomes very large when the 
number and height of the level shifts increases. Obviously, the blocks-estimator 
�̂2

Mean performs much better than the sample variance.
The results for data from the t5-distribution are similar to those obtained for 

the normal distribution, see Fig.  7 in “Appendix.” Again, the blocks-estimator 
with the block size (8) [Panel (c)] performs well and does not lose too much 
performance compared to Panel (b) of Fig.  7, where the optimal block size is 

(8)n = max

�� √
N

K + 1

�
, 2

�
,
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considered. Similar results are obtained for N = 2500 , see Figs.  9 and 10 in 
“Appendix”.

As the number of change-points K is not known exactly in real applications, there 
are several possibilities to set K in formula (8): 

1.	 Use n = max
�� √

N

K+1

�
, 2
�

 with a large guess on the value of K.
2.	 Pre-estimate K with an appropriate procedure.
3.	 Use prior knowledge about plausible values of K.

We will discuss the first two approaches in the following two subsections.

2.3 � Using a large guess on the number of jumps

If many change-points are present, a small block size should be chosen, while larger 
blocks are preferred in the case of only a few level shifts. If a practitioner does not 
have knowledge about the number of jumps in the mean we recommend choosing a 
rather high value K in the formula (8), which results in small blocks. Doing so we 
are usually on the safe side, since choosing too few blocks can result in a very high 
MSE, while the performance of the estimator does not worsen so much when choos-
ing many blocks.

As an example we generate 1000 time series of length N = 1000 with K = 3 
jumps at random positions. Figure  2 shows the MSE of �̂2

Mean depending on the 
jump height h = ��, � ∈ {0, 0.1,… , 5}, when choosing n =

√
N

K+1
 with values 

K ∈ {0, 1,… , 6} . We observe that choosing a too small number of blocks (i.e., a too 
large block size) results in large MSE values if the jumps are rather high. On the 
other hand, the results do not worsen as much when choosing unnecessarily many 
and thus small blocks. Figure  8 in “Appendix” shows similar results for K = 5 
jumps.

Choosing n = 2 results in a non-overlapping difference-based estimator which 
performs also well but loses efficiency compared to the block-estimator with grow-
ing block size, which can be fully efficient, see Remarks 2 and 5.

We will not consider the block-estimator with the block size n depending on the 
choice of some large value of K instead of the true one in the following investiga-
tion, since it is a subjective choice of a practitioner.

Table 1   MSE of the sample variance for normally distributed data and different K and h, N = 1000

K h

0 1 2 3 4 5

1 0.0020 0.0362 0.5404 2.7202 8.5845 20.9459
3 – 1.1540 18.3869 93.0310 293.9704 717.6425
5 – 6.7829 108.3786 548.5482 1733.5569 4232.1758



427

1 3

On variance estimation under shifts in the mean﻿	

2.4 � Pre‑estimation of the number of jumps

We will investigate the MOSUM procedure for the detection of multiple change-
points proposed by Eichinger and Kirch (2018) to pre-estimate the number of 
change-points K. According to the simulations in the aforementioned paper, this 
procedure yields very good results in comparison with many other procedures for 
change-point estimation. We will describe the procedure briefly in the following.

At time point t a statistic Tt,N is calculated as

where G = G(N) is a bandwidth parameter and G ≤ t ≤ N − G . In what follows, 
we will set the bandwidth parameter to G =

√
N . The estimated number of change-

points K̂ is the number of pairs (vi,wi) which fulfil

Tt,N(G) =
1√
2G

� t+G�

i=t+1

Yi −

t�

t−G+1

Yi

�
,

|Tt,N(G)|
�𝜏t,N

≥ DN(G, 𝛿N) for t = vi,… ,wi

|Tt,N(G)|
�𝜏t,N

< DN(G, 𝛿N) for t = vi − 1,wi + 1

wi − vi ≥ 𝜂G with0 < 𝜂 < 1∕2arbitrary but fixed,
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Fig. 2   MSE of �̂2
Mean when choosing n =

√
N

K+1
 for true K = 3 (—), K = 0 ( ) K = 1 (- - -)  

K = 2 (· · · ·) K = 4 (- · -) K = 5 (– – –) and K = 6 (– - –) with N = 1000 and 

h = � ⋅ �, � ∈ {0, 0.1,… , 5} , Y
t
= X

t
+
∑3

k=1
hI

t≥t
k
 , where a X

t
∼ N(0, 1) and b X

t
∼ t3
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where DN(G, �N) is a critical value depending on the bandwidth parameter G and 
a sequence �N → 0 and �̂2t,N is a local estimator of the variance at location t. In a 
window of length 2G, the location t is treated as a possible change-point location. A 
mean correction is performed before and after the time point t for computing �̂2t,N.

The corresponding estimated change-point locations t̂1,… , t̂
K̂

 are

More information on the procedure can be found in Eichinger and Kirch (2018).
We will use the MOSUM procedure to estimate the number of change-points K in 

the formula (8) for the block size n. The corresponding blocks-estimator is denoted 
as �̂2

mosum

Mean
 . In Sect. 4 we will see that the performance of the two blocks-estimators 

�̂2
Mean [as defined in (2)] and �̂2

mosum

Mean
 is similar in many cases.

Moreover, we introduce another estimation procedure which is fully based on the 
MOSUM method, for comparison. We divide the data into K̂ + 1 blocks at the esti-
mated locations t̂1,… , t̂

K̂
 of the level shifts. In every block j = 1,… , K̂ + 1, the 

empirical variance S2
j
 is calculated. A weighted average �̂2

mosum

W
 of those values can 

be computed to estimate the variance, i.e.,

where nj is the size of block j = 1,… , K̂.

2.5 � Extension to short‑range dependent data

Since many real datasets exhibit autocorrelation, we investigate the averaging esti-
mation procedure under dependence. We consider a strictly stationary linear process 
(Xt)t≥1 with Xt =

∑∞

i=0
�i�t−i , where �t are i.i.d. with mean zero and finite variance 

and (�i)i≥0 is a sequence of constants with 
∑∞

i=0
𝜓i < ∞ . The autocovariance func-

tion is defined as �(�) = E((Xt − E(Xt))(Xt+� − E(Xt+�))), � ∈ ℕ , and is absolutely 
summable in this case, i.e., 

∑∞

𝛿=0
�𝛾(𝛿)� < ∞.

Theorem 6  Consider a strictly stationary linear process (Xt)t≥1 with an absolutely 
summable autocovariance function and Yt = Xt +

∑K

k=1
hkIt≥tk , i.e., data with K level 

shifts. Moreover, let K
�∑K

k=1
hk

�2

= o(m log(N)−1) . Then �̂2
Mean =

1

m

∑m

j=1
S2
j
→ �2 

in probability.

t̂i = arg max
vi≤t≤wi

|Tt,N(G)|
�̂t,N

.

(9)�̂2
mosum

W
=

K̂∑

j=1

nj

N
S2
j
,
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Proof  Without loss of generality assume that the first B ≤ K out of m blocks are per-
turbed by K jumps in the mean. Furthermore, let � = E(Xj,t) ∀j, t , �j,t = E

(
Yj,t

)
 and 

�j =
1

n

∑n

t=1
E
�
Yj,t

�
 . Let the term S2

j,0
 denote the empirical variance of the uncontam-

inated data Xj,1,… ,Xj,n in the block j = 1,… ,m , while S2
j,h

 is the empirical variance 
in the perturbed block j = 1,… ,B.

Then

For the first term A1,N of (10), we have:

(10)

P
(|||
�𝜎2

Mean − 𝜎2||| > 𝜖
)
= P

(||||||

1

m

m∑

j=B+1

S2
j,0
+

1

m

B∑

j=1

S2
j,h
− 𝜎2

||||||
> 𝜖

)

= P

(||||||

1

m

m∑

j=B+1

S2
j,0
+

1

m

B∑

j=1

S2
j,0

+
1

m

B∑

j=1

2

n − 1

n∑

t=1

(Xj,t − Xj)(𝜇j,t − 𝜇j)

+
1

m

B∑

j=1

1

n − 1

n∑

t=1

(
𝜇j,t − 𝜇j

)2
− 𝜎2

||||||
> 𝜖

)

= P

(||||||

1

m

m∑

j=1

S2
j,0
− 𝜎2 +

1

m

B∑

j=1

2

n − 1

n∑

t=1

Xj,t(𝜇j,t − 𝜇j)

+
1

m

B∑

j=1

1

n − 1

n∑

t=1

(
𝜇j,t − 𝜇j

)2
||||||
> 𝜖

)

≤ P

(||||||

1

m

m∑

j=1

S2
j,0
− 𝜎2

||||||
>

𝜖

3

)

+ P

(||||||

1

m

B∑

j=1

2

n − 1

n∑

t=1

Xj,t(𝜇j,t − 𝜇j)

||||||
>

𝜖

3

)

+ P

(
1

m

B∑

j=1

1

n − 1

n∑

t=1

(
𝜇j,t − 𝜇j

)2
>

𝜖

3

)

=∶ A1,N + A2,N + A3,N
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The first term of (11) converges to zero, since the term 1
N

∑m

j=1

∑n

t=1
(Xj,t − �)2 is a 

consistent estimator of �2 and N

m(n−1)
=

N

N−m
→ 1 . For the second term of (11) we 

have

due to absolute summability of the autocovariance function � , which implies con-
vergence in probability. Therefore, the second term of (11) converges to zero. Alto-
gether, the sum (11) converges to zero.

The second and the third terms A2,N and A3,N of (10) converge to zero due to the 
following considerations:

(11)

A1,N = P

(||||||

1

m

m∑

j=1

S2
j,0
− 𝜎2

||||||
>

𝜖

3

)

= P

(||||||

1

m

m∑

j=1

1

n − 1

n∑

t=1

(Xj,t − Xj)
2 − 𝜎2

||||||
>

𝜖

3

)

= P

(||||||

1

m

m∑

j=1

1

n − 1

n∑

t=1

(Xj,t − 𝜇)2 +
1

m

m∑

j=1

n

n − 1
(𝜇 − Xj)

2

+
2

m(n − 1)

m∑

j=1

n∑

t=1

(Xj,t − 𝜇)(𝜇 − Xj) − 𝜎2

||||||
>

𝜖

3

)

≤ P

(||||||

N

m(n − 1)

1

N

m∑

j=1

n∑

t=1

(Xj,t − 𝜇)2 − 𝜎2

||||||
>

𝜖

6

)

+ P

(||||||
−

n

m(n − 1)

m∑

j=1

(Xj − 𝜇)2
||||||
>

𝜖

6

)

E

�������
−

n

m(n − 1)

m�

j=1

(Xj − �)2
������

�
=

n

m(n − 1)

m�

j=1

E
�
(Xj − �)2

�

=
n

m(n − 1)

m�

j=1

Var(Xj) ≤
n

(n − 1)

�(0) + 2
∑∞

i=1
�(i)

n

⟶ 0,
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due to absolute summability of the autocovariance function � and the condition 
K
�∑K

k=1
hk

�2

= o(m log(N)−1) . Therefore, the term A2,N converges to zero in rth 
mean with r = 2 , which implies convergence in probability. The argument in the 
probability A3,N is deterministic. Set �N = log(N)−1. For large N we have

E

(
1

m

B∑

j=1

2

n − 1

n∑

t=1

Xj,t(�j,t − �j)

)

=
1

m

B∑

j=1

2

n − 1

n∑

t=1

E(Xj,t)(�j,t − �j)

=
1

m

B∑

j=1

2�

n − 1

n∑

t=1

(�j,t − �j) = 0

Var

(
1

m

B∑

j=1

2

n − 1

n∑

t=1

Xj,t(�j,t − �j)

)

=
4

m2(n − 1)2
Var

(
B∑

j=1

n∑

t=1

Xj,t(�j,t − �j)

)

=
4

m2(n − 1)2
Cov

(
B∑

j=1

n∑

t=1

Xj,t(�j,t − �j),

B∑

l=1

n∑

s=1

Xl,s(�l,s − �l)

)

≤
4

m2(n − 1)2

B∑

j=1

n∑

t=1

B∑

l=1

n∑

s=1

|�j,t − �j||�l,s − �l||Cov(Xj,t,Xl,s)|

≤
4

m2(n − 1)2

(
K∑

k=1

hk

)2 m∑

j=1

n∑

t=1

m∑

l=1

n∑

s=1

|Cov(Xj,t,Xl,s)|

=
4

m2(n − 1)2

(
K∑

k=1

hk

)2(
NVar(X1,1) + 2

N−1∑

u=1

|�(u)|(N − u)

)

≤
4N

m2(n − 1)2

(
K∑

k=1

hk

)2(
Var(X1,1) + 2

∞∑

u=1

|�(u)|
)

⟶ 0,
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since K
�∑K

k=1
hk

�2

= o(m log(N)−1) holds. Altogether we get the result 

�̂2
Mean

p
→ �2 . 	�  ◻

Remark 7  If the jump heights are bounded by a constant h ≥ hk, k = 1,… ,K, the 
strongest restriction arises if all heights equal this upper bound resulting in the con-
straint K3h2 = o

(
m log(N)−1

)
.

3 � Trimmed estimator of the variance

So far we have considered cases where the number of changes in the mean K is 
rather small with respect to the number of the blocks m and thus to the number 
of observations N. However, there might be situations in which level shifts occur 
frequently. Asymptotically, the blocks-estimator �̂2

Mean [see (2)] is still a good 
choice for the estimation of the variance as long as the number of level shifts 
grows slowly, see e.g. Theorem 1. However, if many jumps are present in a finite 
sample the blocks-estimator is no longer a good choice and will become strongly 
biased. We propose an asymmetric trimmed mean of the blockwise estimates 
instead of their ordinary average, i.e., large estimates are removed and the aver-
age value of the remaining ones is calculated. We do not consider a symmetric 
trimmed mean, since the sample variance is positively biased in the presence of 
level shifts, so that estimates from blocks containing a level shift are expected to 
show up as upper outliers. Moreover, we suggest using rather many small blocks 
to account for potentially many level shifts. In the next Sects.  3.1 and 3.2, the 
choice of the trimming fraction is discussed.

3.1 � Estimation with a fixed trimming fraction

The trimmed blocks-estimator is given as

A3,N ≤ P

(
1

m

B∑

j=1

1

n − 1

n∑

t=1

(
𝜇j,t − 𝜇j

)2
>

𝜖N
3

)

= P

(
log(N)

1

m

B∑

j=1

1

n − 1

n∑

t=1

(
𝜇j,t − 𝜇j

)2
>

1

3

)

≤ P

(
log(N)

B

m

n

n − 1

(
K∑

k=1

hk

)2

>
1

3

)

≤ P

(
log(N)

K

m

n

n − 1

(
K∑

k=1

hk

)2

>
1

3

)
= 0,
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where S2
(1)

≤ ⋯ ≤ S2
(m)

 are the ordered blockwise estimates, m is the number of 
blocks and CN,Tr,� is a sample and distribution dependent correction factor to ensure 
unbiasedness in the absence of level shifts. In practice this constant can be simulated 
under the assumption of observing data from a known location-scale family. For 
example, for standard normal distribution, � = 0.2 , N = 1000 and n = 20 ( m = 50 ) 
we generate 1000 samples of length N = 1000 and calculate the average of the 
uncorrected trimmed variance estimates. The reciprocal of this average value yields 
C1000,Tr,0.2 = 1.198.

As an example, we generate 1000 time series of length N ∈ {1000, 2500} 
from normal and t5-distribution. We add K = N ⋅ p jumps to the gener-
ated data at randomly chosen positions, as was done in Sect.  2.2, with 
p ∈ {0, 2∕1000, 4∕1000, 6∕1000, 10∕1000} and height h ∈ {0, 2, 3, 5} . We choose 
n = 20 to ensure that the number of jump-contaminated blocks is sufficiently 
smaller than the total number of blocks.

Table  2 shows the simulated MSE of the trimmed estimator (12) for 
� ∈ {0.1, 0.3, 0.5} . Clearly, the performance of the trimmed estimator depends on 
the number of jumps in the mean and the trimming parameter � . Larger values 
of � are required when dealing with many jumps but lead to an increased MSE if 
there are only a few jumps. Therefore, it is reasonable to choose � adaptively, as 
will be described in the next Sect. 3.2.

3.2 � Adaptive choice of the trimming fraction

Instead of using a fixed trimming fraction, we can choose � adaptively, yielding 
the adaptive trimmed estimator �̂2

Tr,ad with

(12)�̂2
Tr,� = CN,Tr,�

1

m − ⌊�m⌋

m−⌊�m⌋�

j=1

S2
(j)
,

Table 2   Simulated MSE⋅102 
of �̂2

Tr,� for normally and t5
-distributed data with N = 1000 
and different � , h and K 

K h N(0, 1) t5

� = 0.1 � = 0.3 � = 0.5 � = 0.1 � = 0.3 � = 0.5

0 0 0.24 0.28 0.35 2.39 4.56 7.05
2 2 0.28 0.30 0.38 1.89 3.96 6.39

8 0.26 0.28 0.35 1.50 3.51 6.01
4 2 0.35 0.34 0.39 1.49 3.12 5.50

8 0.53 0.43 0.46 1.61 2.76 5.13
6 2 0.54 0.46 0.48 1.22 2.47 4.81

8 2.80 0.54 0.51 8.74 1.99 4.32
10 2 1.14 0.76 0.67 2.03 1.58 3.56

8 69.38 1.04 0.77 199.96 1.43 2.79
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where S2
(1)

≤ ⋯ ≤ S2
(m)

 are the ordered blockwise sample variances and �adapt is the 
adaptively chosen percentage of the blocks-estimates which will be removed.

3.2.1 � Estimation under normality

We use the approach for outlier detection discussed in Davies and Gather (1993) to 
determine �adapt , assuming that the underlying distribution is normal. In this case, 
the distribution of the sample variance is well known, i.e., in block j we have that

Since the true variance �2 is not known, we propose to replace �2 by an appropriate 
initial estimate, such as the median of the blocks-estimates, i.e.,

where CN,Med is a finite sample correction factor. Subsequently, we remove those 
values

which exceed q�2
n−1

,1−�m
 , the (1 − �m)-quantile of the �2

n−1
-distribution, with

We will refer to the adaptively trimmed estimator based on the approach of Davies 
and Gather (1993) under normality as �̂2

norm

Tr,ad
.

The choice of �m results in a probability of 1 − � that no observation (block in our 
case) is trimmed if T1,… , Tm are i.i.d. �2

n−1
-distributed, i.e.,

Furthermore, we expect that roughly m ⋅ �m blocks are trimmed on average in the 
absence of level shifts. The following simulations suggest that the adaptive trim-
ming fraction is slightly larger than �m which can be explained by the fact that we 
need to use an estimate such as �̂2

Med instead of the unknown �2 . We generated 
10,000 sequences of observations of size N ∈ {1000, 2500} for � ∈ {0.05, 0.1} . 
Table 3 shows the average number of trimmed blocks in the absence of level shifts.

(13)�̂2
Tr,ad = CN,Tr,ad

1

m − ⌊�adaptm⌋

m−⌊�adaptm⌋�

j=1

S2
(j)
,

Tj ∶=
(n − 1)S2

j

�2
∼ �2

n−1
.

(14)�̂2
Med = CN,Med ⋅med{S2

1
,… , S2

m
},

(15)T̂j =
(n − 1)S2

j

�̂2
Med

,

(16)�m = 1 − (1 − �)1∕m and � ∈ (0, 1).

P(T1 ≤ q�2
n−1

,1−�m
,… , Tm ≤ q�2

n−1
,1−�m

) =
(
P(T1 ≤ q�2

n−1
,1−�m

)
)m

=
(
1 − �m

)m
=
(
(1 − �)1∕m

)m
= 1 − �.
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We suggest choosing a small block size, e.g. n = 20 , to cope with a possibly large 
number of change-points. In this way, it is ensured that the number of uncontam-
inated blocks is much larger than the number of perturbed blocks. Moreover, we 
choose � = 0.05.

The correction factor in (13) needs to be simulated taking into account that the 
percentage of the omitted block-estimates is no longer fixed. Therefore, for given N 
and � we generate 1000 sequences of observations. In each simulation run we calcu-
late the block-estimates S2

j
, j = 1,… ,m, and the initial estimate of the variance 

�̂2
Med . Subsequently, we remove the values T̂j = (n − 1)S2

j
∕�̂2

Med which exceed the 
quantile q�2

n−1
,1−�m

 . Then the average value of the remaining block-estimates is com-
puted. The procedure yields 1000 estimates. The correction factor is the reciprocal 
of the average of these values. For N = 1000 and � = 0.05 the simulated correction 
factor is C0.05

1000,Tr,ad
= 1.0020 , while for N = 2500 we have C0.05

2500,Tr,ad
= 1.0009 , so 

both are nearly 1 and could be neglected with little loss.

3.2.2 � Estimation under unknown distribution

When no distributional assumptions are made and the block size n is large, one can 
use that 

√
n
�
S2
j
− �2

�
∕
√
�4 − �4 is approximately standard normal if the fourth 

moment exists.
The fourth central moment �4 = E

((
X1 − E(X1)

)4) needs to be estimated prop-
erly in the presence of level shifts. We can estimate it in blocks and then compute 
the median of the blocks-estimates �̂4,Med , as was done in (14). Then, values

which exceed the (1 − �m)-quantile of the standard normal distribution are removed. 
The corresponding adaptively trimmed estimator is denoted as �̂2

other

Tr,ad
 , where, again, 

� = 0.05 [see (16)] will be used in what follows.
Table  4 shows the average number of trimmed blocks in the absence of level 

shifts for normally distributed data, analogously to Table  3. We observe that the 
average number of trimmed block-estimates is much larger than the values for the 
trimming procedure which is based on the normality assumption.

Remark 8  We do not use distribution dependent correction factors for the estimators 
�̂4,Med and �̂2

Med , since the underlying distribution is not known. The asymptotic 

(17)T̂j =
√
n
�
S2
j
− �̂2

Med

�
∕

�
�̂4,Med − �̂2

2

Med
,

Table 3   Average number of 
trimmed blocks in the absence 
of level shifts for normally 
distributed data and different N 

and � for the estimator �̂2
norm

Tr,ad

� N

1000 2500

0.05 0.0647 0.0583
0.1 0.1268 0.1208
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distribution of the blockwise empirical variances is normal and therefore, for large 
block sizes, the distribution is expected to be roughly symmetric. A correction fac-
tor can then be neglected with little loss, since the sample median of symmetrically 
distributed random variables estimates their expected value.

3.3 � Choice of the trimming fraction based on the MOSUM procedure

In Sect. 2.4 we have used the MOSUM procedure proposed by Eichinger and Kirch 
(2018) to estimate the unknown number of jumps K. The corresponding estimate 
K̂ can also be used to determine the trimming fraction � of the trimmed estimator 
in (12), i.e., we can set � = K̂∕m . We will denote the corresponding estimator as 
�̂2

mos

Tr,ad
 . We compare the average number of trimmed blocks for the three estima-

tors �̂2
mos

Tr,ad
 , �̂2

norm

Tr,ad
 and �̂2

other

Tr,ad
 in a simulation study. We generate 1000 sequences of 

observations of length N = 1000 for different values of K and h. To every sequence 
we add K jumps of height h at randomly chosen positions, as was done in Sect. 2.2. 
Table  5 shows the average number of trimmed blocks for data sampled from the 
standard normal distribution and the corresponding MSE in different scenarios. 

Table 4   Average number of 
trimmed blocks in the absence 
of level shifts for normally 
distributed data and different 
values of N and � for the 

estimator �̂2
other

Tr,ad

� N

1000 2500

n = 20

   0.05 1.2327 2.1748
   0.1 1.6007 2.8159

n = 40

   0.05 0.4018 0.6036
   0.1 0.5676 0.8829

Table 5   Average number 
of trimmed blocks ( ̂K ) and 
resulting MSE for normally 
distributed data, N = 1000 and 
different values of K and h 

K h K̂ MSE

�̂2
mos

Tr,ad
�̂2

norm

Tr,ad �̂2
other

Tr,ad
�̂2

mos

Tr,ad
�̂2

norm

Tr,ad �̂2
other

Tr,ad
�̂2

Mean

0 0 0.09 0.11 0.41 0.23 0.23 0.26 0.22
2 2 2.06 0.45 1.38 0.25 0.26 0.29 0.25
2 5 2.06 1.82 2.13 0.24 0.23 0.26 1.20
2 8 2.07 1.96 2.20 0.23 0.23 0.25 6.71
6 2 5.52 1.10 3.05 0.30 0.53 0.47 0.33
6 5 5.63 5.16 5.26 0.29 0.26 0.29 1.91
6 8 5.68 5.51 5.43 0.43 0.23 0.27 11.20
10 2 8.40 1.66 4.20 0.34 1.11 1.11 0.46
10 5 8.72 8.16 7.89 0.37 0.33 0.39 2.18
10 8 8.78 8.72 8.22 0.84 0.27 0.32 11.65
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Moreover, the MSE of the averaging estimator �̂2
Mean is displayed in the table for 

comparison.
We observe that �̂2

mos

Tr,ad
 trims more blocks on average and yields a smaller MSE 

than �̂2
norm

Tr,ad
 and �̂2

other

Tr,ad
 if the jumps are small. The MSE of the averaging estimator 

�̂2
Mean is similar to that of �̂2

mos

Tr,ad
 in that case. As opposed to this, the three trimmed 

estimators trim similarly many blocks on average if the jumps are large, with �̂2
norm

Tr,ad
 

and �̂2
other

Tr,ad
 leading to smaller MSE values than �̂2

mos

Tr,ad
 . This can be explained by the 

fact that the former methods base the decision whether to trim a block or not directly 
on the criterion whether the empirical variance in a block is unusual or not. The 
averaging estimator �̂2

Mean is outperformed by the three trimmed estimators when 
dealing with large jumps.

For the heavy-tailed t5-distribution, the results are found in Table 6. The MOSUM-
based procedure yields slightly better results for large jump heights, i.e., h > 2 , since 
the adaptively trimmed estimators overestimate the number of contaminated blocks 
in many cases. For small jumps, the adaptively trimmed procedures yield smaller 
MSE values. The three trimmed estimators perform better than �̂2

Mean in every case.
The results for the data generated by the AR(1) model with � = 0.5 are displayed 

in Table 7. The MOSUM-based procedure trims considerably more blocks than the 
adaptively trimmed estimators �̂2

norm

Tr,ad
 and �̂2

other

Tr,ad
 yielding higher MSE values. More-

over, the averaging estimator �̂2
Mean is outperformed by the adaptively trimmed esti-

mators �̂2
norm

Tr,ad
 and �̂2

other

Tr,ad
 in every case.

We conclude that the estimators �̂2
norm

Tr,ad
 and �̂2

other

Tr,ad
 perform better when dealing 

with large jumps and normally distributed data. For small jumps less contaminated 
blocks are trimmed by the adaptively trimmed estimators resulting in a higher MSE 
values in many scenarios. In this case the MOSUM-based estimator �̂2

mos

Tr,ad
 yields 

the best results which are similar to those of �̂2
Mean . For heavy-tailed data, the 

MOSUM-based procedure is preferable under large jumps but is inferior to the other 

Table 6   Average number 
of trimmed blocks ( ̂K ) and 
resulting MSE for t5-distributed 
data, N = 1000 and different 
values of K and h 

K h K̂ MSE

�̂2
mos

Tr,ad
�̂2

norm

Tr,ad �̂2
other

Tr,ad
�̂2

mos

Tr,ad
�̂2

norm

Tr,ad �̂2
other

Tr,ad
�̂2

Mean

0 0 0.07 2.04 1.56 2.17 2.98 2.81 2.11
2 2 2.06 2.26 1.85 2.16 2.54 2.33 2.29
2 5 2.05 3.55 2.99 1.63 2.72 2.46 4.01
2 8 2.04 3.73 3.06 1.74 2.90 2.61 8.80
6 2 5.45 2.38 2.26 3.81 1.91 1.91 1.85
6 5 5.57 6.12 5.43 1.98 2.58 2.51 3.93
6 8 5.65 6.86 5.87 2.19 2.78 2.56 15.48
10 2 8.32 2.60 2.79 4.97 1.61 2.94 2.87
10 5 8.64 8.48 7.41 2.04 2.43 3.74 4.57
10 8 8.74 9.63 8.18 2.49 2.53 3.06 13.99
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trimmed estimates if the jumps are small. When dealing with positively correlated 
processes the adaptively trimmed estimators �̂2

norm

Tr,ad
 and �̂2

other

Tr,ad
 perform best. There-

fore, the choice of the most appropriate estimator depends on the knowledge about 
the underlying distribution and the height of the jumps.

In the simulation study in Sect. 4, we concentrate on the adaptively trimmed esti-
mators �̂2

norm

Tr,ad
 and �̂2

other

Tr,ad
 since they yield very good results in many scenarios, and 

on the averaging estimator �̂2
Mean since it performs well when dealing with a few 

small jumps and independent data.

4 � Simulations

In this section we compare the estimators �̂2
Mean , �̂2

Diff , �̂2
Tr,0.5 with the block size 

n = 20 , �̂2
norm

Tr,ad
 with the block size n = 20 and � = 0.05 , �̂2

other

Tr,ad
 with the block size 

n = 40 and � = 0.05 , �̂2
mosum

Mean
 and �̂2

mosum

W
 in different scenarios. We generate 1000 

sequences of observations of length N ∈ {200, 1000, 2500} from the standard normal 
and the t5 distribution. We add K jumps of heights h ∈ {0, 2, 3, 5, 8} to the data at ran-
domly chosen positions as was done in Sect. 2.2. K is chosen dependent on the num-
ber of observations, i.e., K = p ⋅ N with p ∈ {0, 2∕1000, 4∕1000, 6∕1000, 10∕1000}.

Table  8 shows the simulated MSE for the normal distribution. The estimators 
�̂2

Mean and �̂2
mosum

Mean
 yield similar results. We conclude that the estimation of the 

number of jumps K [required in the rule (8)] does not have a large effect on the esti-
mator. The estimators �̂2

Mean and �̂2
mosum

Mean
 yield, the best results if the jump heights 

are not very large, i.e., h ≤ 2 . However, the MSE of taking the ordinary average is 
much larger than that of the other estimators if the jump heights are large. Large 
jumps result in large blockwise estimates, which have a strong impact on the ordi-
nary average.

The trimmed estimator �̂2
norm

Tr,ad
 yields the best results among all methods consid-

ered here for normally distributed data if the jumps are rather high. When many 

Table 7   Average number 
of trimmed blocks ( ̂K ) and 
resulting MSE for data 
generated from the AR(1) model 
with � = 0.5 and N = 1000 for 
different values of K and h 

K h K̂ MSE

�̂2
mos

Tr,ad
�̂2

norm

Tr,ad �̂2
other

Tr,ad
�̂2

mos

Tr,ad
�̂2

norm

Tr,ad �̂2
other

Tr,ad
�̂2

Mean

0 0 5.08 0.66 1.27 6.01 2.69 1.84 1.17
2 2 6.79 1.04 1.84 6.77 2.51 1.64 5.46
2 5 6.47 2.29 2.75 5.94 2.69 1.80 2.65
2 8 6.37 2.48 2.83 5.72 2.72 1.72 1.32
6 2 9.41 1.54 2.82 7.26 1.74 1.16 20.85
6 5 9.00 5.33 5.55 5.43 2.50 1.64 12.41
6 8 8.96 5.80 5.71 5.26 2.58 1.54 3.29
10 2 11.53 1.99 3.65 7.37 1.22 1.04 42.02
10 5 11.26 8.02 7.87 4.72 2.06 1.37 29.70
10 8 11.30 8.92 8.27 4.52 2.40 1.35 13.75
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Table 8   Simulated MSE⋅102 of �̂2
Mean , �̂2

Diff , �̂2
Tr,0.5 , �̂2

norm

Tr,ad
 , �̂2

other

Tr,ad
 , �̂2

mosum

Mean
 and �̂2

mosum

W
 for normally 

distributed data and different sample sizes N, jump heights h ⋅ � and number of jumps K = p ⋅ N with 
p ∈ {0, 2∕1000, 4∕1000, 6∕1000, 10∕1000}

K h �̂2
Mean �̂2

Diff �̂2
Tr,0.5 �̂2

norm

Tr,ad �̂2
other

Tr,ad
�̂2

mosum

Mean
�̂2

mosum

W

N = 200

0 0 1.10 1.51 1.64 1.10 1.38 1.19 0.98
1 2 1.34 1.54 1.77 1.54 1.79 1.29 2.92

3 1.81 1.60 1.87 1.43 1.50 1.73 1.01
5 5.23 2.03 1.94 1.32 1.46 5.00 0.95
8 26.31 4.41 2.01 1.30 1.48 24.27 0.99

2 2 1.56 1.57 2.28 2.15 3.11 1.59 2.13
3 2.25 1.76 2.45 2.13 2.37 2.40 1.11
5 7.15 3.21 2.52 1.55 1.94 7.27 2.40
8 37.09 12.17 2.38 1.34 1.77 40.25 5.95

N = 1000

0 0 0.21 0.30 0.35 0.23 0.27 0.22 0.18
2 2 0.25 0.30 0.38 0.29 0.28 0.27 0.21

3 0.36 0.31 0.35 0.25 0.25 0.40 0.21
5 1.23 0.37 0.36 0.23 0.26 1.28 0.30
8 6.47 0.72 0.35 0.20 0.24 6.69 1.04

4 2 0.29 0.31 0.39 0.39 0.34 0.29 0.23
3 0.46 0.33 0.41 0.38 0.26 0.47 0.30
5 1.79 0.56 0.42 0.25 0.27 1.96 0.79
8 10.40 1.95 0.46 0.24 0.27 10.57 4.48

6 2 0.32 0.32 0.48 0.59 0.49 0.33 0.33
3 0.51 0.38 0.49 0.49 0.35 0.55 0.63
5 2.03 0.87 0.47 0.26 0.27 2.29 2.31
8 11.68 4.01 0.51 0.25 0.28 13.25 15.74

10 2 0.46 0.34 0.67 1.16 1.16 0.40 0.55
3 0.66 0.50 0.71 0.88 0.58 0.71 1.79
5 2.28 1.87 0.72 0.32 0.38 3.07 11.23
8 12.36 10.57 0.77 0.27 0.32 18.10 69.41

N = 2500

0 0 0.08 0.12 0.13 0.08 0.10 0.09 0.08
5 2 0.11 0.12 0.15 0.14 0.11 0.12 0.09

3 0.17 0.13 0.14 0.11 0.10 0.18 0.14
5 0.70 0.18 0.15 0.10 0.10 0.76 0.36
8 4.08 0.53 0.15 0.09 0.10 4.40 2.14

10 2 0.13 0.13 0.17 0.27 0.18 0.13 0.16
3 0.21 0.15 0.19 0.20 0.12 0.24 0.44
5 0.87 0.37 0.21 0.11 0.11 1.02 2.39
8 4.99 1.76 0.18 0.09 0.10 6.43 12.63
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small level shifts are present �̂2
other

Tr,ad
 outperforms �̂2

norm

Tr,ad
 , although the latter makes 

use of the exact normality assumption. The estimator �̂2
other

Tr,ad
 tends to remove more 

block-estimates than �̂2
norm

Tr,ad
 in the absence of level shifts, see Tables  3 and 4. 

Therefore, we also expect that more blocks are trimmed away by �̂2
other

Tr,ad
 if level 

shifts are present, reducing the risk of including perturbed blocks in the trimmed 
estimator �̂2

other

Tr,ad
.

The trimmed estimator �̂2
Tr,0.5 with a fixed trimming fraction also yields good 

results. However, this estimation procedure requires the knowledge of the under-
lying distribution to compute the finite sample correction factor, see Sect.  3.1. 
The difference-based estimator �̂2

Diff performs well as long as the jumps are mod-
erately high.

Table  9 shows the results for the t5 distribution. The estimation procedures 
�̂2

norm

Tr,ad
 and �̂2

other

Tr,ad
 yield the best results in this scenario.

In Table 10 the simulated MSE is presented when the data is generated from 
the autoregressive (AR) model with � = 0.5 , i.e., the data is positively correlated. 
The performance of the difference-based estimator worsens considerably then. 
This is due to the fact that this estimation procedure makes explicit use of the 
assumption of uncorrelatedness. While �̂2

Diff underestimates the true variance 
drastically (resulting in a high MSE value) when no changes in the mean are pre-
sent, the performance seems to improve slightly when dealing with many high 
jumps. This can be explained by the fact that the positive bias, which arises from 
the jumps, compensates for the negative bias which arises from the (incorrect) 
assumption of uncorrelatedness. The blocks-estimator �̂2

Mean exhibits a simi-
lar behaviour, since the block size is small when the number of jumps is high, 
while correlated data require large block sizes to ensure satisfying results. For 
dependent data the best results are obtained when using the adaptively trimmed 
estimators. Since the variance �2 is underestimated when the data are dependent, 
the values T̂j in (15) and (17) get larger resulting in a higher trimming parameter 
�adapt . Therefore, more blocks are trimmed away ensuring that the perturbed ones 
are not involved in the calculation of the overall estimate.

Table 8   (continued)

K h �̂2
Mean �̂2

Diff �̂2
Tr,0.5 �̂2

norm

Tr,ad �̂2
other

Tr,ad
�̂2

mosum

Mean
�̂2

mosum

W

15 2 0.15 0.13 0.23 0.47 0.33 0.15 0.38

3 0.26 0.19 0.27 0.37 0.15 0.27 1.27

5 1.19 0.68 0.28 0.13 0.11 1.27 8.19

8 7.03 3.81 0.24 0.08 0.11 7.54 53.93
25 2 0.21 0.16 0.47 1.22 0.96 0.19 2.00

3 0.39 0.32 0.51 0.94 0.32 0.38 7.90
5 1.86 1.68 0.54 0.17 0.17 1.82 52.63
8 11.14 10.37 0.48 0.11 0.13 11.16 356.78
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Table 9   Simulated MSE⋅102 of �̂2
Mean , �̂2

Diff , �̂2
Tr,0.5 , �̂2

norm

Tr,ad
 , �̂2

other

Tr,ad
 , �̂2

mosum

Mean
 and �̂2

mosum

W
 for t5-dis-

tributed data and different sample sizes N, jump heights h ⋅ � and number of jumps K = p ⋅ N with 
p ∈ {0, 2∕1000, 4∕1000, 6∕1000, 10∕1000}

K h �̂2
Mean �̂2

Diff �̂2
Tr,0.5 �̂2

norm

Tr,ad �̂2
other

Tr,ad
�̂2

mosum

Mean
�̂2

mosum

W

N = 200

0 0 11.56 12.53 7.80 8.16 9.38 10.60 8.93
1 2 12.24 12.62 8.57 7.78 10.85 12.69 17.70

3 13.48 12.80 9.22 8.75 11.63 12.88 11.62
5 23.04 13.98 9.85 8.89 10.49 21.03 9.35
8 79.79 20.62 9.33 8.51 9.86 78.54 10.94

2 2 12.67 12.70 10.82 8.28 17.25 10.50 17.78
3 14.42 13.23 11.72 11.60 27.34 15.19 11.15
5 28.38 17.27 13.08 10.16 31.33 29.36 16.02
8 111.37 42.16 12.35 8.84 16.83 129.94 21.69

N = 1000

0 0 2.26 2.50 1.40 2.24 2.80 1.87 2.01
2 2 2.37 2.51 1.61 1.82 2.38 2.43 2.32

3 2.66 2.53 1.64 1.99 2.65 2.52 1.93
5 5.02 2.69 1.70 2.33 2.88 4.72 2.69
8 20.46 3.68 1.64 2.25 2.60 21.87 3.90

4 2 2.48 2.52 1.80 1.59 2.19 2.06 2.37
3 2.94 2.60 1.94 1.91 2.51 2.98 2.96
5 6.69 3.21 1.86 2.09 2.62 6.59 3.88
8 29.63 7.10 1.82 2.17 2.54 33.05 9.51

6 2 2.56 2.54 2.30 1.64 2.46 2.25 2.42
3 3.09 2.71 2.22 1.86 2.47 2.96 3.37
5 7.34 4.08 2.48 2.05 2.39 7.76 6.59
8 33.98 12.80 2.34 2.06 2.60 39.50 39.14

10 2 2.95 2.61 3.07 2.26 4.61 2.49 3.15
3 3.52 3.07 3.40 2.98 4.90 3.82 6.11
5 7.89 6.86 3.71 2.13 3.17 11.64 26.66
8 35.75 31.04 3.93 2.20 2.89 50.17 175.67

N = 2500

0 0 0.89 1.00 0.58 1.32 1.81 0.83 0.94
5 2 0.97 1.01 0.65 0.79 1.28 0.90 0.79

3 1.15 1.02 0.70 0.99 1.37 1.19 0.87
5 2.67 1.18 0.69 1.20 1.45 2.67 2.14
8 12.06 2.14 0.73 1.25 1.55 12.94 7.97

10 2 1.02 1.02 0.92 0.55 0.93 0.87 1.12
3 1.24 1.09 1.03 0.74 1.20 1.48 2.03
5 3.03 1.70 0.99 1.02 1.23 3.53 6.21
8 14.40 5.56 0.95 1.23 1.38 17.91 36.37
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Figure  3 shows the simulated MSE dependent on the AR-parameter 
� ∈ {0.1,… , 0.8} in four different scenarios: no jumps, few small jumps, many 
small jumps, and many high jumps. We observe that the performance of all estima-
tors �̂2

Mean , �̂2
Diff , �̂2

Tr,0.5 , �̂2
norm

Tr,ad
 , �̂2

other

Tr,ad
 , �̂2

mosum

Mean
 and �̂2

mosum

W
 worsens when the 

strength of the correlation (expressed by the parameter � ) grows. When no changes 
in the mean are present [see Panel (a)] the estimators underestimate the variance 
more as � gets larger. On the other hand, large level shifts result in a positive bias of 
the estimators. Therefore, when many high jumps are present [Panel (d)] the results 
are better than in the case of many small jumps [Panel (c)]. This is more obvious for 
the estimators �̂2

Mean , �̂2
Diff and �̂2

mosum

Mean
 . The trimmed estimation procedures do not 

suffer much from the increasing strength of correlation in our example. The aver-
aging approach �̂2

Mean yields good results if the dependence is rather weak and if 
only few small jumps are present. The performance of the weighted average �̂2

mosum

W
 

worsens drastically when many high jumps are present. During this estimation pro-
cedure, the data are segregated into few blocks at estimated change-point locations. 
The approach is highly biased in the case of many and high level shifts if the number 
of change-points is underestimated. This is sometimes the case if two level shifts are 
not sufficiently far away from each other, see Eichinger and Kirch (2018).

Based on the simulation results we recommend using the averaging estimation 
procedure �̂2

Mean if the data are not expected to be correlated or heavy-tailed and 
the jump heights are rather small. Otherwise, if either no information on the dis-
tribution, the dependence structure of the data and the jump heights is given or the 
jumps are expected to be rather large, the adaptively trimmed procedure �̂2

other

Tr,ad
 can 

be recommended.

5 � Application

In this section, we apply the blocks-approach to two datasets in order to estimate the 
variance.

Table 9   (continued)

K h �̂2
Mean �̂2

Diff �̂2
Tr,0.5 �̂2

norm

Tr,ad �̂2
other

Tr,ad
�̂2

mosum

Mean
�̂2

mosum

W

15 2 1.09 1.04 1.24 0.65 1.02 1.17 1.64

3 1.40 1.20 1.38 0.86 1.05 1.39 4.19

5 4.00 2.57 1.40 1.00 1.10 4.24 24.28

8 20.18 11.25 1.34 1.15 1.24 21.27 159.02
25 2 1.25 1.11 2.45 1.63 3.28 1.15 7.77

3 1.75 1.56 2.85 2.23 2.30 1.67 21.70
5 5.77 5.35 2.94 0.89 1.19 5.95 145.89
8 32.04 29.47 2.78 1.11 1.18 31.27 951.03
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Table 10   Simulated MSE⋅102 of �̂2
Mean , �̂2

Diff , �̂2
Tr,0.5 , �̂2

norm

Tr,ad
 , �̂2

other

Tr,ad
 , �̂2

mosum

Mean
 and �̂2

mosum

W
 for data gen-

erated from the AR(1) model with � = 0.5 and different sample sizes N, jump heights h ⋅ � and number 
of jumps K = p ⋅ N with p ∈ {0, 2∕1000, 4∕1000, 6∕1000, 10∕1000}

K h �̂2
Mean �̂2

Diff �̂2
Tr,0.5 �̂2

norm

Tr,ad �̂2
other

Tr,ad
�̂2

mosum

Mean
�̂2

mosum

W

N = 200

0 0 5.21 44.79 7.18 5.92 4.95 27.83 5.02
1 2 9.75 43.01 6.08 4.78 5.15 32.52 6.05

3 7.84 41.08 5.94 5.30 5.31 30.28 5.17
5 4.69 34.70 6.00 5.31 5.06 24.75 5.35
8 19.66 21.60 5.74 5.14 4.73 18.98 5.51

2 2 20.08 41.81 5.50 4.82 6.08 35.01 5.84
3 15.88 37.36 5.14 5.29 6.45 31.92 5.31
5 7.75 26.00 4.98 5.30 5.25 21.20 6.05
8 18.98 6.77 5.00 5.37 4.86 16.33 14.93

N = 1000

0 0 1.31 44.58 5.32 2.72 1.90 18.58 1.02
2 2 5.12 43.84 4.59 2.16 1.53 24.74 1.11

3 4.24 43.00 4.53 2.40 1.77 22.73 1.05
5 2.10 40.32 4.54 2.57 1.78 20.18 1.12
8 2.60 33.96 4.54 2.60 1.71 14.36 1.76

4 2 11.48 43.01 4.05 1.87 1.50 29.51 1.12
3 9.41 41.39 3.87 1.98 1.51 26.50 0.99
5 4.66 36.13 3.92 2.39 1.61 21.68 1.85
8 1.98 24.60 3.72 2.42 1.68 11.80 8.29

6 2 20.15 42.53 3.61 1.51 1.23 33.68 1.02
3 17.05 39.82 3.46 1.80 1.32 30.27 1.07
5 9.76 32.04 3.49 2.45 1.37 22.29 3.69
8 1.90 17.06 3.56 2.64 1.66 10.47 19.47

10 2 40.98 40.84 2.81 1.10 1.11 38.31 0.89
3 37.03 37.04 2.49 1.36 1.38 34.43 2.06
5 25.41 25.13 2.59 2.32 1.38 23.44 14.21
8 7.94 6.07 2.44 2.52 1.35 7.12 122.52

N = 2500

0 0 0.51 44.46 4.83 2.16 1.41 13.95 0.38
5 2 7.50 43.79 4.30 1.65 1.05 22.84 0.38

3 6.45 42.93 4.32 1.79 1.18 21.52 0.40
5 3.68 40.15 4.34 2.09 1.24 18.08 0.75
8 0.64 33.80 4.32 2.20 1.22 12.27 3.50

10 2 20.78 43.04 3.78 1.23 0.78 31.08 0.36
3 18.76 41.45 3.72 1.44 0.92 29.04 0.60
5 13.30 36.13 3.74 1.93 1.08 23.45 3.77
8 3.93 24.69 3.59 2.09 1.08 12.97 22.39
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5.1 � Nile river flow data

The first dataset contains the widely discussed Nile river flow records in Aswan 
from 1871 to 1984, see e.g. Hassan (1981), Hipel and McLeod (1994), Syvitski 
and Saito (2007), among many others. We consider the N = 114 annual maxima 
of the average monthly discharge in m3∕s , since these values are often assumed 

Table 10   (continued)

K h �̂2
Mean �̂2

Diff �̂2
Tr,0.5 �̂2

norm

Tr,ad �̂2
other

Tr,ad
�̂2

mosum

Mean
�̂2

mosum

W

15 2 28.58 42.44 3.38 0.94 0.59 37.94 0.45

3 25.87 39.86 3.16 1.06 0.80 35.29 1.75

5 17.91 32.15 2.98 1.76 0.97 27.69 14.74

8 5.13 16.92 3.10 2.08 0.96 13.55 78.80
25 2 41.03 41.11 2.46 0.47 0.47 40.96 1.97

3 36.83 36.80 2.09 0.59 0.59 36.77 11.09
5 25.48 25.06 1.99 1.49 0.73 25.45 89.71
8 6.84 5.78 2.07 2.00 0.88 6.84 556.63
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Fig. 3   Simulated MSE of �̂2
Mean (—), �̂2

Diff (- - -), �̂2
norm

Tr,ad
 ( ⋅ ⋅ ⋅ ) , �̂2

other

Tr,ad
 ( − ⋅ − ), �̂2

Tr,0.5 (– – – ), �̂2
mosum

Mean
 

with bandwidth G =
√
N ( ) and �̂2

mosum

W
 with bandwidth G =

√
N (- - -) for a K = 0, h = 0 , b 

K = 2, h = 2 , c K = 10, h = 2 and d K = 10, h = 8 with N = 1000 , Y
t
= X

t
+
∑K

k=1
hI

t≥t
k
 , where X

t
 origi-

nates from the AR(1)-process with parameter � ∈ {0.1, 0.2,… , 0.8}
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to be independent in hydrology. The maxima are determined from January to 
December. The flooding season is from July to September, see Hassan (1981). 
Figure 4 shows the annual maxima of the average monthly discharge of the Nile 
river for the years 1871–1984.

The construction of the two Aswan dams in 1902 and from 1960 to 1969 obvi-
ously caused changes in the river flow, see Hassan (1981) and Hipel and McLeod 
(1994). We used Levene’s test [see Section 12.4.2 in Fox (2015)] to check the three 
segments of the data (divided by the years 1902 and 1960) for equality of variances. 
The null hypothesis of equal variances was not rejected with a p value of p = 0.40.

A Q–Q plot of the data indicates that the deviation from a normal distribution 
is not large, see Fig. 11 in “Appendix”. With � = 0.05 and n = 10 ( m = 11 blocks) 
no blocks are trimmed away during the trimming procedures �̂2

norm

Tr,ad
 and �̂2

other

Tr,ad
 . 

The ordinary sample variance of the entire data yields the value 3,243,866, see 
Table 11. For the blocks-estimator of the variance from (2) we choose the block 
size according to (8) with K = 2 getting n = ⌊

√
114∕3⌋ = 3 . All blockwise esti-

mators examined in this paper yield much smaller variance estimates for the 
whole observation period, ranging from 2,075,819 to 2,684,368.
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Fig. 4   Maximal monthly discharge of the Nile river at Aswan in the period 1871–1984

Table 11   Rounded estimates 
( ⋅10−3 ) of the variance for the 
annual maxima of the average 
monthly discharge of the Nile 
river in Aswan

S2 �̂2
Mean �̂2

Diff �̂2
Tr,0.5 �̂2

norm

Tr,ad �̂2
other

Tr,ad
�̂2

mosum

Mean
�̂2

mosum

W

1871–1984
3244 2123 2219 2564 2122 2122 2684 2076
1903–1960
2129 2396 1815 2041 2278 2278 2003 2129
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We conclude that the procedures �̂2
Mean

 , �̂2
Diff , �̂2

Tr,0.5 , �̂2
norm

Tr,ad
 , �̂2

other

Tr,ad
 , �̂2

mosum

Mean
 

and �̂2
mosum

W
 perform better than the ordinary sample variance, since the estimated 

values on the whole dataset are similar to those for the period 1903–1960 in between 
the changes.

5.2 � PAMONO data

In the second example, we use data obtained from the PAMONO (Plasmon Assisted 
Microscopy of Nano-Size Objects) biosensor, see Siedhoff et al. (2014). This tech-
nique is used for detection of small particles, e.g. viruses, in a sample fluid. For more 
details, see Siedhoff et  al. (2011). PAMONO data sets are sequences of grayscale 
images. A particle adhesion causes a sustained local intensity change. This results 
in an obvious level shift in the time series of grayscale values for each correspond-
ing pixel coordinate. To the best of our knowledge, a change of the variance after a 
jump in the mean is not expected to occur. A Q–Q plot of the data indicates that the 
assumption of a normal distribution is reasonable, see Fig. 12 in “Appendix”.

In Panel (a) of Fig.  5 we see a time series corresponding to one pixel which 
exhibits a virus adhesion, therefore revealing several level shifts in the mean of the 
time series. N = 1000 observations are available. Panel (b) of Fig. 5 shows a boxplot 
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Fig. 5   a Intensity over time for one pixel and b a boxplot of variances for the virus-free pixels together 

with the ordinary sample variance of the above data (- - -) and values of �̂2
Mean and �̂2

Diff (—), �̂2
Tr,0.5 

(- - -), �̂2
norm

Tr,ad
 ( ⋅ ⋅ ⋅ ⋅ ), �̂2

other

Tr,ad
 (- ⋅ -), �̂2

mosum

Mean
 (– – –) and �̂2

mosum

W
 (– - –)
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of 101,070 values of the ordinary sample variance for time series which correspond 
to pixels without virus adhesion.

Since changes in the mean are not expected there, we use these data to get some 
insight into the typical value range of the variance. The sample variance of the con-
taminated data (upper panel) is 1.59 × 10−4 which is not within the typical range of 
values, since it exceeds the upper whisker of the boxplot. The other estimation proce-
dures discussed in this paper yield values within the interval [1.1 × 10−4, 1.2 × 10−4] 
which are well within the interquartile range. We conclude that these approaches 
yield reasonable estimates for these data.

5.3 � PAMONO data with trend

Again, we consider a PAMONO dataset, see Sect.  5.2. Panel (a) of Fig.  6 shows 
a time series corresponding to a pixel, which seems to exhibit a virus adhe-
sion as well as a linear trend. Panel (b) of Fig. 6 shows the differenced data, i.e., 
Yt − Yt−1, t = 2,… , 388.

The differences of first order appear to be independent and scattered around a 
fixed mean. Few large differences can be observed which presumably originate from 
the jumps in the mean at the corresponding time points. The existence of the trend 
could be explained by the fact that the surface, on which the fluid for virus adhe-
sion is placed, was heated up over time. N = 388 observations are available. We 
apply the estimation procedures �̂2

Mean [using K ∈ {1,… , 5} in the formula (8)], 

�̂2
Diff , �̂2

Tr,0.5 , �̂2
norm

Tr,ad
 , �̂2

other

Tr,ad
 , �̂2

mosum

Mean
 and �̂2

mosum

W
 to the data and get estimated 
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Fig. 6   a Intensity over time for one pixel and b corresponding differenced series
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values for the variance, which range from �̂2
Mean = 0.95 × 10−6 (with K = 5 ) to 

�̂2
mosum

W
= 1.66 × 10−6 . The empirical variance of the observations has the value 

26.48 × 10−6 , which is much larger than the other estimates. According to our expe-
rience the PAMONO data can be assumed to be uncorrelated after differencing. The 
sample variance of differenced data is 1.93 × 10−6 , which is an estimator of 2�2 , 
yielding the value 0.97 × 10−6 as an estimate for �2 , which is near the estimated 
value of �̂2

Mean.
We conclude that the proposed procedures yield reasonable results even in this 

situation, where a linear trend is present.

6 � Conclusion

In the presence of level shifts, ordinary variance estimators like the empirical vari-
ance perform poorly. In this paper, we considered several estimation procedures in 
order to account for possible changes in the mean.

Estimation of �2 based on pairwise differences is popular in nonparametric regression 
and works well in the presence of level shifts and an unknown error distribution if the 
data are independent and the fraction of shifts is asymptotically negligible. However, we 
have identified scenarios where estimation based on longer blocks is to be preferred.

If only a few small level shifts are expected in a long sequence of observations 
our recommendation is to use the mean of the blocks-variances �̂2

Mean . This estima-
tion procedure does not require knowledge of the underlying distribution, performs 
well in the aforementioned situation and is asymptotically even as efficient as the 
ordinary sample variance if there are no level shifts.

If many or large level shifts are expected to occur we recommend using the adap-
tive trimmed estimators �̂2

norm

Tr,ad
 and �̂2

other

Tr,ad
 . These procedures are constructed for 

independent data and use either the exact �2-distribution or the asymptotic normal 
distribution of the blockwise estimates, where the second and the fourth moments 
need to be estimated. We have found these trimming approaches to work reasonably 
well even under moderate autocorrelations, although many blocks are trimmed away 
then, presumably due to the underestimation of the unknown variance in the formula 
(17). Therefore, when no changes in the mean are present the trimmed estimators 
suffer efficiency loss. On the other hand, we expect that many perturbed blocks are 
trimmed away in the presence of level shifts reducing the bias of the estimator. The 
trimming approach could be extended to dependent data in future work.

In many applications we rather wish to estimate the standard deviation � , e.g. 
for standardization. If only few jumps of moderate heights are expected to occur, 
either the average value of the blockwise standard deviations or the square root of 
the blocks-variance estimator �̂2

Mean can be used. Otherwise, the square root of the 
trimmed estimator �̂2

other

Tr,ad
 can be recommended. For a large sample size N the finite 

sample correction factors can be neglected with little loss, see “Appendix”.
An interesting extension will be to consider situations where not only the level but 

also the variability of the data can change. Suitable approaches for such scenarios 



449

1 3

On variance estimation under shifts in the mean﻿	

might be constructed by combining the ideas discussed here with those presented 
by Wornowizki et al. (2017), where tests for changes in variability have been inves-
tigated using blockwise approaches, assuming a constant mean. This will be an issue 
for future work.
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Appendix

Blockwise estimation of the standard deviation

In many applications, we do not wish to estimate the variance �2 but rather the 
standard deviation � , e.g. for standardization.

Estimation by the blockwise average

We will consider the two blocks-estimators

where CN,1 and CN,2 are sample dependent correction factors to ensure unbiasedness 
when no changes in the mean are present. The block size n can be chosen accord-
ing to the rule (8). If the number of change-points is not known in practice, it can be 
estimated as is done in Sect. 2.4.

For normally distributed data, the correction factors CN,1 and CN,2 can be deter-
mined analytically. To derive the correction factor CN,1 for the estimator �̂corr

Mean,1
, 

we will first consider the exact distribution of the empirical variance when dealing 
with jumps in the mean in order to derive the distribution of �̂Mean,1 in (18). Given 

(18)�̂corr
Mean,1

= CN,1�̂Mean,1 = CN,1

1

m

m∑

j=1

Sj and

(19)�̂corr
Mean,2

= CN,2�̂Mean,2 = CN,2

√√√√ 1

m

m∑

j=1

S2
j
= CN,2

√
�̂2

Mean,

http://creativecommons.org/licenses/by/4.0/
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independent identically normally distributed data Xj,1,… ,Xj,n it is well known that 
(n−1)S2

j

�2
∼ �2

n−1
 in a jth jump-free block with n observations. The situation is differ-

ent in the presence of jumps. Without loss of generality the following lemma is 
expressed in terms of the first block consisting of the observation times t = 1,… , n 
and containing K̃1 ≤ K jumps.

Lemma 9  Assume that X1,… ,Xn ∼ N(0, �2) and Yt = Xt +
∑K̃1

k=1
hkIt≥tk for 

t = 1,… , n . Then we have for S2
1
=

1

n−1

∑n

t=1
(Yt − Y1)

2 that

where �1 =
1

�2

∑n

t=1

�
�1,t − �1

�2
, �1,t =

∑K̃1

k=1
hkIt≥tk and �1 =

1

n

∑n

t=1

∑K̃1

k=1
hkIt≥tk.

Proof  Y1 = X1 + �1 and Yt − Y1 = Xt − X1 − �1 + �1,t, t = 1,… , n, are independ-
ent, since X1 and Xt − X1 are independent and the remaining terms are deterministic 
constants. Hence, S2

1
 and Y1 are independent. Furthermore,

with 
∑n

t=1

�
Yt−�1

�

�2

∼ �2
n,�1

 , since Yt ∀t are independent and n

�2
X
2

1
∼ �2

1
 . The 

moment-generating function at z ∈ ℝ of both sides and the independence of S2
1
 and 

Y1 yield:

In the following, we assume that B ≤ K blocks are contaminated by K̃1,… , K̃B 
jumps, respectively, with 

∑B

k=1
K̃k = K . Without loss of generality assume that the 

n − 1

�2
S2
1
∼ �2

n−1,�1
(the non-central chi-squared distribution),

n∑

t=1

(
Yt − �1

�

)2

=

n∑

t=1

(
Yt − Y1 + Y1 − �1

�

)2

=

n∑

t=1

(
Yt − Y1

�

)2

+

n∑

t=1

(
Y1 − �1

�

)2

+ 2

(
Y1 − �1

�

)
n∑

t=1

(
Yt − Y1

�

)

=
n − 1

�2
S2
1
+

n

�2

(
Y1 − �1

)2

+ 0 =
n − 1

�2
S2
1
+

n

�2
X
2

1

(1 − 2 ⋅ z)−n∕2 exp

(
�1z

1 − 2z

)
= M�2

n,�1

(z) = Mn−1

�2
S2
1

(z) ⋅M�2
1
(z)

= Mn−1

�2
S2
1

(z) ⋅ (1 − 2 ⋅ z)−1∕2

⇔ Mn−1

�2
S2
1

(z) = (1 − 2 ⋅ z)−(n−1)∕2

exp

(
�1z

1 − 2z

)
= M�2

n−1,�1

(z)

⇒
n − 1

�2
S2
1
∼ �2

n−1,�1
.
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jumps are contained in the first B blocks, while the last m − B > 0 blocks do not 
contain any jumps. The square root of a �2

n−1,�j
-distributed random variable 

(n − 1)S2
j
∕�2 is �-distributed with n − 1 degrees of freedom and non-centrality 

parameter 
√
�j , see e.g. Miller (1964). We hence have 

√
n − 1Sj∕� ∼ �n−1,

√
�j

 , 
j = 1,… ,m , where �j = 0 for the last blocks j = B + 1,… ,m , i.e., √
n − 1Sj∕� ∼ �n−1 . The expected value of Sj is given as

where F1,1(a, b, z) represents the generalized hypergeometric function, see Olver 
et al. (2010) for more details. When no changes in the mean are present we have that 
�j = 0∀ j and therefore F1,1(− 0.5, 0.5(n − 1),− 0.5�j) = 1 . The exact finite sample 
correction factor is given as

which is the reciprocal of the term Cn,�j
 in (20) when no level shifts are present, 

since F1,1(− 0.5, 0.5(n − 1),− 0.5�j) = 1 , j = 1,… ,m , in this case.
For the second estimator (19), we have the following statements on its expecta-

tion and a suitable finite sample correction factor:

We used the fact that �̂Mean,2 follows a scaled �u,v distribution with u = m(n − 1) 
degrees of freedom and the non-centrality parameter v =

�∑B

j=1
�j , since 

n−1

�2

∑m

j=B+1
S2
j
∼ �2

(m−B)(n−1)
 and n−1

�2

∑B

j=1
S2
j
∼ �2

B(n−1),
∑B

j=1
�j

 . Using this information 

we can determine the expectation of the estimator straightforwardly, see Miller 
(1964) and Olver et al. (2010). The correction factor is the reciprocal of Dn,�1,…,�B

, 
where we have F1,1

�
− 0.5, 0.5m(n − 1),− 0.5

∑B

j=1
�j

�
= 1 in the absence of level 

shifts.

(20)

E(Sj) = �

√
2

√
n − 1

Γ(0.5n)

Γ(0.5(n − 1))
F1,1(− 0.5, 0.5(n − 1),− 0.5�j) =∶ �Cn,�j

,

CN,1 =

√
n − 1
√
2

Γ(0.5(n − 1))

Γ(0.5n)
,

�̂corr
Mean,2

= CN,2

�√
m(n − 1)

�
n − 1

�2

m�

j=B+1

S2
j
+

n − 1

�2

B�

j=1

S2
j

�1∕2

,

E
�
�̂corr
Mean,2

�
= CN,2

�
√
2

√
m(n − 1)

Γ(0.5(m(n − 1) + 1))

Γ(0.5m(n − 1))

× F1,1

�
− 0.5, 0.5m(n − 1),− 0.5

B�

j=1

�j

�

∶= CN,2�Dn,�1,…,�B
,

CN,2 =

√
m(n − 1)
√
2

Γ(0.5m(n − 1))

Γ(0.5(m(n − 1) + 1))
.
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The following consistency statements are valid for the two introduced uncor-
rected estimators �̂Mean,1 =

1

m

∑m

j=1
Sj [as defined in (18)] and �̂Mean,2 =

�
1

m

∑m

j=1
S2
j
 

[as defined in (19)] of �:

Corollary 10  Under the conditions of Theorem 1 the estimators �̂Mean,1 and �̂Mean,2 
converge almost surely to � , as N → ∞.

Proof  The strong consistency of �̂Mean,2 follows immediately from the Continuous 
Mapping Theorem.

For �̂Mean,1 , we have due to Theorem 2 of Hu et al. (1989) that

since Sj − E
(
Sj
)
 are uniformly bounded with P(|Sj − E

(
Sj
)
| > t) → 0∀t due to Che-

byshev’s inequality and Var(Sj) → 0.
Let Sj,h be the sample standard deviation in the perturbed block while Sj,0 is the 

estimate in the uncontaminated block. We have that

i.e., it suffices to show 1
m

�∑m

j=B+1
E
�
Sj,0

�
+
∑B

j=1
E
�
Sj,h

��
→ � . For the first of these 

two terms, we have

since the consistency and the decreasing variance of S1,0 implies convergence of the 
expectation, see Lemma 1.4A in Serfling (1980).

Using Jensen’s inequality we get for the second term

1

m

m∑

j=1

(
Sj − E

(
Sj
))

→ 0 almost surely,

1

m

m∑

j=1

(
Sj − E

(
Sj
))

= �̂Mean,1 −
1

m

(
m∑

j=B+1

E
(
Sj,0

)
+

B∑

j=1

E
(
Sj,h

)
)
,

1

m

m∑

j=B+1

E
(
Sj,0

)
=

m − B

m
E
(
S1,0

)
⟶ � as N ⟶ ∞,

1

m

B∑

j=1

E
(
Sj,h

)
=

1

m

B∑

j=1
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where �j,t and �j are defined in the proof of Theorem 1.

Remark 11  The correction factors CN,1 and CN,2 from (18) and (19) satisfy

where CN,1 = �∕E(�̂Mean,1) and CN,2 = �∕E(�̂Mean,2) in the absence of level shifts.
This can be shown with Lemma 1.4A in Serfling (1980), since �̂Mean,1 and �̂Mean,2 

are consistent estimators and their variances tend to zero
which implies convergence of the means and thus the above statement. Therefore, 

for large N and n we can neglect the correction factors and use the estimators �̂Mean,1 
and �̂Mean,2 instead of �̂corr

Mean,1
 and �̂corr

Mean,1
 with block sizes n → ∞.

Trimmed estimation

When dealing with a large number of level shifts, as is discussed in Sect.  3, the 
square root of the variance estimator �̂2

Tr,ad from (13) can be used to estimate the 
standard deviation � . For large N and n, a correction factor to ensure unbiasedness 
when no changes in the mean are present can be neglected. Table 12 shows the sim-
ulated finite sample correction factors for normally and t5-distributed data as well as 
for the stationary AR(1)-process with normal errors and parameter � ∈ {0.3, 0.6} . 
We observe that the correction factors are nearly one except for strongly correlated 
data, i.e., AR-process with parameter � = 0.6.

See Figs. 7, 8, 9, 10, 11 and 12.

CN,1 → 1 and CN,2 → 1 as N → ∞,

Table 12   Simulated finite sample correction factors for the adaptively trimmed estimation procedures 
for normally and t5-distributed data as well as for the stationary AR(1)-process with normal errors and 
parameter � ∈ {0.3, 0.6} , denoted by AR(0.3) and AR(0.6)

N(0, 1) t5 AR(0.3) AR(0.6)
√

�̂2
norm

Tr,ad

N = 1000, n = 50 1.0025 1.0660 1.0213 1.0939
N = 5000, n = 100 0.9999 1.0413 1.0108 1.0450

√
�̂2

other

Tr,ad

N = 1000, n = 50 1.0082 1.0666 1.0310 1.1179
N = 5000, n = 100 1.0014 1.0334 1.0135 1.0550
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