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Abstract

The paper deals with the gradient based shape optimization of the biaxial X0-specimen, which has been introduced and
examined in various papers, under producibility restrictions and the related experimental verification. The original, engineering
based design of the X0-specimen has been applied successfully to different loading conditions persisting the question if
relevant stress states could be reached by optimizing the geometry. Specimens with the initial as well as with the two load
case dependent optimized geometries have been fabricated of the aluminum alloy sheets (AISilMgMn; EN AW 6082-T6)
and tested. The strain fields in critical regions of the specimens have been recorded by digital image correlation technique.
In addition, scanning electron microscope analysis of the fracture surfaces clearly indicate the stress state dependent damage
processes. Consequently, the presented gradient based optimization technique facilitated significant improvements to study
the damage and fracture processes in a more purposeful way.

Keywords Optimal specimens - Variational sensitivity analysis - Shape optimization - Biaxial experiments - Damage - Stress

state dependence

1 Introduction

Ductile sheet metals are of outstanding relevance in many
engineering applications and consequently, the need to
improve the lightweight design, to decrease the energy con-
sumption and to increase the cost efficiency is evident and
thus, the utilization factor of these materials has to be aug-
mented. This leads to the demand to characterize the material
behavior within the inelastic domain properly and to avoid
early localization of irreversible strains as well as damage
and fracture within structural components. The connected
material failure processes strongly depend on the stress
state: In tension dominated regions nucleation, growth and
coalescence of micro-voids prevail, whereas shear stress
states facilitate micro-shear-cracks. To analyze this behav-
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ior, experiments with carefully designed specimens covering
a wide range of relevant stress states have to be performed.

Standard specimens are frequently designed to generate
one pre-defined stress state within the region of interest
whereas only one loading condition can be applied. Recent
developments in this field indicate the request to develop new
geometries for in-plane sheet metal testing in a representa-
tive range of loading conditions. In this context, the stress
is frequently characterized by the stress intensity, the stress
triaxiality and the Lode parameter which can be related to
the material degradation processes. For instance, differently
notched tensile specimens [1,10,16,19] generate increasing
stress triaxialities with decreasing notch radius. A similar
effect can be induced by introducing a central hole in flat
specimens [39]. Rather shear dominated stress states can be
achieved with single [10,19,25] and double [39] connection
one-dimensional specimens. The butterfly [35] specimen can
be used in a special testing device producing a big variety
of stress states from tension to shear domination. In this
connection it has to be mentioned that the previously dis-
cussed specimens produce significant stress gradients within
the region of interest, which might be unfavorable for mate-
rial characterization.
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Cruciform specimens facilitate the possibility to study dif-
ferent stress states with one geometry. Standard geometries
have been applied successfully to determine the yield sur-
face of ductile metals [28]. Unfortunately, these standard
geometries tend to localize with ongoing deformation and
unexpected failure of the specimen occurs. In this context,
a new experimental program with biaxially loaded speci-
mens has been proposed [9,21], where stress states have
been analyzed by corresponding numerical simulations to
predict damage and fracture modes. In addition, [20] pro-
posed several new geometries and first experimental results
with the X0-specimen have been presented [13,22,23]. This
specimen (Fig. 1) is characterized by a central opening and
crosswise arranged notches producing four connecting parts.
Consequently, the localization is pre-defined by the notched
regions and the corresponding stress state can be determined
by corresponding numerical simulations. However, to inves-
tigate the material behavior and the damage mechanisms
in a more satisfactory way in a first cut it is preferable
to reach on one hand high stress triaxialities (micro-voids)
and on the other hand low stress triaxialities (micro-shear-
cracks).

For this purpose, mathematical optimization techniques
can be utilized to modify the shape of specimens in order
to gain these preferred stress states in an area of inter-
est. In this context, gradient based methods have proven
to be efficient and stable, cf. [43]. Gradient informa-
tion is determined variationally at continuous level as
described in [2-5]. An enhanced viewpoint of kinemat-
ics that offers a rigorous separation of geometrical and
physical quantities is convenient. Here, the classical con-
tinuum mechanical deformation mapping is split into a
geometry mapping and a motion mapping. Therefore, the
approach differs from other variational approaches. How-
ever, it can be linked to common methods like the Domain
Parametrization Approach, cf. e.g. [38], or the Material
Derivative Approach, cf. e.g. [46]. With any of the men-
tioned variational approaches, exact gradient information can
be provided efficiently with moderate effort and addition-
ally, it allows the computation of stress states and stress
sensitivities simultaneously within a finite element frame-
work.

In this work, the aforementioned XO-specimen is sub-
ject of investigation for shape optimization. The aim is to
gain a distinct (high or low) stress triaxiality with a suf-
ficiently homogeneous distribution in the notched regions
of the specimen where damage and failure are expected to
occur. Obviously, during the biaxial experiment, the speci-
men undergoes large plastic deformations before significant
damage evolution takes place. The onset of damage evo-
lution can be defined by a stress state damage criterion
taking into account the different material degradation pro-
cesses. Within this paper, special focus is given to the stress
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Fig.1 XO-specimen

state at this point, i.e. in this first approach damage is not
considered within the material model. Thus, the chosen
material model, proposed in e.g. [42], captures large defor-
mations and strains. Here, the deformation history deserves
special attention in structural analysis as well as in sensi-
tivity analysis. In the past, many researchers investigated
into theoretical and computational details in the context
of sensitivity formulations in elastoplasticity, cf. e.g. one
of the pioneering contributions [34]. However, formula-
tions in this work are based on the preparatory contribution
[44].

Specimen shape optimization has already been tackled in
literature. For instance in [27] the reduction of the stress con-
centration in the transition zone between straight-sided and
wider-end zones has been subject of discussion. The relation
between the geometric shape of specimens and parameter
identification problems have been discussed in [7]. As out-
lined in e.g. [18] or [32], shape optimization of biaxially
loaded specimens is more complex and challenging. In this
paper the research on design sensitivity analysis applied to
elastoplasticity as outlined in [29] is amplified.

The paper is structured as follows. Hints on the notation
and the aforementioned underlying viewpoint of kinematics
are given in Sect. 2. In continuation, Sect. 3 indicates the
constitutive equations and the material used for the experi-
ments is characterized. Section 4 summarizes the numerical
model for structural and sensitivity analysis. The optimiza-
tion problem is stated in Sect. 5 and the solution is depicted
and discussed. In Sect. 6 the experimental setup is shown
and results of the biaxial tests are illustrated. Furthermore,
the results of the initial and shape optimized specimens are
censoriously compared and discussed. Section 7 summarizes
and draws a conclusion on the findings. Finally, an outlook
to further investigations is given.
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2 Preliminaries
2.1 Notation and operators

In this paper, symbolic tensor notation is used. Vectors are
bold face italic, second order tensors are upright bold face
and sans serif and fourth order tensors are blackboard bold
characters

v=ue;, A=A;je Qej,
T="Tjuei Qe;exe. (1)

Single contraction is either denoted as dot product for vectors
or omitted for higher order tensors, double contraction is
denoted as colon, e.g.

Av=A-v=A;jvje;, T:A=T;jAue Qe;. 2)

Special transpositions of fourth order tensors are denoted as
superscripts, e.g.

23

T =Tikjie; ®e; @ ex D ey (3

21
In some equations, the special product * denoting a single
contraction of the second basis of a fourth order tensor with
the first basis of a second order tensor is used, i.e.

21
T*A=TijmAjrei Qe Qe ey. 4)

The fourth order tensors s and I4 denote the symmetric and
deviatoric projection tensors with Cartesian coefficients

1
Ly = 3 (8ik 81 + 8i1 8 jk),
d s 1
Lijig = Tiju — 3 8ij Ok (5)

Discrete matrix forms are denoted by upright bold face char-
acters, €.g.

A =[A;] e R™™. (6)
2.2 Enhanced kinematics

In shape optimization, the material body is not considered
with a fixed reference configuration. Thus, it is convenient
to work with an enhanced viewpoint of kinematics within
a general continuum mechanical framework. Motivated by
arguments from differential geometry, cf. [2,8,37], the main
idea is to rigorously separate physical and geometrical quan-
tities. Introducing a fixed parameter space B with Cartesian
basis Z; and local coordinates ©, the classical continuum

Fig.2 Enhanced kinematics

mechanical deformation mapping ¢ that maps the referential
coordinates X to the actual coordinates x at time ¢, defined
as

o . (X,H)— x(X,1), (7)

can be decomposed into two independent mappings, i.e. the
design dependent geometry mapping k (@, s) and the time
dependent motion mapping u(®, 1)

Kk:(0O,s)~ X(@O,s)and u : (O,1) — x(0, 1), (8)
with the corresponding tangent mappings
K=Vok =G, QZ andM = Vou =g ® Z'. ©)

Thus, the deformation mapping and also the deformation gra-
dient F = Vx¢ can be decomposed and written as

¢p=pok'andF=MK' =g, G, (10)

cf. Fig. 2. Consequently, for volume mappings we obtain

/dl}:/JdVZ/JJKdVQZ/]MdV(-), (11)
M K

B B

with the determinants J = detF, Jx = detK and Jy; =
det M. This viewpoint of kinematics has the main advantage
that implicit dependencies do not arise until the definition of
global equilibrium. Here, the ‘time-like’ variable s is used
as a scalar design variable that parameterizes the material
body in the reference configuration K = K(s), as well as
the referential points X = X (s).

@ Springer
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2.3 Variations and derivatives

The total variation of any quantity (e)(u; s; h,,) is defined as
the sum of the partial variations

() (u; 55 hy) = 8, (e)(us §; hy)
+8,(o)(it; 83 hy)
+ 81, (0)(@; §; ). (12)

A partial variation, e.g. w.r.t. u at fixed § and h,, is defined
as the Gateaux derivative

Su(e) = %(-)(u + e u; §; hy) e (13)

This notation is used throughout the whole paper.

3 Constitutive equations and material

The elastoplastic material model can be found in the relevant
literature, see e.g. [17,40-42] and is briefly described here for
better understanding of the sensitivity relations in Sect. 4.2. It
is based on a multiplicative split of the deformation gradient
F = F¢ Fpintoanelastic, Fe, and plastic part, Fp,, and captures
finite deformations and strains.

The Kirchhoff stress tensor can be determined by differ-
entiation of the strain energy function

oW

oF F'. (14)

T
The strain energy function is given by

W =UW)+WEC)
K Gr. -

_ 1 2 c-c'_
_?[E(J—l)—an}—i—E[C.Cp 3. as)

where é; denotes the inverse of the isochoric, plastic contri-
bution of the right Cauchy—Green tensor. K and G denote the
compression and shear moduli, respectively. The von Mises
yield condition

2
fp=||Tdev||_\/;k(a) (16)

characterizes the plastic behavior, where T 4y is the deviatoric
part of the Kirchhoff stress tensor (14) and « denotes the
scalar isochoric hardening variable. The nonlinear function

k(@) = 00 + 0uo (1 —e—d“) +Ha (17)

@ Springer

describes hardening during plastic flow. The material param-
eters op and o represent the initial and saturation yield
stress, respectively, H is the linear hardening slope and d
is a dimensionless parameter. The deformation process is
assumed to be quasi-static. However, a pseudo-time is intro-
duced so as to solve the evolution of internal variables,
namely h = {é: , o}. The flow rules

- 2 N
¢ =37 [c : cp‘] FlnFT, (18)

s ,
a = gyv ()

with the plastic multiplier y and the flow direction
n = Zaev/||zgell, (20)

describe the evolution of the internal variables. A local
Newton—Raphson scheme is used to solve the increment
of the plastic multiplier within an implicit backward Euler
time integration due to the nonlinear hardening function, cf.
Eq. (17). The Kuhn-Tucker conditions
Ay =0, fP(r,a)<0, Ay fP=0 21
define the solution point.

Onset and evolution of damage is characterized by the
damage criterion

fl=agli+ B4y h—04=0 (22)

expressed in terms of the stress invariants /1 = trz and J, =
% Tdev : Tdey Of the Kirchhoff stress tensor and the damage
threshold o4 , see [21-23] for further details. In Eq. (22)
og and By are the damage mode parameters corresponding
to different stress state dependent damage processes acting
on the micro-level. These parameters have been determined
by numerical analysis of the deformation behavior of three-
dimensionally loaded micro-defect-containing unit cells [11,
14]. The dependence of the functions on the stress state is
expressed in terms of the stress triaxiality

Om I

= =, 23
1= ea 330 9
with the mean stress o, = % I, the von Mises equivalent
stress 0eq = +/3 J2, and the Lode parameter

21’2—‘[1—1’3
w=———
1 — 173

with T > 1) > 13, (24)
where 711, 72 and 13 denote the principal Kirchhoff stress
components. For the experimental validation of the stress
state dependent parameters oq and fq, tests with biaxially
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Table 1 Material parameters for A1SilMgMn
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Fig.3 Load—displacement curves

loaded specimens undergoing a wide range of stress states
have been performed [9,12,13]. However, in some cases
non-homogeneous stress distributions appear in critical parts
where damage and final fracture take place leading to diffi-
culties in analysis of failure modes. Therefore, besides the
need for distinct stress states, a nearly homogeneous distri-
bution of stress triaxiality (23) and the Lode parameter (24)
are required in notched parts, which will be realized by opti-
mization of the geometry of the biaxially loaded specimens.

Experiments and the corresponding optimization have
been performed with specimens cutted from aluminium alloy
(AlSilMgMn, EN AW 6082-T6) sheets with a thickness
of 40 mm and Fig. 3 indicates a corresponding load-
displacement curve. The experimental data is taken from [24]
and the material parameters have been determined by a curve
fitting procedure based on gradient information obtained fol-
lowing the same variational principles as described in this
paper for shape sensitivities. The procedure is described in
[31] in detail. The parameters found are indicated in Table 1.

4 Structural analysis and sensitivity relations
4.1 Elastoplastic stress response

In view of the sensitivity analysis presented in Sect. 4.2,
here, the most important equations for the computation of
the structural response based on an implicit Return-Mapping
scheme, see e.g. [15,17,41,42], are briefly summarized. Note
that for the computation of the evolution of the internal vari-

ables, cf. Egs. (18) and (19), a pseudo-time is introduced
and discretized using an implicit backward Euler method.
In the following, all quantities are evaluated at the current
pseudo-time step #,4+1, except quantities with subscript n,
which indicates that these quantities are saved from the prior
pseudo-time step £,.

The nonlinear weak equilibrium condition in the reference
configuration reads

R(u,v) = /PK(u) :VyvdV

K
—/b-vdV—/t-vdA
K 0K
:Rint+ReXt:O, (25)

with the internal part R™™ and the external part R®*t. Here,
PK = 7 FT denotes the first Piola—Kirchhoff stress tensor,
and u,v € V are the state and test function, respectively,
where V is the space of admissible states. The Kirchhoff
stress tensor can be calculated using a Return-Mapping-
Algorithm, where first an elastic trial state is assumed,
indicated in the following with the superscript tr. If the trial
state violates the yield condition, cf. Eq. (16), the plastic
corrector step is performed, in which the plastic multiplier
is calculated within a local Newton—Raphson procedure to
update the internal variables and the stress tensor. Once the
increment of the plastic multiplier is determined, the stress
tensor can be adapted

Tdey = rgev -2 Ayn, (26)
with

_ G - -1 G

= gc 1 Cpp = gtrbg. 27)

As the plastic flow is assumed to be incompressible, the
hydrostatic stress can be easily computed to

/ K 2
o =JU'() = 5 (J —1). (28)
Finally, the first Piola—Kirchhoff stress tensor reads
PK = (tyol | + Taey) FT = 7F . (29)

Consistent linearization leads to the explicit form of the mate-
rial tangent

aPK
A=— =KJ*FToF'
oF

24

T 21
—7 (FT®FT) +Se *FT, (30)

@ Springer
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see [31] for details. Here, the partial derivative of the Kirch-
hoff stress deviator is given by

3
Saev = g‘; —H:B, 31)
where
2
]HI:G[ﬂo]ld—gAy,Bln®l+ﬂgn®n] (32)
with the factors
2AVTE 27
Bo=1--2LE 0 =1+ g =gi—py 33)
[T gey Il f
and the identities
—tr
ab 21 _q - __q 2
Bi= =[ * €, F FT+FCp1’nIFT], (34)
oF 7o
F = a—Fr% [(l@ n’— 3 F®F'T] (35)

- 1 . . o
The tensor F = J~ 3 F denotes the isochoric contribution of
the deformation gradient.

4.2 Sensitivity analysis

Utilizing gradient based optimization algorithms, gradient
information of objective and constraint functions have to be
provided to the optimization solver. This section outlines the
computation of sensitivities using a variational approach at
continuous level, i.e. continuous in space.

4.2.1 Sensitivity of the stress state

As aforementioned, the quantity of interest is the stress tri-
axiality, cf. Eq. (23). Thus, the computation of the gradient
of the stress triaxiality is essential. Its total variation reads

d
00m Oeq
1
= — (80’m - USUeq) ) (36)

where the total variations dom and doeq are given by

do 1

80m:a—::51=§I:81, (37)
do, 3

80eq = 8—;3‘* (8T = You Tdey : OT. (38)

@ Springer

By means of Eq. (31), the total variation of the Kirchhoff
stress tensor can be revealed as

ik 4
5t = [K J2I®F'T+Sdev] F + o Shy. (39)

n

As geometric design changes are considered, the design vec-
tor is chosen as the referential coordinates X . From literature,
e.g. [2,33], we find

0F =6,F+ 6xF = Vxéu — Vxu VxsX. (40)

The second addend in Eq. (39) corresponds to the deforma-

tion history that is captured by the internal variables of the
-1

prior load step h, = {C_ ,, @,}. Note that this notation is an

p.n?
abbreviation for
9T sn AT LI (41)
= — 0Uy.
dhy, " ¢! P oty

p.n

The partial derivatives of the Kirchhoff stress tensor w.r.t. the
internal variables read

T 0T

2 _ K
—— =H:Bc and ==2.-p—n, (42
1 ’
acp’n day, 37 f

with the tensor

- 21 _
Be =FIL * F' (43)

and the first derivatives of Egs. (16) and (17)

kK =o00ode™® + H, (44)
- K

In Eq. (40), the total variation of the structural response Su
occurs. This implies that the total variation of the structural
response has to be computed before the gradient information
of the stress state can be obtained.

4.2.2 Structural response sensitivity

The weak equilibrium condition, Eq. (25), has to hold for
any change in design. Thus, its total variation has to vanish,
cf. [2,30,31,44]. We assume that external forces are design
independent (SR = 0 — §R = §R'™™). Consequently, the
total variation of the weak equilibrium reads

SR(v, 8u,5X, 8h,) = 8,R™ 4+ 5x R™ + 5, R'™
= k(v, u) + p(v,8X) + h(v, 8h,) = 0. (46)
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The bilinear forms k : V xV — R, p: V x X — R and
h :V x H — R denote the tangent stiffness, pseudo load
and history sensitivity, respectively.

Tangent stiffness. The tangential stiffness operator repre-
sents the partial variation of the internal residual R™™ w.r.t.
the displacements u

k(v, du) = / Vxdu : A:VxvdV. 47)
K

Pseudo load. The pseudoload operator is the partial vari-
ation of the internal residual R™ w.r.t. design X. Based on
the enhanced viewpoint of kinematics described in Sect. 2, a
pull-back operation to parameter space B can be performed
and all required variations can easily be obtained, see e.g.
[2,26,31,33] for details. Finally, a push-forward to the refer-
ence configuration leads to

p(v,8X) =— / [(VxuVxsX): A]l: VxvdV
dK
- / PX: (Vxv Vx8X)dV
aK
+/PK : VxvVy - 8XdV. (48)
aK
History sensitivity. The partial variation of the internal
residual R™™ w.r.t. the history variables of the prior pseudo-
time step h, is denoted as the history sensitivity operator.

Here, only the first Piola—Kirchhoff stress tensor depends on
the history variables. Thus,

h(v, 8hy) = /SthK S VypdV. (49)
IK

We can identify the partial variation to

aPK
oh,

8, P = Shy, (50)

and determine the partial derivatives of the stress tensor w.r.t.
. . ~-1
the history variables k, = {Cp’n, oy} to

aPK 21

—— = (H:B¢) * FT, (51)
9C,.,

aPk 2 _ kK _+

aa,,z_z gu?nF , (52)
respectively.

Update of history sensitivities. At the end of each plastic
step the internal history variables evolve. Thus, its variations

w.r.t. design changes have to be computed and saved for the
subsequent step, cf. Eq. (50). Recalling Eq. (40), the algo-
rithmic update formula reads

Sh = oh : 8F + oh Z,5X =28X (53)
T OF oh, " ’

where also the relation du = S §X has been used, which is
explained later. The only unknown quantities are the partial

0
derivatives 3F and . For the former we find

oh,
_1 23
0C . _\T 21 /= -
T 1 T . w T
g (F ®F) . F (beF>
1 1 1 21 1
F'l(=H+-191):B|*F
+ [(G +31® ]
2{}
“F'be (E'T@)FT) F|, (54)

oo 2G (2

. . -1 .
for the internal variables C; and «, respectively, w.r.t. the
deformation gradient. The latter can be identified to

-1

aC, LT 1
_—_1=BC: EH+§I®I :]BC, (56)
aC
p.n
=1
aC 2 K
P _ 5 [2 K pain, (57)
da, 37

with the fourth order tensor

__ 21 —

B =F'I, *F", (58)
and

dor 2G [2

— z\/j_/ [_ yl—n}:lﬂ%c (59)
Iy, 313

da - 2k (60)

da, 3

4.3 Discrete matrix forms

With the approximate functions uy, v, € V, C V, X), €
Xp, € X and h,, € Hp C H based on a conforming
Galerkin method, cf. e.g. [6,45], and the discrete approxima-
tions, i.e. the nodal vector of test functions, displacements
and displacement variation v,u,fu € RNf  the nodal
design vector and its variation X, 6X € R”d", as well as the
vector of variations of global internal variables 6h,, 5 € RV

@ Springer
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we find the discrete versions of Egs. (25), (47), (48) and (49),
respectively

R(up,vp) = V'R, (61)
k(vp, Sup) = v' K su, (62)
p(vn, 8X5) = v PSX, (63)
h(vy, 8hy. ) = v Hoh,. (64)

The global quantities ndof, nhv and ndv correspond to the
global number of degrees of freedom, history variables and
design variables, respectively. With this, the discrete matrix
form of Eq. (46) reads

SR =Kéu+PsX+ Héh, =0, (65)

with the tangent stiffness matrix K € R"4ofndof the peeu-
doload matrix P € R4V 44 the history sensitivity
matrix H € R"9°™0V_ Rearranging Eq. (65), the total sen-

sitivity matrix § € R"°f<" can e derived
su=—K"' [P8s+ Héh,]
=-K'[P+HZ,] §X = SsX. (66)

It connects design changes with changes in the structural
response. Note that Z, is the matrix form of the quantity
Z, in Eq. (53) and is updated algorithmically. Note that
within a finite element procedure, the product Q = HZ,, =
U, He Zy, ¢ can be computed on element level, which makes
the assembly of H unnecessary and therefore saves memory,
as for each integration point of each finite element, the history
variables have to be stored and the total number of history
variables nhv can be huge, depending on the finite element
discretization. With the assumption hg = Shg = 0 at time
t = to, from Eq. (65), we obtain

So=—-K'P and Zo=0 (67)

for the first pseudo-time increment. Hence, the sensitivity
part corresponding to the deformation history is considered
in each subsequent load step that has caused plastic yielding.

The overall computational procedure for a pseudo-time
interval [0, N] is illustrated in the flow chart in Fig. 4. Note
that the mathematical optimizer in step 4 can be chosen dif-
ferently depending on the problem size and the form of the
objective and constraint functions. See e.g. [31] for details on
the implementation utilizing the Matlab function fmincon
available in the Matlab Optimization Toolbox. Further details
on the approach, discretization using F-finite elements, cf.
[15], and important implementation aspects can be found in
[31].
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Fig.5 a Initial geometry, b Optimized geometry V1 (LC 1/1), ¢ Opti-
mized geometry V2 (LC 1/-1)

5 Optimization problems
5.1 Initial geometry

The initial geometry of the XO-specimen with notches
inclined by 45° to the loading axis has outer dimensions of
240 mm by 240 mm, see Fig. 1. The depth of the notches
is 1 mm, reducing the thickness here from 4 to 2 mm at its
thinnest point, Fig. 5. First polished micrograph images indi-
cate a homogeneous grain size distribution and consequently
the remaining material can be seen as representative. The
connectors between the specimen legs have a width of 6 mm
and are centrally arranged, quite robust and thus, reduce the
liability to fabrication inaccuracies .

5.2 Forward problem

An FE model of the initial specimen is given in Fig. 6.
Here, the symmetries in longitudinal, lateral and thickness
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prescr. displ.
symm. boundary cond.

Fig.6 FE mesh and boundary conditions

direction are exploited. Consequently, only one eighth of the
whole geometry is modeled. Symmetric boundary conditions
are adopted at the symmetry planes and predefined displace-
ments are applied at the top and the right edges of the mesh.
In total, 5376 F-finite elements are used and the mesh counts
21,375 degrees of freedom.

Two different load cases are considered, namely (LC 1/1)
and (LC 1/-1). In the first case, both axes are equivalently
loaded in positive direction (i = 1), which produces a high
tensile stress state in the notched specimen area. In the latter
case, the axis 2 is loaded in negative direction (i = —uy),
which leads to a shear stress state in the notched area. The
loads are applied in terms of prescribed displacements. The
maximal values are ﬁ?;,al") = 0.15 mm and ﬁ?l‘;"‘)j) =+0.625
mm.

The forward boundary value problem is defined by
Eq. (25) together with the boundary conditions indicated in
Fig. 6. With the solution vector u(p), the vector of stress tri-
axiality values at the cross section of the specimen 7 (u(p))
can be computed in a postprocessing step.

Note that the vector p stores the geometric design variables
described in the next section. As the sensitivity relations have
been derived w.r.t. the referential coordinates, a connection
between these coordinates and the design variables has to
be established, which leads to the so-called design velocity
matrix Q

X
83X =—3§p=Qdp, (68)
op

described in detail in [31]. Consequently, in the following the
number of design variables ndv is the length of the design
vector p.

5.3 Inverse problem

As aforementioned, the shape of the X0-specimen is to be
changed so as to gain a distinct (high or low) preferably
homogeneous stress triaxiality in the cross section of the

Fig.7 Design variables in the notched area

notched area. These geometry changes have to be fulfilled
under consideration of the producibility at reasonable costs;
i.e. the fabrication process constrains the design variables in
acertain way. Consequently, as design variables the inner and
outer radii R;, R, as well as the radius in thickness direction
and the penetration depth R; and D are chosen, see Fig. 7.
Thus, the design vector reads p := [Ri R, R; D] .

For each of the mentioned load cases, one individual opti-
mum is desired. Thus, we state the two optimization problems
for the respective load case.

Load case (1/1)

In this load case, the stress state is desired to be tensile
dominated. Thus, the norm of the vector § that collects the
stress triaxiality values in this area is to be maximized.

Problem 1

max J (u(p) = 17 (u(p)) II,
s.t. ¢®(p) =0,
<"(p) <0,

pl<p <pl, i=1,...ndv, (69)

with the box constraints
p = [1.0 1.01.0 1.0],pu = [4.0 4.03.0 1.5].

Load case (-1/1)

In contrast to the former load case, by inverting the loading
direction of one axis, the stress state in the notched specimen
area is shear dominated. Hence, a minimization of the stress
triaxiality in that area is desired.
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Problem 2

m}}n J(u() = [[9< @),
s.t. ¢®(p) =0,
c"(p) <0,

pi<p <pl, i=1,...ndy, (70)

with the box constraints
p= [1.0 1.01.0 O.5],pu = [5.5 5.54.0 1.5].

In both cases, the equality and inequality constraints are
identical. The equality constraint forces the cross section area
in the notched region to stay constant at 12 mm?, i.e.

c® =% .t — 12mm’ = 0. (71)

Three inequality constraints are chosen to prevent destruction
of the geometry and FE mesh due to design changes. Clearly,
the inner and outer radii should always be greater than the
radius in thickness direction and the penetration depth should
always be smaller than the radius in thickness direction. This
leads to

M=|R-R,|<0. (72)
E—R,

The optimization problems are solved utilizing the interior-
point solver of the internal MATLAB function fmincon,
available in the Optimization Toolbox. Analytical gradients
are provided to fmincon that are computed utilizing the
method described in Sect. 4.2.

5.4 Optimization results

The solutions of Problem 1 and Problem 2 are given in Table 2
and illustrated in Fig. 5b, c. The optimized geometry for the
load case 1/1 is denoted with V1 and for the load case —1/1
with V2. V1 (Fig. 5b) is characterized by a smaller notch
radius in thickness direction R; = 1.0 mm, whereas the pen-
etration depth remains D = 1.0 mm. Furthermore, the outer
radius has been reduced to R, = 1.0 mm and the inner radius
remains R; = 3.0 mm. Due to the reduced notch radii, a more
elevated stress triaxiality under 1/1 loading and a reduced
zone with increased strains can be expected. In contrast, V2
is characterized by a reduced penetration depth of D = 0.5
mm which leads to a smaller width of the notched area of
4.0 mm based on the constant cross section of 12.0 mm2,
see Eq. (71). In addition, the notch radii R, = 3.0 mm and
R, = 4.0 mm have been enlarged whereas R; = 3.0 mm
remains constant. Consequently, it can be expected that V2

@ Springer

Table 2 Initial and optimal values of design variables for the two dif-
ferent load cases

LC 1/1 LC-1/1
Initial Vi1 \P
R; [mm] 3.0 2.0 4.0
R, [mm] 3.0 1.0 5.5
R, [mm] 2.0 1.0 4.0
D [mm] 1.0 1.0 0.5
Crel 25% 17%

conducts ’softer’, i.e. zones with elevated strain increase and
under 1/1 loading areduced stress triaxiality can be expected.
The relative change in the objective function is given as

[Jo—J*| AJ
Crel = = )
“e | Jo | | Jo |

(73)

were J* denotes the value of the objective function in the
solution point. In addition, Fig. 8 summarizes the value of
the objective function during the optimization process. Note
that for Problem 1 the maximization problem has been trans-
formed into a minimization problem. Thus, the value of the
objective function in Fig. 8a is negative. For both load cases
the optimization procedure stops if either the step tolerance is
less than 1e—6 or if the first-order optimality criterion is less
than le-6, see e.g. [36] for details on the stopping criteria.

Figure 9 displays the stress triaxiality n (see Eq. 23) and
Fig. 10 the Lode parameter (see Eq. 24) in the notched area
of the X0-specimen for the initial geometry ((a) and (d)) as
well as for the optimized geometries V1 ((b) and (e)) and
V2 ((c) and (f)) under 1/1 loading ((a—c)) and —1/1 loading
((d—f)) at the end of the simulations. Consequently, Fig. 9b
displays the objective quantity 1 on the corresponding opti-
mized geometry for 1 /1 loading and Fig. 9f for —1/1 loading;
further results are given as reference.

For 1/1 loading the optimized geometry (Fig. 9b) indi-
cates at the center of the notched region stress triaxialities
up to 1.12, whereas the initial geometry (Fig. 9a) indicates
values up to 0.8, i.e. through the geometry changes, mainly
the sharper notch in thickness direction, the V1 geometry
indicates substantially higher tension dominated stress tri-
axialities. Whereas the V2 geometry (optimized for —1/1
loading) reaches only values up to 0.68, see Fig. 9c. Hence
the effect of the optimization process can be clearly seen.
In contrast, the influence of the optimization process is less
obvious for —1/1 loading (Fig. 9d—f). All three geometries
show values in the range from 0.04 to 0.1 in a similar dis-
tribution throughout the cross section characterizing a shear
dominated stress state.

Note that Fig. 8 indicates no significant change of the
overall homogeneity of the stress triaxiality distribution for



Computational Mechanics (2020) 66:1275-1291

1285

-7 T T T T T

-7.5 q
~
E |
=
O
2]
2
2 -85 B
o

9F 1
95 I L . I L
1 10 20 30 40 50
Iteration
(a) Problem 1

6.5 T T T
~ 6 1
o
2
i
Q
2
o)
Ossl J

5 I I I
1 5 10 15

Iteration
(b) Problem 2

N

Fig.8 Objective history

all three geometries, i.e. gradients clearly occur. However, in
the central part of the V1 geometry the high intense stress val-
ues are locally homogeneous within a limited area. For more
significant results in terms of an overall homogeneous dis-
tribution over the whole cross section area, the optimization
problem has to be reformulated in terms of a reconsidered
objective function or additionally formulated constraints.

The Lode parameter @ has not been involved into the
optimization process as objective value. However, it also
characterizes the stress state. Under 1/1 loading (Fig. 10a—c)
the influence of the geometry can be clearly noted: The ini-
tial and the V1 geometry, both with a cross sectional area of
6.0 mm by 2.0 mm, indicate values between —0.1 and —1.0
whereas the V2 geometry (Fig. 10c) with a cross-sectional
area of 4.0 mm by 3.0 mm indicates only values close to —1.
Again, under —1/1 loading the influence is less significant
and a homogeneous distribution with values close to —1 is
shown.

112
—08
— 06
fOA

OOO

(a) Basis (1/1) (b) V1 (1/1)  (¢) V2 (1/1)

O]O
~005
005
-010

(d) Basis (-1/1) (e) V1 (-1/1)  (f) V2 (-1/1)

Fig.9 Stress triaxiality at cross section

6 Experimental investigations
6.1 Experimental setup

All experiments have been performed with the biaxial
test machine LFM-BIAX 20 kN produced by Walter+Bai,
Switzerland. It contains four electromechanically, individu-
ally driven cylinders with load extrema of £20 kN. During
the experiments the specimens are clamped in the four heads
of the cylinders and the machine reports its displacements
as well as the applied forces of each cylinder. To avoid
non-symmetric behavior during the experiments a stable,
mainly displacement driven procedure has been used, see
[20] for details. In this context the nominal displacements
u; ; (indicated by the red dots in Fig. 11) allow the intro-
duction of the relative displacements Auret; = Ui — Ui
as adequate displacement measures and the averaged forces
F; = (Fii+Fi2)/2 are introduced as corresponding force mea-
sures.

During the experiments the displacement fields of the
specimen surfaces have been monitored with a Q-400 digital
image correlation (DIC) system provided by Limess/Dantec.

@ Springer
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(a) Basis (1/1) (b) V1 (1/1)  (¢) V2 (1/1)

(d) Basis (-1/1) (e) V1 (-1/1)  (f) V2 (-1/1)

Fig. 10 Lode parameter at cross section

us

Fig. 11 Notation of experimental technique. (Color figure online)

For the setup 6.0 Mpx cameras equipped with 75 mm lenses
have been applied. The forces F; ; and the machine displace-
ments uivl have been transmitted to the DIC-system and
stored with the corresponding DIC data sets. The nominal
displacements u; ; have been extracted by post processing
the DIC data. Furthermore, macro photographs of the frac-
tured specimens have been taken and the fracture surface has
been analyzed by scanning electron microscopy (SEM). Fur-

@ Springer

ther details on the experimental techniques can be found in
[22].

6.2 Forces and displacements

Figure 12 displays the numerically (sim) and experimentally
(exp) obtained force—displacement curves for (a) 1/1 load-
ing and (b) —1/1 loading. The relative displacements Auer ;
of the numerical simulations have been extracted at corre-
sponding nodes to the experimentally obtained ones, see red
dots in Fig. 11.

Under both loading conditions the influence of the speci-
men geometry can be clearly seen within the elastic region:
The V1 geometry indicates the stiffest reaction due to the
sharp notch radius in thickness direction with R, = 1.0
mm causing a relatively small region with elevated elastic
deformations. Under 1/1 loading the initial geometry (R; =
2.0 mm) reacts less stiff and the V2 geometry with R, = 1.0
mm and a reduced penetration depth of D = 0.5 mm reacts
softest. Under —1/1 loading this influence is present, but
less pronounced. Overall the agreement between numerical
simulation and experiment within the elastic region is good.

The inelastic behavior is predicted in a reasonable way,
having in mind that the material parameters have been
determined with respect to the tension test and that the numer-
ical simulations considered elastic—plastic material behavior
based on the von Mises yield criterion and the isochoric
inelastic deformations, i.e. the material degradation due to
damage has not been included numerically. For 1/1 loading
itcan be noted that the simulations of the initial and V2 geom-
etry underestimate the load whereas the simulation of the V1
geometry overestimates the load. This can be seen in relation
to the increased stress triaxiality of the V1 geometry under
1/1 loading, see Fig. 9. Under —1/1 loading more elevated
relative displacements Auqer; occur, see Fig. 12b. For the
tension as well as for the compression axis the elastic behav-
ior is estimated in good accordance. For the compression
axis also the inelastic behavior is estimated in a reasonable
way, whereas for the tension axis starting from a relative dis-
placement Aurro = 0.4 mm the loads are overestimated,
see Fig. 12b.

6.3 Deformation and fracture behavior

The deformation behavior of the specimens surfaces has
been monitored by digital image correlation (DIC) and the
reported first principal strains are displayed in Fig. 13 for
the different geometries and load cases shortly before frac-
ture occurrence. Furthermore, the photos given in Fig. 14
display the resulting fractured specimens and give a good
impression of the overall deformation behavior of the cen-
tral part of the specimen. It can be noted that the geometry
has a significant influence on the deformation and fracture
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Fig. 12 Global load—displacement diagrams

behavior, specially the sharp notch in thickness direction of
the V1 geometry leads to a reduced area of elevated strains
and consequently less overall deformation before fracture.

The fracture surfaces have been analyzed by scanning
electron microscopy (SEM) and representative pictures are
given in Fig. 15 for 1/1 loading and in Fig. 16 for —1/1 load-
ing. The upper row (a—c) reflects a representative area at the
center of the fracture surface and the lower row (d-f) reflects
a representative area towards the outer radius R,,.

Under 1/1 loading, the fracture surfaces indicate failure
due to void nucleation, growth and coalescence which cor-
responds to the indicated tension dominated stress state, see
Figs. 9a—c and 10a—c. For the optimized V1 geometry sig-
nificantly higher stress triaxialities have been predicted at
the center of the notch and this is reflected by the material
failure. Figure 15b indicates significantly remarkably larger
voids and a more brittle behavior compared with the ini-
tial (Fig. 15a) and the V2 geometry (Fig. 15¢). Towards

the outer radius for all geometries a similar stress triaxial-
ity of approximately n = 0.4 has been predicted and the
SEM images (Fig. 15d—f) indicate the corresponding mate-
rial failure characterized by smaller voids without significant
differences between the different geometries.

For —1/1 loading stress triaxialities without significant
gradients have been numerically predicted (Fig. 9d—f) with
stress triaxialities of approximately n = 0.05 and a Lode
parameter of approximately w = —1 (Fig. 10d—f) which cor-
responds to a shear dominated stress state. The SEM images
of the fracture surface in Fig. 16 indicate the corresponding
shear behavior initiated by micro shear cracks. Overall the
fracture surfaces are rather homogeneous and no significant
differences can be noted neither with respect to the geometry
nor with respect to the location on the fracture surface.

7 Summary and outlook

The paper has discussed the shape optimization of the biax-
ially loaded XO-specimen with respect to a homogeneous
stress state to study the damage and fracture behavior. Exper-
iments with the optimized specimens have been conducted
and the obtained results emphasize the efficiency of the opti-
mization process.

The proposed variational sensitivity analysis has been
integrated into a gradient based optimization algorithm
ensuring reasonable computing time for all considered
numerical investigations. The chosen optimization problems
modeling the mechanical intention of distinct and prefer-
ably homogeneous stress states have been solved requiring
only a small number of iterations. Both remarks empha-
size the practicability of the chosen computational approach
generating quantitative results unavailable by engineering
intuition.

The experiments with the initial and the two load case
dependent optimized X0-specimens confirmed the numer-
ically predicted results. Especially, the increased stress
triaxiality of the V1 geometry under 1/1 loading indicated
bigger micro-pores and a less ductile behavior revealed by
scanning electron microscopy.

The presented promising results mark the onset of a
research program of shape optimization with respect to biax-
ial specimens to study the damage and fracture behavior of
ductile metals. In future investigations, shape optimization
problems with respect to other loading condition needs to
be studied and if possible standardized geometries for cer-
tain loading conditions need to be proposed. Furthermore,
the damage evolution and the constraint of limiting elevated
deformations have to be considered within the optimization
processes.
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Fig. 13 First principal strains reported by digital image correlation (DIC): load case (1/1): a initial geometry, b V1 geometry, ¢ V2 geometry; load
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Fig. 14 Fractured specimens
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Fig. 15 Scanning electron microscopy images load case (1/1): a initial geometry, central; b V1 geometry, central; ¢ V2 geometry, central; d initial
geometry, boundary; e V1 geometry, boundary; f V2 geometry, boundary

Fig. 16 Scanning electron microscopy images load case (—1/1): a initial geometry, central; b V1 geometry, central; ¢ V2 geometry, central; d
initial geometry, boundary; e V1 geometry, boundary; f V2 geometry, boundary
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