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Abstract

The inorganic compound BiCusPOg contains tubelike structures, which are described
magnetically by weakly coupled frustrated spin ladders with a finite energy gap. The el-
ementary excitations are triplons of which the degeneracy is lifted due to Dzyaloshinskii-
Moriya interactions. In certain regions of the BRILLOUIN zone the lifetime of the triplon
excitation modes becomes finite due to the hybridization of the single-triplon with the
two-triplon states. In addition, the dispersions of these triplon modes show a striking
down-bending before ceasing to exist. In experiment, BiCusPOg shows various types of
decay processes, which can be caused by different symmetry breaking interactions. In
previous studies, we established a minimal model to include all symmetry-allowed inter-
actions, such as the Dzyaloshinskii-Moriya interaction. Based on this minimal model,
we show in this thesis that isotropic and anisotropic effects are responsible for noticeable
quasiparticle decay and certain down-shifts of the single-triplon energies. The analyses
are based on a deepCUT approach for the isotropic case augmented by a perturbative
treatment of the anisotropic couplings inducing quasiparticle decay at zero tempera-

ture.

Kurzfassung

Die anorganische Verbindung BiCuyPOg enthilt réhrenartige Strukturen, welche mag-
netisch durch schwach gekoppelte frustrierte Spinleitern mit einer endlichen Energieliicke
beschrieben werden. Die elementaren Anregungen sind Triplonen dessen Entartung
aufgrund der Dzyaloshinskii-Moriya Wechselwirkungen aufgehoben ist. In bestimmten
Bereichen der BRILLOUIN Zone wird die Lebensdauer der Triplonen endlich aufgrund der
Hybridisierung der Eintriplon- mit den Zweitriplonenzustinden. Zusétzlich zeigen diese
Triplonmoden ein auffélliges Abknicken bevor sie aufhdren zu existieren. Im FExperi-
ment weist BiCuyPOg unterschiedliche Typen von Zerfallsprozessen auf, die durch ver-
schiedene symmetriebrechende Wechselwirkungen verursacht sein konnten. In vorherigen
Untersuchungen habe wir ein minimales Model aufgestellt, um alle aufgrund von Sym-
metrie erlaubten Wechselwirkungen, wie die Dzyaloshinskii-Moriya Wechselwirkung, zu
beriicksichtigen. Auf Grundlage dieses minimalen Models zeigen wir in dieser Arbeit,
dass isotrope und anisotrope Effekte fiir erkennbaren Quasiteilchenzerfall und bestimmte
Absenkungen der Eintriplonenenergien verantwortlich sind. Die Analysen basieren auf
einem deepCUT Ansatz fiir den isotropen Fall, ergdnzt durch eine stérungstheoretische
Behandlung der anisotropen Kopplungen, die Quasiteilchenzerfall bei Temperatur gleich

Null induzieren.
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1 Introduction

The field of condensed matter physics addresses the issues of the physical properties of
matter on macroscopic and microscopic level. Its branch concerning matter in the solid
phase is the research field of solid state physics. It deals with the question what atomic-
scaled properties of a solid material are responsible for its observable characteristics on
macroscopic level. The first model to describe the physics of a solid was the DRUDE
model in 1900, which characterizes the transport properties of electrons in materials,
especially in metals, on a classical level |1,2]. During the next years the DRUDE model
was extended in several ways in order to fill its knowledge gaps [3].

The most important milestone in the field of solid state physics was the introduction
of quantum mechanics [4-6]. With this fundamental theory the physics on atomic and
subatomic scales can be explained. One of the best known manifestations of quantum
mechanics in our everyday life is the phenomenon of magnetism [7,[8]. The first model
describing the appearance of magnetism on microscopic level was established by ISING in
1924 [9]. The ISING model characterizes a solid state as a periodic lattice of interacting
spins S= 1/2 |7,|10H13| on microscopic level which results in a net magnetization on
macroscopic level. This model was invented to describe phase transitions. In 1930
NEEL proposed a different form of magnetism called antiferromagnetism [7,[8,/14-16|. In
constrast to ferromagnetism, the spins in an antiferromagnet prefer to align antiparallel
leading to a zero net magnetization. One interesting phenomenon in the context of
antiferromagnetism is the frustrated magnetism [14}/17-19]. It presents a perfect testing

ground in which new states and new properties of matter can be discovered [18].

1.1 Frustrated magnetism

In antiferromagnetic materials it is not always possible that all spins, described by
classical vectors, align antiparallel to their interacting neighbors. This aspect leads to
the field of frustrated magnetism. Frustration occurs when no possible spin configuration
of the interacting spins can minimize all individual bond interactions simultaneously

[20-22|. In general, frustration can be caused either by competing interactions [21] or
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by the underlying lattice structure |14}/17]. The latter case is referred to as geometrical

frustrationﬂ. Figure represents examples for each case.

(a) (b) ¢

? ° !

Figure 1.1: Examples of frustrated spin arrangements. At the corner of each plaquette a

spin with S=1/2 is located. The red lines visualize antiferromagnetic interactions,
whereas the blue line stands for a ferromagnetic interaction.
(a) Geometrical frustration [15,16]. In the triangular lattice two spins align antipar-
allel. The third spin is frustrated since both its orientations give the same energy
and result in one unsatisfied bond. (b) Frustration caused by competing interac-
tions [17]. In the square plaquette three spins arrange antiparallel. The fourth spin
is frustrated due to the competing ferro- and antiferromagnetic interactions with
its neighbors. Its two possible orientations leave one bond unsatisfied.

Further prominent frustrated lattice structures are for example the kagome lattice in
two dimensions [23/25] and in three dimensions the pyrochlore lattice [17,[19P} The
phenomenon of frustrated magnetism gives rise to a degenerate manifold of possible
ground-states leading to magnetic analogies of liquids and ice which are called spin liquids
[14] and spin ice [14,30]. Since frustrated materials show new states and new properties of
matter, they represent promising candidates for applications in modern technology [31].
Therefore, it is crucial to obtain an in-depth knowledge of the mechanisms which are

fundamentally responsible for the characteristics of frustrated systems.

1.2 Experimental analysis of solid state systems

Inelastic neutron scattering (INS|) experiments are a paradigm technique for studying
the magnetic properties of solid state systems, e.g. spin correlation functions or features
of the magnetic excitations [18}32]. In order to characterize the microscopic interactions
of a solid state material its underlying structure needs to be specified. For this neutrons
with a wavelength in the order of 107m and a corresponding energy of a few meV

are used standardlyﬂ As neutrons hold a magnetic moment, they can interact with

'In the context of this thesis, we use the expression frustration as a simplification of geometrical
frustration, unless otherwise stated.

2Each of these lattice structures holds nearest-neighbors antiferromagnetic interactions. For further
interesting frustrated materials we refer to Refs. [14}26H29].

3Neutrons in this energy range are called thermal neutrons.
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unpaired electrons in magnetic atoms. Thus, they can reveal information about the

magnetic lattice structure of a sample |32]. The basics of experiments are shown in

figure [1.2]

detector

neutron ﬁ7E—Z> 45:

source

sample

Figure 1.2: Schematic illustration of [[NS experiments.

A collimated beam of neutrons with initial momentum El and energy F; is focused on a
sample. The neutrons interact with the sample and a transfer in energy and momentum
between the neutrons and the sample takes place. The scattered neutrons hold a different
momentum Ef and energy E providing information about the magnetic properties of
the sample. The intensity of the scattered neutrons depends on the momentum transfer
(Dj =k — Ef and energy transfer w = E; — Ey. It is proportional to the dynamic
structure factor (DSE) S°°(Q,w) [33]. The is defined as the FOURIER transform

of the time- and momentum-dependent spin-spin correlation function

S, w) = %/dtei“t(Sa(—@,t)Sﬂ(Q,0)> (1.2.1)

with the spin components «, 8 € {z,y, 2} |33-35], see sect. for more details. As
the is an accessible variable in theoretical calculations, it represents an appropri-
ate quantity for comparing theoretical and experimental results. It provides valueable
information concerning the magnetic excitations of a material and their mutual interac-

tions.

1.3 The phenomenon of spontaneous quasiparticle

decay

Quasiparticles are a fundamental concept in modern condensed matter physics for de-
scribing strongly interacting many-body systems [36-38]. Within the quasiparticle pic-
ture, complex collective excited states of a many-body system can be described in terms
of effective elementary excitations [39]. The quanta of these excitations hold a definite
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amount of momentum and energy and are called quasiparticles [39]. They are assumed
to have a long or even infinite intrinsic lifetime [38] and to interact weakly with each
other [40]. If a system contains interaction terms which couple single-particle and multi-
particle states, it is possible that a single particle may decays into the continuum of the
multi-particle states spontaneouslyﬂ [37,40]. With the expression “spontaneously” we
mean that the quasiparticle decay takes place at zero temperature (7=0), i.e. its origin
are quantum fluctuations and not thermal fluctuations [41,/42].

If spontaneous quasiparticle decay ([SQPD) is possible, three different scenarios can oc-

curl}
1% The lifetime of the quasiparticle decreases rapidly [41].
284 The single-particle branch disappears completely [41].

3'Y The single-particle dispersion is significantly renormalized in order to avoid an
overlap with the multi-particle continuum. It is pushed below the lower boundary

of the continuum [39).

Quasiparticle decay was first predicted [43] and then discovered in the excitation spec-
trum of superfluid “He [44[46] at temperatures close to zero. In the field of magnetism
[SQPD] was observed by experiments in various valence bond type quantum spin sys-
tems, for example piperazinium hexachlorodicuprate (PHCC) [37], IPA-CuCls [47,148],
BiCuyPOg [39] and also in triangular lattice compounds [49,/50).

1.4 The inorganic compound BiCus;POg

The quantum antiferromagnet BiCuyPOg (BCPQI) states a fascinating structure whose
manifold magnetic properties have been analyzed in detail in the last decades [39,51-70].
It is also discussed as a candidate for topological insulators [71]. Before discussing its
interesting characteristics, observed in [[NSexperiments, and the current research status,
our initial focus is on the spin modelf| of BCPQ] see figure

Although the contained bismuth ions hold a large atomic number (Z = 83), they do not
host the localized spins S=1/2. These are localized at the copper ions Cu*" and form
the magnetic structure of BCPOL The magnetic model is based on tubelike arranged

spin ladders coupled among themselves resulting in a two-dimensional lattice |55}/65].

4Note, that momentum and energy have to be conserved |38].

5In sect. we revive these scenarios and discuss them in more detail.

6 A detailed description of the crystal structure, which describes the spatial arrangement of all contained
ions, was published by TSIRLIN et al. |60].
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Bi CuA CIIB

Figure 1.3: Structures of [BCPOl
(a) Crystal structure of BCPO. The unit cell is orthorhombic and contains coupled
frustrated spin ladders formed by the two inequivalent copper ions Cuy and Cup.
We omitted the phosphorus and oxygen ions for a better overview. (b) Effective spin
model. The analyzed model is made of frustrated spin ladders, which are coupled
by an interladder coupling J’. The inequivalence of the copper ions is neglected.

The tubes represent frustrated spin laddersﬂ which are constructed by two crystallo-
graphically different types of copper ions Cuy and Cug, see figure [I.3] The elementary
excitations are dispersive triplons, i.e. hard-core S=1 quasiparticles [72], which are de-
generated for isotropic models. The difference between the copper ions Cuy and Cup
arises from the positions of the bismuth ions in the crystal structure. The two types of
copper ions alternate along the ladder in y-direction. The coupling between the spins,
which belong to different types of copper ions, is the nearest-neighbor (NN) interac-
tion J;. The couplings Jy and J' acting perpendicular in z-direction connect different
types of copper ions as well. It is an appropriate assumption that a difference in the
next-nearest-neighbor (NNN) interaction between the copper ions of the same type ex-
ists . These couplings are named Jy and Jj. Mostly this aspect is neglected in
research. Since noticable dispersion exists in the yz-plane, has to be considered
as a two-dimensional material . Along the z-direction a dispersion is hardly de-
tected, supporting the two-dimensionality [60,69]. The crystal structure of shows
up broken inversion symmetry about the center of the copper bonds [60], see figure .
For this reason anisotropic interactions are possible in and have to be considered
additionally ,. These anisotropic interactions, referred to as the Dzyaloshinskii-
Moriya interaction (DM inferaction)) arise from the spin-orbit coupling (SOC). They

"The ground-state of BCPQlis a valence bond solid .
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lead to the fact that the spectrum of the elementary excitations, i.e. the triplons, is
split. As a standard estimate for the relative strength of the [DM interactionk compared
to the isotropic interactions D/J is |Ag|/g where g is the gyromagnetic ratio g &~ 2 and

Ag = g — 2. For spins in copper ions Ag assumes values from zero to 0.4 so that any
value of D/J beyond 0.2 must be considered remarkable. Since the is a relativistic
effect, it is of particular importance for elements with a large atomic number implying
strong COULOMB potentials and high electronic Velocitiesﬂ

After considering the magnetic structure of in detail, we now discuss interesting
characteristics of its excitation spectrum and the current research status. The excitation
spectrum of [BCPOIl received by experiments and firstly published by PLUMB et.

al. [39,[70], shows a wide range of interesting features.

There are two striking points concern-

————— ing the excitation spectrum of [BCPO!
0 4 8 12 16 20 _

see figures[I.4 and [I.5], which we want
to address explicitly.

I (u3 meVTfu.T)
h=0£05

1%t The excitation modes are not
degenerated, but split.

2rd Not all excitation modes exist in

Energy (meV)

the complete BRILLOUIN zone,
but show up interesting down-

bendings before ceasing to exist.

The first point emphasizes the as-
sumption that anisotropic interac-
tions are present in lifting the
degeneracy of the excitation modes.
The second aspect demonstrates that
there are effects in present

which have a significant influence

Energy (meV)

on the lifetime of the excitation

modes. In accordance with our pre-
k (r.lu. . . .
. ) _ . vious analysis of the spin model of
Figure 1.4: Results of the IIN5| experiments on ____ .
BCPOIL The illustrations are taken from BCPOL the experimental results con-

Ref. [39). firm the significant influence of the

8 As [BCPQl contains bismuth ions holding a large atomic number of Z = 83, it is reasonable to expect
the presence of anisotropic interactions.
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Figure 1.5: Dispersions of the excitation modes in The color assigment of the data
points indicates the different excitation modes. The grey shaded region around the
minimum area is depicted in a more detailed way. The solid lines correspond to
theorectical calculations based on a bond operator theory (BOT) on a mean-field
level. The illustrations are taken from Ref. .

[DM interactionl on its excitation spectrum. Furthermore the [DM interactionl is dis-
cussed to be also responsible for the observed finite lifetime of the triplons and their
absence in specific parts of the BRILLOUIN zone. PLUMB et. al. discussed this issue
at first ,. They considered triplon interactions, which are induced by the existing
[DM interactionk, via the bond operator formalism and the GREEN’S function formalism

on a one-loop level. These interactions lead to renormalized triplon energies and to the

fact that the triplons can decay, i.e. the phenomenon of spontaneous quasiparticle decay

(SQPD) arises in BCPOl due to [DM inferactiont’} The results can explain the decay

behavior of the triplons inside the two-triplon continua at a satisfactory level, see figure
[64]. In contrast, the prominent down-bending behavior cannot be reproduced since

the occuring level repulsion effects turn out to be rather small. In addition, only one

specific component D, out of all existing DM interactions contributes to decay processes
and assumes a remarkable value of D;/J; = 0.3. Although two-triplon interactions are
taken into account, no bound states occur since these interactions are approximated via

a mean-field approach.

9 Apart from the DM interactionk, even isotropic effects in [BCPQ] for example the previous mentioned
difference in the NNN interactions Jo and Jj, can lead to the phenomenon of SQPD] In chapter
we discuss this aspect in detail.
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Figure 1.6: Theoretical spectral function of including interacting triplons.
(a) The spectral function is plotted with lines. They gray shaded region depicts the
multitriplon continuum. (b) The spectral function is plotted with a color map. The
color dots denote the data from Ref. . Note, that the color coding differs
compared to figure . Both illustrations are taken from Ref. .

1.5 Goals of this thesis

In this thesis we want to establish a microscopic model for that explains all its
striking features, which have been revealed in experiments, by assuming realistic
values for the anisotropic interactions. In particular, we want to address the prominent
down-bending behavior, which cannot be explained up to now, the finite lifetime of the
triplons and their absence in specific parts of the BRILLOUIN zone. We want to point
out comprehensibly what exact mechanisms in are mainly responsible for these
features. In order to do so, we use a continuous unitary transformation (CUT]) approach
for the isotropic case of augmented by a perturbative treatment of the anisotropic
couplings on a mean-field level. We include these corresponding interactions on different
operator levels step by step and fit our results to the experimental data. Using this
procedure, we can determine the values of the anisotropic couplings and work out what
processes are mainly responsible for the dynamics in [BCPQOL

This thesis is structured as follows. In the next chapter [2| we introduce the basic
techniques which have been used in this thesis to set up a comprehensive model for
In chapter [3] we apply these methods to a toy model and discuss the basic
effects of [SQPD] and two-particle interactions. Then we start in chapter [ to set up
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a model for by analyzing its effective spin model in detail and including the
existing [DM interactionk on bilinear operator level. In the following chapters [5| and [6] we
extend this model of by taking into account the difference in the NNN interaction
(Jo # J}) and decay processes stemming from the [DM interactionk. In chapter [7| we
consider two-triplon interactions and further enhance our model of with these.

Finally, we conclude in chapter [§
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2 Theoretical foundations

Describing and solving strongly correlated electron systems represents a significant seg-
ment in the superordinate research field of theoretical solid state physics. One of its
key points is developing methods in order to handle complex systems. These theoretical
approaches can be divided into two major groups: analytical and numerical approaches.
The analytical approaches can be further divided into mathematically exact solutions
and analytical approximations. Prominent candidates for mathematically exact solu-
tions in solid state physics are for example the BETHE ansatz |75] for the one-dimensional
HEISENBERG and HUBBARD model [761[77] and the solution of the ISING model, which
can be solved exactly in one dimension [9] and in two dimensions with the restriction
to zero magnetic field |78|. Besides these specific problems it is possible to solve every
bilinear Hamiltonian in one dimension by a FOURIER transform and/or a BOGOLIUBOV
transformation |79,80]. An example for analytical approximations is the random phase
approximation (RPA) [81-83]. However, most of the of strongly correlated electron
systems are too complex in order to solve them analytically. Therefore, numerical ap-
proaches provide the majority of calculation tools in theoretical solid state physics. Of
course, for all numerical methods approximations need to be applied in order to solve
these complex systems completely numerically, but their essential properties remain un-
changed. To name just a few powerful numerical methods, there are the density matrix
renormalization group (DMRG) [84], the Variational Monte-Carlo method [85-87] and
the Quantum Monte-Carlo method [88].

In this chapter the used methods of this thesis are discussed. The fundamental theoreti-
cal technique of this thesis is given by the method of continuous unitary transformations
(CUTE), which constitutes a powerful tool to address complex spin systems. The second
important method refers to the problem of diagonalizing quadratic bosonic Hamiltoni-
ans. In order to deal with the phenomenon of spontaneous quasiparticle decay, its most
essential aspects are outlined subsequently. The chapter concludes with a section about

the Dzyaloshinskii-Moriya-interaction, which is responsible for spontaneous quasiparti-

cle decay in [BCPOIL
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Parts of this chapter have been published in Physical Review B [89] and in Physical

Review Research as regular articles [71].

2.1 Continuous unitary transformations

Methods which are developed in order to solve Hamiltonians containing complicated
interactions have the aim to simplify the Hamiltonian without the loss of its properties.
With the method of continuous unitary transformations (CUTE) it is possible to derive
an effective tractable Hamiltonian H.g, which can be solved easily from a complex
initial Hamiltonian H in a controlled manner. Thereby, the starting Hamiltonian H is
simplified step-by-step by applying unitary transformations. It has been proven that it
is very useful to derive Heg in second quantization in terms of creation and annihilation
operators of the elementary excitations seen as quasiparticles [90]. In the case of gapped
disordered quantum antiferromagnets, e.g. BCPQOl these quasiparticles are often triplons
[72]. Terms which change the number of quasiparticles are rotated away [91,(92], or at
least some of them depending on the quantity one is interested in [93|. Thus, the ground-
state becomes the vacuum of quasiparticles and their dispersion can be taken from the
hopping of quasiparticles. In principle, a unitary transformation is a change of basis
and can be done in one single step. But it has turned out that it is more appropriate to
perform the basis change continuously because this warrants renormalizing properties
of the transformation. The processes between states with large energy differences are
eliminated first renormalizing the matrix elements of the low-energy states [94].

The basic concept of [CUTk was established by WEGNER [95] and by GLAZEK and
WILSON [96497]. Instead of using a single unitary transformation to simplify the initial

Hamiltonian H we use several continuous unitary transformations
H)=U)HU (1), (2.1.1)

which are denoted with U (I) and depend on the so-called flow parameter [. For [ = 0
the relation U (I = 0) = 1 holds. The flow equation of the Hamiltonian

OH (1) = [n (1), 1 (1)] (2.1.2)
with the anti-Hermitian generator
n(l) = (U (1) U (1) (2.1.3)

outlines the current rate of change of the Hamiltonian H (I). The flow equation, see
eq. (2.1.2), describes a system of coupled differential equations for the prefactors of



2.1 Continuous unitary transformations 21

the operators, which occur in the Hamiltonian H (Z)EI In general, an infinite number
of differential equations has to be solved which cannot be done completely. Therefore,
an appropriate truncation scheme is necessary. With the help of a truncation scheme
one can decide whether a term in the Hamiltonian H (/) has to be considered or ne-
glected so that H (I) ensures a sufficient good description of the initial Hamiltonian
H. There are different types of existing, which differ in their applied truncation
scheme [91},94,98,099]. We make use of the directly evaluated continuous unitary trans-
formation because it shows strong numerical stability [94]. This method
decides whether an operator or a term has to be kept or neglected according to its effect
in powers of the expansion parameter x on a chosen target quantity. In our case the
target quantity is the dispersion of the triplons [100|. If n describes the order up to
which the target quantity should be exact in, all operators and terms, which have an
effect on the target quantity in the order m < n in x, have to be considered.

Forming the limit [ — oo
Hesr = llim H (1) = U (00) HU (00) (2.1.4)
—00

one receives the effective Hamiltonian, which represents a sufficient good description of
the initial Hamiltonian H and can be analyzed more easily. A denotes a change of
basis. This means that observables O have to be transformed into the same basis, which
is used to derive the effective Hamiltonian H.g¢. The procedure for observables is very

similar. One also has to solve the flow equation of the observable
90(1) =1n(),0) (2.1.5)

and receives the effective observable O.g in the limit { — oo as well.

The choice of the generator 7 () is crucial. It determines the flow of the Hamiltonian
H (1) and has to be chosen with respect to the target quantity. For our target quantity,
namely the dispersion, we use the 1n generator [93], which reads

M (1) = Hg (1) + M1y () = Hg (1) = Hy (1) (2.1.6)

The operators Hg (1) and H; (1) consist of all terms of H (I) which create more quasi-
particles than they annihilate out of states with zero or at least one quasiparticle. In
contrast, the operators H, (1) and H; (I) contain all terms of H (I) which annihilate
more quasiparticles than they create. Clearly, the relation (M- (1))' = H_ (1) holds. As
a consequence, the In generator in eq. is anti-Hermitian. This has to be the case

'We choose the prefactors of operators in the Hamiltonian # (1) to be I-dependent and not the operators
themselves, see Ref. [94].
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in order to ensure that the is a unitary transformation. With the 1n generator it
is possible to decouple the subspaces, which contain zero and one quasiparticle, from all
other subspaces. Thus, this generator is suitable for computing the ground-state energy
and the dispersion [93].

One specific example for the application of is the spin ladder model [101-104].
As explained in section [I.4] the magnetic structure of is not given by a single
spin ladder but by multiple spin ladders coupled via a weak interladder coupling, see
figure [[.3] resulting in a two-dimensional model. In order to provide a solution for two-
dimensional spin ladder models, it is reasonable to solve the single spin ladder with a
and to apply a mean-field approach in the elementary excitations [100] to include
the interladder interactions. This approach results in a Hamiltonian with quadratic

terms which needs to be solved. The next section deals with this issue.

2.2 Diagonalization of quadratic bosonic

Hamiltonians

Quadratic Hamiltonians can contain terms which break the conservation of the quasipar-
ticle number, for example in the case of superconductivity [105,/106] where the number
of electrons, i.e. fermions, is not conserved. Since the triplons in disordered quantum
antiferromagnets, e.g. BCPQOl are often treated as free bosons in a mean-field approach,
we focus on quadratic bosonic Hamiltonians in the following. These Hamiltonians can
be solved by a bosonic BOGOLIUBOV transformation |79,107-109]. To gain a deeper un-
derstanding of this transformation we first discuss a general ansatz with which all kinds
of quadratic bosonic Hamiltonians can be solved. Afterwards we discuss a frequently

occuring special case which we label as the two-mode case |79,80].

2.2.1 Bosonic BOGOLIUBOV transformation: general ansatz

In this subsection we introduce a general ansatz to diagonalize Hamiltonians consisting of

quadratic bosonic operator terms [110]. Therefore, we study the following Hamiltonian

n 1 n
H = Z Aija;faj -+ 5 Z (Bijaza} + B;‘jajai) (227)

ij=1 ij=1
with the operators az and a; obeying bosonic algebra

laj,af] = d, (2.2.8)
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and the prefactors A;;, B;; € C. Since the Hamiltonian A has to be Hermitian, the
.7, fulfills the condition AT = A. The matrix B,

including the entries B;;, fulfills the condition B* = B because the operators a}L and a;

matrix A, including the entries A

obey bosonic algebra. By defining the column vector

T
a= (al, ...,an,ai,. aT> (2.2.9)

ey Uy

with 2n entries, containing all bosonic creation and annihilation operators, the commu-

tation relation in eq. ([2.2.8) takes the compact form
[, al] =, (2.2.10)

where the 2n x 2n matrix

n= (%::: _0]711:;) (2.2.11)
is introduced. Using the notation of the column vector v and the corresponding row
vector af = (ai, Lnala, ..., an> the Hamiltonian in eq. can be rewritten to

H = %aTMoz — %Tr (A). (2.2.12)

The matrix M has 2n x 2n entries

M = (A B) (2.2.13)
B* A

and is Hermitian, i.e. M' = M holds. Diagonalizing the Hamiltonian A is equivalent
to finding a canonical transformation K defining new quasiparticle operators bzT and b,
which are represented by a linear combination of the bosonic creation and annihilation

operators aZT and a;. The mathematical expression
B =K« (2.2.14)

characterizes this relation. As an analogy to the column vector «, the new quasiparticle

operators describe the entries of the column vector

B = (bl,...,bn,b‘{,...,bg)T (2.2.15)

< Uns

and of the row vector 81 = (b{, bl by bn). The new quasiparticle operators bZT and

b; are expected to obey the bosonic commutation relation as well. A short calculation



24 Theoretical foundations

2.2.16a
2.2.16b
2.2.16¢

)
@
|
=
Q
Q—:—
al

|
=
3
~
4
—
~— ~— ~—

2.2.16d

[I--
3
—~

yields the relation
n =Kk, (2.2.17)

which is equivalent to
K™t =nKTp (2.2.18)

for the canonical transformation matrix K. Writing the Hamiltonian in terms of the

new quasiparticles results in
1 1 1
H= 5[‘3 nKnMK 3 — §Tr (A). (2.2.19)
If K is the matrix, which diagonalizes the matrix nM into diagonal formE]
KnMK™=Q (2.2.20)

with the 2n x 2n diagonal matrix €2, the Hamiltonian shows

H= %ﬂ*nm — %Tr (A). (2.2.21)

It can be proven that the matrix (2 has in general the block structure

0= <°(‘)’ _Ow> (2.2.22)

with the diagonal n x n matrix w = diag (wy, ..., w,) containing the eigenvalues w; > 0
with ¢ € {1,...,n} of the non-Hermitian matrix nM [110]. Therefore, the Hamiltonian

yields the simple form[]

H = blwb + %Tr (w) — %Tr (A) (2.2.23)

and describes a systems of non-interacting bosonic quasiparticles.

The main point in this calculation is finding the canonical transformation K, which

2Therefore the eigenvectors of the matrix nM are the column vectors of the matrix K .
3In this notation the relations b = (by, ...,bn)T and bf = (bJ{, - bjl) hold.
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describes the mapping between the different bosonic operators, see eq. (2.2.14)). Thereto,
the matrix nM has to be diagonalized, i.e. the eigenvalue problem

nMV' =w; V', ie{l,..2n} (2.2.24)

with the eigenvector V¢ belonging to the eigenvalue w; has to be solved. It is important
to emphasize that the matrix nM is non-Hermitian and therefore its eigenvalues do not
have to be real in general. At the end of this section we will point out that the matrix
nM is self-adjoint with respect to the “symplectic product”. Finally, this fact ensures
that the eigenvalues of nM are truly real. As a consequence, the 2n eigenvalues of the
non-Hermitian matrix nM occur in pairs of (+wy, ..., +w,) with w; € R, i.e. to every
positive eigenvalue the negative counterpart comes up [110].

In contrast to an analytical solution of the eigenvalue problem in eq. , a numeri-
cal approach needs more attention when determining the eigenvectors V. In numerical
computations of eigenvectors the norm of the eigenvectors is set to be equal to llz_f] Since
the entries of the eigenvectors V* describe a mapping between two different types of
bosonic operators, see eq. , they have to fulfill a specific normalization, which
will be re-derived in the following [110].

Therefore, we start by establishing a link between the eigenvectors concerning the eigen-
values +w;. Derived in Ref. [110] we finde the following statement:

. X"
If Vi = (Y’) is an eigenvector of the matrix nM belonging to the eigenvalue w;, then

4 N Yi)*
W' =~ (V") = ( )* is an eigenvector of the eigenvalue —w;.
(X7)

The vectors X and Y? are column vectors with n complex entries each. The matrix

is a 2n X 2n matrix and given by

On n ]171, n
v = ( . 8 ) : (2.2.25)

lan Oan

To prove this claim we start by multiplying both sides of the original eigenvalue problem,
see eq. (2.2.24)), with the matrix v from the left and set up the complexly conjugated

expression, which results in

ynM* (Vl)* = w7y (V’)* : (2.2.26)

4With the expression “norm” the EUCLIDEAN norm is meant.
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A short calculation of the expression ynM* shows

AnM* = (i %) (3)1 _0]1) (‘g i*) (2.2.27a)
_ (;f ;‘) (2.2.27h)

B A

- _ 2.2.27
—A* —B*) ( C)

(P o) (B A (2.2.27d)
0 -1/ \a B

! 0)(A B) (0 ﬂ) 2270
0 -1/ \B* A* 1 0

= —nM~. (2.2.27f)

Using this relation for eq. (2.2.26) we see that
M~y (V)" = —wiy (V). (2.2.28)

holds. We identify the expression v (V?)" to be an eigenvector to the eigenvalue —w;.
Using this relation we can set up the matrix K easily, since K~ is specifically chosen
to diagonalize the non-Hermitian matrix nM. As a consequence the matrix K ! consists

of the eigenvectors V¢ and W,

X1, X (YN (Y

K '= (VL. V", W! . W) =
( ) (Yl,...,Y”,(Xl)*,...,(X”)*

which belong to the eigenvalues 4+w; of the matrix nM.
To calculate the matrix K, which characterizes the mapping between the bosonic opera-
tors aI and a; and the new quasiparticle operators b;-r and b;, we use the relation derived
in eq. (2.2.18) and get

K=n(K" (2.2.30)

Note that we derived this equation by requiring that the new quasiparticle operators b;r-

and b; fulfill bosonic algebra, i.e.

[bi,bq — 6, [bib]=0 and [bT b*} —0. (2.2.31)

J 7]
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Starting with eq. (2.2.30)) and using the expression for K1 from eq. (2.2.29) yields

K=n(K "y (2.2.32a)
xhHt oy
(1 0 (X'")T (Y.")T 1 0
_<0 _]1> AT xi)t (o _1) (2.2.32b)
SO OF
xhHt -y
&y

|y (2.2.32¢)

9

-y, X"

and, thus, an expression for the matrix K. Then, the mapping between the bosonic

operators, see eq. ([2.2.14)), is described by

bl (XI)T ’ _(YI)T aq
b | XD = (Y] fan (2.2.33)
8 I S RS S R N -
ol -yh' o xn" ) \df
resulting in the two important relations
- i\ * i\ * it
b, = Z (X7) a; — (Y]) a; = (V') ' na (2.2.34a)
j=1
bi=> Xial -Yja;, =apV’' (2.2.34D)
j=1

with X’ (Y;) being the j-th component of the n-dimensional vector X' (Y?). Using
eqs. ([2.2.34]) and the bosonic commutator relations, see eq. ([2.2.31)), sets up the specific
normalization of the eigenvectors V*, which we finally derive in the following.
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Utilizing the commutation relation for two annihilation operators yields

= (X)) (V) = (X)) (v (2.2.35b)
k=1
=0, (2.2.35¢)

which is equivalent to the condition
(V) gW' =0, Vi je{1,...n}. (2.2.36)

Vividly speaking eq. (2.2.36]) describes the fact that the eigenvectors V7 of the positive
eigenvalues w; are orthogonal to all eigenvectors W' belonging to the negative eigenvalues
—w; with respect to the matrix 7f] Taking the commutation relation between bosonic

creation and annihilation operators into consideration leads to

Tl — ppt T
00,61 | = bl — bl (2.2.37a)
=y (X)Xl -)Y (2.2.37h)
k=1
=5, (2.2.37c)

which is identical to the relation
(V' yvi =6,,. (2.2.38)

So the eigenvectors V* belonging to the positive eigenvalues w; set up an orthonormal

basis concerning the product in eq. ([2.2.38)).
With the help of eq. (2.2.38) it is possible to derive the relation between two eigenvectors
W' and W7 belonging to two different negative eigenvalues —w; and —w;.

5Using the commutation relation [bj7 bﬂ gives the same result as eq. (2.2.36)).
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Therefore, we set up the complexly conjugated of eq. (2.2.38)) and use v* = 1

(V)Y (V) = (V)] ( " 1) W/ (2.2.392)

-1 0
— — (V) W (2.2.39b)
— — (W)W (2.2.39¢)

to obtain the relation
(W) Wi = 5, ;. (2.2.40)

Summarizing the relations between the different eigenvectors V7 and W¢, see egs.
(2:2.36), (2.2.38) and (2.2.40), they can be identified as a sort of “generalized scalar
product”, which has several names such as “quasi-scalar product” or “para-scalar prod-
uct” in the literature [111-113]. Since eq. denotes a negative value and a scalar

product obeys semi-positivity, we prefer to use the expression “symplectic product” which

is the established attribute for a metric with positive and negative values [71].
Furthermore we want to emphasize that the canonical transformation matrix K con-
serves the symplectic product, see eq. . As previously mentioned in this section,
the non-Hermitian matrix nM is self-adjoint with respect to the symplectic product.
To proove this statement we start with the eigenvalue problem, see eq. , and
multiply both sides of the equation with (V/ )Jr 7, which results in

(V) MV = w6, 5, (2.2.41)

since the eigenvectors V? fulfill the algebra of the symplectic product, see eq. (2.2.38)),
and n? = 1 holds, see eq. (2.2.11)). Setting up the hermetically conjugated expression of

eq. (2.2.41) and using eq. (2.2.24) yields

(V) Mivi = (Vi) v (2.2.42a)
— (V)" pviu, (2.2.42b)
= w;0; (2.2.42¢)
= Wi (2.2.42d)

As a consequence, we receive the simple relation

(wi

- wj) 52',j = O, (2243)
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which requires the eigenvalues w; to be real. Therefore, we conclude this section with
the statement that the matrix nM is self-adjoint with respect to the symplectic product

and that its eigenvalues assume real values.

2.2.2 Bosonic BOGOLIUBOV transformation: two-mode case

The previous subsection dealt with Hamiltonians containing terms aIa} Jaja;, see eq.
(2.2.7). A special case of this Hamiltonian is given by

Hpogo = A (a{al + a£a2> + B (aiag + a2a1> (2.2.44)

with the prefactors A, B € R, which we label as the two-mode case. This restriction
seems like a great simplification, but it turns out that most quadratic bosonic Hamilto-
nians can be reduced to the appearance of Hpogo [79,80,/100]. To transform this Hamil-
tonian into a basis with a conserved number of quasiparticles a bosonic BOGOLIUBOV
transformation [79,[80]

by = cosh (9) a; — sinh () al (2.2.45a)
bl = cosh (9) al, — sinh () a (2.2.45b)
can be applied. This transformation superposes the bosonic creation and annihilation

operators in order to derive new operators bgﬂ /béﬂ. These new operators fulfill the

bosonic algebra as well. Choosing the parameter ¢ to satisfy the condition [22]

B

tanh (20) = -7 (2.2.46)
leads to the particle conserving Hamiltonian
Hiogo = VA7 = B (b{by + by +1) — A. (2.2.47)

It is clearly visible that the one-particle dispersion of the new operators is reduced
in general. If the relation B?> > A? holds, the Hamiltonian Hpog, see eq. (2.2.44),
does not describe a physical meaningful system since its eigenvalues assume imaginary
values. As a consequence, the bosonic BOGOLIUBOV transformation is only valid in the
regime B? < A? implying that the quantum fluctuations do not dominate the system.
Additionally eq. shows that a bosonic BOGOLIUBOV transformation decreases
the ground-state energy by the amount of /A2 — B2 — A < 0.
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2.3 Spontaneous quasiparticle decay

Until now we focused on quadratic bosonic Hamiltonians, which can be solved by a
bosonic BOGOLIUBOV transformation. Thereby, bosons are mapped onto new quasipar-
ticles in which basis the bilinear Hamiltonian is diagonalized. So the picture of quasi-
particles was preserved, meaning that the new quasiparticles describe the elementary
excitations of the system with an infinite lifetime. However, when interaction processes
between the HILBERT space of a single particle and the HILBERT space of multiple
particles occur, the picture of quasiparticles with an infinite lifetime must be put into
proportion [40]. In certain energy regimes it is possible that a single quasiparticle can
decay into two or more quasiparticles spontaneously. The expression “spontaneously”
means that the quasiparticle decay occurs at zero temperature (7' = 0) and its origin
are quantum fluctuations, not thermal fluctuations [41,42]. In this section the steps
for analyzing spontaneous quasiparticle decay (SQPD]) are presented. A concrete model

where all steps are applied on follows in chapter [3]

The starting point of our analysis is given by the diagonal Hamiltonian

H="> w (k)bjb, (2.3.48)
k

whereby the bosonic operator bL creates a boson/quasiparticle with momentum k& and
the operator b, annihilates one with the same momentum. The Hamiltonian H conserves
momentum and its one-particle dispersion is given by wy (k). The ground-state energy
is set to be zero for simplification. Considering states which contain two particles their
energy spectrum can be determined by means of the one-particle dispersion. The energies

of the two-particle continuum
wy (k,q) = w1 (q) + w1 (k—q) (2.3.49)

depend on the total momentum £ of the two quasiparticles and the relative momentum
q between them [41]. For every fixed total momentum k the relative momentum ¢
can vary from 0 to 2w. For this reason the total momentum fixes only an interval of
possible energies instead of a well-defined energy value. Note that eq. includes
no interaction between the two quasiparticles and depends only on the one-particle

dispersion. The lower boundary of the two-particle continuum is simply given by

W2 min (k) = minq€[0,27r) Wa (k7 Q) (235())
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and the upper boundary of the two-particle continuum can be calculated by

W2 max (k) = INaXgeo,2r) W2 (k? Q) . (2351)

If the one-particle dispersion and the two-particle continuum overlap, it is possible that
a single particle with momentum % and energy w; (k) decays into two particles with
momentum ¢ and energy wi (¢) and momentum k — ¢ and energy w; (k — ¢q). Note that
energy and momentum are conserved if ws (k, q) = wy (k) holds.

There are three different scenarios, which can occur, when [SQPD]is possible [39):

1.) As soon as [SQPD]is plausible the one-particle mode terminates. In this case the
elementary excitations cease to exist immediately, when the one-particle dispersion

enters the two-particle continuum.
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Figure 2.1: Graphic display of the first named [SQPD] scenario. As soon as the one-particle
dispersion w; (k) enters the two-particle continuum ws (k, ¢), it terminates.

2.) If the one- and two-particle HILBERT space interact with each other, the one-
particle dispersion stays inside the two-particle continuum as a resonance, but the
lifetime of the elementary excitations becomes finite and the one-particle mode is
highly damped.

3.) Another possible scenario, when interactions between the one- and two-particle
HILBERT space exist, is that the one-particle dispersion is strongly renormalized
in order to avoid an overlap with the two-particle continuum because it is pushed
below the lower boundary of the continuum.
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Figure 2.2: Graphic illustration of the second listed [SQPD]scenario. The one- and two-particle
HILBERT space interact with each other and the one-particle dispersion wy (k) stays
inside the two-particle continuum ws (k, ¢) as a resonance.

Figure 2.3: Graphic representation of the third mentioned [SQPD] scenario. The interactions
between the one- and two-particle HILBERT space ensure that the one-particle dis-
persion w; (k) is strongly renormalized. The renormalized one-particle dispersion
wi, (k) is pushed below the two-particle continuum ws (k, ¢) in order to avoid an
overlap.

To introduce an interaction between the one- and two-particle HILBERT space we need

to take processes into account which describe the transition from a one-particle to a
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two-particle state and vice versa. The Hamiltonian

Heecay = 3 | <r (k,q) bibL_ by + h.c.) (2.3.52)

k,q

describes such a process in momentum space. The first part of Hgecay characterizes the
decay process of a single particle with momentum k into two particles with momenta ¢
and k — ¢q. The amplitude of such a process is given by its prefactor I (k, ¢), which can
be a complex number in general. The probability of this process to occur is proportional
to |I' (k,q) |* according to FERMI’s gold rule [114]. The second part of Hyecay describes
a fusion process of two particles with momenta ¢ and k — ¢ to a single particle with
momentum k. Its probability to happen to also proportional to |T' (k,q) |*. We see that
momentum conservation is fulfilled and that the one-particle dispersion w; (k) and the
two-particle energies wy (k, ¢) interact with each other. The resulting Hamiltonian with

decay terms reads

Hiun = H + Haceny = 3 1 (£) 0y + > (T (k,0) bJb]_ by + hc.) (2.3.53)
k k.q

with the one-particle dispersion w; (k) and decay/fusion amplitudes I' (k, q).

2.3.1 Calculation of spectral functions

An appropriate quantity with which [SQPD]can be demonstrated is the spectral function
A (k,w) [36,115]. It depends on the momentum % and energy w. If normalized to unity,
the spectral function can be considered as a probability distribution for finding a single
particle with momentum k& and energy w in a system. For a diagonal Hamiltonian in
k-space with the one-particle dispersion w; (k), see eq. , the spectral function is

given by a delta-function
Agiag (k,w) =0 (w —wy (k)), (2.3.54)

which is located at the one-particle energy [36,115|. This means concretely that a single
particle with momentum k always carries the energy w; (k). The lifetime of a single par-
ticle is given by the inverse of the half-width at half-maximum (HWHM]) of peaks in the
spectral function. Since a delta-function has zero width per definition the corresponding
lifetime of a single particle is infinite in this case. In other words, the single particle
cannot decay.

When interaction processes between the one- and two-particle HILBERT space are intro-
duced, see eq. , the situation changes. Now the spectral function is no longer
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given by a sharp delta-function but it can be described by a peak with a finite width,
e.g. a LORENTZ distribution

~
At () =~ (2.3.55)
The center of the peak is located at w = w; (k) and its is given by A [36l/115].
In fact, it is now possible that a single particle with momentum % can have energies
which differ from the one-particle energy w; (k). In other words, the picture of a single
particle which always carries the momentum £ and energy w; (k) loses its significance
and the lifetime of a single particle becomes finite
It is important to stress that depending on the context the origin of v differs. To vi-
sualize a single particle with a finite lifetime ~ is purely of numerical origin and can
be chosen arbitrarily close to zero. If spectral functions are calculated numerically and
show up peak structures, these are usually approximated by a LORENTZ distribution.
In this case, the fitted value of v describes real physics, i.e. the inverse finite lifetime of

a single particle.

Within experiments it is possible to receive information about the magnetic struc-
ture of an analyzed sample. Since neutrons carry a magnetic momentum, they interact
with the spins of the sample. We label the initial momentum of the neutrons with ¢ and
their initial energy with E. After interacting with the spins of the sample the momentum
and energy of the neutrons change, which we denote with ¢’ and E’. The intensity of
the scattered neutrons is proportional to the dynamic structure factor (DSE) S C”5(12, w),
which depends on the momentum transfer k= d—q" and energy transfer iw = F— E' of
the scattered neutrons [33,34]. In theory the is defined as the FOURIER transform

of the time- and momentum-dependent spin-spin correlation function

[e.o]

S, w) = o / dt 6 (§%(—F, £)S°(F, 0) (2.3.56)

7r
with the spin components «, § € {z,y, 2z} [33H35]. For the simplest case, we neglect the
spin flavors and fix the direction of the momentum transfer, i.e. we set k := k. Since we

are interested in single particle spectral functions, the [DSE reads

S (k,w) = % / dt ¢! (b (£) b1 (0)) (2.3.57)

6In this context v € R is a simple number and not to be confused with the matrix -, which we

introduced in eq. (2.2.25)).
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with the operators by, (0)/b]. (t) creating/annihilating an excitation with momentum & at
time ¢’ = 0/t' = t. The fluctuation-dissipation theorem [116]

1 1
7l —ew/T

S (kyw) =— Im G™* (k,w) (2.3.58)
describes the connection between the [DSE] which is measurable in experiments, and the
retarded GREEN’S function G*™" (k,w), which is accessible in theory, at temperature T

At zero temperature T = 0 we receive the simple relation
1 ret
S(k,w)=—=ImG* (k,w). (2.3.59)
m

In general, the retarded GREEN’S function describes the response of a system to a per-
turbation [36},/117,/118]. In our case, the perturbation is represented by a neutron which
generates an excitation in the analyzed sample using experiments. The processes of
[SQPD)] can modify the response of the sample to this specific perturbation, i.e. the one-
particle dispersion. There are several representations of the retarded GREEN’S function
and methods of calculation. In our case, we use the resolvent representation [118]. Its

starting point is given by the following expressionﬂ

1 -1

G (k) = {uo () g (k) = [wl — Han ()] (2.3.60)

w — Hsan
which states the 00-element of the inverse matrix [wl — Hea (k)] ", whereby Hea (k) is
the Hamiltonian Hg, for fixed total momentum k£ and a ground-state energy shifted to
zero, see eq. (2.3.53)). The state |ug (k)) is a one-particle state with fixed momentum
k. Using the LANCZOS tridiagonalization [119], see Appendix[A] the retarded GREEN’S
function from eq. can be expressed by a continued fraction [118|

1

G (k,w) = (2.3.61)

b3 (k)
EC O
w—ag(k)—--

w—ag (k) —

w—ai (k)

consisting of the real, momentum-dependent LANCZOS coefficients a; (k) and b; (k).
By introducing the self-energy [115]

S (k,w) = (2.3.62)

"Note that this expression of the retarded GREEN’S function implies zero temperature T = 0.
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the retarded GREEN’S function can be rewritten as

1
w—w; (k) =X (kw)’

G (k,w) = (2.3.63)
whereby the one-particle dispersion w; (k) is identical to the expression for ag (k), see
eq. (A.4a) in Appendix [A] The relation between the retarded GREEN’S function and
the spectral function is rather Simpleﬁ

A(kw) = ! Im G™* (k,w) (2.3.64)
T

whereby the spectral function fulfills the relation
/ Ak w)dw = 1, (2.3.65)

which is known as the sum rule [36]. Considering the spectral function as a probability

distribution as explained before the sum rule becomes clear quickly.

2.3.2 Calculating spectral functions outside the two-particle

continuum

Inside the two-particle continuum, where[SQPD]is possible, the self-energy ¥ (k, w) holds
a real and an imaginary part, see Appendix [A] Therefore the spectral function assumes
non-zero values only inside the two-particle continuum. Outside of the continuum its
value is zero per definition. This statement has to be put into concrete terms and needs
further explanation. In general, a pole in the real part of the retarded GREEN’S function
corresponds to a peak in its imaginary part. Outside of the two-particle continuum these
poles are equivalent to delta-functions in the imaginary part of the retarded GREEN’S
function, i.e. the spectral function, see eq. . These delta-functions describe
so-called quasiparticle peaks. To determine the position of possible quasiparticle peaks
one has to identify the values of w, which fulfill the DYSON equation [120]

1

(G (k,w)) = [f(w) =w—w (k) —ReX (k,w) = 0. (2.3.66)

8Compared with eq. (2.3.59) we see that the and the spectral function are identical within our
applied approximations.
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As already mentioned, one has to find the poles of the retarded GREEN’S function outside
of the two-particle continuum, which we call wy, (k)] The values of wy,, (k) define the
renormalized one-particle dispersion due to the influence of decay processeﬂ.

To gain the spectral weight of the quasiparticle peaks a TAYLOR expansion [121] up to

the first order in w around its roots wy, (k)

fwiwie (k) = f (i (k) + [ (w1, (K)) (w = @ (k) + O (@ = wie (K))°)

(. J/
-~ ~~

=0 =:s

= s(w—wi, (k) + 0 ((w—wi, (k)?) (2.3.67a)

has to be performedlﬂ. To receive the spectral function outside of the two-particle
continuum near wy . (k) we use a standard proceeding in calculating retarded GREEN’S

functions by shifting the energy w into the complex plane by a small real parameter §

reading
Gret (l{i, w) |wzw1 (k) = lim Gret (k’, w + 15) |wzw1 (k) (2368&)
’ d—0+ ’
1
= lim : _ (2.3.68b)
-0+ 5 (w+ 18 — wi, (k) + O (w — wi, (K))7)
~0 for ;;wlyr(k)
1 1
=21 2.3.
5 30t (w—wi, (k) +10 (2.3.68¢)
1 1 im
= - — | — 0 (w—wi,(k 2.3.68d
Pomo) - Sot e ) (2:3.65)

with the CAUCHY principal value P [122]. Applying eq. (2.3.64) gives us

Ak w) = %5 (@ —wr, (k) (2.3.69)

9Therefore we need an algorithm to determine the poles of a function numerically, which is equivalent
to calculating the roots of the denominator of a function. In this thesis we used BRENT’S method,
see Appendix |g

10Tnside of the two-particle continuum one uses the DYSON equation as well to calculate the renormalized
one-particle dispersion wy ;. (k).

1 To determine derivatives we use the central difference quotient, which is given by
f'(x)=(f(x+h)+ f(z—h))/2h for a one-dimensional function f (z) depending on a parameter
x € R. If the analyzed function is three-times differentiable, the error of the central difference
quotient is smaller than the error of other difference quotients. If this is not the case, then the error
is of the same order. We used a step size of h = 10~2 for the calculations.
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for the spectral function outside of the two-particle continuum. The quantity /s is called
the spectral weight of a quasiparticle. By this the sum rule has to be modiﬁed@

e’} W2,max(k)
1
/ Alk,w)dw = -+ / A(k,w)dw = 1. (2.3.70)
S
—00 W2,min(k)

2.3.3 Calculating renormalized dispersions and lifetimes

As discussed in sect. the one-particle dispersion is affected by interactions between
the one- and two-particle HILBERT spaces. The so-called renormalized one-particle dis-
persion wy, (k) corresponds to the solutions of the DYSON equation, see eq. (2.3.60).
This relation holds inside and outside of the two-particle continuum. Inside the two-
particle continuum the lifetime of the quasiparticles, whose energies are described by the
renormalized one-particle dispersion, becomes finite. To determine its value we compare

the general expression of the spectral function

—Im ¥ (k,w)

Ak,w) = 2 2
) = @ —or (0) —Re S (b)) + (I (k0)))

(2.3.71)

from eqgs. (2.3.64) and (2.3.63]) with the LORENTZ distribution from eq. (2.3.55)). Note
that the imaginary part of the self-energy is negative per definition, see Appendix [A]

and that this comparison implies the assumption that the self-energy does not depend
on the energy w explicitly, i.e. ¥ (k,w) = X (k) holds [123]. Therefore, the HWHM] of

the quasiparticle peaks at the renormalized one-particle dispersion is given by [123]
y(k)=—Im¥ (k,w, (k). (2.3.72)

The lifetime of the quasiparticles is the inverse of the HWHM] v (k) and reads

1 1
(k)  —ImX (k,w, (k)

T (k)= (2.3.73)
Vividly speaking this means that the broader the quasiparticle peak, the shorter the
lifetime of the quasiparticle is. To visualize the lifetime of quasiparticles in figures it is
a standard practice to plot the renormalized one-particle dispersion wy, (k) with error
bars, whose half length is equal to the corresponding HWHMI| As discussed in sect.

outside of the two-particle continuum quasiparticle peaks are given by delta-functions.

121f there is more than one value of w fulfilling eq. (2.3.66)), one has to perform these explained steps
for all roots separately. Therefore one adds up all spectral weights Si in eq. (2.3.70)).
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Since the width of delta-functions is zero, the lifetime of the corresponding quasiparticles

is infinite, which means that these quasiparticles are stable and do not decay.

2.4 Dzyaloshinskii-Moriya-interaction

Up to now only the effects of SQPD]on the one-particle dispersion have been discussed.
In this section the origin of[SQPD]|in[BCPOl which is given by the Dzyaloshinskii-Moriya-
interaction, is outlined. This interaction has anisotropic character™®} Theoretical models
of materials often neglect the existence of anistropic interactions since their consideration
is complicated and they are expected to have only a small influence compared to isotropic
interactions [70]. If the symmetry of the crystal structure of the considered material is
high enough, anisotropic interactions do not exist. This is the case for crystal structures
with only one magnetic ion per unit cell. Therefore, point symmetry exists. In general
crystal structures which contain two magnetic ions per unit cell break point symmetry
with respect to the middle of both ions and anisotropic interactions assume a finite
valud™¥] see figure 2.4 The main effect of anisotropic interactions is lifting the spin
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