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Abstract

The inorganic compound BiCu2PO6 contains tubelike structures, which are described
magnetically by weakly coupled frustrated spin ladders with a finite energy gap. The el-
ementary excitations are triplons of which the degeneracy is lifted due to Dzyaloshinskii-
Moriya interactions. In certain regions of the Brillouin zone the lifetime of the triplon
excitation modes becomes finite due to the hybridization of the single-triplon with the
two-triplon states. In addition, the dispersions of these triplon modes show a striking
down-bending before ceasing to exist. In experiment, BiCu2PO6 shows various types of
decay processes, which can be caused by different symmetry breaking interactions. In
previous studies, we established a minimal model to include all symmetry-allowed inter-
actions, such as the Dzyaloshinskii-Moriya interaction. Based on this minimal model,
we show in this thesis that isotropic and anisotropic effects are responsible for noticeable
quasiparticle decay and certain down-shifts of the single-triplon energies. The analyses
are based on a deepCUT approach for the isotropic case augmented by a perturbative
treatment of the anisotropic couplings inducing quasiparticle decay at zero tempera-
ture.

Kurzfassung

Die anorganische Verbindung BiCu2PO6 enthält röhrenartige Strukturen, welche mag-
netisch durch schwach gekoppelte frustrierte Spinleitern mit einer endlichen Energielücke
beschrieben werden. Die elementaren Anregungen sind Triplonen dessen Entartung
aufgrund der Dzyaloshinskii-Moriya Wechselwirkungen aufgehoben ist. In bestimmten
Bereichen der Brillouin Zone wird die Lebensdauer der Triplonen endlich aufgrund der
Hybridisierung der Eintriplon- mit den Zweitriplonenzuständen. Zusätzlich zeigen diese
Triplonmoden ein auffälliges Abknicken bevor sie aufhören zu existieren. Im Experi-
ment weist BiCu2PO6 unterschiedliche Typen von Zerfallsprozessen auf, die durch ver-
schiedene symmetriebrechendeWechselwirkungen verursacht sein könnten. In vorherigen
Untersuchungen habe wir ein minimales Model aufgestellt, um alle aufgrund von Sym-
metrie erlaubten Wechselwirkungen, wie die Dzyaloshinskii-Moriya Wechselwirkung, zu
berücksichtigen. Auf Grundlage dieses minimalen Models zeigen wir in dieser Arbeit,
dass isotrope und anisotrope Effekte für erkennbaren Quasiteilchenzerfall und bestimmte
Absenkungen der Eintriplonenenergien verantwortlich sind. Die Analysen basieren auf
einem deepCUT Ansatz für den isotropen Fall, ergänzt durch eine störungstheoretische
Behandlung der anisotropen Kopplungen, die Quasiteilchenzerfall bei Temperatur gleich
Null induzieren.
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1 Introduction

The field of condensed matter physics addresses the issues of the physical properties of
matter on macroscopic and microscopic level. Its branch concerning matter in the solid
phase is the research field of solid state physics. It deals with the question what atomic-
scaled properties of a solid material are responsible for its observable characteristics on
macroscopic level. The first model to describe the physics of a solid was the Drude
model in 1900, which characterizes the transport properties of electrons in materials,
especially in metals, on a classical level [1, 2]. During the next years the Drude model
was extended in several ways in order to fill its knowledge gaps [3].
The most important milestone in the field of solid state physics was the introduction
of quantum mechanics [4–6]. With this fundamental theory the physics on atomic and
subatomic scales can be explained. One of the best known manifestations of quantum
mechanics in our everyday life is the phenomenon of magnetism [7, 8]. The first model
describing the appearance of magnetism on microscopic level was established by Ising in
1924 [9]. The Ising model characterizes a solid state as a periodic lattice of interacting
spins S= 1/2 [7, 10–13] on microscopic level which results in a net magnetization on
macroscopic level. This model was invented to describe phase transitions. In 1930
Néel proposed a different form of magnetism called antiferromagnetism [7,8,14–16]. In
constrast to ferromagnetism, the spins in an antiferromagnet prefer to align antiparallel
leading to a zero net magnetization. One interesting phenomenon in the context of
antiferromagnetism is the frustrated magnetism [14,17–19]. It presents a perfect testing
ground in which new states and new properties of matter can be discovered [18].

1.1 Frustrated magnetism

In antiferromagnetic materials it is not always possible that all spins, described by
classical vectors, align antiparallel to their interacting neighbors. This aspect leads to
the field of frustrated magnetism. Frustration occurs when no possible spin configuration
of the interacting spins can minimize all individual bond interactions simultaneously
[20–22]. In general, frustration can be caused either by competing interactions [21] or
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by the underlying lattice structure [14,17]. The latter case is referred to as geometrical
frustration1. Figure 1.1 represents examples for each case.

(a) (b)

? ?
Figure 1.1: Examples of frustrated spin arrangements. At the corner of each plaquette a

spin with S=1/2 is located. The red lines visualize antiferromagnetic interactions,
whereas the blue line stands for a ferromagnetic interaction.
(a) Geometrical frustration [15,16]. In the triangular lattice two spins align antipar-
allel. The third spin is frustrated since both its orientations give the same energy
and result in one unsatisfied bond. (b) Frustration caused by competing interac-
tions [17]. In the square plaquette three spins arrange antiparallel. The fourth spin
is frustrated due to the competing ferro- and antiferromagnetic interactions with
its neighbors. Its two possible orientations leave one bond unsatisfied.

Further prominent frustrated lattice structures are for example the kagome lattice in
two dimensions [23–25] and in three dimensions the pyrochlore lattice [17, 19]2. The
phenomenon of frustrated magnetism gives rise to a degenerate manifold of possible
ground-states leading to magnetic analogies of liquids and ice which are called spin liquids
[14] and spin ice [14,30]. Since frustrated materials show new states and new properties of
matter, they represent promising candidates for applications in modern technology [31].
Therefore, it is crucial to obtain an in-depth knowledge of the mechanisms which are
fundamentally responsible for the characteristics of frustrated systems.

1.2 Experimental analysis of solid state systems

Inelastic neutron scattering (INS) experiments are a paradigm technique for studying
the magnetic properties of solid state systems, e.g. spin correlation functions or features
of the magnetic excitations [18,32]. In order to characterize the microscopic interactions
of a solid state material its underlying structure needs to be specified. For this neutrons
with a wavelength in the order of 10−10 m and a corresponding energy of a few meV
are used standardly3. As neutrons hold a magnetic moment, they can interact with

1In the context of this thesis, we use the expression frustration as a simplification of geometrical
frustration, unless otherwise stated.

2Each of these lattice structures holds nearest-neighbors antiferromagnetic interactions. For further
interesting frustrated materials we refer to Refs. [14, 26–29].

3Neutrons in this energy range are called thermal neutrons.
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unpaired electrons in magnetic atoms. Thus, they can reveal information about the
magnetic lattice structure of a sample [32]. The basics of INS experiments are shown in
figure 1.2.

sample

~ki, Eineutron
source

~kf , Ef

detector

Figure 1.2: Schematic illustration of INS experiments.

A collimated beam of neutrons with initial momentum ~ki and energy Ei is focused on a
sample. The neutrons interact with the sample and a transfer in energy and momentum
between the neutrons and the sample takes place. The scattered neutrons hold a different
momentum ~kf and energy Ef providing information about the magnetic properties of
the sample. The intensity of the scattered neutrons depends on the momentum transfer
~Q = ~ki − ~kf and energy transfer ~ω = Ei − Ef . It is proportional to the dynamic
structure factor (DSF) Sαβ( ~Q, ω) [33]. The DSF is defined as the Fourier transform
of the time- and momentum-dependent spin-spin correlation function

Sαβ( ~Q, ω) =
1

2π

∞∫

−∞

dt eiωt〈Sα(− ~Q, t)Sβ( ~Q, 0)〉 (1.2.1)

with the spin components α, β ∈ {x, y, z} [33–35], see sect. 2.3.1 for more details. As
the DSF is an accessible variable in theoretical calculations, it represents an appropri-
ate quantity for comparing theoretical and experimental results. It provides valueable
information concerning the magnetic excitations of a material and their mutual interac-
tions.

1.3 The phenomenon of spontaneous quasiparticle
decay

Quasiparticles are a fundamental concept in modern condensed matter physics for de-
scribing strongly interacting many-body systems [36–38]. Within the quasiparticle pic-
ture, complex collective excited states of a many-body system can be described in terms
of effective elementary excitations [39]. The quanta of these excitations hold a definite
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amount of momentum and energy and are called quasiparticles [39]. They are assumed
to have a long or even infinite intrinsic lifetime [38] and to interact weakly with each
other [40]. If a system contains interaction terms which couple single-particle and multi-
particle states, it is possible that a single particle may decays into the continuum of the
multi-particle states spontaneously4 [37, 40]. With the expression “spontaneously” we
mean that the quasiparticle decay takes place at zero temperature (T=0), i.e. its origin
are quantum fluctuations and not thermal fluctuations [41,42].
If spontaneous quasiparticle decay (SQPD) is possible, three different scenarios can oc-
cur5:

1st The lifetime of the quasiparticle decreases rapidly [41].

2nd The single-particle branch disappears completely [41].

3rd The single-particle dispersion is significantly renormalized in order to avoid an
overlap with the multi-particle continuum. It is pushed below the lower boundary
of the continuum [39].

Quasiparticle decay was first predicted [43] and then discovered in the excitation spec-
trum of superfluid 4He [44–46] at temperatures close to zero. In the field of magnetism
SQPD was observed by INS experiments in various valence bond type quantum spin sys-
tems, for example piperazinium hexachlorodicuprate (PHCC) [37], IPA-CuCl3 [47, 48],
BiCu2PO6 [39] and also in triangular lattice compounds [49,50].

1.4 The inorganic compound BiCu2PO6

The quantum antiferromagnet BiCu2PO6 (BCPO) states a fascinating structure whose
manifold magnetic properties have been analyzed in detail in the last decades [39,51–70].
It is also discussed as a candidate for topological insulators [71]. Before discussing its
interesting characteristics, observed in INS experiments, and the current research status,
our initial focus is on the spin model6 of BCPO, see figure 1.3.
Although the contained bismuth ions hold a large atomic number (Z = 83), they do not
host the localized spins S=1/2. These are localized at the copper ions Cu2+ and form
the magnetic structure of BCPO. The magnetic model is based on tubelike arranged
spin ladders coupled among themselves resulting in a two-dimensional lattice [55, 65].

4Note, that momentum and energy have to be conserved [38].
5In sect. 2.3 we revive these scenarios and discuss them in more detail.
6A detailed description of the crystal structure, which describes the spatial arrangement of all contained
ions, was published by Tsirlin et al. [60].
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(a) (b)

Figure 1.3: Structures of BCPO.
(a) Crystal structure of BCPO. The unit cell is orthorhombic and contains coupled
frustrated spin ladders formed by the two inequivalent copper ions CuA and CuB.
We omitted the phosphorus and oxygen ions for a better overview. (b) Effective spin
model. The analyzed model is made of frustrated spin ladders, which are coupled
by an interladder coupling J ′. The inequivalence of the copper ions is neglected.

The tubes represent frustrated spin ladders7, which are constructed by two crystallo-
graphically different types of copper ions CuA and CuB, see figure 1.3. The elementary
excitations are dispersive triplons, i.e. hard-core S=1 quasiparticles [72], which are de-
generated for isotropic models. The difference between the copper ions CuA and CuB
arises from the positions of the bismuth ions in the crystal structure. The two types of
copper ions alternate along the ladder in y-direction. The coupling between the spins,
which belong to different types of copper ions, is the nearest-neighbor (NN) interac-
tion J1. The couplings J0 and J ′ acting perpendicular in z-direction connect different
types of copper ions as well. It is an appropriate assumption that a difference in the
next-nearest-neighbor (NNN) interaction between the copper ions of the same type ex-
ists [60]. These couplings are named J2 and J ′2. Mostly this aspect is neglected in
research. Since noticable dispersion exists in the yz-plane, BCPO has to be considered
as a two-dimensional material [60, 69]. Along the x-direction a dispersion is hardly de-
tected, supporting the two-dimensionality [60,69]. The crystal structure of BCPO shows
up broken inversion symmetry about the center of the copper bonds [60], see figure 1.3.
For this reason anisotropic interactions are possible in BCPO and have to be considered
additionally [73, 74]. These anisotropic interactions, referred to as the Dzyaloshinskii-
Moriya interaction (DM interaction) arise from the spin-orbit coupling (SOC). They

7The ground-state of BCPO is a valence bond solid [71].
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lead to the fact that the spectrum of the elementary excitations, i.e. the triplons, is
split. As a standard estimate for the relative strength of the DM interactions compared
to the isotropic interactions D/J is |∆g|/g where g is the gyromagnetic ratio g ≈ 2 and
∆g = g − 2. For spins in copper ions ∆g assumes values from zero to 0.4 so that any
value of D/J beyond 0.2 must be considered remarkable. Since the SOC is a relativistic
effect, it is of particular importance for elements with a large atomic number implying
strong Coulomb potentials and high electronic velocities8.
After considering the magnetic structure of BCPO in detail, we now discuss interesting
characteristics of its excitation spectrum and the current research status. The excitation
spectrum of BCPO, received by INS experiments and firstly published by Plumb et.
al. [39, 70], shows a wide range of interesting features.

Figure 1.4: Results of the INS experiments on
BCPO. The illustrations are taken from
Ref. [39].

There are two striking points concern-
ing the excitation spectrum of BCPO,
see figures 1.4 and 1.5, which we want
to address explicitly.

1st The excitation modes are not
degenerated, but split.

2nd Not all excitation modes exist in
the complete Brillouin zone,
but show up interesting down-
bendings before ceasing to exist.

The first point emphasizes the as-
sumption that anisotropic interac-
tions are present in BCPO lifting the
degeneracy of the excitation modes.
The second aspect demonstrates that
there are effects in BCPO present
which have a significant influence
on the lifetime of the excitation
modes. In accordance with our pre-
vious analysis of the spin model of
BCPO, the experimental results con-
firm the significant influence of the

8As BCPO contains bismuth ions holding a large atomic number of Z = 83, it is reasonable to expect
the presence of anisotropic interactions.
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Figure 1.5: Dispersions of the excitation modes in BCPO. The color assigment of the data
points indicates the different excitation modes. The grey shaded region around the
minimum area is depicted in a more detailed way. The solid lines correspond to
theorectical calculations based on a bond operator theory (BOT) on a mean-field
level. The illustrations are taken from Ref. [70].

DM interaction on its excitation spectrum. Furthermore the DM interaction is dis-
cussed to be also responsible for the observed finite lifetime of the triplons and their
absence in specific parts of the Brillouin zone. Plumb et. al. discussed this issue
at first [39,64]. They considered triplon interactions, which are induced by the existing
DM interactions, via the bond operator formalism and the Green’s function formalism
on a one-loop level. These interactions lead to renormalized triplon energies and to the
fact that the triplons can decay, i.e. the phenomenon of spontaneous quasiparticle decay
(SQPD) arises in BCPO due to DM interactions9. The results can explain the decay
behavior of the triplons inside the two-triplon continua at a satisfactory level, see figure
1.6 [64]. In contrast, the prominent down-bending behavior cannot be reproduced since
the occuring level repulsion effects turn out to be rather small. In addition, only one
specific component D1 out of all existing DM interactions contributes to decay processes
and assumes a remarkable value of D1/J1 = 0.3. Although two-triplon interactions are
taken into account, no bound states occur since these interactions are approximated via
a mean-field approach.

9Apart from the DM interactions, even isotropic effects in BCPO, for example the previous mentioned
difference in the NNN interactions J2 and J ′2, can lead to the phenomenon of SQPD. In chapter 5
we discuss this aspect in detail.
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Figure 1.6: Theoretical spectral function of BCPO including interacting triplons.
(a) The spectral function is plotted with lines. They gray shaded region depicts the
multitriplon continuum. (b) The spectral function is plotted with a color map. The
color dots denote the INS data from Ref. [39]. Note, that the color coding differs
compared to figure 1.5. Both illustrations are taken from Ref. [64].

1.5 Goals of this thesis

In this thesis we want to establish a microscopic model for BCPO that explains all its
striking features, which have been revealed in INS experiments, by assuming realistic
values for the anisotropic interactions. In particular, we want to address the prominent
down-bending behavior, which cannot be explained up to now, the finite lifetime of the
triplons and their absence in specific parts of the Brillouin zone. We want to point
out comprehensibly what exact mechanisms in BCPO are mainly responsible for these
features. In order to do so, we use a continuous unitary transformation (CUT) approach
for the isotropic case of BCPO augmented by a perturbative treatment of the anisotropic
couplings on a mean-field level. We include these corresponding interactions on different
operator levels step by step and fit our results to the experimental data. Using this
procedure, we can determine the values of the anisotropic couplings and work out what
processes are mainly responsible for the dynamics in BCPO.

This thesis is structured as follows. In the next chapter 2, we introduce the basic
techniques which have been used in this thesis to set up a comprehensive model for
BCPO. In chapter 3 we apply these methods to a toy model and discuss the basic
effects of SQPD and two-particle interactions. Then we start in chapter 4 to set up
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a model for BCPO by analyzing its effective spin model in detail and including the
existing DM interactions on bilinear operator level. In the following chapters 5 and 6 we
extend this model of BCPO by taking into account the difference in the NNN interaction
(J2 6= J ′2) and decay processes stemming from the DM interactions. In chapter 7 we
consider two-triplon interactions and further enhance our model of BCPO with these.
Finally, we conclude in chapter 8.
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2 Theoretical foundations

Describing and solving strongly correlated electron systems represents a significant seg-
ment in the superordinate research field of theoretical solid state physics. One of its
key points is developing methods in order to handle complex systems. These theoretical
approaches can be divided into two major groups: analytical and numerical approaches.
The analytical approaches can be further divided into mathematically exact solutions
and analytical approximations. Prominent candidates for mathematically exact solu-
tions in solid state physics are for example the Bethe ansatz [75] for the one-dimensional
Heisenberg and Hubbard model [76, 77] and the solution of the Ising model, which
can be solved exactly in one dimension [9] and in two dimensions with the restriction
to zero magnetic field [78]. Besides these specific problems it is possible to solve every
bilinear Hamiltonian in one dimension by a Fourier transform and/or a Bogoliubov
transformation [79, 80]. An example for analytical approximations is the random phase
approximation (RPA) [81–83]. However, most of the of strongly correlated electron
systems are too complex in order to solve them analytically. Therefore, numerical ap-
proaches provide the majority of calculation tools in theoretical solid state physics. Of
course, for all numerical methods approximations need to be applied in order to solve
these complex systems completely numerically, but their essential properties remain un-
changed. To name just a few powerful numerical methods, there are the density matrix
renormalization group (DMRG) [84], the Variational Monte-Carlo method [85–87] and
the Quantum Monte-Carlo method [88].
In this chapter the used methods of this thesis are discussed. The fundamental theoreti-
cal technique of this thesis is given by the method of continuous unitary transformations
(CUTs), which constitutes a powerful tool to address complex spin systems. The second
important method refers to the problem of diagonalizing quadratic bosonic Hamiltoni-
ans. In order to deal with the phenomenon of spontaneous quasiparticle decay, its most
essential aspects are outlined subsequently. The chapter concludes with a section about
the Dzyaloshinskii-Moriya-interaction, which is responsible for spontaneous quasiparti-
cle decay in BCPO.
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Parts of this chapter have been published in Physical Review B [89] and in Physical
Review Research as regular articles [71].

2.1 Continuous unitary transformations

Methods which are developed in order to solve Hamiltonians containing complicated
interactions have the aim to simplify the Hamiltonian without the loss of its properties.
With the method of continuous unitary transformations (CUTs) it is possible to derive
an effective tractable Hamiltonian Heff , which can be solved easily from a complex
initial Hamiltonian H in a controlled manner. Thereby, the starting Hamiltonian H is
simplified step-by-step by applying unitary transformations. It has been proven that it
is very useful to derive Heff in second quantization in terms of creation and annihilation
operators of the elementary excitations seen as quasiparticles [90]. In the case of gapped
disordered quantum antiferromagnets, e.g. BCPO, these quasiparticles are often triplons
[72]. Terms which change the number of quasiparticles are rotated away [91, 92], or at
least some of them depending on the quantity one is interested in [93]. Thus, the ground-
state becomes the vacuum of quasiparticles and their dispersion can be taken from the
hopping of quasiparticles. In principle, a unitary transformation is a change of basis
and can be done in one single step. But it has turned out that it is more appropriate to
perform the basis change continuously because this warrants renormalizing properties
of the transformation. The processes between states with large energy differences are
eliminated first renormalizing the matrix elements of the low-energy states [94].
The basic concept of CUTs was established by Wegner [95] and by Glazek and
Wilson [96,97]. Instead of using a single unitary transformation to simplify the initial
Hamiltonian H we use several continuous unitary transformations

H (l) = U (l)HU † (l) , (2.1.1)

which are denoted with U (l) and depend on the so-called flow parameter l. For l = 0

the relation U (l = 0) = 1 holds. The flow equation of the Hamiltonian

∂lH (l) = [η (l) ,H (l)] (2.1.2)

with the anti-Hermitian generator

η (l) = (∂lU (l))U † (l) (2.1.3)

outlines the current rate of change of the Hamiltonian H (l). The flow equation, see
eq. (2.1.2), describes a system of coupled differential equations for the prefactors of
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the operators, which occur in the Hamiltonian H (l)1. In general, an infinite number
of differential equations has to be solved which cannot be done completely. Therefore,
an appropriate truncation scheme is necessary. With the help of a truncation scheme
one can decide whether a term in the Hamiltonian H (l) has to be considered or ne-
glected so that H (l) ensures a sufficient good description of the initial Hamiltonian
H. There are different types of CUTs existing, which differ in their applied truncation
scheme [91, 94, 98, 99]. We make use of the directly evaluated continuous unitary trans-
formation (deepCUT) because it shows strong numerical stability [94]. This method
decides whether an operator or a term has to be kept or neglected according to its effect
in powers of the expansion parameter x on a chosen target quantity. In our case the
target quantity is the dispersion of the triplons [100]. If n describes the order up to
which the target quantity should be exact in, all operators and terms, which have an
effect on the target quantity in the order m ≤ n in x, have to be considered.
Forming the limit l→∞

Heff = lim
l→∞
H (l) = U (∞)HU † (∞) (2.1.4)

one receives the effective Hamiltonian, which represents a sufficient good description of
the initial Hamiltonian H and can be analyzed more easily. A CUT denotes a change of
basis. This means that observables O have to be transformed into the same basis, which
is used to derive the effective Hamiltonian Heff . The procedure for observables is very
similar. One also has to solve the flow equation of the observable

∂lO (l) = [η (l) , O (l)] (2.1.5)

and receives the effective observable Oeff in the limit l→∞ as well.
The choice of the generator η (l) is crucial. It determines the flow of the Hamiltonian
H (l) and has to be chosen with respect to the target quantity. For our target quantity,
namely the dispersion, we use the 1n generator [93], which reads

η1n (l) = H+
0 (l) +H+

1 (l)−H−0 (l)−H−1 (l) . (2.1.6)

The operators H+
0 (l) and H+

1 (l) consist of all terms of H (l) which create more quasi-
particles than they annihilate out of states with zero or at least one quasiparticle. In
contrast, the operators H−0 (l) and H−1 (l) contain all terms of H (l) which annihilate
more quasiparticles than they create. Clearly, the relation (H+

m (l))
†

= H−m (l) holds. As
a consequence, the 1n generator in eq. (2.1.6) is anti-Hermitian. This has to be the case

1We choose the prefactors of operators in the HamiltonianH (l) to be l-dependent and not the operators
themselves, see Ref. [94].
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in order to ensure that the CUT is a unitary transformation. With the 1n generator it
is possible to decouple the subspaces, which contain zero and one quasiparticle, from all
other subspaces. Thus, this generator is suitable for computing the ground-state energy
and the dispersion [93].
One specific example for the application of CUTs is the spin ladder model [101–104].
As explained in section 1.4, the magnetic structure of BCPO is not given by a single
spin ladder but by multiple spin ladders coupled via a weak interladder coupling, see
figure 1.3, resulting in a two-dimensional model. In order to provide a solution for two-
dimensional spin ladder models, it is reasonable to solve the single spin ladder with a
CUT and to apply a mean-field approach in the elementary excitations [100] to include
the interladder interactions. This approach results in a Hamiltonian with quadratic
terms which needs to be solved. The next section deals with this issue.

2.2 Diagonalization of quadratic bosonic
Hamiltonians

Quadratic Hamiltonians can contain terms which break the conservation of the quasipar-
ticle number, for example in the case of superconductivity [105, 106] where the number
of electrons, i.e. fermions, is not conserved. Since the triplons in disordered quantum
antiferromagnets, e.g. BCPO, are often treated as free bosons in a mean-field approach,
we focus on quadratic bosonic Hamiltonians in the following. These Hamiltonians can
be solved by a bosonic Bogoliubov transformation [79,107–109]. To gain a deeper un-
derstanding of this transformation we first discuss a general ansatz with which all kinds
of quadratic bosonic Hamiltonians can be solved. Afterwards we discuss a frequently
occuring special case which we label as the two-mode case [79,80].

2.2.1 Bosonic Bogoliubov transformation: general ansatz

In this subsection we introduce a general ansatz to diagonalize Hamiltonians consisting of
quadratic bosonic operator terms [110]. Therefore, we study the following Hamiltonian

H =
n∑

i,j=1

Aija
†
iaj +

1

2

n∑

i,j=1

(
Bija

†
ia
†
j +B∗ijajai

)
(2.2.7)

with the operators a†i and aj obeying bosonic algebra
[
aj, a

†
i

]
= δij (2.2.8)
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and the prefactors Aij, Bij ∈ C. Since the Hamiltonian H has to be Hermitian, the
matrix A, including the entries Aij, fulfills the condition A† = A. The matrix B,
including the entries Bij, fulfills the condition BT = B because the operators a†i and aj
obey bosonic algebra. By defining the column vector

α =
(
a1, ..., an, a

†
1, ..., a

†
n

)T

(2.2.9)

with 2n entries, containing all bosonic creation and annihilation operators, the commu-
tation relation in eq. (2.2.8) takes the compact form

[
α,α†

]
= η, (2.2.10)

where the 2n× 2n matrix

η =

(
1n×n 0n×n

0n×n −1n×n

)
(2.2.11)

is introduced. Using the notation of the column vector α and the corresponding row
vector α† =

(
a†1, ..., a

†
n, a1, ..., an

)
the Hamiltonian in eq. (2.2.7) can be rewritten to

H =
1

2
α†Mα− 1

2
Tr (A) . (2.2.12)

The matrix M has 2n× 2n entries

M =

(
A B

B∗ A∗

)
(2.2.13)

and is Hermitian, i.e. M † = M holds. Diagonalizing the Hamiltonian H is equivalent
to finding a canonical transformation K defining new quasiparticle operators b†i and bj,
which are represented by a linear combination of the bosonic creation and annihilation
operators a†i and aj. The mathematical expression

β = Kα (2.2.14)

characterizes this relation. As an analogy to the column vector α, the new quasiparticle
operators describe the entries of the column vector

β =
(
b1, ..., bn, b

†
1, ..., b

†
n

)T

(2.2.15)

and of the row vector β† =
(
b†1, ..., b

†
n, b1, ..., bn

)
. The new quasiparticle operators b†i and

bj are expected to obey the bosonic commutation relation as well. A short calculation
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[
β,β†] =

[
Kα,α†K†

]
(2.2.16a)

= K
[
α,α†

]
K† (2.2.16b)

= KηK† (2.2.16c)
!

= η (2.2.16d)

yields the relation
η = K†ηK, (2.2.17)

which is equivalent to
K−1 = ηK†η (2.2.18)

for the canonical transformation matrix K. Writing the Hamiltonian in terms of the
new quasiparticles results in

H =
1

2
β†ηKηMK−1β − 1

2
Tr (A) . (2.2.19)

If K is the matrix, which diagonalizes the matrix ηM into diagonal form2

KηMK−1 = Ω (2.2.20)

with the 2n× 2n diagonal matrix Ω, the Hamiltonian shows

H =
1

2
β†ηΩβ − 1

2
Tr (A) . (2.2.21)

It can be proven that the matrix Ω has in general the block structure

Ω =

(
ω 0

0 −ω

)
(2.2.22)

with the diagonal n × n matrix ω = diag (ω1, ..., ωn) containing the eigenvalues ωi ≥ 0

with i ∈ {1, ..., n} of the non-Hermitian matrix ηM [110]. Therefore, the Hamiltonian
yields the simple form3

H = b†ωb +
1

2
Tr (ω)− 1

2
Tr (A) (2.2.23)

and describes a systems of non-interacting bosonic quasiparticles.
The main point in this calculation is finding the canonical transformation K, which

2Therefore the eigenvectors of the matrix ηM are the column vectors of the matrix K−1.
3In this notation the relations b = (b1, ..., bn)

T and b† =
(
b†1, ..., b

†
n

)
hold.



2.2 Diagonalization of quadratic bosonic Hamiltonians 25

describes the mapping between the different bosonic operators, see eq. (2.2.14). Thereto,
the matrix ηM has to be diagonalized, i.e. the eigenvalue problem

ηMVi = ωiV
i, i ∈ {1, ..., 2n} (2.2.24)

with the eigenvector Vi belonging to the eigenvalue ωi has to be solved. It is important
to emphasize that the matrix ηM is non-Hermitian and therefore its eigenvalues do not
have to be real in general. At the end of this section we will point out that the matrix
ηM is self-adjoint with respect to the “symplectic product”. Finally, this fact ensures
that the eigenvalues of ηM are truly real. As a consequence, the 2n eigenvalues of the
non-Hermitian matrix ηM occur in pairs of (±ω1, ...,±ωn) with ωi ∈ R, i.e. to every
positive eigenvalue the negative counterpart comes up [110].
In contrast to an analytical solution of the eigenvalue problem in eq. (2.2.24), a numeri-
cal approach needs more attention when determining the eigenvectors Vi. In numerical
computations of eigenvectors the norm of the eigenvectors is set to be equal to 14. Since
the entries of the eigenvectors Vi describe a mapping between two different types of
bosonic operators, see eq. (2.2.14), they have to fulfill a specific normalization, which
will be re-derived in the following [110].

Therefore, we start by establishing a link between the eigenvectors concerning the eigen-
values ±ωi. Derived in Ref. [110] we finde the following statement:

If Vi =

(
Xi

Yi

)
is an eigenvector of the matrix ηM belonging to the eigenvalue ωi, then

Wi = γ (Vi)
∗

=

(
(Yi)

∗

(Xi)
∗

)
is an eigenvector of the eigenvalue −ωi.

The vectors Xi and Yi are column vectors with n complex entries each. The matrix γ
is a 2n× 2n matrix and given by

γ =

(
0n×n 1n×n

1n×n 0n×n

)
. (2.2.25)

To prove this claim we start by multiplying both sides of the original eigenvalue problem,
see eq. (2.2.24), with the matrix γ from the left and set up the complexly conjugated
expression, which results in

γηM∗ (Vi
)∗

= ωiγ
(
Vi
)∗
. (2.2.26)

4With the expression “norm” the Euclidean norm is meant.
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A short calculation of the expression γηM∗ shows

γηM∗ =

(
0 1

1 0

)(
1 0

0 −1

)(
A∗ B∗

B A

)
(2.2.27a)

=

(
−B −A
A∗ B∗

)
(2.2.27b)

= −
(

B A

−A∗ −B∗

)
(2.2.27c)

= −
(
1 0

0 −1

)(
B A

A∗ B∗

)
(2.2.27d)

= −
(
1 0

0 −1

)(
A B

B∗ A∗

)(
0 1

1 0

)
(2.2.27e)

= −ηMγ. (2.2.27f)

Using this relation for eq. (2.2.26) we see that

ηMγ
(
Vi
)∗

= −ωiγ
(
Vi
)∗
. (2.2.28)

holds. We identify the expression γ (Vi)
∗ to be an eigenvector to the eigenvalue −ωi.

Using this relation we can set up the matrix K−1 easily, since K−1 is specifically chosen
to diagonalize the non-Hermitian matrix ηM . As a consequence the matrix K−1 consists
of the eigenvectors Vi and Wi,

K−1 =
(
V1, ...,Vn,W1, ...,Wn

)
=

(
X1, ...,Xn, (Y1)

∗
, ..., (Yn)∗

Y1, ...,Yn, (X1)
∗
, ..., (Xn)∗

)
, (2.2.29)

which belong to the eigenvalues ±ωi of the matrix ηM .
To calculate the matrix K, which characterizes the mapping between the bosonic opera-
tors a†i and aj and the new quasiparticle operators b†i and bj, we use the relation derived
in eq. (2.2.18) and get

K = η
(
K−1

)†
η. (2.2.30)

Note that we derived this equation by requiring that the new quasiparticle operators b†j
and bi fulfill bosonic algebra, i.e.

[
bi, b

†
j

]
= δi,j, [bi, bj] = 0 and

[
b†i , b

†
j

]
= 0. (2.2.31)
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Starting with eq. (2.2.30) and using the expression for K−1 from eq. (2.2.29) yields

K = η
(
K−1

)†
η (2.2.32a)

=

(
1 0

0 −1

)




(X1)
†

, (Y1)
†

... ,
...

(Xn)† , (Yn)†

(Y1)
T

, (X1)
T

... ,
...

(Yn)T , (Xn)T




(
1 0

0 −1

)
(2.2.32b)

=




(X1)
†

, − (Y1)
†

... ,
...

(Xn)† , − (Yn)†

− (Y1)
T

, (X1)
T

... ,
...

− (Y1)
T

, (Xn)T




(2.2.32c)

and, thus, an expression for the matrix K. Then, the mapping between the bosonic
operators, see eq. (2.2.14), is described by




b1

...
bn

b†1
...
b†n




=




(X1)
†

, − (Y1)
†

... ,
...

(Xn)† , − (Yn)†

− (Y1)
T

, (X1)
T

... ,
...

− (Y1)
T

, (Xn)T







a1

...
an

a†1
...
a†n




(2.2.33)

resulting in the two important relations

bi =
n∑

j=1

(
X i
j

)∗
aj −

(
Y i
j

)∗
a†j =

(
Vi
)†
ηα (2.2.34a)

b†i =
n∑

j=1

X i
ja
†
j − Y i

j aj = α†ηVi (2.2.34b)

with X i
j

(
Y i
j

)
being the j-th component of the n-dimensional vector Xi (Yi). Using

eqs. (2.2.34) and the bosonic commutator relations, see eq. (2.2.31), sets up the specific
normalization of the eigenvectors Vi, which we finally derive in the following.
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Utilizing the commutation relation for two annihilation operators yields

[bi, bj] = bibj − bjbi (2.2.35a)

=
n∑

k=1

(
Xj
k

)∗ (
Y i
k

)∗ −
(
X i
k

)∗ (
Y j
k

)∗
(2.2.35b)

!
= 0, (2.2.35c)

which is equivalent to the condition

(
Vj
)†
ηWi = 0, ∀i, j ∈ {1, ..., n}. (2.2.36)

Vividly speaking eq. (2.2.36) describes the fact that the eigenvectors Vj of the positive
eigenvalues ωj are orthogonal to all eigenvectorsWi belonging to the negative eigenvalues
−ωi with respect to the matrix η5. Taking the commutation relation between bosonic
creation and annihilation operators into consideration leads to

[
bi, b

†
j

]
= bib

†
j − b†jbi (2.2.37a)

=
n∑

k=1

(
X i
k

)∗
Xj
k −

(
Y i
k

)∗
Y j
k (2.2.37b)

!
= δi,j, (2.2.37c)

which is identical to the relation

(
Vi
)†
ηVj = δi,j. (2.2.38)

So the eigenvectors Vi belonging to the positive eigenvalues ωi set up an orthonormal
basis concerning the product in eq. (2.2.38).
With the help of eq. (2.2.38) it is possible to derive the relation between two eigenvectors
Wi and Wj belonging to two different negative eigenvalues −ωi and −ωj.

5Using the commutation relation
[
b†i , b

†
j

]
gives the same result as eq. (2.2.36).
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Therefore, we set up the complexly conjugated of eq. (2.2.38) and use γ2 = 1

((
Vi
)†)∗

ηγγ
(
Vj
)∗

=
((
Vi
)∗)†

(
0 1

−1 0

)
Wj (2.2.39a)

= −
((
Vi
)∗)†

γηWj (2.2.39b)

= −
(
Wi
)†
ηWj (2.2.39c)

= δi,j (2.2.39d)

to obtain the relation (
Wi
)†
ηWj = −δi,j. (2.2.40)

Summarizing the relations between the different eigenvectors Vj and Wi, see eqs.
(2.2.36), (2.2.38) and (2.2.40), they can be identified as a sort of “generalized scalar
product”, which has several names such as “quasi-scalar product” or “para-scalar prod-
uct” in the literature [111–113]. Since eq. (2.2.40) denotes a negative value and a scalar
product obeys semi-positivity, we prefer to use the expression “symplectic product” which
is the established attribute for a metric with positive and negative values [71].
Furthermore we want to emphasize that the canonical transformation matrix K con-
serves the symplectic product, see eq. (2.2.17). As previously mentioned in this section,
the non-Hermitian matrix ηM is self-adjoint with respect to the symplectic product.
To proove this statement we start with the eigenvalue problem, see eq. (2.2.24), and
multiply both sides of the equation with (Vj)

†
η, which results in

(
Vj
)†
MVi = ωiδi,j, (2.2.41)

since the eigenvectors Vi fulfill the algebra of the symplectic product, see eq. (2.2.38),
and η2 = 1 holds, see eq. (2.2.11). Setting up the hermetically conjugated expression of
eq. (2.2.41) and using eq. (2.2.24) yields

(
Vi
)†
M †Vj =

(
Vi
)†
ηηMVj (2.2.42a)

=
(
Vi
)†
ηVjωj (2.2.42b)

= ωjδi,j (2.2.42c)
!

= ω∗i δi,j. (2.2.42d)

As a consequence, we receive the simple relation

(ω∗i − ωj) δi,j = 0, (2.2.43)
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which requires the eigenvalues ωi to be real. Therefore, we conclude this section with
the statement that the matrix ηM is self-adjoint with respect to the symplectic product
and that its eigenvalues assume real values.

2.2.2 Bosonic Bogoliubov transformation: two-mode case

The previous subsection dealt with Hamiltonians containing terms a†ia
†
j/ajai, see eq.

(2.2.7). A special case of this Hamiltonian is given by

HBogo = A
(
a†1a1 + a†2a2

)
+B

(
a†1a

†
2 + a2a1

)
(2.2.44)

with the prefactors A,B ∈ R, which we label as the two-mode case. This restriction
seems like a great simplification, but it turns out that most quadratic bosonic Hamilto-
nians can be reduced to the appearance of HBogo [79,80,100]. To transform this Hamil-
tonian into a basis with a conserved number of quasiparticles a bosonic Bogoliubov
transformation [79,80]

b1 = cosh (ϑ) a1 − sinh (ϑ) a†2 (2.2.45a)

b†2 = cosh (ϑ) a†2 − sinh (ϑ) a1 (2.2.45b)

can be applied. This transformation superposes the bosonic creation and annihilation
operators in order to derive new operators b(†)

1 /b
(†)
2 . These new operators fulfill the

bosonic algebra as well. Choosing the parameter ϑ to satisfy the condition [22]

tanh (2ϑ) = −B
A

(2.2.46)

leads to the particle conserving Hamiltonian

H̃Bogo =
√
A2 −B2

(
b†1b1 + b†2b2 + 1

)
− A. (2.2.47)

It is clearly visible that the one-particle dispersion of the new operators is reduced
in general. If the relation B2 > A2 holds, the Hamiltonian HBogo, see eq. (2.2.44),
does not describe a physical meaningful system since its eigenvalues assume imaginary
values. As a consequence, the bosonic Bogoliubov transformation is only valid in the
regime B2 < A2 implying that the quantum fluctuations do not dominate the system.
Additionally eq. (2.2.47) shows that a bosonic Bogoliubov transformation decreases
the ground-state energy by the amount of

√
A2 −B2 − A < 0.
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2.3 Spontaneous quasiparticle decay

Until now we focused on quadratic bosonic Hamiltonians, which can be solved by a
bosonic Bogoliubov transformation. Thereby, bosons are mapped onto new quasipar-
ticles in which basis the bilinear Hamiltonian is diagonalized. So the picture of quasi-
particles was preserved, meaning that the new quasiparticles describe the elementary
excitations of the system with an infinite lifetime. However, when interaction processes
between the Hilbert space of a single particle and the Hilbert space of multiple
particles occur, the picture of quasiparticles with an infinite lifetime must be put into
proportion [40]. In certain energy regimes it is possible that a single quasiparticle can
decay into two or more quasiparticles spontaneously. The expression “spontaneously”
means that the quasiparticle decay occurs at zero temperature (T = 0) and its origin
are quantum fluctuations, not thermal fluctuations [41, 42]. In this section the steps
for analyzing spontaneous quasiparticle decay (SQPD) are presented. A concrete model
where all steps are applied on follows in chapter 3.

The starting point of our analysis is given by the diagonal Hamiltonian

H =
∑

k

ω1 (k) b†kbk, (2.3.48)

whereby the bosonic operator b†k creates a boson/quasiparticle with momentum k and
the operator bk annihilates one with the same momentum. The HamiltonianH conserves
momentum and its one-particle dispersion is given by ω1 (k). The ground-state energy
is set to be zero for simplification. Considering states which contain two particles their
energy spectrum can be determined by means of the one-particle dispersion. The energies
of the two-particle continuum

ω2 (k, q) = ω1 (q) + ω1 (k − q) (2.3.49)

depend on the total momentum k of the two quasiparticles and the relative momentum
q between them [41]. For every fixed total momentum k the relative momentum q

can vary from 0 to 2π. For this reason the total momentum fixes only an interval of
possible energies instead of a well-defined energy value. Note that eq. (2.3.49) includes
no interaction between the two quasiparticles and depends only on the one-particle
dispersion. The lower boundary of the two-particle continuum is simply given by

ω2,min (k) = minq∈[0,2π) ω2 (k, q) (2.3.50)
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and the upper boundary of the two-particle continuum can be calculated by

ω2,max (k) = maxq∈[0,2π) ω2 (k, q) . (2.3.51)

If the one-particle dispersion and the two-particle continuum overlap, it is possible that
a single particle with momentum k and energy ω1 (k) decays into two particles with
momentum q and energy ω1 (q) and momentum k − q and energy ω1 (k − q). Note that
energy and momentum are conserved if ω2 (k, q) = ω1 (k) holds.
There are three different scenarios, which can occur, when SQPD is possible [39]:

1.) As soon as SQPD is plausible the one-particle mode terminates. In this case the
elementary excitations cease to exist immediately, when the one-particle dispersion
enters the two-particle continuum.
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Figure 2.1: Graphic display of the first named SQPD scenario. As soon as the one-particle
dispersion ω1 (k) enters the two-particle continuum ω2 (k, q), it terminates.

2.) If the one- and two-particle Hilbert space interact with each other, the one-
particle dispersion stays inside the two-particle continuum as a resonance, but the
lifetime of the elementary excitations becomes finite and the one-particle mode is
highly damped.

3.) Another possible scenario, when interactions between the one- and two-particle
Hilbert space exist, is that the one-particle dispersion is strongly renormalized
in order to avoid an overlap with the two-particle continuum because it is pushed
below the lower boundary of the continuum.



2.3 Spontaneous quasiparticle decay 33

0.0 0.2 0.4 0.6 0.8 1.0
k [π]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

ω

ω2 (k, q)

ω1 (k)

Figure 2.2: Graphic illustration of the second listed SQPD scenario. The one- and two-particle
Hilbert space interact with each other and the one-particle dispersion ω1 (k) stays
inside the two-particle continuum ω2 (k, q) as a resonance.
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Figure 2.3: Graphic representation of the third mentioned SQPD scenario. The interactions
between the one- and two-particle Hilbert space ensure that the one-particle dis-
persion ω1 (k) is strongly renormalized. The renormalized one-particle dispersion
ω1,r (k) is pushed below the two-particle continuum ω2 (k, q) in order to avoid an
overlap.

To introduce an interaction between the one- and two-particle Hilbert space we need
to take processes into account which describe the transition from a one-particle to a
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two-particle state and vice versa. The Hamiltonian

Hdecay =
∑

k,q

(
Γ (k, q) b†qb

†
k−qbk + h.c.

)
(2.3.52)

describes such a process in momentum space. The first part of Hdecay characterizes the
decay process of a single particle with momentum k into two particles with momenta q
and k − q. The amplitude of such a process is given by its prefactor Γ (k, q), which can
be a complex number in general. The probability of this process to occur is proportional
to |Γ (k, q) |2 according to Fermi’s gold rule [114]. The second part of Hdecay describes
a fusion process of two particles with momenta q and k − q to a single particle with
momentum k. Its probability to happen to also proportional to |Γ (k, q) |2. We see that
momentum conservation is fulfilled and that the one-particle dispersion ω1 (k) and the
two-particle energies ω2 (k, q) interact with each other. The resulting Hamiltonian with
decay terms reads

Hfull = H +Hdecay =
∑

k

ω1 (k) b†kbk +
∑

k,q

(
Γ (k, q) b†qb

†
k−qbk + h.c.

)
(2.3.53)

with the one-particle dispersion ω1 (k) and decay/fusion amplitudes Γ (k, q).

2.3.1 Calculation of spectral functions

An appropriate quantity with which SQPD can be demonstrated is the spectral function
A (k, ω) [36,115]. It depends on the momentum k and energy ω. If normalized to unity,
the spectral function can be considered as a probability distribution for finding a single
particle with momentum k and energy ω in a system. For a diagonal Hamiltonian in
k-space with the one-particle dispersion ω1 (k), see eq. (2.3.48), the spectral function is
given by a delta-function

Adiag (k, ω) = δ (ω − ω1 (k)) , (2.3.54)

which is located at the one-particle energy [36,115]. This means concretely that a single
particle with momentum k always carries the energy ω1 (k). The lifetime of a single par-
ticle is given by the inverse of the half-width at half-maximum (HWHM) of peaks in the
spectral function. Since a delta-function has zero width per definition the corresponding
lifetime of a single particle is infinite in this case. In other words, the single particle
cannot decay.
When interaction processes between the one- and two-particle Hilbert space are intro-
duced, see eq. (2.3.53), the situation changes. Now the spectral function is no longer
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given by a sharp delta-function but it can be described by a peak with a finite width,
e.g. a Lorentz distribution

Adecay (k, ω) =
γ

π
(
(ω − ω1 (k))2 + γ2

) . (2.3.55)

The center of the peak is located at ω = ω1 (k) and its HWHM is given by γ6 [36, 115].
In fact, it is now possible that a single particle with momentum k can have energies
which differ from the one-particle energy ω1 (k). In other words, the picture of a single
particle which always carries the momentum k and energy ω1 (k) loses its significance
and the lifetime of a single particle becomes finite
It is important to stress that depending on the context the origin of γ differs. To vi-
sualize a single particle with a finite lifetime γ is purely of numerical origin and can
be chosen arbitrarily close to zero. If spectral functions are calculated numerically and
show up peak structures, these are usually approximated by a Lorentz distribution.
In this case, the fitted value of γ describes real physics, i.e. the inverse finite lifetime of
a single particle.

Within INS experiments it is possible to receive information about the magnetic struc-
ture of an analyzed sample. Since neutrons carry a magnetic momentum, they interact
with the spins of the sample. We label the initial momentum of the neutrons with ~q and
their initial energy with E. After interacting with the spins of the sample the momentum
and energy of the neutrons change, which we denote with ~q ′ and E ′. The intensity of
the scattered neutrons is proportional to the dynamic structure factor (DSF) Sαβ(~k, ω),
which depends on the momentum transfer ~k = ~q−~q ′ and energy transfer ~ω = E−E ′ of
the scattered neutrons [33,34]. In theory the DSF is defined as the Fourier transform
of the time- and momentum-dependent spin-spin correlation function

Sαβ(~k, ω) =
1

2π

∞∫

−∞

dt eiωt〈Sα(−~k, t)Sβ(~k, 0)〉 (2.3.56)

with the spin components α, β ∈ {x, y, z} [33–35]. For the simplest case, we neglect the
spin flavors and fix the direction of the momentum transfer, i.e. we set ~k := k. Since we
are interested in single particle spectral functions, the DSF reads

S (k, ω) =
1

2π

∞∫

−∞

dt eiωt〈bk (t) b†k (0)〉 (2.3.57)

6In this context γ ∈ R+ is a simple number and not to be confused with the matrix γ, which we
introduced in eq. (2.2.25).
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with the operators bk (0)/b†k (t) creating/annihilating an excitation with momentum k at
time t′ = 0/t′ = t. The fluctuation-dissipation theorem [116]

S (k, ω) = − 1

π

1

1− e−ω/T
ImGret (k, ω) (2.3.58)

describes the connection between the DSF, which is measurable in experiments, and the
retarded Green’s function Gret (k, ω), which is accessible in theory, at temperature T .
At zero temperature T = 0 we receive the simple relation

S (k, ω) = − 1

π
ImGret (k, ω) . (2.3.59)

In general, the retarded Green’s function describes the response of a system to a per-
turbation [36,117,118]. In our case, the perturbation is represented by a neutron which
generates an excitation in the analyzed sample using INS experiments. The processes of
SQPD can modify the response of the sample to this specific perturbation, i.e. the one-
particle dispersion. There are several representations of the retarded Green’s function
and methods of calculation. In our case, we use the resolvent representation [118]. Its
starting point is given by the following expression7

Gret (k, ω) = 〈u0 (k)| 1

ω −Hfull

|u0 (k)〉 = [ω1−Hfull (k)]−1
00 (2.3.60)

which states the 00-element of the inverse matrix [ω1−Hfull (k)]−1, whereby Hfull (k) is
the Hamiltonian Hfull for fixed total momentum k and a ground-state energy shifted to
zero, see eq. (2.3.53). The state |u0 (k)〉 is a one-particle state with fixed momentum
k. Using the Lanczos tridiagonalization [119], see Appendix A, the retarded Green’s
function from eq. (2.3.60) can be expressed by a continued fraction [118]

Gret (k, ω) =
1

ω − a0 (k)− b21(k)

ω−a1(k)−
b22(k)

ω−a2(k)−···

(2.3.61)

consisting of the real, momentum-dependent Lanczos coefficients ai (k) and bi (k).
By introducing the self-energy [115]

Σ (k, ω) =
b2

1 (k)

ω − a1 (k)− b22(k)

ω−a2(k)−···

(2.3.62)

7Note that this expression of the retarded Green’s function implies zero temperature T = 0.
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the retarded Green’s function can be rewritten as

Gret (k, ω) =
1

ω − ω1 (k)− Σ (k, ω)
, (2.3.63)

whereby the one-particle dispersion ω1 (k) is identical to the expression for a0 (k), see
eq. (A.4a) in Appendix A. The relation between the retarded Green’s function and
the spectral function is rather simple8

A (k, ω) = − 1

π
ImGret (k, ω) (2.3.64)

whereby the spectral function fulfills the relation

∞∫

−∞

A (k, ω) dω = 1, (2.3.65)

which is known as the sum rule [36]. Considering the spectral function as a probability
distribution as explained before the sum rule becomes clear quickly.

2.3.2 Calculating spectral functions outside the two-particle
continuum

Inside the two-particle continuum, where SQPD is possible, the self-energy Σ (k, ω) holds
a real and an imaginary part, see Appendix A. Therefore the spectral function assumes
non-zero values only inside the two-particle continuum. Outside of the continuum its
value is zero per definition. This statement has to be put into concrete terms and needs
further explanation. In general, a pole in the real part of the retarded Green’s function
corresponds to a peak in its imaginary part. Outside of the two-particle continuum these
poles are equivalent to delta-functions in the imaginary part of the retarded Green’s
function, i.e. the spectral function, see eq. (2.3.64). These delta-functions describe
so-called quasiparticle peaks. To determine the position of possible quasiparticle peaks
one has to identify the values of ω, which fulfill the Dyson equation [120]

(
Gret (k, ω)

)−1
= f (ω) = ω − ω1 (k)− Re Σ (k, ω) = 0. (2.3.66)

8Compared with eq. (2.3.59) we see that the DSF and the spectral function are identical within our
applied approximations.
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As already mentioned, one has to find the poles of the retarded Green’s function outside
of the two-particle continuum, which we call ω1,r (k)9. The values of ω1,r (k) define the
renormalized one-particle dispersion due to the influence of decay processes10.
To gain the spectral weight of the quasiparticle peaks a Taylor expansion [121] up to
the first order in ω around its roots ω1,r (k)

f (ω;ω1,r (k)) = f (ω1,r (k))︸ ︷︷ ︸
=0

+ f ′ (ω1,r (k))︸ ︷︷ ︸
=:s

(ω − ω1,r (k)) +O
(
(ω − ω1,r (k))2)

= s (ω − ω1,r (k)) +O
(
(ω − ω1,r (k))2) (2.3.67a)

has to be performed11. To receive the spectral function outside of the two-particle
continuum near ω1,r (k) we use a standard proceeding in calculating retarded Green’s
functions by shifting the energy ω into the complex plane by a small real parameter δ
reading

Gret (k, ω) |ω≈ω1,r(k) = lim
δ→0+

Gret (k, ω + iδ) |ω≈ω1,r(k) (2.3.68a)

= lim
δ→0+

1

s (ω + iδ − ω1,r (k)) +O
(
(ω − ω1,r (k))2)

︸ ︷︷ ︸
≈0 for ω≈ω1,r(k)

(2.3.68b)

=
1

s
lim
δ→0+

1

(ω − ω1,r (k)) + iδ
(2.3.68c)

=
1

s
P
(

1

ω − ω1,r (k)

)
− iπ

s
δ (ω − ω1,r (k)) (2.3.68d)

with the Cauchy principal value P [122]. Applying eq. (2.3.64) gives us

A (k, ω) =
1

s
δ (ω − ω1,r (k)) (2.3.69)

9Therefore we need an algorithm to determine the poles of a function numerically, which is equivalent
to calculating the roots of the denominator of a function. In this thesis we used Brent’s method,
see Appendix C.

10Inside of the two-particle continuum one uses the Dyson equation as well to calculate the renormalized
one-particle dispersion ω1,r (k).

11To determine derivatives we use the central difference quotient, which is given by
f ′ (x) = (f (x+ h) + f (x− h)) /2h for a one-dimensional function f (x) depending on a parameter
x ∈ R. If the analyzed function is three-times differentiable, the error of the central difference
quotient is smaller than the error of other difference quotients. If this is not the case, then the error
is of the same order. We used a step size of h = 10−8 for the calculations.
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for the spectral function outside of the two-particle continuum. The quantity 1/s is called
the spectral weight of a quasiparticle. By this the sum rule has to be modified12

∞∫

−∞

A (k, ω) dω =
1

s
+

ω2,max(k)∫

ω2,min(k)

A (k, ω) dω = 1. (2.3.70)

2.3.3 Calculating renormalized dispersions and lifetimes

As discussed in sect. 2.3.1 the one-particle dispersion is affected by interactions between
the one- and two-particle Hilbert spaces. The so-called renormalized one-particle dis-
persion ω1,r (k) corresponds to the solutions of the Dyson equation, see eq. (2.3.66).
This relation holds inside and outside of the two-particle continuum. Inside the two-
particle continuum the lifetime of the quasiparticles, whose energies are described by the
renormalized one-particle dispersion, becomes finite. To determine its value we compare
the general expression of the spectral function

A (k, ω) =
− Im Σ (k, ω)

π
(
(ω − ω1 (k)− Re Σ (k, ω))2 + (Im Σ (k, ω))2) (2.3.71)

from eqs. (2.3.64) and (2.3.63) with the Lorentz distribution from eq. (2.3.55). Note
that the imaginary part of the self-energy is negative per definition, see Appendix A,
and that this comparison implies the assumption that the self-energy does not depend
on the energy ω explicitly, i.e. Σ (k, ω) = Σ (k) holds [123]. Therefore, the HWHM of
the quasiparticle peaks at the renormalized one-particle dispersion is given by [123]

γ (k) = − Im Σ (k, ω1,r (k)) . (2.3.72)

The lifetime of the quasiparticles is the inverse of the HWHM γ (k) and reads

τ (k) =
1

γ (k)
=

1

− Im Σ (k, ω1,r (k))
. (2.3.73)

Vividly speaking this means that the broader the quasiparticle peak, the shorter the
lifetime of the quasiparticle is. To visualize the lifetime of quasiparticles in figures it is
a standard practice to plot the renormalized one-particle dispersion ω1,r (k) with error
bars, whose half length is equal to the corresponding HWHM. As discussed in sect. 2.3.2
outside of the two-particle continuum quasiparticle peaks are given by delta-functions.

12If there is more than one value of ω fulfilling eq. (2.3.66), one has to perform these explained steps
for all roots separately. Therefore one adds up all spectral weights 1

si
in eq. (2.3.70).
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Since the width of delta-functions is zero, the lifetime of the corresponding quasiparticles
is infinite, which means that these quasiparticles are stable and do not decay.

2.4 Dzyaloshinskii-Moriya-interaction

Up to now only the effects of SQPD on the one-particle dispersion have been discussed.
In this section the origin of SQPD in BCPO, which is given by the Dzyaloshinskii-Moriya-
interaction, is outlined. This interaction has anisotropic character13. Theoretical models
of materials often neglect the existence of anistropic interactions since their consideration
is complicated and they are expected to have only a small influence compared to isotropic
interactions [70]. If the symmetry of the crystal structure of the considered material is
high enough, anisotropic interactions do not exist. This is the case for crystal structures
with only one magnetic ion per unit cell. Therefore, point symmetry exists. In general
crystal structures which contain two magnetic ions per unit cell break point symmetry
with respect to the middle of both ions and anisotropic interactions assume a finite
value14, see figure 2.4. The main effect of anisotropic interactions is lifting the spin
degeneracy of the magnetic excitation modes.

13With the expression anisotropic we mean spin anisotropic, i.e. the couplings between the spin flavors
x, y and z are not identical.

14It is also possible that the two magnetic ions per unit cell are located in such a way that point
symmetry concerning the middle of both ions is not broken. In this case no anisotropic interactions
exist.
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(a) (b)

Figure 2.4: (a) Schematic representation of an arrangement of interacting spins, illustrated by
blue spheres and labeled with A and B. The connecting line AB is highlighted in
green. The red spheres depicting other ions in the crystal structure are arranged in
such a way that point symmetry with respect to the middle of the connecting line
AB exists. Therefore, no anisotropic interactions occur.
(b) Similiar arrangement of interacting spins to panel (a). Due to the two missing
red spheres compared to panel (a) point symmetry with respect to the middle of
the connecting line AB is broken. As a consequence, anisotropic interactions can
assume a finite value.

2.4.1 Anisotropic interactions
The first who proposed anisotropic interactions was Dzyaloshinskii in 1958 [124].
With the antisymmetric anisotropic interaction

HD = D · (S1 × S2) (2.4.74)

between two spins S1 and S2 it was possible to explain the existing weak ferromag-
netic momentum of the antiferromagnetic quantum magnet hematite α-Fe2O3 on a phe-
nomenological level based on a symmetry analysis [8]. The vector D in eq. (2.4.74)
contains real coefficients. This antisymmetric anisotropic interaction ensures that the
two spin S1 and S2 in a quantum antiferromagnet tilt instead of arranging antiparallel.
Beyond the level of a symmetry analysis, Moriya was able to deduce this interaction
by extending the Anderson theory of superexchange [125] by including the spin-orbit
coupling [73, 74]. The spin-orbit coupling (SOC) describes a relativistic effect [5] and
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becomes important for materials containing ions with a large atomic number15.
With the help of second order perturbation theory Moriya received the expression

E
(2)
R,R′ = JR,R′ (S (R) · S (R′)) + D

(2)
R,R′ · (S (R)× S (R′)) + S (R) · Γ(2)

R,R′ · S (R′) (2.4.75)

for the energy between two spins at the positions R and R′. The first term in eq. (2.4.75)
stands for the isotropic Heisenberg interaction [76] between the two spins with the
coupling constant JR,R′ . The second term describes the antisymmetric anisotropic inter-
action, see eq. (2.4.74), and the third term characterizes the symmetric anisotropic in-
teraction between the two spins via the tensor Γ

(2)
R,R′ . The expressions antisymmetric and

symmetric refer to the behavior of the terms under exchange the two interacting spins.
The antisymmetric anisotropic interaction is called Dzyaloshinskii-Moriya-interaction
(DM interaction) and arises in linear order of the SOC. The symmetric anisotropic in-
teraction is of second order in the SOC. In spite of this, it is essential to consider both
anisotropic interactions because the symmetric anisotropic interaction is not negligible
compared to the DM interaction [126].

2.4.2 Symmetric anisotropic interactions
The components Γαβij of the tensor Γij describe the symmetric anisotropic interaction
between the two spin components Sαi and Sβj . We choose the tensor Γij to be traceless
since any finite trace can be incorporated into the isotropic Heisenberg interaction
JijSiSj. Additionally the tensor has to be symmetric. The single components Γαβij
depend on the corresponding Dij vectors and Heisenberg couplings Jij. The relation
between these couplings is outlined in this section.
According to Shekhtman et al. [126] it is possible to map a Hamiltonian of the type

H = JS1S2 + D · (S1 × S2) + S1ΓS2 (2.4.76)

containing isotropic (J) and anisotropic interactions (D,Γ), interacting between two
spins on site 1 and 2, onto an isotropic system

H = J ′S1S
′
2 (2.4.77)

in a rotated basis. The reason for this is that the anisotropic interactions arise from the
SOC, which results in a rotation of the spin hopping from site 1 to site 2. The spin S′2
represents the spin S2 in the rotated basis with the corresponding isotropic coupling J ′.
Without loss of generality, we choose the z-axis as the rotation axis for S′2. At the end of
this calculation we will generalize the direction of the rotation axis. Thus, the relation

15In BCPO the bismuth ions with an atomic number of Z = 83 are likely to be responsible for the
influence of the SOC.
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between the spins S2 and S′2 is given by

S′2 =




cos (ϕ) sin (ϕ) 0

− sin (ϕ) cos (ϕ) 0

0 0 1


S2 (2.4.78)

with ϕ being the angle of the rotation. Applying the transformation from eq. (2.4.78)
on eq. (2.4.77) yields

H = JS1S2 + J

(√
1 +

D2

J2
− 1

)
Sz1S

z
2 + D · (S1 × S2) (2.4.79)

with the abbreviations J = J ′ cos (ϕ) and D = J ′ sin (ϕ) ez. It is reasonable to expand

the expression
√

1 + D2

J2 = 1 + D2

2J2 in leading order since it is expected that the absolute
value of the vector D is small compared to the isotropic coupling J . Now we generalize
the calculation, i.e. D does not point into the z-direction anymore but into an arbitrary
direction. With this the Hamiltonian yields

H = JS1S2 +
D2

2J
SD

1 S
D
2 + D · (S1 × S2) , (2.4.80)

whereby the components SD
i stand for the component of the spin Si pointing into the

same direction as the vector D and are given by the projection SD
i = DSi√

D2
. The anti-

symmetric anisotropic term in eq. (2.4.80) has already the correct form, cf. eq. (2.4.76).
Splitting the first two terms of eq. (2.4.80) into their components results in

H =
∑

α,β

Sα1

(
Jδαβ +

DαDβ

2J

)
Sβ2 + D · (S1 × S2) . (2.4.81)

Bearing in mind that the trace of the tensor Γ has to be zero we rewrite eq. (2.4.81) to
become

H =
∑

α,β

Sα1

(
J̃δαβ + Γαβ

)
Sβ2 + D · (S1 × S2) (2.4.82)

using the substitutions

J̃ = J +
D2

6J
, (2.4.83a)

Γαβ =
DαDβ

2J
− δαβD2

6J
. (2.4.83b)

Note that the isotropic coupling is now given by J̃ instead of J . Once again we take into
account that the absolute value of the vector D is expected to be small compared to J .
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Thus, the approximation J̃ ≈ J is valid. Therefore we receive the general expression

Γαβij =
Dα
ijD

β
ij

2Jij
− δαβD2

ij

6Jij
(2.4.84)

for the components of the tensor Γij, which contains only anisotropic interactions, i.e.
it has a trace of zero16.

2.4.3 Selection rules of Moriya
The direction of the vectors Dij is defined by the present symmetries of the analyzed
crystal structure. The five selection rules of Moriya [74] relate the different couplings
based on point group symmetries of the crystal structure and provide information con-
cerning the direction of the D vectors.
Moriya formulated them by considering two interacting ions with spins whose positions
are label with A and B. The center of the connecting line AB is named C.

1st If C is a center of inversion, then D = 0 holds.

2nd If there is a mirror plane perpendicular to AB and passing through C, then
D ⊥ AB is valid.

3rd If a mirror plane including the positions A and B exists, the vector D is perpen-
dicular to this mirror plane.

4th In the case of a two-fold rotation axis perpendicular to the line AB and passing
through C, then D is perpendicular to this two-fold rotation axis.

5th If there is an n-fold axis (n ≥ 2) passing along AB, the relation D ‖ AB holds.

If several rules hold true and provide competing statements, then only D = 0 is the
correct solution.

16There are also other representations of Γij in the literature without vanishing trace [39,70].



3 A toy model for spontaneous
quasiparticle decay

Quasiparticles are the concept of choice for describing excitations in quantum magnets
with a finite spin gap [36]. These quasiparticles are treated as stable excitations with
an infinite lifetime. As discussed in section 2.3 this picture of quasiparticles/elementary
excitations has to be reconsidered when interaction processes between the Hilbert
space of a single quasiparticle and the Hilbert space of multiple quasiparticles come
into play [40]. In this case the possibility of a single quasiparticle decaying into two or
more quasiparticles spontaneously is given. As a reminder, the word “spontaneously”
implies the fact that the quasiparticle decay takes place at zero temperature (T = 0).
For this reason quantum fluctuations and not thermal fluctuations are responsible for
spontaneous quasiparticle decay (SQPD).
In this chapter a toy model is discussed, for which the individual steps to analyze
SQPD, see section 2.3, are performed. As an appropriate toy model we use a simple
one-dimensional bosonic model with hopping elements. In spite of this simplicity a
realistic spin S=1/2 Heisenberg ladder with a finite spin gap ∆ can be mapped onto
such a one-dimensional model [93, 123].

In the limit of decoupled dimers the ground-state of a spin S=1/2 Heisenberg ladder
[101–104] with antiferromagnetic couplings is given by the product state of spin S=0
singlets on each rung. The elementary excitation of a single S=0 singlet is a S=1

quasiparticle, which is called triplon [72]. In the absence of external magnetic fields or
any intrinsic anisotropies the triplons are threefold degenerate with the polarizations x,
y and z, which are referred to as flavors. Triplons on different rungs act like bosons but
they also obey the Pauli exclusion principle. As an approximation we treat the triplons
as free bosons in a mean-field approach with only one flavor to analyze the fundamental
aspects of SQPD in our toy model.
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3.1 Influence of bilinear terms
Our one-dimensional toy model with arbitrary hopping terms is given by the Hamilto-
nian1

H0 =
N−1∑

i=0

(
t0b
†
ibi

)
+

N−1∑

i=0

n∑

d=−n,
d6=0

(
tdb
†
ibi+d + h.c.

)
, (3.1.1)

whereby the bosonic operator b†i creates a quasiparticle at site i and bi annihilates one
at the same site. In total there are N sites, which we label by the site index i. The
parameter d holds the maximum distance n over which hopping processes are possible.
The prefactor td describes the hopping amplitude of a boson from site i + d to site i2.
The probability of a boson hopping from site i + d to site i is proportional to |td|2.
Additionally we assume periodic boundary conditions, i.e. bN = b0 holds. This type of
translationally invariant Hamiltonians can be solved by a Fourier transform

b†i =
1√
N

∑

k

e−ikrib†k (3.1.2a)

bi =
1√
N

∑

k

eikribk (3.1.2b)

with the bosonic operator b†k creating a boson with momentum k and bk annihilating a
boson with momentum k. The momenta are discretized k = 2πm

N
with m = 0, ..., N − 1.

After this transformation the Hamiltonian reads

H0 =
∑

k

ω1 (k) b†kbk (3.1.3)

with the one-particle dispersion

ω1 (k) = t0 + 2
n∑

d=1

td cos (kd) . (3.1.4)

The Hamiltonian is momentum conserving due to the translational invariance in real
space. In more realistic models pair creation terms such as b†b† can occur and break

1Note, that we introduce our toy model without any dimensions or global energy scale for reasons of
simplicity.

2To use realistic values for the parameters td we choose values calculated from a deepCUT, which are
listed in Appendix B. These values fulfill the condition td = t−d because the S=1/2 Heisenberg
ladder is symmetric around its rungs.
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particle conservation3. We also add this effect to our toy model via the expression

HBogo =
N−1∑

i=0

n′∑

d′=−n′

(
εd′b

†
ib
†
i+d′ + h.c.

)
(3.1.5)

with the parameter εd′ , whose square value is proportional to the probability that two
bosons are created/annihilated at site i and i + d′. The index d′ characterizes the
maximum distance n′ between two created/annihilated bosons. To treat HBogo in the
same basis as H0 we also apply a Fourier transform for the former and receive

HBogo =
∑

k

(
ε (k) b†kb

†
−k + h.c.

)
(3.1.6)

with

ε (k) =
n∑

d′=−n

εd′ cos (kd′) (3.1.7)

as a result. The operator HBogo is momentum conserving such as H0. Adding both
Hamiltonians shows that the resulting Hamiltonian is not diagonal in momentum space.
This problem can be solved by applying a bosonic Bogoliubov transformation [79,80]

b̃†k = cosh (ϑk) b
†
k − sinh (ϑk) b−k (3.1.8a)

b̃−k = cosh (ϑk) b−k − sinh (ϑk) b
†
k, (3.1.8b)

which superposes the bosonic creation and annihilation operators to derive new operators
b̃†k/b̃k, which fulfill bosonic algebra as well, see section 2.2.2. Choosing the parameter ϑk
to satisfy the condition [22]

tanh (2ϑk) = − 2ε (k)

ω1 (k)
(3.1.9)

the diagonalized Hamiltonian is given by

H̃ =
∑

k

ω̃1 (k) b̃†kb̃k + ∆E (3.1.10)

with the modified one-particle dispersion4

ω̃1 (k) =

√
(ω1 (k))2 − 4 (ε (k))2 (3.1.11)

3For instance, this scenario becomes real by coupling many single S=1/2 Heisenberg ladders to gain
a two-dimensional model [100].

4If ε (k) is complex, the modified one-particle dispersion reads
√

(ω1 (k))
2 − 4 |ε (k)|2.
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and the ground-state energy

∆E =
1

2

∑

k

(ω̃1 (k)− ω1 (k)) . (3.1.12)

As previously mentioned in section 2.2.2, we see clearly that the modified one-particle
dispersion ω̃1 (k) assumes complex values for 4 (ε (k))2 > (ω1 (k))2. This scenario de-
scribes a system which is not physically meaningful. Therefore, we confine our toy
model to the physically meaningful regime 4 (ε (k))2 < (ω1 (k))2. The Bogoliubov
transformation lowers the one-particle dispersion in the whole Brillouin zone and en-
sures a decrease of the ground-state energy by the amount of ∆E.
To simplify our future calculations we set the prefactors εd′ to be zero except for d′ = 0,
so that the relation

ε (k) = ε0 =: ε (3.1.13)

holds.
Considering the existence of two quasiparticles in the system the corresponding two-
particle continuum ω̃2 (k, q), see eq. (2.3.49), is given by5

ω̃2 (k, q) = ω̃1 (q) + ω̃1 (k − q) . (3.1.14)

5Note, that this expression of the two-particle continuum does not consider interactions between the
two particles.
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Figure 3.1: Graphic display of the one-particle dispersion ω1 (k) (eq. (3.1.4)), the modified
one-particle dispersion ω̃1 (k) with ε = 0.25 (eq. (3.1.11)) and the corresponding
two-particle continuum ω̃2 (k, q) (eq. (3.1.14)). The ?-symbols mark the points of
intersection between ω̃1 (k) and the lower boundary of ω̃2 (k, q). In the intervalls,
where the lower boundary of ω̃2 (k, q) is below ω̃1 (k), SQPD is possible.

3.2 Influence of decay terms
To introduce an interaction between the one- and two-particle Hilbert space we need to
take processes into account, which describe the decay of one particle into two particles.
The expression6

Hdecay = v
N−1∑

i=0

δn∑

δ=−δn

(
vδb
†
ib
†
i+δbi+δ + h.c.

)
(3.2.15)

in real space visualizes such a process7. The first summand of Hdecay characterizes
the decay of a single particle at site i + δ into two particles at sites i + δ and i. The
probability of this process is given by |v·vδ|2. By contrast, the second summand describes
the confluence of two particles on sites i and i+ δ to a single particle on site i+ δ. This
process happens with the complex conjugated amplitude and same probability.

6Note, that eq. (3.2.15) states a specific choice. In general the indices of the operators are given by
(i, j, l) = (i, i+ δ, i+ δ′). To keep our toy model still simple we use (i, j, l) = (i, i+ δ, i+ δ).

7It is important to mention that the distance between the two new created particles δ varies from −δn
to δn, which can be different from the maximum hopping distance ±n, see eq. (3.1.1). The values
of the prefactors vδ are listed in Appendix B and fulfill the relation vδ = v−δ. The variable v ∈ R is
for tuning the decay terms.
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Due to the translation invariance of Hdecay we perform a Fourier transform yielding

Hdecay =
1√
N

∑

k,q

(
v (k, q) b†qb

†
k−qbk + h.c.

)
(3.2.16)

with

v (k, q) =
v

2

(
δn∑

δ=−δn

vδ cos (qδ) +
δn∑

δ=−δn

vδ cos ((k − q) δ)
)
. (3.2.17)

The first part of the Hamiltonian Hdecay in momentum space characterizes the decay
process of a single particle with momentum k into two particles with momenta q and
k − q in order to conserve momentum.
We treat the decay processes as a perturbation regarding the solved problem in section
3.1, i.e. we transform Hdecay into the same basis as H̃, see eq. (3.1.10), and add
both Hamiltonians for further studies. Therefore, we have to apply a Bogoliubov
transformation, see eqs. (3.1.8), on the decay/fusion terms of Hdecay. As a result,
we receive trilinear terms of the form b̃†b̃†b̃†/b̃̃b̃b and b̃†b̃†b/b̃† b̃̃b and additionally due to
normal-ordering linear terms of the form b̃†0/b̃0 at fixed momentum k = 0. The prefactors
of these terms are given by

b̃†q b̃
†
k−q b̃k : v (k, q) cosh (ϑq) cosh (ϑk−q) cosh (ϑk)

+ v (−k + q, q) cosh (ϑq) sinh (ϑk) sinh (ϑk−q)

+ v (q, k) sinh (ϑk) cosh (ϑk−q) sinh (ϑq)

+ v (q, k) cosh (ϑk) sinh (ϑk−q) cosh (ϑq)

+ v (k − q,−q) sinh (ϑq) cosh (ϑk) cosh (ϑk−q)

+ v (k, q) sinh (ϑq) sinh (ϑk−q) sinh (ϑk) (3.2.18a)

b̃†q b̃
†
−k−q b̃

†
k : v (−k, q) cosh (ϑq) cosh (ϑk+q) sinh (ϑk)

+ v (k,−q) sinh (ϑq) sinh (ϑk+q) cosh (ϑk) (3.2.18b)

b̃†0 :
∑

q

(
2v (q, 0) sinh2 (ϑq) + v (0, q) sinh (ϑq) cosh (ϑq)

)
(cosh (ϑ0) + sinh (ϑ0)) ,

(3.2.18c)

whereby one has to keep in mind the overall scaling factor 1√
N
, see eq. (3.2.16).

By way of reminder, we want to analyze the influence of decay terms which describe
an interaction between the one- and two-particle Hilbert space on the one-particle
dispersion. Since we are dealing with bosons, the considered Hilbert space has infinite
dimension. To perform further studies we restrict ourselves to the one- and two-particle
Hilbert space and the interaction between both. We expect the decay/fusion terms
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b̃†b̃†b̃/b̃† b̃̃b to have the biggest influence by far since we are considering quasiparticle
decay at zero temperature. As a consequence, we only keep terms of the type b̃†b̃†b̃/b̃† b̃̃b
in our ongoing discussion and neglect the other terms from eqs. (3.2.18b) and (3.2.18c),
which describe quantum fluctuations creating/annihilating one and three particles. The
resulting Hamiltonian with decay terms reads

H̃decay =
∑

k

ω̃1 (k) b̃†kb̃k +
1√
N

∑

k,q

(
Γ̃ (k, q) b̃†q b̃

†
k−q b̃k + h.c.

)
(3.2.19)

with the modified one-particle dispersion ω̃1 (k) from eq. (3.1.11) and Γ̃ (k, q) represent-
ing the expression from eq. (3.2.18a).

3.3 Influence of interaction terms
Besides transitions between the one- and two-particle Hilbert space, which we in-
troduced in sect. 3.2, we also discuss two-particle interactions and their effects on the
one-particle dispersion ω̃1 (k), see eq. (3.1.11). An attractive two-particle interaction en-
ables the existence of bound states [4,6] and lowers two-particle states energetically. This
energy reduction combined with transitions between the one- and two-particle Hilbert
space, see sect. 3.2, ensures an increased level repulsion. Finally, this results in a further
lowering of the one-particle dispersion ω̃1 (k).
The expression

Hinter = −w
N−1∑

i=0

ni+1ni = −w
N−1∑

i=0

b†i+1b
†
ibibi+1 (3.3.20)

with w ∈ R+ describes such an attractive two-particle interaction process in real space
between next-neighbors. The operator Hinter annihilates two particles at adjacent sites i
and i+1 and creates two particles at the same sites. The interaction strength is constant
and given by −w < 0. As Hinter is translationally invariant, we can perform a Fourier
transform yielding

Hinter =
1

N

∑

k,q,p

w (k, q, p) b†pb
†
k−pbqbk−q (3.3.21)

with
w (k, q, p) = −w

2
(cos (p− q) + cos (k − p− q)) . (3.3.22)

In momentum space the Hamiltonian Hinter characterizes interactions between two-
particle states which hold a total momentum k and a relative momentum q and different
two-particle states with a total momentum k and relative momentum p. As the relative
momenta q and p are independent, Hinter describes couplings between all possible two-
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particle states with a fixed momentum k8.
Just like in sect. 3.2, the next step would be to transform Hinter into the same basis as
H̃, see eq. (3.1.10), and to add it to the Hamiltonian H̃decay, see eq. (3.2.19). To keep
the model simple we omit this step and add the interaction Hamiltonian Hinter to the
bilinear and trilinear terms in H̃decay directly9. Therefore we do a direct mapping

b†k → b̃†k bk → b̃k (3.3.23)

so that we can add the two particle interactions to our toy model right away. Finally,
the Hamiltonian of our toy model including decay and two-particle interaction terms is
given by

H̃full =
∑

k

ω̃1 (k) b̃†kb̃k+
1√
N

∑

k,q

(
Γ̃ (k, q) b̃†q b̃

†
k−q b̃k + h.c.

)
+

1

N

∑

k,q,p

w (k, q, p) b̃†pb̃
†
k−pb̃q b̃k−q

(3.3.24)
with the modified one-particle dispersion ω̃1 (k) from eq. (3.1.11), Γ̃ (k, q) representing
the expression from eq. (3.2.18a) and the term w (k, q, p) describing the interaction
between two particles, see eq. (3.3.22).

3.4 Results of the toy model
3.4.1 Analysis of decay terms, v 6= 0 and w = 0
In this subsection we focus on the effects of SQPD in our toy model neglecting two-
particle interactions, see sect. 3.3, i.e. we refer to the Hamiltonian H̃decay, see eq.
(3.2.19). The first step to analyze the effects of SQPD in our toy model is the Lanczos
tridiagonalization of the Hamiltonian H̃decay, see eq. (3.2.19). The initial state is a single
particle state with fixed momentum k, which we name |k〉. Due to the conservation of
the total momentum k a single particle can only decay into two particles with momenta q
and k− q. We describe these two-particle states via |q, k − q〉 [127]. So the Hamiltonian
H̃decay can be expressed in the basis constructed by the single particle state |k〉 and the
two-particle states |q, k − q〉. In figure 3.2 the convergence behavior of the Lanczos
coefficients, which is explained in Appendix A, is demonstrated.

8In the case p = q the Hamiltonian Hinter outlines a self-interaction of the corresponding two-particle
state.

9A stringent application of the Bogoliubov transformation, see eqs. (3.1.8), would lead to additional
bilinear terms of the form b̃†b̃†/b̃b̃ and b̃†b̃, which we would have to include into our model as well.
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Figure 3.2: Convergence behavior of the Lanczos coefficients for different k-values of the toy
model with parameters ε = 0.25, v = 0.8 and a discretization of N = 1000 in
k-space. The index i represents the number of the Lanczos coefficients. In total
200 Lanczos steps have been performed.

It is easy to see that the calculated Lanczos coefficients ai (k) and bi (k) show the
correct convergence behavior, which is determined by the lower and upper edge of the
two-particle continuum ω̃2 (k, q) [128]. The exact expressions of the limiting values
a∞ (k) and b∞ (k) are listed in Appendix A. Due to the fact that in numeric calculations
the discretization N of the k-space is a finite number the Lanczos coefficients show
deviations after they converged towards a∞ (k) and b∞ (k). These deviations describe
finite size effects [129] and do not have any physical meaning. Therefore, it is necessary
to identify the number of Lanczos steps nLanczos,max at which the coefficients reached
their limiting values appropriately. The continued fraction describing the resolvent, see
eq. (2.3.61), is then performed up to nLanczos,max coefficients and then terminated with
a suitable terminator [118, 130], see Appendix A. For our toy model we find the index
nLanczos,max = 70 to be an appropriate choice for further calculations10.

10Note, that the concrete value of nLanczos,max = 70 belongs to the parameters ε = 0.25 and v = 0.8. If
the latter parameters change, it is possible that nLanczos,max has be chosen differently.
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The next interesting quantity to consider is the spectral function, whose calculation is
described in sects. 2.3.1 and 2.3.2.
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Figure 3.3: Spectral functions A (k, ω) for different k-values of the toy model for the parameters
ε = 0.25 and v = 0.8, which belong to the results in figure 3.2. Note, that the y-axis
has a logarithmic scale. The black dashed lines show the positions of the local and
global extrema in the two-particle continuum ω̃2 (k, q). The green lines illustrate
a Lorentz distribution, see eq. (2.3.55), centered at the one-particle dispersion
ω̃1 (k) and a HWHM γ = 0.001. The energy ω is discretized in steps of 0.001.

The presented spectral functions in figure 3.3 illustrate a number of features, which we
discuss in the following.

Shape inside the two-particle continuum
It is cleary visible that inside the two-particle continuum the spectral function has
a finite value. All its contained peaks hold an intrinsic width, see eq. (2.3.72). At
k = 0.1π and k = 0.8π the one-particle dispersion is located inside the two-particle
continuum. At these k-values we notice that the peak at the position of the one-particle
dispersion becomes broader compared to the general Lorentz distribution holding a
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HWHM which is identical to the discretization of the energy11. This demonstrates that
the lifetime of the quasiparticles becomes finite due to the existing decay processes. At
k = 0.8π a slight shift of the quasiparticle peak to smaller energies can be observed. This
effect stems from the level repulsion induced by the hybridization of the one-particle
and two-particle Hilbert spaces, see eq. (3.2.19).
Another notable characteristic is the occurence of Van Hove singularities [131].
These are visualized by kinks in the spectral function located at the energy values, at
which the two-particle continuum holds local extrema. Close to its local extrema the
two-particle continuum goes flat, which means that there are many two-particle states
with roughly the same energy. This fact becomes visible in the spectral function with
spikes at the corresponding energies. All illustrations in figure 3.3 show the existence
of Van Hove singularities located at the expected energy values.

Limiting behavior of the spectral function
The band edges of a two-particle continuum are determined by their global extrema.
The limiting behavior of the spectral function at the band edges and at the already
mentioned local extrema of the two-particle continuum depends on the dimension d of
the system, namely according to

A (k, ω) ∝ |ω − ωc|
d
2
−1, (3.4.25)

whereby ωc stands for the band edges of the two-particle continuum ω̃2,max (k)

and ω̃2,min (k) and its local extrema in each case12 [132]. Since our toy model is
one-dimensional, we expect the limiting behavior of the spectral function to be like

1√
|ω−ωc|

. All presented spectral functions in figure 3.3 show this limiting behavior clearly.

Quasiparticle peaks outside the two-particle continuum
As explained in sect. 2.3.2, quasiparticle peaks can occur outside of the two-particle
continuum. All displayed k-values in figure 3.3 contain quasiparticle peaks. They are
visualized by sharp lines [36]. In the cases where the one-particle dispersion is located
outside the two-particle continuum the appearing quasiparticle peaks are slightly
shifted to lower energies and hold a large spectral weight of 1/s = 0.95 for k = 0.4π

and 1/s = 0.93 for k = 0.7π. In addition, further quasiparticle peaks occur like the one
at k = 0.7π, which is located close the upper band edge and has only a small spectral
weight of 1/s = 0.0002. In the cases k = 0.1π and k = 0.8π quasiparticle peaks with
small spectral weight 1/s in the order of magnitude of 0.001− 0.0001 occur closely to the

11In our case we set the HWHM for the general Lorentz distribution to be γ = 0.001, see figure 3.3.
12For d = 2 the exponent in eq. (3.4.25) is zero. This implies a finite jump or a logarithmic singularity.
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band edges as well. They are spurious and appear only because of numerical reasons
due to the discretization of the energy ω. Thus, they can be neglected for physical
interpretation13.

Fulfilling the sum rule
All illustrations in figure 3.3 show the integral of the spectral function, which has to
be equal to one due to the sum rule, see eq. (2.3.70). We can see clearly that the sum
rule is fulfilled for all analyzed k-values. For numerical calculations the sum rule is an
important issue in order to determine an appropriate discretization of the energy ω. If
the energy discretization is chosen too large, this becomes visible in a not fulfilled sum
rule, which is notably smaller or larger than one.

To complete the analysis of the toy model we discuss the renormalized dispersion. Its
computation is outlined in section 2.3.3.
The results of the renormalized dispersion in figure 3.4 seem questionable and not
intuitive. At nearly every momentum k various values of the renormalized dispersion
ω1,r (k) exist. It is also astonishing to find data points with huge errorbars, see the
prominent examples at momenta k ≈ 0.5π and k ≈ 0.6π, which are located near the
upper boundary of the two-particle continuum ω̃2 (k, q).

These examples represent the point where theoretically correct formulae and cal-
culations clash with numerics. It is necessary to distinguish whether a numerically
correct solution of the Dyson equation, see eq. (2.3.66), represents a solution with a
physical meaning or not. In other words: Not every solution stands for the energy of a
quasiparticle.
It is a challenge to decide whether a numerically correct value of ω1,r (k) represents
real physics or not. To approach this task one has to introduce additional decision
criteria. These criteria classify the calculated solutions of ω1,r (k) to values with a
physical meaning and values which stem from discretization effects. More concretely,
we need to introduce specific criteria, which make sure that the values ω1,r (k) describe
a quasiparticle peak in the corresponding spectral function A (k, ω). Since it is not
possible to analyze all spectral functions A (k, ω) for each momentum k separately, it
is necessary to think of a criterion or multiple criteria, which can be applied on the
numerical data of the renormalized dispersion.

13The structure of the spectral function consists of peaks and kinks, as mentioned before in this subsec-
tion. If the discretization of the energy ω is chosen too large, it is possible that the peak structure is
not highly resolved, especially close to the quasiparticle peaks. As a consequence, a non-negligible
amount of the spectral weight is missing and the sum rule is not fulfilled.
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Figure 3.4: Renormalized dispersion ω1,r (k) of the toy model for the parameters ε = 0.25
and v = 0.8, which belongs to the results in figures 3.2 and 3.3. In addition, the
dispersion ω̃1 (k) is displayed to visualize the effects of SQPD. The graphic shows
all solutions of the Dyson equation, see eq. (2.3.66). The size of the errorbars of
the renormalized dispersion inside the two-particle continuum ω̃2 (k, q) corresponds
to the related HWHM γ (k), see eq. (2.3.72).

Similiar to the calculation and representation of the spectral function A (k, ω) we
consider whether the calculated solution of ω1,r (k) is located inside or outside the
two-particle continuum ω̃2 (k, q).

Solutions of the Dyson equation inside the two-particle continuum
Inside the two-particle continuum the spectral function shows peaks with an intrinsic
finite width14, see sect. 2.3.1. The positions of the peaks represent the energies of
a quasiparticle or a resonant mode. An associated quantity of these energies is the
HWHM γ, see eq. (2.3.72). It is related to the lifetime of the quasiparticles or resonant
modes, see sect. 2.3.3. A large HWHM indicates a peak in the spectral function, which
is smeared out, and therefore a quasiparticle or resonance with a short lifetime. Since
a quasiparticle or resonance has to hold a sufficient long lifetime to be identified as a
quasiparticle or resonance, the HWHM is a candidate for an appropriate quantity to
differentiate between solutions of the Dyson equation with a purely numerical origin
and the solutions which describe real physics. These solutions characterize the energy

14In general, sharp peaks inside the two-particle continuum can also derive from binding phenomena.



58 A toy model for spontaneous quasiparticle decay

of a quasiparticle or a resonance. As the width of the two-particle continuum

∆ω̃2 (k) = ω̃2,max (k)− ω̃2,min (k) (3.4.26)

varies for each momentum k, considering only the HWHM is not significant enough as
a criterion to determine peaks within the spectral function. The key issue is that the
HWHM of a peak has to be small compared to the width of the corresponding two-
particle continuum. A peak with a large HWHM can still be identified as a peak within
an ever boarder two-particle continuum. Therefore, the relative HWHM γ (k) /∆ω̃2 (k),
with γ (k) /∆ω̃2 (k) � 1, serves as an appropriate quantity to identify the solutions of
the Dyson equation, which characterize the energy of a quasiparticle or resonance.
To explain this issue more closely we compare the results of the spectral function A (k, ω),
see figure 3.3, with the results of the renormalized dispersion ω1,r (k), see figure 3.4, at
the momenta k = 0.1π and k = 0.4π. The spectral function A (k = 0.1π, ω) displays a
clear peak near the corresponding one-particle dispersion ω̃1 (k = 0.1π). The width of
the peak is finite, but small enough compared to the width of the two-particle contin-
uum to identify the peak as a peak. In contrast, the spectral function A (k = 0.4π, ω)

does not show a visible peak inside the two-particle continuum. Despite this, figure 3.4
shows at k = 0.4π two solutions, one at ω ≈ 3 and one near the one-particle dispersion
ω̃1 (k = 0.4π). The solution inside the two-particle continuum ω̃2 (k = 0.4π, q) at ω ≈ 3

holds a HWHM of γ ≈ 0.86. This means that the spectral function A (k = 0.4π, ω) has
a resonance at ω ≈ 3. But no peak can be identified in figure 3.3 since the relative
HWHM γ/∆ω̃2 ≈ 0.41 is large. Thus, this corresponding solution of the Dyson equa-
tion does not describe the energy of a quasiparticle or another well-defined mode but is
of pure numerical nature. At the momentum k = 0.7π we obtain similar results, since
the Dyson equation holds solutions at ω ≈ 1, ω ≈ 1.5 and ω ≈ 3.7, see figure 3.4. The
solution inside the two-particle continuum at ω ≈ 1.5 does not display a clear peak in
the spectral function A (k = 0.7π, ω), see figure 3.315.
To conclude these observations, the relative HWHM states an appropriate quantity to
distinguish inside the two-particle continuum whether a solution of the Dyson equation
describes the energy of a quasiparticle or a well-defined resonance, which can be iden-
tified in the corresponding spectral function with a clear peak or not. Therefore, it is
reasonable to display only the solutions with a relative HWHM below a certain threshold
(γ (k) /∆ω̃2 (k))max � 1. This threshold can be determined by testing different values
and analyzing the shape of spectral function in detail.

15The other solutions at ω ≈ 1 and ω ≈ 3.7 are located outside of the two-particle continuum and are
discussed in the following.
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Solutions of the Dyson equation outside the two-particle continuum
As pointed out in sect. 2.3.2, it is possible that the spectral function holds delta-
functions, which are located outside of the two-particle continuum. These delta-functions
describe so-called quasiparticle peaks with a certain spectral weight 1/s [72]. Since a
quasiparticle or a bound state has to possess a sufficient large value of 1/s to be identi-
fied as a quasiparticle or a bound state, the spectral weight is an appropriate quantity to
differentiate between spurious solutions of the Dyson equation resulting from numerical
artefacts and true physical solutions, i.e. a quasiparticle or (anti-) bound states.
To outline this issue more precisely we compare the results of the spectral function
A (k, ω), see figure 3.3, and the results of the renormalized dispersion ω1,r (k), see figure
3.4, once again. The spectral functions A (k = 0.4π, ω) and A (k = 0.7π, ω) display peaks
near the corresponding one-particle dispersion ω̃1 (k). These peaks are located cleary
outside of the two-particle continuum. As mentioned before, the spectral weight of these
peaks is 1/s = 0.95 for k = 0.4π and 1/s = 0.93 for k = 0.7. For the latter momentum
the spectral function shows an additional peak very close to the upper boundary of the
two-particle continuum at ω ≈ 3.7 with a spectral weight of 1/s = 0.0002. The calcu-
lation of the spectral function A (k, ω) and thereby the calculation of the renormalized
dispersion ω1,r (k) are sensitive to the discretization of the energy ω. It is a reasonable
approach to choose the energy discretization fine enough so that the calculated spectral
function A (k, ω) fulfills the sum rule, see eq. (2.3.70), for every momentum k.
In the case of no SQPD the spectral function is given by a single delta-function. Its
spectral weight is 1/s = 1. This is the maximum value, since in this scenario there is
no interaction between the one- and two-particle Hilbert space and the corresponding
self-energy Σ (k, ω), see eq. (2.3.62), is zero. For this reason, it is obvious to choose the
spectral weight 1/s as an additional criterion to distinguish between the spurious peaks
outside the two-particle continuum and the physical ones, which describe quasiparticles
or (anti-) bound states. Therefore, it is immediately apparent to display only the solu-
tions with a spectral weight 1/s greater than a certain threshold (1/s)min. In order to set
this threshold we follow the results of the literature [72,133–135] and also test different
values within a simultaneous analysis of the shape of the spectral function.
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Figure 3.5: Renormalized dispersion ω1,r (k) of the toy model for the parameters ε = 0.25,
v = 0.8 and the threshold (γ (k) /∆ω̃2 (k))max = 0.05. Outside the two-particle
continuum only the solutions of the Dyson equation holding a spectral weight
1/s ≥ (1/s)min = 0.1 are displayed since these describe quasiparticle peaks in the
corresponding spectral function A (k, ω), see figure 3.3.

Since the two introduced criteria act on different areas of the energy scale, i.e. the max-
imum relative HWHM (γ (k) /∆ω̃2 (k))max acts inside the two-particle continuum and
the minimum spectral function 1/smin outside the two-particle continuum, it is possible
that more than one solution of the Dyson equation can remain as a possible quasi-
particle, resonance or (anti-) bound state energy at a specific momentum k. Inside the
two-particle continuum the remaining solutions describe quasiparticles or resonances
holding a finite lifetime, which is sufficient long in order to be identified. Outside of the
two-particle continuum they represent the energies of a quasiparticle or (anti-) bound
state with infinite lifetime holding a sufficient large amount of spectral weight.
In addition to the renormalized one-particle dispersion ω1,r (k), see figure 3.5, we also
present a color plot of the corresponding spectral function A (k, ω), see figure 3.6. This
color plot stresses our results according to the introduction of the relative HWHM as a
criterion to detect quasiparticle peaks in the spectral function. Inside the two-particle
continuum we clearly see a large amount of weight near the energies we identified as
the renormalized one-particle dispersion ω1,r (k), see figure 3.5. We can also notice the
structure of the Van Hove singularities inside the continuum and that their weight is
less compared to the weight of the corresponding quasiparticle peaks.
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Figure 3.6: Logarithmic color map of the spectral function A (k, ω) for the toy model with the
previously analyzed parameters ε = 0.25 and v = 0.8. The black solid lines represent
the lower and the upper boundary of of the two-particle continuum ω̃2 (k, q) for a
fixed total momentum k. Outside of the continuum only peaks in the spectral
function A (k, ω) with a minimal spectral weight of (1/s)min = 0.1 are depicted with
zero error bars implying that the corresponding excitations have an infinite lifetime.

Finally, we compare the renormalized dispersion ω1,r (k) for different hybridization
strengths v between the one- and two-particle Hilbert space, see figure 3.7.

An increasing value of the variable v describes a stronger hybridization between the
one- and two-particle Hilbert space. This results in a stronger renormalization, e.g.
a stronger downshift, of the one-particle dispersion outside the two-particle continuum
and a larger HWHM of the quasiparticle peaks inside the two-particle continuum, re-
spectively. For further increasing values of v it is even possible that the one-particle
dispersion is reduced so significantly that it assumes negative values, see also eq. (3.1.11)
for the bosonic Bogoliubov transformation. In this context the hybridization between
the one- and two-particle Hilbert space is so strong that the whole system is no longer
physically stable.
Another interesting aspect to discuss is the down-bending of the renormalized dispersion
ω1,r (k) near the two-particle continuum ω̃2 (k, q). As expected, figure 3.7 shows clearly
that with increasing v the down-bending of the renormalized dispersion becomes more
and more pronounced.
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Figure 3.7: Renormalized dispersion ω1,r (k) of the toy model for different hybridization
strengths, tuned by the parameter v, see eq. (3.2.17). The criteria for identi-
fying the quasiparticle peaks in the corresponding spectral functions are set to
(γ (k) /∆ω̃2 (k))max = 0.03 and (1/s)min = 0.1.

3.4.2 Analysis of two-particle interaction terms,
v = 0 and w 6= 0

In this subsection we study only the effects of two-particle interaction terms in our toy
model and do not take decay/fusion terms into account, i.e. we refer to the Hamiltonian
H̃full, see eq. (3.3.24), with v = 0. Finite attractive two-particle interaction terms can
lead to the phenomenon that two particles form a so-called bound state [4,6]. A bound
state is characterized by the fact that its energy is less than the sum of the energies of
each particle. Therefore, it is not possible to separate these particles without expending
energy. To receive the dispersion of the two-particle bound state ωbound (k) of our toy
model we can proceed similar to the steps described in sect. 3.4.1. The only difference to
the steps in sect. 3.4.1 is the choice of the initial state for the Lanczos tridiagonalization
because we consider only two-particle interactions in this subsection and cannot start
from a single particle state. Therefore, we choose the two-particle state

|k, 1〉 =
1√
N

N−1∑

i=0

eik(ri+ 1
2)b̃†i b̃

†
i+1 |0〉 (3.4.27)

as the intial two-particle state for the Lanczos algorithm [123]. This state characterizes
a two-particle state in real space with a total momentum k where two bosons are created
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out of the vaccum state |0〉 on adjacent sites i and i+1. As we perform all our calculations
in momentum space, we apply a Fourier transform yielding

|k, 1〉 =
1√
N

∑

q

cos

(
k

2
− q
)
b̃†q b̃
†
k−q |0〉 . (3.4.28)

This state is a superposition of all possible two-particle states |q, k − q〉, which hold a
fixed total momentum k and a variable relative momentum q. In figure 3.8 the dispersion
of the two-particle bound state is depicted for different two-particle interaction strengths
w.
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Figure 3.8: Dispersion of the two-particle bound state ωbound (k) for different two-particle in-
teraction strengths w. For the calculations a discretization of N = 1000 in k-space
was chosen and 200 Lanczos steps have been performed. In order to solve the
corresponding Dyson equation, see eq. (2.3.66), the energy ω is discretized in
steps of 0.001 and up to nLanczos,max = {50, 30, 20, 20} Lanczos coefficients for
w = {0.5, 1.0, 1.5, 2.0} were used. Due to the definition of a two-particle bound state
only solutions of the Dyson equation below the two-particle continuum ω̃2 (k, q)
can be identified with the dispersion ωbound (k). The lifetime of the two-particle
bound state is infinite per definition, see sect. 2.3.3.

As expected, the introduction of an attractive two-particle interaction in our toy model
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gives rise to a two-particle bound state. With increasing interaction strength, i.e. a
larger amount of energy is required to separate the two bosons, the dispersion of the
two-particle bound state ωbound (k) is reduced further. Note, that within our ansatz for
calculating ωbound (k), see sects. 2.3.2 and 2.3.3, it is possible to receive negative values
for ωbound (k) for sufficient large values of w. Since negative energies describe unstable
systems, we discard these solutions.
As already mentioned, it is necessary to expend energy to separate the two particles
forming a bound state. This amount of energy is known as the binding energy ∆Ebound.
It is defined as the energy difference

∆Ebound (k) = ω̃2,min (k)− ωbound (k) (3.4.29)

between the lower boundary16 of the two-particle continuum ω̃2 (k, q), see eq. (3.1.14),
and the energy of the two-particle bound state ωbound (k). In figure 3.9 the binding
energy for different two-particle interaction strengths w is depicted.
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Figure 3.9: Binding energy ∆Ebound (k) for different interaction strengths w. The results belong
to the two-particle bound states which are shown in figure 3.8.

The results are consistent with our expectation that a stronger attractive two-particle
interaction strength w leads to a larger binding energy ∆Ebound (k), i.e. a larger amount
of energy needs to be expended in order to separate the two particles which form the
two-particle bound state.
16The lower boundary of the two-particle continuum is given by ω̃2,min (k) = minq∈[0,2π)ω̃2 (k, q).
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3.4.3 Analysis of decay and two-particle interaction terms,
v 6= 0 and w 6= 0

In this subsection we investigate the effects of SQPD and an attractive two-particle
interaction on the one-particle dispersion ω̃1 (k), see eq. (3.1.11), and the two-particle
bound state ωbound (k), i.e. we consider the Hamiltonian H̃full from eq. (3.3.24) with
finite values of v and w. In order to receive the corresponding renormalized one-particle
dispersion ω1,r (k) and renormalized two-particle bound state ωbound,r (k) we apply the
same steps as outlined in the previous sects. 3.4.1 and 3.4.2. Figure 3.10 shows the
results for a fixed value of v = 0.8 for the decay/fusion processes and variable values of
w for the attractive two-particle interaction.

Comparing the results shown in figure 3.10 with the renormalized one-particle dispersion
ω1,r (k) without two-particle interactions, see figure 3.517 and with the dispersion of the
two-particle bound state ωbound (k), see figure 3.8, noticeable renormalization effects
can be identified. A clear assignment for the renormalized one-particle dispersion
ω1,r (k) and the renormalized two-particle bound state ωbound,r (k) for v 6= 0 and w 6= 0

is not possible within our calculation path. The points where the dispersion of the
two-particle bound state ωbound (k), see figure 3.8, and the undisturbed one-particle
dispersion ω̃1 (k) intersect describe typical anti-crossing situations. Due to the finite
values of v for decay/fusion processes and finite values of w for two-particle interactions
the one-particle dispersion and the two-particle bound state are interacting with each
other. As a consequence, their dispersions are separated at the anti-crossing points
in the Brillouin zone and the gap between them grows with increasing two-particle
interactions strength w for a fixed value of v and vice versa. To distinguish which
quasiparticle energies belong to the one-particle and which to the two-particle Hilbert
space we use different colors in figure 3.10. We sort the quasiparticle energies by
comparing the solutions with the results for the renormalized one-particle dispersion
ω1,r (k) for w = 0 and with the results for the dispersion of the two-particle bound state
ωbound (k) for v = 0, see figure 3.818, in order to reproduce the previously mentioned
anti-crossing situations.

17Note, that the thresholds used in figures 3.5 and 3.10 differ.
18As explained in sect. 3.4.2 our applied ansatz for calculating the quasiparticle energies gives rise to

negative values for large values of w or v. As these solutions describe unstable systems, we discard
them.
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Figure 3.10: Renormalized one-particle dispersion ω1,r (k) and renormalized dispersion of the
two-particle bound state ωbound,r (k) for a fixed value of v = 0.8 and different
two-particle interaction strengths w. As a discretization in k-space N = 1000 was
chosen and 200 Lanczos steps have been performed. The energy ω is discretized
in steps of 0.001 and up to nLanczos,max = {40, 30, 20, 20} Lanczos coefficients for
w = {0.5, 1.0, 1.5, 2.0} were used. The reason for the different values of nLanczos,max

is that with an increasing value of the two-particle interaction strength w the
Lanczos coefficients show deviations from their limiting values at earlier itera-
tion steps. Peaks in the corresponding spectral function inside the two-particle
continuum ω̃2 (k, q) with a relative HWHM of (γ (k) /∆ω̃2 (k)) = 0.04 are iden-
tified as quasiparticle peaks. Outside the two-particle continuum all shown data
hold a minimal spectral weight of (1/s)min=0.001.

As a final point on our toy model we point out another particular feature. Our calcula-
tions reveal that it is not possible the receive the energy of the renormalized two-particle
bound state ωbound,r (k) at k = π if the one-particle state |k〉 is chosen as a start state
for the Lanczos tridiagonalization. However, choosing the two-particle state |k, 1〉, see
eq. (3.4.28), as a start state yields the renormalized energy of the two-particle bound
state at k = π. Further investigations reveal that the transition probability

p (k) = | 〈k| H̃full |k, 1〉 |2 (3.4.30)
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is equal to zero at k = π. This means that at this specific k-value the Hamiltonian
H̃full generates no overlap between the two-particle start state |k, 1〉 and the one-particle
state |k〉. As a consequence, the two-particle Hilbert space will not be left in the
Lanczos tridiagonalization and the renormalized energy of the two-particle bound state
ωbound,r (k) can be detected at k = π. The solution for this specific feature of our toy
model can be found by a detailed analysis of the prefactor Γ̃ (k, q), see eq. (3.2.19),
which describes the amplitude of the decay/fusion processes. Since our toy model is
invariant under a reflection at a single site the coefficients vδ obey the relation v−δ = vδ,
see sect. 3.2. As a consequence, the prefactor Γ̃ (k, q) is symmetric around k = π in the
relative momentum q, i.e. Γ̃ (k = π,−q) = Γ̃ (k = π, q) holds. As the two-particle start
state |k, 1〉, see eq. (3.4.28), is antisymmetric in the relative momentum q for k = π,
the transition probability p (k), see eq. (3.4.30), has to vanish for k = π. Therefore, it
is crucial to combine all quasiparticle energies from calculations using the one-particle
state |k〉 and the two-particle state |k, 1〉 in order to receive the renormalized dispersions
in the whole Brillouin zone.

3.5 Chapter summary
At the end of this chapter we sum up the key aspects. At first a simple toy model to
demonstrate the effects of SQPD was introduced. We were able to observe the three
different characteristics of SQPD, namely the termination of the one-particle dispersion,
its resonance behavior with a finite HWHM within the two-particle continuum and its
strong renormalization to avoid an overlap with the corresponding two-particle contin-
uum. In the course of the analysis of the toy model we came to the conclusion that it is
necessary to apply specific criteria to the numerically calculated solutions of the Dyson
equation. It is essential to introduce these criteria to distinguish between solutions of the
Dyson equation, which describe the energy of a well-defined quasiparticle, resonance
or (anti-) bound state, and the solutions, which are only numerical artefacts without a
physical meaning. Therefore, we established two criteria to handle this issue. Focus-
ing only on solutions inside the two-particle continuum the ratio between the HWHM
of a peak and the width of the two-particle continuum represents a resonable criterion
to use. Considering the energy range outside the two-particle continuum the value of
the spectral weight is a suitable quantity to identify the energies of a quasiparticle or
(anti-) bound state. Combining these two criteria results in receiving a renormalized
dispersion with a plausible meaning. In addition to transitions between the one- and
two-particle Hilbert space, we also introduced an attractive two-particle interaction
in our toy model. This interaction leads to a two-particle bound state and shows also
renormalization effects in combination with decay/fusion processes on the one-particle
dispersion and on the two-particle bound state.
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4 Description of the quantum
antiferromagnet BiCu2PO6 on
bilinear operator level

To describe and understand the magnetic properties of a material it is essential to have
an in-depth knowledge of its crystallographic structure. Based on this information a
model characterizing the magnetic structure of the material can be set up. In this
chapter the magnetic structure of the quantum antiferromagnet BiCu2PO6 (BCPO)
is analyzed. Furthermore, we set up a model, based on deepCUT results for a single
frustrated spin ladder, to describe the properties of its elementary excitations, i.e. the
one-particle dispersions, taking only bilinear operator terms into account, which stem
from anisotropic couplings, in a mean-field approach. This bilinear anisotropic model
of BCPO serves as a suitable starting point in order to study its effects of SQPD in the
following chapters.

Parts of this chapter have been published in Physical Review B as a regular article [89].
The manuscript and the interpreation of the data contain contributions from Götz S.
Uhrig and myself. Furthermore, I received data using calculations from Holger Krull
and Nils A. Drescher for the isotropic model and created all figures.
In addition, parts of this chapter have been published in Physical Review Research as a
regular article [71]. This manuscript and the interpretation contain contributions from
Maik Malki, Götz S. Uhrig and myself. I contributed the CUT results, parts of the
symmetry analysis and the calculation of the generalized ket states |k, n〉〉. Maik Malki
implemented the topological calculations.

4.1 Isotropic analysis of BCPO
To provide a comprehensive description for the split one-particle dispersions of BCPO
it is essential to consider anisotropic couplings, see sect. 1.4. Since these are expected
to be small compared to the isotropic couplings, it is reasonable to discuss the magnetic
structure of BCPO neglecting anisotropies in the first place by using a deepCUT, see
sect. 2.1. The aim of this analysis is to determine the values of the isotropic couplings
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J1, J2 and J ′, see figure 1.3. Thereby, we gain an effective isotropic model of BCPO to
which we add anisotropic couplings at a later stage.

4.1.1 Results for the isotropic spin ladder
To study the spectrum of a single frustrated spin ladder it is necessary to set up its
Hamiltonian

Hladder = J0H0 + J1H1 + J2H2, (4.1.1a)

H0 =
∑

i

SL
i S

R
i , (4.1.1b)

H1 =
∑

i,τ

Sτi S
τ
i+1, (4.1.1c)

H2 =
∑

i,τ

Sτi S
τ
i+2, (4.1.1d)

in the first place. The variable i denotes the rung index and τ assumes the values L for
the left leg of the spin ladder and R for the right leg. We determine the rung coupling
J0 to be the global energy scale and therefore define the ratios x = J1/J0 and y = J2/J1.
The parameter x states the expansion around the limit of decoupled dimers. This means
that for x → 0 at constant y no interaction between the dimers exists. Therefore, the
parameter x is chosen as the expansion parameter in the deepCUT calculations and
determines the truncation scheme. With the parameter y the relative strength of the
NN and NNN coupling along the legs of the spin ladder can be tuned. The deepCUT
provides the effective Hamiltonian

Heff
ladder =

∑

k,α

ω0 (k) tα,†k tαk , (4.1.2)

which describes the dispersive triplons1. The operator tα,†k (tαk ) creates (annihilates) a
triplon [72, 136] holding momentum k and flavor α ∈ {x, y, z}. Since only isotropic
couplings are analyzed up to this point the dispersion ω0 (k) is the same for all flavors.
As pointed out in sect. 2.1 observables have to be transformed into the same basis as
the Hamiltonian.

4.1.2 Results for coupled isotropic spin ladders
Since the structure of BCPO contains multiple frustrated spin ladders coupled by an
interladder coupling J ′, it is necessary to include this effect as well. In order to do so,

1The deepCUT also determines the ground-state energy E0. As we are interested in the dynamics of
the triplons, we neglect the value of the ground-state energy.
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we transform a single spin operator

Sα,Li,eff =
n∑

δ=−n

aδ

(
tα,†i+δ + tαi+δ

)
+ ... (4.1.3)

into the same basis as the effective Hamiltonian Heff
ladder. The dots stand for terms con-

taining normal-ordered bilinear or a larger number of triplon operators. These terms are
neglected similar to previous applications, which showed matching results to correspond-
ing experiments [100]. The index δ assumes values from −n to n in integer steps. The
effective spin operator, see eq. (4.1.3), is not local anymore but a superposition of triplon
operators from rung i−δ to i+δ. The coefficients aδ represent the probability amplitude
of the triplon operator on rung i+ δ. Vividly spoken this means that the triplon, which
is completely local in the limit of decoupled dimers, becomes smeared out when the NN
interaction J1 and the NNN interaction J2 assume finite values. Considering only linear
contributions to the effective spin operator, see eq. (4.1.3), the relation

Sα,Li,eff = −Sα,Ri,eff (4.1.4)

holds. This follows from the fact that triplon excitations have odd parity relative to the
ground-state with respect to a reflection on the center line of a spin ladder [101,136].
From now on the triplons are treated as free bosons in a mean-field approach. This ap-
proach constitues an approximation of course, but it is reasonable, since the interladder
coupling J ′ is small compared to the rung coupling, i.e. |J ′/J0| � 1 holds2. A Fourier
transform of the effective spin operator yields

Sα,Leff (k) = a (k)
(
tα,†k + tα−k

)
(4.1.5)

with
a (k) =

∑

δ

aδe
ikδ =

∑

δ

aδ cos (kδ) . (4.1.6)

The absolute value squared of a (k) describes the weight of the dominant single-particle
mode in the dynamic structure factor at zero temperature with respect to the assump-
tions made. In the single-mode approximation [137] this weight equals the momentum-
resolved static structure factor. Note, that the prefactors aδ satisfy the relation aδ = a−δ

due to the mirror symmetry about a rung, see figure 1.3.

2Note, that the hard-core properties of the triplons within a single spin ladder are taken into account
exactly by the deepCUT, see sect. 4.1.1.
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To include the interladder coupling J ′ the Hamiltonian

H′ = J ′
∑

i,j

SR
i,jS

L
i,j+1 (4.1.7)

coupling two adjacent spin ladders, which are indicated by the index j, has to be taken
into account. Mapping the spin operators onto the effective spin operators, see eq.
(4.1.3), and performing a Fourier transform leads to the effective Hamiltonian

H′,eff = −J ′
∑

k,l,α

dk,l

(
tα,†k,l + tα−k,−l

)(
tαk,l + tα,†−k,−l

)
(4.1.8)

in momentum space with the expression

dk,l = cos (l) a2 (k) . (4.1.9)

The variable l represents the wave vector perpendicular to the spin ladder in z-direction,
see figure 1.3, in reciprocal lattice units (r.l.u.). Adding the Hamiltonians Heff

ladder for
all ladders, see eq. (4.1.2), and the interladder part H′,eff , see eq. (4.1.8), leads to
the complete isotropic Hamiltonian. We can solve this easily with a Bogoliubov
transformation, see eqs. (3.1.8), and receive the two-dimensional dispersion

ω (k, l) = ω (k) =

√
(ω0 (k))2 − 4J ′dk,lω0 (k) (4.1.10)

of the complete isotropic system3.
To gain a comprehensive description of the spectrum of BCPO it is crucial to consider
anisotropic couplings, which lift the spin isotropy, since the experimental data demon-
strate different modes. Thus, the already discussed isotropic model is not sufficient to
describe BCPO. But with the help of the two-dimensional isotropic model, we determine
the best matching values concerning the coupling ratios x = J1/J0 and y = J2/J1 for
the measured data. For this purpose we focus on two essential features of the measured
dispersions.
As the first criterion, we choose the momentum at which the gap ∆ occurs. This mo-
mentum value is referred to as k∗∆. As a second criterion, we use the ratio between the
lower maximum ω (π) and the gap ∆. Therefore, we use the first published results of the
dispersion [39, 70], see figure 4.1. Since there are three occuring modes in the data, we
have to choose one mode to determine the value of k∗∆. For this we use the data of mode

3The measured data of BCPO were collected for a fixed momentum l = 1 r.l.u. and vary in the
momentum k, which corresponds to the rung index i along a single spin ladder. Therefore, we often
neglect the second momentum l since we fix it to be l = 2π and write ω (k) instead of ω (k, l).
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1 because it is the lowest-lying mode. We read off the value k∗∆ = (0.575± 0.005) (r.l.u.).
Defining the ratio (ω (π) /∆)∗ is challenging as well, since there are different gap values
present. Therefore, we use mode 3 as it is the only mode which was experimentally
observed in the whole Brillouin zone4. Due to the large error bars of the dispersion
around k = π we average these values from kstart = 0.8 (r.l.u.) to kend = 1.2 (r.l.u.) and
get ω (π)∗ = 14meV as a final value. The gap value of mode 3 can be read off and is
∆∗ = 3.8meV. Thus, we end up with (ω (π) /∆)∗ = 3.7 as a reference value. Due to the
already mentioned large error bars we assume a deviation from this value of up to 0.5

to be acceptable.
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Figure 4.1: Experimental data, measured by inelastic neutron scattering [39, 70]. The deter-
mined value k∗∆ = 0.575 (r.l.u.) stands for the position of the gap of mode 1. The
average value of mode 3 at k = π is given by ω (π)∗ = 14meV and the corresponding
gap value is ∆∗ = 3.8meV.

In figure 4.2 the curves defined by k∆ = k∗∆ and ω (π) /∆ = (ω (π) /∆)∗ for different
ratios of x and y are presented. Here we fix the relative value of the interladder coupling
to be J ′/J0 = 0.16 as it has been done in previous studies [39, 70]. Figure 4.2 shows
an overlap of the two criteria at x ≈ 1.2 and y ≈ 0.9. Within the tolerated error range
even larger values than 1.2 for x show an overlap of both criteria. Isotropic disper-
sions with values of x = 1.3 to 1.7 and y = 0.9 were also analyzed but did not lead to
an improvement. A variation of the parameter y does not help fitting the theoretical

4At a later stage of this thesis this association becomes even more reasonable since the anisotropic
couplings are responsible for lowering the dispersion, especially in the low-energy regime.
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calculations to the experimental data either. Thus, with the analysis of the magnetic
structure of BCPO concerning only isotropic couplings we receive the best matching
parameter values to be x = 1.2, y = 0.9 and J ′/J0 = 0.16.

1.1 1.2 1.3 1.4 1.5 1.6 1.7
x

0.70
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0.95

1.00

1.05

1.10

y

J ′/J0 = 0.16

k∗∆ = (0.575± 0.005) (r.l.u.)

(ω (π) /∆)∗ = (3.7± 0.5)

Figure 4.2: Correspondence of the chosen criteria with two-dimensional isotropic dispersions,
see eq. (4.1.10), for different values of x and y. The interladder coupling J ′/J0 =
0.16 is fixed. The red solid line shows k∆ = k∗∆ = 0.575 (r.l.u.) and the correspond-
ing dashed lines represent the deviations by ±0.005, i.e. k∆ = (0.575±0.005) (r.l.u.).
The blue solid line depicts the ratio ω (π) /∆ = (ω (π) /∆)∗ = 3.7 and the corre-
sponding dashed line indicate the accepted deviations by ±0.5, i.e. ω (π) /∆ =
(3.7± 0.5). Both criteria are fulfilled for x ≈ 1.2 and y ≈ 0.9, marked by a circle.

4.2 Anisotropic analysis of BCPO
Starting from the isotropic model, which has been discussed in the previous section,
anisotropic couplings need to be included in order to provide a reasonable model for
BCPO. Its crystal structure, see figure 1.3, demonstrates that the inversion symmetry
about the center of each Cu-Cu bond is broken due to the positions of the Bismuth ions.
Therefore, it is necessary to consider anisotropic couplings, i.e. the Hamiltonian

H = Hladder +
∑

i,j

Dij (Si × Sj) +
∑

i,j

∑

α,β

Γαβij S
α
i S

β
j , (4.2.11)

which consists of the isotropic spin ladder Hladder, see eqs. (4.1.1), the DM interaction
Dij (Si × Sj) and the symmetric anisotropic exchange Γαβij S

α
i S

β
j , see sect. 2.4. The sums

with the indices i and j count each pair of spins once. The couplings concerning the
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rungs of the spin ladder are denoted with the index 0, i.e. J0, D0 and Γαβ0 . The couplings
related to the NN interactions are marked with the index 1, thus J1, D1 and Γαβ1 . The
components considering the NNN interactions carry the index 2, thus J2, D2 and Γαβ2 ,
see also figure 1.3. The components of the D vectors are real and constant coefficients.

4.2.1 Symmetry analysis of BCPO
To decide whether a component Dα

ij has to vanish or not, one has to apply the rules of
Moriya [74] to the crystal structure of BCPO, see figures 1.3 and 4.3.

Figure 4.3: Schematic representation of the spin ladder structure of BCPO. The blue spheres
represent the copper ions CuA and CuB, see figure 1.3, which act like a spin S=1/2.
The different bonds are marked with the corresponding D vectors. The unit cell of
the spin ladder contains an upper and a lower rung.

Besides the rules of Moriya it is possible to obtain more information about the D vec-
tors concerning the signs of the components along the ladder direction by considering
translations and glide reflections.
Each bond holds one D vector, see figure 4.3. For the NN and NNN bonds the spin
operators in the outer product Dij (Si × Sj) are arranged according to ascending y co-
ordinate. For the rung coupling the spin operators are ordered according to ascending z
coordinate. Neglecting the difference between the copper sites CuA and CuB, see figure
1.3, i.e. treating all sites as equal, the crystal structure of BCPO fulfills the following
symmetries:

(1) RSy: Rotation by π about ~y located in the middle of the ladder tube and a shift
by half a unit cell.

(2) Rx: Rotation by π about ~x located in the middle of a rung.

(3) Sxy: Reflection at the xy plane located in the middle of the ladder.
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(4) Sxz: Reflection at the xz plane located on a rung.

(5) SSyz: Reflection at the yz plane located in the middle of the ladder and a shift by
half a unit cell.

By applying these five symmetries to each bond, see figure 4.3, one obtains relations
between the different bonds and so relations between the components of the D vectors.
For an exemplary demonstration of this symmetry analysis we refer to the literature
[71,89] and Appendix D. At this point we present only the results, see table 4.1.

Dα
ij along the legs parity

Dy
0 alternating odd

Dx
1 uniform odd

Dy
1 alternating odd

Dx
2 uniform odd

Dz
2 alternating even

Table 4.1: Behavior of the sign along the legs of the spin ladder and the parity with respect to
the symmetry SSxy of the D vectors. Components not listed vanish due to symmetry
arguments. The parity of Dy

0 does not refer to the component itself, but to the
corresponding term in the Hamiltonian.

As Shekhtman et al. [126] pointed out, it is crucial to consider also the symmetric
anisotropic interactions Γαβij , see sect. 2.4.2, although they are of second order in the
SOC compared to the antisymmetric anisotropic interactions Dij, see sect. 2.4.1. Since
the components of the symmetric tensor Γij are determined by the corresponding Dij

vector and Heisenberg coupling Jij, see eq. (2.4.84), we can translate the properties of
the Dij vectors, see table 4.1, to the properties of each matrix element Γαβij . The results
are listed in table 4.2.



4.2 Anisotropic analysis of BCPO 77

Γαβij along the legs parity
Γxx0 uniform even
Γyy0 uniform even
Γzz0 uniform even
Γxx1 uniform even
Γxy1 alternating even
Γyy1 uniform even
Γzz1 uniform even
Γxx2 uniform even
Γxz2 alternating odd
Γyy2 uniform even
Γzz2 uniform even

Table 4.2: Behavior of the sign along the legs of the spin ladder and the parity with respect to
the symmetry SSxy of the components Γαβij . Components not listed vanish according
to eq. (2.4.84) or they are given by their equivalent expression Γβαij .

4.2.2 Derivation and solution of the bilinear anisotropic
Hamiltonian of BCPO

In this section we present the derivation of the bilinear anisotropic Hamiltonian of
BCPO, which includes all existing DM interactions, and its solution.
The following analysis takes the results for coupled isotropic spin ladders, see sect.
4.1.2, as a starting point, i.e. the values x = 1.2, y = 0.9 and J ′/J0 = 0.16 are set and
will not be varied. Their calculation is performed by a deepCUT using the 1n generator
up to order 13 in x, see Appendix E for the numerical results.
At this point we focus on bilinear terms stemming from the anisotropic couplings
because only they influence the one-particle dispersion on the mean-field level. There-
fore, we treate the DM interactions by a mean-field approach like we did before with
the interladder coupling J ′, see sect. 4.1.2. This approximation is justified with the
expected smallness of the DM interactions compared to the corresponding isotropic
Heisenberg couplings.

To derive a Hamiltonian for BCPO containing anisotropic interactions on bilinear oper-
ator level, we perform the following steps:

1st Write down the anisotropic interaction terms in the basis of the spin operators
S
α,L/R
i .

2nd Map the spin operators Sα,L/Ri onto the effective spin operators Sα,L/Ri,eff , see eqs.
(4.1.3) and (4.1.4), using the results of the deepCUT.
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3rd We treate the triplon operators as standard bosonic operators in a mean-field
approach and apply a Fourier transform, see eqs. (3.1.2). At this point we
neglect the hard-core constraint of the triplon operators. This approximation is
motivated by the assumption that the main influence of the hard-core constraint
is reflected in the dynamics of the single frustrated isotropic spin ladder. Since its
solution is calculated by a deepCUT, which respects the hard-core constraint, the
main influence of the hard-core constraint is encoded in the coefficients aδ for the
effective spin operators Sα,L/Ri,eff , see eq. (4.1.3).

As a result, we receive the effective anisotropic interaction terms which contribute to the
Hamiltonian in momentum space k. Of course, we have to perform these steps for all
existing components Dα

ij and Γαβij , see tables 4.1 and 4.2, separately. To illustrate this
procedure in detail we choose the component Dz

2. It is the only D component with even
parity, see table 4.1, which implies that no other D component can give a contribution
to the Hamiltonian on bilinear operator level since a single triplon operator is odd by
construction5.
First, we write down the corresponding anisotropic interaction term which reads

HD
NNN,z =

∑

i

∑

τ∈{L,R}

Dz,τ
2,i

(
Sτi × Sτi+2

)
z
. (4.2.12)

The index i stands for the rungs and the index τ describes the left (L) and right (R)
leg of the spin ladder. The component Dz

2 has even parity and an alternating sign,
see table 4.1, which means that Dz,L

2,i = Dz,R
2,i = (−1)iDz

2 holds. Replacing the spin
operators Sα,L/Ri with the effective spin operators Sα,L/Ri,eff , see eq. (4.1.3), yields the
effective anisotropic interaction

HD,eff
NNN,z = 2Dz

2

∑

i

(−1)i Sx,Li,eff

(
Sy,Li+2,eff − Sy,Li−2,eff

)
. (4.2.13)

The last step is to express the effective spin operators in eq. (4.2.13) in terms of triplon
operators, see eq. (4.1.3), treat them as free bosons and perform a Fourier transform,
which results in

HD,eff
NNN,z = 4Dz

2i
∑

k

a (k) a (k + π) sin (2k)
(
tx,†k

(
ty,†−k−π + tyk+π

)
− h.c.

)
. (4.2.14)

We see that the component Dz
2 is responsible for a coupling between the x mode at

momentum k and the y mode at momentum k + π. As a consequence, it is already
5This means that D components with odd parity can only generate operator terms which consist of an
odd number of single triplon operators, for example linear or trilinear contributions. In the course
of this thesis, we pick up on this point when we include processes of SQPD in BCPO.
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assured that the dispersions of the different modes will be split since the effective
anisotropic Hamiltonian does not treat all spin flavors equally as expected.

For the next step we have to calculate the dispersions of the effective anisotropic Hamil-
tonian containing the influence of all Dij components and Γij entries with even parity
since only they can give a contribution within our approach. As the effective anisotropic
Hamiltonian consists of triplon operator terms of the types

tα,†k,l t
α
k,l, tα,†k,l t

α,†
−k,−l, t

α
k,lt

α
−k,−l, tx,†k,l t

y,†
−k−π,−l, t

x
k,lt

y
−k−π,−l, tx,†k,l t

y
k+π,l, t

y,†
k+π,lt

x
k,l (4.2.15)

with flavors α ∈ {x, y, z}, we can apply the general ansatz, presented in sect. 2.2.1, to
diagonalize it.
Considering the z mode it turns out that it does not couple to the x and y mode. Only
the symmetric anisotropic interactions Γzz0 , Γzz1 and Γzz2 have an effect on the z mode,
see table 4.2 and eq. (4.2.11). Therefore, the effective anisotropic Hamiltonian for the z
mode is given by

Heff
BCPO,z =

∑

k,l

εz (k, l) tz,†k,l t
z
k,l + µz (k, l)

(
tz,†k,l t

z,†
−k,−l + tzk,lt

z
−k,−l

)
(4.2.16)

with the definitions

εz (k, l) = ω0 (k)− 2J ′ cos (l) a2 (k)− 2Γzz0 a
2 (k) + 4Γzz1 a

2 (k) cos (k) + 4Γzz2 a
2 (k) cos (2k)

(4.2.17a)

µz (k, l) = −J ′ cos (l) a2 (k)− Γzz0 a
2 (k) + 2Γzz1 a

2 (k) cos (k) + 2Γzz2 a
2 (k) cos (2k) .

(4.2.17b)

Comparing the Hamiltonian Heff
BCPO,z with the Hamiltonian HBogo, see eq. (2.2.44) in

sect. 2.2.2, leads to the conclusion that Heff
BCPO,z can be solved with a bosonic Bogoli-

ubov transformation. Following the results from sect. 2.2.2 it becomes clear that the
mapping on bosonic operators t̃z,†k,l/t̃

z
k,l via the transformation

tz,†k,l = cosh
(
ϑzk,l
)
t̃z,†k,l + sinh

(
ϑzk,l
)
t̃z−k,−l (4.2.18a)

tz−k,−l = cosh
(
ϑzk,l
)
t̃z−k,−l + sinh

(
ϑzk,l
)
t̃z,†k,l (4.2.18b)

with the parameter ϑz−k,−l = ϑzk,l fulfilling the condition

tanh
(
2ϑzk,l

)
= −2µz (k, l)

εz (k, l)
(4.2.19)
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diagonalizes the Hamiltonian Heff
BCPO,z. The solved Hamiltonian

H̃eff
BCPO,z =

∑

k,l

ω̃z (k, l) t̃z,†k,l t̃
z
k,l (4.2.20)

describes non-interacting bosonic quasiparticles with the one-particle dispersion6

ω̃z (k, l) = ω̃z (k) =

√
(εz (k, l))2 − 4 (µz (k, l))2. (4.2.21)

The remaining part of the effective anisotropic Hamiltonian is more complicated to
solve because it contains operator terms, which affect the x and y mode separately and
couples the x and y mode at different momenta k and k+ π, see eq. (4.2.15). This type
of Hamiltonian, i.e. the effective anisotropic Hamiltonian including only the operator
terms of the x and y mode, can be solved by the general ansatz, explained in sect. 2.2.1,
as the issue is a quadratic bosonic Hamiltonian.
Therefore, it is necessary to rewrite the remaining effective anisotropic Hamiltonian in
a generalized Nambu notation7, see eq. (2.2.12),

Heff
BCPO,xy =

1

2

∑

k,l

α†k,lMk,lαk,l, (4.2.22)

whereas the column vector αk,l contains the bosonic triplon operators

αk,l =
(
tx,†k,l , t

y,†
k+π,l, t

x
−k,−l, t

y
−k−π,−l

)T

. (4.2.23)

Note, that the sum in eq. (4.2.22) runs over all values of l ∈ [0, 2π) (lattice constant set
to unity) in the Brillouin zone while it runs only over the values k ∈ [0, π), i.e. over
half the Brillouin zone. The reason is that the above column vector in eq. (4.2.23)
addresses the momenta k and k + π simultaneously. Note also, that this ansatz is not
completely equivalent to the ansatz explained in sect. 2.2.1 because we exploit the fact
that the analyzed Hamiltonian conserves momentum up to a factor of π. Therefore, the

6As mentioned before in sect. 4.1.2, the measured data of BCPO were obtained for a fixed momentum
l = 1 r.l.u. and vary in the momentum k. Therefore, we neglect the second momentum l and write
ω̃z (k) instead of ω̃z (k, l).

7As we are only interested in the dynamics of the triplons, we neglect unimportant constants.
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matrixMk,l is a Hermitian 4× 4 matrix

Mk,l =




ω0 (k) + A (k, l) iB (k) A (k, l) iB (k)

−iB (k) ω0 (k + π) + C (k, l) −iB (k) C (k, l)

A (k, l) iB (k) ω0 (k) + A (k, l) iB (k)

−iB (k) C (k, l) −iB (k) ω0 (k + π) + C (k, l)




(4.2.24)
with the shorthand notations

A (k, l) = d1 (k, l) + Γxx0 (k) + Γxx1 (k) + Γxx2 (k) (4.2.25a)

B (k) = Γxy1 (k)−Dz
2 (k) (4.2.25b)

C (k, l) = d2 (k, l) + Γyy0 (k) + Γyy1 (k) + Γyy2 (k) . (4.2.25c)

The abbreviations in eqs. (4.2.25) stand for

d1 (k, l) = −2J ′ cos (l) a2 (k) (4.2.26a)

d2 (k, l) = −2J ′ cos (l) a2 (k + π) (4.2.26b)

Γxx0 (k) = −2Γxx0 a
2 (k) (4.2.26c)

Γxx1 (k) = 4Γxx1 a
2 (k) cos (k) (4.2.26d)

Γxx2 (k) = 4Γxx2 a
2 (k) cos (2k) (4.2.26e)

Γyy0 (k) = −2Γyy0 a
2 (k + π) (4.2.26f)

Γyy1 (k) = −4Γyy1 a
2 (k + π) cos (k) (4.2.26g)

Γyy2 (k) = 4Γyy2 a
2 (k + π) cos (2k) (4.2.26h)

Γxy1 (k) = 4Γxy1 a (k) a (k + π) sin (k) (4.2.26i)

Dz
2 (k) = 4Dz

2a (k) a (k + π) sin (2k) . (4.2.26j)

As described in sect. 2.2.1 solving the effective anisotropic Hamiltonian Heff
BCPO,xy is

equivalent to mapping the bosonic triplon operators, included in the vector αk,l, onto
new bosonic quasiparticle operators which we denote with the flavors b and u. This
mapping can be expressed by the relation

βk,l = Kk,lαk,l, (4.2.27)

see also eq. (2.2.14), with the column vector

βk,l =
(
t̃b,†k,l, t̃

u,†
k,l , t̃

b
−k,−l, t̃

u
−k,−l

)T

(4.2.28)
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containing the new bosonic quasiparticle operators with the flavors b and u. The matrix
Kk,l characterizes the connection between the different bosonic operators for each mo-
mentum pair (k, l), i.e. it states the corresponding canonical transformation. Following
the steps described in sect. 2.2.1 we choose the matrix Kk,l to diagonalize the matrix

ηMk,l =




ω0 (k) + A (k, l) iB (k) A (k, l) iB (k)

−iB (k) ω0 (k + π) + C (k, l) −iB (k) C (k, l)

−A (k, l) −iB (k) −ω0 (k)− A (k, l) −iB (k)

iB (k) −C (k, l) iB (k) −ω0 (k + π)− C (k, l)




(4.2.29)
in order to solve the Hamiltonian Heff

BCPO,xy. Note that the matrix ηMk,l fulfills the
relation ηMk,l =MT

all, see Ref. [89]. The matrixMall describes the same issue and was
derived with a different ansatz. For further details we refer to Ref. [89]. Since transposing
an n×n matrix does not change its eigenvalues, we can take over the analytic expression
for the eigenvalues of ηMk,l, which yields

ω̃b,u (k, l) = ω̃b,u (k) = ±
√

1

2
Ω2

1 (k, l)± 1

2

√
Ω2

2 (k, l) + 16ω0 (k)ω0 (k + π)B2 (k)

(4.2.30)
with8

Ω1 (k, l) = (ω0 (k))2 + 2ω0 (k)A (k, l) + (ω0 (k + π))2 + 2ω0 (k + π)C (k, l) (4.2.31a)

Ω2 (k, l) = (ω0 (k))2 + 2ω0 (k)A (k, l)− (ω0 (k + π))2 − 2ω0 (k + π)C (k, l) . (4.2.31b)

As a consequence, the solution of the effective anisotropic Hamiltonian Heff
BCPO,xy is given

by
H̃eff

BCPO,bu =
∑

k

(
ω̃b (k) t̃b,†k t̃

b
k + ω̃u (k) t̃u,†k t̃uk

)
(4.2.32)

with the dispersion ω̃b (k) corresponding to the positive lower value of eq. (4.2.30),
and the dispersion ω̃u (k) belonging to the positive upper value of eq. (4.2.30). The
solved Hamiltonian H̃eff

BCPO,bu is diagonal in momentum space k and consists of two new
bosonic quasiparticles with the flavors b and u.
Note, that the dispersions ω̃b (k) and ω̃u (k) contain contributions of the original x
mode at momentum k and of the original y mode at momentum k + π, see the entries
of the column vector αk,l in eq. (4.2.23). As the x mode at momentum k and the y
mode at momentum k + π couple, no clear mapping of the original x and y modes onto
the new bosonic quasiparticles with flavors b and u can be made. Since the sum in eq.

8Note, that within our applied ansatz in order to solve the Hamiltonian Heff
BCPO,xy its eigenvalues occur

in pairs (±ω̃b (k) ,±ω̃u (k)), see eq. (4.2.30) and sect. 2.2.1.
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(4.2.32) runs over the values k ∈ [0, π), and to ensure that no mode is counted twice,
we associate the dispersions ω̃b (k) and ω̃u (k) within the intervall k ∈ [0, π) with the
original x mode at momentum k. As a consequence, the original y mode at momentum
k corresponds to the shifted dispersions ω̃b (k + π) and ω̃u (k + π) within the same
intervall k ∈ [0, π). Since the experimental data address all modes simultaneously, we
depict our solutions for ω̃b (k) and ω̃b (k + π) in results9.

Since the aim of this thesis is to analyze the effects of SQPD in BCPO we need to address
the full diagonalizing transformation of the matrix ηMk,l, i.e. we have to calculate
the eigenvalues and the corresponding eigenvectors. As explained in sect. 2.2.1, the
inverse matrix K−1

k,l for each momentum pair (k, l) consists of the eigenvectors of the
non-Hermitian matrix ηMk,l. We decide to assign the positive lower eigenvalue of eq.
(4.2.30) to the bmode and the other positive eigenvalue to the umode. As a consequence,
the first column vector of the inverse matrix K−1

k,l yields the eigenvector belonging to the
positive lower eigenvalue ω̃b (k), which we denote with K(0) (k, l). Therefore, the second
column of the inverse matrix K−1

k,l is given by the eigenvector K(1) (k, l) which belongs
to the eigenvalue ω̃u (k).
Following the results derived in sect. 2.2.1 and due to the fact that the eigenvalues fulfill
the relation

ω̃b,u (−k,−l) = ω̃b,u (k, l) (4.2.33)

we can determine the components of the eigenvectors K(2) (k, l) and K(3) (k, l), which
belong to the negative eigenvalues −ω̃b (k, l) and −ω̃u (k, l), without calculating them
explicitly. With the explicit representation of the eigenvectors

K(0) (k, l) =
(
K−1

00 (k, l) , K−1
10 (k, l) , K−1

20 (k, l) , K−1
30 (k, l)

)T (4.2.34a)

K(1) (k, l) =
(
K−1

01 (k, l) , K−1
11 (k, l) , K−1

21 (k, l) , K−1
31 (k, l)

)T (4.2.34b)

the components of the eigenvectors K2 (k, l) and K3 (k, l) read

K(2) (k, l) =
(
K−1

20 (k, l) , K−1
30 (k, l) , K−1

00 (k, l) , K−1
10 (k, l)

)T (4.2.35a)

K(3) (k, l) =
(
K−1

21 (k, l) , K−1
31 (k, l) , K−1

01 (k, l) , K−1
11 (k, l)

)T
, (4.2.35b)

see also eq. (2.2.28). As a result, only the explicit calculation of the eigenvectors
K(0) (k, l) and K(1) (k, l), which belong to the positive eigenvalues ω̃b,u (k), is necessary.

9During our analysis it turned out that we can only describe the low-energy regime of BCPO using
our present model, which means that the anisotropic effects on the dispersion ω̃u (k) are not relevant
at this point, see also sect. 4.2.3.



84
Description of the quantum antiferromagnet BiCu2PO6 on bilinear operator

level

Another issue one has to take into account when computing the eigenvectors K(0) (k, l)

and K(1) (k, l) is their normalization. Numerical tools provide eigenvectors which have
an Euclidean norm equal to one. As outlined in sect. 2.2.1 the eigenvectors of the
non-Hermitian matrix ηMk,l have to obey the “symplectic” norm for each momentum
pair (k, l) reading (

K(i) (k, l)
)†
ηK(j) (k, l) = δi,j (4.2.36)

with the indices i, j ∈ {0, 1} so that the new quasiparticle modes b and u fulfill bosonic
algebra. This means that it is crucial to rescale the eigenvectors K(0) (k, l) and K(1) (k, l)

after determining them by an appropriate programming routine10.
The second important point is the phase of the eigenvectors of ηMk,l which can be
chosen arbitrarily up to this point. Therefore, it is necessary to set up an additional
criterion which solves this issue. For k-values which are multiples of π the effective
anisotropic Hamiltonian Heff

BCPO,xy, see eq. (4.2.22) does not couple the x and y mode.
For this specific k-values the x and y have to be treated separately like it is the case
for the z mode using a bosonic Bogoliubov transformation. As a consequence, the
components of the eigenvectors simply read

K(0) (k, l) =
(
cosh

(
ϑxk,l
)
, 0, sinh

(
ϑxk,l
)
, 0
)T (4.2.37a)

K(1) (k, l) =
(
0, cosh

(
ϑyk+π,l

)
, 0, sinh

(
ϑyk+π,l

))T (4.2.37b)

in order to provide the solutions of separate bosonic Bogoliubov transformations for
the x and y mode. By analogy with the isolated z mode the parameters ϑxk,l and ϑ

y
k+π,l

have to fulfill the conditions

tanh
(
2ϑxk,l

)
= −2µx (k, l)

εx (k, l)
(4.2.38a)

tanh
(
2ϑyk+π,l

)
= −2µy (k + π, l)

εy (k + π, l)
(4.2.38b)

10In this thesis we use the programming routines of Eigen in C++.
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using the abbreviations

εx (k, l)

2
=
ω0 (k)

2
− J ′ cos (l) a2 (k)− Γxx0 a

2 (k) + 2Γxx1 a
2 (k) cos (k) + 2Γxx2 a

2 (k) cos (2k)

(4.2.39a)

µx (k, l)

2
= −J

′ cos (l) a2 (k)

2
− Γxx0 a

2 (k)

2
+ Γxx1 a

2 (k) cos (k) + Γxx2 a
2 (k) cos (2k)

(4.2.39b)

εy (k, l)

2
=
ω0 (k)

2
− J ′ cos (l) a2 (k)− Γyy0 a

2 (k) + 2Γyy1 a
2 (k) cos (k) + 2Γyy2 a

2 (k) cos (2k)

(4.2.39c)

µy (k, l)

2
= −J

′ cos (l) a2 (k)

2
− Γyy0 a

2 (k)

2
+ Γyy1 a

2 (k) cos (k) + Γyy2 a
2 (k) cos (2k) .

(4.2.39d)

As a reminder, we want to introduce a criterion to fix the phase of the eigenvectors
of ηMk,l. In order to reproduce the special cases for the decoupled x and y mode, as
already discussed, we choose the phase in such a way that the entry with the largest
modulus is a positive real number. To explain this idea in detail we consider the general
numerical solution of the eigenvector

K(0) (k, l) =
(
K−1

00 (k, l) , 0, K−1
20 (k, l) , 0

)T (4.2.40)

in the case of the decoupled x and y mode with the possible complex entries

K−1
00 (k, l) = a00 (k, l) + ib00 (k, l) (4.2.41a)

K−1
20 (k, l) = a20 (k, l) + ib20 (k, l) (4.2.41b)

using the real coefficients a00 (k, l), b00 (k, l), a20 (k, l) and b20 (k, l). Out of these four
real coefficients we have to identify the one whose absolute value is the largest. Then
the phase of the eigenvector is chosen such that the eigenvector entry with this outlined
coefficient is real and positive.
For our example this means that if we found the coefficient b00 (k, l) < 0 to have the
largest absolute value, we have to multiply the whole eigenvector K(0) (k, l) with the
imaginary unit i. The complex entries then read

K−1
00 (k, l) = −b00 (k, l) + ia00 (k, l) (4.2.42a)

K−1
20 (k, l) = −b20 (k, l) + ia20 (k, l) (4.2.42b)

with the realpart −b00 (k, l) being a positive number and having the largest absolute
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value compared to the other coefficients a00 (k, l), a20 (k, l) and b20 (k, l). After that,
we have to ensure that the imaginary part of the component K−1

00 (k, l) vanishes. We

achieve this by multiplying the whole eigenvector with the complex phase e
i
a00(k,l)
b00(k,l) . This

criterion concerning the complex phase of the eigenvectors K(0) (k, l) and K(1) (k, l)

is reasonable since it reproduces the solutions for the case of the decoupled x and y

modes, see eqs. (4.2.37a).

With these two criteria concerning the length and the phase of the eigenvectorsK(0) (k, l)

andK(1) (k, l) it is numerically ensured that the inverse matrixK−1
k,l describes a canonical

transformation between the original x and y modes and the new bosonic quasiparticles
with the flavors b and u.

4.2.3 Results for the bilinear anisotropic Hamiltonian of
BCPO

The main goal of the bilinear anisotropic description of BCPO is to determine the
values of the allowed D components, see table 4.1, which provide the best fit to the
experimentally measured data of the dispersions. We received the experimental data for
the one-particle dispersions, initially published in Ref. [70], by private communication
from the corresponding author. These data have been received by performing inelastic
neutron scattering (INS), which represents a well-established method to study the
properties of magnetic excitations in solid states [32–34].

To create a basis for fitting the experimental dispersion data by adjusting the anisotropic
couplings we study the effects of each component on the calculated dispersion ω̃b (k)11,
see eq. (4.2.30). The results are listed in table 4.3.
We forego a detailed analysis concerning the effects of each D component on the dis-
persion ω̃b (k) as the main issue of this thesis is the influence of SQPD in BCPO. The
effects on bilinear operator level constitute a starting point for this task.
With the knowledge of the effects of each D component we can search for the values
of the D components which provide the best match between our calculated dispersions
and the experimentally received data in a systematic manner. We undertake the results
of the isotropic approach, see sect. 4.1, i.e. the parameters x = 1.2, y = 0.9 and
J ′/J0 = 0.16 are kept fixed. With this starting point we search for appropriate values
of the D components and the energy scale J0. We indicate the D components in units
of the associated isotropic coupling, i.e. D̃α

i = Dα
i /Ji with i ∈ {0, 1, 2} holds.

11We present only the effects of the anisotropic couplings on ω̃b (k) because during our analysis it turned
out that the dispersion ω̃z (k) cannot be fitted in a satisfying way. We address this aspect in the
following. So far, the effects on the dispersion ω̃u (k), see eq. (4.2.30), are not relevant for our
analysis since we want to describe the low-energy regime.
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Dα
ij lin. effect on ω̃b (k)

Dy
0 7 increase in the complete Brillouin zone

Dx
1 7 asymmetric shift about k = π

2

→ lowering at k > π
2

Dy
1 7 asymmetric shift about k = π

2

→ lowering at k < π
2

Dx
2 7 lowering around the minimum

Dz
2 3 linear effect: shift minimum to higher k-values

quadratic effect: increase around the minimum

Table 4.3: Effects of an increase of the various D-components on the dispersion ω̃b (k), see
eq. (4.2.30). If the component induces an effect in linear order it is marked by
3, otherwise we put 7. All components contribute in quadratic order, i.e. via the
symmetric Γ-components.

In the following we discuss several issues concerning our best fit, which is shown in
figure 4.4.

(i) It is possible to achieve a good description in the minimum area of mode 1 and
mode 2 with the calculated dispersions ω̃b (k) and ω̃b (k + π), which stem from the
x and y mode. The fitted values of the components D̃x

1 and D̃y
1 are large stating an

unsatisfying feature. We expected the relative anisotropic couplings to assume values
in the order of 0.1 − 0.2 as they come from the SOC, see sect. 2.4.1. But we have to
choose the components D̃x

1 and D̃y
1 so large in order to obtain a sufficient large value

of Γxy1 , see eq. (2.4.84). This term leads to a lowering of the dispersions ω̃b (k) and
ω̃b (k + π) around the point k = 0.5 r.l.u. and to a flattening of the W-shape of the
dispersions. At k = 0.5 r.l.u. the dispersion without anisotropic couplings, see the black
dashed line in figure 4.4, takes a value of 7.00meV but the experimental data of mode
1 and mode 2 reveal values of 3.20meV and 3.55meV. This means that the anisotropic
couplings have to reduce the dispersion at this point by 3 to 4meV. To obtain this large
energy difference the component Γxy1 , which has the main influence on the dispersion
at k = 0.5 r.l.u., has to assume a large value. Therefore, the components D̃x

1 and D̃y
1

need to be chosen large. We set D̃y
1 to be slightly larger than D̃x

1 to create a small
asymmetric behavior of the dispersions about k = 0.5 r.l.u., which is apparent in the
experimental data. Note that it is possible to swap the course of the two lower modes
stemming from the x and y mode by simply swapping the values of D̃x

1 and D̃y
1 .
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Figure 4.4: (a) Fitted theoretical dispersions ω̃z (k), ω̃b (k) and ω̃b (k + π), which stem from the
z, x and y mode for the fixed parameters x = 1.2, y = 0.9 and J ′/J0 = 0.16. The
fitted parameters are J0, D̃

y
0 , D̃

x
1 , D̃

y
1 , D̃

x
2 and D̃z

2. Their values are listed in the
panel itself. (b) Zoom of panel (a) into the vicinity of the left minimum.

(ii) We choose the value of D̃z
2 to be negative and small, compared to the parameters

D̃x
1 and D̃y

1 . At first, this does not seem intuitive since the component D̃z
2 is the only

one directly affecting the dispersions in linear order due to its even parity, see tables 4.1
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and 4.3. But it turned out that the linear effect of D̃z
2 is rather small and its quadratic

effect via the matrix entries Γxx2 and Γyy2 is not conducive for fitting the dispersion
ω̃b (k) around the minimum, see table 4.3. The negative sign of D̃z

2 can be explained
by analyzing eq. (4.2.30) in detail. Only a negative sign for D̃z

2 can provide a positive
combination of the effects of Γxy1 and D̃z

2, i.e. the asymmetric shift about k = 0.5 r.l.u.
and the shift of the minimum to higher k-values, so that the minimum is approximated
in a satisfying way.

(iii) Figure 4.4 reveals major discrepancies between the shape of the calculated z mode
ω̃z (k) and the measured mode 3. These cannot be eliminated without the loss of
the satisfying description of mode 1 and mode 2 around the minimum. The overall
shape of the calculated dispersion ω̃z (k), see eq. (4.2.21), is similiar to the dispersion
without any anisotropic couplings. However, this appearance is logical since the z

mode is isolated from the x and y mode and solved by an own bosonic Bogoliubov
transformation, see eq. (4.2.16). The finite values of the components Γzz1 and Γzz2 act on
the z mode and increase the dispersion ω̃z (k), see eq. (4.2.21), around the minimum.

(iv) One dominant characteristic of the two lower measured modes 1 and 2 is the
down-bending towards lower energies around k = 0.75 r.l.u. and the complete vanishing
at around k = 1 r.l.u.. Our theoretical results for the two lowest modes do not reproduce
these effects at all. To explain these features of the measured data we have the strong
presumption that at these parts of the Brillouin zone the two-triplon continuum
and the one-triplon states hybridize so that the one-triplon dispersions show level
repulsion [40, 41]. This will result in the prominent shown down-bending of the two
lowest modes. The importance of the discussion of two-triplon continua has already
been pointed out qualitatively by Plumb et al. [39] and Hwang and Kim [64]. In their
approach hybridization effects between the one- and two-particle Hilbert space and
two-triplon interactions were taken into account using a quadratic bond operator theory
in combination with the Green’s function formalism including one-loop self-energy
corrections. The main advantage of this ansatz is that the decay behavior of the
triplons inside the two-triplon continuum can be reproduced, see figure 1.6. However,
one point of criticism is that only a contribution of D1 to the hybridization effects can
be identified and that its level repulsion effects are rather small on the one-loop level.
The down-bending behavior of the two lowest modes in BCPO remains inexplainable.
So far no quantitative theoretical description of this dominant down-bending behavior
exists to our knowledge. We address this issue in the following chapters 5 and 6 of this
thesis when the effects of SQPD in BCPO are taken into account and discussed in detail.
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(v) The maximum value reached by the calculated z mode is ≈19meV, whereas the
measured maximum value is ≈27meV. With our derived formular of the z mode it is
not possible to achieve a better match between experiment and theory without losing
the good fit in the low-energy regime. No parameter in the dispersion ω̃z (k), see eq.
(4.2.21), helps concerning this issue including the isotropic parameters, i.e. x, y and
J ′. The large error bars of the measured data points at high energies stem from peaks
holding a large width in the corresponding DSF, see sect. 2.3.1. This means that these
data points represent resonances, see sect. 3.4.1. As a consequence, it is reasonable
to presume that states of a higher triplon number and the hybridization with the one-
triplon states need to be considered in order to achieve a better fit, especially concerning
these resonances. We address this point in the course of this thesis when we discuss the
hybridization of two-triplon and one-triplon states, see chapters 5 and 6.

4.2.4 Topological properties of BCPO
Besides the main goal of this thesis to fit the experimentally observed dispersions of
BCPO, a project concerning its topological properties was realized and yielded inter-
esting results [71]. In this project the bilinear anisotropic description of BCPO is used
in order to calculate different topological quantities such as the Zak phase [138], which
is a qualified topological invariant for one-dimensional systems, or the Berry curva-
ture [138,139]. The two key points of this work are the following statements:

1st The triplon excitations in BCPO hold a non-trivial Zak phase.

2nd Despite the existing non-trivial Zak phase in BCPO, no localized edge modes
could be found.

On the first point, we found out that the mode stemming from the z mode with the one-
particle dispersion ω̃z (k), see eq. (4.2.21), is topologically trivial, i.e. it has a vanishing
Zak phase in k- and l-direction. In comparison, the modes described by the dispersions
ω̃b (k) and ω̃b (k + π), see eq. (4.2.30), which originate from the x and y mode, hold a
non-trivial Zak phase of π in k-direction corresponding to the direction along the spin
ladder, see figure 1.3. In perpendicular direction, i.e. in l-direction, their Zak phase
is also trivial, i.e. equal to zero. The required difference D̃x

1 6= D̃y
1 in order to fit the

experimental data, see sect. 4.2.3, is the fundamental reason for this non-trivial Zak
phase in k-direction. In the case D̃x

1 = D̃y
1 the Zak phase vanishes or cannot be defined.

With regard to the second key point, it has emerged that the bulk-boundary correspon-
dence has to be refined in its general statement [140–142]. The bulk-boundary corre-
spondence presents a theorem which makes a statement about topological non-trivial
invariants implying the existence of in-gap states which are often localized [143–146].
During our analysis it turned out that the bulk-boundary correspondence has to be
specified in its statement by respecting the distinction between a direct and an indirect
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gap. We found out that the localization of edge modes requires the existence of an
indirect gap, i.e. a finite energy difference independent of momentum. In contrast, the
existence of a non-trivial topology in particular modes only requires the modes to be
separated, i.e. the existence of a direct gap at each momentum is sufficient.
Thus, this project has the final result that BCPO is a gapful, disordered quantum an-
tiferromagnet with a non-trivial finite Zak phase and provides a deeper understanding
of the bulk-boundary correspondence.

4.3 Chapter summary
The aim of this analysis was to describe its experimentally measured dispersion data by
including anisotropic couplings up to bilinear operator level in a mean-field approach.
A comprehensive symmetry analysis of the spin ladder structure of BCPO revealed that
only one out of five allowed DM interactions has an effect on the Hamiltonian in linear
order. The other components contribute in second order. We expected these anisotropic
couplings to accept values between 10% and 20 % of the isotropic couplings. With our
present model we could not meet these expectations. We needed to choose large values of
D1 ≈ 0.6J1 in order to achieve an agreement between experiment and theory in the low-
energy regime. Additionally, we could not describe the broad resonances at high energies
at ≈ 25meV. The prominent down-bending behavior is another striking property of the
experimental data, which we could not reproduce with our theoretical model until now.
However, we have the strong presumption that the hybridization between one-particle
states and states of a higher number of triplons is crucial to improve the match. We
address this issue in the following chapters 5 and 6.
Our results are consistent with the results of Plumb et al., see Ref. [70]. This group
faced the same issue by using the bond operator theory (BOT) on mean-field level. They
received the following results for their best fitting parameters: x = y = 1, J0 = 8meV,
J ′ = 1.6meV, D̃x

1 = 0.6 and D̃y
1 = 0.45. Our fitted parameters go roughly with the

parameters of Plumb et al., i.e. they only differ up to 20%. This means that our
CUT based approach confirms the BOT results and refines them. As the CUT takes
the hard-core constraint of the triplons into account exactly compared to the mean-field
approach in the BOT [147], we consider our CUT based results to be more suitable
in order to describe the magnetic structure of BCPO. Despite this, the large values
of the DM interactions did not fulfill our expectations concerning the anisotropy in
the exchange of the copper spins as discussed previously. Finally, we pointed out that
BCPO shows also interesting topological features, such as a non-trivial Zak phase and
no localized edge modes.
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5 Description of the quantum
antiferromagnet BiCu2PO6 on
trilinear operator level with spin
isotropic effects

In the previous chapter we established a model for the quantum magnet BCPO
including anisotropic couplings on bilinear operator level. As a result, we received a
satisfying description of the experimentally measured data in the low-energy regime.
Thereby, it is necessary to choose DM couplings which assume values up to 60 %

compared to the isotropic couplings. The prominent down-bending and vanishing
behavior of the two lower modes at around k = 1 r.l.u. cannot be described at all
with our present model. In contrast, the third measured mode remains stable in this
range but shows significant larger error bars implying the existence of resonances. So
far no theoretical description of the down-bending exists to our knowledge. Numerous
groups in the community of solid state physics agree on the reasonable assumption
that the hybridization between one-triplon and multiple-triplon states is responsible for
the observed down-bending behavior [39, 64, 70, 89]. To take these effects into account
for the quantum antiferromagnet BCPO we need to consider couplings in its magnetic
structure which induce operator terms arbitrating between Hilbert spaces of different
numbers of triplons.

One existing effect in BCPO which can solve this issue is a variation in the next-nearest-
neighbor coupling originating from the two inequivalent copper ions CuA and CuB, see
sect. 1.4. This effect has odd parity and therefore gives rise to transition processes
between the one- and two-particle Hilbert space. To the best of our knowledge, no
theoretical description of this effect exists in the literature. In this chapter we explore
the consequences of this effect in regards to SQPD. With this extension of our model of
BCPO we expect to obtain an improved fit between the experimental data and theory
choosing smaller DM couplings as in the bilinear anisotropic model, see chapter 4.
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5.1 Analysis of the alternating NNN coupling J2
The simplest processes which describe SQPD are given by trilinear terms reading
t†t†t/t†tt, see sect. 2.3. These terms characterize the decay of a single triplon into two
triplons/the fusion of two triplons into one triplon and induce transitions between the
one- and two-particle Hilbert space directly. As already mentioned in sect. 4.2.2, only
effects with odd parity with respect to a reflection at the center line of the spin ladder
structure, see also sect. 4.2.1 and figure 4.3, can generate operator terms which contain
an odd number of single triplon operators, e.g. trilinear operator terms. The key idea
of this issue is that a single triplon operator has odd parity, see sect. 4.1.2, and that
the parity of an observable represents a conserved quantity.

One effect, which has odd parity in the crystal structure of BCPO, is a variation of
the NNN coupling J2. As mentioned in sect. 1.4, there are two crystallographically
different types of copper ions CuA and CuB existing in BCPO due to the positions of the
bismuth ions, see figure 1.3. Thus, it is reasonable to assume that the NNN interaction
among the CuA and the NNN interaction among the CuB differ [60]. We label the
NNN interaction concerning the copper ions CuA as J2 and for the copper ions CuB as J ′2.

Figure 5.1: (a) Effective spin model without distinguishing between the inequivalent copper
sites. All copper sites are treated equally, i.e. the NNN interaction J2 does not vary.
(b) Effective spin model in consideration of the two inequivalent copper ions CuA
(blue spheres) and CuB (green spheres). This effective spin model was proposed
by Tsirlin et al. [60]. The NNN interactions between the different copper ions
CuA and CuB are considered differently by J2 and J ′2. This alternation of the NNN
coupling has odd parity with respect to a reflection at the center line of the spin
ladder structure.
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We can express the difference between the two NNN interactions by

J2 =




J2 = J2 (1 + δ)

J ′2 = J2 (1− δ)
(5.1.1)

with an averaged coupling strength J2 and a variation parameter δ ∈ [0, 1] indicating
how large the two NNN interactions differ. In the previous model, see chapter 4, no
difference between the NNN couplings was considered, i.e. the case δ = 0 was discussed.
The other extreme case is δ = 1 implying that only an interaction between the copper
ions of the type CuA exists assuming a value of J2 = 2J2.
The couplings J2 and J ′2, see eq. (5.1.1), can be divided into an even part

(
J2

)
, which

is the same for both NNN couplings, and an odd part
(
±J2δ

)
, which changes sign.

The even component J2 is the part considered in the model of the single frustrated
spin ladder discussed before in sect. 4.1.1. This means that the even component J2 is
identical to the NNN coupling J2 in chapter 4. To take the effects of the odd part ±J2δ

into account we treat this component as an observable in the context of perturbation
theory. Note, that this is the same ansatz we applied to the anisotropic couplings in
sect. 4.2.2. Therefore, we write down the actual observable characterizing the variation
of the NNN interaction

J2δ
∑

i

(−1)i
(
SL
i S

L
i+2 − SR

i S
R
i+2

)
, (5.1.2)

see eq. (4.1.1). It is easy to realize that this expression has odd parity and alternates
along the ladder in y-direction, see figure 5.1 b). Applying a deepCUT transforms the
operator part of eq. (5.1.2) into operator terms including an odd number of single triplon
operators, e.g. trilinear terms giving rise to the phenomenon of SQPD1. Focusing on
linear and trilinear operator level leads to the emerging operator terms2

ty,†i+δ1t
z,†
i+δ2

txi+δ3 , tx,†i+δ1t
z,†
i+δ2

tyi+δ3 , tx,†i+δ1t
y,†
i+δ2

tzi+δ3 , tx,†i+δ1t
y,†
i+δ2

tz,†i+δ3 (5.1.3)

with the relative distances δ1, δ2 and δ3 in real space including the Hermitian conjugated
part of each operator term. Note, that we only concentrate on terms up to trilinear
operator level since we expect these to have the main influence on the effects of SQPD
as mentioned before in sect. 3.2.

1The applied deepCUT was performed up to order 11 in the Hamiltonian, i.e. up to order 10 for
observables [94]. Since the spin ladder structure is invariant under the reflection symmetry Sxy, see
figure 4.3 and sect. 4.2.1, this means that for observables processes with a maximum distance of
2× 10 rungs in real space are taken into account.

2In fact, we are only interested in trilinear terms. Despite this, we extract all operator terms up to
trilinear operator level, i.e. also linear operator terms if existing.
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Performing a deepCUT it turns out that the spin observable in eq. (5.1.2) does not
generate linear terms, i.e. a single triplon creation/annihilation operator, although its
odd parity can give rise to them. The reason for the absent linear operator terms is that
the transformed spin observable in eq. (5.1.2) is spin isotropic, i.e. it stays invariant
under shifting the flavors x, y and z. This is equivalent to the statement that the spin
observable has a total spin of S=0, i.e. it is spin conserving. In contrast, a single triplon
operator always has a concrete spin orientation, i.e. it has a total spin of S=1. So it is
obvious that a spin isotropic observable cannot generate linear triplon operator terms
in general. Following the steps described in sect. 4.2.2 we treat the triplon operators
as bosonic operators in the framework of a mean-field approach and apply a Fourier
transform, see eqs. (3.1.2). This leads to the expression

J2δ
∑

k,q

∑

δ1,δ2,δ3

αα
′,β′,γ′

δ1,δ2,δ3√
Nk

ei(δ2−δ1)qei(δ3−δ2)ke−iπδ2tα
′,†
q tβ

′,†
k−q+πt

γ′

k (5.1.4)

for the terms of the type tα
′,†
i+δ1

tβ
′,†
i+δ2

tγ
′

i+δ3
with the flavor combinations (α′, β′, γ′) ∈

{(y, z, x) , (x, z, y) , (x, y, z)}, see eq. (5.1.3). The variable αα
′,β′,γ′

δ1,δ2,δ3
∈ C is the prefac-

tor of the triplon operator terms in real space determined by the applied deepCUT.
The quantity Nk describes the discretization of the momentum k. Note, that a relative
momentum q corresponding to the total momentum k appears. The alternating sign
in the transformed spin observable, see eq. (5.1.2), results in the shift of π concerning
the momentum of the second creation operator tβ

′,†
k−q+π. The Fourier transform of the

remaining operator term in eq. (5.1.3) reads

J2δ
∑

k,q

∑

δ1,δ2,δ3

βx,y,zδ1,δ2,δ3√
Nk

ei(δ2−δ1)qei(δ2−δ3)ke−iπδ2tx,†q ty,†−k−q+πt
z,†
k (5.1.5)

with the variable βx,y,zδ1,δ2,δ3
∈ C characterizing the prefactor of the corresponding triplon

operator term in real space, which is calculated by the deepCUT applied.
At this point we classify two different approaches in order to include the effects of SQPD
stemming from the variation of the NNN coupling J2.

(i) We take the effects of the decay and fusion terms in eq. (5.1.4) into account
directly by adding these terms to the solution of a single frustrated spin ladder as
discussed in sect. 4.1.1. This means that the decay and fusion terms are treated
as a perturbation to the effective Hamiltonian Heff

ladder, see eq. (4.1.2) with the one-
particle dispersion ω0 (k). We determine how the dispersion ω0 (k) is renormalized
due to the effects of SQPD. After calculating the renormalized dispersion ω0,r (k)

we add the effects of the interladder coupling J ′, see sect. 4.1.2, and the effects
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of the anisotropic couplings as described in sect. 4.2.2. Note, that this is an
inaccurate ansatz since its starting point is the isotropic single frustrated spin
ladder, not the bilinear anisotropic model of BCPO, and the effects of SQPD treat
all excitation modes as equals. We refer to this approach as the direct approach.

(ii) We consider the Hamiltonians H̃eff
BCPO,z and H̃eff

BCPO,bu, see eqs. (4.2.20) and
(4.2.32), as our starting point and then add the effects of SQPD to the solution of
the bilinear anisotropic Hamiltonian of BCPO. In order to do so the trilinear terms
resulting from the variation of J2 have to be transformed by applying the same
Bogoliubov transformations derived in sect. 4.2.2, which solve the issue on bi-
linear anisotropic operator level. Afterwards, we proceed as described in the direct
approach and analyze how the dispersions ω̃z (k) and ω̃b (k), see eqs. (4.2.21) and
(4.2.30), are renormalized. With this accurate ansatz the effects of SQPD treat all
excitation modes individually. We name this approach the complete approach.

5.2 Results for the direct approach
By applying the direct approach our starting point is the solved single frustrated spin
ladder, see sect. 4.1.1, with the one-triplon dispersion ω0 (k), see eq. (4.1.2). The
decay/fusion terms stemming from the J2 variation, see eq. (5.1.4), can simply be
added since they are in the same basis as the Hamiltonian Heff

ladder, see eq. (4.1.2). The
resulting Hamiltonian reads

HJ2,direct =
∑

k,α

ω0 (k) tα,†k tαk + J2δ
∑

k,q

∑

α′,β′,γ′

(
Γα
′β′γ′ (k, q) tα

′,†
q tβ

′,†
k−q+πt

γ′

k + h.c.
)
, (5.2.6)

with α ∈ {x, y, z} and the prefactor

Γα
′β′γ′ (k, q) =

∑

δ1,δ2,δ3

αα
′,β′,γ′

δ1,δ2,δ3√
Nk

ei(δ2−δ1)qei(δ3−δ2)ke−iπδ2 (5.2.7)

for the different flavor combinations (α′, β′, γ′) ∈ {(y, z, x) , (x, z, y) , (x, y, z)}. In the
direct approach we only take the influence of operator terms of the type t†t†t/t†tt into
account since these describe a hybridization of the one- and two-triplon Hilbert space.
As explained in sect. 3.2, we expect these operator terms to have the strongest impact
on the phenomenon of quasiparticle decay at zero temperature. Operator terms of the
type t†t†t†/ttt in eq. (5.1.5) describe quantum fluctuations creating/annhilating three
triplons and are completely neglected in the direct approach. In order to determine the
renormalized dispersion ω0,r (k) of the one-triplon dispersion ω0 (k) we restrict ourselves
to the one- and two-triplon Hilbert spaces and transitions between them, equally to
the toy model in sect. 3.2.
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The Hamiltonian HJ2,direct in eq. (5.2.6) points out a hybridization of the one-triplon
states with momentum k and two-triplon states with total momentum k + π. This
shift by π derives from the alternating behavior of the odd J2 part, see the factor of
(−1)i in eq. (5.1.2) and the effect of the alternating component Dz

2 in eqs. (4.2.13) and
(4.2.14). As a consequence, the limiting values for the Lanczos coefficients a∞ (k) and
b∞ (k), see Appendix A, are given by the lower and upper boundary of the two-particle
continuum

ω2 (k + π, q) = ω0 (q) + ω0 (k − q + π) (5.2.8)

at total momentum k + π. Performing a Lanczos tridiagonalization for the Hamil-
tonian HJ2,direct in eq. (5.2.6) and applying the steps described in sects. 2.3.1, 2.3.2
and 2.3.3 result in the renormalized dispersion ω0,r (k). Note, that the renormalized
dispersion ω0,r (k) is spin isotropic as well as the one-triplon dispersion ω0 (k) because
the decay/fusion terms in HJ2,direct stem from a spin isotropic observable, see sect. 5.1.
Due to the fact that the structure of BCPO contains multiple frustrated spin ladders,
which are coupled by an interladder coupling J ′, see sect. 4.1.2, we include this effect in
the direct approach as well in order to receive the two-dimensional dispersion

ωr (k, l) = ωr (k) =

√
(ω0,r (k))2 − 4J ′dk,lω0,r (k). (5.2.9)

This expression is identical to eq. (4.1.10) with the simple substitution ω0 (k) = ω0,r (k)3.
With the help of eq. (5.2.9) we determine the best matching values for the coupling
ratios x = J1/J0 and y = J2/J1 for the measured data of BCPO as we did previously
in sect. 4.1.2. For the deviation of the J2 coupling we use the fixed ratio J ′2/J2 = 0.5,
which is equivalent to δ = 1/3, see eq. (5.1.1), proposed by Tsirlin [60]. As
outlined in sect. 4.1.2, we focus on the two criteria k∗∆ = (0.575± 0.005) (r.l.u.) and
(ω (π) /∆)∗ = (3.7± 0.5) which we want to describe as well as possible with the
two-dimensional trilinear isotropic model, see eq. (5.2.9).

In figure 5.2 the curves defined by k∆ = k∗∆ and ω (π) /∆ = (ω (π) /∆)∗ for different
ratios of x and y are presented. The relative value of the interladder coupling is fixed
J ′/J0 = 0.16 by analogy with the case δ = 0 in sect. 4.1.2. Compared to the two-
dimensional isotropic model without the effects of the J2 variation, see figure 4.2, no
area in figure 5.2 is visible where both criteria are fulfilled. This fact can be explained
by considering two aspects concerning the effects of a finite value of δ on the one-triplon
dispersion ω0 (k).

3As already mentioned in sect. 4.1.2, the measured data of BCPO were collected for a fixed momentum
l = 1 r.l.u. and varying momentum k. Therefore, we neglect the second momentum l and write ωr (k)
instead of ωr (k, l).
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Figure 5.2: Correspondence of the chosen criteria with the renormalized dispersions ωr (k) for
different values of x and y. The variation of the J2 coupling δ = 1/3 is fixed
as well as the interladder coupling J ′/J0 = 0.16. The red solid line shows k∆ =
k∗∆ = 0.575 (r.l.u.) and the corresponding dashed lines represent the deviations by
±0.005, i.e. k∗∆ = (0.575 ± 0.005) (r.l.u.). The blue solid line depicts the ratio
ω (π) /∆ = (ω (π) /∆)∗ = 3.7 and the corresponding dashed lines indicate the
accepted deviations by ±0.5, i.e. (ω (π) /∆)∗ = (3.7± 0.5). The circle marks the
area where both criteria are fulfilled within the range of the accepted deviations at
x ≈ 1.4 and y ≈ 0.85.

(i) The main effect of the decay/fusion terms in the Hamiltonian HJ2,direct, see eq.
(5.2.6), on the one-triplon dispersion is a shift to lower energies since the one-
triplon dispersion tries to avoid an overlap with the corresponding two-triplon
continuum due to level repulsion, see also the third scenario of SQPD in sect. 2.3.
This energy shift does not show a strong modulation in the Brillouin zone and
is rather constant for all values of k. Therefore, the position of the energy gap does
not change significantly. The curve of the gap positions, see the red solid lines in
figures 4.2 and 5.2, reflects this issue by not displaying large differences.

(ii) Understanding the curve of the ratio ω (π) /∆ needs a deeper insight. A finite value
of δ ensures an overall lowering of the one-triplon dispersion. Thus, the value of
the energy gap ∆ is reduced. But at k = π no hybridization between the one- and
two-particle Hilbert space exists, i.e. the prefactor of the decay/fusion terms,
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see eq. (5.2.7), fulfills the relation

Γα
′β′γ′ (k = π, q) = 0 (5.2.10)

for all relative momenta q. This is due to the fact that the decay/fusion terms in
real space, see eq. (5.1.3), with their prefactors obey the same rotational symme-
tries in spin space as the original spin observable, see eq. (5.1.2). More specifically,
the rotational invariance by a rotation of π/2 of these decay/fusion terms in real
space is responsible for the missing hybridization of the one- and two-particle
Hilbert space at k = π. As a consequence, the value of the one-triplon disper-
sion at k = π does not change, i.e. the relation ω0,r (k = π) = ω0 (k = π) holds.
Due to the reduced energy gap ∆ the ratio ω (π) /∆ changes. Therefore, the blue
solid lines in figures 4.2 and 5.2 display differences.

These two aspects explain the missing overlap of both criteria at x ≈ 1.2 and y ≈ 0.9

in figure 5.2 compared to figure 4.2. Considering the tolerated error ranges for each
criterion an overlap at x ≈ 1.4 and y ≈ 0.85 can be identified. In constrast to the
two-dimensional isotropic model without the SQPD effects of the J2 variation, other
ratios of x and y do not show an overlap within the tolerated error ranges. Thus, we
expect the values x = 1.4, y = 0.85, J ′/J0 = 0.16 and δ = 1/3 to present the best
matching parameters for the magnetic structure of BCPO.

On the basis of the trilinear isotropic model we include the effects of anisotropic cou-
plings in order to describe the three different experimentally observed modes of BCPO.
Using the direct approach we can determine the best fitting DM couplings by simply
substituting the isotropic dispersion ω0 (k) in the results of the anisotropic analysis of
BCPO on bilinear operator level, see eqs. (4.2.21) and (4.2.30), by the renormalized
isotropic dispersion ω0,r (k). Note, that the direct approach is only an approximation
in order to obtain a first impression on the reduction of the D values compared to the
anisotropic bilinear model, see sect. 4.2.3. No new analysis of the D components is
necessary since their effects do not depend on the isotropic dispersion. Undertaking
the results of the trilinear isotropic model, i.e. the parameters x = 1.4, y = 0.85,
J ′/J0 = 0.16 and δ = 1/3, we vary the D components and the energy scale J0 to receive
the best description of the experimental data. In the following, we address several issues
concerning our best fit, see figure 5.3, and compare these with the results of the bilinear
anisotropic model, see figure 4.4 and sect. 4.2.3.
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Figure 5.3: (a) Fitted theoretical dispersions ω̃b,r (k), ω̃b,r (k + π) and ω̃z,r (k), which stem from
the x, y and z mode for the fixed parameters x = 1.4, y = 0.85, J ′/J0 = 0.16
and δ = 1/3. Their displayed error bars depict the corresponding HWHM, see
eq. (2.3.72). For the calculation of the isotropic renormalized dispersion ω0,r (k) a
maximum relative HWHM of (γ (k) /∆ω2 (k + π))max = 0.1 and a minimal spectral
weight of (1/s)min = 0.001 are set as thresholds to identify quasiparticle peaks in
the corresponding spectral functions, see sect. 3.4.1. The fitted parameters are J0,
D̃y

0 , D̃
x
1 , D̃

y
1 , D̃

x
2 and D̃z

2. Their values are listed in the panel itself. (b) Zoom of
panel (a) into the vicinity of the left minimum.
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(i) The good description in the minimum area of mode 1 and mode 2 with the calculated
dispersions ω̃b,r (k) and ω̃b,r (k + π) could not be reproduced, i.e. the fit between theory
and experiment becomes worse, when we include the effects of a finite variation of the
NNN coupling J2. Although this issue does not state a satisfying aspect, it can be
explained. Comparing the results for the trilinear isotropic model in figure 5.2 with the
corresponding results of the bilinear isotropic model in figure 4.2 the consideration of
trilinear isotropic operator terms makes it more difficult to find appropriate ratios of
x = J1/J0 and y = J2/J1, which provide a satisfying description of the position of the
gap k∆ and the energy ratio ω (π) /∆. As discussed before, in contrast to the bilinear
isotropic model the trilinear isotropic model does not lead to well matching values for
the parameters x and y, see figure 5.2. Therefore, it is not surprising that the effects of
SQPD stemming from the variation of J2 do not improve the agreement between theory
and experiment since the effects of the anisotropic couplings do not change. The fitted
values of the parameters D̃x

1 = 0.44 and D̃y
1 = 0.58 remain large but could be reduced

slightly compared to the bilinear anisotropic model with D̃x
1 = 0.48 and D̃y

1 = 0.61.
This fact can also be explained by the finite value of δ = 1/3 which provides a lowering
of the renormalized dispersion ω0,r (k) compared to ω0 (k). It is remarkable that the
effects of SQPD stemming from the finite value of δ = 1/3, which describes a large
J2 variation of J ′2/J2 = 0.5, provide only a small improvement concerning a reduction
of the D components in general. At k = 0.5 r.l.u. the renormalized dispersion ωr (k)

including the interladder coupling J ′, see eq. (5.2.9), assumes a value of 6.56meV.
Compared with the results of the bilinear isotropic model, see figure 4.4, this represents
a reduction of only 7 %. This means that the anisotropic couplings still need to lower
the dispersion by ≈ 3meV. As outlined in sect. 4.2.3, the parameter Γxy1 has the main
influence on the dispersions at k = 0.5 r.l.u.. As a consequence, the components D̃x

1 and
D̃y

1 still need to assume large values in order to yield a large value of Γxy1 . As well as in
the bilinear anisotropic model we chose the value of D̃y

1 to be slightly larger than D̃x
1 in

order to create the visible slight asymmetric shift about k = 0.5 r.l.u.. Note, that even
with a finite value of δ the two lower modes stemming from the x and y modes can be
converted into each other by simply swapping the values of D̃x

1 and D̃y
1 .

(ii) Including a finite value of δ the parameter D̃z
2 = −0.02 remains. As explained in

sect. 4.2.3, this component cannot improve the match between theory and experiment
since its linear effect is rather small and its quadratic effects even deteriorate a good
description of the experimental data. As mentioned in aspect (i), the starting point
of the trilinear isotropic model is not as good as in the bilinear isotropic model. As a
consequence, the effects of the parameter D̃z

2 cannot improve the results significantly.
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(iii) As well as in figure 4.4 major discrepancies between the shape of the calculated z
mode ω̃z,r (k) and the measured mode 3 can be observed in figure 5.3. This appearance
is not unexpected since the shape of the isotropic dispersion ω0 (k) presenting the
starting point in the bilinear anisotropic analysis is not significantly changed by a finite
value of δ = 1/3 as discussed before. So the shape of the renormalized dispersion
ω0,r (k) is similar to the shape of ω0 (k). Since the anisotropic couplings have the
identical effects on ω0,r (k) as on ω0 (k) within the direct approach, we cannot expect
the variation of the NNN coupling J2 to provide an improvement concerning this issue.

(iv) Considering the characteristic down-bending behavior of mode 1 and mode 2 the
influence of a finite value of δ using the direct approach does not improve the fit,
either. However, since we take effects of SQPD into account, we can identify a clear
down-bending behavior for all calculated modes in figure 5.3. In constrast to the
experimental data, all calculated modes show this down-bending behavior. This follows
from the fact that the analyzed effects of SQPD are spin isotropic and therefore all
modes are treated equally. The hybridization between the one-triplon states and the
two-triplon states occurs around k ≈ 1 r.l.u. but shows only remarkably small effects.
Inside the two-triplon continuum the peaks in the corresponding spectral functions
are just slightly smeared out and hold a small HWHM. This means that the included
effects of SQPD do not have a strong influence on the lifetime of the triplons and that
they can still be identified and labeled as quasiparticles in the entire Brillouin zone.

(v) Figure 5.3 reveals that the maximum value reached by the calculated z mode is
≈16meV, whereas in the case of no SQPD effects in figure 4.4 the value is ≈19meV. The
measured data show up a value of ≈27meV. This observation is a direct consequence
of the finite value of δ = 1/3 causing a lowering of the dispersion in the complete
Brillouin zone. As discussed before the effects of the hybridization between the
one-triplon states and the two-triplons states are rather small and cannot explain the
observed resonances at high energies.

At the end of this section we sum up our results for the variation of the NNN coupling
J2 using the direct approach for the quantum antiferromagnet BCPO. The aim of this
analysis was to improve the description of the experimental dispersion data of BCPO
compared to the previous analysis concerning the bilinear anisotropic issue. Our expec-
tation was that a finite variation of the J2 coupling leads to a better agreement between
theory and experiment. Additionally, we assumed that this goal can be reached with
smaller values for the D components compared to the large values of D1 ≈ 0.6J1 within
the bilinear anisotropic model of BCPO. Unfortunately, using the direct approach does
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not meet these expectations. However, the results show up several promising features,
i.e. a slight reduction of D1 ≈ 0.58J1 and first indications of a down-bending behavior,
which the experimental data display clearly. Again we stress that the direct approach is
an easier ansatz compared to the complete approach, which considers the solved bilinear
anisotropic model of BCPO as a starting point. In the following section the complete
approach and its results are discussed in detail. We strongly expect this ansatz to pro-
vide an improvement concerning the agreement between the dispersions in theory and
experiment with reduced D components.

5.3 Results for the complete approach
In this section we present the complete approach in order to include the effects of SQPD
stemming from the J2 variation in BCPO and its results. Compared to the direct
approach the complete approach represents a more comprehensive concept because
its starting point is set by the solved bilinear anisotropic Hamiltonians H̃eff

BCPO,z and
H̃eff

BCPO,bu, see eqs. (4.2.20) and (4.2.32), instead of the Hamiltonian Heff
ladder, see eq.

(4.1.2). This is the important difference between these two approaches. Several steps
for the complete approach have already been realized in sect. 5.1. We explain it in
detail at this point since we discuss further couplings, which induce SQPD and which
we analyze within the complete approach as well, in chapter 6.

To study the effects of SQPD stemming from spin couplings with odd parity on the
solved bilinear anisotropic issue of BCPO, derived in sect. 4.2.2, we perform the following
steps:

1st Express the odd spin coupling term in the basis of the spin operators Sα,L/Ri .

2nd Transform the odd spin coupling term from the first step with the help of
a deepCUT in order to receive linear tα,†i+δ/t

α
i+δ and trilinear operator terms

tα
′,†
i+δ1

tβ
′,†
i+δ2

tγ
′

i+δ3
/tα

′,†
i+δ1

tβ
′,†
i+δ2

tγ
′,†
i+δ3

+ h.c. with the flavors α, α′, β′, γ′ ∈ {x, y, z} and the
relative distances δ1, δ2 and δ3 in real space.

3rd By analogy with the bilinear anisotropic analysis of BCPO, see sect. 4.2.2, we treat
the triplon operators as standard bosonic operators in a mean-field approach and
apply a Fourier transform. At this point the hard-core constraint of the triplon
operators is neglected. This approximation is reasonable because we assume that
the main influence of the hard-core constraint is considered in the dynamics of
the single frustrated spin ladder. As its solution is received by a deepCUT, which
takes the hard-core constraint into account, the main influence of the hard-core
constraint is encoded in the prefactors of the linear and trilinear operators terms
from the second step.
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4th Transform the trilinear operator terms into the basis of the Hamiltonians H̃eff
BCPO,z

and H̃eff
BCPO,bu, see eqs. (4.2.20) and (4.2.32). To this end, we map the triplon

operators of the flavor z onto the operators t̃z,(†) using the bosonic Bogoliubov
transformation, see eqs. (4.2.18). Triplon operators with the flavors x and y are
mapped onto a linear combination of the bosonic operators t̃b,(†) and t̃u,(†) using
the canonical transformation matrix K−1

k,l , see eq. (4.2.27).

5th Order all trilinear operator terms according to normal-ordering and neglect terms
of the type t†t†t†/ttt and t†/t. This approximation is motivated by the assumption
that the main influence on the effects of quasiparticle decay at zero temperature
stems from decay/fusion terms of the type t†t†t/t†tt. Furthermore, we are only
interested in the one- and two-particle Hilbert space and the transitions between
them. As linear and trilinear operator terms of the type t†t†t†/ttt do not link the
one- and two-particle Hilbert space, we can neglect them.

6th Since the decay/fusion terms are now in the same basis as the Hamiltonians
H̃eff

BCPO,z and H̃eff
BCPO,bu, we can simply add them. Considering a maximum number

of two quasiparticles we perform a Lanczos tridiagonalization and calculate the
renormalized dispersions ω̃z,r (k) and ω̃b,r (k) as explained in sects. 2.3.1, 2.3.2 and
2.3.3.

For the J2 variation the first two steps of the complete approach have already been
carried out in sect. 5.1. The next step is a Fourier transform. Since the bilinear
anisotropic description of BCPO is a two-dimensional issue, we have to add an index j
to all trilinear operator terms in eq. (5.1.3) indicating different frustrated spin ladders,
see figure 5.1. Applying a two-dimensional Fourier transform changes the results of
eqs. (5.1.4) and (5.1.5) to

HJ2,decay,2D = J2δ
∑

k,q

∑

l,p

∑

δ1,δ2,δ3

αα
′,β′,γ′

δ1,δ2,δ3√
NkNl

ei(δ2−δ1)qei(δ3−δ2)ke−iπδ2tα
′,†
q,p t

β′,†
k−q−π,l−pt

γ′

k,l (5.3.11)

and

HJ2,fluc,2D = J2δ
∑

k,q

∑

l,p

∑

δ1,δ2,δ3

βx,y,zδ1,δ2,δ3√
NkNl

ei(δ2−δ1)qei(δ2−δ3)ke−iπδ2tx,†q,pt
y,†
−k−q−π,−l−pt

z,†
k,l .

(5.3.12)
The additional momentum l corresponds to the index j labeling the spin ladders in
z-direction, see figure 5.1. Its relative momentum is denoted with p. The variable Nl

describes the discretization of the momentum l. We identified the relation Nl = Nk/5
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as reasonable since the bandwidths4

∆l=1 = max
k

ω (k, l = 1)−min
k

ω (k, l = 1) (5.3.13)

of the two-dimensional dispersion ω (k, l), see eq. (4.1.10), and

∆ = max
k,l

ω (k, l)−min
k,l

ω (k, l) (5.3.14)

fulfill the relation ∆l=1/∆ ≈ 5 using the parameter values x = 1.2, y = 0.9 and J ′/J0 =

0.16, see sect. 4.1.2. Note, that except of the normalization factor 1/
√
Nl the Fourier

transforms of the trilinear terms in one and two dimensions do not differ5. This follows
from the fact that the J2 variation affects only the coupled frustrated spin ladders
separately and not the connection between them, see figure 5.1.
The next step in the complete approach is to transform the trilinear operator terms in
momentum space, see eqs. (5.3.11) and (5.3.12), into the same basis as the Hamiltonians
H̃eff

BCPO,z and H̃eff
BCPO,bu. After normal-ordering these we obtain the following triplon

operator terms with prefactors

t̃z,†q,pt̃
b,†
k−q,l−pt̃

b
k,l, t̃z,†q,pt̃

u,†
k−q,l−pt̃

b
k,l, t̃z,†q,pt̃

b,†
k−q,l−pt̃

u
k,l, t̃z,†q,pt̃

u,†
k−q,l−pt̃

u
k,l,

t̃b,†q,pt̃
b,†
k−q,l−pt̃

z
k,l, t̃b,†q,pt̃

u,†
k−q,l−pt̃

z
k,l, t̃u,†q,p t̃

u,†
k−q,l−pt̃

z
k,l, t̃z,†0,0,

t̃z,†q,pt̃
b,†
−k−q,−l−pt̃

b,†
k,l, t̃z,†q,pt̃

b,†
−k−q,−l−pt̃

u,†
k,l , t̃z,†q,pt̃

u,†
−k−q,−l−pt̃

u,†
k,l ,

(5.3.15)

including trilinear and linear operator terms and the Hermitian conjugated part of each
operator term. Note, that the shift of π, see eqs. (5.3.11) and (5.3.12), in the second
operator of trilinear terms has vanished. The reason for this is that this shift by π is
already respected in the canonical transformation matrix K−1

k,l , see eq. (4.2.27). Hence,
the trilinear operator terms in eq. (5.3.15) describe a coupling between one-particle
modes at a fixed momentum pair (k, l) and different two-particle continua with the same
total momentum pair. It is noticeable that after normal-ordering a linear contribution
t̃z,†0,0/t̃

z
0,0 at fixed momenta (k = 0, l = 0) shows up since the original spin observable, see

eq. (5.1.2), is spin isotropic. But this disagreement is explained by the fact that the
prefactor of the linear terms t̃z,†0,0/t̃

z
0,0 is equal to zero. This has to be the case because

the spin observable describing the J2 variation, see eq. (5.1.2), has no outstanding spin
orientation and the applied mapping on the operators t̃z,(†), t̃b,(†) and t̃u,(†) is a canonical
transformation, which conserves this fact. Following the steps of the complete approach

4For the bandwidth ∆l=1 we fix the momentum l = 1 since the experimental data of BCPO have been
obtained for this specific value.

5Note, that in the direct approach, see sect. 5.2, a one-dimensional Fourier transform for the trilinear
operator terms was performed because the starting point is the solved frustrated spin ladder, which
is a one-dimensional model.
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we discard all trilinear operator terms, which do not describe a transition between the
one-particle and two-particle Hilbert space, i.e. trilinear operator terms with three
creation or three annihilation operators are neglected. The remaining triplon operator
terms from eq. (5.3.15) are then given by

t̃z,†q,pt̃
b,†
k−q,l−pt̃

b
k,l, t̃z,†q,pt̃

u,†
k−q,l−pt̃

b
k,l, t̃z,†q,pt̃

b,†
k−q,l−pt̃

u
k,l, t̃z,†q,pt̃

u,†
k−q,l−pt̃

u
k,l,

t̃b,†q,pt̃
b,†
k−q,l−pt̃

z
k,l, t̃b,†q,pt̃

u,†
k−q,l−pt̃

z
k,l, t̃u,†q,p t̃

u,†
k−q,l−pt̃

z
k,l.

(5.3.16)

Since we are only interested in the z and b mode in order to describe the low-energy
regime, we analyze the effects of the trilinear terms on these modes. Eq. (5.3.16) reveals
that the b mode can decay in two different ways, i.e. a single triplon with flavor b and
momenta (k, l) can decay into two particles with flavors z and b and momenta (q, p) and
(k − q, l − p) and it can decay into two particles with flavors z and u and momenta (q, p)

and (k − q, l − p). This means that the one-particle dispersion ω̃b (k, l) couples to the
two-particle continua

ω̃2,zb (k, l, q, p) = ω̃z (q, p) + ω̃b (k − q, l − p) (5.3.17a)

ω̃2,zu (k, l, q, p) = ω̃z (q, p) + ω̃u (k − q, l − p) (5.3.17b)

with the total momenta (k, l) and the corresponding relative momenta (q, p) using the
one-particle dispersions ω̃z (k, l) and ω̃b,u (k, l) derived in eqs. (4.2.21) and (4.2.30).
Considering the decay channels of a single particle with flavor z and fixed momenta (k, l)

eq. (5.3.16) reveals that it can decay in three different ways. Thus, the one-particle
dispersion ω̃z (k, l) couples to the three different two-particle continua

ω̃2,bb (k, l, q, p) = ω̃b (q, p) + ω̃b (k − q, l − p) (5.3.18a)

ω̃2,bu (k, l, q, p) = ω̃b (q, p) + ω̃u (k − q, l − p) (5.3.18b)

ω̃2,uu (k, l, q, p) = ω̃u (q, p) + ω̃u (k − q, l − p) . (5.3.18c)

As a consequence, the limiting values for the Lanczos coefficients a∞ (k, l) and b∞ (k, l),
see Appendix A, are given by the lower and upper boundary of all the corresponding
continua, see eqs. (5.3.17) and (5.3.18).
The next and last step of the complete approach is to add the trilinear terms in eq.
(5.3.16) to the Hamiltonians H̃eff

BCPO,z and H̃eff
BCPO,bu, see eqs. (4.2.20) and (4.2.32).

We forego the explicit expression for this Hamiltonian including the solved bilinear
anisotropic part and the trilinear operator terms from eq. (5.3.16) since the prefactors
of the trilinear terms have to be evaluated numerically anyway. For this Hamiltonian
we perform a Lanczos tridiagonalization and apply the steps described in sects. 2.3.1,



108
Description of the quantum antiferromagnet BiCu2PO6 on trilinear operator

level with spin isotropic effects

2.3.2 and 2.3.3 in order to receive the renormalized dispersions ω̃z,r (k) and ω̃b,r (k).
On this basis we search for the values of the D components which provide the best
match between our calculated renormalized dispersions ω̃z,r (k) and ω̃b,r (k) and the
experimentally received data in a systematic manner. Actually, it would be necessary to
analyze the effects of every singleD component on the renormalized dispersions in detail,
see table 4.3. The prefactors of the decay/fusion terms in eq. (5.3.16) do not depend
on the D components explicitly. They are only influenced by the D components via the
transformation matrixK−1

k,l and the parameter ϑzk,l, see eqs. (4.2.27) and (4.2.19). So it is
reasonable to start our fitting process by using the results of the bilinear anisotropic issue,
see figure 4.4. Then, we vary the D components and the energy scale J0 in a systematic
manner step by step to receive the best match between theory and the experimental data
of BCPO6. Since we have the information about the effects of all anisotropic couplings
on the bilinear anisotropic model of BCPO, see table 4.3, we can use these as a first
orientation for the complete approach. The parameters x = 1.2, y = 0.9, J ′/J0 = 0.16

are fixed such as the results of the bilinear anisotropic description of BCPO, see sect.
4.2.3. We choose these fixed parameters since in the complete approach the bilinear
anisotropic model of BCPO serves as our starting point. Concerning the J2 variation
we stick to the value δ = 1/3 as discussed previously in sect. 5.2.
In the following, we focus on several aspects concerning our best fit, see figures 5.4, 5.5
and 5.6, and compare these with the results of the bilinear anisotropic model, see figure
4.4, and the results of the direct approach, see figure 5.3.

6In the following chapter 6 the decay/fusion terms depend explicitly on the D components. In that
context, an analysis of the effects of each D component on the renormalized dispersion ω̃b,r (k) is
performed by analogy with the bilinear anisotropic model.
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Figure 5.4: (a) Fitted theoretical dispersions, which stem from the x, y and z mode for the
fixed parameters x = 1.2, y = 0.9, J ′/J0 = 0.16 and δ = 1/3. Their displayed error
bars depict the corresponding HWHM, see eq. (2.3.72). As thresholds to identify
quasiparticle peaks in the corresponding spectral functions, see sect. 3.4.1, we set
a maximum relative HWHM of (γ (k) /∆ω̃2 (k))max = 0.1 and a minimal spectral
weight of (1/s)min = 0.005. The fitted parameters are J0, D̃

y
0 , D̃

x
1 , D̃

y
1 , D̃

x
2 and D̃z

2.
Their values are listed in the panel itself. (b) Zoom of panel (a) into the vicinity of
the left minimum.
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Figure 5.5: Zoom of panel (a) of figure 5.4 into the range where mode 1 and 2 show the promi-
nent down-bending behavior. Additionally, the lower boundaries of the two-particle
continua ω̃2,b (k) and ω̃2,z (k) belonging to the one-particle dispersions ω̃b,r (k) and
ω̃z,r (k) are depicted by solid lines.

(i) The match between the two lowest-lying modes 1 and 2 and the calculated dis-
persions ω̃b,r (k) and ω̃b,r (k + π) has improved compared to the results of the direct
approach. Out of the results from the bilinear anisotropic model, the direct approach
and the complete approach the latter shows the best fit around the minimum area of
mode 1 and 2. By this we mean that mode 1 is well described from k ≈ 0.5 r.l.u. to
k ≈ 0.7 r.l.u.. Another positive aspect concerning the results of the complete approach
is the larger reduction of the component D̃y

1 starting with D̃y
1 = 0.61 for the bilinear

anisotropic model, D̃y
1 = 0.58 for the direct approach and D̃y

1 = 0.48 for the complete
approach. This states an achieved reduction up to 20 %. This is possible since the
finite variation of the NNN coupling J2 already ensures a lowering of the one-particle
dispersions so that not only the anisotropic couplings are responsible for decreasing
the dispersions. This means that the values of the anisotropic couplings can be chosen
smaller while still achieving an equivalently satisfying description of the low-energy
regime. As a reminder, we expect the anisotropic couplings to assume values of the
order of 0.1 − 0.2 as their origin is the SOC, see sect. 2.4.1. Still, we do not reach
the range of values consistent with this assumption completely. But the continuous
reduction of the components D̃x

1 and D̃x
1 by taking into account the effects of SQPD

demonstrates clearly that these effects can lead to values of the anisotropic couplings
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which are reasonable. However, the values of D̃x
1 = 0.47 and D̃y

1 = 0.48 are crucial in
order to create the apparent W-shape of the measured modes 1 and 2 and they are
still large. In contrast, for the first time during our analysis of BCPO the component
D̃y

0 assumes a finite value of D̃y
0 = 0.1, which is in agreement with our expectations.

As mentioned in table 4.3, the component D̃y
0 increases the dispersions ω̃b,r (k) and

ω̃b,r (k + π) in the complete Brillouin zone, which turned out to be a negative effect
in the bilinear anisotropic model and in the direct approach. But in the complete
approach this effect becomes important since it compensates the dominant effects of
the component Γxy1 via D̃x

1 and D̃y
1 . Since the finite value of δ = 1/3 already reduces

the one-particle dispersions, we need a component which regulates the strong reduction
effects of D̃x

1 and D̃y
1 in the minimum area. By setting D̃y

0 = 0.1 we can solve this issue.
Note, that also in the complete approach it is possible to swap the two lower modes
stemming from the x and y mode by simply exchanging the values of D̃x

1 and D̃y
1 .

(ib) In the previous part (i) we focused mainly on the satisfying match between mode 1
and the theoretical dispersion relation ω̃b,r (k + π). Considering the agreement between
mode 2 and our calculated solution ω̃b,r (k) we notice that the complete approach
provides a better match in the minimum area than the direct approach but not than
the bilinear anisotropic model. One aspect which explains this issue is the fact that
mode 2 was not taken into account in the isotropic analysis, see sect. 4.1.2, and in
the direct approach, see sect. 5.2. Only the data of mode 1 and 3 were utilized.
Therefore, it is reasonable not to expect a satisfying description of mode 2 from the
beginning7. Since our calculated two lowest-lying modes depend on each other, i.e.
they are identical up to a shift of π, an improvement concerning the agreement between
ω̃b,r (k + π) and mode 1 implies a deterioration in the match between ω̃b,r (k) and mode 2.

(ii) The absolute value of the component D̃z
2 increases from −0.02 for the bilinear

anisotropic model of BCPO and the direct approach up to −0.09 for the complete
approach. This value is still small compared to the large values of D̃x

1 and D̃y
1 but more

realistic concerning our assumption that the anisotropic couplings assume values of the
order of 0.1 − 0.2 in units of the corresponding isotropic couplings. The linear effect
of D̃z

2 becomes more important in the complete approach since it is mainly responsible
for the good match of the position of the gap of mode 1. Additionally, it ensures the
satisfying description of the slope of mode 1 in the intervall k = 0.6 r.l.u.−0.7 r.l.u.,
see panel (b) in figure 5.4, which improved strongly compared to the previous results,

7In the bilinear anisotropic model of BCPO it turned out that mode 1 and 2 could both be described
in the minimum area in a satisfying way although mode 2 was not included in the isotropic analysis,
see sect. 4.1.2. So it is a further characteristic of the bilinear anisotropic model that it can describe
mode 1 and 2 in the low-energy regime simultaneously.
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see figures 4.4 and 5.3. In contrast to the results of the bilinear anisotropic model
and the direct approach, the quadratic effect of D̃z

2 via the matrix entries Γxx2 and
Γyy2 is considered positively in the complete approach in order to achieve a good
agreement between theory and experiment. As well as the component D̃y

0 the quadratic
contributions of D̃z

2 increase the dispersions ω̃b (k) and ω̃b (k + π) around the minimum
and therefore compensate the effects of the components D̃x

1 and D̃y
1 , see also the

previous aspect (ib). The negative sign of D̃z
2 does not influence the behavior of the

matrix entries Γxx2 and Γyy2 , see eq. (2.4.84). Despite this, it is important to choose a
negative value for D̃z

2 so that it can damp the effects of the component Γxy1 as described
in the bilinear anisotropic model and in the direct approach. Thus, only a negative
value for the component D̃z

2 can improve the fit between our calculated results and the
experimentally measured data in the low-energy regime.
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Figure 5.6: Logarithmic color map of the computed spectral function A (k, ω) for the fitted
renormalized one-particle dispersions ω̃b,r (k), ω̃b,r (k + π) and ω̃z,r (k) with the pa-
rameters shown in figure 5.4. The black solid line represents the lowest boundary
of the two-particle continua ω̃2,b (k), ω̃2,b (k + π) and ω̃2,z (k). Outside the corre-
sponding two-particle continua the one-particle dispersions are depicted with error
bars equal to zero, which imply triplon excitations with infinite lifetime.
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(iii) Considering the shape of the dispersion ω̃z,r (k) determined by the complete
approach the major discrepancies observed in the bilinear anisotropic model and the
direct approach remain, i.e. the missing match between ω̃z,r (k) and the measured mode
3. Compared to the bilinear anisotropic ansatz, see figure 4.4, the z mode is shifted to
lower energies in the entire Brillouin zone. In contrast to the results of the direct
approach, see figure 5.3, the complete approach provides a better fit around k = 1 r.l.u.
but it is still impossible to reproduce the resonances in this range. As explained before
the finite values of the components Γzz0 , Γzz1 and Γzz2 acting on the z mode in the
complete approach increase the one-particle dispersion around the minimum. At this
point, it is crucial to recall the effect of the variation of J2, which already ensures a
lowering of all modes. So the anisotropic couplings compensate this effect in such a
way that the results in the complete approach concerning the z mode produce the best
description of mode 3 up to this point. Adjusting the values of the anisotropic couplings
to achieve a better fit for mode 3 would result in a declined fit of the two lowest modes
1 and 2.

(iv) The down-bending behavior of mode 1 and 2 towards lower energies around
k = 0.75 r.l.u. represents an important property of the experimentally received data.
As a reminder, our expectation is that this prominent down-bending behavior stems
from the hybridization between one-triplon and two-triplon states. Using the complete
approach for the variation of J2 we take these effects into account but unfortunately
the level repulsion turns out to be too weak in order to reproduce the characteristic
down-bending behavior of the two lowest modes, see also figure 5.6. In contrast to the
direct approach, where the decay behavior of all modes is identical, each mode decays
differently in the complete approach. Only a slight down-bending behavior around
k = 0.8 r.l.u. can be identified, see figure 5.4 and 5.5, but it is not sufficient enough to
provide a satisfying description of the experimental data. Note, that only the parameter
δ = 1/3 of the J2 variation is responsible for SQPD in this issue and no other effects
in BCPO. The close-up of the area where the renormalized one-particle dispersions
and the corresponding two-particle continua overlap, see figure 5.5, illustrates no
significant shifts of the one-particle dispersions to lower energies or energies outside
the two-particle continuum. A detailed look into the performed numerical calculations
reveals the unexpected fact that the hybridization of the one-triplon and two-triplon
states, i.e. the absolute values of the prefactors of the decay terms, see eq. (5.3.16), are
noticeable smaller at momenta where the one-particle dispersions and the corresponding
two-particle continua overlap compared to other areas of the Brillouin zone. As a
consequence, the peaks of the corresponding spectralfunctions near k = 0.8 r.l.u. are
sharp and their positions are near the undisturbed one-particle dispersions, see figure
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5.7. Considering the color map of the spectral function A (k, ω) in figure 5.6 displays
that it is possible to identify clear quasiparticle peaks in the spectral function for all k
values in the complete Brillouin zone. Around k = 0.8 r.l.u. it is also clearly visible
that no strong SQPD processes exist, i.e. the peaks in the spectral function are just
slightly smeared out and show negligibly small weight near the lower boundary of the
two-particle continuum. As in the direct approach, the effects of SQPD do not have a
strong influence on the lifetime of the triplons so that they can still be identified and
labeled as quasiparticles in the whole Brillouin zone.

0 1 2 3 4 5
ω [J0]

−10

−8

−6

−4

−2

0

2

4

ln
(A

(k
,ω

)J
0)

ln(A(k = 0.8π, ω)J0)

ω̃z(k = 0.8π)/J0

ω̃b(k = 0.8π)/J0

ω̃b(k = 1.8π)/J0

Figure 5.7: Spectral function A (k, ω) for fixed momentum k = 0.8π containing the contribu-
tions of the low-energy modes ω̃z (k), ω̃b (k) and ω̃b (k + π). Note, that the y-axis has
a logarithmic scale. The black dashed lines represent the lower and upper bound-
ary of all corresponding two-particle continua ω̃2,z (k), ω̃2,b (k) and ω̃2,b (k + π).
The colored dashed lines mark the positions of the dispersions ω̃z (k), ω̃b (k) and
ω̃b (k + π), see eqs. (4.2.21) and (4.2.30), for fixed momentum k = 0.8π. The energy
ω is discretized in steps of 0.0001J0.

(v) The maximum value reached is ≈17meV for the z mode, which is 1meV larger
compared to the results of the direct approach. However, the large difference to the
measured values of ≈27meV remains. Comparing the size of the displayed error bars of
the z mode, i.e. the HWHM of the quasiparticle peaks in the spectral function, around
k = 2 r.l.u. in figures 5.3 and 5.4, it is noticeable that they are larger for the complete ap-
proach than for the direct approach. But still it is not possible to explain the high energy
regime with the assumed effects of SQPD in BCPO. Even with the complete approach
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for the variation of the J2 coupling we cannot determine an appropriate set of pa-
rameters in order to improve the match between theory and experiment at high energies.

At the end of this section we sum up our results for the variation of the NNN coupling
J2 using the complete approach for the quantum antiferromagnet BCPO. The aim of
this analysis was to provide an enhanced description of the experimental dispersion data
of BCPO compared to the previous studies in sects. 4.2.3 and 5.2. The important
aspect of the complete approach is that the decay behavior of each mode stemming from
anisotropic couplings in BCPO is treated individually. With this more detailed analysis
of a finite variation in the J2 coupling we expected to achieve an improved agreement
between theory and experiment using smaller values for the D components compared
to the direct approach with D1 ≈ 0.58J1. Not all of these expectations could be met
within the complete approach but several features of the experimental data could be
reproduced. Using the complete approach results in the best fit between theory and
experiment in the low-energy regime for an even broader range of the Brillouin zone
so far. A reduction of the D components to our expected values of 0.1 − 0.2 is also
possible. The dominant value of D1 ≈ 0.48J1 is still larger than estimated but states a
20 % reduction compared to our previous fit results. In contrast, the other components
Dy

0 = 0.1J0 and Dz
2 = −0.09J2 assume values which meet our expectations. All modes

display an individual down-bending behavior, but it turns out that the hybridization
between the one- and two-particle states is not sufficient to describe the experimentally
observed down-bending in a satisfying way.

5.4 Chapter summary
To conclude this chapter we sum up the results for the analysis of the alternating NNN
coupling J2 within the magnetic structure of the quantum antiferromagnet BCPO. The
origin of this effect lies in the crystallographical inequivalent copper ions which describe
the magnetic structure of BCPO. This spinisotropic effect induces a hybridization of
one- and two-particle states, i.e. quasiparticle decay/fusion processes, due to its odd par-
ity. Taking into account these processes we analyzed their influence on the one-particle
dispersion. Because of the hybridization between the one- and two-particle Hilbert
spaces we expected to receive an improved description of the experimental data with
smaller D values compared to the previous analysis in chapter 4. In this context we
used two different approaches. Firstly, we introduced the direct approach with is based
on the spinisotropic analysis of BCPO, see sect. 4.1. After computing the renormalized
spinisotropic dispersion we included the anisotropic couplings of BCPO within the bilin-
ear ansatz explained in sect. 4.2.2. As a result, the renormalized anisotropic dispersions
show several promising features in comparison with the experiment. These contain a
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minimal reduction of the dominant component D1 ≈ 0.58J1, compared to D1 ≈ 0.6J1,
and first indications of the experimentally observed down-bending behavior.
Secondly, as a more complex method we established the complete approach. Its starting
point is given by the model of BCPO derived in chapter 4, which includes anisotropic
couplings up to bilinear operator level in a mean-field approach. The decay and fusion
processes stemming from the finite variation of the J2 coupling are transformed into the
basis of the bilinear model in order to analyze their effects on the one-particle disper-
sions. The results of this ansatz represent our current best agreement between theory
and experiment. We were able to reduce the component D1 ≈ 0.48J1 furthermore and
to set the components D0 ≈ 0.1J0 and D2 ≈ −0.1J2, which are consistent with our
expection of 10 − 20 % of the isotropic couplings. The existing down-bending behavior
can also be explained partially.
We performed the first explicit description of the J2 variation in the crystal structure of
BCPO in the literature receiving promising results. However, this is just one of the dif-
ferent effects in BCPO which induce SQPD. We strongly assume to improve our results
by taking into account the decay and fusion processes which stem from the anisotropic
couplings in BCPO directly. In the following chapter we discuss this issue in detail.



6 Description of the quantum
antiferromagnet BiCu2PO6 on
trilinear operator level with spin
anisotropic effects

In the former chapter we discussed the effects of SQPD induced by a variation of the
isotropic NNN coupling J2 on the one-particle dispersions in the magnetic structure of
BCPO. As a result we achieved an improved description of the experimental data in
the low-energy regime using anisotropic couplings with values up to 48 % compared to
the isotropic couplings with constant J2. Compared to our results for BCPO without
the effects of SQPD this represents a reduction of 20 % for the anisotropic couplings.
The fact that the excitation modes of BCPO are not degenerated, but split, see sect. 1.4,
shows clearly that DM interactions are present. Consequently, we also have to consider
their contributions towards SQPD. The DM interactions themselves have odd parity
and therefore provide transition processes between the one- and two-particle Hilbert
space. We have the strong presumption that adding these effects to our calculations
leads to a further improvement in understanding the observed down-bending behavior
of the low-energy modes. A similiar analysis has been realized by Plumb et al. [39]
and Hwang and Kim [64] using diagrammatic perturbation theory and the quadratic
bond operator theory. By means of their theoretical work it was possible to reduce
the values of the anisotropic couplings from 60 % compared to the isotropic coupling
strengths down to 30%. Additionally, the broadening of the spectral function inside the
two-particle continuum can be described at a satisfactory level. Despite these achieved
improvements, the prominent down-bending behavior of the low-energy modes could
not be reproduced, neither qualitatively nor quantitatively.

Following our confirmation and refinement of the results from Plumb et al. [70], see
sect. 4.3, we take the effects of SQPD, which are induced by the DM interactions, into
account on the basis of our previous established model of BCPO, see chapter 4. With
this approach we provide a comprehensive description for the quantum antiferromag-
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net BCPO and expect to receive clear explainations for all its experimentally observed
features in the excitation spectrum.

6.1 Analysis of the anisotropic DM couplings
Our detailed symmetry analysis in sect. 4.2.1 revealed that the four components Dy

0 ,
Dx

1 , D
y
1 and Dx

2 out of the five existing D components in BCPO have odd parity, see
table 4.1. Figure 6.1 displays the possible orientation of all D vectors in the spin model
of BCPO consistent with the rules of Moriya [74].

z

yx

D2

D1

D0

Figure 6.1: Orientation of the D vectors in the spin model of BCPO, see also figure 4.3. Note,
that only a single spin ladder without the interladder coupling J ′ is depicted. The
short arrows display the orientation of the D vectors in Dij · (Si × Sj), see eq.
(4.2.11), whereas the spins on site i and j are ordered by ascending y respectively
z coordinate. The length of the vectors is not to scale. The orange dashed line
charactertizes the center line of the spin ladder. D components holding odd parity
with respect to a reflection at this symmetry axis generate operator terms containing
an odd number of single triplon operators.

To take the effects of the odd components Dy
0 , Dx

1 , D
y
1 and Dx

2 for our SQPD analysis
into account we follow the complete approach, as outlined in sect. 5.1. For the first step
we write down the observables which characterize the odd D components

HDy0 = Dy
0

∑

i

(−1)i
(
Sz,Ri Sx,Li − Sx,Ri Sz,Li

)
(6.1.1a)

HDx1 = Dx
1

∑

i

(
Sy,Li Sz,Li+1 − Sz,Li Sy,Li+1 − Sy,Ri Sz,Ri+1 + Sz,Ri Sy,Ri+1

)
(6.1.1b)

HDy1 = Dy
1

∑

i

(−1)i
(
Sz,Li Sx,Li+1 − Sx,Li Sz,Li+1 − Sz,Ri Sx,Ri+1 + Sx,Ri Sz,Ri+1

)
(6.1.1c)

HDx2 = Dx
2

∑

i

(
Sy,Li Sz,Li+2 − Sz,Li Sy,Li+2 − Sy,Ri Sz,Ri+2 + Sz,Ri Sy,Ri+2

)
(6.1.1d)
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and occur in the Hamiltonian H, see eq. (4.2.11). Note, that the spins at site i and
j are arranged according to ascending y coordinate1, see also sect. 4.2.1. Since the
components Dy

0 and Dy
1 alternate along the spin ladder in y-direction, see table 4.1, a

factor of (−1)i has to be considered in eqs. (6.1.1a) and (6.1.1c). As the next steps in our
analysis we have to apply a deepCUT in order to map the operator part of eqs. (6.1.1)
onto operator terms including an odd number of single triplon operators2. Considering
only operator terms up to trilinear level results in

ty,†i+δ1 , tx,†i+δ1t
x,†
i+δ2

tyi+δ3 , tx,†i+δ1t
y,†
i+δ2

txi+δ3 , ty,†i+δ1t
y,†
i+δ2

tyi+δ3 ,

ty,†i+δ1t
z,†
i+δ2

tzi+δ3 , tz,†i+δ1t
z,†
i+δ2

tyi+δ3 , tx,†i+δ1t
x,†
i+δ2

ty,†i+δ3 , ty,†i+δ1t
z,†
i+δ2

tz,†i+δ3 ,

ty,†i+δ1t
y,†
i+δ2

ty,†i+δ3 + h.c.

(6.1.2)

for the observables from eqs. (6.1.1a) and (6.1.1c) and in

tx,†i+δ1 , tx,†i+δ1t
y,†
i+δ2

tyi+δ3 , ty,†i+δ1t
y,†
i+δ2

txi+δ3 , tz,†i+δ1t
z,†
i+δ2

txi+δ3 ,

tx,†i+δ1t
z,†
i+δ2

tzi+δ3 , tx,†i+δ1t
x,†
i+δ2

txi+δ3 , tx,†i+δ1t
y,†
i+δ2

ty,†i+δ3 , tx,†i+δ1t
z,†
i+δ2

tz,†i+δ3 ,

tx,†i+δ1t
x,†
i+δ2

tx,†i+δ3 + h.c.

(6.1.3)

for the observables from eqs. (6.1.1b) and (6.1.1d) with the relative distances δ1, δ2,
δ3. The spin observables stemming from the components Dy

0 and Dy
1 (Dx

1 and Dx
2) have

both a spin orientation in y-direction (x-direction). As a consequence, the deepCUT
maps both observables onto the same type of triplon operator terms but with different
prefactors. Note, we only concentrate on terms with up to three single triplon operators
since we expect these to have the main influence on the effects of SQPD, see also sect.
3.2. This means that we neglect all terms with five or more single triplon operators. In
contrast to the spin isotropic observable for the alternating NNN coupling J2, see sect.
5.1 and especially eq. (5.1.3), all the observables of the odd D components also generate
linear terms, i.e. a single triplon creation/annihilation operator. The reason for this is
that the observables in eqs. (6.1.1) have a concrete spin orientation, i.e. they have a
total spin of S=1 just like a single triplon operator. As a single triplon operator does
not describe a transition between the one- and two-particle Hilbert space, it has no
direct influence on the effects of SQPD3. Therefore we do not take the linear operator
terms into account in our calculations.

1For the rung component Dy
0 the spin operators are sorted by ascending z coordinate.

2The applied deepCUT was performed up to order 10 in the Hamiltonian, i.e. up to order 9 for
observables [94]. Since the spin ladder structure is invariant under the reflection symmetry Sxy, see
figure 4.3 and sect. 4.2.1, this means that for observables processes with a maximum distance of
2× 9 rungs in real space are taken into account.

3It is possible to include the effects of the linear operator term by applying a constant shift in all
triplon operators but we neglect this aspect.
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The next step is to apply a two-dimensional Fourier transform to all trilinear operator
terms, which stem from the deepCUT. For the observables of the componentsDy

0 andDy
1

this leads to the same expressions as in eqs. (5.3.11) and (5.3.12) because the observable
of the J2 variation holds also an alternating sign. By contrast, the decay/fusion terms
stemming from the uniform observables Dx

1 and Dx
2 have the Fourier transform

(
HDx1 +HDx2

)
decay

= (Dx
1 +Dx

2)
∑

α′,β′,γ′

∑

k,q

∑

l,p

∑

δ1,δ2,δ3

αα
′,β′,γ′

δ1,δ2,δ3√
NkNl

ei(δ2−δ1)qei(δ3−δ2)ktα
′,†
q,p t

β′,†
k−q,l−pt

γ′

k,l

(6.1.4)
with the flavor combinations (α′, β′, γ′) ∈ {(x, y, y) , (y, y, x) , (z, z, x) , (x, z, z) , (x, x, x)}.
The variable αα

′,β′,γ′

δ1,δ2,δ3
∈ C denotes the prefactor of the corresponding triplon operator

term in real space, which is determined by the applied deepCUT. The Fourier trans-
form of the remaining trilinear operator terms reads

(
HDx1 +HDx2

)
fluc

= (Dx
1 +Dx

2)
∑

α′,β′,γ′

∑

k,q

∑

l,p

∑

δ1,δ2,δ3

βα
′,β′,γ′

δ1,δ2,δ3√
NkNl

ei(δ2−δ1)qei(δ2−δ3)ktα
′,†
q,p t

β′,†
−k−q,−l−pt

γ′,†
k,l

(6.1.5)
with the flavor combinations (α′, β′, γ′) ∈ {(x, y, y) , (x, z, z) , (x, x, x)} and βα′,β′,γ′δ1,δ2,δ3

∈ C
being the prefactor in real space. Note, that in contrast to the Fourier transform of
an alternating quantity, see eqs. (5.3.11) and (5.3.12), no shift of π is present in the
momentum of the second creation operator. Following the next step for the complete
approach we have to transform all trilinear terms in momentum space into the same
basis as the Hamiltonians H̃eff

BCPO,z and H̃eff
BCPO,bu, see eqs. (4.2.20) and (4.2.32). After

normal-ordering the transformed trilinear terms the following operator terms emerge

t̃b,†q,pt̃
b,†
k−q,l−pt̃

b
k,l, t̃b,†q,pt̃

u,†
k−q,l−pt̃

b
k,l, t̃u,†q,p t̃

u,†
k−q,l−pt̃

b
k,l,

t̃z,†q,pt̃
z,†
k−q,l−pt̃

b
k,l, t̃b,†q,pt̃

b,†
k−q,l−pt̃

u
k,l, t̃b,†q,pt̃

u,†
k−q,l−pt̃

u
k,l,

t̃u,†q,p t̃
u,†
k−q,l−pt̃

u
k,l, t̃z,†q,pt̃

z,†
k−q,l−pt̃

u
k,l, t̃z,†q,pt̃

b,†
k−q,l−pt̃

z
k,l,

t̃z,†q,pt̃
u,†
k−q,l−pt̃

z
k,l, t̃b,†0,0, t̃u,†0,0,

t̃z,†q,pt̃
z,†
−k−q,−l−pt̃

b,†
k,l, t̃z,†q,pt̃

z,†
−k−q,−l−pt̃

u,†
k,l , t̃b,†q,pt̃

b,†
−k−q,−pt̃

b,†
k,l,

t̃b,†q,pt̃
b,†
−k−q,l−pt̃

u,†
k,l , t̃b,†q,pt̃

u,†
−k−q,−l−pt̃

u,†
k,l , t̃u,†q,p t̃

u,†
−k−q,−l−pt̃

u,†
k,l ,

(6.1.6)

supplemented by the Hermitian conjugated part of each non-Hermitian operator term.
By analogy with the complete approach for the alternating NNN coupling J2 linear
operator terms at a fixed momentum pair (k = 0, l = 0) occur after normal-ordering,
see sect. 5.3. Since the original spin observables, see eqs. (6.1.1), hold a specific
spin orientation, the linear contributions t̃b,†0,0 and t̃u,†0,0 do not vanish in general. But
as explained in the fifth step of the complete approach, see sect. 5.3, we neglect their
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effects as well as the effects of the operator terms consisting of three creation/annihilation
operators. Thus, we keep the following operator terms

t̃b,†q,pt̃
b,†
k−q,l−pt̃

b
k,l, t̃b,†q,pt̃

u,†
k−q,l−pt̃

b
k,l, t̃u,†q,p t̃

u,†
k−q,l−pt̃

b
k,l, t̃z,†q,pt̃

z,†
k−q,l−pt̃

b
k,l,

t̃b,†q,pt̃
b,†
k−q,l−pt̃

u
k,l, t̃b,†q,pt̃

u,†
k−q,l−pt̃

u
k,l, t̃u,†q,p t̃

u,†
k−q,l−pt̃

u
k,l, t̃z,†q,pt̃

z,†
k−q,l−pt̃

u
k,l,

t̃z,†q,pt̃
b,†
k−q,l−pt̃

z
k,l, t̃z,†q,pt̃

u,†
k−q,l−pt̃

z
k,l,

(6.1.7)

for our further calculations. As we are only interested in the properties of the z and the
b mode in order to describe the low-energy regime, we focus on the trilinear operator
terms which affect these. The remaining operator terms in (6.1.7) reveal that the b mode
can decay in four different ways. A single triplon with flavor b and momentum (k, l) can
decay into two particles with the flavors (b, b) / (b, u) / (u, u) / (z, z) and the momenta
(q, p) and (k − q, l − p). This means that the one-particle dispersion ω̃b (k, l) couples to
the four two-particle continua

ω̃2,bb (k, l, q, p) = ω̃b (q, p) + ω̃b (k − q, l − p) (6.1.8a)

ω̃2,bu (k, l, q, p) = ω̃b (q, p) + ω̃u (k − q, l − p) (6.1.8b)

ω̃2,uu (k, l, q, p) = ω̃u (q, p) + ω̃u (k − q, l − p) (6.1.8c)

ω̃2,zz (k, l, q, p) = ω̃z (q, p) + ω̃z (k − q, l − p) (6.1.8d)

with the total momentum (k, l) and the relative momentum (q, p) using the one-particle
dispersions ω̃b (k, l), ω̃u (k, l) and ω̃z (k, l), which we derived in eqs. (4.2.21) and (4.2.30).
Concerning the possible decay channels of a single particle with z flavor and fixed mo-
mentum (k, l) the listed operator terms in (6.1.7) reveal that it can decay in two dif-
ferent ways. Namely, the one-particle dispersion ω̃z (k, l) couples to the two different
two-particle-continua

ω̃2,zb (k, l, q, p) = ω̃z (q, p) + ω̃b (k − q, l − p) (6.1.9a)

ω̃2,zu (k, l, q, p) = ω̃z (q, p) + ω̃u (k − q, l − p) . (6.1.9b)

As the last step of the complete approach we can now add the trilinear terms in eq.
(6.1.7) to the Hamiltonians H̃eff

BCPO,z and H̃eff
BCPO,bu, see eqs. (4.2.20) and (4.2.32). Again,

we leave out the explicit expression of the prefactors of the trilinear operator terms
in eq. (6.1.7) since they are given by long formulae which are evaluated numerically
anyway. For this composed Hamiltonian we follow the last step of the complete
approach, i.e. we perform a Lanczos tridiagonalization with a maximum number of
two quasiparticles and calculate the renormalized dispersions ω̃z,r (k) and ω̃b,r (k) for
our trilinear anisotropic model of BCPO as explained in sects. 2.3.1, 2.3.2 and 2.3.3.
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In order to search for the values of the D components which provide the best match
between our theoretical results and the experimental data in a systematic manner, we
analyze the effects of each odd D component on the renormalized dispersion ω̃b,r (k)

separately4.

As pointed out in sect. 4.2.2, the x and y mode are coupled by finite values of the D

component Dz
2 and the matrix entry Γxy1 . If these components are equal to zero, the

bilinear anisotropic Hamiltonian Heff
BCPO,xy, see eq. (4.2.22), is solved by two separate

bosonic Bogoliubov transformations reading

tα,†k,l = cosh
(
ϑαk,l
)
t̃α,†k,l + sinh

(
ϑαk,l
)
t̃α−k,−l (6.1.10a)

tα−k,−l = cosh
(
ϑαk,l
)
t̃α−k,−l + sinh

(
ϑαk,l
)
t̃α,†k,l (6.1.10b)

with α ∈ {x, y}5. We also set the isotropic interladder coupling J ′ to zero so that
we concentrate on one-dimensional models in the following. Thus, the solution of the
complete bilinear anisotropic Hamiltonian Heff

BCPO,xy + Heff
BCPO,z, see eqs. (4.2.22) and

(4.2.16), is given by

∑

k,α

√
(ω0 (k))2 + 2ω0 (k) (Γαα0 (k) + Γαα1 (k) + Γαα2 (k))

︸ ︷︷ ︸
=ω̃α1 (k)

t̃α,†k t̃αk (6.1.11)

with α ∈ {x, y, z} and the abbreviations

Γαα0 (k) = −2Γαα0 a2 (k) (6.1.12a)

Γαα1 (k) = 4Γαα1 a2 (k) cos (k) (6.1.12b)

Γαα2 (k) = 4Γαα2 a2 (k) cos (2k) . (6.1.12c)

As a consequence, it is possible to analyze the effects of the anisotropic couplings on
all modes independently of each other. At a later stage of this thesis, we find out
that is it crucial to choose a finite value for the components Dz

2 and Γxy1 in order to fit
our theoretically calculated dispersions to the experimental data. This means that the
original x and y modes are coupled and mapped onto the b and u mode, see sect. 4.2.2.
Since the solutions for the x and y mode are identical up to a shift of π, see again sect.
4.2.2, it is sufficient to analyze only the x mode or only the y mode in detail even for

4As described in sect. 4.2.3 we only present the effects of the anisotropic couplings on ω̃b (k) because
during our analysis it turned out that the dispersion ω̃z (k) cannot be fitted in a satisfying way. The
effects on the dispersion ω̃u (k), see eq. (4.2.30), are not relevant for our analysis since we want to
describe the low-energy regime.

5See eqs. (4.2.38) and (4.2.39) for the used abbreviations.
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the decoupled cases. As the x mode contributes to the b mode at the same momentum
k, see sect. 4.2.2, we choose the x mode and analyze its renormalized dispersion ω̃x,r (k)

in detail in the following.

6.1.1 Analysis of the components Dy
0 and Dy

1

In this subsection we analyze the effects of the anisotropic couplings Dy
0 and Dy

1 on the
isotropic dispersion ω0 (k) of a single spin ladder, see sect. 4.1.1, in detail. All other
anisotropic couplings are set to zero. As a finite value of the components Dy

0 and Dy
1 do

not induce a coupling between the x and y mode, the modes can be treated separately
and we focus on the effects on the x mode, see sect. 6.1. The deepCUT maps the
observables of the components Dy

0 and Dy
1 , see eqs. (6.1.1a) and (6.1.1c), onto the same

operator terms, see eq. (6.1.2). Applying a bosonic Bogoliubov transformation for
each flavor separately on these trilinear operator terms reveals that a single triplon with
flavor x and momentum k can only decay into two triplons with flavors x and y holding
the momenta q and k − q + π. This means that the components Dy

0 and Dy
1 induce

a hybridization of the one-triplon states with flavor x and momentum k and the two-
triplon states with the flavors (x, y) and total momentum k + π. As a consequence,
the limiting values for the Lanczos coefficients a∞ (k) and b∞ (k), see Appendix A, are
determined by the lower and upper boundary of the two-particle continuum

ω̃2,xy (k + π, q) = ω̃x1 (q) + ω̃y1 (k − q + π) (6.1.13)

at a total momentum of k + π. For the Hamiltonian6

H̃decay,Dy0+Dy1
BCPO,x =

∑

k,α

ω̃α1 (k) t̃α,†k t̃αk +
∑

k,q

(
Γ̃xyx (k, q) t̃x,†q t̃y,†k−q+π t̃

x
k + h.c.

)
(6.1.14)

we perform a Lanczos tridiagonalization7 and calculate the renormalized dispersion
ω̃x,r (k), see sects. 2.3.1, 2.3.2 and 2.3.3, which we want to analyze in detail for different
values ofDy

0 andDy
1 . The results are depicted in figure 6.2 and discussed in the following.

Note, that the two-particle continuum ω̃2,xy (k + π, q) is also affected by Dy
0 and Dy

1 . For
a better overview concerning the renormalized dispersion ω̃x,r (k) we display only the
lower boundary of the two-particle continuum ω̃2,xy (k + π, q), see eq. (6.1.13), for the
case Dy

0 = Dy
1 = 0 in figure 6.2 as an orientation. In our studies we distinguish between

the effects inside and outside of the two-particle continuum.

6The variable Γ̃xyx (k, q) ∈ C is the prefactor of the corresponding operator term in the basis of the
separate Bogoliubov transformations for the x and y mode.

7The initial state is a one-triplon state with flavor x and momentum k.
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Figure 6.2: (a) Illustration of the renormalized dispersion ω̃x,r (k) as a function of the com-
ponent Dy

0 . All other D components are set to zero. As thresholds to identify
quasiparticle peaks in the corresponding spectral functions, see sect. 3.4.1, we set
a maximum relative HWHM of (γ (k) /∆ω̃2,xy (k + π))max = 0.05 and a minimal
spectral weight of (1/s)min = 0.005. (b) Illustration of the renormalized dispersion
ω̃x,r (k) as a function of the component Dy

1 . All other D components are set to
zero. As thresholds to identify quasiparticle peaks in the corresponding spectral
functions, we set a maximum relative HWHM of (γ (k) /∆ω̃2,xy (k + π))max = 0.01
and a minimal spectral weight of (1/s)min = 0.001. For the parameters of the iso-
lated frustrated spin ladder we use the values x = 1.2 and y = 0.9 in both panels.
The dotted line in both panels is the lower boundary of the two-particle continuum
ω̃2,xy (k + π, q), see eq. (6.1.13), for the case Dy

0 = Dy
1 = 0.
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Panel (a) of figure 6.2 illustrates the effects of Dy
0 on the x mode.

Inside the two-particle continuum, Dy
0 6= 0

Inside the two-particle continuum between k = 0π and k ≈ 0.3π an increase of Dy
0

provides shifts to lower energies, but which are difficult to notice. The corresponding
HWHMs are also hardly to observe meaning that in the corresponding spectral functions
the quasiparticle peaks are sharp and their position does not differ much from ω0 (k).
Inside the two-particle continuum between k ≈ 0.9π and k = π the dispersion is shifted
to higher energies. The HWHMs are also small.
Outside the two-particle continuum, Dy

0 6= 0

Near the lower boundary of the corresponding two-particle continuum ω̃2,xy (k + π, q) at
k ≈ 0.3π and k ≈ 0.9π we see a down-bending behavior of the renormalized one-particle
dispersion ω̃x,r (k), which becomes more pronounced for larger values of Dy

0 . Outside
the two-particle continuum an increase of Dy

0 results in a slight shift to higher energies.
In total, the component Dy

0 has only slight effects on the x mode and the lifetime of a
triplon with flavor x is not affected so strongly that it becomes impossible to identify it
as a quasiparticle.

Panel (b) of figure 6.2 shows the effects of Dy
1 on the x mode.

Inside the two-particle continuum, Dy
1 6= 0

Inside the two-particle continuum, i.e. in the approximate intervals k ∈ [0π, 0.3π] and
k ∈ [0.9π, π], the dispersion is only slightly reduced and the HWHM of each quasiparticle
peak in the corresponding spectral function is small. So it is possible to identify them
clearly. Increasing the value for Dy

1 makes these effects more pronounced.
Outside the two-particle continuum, Dy

1 6= 0

Near the lower boundary of the two-particle continuum at k ≈ 0.3π and k ≈ 0.9π the
renormalized dispersion ω̃x,r (k) shows a clearly visible down-bending behavior, which
correlates positively with Dy

1 . Outside the two-particle continuum the dispersion is
lowered.
On the whole, neither Dy

1 nor Dy
0 have a strong impact on the x mode. An increasing

value of Dy
1 leads to an energy reduction in the complete Brillouin zone. Furthermore,

the lifetime of a triplon with flavor x is sufficiently large to identify it as a quasiparticle.

6.1.2 Analysis of the components Dx
1 and Dx

2

In this subsection we discuss the effects of the anisotropic couplings Dx
1 and Dx

2 on the
isotropic dispersion ω0 (k) of a single spin ladder, see sect. 4.1.1, in detail. The other
anisotropic couplings are set to zero. Since the components Dx

1 and Dx
2 do not cause a

coupling between the x and y mode, we can treat the modes separately and focus on
the effects on the x mode, see sect. 6.1. Applying a deepCUT to the observables of
the components Dx

1 and Dx
2 , see eqs. (6.1.1b) and (6.1.1d), results in the same operator
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terms which are listed in eq. (6.1.3). Applying a bosonic Bogoliubov transformation
for each flavor separately on these trilinear operator terms reveals that there are three
different decay channels for the x mode. A single triplon with flavor x and momentum
k can decay into two triplons with the flavor combinations (y, y) / (z, z) / (x, x) holding
the momenta (q, k − q). As the behavior of the sign of the components Dx

1 and Dx
2 is

uniform, see table 4.1, the components Dx
1 and Dx

2 induce a hybridization of the one-
triplon states with flavor x and momentum k and the two-triplon states with the flavor
combinations (y, y), (z, z) and (x, x) with the same total momentum k. Consequently,
the limiting values for the Lanczos coefficients a∞ (k) and b∞ (k), see Appendix A, are
fixed by the lower and upper boudary of the three two-particle continua

ω̃2,yy (k, q) = ω̃y1 (q) + ω̃y1 (k − q) (6.1.15a)

ω̃2,zz (k, q) = ω̃z1 (q) + ω̃z1 (k − q) (6.1.15b)

ω̃2,xx (k, q) = ω̃x1 (q) + ω̃x1 (k − q) (6.1.15c)

at total momentum k each. For a better understanding, we combine the three mentioned
two-particle continua to one two-particle continuum which we name ω̃2,x (k, q). For the
Hamiltonian8

H̃decay,Dx1+Dx2
BCPO,x =

∑

k,α

ω̃α1 (k) t̃α,†k t̃αk +
∑

k,q

(
Γ̃yyx (k, q) t̃y,†q t̃y,†k−q t̃

x
k + h.c.

)
+

∑

k,q

(
Γ̃zzx (k, q) t̃z,†q t̃

z,†
k−q t̃

x
k + Γ̃xxx (k, q) t̃x,†q t̃x,†k−q t̃

x
k + h.c.

)
9

(6.1.16)

we perform a Lanczos tridiagonalization10 and calculate the renormalized dispersion
ω̃x,r (k), see sects. 2.3.1, 2.3.2 and 2.3.3, which we want to analyze in detail for different
values of Dx

1 and Dx
2 . The results are presented in figure 6.3 and discussed in the

following. As well as in sect. 6.1.1, we display only the lower boundary of the two-
particle continuum ω̃2,x (k, q) for the case Dx

1 = Dx
2 = 0 in figure 6.3 as an orientation

to ensure a better overview of the renormalized dispersion ω̃x,r (k).

8The variables {Γ̃yyx (k, q) , Γ̃zzx (k, q) , Γ̃xxx (k, q)} ∈ C are the prefactors of the corresponding op-
erator terms in the basis of the separate Bogoliubov transformations for the modes x, y and
z.

10The initial state is again a one-triplon state with flavor x and momentum k.
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Figure 6.3: (a) Illustration of the renormalized dispersion ω̃x,r (k) as a function of the com-
ponent Dx

1 . All other D components are set to zero. As thresholds to identify
quasiparticle peaks in the corresponding spectral functions, see sect. 3.4.1, we set a
maximum relative HWHM of (γ (k) /∆ω̃2,x (k))max = 0.01 and a minimal spectral
weight of (1/s)min = 0.001. (b) Illustration of the renormalized dispersion ω̃x,r (k)
as a function of the component Dx

2 . All remaining D components are set to zero.
As thresholds to identify quasiparticle peaks, we set a maximum relative HWHM
of (γ (k) /∆ω̃2,x (k))max = 0.001 and a minimal spectral weight of (1/s)min = 0.001.
For the parameters of the isolated frustrated spin ladder we use the values x = 1.2
and y = 0.9 in both panels. The dotted line in both panels is the lower boundary
of the two-particle continuum ω̃2,x (k, q) for the case Dx

1 = Dx
2 = 0.
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Panel (a) of figure 6.3 depicts the effects of Dx
1 on the x mode.

Inside the two-particle continuum, Dx
1 6= 0

Inside the two-particle continuum ω̃2,x (k, q) between k = 0π and k ≈ 0.2π an increase
of Dx

1 shows only hardly noticeable shifts of the dispersion to higher energies. The
corresponding HWHMs are also small and difficult to spot. In contrast to the results
in section 6.1.1, the HWHMs of the quasiparticle peaks in the corresponding spectral
functions become larger than the chosen threshold of (γ (k) /∆ω̃2,x (k)) = 0.01 with
increasing Dx

1 . This means that the lifetime of the triplon is not sufficient long enough
to consider it as a quasiparticle.
Outside the two-particle continuum, Dx

1 6= 0

Outside and near the border of the two-particle continuum at k ≈ 0.8π the one-particle
dispersion is shifted to lower energies significantly. Especially the prominent down-
bending behavior near the lower boundary of the two-particle continuum at k ≈ 0.8π is
an important aspect to mention. The level repulsion between the relevant one-particle
and two-particle Hilbert spaces is so strong that the one-particle dispersion is pushed
below the two-particle continuum11.
Overall, the component Dx

1 has a strong influence on the x mode and induces such a
strong level repulsion between the corresponding one- and two-particle Hilbert spaces
so that the renormalized dispersion ω̃x,r (k) is pushed below the two-particle continuum.

The effects of the component Dx
2 on the x mode are shown in panel (b) in figure 6.3.

Inside the two-particle continuum, Dx
2 6= 0

Inside the two-particle continuum ω̃2,x (k, q) between k = 0π and k ≈ 0.1π no signifi-
cantly visible effects on the renormalized dispersion ω̃x,r (k) exist. Inside the two-particle
continuum from k ≈ 0.8π to k = π we observe that an increasing value of Dx

2 ensures
that the one-particle dispersion of a triplon with flavor x vanishes. However, around
k = π the level repulsion between the corresponding one- and two-particle Hilbert
spaces is so strong that the one-particle dispersion is pushed below the lower boundary
of the two-particle continuum.
Outside the two-particle continuum, Dx

2 6= 0

Near the lower boundary of the two-particle continuum ω̃2,x (k, q) at k ≈ 0.1π a clear
down-bending behavior can be observed which grows upon increasing Dx

2 . Outside the
two-particle continuum from k ≈ 0.1π to k ≈ 0.8π the renormalized dispersion ω̃x,r (k) is
shifted significantly to lower energies. Near the lower boundary of ω̃2,x (k, q) at k ≈ 0.8π

only a slight down-bending can be identified and the renormalized dispersion terminates

11In regards to the experimental data of BCPO, see e.g. figure 4.1, this point is essential since the
data are characterized by a prominent down-bending behavior of the two lower modes as mentioned
before.
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abruptly when entering the two-particle continuum because it is strongly damped.
In total, the component Dx

2 has a strong influence on the x mode and ensures that its
one-particle dispersion is reduced strongly outside the two-particle continuum. Inside
the two-particle continuum an increasing value of Dx

2 leads to the scenario that the x
mode vanishes.

6.1.3 Analysis of the combination of the components Dx
1 and

Dy
1

In this subsection we analyze the effects of finite values of the anisotropic couplings Dx
1

and Dy
1 on the isotropic dispersion ω0 (k) of a single spin ladder, see sect. 4.1.1. The

remaining anisotropic couplings are set to zero. In this case the matrix element Γxy1

holds a non-zero value, see eq. (2.4.84), and provides a coupling between the x and y
mode, see sect. 4.2.2. So we have to analyze the effects of the combination of Dx

1 and
Dy

1 on the b mode, see sect. 6.1 for further details12. The results are presented in figure
6.4 and discussed in the following. By analogy with the results in sects. 6.2 and 6.3, we
display only the lower boundary of the two-particle continuum ω̃2,b (k, q) for the case
Dx

1 = 0.1J0 and Dy
1 = 0.2J0 respectively Dx

1 = 0.2J0 and Dy
1 = 0.1J0 in order to provide

a detailed overview of the renormalized one-particle dispersion ω̃b,r (k).

At first, we analyze the effects of the component Dx
1 with a constant value of Dy

1 = 0.2J0

on the b mode, which are displayed in panel (a) in figure 6.4.
Inside the two-particle continuum, Dx

1 6= 0 and Dy
1 = const.

Inside the two-particle continuum ω̃2,b (k, q) at k ≈ 0π even small values of Dx
1 lead to

the scenario that no quasiparticle energies can be identified and the renormalized one-
particle dispersion ω̃b,r (k) vanishes. With an increasing value of Dx

1 the level repulsion
between the one- and the multiple corresponding two-particle states becomes strong
enough to push the one-particle dispersion below the two-particle continuum, see the
case Dx

1 = 0.6J0. In the interval k ∈ [0.8π, π], we can observe the same situation to a
greater extent.
Outside the two-particle continuum, Dx

1 6= 0 and Dy
1 = const.

Outside the two-particle continuum a clear lowering of the renormalized one-particle
dispersion ω̃b,r (k) is visible. In contrast to the results of the previous subsections 6.1.1
and 6.1.2, this lowering effect varies in the Brillouin zone. In the interval k ∈ [0.5π, π]

the energy reduction is significantly stronger than in the interval k ∈ [0π, 0.5π]. These
insights are consistent with our results concerning the effects of Dx

1 , see sect. 6.1.2 and
panel (a) in figure 6.3.

12Note, that we also set the interladder coupling J ′ to zero, so that the calculations explained in sect.
6.1 are reduced to a one-dimensional problem, i.e. the second momentum has be discarded in all
steps.
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Figure 6.4: (a) Illustration of the renormalized dispersion ω̃b,r (k) as a function of the com-
ponent Dx

1 with a fixed value of Dy
1 = 0.2J0. All other D components are

equal to zero. As thresholds to identify quasiparticle peaks in the correspond-
ing spectral functions, see sect. 3.4.1, we set a maximum relative HWHM of
(γ (k) /∆ω̃2,b (k))max = 0.001 and a minimal spectral weight of (1/s)min = 0.001.
(b) Illustration of the renormalized dispersion ω̃b,r (k) as a function of the com-
ponent Dy

1 with a fixed value of Dx
1 = 0.2J0. All remaining D components are

set to be zero. As thresholds to identify quasiparticle peaks, we set a maximum
relative HWHM of (γ (k) /∆ω̃2,b (k))max = 0.001 and a minimal spectral weight of
(1/s)min = 0.001. For the parameters of the isolated frustrated spin ladder we use
the values x = 1.2 and y = 0.9 in both panels. The dotted line in both panels is the
lower boundary of the two-particle continuum ω̃2,b (k, q) for the case Dx

1 = 0.1J0

and Dy
1 = 0.2J0 respectively Dx

1 = 0.2J0 and Dy
1 = 0.1J0.
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Finally, we discuss the influence of the componentDy
1 with a constant value ofDx

1 = 0.2J0

on the b mode, see panel (b) in figure 6.4.
Inside the two-particle continuum, Dy

1 6= 0 and Dx
1 = const.

Inside the two-particle continuum ω̃2,b (k, q) at k ≈ 0π already small values of Dy
1 have

the effect that no quasiparticle energies can be located because the corresponding res-
onances are smeared out too strongly. By analogy with the coupling Dx

1 , an increasing
value of the component Dy

1 generates a level repulsion between the one- and the multiple
corresponding two-particle states which is strong enough to push the one-particle states
energetically below the two-particle continuum. In the interval k ∈ [0.8π, π] we receive
the same results.
Outside the two-particle continuum, Dy

1 6= 0 and Dx
1 = const.

Outside the two-particle continuum only small effects can be observed. Increasing
the value of Dy

1 provides a slight reduction of the renormalized one-particle dispersion
ω̃b,r (k). Furthermore, the concrete characteristic of this lowering effect varies in the
Brillouin zone. In the interval k ∈ [0π, 0.5π] the energy reduction is slightly stronger
than in the interval k ∈ [0.5, π]. These findings are consistent with out results concerning
the effects of Dy

1 , see sect. 6.1.1 and panel (b) of figure 6.2. Compared to the asymmetric
energy reduction to the point k = 0.5π induced by a variation of the component Dx

1 , the
impact of a comparably large value for Dy

1 is significantly smaller and the asymmetry is
reversed.

6.2 Results for the trilinear anisotropic Hamiltonian
of BCPO

The main issue for the trilinear anisotropic description of the quantum antiferromagnet
BCPO is to take the effects of SQPD into account, which are induced by the majority
of the allowed D components, see eqs. (6.1.1). With this comprehensively extended
model of BCPO we determine the values of all allowed D components, see table 4.1,
which provide the best fit for the experimentally measured data of the dispersions. As
discussed thoroughly in sect. 4.2.3, we expect the consideration of SQPD to provide a
great improvement of the results compared to the bilinear anisotropic model of BCPO,
see chapter 4.

The detailed studies of the effects of each oddD component on the calculated one-particle
dispersion ω̃x (k) or ω̃b (k) in sects. 6.1.1, 6.1.2 and 6.1.3 are the basis for fitting the
experimental dispersion data. The main results are listed in table 6.1 as a reminder.
Using the knowledge of the effects of each D component on the bilinear operator level,
see table 4.3, and on the trilinear operator level, see table 6.1, we can search for the
values of the D components which lead to the best match between our calculated
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Dα
ij ω̃x (k) or ω̃b (k) effects inside continuum effects outside continuum

Dy
0 ω̃x (k) slight shifts slight increase

Dx
1 ω̃x (k) slight shifts strong down-bending behavior

Dy
1 ω̃x (k) slight reduction strong lowering

Dx
1 and ω̃b (k) vanishing behavior asymmetric lowering about k = π

2

Dy
1 = const. → stronger lowering at k > π

2

and strong down-bending behavior
Dy

1 and ω̃b (k) vanishing behavior asymmetric lowering about k = π
2

Dx
1 = const. → stronger lowering at k < π

2

Dx
2 ω̃x (k) slight shifts strong lowering

Table 6.1: SQPD effects of an increase of the various odd D-components on the one-particle
dispersion ω̃x (k) or ω̃b (k), see eqs. (6.1.11) and (4.2.30). Note, that the component
Dz

2 has even parity, see table 4.1, and therefore does not contribute to SQPD.

dispersions and the experimentally received data in a systematic manner. Again, we
take over the results for the isotropic approach, see sect. 4.1, meaning that we keep the
parameters x = 1.2, y = 0.9 and J ′/J0 = 0.16 fixed and adjust only the values of the D

components and the global energy scale J0.
In the following we discuss several issues concerning our best fit, which is shown in
figures 6.5 and 6.6, and compare the results to the ones of the bilinear anisotropic
model, see figure 4.4.

(i) The good agreement between the two lowest-lying modes 1 and 2 and the calculated
dispersions ω̃b,r (k) and ω̃b (k + π) in the bilinear model, see figure 4.4, could not be
reproduced by taking into account the effects of SQPD stemming from anisotropic
couplings. The asymmetry of ω̃b,r (k) around k = 0.5 r.l.u. is created by choosing
D̃x

1 6= D̃y
1 6= 0, see sect. 6.1.3. Our analysis in this section reveals that this asymmetric

effect around k = 0.5 r.l.u. including the effects of SQPD does not match the observed
behavior of mode 1 and mode 2 simultaneously, in contrast to the bilinear anisotropic
model, see figure 4.4. Therefore, it is only possible to describe mode 1 or mode 2 in a
satisfying way within our trilinear anisotropic model of BCPO13. Following the results
of our bilinear anisotropic model of BCPO we decided to choose D̃y

1 to be slightly larger
than D̃x

1 in order to create the asymmetric behavior of the renormalized dispersions
around k = 0.5 r.l.u.. We stress that we achieved a clear reduction of the two dominant
components D̃x

1 = 0.25 and D̃y
1 = 0.38 compared to the previous results D̃x

1 = 0.48 and
D̃y

1 = 0.61, see figure 4.4. This states a reduction of ≈ 50 % and ≈ 40 %.

13Again, it is possible to swap ω̃b,r (k) and ω̃b,r (k + π) by simply exchanging the values of D̃x
1 and D̃y

1 .
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Figure 6.5: (a) Fitted theoretical dispersions, which stem from the z, x and y mode for the
fixed parameters x = 1.2, y = 0.9 and J ′/J0 = 0.16. Their error bars depict the
corresponding HWHM, see eq. (2.3.72). As thresholds to identify quasiparticle
peaks in the corresponding spectral functions, see sect. 3.4.1, we set a maximum
relative HWHM of (γ (k) /∆ω̃2 (k))max = 0.05 and a minimal spectral weight of
(1/s)min = 0.001. The fitted parameters are J0, D̃

y
0 , D̃

x
1 , D̃

y
1 , D̃

x
2 and D̃z

2. Their
values are listed in the panel itself. (b) Zoom of panel (a) into the vicinity of the
left minimum.
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Figure 6.6: Zoom of panel (a) of figure 6.5 into the range where mode 1 and 2 show the promi-
nent down-bending behavior. Additionally, the lower boundaries of the two-particle
continua ω̃2,b (k) and ω̃2,z (k) are depicted by solid lines.

As a consequence, our result for D̃x
1 can be considered as a realistic value14 whereas

D̃y
1 = 0.38 is still larger than expected. With this we want to emphasize that our estab-

lished trilinear anisotropic model for the quantum antiferromagnet BCPO represents a
more realistic model as its corresponding D components assume more reasonable values
compared to previous discussed models.
Still, the components D̃x

1 and D̃y
1 present by far the largest values of all possible D

components. Their combination has a strong impact on the shape of the calculated
renormalized dispersion ω̃b,r (k), see table 6.1. We also stress that our results in
figure 6.5 describe an improved description of the lowest-lying mode 1 in the interval
k = 0.5− 0.7 r.l.u. compared to the results of the bilinear model in figure 4.4.
Another positive aspect to comment on is the received value of D̃y

0 = 0.1, which meets
our expectations. Table 6.1 reveals that the component D̃y

0 affects the renormalized
dispersions only slightly, but it is important to achieve the good match in the low-energy
regime. As discussed in detail in passage (i) in sect. 5.3, Dy

0 compensates the dominant
effect of the quadratic component Γxy1 resulting from D̃x

1 and D̃y
1 .

(ib) In the previous part (i) we mainly concentrated on the good agreement between

14As a reminder, our expectation concerning the value of the anisotropic couplings is 10− 20 % of the
corresponding isotropic couplings.
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mode 1 and our results for ω̃b,r (k + π). A similiar satisfying agreement between mode
2 and our results for ω̃b (k) is not possible to achieve. This aspect was also discernible
in figure 5.4 and discussed in part (ib) in sect. 5.3 in detail. Since the statements given
there also hold for the trilinear anisotropic model, we ask the reader to reconsider this
part.
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Figure 6.7: Logarithmic color map of the computed spectral function A (k, ω) for the fitted
renormalized one-particle dispersions ω̃b,r (k), ω̃b,r (k + π) and ω̃z,r (k) with the pa-
rameters shown in figure 6.5. The black solid line represents the lowest border of the
two-particle continua ω̃2,b (k), ω̃2,b (k + π) and ω̃2,z (k). Outside the corresponding
two-particle continua the one-particle dispersions are depicted with error bars equal
to zero implying triplon excitations with infinite lifetime.

(ii) As the only exception the component D̃z
2 holds even parity, see table 4.1, and

therefore cannot give rise to the phenomenon of SQPD in BCPO. It just has an
influence on the bilinear anisotropic model, which serves as a starting point for our
more comprehensive trilinear anisotropic model. Its absolute value increases from
D̃z

2 = −0.02 for the bilinear model up to D̃z
2 = −0.09 for the trilinear anisotropic model.

This is still small compared to value of the dominant components D̃x
1 and D̃y

1 but meets
our expectations. The effects and importance of D̃z

2, which were discussed in detail in
passage (ii) in sect. 5.3, also hold for our received results in this section. Therefore we
refer to this previous point of this thesis.

(iii) Our calculations and studies of the trilinear anisotropic model of BCPO reveal
that even this comprehensive model is not able to provide a satisfying match between
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the calculated renormalized dispersion ω̃z,r (k) and the experimentally received mode
3. Compared to ω̃z (k) in the bilinear model the renormalized dispersion ω̃z,r (k) is
shifted to lower energies in general but still does not suit the data of mode 3 in the
minimum area. Around k = 1 r.l.u. our results can still be considered as acceptable
since the experimental data overlap with ω̃z,r (k) within the displayed error ranges15. In
this interval we see that the HWHM becomes larger from 0.23meV to 0.82meV which
goes well with the experimental observations. The missing explanations concerning
the measured resonances at high energies remain. For the sake of completeness,
we point out again that it is possible to obtain a better description of mode 3 with
our results for ω̃z,r (k) but this would mean a declined fit of the two lowest modes 1 and 2.

(iv) Discussing the results of the bilinear model in sect. 4.2.3 we formulated the
presumption that a hybridization between the one- and two-triplon states is responsible
for the dominant down-bending behavior of the two lowest-lying modes in the experi-
ment. In our extended trilinear anisotropic model of BCPO we take this aspect into
account and can identify several effects. In figure 6.6 we can see a clear down-bending
behavior of ω̃b,r (k) at k ≈ 0.75 r.l.u. where it approaches the lower boundary of the
two-particle continuum ω̃2,b (k). The one-particle dispersion tries to avoid an overlap
with the two-particle continuum, see the third scenario of SQPD in sect. 2.3, and is
pushed below it. After entering the two-particle continuum the lifetime of the triplons
becomes finite, represented by the displayed error bars of ω̃b,r (k). At k ≈ 0.75 r.l.u. it
is still possible to identify quasiparticle energies inside the two-particle continuum, i.e.
the relative HWHM of the quasiparticle peaks in the corresponding spectral functions
is smaller than our chosen threshold of (γ (k) /∆ω̃2 (k))max = 0.05. In the interval
k ≈ 0.8 − 0.9 r.l.u. no quasiparticle energies can be determined. This means that the
lifetime of the triplons is so short that they cannot be considered as quasiparticles
anymore. Although the exact shape of the measured data cannot be reproduced this
behavior, i.e. the down-bending of ω̃b,r (k), the finite lifetime of the triplons and their
disappearance, goes with the experimental data in general.
In the interval k = 0.9 − 1 r.l.u. we can determine quasiparticle energies again. This is
not in agreement with the experiment but we stress that our chosen criteria to identify
quasiparticle peaks could be adapted such that the theoretical data points in this
interval are not displayed in figure 6.6. Another crucial aspect concerning this issue
refers to the experimental side. In INS experiments the DSF is measured, see sect. 1.2,
which is identical to the spectral function in the case of zero temperature, see sect.
2.3.1. Just like in our theoretical calculations, see sect. 3.4.1, it is crucial to decide

15As a reminder, our denoted error bars represent the HWHM of the corresponding peaks in the spectral
function, see sect. 2.3.3.
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whether a peak in the measured data of the DSF is sharp enough to be considered as a
quasiparticle peak or not. In order to do so, one has to introduce certain criteria which
solve this issue. Changing these criteria leads different results for the quasiparticle
energies. Therefore, it is possible that the experiment holds more data, which can also
be interpreted as quasiparticle energies, as shown.
The down-bending behavior of mode 1 cannot be reproduced at all. We tried hard but
could not find a parameter combination which provides more satisfying results concern-
ing the down-bending behavior while keeping the good agreement in the low-energy
regime. Beyond the considered hybridization effects taking into account two-particle
interactions in addition could ensure an improved fit especially concerning the observed
down-bending behavior. As discussed in our toy model two-particle interactions can
give rise to bound states and lower the two-particle states energetically, see sect. 3.3. In
combination with the hybridization effects discussed here this can result in an increased
level repulsion which finally leads to a further energetical reduction of the one-particle
dispersions and hence to a prominent down-bending.
To the best of our knowledge no theoretical description of BCPO including two-particle
interactions exists in the literature. We address this issue in detail in chapter 7.

(v) With regard to the resonances of mode 3 in the high energy regime at ≈ 27meV,
the trilinear anisotropic model of BCPO is not able to explain these. We tried hard
but could not find a parameter combination which provides a good agreement between
theory and experiment in this energy range. Panel (a) of figure 6.5 reveals that the
renormalized dispersion ω̃z,r (k) shows a clear down-bending behavior at k ≈ 0.3 r.l.u..
In this range the dispersion approaches the lower boundary of the corresponding two-
particle continuum ω̃2,z (k, q)16 and tries to avoid an overlap with it, see the third scenario
of SQPD in sect. 2.3. Compared to the results of the bilinear model, see figure 4.4, the
quasiparticle energies of a triplon with flavor z are noticeably reduced in this part of
the Brillouin zone. The spectral function A (k, ω), see figure 6.7, also shows that
no significant amount of spectral weight is present near the experimentally measured
resonances around ≈ 27meV. Finally, we conclude that our presumption of the bilinear
model, see aspect (v) in sect. 4.2.3, that including states with a higher number of
triplons and a hybridization with one-triplon states helps explaining the resonances a
high energies, did not turn out to be true.

6.3 Chapter summary
In this chapter we analyzed the effects of SQPD, which stem from anisotropic couplings,
in the magnetic strucuture of BCPO starting from its bilinear anisotropic model, which
16For reasons of clarity, the lower boundaries of the two-particle continua ω̃2,b (k, q) and ω̃2,z (k, q) are

not displayed in figure 6.5.
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we established in chapter 4. The symmetry analysis of the spin ladder structure of
BCPO revealed that four out of five allowed anisotropic couplings hold odd parity.
Consequently, these four D components induce a hybridization between the one- and
two-particle states, i.e. quasiparticle decay/fusion processes. We discussed the influence
of each D component on the one-particle dispersion separately. We found that the
component D1 still has the greatest impact. Due to the considered hybridization effects
we expected to provide an improved description of the experimental data with smaller
D values compared to our starting point, i.e. the bilinear anisotropic model. Our results
reveal several improvements concerning the match between our calculated renormalized
dispersions and the experimental data. These comprise a significant reduction of the
dominant componentD1 ≈ 0.38J1, compared toD1 ≈ 0.6J1, and a better approximation
of the slope of the energetically lowest-lying mode. The component D1 ≈ 0.38J1 still
has to be considered as remarkably large, but our results for the components D0 ≈
0.1J0 and D2 ≈ −0.1J2 are in line with our expection of 10 − 20 % of the isotropic
couplings. A major point of criticism concerning our results is the insufficient description
of the characteristic down-bending behavior of the two lowest modes. The included level
repulsion turned out to be too weak for this purpose. In order to solve this issue we use
the results of our toy model, see chapter 3. Thereby, we demonstrated that taking into
account two-particle interactions can solve this issue. These interactions can give rise to
bound states and provide a shift of the two-particle states in energy. In combination with
the already discussed hybridization effects this can result in an increased level repulsion
and finally in a further lowering of the one-particle modes. We strongly assume that
we can improve our current results, especially the description of the down-bending, by
extending our current model of BCPO with the effects of two-particle interactions. We
address this issue in the following chapter in detail.
Our results are similiar to the results from Hwang and Kim [64]. In their calculations
they considered bilinear operator terms and two-particle interactions using the BOT on
a mean-field level17. In addition, decay/fusion processes are included via the Green’s
function formalism on an one-loop level. Their best fitting parameters read: x = y = 1,
J0 = 10meV, J ′ = 2meV and Dx

1 = Dy
1 = 0.3J1. Our results go roughly with these

parameters, i.e. they differ up to 25 %. Thus, our CUT based results can be interpreted
as a confirmation of the BOT based results. In contrast to Hwang and Kim, our current
results do not respect two-particle interactions at all. Therefore, we see further potential
for improvement in our results concerning the match between theory and experiment by
including the effects of two-particle interactions explicitly.

17Note, performing a mean-field decoupling of two-particle interactions precludes that bound states
occur.
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In the previous chapter we discussed the influence of SQPD, induced by the
DM interaction, on the excitation spectrum of BCPO. Thereby, we concentrated only on
processes which describe a transition between the one- and two-triplon Hilbert space.
Concerning the characteristic down-bending of BCPOs excitation spectrum these pro-
cesses had hardly any effect. Therefore, we extend our model for BCPO in a further step
by considering two-triplon interactions. In our toy model we showed that attractive two-
particle interactions can lead to an additional lowering effect of the one-particle energies,
see sect. 3.3. In addition, bound states can occur. We presume that adding two-triplon
interactions to our model of BCPO provides a better match between theory and experi-
ment by choosing even smaller values for the fitted D components1. Plumb et. al. and
Hwang et. al. already included two-triplon interactions in their studies [39, 64] but
not in a comprehensive range. In their calculations the two-triplon interactions were
treated by a mean-field decoupling so that it was not possible to receive bound states.
In our studies we will consider the existing two-triplon interactions in BCPO explicitly
by using the complete approach, see sect. 5.1. By this, it is possible to observe bound
states and to obtain a further lowering of the one-triplon dispersions.

7.1 Bound states in the isotropic spin ladder
In order to include the two-triplon interactions in BCPO, it is reasonable to neglect all
anisotropies in the first place and analyze their influence on the isotropic spin ladder.
Therefore, we first consider the Hamiltonian Hladder, see eqs. (4.1.1). In addition to the
analysis performed in sect. 4.1.1, we also respect the existence of two triplons in the
isotropic spin ladder. Then, the deepCUT provides the effective two-triplon interactions

1Previous studies on spin ladder models without spin anisotropic effects showed that considering two-
triplon interactions leads to the existence of bound states and that spectral weight is shifted to lower
energies [148,149].



140
Description of the quantum antiferromagnet BiCu2PO6 on quadrilinear

operator level

of the type

Hquad,1 =
∑

i

∑

δ1,δ2,δ3,δ4

∑

α,β

αα,α,β,βδ1,δ2,δ3,δ4
tα,†i+δ1t

α,†
i+δ2

tβi+δ3t
β
i+δ4

(7.1.1)

and
Hquad,2 =

∑

i

∑

δ1,δ2,δ3,δ4

∑

α 6=β

αα,β,α,βδ1,δ2,δ3,δ4
tα,†i+δ1t

β,†
i+δ2

tαi+δ3t
β
i+δ4

(7.1.2)

with the spin components α, β ∈ {x, y, z}, the relative distances δ1, δ2, δ3, δ4 in real space
and the corresponding prefactors {αα,α,β,βδ1,δ2,δ3,δ4

, αα,β,α,βδ1,δ2,δ3,δ4
} ∈ R. The Fourier transform

of eqs. (7.1.1) and (7.1.2) yields

Hquad,1D =
1

N

∑

k,q,q′

αα
′,β′,γ′,δ′ (k, q, q′) tα

′,†
q′ t

β′,†
k−q′t

γ′

q t
δ′

k−q (7.1.3)

with the general flavors (α′, β′, γ′, δ′) assuming the occuring flavor combinations. The
prefactor

αα
′,β′,γ′,δ′ (k, q, q′) =

∑

δ1,δ2,δ3,δ4

αα
′,β′,γ′,δ′

δ1,δ2,δ3,δ4
ei(δ2−δ1)q′ei(δ3−δ4)qei(δ4−δ2)k (7.1.4)

adds up the prefactors αα
′,β′,γ′,δ′

δ1,δ2,δ3,δ4
of the two-triplon interactions from eqs. (7.1.1) and

(7.1.2). Combining the effective Hamiltonian Heff
ladder, see eq. (4.1.2), with the discussed

two-triplon interactions gives rise to the appearance of bound states. By analogy with
our toy model, see sect. 3.4.2, we choose the two-particle state

|k, α〉 |1, β〉 =
1√
N

N−1∑

i=0

eik(ri+ 1
2)tα,†i tβ,†i+1 |0〉 (7.1.5)

as the initial state for our calculations. Note, that this state takes different triplon flavors
into account in contrast to |k, 1〉 in eq. (3.4.28). In the isotropic case, where the total
spin Stot is a good quantum number, two triplons can form two-triplon states with a
total spin of S=0, 1, 2 [150]. For our concerns we concentrate only on the S=0 and S=1

bound states. The S=2 two-particle state describes an anti-bound state which is located
above the two-particle continuum. Such a state is of no interest for BCPO where we
focus on the low-energy regime.

7.1.1 S=0 and S=1 bound states
Due to the SU(2) symmetry of the considered Hamiltonian Hladder, see eq. (4.1.1), it
is possible to focus only on one single Sztot = m value for a fixed total spin S. For our
calculations we choose m = 0. In real space the S=0 two-particle state, see eq. (7.1.5),
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yields

|k, 1〉S=0
m=0 =

1√
3N

N−1∑

i=0

eik(ri+ 1
2)
(
tx,†i tx,†i+1 − tz,†i tz,†i+1 + ty,†i ty,†i+1

)
|0〉 . (7.1.6)

For a detailed derivation we refer to Refs. [123, 150]. The Fourier transform of eq.
(7.1.6) results in

|k, 1〉S=0
m=0 =

1√
3N

∑

q

cos

(
k

2
− q
)(

tx,†q tx,†k−q − tz,†q tz,†k−q + ty,†q ty,†k−q

)
|0〉 , (7.1.7)

which serves as our initial state for the Lanczos calculations in momentum space. For
a total spin of S=1 the two-particle state in real space reads

|k, 1〉S=1
m=0 =

i√
2N

N−1∑

i=0

eik(ri+ 1
2)
(
ty,†i tx,†i+1 − tx,†i ty,†i+1

)
|0〉 (7.1.8)

yielding

|k, 1〉S=1
m=0 = −

√
2

N

∑

q

sin

(
k

2
− q
)
tx,†q ty,†k−q |0〉 (7.1.9)

in momentum space. In figure 7.1 the dispersions of the S=0 and S=1 two-particle
bound state are presented.
On average, we note a stronger attraction for the S=0 two-particle bound state compared
to the S=1 state except in the region around k ≈ 0. There the situation is the opposite.
Our results are in qualitative accordance with previous results on spin ladders [148,149].
The exciting aspect of the results in figure 7.1 is that in BCPO the S=0 and S=1 two-
particle states are mixed by the DM interactions. The down-bending of the two lowest
modes reminds strongly of the S=0 bound state. Thus, extending our model of BCPO
by two-particle interactions represents a promising approach.
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Figure 7.1: Dispersions of the two-particle bound state ωbound (k) with a total spin of S=0 and
S=1 for the isotropic spin ladder. The coupling ratios are x=1.2 and y = 0.9. For
the calculations a discretization of N = 800 in k-space was chosen and 200 Lanczos
steps have been performed. The energy ω is discretized in steps of 0.001J0 and up to
nLanczos,max = 25 for S=0 and up to nLanczos,max = 30 for S=1 Lanczos coefficients
were used in order to solve the Dyson equation, see eq. (2.3.66).

7.2 Results for the quadrilinear anisotropic
Hamiltonian of BCPO

In order to take two-particle interactions into account for our trilinear anisotropic model
of BCPO, see chapter 6, we again follow the steps of the complete approach as explained
in sect. 5.3. The first steps have already been performed in sect. 7.1 partially. As
the magnetic structure of BCPO is two-dimensional, we have to modify the Fourier
transform of the two-particle interactions, see eq. (7.1.3), to read

Hquad,2D =
1

NkNl

∑

k,q,q′

∑

l,p,p′

αα
′,β′,γ′,δ′ (k, q, q′) tα

′,†
q′,p′t

β′,†
k−q′,l−p′t

γ′

q,pt
δ′

k−q,l−p. (7.2.10)

This expression describes transitions between two-particle states, which hold total mo-
mentum (k, l) and relative momentum (q, p), and different two-particle states with the
same total momentum (k, l) and relative momentum (q′, p′)2. The next step is to trans-
form all these quadrilinear operator terms in momentum space into the same Bogoli-

2Of course the case q = q′, p = p′ is also possible and describes a self-interaction of the corresponding
two-particle state.
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ubov basis as the Hamiltonians H̃eff
BCPO,z and H̃eff

BCPO,bu, see eqs. (4.2.20) and (4.2.32).
Subsequent normal-ordering would give rise to quadrilinear operator terms which do
not conserve the number of particles and bilinear operator terms. The former are ne-
glected anyway in the complete approach as it considers only interactions in the one-
and two-particle Hilbert space and transitions between them. Concerning the bilin-
ear operator terms of the type t̃†t̃ would not be neglected directly within the complete
approach. However, to hold the calculation effort low we also neglect these bilinear op-
erator terms. This means that we only keep the terms of the type t̃†t̃†t̃t̃ for our further
calculations. Thus, the operator terms of the type t̃†q′,p′ t̃

†
k−q′,l−p′ t̃q,pt̃k−q,l−p with the flavor

combinations

t̃b,†t̃b,†t̃bt̃b, t̃b,†t̃u,†t̃bt̃u, t̃u,†t̃u,†t̃ut̃u, t̃z,†t̃z,†t̃z t̃z, t̃b,†t̃b,†t̃bt̃u,

t̃b,†t̃b,†t̃ut̃u, t̃z,†t̃z,†t̃bt̃b, t̃b,†t̃u,†t̃ut̃u, t̃z,†t̃z,†t̃bt̃u, t̃z,†t̃z,†t̃ut̃u,

t̃z,†t̃b,†t̃z t̃b, t̃z,†t̃b,†t̃z t̃u, t̃z,†t̃u,†t̃z t̃u,

(7.2.11)

emerge including the Hermitian conjugated part of each non-Hermitian operator term.
These two-particle interactions describe transitions between all occuring two-particle
Hilbert spaces as pointed out in sect. 6.1. As the final step of the complete approach
we add the quadrilinear terms in eq. (7.2.11) to our trilinear anisotropic model of
BCPO, see sect. 6.1, and receive the renormalized dispersions ω̃z,r,qu (k) and ω̃b,r,qu (k).
Again, we forego the explicit expressions of the prefactors of the quadrilinear operator
terms in eq. (7.2.11) since they are given by extremely cumbersome formulae which are
evaluated numerically anyway. This calculation step turned out to be very challenging.
After developing and implementing different algorithms this numerical evaluation
appears only to be possible for a maximal discretization of Nk = 40. In section 7.3 we
go into detail and explain why higher discretizations are not possible for the currently
available computational resources.
However, even with small discretizations reasonable results can be received and the
effects of two-particle interactions in BCPO can be analyzed. Before discussing the
final results of the renormalized dispersions ω̃z,r,qu (k) and ω̃b,r,qu (k) we have to discuss
the convergence behavior of the corresponding Lanczos coefficients.

As pointed out in sect. 3.4.1 it is essential to identify the number of Lanczos steps
nLanczos,max at which the coefficients reach their limiting values sufficiently well. Coarse
discretizations can lead to the scenario that this convergence behavior does not exist
due to finite size effects [129]. Figure 7.2 demonstrates this issue.
Even the Lanczos coefficients with the maximal possible discretization of Nk = 40

including two-particle interactions do not show convergence at all. Considering the
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first five to ten coefficients we can already identify deviations between the different
discretizations.
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Figure 7.2: Convergence behavior of the Lanczos coefficients for different k-values and dif-
ferent discretizations Nk including two-particle interactions in BCPO. The used
parameters are identical to the best fitting parameters of the trilinear anisotropic
model, see figure 6.5. As an initial state for the Lanczos tridiagonalization a sin-
gle particle with the flavor b was chosen. The index i represents the number of the
Lanczos coefficients.

In order to determine a reasonable value for nLanczos,max, which we need for the calcula-
tions of the spectral functions and renormalized dispersions, we align ourselves to the
convergence behavior of the Lanczos coefficients without the two-particle interactions,
i.e. the trilinear anisotropic model of BCPO, see chapter 6. Figure 7.3 illustrates the
results.
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Figure 7.3: Convergence behavior of the Lanczos coefficients for different k-values and different
discretizations Nk without two-particle interactions BCPO, i.e. for the trilinear
anisotropic model, see chapter 6. The used parameters are identical to its best fitting
parameters, see figure 6.5. As an initial state for the Lanczos tridiagonalization a
single particle with the flavor b was chosen. The index i represents the number of
the Lanczos coefficients.

For the discretization Nk = 400 the coefficients converge clearly towards their limiting
values. For the coefficients belonging to the notably coarser discretization Nk = 40 we
can identify deviations from the results for Nk = 400 beginning at the tenth coefficient
approximately. We compared spectral functions of the trilinear anisotropic model
with Nk = 400 and nLanczos,max = 40 to results with Nk = 40 and nLanczos,max = 10 in
order to find out whether the latter results contain all physical meaningful features
or not3. Besides more numerical artefacts occuring in the results for Nk = 40 and
nLanczos,max = 10 the spectral functions are similar to the ones with the parameters
Nk = 400 and nLanczos,max = 40. Thus, it is reasonable to set nLanczos,max = 10 for the
Lanczos coefficients for the calculations with two-particle interactions as well despite
the missing convergence behavior.

With this knowledge basis, we extend our current model of the quantum antiferromagnet
BCPO by the effects of two-particle interactions. Thus, we provide the first explicit
description of BCPO including two-particle interactions in the literature giving rise to
the phenomenon of bound states. The prefactors of the quadrilinear operator terms in
eq. (7.2.11) do not depend on the D components explicitly. They are only influenced by
the D components via the transformation matrix K−1

k,l and the parameter ϑzk,l, see eqs.
(4.2.27) and (4.2.19). Therefore, it is not necessary to perform a complete new analysis
concerning the effects of each D component on the renormalized dispersions ω̃z,r,qu (k)

3These results are not shown in this thesis.
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and ω̃b,r,qu (k). It is reasonable to begin our fitting process by starting with the results
of the trilinear anisotropic model, see figure 6.5. Next, we vary the D components and
the energy scale J0 in a systematic manner step by step in order to approach the best
match between theory and the experimental data of BCPO4. We can use the effects
of the anisotropic couplings on the trilinear anisotropic model, see table 6.1, as an
orientation. As the bilinear anisotropic description of BCPO serves as a starting point,
we take over the fixed parameters x = 1.2, y = 0.9 and J ′/J0 = 0.16, see sect. 4.1.2.
In the following, we discuss several aspects concerning our best fits, see figures 7.4,
7.5 and 7.6, and compare these with the results of the trilinear anisotropic model, see
figures 6.5 and 6.6. We do this by plotting the results of the trilinear anisotropic model
ω̃z,r,tri (k) and ω̃b,r,tri (k) in addition to the results including two-particle interactions.
To maintain a good overview in the plots we decided to illustrate the modes in separate
figures.

(i) As in the trilinear anisotropic model of BCPO, we assign the solutions of
ω̃b,r,qu (k + π) to the measured mode 1, see figure 7.4. In addition, the missing good
agreement between the two lowest-lying modes 1 and 2 and our calculated solutions for
ω̃b,r,qu (k) and ω̃b,r,qu (k + π) remains like in the previous model, see also figure 7.6 for
the solutions for ω̃b,r,qu (k). One striking feature of our results including two-particle
interactions is that the fitting parameters are nearly identical to the ones we received
for the trilinear anisotropic model5. Especially the dominant values of the components
D̃x

1 = 0.25 and D̃y
1 = 0.38 stay unaltered. This aspect is reflected in the fact that

ω̃b,r,tri (k + π) and ω̃b,r,qu (k + π) do not display large deviations due to the two-particle
interactions in the low-energy regime, which we want to describe as well as possible6.
This means that the two-particle interactions do not have a great impact in the
low-energy regime and cannot lead to a further reduction of the dominant components
D̃x

1 and D̃y
1 .

(ii) As already mentioned, the only difference between the results with and without
the effects of two-particle interactions lies in the value of the anisotropic coupling D̃z

2.
Starting with D̃z

2 = −0.02 for the bilinear anisotropic model its absolute value increases
up to D̃z

2 = −0.06 for the quadrilinear model of BCPO. Compared to the results of the
trilinear anisotropic model holding D̃z

2 = −0.09 its value decreased again.

4Note, that with the maximally possible discretization Nk = 40 the majority of experimental data
points is not addressed in our calculations. One has to keep this aspect in mind while discussing
our results in the following.

5Only the value of the component D̃z
2 differs slightly. We address this point in part (ii) in detail.

6Therefore, we refer to part (i) in sect. 6.2 for further details concerning the effects of the components
D̃x

1 , D̃
y
1 and D̃y

0 .
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Figure 7.4: (a) Fitted theoretical dispersion ω̃b,r,qu (k + π) for the fixed parameters x = 1.2,
y = 0.9 and J ′/J0 = 0.16 including two-particle interactions (filled triangles). Their
displayed error bars depict the corresponding HWHM, see eq. (2.3.72). As thresh-
olds to identify quasiparticle peaks in the corresponding spectral functions, see sect.
3.4.1, we set a maximum relative HWHM of (γ (k) /∆ω̃2 (k))max = 0.05 and a min-
imal spectral weight of (1/s)min = 0.01. The fitted parameters are J0, D̃

y
0 , D̃

x
1 , D̃

y
1 ,

D̃x
2 and D̃z

2. Their values are listed in the panel itself. The data ω̃b,r,tri (k + π)
illustrate the results of the trilinear anisotropic model, see figure 6.5, with the pa-
rameter D̃z

2 = −0.09 being different compared to the listed parameters. (b) Zoom
of panel (a) into the range where mode 1 shows the prominent down-bending be-
havior, marked by a circle. Additionally, the lower boundary of the two-particle
continuum ω̃2,b (k + π) is depicted by a solid line.
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Note, that the component D̃z
2 is mainly responsible for fitting the position of the

minimum. It is the only D component which contributes in linear order, see table
4.3. As a consequence, even small deviations in its value show visible effects in the
renormalized dispersions. Furthermore, we want to stress that our results including
two-particle interactions have to be considered with caution since we can only perform
calculations with a maximum discretization of Nk = 40. Therefore, we have significantly
less points of reference when comparing our theoretical results including two-particle
interactions with the experimental data. Keeping this in mind, the small difference
between the component D̃z

2 of the results with and without two-particle interactions
should not be considered as of great importance.

(iii) The unsatisfying match between our solutions of the z mode and the measured
mode 3 from the trilinear anisotropic model, see part (iii) in sect. 6.2, remains for
the quadrilinear model. Comparing our results for the renormalized dispersion of the
z mode with and without the effects of two-particle interactions, see figure 7.5, no
significant differences can be identified. Only in the interval k ≈ 0− 0.3 r.l.u. a further
shift to lower energies for ω̃z,r,qu (k) is visible. In this range the dispersion approaches
the two-particle continuum. As explained in sect. 3.3, the considered two-particle
interactions ensure an increased level repulsion, which leads to this further lowering of
the z mode. In the minimum area, see figure 7.5b), the consideration of two-particle
interactions does not show any visible effects. Concerning the resonances of mode 3 at
high energies we refer to part (v) in the following.

(iv) Including the effects of the hybridization between the one- and two-particle states in
chapter 6 for our model of BCPO revealed that these cannot reproduce the characteristic
down-bending behavior in the excitation spectrum. Focusing on the interval k ≈ 0.75−
0.85 r.l.u. in figure 7.4 we notice that ω̃b,r,qu (k + π) is not as well in agreement with
the experimental data as ω̃b,r,tri (k + π). In figure 7.4b) we can identify a weak down-
bending effect near the lower boundary of the two-particle continuum ω̃2,b (k + π). After
entering the continuum the lifetime of the corresponding triplons becomes finite but
it is long enough, i.e. the corresponding HWHM is small enough, to be considered as
a quasiparticle furthermore. However, including the effects of two-particle interactions
provides striking features in our results. We find solutions for ω̃b,r,qu (k + π) which are
energetically located above the minimum area at ≈ 12meV. In figure 7.6 the solutions
of ω̃b,r,qu (k) and ω̃b,r,qu (k + π) are illustrated in a scatter plot. The solutions which lie
outside the respective two-particle continuum, i.e. which correspond to sharp resonances
in the spectral function, are colored with regard to their spectral weight. The solutions
at ≈ 12meV hold a spectral weight of 0.01− 0.1.
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Figure 7.5: (a) Fitted theoretical dispersion ω̃z,r,qu (k) for the fixed parameters x = 1.2, y = 0.9
and J ′/J0 = 0.16 including two-particle interactions (filled triangles). Their dis-
played error bars depict the corresponding HWHM, see eq. (2.3.72). As thresholds
to identify quasiparticle peaks in the corresponding spectral functions, see sect.
3.4.1, we set a maximum relative HWHM of (γ (k) /∆ω̃2 (k))max = 0.05 and a min-
imal spectral weight of (1/s)min = 0.01. The fitted parameters are J0, D̃

y
0 , D̃

x
1 , D̃

y
1 ,

D̃x
2 and D̃z

2. Their values are listed in the panel itself. The data ω̃z,r,tri (k) illustrate
the results of the trilinear anisotropic model, see figure 6.5, with the parameter
D̃z

2 = −0.09 being different compared to the listed parameters. (b) Zoom of panel
(a) into the minimum area. Additionally, the lower boundary of the two-particle
continuum ω̃2,z (k + π) is depicted by a solid line.
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Figure 7.6: (a) Solutions of the two lowest modes ω̃b,r,qu (k) and ω̃b,r,qu (k + π) stemming from
the x and y mode using the fitting parameters shown in figure 7.4. The data
points outside the corresponding two-particle continuum are colored according to
their spectral weight. (b) Zoom of panel (a) into the range where the experimental
modes 1 and 2 show the characteristic down-bending behavior.

The solutions in the energy range below 10meV possess a greater spectral weight of
0.1 − 1. Comparing the results of the S= 0 and S= 1 two-particle bound states of the
isotropic spin ladder, see figure 7.1, to the results shown in figure 7.6 we can identify
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clear connections between them. As already mentioned in sect. 7.1, in the isotropic
case the total spin Stot is a conserved quantity. Therefore, the corresponding S=0 and
S=1 bound states are clearly separated in their calculations and do not mix. Since the
DM interactions break the conservation of the total spin Stot, a mixing of the original
S=0 and S=1 bound states occurs and we can observe signatures of both in our results,
see figures 7.4 and 7.6. The solutions of ω̃b,r,qu (k) and ω̃b,r,qu (k + π) around ≈ 12meV
stem from the S=1 bound state. The S= 0 bound state of the isotropic spin ladder is
also reflected in the solutions of the quadrilinear model of BCPO. The significant down-
bending behavior of our results in the interval k ≈ 0.75 − 1 r.l.u. in figure 7.6 recalls
the dispersion of the S=0 bound state in figure 7.1. As discussed within our toy model
in sect. 3.4.3 considering two-particle interactions and the hybridization between one-
and two-particle states simultaneously leads to the scenario that the original one-particle
dispersion ω0 (k) and the two-particle bound states ωbound (k) of the isotropic spin ladder
are separated at anti-crossing points. So, we can conclude that the prominent down-
bending behavior of our results in figure 7.6 is related to the original S=0 bound state of
the isotropic spin ladder, see figure 7.1. The solutions inside the two-particle continuum
in figure 7.6, which are not colored according to their spectral weight, are not in line
with the shown experimental data at first sight. To analyze this aspect in more detail
we compare the experimental intensity results with our results for the DSF S( ~Q, ω),
see figures 7.7 and 7.8. To reproduce the spectral broadening of the experimental data
within our calculations, see sect. 2.3.1, we shift the energy ω into the complex plane
by a small real factor δ > 0, see also sect. 2.3.2. This proceeding has the effect that
the peaks in the spectral function A (k, ω), which are located outside of the two-particle
continuum, are no longer sharp delta-functions but Lorentz distributions with a finite
HWHM, see sect. 2.3.1. We choose the parameter δ to be equal to the energy resolution
of the experiment7, which is δ = 0.25 meV. Furthermore, we perform the continued
fraction for determining the spectral function A (k, ω), see sect. 2.3.1, up to a depth of
100 coefficients, whereas the first ten Lanczos coefficients, as discussed before in this
section, are used. The remaining 90 coefficients are set to the limiting values a∞ (k)

and b∞ (k), which are determined by the corresponding band edges, see also Appendix
A. With this approach we simulate the usage of the square-root terminator and receive
smooth results for the spectral function A (k, ω) in the energy ω. As we use single particle
states with the flavors z and b for our Lanczos calculations with a weight of 1 regardless
of the corresponding momentum k, we rate our results for the spectral function A (k, ω)

with the static structure factor |a (k) |2, see eq. (4.1.6). By this, we take into account the
deepCUT results for a single spin operator, see Refs. [123] and [151] for further details.

7We received this information by private communication with the researchers from Ref. [39].
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Thus, within our made approximations the relation

S(k, ω) = |a(k)|2A(k, ω) (7.2.12)

holds8. The results for S(k, ω) are depicted and compared to the experimental measure-
ments in figures 7.7 and 7.8. Despite the coarse discretization Nk = 40, our results for
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Figure 7.7: (a) Intensity results of the excitation spectrum of BCPO, received by INS experi-
ments. The illustrations are taken from Ref. [39]. (b) Theoretically determined DSF
S( ~Q, ω) multiplied by the energy ω in arbitrary units (a.u.). The results consider
only the influence of the deepCUT calculations on the corresponding single particle
states which were chosen for the Lanczos tridiagonalization. The effects of the
Bogoliubov transformations for the original x, y and z mode, see sect. 4.2.2, are
left out.

the DSF, see figures 7.7 and 7.8, show a good agreement with the experimental results
within the energy range up to 15meV. As expected, the intensity near the minimum
area around k ≈ 0.5 r.l.u. is larger than inside the continuum at k ≈ 1 r.l.u., where we
can reproduce the smeared out data in a satisfying manner. The enlarged display of
the results, see figure 7.8, reveals the signature of the previous discussed orginal S= 0

bound state in the DSF clearly, which is in line with the down-bending behavior of the
experimental data.

8Within a more comprehensive approach it would also be necessary to take into account the influence
of the applied Bogoliubov transformations on the original x, y and z mode, see sect. 4.2.2.
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Figure 7.8: (a) Experimental results for the DSF, received by INS measurements in arbitrary
units, in the low energy regime. The illustration is taken from Ref. [152] with
permission from the author. (b) Theoretical results for the DSF S( ~Q, ω) multiplied
by the energy ω in arbitrary units (a.u.) in the low energy regime. Note, that the
color scaling differs compared to the results shown in figure 7.7.
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Once more we want to discuss our findings concerning the occuring bound state
of BCPO in the energy range of ≈ 12meV. As mentioned previously, there is no
experimental evidence concerning a bound state in BCPO up to this point. The
interesting aspect concerning this issue is that the performed experiments could not
detect our claimed bound state at all since no experimental data have been received in
this energy regime, see figure 7.8. This means that the existence of our claimed bound
state in BCPO cannot be completely excluded by the current experimental findings.
Therefore, we call for further measurements considering especially the energy regime of
≈ 12meV, see also sect. 8.2.
With these findings we provide the first detailed explanation concerning the character-
istic down-bending behavior in the excitation spectrum of BCPO, which stems from the
S=0 two-particle bound state of the isotropic spin ladder. Furthermore, we claim the
existence of a two-particle bound state in the energy regime of ≈ 12meV, which derives
from the S=1 two-particle bound state of the isotropic spin ladder.

(v) The unsolved issue concerning the resonances of mode 3 in the high energy regime at
≈ 27meV remains even for the quadrilinear model of BCPO. Within this comprehensive
model we could not find a parameter combination for the fitted D values which provides
a good agreement between theory and experiment in this energy range. Even without
our applied criterion of a maximum relative HWHM, see sect. 3.4.1 and figure 7.5 for
the concrete value in this case, our numerical results for ω̃z,r,qu (k) do not reveal any
solutions at energies around ≈ 27meV. Finally, this means that even adding the effects
of two-particle interactions to the trilinear anisotropic model of BCPO, see chapter 6,
does not lead to an explanation for the observed resonances in the high energy regime.
One possible reason to clarify the origin of these resonances could be that they stem
from particles states which include more than two particles. This presumption describes
an issue for further research work, see sect. 8.2.

7.3 Technical challenges
As briefly mentioned in the previous section 7.2, computing the prefactors of the quadri-
linear operator terms listed in eq. (7.2.11) turned out to be very demanding concerning
the computational effort. As a first approach to estimate this computational effort we
determine the required memory for only storing the numerical value of the prefactors.
The required memory mr is given by the formula

mr (Nk, Nl) = 13 ·N3
k ·N2

l · 16 Byte (7.3.13)

and depends on the discretizations Nk and Nl, see sect. 5.3. The factor of 13 describes
the number of different quadrilinear operator terms concerning the occuring flavor combi-
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nations, see eq. (7.2.11). Since the magnetic structure of BCPO is two-dimensional, see
sect. 1.4, and the total momentum of the two-particle interaction terms in eq. (7.2.11) is
fixed, there are six independent momentum components present. The components k, q
and q′, see eq. (7.2.10), correspond to the direction along the spin ladder in y-direction,
see figure 1.3. Their discretization is given by Nk. The momenta l, p and p′, see eq.
(7.2.10), belong to the direction perpendicular to the spin ladder in z-direction, see fig-
ure 1.3. Their discretization is given by Nl. As the experimental data are received for a
fixed value of l = 1 r.l.u., we just have to store the prefactors which belong to a quadri-
linear operator term with this fixed value of l. Concerning the remaining momentum
components we have to compute all possible N3

k ·N2
l combinations. As discussed in sect.

5.3, we set Nl = Nk/5. To ensure that Nl is always an integer number we set

Nl = floor (Nk/5) (7.3.14)

so that mr (Nk, Nl), see eq. (7.3.13), depends only on the discretization Nk. The prefac-
tors of the quadrilinear operator terms, see eq. (7.2.11), are composed of the prefactor
αα
′,β′,γ′,δ′ (k, q, q′), the entries of the transformation matrix K−1

k,l and the parameter ϑzk,l,
see eqs. (7.1.4), (4.2.27) and (4.2.19). Since the components of the transformation ma-
trix K−1

k,l can assume complex values, see sect. 4.2.2, the prefactors of the quadrilinear
terms in eq. (7.2.11) can assume complex values as well. Therefore, we need to request
16Byte memory9 for each of the possible N3

kN
2
l combinations. Figure 7.9 shows the re-

quired memory mr (Nk) on a logarithmic scale and the current maximal available RAM
of the LiDO3 cluster (1TB) and of the cl1 cluster (256GB)10.
Figure 7.9 reveals clearly that on LiDO3 (cl1) a maximal discretization of Nk,max,LiDO3 ≈
170 (Nk,max,cl1 ≈ 130) is possible. These discretization values are considerably smaller
than the used discretization of Nk = 400 for the trilinear anisotropic model, see sect.
6.2, which ensured the convergence of the Lanczos coefficients.

9The memory requirement for a variable of the data type complex<double> in C++ is 16Byte.
10The calculations have been performed in September/October 2020.
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Figure 7.9: Logarithmic illustration of the required memory mr (Nk) for only storing the
numerical values of the prefactors of the quadrilinear operator terms in eq. (7.2.11).
The current maximal available RAM of LiDO3 (1TB) and cl1 (256GB) are also
shown.

As numerical computations need a very large amount of dynamic memory in addition to
the final required storage memory, it is obvious that the maximal possible discretizations
of Nk,max,LiDO3 ≈ 170 and Nk,max,cl1 ≈ 130 cannot not be realized. The true maximal
possible discretization Nk,max,true is much smaller. To determine its value we run our
calculations for different values of Nk and analyze the total utilized memory11. Figure
7.10 shows the results of this analysis. Note, that the jump in figure 7.10 occurs because
of eq. (7.3.14). Determining the power law of the data points via a log-log-plot, see
figure 7.10b), we receive that the complete utilized memory for our calculations grows
with N6

k . Extrapolating our data points with this power law reveals that on LiDO3
(cl1) a maximal discretization of Nk,max,true = 54 (Nk,max,true = 42) is possible.

Besides the needed memory for numerical computations the run time has to be
considered as well. Therefore, we also analyzed the run time of our calculations for
different values of Nk. The results are illustrated in figure 7.11.
The log-log-plot of our data points, see figure 7.11b) reveals that the run time
for our computations grows with N8.4

k . The maximal run time for calculations on
LiDO3 and cl1 is 1 week, i.e. 168 hours. Extrapolating our data points with our run
11At the time of this analysis this was only possible on LiDO3. All computations were performed on

an Intel Xeon CPU (E5 4640v4, 2.1GHz.). The number of used cores was equal to Nk.
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time power law of N8.4
k yields that a maximal discretization of Nk,max,true = 52 is feasible.
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Figure 7.10: (a) Total utilized memory of the computations for determining the prefactors of
the quadrilinear operator terms, see eq. (7.2.11), as a function of the discretization
Nk. The calculations were performed on LiDO3. (b) Logarithmic illustration of
panel (a). The power law of the data points is N6

k and also depicted in the panel
as well as the current maximal available RAM of LiDO3 (1TB) and cl1 (256GB).
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Figure 7.11: (a) Run time of the computations for determining the prefactors of the quadrilinear
operator terms, see eq. (7.2.11), as a function of the discretization Nk. The
calculations were performed on LiDO3. (b) Logarithmic illustration of panel (a).
The power law of the data points is N8.4

k and also depicted in the panel.

Combining the limiting values concerning the maximal RAM and run time for com-
putations on LiDO3 (cl1) we realize that the true maximal possible discretization is
Nk,max,true = 54 (Nk,max,true = 42). We decided to perform all ongoing calculations on
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our internal cluster cl1 since it is significantly less engaged than the university wide
available cluster LiDO3. As we established the relation Nl = Nk/5 in sect. 5.3, we
set Nk = 40 to be our maximal possible discretization for calculations concerning our
quadrilinear model of BCPO.

7.4 Chapter summary
In this chapter we extended our trilinear anisotropic model of BCPO, which we estab-
lished in chapter 6, by the inclusion of two-particle interactions. In doing so, we provide
the first description of BCPO which considers two-particle interactions explicitly. Start-
ing this project we found out that the anisotropic couplings in BCPO ensure a mixing
of the S=0 and S=1 two-particle bound state of the isotropic spin ladder. Therefore,
we assumed that their properties are reflected in our results for BCPO and that we
can provide a more detailed understanding of its excitation spectrum. Our results for
BCPO reveal that including two-particle interactions does not lead to visible effects
in the low-energy regime. Therefore, the values of the anisotropic couplings did not
change significantly compared to our results for the trilinear anisotropic model. The
value of the dominant component D1 ≈ 0.38J1 still has to be considered remarkable
large, whereas our results for D0 ≈ 0.1J0 and D2 ≈ −0.06J2 are in line with our expec-
tations of 10− 20 % of the isotropic couplings. The unsolved issue of the characteristic
down-bending of the two lowest modes could be solved within our quadrilinear model
of BCPO. Our results reproduce this striking feature of the excitation spectrum on
a qualitative and quantitative level. Furthermore, we identified the S=0 two-particle
bound state of the isotropic spin ladder to be the mechanism behind this characteristic
of BCPO. We stress that our results represent the first in the literature including this
important aspect. The S=1 two-particle bound state of the isotropic spin ladder leads
to the fact that we receive a clear signature mark of a two-particle bound state in the
excitation spectrum of BCPO, which could not be found in the experimental data due
to missing resolution in this energy regime. Thus, we suggest further measurements to
confirm the current experimental data of BCPO focusing especially on indications of a
two-particle bound state in the energy regime of ≈ 12meV. Despite these highly satis-
fying results, the issue concerning the existing resonances in the high-energy regime still
remains unsolved. Possible approaches will be discussed in sect. 8.2. The computational
effort of our quadrilinear model of BCPO turned out to be significantly greater than for
our previous models. We also discussed the limits of our calculations with respect to the
current available computational resources in detail.
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8 Summary & Outlook

8.1 Summary
In this thesis we established a microscopic model for the quantum antiferromagnet
BiCu2PO6 (BCPO) which reproduces the characteristic properties of its one-particle
dispersions1 by using realistic coupling values. More specifically, we found out what
mechanisms in the magnetic structure of BCPO are responsible for the decay processes
which occur in its excitation spectrum. We also clarified the reasons for the prominent
down-bending of the two energetically lowest-lying modes before they cease to exist.
Before dealing with this complex issue we analyzed a simple one-dimensional bosonic
model with hopping elements with regard to the influence of different effects on the
one-particle dispersion. We included pair creation terms, hybridization effects between
the one- and two-particle Hilbert space, i.e. decay/fusion processes, and two-particle
interactions step by step. Already with this toy model we were able to observe and to
understand the different types of decay processes.
As a first approach for a microscopic model of BCPO we solved the isotropic case of
BCPO, i.e. an isotropic frustrated spin ladder, using a directly evaluated continuous
unitary transformation (deepCUT). By coupling multiple frustrated spin ladders via
a weak interladder coupling |J ′/J0| � 1 within a mean-field approach we received a
two-dimensional isotropic model for BCPO. With this we determined the best matching
values concerning the coupling ratios x = J1/J0 = 1.2 and y = J2/J1 = 0.9 with a
fixed relative value for the interladder coupling J ′/J0 = 0.16 as assumed in previous
studies [39,70]. By means of a comprehensive symmetry analysis of BCPO we included
the Dzyaloshinskii-Moriya interaction (DM interaction) to the two-dimensional isotropic
model by a perturbative treatment of the anisotropic couplings within a mean-field ap-
proach up to bilinear operator level. Our results cannot describe the different kinds
of decay processes but can reproduce the low-energy regime using remarkably large
anisotropic couplings D1 ≈ 0.6J1.
We used this bilinear anistropic model as the basis for analyzing the effects of quasipar-
ticle decay at zero temperature in BCPO. Thereto, we focused on effects in its magnetic
structure holding odd parity, which give rise to transition processes between the one-

1The excitation modes are not degenerated, but split. This means that anisotropic interactions are
present in BCPO lifting the degeneracy of the excitation modes.



162 Summary & Outlook

and two-particle Hilbert space, i.e. decay processes. First, we focused on a variation
in the next-nearest-neighbor coupling, which can originate from the two crystallograph-
ically inequivalent copper ions CuA and CuB. With this spin isotropic effect we received
the best fitting values for the anisotropic couplings: D1 ≈ 0.48J1, D0 ≈ 0.1J0 and
D2 ≈ −0.1J2. While the value of D1 is still remarkable large, our results for D0 and D2

are in accordance with our expectations. Unfortunately, it was not possible to reproduce
the spontaneous quasiparticle decay (SQPD) characteristics of the experimental data of
BCPO within this trilinear isotropic model.
Besides the variation in the the next-nearest-neighbor coupling, we extended our bilinear
anisotropic model of BCPO by the effects of SQPD which stem from the anisotropic cou-
plings themselves. After a detailed analysis concerning the effects of each D component
on the one-particle dispersions we received the best fitting parameters: D1 ≈ 0.38J1,
D0 ≈ 0.1J0 and D2 ≈ −0.1J2. Our results represent a reduction of up to ≈ 40 % com-
pared to the bilinear anisotropic model and are comparable to the results from Hwang
and Kim [64]. With this trilinear anisotropic model of BCPO it is possible to reproduce
the low-energy regime but it still cannot describe the occuring decay characteristics, e.g.
the down-bending behavior of the two lowest modes.
As a final extension we included two-particle interactions to our trilinear anisotropic
model. Within the limits of the current available computational ressources we deter-
mined the best fitting values for the anisotropic couplings: D1 ≈ 0.38J1, D0 ≈ 0.1J0

and D2 ≈ −0.06J2. We found out that the low-energy regime is only hardly effected by
the included two-particle interactions which is why the results are almost identical to
the ones without two-particle interactions. However, within this quadrilinear model of
BCPO it is possible to explain the experimentally observed down-bending behavior of
the two lowest-lying modes. The mechanism behind this feature is the S=0 two-particle
bound state of the isotropic case of BCPO, which is mixed with the S=1 two-particle
state by the DM interaction. This means that the observed down-bending behavior of
the two lowest modes is not a down-bending in the sense of an effect stemming from
the hybridization between the one- and two-particle Hilbert space and level repulsion
between the corresponding energy levels. It is a signature of the S= 0 two-particle
bound state of the isotropic case of BCPO and can only be identified when two-particle
interactions are considered explicitly. In addition, our quadrilinear model yields a clear
two-particle bound state for BCPO above the low-energy regime, which could not be
found in experiments so far. It stems from the S=1 two-particle bound state of the
isotropic case. Further experimental investigations concerning this specific question are
called for.
In this way, we established the first comprehensive model of the quantum antiferro-
magnet BCPO which is able to reproduce the different types of decay processes in its
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excitation spectrum. Unfortunately, its occuring resonances at high energies remain
unexplained.

8.2 Outlook
This thesis shows that successive extensions of a microscopic model for a complex com-
pound lead to the point that more and more of its properties can be explained. There
are several possibilities for extending our model of BCPO.
One enhancement on theoretical side is related to the number of considered particles. We
strongly assume that augmenting our model of BCPO by including more than two par-
ticles can provide an explanation for the present resonances in the high-energy regime.
Another option to improve our results is to combine the decay processes which stem
from the variation of the next-nearest-neighbor coupling with the ones which originate
from the DM interactions, i.e. a combination of the models from chapter 5 and 6. On
top of that one could also take the two-particle interactions, see chapter 7, into account
to receive an even more comprehensive model of BCPO.
Furthermore, it is possible to extend our model by including the effects of SQPD and
two-particle interactions stemming from the symmetric anisotropic interactions, see sect.
2.4.2. As they have a great influence on the one-particle dispersions on bilinear operator
level, it is reasonable to assume identical observations on trilinear and quadrilinear op-
erator level. On the technical side these enhancements require the further development
and implementation of efficient algorithms in order to transform multi-particle interac-
tions into the basis of the bilinear anisotropic model. Concerning the determination of
the fitting parameters, i.e. the values of the anisotropic couplings, introducing a different
systematic approach, based on a numerical multi-dimensional determination of the best
parameters, can lead to better fits between theory and experiment. With this we mean
that this fitting process could be automated.
On experimental side, further inelastic neutron scattering (INS) measurements on BCPO
in order to confirm and refine the previous results are preferable. In particular, we sug-
gest measurements with a sufficiently high resolution in the energy regime of ≈ 12meV to
enable the possibility of locating our claimed S=1 two-particle bound state in BCPO.



164 Summary & Outlook



Appendix

A Lanczos tridiagonalization
To compute the retarded Green’s function of the form

Gret (k, ω) = 〈u0|
1

ω − H̄ (k)
|u0〉 (A.1)

the Lanczos tridiagonalization can be used. This algorithm sets up an orthogonal basis
|ui〉, in which the Hamiltonian H̄ has the form

H̄ (k) =




a0 (k) b1 (k) 0 0 · · ·
b1 (k) a1 (k) b2 (k) 0 · · ·

0 b2 (k) a3 (k) b3 (k) · · ·
...

...
...

... . . .




(A.2)

with the real Lanczos coefficients ai (k) and bi (k).
These coefficients and the orthogonal basis |ui〉 can be calculated via the recursion
scheme

|u0〉 (A.3a)

|u1〉 = (H (k)− a0 (k)) |u0〉 (A.3b)

|u2〉 = (H (k)− a1 (k)) |u1〉 − b2
1 (k) |u0〉 (A.3c)

|u3〉 = (H (k)− a2 (k)) |u2〉 − b2
2 (k) |u1〉 (A.3d)

... (A.3e)

with the Lanczos coefficients reading

ai (k) =
〈ui|H (k) |ui〉
〈ui|ui〉

for i = 0, 1, 2, ... (A.4a)

b2
i (k) =

〈ui|ui〉
〈ui−1|ui−1〉

for i = 1, 2, 3, ... (A.4b)

b0 (k) = 0. (A.4c)
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For our issues the start state |u0〉 is a one-particle state with fixed momentum k.
Thus, the retarded Green’s function can be expressed by a continued fraction

Gret (k, ω) =
1

ω − a0 (k)− b21(k)

ω−a1(k)−
b22(k)

ω−a2(k)−···

, (A.5)

which has to be terminated at a specific iteration level nLanczos.
In the case of decay processes from one particle into two the limiting values of the
Lanczos coefficients are determined by the lower band edge of the concerning two-
particle continuum ω2,min (k) and the upper band edge ω2,max (k). The coefficients
a∞ (k) := lim

i→∞
ai (k) and b∞ (k) := lim

i→∞
bi (k) fulfill the relations

ω2,min (k) = a∞ (k)− 2b∞ (k) (A.6a)

ω2,max (k) = a∞ (k) + 2b∞ (k) . (A.6b)

Numerically only a finite number of Lanczos tridiagonalization steps can be performed.
To simulate infinite large systems in the thermodynamic limit one has to terminate the
algorithm. It is reasonable to truncate at the iteration step where the Lanczos coeffi-
cients fulfill the relations (A.6) up to negligible deviations.
There are different types of terminators to reconstruct Green’s functions from incom-
plete continued fractions. The simplest way of termination is the square-root terminator
T (k, ω), which is given by

T (k, ω) =
1

2b2
∞ (k)

(
ω − a∞ (k)−

√
R (k, ω)

)
for ω ≥ ω2,max (k) (A.7a)

T (k, ω) =
1

2b2
∞ (k)

(
ω − a∞ (k)− i

√
−R (k, ω)

)
for ω2,min ≤ ω ≤ ω2,max (k) (A.7b)

T (k, ω) =
1

2b2
∞ (k)

(
ω − a∞ (k) +

√
R (k, ω)

)
for ω ≤ ω2,min (k) (A.7c)

with the radicand
R (k, ω) = (ω − a∞ (k))2 − 4b2

∞ (k) . (A.8)

It is evident that the square-root terminator has an imaginary part only inside the
two-particle continuum.
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B Parameters of the toy model
Here the parameters for the toy model, presented in chapter 3, are listed.
The values of the hopping elements were calculated by a deepCUT using the 1n-generator
in the one-particle space. The underlying model is a frustrated isotropic spin S=1/2

Heisenberg ladder with rung coupling J0, nearest-neighbor coupling J1 and next-
nearest-neighbor coupling J2. The rung coupling J0 is determined to be the global
energy scale. The used coupling ratios are given by x = J1

J0
= 1.2 and y = J2

J1
= 0.9.

d td
0 1.549938420848804
1 0.1794088852461154
2 0.2623695437552867
3 -0.1048611048320241
4 -0.08017242688698614
5 0.04837581228692146
6 0.005231194502012992
7 -0.01735217860096988
8 5.623129910602866e-05
9 0.006964869432389426
10 -0.003188537391764854
11 -0.002018711432624706
12 0.002147797713125333
13 0.0002306605843470841

Table B.1: Values of the hopping elements td, which have been used for the toy model. Note
that only the values for the distances d ≥ 0 are listed because the model is symmetric
around the rungs. This symmetry implies the relation td = t−d.

The used values of vδ, which present the amplitude of the decay terms, are from the
same deepCUT calculation as the prefactors td. We chose a single spin operator Sα,Ri ,
transformed it by the deepCUT and set the prefactors of the linear terms tαi+δ/t

α,†
i+δ to be

the values of vδ. These values were already produced for previous calculations and do not
simulate any physically realistic decay amplitudes. They serve only for an example.
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δ vδ
0 -0.3874491109155713
1 0.05165001704799924
2 0.08095884805094124
3 -0.03713614889687351
4 -0.0219291397751164
5 0.01719462494862808
6 0.004727305201296136
7 -0.01024208259455439
8 0.001628782296091526
9 0.00497492501969249
10 -0.002315960919757644
11 -0.001621270078823474
12 0.001835116321222724

Table B.2: Values of the decay amplitude vδ, which have been used for the toy model. Note that
only the values for the distances δ ≥ 0 are listed because the model is symmetric
around the rungs. This symmetry implies the relation vδ = v−δ.

C Brent’s method
Computing the roots of a given function numerically is possible with different kinds of
methods or algorithms. In this thesis we used Brent’s method to address this issue.
This method is a numerical one which calculates the roots of a continuous function
on an iterative basis [153]. It combines the bisection method, the secant method and
inverse quadratic interpolation.
The starting point is finding the roots f (x) = 0 of a continuous function f (x), which
is defined on an intervall [a0, b0] → R, while the signs of the values f (a0) and f (b0)

differ. That means the function f (x) has a root in the intervall [a0, b0].

In principle, Brent’s method represents a modification of the Dekker method, which
combines the bisection method and the secant method. The Dekker method starts
with the intervall [a0, b0], as described before, and calculates two values in each iteration
step. First the value

s = bk −
bk − bk−1

f (bk)− f (bk−1)
f (bk) (C.1)

is determined with the secant method and second the value

m =
ak + bk

2
(C.2)

using the bisection method is calculated. Hereby the variable bk describes the current
iteration value and ak describes the other point of the intervall so that the sign of
the values f (ak) and f (bk) differ. Additionally the relation |f (bk) | ≤ |f (ak) | holds,
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meaning that bk represents a better approximation for the root than ak. In the first
iteration step bk−1 = a0 holds.
If the relation m < s < bk ist valid, the new iteration value is set to bk+1 = s, otherwise
the result of the bisection method bk+1 = m is chosen. For the new iteration value
ak+1 is has to be ensured that f (ak+1) and f (bk+1) have different signs. If the values
f (ak) and f (bk+1) show up different sign, then ak+1 = ak holds. If this is not the case,
the signs of the values f (bk+1) and f (bk) have to be different so that ak+1 = bk is set.
As a last step the next iteration values ak+1 and bk+1 have to be arranged such that
|f (bk+1) | ≤ |f (ak+1) | is fulfilled.

It is possible that the Dekker method converges more slowly than the bisection method
itself since the intervall [bk, bk−1] can become arbitrarily small. The key point of Brent’s
method is a modification of the Dekker method to avoid this case. Therefore this
method uses inverse quadratic interpolation so that its convergence is not slower than
the convergence of the bisection method. Furthermore the value of bk always has to
change by a certain tolerance value to avoid slow convergence. This tolerance value
depends on the machine accuracy ε and the requested precision t of the result.
For our calculations we used a machine accuracy of ε = 10−14 and a precision of t = 10−8,
which implies that the calculated roots of the function f (x) are exact up to 10−8. For
further details we refer to Ref. [153].

D Symmetry analysis of D1
We choose the vector D1 concerning the NN bonds, see figure 4.3, as an example to
demonstrated the symmetry analysis in detail. The symmetry analyses of the vectors
D0 and D2 are similiar and presented in detail in the Appendix of Ref. [89].

By applying the rotation RSy we map the bonds of the vectors D1,LU and D1,LO, respec-
tively, to the bonds to which the vectors D1,RO and D1,RU belong. It is not necessary
to rearrange the spin operators according to our notation after the rotation because the
spin operators stay in the same order with regard to the y-coordinate. In this way, we
obtain the following relations

D1,RO = RSy (D1,LU) (D.1a)

D1,RU = RSy (D1,LO) (D.1b)

D1,LU = RSy (D1,RO) (D.1c)

D1,LO = RSy (D1,RU) . (D.1d)
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Second, we consider the rotation Rx and obtain

D1,RO = −Rx (D1,LU) (D.2a)

D1,RU = −Rx (D1,LO) (D.2b)

D1,LU = −Rx (D1,RO) (D.2c)

D1,LO = −Rx (D1,RU) . (D.2d)

After the rotation Rx the spin operators have to be swapped to comply with our con-
vention. Thus an additional minus sign appears in eqs. (D.2a)-(D.2d).
Next, the reflection Sxy is applied yielding

D1,RU = −Sxy (D1,LU) (D.3a)

D1,RO = −Sxy (D1,LO) (D.3b)

D1,LO = −Sxy (D1,RO) (D.3c)

D1,LU = −Sxy (D1,RU) . (D.3d)

The additional minus sign occurs due to the pseudovector properties of the spin opera-
tors. Now we derive the relations between the vectors D1 which arise from applying the
reflection Sxz

D1,LO = Sxz (D1,LU) (D.4a)

D1,LU = Sxz (D1,LO) (D.4b)

D1,RU = Sxz (D1,RO) (D.4c)

D1,RO = Sxz (D1,RU) . (D.4d)

In this case the minus signs resulting from the pseudovector properties and the rear-
rangement of the spin operators compensate.
Finally, we employ the reflection SSyz to receive the following relations

D1,LO = −SSyz (D1,LU) (D.5a)

D1,LU = −SSyz (D1,LO) (D.5b)

D1,RU = −SSyz (D1,RO) (D.5c)

D1,RO = −SSyz (D1,RU) . (D.5d)

Here the minus sign occurs because of the pseudovector properties of the spin operators.
With the above relations we are now able to derive the parity and the behavior of the
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sign along the legs of the ladder of the vector D1. We start from the ansatz

D1,LU = cxex + cyey + czez, (D.6)

which means that D1,LU is an arbitrary combination of the unit vectors ex, ey and ez

with constant real coefficients cx, cy and cz. Using this ansatz for eq. (D.4a) we obtain

D1,LO = cxex − cyey + czez. (D.7)

Additionally, we insert the ansatz in eq. (D.5a) and obtain

D1,LO = cxex − cyey − czez. (D.8)

To fulfill eqs. (D.7) and (D.8), the z-component has to vanish, i.e. cz = 0 holds. Using
eqs. (D.3a) and (D.1a), respectively, we obtain

D1,RU = −cxex − cyey (D.9a)

D1,RO = −cxex + cyey. (D.9b)

In conclusion, we see that the sign of the x-component does not change along the legs,
i.e. the signs of the x-component of the vectors D1,LO and D1,LU are the same as the
signs of the x-component of the vectors D1,RO and D1,RU .
In contrast, the y-component alternates along the legs, i.e. the signs of the y-component
of the vectors D1,LO and D1,LU differ and so do the signs of the vectors D1,RO and D1,RU .
To determine the parity of D1 we compare the sign of each components of D1,LO with
the one of D1,RO and D1,LU with D1,RU . As a result we find that the components on the
left leg have a different sign than the components on the right leg. Hence, the parity of
D1 is odd.

E deepCUT results for the isotropic spin ladder
The dispersion of the frustrated isotropic spin ladder is calculated by the deepCUT
method, see sect. 2.1, yielding

ω0 (k) =
13∑

δ=0

ωδ cos (δk) . (E.1)
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The coefficients ωδ are given in table E.1. With the same deepCUT a single spin operator
S
α,L/R
i is transformed to the effective spin operator

Sα,Li,eff = −Sα,Ri,eff =
12∑

δ=−12

a|δ|

(
tα,†i+δ + tαi+δ

)
+ bilinear and higher terms, (E.2)

with the amplitudes aδ, which are also given in table E.1. The spin operators are labeled
with the indices L and R referring to the left and right spin of a single dimer in the spin
ladder.

δ ωδ aδ
0 1.5499384208488 0.3874491109155713
1 0.358817770492231 -0.05165001704799924
2 0.524739087510573 -0.08095884805094124
3 -0.209722209664048 0.03713614889687351
4 -0.160344853773972 0.0219291397751164
5 0.0967516245738429 -0.01719462494862808
6 0.010462389004026 -0.004727305201296136
7 -0.0347043572019398 0.01024208259455439
8 0.000112462598212057 -0.001628782296091526
9 0.0139297388647789 -0.00497492501969249
10 -0.00637707478352971 0.002315960919757644
11 -0.00403742286524941 0.001621270078823474
12 0.00429559542625067 -0.001835116321222724
13 0.000461321168694168

Table E.1: The coefficients ωδ in order to describe the dispersion of the frustrated isotropic spin
ladder as well as the prefactors aδ to transform a single spin operator are determined
by using a deepCUT calculation for the ratios x = J1/J0 = 1.2 and y = J2/J1 = 0.9.
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1.1 Examples of frustrated spin arrangements. At the corner of each plaque-
tte a spin with S=1/2 is located. The red lines visualize antiferromagnetic
interactions, whereas the blue line stands for a ferromagnetic interaction.
(a) Geometrical frustration [15, 16]. In the triangular lattice two spins
align antiparallel. The third spin is frustrated since both its orientations
give the same energy and result in one unsatisfied bond. (b) Frustra-
tion caused by competing interactions [17]. In the square plaquette three
spins arrange antiparallel. The fourth spin is frustrated due to the com-
peting ferro- and antiferromagnetic interactions with its neighbors. Its
two possible orientations leave one bond unsatisfied. . . . . . . . . . . . . 10

1.2 Schematic illustration of INS experiments. . . . . . . . . . . . . . . . . . 11

1.3 Structures of BCPO. (a) Crystal structure of BCPO. The unit cell is
orthorhombic and contains coupled frustrated spin ladders formed by the
two inequivalent copper ions CuA and CuB. We omitted the phosphorus
and oxygen ions for a better overview. (b) Effective spin model. The
analyzed model is made of frustrated spin ladders, which are coupled by
an interladder coupling J ′. The inequivalence of the copper ions is neglected. 13

1.4 Results of the INS experiments on BCPO. The illustrations are taken
from Ref. [39]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Dispersions of the excitation modes in BCPO. The color assigment of
the data points indicates the different excitation modes. The grey shaded
region around the minimum area is depicted in a more detailed way. The
solid lines correspond to theorectical calculations based on a bond opera-
tor theory (BOT) on a mean-field level. The illustrations are taken from
Ref. [70]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
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1.6 Theoretical spectral function of BCPO including interacting triplons. (a)
The spectral function is plotted with lines. They gray shaded region
depicts the multitriplon continuum. (b) The spectral function is plotted
with a color map. The color dots denote the INS data from Ref. [39]. Note,
that the color coding differs compared to figure 1.5. Both illustrations are
taken from Ref. [64]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 Graphic display of the first named SQPD scenario. As soon as the one-
particle dispersion ω1 (k) enters the two-particle continuum ω2 (k, q), it
terminates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Graphic illustration of the second listed SQPD scenario. The one- and
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resonance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Graphic representation of the third mentioned SQPD scenario. The in-
teractions between the one- and two-particle Hilbert space ensure that
the one-particle dispersion ω1 (k) is strongly renormalized. The renor-
malized one-particle dispersion ω1,r (k) is pushed below the two-particle
continuum ω2 (k, q) in order to avoid an overlap. . . . . . . . . . . . . . . 33

2.4 (a) Schematic representation of an arrangement of interacting spins, il-
lustrated by blue spheres and labeled with A and B. The connecting
line AB is highlighted in green. The red spheres depicting other ions in
the crystal structure are arranged in such a way that point symmetry
with respect to the middle of the connecting line AB exists. Therefore,
no anisotropic interactions occur. (b) Similiar arrangement of interacting
spins to panel (a). Due to the two missing red spheres compared to panel
(a) point symmetry with respect to the middle of the connecting line AB
is broken. As a consequence, anisotropic interactions can assume a finite
value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1 Graphic display of the one-particle dispersion ω1 (k) (eq. (3.1.4)), the
modified one-particle dispersion ω̃1 (k) with ε = 0.25 (eq. (3.1.11)) and
the corresponding two-particle continuum ω̃2 (k, q) (eq. (3.1.14)). The
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boundary of ω̃2 (k, q). In the intervalls, where the lower boundary of
ω̃2 (k, q) is below ω̃1 (k), SQPD is possible. . . . . . . . . . . . . . . . . . 49
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3.2 Convergence behavior of the Lanczos coefficients for different k-values
of the toy model with parameters ε = 0.25, v = 0.8 and a discretization of
N = 1000 in k-space. The index i represents the number of the Lanczos
coefficients. In total 200 Lanczos steps have been performed. . . . . . . 53

3.3 Spectral functions A (k, ω) for different k-values of the toy model for the
parameters ε = 0.25 and v = 0.8, which belong to the results in figure
3.2. Note, that the y-axis has a logarithmic scale. The black dashed lines
show the positions of the local and global extrema in the two-particle con-
tinuum ω̃2 (k, q). The green lines illustrate a Lorentz distribution, see
eq. (2.3.55), centered at the one-particle dispersion ω̃1 (k) and a HWHM
γ = 0.001. The energy ω is discretized in steps of 0.001. . . . . . . . . . . 54

3.4 Renormalized dispersion ω1,r (k) of the toy model for the parameters ε =

0.25 and v = 0.8, which belongs to the results in figures 3.2 and 3.3.
In addition, the dispersion ω̃1 (k) is displayed to visualize the effects of
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the two-particle continuum ω̃2 (k, q) corresponds to the related HWHM
γ (k), see eq. (2.3.72). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5 Renormalized dispersion ω1,r (k) of the toy model for the parameters ε =

0.25, v = 0.8 and the threshold (γ (k) /∆ω̃2 (k))max = 0.05. Outside the
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a spectral weight 1/s ≥ (1/s)min = 0.1 are displayed since these describe
quasiparticle peaks in the corresponding spectral function A (k, ω), see
figure 3.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.6 Logarithmic color map of the spectral function A (k, ω) for the toy model
with the previously analyzed parameters ε = 0.25 and v = 0.8. The black
solid lines represent the lower and the upper boundary of of the two-
particle continuum ω̃2 (k, q) for a fixed total momentum k. Outside of the
continuum only peaks in the spectral function A (k, ω) with a minimal
spectral weight of (1/s)min = 0.1 are depicted with zero error bars implying
that the corresponding excitations have an infinite lifetime. . . . . . . . . 61

3.7 Renormalized dispersion ω1,r (k) of the toy model for different hybridiza-
tion strengths, tuned by the parameter v, see eq. (3.2.17). The criteria for
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3.8 Dispersion of the two-particle bound state ωbound (k) for different two-
particle interaction strengths w. For the calculations a discretization
of N = 1000 in k-space was chosen and 200 Lanczos steps have
been performed. In order to solve the corresponding Dyson equa-
tion, see eq. (2.3.66), the energy ω is discretized in steps of 0.001
and up to nLanczos,max = {50, 30, 20, 20} Lanczos coefficients for w =
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state only solutions of the Dyson equation below the two-particle contin-
uum ω̃2 (k, q) can be identified with the dispersion ωbound (k). The lifetime
of the two-particle bound state is infinite per definition, see sect. 2.3.3. . 63
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results belong to the two-particle bound states which are shown in figure
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3.10 Renormalized one-particle dispersion ω1,r (k) and renormalized dispersion
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4.1 Experimental data, measured by inelastic neutron scattering [39,70]. The
determined value k∗∆ = 0.575 (r.l.u.) stands for the position of the gap of
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4.2 Correspondence of the chosen criteria with two-dimensional isotropic dis-
persions, see eq. (4.1.10), for different values of x and y. The in-
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marked by a circle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
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5.2 Correspondence of the chosen criteria with the renormalized dispersions
ωr (k) for different values of x and y. The variation of the J2 coupling
δ = 1/3 is fixed as well as the interladder coupling J ′/J0 = 0.16. The red
solid line shows k∆ = k∗∆ = 0.575 (r.l.u.) and the corresponding dashed
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5.5 Zoom of panel (a) of figure 5.4 into the range where mode 1 and 2 show the
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the two-particle continua ω̃2,b (k) and ω̃2,z (k) belonging to the one-particle
dispersions ω̃b,r (k) and ω̃z,r (k) are depicted by solid lines. . . . . . . . . 110
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5.6 Logarithmic color map of the computed spectral function A (k, ω) for
the fitted renormalized one-particle dispersions ω̃b,r (k), ω̃b,r (k + π) and
ω̃z,r (k) with the parameters shown in figure 5.4. The black solid line repre-
sents the lowest boundary of the two-particle continua ω̃2,b (k), ω̃2,b (k + π)

and ω̃2,z (k). Outside the corresponding two-particle continua the one-
particle dispersions are depicted with error bars equal to zero, which imply
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5.7 Spectral function A (k, ω) for fixed momentum k = 0.8π containing the
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and (4.2.30), for fixed momentum k = 0.8π. The energy ω is discretized
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6.1 Orientation of the D vectors in the spin model of BCPO, see also figure
4.3. Note, that only a single spin ladder without the interladder coupling
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and y = 0.9. For the calculations a discretization of N = 800 in k-space
was chosen and 200 Lanczos steps have been performed. The energy ω
is discretized in steps of 0.001J0 and up to nLanczos,max = 25 for S=0 and
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for the Lanczos tridiagonalization a single particle with the flavor b was
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