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Introduction 1
1.1 Cells, Their Cytoskeleton, and Mitosis

The fundamental building blocks of life are cells, be it for simple organisms only consisting
of a single cell or complex organisms like human beings that are made up of more than 1013

cells1. Cells store the information for every aspect of their life cycle in form of deoxyribonucleic
acid (DNA) double helices in their nucleus. Cells are complex structures consisting of many
components that are responsible for a wide range of different tasks like mitochondria in
eucaryotic2 cells producing adenosine triphosphate (ATP), an important energy source for cells.
For the following discussion, however, we will drastically simplify the architecture of cells as
shown in Figure 1.1, which focuses on the cytoskeleton.

In this simplified model, the cell is confined by a membrane surrounding the intracellular fluid
(also called cytosol) and the nucleus with the DNA. In the cytosol, three different types of
protein filaments form the cytoskeleton. The cytoskeleton fulfills a multitude of functions in
cells like providing their shape and their physical robustness, facilitating their movement, and
enabling intracellular transport. The protein filaments constituting the cytoskeleton are actin
filaments, intermediate filaments, and the topic of this thesis, microtubules. Each type of
filament is responsible for different main aspects of the cells’ functioning: Actin filaments are
below the membrane and are thus perfectly positioned to change the shape of the cells and to
allow cells to move by protruding the part of the cell in movement direction and pulling back the
part of the cell on the opposite site. The different types of intermediate filaments are responsible
for the mechanical stability of the cells. Microtubules form the pathways for cargo being
transported in the cell by kinesin and dynein motor proteins. Microtubules are stiff polymers
with a persistence length of Lp = O(1 mm)[2,3], while actin filaments (Lp = O(10 µm)[2,4]) and
intermediate filaments (Lp = O(1 µm)[5], the actual value depends on the type of intermediate
filament) are softer. The persistence length is the characteristic length over which the correlation
of tangential directions along a polymer are lost (see (4.20)).

While actin filaments and intermediate filaments are not statically anchored in the cells (though
actin filaments can be anchored to each other by forming bundles or networks via additional
proteins, and they can also connect to microtubules), microtubules generally grow from a
microtubule-organizing center (MTOC)[6,7] (see Figure 1.1), which serves as their nucleation
site and anchor point. One type of such a microtubule-organizing center are centrosomes found
in animals. It is important to note that while we generally associate the term “skeleton” with
our own human skeleton and thus consider it a static structure, the cytoskeleton, however,
is anything but static. As already mentioned, the cytoskeleton enables cells to move by
reorganizing the actin filament network, but the components of the cytoskeleton, the protein

1The short introduction into cells given in this section is based on Alberts et al.[1].
2Eucaryotes are organisms with a distinct, membrane-enclosed nucleus in contrast to procaryotes like bacteria

that do not have a membrane-enclosed nucleus.

1



Figure 1.1: Schematic illustration of the cytoskeleton formed by microtubules, actin filaments, and
intermediate filaments (based on similar images from Alberts et al.[1]).

filaments themselves, are also generally non-static, i.e., change their length by growing or
shrinking.

One important step in the life cycle of cells is cell division and in the part of cell division
called mitosis in which the duplicated chromosomes are separated and the two new daughter
cells are formed, microtubules and actin filaments play crucial roles. Microtubules form the
mitotic spindle that attaches to the duplicated chromosomes during the prometaphase and
aligns the duplicated chromosomes in the center of the cell during the following metaphase. In
the anaphase of mitosis, the microtubules that are attached to the chromosomes shrink and
pull the chromosomes with them and thus separate them. In the following and last phase of
mitosis, which is called telophase, the actin filaments start forming the contractile ring, which
separates the original cell into the two daughter cells during cytokinesis, the step following
mitosis. Figure 1.2 gives a graphic overview of the previously described different parts of mitosis
and cytokinesis related to microtubules and actin filaments. During mitosis, in addition to the
kinetochore microtubules that are attached to the duplicated chromosomes via kinetochores
(thus the name “kinetochore microtubules”), there are also two other types of microtubules:
interpolar microtubules and astral microtubules. Interpolar microtubules grow towards the
opposite pole of the cell and the free ends of interpolar microtubules growing in opposite
directions are linked by motor proteins in the center of the cell. There are two types of these
motor proteins that either pull the poles together or push them apart, which helps correctly
positioning the mitotic spindle in the cell. In contrast, astral microtubules can be found at the
two poles of the cell near their MTOC, and they also help to ensure that the mitotic spindle is
correctly positioned.

From this short introduction, it is already obvious that microtubules are an important aspect
of life and thus of great interest for research. Additionally, microtubules are important parts
of dendrites and axons in neurons, which are responsible for the propagation of electrical
impulses. Several diseases affecting the nervous system like Alzheimer’s disease are linked to
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(a) Initial configuration with the chromosomes
aligned in the center of the cell.

(b) Configuration after the kinetochore micro-
tubules have pulled the chromosomes apart and
the formation of the contractile ring.

Figure 1.2: Oversimplified illustration of how the kinetochore microtubules are pulling the chromo-
somes apart and how the actin filaments form the contractile ring separating the cells (based on
similar images from Alberts et al.[1]).

microtubules[8]. Furthermore, successful “antimitotic drugs”[9] used in cancer treatment target
microtubule dynamics making microtubules “the best cancer target to be identified so far”[9].
By influencing how microtubule grow and shrink and by disrupting mitosis of cancer cells, these
drugs lead the cancer cells to apoptosis (“programmed cell death”)[9]. Another way of how
cancer influences microtubules are changes to their monomeric building blocks, for example via
post-translational modifications, though this is still an active field of research[10].

We have already mentioned that during anaphase, it becomes important that the kinetochore
microtubules shrink. However, it is important for all three types of microtubules that they
can switch between growth and shrinkage. While in cells in general, and thus during mitosis
specifically, such switching is often facilitated by additional proteins, it is an important intrinsic
property of microtubules as well (see next section). Hence, not only are microtubules themselves
of interest, but also their growth dynamics in particular, which is the topic of this thesis.

Cells, Their Cytoskeleton, and Mitosis 3



1.2 A Short History of Microtubules

Starting in the 1950s[11], long filaments were found in cells that were named “microtubules” in
1963[12,13] due to their tubular structure. Retrospectively, Slautterback[12] was able to identify
many of the previously reported structures as microtubules. Shortly thereafter[14,15], while
investigating microtubules in plant cells, it was discovered that microtubules consist of “slender
filamentous subunits”[14] and that there were probably 13 of these “protofilaments”[15]. In the
following years, microtubules with 8 up to 17 protofilaments[16–24] were found in different cells
or in vitro, though not every number of protofilaments found in vitro experiments might also be
found in actual cells[22]. It has even been observed that within the same microtubule, the number
of protofilaments can change[22,25], which can be considered a defect in the microtubule lattice.
Microtubules can also form doubles and triples in which microtubules share protofilaments
between each other[26]. Additionally, while imaging microtubules, spiral structures and rings
formed by depolymerized subunits of microtubules have been found[27–29].

Following the discovery of microtubules, research into and isolation of their subunits was under
way[30], which was ultimately named “tubulin”[31]. Previously, the “axial repeat along the
[proto]filaments”[32] was already measured as either 4 nm or 8 nm[26,32,33]. The discrepancy
between these two lengths was explained by the subunit being a dimer[34–37] with a length of
8 nm consisting of two tubulin monomers with a length of 4 nm per monomer. Each tubulin
monomer has a binding site for a guanosine nucleotide molecule[34]. In the beta-tubulin monomer,
guanosine triphosphate (GTP) can hydrolyze into guanosine triphosphate (GDP), which is why
it is also called the “E site” (with “E” for “exchangeable”)[34,38], while in the alpha-tubulin,
the “N site” (with “N” for “nonexchangeable”)[34,38], the GTP molecule does not hydrolyze[34],
resulting in a alpha-beta-heterodimer[35]. These hetero-dimers are arranged “head-to-tail”[34]

in protofilaments, i.e., they form an alternating chain of alpha- and beta-tubulin monomers.
Figure 1.3 gives a schematic overview of how individual tubulin dimers build the protofilament
and how then multiple protofilaments form the microtubule.

An important breakthrough for further investigations into microtubules was the in vitro growth
of microtubules from tubulin[39,40]. In these initial experiments and in later ones[41–43] as well,
it was shown that the contents and their amounts in the buffer solution, like different amounts
of specific ions, influence the microtubule dynamics. It has also been shown that there are
different tubulin isotypes that influence the dynamics of the microtubules they build[44,45]4.
Together, these aspects can make comparisons between different experiments difficult and can
result, for example, in different values for growth velocities.

Having the ability to grow microtubules in vitro lead to the discovery of their “dynamic insta-
bility” by Mitchison and Kirschner[46,47], which results in growing and shrinking microtubules
being present in the same buffer at the same time. It was also found that microtubules shrink
significantly faster than they grow[47–49]. Two years after the discovery of the dynamic instability
of microtubules, individual microtubules could be tracked and their length recorded over time
showing when a growing microtubule would switch to shrinking and vice versa[48]. Figure 1.4(b)
shows schematically how a microtubule switches from growth to shrinkage, which is called

3Used with permission of Springer Nature BV, from “Structure of the αβ tubulin dimer by electron
crystallography” by E. Nogales, S. G. Wolf, and K. H. Downing, Nature 391 (6663), 1998[37]; permission
conveyed through Copyright Clearance Center, Inc.

4In humans alone, there are eight different α-tubulin isotypes and seven different β-tubulin isotypes[10].
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Figure 1.3: Schematic illustration of the building blocks (tubulin dimers and protofilaments) of
microtubules (based on a similar image from Alberts et al.[1]). The tubulin dimer structure on the
left has been taken from Nogales et al.3

(a) Exemplary time evolution of the ratio of the
number of monomers incorporated into polymers
Nmip and the total number of monomers Nm for a
simple type of polymers. (Based on a similar image
from Alberts et al.[1].)

(b) Exemplary growth trajectory (microtubule
length LMT as a function of time) of a micro-
tubule undergoing catastrophes (C) after a period
of growth (G) switching to shrinkage (S) until a
rescue (R) occurs.

Figure 1.4: Comparison between the growth behavior of simple types of polymers and microtubules.

a catastrophe, and then switches back to growth after a rescue. This behavior is different
from a simple type of polymer growth as shown in Figure 1.4(a), which starts with a “lag
phase”[1] during which monomers require some time to form a stable polymer. This lag phase
is also relevant for microtubules and can generally be avoided if there is an existing seed or
nucleation side from with the polymer can grow. After stable polymers have formed, they can
grow (growth phase) and the number of monomers incorporated into polymers increases, which
in turn results in a decrease of monomers in the surrounding buffer. After the concentration of
free monomers in the buffer has reached the critical concentration ccrit

[50,51] at which the flux
of free monomers into the polymers equals the flux of monomers from the polymers back into
the solution, a steady state is reached.

A Short History of Microtubules 5



An explanation for these sudden switches between growth and shrinkage is given by the “GTP-
cap model” in which newly polymerized GTP-tubulin dimers form a cap, which grows via the
attachment of new GTP-tubulin dimers and shrinks because of the detachment of GTP-tubulin
dimers and the hydrolysis of GTP to GDP resulting in a “GDP body”[27,47,52]. After the
development of techniques to identify GTP-tubulin dimers in microtubules[53–56], islands of
GTP-tubulin dimers inside the GDP-body were detected and proposed as one possible rescue
mechanisms for microtubules[53,57].

In vitro experiments[47–49] also showed that the two ends of the free microtubules behave
differently: One end, called the “plus end”, grows faster and changes its growth state more
often than the other end, the “minus end”. Later, it was established that the beta-tubulin with
the exchangeable GTP molecule is located at the plus end and the alpha-tubulin at the minus
end[37,38,58]. The minus end is also the end from which microtubules grow from MTOCs. In
the sense of there being two distinct ends, microtubules are referred to as “polar” filaments[59],
which ultimately originates from the heterogeneity of the tubulin-dimer, i.e., alpha-tubulin
monomers and beta-tubulin monomers being distinct. Free microtubules also have the ability
to shrink at one end and grow at the other end[51,60,61], a phenomenon called “treadmilling”,
which effectively allows them to “move” in the surrounding fluid and which is a relevant process
for actin filaments as well[50]. For microtubules anchored in cells at MTOCs, however, only
dynamic instability is relevant because the minus end is static.

An important finding to understand how the GTP-cap stabilizes microtubules were “ram’s horns”
at the tip of shrinking microtubules[29]: In contrast to straight tips of growing microtubules (see
Figure 1.5(a)), protofilaments were found to bent outward while the microtubule shrinks making
them look like “ram’s horns”[27,29,62] as shown in Figure 1.5(b). During the debate of why
the lattice of the GDP-body of microtubules is unstable and why the GTP-cap stabilizes, two
models emerged trying to explain the stabilizing effect of the GTP-cap: the lattice model and
the allosteric model. In the lattice model[64,65], GTP- and GDP-tubulin dimers are intrinsically
curved (supported by newer images of protofilament ends also being bent during growth, as
shown in Figure 1.5(c)), but when GTP-tubulin dimers polymerize into the microtubule, they
assume a straight conformation, which is then kept after hydrolysis due to the lattice constraints.
To explain the stabilizing effect of the GTP-cap, lateral bonds between GTP-tubulin dimers
are assumed to be stronger than for GDP-tubulin dimers. In the allosteric model[28,29,66,67],
however, GTP-tubulin dimers are assumed to be straight regardless of whether they are part
of the microtubule or whether they are unbound in the surrounding buffer solution, resulting
in a naturally stable GTP-cap as there are no lattice forces acting on these tubulin dimers
keeping them straight because it is already their preferred conformation. While we are using the
allosteric model, as we will explain in the description of our model in chapter 2, we will come
back to the lattice model in section 10.2 as part of our conclusions and outlook to highlight
recent findings.

We end our short history of microtubules here as most aspects relevant for the rest of this thesis
5Used with permission of Rockefeller University Press, from “Microtubule Dynamics and Microtubule Caps:

A Time-resolved Cryo-Electron Microscopy Study” by E. M. Mandelkow, E. Mandelkow, and R. A. Milligan, J.
Cell Biol. 114 (5), 1991[29]; permission conveyed through Copyright Clearance Center, Inc.

6Used with permission of Rockefeller University Press, from “Microtubules grow by the addition of bent
guanosine triphosphate tubulin to the tips of curved protofilaments” by J. R. McIntosh, E. O’Toole, G. Morgan,
J. Austin, E. Ulyanov, F. Ataullakhanov, and N. Gudimchuk, J. Cell Biol. 217 (8), 2018[63]; permission conveyed
through Copyright Clearance Center, Inc.
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(a) Images of straight ends of growing micro-
tubules5.

(b) Images of bent protofilament ends of shrinking
microtubules5.

(c) Images of bent protofilament ends of a growing microtubule with green trace marks and the viewing
angles (red numbers)6.

Figure 1.5: Images of the ends of growing and shrinking microtubules.

have been introduced. Further information can be found in various review articles that have
been published in the last decades[7,68–78].

A Short History of Microtubules 7



(a) Continuous macroscopic one-dimensional micro-
tubule model with growth velocity vgr and shrinkage
velocity vsh.

(b) Discrete microscopic one-dimensional micro-
tubule model with polymerization rate kon and de-
polymerization rate koff.

(c) Discrete microscopic two-dimensional micro-
tubule model.

(d) Discrete microscopic three-dimensional micro-
tubule model in which tubulin monomers are repre-
sented by cylinders.

Figure 1.6: Schematic illustration of different types of major microtubule models in different
dimensions.

1.3 Microtubule Modeling

To understand the growth dynamics of microtubules, since the 1980s, theoretical and compu-
tational models have been developed on different levels of complexity, which we will review
briefly in this section[79,80]. There are three main types of microtubule models corresponding
to the number of dimensions used to model the microtubule. In one-dimensional models, or
single protofilament models, microtubules are represented as a one-dimensional object with
either a continuous length or as a sequence of one-dimensional tubulin dimers. Two-dimensional
models explicitly include the multi-protofilament structure of microtubules but represent each
protofilament as a one-dimensional object made up of one-dimensional tubulin dimers. Lastly,
three-dimensional models represent tubulin dimers as three-dimensional objects resulting in an
overall three-dimensional model. The level at which tubulin dimers are modeled can differ in
three-dimensional models, however. They can either be just a dimer of two tubulin monomers
that themselves have no substructure or they can be modeled at (near-)atomic resolution.
Obviously, as the models get more detailed, they also require more computational power so
that the three-dimensional models were the last ones to be developed. Figure 1.6 provides a
graphic overview of the different types of major microtubule models in different dimensions.

1.3.1 One-Dimensional Models

Early microtubule modeling in the 1980s, in particular by Hill et al.[52,81–85], considered the mi-
crotubule as a one-dimensional sequence of GDP- and GTP-tubulin dimers with polymerization
rates dependent on the nucleotide state of the terminal tubulin dimer, depolymerization rates
dependent on the nucleotide state of the terminal tubulin dimer that is depolymerizing and
the nucleotide tubulin dimer below it, and hydrolysis rates depending on whether the terminal
tubulin dimer or an “interior”[82] tubulin dimer is being hydrolyzed. While these models were
used for Monte Carlo simulations, they also allowed to calculate, for example, the probability
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of a growth microtubule of a certain length to depolymerize completely[84] or to compare the
growth and shrinkage velocities after reducing the amount of available free GTP-tubulin dimers
in experiments[52].

An important step forward was the work by Flyvbjerg et al.[86,87] in the 1990s, which incorporated
different types of hydrolysis mechanisms: vectorial and random hydrolysis (which we will explain
later in subsection 2.3.3). For most of their discussion, they also change from a “microscopic”
view represented by the rates of individual events to a “coarse-grained” view represented by
growth, shrinkage, and hydrolysis velocities with which they estimated the GTP-cap size, the
catastrophe rate and more.

Despite the advances in recent years with modeling microtubules in two and three dimen-
sions, the one-dimensional model is still used today, in particular for analytical calculations
and approximations, for example for the distribution of GTP in microtubules[88–90] (also see
Appendix F), to consider fluctuations in the free GTP-tubulin dimer concentration[91] or the
influence of a maximum microtubule length[92], or to use master equations for the microscopic
processes as a starting point[93–97] (Flyvbjerg et al.[86,87] also used a master equation in their
coarse-grained description, similar to later research[98]). By continuously changing the free
GTP-tubulin dimer concentration, hysteresis behavior was found for the average growth velocity
using a one-dimensional model[99].

1.3.2 Two-Dimensional Models

The first two-dimensional model by Chen and Hill[100] is based on their previous one-dimensional
modeling and considers the microtubule as a five-stranded helix. New tubulin dimers can only
attach at the ends of the helices, which means that polymerization requires both a longitudinal
neighbor below (i.e., in the previous helix) and a lateral neighbor on the left side (i.e., a tubulin
dimer in the same helical strand). In the lateral cap model published a few years later[101–103],
the same structure was used, but the polymerization of a new GTP-tubulin dimer causes the
instantaneous hydrolysis of the previous GTP-tubulin dimer creating a direct coupling between
polymerization and hydrolysis and a minimal cap.

An important advancement for the modeling of microtubule dynamics was to incorporate
thermodynamics by VanBuren et al.[104,105] into a simple model with few parameters. They
incorporated depolymerization as a thermally activated bond rupture process, which depends
on the total energy of all the relevant (longitudinal and lateral) bonds that must be broken
for the tubulin dimer(s) to depolymerize. The importance of the VanBuren et al. model is
shown by the fact that it has been used as the basis for many other modeling efforts[106–110].
While the model by VanBuren et al. did not consider the rupture (and formation) of lateral
bonds explicitly (they were automatically formed when a new tubulin dimer polymerized, and
their bond energy was considered for the depolymerization rate so that longitudinal and lateral
bonds ruptured at the same time during depolymerization), Margolin et al.[111–113] extended
this model by explicitly considering the formation and rupture of lateral bonds as separate
processes that now give rise to “cracks” between protofilaments, i.e., stretches of broken lateral
bonds.

Two-dimensional models have also been used for analytical calculations and approximations for
microtubules in particular or multi-stranded polymers in general[114–117].

Microtubule Modeling 9



1.3.3 Three-Dimensional Models

Following their two-dimensional model, VanBuren et al.[118] extended it to a three-dimensional
model, which also incorporates mechanics like bending of tubulin dimers and longitudinal
and lateral stretching[118–120]. Using a mechanical model without any polymerization and
depolymerization, but with hydrolysis, the influence of different hydrolysis rules and the
influence of coupling mechanics to hydrolysis, which we will also consider in this thesis,
was investigated[121]. An important additional requirement for three-dimensional models
with mechanics[122–124] is the need for some form of mechanical relaxation, for example via
explicit energy minimization[118,122] or by explicitly simulating the thermal motion of tubulin
monomers[125,126]. Instead of using explicit energy minimization, Zakharov et al.[126] use
Brownian dynamics to simulate the thermal motion of tubulin dimers by which the microtubule
structure relaxes and by which bonds are stretched until they are considered broken. By
using such an approach, they have to use a very small time step for their Brownian dynamics
simulation compared to the stochastic events like attachment and detachment of tubulin dimers,
making this approach much more computationally expensive.

To investigate the mechanics of microtubules, three-dimensional models have been used in
which the microtubule wall is represented as an elastic two-dimensional mesh structure[127,128].
Others have also focused on the mechanical properties of microtubules but have chosen a
three-dimensional representation of the tubulin monomers instead of a mesh structure[129–131].

Starting in the 2000s, computationally expensive simulations of microtubule or microtubule
parts were conducted using (near-)atom resolution based on tubulin dimer structures obtained
in experiments[132,133]. One of the earliest simulation used two protofilaments with five tubu-
lin dimers each and was able to show that longitudinal bonds between tubulin dimers are
much stronger than lateral bonds[134]. Others investigated mechanical properties of tubulin
monomers[135] or microtubules[136,137], for example by applying external forces on protofila-
ments[138] or microtubules[139]. There has also been an “intermediate” approach between a
dimer-based model and a (near-)atomic representation of microtubules by modeling each tubulin
monomer as multiple interacting beads to allow for (slight) form changes without having to go
to the (near-)atomic resolution[140]. At the end of this thesis, in section 10.2, we will come back
to some results of such models when discussing the lattice model again.
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1.4 Thesis Outline

The goal of this thesis to develop, implement, and parameterize a computationally efficient
three-dimensional microtubule model that combines the mechanics of the microtubule with its
microscopic dynamics, i.e., the addition and removal of new tubulin dimers, the formation and
rupture of lateral bonds, and the hydrolysis of GTP-tubulin dimers. In the next chapter, in
chapter 2, we will describe how we model microtubules structurally and mechanically and how
these two aspects are linked to the dynamics and internal changes of the simulated microtubules.
This modeling builds on the author’s master thesis[141]. After explaining how this model is
used in a computer program to simulate microtubule growth in chapter 3, chapter 4 details the
process of determining the free parameters of our model, which were introduced in chapter 2.
After determining the model parameters, we show the results of full microtubule dynamics
simulations with catastrophes and rescues in chapter 5 as the result of hydrolysis (with a
constant rate). In chapter 6, we investigate the influence of coupling hydrolysis of GTP to
GDP to the mechanics of the microtubule, and in chapter 7, we focus on selected properties of
microtubules. To get an understanding for the underlying mechanisms causing catastrophes and
rescues, we analyze individual microtubule trajectories in chapter 8 for both, constant hydrolysis
rates and mechanical hydrolysis. Lastly, we simulate dilution experiments in chapter 9 in which
the concentration of free GTP-tubulin dimer is (drastically) reduced at one point during the
experiment/simulation.
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Microtubule Model 2
Our microtubule model consists of three parts: the spatial microtubule structure, the energy
of the microtubule that describes its mechanics, and the chemical events that can change
the structure and the energy of the microtubule. In the following sections, each part will be
explained, and it is highlighted how the different parts interact leading to a chemomechanical
microtubule model. The static model by Müller et al.[121], which did not include polymerization
and depolymerization dynamics, serves as the basis for our model.

2.1 Structural Model

The fundamental units of our structural microtubule model are tubulin monomers in form
of alpha- and beta-tubulin monomers. The only difference between alpha- and beta-tubulin
monomers in our model is that the GTP molecule in beta-tubulin monomers can hydrolyze to
a GDP molecule. The shape of real tubulin monomers are ellipsoids with a width of 4.6 nm, a
height of 4.0 nm, and a depth of 6.5 nm[58]. In our model, we represent the tubulin monomers
as cylinders with radius rtub = 2 nm and length `tub = 4 nm, thus we do not resolve them on an
atomic or an almost atomic level[132–137,139,142–144]. The radius of the cylinders is intentionally
smaller than half of the real width and depth of tubulin monomers because we will model lateral
bonds between tubulin monomers in neighboring protofilaments with a finite rest length, which
accounts for the difference. The next level of our structural microtubule model are tubulin
dimers, which are formed by an alpha-tubulin monomer and a beta-tubulin monomer linked
with an unbreakable bond. These tubulin dimers are arranged “head-to-tail”, i.e., the tubulin
dimers only bond at heterotypic interfaces between beta- and alpha-tubulin monomers resulting
in an alternating chain of alpha- and beta-tubulin monomers (see Figure 1.3). These chains
are called protofilaments. The end at which an alpha-tubulin monomer is exposed is called
the “minus end”, and the other end at which a beta-tubulin monomer is exposed is called the
“plus end”. Lastly, 13 of these protofilaments form the surface of a cylinder by arranging them
parallel so that the minus ends of all protofilaments are at the same end of the microtubule,
its minus end, and the plus ends of all protofilaments form the microtubule’s plus end at the
opposite side. As the minus end will be static during our simulations, we will be referring to
the microtubules’ plus end as their tip. While the protofilaments are aligned parallel, they are
also positioned in a staggered way so that there is a small offset in the direction of the cylinder
axis between neighboring protofilaments. These small individual offsets result in a larger offset
of three tubulin monomer lengths, i.e., 12 nm, between the 13th and the first protofilament. As
the offset is an odd number of tubulin monomer lengths, the lateral bonds between the 13th and
the first protofilament are heterotypic, i.e., only alpha-beta lateral bonds exist in contrast to all
of the other lateral interfaces at which only homotypic lateral bonds exist, i.e., only alpha-alpha
and beta-beta bonds. The interface between the 13th and the first protofilament is generally
refereed to as the microtubule’s “seam”[145]. While there is debate[3,146–150] over whether the
lateral bonds between neighboring tubulin monomers at the seam are weaker, we only include
the seam as a structural component as a result of the offset and do not distinguish between
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lateral bonds at the seam and elsewhere. Because we use 13 protofilaments and because of
the offset of three tubulin monomer lengths at the seam, this type of microtubule is referred
to as a 13_3 microtubule[22]. One special property of 13_3 microtubules in contrast to other
microtubule configurations like 14_3 is the absence of a skew angle of protofilaments[20–22]

meaning that it is the only configurations for which the protofilaments are aligned in parallel
to the cylinder axis (in absence of any protofilament bending).

Whenever we want to reference a specific tubulin monomer within the microtubule, we will use
the triple (p, d, t). p ∈ {1, . . . , 13} is the index of the protofilament and dmax(p) is the number
of tubulin dimers in the protofilament. d ∈ {1, . . . , dmax(p)} is the index of the tubulin dimer
in protofilament p, where d = 1 refers to the tubulin dimer at the minus end and d = dmax(p)
refers to the tubulin dimer at the plus end. Lastly, t ∈ {1, 2} is the index of the specific tubulin
monomer in tubulin dimer (p, d). Alpha-tubulins are indexed with t = 1 and beta-tubulins
are indexed with t = 2. In the remainder of this thesis, we will also be referencing potential
neighboring tubulin monomers of monomer (p, d, t): It can have two longitudinal neighbors
(p, d, t− 1) and (p, d, t+ 1) and two lateral neighbors (p− 1, d, t) and (p+ 1, d, t). In order for
this indexing to work, we additionally define

(p, d, 0) ≡ (p, d− 1, 2), (2.1a)
(p, d, 3) ≡ (p, d+ 1, 2), (2.1b)
(0, d, t) ≡ (13, d, t), (2.1c)
(14, d, t) ≡ (1, d, t). (2.1d)

When considering the lateral neighbors (p ± 1, d, t) of tubulin monomer (p, d, t), (p ± 1, d, t)
should be understood contextually as the lateral neighbor in the previous/next protofilament.
For most protofilaments this is also literally correct. At the seam, which is located between
protofilaments p = 13 and p = 1, however, neighboring tubulin monomers differ in all three
indices due to the helical shift. For example, the lateral neighbor of tubulin monomer (13, 2, 2)
in the first protofilament is (1, 1, 1). To avoid having special cases for the seam, we simply use
(p± 1, d, t). When referencing tubulin dimers, we will omit the tubulin monomer index t and
simply use (p, d).

After having explained the microtubule structure descriptively and after having established the
tubulin monomer indices, we can now introduce the mathematical modeling of the microtubule
structure. The basis of this modeling are vectors pointing to different points of the tubulin
monomer cylinders and vectors connecting different points on the tubulin monomer cylinders
with other points on the same or a different tubulin monomer cylinder. To describe the
orientation of tubulin monomers, we use spherical coordinates (`tub, φ, θ) with the constant
tubulin monomer length `tub, the azimuthal angle φ, and the polar angle θ. Whenever explicit
values of angles are given in this thesis, degrees is used as their unit because we generally have
an easier understanding of angles in degrees than in radian. In all calculations, however, their
value in radian is used.

Each tubulin monomer is described by three vectors: the minus end vector m(p, d, t) pointing
to the center of the bottom circle facing the microtubule’s minus end, the plus end vector
p(p, d, t) pointing to the center of the top circle facing the microtubule’s plus end, and the
direction vector d(p, d, t), which connects the tubulin monomer’s minus end with its plus end.
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Figure 2.1: Schematic view onto
the minus end of our microtubule
model showing the minus end vectors
m(p, 1, 1) of the first alpha-tubulin in
each protofilament and highlighting
the position of the seam.

The minus end vector of the first tubulin monomer in each protofilament is given by

m(p, 1, 1) =

 RMT cosφ(p)
−RMT sinφ(p)
(p− 1)∆zh

 (2.2)

with the average microtubule radius RMT = 10.5 nm from the inner microtubule radius
8.5 nm[151] and the outer microtubule radius 12.5 nm[16,20]. (RMT is the spatial average radius,
while the “average radius to the dimer center of mass”[152] was determined as 11.2 nm[152].) The
minus sign in the y-component ensures the left-handed chirality of the microtubule lattice and
the z-component positions the seam between protofilaments p = 13 and p = 1 (see Figure 2.1)
with

∆zh =
3

13
`tub. (2.3)

The azimuthal angle of all tubulin monomers in a protofilament has the same fixed value of

φ(p) = 2π
p− 1

13
. (2.4)

Starting from these initial points, each protofilament can be regarded as a vector chain of the
direction vectors

d(p, d, t) = p(p, d, t)−m(p, d, t) = `tub

 cosφ(p) sin θ(p, d, t)
− sinφ(p) sin θ(p, d, t)

cos θ(p, d, t)

 . (2.5)

As `tub = const and φ(p) = const for a given protofilament, a tubulin monomer’s only degree of
freedom is its polar angle θ(p, d, t), which is a crucial aspect of our microtubule modeling. As a
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(a) Two protofilament segments with three tubulin
monomers each showing the different structural vec-
tors. (The gaps between the tubulin monomers in
z-direction were only added for this illustration.)

(b) Bending angles ψ as the difference of the polar
angles of successive tubulin monomers between the
tubulin monomer direction vectors.

Figure 2.2: Schematic illustration of the structural vectors and bending angles.

consequence, the whole microtubule has the same number of degrees of freedom as it contains
tubulin monomers.

Using (2.5), the other minus end vectors and the plus end vectors of all tubulin monomers can
thus be calculated by summing the appropriate number of direction vectors:

m(p, d, t) = m(p, 1, 1) +

d−1∑
d′=1

2∑
t′=1

d(p, d′, t′) + δt,2d(p, d, 1), (2.6)

p(p, d, t) = m(p, d, t) + d(p, d, t) = m(p, 1, 1) +
d∑

d′=1

2∑
t′=1

d(p, d′, t′)− δt,1d(p, d, 2). (2.7)

Figure 2.2(a) shows a graphic illustration of the different structural vectors introduced in this
section.

The length Lproto of protofilament p is defined as the maximum z-coordinate of all tubulin
monomer in the protofilament:

Lproto(p) = max
d,t

[
p(p, d, t) · ez

]
. (2.8)

If the protofilament is perfectly straight, i.e., θ(p, d, t) = 0 for all tubulin monomers in protofil-
ament p (see Figure 2.3(a)), this protofilament’s length is given by the z-coordinate of the plus
end of the last tubulin monomer in the protofilament:

Lproto(p) = p(p, dmax(p), 2) · ez. (2.9)

For slightly curved protofilaments, (2.9) also holds (see Figure 2.3(b)). In contrast, for a
very curved protofilament (see Figure 2.3(c)), the protofilament length will be larger than the
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(a) Straight protofilament. (b) Slightly curved protofila-
ment.

(c) Curved protofilament.

Figure 2.3: Schematic illustration of the protofilament length (2.8) for different degrees of protofil-
ament curvature. The gaps between the tubulin monomers are for illustration purposes only.

z-coordinate of the plus end of the last tubulin monomer in the protofilament:

Lproto(p) > p(p, dmax(p), 2) · ez. (2.10)

There are different experimental methods used to determine the length of a microtubule[79]:
Dark field microscopy measures the microtubule length of the closed tubular part of the
microtubule, thus the length of the shortest protofilament, differential-interference-contrast
(DIC) microscopy measures the microtubule length as the average length of protofilaments,
and optical tweezers are sensitive to the longest protofilament so that they measure the length
of the longest protofilament as the microtubule length. As we will be using DIC microscopy
data[49] later on, we define the length of a microtubule as the average protofilament length:

LMT =
1

13

13∑
p=1

Lproto(p). (2.11)

Lateral bonds between neighboring tubulin monomers are modeled as elastic springs that are
fixed at the edge of upper circular base of the tubulin cylinders. The connection vector from
p(p, d, t) to the attachment point of the lateral bond to the next tubulin monomer (p+ 1, d, t)
is

c(p, d, t) = −rtub

sinφ(p)
cosφ(p)

0

 (2.12)

so that c(p, d, t) ⊥ p(p, d, t) in the x-y-plane. Consequently, the connection vector from p(p, d, t)
to the attachment point of the lateral bond to the previous tubulin monomer (p − 1, d, t) is
simply −c(p, d, t). The vectors representing the lateral bonds themselves are then given by

s(p, d, t) = −
[
p(p, d, t) + c(p, d, t)

]
+
[
p(p+ 1, d, t)− c(p+ 1, d, t)

]
. (2.13)

The spring vectors are defined so that s(p, d, t) points from tubulin monomer (p, d, t) to its
next neighbor (p+ 1, d, t). The rest length s0 of these springs can be calculated in two steps as
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(a) Projection of a lateral spring into the x-y-plane
illustrating the way to calculate s0,‖.

(b) Projections of a lateral spring into the x-y-plane
and onto the z-axis illustrating the way to calculate
s0.

Figure 2.4: Illustrations for the calculation of the rest length s0 of lateral springs.

illustrated in Figure 2.4. First, we consider the projection of the spring into the x-y-plane as
shown in Figure 2.4(a) and whose length is given by

s0,‖ = 2C sin δ
2
, (2.14)

where C is the length of the dashed lines in Figure 2.4(a) and

φ =
2δ

13
− 2α. (2.15)

The angle α (see Figure 2.4(a)) in turn can be expressed via the average microtubule radius
RMT and the tubulin radius rtub:

α = arctan rtub
RMT

. (2.16)

From the same right triangle, it follows that

C =
√
R2

MT + r2tub (2.17)

with which s0,‖ can finally be written as[121]:

s0,‖ = 2
√
R2

MT + r2tub sin
(
π

13
− arctan rtub

RMT

)
(2.18)

= 2
√
R2

MT + r2tub
RMT√

R2
MT + r2tub

(
sin π

13
− rtub
RMT

cos π
13

)
(2.19)

= 2 sin π

13

(
RMT − rtub cot π

13

)
(2.20)

' 1.14 nm. (2.21)

The projection of the spring onto the z-axis, s0,⊥, is due to the shift between protofilaments
and given by

s0,⊥ =
3`tub
13

' 0.92 nm. (2.22)
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Geometric Parameter Symbol Value

mean microtubule radius RMT 10.5 nm
tubulin monomer radius rtub 2 nm
tubulin monomer length `tub 4 nm
helical shift between protofilaments ∆zh 0.92 nm
rest length of lateral springs s0 1.47 nm
straight equilibrium bending angle ψ0 0°
curved equilibrium bending angle ψ0 11°

Table 2.1: Geometric model parameters and their values.

Finally, the rest length of the spring is

s0 =
√
s20,‖ + s20,⊥ ' 1.47 nm. (2.23)

Table 2.1 lists the geometric parameters introduced in this and the following section.

With the three-dimensional structure of the microtubule lattice introduced, we can now use it
to define the energy of the microtubule.
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2.2 Mechanical Model

There are two main contributors to the mechanical energy in our model: the stretching of
lateral bonds and the bending energy of longitudinal junctions. There is also an additional
repulsion energy between neighboring tubulin monomers to ensure the cylindrical shape of
the microtubule. While the longitudinal intra-dimer bond between the alpha-tubulin and
the beta-tubulin of the same tubulin dimer is unbreakable, the inter-dimer bond between the
beta-tubulin of one tubulin dimer and the alpha-tubulin of the next tubulin dimer is breakable.
As a consequence, the longitudinal inter-dimer bond is explicitly contained in our model via
the longitudinal bond energy ∆G0∗

long
1.

Lateral bonds are modeled as elastic springs with equilibrium energy ∆G0
lat and spring constant

klat so that the energy of the lateral bond connecting tubulin monomers (p, d, t) and (p+1, d, t)
is given by:

Elat(p, d, t) = ∆G0
lat +

1

2
klat

[
|s(p, d, t)| − s0

]2
. (2.24)

If no such lateral bond exists, the implicit assumption is that Elat(p, d, t) = 0.

Independent of the existence of a lateral bond between the two lateral neighboring tubulin
monomers (p, d, t) and (p+ 1, d, t), there is also a repulsive energy

Erep(p, d, t) = krep
[
|p(p, d, t)− p(p+ 1, d, t)| − 2rtub

]−12 (2.25)

with the repulsion constant krep. The need for such an additional energy contribution will be
detailed at the end of this section.

The last part of our mechanical model is the bending energy, which penalizes the enforced
straight conformation of GDP-tubulin dimers in the microtubule lattice. To keep the model
as simple as possible, the bending energy, just like the lateral spring energy, is modeled via a
harmonic potential with bending constant κ:

Ebend(p, d, t) =
1

2
κ
[
ψ(p, d, t)− ψ0(p, d, t)

]2 ≡ 1

2
κ∆ψ2(p, d, t). (2.26)

ψ(p, d, t) is the bending angle of tubulin monomer (p, d, t) and it is the difference in the polar
angle to the previous tubulin monomer (p, d, t− 1):

ψ(p, d, t) =

{
θ(p, d, t) if d = 1, t = 1

θ(p, d, t)− θ(p, d, t− 1) else
(2.27)

so that for a tubulin monomer’s bending, the tubulin-tubulin interface at its minus end is
relevant (see Figure 2.2(b)). Additionally, the deviation of the bending angle from its equilibrium
value

∆ψ(p, d, t) = ψ(p, d, t)− ψ0(p, d, t) (2.28)

1We use the same nomenclature introduced by VanBuren et al.[105] that we will come back to in the next
section.
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was introduced for brevity. ψ0(p, d, t) in (2.26) is the equilibrium value of the bending angle
ψ(p, d, t). In principle, there are different possible choices for ψ(p, d, t) depending on the value
of t and whether or not tubulin dimer (p, d) is hydrolyzed. Regardless of this choice, a free
protofilament made up entirely by GDP-tubulin dimers must form an arc with an radius
of 21 nm[67,153]. Two ways of achieving such a radius would be to set ψ0(p, d, 2) = 22° and
ψ0(p, d + 1, 1) = 0° or ψ0(p, d, 2) = 0° and ψ0(p, d + 1, 1) = 22° if the tubulin dimer (p, d) is
hydrolyzed. In the first case, there would only be intra-dimer bending, and in the second case,
there would only be inter-dimer bending. Experimental data suggests, however, that there is
both intra-dimer bending and inter-dimer bending[154,155]. Thus, as a consequence of tubulin
dimer (p, d) being hydrolyzed, we choose a simple uniform distribution between both angles:

ψ0(p, d, 1) =

{
11° if tubulin dimer (p, d− 1) is hydrolyzed
0° else

(2.29a)

ψ0(p, d, 2) =

{
11° if tubulin dimer (p, d) is hydrolyzed
0° else

(2.29b)

As alpha-tubulin monomers are only influenced by the hydrolysis state of the previous tubulin
dimer, this choice leaves the first alpha-tubulin unaffected so that we also use ψ0(p, 1, 1) = 11°
if tubulin dimer (p, 1) is hydrolyzed2.

The total energy of a microtubule is given as the sum of all relevant energies:

EMT =

13∑
p=1

dmax(p)∑
d=1

∆G0∗
long +

2∑
t=1

[
Elat(p, d, t) + Erep(p, d, t) + Ebend(p, d, t)

] , (2.30)

which depends on the polar angles θ(p, d, t) of all tubulin monomers.

Our mechanical microtubule model introduces five free parameters:

1. the longitudinal bond energy ∆G0∗
long,

2. the lateral bond energy ∆G0
lat,

3. the lateral spring constant klat,

4. the lateral repulsion constant krep, and

5. the bending constant κ.

While the lateral bond energy (2.24) and the bending energy (2.26) are of significant interest as
they are relevant for the lateral bond rupture process and protofilament bending, respectively,
the lateral repulsion energy (2.25) was only introduced as a means to ensure a tubular structure.
As a consequence, the lateral repulsion energy is of no interest when investigating the dynamics
of microtubules and to avoid having krep as another free parameter in the model, it has already
been previously[121] determined that setting

krep = 10−6 rad2 nm−12κ (2.31)
2In hindsight, either always using ψ0(p, 1, 1) = 0° or ψ0(p, 1, 1) = 11° seems to be a more intuitive choice. In

practice, however, this choice has no relevant influence as actual bending of this tubulin monomer only becomes
relevant once the microtubule has already depolymerized almost completely.
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Figure 2.5: Microtubule structures for
different values of krep/κ in units of
rad2 nm−12 show how the repulsion energy
(2.25) is needed to avoid buckling.

results in a tubular structure while keeping krep as small as possible. The necessity of an
additional repulsive energy Erep(p, d, t) is illustrated in Figure 2.5, which shows that the
protofilaments constrict and neighboring protofilaments start to overlap for krep = 0 and
that increasing krep widens the constriction until a proper tube is formed. (The VanBuren et
al. model[118] did not introduce such a repulsive energy but instead enforced that their polar
angles θ cannot be negative).

Due to (2.31), there are now only four free parameters left from the mechanical part of our
model.
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2.3 Chemical Model

During the simulation of the microtubule dynamics, different types of chemical events can
occur: New GTP-tubulin dimers can attach at any protofilament (polymerization), tubulin
dimers without lateral bonds can detach from any protofilament (depolymerization), lateral
bonds between tubulin monomers can form or break, and the GTP molecule in tubulin dimers’
beta-tubulin can hydrolyze to GDP. The polymerization and depolymerization dynamics are
restricted to the microtubule’s plus end, and the minus end is considered as fixed (as they are
in cells at MTOCs).

2.3.1 Dimer Polymerization and Depolymerization

In general, polymerization and depolymerization reactions can be written as[156]

Pn + M kon−−⇀↽−−
koff

Pn+1, (2.32)

where Pn is a polymer consisting of n monomers and M is a monomer. kon is the attachment
rate of a new monomer onto the polymer, and koff is the detachment rate of a monomer from
the polymer.

The dissociation constant for a polymerization process at standard conditions, i.e., c0 = 1 M,
with on-rate kon and off-rate koff is given by[156]

Kdiss =
koff
kon

= exp
(
β∆G0

)
, (2.33)

where ∆G0 < 0 is the energy of the bond that is formed during polymerization and broken
during depolymerization and β = (kBT)−1.

In general, (2.32) is a second-order reaction for which the forward reaction rate kon depends
on the concentration of the polymers and the monomers. As the concentration of polymers is
much smaller than the concentration of monomers, the concentration of polymers is assumed
to be constant, and this second-order reaction simplifies to a pseudo-first order reaction. As a
consequence, the attachment rate of monomers onto the polymer is only proportional to the
monomer concentration:

kon = k+c, (2.34)

where k+ is the pseudo-first order polymerization rate. With (2.33), the detachment rate is
given by

koff = k+c
0 exp

(
β∆G0

)
. (2.35)

During our microtubule simulation, the concentration of free GTP-tubulin dimers is c = ctub.
This solution of individual GTP-tubulin dimers is not explicitly modeled but only represented
by the concentration ctub. It is assumed that ctub is sufficiently large so that the decrease
in ctub due to the attachment of dimers can be neglected so that ctub = const during the
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Figure 2.6: Exemplary two-dimensional representation of four
protofilament plus ends of a microtubule with lateral bonds between
tubulin monomers represented by black lines. Only the four tubulin
dimers highlighted in gray can depolymerize because they have no
lateral bonds. In the third protofilament, either only the top tubulin
dimer can depolymerize by breaking its longitudinal bond to the gray
tubulin dimer below it or both gray tubulin dimer can depolymerize
together by breaking the longitudinal bond between the second gray
tubulin dimer and the white tubulin dimer below.

simulation3. In contrast to a simple linear polymer, which only contains one type of bond,
microtubules contain two types of bonds: longitudinal bonds between tubulin dimers in the
same protofilament and lateral bonds between tubulin monomers in neighboring protofilaments.
When a new tubulin dimer attaches to the tubulin dimer, we assume that only a longitudinal
bond forms so that the relevant bond energy ∆G0 for the polymerization process is the bond
energy ∆G0∗

long of such a longitudinal bond. The depolymerization rate of a tubulin dimer from
a protofilament is thus given by

koff = k+c
0 exp

(
β∆G0∗

long

)
. (2.36)

When a tubulin dimer attaches to the microtubule, the tubulin dimer also has to pay an
entropic cost of “immobilization”[104], which was previously estimated to be between 11.8 kBT
and 18.5 kBT [104,157]. In reality, the value of this entropic cost depends on the surroundings
of the attachment side, i.e., whether the polymerized tubulin dimer has lateral neighbors or
not. However, to keep our model simple, we assume that the difference in entropic cost is
negligible so that we can use the same value for all polymerization reactions. As during each
polymerization reaction, a longitudinal bond is formed, the entropic cost of immobilization can
be combined with the longitudinal bond energy resulting in ∆G0∗

long
[104].

As our model explicitly contains the formation and breakage of lateral bonds, we only allow
depolymerization of laterally unbonded tubulin dimers, which also allows for the detachment of
whole longitudinally connected protofilament segments as long as all of the relevant tubulin
dimers are laterally unbonded (see Figure 2.6). Other models that do not consider the
formation and breakage of lateral bonds explicitly[104,106–108,118,120] change the bond energy in
the depolymerization rate (2.36) to the total energy of all bonds, i.e., longitudinal and lateral
bonds, that need to be broken for the tubulin dimer(s) to detach.

2.3.2 Formation and Breakage of Lateral Bonds

As mentioned in section 1.2, in shrinking microtubules, protofilaments can bend outward
forming “ram’s horns”. In order for such a process to occur, the lateral bonds between
protofilaments must break illustrating why bond breakage is most likely an important process

3Walker et al.[49] use 5 µL samples with tubulin dimer concentrations of ctub = O(10 µM) resulting in O(1013)
tubulin dimers in the sample. A single microtubule with length LMT = 10 µm, however, only contains O(104)
tubulin dimers resulting in a negligible decrease of the tubulin dimer concentration in the surrounding solution.
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for catastrophes to occur. Bond formation and rupture was already previously considered
in a chemical model without explicit three-dimensional mechanics[111–113]. Additionally, MD
simulations of microtubules under an external force[143] showed that lateral bonds can easily
reform also highlighting the need to explicitly consider the (re)formation of lateral bonds in our
model.

For the formation and breakage of lateral bonds, another dissociation constant can be defined
resulting in the following relation between the rate for the formation of lateral bonds kform and
the rate for the rupture of lateral bonds krup:

krup
kform

= exp
(
β∆G0

lat

)
. (2.37)

In contrast to the formation and breakage of longitudinal bonds, i.e., polymerization and
depolymerization, where the bond formation rate kon could be explicitly expressed as a function
of the tubulin dimer concentration ctub, there is no analog for lateral bonds. In general, it is
possible to “split” the exponential factor in (2.37) between the formation and the breakage
rate:

kform = katt exp
(
γβ∆G0

lat

)
, (2.38)

krup = katt exp
(
(1− γ)β∆G0

lat

)
, (2.39)

where katt is the attempt rate to form or break a lateral bond and γ is a “load distribution
factor”[158] that determines to which extent the strength of the lateral bond affects the bond
formation and the bond rupture rate. To avoid introducing another parameter and to only
have the bond energy dependence in the rupture process like for longitudinal bonds, we chose
γ = 0:

kform = katt, (2.40)

krup = katt exp
(
β∆G0

lat

)
. (2.41)

Until now, we only considered lateral bonds without any external forces. In section 2.2, however,
we introduced the lateral bonds as stretchable springs so that we also have to consider external
forces acting on the lateral bonds. As these forces influence the bond energy, they have to be
incorporated into the bond rupture rate via Bell theory[159,160]:

krup(p, d, t) = katt exp
[
β
(
∆G0

lat + Flat(p, d, t)`rup

)]
. (2.42)

Flat is the force acting on the lateral bond, which is given by

Flat(p, d, t) =
∂Elat(p, d, t)

∂|s(p, d, t)|
(2.43)

for the lateral bond between tubulin monomers (p, d, t) and (p+1, d, t). `rup is the characteristic
lateral bond rupture length, which accounts for “all features of the energy landscape”[160] and
which we define as the length increase of the lateral bonds from their rest length s0 so that

∆G0
lat + Elat = 0 ⇐⇒ `rup =

√
−2∆G0

lat
klat

. (2.44)
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Figure 2.7: Illustration of the characteristic bond rupture
length `rup at which the lateral spring energy Elat cancels
the equilibrium bond energy ∆G0

lat.

(see Figure 2.7). If it was experimentally possible, `rup would be determined experimentally
via the characteristic bond rupture force (β`rup)

−1. We must highlight that the rupture rate
of lateral bonds (2.42) in this form is a crucial part of the model because this is where the
mechanical model represented by the lateral bond force Flat and the chemical model in form of
the rupture rate krup are combined making the model a chemomechanical model.

When introducing the depolymerization process in our model in subsection 2.3.1, we added
no explicit dependence of the depolymerization rate (2.36) on the nucleotide state of the
depolymerizing tubulin dimer or the nucleotide state of the tubulin dimer below it[112] (see
discussion in section 10.2). However, as the lateral bond rupture rate (2.42) depends on the
lateral bond force (2.43), there will be a different “effective” depolymerization rate for a terminal
GDP-tubulin dimer with all four of its lateral bonds formed compared to a GTP-tubulin dimer
in the same situation. As the GDP-tubulin dimer prefers a bent conformation and as there are
no more tubulin dimers on top of it generating lattice constraints in that direction, a terminal
GDP-tubulin dimer is able to bent outward resulting in stretched lateral bonds, which makes it
more likely for them to rupture. In contrast, a GTP-tubulin dimer can stay in its preferred
straight conformation without any external forces on it, and it itself will thus not cause any
lateral bond stretching and thus generally have more stable lateral bonds. As a consequence,
the overall depolymerization process of lateral bond rupture followed by the longitudinal bond
rupture is on average easier for terminal GDP-tubulin dimers than for terminal GTP-tubulin
dimers.

Until now, we have only discussed the rates with which lateral bonds can form and rupture.
We have, however, not discussed where bonds can form and rupture. In principle, it would be
possible to allow bonds to form wherever a tubulin monomer has a lateral neighbor with which
it has not already formed a lateral bond and to allow any existing lateral bond to break. We
have, however, already mentioned that rupture of lateral bonds at the microtubule tip allows
protofilaments to bend outward and form ram’s horns. Only the existence of lateral bonds
below the starting point of the bent protofilament part stops the bending. At this interface
between existing and ruptured lateral bonds, the bond rupture forces will be the highest so that
here, bonds would rupture predominantly creating a zipper-like mechanism for rupture. On
the simulation side, having any bond potentially rupture causes a significant slowdown of the
simulation for long microtubules as for each bond, the lateral spring forces must be determined
to calculate the rupture rate. As a consequence, we only allow one of the lateral bonds between
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Figure 2.8: Exemplary two-dimensional representation of four protofil-
ament plus ends of a microtubule with lateral bonds between tubulin
monomers that cannot rupture represented by thick black lines, lateral
bonds that can rupture represented by thin black lines, and lateral bond
that can form represented by dashed lines.

two protofilaments to rupture: the bond closest to the plus end. Consequently, we also only
allow the formation of a lateral bond above an existing lateral bond. These rules result in
one continuous stretch of formed bonds starting at the minus end, which can be followed by a
stretch where no lateral bonds exist at the plus end as illustrated in Figure 2.8. Having such a
rupture rule for lateral bonds results in at most 13 bond rupture rates to be calculated (one
per protofilament) instead of one rupture rate for each tubulin monomer making the required
runtime for these calculations independent of the microtubule length.

2.3.3 Hydrolysis

The last chemical process included in our model is the hydrolysis of GTP-tubulin dimers into
GDP-tubulin dimers. It was already found out quite early that tubulin dimers have two binding
sites for GTP and that at one site the GTP is exchangeable (“E site”) and at the other site, it
is generally not exchangeable (“N site”)[34,161–163]. Later, it was revealed that GTP at the E
site hydrolyzes to GDP while microtubules grow[36,162,164,165] and that the E site is located in
the beta-tubulin of the tubulin dimer[165,166]. While hydrolysis can be described as a first-order
reaction[167], it was also shown that hydrolysis consists of two parts, the cleavage of the inorganic
phosphate Pi followed by its release[168–171]:

GTP −−→ GDP ·Pi −−→ GDP + Pi. (2.45)

As in the other computational models mentioned before, we do not consider the intermediate
state GDP ·Pi , but instead, we will only consider a simplified hydrolysis model

GTP −−→ GDP + Pi (2.46)

because we want to introduce as few model parameters as possible and (2.46) only requires
one rate constant while (2.45) would require two rate constants and we would also have to
consider the GDP ·Pi-state in addition to the GTP- and the GDP-state. (Manka et al.[172]

were able to investigate the GDP ·Pi-state, and they found structural differences, which we will
discuss briefly in section 10.2.) Almost the entire energy released during the whole hydrolysis
process (estimated as 4.7 kBT [173]) is believed to be stored in the microtubule lattice[173], which
is then released by protofilaments bending outward during shrinkage. It has been shown that
the bent protofilaments are indeed able to produce work by moving nearby beads held in laser
traps[174,175] and by pulling the chromosomes apart during mitosis[176].
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(a) Coupled hydrolysis. (b) Vectorial hydrolysis.

(c) Random hydrolysis. (d) Coupled random hydrolysis.

Figure 2.9: Schematic illustration of the different hydrolysis models in which only the dark tubulin
dimers (“T”) are allowed to hydrolyze. Actual hydrolysis events are represented by black arrows,
while other possible events are represented by dashed gray arrows. (A similar figure was published
by Bowne-Anderson et al.[79].)

There are different rule sets that can be applied to hydrolysis dictating which GTP-tubulin
dimers are allowed to hydrolyze and which ones are not[79]. The coupled hydrolysis model
(see Figure 2.9(a)) postulates that hydrolysis happens immediately after a tubulin dimer
polymerizes on top of it[177] creating a maximum GTP-cap length of one tubulin dimer. In
the vectorial hydrolysis model (see Figure 2.9(b)), only the GTP-tubulin dimer directly at the
GDP-body/GTP-cap interface is allowed to hydrolyze resulting in a continuous GDP-body
followed by a continuous GTP-cap. In the random hydrolysis model (see Figure 2.9(c)), any
GTP-tubulin dimer is allowed to hydrolyze leading to a GDP-dominated body and a “porous”
GTP-cap in which there are GTP-tubulin dimers and GDP-tubulin dimers. It is also possible
to combine models like allowing vectorial and random hydrolysis at the same time[87] so that
there are different hydrolysis rates at the GDP/GTD-interfaces and inside of GTP islands or
to combine random and coupled hydrolysis (see Figure 2.9(d)) so that hydrolysis is random
except for terminal GTP-tubulin dimers that cannot hydrolyze[92]. The idea that a terminal
GTP-tubulin dimer cannot hydrolyze is due to experimental results that the formation of a
longitudinal bond during the polymerization of a new tubulin dimer onto the terminal GTP-
tubulin dimer catalyzes the hydrolysis reaction in the now second-to-last tubulin dimer[58,162].
Structural data has shown that the residue in the alpha-tubulin connecting to the “catalytic
pocket”[78] of the previous beta-tubulin relevant for hydrolysis is missing in the beta-tubulin
explaining why the GTP molecule in the alpha-tubulin does not hydrolyze[78,178].

In our model, hydrolysis is included as a stochastic process with constant rate kh (a non-constant
hydrolysis rate will be discussed in subsection 2.3.4), and we will use a slightly altered variant of
the coupled random hydrolysis model: We also allow terminal GTP-tubulin dimers to hydrolyze
if they ever had another tubulin dimer on top of them as illustrated in Figure 2.10. The value
of kh will be discussed in section 5.1.

While there is no feedback of the microtubule’s mechanics on the hydrolysis rate kh, hydrolysis
in turn influences the mechanics as hydrolysis changes the rest bending angle ψ0, see (2.29).
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Figure 2.10: Coupled random hydrolysis model
used in our simulation, where a terminal GTP-
tubulin dimer can hydrolyze if it ever had an-
other tubulin dimer on top of it. (Possible
hydrolysis reactions are marked by the vertical
dashed arrows with “kh”.)

In the next section, we will discuss an approach in which there is explicit feedback of the
mechanical modeling on the hydrolysis rate resulting in a non-constant hydrolysis rate that
becomes tubulin dimer-dependent.

2.3.4 Hydrolysis With Mechanical Feedback

It was already proposed previously by Müller et al.[121] to couple the hydrolysis to the mechanics
of the microtubule resulting in different hydrolysis rates for different tubulin dimers. Before we
discuss the coupling of hydrolysis and mechanics further, we should go back to bond rupture
processes for a moment and consider a bond at different lengths: At its equilibrium length,
the bond is in an energetic minimum, and if it is stretched beyond a certain length, it is
energetically more favorable for the bond to rupture. In between these two extremes, there
is an energy barrier that must be overcome before the bond ruptures (see Figure 2.11(a))4.
From the perspective of the stochastic bond rupture process, the height of this energy barrier
determines the rupture rate: the higher the barrier, the smaller the rupture rate. As a result,
the bond length can be regarded as the “reaction coordinate” for the bond rupture process.

The idea when coupling hydrolysis and mechanics is to also apply the same general principle
of activation over an energy barrier dynamics that we use in bond rupture processes to the
hydrolysis reaction. In our modeling, the equilibrium value of the bending angle ψ0 differs
between GTP-tubulin dimers and GDP-tubulin dimers, see (2.29). The fact that hydrolysis
of one tubulin dimer (p, d) affects the equilibrium value of two bending angles ψ0(p, d, 2)
and ψ0(p, d + 1, 1) will be neglected for now while we introduce the concept of the coupling
mechanism. Instead, we will focus on one bending angle for now and will come back to the two
angles later on.

During the hydrolysis process, the equilibrium bending angle value changes from ψ0 = 0° (GTP)
to ψ0 = 11° (GDP) making it the perfect candidate for the reaction coordinate of the hydrolysis
reaction. However, in contrast to the bond length in the bond rupture process, the value of ψ0

does not change continuously but can only be ψ0 = 0° or ψ0 = 11°. This case of two distinct
states is equivalent to the bond rupture process in the absence of external forces (bond at

4We simplified the energy for the lateral bond in (2.24) by only considering the harmonic approximation
around the energy minimum.

Chemical Model 29



(a) Exemplary more realistic bond energy profile
and altered bond energy profile due to an external
force, which decreases the height of the energy bar-
rier ∆Eb.

(b) Exemplary hydrolysis reaction energy profile
and altered hydrolysis reaction energy profile due
to coupling to mechanics changing the height of the
energy barrier ∆Eh,b.

Figure 2.11: Schematic illustration of the similarity between external forces changing the height of
a bond rupture energy barrier and how our coupling of the hydrolysis to the microtubule energy
changes the height of the energy barrier for the hydrolysis reaction.

equilibrium length or bond is broken) so that it is only a thermally activated process. We
postulate that between the straight and curved conformations at ψ0 = 0° and ψ0 = 11°, there
is also a rate-limiting barrier at an intermediate value of ψ0 (see Figure 2.11(b)). Neither the
position nor the height of this barrier is known, which are both irrelevant for the modeling
of the hydrolysis reaction with a constant rate as they are both implicitly included in the
hydrolysis rate kh.

Going back to the bond rupture process, we have seen that an external force changes the
bond rupture rate (2.42) by changing the energy landscape and decreasing the energy barrier
that must be overcome (see Figure 2.11(a)). The external force, in this case, causes bonds to
stretch and thus moving the bond length closer to the value at which it would rupture. As
already mentioned, the reaction coordinate for hydrolysis, the rest bending angle ψ0, cannot
be changed continuously (in our model), but we can use the actual bending angle ψ in the
following sense: We propose that the closer the actual bending angle ψ of a GTP-tubulin dimer
is to the rest bending angle of a GDP-tubulin dimer ψ0 = 11°, the easier it is for the tubulin
dimer to hydrolyze. Vice versa, and we will see later on that this is actually the more relevant
case, if the bending angle ψ of one tubulin dimer is further away from ψ0 = 11° (compared to
the average bending angle ψ of all GTP-tubulin dimers), it will decrease the hydrolysis rate of
this GTP-tubulin dimer.

As a starting point for coupling hydrolysis to the microtubule mechanics, the hydrolysis rate of
tubulin dimer (p, d) can be written as

kh(p, d) = k0h exp
(
−β∆Eh(p, d)

)
, (2.47)

where k0h is a constant base hydrolysis rate (which differs from the constant hydrolysis rate
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kh if hydrolysis is not coupled to mechanics, see below) and ∆Eh(p, d) describes the change
in the energy barrier, which the hydrolysis reaction must overcome, due to the coupling to
mechanics. The goal of the following discussion is to explain how we calculate ∆Eh(p, d) in our
simulation. Before we can do that, however, we have to discuss the energy barrier for hydrolysis
if ∆Eh(p, d) = 0. We have already mentioned that we have no information about the hydrolysis
energy profile, except for the values of the GTP rest bending angle (ψ0 = 0°) and the GDP
value (ψ0 = 11°). We assume that the barrier is centered between these values at ψ0,b = 5.5°
with height ∆Eh,b. This default height ∆Eh,b of the energy barrier is already included in k0h
and thus does not have to be considered anymore. What we have to consider, however, is how
the coupling changes the height of the energy barrier. To calculate this change in barrier height
∆Eh, we consider the microtubule energy (2.30) now as a function of the relevant rest bending
angle ψ0 with constant polar angles {θ(p, d, t)}. As a consequence, ∆Eh is given as the energy
difference of the microtubule energy for ψ0 = 5.5° (the position of the energy barrier) and
ψ0 = 0° (the straight GTP conformation):

∆Eh = EMT [ψ0 = 5.5°]− EMT [ψ0 = 0°] . (2.48)

Now that we have established the basic principles of how we couple hydrolysis and mechanics,
we have to come back to the fact that hydrolysis of tubulin dimer (p, d) changes ψ0(p, d, 2) and
ψ0(p, d+ 1, 1), which changes (2.48) to

∆Eh(p, d) = EMT
[
ψ0(p, d, 2) = 5.5°, ψ0(p, d+ 1, 1) = 5.5°

]
− EMT

[
ψ0(p, d, 2) = 0°, ψ0(p, d+ 1, 1) = 0°

]
. (2.49)

As the only part of the microtubule energy (2.30) that depends on ψ0 is the bending energy
(2.26), we do not have to calculate a “global” energy change as given by (2.49), but we only
have to calculate a “local” bending energy change for two tubulin monomers:

∆Eh(p, d) =
1

2
κ
[
(ψ(p, d, 2)− 5.5°)2 − ψ2(p, d, 2)

+ (ψ(p, d+ 1, 1)− 5.5°)2 − ψ2(p, d+ 1, 1)
]

(2.50)

=
1

2
κ
[
−11° · (ψ(p, d, 2) + ψ(p, d+ 1, 1)) + 2 · (5.5°)2

]
. (2.51)

Equation (2.51) explicitly shows that, indeed, larger bending angles will result in a smaller
energy barrier ∆Eh and thus a larger hydrolysis rate.

For the hydrolysis of the terminal GTP-tubulin dimer (p, dmax(p)), (2.51) has to be adjusted
because in this case, the hydrolysis reaction only affects ψ0(p, dmax(p), 2) because there is
no tubulin dimer on top of a terminal tubulin dimer and thus no alpha-tubulin monomer
ψ0(p, dmax(p) + 1, 1) exists:

∆Eh(p, dmax(p)) =
1

2
κ
[
−11° · ψ(p, dmax(p), 2) + (5.5°)2

]
. (2.52)

With (2.51) and (2.52) explicitly written out, we now also see that the base hydrolysis rate
k0h in (2.47) is not the hydrolysis rate for perfectly straight tubulin monomers (ψ(p, d, 2) =
ψ(p, d + 1, 1) = 0°), because of the additional κ(5.5°)2 term in (2.51) and 1

2κ(5.5°)2 term in
(2.52). As these terms differ whether the relevant GTP-tubulin dimer is terminal or not and
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because they depend on another model parameter, the bending constant κ, they cannot simply
be included in k0h.

Before we continue, we have to discuss the implications of having to calculate the energy
barrier for the terminal GTP-tubulin dimer (2.52) separately. The underlying reason is that
our model contains intra-dimer and inter-dimer bending affecting ψ0(p, d, 2) and ψ0(p, d+ 1, 1),
respectively, during hydrolysis. The relevant part here is the inter-dimer bending that affects
ψ0(p, d+1, 1) so that every model coupling hydrolysis and mechanics like here and that includes
inter-dimer bending will have to consider the terminal GTP-tubulin dimer separately. Only
models with intra-dimer bending only could use the same formula for the change ∆Eh in the
hydrolysis energy barrier. On the practical side, the hydrolysis reaction of a GTP-tubulin
dimer buried in the microtubule has to overcome an energy barrier that depends on two tubulin
monomers, see (2.51), while for a terminal GTP-tubulin dimer, the energy barrier only depends
on one tubulin monomer, see (2.52), which results in a smaller energy barrier and thus a higher
hydrolysis rate. In section 6.2, we will see that this bias for higher hydrolysis rates at the tip
manifests itself in our simulation data.

Lastly, we come back to how the mechanical model and the chemical model are connected. In the
previous section on the constant hydrolysis rate kh, we mentioned that there is a unidirectional
feedback of the hydrolysis reaction on the mechanical model by changing ψ0. In this section,
we have extended the feedback to be bidirectional as the mechanical model now also influences
hydrolysis by modulating the hydrolysis rate (2.47).

To avoid having to refer to “the hydrolysis model in which the hydrolysis rate is coupled to the
mechanics of the microtubule”, we will simply use “mechanical hydrolysis” in the following.
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Symbol Parameter

∆G0∗
long longitudinal bond energy

∆G0
lat lateral bond energy
klat lateral spring constant
κ bending constant
k+ pseudo-first-order polymerization rate
katt lateral bond attempt rate
kh constant hydrolysis rate
k0h base hydrolysis rate for mechanical hydrolysis

Table 2.2: The seven free parameters of our model. The two hydrolysis rates only count as one
parameter as only one of them is used in a specific simulation.

2.4 Summary

Table 2.2 shows all of the free parameters that were introduced in the previous sections of this
chapter. In order to determine the values of all seven of them, we need the same number of
values from experiments. We can already pre-empt that fixing the values of all parameters
will not be possible, but we will fix as many as possible in chapter 4 (the hydrolysis rates will
be discussed later in chapter 5 and chapter 6). But before we can determine these values, we
have to explain how the simulation that implements the microtubule model introduced in this
chapter actually works.

Summary 33





Microtubule Simulation 3
3.1 Gillespie Algorithm

Let us for a moment consider the phenomenological four parameter microtubule model shown
in Figure 3.1 in which the microtubules only have two properties: their length LMT ≥ 0 and
their state, which can either be “growing” or “shrinking”. The four parameters of the model
are the state velocities, the growth velocity vgr > 0 and the shrinkage velocity vsh < 0, and the
transition rates between the states, the catastrophe rate ωcat and the rescue rate ωres. One
approach to simulate the microtubule growth dynamics is to discretize time into sufficiently
short intervals of length ∆t so that ωcat∆t is the probability for a growing microtubule to switch
to shrinking within ∆t and ωres∆t is the probability for a shrinking microtubule to switch to
growing within ∆t. If a microtubule starts in its growing state with length LMT, the next
step in a four parameter model simulation would be to draw a uniformly distributed random
number from [0, 1] and compare it with the probability of the microtubule switching its state to
shrinking, ωcat∆t. If the random number is smaller than the catastrophe probability, the state
is switched. Otherwise, the microtubule length is increased by vgr∆t. The same procedure is
used if the microtubule is in its shrinking state though now the probability for state switching
is ωres∆t, and the length increase per time interval is vsh∆t. Additionally, the shrinking state
has a boundary condition with regard to the microtubule length as LMT < 0 is not possible so
that if such a case would happen, the microtubule would automatically switch back into its
growing state.

While this approach works perfectly fine and in some instance has to be used[126], for example
if the microtubules are coupled to another system that also has dynamics calculated in ∆t time
intervals, one major drawback of the approach is the fact that due to the small catastrophe and
rescue rates, in the majority of time steps, the microtubule will simply continue being in its
current state. In other words: Most checks if the microtubule switches its state are effectively
done for nothing but, on the other hand, have to be done to ensure that ωcat∆t and ωres∆t can
be interpreted as transition probabilities. A more effective approach would be to determine
the periods of time during which the microtubule stays in its current growth state and after

Figure 3.1: Schematic illustration of the four parameter
model of microtubules in which microtubules are one-
dimensional objects of a certain length LMT and growth
state.
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which the microtubule switches its state1. This is were the Gillespie algorithm[179,180] comes
into play.

Gillespie introduced a new method to simulate multiple chemical reactions that can occur
simultaneously. In his derivation, he explicitly considered that in order to calculate the
probability at time t that the next reaction will occur in the interval [t+∆t, t+∆t+ dt] and
that it will be one specific reaction of all of the possible reactions, the first step is to calculate
the probability of no reaction occurring in the interval [t, t+∆t]. It is then the second step to
calculate the probability that the relevant reaction will occur in the interval [t+∆t, t+∆t+dt].
He presented two methods to implement its algorithm: the direct method and the first reaction
method. We use the first reaction method as it is more intuitive to understand: It requires you
to calculate “tentative reaction times”[179] for each possible event with rate ki according to

ti =
1

ki
ln 1

r
(3.1)

were r is a uniformly distributed random number from (0, 1). As the name “first reaction
method” indicates, the event i with the smallest reaction time ti is implemented, and the
simulation time is advanced by ti. While (3.1) stems from a simple exponential distribution,
Gillespie emphasizes and proves as well that this approach also considers the probability that
no other event happens in the meantime. Additionally, it is important to note that the tentative
reaction times (3.1) must be recalculated in each iteration of the simulation because the rates
change after a chemical reaction due to the changed number of molecules of each type after the
previous reaction and, in our case, due to the changed configuration of the microtubule.

Before we turn to the complete simulation procedure using the Gillespie algorithm in the next
section, we want to note that depending on the context, the Gillespie algorithm is also called
a “rejection-free kinetic Monte Carlo method”[181]. “Rejection-free” refers to the fact that all
events are successful, compared to, for example, the Metropolis algorithm where proposed
events can be rejected with a certain probability, and “kinetic” highlights the goal of the method
to simulate the time evolution of a system[181].

1In the four parameter model, the determined time interval for shrinking microtubules might be longer than
|LMT/vsh|. In such cases, the rescue would happen “too late” (resulting in an unphysical negative length) and
instead, the microtubule would shrink to LMT = 0 and a forced rescue would happen.
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3.2 Simulation Procedure

The procedure implemented by us to simulate microtubule dynamics consists of two parts: the
initialization and the event loop. The simulation initialization itself consists of two steps:

1. A microtubule with 13 protofilaments and NGDP GDP-tubulin dimers followed by NGTP
GTP-tubulin dimers per protofilament is initialized. The 26(NGDP +NGTP) polar angles
{θ(p, d, t)} are initially set to θ(p, d, t) = 0°.

2. To obtain the “real” initial structural configuration of the microtubule, its energy (2.30)
is minimized with respect to the polar angles {θ(p, d, t)}.

Once the simulation is initialized, it enters the event loop:

3. All of the possible events that were discussed in section 2.3 are determined, i.e., polymer-
ization events for each protofilament, depolymerization events for all laterally unbonded
tubulin dimers, at most one lateral bond formation and one rupture event per protofila-
ment, and hydrolysis events for all GTP-tubulin dimers that are allowed to hydrolyze.
Based on each event’s rate ki, its tentative reaction time ti is calculated via (3.1), and the
event with the shortest reaction time ti, as described in section 3.1, is executed. Lastly,
the simulation time tsim is advanced by ti.

4. As the executed event has changed the microtubule’s configuration and thus its energy,
its equilibrium configuration has also changed and needs to be restored. We assume
that all of the conformational changes due to the executed event, like tubulin monomers
bending due to a broken lateral bond, happen much faster than the chemical microtubule
dynamics[118]. As a consequence, we minimize the microtubule’s energy immediately after
the shortest event is executed resulting in an instantaneous relaxation of the microtubule
lattice. Explicitly simulating this relaxation process is computationally very expensive
and will be discussed in section 3.3.

5. If the simulation time tsim has exceeded the maximum simulation time tmax set for
the simulation, the simulation ends. A second possibility for the simulation to end
gracefully2 is if any protofilament only contains one tubulin dimer, i.e., if the microtubule
has shrunken almost completely. The reason to end on only one tubulin dimer in any
protofilament instead of zero tubulin dimers is a practical one to extract the shrinkage
velocity vsh from simulations where the microtubule is only shrinking: In such simulations,
the microtubule length LMT decreases linearly with the simulation time tsim so that the
shrinkage velocity vsh can be determined via a linear fit from the (tsim, LMT) data points
automatically without any manual interference. In some instances, however, it can take
the last GDP-tubulin dimer of a protofilament longer to depolymerize because there is no
additional GDP-tubulin dimer below it, which would exert an additional bending moment.
Consequently, the lateral bonds of the terminal tubulin dimer are stretched less resulting
in smaller forces on the lateral bond making it less likely to rupture. As we are interested
in the overall dynamics of microtubules, not specifically nucleation[182] or processes at the
nucleation site from which the microtubule grows, we can simply regard this terminal

2in contrast to simulations running on clusters on which they can also be terminated by the scheduler if they
have exceeded their allocated maximum runtime
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Figure 3.2: Flow chart of the different major steps of the simulation procedure.

layer as a seed on which the dynamic part of the microtubule grows. (Having a seed is an
actual technique used in some experiments[56,57] and also in simulations[120].)

Figure 3.2 illustrates these steps in a flow chart. The distinction between the initial energy
minimization and the energy minimization in the event loop will become clear in section 3.3.
Some further details on the actual implementation of the simulation in C++ are presented in
Appendix A.

As energy minimization is a crucial part of the simulation, we will discuss it in more detail in
the following section.
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3.3 Energy Minimization

We use the GNU Scientific Library (GSL)[183] for minimization, which provides the following
minimization algorithms that use the gradient of the relevant function3:

1. steepest_descent implements the steepest descent algorithm, which “follows the down-
hill gradient of the function at each step”[183].

2. conjugate_fr implements the Fletcher–Reeves version of the conjugate gradient algo-
rithm, which chooses its direction vectors more intelligently than the steepest descent
algorithm resulting in better performance.

3. conjugate_pr implements the Polak–Ribiere version of the conjugate gradient algorithm
and differs from the Fletcher–Reeves version by a different value of an internal parameter.

4. bfgs implements the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm, a quasi-
Newton algorithm that calculates approximations of the second derivative using the
gradient.

5. bfgs2 is an improved implementation of the BFGS algorithm with better performance.

All methods expect a C++ function that returns the function value for a given set of coordinates,
in our case the microtubule energy (2.30), and a C++ function that returns the gradient for
a given set of coordinates, which we have implemented analytically (see Appendix B for the
analytical calculation of the gradient). Figure 3.3 compares the performance of the different
algorithms by minimizing the microtubule energy (2.30) of an initial GDP-only microtubule.
The results clearly show that the improved version of the BFGS algorithm, bfgs2, performs
the best, thus it is used in our simulation4.

One major concern with the energy minimization part of our simulation is its runtime as the
simulations generally spend more than 90 % of their runtime with energy minimization (see
section 6.4). If we consider a microtubule in which each protofilament consists of NGDP GDP-
tubulin dimers and NGTP GTP-tubulin dimers, then there are 26(NGDP +NGTP) minimization
parameters the minimization algorithm has to use. As a consequence, as the microtubule
grows, the number of minimization parameters increases as well, which in turn slows down
the minimization. This slowdown of the simulation makes realistic microtubule simulations
with long growth phases interrupted by catastrophes and rescues unrealistic (without each
simulation requiring a prohibitive amount of runtime). In order to simulate long microtubules
without runtime penalties, we have to evaluate strategies to restrict the energy minimization
to not (significantly) slow down for longer microtubules. In contrast to a full minimization of
all minimization parameters, a restricted minimization will lead to a worse result. The goal
is to find an approach that balances the required runtime for minimizations with the quality
of the minimization result. At this point, we can now go back to the difference between the
initial energy minimization and the energy minimization in the event loop (see Figure 3.2). To
ensure a proper initial microtubule configuration, the initial energy minimization will always

3in contrast to another class of minimization algorithms that only needs the function used for minimization
4We use the recommended[183] tolerance parameter value for the line search of 0.1, a maximum gradient

norm of 0.1, and a maximum number of iterations per minimization of 100 000.
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(a) Comparison by the number of minimization
iterations.

(b) Comparison by the runtime.

Figure 3.3: Comparison of the different minimization algorithms to minimize the initial microtubule
as a function of the number of the GDP-tubulin dimers NGDP per protofilament (with NGTP = 0).
The simulations were run on one core of an Intel Xeon E5-1620 v3 CPU and the program was
compiled with g++ in version 8.2.0 using -O3, -ffast-math, and -march=native.

be unrestricted5; the restrictions discussed next only apply to the energy minimization in the
event loop.

There are two possible types of restrictions we considered and evaluated:

1. restricting the number of iterations per minimization,

2. restricting the number of minimization parameters.

The first approach effectively results in many incomplete minimizations that would normally
require further iterations. This approach, however, only solves one of the two reasons for
slowdown of the minimizations for longer microtubules: the increased number of minimization
iterations. The second reason for the slowdown is having to consider the whole microtubule when
calculating the energy and gradient in each minimization step. This problem is not solved by the
first approach, and because of the combination of a restricted number of available minimization
iterations for an increasing number of parameters, the quality of the minimization might also
suffer. In contrast, the second approach solves both of these issues: By only considering a
subset of the minimization parameters, only a part of the microtubule has to be considered,
which avoids iterations over the whole microtubule lattice, which in turn then also restricts the
number of minimization iterations necessary to minimize the microtubule energy with respect to
this subset of parameters. Already from this short qualitative discussion, the second approach
is better than the first one.

We have, however, still to define how we restrict the number of minimization parameters in
the second approach. The subset of considered tubulin dimers can be restricted to a certain

5In reality, even for “unrestricted” minimization, there is an upper limit for the number of iterations per
minimization to avoid situations in which the minimization algorithm would get stuck unexpectedly and iterate
indefinitely.
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Figure 3.4: Schematic illustration of the minimization cut-
off layer distance ∆dcutoff. If an executed event affects the
black tubulin dimer in layer d′ and we use ∆dcutoff = 2,
then all polar angles of the gray (and black) tubulin dimers
are considered for energy minimization. The first protofila-
ment shown is the periodic image of the last protofilament
(thus the added transparency). The three red lines high-
light the lateral heterotypic interfaces of tubulin monomers
at the seam between tubulin monomers whose polar angles
are considered for minimization and tubulin monomers
whose polar angles are ignored during minimization.

part of the microtubule tip at its plus end because this is the part of the microtubule where
it changes its configuration due to chemical events, while its GDP-body is static. The only
question remaining is how deep from the microtubule tip we have to go. While polymerization
and depolymerization events happen at the very tip of protofilaments, the formation and
rupture of lateral bonds can also happen a bit deeper in the microtubule lattice, while the
hydrolysis of GTP-tubulin dimers can happen as deep in the microtubule lattice as there are
GTP-tubulin dimers to hydrolyze. As a consequence, the subset must depend on the tubulin
dimer (p′, d′) that was affected by the previous event. As the microtubule tip is the dynamic
part for which we have to ensure a proper configuration to calculate correct event rates, we
have to consider all tubulin dimers with d ≥ d′. Additionally, configuration changes due to
events can also propagate deeper into the microtubule lattice so that an additional number
of ∆dcutoff layers below the d-th layer have to be considered as well. In summary, when using
the second approach and an event happens in layer d′, all polar angles of the tubulin dimers
with d ≥ min(0, d′ −∆dcutoff) are used as minimization parameters. Figure 3.4 illustrates the
way in which ∆dcutoff cuts off tubulin dimers in longitudinal direction from the minimization.
Figure 3.4, however, also shows that there are three lateral tubulin monomer interfaces at the
seams at which a cutoff happens. At the seam, tubulin monomers from different layers interact
laterally so that due to the helical structure, a longitudinal-only cutoff is not possible, but there
has to be a lateral cutoff at the seam as well.

To assess the quality of both restriction types, we have to select an observable by which we
grade the restriction, and we have to select quantities for both restriction types that we adjust
to a suitable value. For the restriction of the number of iterations per minimization, the
relevant quantity is the maximum number of iterations per minimization Niter, and for the
restriction of the number of minimization parameters, it is the layer cutoff length ∆dcutoff. In
both cases, the chosen value should be as small as possible to maximize the decrease in the
required minimization time. An easily measurable observable to judge the minimization quality
on is the shrinkage velocity vsh of microtubules. Details on shrinkage simulations will be given
in section 4.2. For now, we only have to know that the microtubules considered here should be
shrinking with velocity vsh = −27 µm min−1[49]. Figure 3.5 shows the shrinkage velocity vsh for
certain sets of simulation parameters (whose origin will be explained later in chapter 4). Even
though we have already argued conceptually why the second approach is better than the first

Energy Minimization 41



(a) Shrinkage velocity vsh as a function of the max-
imum number of minimization iterations Niter.

(b) Shrinkage velocity vsh as a function of the layer
cutoff distance ∆dcutoff. ∆dcutoff = ∞ means that
no cutoff was used.

Figure 3.5: Comparison of the two minimization restriction approaches by running 20 shrinkage
simulations with k+ = 4 s−1 µM−1, ∆G0∗

long = −9.3 kBT , NGDP = 20, NGTP = 0 and four different
values of klat.

(a) k+ = 2 s−1 µM−1, ∆G0∗
long = −9.7 kBT ,

NGDP = 20
(b) k+ = 4 s−1 µM−1, ∆G0∗

long = −9.3 kBT ,
NGDP = 50

Figure 3.6: Shrinkage velocity vsh as a function of the layer cutoff distance ∆dcutoff for additional
parameter values (in both cases: NGTP = 0) and four different values of klat.

one, we have also shown results for the first approach in Figure 3.5(a). The interesting results
for the second minimization restriction approach are shown in Figure 3.5(b). These results
indicate that ∆dcutoff = 10 is an appropriate choice, which is also confirmed by simulations
using different simulation parameter values (see Figure 3.6). Except for the determination of
some of the model parameters with shrinking microtubules in section 4.2 for which we used
unrestricted minimization, ∆dcutoff = 10 will be used in the remainder of this thesis.
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Lastly, we want to compare our approach to two other minimization approaches. During the
energy minimization employed by VanBuren et al.[118], individual tubulin dimers are randomly
chosen, and then, for each tubulin dimer a local energy minimization is performed during which
all of the other tubulin dimers are static. It is important to note that they also restrict the
values of their minimization parameters so that their polar angles cannot be negative and
thus forbid tubulin dimers bending inward (a phenomenon, as we will see later on, that is not
only allowed in our model but one that also happens). This approach does not guarantee that
every tubulin dimer is considered during minimization, but according to VanBuren et al., the
microtubule energy was minimized at least once for, on average, 95 % of all tubulin dimers
and, again on average, the microtubule energy was minimized using each tubulin dimers three
times. As a consequence of this approach, there is no clear way to compare our approach to
minimization to theirs. Additionally, their mechanical model also contains longitudinal springs,
which change how the microtubule lattice reacts to individual tubulin dimers bending outward.
In their model, one tubulin dimer bending outward causes the next longitudinal spring to stretch
and keep the remaining tubulin dimers in the same protofilament up to the plus end in place.
This local effect of bending outward enables the usage of a local minimization approach. In our
model, however, there are no such longitudinal springs (which would come with yet another free
model parameter in form of second spring constant) so that one tubulin dimer bending outward
results in the protofilament segment above it to also bend outward causing many lateral springs
to be stretched. As a consequence, we cannot implement a local minimization for comparison
as we have “non-local interactions” in our model. However, the following qualitative argument
can be made: Minimizing the microtubule energy for each tubulin dimer separately is the
same as minimizing a multidimensional function with fixed unit vectors as the minimization
directions for each minimization step. Such an approach is generally inferior[184] to selecting
the minimizing direction dynamically based on the current position in the energy landscape
like, for example, the conjugate gradient method does.

In contrast, Zakharov et al.[126] use a different approach: They solve Langevin equations for the
first 300 tubulin dimers at the plus end and thus also incorporate stochastic thermal motion of
individual tubulin monomers. This approach, however, requires a discretization of the time as
discussed in the beginning of section 3.1. First, they have a time step of 2 · 10−10 s for solving
the Langevin equations, and second, they have a time step of 10−3 s for the events in their
simulation. As a consequence, they have to calculate O(107) dynamics steps for each event
step resulting in a runtime of more than a day for 1 s of microtubule dynamics despite using a
parallel implementation of their simulation that is run on a supercomputer, illustrating the
computational cost associated with this approach. Comparing our approach to their approach is
easier than for VanBuren et al. If we neglect the thermal fluctuations included in the Langevin
equations, during one of their 2 · 10−10 s steps, they are basically taking one step of a gradient
descent method resulting in O(107) gradient descent steps between events. Phrased differently,
during one of their “minimization steps”, time advances by 2 · 10−10 s. While in our simulation,
minimization happens instantaneously after an event is executed, we can use the time difference
between an event and the next event and the number of required minimization iterations to
calculate a similar quantity to their time step of 2 · 10−10 s. In our simulations, the value of this
minimization time step depends on different factors like the values of the model parameters and
the type of the simulation (i.e., whether only growth or shrinkage is considered of whether full
simulations with catastrophes and rescues are considered). When only considering shrinking
microtubules (see section 4.2), minimization time steps take O(10−5 s) for polymerization events,
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O(10−4 s) for depolymerization events, and O(10−7 s) for lateral bond events. (Additional values
for one example of a full simulation can be found in Figure 6.16(a).) This comparison shows that
significantly less minimization iterations are needed in our simulations compared to number the
dynamics steps between the event steps in the simulations by Zakharov et al. As a result, our
simulations running on a single CPU core only require a few hours (depending on the parameter
values, sometimes even less than an hour) for simulating 1 min of microtubule dynamics, which
is much more efficient. It should not be neglected, of course, that our simulations do not contain
thermal motion of the tubulin monomers at the microtubule tip as the simulations by Zakharov
et al. do. They use this thermal motion as a basis for when bonds are considered ruptured, i.e.,
when bonds exceeded their rupture length, in contrast to our approach of explicitly modeling
rupture events.

In summary, we consider our approach of restricted minimization to be a fair balance between
properly minimizing the dynamic part of microtubule and having a computationally efficient
method that enables us to simulate long microtubules.
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Determination of Model
Parameters 4
In Table 2.2, we have listed the free parameters of our model of which we have to determine the
values. Determining the values of all seven parameters simultaneously is prohibitive because
of the large parameter space that would have to be analyzed. Instead, we use a “divide and
conquer” approach[104,118] with which one subset of parameters is determined first and a second
subset next. In this chapter, we will not consider hydrolysis, thus kh = 0 s−1. We will come back
to hydrolysis with a constant rate in chapter 5 and to mechanical hydrolysis in chapter 6.

To determine the values of our parameters, we need experimental results that we can compare
observables of our simulation to. Walker et al.[49] did an extensive investigation into the growth
behavior of microtubules at different concentrations of free GTP-tubulin dimers ctub. They
found that the growth velocity vgr of microtubules scales linearly with ctub

vgr(ctub) = (0.33 ± 0.01) µm
min µM

ctub − (1.59 ± 0.50) µm
min

(4.1)

and that the shrinkage velocity vsh is independent of ctub

vsh = (−27 ± 1) µm
min

(4.2)

for ctub ∈ [7.7 µM, 15.5 µM]. Based on this data, we will first focus on growing microtubules in
section 4.1 and then turn to shrinking microtubules in section 4.2.

From the experimental results showing bending protofilaments forming ram’s horns, we know
that mechanics plays a more important role for shrinking microtubules than for growing
microtubules as mechanical stresses are relieved during shrinkage when the protofilaments
are able to bend outward. To determine our model parameters, we take this finding to the
extreme and assume that for growing microtubules, mechanics does not play any role, so
that we can simply set klat = 0 kBT/nm2 and κ = 0 kBT/rad2, i.e., ignore two of the model
parameters so that only four model parameters remain: k+, ∆G0∗

long, ∆G0
lat, and katt. Such

“microtubules without mechanics” must then only consist of GTP-tubulin dimers so that for
the initial microtubule NGDP = 0. As hydrolysis is ignored for now, NGDP = 0 stays during
the whole simulation.

Like VanBuren et al.[104,118], we will not treat k+ as yet another truly free model parameter
but instead, we will also only consider k+ = 2 s−1 µM−1 and k+ = 4 s−1 µM−1, leaving three
parameters left for each value of k+. (These values were previously used by VanBuren et
al.[104,118], which are similar to values from other publications[49,171], and k+ = 2 s−1 µM−1

was previously estimated for “generic protein-protein-association” using Brownian dynamics
computer simulations[185].) From the growth velocity data (4.1), we can fix two of these
remaining parameters because we know the expected slope and intercept of the vgr(ctub). In
section 4.1, we will find the lateral bond energy ∆G0

lat and the lateral bond attempt rate katt
as a function of ∆G0∗

long.

After the “growth parameters” have been determined, we can then turn to the “shrinkage
parameters”, i.e., the two parameters that are relevant for our mechanical model: the lateral
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spring constant klat and the bending constant κ. Here, we are only interested in shrinking
microtubule to reproduce the shrinkage velocity (4.2). As the shrinkage velocity does not
depend on ctub, the experimental data only yields one value with which we will only be able
to fix the value of κ if we specify a value of klat (it would, of course, also work vice versa, i.e.,
getting a value of klat for a given κ, but we have chosen the former procedure). The extreme
case of shrinking microtubules are microtubules without any GTP-tubulin dimers forming a
stabilizing cap in the beginning, i.e., NGTP = 0. In contrast to the growth simulations for which
NGDP = 0 stayed the same, here, NGTP = 0 only holds at the beginning of the simulation as
new GTP-tubulin dimers are able to polymerize onto the microtubule.

Figure 4.1 provides an overview of how we determined the model parameters as described in
the two following sections.

4.1 Growing GTP-Microtubules and Growth Parameter
Values

As already mentioned before, for the growing microtubules, we ignore mechanics completely, thus
set klat = 0 kBT/nm2 and κ = 0 kBT/rad2 and use GTP-only microtubules. As a consequence,
we do not have to use energy minimization for these simulations making them much faster. For
k+ = 2 s−1 µM−1 and k+ = 4 s−1 µM−1, we scanned the parameter space (∆G0∗

long,∆G
0
lat, katt)

to find parameter values that reproduce the experimentally measured growth velocity (4.1).
After an initial coarse-grained scan of the parameters space, we used a fine-grained scan with
at least ∆∆G0∗

long = 0.2 kBT for the final parameters values. As Walker et al.[49] measured the
growth velocities for ctub ∈ [7.7 µM, 15.5 µM], we used ctub ∈ {7 µM, 8 µM, . . . , 16 µM}. For each
(k+,∆G

0∗
long,∆G

0
lat, katt, ctub) parameter set, 100 simulations were run during the fine-grained

scan.

The relevant observable during these simulations is the microtubule length LMT, see (2.11), as
a function of the simulation time tsim from which the growth velocity vgr can be calculated.
The next step is then to calculate the growth velocity dependence on the free GTP-tubulin
dimer concentration ctub for each set of (k+,∆G0∗

long,∆G
0
lat, katt) values and compare the results

of the linear fits with the experimental data (4.1). As the experimental linear vgr(ctub) relation
contains two values in form of the slope and intercept value, we can fix the value of ∆G0

lat and
katt for a given set of (k+,∆G0∗

long) values. These results are shown in Figure 4.2: For a specific
set of (k+,∆G0∗

long) values, the value of the lateral bond energy ∆G0
lat can be extracted from

Figure 4.2(a) and the matching value katt from Figure 4.2(b). The first observation is that the
lateral bond energy ∆G0

lat differs only slightly between the two values of k+, we considered.
The second observation is regarding the lateral bond attempt rate katt and is twofold: katt is
always smaller for the larger value of k+, and in contrast to ∆G0

lat(∆G
0∗
long), katt(∆G

0∗
long) is not

monotonic but after decreasing for stronger longitudinal bonds starts to increase again for very
strong longitudinal bonds.

The general finding shown in Figure 4.2(a) that weakening longitudinal bonds requires strength-
ening the lateral bonds is expected because tubulin dimers must have the same overall “stability”
in the microtubule lattice so that the microtubules grow with the same velocity. If the lon-
gitudinal bonds are weaker, this stability is decreased, which then has to be compensated
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Figure 4.1: Schematic illustration of the procedure used to determine the values of our model
parameters for a fixed value of k+ showing how many individual simulations (see 1. and 5.)
ultimately result in one data point (see 4. and 7.).
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(a) Our lateral bond energy ∆G0
lat as a function of the longitudinal bond energy ∆G0∗

long and additional
parameter values from other publications. (A direct comparison of the values from other publications to
our values in not always directly possible due to different mechanical models. Additionally, their values
were converted to account for two lateral bonds per tubulin dimer in our model.)

(b) Lateral bond attempt rate katt as a function of the longitudinal bond energy ∆G0∗
long.

Figure 4.2: Results for our growth model parameters for two pseudo-first order polymerization
rates k+. The numerical values can be found in Table C.1.

by stronger lateral bonds. Additionally, our results in Figure 4.2(a) are consistent with data
from other publications[104,120,186] but deviate from other data[106,187]. The molecular dynamics
(MD) nano-indentation results (i.e., not from the growth dynamics of the microtubules) by
Kononova et al.[143] differ significantly from all of these bond energies by having much stronger
longitudinal and lateral bonds, about −25.1 kBT and −11.6 kBT respectively, and are thus
not shown in Figure 4.2(a). Manka et al.[172], however, get a longitudinal bond energy of
∆G0∗

long ' −9.1 kBT for GMPCPP, which is a slowly hydrolyzable GTP analogue, from their
lattice contact analysis, which is close to our final values in Table 4.1.
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The finding that katt decreases if k+ is increased can be understood qualitatively as follows:
From the polymerization rate (2.36) and the depolymerization rate (2.35), we can define an
effective polymerization rate as

keff
on = kon − koff = k+

[
ctub − c0 exp

(
β∆G0∗

long

)]
. (4.3)

Due to the lateral bonds that need to rupture before a tubulin dimer can depolymerize, there
is no strict relation between keff

on and the growth velocity vgr, but qualitatively we know that
increasing keff

on will also increase vgr so that an increase in k+ will increase vgr as well.

From the lateral bond formation rate (2.40) and the lateral bond rupture rate (2.41), we can
also define an effective lateral bond formation rate as

keff
form = kform − krup = katt

[
1− exp

(
∆G0

lat

)]
. (4.4)

From (4.4) it follows, that increasing katt increases keff
form as well. An increase in the effective

lateral bond formation rate keff
form results in a quicker stabilization of newly polymerized tubulin

dimers, which in turn decreases the depolymerization probability and thus increases the growth
velocity vgr.

Now, we have a qualitative understanding what happens if the values of k+ and katt are changed
separately and all other parameter values are kept constant: increasing them also increases the
growth velocity vgr. If, however, it is the goal to keep vgr constant, an increase in k+ must be
compensated for by a decrease in katt (and vice versa), as shown in Figure 4.2(b).

While the previous argument with the effective rates (4.3) and (4.4) gives an intuitive under-
standing of the relation between k+ and katt, it should be noted that while keff

form > 0 is always
fulfilled because ∆G0

lat < 0, keff
on > 0 only holds for strong longitudinal bonds. For weaker

longitudinal bonds, keff
on < 0 is possible, which again highlights the need for a large (effective)

lateral bond formation rate to prevent tubulin dimers from depolymerizing again.

From now on, we will generally only give the value of ∆G0∗
long and the values of ∆G0

lat and katt
are the ones shown in Figure 4.2 and explicitly listed in Table C.1.

For k+ = 4 s−1 µM−1, Figure 4.3(a) shows the microtubule growth velocity vgr as a function
of ctub ∈ {7 µM, 8 µM, . . . , 16 µM}. While all of the shown data sets of the different values of
∆G0∗

long follow the expected result quite well (as they should because reproducing (4.1) was
the criterion used to determine the growth parameter values), not all of the sets are as linear
as the other sets. This non-linear dependence becomes very pronounced when the interval
of ctub values is extended to ctub ∈ {1 µM, . . . , 50 µM}, as shown in Figure 4.3(b). As the
longitudinal bond strength gets weaker, the vgr(ctub) relations change from concave to convex.
In-between the concave and convex relations, we find one ∆G0∗

long that results in the most
linear vgr(ctub) relation for both of our k+ values. These two parameter sets are listed in
Table 4.1 and highlighted in the parameter value tables in Appendix C. To determine these
parameter sets, only those values of ctub above the critical concentration ccrit were considered
as we are only interested in growing microtubules for now. The critical free GTP-tubulin
dimer concentration ccrit is the concentration at which microtubules do not grow, i.e., vgr = 0.
Figure 4.4 shows that for ctub > ccrit, our simulated growth velocities match the expected
dependence measured by Walker et al.[49] very well, even over the larger interval of values of
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(a) Growth velocity vgr for almost the same ctub interval as used by Walker et al.[49].

(b) Growth velocity vgr for an extended interval of ctub values.

Figure 4.3: Microtubule growth velocity vgr as a function of the free GTP-tubulin dimer concen-
tration ctub for k+ = 4 s−1 µM−1 and different values of ∆G0∗

long. The black lines are the expected
dependence from Walker et al.[49].

k+/µM−1 s−1 ∆G0∗
long/kBT ∆G0

lat/kBT katt/s−1

2 −9.7 −1.38 281
4 −9.3 −1.58 258

Table 4.1: Values of the “growth parameters” ∆G0∗
long, ∆G0

lat, and katt for the two considered
values of k+.
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Figure 4.4: Microtubule growth velocity vgr as a function of the free GTP-tubulin dimer concen-
tration ctub for the our two best parameter sets given in Table 4.1. The black line is the expected
dependence from Walker et al.[49].

ctub. Our choice to select the parameter set with the most linear vgr(ctub) relation is also based
on measurements of this relation by other researchers[47,52,188–193], all of which find a linear
relation, even over larger intervals of ctub values[47,189,192,193] than Walker et al.[49]. Nevertheless,
finding a non-linear vgr(ctub) relation is not surprising as just because individual protofilaments
grow linearly with ctub (see (4.3)), the same does not have to apply to the microtubule because
it is not just a collection of uncorrelated dynamic protofilaments. Instead, because of the lateral
interactions between the protofilaments, non-linear growth with ctub is the result, as already
shown previously for multi-stranded polymers[114]. Piette et al.[106] used a two-dimensional
microtubule model based on the model by VanBuren et al.[104], and they also found a non-linear
relation.

Now that we have determined the values of the growth parameters ∆G0∗
long, ∆G0

lat, and katt, we
can use these values to determine the values of the “shrinkage parameters” klat and κ.
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4.2 Shrinking GDP-Microtubules and Shrinkage
Parameter Values

To determine the values of the shrinkage parameters klat and κ, we consider microtubules with
initially NGTP = 0 and NGDP = 20, i.e., microtubules without a stabilizing GTP-cap, which,
if the values of klat and κ are chosen appropriately, should shrink completely. For all of the
growth parameter sets shown in Figure 4.2, we chose the same set of values of klat and then
adjusted κ so that the shrinkage velocity matches the experimentally measured value (4.2).
For each parameter set, 20 simulations were run and the average shrinkage velocity vsh was
calculated. As we have two free parameters, klat and κ, and only one experimental value, vsh,
we will only be able to determine κ as a function of klat.

The results of these simulations are shown for some of the considered ∆G0∗
long values in Figure 4.5.

Just like for the growth parameters, in the following, we will generally only give the value of
klat and the matching value of κ is the value shown in Figure 4.5 and listed in Table C.2 or
Table C.3.

For a given value of ∆G0∗
long, the values follow a square root function

κ(klat) = ash
√
klat + bsh. (4.5)

To understand this relation, we have to remember that lateral spring stretching and bending
only affects the microtubule dynamics via the lateral bond rupture rate (2.42) by modulating
the rate with a force-dependent exponential factor:

krup ∼ exp
(
βFlat`rup

)
. (4.6)

To get the same shrinkage velocity for different sets of (klat, κ) values, the rupture rate must be
the same, i.e.,

Flat`rup = const (4.7)

⇐⇒ Flat ∼
1

`rup

(2.44)∼
√
klat. (4.8)

The origin of the force Flat acting on the lateral bonds is the stretching of these bonds because
of the bending of tubulin monomers. The lateral bonds are stretching to decrease the bending
force

Fbend =
∂Ebend
∂θ

= κ∆ψ. (4.9)

Consequently, in equilibrium, the lateral spring force Flat and the bending force Fbend balance
each other out so that

Flat ∼ Fbend ∼ κ (4.10)

resulting in

κ ∼
√
klat, (4.11)

52 Determination of Model Parameters



(a) k+ = 2 s−1 µM−1 (Data values can be found in Table C.2.)

(b) k+ = 4 s−1 µM−1 (Data values can be found in Table C.3.)

Figure 4.5: Bending constant κ as a function of the lateral spring constant klat reproducing the
shrinkage velocity (4.2) by Walker et al.[49] for our two values of k+ and different values of ∆G0∗

long.
The lines are the square root functions (4.5), which can be used to describe the κ(klat) relation.

which matches the fit function (4.5) used for our data.

To verify (4.8), we measured the lateral bond rupture force Frup during the rupture events1.
Figure 4.6(a) and Figure 4.6(b) show that the data indeed follows square root functions

Frup(klat) = arup
√
klat + brup (4.12)

1To be clear, Flat(p, d, t) is the force acting on the lateral bond connecting tubulin monomers (p, d, t) and
(p+ 1, d, t), while Frup(p, d, t) is the value of Flat(p, d, t) during an actual bond rupture.
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(a) Lateral bond rupture force for k+ = 2 s−1 µM−1. (b) Lateral bond rupture force for k+ = 4 s−1 µM−1.

(c) Lateral bond rupture energy for k+ =
2 s−1 µM−1.

(d) Lateral bond rupture energy for k+ =
4 s−1 µM−1.

Figure 4.6: Lateral bond rupture force Frup and lateral bond rupture energy Frup`rup as a function
of the lateral spring constant klat for our two values of k+, different values of ∆G0∗

long, and
ctub = 10 µM.

as predicted by (4.8). The values of these fit parameters can be found in Table C.4. From these
results, we can already deduce that (4.7) is not strictly fulfilled. Instead, it should follow

Frup(klat)`rup(klat) =
crup√
klat

+ drup (4.13)

with

crup = brup

√
−2∆G0

lat, (4.14)

drup = arup

√
−2∆G0

lat. (4.15)

Figure 4.6(c) and Figure 4.6(d) show that except for small values of klat, the data points
follow (4.13). The fact that some of the functions shown in Figure 4.6(c) and Figure 4.6(d)
are monotonically decreasing instead of monotonically increasing like the data is due to the fit
constant brup in (4.12) being negative resulting in a negative factor crup before the inverse root
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Figure 4.7: The shrinkage velocity vsh
shows a linear dependence on the free GTP-
tubulin dimer concentration ctub. 100 sim-
ulations for each ctub value were run with
k+ = 4 s−1 µM−1, ∆G0∗

long = −9.3 kBT , and
klat = 1 kBT/nm2.

function in (4.13)2. Apart from the deviations at small values of klat, overall, (Frup`rup)(klat) is
mostly constant, as expected.

Lastly, we have to go back to the beginning of this section and to how we determined the
values of the shrinkage parameters: We compared the shrinkage velocity vsh at different free
GTP-tubulin dimer concentrations ctub with the experimental value from Walker et al. in (4.2).
As the experimentally measured vsh does not depend on ctub, we also used

vsh(ctub) = const (4.16)

to determine vsh for a given set of parameter values. In reality, however, we find that the
microtubules in our simulations shrink slower if ctub is increased instead of (4.16) as shown in
Figure 4.7. Compared to the dependence of the growth velocity vgr on ctub, see (4.1), the slope
in Figure 4.7 is only 0.19 µm min−1 µM−1, i.e., about half of the slope for growth. To confirm
that this dependence is directly due to the greater number of tubulin dimers polymerizing
onto the microtubule if ctub is increased, we calculated the average number of polymerization
events 〈Npoly〉, depolymerization events 〈Ndepoly〉, lateral bond formation events 〈Nform〉, and
lateral bond rupture events 〈Nrup〉. The data in Figure 4.8(a) shows that, expectedly, the
average number of polymerization events 〈Npoly〉 increases linearly with the shrinkage velocity
vsh and thus also increases linearly with ctub. The additional plots in Figure 4.8 show that the
average number of all relevant events increases linearly with vsh so that increasing ctub does
not simply result in newly attached GTP-tubulin dimers simply depolymerizing again. Instead,
as seen by the increase in the average number of lateral bond formation and rupture events in
Figure 4.8(c) and Figure 4.8(d), these new GTP-tubulin dimers can also be stabilized laterally
requiring additional time for these lateral bonds to rupture again before depolymerization and
thus making the shrinkage process slower.

Lastly, we have to compare our values for the mechanical parameters klat and κ with other
publications. Before doing so, however, we have to mention two aspects: First, as shown in
Figure 4.5, we were not able to determine one set of such parameters due to the limited amount
of data but only κ as a function of klat. Second, a direct comparison with other values is not
always possible due to different modeling or different ways of obtaining the mechanical parameter
values. In general, values klat � 1000 kBT/nm2 and κ � 1000 kBT/nm2 are found[118,175,194],

2If crup and drup in (4.13) were treated as fit parameters instead of using (4.14) and (4.15), the monotonicity
of the fit function would match the monotonicity of the data, of course.
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(a) Polymerization. (b) Depolymerization.

(c) Lateral bond formation. (d) Lateral bond rupture.

Figure 4.8: Average number of different simulation events as a function of the shrinkage velocity
vsh using the same simulation data as in Figure 4.7.

though there are also some publications getting larger values[142,143]. The bending constant κ
can be calculated[121] from the fluctuations of MD simulation data[195] resulting in a relatively
small value of κ ' 50 kBT/rad2.

The persistence length Lp of a flexible polymer relates to its bending rigidity Kb via[196]

Lp =
Kb
kBT

(4.17)

from which the harmonic bending energy follows as[196]:

Ebend =
1

2

Kb
`tub

ψ2, (4.18)

where we already have replaced the general segment length of the polymer bonds with the
tubulin monomer length `tub. Comparing (4.18) to our bending energy (2.26) results in a
relation between our bending constant κ and the persistence length:

κ =
Lp
`tub

kBT . (4.19)

MD simulations of individual protofilaments[143] yield a persistence length for protofilaments of
Lp ' 6 µm resulting in a much larger value of κ ' 1500 kBT/rad2 via (4.19).
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Alternatively, the persistence length can also be calculated from the exponential decay of a
polymer’s orientation correlation function[196]

〈t̂(s) · t̂(0)〉 = exp

(
− s

Lp

)
, (4.20)

where t̂(s) is the unit tangent vector along the polymer at the polymer contour position s. By
measuring the angles of bent protofilament ends, McIntosh et al.[63] were able to calculate the
persistence length of protofilaments as Lp ' 0.2 µm resulting in a much smaller value again
of κ ' 50 kBT/rad2. (They also briefly discuss microtubule simulations for which they use
κ = 58 kBT/rad2.)

While this data shows that our values in Figure 4.5 are generally compatible with other results,
we are still not able to definitively determine one set of klat and κ parameter values. However,
to avoid having to do all of the following analyses with all parameters values (which would lead
to an unmanageable number of simulations to run), we focus on one set of parameters shown in
Table 4.2 with a value of κ = 149 kBT/rad2 that is closer to the smaller values mentioned before
and close to previously used values[118]. In the appendices to the following chapters, we will,
however, also present results for some other parameters values of the mechanical parameters
klat and κ, which do not differ qualitatively from the results presented in the main text.
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Model Parameter Symbol Standard Set of Values

longitudinal bond energy ∆G0∗
long −9.3 kBT

lateral bond energy ∆G0
lat −1.58 kBT

lateral spring constant klat 100 kBT/nm2

bending constant κ 149 kBT/rad2

pseudo-first-order polymerization rate k+ 4 µM−1 s−1

lateral bond formation attempt rate katt 258 s−1

constant hydrolysis rate kh 0.1 s−1 to 0.5 s−1

base hydrolysis rate k0h 1 s−1 to 5 s−1

Table 4.2: List of the seven free parameter of our chemomechanical microtubule model and the
standard set of their values we will generally be using for the rest of this thesis. (The two hydrolysis
rates are counted only as one free parameter because either a constant hydrolysis rate is used or
mechanical hydrolysis.)

4.3 Summary

In this chapter, we have seen that we were able, for a given value of the pseudo-first-order
polymerization rate k+, to determine the longitudinal bond energy ∆G0∗

long, the lateral bond
energy ∆G0

lat, and the lateral bond formation attempt rate katt to match the growth data from
Walker et al.[49] Only using their experimental value for the microtubules’ shrinkage velocity,
we were only able to determine bending constant κ as a function of lateral spring constant klat
still leaving klat as a free parameter of the model. The influence of a constant hydrolysis rate kh
will be discussed in chapter 5 by running “full” simulations with catastrophes and rescues and
in chapter 9 via dilution experiments. In chapter 6, we will consider mechanical hydrolysis.

Unless explicitly stated otherwise, we will use the set of parameters values given in Table 4.2.
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Microtubule Dynamics 5
After having determined the growth parameters ∆G0∗

long, ∆G0
lat, and katt and the shrinkage

parameters klat and κ separately in growth-only and shrinkage-only simulations in chapter 4, we
will now bring growing and shrinking microtubules “together” by enabling hydrolysis. Hydrolysis
will trigger catastrophes during which microtubules switch from growth to shrinkage. From
shrinkage, microtubules are then able to switch back to growth via rescues (or depolymerize
completely). Enabling hydrolysis adds another free parameter of model, the hydrolysis rate kh,
that we have to consider.

In this chapter, we will focus on the simpler hydrolysis model with a constant hydrolysis rate.
In chapter 6, we will consider mechanical hydrolysis.

5.1 Hydrolysis Rate Value and Catastrophe Rate

Direct measurements of the hydrolysis rate in microtubules has not been possible yet. Experi-
ments trying to gain insight into the hydrolysis mechanism generally rely on measuring the
concentration of inorganic phosphate Pi in the solution over time[167,171,197,198]. To interpret
this data, however, assumptions have to be made on how to translate this data into a hydrolysis
rate (or into the individual rates of a multi-step hydrolysis process). In particular, it is relevant
whether a vectorial model or a random model is used to match the experimental data because
in a vectorial model, the maximum number of GTP-tubulin dimers that can hydrolyze equals
the number of protofilaments while in a random model, (almost) all GTP-tubulin dimers can
hydrolyze.

Melki et al. found that “the time course of tubulin polymerization […] and of Pi release […]
demonstrates that Pi release occurs with a delay of 2 s following the onset of assembly”[171].
This finding has been used[99,126] to deduce a random hydrolysis rate of kh = 0.5 s−1, which is
of the same order as kh values used in other publications, see Table 5.1. It must be emphasized,
that several of the kh values in Table 5.1 are extracted from simulations and chosen so that
the simulated microtubule dynamics fulfill certain, publication-specific criteria. Except for the
relatively high value of kh = 0.95 s−1 from VanBuren et al.[104,118], the hydrolysis rates generally
fall into the range of 0.1 s−1 to 0.5 s−1, which is the range we will choose our hydrolysis rates
from in the following discussion.

As hydrolysis is the reason for the disappearance of the GTP-cap, hydrolysis and catastrophes
are closely coupled. The catastrophe rate ωcat indicates how often a catastrophe occurs. The
inverse of ωcat, tcat = ω−1

cat, is the time a microtubule grows until it, on average, undergoes
a catastrophe. Measurements of the catastrophe rate ωcat as a function of the free GTP-
tubulin dimer concentration ctub have shown that ωcat decreases as ctub increases[49,189,190,199].
This dependence can understood quantitatively by considering the stabilizing GTP-cap: the
GTP-cap length increases with ctub (which we will discuss in more detail in section 7.2), and
a longer GTP-cap make catastrophes more unlikely. Measurements of the catastrophe rate
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kh/s−1 Origin Source

0.95 simulations [104,118]

0.3 simulations [106]

0.20/0.25 simulations [111]

0.20/0.25/0.7 simulations [112]

0.20/0.25 simulations [94,95]

0.26 estimate from microtubule lifetimes[49] [79]

0.2–0.5 simulations [120]

0.5 based on Melki et al.[171] [99,126]

0.11/9 based on Gardner et al.[199] [126]

0.14 simulations [109]

Table 5.1: Overview of random hydrolysis rates used by or gotten from simulations by other
publications.

ωcat at individual concentrations ctub in other experiments[48,192,200–205] are of the same order
and generally ωcat < 1 min−1. For example, the fit to the catastrophe rate data of Walker et
al.[49] predict a catastrophe rate of ωcat = 0.33 min−1 at ctub = 7 µM and ωcat = 0.05 min−1

at ctub = 16 µM. These small catastrophe rates highlight the need for computationally fast
simulations, which allow simulating minutes of microtubule dynamics at acceptable runtimes
to observe catastrophes at such rates. To circumvent having to simulate several minutes of
microtubule dynamics, Zakharov et al.[126] used much higher hydrolysis rates between 3 s−1

to 11 s−1 resulting in a much higher catastrophe rate ωcat. As they found a linear ωcat(kh)
dependence, they calculated kh = 0.11 s−1 to match the catastrophe rate found by Gardner
et al.[199] When they were not specifically investigating catastrophes, however, Zakharov et
al. used kh = 0.5 s−1. For catastrophe-specific investigations, they used kh = 9 s−1 and then
they normalized their data “by ‘slowing down’ the modeling time by a factor of 82 (ratio of the
accelerated to experimental hydrolysis rate constants) prior to plotting”[126]. In the next section
in which microtubule growth trajectories generated by our simulation are shown for different
hydrolysis rates, we will see that we are not able to do the same as already for hydrolysis rates
much smaller than kh = 9 s−1, the microtubules simply shrink without any growth phase. The
reason why Zakharov et al. are able to use such a procedure and we are unable to do so is
unknown, but it could potentially be due to the different models used.
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5.2 Microtubules Undergo Catastrophes and Rescues

Based on the hydrolysis rate range mentioned in the previous section, we ran 20 simulations
for each parameter set with NGDP = 20 and NGTP = 10 and the results in Figure 5.1 show
the ability of our program to simulate several minutes of microtubule dynamics so that the
microtubules are able to undergo catastrophes and rescues. To get an idea of the performance
of the simulation, Figure 5.2(c) shows the ratio of average run time trun and the simulated time
tsim of the simulations shown in Figure 5.1. Even though the individual simulations ran on
different processor architectures with different performances, the results in Figure 5.2(c) give
a good indication that the simulations require at most 600 times the runtime trun for a given
maximum final simulation time tsim (and for hydrolysis rates kh ≥ 0.2 s−1, the simulations
require at most 200 times the runtime trun for a given maximum final simulation time tsim).

In section D.1, there are additional microtubule trajectories like in Figure 5.1 but for different
values of the lateral spring constant klat (and in Figure D.2 also for a longer initial GTP-cap).
The additional runtime data shown in Figure 5.2 for these additional klat values show that
increasing klat (and thus increasing κ as well, see Figure 4.5) also slows down the simulation
due to the need for more iterations per energy minimization.

Before we determine the catastrophe and rescue rates from the simulations shown in Figure 5.1
in section 5.4, we first focus on the influence of the hydrolysis rate value on the growth velocity
of the simulated microtubules.
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Figure 5.1: Microtubule growth trajectories of 20 different simulations for each of the considered
values of the free GTP-tubulin dimer concentration ctub and the hydrolysis rate kh.
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(a) klat = 1 kBT/nm2 (b) klat = 10 kBT/nm2

(c) klat = 100 kBT/nm2 (d) klat = 20 000 kBT/nm2

Figure 5.2: The ratio of the average run time trun and the simulated time tsim of the simulations
shown in Figure D.1, Figure D.3, and Figure D.4 for different lateral spring constants klat and
hydrolysis rates kh increases with the free GTP-tubulin dimer concentration ctub and with klat. A
higher value of ctub results in a higher the rate of polymerization kon, i.e., more events in the same
amount of time, and a higher value of klat also results in a higher ratio because of more iterations
per minimization.
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(a) Microtubule growth velocity vgr as a function
of the free GTP-tubulin dimer concentration ctub
for different hydrolysis rates kh.

(b) Microtubule growth velocity vgr as a function
of the hydrolysis rates kh for different free GTP-
tubulin dimer concentrations ctub.

Figure 5.3: Increasing the hydrolysis rates kh results in a linear decrease of the microtubule growth
velocity vgr but also still results in a linear vgr(ctub) relation like the experimental data by Walker
et al.[49]

5.3 Influence of the Hydrolysis Rates on the Growth
Velocity

When we determined the growth parameters that reproduce the experimentally measured
growth velocities (4.1), we did so without hydrolysis in section 4.1 to avoid having to search for
parameter values in a much larger parameter space. Now with hydrolysis enabled, an interesting
question is to check the validity of the divide-and-conquer approach by determining the growth
velocity vgr for different hydrolysis rates and comparing the results to (4.1). Taking a closer
look at the final length of the microtubules shown in the last row of Figure 5.1 already shows
that increasing the hydrolysis rate does have an effect on the growth velocity by decreasing it.

Figure 5.3(a) shows that while vgr(ctub) is still linear, it no longer matches the experimental
data by Walker et al.[49], which were used to determine the values of the growth parameters.
The higher the hydrolysis rates, the greater is the deviation of the growth velocity vgr from
the experimental data. If the data in Figure 5.3(a) is plotted as a function of the hydrolysis
rate instead of the free GTP-tubulin dimer concentration ctub, as was done in Figure 5.3(b),
it is evident that there is a linear relation between vgr and kh. Figure 5.3(b) also shows that
the decrease in the growth velocity while increasing the hydrolysis rate is entirely due to
the presence of hydrolysis as the experimental data are on the fit lines at kh = 0. (As the
experimental data by Walker et al.[49] is based on real microtubules, they, of course, also account
for the presence of hydrolysis at a certain rate kh > 0. We, however, used their growth velocity
relation (4.1) with kh = 0 to determine the growth parameters so that the expected result is to
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Figure 5.4: The critical GTP-tubulin
dimer concentration ccrit calculated from
the growth velocity as a function of the
free GTP-tubulin dimer concentration ctub
in Figure 5.3(a) increases for greater hy-
drolysis rates kh.

find the experimental data on the fit lines at kh = 0.)

From the data in Figure 5.3(a), the critical GTP-tubulin dimer concentration ccrit for each
hydrolysis rate kh can be calculated. Figure 5.4 shows that there is a linear relation between ccrit
and kh and that the linear fit only has small deviation from the experimental value ccrit = 4.8 µM
by Walker et al.[49] This increase of ccrit with kh has already been seen in Figure 5.1, where
most microtubules can grow the full ten minutes of simulation time already at ctub = 8 µM
for kh = 0.1 s−1, while for kh = 0.5 s−1, such prolonged growth is only possible starting at
ctub = 12 µM.

The decrease of the growth velocity vgr for increasing hydrolysis rates kh as shown in Figure 5.3(b)
is due to the higher probability of terminal tubulin dimers being hydrolyzed. As such tubulin
dimers prefer to be bent, they stretch the lateral springs to their neighbors, which increases
the rate of bond rupture making it ultimately more likely for them to depolymerize. (Even
though in our model, a newly polymerized GTP-tubulin directly at the tip of a protofilament is
not allowed to hydrolyze as explained in subsection 2.3.3, it enables the previous GTP-tubulin
dimer to hydrolyze. If after the hydrolysis event, the terminal GTP-tubulin depolymerizes,
there is now a GDP-tubulin dimer at the protofilament tip.) If a terminal tubulin dimer of a
protofilament is hydrolyzed, the cap length of this protofilament is Ncap = 0. Thus, it makes
sense to analyze the cap length Ncap as a function of the hydrolysis rate kh. The cap length
Ncap is the number of consecutive GTP-tubulin dimers at the plus end of a protofilament
or, depending on the context, the average number of consecutive GTP-tubulin dimers per
protofilament at the plus end of the microtubule. As expected, the cap length Ncap decreases if
the hydrolysis rate kh is increased, see Figure 5.5(a). Additionally, the cap length increases for
higher free GTP-tubulin dimer concentrations ctub as a higher ctub means that there a more
GTP-tubulin dimers polymerizing onto the microtubules.

The data in Figure 5.5 are averages over the whole course of multiple simulations, which also
results in an average over different growth states. In the shrinking state, the GTP-cap is
significantly shorter than in the growing state so that the cap lengths in Figure 5.5(a) can be
regarded as lower limits for the cap length in the growing state. Similarly, the probability for a
terminal GDP-tubulin dimer is higher in the shrinkage state than in the growth state, so that
the probabilities in Figure 5.5(b) are upper limits for the probability for a terminal GDP-tubulin
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(a) The average GTP-cap length Ncap decreases
with increasing hydrolysis rates kh and increases for
higher free GTP-tubulin dimer concentrations ctub.

(b) The probability of the terminal tubulin dimer
being hydrolyzed, i.e., the probability of there being
no cap, p(Ncap = 0), increases with the hydrolysis
rate kh and decreases for higher free GTP-tubulin
dimer concentrations ctub.

Figure 5.5: Influence of the hydrolysis rate on the microtubule tip for different concentrations ctub.

(a) The average GTP-cap length 〈Ncap〉 increases
with higher free GTP-tubulin dimer concentrations
ctub.

(b) The probability of the terminal tubulin dimer
being hydrolyzed, p(Ncap = 0), decreases for higher
free GTP-tubulin dimer concentrations ctub.

Figure 5.6: The same data as in Figure 5.5 but now as a function of the free GTP-tubulin dimer
concentration ctub.

dimer in the growing state. To get a better understanding that this averaging affects the results,
it is sufficient to plot the data in Figure 5.5 not as a function of the hydrolysis rate kh but as
a function of the free GTP-tubulin dimer concentration ctub as shown in Figure 5.6. For ctub
below or near the critical concentration ccrit shown in Figure 5.4, Ncap only increases weakly
with ctub. For ctub > ccrit, the slope increases. In the simulations with ctub < ccrit, a Ncap > 0
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value is due to the initial GTP-cap at the start of the simulation that is hydrolyzed before
and during the shrinkage of the microtubule. The same effect is visible for the probability of
the terminal tubulin dimer being hydrolyzed in Figure 5.6(b) as a discontinuity in the data
near ctub = ccrit. As the goal of this microtubule tip analysis only was to explain how the
hydrolysis rate kh influences the growth velocity vgr as shown in Figure 5.3, this level of analysis
is sufficient, even though the data is averaged over difference growth phases.

In section 7.2, we will come back to the GTP-cap and show that the dependence of 〈Ncap〉 on
kh as shown in Figure 5.5(a) and on ctub as shown in Figure 5.6(a) is expected.
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5.4 Catastrophe and Rescue Rates

In Figure 5.1, we have shown many microtubule trajectories. To calculate catastrophe rates
ωcat and rescue rates ωres, we have to identify catastrophes and rescues in these trajectories and
determine the previous time interval during which the microtubule was growing or shrinking,
respectively. Identifying them by hand is too cumbersome for a large number of simulations and
can also result in biased decisions of whether catastrophe followed by a rescue is identified or
whether it is just a short length fluctuation. Instead, we deployed a simple algorithm presented
in subsection 5.4.1 to classify catastrophes and rescue and then calculate the catastrophe rates
ωcat and rescue rates ωres based on this classification. Recently, a more sophisticated program
based on machine learning[206,207] was introduced for the same classification, which will result
in better classifications and thus better results than we do here but has also required much
more time to develop than our simple algorithm.

5.4.1 Algorithm for Catastrophe and Rescue Identification

The simulations produce lists of simulation time and microtubule length tuples {(LMT,i, tsim,i)}.
The first part of the following algorithm to calculate catastrophe and rescue rates is to determine
the times {τcat,j} and {τresc,j} at which catastrophes and rescues happen, respectively. The
second part is then to calculate the periods of time the microtubule grows ∆tgr,k and the
periods of time the microtubule shrinks ∆tsh,k from which the catastrophe and rescue rate can
be calculated via[87]

ωcat =

 1

Ncat

Ncat∑
k=1

∆tgr,k

−1

, (5.1)

ωres =

 1

Nresc

Nresc∑
k=1

∆tsh,k

−1

, (5.2)

respectively. Ncat is the number of catastrophes and Nresc is the number of rescues. In
the following description, we will use two different length increments, ∆`1 = 50 nm and
∆`2 = 300 nm for which we have explicitly chosen ∆`1 < ∆`2 for reasons that will become clear
during the discussion of the algorithm.

The algorithm starts with the first data tuple with i = 0 and then iterates over all data tuples
{(LMT,i, tsim,i)}. Additionally, i0 = 0 is set, which denotes the previous cutoff point. In the
beginning, no cutoffs have been made, thus i0 := 0 is used. i continues to be increased until the
microtubule has grown or shrunk by ∆`1 since the last cutoff, i.e., until LMT,i − LMT,i0 ≥ ∆`1
or LMT,i − LMT,i0 ≤ −∆`1. In the first case, LMT,i − LMT,i0 ≥ ∆`1, the microtubule has
grown sufficiently so that the interval [i0, i] is marked as a growth interval. In the second
case, LMT,i − LMT,i0 ≤ −∆`1, the interval [i0, i] is marked as a shrinkage interval. By setting
i0 := i, we “cut off” this interval and start a new one. It should be noted that this classification
“absorbs” plateaus, i.e., periods in which the microtubule stays roughly constant, into the
surrounding interval. If the (n− 1)-th interval is classified as a growth interval and the n-th
interval is classified as a shrinkage interval, the n-th interval is bookmarked as potentially
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containing a catastrophe. Vice versa, if the (n−1)-th interval is classified as a shrinkage interval
and the n-th interval is classified as a growth interval, the n-th interval is bookmarked as
potentially containing a rescue. A consequence of this approach is that, like in reality, potential
catastrophes and rescues are always alternating.

Before we continue explaining how we proceed with this preliminary classification, we want to
clarify two minor aspects:

1. In the previous two examples of classifying the n-th interval to potentially containing a
catastrophe or a rescue, we intentionally chose the n-th interval and neither the (n− 1)-th
interval nor combining both intervals and then bookmarking this merged interval. For the
(n−1)-th interval to be marked as a growth interval, the length difference between the last
two data tuples in this interval must have been positive for the length difference between
the first and last data tuples in this interval to exceed the threshold length difference
∆`1. In the general case, the microtubule will continue growing at the beginning of the
n-th interval and then shrink until the threshold length difference −∆`1 is met. In this
case, the switch between growth and shrinkage happens in this n-th interval and the
classification is correct. In the extreme edge case of the microtubule starting to shrink
between the first two data tuples in the n-th interval, the catastrophe happens directly at
the common border between the two intervals so that marking the n-th interval is also
correct.

2. The last data tuples {(LMT,i, tsim,i)} will generally not be included in any interval because
the length change of the microtubule will not be sufficient for either classification resulting
in unclassified data. There are, however, two reasons why this leftover data is no problem:
Firstly, if the remaining data would be classified as the opposite growth type as the
previous interval, there would not be enough “surrounding” data to validate whether a
catastrophe or rescue really occurred or whether it was just a local fluctuation. Secondly,
the fine-grained analysis of the preliminary classification, which we will describe next,
will also take this leftover data into consideration so that the lack of classification of these
last data tuples will have no effect on the analysis of the previous intervals.

The result of this first part is a list of intervals {[c1,m, c2,m]} with potential catastrophes and a
list of intervals {[r1,m, r2,m]} with potential rescues. We initially mentioned that ∆`1 < ∆`2
so that these initial preliminary classifications using ∆`1 are done more greedily (i.e., small
fluctuations can already lead to a classification as a potential catastrophe or rescue) so that we
can filter them in the second part with a higher threshold for the relevant length differences.

In the second part of the algorithm, first, we iterate over all catastrophe intervals {[c1,m, c2,m]}
and then per catastrophe interval iterate over all indices within the interval k ∈ [c1,m, c2,m].
For k, we now determine an interval [k−, k+] around k so that the microtubule grows by
∆`2 in the subinterval [k−, k] and shrinks by ∆`2 in the following subinterval [k, k+], i.e.,
LMT,k − LMT,k− ≥ ∆`2 and LMT,k+ − LMT,k ≤ −∆`2. To avoid going back and forth too far,
for example to k− = 0, which would, on the one hand, worsen the classifications, and on the
other hand massively increase the runtime of the analysis script, we use a threshold criterion
for the time differences |tk± − tk|. If tk − tk− > ∆tmax, we skip the current k as there was
no sufficient growth before k required for a catastrophe event, i.e., the microtubule did not
grow by ∆`2 within the previous ∆tmax = 50 s. To keep the target interval [k−, k+] as small
as possible, we select the largest value of k− fulfilling LMT,k − LMT,k− ≥ ∆`2. Once k− is
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(a) ctub = 10 µM, kh = 0.3 s−1 (b) ctub = 11 µM, kh = 0.4 s−1

Figure 5.7: Two exemplary microtubule trajectories in which catastrophes and rescues determined
by the algorithm are marked by red arrows pointing down and green arrows pointing up, respectively.

determined, the same approach is used for k+ so that the microtubule’s length must change
by LMT,k+ − LMT,k ≤ −∆`2. We also use tk+ − tk ≤ ∆tmax to avoid considering too much of
the following data again. If no k+ can be found, k is skipped. Otherwise, we use the smallest
value of k+ to also keep the second interval [k, k+] as small as possible. After having checked
all k ∈ [c1,m, c2,m], we select the value of k as the point where the catastrophe happened if
both k− and k+ values could be determined for k and for which tk+ − tk− is the smallest. If
no k ∈ [c1,m, c2,m] could be determined fulfilling these criteria, no catastrophe happened in
this interval. As rescues follow catastrophes, we can also discard the rescue interval following
this catastrophe interval from consideration. After going through all catastrophe intervals
{[c1,m, c2,m]} as described previously, we repeat the same procedure for the rescue intervals
{[r1,m, r2,m]} except that the microtubule must have been shrinking before and be growing
after the considered k ∈ [r1,m, r2,m].

As a result of this algorithm, we get a list of indices at which catastrophes occurred and
a list of indices at which rescues occurred. Figure 5.7 shows two examples of microtubule
trajectories and marks the times determined by the algorithm at which the microtubules
underwent catastrophes and rescues with arrows. Having identified catastrophes and rescues,
we can calculate the growth times ∆tgr and shrinkage times ∆tsh used in (5.1) and (5.2) to
determine the catastrophe rate ωcat and rescue rate ωres.

5.4.2 Catastrophe and Rescue Rate Values

Table 5.2 contains the catastrophe rates ωcat and rescue rates ωres calculated from the simulations
previously shown in Figure 5.1. In Figure 5.8, we have plotted these values and the experimental
results by Walker et al.[49] for comparison. While the values of both rates that we were able to
measure are of the same order as the experimental values and generally follow the same trend
(ωcat decreasing and ωres increasing with ctub), we are unable to reproduce the same overall
dependence of the rates on the free GTP-tubulin dimer concentration ctub. The same also holds
true for other mechanical parameters as shown in section D.2.
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ctub

kh 0.1 s−1 0.2 s−1 0.3 s−1 0.4 s−1 0.5 s−1

7 µM (0.70 min−1) — — — —
8 µM 0.02 min−1 — — — —
9 µM ∼ 0 0.15 min−1 — — —

10 µM ∼ 0 ∼ 0 0.24 min−1 0.89 min−1 —
11 µM ∼ 0 ∼ 0 ∼ 0 0.14 min−1 0.67 min−1

12 µM ∼ 0 ∼ 0 ∼ 0 ∼ 0 0.11 min−1

13 µM ∼ 0 ∼ 0 ∼ 0 ∼ 0 (0.01 min−1)
14 µM ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0
15 µM ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0
16 µM ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0

(a) Catastrophe rates ωcat for different free GTP-tubulin dimer concentrations ctub and different hydrolysis
rates kh. For parameter combinations with “—” as catastrophe rate, no proper growth phase was observed,
so no catastrophe rates could be calculated. “∼ 0” is used to denote cases in which microtubules grew
during the whole simulation without any catastrophe resulting in catastrophe rates close to zero (at least
ωcat � 0.01 min−1). For values in parentheses, only one or two catastrophe happened.

ctub

kh 0.1 s−1 0.2 s−1 0.3 s−1 0.4 s−1 0.5 s−1

7 µM (1.06 min−1) — — — —
8 µM 1.31 min−1 — — — —
9 µM — 0.79 min−1 — — —

10 µM — — 1.48 min−1 (0.76 min−1) —
11 µM — — — 2.98 min−1 1.76 min−1

12 µM — — — (4.32 min−1) 6.88 min−1

13 µM — — — — (7.45 min−1)
14 µM — — — — —
15 µM — — — — —
16 µM — — — — —

(b) Rescue rates ωres for different free GTP-tubulin dimer concentrations ctub and different hydrolysis
rates kh. For parameter combinations with “—” as rescue rate, no rescues were observed and for values in
parentheses only one or two rescues happened.

Table 5.2: Catastrophe rates ωcat and rescue rates ωres for different free GTP-tubulin dimer
concentrations ctub and different hydrolysis rates kh.
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(a) Catastrophe rate ωcat as a function of the free
GTP-tubulin dimer concentration ctub.

(b) Rescue rate ωres as a function of the free GTP-
tubulin dimer concentration ctub.

Figure 5.8: Comparison between our values for the catastrophe and rescue rates from Table 5.2
and the values measured by Walker et al.[49] and Janson et al.[204]

The catastrophe rates from the data of Janson et al.[204], which is also shown in Figure 5.8,
however, imply that the relation between the catastrophe rate ωcat and the free GTP-tubulin
dimer concentration ctub is not linear like in Walker et al.[49] but instead follows[208]

ωcat(ctub) =
1

aJanctub + bJan
, (5.3)

where aJan and bJan are fit parameters. The corresponding curve in Figure 5.8(a) shows that
such a relation and the underlying data by Janson et al.[204] do have a steeper dependence of
ctub on ωcat like in our data, but the decline in ωcat with increasing values of ctub happens for a
smaller value of ctub than in our data.

In summary, the reason why the dependence on ctub for both rates is too steep in our models
compared to experimental results[49,199] cannot be explained at the moment but could hint
at an underlying problem in the model. Regardless of these discrepancies, it is important to
highlight the ability of our simulation program to generate ωcat(ctub) and ωres(ctub) data in the
first place.
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Mechanical Hydrolysis 6
In subsection 2.3.4, we have explained how we couple the mechanics of the microtubule to the
hydrolysis rate of individual GTP-tubulin dimers via (2.47). In this chapter, we focus on our
standard set of parameters with klat = 100 kBT/nm2 (see Table 4.2), but in Appendix E, we
present additional data for klat = 10 kBT/nm2.

6.1 Actual Hydrolysis Rates and Comparison to
Constant Hydrolysis Rate

The major difference between the model with a constant hydrolysis rate and a non-constant
hydrolysis rate depending on the mechanics is the very fact that in the second case, there is a
distribution of rates at which hydrolysis events occur. For the following discussion, we want
to remind ourselves that there is a difference between the rates of proposed events and the
rates of the events that are actually implemented (see third step of the simulation procedure
in section 3.2). Here, the rates of actually executed hydrolysis events are relevant from which
we calculate the average hydrolysis rate, i.e., we average over multiple simulations with the
same parameters and also over the whole microtubule as we do not consider the position of
the GTP-tubulin dimer that is hydrolyzed in the microtubule lattice for now. In section 6.2,
however, we will investigate how the hydrolysis rate depends on the position of the hydrolyzed
GTP-tubulin dimer.

First, we consider how this average hydrolysis rate 〈kh〉 depends on the base hydrolysis rate k0h
that we introduced in (2.47). We find 〈kh〉(k0h) to be a linear function of k0h for smaller free
GTP-tubulin dimer concentrations ctub, as shown in Figure 6.1(a). For larger values of ctub,
〈kh〉(k0h) is still linear for larger values of k0h but increases slower for smaller values of k0h.

In Figure 6.1(b), we see that 〈kh〉(ctub) starts at a constant value and then decreases. The
initial constant value is a manifestation again of parameter combinations for which the initial
microtubule does not grow (i.e., ctub is below the individual critical concentration ccrit) so that
hydrolysis events only happen in the same initial GTP-cap for all of these ctub values resulting
in the same value of 〈kh〉.

To compare simulations with a constant hydrolysis rate kh to simulations with mechanical
hydrolysis, we selected one pair of constant hydrolysis rate kh and base hydrolysis rate k0h so
that the average actual hydrolysis rate is close to the constant hydrolysis rate 〈kh〉 ' kh for
growing microtubules. Figure 6.2 shows that k0h = 1.5 s−1 results in an average hydrolysis rate
〈kh〉 ' 0.25 s−1 for growing microtubules at sufficiently high ctub values. While the average
rates are comparable, the length of the porous GTP-cap Npcap reveals that when mechanical
hydrolysis is used, Npcap is much larger compared to a comparable constant hydrolysis rate, as
shown in Figure 6.3(a). In contrast to the GTP-cap length Ncap that considers the continuous
stretch of GTP-tubulin dimers at the end of a protofilament, the porous GTP-cap length Npcap
measures the distance from the plus end to the last GTP-tubulin dimer in a protofilament
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(a) Average hydrolysis rate 〈kh〉 as a function of
the base hydrolysis rate k0h for different free GTP-
tubulin dimer concentrations ctub.

(b) Average hydrolysis rate 〈kh〉 as a function of
the free GTP-tubulin dimer concentration ctub for
different base hydrolysis rates k0h.

Figure 6.1: Average hydrolysis rate 〈kh〉 calculated from the hydrolysis events executed in the
relevant simulations.

Figure 6.2: Comparison of the average hy-
drolysis rate 〈kh〉 as a function of the free
GTP-tubulin dimer concentration ctub for
a constant hydrolysis rate kh = 0.25 s−1

and mechanical hydrolysis with a base hy-
drolysis rate k0h = 1.5 s−1.
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(a) Comparison of the average porous GTP-cap length 〈Npcap〉 between a constant hydrolysis rate of
kh = 0.25 s−1 and mechanical hydrolysis with a base hydrolysis rate kh = 1.5 s−1.

(b) Example configuration of a simulation with a constant hydrolysis rate kh = 0.25 s−1. (The top and
bottom protofilament are the period image of the last and first protofilament, respectively.)

(c) Example configuration of a simulation with a base hydrolysis rate kh = 1.5 s−1. (The top and bottom
protofilament are the period image of the last and first protofilament, respectively.)

Figure 6.3: Comparison of the porous GTP-cap between a constant hydrolysis rate and mechanical
hydrolysis.

in units of tubulin dimers. If the only GTP-tubulin dimers in a protofilament happen to be
directly at its plus end, Npcap = Ncap. Figure 6.3(b) and Figure 6.3(c) are two exemplary
configuration snapshots that show how for mechanical hydrolysis, more GTP-tubulin dimers
can be found further away from the microtubule tip. A more detailed discussion of the porous
GTP-cap length Npcap can be found in section 7.3.

In addition to the average hydrolysis rates in Figure 6.1, we also analyzed the distribution of
hydrolysis rates kh for different base hydrolysis rates k0h and different free GTP-tubulin dimer
concentrations ctub. Before continuing with this discussion, however, we will first investigate
the influence of the distance of the hydrolyzed tubulin dimer from the protofilament tip (which
we will refer to as “layer-dependence” for brevity) on the average hydrolysis rate because this
discussion will lay the foundation for understanding the distribution of actual hydrolysis rates.

Actual Hydrolysis Rates and Comparison to Constant Hydrolysis Rate 75



Figure 6.4: Average hydrolysis rate 〈kh〉 as a function of the distance ∆dtip of the hydrolyzed
tubulin dimer from the tip of its protofilament for k0h = 1.5 s−1.

6.2 Layer-Dependence of Average Hydrolysis Rate

Previously[121], coupling mechanics and hydrolysis was already considered in a simplified model
and even though a random hydrolysis rule was used, the coupling caused hydrolysis to occur
layer by layer.

To account for different lengths of individual protofilaments, we will consider the distance of a
tubulin dimer (p, d) from the tip of the protofilament it is in:

∆dtip = dmax(p)− d. (6.1)

In Figure 6.4, we see that the average hydrolysis rate 〈kh〉 is higher at the plus end of the
microtubule. In subsection 2.3.4, we had already discussed that due to our choice of where
tubulin dimers are able to bend (both intra- and inter-dimer bending is possible), we will have
a higher hydrolysis rate at the very end of the protofilament, ∆dtip = 0, which is highlighted in
the inset in Figure 6.4. However, for ∆dtip > 0 but still close to the tip, the hydrolysis rate is
still higher than for GTP-tubulin dimers buried deep into the microtubule lattice (∆dtip � 0).

We have modeled the coupling between hydrolysis and mechanics in (2.51) and (2.52) so that a
larger bending angle ψ results in a higher hydrolysis rate. Compared to a straight GTP-tubulin
dimer with ψ = 0°, hydrolysis of a GTP-tubulin dimer with ψ > 0° is more likely and less likely
if ψ < 0°. From (2.51), (2.52), and the average hydrolysis rate data in Figure 6.4, it is possible
to calculate the average bending angles 〈ψ̃〉:

〈ψ̃(∆dtip)〉 =
1

11°

1 + δ∆dtip,0

κ
ln

(
〈kh〉(∆dtip)

k0h

)
+ (5.5°)2

 , (6.2)

which are shown in Figure 6.5. While the intent of the coupling between hydrolysis and
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Figure 6.5: Average bending angle 〈ψ̃〉 calculated via (6.2) from the average hydrolysis rate 〈kh〉
shown in Figure 6.4.

mechanics was to ease hydrolysis of GTP-tubulin dimers that are already bent outward, we find
that in reality, the GTP-tubulin dimers tend to bent inward instead of outward resulting in a
penalty for the hydrolysis of these tubulin dimers compared to straight GTP-tubulin dimers.
To understand why it is energetically preferable for GTP-tubulin dimers to bend inward (in
the GDP-body of the microtubule), we generated a GDP-only microtubule and then artificially
changed the beta-nucleotide of certain tubulin dimers back to GTP and investigated the effect
of these changes on the bending angles ψ. In Figure 6.6, we first changed the nucleotide of five
GTP-tubulin dimers in the same layer. In Figure 6.6(b), after changing the first nucleotide,
the two tubulin monomers, whose bending angles are affected by the relevant nucleotide, bend
inward to allow the tubulin monomers below and above these two tubulin monomers to bent
outward resulting in an overall energy decrease. If we average the bending angles of the
inward-bending tubulin monomers in the last configuration in Figure 6.6(f), we find a similar
bending angle as the asymptotic value in Figure 6.5.

Additionally, we also changed the nucleotide of five GTP-tubulin dimers in the same protofila-
ment as shown in Figure 6.7. The interesting finding here is that as the length of the GTP-island
in the protofilament grows, the monomers in the center become straighter, ultimately resulting
in the following succession of bending angles in the last configuration in Figure 6.7(f): straight
GDP-tubulin monomers1 due to the lattice constraints, GDP-tubulin monomers bending out-
ward at the interface of the GDP/GTP-region, GTP-tubulin monomers bending inward to
compensate for the previous GDP-tubulin monomers bending outward, straight GTP-tubulin
monomers, GTP-tubulin monomers bending inward to compensate for the following GDP-
tubulin monomers bending outward, which are then followed by straight GDP-tubulin monomers.
Finally, at the plus end tip of the protofilament, there are again GDP-tubulin monomers bending
outward due to the reduced lattice constraints at the tip. Having straight GTP-tubulin dimers

1We use the shortcut “GTP/GDP-tubulin monomer” here to refer to tubulin monomers whose rest configu-
ration is either straight (GTP) or bent (GDP).
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(a) Bending angles of initial configuration.

(b) Bending angles after changing the beta-nucleotide of tubulin dimer (3, 31) from GDP to GTP.

(c) Bending angles after changing the beta-nucleotide of tubulin dimer (4, 31) from GDP to GTP.

(d) Bending angles after changing the beta-nucleotide of tubulin dimer (6, 31) from GDP to GTP.

(e) Bending angles after changing the beta-nucleotide of tubulin dimer (7, 31) from GDP to GTP.

(f) Bending angles after changing the beta-nucleotide of tubulin dimer (5, 31) from GDP to GTP.

Figure 6.6: Bending angles ψ(p, d, t) as a function of the tubulin monomer in five protofilaments of
a microtubule with initially NGDP = 40 and NGTP = 0 and subsequent artificial changes of certain
beta-nucleotides from GDP to GTP. The highlighted tubulin monomers are the ones bending
inward as a result of the previous change of the beta-nucleotide from GDP to GTP.
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(a) Bending angles of initial configuration. (b) Bending angles after changing the beta-
nucleotide of tubulin dimer (3, 31) from GDP to
GTP.

(c) Bending angles after changing the beta-
nucleotide of tubulin dimer (3, 32) from GDP to
GTP.

(d) Bending angles after changing the beta-
nucleotide of tubulin dimer (3, 33) from GDP to
GTP.

(e) Bending angles after changing the beta-
nucleotide of tubulin dimer (3, 34) from GDP to
GTP.

(f) Bending angles after changing the beta-
nucleotide of tubulin dimer (3, 30) from GDP to
GTP.

Figure 6.7: Bending angles ψ(p, d, t) as a function of the tubulin monomer in protofilament p = 3 of
a microtubule with initially NGDP = 40 and NGTP = 0 and subsequent artificial changes of certain
beta-nucleotides from GDP to GTP. The highlighted tubulin monomers are the ones bending
inward as a result of all the changes of the beta-nucleotide from GDP to GTP.

in the interior of the GTP-island compared to the GTP-dimers bending outward at the edges of
the GTP-island, results in a higher hydrolysis rate in the interior of the GTP-island, which can
be interpreted as an “anti-vectorial” hydrolysis mechanism (compared to the normal vectorial
hydrolysis mechanism in which such a GTP-island would be hydrolyzed from its edges, see
Figure 2.9(b)).

It must be noted that these findings regarding the bending angles of GTP-tubulin monomers
in the GDP-body of the microtubule are independent of whether hydrolysis is coupled to
mechanics or not. The conclusion regarding the influence of these negative bending angles on
the hydrolysis rate, of course, only applies to mechanical hydrolysis.

In section 6.1, we have seen that for mechanical hydrolysis, the porous GTP-cap length Npcap
is much longer for growing microtubules (see Figure 6.3(a)). Hence, it makes sense to analyze
the probability of finding GTP-tubulin dimers as a function of the distance from the tip.
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(a) Constant hydrolysis rate kh = 0.25 s−1.

(b) Base hydrolysis rate k0h = 1.5 s−1.

Figure 6.8: Probability pGTP to find a GTP-tubulin dimer at the distance ∆dtip from the tip of
its protofilament for a constant hydrolysis rate and for mechanical hydrolysis.

From the higher value of Npcap for mechanical hydolysis mentioned before in section 6.1, we
already know that this probability distribution will have a longer tail for mechanical hydrolysis
than for a constant hydrolysis, which is confirmed by our data shown in Figure 6.8. For a
constant hydrolysis rate, the GTP probability distribution shown in Figure 6.8(a) is exponential,
which is consistent with in vivo experiments[209]. In Appendix F, we show analytically with a
simple one-dimensional model with a polymerization rate kon, depolymerization rate koff, and
hydrolysis rate kh for all GTP-tubulin dimers that our pGTP data for a constant hydrolysis
rate can be reproduced with such a simple model. While there is a direct mapping from our
three-dimensional model to the one-dimensional model for the polymerization rate kon and the
hydrolysis rate kh (if we ignore whether or not a newly polymerized GTP-tubulin dimer can
be hydrolyzed or not), there is no such direct mapping for the depolymerization rate koff. In
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our three-dimensional model, we, of course, also have a depolymerization rate koff, see (2.36),
the actual depolymerization process, however, is an interplay between depolymerization and
lateral bond dynamics, which are not part of the one-dimensional model. As a consequence,
the depolymerization rate obtained via fitting from the one-dimensional model can be viewed
as an “effective” depolymerization rate keff

off that represents the actual depolymerization process
and the lateral bond dynamics of our three-dimensional model.

For mechanical hydrolysis, we find that pGTP(∆dtip) is only exponential in its tail, see Fig-
ure 6.8(b). Additionally, this tail is much longer and reaches deeper into the GDP-body of
the microtubule compared to a constant hydrolysis rate. These results are consistent with the
decrease of the hydrolysis rate in the GDP-body of the microtubule shown in Figure 6.4. The
fact that the distribution is no longer exponential is not surprising as the hydrolysis rate is not
constant. The data, for the average hydrolysis 〈kh〉 shown in Figure 6.4, however, demonstrates
that in the GDP-body, i.e., in the tail of the distribution shown in Figure 6.8(b), 〈kh〉 is almost
constant resulting in an exponential GTP-tubulin dimer distribution in that region.

In Appendix F, we show that the following differential equation for pGTP can be derived from
the balance of the polymerization, depolymerization, and hydrolysis of GTP-tubulin dimers in
the stationary case, see (F.45):

dpGTP
d∆dtip

= −〈kh〉(∆dtip)

kon − keff
off

pGTP(∆dtip). (6.3)

Equation (6.3) explains why there is a much larger decrease of pGTP directly at the tip for
mechanical hydrolysis compared to a constant hydrolysis because there is a significant drop in the
average hydrolysis rate 〈kh〉 from ∆dtip = 0 to ∆dtip = 1, see the inset in Figure 6.4. Equation
(6.3) also explicitly shows what we have already discussed before: For large ∆dtip, 〈kh(∆dtip)〉
reaches a constant value so that (6.3) can be solved explicitly yielding an exponential distribution.
For all values of 〈kh(∆dtip)〉, however, (6.3) cannot be solved analytically to compare it to our
data. Instead, we can solve (6.3) for keff

off:

keff
off(∆dtip) = kon +

(
dpGTP
d∆dtip

)−1

〈kh〉(∆dtip) pGTP(∆dtip). (6.4)

We have added a ∆dtip-dependence on the left-hand side of (6.4) because the right-hand side also
depends on ∆dtip. Additionally, keff

off(∆dtip) is not the depolymerization rate of tubulin dimers
with a distance of ∆dtip from the tip, but the depolymerization rate in the one-dimensional
model of the terminal tubulin dimer calculated with the data of the tubulin dimer with a
distance of ∆dtip from the tip. If our simulation results can be understood qualitatively via the
one-dimensional model, we expect, however, keff

off to be independent of ∆dtip. For 〈kh〉(∆dtip)
and pGTP(∆dtip), we can use the data shown in Figure 6.4 and Figure 6.8(b), respectively, and
the derivative in (6.4) can be calculated from our pGTP(∆dtip) data using a central difference
quotient (and a forward and backward difference quotient for the first and last data point,
respectively). The results of these calculations for the data from Figure 6.4 and Figure 6.8
and, as a comparison, also for the data with a constant hydrolysis rate are shown in Figure 6.9.
Despite the significant peaks visible for both data sets for all values of ctub due to numerical
issues, and, in particular for larger values of ∆dtip, due to an insufficient amount of data, it is
clear that the keff

off ≈ const in both cases holds, which validates our data.
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(a) ctub = 7 µM (b) ctub = 8 µM

(c) ctub = 9 µM (d) ctub = 10 µM

(e) ctub = 11 µM (f) ctub = 12 µM

(g) ctub = 13 µM (h) ctub = 14 µM

(i) ctub = 15 µM (j) ctub = 16 µM

Figure 6.9: Effective depolymerization rate keff
off calculated via (6.4) for a constant hydrolysis rate

koff = 0.25 s−1 and a base hydrolysis rate k0h = 1.5 s−1 and different free GTP-tubulin dimer
concentrations ctub. (keff

off values outside of [0 s−1, 100 s−1] were cut off.)
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Figure 6.10: Average distance of GTP-
tubulin dimers from the microtubule tip
calculated from the data shown in Fig-
ure 6.8 for a constant hydrolysis rate and
mechanical hydrolysis via (6.5).

The GTP-tubulin dimer probability results for mechanical hydrolysis shown in Figure 6.8(b)
can also be used to explain the increase in the porous GTP-cap length shown in Figure 6.3(a)
in a simple way by considering the average distance of GTP-tubulin dimers from the tip:

〈∆dtip〉 =
∞∑
i=0

i pGTP(i). (6.5)

Using the data in Figure 6.8, 〈∆dtip〉 was calculated and the results in Figure 6.10 show that,
unsurprisingly, 〈∆dtip〉 is much larger for mechanical hydrolysis. While 〈∆dtip〉 is only the
average distance from the tip, the porous GTP-cap length Npcap is the maximum distance so
that 〈∆dtip〉 ≤ Npcap, which causes Npcap to also increase as 〈∆dtip〉 increases.

Comparing the probability pGTP directly at the tip, we find there to be a relative increase of
GDP-tubulin dimers for mechanical hydrolysis compared to a constant hydrolysis rate, see
insets in Figure 6.8. As GDP-tubulin dimers at the microtubule tip destabilize the microtubule,
mechanical hydrolysis might cause an increase in the catastrophe rate compared to a constant
hydrolysis rate (see section 5.4) and potentially a flatter concentration dependence of the
catastrophe rate. To investigate whether this hypothesis is true, we simulated microtubule
growth trajectories like we did for constant hydrolysis rates as shown in Figure 5.1, which we
will consider in the next section. Before continuing with that topic however, we have to finish
the discussion we started in the previous section about the distribution of the actual hydrolysis
rates.

Using the raw simulation data from which the average hydrolysis rates in Figure 6.1(a) were
calculated, we generated histograms of the distribution of the rates of individual hydrolysis
events for different base hydrolysis rates k0h and free GTP-tubulin dimer concentrations ctub
shown in Figure 6.11. Most probability densities in Figure 6.11 show three clear distinct peaks
for all base hydrolysis rates k0h. The kh values of the peaks are greater, the greater the base
hydrolysis rate k0h is. To eliminate the influence of k0h, we replotted the data in Figure 6.11
as a function of kh/k

0
h in Figure 6.12. By eliminating k0h, we can clearly see that the second

and third peak is present at the same value of kh/k
0
h regardless of the actual value of k0h and

ctub. The position of the first peak is not as clearly defined as for the other peaks, which
was already visible in the separate data for the different k0h values, as seen, for example, in
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(a) k0h = 1.0 s−1 (b) k0h = 1.5 s−1 (c) k0h = 2.0 s−1

(d) k0h = 2.5 s−1 (e) k0h = 3.0 s−1 (f) k0h = 3.5 s−1

(g) k0h = 4.0 s−1 (h) k0h = 4.5 s−1 (i) k0h = 5.0 s−1

Figure 6.11: Probability density ρprob of the actual hydrolysis rates kh for different base hydrolysis
rates k0h and free GTP-tubulin dimer concentrations ctub. ρprob was generated as a histogram with
a histogram bar width of ∆kh = 0.05 s−1. The cutoff k0h = 3 s−1 for the plots has been chosen as
beyond k0h = 3 s−1, ρprob is negligible.

Figure 6.11(i). The “sub-peak” in the first peak that is at larger values of kh appears for small
free GTP-tubulin dimer concentrations ctub, while the sub-peak at smaller values of kh appears
for larger free GTP-tubulin dimer concentrations ctub. To explain this substructure, we again
calculated the average bending angles from these rates via

ψ̃(kh) =
1

11°

1
κ

ln

(
kh
k0h

)
+ (5.5°)2

 , (6.6)

which is (6.2) without the special consideration of GTP-tubulin dimers directly at the tip being
hydrolyzed as we averaged over all tubulin dimers. The probability for the calculated angles is
shown in Figure 6.12(b). The second peak in Figure 6.12(b) is due to straight GTP-tubulin
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(a) Probability density ρprob of the actual hydrolysis
rates kh normalized by the base hydrolysis rate
k0h for different base hydrolysis rates k0h and free
GTP-tubulin dimer concentrations ctub. ρprob was
generated as a histogram with a histogram bar width
of ∆(kh/k

0
h) = 0.01.

(b) Relative occurrence probability of the average
bending angle 〈ψ̃〉 calculated via (6.6) using the kh
values from the left plot for the average bending
angles on the x-axis, while keeping the y-data the
same (and thus not making it probability density
anymore).

Figure 6.12: Further analysis of the hydrolysis rate distribution and the resulting bending angle
distribution using the data in Figure 6.11. The cutoffs on the x-axis for the plots have been chosen
so that beyond it, ρprob is negligible. Due to the large amount of indistinguishable individual lines
in the plots, no legend is given.

dimers being hydrolyzed, and the third peak is due to GTP-tubulin dimers that are bending
outward. Straight GTP-tubulin dimers are mostly likely found in the GTP-cap or in any longer
GTP-island (see Figure 6.7(f)) and, as discussed before, GTP-tubulin dimers bending inward
is due to neighboring GDP-tubulin dimers (see Figure 6.7). The only open question now is
the origin of the sharp peak of positive bending angles around 〈ψ̃〉 ' 1.4° in Figure 6.12(b) as
there is generally no reason for GTP-tubulin monomers to bend outward (see Figure 6.6 and
Figure 6.72). As mentioned when introducing (6.6), the bending angles in Figure 6.12(b) are
calculated without the knowledge of where an hydrolysis event occurred so that GTP-tubulin
dimers at the tip were not considered separately as in (6.2). If we take the kh/k

0
h ' 0.5

peak from Figure 6.12(a) and calculate the bending angle for a terminal GTP-tubulin dimer
with it, we get 〈ψ̃〉 ' 0°, showing that this peak is due to the hydrolysis of straight terminal
GTP-tubulin dimers that our average over all hydrolysis events does not properly consider.

In the next section, we will discuss microtubule trajectories and in Figure 6.13, we will see that
for small values of ctub, where there is only the left sub-peak of the first peak in Figure 6.12(a),
the initial microtubules shrink immediately so that the case of GTP-tubulin dimers deeply
embedded into the GDP-body of the microtubule does not happen as the only GTP-tubulin
dimers relevant for this scenario are the ones from the initial GTP-cap, which is being hydrolyzed
while the microtubule shrinks. Such deeply embedded GTP-tubulin dimers only exist for growing
microtubules, which requires larger values of ctub.

2Although it is not explicitly mentioned, GTP-tubulin dimers bending inward also applies at the microtubule
tip if it allows neighboring GDP-tubulin dimers to bend outward. If no such neighboring GDP-tubulin dimers
exist, GTP-tubulin dimers at the microtubule tip are straight.
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6.3 Microtubule Trajectories and Individual
Catastrophes and Rescues

Like in Figure 5.1 for a constant hydrolysis rate, we also logged the microtubule lengths of the
simulations with mechanical hydrolysis we analyzed in the previous sections, which are shown
in Figure 6.13. In the previous section, we speculated that due to more GDP-tubulin dimers
being at the microtubule tip, we might find a flatter dependence of the catastrophe rate ωcat on
the free GTP-tubulin dimer concentration ctub. In reality, however, we again find that between
values of ctub at which microtubules only shrink and values of ctub at which microtubules grow
for the whole duration of the simulation, there is only one intermediate concentration at which
we can observe catastrophes and rescues. The catastrophe rate ωcat still having such a steep
dependence on the free GTP-tubulin dimer concentration ctub despite a different hydrolysis
mechanism hints at a different problem with our modeling. Table 6.1(a) and Figure 6.14(a)
show the values of the catastrophe and rescue rates determined the same way as for a constant
hydrolysis rate in section 5.4 based on the simulations shown in Figure 6.13. Figure 6.14 shows
the data from Table 6.1(a) and Table 6.1(b) and compares it to the rates from Walker et al.[49]

and Janson et al.[204]

Lastly, in section 5.3, we have seen that the growth velocity decreases if the constant hydrolysis
rate kh is increased. We repeated the same analysis for mechanical hydrolysis and find the
same quantitative behavior as shown in Figure 6.15. Overall, however, the growth velocities vgr
are smaller as the linear fit in Figure 6.15(b) does not reach the value from Walker et al.[49]

as it did in Figure 5.3(b) for constant hydrolysis rates kh. These smaller values of vgr can be
explained by the decreased probability of finding a stabilizing GTP-tubulin dimer directly at
the tips of protofilaments as discussed previously in section 6.2.
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Figure 6.13: Microtubule growth trajectories of 20 different simulations for each of the considered
values of the free GTP-tubulin dimer concentration ctub and the base hydrolysis rate k0h.
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ctub

k0h 1 s−1 2 s−1 3 s−1 4 s−1 5 s−1

7 µM — — — — —
8 µM 0.25 min−1 — — — —
9 µM (0.01 min−1) — — — —

10 µM ∼ 0 0.11 min−1 — — —
11 µM ∼ 0 ∼ 0 0.21 min−1 — —
12 µM ∼ 0 ∼ 0 ∼ 0 0.16 min−1 0.24 min−1

13 µM ∼ 0 ∼ 0 ∼ 0 ∼ 0 0.05 min−1

14 µM ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0
15 µM ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0
16 µM ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0

(a) Catastrophe rates ωcat for different free GTP-tubulin dimer concentrations ctub and different hydrolysis
rates kh. For parameter combinations with “—” as catastrophe rate, no proper growth phase was observed,
so no catastrophe rates could be calculated. “∼ 0” is used to denote cases in which microtubules grew
during the whole simulation without any catastrophe resulting in catastrophe rates close to zero (at least
ωcat � 0.01 min−1). For values in parentheses, only one or two catastrophe happened.

ctub

k0h 1 s−1 2 s−1 3 s−1 4 s−1 5 s−1

7 µM — — — — —
8 µM — — — — —
9 µM (1.22 min−1) — — — —

10 µM — 2.11 min−1 — — —
11 µM — — 1.73 min−1 — —
12 µM — — — 3.61 min−1 —
13 µM — — — — 4.67 min−1

14 µM — — — — —
15 µM — — — — —
16 µM — — — — —

(b) Rescue rates ωres for different free GTP-tubulin dimer concentrations ctub and different hydrolysis
rates kh. For parameter combinations with “—” as rescue rate, no rescues were observed and for values in
parentheses only one or two rescues happened.

Table 6.1: Catastrophe rates ωcat and rescue rates ωres for different free GTP-tubulin dimer
concentrations ctub and different base hydrolysis rates k0h.
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(a) Catastrophe rate ωcat as a function of the free
GTP-tubulin dimer concentration ctub.

(b) Rescue rate ωres as a function of the free GTP-
tubulin dimer concentration ctub.

Figure 6.14: Comparison between our values for the catastrophe and rescue rates from Table 6.1(a)
and Table 6.1(b) and the values measured by Walker et al.[49] and Janson et al.[204]

(a) Microtubule growth velocity vgr as a function
of the free GTP-tubulin dimer concentration ctub
for different base hydrolysis rates k0h.

(b) Microtubule growth velocity vgr as a function of
the base hydrolysis rates k0h for different free GTP-
tubulin dimer concentrations ctub.

Figure 6.15: Increasing the hydrolysis rates kh results in a linear decrease of the microtubule
growth velocity vgr but also still results in a linear vgr(ctub) relation like the experimental data by
Walker et al.[49]
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(a) Simulation with kh = 0.25 s−1 run on a single
core of an Intel Xeon E5-2650 (Sandy Bridge) pro-
cessor (originally released in the first quarter of 2012
with a base frequency of 2.0 GHz[210]).

(b) Simulation with k0h = 1.5 s−1 run on a single
core of an Intel Xeon E5-2630 v3 (Haswell) processor
(originally released in the third quarter of 2014 with
a base frequency of 2.4 GHz[211]).

Figure 6.16: Comparison of the porous GTP-cap length Npcap and the cumulative running averages
〈timin〉 of the minimization times after an event of type i with possible events being polymerization
(i = on), depolymerization (i = off), lateral bond formation (i = form), lateral bond rupture
(i = rup), and hydrolysis (i = rup). Both simulations were run with ctub = 11 µM.

6.4 Impact on Computational Speed

In subsection 2.3.4, we have discussed that calculating the mechanical hydrolysis rate only
requires calculating a local energy difference for each relevant GTP-tubulin dimer. For a
constant hydrolysis rate, no rate must be calculated making it faster to calculate the tentative
reaction times for such hydrolysis events. While running the simulations and comparing runtimes
between a constant hydrolysis rate and mechanical hydrolysis, it became clear, however, that
the increase in runtime for mechanical hydrolysis simulations could not solely be due to this
change. Instead, we found that minimizations required more time. To understand this effect,
we measured the runtimes of the minimizations after each event execution and calculated the
running average for each possible event type as a function of the simulation tsim. The results in
Figure 6.16 show that the minimization times after polymerization, depolymerization, lateral
bond formation, and lateral bond rupture events are similar between a constant hydrolysis
rate and mechanical hydrolysis. In both cases, we also see that the running average of the
minimization time after hydrolysis events takes some time until it reaches it steady-state value.
This value is, however, four times higher for mechanical hydrolysis than for a constant hydrolysis
rate.

To explain this increase in minimization time, we have also plotted the porous GTP-cap length
Npcap in Figure 6.16, and we see that for both simulations, the porous GTP-cap length Npcap
and the average minimization time after hydrolysis events 〈thmin〉 reach their steady-state value
around the same time, though Npcap is about six times longer for the mechanical hydrolysis
simulation than the simulation with a constant hydrolysis rate. This increase in the porous
GTP-cap length means that during minimizations, up to six times more layers need to be
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considered if a GTP-tubulin dimer located far from the microtubule plus end is hydrolyzed.
This significant increase in the number of tubulin dimers that are used for minimization results
in a slowdown of the minimization.

Lastly, we want to mention that both simulations spend about 98 % of their runtime with
minimizations, further showing that the differences in calculating the hydrolysis rates are
negligible. If we split up that total minimization time between the different event types,
however, the simulation with a constant hydrolysis rate, whose data is shown in Figure 6.16(a),
uses about 30 % of its minimization time for minimizations after hydrolysis events. The
simulation with mechanical hydrolysis, whose data is shown in Figure 6.16(b), on the other
hand, uses about 66 % of its minimization time for minimizations after hydrolysis events. At the
same time, the percentage of hydrolysis events from all events was only about 0.1 percentage
points higher for mechanical hydrolysis. Additionally, such large deviations can also not be
explained by different processors on which individual simulations run, in particular as the
example for mechanical hydrolysis in Figure 6.16(b) ran on a newer and faster processor
compared to the simulation with a constant hydrolysis rate in Figure 6.16(a).
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Microtubule Properties 7
Before we focus on and analyze individual microtubule growth trajectories in chapter 8, we first
consider different properties related to the distribution of GTP-tubulin dimers in the simulated
microtubules and the structure of their tips.

7.1 GTP-Islands

Due to the random hydrolysis rule that we implemented, there can be multiple segments of
GTP-tubulin dimers within each protofilament, not just one terminal segment in form of the
GTP-cap. Such “GTP-islands”[53,57,88,89] are not just a feature introduced by this random
hydrolysis rule, but they have been observed in experiments[53,57] as well. The length of a GTP-
island Lisl is defined as the number of GTP-tubulin dimers in the island so that the minimum
length is 1 and the maximum length is the number of tubulin dimers in the protofilament. In
addition to the GTP-island length Lisl, we will also consider the number of GTP-islands per
protofilament Nisl. Figure 7.1 shows the probability distributions of Lisl and Nisl for different
free GTP-tubulin dimer concentrations ctub and different hydrolysis rates kh.

Antal et al.[88,89] used a one-dimensional microtubule model and calculated the probability of
GTP-islands having the length Lisl in the case of unrestricted growth and fast polymerization
as:

p(Lisl) =
4

Lisl(Lisl + 1)(Lisl + 2)
. (7.1)

Our simulation data in the left column of Figure 7.1 matches their one-dimensional simulations
results, even in the form of the deviations from (7.1) by first increasing a bit above (7.1) before
being lower for larger values of Lisl. They explain this deviation as a finite-size effect of the
system, which is also supported by our data as the deviation in the tail of the distribution
starts later for larger values of ctub for which the simulated microtubules are longer. In our case,
there is another factor causing deviations for some parameter combinations as the values of ctub
and kh influence whether the microtubule can be considered growing (almost) unrestrictedly.
For small values of ctub and/or large values of kh, there is not even a proper growth phase,
as previously shown in Figure 5.1. The small peak around Lisl = 10, which becomes more
pronounced the smaller ctub and the larger kh is, is a direct result of the initial GTP-cap length
of NGTP = 10.

From (7.1), the predicted average length of a GTP-island can be calculated as

〈Lisl〉 =
∞∑

Lisl=1

Lisl p(Lisl) = 2, (7.2)

which our simulations reach quite closely in the relevant case of fast growing microtubules as
shown in Figure 7.2(a). Deviations from (7.2) in Figure 7.2 are artifacts because for the relevant
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(a) kh = 0.1 s−1 (b) kh = 0.1 s−1.

(c) kh = 0.2 s−1 (d) kh = 0.2 s−1

(e) kh = 0.3 s−1 (f) kh = 0.3 s−1

(g) kh = 0.4 s−1 (h) kh = 0.4 s−1

(i) kh = 0.5 s−1 (j) kh = 0.5 s−1

Figure 7.1: Distribution of the GTP-islands lengths Lisl (left column, with black lines showing
(7.1)) and the number of GTP-islands per protofilament Nisl (right column, with fits via (7.4)) for
different free GTP-tubulin dimer concentrations ctub and different constant hydrolysis rates kh.
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(a) Average length of GTP-islands 〈Lisl〉 as a func-
tion of ctub.

(b) Average number of GTP-islands per protofila-
ment 〈Nisl〉 as a function of ctub.

Figure 7.2: The average length of GTP-islands 〈Lisl〉 and the average number of GTP-islands per
protofilament 〈Nisl〉 as a function of the free GTP-tubulin dimer concentration ctub for different
hydrolysis rates kh from the data in Figure 7.1.

parameter sets, microtubules are not growing so that (7.2) does not apply and the presence
of GTP-islands is only due to the initial GTP-cap. On first sight, it might be surprising that
(7.2) does not depend on the free GTP-tubulin dimer concentration ctub as a larger ctub value
also implies a larger number of GTP-tubulin dimers NGTP. As the hydrolysis current, however,
increases with NGTP as well, see (F.53), the average GTP-island length stays the same. In
the following discussion of the number of GTP-islands, we will see that increasing ctub does
increase the number of GTP-islands so that

〈Lisl〉 =
〈
NGTP
Nisl

〉
' 〈NGTP〉

〈Nisl〉
' 2 (7.3)

for ctub > ccrit. Figure 7.3 shows that NGTP also increases linearly with ctub, just like 〈Nisl〉
(see Figure 7.2(b)).

The right column of Figure 7.1 shows that the number of GTP-islands per protofilament follows
a normal distribution

ρprob(Nisl) =
1√
2π σ

exp

[
−1

2

(
Nisl − 〈Nisl〉

σ

)2
]
. (7.4)

For smaller values of ctub at which the microtubules do not grow, the values for Nisl = 0 and
sometimes Nisl = 1 are increased compared to a normal distribution due to domination of
shrinkage when using these parameters. In such cases, we ignored these Nisl values when fitting
the normal distribution (7.4).

The average number of GTP-islands per protofilament 〈Nisl〉 obtained from fitting (7.4) to
the data in Figure 7.1 increases linearly with the free GTP-tubulin dimer concentration ctub
from ctub > ccrit, i.e., when the microtubules are able to grow, as shown in Figure 7.2(b). This
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Figure 7.3: Average number of GTP-tubulin
dimers per protofilament 〈NGTP〉 as a function
of ctub.

increase in 〈Nisl〉 for larger ctub is a direct consequence of the greater number of GTP-tubulin
dimers in the microtubule when ctub is increased and kh is kept the same.

We repeated the same analysis for mechanical hydrolysis and found the number of GTP-islands
Nisl to still follow a Gaussian distribution as shown in the right column of Figure 7.4. The
distribution of the GTP-island lengths Lisl, however, does not generally match (7.1) anymore
due to the non-constant hydrolysis rate in the simulations while a constant hydrolysis was
used to calculate (7.1). Compared to the GTP-island lengths when using a constant hydrolysis
shown in Figure 7.1, the GTP-islands with mechanical hydrolysis are shorter. The GTP-islands
being shorter is already visible in Figure 7.4 but becomes even more evident when comparing
the average GTP-island length in Figure 7.5(a) with Figure 7.2(a). We observe the same small
peak around Lisl = 10 as for constant hydrolysis rates, though the peak is more pronounced for
mechanical hydrolysis due to the overall smaller island lengths. The reason for shorter GTP-
islands was already mentioned in section 6.2: the tendency of GTP-islands being hydrolyzed
from the interior, which we called an “anti-vectorial hydrolysis mechanism”, making it more
likely that a GTP-island is split in half than the island shrinking by one GTP-tubulin dimer
from its borders. As a consequence of this anti-vectorial hydrolysis mechanism, longer GTP-
islands are suppressed. Additionally, Figure 7.5(a) shows that for growing microtubules, the
average GTP-islands length becomes 〈Lisl〉 ' 1. The persistence of such remaining individual
GTP-tubulin dimers in the GDP-body was implicitly already foreshadowed in Figure 6.6(b),
where we showed the bending angles of tubulin monomers in a protofilament in which all
but one tubulin dimers were hydrolyzed. The effect of an individual GTP-tubulin dimer was
that this tubulin dimer bends inward resulting in a decrease of the hydrolysis rate making
such individual GTP-tubulin dimers more unlikely to hydrolyze. As a consequence of smaller
GTP-islands, there are now more GTP-islands, see Figure 7.5(b), than for a constant hydrolysis
rate (see Figure 7.2(b)).

96 Microtubule Properties



(a) k0h = 1 s−1 (b) k0h = 1 s−1

(c) k0h = 2 s−1 (d) k0h = 2 s−1

(e) k0h = 3 s−1 (f) k0h = 3 s−1

(g) k0h = 4 s−1 (h) k0h = 4 s−1

(i) k0h = 5 s−1 (j) k0h = 5 s−1

Figure 7.4: Distribution of the GTP-islands lengths Lisl (left column, with black lines showing
(7.1)) and the number of GTP-islands per protofilament Nisl (right column, with fits via (7.4)) for
different free GTP-tubulin dimer concentrations ctub and different base hydrolysis rates k0h.
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(a) Average length of GTP-islands 〈Lisl〉 as a func-
tion of ctub.

(b) Average number of GTP-islands per protofila-
ment 〈Nisl〉 as a function of ctub.

Figure 7.5: The average length of GTP-islands 〈Lisl〉 and the average number of GTP-islands per
protofilament 〈Nisl〉 as a function of the free GTP-tubulin dimer concentration ctub for different
base hydrolysis rates k0h from the data in Figure 7.4.
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7.2 GTP-Cap Length

In section 5.3, we have already considered the GTP-cap length when discussing the influence of
the hydrolysis rate kh on the growth velocity vgr. In this section, we will now show that the
previously mentioned dependence of the average GTP-cap length 〈Ncap〉 on kh and on ctub is
expected.

While discussing a one-dimensional actin filament model, which is equivalent to a one-dimensional
microtubule model for the discussion in this section, Li et al.[212] found the following probability
distribution for ATP-caps (in our case: GTP-caps) of length Ncap for fast growth1 using a
master equation approach similar to Antal et al.[88,89]:

p(Ncap) '
Ncapkh
kgr

exp

(
−
khN

2
cap

2kgr

)
, (7.5)

where kgr (in units of s−1) is the growth rate, which relates to the growth velocity vgr (given in
units of µm min−1) via

kgr =
125vgr
60

min
µm s

. (7.6)

From (7.5), the average GTP-cap length follows as[212]

〈Ncap〉 '

√
πkgr
2kh

. (7.7)

The upper row of Figure 7.6 shows the distribution of the GTP-cap lengths for constant
hydrolysis rates and the expected distributions according to (7.5) with the growth rates kgr
calculated from the growth velocities vgr(ctub) in Figure 5.3. We find relatively good agreement
between the prediction (7.5) of the one-dimensional and the data of our three-dimensional
model for higher values of ctub. As expected, however, the deviations between prediction and
data grow as ctub decreases and/or kh increases as in both cases, the assumption of fast growth
becomes less valid until the microtubules do not even grow anymore. Additional deviations
arise for smaller GTP-cap lengths due to newly polymerized GTP-tubulin dimers not being
able to hydrolyze directly as explained in subsection 2.3.3 making smaller GTP-caps more likely.
In Figure G.1, we show that by using the general form of (7.5) and adding a “shift parameter”
(Ncap → Ncap + b), the data can be reproduced better by such fit functions. We also find
that for ctub > ccrit, the average GTP-cap length 〈Ncap〉 shown in Figure 7.7(a) matches the
expectation (7.7).

The GTP-cap length distribution for mechanical hydrolysis is shown in the lower row of
Figure 7.6. For mechanical hydrolysis, (7.5) does not fit anymore due to the increased probability
for cap-less protofilaments or GTP-caps only consisting of a single tubulin dimer. This finding is
consistent with the results in section 6.2, where we found a higher probability for GTP-tubulin
dimers at the tip being hydrolyzed.

1Li et al.[212] considered different ATP-hydrolysis rates depending on the neighbor of the relevant monomer
via the parameter ρc. If there is no influence of the neighbor’s hydrolysis state, as it is the case for us when
using a constant hydrolysis rate kh, ρc = 1.
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(a) kh = 0.1 s−1 (b) kh = 0.2 s−1 (c) kh = 0.3 s−1

(d) k0h = 1.0 s−1 (e) k0h = 1.5 s−1 (f) k0h = 2.0 s−1

Figure 7.6: The GTP-cap length distribution p(Ncap) for different constant hydrolysis rates kh
(upper row) and different base hydrolysis rates k0h (lower row) and different free GTP-tubulin dimer
concentrations ctub. The lines are the expected results according to (7.5).

In Figure 6.15(a), we have shown the growth velocity as a function of the free GTP-tubulin
dimer distribution vgr(ctub). In contrast to a constant hydrolysis rate kh, there is no clear
fixed hydrolysis rate we can use in (7.5) and (7.7), in particular because we have seen in
Figure 6.15(b) that 〈kh〉 depends on ctub. For the average GTP-cap length data in Figure 7.7(b)
for mechanical hydrolysis, however, there is still a square root-like dependence on ctub if
we ignore the data points with ctub < ccrit. By using kh as a fit parameter and using the
known vgr(ctub) relation to calculate the growth rate kgr, (7.7) still fits the data, as shown in
Figure 7.7(b). As already mentioned, 〈kh〉 is not independent of ctub, but if, nevertheless, we
average the rates of actual hydrolysis events over ctub and compare them to the fitted values
used for the lines in Figure 7.7(b), we find there to be only a systematic shift manifested in
different y-intercepts of the fit lines but almost identical slopes that only deviate about 3 %
from each other.

100 Microtubule Properties



(a) Constant hydrolysis rate with expected results
via (7.7) as lines.

(b) Mechanical hydrolysis with fits using kh in (7.7)
as a fit parameter.

Figure 7.7: Average GTP-cap length 〈Ncap〉 as a function of the free GTP-tubulin dimer concentra-
tion ctub for different constant hydrolysis rates kh and different base hydrolysis rates k0h (mechanical
hydrolysis).

Figure 7.8: Comparison of the average hy-
drolysis rate 〈kh〉 as a function of the base
hydrolysis rate k0h obtained from averag-
ing the rates of actually executed hydroly-
sis events and from the fits shown in Fig-
ure 7.7(b).
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7.3 Porous GTP-Cap Length and GTP-Tubulin Dimer
Distribution

The porous GTP-cap length Npcap gives an indication of the extent that GTP-tubulin dimers
remain unhydrolyzed in the GDP-dominated body of a microtubule. If Npcap ' Ncap, the
GTP-tubulin dimers are concentrated at the microtubule plus end, while for Npcap � Ncap,
there are GTP-tubulin dimers far from the GTP-cap and thus also far from the microtubule
plus end.

In Figure 6.8(a), we have seen that, at least for ctub > ccrit, the probability to find a GTP-tubulin
dimer at a certain distance from the tip follows an exponential distribution for a constant
hydrolysis rate and to follow at least an exponential distribution in the body of the microtubule
for mechanical hydrolysis (see Figure 6.8(b)). If we consider a protofilament with GTP-tubulin
dimers at positions {∆dGTP

tip (i)}, then the length of the porous GTP-cap is, by definition,

Npcap = max
i

∆dGTP
tip (i) + 1, (7.8)

i.e., the porous GTP-cap length is the extreme value of the GTP-tubulin dimer positions (plus
one, which is due to ∆dGTP

tip = 0 referencing the terminal tubulin dimer, which would result in
Npcap = 1 if it was the only GTP-tubulin dimer in the protofilament). Hence, the distribution
of the porous GTP-cap lengths is a so-called extreme value distribution. As the ∆dtip values are
distributed exponentially, the expectation is that Npcap follows an extreme value distribution
of type 1, also called the Gumbel distribution[213,214]:

g(x) =
1

σ
exp

[
−x− µ

σ
− exp

(
−x− µ

σ

)]
(7.9)

with σ > 0. In contrast to the Gaussian distribution in which µ denotes the expected value of
the distribution, the expected value of the Gumbel distribution (7.9) is

〈x〉 = µ+ γσ (7.10)

with the Euler–Mascheroni constant γ ' 0.57722.[213,214]

If N random number are drawn from an exponential distribution

p(x) = λ exp (−λx) (7.11)

then the parameters of the Gumbel distribution (7.9) are[213,214]

σ =
1

λ
, (7.12)

µ =
1

λ
lnN (7.13)

changing (7.9) to:

g(x) = λN exp
[
−λx−N exp (−λx)

]
. (7.14)
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It must be noted that the Gumbel distribution is not an exact result but only the asymptotic
distribution. The exact extreme value distribution can be calculated as follows[215]: For a given
probability density function p(x), the probability to draw a random number from p(x) to be
less than or equal to X is given by the associated cumulative distribution function

Prob(x ≤ X) = q(X) =

∫ X

−∞
dxp(x) (7.15)

so that

p(x) =
dq
dx

. (7.16)

The probability that N numbers xi from p(x) are less than or equal to X is then given by

Prob(∀xi ≤ X) =
[
Prob(xi ≤ X)

]N
=
[
q(X)

]N ≡ Q(X). (7.17)

The matching probability density function follows from (7.16) as

P (x) =
dQ
dx

= N
[
q(x)

]N−1 dq
dx

= Np(x)
[
q(x)

]N−1
. (7.18)

The cumulative distribution function of the exponential function (7.11) is

q(x) = 1− exp (−λx) (7.19)

so that P (x) for the exponential distribution is

P (x) = Nλ exp (−λx)
[
1− exp (−λx)

]N−1 (7.20)

= Nλ exp
(
−λx+ (N − 1) ln

[
1− exp (−λx)

])
. (7.21)

For large N so that N ' N − 1 and for small values λx so that the logarithm in (7.21) can be
replaced by the first term of its Taylor expansion, (7.21) becomes

P (x) ' Nλ exp
[
−λx−N exp (−λx)

]
, (7.22)

which is exactly the Gumbel distribution (7.14).

For illustration purposes, we calculated 100 000 maxima of distinct sets of N exponentially
distributed numbers for different values of N and λ and compared the distribution of these
maxima with the Gumbel distribution (7.14). The generated data and the matching Gumbel
distributions are shown in Figure 7.9. The data in Figure 7.9 shows that the Gumbel distribution
(7.14) fits the data very well except for N = 10 for which there are small deviations at smaller
values of x.

We now have to identify the observable/parameter in our model that matches the λ parameter
from which the exponentially distributed numbers are drawn and the other observable/parameter
in our model that matches the number of exponentially distributed numbers N that are drawn.
From (7.8), we see that the positions of the GTP-tubulin dimers in a protofilament are the
relevant quantities. As there are NGTP GTP-tubulin dimers in a protofilament, we can identify
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(a) λ = 1 (b) λ = 0.1 (c) λ = 0.01

Figure 7.9: Comparison of the distribution of the 100 000 maximum values from sets of exponentially
distributed random numbers and the corresponding Gumbel distribution (7.14) and the exact
distribution (7.21) (black dashed lines) with different numbers N of generated random numbers
per set and different values of λ.

N = NGTP. At the beginning of the section, we have already mentioned that the GTP-tubulin
dimer positions are distributed exponentially, i.e.,

pGTP(∆dtip) = λ exp
(
−λ∆dtip

)
(7.23)

so that we now also know the origin of λ. In the context of how mechanical hydrolysis influence
the distribution of GTP-tubulin dimers, we have already shown the distribution of pGTP(∆dtip)
for one value kh in Figure 6.8(a). The remaining distributions can be found in Figure G.2
and the associated values of λ in Table G.1. We have to emphasize again here that the
exponential distribution is only expected for growing microtubules so that for parameter sets
for which ctub < ccrit, i.e., for which microtubules do not grow, a non-exponential distribution
is expected.

As we already have identified N = NGTP, we have to group all of the porous GTP-cap lengths
by the current number of GTP-tubulin dimers in the relevant protofilament as NGTP changes
over time. Otherwise, we get the distribution of porous GTP-cap lengths averaged over all
NGTP values. Additionally, in the case of growing microtubules, it will take some time before
both, the porous GTP-cap length Npcap and the number of GTP-tubulin dimers NGTP, will
reach a steady-state value (or, to be more precise, fluctuate around a steady-state value), as
shown in Figure 7.10. Considering the pre-steady-state values would result in an increased
probability for smaller Npcap values. As a consequence for the following analysis of the porous
GTP-cap length distribution, we ignore the first data sets until Npcap reaches its steady-state
value.

7.3.1 Constant Hydrolysis Rate

Figure 7.11 shows the distribution of the porous GTP-cap length NGTP for some parameter sets.
For each parameter set of kh and ctub, three values of NGTP were chosen so that the smallest
and largest value is shown for which sufficient data exists. While all data sets have the form of
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(a) Porous GTP-cap length Npcap as a function of
time tsim.

(b) Number of GTP-tubulin dimers per protofila-
ment NGTP as a function of time tsim.

Figure 7.10: The porous GTP-cap length Npcap and the number of GTP-tubulin dimers per
protofilament NGTP take some time until they fluctuate around a steady-state value. The shown
data is for three exemplary simulations with kh = 0.1 s−1 and different values of ctub.

Gumbel distributions and the deviations between the Gumbel distribution (7.14) and the exact
distribution (7.21) are relatively small (compare the solid colored lines and the dashed black
lines in Figure 7.11), the expected distributions only sometimes match the actual data.

To investigate the origin of these deviations, we first considered correlations. For the examples
in Figure 7.9, we have determined the maximum of 100 000 independent sets of exponentially
distributed numbers. For our microtubules, the individual GTP-tubulin dimer distributions
of the simulation are inherently not independent of each other as the GTP-tubulin dimer
distribution at iteration i directly follows from the GTP-tubulin dimer distribution at iteration
i− 1. (In the actual simulation, we only logged observables every 20 iterations to keep the file
sizes smaller, but after 20 iterations, the GTP-tubulin dimer distribution generally does not
change drastically.) To avoid any other potential underlying influence affecting our microtubule
data, we return to drawing random number from an exponential distribution directly like we
did for Figure 7.9. Now, however, after the first set of N random numbers is draw, a random
subset of M of these numbers is kept and only N −M new random numbers are drawn. Using
the same number parameters as in Figure 7.9 and choosing different rations M/N , the data in
Figure 7.12 shows that increasing M “worsens” the data in the sense that there are greater
fluctuations around the expected Gumbel distributions, but there is no shift of the peak of the
distributions. These results indicate that correlations are not responsible for the deviations in
Figure 7.11 between the data and the expected distributions.

Another possible explanation for the deviations could lie in the expected distributions themselves.
While the value of N = NGTP is fixed, we determined the value of λ from the exponential decay
of the GTP-tubulin dimer distribution as shown in Figure G.2. Instead of using the pGTP(∆dtip)
data, determining λ by fitting (7.23) and then using this value of λ as the parameter value
for the expected extreme value distribution, we can also use the {(∆dtip, pGTP)} data as a
discrete probability distribution. We can draw random numbers from this discrete probability

Porous GTP-Cap Length and GTP-Tubulin Dimer Distribution 105



(a) ctub = 10 µM, kh = 0.10 s−1 (b) ctub = 13 µM, kh = 0.10 s−1 (c) ctub = 16 µM, kh = 0.10 s−1

(d) ctub = 10 µM, kh = 0.15 s−1 (e) ctub = 13 µM, kh = 0.15 s−1 (f) ctub = 16 µM, kh = 0.15 s−1

(g) ctub = 10 µM, kh = 0.20 s−1 (h) ctub = 13 µM, kh = 0.20 s−1 (i) ctub = 16 µM, kh = 0.20 s−1

(j) ctub = 10 µM, kh = 0.25 s−1 (k) ctub = 13 µM, kh = 0.25 s−1 (l) ctub = 16 µM, kh = 0.25 s−1

Figure 7.11: Distribution of the porous GTP-cap lengths Npcap for different free GTP-tubulin dimer
concentrations ctub, hydrolysis rates kh, and numbers of GTP-tubulin dimers per protofilaments
NGTP, the expected Gumbel distributions (7.14), and the exact distribution (7.21) (black dashed
lines).
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(a) λ = 0.1, M/N = 0.2 (b) λ = 0.01, M/N = 0.2 (c) λ = 0.1, M/N = 0.5

(d) λ = 0.01, M/N = 0.5 (e) λ = 0.1, M/N = 0.9 (f) λ = 0.01, M/N = 0.9

Figure 7.12: Comparison of the distribution of the 100 000 maximum values from sets of exponen-
tially distributed random numbers and the corresponding Gumbel distribution (7.14) with different
numbers N of generated random numbers per set, different numbers M of randomly kept numbers
between sets, and different values of λ.

(a) ctub = 10 µM (b) ctub = 13 µM (c) ctub = 16 µM

Figure 7.13: Comparison of the distribution of the 100 000 maximum values from sets of random
numbers distributed according the to measured GTP-tubulin dimer distribution in Figure G.2(c)
for kh = 0.20 s−1 and the corresponding Gumbel distribution (7.14) with λ from Table G.1, i.e.,
from the exponential fits to pGTP(∆dtip).

distribution instead of the fitted exponential distribution and then compare the distribution of
the maxima of sets of such random numbers with the expected Gumbel distribution. The data
in Figure 7.13 shows some discrepancies between the data and the expected Gumbel distribution,
in particular for ctub = 10 µM in Figure 7.13(a). They are, however, not as pronounced as our
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Figure 7.14: λ as a function of the number
of GTP-tubulin dimers NGTP in a protofil-
ament by fitting some of the porous GTP-
cap distributions in Figure 7.11 with Gum-
bel distributions (7.14) and using λ as the
only fit parameter.

microtubule data in Figure 7.11 and thus also not explaining the deviations.

While our data for the porous GTP-cap length distributions shown in Figure 7.11 does not
match the expected Gumbel distributions, the overall shape of the data still resembles Gumbel
distributions. We use this fact to now fit Gumbel distributions to the data using λ as a
fit parameter. If the data actually matched the expected Gumbel distribution, we expect λ
to be independent of NGTP. The data in Figure 7.14 confirms the deviations between data
and expected distribution in Figure 7.11 because λ(NGTP) 6= const. As the value of λ in
the Gumbel distribution (7.14) has the same value as in the exponential distribution of the
GTP-tubulin dimers pGTP(∆dtip), this finding implies that the overall exponential decays of
pGTP(∆dtip) shown in Figure G.2 are the result of averaging individual distinct distributions
pGTP(∆dtip, NGTP) with different values of λ(NGTP).

To check whether this hypothesis is actually true, we determined the distributions of GTP-
tubulin dimers separately for the different numbers of GTP-tubulin dimers per protofilament
NGTP, i.e., pGTP(∆dtip, NGTP). For some of the parameter combinations whose porous GTP-
cap length distributions p(Npcap) are shown in Figure 7.11, Figure 7.15 compares the individual
distributions pGTP(∆dtip, NGTP) with the distribution of GTP-tubulin dimers averaged over
NGTP. The first observation is the distinctness of the data for different values of NGTP. Fitting
each pGTP(∆dtip, NGTP) with an exponential distribution would result in different values of
λ then, underpinning our previous hypothesis. Secondly, the data in Figure 7.15 then also
explains why there is the best agreement between data and expected Gumbel distribution for
the intermediate values of NGTP per plot shown in Figure 7.11: For these values of NGTP,
the average distribution pGTP(∆dtip) and the distribution pGTP(∆dtip, NGTP) are quite close.
Lastly, however, we only find the intermediate values of NGTP to follow exponential distributions,
while the two other curves deviate, in particular for small values of ∆dtip.

To check whether these differences in GTP-tubulin dimer distributions for different values of
NGTP explain the deviations in Figure 7.11, we again draw sets of random numbers from the
discrete distributions2 shown in Figure 7.15 and determine their maxima. Then, we fit Gumbel

2As shown in Figure 7.14, the pGTP(∆dtip, NGTP) distributions are quite close to exponential distributions in
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(a) kh = 0.10 s−1, ctub = 10 µM (b) kh = 0.15 s−1, ctub = 10 µM

(c) kh = 0.20 s−1, ctub = 13 µM (d) kh = 0.25 s−1, ctub = 16 µM

Figure 7.15: Probability pGTP to find a GTP-tubulin dimer at the distance ∆dtip from the tip of
its protofilament for different hydrolysis rates kh, free GTP-tubulin dimer concentrations ctub, and
different numbers of GTP-tubulin dimers in the protofilament NGTP. The “average” data refers to
the data shown in Figure G.2, where the data was not split up by the value of NGTP, i.e., these
results were implicitly averaged over NGTP. (To highlight the differences between the different
values of NGTP, the ∆dtip-axis was cut off compared to Figure G.2.)

distributions to the distribution data of these maxima using λ as a fit parameter and compare
these values of λ with the ones we get from fitting the porous GTP-cap distribution data (see
Figure 7.14). Figure 7.16 shows that the values of λ obtained by these two approaches match,
thus finally explaining the deviations in Figure 7.11.

Having found the reason for the deviations in Figure 7.11 in the dependence of the GTP-tubulin
dimer distribution pGTP(∆dtip) on the number of GTP-tubulin dimers in the protofilament
NGTP, as shown in Figure 7.15, we have to turn to this finding now. While we have previously
compared our porous GTP-cap length data to determining the maximum of sets of exponentially
distributed random numbers, this comparison can be misleading. The porous GTP-cap, i.e.,

their tail but deviate for small values of ∆dtip from exponential distributions so that first fitting an exponential
distribution to the data and then drawing random numbers from these fitted distributions would cause additional
deviations.
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Figure 7.16: Comparison of the values
of λ by fitting Gumbel distributions to
the distribution of 100 000 maxima of
sets of random numbers drawn from the
discrete GTP-tubulin dimer distributions
pGTP(∆dtip, NGTP) (data points) with the
values of λ when fitting Gumbel distribu-
tions to the distribution of porous GTP-cap
lengths p(Npcap, NGTP) like in Figure 7.14
(lines).

the distribution of GTP-tubulin dimers in a protofilament, is not the result of randomly placing
GTP-tubulin dimers in a protofilament according to an exponential distribution. Instead, it
is the result of the interplay between the polymerization of new GTP-tubulin dimers and the
hydrolysis of GTP-tubulin dimers to GDP-tubulin dimers3. As a consequence, fluctuations can
occur where there are more GTP-tubulin dimers at the tip, for example in the form of a longer
GTP-cap, or where there are less GTP-tubulin dimers at the tip. The probability of there being
more GTP-tubulin dimers at the tip than on average is, of course, higher if there is a greater
number GTP-tubulin dimers present in a protofilament. In practice, it is easy to illustrate
these two cases starting from a “perfect” protofilament whose NGTP GTP-tubulin dimer follow
an exponential distribution without deviations. In a situation where randomly multiple new
GTP-tubulin dimers attach to the protofilament without any existing GTP-tubulin dimers
hydrolyzing, the GTP-tubulin dimers are no longer distributed exponentially, but there is a
bias for more GTP-tubulin dimers at the tip. In this situation, there are now more than NGTP
GTP-tubulin dimers present in the protofilament. The inverse scenario is the bias for less
GTP-tubulin dimers at the tip, for example if randomly multiple GTP-tubulin dimers at the
tip of the protofilament detach. In this scenario, however, there is still a bias for the terminal
tubulin dimer to be a GTP-tubulin dimer because of new GTP-tubulin dimers not being
hydrolyzable (see subsection 2.3.3). For this case, there are now less than NGTP GTP-tubulin
dimers in the protofilament. To check if this link between the number of GTP-tubulin dimers
at the tip and the total number of GTP-tubulin dimers in the protofilament explains the data
shown in Figure 7.15, we artificially generated GTP-tubulin dimer positions. The starting point
is an exponential distribution to which we either add a bias for the last tubulin dimers in the
protofilament to be GTP-tubulin dimers or by using a steeper exponential distribution for a
shorter GTP-cap in a subset of samples4. Figure 7.17 shows that these two cases do indeed

3Only mentioning these two processes is a simplification for the discussion here. In reality, the depolymerization
of GTP-tubulin dimers, which could be combined with their polymerization into a “net polymerization process”,
and the depolymerization of GDP-tubulin dimers are also relevant, of course.

4For the data with a bias for long GTP-caps, we enforced that the last 10 tubulin dimers to be GTP-tubulin
dimers in 2/3 of the configurations generated. To generate a bias for shorted GTP-caps, we used an exponential
distribution with λ = 0.09 in 2/5 of the cases instead of the default unbiased λ = 0.03. All of these values were
chosen arbitrarily to generate a similar plot to Figure 7.15.
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Figure 7.17: Comparison between an
unbiased/perfectly exponential GTP-
tubulin dimer distribution, a GTP-
tubulin dimer distribution favoring longer
caps, and a GTP-tubulin dimer distribu-
tion favoring shorter caps.

result in similar non-exponential distributions as in Figure 7.15.

In Figure 7.18, we present the overall porous GTP-cap length distributions p(Npcap) not split up
by the number of GTP-tubulin dimers NGTP. These distributions are still Gumbel distributions
with NGTP close to the average number of GTP-tubulin dimers in a protofilament and λ close to
the average λ when fitting the overall GTP-tubulin dimers distributions, as shown in Figure 7.19.

Lastly, before turning to the porous GTP-cap lengths when mechanical hydrolysis is used,
we consider the average porous GTP-cap length 〈Npcap〉 at different free GTP-tubulin dimer
concentrations and for different hydrolysis rates kh, as shown in Figure 7.20. In Figure 7.20(a), we
find 〈Npcap〉(kh) to decrease exponentially with kh and Figure 7.20(b) shows that 〈Npcap〉(ctub)
increases linearly with ctub for ctub > ccrit. From (7.10), (7.12), and (7.13) the average porous
GTP-cap length follows as:

〈Npcap〉 '
1

〈λ〉
(
ln〈NGTP〉+ γ

)
. (7.24)

Using the data from Figure 7.20, we can compare 〈Npcap〉 calculated via (7.24) and calculated
with the actual simulation data in Figure 7.20. Figure 7.21 shows good agreement between the
data calculated via (7.24) and directly measured in the simulation showing that the dependencies
in Figure 7.20 are expected.
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(a) kh = 0.10 s−1 (b) kh = 0.15 s−1

(c) kh = 0.20 s−1 (d) kh = 0.25 s−1

Figure 7.18: Distribution of the porous GTP-cap lengths Npcap for different free GTP-tubulin
dimer concentrations ctub and hydrolysis rates kh averaged over the number of GTP-tubulin dimers
per protofilaments NGTP and fitted Gumbel distributions using λ and NGTP as fit parameters
(black dashed lines).
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(a) Number of GTP-tubulin dimers per protofila-
ment.

(b) Exponential decay parameter of GTP-tubulin
dimer distribution.

Figure 7.19: Comparison of the values of the two parameters NGTP and λ of the Gumbel dis-
tributions shown in Figure 7.18 and the average values obtained from the GTP-island data
(〈NGTP〉 ' 〈Nisl〉〈Lisl〉) and the exponential GTP-tubulin dimer distribution fits (black marks, see
Table G.1).

(a) Average porous GTP-cap length 〈Npcap〉 as a
function of the hydrolysis rate kh.

(b) Average porous GTP-cap length 〈Npcap〉 as a
function of the free GTP-tubulin dimer concentra-
tions ctub.

Figure 7.20: The average porous GTP-cap length 〈Npcap〉 decreases with an increasing hydrolysis
rate kh and increases with increasing free GTP-tubulin dimer concentrations ctub.
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Figure 7.21: Comparison between the
average porous GTP-cap length 〈Npcap〉
as a function of the free GTP-tubulin
dimer concentration ctub calculated via
(7.24) using the data from Figure 7.20
and the 〈Npcap〉 values directly measured
in the simulations (black marks, see Fig-
ure 7.20(b)).
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(a) ctub = 10 µM, k0h = 1.0 s−1 (b) ctub = 13 µM, k0h = 1.0 s−1 (c) ctub = 15 µM, k0h = 1.0 s−1

(d) ctub = 10 µM, k0h = 1.5 s−1 (e) ctub = 13 µM, k0h = 1.5 s−1 (f) ctub = 15 µM, k0h = 1.5 s−1

(g) ctub = 10 µM, k0h = 2.0 s−1 (h) ctub = 13 µM, k0h = 2.0 s−1 (i) ctub = 15 µM, k0h = 2.0 s−1

Figure 7.22: Distribution of the porous GTP-cap lengths Npcap for different free GTP-tubulin
dimer concentrations ctub, base hydrolysis rates k0h, and numbers of GTP-tubulin dimers per
protofilaments NGTP and fitted Gumbel distributions (7.14) using λ as a fit parameter.

7.3.2 Mechanical Hydrolysis

With the knowledge gained from the previous section, where we only considered a constant
hydrolysis rate, we now start with the distribution of the porous GTP-cap length p(Npcap) and
fit Gumbel distributions using λ as the fit parameter. The data in Figure 7.22 shows again that
for mechanical hydrolysis, porous GTP-cap lengths become much longer. For the most part,
in particular for higher values of ctub, the Gumbel distribution fits match the data quite well,
even tough the data becomes noisier the higher ctub is. It is important to note, however, that
for mechanical hydrolysis, deviations from the Gumbel distribution are expected as there is no
longer an exponential distribution of GTP-tubulin dimers even if the number of GTP-tubulin
dimers in the protofilament is not considered, as previously shown in Figure 6.8(b).

Figure 7.23 shows the GTP-tubulin dimer distribution for some of the parameter combinations
from Figure 7.22. Here, we also explicitly see the non-exponential distribution if the distributions
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(a) kh = 1.0 s−1, ctub = 10 µM (b) kh = 1.5 s−1, ctub = 10 µM

(c) kh = 2.0 s−1, ctub = 13 µM (d) kh = 2.0 s−1, ctub = 15 µM

Figure 7.23: Probability pGTP to find a GTP-tubulin dimer at the distance ∆dtip from the tip of
its protofilament for different base hydrolysis rates k0h, free GTP-tubulin dimer concentrations ctub,
and different numbers of GTP-tubulin dimers in the protofilament NGTP.

are split up by the number of GTP-tubulin dimers NGTP in the protofilament. Just like for
constant hydrolysis rates in Figure 7.15, we again find the same splitting of the data at the
microtubule tip, as highlighted by the insets in Figure 7.23. For completeness, Figure 7.24
shows the porous GTP-cap length distributions not separated by NGTP and we generally find
good agreement with Gumbel distributions again.

Lastly, Figure 7.25 shows the average porous GTP-cap length 〈Npcap〉 for different free GTP-
tubulin dimer concentrations ctub and different base hydrolysis rates k0h. Figure 7.25(a) shows
that for sufficiently large free GTP-tubulin dimer concentrations ctub, the porous GTP-cap
length follows an exponential decrease with an increasing base hydrolysis rate k0h. The fact
that this exponential relation only exists for large ctub and in some other instances only for a
subset of smaller k0h values was explained by the results in section 6.3, as only in these cases the
microtubules are able to grow. Above the same threshold, the porous GTP-cap length increases
linearly with ctub, as shown in Figure 7.25(b). These quantitative dependencies are similar to
the ones for constant hydrolysis rates, as previously shown in Figure 7.21.
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(a) k0h = 1.0 s−1 (b) k0h = 1.5 s−1

(c) k0h = 2.0 s−1 (d) k0h = 2.5 s−1

Figure 7.24: Distribution of the porous GTP-cap lengths Npcap for different free GTP-tubulin dimer
concentrations ctub and base hydrolysis rates k0h averaged over the number of GTP-tubulin dimers
per protofilaments NGTP and fitted Gumbel distributions using λ and NGTP as fit parameters
(black dashed lines).
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(a) Average porous GTP-cap length 〈Npcap〉 as a
function of the hydrolysis base rate k0h.

(b) Average porous GTP-cap length 〈Npcap〉 as a
function of the free GTP-tubulin dimer concentra-
tions ctub.

Figure 7.25: The average porous GTP-cap length 〈Npcap〉 decreases with an increasing base
hydrolysis rate k0h and increases with increasing free GTP-tubulin dimer concentrations ctub.
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(a) kh = 0.1 s−1 (b) kh = 0.2 s−1 (c) kh = 0.3 s−1

(d) k0h = 1.0 s−1 (e) k0h = 2.0 s−1 (f) k0h = 3.0 s−1

Figure 7.26: The tip roughness distribution p(τrough) for different constant hydrolysis rates kh
(upper row) and different base hydrolysis rates k0h (lower row) and different free GTP-tubulin dimer
concentrations ctub.

7.4 Tip Roughness

To analyze the structure of the microtubule tip, we consider the tip roughness τrough, which we
define as the difference in the number of tubulin dimers in neighboring protofilaments:

τrough(p) = dmax(p)− dmax(p+ 1). (7.25)

The first aspect to note with regard to the tip roughness (7.25) is that the average tip roughness
〈τrough〉 is meaningless as it is 〈τrough〉 = 0 by definition. This property of τrough also manifests
itself in the symmetrical distribution of τrough values, as shown in Figure 7.26. The distributions
in Figure 7.26 can be split into two groups: narrow distributions with small minimum and
maximum values of τrough that are less likely to be found and broader distributions. The values
of ctub resulting in broader distributions coincide with the concentrations that are below the
critical concentration ccrit, i.e., shrinking microtubules, as seen in Figure 5.1 and Figure 6.13.
This finding indicates a correlation between a higher tip roughness and catastrophes or shrinkage
and we will come back to this point in chapter 8.

As mentioned before, 〈τrough〉 = 0 by definition. Instead of the average value of τrough itself,
we can consider the average value of |τrough|, as shown in Figure 7.27. Here we see that on
average, the number of tubulin dimers in neighboring protofilaments is almost the same and
that there are only small differences. 〈|τrough|〉 also shows again that the tip is rougher for
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(a) Constant hydrolysis rates. (b) Mechanical hydrolysis.

Figure 7.27: Average of the absolute tip roughness values 〈|τrough|〉 as a function of the free
GTP-tubulin dimer concentration for different hydrolysis rates kh, different base hydrolysis rates
k0h, and different free GTP-tubulin dimer concentrations ctub.

shrinking microtubules (ctub < ccrit) than for growing microtubules (ctub > ccrit)5. For growing
microtubules, we find 〈|τrough|〉 to increase slowly with ctub. This increase is expected as a
higher ctub value results in a higher polymerization rate while the depolymerization rate stays
the same. As a consequence, the probability of finding tubulin dimers without lateral neighbors
increases. Having more “tapered” ends for higher free GTP-tubulin dimer concentrations is also
seen in experiments[108,120]. With regard to constant hydrolysis rates and mechanical hydrolysis,
there are only minimal differences like a slightly higher 〈|τrough|〉 value for growing microtubules
when using mechanical hydrolysis, as shown in Figure 7.27.

5The maximum of 〈|τrough|〉 being at ctub ' ccrit (see Figure 5.4) could be similar to the greater length
fluctuations in actin filaments around their critical concentration[216–218]. While ccrit is defined as the concentration
at which microtubules do not grow, in practice however, filaments are only not growing on average by alternating
between periods of growth and shrinkage resulting in no length change overall. Having such frequent switches
between growth and shrinkage then also explains greater length fluctuations, which in turn could result in a
rougher tip structure. In chapter 8, we will see that 〈|τrough|〉 can increase during catastrophes and rescues.
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(a) kh = 0.1 s−1 (b) kh = 0.2 s−1 (c) kh = 0.3 s−1

(d) k0h = 1.0 s−1 (e) k0h = 2.0 s−1 (f) k0h = 3.0 s−1

Figure 7.28: The crack length distribution p(Ncrack) for different constant hydrolysis rates kh
(upper row) and different base hydrolysis rates k0h (lower row) and different free GTP-tubulin dimer
concentrations ctub.

7.5 Crack Length

In subsection 2.3.2, we have explained the formation and rupture of lateral bonds. As there is
only one continuous stretch of lateral bonds between two protofilaments starting from the minus
end, there can exist a “crack” at the plus end, where additional lateral bonds could exist. We
describe this crack via its length Ncrack, which we define as the number of laterally neighboring
tubulin monomers that do not have a connecting lateral bond. If neighboring protofilaments
contain different numbers of tubulin dimers, the protruding tip of the longer protofilament does
not count for the crack length as the tubulin dimers in this protruding tip lack neighbors with
which they could form lateral bonds. In Figure 7.28, we find the probability of a crack with
length Ncrack to be decreasing exponentially with the crack length and to be mostly independent
of the free GTP-tubulin dimer concentration ctub, the hydrolysis mechanism, and the hydrolysis
rate kh or k0h.

From the distributions in Figure 7.28 (and additional distributions not explicitly shown), we
calculated the average crack lengths 〈Ncrack〉 as shown in Figure 7.29. We see “large” cracks
for small values of the free GTP-tubulin dimer concentration below the critical concentration,
ctub < ccrit, and an increase in the average crack length 〈Ncrack〉 with ctub for ctub > ccrit. This
increase with ctub has the same underlying reason as the increase in tip roughness shown in
Figure 7.27. The higher ctub, the higher is the probability of two tubulin dimers polymerizing
next to each other and not forming a lateral bond because the polymerization rate kon increases
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(a) Constant hydrolysis rates. (b) Mechanical hydrolysis.

Figure 7.29: Average crack length 〈Ncrack〉 as a function of the free GTP-tubulin dimer concentration
for different hydrolysis rates kh, different base hydrolysis rates k0h, and different free GTP-tubulin
dimer concentrations ctub.

with ctub, while the lateral bond formation rate kform stays the same. Overall, however, we only
find about every second terminal lateral bond not to be formed resulting in overall small cracks.
Compared to other simulations[113], where average crack lengths of 〈Ncrack〉 ' 4 are found6,
and from the existence of bent protofilaments for growing and shrinking microtubules[63], which
imply that there are no lateral bonds between them, our crack lengths appear to be too small.

6Li et al.[113] used the same basic crack length definition but count tubulin dimer lengths, which we converted
here to tubulin monomer lengths.
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(a) Before the instability appears. (b) Immediately after the instability appears and
how it persists and moves towards the plus end.

Figure 7.30: Bending angle ψ as a function of the tubulin monomer for protofilament p = 12 in an
artificial simulation with NGDP = 25, NGTP = 20, and klat = 1 kBT/nm2 in which the GTP-cap
is hydrolyzed systematically starting with tubulin dimer (1, 21) and ending with tubulin dimer
(13, 45). The legend entries indicate the relevant configuration numbers (equivalent to the number
of tubulin dimers that have already been hydrolyzed during the simulation). In configuration 51,
tubulin dimer (12, 28) was just hydrolyzed and in configuration 52, tubulin dimer (13, 28) was just
hydrolyzed.

7.6 Structural Instability of Microtubule Lattice

While investigating how hydrolysis affects the bending angles of neighboring tubulin dimers, we
prepared microtubules with a continuous cap and then systematically hydrolyzed the cap layer
by layer manually from the lowest layer to the last layer. To minimize these configurations,
we used unrestricted minimization, i.e., we considered all polar angles during minimization.
Figure 7.30(a) shows the bending angles of one protofilament after 51 hydrolysis events were
executed. The peak shown here is a manifestation of the interface between the GDP-body and
the GTP-cap that was already discussed in more detail in section 6.2.

As more and more of the original GTP-cap is hydrolyzed, the interface between the GDP-body
and the GTP-cap will move to the plus end of the microtubule as the GTP-cap shrinks. This
shift of the peak can be seen in Figure 7.30(b) (and the increase in the bending angle for
configuration 250 is a manifestation of the reduced lattice constraints at the microtubule tip
allowing tubulin monomers to bend further outward). The actual topic of this section, however,
are the additional non-vanishing bending angle values in the GDP-body, i.e., for 2(d− 1) + t
values smaller than the value of the peak. This “instability” emerges suddenly, as the first
configuration shown in Figure 7.30(b), is configuration 52, i.e., just one configuration after
the configuration shown in Figure 7.30(a) where no instability is visible. We note that the
instability in Figure 7.30(b) looks like one period of a wave that moves with the peak further to
the tip as more and more tubulin dimers are hydrolyzed and whose amplitude also diminishes.

As such deviations in the bending angle are an inherently mechanical phenomenon, we used
different values of the spring constant klat (and matching bending constants κ, see Appendix C)
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(a) Instability in front of the GDP/GTP-interface. (b) Instability behind the GDP/GTP-interface.

Figure 7.31: Bending angle ψ as a function of the tubulin monomer for protofilament p = 10 in an
artificial simulation with NGDP = 25, NGTP = 20, and klat = 100 kBT/nm2 in which the GTP-cap
is hydrolyzed systematically starting with tubulin dimer (1, 21) and ending with tubulin dimer
(13, 45). Between configuration 100 and configuration 101, the instability (marked by arrows) moves
from in front of the GDP/GTP-interface to behind the GDP/GTP-interface.

to check whether this is a persistent phenomenon. Figure 7.31 shows the bending angles for
another protofilament for klat = 100 kBT/nm2 instead of klat = 1 kBT/nm2. Here, we see that
the instability already exists in the original configuration but now within the GTP-cap (see
arrows in Figure 7.31(a)) and that the instability behaves as before. As the expected peak
moves closer to the microtubule tip, the instability also moves closer to the tip and its amplitude
decreases. At one point, however, in Figure 7.31 between configurations 100 and 101, the
instability is “reflected” back from the GTP-cap to the GDP-body (see arrows in Figure 7.31(b))
where it now also continues moving towards the tip with a decreasing amplitude.

We mentioned in the beginning of this section that we used unrestricted minimization for
the simulations in Figure 7.30 and Figure 7.31. In practice, however, when we encounter
configurations with a GDP-body and a GTP-cap, i.e., proper dynamics simulations as discussed
first in chapter 5, we will use restricted minimization as explained in section 3.3. In Figure 7.32(a),
we see that the issue in the GTP-cap still exists for a relatively long cap of NGTP = 20 but
we see no reflection back into the GDP-body as in Figure 7.31(b) because the majority of the
GDP-body is static as it is not considered for minimization anymore due to the cutoff. If
we, however, use a shorter cap resulting in a similar initial configuration used for our actual
full simulations in chapter 5, we see no equivalent instabilities in Figure 7.32(b) as marked
by arrows in Figure 7.32(a). We only see, compared to Figure 7.30(a), an asymmetry in the
negative dips before and after the expected peaks at the GDP/GTP interface.

Previously, vibration modes of whole microtubules using near-atomic MD simulations have
already been found[144] when researching the bending of microtubules. Kahraman et al.[219]

modeled the microtubule lattice as a mesh with different bending potentials and using Langevin
dynamics, they found individual tubulin dimers in a curved state, which they called either
“partial confoplex” or “full confoplex” depending on whether only some or all tubulin dimers
in a certain layer were curved. When considering whole microtubules, “confostacks” emerged
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(a) NGTP = 20 (b) NGTP = 10

Figure 7.32: Bending angle ψ as a function of the tubulin monomer for protofilament p = 7 in
an artificial simulation with NGDP = 25, klat = 100 kBT/nm2, and restricted minimization with
∆dcutoff = 10.

where multiple confoplexes cooperated and resulted in a larger scale deflection similar to the
previously mentioned vibration modes[144].

While the exact origin of the instability we observed here in our model is yet unknown, the
results by Kahraman et al.[219] might give an indication that it could be due to the mechanical
modeling. It is, however, important to note that in actual simulations, this phenomenon will
not be very relevant. Firstly, there is no such systematic hydrolysis of tubulin dimers as in the
manually controlled simulations here because we use random hydrolysis. Secondly, we start
with configurations similar to the one used in Figure 7.32(b) without the instability and as the
simulation progress, such artificially induced configurations will not occur. Nevertheless, in
future research, the origin of this instability could be investigated further.
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Analysis of Individual
Microtubule Trajectories 8
An advantage of simulations over actual experiments is that existing simulations can be rerun
to identify the point in the simulation where a catastrophe or a rescue is almost guaranteed
to occur. To determine the probability of a certain event to occur, we will use configurations
around the relevant events in the simulations as starting points for new simulations, similar to
Margolin et al.[112] For each each starting point, 20 new simulations with a maximum simulation
time of tmax = 1 min are run. Due to the stochastic nature of the microtubule simulation, each
of the 20 “reruns” will result a in different growth trajectory.

We do this analysis for two simulations with a constant hydrolysis rate in section 8.1 and
two simulations with mechanical hydrolysis in section 8.2. In addition to the analysis of the
trajectories for simulations with a constant rate, we will also introduce the principles employed
to analyze the trajectories in section 8.1 that will be reused in section 8.2 for mechanical
hydrolysis.

8.1 Constant Hydrolysis Rate

In Figure 5.1, we have seen that our simulations are able to generate microtubule trajectories
with catastrophes and rescues. Figure 8.1 shows two of these simulations in greater detail,
where two catastrophes (C) and one rescue (R) occur. Additionally, in both simulations, there
are dips (D) in which the growing phase is interrupted by a very short shrinkage phase (similar
to the “stutters” found by Mahserejian et al.[206] and “transient pauses” found by Kim et
al.[110]).

Figure 8.2 shows the trajectories of some of the rerun simulations around the catastrophe in
Figure 8.1(a) together with the length trajectory of the original microtubule. To classify whether
a rerun of a simulation follows the same path as the original simulation, different criteria could
be used with varying levels of difficulty to implement them. For the relevant analysis here, we
are only interested in whether the relevant event, for example a catastrophe, still occurred or
whether the simulation followed a different path. For the events in the insets of Figure 8.1, we
used the following criteria to determine whether the relevant event still happened:

• Dips in Figure 8.1(a) and Figure 8.1(b)

For the dips, the relevant question is whether the dip persists, i.e., whether no actual
catastrophe occurred. As a consequence, we demand that the microtubule is growing and
should not be significantly shorter at the end of the rerun simulation than the microtubule in
the original simulation at the same point in time. We chose 400 nm as the maximum length
difference by which the microtubule in the reran simulation was allowed to be shorter than
the microtubule in the original simulation. There is no cutoff criterion in case the microtubule
in the reran simulation is longer because in such a case, there is also no catastrophe fulfilling
our general criterion.
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(a) ctub = 8 µM and kh = 0.1 s−1

(b) ctub = 9 µM and kh = 0.2 s−1

Figure 8.1: Length LMT of two exemplary microtubules as a function of the simulation time tsim.
The insets show three types of events of interest: dip (D), catastrophe (C), and rescue (R). The
color coding of the curves in these insets is the probability that at the given point of the simulation,
reruns of the simulation starting at this point are going to follow a similar path. (More details on
this probability can be found in the main text.)
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(a) Configuration 990 000. (b) Configuration 1 000 000.

(c) Configuration 1 010 000. (d) Configuration 1 020 000.

Figure 8.2: Trajectories of the reran simulations of the original simulation shown in Figure 8.1(a)
using four different configurations around the catastrophe of the original simulation as starting
points. The configuration number refers to the number of events that have been executed in the
original simulation before the relevant configuration. The starting points of the rerun simulations
are marked by black squares on the original trajectory.

• Catastrophe in Figure 8.1(a)

For the catastrophe, the end time of the rerun simulation was only allowed to be 10 s later
than the original simulation, and the final microtubule length must be less than 200 nm.
These criteria ensure that the catastrophe actually happened around the same time as in
the original simulation.

• Catastrophe in Figure 8.1(b)

We cannot use the previous criterion for this catastrophe because there is a rescue in the
original simulation afterwards. Instead, we demand that 15 s after the start of the rerun
simulations (or 10 s if the reruns started after the catastrophe in the original simulation),
the new microtubules are no more than 400 nm longer than the original microtubules.

• Rescue in Figure 8.1(b)

For the rescue, the relevant question is whether the microtubule switched from shrinking to
growing. The easiest way to check this case is to check whether the reruns terminated due
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to the microtubule depolymerizing or due to the time constraint. From Figure 8.1(b), it is
obvious that if the microtubule simply continues depolymerizing completely, it would require
much less than the maximum simulation time of the reruns of 1 min making the simulation
time a viable quantity.

It must be noted that these criteria are not the most general criteria possible and do not cover
every possible scenario (for example, a rescue could have happened after the catastrophe in
Figure 8.1(b)), but these criteria proved sufficient for the results of the relevant reruns.

From the number of reruns that match the criteria above, we can calculate the fraction or
probability that the relevant event is going to happen. This probability is used as color coding in
the insets of Figure 8.1. For each event of interest, the configurations used as initial configuration
for the reruns were chosen so that a sufficient number of configurations before and after the
event are considered so that a total of 16 040 rerun simulations were performed for Figure 8.1(a)
and 20 060 rerun simulations for Figure 8.1(b). In the insets in Figure 8.1 for the catastrophes
and the rescue, we see that the probability to switch from growth to shrinkage and vice versa
changes within seconds. Figure 8.3 and Figure 8.4 show some two-dimensional representations
of the simulated microtubules during the catastrophes and rescues with enlarged versions of
the relevant insets from Figure 8.2. Appendix H contains the matching three-dimensional
representations for all of the two-dimensional configuration snapshots shown in this chapter.

To properly analyze catastrophes and rescues to deduce a microscopic mechanism for both,
we would have to repeat this probability analysis for many more catastrophes and rescues to
isolate the configurations for which catastrophes and rescues become unavoidable. Such an
analysis, however, was out of scope for now, but we can still highlight similarities between
the two catastrophes and the relevant configurations shown in Figure 8.3. We can see for
both catastrophes that it is not simply sufficient for the microtubule to stop growing for
a guaranteed catastrophe to happen, but it must also shrink by 50 nm to 100 nm initially
before the catastrophe becomes unavoidable. This short period of shrinkage happens at a
slower velocity that then becomes gradually faster until it reaches its final value with which
the microtubule then shrinks. Such a “continuous transition” from growth to shrinkage was
also found to be very common in vitro and was termed a “transitional catastrophe”[206] (as
opposed to “abrupt catastrophes” with sharp transitions between growth and shrinkage). One
common feature of the two exemplary catastrophes shown in Figure 8.1 is highlighted by the
configuration snapshots numbered “7” shown in Figure 8.3 in the form of a “nucleus” of three
to four neighboring protofilaments having lost their GTP-cap and starting to shrink.

Comparing the two dips in Figure 8.1(a) and Figure 8.1(b) reveals that the dip in Figure 8.1(b)
would better be classified as a catastrophe with a subsequent rescue as the microtubule reaches a
configuration from which it is very unlikely to be rescued. Compared to the dip in Figure 8.1(a),
where a catastrophe remained unlikely throughout, the microtubule in Figure 8.1(a) did shrink
the previously mentioned 50 nm to 100 nm until the catastrophe is almost ensured compared to
the short shrinkage of less than 50 nm in Figure 8.1(a).

Lastly, the rescue and the sample configurations shown in Figure 8.4 hint that the general
assumption of the reformation of a protective GTP-cap for a rescue to occur is correct. But
it also shows that it is appears to be necessary that a “shrinkage front”, i.e., neighboring
protofilaments that have shrunken more than the other protofilaments (what we called a
nucleus in the case of a catastrophe), must be “healed” by new stabilizing GTP-tubulin dimers
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(a) Catastrophe from Figure 8.1(a).

(b) Catastrophe from Figure 8.1(b).

Figure 8.3: Two-dimensional configuration snapshots around the catastrophes shown in Figure 8.1.
Three-dimensional configuration snapshots can be found in Figure H.1.
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Figure 8.4: Two-dimensional configuration snapshots around the rescue shown in Figure 8.1(b).
Three-dimensional configuration snapshots can be found in Figure H.2.

polymerizing onto the relevant protofilaments. The last point can be seen in the differences
between configurations “5” and “7” in Figure 8.4.

To formalize these observations from the configuration snapshots, we considered different
observables in Figure 8.5 around the catastrophes and rescue from Figure 8.1. The first
observation is the confirmation, that catastrophes become unavoidable once the GTP-cap
has almost completely vanished. The porous GTP-cap, on the other hand, still keeps on
vanishing once the catastrophe has occurred showing that individual GTP-tubulin dimers at
random positions in the GDP-body are insufficient to stop shrinkage. While we observe a
slight increase in the crack length Ncrack after the catastrophe, overall, however, cracks remain
relatively short. The lack of deeper cracks prohibits protofilament tips from bending outward,
see the three-dimensional configuration snapshots in Appendix H, in contrast to experimental
results as previously shown in Figure 1.5. The absolute tip roughness |τrough| does peak for
the catastrophe in Figure 8.5(a), but for the catastrophe in Figure 8.5(b), there is no distinct
peak.

To check for a nucleus, i.e., for neighboring protofilaments that have shrunken more than the
rest of the protofilaments, we define ρmin and ρmax as the protofilament indices for which the
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(a) Catastrophe from Fig-
ure 8.1(a).

(b) Catastrophe from Fig-
ure 8.1(b).

(c) Rescue from Figure 8.1(b).

Figure 8.5: The microtubule length LMT, the average GTP-cap length per protofilament Ncap, the
average porous GTP-cap length per protofilament Npcap, the average crack length per protofilament
Ncrack, the average absolute tip roughness per protofilament |τrough|, and the width of the shrinking
nucleus ∆nucleus for the catastrophes and the rescue from Figure 8.1 as a function of the simulation
time tsim. The same color coding as in the relevant insets of Figure 8.1 is used and additional data
before and after the data shown in these insets is color-coded in gray.
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tip roughness is the smallest and for which it is the largest:

τrough(ρmin) = min
p
τrough(p), (8.1)

τrough(ρmax) = max
p
τrough(p). (8.2)

From these indices, we can define the width of the (potential) nucleus as

∆nucleus = (ρmax − ρmin)mod 13, (8.3)

where the modulo operator accounts for the periodicity of the microtubule changing negative
values of ρmax − ρmin to the correct width. If a nucleus exists and persists for some time, we
expect ρmin = const and ρmax = const resulting in ∆nucleus = const.

Before we can discuss the results for this observable, we have to come back to (8.1) and (8.2).
While these formulas are conceptually correct, in practice, we will find multiple values of ρmin
and ρmax that fulfill (8.1) and (8.2), respectively. The easiest configuration to illustrate this
problem with is a configuration where all protofilaments contain the same number of tubulin
dimers so that τrough(p) = 0 for all protofilaments p. In all cases where ρmin or ρmax is not
distinct, we calculate the nucleus widths (8.3) for all combinations of ρmin or ρmax and choose
the pair of ρmin and ρmax values resulting in the nucleus with the smallest width because we
expect the nucleus to be small1. If there are multiple pairs of ρmin and ρmax values with the
smallest nucleus width (8.3), the first pair is selected, i.e., the pair with the smaller values of
the protofilament indices ρmin and ρmax as they are iterated over from smallest to largest. In
practice, however, this last special case of multiple pairs of ρmin and ρmax values resulting in
the same smallest nucleus width ∆nucleus was not relevant for our cases here.

While Figure 8.5(a) shows a persistent nucleus with ∆nucleus = 3 shortly before the catastrophe
becomes unavoidable, overall, the ∆nucleus data does not provide much further insight and
might have to be replaced by a better observable in the future.

For the rescue observables shown in Figure 8.5(c), we see the increase in the GTP-cap length
and it needs to pass Ncap ' 2 until a rescue becomes more likely. The tip roughness |τrough| also
peaks for this rescue shortly before the rescue happens. The falling flank of this peak in the
|τrough| data during which the rescue happens is a manifestation of the previously mentioned
“healing of the shrinkage front”.

1If the nucleus was not small, it would not make sense to discuss neighboring protofilaments being shorter
than the other protofilaments but instead to discuss neighboring protofilaments that are longer than the rest.
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8.2 Mechanical Hydrolysis

Like in Figure 8.1 for constant hydrolysis rates, Figure 8.6 shows two exemplary microtubule
length trajectories with insets showing the probability for a certain event to happen (see
section 8.1 for the basic explanation of how this probability is calculated). For the dip and
catastrophe in Figure 8.6(a), we used the same criteria as for Figure 8.1(a). For catastrophes
(C1) and (C3), we used the same criterion as for the catastrophe in Figure 8.1(b) (but always
using 15 s), and for catastrophe (C4), we also used the same criterion but with a 10 s checkpoint
for the length difference. For catastrophe (C2), we cannot use the same criterion as there is
an immediate rescue, (R2), afterwards. Instead we use the point in time where rescue (R2)
occurred in the original simulation as the reference point and demanded the microtubules in
rerun simulations to be no more than 100 nm longer than the original microtubule at (R2). For
the rescues in Figure 8.6(b), we simply checked whether the microtubule still existed after 15 s
or whether it had depolymerized completely. As mentioned before in section 8.1, these criteria
are not meant as general criteria to be used for any simulation, but they are simply criteria
that work for the simulations that are relevant here.

Figure 8.7 shows some configurations before, during and after two catastrophes from Figure 8.6.
While the second example in Figure 8.7(b) is inconclusive, the first example in Figure 8.7(a)
again shows the formation of a “nucleus” of neighboring protofilaments having already shrunken
further than the other protofilaments. This nucleus starts forming in configuration “6” and is
present until configuration “9” and spans three protofilaments.

For a constant hydrolysis rate, we found in Figure 8.4 that any neighboring protofilaments that
have shrunken more than the other protofilaments (which we called a “shrinkage front”) appear
to require a GTP-cap for a rescue to occur. The two rescues shown in Figure 8.8 strengthen
this point, see configurations “2” and “3” and configurations “8” and “9” in Figure 8.8(a) and
configurations “7” and “9” in Figure 8.8(b).

Figure 8.9 shows the same observables for two catastrophes and one rescue from Figure 8.6 like
we did for a constant hydrolysis rate in Figure 8.5. Overall, the results are qualitatively the
same as for constant hydrolysis rates: Catastrophes become unavoidable once the GTP-cap has
almost completely vanished and rescues happen once a GTP-cap has been rebuilt. The cracks
between protofilaments become slightly longer during catastrophes and remain relatively short
on average. Lastly, except for Figure 8.9(b), we again see peaks in the tip roughness |τrough| as
expected by the visible nucleus for the catastrophe in Figure 8.7(a).

Overall, for the limited data analyzed here, there appears not to be a distinct difference
between catastrophes and rescues in our models with constant hydrolysis rates and mechanical
hydrolysis.
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(a) ctub = 9 µM and k0h = 1.5 s−1

(b) ctub = 11 µM and k0h = 3.0 s−1

Figure 8.6: Length LMT of two exemplary microtubules as a function of the simulation time tsim
with dips, catastrophes, and rescues being highlighted in the insets like in Figure 8.1.
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(a) Catastrophe from Figure 8.6(a).

(b) Catastrophe (C4) from Figure 8.6(b).

Figure 8.7: Two-dimensional configuration snapshots around catastrophes shown in Figure 8.6.
Three-dimensional configuration snapshots can be found in Figure H.3.
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(a) Rescue (R1).

(b) Rescue (R3).

Figure 8.8: Two-dimensional configuration snapshots around rescues shown in Figure 8.6(b). Three-
dimensional configuration snapshots can be found in Figure H.4 and Figure H.5.
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(a) Catastrophe from Fig-
ure 8.6(a).

(b) Catastrophe (C4) from Fig-
ure 8.6(b).

(c) Rescue (R2) from Fig-
ure 8.6(b).

Figure 8.9: The microtubule length LMT, the average GTP-cap length per protofilament Ncap, the
average porous GTP-cap length per protofilament Npcap, the average crack length per protofilament
Ncrack, the average absolute tip roughness per protofilament |τrough|, and the width of the shrinking
nucleus ∆nucleus for the catastrophes and the rescue from Figure 8.6 as a function of the simulation
time tsim. The same color coding as in the relevant insets of Figure 8.6 is used and additional data
before and after the data shown in these insets is color-coded in gray.
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Dilution 9
In dilution experiments[52,169,188,220–222], microtubules are grown at a concentration of free GTP-
tubulin dimers ctub that is quickly decreased to cdil < ctub at a certain point in time during the
experiment. Due to the change in the GTP-tubulin dimer concentration, the growth velocity of
the microtubules changes. In experiments, cdil is decreased below the critical concentration
ccrit so that the microtubules undergo an “induced” catastrophe and shrink.

Walker et al.[223] found there to be a delay of several seconds between dilution and catastrophe
during which they did not measure length changes in the observed microtubules. In the
same year, Voter et al.[224], however, found no such delay in their experiments and attributed
the different results by Walker et al.[223] to the higher post-dilution concentration cdil in the
experiments by Walker et al.[223] More recent studies[225,226], however, again found delays
between dilution (or “tubulin wash out”, as they call it) and catastrophe, as shown in Figure 9.1.
Having better data resolution than the earlier dilution experiments, they were also able to show
that during the delay, the microtubule dynamics do not actually pause, but the microtubules
start to shrink with a slower speed compared to the speed after the “proper” catastrophe
highlighted in Figure 9.1 with the blue arrow. They also found that the delay time increases
with the pre-dilution growth speed (i.e., a higher free GTP-tubulin dimer concentration ctub)
indicating that such microtubules are more stable due to a longer GTP-cap. Their measured
delay times range from a few seconds up to about 20 s.

In this chapter, we will focus on results for an initial free GTP-tubulin dimer concentration of
ctub = 16 µM. Additional results for smaller values of ctub can be found in Appendix I.

Figure 9.1: Kymograph illustrating the delay between
dilution/wash out and the subsequent catastrophe1.

1Used with permission of American Society for Cell Biology, from “Microtubule aging probed by microfluidics-
assisted tubulin washout” by C. Duellberg, N. I. Cade, and T. Surrey, Mol. Biol. Cell 27 (22), 2016[225];
permission conveyed through Copyright Clearance Center, Inc.

141



9.1 Analysis of Dilution Simulations

To analyze the growth trajectories (tsim, LMT) of our dilution simulations, we split them into
three parts: the initial growing phase until tsim = tdil when ctub is changed to cdil, the second
phase until the catastrophe at tsim = τcat in which the microtubule lengths stay approximately
the same LMT(tdil) ' Ldil, and the third and final phase in which the microtubule shrinks with
the velocity vsh. As a consequence, each actual trajectory is approximated by three lines:

1. growth phase for tsim ∈ [0, tdil]:

LMT(tsim) = vgrtsim + LMT(0), (9.1)

2. delay phase for tsim ∈ [tdil, τcat]:

LMT(tsim) = Ldil, (9.2)

3. shrinkage phase for tsim ≥ τcat:

LMT(tsim) = vsh(tsim − τcat) + Ldil. (9.3)

During the analysis of the dilution simulation data, Ldil is given by the length in the first data
sample with tsim ≥ tdil. Additionally, τcat is the time at which the fit function of the shrinkage
phase intersects LMT(tsim) = Ldil. The shrinkage velocity vsh is determined from the last five
seconds of data and simulations with non-negative vsh determined from these last five seconds
of data are ignored2. Thus, the delay time ∆tdelay between dilution and when shrinkage starts
is given by

∆tdelay = τcat − tdil. (9.4)

Figure 9.2 shows two examples of how the actual microtubule growth trajectories in Figure 9.2(a)
are simplified into the three phases in Figure 9.2(b). The example for kh = 0.5 s−1 in particular
shows that this procedure results in a coarse approximation as the real delay phase in which
the microtubule does shrink but with a smaller shrinkage velocity is mapped onto a delay phase
in which the microtubule length does not change. Nevertheless, ∆tdelay gives us an indication
of how long the actual delay phase is.

2Non-negative post-dilution velocities are relevant for high post-dilution concentrations cdil. We, however,
focus on sufficiently small values of cdil for which this case is generally irrelevant.
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(a) Actual microtubule growth trajectories. (b) Simplified microtubule growth trajectories split
into a growth, delay, and shrinkage phase.

Figure 9.2: Example of how actual microtubule growth trajectories of dilution simulations with
ctub = 16 µM, cdil = 0 µM, and two different values of kh are simplified into a growth, delay, and
shrinkage phase.
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(a) Average post-dilution delay time 〈∆tdelay〉 as a
function of the hydrolysis rate kh.

(b) Average GTP-cap length 〈Ncap〉 at the time
of dilution tdil as a function of the average post-
dilution delay time 〈∆tdelay〉.

Figure 9.3: Average post-dilution delay time ∆tdelay as a function of the hydrolysis rate kh and the
GTP-cap length Ncap at the time of dilution tdil as a function of the average post-dilution delay
time ∆tdelay for ctub = 16 µM and different post-dilution concentrations cdil.

9.2 Dilution Simulations With Constant Hydrolysis Rate

There are two main parameters that are relevant for how the microtubule growth trajectories
look in dilution experiments: the post-dilution concentration cdil and the hydrolysis rate kh. In
Figure 9.2, we have already seen that for two exemplary simulations that a smaller hydrolysis
rate increases the delay time ∆tdelay. For ctub = 16 µM and different post-dilution concentrations
cdil, Figure 9.3(a) shows that the delay time ∆tdelay does indeed increase for smaller hydrolysis
rates. For each parameter set, 50 simulations were run and a script filtered out “irrelevant”
simulations in which, for example, the microtubule already underwent a “normal” catastrophe
before tdil or if the calculated delay time is ∆tdelay < 0. Additionally, average values from each
parameter set were only calculated if only at least 10 out of the 50 simulations are classified
as “relevant”. Some of the growth trajectories, from which the delay times in Figure 9.3(a)
are calculated, are shown in Figure I.1. The delay time-dependence on the hydrolysis rate for
smaller concentrations can be found in Figure I.2.

To explain the dependence of 〈∆tdelay〉 on kh, we first consider the average GTP-cap length
〈Ncap〉 at the time of dilution tdil, as shown in Figure 9.3(b), which scales linearly with the
average dilution delay time 〈∆tdelay〉. Figure 9.4 shows the same two exemplary microtubule
trajectories as in Figure 9.2(a), but now also together with the cap length Ncap and the porous
GTP-cap length Npcap. Regardless of whether a low or a high hydrolysis rate kh is used,
the cap length Ncap quickly decreases after the dilution at tdil = 1 min. While this decrease
happens for the porous GTP-cap length Npcap for kh = 0.5 s−1 as well, which already reached
its steady-state length at tsim = 0.1 min, for kh = 0.1 s−1, the porous GTP-cap only vanished
shortly before the microtubule had (almost) completely depolymerized. The results of the
simulation with kh = 0.1 s−1 are of interest in particular, as here, a significant delay phase exists
in which the shrinkage velocity gradually increases to its final value. From this example, we
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(a) kh = 0.1 s−1 (b) kh = 0.5 s−1

Figure 9.4: Microtubule growth trajectories and cap length trajectories of dilution simulations
with ctub = 16 µM, cdil = 0 µM, and two different values of kh indicate a correlation between the
delay time ∆tdelay and the cap length Ncap during dilution.

can postulate that there is a correlation between the length of the GTP-cap Ncap and the delay
time ∆tdelay as the point in time when the final shrinkage velocity is reached matches the point
in time when the GTP-cap has vanished almost completely around tsim = 1.5 min. To explicitly
check the relation between the dilution delay time 〈∆tdelay〉 and the cap length Ncap at the
time of dilution tdil, we used the same simulation data as in Figure 9.3(a) and additionally
determined 〈Ncap〉(tsim = tdil). Figure 9.3(b) shows that there is linear relation between the
〈Ncap〉(tsim = tdil) and 〈∆tdelay〉 resulting in longer delay times for longer cap length at the
time of dilution. The same linear relation can also be found for smaller initial GTP-tubulin
dimer concentrations ctub, see Figure I.3.

When analyzing the GTP-cap length in section 7.2, we haven shown that 〈Ncap〉 ∼ k−0.5
h .

Together with the linear dependence 〈Ncap〉(〈∆tdelay〉), we expect the following relation between
the average delay time 〈∆tdelay〉 and the hydrolysis rate:

〈∆tdelay〉(kh) =
adelay√
kh

+ bdelay. (9.5)

The fits in Figure 9.3(a) show that the data points do follow (9.5).

Lastly, we want to compare the dependence of the average delay time 〈∆tdelay〉 on the pre-
dilution GTP-tubulin dimer concentration ctub with the results by Duellberg et al.[226] that we
mentioned at the beginning of this chapter. While a direct comparison is not possible due to
different experimental conditions compared to Walker et al.[49], whose growth and shrinkage
velocities were the basis for our parametrization, it gives us at least an insight on whether
we get similar or completely different results. The data in Figure 9.5 for cdil = 0 µM shows
that the quantitative behavior of a slowly increasing delay time 〈∆tdelay〉 potentially reaching a
saturation value is similar. While the actual delay time values 〈∆tdelay〉 are of the same order,
only the data for kh = 0.1 s−1 comes close to the actual values but appears to depend to steeply
on ctub.
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Figure 9.5: Average post-dilution delay time
〈∆tdelay〉 as a function of the pre-dilution
GTP-tubulin dimer concentration ctub for
different hydrolysis rates kh and cdil = 0 µM.
The averaged data from Duellberg et al.[226]

specified the pre-dilution growth velocity,
which was converted to ctub for this plot
using (4.1).
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(a) Average post-dilution delay time 〈∆tdelay〉 as a
function of the base hydrolysis rate k0h.

(b) The average rate 〈kh〉 of executed hydrolysis
events increases linearly with the base hydrolysis
rate k0h.

Figure 9.6: Average post-dilution delay time 〈∆tdelay〉 as a function of the base hydrolysis rate k0h
and average rate 〈kh〉 as a function of the base hydrolysis rate k0h for ctub = 16 µM and different
post-dilution concentrations cdil.

9.3 Dilution Simulations With Mechanical Hydrolysis

We repeated the previous analysis of simulations with constant hydrolysis rates with mechanical
hydrolysis instead. We find the same dependence (9.5) of the average delay time 〈∆tdelay〉 on
the base hydrolysis rate k0h as for a constant hydrolysis rate kh as shown in Figure 9.6(a) (and
in Figure I.4).

To compare these delay times in Figure 9.6(a) with the delay times for a constant hydrolysis
rate in Figure 9.3(a), we determined the average rate 〈kh〉 of executed hydrolysis events as
shown in Figure 9.6(b) (and Figure I.5) for different post-dilution concentrations cdil. 〈kh〉
is independent of cdil but increases linearly with k0h. We are now able to compare the delay
times 〈∆tdelay〉 as a function of the average actual hydrolysis rates for a constant hydrolysis
rate (see Figure 9.7(a)) and mechanical hydrolysis (see Figure 9.7(b)). We find that 〈∆tdelay〉
is significantly longer for mechanical hydrolysis than for a constant hydrolysis if kh ≈ 〈kh〉
despite the GTP-cap being shorter (compare Figure 9.7(c) and Figure 9.7(d)). As compensation,
however, Figure 9.7(e) and Figure 9.7(f) show that the average porous GTP-cap length 〈Npcap〉
is, as expected, significantly longer.

Compared to a constant hydrolysis rate (see Figure 9.5), we find an even steeper depen-
dence of the average post-dilution delay time 〈∆tdelay〉 on the pre-dilution GTP-tubulin dimer
concentration ctub without a flattening for higher values of ctub.
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(a) Constant hydrolysis rate. (b) Mechanical hydrolysis.

(c) Constant hydrolysis rate. (d) Mechanical hydrolysis.

(e) Constant hydrolysis rate. (f) Mechanical hydrolysis.

Figure 9.7: Comparison of the average post-dilution delay time 〈∆tdelay〉 as a function of the
hydrolysis rate kh (or the average hydrolysis rate 〈kh〉 for mechanical hydrolysis) and the average
cap length 〈Ncap〉 and the average porous GTP-cap length 〈Npcap〉 at the time of dilution as a
function of the following post-dilution delay time ∆tdelay for ctub = 16 µM and different post-
dilution concentrations cdil.
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Figure 9.8: Average post-dilution delay time
〈∆tdelay〉 as a function of the pre-dilution
GTP-tubulin dimer concentration ctub for
different base hydrolysis rates k0h and cdil =
0 µM and data from Duellberg et al.[226] for
comparison.
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Conclusions and Outlook 10
10.1 Conclusions

In the first chapters of this thesis, we explained how we modeled microtubules to simulate
their growth dynamics and how we parameterized this chemomechanical model. The main
features of the mechanical model are lateral springs connecting tubulin monomers in neighboring
protofilaments and a bending energy favoring straight GTP-tubulin dimers and bent GDP-
tubulin dimers. The chemical part of the model consists of polymerization and depolymerization
of tubulin dimers, formation and rupture of lateral bonds, and hydrolysis of GTP-tubulin
dimers. As the mechanical parts and chemical parts directly and indirectly influence each other,
the overall model is chemomechanical.

To parameterize our model, we used growth and shrinkage velocity data from Walker et al.[49]

First, we only considered growing microtubules to fix the longitudinal bond energy and the
lateral bond energy. Using these values, we then determined the bending constant as a function
of the lateral spring constant by simulating shrinking microtubules.

To combine these two growth dynamics into one proper simulation of microtubules, we had to
focus on the energy minimization after each event so that the microtubule lattice assumes its
equilibrium conformation. Using the bending angles of all tubulin monomers is infeasible as
it causes the minimization time to scale up with the length of the microtubule resulting in a
massive slowdown the longer the microtubules are. Such a slowdown makes it impossible to
reach relevant growth times[126]. To avoid a length-dependent minimization time, we found the
best way to improve minimization speed without a significant decrease in the minimization
quality is to only consider the tubulin dimers above the tubulin dimer affected by the last event
and the ten layers below it.

To enable switching between growth and shrinkage, hydrolysis has to be possible. With
constant hydrolysis rates, we investigated the dynamics of microtubules and were able to
generate catastrophes and rescues at realistic rates and to investigate the influence of dilution
of the free GTP-tubulin dimers on microtubule growth. In both cases, however, we found the
catastrophe and rescue rates on the one side and the delay time after dilution on the other side
to depend too steeply on the concentration of free GTP-tubulin dimers ctub compared to the
experimental results by Walker et al.[49] and Duellberg et al.[226] As we have seen this steep
dependence of the catastrophe and rescue rates for more than one set of mechanical parameters,
it hints at a yet unknown issue with the microtubule model.

Once hydrolysis was enabled to simulate realistic microtubule growth dynamics, we also found
that depending on the value of the hydrolysis rate, the growth velocities do not match the
experimental values from Walker et al.[49] anymore but become lower. This finding shows a
weakness of the “divide-and-conquer” approach employed here as simply merging the individual
results together and then enabling hydrolysis is not possible. Instead, for future investigations,
the parameter values obtained by separate growth-only and shrinkage-only simulations can be
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used as the base values, which are then gradually adjusted for a given hydrolysis rate until the
experimental growth velocity is reproduced again.

We also considered mechanical feedback on the hydrolysis rate, which results in an increased
hydrolysis rate at the microtubule tip. Additionally, hydrolysis of GTP-tubulin dimers deep
in the GDP-body of the microtubule becomes more unlikely resulting in an increased porous
GTP-cap length. We found the mechanical feedback to induce in an “anti-vectorial” bias so
that GTP-islands are preferably hydrolyzed from the interior. Using mechanical hydrolysis also
generates the same steep dependence of the catastrophe rate, rescue rate, and delay time after
dilution on the free GTP-tubulin dimer concentration.

The analysis of different properties of the simulated microtubules showed that the distributions
of GTP-island lengths and of GTP-cap lengths are consistent with predictions from a one-
dimensional model[88,89]. We showed that in order to explain the distribution of the porous
GTP-cap length, we have to consider separate distributions for different numbers of GTP-tubulin
dimers in a protofilament, which then follow Gumbel-distributions. To analyze the structure of
the tip, we considered the roughness of the tip and the length of cracks between protofilaments.
From both of these quantities, we could conclude that the tips of our microtubules are generally
quite blunt and do not exhibit bent ends as observed experimentally[63].

During the analysis of individual microtubule trajectories, we found “transitional catastro-
phes”[206] during which the microtubule switches from growth to slow shrinkage and then finally
fast shrinkage, consistent with experimental data[206]. Additionally, we observed “dips”, i.e.,
short, intermediate phases of shrinkage that have also been observed in experiments[110,206].
The same analysis also gave insight into a potential requirement for catastrophes: the loss of the
stabilizing GTP-cap of three to four neighboring protofilaments. For rescues, we observed that
once neighboring protofilaments that have shrunken more than the other protofilaments have a
GTP-cap again, a rescue is likely. Seeing that effects affecting neighboring protofilaments are
important for catastrophes and rescues gives further confirmation that one-dimensional models
or two-dimensional models with independent protofilaments are insufficient for explaining
microtubule dynamics. Compared to constant hydrolysis rates, we find an increase in small
dips when using mechanical hydrolysis.
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10.2 Lattice Model

In section 1.2, as part of the introduction, we have mentioned two different models explaining
how the curvature of tubulin dimers could influence dynamic instability. In the allosteric model,
GTP-tubulin dimers are assumed to be straight and GDP-tubulin dimers to be bent resulting
in mechanical strain in the microtubule lattice because the GDP-tubulin dimers in the lattice
are held in an energetically unfavorable straight conformation. The lattice model, in contrast,
assumes that both GTP- and GDP-tubulin dimers are bent and that lateral bonds are stronger
for GTP-tubulin dimers than for GDP-tubulin dimers, resulting in the GTP-cap being more
stable than the GDP-body. For the majority of previous three-dimensional modeling, the
allosteric model was used[118,120–122,124,126]. Only McIntosh et al.[63], as part of an experimental
study, discussed briefly adapting the model by Zakharov et al.[126] to the lattice model.

Recent extensive experimental data[63] found the ends of both growing and shrinking mi-
crotubules to be bent, which confirms earlier data[227–231]. Via the analysis of microtubule
cryogenic electron microscopy (cryo-EM) structures with different nucleotide content[146,172] and
by employing all-atom MD simulations of microtubules only consisting of GTP-tubulin dimers
or GDP-tubulin dimers[232–234], it was revealed that the lateral bonds between GDP-tubulin
dimers are weaker than between GTP-tubulin dimers and that the longitudinal bonds between
GDP-tubulin dimers are stronger than between GTP-tubulin dimers. In order words, it was
shown that lateral bonds are weakened and longitudinal bonds are strengthened by hydrolysis.
Combined, these two findings support the lattice model instead of the allosteric model and
show that for future microtubule modeling, the lattice model should be used (see the following
discussion in section 10.3).

As changing from the allosteric model to the lattice model does not alter all but only some
aspects of the microtubule model, there are still relevant aspects to be learned from this
allosteric study that can then be also used in a lattice model:

1. In both models, hydrolysis weakens lateral interactions, which makes catastrophes possible.
The difference in the models is how this weakening happens. In the allosteric model, more
strain is put on lateral bonds after hydrolysis because GDP-tubulin dimers prefer to bent
while GTP-tubulin dimers prefer to remain straight. In the lattice model, since both
types of tubulin dimers are intrinsically bent, there is always a base amount of strain on
the lateral bonds. Because of the lateral weakening after hydrolysis, however, the amount
of strain that the lateral bonds can hold, is reduced. The result in both models is the
same: The rate for these lateral bonds to rupture is increased, highlighting why it is
important to consider the rupture of lateral bonds explicitly as in our model. Previously,
lateral bond dynamics were only considered in the context of two-dimensional models
without the crucial inclusion of mechanics[111–113] or as the result of computationally
costly Brownian dynamics if the stretching energy exceeds an energy barrier[126].

2. Lateral bond rupture is essential for catastrophes as only the rupture of lateral bonds
enables tubulin dimers to depolymerize from the microtubule. During catastrophes and
during shrinkage, GDP-tubulin dimers at the microtubule tip are relevant due to the
loss of the GTP-cap. In both models, GDP-tubulin dimers are bent and if they are
directly exposed at the microtubule tip, they can start bending due to reduced lattice
constraints compared to GDP-tubulin dimers embedded deep in the microtubule. This
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bending at the tip stretches the lateral bonds of the relevant tubulin dimers. Due to this
commonality in the models, we expect similar quantitative results for both models around
catastrophes and during shrinkage. The only difference between the models relevant here
is that the rupture rate (2.41) in the lattice model will also depend on the nucleotide
type of the relevant tubulin dimers. As, however, the microtubules are mostly made up of
GDP-tubulin dimers during and after catastrophe, there will be no significant influence
of the nucleotide type on the rupture rate in this case. Consequently, parameterizing the
lattice model using shrinkage velocity data should lead to similar results.

3. In section 3.3, we have discussed extensively the minimization part of our simulation and
how it compares favorably to other approaches with respect to the actual mechanical
relaxation[118] or the computational expense[126]. Re-using the same approach for a future
simulation with the lattice model is perfectly viable.

4. A mechanical feedback mechanism for the hydrolysis rate cannot only be applied to the
allosteric model via the equilibrium value of the bending angle (see (2.48)), but in the
lattice model as well. An analogous approach in the lattice model would be to assume
that due to hydrolysis weakening lateral bonds, mechanical strain weakening lateral bonds
could also ease hydrolysis.
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10.3 Outlook

As discussed in the previous section, probably the most important future change to the model
is to change from the allosteric model to the lattice model by using the same equilibrium value
of the bending angle for GTP- and GDP-tubulin dimers and having different longitudinal and
lateral bond energies depending on the nucleotide content of the bonded tubulin monomers. If
the lattice model is used, however, a parameter determination scheme first considering growing
microtubules and then considering shrinking microtubules as described in chapter 4 will not be
possible anymore because in the growing state, mechanics will now be relevant as well because
of GTP-tubulin dimers also preferring to be bent. With regard to the different bond energies
for GTP- and GDP-tubulin dimers, however, the divide-and-conquer approach might still be
feasible because in a growing GTP-only simulation, we would only have to consider the bond
energies for GTP-tubulin dimers.

Despite such a change from the allosteric model to the lattice model already introducing two
new parameters (the two new bond energies), it might be useful to incorporate longitudinal
stretching of tubulin monomers[118] as well so that if one tubulin monomer bends outward
during minimization, it is only a local effect causing stretching of this tubulin monomer instead
of having a global effect of all tubulin monomers above it also bending outward as a rigid
segment. Having such an additional stretching energy, however, will result in another model
parameter in form of a longitudinal spring constant and would introduce the tubulin monomer
length as another parameter that has to be considered during minimization.

As recent studies have shed light on the intermediate hydrolysis state GDP ·Pi
[110,172], splitting

hydrolysis into two discrete steps of cleavage and release of the phosphate would be a natural
addition. Such a more detailed hydrolysis model, however, would again be at the expense of
having to replace one overall hydrolysis rate with two rates for both sub-processes and also a
new longitudinal and a new lateral bond energy for this intermediate state. While in practice
having additional parameters requires additional time to determine their values, on a practical
level, we would need further experimental data with which we can determine their values
then.

An important part of microtubule dynamics in cells are proteins called microtubule-associated
proteins (MAPs) that interact with the microtubules and change their dynamics[235–237]. For
us, as we focus on the plus end of microtubules, so called plus-end tracking proteins (+TIPs)
would be relevant. Including such proteins would at least require the addition of attachment
(and possibly detachment) events of such MAPs to the simulation and different possibilities of
how they interact with the microtubule, for example by changing the mechanical parameters of
the tubulin monomers to which the proteins are attached.

An additional aspect that has only been focused on in chemical models[93,114,158,238,239] is how
external forces on growing microtubule end influence its dynamics[240,241], in particular catas-
trophes. External forces on the microtubule wall are also one way to damage the microtubule
lattice, which has shown to be able to self-heal by incorporating new tubulin dimers[242–245].

There have been significant performance improvements in the simulation code during this
research and using restricted minimization as explained in section 3.3 enabled us to run
simulations for a longer time. To generate more statistics for catastrophe and rescue rates,
making the code run even faster would require a major overhaul of the program relying on
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in-depth knowledge of C++ code optimization. After more catastrophe and rescue rates can
be determined, they can also be used to fix the values of more model parameters. On a more
practical level, in particular if longitudinal stretching is added to the model, it might make
sense to investigate the introduction of an upper cutoff distance for energy minimization in
addition to the present lower (i.e., directed to the minus-end) cutoff distance (see Figure 3.4).
If a GTP-tubulin dimer relatively far from the microtubule tip is hydrolyzed, the effects of
this hydrolysis event on neighboring tubulin dimers will diminish with their distance so that it
might not be necessary to consider all tubulin dimers in the layers above it. By only considering
“local” neighbors, we might be able to further speed up minimizations after hydrolysis, which,
as we have discussed in section 6.4, slow down mechanical hydrolysis simulations.

Lastly, once sufficient statistics for catastrophe rates have been generated, an important aspect
to investigate with regard to these catastrophe rates is whether they depend on the age of the
microtubule. Experimental results have shown that the catastrophe rate increases with the
microtubule age, which hints at catastrophes being multi-step processes[120,199,205].
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Implementation A
While the goal of this thesis was the implementation of a three-dimensional chemomechanical
microtubule simulation, as a side-project that itself was not further utilized, a two-dimensional
microtubule simulation similar to VanBuren et al.[104] and Margolin et al.[112] was implemented.
Even though this implementation was not used to generate specific two-dimensional data,
it was used to generate the growth-only parameters discussed in section 4.1 as they do not
depend on mechanics. The parameter values were later validated by the three-dimensional
implementation with mechanics and minimization enabled to ensure that there is no difference
between the two implementations for this specific case. Coding the two-dimensional program
after the three-dimensional program was already established allowed for some adjustments in the
approach to the code structure. These adjustments improved the speed of the two-dimensional
implementation compared to the three-dimensional implementation running the same type of
simulation. Some of these changes (like compiling parameter values into the program instead of
passing them around as variables) were later also added to the three-dimensional program if it
did not result in major changes to the existing code base.

Both programs were written in C++ and the three-dimensional program also uses, as mentioned
in section 3.3, the GNU Scientific Library (GSL)[183] for energy minimization and the Eigen
library[246] for the vectors of the tubulin monomers discussed in section 2.1.
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Gradient of the Microtubule
Energy B
To minimize the microtubule energy (2.30) as described in section 3.3, we must calculate the
gradient of (2.30) with respect to the tubulin monomers’ polar angle {θ(p, d, t)} as they are
the tubulin monomers’ only degree of freedom. Theoretically, it would be possible to calculate
the gradient numerically, but as we are able to calculate it analytically and as the gradient is
used to calculate an approximate inverse Hessian by the BFGS algorithm, we have also chosen
to implement it analytically for better results. While this analytical calculation was already
presented before in similar form[141], we present it here again for completeness and to discuss
at the end of this chapter how calculating the gradient was sped up in the implementation.

The goal of this chapter it to calculate

∇EMT =
13∑
p=1

dmax(p)∑
d=1

2∑
t=1

∂EMT
∂θ(p, d, t)

e(p, d, t), (B.1)

where e(p, d, t) is a unit vector with components

[
e(p, d, t)

]
i
=


1, if i = 2

p−1∑
p′=1

dmax(p
′) + 2d− δt,1

0, else

(B.2)

Consequently, we have to calculate partial derivative of the lateral energy (2.24), the repulsive
energy (2.25), and the bending energy (2.26) with respect to one particular polar angle θ(p, d, t).
To make calculating these derivatives easier, we first calculate the same derivative for the
structural vectors introduced in section 2.1 as the lateral energy (2.24) and the repulsive energy
(2.25) are only indirectly given in terms of the polar angles via these structural vectors:

∂m(p′, 1, 1)

∂θ(p, d, t)
=

∂

∂θ(p, d, t)

 RMT cosφ(p′)
−RMT sinφ(p′)
(p′ − 1)∆zh

 (B.3)

= 0, (B.4)
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∂θ(p, d, t)
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∂

∂θ(p, d, t)
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 cosφ(p′) sin θ(p′, d′, t′)
− sinφ(p′) sin θ(p′, d′, t′)

cos θ(p′, d′, t′)
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 cosφ(p) cos θ(p, d, t)
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− sin θ(p, d, t)
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=
∂d(p, d, t)

∂θ(p, d, t)
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∂p(p′, d′, t′)
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where Θ(x) is the Heaviside function. The term in the derivative of the tubulin plus end vector
p(p′, d′, t′) in (B.12) in which the Heaviside function occurs, Θ(d′ − d), is an interesting term
as it introduces long-ranging “interactions” in the microtubule with respect to the derivatives
because the plus end vectors of all tubulin monomers on top of tubulin monomer (p, d, t) also
depend on θ(p, d, t). A possibility to avoid such a long-ranging effect would be the introduction
of longitudinal stretching of tubulin monomers (see section 10.3). Currently, if a tubulin
monomer bends outward, the protofilament segment on top of it stays rigid, thus also changing
the plus (and minus) end positions of every tubulin monomer above. If there was longitudinal
stretching, however, the direct consequence of one tubulin monomer bending outward would be
an increase in its length due to longitudinal stretching and the other tubulin monomers closer
to the plus above it end staying in place.

We start with the derivative of the bending energy (2.26) with respect to polar angles:

∂Ebend(p
′, d′, t′)

∂θ(p, d, t)
=

1

2
κ

∂

∂θ(p, d, t)
∆ψ2(p′, d′, t′) (B.18)

= κ∆ψ(p′, d′, t′)
∂ψ(p′, d′, t′)

∂θ(p, d, t)
(B.19)

= κ∆ψ(p′, d′, t′)

[
∂θ(p′, d′, t′)

∂θ(p, d, t)
− ∂θ(p′, d′, t′ − 1)

∂θ(p, d, t)

]
(B.20)
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= κ∆ψ(p′, d′, t′)
(
δp,p′δd,d′δt,t′ − δp,p′δd,d′δt,t′−1

)
(B.21)

= κ∆ψ(p′, d′, t′)
(
δt,t′ − δt,t′−1

)
δp,p′δd,d′ . (B.22)

In (B.20), we have not considered the case of the first alpha-tubulin monomer in the protofila-
ment, i.e., only d′ 6= 1 and t′ 6= 1, for the bending angle ψ(p′, d′, t′), see (2.27). The case d′ = 1
and t′ = 1, however, is still correctly covered by the final result, as the second term in (B.22)
does not contribute in this case as it would require the derivative to be with respect to the
polar angle of tubulin monomer (p, 1, 0), which does not exist.

The derivative of the lateral energy (2.24) of tubulin monomer (p′, d′, t′) with respect to the
polar angle θ(p, d, t) is given by

∂Elat(p
′, d′, t′)

∂θ(p, d, t)
=

1

2
klat

∂

∂θ(p, d, t)

[
|s(p′, d′, t′)| − s0

]2 (B.23)

= klat
[
|s(p′, d′, t′)| − s0

] s(p′, d′, t′)

|s(p′, d′, t′)|
∂s(p′, d′, t′)

∂θ(p, d, t)
(B.24)

= klat
[
|s(p′, d′, t′)| − s0

] s(p′, d′, t′)

|s(p′, d′, t′)|
∂d(p, d, t)

∂θ(p, d, t)

(
δp,p′+1 − δp,p′

)
×

×
[
Θ(d′ − d)− δd,d′δt,2δt′,1

]
(B.25)

in which

∂ |f(x)|
∂x

=
f(x)

|f(x)|
∂f(x)

∂x
(B.26)

was used.

Lastly, the derivative of the repulsive energy (2.25) of tubulin monomer (p′, d′, t′) with respect
to the polar angle θ(p, d, t) is given by

∂Erep(p
′, d′, t′)

∂θ(p, d, t)
(B.27)

= krep
∂

∂θ(p, d, t)

[
|p(p′, d′, t′)− p(p′ + 1, d′, t′)| − 2rtub

]−12 (B.28)

= −12krep
[
|p(p′, d′, t′)− p(p′ + 1, d′, t′)| − 2rtub

]−13×

× p(p′, d′, t′)− p(p′ + 1, d′, t′)

|p(p′, d′, t′)− p(p′ + 1, d′, t′)|

[
∂p(p′, d′, t′)

∂θ(p, d, t)
− ∂p(p′ + 1, d′, t′)

∂θ(p, d, t)

]
(B.29)

(B.17)
= 12krep

[
|p(p′, d′, t′)− p(p′ + 1, d′, t′)| − 2rtub

]−13 ∂d(p, d, t)

∂θ(p, d, t)
×

× p(p′, d′, t′)− p(p′ + 1, d′, t′)

|p(p′, d′, t′)− p(p′ + 1, d′, t′)|
(
δp,p′+1 − δp,p′

) (
Θ(d′ − d)− δd,d′δt,2δt′,1

)
. (B.30)

Before we calculate the derivative of the sum of all energy contributions, it makes sense to
calculate the derivatives of the total lateral energy, the total repulsive energy, and the bending
energy separately. For the derivative of the total lateral energy, we get

∂Ebend
∂θ(p, d, t)

=
13∑

p′=1

dmax(p)∑
d′=1

2∑
t′=1

∂Ebend(p
′, d′, t′)

∂θ(p, d, t)
(B.31)
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= κ

13∑
p′=1

dmax(p′)∑
d′=1

2∑
t′=1

∆ψ(p′, d′, t′)
(
δt,t′ − δt,t′−1

)
δp,p′δd,d′ (B.32)

= κ
2∑

t′=1

∆ψ(p, d, t′)
(
δt,t′ − δt,t′−1

)
(B.33)

= κ
(
∆ψ(p, d, t)−∆ψ(p, d, t+ 1)

)
, (B.34)

for the repulsive energy, we get
∂Elat

∂θ(p, d, t)
(B.35)

=

13∑
p′=1

dmax(p′)∑
d′=1

2∑
t′=1

∂Elat(p
′, d′, t′)

∂θ(p, d, t)
(B.36)

= klat

13∑
p′=1

dmax(p′)∑
d′=1

2∑
t′=1

[
|s(p′, d′, t′)| − s0

] s(p′, d′, t′)

|s(p′, d′, t′)|
∂d(p, d, t)

∂θ(p, d, t)

(
δp,p′+1 − δp,p′

)
×

×
(
Θ(d′ − d)− δd,d′δt,2δt′,1

)
(B.37)

= klat
∂d(p, d, t)

∂θ(p, d, t)

(
dmax(p−1)∑

d′=1

2∑
t′=1

[
|s(p− 1, d′, t′)| − s0

] s(p− 1, d′, t′)

|s(p− 1, d′, t′)|
(
Θ(d′ − d)− δd,d′δt,2δt′,1

)
−

dmax(p)∑
d′=1

2∑
t′=1

[
|s(p, d′, t′)| − s0

] s(p, d′, t′)

|s(p, d′, t′)|
(
Θ(d′ − d)− δd,d′δt,2δt′,1

))
(B.38)

= klat
∂d(p, d, t)

∂θ(p, d, t)

(
dmax(p−1)∑

d′=d

2∑
t′=1

[
|s(p− 1, d′, t′)| − s0

] s(p− 1, d′, t′)

|s(p− 1, d′, t′)|

−
[
|s(p− 1, d, 1)| − s0

] s(p− 1, d, 1)

|s(p− 1, d, 1)|
δt,2

−
dmax(p)∑
d′=1d

2∑
t′=1

[
|s(p, d′, t′)| − s0

] s(p, d′, t′)

|s(p, d′, t′)|

+
[
|s(p, d, 1)| − s0

] s(p, d, 1)

|s(p, d, 1)|
δt,2

)
, (B.39)

and finally the derivative of the total bending energy with respect to the bending angle is
∂Erep

∂θ(p, d, t)
(B.40)

=
13∑

p′=1

dmax(p′)∑
d′=1

2∑
t′=1

∂Erep(p
′, d′, t′)

∂θ(p, d, t)
(B.41)

= 12krep

13∑
p′=1

dmax(p′)∑
d′=1

2∑
t′=1

[
|p(p′, d′, t′)− p(p′ + 1, d′, t′)| − 2rtub

]−13 ∂d(p, d, t)

∂θ(p, d, t)
×
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× p(p′, d′, t′)− p(p′ + 1, d′, t′)

|p(p′, d′, t′)− p(p′ + 1, d′, t′)|
(
δp,p′+1 − δp,p′

) (
Θ(d′ − d)− δd,d′δt,2δt′,1

)
(B.42)

= 12krep
∂d(p, d, t)

∂θ(p, d, t)

(
dmax(p−1)∑

d′=1

2∑
t′=1

[
|p(p− 1, d′, t′)− p(p, d′, t′)| − 2rtub

]−13×

× p(p− 1, d′, t′)− p(p, d′, t′)

|p(p− 1, d′, t′)− p(p, d′, t′)|
(
Θ(d′ − d)− δd,d′δt,2δt′,1

)
−

dmax(p)∑
d′=1

2∑
t′=1

[
|p(p, d′, t′)− p(p+ 1, d′, t′)| − 2rtub

]−13×

× p(p, d′, t′)− p(p+ 1, d′, t′)

|p(p, d′, t′)− p(p+ 1, d′, t′)|
(
Θ(d′ − d)− δd,d′δt,2δt′,1

))
(B.43)

= 12krep
∂d(p, d, t)

∂θ(p, d, t)

(
dmax(p−1)∑

d′=d

2∑
t′=1

[
|p(p− 1, d′, t′)− p(p, d′, t′)| − 2rtub

]−13 p(p− 1, d′, t′)− p(p, d′, t′)

|p(p− 1, d′, t′)− p(p, d′, t′)|

−
[
|p(p− 1, d, 1)− p(p, d, 1)| − 2rtub

]−13 p(p− 1, d, 1)− p(p, d, 1)

|p(p− 1, d, 1)− p(p, d, 1)|
δt,2

−
dmax(p)∑
d′=d

2∑
t′=1

[
|p(p, d′, t′)− p(p+ 1, d′, t′)| − 2rtub

]−13 p(p, d′, t′)− p(p+ 1, d′, t′)

|p(p, d′, t′)− p(p+ 1, d′, t′)|

)

+
[
|p(p, d, 1)− p(p+ 1, d, 1)| − 2rtub

]−13 p(p, d, 1)− p(p+ 1, d, 1)

|p(p, d, 1)− p(p+ 1, d, 1)|
δt,2

)
. (B.44)

To keep the final result a bit clearer, we introduce the following abbreviations:

s̄(p, d, t) ≡
[
|s(p, d, t)| − s0

] s(p, d, t)

|s(p, d, t)|
, (B.45)

p̄(p, d, t) ≡
[
|p(p, d, t)− p(p+ 1, d, t)| − 2rtub

]−13 p(p, d, t)− p(p+ 1, d, t)

|p(p, d, t)− p(p+ 1, d, t)|
, (B.46)

v̄(p, d, t) ≡ klats̄(p, d, t) + 12krepp̄(p, d, t). (B.47)

Additionally, we introduce the following new summation operator:

p∑
d′,t′>(d,t)

f(p, d′, t′) ≡
dmax(p)∑
d′=d

2∑
t′=1

f(p, d′, t′)− f(p, d′, 1)δt,2, (B.48)

which sums over all tubulin monomers starting with (p, d, t) and ending with (p, dmax(p), 2).

With these abbreviations, the components of the energy gradient (B.1) are

∂EMT
∂θ(p, d, t)

(B.49)
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=

13∑
p′=1

dmax(p′)∑
d′=1

2∑
t′=1

∂

∂θ(p, d, t)

(
Ebend(p

′, d′, t′) + Elat(p
′, d′, t′) + Erep(p

′, d′, t′)
)

(B.50)

= κ
[
∆ψ(p, d, t)−∆ψ(p, d, t+ 1)

]
+ klat

∂d(p, d, t)

∂θ(p, d, t)

 p−1∑
d′,t′>(d,t)

s̄(p− 1, d′, t′)−
p∑

d′,t′>(d,t)

s̄(p, d′, t′)


+ 12krep

∂d(p, d, t)

∂θ(p, d, t)

 p−1∑
d′,t′>(d,t)

p̄(p− 1, d′, t′)−
p∑

d′,t′>(d,t)

p̄(p, d′, t′)


= κ

[
∆ψ(p, d, t)−∆ψ(p, d, t+ 1)

]
+
∂d(p, d, t)

∂θ(p, d, t)

(
p−1∑

d′,t′>(d,t)

[
klats̄(p− 1, d′, t′) + 12krepp̄(p− 1, d′, t′)

]
−

p∑
d′,t′>(d,t)

[
klats̄(p, d

′, t′) + 12krepp̄(p, d
′, t′)

])
(B.51)

= κ
[
∆ψ(p, d, t)−∆ψ(p, d, t+ 1)

]
+
∂d(p, d, t)

∂θ(p, d, t)

(
p−1∑

d′,t′>(d,t)

v̄(p− 1, d′, t′)−
p∑

d′,t′>(d,t)

v̄(p, d′, t′)

)
. (B.52)

When the gradient of the microtubule energy (B.1) is calculated in the simulation, the whole
microtubule structure1 is iterated, and each tubulin calculates the derivative of the microtubule
energy with respect to its own polar angle θ(p, d, t). Simply calculating the gradient component
(B.52) as is would result in a complexity of O(N2) for the calculation of the gradient (with N
being the number of tubulin monomers here) because of the two sums in (B.52) that consider
all tubulin monomers starting with tubulin monomer (p, d, t) in the same protofilament and all
tubulin monomers in the previous protofilament starting with the lateral neighbor of tubulin
monomer (p, d, t). It is, however, possible to calculate all of these sums immediately before
the actual gradient is calculated by only iterating over the microtubule once because the only
influence the tubulin monomer (p, d, t) has on these sums is the starting point of the sum but
not the function values that are summed (i.e., there is no explicit dependence of the summed
terms on p, d, or t). In practice, to calculate these sums along each protofilament, an iteration
over all tubulin monomers in the considered protofilament is started from the plus end. The
value of the sum for tubulin monomer (p, d, t) is simply the sum of the summed up value for the
tubulin monomer on top of it, tubulin monomer (p, d, t+ 1), and the relevant value v̄(p, d, t)
for the current tubulin monomer (p, d, t). In summary, by intelligently calculating the gradient,
it can be done in two iterations over the whole microtubule with a complexity of O(N) instead
of a complexity of O(N2).

1We only consider full minimizations here. Restricted minimizations work the same way except that the
starting value of d for the iteration is generally greater than one.
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Model Parameter Values C

∆G0∗
long/kBT ∆G0

lat/kBT katt/s−1

−14.0 −0.127 282
−13.8 −0.143 256
−13.6 −0.161 235
−13.4 −0.181 216
−13.2 −0.204 198
−13.0 −0.231 183
−12.8 −0.260 170
−12.6 −0.294 159
−12.4 −0.332 150
−12.2 −0.374 143
−12.0 −0.42 136
−11.8 −0.47 130
−11.6 −0.53 128
−11.4 −0.60 128
−11.2 −0.67 129
−11.0 −0.75 133
−10.8 −0.83 139
−10.6 −0.92 150
−10.4 −1.02 165
−10.2 −1.11 185
−10.0 −1.22 215
−9.8 −1.33 255
−9.7 −1.38 281
−9.6 −1.44 311
−9.5 −1.49 345
−9.4 −1.55 389
−9.3 −1.60 413
−9.2 −1.66 495
−9.0 −1.77 647
−8.8 −1.89 871
−8.6 −2.01 1205
−8.4 −2.12 1736
−8.2 −2.23 2568
−8.0 −2.34 4119
−7.8 −2.454 7365
−7.6 −2.565 16 361

(a) k+ = 2 s−1 µM−1

∆G0∗
long/kBT ∆G0

lat/kBT katt/s−1

−14.0 −0.105 270
−13.8 −0.119 248
−13.6 −0.136 221
−13.4 −0.155 201
−13.2 −0.177 182
−13.0 −0.202 165
−12.8 −0.230 151
−12.6 −0.262 139
−12.4 −0.30 129
−12.2 −0.34 121
−12.0 −0.39 115
−11.8 −0.44 109
−11.6 −0.50 105
−11.4 −0.56 102
−11.2 −0.64 102
−11.0 −0.72 103
−10.8 −0.80 105
−10.6 −0.89 110
−10.4 −0.99 118
−10.2 −1.09 130
−10.0 −1.19 145
−9.8 −1.30 167
−9.7 −1.36 181
−9.6 −1.41 196
−9.5 −1.47 214
−9.4 −1.53 234
−9.3 −1.58 258
−9.2 −1.64 286
−9.0 −1.76 355
−8.8 −1.88 447
−8.6 −1.99 571
−8.4 −2.11 736
−8.2 −2.22 964
−8.0 −2.33 1280
−7.8 −2.447 1713
−7.6 −2.555 2328
−7.4 −2.660 3202
−7.2 −2.764 4494
−7.0 −2.862 6398
−6.8 −2.960 9274
−6.6 −3.055 13 939

(b) k+ = 4 s−1 µM−1

Table C.1: Model parameter values from growth-only simulations for our two values of k+ as shown
in Figure 4.2. The highlighted parameter sets in each table are the values resulting the most linear
vgr(ctub) relation (see Table 4.1).
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Table C.2: κ values (in units of kBT/rad2) for different values of ∆G0∗
long, klat (which are given in

the column headings in units of kBT/nm2), and k+ = 2 s−1 µM−1 as shown in Figure 4.5(a). The
highlighted parameter sets use the best growth parameter set (see Table 4.1).
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Table C.3: κ values (in units of kBT/rad2) for different values of ∆G0∗
long, klat (which are given in

the column headings in units of kBT/nm2), and k+ = 4 s−1 µM−1 in Figure 4.5(b). The highlighted
parameter sets use the best growth parameter set (see Table 4.1).
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∆G0∗
long/kBT arup/

√
kBT brup/(kBT/nm)

−14.0 1.24 −0.25
−13.0 1.36 −0.13
−12.0 1.40 0.08
−11.0 1.36 0.10
−10.0 1.22 0.17
−9.0 1.07 0.30
−8.0 1.05 0.21

(a) k+ = 2 s−1 µM−1

∆G0∗
long/kBT arup/

√
kBT brup/(kBT/nm)

−14.0 1.32 −0.34
−13.0 1.46 −0.19
−12.0 1.52 −0.15
−11.0 1.49 −0.13
−10.0 1.34 −0.01
−9.0 1.17 0.35
−8.0 1.09 0.19

(b) k+ = 4 s−1 µM−1

Table C.4: Values of the parameters arup and brup from (4.12) of the fits shown in Figure 4.6(a)
and Figure 4.6(b).
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Additional Microtubule
Dynamics Figures and Tables D
In this appendix, we present microtubule trajectories and figures and data tables for sets of
mechanical parameters in addition to the standard set in Table 4.2.

D.1 Microtubule Trajectories

Some of the simulations whose trajectories are shown in this section, in particular those with
higher free GTP-tubulin dimer concentrations ctub and/or smaller hydrolysis rates kh, were
aborted due to runtime restrictions and thus did not reach tsim = 10 min.

While the results in Figure D.1, Figure D.2, and Figure D.3 are qualitatively similar to the results
in Table 4.2, the trajectories for the extremely high klat = 20 000 kBT/nm2 are different in that
they are “rougher”, i.e., there is a greater number of “micro-dips” and that for kh = 0.5 s−1 and
high values of ctub, the microtubules are still growing, but tend to slow down their growth.
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Figure D.1: Microtubule growth trajectories of 20 different simulations for each of the considered
values of the free GTP-tubulin dimer concentration ctub and the hydrolysis rate kh with k+ =
4 s−1 µM−1, ∆G0∗

long = −9.3 kBT , and klat = 1 kBT/nm2.
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Figure D.2: Microtubule growth trajectories of 20 different simulations for each of the considered
values of the free GTP-tubulin dimer concentration ctub and the hydrolysis rate kh with k+ =
4 s−1 µM−1, ∆G0∗

long = −9.3 kBT , klat = 1 kBT/nm2 and an initial cap length of NGTP = 20 per
protofilament.

Microtubule Trajectories 171



Figure D.3: Microtubule growth trajectories of 20 different simulations for each of the considered
values of the free GTP-tubulin dimer concentration ctub and the hydrolysis rate kh with k+ =
4 s−1 µM−1, ∆G0∗

long = −9.3 kBT , and klat = 10 kBT/nm2.
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Figure D.4: Microtubule growth trajectories of 20 different simulations for each of the considered
values of the free GTP-tubulin dimer concentration ctub and the hydrolysis rate kh with k+ =
4 s−1 µM−1, ∆G0∗

long = −9.3 kBT , and klat = 20 000 kBT/nm2.
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D.2 Catastrophe and Rescue Rate Values

ctub

kh 0.1 s−1 0.2 s−1 0.3 s−1 0.4 s−1 0.5 s−1

7 µM — — — — —
8 µM 0.89 min−1 — — — —
9 µM 0.11 min−1 — — — —

10 µM ∼ 0 1.14 min−1 — — —
11 µM ∼ 0 0.06 min−1 1.38 min−1 — (1.25 min−1)
12 µM ∼ 0 ∼ 0 0.46 min−1 2.67 min−1 (3.50 min−1)
13 µM ∼ 0 ∼ 0 0.04 min−1 0.75 min−1 2.67 min−1

14 µM ∼ 0 ∼ 0 ∼ 0 0.22 min−1 1.17 min−1

15 µM ∼ 0 ∼ 0 ∼ 0 0.02 min−1 0.21 min−1

16 µM ∼ 0 ∼ 0 ∼ 0 ∼ 0 0.02 min−1

(a) Catastrophe rates ωcat for different free GTP-tubulin dimer concentrations ctub and different hydrolysis
rates kh. For parameter combinations with “—” as catastrophe rate, no proper growth phase was observed,
so no catastrophe rates could be calculated. “∼ 0” is used to denote cases in which microtubules grew
during the whole simulation without any catastrophe resulting in catastrophe rates close to zero (at least
ωcat � 0.01 min−1). For values in parentheses, only one or two catastrophe happened.

ctub

kh 0.1 s−1 0.2 s−1 0.3 s−1 0.4 s−1 0.5 s−1

7 µM — — — — —
8 µM — — — — —
9 µM (0.27 min−1) — — — —

10 µM — (0.64 min−1) — — —
11 µM — — — — —
12 µM — — — — —
13 µM — — — — —
14 µM — — — — (0.52 min−1)
15 µM — — — — (0.17 min−1)
16 µM — — — — (0.52 min−1)

(b) Rescue rates ωres for different free GTP-tubulin dimer concentrations ctub and different hydrolysis
rates kh. For parameter combinations with “—” as rescue rate, no rescues were observed and for values in
parentheses only one or two rescues happened.

Table D.1: Catastrophe rates ωcat and rescue rates ωres for klat = 1 kBT/nm2, different free GTP-
tubulin dimer concentrations ctub, and different hydrolysis rates kh.

174 Additional Microtubule Dynamics Figures and Tables



ctub

kh 0.1 s−1 0.2 s−1 0.3 s−1 0.4 s−1 0.5 s−1

7 µM (1.43 min−1) — — — —
8 µM 0.17 min−1 — — — —
9 µM ∼ 0 1.09 min−1 — — —

10 µM ∼ 0 0.05 min−1 1.19 min−1 — —
11 µM ∼ 0 ∼ 0 0.31 min−1 1.21 min−1 (1.25 min−1)
12 µM ∼ 0 ∼ 0 ∼ 0 0.13 min−1 0.79 min−1

13 µM ∼ 0 ∼ 0 ∼ 0 ∼ 0 0.12 min−1

14 µM ∼ 0 ∼ 0 ∼ 0 ∼ 0 (0.01 min−1)
15 µM ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0
16 µM ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0

(a) Catastrophe rates ωcat for different free GTP-tubulin dimer concentrations ctub and different hydrolysis
rates kh. For parameter combinations with “—” as catastrophe rate, no proper growth phase was observed,
so no catastrophe rates could be calculated. “∼ 0” is used to denote cases in which microtubules grew
during the whole simulation without any catastrophe resulting in catastrophe rates close to zero (at least
ωcat � 0.01 min−1). For values in parentheses, only one or two catastrophe happened.

ctub

kh 0.1 s−1 0.2 s−1 0.3 s−1 0.4 s−1 0.5 s−1

7 µM — — — — —
8 µM — — — — —
9 µM — — — — —

10 µM — (0.36 min−1) — — —
11 µM — — (0.31 min−1) — —
12 µM — — (1.84 min−1) 1.38 min−1 (0.80 min−1)
13 µM — — — — 1.96 min−1

14 µM — — — — (4.78 min−1)
15 µM — — — — —
16 µM — — — — —

(b) Rescue rates ωres for different free GTP-tubulin dimer concentrations ctub and different hydrolysis
rates kh. For parameter combinations with “—” as rescue rate, no rescues were observed and for values in
parentheses only one or two rescues happened.

Table D.2: Catastrophe rates ωcat and rescue rates ωres for klat = 10 kBT/nm2, different free
GTP-tubulin dimer concentrations ctub, and different hydrolysis rates kh.
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(a) Catastrophe rate ωcat as a function of the free
GTP-tubulin dimer concentration ctub for klat =
1 kBT/nm2.

(b) Rescue rate ωres as a function of the free
GTP-tubulin dimer concentration ctub for klat =
1 kBT/nm2.

(c) Catastrophe rate ωcat as a function of the free
GTP-tubulin dimer concentration ctub for klat =
10 kBT/nm2.

(d) Rescue rate ωres as a function of the free
GTP-tubulin dimer concentration ctub for klat =
10 kBT/nm2.

Figure D.5: Comparison between our values for the catastrophe and rescue rates from Table D.1
and Table D.2 and the values measured by Walker et al.[49] and Janson et al.[204]
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Additional Mechanical
Hydrolysis Figures E
All data presented in this chapter are for our standard set of parameters with klat = 10 kBT/nm2

and κ = 75 kBT/rad2.

E.1 Hydrolysis Rates

(a) Average hydrolysis rate 〈kh〉 as a function of
the base hydrolysis rate k0h for different free GTP-
tubulin dimer concentrations ctub.

(b) Average hydrolysis rate 〈kh〉 as a function of
the free GTP-tubulin dimer concentration ctub for
different base hydrolysis rates k0h.

Figure E.1: Average hydrolysis rate 〈kh〉 calculated from the hydrolysis events executed in the
relevant simulations.
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(a) kh = 1.0 s−1 (b) kh = 1.5 s−1 (c) kh = 2.0 s−1

(d) kh = 2.5 s−1 (e) kh = 3.0 s−1 (f) kh = 3.5 s−1

(g) kh = 4.0 s−1 (h) kh = 4.5 s−1 (i) kh = 5.0 s−1

Figure E.2: Probability density ρprob of the actual hydrolysis rates kh for different base hydrolysis
rates k0h and free GTP-tubulin dimer concentrations ctub. ρprob was generated as a histogram with
a histogram bar width of ∆kh = 0.05 s−1. The cutoff k0h = 4 s−1 for the plots has been chosen as
beyond k0h = 4 s−1, ρprob is negligible.
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(a) Probability density ρprob of the actual hydrolysis
rates kh normalized by the base hydrolysis rate
k0h for different base hydrolysis rates k0h and free
GTP-tubulin dimer concentrations ctub. ρprob was
generated as a histogram with a histogram bar width
of ∆(kh/k

0
h) = 0.01.

(b) Relative occurrence probability of the average
bending angle 〈ψ̃〉 calculated via (6.6) using the kh
values from the left plot for the average bending
angles on the x-axis, while keeping the y-data the
same (and thus not making it probability density
anymore).

Figure E.3: Further analysis of the hydrolysis rate distribution and the resulting bending angle
distribution using the data in Figure E.2. The cutoffs on the x-axis for the plots have been chosen
so that beyond it, ρprob is negligible. Due to the large amount of indistinguishable individual lines
in the plots, no legend is given.
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E.2 Microtubule Trajectories and Catastrophe and
Rescue Rates

Figure E.4: Microtubule growth trajectories of 20 different simulations for each of the considered
values of the free GTP-tubulin dimer concentration ctub and the base hydrolysis rate k0h.
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ctub

k0h 1 s−1 2 s−1 3 s−1 4 s−1 5 s−1

7 µM — — — — —
8 µM — — — — —
9 µM — — — — —

10 µM — — — — —
11 µM 0.34 min−1 — — — —
12 µM 0.04 min−1 (0.27 min−1) — — —
13 µM ∼ 0 0.80 min−1 — — —
14 µM ∼ 0 0.26 min−1 (0.34 min−1) — —
15 µM ∼ 0 0.03 min−1 0.86 min−1 (0.39 min−1) —
16 µM ∼ 0 ∼ 0 0.15 min−1 0.52 min−1 —

(a) Catastrophe rates ωcat for different free GTP-tubulin dimer concentrations ctub and different base
hydrolysis rates k0h. For parameter combinations with “—” as catastrophe rate, no proper growth phase was
observed, so no catastrophe rates could be calculated. “∼ 0” is used to denote cases in which microtubules
grew during the whole simulation without any catastrophe resulting in catastrophe rates close to zero (at
least ωcat � 0.01 min−1). For values in parentheses, only one or two catastrophe happened.

ctub

k0h 1 s−1 2 s−1 3 s−1 4 s−1 5 s−1

7 µM — — — — —
8 µM — — — — —
9 µM — — — — —

10 µM — — — — —
11 µM — — — — —
12 µM 2.20 min−1 — — — —
13 µM — — — — —
14 µM — 4.36 min−1 — — —
15 µM — 8.34 min−1 2.17 min−1 — —
16 µM — — 7.68 min−1 1.47 min−1 —

(b) Rescue rates ωres for different free GTP-tubulin dimer concentrations ctub and different base hydrolysis
rates k0h. For parameter combinations with “—” as rescue rate, no rescues were observed and for values in
parentheses only one or two rescues happened.

Table E.1: Catastrophe rates ωcat and rescue rates ωres for different free GTP-tubulin dimer
concentrations ctub and different base hydrolysis rates k0h.
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(a) Catastrophe rate ωcat as a function of the free
GTP-tubulin dimer concentration ctub.

(b) Rescue rate ωres as a function of the free GTP-
tubulin dimer concentration ctub.

Figure E.5: Comparison between our values for the catastrophe and rescue rates from Table E.1
and the values measured by Walker et al.[49] and Janson et al.[204]
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GTP-Probability Distribution
in One-Dimensional Model F
Let us consider a one-dimensional microtubule model1 in which GTP-tubulin dimers can attach
with rate kon, the terminal dimer can detach with rate koff, and any GTP-tubulin dimer can
hydrolyze with rate kh. Tubulin dimers are indexed via their position i in the microtubule
counted from the plus end with i = 1 being the terminal tubulin dimer at the plus end. A
consequence of this choice of the starting point for the indices is that the index changes for all
tubulin dimers whenever a tubulin dimer attaches or detaches. In the following discussion, we
will only consider growing microtubules.

Let pGTP(i, t) be the probability of the tubulin dimer at position i and time t to be a GTP-
tubulin dimer. As a consequence, 1 − pGTP(i, t) is the probability of the tubulin dimer at
position i and time t to be a GDP-tubulin dimer. The time evolution of pGTP(i, t) for i > 1 is
given by[94]:

∂tpGTP(i, t) =− khpGTP(i, t)

+ kon
[
1− pGTP(i, t)

]
pGTP(i− 1, t)

− konpGTP(i, t)
[
1− pGTP(i− 1, t)

]
+ koff

[
1− pGTP(i, t)

]
pGTP(i+ 1, t)

− koffpGTP(i, t)
[
1− pGTP(i+ 1, t)

]
. (F.1)

The origin of the different terms of (F.1) are described in Figure F.1. Equation (F.1) can be
simplified to:

∂tpGTP(i, t) =− khpGTP(i, t) + kon
[
pGTP(i− 1, t)− pGTP(i, t)

]
+ koff

[
pGTP(i+ 1, t)− pGTP(i, t)

]
. (F.2)

For the terminal tubulin dimer at the plus end, we get the following boundary condition:

∂tpGTP(1, t) =− khpGTP(1, t) + kon
[
1− pGTP(1, t)

]
+ koff

[
1− pGTP(1, t)

]
pGTP(2, t)− koffpGTP(1, t)

[
1− pGTP(2)(t)

]
(F.3)

=− khpGTP(1, t) + kon
[
1− pGTP(1, t)

]
+ koff

[
pGTP(2, t)− pGTP(1, t)

]
. (F.4)

In the steady state ∂tpGTP(i, t) = 0, pGTP(i, t) does not change with t, thus pGTP(i, t) = pGTP(i)
so that the master equation (F.2) simplify to:

0 = −khpGTP(i) + kon
[
pGTP(i− 1)− pGTP(i)

]
+ koff

[
pGTP(i+ 1)− pGTP(i)

]
(F.5)

resulting in the following recursion equation for pGTP(i):

pGTP(i+ 1) = pGTP(i) +
kh
koff

pGTP(i) +
kon
koff

[
pGTP(i− 1)− pGTP(i)

]
(F.6)

1An equivalent name would be “single protofilament microtubule model”.
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(a) Illustration of the first term describing the decrease of pGTP(i, t) due to the hydrolysis of the GTP-
tubulin dimer at position i.

(b) Illustration of the second term describing the increase of pGTP(i, t) due to the polymerization of a
new GTP-tubulin dimer resulting in a shift of the tubulin dimers towards the minus end so that the
GTP-tubulin dimer at position i− 1 moves to position i, which was previously occupied by a GDP-tubulin
dimer.

(c) Illustration of the third term describing the decrease of pGTP(i, t) due to the polymerization of a
new GTP-tubulin dimer resulting in a shift of the tubulin dimers towards the minus end so that the
GDP-tubulin dimer at position i− 1 moves to position i, which was previously occupied by a GTP-tubulin
dimer.

(d) Illustration of the fourth term describing the increase of pGTP(i, t) due to the depolymerization of a
tubulin dimer resulting in a shift of the tubulin dimers towards the plus end so that the GTP-tubulin
dimer at position i+ 1 moves to position i, which was previously occupied by a GDP-tubulin dimer.

(e) Illustration of fifth term describing the decrease of pGTP(i, t) due to the depolymerization of a tubulin
dimer resulting in a shift of the tubulin dimers towards the plus end so that the GDP-tubulin dimer at
position i+ 1 moves to position i, which was previously occupied by a GTP-tubulin dimer.

Figure F.1: Illustrations of the individual terms (line by line) of the master equation (F.1) for
pGTP(i, t). The microtubule’s plus end position is on the right-hand side of the microtubules and
their minus end on the left-hand side.

=
kon + koff + kh

koff
pGTP(i)−

kon
koff

pGTP(i− 1) (F.7)

≡ αpGTP(i) + βpGTP(i− 1) (F.8)

with

α =
kon + koff + kh

koff
, (F.9)
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β = −kon
koff

. (F.10)

In the steady state, the boundary condition (F.4) simplifies to:

0 = −khpGTP(1) + kon(1− pGTP(1)) + koff
[
pGTP(2)− pGTP(1)

]
(F.11)

pGTP(2) = pGTP(1) +
kh
koff

pGTP(1) +
kon
koff

[
1− pGTP(1)

]
(F.12)

=
kon + koff + kh

koff
pGTP(1)−

kon
koff

(F.13)

= αpGTP(1) + β. (F.14)

Equation (F.8) is a homogeneous linear recurrence equation for which an ansatz

pGTP(i) = qi (F.15)

with q ∈ [0, 1] (as pGTP(i) is a probability) can be used to solve it:

qi+1 = αqi + βqi−1 (F.16)
q2 − αq = β (F.17)

q± =
1

2

(
α±

√
α2 + 4β

)
(F.18)

=
1

2

kon + koff + kh
koff

±

√(
kon + koff + kh

koff

)2

− 4
kon
koff

 (F.19)

=
kon + koff + kh

2koff

1±
√

1− 4konkoff

(kon + koff + kh)
2

 . (F.20)

To simplify the right-hand side of (F.20) further to check which solution satisfies q± ≤ 1, we
have to show that we can use Taylor expansion of the square root:

(kon + koff + kh)
2 > 4konkoff (F.21)

k2on + k2off + k2h + 2konkoff + 2konkh + 2koffkh > 4konkoff (F.22)
k2on − 2konkoff + k2off + k2h + 2konkh + 2koffkh > 0 (F.23)

(kon − koff)
2 + k2h + 2kh(kon + koff) > 0. (F.24)

As all rates are positive and we only consider growing microtubules, thus kon > koff, the
inequality is satisfied. With that shown, the right-hand side can be approximated as

q± ' kon + koff + kh
2koff

(
1± 1∓ 2konkoff

(kon + koff + kh)
2

)
(F.25)

and the two solutions are

q+ ' kon + koff + kh
2koff

(
2− 2konkoff

(kon + koff + kh)
2

)
(F.26)
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=
kon + koff + kh

koff
− kon
kon + koff + kh

(F.27)

q− ' kon + koff + kh
2koff

2konkoff

(kon + koff + kh)
2 (F.28)

=
kon

kon + koff + kh
(F.29)

The general solution is

pGTP(i) = Aqi+ +Bqi−. (F.30)

As kon > koff and kon > kh for steady-state growth, it follows that q+ > 1 and q− ∈ [0, 1] for
the approximations above so that A = 0:

pGTP(i) = Bqi−. (F.31)

To determine B, the boundary condition (F.14) has to be satisfied:

pGTP(1) = Bq− =
B

2

(
α−

√
α2 + 4β

)
(F.32)

pGTP(2) = Bq2− =
B

4

(
α2 − 2

√
α2 + 4β + α2 + 4β

)
(F.33)

=
B

2

(
α2 − α

√
α2 + 4β

)
+Bβ (F.34)

!
= αpGTP(1) + β (F.35)

=
B

2

(
α2 − α

√
α2 + 4β

)
+ β. (F.36)

Hence, it follows that

B = 1 (F.37)

and the solution is given by

pGTP(i) = qi− =

kon + koff + kh
2koff

1−
√
1− 4konkoff

(kon + koff + kh)
2



i

. (F.38)

From the simulation data, we do not calculate pi but create a histogram of how often the i-th
tubulin dimer is a GTP-tubulin dimer. To compare results between different simulations with
different numbers of measurements, we will calculate the probability density:

ρprob(i) = CpGTP(i) (F.39)

with

1
!
=

∞∑
i=1

ρprob(i) =

∞∑
i=0

ρprob(i+ 1) = C

∞∑
i=0

qi+1
− =

Cq−
1− q−

(F.40)
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Figure F.2: Probability density ρprob to find a GTP-tubulin dimer at position i (from the micro-
tubule’s plus end) for koff = 1 s−1, kh = 0.5 s−1, and different values of kon. The data points are the
results of one-dimensional microtubule simulations and the lines are the expected results according
to (F.42). Deviations from the expected result for very small values of ρprob, in particular for
kon = 10 s−1 are due to small samples sizes for the corresponding high values of i.

from which C follows as

C =
1− q−
q−

(F.41)

and the relevant probability density as

ρprob(i) = (1− q−)q
i−1
− . (F.42)

To validate (F.42), we have implemented a simple one-dimensional microtubule simulation
and calculated ρprob(i) from the simulation data. Figure F.2 shows that the simulation data
perfectly reproduces the expected result given in (F.42).

An alternative approach is to start with the steady-state equation (F.5), and consider the
difference in the GTP-tubulin dimer probability pGTP at neighboring positions as the derivative
of pGTP with respect to the position i:

pGTP(i− 1)− pGTP(i) = −pGTP(i)− pGTP(i− 1)

i− (i− 1)
' − ∂pGTP(i)

∂i
, (F.43)

pGTP(i+ 1)− pGTP(i) =
pGTP(i+ 1)− pGTP(i)

(i+ 1)− i
' ∂pGTP(i)

∂i
. (F.44)
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Using i as a continuous variable with i ∈ [1,∞), (F.5) becomes a differential equation for the
GTP-tubulin dimer probability pGTP:

∂pGTP(i)

∂i
= − kh

kon − koff
pGTP(i) (F.45)

with the solution

pGTP(i) = pGTP(1) exp

(
−
∫ i

1
dj kh
kon − koff

)
(F.46)

= pGTP(1) exp
(
− kh
kon − koff

(i− 1)

)
. (F.47)

As we are again considering a probability density (F.39), it must also hold that∫ ∞

1
di ρprob(i) = 1 (F.48)

resulting in

ρprob(i) =
kh

kon − koff
exp

(
− kh
kon − koff

(i− 1)

)
. (F.49)

Normally, approximating a difference quotient with a derivative only works for small differences
between neighboring positions. As in our model this difference is, by definition, always ∆i = 1,
the approximation can alternatively be viewed as valid if i spans a large interval of values so that
∆i = 1 is comparably small to the overall length of the interval and changes between neighboring
ρprob become smaller. Figure F.3 shows that indeed, the approximation is insufficient for small
values of kon, which also in turn results in a smaller maximum value of i, thus a smaller interval
of i values. However, the larger the value of kon becomes, the better the exponential version
(F.49) of ρprob(i) fits the simulation data.

From (F.49), we can define a characteristic cap length Lcap as the denominator in the exponential
function

ρprob(i) =
1

Lcap
exp

(
− i− 1

Lcap

)
(F.50)

with

Lcap =
kon − koff

kh
. (F.51)

To get a better understanding of the characteristic cap length (F.51), we consider the GTP-
tubulin dimer current jon into the microtubule from the polymerization and depolymerization
dynamics given by

jon = kon − koff =
vgr
`dim

. (F.52)

It should be noted that (F.52) is only the best possible simple approximation to this current
because it assumes that the off-part of the current (koff) is entirely made up of GTP-tubulin
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Figure F.3: Probability density ρprob to find a GTP-tubulin dimer at position i (from the micro-
tubule’s plus end) for koff = 0.5 s−1, kh = 0.5 s−1, and different values of kon. The data points
are results from one-dimensional microtubule simulations and the lines are the expected results
according to (F.49).

dimers, while in reality, it also contains GDP-tubulin dimers. As depolymerization is only
possible for the terminal tubulin dimer in this one-dimensional model and because this terminal
tubulin dimer has the highest probability of being a GTP-tubulin dimer, see Figure F.2, this
approximation is acceptable.

The second current related to GTP-tubulin dimers is the hydrolysis current jh that describes
the conversion of GTP-tubulin dimers due to hydrolysis into GDP-tubulin dimers and is given
by

jh = NGTPkh. (F.53)

In the steady state, both currents (F.52) and (F.53) balance each other out resulting in:

jon = jh ⇐⇒ NGTP =
kon − koff

kh
. (F.54)

Thus, the characteristic cap length (F.51) from the spatial GTP-tubulin dimer distribution
(F.49) is simply the total number of GTP-tubulin dimers. From all three “types” of GTP-caps,
we have considered, the continuous GTP-cap (Ncap) is the shortest, followed by the characteristic
cap length (Lcap = NGTP), and the porous GTP-cap (Npcap) being the longest.
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Additional Microtubule
Properties Figures and Data G
G.1 GTP-Cap Length

(a) kh = 0.10 s−1 (b) kh = 0.15 s−1

(c) kh = 0.20 s−1 (d) kh = 0.25 s−1

(e) kh = 0.30 s−1 (f) kh = 0.40 s−1

Figure G.1: The GTP-cap length distribution p(Ncap) for different constant hydrolysis rates kh
and different free GTP-tubulin dimer concentrations ctub. The lines are fits using the fit function
a(Ncap + b) exp

[
−0.5a(Ncap + b)2

]
.
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G.2 Porous GTP-Cap Length

(a) kh = 0.10 s−1 (b) kh = 0.15 s−1

(c) kh = 0.20 s−1 (d) kh = 0.25 s−1

(e) kh = 0.30 s−1 (f) kh = 0.40 s−1

(g) kh = 0.50 s−1

Figure G.2: Probability pGTP to find a GTP-tubulin dimer at the distance ∆dtip from the tip of
its protofilament for different hydrolysis rates kh and free GTP-tubulin dimer concentrations ctub.
(Due to the large amount of data, it is plotted as lines instead of individual data points.)
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ctub

kh 0.10 s−1 0.15 s−1 0.20 s−1 0.25 s−1 0.30 s−1 0.40 s−1 0.50 s−1

7 µM (0.106) (0.132) (0.138) (0.148) (0.154) (0.148) (0.155)
8 µM 0.061 0.104 (0.134) (0.143) (0.146) (0.153) (0.148)
9 µM 0.043 0.070 0.101 0.135 (0.145) (0.153) (0.152)

10 µM 0.033 0.051 0.072 0.097 0.123 (0.170) (0.165)
11 µM 0.027 0.041 0.057 0.074 0.092 0.134 (0.175)
12 µM 0.022 0.034 0.047 0.060 0.074 0.104 0.137
13 µM 0.019 0.030 0.040 0.051 0.063 0.086 0.112
14 µM 0.017 0.026 0.035 0.044 0.054 0.074 0.095
15 µM 0.015 0.023 0.031 0.039 0.047 0.065 0.083
16 µM 0.014 0.021 0.028 0.035 0.042 0.058 0.073

Table G.1: Exponential distribution parameter λ (see (7.23)) for the GTP-tubulin dimer distribu-
tions in Figure G.2. The values in parentheses are for parameter sets for which the exponential fit
only matches the first few data points due to ctub < ccrit, see the relevant lines in Figure G.2.
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Additional Individual
Microtubule Trajectory Figures H
In this appendix, we present the three-dimensional configuration snapshots of the same configu-
rations shown in two dimensions in chapter 8.
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(a) Catastrophe from Figure 8.1(a).

(b) Catastrophe from Figure 8.1(b).

Figure H.1: Three-dimensional configuration snapshots around the catastrophes shown in Figure 8.1.
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Figure H.2: Three-dimensional configuration snapshots around the rescue shown in Figure 8.1(b).
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(a) Catastrophe from Figure 8.6(a).

(b) Catastrophe (C4) from Figure 8.6(b).

Figure H.3: Three-dimensional configuration snapshots around catastrophes shown in Figure 8.6.
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Figure H.4: Three-dimensional configuration snapshots around rescue (R1) shown in Figure 8.6(b).
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Figure H.5: Three-dimensional configuration snapshots around rescue (R3) shown in Figure 8.6(b).
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Additional Dilution Figures I
In the main chapter on dilution, chapter 9, we only presented the results for a pre-dilution free
GTP-tubulin dimer concentration of ctub = 16 µM. Here, we show additional results for smaller
values of ctub, which are qualitatively similar to the previously shown results for ctub = 16 µM.

(a) cdil = 0 µM, kh = 0.1 s−1 (b) cdil = 0 µM, kh = 0.3 s−1 (c) cdil = 0 µM, kh = 0.5 s−1

(d) cdil = 3 µM, kh = 0.1 s−1 (e) cdil = 3 µM, kh = 0.3 s−1 (f) cdil = 3 µM, kh = 0.5 s−1

(g) cdil = 6 µM, kh = 0.1 s−1 (h) cdil = 6 µM, kh = 0.3 s−1 (i) cdil = 6 µM, kh = 0.5 s−1

Figure I.1: Microtubule trajectories of dilution simulations for ctub = 16 µM, tdil = 1 min, different
post-dilution concentrations cdil, and different hydrolysis rates kh. The associated average delay
times 〈∆tdelay〉 are shown in Figure 9.3(a).
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(a) ctub = 10 µM (b) ctub = 11 µM

(c) ctub = 12 µM (d) ctub = 13 µM

(e) ctub = 14 µM (f) ctub = 15 µM

Figure I.2: The average post-dilution delay time 〈∆tdelay〉 as a function of the hydrolysis rate kh
for different pre-dilution concentrations ctub and post-dilution concentrations cdil.
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(a) ctub = 10 µM (b) ctub = 11 µM

(c) ctub = 12 µM (d) ctub = 13 µM

(e) ctub = 14 µM (f) ctub = 15 µM

Figure I.3: The average GTP-cap length 〈Ncap〉 at the time of dilution tdil as a function of the
average post-dilution delay time 〈∆tdelay〉 for different pre-dilution concentrations ctub and post-
dilution concentrations cdil.
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(a) ctub = 10 µM (b) ctub = 11 µM

(c) ctub = 12 µM (d) ctub = 13 µM

(e) ctub = 14 µM (f) ctub = 15 µM

Figure I.4: The average post-dilution delay time 〈∆tdelay〉 as a function of the base hydrolysis rate
k0h for different pre-dilution concentrations ctub and post-dilution concentrations cdil.
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(a) ctub = 10 µM (b) ctub = 11 µM

(c) ctub = 12 µM (d) ctub = 13 µM

(e) ctub = 14 µM (f) ctub = 15 µM

Figure I.5: The average rate 〈kh〉 of executed hydrolysis events increases with the base hydrolysis
rate k0h for different pre-dilution concentrations ctub and is independent of the different post-dilution
concentrations cdil.
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(a) ctub = 10 µM (b) ctub = 11 µM

(c) ctub = 12 µM (d) ctub = 13 µM

(e) ctub = 14 µM (f) ctub = 15 µM

Figure I.6: The average post-dilution delay time 〈∆tdelay〉 as a function of the average hydrolysis
rate 〈kh〉 for different pre-dilution concentrations ctub and different post-dilution concentrations
cdil.
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Symbols

Lp persistence length [µm]
LMT microtubule length [µm]
vgr velocity with which a microtubule grows [µm min−1]
vsh velocity with which a microtubule shrinkage [µm min−1]
kon polymerization rate [s−1]
koff depolymerization rate [s−1]
rtub radius of tubulin monomers in our model, value: 2 nm
`tub length of tubulin monomers in our model, value: 4 nm
p protofilament index, values: {1, . . . , 13}
dmax(p) number of tubulin dimers in protofilament p
d tubulin dimer index within a protofilament, values: {1, . . . , dmax}
t tubulin monomer index within a tubulin dimer, values: {1, 2}
φ(p) azimuthal angle of all tubulin monomers in protofilament p [rad]
θ(p, d, t) polar angle of tubulin monomers (p, d, t) [rad]
m(p, d, t) vector pointing to minus end of tubulin monomer (p, d, t)
p(p, d, t) vector pointing to plus end of tubulin monomer (p, d, t)
d(p, d, t) direction vector of tubulin monomer (p, d, t)
RMT average microtubule radius, value: 10.5 nm
∆zh helical shift between protofilaments, value: 0.92 nm
Lproto(p) length of protofilament p
c(p, d, t) vector connecting p(p, d, t) with the point on the surface of tubulin monomer

(p, d, t) at which the lateral bond to tubulin monomer (p+ 1, d, t) starts
s(p, d, t) spring vector representing lateral bond from monomer (p, d, t) to monomer

(p+ 1, d, t)
s0 rest length of spring vector representing lateral bonds [nm]
s0,‖ length of the projection of a lateral spring at its rest length into the x-y-plane
s0,⊥ length of the projection of a lateral spring at its rest length onto the z-axis
∆G0∗

long longitudinal bond energy between tubulin dimers [kBT ]
Elat(p, d, t) energy of the lateral bond between laterally neighboring tubulin monomers

(p, d, t) and (p+ 1, d, t) [kBT ]
∆G0

lat lateral bond energy between tubulin monomers at equilibrium [kBT ]
klat spring constant of lateral bonds [kBT/nm2]
krep lateral repulsion constant [kBTnm−12]
Ebend(p, d, t) bending energy of tubulin monomer (p, d, t) [kBT ]
κ bending constant [kBT/rad2]
ψ(p, d, t) bending angle of tubulin monomer (p, d, t) [rad]
ψ0(p, d, t) equilibrium bending angle of tubulin monomer (p, d, t) [rad]
∆ψ(p, d, t) deviation of the bending angle of tubulin monomer (p, d, t) from its equilibrium

value [rad]
EMT total microtubule energy [kBT ]
Pn polymer consisting of n monomers
M monomer of a polymer
Kdiss dissociation constant
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∆G0 general bond energy [kBT ]
c concentration [µM]
c0 standard concentration, value: 1 M
β thermodynamic beta: β = (kBT)−1

k+ pseudo-first order polymerization rate [s−1 µM−1]
ctub GTP-tubulin dimer concentration [µM]
krup lateral bond formation rate [s−1]
kform lateral bond rupture rate [s−1]
katt lateral bond formation/rupture attempt rate [s−1]
Flat force acting on a lateral bond [kBT/nm]
`rup characteristic lateral bond rupture length [nm]
kh hydrolysis rate [s−1]
k0h constant base hydrolysis rate if hydrolysis is coupled to mechanics [s−1]
∆Eh(p, d) change in hydrolysis energy barrier if hydrolysis is coupled to mechanics [kBT ]
ψ0,b position of the energy barrier on the ψ0-axis that limits the hydrolysis rate [°]
∆Eh,b height of unaltered energy barrier that limits the hydrolysis rate [kBT ]
ωcat rate with which a microtubule undergoes a catastrophe [min−1]
ωres rate with which a microtubule undergoes a rescue [min−1]
NGDP (initial) number of GDP-tubulin dimers per protofilament
NGTP (initial) number of GTP-tubulin dimers per protofilament
tsim time passed within the microtubule simulation [s]
tmax maximum time than can pass within the microtubule simulation [s]
∆dcutoff number of additional layer below a layer affected by an event that are also

considered during restricted minimization
Niter maximum number of minimization iterations during restricted minimization
agr slope of the linear vgr(ctub) relation
bgr intercept of the linear vgr(ctub) relation
keff

on effective polymerization rate
keff

form effective lateral bond formation rate
ccrit critical free GTP-tubulin dimer concentration at which vgr = 0 [µM]
ash constant factor of the

√
klat term in the κ(klat) relation [

√
kBTnm rad−2]

bsh constant term in the κ(klat) relation [kBT/rad2]
Fbend bending force [kBT/rad]
Frup lateral bond force during bond rupture [kBT/nm]
arup constant factor of the

√
klat term in the Frup(klat) relation [

√
kBT ]

brup constant term in the Frup(klat) relation [kBT/nm]
crup constant factor of the

√
klat

−1 term in the Frup(klat)`rup(klat) relation
[
√

kBT/nm]
drup constant term in the Frup(klat)`rup(klat) relation [kBT/nm2]
Npoly number of polymerization events
Ndepoly number of depolymerization events
Nform number of lateral bond formation events
Nrup number of lateral bond rupture events
Kb bending rigidity [kBTnm]
t̂ unit tangent vector
s position along the contour of a polymer [nm]
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tcat average time a microtubule grows until it undergoes a catastrophe [min]
trun runtime of a simulation [h]
Ncap average number of GTP-tubulin dimers in the GTP-cap of a microtubule

per protofilament or number of GTP-tubulin dimers in the GTP-cap of an
individual protofilament

p probability
τcat time at which a microtubule undergoes a catastrophe [min]
τresc time at which a microtubule undergoes a rescue [min]
Ncat number of catastrophes
Nresc number of rescues
aJan parameter in the ωcat(ctub) relation according to data by Janson et al.[204]

[min µM−1]
bJan parameter in the ωcat(ctub) relation according to data by Janson et al.[204]

[min]
Npcap counted from the plus end of the microtubule, the average position of the last

GTP-tubulin dimer per protofilament or the position of the last GTP-tubulin
dimer of an individual protofilament

∆dtip distance of a tubulin dimer from the tip of the protofilament (with ∆dtip = 0
for the tubulin dimer directly at the plus end)

keff
off effective depolymerization rate when mapping our three-dimensional model

to a one-dimensional model [s−1]
ρprob probability density
Lisl number of GTP-tubulin dimers in a GTP-island
Nisl number of GTP-islands in a protofilament
kgr growth rate [s−1]
τrough tip roughness, i.e., the difference in the number of tubulin dimers in neigh-

boring protofilaments
Ncrack number of laterally neighboring tubulin monomers at the plus end, which do

not have a bond connecting them, resulting in a crack
∆nucleus width a shrinking nucleus, i.e., neighboring protofilaments that have shrunken

more than the other protofilaments
cdil GTP-tubulin dimer concentration after dilution [µM]
tdil time at which the GTP-tubulin dimer concentration is changed from ctub to

cdil in dilution experiments/simulations [min]
Ldil length of a microtubule at the time of dilution that it can also approximately

keep in the following delay phase [µm]
adelay constant factor of the k−0.5

h term in the 〈∆tdelay〉(kh) relation, [
√

s]
bdelay constant term in the 〈∆tdelay〉(kh) relation [s]
Lcap characteristic cap length
jon GTP-tubulin dimer current into the microtubule from polymerization and

depolymerization [s−1]
`dim length of a tubulin dimer, value: 8 nm
jh GTP-tubulin dimer current out of the microtubule due to hydrolysis [s−1]
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