
Machine Learning Applied to Radar Data:

Classification and Semantic Instance

Segmentation of Moving Road Users

Von der Fakultät für
Elektrotechnik und Informationstechnik
der Technischen Universität Dortmund

genehmigte

Dissertation

zur Erlangung des Grades

Doktor der Naturwissenschaften
(Dr. rer. nat.)

eingereicht von

Ole Schumann

Dortmund, 2021

Tag der mündlichen Prüfung: 16.03.2021

Hauptreferent: Prof. Dr. rer. nat. Christian Wöhler

Korreferent: Prof. Dr.-Ing. Klaus Dietmayer

Ole Schumann, M. Sc.: Machine Learning Applied to Radar Data: Classification and
Semantic Instance Segmentation of Moving Road Users, Arbeitsgebiet Bildsignalverar-
beitung, Technische Universität Dortmund, © March 2021.

A B S T R A C T

Classification and semantic instance segmentation applications are rarely consid-
ered for automotive radar sensors. In current implementations, objects have to be
tracked over time before some semantic information can be extracted. In this thesis,
data from a network of 77 GHz automotive radar sensors is used to construct, train
and evaluate machine learning algorithms for the classification of moving road
users. The classification step is deliberately performed early in the process chain so
that a subsequent tracking algorithm can benefit from this extra information. For
this purpose, a large data set with real-world scenarios from about 5 h of driving
was recorded and annotated.

Given that the point clouds measured by the radar sensors are both sparse and
noisy, the proposed methods have to be sensitive to those features that discern the
individual classes from each other and at the same time, they have to be robust to
outliers and measurement errors. Two groups of applications are considered: classi-
fication of clustered data and semantic (instance) segmentation of whole scenes.
In the first category, specifically designed density-based clustering algorithms are
used to group individual measurements to objects. These objects are then used
either as input to a manual feature extraction step or as input to a neural network,
which operates directly on the bare input points. Different classifiers are trained
and evaluated on these input data.

For the algorithms of the second category, the measurements of a whole scene
are used as input, so that the clustering step becomes obsolete. A newly designed
recurrent neural network for instance segmentation of point clouds is utilized. This
approach outperforms all of the other proposed methods and exceeds the baseline
score by about ten percentage points.

In additional experiments, the performance of human test candidates on the same
task is analyzed. This study shows that temporal correlations in the data are of
great use for the test candidates, who are nevertheless outrun by the recurrent
network.

iii

Them bats is smart. They use radar!

— David Letterman

A C K N O W L E D G M E N T S

Writing an external PhD thesis requires that a common understanding about its
contents is shared among all parties concerned. I am extremely grateful that my
two supervisors, Prof. Christian Wöhler at TU Dortmund and Dr. Markus Hahn
at Daimler, not only quickly agreed on the basic topic but also gave me all the
freedom one could wish for to develop my own ideas and to go after my research
interests.

I want to thank Prof. Christian Wöhler for his valuable feedback, his constructive
criticism and his openness in every situation. From our first phone call onward,
I enjoyed his down-to-earth views, his positive support as well as his words of
caution, which turned out to be valuable in the following years. He cushioned the
impact of drastic modifications in the organizational structure at Daimler, and his
encouragement to pursue one of the emerging possibilities made the subsequent
adaptions much easier for me.

I am also grateful for his support in administrative tasks at TU Dortmund, especially
for his commitment related to changes in the examination regulations. In this
context, I would like to thank Prof. Rehtanz for the kind communication and his
willingness to liberalize the rules for PhD candidates from other disciplines.

I want to thank Dr. Markus Hahn for his innovative ideas, his contagious positive
attitude and his amazing support from the first minute onward. Without him,
this thesis would not have been possible in this form. His feedback and advice
always helped me to do the next step and to overcome the many challenges and
hurdles that presented themselves. Having him as a supervisor at Daimler was of
inestimable value for me.

I thank all “Radar Doks” for the inspiring discussions we had, the honest feedback
we shared and the mutual support we gave each other. Working with you really
eased the whole process and made it fun to come to work. I thank the Radar team
at Daimler – including the Ulm colleagues who left the company – for helping
me out whenever needed and giving me valuable tips about the life in a major
corporation.

v

I want to thank everybody who helped me counterchecking my thesis and giving
me ideas how to visualize some data.

I am grateful to my family for everything they have done for me and for always
supporting me in any possible way. Last, but definitely not least, I want to thank
my wife for her endless support, understanding and love.

Thank you!

vi

P U B L I C AT I O N S

The following list contains all publications related to this thesis that were released
beforehand in workshops, conference proceedings or journals.

1. O. Schumann, M. Hahn, J. Dickmann, C. Wöhler, “Comparison of random
forest and long short-term memory network performances in classification
tasks using radar”, in 2017 Sensor Data Fusion: Trends, Solutions, Applications
(SDF), https://doi.org/10.1109/SDF.2017.8126350, 2017.

2. O. Schumann, M. Hahn, J. Dickmann, C. Wöhler, “Supervised Clustering
for Radar Applications: On the Way to Radar Instance Segmentation”, in
2018 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility,
ICMIM 2018, https://doi.org/10.1109/ICMIM.2018.8443534, 2018.

3. M. Horn, O. Schumann, M. Hahn, J. Dickmann, K. Dietmayer, “Motion
Classification and Height Estimation of Pedestrians Using Sparse Radar
Data”, in 2018 Sensor Data Fusion: Trends, Solutions, Applications (SDF), https:
//doi.org/10.1109/SDF.2018.8547092, 2018.

4. O. Schumann, M. Hahn, J. Dickmann, C. Wöhler, “Semantic Segmentation
on Radar Point Clouds”, in 2018 21st International Conference on Information
Fusion (FUSION), https://doi.org/10.23919/ICIF.2018.8455344, 2018.

5. N. Scheiner, O. Schumann, “Machine Learning Concepts For Multiclass
Classification Of Vulnerable Road Users”, in 16th European Radar Conference
(EuRAD 2019), Presentation in a workshop, 2019.

6. O. Schumann, J. Lombacher, M. Hahn, C. Wöhler, J. Dickmann, “Scene Under-
standing with Automotive Radar”, in IEEE Transactions on Intelligent Vehicles,
vol 5, no. 2, https://doi.org/10.1109/TIV.2019.2955853, 2020.

The next list contains publications which are not directly linked to the contents of
this thesis.

1. J. Tilly, F. Weishaupt, O. Schumann, J. Klappstein, J. Dickmann, G. Wanielik,
“Polarimetric Signatures of a Passenger Car”, in IEEE 2019 Kleinheubach Con-
ference, https://ieeexplore.ieee.org/document/8890117, 2019.

vii

https://doi.org/10.1109/SDF.2017.8126350
https://doi.org/10.1109/ICMIM.2018.8443534
https://doi.org/10.1109/SDF.2018.8547092
https://doi.org/10.1109/SDF.2018.8547092
https://doi.org/10.23919/ICIF.2018.8455344
https://doi.org/10.1109/TIV.2019.2955853
https://ieeexplore.ieee.org/document/8890117

2. O. Schumann, J. Dickmann, J. Lombacher, N. Scheiner, “AI in automotive
Radar”, in 22nd European Microwave Week (EuMW 2019) – Automotive Fo-
rum, Presentation in a workshop, https://doi.org/10.13140/RG.2.2.10544.
38407, 2019.

3. N. Scheiner, O. Schumann, F. Kraus, N. Appenrodt, J. Dickmann, B. Sick, “Off-
the-shelf sensor vs. experimental radar – How much resolution is necessary
in automotive radar classification?”, in 2020 23rd International Conference on
Information Fusion (FUSION), 2020.

4. J. Tilly, S. Haag, O. Schumann, F. Weishaupt, B. Duraisamy, J. Dickmann, M.
Fritzsche, “Detection and Tracking on Automotive Radar Data with Deep
Learning”, in 2020 23rd International Conference on Information Fusion (FU-
SION), 2020.

The following master’s thesis was supervised:

1. M. Horn, “Motion Classification and Height Estimation of Pedestrians Using
Sparse Radar Data”. Ulm University, 2018.

viii

https://doi.org/10.13140/RG.2.2.10544.38407
https://doi.org/10.13140/RG.2.2.10544.38407

C O N T E N T S

1 Introduction 1

2 Fundamentals of Machine Learning 3

2.1 Supervised Learning . 5

2.1.1 The Random Forest Classifier 7

2.1.2 Artificial Neural Networks . 15

2.2 Unsupervised Learning . 25

2.3 Semi-Supervised Learning . 27

3 Fundamentals of Automotive Radar 29

3.1 Introduction to Radar Signal Processing 32

3.1.1 Range and Doppler Estimation 34

3.1.2 Azimuth Angle Estimation . 36

3.1.3 Ambiguities and Resolution Limits in Range, Doppler and
Angle . 39

3.1.4 Target Extraction . 43

3.2 Coordinate Systems . 46

3.3 Ego-Motion Compensation . 51

3.4 Clutter . 53

4 Data Recording, Annotation and Measurement Statistics 55

4.1 Sensor Setup and Recording Procedure 56

4.2 Labeling . 61

4.3 Artifacts and Labeling Challenges . 66

4.4 Description of the Data Set . 70

4.4.1 General Properties . 71

4.4.2 Spatial Distribution of Labeled Objects 75

4.4.3 Distribution of Doppler Values 77

4.4.4 Radar Cross Sections of Different Road Users 79

4.4.5 Measurements of Three Different Bicycles 82

5 Clustering of Radar Data 87

5.1 State of the Art . 88

5.1.1 DBSCAN . 88

5.1.2 DBSCAN Variants . 90

ix

x contents

5.1.3 Clustering Applied to Radar Data 92

5.1.4 Simulated Annealing . 93

5.2 Supervised Clustering . 95

5.2.1 Score Function to Assess Clustering Results 98

5.2.2 Method and Training . 100

5.2.3 Evaluation . 102

6 Classification of Clustered Radar Data 107

6.1 State of the Art . 108

6.2 Comparison of Different Feature Based Approaches 111

6.2.1 Feature Extraction . 111

6.2.2 Random Forest . 115

6.2.3 Long Short-Term Memory Network 126

6.3 Automatic Feature Extraction . 132

6.3.1 Classification with PointNet++ 133

6.3.2 PointNet++ as Feature Extractor, LSTM as Classifier 137

6.4 Human Performance . 139

6.4.1 Experimental Setup . 139

6.4.2 Results . 140

6.5 Motion Classification and Body Height Estimation of Pedestrians . . 143

6.5.1 Motion Type Classification . 144

6.5.2 Height Estimation . 147

6.6 Comparison and Summary . 149

7 Semantic (Instance) Segmentation of Radar Point Clouds 155

7.1 State of the Art . 156

7.1.1 Neural Network Architectures for Semantic (Instance) Seg-
mentation . 156

7.1.2 Works on Point Cloud Data . 157

7.1.3 Works on Radar Data . 160

7.2 Methods . 161

7.2.1 Semantic Segmentation . 161

7.2.2 Recurrent Instance Segmentation 164

7.3 Results . 171

7.3.1 Per-Target Evaluation . 171

7.3.2 Feature Importance . 174

7.3.3 Dependence on Sequence Length 176

7.3.4 Evaluation per Object Instance 178

7.3.5 Ensemble Learning . 181

7.4 Human Performance . 183

7.4.1 Experimental Setup . 183

7.4.2 Results . 184

contents xi

7.5 Comparison and Summary . 186

8 Conclusion 189

A Appendix 191

A.1 Five Ingredients for Supervised Learning 191

A.2 Spatial Distribution of Radar Targets 198

A.3 Radar Cross Sections . 201

A.4 Cluster Learning Results . 203

A.5 Parameters of the Instance Segmentation Network 205

A.6 Example Predictions of the Instance Segmentation Network 206

Bibliography 209

List of Figures 233

List of Tables 243

List of Acronyms 244

1
I N T R O D U C T I O N

Radar sensors are frequently used in the automotive field, e.g. for driver assistance
systems. Their robustness to adverse weather conditions, the possibility to measure
not only the position of an object but also its radial velocity and their low price
make radar sensors a viable solution for various applications. Often, however, these
sensors are only used for their eponymous tasks – detection and ranging. Semantic
information about a detected object is either not considered at all or only available
after an object has been tracked over a certain period. Especially due to the low
angular resolution of most automotive radars, little information is available for
each object so that classification algorithms have to deal with sparse and noisy
data. Usually, cameras and lidar sensors are used for the understanding of the
environment due to their high angular resolution and dense data representation.
Given the increasing requirements on the perception side of autonomous driving
systems, it has to be re-evaluated if additional class information from a radar sensor
becomes relevant.

In the last years, machine learning algorithms gained popularity. The widespread
use of these type of algorithms has three causes: availability of data, potent com-
puter hardware and convincingly high performance. Especially for the image
community, many publicly available data sets make it easy for researchers to de-
velop new algorithms and to compare them to existing ones using standardized
benchmarks. With modern GPUs, both training and evaluation of large neural
networks becomes feasible and the accuracy of many machine learning based
perception systems is a convincing argument against more traditional approaches.

At the most basic level, the distinction between truly moving road users and noisy
measurements is relevant for almost all driving tasks. In order to estimate how
other road users currently move and to predict where they will be in the next
few seconds, tracking algorithms are needed. Semantic information can help to
choose the correct motion model for a tracking algorithm and therefore allow for
a more reliable tracking and prediction. Functional safety considerations suggest
that multiple redundant sensors should provide the needed information so that it
is reasonable to maximize each sensor’s capabilities.

1

2 introduction

In this thesis, different machine learning based methods are proposed, extended
and analyzed which provide semantic information for moving road users based on
data measured by off-the-shelf automotive radar sensors. Further information about
the static environment is not provided. The goal is to provide semantic information
as early as possible, so that subsequent processing steps like a tracking algorithm
can profit from it. Hence, the approach followed in this work inverts the usual
order in which reliable tracking is needed before any classification can be done.

This thesis is structured as follows. In the next two chapters, basic information
about the machine learning algorithms used in this work is given and the funda-
mental measurement principle of radar sensors is introduced. These two chapters
summarize currently available knowledge and contain no own contribution, except
for bringing this material together. Excluding the “State of the Art” sections, the
following five chapters contain own material that was partly published beforehand
in [105], [232]–[235].

In Chapter 4, the data set that was recorded for this thesis is described and the
annotation process is explained. Furthermore, radar cross sections of different road
users are presented and it is analyzed how different bicycle types look like for a
radar sensor.

Grouping of individual radar measurements to objects is discussed in Chapter 5,
where clustering methods are introduced and a supervised component is added to
a usually unsupervised density based clustering algorithm. Adding domain knowl-
edge to the clustering step proofs to be beneficial in the subsequent classification
steps, which are discussed in detail in Chapter 6. Three different classifiers are
confronted with the problem of assigning the correct class label to the extracted
clusters. Methods relying on a manual feature extraction step are compared to a
setting where a neural network generates the relevant features on its own. To insert
temporal information into the classification process, recurrent neural networks are
used as well.

To eliminate the difficult clustering step, semantic (instance) segmentation networks
are considered in Chapter 7. A novel recurrent network structure is introduced
that provides not only semantic segmentation for each input point but also groups
measurements of the same instance together.

For the classification task as well as for the semantic segmentation, experiments
with human annotators are performed to assess how well humans perform on the
same exercise.

The last sections of Chapters 5, 6 and 7 summarize the main findings of each
chapter and a global recap is given in Chapter 8.

2
F U N D A M E N TA L S O F M A C H I N E
L E A R N I N G

In 1988, the Austrian scientist Hans Moravec wrote in his book “Mind Children”
that

“[...] it is comparatively easy to make computers exhibit adult-level
performance [...] on intelligence tests or playing checkers, and difficult
or impossible to give them the skills of a one-year-old when it comes to
perception and mobility.” [168]

Similar statements were previously made by himself, Rodney Brooks and Marvin
Minsky and are today summarized under the term “Moravec’s paradox”. The core
statement is that in contrast to logical and abstract reasoning, sensorimotor skills
are exceptionally difficult to implement in robots. For example, a computer can
easily integrate a system of (complex-valued) differential equations – a task that
is extremely difficult and time consuming for most humans – but the decision
whether a photograph contains a bird proofs to be exceptionally more complex
for a computer [170]. For the integration of differential equations, strict rules can
be formulated so that after repetitive application of said rules a solution to the
problem can be obtained within some numerical bounds. In contrast, there are
no simple rules to determine if a picture contains a bird or not. One could try
to describe a bird as having wings, feathers and a beak and look for these key
features in the image. However, wings are not necessarily visible when a bird sits
still, a beak cannot be seen if the bird is photographed from behind and individual
feathers are only visible at close distances. Nevertheless, we as humans have no
problem to identify a bird in a picture even if one or even all of the mentioned
properties are not captured. Of course, one could try to find more elaborate rules,
e.g. use color information, gradients and contrast to nearby objects or infer that
objects in the sky have a higher probability to be a bird. History proofed, however,
that no matter how hard one tries to find more and more elaborate rules for such
classification problems, one does not reach the performance a human shows on this
task.

Therefore, rule-based algorithms seem insufficient for some tasks humans do
intuitively correct. So instead of giving a full set of instructions to the computer

3

4 fundamentals of machine learning

that describe the algorithm completely from input to output, the idea of machine
learning algorithms is to provide large amounts of data and let the computer infer
itself the rules it needs to solve the given task. To stay with the example of the
detection of birds in a picture, one would collect large a amount of images that
either do or do not contain a bird, present them to the machine learning algorithm
in a suitable form and let the algorithm create a set of rules that discriminate images
with birds from images without birds. That is, the computer learns the decision
function from provided data instead of applying fixed rules to obtain a result. The
scientific effort now shifts from designing appropriate algorithms that detect a bird
in a picture to the task of designing algorithms that allow the computer to learn
these rules by themselves.

Of course, there is no strict border between traditional rule based systems and
machine learning algorithms. In traditional machine learning, the researcher might
use his domain knowledge to calculate input features from the actual raw input
data, which are then provided to the learning part of the algorithm. That is, rule
based feature extraction steps are combined with a learning part in which a decision
function is inferred from the “classically” created features. The feature extraction
part is often interpreted as providing a more suitable representation of the input
data to the learning algorithm. At the other end of the spectrum of machine
learning, even the suitable representation is learned from the input data. That is,
the algorithm learns which representation of the input data is useful for the task as
well as the rules that map the representation to a decision. In popular science, the
term deep learning is often used for these kind of algorithms.

This chapter aims to introduce basic terminology that is needed for later reference.
The presentation of each topic will be brief to avoid unnecessary long repetition of
textbook knowledge.

Machine learning algorithms can be sorted into categories depending on the amount
of human supervision the respective algorithm needs to fulfill its task. Commonly,
three categories are used:

1. Unsupervised Learning,

2. Semi-Supervised Learning,

3. Supervised Learning.

The term “supervised” describes that annotated data (e.g. annotated by humans) is
needed by an algorithm in a training phase. Annotation (or labeling) of data means
that some knowledgeable entity attaches a label to each input datum. For example,
for the classification task of birds, the labeling process would require that either the
label “contains a bird” or the label “does not contain a bird” be attached to each
input picture. The concrete label task depends of course on the application and has

2.1 supervised learning 5

to match the output of the target algorithm since for example an algorithm that
decides about the pure existence of a bird in a picture requires simpler annotation
than an algorithm which should mark all pixels in an image that belong to birds.
Annotation of data is an often-overlooked difficulty when machine learning topics
are discussed. Details on the labeling of radar data for this work are presented later
in Chapter 4.

For each of the three categories, this chapter contains a separate section in which
algorithms are introduced that are relevant for the remainder of this work. It should
be noted, however, that there is a fluid transition between the three categories and
algorithms from one category can often be extended or simplified so that they shift
more to the (un-)supervised direction.

2.1 supervised learning

The currently most prominently used machine learning algorithms stem from the
field of supervised learning. At the core, all supervised learning schemes need the
following five ingredients:

1. A data set X = {x0, x1, . . . xN}
2. Ground truth labels Y = {y0, y1, . . . yN}
3. An algorithm that takes one xi as input, has trainable parameters θj, j =

1, . . . , Nparam, and outputs a prediction ŷi

4. A loss function L(ŷ, y), sometimes also called cost function or error function

5. An optimizer

For a given task, all five elements have to be chosen carefully to construct a well
performing system. A famous quote by Tom Mitchell lists three instead of five
different ingredients to describe a machine learning system [165]:

“A computer program is said to learn from experience E with respect
to some class of tasks T and some performance measure P, if its per-
formance at tasks in T, as measured by P, improves with experience
E.”

In [79], this statement is used to define the three individual pieces experience E,
task T and performance measure P. Here, however, a more fine-grained view is
taken with the five elements listed above.

6 fundamentals of machine learning

The general working procedure of a supervised machine learning algorithm is that
an input datum x is presented to the program which then computes an output ŷ.
This predicted output is compared to the desired output y and an error L(ŷ, y) is
computed. It is then the optimizer’s task to apply updates to the internal weights
θj based on the current error L. These steps are repeated for a fixed number of
times, until the error function L converges or after any other user defined stop
criterion. The goal is that the error function decreases so that the predicted output
ŷ equals the ground truth output y for as many training samples x as possible.
The important aspect that separates supervised learning algorithms from pure
optimization is that one does not only want high performance on the already
collected data X but also on new and unseen data X ′. That is, the algorithm should
learn a generalization and not learn the presented examples by heart. Therefore, the
training phase of an algorithm is always followed by a test phase during which the
outputs of the algorithm are again compared to the ground truth labels to calculate
performance metrics. In this phase, however, the parameters θj remain constant
since only the performance of the algorithm is evaluated and no further refinement
of the weights is done. In Section A.1 in the appendix, more detailed information
is given about each of the five ingredients and some examples are presented.

Since many researchers in the field of machine learning use the same terminology
but with varying definitions, it is useful to define some common phrases. The term
classification is often used for two slightly different things: a) as a headline for all
tasks in which an algorithm returns semantic information about the input data or
b) specifically for tasks in which a single label (often an integer y, ŷ ∈ {1, . . . , Ncls})
is returned for each input datum. In this work, solely the second definition of
the term classification is used. More specifically, exclusively multi-class classification
tasks are considered, i.e. Ncls > 2. In multi-label classification tasks, each input xi
can have multiple ground truth values. For example, finding genres a movie or a
newspaper article belongs to is an ambiguous task so that multiple categories fit
for a given movie or article. In this work, multi-label tasks are not considered, i.e.
each input xi has exactly one single ground truth value yi. With images as input, a
typical classification task is to assign the largest object shown in the image to one of
Ncls categories, e.g. an image showing a cat would get the label cat and an image
with a dog would get the label dog. For point cloud data, e.g. data from a lidar or a
radar sensor, a classification task would use as input either the raw measurement
points that belong to one object or some higher-level representation in the form of
extracted feature vectors.

Semantic segmentation is in general a more complex task than mere classification.
Segmentation of an image means that lines, shapes and connected regions that are
defined by color, shape or gradients are returned so that the input image is cut
into multiple segments. In semantic segmentation, the segmentation is performed in

2.1 supervised learning 7

such a way that pixels from the same semantic class are grouped together and the
respective label is attached to each pixel. In contrast to classification, not a single
label ŷ for an input image x is returned, but a whole matrix with one label (or even
one probability vector) for each pixel of the image is produced by the machine
learning algorithm. For example, an image which shows two cats and one dog
would be segmented into three parts. The first part contains all pixels that belong
to the two cats, the second part contains only pixels with the label dog and the third
part consists of all background pixels. Note that in semantic segmentation different
objects of the same semantic class are not discerned but grouped together. That
is, the number of objects of the same semantic class cannot be retrieved from the
semantic segmentation result. Semantic segmentation on point clouds just means
that for each pixel a class label is computed.

Finally, in semantic instance segmentation not only a semantic segmentation is
performed but also bounding boxes or even pixel-masks are returned for each
individual object in the input image. In the example given before, three bounding
boxes with the labels cat, cat and dog would be returned along with the pixel-wise
semantic segmentation. On point cloud data, either the instances can be represented
with bounding boxes – just as it is done for image data – or the individual points
that belong to one object are grouped together. The latter method corresponds to a
pixel-wise mask in image processing.

Slightly different from the three previously named tasks is supervised regression.
In this task – in contrast to classification and segmentation – a continuous output
variable ŷ ∈ R is estimated for each input x. Popular examples in the machine
learning community with accompanied data set are the estimation of house prices
in Boston [45] or the prediction of the burned area of forest fires in Portugal [90].

In the following subsections, two algorithms that are used throughout this thesis
will be introduced: random forest classifiers and artificial neural networks.

2.1.1 The Random Forest Classifier

The random forest algorithm is usually grouped into the “traditional” machine
learning category, because the representation of the input features remains un-
changed during training, i.e. no further feature extraction of the input data is done.
The method was developed by Leo Breiman in 2001 [26] and therefore the idea was
published about 10 years before the current machine learning hype cycle started
and before deep neural networks started to dominate the field.

Random forests are a clever way to combine weak learners – in this case decision
trees – to one strong learner. To understand the mechanics of a random forest it is

8 fundamentals of machine learning

therefore necessary to introduce decision trees first. Even though random forests
can be used for both classification and regression, only the classification algorithm
is discussed here. Detailed information about regression forests can be found in
[47], [104], [149].

2.1.1.1 Decision Trees

A decision tree for classification tasks takes as input a feature vector x ∈ RNfeat and
outputs a vector of “probabilities” p(y|x) ∈ RNcls so that the predicted class label of
input x is given by ŷ = arg maxy p(y|x). The tree consists of several nodes at which
the incoming data is split into two sub-nodes. The split condition of each node is
derived during training and is always based on exactly one of the Nfeat available
features. A split S is of the form

fS : RNfeat → {0, 1}, x 7→

0, for xi ≤ aS

1 otherwise,
(2.1)

where xi is one of the Nfeat features of the feature vector x and aS is a threshold
for this feature. Both the index i of the feature dimension and aS are determined
during training and are part of the split definition. At test time an input vector is
passed down the tree by checking the split criterion of each node and depending on
whether x passes the test (fS(x) = 1 or fS(x) = 0), the data are directed to one or
the other child node. This is repeated until a leaf node is found, i.e. a node without
any child nodes. The distribution of the training data in this leaf node is stored
during training and returned as p(y|x). This is the reason why the term probabilities
was put into parentheses previously: p(y|x) reflects merely the distribution of the
training data in the leaf nodes of the tree and is not an independent certainty
measure. If the tree is grown until only samples of one class remain in the leaf
nodes, the reported probability for the chosen class will always be one.

In Fig. 2.1, a decision tree for a simple three-class classification problem is displayed.
Each data point is characterized by a feature vector x ∈ R7. At the first node n1 the
third feature f3 is used for the split. If for an input vector x3 ≤ a1, where a1 is the
threshold that was fixed during training, then the feature vector is passed down
to the left child n2 and if x3 > a1 the sample is passed to the right child which is
in this case already a leaf node n3. If a feature vector ends up in n3, one always
obtains p(blue|x) = 1 since during training only samples of the “blue” class were
found in this region. If some x passes the first test, i.e. x3 ≤ a1 holds true, then
at node n2 a second split is performed, but this time the seventh feature is tested
against threshold a2. The leaf nodes n4 and n5 are not pure since each node contains
samples from multiple classes. Part b) of the figure shows the data distribution

2.1 supervised learning 9

along the two selected feature dimensions three and seven. It should be noted
here that a decision tree can only devise split rules that are axis parallel. Every
other non-linear split rule is approximated by cutting the feature space in small
axis-aligned regions.

Figure 2.1: Decision tree for three different classes (red, blue and green). In a) the tree with
its three leaf nodes (n3, n4, n5) along with the class distribution in each node
is displayed. The first split criterion checks whether the third feature in the
input x is smaller than a1 and the second criterion at node n2 check whether the
seventh feature in x is smaller than a2. If input x passes a test, it is redirected to
the left child node. In b) the data distribution in the two-dimensional subspace
spanned by feature f3 and feature f7 is displayed along with the two decision
boundaries that separate the space in three regions.

During training the tree has to “grow”, i.e. the split criterion for the current node
has to be fixed (selection of feature index i and threshold aS) and child nodes for
the two possible decisions have to be created. Construction of the trees is often
done in a greedy fashion, i.e. the best possible split is performed on the first level
and thereafter the split criteria for the two emerging child nodes are identified.
That means that once a node was created, it is not modified again. The best split
S is found when the information gain obtained through splitting the data under
this criterion is maximal. Information gain IG is defined in this context as the
difference between an impurity measure I(T) of the data T in the parent node and
the “conditional impurity” I(T|S):

IG = I(T)− I(T|S). (2.2)

The “conditional impurity” I(T|S) is given by the weighted sum of the impurities
that emerge when the split criterion S is applied to the current node:

I(T|S) = ∑
i∈{L,R}

|Ti|
|T| I(Ti). (2.3)

10 fundamentals of machine learning

The split causes that the parent data T is divided into TL and TR (left and right
branch of the tree). The expression |Ti| stands for the number of elements in the
respective branch after the split node.

For the impurity measure I itself two popular definitions exist. The first definition
assumes that the best split S is found when the entropy is reduced. In this case, the
impurity measure is given by

IH(T) = H(T) = −
Ncls

∑
i=1

pi log pi. (2.4)

The probabilities p1, . . . , pNcls are given by the fraction of data in the current node
of the respective class. The “conditional impurity” is defined in this case as the
more commonly used conditional entropy H(T|S). In fact, the term “conditional
impurity” seems not to be used in the literature as a generalization of the concept
of conditional entropy. In [49], the term is defined in a different way than it is
used here, namely as a weighted impurity measure with the weights stemming
from some predictability index. Nevertheless, in this context the wording fits in
the sense that different impurity measures I can be inserted in the calculation of
I(T|S) and H(T|S) being a special case of this. Loosely speaking, the conditional
entropy H(Y|X) describes the uncertainty about the random variable Y given
information about the random variable X. In the case of a decision tree, H(T|S)
quantifies the uncertainty in the data after split criterion S was applied. It is
therefore reasonable to seek a split S that minimizes this uncertainty, i.e. a split
that maximizes H(T)− H(T|S).
The second impurity measure is defined by the so-called Gini impurity IG. In
contrast to the entropy, a more probabilistic description of impurity is chosen here:
The Gini impurity equals the probability that a randomly chosen sample would be
incorrectly labeled, if both the sample and the label were chosen according to the
label distribution in the current node. The probability for choosing an element of
class i is per definition given by pi and the probability of assigning a wrong label is
simply 1− pi. Hence the Gini impurity reads

IG =
Ncls

∑
i=1

pi(1− pi) = 1−
Ncls

∑
i=1

p2
i . (2.5)

Comparing Eq. (2.4) and Eq. (2.5) shows that entropy requires a computationally
expensive logarithm for the estimation of the impurity whereas the Gini impurity
simply uses the squares of the pi. In practice both measures yield similar or identical
results, so that often the Gini impurity is favored [201], [202].

Given an impurity measure I, the information gain IG has to be computed for each
possible split of the Nfeat different features. To illustrate this process, consider the

2.1 supervised learning 11

Figure 2.2: Different splits of the training data along the dimension of feature f3. On the
right hand side a plot of the information gain at each split index is shown. At
split index 14, the maximum information gain is found so that this split would
be chosen.

situation in which a tree was built up to a certain depth and the optimal split for
the current node is sought. For each of the Nfeat feature dimensions a sorted list
of training samples in the current node is needed. Often, the whole training set
is sorted once prior to training so that no additional sorting in the child nodes is
needed. The information gain of one feature dimension is computed by starting
with a cut that separates the sample with the smallest value from the remaining
samples. Then the cut is shifted one position further towards larger values so that
the second cut separates two samples. This is repeated until the final cut between
the two largest values in this feature dimension has been performed. In Fig. 2.2, the
split procedure along the dimension of feature f3 is shown. The best split is found
at index 14, when the information gain is maximal and most “blue” data points are
separated from the others. This procedure has the great benefit that the information
gain at each new cut can be computed in O(1) time. This follows from the fact
that no recursion in the computation of IG is needed if only a single data point
is added or removed from a previous configuration. Sorting the data along each
feature dimension beforehand ensures this and hence allows for a fast computation
of the information gain in each feature dimension. It can be shown that a decision
tree with N training samples can be constructed in O(Nfeat · N log N) time, see
chapter 5 in [149].

2.1.1.2 Boosting and Bagging: From Decision Trees to a Random Forest

Fully-grown decision trees have a small bias but a large variance. The large variance
is a direct result of how decision trees are constructed: the deeper one goes down a
tree, the more the resulting region in feature space is confined by the split criteria
of the previously passed nodes. Each split is created by looking for the optimal

12 fundamentals of machine learning

split at the current node. Therefore, often rather noisy decision boundaries are
created which take the many fluctuations in the training data set into account. A
single decision tree hence tends to fit the resulting decision function too close to
the training distribution, i.e. decision trees tend to overfit to the data. Enforcing
bounds on the depth of a tree (sometimes called pruning) lowers the variance and
is hence a well-established method to reduce overfitting. This happens at the cost
of an increase in the bias so that the overall accuracy of the decision tree classifier
decreases.

The bias–variance tradeoff is a well-researched problem in statistics and machine
learning [73]. It states that predictive models with low bias often have a high
variance and vice versa. Ensemble methods aim to reduce the variance (or bias) of
a group of classifiers while keeping the low bias (variance) of each single classifier.
This is done by combining the high variance (high bias) “weak learners” into one
classifier so that the variances (biases) reduce by taking averages over the individual
classifier outputs.

Multiple popular ways exist to combine the weak-learns “decision tree” into one
strong learner. Two of them are random forests [26] and (gradient) boosted trees. The
former uses fully-grown decision trees which have a low bias but a high variance
whereas the latter method is an example of the more general AdaBoost algorithm
[68] which is designed to reduce the bias of low-variance base-classifiers. That is,
for the boosted trees algorithm, decision trees with a very small depth are used
which have a high bias and a small variance in contrast to the fully-grown decision
trees used in random forests.

In practice, both random forests and gradient boosted trees yield similar results,
although with careful tuning the boosted trees algorithm can provide more accurate
results with less trees. However, as so often in machine learning, general statements
are hard to make since the performance of classification algorithms varies strongly
with the data set under investigation so that for one data set gradient boosted trees
show higher performance [33], [174] and for other data sets random forests are
better or at least on par [172], [262], [287]. In contrast to random forests, which can
be built in parallel as each decision tree is independent of the other trees in the
forest, boosted trees are built sequentially. The idea is to add trees that perform
well on those samples that were incorrectly classified by the already present trees.
Details can be found in [68], [69].

Random forests are one example of a bagging method. The term bagging is a
portmanteau of bootstrap and aggregating [25]. Bagging works by selecting for each
of the k base-classifiers a different training data set from the N available training
samples. Just like the original training data set, each of the k newly generated
training sets consists of N samples. These samples are drawn with replacement from

2.1 supervised learning 13

the original training data so that one specific sample may occur multiple times
in one generated training set or not at all [25]. The probability p that one sample
makes it into one specific training set is the complementary probability to the event
that after N draws only the other N − 1 samples were chosen:

p =1−
(

N − 1
N

)N

(2.6)

=1− e−1 ≈ 0.63 for N → ∞. (2.7)

This implies that on average 63 % of each generated training set are unique samples
so that about 37 % of the original training samples are not present in one boot-
strapped set. Each of the k base-classifiers (decision trees) is then trained on one of
the k generated training sets, the results of the classifiers are aggregated and by
averaging the scores, the most probable class can be obtained. The samples that
are not used for training are called out of bag samples. They can be directly used to
estimate the performance of the random forest by passing these samples down the
trees and comparing the predicted output with the ground truth label.

In addition to randomness in the data selection step, random forests introduce
also random selection of the features that are considered at each split during the
creation of the individual decision trees. To be more precise, at each level of each
decision tree, m of the originally present Nfeat features are chosen and only those
are considered during the search for the best possible split. Popular choices for
the hyper-parameter m are m =

⌊√
Nfeat

⌋
and m = blog2 Nfeatc. Historically, this

second randomness was introduced a few years after experiments with combining
decision trees solely via bagging were performed. The term “random forest” was
initially used for a many different methods that combine decision trees to one
strong learner. Today, however, “Random Forests” is a registered trademark of the
company Minitab LLC [279] and used almost exclusively to describe the algorithm
that uses both bagging and random feature selection.

Two schemes exist to merge the individual results of the decision trees in the
random forest: hard-voting and soft-voting. In the hard-voting scheme, it is simply
counted how many of the k trees in the forest voted for each class and the class
with the maximum number of votes wins. Soft-voting differs in so far that the
class-probabilities obtained from each tree are taken into account. If pj(y|x) is the
probability vector obtained from the jth tree, then the combined probability vector
p(y|x) is the average taken over all trees in the forest:

p(y|x) = 1
k

k

∑
j=1

pj(y|x). (2.8)

The predicted class is then again simply the class with the highest probability value
in p(y|x).

14 fundamentals of machine learning

The number of features m considered in each split is often quoted to be the most
influential hyper-parameter of a random forest [10]. Although m =

⌊√
Nfeat

⌋
is a

reasonable starting point, careful tuning of m can often increase the performance
of a random forest since for example small values of m lead to less correlated trees
which is in general beneficial for a random forest [10]. At the same time, trees
created with a small value for m may perform worse on average since the optimal
split variable might not be available. Another hyper-parameter is the maximum
depth of a tree, which can be controlled by the minimum number of samples
needed to split a node or by the minimum number of samples required to define
a node as leaf node. In [191] a detailed analysis of parameter tuning for random
forests is given. The number of trees in a random forest k is usually not considered
as a hyper-parameter. Even though [190] shows that under some circumstances a
larger value of k results in a weaker performance, they argue that k should be set
as large as computationally feasible. Often the number of trees can be used as a
tunable parameter for the tradeoff between performance and computational power.

In addition to obvious ways to parallelize training as well as execution of a random
forest and the scalability with the number of trees, random forests have the pleasant
property that they can report how important each of the input features is for the
classification task. The importance of a feature can be directly obtained for example
from impurity measures that are calculated during training. Loosely speaking,
the more often a feature was selected in a node of a decision tree for a split, the
more important it is for the given task. A feature is chosen more often if it is
effective in reducing uncertainty, so that important features are those that have a
large mean decrease in the impurity measure. In [250], it is argued that this form
of measuring the feature importance is biased. This view is supported by [179]
and as an alternative and unbiased importance measure, the so-called permutation
importance is recommended. The more robust importance measure was initially
described by Breiman in 2001 [26] but today in most random forest libraries the
default setting for variable importance computation is still such that the biased but
faster and easier to calculate impurity reduction measure is used. The permutation
importance measure works as follows: First, a random forest is trained normally
and a baseline performance on a validation set is estimated. Within this data set,
the values of the nth feature are permuted and the data is passed again through
the random forest. The increase in miss-classification rate is then a measure of
how important the nth feature is for the task. This method can also be applied to
other machine learning algorithms since this approach makes no use of any specific
features of a random forest – in contrast to importance measures, which make
use of the reduction in impurity. Additional information on the different ways to
compute the feature importance and possible biases of these methods can be found
in [27], [179], [249].

2.1 supervised learning 15

2.1.2 Artificial Neural Networks

The currently most popular and most successful machine learning algorithms stem
from the category of Artificial Neural Networks (ANNs). With the phrase “artificial
neural network”, many different algorithms are subsumed which have in common
that input data is passed through one or multiple layers, where each layer maps
the input to a different output representation.

In addition to terms containing the phrase “neural network”, a new description
for these kind of algorithms emerged since about 2013: “deep learning”. As the
deep in deep learning is neither well defined nor is every type of neural network
automatically deep in some sense, the currently more popular term is not used
here.

Interestingly, almost all building blocks of modern neural networks were already
known many years before the current hype-cycle started around 2010. In [79], it
is well explained why neural networks currently gain so much attention. Firstly,
large amounts of labeled data are nowadays either directly available or easy to
collect. Secondly, the computational power accessible for machine learning algo-
rithms increased tremendously with the development of modern GPUs. The third
reason is that many companies expect disruptive changes in their market with the
introduction of “intelligent” systems so that they invest large amounts of money
in research and acquisition of start-ups that work in this field. Especially the first
two points highlight why already well-known algorithms are studied again by a
large community and why interest in neural networks decreased before the current
hype-cycle started. With the data sets and computational resources available at that
time it was simply not possible to reach the desired performance levels.

From the many types and layers of different neural networks that exist today, only
the Convolutional Neural Network (CNN) and the Long Short-Term Memory (LSTM)
network will be discussed here briefly.

2.1.2.1 Convolutional Neural Networks

The current interest of many scientific fields in machine learning and the popularity
of neural networks in general is tightly linked to the performance boost granted
by convolution layers within neural networks. Although the first steps towards
convolutional neural networks were made in the 1960s with the works by Hubel
and Wiesel [106], [107], it took about 30 more years until the full potential of
convolution operations in neural networks became apparent. Hubel and Wiesel
found out that different biological neurons in the visual cortex of a cat’s brain fired
only for certain simple structures like vertical or horizontal bars. That is, some

16 fundamentals of machine learning

neurons are specialized in the detection of vertical bars whereas other neurons only
respond to horizontal edges or bars. In other words, neurons in the visual cortex
are orientation detectors [16], [17]. In addition to the specialization of individual
neurons, they also discovered a column-like structure in which the neurons produce
the full visual perception from a cascade of these highly specialized neurons. What
is more, each neuron is only responsive for a certain receptive field [106], [108].

These ideas inspired the so-called convolution layers of modern neural networks
used in computer vision tasks. They are designed so that each convolution kernel is
specialized to one task (e.g. edge detection) and they are applied only to a certain
region of the previous layer (receptive field). For some time, convolution kernels
were designed by human experts and tailored to one specific task. In 1989, the
research group around Yann LeCun showed that convolution kernels could be
efficiently learned during training of the network using back propagation [133].
In contrast to the hand-made kernels, the network was then able to learn the
relevant kernels itself. This finding – combined with efficient implementations of
convolution operations on modern GPUs – are the foundation of today’s neural
networks. It is therefore worthwhile to look at the exact definition of a convolution
operation in modern neural networks.

Historically, one of the first times the convolution operation appeared in mathe-
matics was in 1768 in Leonhard Euler’s book Institutionum Calculi Integralis, vol. 2
when Euler studied the solution of certain partial differential equations [57]. Even
though this operation was not called convolution at that time, its properties were
analyzed in detail in the following years and centuries. The modern definition of a
convolution between two functions f and g is given by

(f ∗ g)(t) :=
∫ ∞

−∞
f (τ)g(t− τ)dτ for f , g : R→ C (2.9)

(f ∗ g)(n) := ∑
k∈D

f (k)g(n− k) for f , g : D→ C, D ⊂ Z. (2.10)

One possible interpretation of the convolution operation is that a running mean of
the function f is calculated where the weighting is defined by the function g. That
is, a weighted sum of “echoes” (previous function values of f) is computed and
the weight of each past value is defined by g.

For digital image processing, a formulation of the convolution operation on discrete
and finite regions is needed. For a two-dimensional data structure with input I, con-
volution kernel K (sometimes also called convolution filter) and output S (sometimes
also called feature map), the convolution operation is defined as [237], [245]

Sij = (I ∗ K)ij := ∑
n

∑
m

I(m, n)K(i−m, j− n). (2.11)

2.1 supervised learning 17

The two sums run over the size of the kernel and border cases have to be treated
separately, e.g. by padding, see also chapter 2 of [244] or chapter 5 of [12]. In
non-border cases, the convolution operation on image like data can be described
as follows. The kernel is placed with its center onto one input image pixel, each
value of an input pixel within the receptive field of the kernel is multiplied with
the appropriate kernel value, the result of all products is summed together and
finally the kernel is shifted to the next position.

In machine learning usually batches of input data are considered and input images
as well as the intermediate representations have not one but multiple channels. For
example, typical color images consist of three channels: one channel for each of the
base colors red, green and blue. Additionally, a stride parameter can be selected
that defines how many pixels the convolution kernel moves forward after one
output value was computed.

Combining all these extra parameters into the definition of the convolution oper-
ation, the value at position (ho, wo) of output b of the data batch in channel co is
given by

S(b, ho, wo, co) =
Hk−1

∑
hk=0

Wk−1

∑
wk=0

C−1

∑
c=0

I(b, sh · ho + hk, sw · wo + wk, c)K(hk, wk, c, co),

(2.12)

if the input I has in total C channels, the convolution kernel has size Hk ×Wk and
the strides of magnitude sh and sw, respectively, are used. This means that for one
output channel all input channels of I along with all channels of the convolution
kernel K are considered. The number of parameters of such a convolution kernel is
given by

Nparam(K) = Hk ·Wk · C · Cout, (2.13)

where Cout is the number of output channels. A different wording would be that
there is not one single convolution kernel with Cout channels but rather that there
are Cout different convolution kernels (with one channel each).

Despite the fact that the use of convolution kernels can be biologically motivated,
this kind of operation also has other upsides. To show this, a comparison with
a fully connected layer (sometimes also called a dense layer) is useful. For an input
X ∈ RNfeat , a fully connected layer produces an output X′ ∈ Rm via a simple matrix
product with weight matrix W ∈ Rm×Nfeat and addition of a bias vector b ∈ Rm:

X′ = W · X + b. (2.14)

The number of parameters involved in this operation is given by Nfeat × m + m.
For an image with size 800× 800 pixels and 3 RGB channels, the input vector

18 fundamentals of machine learning

already has a size of Nfeat = 1 920 000. So even for small values of m, the number
of parameters in this layer becomes prohibitively large. In contrast, a convolution
kernel of size Hk = Wk = 3 and Cout = 64 output channels has only 3× 3× 3× 64 =

1728 parameters. Therefore, convolution layers require per definition much less
parameters for the transformation of the input image to the next deeper layer.
The number of parameters in an operation is not a valuable quantity on its own
but rather the resulting performance in a given task has to be evaluated and a
trade-off between accuracy and computational demand has to be made. Fortunately,
convolution layers are extremely well suited for computer vision tasks and often
accuracy even increases so that there is no trade-off but rather a win-win situation.

The reduced number of parameters stems of course from the fact that the same
kernel is used for all different positions on the input. This implies two things. Firstly,
there is a massive weight sharing (or put differently: a sparsity of connections) since
input features at all positions are exposed to the same weights in the convolution
kernel. This contrasts fully connected layers where each input is connected to each
output by a unique weight. Secondly, translation invariance is automatically built
into the network so that a certain feature can be detected anywhere (and even
multiple times) in an input. This is a useful property since for example a classifier
should be able to detect features and objects anywhere in the input irrespective
of the exact location and a feature learned from one position in a training image
might be useful at a different position in another image. Another advantage is that
neighborhood relations are trivially captured so that for example a network has
the chance to infer information about one pixel from the surrounding pixels.

Especially sharing of weights proofed to be a successful property of neural network
layers. It is illustrative to make this weight sharing more explicit on one simple
example. Consider an input X ∈ R3 that shall be mapped to an output X′ ∈ R2.
With a fully connected layer, the output is defined by the six parameters of the
weight matrix W (ignoring the bias vector b):

X′ = W · X ⇔

x′1

x′2

 =

w11 w12 w13

w21 w22 w23

 ·

x1

x2

x3

 . (2.15)

2.1 supervised learning 19

Figure 2.3: Comparison between a fully connected layer and a convolution layer for an
example input feature vector with three entries. In a) a fully connected layer is
used to map the input to a two-dimensional output. In b) a convolution kernel
of height Hk = 2 is used and the two positions of the kernel at hk = 0 and
hk = 1 are displayed (dashed and dotted rectangles).

Application of a convolution kernel with size Hk = 2, Wk = 1 and Cout = 1 output
channel would result in (cf. Eq. (2.12))

X′ = X ∗ K ⇔ X′(ho) =
Hk−1

∑
hk=0

X(ho + hk)K(hk, wk = 1, c = 1, co = 1)

⇔

x′1

x′2

 =

k1 k2 0

0 k1 k2

 ·

x1

x2

x3

 . (2.16)

Notice that the (empty) sums over the width of the convolution kernel and the input
channels were left out for brevity. By writing both operations as a matrix-vector
product, the two properties weight sharing and sparsity in the connections become
apparent: Whereas in the fully connected layer there are six different parameters
and each entry in the matrix is filled, the convolution kernel has only two different
parameters and connections between the first and third input feature x1 and x3

are not modeled. In Fig. 2.3, the two layers are visualized again where the orange
circles stand for the input features and the teal circles symbolize the two output
features. The dashed and dotted rectangles in part b) of the figure indicate the two
positions of the convolution kernel as it is shifted over the input vector.

To show that convolution layers are not only useful for image-like data, an example
from the PointNet++ network [197], [198] is presented here. As the name of the
network already suggests, PointNet++ is tailored for the usage of point cloud data
as input. Point clouds are often stored as a list of points pi where each point has d
spatial coordinates and f extra features. The extra features depend on the sensor

20 fundamentals of machine learning

that recorded the data. For radar sensors, the extra features could be for example
the Doppler velocity or the measurement time. The list of points is usually not
sorted and sorting of a one-dimensional list of d-dimensional points would just
yield sub-optimal neighborhood relations anyway. Hence, convolution kernels with
a size larger than 1× 1 are not used. To illustrate how 1× 1 convolution kernels
can be employed, consider Fig. 2.4.

Figure 2.4: Illustration of a convolution. a) Input tensor of size Npoints × Nneigh × C. b) The
Cout different 1× 1 convolution kernels. c) All convolution kernels are shifted
individually over the input tensor, each creating one Npoints × Nneigh output.
d) Combination of all Cout convolution outputs results in the final Npoints ×
Nneigh × Cout tensor.

A data cube with dimensions Npoints × Nneigh × C is displayed there along with a
hint how the convolution kernels are applied. The parameter Npoints stands for the
number of points in the point cloud and Nneigh is the number of neighborhood
points which were collected by a previous function for each of the Npoints points.
Each of the in total Npoints × Nneigh points is described by a C dimensional feature
vector xmn. Application of a convolution kernel of size 1 × 1 with Cout output
channels results in a tensor of size Npoints × Nneigh × Cout, where the same Cout

convolutions are applied to each input point. Let (xmn)i be the ith entry of the C
dimensional feature vector xmn of the point at position (m, n) in the input matrix
and let (x′mn)j be the jth entry of the generated output feature vector. Then

(x′mn)j =
C−1

∑
i=0

(xmn)i · k ji, (2.17)

where k ji can be interpreted both as the ith entry of convolution kernel Kj (j =
0, . . . , Cout − 1) or alternatively as entry (j, i) of a kernel matrix K. The former
interpretation is aligned with the usual way how convolution operations are de-
fined. The latter interpretation suggests that the 1× 1 convolution can in fact be

2.1 supervised learning 21

interpreted as the application of a fully connected layer on the feature dimension
so that each of the Npoints × Nneigh points is transformed by the same matrix:

(x′mn)0

(x′mn)1

...

(x′mn)N

=

k00 k01 . . . k0M

k10 k11 . . . k1M

...
...

. . .
...

kN0 kN1 . . . kNM

·

(xmn)0

(xmn)1

...

(xmn)M

. (2.18)

The short hands N := Cout − 1 and M := C− 1 are used here for brevity. A 1× 1
convolution can therefore be used as an efficient implementation of a shared weight
matrix of a fully connected layer. This will become useful again later when semantic
segmentation on radar data is discussed.

2.1.2.2 Recurrent Neural Networks

In the previous sections, convolutional and fully connected layers were mentioned as
building blocks of neural networks. Networks built solely from these blocks (and
of course built from activation functions, pooling layers, transposed convolution
operations etc.) are summarized in the category of feed-forward neural networks.
Defining property of these kind of neural networks is that there are no circular
connections so that once an input passed a layer, no feedback is given to any
other layer except for the following. In other words, feed-forward networks can be
described as acyclic graphs [227]. The category of Recurrent Neural Networks (RNNs)
differs from feed-forward networks in this aspect: Feedback loops are implemented
so that the first element of a sequence of inputs alters the state of the network.
Subsequent elements are then treated differently compared to the situation in which
there was no preceding data.

Recurrent neural networks possess an internal state, which is updated with each
new input and the output depends on the current internal state. Therefore, RNNs

are popular in those fields of research where sequential data is used. Especially
in tasks from the area of Natural Language Processing (NLP), recurrent connections
are inevitable, because for example preceding words highly influence both the
likelihood of the following words and the semantic meaning of an expression.

In earlier days, temporal connections were not modeled via recurrent connections
but for example, Time Delay Neural Networks (TDNNs) [261], [273]–[277] or hidden
Markov models were used. The former were constructed with the goal in mind
that relationships between events in time can be represented and that the network
is invariant under translations in time [261]. In a TDNN, not only the input of the

22 fundamentals of machine learning

current time t is considered, but also past data from times t− 1, t− 2, . . . , t− N.
Input data from the different time steps are put next to each other in a matrix-like
structure and fixed size windows are shifted over this matrix to produce features
from the respective time window. For example, in the original paper by Waibel [261],
15 different time steps are considered in the input where each input vector has 16

scalar features. Windows of size three are moved over this 15× 16 input matrix and
the same weight matrix of size 16× 3 is used in each window to compute an output
signal. This is then repeated eight times so that a new 13× 8 intermediate matrix
with 13 different time steps is created. The number of time steps is reduced from
15 to 13 in this case because a window of size three can only fit into 13 different
positions in a frame with 15 places. The hidden layer is then transformed in the
same way again (but now with a larger time window of five steps) before the final
output is calculated. The structure of a basic TDNN is very similar to a CNN and
in fact, in modern deep learning frameworks, TDNNs are actually implemented
as convolution layers. Just as in CNNs, each unit in a TDNN has connections to a
receptive field in the previous layer, where the receptive field now extends over
time. The weight sharing that is used in TDNNs by using the same weight matrix
for each of the different time windows in one layer just corresponds to using the
same convolution kernel, which is shifted over the input.

One downside of TDNNs is that the “delays” in the time dimension are manually
selected prior to the actual training and are held constant afterwards. The network
is therefore restricted to only the presented snapshots in time and cannot learn on
its own which points in time are useful for the task. Recurrent neural networks
heal this shortcoming by introducing internal memory states, which are learned
during training.

To make this more explicit, the equations for a vanilla RNN are presented in the
following. To this end, let {x1, x2, . . . , xN} be a sequence of N inputs with xi ∈ Rn

being some feature vector. Further, let Whx ∈ Rn×m and Whh ∈ Rm×m be trainable
weight matrices and let {ŷ1, ŷ2, . . . , ŷN} with ŷi ∈ Rk be the output vector. Then the
input and output are linked via the following set of equations:

ht = φ (Whx · xt + Whh · ht−1) (2.19)

ŷt = ht, (2.20)

where φ is a non-linear activation function, e.g. the hyperbolic tangent function, a
sigmoid or a Rectified Linear Unit (ReLu) [171]. A possible additional bias vector is
neglected here for brevity. In Fig. 2.5a the cell is sketched. The internal state ht−1

is modified by the current input xt so that in the next step t + 1 the input xt+1 is
altered by the then updated ht. The hidden state is often initialized as a zero vector,
so that the first input of a sequence is treated like in a simple feed-forward neural
network. In this most simple RNN cell, the output is identical to the current hidden

2.1 supervised learning 23

state. An obvious extension of this recurrent layer would be to introduce another
weight matrix Woh which connects the hidden state ht and the output ŷt.

Gradients for the training of usual feed-forward neural networks are computed
using backpropagation, i.e. by repetitive application of the chain rule. In general, the
same is done for RNNs, except that now care has to be taken when the derivatives
for the weight matrices that appear in the recursive step are calculated. For example,
when calculating the derivative of the error function with respect to the weights in
Whh, then it has to be considered that ht does not only depend directly on Whh but
it also depends indirectly on Whh through ht−1. In practice, RNNs are often unrolled
so that multiple copies of the same network are created and these are treated as
normal feed-forward networks. Details about backpropagation in time can be found
in [169], [209], [269].

Figure 2.5: Connections within a recurrent neural network. In a) the most simple RNN cell
is sketched, see Eq. (2.19). In b) an LSTM cell is drawn and peephole connections
are illustrated by dashed lines. Based on Fig. 6 in [175].

For long input sequences – and hence long temporal dependencies of the gradients
– the contributions from the different time steps are multiplied together. For contri-
butions that are greater than one, the gradients become quickly unreasonably large
and for derivatives smaller than one, the total gradient may vanish. Both effects
are undesirable and stop the neural network from learning. The first scenario is
often described as exploding gradients whereas the latter scenario is referred to as
vanishing gradients [180]. Both effects were described the first time in detail in the
diploma thesis of Hochreiter [100]. He showed that the gradients of past inputs
are exponentially weighted in the calculation of the error function causing either
too large values or values close to zero. Four years later, Hochreiter and his for-
mer professor Schmidhuber proposed in 1995 the Long Short-Term Memory (LSTM)
network, which solves the problem of vanishing or exploding gradients [101]. The
first version of LSTMs was trained with truncated gradients so that not the full back-
propagation trough time scheme was used [102]. In the following years, different
extensions were made to the original formulation of the LSTM, for example forget
gates were introduced, peephole connections integrated and the output activation
function was removed. Introduction of the forget gate allowed training with full

24 fundamentals of machine learning

backpropagation trough time because they create an extra path in the gradient
calculation which is not defined by the product of many small or many large values
[85].

The recurrent units of an LSTM contain far more internal structure than simple
RNNs. One widely used way to illustrate an LSTM cell is shown in Fig. 2.5b. In
contrast to a simple RNN cell, an LSTM cell contains not only the hidden state ht

that is updated in each time step t, but also a cell state st that is updated via the
already mentioned input and forget gates it and ft. The nowadays most commonly
used form of an LSTM is defined by the following set of equations [82]:

ft = σ
(
W f x · xt + W f h · ht−1 + Vf s · st−1

)
, (2.21)

it = σ (Wix · xt + Wih · ht−1 + Vis · st−1) , (2.22)

gt = tanh
(
Wgi · xt + Wgh · ht−1

)
, (2.23)

st = ft � st−1 + it � gt, (2.24)

ot = σ (Wox · xt + Woh · ht−1 + Vos · st) , (2.25)

ht = ot � tanh(st). (2.26)

The weight matrices Wab follow the naming convention that the index a signals to
which gate the matrix belongs (i for input, f for forget and o for output) and the
index b ∈ {x, h, s} describes to which vector this matrix is applied to. For example,
the matrix Wih is the weight matrix of the input gate, which acts on the hidden
state vector ht−1. The weight matrices Vab follow the same naming convention but
are called V instead of W to indicate that these matrices form the optional peephole
connections (dashed lines in Fig. 2.5). For an input xt ∈ RN and a user-defined
size H of the hidden state ht, the matrices Wax have size H × N and the matrices
including the hidden state or the cell state Wah or Vas are square with size H × H.

The intuition behind the input and forget gates is that the network should decide
on its own which information are carried over to the next time step and which
information should be removed from the cell state to free up space. Both the input
and forget gate take the current element of the sequence xt as well as the previous
hidden state ht−1 as input (and optionally also via peephole connections the cell
state st−1) to a fully-connected layer with sigmoid activation function σ defined as

σ : R→ R, y 7→ 1
1 + exp(−y)

. (2.27)

As σ(y) ∈ (0, 1), the resulting values of ft and it can be interpreted as masks,
indicating which values of another vector z are kept when the Hadamard products
ft � z or it � z are calculated. Therefore, ft � st−1 describes which parts of the
previous cell state are carried over to the next time step and which parts of st−1

will be “forgotten”. The output of the input gate it is not directly applied to the cell

2.2 unsupervised learning 25

state but rather multiplied with an intermediate representation gt, which is again
just the output of a fully-connected layer with the current xt and previous hidden
state ht−1 as input. The reasoning behind this extra step is that gt should represent
a set of new features, which are then masked by the input gate before they are
added to the cell state. The output gate ot controls the update of the hidden state
ht−1 → ht where ht is also the output of the cell. Again, a peephole connection
from the already updated cell state st can be included in the computation of ot.
With the same reasoning as before, the Hadamard product of this “output mask” is
computed, but this time the cell state st is used as the underlying feature vector,
which is masked out by ot.

Multiple LSTM cells can be stacked behind each other so that similar to CNNs,
features of different complexity can be extracted. Networks including or consisting
solely of LSTM cells proofed to be very successful in NLP tasks and are widely
used in commercial products like Amazon’s speech assistant Alexa [160], Apple’s
QuickType keyboard [3] or in Google translate [280], [288].

A large zoo of LSTM variants was developed in the last years, including bi-directional
LSTMs [83], [84], [236], the simpler Gated Recurrent Unit (GRU) cells [39], dropout
regularization [70] or convolutional LSTMs [239]. An overview article about differ-
ent (recurrent) deep learning architectures can be found in [227]. More recently,
attention based CNNs gained popularity in NLP tasks [71], [258], since they tend
to be easier trainable than LSTMs and highly optimized libraries for convolution
operations can be borrowed from the field of computer vision so that attention
based CNNs are more resource friendly.

2.2 unsupervised learning

Machine learning algorithms from this category require as input only the data X ,
i.e. no supervision in form of annotations Y is needed. However, it is rarely the
case that for the same application algorithms from both the supervised and the
unsupervised category are suitable so that the intrinsic feature that no labeled data
are necessary for these classes of algorithms cannot be counted as an advantage
over supervised algorithms.

Among others, unsupervised learning tackles the problems of clustering, anomaly
detection and dimensionality reduction [151]. Clustering describes the process
of finding frequent patterns in data and grouping elements with the same (or
similar) pattern together. The grouping criteria can be very different but at the root,
some distant measure in a metric space is used to describe neighborhood relations

26 fundamentals of machine learning

between the data points. This neighborhood relation is then exploited to group
nearby points and split far distant points from each other [74], [150].

The large variety of different clustering algorithms makes it difficult to sort the
methods unambiguously into categories. A common attempt for the grouping of
clustering algorithms is by looking at the decision criteria applied during clustering:
hierarchical models use cuts in tree-like structures to group the data (e.g. the SLINK
algorithm [240]), distribution models try to fit statistical distributions and obtain
thereby a measure for "nearness" (e.g. Gaussian mixture models [218]), subspace
models analyze data in different subspaces of the original feature space (e.g. sparse
subspace clustering [63]) and density models build clusters by computing the
density of different regions in feature space and grouping points in high density
regions together (e.g. DBSCAN [65]). The whole Chapter 5 is devoted to describe
clustering methods for radar data, so that no further details are presented here.

Anomaly detection is a complementary task to clustering in the sense that no
grouping of common and reappearing patterns is sought but rather reporting of
the rare cases that deviate from the usual data point is desired. The term “rare”
does not necessarily refer to sparsity in the data because high activity in a bank
account or high network traffic may also indicate anomalies from the average status.
Depending on the application, density based methods like Isolation Forests [254],
subspace projections [127] or autoencoders [19] can be used.

The aim of dimensionality reduction algorithms is to keep the expressiveness of
the input data while the amount of information that describe the data is reduced.
Popular techniques include Principal Component Analysis (PCA) [183], random pro-
jection (based on the Johnson–Lindenstrauss lemma [115]) and a common choice for
visualization purposes is t-SNE (t-Distributed Stochastic Neighbor Embedding) [257].
The t-SNE method is a rather new algorithm to project high dimensional data down
into two or three dimensions so that neighborhood relations can be visualized. The
actual way in which this is accomplished is nicely explained in detail in the original
publication [257]. Since t-SNE is used later on to visualize high dimensional feature
vectors that appear in the classification tasks, a basic outline of the algorithm is
presented here.

The idea is to compute an affinity measure pij in the high dimensional feature space
and an affinity measure qij in the low dimensional feature space for all points i
and j and to minimize a cost function that describes the similarity between the two
resulting distributions. Because if the distributions of pij and qij are similar, then
neighborhood relations in the high dimensional space are resembled appropriately
in the low dimensional space. The affinity measure between the high dimensional
points xi and xj is given by a symmetrized version of the conditional probabilities
pi|j and pj|i. The term pj|i describes the probability that point xi would choose xj as

2.3 semi-supervised learning 27

its neighbor, “if neighbors were picked in proportion to their probability density
under a Gaussian centered at xi” [257]. The standard deviation of the Gaussian
distribution is determined by a user-defined value for the perplexity Perp(·) which
in turn is defined via the Shannon-entropy H:

Perp(Pi) = 2H(Pi) with H(Pi) = −∑
j

pj|i log2 pj|i. (2.28)

The standard deviation σi of the Gaussian around xi is found by a binary search so
that Perp(Pi) equals the user-defined value for the perplexity. The similarity mea-
sure in the low dimensional space (which is usually two- or three-dimensional) is
defined via the neighborhood relations of the corresponding low dimensional points
yi and yj. In contrast to the high dimensional space where the conditional proba-
bilities are modeled via a Gaussian, a Student t-distribution is used to eliminate
the crowding problem [257]. The cost function is defined by the Kullback-Leibler
divergence of the probability distributions in the high dimensional space and the
low dimensional space:

C = ∑
i

∑
j

pij log
pij

qij
. (2.29)

The algorithm then starts with a single calculation of the probabilities pij and
random initialization of the positions of the points in the low dimensional space yi.
For a user defined number of times the affinities in the low dimensional space qij
are calculated, the gradient of the cost function with respect to the yi is determined
and finally the positions yi are updated using gradient descent with momentum.
In this way, the distributions of the affinities in the high and low dimensional space
approach each other so that in the final configuration the probability that points xi
and xj are neighbors in the high dimensional space is close to the probability that
the corresponding low dimensional points yi and yj are neighbors.

Extensive discussion about various unsupervised learning algorithms – especially
clustering methods – can be found in the three books [74], [150], [151].

2.3 semi-supervised learning

Now that supervised and unsupervised learning methods were introduced, some
motivation for the intermediate category semi-supervised learning is given in this
section. Semi-supervised algorithms can be viewed from both ends of the spectrum.
The first perspective is that semi-supervised learning algorithms use unlabeled
data to leverage the performance of a supervised learning algorithm. That is, the
supervised model is the basic component and unlabeled data is only used as

28 fundamentals of machine learning

an addition. The second perspective is that semi-supervised learning methods
enrich unsupervised learning algorithms by a supervised component. The second
perspective can be found later on in this work: In section 5.1.3, an unsupervised
clustering algorithm will be extended by a supervised component.

The first perspective is backed by the fact that it is often much easier to collect
(unlabeled) data than it is to manually annotate these samples. If information from
the unlabeled data can be used to increase the performance of an initially purely
supervised learning algorithm, then both time and money can be saved.

Figure 2.6: Example situation in which unlabeled data helps to identify the underlying
structure in a data set. In a) only the labeled data are drawn. With the unlabeled
data shown in b), more structure of the underlying distribution becomes visible.
Inspired by Fig. 2.1 in [78].

A simple illustration why unlabeled data can increase the performance of a su-
pervised learning algorithm is shown in Fig. 2.6. In part a) of the figure, only
the labeled data are plotted. One could draw a simple linear decision boundary
between the two classes (red and blue circles) which separates all samples from one
class perfectly from samples of the other class. With such a decision function the
point in question (orange circle) would be ascribed to class one (red). If, however,
unlabeled data is considered as well, a different structure of the data distribution
emerges. The labeled samples of class one lie all on a circle and the labeled samples
of class two lie all on a triangular shape that is located inside the circle. With
this additional information, the point in question is more likely to belong to the
second class as the point lies on the triangle. Even though this is an artificially
created example, it conveys the idea that the distribution of unlabeled data around
labeled data can leverage the performance of a supervised learning algorithm if
the underlying structure of the unlabeled data is correctly identified.

3
F U N D A M E N TA L S O F AU T O M O T I V E
R A D A R

The aim of this chapter is to give a general introduction to radar signal processing
as it is done in the automotive field. Since this is a rather broad topic and as it is
discussed in various theses, publications and books, only the necessary terminology
is introduced as well as radar specific properties are presented. The focus lies on
topics that reappear later in this thesis when algorithms are defined and evaluated
based on how radar sensors perceive the world.

The term radar is an acronym for radio detection and ranging although in earlier
times it stood for the more application centered phrase radio aircraft detection and
ranging [22], [153], [186].

A basic description of a radar could be given as follows: A radar sensor is a device
that emits electromagnetic waves as a primary signal and listens for returned echoes
(the secondary signal) to detect objects as well as to infer properties about them.
The kind of information that can be collected about a detected object depends
highly on the used radar sensor and on the object itself. For example, some radar
sensors can measure the position of an object in the plane of the radar sensor
(radial distance and azimuth angle) and additionally its radial velocity whereas
other sensors are well equipped to measure radial velocities but can hardly measure
the position of an object [242].

The general working principle of a radar sensor can be found again in the mathe-
matical description of the received energy Pr that a radar sensor measures after the
transmit antennas emitted radiation with power Pt [242]:

Pr =
PtGt Aeσ

(4π)2R4 =
Pt

4πR2︸ ︷︷ ︸
1

· Gt︸︷︷︸
2

· σ

4πR2︸ ︷︷ ︸
3

· Ae.︸︷︷︸
4

(3.1)

This equation is often referred to as the radar equation. The first term describes
the power density at a distance R from an isotropic antenna. The denominator
4πR2 accounts for the fact that the power of an isotropic emitter is uniformly
distributed over the surface of sphere with radius R centered at the position of the
emitter. Since radar antennas are usually directed, i.e. they do not emit the radiation

29

30 fundamentals of automotive radar

isotropically but focus the beam in some direction, the second term Gt accounts for
this so-called antenna gain of the transmit antenna. The combination of terms one
and two therefore describe the power density that arrives at an object located at
a distance R from the sensor. The third term describes that the illuminated object
reflects some of the incident power isotropically back. The RCS (Radar Cross Section)
σ is a measure for the apparent size of the object. The RCS value is measured in m2

and often reported in a logarithmic scale as dBsm. The RCS value is not directly
linked to the physical size of an object but rather to the objects shape and material
[206], [242]. An extended discussion about the RCS values of the semantic classes
considered in this work will be given later in Chapter 4. The fourth and final part
of the radar equation accounts for the additional gain of the receiver antenna. In
this formulation of the radar equation, it is described by the effective area Ae of the
receiving antenna.

Two important conclusions can be drawn from this equation:

1. The received power decreases with the fourth power of the distance. It is
therefore an inherent property of a radar sensor that the detection perfor-
mance decreases with increasing distance. This already suggests that also
the classification accuracy of the algorithms discussed later in this work may
decrease with the distance of the objects under consideration.

2. The radar cross section σ is a distance independent parameter that describes
shape and material properties of the detected object. The most prominent
example where geometry highly influences the detectability of an object are
stealth aircraft. The design goal of these aircraft is to reduce the reflection of
electromagnetic radiation in a specific frequency region, so that an incoming
radar signal is not returned to the emitter. The RCS value can be used as
extra information for the classification and segmentation algorithms and its
explanatory power has to be analyzed.

Radar sensors are used in astronomy, meteorology, geology, in the defense industry,
for aircraft tracking, as a level-sensor, for navigation and in the automotive industry.
Depending on the application, different design choices have to be made. One
important factor is the structure of the emitted signal for which – on the most
basic level – two choices can be made. Pulse radars emit wave packages for a short
period and listen afterwards for the echo signal while pausing the emission of
further pulses. In contrast, continuous wave radars constantly emit radiation and
mix the returned signal with the emitted signal.

For current automotive applications, Frequency Modulated Continuous Wave (FMCW)
radars are used most frequently because they can measure range, angle and Doppler
velocity at the same time, are inexpensive and can be manufactured small enough

fundamentals of automotive radar 31

which allows for a seamless integration in current car designs [20], [21], [43], [55],
[56], [91], [242].

Experiments with radar for automotive applications started in the 1970s with the
goal of reducing the number of traffic accidents and fatalities. Different frequency
ranges were tested on various installation points on test vehicles: The companies
VDO and SEL experimented with 10 GHz sensors mounted on the roof and 16 GHz
sensors mounted on the front bumper of sedans, respectively [158]. With the
advent of 35 GHz technology, smaller sensors could be constructed allowing for
a more visually appealing integration in the vehicles. First blind spot detection
sensors, i.e. short range radar sensor operating at 16 GHz were already presented
in the 1970s and with the introduction of 77 GHz technology for long range radars,
applications like radar based Adaptive Cruise Control (ACC) could be developed
[156]–[158]. Mercedes-Benz introduced their radar-only ACC-system “distronic” in
1999 in the W220 S-class after other car companies like Toyota and Mitsubishi
previously experimented with lidar based cruise control systems. Nowadays, most
ACC-systems are radar based [4], [50], [189], [259] – even though they are sometimes
supported by a front facing camera [5], [259] – and also emergency braking systems
with pedestrian recognition rely on radar sensors [51].

Future trends in automotive radar concerning autonomous driving are extensively
discussed in [263]. On the functional side, improved imaging capabilities, auto-
motive SAR (Synthetic Aperture Radar) and better resolved Doppler signatures are
mentioned by the authors. Imaging capabilities can be increased by exploiting
MIMO (Multiple Input Multiple Output) technology, i.e. by using multiple antennas
for transmitting and receiving signals. Multiple antennas leverage the angular
resolution and at the same time reduce the ambiguities in the measured angle.

For SAR to work, the antenna has to be moved perpendicular to the direction of
the beam, i.e. in the so-called cross range direction, and the precise position of the
antenna has to be known at each point in time. Only static scenes can be properly
resolved so that parking lot detection is a reasonable field of application for this
technique [113], [132], [263].

Increased resolution of Doppler values makes it possible to detect micro-Doppler
signatures of objects and hence allow for easier classification at an early stage in
the signal processing chain. Micro-Doppler signatures are modulations of the base
Doppler signal of an object caused by smaller moving parts [37]. For example, a
walking pedestrian creates one base Doppler signal that results from the mean speed
of the pedestrian’s torso, and multiple periodic signals with smaller amplitude and
different frequencies that stem from the movement of the pedestrian’s arms and
legs [38], [166], [253], [263].

32 fundamentals of automotive radar

Additionally, the authors in [263] state that better shape resolution is needed, espe-
cially for classification tasks. This statement will be explored later in more detail,
when the impact of spatial properties on the classification results are explored.

3.1 introduction to radar signal processing

Modern automotive radar sensors use the FMCW technique to measure range,
azimuth angle and radial velocity simultaneously. In this section, signal processing
methods used to obtain these three features for multiple objects are introduced.
Again, only the most relevant steps are presented here since this work does not
focus on the improvement of signal processing in automotive radar but rather the
output of the industry standard signal processing is used. For the interested reader,
multiple references are given for further reading on the presented topics.

Figure 3.1: Simplified system diagram of an FMCW radar. Based on Fig. 2 in [270].

In Fig. 3.1, a system diagram of an FMCW radar with one transmit antenna and
one receiver antenna is shown. In a MIMO setting, multiple transmit and receiver
antennas are present. A chirp generator creates a signal that is amplified and
directed to the transmitter antenna TX. The receiver antenna listens for the returned
echo signal and after amplification, this signal is mixed with the current signal. The
newly created mixture signal is amplified and the high frequency parts are filtered
out by a low-pass filter. An ADC (Analog-to-Digital Converter) transforms the filtered
signal, which is then subject to further signal processing.

As the term FMCW radar already hints, the transmitted signal sTX (t) is a continuous
signal whose frequency is modulated periodically. Since the modulation time is
usually much larger than the round trip time, the signal appears as a “continuous
wave” for the illuminated objects. Linear frequency modulations of the form f (t) ∝ t
are commonly used for automotive radar sensors although many approaches exist
to overlay the signal with more complex patterns in order to detect or even avoid

3.1 introduction to radar signal processing 33

interference with other radar sensors [136], [278], [284]. In this section, however, a
simple linearly increasing frequency modulation of the form

f (t) = fc +
B
Tc

t (3.2)

is assumed because the relevant steps can be discussed quite as well with such a
simple signal modulation. The carrier frequency fc is the lowest frequency in each
chirp of length Tc. The parameter B controls the bandwidth of the signal so that
the highest frequency during the chirp is fc + B. With the instantaneous phase [14],
[187]

Φ(t) = 2π
∫ t

0
f (t̃)dt̃ = 2π

(
fct +

B
2Tc

t2
)
+ φ0, (3.3)

the transmitted signal with amplitude A can be written as

sTX (t) = A cos(Φ(t)). (3.4)

The echo signal obtained at the receiver antenna is identical to the emitted signal,
except for the amplitude and a temporal shift:

sRX (t) = Ã cos(Φ(t− τ)). (3.5)

Figure 3.2: Left: Amplitude vs. time plot of the transmitted signal. Right: Frequency vs.
time plot for the transmitted as well as for the received signal. The transmitted
signal is drawn in red and the received signal is drawn in blue with dashed
lines. Symbols are defined in the text. Based on Fig. 3 in [182].

Fig. 3.2 shows the transmitted signal in an amplitude – time plot, and in a frequency
– time plot the transmitted (red) as well as the received signal (blue, dashed lines)
are displayed. The index n enumerates the N chirps that make up one scan. In this
work, a scan is defined as one complete measurement cycle during which radial
distance, azimuth angle and radial velocity are measured for the objects in the field
of view of the sensor.

34 fundamentals of automotive radar

3.1.1 Range and Doppler Estimation

The time delay τ between the transmitted and received signal is proportional to
the distance of the object that caused the echo signal:

τ =
2(R + vrt)

c
. (3.6)

The factor 2 stems from the fact that the signal has to cover twice the distance to the
object: once towards the object and once back to the sensor. The term containing
the radial velocity vr takes the change of position of the object during measurement
into account. In the special case of a static object, the radial velocity vr is zero and
hence the time delay reads

τ′ =
2R
c

. (3.7)

The parameter c stands for the velocity of the emitted signal. For automotive
radar, this is simply the speed of light in air. For radar applications in which the
signal traverses the atmosphere, the propagation speed cannot be assumed constant
but atmospheric effects have to be taken into account, especially when the signal
traverses the ionosphere [126].

Mixing of the transmitted and received signal leads to

sIF(t) = sTX (t)× sRX (t) ∝ cos(Φ(t)) · cos(Φ(t− τ)), (3.8)

where the index IF stands for intermediate frequency.

Using cos(x) · cos(y) = 1
2 (cos(x + y) + cos(x− y)), it becomes apparent that the

mixed signal has two components. The first component is a high-frequency os-
cillation that is removed by the low-pass filter and is not further processed. The
frequency of the second component is the so-called beat frequency fb, i.e. it is the
difference of the transmitted and received frequency.

In the academic case of one stationary object that causes a single echo signal, the
radial distance to the object can be calculated using similarity statements about
triangles: The ratio of the bandwidth B to the chirp duration Tc is the same as the
ratio of the beat frequency fb to the time delay τ = τ′:

B
Tc

=
fb

τ
⇔ τ =

fbTc

B
⇔ R =

fb

B
cTc

2
. (3.9)

Hence, by measuring the beat frequency fb of the mixed signal, the distance to an
object can be directly calculated from the known parameters of the radar sensor.

3.1 introduction to radar signal processing 35

For real world applications with multiple moving objects, the processing steps are
more complex. Inserting the value for the instantaneous phase from Eq. (3.3) into
the expression of the mixed signal, Eq. (3.8), results in

sIF(t) ∝ cos
(

2π

[
fcτ +

Bτ

Tc
t− B

2Tc
τ2
])

(3.10)

≈ cos
(

2π

[
fcτ′ +

(
2 fcvr

c
+

Bτ′

Tc

)
t
])

. (3.11)

In the second line, small terms were neglected, for example terms with c2 in the
denominator. The mixed signal contains a phase term ϕ = fcτ′ = 2 fcR/c and a
frequency f IF that depends on both, the range R and the Doppler velocity vr, and is
given by f IF = 2 fcvr/c+ 2RB/(cTc). At first sight it might seem tempting to use the
intermediate frequency to extract information about the Doppler velocity. However,
since f IF depends also on the range R, the so-called range-Doppler coupling would
have to be resolved. This can be done either by using a saw-tooth modulation of the
frequency or by changing the steepness of the individual ramps during one scan.
A different route is to work only with the phase term ϕ and to collect information
about the change in the phase over N chirps. The intermediate frequency is then
used to extract the range information, which later has to be compensated for the
Doppler term. This last approach is most commonly used in automotive radar
sensors, because for example the saw-tooth modulation pattern can only resolve
the range-Doppler coupling in situations with a single return signal.

Two different time scales are considered in the following steps: the fast-time and
the slow-time. The fast-time is the time scale of one chirp, i.e. of the order of Tc and
the slow-time is the time scale of one scan with N chirps. Performing a Fourier
transformation on sIF(t) yields the frequency spectrum of the mixed signal. If only
a single echo from one object creates the mixed signal, the spectrum will contain
a single peak around the frequency that corresponds to the distance of the object
to the sensor (and due to the range-Doppler coupling also on its velocity). For
multiple illuminated objects, the returned signal becomes more complex as each
object contributes to the mixed signal with its own range dependent frequency. The
Fourier transform then contains one peak for each object, and the frequencies at
which the peaks appear can be directly converted to range information. Often, a
Fast Fourier Transform (FFT) is used as an efficient algorithm to perform the Fourier
transform on the digital signal. As this FFT results in information about the distance
of the detected objects, it is often called range-FFT.

A second FFT is performed over the slow-time dimension to obtain the rate of
change of the phase term over N chirps. For a stationary object, the phase remains
constant since the distance R to the object stays the same. For a moving object,
however, R changes over time causing a change in the phase ϕ. The peaks in the

36 fundamentals of automotive radar

Figure 3.3: Creation of the range-Doppler-matrix by application of a 2D-FFT on the rows
and columns of the input matrix. The input matrix consists of M sampled values
from each of the N chirps.

frequency spectrum can therefore be used to calculate the radial velocity of the
objects and hence this second FFT is often called Doppler-FFT.

If each chirp is sampled at M positions, an M× N matrix with the sampled values
of all N chirps can be created. The range-FFT corresponds to an FFT along the M
rows of the matrix, whereas the Doppler-FFT corresponds to an FFT along the N
columns. The resulting matrix is called the range-Doppler-matrix. The generation of
this matrix is sketched in Fig. 3.3.

A more detailed mathematical analysis of the presented processing steps can be
found in [241], [270].

3.1.2 Azimuth Angle Estimation

Up to now, only a single antenna was considered and range as well as Doppler
velocity information were extracted from the mixed signal. However, to obtain the
direction of the objects that caused the return signals, a single stationary antenna
is not sufficient. A mechanically rotating antenna as it is used in different radar
applications (for example at a larger scale in airport surveillance) is not the optimal
choice for automotive applications. For a good angular accuracy and resolution,
the rotation has to be fast and constant in time. As a moving car causes various
vibrations and disturbances, such a mechanical system is bound to be difficult to
implement. Nevertheless, earlier automotive radar sensors relied on mechanically
rotating antennas [42], [231], [271].

Instead, modern automotive FMCW radars use an array of antennas to estimate the
direction of the returned signal. The basic idea is sketched in Fig. 3.4. The primary

3.1 introduction to radar signal processing 37

Figure 3.4: Sketch of the phase difference that occurs on the receiver antennas (RX, blue
circles) if an object is detected under an angle φ. Colored lines indicate areas
with the same phase (wave fronts). Similar figures are in [120], [241].

signal is reflected off an object whose position in polar coordinates is given by (r, φ)

relative to the sensor. For automotive radar, the distance to the object r is usually so
large that the echo signal can be modeled as a plane wave. The path lengths to the
receiver antennas is now a function of the angle φ. A wave front that hits the first
antenna element is still a distance ∆s = d sin(φ) away from the second antenna.
The parameter d describes the distance between two receiver antennas. Therefore,
neighboring receiver antennas measure a phase difference of ∆ϕ = 2π∆s/λ, where
λ is the wavelength of the returned signal. Inserting the expression for ∆s yields

∆ϕ =
2π

λ
d sin(φ). (3.12)

For NRX receiver antennas, the relative phase differences to the first antenna
are given by [0, ∆ϕ, 2∆ϕ, . . . , (NRX − 1)∆ϕ]. Just as for the range and Doppler
information, a Fourier transformation can be used to extract the value of ∆ϕ and
hence the angle information. In this case, however, the Fourier transform is taken
over the NRX values of the receiver antennas. With four to six receiver antennas in
current series automotive radars, this number is rather limited [20], [43]. As the
angle resolution is proportional to the inverse number of sample points 1/NRX ,
performing only a FFT would not yield desirable resolutions of about 1°.

Multiple methods exist to increase the angle resolution. In [120], [155] an ex-
trapolation scheme of the received phase-difference signal is described. Linear
combinations of measured values are created to artificially increase the number
of antenna elements and hence increase the number of data points over which
the FFT is performed. The increase in resolution is directly proportional to the
number of predicted values and can therefore be scaled almost freely depending

38 fundamentals of automotive radar

on the available resources. However, this method assumes that the true signal is a
sum of sin terms with additional white noise. If this assumption is violated, the
performance of the algorithm degrades and alternative methods are needed.

Since the angular resolution scales with the number of antenna elements NRX , it
is desirable to increase this number. Naïvely, one could use twice the number of
receiver antennas to double the angular resolution. On the hardware side, the MIMO

technique follows a more sophisticated route by using not only multiple receiver
antennas but also multiple transmit antennas with orthogonal signals. Thereby,
virtual antenna elements are created causing a better sampling of the return signal.
In Fig. 3.5, a sketch of a MIMO setup is shown. Two transmit antennas (red circles)
are separated by a distance 4d from each other and emit orthogonal signals that
can be distinguished at the receiver side (blue filled circles). As discussed before,
the phase differences at the four receiver antennas from the signal of the first
transmit antenna is given by [0, ∆ϕ, 2∆ϕ, 3∆ϕ]. The signal of the second transmit
antenna has a relative phase difference of 4∆ϕ to the signal of the first antenna
because of the spatial separation of 4d. When these signals arrive at the receiver,
they still have this relative phase difference to the first transmit antenna, so that the
phase differences at the four receiver antennas are given by [4∆ϕ, 5∆ϕ, 6∆ϕ, 7∆ϕ].
Therefore, eight different values can be sampled in total, i.e. by the introduction of
one additional transmit antenna four additional virtual antennas were created (blue
unfilled circles in Fig. 3.5). In general, a combination of NTX transmit antennas and
NRX receiver antennas can yield up to NTX · NRX sample points, provided that the
signals of the transmit antennas are orthogonal. For the generation of orthogonal
signals, TDM (Time Division Multiplexing), CDM (Code Division Multiplexing) or other
variants can be used. One of the downsides of using MIMO radars is that a more
complex signal processing is needed. More elaborate details on MIMO techniques
can be found in [36] and references therein.

v i r t u a l a n t e n n a s

Figure 3.5: Sketch of a MIMO setup. Two transmit antennas in combination with four receiver
antennas can emulate the same behavior as one transmit antenna and eight
receiver antennas. Based on Fig. 5 in [200].

A different way to increase the angular resolution is the application of super-
resolution algorithms like MUSIC (Multiple Signal Classification) and ESPRIT (Esti-
mation of Signal Parameter via Rotational Invariance Technique) [59], [67], [214], [228],
[263]. As these algorithms are computationally expensive, experiments have been

3.1 introduction to radar signal processing 39

conducted to perform basic signal processing first and then apply high-resolution
algorithms for selected regions of interest [53].

3.1.3 Ambiguities and Resolution Limits in Range, Doppler and Angle

Just as every other measuring device, also a radar sensor can resolve received
signals only up to a certain precision. In addition to resolution limits, ambiguities
have to be accounted for during signal processing and later on in the development
of clustering and classification algorithms as well. These ambiguities stem from the
inherent cyclic properties that come along with wave phenomena and processing
steps that include FFTs. In this section, the resolution limits of an FMCW automotive
radar are stated and examples for possible ambiguity effects are given. For each
of the three measurement dimensions range, Doppler velocity and angle, the
maximum resolution and the maximum ambiguous free value will be derived in a
similar way. Two general statements are used repetitively:

1. The bin resolution of an FFT is given by the ratio of the sampling frequency
fsample of the signal and the number of sampling points Nsample.

2. Nyquist–Shannon sampling theorem: “If a function contains no frequencies
higher than W, it is completely determined by giving its ordinates at a series
of points spaced 1/(2W) seconds apart” [238]. In other words, a sampling
rate of at least 2W is needed to capture all parts of a signal with maximum
frequency W.

The range-FFT is performed with M samples per chirp, i.e. fsample = M/Tc. Hence,
the bin resolution is 1/Tc. In Eq. (3.10) it was shown that the intermediate frequency
is given by f IF ≈ Bτ′/Tc, where the range-Doppler coupling is neglected due to its
small effect and τ′ = 2R/c. If two objects are separated by ∆R, they are separated
in frequency by

∆ f IF =
2B
cTc

∆R. (3.13)

In order to resolve the two objects, the frequency difference ∆ f IF has to be resolvable,
i.e. the frequency difference has to be greater than one bin width: ∆ f IF > 1/Tc.
Combining these information yields

∆ f IF =
2B
cTc

∆R >
1
Tc

⇔ ∆R >
c

2B
. (3.14)

That being said, the larger the bandwidth B, the better the range resolution. To
determine the maximum range of a radar sensor, the ADC sampling rate Fs has to be

40 fundamentals of automotive radar

considered. The Nyquist–Shannon sampling theorem demands that the sampling
rate Fs has to be larger than twice the maximum frequency in the spectrum f max

IF .
This leads to

Fs > 2 f max
IF ⇔ Fs > 2

2B
cTc

Rmax ⇔ Rmax <
cTc

4B
Fs. (3.15)

Increasing the ADC sampling rate or the duration of one chirp therefore allows for
a greater detection range.

To estimate the Doppler velocity, an FFT over the slow-time is performed, i.e. the
change in phase ϕ = fcτ′ over N chirps is considered (see previous section). In
this case, the sample frequency is given by 1/Tc and hence the bin resolution is
1/(NTc). The change in phase ∆ϕ is caused by a change in distance ∆R which in
turn is caused by the movement of the object with radial velocity vr. Hence, the
phase changes during the time Tc by

∆ϕ =
2 fc

c
∆R =

2 fc

c
vrTc. (3.16)

If two objects are separated by ∆vr, they can again only be resolved if the cor-
responding change in frequency is larger than the bin width. That is, a velocity
difference of ∆vr can be resolved if

∆vr >
c
fc

1
2NTc

. (3.17)

Therefore, the more chirps being performed (larger N), the higher the carrier
frequency fc or the longer the chirp duration Tc, the higher gets the Doppler
resolution of the radar. This equation displays why systems with fc = 76 GHz
became prevalent instead of the previous 24 GHz radars. Just as it was done for
the maximum range of a radar sensor (cf. Eq. (3.15)), the maximum unambiguous
Doppler value of an FMCW radar is considered here as well. Again, the Nyquist-
Shannon sampling theorem can be used to derive the expression for the maximum
Doppler value vmax

r . As stated before, the sample frequency is given by 1/Tc so the
highest frequency in the spectrum

f max
v = 2 fc

vmax
r
c

(3.18)

is limited by 2 f max
v < 1/Tc. Plugging in the value of f max

v and rearranging yields

vmax
r <

c
4 fcTc

. (3.19)

A different (although related) way to arrive at this result is by noting that the
change in phase between two consecutive samples has to be smaller than π in

3.1 introduction to radar signal processing 41

Figure 3.6: Blue arrow: time t0, red arrow: time t1. In a) and b), two different possible paths
the phasor could have taken between t0 and t1 are displayed. In c), the two
phase differences are plotted and d) shows regions with positive and negative
Doppler velocity.

order to unambiguously resolve the velocity. In Fig. 3.6, the phasors (complex
amplitudes) of the signal are depicted by rotating arrows. The blue and red arrows
show the phasor at times t0 and t1 > t0. In Fig. 3.6a and Fig. 3.6b, two different
paths are depicted the phasor could have taken between t0 and t1. In this example,
a positive radial velocity causes a counter-clockwise rotation of the phasor and
a negative radial velocity results in a clockwise rotation. The clockwise path in
Fig. 3.6b corresponds to a change in phase of ∆ϕ, whereas the counter-clockwise
path in Fig. 3.6a corresponds to a change in phase of 2π − ∆ϕ. If the change in
phase is now larger than π between two samples, there is no way to know that this
change in phase was not caused by a movement in the opposite direction. Therefore,
even though the true path was the counter-clockwise one from Fig. 3.6a, a clockwise
rotation of the phasor would be incorrectly assumed and hence a negative velocity
reported for an object with a high positive velocity. This graphical argument is of
course just a rephrasing of the Nyquist-Shannon sampling theorem. In Fig. 3.6d,
areas that correspond to positive and negative Doppler velocities are highlighted.
Mathematically, the result can be derived with this line of reasoning as follows

∆ϕ < π

⇔ 2πTc · 2 fc
vmax

r
c

< π (3.20)

⇔ vmax
r <

c
4 fcTc

,

leading naturally to the same result as before. The important finding is that if
the relative radial velocity between radar sensor and object is larger than vmax

r , a
velocity with the opposite sign is reported. In situations where the radar sensor
and one detected object move in opposite directions, these limits can be reached
quite easily so that especially oncoming traffic is affected by this. Without any
counter measures, the unambiguous Doppler range of modern automotive FMCW

radars lies in intervals of about [−15; 15] m/s. One counter measure to reduce this
unwanted effect is to integrate a mini-tracking algorithm into the sensor so that

42 fundamentals of automotive radar

from the possible values vr,i = vr + i · vmax
r , with i ∈ Z, the correct ambiguity index

i is chosen, i.e. that the correct number of times the maximum Doppler velocity is
added or subtracted from the initially reported value. Even without an integrated
mini-tracking such an ambiguity index (or a list of possible Doppler values) can be
reported so that the correct Doppler value can be resolved in later processing steps.

With the same line of reasoning, statements for the maximum unambiguous angle
can be made as well. From Eq. (3.12) and ∆ϕ < π it follows

φmax < arcsin
(

λ

2d

)
. (3.21)

This expression directly shows that an antenna spacing of d = λ/2 leads to the
largest unambiguous angle of φmax = ±90°.

For the angle resolution the bin resolution of the angle-FFT has to be considered,
which is given by 1/NRX since one sample per receiver antenna can be obtained.
The phase difference between two objects, separated by an angle ∆φ, is according
to Eq. (3.12) given by

∆ϕ =
2π

λ
d(sin(φ + ∆φ)− sin(φ)) (3.22)

≈ 2π

λ
d cos(φ)∆φ. (3.23)

Again using the statement that the change in frequency has to be greater than one
bin width in order to be resolvable, one arrives at

∆φ >
λ

NRX · d
1

cos φ
. (3.24)

Two statements are in order here:

1. In contrast to the range and Doppler resolution which are independent of the
respective range or Doppler value, the angle resolution depends on the actual
angle and is maximal for φ = 0.

2. For an optimal antenna spacing of d = λ/2, the resolution is solely de-
termined by the number of receiver antennas NRX . Doubling the number
of receiver antennas (by using twice as many physical antennas or MIMO

techniques) therefore doubles the angle resolution.

The statements about ambiguities and maximum resolution values are only true if
basic signal processing as discussed here is applied. More advanced algorithms like
MUSIC [228] or ESPRIT [214] of course yield a better resolution so that these basic
formulas cannot be directly applied. However, especially the Doppler ambiguities

3.1 introduction to radar signal processing 43

resulting possibly in sign changes of the reported values will be discussed again
when the radar data set is introduced.

One further ambiguity in the angle is discussed here, because its manifestations
become also apparent in the data set. If only one object causes a reflection of the
transmitted signal, the mixed signal is a constant during the times t0 and t1 when
both the transmitted and received signal are non-zero, see Fig. 3.7. The Fourier trans-
formation of such a rectangle signal is given by the si-function si(x) = sin(x)/x.
The maximum of the transformed signal lies at the beat frequency fb. However,
in addition to the central maximum, there are multiple smaller maxima located
symmetrically around the central peak. Ideally, the range-bin bk corresponding to
the beat frequency fb has its center directly at the maximum so that the value at
the center of the adjacent range bins bk±1 is zero. In this case, the sidelobes have no
negative effect and only one target would be reported. If however the bins are not
ideally distributed, a non-zero value is reported in neighboring bins. In cases where
the original object is a strong reflector, the amplitude of the sidelobes could raise
above the surrounding noise level so that in addition to the original object other
objects are reported. This discussion is not limited to the range-FFT but applies
generally. In our data set, this effect is most pronounced for the angle-FFT. In this
case, a “ghost” object is created a few degrees away from the original object. These
ghost objects are well visible in situation where the ego-vehicle follows a truck or
other dynamic objects with high RCS value.

Figure 3.7: In a), the transmitted and received signals are plotted, similar to Fig. 3.2. The
resulting mixed signal with constant frequency is drawn for the times where
receive and transmit signal both exist. In b) the Fourier transformation of the
mixed signal is plotted along with ideally located bins.

3.1.4 Target Extraction

Up to now, a transformation of the measured signals into a three-dimensional data
cube was described. This procedure is sketched again in Fig. 3.8. However, not

44 fundamentals of automotive radar

every cell in this data cube is necessarily needed for further applications, so it is
desirable to reduce the data stream that has to be transferred from the sensor to
the control unit. Most of the cells in the data cube contain only noise so that an
algorithm is needed to extract the signals that stem from real objects. A simple
peak-finding algorithm is not sufficient because of varying noise levels and hence
different criteria are needed.

Figure 3.8: Transformation of the measured return signals to the three dimensions range,
Doppler velocity and angle. The fast-time (samples on one chirp) corresponds
to the range dimension, the slow-time (the number of chirps) corresponds to
the Doppler velocity dimension and finally the number of antenna elements
determines the angle. Based on figure in [7].

Most commonly, a CFAR (Constant False Alarm Rate) algorithm is used to identify
only those peaks that belong to real objects [206]. The criteria for selecting these
peaks is already hinted by the algorithm’s name: the resulting output has a constant
false alarm rate. A false alarm in this context means that a peak was identified as a
true measurement even though it is only a result of noise.

Multiple variations of the CFAR algorithm exist that differ in computational complex-
ity and accuracy. One basic implementation is the so-called CA-CFAR (Cell Averaging
Constant False Alarm Rate) algorithm [210]. Here, one Cell Under Test (CUT) is picked
and the noise level around this cell is estimated by the average of the surrounding
cells. To improve the noise level estimation around broad peaks, so-called guard
cells are introduced around the CUT. These guard cells do not contribute to the
average so that the predicted noise level is not incorrectly increased around peaks.
The algorithm declares a target in one CUT, if its value is both higher than the
estimated noise level and higher than the neighboring cells.

The term target is used in this work to describe one single CFAR detection. In the
radar community, the term target has often been used to describe one whole object,
e.g. one car. This wording stems from earlier times, when radars could only resolve

3.1 introduction to radar signal processing 45

one target on one object so that a distinction between the terms was not necessary.
However, since modern automotive radars can measure several targets on one
object, the wording has to be chosen more carefully. Synonyms for the word target
(in the sense used in this work) encountered in other publications are location,
detection or measurement.

The target extraction with CA-CFAR is sketched in Fig. 3.9 for a one-dimensional
signal. The noise level around the current CUT is estimated over five surrounding
cells, where two guard cells from each side around the CUT are excluded from the
calculation. Since the value of the CUT is higher than the neighboring values and
also higher than the noise level, a target is extracted from this cell.

Figure 3.9: Sketch of the cell-averaging CFAR algorithm. The two guard cells (red) at each
side of the cell under test (blue) are not considered during estimation of noise
level (green cells). Based on Fig. 7.3 in [206].

A more advanced target extraction algorithm is called OS-CFAR (Ordered Statistics
Constant False Alarm Rate) [15], [211]. This approach fixes one shortcoming of the
simpler CA-CFAR method, namely that two nearby signals can no longer mask each
other. To achieve this, all values in the current sliding window have to be sorted
and the kth value in the sorted array is used for the estimation of the noise level.
The performance gain of OS-CFAR in comparison with CA-CFAR comes at the cost of
increased computational complexity, caused by the need to sort the values in each
sliding window.

Multiple other variations like Cell Averaging Statistic Hofele CFAR [103] or Trimmed
Mean CFAR exist [62], which all try to yield as many true positive targets as possible
while keeping the computational costs low.

The extracted CFAR targets form the basis of all algorithms discussed in this work.
Each target has the following four basic properties:

1. range r (in m),

2. azimuth angle φ (in rad),

3. Doppler velocity vr (in m/s),

4. RCS value σ (in dBsm).

46 fundamentals of automotive radar

Additionally, each radar sensor reports the time of the scan that contains the target
as well as variances for all measured quantities. The measured targets of one
or multiple radar sensors form a spatio-temporal point cloud with two spatial
dimensions. The spatial properties are reported relative to the sensor, i.e. in a sensor
coordinate system. In the following sections, the transformation into other coordinate
systems is discussed as well as the ego-motion compensation of the measured
Doppler velocity.

3.2 coordinate systems

In this thesis, data from a network of radar sensors is used for the development
of classification algorithms. The data from each sensor is reported in the sensor’s
own polar coordinate system with the sensor located at r = 0. Common coordinate
systems are needed into which the data from all sensors can be transformed so
that following algorithms can work with the merged data. In addition to the sensor
coordinate system (abbreviated as sc), a vehicle-fixed car coordinate system (cc)
and a global coordinate system (gc) are used in this work.

The origin of the car coordinate system is fixed at the center of the rear axle. In
accordance with ISO 8855, the x-axis of the car coordinate system points in the
forward direction and is “substantially horizontal” [114]. The y-axis points to the
left of the driving direction so that in a right-handed coordinate system the z-axis
points upwards. While the test vehicle is moving, also the car coordinate system
moves through the global coordinate system, whose origin is aligned with the
car coordinate system’s origin when the vehicle is started for the first time in a
measurement cycle. Therefore, the global coordinate system cannot be used to
identify the position of the vehicle uniquely on the globe, but it is rather a frame
in which all measurements made during one single drive can be collected and
uniquely positioned.

The position of the ego-vehicle in the global coordinate system is obtained from ei-
ther the vehicle’s odometry sensors or a DGPS (Differential Global Positioning System)
that is built into the vehicle. Usually, data from a DGPS system is more accurate as
less numerical integration has to be performed and hence drifts in the trajectory are
smaller. However, high costs of a DGPS system prohibit the widespread usage in a
large fleet of vehicles. For parts of the data set used in this work, a DGPS system was
available. The rest of the data set was recorded with only odometry information.
Both systems have in common that they yield at least the following information
about the ego-vehicle’s position and motion:

• Position in the global coordinate system: x(gc)
car , y(gc)

car

3.2 coordinate systems 47

• Speed in driving direction: vcar,x

• Yaw angle of the vehicle: γ. It is measured from the x-axis of the global
coordinate system to the x-axis of the car coordinate system.

• Yaw rate: γ̇. The center of rotation is assumed to be the center of the rear axle.

It is further assumed that the ego-vehicle does not drift so that vcar,y ≡ 0. With this

definition, the point (x(gc)
car , y(gc)

car) defines the origin of the car coordinate system as
seen from the global coordinate system. This origin is of course time dependent
due to the car’s motion.

The positions of the radar sensors are defined by two coordinates x(cc)
sens,i and y(cc)

sens,i.
The orientation of the sensors is given by the yaw, pitch and roll angles φsens,i, θsens,i
and ψsens,i. The index i enumerates the Nsens different radar sensors of a vehicle.
In this work Nsens ∈ {4, 8}, i.e. either four or eight sensors are used on the test
vehicles. A superscript in parentheses like (cc), (sc) or (gc) indicates the coordinate
system the respective quantity belongs to.

Figure 3.10: Location and orientation of the three coordinate systems. The black dashed
line in a) symbolizes the trajectory of the test vehicle and the green triangle
stands for one radar sensor. In b) the vectors connecting the origins of the
coordinate systems as well as the angles γ and φsens,1 are displayed.

In Fig. 3.10, the relations of the three coordinate systems are depicted. The global
coordinate system (orange) with its basis vectors x̂(gc) and ŷ(gc) has its origin at
the beginning of the trajectory (black dashed line). A hat over a symbol as in x̂
indicates a unit vector. The angle γ increases in mathematical positive direction, i.e.
from x̂(gc) to ŷ(gc), so that in the displayed case γ > 0. Similarly, the angles φsens,i
are measured from x̂(cc) towards ŷ(cc) so that in the example in Fig. 3.10b φsens,i > 0.
The pitch and roll angles of the sensor alignment are not displayed here but are
defined analogously.

Transformation of a measured target t with distance r and azimuth angle φ from
polar coordinates to the Cartesian sensor coordinate system is done as follows:

x(sc) = r cos(φ)

y(sc) = r sin(φ).
(3.25)

48 fundamentals of automotive radar

In general, the transformation from one coordinate system A into another coordi-
nate system B can either be done by applying a rotation matrix R followed by the
addition of a translation vector ~d or by applying one homogeneous transformation
matrix BTA. The matrix T is a combination of R and ~d:

BTA =

dx

R dy

dz

0 0 0 1

. (3.26)

The rotation matrix R is the product of rotation matrices that describe rotations
around the x-axis (roll angle δ), the y-axis (pitch angle β) and the z-axis (yaw angle
α):

R = Rz(α)Ry(β)Rx(δ) with (3.27)

Rx(δ) =

1 0 0

0 cos δ − sin δ

0 sin δ cos δ

 , Ry(β) =

cos β 0 sin β

0 1 0

− sin β 0 cos β

Rz(α) =

cos α − sin α 0

sin α cos α 0

0 0 1

 (3.28)

Using only one homogeneous transformation matrix has the upside that for mul-
tiple consecutive transformations only the product of two matrices has to be
calculated which in turn is just another homogeneous transformation matrix.

For the concrete example of a transformation from sensor coordinates (of sensor
i) to car coordinates, the angles α, β and δ are given by φsens,i, θsens,i and ψsens,i

and the translation vector ~d is built from the two entries x(cc)
sens,i and y(cc)

sens,i as the z
displacement can be neglected in all our use cases:

ccTsc =

x(cc)
sens,i

R(φsens,i, θsens,i, ψsens,i) y(cc)
sens,i

0

0 0 0 1

. (3.29)

3.2 coordinate systems 49

Therefore, the coordinates of the target t in the car coordinate system are given by(
x(cc) y(cc) z(cc) 1

)T
= ccTsc

(
x(sc) y(sc) 0 1

)T. (3.30)

For the transformation from car coordinates to the global coordinate system, only
the yaw angle γ between the global coordinate’s x-axis and the x-axis of the car
coordinate system is relevant for the rotation matrix, since pitch and roll motions
of the vehicle are expected to be negligible. Hence, the rotation matrix simplifies to
R = Rz(γ) and the full homogeneous transformation matrix is given by

gcTcc =

x(gc)
car

Rz(γ) y(gc)
car

0

0 0 0 1

. (3.31)

To directly transform measurements from the sensor coordinate system to the
global coordinate system, the product of the two intermediate transformations has
to be considered:

gcTsc = gcTcc · ccTsc. (3.32)

The inverse transformation, e.g. from car coordinates to sensor coordinates, is given
by the inverse of the respective transformation matrix:

scTcc = ccT−1
sc , ccTgc = gcT−1

cc and scTgc = gcT−1
sc . (3.33)

To display the need of transforming the measured targets into the different coordi-
nate systems, Fig. 3.11 shows measurements obtained from four radar sensors in
two coordinate systems. Measurements from a time window of 500 ms are shown.
The test vehicle on which the sensors were mounted performs a right turn in this
scenario. Colors indicate from which sensor the respective targets come from. In
the left panel, the locations are shown in the car coordinate system and in the right
panel, the targets are plotted in the global coordinate system. The visualization
of all targets in a single sensor coordinate system is of course not useful, bears
little information and is hence not displayed here. If the targets are plotted in
the car coordinate system of their respective recording time, the structure of the
scene becomes already visible. Since the ego vehicle is moving, the origin of the
car coordinate system is not fixed and hence targets of the same static object are
not positioned at the same coordinates. Therefore, the whole scene looks “smeared
out”. This is only patched if the global coordinate system is considered, in which

50 fundamentals of automotive radar

points from the same physical position are plotted at the same point, irrespective of
the vehicle movement. Notice that the orientation of the global coordinate system
differs in general from the current driving direction so that the point clouds shown
in the right panel of Fig. 3.11 are rotated compared to the points in the left panel.

0 20 40

x(cc) (m)

−20

−10

0

10

20

y(c
c)

(m
)

4120 4140 4160

x(gc) (m)

−2120

−2110

−2100

−2090

−2080

y(g
c)

(m
)

Sensor 1 Sensor 2 Sensor 3 Sensor 4

Figure 3.11: Radar targets from the four sensors are displayed in two different coordinate
systems. Left: Car coordinate system. Right: Global coordinate system. Data
accumulated over 500 ms is shown.

The downside of displaying the targets in a global coordinate system is that the
numerical values of the coordinates are usually not very meaningful for a human
observer and that the coordinate system can be arbitrarily rotated. A position in
car coordinates is easier to understand, since with the ego vehicle at the origin,
there is a clear fix point and the numerical values are in the order of 10 m to 100 m.
For example, a coordinate tuple in world coordinates like (4157,−2105) is harder
to grasp and to put into context than the same position in the vehicle coordinate
system: (3, 15). The latter can be directly understood as “three meters in front of
the vehicle and 15 meters to the left”. Good orientation in the radar point cloud
is important for the labeling task, which will be discussed later in more detail.
Since the origin of the global coordinate system is chosen rather arbitrarily, it can
also be translated to the current position of the ego vehicle. Thereby a new global
coordinate system is created which has the pleasant feature that the positions
of all targets are now relative to the ego vehicle and the absolute values of the
coordinates are smaller and hence easier to grasp. Another way to think about
this coordinate system is that the positions of the targets are transformed to a car
coordinate system of a different point in time.

If not explicitly stated otherwise, the term car coordinates will in this work always
mean that a car coordinate system of one point in time is chosen and all points

3.3 ego-motion compensation 51

from different time steps are projected into this frame of reference. That is, the
position of the ego vehicle at t0 is selected and all targets that were measured at
this time are inserted into this frame. Targets from time t1 6= t0 are projected into
this selected frame of reference and are not positioned at the coordinates of the car
coordinate system of time t1.

In such a car coordinate system the targets of a static object lie at one fixed spatial
area whereas the measurements of a dynamic object show up as a trail, which is
solely defined by the object’s size and motion but is independent of the motion of
the ego vehicle.

Measurements collected during 1 s of one example scene are displayed in the car
coordinate frame of the earliest time stamp in Fig. 3.12. The extended trail of targets
of the oncoming car (red points) is clearly visible as well as the fact that targets
that belong to the two parked cars on the right are all located at the same spatial
area even though the ego vehicle moves during the measurement time.

−5 0 5 10 15 20 25 30

x(cc) (m)

−5

0

5

y(c
c)

(m
)

Figure 3.12: Left: Radar targets of an oncoming car (red) and the static infrastructure (grey).
Right: Cropped camera image of the same scene. Data accumulated over 1 s is
shown.

3.3 ego-motion compensation

As discussed in section 3.1.1, the Doppler effect is used to estimate the relative
radial velocity between radar sensor and object. In automotive applications, the
radar sensor is usually not stationary so that the Doppler values reported from
the sensor have to be compensated for the ego-motion. Only then the Doppler over
ground is obtained, i.e. the Doppler velocity of the detected object relative to the
stationary environment.

52 fundamentals of automotive radar

The Doppler over ground (the ego-motion compensated Doppler velocity) v̂r can
be calculated from the measured Doppler velocity vr by subtracting the apparent
radial velocity of static objects vstatic

r :

v̂r = vr − vstatic
r . (3.34)

The measured radial velocity of static objects is the projection of the velocity of the
radar sensor in the radial direction:

vstatic
r = −

(
vsens

x cos(φ + φsens) + vsens
y sin(φ + φsens)

)
. (3.35)

The minus sign accounts for the fact that if a radar sensor is moved towards a
static object, a Doppler velocity is measured that indicates a movement of the object
towards the sensor, i.e. a movement in the negative radial direction. The quantities φ

and φsens are just as before the azimuth angle of the target (in sensor coordinates)
and the rotation of the sensor relative to the ego vehicle, respectively. Since the
azimuth angle of the target φ enters the calculation and this is the measurement
dimension that is usually worst resolved by a radar sensor, the error in φ propagates
to the ego-motion compensated Doppler velocity so that the accuracy of the usually
well resolved Doppler value degrades.

Figure 3.13: Sketch of the ego vehicle during a right turn where γ̇ < 0. Quantities used for
the ego-motion compensation of the Doppler velocity of one measured target
(orange pentagon) are shown.

Finally, the velocity components of the sensor vsens
x and vsens

y are determined by the
speed of the ego vehicle, its yaw rate and the sensor position:

vsens
x = vcar,x − y(cc)

sens · γ̇ (3.36)

vsens
y = x(cc)

sens · γ̇. (3.37)

Again, the assumption is made that the car does not slip or drift so that vcar,y ≡ 0.
In Fig. 3.13, the relevant quantities are sketched. It should be noted that vsens

x and

3.4 clutter 53

vsens
y are components corresponding to the basis vectors x̂(cc) and ŷ(cc), i.e. the

components are relative to the car coordinate system:

vsens =

vsens
x

vsens
y

 = vsens
x x̂(cc) + vsens

y ŷ(cc). (3.38)

In the remainder of this work, the term Doppler velocity will usually be used as a
synonym for the ego-motion compensated Doppler velocity, as the pure Doppler value
is often not meaningful. However, in formulas there will always be a distinction
between the measured Doppler vr and the ego-motion compensated Doppler
velocity v̂r to avoid any confusion.

3.4 clutter

Depending on the application, the term clutter is used in the radar community for
very different effects or objects [242]. The common basis is that clutter measure-
ments are undesired information for the current application that can either result in
false positives or overlay and thereby alter the true signal. For example, in aircraft
detection, precipitation, ground reflections or even birds are considered as clutter.
In maritime applications, sea waves are a large source of clutter measurements,
which can be hardly accounted for due to their variable sizes and velocities. In
contrast, a weather surveillance radar would certainly not consider precipitation
as clutter and in the context of driver assistance systems, ground reflections are
not per se clutter as they can be used e.g. for road course estimation [75], [220] and
larger birds or other animals might be relevant for precrash systems.

As this work deals with the semantic classification of moving objects, one necessary
condition for a target to be declared as clutter is that it has a non-zero Doppler
velocity v̂r. Three different groups of this type of clutter can be identified:

1. Mirrored objects. Just as there are mirrors for electromagnetic waves in the
visible range, there are also objects that work as a mirror for electromagnetic
waves around 77 GHz. Metallic surfaces of fences, gates or guardrails can
create a mirrored object of a truly existing object that appears at a different
range or angle in the radar point cloud. Two features make it difficult to
detect mirrored objects even with the help of a documentary camera. Firstly,
mirrors for radar waves look very different from commonly known mirrors
that work in the visible range of electromagnetic radiation and secondly, multi
path propagation of the returned signal makes it difficult to track the exact
way the wave took. Since mirrored objects have very similar properties in all

54 fundamentals of automotive radar

measurement dimensions (r, φ, vr and σ), their distinction from real objects is
a challenging task. Information about the polarization of the returned signals
may help to distinguish mirrored objects from true objects, since for example
a circular polarized wave changes its polarization direction each time it is
reflected.

2. Ambiguities. As discussed in section 3.1.3, ambiguities in angle can cause
targets to be reported at a wrong value of φ so that either parts of an object
are displayed at the wrong position or the whole object is moved to a different
angle. This type of clutter objects appear at a fixed angle relative to a real
object if they stem from sidelobe measurements or if the TDM (Time Division
Multiplexing) MIMO (Multiple Input Multiple Output) corrections are incorrectly
calibrated. Ambiguities in Doppler may result in attributing a non-zero
Doppler velocity to in fact static targets.

3. Noise. Each measurement device suffers from some amount of noise in each
of the measurement dimensions. A radar sensor is of course no exception to
this so that random fluctuation in the noise may lift one CUT over the adaptive
noise threshold of the CFAR algorithm. Processing errors in the sensor may
be another source of falsely created targets. Thirdly, misalignment in time
of odometry information and sensor data or simply erroneous odometry
information can result in an incorrect ego-motion compensation which in
turn causes that static targets are attributed with a non-zero Doppler velocity.

Clutter measurements have to be dealt with when classification tasks with radar are
performed. Firstly, because radar sensors are in contrast to cameras and lidars rather
noisy so that clutter appears rather frequently and hence classification algorithms
should not confuse clutter with a real object. Secondly, algorithms further down
in the processing chain of a driver assistance system, e.g. tracking algorithms, can
benefit enormously if they can sort out clutter measurements from the start. For
example, a nearby clutter object with apparent velocity towards the ego vehicle
would get unnecessary much attention from the system if it were not known that
the targets stem in fact from a ghost object.

Therefore, clutter targets are considered explicitly in this work from the labeling
stage onward.

4
D ATA R E C O R D I N G , A N N O TAT I O N
A N D M E A S U R E M E N T S TAT I S T I C S

One often overlooked difficulty when working with machine learning algorithms is
the whole area of data management. This broad topic includes raw data acquisition,
development of a labeling strategy, a label guide as well as suitable tooling, the
actual labeling, quality control and finally refinement steps in the complete work
process.

For various machine learning tasks, publicly available data sets exists so that
researches can start right away with the design and implementation of their own
algorithms. For image data, large data sets are for example ImageNet with over 14

million annotated images [54], CIFAR-10 and CIFAR-100 which consist both of the
same 60 000 images split into either ten or 100 classes [128], or Microsoft’s COCO
with 2.5 million annotated images [141]. Especially for automotive applications,
the cityscapes data set with camera data from 50 different cities [44], the KITTI
vision benchmark data set with recordings of both a stereo camera and a lidar
sensor [72] or the nuScenes data set [31] proofed to be valuable starting points for
the development of new machine learning algorithms. More and more companies
working on autonomous driving start to release their own labeled data sets to
enable the community to contribute to the field [34], [122], [268]. Unfortunately,
currently no publicly available data set exists with which classification of dynamic
objects based solely on radar sensors would be possible. In all available automotive
data sets, radar sensors were either not included in the sensor set up [34], [44],
[122], [268] or as it is the case in the nuScenes data set, the radar data are too sparse
to allow usage in semantic tasks. A more detailed analysis of currently published
data sets can be found in the overview article [117].

It is not surprising that radar data were often neglected in these data sets and that
therefore only few works deal with classification of radar data. The first reason is
that radar data is both sparser and noisier than for example data from a lidar sensor
and hence semantic information is much more difficult to extract. Historically, radar
sensors were used for tasks in which semantic information was only necessary at
the basic decision noise vs. not noise and due to the sparseness in the data, extraction
of more semantic information was just impossible. Secondly, publicly available

55

56 data recording , annotation and measurement statistics

radar sensors often return the measured data on an object level, i.e. the whole object
formation from the individual targets is performed on the sensor and the researcher
has no means of getting access to deeper data levels. Manufacturers often do not
want to make deeper processing layers available for research so that especially
universities struggle to include radar sensors in their work [255]. Thirdly, labeling
of radar data on target level is a difficult and time consuming task with which only
very few companies have experience so that both a lot of money and time have to
be invested to obtain annotated data.

For this thesis, a new data set was recorded and annotated so that machine learning
methods could be developed for the task of classification and semantic (instance)
segmentation of dynamic objects based solely on radar data. Even though most
of the data presented here were recorded for this thesis, the data were internally
made available for other publications [87], [222]–[225].

This chapter is devoted to the whole data management topic and detailed informa-
tion is given on how the data were recorded, how the labeling took place, which
artifacts and labeling errors occurred and finally statistical information about the
collected data is presented. The last point includes an in-depth analysis of the
measured RCS values of various semantic classes.

The contributions of this chapter are hence as follows:

• description of the sensor setup and the recording method,

• a detailed description of the collected data used in the remainder of this work,

• analysis of the RCS values of different classes of road users,

• information on how radar data can be annotated so that the labels are useful
for classification and semantic segmentation tasks,

• a comparison of radar characteristics of three different bicycle types.

4.1 sensor setup and recording procedure

The data used in this work stem from a single vehicle that is equipped with
four industry standard automotive radar sensors, which operate at a frequency
of 77 GHz. The sensors are mounted on the two front corners as well as on the
left and right side of the car. The two sensors at the front corner are tilted 25°
outwards while the sensors on the two sides are oriented perpendicular to the
driving direction. The radar sensors operate in two different modes which are
triggered alternately: the far-range mode and the near-range mode. In the far-range
mode, targets can be detected up to a distance of rmax = 200 m whereas in the

4.1 sensor setup and recording procedure 57

near-range mode rmax = 100 m. However, the far-range mode is restricted to a
much narrower field of view than the near-range mode. In this work, only data
from the near-range mode is considered since data from the far-range mode often
showed inexplicable artifacts that degrade the overall quality. The accuracy in
radial direction is given by ∆r = 0.15 m and the accuracy in the Doppler velocity
is ∆v = 0.1 km/h. Depending on the azimuth angle φ, the angular accuracy lies
between ∆φ = 0.5° and ∆φ = 2° with higher accuracy at smaller angles.

100 0 -100

y(cc) (m)

−100

−50

0

50

100

x(c
c)

(m
)

4 2 0 -2 -4

y(cc) (m)

−2

0

2

4

x(c
c)

(m
)

Figure 4.1: Field of view and positions of the sensors on the test vehicle.

In Fig. 4.1, the positions as well the field of view of the radar sensors are displayed.
Only the field of view in the near-range mode of the sensors is depicted here. The
field of view of each sensor is represented by a unique color of the arc’s outline. The
arcs representing the sensor’s field of view are filled with 80 % transparent black
color so that regions covered by multiple sensors are displayed in a darker color
(overlapping field of view). A radar sensor does not work equally well throughout
its whole field of view since for example the angular accuracy decreases with
increasing angle and targets with small RCS values are more likely to be detected
around φ ≈ 0 and less likely at the borders of the field of view. Therefore, the arcs
shown here are simplifications but since the figure is meant to give an impression
from which area around the car data can be measured, this simplification is justifi-
able here. The data sheet lists the field of view of the sensor as ±60°. Interestingly,
the sensors frequently report measurements from angles φ > 60°. If the sensor field
of view had been estimated from the actual recorded data by choosing those two
boundary angles for which still targets are measured throughout the whole range
region, then a value of about ±72° would have to be reported. The exact reason
why some targets are reported with azimuth angles larger than 60° even though
the sensor is not specified for this region is not clear. One possibility is that for

58 data recording , annotation and measurement statistics

these targets a wrong azimuth angle hypothesis was chosen so that the target lies
in fact at a different angular position, see Section 3.1.3.

In addition to the radar data, also images from a documentary camera installed
behind the windscreen were recorded. For the calculation of the ego-motion com-
pensated Doppler velocity and for the transformation of the measured targets into
a global coordinate system (see also Section 3.2), the vehicle’s current position
and velocity at each point in time has to be known. For some recordings, the
odometry information was obtained from on-board sensors like a speedometer and
a gyroscope, and for other recordings, a DGPS system was used to estimate a precise
pose of the vehicle. The odometry data were stored along with the radar data and
the camera images where each odometry measurement consists of a timestamp,
the x and y position of the vehicle in the global coordinate system, the yaw-angle
γ, the vehicle’s velocity in x-direction vcar,x and its yaw rate γ̇.

Most data were recorded in Ulm, Germany, and the surrounding area. To ease
data handling and labeling, the recordings were split into sequences with lengths
between two to five minutes. Almost all recordings were made in everyday traffic
except for a few sequences that were recorded at the Daimler research campus in
Ulm to collect more data from pedestrians.

The four radar sensors of the test vehicle fire independently of each other with a
non-constant time interval between two consecutive scans. Each near-range scan is
followed by a far-range scan and vice versa. The sensor cycle time is not constant
and a histogram of the cycle times is drawn in Fig. 4.2 for one sensor, where the
sensor cycle time is used as the time difference between two near-range scans.
The distributions for the other three sensors are very similar and hence omitted
here for brevity. The figure shows that no more than ∆t = 80 ms lie between two
consecutive near-range scans with an average cycle time of ∆t = 59.2 s. The fact
that the radar sensors fire asynchronously of each other with a non-constant cycle
will be important in the labeling stage and will be discussed in more detail in the
next section.

In Fig. 4.3, two histograms from two different sensors are displayed which show
the number of targets measured per scan. In each figure, two different states of the
ego-vehicle were considered: a moving ego-vehicle and a stationary ego-vehicle.
First, consider the data obtained from the sensor mounted at the front left corner
in Fig. 4.3a. It can be clearly seen that the motion of the ego-vehicle – and hence
the motion of the sensor – influences the number of measured targets. If the sensor
is stationary, on average fewer targets are measured.

The distributions of the number of measured targets resemble in both cases a
Gaussian. To underline this, normal distributions were fitted to the empirical data
resulting in the blue and dark-blue lines in the figure. Notice that the y-axis is

4.1 sensor setup and recording procedure 59

0 10 20 30 40 50 60 70 80 90
∆t (ms)

0.0

0.1

0.2

0.3

0.4

R
el

at
iv

e
co

un
ts

∆t = 59.2 ms

Figure 4.2: Distribution of the sensor cycle times of one radar sensor. The cycle time is here
defined as time difference between two near-range scans. The grey dashed line
shows the average cycle time.

scaled such that the integral over each of the Gaussians as well as the integral
over each of the two histograms is equal to one. The probability densities for the
moving and the stationary case were calculated separately from each other so that
for each scenario a separate Gaussian distribution can be fitted. The distribution of
the measurements obtained from a moving sensor is much broader than the one of
the stationary sensor measurements. On average, the moving sensor delivers about
twice as many points as the stationary sensor.

Now consider 4.3b, i.e. the sensor mounted at the left side of the vehicle, facing 90°
to the left of the driving direction. In this case, neither of the two distributions is
well described by a Gaussian distribution. The distribution of the data obtained
from the moving sensor is shifted to smaller values where the maximum value now
approximately coincides with the maximum of the distribution obtained from the
stationary sensor. However, the distribution has still a long and slowly decaying
tail with values ranging up to the same maximum values as the distribution of the
front sensor.

A definite explanation for the two different distributions in the cases of a moving
or a stationary ego-vehicle is hard to obtain. One possible explanation could be the
following reasoning. A moving sensor (ego-vehicle) causes that stationary targets
are measured with an angle-dependent and non-zero Doppler value. If now a
CFAR algorithm is applied on individual range–angle slices of the data cube (see
Fig. 3.8 and Fig. 3.9), then spreading the data along the Doppler dimension results
in a higher number of targets because the noise level is reduced around one cell.
This hypothesis is backed by the observation that the sensor facing to the front

60 data recording , annotation and measurement statistics

0 50 100 150 200 250 300 350 400
Nmeas per Scan

0.000

0.005

0.010

0.015

0.020

0.025

0.030
Pr

ob
ab

ili
ty

D
en

si
ty

Gaussian Fit Moving
Gaussian Fit Stationary
Moving
Stationary

a) Sensor front left.

0 50 100 150 200 250 300 350 400
Nmeas per Scan

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Pr
ob

ab
ili

ty
D

en
si

ty

Gaussian Fit Moving
Gaussian Fit Stationary
Moving
Stationary

b) Sensor side left.

Figure 4.3: Number of measured targets per scan for two different sensors. Measurements
with a moving or stationary ego-vehicle are displayed separately from each
other.

is more affected than the sensor facing to the left of the vehicle since this sensor
moves perpendicular to stationary targets (at least for small azimuth angles) so
that no additional radial velocity of these targets is measured and hence no spread
in the Doppler dimension takes place. Since the manufacturer did not provide a
documentation of the radar sensor up to this level of detail, no final explanation
for this behavior can be given.

4.2 labeling 61

4.2 labeling

Large portions of this work make use of supervised learning approaches for
classification or semantic (instance) segmentation applications. The foundation
of every supervised machine learning algorithm is a sufficiently large data set
with annotations of high quality. In this section, information on how the labeling
procedure took place are presented.

Labeling of radar data can happen on different computation levels: early in the
computation chain on the range-Doppler matrix [1], [154], [181], [192], [193], on
CFAR target level (this work), on tracked objects (e.g. data for ACC-systems) or in
occupancy grid maps [144]–[147], [272]. The level on which the data is labeled
depends strongly on the application since for example for an ACC-system there is
no need to annotate individual CFAR targets because the final application works
with tracked objects. Labeling radar data on occupancy grid maps proved to be very
successful for classification tasks of static objects. However, accumulating data over
multiple seconds is not useful if dynamic objects are considered which by definition
move throughout the integration time. Moving objects create a velocity-depended
trail in a world-fixed coordinate system if accumulated data is considered. These
trails may overlap in situations where the trajectories of multiple objects cross in
space but are separated in time. As it is impossible to ascribe intersecting regions
uniquely to one object, labeling of dynamic objects in grid maps cannot be done in
all situations and is hence not considered here.

Labeling on object level has the upside of being relatively cheap since (ideally) for
each object only one single decision has to be made, namely to which class this
object belongs. The downside of this approach is that object formation has to be
done at some point and that the label quality depends on the algorithm that created
the object. This is not an issue for systems which directly take the formed objects
as input (from the same algorithm which created the objects for the labeling stage)
and predict one single object label. In this work, however, the goal is to predict a
class label on target level early in the process chain so that during object formation
and tracking these class labels can be used as input. If now tracking algorithms are
used to create the objects for the labeling stage, the quality of these labels will be
bounded by the currently used tracking algorithm and will not be a valid “ground
truth”.

Labeling on the range-Doppler matrix or on the full 3D data cube can be desirable
if the algorithms used later on also work on this computation level or if one wants
to be independent of the applied CFAR algorithm. The latter might be interesting
for example if high-resolution algorithms are applied to regions of interest, which
are then resolved more accurately resulting in more CFAR targets. In this case, it

62 data recording , annotation and measurement statistics

could be useful to have ground truth labels attached already to the data cube so
that irrespective of the applied target extraction algorithm ground truth labels
can be propagated from the data cube to the individual targets. The downside,
however, is that these deeper signal processing stages are often not available for
series automotive radar sensors because target extraction from the data cube is done
directly on the sensor to save bandwidth. Additionally, humans are not experienced
in visually understanding the contents of the 3D data cube so that labeling of this
data is a great challenge and way more difficult than annotating more processed
data.

Having considered the different possible label stages, it appears reasonable to select
the CFAR target level as the input for the labeling: The targets can be extracted
directly from the sensors and stored in an appropriate file format without getting
too close to bandwidth problems if multiple sensors are used. The algorithms
discussed in this work use as input either the targets themselves or clusters created
from these targets. It is therefore necessary and sufficient to have one ground truth
label attached to each target in addition to the information to which object each
target belongs to.

Each recorded sequence with length of a few minutes is the basis for one labeling
task and treated independently from all other recordings. Since data from multiple
radar sensors has to be annotated, all measured targets from all sensors are inte-
grated into one single spatio-temporal point cloud. This point cloud is then cut
into frames of length 100 ms so that each of these frames contains all targets that
any of the radar sensor measured in this time range. The points from the different
sensors are transformed into the current car coordinate system of the respective
frame, cf. Section 3.2. In each of these frames, the labeler (i.e. the person who labels
the data) compares the images from the documentary camera with the radar point
cloud and groups all points that belong to the same object together to one cluster.
Every cluster is identifiable by a Universally Unique Identifier (UUID) which works
as an object label. In addition, the labeler adds a class label to each cluster which is
then automatically propagated to each point within the cluster. In this work, the
following semantic classes of true objects are considered

• Passenger Car (e.g. everyday sedans, SUVs, . . .),

• Pedestrian (with or without smaller objects like suitcases, canes, . . .),

• Pedestrian Group (used when individual pedestrians cannot be discerned in
the radar point cloud),

• Two-Wheeler (e.g. bicycles, motorbikes, . . .),

• Large Vehicle (e.g. buses, trucks, construction vehicles, . . .).

4.2 labeling 63

These classes were chosen because on the one hand they cover most of the moving
objects one encounters in every day traffic and on the other hand because they
are not too fine grained so that a separation between the classes based on radar
data would become impossible. In Section 6.5.1, it is analyzed if other motion types
of pedestrian can be classified if longer observation windows are available. These
motion types contain for example jumping, walking with crutches or skateboarding.

Radar sensors deliver very noisy data compared to a lidar sensor. Therefore it
happens that points which are in fact static are reported with a non-zero ego-
motion compensated Doppler velocity v̂r. Ambiguities in Doppler or azimuth as
described in Section 3.1.3 are one possible origin of points with wrong Doppler
values. Other origins of non-zero v̂r values of in fact static points are interference
effects caused by other sensors, incorrectly reported (or delayed) ego-motion values
of the vehicle, errors in the calibration or misalignment. Mirror effects are another
source of apparently moving points that have no match to an object in the real
world. To consider these noise points, they are ascribed to the Clutter class during
labeling. Notice that such a Clutter cluster is only annotated if clutter is visible for
multiple time steps so that not every single point with |v̂r| > 0 has to be labeled.
Only those Clutter “objects” are of interested which for example would also be
considered in tracking algorithms. Moving points for which it cannot be decided
whether they belong to a real object or are in fact just clutter, are marked as Unknown.
This label is used for example for occluded objects or for objects outside the field of
view of the documentary camera. Targets marked as Unknown are excluded in the
classification algorithms. Targets that are not ascribed to any of the aforementioned
classes are automatically labeled as Static.

In the annotation software, the velocity v̂r is visualized for each target by an arrow
pointing towards or away from the radar sensor it was measured by. The length of
the arrow indicates the absolute value of v̂r. The object label (i.e. the cluster UUID)
is used for one object as long as it is visible in the radar point cloud so that the
same UUID is used across multiple frames. One object gets only a new UUID if it
was not visible in the radar point cloud for more than five consecutive frames, i.e.
for more than 500 ms. Association of targets to one real world object happens only
within one sequence. If for example one recording ends with a pedestrian walking
past the ego vehicle and the next sequence starts with this same pedestrian, then
different object UUIDs are used.

As an additional support for the labelers, radar points of future or past time steps
can be projected into the current view, i.e. they are transformed into the same car
coordinate system as the points from the actual selected frame. This has the effect
that targets from different time steps that belong to one static object remain at
the same spatial region whereas moving objects create a velocity-dependent trail –
just as they would do in a grid map. In situations with only a few well separated

64 data recording , annotation and measurement statistics

moving objects, the labeler can increase the time window so that points from
multiple time steps can be annotated in one move and hence not each individual
frame has to be considered. In situations with many objects, the time window can
be decreased again to allow for a more fine-grained labeling.

Evaluation of the labeling tasks revealed that annotation of one frame with length
100 ms takes about two minutes. This value varies of course with the complexity of
the scene: in situation with only one car in front of the ego-vehicle, labeling can be
done much faster due to the possibility to label multiple frames at once. However,
recordings made in the inner city with many road users take naturally more time
to annotate.

In Fig. 4.5, one example scene is displayed. The annotated dynamic objects are
highlighted in different colors for each class and a convex hull around targets
displays that these points belong to the same object. Notice that the Doppler
velocities of the pedestrian group in front of the ego vehicle is close to zero since
they move mostly orthogonal to the sensors so that the radial component of the
velocity vector is very small. The Clutter cluster at position (10, 10) is presumably
a mirrored object of the left-turning Passenger Car where the fences from the
construction site work as a mirror. An image of the documentary camera of this
scene can be found in Fig. 4.4.

Figure 4.4: Camera image of the scene shown in Fig. 4.5.

4.2 labeling 65

30 20 10 0 -10 -20 -30

y(cc) (m)

−10

0

10

20

30

40

50

60

70

x(c
c)

(m
)

Two-Wheeler

Pedestrian

Car
Pedestrian
Ped. Group
Two-Wheeler
Clutter
Static

Figure 4.5: Example scene with labeled objects. The point cloud shows all annotated radar
targets as well as the targets of the static environment. Data accumulated over
100 ms are shown.

66 data recording , annotation and measurement statistics

4.3 artifacts and labeling challenges

In this section, examples of different radar specific artifacts will be presented and
difficulties that occur during labeling are discussed. The intention is to give more
insight into how the annotated data actually looks like and what challenges in the
classification task arise due to the structure of the data itself. In Section 3.1.3, the
origin of ambiguities in azimuth angle and Doppler velocity were already discussed.
In Section 3.4 different types of clutter were defined. Examples for ambiguities and
clutter objects are now presented here.

In Fig. 4.6, one example for a Doppler ambiguity is shown. The ego-motion com-
pensated Doppler velocities of the individual targets are indicated by arrows where
the length of each arrow symbolizes the magnitude of the velocity and the direction
of the arrow encodes the sign. For the oncoming car on the opposite lane, one
expects the Doppler velocities to be negative (arrows pointing towards the sensor)
since the car approaches the ego-vehicle. However, in this scene some velocities
are reported to be positive (arrows pointing away from the sensor) indicating
that the relative velocity between sensor and measured object is larger than the
unambiguous Doppler range and the sensor was not able to resolve this internally.

−5 0 5 10 15 20 25

x(cc) (m)

0

5

10

15

y(c
c)

(m
)

Figure 4.6: Left: Radar targets of an oncoming vehicle. Right: Cropped camera image of the
same scene. The targets originating from the oncoming car are highlighted in
pink. Targets between the ego-vehicle and the other car stem from the guardrail.
Arrows indicate the radial velocity over ground. Data accumulated over 100 ms
are shown.

Figure 4.7 shows one example scene in which the azimuth angle was not properly
resolved by the sensor. The truck driving in front of the ego-vehicle is not only
visible at its true position (green points) but also about 40° to the left (pink points).
It appears as if the truck also drives “inside” the building next to the street. In

4.3 artifacts and labeling challenges 67

this situation the truck is visible at both positions for multiple seconds so that also
tracking algorithms would spawn and track an object at this second position. Since
the RCS values of the targets at the wrong position as well the shape of the emerging
object are plausible, these situations are a great challenge for each classification
algorithm.

0 10 20 30 40 50

x(cc) (m)

0

5

10

15

20

25

30

y(c
c)

(m
)

Pedestrian
Large Vehicle
Clutter
Static

Figure 4.7: Left: Radar targets of a truck (green), the static infrastructure (grey) and a clutter
object (pink) caused by an angle ambiguity. Right: Cropped camera image of
the same scene. The pedestrian (blue points) is not visible in the camera image.
Data accumulated over 100 ms are shown.

One further challenge is that sometimes the reported ego-motion values are not
perfectly synchronized to the radar data. This becomes obvious especially in
situations with large accelerations, e.g. during a turn of the ego-vehicle, since the
yaw-rate of the vehicle changes quickly here which has a great influence on the
ego-motion compensation, cf. also Eq. (3.36). This causes that truly static objects
are erroneously reported with non-zero v̂r which might mislead clustering as well
as classification algorithms. In Fig. 4.8, an example scene is displayed in which
the ego-vehicle does a left turn. The actually static targets from the surrounding
are reported with a non-zero ego-motion compensated Doppler velocity since the
yaw-rate obtained from the vehicle’s odometry sensors does not correspond well
enough to the actual motion of the vehicle at the measurement time of the radar
sensors. This is well visible on the targets obtained from the curbstones, especially
on targets from the lowered curbstone to the left of the vehicle. The magnitude
of the erroneously reported velocities ranges around 0.5 m/s so that the longest
visible arrows in the graphic correspond to about 1 m/s. It should be noted that
the camera image was extracted two seconds before the turn was done on the
intersection to better show the scenery.

68 data recording , annotation and measurement statistics

0 10 20

x(cc) (m)

−10

−5

0

5

10

y(c
c)

(m
)

Figure 4.8: Left: Radar targets of the static infrastructure (grey) with ego-motion compen-
sated Doppler velocity v̂r depicted as arrows. Data accumulated over 100 ms are
shown. Right: Cropped camera image of the scene. The ego-vehicle performs a
left turn and the odometry sensors yield inaccurate data.

As described in Section 3.4, one type of radar clutter is formed by mirrored objects.
An example scene in which the ego-vehicle is mirrored in a metallic gate is displayed
in Fig. 4.9, where data from a time range of 500 ms is shown to pronounce the
effect. The camera image of this scene can be found in Fig. 4.8. The gate is located
about 37 m away from the ego-vehicle (center of rear-axle) and the mirrored object
appears at about twice the distance from the front of the ego-vehicle to the gate, i.e.
at about 70 m. Notice that the ego-vehicle moves at a slight angle with respect to
the gate so that the mirrored object is not at the same y(cc) coordinates but slightly
shifted.

These radar specific artifacts are one reason why annotation of radar data is
extremely difficult and hence both expensive and time consuming. One other
complication is that due to the lack of height information of the detected targets
and the sub-optimal azimuth angle resolution at larger detection angles, association
of the radar targets with the objects in the camera image is quite challenging. In
combination with the rather high amount of clutter, it is often difficult to decide
whether a certain target still belongs to one object or should rather be regarded
as clutter. In Fig. 4.10 a scene is displayed in which many clutter points between
two oncoming trucks make it almost impossible to associate the targets to either
one of the two trucks or to a clutter cluster. Only with the help of the camera
image and by looking at previous and following frames, a labeler can estimate the

4.3 artifacts and labeling challenges 69

0 10 20 30 40 50 60 70

x(cc) (m)

−10

−5

0

5

10

y(c
c)

(m
)

Figure 4.9: Radar targets of the static surrounding (grey) and the mirrored ego-vehicle
(pink). Data is accumulated over 500 ms to emphasize the effect. Camera image
of this scene can be found in Fig. 4.8.

dimensions of the objects and afterwards infer a reasonable segmentation of the
scene. Additionally, radar sensors are often able to detect objects which are not
visible in the documentation camera either because the field of view of the radar
sensors are larger than the camera’s field of view, because illumination conditions
degrade the image’s quality (direct sunlight, shadows etc.), or because occlusions
hide objects from the camera but not from the radar sensor. In the latter case, the
radar detects an object due to multipath propagation of the radar signal while the
direct line of side is occluded. At larger distances from about 80 m onward, the
image resolution of the documentary camera becomes a limiting factor for labeling
since especially partly occluded pedestrians are difficult to identify in the camera
image and hence it is also difficult to annotate the radar targets correctly. This
shortcoming can only be healed in situations where the ego-vehicle approaches the
far-distant object so that the labeler can use the information from later time steps
to infer the true semantic class of an object.

Leaving the radar specific challenges during labeling aside, there are corner cases
for which it is difficult to assign a class label. There is no strict border between a
Large Vehicle and a Passenger Car but rather a smooth transition between the
two classes: Figure 4.11 shows two vehicles for which it is not obvious to which
of the two classes they belong. In this thesis, the rule for the distinction between
these two classes is that vehicles with length of more than 5.5 m should belong
to the Large Vehicle class. However, measuring the length of a moving object is
not directly possible from the detected radar targets since the contour information
from one radar scan is often insufficient. If data from multiple scans were used,
precise knowledge of the object’s motion state would be needed to compensate
for its dynamics. Only then the measurements from the different time steps could

70 data recording , annotation and measurement statistics

0 10 20 30 40 50 60

x(cc) (m)

0

5

10

15

20

25

30
y(c

c)
(m

)

Car
Large Vehicle
Clutter
Static

Figure 4.10: Left: Radar targets of other vehicles (red and green), the static environment
(grey) and clutter (pink). Many clutter points between the two trucks make it
difficult to annotate the real objects. Data accumulated over 100 ms are shown.
Right: Cropped camera image of the scene.

be mapped to the correct Cartesian positions so that the contours become more
pronounced. Since such a precise motion state estimation and tracking algorithm
does not yet exist, the objective condition “object length is ≤ 5.5 m” cannot be
followed in all cases and the labeler has some freedom to assign these corner cases
to either class. Human errors like overlooking objects, assigning wrong attributes
or class labels to an object, merging multiple objects into the same cluster or adding
points from the environment to a dynamic object cluster are further common
sources of errors.

Figure 4.11: Two examples of vehicles for which a mapping to the two classes Passenger

Car and Large Vehicle is non-trivial.

4.4 description of the data set

In the following subsections, details about the recorded data are presented. General
properties such as the hours of driving, the number of driven kilometers, the

4.4 description of the data set 71

Property Value Description

Recording Time 4.95 h Accumulated time in hours of all record-
ings

Driven Distance 104.11 km Accumulated distance in kilometers cov-
ered during all recordings

Speed Range 0 m/s – 25 m/s Minimum and maximum speed of ego-
vehicle during the recordings

Number of Targets 1.35× 108 Total number of measured radar targets
from all four sensors

Labeled Targets 5.81× 106 (4.3 %) Total and relative number of annotated
radar targets

Objects 7614 Total number of annotated objects in the
data set (without clutter)

Table 4.1: General properties of the recorded data.

number of recorded as well as labeled radar targets and the total number of labeled
objects will be presented. Afterwards the spatial distribution of the labeled data
within the field of view of the radar sensors is discussed, the Doppler velocity
distribution of the dynamic objects is presented and the RCS values of the different
object categories are analyzed. Then, three different bicycle types are compared
concerning their appearance in an automotive radar sensor.

4.4.1 General Properties

Data were recorded between December 2016 and May 2018 in Ulm and the sur-
rounding area. The most general properties of the data set are summarized in
Table 4.1. From this table, it can be seen that only a small fraction (4.3 %) of the
recorded data was annotated. This is simply a result from the fact that dynamic
objects are much rarer than static objects during a normal drive so that the majority
of the measured targets belong to static infrastructure. The ego-vehicle moved with
a maximum speed of 25 m/s during the recordings with an average velocity of
a bit under 6 m/s. Some recordings were even done with the ego-vehicle being
stationary.

In Table 4.2 more details about the class distribution of the annotated objects and
targets is given. In the first part of the table, the number of labeled targets per

72 data recording , annotation and measurement statistics

Passenger

Car
Pedestrian

Pedestrian

Group

Two-

Wheeler

Large

Vehicle
Clutter Static

labeled
targets

1 922 385 424 047 934 994 237 258 913 047 1 379 757 128 828 260

in % 1.43 0.31 0.69 0.18 0.68 1.02 95.68

labeled
objects

3815 1701 1216 379 503 49 236 –

in % 6.71 2.99 2.14 0.67 0.88 86.61 –

total observ.
times (h)

7.28 3.68 4.42 1.10 1.39 6.71 –

in % 29.60 14.98 17.99 4.48 5.63 27.31 –

Table 4.2: Distribution of the annotated targets and objects among the classes.

class are listed and in the second part, the number of unique objects per class is
stated. There is no distinction between objects that were visible only for a few
seconds and objects which were visible for multiple minutes. To quantify how long
dynamic objects were recorded, the total observation duration of object instances is
calculated as

Tobj. =
Nobj.

∑
i=1

(
ti

f − ti
s

)
, (4.1)

with ti
s and ti

f being the start and final time at which the ith object was seen.
This number is listed for each object class except for the Static class since no
object formation was done for any static object. The observation time can be also
interpreted as the time one single object from each semantic class would have to
move in front of the ego-vehicle with no other moving objects present in order to
generate the same amount of data as it is present in this data set. This is a useful
metric for comparison with other publications, e.g. [192], [193] in which statements
are derived based on data sets consisting of only one or just a few members of
each class. The numbers in the table now list for how long one class representative
would have to be recorded to make a data set comparable to this one (irrespective
of the smaller variety of objects and traffic scenarios if only one object from each
class is used at one single location).

To give an impression of how many targets Nt are measured during one scan
of one radar sensor on objects of the five classes (Clutter and Static are not
considered), in Fig. 4.12 average values of this quantity are displayed. As Nt

depends strongly on the distance of the object to the sensor, one mean value along
with the corresponding standard deviation σ is calculated for each distance bin

4.4 description of the data set 73

of width 1 m in the range 0 m to 100 m. That is, for each annotated object of one
semantic class, the measured targets per individual scan are counted and the
average position of the object during the measurement is calculated. The counts
are then sorted into the respective range bins that are in the end used for the
calculation of the mean and standard deviation. The solid lines in Fig. 4.12 display
the mean values and the slightly transparent regions around the solid lines mark
the ±σ area around the mean.

0 20 40 60 80 100
Radial Distance r (m)

0

5

10

15

20

N
t

pe
r

Sc
an

Car
Pedestrian

Ped. Group
Two-Wheeler

Large Vehicle

Figure 4.12: Number of targets per object measured by one radar in one scan versus radial
distance to the object. The colored areas indicate ±σ regions around the mean
value.

Unsurprisingly, objects of the class Large Vehicle contain on average the most
points and objects from the class Pedestrian the least points. Even though the
average value for the Large Vehicle class is still far above the values from the other
classes, the large standard deviation already hints that there are large fluctuations,
which are mostly induced by the orientation of the objects. For example, if a truck
drives in front of the ego-vehicle at a distance of about 90 m, it cannot be expected
that many more targets are measured than from a normal car, since only the back of
the truck is well visible. Measurements from the truck’s underbody are rare at these
distances. If, however, the truck is observed at the same distance at an intersection
so that the full length of the truck is visible, more targets will be measured and the
difference to a normal car becomes more pronounced.

The reason why the number of detected targets per object decreases with increasing
distance is twofold. Firstly, the greater the distance to an object the higher the
chances that occlusions perturb the measurement of the object. For example, a
smaller number of targets will be measured from a car at 80 m distance if two other

74 data recording , annotation and measurement statistics

cars are in between the ego-vehicle and the considered car compared to the case
when there is a free line of sight to the car. Secondly, the noise level increases with
increasing distance so that in order to maintain a constant false alarm rate during
target extraction, the detection thresholds are increased so that on average less
targets are reported per object. This point will be discussed in more detail in Section
4.4.4, when the distance dependency of the RCS values is presented. Notice that
for the annotated objects no difference in the Nt distributions between a stationary
and moving radar sensor were detected. This hints that the difference observed in
Fig. 4.3 only affects measurements of the static environment and hence no further
distinction is needed in this thesis.

0 2 4 6 8 10
Nt per Scan

0.00

0.05

0.10

0.15

R
el

at
iv

e
C

ou
nt

0 2 4 6 8 10
Nt per Scan

0.0

0.1

0.2

0.3
R

el
at

iv
e

C
ou

nt

Figure 4.13: Histogram with relative counts of the number of measured targets per scan.
Only targets from the range 0 m to 30 m are considered. Left: Histogram for
the Passenger Car class. Right: Histogram for the Pedestrian class.

Finally, in Fig. 4.13 histograms of the distribution of Nt with targets from the range
0 m to 30 m are displayed. The histogram on the left shows the relative counts
for the Passenger Car class, whereas the histogram on the right shows data for
the Pedestrian class. Since in Fig. 4.12 only the mean values and the standard
deviations are displayed, the two histograms give more detailed information about
the actual distribution of Nt. Interestingly, the data of the Passenger Car class
resemble a Poisson distribution with λ ≈ 3.5. However, a rigorous χ2 test against
a Poisson distribution failed so that only a visual resemblance can be stated. The
histogram for the Pedestrian class illustrates that most often only one or two
targets are returned from one pedestrian so that a single-shot distinction between a
clutter point and a pedestrian is almost impossible. Only if data from more than
one sensor or from multiple scans is considered, classification seems feasible.

4.4 description of the data set 75

4.4.2 Spatial Distribution of Labeled Objects

The field of view displayed in Fig. 4.1 indicates the regions in which each radar
sensor can possibly detect objects. However, it does not indicate how the recorded
data are distributed in both azimuth angle and range. Therefore, in Fig. 4.14

four polar plots are shown in which the positions of the recorded targets of the
semantic classes Passenger Car, Pedestrian, Pedestrian Group, Two-Wheeler and
Large Vehicle are displayed. Each plot shows the targets recorded by one sensor.
The plot is rotated by the sensor’s installation angle so that the vehicle’s heading
direction (x-axis of the vehicle coordinate system) always points upwards and
the vehicle can be imagined as being at the center of the four plots. The azimuth
angles are, however, relative to the sensor coordinate system so that an angle of 0°
corresponds to the position directly in front of the sensor. In Appendix A.2, these
kind of plots are repeated with each class displayed in a separate figure.

Figure 4.14: Target distribution in a polar plot. The measured targets of each sensor are
displayed in a separate diagram. The diagrams are rotated by the mounting
position of the respective sensor.

Since traffic scenarios usually do not have rotational invariance, a homogeneous
distribution of the measured dynamic objects around the ego-vehicle cannot be

76 data recording , annotation and measurement statistics

expected. Rather, objects are much more likely to appear in front of the ego-vehicle
so that the distribution is biased toward the forward direction. Streets in the city are
likely to be surrounded by buildings, rural streets are often neighbored by fields
and motorways contain guardrails next to the road. In all three cases, dynamic
objects cannot be expected to appear at large distances to the left or to the right side
of the ego-vehicle either because the field of view of the radar sensors is blocked
or because it is unlikely for road users to be at these places. Intersections, side
roads, squares or roundabouts are of course exceptions and measurements from
dynamic objects in these scenarios will show up in other locations than the forward
direction.

The plot in Fig. 4.14 supports this reasoning since indeed most dynamic objects
were measured in the forward direction and the two side radars measured way less
dynamic objects at larger distances than the front facing radars did. What is more,
some individual tracks become visible in this representation.

100 75 50 25 0 -25 -50 -75 -100

y(cc) (m)

−40

−20

0

20

40

60

80

100

x(c
c)

(m
)

100

101

102

103

104

Figure 4.15: Heat map of the target distribution around the ego-vehicle. Colors indicate
how many annotated targets were measured in each cell. Log-scale is used to
make areas with low occupancy visible.

Another way to visualize the same data is shown in Fig. 4.15, where a heat map
displays how many targets were measured around the ego-vehicle. In this grid, a
cell size of 1 m× 1 m is chosen and a log scale is used so that also areas with just a

4.4 description of the data set 77

few measurements are visible. Again, the analysis made before is backed by this
plot.

However, even though a homogeneous coverage of each region around the ego-
vehicle with objects from the five classes cannot be expected due to the above
reasoning, these plots (especially the per-class plots in Appendix A.2) display
that the data set is still not large enough to make broad and general statements
about each situation. Especially members of the Two-Wheeler class are not equally
distributed over the sensors’ field of view so that more data from this class would
be desirable. Statements made in this work should therefore always be understood
with this limitation in mind.

4.4.3 Distribution of Doppler Values

After the spatial distribution of the annotated targets was discussed in the last
section, now the distribution of the measured Doppler velocities is considered here.

To this end, Fig. 4.16 shows one histogram for each semantic class in which the
velocities v̂r are displayed on the horizontal axis and the counts of each bin are
plotted on the vertical axis. The histogram was normalized so that the sum of all
bins equals one. In Section 4.3, an example was shown for a situation in which
the Doppler velocities of an oncoming vehicle were incorrectly reported due to the
incapability of the radar sensor to resolve the ambiguous Doppler value correctly.
As this problem arises frequently in the recorded data whenever the relative
velocities between ego-vehicle and detected object are large, also the displayed
histograms are influenced by this. It can therefore be expected that the whole
histogram is shifted towards smaller absolute velocities so that the real object
velocities are larger (in magnitude) than the figure suggests. Again, it should be
kept in mind that only the radial velocity is considered here since the true Cartesian
velocity is not accessible.

Nevertheless, it can be seen from these histograms that objects from all classes
were measured in a velocity range that one would ascribe to such an object so
that the data set appears diverse enough in this dimension. It is interesting to see
that the maximum of all distributions lies close to 0 m/s. Targets with small v̂r

can result from slowly moving objects (e.g. slowing down and finally stopping at
intersections or traffic lights), by tangential motion with respect to the radar sensor,
stationary parts of a moving object (e.g. the standing leg of walking pedestrian
or the bottom of a rotating car wheel) or by annotation errors (e.g. assigning
targets from a curbstone to the cluster of a nearby walking pedestrian). From the
mentioned possibilities, the greatest influence stems probably from tangentially

78 data recording , annotation and measurement statistics

−20 0 20
Doppler over Ground v̂r (m/s)

0.00

0.02

0.04

0.06

0.08

R
el

at
iv

e
C

ou
nt

a) Passenger Car

−4 −2 0 2 4
Doppler over Ground v̂r (m/s)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

R
el

at
iv

e
C

ou
nt

b) Pedestrian

−4 −2 0 2 4
Doppler over Ground v̂r (m/s)

0.00

0.05

0.10

0.15

R
el

at
iv

e
C

ou
nt

c) Pedestrian Group

−10 −5 0 5 10
Doppler over Ground v̂r (m/s)

0.00

0.02

0.04

0.06

0.08

R
el

at
iv

e
C

ou
nt

d) Two Wheeler

−20 0 20
Doppler over Ground v̂r (m/s)

0.00

0.02

0.04

0.06

0.08

R
el

at
iv

e
C

ou
nt

e) Large Vehicle

−10 −5 0 5 10
Doppler over Ground v̂r (m/s)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

R
el

at
iv

e
C

ou
nt

f) Clutter

Figure 4.16: Histograms of ego-motion compensated Doppler velocities v̂r for each semantic
class. The histograms are normalized so that the sum of all bins equals one.

4.4 description of the data set 79

moving objects, followed by slowly moving objects. With the help of a sufficiently
well performing multi-target tracking algorithm, the true Cartesian velocities could
be estimated and hence the proportion of tangentially moving objects estimated.
As the obtained insight of this analysis is expected to be of minor relevance for this
thesis, it is omitted here.

Another interesting result from these histograms is that the data set does not contain
any running pedestrians (at least not running in the radial direction) since almost
no v̂r > 4 m/s were measured. For future analysis, it would be worthwhile to
analyze if the later on trained classification algorithms generalize to faster moving
pedestrians.

4.4.4 Radar Cross Sections of Different Road Users

The RCS value is a measure of how large an object appears to the radar and has
units of an area. Since the RCS value of objects differs in orders of magnitude, it is
often given in logarithmic units, expressed as dBsm (decibel square meter). If x is the
apparent size of the object to the radar measured in m2, then the value σ in units
of dBsm is obtained as follows:

σ = 10 · log10
x

1 m2 . (4.2)

It should be noted that for a rigorous RCS analysis a special measuring chamber
should be used which absorbs all signals stemming not from the object under
consideration. In real world driving scenarios the RCS value is strongly affected
by the path the electromagnetic wave took since for example fading due to multi-
path reflections changes the return signal and hence also the RCS calculation.
The data presented in this section should therefore be understood as real world
measurements with all the side-effects included.

In Fig. 4.17, the distributions of the RCS values of the six different classes is displayed.
Except for the Clutter class, the distributions resemble Gaussians, even though
they appear slightly skewed for the Passenger Car and Two-Wheeler classes. Notice
that the RCS values are given in logarithmic units, so that the linearly scaled values
measured in m2 would resemble log-normal distributions.

Not many publications intensively analyze the RCS values of different road users
as measured by an automotive radar in the 76 GHz band. In [286], the RCS value
of pedestrians is measured and the influence of different clothes is analyzed.
They conclude that the RCS value of a pedestrian lies at −8 dBsm. In [242], the
RCS values of a pedestrian, a bike, a car and a truck are given as 1 m2 (0 dBsm),
2 m2 (3 dBsm), 100 m2 (20 dBsm) and 200 m2 (23 dBsm), respectively. In [118], an

80 data recording , annotation and measurement statistics

−20 0 20
RCS σ (dBsm)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

R
el

at
iv

e
C

ou
nt

a) Passenger Car

−20 0 20
RCS σ (dBsm)

0.00

0.02

0.04

0.06

0.08

0.10

R
el

at
iv

e
C

ou
nt

b) Pedestrian

−20 0 20
RCS σ (dBsm)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

R
el

at
iv

e
C

ou
nt

c) Pedestrian Group

−20 0 20
RCS σ (dBsm)

0.00

0.02

0.04

0.06

0.08

0.10

R
el

at
iv

e
C

ou
nt

d) Two Wheeler

−20 0 20
RCS σ (dBsm)

0.00

0.02

0.04

0.06

R
el

at
iv

e
C

ou
nt

e) Large Vehicle

−20 0 20
RCS σ (dBsm)

0.00

0.02

0.04

0.06

R
el

at
iv

e
C

ou
nt

f) Clutter

Figure 4.17: Histograms of RCS values σ for each semantic class. The histograms are
normalized so that the sum of all bins equals one.

4.4 description of the data set 81

empirical model for the RCS values of different road users is created for a radar
simulation platform. For pedestrians and motorcycles, fixed values of −10 dBsm
and 7 dBsm, respectively, are used. For cars and trucks, the RCS value is scaled with
the logarithm of the radial distance r to the object, so that σcar = min{10 log10(r) +
5; 20} and σtruck = min{20 log10(r) + 5; 45}.
In [229] the distance dependence of the RCS value is again highlighted as for the two
distances 5 m and 25 m the RCS value of a car is reported to change from 2 dBsm to
16 dBsm.

The data collected for this thesis support the general trend that the RCS value of an
object increases with increasing distance. In Fig. 4.18, the RCS values for the two
classes Passenger Car and Pedestrian are displayed with respect to the distance at
which the targets were measured. The average value was computed on the linearly
scaled RCS values and afterwards converted back to the log-scale. In Fig. A.6, the
range-dependent RCS plots are repeated for each class. Notice that the averaging
is done on a target level, i.e. all targets within one range bin are used for the
calculation. In contrast, in Fig. A.7 the RCS values are plotted for the individual
objects. That is, the RCS values of all targets measured during one scan of one object
are summed together and this value is entered in the range bin corresponding to
the mean radial distance of the targets to the sensor. In comparison with Fig. A.6,
the curves in Fig. A.7 are shifted towards higher RCS values since now all targets of
one object contribute to the displayed value and not the RCS value of the individual
targets are displayed.

The reason why the RCS value apparently increases with increasing distance is
that targets with small RCS value cannot be resolved at larger distances because
the signal-to-noise ratio gets smaller the larger the distance. Only those targets
of an object that have a high RCS value can still be resolved by the sensor so that
only these targets enter the statistics. At smaller distances, however, also targets
with small RCS value can be measured so that not only more targets per object are
detected but also on average targets with a smaller RCS value. An additional effect
is that at small distances not the whole object can be illuminated by the radar so
that not every part of the object contributes to the total RCS value. In general, the
RCS value is not only distance dependent but additionally has a strong dependence
on the angle under which an object is detected. This influence, however, cannot
be extracted from our data set since the orientation of an object to the sensor was
not annotated by the labelers and no ground truth data exists for this quantity.
Therefore, the angular dependency is averaged over in these plots and cannot be
made more explicit.

The spikes in some of the plots in Fig. A.6 (and in Fig. 4.18) are probably caused
either by errors in the measurements or by annotation mistakes. Since especially

82 data recording , annotation and measurement statistics

0 20 40 60 80
Radial Distance r (m)

−20

−10

0

10

20
R

C
S

σ
(d

Bs
m

)

Mean RCS value for class Passenger Car

Mean RCS value for class Pedestrian

Figure 4.18: Measured RCS values as a function of the radial distance at which the respec-
tive targets were measured. Comparison between the two classes Passenger

Car and Pedestrian. The shaded region mark areas within one standard devi-
ation around the mean.

data from the Two-Wheeler class is rather rare compared to the Passenger Car class,
a small number of labeling mistakes can cause large deviations in one range bin.
For example, if a Two-Wheeler drives close to a Large Vehicle at a large distance
and a labeler erroneously adds one target of the Large Vehicle to the Two-Wheeler

cluster, then the RCS value in this range bin increases considerably since the RCS

value of a Large Vehicle is usually much larger than the one from a Two-Wheeler.
Because there are often not enough data points within one range bin to compensate
entirely for one outlier, these mistakes show up easily. This fact can also be used to
detect labeling errors automatically or to bring them to the attention of the labeler:
if the average RCS value of a created cluster differs too much from an ensemble
average, then this cluster can be marked as potentially defective and either the
labeler or a quality control instance should check this cluster again.

4.4.5 Measurements of Three Different Bicycles

The results shown in this section were presented together with N. Scheiner in the
workshop “Automotive Radar Systems and Signal Processing” at the European
Microwave Week 2019 [226].

In the previous sections, inter-class variability was analyzed. Now, differences
between objects of the same class, namely the Two-Wheeler class are inspected in
more detail. To be more precise, in this section the question is answered whether

4.4 description of the data set 83

the bicycle types carbon bike, folding bike and city bike appear significantly different
to an automotive radar sensor.

To analyze this question, recordings with the three different bicycle types were
performed, recorded and annotated, resulting in about 110 000 labeled targets from
the three bikes, i.e. about 20 min non-stop driving. Three different people rode each
of the three bikes in turns to diminish the effect the rider has on the measurements.

The hypothesis prior to the measurements was that less targets from the carbon
bike will be measured and that the RCS value of this bicycle type will be smaller
than that of the other two bikes since carbon fibers are often used as absorber
materials for electromagnetic waves, e.g. in stealth aircraft [119], [178], [207].

0 10 20 30 40 50 60
Radial Distance r (m)

0

2

4

6

8

N
t

pe
r

Sc
an

Carbon Bike
City Bike
Folding Bike

Figure 4.19: Comparison of the measured number of targets Nt per scan between the three
different bicycle types.

In Fig. 4.19, the number of targets Nt measured per scan is plotted against the
radial distance for each of the three bikes. The figure was created in the same way
as Fig. 4.12, namely by counting the number of targets which were measured per
object in each scan, sorting this number into the range bin which corresponds to
the distance of the object to the sensor and finally averaging the values in each bin.
This plot displays no visible difference between the three bike types. The number
of measured targets decreases with distance at about the same rate for all three
bikes and the deviations around the mean are very similar.

For further analysis, the RCS values of the three bicycle types are plotted in Fig. 4.20

versus the mean range of the respective object. Just as discussed in the previous
section, the RCS value increases with increasing distance of the object. However,
again no real difference between the different bicycle types can be found. The
carbon bike was expected to have a smaller RCS value than the other two bikes due

84 data recording , annotation and measurement statistics

0 10 20 30 40 50 60
Radial Distance r (m)

−15

−10

−5

0

5

10

15
R

C
S

σ
(d

Bs
m

)
Mean RCS, Carbon Bike
Mean RCS, City Bike

Mean RCS, Folding Bike

Figure 4.20: Comparison of the range dependency of the RCS values σ between the three
different bicycle types.

to the absorption properties of carbon. Two possible explanations emerge from
this. Either most of the measured targets stem from the rider of the bike and not
from the bike itself or the material properties of the carbon used in racing bikes are
different from the carbon fibers used for electromagnetic absorption.

To assess from which positions of the bicycles the measured targets originate, the
precise ground truth position of the bikes during driving is needed. To obtain
these values, a new measurement campaign was started during which the riders of
the bike were equipped with DGPS systems stored in a backpack which were then
synced with the DGPS system of the ego-vehicle. The targets obtained from the bikes
can then be entered in a coordinate system that has its origin at the position of the
DGPS system. Details about this procedure can be found in [225]. The results of these
measurements are shown in Fig. 4.21, where one heatmap for each bicycle type is
shown. Color indicates the relative frequency with which targets were measured
in the respective cell. These plots show again no significant difference between
the three bicycles. What is more, the distribution of the targets resulting from the
carbon bike seem to have a larger spread than the distributions of the other two
bikes. Hence, the hypothesis that most reflections stem from the rider and therefore
no difference between the bikes becomes visible cannot be backed by these data.
Nevertheless, all heatmaps show that the highest measurement frequency is at the
center of the bikes, so that one can assume that the rider does have an influence on
the measured targets, even though the overall spread of the data is not altered by
the bicycle type.

Since still no difference between the bicycle types is visible, the initial hypothesis
has to be rejected. One possible explanation for the similar radar characteristics of

4.4 description of the data set 85

−2 −1 0 1 2
x (m)

−1

0

1

y
(m

)

a) City Bike

−2 −1 0 1 2
x (m)

−1

0

1

y
(m

)
b) Carbon Bike

−2 −1 0 1 2
x (m)

−1

0

1

y
(m

)

c) Folding Bike
d) Pictures of the three bicycles [48], [94],

[184].

Figure 4.21: Spatial distribution of the measured targets of the three bicycles. Color indicates
the relative count in each cell.

the bikes might be that for radar absorber material short carbon fibers with random
orientation are used [221], whereas in other applications long and axis oriented
carbon fibers are preferred for mechanical stability [134]. In [207], the influence of
orientation of a carbon fiber plate on the RCS value is analyzed. The authors state
that under some circumstances the RCS value of the carbon fiber plate is almost
as high as the RCS value of an Aluminum panel of comparable size despite the
great difference in electric conductivity. The results of this section are therefore in
accordance with these articles and no significant differences between the bicycle
types can be measured.

5
C L U S T E R I N G O F R A D A R D ATA

For many radar applications, grouping of targets that belong to the same object is
necessary. For example, to estimate the dimensions of an object in extended target
tracking algorithms, a method is needed to decide whether a measured reflection
belongs to one object. This holds also true for classification algorithms that take
as input either the raw targets of one object or some feature vector generated
from these targets. Clustering algorithms provide means to group individual items
with similar properties together. The way the grouping is done depends on the
clustering algorithm itself and the choice of the algorithm’s parameters. Since the
performance of the clustering algorithm has direct influence on all subsequent
processing steps, tuning this step is vital to obtain high performance, for example
in classification tasks.

In this chapter, clustering of radar data is discussed and a new method is presented
to incorporate domain knowledge into an unsupervised clustering algorithm. First,
a review of state of the art clustering methods on radar data is given. This includes
the introduction of the general clustering algorithm DBSCAN (Density-Based Spatial
Clustering of Applications with Noise) which is often used in radar applications. Since
the proposed new clustering method relies on DBSCAN as well, it is worthwhile and
necessary to first introduce the mechanics of this algorithm before its extensions
are discussed.

In the second part of this chapter, the following own contributions are made:

• Introduction of a new metric to evaluate a clustering result by comparison
with ground truth data

• Extension of the DBSCAN algorithm to work with multi-dimensional data with
different scaling

• Extension of the unsupervised algorithm with a supervised component to
learn different parameter sets for different range/velocity regions

This second part is based on the publication “Supervised Clustering for Radar
Applications: On the Way to Radar Instance Segmentation” which was published
beforehand [234].

87

88 clustering of radar data

5.1 state of the art

This section is split into four parts. First, the DBSCAN algorithm is introduced before
in the second part of this section some of the more popular variations and extensions
of DBSCAN are introduced. Then, different approaches for clustering radar data are
presented which most often rely on density-based clustering algorithms. Finally,
the optimization scheme simulated annealing is explained as it is used later on in
the supervised clustering algorithm.

5.1.1 DBSCAN

DBSCAN and its variants are popular density-based clustering algorithms. The
algorithm was proposed in 1996 by Ester et al. [65] and specifically designed for
working on data sets with spatial features with minimum requirements on domain
knowledge. The algorithm takes as input a list of points x = {x1, x2, . . . , xn} and
outputs for each point a cluster id yi ∈ {0, 1, . . . , Nclst} with i ∈ {1, . . . , n}. The
points xi can stem from any metric space M with distance function d : M×M→ R.
If two points share the same cluster id they belong to the same cluster. One cluster
id is singled out (for example y = 0) to mark all the noise points, i.e. points that do
not belong to any of the created clusters. The fundamental idea is that each cluster
has a higher density of points within the cluster than outside and that the density
around each noise point is smaller than inside any cluster. The existence of noise
points is one of the aspects that discerns DBSCAN from other clustering algorithms
like k-means, which assign each of the points xi to one of the clusters and no point
is left out.

To formalize the idea of density-based clustering, the following terms are defined
in accordance with [65]. An ε-region around a point xj is defined as the set
of all points for which the distance to xj is smaller than or equal to ε, that is
Nε(xj) = {xi ∈ x | d(xi, xj) ≤ ε}. A core point is then defined as a point xj for
which |Nε(xj)| ≥ Nmin, where Nmin ∈N is in addition to ε ∈ R the second hyper-
parameter of the DBSCAN algorithm. Since border points of a cluster usually have
less neighbors in an ε-region than a core point, not every point of a cluster has to be
a core point. However, a border point xj of a cluster can be defined as a point which
lies in an ε-region of a core point but for which |Nε(xj)| < Nmin. In [65], two points
p, q ∈ x are said to be density-reachable, if there is a chain x1, . . . , xn with x1 = p
and xn = q such that xi+1 lies in the ε-region of the core point xi. Furthermore,
the points p, q ∈ x are density-connected if there is a third point s ∈ x such that p
and q are both density-reachable from s. A cluster C ⊂ x is then defined via two

5.1 state of the art 89

conditions: Firstly, if xi ∈ C and xj is density-reachable from xi, then also xj ∈ C,
and secondly, if xi, xj ∈ C, then the two points are density-connected.

These definitions directly imply that given values for ε and Nmin, a cluster is
uniquely defined by any of its core points. This allows to construct clusters by
selecting an arbitrary core point xi ∈ x and collecting all density-reachable points
from this seed point by querying the points in the respective ε-regions until no
more density-reachable points can be found. In [65], a pseudo-code for one possible
implementation of DBSCAN is listed.

Figure 5.1: Examples for a) density-reachable points, b) density connected points and the
final clustering result in c). See text for details. Inspired by Fig. 3 in [65].

In Fig. 5.1, one set of points x is drawn. The radius of the circles indicates the
choice of ε and Nmin is in this example set to Nmin = 4. Notice that each point
has at least one point in its ε-neighborhood, namely itself. In part a) of the figure,
one example for two density-reachable points is shown. The point x3 is density-
reachable from x1, but not vice versa since x3 is not a core point. The points x3 and
x5 are density-connected to each other by x1 as shown in part b) of Fig. 5.1. The
full clustering result is shown in c), where core points are drawn in red, border
points of the cluster in blue and noise points are colored in teal. Even though the
noise point on the bottom right of the data set lies in one ε-neighborhood of a point
from the cluster, it is not part of the cluster since it is not density reachable from
any of the cluster’s points. This would only be the case if the point were in the
ε-neighborhood of a core point and not only in the ε neighborhood of a border
point as it is illustrated here.

The role of the two hyper-parameters ε and Nmin is not completely disjoint. The
threshold ε defines the search radius around a given point xi ∈ x in which neigh-
boring points are sought. Core points are created if more than Nmin neighbors
are found in the search region. Since increasing ε also increases the possibility of

90 clustering of radar data

finding more neighbors, more core points are found and on average larger clusters
are created the larger ε gets. The same holds true if Nmin is decreased since then
less neighboring points in a fixed ε-region are needed for the creation of a core
point. Suitable values for these coupled hyper-parameters have to be determined
for each clustering problem individually.

The run time complexity of DBSCAN depends on the method used for the neigh-
borhood searches. If a fast indexing structure like an R-tree is used for the region
queries, one neighborhood lookup can be done in O(log n). This cost has to be
paid at most once for each of the n points in x so that the total complexity of
the algorithm is O(n log n). If no indexing structure can be used, the run time
complexity degrades to O(n2).

The reasons why DBSCAN is so frequently used are manifold. Firstly, the algorithm
can identify a variable number of clusters with arbitrary shape – in contrast to e.g.
the k-means algorithm that constructs exactly k clusters and this number has to
be specified by the user beforehand. Since it is often unclear how many clusters
exist in a data set, this property of DBSCAN is a large advantage over many other
approaches. Secondly, not every point of the data set has to be added to one of
the clusters. Noise is very common in real world data sets but often not desired
to be part of a cluster so that additional filtering would have to be done if it was
included. Thirdly, using density information to create clusters is often a natural
choice if spatial data is used. The downsides of DBSCAN are that proper choices for
the values of ε and Nmin are sometimes difficult to make and that data sets with
varying density cannot be clustered properly since global parameters for ε and
Nmin are used.

5.1.2 DBSCAN Variants

In the years following the publication of DBSCAN, multiple variants were proposed.
The authors of the DBSCAN algorithm proposed GDBSCAN [219], where the G stands
for generalized. In their work, the classical DBSCAN is extended by allowing any
neighborhood definition as long as this relation is both symmetric and reflexive
and the number of neighbors is no longer defined to be the sheer number of objects
in a neighborhood but rather non-spatial features of objects can be taken into
account. The claimed advantage is that GDBSCAN can cluster not only points but
also extended objects and can take non-spatial features into account. In practical
applications, however, GDBSCAN is much less used than the “special case” DBSCAN.

A parameter free variant is called Distribution Based Clustering of Large Spatial
Databases (DBCLASD) and aims to create clusters based on nearest-neighbor dis-

5.1 state of the art 91

tances and the assumption that points within a cluster are uniformly distributed
[282]. Loosely speaking, a point is added to a cluster if the distribution of its nearest
neighbor distances aligns well enough with the assumed uniform distribution
of a cluster. A χ2 test is used to estimate whether the distance-distribution of a
candidate point fits with the expected distribution and if so, the point is added to a
candidate cluster. In terms of run time efficiency, DBCLASD performs slightly worse
than DBSCAN but indexing structures can again help reducing the time-consuming
neighborhood searches.

A popular improvement over DBSCAN is the OPTICS (Ordering Points To Identify the
Clustering Structure) algorithm [2]. OPTICS heals the shortcoming of DBSCAN that
only clusters with similar density can be created and at the same time the influence
of the parameter ε is reduced. In contrast to DBSCAN, a point is not defined as a
core point if more than Nmin neighbors are in an ε-region around the point but
rather distances are calculated which define how large ε would have to be chosen to
make the point a core point. In this sense, the parameter ε can be understood as a
maximum radius that should be checked. A so-called core-distance and a reachability-
distance are defined which in addition to an ordering of the data set form the basis
for the main loop of the algorithm. The output of the algorithm is an ordering of
the input points along with corresponding reachability values. If the points are
displayed in the proposed order on the x-axis and the reachability values are drawn
on the y-axis, then clusters can be identified as the “dents” in this reachability-plot.
Cutting this graph at a fixed y-value corresponds to the application of DBSCAN with
this value set as DBSCAN’s ε. In OPTICS, however, not a fixed value for cutting is
used, but rather the steepness of the decrease or the increase in reachability values
is considered and cuts are made based on regions with a steep decrease followed
by a steep increase in the reachability plot.

The algorithm HDBSCAN (Hierarchical Density-Based Spatial Clustering of Applications
with Noise) is one further improvement over the OPTICS algorithm and tries to heal
the downside of DBSCAN that the two parameters ε and Nmin have to be defined
manually beforehand [32]. Hierarchical DBSCAN uses only the parameter Nmin that
it is now used as a threshold for the minimum size of the resulting clusters. The
ε parameter used in DBSCAN or OPTICS is no longer required. Similar to OPTICS, a
tree-like structure is created from which in principle all DBSCAN clustering results
with arbitrary ε could be extracted. In HDBSCAN, however, only the most stable
clusters are extracted which do not necessarily have to have the same density. This
is done by condensing a generated cluster hierarchy so that all cluster candidates
with less than Nmin points are removed. Details can be found in [32].

The algorithm IDBSCAN (Improved DBSCAN) [18] does not alter the way that clusters
are created but rather introduces a sampling method so that run time and memory
consumption of the algorithm are reduced.

92 clustering of radar data

5.1.3 Clustering Applied to Radar Data

With the increase in resolution of modern radar sensors, the need for grouping
targets originating from the same object has risen. For example, in [137] a density-
based algorithm is proposed for clustering targets of an airport surveillance radar.
The algorithm was designed to work with different density thresholds in each
feature dimension but density variations within one feature dimension are not
considered. In [290], an implementation of the k-means clustering algorithm on the
GPU is presented with focus on clustering radar reflectivity data used for weather
prediction. Their implementation uses the massive parallelism options GPUs offer
to increase the execution speed of k-means. However, no radar specific adaptions
were made to the algorithm so that in contrast to the publications title a rather
generic clustering algorithm was implemented.

In [121], however, the DBSCAN clustering algorithm is modified specifically for the
application on automotive radar data. It is argued that since the resolution of a
radar sensor is (approximately) constant in radial and azimuth direction (i.e. in
a polar grid), it is not uniform in a Cartesian grid. Therefore objects close to the
sensor can create more targets than far distant objects which cover only very little
range-azimuth bins. This effect is of course also visible in the data set used in this
thesis, cf. Fig. 4.12. With a fixed value of ε in the DBSCAN algorithm, far distant
objects cannot be clusters since less targets are measured in the given neighborhood
region. Additionally, objects close to the sensor can be hardly separated for larger
ε values since then the nearby targets of the different objects would be grouped
together. Position depended values for ε and Nmin are proposed to take the varying
sampling densities into account. These are implemented implicitly by working
on a grid with scaled range and azimuth cells. The scaling factors of each cell
then depend on the range and angle resolution as well as on the range and angle
bin itself. Since these scaling factors can be computed beforehand and stored in a
lookup-table, the run time complexity of DBSCAN is maintained.

Basic DBSCAN is applied to radar data in [230], where different ε values are used for
the spatial direction and the space of Doppler velocities. Additionally, stationary
objects are excluded from the clustering step by using a threshold for the Doppler
velocity. Similarly, also in [173] and [140] basic DBSCAN is used for clustering of
automotive radar data without tuning it for this specific application.

In [260], small changes to the OPTICS algorithms are made to leverage its perfor-
mance on radar data. More specifically, OPTICS is used to cluster regions in the
range-Doppler matrix so that in contrast to the other methods discussed in this
section, no individual targets are considered. The changes in the algorithm include
for example that the valley detection in the reachability plot is modified to allow

5.1 state of the art 93

for clusters separated by one target and that a bounding box check is implemented
to add all points of the interior of a cluster. Additionally, the distance metric is
scaled by the amplitudes of the return signal.

A border following method on 2D binary images of radar targets is presented in
[247]. For the three different feature pairs range-azimuth, range-Doppler velocity
and azimuth-Doppler velocity, binary images with a fixed grid size are created.
Then, a slightly modified version of the border following algorithm presented in
[285] is applied to the image to detect connected groups of targets. The advantages
and disadvantages of each of the three image representations is discussed with
the conclusion that the range-azimuth representation works best in the presented
scene.

Based on the work presented in this thesis and the article previously published in
[234], in [223] a two-stage clustering approach is presented. Since only dynamic
objects are considered for clustering, the static background is filtered in a first
step by taking both the density of the targets and their Doppler velocity into
account. Afterwards, a first clustering step in a low dimensional feature space is
performed. In a second step, the cluster candidates are merged together based for
example on a velocity estimation of the clustered objects. Similarly as in the work
presented below, an optimization framework is used to learn the free parameters
of the filtering step and the two clustering steps from a data set. Additionally, the
authors use also the idea presented below that only points with a sufficiently larger
Doppler velocity can become core points the DBSCAN algorithm. Access to the data
set recorded for this thesis was granted to the author.

5.1.4 Simulated Annealing

The optimization scheme simulated annealing [124] displays a deep connection be-
tween statistical mechanics and traditional optimization problems. Kirkpatrick et
al. noticed that the Metropolis algorithm [161] can be applied to various combi-
natorial problems, as long as a few basic ingredients are provided. The original
Metropolis algorithm was designed to calculate equilibrium properties for a set
of atoms at a specific temperature. In statistical mechanics, the Boltzmann factor
exp(−E/kBT), in which kB is the Boltzmann constant, weighs the probability that
a state with energy E is encountered at temperature T. This means that the higher
the temperature T of a system, the larger the probability to detect the system
in a state with energy E, and the lower the energy E of a state, the more likely
it is to encounter it. In the Metropolis algorithm, a starting configuration of the
atoms is chosen before one atom is selected from the set, randomly displaced and
the change in energy ∆E of the system is calculated. If ∆E ≤ 0, then the move

94 clustering of radar data

is accepted since a more favorable energy state is found. If on the other hand
∆E > 0, then the value p1 = exp(−∆E/kBT) is compared to a random number p2

generated uniformly over the range (0, 1) and the move is only accepted if p1 > p2.
This implies that moves which increase the energy by a large positive ∆E are only
likely at higher temperatures and become more unlikely the lower the temperature
gets. The temperature T of the system is slowly decreased while the presented
basic steps are repeated. In this way, the system can explore states with different
energies at higher temperatures and settle into a global minimum the lower the
temperature gets. Local optima can be left at non-zero temperatures since then
states with ∆E > 0 can be accepted.

The ingredients needed to apply simulated annealing to an optimization problem
are rather easy to collect: a description of the current configuration of the system,
a generator of moves through the configuration space, a score/energy function
and an annealing schedule. The latter describes how fast the “temperature” of the
system decreases, i.e. how long the configuration space can be explored before the
system no longer (or only very unlikely) accepts moves with ∆E > 0.

The use of a Boltzmann distribution for modeling the acceptance probabilities is
motivated by physical applications. For other optimization schemes, however, there
is no real need to utilize this specific distribution. One downside of the Boltzmann
distribution is that a logarithmic annealing scheme of the form

Tk = T0
log k0

log k
⇒ Tk+1 = Tk − T0

log k0

k(log k)2 for k� 1 (5.1)

has to be chosen in order to guarantee a proper search through the parameter space.
Here, k denotes the current step in the algorithm an Tk the temperature at step k.

In adaptive simulated annealing [110], [111], a different probability distribution is
chosen such that exponential decrease of temperature is possible:

Tk = T0 exp(−ck). (5.2)

For more details on the derivation of this distribution, see [111]. Additionally,
adaptive simulated annealing introduces the concept of reannealing, i.e. increasing
the temperature from time to time to sample parameter regions with little impact
more roughly and to escape local minima.

The score function that will be introduced in the next section in Eq. (5.5) is in general
neither differentiable nor continuous. Gradient-based optimization schemes can
therefore not be used and other methods are needed to find optimal parameters of
the clustering algorithm.

Simulated annealing fulfills this requirement since multi-dimensional non-con-
tinuous score functions can be handled. Other non-gradient based optimization

5.2 supervised clustering 95

schemes like differential evolution [248] could be chosen as well for the task at
hand but since no further requirements are made for the optimization scheme and
no better solutions are expected from more complicated algorithms, (adaptive)
simulated annealing is chosen due to its simplicity.

5.2 supervised clustering

This section is based on the previously published work [234]. In the literature, the
term “supervised clustering” is used in different ways than it is used here. In this
work, “supervised clustering” means that an unsupervised clustering algorithm
is extended by a supervised component, which fixes the free parameters of the
unsupervised method. Thereby, domain knowledge can be incorporated into the
previously purely unsupervised algorithm, resulting in a “supervised clustering
algorithm”. In [61], [89], the term is used to describe algorithms that create dense
clusters in some feature space but with the additional constraint that these clusters
should contain only members of the same class. The class label is known to the
algorithm and can be taken into account during clustering. The second way the
term “supervised clustering” is used in the literature is that examples for clusters
are provided and the algorithm learns from these examples how the clustering
should be done. In [66], a support vector machine is used to learn a similarity
measure between two objects. Approaches in which “must-link” and “cannot-link”
information are provided are strongly related to this approach. After a similarity
value for each pair of items is calculated, correlation clustering is applied on the
resulting similarity matrix. A similarity neural network is used in [159] for the
computation of the similarity values which are then used in k-means clustering
step during the distance calculation.

In this work, the goal of clustering radar data is to identify all targets that belong
to the same dynamic object. This cluster should be valid over multiple time steps
so that not only the targets of one object obtained from one single scan are grouped
together but rather data from all sensors obtained in a certain time window is
considered. Targets that do not belong to any dynamic object should not be included
in any cluster and only one cluster per true object should be created. Difficulties
that arise during clustering of radar data are manifold. For example, while the
number of targets measured on an object decreases with increasing distance, the
nearest-neighbor distance between targets increases. Micro Doppler effects caused
by moving wheels, arms, legs or any other small moving parts of an object create
an inhomogeneous velocity profile so that fluctuations in the Doppler velocity
value of spatially nearby points can be expected. Additionally, ambiguities in the
Doppler value (see also 3.1.3) can cause large deviations of the Doppler velocity of

96 clustering of radar data

neighboring targets. Other sensor artifacts and mirror effects can also create targets
with non-zero Doppler velocity, which ideally should not be part of any cluster.

In Fig. 5.2a and Fig. 5.2b, the spatial difference ∆r between nearest neighbor targets
of the same moving object are plotted against the average radial distance r the
object is located at as well as against the average Doppler velocity v̂r of the object.
Data from all sensors during time windows of length 100 ms were considered for
the nearest neighbor searches. The nearest neighbor difference ∆r increases with
both r and v̂r. Because data from multiple time steps is considered, the motion
of the objects under consideration influences the distribution of the measured
targets. The faster an object moves, the further apart are the targets measured at
two different points in time and hence the nearest neighbor distance increases on
average. With less targets being detected from far distant objects, it becomes more
likely that the nearest neighbor stems from a measurement cycle of a different
sensor so that again the motion of the object has an influence here. Notice that
it is necessary to choose a finite time window for this analysis and not separate
radar scans, since in the clustering and classification step also data from a certain
time range from multiple sensors are considered. In the bottom row of Fig. 5.2,
the difference in Doppler velocity ∆v̂r of the same nearest neighbor targets as
calculated before are displayed versus the average radial distance of the respective
objects (Fig. 5.2c) and versus their average Doppler velocity (Fig. 5.2d). The large
standard deviations (shaded area) around the mean value (solid line) already
indicate that trends are less reliable and interpretations need to be done more
carefully. One striking feature in Fig. 5.2d is that for large Doppler velocities the
value of ∆v̂r drastically increases again. This might be explained by the fact that
especially for fast moving objects the sensor cannot resolve the ambiguous Doppler
velocity correctly so that nearby targets are erroneously reported with very different
Doppler velocities. For slow moving objects the values of ∆v̂r are on average larger
than for faster moving objects. Two effects can cause this: Micro-Doppler effects
of moving pedestrians – with one stationary leg and one moving leg – create a
large difference in the Doppler velocities of nearby targets and objects moving
perpendicular to the sensor (e.g. a car moving from left to right in front of the
ego-vehicle) have a strongly varying Doppler velocity pattern including a sign
change of the measured Doppler velocities. The almost constant non-zero value
of ∆v̂r in Fig. 5.2c is probably a geometric result. An extended moving object seen
by one radar sensor will create multiple targets whose Doppler velocities differ
due to the difference in angle between the measured target and the sensor. The
same holds true if multiple sensors measure the same object so that by design of
the measurement a non-zero difference in the Doppler values can be expected.

The idea is now to learn suitable parameters ε and Nmin of the DBSCAN algorithm for
different regions of the 2D feature space spanned by radial distance and Doppler

5.2 supervised clustering 97

0 25 50 75
Radial distance r (m)

0.0

0.2

0.4

0.6

0.8

1.0

∆
r

(m
)

a) ∆r vs. r

0 10 20
Radial velocity v̂r (m/s)

0.0

0.2

0.4

0.6

0.8

1.0

∆
r

(m
)

b) ∆r vs. v̂r

0 25 50 75
Radial distance r (m)

−2

0

2

4

∆
v̂ r

(m
/s

)

c) ∆v̂r vs. r

0 10 20
Radial velocity v̂r (m/s)

−2

0

2

4

∆
v̂ r

(m
/s

)

d) ∆v̂r vs. v̂r

Figure 5.2: Statistics about nearest neighbor differences in space and velocity. The solid lines
mark the average value of all measurements that fell into the respective range
or velocity bin and the shaded areas are regions with plus/minus one standard
deviation. Only the absolute value of the Doppler velocity v̂r is considered.

velocity. Targets close to the radar sensor will therefore be clustered with a different
set of parameters than targets far from the sensor and fast moving objects with
high Doppler velocities will be treated differently than targets with Doppler values
close to zero. Learning these values directly from the data set has the upside that
no “magic-thresholds” have to be introduced as a best guess for parametrizing
DBSCAN. A performance metric can be directly used to evaluate the clustering
results and thereby quantify the performance of the algorithm. In order to find
suitable parameters for the clustering of a specific region of the 2D feature space,

98 clustering of radar data

the already introduced optimization scheme simulated annealing is applied so that
different parameter sets are explored and gradually the best performing set is
obtained.

For the rest of this chapter, the following definitions are used. A cluster X =

{q1, . . . , qn} ⊂ P is a subset of the whole set of radar targets P = {p1, . . . , pN}
that were measured by all sensors in a given time range. From each target p,
four properties are used: the measurement time pt, the Cartesian position in car
coordinates px and py (see also Section 3.2) and the ego-motion compensated
Doppler velocity pv. A ground truth cluster of object i is represented as Yi =

{t1, . . . , tm} ⊂ P , where the information which target belongs to which cluster is
obtained from the labeling stage discussed in Section 4.2. Application of a clustering
algorithm results in a set χi = {X1, . . . , Xnclst} of predicted clusters for ground truth
object i with single ground truth cluster Yi.

5.2.1 Score Function to Assess Clustering Results

For evaluating how well a specific clustering algorithm performs on the radar data
set, a score function is needed. This score function is then also used during the
optimization step as a cost function. Let s be the score function which takes as
arguments a set of created clusters χi for one object i as well as the ground truth
cluster Yi and maps this onto a real number s(χi, Yi) ∈ [0, 1]. A perfect clustering
results in a score of one, whereas the score function returns the value zero if no
clusters at all were created for a given object.

Let χ =
⋃nclst

j=1 Xj be the union of all clusters created for one ground truth cluster
Yi. Then the true positives are defined as TP = |{p ∈ P | p ∈ Yi ∧ p ∈ χ}|, the
false positives are defined as FP = |{p ∈ P | p /∈ Yi ∧ p ∈ χ}| and the false
negatives are given by FN = |{p ∈ P | p ∈ Yi ∧ p /∈ χ}|. Then the F1 score is
defined as the harmonic mean between precision Pr = TP/(TP + FP) and recall
Re = TP/(TP + FN):

F1 =
2

1/Pr + 1/Re
= 2

Pr · Re
Pr + Re

. (5.3)

The F1 score is a suitable measure for how well the clustering algorithm managed
to assign targets to the correct ground truth object. It takes into account how
many of the object’s targets are part of the cluster (TP), how many targets were
erroneously not included in any of the generated clusters (FN) and how many
targets of different objects or of the static environment were added (FP). The
precision Pr then gives the ratio of the correctly identified targets to the predicted

5.2 supervised clustering 99

targets and the recall value describes the ratio of the correctly clustered targets to
all true targets of the object.

However, the F1 score alone is not sufficient to describe the clustering result since a
clustering algorithm that creates many clusters for one object should be considered
worse than an algorithm that creates only one cluster. Therefore, the variety measure
V is introduced, which penalizes the creation of many small clusters:

V = 1− η · tanh(α[nclst − 1]), η = 1−max
j

|xj ∩Yi|
|Yi|

. (5.4)

The variety measure is defined for one ground truth object i and the factor η takes
into account the size of the created clusters. If for example one large cluster and
many smaller clusters were created for one dynamic object, then this should be
ranked higher than a clustering result with equally many clusters, which all have
the same size. The intuition behind this is that if one large cluster is created for the
object, then the main structure of the object is covered and any following algorithm
can work e.g. with the emerging shape information more reliably than if the object
was fragmented into equally many but on average smaller clusters. The parameter α

controls how fast the variety measure decreases with increasing number of created
clusters nclst. In this work, the parameter is set to α = 0.3.

The total score function is then composed of the harmonic mean of the F1 score
and the variety measure V:

s(χi, Yi) = 2
F1(χi, Yi) ·V(χi, Yi)

F1(χi, Yi) + V(χi, Yi)
. (5.5)

The V-measure introduced in [212] has some similarities with the metric defined
in this work. The reason why the V-measure is not used directly here is due to
the presence of static targets in the measured radar point cloud. The goal of the
clustering algorithm is to group all targets of dynamic objects together and leave
targets of static objects out of any cluster. During the calculation of the V-measure,
the conditional entropy over all clusters is calculated and every created cluster is
treated equally. It is unclear how static targets could be integrated into this scheme.
If static targets were treated as if they were all part of the same static cluster, then
the V-measure could be directly calculated but the total score would depend on
the number of static targets in the scene. This can be made more explicit with an
example: Consider the situation in which only one dynamic object is present in a
scene with some static environment and a clustering algorithm correctly identifies
the dynamic object but erroneously adds some of the static targets to the cluster
of the dynamic object. Then the score for the clustering result reported by the V-
measure gets higher the more static targets are in a scene even though the overlap

100 clustering of radar data

between static targets and the dynamic cluster remains constant. This property is
not desired since clustering of dynamic objects should only depend on how well
the dynamic objects are clustered and not how many static clusters are in a scene. If
on the other hand static targets were not treated as belonging all to the same cluster,
then false positive static points in a dynamic cluster would not be considered at all.

5.2.2 Method and Training

In vanilla DBSCAN only one distance threshold ε is used for the definition of the
neighborhood regions around a point p, namely Nε(p) = {q ∈ P | d(p, q) ≤ ε}. For
the clustering of radar data, however, one combined distance function that takes
all four features of a target into account is not reasonable. This would require a
weighting for example between the spatial dimensions and the Doppler velocities.
Using different thresholds for each feature dimension seems therefore a reasonable
extension. With the three thresholds εr, εv and εt, the ε-region around point p ∈ P
is defined as

Nε(p) = {q ∈ P | |px − qx| ≤ εr ∧ |py − qy| ≤ εr

∧ |pv − qv| ≤ εv ∧ |pt − qt| ≤ εt}. (5.6)

The two spatial dimensions were treated equally because the clustering should
be rotationally invariant. The condition can be reformulated and shortened, if the
Chebyshev distance

dcheby(~p,~q) = max
i
|pi − qi| (5.7)

is used as a metric and the vector ~p = (px, py, pv, pt) is scaled with the inverse
ε-threshold prior to the distance calculation:

~p′ = (px/εr, py/εr, pv/εv, pt/εt). (5.8)

Then the neighborhood condition can be reformulated as

|px − qx| ≤ εr ∧ |py − qy| ≤ εr ∧ |pv − qv| ≤ εv ∧ |pt − qt| ≤ εt (5.9)

⇔|p′x − q′x| ≤ 1 ∧ |p′y − q′y| ≤ 1 ∧ |p′v − q′v| ≤ 1 ∧ |p′t − q′t| ≤ 1 (5.10)

⇔max
i
|p′i − q′i| ≤ 1 ⇔ dcheby(~p′,~q′) ≤ 1. (5.11)

This results in the simple term Nε(p) = {q ∈ P | dcheby(~p′,~q′) ≤ 1}, where the
different ε thresholds are now implicitly incorporated in the scaled feature vectors
of the targets.

5.2 supervised clustering 101

Now the goal is to find suitable values for the three ε-thresholds as well as for the
Nmin parameter. As it cannot be expected to find one suitable set of parameters that
works for all distances and object velocities, the whole point cloud P is divided
into six different range regions and five Doppler velocity regions. For each of these
30 individual subspaces, an individual set of parameters should be found.

To extract training data from the labeled point clouds, so-called sectors are created
for each individual object. A sector is defined as a collection of the object’s reflections
and surrounding measurements up to 6m away from the object borders. If an object
leaves a specific sector during its observation (for example an approaching car), the
measured targets are split into multiple regions. This process results in a list of
sectors for each individual range-velocity region and is repeated for training and
test data sets.

One further extension made to DBSCAN is that the algorithm is only allowed to
consider those targets as core points of a clusters if their Doppler-velocity exceeds
a threshold of 0.4 m/s. Thereby, static or slowly moving targets can still be added
to a cluster if they are density-reachable but they cannot work as seed points for
further expansion of the cluster.

Adaptive simulated annealing with the score function defined in Eq. (5.5) is applied
to each range-Doppler region so that 30 different optimal parameter sets εr, εv, εt

and Nmin are iteratively obtained. These parameters are then used for clustering
the test data and comparison with ground truth clusters and the score function
is done. This process allows incorporating domain knowledge into the DBSCAN

clustering since now the radar specific distance and Doppler velocity dependencies
are represented by the learned thresholds.

To compare the clustering results obtained by this method, also standard DBSCAN

with fixed parameters as well as HDBSCAN are applied to the test set. From now
on, the standard DBSCAN algorithm will be referenced as DBSCAN− and the new
variant with learned parameters will be referenced as DBSCAN+. For DBSCAN−, the
parameters εr = 1 m, εv = 5 m/s, εt = 0.2 s and Nmin = 1 are used as expert guesses
for reasonable values. For HDBSCAN a metric has to be defined. For example, if an
Euclidean metric is used, the distance between two points is calculated as d(p, q)2 =

∑i(pi − qi)
2, i ∈ {x, y, v, t}. This expression is only meaningful and useful, if each

dimension is scaled by a characteristic length `i, so that the dimensions have the
same impact on the distance. Two approaches to find suitable values for the `i are
shown here: i) Nearest neighbor distances are calculated from the ground truth
clusters in space, time and velocity for different range-velocity regions and thereby
a set of `i is obtained for each region. ii) The learned parameters εr, εv and εt from
DBSCAN+ are used for the `i. The two approaches are referenced as HDBSCAN(i) and
HDBSCAN(ii), respectively.

102 clustering of radar data

Algorithm s± σs ŝ V ± σv Pr± σPr Re± σRe

HDBSCAN(i) 0.60± 0.35 0.72 0.90± 0.16 0.61± 0.37 0.88± 0.17

HDBSCAN(ii) 0.66± 0.35 0.82 0.92 ± 0.14 0.65± 0.35 0.92± 0.14

DBSCAN− 0.81± 0.21 0.88 0.80± 0.24 0.88 ± 0.20 0.98± 0.08

DBSCAN+ 0.87 ± 0.17 0.94 0.90± 0.16 0.86± 0.21 0.98 ± 0.07

Table 5.1: Overview of the clustering scores.

5.2.3 Evaluation

The extracted sectors from all annotated recordings were used for five-fold cross
validation. The results shown in this section are summarized over all five test
folds. For each object in the test folds, the total score s(χi, Yi) and its components
V(χi, Yi), Pr(χi, Yi), Re(χi, Yi) were calculated and stored. From these bare values,
arithmetic means s, V, Pr, Re along with their standard deviations σs, σV , σPr, σRe

were computed and the median score ŝ was calculated. In Table 5.1, these values
are presented for the four different clustering approaches.

The DBSCAN variant with learned parameters outperforms the other methods with
regard to the mean and median values of the total scores s(χi, Yi). Especially the
variety measure V and the recall value Re are large for this method. Interestingly,
DBSCAN− with fixed parameters has a higher precision than the variant with learned
parameters, indicating that less false positives are inserted into the proposed
clusters. The variety scores show that DBSCAN+ creates less clusters for one object
with more true positive points per cluster compared with DBSCAN−. Combining
these two observations allows the conclusion that DBSCAN+ captures an object with
less created clusters at the cost of including some false positive points. The number
of true positive points left out of a cluster is almost the same for the two methods
as indicated by the similar recall values.

The scores of the two HDBSCAN approaches are even below the scores of DBSCAN−.
This might be explained as follows: For DBSCAN we could restrict the core points
to those with some minimal Doppler velocity. By design, this is not possible
for HDBSCAN. To stop HDBSCAN from adding too many static points from the
surrounding to a cluster, one would have to increase the distance between moving
and static points manually. This, however, would also hinder HDBSCAN to add static
points of a moving object to a cluster, for example the bottom part of a turning

5.2 supervised clustering 103

wheel. An unmodified version of HDBSCAN therefore does not seem to be a good
choice for our task.

The high standard deviations in all the computed scores demand some extra con-
sideration. In Fig. 5.3, the distribution of the score values obtained from DBSCAN−

and DBSCAN+ are plotted and the count differences of each bin are visualized. This
representation shows that the score distributions are highly skewed towards higher
scores. The high standard deviation in the scores stems from the fact that in both
methods the full range of scores is covered and the score counts decrease only
slowly in the direction of lower scores. The visualization of the count differences
shows that the greatest difference exists in the region of scores greater than 0.85:
Significantly more sectors obtained a high score when clustered with DBSCAN+. On
the other end of the score range, there is almost no difference in the counts because
both algorithms have problems with a few rare situations in which the measured
reflections have low velocities or only a few reflections were measured. If no cluster
was created for an object, a score of zero was assigned. In the difference plot in
Fig. 5.3 it is visible that for DBSCAN+ the smallest score bin has a higher count so
that DBSCAN+ failed more often to create at least one cluster for a true object than
DBSCAN−.

0.0

0.1

0.2

0.3

R
el

at
iv

e
C

ou
nt

s

DBSCAN− Scores
Mean
Median

0.00 0.25 0.50 0.75 1.00
Score

0.0

0.1

0.2

0.3

R
el

at
iv

e
C

ou
nt

s

DBSCAN+ Scores
Mean
Median

0.00 0.25 0.50 0.75 1.00
Score

0.00

0.02

0.04

0.06

0.08

0.10

C
ou

nt
D

iff
er

en
ce

D
BS

C
A

N
+
−

D
BS

C
A

N
−

Figure 5.3: Histograms displaying the score distribution of DBSCAN− and DBSCAN+ as well
as the distribution of the bin count differences. The histograms are normalized
so that the bins sum to one.

To justify the claim that despite the large standard deviations DBSCAN+ performs
better than DBSCAN−, the 95 % bias corrected and accelerated bootstrap confidence

104 clustering of radar data

interval [60] for the mean difference of the scores s(χi, Yi)
+− s(χi, Yi)

− is calculated.
The symbols s(χi, Yi)

+ and s(χi, Yi)
− indicate the score of the i-th sample obtained

by using DBSCAN+ and DBSCAN−, respectively. This interval describes that in 95 %
of the cases the interval encloses the true difference between the scores of the two
methods. The interval was calculated to be [0.060, 0.068] so that in 95 % of the cases
the DBSCAN+ method has a higher score by at least 0.06.

0 20 40 60 80
Radial Distance r (m)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ε r
(m

)

v̂r ∈ [0; 3]

v̂r ∈ [3; 6]

v̂r ∈ [6; 10]

v̂r ∈ [10; 15]

v̂r ∈ [15; 30]

Figure 5.4: Averaged values for εr plotted against radial distance for each of the five
different velocity intervals. Shaded areas indicate regions with plus/minus one
standard deviation around the mean value.

The final parameters obtained from adaptive simulated annealing proofed to be
relatively invariant of the initial values. For εr, the search space was limited to 0.4 m
to 5 m, for εv the interval 0.2 m/s to 8 m/s was used and for εt values from 0.1 s
until 0.8 s were allowed to be selected during the annealing process. The optimized
parameter εr for the different range and velocity regions is depicted in Fig. 5.4
and Fig. 5.5. From the five test folds, average values and standard deviations were
computed for each of the range/velocity regions. The mean values are represented
by the ? symbols in the plot and the shaded areas indicate the standard deviation.
Similar plots for εv and εt can be found in Appendix A.4.

In Fig. 5.4, it can be seen that the threshold εr increases with increasing radial
distance to the object – just as it is also indicated by the nearest neighbor differences
∆r in Fig. 5.2a. This plot also hints that there is a clear structure in the velocity
domain since εr in one range bin is almost always smaller for lower Doppler
velocities. This is again illustrated in Fig. 5.5 where now εr is explicitly plotted
against the Doppler velocities.

5.2 supervised clustering 105

0 5 10 15 20 25
Doppler over Ground v̂r (m/s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ε r
(m

)

r ∈ [0; 15]

r ∈ [15; 30]

r ∈ [30; 45]

r ∈ [45; 60]

r ∈ [60; 75]

r ∈ [75; 100]

Figure 5.5: Averaged values for εr plotted against Doppler velocity for each of the six range
regions. Shaded areas indicate regions with plus/minus one standard deviation
around the mean value.

30 40 50 60

x(cc) (m)

−10

−5

0

5

10

y(c
c)

(m
)

30 40 50 60

x(cc) (m)

Figure 5.6: Example clustering result of a scene with two approaching cars and one car in
front of the ego-vehicle. Left: Clustering result of the DBSCAN− algorithm. Right:
Result of the DBSCAN+ method with learned parameters.

Finally, in Fig. 5.6 an example scene is displayed with the clustering results of
DBSCAN− and DBSCAN+. Both algorithms managed to cluster the first oncoming
car perfectly, whereas only DBSCAN+ was able to create exactly one cluster for each
of the other two vehicles. Especially at larger distances, the difference between
the two algorithms becomes visible. In this concrete situation, the difference in
Doppler velocity caused DBSCAN− to create multiple clusters. However, in the cases
of Doppler ambiguities in which the sign of the Doppler value switches, also
DBSCAN+ was only rarely able to include these points. Some post processing steps

106 clustering of radar data

that include all points of the interior of the convex hull of the cluster could solve
this problem partially.

The parameters obtained here are possibly biased towards the majority classes
of the data set. Further improvements could be made if balancing is introduced
so that semantic classes which are underrepresented in the data set are weighted
higher in the score function than majority classes so that the learned parameters
work not only well on e.g. the Passenger Car class.

6
C L A S S I F I C AT I O N O F C L U S T E R E D
R A D A R D ATA

After discussing methods for clustering of radar data in the last chapter, this chapter
presents approaches for classification of these formed clusters. This means that the
algorithms discussed here will use clusters – or time slices of these clusters – as
input and a vector of class probabilities will be the output. Since the clustering
performance has direct influence on the classification, evaluations are performed on
ground truth clusters as well as on predicted clusters. For some algorithms a feature
extraction step precedes the actual classification. Manual feature extraction as well
as automatic feature extraction will be demonstrated, evaluated and discussed. In
Fig. 6.1, the process pipeline is illustrated.

Figure 6.1: Process pipeline for classification based on clustered data. From the created
clusters (red boxes) either feature vectors are extracted manually (blue box) and
then classified (green box) or feature extraction and classification is performed
in a combined step (bottom part).

In the first part of this chapter, related work and state of the art is discussed.
Afterwards, approaches are introduced which rely on a manual feature extraction
step and then classify the generated feature vectors. Two different classifiers with
different feature sets are used: a random forest and an LSTM (see Fig. 6.1 top part).
It is discussed how changes over time can be incorporated into the classification
scheme so that predictions are not only made on a single feature vector but rather
on a sequence of feature vectors. In the third part of the chapter, the bare clusters
are used as input so that the manual feature extraction step becomes obsolete

107

108 classification of clustered radar data

(bottom part of Fig. 6.1). For all of these methods various scores are presented so
that a performance comparison is possible. Thereafter, the human performance on
the classification task is evaluated and compared to the outputs of the algorithms
introduced before.

Finally, situations are considered in which pedestrians are tracked over a longer
period so that features from a greater time window can be extracted. Classification
of more fine-grained movement patterns as well as a height classification of pedes-
trians will be presented. This last part was done together with a master student
and culminated in his master’s thesis [104] and a publication [105].

To summarize, the following own contributions are made

• Comparison of different feature-based classification algorithms on both
ground truth clusters and automatically predicted clusters

• Consideration of time information in the classification procedure

• Classification based on bare point clouds with automatic feature extraction

• Assessment of human performance on the classification task

• Body height estimation and movement classification of pedestrians using
solely 2D radar data

The first item mentioned here is based on the publication “Comparison of random
forest and long short-term memory network performances in classification tasks
using radar” which was published beforehand [232]. The numbers presented in
that paper differ from the ones in this thesis since the data set size has increased
considerably in the meantime.

6.1 state of the art

Compared to the image community where a sheer endless body of publications
related to classification approaches exists, extracting semantic information from
automotive radar sensors is a rather novel topic and not too many published
articles cover this area. Often, the term “classification” is understood in the radar
community as the task of deciding whether a detected target is noise or a real
measurement. That is, a binary decision for the detection is made and no semantic
information is added to a target. Literature covering this kind of classification is
not discussed here since the detection stage is not part of this work. However, it is
interesting to note that machine learning also starts to enter in these processing
steps, which are usually performed without any learned parameters [28].

6.1 state of the art 109

Before machine learning gained popularity, pedestrian classification was done with
hand-made features extracted from range-profiles, Doppler spectrograms and RCS

values [95]. In their work, only simulated data of a 24 GHz radar was used to discern
between pedestrians and cars. Later, the same authors added a subsequent tracking
stage to improve the performance [96], developed more expressive features [97], and
analyzed the impact of different wave forms on the classification performance [98].
Generating features which work equally well for radar sensors operating on 24 GHz
or 77 GHz is discussed in [167]. A small set of recordings from a 24 GHz radar and
simulated data from a 77 GHz radar is used to train a Support Vector Machine (SVM)
which discerns between pedestrians and vehicles. The main observation used in
their approach is that Doppler spectra measured at different frequencies can be
considered as scaled versions of each other. In [109] the task of distinguishing
between pedestrians and vehicles is tackled again. As before, the Doppler spectrum
of a 24 GHz radar is used as a basis for feature extraction. Handcrafted thresholds
for the extent of the spectra and their change over time are used for the classification.
An SVM with features based on handcrafted RCS thresholds is used by the authors
in [135]. Similarly, in [1] the Doppler spectra are used as input to a CNN. The three
classes vehicle, pedestrian and bicycle are distinguished and a small data set with
staged scenes is used as input for training and evaluation. With a similar approach,
but with entirely simulated data, human activities are classified based on micro
Doppler variations on the Doppler spectrograms [93]. Another CNN approach is
shown in [129], where only the distinction between the two classes “walking” and
“noise” is made. Similarly, [176] analyzes how multiple radar sensors influence the
classification performance of an SVM if different motion types are to be classified.
All of the listed publications do not explicitly mention how the relevant parts of
the full spectrum are extracted. Often, the starting point of these works is a single
Doppler spectrogram or a series of spectrograms over time from one moving object
from which features are calculated. The difficult task of identifying the parts of
the complete measurement that belong to one object is not discussed. How the
approaches can be extended to real-life scenarios with multiple moving objects
remains open. However, this step is mentioned in [192], where DBSCAN is used
in a first stage for clustering, followed by manual feature calculation, and finally
classification by different tree-based algorithms. Again, a Doppler spectrogram is
used as basis for feature extraction.

A shared feature of the presented works is that they work either on simulated data
or on a minuscule data set with staged scenarios. Naturally, the performance metrics
listed in these publications are quite high since a controlled environment is used.
Additionally, a variety of radar sensors with different measurement capabilities is
used which makes a comparison of the approaches almost impossible.

110 classification of clustered radar data

A second group of publications works on CFAR-level data, i.e. on the same data level
as used in this work. Those articles which are based on the data set (or a smaller
subset of it) that was collected for this thesis [222]–[224] are of special interest.
Access to the data was granted to the authors for evaluation of their algorithms. In
[222], a set of one-versus-one and one-versus-all LSTM-classifiers are trained and
their performance is evaluated. A large handcrafted set of features is used and
their importance is ranked. As input to the feature extraction process, ground truth
clusters, which are the ones created by the labelers, are used. The impact on the
total performance of using either ground truth clusters or automatically created
clusters is analyzed later in this chapter. In [223], a multi-stage clustering framework
is introduced which is supposed to be beneficial for the following feature extraction
and classification steps. Similarly, in [224] the aforementioned approaches are
extended by a novelty-detection algorithm so that semantic classes which were not
seen before can be automatically detected. Three different variants of a novelty
detection are tested which are all based on the uncertainty the one-versus-one
and one-versus-all classifiers show on a sample. According to the authors, simply
assigning a sample to the novelty class if all one-versus-all classifiers report a
probability of less than some threshold performed best.

Another notable set of publications based on a large real world data set deals with
the classification of static objects [144]–[146]. The authors of these publications
also work on CFAR-level data but accumulate the measurements in a grid-mapping
process. Clustering and classification algorithms are then applied to the created
multi-layer grid maps. Only measurements with an ego-motion compensated
Doppler velocity below 0.5 m/s are entered in the grid maps so that dynamic
objects are entirely excluded. Different classifiers like random forests and CNNs, as
well as ensembles of these algorithms are used to evaluate the performance of this
approach [144].

In [185], a lidar sensor is used to extract regions of interest. These regions are
then cut out of the range-Doppler map and passed through a neural network for
classification. That is, a lidar sensor is used as an object detector and semantic
information is added by the radar sensor. The data set used in their work contains
real work data but makes up less than about 5 % of the data used in this thesis.
Application of classification algorithms after a tracking stage to eliminate ghost
objects is analyzed in [217]. A binary classifier is trained which discerns between
real objects and false positive tracks. Handcrafted features like the lifetime of
the track are used to train a simple neural network with fully-connected layers.
Evaluation is done on 28 min of real world data recorded at one intersection.

A promising approach using both CFAR-level data and low-level information from
the 3D data cube is presented in [177]. For each of the measured targets, the
corresponding region of the 3D data cube is extracted and passed through a set of

6.2 comparison of different feature based approaches 111

convolution layers to generate feature vectors that describe the target’s surrounding.
Along with the measured position, Doppler velocity and RCS value of the target, the
created feature vector is passed through another neural network for classification.
After each measured target is ascribed with a class label, DBSCAN is used for
clustering during which the predicted class label is taken into account.

6.2 comparison of different feature based

approaches

In this section, two classification approaches are evaluated on the task of classifying
the manually extracted feature vectors. First, classification is performed with a
random forest and in order to incorporate time information, an LSTM is used as a
second classifier.

The way the features are extracted from the formed clusters is explained in the next
section. Thereafter, results from the two classifiers are presented and discussed. A
complete comparison is done in Section 6.6 after also the approaches with automatic
feature extraction have been evaluated.

6.2.1 Feature Extraction

As displayed in Fig. 6.1, the input to the random forest and the LSTM are manually
extracted feature vectors. These feature vectors can stem either from ground truth
clusters or from a re-clustering step with either DBSCAN− or DBSCAN+. Irrespective
of the origin of the clusters, the same set of features are calculated.

Since the LSTM requires as input a sequence of feature vectors rather than a single
feature vector, the methods to calculate the respective classifier’s input data are
slightly different. For the random forest, a sliding window of length T = 150 ms is
moved over a cluster and all targets measured from any sensor within this time
window are collected.

After one feature vector with temporal length T has been computed, the starting
point of the time window is moved to the next time stamp at which a sensor has
measured points of the cluster. Hence, the extracted feature vectors of a cluster
have a temporal overlap and are therefore strongly correlated. It should be noted
that even though a fixed window size of T = 150 ms is used, the difference between
the latest and the earliest time stamp of the selected targets will be non-constant

112 classification of clustered radar data

and will be always less than T because the sensors provide data only at discrete
points in time, fire asynchronously and at non-equidistant intervals, see Section 4.1.

Two different approaches are used to extract sequences of feature vectors for the
LSTM. The first method is simply that the feature vectors extracted for the random
forest are stacked on top of each other so that all feature vectors have the same
length T (with the limitations described previously) and are separated by the
varying number ∆t. The value ∆t is the time difference between data from the last
sensor scan in the current time window and the first sensor scan in the following
time window. If an object is only seen by one sensor, the values of ∆t are distributed
according to Fig. 4.2. The second method used here to create sequences of feature
vectors adds all previously seen data to the new feature vector so that the ith
feature vector in the sequence contains all data up to the ith unique time stamp.
That is, the first feature vector contains data only from the measurements made at
t0, the second feature vector contains data from t0 until t0 + ∆t1, the third one from
t0 until t0 + ∆t1 + ∆t2 and so on.

With both methods, sequences with a maximum length of eight feature vectors are
created. If the end of a cluster was reached before all eight feature vectors could be
computed, the remaining time steps are filled with zeros. Feature vectors are only
computed if more than three targets were measured within T, because otherwise
classification seems impracticable.

6.2.1.1 Basic Feature Set

Since the targets originate from different time stamps within the selected time
window and in general the ego-vehicle moves during this time, the data are
transformed in a first step to the same car coordinate system (cf. also Section
3.2). Then, from the radial distances r(cc)

i , the azimuth angles φ
(cc)
i , the ego-motion

compensated Doppler velocities v̂r,i and the RCS values σi, the average value, the
standard deviation and the spread (difference between maximum and minimum
value) are computed. This results in the first 12 features σmean, σstd, σspread, rmean,
rstd, rspread, φmean, φstd, φspread, v̂mean, v̂std and v̂spread. Additionally, the bare number
of targets ntargets within this time window as well as the fraction of “stationary”
targets fstat for which |v̂r| < 0.3 m/s are added as features. The threshold of
0.3 m/s is chosen not to be zero since imperfect ego-motion compensation and
noise enforces a non-zero threshold in order to obtain a reasonable feature. From
the spatial positions x(cc)

i and y(cc)
i of the targets, the covariance matrix is generated

and the two eigenvalues λ1 and λ2 are computed. The eigenvalues of this matrix
are a measure for the magnitude of the spread in the directions of the two principal
components. In this application, they describe the extension of the object along its

6.2 comparison of different feature based approaches 113

two major directions, which are expected to be the width and the length of the
cluster. Along with the number of sensors nsens which contributed targets to this
cluster, the two eigenvalues λ1 and λ2 complete the now 17-dimensional feature
vector.

σ m
ea

n
σ s

td
σ s

pr
ea

d
r m

ea
n

r s
td

r s
pr

ea
d

φ
m

ea
n

φ
st

d
φ

sp
re

ad
v̂ m

ea
n

v̂ s
td

v̂ s
pr

ea
d

f s
ta

t
λ

1
λ

2
n t

ar
ge

ts
n s

en
s

nsens
ntargets

λ2

λ1
fstat

v̂spread

v̂std
v̂mean

φspread

φstd
φmean

rspread

rstd
rmean

σspread

σstd
σmean

−1

0

1

a) Feature vectors are calculated on ground
truth clusters.

σ m
ea

n
σ s

td
σ s

pr
ea

d
r m

ea
n

r s
td

r s
pr

ea
d

φ
m

ea
n

φ
st

d
φ

sp
re

ad
v̂ m

ea
n

v̂ s
td

v̂ s
pr

ea
d

f s
ta

t
λ

1
λ

2
n t

ar
ge

ts
n s

en
s

nsens
ntargets

λ2

λ1
fstat

v̂spread

v̂std
v̂mean

φspread

φstd
φmean

rspread

rstd
rmean

σspread

σstd
σmean

−1

0

1

b) Feature vectors are calculated on re-
clustered data.

Figure 6.2: Correlations between the features of the basic feature set.

In Fig. 6.2, mutual correlations between the 17 features are shown for feature
vectors extracted from ground truth clusters and from re-clustered data. Positive
correlations are marked with red color and negative correlations are marked in
blue. The size of the small squares increases proportionally with the correlation.
Not surprisingly, the spread and std features show a strong positive correlation.
Another reasonable finding of this evaluation is that the closer objects get to the
sensor (smaller rmean), the larger their spread in angle φspread becomes because
nearby objects cover a greater angular range than more distant objects. The positive
correlation between ntargets and both φspread and rspread simply shows the fact that
clusters with a larger extent contain more targets. Interestingly, there is also a
high correlation between σmean and σspread, indicating that the larger the average
RCS value of a cluster gets, the larger the difference between the maximum and
minimum value becomes. One explanation for this behavior could be that targets
obtained via multipath reflections with the street have a smaller amplitude due
to fading effects. The larger the RCS value of an object is, the larger the difference
to these targets gets so that the spread increases. This explanation assumes that
a large portion of the annotated objects contains targets measured via multipath
effects.

114 classification of clustered radar data

6.2.1.2 Extended Feature Set

In addition to this basic set of features, also an extended feature set is computed
via the same process. The idea of this extended feature set is that not only the
statistical quantities “mean”, “standard deviation” and “spread” are useful for
the classification task but that the whole distribution of the values within the
cluster can be beneficial. Especially for the RCS value and the Doppler velocity this
seems reasonable since both of these properties can be highly affected by outliers
and sensor artifacts, e.g. Doppler ambiguities. Different options exist to encode a
histogram of the respective distributions into a feature vector. One option is that the
position and the number of bins is fixed to some reasonable scales so that the whole
spectrum of possible values is well covered and then only the relative number of
points within each bin is used as a feature. This method has the advantage of being
simple and that the individual feature vectors are directly comparable to each
other. The downside is that since each cluster will likely cover only a fraction of the
possible feature range, a cluster will fall almost exclusively into one bin. This could
be corrected by increasing the number of bins but then many bins would be simply
zero so that the classifiers would have to learn to deal with sparsely filled feature
vectors. A different method of encoding the histogram is fixing only the number
of bins to a constant value but choosing the position of the bins dynamically for
the current cluster. Since the bare counts of a bin are then no longer meaningful,
the position of the bin must also be encoded along with the bin count into the
single number describing the feature. Mapping the vector ~w ∈ R2 of these two
numbers injectively to a single scalar p ∈ R can be done as follows. Let bi denote
the position of the left edge of the bin i and let δi be a small variation in the sense
that δi/(bi+1 − bi) � 1. The meaning of the histograms should be barely altered
if each bin experiences such a small disturbance δi and the emerging classifier
should be robust enough to these changes. Hence, an approximation of the relative
bin counts and the position of the bin with a few digits precision should suffice
for the task at hand. If the bin counts ci are normalized so that ci ∈ [0, 1), then
the first two decimals are enough for the description of the bin’s content and the
ci can be rounded to two decimals. Furthermore, let b(0)i = bbic be the integer

part of bi and let b(j)
i =

⌊
(bi · 10j) mod 10

⌋
be the jth decimal of bi. Then a single

scalar fi = b(0)i + ci + b(1)i /103 + b(2)i /104 can be formed which encodes both the
bin position bi up to two digits precision and the relative bin count ci. The integer
part of fi is defined via the integer part of bi and the first two decimals of fi are
the value of ci. The following digits in fi are then the further decimals of bi. This
second approach of encoding the histogram proved to be more beneficial to the
classifiers so that only this method is used from here on. The extended feature set
then contains the 17 basic features and nbins = 8 additional features for each of the
two distributions of the RCS values and the Doppler velocities v̂r.

6.2 comparison of different feature based approaches 115

6.2.2 Random Forest

In this section, a random forest is used as a classifier and trained on the extracted
feature vectors. Relevant hyper-parameters are tuned and their effects are dis-
cussed. Decision surfaces, feature importances and the resulting performance of
the classifier are illustrated.

6.2.2.1 Decision Surfaces

To get a feeling how the random forest makes its decisions, it is illustrative to plot
2D decision surfaces of a reduced feature set. To this end, a random forest was
trained on only two features and evaluated on a wide range of values of these
two features. A class label can be obtained for each point of this 2D feature space
and the decision boundaries become apparent. In Fig. 6.3, this is illustrated for
the two feature pairs ntargets and rmean as well as for v̂mean and rspread. The colored
background areas indicate to which class a feature vector would be assigned to if
it lay in the respective region. Some sample points are drawn from the training
data set and displayed. If the color of a point coincides with the background color,
the correct class label would be assigned. Otherwise, the background color shows
which class would be erroneously predicted. For the first pair of features, the
maximum depth of each tree in the forest is altered and the resulting decision
surfaces are drawn. The first observation is that the decision surface between the
number of targets in a cluster and its average radial distance has great similarity
with Fig. 4.12 where the actual measurements are displayed in a comparable way.
This shows that the random forest learns from the data set that for all classes the
number of points in a cluster decreases with increasing distance and that e.g. the
number of points in a Passenger Car cluster is larger than the number of points
in clusters of class Pedestrian. With increasing depth of the trees, the decision
surface becomes more complex and the block structure in Fig. 6.3a transforms first
into a more continuous decision boundary before the decision surface begins to
look more noisy and possibly signs of overfitting can be observed.

The decision surface for the two features v̂mean and rspread displays the expected
boundaries between the classes. Objects with a large spread and high velocities
are likely members of the class Large Vehicle and with decreasing spread the
probability for the Passenger Car class increases. Clusters with small spread and
small velocity are likely to be either from the classes Pedestrian or Pedestrian

Group and if v̂mean increases the class Two-Wheeler is chosen. A Clutter cluster is
obtained e.g. for objects which have small Doppler velocities and at the same time
a large spread or in general if the spread becomes larger than about 20 m.

116 classification of clustered radar data

0 25 50 75 100
rmean (m)

0

25

50

75

100

125

150
n t

ar
ge

ts
Car
Ped.
Ped. Grp.

Two-Wh.
Large Veh.
Clutter

a) Max. depth 5.

0 25 50 75 100
rmean (m)

0

25

50

75

100

125

150

n t
ar

ge
ts

Car
Ped.
Ped. Grp.

Two-Wh.
Large Veh.
Clutter

b) Max. depth 10.

c) Max. depth 20.

0 10 20
rspread (m)

0

5

10

15

20

25

30
v̂ m

ea
n

(m
/s

)
Car
Ped.
Ped. Grp.

Two-Wh.
Large Veh.
Clutter

d) rspread vs. v̂r.

Figure 6.3: Decision surfaces for different features and classifiers. In parts a), b) and c) of
the figure, the features rmean and ntargets are considered with varying depths of
the trees and in part d) the features rspread and v̂mean are used with unrestricted
tree depths.

These plots show nicely that reasonable features were provided for the classifica-
tion task and that the random forest successfully learned the expected decision
boundaries. It should be noted, however, that only two features were used for
training and evaluation and that a random forest with all 17 or 33 features has a
far more complicated decision surface, which cannot be displayed directly.

6.2 comparison of different feature based approaches 117

6.2.2.2 Feature Importances

Random forests have the property that they can directly report which input features
were important for the classification task. As noted in Section 2.1.1.2, the standard
way to compute the feature importances via the mean decrease in impurity can
be biased and the more general method of permutation importance calculation is
recommended in the literature [27], [179], [249].

In Fig. 6.4, the importances of the ten highest ranked features of the basic feature
set are displayed for both calculation methods. Training is repeated ten times for
the creation of the diagrams and the average values of these ten runs are displayed
along with the standard deviation indicated by the error bars. The values of the
two importance measures cannot be compared between the two methods, but the
ranking of the features and the relative distances between them can be analyzed.
The permutation importance can be directly read as the decrease in the F1 macro
averaged score if a given feature is shuffled randomly.

0.00 0.05 0.10
Feature Importance

v̂mean

fstat

ntargets

σmean

rspread

nsens

σstd

v̂spread

φmean

λ1

a) Importance via mean decrease in impurity.

0.0 0.1 0.2 0.3
Feature Importance

v̂spread

rmean

rspread

φmean

λ2

fstat

ntargets

σmean

v̂mean

λ1

b) Permutation importance.

Figure 6.4: Feature importances of the random forest classifier, trained on the basic feature
set.

One striking difference between the two methods is that the mean decrease in
impurity calculation shows way larger fluctuations between the individual runs
than the permutation importance, which has almost no noticeable deviations from
the mean. Both methods rank λ1 as their most important feature, where in Fig. 6.4b
the distance from the first place to the second place is much larger than for the
impurity based estimation. The feature v̂mean is ranked quite differently by the two

118 classification of clustered radar data

methods: the first method ranks it at place ten whereas the permutation importance
puts it in second place with a mean decrease in the F1 score by about 0.2. It appears
reasonable that v̂mean is ranked quite high since the average Doppler velocity is
clearly a good feature to discern e.g. between fast moving cars and pedestrians.
Since the impurity based feature importance assessment is biased towards features
with large numerical values, it is not surprising that φmean (measured in degrees)
is ranked quite high. It is noteworthy that the permutation importance ranks
features from the three measurement dimensions space, velocity and RCS on the
first three places and that therefore all feature dimensions a radar can measure
are well represented and apparently useful for classification. The fact that mostly
spatial features dominate the top ten list hints that radar sensors with higher
spatial resolution and more measured targets per object can greatly increase the
classification result.

For the permutation importance method, data from the training set was used.
Comparison with data from the test set showed that no big differences between the
feature importances exist so that none of the top ten features can be identified as
causing overfitting. A feature would be suspected to cause overfitting if it has a
high importance during training but shows a low importance during testing. The
impurity based importance measure can only be evaluated on training data.

Overall, it can be summarized that the results obtained from the permutation
importance method are more reasonable and give better insight into the true
relevance of the input features.

6.2.2.3 Parameter Sweep

To assess which hyper-parameter set works best for the classification task, the
following settings are tuned: the maximum depth of the individual trees, the
number of features considered in each split, the number of trees in the forest and
balancing methods to increase the performance on minority classes. The basic
feature set is used for this evaluation but no significant changes are expected if the
extended set is used. Since only the classification task itself should be evaluated,
influences from the preceding clustering step are ignored and only features from
the ground truth clusters are used for training and evaluation. The scores presented
here were obtained after five-fold cross validation.

In Fig. 6.5a, the maximum depth of the decision trees are tuned and the resulting
F1 macro averaged scores are computed. A forest with 100 trees was used and a
maximum of m = 3 features per split were considered. The score continuously
increases with increasing maximum depth of the trees. Pruning of the trees does
therefore not help and overfitting does not occur, in accordance with [26]. However,

6.2 comparison of different feature based approaches 119

5 10 20 None
Max. Depth

0.74

0.76

0.78

0.80

0.82

0.84

0.86

F 1

a) Variation of the maximum depth of the
trees.

2 3 4 5 6 8 10 12 14 16
Max. Feat. per Split m

0.840

0.845

0.850

0.855

0.860

F 1

b) Variation of the max. number of features
considered in each split.

2 10 25 50 100
Ntrees

0.76

0.78

0.80

0.82

0.84

0.86

F 1

c) Variation of the number of trees.

None W1 W2 S1 S2

Balancing mode

0.840

0.845

0.850

0.855

0.860

F 1

d) Class balancing options.

Figure 6.5: Classifier performance as a function of different random forest parameter
settings.

the difference between pruning the trees at a depth of 20 and letting the trees grow
to their full extent shows no great difference in performance, although the fully-
grown trees have an average depth of 50 with in total twice as many leave nodes
as the pruned forest. On systems were memory resources are sparse, pruning the
trees can therefore be a valid method to find a good trade-off between performance
and memory footprint.

120 classification of clustered radar data

Varying the maximum number of features m that are considered per split is often
cited as the most influential parameter for tuning a random forest, see also Section
2.1.1.2. In Fig. 6.5b, this number m is varied and again the F1 score is reported.
Notice that the scales in Fig. 6.5a and Fig. 6.5b are different since the variations
are in this case much smaller. The 100 trees in the forest were allowed to grow to
their full extent. Often the square root of the total number of features is used as
a default setting, which in this case corresponds to m = 4. The figure shows that
for m = 3 the score is maximal, but since the difference to the case with m = 4 is
minuscule, the rule of thumb with setting m to the square root of the total number
of features is confirmed here. However, for this task the parameter has only very
little impact compared to the variation of the maximum depth of the trees.

Generally, the number of trees in a forest should be chosen as high as possible
since the more trees are used, the better the overfitting of individual trees can be
compensated for. Figure 6.5c supports this view and shows that the performance
saturates if about 100 trees are used. The trees were not pruned and m = 3 features
per split were considered. Adding more trees beyond this value just adds extra
computation time with no real improvement in the classification performance.

Finally, it is evaluated how different balancing methods influence the classifier’s
score. In total, four different balancing and weighting methods are compared with
the basic setting where no balancing is done and all feature vectors are weighted
equally. In general, two different categories exist to increase the performance of
a classifier on minority classes. Weighting methods influence the way the loss
function of a classifier is computed by increasing the loss if an example from
a minority class is misclassified. Balancing approaches change the number of
training samples presented during training by oversampling minority classes,
undersampling majority classes or by combining these two methods. The two
weighting methods used here differ on how the weights for the respective class are
calculated. In the first case W1, the weight of a class is given by the total number
of samples of this class in the training set divided by the number of all training
samples. In the second case W2, not the whole training data set is considered but
rather only the samples that were chosen for a given tree. For balancing the data set,
Synthetic Minority Over-sampling Technique (SMOTE) [35] is used as a first method
S1, and as a second balancing method, SMOTE oversampling is combined with
edited nearest neighbor [8] undersampling. The F1 scores for the different methods
are depicted in Fig. 6.5d. The results indicate that neither balancing nor weighting
increases the overall performance. Since the differences in the overall score are
rather small, it is worthwhile to look at how the scores of the minority classes
change with the different methods. For all four methods, the true positives of
each of the two minority classes Two-Wheeler and Large Vehicle increased, so
that the recall values are higher than for the unbalanced and un-weighted random

6.2 comparison of different feature based approaches 121

forest. This, however, happened at the cost of a slight decrease in true positives
of the Passenger Car class and at the cost of predicting far less true positives of
the Clutter class. The latter has a great impact on the precision of the classifiers
so that the increased recall values are compensated by the decrease in precision.
One therefore has to decide in the broader context of the application whether one
would rather classify more instances of a minority class correctly at the cost of
identifying fewer Clutter objects and thereby creating “ghost” objects or if the
opposite scenario is more desirable.

For the remainder of this chapter, random forests are always trained with 100 trees
which can grow to their full extent, a maximum of m = 3 features are considered
per split and no balancing or weighting takes place.

6.2.2.4 Performance Evaluation Based on Feature Vectors

To assess how well the random forest performs on the different feature sets and
clustering methods, scores and confusion matrices are now presented on a feature
vectors basis. This means that neither individual points nor complete clusters are
considered but only the extracted feature vectors are taken into account.

Car Ped. Ped.Group Two-Wh. L. Vehicle Clutter

Predicted label

Car

Pedestrian

Ped.Group

Two-
Wheeler

Large
Vehicle

Clutter

Tr
ue

la
be

l

94.4 %
(534 386)

0.2 %
(1170)

1.0 %
(5477)

0.4 %
(2392)

0.7 %
(3814)

3.3 %
(18 871)

0.6 %
(1293)

86.1 %
(176 252)

11.1 %
(22 674)

1.2 %
(2413)

0.0 %
(0)

1.0 %
(2147)

2.0 %
(5949)

10.2 %
(30 081)

84.2 %
(247 674)

0.9 %
(2526)

0.2 %
(599)

2.5 %
(7254)

6.8 %
(5851)

3.4 %
(2889)

8.2 %
(7054)

78.8 %
(67 956)

0.0 %
(1)

2.9 %
(2483)

19.9 %
(24 522)

0.0 %
(24)

0.4 %
(513)

0.0 %
(23)

74.0 %
(90 990)

5.6 %
(6918)

6.2 %
(23 220)

1.3 %
(4823)

1.8 %
(6651)

0.5 %
(1796)

1.3 %
(4838)

88.9 %
(331 400)

Car Ped. Ped.Group Two-Wh. L. Vehicle Clutter

Predicted label

94.3 %
(533 625)

0.2 %
(1106)

1.1 %
(6219)

0.4 %
(2499)

0.7 %
(3833)

3.3 %
(18 828)

0.6 %
(1133)

86.2 %
(176 510)

11.3 %
(23 059)

1.1 %
(2230)

0.0 %
(0)

0.9 %
(1847)

1.8 %
(5209)

10.3 %
(30 182)

84.8 %
(249 316)

0.7 %
(2086)

0.2 %
(513)

2.3 %
(6777)

7.2 %
(6224)

3.2 %
(2765)

9.0 %
(7727)

77.6 %
(66 899)

0.0 %
(1)

3.0 %
(2618)

20.1 %
(24 765)

0.0 %
(34)

0.4 %
(543)

0.0 %
(32)

73.4 %
(90 304)

5.9 %
(7312)

6.6 %
(24 641)

1.4 %
(5316)

2.0 %
(7528)

0.5 %
(1727)

1.4 %
(5149)

88.1 %
(328 367)

0

0.3

0.6

1

Figure 6.6: Confusion matrix based on feature vectors. Left: Basic feature set. Right: Ex-
tended feature set.

First, a random forest is trained and evaluated only on feature vectors obtained from
ground truth clusters while the two different feature sets are used. In Fig. 6.6, the
confusion matrices for both feature calculation methods are displayed. The macro
averaged F1 scores of the two methods are 0.858 for the basic feature set and 0.855
for the extended feature set, see also Table 6.1. The majority class Passenger Car

is classified best by the two approaches, followed by the Clutter class. Minority

122 classification of clustered radar data

classes like Two-Wheeler and Large Vehicle show a significantly lower perfor-
mance than the classes with more objects. The mixture between the two classes
Pedestrian and Pedestrian Group is not surprising: instances of these two classes
have similar spatial extent, about the same Doppler velocities and the average
RCS values does not differ too much. Additionally, uncertainties from the labeling
process itself come into play here. The class Pedestrian Group was designed as a
fallback for situations in which it is apparent from the camera image that multiple
Pedestrian are present but the radar targets cannot be assigned properly to indi-
vidual Pedestrian clusters. Some labelers feel more confident and create multiple
Pedestrian instances in situations where other labelers would have created one
large Pedestrian Group cluster. This causes some extra overlap between the classes
which also shows up here. Similar arguments can be used to explain the confu-
sion between Passenger Car and Large Vehicle feature vectors. As explained in
Section 4.3, the transition between these two classes is almost continuous and
labelers can easily come to different conclusions for the same object. Small trucks
are then difficult to discern from larger cars and the situation becomes even more
complicated if the objects are far away so that only few targets are available for
the classification task. The same holds true if a Large Vehicle is only seen from
behind since then the most discriminating feature – the spatial extent of the cluster
– becomes less useful. Occlusions caused by guard rails or other road users are
another source which can make a Large Vehicle appear shorter than it actually is.

The extended feature set caused a small increase in the true positives of the
Pedestrian and Pedestrian Group classes but at the same time, the true positives
of the other classes slightly decreased. Hence, no real performance boost can be
obtained from the additional features even though they show up as more important
than some features from the basic feature set when the permutation importance
measure is used. This finding is also interesting in so far that it allows the statement
that more features are not always helpful for the classification task, even though a
classifier built solely from these additional features performs better than random
guess.

Up to now, only the performance on feature vectors extracted from ground truth
clusters was discussed. Since a clustering step is necessary for the extraction of
feature vectors, the complete system performance is only obtained when the per-
formance is evaluated on the feature vectors extracted from the predicted clusters.
Therefore, a classifier was trained on feature vectors extracted from ground truth
clusters and evaluated on feature vectors extracted from DBSCAN− and DBSCAN+

clusters. The resulting confusion matrices are displayed in Fig. 6.7.

Performance on the DBSCAN+ clusters is slightly better than on the DBSCAN−

clusters (F1 scores of 0.486 and 0.438, respectively), especially on the Pedestrian

and Two-Wheeler classes, but a clear performance degradation is visible for all

6.2 comparison of different feature based approaches 123

Car Ped. Ped.Group Two-Wh. L. Vehicle Clutter

Predicted label

Car

Pedestrian

Ped.Group

Two-
Wheeler

Large
Vehicle

Clutter

Tr
ue

la
be

l

78.4 %
(406 995)

0.2 %
(1112)

1.3 %
(6956)

0.4 %
(2276)

9.1 %
(47 200)

10.5 %
(54 642)

8.0 %
(10 982)

41.8 %
(57 445)

46.5 %
(63 886)

0.9 %
(1250)

1.1 %
(1529)

1.7 %
(2359)

7.2 %
(19 114)

5.6 %
(14 948)

83.4 %
(222 283)

0.2 %
(520)

1.6 %
(4314)

2.0 %
(5423)

23.2 %
(18 822)

1.3 %
(1066)

15.5 %
(12 530)

54.7 %
(44 321)

1.5 %
(1194)

3.7 %
(3026)

22.1 %
(29 879)

0.1 %
(137)

1.2 %
(1574)

0.3 %
(364)

56.1 %
(75 977)

20.3 %
(27 525)

33.7 %
(509 802)

2.1 %
(31 582)

41.9 %
(634 004)

0.4 %
(6113)

9.0 %
(135 422)

12.9 %
(194 743)

Car Ped. Ped.Group Two-Wh. L. Vehicle Clutter

Predicted label

79.7 %
(439 646)

1.0 %
(5359)

1.8 %
(9996)

0.9 %
(4990)

4.2 %
(23 123)

12.4 %
(68 179)

2.1 %
(3491)

64.6 %
(108 016)

30.4 %
(50 776)

1.2 %
(2006)

0.3 %
(499)

1.4 %
(2369)

3.1 %
(9448)

12.0 %
(36 388)

81.4 %
(246 830)

0.5 %
(1488)

1.0 %
(2955)

2.0 %
(6186)

10.2 %
(8646)

3.5 %
(2963)

11.3 %
(9593)

71.3 %
(60 360)

0.4 %
(345)

3.3 %
(2778)

23.8 %
(37 630)

0.9 %
(1470)

1.9 %
(2923)

0.7 %
(1127)

47.3 %
(74 641)

25.4 %
(40 081)

16.8 %
(231 533)

19.7 %
(270 983)

40.5 %
(557 191)

2.1 %
(29 132)

2.7 %
(37 469)

18.1 %
(249 737)

0

0.3

0.6

1

Figure 6.7: Confusion matrix based on feature vectors. A classifier was trained on feature
vectors from ground truth clusters. Left: Evaluation on feature vectors from
DBSCAN− clusters. Right: Evaluation on feature vectors from DBSCAN+ clusters.

classes. The Clutter class experienced its largest drop from about 89 % to 18 %.
The reason for this is quite understandable: The labelers got a precise definition
of the cases when they should create a Clutter cluster. These rules, however, do
not necessarily correspond to the false-positive objects that a clustering algorithm
creates and which then should be classified as clutter. One approach could be to
change the labeling task so that already clustered data is provided. The labelers
task would then be to correct only those clusters that correspond to real objects
and only assign the Clutter label to the false-positive clusters. This approach has
the downsides that a) the labeling task depends on the parameters of the clustering
algorithm and any change in these would require a re-labeling of the already
annotated data and b) it turned out that correcting pre-clustered data is more
time-consuming than starting from scratch. A more feasible approach is to assign
the label Clutter automatically to all clusters that do not have any overlap with an
existing ground truth cluster. With this method, the statistics of the Clutter class
still depend on the clustering algorithm and its parameters, but since the labeling
of this class can be done automatically this comes at no cost.

The previous evaluation clearly shows that the clustering step has a great influence
on the classifier’s performance and that a classifier trained on feature vectors of
one clustering method (here: ground truth labeling) does not necessarily perform
well on feature vectors of another source. One approach to heal this is by re-
clustering the ground truth clusters so that a clustering algorithm takes ground
truth clusters as input and outputs (possibly multiple) new clusters which all
contain a subset of the ground truth cluster’s points. An ideal clustering algorithm
would create only one cluster, which is identical to the ground truth cluster. This

124 classification of clustered radar data

method has the advantage that only those targets are added to a cluster which
truly belong to the object. Any targets from the surrounding cannot enter any of
the clusters since only the ground truth cluster is used as input. The clusters are
hence “clean” in the sense that all targets in the cluster have the same ground truth
label. This approach was used in the previously published papers [232], [234]. The
second possibility is that the whole recorded sequences are re-clustered with the
respective clustering algorithm. This has the advantage that all the peculiarities
of the respective algorithm are covered and the extracted features take this into
account. The downside is that the targets in the created clusters do not necessarily
all have the same label since nearby objects might be merged into one cluster or
targets from the static environment might be added. Nevertheless, this second
method is chosen here since it turned out to yield far better results than the first
method. The ground truth label for a newly created cluster is chosen to be the
ground truth label of the individual targets which appear most often in the cluster.
That is, a simple majority vote is used to assign labels to the created clusters.

Car Ped. Ped.Group Two-Wh. L. Vehicle Clutter

Predicted label

Car

Pedestrian

Ped.Group

Two-
Wheeler

Large
Vehicle

Clutter

Tr
ue

la
be

l

88.6 %
(459 797)

0.2 %
(894)

0.8 %
(4290)

0.4 %
(1853)

2.1 %
(10 727)

8.0 %
(41 620)

1.1 %
(1546)

51.2 %
(70 400)

26.3 %
(36 187)

1.1 %
(1514)

0.0 %
(5)

20.2 %
(27 799)

1.5 %
(3918)

7.3 %
(19 589)

77.9 %
(207 756)

0.4 %
(1082)

0.1 %
(161)

12.8 %
(34 096)

8.8 %
(7084)

1.9 %
(1527)

9.0 %
(7296)

67.8 %
(54 850)

0.0 %
(30)

12.6 %
(10 172)

27.1 %
(36 754)

0.1 %
(117)

0.5 %
(731)

0.3 %
(374)

59.2 %
(80 168)

12.8 %
(17 312)

2.3 %
(34 237)

0.6 %
(9699)

1.2 %
(18 776)

0.1 %
(1991)

0.6 %
(9277)

95.1 %
(1 437 686)

Car Ped. Ped.Group Two-Wh. L. Vehicle Clutter

Predicted label

85.8 %
(473 266)

0.2 %
(1164)

0.8 %
(4317)

0.4 %
(2127)

2.2 %
(12 260)

10.5 %
(58 159)

0.8 %
(1364)

59.3 %
(99 088)

20.2 %
(33 822)

0.9 %
(1439)

0.0 %
(14)

18.8 %
(31 430)

1.2 %
(3560)

9.4 %
(28 409)

72.1 %
(218 783)

0.5 %
(1559)

0.1 %
(323)

16.7 %
(50 661)

6.9 %
(5848)

2.1 %
(1815)

7.4 %
(6278)

70.3 %
(59 559)

0.2 %
(149)

13.0 %
(11 036)

25.4 %
(40 075)

0.1 %
(220)

0.6 %
(891)

0.3 %
(552)

55.8 %
(88 103)

17.8 %
(28 031)

3.0 %
(41 935)

1.3 %
(17 836)

1.8 %
(24 909)

0.2 %
(2482)

0.8 %
(11 675)

92.8 %
(1 277 208)

0

0.3

0.6

1

Figure 6.8: Confusion matrix based on feature vectors. Left: Training and evaluation on
feature vectors from DBSCAN− clusters. Right: Training and evaluation on feature
vectors from DBSCAN+ clusters.

The training and evaluation pipeline then consists of the following steps:

1. Re-clustering with DBSCAN− or DBSCAN+.
2. Propagation of ground truth labels to the newly created clusters.
3. Extraction of features from both the ground truth clusters and the newly

created clusters.
4. Training of a random forest with the two sets of feature vectors.
5. Evaluation of the trained classifier on the feature vectors of the re-clustered

data.

6.2 comparison of different feature based approaches 125

Feature Set Clustering Eval. Basis F1 Prec. Rec. Conf. Matrix

Basic ground truth (gt) feat. vec. 0.858 0.876 0.844 Fig. 6.6 left

Extended ground truth (gt) feat. vec. 0.855 0.875 0.840 Fig. 6.6 right

Basic train: gt
eval: DBSCAN− feat. vec. 0.438 0.493 0.546 Fig. 6.7 left

Basic train: gt
eval: DBSCAN+ feat. vec. 0.486 0.493 0.604 Fig. 6.7 right

Basic train: gt & DBSCAN−
eval: DBSCAN− feat. vec. 0.767 0.816 0.733 Fig. 6.8 left

Basic train: gt & DBSCAN+

eval: DBSCAN+ feat. vec. 0.758 0.800 0.727 Fig. 6.8 right

Basic train: gt & DBSCAN−
eval: DBSCAN− targets 0.719 0.753 0.708 Fig. 6.9 left

Basic train: gt & DBSCAN+

eval: DBSCAN+ targets 0.761 0.785 0.746 Fig. 6.9 right

Table 6.1: Scores obtained with a random forest as classifier for different configurations.

It should be noted that the evaluation is solely done on feature vectors extracted
from the re-clustered data since this is the data the classifier would get in a true
application. Cross validation of the training with DBSCAN+ re-clustering results in
an F1 score of 0.758 and the training with DBSCAN− yields a score of 0.767. The
confusion matrices are shown in Fig. 6.8 and can be directly compared to the ones
displayed in Fig. 6.7, where only ground truth data was used for training. A drastic
increase in the overall performance can be observed even though the performance
on ground truth clusters is unmatched, cf Fig. 6.6. It is noteworthy that the confusion
between instances of the Large Vehicle class with Passenger Car samples is still
quite high. This is most likely due to imperfect clustering which causes that
larger objects are not clustered together but rather many small clusters are created
which then resemble Passenger Car objects. For driver assistance systems, the
confusion between Pedestrian and Pedestrian Group is possibly not too relevant.
Nevertheless, for tracking applications it might be valuable information that an
object is a group of pedestrian and not a single pedestrian so that possibly multiple
pedestrian objects could emerge from the Pedestrian Group at a later point in time.
Another interesting fact is that the F1 score for the DBSCAN+ training is lower than
for the DBSCAN− training. This could indicate that the improved clustering does
not help in the classification task. However, in the per-target evaluation in the next
section, different results are found.

In Table 6.1, the results of all approaches are summarized again.

126 classification of clustered radar data

6.2.2.5 Per-Target Evaluation

To compare the random forest performance to methods presented later in this
thesis, it is necessary to introduce a common evaluation scheme. Since a feature
vector based evaluation is not feasible for the other methods, a per-target evaluation
is used. To this end, the predicted label of each feature vector is propagated to
the targets that were used for the creation of the feature vector. Since overlapping
time windows are used during feature extraction, each target appears in multiple
feature vectors and therefore a target might get different labels. This is resolved
by using only the label which is predicted the first time a target contributes to a
feature vector since this case is probably the one relevant in a driver assistance
system where new information should be directly processed.

In Fig. 6.9, the two confusion matrices displayed in Fig. 6.8 are repeated on a
per-point scale and F1 scores are re-computed from them. The per-point scores
with 0.719 and 0.761 (see also Table 6.1) differ far more from each other than the
scores computed on the feature vector basis. It should be noted that the situation
is reversed from the evaluation on the last section where the DBSCAN− approach
performed better. This indicates that with DBSCAN+ on average less feature vectors
are classified correctly but at the same time more individual targets are ascribed to
the correct class. This is not a contradiction but rather shows that feature vectors
built from many targets are classified better than the ones created from only a few
targets and that apparently more of these “large” feature vectors are present in the
DBSCAN+ case. Feature vectors created from clusters with a small amount of targets
have a lower impact on the here presented per-target score.

Just as in the previous evaluation, the weak performance on the Pedestrian class
becomes apparent with about 26 % and 18 % “overlooked” targets, i.e., targets
which were classified either as clutter or not even added to a cluster and hence
could not be classified.

6.2.3 Long Short-Term Memory Network

Using an LSTM as a classifier instead of a random forest allows to consider temporal
correlations by using sequences of feature vectors as input instead of just one single
feature vector. Details on how LSTMs work can be found in Section 2.1.2.2 and in
the references mentioned in there.

The performance of different LSTM networks is analyzed in this section. Common
to all experiments is that the LSTM layers are followed by one fully connected layer,
which maps the output of the last LSTM to the six (unscaled) class probabilities.

6.2 comparison of different feature based approaches 127

Car Ped. Ped.Group Two-Wh. L. Vehicle Static

Predicted label

Car

Pedestrian

Ped.Group

Two-
Wheeler

Large
Vehicle

Static

Tr
ue

la
be

l

79.8 %
(1 534 555)

0.1 %
(1072)

0.8 %
(14 934)

0.2 %
(3778)

4.6 %
(87 522)

14.6 %
(280 524)

1.8 %
(7781)

32.8 %
(139 002)

38.6 %
(163 494)

1.1 %
(4727)

0.1 %
(367)

25.6 %
(108 676)

1.6 %
(15 361)

3.4 %
(31 713)

75.5 %
(705 803)

0.4 %
(4185)

0.2 %
(1494)

18.9 %
(176 438)

8.4 %
(19 822)

1.1 %
(2669)

10.0 %
(23 643)

67.2 %
(159 338)

0.2 %
(520)

13.2 %
(31 266)

14.3 %
(130 927)

0.0 %
(205)

0.2 %
(2142)

0.1 %
(710)

69.9 %
(638 151)

15.4 %
(140 912)

0.3 %
(367 766)

0.0 %
(43 592)

0.2 %
(208 324)

0.0 %
(18 234)

0.2 %
(208 424)

99.4 %
(129 361 677)

Car Ped. Ped.Group Two-Wh. L. Vehicle Static

Predicted label

81.2 %
(1 561 624)

0.1 %
(2086)

0.8 %
(14 836)

0.2 %
(4563)

4.2 %
(81 574)

13.4 %
(257 702)

1.4 %
(6088)

46.2 %
(195 869)

33.2 %
(140 894)

1.1 %
(4478)

0.1 %
(464)

18.0 %
(76 254)

1.4 %
(13 063)

5.2 %
(48 451)

77.0 %
(720 129)

0.6 %
(5338)

0.2 %
(1893)

15.6 %
(146 120)

5.9 %
(13 984)

1.4 %
(3332)

8.2 %
(19 430)

73.3 %
(173 934)

0.2 %
(488)

11.0 %
(26 090)

14.3 %
(130 587)

0.0 %
(368)

0.3 %
(2686)

0.1 %
(1091)

70.0 %
(639 563)

15.2 %
(138 752)

0.2 %
(279 316)

0.0 %
(43 799)

0.1 %
(143 773)

0.0 %
(10 588)

0.1 %
(182 079)

99.5 %
(129 548 462)

0

0.3

0.6

1

Figure 6.9: Random forest confusion matrix based on individual targets after label prop-
agation from the respective feature vectors. Left: Training and evaluation on
feature vectors from DBSCAN− clusters. Right: Training and evaluation on feature
vectors from DBSCAN+ clusters.

As input data, sequences of eight feature vectors are used, which are generated
according to the two schemes described in 6.2.1. It is evaluated which of the two
schemes is more beneficial for the classifier and how normalization of the feature
vectors influences the performance.

6.2.3.1 Parameter Sweep

Prior to training of the network, choices have to be made about the hyper-para-
meters of the classifier. This includes the number of LSTM layers, the number of
neurons in each of the layers, the ratio of both dropout and recurrent dropout
and whether or not normalization of input data should be used. Dropout is a
regularization method that helps to prevent overfitting by randomly dropping
connections between neurons during training [246]. With normal dropout dn, the
ratio of dropped neurons in the input layer of the LSTM is described and the
recurrent dropout dr describes the ratio of dropped units of the recurrent kernel.

In Fig. 6.10, variations of different parameters and their effect on the F1 score are
displayed. Similar to the discussion of the random forest parameters, evaluation
is done on feature vectors extracted from ground truth clusters and the scores
are obtained after five-fold cross validation. In all three sub-figures, the blue lines
stand for the evaluation with constant size feature vectors and red lines show the
performance if feature vectors with increasing size are used.

128 classification of clustered radar data

5 20 80 20, 20 80, 80
LSTM Layer Sizes

0.86

0.87

0.88

0.89

F 1

a) Variation of the number and size of the
LSTM layers .

dn = 0 dn = 0.1 dr = 0.1 dr = 0.2

(Recurrent) Dropout

0.84

0.85

0.86

0.87

0.88

0.89

0.90

F 1
b) Effect of applying normal dropout dn and

recurrent dropout dr during training.

2 3 4 5 6 7 8
Number of Timesteps

0.84

0.86

0.88

0.90

F 1

c) Variation of the number of time steps used in the feature vector sequences. The LSTM

was both trained and evaluated on sequences of the respective length.

Figure 6.10: Classifier performance as a function of different parameter settings. The red
curves symbolize the score if the increasing time windows are used and the
blue curve marks the case where features from constant time windows are
calculated, see also Section 6.2.1.

Variation of the LSTM layer sizes is shown in Fig. 6.10a. A sequence consisting of
eight feature vectors, dn = 0 and dr = 0.1 was used in this experiment. The numbers
on the horizontal axis stand for the size H of the internal matrices of the LSTM, see
also Eq. (2.22)ff. Comma separated numbers indicate that multiple stacked LSTM

layers with the given sizes are used. Interestingly, there is no simple relationship
between the number of trainable variables in the network and the performance
since at first the scores increase with increasing number of neurons and decrease

6.2 comparison of different feature based approaches 129

later if the matrix sizes are further enlarged. Unsurprisingly, the network shows the
lowest scores among all tested configurations if only five neurons are used. But for
the case of fixed size feature vectors in the input sequence (blue curve), a similar
performance is reported for a two-layer LSTM in which both layers have 80 neurons.
The “sweet spot” seems to lie around 20 neurons in a single-layer LSTM since the
highest scores are reported here for both feature extraction methods. Overfitting
could be a possible explanation for this finding even though neither dropout nor
recurrent dropout changed the general behavior. This suggests that a single layer
LSTM with only 20 neurons should be used.

In Fig. 6.10b, the impact on the F1 score of using dropout and recurrent dropout
during training is displayed. Using dropout dn = 0.1 on the input connections
decreases the performance considerably. In contrast, slight recurrent dropout of
dr = 0.1 results in a small performance increase compared to the case in which
neither dropout nor recurrent dropout were used (first ? in the figure). However,
increasing dr further is not beneficial so that dr = 0.1 is selected for all following
experiments.

Finally, the impact of the sequence length is displayed in Fig. 6.10c. A single layer
LSTM with 20 neurons and dr = 0.1 was trained and evaluated on sequences of
varying length and the F1 scores of the test sets were collected. If only two time
steps are used, the method using constant size feature vectors shows a higher
performance. This relation switches if more than four time steps make up the input
sequence. As explained in Section 6.2.1, the constant size feature vectors all have a
length of T = 150 ms and are separated by the varying time range ∆t. If sequences
of length two are extracted with the second method, then only data from two
different radar scans is used which in this data set is typically less information
than in the 300 ms + ∆t time window used in the first method. It is hence not
surprising that for short sequences (in the sense of number of feature vectors in
the sequence) the first feature extraction method is superior. For longer sequences,
however, accumulating data shows higher performance even though the total time
(in seconds) of the data presented to the network is smaller than if fixed size feature
vectors were used. This indicates that it is easier for the LSTM to make use of the
time information if all available data is presented instead of showing only the new
feature vectors. Nevertheless, the score saturates at about eight time steps so that
this number will be used in the following experiments.

It is often quoted that normalizing (and scaling) input data for a neural network
is an important pre-processing step [13], which a) stops gradients from becoming
too large for some of the feature dimensions and thereby “shadowing” the other
dimensions and b) avoids the tails of the sigmoid activation function at which
the gradients are all close to zero. In the results shown before, all input features
were normalized by subtracting the mean and dividing by the standard deviation

130 classification of clustered radar data

of the respective feature dimension. The means and standard deviations of the
training step were saved and test data was normalized with the same values. The
best performing LSTM architecture achieves an F1 score of 0.896, whereas the same
architecture without normalization scores a bit lower with 0.890. Normalization
therefore seems to have some positive impact even though the changes are rather
small in this case. This is possibly due to the fact that all features vary on the same
scale and that there is no feature that is many orders of magnitudes different from
the others.

6.2.3.2 Performance Evaluation

Now that the optimal LSTM configuration was found (namely a single layer with
20 neurons, dr = 0.1, eight time steps using feature extraction method two with
normalization), confusion matrices and further scores of the best performing
architecture can be discussed.

Car Ped. Ped.Group Two-Wh. L. Vehicle Clutter

Predicted label

Car

Pedestrian

Ped.Group

Two-
Wheeler

Large
Vehicle

Clutter

Tr
ue

la
be

l

95.5 %
(388 115)

0.1 %
(209)

1.1 %
(4332)

0.4 %
(1559)

1.3 %
(5173)

1.7 %
(6970)

0.3 %
(364)

89.1 %
(98 758)

8.5 %
(9442)

1.4 %
(1510)

0.0 %
(2)

0.7 %
(748)

1.5 %
(3315)

6.1 %
(13 550)

89.9 %
(198 252)

1.2 %
(2612)

0.1 %
(306)

1.1 %
(2381)

2.8 %
(1739)

1.7 %
(1045)

7.2 %
(4457)

87.3 %
(54 341)

0.0 %
(8)

1.0 %
(630)

14.7 %
(16 318)

0.0 %
(1)

0.7 %
(794)

0.0 %
(7)

80.5 %
(89 407)

4.1 %
(4516)

4.2 %
(8686)

0.4 %
(907)

1.3 %
(2730)

0.3 %
(703)

2.1 %
(4406)

91.6 %
(189 882)

Car Ped. Ped.Group Two-Wh. L. Vehicle Clutter

Predicted label

95.4 %
(387 670)

0.1 %
(210)

1.0 %
(4167)

0.4 %
(1531)

1.3 %
(5460)

1.8 %
(7320)

0.3 %
(331)

86.7 %
(96 107)

10.3 %
(11 396)

1.8 %
(1977)

0.0 %
(2)

0.9 %
(1011)

1.6 %
(3525)

5.2 %
(11 379)

90.7 %
(199 992)

1.0 %
(2290)

0.2 %
(405)

1.3 %
(2825)

2.9 %
(1808)

1.3 %
(824)

7.4 %
(4587)

87.2 %
(54 228)

0.0 %
(13)

1.2 %
(760)

14.6 %
(16 216)

0.0 %
(10)

0.5 %
(542)

0.0 %
(22)

80.5 %
(89 394)

4.4 %
(4859)

4.3 %
(9010)

0.4 %
(901)

1.3 %
(2649)

0.3 %
(605)

2.3 %
(4823)

91.3 %
(189 326)

0

0.3

0.6

1

Figure 6.11: Confusion matrices of the LSTM classifier. Training and evaluation is done on
features from ground truth clusters. Left: Basic feature set. Right: Extended
feature set.

To give an upper limit for the classifier’s performance, Fig. 6.11 shows the confusion
matrices for LSTMs trained on feature vectors of ground truth clusters with the basic
(left) and the extended (right) feature set. The F1 scores of the two approaches are
with 0.896 and 0.893 very similar, with slightly higher performance if the basic
feature set is used. This result is in accordance with the findings made for the
random forest. Similar to the random forest results, also the LSTM struggles most
with the distinction between Passenger Car and Large Vehicle objects – probably
for the same reasons as discussed before in Section 6.2.2.4. A detailed comparison
between the approaches will be done in Section 6.6.

6.2 comparison of different feature based approaches 131

To assess the performance in a real system, i.e. in the case where no ground truth
clusters are present but rather DBSCAN is used for the cluster creation, classifiers are
trained and evaluated on feature vectors of DBSCAN− and DBSCAN+. For training,
also feature vectors from ground truth clusters are added for augmentation. The
resulting confusion matrices are displayed in Fig. 6.12, where for features from
DBSCAN− a score of 0.782 is obtained and for DBSCAN+ the F1 score is given by
0.793. In contrast to the random forest, a clear improvement can be seen on a feature
vector level if DBSCAN+ clusters are used. This allows the interesting conclusion that
different classifiers work differently well with clustering methods and therefore
optimizing clustering in one direction (here: towards on average larger clusters
with a little more false positive targets, see Section 5.2.3) does not necessarily help
all classifiers which work on these clusters.

Car Ped. Ped.Group Two-Wh. L. Vehicle Clutter

Predicted label

Car

Pedestrian

Ped.Group

Two-
Wheeler

Large
Vehicle

Clutter

Tr
ue

la
be

l

89.9 %
(333 147)

0.1 %
(345)

0.8 %
(3142)

0.4 %
(1592)

3.0 %
(10 950)

5.7 %
(21 267)

1.1 %
(963)

50.3 %
(43 511)

32.5 %
(28 113)

2.1 %
(1826)

0.0 %
(19)

14.0 %
(12 087)

1.4 %
(2999)

5.5 %
(11 470)

84.8 %
(175 973)

0.9 %
(1770)

0.1 %
(128)

7.3 %
(15 246)

7.3 %
(4497)

2.1 %
(1298)

9.2 %
(5674)

74.4 %
(45 737)

0.1 %
(38)

6.9 %
(4247)

22.3 %
(25 548)

0.1 %
(92)

0.6 %
(661)

0.3 %
(292)

67.3 %
(77 044)

9.5 %
(10 896)

3.6 %
(18 759)

1.0 %
(5050)

2.9 %
(15 280)

0.3 %
(1501)

1.9 %
(9638)

90.3 %
(468 584)

Car Ped. Ped.Group Two-Wh. L. Vehicle Clutter

Predicted label

89.3 %
(317 316)

0.1 %
(354)

0.8 %
(2990)

0.5 %
(1676)

3.3 %
(11 635)

6.0 %
(21 473)

1.0 %
(866)

60.3 %
(54 171)

26.0 %
(23 343)

1.8 %
(1582)

0.0 %
(15)

11.0 %
(9873)

1.1 %
(2320)

6.1 %
(12 978)

82.8 %
(176 948)

1.2 %
(2489)

0.1 %
(212)

8.8 %
(18 851)

4.8 %
(2870)

1.8 %
(1056)

6.3 %
(3752)

81.0 %
(48 083)

0.2 %
(126)

5.9 %
(3483)

20.5 %
(24 158)

0.1 %
(107)

0.6 %
(684)

0.3 %
(352)

66.2 %
(78 013)

12.4 %
(14 572)

4.2 %
(22 642)

1.3 %
(7064)

3.8 %
(20 333)

0.4 %
(1932)

1.9 %
(10 324)

88.5 %
(479 818)

0

0.3

0.6

1

Figure 6.12: Confusion matrices of the LSTM classifier. The basic feature set is used and
evaluation is done per feature vector. Left: Training with features from ground
truth and DBSCAN− clusters. Right: Training with features from ground truth
and DBSCAN+ clusters.

The same relation between the scores of the two clustering approaches can be seen
in a per-target evaluation: in this case the scores are given by 0.721 and 0.766 for
DBSCAN− and DBSCAN+, respectively. The confusion matrices are shown in Fig. 6.13

and can be directly compared to the ones of the random forest shown in Fig. 6.9
since the two classifiers are evaluated on the same basis. The trends already visible
in the evaluation on feature vector basis are also present in these matrices: the LSTM

shows higher performance on all classes except for the Large Vehicle category if
DBSCAN+ is used as a clustering algorithm instead of DBSCAN−.

Another positive aspect is the reduction of false positives, i.e. the reduction of
targets that are truly Static but classified as something different. The confusion
matrices shown in Fig. 6.12 could lead to the opposite conclusion since the DBSCAN+

132 classification of clustered radar data

Car Ped. Ped.Group Two-Wh. L. Vehicle Static

Predicted label

Car

Pedestrian

Ped.Group

Two-
Wheeler

Large
Vehicle

Static

Tr
ue

la
be

l

79.7 %
(1 531 369)

0.1 %
(1093)

0.9 %
(17 348)

0.3 %
(6439)

4.6 %
(88 117)

14.5 %
(278 019)

1.5 %
(6569)

35.9 %
(152 410)

38.7 %
(163 949)

1.7 %
(7001)

0.1 %
(303)

22.1 %
(93 815)

1.5 %
(13 733)

3.7 %
(34 433)

77.7 %
(726 932)

0.8 %
(7116)

0.1 %
(1229)

16.2 %
(151 551)

8.0 %
(18 937)

1.7 %
(3990)

9.1 %
(21 492)

70.9 %
(168 317)

0.2 %
(516)

10.1 %
(24 006)

13.9 %
(126 588)

0.0 %
(222)

0.3 %
(2310)

0.1 %
(1216)

70.3 %
(641 452)

15.5 %
(141 259)

0.3 %
(380 302)

0.0 %
(64 927)

0.2 %
(230 489)

0.0 %
(26 142)

0.2 %
(230 630)

99.3 %
(129 275 527)

Car Ped. Ped.Group Two-Wh. L. Vehicle Static

Predicted label

79.9 %
(1 535 628)

0.1 %
(1750)

0.8 %
(15 621)

0.4 %
(7885)

4.4 %
(84 360)

14.4 %
(277 141)

1.5 %
(6179)

49.7 %
(210 542)

33.1 %
(140 456)

1.7 %
(7081)

0.1 %
(285)

14.0 %
(59 504)

1.0 %
(9703)

4.9 %
(45 436)

80.2 %
(749 664)

1.1 %
(9904)

0.1 %
(1359)

12.7 %
(118 928)

5.1 %
(12 196)

1.7 %
(3992)

6.1 %
(14 563)

78.5 %
(186 189)

0.2 %
(477)

8.4 %
(19 841)

13.6 %
(124 523)

0.0 %
(338)

0.3 %
(2764)

0.2 %
(1555)

70.2 %
(640 947)

15.7 %
(142 920)

0.2 %
(295 558)

0.0 %
(46 999)

0.1 %
(171 068)

0.0 %
(17 401)

0.1 %
(186 335)

99.4 %
(129 490 656)

0

0.3

0.6

1

Figure 6.13: Confusion matrices of the LSTM classifier. The basic feature set is used and
evaluation is done per target. Left: Training with features from ground truth
and DBSCAN− clusters. Right: Training with features from ground truth and
DBSCAN+ clusters.

approach has with 88.5 % true positives for the Clutter class on a relative scale
less correct predictions than the LSTM trained on DBSCAN− clusters (90.3 %). Since
the occurrence of Clutter highly depends on the clustering algorithm itself and
hence a different number of feature vectors with different statistics are extracted,
a comparison on feature level basis is not directly possible and the per-target
evaluation has to be used for this kind of comparison. For example, a very sensitive
clustering algorithm creates many clusters in areas where no true dynamic objects
exist (e.g. due to noise) so that a classifier has to reject these clusters as Clutter in
order to obtain a high score. A less sensitive clustering algorithm creates fewer of
these Clutter clusters so that for many targets it is implicitly clear that they belong
to the Static class as they are not a member of any of the proposed clusters.

Finally, in Table 6.2 the scores mentioned in this section are summarized again.

6.3 automatic feature extraction

The methods presented in the last sections rely on a manual feature extraction step.
These features are handcrafted with the hope in mind that they allow to discern the
individual classes from each other. However, the most recent history of machine
learning indicated that methods which do not only classify the input data but
also calculate the needed features on their own often outperform methods which
are based on manually created features. As there is no strong argument why this

6.3 automatic feature extraction 133

Feature Set Clustering Eval. Basis F1 Prec. Rec. Conf. Matrix

Basic ground truth (gt) feat. vec. 0.895 0.902 0.890 Fig. 6.11 left

Extended ground truth (gt) feat. vec. 0.893 0.901 0.886 Fig. 6.11 right

Basic train: gt & DBSCAN−
eval: DBSCAN− feat. vec. 0.782 0.812 0.761 Fig. 6.12 left

Basic train: gt & DBSCAN+

eval: DBSCAN+ feat. vec. 0.793 0.810 0.780 Fig. 6.12 right

Basic train: gt & DBSCAN−
eval: DBSCAN− targets 0.721 0.733 0.723 Fig. 6.13 left

Basic train: gt & DBSCAN+

eval: DBSCAN+ targets 0.766 0.774 0.763 Fig. 6.13 right

Table 6.2: Scores obtained with LSTM classifiers for different configurations.

should be different for classification tasks using radar data, it is worthwhile to
investigate how these methods perform in comparison to the approaches discussed
before.

6.3.1 Classification with PointNet++

With the neural networks called PointNet [199] and PointNet++ [198], Qi et al.
introduced novel architectures, which directly operate on bare point clouds, see
also Section 2.1.2.1. From the different architectures and variants introduced in
their work, in this section the classification network from PointNet++ is used, which
incorporates a configurable number of Multi-Scale Grouping (MSG) blocks followed
by pooling layers and finally fully connected layers for the mapping of the created
high dimensional feature vectors onto the class probabilities. The details of why
the network is designed that way and how the MSG modules work can be found in
[198].

6.3.1.1 Input Data

In contrast to the random forest and LSTM approaches discussed before, now the
bare clusters are used as input to the network. This means that the individual
targets which form a cluster are used as input, where each target is defined by its
position in car coordinates x(cc) and y(cc), the ego-motion compensated Doppler
velocity v̂r , the RCS value σ and the measurement time t at which the target was
recorded.

134 classification of clustered radar data

To keep the approach as similar as possible to the previous ones, time slices of
length T = 150 ms are extracted from the clusters. All targets within this time
window are transformed to the car coordinate system of the earliest present time
stamp so that all targets lie in the same reference system. The time dimension is
normalized so that t0 = 0 indicates the earliest measurement time and all other
times are given in seconds after t0.

With 200 allowed input targets, the network’s input layer is designed large enough
so that all targets measured typically during 150 ms on one object can be processed.
In the rare case in which there are more targets within a cluster, a random subset
of targets is chosen and used as input. Usually, less than 200 targets are measured
so that in order to guarantee a fixed size input tensor, one target is repeated the
required number of times. As the network is invariant with respect to repetitions
of targets, this does not alter the result.

To increase the number of training samples and to help the network to generalize
better to unseen data, the following three augmentation steps are done during
training. With a probability of 80 %, the targets are shifted randomly in space, time,
velocity and RCS. The distances of the shifts are chosen from a normal distribution
centered at zero and are clipped to 0.2 m for the spatial shift, 0.5 m/s for the
velocities and 0.5 dBsm for the RCS. Independent of this first augmentation step,
the cluster is mirrored with a probability of 30 % on the origin of the car coordinate
system so that an object which was initially recorded at the front left of the ego-
vehicle is then mirrored to the rear right side. Thirdly, random dropout was applied
to the targets so that a target was removed from the cluster with a 30 % chance. The
effectiveness of these augmentation steps is evaluated later on.

6.3.1.2 Network Structure and Training

The structure of the classification network is shown in Fig. 6.14. Two MSG modules
are followed by a set abstraction module whose output is then fed into three
consecutive fully connected layers. The definition of the MSG modules in [198]
assumes that the input data consists only of 3D points with x, y, and z coordinates.
In this case, however, the targets have two spatial dimensions and a variable
number c of further feature dimensions. Most often, c = 3 for the three extra
dimensions Doppler velocity, RCS value and measurement time. The MSG modules
were modified so that this new input data can be processed, which means that the
neighborhood searches are done in two dimensions but all feature dimensions are
taken into account during the convolution operations.

The first MSG module uses 64 of the 200 input targets as core points (abbreviated
in Fig. 6.14 as “MSG @ 64”). As described in [198], the core points are selected via

6.3 automatic feature extraction 135

MSG @ 64
r (m) Nneigh. conv.
0.5 8
 1 16
 2 16

MSG @ 32
r (m) Nneigh. conv.
 1 4
 3 8

Set Abstraction

conv = [64, 64, 128]
group all

FC

Dropout, p=0.3
N=512, ReLU

FC
N=6, Softmax

FC

Dropout, p=0.3
N=128, ReLU

Figure 6.14: Network structure of the classification network. See text for details about the
used abbreviations.

farthest-point-sampling. Neighborhoods with radii 0.5 m, 1 m and 2 m are created
and targets within this area are grouped together so that each of the 64 core points
has for each of the three neighborhoods either 8 or 16 neighbors. The core point
– neighborhood tensors are then passed three times through a convolution layer
with 64 kernels for feature extraction (see also Section 2.1.2.1, especially Fig. 2.4
for details). The generated feature vectors for each of the three neighborhoods are
concatenated and used as input for the next MSG module along with the chosen 64

core points. Max pooling is used to select for each core point only one feature vector
(instead of Nneigh feature vectors) with the highest activation caused by one of the
Nneigh neighboring points. That is, one high dimensional feature vectors are ascribed
to each of the core points which contain information about the neighborhood.

The second MSG module then selects 32 core points out of the 64 input points
and the same process as in the first MSG module is repeated, except for different
hyper-parameters, see Fig. 6.14.

The set abstraction module groups all of the 32 core points of the last step together
(instead of selecting a subset, as done in the MSG modules) and creates one large
feature vector which encodes information from all core points via convolution.

The network described until now could be seen as a feature extractor and the
following part consisting of fully connected layers (abbreviated as FC in the figure)
is then the part which classifies the generated feature vectors into the six classes. The
first two fully connected layers with N1 = 512 and N2 = 128 neurons, respectively,
are followed by dropout layers during training to avoid overfitting. In these dropout
layers, connections are left out with probability p = 0.3 during both the forward
and the backward path of the training. ReLu activation functions are used at all
layers except for the last fully connected layer, where a softmax function creates a
normalized probability vector.

Adam [123] is used as an optimizer with learning rate of α = 0.001. In total, about
222 000 free parameters were tuned during training.

One training epoch is defined here as passing 20 000 batches with 100 samples
through the network. The usual definition of an epoch is that all samples of the
training set are passed once through the network but since data augmentation is

136 classification of clustered radar data

used and samples could be shown with and without augmentation, it becomes
difficult to define when the network has seen each sample once. Choosing samples
randomly from all available clusters proofed to yield stable results. No weighting
between the classes was done so that each cluster contributes equally to the total
loss.

After four of these epochs, the loss saturated at a minimum so that the training
was stopped at that point. Each of the epochs took about one hour to train on an
Nvidia GTX 1080 GPU.

6.3.1.3 Results

Just as in the previous experiments, evaluation was done using five-fold cross
validation. The general trends observed there, namely that a) using only ground
truth clusters for both training and inference yields higher results than working
with the clusters created by DBSCAN± and b) using DBSCAN+ shows slightly better
results than using DBSCAN−, also hold true in this case. These experiments are
therefore not shown again but only the case is considered where training is done
on both ground truth clusters and DBSCAN+ clusters and evaluation is performed
solely on DBSCAN+ clusters of the respective test set.

The network architecture shown in Fig. 6.14 performed best in the experiments.
Using less neurons in the fully connected layers (e.g. 256 instead of 512) led to a
considerable decrease in performance. Increasing the number of neurons beyond
512 did, however, not result in higher scores. Different number of convolution
layers and sizes were tested for the MSG modules. Again, increasing the size of the
convolution layers beyond 64 was not beneficial.

With the best performing architecture, an F1 score of 0.771 on a per-target evalu-
ation was obtained. The corresponding confusion matrix is displayed in the left
part of Fig. 6.15. Once again, highest true positive counts are obtained for the
Passenger Car class and the already discussed confusions between Pedestrian

and Pedestrian Group instances is visible. A more detailed comparison with the
other approaches will be done in Section 6.6.

As an additional experiment, the augmentation steps described previously were left
out so that no further modifications to the training data were done. Interestingly,
the difference in the final score is negligible so that no clear performance increase
due to augmentation can be stated. Possible explanations for this are manifold.
One reason could be that the training set is already large enough so that the
chosen augmentation steps do not add additional information. This would be the
case if the augmented samples were identical to an already existing sample. A
different possibility is that the augmentation (especially dropping some of the

6.3 automatic feature extraction 137

input points) alters the instances too much so that they no longer resemble the
unchanged instances and hence the additionally learned information is of no use.
It is also possible that augmentation only helps at the final stages of the training
period in which the general differences between the classes is already learned and
only the edge cases are refined. This stage might not have been reached in the
performed experiments and would require more computation time with maybe
decaying learning rates, freezing of initial layers or other configuration changes. It
is therefore likely that additional fine-tuning of the training is necessary to increases
the classifier’s performance further.

In a different setting, the manually computed feature vectors that were used as input
for the random forest and the LSTM, were also provided and concatenated with the
generated feature vector. This was done right before the first fully connected layer
so that the “classification layers” had access to the manually computed features as
well as to the features generated by the previous layers of the network. The scores
obtained from this experiment do not show any significant difference to the case
were the manually computed features were not provided. This suggests that the
automatically generated features already contain the information of the manually
computed features and therefore information is only repeated.

Car Ped. Ped.Group Two-Wh. L. Vehicle Static

Predicted label

Car

Pedestrian

Ped.Group

Two-
Wheeler

Large
Vehicle

Static

Tr
ue

la
be

l

83.1 %
(1 596 903)

0.2 %
(4086)

0.7 %
(13 063)

0.4 %
(7766)

3.0 %
(57 901)

12.6 %
(242 666)

0.7 %
(2911)

53.4 %
(226 467)

30.7 %
(130 147)

1.3 %
(5625)

0.0 %
(193)

13.8 %
(58 704)

1.0 %
(9596)

7.8 %
(72 586)

78.2 %
(731 411)

0.8 %
(7255)

0.1 %
(780)

12.1 %
(113 366)

6.3 %
(14 863)

2.4 %
(5779)

5.4 %
(12 820)

76.9 %
(182 526)

0.0 %
(101)

8.9 %
(21 169)

14.4 %
(131 117)

0.1 %
(910)

0.2 %
(2194)

0.2 %
(1589)

68.8 %
(627 820)

16.4 %
(149 417)

0.2 %
(290 644)

0.0 %
(63 555)

0.1 %
(145 697)

0.0 %
(16 315)

0.1 %
(153 352)

99.5 %
(129 538 454)

Car Ped. Ped.Group Two-Wh. L. Vehicle Static

Predicted label

79.9 %
(1 536 628)

0.1 %
(2542)

0.5 %
(9575)

0.4 %
(7316)

3.7 %
(70 583)

15.4 %
(295 741)

0.6 %
(2487)

53.5 %
(226 746)

30.3 %
(128 298)

1.6 %
(6603)

0.1 %
(295)

14.1 %
(59 618)

0.5 %
(5093)

7.0 %
(65 727)

80.6 %
(753 372)

1.0 %
(9521)

0.1 %
(797)

10.7 %
(100 484)

4.5 %
(10 789)

1.9 %
(4491)

4.3 %
(10 285)

79.8 %
(189 294)

0.1 %
(348)

9.3 %
(22 051)

12.3 %
(112 204)

0.0 %
(276)

0.3 %
(2481)

0.1 %
(1256)

71.1 %
(648 929)

16.2 %
(147 901)

0.2 %
(256 946)

0.0 %
(59 245)

0.1 %
(151 086)

0.0 %
(20 147)

0.1 %
(161 197)

99.5 %
(129 559 396)

0

0.3

0.6

1

Figure 6.15: Per-target confusion matrices for the automatic feature extraction approaches.
Left: Single time steps with PointNet++. Right: Combination of PointNet++ as
feature extractor and an LSTM as classifier with eight time steps.

6.3.2 PointNet++ as Feature Extractor, LSTM as Classifier

A natural extension to the previously shown experiments is to interpret the Point-
Net++ architecture as a feature extractor and to train a different classifier on these

138 classification of clustered radar data

features. That is, the fully connected layers at the end of the network shown in
Fig. 6.14 are substituted by a different classifier. More specifically, in this section
it is explored how time information can be incorporated. A straightforward way
to achieve this is by using an LSTM as a classifier instead of the fully connected
layers. This new architecture is shown in Fig. 6.16. Inspired by the results of the
LSTM approach discussed in the previous section, eight time steps are used with
increasing time windows, i.e. targets of the next time step are added to the existing
cluster so that the number of targets in a cluster increases over time.

LSTM
20 Nodes

...... FC
N=6, Softmax

FC

Dropout, p=0.3
N=64, ReLU

PointNet
MSG @ 64
MSG @ 32
Set Abstraction
FC, N=512

Reshape

Figure 6.16: Network structure of the combination of PointNet++ with an LSTM. The fully
connected block drawn with dashed lines is only used once to evaluate its
necessity.

The dashed line around the fully connected layer in Fig. 6.16 indicates that this
layer was only used once to assess whether or not fully connected layers after the
LSTM increase the performance. This experiment revealed that having a single LSTM

layer with 20 neurons followed by only one fully connected layer which maps the
LSTM output onto the six classes, shows the highest performance. Including an
extra fully connected layer or increasing the LSTMs layer size is not beneficial.

In the chosen architecture, the clusters of each time step are first passed as indi-
vidual samples through the PointNet++ feature extractor. This results in one high
dimensional feature vector for each of the “samples” (displayed as orange circles in
the “Reshape” block in Fig. 6.16). The first part of the network is therefore agnostic
to the fact that the presented samples have a time order. Reshaping the samples
so that they form an array with eight time steps allows passing them through the
LSTM as a sequence of feature vectors. Only the final output of the LSTM is used in
the subsequent layers, i.e. the fully connected layers receive as input the output of
the LSTM after all time steps have been processed.

The same optimizer as in the previous experiment is utilized in which only one
time step was used. In contrast to the pure PointNet++ network, training is now
split into two parts. In the first part, only the PointNet++ network is trained for
one epoch and the LSTM output is discarded. In the second part of the training, the
complete network including the LSTM is trained for three more epochs. The idea
behind this is to ease the learning so that in the first stage the simpler PointNet++
architecture can be trained without interference of the LSTM, which would otherwise
have to deal with initially less meaningful feature vectors. With this training setup,

6.4 human performance 139

however, the LSTM is only involved after it was assured that useful feature vectors
are extracted in the previous stage by the PointNet.

After five fold cross-validation, an F1 score of 0.776 was obtained with this method.
The confusion matrix is displayed on the right side of Fig. 6.15 and is very similar to
the one obtained if only a single time step is used. Small increases can be observed
in the Pedestrian Group, Two-Wheeler and Large Vehicle class. However, perfor-
mance on the Passenger Car class slightly decreases and the additional errors
result almost entirely from classifying the Passenger Car instances as Clutter.
This can be read off the two confusion matrices in Fig. 6.15 by comparing the two
entries in the top right corner. The slight performance increases in the other classes
overcompensate this so that in total the score is a little higher than in the case with
one time step.

6.4 human performance

Until now, only the performance of different algorithms on the task of classification
of clustered radar data was discussed. In this section, however, the classification
performance of three different human labelers is evaluated. To this end, three
skilled labelers who all collected several hours of annotation experience beforehand
were challenged to ascribe class labels to some selected clusters. The goal of this
small experiment is to obtain an estimate, how well humans perform on the task
discussed in the last sections.

6.4.1 Experimental Setup

From all available and already annotated data, small sequences were extracted and
the ground truth labels of the clusters were removed. For each of the three different
lengths T ∈ {0.2 s, 0.6 s, 1 s}, 15 sequences were extracted which all contained
a variety of different dynamic objects. All three labelers received the radar point
clouds of the same sequences in which the ground truth clusters were still present.
They were then asked to ascribe labels to each of the available clusters. The labelers
had no access to the camera images they usually used during the labeling process.
Otherwise, they were allowed to move forward and backward in the sequences
in time steps of 100 ms and to display radar data from multiple scenes just as
they did during normal labeling, see also Section 4.2. In contrast to the algorithms
discussed before, whole scenes including the static environment were shown so
that the labelers were not only confronted with the targets of one cluster (in a
given time range) but rather with all dynamic (ground truth) clusters in the scene

140 classification of clustered radar data

Time bin Basis Passenger

Car
Pedestrian

Pedestrian

Group

Two

Wheeler

Large

Vehicle
Static

0.2 s
targets 612 75 141 107 306 28 562
objects 46 12 10 9 11 –

0.6 s
targets 1757 256 285 327 609 81 281
objects 127 44 30 28 27 –

1 s
targets 2949 145 825 247 1691 161 735
objects 215 34 78 39 47 –

Table 6.3: Number of targets and objects used in the experiment for each of the three time
bins.

as well as all other measured targets. This extra information could for example
be used by the labelers to assess where roads and sidewalks are located in the
scene and hence to verify if their selected class label is reasonable. In Table 6.3, the
number of objects and the number of targets presented to the test candidates are
listed per class and per sequence length. In this table the imbalance in the data
set becomes apparent again: since in most scenes with pedestrians also cars were
present, the Passenger Car class makes up the largest fraction of all objects. No
Clutter clusters were shown to the labelers but they were allowed to assign this
label to any cluster. Additionally, the three labelers were asked to note how long
they needed for the classification of each sequence.

6.4.2 Results

Evaluating the classification scores and the time the labelers needed for completing
the task shows that the classification skills are very differently distributed among
the three labelers L1, L2 and L3. In Fig. 6.17, two plots are displayed which show how
long the three labelers needed for the “classification” of one sequence (left figure)
and how well they performed in terms of the F1 score (right figure). Labeler L1

needed on average the least time to complete the task and at the same time achieved
the highest scores (red curves in Fig. 6.17). In contrast, L2 needed a considerable
larger amount of time to classify the sequences but achieved only mediocre scores
(pink curves). Labeler L3 achieved scores similar to L2 but was considerably faster
(blue curves in Fig. 6.17). Interestingly, both L1 and L2 needed more time to
complete the T = 0.6 s sequences than for the longer T = 1 s sequences.

Two factors influence how long the test candidates need to finish the classification
task: the total number of objects for which a decision has to be made and the

6.4 human performance 141

0.2 0.6 1
Sequence length (s)

0

100

200

300

400

R
eq

ui
re

d
ti

m
e

pe
r

se
qu

en
ce

(s
)

L1 L2 L3

0.2 0.6 1
Sequence length (s)

0.5

0.6

0.7

0.8

0.9

F 1
sc

or
e

L1

L2

L3

Figure 6.17: Left: Average duration each of the labeleres needed for “classification” of one
sequence. Right: F1 scores as a function of the length of the sequences.

difficulty of assigning a label to one object. As the scores in the right panel of
Fig. 6.17 show, the classification task becomes easier if objects are visible for a
longer period so that the test candidates can infer information from the movement
of the objects within the scene. This indicates that for longer sequences the decision
for one object becomes easier and can hence be made faster. But since the number
of objects increases with sequence length (see Table 6.3), two opposing effects
influence the labeling duration. For short sequences the difficulty is high but since
there are only a few objects per sequence, the needed time is rather small. If the
difficulty would remain constant, the labelers would need about thrice as much
time for the T = 0.6 s sequences since they contain about three times as many
objects. However, for all three labelers the increase is smaller. Finally, for T = 1 s
the reduction of complexity outweighs the increase in objects (for L1 and L2). In
total, the labelers needed between 1.2 and 3 hours to complete the experiment.

The two confusion matrices of L1 and L3 at the time bin T = 0.6 s are displayed in
Fig. 6.18. This time window was chosen because T is comparable to the lengths of
the sequences presented to the LSTM classifier in Section 6.2.3. Labeler L1 performed
best at this sequence length and L3 worst. Since no truly Static objects were
presented to the labelers as candidates for dynamic objects, they naturally achieved
100 % true positives on this class. However, L3 rejected some of the truly moving
objects as Clutter while L1 never decided to do so. From the confusion matrices
it is visible that both test candidates were biased towards the Passenger Car

class since they predicted this class most frequently (left column of the matrices).
Unsurprisingly, they achieved high true positive rates for the Passenger Car class

142 classification of clustered radar data

Car Ped. Ped.Group Two-Wh. L. Vehicle Static

Predicted label

Car

Pedestrian

Ped.Group

Two-
Wheeler

Large
Vehicle

Static

Tr
ue

la
be

l

94.3 %
(1656)

0.5 %
(8)

3.0 %
(53)

2.3 %
(40)

0.0 %
(0)

0.0 %
(0)

23.4 %
(60)

59.0 %
(151)

0.0 %
(0)

4.7 %
(12)

0.0 %
(0)

12.9 %
(33)

33.3 %
(95)

45.3 %
(129)

13.0 %
(37)

0.0 %
(0)

0.0 %
(0)

8.4 %
(24)

13.5 %
(44)

0.6 %
(2)

0.0 %
(0)

70.3 %
(230)

0.0 %
(0)

15.6 %
(51)

91.0 %
(554)

0.0 %
(0)

3.0 %
(18)

0.0 %
(0)

6.1 %
(37)

0.0 %
(0)

0.0 %
(0)

0.0 %
(0)

0.0 %
(0)

0.0 %
(0)

0.0 %
(0)

100.0 %
(81 281)

Car Ped. Ped.Group Two-Wh. L. Vehicle Static

Predicted label

88.8 %
(1560)

0.7 %
(13)

4.2 %
(74)

0.0 %
(0)

6.3 %
(110)

0.0 %
(0)

16.0 %
(41)

75.4 %
(193)

8.6 %
(22)

0.0 %
(0)

0.0 %
(0)

0.0 %
(0)

41.8 %
(119)

45.3 %
(129)

13.0 %
(37)

0.0 %
(0)

0.0 %
(0)

0.0 %
(0)

33.0 %
(108)

12.8 %
(42)

0.0 %
(0)

54.1 %
(177)

0.0 %
(0)

0.0 %
(0)

32.3 %
(197)

3.0 %
(18)

0.0 %
(0)

0.0 %
(0)

64.7 %
(394)

0.0 %
(0)

0.0 %
(0)

0.0 %
(0)

0.0 %
(0)

0.0 %
(0)

0.0 %
(0)

100.0 %
(81 281)

0

0.3

0.6

1

Figure 6.18: Per-target confusion matrices for the best performing labeler L1 (right) and the
worst performing labeler L3 (left) for sequences of length T = 0.6 s.

itself. Both labelers struggled with identifying Pedestrian Groups properly and
assigned either the Pedestrian or Passenger Car label. Candidate L1 did a far
better job in identifying Large Vehicle objects whereas L3 usually assigned them
to the Passenger Car class.

The results of this experiment show that temporal evolution of the clusters is a very
important feature for “human classifiers” and that the performance fluctuations
are quite large. Labeler L1 had by far the most experience with annotating radar
data, had also trained one of the other labelers and had assisted in writing labeling
instructions. This leads to the unsurprising result that more experience in the task
leverages both the speed and accuracy of the labeler. At short sequence lengths
with T < 1 s, the algorithms shown in the previous section outperform the human
test candidates by a great margin. However, for longer sequences humans can make
great use of the temporal evolution of the clusters and use this information to reach
similar or even higher performance. A larger number of skilled labelers would be
needed to allow for more reliable statements.

Finally, Fig. 6.19 shows an excerpt of a scene the test persons had to annotate.
Colors indicate to which semantic class the points belong to and convex hulls mark
the individual clusters. The text labels above the objects mark to which class the
three labelers ascribed the object. Correct assignments are drawn with a green
background whereas errors are highlighted in red. Interestingly, L2 classified the
car next to the ego-vehicle as a Two-Wheeler even though the width of the cluster
clearly indicates that this cannot be a motorbike, bicycle or any other member of
the Two-Wheeler class. The same test candidate did not ascribe a label to one of the

6.5 motion classification and body height estimation of pedestrians 143

Figure 6.19: Example scene that was presented to the test persons. Left: Camera image of
the scene (not shown during the experiment). Right: Point cloud with per-class
colors. The text labels describe to which class the three test persons assigned
the respective object.

pedestrians and later mentioned that he was too unsure to which class this object
belongs to and hence left the cluster unassigned.

6.5 motion classification and body height

estimation of pedestrians

The algorithms presented before are all designed to work on radar data of rather
small time windows of a few hundred milliseconds. The intention is that these
algorithms can provide semantic information as early as possible after the sensor
delivered the data so that subsequent applications like tracking can benefit from
this. Nevertheless, it is also worthwhile to investigate which additional semantic
information can be extracted if data from longer time windows are available, e.g. if
a pedestrian was tracked for over more than 3 s. Together with a master’s student,
the following two questions were investigated:

1. Is it possible to distinguish different motion types like walking, running,
jumping or walking with crutches from each other?

2. Is it possible to estimate a pedestrian’s body height solely from radar data if
no elevation angle can be measured?

The results of the research activities are explained in detail in the resulting master’s
thesis [104], which was supervised by the author of this thesis, and in one further
publication [105]. The contents of this section are therefore similar to these earlier
publications.

144 classification of clustered radar data

This section summarizes briefly the individual approaches and their results. It is
not intended to repeat all the findings described in the master’s thesis but rather
a short overview is presented. For a more elaborate discussion of the two topics,
[104] should be consulted.

6.5.1 Motion Type Classification

Radar
Targets

Motion
Classification

Features

Grid
Transformation

Signal Feature
Extraction

Radar Data
Grids

Dictionary Feature
Extraction

HOG Feature
Extraction

Figure 6.20: Feature extraction pipeline for the motion type classification of pedestrians.

As discussed in the previous sections, it is already a great challenge to distinguish
pedestrians from other road users if only radar data from short time ranges are
used. If, however, a combination of a clustering algorithm and a classifier is able
to group all points belonging to the same pedestrian together, then the natural
question arises whether the motion type of the pedestrian can be classified in more
detail.

To this end, a data set was recorded in which eleven different test subjects per-
formed the motion types walk, run, jump, crutches, skateboard and driving in a
wheelchair repeatedly. Similar to the labeling process described before, ground
truth clusters were created of all measured targets that belong to the same repetition
of one test subject.

The radar targets of each cluster are the starting point of a feature extraction
pipeline. Since only a small data set could be recorded in the limited time available
for the master’s student, an automatic feature extraction approach with for example
a PointNet++ architecture was not considered but rather meaningful manual
features were created.

A flowchart of the feature extraction process is displayed in Fig. 6.20. Red rounded
boxes symbolize data input or output and blue rectangles mark a computation step.
The feature set for the motion classification consists of three parts:

6.5 motion classification and body height estimation of pedestrians 145

1. Signal features
2. Histograms of oriented gradients (HOG)
3. One-hot encoded classification results from a dictionary learning approach

The signal features are directly computed from the ego-motion compensated
Doppler velocities v̂r,i of the N radar targets in a cluster via

µ1 =
1

N − 1

N

∑
i=1
|v̂r,i − µ| (6.1)

µk =
1

N − 1

N

∑
i=1

(v̂r,i − µ)k for k = 2, 3, 4, (6.2)

where µ is the average value of all v̂r,i.

For the computation of the other two feature sets, a special grid map is computed
first. As a precondition for the grid map computation, the pedestrian’s trajectory
has to be estimated. A linear trajectory fit on the measured targets is done via
the Random Sample Consensus (RANSAC) scheme to obtain an estimation for the
pedestrian’s position for each point in time. Additionally, the pedestrian’s Cartesian
velocity vped can be directly extracted. After the trajectory estimation, a Frenet
transformation is used to transform the Cartesian coordinates of the measurements
into pairs of the form (di, ni), where di is the coordinate parallel to the trajectory and
ni is the component orthogonal to the estimated route. For one example trajectory,
this is illustrated in the left part of Fig. 6.21. These newly generated coordinate
pairs can then be used to compute a 2D grid map: the deviation of each measured
Doppler velocity from the estimated velocity of the pedestrian vped is entered in the
grid cell corresponding to (di, ni), and Gaussian distributed weights are applied to
the central cell and its neighbors. Two examples of these grid maps are shown in
the right part of Fig. 6.21. Further details about the trajectory estimation and the
computation of the grid map can be found in [104].

These grid maps are then used for the computation of histograms of oriented
gradients, which form the first set of features extracted from the grid maps. The
second set of features stems from a dictionary learning approach [265]. Dictionary
learning in combination with sparse coding [152] can be used as a stand-alone
classifier. However, the one-hot encoded vector of class predictions – in which the
entry associated with the predicted class is set to one and the remaining entries are
set to zero – can also be used as an additional feature for a different classifier. More
information about the dictionary learning approach can be found in both [104] and
[105].

146 classification of clustered radar data

y

x

n

d

0

Frenet
Transformation

n

d
n

d

Figure 6.21: Left: Example for a Frenet transformation. Right: Two radar grids for the
motion types walking and crutches. Images are based on figure 4.3 and 4.6 in
[104].

Approach F1 Score

Signal Feat. only 0.64

HOG only 0.61

Dictionary only 0.75

Ensemble 0.79

Table 6.4: Motion classification
scores.

wa
lk

ru
n

ju
mp

cr
ut
ch
es

sk
at
eb
oa
rd

wh
ee
lc
ha
ir

Predicted label

walk

run

jump

crutches

skateboard

wheelchair

Tr
ue

la
be

l

88.6 %
(437)

0.0 %
(0)

2.6 %
(13)

4.9 %
(24)

3.9 %
(19)

0.0 %
(0)

1.0 %
(2)

77.8 %
(158)

20.2 %
(41)

0.5 %
(1)

0.5 %
(1)

0.0 %
(0)

11.9 %
(28)

23.4 %
(55)

57.9 %
(136)

3.0 %
(7)

3.8 %
(9)

0.0 %
(0)

5.9 %
(43)

0.0 %
(0)

0.8 %
(6)

87.2 %
(631)

6.1 %
(44)

0.0 %
(0)

9.1 %
(33)

0.0 %
(0)

3.8 %
(14)

11.8 %
(43)

72.3 %
(263)

3.0 %
(11)

5.9 %
(3)

0.0 %
(0)

2.0 %
(1)

11.8 %
(6)

56.9 %
(29)

23.5 %
(12)

0

0.3

0.6

1

Figure 6.22: Confusion matrix of the motion classifica-
tion approach. The absolute numbers in the
matrix represent clusters with length 3 s.

The generated features are then used to train a random forest classifier. For evalua-
tion, cross-validation is used to obtain reliable scores. In Fig. 6.22, the confusion
matrix of the best performing random forest configuration is shown. The classes
walk and crutches are classified best – possibly due to their characteristic grid map
representations. The wheelchair class is identified worst, which might be caused
by the fact that only data from a single individual were available. Increasing the
data set would certainly leverage the classifier’s performance on this class or at

6.5 motion classification and body height estimation of pedestrians 147

least allow for a more detailed analysis so that more expressive features can be
extracted.

In Table 6.4, F1 scores of different classification approaches are summarized. If
only the signal features µk are used, a random forest classifier achieves a score of
0.64 and if only the features obtained from the histogram of oriented gradients
are used, the score drops to 0.61. On the other hand, if dictionary learning in
combination with sparse coding is used as a classifier instead of a random forest
and only the grid maps are used for feature extraction, the score increases to 0.75.
Finally, if a random forest is used as a classifier and the three feature sets are used
in combination, the highest score of 0.79 is reached.

6.5.2 Height Estimation

The second question raised in the introduction of this chapter deals with estimating
the height of a person solely from radar data with two spatial measurement
dimensions. This apparent paradox can be resolved when the other measurement
dimensions of a radar sensor are included in the considerations. Since also the
Doppler velocities are available, the fluctuations in the Doppler profile can be used
to estimate either the stride length or the stride duration of a walking person. The
stride length in turn is correlated with the body height of a person so that with
the help of a reliable model, the body height can be calculated. This model can
be either constructed from analyzing the physiology of humans and their gait or
alternatively it can be learned from data.

The idea is based on the observation that during walking, a person has always
one stationary leg on the ground while the other leg swings forward. Radar
targets obtained from the legs of a moving person will then show an oscillation
in the measured Doppler velocity whose frequency is directly proportional to the
stride length ls of the person. In the left part of Fig. 6.23, the Doppler velocities
obtained from a walking person are plotted against the distance d along the person’s
trajectory where the oscillations become visible.

To extract the step frequency or alternatively the stride length ls of a pedestrian,
the computation pipeline displayed in Fig. 6.24 is used. In a first step, the person’s
trajectory is estimated and the Frenet transformation is applied, resulting in coordi-
nate pairs (di, ni) for each target. This step is identical to the one performed during
feature extraction of the motion classification algorithm described in the previous
section. With the radar targets transformed to this new coordinate system, the
data points in the d – v̂r space are smoothed with a moving average filter for non-
uniform data so that evenly spaced data points can be sampled. One resulting curve

148 classification of clustered radar data

6 8 10
Distance d (m)

0.0

0.5

1.0

1.5

2.0

2.5

3.0
v̂ r

(m
/s

)

1.0 1.5 2.0
Cycle Length (m)

50

100

150

200

250

A
m

pl
it

ud
e

ls = 1.52 m

Figure 6.23: Left: Doppler over ground v̂r vs. distance d. Blue stars show measurements,
the orange line displays the low-pass filtered signal. Right: Fourier transform
of the filtered signal (blue line) with highlighted maximum, corresponding to
the stride length ls (red line). Based on figure 4.11 in [104].

Radar
Targets

Moving Average
Filtering

Trajectory Estimation &
Frenet Transformation

Radar Targets
in Frenet Coords.

Step Frequ. &
Stride Length

FFT & Maximum
Detection

Filtered Doppler
Signal

Figure 6.24: Pipeline of the stride length extraction for height estimation of pedestrians.

is displayed in the left part of Fig. 6.23 as an orange line on top of the measured
targets. An FFT on this smoothed signal is used to find the dominating frequency of
the oscillation. After appropriate scaling of the abscissa, the stride length ls can be
directly read off. Notice that the stride length ls is commonly defined as twice the
length of a single step so that ls = 2/ fmax where fmax corresponds to the Fourier
frequency at which the maximum occurs. This is illustrated in the right part of
Fig. 6.23.

A model created by Boulic and Thalmann [24] describes the relation between a
person’s stride length and body height as

h =
l2
s

vped · 1.3462 · 0.53
, (6.3)

where the factor 0.53 stems from the observation that the height of thigh of a
human is typically 53 % of their body height and the factor 1.346 was obtained from
different experiments presented in [112]. The walking speed vped can be obtained
from the trajectory estimation, just as it was done for the motion classification.

6.6 comparison and summary 149

A data set with over 50 different persons walking towards and away from the
radar sensors was recorded and manually labeled. The person’s body heights
were determined and stored together with the measured radar targets. From time
windows of length 3 s, the stride length ls and the pedestrians velocity vped was
extracted via the procedure discussed before. Inspired by the Boulic-Thalmann
model, the terms l2

s /vped, ls/v2
ped, vped, ls/vped, ls, vped · ls, v2

ped · ls and vped · l2
s

were calculated and provided as features to a random forest regressor. Training
and evaluation of this approach was again done using cross-validation. In the
left part of Fig. 6.25, the feature importances of the different terms are displayed.
In accordance with the Boulic-Thalmann model, the term l2

s /vped was ranked as
the most important feature for the height estimation. However, the regression
forest outperformed the Boulic-Thalmann model by a considerable margin as it
becomes apparent from the right part of Fig. 6.25. In this plot, the absolute values
of the differences between the estimated and true body height are displayed for
the different body heights. The blue bars indicate the mean error for a given body
height range and the black lines on top visualize the standard deviation of the error.
Additionally, the average error of the Boulic-Thalmann model is inserted as a red
line. The mean absolute error of the random forest approach lies with about 6.7 cm
far below the average error of the Boulic-Thalmann model. The best performance is
achieved for heights around 175 cm. Given that the majority of persons recorded
in this data set have a body height around this value and only few very tall or
very short people were available, the data set is highly imbalanced and the random
forest tends to focus on the majority values. Nevertheless, this proof of concept
shows that body height estimation is – up to a certain extent – indeed possible even
though only two spatial dimensions are measured by the radar sensor.

6.6 comparison and summary

In this chapter, different methods to classify clusters of radar targets into the
six classes Passenger Car, Pedestrian, Pedestrian Group, Two-Wheeler, Large

Vehicle and Clutter were introduced, tuned and evaluated on a recorded data set.
First, methods based on manual feature extraction were applied and afterwards
two methods were employed which generate features from the raw clusters so that
the manual feature calculation step becomes obsolete.

The per-target scores of all four approaches are summarized in Table 6.5. Only
the best performing setting is displayed in the table. Except for the first entry
in the table, training was done in all cases with ground truth clusters as well as
clusters from DBSCAN+, and evaluation only on DBSCAN+ clusters. For a detailed
comparison with basic DBSCAN, the individual subsections of this chapter can be

150 classification of clustered radar data

0.0 0.2 0.4 0.6
Feature Importance

vped · ls
v2

ped · ls
vped · l2

s

ls

ls/v2
ped

vped

ls/vped

l2
s /vped

1.5 1.6 1.7 1.8 1.9 2.0
Height (m)

0

5

10

15

20

A
bs

ol
ut

e
Er

ro
r

(c
m

) mean
std
model

Figure 6.25: Left: Feature importances during the height estimation. Right: Absolute values
of the predicted heights. The mean errors for each height bin are drawn along
with the standard deviation. The red line indicates the mean error of the
Boulic-Thalmann model. Based on figures 4 and 5 in [105].

consulted. The first entry in the table belongs to the most basic setting in which
DBSCAN− is used for clustering. This random forest approach can be seen as the
baseline set by the previous works [289], so that the comparison highlights the
improvements obtained through methods introduced in this thesis. From this table
it becomes obvious that if DBSCAN+ is used, the difference in F1 score between the
best and worst performing classifier is with about 0.015 rather small. However,
a considerable jump to the baseline of up to 0.06 can be observed. The rather
simple approach of using a manually created feature set with rather obvious
choices for the individual features and feeding those into a random forest classifier
performs surprisingly well. The more elaborate methods using PointNet++ or a

Method F1 Precision Recall Confusion Matrix

Random Forest, DBSCAN− 0.719 0.753 0.708 Fig. 6.9 left

Random Forest 0.761 0.785 0.746 Fig. 6.9 right

LSTM 0.766 0.774 0.763 Fig. 6.13 right

PointNet++ 0.771 0.777 0.767 Fig. 6.15 left

PointNet++ & LSTM 0.776 0.781 0.774 Fig. 6.15 right

Table 6.5: Comparison of the scores obtained with the four different approaches.

6.6 comparison and summary 151

combination of PointNet++ and an LSTM perform only slightly better. Crucial for
a well performing algorithm is that the exact same clustering method is used for
both training and evaluation. If training is done only on ground truth clusters and
evaluation on the automatically generated clusters, then the performance of the
total system decreases considerably. A simple re-clustering of existing ground truth
clusters as it was done in [232] turned out to be not sufficient.

Car Ped. Ped.Group Two-Wh. L. Vehicle Static

Predicted label

Car

Pedestrian

Ped.Group

Two-
Wheeler

Large
Vehicle

Static

Tr
ue

la
be

l

79.9 %
(1 536 628)

0.1 %
(2542)

0.5 %
(9575)

0.4 %
(7316)

3.7 %
(70 583)

15.4 %
(295 741)

0.6 %
(2487)

53.5 %
(226 746)

30.3 %
(128 298)

1.6 %
(6603)

0.1 %
(295)

14.1 %
(59 618)

0.5 %
(5093)

7.0 %
(65 727)

80.6 %
(753 372)

1.0 %
(9521)

0.1 %
(797)

10.7 %
(100 484)

4.5 %
(10 789)

1.9 %
(4491)

4.3 %
(10 285)

79.8 %
(189 294)

0.1 %
(348)

9.3 %
(22 051)

12.3 %
(112 204)

0.0 %
(276)

0.3 %
(2481)

0.1 %
(1256)

71.1 %
(648 929)

16.2 %
(147 901)

0.2 %
(256 946)

0.0 %
(59 245)

0.1 %
(151 086)

0.0 %
(20 147)

0.1 %
(161 197)

99.5 %
(129 559 396)

Car Ped. Ped.Group Two-Wh. L. Vehicle Static

Predicted label

0.1 %
(2073)

0.1 %
(1470)

-0.3 %
(−5359)

0.2 %
(3538)

-0.9 %
(−16 939)

0.8 %
(15 217)

-1.2 %
(−5294)

20.7 %
(87 744)

-8.3 %
(−35 196)

0.4 %
(1876)

-0.0 %
(−72)

-11.6 %
(−49 058)

-1.1 %
(−10 268)

3.6 %
(34 014)

5.1 %
(47 569)

0.6 %
(5336)

-0.1 %
(−697)

-8.1 %
(−75 954)

-3.8 %
(−9033)

0.8 %
(1822)

-5.6 %
(−13 358)

12.6 %
(29 956)

-0.1 %
(−172)

-3.9 %
(−9215)

-2.1 %
(−18 723)

0.0 %
(71)

0.0 %
(339)

0.1 %
(546)

1.2 %
(10 778)

0.8 %
(6989)

-0.1 %
(−110 820)

0.0 %
(15 653)

-0.0 %
(−57 238)

0.0 %
(1913)

-0.0 %
(−47 227)

0.2 %
(197 719)

-0.2

0

0.2

Figure 6.26: Comparison of the most basic approach using standard DBSCAN for clustering
and a random forest as classifier with the one using DBSCAN+ for clustering
and PointNet++ & LSTM as classifier. Left: Confusion matrix of the best per-
forming PointNet++ & LSTM architecture. Right: Differences to the random
forest confusion matrix.

In Fig. 6.26, the confusion matrix of the best performing method which combines
PointNet++ with an LSTM and uses DBSCAN+ for clustering is repeated (original
in the right panel of Fig. 6.15) and the differences to the baseline random forest
approach with DBSCAN− are displayed (confusion matrix in the left panel of Fig. 6.9).
In the right panel of Fig. 6.26, green color is used to highlight improvements and
red color shows where the random forest approach yielded better scores. This
definition implies that positive values on the diagonal and negative values on the
off-diagonal of the confusion matrix are colored green whereas negative values
on the diagonal and positive values on off-diagonal elements are colored red. The
color bar on the right side of the figure is hence valid for the diagonal entries. For
off-diagonal entries, the color bar ranges from -0.2 (green) to +0.2 (red). The listed
percentage values are relative to the total number of targets of the respective class.
The greatest performance increase can be seen at the Pedestrian class where the
true positive counts increases by over 20 percentage points. Main driver of this
performance boost is that less targets are erroneously classified as Static. This
in turn is caused by two effects: Firstly, less Pedestrian clusters are overlooked
with DBSCAN+ which are otherwise automatically classified as Static and secondly,

152 classification of clustered radar data

the PointNet++ & LSTM combination shows higher performance in the distinction
between Pedestrian and Clutter clusters. Since Clutter predictions are mapped
onto the Static class for the per-target evaluation, higher performance on the
Clutter class directly influences the score of the Static class.

The second highest performance increase stems from the Two-Wheeler class, where
the confusion with Passenger Car objects and Pedestrian Group instances could
be decreased in favor of more true positives. The biggest decrease in performance is
visible at the Pedestrian Group – Pedestrian confusion. However, closer inspection
of the Pedestrian Group row shows that this is a non-critical performance decline.
Firstly, the true positive count of Pedestrian Group targets increases. Secondly, the
increase in wrong Pedestrian predictions can be entirely explained by the decrease
of Clutter (or Static) predictions. Therefore, the error shifted from predicting a
Pedestrian Group as Clutter (or not clustering it all – both cases would result
in a Static label) towards predicting a Pedestrian Group as a single Pedestrian

which is much more favorable.

In Fig. 6.3, different decision surfaces of the random forest classifier are shown.
Since visualization of the complete feature space with 17 dimensions is impossible,
the surfaces are shown for classifiers for which only two features are used. A
different method to display the interplay of the features is to embed the high-
dimensional feature space into two dimension with the help of t-SNE [257], see
also Section 2.2. This is done in Fig. 6.27 where for 300 clusters of each class
manually created features and automatically created features of the PointNet++
approach are displayed after the embedding in two dimensions. Since the scaling
of the axes has no real meaning after the embedding, labels on the axes were
left out for brevity. Each point in the figure symbolizes the embedding of one
feature vector and color indicates for which class the feature vector was created.
For the PointNet++ approach, feature vectors are defined as the output of the
set abstraction module. A clear structure can be seen in the embedding of the
automatically generated features that allows even in two dimensions the creation
of simple decision boundaries. For the manually created features, however, many
regions can be identified where multiple classes overlap each other and feature
vectors of each class are spread out over the whole space instead of being clustered
together. It is therefore understandable that a classifier which uses the manually
created feature vectors as input has a harder job to do than a classifier which
processes the automatically extracted features. Since both the random forest and
the LSTM performed reasonably well on the manually created feature vectors, the
full feature space does allow the creation of reasonable decision boundaries and
the embedding into two dimensions does not reflect the information content of the
features properly.

6.6 comparison and summary 153

Car
Pedestrian

Ped. Group
Two-Wheeler

Large Vehicle
Clutter

Figure 6.27: Embedding of the automatically generated features (left) and the manually
computed features (right). For embedding into two dimensions, t-SNE was
used.

Incorporating time information in the classification step proves to be non-trivial.
Even though the best performing architecture includes an LSTM and makes use
of up to eight time steps, the difference to methods that do not make use of the
temporal evolution of the clusters is small. This stands in great contrast to the
performance humans show on the same task. A clear correlation between the
length of the sequences shown to the annotators and the achieved score is visible,
cf. Fig. 6.17. For sequences with a length of 1 s, the best performing test person
outperformed the proposed algorithms. This hints that the way temporal evolution
was incorporated into the algorithms was not optimal and that there is more
potential to utilize this information. However, during the experiment the subjects
could see the entire scene and not only the extracted clusters so that they had
access to more information than the proposed classifiers.

7
S E M A N T I C (I N S TA N C E)
S E G M E N TAT I O N O F R A D A R P O I N T
C L O U D S

In the last chapter it was shown in detail how variation of the clustering method
influences the classifier’s performance. With perfect clustering, i.e. with a clustering
algorithm that reproduces ground truth clusters, a classifier has a far easier job
than a classifier that has to work on the output of an imperfect clustering algorithm.
Especially larger objects like trucks tend to break into multiple smaller clusters
since there are often larger gaps between targets originating from the front and
back parts of the vehicle. This in turn influences the feature extraction process and
finally the classifier’s output. Further complexities of the clustering process are
listed in section 5.2. It is therefore a natural thing to look for alternatives to the
clustering step so that feature extraction and classification are no longer affected
by this prepossessing step. Therefore, in this chapter semantic segmentation and
recurrent instance segmentation algorithms are constructed and evaluated. The
results shown in this chapter were previously published in [233] and [235]. It should
be noted that in [235] a complete processing pipeline for the classification of both
static and the dynamic objects is shown. However, only the part regarding moving
objects is discussed here since classification of static objects was contributed by the
second author of the article.

As input to these algorithms, the spatio-temporal point cloud constructed from
the measured radar targets is used. An alternative to using point clouds as input
would be a grid mapping approach. This is for example used in the classification
and semantic segmentation of static radar targets [144]–[147]. One problem that
arises when grid maps are used is the varying density of the individual radar
targets. In typical scenes, only a small fraction of the 2D measurement space is
filled with targets while the rest remains empty. In areas where targets are detected,
i.e. especially where dynamic objects are located, the target distribution is rather
high and the spatial distribution of the targets is an important feature for the
classification task. This fact necessitates that a grid with cell sizes < 1 m is needed
even though most parts of the grid remain empty. Another issue is that grid
mapping algorithms are designed for situation where data are accumulated over

155

156 semantic (instance) segmentation of radar point clouds

longer periods, so that measurement noise is averaged out and true structures
become sharper. It is a non-trivial task to align this with the requirement that the
classification information of dynamic objects should be available on short time
scales, as it is required for the algorithms discussed in this work.

After related work is discussed in the following section, details about the chosen
algorithms for semantic segmentation and recurrent instance segmentation are
given and the training procedure is explained. Thereafter, the results obtained from
the two approaches are presented and discussed. Similarly to the previous chapter
where classification scores were shown, the performance of human annotators on
the instance segmentation task is analyzed.

The following own contributions are made in this chapter:

• Introduction of a novel neural network architecture for recurrent instance
segmentation on point cloud data

• Performance comparison of a semantic segmentation approach with an in-
stance segmentation network

• Assessment of human performance on the instance segmentation task

• Evaluation of ensemble methods for instance segmentation

7.1 state of the art

Related work from three categories is displayed in this section: Firstly, semantic
(instance) segmentation network architectures are presented which highly influ-
enced the whole machine learning community. These pioneering works all use
images as input but inspired the subsequently published articles that work with
point cloud data. These kind of networks are presented in the second part of this
section. Finally, literature about semantic (instance) segmentation of radar data is
discussed.

7.1.1 Neural Network Architectures for Semantic (Instance) Segmentation

The foundation for neural networks which perform a semantic segmentation of
an image was laid in 2015 by the authors of [148]. They proposed that a CNN

could not only be used as a feature extractor and classification network but could
also be used to predict a class label for each pixel in an image. Several network
architectures like GoogLeNet [252] – originally designed for classification tasks –

7.1 state of the art 157

were extended to semantic segmentation networks and their superior performance
over other approaches was demonstrated. Notably, they outperformed also the
famous R-CNN network [77] by a great margin. The R-CNN architecture was until
then one of the best performing structures. Updated versions of R-CNN like “Fast
R-CNN” [76], “Faster R-CNN” [204] and “Mask R-CNN” [92] were developed
thereafter. In addition to bounding boxes and class labels for each box, “Mask
R-CNN” also creates a pixel-wise classification of the predicted objects.

Despite many improvements in this direction, one shortcoming of these networks
is still their relatively large inference time of about 200 ms per frame [92]. This
observation caused the development of network architectures that deliver results
faster at the cost of being slightly less accurate. Prominent examples are the
YOLO network [203] developed by Facebook and the SSD [142] developed by
researches from Zoox and Google. Both networks are object detectors, i.e. they
predict bounding boxes and class labels for each object in an image but do not
perform a semantic segmentation.

A different approach is used in [138], where a polygon fit is used to predict object
instances based on proposed instance masks, which in turn are generated by a
segmentation network.

A different way of predicting instances is used in [256]. For each pixel in the image,
they predict the direction to its corresponding instance center. The predicted angle
is discretized into a fixed number of classes so that the task is tailored for a fully
convolutional network. Yet another way to create object instances from a semantic
segmentation output is to learn the energy levels of a watershed transformation [6],
[11]. A direction network is used to predict the direction of descent of the watershed
energy level for each pixel. This is used as input to another network which predicts
the final energy level so that a single cut through this energy landscape produces
the desired instances.

A more thorough overview about semantic segmentation networks is given in [143].

7.1.2 Works on Point Cloud Data

Working with raw point clouds instead of images requires novel network archi-
tectures since the input data is usually not ordered and neighborhood relations
are a priori unknown. As almost all CNNs for images make great use of the neigh-
borhoods of each pixel and use them for feature generation, new ways have to be
developed to obtain this information. Three categories emerged into which most ap-
proaches can be sorted: voxel-based models, point-based models and graph-based

158 semantic (instance) segmentation of radar point clouds

architectures. Each of these categories is discussed in the following subsections
individually.

7.1.2.1 Voxel-Based Approaches

One natural idea to create neighborhood relations is by simply dividing the mea-
surement space into equally sized cells. For 2D data, this corresponds to a grid-
mapping process so that an image-like structure is created. For data with three
spatial dimensions, so-called voxels are created which are simply elements in a
regular 3D grid. The advantage of these approaches is that in the 2D case all
network architecture used for images can be directly applied. In the case with three
spatial dimensions, the usual convolution operation can be extended to 3D so that
neighborhoods in all directions are considered. Two large disadvantages exist with
this approach. Firstly, slicing the input space into equally sized parts and storing
values for each of the cells is very memory demanding. For sparse input data, many
cells remain unoccupied so that large parts of the required memory remain unused.
Secondly, a cell size has to be fixed so that a resolution limit is directly enforced. If
the input data shows large variations in density and is at the same time very sparse,
then it is a non-trivial task to find a resolution which covers the essential properties
of the data but at the same time is not too memory demanding. Most commonly,
the chosen resolution causes that multiple input points fall into the same cell so
that the network does not see the true input data but rather a sampled version.

Prominent examples for voxel-based networks are VoxelNet [291] (created by a
research team at Apple), MSNet [266] or 3D U-Net [41]. VoxelNet operates directly
on the input point cloud so that the embedding is learned during training. Based
on these pioneering works, many network variants emerged which for example use
different encoding schemes to transform the point clouds into a regular grid [131].

7.1.2.2 Point-Based Approaches

Point-based approaches directly use point clouds as input and do not demand a
voxeling step during processing. PointNet [199] gained widespread attention due
to its novel approach to deal with unstructured data. The architecture takes three
properties of point clouds as design principles: a) the input points are unordered
and order of the points should not matter, b) local structures in the point cloud
contain relevant information, c) a set of transformations (e.g. rotation or translation)
applied to the whole point cloud should not alter the semantics. Key to working
with unordered input is to apply a symmetric function at relevant positions in the
network so that the output of this function does not depend on the order of the
input values. In PointNet, maxpooling is used as the symmetric function so that

7.1 state of the art 159

only the point with the highest activation for a given convolution kernel contributes
to the subsequent layers. In PointNet++ [198], the feature extraction step is extended
so that local properties of the point cloud are better captured. As demonstrated
in the previous chapter, the PointNet structure can be used for classification and
in this chapter it will be used as a basis for semantic segmentation. More details
on the individual PointNet modules are given for example in Section 7.2.1.1. The
so-called “Frustrum PointNet” [196] is an extension of PointNet designed to fuse
information from camera and point cloud data in a single network.

The great advantage of the PointNet approach is that the network operates directly
on the true input data so that no resolution artifacts are introduced and empty
areas do not have to be modeled. However, to obtain information from the local
neighborhoods of a point, explicit nearest neighbor searches have to be performed
at various stages in the network.

Combinations of the PointNet architecture with voxel- or grid-based approaches
allow to use PointNet only for embedding and 2D or 3D convolutions at later
stages [23], [205].

Improvements of PointNet++ include for example MHNet [139] which extracts
similarly to the original PointNet++ features at different scales but explicitly fuses
the features from different scales to one combined representation. Thereby, local
features of different abstraction levels are combined again, which the original
PointNet++ does not do. Conditional random fields are used as a post-processing
step to smooth the predictions. SpiderCNN introduces parametrized convolution
kernels which can operate directly on point clouds [283]. In PCPNet, surface
normals are estimated with the help of local patches that are encoded using a
variant of PointNet modules [86].

An entirely differently route is taken by Kd-networks [125]. The authors use the kd-
tree indexing structure as a basis representation of the point cloud data instead of
uniform grids. Parameter sharing of the trainable weights is implemented similarly
to regular convolution operations and standard backpropagation can be used for
training.

7.1.2.3 Graph-Based Approaches

Finally, graph-based approaches make up the third category. The idea of these ap-
proaches is that convolution operations can be defined on graphs so that contextual
information can be propagated. In [130], the input point cloud is first partitioned
into geometrically homogeneous subsets, the so-called superpoints. From these su-
perpoints, a new graph is created which is much smaller than a graph constructed

160 semantic (instance) segmentation of radar point clouds

on the whole point cloud so that the subsequent convolution operations can be per-
formed more efficiently. Spectral graph convolution on local point neighborhoods
is used in [264] in combination with recursive cluster pooling. In their network,
some of PointNet’s modules are used for farthest point sampling and grouping
but the max-pooling step employed in PointNet and PointNet++ is replaced with a
recursive clustering and pooling strategy. The proposed architecture can be used
for both classification and semantic segmentation.

A mixture of a graph-based approach and a grid-based approach is shown in
[64]. Instance segmentation is performed with the help of a bird’s eye view on
a 3D point cloud, which in turn is obtained by a grid-mapping process. A fully-
convolutional network is applied to this 2D map to predict object instances and
feature vectors for each point visible from the top-down view. The points left
out in this process are treated in a second step, where a graph neural network is
used to propagate the existing feature vectors. Finally, instance grouping based
on the predicted feature vectors is performed by using the mean shift algorithm.
The graph constructed in their work is borrowed from [267], where the so-called
“EdgeConv” network module is introduced. This network module can be directly
integrated into the PointNet architecture while reducing memory footprint and
inference time drastically.

An extension to simple graph convolutional neural networks [30] is presented in
[281] where features from multiple scales are extracted for a more fine-grained
segmentation of the input point cloud.

7.1.3 Works on Radar Data

Semantic segmentation using (automotive) radar data is dealt with only in few
articles.

Depending on the data representation, different approaches are used. For radar
grid maps, neural networks similar to the ones used for images can be utilized. For
example, semantic segmentation of the static environment is performed in [147],
[194], [235]. A grid mapping algorithm precedes the actual segmentation so that
in a first step an image-like structure is created from the radar targets. Grid maps
describing radar specialties, e.g. the distribution of RCS values of objects, can be
created to facilitate all measurement dimensions of the sensor. Since radar data is
relatively sparse, large portions of the emerging grid map remain empty so that
careful weighting of the loss function is necessary during training [235].

In [163], camera and radar data is fused together as a combined input to a neural
network that predicts bounding boxes for cars. From the 3D radar data, grid maps

7.2 methods 161

with multiple height layers are created so that the third dimension of the point
cloud is encoded in different layers of the grid map. A small toy data set [162] was
released to illustrate the abilities of the radar used in the classification task.

Another approach dealing with grid maps is presented in [243]. The goal of their
work is not to provide semantic information but rather to replace the traditional
occupancy grid mapping with a learning procedure so that a complex inverse
sensor model is obtained. Input to the network is a simple 2D grid of clustered
radar data. An encoder-decoder architecture with skip connections is chosen which
creates an occupancy grid map with the three classes “occupied”, “free” and
“unobserved”.

Working directly on radar point clouds for semantic segmentation is done in [52].
They use PointNet++ in combination with “Frustum PointNet” [196] to obtain a
semantic instance segmentation of the point cloud. Even though their approach can
be used for an arbitrary amount of different classes, the algorithm is only evaluated
on the two classes Passenger Car and Clutter due to a lack of annotated data. For
data generation, a single test vehicle is recorded for which its ground truth position
is known. Thereby, all radar targets recorded in the vicinity of the car’s position
can be automatically labeled. The downside of this approach is that the network
gets a high bias towards the object size of the single test vehicle. This is especially
problematic since a bounding box estimation is used for the instance segmentation.
In principle, the network could have learned the car’s size by heart to achieve high
scores but without the ability to generalize to different objects or classes.

7.2 methods

In this section, the network structures and training pipelines for the semantic
segmentation approaches as well as for the recurrent instance segmentation are
presented. In the first part, only the semantic segmentation network is discussed,
before in the second part of this section a novel architecture is introduced. In each
of these two subsections, first the general architecture of the networks is described,
before details about training parameters and other hyper-parameter choices are
explained.

7.2.1 Semantic Segmentation

The presentation of the semantic segmentation approach is split into two parts.
First, the general network structure is introduced and the processing pipeline of the

162 semantic (instance) segmentation of radar point clouds

input data is explained. Then, training parameters like learning rate and weights
for the loss function are listed.

7.2.1.1 Network Structure

The basis for the neural network is the PointNet++ semantic segmentation architec-
ture [198] which is similar to the classification architecture already used in section
6.3.1. The network was originally designed for 3D point clouds, i.e. for points with
three spatial dimensions. The radar data used in this work has, however, only
two spatial dimensions but with the Doppler velocity v̂r, the measurement time
t and the RCS value σ three additional feature dimensions exist which have to be
considered. Secondly, radar data shows much greater differences in density and
sampling rate than the 3D data for which the network was constructed. Therefore,
the individual network modules were adapted to reflect these different properties.

Figure 7.1: Structure of the semantic segmentation network. The convolution kernel sizes
of the three MSG modules are [[32, 32, 64], [64, 64, 128]], for the first two modules
and [[64, 64, 128], [64, 64, 128]] for MSG 3. The figure was published beforehand
in [233].

The structure of the network is shown in Fig. 7.1. Input to the network is a
point cloud P0 with Nin points pi. Each of these points consists of its two spatial
coordinates (x(cc), y(cc)), the measured Doppler velocity (over ground) v̂r, the RCS

value σ and the measurement time t. The measurement time is normalized so
that the earliest timestamp occurring in the scene is set to zero and all other
measurement times are relative to it.

Three MSG modules are followed by three feature propagation modules. The MSG

modules create high dimensional feature vectors for a subset of the input points.
These feature vectors contain information about the surrounding measurements
so that semantic information can be extracted. Since, however, a class probability
vector is desired for each of the input points, the generated features have to be
propagated back to the complete point cloud. This step is performed in the feature
propagation modules. Their task is to transfer the high dimensional feature vectors

7.2 methods 163

from sparser point clouds to the next higher layer. For example, the output point
cloud P3 of MSG module three contains only 256 points. The next denser point
cloud P2 is the one created by MSG module 2 and contains 512 points. To propagate
the features from P3 to P2, for each point in P2, the three nearest neighbors in P3

are selected. The weighted average of the feature vectors of the three points is then
used for the point in P2, after passing them through a set of convolution layers.
Weighting is done via the inverse spatial distance, i.e. points closer to the seed
point are weighted higher.

After the third feature propagation layer, each of the Nin input points is attributed
with a high-dimensional feature vector fi. Using 1D convolutions, the feature
vectors are mapped sequentially down to Nclass = 6 dimensions, see also Eq. (2.16).
During training, dropout layers are used for regularization and to avoid overfitting.
Finally, a softmax layer is applied to convert the six values to a probability vector
whose entries all lie in [0, 1] and sum to one.

7.2.1.2 Training Parameters

As with all neural network architectures, hyper-parameters have to be chosen prior
to the final training and evaluation rounds. This was done in accordance with
[233] on randomly selected subsets of the training data. The results of this hyper-
parameter tuning are not presented here but rather the resulting best performing
architecture is shown. The chosen parameters of each module are listed in Fig. 7.1
and the number of input points is set to Nin = 3072.

For both training and evaluation, point clouds of a fixed time length T are used
as input. The architecture is optimized for T = 0.5 s but different time lengths are
evaluated in section 7.3.3. Similarly to the classification network in section 6.3.1, the
input point cloud is over-sampled if less than Nin targets were measured during
time T. If more than Nin targets are measured in the respective time period, the
Nin points with highest Doppler velocity v̂r are chosen. During inference, the same
value for T is chosen and if targets are left out due to the input size restriction,
the class label is propagated from the nearest neighbor for which a prediction was
made. In this way, predictions for all input points can be made.

Cross-entropy is used as a loss function. Let yik and ŷik describe the ground truth
probabilities and predicted class probabilities of point i. Then yic = 1 if point pi
belongs to class c and yik = 0 for all k 6= c. The six values ŷik with k = 1, 2, . . . , 6 are

164 semantic (instance) segmentation of radar point clouds

the output of the network after the softmax layer. The loss function is then defined
as

Lsem =
1

Nin

Nin

∑
i=1

ωi

6

∑
k=1

yik log
1

ŷik
, (7.1)

where ωi is the weight factor of point i. In preceding experiments, the weights ωi
were fixed to ωstatic = 1 and ωdynamic = 7 for points of the static and any dynamic
class, respectively.

Adam [123] was used as an optimizer with an initial learning rate of α = 0.001.
The learning rate was decreased every 300 000 samples by a factor of 2. Training
was done with a batch size of 24 for 25 epochs. Including dynamically loading of
training data from disk, training takes about 45 min per epoch on an Nvidia GTX
1080 GPU.

Just as for the PointNet++ classification network, the following two augmentation
steps are done during training to enrich the input data. With a probability of 80 %,
the targets are shifted randomly in space, time, velocity and RCS. The distances of
the shifts are chosen from a normal distribution centered at zero and are clipped
to 0.2 m for the spatial shift, 0.5 m/s for the velocities and 0.5 dBsm for the RCS.
Secondly, random dropout was applied to the targets so that a target was removed
from the scene with a probability of 30 %.

7.2.2 Recurrent Instance Segmentation

Similar to the semantic segmentation network presented in the last section, now
the novel recurrent neural network structure is presented in two steps. Again,
the general structure is explained first, before training parameters and the loss
functions are described in a second step.

7.2.2.1 Network Structure

The network architecture used for the recurrent instance segmentation is best
described by splitting the network into a set of modules, where each module fulfills
one individual sub-task. These modules and their interaction is described in the
following subsections. The recurrent nature of the network is achieved through
the two modules memory abstraction and memory update. A simple LSTM cannot be
incorporated into the network since if it was applied to the individual targets, an
ordering of the points would be needed. If it was applied to the created instances,
an association of the instances of the different time step would be needed which is

7.2 methods 165

in general a complex topic on its own. An overview of the network structure and
the interaction of the different modules is given in Fig. 7.2.

Input

M
em

ory

Point C
loud

Output
Instance Segmentation

of Point Cloud

Combined
FeaturesM

emAM

M
emUM

PointFM SemanticSegm.

Direc-tions

Instance
Classifier

Point C
loud

Figure 7.2: Structure of the recurrent instance segmentation network. The input point
cloud is passed to the point feature generation module (teal box) and the
memory abstraction module (blue box), where feature vectors for each point are
generated and afterwards combined (red box). The direction module and the
semantic segmentation module (violet and light blue box, respectively) support
the final instance classifier (green box). The light grey dashed arrows symbolize
the forward path whereas the dark grey arrows show the update step of the
memory point cloud during which the memory update module (yellow box) is
utilized.

input point cloud The network expects as input a point cloud with Nin

points p1, . . . , pNin . As before, each point (radar target) pi is defined by two spatial
coordinates, the measured RCS value σi, the ego-motion compensated Doppler
velocity v̂r,i and the measurement time ∆ti relative to the earliest measurement in
the complete input data. The spatial coordinates are given in both car coordinates
(x(cc)

i , y(cc)
i) as well as in global coordinates (x(gc)

i , y(gc)
i). The global coordinates

are later used for a lookup of neighboring points, whereas the car coordinates are
used as input features. The input point cloud is passed into the two blocks point
feature generation module and memory abstraction module.

memory point cloud As the name suggests, the memory point cloud works
as a memory block for the network. It consists of a list of Nm points q1, . . . , qNm

of previous inputs. Each of these points is defined by the same six parameters as
the input points pi as well as one additional km-dimensional feature vector gj. The

166 semantic (instance) segmentation of radar point clouds

construction of this feature vector as well as the filling of the memory point cloud
is described in the paragraph about the memory update module.

point feature generation module For each input point pi, a k f -dimensional
feature vector fi is created by passing the input point cloud through a cascade of
PointNet++ MSG modules and matching feature propagation modules, see also
section 7.2.1.1. The car coordinates (x(cc)

i , y(cc)
i) as well as v̂r,i, ti and σi are used as

input features to the first MSG module. Just as described for the semantic segmenta-
tion network, the time dimension is normalized so that the earliest measurement
occurs at t = 0. The dimension k f of the created feature vectors fi is a tunable
parameter and depends on the size of the convolution layers in the feature propaga-
tion modules. This module is similar to the first part of the semantic segmentation
network described in section 7.2.1.1 since for each point a high-dimensional feature
is generated which takes neighboring points into account. In Fig. 7.2, the module is
displayed as a teal box with label Point FM.

memory abstraction module To fuse the input point cloud with information
from previous time steps, the memory abstraction module (Mem AM, blue box in
Fig. 7.2) performs neighborhood searches for each point pi from the input point
cloud within the memory point cloud. That is, each input point pi with global
coordinates (x(gc)

i , y(gc)
i) is considered in a first step as a center of a circular search

area with radius r. From all points qj of the memory point cloud within this area,
the first nsample points are selected along with their km-dimensional feature vectors
gj and are then grouped together. If for one input point no neighboring points
in the memory point cloud could be found, all nsample feature vectors are set to
zero. If less than nsample different neighbors are found, the already detected points
are repeated to guarantee a fixed size tensor in the subsequent computations. The
neighborhood searches are performed in the global coordinate system since due to
the ego-motion of the vehicle the car coordinates are in general time dependent
and a comparison of target positions from different time steps is not possible in
this reference frame. The collection of neighboring points is passed through a set of
convolution layers followed by max-pooling so that a new kma-dimensional feature
vector is created. Applying max-pooling after the convolution operation causes
that only the neighbor with the highest activation with respect to the convolution
kernel contributes to the output which in turn makes the operation invariant to
permutations of the points. The whole process is similar to the MSG modules in
PointNet++ with the exception that the neighborhood search is performed in the
memory point cloud and the central points stem from the input data. The memory
abstraction module is responsible for propagating information from past inputs
to the current one so that not only information from the current point cloud is

7.2 methods 167

used for the segmentation task but also the evolution of the input data is taken into
account.

feature vector combination The memory abstraction module outputs a kma

dimensional feature vector for each input point pi and the point feature generation
module creates k f -dimensional feature vectors. To create one single feature vector
per input point, the outputs are simply concatenated, resulting in one k f + kma

dimensional feature vector (displayed as a red box in Fig. 7.2). This feature vector
then encodes information about the current input point, its surrounding, and earlier
measurements in the neighborhood.

semantic segmentation module To obtain a vector of class probabilities for
each point of the input point cloud, the tensor holding all the combined k f + kma

dimensional feature vectors fin is passed through a set of 1D convolution layers.
These convolution layers can be interpreted as applying one shared fully connected
layer to each of the individual points: fout = W · fin. This approach is discussed in
more detail in section 2.1.2.1 and illustrated in Fig. 2.4. The final convolution layer
of this module creates a six-dimensional output vector for each input point, which
contains the unscaled probabilities of the six classes.

direction module The architecture of the direction module is very similar to
the one of the semantic segmentation module. Its task is to generate displacement
vectors dr = (dx(cc)

i , dy(cc)
i) for each input point pi so that the shifted points

p̃i =
(

x(cc)
i + dx(cc)

i , y(cc)
i + dy(cc)

i , σi, v̂r,i, ti
)

lie at the center of the instance the
respective point belongs to. If a point does not belong to a moving object, the
displacements (dx(cc)

i , dy(cc)
i) should be zero. If for example pi is one of the |I|

points that belong to instance I and the average spatial position of all points within
I is given by (x̄, ȳ), then the ideal outputs of the direction module for this point are
dx(cc)

i = x̄− x(cc)
i and dy(cc)

i = ȳ− y(cc)
i . The two numbers dx(cc)

i and dy(cc)
i are the

final output of the direction module after a number of one-dimensional convolution
operations is applied to the input features fin, similar to the semantic segmentation
module.

memory update module Integration of targets of the current point cloud
into the internal memory point cloud is done in the memory update module (Mem
UM, orange box in Fig. 7.2). The class probabilities predicted in the semantic
segmentation module are concatenated with the feature vectors generated for the
current input point cloud to form the input to a set of convolution layers. The
output of these layers is one km-dimensional feature vector for each input point.
These feature vectors are then stored in the memory point cloud along with the

168 semantic (instance) segmentation of radar point clouds

global coordinates (x(gc)
i , y(gc)

i) of the point to which this feature vector belongs
to. Since the memory point cloud cannot grow arbitrarily but is restricted to Nm

points, the oldest Nin points are removed to make space for the new entries. It
should be noted that even though the size of the memory point cloud is restricted
and old points are removed, the update scheme allows for passing information
over arbitrarily long times. This is possible since the combined feature vectors
of the current input point cloud and the previous memory point cloud contain
information from the last state of the memory and hence information from the
neighborhoods of the previous memory points. Even if points are removed from
the memory point cloud, their information content can still be passed on if they
were processed once by the memory abstraction module.

instance classifier The final output of the network is a list of instances
along with a predicted class label for each instance. This output is generated
from the combined feature vectors, the semantic segmentation output and the
displacement vectors created in the direction module. In a first step, instance
candidates are created from the displacement vectors. This is done by shifting
all points by the predicted values of dx(cc)

i and dy(cc)
i , i.e. pi → p̃i =

(
x(cc)

i +

dx(cc)
i , y(cc)

i + dy(cc)
i , σi, v̂r,i, ti

)
. The better the direction module performs, the closer

all points of the same instance lie together in the shifted point cloud. Based on
the predicted labels of the semantic segmentation module, mdyn points of the five
dynamic object classes are chosen from the input point cloud. For each of these
points, mr points within a radius rdyn around the seed point are selected. The
created neighborhoods are then merged together to a maximum of minst instances
with np,inst points per instance. Two neighborhoods are merged if they have a
non-empty intersection, i.e. if at least one point belongs to both neighborhoods.
To guarantee fixed size tensors, resampling of the number of points per instance
np,inst as well as the number of instances minst is done. That is, if less than minst

instances are created (or less than np,inst points make up one instance), the first
detected instance (or point within an instance) is repeated the appropriate number
of times. The number of unique instances is stored so that later on only the correct
number of instances is used for both training and evaluation. The parameters np,inst

and minst are chosen large enough so that the typical number of points per instance
and number of instances in a scene can be predicted. The instance creation process
is depicted for one example scene in Fig. 7.3. The semantic segmentation module
initially predicted in this case the two labels Large Vehicle and Passenger Car

for one single Large Vehicle object. After shifting the targets by the predicted
direction vectors, performing neighborhood searches and merging the resulting
groups, a single instance is created. The instance classifier then predicts one single
label for all targets of this instance – in this case the correct label Large Vehicle is
chosen.

7.2 methods 169

Seed Points
Large Vehicle
Passenger Car

Static

a) b) c)

Created Instance

Figure 7.3: Instance creation for one example object. a) Predictions from semantic segmen-
tation module and predicted direction vectors. b) Shifted targets, selection of
seed points, neighborhood search. c) Merged neighborhoods form one instance,
which is classified by the instance classifier.

Applying the instance generation algorithm on the shifted point cloud allows
to use a greater search radius rdyn since points of the same instance are closer
together and points not belonging to the instance are on average further away
so that it becomes less likely that points are added to an instance which are
in fact member of a different instance or belong the static environment. After
creation of the instances, all points belonging to this instance are passed together
through a PointNet++ classification network, similar to the one described in section
6.3.1. In the shape feature generation part of this network, the five basic features
of each point pi =

(
x(cc)

i , y(cc)
i , σi, v̂r,i, ti

)
are used as input to a series of MSG

modules. The combined feature vectors generated before are used as input for a
set of convolution layers. This allows incorporating the encoded time information
into the classification step. The feature vectors generated in these two paths are
concatenated and finally passed through fully connected layers to obtain the final
class probability vector.

7.2.2.2 Training Parameters

The size of the input point cloud is set to Nin = 1000 and points are collected
from a fixed time range of Trec. = 150 ms. The memory point cloud can hold up to
Nm = 2× Nin = 2000 targets. The other free hyper-parameters of the network are
listed in the appendix in Section A.5.

Training of the network is done in four consecutive steps. Firstly, the semantic
segmentation branch of the network is trained so that both the direction module
and the instance classifier are neglected. Just as in the previous setting where only a

170 semantic (instance) segmentation of radar point clouds

semantic segmentation network was considered, the cross-entropy loss function on
a per-target basis is used:

Lsem =
1

Nin

Nin

∑
i=1

ωi

6

∑
k=1

yik log
1

ŷik
. (7.2)

Just as before, ωi is the weight factor of point i and the two symbols yik and ŷik
describe the ground truth probabilities and predicted class probabilities, respec-
tively. In preceding experiments, the weights ωi were fixed to ωstatic = 0.5 and
ωdynamic = 8 for points of the static and dynamic class, respectively. Training of the
semantic segmentation branch is done for 10 epochs.

In the second training step, the direction module is trained for another six epochs
while all other trainable weights are kept constant. That is, only the parameters of
the direction module are altered and all weights of the preceding modules remain
unchanged. Therefore, the features extracted in the point feature generation module
and in the memory abstraction module remain the same and only the 1D convolution
layers in the direction module itself can be tuned. The following loss function is
used during this training stage:

Ldir =
1

N̂I

N̂I

∑
j=1

|Ij|

∑
l=1

||djl − d̂jl ||2
|Îj|

. (7.3)

The value N̂I stands for the number of ground truth instances Ij, which in turn
are constructed from a set of |Ij| targets. The 2D vector djl describes the ground
truth distance from target l of instance j to the instance’s center and similarly, d̂jl
symbolizes the prediction. The inner sum runs over all targets within one ground
truth instance Ij so that each target enters the loss function only once for the
ground truth instance it belongs to. Distances to other instances are not considered.
For example, if point pi is the lth point of instance j, then djl = (dx(cc)

i , dy(cc)
i) and

the point pi does not enter the loss function in any other sum. Similar approaches
for predicting vectors to instance centers are used in [6], [256].

In the third phase, the sum of the two previously used functions

Lcomb. = Lsem + Ldir (7.4)

is used as a combined loss function for another 10 epochs. In contrast to the
previous stage, now all parameters can be optimized, i.e. also the weights of the
preceding modules. Avoiding the second training step and training directly with
the combined loss function yielded poor results since the initially random weights
of the direction module did not converge to useful values.

7.3 results 171

Finally, the instance classifier is trained while the weights of all other layers remain
fixed. Similar to the semantic segmentation training phase, cross-entropy is used as
a loss function. However, now the loss is calculated per instance and not per target:

Linst =
1

NI

NI

∑
i=1

wi

6

∑
k=1

yik log
1
ŷik

. (7.5)

The factor NI stands for the predicted number of unique instances, while wi are
weights for instances created for truly dynamic objects and for instances which
contain only static points. The predicted and ground truth class probabilities are
denoted by the two symbols ŷik and yik, respectively. Since a predicted instance can
contain targets from different ground truth classes, a scheme is needed to ascribe
a single ground truth label to the instance. If all targets of the predicted instance
are in fact members of the Static class, then the ground truth label is defined as
Static. If at least one of the targets is a member of one of the other five classes,
then the maximum occurring label of these five classes is chosen, i.e. the mode
of the ground truth class label distribution of the instance’s targets is used as a
ground truth label for the whole instance. For instances with a Static label, the
weight factor wstatic = 0.5 is used and for instances with a ground truth label from a
dynamic object class, the weight wdynamic = 1.5 is selected. Training of the instance
classifier is done for 15 epochs with a batch size of 20.

All training steps are performed with the same sequence length of six consecutive
time steps. Adam [123] is used as an optimizer with learning rate α1 = 0.001 for all
but the third training phase where a reduced learning rate of α2 = 0.0002 is chosen
so that the already learned features are only refined.

7.3 results

Outcomes of the two different neural network architectures are presented in this
chapter. Since similar experiments are performed for both approaches, results are
shown side-by-side in the subsequent sections. Except for the section about the
classification performance on objects, all scores given here are calculated per target,
allowing for a direct comparison with the classifiers presented in the last chapter.

7.3.1 Per-Target Evaluation

During training of the networks, augmentation of the input data was used to help
the network generalize to unseen data. The impact of using augmentation is ana-

172 semantic (instance) segmentation of radar point clouds

lyzed for the semantic segmentation network by training once with augmentation
and once without it.

Car Ped. Ped.Group Two-Wh. L. Vehicle Clutter

Predicted label

Car

Pedestrian

Ped.Group

Two-
Wheeler

Large
Vehicle

Clutter

Tr
ue

la
be

l

90.8 %
(1 744 598)

0.1 %
(1278)

0.4 %
(8434)

0.6 %
(12 210)

3.5 %
(68 188)

4.6 %
(87 677)

0.5 %
(2247)

57.6 %
(244 066)

32.1 %
(136 071)

1.3 %
(5638)

0.0 %
(180)

8.5 %
(35 845)

0.5 %
(4788)

9.3 %
(87 283)

84.5 %
(789 702)

0.6 %
(5860)

0.1 %
(1130)

4.9 %
(46 231)

6.5 %
(15 403)

4.2 %
(10 078)

8.1 %
(19 287)

75.9 %
(180 192)

0.1 %
(268)

5.1 %
(12 030)

11.3 %
(103 416)

0.0 %
(337)

0.2 %
(2041)

0.1 %
(687)

80.7 %
(736 821)

7.6 %
(69 745)

0.4 %
(492 127)

0.1 %
(107 552)

0.1 %
(139 836)

0.0 %
(29 143)

0.2 %
(271 915)

99.2 %
(129 167 444)

Car Ped. Ped.Group Two-Wh. L. Vehicle Clutter

Predicted label

91.2 %
(1 753 698)

0.1 %
(1269)

0.3 %
(6244)

0.6 %
(12 445)

3.5 %
(67 688)

4.2 %
(81 041)

0.8 %
(3318)

61.0 %
(258 587)

28.2 %
(119 379)

1.7 %
(7180)

0.1 %
(294)

8.3 %
(35 289)

1.0 %
(9056)

9.8 %
(91 815)

83.3 %
(778 510)

0.9 %
(8359)

0.5 %
(4219)

4.6 %
(43 035)

7.6 %
(17 949)

4.1 %
(9673)

4.8 %
(11 321)

78.6 %
(186 466)

0.1 %
(125)

4.9 %
(11 724)

12.3 %
(112 087)

0.0 %
(112)

0.2 %
(1720)

0.1 %
(616)

79.4 %
(725 386)

8.0 %
(73 126)

0.4 %
(520 944)

0.1 %
(112 299)

0.1 %
(133 893)

0.0 %
(31 753)

0.2 %
(290 665)

99.2 %
(129 118 463)

0

0.3

0.6

1

Figure 7.4: Confusion matrices from the semantic segmentation network. Left: Training
without augmentation. Right: Training with augmentation.

The two resulting confusion matrices are displayed in Fig. 7.4, showing that using
augmentation increases the performance slightly (F1 = 0.776 with augmentation
versus F1 = 0.775 without augmentation). Due to this finding, augmentation is also
used during training of the recurrent instance segmentation network. The confusion
matrix on the right hand side of Fig. 7.4 shows the results of the best performing
semantic segmentation network. The achieved F1 score is identical to the one of
the PointNet++ & LSTM approach presented in the previous chapter. However, the
underlying precision and recall values are quite different. While for the PointNet++
& LSTM classifier the precision value is slightly higher than the recall value (see
Table 6.5), this relationship is inverted for the semantic segmentation network: the
recall value is with 0.821 considerably higher than the precision, which ranges at
0.739. The precision value is mostly influenced by the number of targets that were
assigned to one of the dynamic classes even though they truly belong to the Static

class (last row of the confusion matrix). The influence of the Static class is large
simply because it contains so many locations.

This allows for the conclusion that the semantic segmentation network misses way
less truly moving targets in comparison to the classification approach at the cost
of creating many more false positive targets that are truly members of the Static

class. Depending on the application, either of the two behaviors is favorable.

Training of the recurrent instance segmentation network was done with six consec-
utive time steps. Due to the recurrent nature of the network, it is however possible
to perform the evaluation with arbitrarily many time steps. As it will be shown

7.3 results 173

in the next sections, the more time steps are used the better the score gets. The
confusion matrices shown in Fig. 7.5 are created with nt = 14 consecutive time
steps.

Car Ped. Ped.Group Two-Wh. L. Vehicle Clutter

Predicted label

Car

Pedestrian

Ped.Group

Two-
Wheeler

Large
Vehicle

Clutter

Tr
ue

la
be

l

92.2 %
(1 772 857)

0.0 %
(790)

0.2 %
(3207)

0.3 %
(6224)

2.6 %
(50 505)

4.6 %
(88 802)

0.4 %
(1496)

67.9 %
(288 020)

25.0 %
(106 073)

1.3 %
(5466)

0.0 %
(134)

5.4 %
(22 858)

0.3 %
(3171)

10.6 %
(99 556)

82.1 %
(767 965)

3.5 %
(32 994)

0.1 %
(525)

3.3 %
(30 783)

4.5 %
(10 675)

2.7 %
(6502)

4.3 %
(10 210)

84.3 %
(200 121)

0.1 %
(277)

4.0 %
(9473)

8.5 %
(77 691)

0.0 %
(204)

0.1 %
(521)

0.1 %
(1317)

83.6 %
(763 314)

7.7 %
(70 000)

0.2 %
(314 507)

0.1 %
(84 901)

0.1 %
(135 834)

0.0 %
(22 434)

0.1 %
(192 492)

99.4 %
(129 457 849)

Car Ped. Ped.Group Two-Wh. L. Vehicle Clutter

Predicted label

74.2 %
(1 427 073)

0.0 %
(313)

0.6 %
(10 895)

0.2 %
(4598)

2.4 %
(46 674)

22.5 %
(432 832)

0.2 %
(849)

45.6 %
(193 333)

23.1 %
(98 046)

0.4 %
(1839)

0.0 %
(158)

30.6 %
(129 822)

0.8 %
(7294)

6.5 %
(60 973)

68.7 %
(641 916)

3.3 %
(30 416)

0.1 %
(1038)

20.7 %
(193 357)

3.0 %
(7105)

2.7 %
(6507)

10.6 %
(25 078)

62.6 %
(148 479)

0.1 %
(142)

21.1 %
(49 947)

7.3 %
(66 312)

0.0 %
(215)

0.7 %
(6102)

0.1 %
(1172)

55.7 %
(508 753)

36.2 %
(330 493)

0.3 %
(429 840)

0.1 %
(73 973)

0.2 %
(219 260)

0.0 %
(23 011)

0.2 %
(229 887)

99.3 %
(129 232 046)

0

0.3

0.6

1

Figure 7.5: Confusion matrices of the recurrent instance segmentation network. Left: All
five target-features are used and evaluation is done with 14 time steps. Right:
Resulting confusion matrix if only the two position features are used as input.

In comparison to the output of the semantic segmentation network, the recurrent
instance classifier achieves not only a higher recall value, but also produces less
false positives so that the precision increases as well. The true positive rates are
greater than the ones from the semantic segmentation network for almost all classes
with the only exception being the Pedestrian Group class where a minor decrease
can be found. Noteworthy confusions appear once again between the Pedestrian

and Pedestrian Group classes as well as between the Passenger Car and Large

Vehicle categories. The origins of these errors are most probably the same as
already discussed in Section 6.2.2.4. As described in Section 7.2.2.1, the recurrent
network outputs not only predictions for each instance but also has a semantic
segmentation branch. These predictions can now also be compared to the pure
semantic segmentation network with no recurrent structure. This comparison shows
a slight superiority of the recurrent network over the simpler feed-forward network
but at the same time, the scores of the recurrent network’s semantic segmentation
branch are considerably lower than the ones from the instance segmentation.

To provide an insight on how the directions module performs, Fig. 7.6 displays
three ground truth instances in the left panel and the predicted displacement
vectors in the right panel. All targets belonging to the Passenger Car are noticeably
shifted inwards so that the network successfully learned that these targets belong
together. The instance creation module then has no difficulty in grouping all these

174 semantic (instance) segmentation of radar point clouds

points together so that the instance classifier can finally predict a single class label
for all of the targets.

0 5 10 15 20 25 30 35

x(cc) (m)

−10

−5

0

5

10

y(c
c)

(m
)

20 22 24 26 28

x(cc) (m)

−8

−6

−4

−2

0

Car

Pedestrian

Two-Wheeler

Static

Figure 7.6: Left: Ground truth instances. Right: Predicted displacement vectors for each
target.

Similarly, the predicted displacements for the bicycle’s targets also point towards
the center of the object. A problem that was noticed for multiple objects is that the
network manages to predict the correct direction of the vectors but their extent
remains too small so that even though a small shift is done in the right direction,
multiple instances are created for one object. This is analyzed in more detail in
Section 7.3.4, where the number of created and missed objects is evaluated.

7.3.2 Feature Importance

To evaluate how the different features influence the classification performance,
they are removed one after the other from the input data. Thereby, an F1 score is
obtained for different input combinations so that it can be assessed how much each
feature contributes to the total score. This approach is similar to the permutation
importance measure where the values of a single feature are interchanged among
all inputs and the decrease in performance is monitored, see also the last part in
Section 2.1.1.2. Removing the feature entirely from the input data and re-training
the classifier on this smaller number of features has very similar expressiveness.

In Table 7.1, the F1 scores as well as precision and recall values are listed for
the semantic segmentation network and the instance classification approach for
different input feature combinations. The two spatial positions x(cc) and y(cc) of the
locations are abbreviated as x and y in the table, σ is the RCS value, v̂r describes the
ego-motion compensated Doppler velocity and ∆t is the time difference between a
target’s measurement time and the earliest timestamp in the point cloud.

7.3 results 175

Semantic Segmentation Instance Segmentation

Features F1 Precision Recall F1 Precision Recall

x, y, σ, v̂r, ∆t 0.776 0.739 0.821 0.811 0.777 0.849

x, y, v̂r, ∆t 0.769 0.732 0.814 0.799 0.770 0.831

x, y, σ, v̂r 0.760 0.721 0.808 0.799 0.768 0.833

x, y, σ, ∆t 0.736 0.731 0.740 0.727 0.731 0.723

x, y 0.591 0.602 0.583 0.694 0.717 0.677

Table 7.1: Scores obtained for different input combinations, displaying the importance of
each feature.

Since the network needs the spatial positions of each location to generate feature
vectors for a target and its neighborhood, these two input feature cannot be removed
without altering the whole network architecture. The first observation that can be
made from this table is that in all cases the recurrent instance classification network
outperforms the semantic segmentation approach.

Secondly, removing either the RCS value σ or the measurement time ∆t from
the input data (second and third row) results in similar F1 scores so that these
two features are of almost the same importance. This statement holds true for
both neural networks. If, however, the Doppler information is removed, a more
considerable drop in performance can be observed (fourth row). This indicates that
among the three features σ, v̂r and ∆t, the Doppler velocity is the most important
feature for the classification.

Using only the two spatial positions as input shows an even greater decrease in
performance. The resulting confusion matrix is shown on the right side of Fig. 7.5.
The extent of the decrease differs highly between the two architectures: for the
semantic segmentation network, the difference in F1 score between the case where
both σ and ∆t are still available to the case where only x and y are used as input is
much larger than for the instance classification network. It is therefore interesting
to note that removing either σ or ∆t has a very small impact on the score if v̂r is
still available (rows two and three) but if also the Doppler information is removed,
the semantic segmentation network makes great use of these two features (cf. rows
four and five of the table). For the instance classification network, the importance
of σ and ∆t remains more constant, i.e. the performance drop between rows four
and five is of similar magnitude as between row one and two as well as between
row one and three where σ and ∆t are removed individually. This also shows that

176 semantic (instance) segmentation of radar point clouds

the instance segmentation approach makes far more use of the spatial positions
of the targets than the simpler semantic segmentation network. This effect can be
possibly explained by the fact that with the direction module the network is forced to
make use of the spatial relationship between the targets in order to create instances
out of them.

7.3.3 Dependence on Sequence Length

The performances of the two approaches depend on the length of input point cloud
T (for the semantic segmentation network) and the number of input time steps nt

(in the case of the recurrent network).

For the simpler semantic segmentation network, it can be expected that the per-
formance increases the greater T gets since then the properties of the dynamic
objects become more pronounced. However, this only holds true up to the point
where the number of measured targets exceeds the number of input points Nin of
the network. If this happens, then additional targets cannot be processed anymore
by the network or alternatively, these points have to replace some of the earlier
measured points, e.g. by selecting the Nin points with the highest v̂r values. This
replacement would then cause that the network has less information to infer from
the static environment where dynamic objects could be and how they relate to the
overall scene. Therefore, the structure of the semantic segmentation network sets
an upper limit to the number of input points that can be processed and hence the
sequence length T cannot be extended arbitrarily. The network was designed for a
sequence length of T = 0.5 s with Nin = 3072. In this section it is analyzed how the
performance changes, if data from shorter time windows is used as input.

The recurrent structure of the instance classification network allows for arbitrarily
long input sequences with nt steps. Each of the input point clouds has the same
time length Trec. so that in contrast to the semantic segmentation approach, the
network structure itself has not to be modified if sequences with larger nt are used
as input.

In Fig. 7.7, the scores of the semantic segmentation network as well as the scores
of the recurrent instance segmentation approach are shown. For the recurrent
algorithm, the two branches of the semantic segmentation and the instance seg-
mentation are displayed. It should be noted that the network was trained with a
fixed number of time steps nt = 6 but evaluated with varying nt. The semantic
segmentation network was newly trained and evaluated for each value of T.

From the plot of the scores achieved by the semantic segmentation network it
becomes obvious that the network was designed for T = 0.5 s. With shorter scenes

7.3 results 177

0.2 0.3 0.4 0.5
Scene length (s)

0.74

0.75

0.76

0.77

0.78

0.79

0.80

F 1
sc

or
e

Sem. Seg. Network

2 4 6 8 10 12 14
Number of time steps nt

0.74

0.76

0.78

0.80

0.82

F 1
sc

or
e

Semantic Segmentation
Instance Segmentation

Figure 7.7: Dependence of the F1 score on the temporal length of the input data. Left:
Scores from the semantic segmentation network. Right: F1 scores of the instance
classification network, showing both the sem. seg. branch of the network and
the instance classifier.

and subsequently less input targets, the performance drops considerably. Evaluating
with larger values of T is not directly possible since then the network architecture
would have to be changed. Further experiments proofed that performance saturates
around F1 = 0.78 even if the network structure is altered to process more input
targets.

For the recurrent network, saturation is visible for both output branches. Since
the memory point cloud of the network can hold only twice the number of input
points, one could expect that after nt = 3 the score cannot increase any further.
Nevertheless, due to the design of the memory update module, features of earlier
inputs can be propagated to much later time steps. Even though a clear saturation
is visible, the scores of the instance segmentation output continuously increase.
Because of this finding, the confusion matrices shown in Fig. 7.5 and the scores
listed in Table 7.1 are extracted from the evaluation with nt = 14 time steps. The
recurrent network is hence able to make use of the temporal evolution of the input
scenes and to propagate the extracted information over multiple time steps. For
the recurrent network, the abscissa in Fig. 7.7 shows the number of time steps nt,
whereas for the semantic segmentation network the abscissa lists the sequence
length T. This choice is made because for a recurrent network it is more natural
to consider the number of sequence elements nt rather than the total time. The
total duration of data shown to the recurrent network can be recovered by simply
multiplying nt with the duration Trec. = 150 ms of each single step.

Since training the network with larger nt requires more memory on the GPU, this
step was restricted to nt = 6. Experiments with nt = 4 during training showed an

178 semantic (instance) segmentation of radar point clouds

overall decrease in performance so that possibly with nt > 6 even higher scores
could be obtained.

7.3.4 Evaluation per Object Instance

Up to now, evaluation was done on a per-target basis. Since the recurrent network
predicts not only a class label per target but creates instances as well, it is possible
to evaluate the classifier’s performance on a per-object basis.

To this end, the Intersection Over Union (IoU) between the predicted instances and the
ground truth instances is calculated for each output of the network. The predicted
object with the largest IoU for one ground truth instance is then associated with
it. If no prediction overlaps with a ground truth object, this object is counted as
an overlooked object. If multiple predictions have an IoU greater than zero with a
ground truth object, only the one with the largest IoU is associated and the other
ones are considered as additional predictions. If a prediction has no overlap with any
ground truth object, it is counted as a false positive.

For the overlooked objects it is measured how long they remain unobserved. Since
the instance segmentation network processes point clouds of length T = 0.15 s,
objects are considered as overlooked for time ranges which are multiples of T. The
processing time of the network is not considered in this calculation. To allow for
a direct comparison, the same evaluation is also performed for the approaches
described in Chapter 6 where a clustering algorithm is used for the instance
creation.

0.15 0.45 0.75 1.05 1.35 1.65 1.95 2.25 2.55
Duration (s)

0.0

0.2

0.4

0.6

0.8

O
ve

rl
oo

ke
d

O
bj

ec
ts

,R
el

at
iv

e
C

ou
nt

s

Recurrent Instance Segmentation
Random Forest + DBSCAN+

Random Forest + DBSCAN−

Figure 7.8: Relative number of overlooked objects for three different approaches: recurrent
instance segmentation network, DBSCAN+ and DBSCAN−.

7.3 results 179

In Fig. 7.8, the relative number of these missed objects is shown. The chart is
normalized so that the sum of the bar heights corresponding to the instance
segmentation network equals one. The same normalization weights were also
used for the two random forest approaches so that the bar heights can be directly
compared. This choice implies that the bar heights of these two algorithms do
not sum to one. The general trend of the three distributions is identical: the most
common case is that if an object was missed, it is only overlooked for one time
step. For the instance segmentation network, this event accounts for over 50 % of
all cases. Of all missed objects, less than 20 % are overlooked for two consecutive
time steps and this number drops to about 10 % for three time steps.

The values for both DBSCAN+ and DBSCAN− are higher than for the network. For
example, about twice as many objects are overlooked by DBSCAN− than by the
network in the 0.3 s bin. This finding is well aligned with the results discussed in
Section 7.3.1, where it was shown that on a per-target basis the neural network
predicts fewer points as static that truly belong to a dynamic object. As one could
expect from the evaluation performed in the last chapters, with DBSCAN+ less
objects are overlooked than with DBSCAN−.

−80−60−40−20020406080

y(cc) (m)

−20

0

20

40

60

80

100

x(c
c)

(m
)

0.0

0.2

0.4

0.6

0.8

1.0

Ti
m

e
(s

)

Figure 7.9: Positions of objects overlooked by the instance segmentation network. The
average time an object was not identified in a certain cell is color-coded.

To assess how the objects overlooked by the network are spatially distributed,
Fig. 7.9 displays the object’s centers in a Cartesian grid map. The average value
of the times an object was overlooked in one of the 10 cm × 10 cm cells is color

180 semantic (instance) segmentation of radar point clouds

Method Passenger

Car
Pedestrian

Pedestrian

Group

Two-

Wheeler

Large

Vehicle

Ground Truth 13.4 7.3 11.5 18.7 31.4

Instance Segm. Network 10.5 7.4 8.8 19.3 14.3

DBSCAN+ 5.1 3.1 5.1 7.2 10.6

DBSCAN− 5.4 3.4 5.7 7.5 11.9

Table 7.2: Average number of targets per ground truth and per predicted object in a time
bin of size 0.15 s.

coded in this plot. The visualization displays that in general the network’s mistakes
are distributed homogeneously. This means, for example, that an object far away
is equally likely missed as an object nearby the ego-vehicle. This result is rather
surprising given that considerably less targets are measured on far distant objects,
see also Fig. 4.12.

To quantify the differences between the network’s object predictions and the ones
from DBSCAN± with a random forest as classifier, it is instructive to look at the total
numbers of predicted instances. It should be kept in mind that the numbers shown
here strongly depend on the chosen time window size, since of course the number
of predicted objects increases if the network is queried more often with shorter
time windows. Accumulating all ground truth instances in the 0.15 s time windows
shows that in total about 402 000 individual objects exist. The network predicted in
total about 525 000 instances, DBSCAN+ over 985 000 objects and DBSCAN− created
around 911 000 instances. That is, the clustering methods created more than twice
as many objects as needed and the network predicted only about 30 % more objects
than the number of ground truth objects actually is. At the same time, the number
of overlooked objects is with about 39 000 objects much smaller than for DBSCAN+

(73 000 overlooked objects) and DBSCAN− (87 000 missed objects).

It is also instructive to compare the sizes of the created objects in terms of the
number of targets they contain. These numbers are listed in Table 7.2 for each class
along with the average sizes of the ground truth objects. Both DBSCAN approaches
create considerably smaller clusters than the network’s instance creation module.
This finding highlights again that a large part of the classification problem actually
lies at the clustering stage since no classifier can perform well if the input data is
too noisy and contains too little class specific information. However, the network
still fails to assign targets of a Large Vehicle instance to one single object since the
average number of targets per predicted object is less than half of the number in
ground truth objects. This in turn explains the large confusion between Passenger

7.3 results 181

Car and Large Vehicle targets seen in the matrices in Fig. 7.5: If not all targets of
a Large Vehicle instance are grouped together properly, the resulting object looks
rather like a Passenger Car instance than a Large Vehicle.

7.3.5 Ensemble Learning

The recurrent instance segmentation network can be interpreted also in one further
way: Everything up to the instance classification can be considered as a cluster-
ing algorithm and the final part of the network does the actual classification of
the predicted instances. With this interpretation, one obvious experiment is to
exchange the instance classification head of the network with a different classifier.
For example, a random forest can be trained on the instances predicted by the
network and later on used for evaluation as well. This degrades the whole network
to a substitute for DBSCAN± but allows for a comparison with these clustering
algorithms. Since a random forest cannot work with the bare points of an instance
as input data, features are calculated in the same way as described in Section 6.2.1.

Another possibility is to add these manually calculated features to the instance
classification network in order to check if these additional features are helpful for
the classification task or if the network performs well enough with the automatically
generated features.

Figure 7.10: Flowchart showing the different evaluation schemes for the ensemble classifier.

Finally, the predictions made by the random forest and the instance classification
network can be averaged to obtain an ensemble result. The possible evaluation
ways are depicted in Fig. 7.10. The red boxes indicate the normal path of the
recurrent network that was evaluated in the previous sections. The green boxes
show the evaluation strategy if the network is used only for instance prediction
and a random forest is used for classification of these instances. The dashed line
displays the branch in which the manually created features are added to the instance
classification network. Averaging the probabilities predicted by the random forest
and the neural network is indicated in the last column of the figure.

182 semantic (instance) segmentation of radar point clouds

If only a random forest is used for classification with features identical to the
ones used in the last chapters, then the combination of recurrent network for
“clustering” and random forest for classification achieves an F1 score of 0.777. The
best performing random forest classifier using DBSCAN+ for clustering achieves a
score of 0.761, cf. Table 6.5. The confusion matrix of this newly trained random
forest classifier is shown on the left side of Fig. 7.11. This experiment demonstrates
that the clusters created by the network are more beneficial to the subsequent
classifier than the ones from the DBSCAN algorithm. At the same time, the achieved
score is considerably lower than the one obtained by the full network, which is
0.811. The difference between these two cases is not only the different classifier, but
also the different input features. The instance classifier network uses the feature
vectors generated by the recurrent neural network which can possibly contain
information about the neighborhood of the instance under consideration and the
temporal evolution of the region at which the instance is located. This information
is not available in the manually created feature vectors the random forest utilizes.

Car Ped. Ped.Group Two-Wh. L. Vehicle Clutter

Predicted label

Car

Pedestrian

Ped.Group

Two-
Wheeler

Large
Vehicle

Clutter

Tr
ue

la
be

l

87.9 %
(1 689 755)

0.1 %
(1389)

1.1 %
(20 656)

0.3 %
(6135)

1.7 %
(33 151)

8.9 %
(171 299)

0.6 %
(2477)

54.5 %
(231 030)

28.5 %
(120 657)

1.7 %
(7234)

0.0 %
(14)

14.8 %
(62 635)

1.5 %
(14 298)

8.0 %
(74 413)

78.5 %
(734 246)

1.3 %
(11 849)

0.0 %
(320)

10.7 %
(99 868)

4.7 %
(11 250)

1.4 %
(3289)

10.9 %
(25 821)

71.4 %
(169 493)

0.1 %
(263)

11.4 %
(27 142)

19.4 %
(177 384)

0.0 %
(381)

0.4 %
(3260)

0.2 %
(1385)

68.9 %
(629 393)

11.1 %
(101 244)

0.2 %
(289 025)

0.0 %
(38 775)

0.1 %
(145 608)

0.0 %
(10 738)

0.1 %
(117 819)

99.5 %
(129 606 052)

Car Ped. Ped.Group Two-Wh. L. Vehicle Clutter

Predicted label

92.3 %
(1 774 793)

0.0 %
(485)

0.2 %
(4282)

0.2 %
(4029)

1.8 %
(34 070)

5.4 %
(104 726)

0.3 %
(1351)

67.0 %
(283 927)

25.1 %
(106 313)

1.1 %
(4506)

0.0 %
(60)

6.6 %
(27 890)

0.2 %
(2212)

8.5 %
(79 735)

83.7 %
(782 525)

3.3 %
(31 234)

0.0 %
(382)

4.2 %
(38 906)

4.1 %
(9676)

1.6 %
(3904)

4.7 %
(11 077)

84.6 %
(200 830)

0.1 %
(134)

4.9 %
(11 637)

9.3 %
(85 289)

0.0 %
(113)

0.1 %
(902)

0.1 %
(1045)

81.8 %
(746 887)

8.6 %
(78 811)

0.2 %
(278 320)

0.0 %
(58 429)

0.1 %
(132 127)

0.0 %
(15 712)

0.1 %
(158 557)

99.5 %
(129 564 872)

0

0.3

0.6

1

Figure 7.11: Confusion matrices of the ensemble learning. Left: Random forest classifier
trained on the instances proposed by the network. Right: Combination of
random forest and instance classification network.

Adding the manually created feature vectors to the instance classification network
does not yield any performance increase. In fact, the F1 score remains with 0.811
the same. This finding is identical to the one made for the PointNet++ classification
network in Section 6.3.1.3.

In the final experiment, the scores of the random forest classifier and the instance
classification network are combined by computing the average value of the two

7.4 human performance 183

probability vectors p(RF) and p(NN). The instance is then assigned to the class c for
which the corresponding averaged probability is the highest:

c = arg max
i

1
2

(
p(RF)

i + p(NN)
i

)
. (7.6)

With this method, an F1 score of 0.825 is achieved. The confusion matrix of this
ensemble classifier is displayed on the right side of Fig. 7.11. The main reason for
the higher score is an increase in the precision value, which in turn is caused by
a reduction of false positive dynamic objects (last row of the confusion matrix).
The random forest tends to classify a truly dynamic object rather as Clutter then
creating a false positive object. This contrasts the neural network, which tends
to predict more false positives but therefore misses less objects. Combining these
two methods now leads to an ensemble classifier that overlooks more objects than
the single network but at the same time reduces the false positives. As the true
positive rates remain on a similar level, it depends on the final system which of the
two classifiers is more desirable, i.e. if it is better for the system to deal with false
positives than to overlook targets of a dynamic object or vice versa.

7.4 human performance

Similar to section 6.4, where the performance of human annotators on the clas-
sification task was evaluated, the performance of the same three labelers is now
evaluated on the instance segmentation task.

7.4.1 Experimental Setup

The semantic instance segmentation task was presented to the three labelers in
an analogous way to the classification task. Short snippets of four different time
lengths T ∈ {0.2 s, 0.6 s, 1 s, 5 s} were cut out of all annotated sequences so that 15

snippets per length T were available for testing. All three labelers received the
same snippets that contained only the measured radar data and in contrast to
the classification experiment, no ground truth clusters were present. The labelers
were then asked to create clusters for each object as well as assigning a class label
to each of the created clusters. This exercise was identical to the actual labeling
process described in section 4.2 with the only difference that no camera data was
accessible. That is, the three test candidates had only the measured radar targets
as information source to identify where dynamic objects are located and what
class these objects belong to. Just as in the classification experiment, the labelers

184 semantic (instance) segmentation of radar point clouds

Time bin Basis Passenger

Car
Pedestrian

Pedestrian

Group

Two-

Wheeler

Large

Vehicle
Static

0.2 s
targets 575 281 116 165 286 32 040
objects 40 41 11 10 12 –

0.6 s
targets 3562 460 455 350 894 88 768
objects 173 67 33 30 32 –

1 s
targets 4426 217 830 381 1570 160 391
objects 213 50 52 44 40 –

5 s
targets 21 673 1180 4115 2932 5493 775 917
objects 1249 155 324 229 138 –

Table 7.3: Number of targets and objects used in the experiment for each of the four time
bins.

could jump forwards and backwards in time through the scenes and make use of
the Doppler velocity information. The time the labelers needed to annotate each
snippet was denoted for later evaluation. The number of targets and objects per
class present in the snippets is summarized for each length T in Table 7.3.

7.4.2 Results

The same evaluation as done for the classification experiment is repeated for this
instance segmentation task. In Fig. 7.12, both the annotation duration and the
achieved F1 score are plotted against the sequence length. For the three sequence
lengths T ∈ {0.2 s, 0.6 s, 1 s}, the trend of the curves describing the time the labelers
needed to “classifiy” a sequence is directly comparable to the ones shown in
Fig. 6.17 for the classification task. The labeling time needed for sequences of length
1 s is on average shorter than for 0.6 s long sequences (at least for labelers L1 and L3)
which is possibly for the same reasons as discussed in Section 6.4: The task becomes
easier when objects are visible for a longer period of time but at the same time
the number of present objects increases with increasing sequence length so that a
local minimum can be predicted. However, the longer the extracted snippets get
the more time is needed in general so that after this local minimum an increase in
labeling time can expected. It should be noted that the time needed to annotate the
5 s long sequences is shorter than five times the average time needed for annotation
of the 1 s snippets so that having more information about the temporal evolution
of the objects is still beneficial for the annotation speed. Just as in the classification
experiment, test candidate L1 is the fastest for almost all sequence lengths – except
for the longest snippets where L2 is the fastest. This is in so far remarkable as L2 is

7.4 human performance 185

by far the slowest for all other sequence lengths. This speed up cannot be explained
with a lack of motivation or less focused work since the performance of L2 on the
longest snippets is better than the one of L3 who needed the most time to finish
the job.

0.2 1 3 5
Sequence length (s)

500

1000

1500

2000

R
eq

ui
re

d
ti

m
e

pe
r

se
qu

en
ce

(s
)

L3

L2

L1

0.2 1 3 5
Sequence length (s)

0.45

0.50

0.55

0.60

0.65

0.70

0.75

F 1
sc

or
e

L1 L2 L3

Figure 7.12: Left: Average duration each of the labeleres needed for instance segmentation
of one sequence. Right: F1 scores as a function of the length of the sequences.

In general, the scores depicted in the right part of Fig. 7.12 show that the longer
the sequence lengths are the better the score gets on average. However, there are
also considerable deviations from this trend since for example L2 performs by far
the best on the 0.6 s long sequences where the other two test candidates achieved
much lower scores. One possible explanation is that the snippets chosen for this
time length are easier to comprehend for this test candidate for example because
he annotated similar sequences during his normal working task before. Another
explanation could be that the number of targets and objects in the short sequences
is rather small so that rather minute differences in the labeling result cause large
deviation in the score. The highest overall score – achieved by L1 for the longest
sequences – is with about 0.69 considerably below the scores that the algorithms
presented in this chapter accomplish (between 0.75 and 0.8). So in contrast to the
classification task where the human test candidates outperformed the algorithm,
the machine learning algorithm wins in the instance segmentation task. This leads
to the conclusion that humans struggle more with the detection of dynamic objects
in a radar point cloud than the presented algorithms but once a clustering is
presented, the human test candidates outperform the algorithms since they make
better use of the information contained in the temporal evolution of the objects.

186 semantic (instance) segmentation of radar point clouds

Car Ped. Ped.Group Two-Wh. L. Vehicle Static

Predicted label

Car

Pedestrian

Ped.Group

Two-
Wheeler

Large
Vehicle

Static

Tr
ue

la
be

l

76.8 %
(2737)

0.0 %
(0)

1.9 %
(69)

4.1 %
(147)

12.0 %
(429)

5.1 %
(180)

25.0 %
(115)

20.9 %
(96)

6.7 %
(31)

12.4 %
(57)

0.0 %
(0)

35.0 %
(161)

26.6 %
(121)

0.0 %
(0)

45.9 %
(209)

5.9 %
(27)

0.0 %
(0)

21.5 %
(98)

86.6 %
(303)

10.6 %
(37)

0.0 %
(0)

0.0 %
(0)

0.0 %
(0)

2.9 %
(10)

25.7 %
(230)

0.0 %
(0)

0.0 %
(0)

0.0 %
(0)

71.4 %
(638)

2.9 %
(26)

0.5 %
(427)

0.2 %
(182)

0.1 %
(53)

0.1 %
(104)

0.2 %
(167)

98.9 %
(87 835)

Car Ped. Ped.Group Two-Wh. L. Vehicle Static

Predicted label

56.8 %
(2024)

0.0 %
(0)

0.0 %
(0)

4.5 %
(160)

0.0 %
(0)

38.7 %
(1378)

0.0 %
(0)

39.6 %
(182)

6.1 %
(28)

6.3 %
(29)

0.0 %
(0)

48.0 %
(221)

0.0 %
(0)

10.5 %
(48)

62.2 %
(283)

0.0 %
(0)

0.0 %
(0)

27.3 %
(124)

20.6 %
(72)

0.0 %
(0)

0.0 %
(0)

62.3 %
(218)

0.0 %
(0)

17.1 %
(60)

15.4 %
(138)

0.0 %
(0)

0.0 %
(0)

0.0 %
(0)

37.0 %
(331)

47.5 %
(425)

0.2 %
(154)

0.0 %
(0)

0.0 %
(43)

0.1 %
(66)

0.2 %
(159)

99.5 %
(88 346)

0

0.3

0.6

1

Figure 7.13: Per-target confusion matrices for the best performing labeler L2 (right) and the
worst performing labeler L3 (left) for sequences of length T = 0.6 s.

In Fig. 7.13, the confusion matrices of the two test candidates L3 and L2 are shown
for the T = 0.6 s snippets. In contrast to the classification task, where the last
column of the confusion matrices indicated that for some reason no label was
attached to a ground truth cluster, this column can now be interpreted as the
number of targets left out of a created cluster. The trends in the two results are
quite different. Whereas L3 is strongly biased towards predicting the Passenger

Car class (first column of the confusion matrix), L2 overlooked more targets and left
them unlabeled (last column). If however L2 creates a cluster for a dynamic object,
the assigned label is most often correct since the greatest confusions happen usually
with the Static class. Additionally, L2 created much less false positive objects or
put differently, L2 assigned less truly Static targets to a dynamic object (last row
in matrices). To summarize, the instance segmentation task naturally proved to be
much harder than the classification task for the human annotators and the machine
learning algorithms outperformed the manual work – at least the one from the
three labelers.

7.5 comparison and summary

In this chapter, one feed-forward neural network for semantic segmentation and
one recurrent network for instance segmentation were introduced and evaluated
with different performance measures. Both networks take bare point clouds as
input in which each point is defined by five features: two spatial coordinates, the
ego-motion compensated Doppler velocity, the RCS value and the measurement
time relative to the earliest measurement in the point cloud.

7.5 comparison and summary 187

Method F1 Precision Recall Confusion Matrix

Semantic Segmentation 0.776 0.739 0.821 Fig. 7.4 right

Instance Segmentation, 14 time steps 0.811 0.777 0.849 Fig. 7.5 left

RF, Clusters from Network 0.777 0.793 0.768 Fig. 7.11 left

Ensemble 0.825 0.803 0.848 Fig. 7.11 right

Table 7.4: Comparison of the scores obtained with the segmentation approaches.

The instance segmentation approach outperformed the pure semantic segmentation
algorithm by a great margin. The longer the input sequence to the network, the
higher the performance gets, even though a clear saturation is visible. This finding
underlines that the proposed network architecture makes use of temporal corre-
lations in the data with the upside that only data from a limited period has to be
used as input. In the case of the semantic segmentation network, the architecture
strongly depends on the number of input points and hence on the temporal length
of the input data.

Evaluating the importance of the input features showed that for both networks the
Doppler velocity v̂r has the greatest impact on the final score, see Table 7.1. Even
with only spatial information present, the network is still able to distinguish most
classes from each other.

The scores of the approaches shown in this chapter are listed again in Table 7.4.
The ensemble classifier consisting of the recurrent instance segmentation network
and a random forest performs best with respect to the F1 score. As discussed in
section 7.3.5 about the ensemble, this classifier has the downside of predicting more
targets of truly dynamic objects as Static than the pure instance segmentation
network. This has a small negative effect on the recall value. On the other hand,
the ensemble classifier predicts less false positive targets of dynamic objects, which
increases the precision value considerably. Which behavior is favorable, depends
on the entire system in which the algorithm is used and what further processing is
done with the data.

Predictions of the instance segmentation network are illustrated in the appendix in
Section A.6. Positive as well as negative examples are shown and a camera image
of the scene is displayed for reference. The arrows in the figures symbolize the
ego-motion compensated Doppler velocity.

Finally, Fig. 7.14 again displays the confusion matrix of the instance segmentation
network and the differences to the scores predicted by the baseline approach, in

188 semantic (instance) segmentation of radar point clouds

Car Ped. Ped.Group Two-Wh. L. Vehicle Static

Predicted label

Car

Pedestrian

Ped.Group

Two-
Wheeler

Large
Vehicle

Static

Tr
ue

la
be

l

92.2 %
(1 772 857)

0.0 %
(790)

0.2 %
(3207)

0.3 %
(6224)

2.6 %
(50 505)

4.6 %
(88 802)

0.4 %
(1496)

67.9 %
(288 020)

25.0 %
(106 073)

1.3 %
(5466)

0.0 %
(134)

5.4 %
(22 858)

0.3 %
(3171)

10.6 %
(99 556)

82.1 %
(767 965)

3.5 %
(32 994)

0.1 %
(525)

3.3 %
(30 783)

4.5 %
(10 675)

2.7 %
(6502)

4.3 %
(10 210)

84.3 %
(200 121)

0.1 %
(277)

4.0 %
(9473)

8.5 %
(77 691)

0.0 %
(204)

0.1 %
(521)

0.1 %
(1317)

83.6 %
(763 314)

7.7 %
(70 000)

0.2 %
(314 507)

0.1 %
(84 901)

0.1 %
(135 834)

0.0 %
(22 434)

0.1 %
(192 492)

99.4 %
(129 457 849)

Car Ped. Ped.Group Two-Wh. L. Vehicle Static

Predicted label

12.4 %
(238 302)

-0.0 %
(−282)

-0.6 %
(−11 727)

0.1 %
(2446)

-1.9 %
(−37 017)

-10.0 %
(−191 722)

-1.5 %
(−6285)

35.1 %
(149 018)

-13.5 %
(−57 421)

0.2 %
(739)

-0.1 %
(−233)

-20.2 %
(−85 818)

-1.3 %
(−12 190)

7.3 %
(67 843)

6.6 %
(62 162)

3.1 %
(28 809)

-0.1 %
(−969)

-15.6 %
(−145 655)

-3.9 %
(−9147)

1.6 %
(3833)

-5.7 %
(−13 433)

17.2 %
(40 783)

-0.1 %
(−243)

-9.2 %
(−21 793)

-5.8 %
(−53 236)

-0.0 %
(−1)

-0.2 %
(−1621)

0.1 %
(607)

13.7 %
(125 163)

-7.8 %
(−70 912)

-0.0 %
(−53 259)

0.0 %
(41 309)

-0.1 %
(−72 490)

0.0 %
(4200)

-0.0 %
(−15 932)

0.1 %
(96 172)

-0.2

0

0.2

Figure 7.14: Comparison between the results from the instance segmentation network and
the basic approach using standard DBSCAN for clustering and a random forest
as classifier. Left: Confusion matrix of the instance segmentation network.
Right: Differences to the random forest confusion matrix.

which DBSCAN− is used for clustering and a random forest predicts the class label
based on handcrafted feature vectors. In the confusion matrix on the right hand
side, green color indicates areas in which the instance classification outperforms the
random forest and red areas mark the cells in which the random forest is superior,
see also the description in Section 6.6. The true positive rate increased for all classes,
with the greatest increase at the Pedestrian class with over 35 percentage points.
The number of overlooked targets (last column) decreased significantly for all
object types, with again the greatest difference in the Pedestrian class. While the
confusion of Pedestrian Group targets with the Pedestrian and Two-Wheeler class
increased, also the true positive rate of the Pedestrian Group category got higher.
The incorrect predictions of the Pedestrian and Two-Wheeler class therefore stem
on average from targets that were predicted as Static by the random forest. This
finding is similar to the one already described in Section 6.6.

Experiments with three human annotators showed that their performance increases
significantly with the duration of the presented sequences. However, even on
sequences with 5 s length, the scores of the labelers remains far below the ones
achieved by the network. The greatest difficulty in this task seems to be the correct
identification of targets that belong to a moving object since the greatest confusion
exists for all test candidates between the true class of a target and the Static

class. With the limited number of test candidates in mind and the therefore limited
expressiveness of the experiment, these findings hint that the machine learning
approach is superior to a human at this task.

8
C O N C L U S I O N

In this thesis, various methods for classification and semantic (instance) segmen-
tation of moving road users were introduced. Solely radar measurements from a
large real-world data set were used to construct, train and evaluate the machine
learning based algorithms. Sequences were recorded over a period of about 1.5
years and afterwards annotated according to a newly developed label guideline for
radar data.

From the various approaches discussed in this work, the newly developed network
architecture that performs semantic instance segmentation on the raw radar point
cloud achieves the highest scores. A general trend can be noticed between the
different algorithms: the greater the extent to which the algorithm can work with
raw data, the higher the resulting scores. For example, the classification network
which performs the feature extraction step of previously generated clusters on its
own, performs better than an algorithm that relies on manually created features,
cf. Section 6.6. Similarly, if also the clustering step is included into a combined
learning step, the score increases even further.

Handcrafted features are therefore less expressive than features generated by
a neural network and a fully supervised instance creation is favorable over an
unsupervised or semi-supervised clustering algorithm. The correct grouping of all
radar targets that belong to the same object proved to be one of the critical steps in
the classification task. If ground truth clusters are used as a basis, even a simple
random forest classifier working with manually extracted features is able to discern
most classes from each other. However, performance rapidly decays, if clusters
from a DBSCAN algorithm are used, i.e. if a system is considered in which clusters
are automatically created.

In Table 8.1, scores of some approaches discussed in this thesis are repeated again.
The baseline is given by a random forest classifier with basic DBSCAN for clustering.
Extending the clustering algorithm by a learning phase to incorporate domain
knowledge into the hyper-parameters of the approach (cf. Chapter 5), results in
a noticeable performance increase (second row in the table). Incorporating time
information into the classification algorithms increases the scores slightly (rows
three and five), even though much more data can be used for the decision. A

189

190 conclusion

Method F1 Precision Recall Confusion Matrix

Random Forest, DBSCAN− 0.719 0.753 0.708 Fig. 6.9 left

Random Forest, DBSCAN+ 0.761 0.785 0.746 Fig. 6.9 right

LSTM 0.766 0.774 0.763 Fig. 6.13 right

PointNet++ 0.771 0.777 0.767 Fig. 6.15 left

PointNet++ & LSTM 0.776 0.781 0.774 Fig. 6.15 right

Semantic Segmentation 0.776 0.739 0.821 Fig. 7.4 right

Instance Segmentation 0.811 0.777 0.849 Fig. 7.5 left

Table 8.1: Scores of the different approaches presented in this work.

similar statement can be made for the semantic (instance) segmentation approaches,
where using data from multiple time steps raises the F1 score, see also Section 7.3.3,
especially Fig. 7.7.

Experiments with human annotators showed that in contrast to the proposed
algorithms, a considerable performance increase can be measured if sequences of
longer duration have to be classified or segmented. This suggests that the way
temporal information was incorporated into the algorithms was not yet optimal
and that investigations into this direction could pay off. However, in the instance
segmentation task the neural network outperformed the three test candidates by a
great margin, especially due to its superiority in discerning truly dynamic objects
from the static environment.

The lack of a publicly available radar data set to compare the algorithms of different
researchers makes it difficult to put the proposed approaches into perspective.
However, since more and more companies and research institutes release data sets,
chances increase that an open benchmark will become possible.

The results of this thesis indicate that with the advent of the next generation
radar sensors, which provide height information, better angular resolution and
less clutter, the classification performance can be further increased since especially
spatial features always proofed to be important to the algorithms. Integration of
one additional spatial dimension is trivially possible in the proposed recurrent
neural network architecture.

A
A P P E N D I X

a.1 five ingredients for supervised learning

In Section 2.1, supervised learning methods were introduced. Five ingredients were
listed which are needed for each algorithm from this category. In this section, more
details about these five ingredients are given and some examples are presented.

Data Set

The data set X is the basis from which the algorithm should learn the defined task.
For example, each datum x in the data set can be a single image [216], an audio
sequence [88], a track resulting from a particle collision in the LHC [116], [213] or
any other abstract feature vector.

Depending on the task and chosen algorithm, pre-processing of the inputs might
be necessary. The pre-processing steps can be as simple as re-sizing an image or as
complex as changing the representation of x by calculating hand-crafted feature
vectors or apply dimensionality reduction algorithms to reduce the number features
which define x.

To assess later on the generalization power of the algorithm, not all elements in X
are used in the training stage. Some parts are left out during training and used
only in the test phase for evaluation. There are two common ways to split the data.
The first way is to split X into three parts: Xtrain, Xval and Xtest. The largest part of
the data goes into Xtrain which is used to train the algorithm and adapt the weights
θj. Every machine learning algorithm contains some parameters hi which define
the structure of the algorithm itself and cannot be optimized during the training
stage. These parameters are called hyper-parameters. In order to find suitable
values for these non-trainable parameters, the performance of a trained algorithm
is estimated on the validation data set Xval and the hi are modified manually until
the performance on Xval saturates at a maximum. After that, a final evaluation on
Xtest is done, to obtain unbiased metrics that describe the generalization ability of
the trained model. If tuning of the hi was performed on the test data, information

191

192 appendix

would leak from the supposed to be unknown data into the training phase and
thereby an over-confident performance metric would be reported, see e.g. chapter
5 in [79]. The second way to split the data is the so-called cross-validation scheme.
During n-fold cross-validation, the data is split into n parts and each of the n parts
is used in turn as a test set while the remaining n− 1 parts are used for training.
Hyper-parameters should be fixed beforehand on a separate validation set. This
method is often used to obtain more reliable metrics for the generalization abilities
of the algorithm since one single test set might be biased in some way. For example,
in a classification task the test set might have an imbalanced class distribution or
contain disproportionately many difficult (or easy) samples. Splitting data into the
different sets has to be done carefully to avoid that information leaks from the
test set into the training data. For example, if for a classification task of camera
images a video was captured and the splitting into training and test data would be
done by creating blocks of ten seconds and using the first eight seconds of each
block for training and the last two seconds for testing, then there would be a large
temporal correlation between the training and the test set. Frames at the beginning
and the end of the two-second test data block would be very similar to frames of
the previous and following training data block so that overconfident metrics would
be reported. The splitting of the radar data used in this work is described at the
respective later chapters.

Ground Truth Labels

Collecting data is often inexpensive with regards to time and money. In contrast,
obtaining ground truth labels Y for the acquired data requires usually human experts
who go through the collected data and attach labels y to each datum x. Modern
machine learning algorithms like deep convolutional neural networks require often
large amounts of labeled data to achieve high performance. For example, for the
popular object localization task in the “Large Scale Visual Recognition Challenge”,
training data with 1.2 million manually labeled images are provided and further
150 000 annotated images are available for validation [216]. Companies developed
different strategies to obtain labeled data without spending too much money on
the labeling process. The most ingenious method is Google’s reCAPTCHA system
[80]. The system is advertised as a free service that protects web projects from spam
and automated requests by presenting a Completely Automated Public Turing test to
tell Computers and Humans Apart (CAPTCHA) to peculiar users. Depending on the
version of the system, these CAPTCHAs include tasks like selecting all parts of an
image that contain traffic lights, typing in the letters of a distorted and scanned text
or typing in the house number that can be read off from a photograph. Owners of
web services make use of reCAPTCHA because it is reliable, free as well as easy

A.1 five ingredients for supervised learning 193

to implement. The advantage for Google is that they obtain labeled data from the
users of the third party web services free of charge and can use the data to increase
the performance of their own machine learning algorithms. Other strategies to
decrease the demand of manually labeled data is to use auto-labeling concepts.
Auto-labeling means that the desired label information is obtained automatically
from a different algorithm. For example, in [188] a strategy for obtaining per-point
labels for lidar data from the classification results of simultaneously recorded
camera images is presented. The idea is that semantic information can be obtained
easier from images because plenty of pre-trained neural networks [40], [81], [195]
already exist which can provide pixelwise class information. If the lidar point cloud
and the classified camera image are aligned, the semantic information from the
image-classifier can be propagated to the lidar points and hence no manual labeling
is required.

Depending on the task, the complexity of the labeling job varies. For a simple classi-
fication task of an image, only a single label has to be attached to the image. These
labels are usually represented by integer indices so that yi ∈ {1, 2, . . . , Ncls}, where
Ncls is the number of different classes. For a pixelwise semantic segmentation of an
image, every pixel has to be annotated so that for an image Xi with width W and
height H the label result yi is also an W × H matrix where (yi)mn ∈ {1, 2, . . . , Ncls}.
If not only semantic segmentation but semantic instance segmentation is desired,
the label result yi is an W × H× 2 tensor of two stacked W × H matrices where the
first matrix is identical to the one from the semantic segmentation labeling task and
the second matrix encodes the instance id. The instance id is used to differentiate
between objects of the same kind in an image, e.g. the pixels of two chairs in an
image would all get the same semantic label id but the pixels of the first chair
would get a different instance id than the pixels of the second chair. These examples
illustrate that the labeling costs can vary dramatically depending on the actual
task that should be performed in the end. Unfortunately, labeling of radar data
is extremely difficult for a number of reasons. The labeling process is discussed
extensively in section 4.2. Irrespective of the concrete task, labels fulfill the need of
machine learning algorithms to compare the predicted output with ground truth
data.

Algorithm

Machine learning algorithms have usually two operation modes, namely training and
testing. During training, the internal parameter θj, j = 1, . . . , Nparam are adapted so
that the predicted outcome ŷ resembles the ground truth label y. After the training
phase, the internal parameters are held constant and only the algorithm’s output

194 appendix

(i.e. the algorithm’s prediction) is used for whatever application the algorithm was
designed for. The exact way in which the θj are updated depends on both the
algorithm itself and the optimizer that is used for training. Of course, not every
machine learning algorithm is suitable for a given task but rather an algorithm has
to be chosen whose capacity fits the complexity of the task. For example, logistic
regression has way smaller capacity than a large convolutional neural network like
GoogLeNet [252] and hence logistic regression is not expected to perform well on
image classification tasks. In other words, algorithms with a lower capacity tend to
underfit a given problem, i.e. the learned decision function is too simple to represent
the complexity of the given task. The other extreme called overfitting happens when
the algorithm has too many degrees of freedom so that the decision function is fitted
tightly to the training data. A very noise und highly varying decision function
is the result of overfitting. To allow models to have a large number of tunable
parameters so that also complex tasks can be learned, regularization schemes have
been developed which aim to reduce overfitting, e.g. by penalizing very large
weights (c.f. `1 and `2 regularization in [79]). In the following sections 2.1.1 and
2.1.2, the random forest classification algorithm and artificial neural networks will
be introduced.

Loss Function

The fourth ingredient for supervised learning is the loss function. The loss function
takes as input the predicted value and the ground truth label and returns an error
measure that indicates how well the algorithm performed on the current input
sample. Often, either the loss function can be interpreted as a distance between
ŷ and y or the loss is directly implemented as a distance function. For example,
the `2-loss function is simply the sum of the squared distances of the output and
ground truth vectors:

L`2(ŷ, y) = ||ŷ− y||2. (A.1)

For classification tasks, often the so-called cross-entropy is used. Let ~q ∈ RNcls be the
predicted probability vector over the Ncls possible classes of a single sample x so
that ∑i qi = 1 and ŷ = arg maxi qi. Accordingly, let ~p ∈ RNcls be the ground truth
probability vector for this sample which has zeros everywhere except for position
y, where py = 1. The cross-entropy is then defined as

H(p, q) = −
Ncls

∑
i

pi log qi. (A.2)

Often, the cross entropy is not calculated for only a single sample x but for a batch
of N samples which introduces just another sum in the calculation of H(p, q) where

A.1 five ingredients for supervised learning 195

pij and qij are now the ground truth and predicted probabilities for class i of sample
j:

H(p, q)N = − 1
N

N

∑
j=1

Ncls

∑
i=1

pij log qij. (A.3)

The cross-entropy is tightly linked to the Kullback-Leibler divergence D(p||q)
which is a measure for the similarity of two probability distributions p and q over
the random variable x:

D(p||q) = ∑
x

p(x) log
p(x)
q(x)

= H(p, q) + ∑
x

p(x) log p(x). (A.4)

The point is now that a maximum likelihood estimation of the model parame-
ters θ can be interpreted as minimizing the dissimilarity between the empirical
distribution of the training data X and the learned model distribution where the
dissimilarity is measured by the Kullback-Leibler divergence. Therefore, finding a
maximum likelihood solution for the θj of the model corresponds directly to mini-
mizing D(p||q) and therefore it corresponds also to minimizing the cross entropy
H(p, q). For details see for example Chapter 5 in [79] or Chapter 2 in [46].

Optimizer

The last ingredient is finally the optimizer. The optimizer is responsible for updating
the internal weights θj after each forward pass of training data. The way the weights
are updated from training step t to the next step t + 1 highly depends on the actual
machine learning algorithm itself. For example, the decision trees in a random
forest classifier are constructed in a greedy fashion by selecting as a split criterion
the feature which results in the maximum information gain. Details about random
forests are discussed in the following section. In this case, the optimizer is tightly
linked to the algorithm itself. In contrast, there exist several different methods
to optimize the weights in a neural network. At the root of these optimizers lies
the idea that the gradient of the loss function with respect to the weights gives
information on how to change the weights so that the loss decreases. These gradient
descent methods proofed to be very successful even for large networks with millions
of parameters. The basic form of gradient descent, namely

θt+1
j = θt

j − α
∂

∂θj
L(ŷ(θ1, . . . , θNparam), y) (A.5)

is only rarely used in real world application but its simplicity allows for an easy
understanding of the update scheme and is therefore often cited in introductory

196 appendix

works and tutorials [29], [164], [251]. Since the gradient of a function L points in
the direction of steepest ascent, subtracting the gradient from the current value
of the parameter causes a decrease of the function. The idea is hence to follow the
(negative) gradient until the loss function converges. The parameter α is called the
learning rate of the optimizer and defines how far the current gradient is followed
until the next θj is found. Manual tuning of the learning rate proofed to be difficult
so that nowadays often the Adam optimizer [123] is used which internally controls
the learning rate for each of the Nparam parameters by incorporating information
from the first and second stochastic moments of the gradients into the update rule:

θt+1
j = θt

j − α
mt√

vt + ε
. (A.6)

The parameter ε is a small number that is added to avoid division by zero, mt is
a bias-corrected moving average of the past gradients that were computed for θt

and vt is the corresponding bias-correct second moment of θt’s past gradients. The
value for α has to be understood as a maximum learning rate since the actually used
learning rate in an update step will mostly be different from α due to the scaling
with mt and vt. Many other variants of (stochastic) gradient descent algorithms
exist, e.g. AdaGrad [58], AdaMax [123] or RMSprop [99].

The great advantage of gradient descent based optimizer is that the gradients can
be computed efficiently using the backpropagation scheme [215]. In its essence, this
scheme describes only the repetitive application of the chain rule from calculus.
Derivative free optimization schemes like simulated annealing are rarely found
in the context of neural networks since their performances degrades quickly with
increasing number of parameters [208]. Already for Nparam > O(100) most of the
methods mentioned in [208] perform sub-optimally so that application of these
algorithms for networks with several million parameters is unlikely to succeed.
Frameworks like Google’s tensorflow use reverse-mode automatic differentiation for
the computation of the gradients [9], [74]. A computation graph is created which
has nodes for each operation in the network. For example, the addition of two
numbers u and v is represented by three nodes: one node for the input u, one node
for the input v and one node for the sum u + v. The computation graph is used
for both the forward pass through the network and the reverse pass during which
the gradients are computed. For the latter, the output of one node is considered
as a function of the inputs to this node. For each node, not only the definition of
the forwards pass is needed but also the definition of its gradient with respect
to all inputs. Since after one forward pass the values of all nodes are known, the
gradients for each output variable can be obtained in a reverse pass through the
computation graph during which all partial derivatives of the nodes are combined
using the chain rule. That is, for a parameter update of all weights in the neural
network, one forward pass plus one reverse pass for each output variable is needed.

A.1 five ingredients for supervised learning 197

In contrast, numerical differentiation would require at least one forward pass for
each of the Nparam parameters of the network making this method unfeasible. It
should be noted that backpropagation is not an optimizer. It is only a way to calculate
gradients efficiently.

198 appendix

a.2 spatial distribution of radar targets

The following images display how the radar targets of the five classes Passenger

Car, Pedestrian, Pedestrian Group, Two-Wheeler and Large Vehicle are distribu-
ted around the field of view of the four sensors.

Figure A.1: Target distribution in a polar plot. The measured targets of each sensor are
displayed in a separate diagram. The diagrams are rotated by the mounting
position of the respective sensor. Only targets of the class Passenger Car are
displayed.

A.2 spatial distribution of radar targets 199

Figure A.2: Target distribution in a polar plot. The measured targets of each sensor are
displayed in a separate diagram. The diagrams are rotated by the mounting
position of the respective sensor. Only targets of the class Pedestrian are
displayed.

Figure A.4: Target distribution in a polar plot. The measured targets of each sensor are
displayed in a separate diagram. The diagrams are rotated by the mounting
position of the respective sensor. Only targets of the class Two-Wheeler are
displayed.

200 appendix

Figure A.3: Target distribution in a polar plot. The measured targets of each sensor are
displayed in a separate diagram. The diagrams are rotated by the mounting
position of the respective sensor. Only targets of the class Pedestrian Group

are displayed.

Figure A.5: Target distribution in a polar plot. The measured targets of each sensor are
displayed in a separate diagram. The diagrams are rotated by the mounting
position of the respective sensor. Only targets of the class Large Vehicle are
displayed.

A.3 radar cross sections 201

a.3 radar cross sections

0 25 50 75
Radial Distance r (m)

−20

−15

−10

−5

0

5

10

15

R
C

S
σ

(d
Bs

m
)

a) Pedestrian

0 25 50 75
Radial Distance r (m)

−20

−15

−10

−5

0

5

10

15

R
C

S
σ

(d
Bs

m
)

b) Pedestrian Group

0 25 50 75
Radial Distance r (m)

−10

0

10

20

30

R
C

S
σ

(d
Bs

m
)

c) Passenger Car

0 25 50 75
Radial Distance r (m)

−10

0

10

20

30

R
C

S
σ

(d
Bs

m
)

d) Large Vehicle

0 25 50 75
Radial Distance r (m)

−20

−15

−10

−5

0

5

10

15

R
C

S
σ

(d
Bs

m
)

e) Two Wheeler

0 25 50 75
Radial Distance r (m)

−10

0

10

20

30

R
C

S
σ

(d
Bs

m
)

f) Clutter

Figure A.6: Measured RCS values of the different semantic classes as a function of the
radial distance at which the respective targets were measured.

202 appendix

0 25 50 75
Radial Distance r (m)

−10

−5

0

5

10

15
R

C
S

σ
(d

Bs
m

)

a) Pedestrian

0 25 50 75
Radial Distance r (m)

−10

−5

0

5

10

15

R
C

S
σ

(d
Bs

m
)

b) Pedestrian Group

0 25 50 75
Radial Distance r (m)

0

5

10

15

20

25

30

35

R
C

S
σ

(d
Bs

m
)

c) Passenger Car

0 25 50 75
Radial Distance r (m)

0

5

10

15

20

25

30

35
R

C
S

σ
(d

Bs
m

)

d) Large Vehicle

0 25 50 75
Radial Distance r (m)

−10

−5

0

5

10

15

R
C

S
σ

(d
Bs

m
)

e) Two Wheeler

0 25 50 75
Radial Distance r (m)

0

5

10

15

20

25

30

35

R
C

S
σ

(d
Bs

m
)

f) Clutter

Figure A.7: Measured RCS values of the different semantic classes as a function of the
radial distance at which the respective objects were measured. The RCS values
are summed for each object first and then the average value for each range bin
is calculated.

A.4 cluster learning results 203

a.4 cluster learning results

Resulting parameters of the supervised clustering approach discussed in Section
5.2 are displayed in the following.

0 20 40 60 80
Radial Distance r (m)

0

2

4

6

8

ε v
(m

/s
)

v̂r ∈ [0; 3]

v̂r ∈ [3; 6]

v̂r ∈ [6; 10]

v̂r ∈ [10; 15]

v̂r ∈ [15; 30]

Figure A.8: Averaged values for εv plotted against radial distance for each of the five
different velocity intervals. Shaded areas indicate regions with plus/minus one
standard deviation around the mean value.

0 5 10 15 20 25
Doppler over Ground v̂r (m/s)

0

2

4

6

8

ε v
(m

/s
)

r ∈ [0; 15]

r ∈ [15; 30]

r ∈ [30; 45]

r ∈ [45; 60]

r ∈ [60; 75]

r ∈ [75; 100]

Figure A.9: Averaged values for εv plotted against Doppler velocity for each of the six
range regions. Shaded areas indicate regions with plus/minus one standard
deviation around the mean value.

204 appendix

0 20 40 60 80
Radial Distance r (m)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

ε t
(s

)

v̂r ∈ [0; 3]

v̂r ∈ [3; 6]

v̂r ∈ [6; 10]

v̂r ∈ [10; 15]

v̂r ∈ [15; 30]

Figure A.10: Averaged values for εt plotted against radial distance for each of the five
different velocity intervals. Shaded areas indicate regions with plus/minus
one standard deviation around the mean value.

0 5 10 15 20 25
Doppler over Ground v̂r (m/s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

ε t
(s

)

r ∈ [0; 15]

r ∈ [15; 30]

r ∈ [30; 45]

r ∈ [45; 60]

r ∈ [60; 75]

r ∈ [75; 100]

Figure A.11: Averaged values for εt plotted against Doppler velocity for each of the six
range regions. Shaded areas indicate regions with plus/minus one standard
deviation around the mean value.

A.5 parameters of the instance segmentation network 205

a.5 parameters of the instance segmentation

network

This section lists the hyper-parameters that were used for training and evaluation of
the recurrent instance segmentation network. For a description of the used symbols
see Section 7.2.2.1.

Point Feature Generation Module

Memory Abstraction Module

Semantic Segm. Module

Direction Module

Memory Update Module

Instance Creation Instance Classification

shape
features

206 appendix

a.6 example predictions of the instance

segmentation network

0 10 20 30 40 50 60 70

x(cc) (m)

−15

−10

−5

0

5

10

15

y(c
c)

(m
)

Car
Static

Figure A.12: Almost perfect instance segmentation of multiple cars driving straight or
performing a left turn.

−5 0 5 10 15 20 25 30

x(cc) (m)

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

y(c
c)

(m
)

Pedestrian
Static

Figure A.13: The network correctly created three Pedestrian instances. One of the instance
contains measurements from the nearby wall.

0 10 20 30 40 50 60

x(cc) (m)

−5

0

5

10

15

y(c
c)

(m
) Car

Pedestrian
Static

Figure A.14: Correct segmentation of one car left of the ego vehicle. For the second car, two
instances are predicted. The predicted Pedestrian does not exist.

A.6 example predictions of the instance segmentation network 207

−5 0 5 10 15 20 25 30

x(cc) (m)

−10

−5

0

5

10

y(c
c)

(m
)

Car
Large Vehicle
Static

Figure A.15: Perfect classification and segmentation of a tractor and a car.

−5 0 5 10 15 20 25 30

x(cc) (m)

−10

−5

0

5

10

y(c
c)

(m
)

Two-Wheeler
Static

Figure A.16: Two bicycles in front of the ego-vehicle are correctly identified.

0 10 20 30 40

x(cc) (m)

−10

−5

0

5

10

15

y(c
c)

(m
)

Car
Pedestrian
Large Vehicle
Static

Figure A.17: The predicted width of car right of the ego-vehicle is too large. A ghost object
is created behind the car which performs the left turn.

208 appendix

−5 0 5 10 15

x(cc) (m)

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

y(c
c)

(m
)

Car
Static

Figure A.18: The approaching cars extend a bit too much into the sidewalk but are other-
wise well captured.

0 10 20

x(cc) (m)

−5

0

5

10

15

20

y(c
c)

(m
)

Car
Pedestrian
Large Vehicle
Static

Figure A.19: All three pedestrians, the truck and the car are correctly classified. However,
two car instances are created instead of only one.

B I B L I O G R A P H Y

[1] A. Angelov, A. Robertson, R. Murray-Smith, et al., “Practical classification of
different moving targets using automotive radar and deep neural networks”,
IET Radar, Sonar & Navigation, vol. 12, no. 10, pp. 1082–1089, Oct. 2018.

[2] M. Ankerst, M. M. Breunig, H.-P. Kriegel, et al., “OPTICS: Ordering Points
To Identify the Clustering Structure”, ACM SIGMOD international conference
on Management of data, vol. 28, no. 2, pp. 49–60, Jun. 1999.

[3] Apple: Frameworks Natural Language Processing Team, Can Global Semantic
Context Improve Neural Language Models?, 2018. [Online]. Available: https://
machinelearning.apple.com/2018/09/27/can-global-semantic-context-

improve-neural-language-models.html (visited on 08/15/2019).

[4] Audi, Adaptive Cruise Control mit Stop & Go-Funktion, 2011. [Online]. Avail-
able: https://www.audi-technology-portal.de/de/elektrik-elektronik/
fahrerassistenzsysteme/adaptive-cruise-control-mit-stop-go-funktion

(visited on 06/06/2019).

[5] Audi, Fahrerassistenzsysteme, 2017. [Online]. Available: https://www.audi-
mediacenter.com/de/technik-lexikon-7180/fahrerassistenzsysteme-

7184 (visited on 06/06/2019).

[6] M. Bai and R. Urtasun, “Deep Watershed Transform for Instance Segmen-
tation”, in 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), IEEE, Jul. 2017, pp. 2858–2866.

[7] M. Barjenbruch, Drive U - Übersichtsvortrag Radar, Ulm, 2015.

[8] G. E. A. P. A. Batista, A. L. C. Bazzan, and M. C. Monard, “Balancing
Training Data for Automated Annotation of Keywords: a Case Study”, In
Proceedings of the Second Brazilian Workshop on Bioinformatics, 2003.

[9] A. G. Baydin, B. A. Pearlmutter, and A. A. Radul, “Automatic Differentiation
in Machine Learning: a survery”, arXiv preprint, 2015.

[10] S. Bernard, L. Heutte, and S. Adam, “Influence of hyperparameters on
random forest accuracy”, in Lecture Notes in Computer Science, Berlin, Hei-
delberg: Springer, 2009.

[11] S. Beucher and C. Lantuejoul, “Use of Watersheds in Contour Detection”,
in International Workshop on Image Processing: Real-time Edge and Motion De-
tection/Estimation, Rennes, 1979.

209

https://machinelearning.apple.com/2018/09/27/can-global-semantic-context-improve-neural-language-models.html
https://machinelearning.apple.com/2018/09/27/can-global-semantic-context-improve-neural-language-models.html
https://machinelearning.apple.com/2018/09/27/can-global-semantic-context-improve-neural-language-models.html
https://www.audi-technology-portal.de/de/elektrik-elektronik/fahrerassistenzsysteme/adaptive-cruise-control-mit-stop-go-funktion
https://www.audi-technology-portal.de/de/elektrik-elektronik/fahrerassistenzsysteme/adaptive-cruise-control-mit-stop-go-funktion
https://www.audi-mediacenter.com/de/technik-lexikon-7180/fahrerassistenzsysteme-7184
https://www.audi-mediacenter.com/de/technik-lexikon-7180/fahrerassistenzsysteme-7184
https://www.audi-mediacenter.com/de/technik-lexikon-7180/fahrerassistenzsysteme-7184

210 bibliography

[12] S. Birchfield, Image Processing and Analysis, 1st ed. Cengage Learning, 2017.

[13] C. M. Bishop, Neural Networks for Pattern Recognition, 1st ed. Oxford: Claren-
don Press, 1995.

[14] J. M. Blackledge, Digital Signal Processing: Mathematical and Computational
Methods, Software Development and Applications, 2nd ed. 2006.

[15] S. Blake, “OS-CFAR Theory for Multiple Targets and Nonuniform Clutter”,
IEEE Transactions on Aerospace and Electronic Systems, 1988.

[16] C. Blakemore and F. W. Campbell, “On the existence of neurones in the
human visual system selectively sensitive to the orientation and size of
retinal images”, The Journal of Physiology, vol. 203, no. 1, pp. 237–260, Jul.
1969.

[17] C. Blakemore, Video - The Visual Cortex of the Cat, 1972. [Online]. Available:
https://www.youtube.com/watch?v=RSNofraG8ZE (visited on 08/15/2019).

[18] B. Borah and D. K. Bhattacharyya, “An Improved Sampling-Based DBSCAN
for Large Spatial Databases”, in Proceedings of International Conference on
Intelligent Sensing and Information Processing, ICISIP 2004, 2004.

[19] A. Borghesi, A. Bartolini, M. Lombardi, et al., “Anomaly Detection Using
Autoencoders in High Performance Computing Systems”, Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp. 9428–9433, 2019.

[20] Bosch, Fourth generation long-range radar sensor, Abstatt, 2014. [Online]. Avail-
able: https://cds.bosch.us/themes/bosch%7B%5C_%7Dcross/amc%7B%5C_
%7Dpdfs/LRR4%7B%5C_%7D292000P0ZH%7B%5C_%7DEN%7B%5C_%7Dlow.pdf

(visited on 02/13/2019).

[21] Bosch, Radar-based driver assistance systems: Mid-range radar sensor, Stuttgart,
2017. [Online]. Available: https://bit.ly/2WOFJD4 (visited on 06/06/2019).

[22] A. Bott, Synoptische Meteorologie : Methoden der Wetteranalyse und -prognose,
1st ed. Berlin Heiderlberg: Springer, 2012.

[23] A. Boulch, J. Guerry, B. Le Saux, et al., “SnapNet: 3D point cloud seman-
tic labeling with 2D deep segmentation networks”, Computers & Graphics,
vol. 71, pp. 189–198, Apr. 2018.

[24] R. Boulic, N. M. Thalmann, and D. Thalmann, “A global human walking
model with real-time kinematic personification”, The Visual Computer, 1990.

[25] L. Breiman, “Bagging Predictors”, Machine Learning, vol. 24, pp. 123–140,
1996.

[26] L. Breiman, “Random Forests”, Machine Learning, vol. 45, no. 1, pp. 5–32,
2001.

https://www.youtube.com/watch?v=RSNofraG8ZE
https://cds.bosch.us/themes/bosch%7B%5C_%7Dcross/amc%7B%5C_%7Dpdfs/LRR4%7B%5C_%7D292000P0ZH%7B%5C_%7DEN%7B%5C_%7Dlow.pdf
https://cds.bosch.us/themes/bosch%7B%5C_%7Dcross/amc%7B%5C_%7Dpdfs/LRR4%7B%5C_%7D292000P0ZH%7B%5C_%7DEN%7B%5C_%7Dlow.pdf
https://bit.ly/2WOFJD4

bibliography 211

[27] L. Breiman, Manual On Setting Up, Using, And Understanding Random Forests
V3.1, Berkeley, 2002. [Online]. Available: https://www.stat.berkeley.
edu/%7B~%7Dbreiman/Using%7B%5C_%7Drandom%7B%5C_%7Dforests%7B%5C_

%7DV3.1.pdf.

[28] D. Brodeski, I. Bilik, and R. Giryes, “Deep Radar Detector”, in 2019 IEEE
Radar Conference (RadarConf), IEEE, Apr. 2019, pp. 1–6.

[29] J. Brownlee, Gradient Descent For Machine Learning, 2016. [Online]. Available:
https://machinelearningmastery.com/gradient-descent-for-machine-

learning/ (visited on 08/12/2019).

[30] J. Bruna, W. Zaremba, A. Szlam, et al., “Spectral Networks and Locally
Connected Networks on Graphs”, 2nd International Conference on Learning
Representations, ICLR 2014 - Conference Track Proceedings, Dec. 2013.

[31] H. Caesar, V. Bankiti, A. H. Lang, et al., “nuScenes: A multimodal dataset
for autonomous driving”, arXiv preprint arXiv:1903.11027, 2019.

[32] R. J. G. B. Campello, D. Moulavi, and J. Sander, “Density-Based Cluster-
ing Based on Hierarchical Density Estimates”, in Advances in Knowledge
Discovery and Data Mining, Springer, Berlin, Heidelberg, 2013, pp. 160–172.

[33] R. Caruana and A. Niculescu-Mizil, “An Empirical Comparison of Su-
pervised Learning Algorithms Using Different Performance Metrics”, in
Proceedings of the 23rd international conference on Machine Learning, 2006.

[34] M.-F. Chang, J. W. Lambert, P. Sangkloy, et al., “Argoverse: 3D Tracking and
Forecasting with Rich Maps”, in Conference on Computer Vision and Pattern
Recognition (CVPR), IEEE, 2019.

[35] N. V. Chawla, K. W. Bowyer, L. O. Hall, et al., “SMOTE: Synthetic minority
over-sampling technique”, Journal of Artificial Intelligence Research, vol. 16,
pp. 321–357, 2002.

[36] C. Y. Chen and P. P. Vaidyanathan, “Beamforming issues in modern MIMO
radars with Doppler”, in Conference Record - Asilomar Conference on Signals,
Systems and Computers, 2006.

[37] V. Chen, Fayin Li, Shen-Shyang Ho, et al., “Micro-doppler effect in radar:
phenomenon, model, and simulation study”, IEEE Transactions on Aerospace
and Electronic Systems, vol. 42, no. 1, pp. 2–21, Jan. 2006.

[38] V. C. Chen, D. Tahmoush, and W. J. Miceli, Eds., Radar Micro-Doppler Signa-
tures: Processing and Applications. Institution of Engineering and Technology,
May 2014.

https://www.stat.berkeley.edu/%7B~%7Dbreiman/Using%7B%5C_%7Drandom%7B%5C_%7Dforests%7B%5C_%7DV3.1.pdf
https://www.stat.berkeley.edu/%7B~%7Dbreiman/Using%7B%5C_%7Drandom%7B%5C_%7Dforests%7B%5C_%7DV3.1.pdf
https://www.stat.berkeley.edu/%7B~%7Dbreiman/Using%7B%5C_%7Drandom%7B%5C_%7Dforests%7B%5C_%7DV3.1.pdf
https://machinelearningmastery.com/gradient-descent-for-machine-learning/
https://machinelearningmastery.com/gradient-descent-for-machine-learning/

212 bibliography

[39] K. Cho, B. van Merrienboer, C. Gulcehre, et al., “Learning Phrase Represen-
tations using RNN Encoder–Decoder for Statistical Machine Translation”, in
Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), Stroudsburg, PA, USA: Association for Computational
Linguistics, 2014, pp. 1724–1734.

[40] F. Chollet, Trained image classification models for Keras, 2016. [Online]. Avail-
able: https://github.com/fchollet/deep-learning-models/ (visited on
08/13/2019).

[41] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, et al., “3D U-net: Learning dense
volumetric segmentation from sparse annotation”, in Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics), 2016.

[42] Continental, ARS 300 Long Range Radar Data Sheet, 2009. (visited on 06/12/2019).

[43] Continental, ARS 408-21 Premium Radar Datasheet, 2017. [Online]. Available:
https://www.continental- automotive.com/getattachment/8e4678e1-

9358-48e1-8d5b-a0c2de942edb/ARS408-21%7B%5C_%7DDatenblatt%7B%5C_

%7Dde%7B%5C_%7D170707%7B%5C_%7DV07.pdf.pdf (visited on 03/10/2019).

[44] M. Cordts, M. Omran, S. Ramos, et al., “The Cityscapes Dataset for Semantic
Urban Scene Understanding”, in 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), IEEE, Jun. 2016, pp. 3213–3223.

[45] P. Cortez and A. Morais, “A Data Mining Approach to Predict Forest Fires
using Meteorological Data”, in Proceedings of 13th Portugese Conference on
Artificial Intelligence, 2007.

[46] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed. Wiley,
2005.

[47] A. Criminisi, “Decision Forests: A Unified Framework for Classification,
Regression, Density Estimation, Manifold Learning and Semi-Supervised
Learning”, Foundations and Trends in Computer Graphics and Vision, vol. 7,
no. 2-3, pp. 81–227, 2011.

[48] Cycling Sports Group Europe B.V., GT Bicycles, 2019. [Online]. Available:
www.gtbicycles.com (visited on 09/25/2019).

[49] A. D’Ambrosio and V. A. Tutore, “Conditional classification trees by weight-
ing the gini impurity measure”, in Studies in Classification, Data Analysis, and
Knowledge Organization, 2011.

[50] Daimler AG, So funktioniert DISTRONIC PLUS, 2015. [Online]. Available:
https://blog.daimler.com/2015/03/18/einfach-technik-so-funktioniert-

distronic-plus/ (visited on 05/15/2019).

https://github.com/fchollet/deep-learning-models/
https://www.continental-automotive.com/getattachment/8e4678e1-9358-48e1-8d5b-a0c2de942edb/ARS408-21%7B%5C_%7DDatenblatt%7B%5C_%7Dde%7B%5C_%7D170707%7B%5C_%7DV07.pdf.pdf
https://www.continental-automotive.com/getattachment/8e4678e1-9358-48e1-8d5b-a0c2de942edb/ARS408-21%7B%5C_%7DDatenblatt%7B%5C_%7Dde%7B%5C_%7D170707%7B%5C_%7DV07.pdf.pdf
https://www.continental-automotive.com/getattachment/8e4678e1-9358-48e1-8d5b-a0c2de942edb/ARS408-21%7B%5C_%7DDatenblatt%7B%5C_%7Dde%7B%5C_%7D170707%7B%5C_%7DV07.pdf.pdf
www.gtbicycles.com
https://blog.daimler.com/2015/03/18/einfach-technik-so-funktioniert-distronic-plus/
https://blog.daimler.com/2015/03/18/einfach-technik-so-funktioniert-distronic-plus/

bibliography 213

[51] Daimler AG, New assistance systems: Active Brake Assist 4 emergency braking
assistant featuring pedestrian recognition and sideguard assist, 2017. [Online].
Available: https://media.daimler.com/marsMediaSite/en/instance/ko.
xhtml?oid=12367326 (visited on 06/06/2019).

[52] A. Danzer, T. Griebel, M. Bach, et al., “2D Car Detection in Radar Data with
PointNets”, in 2019 IEEE Intelligent Transportation Systems Conference (ITSC),
IEEE, Oct. 2019, pp. 61–66.

[53] S. K. Dehkordi, N. Appenrodt, J. Dickmann, et al., “Region of interest
based adaptive high resolution parameter estimation with applications in
automotive radar”, in Proceedings International Radar Symposium, 2018.

[54] J. Deng, W. Dong, R. Socher, et al., “ImageNet: A large-scale hierarchical
image database”, in 2009 IEEE Conference on Computer Vision and Pattern
Recognition, IEEE, Jun. 2009, pp. 248–255.

[55] J. Dickmann, J. Klappstein, H.-L. Bloecher, et al., “Automotive Radar — “
quo vadis ?””, in 2012 9th European Radar Conference, IEEE, 2012, pp. 18–21.

[56] J. Dickmann, J. Klappstein, M. Hahn, et al., “Present research activities
and future requirements on automotive radar from a car manufacturer’s
point of view”, in 2015 IEEE MTT-S International Conference on Microwaves
for Intelligent Mobility, ICMIM 2015, Heidelberg, Apr. 2015, pp. 15–18.

[57] A. Dominguez, “A History of the Convolution Operation”, IEEE Pulse, vol. 6,
no. 1, pp. 38–49, Jan. 2015.

[58] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online
learning and stochastic optimization”, Journal of Machine Learning Research,
2011.

[59] C. Duofang, C. Baixiao, and Q. Guodong, “Angle estimation using ESPRIT
in MIMO radar”, Electronics Letters, vol. 44, no. 12, p. 770, 2008.

[60] B. Efron, “Better bootstrap confidence intervals”, Journal of the American
Statistical Association, vol. 82, no. 397, pp. 171–185, Mar. 1987.

[61] C. Eick, N. Zeidat, and Z. Zhao, “Supervised clustering - algorithms and ben-
efits”, in 16th IEEE International Conference on Tools with Artificial Intelligence,
IEEE Comput. Soc, 2004, pp. 774–776.

[62] M. B. El Mashade, “Heterogeneous performance evaluation of sophisticated
versions of CFAR detection schemes”, Radioelectronics and Communications
Systems, vol. 59, no. 12, pp. 536–551, Dec. 2016.

[63] E. Elhamifar and R. Vidal, “Sparse Subspace Clustering: Algorithm, The-
ory, and Applications”, IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 35, no. 11, pp. 2765–2781, Nov. 2013.

https://media.daimler.com/marsMediaSite/en/instance/ko.xhtml?oid=12367326
https://media.daimler.com/marsMediaSite/en/instance/ko.xhtml?oid=12367326

214 bibliography

[64] C. Elich, F. Engelmann, T. Kontogianni, et al., “3D Bird’s-Eye-View In-
stance Segmentation”, in Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
vol. 11824 LNCS, 2019, pp. 48–61.

[65] M. Ester, H. P. Kriegel, J. Sander, et al., “A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise”, in Proceedings
of the 2nd International Conference on Knowledge Discovery and Data Mining,
AAAI Press, Aug. 1996, pp. 226–231.

[66] T. Finley and T. Joachims, “Supervised clustering with support vector ma-
chines”, in Proceedings of the 22nd international conference on Machine learning
- ICML ’05, New York, New York, USA: ACM Press, 2005, pp. 217–224.

[67] C. Fischer, F. Ruf, H.-L. Bloecher, et al., “Evaluation of different super-
resolution techniques for automotive applications”, in IET International
Conference on Radar Systems (Radar 2012), Institution of Engineering and
Technology, 2012, pp. 33–33.

[68] Y. Freund and R. E. Schapire, “Experiments with a New Boosting Algo-
rithm”, Proceedings of the 13th International Conference on Machine Learning,
1996.

[69] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression: a
statistical view of boosting”, The Annals of Statistics, vol. 28, no. 2, pp. 337–
407, Apr. 2000.

[70] Y. Gal and Z. Ghahramani, “A theoretically grounded application of dropout
in recurrent neural networks”, in Advances in Neural Information Processing
Systems, 2016.

[71] J. Gehring, M. Auli, D. Grangier, et al., “Convolutional sequence to sequence
learning”, in 34th International Conference on Machine Learning, ICML 2017,
2017.

[72] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving?
The KITTI vision benchmark suite”, in 2012 IEEE Conference on Computer
Vision and Pattern Recognition, IEEE, Jun. 2012, pp. 3354–3361.

[73] S. Geman, E. Bienenstock, and R. Doursat, “Neural Networks and the
Bias/Variance Dilemma”, Neural Computation, vol. 4, no. 1, pp. 1–58, Jan.
1992.

[74] A. Géron, Hands-on machine learning with Scikit-Learn and TensorFlow : con-
cepts, tools, and techniques to build intelligent systems, 1st ed. Sebastopol:
O’Reilly, 2017.

bibliography 215

[75] T. Giese, J. Klappstein, J. Dickmann, et al., “Road course estimation using
deep learning on radar data”, in Proceedings International Radar Symposium,
2017.

[76] R. Girshick, “Fast R-CNN”, in IEEE International Conference on Computer
Vision (ICCV), 2015.

[77] R. Girshick, J. Donahue, T. Darrell, et al., “Rich feature hierarchies for
accurate object detection and semantic segmentation”, in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2014.

[78] A. B. Goldberg and X. Zhu, “Introduction to semi-supervised learning”,
Synthesis Lectures on Artificial Intelligence and Machine Learning, 2009.

[79] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, 1st ed. MIT Press,
2016.

[80] Google LLC, reCAPTCHA, 2009. [Online]. Available: https://www.webcitation.
org/6HultOqbu?url=http://recaptcha.net/learnmore.html (visited on
08/12/2019).

[81] Google LLC; Google Brain, Tensorflow detection model zoo, 2019. [Online].
Available: https://github.com/tensorflow/models/blob/master/research/
object%7B%5C_%7Ddetection/g3doc/detection%7B%5C_%7Dmodel%7B%5C_

%7Dzoo.md (visited on 08/13/2019).

[82] A. Graves, “Supervised Sequence Labeling with Recurrent Neural Net-
works”, PhD thesis, Technical University Munich, 2008.

[83] A. Graves, S. Fernández, and J. Schmidhuber, “Bidirectional LSTM networks
for improved phoneme classification and recognition”, in Lecture Notes in
Computer Science, Springer, Berlin, Heidelberg, 2005, pp. 799–804.

[84] A. Graves, N. Jaitly, and A.-r. Mohamed, “Hybrid speech recognition with
Deep Bidirectional LSTM”, in 2013 IEEE Workshop on Automatic Speech Recog-
nition and Understanding, IEEE, Dec. 2013, pp. 273–278.

[85] K. Greff, R. K. Srivastava, J. Koutnik, et al., “LSTM: A Search Space Odyssey”,
IEEE Transactions on Neural Networks and Learning Systems, vol. 28, no. 10,
pp. 2222–2232, Oct. 2017.

[86] P. Guerrero, Y. Kleiman, M. Ovsjanikov, et al., “PCPNet Learning Local
Shape Properties from Raw Point Clouds”, Computer Graphics Forum, vol. 37,
no. 2, pp. 75–85, May 2018.

[87] S. Haag, B. Duraisamy, W. Koch, et al., “Classification Assisted Tracking for
Autonomous Driving Domain”, in 2018 Sensor Data Fusion: Trends, Solutions,
Applications (SDF), IEEE, Oct. 2018, pp. 1–8.

https://www.webcitation.org/6HultOqbu?url=http://recaptcha.net/learnmore.html
https://www.webcitation.org/6HultOqbu?url=http://recaptcha.net/learnmore.html
https://github.com/tensorflow/models/blob/master/research/object%7B%5C_%7Ddetection/g3doc/detection%7B%5C_%7Dmodel%7B%5C_%7Dzoo.md
https://github.com/tensorflow/models/blob/master/research/object%7B%5C_%7Ddetection/g3doc/detection%7B%5C_%7Dmodel%7B%5C_%7Dzoo.md
https://github.com/tensorflow/models/blob/master/research/object%7B%5C_%7Ddetection/g3doc/detection%7B%5C_%7Dmodel%7B%5C_%7Dzoo.md

216 bibliography

[88] P. Hamel and D. Eck, “Learning features from music audio with deep belief
networks”, in Proceedings of the 11th International Society for Music Information
Retrieval Conference, ISMIR 2010, 2010.

[89] S. H. Al-Harbi and V. J. Rayward-Smith, “Adapting k-means for supervised
clustering”, Applied Intelligence, vol. 24, no. 3, pp. 219–226, Jun. 2006.

[90] D. Harrison and D. L. Rubinfeld, “Hedonic housing prices and the demand
for clean air”, Journal of Environmental Economics and Management, vol. 5,
1978.

[91] J. Hasch, E. Topak, R. Schnabel, et al., “Millimeter-wave technology for
automotive radar sensors in the 77 GHz frequency band”, IEEE Transactions
on Microwave Theory and Techniques, vol. 60, no. 3 PART 2, pp. 845–860, 2012.

[92] K. He, G. Gkioxari, P. Dollar, et al., “Mask R-CNN”, in Proceedings of the
International Conference on Computer Vision (ICCV), 2017.

[93] Y. He, Y. Yang, Y. Lang, et al., “Deep Learning based Human Activity
Classification in Radar Micro-Doppler Image”, in 2018 15th European Radar
Conference (EuRAD), IEEE, Sep. 2018, pp. 230–233.

[94] Hermann Hartje KG, Excelsior Fahrrad, 2019. [Online]. Available: https:
//www.excelsior-fahrrad.de/ (visited on 09/25/2019).

[95] S. Heuel and H. Rohling, “Pedestrian recognition based on 24 GHz radar
sensors”, in 11th International Radar Symposium (IRS), Vilnius: IEEE, 2010,
pp. 1–6.

[96] S. Heuel and H. Rohling, “Two-stage pedestrian classification in automotive
radar systems”, 12th International Radar Symposium (IRS), pp. 477–484, 2011.

[97] S. Heuel and H. Rohling, “Pedestrian classification in automotive radar
systems”, in 13th International Radar Symposium (IRS), Warsaw: IEEE, May
2012, pp. 39–44.

[98] S. Heuel and H. Rohling, “Pedestrian recognition in automotive radar
sensors”, 14th International Radar Symposium (IRS), 2013.

[99] G. E. Hinton, N. Srivastava, and K. Swersky, “Neural Networks for Machine
Learning Lecture 6a Overview of mini-batch gradient descent.”, COURS-
ERA: Neural Networks for Machine Learning, 2012.

[100] S. Hochreiter, “Untersuchungen zu dynamischen neuronalen Netzen”, Mas-
ter’s thesis, Institut für Informatik, Technische Universität, Munchen, 1991.

[101] S. Hochreiter and J. Schmidhuber, “Long Short Term Memory”, Technical
Report FKI-207-95, München, Tech. Rep., 1995, p. 8.

[102] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory”, Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

https://www.excelsior-fahrrad.de/
https://www.excelsior-fahrrad.de/

bibliography 217

[103] F. Hofele, “An innovative CFAR algorithm”, in 2001 CIE International Con-
ference on Radar Proceedings (Cat No.01TH8559), IEEE, 2002, pp. 329–333.

[104] M. Horn, “Motion Classification and Height Estimation of Pedestrians Using
Sparse Radar Data”, PhD thesis, Ulm University, 2018.

[105] M. Horn, O. Schumann, M. Hahn, et al., “Motion Classification and Height
Estimation of Pedestrians Using Sparse Radar Data”, in 2018 Sensor Data
Fusion: Trends, Solutions, Applications (SDF), IEEE, Oct. 2018, pp. 1–6.

[106] D. H. Hubel and T. N. Wiesel, “Receptive fields of single neurones in the
cat’s striate cortex”, The Journal of Physiology, vol. 148, no. 3, 1959.

[107] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex”, The Journal of Physiology,
vol. 160, no. 1, p. 106, 1962.

[108] D. Hubel and T. Wiesel, Brain and Visual Perception: The Story of a 25-year
Collaboration. Oxford University Press, Nov. 2004.

[109] E. Hyun and Y.-S. Jin, “Human-vehicle classification scheme using doppler
spectrum distribution based on 2D range-doppler FMCW radar”, Journal of
Intelligent & Fuzzy Systems, vol. 35, no. 6, S. O. Hwang, Ed., pp. 6035–6045,
Dec. 2018.

[110] L. Ingber, Adaptive Simulated Annealing (ASA), Pasadena, 1993. [Online].
Available: https://www.ingber.com/%7B%5C#%7DASA-CODE.

[111] L. Ingber, “Adaptive simulated annealing (ASA): Lessons learned”, Control
and Cybernetics, vol. 25, no. 1, pp. 32–54, 1996.

[112] V. T. Inman, H. J. Ralsto, and F. Todd, Human Walking, 1st ed. Michigan:
Williams & Wilkin, 1981.

[113] H. Iqbal, M. Schartel, F. Roos, et al., “Implementation of a SAR Demonstrator
for Automotive Imaging”, in 2018 18th Mediterranean Microwave Symposium
(MMS), IEEE, Oct. 2018, pp. 240–243.

[114] ISO, “ISO 8855 - Road Vehicles, Vehicle dynamic and road-holding ability”,
International Organization for Standardization, Geneva, Tech. Rep., 2011,
p. 11. [Online]. Available: https://www.sis.se/api/document/preview/
914200/.

[115] W. B. Johnson and J. Lindenstrauss, “Extensions of Lipschitz mappings into
a Hilbert space”, in Conference on Modern Analysis and Probability, R. Beals,
A. Beck, A. Bellow, et al., Eds., 1984, pp. 189–206.

[116] Kaggle Competition, TrackML Particle Tracking Challenge - Kaggle, 2018. [On-
line]. Available: https://www.kaggle.com/c/trackml-particle-identification
(visited on 08/12/2019).

https://www.ingber.com/%7B%5C#%7DASA-CODE
https://www.sis.se/api/document/preview/914200/
https://www.sis.se/api/document/preview/914200/
https://www.kaggle.com/c/trackml-particle-identification

218 bibliography

[117] Y. Kang, H. Yin, and C. Berger, “Test Your Self-Driving Algorithm: An
Overview of Publicly Available Driving Datasets and Virtual Testing Envi-
ronments”, IEEE Transactions on Intelligent Vehicles, vol. 4, no. 2, pp. 171–185,
Jun. 2019.

[118] C. Karnfelt, A. Peden, A. Bazzi, et al., “77 GHz ACC radar simulation
platform”, in 2009 9th International Conference on Intelligent Transport Systems
Telecommunications, (ITST), IEEE, Oct. 2009, pp. 209–214.

[119] D. Katz, “State of Stealth”, Aviation Week & Space Technology, no. Special
Issue, 2017.

[120] D. Kellner, “Verfahren zur Bestimmung von Objekt- und Eigenbewegung
auf Basis der Dopplerinformation hochauflösender Radarsensoren”, PhD
thesis, Ulm University, 2017.

[121] D. Kellner, J. Klappstein, and K. Dietmayer, “Grid-based DBSCAN for clus-
tering extended objects in radar data”, in IEEE Intelligent Vehicles Symposium,
Proceedings, Alcala de Henares, 2012, pp. 365–370.

[122] R. Kesten, M. Usman, J. Houston, et al., Lyft Level 5 AV Dataset 2019, 2019.
[Online]. Available: https : / / level5 . lyft . com / dataset/ (visited on
08/10/2019).

[123] D. P. Kingma and J. L. Ba, “Adam: a Method for Stochastic Optimization”, in
International Conference on Learning Representations 2015, May 2015, pp. 1–15.

[124] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated
annealing”, Science, 1983.

[125] R. Klokov and V. Lempitsky, “Escape from Cells: Deep Kd-Networks for the
Recognition of 3D Point Cloud Models”, in 2017 IEEE International Confer-
ence on Computer Vision (ICCV), vol. 2017-Octob, IEEE, Oct. 2017, pp. 863–
872.

[126] A. Komjathy, “Ionospheric Effects on the Propagation of Electromagnetic
Waves”, in Encyclopedia of Remote Sensing, N. E.G, Ed., New York, 2014,
pp. 286–291.

[127] H.-P. Kriegel, P. Kröger, E. Schubert, et al., “Outlier Detection in Axis-Parallel
Subspaces of High Dimensional Data”, in Advances in Knowledge Discovery
and Data Mining. PAKDD 2009. Lecture Notes in Computer Science, T. T., K. B.,
C. N., et al., Eds., Berlin Heidelberg: Springer, 2009, pp. 831–838.

[128] A. Krizhevsky, “Learning Multiple Layers of Features from Tiny Images”,
Tech. Rep., 2009. [Online]. Available: https://www.cs.toronto.edu/%7B~%
7Dkriz/cifar.html.

https://level5.lyft.com/dataset/
https://www.cs.toronto.edu/%7B~%7Dkriz/cifar.html
https://www.cs.toronto.edu/%7B~%7Dkriz/cifar.html

bibliography 219

[129] J. Kwon, S. Lee, and N. Kwak, “Human Detection by Deep Neural Networks
Recognizing Micro-Doppler Signals of Radar”, in 2018 15th European Radar
Conference (EuRAD), IEEE, Sep. 2018, pp. 198–201.

[130] L. Landrieu and M. Simonovsky, “Large-Scale Point Cloud Semantic Seg-
mentation with Superpoint Graphs”, in Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, 2018.

[131] A. H. Lang, S. Vora, H. Caesar, et al., “Pointpillars: Fast encoders for object
detection from point clouds”, in Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 2019.

[132] A. Laribi, M. Hahn, J. Dickmann, et al., “Performance Investigation of
Automotive SAR Imaging”, in 2018 IEEE MTT-S International Conference on
Microwaves for Intelligent Mobility (ICMIM), IEEE, Apr. 2018, pp. 1–4.

[133] Y. LeCun, B. Boser, J. S. Denker, et al., “Backpropagation Applied to Hand-
written Zip Code Recognition”, Neural Computation, vol. 1, no. 4, pp. 541–
551, Dec. 1989.

[134] K. Lee, H. Cheng, W. Jou, et al., “The influence of carbon fiber orientation on
the mechanical and tribological behavior of carbon fiber/LCP composites”,
Materials Chemistry and Physics, vol. 102, no. 2-3, pp. 187–194, Apr. 2007.

[135] S. Lee, Y.-J. Yoon, J.-E. Lee, et al., “Human-vehicle classification using feature-
based SVM in 77-GHz automotive FMCW radar”, IET Radar, Sonar & Navi-
gation, vol. 11, no. 10, pp. 1589–1596, Oct. 2017.

[136] Li Mu, Tong Xiangqian, Shen Ming, et al., “Research on key tchnologies
for collision avoidance automotive radar”, in 2009 IEEE Intelligent Vehicles
Symposium, IEEE, Jun. 2009, pp. 233–236.

[137] Z. Li and X. Wang, “High Resolution Radar Data Fusion Based on Clustering
Algorithm”, in 2010 2nd International Workshop on Database Technology and
Applications, 2010, pp. 1–4.

[138] J. Liang, N. Homayounfar, W.-C. Ma, et al., “PolyTransform: Deep Polygon
Transformer for Instance Segmentation”, arXiv preprint, 2019.

[139] X. Liang and Z. Fu, “MHNet: Multiscale Hierarchical Network for 3D Point
Cloud Semantic Segmentation”, IEEE Access, vol. 7, pp. 173 999–174 012,
2019.

[140] S. Lim, S. Lee, and S. C. Kim, “Clustering of detected targets using DBSCAN
in automotive radar systems”, in Proceedings International Radar Symposium,
vol. 2018-June, 2018.

[141] T.-Y. Lin, M. Maire, S. Belongie, et al., “Microsoft COCO: Common Objects in
Context”, in Computer Vision – ECCV 2014. Lecture Notes in Computer Science,
Springer, Cham, 2014, pp. 740–755.

220 bibliography

[142] W. Liu, D. Anguelov, D. Erhan, et al., “SSD: Single Shot MultiBox Detector”,
in Lecture Notes in Computer Science, vol. 9905 LNCS, 2016, pp. 21–37.

[143] X. Liu, Z. Deng, and Y. Yang, “Recent progress in semantic image segmenta-
tion”, Artificial Intelligence Review, 2019.

[144] J. Lombacher, M. Hahn, J. J. Dickmann, et al., “Object classification in
radar using ensemble methods”, in International Conference on Microwaves
for Intelligent Mobility (ICMIM), H. Okazaki, Ed., Nagoya, Japan: IEEE, Mar.
2017, pp. 87–90.

[145] J. Lombacher, M. Hahn, J. Dickmann, et al., “Detection of arbitrarily rotated
parked cars based on radar sensors”, in 16th International Radar Symposium
(IRS), IEEE, Jun. 2015, pp. 180–185.

[146] J. Lombacher, M. Hahn, J. Dickmann, et al., “Potential of radar for static
object classification using deep learning methods”, in 2016 IEEE MTT-S
International Conference on Microwaves for Intelligent Mobility (ICMIM), IEEE,
May 2016, pp. 1–4.

[147] J. Lombacher, K. Laudt, M. Hahn, et al., “Semantic radar grids”, in 2017
IEEE Intelligent Vehicles Symposium (IV), IEEE, Jun. 2017, pp. 1170–1175.

[148] J. Long, E. Shelhamer, and T. Darrell, “Fully Convolutional Networks for
Semantic Segmentation”, in The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Jun. 2015.

[149] G. Louppe, “Understanding Random Forests: From Theory to Practice”,
PhD thesis, University of Liege, 2014.

[150] M. Emre Celebi (ed), Partitional Clustering Algorithms, 1st ed. Heidelberg:
Springer International Publishing, 2015.

[151] M. Emre Celebi (ed), Unsupervised Learning Algorithms, 1st ed. Springer
International Publishing, 2015.

[152] J. Mairal, F. Bach, J. Ponce, et al., “Online dictionary learning for sparse
coding”, in ACM International Conference Proceeding Series, 2009.

[153] M. Mann, “Benutzerorientierte Entwicklung und fahrergerechte Auslegung
eines Querführungsassistenten”, PhD thesis, 2008.

[154] J. Martinez, D. Kopyto, M. Schutz, et al., “Convolutional Neural Network
Assisted Detection and Localization of UAVs with a Narrowband Multi-
site Radar”, in 2018 IEEE MTT-S International Conference on Microwaves for
Intelligent Mobility (ICMIM), IEEE, Apr. 2018, pp. 1–4.

[155] W. Mayer, “Abbildender Radarsensor mit sendeseitig geschalteter Grup-
penantenne”, PhD thesis, Ulm University, Ulm, 2008, p. 196.

[156] H. H. Meinel, “Millimeterwaves for automotive applications”, in 26th Euro-
pean Microwave Conference, EuMC 1996, vol. 2, 1996, pp. 830–835.

bibliography 221

[157] H. H. Meinel, “Automotive Millimeterwave Radar: History and Present
Status”, in 28th European Microwave Conference Amsterdam, Amsterdam, 1998,
pp. 619–629.

[158] H. H. Meinel, “Evolving automotive radar - From the very beginnings into
the future”, 8th European Conference on Antennas and Propagation, EuCAP
2014, no. EuCAP, pp. 3107–3114, 2014.

[159] S. Melacci, M. Maggini, and L. Sarti, “Semi-supervised clustering using
similarity neural networks”, in 2009 International Joint Conference on Neural
Networks, IEEE, Jun. 2009, pp. 2065–2072.

[160] A. Metallinou, Amazon Scientists Use Transfer Learning to Accelerate Develop-
ment of New Alexa Capabilities, 2018. [Online]. Available: https://developer.
amazon.com/de/blogs/alexa/post/b6187c9a-2faa-4c17-a90c-142ab0e48b7e/

amazon-scientists-use-transfer-learning-to-accelerate-development-

of-new-alexa-capabilities (visited on 08/15/2019).

[161] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, et al., “Equation of state
calculations by fast computing machines”, The Journal of Chemical Physics,
1953.

[162] M. Meyer and G. Kuschk, “Automotive radar dataset for deep learning based
3D object detection”, in EuRAD 2019 - 2019 16th European Radar Conference,
IEEE, 2019.

[163] M. Meyer and G. Kuschk, “Deep learning based 3D object detection for
automotive radar and camera”, in EuRAD 2019 - 2019 16th European Radar
Conference, IEEE, 2019.

[164] L. Miller, Machine Learning week 1: Cost Function, Gradient Descent and Uni-
variate Linear Regression, 2018. [Online]. Available: https://link.medium.
com/LgHTbpfj64 (visited on 08/12/2019).

[165] T. Mitchell, Machine Learning, 1st ed., C. Liu, Ed. Boston: McGraw-Hill, 1997.

[166] P. Molchanov, J. Astola, K. Egiazarian, et al., “On micro-doppler period
estimation”, in Proceedings - 19th International Conference on Control Systems
and Computer Science, CSCS 2013, 2013.

[167] P. Molchanov and A. Vinel, “Radar frequency band invariant pedestrian
classification”, Radar Symposium (IRS . . ., pp. 1–6, 2013.

[168] H. Moravec, Mind Children, 1st ed. Harvard University Press, 1988.

[169] M. C. Mozer, “A Focused Backpropagation Algorithm for Temporal Pattern
Recognition”, Complex Systems, vol. 3, no. 4, pp. 349–381, 1995.

[170] R. Munroe, Tasks - xkcd, 2014. [Online]. Available: https://xkcd.com/1425/
(visited on 08/12/2019).

https://developer.amazon.com/de/blogs/alexa/post/b6187c9a-2faa-4c17-a90c-142ab0e48b7e/amazon-scientists-use-transfer-learning-to-accelerate-development-of-new-alexa-capabilities
https://developer.amazon.com/de/blogs/alexa/post/b6187c9a-2faa-4c17-a90c-142ab0e48b7e/amazon-scientists-use-transfer-learning-to-accelerate-development-of-new-alexa-capabilities
https://developer.amazon.com/de/blogs/alexa/post/b6187c9a-2faa-4c17-a90c-142ab0e48b7e/amazon-scientists-use-transfer-learning-to-accelerate-development-of-new-alexa-capabilities
https://developer.amazon.com/de/blogs/alexa/post/b6187c9a-2faa-4c17-a90c-142ab0e48b7e/amazon-scientists-use-transfer-learning-to-accelerate-development-of-new-alexa-capabilities
https://link.medium.com/LgHTbpfj64
https://link.medium.com/LgHTbpfj64
https://xkcd.com/1425/

222 bibliography

[171] V. Nair and G. E. Hinton, “Rectified linear units improve Restricted Boltz-
mann machines”, in ICML 2010 - Proceedings, 27th International Conference
on Machine Learning, 2010.

[172] S. Nawar and A. M. Mouazen, “Comparison between random forests, arti-
ficial neural networks and gradient boosted machines methods of on-line
Vis-NIR spectroscopy measurements of soil total nitrogen and total carbon”,
Sensors (Switzerland), 2017.

[173] V. Nordenmark, “Radar-detection based classification of moving objects
using machine learning methods”, PhD thesis, KTH Industrial Engineering
and Management, 2015, p. 112.

[174] J. O. Ogutu, H. P. Piepho, and T. Schulz-Streeck, “A comparison of random
forests, boosting and support vector machines for genomic selection”, in
BMC Proceedings, 2011.

[175] C. Olah, Understanding LSTM Networks, 2015. [Online]. Available: https:
//colah.github.io/posts/2015-08-Understanding-LSTMs/ (visited on
08/16/2019).

[176] M. Özcan, S. Z. Gürbüz, A. R. Persico, et al., “Performance Analysis of
Co-Located and Distributed MIMO Radar for Micro-Doppler Classification”,
in EuRAD 2016, 2016, pp. 85–88.

[177] A. Palffy, J. Dong, J. F. P. Kooij, et al., “CNN Based Road User Detection
Using the 3D Radar Cube”, IEEE Robotics and Automation Letters, vol. 5, no. 2,
pp. 1263–1270, Apr. 2020.

[178] Y. Pang, Y. Li, J. Wang, et al., “Carbon fiber assisted glass fabric composite
materials for broadband radar cross section reduction”, Composites Science
and Technology, vol. 158, pp. 19–25, Apr. 2018.

[179] T. Parr, K. Turgutlu, C. Csiszar, et al., Beware Default Random Forest Impor-
tances, 2008. [Online]. Available: https://explained.ai/rf-importance/
index.html (visited on 08/15/2019).

[180] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent
neural networks”, in 30th International Conference on Machine Learning, ICML
2013, Atlanta: Journal of Machine Learning Research, 2013.

[181] K. Patel, “Deep Learning-based Object Classification on Automotive Radar
Spectra”, in Radar Conf 2019, 2019.

[182] S. M. Patole, M. Torlak, D. Wang, et al., “Automotive radars: A review of
signal processing techniques”, IEEE Signal Processing Magazine, vol. 34, no. 2,
pp. 22–35, Mar. 2017.

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://explained.ai/rf-importance/index.html
https://explained.ai/rf-importance/index.html

bibliography 223

[183] K. Pearson, “LIII. On lines and planes of closest fit to systems of points in
space”, The London, Edinburgh, and Dublin Philosophical Magazine and Journal
of Science, vol. 2, no. 11, pp. 559–572, Nov. 1901.

[184] Pending System GmbH & Co. KG, Cube Bikes, 2019. [Online]. Available:
https://www.cube.eu/cube-bikes/ (visited on 09/25/2019).

[185] R. Pérez, F. Schubert, R. Rasshofer, et al., “A machine learning joint lidar
and radar classification system in urban automotive scenarios”, Advances in
Radio Science, 2019.

[186] T. Peters, “Ableitung einer Beziehung zwischen der Radarreflektivität, der
Niederschlagsrate und weiteren aus Radardaten abgeleiteten Parametern
unter Verwendung von Methoden der multivariaten Statistik”, PhD thesis,
2012.

[187] R. Photonics, Instantaneous Frequency. [Online]. Available: https://www.rp-
photonics.com/instantaneous%7B%5C_%7Dfrequency.html (visited on
06/11/2019).

[188] F. Piewak, P. Pinggera, M. Schäfer, et al., “Boosting LiDAR-Based Semantic
Labeling by Cross-modal Training Data Generation”, in, Springer, Cham,
Sep. 2019, pp. 497–513.

[189] Porsche, Intelligente Unterstützung für den Fahrer, 2015. [Online]. Available:
https://presse.porsche.de/presskits%7B%5C_%7Duntil%7B%5C_%7D2015/

products/2014/macan/html/de%7B%5C_%7D23544%7B%5C_%7D0.html (visited
on 06/06/2019).

[190] P. Probst and A.-L. Boulesteix, “To tune or not to tune the number of trees
in random forest”, The Journal of Machine Learning Research, vol. 18, no. 1,
pp. 6673–6690, 2017.

[191] P. Probst, M. N. Wright, and A. L. Boulesteix, Hyperparameters and tuning
strategies for random forest, 2019.

[192] R. Prophet, M. Hoffmann, A. Ossowska, et al., “Pedestrian Classification
for 79 GHz Automotive Radar Systems”, in 2018 IEEE Intelligent Vehicles
Symposium (IV), vol. 2018-June, IEEE, Jun. 2018, pp. 1265–1270.

[193] R. Prophet, M. Hoffmann, M. Vossiek, et al., “Pedestrian Classification
with a 79 GHz Automotive Radar Sensor”, in 2018 19th International Radar
Symposium (IRS), IEEE, Jun. 2018, pp. 1–6.

[194] R. Prophet, G. Li, C. Sturm, et al., “Semantic Segmentation on Automotive
Radar Maps”, in 2019 IEEE Intelligent Vehicles Symposium (IV), vol. 2019-June,
IEEE, Jun. 2019, pp. 756–763.

https://www.cube.eu/cube-bikes/
https://www.rp-photonics.com/instantaneous%7B%5C_%7Dfrequency.html
https://www.rp-photonics.com/instantaneous%7B%5C_%7Dfrequency.html
https://presse.porsche.de/presskits%7B%5C_%7Duntil%7B%5C_%7D2015/products/2014/macan/html/de%7B%5C_%7D23544%7B%5C_%7D0.html
https://presse.porsche.de/presskits%7B%5C_%7Duntil%7B%5C_%7D2015/products/2014/macan/html/de%7B%5C_%7D23544%7B%5C_%7D0.html

224 bibliography

[195] PyTorch, Torchvision.Models, 2019. [Online]. Available: https://pytorch.
org/docs/stable/torchvision/models.html%7B%5C#%7Dsemantic-segmentation

(visited on 08/13/2019).

[196] C. R. Qi, W. Liu, C. Wu, et al., “Frustum PointNets for 3D Object Detection
from RGB-D Data”, in 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, IEEE, Jun. 2018, pp. 918–927.

[197] C. R. Qi, L. Yi, H. Su, et al., PointNet++, Tensorflow Implementation, 2017.
[Online]. Available: https://github.com/charlesq34/pointnet2 (visited
on 02/10/2019).

[198] C. R. Qi, L. Yi, H. Su, et al., “PointNet++: Deep Hierarchical Feature Learning
on Point Sets in a Metric Space”, arXiv preprint, pp. 1–14, Jun. 2017.

[199] C. R. Qi, H. Su, K. Mo, et al., “PointNet: Deep Learning on Point Sets for
3D Classification and Segmentation”, in Proc. Computer Vision and Pattern
Recognition (CVPR), IEEE, Dec. 2017, pp. 77–85.

[200] S. Rao, “MIMO Radar”, Texas Instruments, Tech. Rep., 2017, p. 13. [Online].
Available: http://www.ti.com/lit/an/swra554a/swra554a.pdf.

[201] S. Raschka, Python Machine Learning, 1st ed. Packt Publishing, 2015.

[202] S. Raschka, Python Machine Learning Book - FAQ, 2015. [Online]. Available:
https : / / github . com / rasbt / python - machine - learning - book / blob /

master/faq/decision-tree-binary.md (visited on 08/14/2019).

[203] J. Redmon, S. Divvala, R. Girshick, et al., “You Only Look Once: Unified,
Real-Time Object Detection”, in 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), vol. 2016-Decem, IEEE, Jun. 2016, pp. 779–788.

[204] S. Ren, K. He, R. Girshick, et al., “Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks”, Neural Information Processing
Systems (NIPS), 2015.

[205] D. Rethage, J. Wald, J. Sturm, et al., “Fully-Convolutional Point Networks for
Large-Scale Point Clouds”, in Lecture Notes in Computer Science, vol. 11208

LNCS, Springer Verlag, 2018, pp. 625–640.

[206] M. A. Richards, Fundamentals of Radar Signal Processing. McGraw-Hill, 2005.

[207] E. J. Riley, E. H. Lenzing, and R. M. Narayanan, “Characterization of radar
cross section of carbon fiber composite materials”, in SPIE 9461, Radar Sensor
Technology XIX; and Active and Passive Signatures VI, K. I. Ranney, A. Doerry,
G. C. Gilbreath, et al., Eds., vol. 9461, International Society for Optics and
Photonics, May 2015.

[208] L. M. Rios and N. V. Sahinidis, “Derivative-free optimization: A review
of algorithms and comparison of software implementations”, in Journal of
Global Optimization, 2013.

https://pytorch.org/docs/stable/torchvision/models.html%7B%5C#%7Dsemantic-segmentation
https://pytorch.org/docs/stable/torchvision/models.html%7B%5C#%7Dsemantic-segmentation
https://github.com/charlesq34/pointnet2
http://www.ti.com/lit/an/swra554a/swra554a.pdf
https://github.com/rasbt/python-machine-learning-book/blob/master/faq/decision-tree-binary.md
https://github.com/rasbt/python-machine-learning-book/blob/master/faq/decision-tree-binary.md

bibliography 225

[209] A. J. Robinson and F. Fallside, “The utility driven dynamic error propagation
network”, Cambridge University, Engineering Department, Cambridge, Tech.
Rep., 1987.

[210] H. Rohling, “Radar CFAR Thresholding in Clutter and Multiple Target
Situations”, IEEE Transactions on Aerospace and Electronic Systems, vol. AES-
19, no. 4, pp. 608–621, Jul. 1983.

[211] H. Rohling, “Ordered Statistic CFAR Technique - an Overview”, Processing,
2011.

[212] A. Rosenberg and J. Hirschberg, “V-Measure: A conditional entropy-based
external cluster evaluation measure”, in EMNLP-CoNLL 2007 - Proceedings of
the 2007 Joint Conference on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning, 2007.

[213] D. Rousseau, S. Amrouche, P. Calafiura, et al., The TrackML Particle Tracking
Challenge, 2018. [Online]. Available: https://hal.inria.fr/hal-01680537
(visited on 08/12/2019).

[214] R. Roy and T. Kailath, “ESPRIT-Estimation of signal parameters via rota-
tional invariance techniques”, in Adaptive Antennas for Wireless Communica-
tions, 1989.

[215] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations
by back-propagating errors”, Nature, vol. 323, no. 6088, pp. 533–536, Oct.
1986.

[216] O. Russakovsky, J. Deng, H. Su, et al., “ImageNet Large Scale Visual Recog-
nition Challenge”, International Journal of Computer Vision (IJCV), vol. 115,
no. 3, pp. 221–252, 2015.

[217] I.-h. Ryu, I. Won, and J. Kwon, “Detecting Ghost Targets Using Multilayer
Perceptron in Multiple-Target Tracking”, Symmetry, vol. 10, no. 1, p. 16, Jan.
2018.

[218] H. Sahbi, “A particular Gaussian mixture model for clustering and its
application to image retrieval”, Soft Computing, vol. 12, no. 7, pp. 667–676,
May 2008.

[219] J. Sander, M. Ester, H. P. Kriegel, et al., “Density-based clustering in spatial
databases: The algorithm GDBSCAN and its applications”, Data Mining and
Knowledge Discovery, 1998.

[220] F. Sarholz, J. Mehnert, J. Klappstein, et al., “Evaluation of different ap-
proaches for road course estimation using imaging radar”, in IEEE Interna-
tional Conference on Intelligent Robots and Systems, 2011.

[221] P. Saville, “Review of Radar Absorbing Materials”, Defence Research and
Development Canada, 2005.

https://hal.inria.fr/hal-01680537

226 bibliography

[222] N. Scheiner, N. Appenrodt, J. J. Dickmann, et al., “Radar-based Feature
Design and Multiclass Classification for Road User Recognition”, in 2018
IEEE Intelligent Vehicles Symposium (IV), IEEE, Jun. 2018, pp. 779–786.

[223] N. Scheiner, N. Appenrodt, J. Dickmann, et al., “A Multi-Stage Clustering
Framework for Automotive Radar Data”, in IEEE 22nd Intelligent Transporta-
tion Systems Conference (ITSC), Acukland: IEEE, Oct. 2019.

[224] N. Scheiner, N. Appenrodt, J. Dickmann, et al., “Radar-based Road User
Classification and Novelty Detection with Recurrent Neural Network En-
sembles”, May 2019.

[225] N. Scheiner, S. Haag, N. Appenrodt, et al., “Automated Ground Truth
Estimation for Automotive Radar Tracking Applications With Portable GNSS
And IMU Devices”, in 2019 20th International Radar Symposium (IRS), IEEE,
Jun. 2019, pp. 1–10.

[226] N. Scheiner and O. Schumann, “Machine Learning Concepts For Multiclass
Classification Of Vulnerable Road Users”, in 16th European Radar Conference
(EuRAD 2019) Workshops, Paris, 2019.

[227] J. Schmidhuber, “Deep learning in neural networks: An overview”, Neural
Networks, vol. 61, pp. 85–117, Jan. 2015.

[228] R. Schmidt, “Multiple emitter location and signal parameter estimation”,
IEEE Transactions on Antennas and Propagation, vol. 34, no. 3, pp. 276–280,
Mar. 1986.

[229] R. Schneider, H.-L. Blocher, and K. M. Strohm, “KOKON - Automotive high
frequency technology at 77/79 GHz”, in 2007 European Radar Conference,
IEEE, Oct. 2007, pp. 247–250.

[230] E. Schubert, F. Meinl, M. Kunert, et al., “Clustering of high resolution auto-
motive radar detections and subsequent feature extraction for classification
of road users”, in 2015 16th International Radar Symposium (IRS), IEEE, Jun.
2015, pp. 174–179.

[231] K. Schuler, M. Younis, R. Lenz, et al., “Array design for automotive digital
beamforming radar system”, in IEEE International Radar Conference, 2005.,
IEEE, 2005, pp. 435–440.

[232] O. Schumann, M. Hahn, J. Dickmann, et al., “Comparison of random forest
and long short-term memory network performances in classification tasks
using radar”, in Sensor Data Fusion: Trends, Solutions, Applications (SDF),
IEEE, Oct. 2017, pp. 1–6.

[233] O. Schumann, M. Hahn, J. Dickmann, et al., “Semantic Segmentation on
Radar Point Clouds”, in 2018 21st International Conference on Information
Fusion (FUSION), IEEE, Jul. 2018, pp. 2179–2186.

bibliography 227

[234] O. Schumann, M. Hahn, J. Dickmann, et al., “Supervised Clustering for
Radar Applications: On the Way to Radar Instance Segmentation”, in 2018
IEEE MTT-S International Conference on Microwaves for Intelligent Mobility,
ICMIM 2018, IEEE, Apr. 2018, pp. 1–4.

[235] O. Schumann, J. Lombacher, M. Hahn, et al., “Scene Understanding with
Automotive Radar”, IEEE Transactions on Intelligent Vehicles, vol. 5, no. 2,
2020.

[236] M. Schuster and K. Paliwal, “Bidirectional recurrent neural networks”, in
IEEE Transactions on Signal Processing, vol. 45, 1997, pp. 2673–2681.

[237] M. Seul, L. O’Gorman, and M. Sammon, Practical Algorithms for Image Anal-
ysis, 1st ed. Cambridge: Cambridge University Press, 2000.

[238] C. E. Shannon, “Communication in the Presence of Noise”, Proceedings of
the IRE, 1949.

[239] X. Shi, Z. Chen, H. Wang, et al., “Convolutional LSTM Network: A Machine
Learning Approach for Precipitation Nowcasting”, in Advances in Neural
Information Processing Systems 28, C. Cortes, N. D. Lawrence, D. D. Lee, et
al., Eds., Curran Associates, Inc., 2015, pp. 802–810.

[240] R. Sibson, “SLINK: An optimally efficient algorithm for the single-link
cluster method”, The Computer Journal, vol. 16, no. 1, pp. 30–34, Jan. 1973.

[241] S. Sileymanov, Design and Implementation of an FMCW Radar Signal Processing
Module for Automotive Applications, Twente, 2016. [Online]. Available: https:
//essay.utwente.nl/70986/1/Suleymanov%7B%5C_%7DMA%7B%5C_%7DEWI.

pdf.

[242] M. I. Skolnik, Introduction to Radar Systems, 3rd ed. McGraw-Hill, 2001.

[243] L. Sless, G. Cohen, B. E. Shlomo, et al., “Self-Supervised Occupancy Grid
Learning From Sparse Radar For Autonomous Driving”, arXiv preprint, Mar.
2019.

[244] C. Solomon and T. Breckon, Fundamentals of Digital Image Processing. Chich-
ester, UK: John Wiley & Sons, Ltd, Dec. 2010.

[245] M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Anaylsis, and Machine
Vision, 3rd ed. Thomson, 2007.

[246] N. Srivastava, G. Hinton, A. Krizhevsky, et al., “Dropout: A simple way
to prevent neural networks from overfitting”, Journal of Machine Learning
Research, 2014.

[247] M. Stolz, M. Li, Z. Feng, et al., “High resolution automotive radar data clus-
tering with novel cluster method”, in 2018 IEEE Radar Conference, RadarConf
2018, 2018.

https://essay.utwente.nl/70986/1/Suleymanov%7B%5C_%7DMA%7B%5C_%7DEWI.pdf
https://essay.utwente.nl/70986/1/Suleymanov%7B%5C_%7DMA%7B%5C_%7DEWI.pdf
https://essay.utwente.nl/70986/1/Suleymanov%7B%5C_%7DMA%7B%5C_%7DEWI.pdf

228 bibliography

[248] R. Storn and K. Price, “Differential Evolution - A Simple and Efficient
Heuristic for Global Optimization over Continuous Spaces”, Journal of Global
Optimization, 1997.

[249] C. Strobl, A.-L. Boulesteix, T. Kneib, et al., “Conditional variable importance
for random forests”, BMC Bioinformatics, vol. 9, no. 1, p. 307, Dec. 2008.

[250] C. Strobl, A.-L. Boulesteix, A. Zeileis, et al., “Bias in random forest variable
importance measures: Illustrations, sources and a solution”, BMC Bioinfor-
matics, vol. 8, no. 1, p. 25, Dec. 2007.

[251] S. Suryansh, Gradient Descent: All You Need to Know, 2018. [Online]. Available:
https://hackernoon.com/gradient-descent-aynk-7cbe95a778da (visited
on 08/12/2019).

[252] C. Szegedy, Wei Liu, Yangqing Jia, et al., “Going Deeper with Convolutions”,
in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
vol. abs/1409.4, IEEE, Jun. 2015, pp. 1–9.

[253] D. Tahmoush, “Review of micro-Doppler signatures”, IET Radar, Sonar &
Navigation, vol. 9, no. 9, pp. 1140–1146, Dec. 2015.

[254] F. Tony Liu, K. Ming Ting, Z.-H. Zhou, et al., “Isolation Forest”, in 2008
Eighth IEEE International Conference on Data Mining, IEEE, Dec. 2008, pp. 413–
422.

[255] TU Delft et al., Private discussions with Professors from different Universities,
2018.

[256] J. Uhrig, M. Cordts, U. Franke, et al., “Pixel-Level Encoding and Depth
Layering for Instance-Level Semantic Labeling”, in Pattern Recognition, B.
Rosenhahn and B. Andres, Eds., Springer International Publishing, Apr.
2016, pp. 14–25.

[257] L. J. P. Van Der Maaten and G. E. Hinton, “Visualizing high-dimensional
data using t-sne”, Journal of Machine Learning Research, vol. 9, pp. 2579–2605,
Nov. 2008.

[258] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you need”, in
Advances in Neural Information Processing Systems 30, I. Garnett, Guyon, U. V.
Luxburg, et al., Eds., Curran Associates, Inc., 2017.

[259] Volkswagen, Automatische Distanzregelung (Active Cruise Control - ACC), 2018.
[Online]. Available: https://www.volkswagen-newsroom.com/de/automatische-
distanzregelung-active-cruise-control-acc-3664 (visited on 06/06/2019).

[260] T. Wagner, R. Feger, and A. Stelzer, “Modifications of the OPTICS Clustering
Algorithm for Short-Range Radar Tracking Applications”, in 2018 15th
European Radar Conference, EuRAD 2018, 2018.

https://hackernoon.com/gradient-descent-aynk-7cbe95a778da
https://www.volkswagen-newsroom.com/de/automatische-distanzregelung-active-cruise-control-acc-3664
https://www.volkswagen-newsroom.com/de/automatische-distanzregelung-active-cruise-control-acc-3664

bibliography 229

[261] A. Waibel, T. Hanazawa, G. Hinton, et al., “Phoneme recognition using time-
delay neural networks”, IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 37, no. 3, pp. 328–339, Mar. 1989.

[262] J. Wainer, “Comparison of 14 different families of classification algorithms
on 115 binary datasets”, CoRR, vol. abs/1606.0, 2016.

[263] C. Waldschmidt and H. Meinel, “Future trends and directions in radar
concerning the application for autonomous driving”, in EuMW 2014; EuRAD
2014: 11th European Radar Conference, European Microwave Association -
EuMA, Oct. 2014, pp. 416–419.

[264] C. Wang, B. Samari, and K. Siddiqi, “Local Spectral Graph Convolution for
Point Set Feature Learning”, in Lecture Notes in Computer Science, vol. 11208

LNCS, 2018, pp. 56–71.

[265] H. Wang, C. Yuan, W. Hu, et al., “Supervised class-specific dictionary learn-
ing for sparse modeling in action recognition”, Pattern Recognition, 2012.

[266] L. Wang, Y. Huang, J. Shan, et al., “MSNet: Multi-Scale Convolutional Net-
work for Point Cloud Classification”, Remote Sensing, vol. 10, no. 4, p. 612,
Apr. 2018.

[267] Y. Wang, Y. Sun, Z. Liu, et al., “Dynamic graph Cnn for learning on point
clouds”, ACM Transactions on Graphics, 2019.

[268] Waymo, Waymo Open Dataset, 2019. [Online]. Available: https://waymo.
com/open/ (visited on 08/10/2019).

[269] P. J. Werbos, “Generalization of backpropagation with application to a
recurrent gas market model”, Neural Networks, 1988.

[270] V. Winkler, “Range Doppler detection for automotive FMCW radars”, in
2007 European Radar Conference, EURAD, 2007.

[271] H. Winner, S. Hakuli, and G. Wolf, Handbuch Fahrerassistenzsysteme, 1st ed.
Wiesbaden: Vieweg+Teubner, 2009.

[272] T. Winterling, J. Lombacher, M. Hahn, et al., “Optimizing labelling on radar-
based grid maps using active learning”, in Proceedings International Radar
Symposium, 2017.

[273] C. Wohler and J. Anlauf, “An adaptable time-delay neural-network algo-
rithm for image sequence analysis”, IEEE Transactions on Neural Networks,
vol. 10, no. 6, pp. 1531–1536, 1999.

[274] C. Wöhler and J. Anlauf, “Real-time object recognition on image sequences
with the adaptable time delay neural network algorithm - applications for
autonomous vehicles”, Image and Vision Computing, vol. 19, no. 9-10, pp. 593–
618, Aug. 2001.

https://waymo.com/open/
https://waymo.com/open/

230 bibliography

[275] C. Wöhler, J. Schürmann, and J. K. Anlauf, “Segmentation-Free Detection
of Overtaking Vehicles with a Two-Stage Time Delay Neural Network Clas-
sifier”, in European Symposium on Artificial Neural Networks, 1999, pp. 301–
306.

[276] C. Wöhler and J. K. Anlauf, “A time delay neural network algorithm for
estimating image-pattern shape and motion”, Image and Vision Computing,
vol. 17, pp. 281–294, 1999.

[277] C. Wöhler, J. K. Anlauf, T. Pörtner, et al., “A Time Delay Neural Network
Algorithm for Real-Time Pedestrian Recognition”, in IEEE Int. Conf. on
Intelligent Vehicles, Stuttgart, 1998.

[278] D. Wolf, Code-moduliertes Radar für Automobilanwendungen, Ulm, 2017.

[279] World Intellectual Property Organization, WIPO Trademarks - Random Forests,
2002. [Online]. Available: https://www.wipo.int/branddb/en/showData.
jsp?ID=EMTM.017891729 (visited on 08/14/2019).

[280] Y. Wu, M. Schuster, Z. Chen, et al., “Google’s Neural Machine Translation
System: Bridging the Gap between Human and Machine Translation”, CoRR,
Sep. 2016.

[281] M. Xu, W. Dai, Y. Shen, et al., “MSGCNN: Multi-scale Graph Convolutional
Neural Network for Point Cloud Segmentation”, in 2019 IEEE Fifth Interna-
tional Conference on Multimedia Big Data (BigMM), IEEE, Sep. 2019, pp. 118–
127.

[282] X. Xu, M. Ester, H. P. Kriegel, et al., “A Distribution-based Clustering Algo-
rithm for Mining in Large Spatial Databases”, in Proceedings - International
Conference on Data Engineering, 1998.

[283] Y. Xu, T. Fan, M. Xu, et al., “SpiderCNN: Deep Learning on Point Sets with
Parameterized Convolutional Filters”, in Lecture Notes in Computer Science,
vol. 11212 LNCS, Springer Verlag, 2018, pp. 90–105.

[284] Z. Xu and Q. Shi, “Interference mitigation for automotive radar using
orthogonal noise waveforms”, IEEE Geoscience and Remote Sensing Letters,
2018.

[285] M. Yamada and K. Hasuike, “Document image processing based on en-
hanced border following algorithm”, in Proceedings - International Conference
on Pattern Recognition, 1990.

[286] N. Yamada, Y. Tanaka, and K. Nishikawa, “Radar cross section for pedestrian
in 76GHz band”, in 2005 European Microwave Conference, IEEE, 2005, 4 pp.–
1018.

https://www.wipo.int/branddb/en/showData.jsp?ID=EMTM.017891729
https://www.wipo.int/branddb/en/showData.jsp?ID=EMTM.017891729

bibliography 231

[287] R.-M. Yang, G.-L. Zhang, F. Liu, et al., “Comparison of boosted regression
tree and random forest models for mapping topsoil organic carbon concen-
tration in an alpine ecosystem”, Ecological Indicators, vol. 60, pp. 870–878,
Jan. 2016.

[288] H. Zen and H. Sak, “Unidirectional long short-term memory recurrent neu-
ral network with recurrent output layer for low-latency speech synthesis”, in
2015 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), IEEE, Apr. 2015, pp. 4470–4474.

[289] X. Zhang, “Dynamic Objects Classification Based on High Resolution Doppler
Radar and Laser Data”, PhD thesis, Stuttgart University, 2017.

[290] W. Zhou, H. An, H. Yang, et al., “Fast clustering of radar reflectivity data on
GPUs”, in Lecture Notes in Electrical Engineering, 2011.

[291] Y. Zhou and O. Tuzel, “VoxelNet: End-to-End Learning for Point Cloud
Based 3D Object Detection”, in 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, IEEE, Jun. 2018, pp. 4490–4499.

L I S T O F F I G U R E S

2.1 Decision tree for three different classes (red, blue and green). In a)
the tree with its three leaf nodes (n3, n4, n5) along with the class
distribution in each node is displayed. The first split criterion checks
whether the third feature in the input x is smaller than a1 and the
second criterion at node n2 check whether the seventh feature in x is
smaller than a2. If input x passes a test, it is redirected to the left child
node. In b) the data distribution in the two-dimensional subspace
spanned by feature f3 and feature f7 is displayed along with the two
decision boundaries that separate the space in three regions. 9

2.2 Different splits of the training data along the dimension of feature
f3. On the right hand side a plot of the information gain at each split
index is shown. At split index 14, the maximum information gain is
found so that this split would be chosen. 11

2.3 Comparison between a fully connected layer and a convolution layer
for an example input feature vector with three entries. In a) a fully
connected layer is used to map the input to a two-dimensional output.
In b) a convolution kernel of height Hk = 2 is used and the two
positions of the kernel at hk = 0 and hk = 1 are displayed (dashed
and dotted rectangles). 19

2.4 Illustration of a convolution. a) Input tensor of size Npoints× Nneigh×
C. b) The Cout different 1× 1 convolution kernels. c) All convolution
kernels are shifted individually over the input tensor, each creating
one Npoints × Nneigh output. d) Combination of all Cout convolution
outputs results in the final Npoints × Nneigh × Cout tensor. 20

2.5 Connections within a recurrent neural network. In a) the most simple
RNN cell is sketched, see Eq. (2.19). In b) an LSTM cell is drawn and
peephole connections are illustrated by dashed lines. Based on Fig. 6

in [175]. 23

2.6 Example situation in which unlabeled data helps to identify the
underlying structure in a data set. In a) only the labeled data are
drawn. With the unlabeled data shown in b), more structure of the
underlying distribution becomes visible. Inspired by Fig. 2.1 in [78]. 28

3.1 Simplified system diagram of an FMCW radar. Based on Fig. 2 in
[270]. 32

233

234 list of figures

3.2 Left: Amplitude vs. time plot of the transmitted signal. Right: Fre-
quency vs. time plot for the transmitted as well as for the received
signal. The transmitted signal is drawn in red and the received signal
is drawn in blue with dashed lines. Symbols are defined in the text.
Based on Fig. 3 in [182]. 33

3.3 Creation of the range-Doppler-matrix by application of a 2D-FFT on
the rows and columns of the input matrix. The input matrix consists
of M sampled values from each of the N chirps. 36

3.4 Sketch of the phase difference that occurs on the receiver antennas
(RX, blue circles) if an object is detected under an angle φ. Colored
lines indicate areas with the same phase (wave fronts). Similar figures
are in [120], [241]. 37

3.5 Sketch of a MIMO setup. Two transmit antennas in combination with
four receiver antennas can emulate the same behavior as one transmit
antenna and eight receiver antennas. Based on Fig. 5 in [200]. 38

3.6 Blue arrow: time t0, red arrow: time t1. In a) and b), two different
possible paths the phasor could have taken between t0 and t1 are
displayed. In c), the two phase differences are plotted and d) shows
regions with positive and negative Doppler velocity. 41

3.7 In a), the transmitted and received signals are plotted, similar to
Fig. 3.2. The resulting mixed signal with constant frequency is drawn
for the times where receive and transmit signal both exist. In b) the
Fourier transformation of the mixed signal is plotted along with
ideally located bins. 43

3.8 Transformation of the measured return signals to the three dimen-
sions range, Doppler velocity and angle. The fast-time (samples on
one chirp) corresponds to the range dimension, the slow-time (the
number of chirps) corresponds to the Doppler velocity dimension
and finally the number of antenna elements determines the angle.
Based on figure in [7]. 44

3.9 Sketch of the cell-averaging CFAR algorithm. The two guard cells (red)
at each side of the cell under test (blue) are not considered during
estimation of noise level (green cells). Based on Fig. 7.3 in [206]. . . . 45

3.10 Location and orientation of the three coordinate systems. The black
dashed line in a) symbolizes the trajectory of the test vehicle and the
green triangle stands for one radar sensor. In b) the vectors connecting
the origins of the coordinate systems as well as the angles γ and
φsens,1 are displayed. 47

3.11 Radar targets from the four sensors are displayed in two different
coordinate systems. Left: Car coordinate system. Right: Global coor-
dinate system. Data accumulated over 500 ms is shown. 50

list of figures 235

3.12 Left: Radar targets of an oncoming car (red) and the static infrastruc-
ture (grey). Right: Cropped camera image of the same scene. Data
accumulated over 1 s is shown. 51

3.13 Sketch of the ego vehicle during a right turn where γ̇ < 0. Quantities
used for the ego-motion compensation of the Doppler velocity of one
measured target (orange pentagon) are shown. 52

4.1 Field of view and positions of the sensors on the test vehicle. 57

4.2 Distribution of the sensor cycle times of one radar sensor. The cycle
time is here defined as time difference between two near-range scans.
The grey dashed line shows the average cycle time. 59

4.3 Number of measured targets per scan for two different sensors.
Measurements with a moving or stationary ego-vehicle are displayed
separately from each other. 60

4.4 Camera image of the scene shown in Fig. 4.5. 64

4.5 Example scene with labeled objects. The point cloud shows all anno-
tated radar targets as well as the targets of the static environment.
Data accumulated over 100 ms are shown. 65

4.6 Left: Radar targets of an oncoming vehicle. Right: Cropped camera
image of the same scene. The targets originating from the oncoming
car are highlighted in pink. Targets between the ego-vehicle and the
other car stem from the guardrail. Arrows indicate the radial velocity
over ground. Data accumulated over 100 ms are shown. 66

4.7 Left: Radar targets of a truck (green), the static infrastructure (grey)
and a clutter object (pink) caused by an angle ambiguity. Right:
Cropped camera image of the same scene. The pedestrian (blue
points) is not visible in the camera image. Data accumulated over
100 ms are shown. 67

4.8 Left: Radar targets of the static infrastructure (grey) with ego-motion
compensated Doppler velocity v̂r depicted as arrows. Data accumu-
lated over 100 ms are shown. Right: Cropped camera image of the
scene. The ego-vehicle performs a left turn and the odometry sensors
yield inaccurate data. 68

4.9 Radar targets of the static surrounding (grey) and the mirrored ego-
vehicle (pink). Data is accumulated over 500 ms to emphasize the
effect. Camera image of this scene can be found in Fig. 4.8. 69

4.10 Left: Radar targets of other vehicles (red and green), the static en-
vironment (grey) and clutter (pink). Many clutter points between
the two trucks make it difficult to annotate the real objects. Data
accumulated over 100 ms are shown. Right: Cropped camera image
of the scene. 70

236 list of figures

4.11 Two examples of vehicles for which a mapping to the two classes
Passenger Car and Large Vehicle is non-trivial. 70

4.12 Number of targets per object measured by one radar in one scan
versus radial distance to the object. The colored areas indicate ±σ

regions around the mean value. 73

4.13 Histogram with relative counts of the number of measured targets
per scan. Only targets from the range 0 m to 30 m are considered.
Left: Histogram for the Passenger Car class. Right: Histogram for
the Pedestrian class. 74

4.14 Target distribution in a polar plot. The measured targets of each
sensor are displayed in a separate diagram. The diagrams are rotated
by the mounting position of the respective sensor. 75

4.15 Heat map of the target distribution around the ego-vehicle. Colors
indicate how many annotated targets were measured in each cell.
Log-scale is used to make areas with low occupancy visible. 76

4.16 Histograms of ego-motion compensated Doppler velocities v̂r for
each semantic class. The histograms are normalized so that the sum
of all bins equals one. 78

4.17 Histograms of RCS values σ for each semantic class. The histograms
are normalized so that the sum of all bins equals one. 80

4.18 Measured RCS values as a function of the radial distance at which
the respective targets were measured. Comparison between the two
classes Passenger Car and Pedestrian. The shaded region mark
areas within one standard deviation around the mean. 82

4.19 Comparison of the measured number of targets Nt per scan between
the three different bicycle types. 83

4.20 Comparison of the range dependency of the RCS values σ between
the three different bicycle types. 84

4.21 Spatial distribution of the measured targets of the three bicycles.
Color indicates the relative count in each cell. 85

5.1 Examples for a) density-reachable points, b) density connected points
and the final clustering result in c). See text for details. Inspired by
Fig. 3 in [65]. 89

5.2 Statistics about nearest neighbor differences in space and velocity.
The solid lines mark the average value of all measurements that fell
into the respective range or velocity bin and the shaded areas are
regions with plus/minus one standard deviation. Only the absolute
value of the Doppler velocity v̂r is considered. 97

list of figures 237

5.3 Histograms displaying the score distribution of DBSCAN− and DBSCAN+

as well as the distribution of the bin count differences. The histograms
are normalized so that the bins sum to one. 103

5.4 Averaged values for εr plotted against radial distance for each of the
five different velocity intervals. Shaded areas indicate regions with
plus/minus one standard deviation around the mean value. 104

5.5 Averaged values for εr plotted against Doppler velocity for each of
the six range regions. Shaded areas indicate regions with plus/minus
one standard deviation around the mean value. 105

5.6 Example clustering result of a scene with two approaching cars
and one car in front of the ego-vehicle. Left: Clustering result of
the DBSCAN− algorithm. Right: Result of the DBSCAN+ method with
learned parameters. 105

6.1 Process pipeline for classification based on clustered data. From the
created clusters (red boxes) either feature vectors are extracted man-
ually (blue box) and then classified (green box) or feature extraction
and classification is performed in a combined step (bottom part). . . 107

6.2 Correlations between the features of the basic feature set. 113

6.3 Decision surfaces for different features and classifiers. In parts a),
b) and c) of the figure, the features rmean and ntargets are considered
with varying depths of the trees and in part d) the features rspread
and v̂mean are used with unrestricted tree depths. 116

6.4 Feature importances of the random forest classifier, trained on the
basic feature set. 117

6.5 Classifier performance as a function of different random forest pa-
rameter settings. 119

6.6 Confusion matrix based on feature vectors. Left: Basic feature set.
Right: Extended feature set. 121

6.7 Confusion matrix based on feature vectors. A classifier was trained
on feature vectors from ground truth clusters. Left: Evaluation on
feature vectors from DBSCAN− clusters. Right: Evaluation on feature
vectors from DBSCAN+ clusters. 123

6.8 Confusion matrix based on feature vectors. Left: Training and evalu-
ation on feature vectors from DBSCAN− clusters. Right: Training and
evaluation on feature vectors from DBSCAN+ clusters. 124

6.9 Random forest confusion matrix based on individual targets after
label propagation from the respective feature vectors. Left: Training
and evaluation on feature vectors from DBSCAN− clusters. Right:
Training and evaluation on feature vectors from DBSCAN+ clusters. . 127

238 list of figures

6.10 Classifier performance as a function of different parameter settings.
The red curves symbolize the score if the increasing time windows
are used and the blue curve marks the case where features from
constant time windows are calculated, see also Section 6.2.1. 128

6.11 Confusion matrices of the LSTM classifier. Training and evaluation is
done on features from ground truth clusters. Left: Basic feature set.
Right: Extended feature set. 130

6.12 Confusion matrices of the LSTM classifier. The basic feature set is
used and evaluation is done per feature vector. Left: Training with
features from ground truth and DBSCAN− clusters. Right: Training
with features from ground truth and DBSCAN+ clusters. 131

6.13 Confusion matrices of the LSTM classifier. The basic feature set is used
and evaluation is done per target. Left: Training with features from
ground truth and DBSCAN− clusters. Right: Training with features
from ground truth and DBSCAN+ clusters. 132

6.14 Network structure of the classification network. See text for details
about the used abbreviations. 135

6.15 Per-target confusion matrices for the automatic feature extraction
approaches. Left: Single time steps with PointNet++. Right: Combi-
nation of PointNet++ as feature extractor and an LSTM as classifier
with eight time steps. 137

6.16 Network structure of the combination of PointNet++ with an LSTM.
The fully connected block drawn with dashed lines is only used once
to evaluate its necessity. 138

6.17 Left: Average duration each of the labeleres needed for “classification”
of one sequence. Right: F1 scores as a function of the length of the
sequences. 141

6.18 Per-target confusion matrices for the best performing labeler L1 (right)
and the worst performing labeler L3 (left) for sequences of length
T = 0.6 s. 142

6.19 Example scene that was presented to the test persons. Left: Camera
image of the scene (not shown during the experiment). Right: Point
cloud with per-class colors. The text labels describe to which class
the three test persons assigned the respective object. 143

6.20 Feature extraction pipeline for the motion type classification of pedes-
trians. 144

6.21 Left: Example for a Frenet transformation. Right: Two radar grids for
the motion types walking and crutches. Images are based on figure
4.3 and 4.6 in [104]. 146

6.22 Confusion matrix of the motion classification approach. The absolute
numbers in the matrix represent clusters with length 3 s. 146

list of figures 239

6.23 Left: Doppler over ground v̂r vs. distance d. Blue stars show measure-
ments, the orange line displays the low-pass filtered signal. Right:
Fourier transform of the filtered signal (blue line) with highlighted
maximum, corresponding to the stride length ls (red line). Based on
figure 4.11 in [104]. 148

6.24 Pipeline of the stride length extraction for height estimation of pedes-
trians. 148

6.25 Left: Feature importances during the height estimation. Right: Abso-
lute values of the predicted heights. The mean errors for each height
bin are drawn along with the standard deviation. The red line indi-
cates the mean error of the Boulic-Thalmann model. Based on figures
4 and 5 in [105]. 150

6.26 Comparison of the most basic approach using standard DBSCAN

for clustering and a random forest as classifier with the one using
DBSCAN+ for clustering and PointNet++ & LSTM as classifier. Left:
Confusion matrix of the best performing PointNet++ & LSTM archi-
tecture. Right: Differences to the random forest confusion matrix. . . 151

6.27 Embedding of the automatically generated features (left) and the
manually computed features (right). For embedding into two dimen-
sions, t-SNE was used. 153

7.1 Structure of the semantic segmentation network. The convolution
kernel sizes of the three MSG modules are [[32, 32, 64], [64, 64, 128]],
for the first two modules and [[64, 64, 128], [64, 64, 128]] for MSG 3.
The figure was published beforehand in [233]. 162

7.2 Structure of the recurrent instance segmentation network. The input
point cloud is passed to the point feature generation module (teal
box) and the memory abstraction module (blue box), where feature
vectors for each point are generated and afterwards combined (red
box). The direction module and the semantic segmentation module
(violet and light blue box, respectively) support the final instance
classifier (green box). The light grey dashed arrows symbolize the
forward path whereas the dark grey arrows show the update step of
the memory point cloud during which the memory update module
(yellow box) is utilized. 165

7.3 Instance creation for one example object. a) Predictions from semantic
segmentation module and predicted direction vectors. b) Shifted
targets, selection of seed points, neighborhood search. c) Merged
neighborhoods form one instance, which is classified by the instance
classifier. 169

240 list of figures

7.4 Confusion matrices from the semantic segmentation network. Left:
Training without augmentation. Right: Training with augmentation. 172

7.5 Confusion matrices of the recurrent instance segmentation network.
Left: All five target-features are used and evaluation is done with 14

time steps. Right: Resulting confusion matrix if only the two position
features are used as input. 173

7.6 Left: Ground truth instances. Right: Predicted displacement vectors
for each target. 174

7.7 Dependence of the F1 score on the temporal length of the input data.
Left: Scores from the semantic segmentation network. Right: F1 scores
of the instance classification network, showing both the sem. seg.
branch of the network and the instance classifier. 177

7.8 Relative number of overlooked objects for three different approaches:
recurrent instance segmentation network, DBSCAN+ and DBSCAN−. . 178

7.9 Positions of objects overlooked by the instance segmentation network.
The average time an object was not identified in a certain cell is color-
coded. 179

7.10 Flowchart showing the different evaluation schemes for the ensemble
classifier. 181

7.11 Confusion matrices of the ensemble learning. Left: Random forest
classifier trained on the instances proposed by the network. Right:
Combination of random forest and instance classification network. . 182

7.12 Left: Average duration each of the labeleres needed for instance
segmentation of one sequence. Right: F1 scores as a function of the
length of the sequences. 185

7.13 Per-target confusion matrices for the best performing labeler L2 (right)
and the worst performing labeler L3 (left) for sequences of length
T = 0.6 s. 186

7.14 Comparison between the results from the instance segmentation net-
work and the basic approach using standard DBSCAN for clustering
and a random forest as classifier. Left: Confusion matrix of the in-
stance segmentation network. Right: Differences to the random forest
confusion matrix. 188

A.1 Target distribution in a polar plot. The measured targets of each
sensor are displayed in a separate diagram. The diagrams are rotated
by the mounting position of the respective sensor. Only targets of the
class Passenger Car are displayed. 198

list of figures 241

A.2 Target distribution in a polar plot. The measured targets of each
sensor are displayed in a separate diagram. The diagrams are rotated
by the mounting position of the respective sensor. Only targets of the
class Pedestrian are displayed. 199

A.4 Target distribution in a polar plot. The measured targets of each
sensor are displayed in a separate diagram. The diagrams are rotated
by the mounting position of the respective sensor. Only targets of the
class Two-Wheeler are displayed. 199

A.3 Target distribution in a polar plot. The measured targets of each
sensor are displayed in a separate diagram. The diagrams are rotated
by the mounting position of the respective sensor. Only targets of the
class Pedestrian Group are displayed. 200

A.5 Target distribution in a polar plot. The measured targets of each
sensor are displayed in a separate diagram. The diagrams are rotated
by the mounting position of the respective sensor. Only targets of the
class Large Vehicle are displayed. 200

A.6 Measured RCS values of the different semantic classes as a function
of the radial distance at which the respective targets were measured. 201

A.7 Measured RCS values of the different semantic classes as a function
of the radial distance at which the respective objects were measured.
The RCS values are summed for each object first and then the average
value for each range bin is calculated. 202

A.8 Averaged values for εv plotted against radial distance for each of the
five different velocity intervals. Shaded areas indicate regions with
plus/minus one standard deviation around the mean value. 203

A.9 Averaged values for εv plotted against Doppler velocity for each of
the six range regions. Shaded areas indicate regions with plus/minus
one standard deviation around the mean value. 203

A.10 Averaged values for εt plotted against radial distance for each of the
five different velocity intervals. Shaded areas indicate regions with
plus/minus one standard deviation around the mean value. 204

A.11 Averaged values for εt plotted against Doppler velocity for each of
the six range regions. Shaded areas indicate regions with plus/minus
one standard deviation around the mean value. 204

A.12 Almost perfect instance segmentation of multiple cars driving straight
or performing a left turn. 206

A.13 The network correctly created three Pedestrian instances. One of the
instance contains measurements from the nearby wall. 206

A.14 Correct segmentation of one car left of the ego vehicle. For the second
car, two instances are predicted. The predicted Pedestrian does not
exist. 206

242 list of figures

A.15 Perfect classification and segmentation of a tractor and a car. 207

A.16 Two bicycles in front of the ego-vehicle are correctly identified. . . . 207

A.17 The predicted width of car right of the ego-vehicle is too large. A
ghost object is created behind the car which performs the left turn. . 207

A.18 The approaching cars extend a bit too much into the sidewalk but
are otherwise well captured. 208

A.19 All three pedestrians, the truck and the car are correctly classified.
However, two car instances are created instead of only one. 208

L I S T O F TA B L E S

4.1 General properties of the recorded data. 71

4.2 Distribution of the annotated targets and objects among the classes. 72

5.1 Overview of the clustering scores. 102

6.1 Scores obtained with a random forest as classifier for different con-
figurations. 125

6.2 Scores obtained with LSTM classifiers for different configurations. . . 133

6.3 Number of targets and objects used in the experiment for each of the
three time bins. 140

6.4 Motion classification scores. 146

6.5 Comparison of the scores obtained with the four different approaches. 150

7.1 Scores obtained for different input combinations, displaying the
importance of each feature. 175

7.2 Average number of targets per ground truth and per predicted object
in a time bin of size 0.15 s. 180

7.3 Number of targets and objects used in the experiment for each of the
four time bins. 184

7.4 Comparison of the scores obtained with the segmentation approaches. 187

8.1 Scores of the different approaches presented in this work. 190

243

L I S T O F A C R O N Y M S

ACC Adaptive Cruise Control .31

ADC Analog-to-Digital Converter . 32

ANN Artificial Neural Network . 15

CA-CFAR Cell Averaging Constant False Alarm Rate . 44

CAPTCHA Completely Automated Public Turing test to tell Computers and
Humans Apart . 192

CDM Code Division Multiplexing . 38

CFAR Constant False Alarm Rate . 44

CNN Convolutional Neural Network . 15

CUT Cell Under Test .44

DBCLASD Distribution Based Clustering of Large Spatial Databases 90

DBSCAN Density-Based Spatial Clustering of Applications with Noise 87

DGPS Differential Global Positioning System. .46

ESPRIT Estimation of Signal Parameter via Rotational Invariance Technique 38

FMCW Frequency Modulated Continuous Wave . 30

FFT Fast Fourier Transform . 35

GRU Gated Recurrent Unit .25

HDBSCAN Hierarchical Density-Based Spatial Clustering of Applications with
Noise . 91

IoU Intersection Over Union . 178

LSTM Long Short-Term Memory . 15

MIMO Multiple Input Multiple Output . 31

MSG Multi-Scale Grouping . 133

MUSIC Multiple Signal Classification . 38

NLP Natural Language Processing .21

OPTICS Ordering Points To Identify the Clustering Structure.91

OS-CFAR Ordered Statistics Constant False Alarm Rate .45

PCA Principal Component Analysis . 26

RANSAC Random Sample Consensus . 145

RCS Radar Cross Section . 30

ReLu Rectified Linear Unit . 22

RNN Recurrent Neural Network . 21

SAR Synthetic Aperture Radar. .31

SMOTE Synthetic Minority Over-sampling Technique .120

245

246 acronyms

SVM Support Vector Machine . 109

TDM Time Division Multiplexing . 38

TDNN Time Delay Neural Network . 21

t-SNE t-Distributed Stochastic Neighbor Embedding . 26

UUID Universally Unique Identifier .62

	Abstract
	Acknowledgments
	Publications
	Contents
	1 Introduction
	2 Fundamentals of Machine Learning
	2.1 Supervised Learning
	2.1.1 The Random Forest Classifier
	2.1.2 Artificial Neural Networks

	2.2 Unsupervised Learning
	2.3 Semi-Supervised Learning

	3 Fundamentals of Automotive Radar
	3.1 Introduction to Radar Signal Processing
	3.1.1 Range and Doppler Estimation
	3.1.2 Azimuth Angle Estimation
	3.1.3 Ambiguities and Resolution Limits in Range, Doppler and Angle
	3.1.4 Target Extraction

	3.2 Coordinate Systems
	3.3 Ego-Motion Compensation
	3.4 Clutter

	4 Data Recording, Annotation and Measurement Statistics
	4.1 Sensor Setup and Recording Procedure
	4.2 Labeling
	4.3 Artifacts and Labeling Challenges
	4.4 Description of the Data Set
	4.4.1 General Properties
	4.4.2 Spatial Distribution of Labeled Objects
	4.4.3 Distribution of Doppler Values
	4.4.4 Radar Cross Sections of Different Road Users
	4.4.5 Measurements of Three Different Bicycles

	5 Clustering of Radar Data
	5.1 State of the Art
	5.1.1 DBSCAN
	5.1.2 DBSCAN Variants
	5.1.3 Clustering Applied to Radar Data
	5.1.4 Simulated Annealing

	5.2 Supervised Clustering
	5.2.1 Score Function to Assess Clustering Results
	5.2.2 Method and Training
	5.2.3 Evaluation

	6 Classification of Clustered Radar Data
	6.1 State of the Art
	6.2 Comparison of Different Feature Based Approaches
	6.2.1 Feature Extraction
	6.2.2 Random Forest
	6.2.3 Long Short-Term Memory Network

	6.3 Automatic Feature Extraction
	6.3.1 Classification with PointNet++
	6.3.2 PointNet++ as Feature Extractor, LSTM as Classifier

	6.4 Human Performance
	6.4.1 Experimental Setup
	6.4.2 Results

	6.5 Motion Classification and Body Height Estimation of Pedestrians
	6.5.1 Motion Type Classification
	6.5.2 Height Estimation

	6.6 Comparison and Summary

	7 Semantic (Instance) Segmentation of Radar Point Clouds
	7.1 State of the Art
	7.1.1 Neural Network Architectures for Semantic (Instance) Segmentation
	7.1.2 Works on Point Cloud Data
	7.1.3 Works on Radar Data

	7.2 Methods
	7.2.1 Semantic Segmentation
	7.2.2 Recurrent Instance Segmentation

	7.3 Results
	7.3.1 Per-Target Evaluation
	7.3.2 Feature Importance
	7.3.3 Dependence on Sequence Length
	7.3.4 Evaluation per Object Instance
	7.3.5 Ensemble Learning

	7.4 Human Performance
	7.4.1 Experimental Setup
	7.4.2 Results

	7.5 Comparison and Summary

	8 Conclusion
	A Appendix
	A.1 Five Ingredients for Supervised Learning
	A.2 Spatial Distribution of Radar Targets
	A.3 Radar Cross Sections
	A.4 Cluster Learning Results
	A.5 Parameters of the Instance Segmentation Network
	A.6 Example Predictions of the Instance Segmentation Network

	Bibliography
	List of Figures
	List of Tables
	List of Acronyms

