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Abstract
This contribution presents a theoretical and computational framework for two-scale shape optimisation of nonlinear elas-
tic structures. Particularly, minimum compliance optimisation problems with composite (matrix-inclusion) microstructures
subjected to static loads and volume-type design constraints are focused. A homogenisation-based FE2 scheme is extended
by an enhanced formulation of variational (shape) sensitivity analysis based on Noll’s intrinsic, frame-free formulation of
continuum mechanics. The obtained overall two-scale sensitivity information couples shape variations across micro- and
macroscopic scales. A numerical example demonstrates the capabilities of the proposed variational sensitivity analysis and
the (shape) optimisation framework. The investigations involve a mesh morphing scheme for the design parametrisation at
both macro- and microscopic scales.

Keywords FEM · Numerical multiscale methods (FE2) and homogenisation · Two-scale structural analysis · Variational
sensitivity analysis · Structural optimisation · Shape optimisation

1 Introduction

Today’s state of the art within industrial applications requires
the usage of efficient and high-performance materials, which
are optimally designed in terms of production costs, mate-
rial savings, fuel consumption or their mechanical behaviour.
In many cases, a useful choice of materials of components
contributes to the overall performance significantly. Materi-
als can not be classified as homogeneous, but are composed
of various ingredients. Often, considerations at the structural
(macroscale) level are no longer sufficient and investigations
on a lower length scale, the so-calledmaterial- or microscale,
become necessary. Based on experimental data, practical
experience and available methods for computer-aided sim-
ulation and analysis, the responsible design engineer has
to decide which ingredients are suitable for a goal-oriented
composition of materials. The evaluation of different designs
can be performed based on so-called multiscale methods
for structural analysis. These also include the FE2 method,
which allows a combined analysis of the macroscopic struc-
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tural behaviour and the microscopic material behaviour by
a numerical homogenisation scheme applied to the micro-
scopic material structure.

Overall, a broad range of multiscale optimisation prob-
lems are considered intensively in literature. Particularly,
solution strategies based on topology optimisation methods
are of major interest. An extensive introduction on topol-
ogy optimisation methods in general is given in [13]. Several
problem formulations for the choice of optimal thermoelas-
tic properties with the target of maximum, zero or negative
thermal expansion as well as of weight minimisation and
manufacturing constraints can be found in [62–65]. The
design of periodic linear elastic microstructures of cellu-
lar materials in terms of maximisation of weighted sum of
equivalent strain energy density or linear combinations of
mechanical properties under volume and material symmetry
constraints are discussed in [51] aswell as forminimisationof
mean compliance subject to volume fractions of constituents
in an underlying RVE in [22]. The key idea of extreme
materials is often represented by applications with nega-
tive Poisson’s ratios. Several authors [36,49,59,62,63] tackle
optimisation problems and provide results and material rep-
resentations for this kind of structures, which in general
are characterised by their ability for high energy absorption
and fracture resistance. Two-phase composite materials with
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targeted properties such as piezoelectric properties in combi-
nation with thermoelectric coefficients can be found in [30].
General investigations for multiphase composites and their
design process for optimal performance under certain con-
straints are proposed in [24,70,71] and especially in [69] for
high stiffness or high strength composites. Procedures which
tackle orthotropic materials, thickness of components and
especially the optimisation of the angle of material rotation
or material orientation in general are derived in [54,55] and
[56]. A computational model to design bi-material compos-
ite laminates to minimise structural compliance with mixed
sets of micro and macro design variables is introduced in
[19]. The target is to find optimal composite microstruc-
tures andoptimal fibre orientation on themacroscale.Aspects
on lightweight materials for non-periodic topologies within
minimum compliant mechanism problems can be found in
[37].

Strategies based on evolutionary optimisation algorithms,
like the bi-directional evolutionary structural optimisation
(BESO), for the concurrent design of material and struc-
tures within frameworks for topology optimisation and
non-linear FE2 analysis with design variables on both scales
are investigated in [82–85]. Aspects on efficient topology
optimisation schemes for the design of multiscale non-linear
heterogeneous structures and high performancematerials are
summarised in [81]. The authors in [31] bridge topology
and shape optimisation schemes to design three-dimensional
microstructured materials with extreme properties using
energy-based homogenisation and parameteric level set
methods. Patterns for engineered materials in terms of size,
shape and layout of inclusion-like phases in continuum
domains are obtained in [26].

Considering shape optimisation methods, theory and
numerical methods for homogenisation techniques are for-
mulated in [1]. Classical (fixed connectivity) shape optimisa-
tion has been outlined over the last decades in detail including
the corresponding sensitivity analysis, see e.g. [16,17,29,32].

In this manuscript, special emphasis is given to methods
for (fixed-connectivity) shape optimisation applied to numer-
ical homogenisation between two adjacent scales. Since the
numerical effort for multiscale structural analysis raises with
the complexity of referred problems, it is useful to focus
on computational efficient methods for structural optimisa-
tion. Thus, so-called gradient based optimisation methods
utilising the variational approach for sensitivity analysis are
chosen. The focus is on relations for design (e.g. shape) mod-
ifications in terms of general geometrical parameters on both
scales. But modifications like number, location and shapes
of holes and inclusions are postponed. Similarly, character-
istic material properties are not tackled here. The proposed
method extends the formulation of a single-scale optimisa-
tion task and allows choices of objective functions or goals,
constraints and design parameters on two scales.

Optimisation model and initial structural design
OF, CON, SCON, DP, CAGD or CAE-FEM model, technological data

Structural analysis
Equilibrium and design response by FEM

Design sensitivity analysis
Gradients of OF, CON and SCON

Mathematical optimisation
Design parameter increment by NLP

Update and new design
CAGD- or CAE-FEM-model, technological data

Convergence

Optimum design

YES

NO

Fig. 1 Principle framework for structural optimisation

In accordance to the well-known principal framework for
structural optimisation pictured in Fig. 1, which is valid
for single- and two-scale optimisation problems, the paper
is organised as follows. Section 2 elaborates the advocated
enhanced formulation of variational sensitivity analysis for
shape optimisation problems on a single scale. Section 3
outlines a brief review of relations used for the structural
analysis block, i.e. relations for numerical homogenisation
and FE2 methods in terms of the Lagrange formalism are
outlined. Section 4 provides required two-scale sensitivity
information with respect to defined design parameters (DP),
which is necessary for the evaluation of objective functions
(OF), constraints (CON) and side-constraints (SCON)within
the block design sensitivity analysis. The setup of two-scale
optimisation problems for the block mathematical optimi-
sation is presented in Sect. 5. Finally, Sect. 6 demonstrates
the applicability of the derived formulation investigating an
illustrative example.

The following notation is used. Second order tensors are
depicted by Roman, upright, boldface letters, e.g.A. Vectors
are printed in Roman, slanted, boldface letters, i.e. X . Scalars
are written, as usual, using Roman, slanted letters, i.e. α. All
matrices are denoted by sans serif, slanted, boldface letters,
i.e. A,X .

Furthermore, the notation of central quantities are men-
tioned at this early stage to enhance readability, especially in
Sect. 2. Continuous mappings for geometry, motion, defor-
mation and displacements are denoted by κ,μ,ϕ and υ.
The corresponding vectors are written as X, x and u. The
(global) matrices in the finite element context read x (nodal
coordinates) and u (nodal displacements), respectively. The
dependency on time is indicated, as usual, by the parameter t .
Similarly, the scalar variable s highlights the dependency on
design.
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Variations are written using the operator δ. A more com-
pact representation of variations is chosen using the notation
δ(·) = (·)′. The total variation of a quantity of interest appears
in the following compact way

δ(·)(υ, κ) = (·)′υ + (·)′κ = (·)′(υ, κ).

Partial variationswith respect to state and geometry functions
can be identified by δυ(·) = (·)′υ and δκ(·) = (·)′κ .

2 Variational sensitivity analysis on a single
scale

The essential statements for answering the central question

“How do resulting quantities change
if input parameters are modified?”

can be deduced from sensitivity analysis, which plays the
key role within frameworks for structural optimisation and
is an important prerequisite for the success of mathematical
optimisation algorithms. The design (e.g. shape) sensitiv-
ity analysis leads to insights about impacts and significant
effects of design (e.g. shape) modifications on the physi-
cal properties and the resulting physical behaviour. Different
approaches are well-known from literature including con-
tinuous variational, discrete (semi-) analytical as well as
numerical methods, to name a few. A detailed discussion
is beyond the scope of this paper and the readers are referred
to the vast literature on structural optimisation, see e.g.
[16,17,29,34,75].

2.1 Advantages of variational sensitivity analysis

The benefits of variational sensitivity analysis (VSA) com-
pared to discrete approaches are emphasised in more detail.
Within this class, especially thematerial derivative approach
(MDA), see [2,16,17,35], and the domain parametrization
approach (DPA), see [15,27,57,72], gained a high degree of
respect based on numerous valuable theoretical and compu-
tational results for a wide range of challenging problems.
Both approaches yield mutally equivalent results. Again, the
reader is referred to literature for a detailed characterisation
of the approaches. Importantly, all results are derived on the
continuous level using variations of continuous functions. A
subsequent discretisation yield the matrix equations needed
for implementation and subsequent computation.

A central purpose of our contribution is to show, that a
variational sensitivity analysis of complex problems such as
the subject of this paper can be performed and presented in an
understandable manor. We emphasise, that this statement is
true for both mentioned variants as well as for the variational
approach to (shape) sensitivity analysis outlined in Sect. 2.3.

2.2 Challenge of an enhanced variational sensitivity
analysis

The advantages of an enhanced theoretical framework for
variational (shape) sensitivity analysis are argued briefly.
Most of the mentioned approaches use already worked out
and widely recognised standards of continuum mechanics
and numerical methods as starting point for performing
sensitivity analysis. But historically, the development of con-
tinuum mechanics, computer aided geometric design, finite
element method as well as structural and multidisciplinary
optimisation neither took place simultaneously nor in a coor-
dinated way. Similarly to shape optimisation, neighbouring
research fields such as mechanics of growth and configu-
rational mechanics matured after fundamental concepts of
continuum mechanics had been consolidated. An integrated
presentation of these fields is desirable. Thus, the concepts
of variations of the body and its shape should be clarified
within an enhanced formulation of continuum mechanics.
Additionally, continuummechanics and the other mentioned
areas would benefit significantly from (i) rigorous mathe-
matical concepts and (ii) their understandable translation to
engineering language. Thus, a demanding and still unsolved
optimisation problem for its own is the question on how
to enhance both theory and numerics in a minimal form to
achieve maximal insight, unifications and improvements for
the above-mentioned research areas.

In a series of papers, Barthold and coworkers contributed
to this problem, see e.g. [5,7–9,11] on the theory and
numerics of variational sensitivity analysis, [38–42] on the
interaction of variational sensitivity analysis and configu-
rational mechanics, and [9] on the interaction of structural
optimisation and growth. A thorough outline of these ideas
is beyond the scope of this paper. Thus, only a brief sketch
is given highlighting the central ideas.

2.3 Details of an enhanced variational sensitivity
analysis

2.3.1 Remarks on an intrinsic, frame-free formulation

The material body B described in [73], see [74, Sect. 15], is
considered as given continuum consisting of material points
X. It is homogenized from the realmatter composed of a large
but finite integer number of elementary entities measured
in the SI unit mole. Mathematically speaking, continuum
mechanics is based on differentiable manifolds [74, Sect. 15].
It is important for understanding our approach to refer to a
revised formulation byNoll [52], i.e. an intrinsic, frame-free
viewpoint, which is completely formulated on the material
body B using intrinsic coordinates θ of material points X.
Again, a detailed outline of Noll’s ideas is beyond the scope
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of this presentation and the readers are referred to e.g. [14,52,
53] for details. The most central ingredients are highlighted.

The intrinsic geometry mapping κ and the intrinsic motion
mapping μ define the reference placement K and the cur-
rent placement M, respectively. The dependency of motion
on time t is obvious but hidden at most places. Thus, the
referential deformation mapping ϕ is composed in form of

ϕ = μ ◦ κ−1. (1)

Please observe the distinction between placement and con-
figuration argued by Noll [52]. In the novel formulation,
a configuration means the metric at the considered point,
i.e. the central information which enters the definition of
strains.

The referential deformation gradient F split up into two
tangent mappings with respect to intrinsic coordinates θ , i.e.

F = MK−1, (2)

with the intrinsic motion gradient M = ∇θμ = GRAD μ

and the intrinsic geometry gradient K = ∇θκ = GRAD κ ,
see [52, Eq. 5.3], [53, Eq. 2.7] as well as [5,7,8]. The absolute
tensor presentation can be transferred into a matrix notation.
Let X = κ(θ) ∈ K and x = μ(θ) ∈ M be the refer-
ence and current coordinates of a material point X ∈ B with
intrinsic coordinates θ ∈ P. Let Ei = ei and Zi be Carte-
sian base vectors of reference and current placements as well
as of the set P of intrinsic coordinates, respectively. Thus,

K = GRAD X = ∂ Xi

∂θk
Ei ⊗ Zk with K =

[
∂ Xi

∂θk

]

M = GRAD x = ∂xi

∂θk
ei ⊗ Zk with M =

[
∂xi

∂θk

] (3)

are used to compute the deformation gradient

F = Grad x = ∂xi

∂ X j
ei ⊗ E j with F =

[
∂xi

∂ X j

]
. (4)

The (still continuous) matrix equation reads

F = MK−1 with K−1 =
[

∂θk

∂ X j

]
=
[
∂ X j

∂θk

]−1

. (5)

Thus, the tensor K results into the Jacobian matrix K of the
coordinate transformation between (Cartesian) reference and
(Cartesian) intrinsic coordinates. These results are valid for
any choice of intrinsic coordinates due to the underlyingman-
ifold structure.

2.3.2 Remarks on evolving material bodies

In contrast to all investigations for a single and fixed material
body based on [52,73,74], growth and structural optimisa-
tion consider evolving material bodies. The modification of
the material body is done either by nature over time t or
by engineers within an optimisation cycle. Common to both
challenges is the observation, that an enhanced continuum
mechanical theory should incorporate a family of material
bodies which are parametrised by s ∈ R, say a real valued
design variable. In case of growth, the design s is a function
of time t .

A suitable extension based on a thorough analysis of the
manifold concept is outlined in [5,7,8]. In detail, any ball
around any point of the manifold, i.e. the material body,
can be mapped to a (local) coordinate system using invert-
ible mappings φ. Consequently, the inverse mappings φ−1

defines the material body locally, i.e. for a small portion of
the body. The choice of (local) coordinate systems is arbi-
trary and does not change the properties of the material body.
And the change of coordinate systems is continuously dif-
ferentiable. Without loss of generality, a design independent
coordinate domain can be chosen. Altogether, the concept of
a reservoir R is deduced from the manifold property. Thus,
material bodies are generated from the set R by a function of
local coordinates θ and design s, see [9] for details. Here, the
symbols of mappings and coordinates for either the intrin-
sic or the local description coincide to limit the notational
complexity. Thus, the above-mentioned matrix equations are
similarly valid for any local coordinate system used on the
reservoir.

The outlined extension of Noll’s framework of mechan-
ics on differentiable manifolds [52,53] is a direct conse-
quence of the manifold properties. Importantly, a concept
to define a material body in a continuous differentiable way
is available. Now, structural optimisation and growth can be
investigated in an unified theoretical framework based on
variations of functions [9]. To our best knowledge, no com-
parable formulation is available elaborating the evolution of
material bodies.

2.3.3 Continuummechanics as theory of twomappings

As a consequence, continuum mechanics can be interpreted
as theory of two independent mappings, i.e. the (design s
dependent) geometry mapping κ (from reservoir R to ref-
erence placement K) and the (time t dependent) motion
mapping μ (from reservoir R to current placement M) [7].
This concept eases the investigations for sensitivity analy-
sis and structural optimisation because all known functional
dependencies are disassembled into parts, i.e. α(s, t) =
β(s) ◦ γ (t). The known implicit dependency of motion μ(t)
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on the (design s dependent) geometry κ(s) is achieved once
any kind of equilibrium condition is formulated.

Furthermore, allmathematical structures concerning either
geometry (κ,K) or motion (μ,M) are very similar, i.e. any
quantity in the physical world (parametrised by time t) has
a twin in the material (configurational) world (parametrised
by design s), see e.g. [42]. Again, to our best knowledge, no
comparable conclusion has been published so far.

2.3.4 Fundamental variations of continuous functions

The (local) mappings for geometry κ and motion μ with

X = X(s) = κ(θ , s) and x = x(t) = μ(θ, t) (6)

are starting point of the advocated variational formulation of
(shape) sensitivity analysis. Thus, the general expressions of
perturbations (variations) of either geometry or motion read

δX = δX(s) = δκ(θ, s) and δx = δx(t) = δμ(θ , t).

(7)

The (local) displacement mapping υ = μ − μ◦ is defined
as difference between the motion mapping μ at current time
t with current placement M and the motion mapping μ◦ at
initial time t◦ with initial placement M◦, i.e.

u = u(t) = υ(θ, t) = μ(θ, t) − μ(θ, t◦) = x − x◦. (8)

Usually, the initial placement M◦ is assumed to coincide
with the reference placement K , i.e. x◦ = X . Thus, the
relationship and its variation read

x = X + u and δx = δX + δu. (9)

As the consequence, continuum mechanics can be presented
as theory of two local mappings, i.e. using geometry κ and
either motion μ or displacement υ. The dependencies on
time t and design s have been argued but are hidden at most
places. The linkage of mappings is outlined in Sect. 2.3.5.

Next, the variation of tangent mappings is considered, see
[5,7–9] for details. Based on the variation of local geometry
and motion mappings, i.e.

δK = GRAD δκ and δM = GRAD δμ, (10)

the variation of the (referential) deformation gradientF reads

δF = δGrad x = Grad δx − Grad x Grad δX

= Grad δu − Grad uGrad δX .
(11)

Three different gradient operators GRAD,Grad and grad are
used, which are defined on the intrinsic, referential and cur-
rent domains, respectively.

These preparations are the foundation of an enhanced
formulation of variational sensitivity analysis. In detail, a
consistent linearisation technique for nonlinear mechanics,
cf. [80], is utilised. A detailed report of all findings is beyond
the scope of this paper, see [5,7,8]. Central results needed in
this publication are mentioned next.

2.3.5 Variational sensitivity of continuous functions

The linkage between the (independent) geometry andmotion
mappings is given by an equilibrium condition. On the con-
tinuous level, strong and weak forms of equilibrium are
equivalent if sufficient smoothness is assumed. With regard
to the discrete formulations, only the weak form

R(υ, κ; η) = 0 (12)

is considered at this place, where η denotes the test function.
Thus, themotion and the displacements depend on the chosen
geometry. The introduced notation using commas and semi-
colons allows to distinguish between linear and non-linear
arguments in functionals and tangent forms, when needed.
For instance, a functional (·)(·; ·, ·) is non-linear in arguments
on the left hand side of the semicolon, and linear in arguments
on the right hand side of the semicolon, respectively.

Equilibrium should never be violated. Therefore, the total
variation of R = 0 must vanish, i.e.

δR = δυ R + δκ R = k(η, δυ) + p(η, δκ) = 0. (13)

Two tangent operators occur, i.e. a tangent stiffness operator
k and a tangent pseudo load operator p. The variation of the
(continuous) geometry mapping δX = δκ(θ, s), is answered
by a corresponding variation of the (continuous) state func-
tion, i.e. of the displacements δu = δυ(θ, t). From Eq. (13),
the (continuous) sensitivity operator s is implicitely defined

δυ = s(υ, κ; δκ). (14)

The difference of the scalar variable s, introduced to model
the functional dependencies on design, and the sensitivity
operator s is highlighted by using different letter fonts.

The variation of any continuum mechanical function f
can be derived based on the already gathered information,
i.e.

δ f = δυ f + δκ f = f ′
υ + f ′

κ = a(δυ) + b(δκ), (15)
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with the linear operators a = δυ f = f ′
υ and b = δκ f = f ′

κ .
All operators, evaluated at (υ, κ), are elaborated in detail for
the two-scale optimisation problem in Sect. 4.

2.3.6 General remarks on discrete approximations

Some remarks on discrete approximations of continuous
mappings and continuous equations are added.

A differentiable manifold, i.e. the atlas A of charts
with sufficiently smooth transformation mappings between
coordinate systems, is the continuousmaster concept to com-
putational techniques. The choice of a specific atlas does not
change the manifold, i.e. the derived continuous equations
are valid for any choice of atlasA.

Any discrete technique using some approximation spaces
of shape and Ansatz functions yield discrete atlases, e.g.
Acagd (computer aided geometric design) and Afem (finite
element method) as outlined in [7, Sect. 2.3]. Importantly,
the quality of the approximations depend on the chosen dis-
crete atlases.

The following three function spaces and their approxima-
tions are mentioned without discussing their mathematical
details. All discrete (finite dimensional) function spaces
and all elements of theses spaces are denoted by a sub-
script h. First, the continuous geometry mapping κ ∈ G
is approximated by κh ∈ Gh ⊂ G. Second, the contin-
uous displacement mapping υ ∈ V is approximated by
υh ∈ Vh ⊂ V. Furthermore, the specific optimization prob-
lem introduces a continuous design space S ⊂ G in order to
fulfill certain constraints. Thus, third, the variation of geom-
etry δκ ∈ S ⊂ G is approximated by δκh ∈ Sh ⊂ Gh .

2.3.7 Discretisation of continuous geometry mappings

The combination of CAGD and FEM is the most widely used
approximation method for geometry. The continuous map-
ping κ is approximated using a CAGD model, say a Bézier
surface, with y ∈ R

ny parameters, say the Bézier control
point coordinates, see e.g. [21] for details. Furthermore, the
nodal coordinates x ∈ R

nx of any subsequent FEMmodel are
linked to the CAGD parameters y, i.e. x = g(y) for example
using a mapped meshing technique. Last but not least, the
finite element technique adds another approximation on the
finite element domain, see Sect. 2.3.8 for further remarks. In
all cases, the discrete approximations are member of finite
dimensional spaces with dimensions nx and ny, respectively.

The linkage between CAGD and FEM models is well-
known in literature on shape optimisation since decades and
has also been investigated in [6] describing the effect of
mapped meshing on sensitivity analysis. In [4], the mesh
refinement error for optimisation problems has been investi-
gated. In [20] hierarchical geometry models are investigated
concerning their approximation properties.

The variation of the geometry mapping δκ substitutes the
design velocity field introduced in the material derivative
approach (MDA), see e.g. [87] and [16,17]. Any detailed
computation of δκ needs a precise knowledge of the map-
ping κ , which is only available in the context of specific
computational methods.

Here, the approximation δκh ∈ Sh ⊂ Gh is exemplified
in the context of CAGD and FEM coupling. In (shape) opti-
misation, the CAGD parameters y (coordinates of Gh) are
linked to some finite number of design variables s ∈ R

ns

(coordinates of Sh) via y = h(s). Thus, the variation δκ is
approximated by δκh using the matrices

G = dx
dy

∈ R
nx× ny and H = dy

ds
∈ R

ny× ns . (16)

The combination yields the mesh design matrix

V = dx
ds

= dx
dy

dy
ds

= GH ∈ R
nx× ns , (17)

which is frequently used in computations, see Sect. 6.

2.3.8 Approximations on the finite element domain

The continuous displacement mapping υ is approximated by
FEM using e.g. nodal displacement parameters u ∈ R

nu . At
this place, the isoparametric finite element technique using a
fixed parent domain and n element nodes is exemplified, i.e.

ui =
n∑

I=1

hI (ξ j ) ui
I and Xi =

n∑
I=1

hI (ξ j ) Xi
I . (18)

The method combines shape functions hI of coordinates ξ j

on the parent domain and nodal coordinates Xi
I and nodal

displacements ui
I . The technique to compute a Cartesian

derivative for shape functions is using the Jacobian matrix
Je of the coordinate transformation between referential and
local coordinates of the finite element parent domain, see e.g.
[80].

Concerning sensitivity analysis, the continuous variations
δX = δκ(θ, s) and δu = δυ(θ , s) are linked to perturbations
of nodal coordinates δXi

I and nodal displacements δui
I .

Next, the computation (on the finite element level) of the
Cartesian derivatives of shape functions, the displacement
approximation as well as of the corresponding variations can
be directly deduced from Eqs. (5) to (11), i.e. by evaluating
continuum mechanical results. As already mentioned above,
the tangent mapping K (tensor of 2nd order) is the origin of
the Jacobian matrix Je. Furthermore, the derivatives of shape
functions hI with respect to (Cartesian) referential coordi-
nates Xi are a direct result of combining Eqs. (5) and (18),
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i.e.

[
∂hI

∂ X j

]
=
[

∂hI

∂Θk

] [
∂θk

∂ X j

]
. (19)

Similarly, analytical derivatives of finite element quantities
with respect to nodal coordinates can be linked to the contin-
uous variations such as Eq. (11). These remarks highlight the
fundamental concepts of the advocated approach to sensitiv-
ity analysis based on Noll’s intrinsic, frame-free formulation
of continuum mechanics and the subsequent variations with
respect to both fundamental mappings. The final results are
similar to those obtained by DPA andMDA. A detailed com-
parison is beyond the scope of this paper and the readers are
referred to the cited literature.

2.3.9 Nonlinear problems solved by the advocated method

The advocated approach has been successfully applied to
shape sensitivity analysis of nonlinear behaviour such as
hyperelasticity with isotropic damage [10], multiplicative
elasto-plasticity [76], shake down analysis [77] and the the-
ory of porous media [67], to name a few early applications.

3 Structural analysis on two scales:
computational homogenisation and the
FE2 method

Heterogeneities are part of most natural and non-natural
materials and often cause anisotropic effects in stress and
strain fields. The spatial distribution of individual and so-
called microscale constituents on the so-called mesoscale,
the specific properties of each constituent as well as their size
and shape have a strong influence on the overall mechanical
behaviour on the macroscopic structural level. To be able to
postulate reliable predictions about the overall behaviour or
possible failure scenarios, fundamental knowledge about the
physical behaviour on lower scales is required. Homogeni-
sation methods and so-called FE2 techniques act like a
bridging approach for the coupling of structural and material
scales and allow to include mentioned effects into overall
investigations. A basic introduction on numerical two-scale
homogenisation methods is given in [86] or [60]. A discus-
sion on computational homogenisation, a general overview
and a summary of developments is given in [68] and [43].
A variety of methods is presented in [50], and especially
the article [23] reviews the state-of-the-art of computational
homogenisation and discusses trends and upcoming chal-
lenges in this field.

Fig. 2 Basic homogenisation scheme

3.1 Continuous formulation of homogenisation

In this section, some of the aforementioned aspects on
mechanical two-scale problems are summarised. The nota-
tion of following descriptions is related to the formulations
in [12,45,46,48]. Throughout this work, all frequently used
quantities connected to themacroscale are identified by over-
lines, i.e. (·), and quantities connected to the microscale are
represented without additional markers, i.e. (·).

The basic concept of the homogenisation scheme formu-
lated by using continuous quantities is pictured in Fig. 2.
The underlying representative volume element (RVE) with
the domain K is associated with each macroscopic point
X in the macroscopic domain K . The macroscopic defor-
mation gradient F in X is the necessary driving factor for
the formulation of boundary conditions for the microscopic
boundary value problem (BVP). The solution investigated
within homogenisation approaches results in effective stress
and material parameters, i.e. P andA. The effective response
P and A of the microscale influences the solution of the
macroscopic BVP.

The characterisation of the aforementioned micro to
macro transition as an energy minimisation problem for
microstructures with constituents of standard materials is
presented in [44,45,47]. For each X ∈ K , an exact geo-
metrical resolution of the referred microscale is required
and a non-linear elastic material behaviour is considered,
see Eq. (20),

W (F) = inf
ϕ

W̃ (ϕ) with

W̃ (ϕ) = 1

V

∫
K

W (∇ϕ; X) dV .
(20)

The energy depends on the microscopic deformation ϕ,
which itself is induced by the macroscopic deformation
gradient F. The average energy of the microstructure is min-
imised while boundary conditions on the microscale are
enforced, i.e. either linear (D) or periodic (P) displacements
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or uniform tractions (S), see Sect. 3.2. The boundary condi-
tions {D, P, S} can be applied using the Lagrange formalism,
which allows to recast Eq. (20) into the following saddle point
problem

W
λ

I (F)= inf
ϕ

sup
λI

{
1

V

∫
K

W (∇ϕ; X) dV − cI(ϕ,λI;F)

}
.

(21)

Here, a general form of enforced constraints cI and a general
description of the necessary Lagrange multiplier λI for intro-
duced classes of boundary conditions I = {D, P, S} is used.
The effective stress and material parameters can be obtained
from Eq. (21) directly by the evaluation of

PI = ∂F W
λ

I and AI = ∂F PI = ∂2
FF

W
λ

I . (22)

3.2 General form of boundary conditions at discrete
points

The abstract formulation of general boundary conditions is
omitted at this place, because the boundary conditions in the
framework of the FE2 method are evaluated at discrete nodal
points of the finite element mesh. Nevertheless, all quantities
are still continuousmappings but evaluated at discrete points.
The very first step is the partitioning of nodes of the underly-
ing FE mesh of the discretised microscopic domainK . Two
sets of nodes can be distinguished: the nodes in the interior
of the domain K , i.e. nodes indicated by the index (i), and
nodes on the boundary ∂K of the RVE, i.e. nodes indicated
by the index (b), see [12,46] or [33] for further explanations.

The structure of introducedboundary conditions {D, P, S}
is known from standard literature on homogenisation. The
obvious similarity allows to find a general formulation for the
representation of boundary conditions and to use this unique
and compact notation for further purposes and investigations.
Using the Voigt notation for the deformation gradient F, this
general form is defined by

S1 ub − S2 (F − I) = 0 (23)

for introduced classes of boundary conditions I = {D, P, S}.
For instance, in the two-dimensional case the deformation
gradient reads F = [

F11 F22 F12 F21
]T
. The correspond-

ing coefficient matricesS1 andS2 are of the following forms

S1 :=

⎧⎪⎨
⎪⎩
I ∈ R

nB×nB (D)

P ∈ R
nP×nB (P)

A ∈ R
d2×nB (S)

(24)

and

S2 :=

⎧⎪⎪⎨
⎪⎪⎩

DT ∈ R
nB×d2

(D)

PDT ∈ R
nP×d2

(P)

VI ∈ R
d2×d2

(S)

(25)

with I being an identity matrix, V the volume of the RVE,
nB number of nodes on the boundary, nP number of period-
icity conditions and d the dimension of the stated problem.
For better clarity in terms of comprehensivness of the gen-
eral form of boundary conditions, the matrices D,P and A
are depicted shortly. The matrix D ∈ R

d2×nB is a global
coordinate matrix

D = [D1 D2 . . . DnB

]
(26)

and contains coordinates of each node xq with q = 1, . . . , nB

on the surface of the underlying RVE in terms of matrices
Dq ∈ R

d2×d . Each matrix Dq has the following explicit
form

Dq :=

⎡
⎢⎢⎣
x1 0
0 x2
x2 0
0 x1

⎤
⎥⎥⎦

q

. (27)

The periodicity matrix P ∈ R
nP×nB is a topology matrix

including only values {0, 1,−1}. The entries of the matrix P
can be constructed using following cases

Pi j =

⎧⎪⎨
⎪⎩

1 for i = j,

−1 for coupled nodes on surface (i �= j),

0 otherwise.

(28)

The matrix A ∈ R
d2×nB contains components Aq ∈ R

d2×d

A = [A1 A2 . . . AnB

]
and Aq :=

⎡
⎢⎢⎣
A1 0
0 A2
A2 0
0 A1

⎤
⎥⎥⎦

q

, (29)

where (A1,A2) inAq represent entries of the discrete normal
area vectorAq at node q in the referential placement. Further
derivations, extended explanations and details in terms of the
chosen notation can be found in [12,46].

3.3 Discrete minimisation problem of
homogenisation

Again, the continuous Lagrange functional is omitted to
reduce the complexity of the presentation.Basedon the speci-
fication of boundary conditions in Eq. (23) in their discrete
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form, the discrete Lagrange functional for the solution proce-
dure of the discreteminimisation problemof homogenisation
can also be stated in the general form

W
λ

I (F)= inf
u
sup
λI

{
W̃ (u)−λ

T
I

[S1 ub−S2 (F−I)
]}

. (30)

To solve this problem in terms of minimisation, variations
with respect to partitioned state functions ui and ub (evalu-
ated at discrete points) and with respect to the (finite number
of) Lagrange multipliers λI are necessary.

Based on the solution of Eq. (30), homogenised stresses
and the overall tangent moduli can be obtained by the eval-
uation of Eq. (22) and, in the discrete sense, they result to

PI := ∂F W
λ

I = ST
2 λI

AI := ∂2
FF

W
λ

I = ∂F PI = ST
2

∂λI

∂F
= ST

2 K IS2.
(31)

It can be observed that effective stresses depend only on the
LagrangemultiplierλI, i.e. on terms defined on the surface of
the RVE. The homogenised tangent moduli can be evaluated

in terms of the condensed matrix K I = 1
V (S1K̃

−1
bb ST

1 )−1

with K̃bb = Kbb − KbbK
−1
ii K ib, cf. [46] and [12].

4 Two-scale structural design based on
variational two-scale sensitivity analysis

Understanding two-scale homogenisation techniques and
FE2 methods gives the opportunity to analyse complex and
heterogeneous materials on different length scales. This out-
standing and deep insight into the physical behaviour of
individual constituents of heterogeneous material composi-
tions comes along with the allure of improvements in terms
of the overall performance or adjustments of the physical
response. The presented framework for two-scale analysis
is predestinated for purposes within structural optimisation,
especially due to its variety of possible applications. The
major target is to obtain a closed formulation, which con-
tains the sensitivity information of the overall macroscopic
BVP and therefore, the sensitivity information of all under-
lying microscopic BVPs.

4.1 Basic sensitivity relations on two scales

The layout for sensitivity analysis on single scales, see
Sect. 2, is extended for two-scale problems, see Fig. 3 for an
overview of mappings. In detail, the macroscopic deforma-
tionmappingϕ(X), depending on themacroscopic geometry
κ , and the microscopic deformation mapping ϕ(X), depend-
ing on the microscopic geometry κ , are introduced. Both

Fig. 3 Enhanced kinematics
based on two independent
geometry and motion mappings
on two scales with the following
ingredients.
(i) Point spaces: referential
placementsK and K , current
placementsM and M, and
reservoirs R and R.
(ii) Point mappings:
deformation mappings ϕ and ϕ,

geometry mappings κ and κ ,

and motion mappings μ and μ.
(iii) Tangent spaces not depicted
(iv) Tangent mappings:
deformation gradients F and F,
geometry gradients K and K,

and motion gradients M and M.
(v) Decompositions: point
mappings see Eq. (32) tangent
mappings see Eq. (33)
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Table 1 Overview of macro- and microscopic point and tangent map-
pings

Description Macroscale Microscale

Deformation mapping ϕ ϕ

Local geometry mapping κ κ

Local deformation mapping μ μ

Deformation gradient F = Grad ϕ F = Grad ϕ

Local geometry gradient K = GRAD κ K = GRAD κ

Local deformation gradient M = GRAD μ M = GRAD μ

mappings can be equivalently decomposed in so-called local
geometry and local deformation mappings with the distinc-
tion in macroscopic andmicroscopic contributions, i.e. using
mappings {μ, κ} for the macroscale and mappings {μ, κ} for
themicroscale, see Eq. (1) for single scales and nowEq. (32).
Thus, one obtains the decompositions

ϕ = μ ◦ κ−1 and ϕ = μ ◦ κ−1. (32)

Similarly and referring to Eq. (2), the decomposition of both
deformations gradients into two tangent mappings read

F = MK
−1

and F = MK−1. (33)

The full set of point mappings and affiliated tangent
mappings in terms of macro- and microscopic notation is
summarised in Table 1.

All introduced tangent mappings can be used to perform
pull-back and push-forward operations between introduced
tangent spaces, i.e. those of the placements K,M and the
reservoir R on the macroscale and between the tangent
spaces of the placements K,M and the reservoir R on the
microscale for several variations of quantities from contin-
uum mechanics. The advantage of the approach is, that the
methodological procedure for obtaining analytical variations
of physical quantities can be proceeded independent of the
scale under investigation.

4.2 Variation of themacroscopic weak form of
equilibrium

The full list of dependencies for the macroscopic weak form
of equilibrium for all upcoming investigations within design
sensitivity analysis, and later structural optimisation, reads

R(υ, κ,υ, κ; η) = 0. (34)

Considering these dependencies, the total variation of the
macroscopic physical residual reads

R
′ = k(υ, κ,υ, κ; η, δυ) + p(υ, κ,υ, κ; η, δκ)

+ k̃(υ, κ,υ, κ; η, δυ) + p̃(υ, κ,υ, κ; η, δκ) = 0.

(35)

Here, the variations of themacroscopic physical residualwith
respect to state functions υ and υ are introduced by tangent
stiffness operators k and k̃ and variations with respect to
geometry functions κ and κ are introduced by tangent pseudo
operators p and p̃, respectively. In the following, each tangent
operator is stated

k(υ, κ,υ, κ; η, δυ) = R
′
υ macro physical stiffness,

p(υ, κ,υ, κ; η, δκ) = R
′
κ macro pseudo load,

k̃(υ, κ,υ, κ; η, δυ) = R
′
υ multilevel stiffness,

p̃(υ, κ,υ, κ; η, δκ) = R
′
κ multilevel pseudo load.

(36)

Throughout the entire work, the term “multilevel” indicates
variations of the macroscopic residual R with respect to
functions related to the microscale, i.e. quantities like the
microscopic state υ and the microscopic geometry κ .

4.3 Explicit weak form of equilibrium and its
variation

The explicit form of the macroscopic residual in terms of the
macroscopic deformation gradient F and now, in terms of

effective or homogenised stresses PI = 1

V

∫
K
P dV accord-

ing to relations for numerical homogenisation techniques
presented in Sect. 3, reads

R(υ, κ,υ, κ; η) =
∫
K
PI : F′

υ(υ, η) dV − F(κ, η). (37)

The total variation of the residual form in Eq. (35) contains
partial variations with respect to all introduced parameters in
the argument list, i.e. with respect to {υ, κ,υ, κ} and there-
fore, it reads R

′ = R
′
υ +R

′
κ +R

′
υ +R

′
κ . All four contributions

can be extracted from the total variation of Eq. (37)

δR(υ, κ,υ, κ; η) = δ

∫
K
PI : F′

υ dV − F
′
κ(κ; η, δκ)

=
∫
R

δ
[
PI : F′

υ JK

]
dVθ − F

′
κ(κ; η, δκ)

=
∫
R

[(
δPI : F′

υ + PI : δF
′
υ

)
JK + PI : F′

υδ JK

]
dVθ

− F
′
κ(κ; η, δκ).

(38)
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Here, the total variation (or mixed variation) of the varia-
tion of the deformation gradient δF

′
υ and the variation of

the Jacobian δ JK are provided from sensitivity analysis on
single scales [7]. At this point, the variation of the contri-
bution of external loads on the macroscale F

′
κ is neglected.

Themajor difference in comparison to sensitivity analysis on
single scales is the total variation of stresses, especially here
of the homogenised stressesPI, which contains the following
partial variations

δPI = (
PI
)′
υ

+ (
PI
)′
κ

+ (
PI
)′
υ

+ (
PI
)′
κ

= ∂PI

∂υ
δυ + ∂PI

∂κ
δκ + ∂PI

∂υ
δυ + ∂PI

∂κ
δκ .

(39)

Inserting the obtained relations in Eq. (38), an appropriate
rearranging leads to

δR(υ, κ,υ, κ; η) =
∫
K
(
PI
)′
υ

: F′
υ dV

+
∫
K
(
PI
)′
κ

: F′
υ + PI : F′′

υ κ + PI : F′
υ Div δX dV − F

′
κ

+
∫
K
(
PI
)′
υ

: F′
υ dV +

∫
K
(
PI
)′
κ

: F′
υ dV . (40)

The first integral in Eq. (40) can be identified as the macro-
scopic tangent stiffness operator k from Eq. (36). The second
integral can be directly connected to themacroscopic tangent
pseudo load operator p from Eq. (36) and has a similar struc-
ture to the pseudo load operatorwithin the sensitivity analysis
on single scales. The last two terms in Eq. (40) contain partial
variations of the macroscopic physical residual with respect
to microscopic state and design (geometry) parameters, i.e.
with respect to υ and κ and can be identified with the mul-
tilevel stiffness operator k̃ and the multilevel tangent pseudo
load operator p̃, both introduced in Eq. (36).

4.4 Discretisation of variation of macroscopic weak
form

Discretisation schemes for the state and geometry functions
are employed to generate the discrete counterpart of the total
variation of the weak form, see Sects. 2.3.7 and 2.3.8 for the
results on a single scale. Here, u and u denote the matrix of
all discrete state parameters of the macro- and microscale,
respectively. Similarly, x and x are the matrices of discrete
geometry parameters of the macro- and microscale, respec-
tively. Thus, the discretisation of Eq. (35) reads

R
′ = K δu + P δx + K̃ δu + P̃ δx = 0. (41)

In case of the finite element method (FEM), the state param-
eters are nodal displacements and the geometry parameters
are the nodal coordinates of the macro- and microscopic FE
mesh, respectively.

4.5 Discrete sensitivity of themacroscopic physical
state

To avoid confusion, prior to the evaluation of the sensitivity
relation the following sensitivity operators are introduced

S = −K
−1

P sensitivity of macro state (exclusively),

S̃ = −K
−1

P̆ sensitivity of macro state

due to micro changes (multilevel),

Ŝ = [
S S̃

]
effective sensitivity of macro state,

S = −K−1P sensitivity of micro state (exclusively).

(42)

The sensitivity matrix is the discretisation of the continuous
sensitivity operator, cf. Eq. (14). After a standard discreti-
sation and the solution of the stated macroscopic BVP, each
sensitivity matrix can be computed. Both, the macroscopic
sensitivity matrix S and themultilevel sensitivity matrix S̃ are
compiled to a global sensitivity matrix Ŝ. According to the
list of sensitivity operators in Eq. (42), the sensitivity of the
macroscopic state parameters reads

δu = −K
−1 [

P δx + K̃ δu + P̃ δx
]

= −K
−1 [

P δx + (
K̃S + P̃

)
δx
]

= −K
−1
[
P δx + P̆ δx

]

= S δx + S̃ δx = [
S S̃
] [ δx

δx

]
= Ŝ δ̂x.

(43)

Here, the sensitivity relation δu = S δx for the discretemicro-
scopic state parameters, which is evaluated in the equilibrium
point of each stated microscopic BVP, is used. Further-
more, the multilevel terms are stored in a total multilevel

pseudo load matrix P̆ = (
K̃ S + P̃

)
, which represents the

total derivative of the macroscopic residual R with respect to
microscopic geometry parameters x, i.e. dR/dx. Importantly,
this quantitiy is not computed by discrete derivatives but by
the discretisation of continuous variations.

4.6 Variational sensitivity of arbitrary functionals

The total variation of an arbitrary objective or constraint func-
tional f (υ, κ,υ, κ), i.e. which is formulated on two scales,
can be derived based on the preliminary remarks, cf. Eq. (15).
Similarly to Eq. (36), the linear operators
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a(υ, κ,υ, κ; δυ) = f ′
υ macro state influence,

b(υ, κ,υ, κ; δκ) = f ′
κ macro geometry influence,

ã(υ, κ,υ, κ; δυ) = f ′
υ multilevel state influence,

b̃(υ, κ,υ, κ; δκ) = f ′
κ multilevel geometry influence

(44)

are derived and composed to the total variation of the function

f ′ = a(υ, κ,υ, κ; δυ) + b(υ, κ,υ, κ; δκ)

+ ã(υ, κ,υ, κ; δυ) + b̃(υ, κ,υ, κ; δκ).
(45)

4.7 Discrete form of the variation of arbitrary
functionals

The continuous formulation of the variation of an arbitrary
objective or constraint functional f (υ, κ,υ, κ) formulated
on two scales, i.e. Eq. (45), can be transferred to its dis-
crete counterpart using discretised sensitivity operators from
Eqs. (43) to (42), respectively. Dependencies on quantities
from two different scales have to be taken into account. The
total geometry variation with respect to macroscopic and
microscopic geometry, i.e. with respect to x and x, is out-
lined using the notation of discrete derivatives of f , i.e. it
reads

f ′ = ∂ f

∂u
δu + ∂ f

∂x
δx + ∂ f

∂u
δu + ∂ f

∂x
δx

= ∂ f

∂u
S δx + ∂ f

∂u
S̃ δx + ∂ f

∂x
δx +

(
∂ f

∂u
S + ∂ f

∂x

)
δx

=
(

∂ f

∂u
S + ∂ f

∂x

)
δx +

(
∂ f

∂u
S̃ + ∂ f

∂u
S + ∂ f

∂x

)
δx.

(46)

This notation is used to highlight the contents of the differ-
ent continuous operators, i.e. the variations are performed
and discretised. This relationship can be used for derivations
and evaluations of several objective or constraint function-
als on two scales within frameworks for two-scale structural
optimisation. Especially their gradients or general sensitivity
information are available.

4.8 Variation of effective parameters

To obtain the full formulation of the total variation of the
macroscopic weak form of equilibrium from Eq. (40), varia-
tions of homogenised stresses are required. In accordance
to the minimisation problem of homogenisation in terms
of the Lagrange formalism from Eq. (21) and deduced
homogenised stresses in Eq. (22) or in Eq. (31), effec-
tive stresses PI or PI, respectively, explicitly depend on the
Lagrange multiplier λI and their variation reads

(
PI

)′
υ

+ (
PI

)′
κ

= ∂PI

∂λI
(λI)

′ = ∂PI

∂λI

[
(λI)

′
υ + (λI)

′
κ

]

= ∂PI

∂λI

[
∂λI

∂u
δu + ∂λI

∂x
δx
]

.

(47)

This relation can be connected to the sensitivity of the micro-
macro coupling condition. The sensitivity of the Lagrange
multiplier λI has to be investigated. Referring the solution
scheme on the lower scale, in the solution point of stated
microscopic BVP the obtained Lagrange multiplierλI, espe-
cially directly in the case of linear displacements (D) for
boundary conditions, corresponds to resulting reaction forces
or the external part of the residual on the surface of the
underlying RVE scaled by the value of the microscopic vol-
ume. For different types of boundary conditions, like periodic
displacements (P) or uniform tractions (S), the resulting sen-
sitivity relations have to be adapted. Overall, the total design
variation of the Lagrange multiplier for alternative boundary
conditions I = {D, P, S} in discrete form is obtained from

VST
1 (λI)

′ =
[
K int
ba Sa + Pint

b

]
δx. (48)

Compared to the set (i, b) introduced in Sect. 3.2 for inner
and boundary nodes of an RVE, the nodes on the Dirichlet
boundary given in Eq. (48) are also indicated by the index
(b). Whereas the set identified by the index (a) contains all
nodes except boundary nodes, i.e. it contains nodes in the
inner domain as well as nodes on the Neumann boundary.
The superscript (·)int indicates the contribution of the internal
part of the residual and therefore, it indicates the contribution
of the resulting stiffness K int and pseudo load Pint.

The chosen homogenisation approach requires the incor-
poration of the obtained sensitivity information into the
context of homogenised stresses in Eq. (31) and formu-
lated boundary conditions presented in Sect. 3. The variation
of effective stresses is presented in Eq. (47). In the com-
putational sense, they are adapted for different boundary
conditions and are computed using the general formulation
of the boundary conditions matrix S2, i.e. PI(λI) = ST

2 λI.
In comparison to Eq. (47), the boundary conditions matrix
S2 can be identified with the partial derivative of effective
stresseswith respect to the LagrangemultiplierλI. Due to the
fact that S2 is constant for all introduced types of boundary
conditions, the variation of homogenised stresses contains
only the variation of λI and therefore, its final form results
to

(
PI

)′
υ
+(PI

)′
κ

= ST
2 (λI)

′ = 1

V
ST
2 S−T

1

[
K int
ba Sa + Pint

b

]
δx.

(49)
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5 Optimisation setup for problems on two
scales

After the solution of the statedBVP in terms of structural ana-
lysis, the subsequently performed design sensitivity analysis
gives the opportunity to deal with following three questions
and investigations: How will physical responses in K react,

– if design parameters inK change?
– if design parameters inK change?
– if design parameters inK and K change?

These questions represent a central investigation and are
evaluated in [33] within several numerical examples. Some
possible model problems with different microstructures are
schematically pictured in Fig. 4. Each individual microscale
RVEcan be embedded into themacroscale domain and inves-
tigated within several optimisation procedures.

Beside the necessity of sensitivity relations for the cou-
pling conditions of different scales, the choice of appropriate
objective functionals and constraints in combination with
useful design parameters is essential. Table 2 lists possible
sets for objectives, constraints and design parameters, which
are common and often used in standard publications on struc-
tural optimisation, see [3,13,18,28,61] to name a few.

A complete formulation and the numerical treatment of a
two-scale optimisation problem requires an accurate speci-
fication of the two-scale optimisation problem in its discrete
form, which is articulated as follows.

Two-scale optimisation problem Find {u, s, u, s} ∈
Vh ×Sh ×Vh ×Sh of the discrete macroscopic objec-
tive functional J : Vh × Sh × Vh × Sh → R such
that

min
u, s,u, s∈Vh×Sh×Vh×Sh

J (u, s, u, s) (50)

subject to the constraints

h(u, s, u, s) = 0, g(u, s, u, s) ≤ 0, sl ≤ s ≤ su,

h(u, s) = 0, g(u, s) ≤ 0, sl ≤ s ≤ su.
(51)

Fig. 4 Arbitrary subset of model problems with different microstruc-
tures for structural optimisation on two scales

Table 2 Possible sets for
objectives (OF) in terms of goal
setting, constraints (CON) in
terms of restrictions and design
parameters (DP) in the design
space

Goals

Cost functions

– Stiffness, compliance

– Volume, mass

– Displacements, frequencies

– Costs of constructions

Restrictions

Failure & manufacturing

– Volume fractions

– Stresses, strains

– Damage criteria

– Manufacturing parameters

Design space

Geometry & material

– Shape parameters

– Material distribution

– Thickness, cross-sections

– Technological data

Here, the following matrix notations are introduced: a
matrix notation h(u, s, u, s) of introduced macroscopic
equality constraints hi (u, s, u, s) = 0, i ∈ Eh , a matrix rep-
resentationg(u, s, u, s) of introducedmacroscopic inequal-
ity constraints g j (u, s, u, s) ≤ 0, j ∈ Ih , a matrix nota-
tion h(u, s) of introduced microscopic equality constraints
hk(u, s) = 0, k ∈ Eh , and a matrix representation g(u, s) of
introduced microscopic inequality constraints gl(u, s) ≤ 0,
l ∈ Ih . The sets of indices for equality and inequality con-
straints are denoted by Eh, Eh, Ih and Ih . The application
of the general SQPmethod as a solver for the stated optimisa-
tion problem, which guarantees solutions in feasible regions
with respect to the stated constraints, requires a compact
and summarising representation of all introducedmacro- and
microscopic constraints and design parameters. Therefore,
the following representation is introduced

Equality constraints: ĥ (u, s, u, s) =
[
h
h

]
,

Inequality constraints: ĝ (u, s, u, s) =
[
g
g

]
,

Design parameters: ŝ =
[
s
s

]
.

(50)

The Lagrange function used within SQP as well as its gradi-
ent are modified to

L( ŝ, λ̂, μ̂ ) = J ( ŝ ) + λ̂
T ĥ ( ŝ ) + μ̂T ĝ ( ŝ ),

∇L( ŝ, λ̂, μ̂ ) = 0.
(51)

For the solution of the optimality criteria using the SQP
method, a sequential solution of quadratic subproblems with
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a quadratic approximation of the defined objective functional
J (u, s, u, s) and the linearisation of equality ĥ (u, s, u, s)
and inequality constraints ĝ (u, s, u, s) is required.

Choice of design parameters In the previous section, all dis-
crete shape sensitivity information is provided with respect
to nodal coordinates (x, x) of the finite element mesh. In
the abstract setting of the two-scale optimisation problem in
Eqs. (50) and (51), respectively, the design is represented
by the vectors s and s, which are a general placeholders for
any arbitrary finite set of design parameters. For instance, the
latter example in Sect. 6 contains coordinates of the Bézier
patch of morphing boxes as design parameters of choice.

Verification of sensitivity information in numerical studies
Prior to the discussion on numerical examples and obtained
optimisation results, it is mentioned that all analytically
obtained quantities and values within the design sensitiv-
ity analysis are verified using the finite difference method
(FDM). These numerical tests guarantee correct gradient
information and therefore, they guarantee an efficient optimi-
sation process. The verifications are performed in accordance
to the appropriate quantity either on the element (e.g. pseudo
load matrices), on the global system level (e.g. sensitivities
of the state) or after the transformation with the mesh design
matrices (e.g. final objectives and constraints).

6 Example: two-scale optimisation of a
bracket

The following example illustrates the applicability of the for-
mulated sensitivity relations and corresponding numerical
aspects fromprevious chapters. The stated optimisation prob-
lem focuses on the minimisation of the overall macroscopic
compliance, which is directly related to the maximisation of
the overall macroscopic stiffness. In addition to some con-
straints for defined design parameters, volume constraints on
both scales are incorporated into the optimisation process.
Additionally, a morphing based design parametrisation on
the macro- and the microscale K and K is used to perform
shape optimisation on both scales simultaneously. Design
parametrisation based on morphing is useful to handle forms
and geometries without explicit geometrical properties, like
diameters, positions and angles. Although morphing boxes
have to be selectedmanualy, they provide a convenientmeans
to specify which geometry degrees of freedom are subject
to optimization. Furthermore, the morphing parametrisation
technique provides the opportunity to reduce the dimen-
sion of the discrete geometry design space to make the
numerical optimisation problem more tractable. It is basi-
cally established and known from image processing and is
based on smooth and continuous transformations of target

objects into other objects of interest. A review on different
aspects and approaches can be found in [78] and extensions
to three-dimensional investigations are presented in [66,79].
Overall, meshmorphing techniques within mechanical prob-
lems and structural optimisation procedures on single scales
are applied in [58] or in [25] using commercially-available
software tools for instance. In the context of a two-scale shape
optimisation scheme, its first use is presented in the work at
hand. Extended explanations can also be found in [33]. In
general, mesh morphing techniques can be classified as a
combination of parameter free and CAGD based optimisa-
tion techniques. Consequently, transformations using mesh
design matrices are necessary to obtain accurate information
in the design space of interest.

Due to the wide range of applicability and practical rel-
evance, the example is evaluated using the formulation for
periodic boundary conditions (P) on the microscale.

The iterative solution in terms of structural analysis is
provided by the application of the Newton’s method on
the macro- and the microscale. The computation is based
on the hyperelastic Neo-Hookean material law for the con-
stituents on the microscale and are stopped after the criterion
of ευ = 10−8 for the residuals is reached. The iterative solu-
tion within the structural optimisation is carried out by the
SQP method. The change in the objective function is defined
as stop criterion and is set to εs = 10−4.

For the finite element analysis a half of a bracket on the
macroscale with main dimensions A and B and a microscale
with the main dimension a consisting of a stiff matrix
and a softer kernel material is modeled, cf. Fig. 5. The
illustrated microscale representation is connected with each
macroscopic integration point and allows the computation of
effective stress and material parameters in terms of compu-
tational homogenisation. Characteristic system parameters
for both scales, like dimensions and material properties, are
compiled in Table 3. The used finite element technology is
a pure displacement formulation with linear shape functions
and two degrees of freedom per node for triangular element
types on themacroscale and rectangular element types on the
microscale, respectively.

The optimisation setup with all design parameters on the
macro- and the microscale also can be found in Fig. 5.
On both scales selected coordinates of control points of
defined morphing boxes are chosen as design parameters.
On the microscale one morphing box with 25 control points
is defined. The coordinates of the inner control points of the
morphing box (indicated by numbers 1–8 in Fig. 5) are cho-
sen as design variables. They can move nearly to the defined
boundary of the domain. The control point in the center of
the domain is neglected as design parameter due to symmetry
properties of the system. On the macroscale two morphing
boxes are defined. The first one is around the loading area
and consists of 9 control points. Here, coordinates of only
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Fig. 5 Two-scale optimisation of a bracket: mechanical system and FE mesh for the macro- and microscopic initial design (top line). Optimisation
model for macroscale with two morphing boxes and for microscale with one morphing box (bottom line)

Table 3 Optimisation of a bracket: model parameters

Parameter Macroscale Microscale

Length A 10.0 a 1.0

B 4.0

C 1.0

D 8.0

E 1.0

F 0.64

G 1.6

radius R1 0.75 r 0.25

R2 2.14

R3 0.8

R4 2.0

Thickness t 0.1 t 0.1

Load q 5.1

Young’s modulus E 10000

Poisson’s ratio ν 0.2

Number degrees of freedom nυ 464 nυ 386

one control point are chosen as design variables (indicated
by number 9 in Fig. 5). The second morphing box is defined
over the main and regular part of the system. It contains
20 control points. For this morphing box, coordinates of 11
control points (indicated by the numbers 10–20 in Fig. 5) are
chosen as design parameters within the optimisation proce-
dure. Due to the characteristics of morphing based design
parametrisation, see Sect. 2.3.7 for general remarks on func-
tional dependencies, the following dependencies hold true

macroscale: (·)(u( x( y(s))), x( y(s))) and

microscale: (·)(u(x(y(s))), x(y(s))) .
(52)

In detail, (u,u) are the macro- and microscopic state, (x, x)
are the macro- and the microscopic coordinates of the FE
mesh, (y, y) are the coordinates of the macro- and the micro-
scopic CAGD parameters and (s, s) are the finite subsets of
design variables. Therefore, the following transformations
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Fig. 6 Two-scale optimisation of a bracket: objective (top) corresponds
to macroscopic compliance C and constraints (bottom) correspond to
volume constraints V , V on themacro- and themicroscale. Comparison
of initial and optimised values of objectives for performed example
results to:C opt/ C ini = 0.329 / 0.398 = 0.83. The volumes of referred
domains remain constant, i.e. V ini/V opt = V ini/V opt = 1

of sensitivity information for arbitrary functionals f on the
macroscale and f on the microscale are necessary

f
′ =

(
∂ f

∂u
S̃ + ∂ f

∂x

)
∂x
∂s

δs =
(

∂ f

∂u
S̃ + ∂ f

∂x

)
Vδs, (53)

f ′ =
(

∂ f

∂u
S + ∂ f

∂x

)
∂x
∂s

δs =
(

∂ f

∂u
S + ∂ f

∂x

)
Vδs. (54)

Here, V and V are the mesh design matrices of both scales
introduced in Sect. 2.3.7. In both cases the appropriate sen-
sitivity matrix S̃ for the macro- and S for the microscale is
required. Equations (53) and (54) provide the transformation
of sensitivity information calculated with respect to nodal
coordinates of the finite element mesh, i.e. of ∂(·)/∂s on the
macro- or ∂(·)/∂s on the microscale, into the design space
of interest.

The stated optimisation problem introduced in Sect. 5 con-
tains the minimisation of an objective, which is here the
macroscopic compliance C . Its minimisation is performed
with respect to constant volume constraints (V , V ) and lower
and upper bounds (sli , sui , sli , sui ) for the design parameters
on the macro- and the microscale. The solution is obtained
by the application of the SQP method with an BFGS update
for second derivatives.

To provide a well posed optimisation problem and to force
a modification of the design, the contribution of each indi-
vidual constituent is weighted, i.e. the overall volume is
computed by V = ∑k

i=1 wi Vi . Otherwise, difficulties during
the evaluation of the constraints and of their derivatives arise.
The weight factorswi can be related to the importance, over-
all costs or valency of each constituent in an abstract sense.
The weight for the matrix material is set to w1 = 2.0 and for
the softer kernel material to w2 = 1.0.

Fig. 7 Two-scale optimisation of a bracket: distribution of final design parameters for the macroscopic optimisation model with two morphing
boxes (left) and the microscopic optimisation model with one morphing box (right)
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Fig. 8 Two-scale optimisation of a bracket:macroscopic displacements
(large) for initial and optimised supplemented designs. Microscopic
vonMises stress distribution in selected macroscopic integration points

(1–3) for initial and optimised design. Due to symmetry properties,
microstructures in points (1–3) can be copied to design the full system
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The optimisation results for this two-scale optimisation
problem of a macroscopic bracket with a heterogeneous
microstructure are plotted in Fig. 6. The objective can be
minimised to a value that is 17% lower than the initial value
and the volume constraints on both scales are fulfilled. This
means that the overall volume on the macroscale as well as
the overall volume on the microscale remain constant. The
optimisation algorithm takes 23 iterations to find a feasible
solution.

The distribution of design parameters on both scales for
the initial and optimised shape can be found in Fig. 7. All
design parameters fulfill their constraints and lie in the fea-
sible domain. The comparison of the initial and optimised
designs in terms of overall performance is illustrated in Fig. 8.
The results obtained for one half of the system can be mir-
rored due symmetry properties to design the overall system.
It is shown that minimisation of the macroscopic compli-
ance leads to a lower maximum value of the macroscopic
displacements, i.e. uopt

max / uini
max = 0.0593 / 0.0733 = 0.81,

which is in the range of the reduction of overall compliance.
Furthermore, the design of the obtainedmicroscale represen-
tation leads to a lower distribution of von Mises stresses in
the selectedmacroscopic integration points. For instance, the
maximum von Mises stress in point 1 can be reduced by 6
%, in point 2 by 18 % and in point 3 even by 43 %, cf. Fig. 8.
This example proves the applicability of the presented rela-
tions for the sensitivity analysis over two scales and that it
comes along with a large gain in terms of overall behaviour
of investigated systems.

7 Conclusion

The paper at hand outlines a framework for the design of
structures andmaterials over two length scales. The formula-
tion of the two-scale optimisation problem is compiled based
on relations for numerical homogenisation and FE2 meth-
ods, methods for two-scale sensitivity analysis and methods
for mathematical optimisation. Special emphasize is given
to the determination of the sensitivity information of effec-
tive parameters, which in fact bridge underlying scales. An
example for the minimisation of the overall macroscopic
compliance with constraints and design parameters on dif-
ferent scales proves, that it is worthwhile to incorporate the
material scale into the overall design process.

Detailed explanations on mentioned approaches and for-
mulations as well as further illustrative examples can be
found in the PhD thesis of the author Wojciech Kijanski,
see [33].
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