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Abstract
Pooling the relative risk (RR) across studies investigating rare events, for exam-
ple, adverse events, via meta-analytical methods still presents a challenge to
researchers. The main reason for this is the high probability of observing no
events in treatment or control group or both, resulting in an undefined log
RR (the basis of standard meta-analysis). Other technical challenges ensue, for
example, the violation of normality assumptions, or bias due to exclusion of
studies and application of continuity corrections, leading to poor performance
of standard approaches. In the present simulation study, we compared three
recently proposed alternative models (random-effects [RE] Poisson regression,
RE zero-inflated Poisson [ZIP] regression, binomial regression) to the standard
methods in conjunctionwith different continuity corrections and to different ver-
sions of beta-binomial regression. Based on our investigation of the models’ per-
formance in 162 different simulation settings informed by meta-analyses from
the Cochrane database and distinguished by different underlying true effects,
degrees of between-study heterogeneity, numbers of primary studies, group size
ratios, and baseline risks, we recommend the use of the RE Poisson regression
model. The beta-binomial model recommended by Kuss (2015) also performed
well. Decent performance was also exhibited by the ZIP models, but they also
had considerable convergence issues. We stress that these recommendations are
only valid for meta-analyses with larger numbers of primary studies. All models
are applied to data from two Cochrane reviews to illustrate differences between
and issues of the models. Limitations as well as practical implications and rec-
ommendations are discussed; a flowchart summarizing recommendations is pro-
vided.
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1 INTRODUCTION AND BACKGROUND

Meta-analysis is a commonandpopular statistical tool for research synthesis that hardly needs an introduction at this point
(Jackson, Law, Stijnen, Viechtbauer, &White, 2018). Of interest in the present paper is the research synthesis of count data
in settings, where researchers study the occurrence of an event that is rare. We refer to an event as rare when it has a very
low event occurrence probability that results in only very few to no observations of the respective event in a study, even if
observation times and experimental groups are not short/small (Böhning,Mylona, &Kimber, 2015). This topic has recently
received an increasing amount of attention in the statistical literature (e.g., Böhning et al., 2015; Efthimiou, 2018; Jackson
et al., 2018; Kuss, 2015). A common example of rare events is adverse side effects to treatment, for example, cardiovascular
mortality in response to medications, such as prophylactics (Squizzato, Bellesini, Takeda, Middeldorp, & Donadini, 2017)
or anti-inflammatory drugs (Hemkens et al., 2016). These two Cochrane reviews shall serve as examples in the present
work. Excerpts of the data for the outcomes cardiovascular mortality and fatal stroke from these two reviews are shown
in Table 1 to give the reader an impression of the data setting discussed in the present work (four studies for each outcome
shown). Meta-analysis is especially important in rare-events contexts, as it might constitute the only means by which
researchers may obtain reliable evidence for the clinical phenomena they are studying (Higgins & Green, 2011). Meta-
analyses may also serve as a basis for decisions on medication approval, making reliable statistical methods all the more
necessary. For an overview and methodological evaluation of such applications, see Warren, Abrams, Golder, and Sutton
(2012). Typically, primary studies examine howoften an event of interest occurred in either one of two experimental groups
(i.e., treatment and control group), yielding 2 × 2 frequency tables like Table 2. Then, univariate summary statistics, such
as the odds ratio (OR) or the relative risk (RR), are calculated. These in turn are then pooled in the meta-analysis. Among
meta-analysis models, we distinguish between fixed- and random-effects (RE) approaches. While the former assumes one
single “true” effect underlying all studies, with differences in effects between studies being only due sampling error, the

TABLE 1 Excerpts from the data from three meta-analyses conducted in the context of two Cochrane reviews (Hemkens et al., 2016;
Squizzato et al., 2017) that were used as examples to illustrate the models compared in this simulation study (from each meta-analysis, four
included primary studies are shown)

Squizzato et al. (2017): Cardiovascular mortality
Study ID* 𝒀𝒊𝟏 𝒀𝒊𝟐 𝒏𝒊𝟏 𝒏𝒊𝟐

STD-CURE-2001 318 345 6,259 6,303
STD-Vavuranakis-2006 1 1 43 43
STD-CASCADE-2010 0 1 56 57
STD-CRYSSA-2012 1 2 150 150
Hemkens et al. (2016): Cardiovascular mortality
Study ID* 𝒀𝒊𝟏 𝒀𝒊𝟐 𝒏𝒊𝟏 𝒏𝒊𝟐

STD-Nidorf-2013 1 10 282 250
STD-Kaplan-1986 1 0 28 29
STD-Kershenobich-1988 0 2 54 46
STD-Parise-1995 0 0 21 20
Hemkens et al. (2016): Fatal stroke
Study ID* 𝒀𝒊𝟏 𝒀𝒊𝟐 𝒏𝒊𝟏 𝒏𝒊𝟐

STD-Deftereos-2013 1 0 112 110
STD-Nidorf-2013 0 0 282 250
STD-Parise-1995 0 0 21 20
STD-Yurdakul-2001 0 0 60 60

Note. *Study ID as used in the respective review.

TABLE 2 Illustration of a 2×2 Frequency Table for a primary study 𝑖

Group Event No event Total
Treatment 𝑌𝑖1 𝑛𝑖1 − 𝑌𝑖1 𝑛𝑖1

Control 𝑌𝑖2 𝑛𝑖2 − 𝑌𝑖2 𝑛𝑖2

Total 𝑛𝑒𝑣𝑒𝑛𝑡,𝑖 𝑛𝑛𝑜 𝑒𝑣𝑒𝑛𝑡,𝑖 𝑛𝑡𝑜𝑡𝑎𝑙,𝑖
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latter assumes that underlying true effects differ systematically between primary studies additionally to sampling error.
In real-world applications, an RE approach is commonly considered more adequate (Bai, Chen, & Wang, 2016; Jackson,
Law, Stijnen, Viechtbauer, & White, 2018) and therefore constitutes the focus of this paper.
Rare events present a challenge in this context for multiple reasons, specifically when they result in the lack

of observations of the event of interest in either one of treatment or control group (single-zero study) or in
both (double-zero study). First, zero studies leave estimators of measures like the RR (formally defined as RR =

𝑃(event | treatment group) ∕ 𝑃(event | control group), and estimated by R̂R𝑖 = (𝑌𝑖1∕𝑛𝑖1) ∕ (𝑌𝑖2∕𝑛𝑖2), using the nota-
tion introduced in Table 2) as either 0 or undefined; their logarithm is undefined in any case that causes a problem for
the standard meta-analytical approach, which pools the log RR rather than the RR. The same issue applies to the OR
(see Böhning et al., 2015, for more details). A related problem that also concerns the standard model of meta-analysis,
commonly referred to as the inverse-variance model, is the following: The inverse-variance method computes a weighted
average of the log R̂R𝑖 estimated for the primary studies included in the meta-analysis. With an RE approach, the weight
for study 𝑖 is given by 1∕(𝜏2 + 𝑠2

𝑖
), with 𝜏2 denoting the between-study variance in the underlying effects, and 𝑠2

𝑖
denoting

the sampling variance, estimated as 𝑠2
𝑖
= 1∕𝑌𝑖1 − 1∕𝑛𝑖1 + 1∕𝑌𝑖2 − 1∕𝑛𝑖2. The estimator for 𝑠2𝑖 is based on the assumption

that the sample distribution of log R̂R𝑖 is approximately normal (Jackson & White, 2018). However, this assumption is
often violated in the context of rare events (Friede, Röver, Wandel, & Neuenschwander, 2017; Jackson & White, 2018). A
general criticism of the inverse-variance method is that this method treats the estimates of 𝜏2 and 𝑠2

𝑖
as if they were the

true values in the computation of the meta-analytical weights (Bakbergenuly & Kulinskaya, 2018; Jackson &White, 2018;
Malzahn, Böhning, & Holling, 2000; Stijnen, Hamza, & Özdemir, 2010). The common approaches to enable the compu-
tation of a meta-analysis with the inverse-variance method in the presence of single- or double-zero studies are either the
exclusion of the problematic primary studies or the application of a continuity correction, either using a fixed (standard
correction, often 0.5; Higgins & Green, 2011; Cox, 1970) or a variable value (alternative correction; Sweeting, Sutton, &
Lambert, 2004, see also de Rooi, 2008, for another alternative correction). Both approaches (exclusion and correction)
have been heavily criticized as they might introduce bias (Friedrich, Adhikari, & Beyene, 2007; Kuss, 2015; Sankey, Weiss-
feld, Fine, & Kapoor, 1996), and the latter is also warned against by the Cochrane collaboration (Higgins & Green, 2011).
In general, authors are usually in unison when discouraging the use of the inverse-variance method in the context of
rare events (Bradburn, Deeks, Berlin, & Russell Localio, 2007; Sweeting, Sutton, & Lambert, 2004; Tang, 2000), or at least
recommend robustness assessment due to bias in themethod (Keus,Wetterslev, Gluud, Gooszen, &Van Laarhoven, 2009).
Thus, it is unsurprising that research into alternative RE approaches of pooling the RR in a setting with rare events

has recently grown. So far, a focus on the OR as an effect measure (e.g., Bhaumik et al., 2012; Bradburn, Deeks, Berlin,
& Russell Localio, 2007; Cheng, Pullenayegum, Marshall, Iorio, & Thabane, 2016; Jackson, Law, Stijnen, Viechtbauer, &
White, 2018; Li, Bai, & Wang, 2018; Sankey, Weissfeld, Fine, & Kapoor, 1996; Shuster, 2010; Sweeting, Sutton, & Lambert,
2004) and fixed-effects approaches (Bradburn et al., 2007; Sweeting et al., 2004 for the OR; Guevara, Berlin, &Wolf, 2004;
Spittal, Pirkis, & Gurrin, 2015 for the incidence rate ratio, extendable to the RR; Böhning et al., 2015) has prevailed. For an
overview of existing methods and recommendations—also extending to other effect measures not considered here, such
as the risk difference (RD) or the arcsine difference (Rücker, Schwarzer, Carpenter, & Olkin, 2009)— please see Efthimiou
(2018), Jackson et al. (2018), Lane (2013), or Kuss (2015). However, considering that approximately one third of adverse
events meta-analyses alone use the RR as an effect measure (Warren et al., 2012), the development of appropriate methods
for the RR seemsmuch warranted. Providing researchers with appropriate and updated guidelines is especially important
as the Cochrane collaboration focuses their recommendations on theOR (Higgins&Green, 2011). Their recommendations
are also mainly fixed-effects models. However, REmodels for the RR are available. A recent paper by Böhning et al. (2015)
discussed several models to this end and demonstrated them using a real-life example. The aim of the present paper is
to extend their work by comparing the models discussed in their paper to other proposed alternatives and the standard
meta-analysis approach (i.e., the inverse-variance method). Before discussing the models we included in our comparison,
we are going to give an overview of the existing literature: Even though there is a RE version of theMantel–Haenszel (MH)
method (Mantel&Haenszel, 1959), it ismerely the fixed-effectsMHestimator embedded into the inverse-variancemethod,
thus subject to the same limitations (Efthimiou, 2018) and so not considered here. RE Poisson regressionmodels have been
suggested for pooling incidence rate ratios (Guevara et al., 2004; Spittal et al., 2015; Stijnen et al., 2010). The model is also
applicable to theRR and discussed as one of themodels in Böhning et al. (2015). A comparable, but supposedly numerically
more stable approach has been recommended by Cai, Parast, and Ryan (2010) (a gamma RE Poisson regression model).
Böhning et al. (2015), the first to our knowledge, also suggested to use an extension of the RE Poisson regression model: a
(RE) zero-inflated Poisson (ZIP) regressionmodel (Lambert, 1992). Promisingly, an analogousmodel for the OR in a fixed-
effects setting, that is, zero-inflated binomial regression, has shown good performance (Dong, Zhao, &Tiwari, 2019). Based
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on an extensive simulation study, Kuss (2015) recommended beta-binomial regression using a log link for pooling the RR
(and also the OR and the RD, using different link functions). His recommendation is based on a comparison including the
models proposed by Stijnen et al. (2010) and Cai et al. (2010) that—taking into consideration all measures of performance
administered in this study—were out-performed by the beta-binomial model. Other proposed models also discussed by
Böhning et al. (2015) include binomial RE models that predict the number of events in the treatment group conditioned
on the total number of events observed across both groups (Stijnen et al., 2010). Again, Cai et al. (2010) have suggested an
alternative version of this model that has a closed-form likelihood. Yet, it should be pointed out that these models warrant
the exclusion of double-zero studies.
As previously mentioned, the aim of the present simulation study with a strong focus on the RR was to extend the work

by Böhning et al. (2015). We compared the RE models they discussed to other existing models in different rare-events
settings of meta-analysis of randomized trials. An important contribution of this simulation study is that it includes the
evaluation of the newly suggested application of the zero-inflated Poisson regression model (Böhning et al., 2015). The
models were compared in terms of convergence rates as well as mean and median bias, root mean squared error (RMSE),
mean absolute error and maximum absolute error of their pooled (log) RR estimates, and coverage of the respective 95%
confidence intervals (CIs). Models that had already been included in a previous study by Kuss (2015) and had been clearly
outperformedby themodelKuss (2015) endedup recommendingwere not included again to avoid repetition (except for the
Poisson regressionmodel as it was also discussed in Böhning et al., 2015).We derived standard errors for some of the pooled
effect estimators, as well as in one case even the estimator itself (based on the ZIP regression model and considerations by
Dong et al., 2019). This may be considered another contribution of the present study. To limit the extensive scope of our
undertaking, we restricted our investigation to frequentist RE approaches and comparable models (but please see Shuster,
Guo, & Skyler, 2012; Shuster & Walker, 2016, for a discussion of the distinction between different variants of RE and the
resulting implications for employed methods). Bayesian methods were excluded from the current investigation mainly
for two reasons: (a) arguably, they are still less popular in meta-analytical work, at least the vast majority of Cochrane
reviews do not employ them, and (b) more importantly, typical Bayesian methods employ Markov chain Monte Carlo
(MCMC) methods for parameter estimation, which are often more computer intensive and would have severely limited
the number of replications of the simulations. Even though some of the models, for example, the Poisson regression
model (see Section 2 for details), are able to account for varying person-time across studies, we do not consider scenarios
with varying person-time across studies here. We further concentrated on a setting free of any further methodological
issues likely to occur in the context of rare-events studies in our simulation study, such as publication bias or outcome
reporting bias.
The paper is organized as follows. In Section 2, we describe the models compared in this simulation study. In Section 3,

we describe the conducted Monte Carlo simulation study and in Section 4, we present the respective results. An example
that illustrates model performance using data from two different Cochrane reviews is presented in Section 5. We conclude
with a discussion of our findings and their implications as well as give practical recommendations in Section 6.

2 MODELS

2.1 RE Poisson model

Poisson regressionmodels with RE are amember of the family of generalized linearmixedmodels (GLMM). They are used
to predict count data. For the model proposed by Böhning et al. (2015) (see also Spittal et al., 2015; Stijnen et al., 2010),
we assume that the number of observed events of interest 𝑌𝑖𝑗 in study 𝑖 and group 𝑗 follows a Poisson(𝜆𝑖𝑗) distribution.
The expected value can be written as 𝜆𝑖𝑗 = 𝐸(𝑌𝑖𝑗) = 𝜇𝑖𝑗𝑛𝑖𝑗 , where 𝜇𝑖𝑗 is the incidence rate in group 𝑗 of the 𝑖th study and
𝑛𝑖𝑗 is the number of total observational units (i.e., subjects) in group 𝑗 of study 𝑖. The incidence rate 𝜇𝑖𝑗 in group 𝑗 of
study 𝑖 is thus given by 𝜇𝑖𝑗 = 𝐸(𝑌𝑖𝑗)∕𝑛𝑖𝑗 . Applying the log function to 𝜆𝑖𝑗 = 𝐸(𝑌𝑖𝑗) = 𝜇𝑖𝑗𝑛𝑖𝑗 , yields log 𝜆𝑖𝑗 = log 𝐸(𝑌𝑖𝑗) =

log 𝜇𝑖𝑗𝑛𝑖𝑗 = log 𝑛𝑖𝑗 + log 𝜇𝑖𝑗 . As common in regression models, we may predict log 𝜇𝑖𝑗 by a linear combination, yielding

log 𝜆𝑖𝑗 = log 𝐸(𝑌𝑖𝑗) = log 𝜇𝑖𝑗𝑛𝑖𝑗 = log 𝑛𝑖𝑗 + log 𝜇𝑖𝑗 = log 𝑛𝑖𝑗 + 𝛼𝑖 + 𝛽𝑖𝑋𝑖1, (1)

which describes the Poisson regression model (using a log link) to predict the number of events of interest in group 𝑗 of
study 𝑖. 𝑋𝑖1 is a dummy-coded variable with 𝑋𝑖1 = 1 for the treatment group, and else 0 (control group). Note that the
multiplicative relationship between 𝜇𝑖𝑗 and 𝑛𝑖𝑗 translates into an additive relationship on the log scale. Consequently,
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an offset of log 𝑛𝑖𝑗 is included in our regression equation on the log scale. This offset allows for accounting for different
group sizes in different studies. In fact, it actually allows to even model different group sizes in conjunction with different
observation times for the groups and/or studies. To simplify matters, we do not further discuss this option here but please
see Böhning et al. (2015) for more details. Further, note the subscripts on the intercept parameter 𝛼𝑖 and the slope parame-
ter 𝛽𝑖 , indicating that these parameters differ across studies. We assume that 𝛼𝑖 ∼ Normal(𝛼, 𝜎2𝛼) and 𝛽𝑖 ∼ Normal(𝛽, 𝜎2

𝛽
),

modeling both regression coefficients as RE. The likelihood of the model is given by

𝐿𝑚(𝜃𝜃𝜃 | 𝑌𝑖𝑗, 𝑋𝑖1, 𝑛𝑖𝑗) =

𝑚∏
𝑖=1

∫ Po(𝑦𝑖2 | 𝜆𝑖2)×
[
∫ Po(𝑦𝑖1 | 𝜆𝑖1)𝜙(𝛽𝑖 | 𝛽, 𝜎2𝛽)𝑑𝛽𝑖]𝜙(𝛼𝑖 | 𝛼, 𝜎2𝛼) 𝑑𝛼𝑖 (2)

with𝑚 denoting the number of studies included in the meta-analysis, 𝜃𝜃𝜃 = [𝛼, 𝛽, 𝜎2𝛼, 𝜎
2
𝛽
]′ denoting the vector of unknown

parameters to be estimated in the model, and Po(𝑦𝑖𝑗 | 𝜆𝑖𝑗) representing the (discrete) density of the Poisson distribution,
that is,

Po(𝑦𝑖𝑗 | 𝜆𝑖𝑗) = exp(−𝜆𝑖𝑗)𝜆
𝑦𝑖𝑗
𝑖𝑗

𝑦𝑖𝑗!
.

The intercept 𝛼𝑖 of the model, representing the log risk in the control group (i.e., the log baseline risk), is modeled as
a random effect to account for different baseline risks across studies. The slope 𝛽𝑖 represents the log RR, with the fixed
effect 𝛽 representing the pooled log RR (i.e., our parameter of interest). Here, we have the option of modeling the log RR
as constant across studies, yielding a fixed-effects model of meta-analysis, or, as we have done here, we can assume that
the log RR varies across studies. Please note that the distinction between the fixed- and random-effects meta-analytical
model is made in reference to the slope. In both cases, the intercept is modeled as a random effect.

2.2 Zero-inflated Poisson models

Asmentioned above, in a rare events setting, one of the crucial problems with conducting meta-analysis is the occurrence
of zero events. Although the Poisson model is principally able to handle single- as well as double-zero studies, it may not
fit the data as well when we observe more zeros than we would expect under the Poisson distribution: an excess of zero
counts. This problem can be alleviated by explicitly modeling the excess of zeroes using a variant of the Poisson model
called ZIP regression (Böhning et al., 2015; Lambert, 1992). ZIP regression models handle zero inflation by modeling a
two-component process for data generation: the observed count is an excess zero with probability 𝜋𝑖𝑗 and a realization
of a Poisson-distributed random variable with probability 1 − 𝜋𝑖𝑗 . As in Equation (2), Po(𝑦𝑖𝑗 | 𝜆𝑖𝑗) denotes the (discrete)
density of the Poisson distribution. The ZIPmodel then predicts the excess-zero probability 𝜋𝑖𝑗 using logistic regression as
well as 𝜆𝑖𝑗 , the expectation of the Poisson distribution, using the same Poisson regression model as described in Equation
(1). More formally, we write

𝑌𝑖𝑗 = 0, with probability 𝜋𝑖𝑗 + (1 − 𝜋𝑖𝑗) Po(0 | 𝜆𝑖𝑗)
= 𝑦, with probability(1 − 𝜋𝑖𝑗) Po(𝑦 | 𝜆𝑖𝑗)

with 𝑦 = 1, 2, …. Further, 𝜆𝑖𝑗 and 𝜋𝑖𝑗 satisfy

log 𝜆𝑖𝑗 = log 𝜇𝑖𝑗𝑛𝑖𝑗 = log 𝑛𝑖𝑗 + log 𝜇𝑖𝑗 = log 𝑛𝑖𝑗 + 𝛼𝑖 + 𝛽𝑖𝑋𝑖1

with 𝛼𝑖 ∼ Normal(𝛼, 𝜎2𝛼) and 𝛽𝑖 ∼ Normal(𝛽, 𝜎2
𝛽
), as well as

logit 𝜋𝑖𝑗 = log(𝜋𝑖𝑗∕(1 − 𝜋𝑖𝑗)) = 𝜂𝑖𝑗 (3)
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with 𝜂𝑖𝑗denoting the linear prediction term that models logit 𝜋𝑖𝑗 . In the estimation of this model, we would maximize the
product of the likelihood of the observation 𝑌𝑖𝑗 , integrating over the RE, analogously to what we have shown in Equation
(2) for the Poisson model. We generically use 𝜂𝑖𝑗 in Equation (3) as we included several versions of this ZIP model in our
simulations differentiated by different 𝜂𝑖𝑗 . Böhning et al. (2015) presented and illustrated a fixed-effects ZIPmodel (see eqs.
10 and 11 in Böhning et al., 2015) in which both 𝜆𝑖𝑗 and𝜋𝑖𝑗 were predicted by an intercept and the indicator of experimental
group membership (treatment or control). A full RE model is given by substituting 𝛼′

𝑖
+ 𝛽′

𝑖
𝑋𝑖1 (with 𝛼′𝑖 ∼ Normal(𝛼′, 𝜎2

𝛼′
)

and 𝛽′
𝑖
∼ Normal(𝛽′, 𝜎2

𝛽′
)) for 𝜂𝑖𝑗 in Equation (3). Preliminary trial simulations showed that this model was practically not

viable as it hardly ever converged in any of our simulation conditions. Alternatively, we could model the treatment effect
in the zero-inflation arm as a fixed effect, in conjunction with either (a) a fixed, or (b) a random intercept, yielding either
(1) 𝜂𝑖𝑗 = 𝛼′

𝑖
+ 𝛽′𝑋𝑖1 with 𝛼′𝑖 ∼ Normal(𝛼′, 𝜎2

𝛼′
), or (2) 𝜂𝑖𝑗 = 𝛼′ + 𝛽′𝑋𝑖1. It is also possible that our model would not benefit

considerably frommodeling a treatment effect in the zero-inflation arm. If that were the case, merely modeling a random
intercept (𝜂𝑖𝑗 = 𝛼′

𝑖
, with 𝛼′

𝑖
∼ Normal(𝛼′, 𝜎2

𝛼′
)) or possibly just a fixed intercept (𝜂𝑖𝑗 = 𝛼′) might suffice.

An issue that arises with employing the ZIP model is that if we include a treatment effect in the zero-inflation arm of
our model, then our parameter of interest, the RR (or rather the log RR), is no longer a parameter in the model. The (fixed
effect of the) slope for the experimental group, 𝛽, (in the Poisson-arm of the model) represents now the pooled log RR
conditional on being in the Poisson-arm of the model (Dong et al., 2019). For their fixed-effects zero-inflation binomial
model, Dong et al. (2019) have shown how an “unconditional” pooled OR can be obtained from the estimated model
parameters. Adapting their work to the ZIP model, we can arrive at an “unconditional” pooled RR. It is

RR𝑝𝑜𝑜𝑙𝑒𝑑 =
𝐸(𝑌1)∕𝑛1
𝐸(𝑌2)∕𝑛2

=
((1 − expit(𝛼′ + 𝛽′)) exp(𝛼 + 𝛽 + log 𝑛1))∕𝑛1

((1 − expit(𝛼′)) exp(𝛼 + log 𝑛2))∕𝑛2

=
1 + exp(𝛼′)

1 + exp(𝛼′ + 𝛽′)
exp(𝛽)

with expit(𝑥) = logit
−1
(𝑥) = exp(𝑥)∕(1 + exp(𝑥)), 𝛼′ and 𝛽′ denoting the fixed effects for the intercept and slope, respec-

tively, in the zero-inflation arm, and 𝛼 and 𝛽 denoting the fixed effects for the intercept and slope, respectively, in the
Poisson arm. Please note that here, we use 𝛼′, 𝛽′, 𝛼, and 𝛽 without any subscript to indicate that we are referring to the
respective fixed effects. Under the assumption of a normal sampling distribution, we derived a standard error for the
“unconditional” pooled RR by employing the delta method relying upon a first-order Taylor-series approximation:

SE(R̂R𝑝𝑜𝑜𝑙𝑒𝑑) =
√
𝐽(𝛼′, 𝛽′, 𝛽)𝑉𝐽(𝛼′, 𝛽′, 𝛽)𝑇

with 𝐽(𝛼′, 𝛽′, 𝛽) denoting the Jacobian matrix for the “unconditional” RR estimator, given by

𝐽(𝛼′, 𝛽′, 𝛽) =

[
(1 − exp(𝛽′)) exp(𝛽 + 𝛼′)

(1 + exp(𝛼′ + 𝛽′))2
, −

(1 + exp(𝛼′)) exp(𝛼′ + 𝛽′ + 𝛽)

(1 + exp(𝛼′ + 𝛽′))2
,

exp(𝛽) + exp(𝛼′ + 𝛽)

1 + exp(𝛼′ + 𝛽′)

]
and 𝑉 denoting the variance–covariance matrix of the parameters 𝛼′, 𝛽′, and 𝛽. Please note that computing an “uncondi-
tional” pooled RR is only necessary for those ZIP models that include a treatment effect in the zero-inflation arm.

2.3 Conditional (beta-)binomial models

The third model discussed in Böhning et al. (2015) is a model proposed by Stijnen et al. (2010). Here, we consider 𝑌𝑖1

conditional on 𝑌𝑖 = 𝑌𝑖1 + 𝑌𝑖2. Stijnen et al. (2010) state that given this assumption, 𝑌𝑖1 follows a binomial distribution:
𝑌𝑖1 ∼ Binom(𝑌𝑖, 𝜋𝑖)where we predict the probability𝜋𝑖 that an observed event was observed in the treatment group using
a binomial regression model with the canonical logit-link (i.e., logistic regression) with a random intercept and an offset
variable that is the log group size ratio 𝑛𝑖1∕𝑛𝑖2. Please note again that instead of only taking the group sizes into account,
we could also consider different observation times in conjunction with different group sizes across studies. To simplify,
we again do not touch on this option further and refer to Böhning et al. (2015). We write this model as

logit 𝜋𝑖 = 𝛼𝑖 + log(𝑛𝑖1∕𝑛𝑖2)
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with 𝛼𝑖 ∼ Normal(𝛼, 𝜎2𝛼). The fixed effect of the intercept in this model represents the pooled log RR across studies, with
𝜎2𝛼 indicating the between-study variation in the log RR, that is, 𝜏2. Please note that here, the log RR is represented by the
intercept parameter while it was represented by the slope parameter in the models described above. The likelihood for
this model is given by

𝐿𝑚(𝛼, 𝜎
2
𝛼 | 𝑌𝑖1, 𝑌𝑖, 𝑛𝑖𝑗) =

𝑚∏
𝑖=1

∫
(𝑌𝑖

𝑌𝑖1

)
expit(𝛼𝑖 + log(𝑛𝑖1∕𝑛𝑖2))

𝑌𝑖1 ×

(1 − expit(𝛼𝑖 + log(𝑛𝑖1∕𝑛𝑖2))
𝑌𝑖−𝑌𝑖1𝜙(𝛼𝑖 | 𝛼, 𝜎2𝛼)𝑑𝛼𝑖,

where 𝑚 denotes the number of studies included in the meta-analysis. Böhning et al. (2015) point out a disadvantage of
this model that has also been criticized by Kuss (2015): it does not use any information from double-zero studies as they
would result in 𝑌𝑖 = 0. Cai et al. (2010) view the fact that the model relies upon numerical approximations in order to be
estimated as another disadvantage. They attempt to remedy this problemby conceiving a beta-binomialmodel thatmodels
𝜋𝑖 as varying between studies and also offers a closed-form likelihood solution that does not have to rely upon numerical
approximations (see subsection 2.2.1 in Cai et al., 2010, p. 2080 for more details). Assuming again that𝑌𝑖1 ∼ Binom(𝑌𝑖, 𝜋𝑖)

and now also that𝜋𝑖 ∼ Beta(𝜓𝛾, 𝜓(𝑛𝑖2∕𝑛𝑖1)), themodel alongwith its parameters𝜓 and 𝛾 can be estimated bymaximizing

𝐿𝑚(𝜓, 𝛾 | 𝑌𝑖𝑗, 𝑛𝑖𝑗) =

𝑚∏
𝑖=1

∫ 𝜋𝑌𝑖1(1 − 𝜋)𝑌𝑖2
𝜋𝜓𝛾−1(1 − 𝜋)𝜓(𝑛𝑖2∕𝑛𝑖1)−1

𝐵(𝜓𝛾, 𝜓(𝑛𝑖2∕𝑛𝑖1))
𝑑𝜋

=

𝑚∏
𝑖=1

𝐵(𝜓𝛾 + 𝑌𝑖1, 𝜓(𝑛𝑖2∕𝑛𝑖1) + 𝑌𝑖2)

𝐵(𝜓𝛾, 𝜓(𝑛𝑖2∕𝑛𝑖1))
.

𝐵(𝑎, 𝑏) denotes the beta function. Please note that none of the model parameters directly represent the parameter of
interest, the pooled (log) RR. The parameter 𝜓 provides a way to adjust the shape of the beta-binomial distribution accord-
ing to the between-study variation in the treatment effects. The less between-study variation, the larger is 𝜓 (Cai et al.,
2010). The authors themselves only examined the estimates of themodel parameters 𝛾 and𝜓 in terms of, for example, bias,
not their proposed estimator for the pooled RR. Yet, for practical applications, these are likelymuchmore important. Thus,
we evaluated the estimates of the pooled RR in our simulation study rather than the model parameters 𝛾 and 𝜓. A pooled
RR can be obtained on the basis of the model parameters 𝜓 and 𝛾 as

R̂R𝑝𝑜𝑜𝑙𝑒𝑑 = 𝑚−1
𝑚∑
𝑖=1

∫ exp(𝜃)𝑓𝐵𝑖(𝜃; 𝜓, 𝛾)𝑑𝜃

with

𝑓𝐵𝑖(𝜃 | 𝜓, 𝛾) =
(

exp(𝜃)

(𝑛𝑖2∕𝑛𝑖1)+exp(𝜃)

)𝜓𝛾(
(𝑛𝑖2∕𝑛𝑖1)

(𝑛𝑖2∕𝑛𝑖1)+exp(𝜃)

)𝜓(𝑛𝑖2∕𝑛𝑖1)
𝐵(𝜓𝛾, 𝜓(𝑛𝑖2∕𝑛𝑖1))

, (4)

where 𝑓𝐵𝑖(𝜃; 𝜓, 𝛾) denotes the density of the log RR𝑖 and 𝜃 denotes the log RR (Cai et al., 2010). Cai et al. (2010) do not
give an estimator for the standard error of R̂R𝑝𝑜𝑜𝑙𝑒𝑑. Thus, we again employed the delta method under the assumption of a
normal sampling distribution to derive a standard error for the pooled RR estimator, relying on a first-order Taylor-series
approximation:

SE(R̂R𝑝𝑜𝑜𝑙𝑒𝑑) =
√
𝐽(𝜓, 𝛾)𝑉𝐽(𝜓, 𝛾)𝑇

with 𝐽(𝜓, 𝛾) denoting the Jacobian matrix for the pooled RR estimator and 𝑉 denoting the variance–covariance matrix of
the parameters 𝜓 and 𝛾. 𝐽(𝜓, 𝛾) is of the shape

𝐽(𝜓, 𝛾) =

[
𝛿𝑔(𝜓, 𝛾)

𝛿𝜓
,

𝛿𝑔(𝜓, 𝛾)

𝛿𝛾

]
,
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wherewe use 𝑔(𝜓, 𝛾) to denote R̂R𝑝𝑜𝑜𝑙𝑒𝑑. The partial derivatives within the Jacobianmatrix are presented in the Appendix.
Cai et al. (2010) point out that the density function in Equation (4) can also be used to estimate the between-study vari-
ance of the RR𝑖 . Yet, studying the respective estimates would have been difficult with our simulation design (compare
Subsection 3.1), and as this model was not the focus of this paper, we neither estimated nor assessed estimates for the
between-study variance of the RR𝑖 as provided by the model by Cai et al. (2010).
Finally, we also included a different parameterization of the beta-binomial model for which we wished to assess

the performance, one that directly included the parameter of interest, the pooled log RR. The respective model is a
beta-binomial model using the canonical logit-link. Here, we once again assume that 𝑌𝑖1 ∼ Binom(𝑌𝑖, 𝜋𝑖) and that
𝜋𝑖 ∼ Beta(𝜇𝑖𝑣, (1 − 𝜇𝑖)𝑣), where 𝑣 > 0 resembles the precision in the sense that it is roughly proportional to the preci-
sion, that is, the inverse of the variance. This can be seen from 𝑣 = (𝜇(1 − 𝜇))∕𝜎2 − 1, with 𝜎2 denoting the variance of
the beta distribution and 𝜇 denoting the mean of the beta distribution. We can see that even though 𝑣 is not exactly the
precision, which would be the inverse of the variance 𝜎2, it is roughly proportional to the precision. We predict the mean
𝜇𝑖 of the beta distribution via logit 𝜇𝑖 = 𝛼 + log(𝑛𝑖1∕𝑛𝑖2). Please once again be reminded of our remarks above about being
able to also model different observation times. Here, as in the conditional model proposed by Stijnen et al. (2010) and dis-
cussed in Böhning et al. (2015), the intercept 𝛼 represents the pooled log RR, the parameter of interest. The corresponding
likelihood is given by

𝐿𝑚(𝛼, 𝛽, 𝑣 | 𝑌𝑖1, 𝑌𝑖, 𝑛𝑖𝑗) =

𝑚∏
𝑖=1

(𝑌𝑖

𝑌𝑖1

)𝐵(𝜇𝑖𝑣 + 𝑌𝑖1, 𝑌𝑖 + (1 − 𝜇𝑖)𝑣 − 𝑌𝑖1)

𝐵(𝜇𝑖𝑣, (1 − 𝜇𝑖)𝑣)
,

where 𝐵(𝑎, 𝑏) denotes the beta function, 𝑚 the number of primary studies and 𝜇𝑖 = expit(𝛼 + log(𝑛𝑖1∕𝑛𝑖2)). This model
does not provide an estimate for the between-study heterogeneity 𝜏2. Conceptionally, we are unable to include double-
zero studies with all three (beta-)binomial models in this section. Based on arguments brought forward by Kuss (2015),
we would thus expect these models to perform less well than other models, such as the Poisson or ZIP models, which are
naturally able to include all studies.

2.4 Beta-binomial model by Kuss

Based on an extensive simulation study comparing a wide array of exact-likelihoodmethods that do not warrant the exclu-
sion of double-zero studies or the administration of continuity corrections, Kuss (2015) recommended the use of a beta-
binomial regression model for meta-analysis of the RR. This beta-binomial model differs from the beta-binomial model
described above: the beta-binomial model is applied in conjunction with a log link, assuming that 𝑌𝑖𝑗 ∼ Binom(𝜋𝑖𝑗, 𝑛𝑖𝑗)

and that the 𝜋𝑖𝑗 follow a beta distribution with a mean 𝜇𝑖𝑗 . Then, log 𝜇𝑖𝑗 is predicted through an intercept 𝛼 and an indi-
cator of the experimental group membership (treatment or control) 𝑋𝑖1, yielding log 𝜇𝑖𝑗 = 𝛼 + 𝛽𝑋𝑖1. Note that the model
does not conditionalize on the total number of observed events, therewith not introducing the restriction that double-zero
studies cannot be included. An interpretation of the slope 𝛽 in terms of the pooled log RR is enforced by using the log link
(for this model, the canonical logit link would result in the slope 𝛽 representing the pooled log OR). In the parameteriza-
tion of the beta-binomial model used in Kuss (2015), the beta distribution is parameterized in terms of the mean 𝜇𝑖𝑗 and
the correlation between the observations from the same study in control and treatment group (please see subsection 3.4
in Kuss, 2015, p. 1101 for further details). Due to being unable to obtain a working implementation of the parameterization
used in Kuss (2015) in R, we chose to use a parameterization of the beta-binomial model in which the beta distribution
is parameterized in terms of its mean 𝜇 and a second parameter 𝑣 (similar to the precision), with 𝑣 > 0 (same parame-
terization as used for the third conditional beta-binomial model, see above for further details). The crucial difference of
this beta-binomial model to the one described in the previous section is the linear combination as well as the link used to
predict the mean 𝜇𝑖𝑗 of the distribution, resulting in log 𝜇𝑖𝑗 = 𝛼 + 𝛽𝑋𝑗 . The corresponding likelihood can be written as

𝐿𝑚(𝛼, 𝛽, 𝑣 | 𝑌𝑖𝑗, 𝑋𝑖1, 𝑛𝑖𝑗) =

𝑚∏
𝑖=1

(𝑛𝑖𝑗
𝑌𝑖𝑗

)𝐵(𝜇𝑖𝑗𝑣 + 𝑌𝑖𝑗, 𝑛𝑖𝑗 + (1 − 𝜇𝑖𝑗)𝑣 − 𝑌𝑖𝑗

)
𝐵
(
𝜇𝑖𝑗𝑣, (1 − 𝜇𝑖𝑗)𝑣

) , (5)

where 𝐵(𝑎, 𝑏) denotes the beta function and 𝜇𝑖𝑗 = exp(𝛼 + 𝛽𝑋𝑖1). Note that for consistency’s sake, we use 𝛼 and 𝛽 to
denote the intercept and slope of the regression model here, not the shape parameters of the beta distribution, as is very
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common. Again, using the log link in conjunction with this model allows for interpreting the treatment effect 𝛽 as the
log RR. But, note that the application of the log link results in mapping the value of the linear combination with a value
range of (−∞,∞) onto the value range of the inverse log function, that is, [0,∞), albeit the value range of 𝜋 being [0, 1].
Nonetheless, the maximum likelihood estimator may still converge onto sensible parameter values, but it should be noted
that this could lead to numerical difficulties. This model does not provide an estimate for 𝜏2, the between-study hetero-
geneity in the RR. Based on the conclusions drawn by Kuss (2015), we would expect this model to perform well, serving
as an important benchmark for yet uninvestigated models, such as the ZIP model.

2.5 Standard REmeta-analysis

Finally, we also included the standard RE meta-analysis model (i.e., inverse-variance method). Even though based on the
theoretical considerations elaborated above (Bakbergenuly & Kulinskaya, 2018; Friede et al., 2017; Jackson &White, 2018;
Shuster & Walker, 2016; Stijnen et al., 2010) as well as simulative evidence (Pateras, Nikolakopoulos, Mavridis, & Roes,
2018), we do not expect the conventional meta-analysis model to perform particularly well, we still wanted to include
it as a benchmark that is commonly used in practice (Warren et al., 2012). The standard RE meta-analysis model com-
putes a pooled log RR from the RR𝑖 obtained in 𝑖 studies included in one meta-analysis. It is also referred to as the two-
stage approach: first, an RR𝑖 , its logarithm, and the sampling variance 𝑠2𝑖 of log RR𝑖 are estimated for each study 𝑖. Then,
the log RR𝑖 are predicted using an RE model, with log RR𝑖 ∼ Normal(𝜃𝑖, 𝑠

2
𝑖
) and 𝜃𝑖 ∼ Normal(𝜃, 𝜏2), so that equivalently

log RR𝑖 ∼ Normal(𝜃, 𝜏2 + 𝑠2
𝑖
). Here, 𝜃𝑖 denotes the true underlying log RR𝑖 for the 𝑖th study. The 𝜃𝑖 are assumed to be

drawn from an underlying (RE) distribution with expected value 𝜃 and (between-study) variance 𝜏2. Variants of the stan-
dard REmeta-analysis model differ with regard to the estimator they use for 𝜏2. The most commonly used 𝜏2 estimator in
the (medical) meta-analyses of rare events—as outlined in the systematic literature review byWarren et al. (2012)—is the
DerSimonian–Laird (DL) estimator (DerSimonian & Laird, 1986). We included this estimator because of its prevalence.
With theDLestimator, the between-study variance in the logRR𝑖 is estimated as 𝜏̂2𝐷𝐿 = max(0, (𝑄𝐹𝐸 − (𝑚 − 1))∕𝑐𝐹𝐸), with
𝑄𝐹𝐸 =

∑𝑚

𝑖=1
𝑤𝑖(𝑌𝑖 − 𝑌̄𝐹𝐸)

2 and 𝑐𝐹𝐸 =
∑𝑚

𝑖=1
𝑤𝑖(

∑𝑚

𝑖=1
𝑤2
𝑖
)∕(

∑𝑚

𝑖=1
𝑤𝑖), where 𝑤𝑖 = 1∕𝑠2

𝑖
, 𝑌𝑖 represents the log RR of study 𝑖

and 𝑌̄𝐹𝐸 = (
∑𝑚

𝑖=1
𝑤𝑖𝑌𝑖)∕(

∑𝑚

𝑖=1
𝑤𝑖). For the same reason, we also included the restricted maximum likelihood (REML)

estimator for 𝜏2 that is the default estimator in the R meta-analysis software package metafor (Viechtbauer, 2010) and
thus also commonly used. The iterative estimator is given by 𝜏̂2𝑅𝐸𝑀𝐿 = max(0, (

∑𝑚

𝑖=1
𝑤̃𝑖

2(𝑌𝑖 − 𝑌̄𝑀𝐿) − 𝑠2
𝑖
)∕(

∑𝑚

𝑖=1
𝑤̃𝑖

2) +

1∕(
∑𝑚

𝑖=1
𝑤̃𝑖), with 𝑤̃𝑖 = 1∕(𝑠2

𝑖
+ 𝜏2) and 𝑌̄𝑀𝐿 denoted themaximum likelihood estimate of the pooled log RR. Even though

these estimators have been compared to other methods in rare event settings before (e.g., Pateras et al., 2018; Spittal et al.,
2015) and we otherwise tried to avoid redundant comparisons in this simulation study, we still included them in our com-
parison to be able to compare the performance of more recently proposed models to models that are most commonly used
in practice. We also included a third 𝜏2 estimator, the Sidik–Jonkman (SJ) estimator (Sidik & Jonkman, 2005), given by
𝜏2𝑆𝐽 = max((

∑𝑚

𝑖=1
((𝑌𝑖 − 𝑌̄𝐹𝐸)

2)∕(𝑟𝑖 + 1))∕(𝑚 − 1), 0.01), with 𝑟𝑖 = 𝑠2
𝑖
∕(
∑𝑚

𝑖=1
(𝑌𝑖 − 𝑌̄𝐹𝐸)∕𝑚). This estimator was chosen

based on recommendations by Pateras et al. (2018), albeit their simulations concerned the OR. To avoid more redundant
comparisons, we chose only one of the three equally recommended estimators of this paper.

2.6 Continuity correction

As discussed above, the standard RE meta-analysis model has to rely on continuity corrections or exclusion of studies in
the event of single- or double-zero studies. As all other models compared in our simulation study were able to at least
include single-zero studies and in line with other simulation studies (Pateras et al., 2018; Spittal et al., 2015), we applied
a continuity correction to all single-zero studies so that they could be included in the standard RE meta-analysis model.
For double-zero studies, the circumstances were different: not only the standard RE meta-analysis model but also the
conditional binomial models were unable to include them. Thus, we chose to exclude them from those models that were
unable to handle them and only include them in models that could do so naturally, that is, the Poisson, ZIP models, and
the beta-binomial model by Kuss (2015). For each standard RE meta-analysis model, we used two different continuity
corrections: (a) We applied the standard continuity correction of adding a constant 0.5 to each cell of the 2 × 2 frequency
tables of those studies in which zero events occurred. (b) We used the treatment arm continuity correction proposed by
Sweeting et al. (2004) that is extendable to the RR and an RE scenario. Instead of adding the same constant value to all
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cells of the 2 × 2 frequency table, we add different values to the treatment and control group that depend on the group
sizes. The starting point is again a constant, for example, 0.5, which is then divided by the respective group sizes. This
continuity correction supposedly accounts better for group size imbalances than the standard continuity correction, at
least in fixed-effects settings (Sweeting et al., 2004). Based on the findings by Sweeting et al. (2004) and hoping to extend
them to an RE setting, we would expect the conventional RE meta-analysis models to perform better in conjunction with
the treatment arm (as opposed to the standard) continuity correction.

3 MONTE CARLO STUDY

Our simulations were carried out using R (R Core Team, 2019), with the help of the R packages doParallel (Watson,
2018), dplyr (Wickham, François, Henry, & Müller, 2019), tidyr (Wickham & Henry, 2019), truncnorm (Mersmann,
Trautmann, Steuer, & Bornkamp, 2018), and nleqslv (Hasselman, 2018), in addition to the R packages used to implement
the investigated models below (for details, please see Subsection 3.2). The simulations were run on the computing cluster
PALMA II (https://www.uni-muenster.de/ZIV/Technik/Server/HPC.html) at the University of Münster. You may
find rds files of the simulation results for each condition on the OSF repository for this paper (https://osf.io/h4vp6/)
and all R scripts used for this simulation, the data preparation and the results visualization on the GitHub repository for
this paper (https://github.com/mariebeisemann/metaanalysis_for_rare_events_simulation).

3.1 Simulation set-up

We designed the simulation scenarios to align with settings used in previous work (Cheng et al., 2016; Pateras et al.,
2018; Spittal et al., 2015; Sweeting et al., 2004) and to reflect relevant situations in which applied work would use the
models examined here (e.g., Cheng et al., 2016). Our aim was to investigate the performance of the models presented
above in a setting with rare events. Although such a setting often coincides with other methodological challenges, such as
extremely small numbers of primary studies (as low as two studies, see below), publication bias, or outcome reporting bias,
our investigation focused only on rare events, operating under the assumption that none of these other methodological
challenges were present.
To achieve realistic simulation scenarios (this term is used interchangeably with the term “simulation scenarios” and

“simulation settings” throughout the remaining paper), we re-analyzed a set of Cochrane reviews investigating rare events.
To this end, we searched the Cochrane Library (https://www.cochranelibrary.com) for the key word “adverse events.” Of
the 2,953 search results, we downloaded the 2,218 data sets that were available to us and not meta-reviews. We selected the
(sub-)data sets with dichotomous outcomes and searched the outcomes for key words typically associated with adverse
events (“adverse,” “morbidity,” “mortality,” “death,” “trauma,” “infection”) and selected them accordingly. A total of 1,447
Cochrane reviews met these criteria, leading (with multiple suitable outcomes in some studies) to a re-computation of
15,537 meta-analyses. For each outcomemeasure, we computed a standard REmeta-analysis (with a continuity correction
of 0.5) using the RR as an effect measure. We also used the standard approach to pool the baseline risks (in conjunction
with a logit transformation). Additionally, we applied the RE Poisson model to the data that yielded estimates for both
the pooled baseline risk and the pooled RR. Excluding results for outcome measures for which only one primary study
was available, we computed the mean, the median, and the variance of the RR as well as the baseline risk, as estimated by
both approaches. We found a mean baseline risk of 0.13 (𝑀𝑑𝑛 = 0.07) with the standard and of .11 (𝑀𝑑𝑛 = 0.06) with the
Poisson approach. The estimate of the mean RR obtained using the Poisson model appeared distorted (possibly by some
models with undetected convergence issues—we did not check all 15,537 models manually), but the mean RR obtained
using the standard approach was 1.06 (𝑀𝑑𝑛 = 1.00). The log RR (as computed with the standard approach) varied across
outcome measures with a variance (on the log scale) of 0.36. The average number of studies included in a meta-analysis
(after exclusion of outcome measures with only one study available) was 5 (min = 2, max = 105). We then used these
results as inspiration for the parameter values we chose for the parameters we varied to derive our simulation scenarios.
We ran 1,000 simulation trials for each simulation condition. The simulation conditions resulted from a full crossing

of six design factors that we are going to describe in the following and an overview of which is shown in Table 3. In
accordance with other simulation studies on the topic (Bai et al., 2016; Bhaumik et al., 2012; Bradburn et al., 2007; de
Rooi, 2008; Jackson et al., 2018; Sweeting et al., 2004), we generated the data for each one of the 𝑛𝑠𝑡𝑢𝑑𝑖𝑒𝑠 primary studies of
each respective meta-analysis using a binomial distribution Binom(𝑛, 𝑝). Depending on the group (treatment or control),

https://www.cochranelibrary.com
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TABLE 3 Parameters and their values in the simulation study

Parameter Values
True RR {0.5, 1, 2}
Between-study heterogeneity 𝜏 {0, 0.6, 1}
Baseline event probability 𝜇𝑖2 {0.05, 0.1}
Number of primary studies𝑚 {5, 30, 100}
Group size ratio 𝑅 {0.5, 1, 2}
Control group size 𝑛𝑖2 50

different values for the parameters 𝑛 and 𝑝 according to the respective simulation condition were used. The values for
𝑛 depended on the simulation conditions as described below. The values for 𝑝 for study 𝑖 are (a) the baseline risk 𝜇𝑖2 as
determined by the simulation condition for the control group, and (b) computed as the product of the baseline risk 𝜇𝑖2
and the true RR𝑖 of study 𝑖 for the treatment group. To model heterogeneous settings, that is, variability in the true RR𝑖

across studies, we sampled 𝑚 logRR𝑖 from a truncated normal distribution (in each trial in each condition; 𝑚 denotes
the number of primary studies in the respective condition), as described below. We then exponentiated the sampled value
and multiplied it with the baseline risk, to obtain the event probability in the treatment group, 𝜇𝑖1, which was then used
as the parameter 𝑝 of the binomial distribution fromwhich we generated the data in the treatment group of study 𝑖. Based
on these generated observations in treatment and control group of the primary studies, we either calculated the log RR
and its sampling variance (using one of the two different continuity corrections whenever a primary study displayed zero
events in either control or treatment group or both) to be entered into the conventional RE meta-analysis model, or we
computed the counts of events per group for each study to be used as the dependent variable in the other models. Based
on these data, we estimated all 15 models for every simulation trial in all conditions.
To obtain our simulation conditions, we varied a number of parameters as follows: We used three different underly-

ing true effects (RR = {0.5, 1, 2}). We also varied the underlying variability in the true effects, 𝜏2, or rather 𝜏, so that our
simulation scenarios depicted (a) a situation where there is no between-study heterogeneity (𝜏 = 0), (b) a situation where
we have as much between-study heterogeneity as we found variation between pooled RR𝑖 in our re-analysis of Cochrane
reviews (𝜏 =

√
0.36 = 0.6; which is also roughly in linewith Spittal et al., 2015), and (c) a situationwith greater heterogene-

ity, 𝜏 = 1.0. We sampled the log RR𝑖 for each study 𝑖 from a truncated normal distribution. We chose a truncated rather
than just a normal distribution (like, e.g., de Rooi, 2008) because as RR𝑖 = 𝜇𝑖1∕𝜇𝑖2, where 𝜇𝑖𝑗 denote the incidence rate in
group 𝑗 and study 𝑖, we cannot sample RR𝑖 (or log RR𝑖) completely independently of the baseline risk 𝜇𝑖2. If we were to do
so, then especially for larger 𝜇𝑖2 and greater heterogeneity, it can happen that RR𝑖 ×𝜇𝑖2 = 𝜇𝑖1 > 1, even though it should
apply that 𝜇𝑖1 ∈ [0, 1]. As we vary the baseline risks systematically but fix themwithin each condition (see below), we can
easily see that this problem would occur when RR𝑖 > 1∕𝜇𝑖2. Thus, we truncated the normal distribution with an upper
boundary of 𝑏 = log(1∕𝜇𝑖2) to ensure that we would obtain valid values for 𝜇𝑖1 that we computed as RR𝑖 ×𝜇𝑖2 in each trial
of each condition. Although the truncated normal distribution is still parameterized in terms of parameters 𝜇 and 𝜎2 as
well as the lower and upper boundaries, the parameters 𝜇 and 𝜎2 are not equal to the expectation and variance of the
truncated normal distribution as they are for the normal distribution. To ensure the validity of our simulation settings,
we wanted to make sure that the expectation of the truncated normal distribution was equal to the true log RR we set
for the respective condition and that the variance of the truncated normal distribution was equal to the 𝜏2 we set for the
respective condition. The expectation and variance of a truncated normal distribution with a one-sided truncation of the
upper tail (as was required for our purposes) are given by

𝐸(𝑋 | 𝑋 < 𝑏) = 𝜇 − 𝜎
𝜙(𝑧𝑏)

Φ(𝑧𝑏)
(6)

Var(𝑋 | 𝑋 < 𝑏) = 𝜎2

[
1 − 𝑧𝑏

𝜙(𝑧𝑏)

Φ(𝑧𝑏)
−

(
𝜙(𝑧𝑏)

Φ(𝑧𝑏)

)2
]
, (7)

with 𝜙(.) denoting the probability density function of the standard normal distribution,Φ(.) denoting its cumulative distri-
bution function, and 𝑧𝑏 denoting the standardized upper boundary 𝑏. We wanted to know which values of 𝜇 and 𝜎 would
result in 𝐸(𝑋 | 𝑋 < 𝑏) = true log RR and Var(𝑋 | 𝑋 < 𝑏) = 𝜏2, so we set Equations (6) and (7) equal to these values and
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solved them for 𝜇 and 𝜎 using a nonlinear equation solver (R package nleqslv; Hasselman, 2018). The resulting values
(shown in Table S1) were then used together with 𝑏 = log(1∕𝜇𝑖2) as parameters of the truncated normal distribution from
which the log RR𝑖 for the 𝑖 studies in each trial in each condition were drawn.
The baseline event probabilities (i.e., the event probabilities in the control group) for the primary studies were system-

atically varied (𝜇𝑖2 = {0.05, 0.10}). The values were chosen to roughly reflect the median (0.06 or 0.07) and the mean (0.11
or 0.13) baseline risk we found in our re-analysis of Cochrane reviews. For the sake of numerical stability, we did not
impose any heterogeneity upon the baseline risks. We then used 𝜇𝑖2 to compute 𝜇𝑖1 as described above. These parameter
values were also used in conjunction with the values for the group sizes 𝑛𝑖𝑗 to generate the observations in treatment and
control groups from the binomial distribution. For 𝑛𝑖𝑗 , we set the values o 𝑛𝑖2, that is, the control group size, to 50, and
systematically varied the group size ratio 𝑅 (= {0.5, 1, 2}), from which we then computed 𝑛𝑖1 as 𝑛𝑖2 × 𝑅. For 𝑛𝑖2, the value
𝑛𝑖2 = 50was chosen as it had previously been used in other simulation studies as a representative control group size in the
medical literature (Cheng et al., 2016; Sweeting et al., 2004). The group size ratio 𝑅 was varied systematically with values
𝑅 = {0.5, 1, 2}.
Finally, we also varied the number of primary studies𝑚 = {5, 30, 100} included in the meta-analyses. The lowest value

of 5 was inspired by the choice of Cheng et al. (2016), Günhan, Röver, and Friede (2018), Sankey et al. (1996), and Spit-
tal et al. (2015), as well as our re-analyses of Cochrane reviews. We included this small number of primary studies as it
is common for medical meta-analyses (Cheng et al., 2016). The intermediate value was inspired (yet slightly larger) by
choices of other simulation studies (e.g., Bai et al., 2016; Bhaumik et al., 2012), and we chose the largest value based on
the maximum number of studies included in the Cochrane reviews we re-analyzed. The inclusion of a greater number of
primary studies is also helpful in the assessment of model convergence and performance improvements with increased
numbers of primary studies (as suggested by Cai et al., 2010). Altogether, these parameter variations resulted in a total of
162 simulation conditions in which model performance was assessed. Their varied values are summarized in Table 3.

3.2 Model estimation

All models were fitted in R (R Core Team, 2019). We used the lme4 package (Bates, Mächler, Bolker, & Walker, 2014) to fit
the RE Poissonmodel (poiss; Böhning et al., 2015; Spittal et al., 2015; Stijnen et al., 2010) as well as the conditional binomial
model (cond_binom; Böhning et al., 2015; Stijnen et al., 2010). The glmmTMB package (Brooks et al., 2017) served to fit the
four variations of the ZIP Model (zip_rifs with random intercept and fixed slope; zip_fifs with fixed intercept and fixed
slope; zip_ri with only a random intercept; zip_fi with only a fixed intercept; Böhning et al., 2015) and the parameteriza-
tion of the conditional beta-binomial model in which the pooled log RR was a parameter of the model (beta_binom). The
standard RE meta-analysis models (DL for the standard model using the DL estimator; SJ for the SJ estimator; REML for
the REML estimator) were fitted using the metafor package (Viechtbauer, 2010) that also allows for applying the stan-
dard continuity correction of adding a constant 0.5 to all cells of the 2 × 2 frequency table in a zero study.We implemented
the treatment arm continuity correction (Sweeting et al., 2004) ourselves (standard models in conjunction with the treat-
ment arm continuity correction: DL_tcc, SJ_tcc, REML_tcc). Following other simulation studies (Bradburn et al., 2007;
Sweeting et al., 2004), we only applied one of the two continuity corrections in the case of single-zero studies. Double-zero
studies were excluded. This is the same treatment (albeit without continuity correction) that is natively administered by
the conditional (beta-)binomial models, so it felt most consistent to us. Only in models that were naturally able to take
all primary studies into account, even double-zero studies (i.e., the Poisson regression model, the ZIP models, and the
beta-binomial model by Kuss, 2015), did we include all primary studies including both single- and double-zero studies.
We estimated the beta-binomial models by Kuss (2015) (kuss_binom) and by Cai et al. (2010) (cai_binom) by minimizing
their log-likelihoods with the optim function in R, using its default method. For the implementation of the beta-binomial
likelihood for kuss_binom, we used the R package extraDistr (Wolodzko, 2019). The kuss_binom model was not fitted
with standard R packages as we did not find any package that allowed to fit a beta-binomial regression with a log link.
Standard errors for the parameters were obtained from the inverse of the Hessian matrix as computed by optim. To our
knowledge, the model by Cai et al. (2010) was also not available in any standard package, and thus, was estimated anal-
ogously to kuss_binom. The aforementioned estimators of the pooled RR for cai_binom, zip_rifs, and zip_fifs as well as
their derived standard errors were implemented in R using the formulae given in Subsections 2.2 and 2.3, respectively. The
variance–covariance matrix used to compute the standard errors was again obtained by taking the inverse of the Hessian
matrix computed by optim. Please note that the estimator associated with cai_binom required numerical integration. Our
implementation failed to work when trying to approximate the integral over the interval (−∞,∞). To still be able to attain
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the required estimates, we integrated instead over the interval (−100, 100). Please note that this is not entirely accurate
(see Section 6 for a reflection upon this).

3.3 Performance evaluation

As we suspected convergence issues with some of the more complex models in rare events settings (and we also witnessed
them in our preliminary trial simulations), we computed the number of trials that did not converge for each condition
and each model. We considered models estimated by metafor, lme4 and the likelihoods we minimized using optim to
have converged when the respective software indicated they had. This was done fully automatically in R. In preliminary
trial simulations, we found the glmmTMB to not have been sensitive enough in this respect, so we chose to consider them
converged only when the software returned standard errors for all parameter estimates. Please note that model estimates
were not individually screened to check for any unrealistic parameter estimates, but instead we assumed they had con-
verged properly if the criteria described above were met. Model performance was evaluated by assessing the mean and
median bias, computed as

Bias𝑀 =

∑𝑛𝑡𝑟𝑖𝑎𝑙𝑠
𝑖=1

(𝜃𝑖 − 𝜃)

𝑛𝑡𝑟𝑖𝑎𝑙𝑠

Bias𝑀𝑑𝑛 = median(𝜃̂𝜃𝜃 − 𝜃),

respectively, where 𝜃̂𝜃𝜃 denotes the vector of parameter estimates from the 𝑛𝑡𝑟𝑖𝑎𝑙𝑠 simulation trials, the RMSE computed
as

RMSE =

√∑𝑛𝑡𝑟𝑖𝑎𝑙𝑠
𝑖=1

(𝜃𝑖 − 𝜃)2

𝑛𝑡𝑟𝑖𝑎𝑙𝑠
,

the mean absolute error (MAE) computed as

MAE =

∑𝑛𝑡𝑟𝑖𝑎𝑙𝑠
𝑖=1

|𝜃𝑖 − 𝜃|
𝑛𝑡𝑟𝑖𝑎𝑙𝑠

,

and the maximum absolute error (ME) computed as

ME = max |𝜃̂𝜃𝜃 − 𝜃|,
for the point estimator for the pooled log RR. In all of the equations above, we used 𝑛𝑡𝑟𝑖𝑎𝑙𝑠 to denote the number of

converged trials (which differed between models and conditions). There was no parameter as part of the models zip_rifs,
zip_fifs, and cai_binom that was directly interpretable as the pooled log RR as was the case for all of the other models.
However, we were able to estimate the pooled RR on the basis of the respectivemodel parameters. As these estimates were
on the original instead of the log scale, we also computed bias, RMSE,MAE, andME for these threemodels on the original
RR scale. We also assessed the coverage of the 95% CI for all models. The coverage was computed as the percentage of
converged trials in which the 95% CI covered the true log RR out of all converged trials (for the respective model in the
respective condition). For each model and in each trial 𝑖, we computed the 95% CI as [𝜃𝑖 − 1.96𝑆𝐸(𝜃𝑖), 𝜃𝑖 + 1.96𝑆𝐸(𝜃𝑖)],
with the 𝑆𝐸(𝜃𝑖) estimates obtained as described in the section above. For models for which estimates of the pooled RR (as
opposed to the pooled log RR) were obtained, the 95% CI were computed on the original scale and the boundaries were
subsequently mapped onto the log scale. Then, it was assessed whether the true log RR was covered by these transformed
boundaries. The focus of this paper was the evaluation of the models’ estimation of the pooled log RR. In the Supporting
Information, we additionally report results regarding the bias (mean and median), the RMSE, the MAE, and the ME of 𝜏2
for models that provided respective estimates (i.e., the standard meta-analysis models with both continuity corrections,
zip_ri, zip_fi, poiss, cond_binom).
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4 RESULTS

We included a plot showcasing the mean relative frequency of zero counts across trials for each condition in the Sup-
porting Information, in case the reader wishes to develop a better impression of the simulated data sets in the conditions.
Furthermore, we also display the average number of single- and double-zero studies across trials per condition in the Sup-
porting Information. On average, there were few double-zero studies. The average number of single-zero studies (relative
to the number of primary studies) was—as is to be expected—highest in conditions with a baseline risk of 0.05 and an RR
of 0.5. In these conditions, there were roughly 50% single-zero studies.

4.1 Convergence

In this paper, we merely show the results regarding model convergence in the different conditions for conditions with a
group size ratio of 0.5, the results for conditions with the other group ratios showed a similar pattern and are shown in
the Supporting Information. In Figure 1, we color-coded the amount of trials that failed to converge ranging from black
(indicating that none of the 1,000 trials converged for the respectivemodel in the respective condition) to white (indicating
that all trials converged for the respective model in the respective condition). We observed that across all conditions,
the standard meta-analysis models (with either continuity correction), beta_binom, poiss, and binom converged (nearly)
seamlessly. For settings without heterogeneity, the cai_binom model showed considerably more convergence issues than
it did in the settings with more heterogeneity (a pattern that also occurred, albeit only very subtly, for kuss_binom). The
inverse pattern was observed for the ZIP models that showed overall the poorest convergence rates out of all the models.
However, they converged comparatively better in settingswithout heterogeneity. Figure 1 also shows that in settingwithout
heterogeneity, convergence of theZIPmodelswas even better themore primary studieswere included in themeta-analysis.
A greater number of primary studies seems to have aided convergence for cai_binom as well, yet was not able to remedy
the convergence problems observed for settings without heterogeneity.

4.2 Distribution of (pooled) log RR estimates across trials

For a first impression of the results regarding the log RR estimates, we show the distribution of log RR estimates from
the 1,000 trials per model and condition in Figure 2 (selectively for conditions with a group size ratio of 0.5; please see
the Supporting Information for the figures displaying the results for conditions with group sizes of 1 and 2). As we only
wanted to give a rough overview of the models’ log RR estimates and also an impression of how the models compare to
each other in their performance, we show the results for all models in the same plot, to this end taking the logarithm of
estimates of the pooled RR as provided by some models (i.e., zip_rifs, zip_fifs, and cai_binom). We refrain from doing so
in all subsequent plots in which we want to scrutinize the results a little more. Please note that naturally an unbiased
estimator on the original scale, should show bias on the log scale or vice versa. Figure 2 shows that for all models, log
RR estimates varied more across trials in conditions with fewer primary studies and with more heterogeneity. We would
like to highlight the very good performance of poiss and kuss_binom (except for in the most extreme conditions in terms
of data sparsity). Yet, the comparatively slightly wider distributions for poiss (as opposed to those for some of the other
models) also show that for some trials, log RR estimates were still quite far off (as indicated by the narrow but—at least
in some conditions—long tails of the distribution; for example, for a very low baseline risk of 0.05, an RR of 0.5 equat-
ing to a log RR of −0.67, 30 primary studies, and a group ratio of 0.5: the distribution of estimates indicates some pooled
log RR were estimated as small as roughly −2 across different amounts of heterogeneity). However, this becomes much
less of a problem as the number of primary studies increases (or alternatively the baseline risk increases). kuss_binom
performed very well for lesser degrees of heterogeneity, showing narrower distributions than poiss. However, as hetero-
geneity increases, the model mean for kuss_binom (but not the one for poiss) did not coincide with the true underlying
log RR.We observed a similar pattern for beta_binom and cond_binom. The distributions for the ZIP models were overall
slightly wider spread than those of the other models but the respective model means of the ZIP models usually came very
close to the true underlying log RR (indicated by the gray vertical lines), but please note the conditions where this was not
the case. cai_binom exhibited slightly wider distributions that—as for all models—narrowed with increased numbers of
primary studies. Yet, for cai_binom we observed model means far off from the center of the distribution relatively more
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F IGURE 1 Number of trials for which convergence failed shown permodel (shown on x-axis) and condition (shown on y-axis), selectively
for conditions with a group size ratio of 0.5
Note. The values are color-codedwith red indicating that all trials failed to converge for the respectivemodel and condition and green indicating
convergence in all trials. Abbreviations on the x-axis: beta, beta_binom; binom, cond_binom; cai, cai_binom; kuss, kuss_binom. Conditions on
y-axis are described in terms of true RR (RR), baseline risk (p), number of primary studies (no. of studies), and amount of heterogeneity (tau);
the values of these parameters together with these abbreviations are shown on the y-axis

often than for the other models. It should be noted that this may have also resulted from or rather been aggravated by
our transformation of the values onto the log scale for this plot, but as we are going to see below, bias, RMSE, MAE, and
ME paint a similar picture. The standard meta-analysis models showed the (relative to the other models in the respective
conditions) narrowest distribution. However, their model means were also consistently off, even for settings without het-
erogeneity. The application of the alternative treatment-arm correction tended to lead to further off distributions than that
of the standard continuity correction. It seems also worth noting that the cases in which the model means (displayed as
red triangles) do not fall into the center of the distribution indicate that there might have been outliers for the respective
model in the respective condition that considerably distorted the average pooled log RR. Results were overall similar also
for group size ratios of 1 and 2.
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F IGURE 3 Median (gray panels) andmean (white panels) biases of the estimate for pooled log RR (displayed on y-axis) shown for different
degrees of heterogeneity (displayed on x-axis), shown selectively only for conditions with a group size ratio of 0.5
Note. Results for different models are shown in different colors, shapes and line types (see legend on right-hand side). Note that cai_binom,
zip_fifs, and zip_rifs are not shown here. Note that the values range of the y-axis varies between panels. Only values > −2 are shown. Gray
panels along x-axis indicate true RR (0.5, 1, or 2) in the upper and true baseline risk (0.05 or 0.10) in the lower row. Gray panels along the y-axis
indicate type of bias (mean or median) in the lower and number of primary studies (5, 30, or 100) in the upper row

4.3 Bias

Mean and median biases in the estimated pooled log RR are displayed for a group size ratio of 0.5 and a restricted value
range (only bias values above −2 are shown) are displayed in Figure 3 (please see the Supporting Information for the
results regarding group size ratios of 1 and 2 as well as complete value ranges). Please note that if for any value of between-
study heterogeneity (displayed on x-axis) for any model, no bias is shown in the plot, than that is due to the bias being
too great to be displayed on the scale of the y-axis in the plot. Such a bias would be unacceptably large regardless of the
exact value. Please note that results for cai_binom, zip_fifs, and zip_rifs are not shown in Figure 3, but instead in Figure 4
in order to be able to show their bias on the scale of the estimator (i.e., the original scale of the RR, not the log scale as
for the models shown in Figure 3). Overall, the condition with a baseline risk of 0.05, a group ratio of 0.5, an RR of 0.5
and five primary studies resulted in the most bias for the models. For this condition, mean biases (displayed on white
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panels) differed considerably from median biases (displayed on gray panels), suggesting the presence of outliers for the
respective models in that condition. Notably, poiss and kuss_binom (too large to be shown in Figure 3 in the respective
condition) showed very large biases in that condition, yet, for most other conditions, poiss and kuss_binom showed the
least amount of bias out of all the models. (Mean and median) bias for poiss and kuss_binom is very close to zero in
most condition. (Mean and median) bias for poiss tended to be slightly negative in conditions without heterogeneity and
slightly positive for settings with a lot of heterogeneity. Especially for an RR of 0.5 (so when zero-events were most likely
in the treatment group), poiss performed better in terms of bias than kuss_binom, in particular for settings with more
heterogeneity. In these settings, the ZIPmodels also tended to outperformkuss_binom in terms of bias (but note howmuch
the ZIPmodels struggled in settings with an RR of 2, especially in conjunctionwith only five primary studies). This pattern
is reversed for an RR of 2, but in these conditions, bias for kuss_binom was not visibly smaller in absolute magnitude
than that for poiss, just negative (while the bias for poiss was slightly positive) for great heterogeneity. Performance of
the standard models of meta-analysis was overall poor in terms of bias, regardless of the condition. cond_binom and
beta_binom tended to exhibit bias thatwas somewhere in between the bias observed for thewell and the poorly performing
models. For control group size ratios of 1 and 2 (see the Supporting Information), the overall patterns of results were
similar. The most notable difference was that poiss showed much more clearly superior performance in terms of bias,
especially for larger numbers of primary studies (although the ZIP sometimes came close again). For these greater group
sizes ratios, kuss_binom tended to show rather noticeable negative biases in settingswith great heterogeneity. Performance
of cond_binomwas noticeably poorer for group size ratios of 1 and 2, in particular for anRRof 2. Itmight also be interesting
to note that for greater group size ratios, in particular in conjunctionwith greater RR, the standardmodels ofmeta-analyses
tended to show negative bias in settings without heterogeneity. Mean andmedian biases for the remainingmodels, that is,
cai_binom, zip_fifs, and zip_rifs, are shown on their original scale in Figure 4. For this figure, we restricted the value range
in order to be able to make out relevant differences. Only the display of biases for cai_binom was affected by this choice
and the respective complete value range is displayed in a table in the Supporting Information. Overall, performance of
cai_binom in terms of bias can be summarized as very poorwith better performance for settingswithout heterogeneity (but
please note that for these conditions, cai_binom demonstrated the greatest convergence problems) and settings withmore
primary studies. Performance of zip_fifs and zip_rifs was similar to each other and much better than that of cai_binom.
Bias was smaller for more primary studies and noticably larger for more heterogeneity and an RR of 2. Please consult the
Supporting Information for Monte Carlo standard errors for the (mean) bias estimates.

4.4 RMSE, MAE, andME

RMSE for all models except cai_binom, zip_fifs and zip_rifs (which again provided estimates for the pooled RR instead
of the pooled log RR, resulting in RMSE values on a different scale; see Figures S14 and S15) are shown in Figure 5. MAE
andME are shown in Figures 6 and 7 for all models that provide an estimate of the pooled log RR, respectively (please see
Figures S17 and S18 as well as S21 and S22 for the results for the other models, namely, cai_binom, zip_fifs, and zip_rifs).
All these plots only show restricted value ranges for which the limits are always indicated in the figure description. Please
consult the Supporting Information for plots and tables (depending on the model) showing the complete value range. In
Figures 5–7, we can see that overall, RMSE, MAE, and ME tended to be higher across conditions and models for settings
with more heterogeneity. As we have seen before for other measures, while performance in terms of RMSE andMAEwas
remarkably poor for poiss and especially kuss_binom in themost extreme conditions in terms of data sparsity, bothmodels
showed good (either absolutely or at least compared to the other models) performance in the majority of conditions. Fig-
ure 7 as well as the corresponding plots in the Supporting Information that show the complete value range highlight how
poor performance of these models was in the worst cases with maximum errors for poiss exceeding 30 and kuss_binom
exceeding 600 on the log scale. Also in line with previous observations, poiss tended to perform best for conditions with
an RR of 0.5 and kuss_binom tended to perform best for conditions with an RR of 2. These differences were especially
noticeable for conditions with great heterogeneity. For an RR of 1, the models’ performance was similar, with some condi-
tions where poiss was better than kuss_binom and some conditions where the opposite was the case. Even though not as
pronounced, the ZIP models showed a similar pattern of performance across conditions as poiss, however, poiss tended
to outperform them slightly in terms of RMSE and MAE in most conditions in which poiss performed very well. In terms
of ME, the ZIP models even tended to show slightly smaller ME than poiss on occasion. With regard to the remaining
models, the results regarding the RMSE and MAE also hardly revealed any new patterns so that due to space limitations,
we will not reiterate the descriptions of the patterns in the results for the RMSE and the MAE that were similar to those
in the results for the bias. However, we did notice that in terms of RMSE that while usually the RMSE tended to be larger
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F IGURE 5 RMSE of log RR (displayed on y-axis) for different degrees of heterogeneity (displayed on x-axis)
Note. The underlying true RR is indicated by the upper gray panels along the x-axis as well as by color-coded background panels (RR of 0.5
in blue, RR of 1 in white, RR of 2 in yellow). Results for different models are shown in different colors, shapes, and line types (see legend on
right-hand side). Please note that cai_binom, zip_fifs, and zip_rifs are not shown here. Note that the scale of the y-axis varies between rows.
Only RMSE values smaller than 2 are shown. Lower gray panels along x-axis indicate true baseline risk (0.05 or 0.10). Gray panels along the
y-axis indicate the number of primary studies (5, 30, or 100) in the upper row and group size ratio (0.5, 1, or 2) in the lower row

for settings with more heterogeneity, it was noticeably larger for beta_binom in settings without heterogeneity in some
conditions. We did not see the same pattern for beta_binom in terms of the MAE, suggesting that these large RMSE val-
ues might have arisen due to single outliers that are weighted more heavily by the RMSE than the MAE due squaring the
deviations from the true parameter value as opposed to taking the absolute difference. This also seems plausible in light of
the very high ME we observed (see Figure 7) for beta_binom in those conditions. We also observed on occasion very large
ME for cond_binom (see Figure 7). Figures S14, S15, S17, S18, S21, and S22 show that much like in terms of bias, cai_binom
also performed very poorly in terms of RMSE, MAE, and ME, respectively, even more dramatically so in conditions with
fewer primary studies. Again, we were not able to show the whole value range for cai_binom in terms of RMSE, MAE,
and ME, but we included tables in the Supporting Information in which the whole value range is presented. Performance
of zip_rifs and zip_fifs was overall much better and was in particular very good for large numbers of primary studies and
less heterogeneity.
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F IGURE 6 Mean absolute error (MAE) of log RR (displayed on y-axis) for different degrees of heterogeneity (displayed on x-axis)
Note. The underlying true RR is indicated by the upper gray panels along the x-axis as well as by color-coded background panels (RR of 0.5
in blue, RR of 1 in white, RR of 2 in yellow). Results for different models are shown in different colors, shapes, and line types (see legend on
right-hand side). Please note that cai_binom, zip_fifs, and zip_rifs are not shown here. Note that the scale of the y-axis varies between rows.
Only MAE values smaller than 2 are shown. Lower gray panels along x-axis indicate true baseline risk (0.05 or 0.10). Gray panels along the
y-axis indicate the number of primary studies (5, 30, or 100) in the upper row and group size ratio (0.5, 1, or 2) in the lower row

4.5 Coverage

Coverage of the 95% CI for the pooled log RR is displayed in Figure 8. Please see Subsection 3.3 on why we display the
results for all models in one plot. The nominal level of 95% is marked with a black horizontal line. It is immediately
visible by looking at Figure 8 that coverage was an issue for the overwhelming majority of the models in most conditions.
As a general tendency for all values of the RR, coverage for most models tended to be better for conditions with less
heterogeneity. Coverage was closest to nominal level in those conditions in which the number of primary studies was
smaller. As the number of primary studies increases, the coverage of the 95% CI decreased for several models, especially
in conditions with smaller group size ratios—and that in part drastically so. For instance, for 100 primary studies, the
actual coverage for REML_tcc, REML, SJ, or SJ_tcc sometimes dipped as low as 0%. As precision increases with higher
numbers of primary studies (i.e., CI grow more narrow), it is likely that the bias we have observed above, in conjunction
with those increasingly more narrow CI, resulted in considerable larger numbers of CI than expected that do not cover
the true parameter. To corroborate this suspicion of ours, we inspected the ratio of the average estimated standard error
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F IGURE 7 Maximum absolute error (ME) of log RR (displayed on y-axis) for different degrees of heterogeneity (displayed on x-axis)
Note. The underlying true RR is indicated by the upper gray panels along the x-axis as well as by color-coded background panels (RR of 0.5
in blue, RR of 1 in white, RR of 2 in yellow). Results for different models are shown in different colors, shapes, and line types (see legend on
right-hand side). Please note that cai_binom, zip_fifs, and zip_rifs are not shown here. Note that the scale of the y-axis varies between rows.
OnlyME values smaller than 10 are shown. Lower gray panels along x-axis indicate true baseline risk (0.05 or 0.10). Gray panels along the y-axis
indicate the number of primary studies (5, 30, or 100) in the upper row and group size ratio (0.5, 1, or 2) in the lower row

of the parameter estimate to the observed standard deviation of parameter estimates across trials, for each model in each
condition (i.e.,mean(ŜE(𝜃̂))∕ SD(𝜃̂), with 𝜃 denoting the pooled (log) RR; referred to as “SE ratio” in the following). The
results are visualized in the Supporting Information. Ratios below 1 indicate that the SE tended to be underestimated,
suggesting that the low coverage might be caused by this instead of the bias, as we have speculated. We found that the
standard models tended to overestimate the SE, speaking for our explanation of the low coverage of these models. At the
same time, for a small number of primary studies, SJ and SJ_tcc were among the, if not the, models with the highest
coverage, which was sometimes—especially for no heterogeneity—higher than the nominal level. In fact, for a small
number of primary studies,we observed thatmostmodelswere too conservative in settingswithout heterogeneity. For only
five primary studies, cai_binom also showed good coverage, but the performance dropped with an increase in the number
of primary studies so much so that for 100 primary studies, cai_binom performed as one of the worst models. Again, this
could be due to the increased narrowness of the CI around very biased estimates. Our inspection of the SE ratios (see the
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Supporting Information) revealed that while for conditions withmore primary studies, there was a slight tendency that SE
were underestimated, speaking against bias as the only explanation for the low coverage of thesemodels.Nonetheless, both
factors could be at work here. For settings with little heterogeneity, SE for cai_binom tended to have been overestimated
Coverage for models that demonstrated less bias, especially with increased number of primary studies, also showed better
coverage with increased number of primary studies. For instance, for the majority of conditions with larger number of
primary studies, albeit there are exceptions, the coverage for poiss is comparatively the closest to the nominal level and
often not very far off. In a considerable number of conditions, coverage for kuss_binom was also quite good, however,
it dropped to alarmingly low levels for smaller group size ratios, in particular in conjunction with greater amounts of
heterogeneity and more primary studies. Coverage for the ZIP models, in particular also the ZIP with a slope in the zero-
inflation arm of themodel, was quite consistent across conditions at very close to nominal level for no heterogeneity and—
at least in some conditions—further below nominal level for more heterogeneity. This pattern of diminished coverage for
settings with more heterogeneity is accompanied by a tendency of poiss and the ZIP models of underestimating the SE in
these settings (see the Supporting Information). However, for kuss_binom, SE tended to be underestimated for settings
without heterogeneity (especially in conjunctionwith anRRof 0.5) and overestimated for settingswithmore heterogeneity
(especially in conjunction with an RR of 1 and 2). In most conditions, coverage for cond_binom and beta_binom was not
notably better than for the relatively well performing models, in fact, it was often rather extremely poor. Both models
also exhibited SE ratios indicating that underestimation of SE has occurred in some settings, most notably so for settings
without heterogeneity for beta_binom and for settings with more heterogeneity for cond_binom.

4.6 Additional results

Additional results mainly regarding the models’ performance in estimating the between-study variance in the underlying
effect, 𝜏2, are available in the Supporting Information. As this was not the major focus of this paper and space is limited,
we are not going to go into detail about these results in this paper. However, we would like to point out that the model
that performed (among the) best in terms of estimating the pooled effect across studies, that is, poiss, also performed the
best in terms of estimating the between-study variance in the effects (as indicated by bias, RMSE, MAE, and ME) in the
majority of conditions. However, it should also be highlighted that poiss also failed to provide unbiased estimates of the
between-study heterogeneity for the most extreme conditions in terms of data sparsity, in particular for settings with only
five primary studies. Additionally, it is also important to note that performance increased visibly with larger numbers of
primary studies. For 30 and 100 primary studies, cond_binom, zip_fi, and zip_ri showed similar performance as poiss
(especially cond_binom; but note that cond_binom also exhibited the largest ME in some conditions, especially in those
with greater numbers of zeroes and in particular in settings with only five primary studies), but provided slightly more
biased estimates for settings with great heterogeneity (especially zip_fi and zip_ri). The standard models of meta-analysis
showed noticeably larger amounts of bias. Yet, while the standard models were consistently off in their estimates, the
alternative models tended to exhibit considerably higher ME, especially in the more extreme conditions in terms of data
sparsity. Please note that not all models examined in this paper provide estimates for 𝜏2, even though they do all take
between-study variability in the effect into account.

5 ILLUSTRATIVE EXAMPLES

To illustrate how the models can differ in their effect estimates when applied to one single data set, we used the data from
two recent Cochrane reviews (Hemkens et al., 2016; Squizzato et al., 2017) for which the data are available through the
Cochrane Library (https://www.cochranelibrary.com). Excerpts of the data are shown in Table 1 (four studies for each
outcome). Squizzato et al. (2017) summarized results on the effects (both beneficial and adverse) of using aspirin as a pro-
phylactic antiplatelet drug in conjunction with another antiplatelet drug, namely clopdiogrel, for cardiovascular disease
patients. Hemkens et al. (2016) pooled effects (both beneficial and adverse) of the anti-inflammatory drug Colchicine on
cardiovascular outcomes. Please see the respective reviews for the detailed descriptions of the respective object of investi-
gation as well as details on the methodological approaches of the papers, which followed Cochrane guidelines. We chose
to re-analyze some of the data subsets from these reviews in which the outcome was an adverse event, specifically car-
diovascular mortality (Hemkens et al., 2016; Squizzato et al., 2017) and fatal strokes (Hemkens et al., 2016). The examples
chosen and presented here are supposed to illustrate how difficult meta-analysis of rare events can present itself in real-life

https://www.cochranelibrary.com
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TABLE 4 Results obtained with the different models for different outcomes from three data examples

Cardiovascular mortality Fatal stroke
Squizzato et al. Hemkens et al. Hemkens et al.

Model RR 95% CI RR 95% CI RR 95% CI
REML 0.983 [0.879, 1.099] 0.346 [0.091, 1.318] 2.947 [0.121, 71.567]
REML_tcc 0.984 [0.879, 1.101] 0.243 [0.029, 2.050] 217.004 [0.000, 9.770e+14]
DL 0.983 [0.879, 1.100] 0.335 [0.094, 1.185] 2.947 [0.121, 71.567]
DL_tcc 0.984 [0.880, 1.100] 0.211 [0.042, 1.067] 217.004 [0.000, 9.770e+14]
SJ 1.018 [0.779, 1.330] 0.366 [0.082, 1.625] 2.947 [0.121, 71.567]
SJ_tcc 1.039 [0.654, 1.651] 0.263 [0.018, 3.819] 217.004 [0.000, 9.770e+14]
poiss 1.130a [0.865, 1.478]a 0.270 [0.052, 1.409] 1.002e+13a [0.000, Inf]a

zip_rifs – – – – – –
zip_fifs – – – – – –
zip_ri – – – – – –
zip_fi – – – – – –
cond_binom 0.983a [0.877, 1.102]a 0.195a [0.056, 0.679]a – –
beta_binom – – – – – –
kuss_binom 0.935 [0.451, 1.938] 0.200 [0.058, 0.691] – –
cai_binom – – – – – –

Note.When no values are provided (–), the model did not converge.
Models for which warnings were given are marked witha, warnings occurred when model fit was singular.

settings in which only few primary studies are available. We wanted to highlight that what is an unpleasant percentage
of convergence issues in our simulations, means not being able to compute an analysis in real-life settings. This point has
been made before (Jackson et al., 2018): most of the alternative methods are quite complex and thus prone to convergence
difficulties, especially in very sparse data settings. As we have seen in our simulation and has been illustrated elsewhere
(see, e.g., Böhning et al., 2015), basing the meta-analysis on more primary studies provides relief to this issue. With regard
to our examples, for one outcome (i.e., “serious adverse events”) in the review byHemkens et al. (2016), all four studies that
had fit the inclusion criteria were double-zero studies. It is trivial that none of themodels were able to provide estimates of
the pooled RR, but wewanted to highlight that these kinds of data settings are realistic when investigating rare events. The
results for the other selected outcomes are shown in Table 4. Whenever we provided no values in Table 4, model compu-
tation failed. That is, the model did not converge properly (as indicated by missing standard errors or warnings provided
by the software). Like for the simulation study, the code for the illustrative analyses is also available on the GitHub repos-
itory of this paper (https://github.com/mariebeisemann/metaanalysis_for_rare_events_simulation); the data
are available through the Cochrane Library.
The data for the outcome “cardiovascular mortality” in the review by Squizzato et al. (2017) consisted of seven stud-

ies, out of which one was a single-zero and none were double-zero studies. The average sample size across studies was
4,557.6 (𝑆𝐷 = 6667.5,min = 86,max = 15, 603). We can see in Table 4 that even though only seven primary studies were
included—but in conjunctionwith in part very large sample sizes—themodels that converged provided rather similar esti-
mates of the pooled RR, all indicating no effect. The effects estimated by SJ, SJ_tcc, and in particular poiss were slightly
higher than those estimated by the remaining models. 95% CIs were narrower for the standard models and particularly
large for kuss_binom. The model fit of poiss and cond_binom was singular, more specifically, the RE variance of the
respective model parameter representing the log RR was estimated (close to) 0. The singular fit suggests that assuming a
random effect of the log RR is too complex and not supported by the data. This is supported by the standard models all
exhibiting insignificant tests for heterogeneity andmostly (except for SJ_tcc) estimating the between-study variance (very
close to) 0. We discuss this point further in Section 6. For the same outcome but in the review by Hemkens et al. (2016), we
also re-analyzed seven studies, out of which three were single-zero and twowere double-zero studies. Average sample size
was lower here with 161.7 (𝑆𝐷 = 174.3,min = 41,max = 532). In this sparser data situation, differences between models
emerged. We can see in Table 4, that while cond_binom and kuss_binom indicated a significant effect (in the direction
of a lower risk in the treatment group; but note here that cond_binom exhibited singular fit), the remaining converged
models yielded insignificant results (which aligns with the results in the review by Hemkens et al., 2016, who used anMH
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RE model). Point estimates also differed slightly more between models. Finally, we re-analyzed the data for the outcome
“fatal stroke,” also from the review by Hemkens et al. (2016), for which only four studies had met the inclusion criteria of
the review authors, out of which one was a single-zero study and three were double-zero studies (the latter of which we, in
alignment with the simulation study, excluded for the standard and the binomial models except for kuss_binom) with an
average sample size of 228.8 (𝑆𝐷 = 215.3,min = 41,max = 532). Here, we saw how pathological results for meta-analyses
with rare events can be (see Table 4). Please also note how our examples illustrate the practical challenges faced in the
application of the zero-inflation Poissonmodels, beta_binom and cai_binom in sparse data situations especially with only
small numbers of primary studies: these models did not converge for any of the exemplary data sets. Our examples also
illustrate the unreliability of the available methods when only few primary studies with a number of zero studies among
them are included in a meta-analysis.

6 DISCUSSION

In the present simulation study, we investigated the performance of different meta-analysis models in terms of estimating
the pooled (log) RR across different primary studies in an RE setting in which the event of interest was rare. We exam-
ined three recently proposed or discussed models by Böhning et al. (2015) (an RE Poisson regression model, an RE ZIP
regression model, and an RE binomial model) as well as compared them to other similar recommended models (beta-
binomial models by Cai et al., 2010; Kuss, 2015) and standard RE meta-analysis models. We investigated and compared
the models’ performance under 162 different simulation conditions distinguished by different underlying true RR, dif-
ferent event occurrence probabilities in the control group (i.e., baseline probabilities), different degrees of heterogeneity,
different group size ratios between treatment and control group, and different numbers of primary studies. The data were
simulated from two binomial distributions (one per study arm) within each study, and the true underlying RR was drawn
as a log RR from a (truncated) normal distribution. Out of all the models, we found the Poisson regression model to have
shown the best performance, both in terms of estimating the pooled log RR and also—though not the main focus of this
paper—in terms of estimating the between-study heterogeneity as well as in terms of convergence rates. Another model
that performed very well, often close to the Poisson regression model and on occasion even better was the beta-binomial
model suggested by Kuss (2015). Yet, it is important to point out that settings with only very few primary studies (especially
in conjunction with very low baseline risks and few observations) proved difficult for any of the examined models to per-
form in, also for the Poisson model and the beta-binomial model by Kuss (2015) both of which exhibited considerable bias
in these settings. In particular when samples were not extremely large and a lot of zero studies were included in the meta-
analysis, our illustrative examples also highlighted this issue: The models showed notable differences in their estimates, a
considerable number of them failed to converge, and others indicated singular fit in some cases. Singular fit suggests that
the assumption of heterogeneity in the underlying effect is not supported by the data. Yet, in a lot of theoretical settings,
the assumption of heterogeneous underlying effects is theoretically valid and called for. When we only have few studies
(as does happen and is illustrated by our examples) and especially when a number of them are single-zero or maybe even
double-zero studies, modeling such REmight nonetheless be very difficult because the data do not allow to estimate such
a complex model structure. This is a challenge in the application of meta-analysis models for rare events that we wanted
to highlight with our examples. In the following, we are going to discuss and reflect upon our findings in more detail as
well as point out limitations of the present simulation study and give ideas for future research.

6.1 Convergence

Before even discussing our findings regarding the models’ performance in estimating the pooled (log) RR, we need to
address the high rates of trials with convergence failures for somemodels. This concerns mostly the ZIPmodels (of which
we investigated four different variants, differing in the linear combination in the zero-inflation arm of themodel), but also
the beta-binomial model by Cai et al. (2010). This finding was also reflected in the failure of these models to converge for
any of our illustrative examples. The practical issue of convergence in real-life applications of alternative meta-analyses
models in rare event settings was also observed and discussed in Jackson et al. (2018), but there in respect to the OR. The
former showed relatively better convergence rates for settings without heterogeneity and within those better convergence
for meta-analyses with more primary studies. Yet, this comparatively better convergence is of little practical consequence
as (a) truly homogeneous settings are unrealistic in real-life applications, and (b) if one were to conduct a meta-analysis
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in fact in a truly homogeneous setting, one might prefer to revert to actual fixed-effects methods, that is, modeling no
RE in the ZIP models. These could likely improve convergence beyond the rates we have observed for the RE models in
homogeneous settings. Moreover, convergence rates for the ZIP models were quite poor even in settings where models
such as the Poisson model showed only very little bias, for example, in scenarios with an RR of 0.5 or 1, a baseline risk
of 0.05 or 0.1, and 100 primary studies (for a group size ratio of 0.5), suggesting that the convergence of these models (or
failure thereof) does unfortunately not serve as somewhat of a warning sign that should raise concerns with regard to
other models’ performance. However, as we are going to discuss below, when the zero-inflated models did converge, their
performance was quite good. This may be motivating to investigate possibilities to improve convergence for these models,
for example, by employing Bayesian methods with weakly informative prior distributions or using frequentist methods
of regularization. Out of the four variants of the ZIP models examined here (see Subsection 2.2), the least complex, that
is, the ZIP model with only a fixed intercept in the zero-inflation arm of the model, tended to show the least amount of
convergence issues. The beta-binomial model proposed by Cai et al. (2010) showed considerably better performance rates
for settings with more heterogeneity. It is parameterized in terms of two parameters, 𝛾 and 𝜓 (see Subsection 2.3), none of
whichmay be directly interpreted as the parameter of interest, namely the pooled log RR. The parameter 𝜓 provides a way
to adjust the shape of the beta-binomial distribution according to the between-study variation in the treatment effects. The
less between-study variation, the larger is 𝜓 (Cai et al., 2010), tending toward infinity for a setting without heterogeneity. If
one were interesting in remedying the convergence issues exhibited by themodel of Cai et al. (2010)—whichwewould not
necessarily place the utmost importance on, based on the overall rather unsatisfactory performance of this model—one
could explore whether other parameterizations might relieve the observed convergence difficulties in settings without
heterogeneity. One could of course also argue that this being an RE model, its performance in fixed-effects settings is less
relevant and it simply should not be used in such settings.

6.2 Estimating the pooled (log) RR

The model that performed most consistently well (and often also best in the model comparison) across most measures of
performance andmost simulation settings was the Poisson regressionmodel, closely followed by the beta-binomial model
by Kuss (2015)—a finding that aligns well with previous research (Kuss, 2015; Spittal et al., 2015). For an RR of 0.5, the
Poisson regression model tended to perform best and for an RR of 2, the beta-binomial model by Kuss (2015) tended to
perform better overall, yet not necessarily in terms of bias. This is in line with findings by Kuss (2015), who also did not
find the beta-binomial model to be free of bias in RE settings. However, it should be noted that even these overall very
well performing model exhibited extremely problematic performance in very difficult data settings, particularly in meta-
analyses with only five primary studies in which the event of interest had a very low baseline probability and even lower
occurrence probability in the event group. In fact, a very important observation that we made is that in settings with only
five primary studies, in particular in conjunction with smaller treatment groups (i.e., 25 participants in our simulations)
and very rare events, all models showed unacceptably large biases. Furthermore, it is also important to pay attention to the
value range in the distribution of the estimated log RR. Please note that estimated log RR with an opposite sign to the true
effect, indicate that in some trials, the respective model estimated the pooled effect in the opposite direction of the true
effect. Looking at the distributions of the models’ pooled log RR estimates, we can see that especially for only five primary
studies and smaller experimental groups (i.e., 25 participants in our simulations), this is an issue for all of the models
that we examined here. When conducting just one meta-analysis in a practical application, this might be a very relevant
problem. This should show us quite plainly how even usually well performing and recommended models are not well
equipped to be used to conduct a meta-analysis in such a data setting. More importantly, these problems can be remedied
rather simply by holding off on conducting the meta-analysis until more primary studies are available. At the very least
more than five, even though the present study cannot make more precise recommendations based on our simulation
conditions. Unsurprisingly on the basis of prior research (Bradburn et al., 2007; Sweeting et al., 2004; Tang, 2000), the
overall performance of the standard meta-analysis models was unsatisfactory, regardless of the estimator for 𝜏2 used. The
alternative continuity correction proposed by Sweeting et al. (2004) tended to lead to even worse performance. The beta-
binomial model proposed by Cai et al. (2010) showed overall rather poor performance as well. Especially problematic
was the instability of this model, even though, ironically, Cai et al. (2010) proposed their model to alleviate issues with
instability due to numerical integration in models such as the binomial model with normal RE. Yet, albeit their model
does not rely on numerical integration, their estimator for the pooled RR—which applied researchers will likely be most
interested in—does and was, in fact, rather unstable. Tomakematters worse, we were not able to approximate the integral
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over the interval (−∞,∞) (as intended), so that we instead integrated over the interval (−100, 100) in order to be able to
obtain any estimates at all. Clearly, this is only an approximation of the integral we actually wanted to compute. How
good this approximation was depends on the distribution of values across the value range. These issues are not addressed
in Cai et al. (2010), as they only evaluated the performance of the model in terms of estimating the model parameters 𝛾
and 𝜓. Especially in light of the considerably better and more stable performances of other models, this generally speaks
against the beta-binomial model proposed by Cai et al. (2010). The third beta-binomial and the binomial model (Böhning
et al., 2015; Stijnen et al., 2010) tended to perform overall less well than the Poisson regression and the beta-binomial
model by Kuss (2015) but usually better than the standard meta-analysis models. A conceptual drawback of these models,
as discussed in Kuss (2015), is their inability to include double-zero studies that might have contributed to their inferior
performance compared tomodels that are able to include double-zero studies, such as the Poisson regressionmodel or the
beta-binomialmodel recommended byKuss (2015). For theZIPmodel,we found—insofar they actually converged—rather
good results. For the Poisson models with a (fixed) treatment effect in the zero-inflation arm of the model, this speaks for
the estimator for the pooled RR we suggested based on previous work by Dong et al. (2019). Yet, the model complexity
for these models is quite high. This certainly offers an explanation for the high rates of failed convergence. This issue in
turn makes our estimates of their performance less reliable and also poses a challenge to the practical application of these
models, as highlighted by our illustrative examples.

6.3 Coverage of the 95% CI for the pooled log RR

The assessment of the coverage of the 95% CI for the pooled log RR did not throw a great light on most models’ perfor-
mance, an observation that has also previously been made in other simulation studies on pooling the RR in a rare-events
RE setting (Kuss, 2015). Especially poor was the coverage of the 95% CI for the standard models of meta-analyses, but
(at least in some conditions) also for the beta-binomial models except for the beta-binomial model by Kuss (2015). With
increasing numbers of primary studies, the coverage was extremely low, in extreme cases even dipping as low as 0%. With
larger numbers of primary studies the 95% CIs should become increasingly narrower and at the same time, the standard
models consistently show bias. Together, these two tendencies might explain the extremely poor coverage observed for
the standard models of meta-analysis. We did not find evidence for the alternative explanation that standard errors were
underestimated the standard models, leading to the observed low coverage. In fact, standard errors tended to be over-
estimated by the standard models. Better results in terms of coverage (at least in some conditions close to the nominal
level of 95%.) were exhibited by the ZIP regression models, the Poisson regression model, and the beta-binomial model
by Kuss (2015). This is particularly good considering that we newly derived the standard errors for the ZIP models with a
(fixed) treatment effect in the zero-inflation arm of the model. Again, there was a tendency of better performance of the
beta-binomial model by Kuss (2015) for a true RR of 2, and better performance of the Poisson regression model otherwise.
Overall, it is important to highlight that to some degree and with different frequencies, all models diverged notably from
nominal level coverage and that in an anticonservative manner, that is, the 95% CI covered the true effect less often than
the nominal 95% of the cases. Clearly, this is undesirable and in our opinion, the choice of the meta-analytical model
should at least reflect that we can do considerably better in terms of coverage than the standard meta-analytical models.
Yet, these findings for the RR stand in contrast to conclusions drawn for the OR by Jackson et al. (2018), who found much
better coverage for standard models using the DerSimonian–Laird and the REML estimator. However, in light of these
discrepancies between the results for these two effect measures, it should be noted that Jackson et al. (2018) used simula-
tion settings with far fewer primary studies than we did in some of our conditions, with the highest number of primary
studies in their simulation being merely 20. Yet, it is only for considerably more primary studies that we see those drastic
drops in coverage in our simulations. It might be interesting to explore whether our findings replicate for the OR as an
effect measure, especially as Jackson et al. (2018) deem the standard model of meta-analysis as remaining an adequate
model choice for meta-analysis of rare events.

6.4 Limitations and directions for future research

Any implications, conclusions, and recommendations derived from our findings should always be considered carefully in
light of the limitations of this study. First of all, as we have already touched upon above, the in part very poor convergence
rates for somemodels, in particular, the ZIPmodels, resulted in differing precision of simulation estimates betweenmodels
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and conditions. This leads us to one direction for future research and that is exploring whether convergence of the ZIP
models can be improved upon, for example,with the help of Bayesianmethods. Previouswork,which focused on theORas
an effectmeasure and differentmodels, showed promising results regarding the development of weakly informative priors
that improve model performance (Friede et al., 2017; Günhan et al., 2018). Another limitation of our work is constituted
by our inability to attain a working implementation in R of the beta-binomial model with a log link by Kuss (2015) using
the parameterization given in his paper and implemented in SAS. Yet, our implementation in R did produce results that
align well with the results in Kuss (2015) and might constitute a viable alternative for applied researchers using R. We
did not explore different parameterizations and their comparative performance that might be an interesting endeavor for
future research. Further, we did not dedicate a separate simulation to our derived standard errors. For the model by Cai
et al. (2010), which we overall do not recommend, this is less important than it might be for the ZIP regression models if
their application is further pursued (under the assumption that their convergence rates can be improved). It might also
be interesting to explore bootstrapped standard errors.
Based on their simulation study for the OR with simulation conditions assuming a maximum of 20 primary studies,

Jackson et al. (2018) concluded that the standardmethod ofmeta-analysis remains a viable option. Yet, our findings for the
RR of drastically impaired coverage for the standardmodel originated predominantly in settings with 100 primary studies.
Thus, we would recommend also evaluating the standard model’s performance with the OR as an effect measure in such
settings. We would also like to point out that based on our Cochrane review re-analysis, these settings are not unrealistic.
On a similar note, we have overall seen the importance of the number of primary studies included in the meta-analysis
for the model performance. Notably, we have observed that even though some of the alternative models and in particular
the Poisson regression model, perform very well, they show in part very poor performance for only five primary studies.
Yet, our re-analysis of Cochrane reviews as well as the review by Warren et al. (2012) indicated that such low numbers of
primary studies included in one meta-analysis are not uncommon. Although we can advise against conducting RE meta-
analysis in a rare events settings on the basis of merely five primary studies, our simulations do not enable us to make a
recommendation regarding the minimum number of primary studies required to ensure sufficiently stable performance
of the employed model. Please note that such a recommendation of a minimum number of primary studies might also
vary between models and is not independent of the remaining meta-analytical setting. Such an investigation is especially
warranted for the models we wish to recommend, first and foremost the Poisson regression model, but also the beta-
binomial model by Kuss (2015).
In our simulation scenarios, we assumed that we had access to all primary studies we generated for the respectivemeta-

analysis. In real life, it is unlikely that this is actually the case. A general challenge for meta-analysis is constituted by a
tendency of publishing only studies that yielded significant or otherwise favorable results—a phenomenon that is referred
to as publication bias (Harris, Hedges, & Valentine, 2009). This is a problem for meta-analysis as it obviously distorts the
estimate of the pooled effect. In a setting of rare events, where it is not unlikely to observe no events at all in any one
primary study, we suspect this issue could be particularly relevant. That is, the actual number of single- and double-zero
studies could be higher than the number of published single- and double-zero studies. Several other simulation studies
have also taken our approach of not considering the publication bias in the design of their simulation conditions (e.g.,
Bakbergenuly & Kulinskaya, 2018; Jackson et al., 2018; Kuss, 2015), and to our knowledge, no methodological studies
have been entirely devoted to study the effect of publication bias in rare-event settings. With regard to real-life meta-
analyses, for instance on adverse effects, it has been pointed out that only around 50% considered publication bias at
all, and only 20% conducted a quantitative examination to this end (Warren et al., 2012). Only two of 166 meta-analysis
reviewed by Warren et al. (2012) corrected for publication bias. It would therefore be important for future research to (a)
examine the effect of publication bias in rare-events settings as well as the effect of adjusting for publication bias, and (b)
examine recommended models in more realistic simulation settings, including such with different degrees of publication
bias. To study the prevalence of (undetected) publication bias in published meta-analyses, the consideration of clinical
trials with mandatory preregistration may prove useful. On a similar note, we also simplified our simulation design by
not considering different observation times in different studies, which some of the models (e.g., the Poisson model, see
Subsection 2.1 for details) can also take into account. It might be interesting to explore if the Poisson model shows a
more notably superior performance in settings where observations time vary. Furthermore, while our conditions yielded
considerable numbers of single-zero studies, they only included a small number of double-zero studies on average. As we
have already seen poor performance in several settings with our simulation study, we would expect to model performance
deteriorate further with higher numbers of double-zero studies. We also restricted our simulation conditions to primary
study group sizes of 25, 50, or 100. Although these values align well with previous simulation studies that chose values that
are representative of the medical literature (e.g., Cheng et al., 2016; Kuss, 2015; Sweeting et al., 2004), studies with much
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F IGURE 9 Flowchart summarizing the practical implications of this simulation study.
Note. Decisions in the data analysis process relevant to our findings are shown in rectangular boxes. Black arrows indicate the answer “yes,”
gray arrows indicate the answer “no.” Recommendations are shown in rectangular boxes with rounded edges (marked as “Recommendation”).
Abbreviations: ZIP, zero-inflated Poisson; ZI, zero inflation; treat. gr., treatment group

larger samples do occur. Judging from our illustrative examples, larger samples appears to have aided in the stabilization
of the models. It may thus be worthwhile to explore in future research in how far considerably larger sample sizes in the
primary studies affect the models’ performance.
The choice of themodels compared in this simulation study was based on both a literature search of themethodological

literature on the topic of meta-analysis in the case of rare events and on findings from a systematic literature review by
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Warren et al. (2012). In the latter, Warren et al. (2012) examined which methods of meta-analyses are employed in the
medical literature on adverse events, a common example for rare events. We would like to highlight that it would have
been preferable to base our model selection on an even more recent search of the medical literature, however, this would
have been an undertaking too extensive in scope for the present study. Yet, future researchmight wish to update the review
by Warren et al. (2012) and extend our simulative comparison to methods that are employed in practice but were not
included in the present simulation study. Finally, we would also like to stress that our conclusions and recommendations
naturally are limited to the models we selected to compare in our simulations. We did not examine the performance of
Bayesian models, models from a line of research most notably spear-headed by Shuster and colleagues who distinguish
between different variants of RE and developed respective methods (Shuster et al., 2012; Shuster &Walker, 2016), or exact
methods. The latter have shown very promising performance for fixed-effects settings (Liu, Liu, & Xie, 2014; Tian et al.,
2008)—examined for the OR in those studies but generally also applicable to the RR—but are not as easily extendable
to RE settings. If future research extends these methods to RE settings, a comparison of their performance to the best
performing models from our simulations would also be very interesting. All of these limitations may constitute avenues
for future research.

6.5 Conclusions and practical recommendations

In summary, on the basis of our simulations, we would overall recommend the Poisson regression model for the meta-
analysis of rare events in an RE setting when using the RR as an effect measure. In situations where one expects larger
event probabilities in the treatment than in the control group (i.e., an RR greater than 1), we would also recommend using
the beta-binomial model by Kuss (2015). The ZIP regression models also performed well, even though the practical draw-
backs, that is, the considerable convergence issues, of these models as discussed above should be considered carefully. In
agreement with Kuss (2015), we would strongly recommend against employing the standard methods of meta-analysis
as there are other methods available with which the performance of the standard models can be considerably improved
upon. Another important finding of our simulations is that we would not recommend conducting a meta-analysis with
the RR as an effect measure in a rare-events RE setting on the basis of as few as five primary studies, as even our recom-
mended models performed very poorly in such a setting (especially in conjunction with smaller experimental group, that
is, 25 participants in our simulations). Poor performance in this context refers to not only atrociously large biases, but also
estimates of the pooled effect in the opposite direction of the true effect. The exact minimal number of primary studies
necessary has yet to be determined, but our results suggests it is more than 5 and below 30. In accordancewith Kuss (2015),
our findings have clearly shown that recommendations regardingmeta-analysis of the RR in rare-events RE settings by the
Cochrane collaboration (Higgins &Green, 2011) are outdated and can be improved upon.We have summarized our recom-
mendations in a flowchart (see Figure 9) to aid practitioners in their decision process when conducting a meta-analysis of
rare events. This flowchart may also be helpful for researchers deriving more comprehensive method recommendations.
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APPENDIX
A.1 First Derivatives of Pooled RR Estimator for cai_binom

𝛿𝑔(𝜓, 𝛾)

𝛿𝜓
= exp(𝜃)(𝑊∕(𝑊 + exp(𝜃)))𝑊𝜓(exp(𝜃)∕(𝑊 + exp(𝜃)))𝜓𝛾 ×

𝛾 log(exp(𝜃)∕(𝑊 + exp(𝜃)))

𝐵(𝜓𝛾,𝑊𝜓)
+

𝑊 log(𝑊∕(𝑊 + exp(𝜃))) +𝑊𝜓∗(𝜓(𝑊 + 𝛾))

𝐵(𝜓𝛾,𝑊𝜓)
+

𝛾𝜓∗(𝜓(𝑊 + 𝛾)) −𝑊𝜓∗(𝑊𝜓) − 𝛾𝜓∗(𝜓𝛾)

𝐵(𝜓𝛾,𝑊𝜓)

and

𝛿𝑔(𝜓, 𝛾)

𝛿𝛾
= exp(𝜃)𝜓(𝑊∕(𝑊 + exp(𝜃)))𝑊𝜓 ×

(exp(𝜃)∕(𝑊 + exp(𝜃)))𝛾𝜓 ×

(log(exp(𝜃)∕(𝑊 + exp(𝜃)))𝐵(𝛾𝜓,𝑊𝜓) − 𝐵(𝛾𝜓,𝑊𝜓)(𝜓∗(𝛾𝜓) − 𝜓∗(𝛾𝜓 +𝑊𝜓)))

𝐵(𝛾𝜓,𝑊𝜓)2
,

where B(𝑎, 𝑏) denotes the beta function. Please note that we denote the digamma function (which is commonly denoted as
𝜓(𝑥)) as 𝜓∗(𝑥) in the equations above, as we already use 𝜓 to denote the respective parameter used in the model proposed
by Cai et al. (2010).
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