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Damage Optimisation for Air Bending
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Load and shape optimisation are applied to the process of air bending to optimise the damage state in the formed component.
The enhanced process of elastomer bending is optimised, which yields a reduced damage state due to the superimposed radial
stresses in the critical area of the forming process. The optimisation presented here is twofold. First, the elastomer is replaced
by nodal loads to generate optimised loads for a reduced damage state. Second, the elastomer itself is optimised via shape
optimisation by adjusting the layer for two kinds of elastomer of varying stiffness. The optimisation is accomplished with the
commercial FEM software Abaqus as the solver for the mechanical problem and Matlab is used for optimisation.
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1 Motivation

The results obtained in [1], where damage evolution in selected forming processes was investigated, show the possibilities
of superimposing stresses in bending to yield lesser damaged components, while maintaining the same deformation and final
shape. The disadvantage of the elastomer cushion, however, is the inhomogeneous triaxiality distribution and the impossibility
to directly define the forces imposed by the elastomer. The objective of load optimisation is to generate loads which yield
a reduced damage state. By altering the elastomer cushion to be manufactured with different types of elastomer and thus
stiffness, shape optimisation can be utilised to homogenise the triaxiality in the critical area of the bended sheet.

2 Numerical implementation

The main aspect of this work is the implementation of the optimisation framework. For a detailed explanation of the idea of
load optimisation see [2] or [3].

In order to allow comparison of the results with [1], the software Abaqus is used as the solver for the FEM problem. This
allows for the use of the same material properties while more importantly the use of the in-built contact formulations. The
optimisation framework is built around Abaqus, wherein Matlab is used to gather the results from Abaqus and to solve the
defined mathematical optimisation problem. In order to transfer the data from the simulations to Matlab, the python library and
interface provided by Abaqus is utilised. The FEM problem is defined in the Complete Abaqus Environment (Abaqus/CAE)
and includes the region for the objective function, the area for the constraints and the nodes for the load application. The input
file created this way can then be altered to allow for optimisation, by exchanging either the nodal load values or the optimised
nodal coordinates.

Applying the above concept, the complete optimisation framework consists of the following steps:

1. A structural analysis (Abaqus) for the material response of the problem with design variables s.

2. Perturb design variable si (Matlab) and calculate the structural response (Abaqus) and the numerical gradient for the
corresponding design variable via finite differences.

3. Use the objective functions, constraints (and gradients) for the optimisation and generate a new design (Matlab).

Step two of the above enumeration only applies if gradient based optimisation (e.g. Sequential Quadratic Programming
(SQP)) is performed. Otherwise the pertubation is skipped.

For the load optimisation, the problem is defined as a least square problem, i.e.

minimise
sl≤s≤su

‖U(s)−Upre‖22
subject to η(s) ≤ ηcrit

with η =
σh
σvM

and σh =
I1
3

=
tr(σ)
3

, (1)

where U(s) is the current deformation with design s of the sheet and Upre the deformation of the sheet when no additional
compressive forces are present. η is the so-called stress triaxiality with σvM as the von Mises stresses and the hydrostatic
stresses σh. The stress triaxiality is used as the quantity that is controlled to reduce the damage evolution in the forming
process. Large triaxiality values are equivalent to a highly tensile oriented stress state, which in turn favours damage evolution,
see [1]. This leads to the optimisation problem stated above, where the critical triaxiality value ηcrit shall not be exceeded in
the optimised design. This value is set to be equal to ηcrit = 0.48. The final deformation is defined in the objective function
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Fig. 1: Results for the load optimisation. The initial deformed sheet with no external loads (left) and the deformed sheet with optimised
loads (right). The triaxiality is homogenised around the critical value of ηcrit = 0.48.

since the aim of the initial forming process is to generate a specific geometry for the sheet. Thus, the shape of the optimised
sheet must remain as close as possible to the original one.

For the shape optimisation, the optimisation problem is defined as minimise
sl≤s≤su

‖η(s) − ηcrit‖22. The deformation is not

considered here since it is directly prescribed by the process and the elastomer cushion. Hence, the triaxiality is utilised for
the objective function, in order to homogenise the values in the given critical area.

3 Numerical examples

Fig. 2: The initial (left) and optimised (right) elastomer cushion. The blue area is
the soft, the red the hard elastomer. The red bordered are shows the homogenised
sheet.

The above framework is applied to air bending
to generate optimised loads, as well as elastomer
bending to generate an optimised layout for the
elastomer cushion. The dimensions and specific
parameters of the simulation can be taken from
[1] and [3].

For the load optimisation, a gradient-based
scheme (SQP) is used. The results are presented
in Fig. 1. Only the area of the sheet, where
damage is likely to accumulate and hence the
loads applied, is shown. Initially, the triaxial-
ity is largely homogeneous in x-direction of the
plate. High values of the triaxiality are visible
in the lower part of the plate, reaching values
of around ηmax = 0.58. The optimised loads
are depicted on the right, showing the desired
triaxiality distribution, which never exceeds the
critical value of ηcrit = 0.48.

For the shape optimisation, gradient-based optimisation did not converge and thus was not applicable. This is likely due to
the highly discontinuous nature of contact calculation. While contact is still present in the above load optimisation, it is more
severe in this optimisation problem due to the additional elastic-elastic contact of the elastomer and the metal sheet. In order
to still be able to generate solutions, gradient-free optimisation in the form of a downhill-simplex [4] has been utilised. The
generated results are shown in Fig. 2. The blue area depicts the elastomer of harder stiffness with the red being softer. By
rearranging the elastomer parts, the triaxiality can be reduced and homogenised, depicted in the enlarged red-bordered area.
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