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Abstract
We present limit theorems for locally stationary processes that have a one sided time-
varying moving average representation. In particular, we prove a central limit theorem
(CLT), a weak and a strong law of large numbers (WLLN, SLLN) and a law of the
iterated logarithm (LIL) under mild assumptions using a time-varying Beveridge–
Nelson decomposition.

Keywords Locally stationary process · Central limit theorem · Law of large
numbers · Law of the iterated logarithm

1 Introduction

In this paperwe consider locally stationary processes, defined via a triangular sequence
of stochastic processes {ηt,T }t=1,...,T with T ∈ N, where every ηt,T has a representa-
tion of the form

ηt,T = μ

(
t

T

)
+

∞∑
j=0

ψ j,t,T εt− j , t = 1, . . . , T . (1)

Throughout this paper we impose the following assumption on the error sequence
{εt }t∈Z, on the moving average coefficients ψ j,t,T and on the trend function μ.

Assumption 1.1 The random variables {εt }t∈Z are independent and identically dis-
tributed with Eεt = 0, Eε2t = 1 and E|εt |2+κ < ∞ for some κ > 0. The coefficients
ψ j,t,T in the moving average representation (1) fulfill

sup
t,T

|ψ j,t,T | ≤ K

l( j)
,
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with constant K independent of T and somepositive deterministic sequence {l( j)} j∈N0

satisfying

∞∑
j=0

j

l( j)
< ∞.

The trend function μ : [0, 1] → R is assumed to be bounded and continuous almost
everywhere.

Remark 1.2 In contrast to the definition of Dahlhaus and Polonik (2006) we restrict
locally stationary processes to have a one-sided moving average representation.
Nonetheless, our definition covers most of the important examples of locally station-
ary processes. For instance, it follows from Dahlhaus and Polonik (2009, Proposition
2.4) that time-varying causal ARMA processes have a representation of the form (1).

The idea behind locally stationary processes is that, after rescaling the time domain
to the unit interval, the process can be approximated locally in time by a stationary pro-
cess. Therefore, one usually assumes that ψ j,t,T ≈ ψ j (t/T ) for some well behaving
functions ψ j .

Assumption 1.3 There exist functions ψ j : [0, 1] → R with

‖ψ j‖∞ ≤ K

l( j)
,

V (ψ j ) ≤ K

l( j)

and

T∑
t=1

∣∣∣∣ψ j,t,T − ψ j

(
t

T

)∣∣∣∣ ≤ K

l( j)
, for all T ∈ N, (2)

where V ( f ) denotes the total variation of a function f on [0, 1].
Remark 1.4 The coefficient functions are uniquely defined almost everywhere. To see
this let {ηt,T }t=1,...,T be locally stationary process with moving average coefficients
ψ j,t,T and corresponding coefficient functionsψ j . Let φ j be another set of coefficient
functions that fulfills Assumption 1.3. Then it holds that

‖ψ j − φ j‖L1 = lim
T→∞

1

T

T∑
t=1

∣∣∣∣ψ j

(
t

T

)
− φ j

(
t

T

)∣∣∣∣

≤ lim
T→∞

1

T

{
T∑
t=1

∣∣∣∣ψ j,t,T − ψ j

(
t

T

)∣∣∣∣ +
T∑
t=1

∣∣∣∣ψ j,t,T − φ j

(
t

T

)∣∣∣∣
}

≤ lim
T→∞

2K

Tl( j)
= 0,

implying ψ j = φ j almost everywhere.
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Limit theorems for locally stationary processes

For every u ∈ [0, 1] we define the process {ηt (u)}t∈Z via

ηt (u) = μ(u) +
∞∑
j=0

ψ j (u)εt− j .

By Assumption 1.3 the centered process {ηt (u) − μ(u)}t∈Z is weakly stationary with
long-run variance given by Ψ 2(u), where

Ψ (u) =
∞∑
j=0

ψ j (u).

The main purpose of the process {ηt (u)}t∈Z is to approximate {ηt,T }t=1,...,T . In partic-
ular, the process {ηt,T }t=1,...,T should approximately behave like the stationary process
{ηt (u)}t∈Z in the rescaled time point u = t/T . For brevity, we define the auxiliary
process {η̃t,T }t=1,...,T via η̃t,T = ηt (t/T ), i.e.

η̃t,T = μ

(
t

T

)
+

∞∑
j=0

ψ j

(
t

T

)
εt− j . (3)

Under the stated assumptions it holds that (cf. Lemma A.1 in the appendix)

1

T

T∑
t=1

(
ηt,T − η̃t,T

) P→ 0,

as T → ∞. Hence, the process {ηt (u)}t∈Z approximates the locally stationary process
on average over all rescaled time points 1/T , 2/T . . . , 1. Later we will strengthen
condition (2) in order to obtain a stronger approximation.

Remark 1.5 The construction of locally stationary processes with time dependent
moving-average coefficients ψ j,t,T on the one hand and approximating functions ψ j

on the other hand looks cumbersome at first glance. It seems more natural to define
locally stationary processes directly via (3). However, it was already pointed out by
Künsch (1995) and Dahlhaus and Polonik (2009) that this rules out interesting exam-
ples such as time-varying autoregressive processes.

Consider the stationary approximating process {ηt (u)}t∈Z for some fixed u ∈ [0, 1].
By the Beveridge–Nelson decomposition (cf. Phillips and Solo 1992) it holds that

ηt (u) = μ(u) +
∞∑
j=0

ψ j (u)εt− j

= μ(u) +
∞∑
j=0

ψ j (u)εt −
∞∑
j=0

⎛
⎝ ∞∑

k= j+1

ψk(u)

⎞
⎠ (εt− j − εt−1− j ),
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which iswell defined due toAssumption 1.3. Setting u = t/T weobtain a time-varying
Beveridge–Nelson decomposition for the auxiliary process {η̃t,T }t=1,...,T .

Lemma 1.6 (Time-varying Beveridge–Nelson decomposition) The auxiliary process
{η̃t,T }t=1,...,T exhibits a representation of the form

η̃t,T = μ

(
t

T

)
+ Ψ

(
t

T

)
εt −

∞∑
j=0

ψ̃ j

(
t

T

)
(εt− j − εt−1− j ),

with

ψ̃ j (u) =
∞∑

k= j+1

ψ j (u).

The time-varying Beveridge–Nelson decomposition will be useful for the derivation
of the main results in this paper. In particular, we will use it to generalize the proof
techniques of Phillips and Solo (1992) to the locally stationary framework.

2 Main results

The first limit theoremwe present is aCLT for locally stationary processes. Tomotivate
the outcome,wefirst derive the result for an easy example. Let {ηt,T }t=1,...,T be defined
by

ηt,T = φ

(
t

T

)
εt , t = 1, . . . , T ,

for some bounded variation function φ : [0, 1] → R and {εt }t∈Z being a sequence of
independent and identicallyN (0, 1) distributed random variables. Then, it holds that

1√
T

T∑
t=1

ηt,T ∼ N
(
0,

1

T

T∑
t=1

φ2
(
t

T

))
.

Since φ is of bounded variation it is square-integrable on the unit interval and it holds
that

lim
T→∞

1

T

T∑
t=1

φ2
(
t

T

)
=

∫ 1

0
φ2(u) du

and Lévy’s continuity theorem implies that

1√
T

T∑
t=1

ηt,T
d→ N

(
0,

∫ 1

0
φ2(u) du

)
. (4)
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Limit theorems for locally stationary processes

Note that the approximating stationary process {ηt (u)}t∈Z is defined by ηt (u) =
φ(u)εt with long-run variance given by φ2(u). Hence, the variance of the limiting
distribution in (4) is equal to the integrated long-run variance of the auxiliary process.
This result also holds for arbitrary centered locally stationary processes.

Theorem 2.1 (CLT) Let {ηt,T }t=1,...,T be a locally stationary process with moving-
average representation (1) that satisfies Assumptions 1.1 and 1.3. Then, as T → ∞,
it holds that

1√
T

T∑
t=1

{
ηt,T − μ

(
t

T

)}
d→ N

(
0, ‖Ψ ‖2L2

)
,

where ‖Ψ ‖L2 denotes the L2 norm of Ψ on the unit interval.

Proof It suffices to show the claim for the auxiliary process {η̃t,T }t=1,...,T since

1√
T

T∑
t=1

ηt,T = 1√
T

T∑
t=1

η̃t,T + 1√
T

T∑
t=1

(ηt,T − η̃t,T )

and the second term goes to zero in probability by Lemma A.1. Without loss of
generality we assume that μ(u) = 0 for all u ∈ [0, 1]. By Lemma 1.6 it holds that

1√
T

T∑
t=1

η̃t,T = 1√
T

T∑
t=1

Ψ

(
t

T

)
εt − 1√

T

T∑
t=1

∞∑
j=0

ψ̃ j

(
t

T

)
(εt− j − εt−1− j ). (5)

We show that the first term in (5) converges in distribution and the second termvanishes
in probability. By the i.i.d. assumption on the innovation terms it holds that

Var

(
1√
T

T∑
t=1

Ψ

(
t

T

)
εt

)
= 1

T

T∑
t=1

Ψ 2
(
t

T

)
→

∫ 1

0
Ψ 2(u) du.

Next, we verify the Lyapunov condition. By Assumption 1.1 there exists some κ > 0
such that E|εt |2+κ is finite. Hence,

lim
T→∞

∑T
t=1 E

∣∣∣ 1√
T
Ψ

( t
T

)
εt

∣∣∣2+κ

(
Var

(
1√
T

∑T
t=1 Ψ

( t
T

)
εt

))1+κ/2

= lim
T→∞

E|ε1|2+κ

T κ/2 lim
T→∞

1
T

∑T
t=1 Ψ 2+κ

( t
T

)
(
1
T

∑T
t=1 Ψ 2

( t
T

))1+κ/2 = 0.

123



R. Kawka

From the Lindeberg-CLT for triangular arrays we deduce that

1√
T

T∑
t=1

Ψ

(
t

T

)
εt

d→ N
(
0,

∫ 1

0
Ψ 2(u) du

)
.

To finish the proof it remains to show that the second term in (5) goes to zero in
probability. It holds that

∞∑
j=0

ψ̃ j

(
t

T

)
(εt− j − εt−1− j ) =

∞∑
j=0

{
ψ̃ j

(
t

T

)
εt− j − ψ̃ j

(
t

T

)
εt−1− j

}

=
∞∑
j=0

{
ψ̃ j

(
t

T

)
εt− j − ψ̃ j

(
t − 1

T

)
εt−1− j

+ ψ̃ j

(
t − 1

T

)
εt−1− j − ψ̃ j

(
t

T

)
εt−1− j

}

=
∞∑
j=0

{
ψ̃ j

(
t

T

)
εt− j − ψ̃ j

(
t − 1

T

)
εt−1− j

}

+
∞∑
j=0

{
ψ̃ j

(
t − 1

T

)
εt−1− j − ψ̃ j

(
t

T

)
εt−1− j

}
. (6)

Taking partial sum of the first term and dividing by T 1/2 leads to:

1√
T

T∑
t=1

∞∑
j=0

{
ψ̃ j

(
t

T

)
εt− j − ψ̃ j

(
t − 1

T

)
εt−1− j

}

= 1√
T

∞∑
j=0

{
ψ̃ j (1) εT− j − ψ̃ j (0)ε− j

}
, (7)

as the sum over t is telescopic. Since

E

∣∣∣∣∣∣
∞∑
j=0

sup
u∈(0,1)

|ψ̃ j (u)|εt− j

∣∣∣∣∣∣ ≤
∞∑
j=0

∞∑
k= j+1

sup
u∈(0,1)

|ψk(u)|E|ε1|

≤
∞∑
j=0

j KE|ε1|
l( j)

< ∞

for an arbitrary t ∈ {1, . . . , T } it follows that the term on the right hand side of (7)
converges to zero in probability.
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It remains to prove that the scaled partial sum of the second term in (6) also vanishes
asymptotically. It holds that

E

∣∣∣∣∣∣
1√
T

T∑
t=1

∞∑
j=0

{
ψ̃ j

(
t

T

)
− ψ̃ j

(
t − 1

T

)}
εt−1− j

∣∣∣∣∣∣
≤ 1√

T

T∑
t=1

∞∑
j=0

∣∣∣∣ψ̃ j

(
t

T

)
− ψ̃ j

(
t − 1

T

)∣∣∣∣E|ε1|

≤ 1√
T

∞∑
j=0

V (ψ̃ j )E|ε1|,

which converges to zero if the V (ψ̃ j ) are summable. Using the definition of the total
variation we obtain

∞∑
j=0

V (ψ̃ j ) =
∞∑
j=0

sup
0≤x1<...<xM≤1

M∈N

M∑
i=1

|ψ̃ j (xi+1) − ψ̃ j (xi )|

≤
∞∑
j=0

∞∑
k= j+1

sup
0≤x1<...<xM≤1

M∈N

M∑
i=1

|ψ j (xi+1) − ψ j (xi )|

=
∞∑
j=0

∞∑
k= j+1

V (ψ j )

≤
∞∑
j=0

j K

l( j)
,

which is finite by Assumption 1.1. 
�

From Theorem 2.1 we immediately obtain a WLLN.

Corollary 2.2 (WLLN) Let {ηt,T }t=1,...,T be a locally stationary process defined via
its moving-average representation (1) with Assumptions 1.1 and 1.3 in place. Then,
as T → ∞, it holds that

1

T

T∑
t=1

{
ηt,T − μ

(
t

T

)}
P→ 0.

In order to prove a SLLN and a LIL we require a stronger assumption that connects
the coefficient functions ψ j,t,T and the approximating functions ψ j . The following
assumption, that immediately implies condition (2), corresponds to assumption (69)
in Dahlhaus (2012).
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Assumption 2.3 The functions ψ j and the moving average coefficients ψ j,t,T satisfy

sup
1≤t≤T

∣∣∣∣ψ j,t,T − ψ j

(
t

T

)∣∣∣∣ ≤ K

Tl( j)
, for all T ∈ N.

Previously, we observed that the stationary process {ηt (u)}t∈Z approximates the
locally stationary process on average over the series. Under Assumption 2.3 we have a
better approximation as it now holds that ηt,T − η̃t,T = OP (T−1). This follows from
the fact that

lim
T→∞E

∣∣ηt,T − η̃t,T
∣∣ ≤ lim

T→∞

∞∑
j=0

∣∣∣∣ψ j,t,T − ψ j

(
t

T

)∣∣∣∣E|εt− j |

≤ lim
T→∞

∞∑
j=0

KE|ε0|
T l( j)

= 0.

Consequently, the stationary process {ηt (u)}t∈Z approximates the locally stationary
process {ηt,T }t=1,...,T in every rescaled time point u = t/T . In fact, we even have the
following strong approximation. It holds that

sup
1≤t≤T

|ηt,T − η̃t,T | a.s.→ 0, (8)

as T → ∞ (cf. Lemma A.2 in the appendix).

Theorem 2.4 (SLLN) Let {ηt,T }t=1,...,T be a locally stationary process defined via its
moving-average representation (1) with Assumptions 1.1, 1.3 and 2.3 in place. Then,
as T → ∞, it holds that

1

T

T∑
t=1

ηt,T
a.s.→

∫ 1

0
μ(u) du.

Proof It suffices to show the claim for the auxiliary process {η̃t,T }t=1,...,T since the
strong approximation (8) implies that

1

T

T∑
t=1

ηt,T = 1

T

T∑
t=1

η̃t,T + oa.s.(1).

The trend function μ is assumed to be bounded and continuous everywhere. This
implies that it is Riemann integrable and we immediately deduce that

lim
T→∞

1

T

T∑
t=1

μ

(
t

T

)
=

∫ 1

0
μ(u) du.
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It remains to show that

1

T

T∑
t=1

∞∑
j=0

ψ j

(
t

T

)
εt− j

a.s.→ 0.

Using Lemma 1.6 we first need to verify that

1

T

T∑
t=1

Ψ

(
t

T

)
εt

a.s.→ 0. (9)

It holds that

sup
u∈(0,1)

|Ψ (u)| ≤ sup
u∈(0,1)

∞∑
j=0

|ψ j (u)| ≤
∞∑
j=0

sup
u∈(0,1)

∣∣ψ j (u)
∣∣ ≤

∞∑
j=0

K

l( j)
< ∞.

Since the εt ’s are independent and identically distributedwithE(ε1) = 0 andEε21 < ∞
almost sure convergence of (9) follows from Cuzick (1995, Theorem 1.1) or Choi and
Sung (1987, Theorem 5).

It remains to show that

1

T

∞∑
j=0

ψ̃ j (1)εT− j
a.s.→ 0, (10)

1

T

∞∑
j=0

ψ̃ j (0)ε− j
a.s.→ 0 (11)

and

1

T

T∑
t=1

∞∑
j=0

{
ψ̃ j

(
t − 1

T

)
− ψ̃ j

(
t

T

)}
εt−1− j

a.s.→ 0. (12)

It holds that

E

⎛
⎝ 1

T

∞∑
j=0

ψ̃ j (1)εT− j

⎞
⎠

2

= 1

T 2

∞∑
j=0

ψ̃ j (1)
2

= 1

T 2

∞∑
j=0

⎛
⎝ ∞∑

i= j+1

ψi (1)

⎞
⎠

2

= O
(

1

T 2

)
,
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since

∞∑
j=0

∞∑
i= j+1

ψi (1) ≤
∞∑
j=0

∞∑
i= j+1

‖ψi‖∞ =
∞∑
j=0

j‖ψ j‖∞ < ∞.

Hence, the term in (10) converges sufficiently fast to zero in probability and almost sure
convergence follows from the Borel–Cantelli lemma. The proof of (11) is identical.
At last we have to show (12). It holds that

E

⎛
⎝ 1

T

T∑
t=1

∞∑
j=0

{
ψ̃ j

(
t − 1

T

)
− ψ̃ j

(
t

T

)}
εt−1− j

⎞
⎠

2

≤ 1

T 2

∞∑
j1, j2=0

T∑
t1,t2=1

∣∣∣∣ψ̃ j1

(
t1 − 1

T

)
− ψ̃ j1

(
t1
T

)∣∣∣∣
∣∣∣∣ψ̃ j2

(
t2 − 1

T

)
− ψ̃ j2

(
t2
T

)∣∣∣∣

≤ 1

T 2

∞∑
j=0

V (ψ̃ j )

∞∑
k=0

V (ψ̃k) = O
(

1

T 2

)
.

Hence, the second moment of the term in (12) converges sufficiently fast to zero
implying almost sure convergence. 
�

Our last result is a LIL. In order to prove the theorem we impose some additional
moment condition on the sequence {εt }t∈Z. In particular, we assume that at least the
fourth moment of εt is finite.

Theorem 2.5 (LIL) Let {ηt,T }t=1,...,T be a locally stationary process with Assump-
tions 1.1, 1.3 and 2.3 in place and let dT = T log log T . Assume further that the
innovation sequence {εt }t∈Z satisfies Eε4t = μ4 < ∞. Then, as T → ∞, it holds that

lim sup
T→∞

1√
dT

T∑
t=1

{
ηt,T − μ

(
t

T

)}
a.s.= √

2‖Ψ ‖L2 .

Proof By Lemma A.3 it suffices to show the claim for the auxiliary process
{η̃t,T }t=1,...,T . Following the lines of the proof of Theorem 2.4 we first prove that

lim sup
T→∞

1√
dT

T∑
t=1

Ψ

(
t

T

)
εt

a.s.= √
2‖Ψ ‖L2 .

Since {εt }t∈Z is a sequence of independent random variables with finite variance the
claim follows immediately from Tomkins (1975, Theorem 1), Wichura (1973, page
279) and Lai and Wei (1982, Corollary 2). Therefore, it remains to prove that
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1√
dT

∞∑
j=0

ψ̃ j (1)εT− j
a.s.→ 0, (13)

1√
dT

∞∑
j=0

ψ̃ j (0)ε− j
a.s.→ 0 (14)

and

1√
dT

T∑
t=1

∞∑
j=0

(
ψ̃ j

(
t − 1

T

)
− ψ̃ j

(
t

T

))
εt−1− j

a.s.→ 0. (15)

In contrast to the proof of Theorem 2.4 it is not sufficient to investigate the second
moments of these terms, as d−1

T decays too slowly. However, we adapt the proof using
fourth moments. For the term in (13) it holds that

E

⎛
⎝ ∞∑

j=0

ψ̃ j (1)εT− j

⎞
⎠

4

=
∞∑

j1,..., j4=0

{
4∏

m=1

ψ̃ jm (1)

}
E

(
4∏

m=1

εT− jm

)

≤ μ4

⎛
⎝ ∞∑

j=0

ψ̃ j (1)

⎞
⎠

4

,

implying

∞∑
T=1

E

⎛
⎝ 1√

dT

∞∑
j=0

ψ̃ j (1)εT− j

⎞
⎠

4

≤
∞∑
T=1

C

T 2(log log T )2
< ∞

and, by the Borel–Cantelli lemma, almost sure convergence. The claim in (14) is
proven in exactly the same way. To show (15) consider

E

⎛
⎝ 1√

dT

T∑
t=1

∞∑
j=0

(
ψ̃ j

(
t − 1

T

)
− ψ̃ j

(
t

T

))
εt−1− j

⎞
⎠
4

= 1

d2T

T∑
t1,...,t4=1

∞∑
j1,..., j4=0

⎧⎨
⎩

4∏
m=1

(
ψ̃ j

(
t − 1

T

)
− ψ̃ j

(
t

T

))⎫⎬
⎭E

⎛
⎝ 4∏
m=1

εtm−1− jm

⎞
⎠

≤ 1

d2T

∞∑
j1,..., j4=0

⎧⎨
⎩

4∏
m=1

T∑
tm=1

∣∣∣∣ψ̃ j

(
tm − 1

T

)
− ψ̃ j

(
tm
T

)∣∣∣∣
⎫⎬
⎭ μ4

≤ 1

d2T

∞∑
j1,..., j4=0

⎧⎨
⎩

4∏
m=1

V (ψ̃ jm )

⎫⎬
⎭ = 1

d2T

⎛
⎝ ∞∑

j=0

V (ψ̃ j )

⎞
⎠
4

μ4.

The claim follows by the same arguments as above. 
�
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Obviously, if the coefficients ψ j,t,T are not time-dependent, the statement of Theo-
rem 2.5 coincides with the LIL for linear processes which was proven by Phillips and
Solo (1992).
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Appendix: Auxiliary lemmata

Lemma A.1 Let {ηt,T }t=1,...,T be a locally stationary process defined via its moving
average representation (1)with Assumptions 1.1 and 1.3 in place and let {η̃t,T }t=1,...,T
be the corresponding auxiliary process, defined by (3). Then it holds that

T∑
t=1

∣∣ηt,T − η̃t,T
∣∣ = OP (1).

Proof It holds that

T∑
t=1

∣∣ηt,T − η̃t,T
∣∣ ≤

∞∑
j=0

T∑
t=1

∣∣∣∣ψ j,t,T − ψ j

(
t

T

)∣∣∣∣ |εt− j |.

Hence,

T∑
t=1

E
∣∣ηt,T − η̃t,T

∣∣ ≤
∞∑
j=0

T∑
t=1

∣∣∣∣ψ j,t,T − ψ j

(
t

T

)∣∣∣∣E|ε1| ≤
∞∑
j=0

KE|ε1|
l( j)

< ∞,

implying the claim. 
�

Lemma A.2 Let {ηt,T }t=1,...,T be a locally stationary process defined via its mov-
ing average representation (1) with Assumptions 1.1 and 2.3 in place. Further, let
{η̃t,T }t=1,...,T be the corresponding auxiliary process, defined by (3). Then, it holds
that
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sup
1≤t≤T

|ηt,T − η̃t,T | a.s.→ 0,

as T → ∞.

Proof It holds that

∣∣ηt,T − η̃t,T
∣∣ ≤

∞∑
j=0

∣∣∣∣ψ j,t,T − ψ j

(
t

T

)∣∣∣∣ |εt− j | ≤ 1

T

∞∑
j=0

K

l( j)
|εt− j |.

Using Hölder’s inequality we obtain

∞∑
j=0

K

l( j)
|εt− j | =

∞∑
j=0

(
K

l( j)

) 1+κ
2+κ

(
K

l( j)

) 1
2+κ |εt− j |

≤
⎛
⎝ ∞∑

j=0

K

l( j)

⎞
⎠

1+κ
2+κ

⎛
⎝ ∞∑

j=0

K

l( j)
|εt− j |2+κ

⎞
⎠

1
2+κ

.

This implies that

E|ηt,T − η̃t,T |2+κ ≤ E

⎛
⎝ 1

T

∞∑
j=0

K

l( j)
|εt− j |

⎞
⎠
2+κ

≤ 1

T 2+κ

⎛
⎝ ∞∑

j=0

K

l( j)

⎞
⎠
1+κ ∞∑

j=0

K

l( j)
E|εt− j |2+κ

= K̃

T 2+κ
,

since, by Assumption 1.1, {εt }t∈Z is a sequence of independent random variables and
there exists some κ > 0 such that E|εt |2+κ < ∞. Hence, for all α > 0 we obtain,
applying the Bonferroni and the Markov inequalities,

∞∑
T=1

P

(
sup

1≤t≤T
|ηt,T − η̃t,T | > α

)
≤

∞∑
T=1

T∑
t=1

P(|ηt,T − η̃t,T | > α)

≤
∞∑
T=1

T∑
t=1

E|ηt,T − η̃t,T |2+κ

α2+κ

≤
∞∑
T=1

T∑
t=1

K̃

(αT )2+κ

=
∞∑
T=1

K̃

α2+κT 1+κ
< ∞,

which implies the claim. 
�
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Lemma A.3 Let {ηt,T }t=1,...,T be a locally stationary process defined via its mov-
ing average representation (1) with corresponding auxiliary process {η̃t,T }t=1,...,T ,
defined by (3). Under the Assumptions of Theorem 2.5 it holds that

1√
dT

T∑
t=1

(
ηt,T − η̃t,T

) a.s.→ 0,

as T → ∞, where dT = T log log T .

Proof It holds that

1√
dT

T∑
t=1

|ηt,T − η̃t,T | ≤ 1√
dT

T∑
t=1

sup
1≤t≤T

|ηt,T − η̃t,T | ≤ T√
dT

sup
1≤t≤T

|ηt,T − η̃t,T |.

From the proof of Lemma A.2 we deduce that for α > 0

∞∑
T=1

P

(
T√
dT

sup
1≤t≤T

|ηt,T − η̃t,T | > α

)
≤

∞∑
T=1

T∑
t=1

K̃ T 2+κ

α2+κT 2+κd1+κ/2
T

= K̃

α2+κ

∞∑
T=1

T

d1+κ/2
T

.

Since Eε4t = μ4 is finite by assumption we can set κ = 2 and obtain

∞∑
T=1

T

d1+2/2
T

=
∞∑
T=1

T

(T log log T )2
=

∞∑
T=1

1

T (log log T )2
< ∞,

which yields almost sure convergence. 
�
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