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Abstract
In cell biology, pharmacology and toxicology dose-response and concentration-response curves are frequently fitted to data 
with statistical methods. Such fits are used to derive quantitative measures (e.g. EC

20
 values) describing the relationship 

between the concentration of a compound or the strength of an intervention applied to cells and its effect on viability or func-
tion of these cells. Often, a reference, called negative control (or solvent control), is used to normalize the data. The negative 
control data sometimes deviate from the values measured for low (ineffective) test compound concentrations. In such cases, 
normalization of the data with respect to control values leads to biased estimates of the parameters of the concentration-
response curve. Low quality estimates of effective concentrations can be the consequence. In a literature study, we found 
that this problem occurs in a large percentage of toxicological publications. We propose different strategies to tackle the 
problem, including complete omission of the controls. Data from a controlled simulation study indicate the best-suited prob-
lem solution for different data structure scenarios. This was further exemplified by a real concentration-response study. We 
provide the following recommendations how to handle deviating controls: (1) The log-logistic 4pLL model is a good default 
option. (2) When there are at least two concentrations in the no-effect range, low variances of the replicate measurements, 
and deviating controls, control values should be omitted before fitting the model. (3) When data are missing in the no-effect 
range, the Brain-Cousens model sometimes leads to better results than the default model.

Keywords  Concentration-response curve · Dose-response curve · Viability assay · Deviating controls · 4pLL model · 
Simulation study

Introduction

Concentration-response curves are often used to graphi-
cally describe the relationship between the concentration 
of a compound applied to cells and the resulting response. 
More general, any response of a cell or an organism to an 

exposure or stimulus can be modeled as a function of expo-
sure time or as a function of a concentration or dose. Many 
types of assays in cell biology, pharmacology and toxicology 
generate such data. As reference, typically concentration 0 
or exposure time t0 = 0 , respectively, is used. This reference 
is often called negative control, or simply control.

Fitting dose-response curves or concentration-response 
curves serves different purposes. Two main objectives are 
the determination of a benchmark dose or an effective con-
centration at which the curve drops by a certain percent-
age or to a specified absolute value, and the comparison of 
curves from different exposures. Both goals require suitable 
normalization of the curves, in practice often depending on 
the observed values for the control.

However, examination of the published toxicological lit-
erature shows many examples, where the values correspond-
ing to the controls and the upper asymptote of concentration-
response curves do not fit together (Krebs et al. 2018). This 
means that the response value for the control is different 

Electronic supplementary material  The online version of this 
article (https​://doi.org/10.1007/s0020​4-020-02913​-0) contains 
supplementary material, which is available to authorized users.

 *	 Franziska Kappenberg 
	 kappenberg@statistik.tu‑dortmund.de

1	 Department of Statistics, TU Dortmund University, 
44221 Dortmund, Germany

2	 Leibniz Research Centre for Working Environment 
and Human Factors (IfADo), TU Dortmund University, 
44139 Dortmund, Germany

3	 Department of Biology, University of Konstanz, 
78457 Constance, Germany

http://orcid.org/0000-0001-8066-5333
http://crossmark.crossref.org/dialog/?doi=10.1007/s00204-020-02913-0&domain=pdf
https://doi.org/10.1007/s00204-020-02913-0


3788	 Archives of Toxicology (2020) 94:3787–3798

1 3

from the asymptotic response value for low concentrations. 
This situation is further called deviating controls. Note that 
deviating controls can only be undoubtedly identified, when 
an upper asymptote of a curve can be estimated with reason-
able certainty, i.e. where a sufficient number of data points at 
very low (no effect) concentrations are available.

Real-life data can have several additional problems, the 
most frequent is that the upper asymptote is not defined at all 
by data in the range of the asymptote value, but it is rather 
derived by an extrapolation of data in the descending part of 
the curve. This situation can result from flawed experimental 
design, and it could be remedied by inclusion of more data 
points in the low-concentration range.

In the case of sufficient data points at very low concentra-
tions, the explanation for deviating controls is less straight-
forward, as the controls do not fit to the curves despite an 
adequate experimental design (spacing of data points on the 
concentration axis). The most likely reasons are:

–	 Random variations of data points due to experimental 
imperfections

–	 Errors during the performance of the experiments (e.g. 
in producing stock dilutions)

–	 Variation in the concentration of solvents between sam-
ples

–	 Systematic deviation of endpoint readouts according to 
their position on culture plates or in analytical devices

–	 Systematic deviations due to the timing of sample prepa-
ration (e.g. incubation of cells, storage of solutions or 
during analysis, etc.)

Deviating controls raise the question how to appropriately 
deal with this situation. On the one hand, if not enough 
measurements for very low concentrations are available, 
controls are required to fit the asymptote of the concentra-
tion-response curve, and it is difficult to judge from observed 
data if the deviation is critical. On the other hand, the use 
of deviating controls can cause an extreme bias both for 
estimating the curves (or its parameters) and for estimating 
parameters derived from these curves, such as benchmark 
concentrations or EC values.

Different definitions of benchmark concentrations and 
EC values are used in the literature. Here, we use the term 
EC value in the following sense: EC20 is the concentration, 
where an absolute viability of 80% is reached.

As an illustrating example we fitted two different con-
centration-response curves to the same dataset (Fig. 1). The 
dataset is part of the real dataset analyzed in detail in the 
Results section. Cells are treated with valproic acid (VPA), 
with control values and increasing concentrations. Here, for 
a subset with five concentrations (plus control) and three 
replicates, two non-linear sigmoidal curves are fitted. Appar-
ently, the control values are higher than the response values 

for very low concentrations. In one case the data are normal-
ized to the controls such that the mean control value is 100 
and the upper asymptote of the curve is set to 100 (Fig. 1, 
left), and in the other case the control values are omitted 
and the data are normalized such that the upper asymptote 
corresponds to a value of 100 (Fig. 1, right).

The results show that the fitting procedure has a strong 
influence on the resulting estimate of the EC20 value. When 
including the control values, the estimated value is 2.633, 
and when omitting them, the value is 3.611. By visual 
inspection, for this specific case, the right fit seems to be 
more appropriate. Guidance for a general procedure to iden-
tify the best fit is required.

In this paper, we analyze the extent of deviating controls 
in published concentration-response curves, and we pre-
sent a comprehensive simulation study that analyzes the 
impact of deviating controls on the quality of the estimation 
of EC values. First, we present the literature study based 
on the journals ”Archives of Toxicology”, ”Toxicological 
Sciences”, and ”Toxicology in vitro” to determine the fre-
quency and the extent of deviating controls in published 
toxicological assays.

Then we present four different strategies to handle devi-
ating controls, including different modelling and normali-
zation approaches and one approach that completely omits 
the controls. Many different modelling approaches have 
been proposed. Here, we focus on sigmoidal relationships 
between the concentration and the response.

We perform a simulation study with three different con-
centration regimes, and with different degrees of deviation 
of the controls and of variance of the replicate measure-
ments. This leads to suggestions in which situations which 
strategy is most appropriate. Finally, we apply the methods 

Fig. 1   Concentration-response curves fitted to a part of the VPA 
dataset, normalizing to controls (left) and normalizing to the upper 
asymptote of the model fit and omitting controls (right). The fit-
ted models are the methods ”3pLL” (left) and ”NoCtrl” (right) as 
explained in section Handling deviating controls. In the left plot, the 
fitted upper asymptote is higher relative to the data points and the fit 
results in a smaller EC

20
 value (EC

20
= 2.633 ) compared to the right 

plot with EC
20

= 3.611
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to the raw data of a real data study with a large number of 
different concentrations to illustrate the insights from the 
simulation study.

Materials and methods

Literature review

We conducted a literature review in three leading inter-
national toxicological journals, ”Archives of Toxicology” 
(all issues from 2016–2018), ”Toxicological Sciences” 
(all issues from 2017–2018), and ”Toxicology in Vitro” 
(all issues from 2015–2017), to answer the following two 
questions:

–	 How often does the problem of deviating control values 
occur?

–	 How strong are the deviations in these cases?

We restricted our research to viability assays, where viability 
is defined in a broad sense, such that not only life and death 
is considered, but also activity (mostly mitochondrial activ-
ity), motility, contraction, or mitotic activity.

For such assays, we define a set of necessary criteria for 
including the curves in our analysis set:

–	 A concentration-response model is fitted to the data.
–	 Measurements for some (negative) controls are available.
–	 Measurements for at least four concentrations are avail-

able, in addition to the control.
–	 When neglecting the controls, the response values are 

monotonously decreasing with increasing concentration.
–	 For at least two of the concentrations (other than control), 

no effect can be observed, i.e. the difference between the 
corresponding response values is smaller than 10% of the 
response value for the lowest concentration.

–	 For every concentration, at least three replicate values are 
available (technical or biological).

For the curves that fulfill these criteria, we looked up (if 
available in the corresponding article) or otherwise esti-
mated both the average values of the controls and the value 
of an upper asymptote when omitting the controls. If a curve 
was fitted without the controls, the value of the upper asymp-
tote was directly obtained from the corresponding figure or 
data, if available. Otherwise, the asymptote was estimated 
manually as an average of all response values in the no-effect 
range. The deviation of the controls was calculated in per-
cent, based on a value of 100 for the asymptote. If Control 
represents the average of all individual control values and 
Fit represents the value of the upper asymptote for very 

small concentrations when omitting the controls, then the 
deviation is � = (������� − ���)∕��� ∗ 100.

Additional information was collected for each curve. For 
each concentration, the corresponding response value and 
the standard deviation of the replicates were determined, 
by estimating the values from the plotted data. If a standard 
deviation was smaller than 1 (for response values measured 
in percent values), then the value was set to 1. The aver-
age standard deviation for an entire curve was calculated as 
the median of the standard deviations for all concentrations 
except the control and was denoted by 𝜎̂med.

Fitting concentration‑response models

A parametric model is a statistical model with a finite num-
ber of parameters that have to be estimated from the data. 
We consider the situation, that for a set of concentrations 
including a negative control, measurements of several repli-
cates (biological or technical) are available. Further, mostly, 
we assume that the lowest concentrations were chosen in a 
range, where no change in viability is expected to occur. We 
call these concentrations no-effect concentrations.

When fitting parametric concentration-response curves 
to data, after an initial background correction, often the first 
modelling step is to normalize the data with respect to the 
controls to obtain percentages. Then a curve can be fitted to 
the data, and a benchmark concentration, at which a specific 
relative response is observed, can be estimated. Here, we 
concentrate on effective concentrations with EC� being the 
concentration where (100 − �)% viability is attained.

For deviating controls, where the response values of the 
controls deviate from the response values of the no-effect 
concentrations, the upper asymptote of the curve fitted to all 
data including controls does not correspond to an effect of 
100% and therefore the EC values cannot be properly inter-
preted. For example, consider the EC10 value, which corre-
sponds to the intersection of the fitted curve with the value 
90% . In the extreme case that the upper asymptote attains a 
value lower than 90% , the calculation of the EC10 value is 
even impossible.

We propose four methods to deal with this situation. All 
methods are based on the assumption that the relationship 
between concentration and viability can be described by a 
function of the family of the log-logistic functions, which 
have a typical sigmoidal shape.

As a basic model for describing the relationship between 
concentration and response, we use the four-parameter log-
logistic model (4pLL) (e.g. Ritz 2010). For a concentration 
x, x ≥ 0 , and four parameters b, c, d, e, with e > 0 , the model 
is defined by the relationship
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The parameters c and d are the lower and the upper asymp-
tote of the function, respectively, b is the slope parameter, 
and e is the inflection point. The parameter e also corre-
sponds to the concentration where the half-maximal effect 
can be observed, i.e. a response of c+d

2
 . Often, especially for 

small data sets, the re-parameterisation ẽ = log(e) is used. 
Note that the parameter e only coincides with our definition 
of the EC50 value if d = 100 , c = 0 and b > 0 , or if d = 0 , 
c = 100 and b < 0.

Fixing the parameter d to a value of 100 and restrict-
ing to b > 0 yields a three-parameter log-logistic model 
(3pLL) with a prespecified upper asymptote of 100. Add-
ing a fifth parameter f ≥ 0 and extending the model to

yields the Brain-Cousens function (BC) which is no longer 
point-symmetric but can model a so-called hormesis effect, 
where higher response values than for the controls are 
observed in the low-concentration range (Brain and Cous-
ens 1989). The size of the hormesis effect is determined by 
the value of the parameter f. The larger f the larger is the 
hormesis effect. In the BC model, the parameters c and d still 
represent the lower and the upper asymptote, respectively, 
but the parameters b and e do not have a direct interpretation 
as for the 4PLL model.

The curves were fitted numerically under the assump-
tion of normally distributed response values by minimiz-
ing the sum of squared errors between the data points and 
the fitted function. We fitted the curves using the statisti-
cal software R, version 3.5.1 (R Development Core Team 
2018), and the R-package drc (Ritz et al. 2015)

For the 3pLL and the 4pLL function we estimated the 
EC values based on the inverse of the model function. 
This means that for a fixed value of � the EC� value is the 
concentration x̃ at which f (x̃|b, c, d, ẽ) = 100 − 𝜆 , that is

For the 3pLL function, in this formula d was replaced by the 
constant 100. For the BC model, EC values cannot be cal-
culated with an inverse function. Instead, they are obtained 
by numerical optimization.

Handling deviating controls

Based on the dose-response models from the family of the 
log-logistic functions, we propose four methods for fitting 

f (x|b, c, d, e) = c +
d − c

1 + exp(b(log(x) − log(e))
.

f (x|b, c, d, e, f ) = c +
d − c + f ⋅ x

1 + exp(b(log(x) − log(e))

x̃ = exp(ẽ)

(
d − (100 − 𝜆)

(100 − 𝜆) − c

) 1

b

.

a model to the data with an upper asymptote of 100%, 
or respectively a maximum value of 100% for a present 
hormesis effect. The procedures and their acronyms used 
in this paper are:

–	 4pLL

–	 Fit a 4pLL model to the original data
–	 Normalize the data with respect to the upper asymp-

tote
–	 Fit a 4pLL model to the normalized data

–	 3pLL

–	 Normalize the data with respect to the controls
–	 Fit a 3pLL model with fixed value d = 100 (for upper 

asymptote)

–	 No Ctrl

–	 Fit a 4pLL model to the original data without the 
controls

–	 Normalize the data with respect to the upper asymp-
tote

–	 Fit a 4pLL model to the normalized data without the 
controls

–	 BC

–	 Fit a Brain-Cousens model to the original data
–	 Normalize the data with respect to the upper 

asymptote or the maximal value of the fitted curve 
(maximal value is set to 100, if a hormesis effect is 
observed for the fit)

–	 Fit a Brain-Cousens model to the normalized data

The methods ”4pLL” and ”3pLL” make full use of the con-
trol values with the difference that once the value of the 
upper asymptote and once the mean control value is used 
for normalizing the data. ”No Ctrl” completely ignores the 
control values, and ”BC” allows a more flexible fit for mod-
elling curves in cases where a hormesis effect is observed 
at low concentrations before viability decreases at higher 
concentrations.

The second model fit for the methods ”4pLL”, ”No 
Ctrl” and ”BC” is only required since starting values for 
the optimization may be range-dependent and thus can lead 
to slightly different results. For the first three methods, the 
final upper asymptote corresponds to a viability of 100% . 
For the method ”BC”, if a hormesis effect is observed, the 
data is normalized with respect to the maximal value of the 
fitted curve.
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In the choice of models considered, we concentrate on 
functions from the family of log-logistic functions as these 
are well-established in the field of toxicology for modelling 
concentration-response relationships where the response is 
viability of a cell. The methods ”3pLL” and ”No Ctrl” cor-
respond to two intuitive ideas one might have when deal-
ing with the problem of deviating controls. When using 
the ”3pLL” model, the upper asymptote is only determined 
by the control values, while for ”No Ctrl”, the controls are 
not considered at all for determining the value of the upper 
asymptote. In the ”4pLL” model, the importance of the con-
trols lies between these two extremes, therefore these three 
methods cover a wide range of the weighting with which 
the controls should be included into the analysis. The ”BC” 
model includes the additional idea that in the case of neg-
atively deviating controls, these deviations should not be 
compensated by some renormalization or by omission of 
the controls, but instead should be taken into account in the 
model.

Design of the simulation study

In a simulation study we compare the four methods intro-
duced above, considering several scenarios (subsequently 
called situations) with deviating controls. The quality of a 
method is assessed by calculating the EC20 value and com-
paring it to the known true value of the corresponding con-
centration-response curve.

The shape of the true concentration-response curve is 
based on a real data example, which is presented in section 
Application to Real Data. The parameter values of the true 
4pLL model are b = 1.462 , c = 0 , d = 100 , and e = 4.22 , 
corresponding to a decreasing curve with upper asymptote 
100% , lower asymptote 0% and inflection point 4.22, which 
coincides in this case with the EC50 value. For this model, 
the EC20 value is 1.63. Figure 2 (top left) visualizes the cor-
responding curve.

For simulating data from the true curve, we selected 5 
values and the control 0 as concentrations, with 3 replicates 
for each concentration. Random normal noise was added 
to each value, with mean � = 0 and standard deviation � . 
The deviation of the controls was modeled by adding a shift 
value � to the control values. The two variable parameters 
in this simulation study are the standard deviation � and 
the shift � . We set the standard deviation � to the values 
{2, 4, 8, 12} and the deviation � of the controls from the true 
curve to the values {−10,−8,−6,−4,−2, 0, 2, 4, 6, 8, 10}.

We considered three situations that differ in the five 
concentration values with respect to the true curve. The 
three situations are labeled ”easy”, ”medium” and ”diffi-
cult”, see Fig. 2.

–	 In the ”easy” situation the concentration values cover the 
entire range of the curve, particularly the region around 
the upper asymptote. Two concentrations are in the low 
or no effect range, one concentration corresponds to 
approximately 60% viability, and two concentrations are 
in the range of higher toxicity.

–	 In the ”medium” situation, only one concentration is in 
the low effect range, and even for this concentration the 
viability has already dropped by about 10% . Instead, two 
concentrations are in the middle range of the curve and 
two concentrations in the range of high toxicity, with 
only 0 − 10% viability remaining.

–	 In the ”difficult” situation, neither the upper nor the lower 
asymptote is covered well by the concentration values. 
Instead, all five values are in the range of 10% to 80% 
viability.

For each combination of � and � and for each situation, we 
simulated 5 000 datasets. We applied all four fitting methods 
to each of these datasets and estimated the EC20 values. As 
quality measure of a model fit, the difference between the 
estimated EC20 value and the true value 1.63 was calculated.

VPA cytotoxicity study

We applied all four methods compared in the simulation 
study to a real dataset. The dataset is a cytotoxicity assay of 
the compound valproic acid (VPA), which was measured for 

Fig. 2   Underlying sigmoidal curve of the simulation study with true 
EC

20
 value (top left), and selected concentrations (denoted as red tri-

angles) for the three situations ”easy” (top right), ”medium” (bottom 
left) and ”difficult” (bottom right)
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a negative control and for 12 increasing concentrations from 
0.1 mM to 56.2 mM.

Cytotoxicity with HepG2 cells was analysed using the 
CellTiter-Blue (CTB) assay as described in Gu et al. (2018) 
according to the SOP in Supplement 3A. HepG2 cells were 
cultivated in Dulbecco’s Modified Eagle’s Medium (DMEM) 
with 25 mM glucose (Albrecht et al. 2019). VPA (CAS num-
ber 99-66-1; Sigma Aldrich; product number: PHR1061-1G) 
was directly dissolved in the culture medium to generate 
the concentrations indicated in the results section so that no 
solvent was required.

In the experimental study, the viability was measured for 
seven technical replicates for each of the concentrations. To 
apply the four methods to datasets that resemble those from 
the simulation study, we chose three combinations of five 
concentrations analogously to the three situations ”easy”, 
”medium” and ”difficult” from the simulation study. For 
each of the chosen concentrations we randomly sampled 
three out of the seven replicates.

Results

Literature review

In total, 2199 papers from the Archives of Toxicology (Arch-
Tox, all issues 2016-2018), Toxicological Sciences (ToxSci, 
all issues 2017-2018) and Toxicology in Vitro (ToxVitro, all 
issues 2015-2017) were reviewed.

In Table 1, different numbers of papers and numbers 
of curves are listed. The first block gives the number of 
papers per journal, the number of papers with curves, and 

the number of papers that contain at least one curve fulfill-
ing the criteria defined in section Literature Review. The 
second block contains the number of curves, the number of 
curves fulfilling the criteria, and the number of curves with 
indicated standard deviation. The two latter numbers differ, 
as for some plots it could not be detected in the respective 
publication whether standard deviation or standard error is 
shown in the plots, and in some cases with standard errors 
the number of replicates remains unknown.

The number of curves per paper is in the range 1 to 204. 
The median value of curves per paper fulfilling all criteria 
is 6 and the mean value is 17.04, with standard deviation 
33.31. The three papers with the most curves fulfilling all 
criteria contain 204, 91, and 57 such curves, while 8 papers 
contain only one such curve.

Histograms for the observed values of � and 𝜎̂med illus-
trate the extent of deviations between the controls and the 
asymptote for very small concentrations (Fig. 3).

The standard deviation is in the range 0 to 10 for 85% 
(ArchTox), 88% (ToxSci) and 91% (ToxVitro) of the curves 
and in the range 0 to 20 for 99%, 100% and 99% of the 
curves, respectively.

The deviation of the controls is very small ( � in the range 
-2 to 2) and thus essentially negligible only for 47% (Arch-
Tox), 38% (ToxSci) and 31% (ToxVitro) of the curves. For 
80%, 88% and 79% of the curves, respectively, � is in the 
range -10 to 10. Based on this observation, the deviation of 
the controls considered in the simulation study varies in that 
same range. Basically all deviations are between -40 and 40, 
only for 3 curves in ArchTox and 1 curve in ToxVitro the 
deviation is larger than 40.

The controls are not consistently deviating in the same 
direction across the three journals: For ArchTox, negative 
deviations with 𝛥 < −2 occur for 34% and positive devia-
tions with 𝛥 > 2 for 19% of the curves. For ToxSci, negative 
deviations occur for 21% and positive deviations for 41% of 
the curves, and for ToxVitro, negative deviations occur for 
23% and positive deviations for 46% of the curves.

These analyses demonstrate that deviations of the con-
trol occur frequently for concentration-response curves pub-
lished in the toxicological literature.

Simulation study

The results of the simulation study are analyzed in two dif-
ferent ways. In the first analysis, the proportion of estimated 
EC20 values that are in an acceptable range of the true value 
is calculated. A factor of at most 1.3 is defined to be accept-
able, i.e. the estimate of the true value EC20 = 1.63 must be 
in the interval [1.25, 2.12].

The proportions of accepted estimates for the ”easy” 
situation are shown in Fig. 4. The corresponding plots for 
the ”medium” and the ”difficult” situation are shown in the 

Table 1   Key figures of the literature review: The table comprises the 
total number of papers identified in the respective years in the three 
journals ArchTox, ToxSci and ToxVitro, the number of papers that 
contain modelled dose-response curves, the number of papers where 
at least one curve fulfilled the criteria, the total number of modelled 
dose-response curves, the number of curves that fulfill the criteria, 
and the number of curves that fulfill the criteria and indicate whether 
standard deviation or standard error of the mean is indicated in the 
plot

ArchTox 
(2016–
2018)

ToxSci 
(2017–
2018)

ToxVitro 
(2015–
2017)

Total number of papers 810 592 797
Number of papers with curves 31 7 37
Number of papers with at 

least one curve fulfilling the 
criteria

15 6 26

Number of curves 702 65 345
Fulfilling the criteria 440 56 213
Number of curves with indi-

cated measure of dispersion
266 56 202
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Supplemental Figures S1 and S2. Each cell of one plot cor-
responds to one combination of the parameters � and � . The 
columns represent from left to right increasing noise. The 
rows represent the deviation of the controls, with decreasing 
values from top to bottom and no deviation in the center.

In the ”easy” situation the methods ”4pLL” and ”No 
Ctrl” achieve the highest proportions. Especially for � ≤ 8 
and 𝛥 > 6 ”No Ctrl” outperforms also ”4pLL”. The method 
”3pLL” performs clearly worse for � ≥ 8 and for large devia-
tions ( � ≤ −6 and � ≥ 4 ), The method ”BC” is competitive, 
except for large � values.

In the ”medium” situation, in general the methods 
”4pLL”, ”3pLL” and ”BC” perform similar, with still about 

100% accepted estimates for � = 2 . ”No Ctrl” often performs 
worse. However, for � ≤ 4 and large deviations |�| ≥ 8 ”No 
Ctrl” achieves clearly higher proportions.

In the ”difficult” situation, in general the results are simi-
lar to the ”medium” situation, but ”No Ctrl” only performs 
best for � = 2 and |�| = 10 , and now ”BC” leads to accept-
able results more often for � ≤ −8 , i.e. for control values 
with a negative deviation.

In the second analysis, we determined for each of the 
5000 iterations for every parameter combination the method 
with the smallest absolute difference between estimated and 
true EC20 value. Only iterations were considered where at 

Fig. 3   Distribution of the values of the standard deviations 𝜎̂
med

 and 
the deviations of the controls � as found in ArchTox (2016–2018), 
ToxSci (2017–2018) and ToxVitro (2015–2017). For � , all curves 
that fulfill the criteria are considered, regardless of whether it is 

clearly stated whether standard deviation or standard errors are indi-
cated. 3 values for ArchTox and 1 value for ToxVitro are larger than 
40 and are not shown in this plot
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least one method (and thus also the best) leads to an accept-
able result.

For the ”easy” situation, for every combination of the 
parameters � and � , the frequencies how often the meth-
ods perform best, respectively, are shown in Fig. 5. For the 
”medium” and ”difficult” situation, corresponding plots are 
shown in Supplemental Figures S3 and S4. The number in 
each cell gives the number of iterations in which at least one 
method lead to an acceptable estimate of the EC20 value.

The ”easy” and the ”medium” situation lead overall to 
very similar conclusions. In almost all cases, ”No Ctrl” is by 
far the most frequent winner, especially for small � and large 
absolute � values. From the other methods, ”4pLL” often is 
the best one, while ”3pLL” and ”BC” fail more often.

For moderate � , ”No Ctrl” still is the best method most 
frequently. This is even true for � = 2 and � = 0 in the 
”easy” situation, where controls are expected to help. 
However, the other methods also lead to the smallest error 
in estimating the EC20 considerably often.

Fig. 4   Percentages of accepted estimates for the 5000 iterations of the 
simulation study. In the situation shown here, the five concentrations 
considered cover the entire range of the curve (”easy” situation). An 
estimate is accepted if it takes values in the interval [1.25, 2.12]. Each 
cell corresponds to one combination of the standard deviation of the 
replicates, � , and the deviation of the controls, � . In each cell, per-

centages for all four methods (from left to right: 4pLL, 3pLL, NoCtrl, 
BC) are shown. The columns represent standard deviations (increas-
ing from left to right) and rows deviations of the controls (positive 
deviations on top, no deviations in the center and negative deviations 
in the bottom)
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In the ”difficult” situation, the results for � ≥ 8 look 
similar across all values of � . ”No Ctrl” rarely is the best 
method, whereas all other three methods win similarly 
often. ”BC” slightly dominates for negative values of � . 
The more extreme the deviation is in this direction, the 
better is the method ”BC”.

For � = 2 and � = 4 , the results are different. For large � 
”No Ctrl” is most frequently the best method, in a medium 
range of � often ”4pLL” is the winner, while ”No Ctrl” per-
forms poorly, and for negative � , ”BC” is the best method.

In summary, the main results are:

–	 In the ”easy” situation ”4pLL” and ”No Ctrl” are com-
petitive, but for large deviations of the controls and small 
standard deviation of the replicates ”No Ctrl” is clearly 
better.

–	 In the ”medium” situation, we have to distinguish 
between numbers of acceptable estimates and winners. 
”No Ctrl” is often the winner, but it leads to acceptable 

Fig. 5   Number of times each model leads to the best estimate of the 
EC

20
 in the 5000 iterations of the simulation study, respectively. In 

the situation shown here, the five concentrations considered cover the 
entire range of the curve (”easy” situation). Each cell corresponds 
to one combination of the standard deviation of the replicates � and 
the deviation of the controls � . In each cell, the numbers for all four 

methods (from left to right: 4pLL, 3pLL, NoCtrl, BC) are shown. 
The columns represent standard deviations (increasing from left to 
right) and rows deviations of the controls (positive deviations on top, 
no deviations in the center and negative deviations in the bottom). N 
denotes the number of iterations in which at least one method lead to 
an estimate in the interval [1.25, 2.12] (”acceptable result”)



3796	 Archives of Toxicology (2020) 94:3787–3798

1 3

results less frequently, except for large deviations and 
small standard deviations.

–	 In the ”difficult” situation, ”4pLL” is competitive, but 
for very large positive deviations ”No Ctrl” performs 
better and for large negative deviations ”BC” performs 
better.

In addition to these analyses for the EC20 , we conducted 
the same analyses for the EC50 . The true value of the EC50 
for the underlying curve (Fig. 2) is 4.22. Again, plots sum-
marizing the proportion of acceptable results (Supplemental 
Figures S5, S6 and S7) and plots counting the number of 
winners (Supplemental Figures S8, S9 and S10) are created. 
Since estimation of the EC50 is affected less by deviation of 
the controls, a narrower acceptable range around the true 
EC50 is considered: A factor of at most 1.1 is defined to be 
acceptable, i.e. the estimate of the true value EC50 = 4.22 
must be in the interval [3.84, 4.64].

Regarding the percentage of accepted estimates, the 
results are very similar to those of the EC20 in all three situa-
tions with equally slightly less accepted estimates. For � ≥ 8 
or |�| ≤ 4 , the methods ”3pLL”, ”4pLL” and ”BC” perform 
similarly. A difference between the three scenarios can be 
observed for ”No Ctrl”, with fewer acceptable results for 
medium and difficult situation.

For the number of winners, an increase in the number of 
times that ”3pLL” leads to the best result is noticeable. In 
the case of |�| ≤ 2 , ”3pLL” is the best method most often, 
while for larger deviations ”No Ctrl” and ”BC” lead to the 
best result most often, in the ”easy” situation also ”4pLL” 
is competitive.

One point of criticism regarding counting the number of 
winners is that no differences between the performances of 
the methods are shown: It may happen that one method only 
very slightly dominates another method in the majority of 
cases, but this other method is far better than the first method 
in the remaining cases. In such a scenario we would prefer 
the second method over the first one, but the number of win-
ners suggests otherwise. Therefore, this analyses should be 
interpreted with caution and algorithmic recommendations 
should mainly follow the analysis considering the percent-
age of acceptable results. The recommendations remain 
unchanged by the analysis of the EC50.

Application to real data

The four procedures described in section Handling deviating 
controls were applied to the VPA dataset, resembling the 
”easy” situation (Fig. 6). The plots for the ”medium” and 
the ”difficult” situation are shown in Figures S11 and S12 in 
the supplement. For the ”easy” situation, we observe a posi-
tive deviation of the controls with � ≈ 12 . For the other two 
situations, reliable estimation of � directly from the reduced 

dataset is not possible. In the ”easy” situation, the standard 
deviations lie approximately in the interval [2,11.5] with a 
median close to 5. In the ”medium” and ”difficult” situa-
tion the standard deviations are smaller, with median values 
around 2.1 and 4.3, respectively.

The estimated EC20 values for the three situations and 
for the four modeling methods are presented in Table 2. 
In all three situations, the method ”No Ctrl” leads to 
the largest estimates for the EC20 . For the ”easy” and 
the ”medium” situation, this is followed by the method 
”4pLL”, while ”3pLL” leads to the smallest estimates in 
all situations. The estimates for ”No Ctrl” and ”3pLL” dif-
fer by a factor of 1.3 in the ”easy” situation, by a factor of 
2.3 in the ”medium” situation and by a factor of 1.7 in the 
”difficult” situation. The estimation method thus heavily 
influences the resulting estimate of the EC20 , even in the 
”easy” situation.

The curve modelled with ”BC” is not necessarily 
monotonously decreasing. For example, in the ”medium” 
and the ”difficult” situation, the modelled curve takes its 

Fig. 6   Application of the four methods ”4pLL”, ”3pLL”, ”NoCtrl” 
and ”BC” to a part of the VPA dataset according to the ”easy” situa-
tion from the simulation study

Table 2   EC
20

 values for all four methods applied to parts of the VPA 
dataset according to the ”easy”, the ”medium” and the ”difficult” situ-
ation from the simulation study

4pLL 3pLL No Ctrl BC

Easy 3.25 2.63 3.61 3.11
Medium 2.45 1.77 3.99 1.96
Difficult 1.87 1.85 3.23 1.91
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lowest value between the two highest concentrations and 
increases again. The value of the right asymptote in the 
”middle” situation is 209 and even 945 in the ”difficult” 
situation, which is biologically not meaningful and which 
illustrates one of the problems when modelling a Brain-
Cousens curve in a situation where the controls are not 
negatively deviating.

Discussion and conclusions

Fitting curves to estimate the relationship between concen-
trations of a compound and the viability of cells is a fre-
quent task in the analysis of toxicological and biological 
assays. Control values corresponding to concentration 0 
are often used to normalize the estimated response values 
before or after curve fitting. However, from experience and 
based on our review of the recent toxicological literature it 
becomes obvious that often response values of the control 
concentration do not fit well to asymptotes of the fitted 
curves in the low-concentration range. Such deviating con-
trols must be accounted for in the statistical analysis. We 
focused on the quality of estimates of effective concentra-
tions derived from the fitted curves.

The simulation study helps to understand in which theo-
retical situations which method is best. However, since 
the true function is not known in practical data situations, 
only features of the observed data can be used to make 
decisions on the analysis strategy. The standard deviation 
of the replicates can be estimated from the data, but the 
deviation of the controls cannot be estimated in general, 
especially without concentrations in the no-effect range. In 
the ”easy” situation, there are two no-effect concentrations 
that help to determine the upper asymptote and to estimate 
the deviation. In the ”medium” and ”difficult” situation 
this is only possible for small standard deviations. In the 
”difficult” situation there is still a clear decrease in the 
response for the two lowest concentrations. If the observed 
response value for the control is only slightly larger than 
the observed values for the lowest concentration, this can 
be interpreted as negatively deviating controls.

Our comparisons of different approaches on simu-
lated and real data lead to clear recommendations how 
to address the challenge of deviating controls. In general, 
for true sigmoidal relationships as expected in many real 
world scenarios, the popular ”4pLL” approach works well. 
In case of a high-quality fit of the asymptote for low con-
centrations, low variances of the replicate measurements, 

Fig. 7   Recommended algo-
rithm for fitting concentration-
response curves to toxicologi-
cal data from viability or cell 
function assays, considering 
potential deviations for the 
negative control. The algo-
rithm is specifically aimed at 
the situation of monotonously 
decreasing concentration-
response-curves
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and deviating controls, the approach ”No Ctrl” (omit 
control values) clearly leads to better results. In case of 
missing values both in the low-concentration and in the 
high-concentration range, ”4pLL” or ”BC” lead to the best 
results and should both be considered. As biologically 
meaningless results may occur when modeling a BC curve 
with positively deviating controls, this method should only 
be used for negative deviations and should always be sub-
jected to a plausibility check.

In general we strongly discourage the use of the ”3pLL” 
method as it performs clearly worse in terms of percentage 
of accepted estimates in comparison to the other methods. 
Only for estimation of the EC50 , where the value of the 
upper asymptote has less impact than for estimating the 
EC20 , ”3pLL” leads to the most accurate estimate most 
often especially in those situations where all methods per-
form similarly regarding accepted estimates.

Note that we specifically investigated the situation of 
monotonously decreasing concentration-response-curves. 
For this scenario, as practical guideline for the analysis 
of a real dataset, we propose the procedure as presented 
in Fig. 7.

Based on these recommendations, for the application to 
the VPA dataset, in the ”easy” situation the method ”No 
Ctrl” should yield the best estimate of the EC20 , which is 
in this case 3.61mM. Looking at the full dataset, the con-
trols seem to be positively deviating such that ”No Ctrl” 
indeed seems to be the most plausible and suitable method 
for this case.
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